Cystobactamides

Baumann; Sascha ;   et al.

Patent Application Summary

U.S. patent application number 14/904654 was filed with the patent office on 2016-05-26 for cystobactamides. The applicant listed for this patent is GOTTFRIED WILHELM LEIBNIZ UNIVERSITAT HANNOVER, HELMHOLTZ-ZENTRUM FUR INFEKTIONSFORSCHUNG GMBH. Invention is credited to Sascha Baumann, Walid A.M. Elgaher, Klaus Gerth, Franziska Gille, Mostafa Hamed, Rolf Hartmann, Jennifer Herrmann, Andreas Kirschning, Kathrin Mohr, Maria Moreno, Rolf Muller, Ritesh Raju, Heinrich Steinmetz, Liang Liang Wang.

Application Number20160145304 14/904654
Document ID /
Family ID48792948
Filed Date2016-05-26

United States Patent Application 20160145304
Kind Code A1
Baumann; Sascha ;   et al. May 26, 2016

CYSTOBACTAMIDES

Abstract

The present invention provides cystobactamides of formula (I) and the use thereof for the treatment or prophylaxis of bacterial infections: ##STR00001##


Inventors: Baumann; Sascha; (Saarbrucken, DE) ; Herrmann; Jennifer; (Saarbrucken, DE) ; Mohr; Kathrin; (Braunschweig, DE) ; Steinmetz; Heinrich; (Hildesheim, DE) ; Gerth; Klaus; (Braunschweig, DE) ; Raju; Ritesh; (Saarbrucken, DE) ; Muller; Rolf; (Blieskastel, DE) ; Hartmann; Rolf; (Saarbrucken, DE) ; Hamed; Mostafa; (Saarbrucken, DE) ; Elgaher; Walid A.M.; (Saarbrucken, DE) ; Moreno; Maria; (Hannover, DE) ; Gille; Franziska; (Langenhagen, DE) ; Wang; Liang Liang; (Hannover, DE) ; Kirschning; Andreas; (Clausthal-Zellerfeld, DE)
Applicant:
Name City State Country Type

HELMHOLTZ-ZENTRUM FUR INFEKTIONSFORSCHUNG GMBH
GOTTFRIED WILHELM LEIBNIZ UNIVERSITAT HANNOVER

Braunschweig
Hannover

DE
DE
Family ID: 48792948
Appl. No.: 14/904654
Filed: July 14, 2014
PCT Filed: July 14, 2014
PCT NO: PCT/EP2014/001925
371 Date: January 12, 2016

Current U.S. Class: 514/2.4 ; 435/252.3; 435/252.31; 435/252.32; 435/252.33; 435/252.34; 435/252.35; 435/254.11; 435/254.2; 435/254.21; 435/254.22; 435/254.23; 435/254.3; 435/320.1; 435/325; 435/346; 435/348; 435/354; 435/358; 435/365; 435/366; 435/369; 435/419; 435/69.1; 530/330; 536/23.7; 560/43
Current CPC Class: C07C 237/42 20130101; C12N 15/52 20130101; Y02A 50/30 20180101; A61K 38/00 20130101; C07K 7/06 20130101; C07K 5/06078 20130101; C07C 237/44 20130101; A61P 31/04 20180101; C12P 13/02 20130101
International Class: C07K 7/06 20060101 C07K007/06; C07K 5/065 20060101 C07K005/065

Foreign Application Data

Date Code Application Number
Jul 12, 2013 EP 13003539.7

Claims



1. A compound of formula (V) ##STR00112## wherein R.sup.51 is a hydrogen atom, or a C.sub.1-6 alkyl group; R.sup.52 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl; R.sup.53 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl; R.sup.54 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl; R.sup.55 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl; D is N or CR.sup.56; E is N or CR.sup.57; G is N or CR.sup.58; M is N or CR.sup.59; R.sup.56 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl; R.sup.57 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl; R.sup.58 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl; R.sup.59 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl; and Ar.sup.6 is an optionally substituted phenyl group or an optionally substituted heteroaryl group having 5 or 6 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen; or a pharmaceutically acceptable salt, solvate or hydrate or a pharmaceutically acceptable formulation thereof.

2. A compound according to claim 1 of formula (VI) ##STR00113## wherein R.sup.51 is a hydrogen atom, or a C.sub.1-6 alkyl group; R.sup.53 is F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl; D is N or CR.sup.56; R.sup.56 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl; R.sup.57 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl; R.sup.58 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl; R.sup.59 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl; and Ar.sup.6 is an optionally substituted phenyl group or an optionally substituted heteroaryl group having 5 or 6 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen; or a pharmaceutically acceptable salt, solvate or hydrate or a pharmaceutically acceptable formulation thereof.

3. A compound according to claim 1 of formula (VII) ##STR00114## wherein R.sup.51 is a hydrogen atom, or a C.sub.1-6 alkyl group; R.sup.53 is F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl; D is N or CR.sup.56; R.sup.56 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl; R.sup.57 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl; R.sup.58 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl; R.sup.59 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl; R.sup.60 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl; R.sup.61 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl; and R.sup.8 is a hydrogen atom, an alkyl, an alkenyl, an alkynyl, a heteroalkyl, a cycloalkyl, a heterocycloalkyl, an alkylcycloalkyl, a heteroalkylcycloalkyl, an aryl, a heteroaryl, an aralkyl or a heteroaralkyl group; or a pharmaceutically acceptable salt, solvate or hydrate or a pharmaceutically acceptable formulation thereof.

4. A compound according to claim 1 of formula (IV) ##STR00115## wherein R.sup.5 is a group of formula --O--C.sub.1-6 alkyl; R.sup.6 is a hydroxy group; R.sup.7 is a group of formula --O--C.sub.1-6 alkyl; and R.sup.8 is a hydrogen atom, an alkyl, an alkenyl, an alkynyl, a heteroalkyl, a cycloalkyl, a heterocycloalkyl, an alkylcycloalkyl, a heteroalkylcycloalkyl, an aryl, a heteroaryl, an aralkyl or a heteroaralkyl group; or a pharmaceutically acceptable salt, solvate or hydrate or a pharmaceutically acceptable formulation thereof.

5. A compound according to claim 3, wherein R.sup.8 is a hydrogen atom or a group of the following formula: ##STR00116## wherein R.sup.9 is COOH or CONH.sub.2 and R.sup.10 is COOH or CONH.sub.2.

6. A compound selected from: ##STR00117## ##STR00118## ##STR00119## ##STR00120##

7. A compound of formula (I) ##STR00121## wherein Ar.sup.1 is an optionally substituted phenylene group or an optionally substituted heteroarylene group having 5 or 6 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen; Ar.sup.2 is an optionally substituted phenylene group or an optionally substituted heteroarylene group having 5 or 6 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen; Ar.sup.3 is an optionally substituted phenylene group or an optionally substituted heteroarylene group having 5 or 6 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen; Ar.sup.4 is absent or an optionally substituted phenylene group or an optionally substituted heteroarylene group having 5 or 6 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen; Ar.sup.5 is absent or an optionally substituted phenylene group or an optionally substituted heteroarylene group having 5 or 6 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen; L.sup.1 is a bond, an oxygen atom, a sulphur atom or a group of formula NH, CONH, NHCO, COO, OCO, CONR.sup.3, NR.sup.3CO, OCONH, NHCOO, NHCONH, OCONR.sup.3, NR.sup.3COO, NR.sup.3CONR.sup.4, NR.sup.3, --CNR.sup.3--, --CO--, --SO--, --SO.sub.2--, --SO.sub.2NH--, --NHSO.sub.2--, --SO.sub.2NR.sup.3--, --NR.sup.3SO.sub.2--, --COCH.sub.2--, --CH.sub.2CO--, --COCR.sup.3R.sup.4--, --CR.sup.3R.sup.4CO--, --NHCSNH--, --NR.sup.3CSNR.sup.4, --CH.dbd.CH--, --CR.sup.3.dbd.CR.sup.4--, or a heteroarylene group having 5 or 6 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen, or a heteroalkylene group; L.sup.2 is a bond, an oxygen atom, a sulphur atom or a group of formula NH, CONH, NHCO, COO, OCO, CONR.sup.3, NR.sup.3CO, OCONH, NHCOO, NHCONH, OCONR.sup.3, NR.sup.3COO, NR.sup.3CONR.sup.4, NR.sup.3, --CNR.sup.3--, --CO--, --SO--, --SO.sub.2--, --SO.sub.2NH--, --NHSO.sub.2--, --SO.sub.2NR.sup.3--, --NR.sup.3SO.sub.2--, --COCH.sub.2--, --CH.sub.2CO--, --COCR.sup.3R.sup.4--, --CR.sup.3R.sup.4CO--, --NHCSNH--, --NR.sup.3CSNR.sup.4, --CH.dbd.CH--, --CR.sup.3.dbd.CR.sup.4--, or a heteroarylene group having 5 or 6 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen, or a heteroalkylene group; L.sup.3 is absent or a bond, an oxygen atom, a sulphur atom or a group of formula NH, CONH, NHCO, COO, OCO, CONR.sup.3, NR.sup.3CO, OCONH, NHCOO, NHCONH, OCONR.sup.3, NR.sup.3COO, NR.sup.3CONR.sup.4, NR.sup.3, --CNR.sup.3--, --CO--, --SO--, --SO.sub.2--, --SO.sub.2NH--, --NHSO.sub.2--, --SO.sub.2NR.sup.3--, --NR.sup.3SO.sub.2--, --COCH.sub.2--, --CH.sub.2CO--, --COCR.sup.3R.sup.4--, --CR.sup.3R.sup.4CO--, --NHCSNH--, --NR.sup.3CSNR.sup.4, --CH.dbd.CH--, --CR.sup.3.dbd.CR.sup.4--, or a heteroarylene group having 5 or 6 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen, or a heteroalkylene group; L.sup.4 is absent or a bond, an oxygen atom, a sulphur atom or a group of formula NH, CONH, NHCO, COO, OCO, CONR.sup.3, NR.sup.3CO, OCONH, NHCOO, NHCONH, OCONR.sup.3, NR.sup.3COO, NR.sup.3CONR.sup.4, NR.sup.3, --CNR.sup.3--, --CO--, --SO--, --SO.sub.2--, --SO.sub.2NH--, --NHSO.sub.2--, --SO.sub.2NR.sup.3--, --NR.sup.3SO.sub.2--, --COCH.sub.2--, --CH.sub.2CO--, --COCR.sup.3R.sup.4--, --CR.sup.3R.sup.4CO--, --NHCSNH--, --NR.sup.3CSNR.sup.4, --CH.dbd.CH--, --CR.sup.3.dbd.CR.sup.4--, or a heteroarylene group having 5 or 6 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen, or a heteroalkylene group; R.sup.1 is a hydrogen atom, a halogen atom, a hydroxy group, an amino group, a thiol group, a nitro group, a group of formula --COOH, --SO.sub.2NH.sub.2, --CONH.sub.2, --NO.sub.2 or --CN, an alkyl, an alkenyl, an alkynyl, a heteroalkyl, a cycloalkyl, a heterocycloalkyl, an alkylcycloalkyl, a heteroalkylcycloalkyl, an aryl, a heteroaryl, an aralkyl or a heteroaralkyl group; R.sup.2 is a hydrogen atom, a halogen atom, a hydroxy group, an amino group, a thiol group, a nitro group, a group of formula --COOH, --SO.sub.2NH.sub.2, --CONH.sub.2, --NO.sub.2 or --CN, an alkyl, an alkenyl, an alkynyl, a heteroalkyl, a cycloalkyl, a heterocycloalkyl, an alkylcycloalkyl, a heteroalkylcycloalkyl, an aryl, a heteroaryl, an aralkyl or a heteroaralkyl group; the groups R.sup.3 are independently from each other a hydrogen atom or a C.sub.1-6 alkyl group; and the groups R.sup.4 are independently from each other a hydrogen atom or a C.sub.1-6 alkyl group; or a pharmaceutically acceptable salt, solvate or hydrate or a pharmaceutically acceptable formulation thereof.

8. A compound according to claim 7 of formula (II) ##STR00122## wherein Ar.sup.1, Ar.sup.2, Ar.sup.3, L.sup.1, L.sup.2, R.sup.1 and R.sup.2 are as defined in claim 7.

9. A compound according to claim 7, wherein Ar.sup.1 is an optionally substituted 1,4-phenylene group or an optionally substituted 1,3-heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen; Ar.sup.2 is an optionally substituted 1,4-phenylene group or an optionally substituted 1,3-heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen; Ar.sup.3 is an optionally substituted 1,4-phenylene group or an optionally substituted 1,3-heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen; Ar.sup.4 is absent or an optionally substituted 1,4-phenylene group or an optionally substituted 1,3-heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen; and Ar.sup.5 is absent or an optionally substituted 1,4-phenylene group or an optionally substituted 1,3-heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen.

10. A compound according to claim 7, wherein L.sup.1 is a group of formula --CONH--, --NHCO--, --SO.sub.2NH--, --NHSO.sub.2--, --CH.dbd.CH--, --CR.sup.3.dbd.CR.sup.4-- or an optionally substituted heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen, wherein R.sup.3 and R.sup.4 are independently from each other a C.sub.1-6 alkyl group; L.sup.2 is a group of formula --CONH--, --NHCO--, --SO.sub.2NH--, --NHSO.sub.2--, --CH.dbd.CH--, --CR.sup.3.dbd.CR.sup.4-- or an optionally substituted heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen, wherein R.sup.3 and R.sup.4 are independently from each other a C.sub.1-6 alkyl group; L.sup.3 is absent or a group of formula --CONH--, --NHCO--, --SO.sub.2NH--, --NHSO.sub.2--, --CH.dbd.CH--, --CR.sup.3.dbd.CR.sup.4-- or an optionally substituted heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen, wherein R.sup.3 and R.sup.4 are independently from each other a C.sub.1-6 alkyl group; and L.sup.4 is absent or a group of formula --CONH--, --NHCO--, --SO.sub.2NH--, --NHSO.sub.2--, --CH.dbd.CH--, --CR.sup.3.dbd.CR.sup.4-- or an optionally substituted heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen, wherein R.sup.3 and R.sup.4 are independently from each other a C.sub.1-6 alkyl group.

11. A compound according to claim 7, wherein R.sup.1 is a hydrogen atom, a halogen atom or a group of formula --OH, --NH.sub.2, --COOH, --SO.sub.2NH.sub.2, --CONH.sub.2, --NO.sub.2, --CN, -alkyl (e.g. --CF.sub.3), --O-alkyl, --O--CO-alkyl, --NH-alkyl, --NH--CO-alkyl, or an optionally substituted heteroaryl group having 5 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen, or an optionally substituted heterocycloalkyl group having 5 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen.

12. A compound according to claim 7, wherein R.sup.2 is a hydrogen atom, a halogen atom or a group of formula --OH, --NH.sub.2, --COOH, --SO.sub.2NH.sub.2, --CONH.sub.2, --NO.sub.2, --CN, -alkyl (e.g. --CF.sub.3), --O-alkyl, --O--CO-alkyl, --NH-alkyl, --NH--CO-alkyl, or an optionally substituted heteroaryl group having 5 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen, or an optionally substituted heterocycloalkyl group having 5 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen.

13. A compound according to claim 7, wherein L.sup.1 is NHCO (wherein the nitrogen atom is bound to Ar.sup.1) or a group of the following formula: ##STR00123## (wherein the NH group is bound to Ar.sup.1), wherein R.sup.30 is a hydrogen atom or a C.sub.1-3 alkyl group; and/or L.sup.2 is NHCO (wherein the nitrogen atom is bound to Ar.sup.2) or a group of the following formula: ##STR00124## (wherein the NH group is bound to Ar.sup.2), wherein R.sup.30 is a hydrogen atom or a C.sub.1-3 alkyl group; and/or wherein L.sup.3 is absent or a group of the following formula: ##STR00125## (wherein the NH group is bound to Ar.sup.3), wherein R.sup.30 is a hydrogen atom or a C.sub.1-3 alkyl group; and/or wherein L.sup.4 is absent or NHCO (wherein the nitrogen atom is bound to Ar.sup.4).

14. Pharmaceutical composition comprising a compound according to claim 7, and optionally one or more carrier substances and/or one or more adjuvants.

15. Compound or pharmaceutical composition according to claim 7, for use in the treatment or prophylaxis of bacterial infections.

16. A recombinant biosynthesis cluster capable of synthesizing a cystobactamide selected from the group consisting of cystobactamide A, B, C, D, E, F, G and H, wherein the cluster comprises all of the polypeptides, or a functional variant thereof, according to SEQ ID NOs. 40 to 73.

17. An isolated, synthetic or recombinant nucleic acid comprising: (i) a sequence encoding a cystobactamide biosynthesis cluster, wherein the sequence has a sequence identity to the full-length sequence of SEQ ID NO. 1 from at least 85%, 90%, 95%, 96%, 97%, 98%, 98.5%, 99%, or 99.5% to 100%; (ii) a sequence encoding a NRPS, wherein the sequence has a sequence identity to the full-length sequence of any of SEQ ID NOs. 8, 9, 12 or 13 from at least 85%, 90%, 95%, 96%, 97%, 98%, 98.5%, 99%, or 99.5% to 100%; (iii) a sequence completely complementary to the full length sequence of any nucleic acid sequence of (i) or (ii); or (iv) a sequence encoding a polypeptide according to any of SEQ ID NOs. 46, 47, 50 or 51.

18. A vector comprising at least one nucleic acid according to claim 17.

19. A recombinant host cell comprising at least one nucleic acid according to claim 17.

20. A method for the preparation of a compound according to claim 6, the method comprising the steps of: (a) culturing Cystobacter velatus strain MCy8071 (DSM27004) or a recombinant host cell of claim 19; and (b) separating and retaining the compound from the culture broth.

21. A method for treating a subject suffering from or susceptible to a bacterial infection, comprising administering to the subject an effective amount of a compound of claim 7.

22. The method of claim 21 wherein the subject is identified as suffering from a bacterial infection and the compound is administered to the identified subject.

23. The method of claim 21 wherein the subject is a human.

24. A method for treating a subject suffering from or susceptible to a bacterial infection, comprising administering to the subject an effective amount of a compound of claim 1.
Description



[0001] Cystobactamides are novel natural products that have been isolated from myxobacterium Cystobacter velatus (MCy8071; internal name: Cystobacter ferrugineus). Cystobactamides exhibit a good antibiotic activity, especially against selected Gram-negative bacteria, such as E. coli, P. aeruginosa, and A. baumannii, as well as a broad spectrum activity against Gram-positive bacteria.

[0002] The present invention provides compounds of formula (I)

##STR00002##

wherein

[0003] Ar.sup.1 is an optionally substituted phenylene group or an optionally substituted heteroarylene group having 5 or 6 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen;

[0004] Ar.sup.2 is an optionally substituted phenylene group or an optionally substituted heteroarylene group having 5 or 6 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen;

[0005] Ar.sup.3 is an optionally substituted phenylene group or an optionally substituted heteroarylene group having 5 or 6 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen;

[0006] Ar.sup.4 is absent or an optionally substituted phenylene group or an optionally substituted heteroarylene group having 5 or 6 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen;

[0007] Ar.sup.5 is absent or an optionally substituted phenylene group or an optionally substituted heteroarylene group having 5 or 6 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen;

[0008] L.sup.1 is a bond, an oxygen atom, a sulphur atom or a group of formula NH, CONH, NHCO, COO, OCO, CONR.sup.3, NR.sup.3CO, OCONH, NHCOO, NHCONH, OCONR.sup.3, NR.sup.3COO, NR.sup.3CONR.sup.4, NR.sup.3, --CNR.sup.3--, --CO--, --SO--, --SO.sub.2--, --SO.sub.2NH--, --NHSO.sub.2--, --SO.sub.2NR.sup.3--, --NR.sup.3SO.sub.2--, --COCH.sub.2--, --CH.sub.2CO--, --COCR.sup.3R.sup.4--, --CR.sup.3R.sup.4CO--, --NHCSNH--, --NR.sup.3CSNR.sup.4, --CH.dbd.CH--, --CR.sup.3.dbd.CR.sup.4--, or a heteroarylene group having 5 or 6 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen, or a heteroalkylene group;

[0009] L.sup.2 is a bond, an oxygen atom, a sulphur atom or a group of formula NH, CONH, NHCO, COO, OCO, CONR.sup.3, NR.sup.3CO, OCONH, NHCOO, NHCONH, OCONR.sup.3, NR.sup.3COO, NR.sup.3CONR.sup.4, NR.sup.3, --CNR.sup.3--, --CO--, --SO--, --SO.sub.2--, --SO.sub.2NH--, --NHSO.sub.2--, --SO.sub.2NR.sup.3--, --NR.sup.3SO.sub.2--, --COCH.sub.2--, --CH.sub.2CO--, --COCR.sup.3R.sup.4--, --CR.sup.3R.sup.4CO--, --NHCSNH--, --NR.sup.3CSNR.sup.4, --CH.dbd.CH--, --CR.sup.3.dbd.CR.sup.4--, or a heteroarylene group having 5 or 6 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen, or a heteroalkylene group;

[0010] L.sup.3 is absent or a bond, an oxygen atom, a sulphur atom or a group of formula NH, CONH, NHCO, COO, OCO, CONR.sup.3, NR.sup.3CO, OCONH, NHCOO, NHCONH, OCONR.sup.3, NR.sup.3COO, NR.sup.3CONR.sup.4, NR.sup.3, --CNR.sup.3--, --CO--, --SO--, --SO.sub.2--, --SO.sub.2NH--, --NHSO.sub.2--, --SO.sub.2NR.sup.3--, --NR.sup.3SO.sub.2--, --COCH.sub.2--, --CH.sub.2CO--, --COCR.sup.3R.sup.4--, --CR.sup.3R.sup.4CO--, --NHCSNH--, --NR.sup.3CSNR.sup.4, --CH.dbd.CH--, --CR.sup.3.dbd.CR.sup.4--, or a heteroarylene group having 5 or 6 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen, or a heteroalkylene group;

[0011] L.sup.4 is absent or a bond, an oxygen atom, a sulphur atom or a group of formula NH, CONH, NHCO, COO, OCO, CONR.sup.3, NR.sup.3CO, OCONH, NHCOO, NHCONH, OCONR.sup.3, NR.sup.3COO, NR.sup.3CONR.sup.4, NR.sup.3, --CNR.sup.3--, --CO--, --SO--, --SO.sub.2--, --SO.sub.2NH--, --NHSO.sub.2--, --SO.sub.2NR.sup.3--, --NR.sup.3SO.sub.2--, --COCH.sub.2--, --CH.sub.2CO--, --COCR.sup.3R.sup.4--, --CR.sup.3R.sup.4CO--, --NHCSNH--, --NR.sup.3CSNR.sup.4, --CH.dbd.CH--, --CR.sup.3.dbd.CR.sup.4--, or a heteroarylene group having 5 or 6 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen, or a heteroalkylene group;

[0012] R.sup.1 is a hydrogen atom, a halogen atom, a hydroxy group, an amino group, a thiol group, a nitro group, a group of formula --COOH, --SO.sub.2NH.sub.2, --CONH.sub.2, --NO.sub.2 or --CN, an alkyl, an alkenyl, an alkynyl, a heteroalkyl, a cycloalkyl, a heterocycloalkyl, an alkylcycloalkyl, a heteroalkylcycloalkyl, an aryl, a heteroaryl, an aralkyl or a heteroaralkyl group;

[0013] R.sup.2 is a hydrogen atom, a halogen atom, a hydroxy group, an amino group, a thiol group, a nitro group, a group of formula --COOH, --SO.sub.2NH.sub.2, --CONH.sub.2, --NO.sub.2 or --CN, an alkyl, an alkenyl, an alkynyl, a heteroalkyl, a cycloalkyl, a heterocycloalkyl, an alkylcycloalkyl, a heteroalkylcycloalkyl, an aryl, a heteroaryl, an aralkyl or a heteroaralkyl group;

[0014] the groups R.sup.3 are independently from each other a hydrogen atom or a C.sub.1-6alkyl group; and

[0015] the groups R.sup.4 are independently from each other a hydrogen atom or a C.sub.1-6 alkyl group;

[0016] or a pharmaceutically acceptable salt, solvate or hydrate or a pharmaceutically acceptable formulation thereof.

[0017] The expression alkyl refers to a saturated, straight-chain or branched hydrocarbon group that contains from 1 to 20 carbon atoms, preferably from 1 to 15 carbon atoms, especially from 1 to 10 (e.g. 1, 2, 3 or 4) carbon atoms, for example a methyl, ethyl, propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, iso-pentyl, n-hexyl, 2,2-dimethylbutyl or n-octyl group.

[0018] The expressions alkenyl and alkynyl refer to at least partially unsaturated, straight-chain or branched hydrocarbon groups that contain from 2 to 20 carbon atoms, preferably from 2 to 15 carbon atoms, especially from 2 to 10 (e.g. 2, 3 or 4) carbon atoms, for example an ethenyl (vinyl), propenyl (allyl), iso-propenyl, butenyl, ethinyl, propinyl, butinyl, acetylenyl, propargyl, isoprenyl or hex-2-enyl group. Preferably, alkenyl groups have one or two (especially preferably one) double bond(s), and alkynyl groups have one or two (especially preferably one) triple bond(s).

[0019] Furthermore, the terms alkyl, alkenyl and alkynyl refer to groups in which one or more hydrogen atoms have been replaced by a halogen atom (preferably F or Cl) such as, for example, a 2,2,2-trichioroethyl or a trifluoromethyl group.

[0020] The expression heteroalkyl refers to an alkyl, alkenyl or alkynyl group in which one or more (preferably 1 to 8; especially preferably 1, 2, 3 or 4) carbon atoms have been replaced by an oxygen, nitrogen, phosphorus, boron, selenium, silicon or sulfur atom (preferably by an oxygen, sulfur or nitrogen atom) or by a SO or a SO.sub.2 group. The expression heteroalkyl furthermore refers to a carboxylic acid or to a group derived from a carboxylic acid, such as, for example, acyl, acylalkyl, alkoxycarbonyl, acyloxy, acyloxyalkyl, carboxyalkylamide or al koxycarbonyloxy.

[0021] Preferably, a heteroalkyl group contains from 1 to 12 carbon atoms and from 1 to 8 heteroatoms selected from oxygen, nitrogen and sulphur (especially oxygen and nitrogen). Especially preferably, a heteroalkyl group contains from 1 to 6 (e.g. 1, 2, 3 or 4) carbon atoms and 1, 2, 3 or 4 (especially 1, 2 or 3) heteroatoms selected from oxygen, nitrogen and sulphur (especially oxygen and nitrogen). The term C.sub.1-C.sub.6 heteroalkyl refers to a heteroalkyl group containing from 1 to 6 carbon atoms and 1, 2 or 3 heteroatoms selected from O, S and/or N (especially 0 and/or N). The term C.sub.1-C.sub.4 heteroalkyl refers to a heteroalkyl group containing from 1 to 4 carbon atoms and 1, 2 or 3 heteroatoms selected from O, S and/or N (especially 0 and/or N). Furthermore, the term heteroalkyl refers to groups in which one or more hydrogen atoms have been replaced by a halogen atom (preferably F or Cl).

[0022] Especially preferably, the expression heteroalkyl refers to an alkyl group as defined above (straight-chain or branched) in which one or more (preferably 1 to 6; especially preferably 1, 2, 3 or 4) carbon atoms have been replaced by an oxygen, sulfur or nitrogen atom; this group preferably contains from 1 to 6 (e.g. 1, 2, 3 or 4) carbon atoms and 1, 2, 3 or 4 (especially 1, 2 or 3) heteroatoms selected from oxygen, nitrogen and sulphur (especially oxygen and nitrogen); this group may preferably be substituted by one or more (preferably 1 to 6; especially preferably 1, 2, 3 or 4) fluorine, chlorine, bromine or iodine atoms or OH, .dbd.O, SH, .dbd.S, NH.sub.2, .dbd.NH, N.sub.3, CN or NO.sub.2 groups.

[0023] The expression heteroalkylene group refers to a divalent heteroalkyl group.

[0024] Examples of heteroalkyl groups are groups of formulae: R.sup.a--O--Y.sup.a--, R.sup.a--S--Y.sup.a--, R.sup.a--SO--Y.sup.a--, R.sup.a--SO.sub.2--Y.sup.a--, R.sup.a--N(R.sup.b)--Y.sup.a--, R.sup.a--CO--Y.sup.a--, R.sup.a--O--CO--Y.sup.a--, R.sup.a--CO--O--Y.sup.a--, R.sup.a--CO--N(R.sup.b)--Y.sup.a--, R.sup.a--N(R.sup.b)--CO--Y.sup.a--, R.sup.a--O--CO--N(R.sup.b)--Y.sup.a--, R.sup.a--N(R.sup.b)--CO--O--Y.sup.a--, R.sup.a--N(R.sup.b)--CO--N(R.sup.c)--Y.sup.a--, R.sup.a--O--CO--O--Y.sup.a--, R.sup.a--N(R.sup.b)--C(.dbd.NR.sup.d)--N(R.sup.c)--Y.sup.a--, R.sup.a--CS--Y.sup.a--, R.sup.a--O--CS--Y.sup.a--, R.sup.a--CS--O--Y.sup.a--, R.sup.a--CS--N(R.sup.b)--Y.sup.a--, R.sup.a--N(R.sup.b)--CS--Y.sup.a--, R.sup.a--O--CS--N(R.sup.b)--Y.sup.a--, R.sup.a--N(R.sup.b)--CS--O--Y.sup.a--, R.sup.a--N(R.sup.b)--CS--N(R.sup.c)--Y.sup.a--, R.sup.a--O--CS--O--Y.sup.a--, R.sup.a--S--CO--Y.sup.a--, R.sup.a--CO--S--Y.sup.a--, R.sup.a--S--CO--N(R.sup.b)--Y.sup.a--, R.sup.a--N(R.sup.b)--CO--S--Y.sup.a--, R.sup.a--S--CO--O--Y.sup.a--, R.sup.a--O--CO--S--Y.sup.a--, R.sup.a--S--CO--S--Y.sup.a--, R.sup.a--S--CS--Y.sup.a--, R.sup.a--CS--S--Y.sup.a--, R.sup.a--S--CS--N(R.sup.b)--Y.sup.a--, R.sup.a--N(R.sup.b)--CS--S--Y.sup.a--, R.sup.a--S--CS--O--Y.sup.a--, R.sup.a--O--CS--S--Y.sup.a--, wherein R.sup.a being a hydrogen atom, a C.sub.1-C.sub.6 alkyl, a C.sub.2-C.sub.6 alkenyl or a C.sub.2-C.sub.6 alkynyl group; R.sup.b being a hydrogen atom, a C.sub.1-C.sub.6 alkyl, a C.sub.2-C.sub.6 alkenyl or a C.sub.2-C.sub.6 alkynyl group; R.sup.d being a hydrogen atom, a C.sub.1-C.sub.6 alkyl, a C.sub.2-C.sub.6 alkenyl or a C.sub.2-C.sub.6 alkynyl group; R.sup.d being a hydrogen atom, a C.sub.1-C.sub.6 alkyl, a C.sub.2-C.sub.6 alkenyl or a C.sub.2-C.sub.6 alkynyl group and Ya being a bond, a C.sub.1-C.sub.6 alkylene, a C.sub.2-C.sub.6 alkenylene or a C.sub.2-C.sub.6 alkynylene group, wherein each heteroalkyl group contains at least one carbon atom and one or more hydrogen atoms may be replaced by fluorine or chlorine atoms.

[0025] Specific examples of heteroalkyl groups are methoxy, trifluoromethoxy, ethoxy, n-propyloxy, isopropyloxy, butoxy, tert-butyloxy, methoxymethyl, ethoxymethyl, --CH.sub.2CH.sub.2OH, --CH.sub.2OH, --SO.sub.2Me, methoxyethyl, 1-methoxyethyl, 1-ethoxyethyl, 2-methoxyethyl or 2-ethoxyethyl, methylamino, ethylamino, propylamino, isopropylamino, dimethylamino, diethylamino, isopropylethylamino, methylamino methyl, ethylamino methyl, diisopropylamino ethyl, methylthio, ethylthio, isopropylthio, enol ether, dimethylamino methyl, dimethylamino ethyl, acetyl, propionyl, butyryloxy, acetyloxy, methoxycarbonyl, ethoxycarbonyl, propionyloxy, acetylamino or propionylamino, carboxymethyl, carboxyethyl or carboxypropyl, N-ethyl-N-methylcarbamoyl or N-methylcarbamoyl. Further examples of heteroalkyl groups are nitrile, isonitrile, cyanate, thiocyanate, isocyanate, isothiocyanate and alkylnitrile groups.

[0026] The expression cycloalkyl refers to a saturated or partially unsaturated (for example, a cycloalkenyl group) cyclic group that contains one or more rings (preferably 1 or 2), and contains from 3 to 14 ring carbon atoms, preferably from 3 to 10 (especially 3, 4, 5, 6 or 7) ring carbon atoms. The expression cycloalkyl refers furthermore to groups in which one or more hydrogen atoms have been replaced by fluorine, chlorine, bromine or iodine atoms or by OH, .dbd.O, SH, .dbd.S, NH.sub.2, .dbd.NH, N.sub.3 or NO.sub.2 groups, thus, for example, cyclic ketones such as, for example, cyclohexanone, 2-cyclohexenone or cyclopentanone. Further specific examples of cycloalkyl groups are a cyclopropyl, cyclobutyl, cyclopentyl, spiro[4,5]decanyl, norbornyl, cyclohexyl, cyclopentenyl, cyclohexadienyl, decalinyl, bicyclo[4.3.0]nonyl, tetraline, cyclopentylcyclohexyl, fluorocyclohexyl or cyclohex-2-enyl group.

[0027] The expression heterocycloalkyl refers to a cycloalkyl group as defined above in which one or more (preferably 1, 2 or 3) ring carbon atoms have been replaced by an oxygen, nitrogen, silicon, selenium, phosphorus or sulfur atom (preferably by an oxygen, sulfur or nitrogen atom) or a SO group or a SO.sub.2 group. A heterocycloalkyl group has preferably 1 or 2 ring(s) containing from 3 to 10 (especially 3, 4, 5, 6 or 7) ring atoms (preferably selected from C, O, N and S). The expression heterocycloalkyl refers furthermore to groups that are substituted by fluorine, chlorine, bromine or iodine atoms or by OH, .dbd.O, SH, .dbd.S, NH.sub.2, .dbd.NH, N.sub.3 or NO.sub.2 groups. Examples are a piperidyl, prolinyl, imidazolidinyl, piperazinyl, morpholinyl, urotropinyl, pyrrolidinyl, tetrahydrothiophenyl, tetrahydropyranyl, tetrahydrofuryl or 2-pyrazolinyl group and also lactames, lactones, cyclic imides and cyclic anhydrides.

[0028] The expression alkylcycloalkyl refers to groups that contain both cycloalkyl and also alkyl, alkenyl or alkynyl groups in accordance with the above definitions, for example alkylcycloalkyl, cycloalkylalkyl, alkylcycloalkenyl, alkenylcycloalkyl and alkynylcycloalkyl groups. An alkylcycloalkyl group preferably contains a cycloalkyl group that contains one or two rings having from 3 to 10 (especially 3, 4, 5, 6 or 7) ring carbon atoms, and one or two alkyl, alkenyl or alkynyl groups (especially alkyl groups) having 1 or 2 to 6 carbon atoms.

[0029] The expression heteroalkylcycloalkyl refers to alkylcycloalkyl groups as defined above in which one or more (preferably 1, 2 or 3) carbon atoms have been replaced by an oxygen, nitrogen, silicon, selenium, phosphorus or sulfur atom (preferably by an oxygen, sulfur or nitrogen atom) or a SO group or a SO.sub.2 group. A heteroalkylcycloalkyl group preferably contains 1 or 2 rings having from 3 to 10 (especially 3, 4, 5, 6 or 7) ring atoms, and one or two alkyl, alkenyl, alkynyl or heteroalkyl groups (especially alkyl or heteroalkyl groups) having from 1 or 2 to 6 carbon atoms. Examples of such groups are alkylheterocycloalkyl, alkylheterocycloalkenyl, alkenyl-heterocycloalkyl, alkynylheterocycloalkyl, heteroalkylcycloalkyl, heteroalkylhetero-cycloalkyl and heteroalkylheterocycloalkenyl, the cyclic groups being saturated or mono-, di- or tri-unsaturated.

[0030] The expression aryl refers to an aromatic group that contains one or more rings containing from 6 to 14 ring carbon atoms, preferably from 6 to 10 (especially 6) ring carbon atoms. The expression aryl refers furthermore to groups that are substituted by fluorine, chlorine, bromine or iodine atoms or by OH, SH, NH.sub.2, N.sub.3 or NO.sub.2 groups. Examples are the phenyl, naphthyl, biphenyl, 2-fluorophenyl, anilinyl, 3-nitrophenyl or 4-hydroxyphenyl group.

[0031] The expression heteroaryl refers to an aromatic group that contains one or more rings containing from 5 to 14 ring atoms, preferably from 5 to 10 (especially 5 or 6 or 9 or 10) ring atoms, and contains one or more (preferably 1, 2, 3 or 4) oxygen, nitrogen, phosphorus or sulfur ring atoms (preferably 0, S or N). The expression heteroaryl refers furthermore to groups that are substituted by fluorine, chlorine, bromine or iodine atoms or by OH, SH, N.sub.3, NH.sub.2 or NO.sub.2 groups. Examples are pyridyl (e.g. 4-pyridyl), imidazolyl (e.g. 2-imidazolyl), phenylpyrrolyl (e.g. 3-phenylpyrrolyl), thiazolyl, isothiazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, oxadiazolyl, thiadiazolyl, indolyl, indazolyl, tetrazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, oxazolyl, isoxazolyl, triazolyl, tetrazolyl, isoxazolyl, indazolyl, indolyl, benzimidazolyl, benzoxazolyl, benzisoxazolyl, benzthiazolyl, pyridazinyl, quinolinyl, isoquinolinyl, pyrrolyl, purinyl, carbazolyl, acridinyl, pyrimidyl, 2,3'-bifuryl, pyrazolyl (e.g. 3-pyrazolyl) and isoquinolinyl groups.

[0032] The expression aralkyl refers to groups containing both aryl and also alkyl, alkenyl, alkynyl and/or cycloalkyl groups in accordance with the above definitions, such as, for example, arylalkyl, arylalkenyl, arylalkynyl, arylcycloalkyl, arylcycloalkenyl, alkylarylcycloalkyl and alkylarylcycloalkenyl groups. Specific examples of aralkyls are toluene, xylene, mesitylene, styrene, benzyl chloride, o-fluorotoluene, 1H-indene, tetraline, dihydronaphthalene, indanone, phenylcyclopentyl, cumene, cyclohexylphenyl, fluorene and indane. An aralkyl group preferably contains one or two aromatic ring systems (especially 1 or 2 rings), each containing from 6 to 10 carbon atoms and one or two alkyl, alkenyl and/or alkynyl groups containing from 1 or 2 to 6 carbon atoms and/or a cycloalkyl group containing 5 or 6 ring carbon atoms.

[0033] The expression heteroaralkyl refers to groups containing both aryl or heteroaryl, respectively, and also alkyl, alkenyl, alkynyl and/or heteroalkyl and/or cycloalkyl and/or heterocycloalkyl groups in accordance with the above definitions. A heteroaralkyl group preferably contains one or two aromatic ring systems (especially 1 or 2 rings), each containing from 5 or 6 to 9 or 10 ring carbon atoms and one or two alkyl, alkenyl and/or alkynyl groups containing 1 or 2 to 6 carbon atoms and/or one or two heteroalkyl groups containing 1 to 6 carbon atoms and 1, 2 or 3 heteroatoms selected from O, S and N and/or one or two cycloalkyl groups each containing 5 or 6 ring carbon atoms and/or one or two heterocycloalkyl groups, each containing 5 or 6 ring atoms comprising 1, 2, 3 or 4 oxygen, sulfur or nitrogen atoms.

[0034] Examples are arylheteroalkyl, arylheterocycloalkyl, arylheterocycloalkenyl, arylalkyl-heterocycloalkyl, arylalkenylheterocycloalkyl, arylalkynylheterocycloalkyl, arylalkyl-heterocycloalkenyl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, heteroaryl-heteroalkyl, heteroarylcycloalkyl, heteroarylcycloalkenyl, heteroarylheterocycloalkyl, heteroarylheterocycloalkenyl, heteroarylalkylcycloalkyl, heteroarylalkylheterocyclo-alkenyl, heteroarylheteroalkylcycloalkyl, heteroarylheteroalkylcycloalkenyl and heteroarylheteroalkylheterocycloalkyl groups, the cyclic groups being saturated or mono-, di- or tri-unsaturated. Specific examples are a tetrahydroisoquinolinyl, benzoyl, 2- or 3-ethylindolyl, 4-methylpyridino, 2-, 3- or 4-methoxyphenyl, 4-ethoxy-phenyl, 2-, 3- or 4-carboxyphenylalkyl group.

[0035] As already stated above, the expressions cycloalkyl, heterocycloalkyl, alkylcycloalkyl, heteroalkylcycloalkyl, aryl, heteroaryl, aralkyl and heteroaralkyl also refer to groups that are substituted by fluorine, chlorine, bromine or iodine atoms or by OH, .dbd.O, SH, .dbd.S, NH.sub.2, .dbd.NH, N.sub.3 or NO.sub.2 groups.

[0036] The expression "optionally substituted" especially refers to groups that are optionally substituted by fluorine, chlorine, bromine or iodine atoms or by OH, .dbd.O, SH, .dbd.S, NH.sub.2, .dbd.NH, N.sub.3 or NO.sub.2 groups. This expression refers furthermore to groups that may be substituted by one, two, three or more unsubstituted C.sub.1-C.sub.10 alkyl, C.sub.2-C.sub.10 alkenyl, C.sub.2-C.sub.10 alkynyl, C.sub.1-C.sub.10 heteroalkyl, C.sub.3-C.sub.18 cycloalkyl, C.sub.2-C.sub.17 heterocycloalkyl, C.sub.4-C.sub.20 alkylcycloalkyl, C.sub.2-C.sub.19 heteroalkylcycloalkyl, C.sub.6-C.sub.18 aryl, C.sub.1-C.sub.17 heteroaryl, C.sub.7-C.sub.20 aralkyl or C.sub.2-C.sub.19 heteroaralkyl groups. This expression refers furthermore especially to groups that may be substituted by one, two, three or more unsubstituted C.sub.1-C.sub.6 alkyl, C.sub.2-C.sub.6 alkenyl, C.sub.2-C.sub.6 alkynyl, C.sub.1-C.sub.6 heteroalkyl, C.sub.3-C.sub.10 cycloalkyl, C.sub.2-C.sub.9 heterocycloalkyl, C.sub.7-C.sub.12 alkylcycloalkyl, C.sub.2-C.sub.11 heteroalkylcycloalkyl, C.sub.6-C.sub.10 aryl, C.sub.1-C.sub.9 heteroaryl, C.sub.7-C.sub.12 aralkyl or C.sub.2-C.sub.11 heteroaralkyl groups.

[0037] Especially preferably at group Ar.sup.1, Ar.sup.2, Ar.sup.3, Ar.sup.4 and Ar.sup.5, the expression "optionally substituted" refers to groups that are optionally substituted by one, two or three groups independently selected from halogen atoms, hydroxy groups, groups of formula --O-alkyl (e.g. --O--C.sub.1-6 alkyl such as --OMe, --OEt, --O-nPr, --O-iPr, --O-nBu, --O-iBu or --O-tBu), --NH.sub.2, --NR.sup.5aR.sup.6a (wherein R.sup.5a and R.sup.6a independently from each other are a hydrogen atom or an alkyl group such as a C.sub.1-6 alkyl group), --SO.sub.2NH.sub.2, --CONH.sub.2, --CN, -alkyl (e.g. --C.sub.1-6 alkyl, --CF.sub.3), --SH, --S-alkyl (e.g. --S--C.sub.1-6 alkyl).

[0038] Most preferably at group Ar.sup.1, Ar.sup.2, Ar.sup.3, Ar.sup.4 and Ar.sup.5, the expression "optionally substituted" refers to groups that are optionally substituted by one, two or three groups independently selected from F, Cl, hydroxy groups, groups of formula --O--C.sub.1-6 alkyl (especially --O--C.sub.1-4 alkyl such as --OMe, --OEt, --O-nPr, --O-iPr, --O-nBu, --O-iBu or --O-tBu), and --C.sub.1-6alkyl (e.g. --C.sub.1-4alkyl such as --CH.sub.3 or --CF.sub.3).

[0039] Especially preferably at group Ar.sup.6, the expression "optionally substituted" refers to groups that are optionally substituted by one, two or three groups independently selected from halogen atoms, hydroxy groups, groups of formula --O-alkyl (e.g. --O--C.sub.1-6 alkyl such as --OMe, --OEt, --O-nPr, --O-iPr, --O-nBu, --O-iBu or --O-tBu), --NH.sub.2, --NR.sup.5aR.sup.6a (wherein R.sup.5a and R.sup.6a independently from each other are a hydrogen atom or an alkyl group such as a C.sub.1-6 alkyl group), --SO.sub.2NH.sub.2, --CONH.sub.2, --CN, -alkyl (e.g. --C.sub.1-6 alkyl, --CF.sub.3), --SH, --S-alkyl (e.g. --S--C.sub.1-6 alkyl) and NO.sub.2.

[0040] Most preferably at group Ar.sup.6, the expression "optionally substituted" refers to groups that are optionally substituted by one, two or three groups independently selected from F, Cl, hydroxy groups, --NH.sub.2, --NO.sub.2, groups of formula --O--C.sub.1-6 alkyl (especially --O--C.sub.1-4alkyl such as --OMe, --OEt, --O-nPr, --O-iPr, --O-nBu, --O-iBu or --O-tBu), and --C.sub.1-6 alkyl (e.g. --C.sub.1-4 alkyl such as --CH.sub.3 or --CF.sub.3).

[0041] The term halogen refers to F, Cl, Br or I.

[0042] According to a preferred embodiment, all alkyl, alkenyl, alkynyl, heteroalkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, alkylcycloalkyl, heteroalkylcycloalkyl, aralkyl and heteroaralkyl groups described herein may independently of each other optionally be substituted.

[0043] When an aryl, heteroaryl, cycloalkyl, alkylcycloalkyl, heteroalkylcycloalkyl, heterocycloalkyl, aralkyl or heteroaralkyl group contains more than one ring, these rings may be bonded to each other via a single or double bond or these rings may be annulated.

[0044] Owing to their substitution, compounds of formula (I) may contain one or more centers of chirality. The present invention therefore includes both all pure enantiomers and all pure diastereoisomers and also mixtures thereof in any mixing ratio. The present invention moreover also includes all cis/trans-isomers of the compounds of the general formula (I) and also mixtures thereof. The present invention moreover includes all tautomeric forms of the compounds of formula (I).

[0045] Preferably, when Ar.sup.4 is absent, also L.sup.3 is absent.

[0046] Further preferably, when Ar.sup.5 is absent, also L.sup.4 is absent.

[0047] Preferably, Ar.sup.1 is an optionally substituted 1,4-phenylene group or an optionally substituted 1,3-heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen.

[0048] Further preferably, Ar.sup.1 is an optionally substituted 1,4-phenylene group.

[0049] Preferably, Ar.sup.2 is an optionally substituted 1,4-phenylene group or an optionally substituted 1,3-heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen.

[0050] Further preferably, Ar.sup.2 is an optionally substituted 1,4-phenylene group.

[0051] Preferably, Ar.sup.3 is an optionally substituted 1,4-phenylene group or an optionally substituted 1,3-heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen.

[0052] Further preferably, Ar.sup.3 is an optionally substituted 1,4-phenylene group.

[0053] Preferably, Ar.sup.4 is an optionally substituted 1,4-phenylene group or an optionally substituted 1,3-heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen.

[0054] Further preferably, Ar.sup.4 is an optionally substituted 1,4-phenylene group.

[0055] Preferably, Ar.sup.5 is an optionally substituted 1,4-phenylene group or an optionally substituted 1,3-heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen.

[0056] Further preferably, Ar.sup.5 is an optionally substituted 1,4-phenylene group.

[0057] Further preferably, Ar.sup.4 is absent.

[0058] Further preferably, Ar.sup.5 is absent.

[0059] The term 1,3-heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen especially preferably refers to one of the following groups:

##STR00003##

wherein A is 0, S or NH; U is N or CH; V is N or CH; W is N or CH; and X is N or CH.

[0060] Further preferably, L.sup.1 is a group of formula --CONH--, --NHCO--, --SO.sub.2NH--, --NHSO.sub.2--, --CH.dbd.CH--, --CR.sup.3.dbd.CR.sup.4-- or an optionally substituted heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen, wherein R.sup.3 and R.sup.4 are independently from each other a C.sub.1-6 alkyl group.

[0061] Further preferably, L.sup.2 is a group of formula --CONH--, --NHCO--, --SO.sub.2NH--, --NHSO.sub.2--, --CH.dbd.CH--, --CR.sup.3.dbd.CR.sup.4-- or an optionally substituted heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen, wherein R.sup.3 and R.sup.4 are independently from each other a C.sub.1-6 alkyl group.

[0062] Further preferably, L.sup.3 is absent or a group of formula --CONH--, --NHCO--, --SO.sub.2NH--, --NHSO.sub.2--, --CH.dbd.CH--, --CR.sup.3.dbd.CR.sup.4-- or an optionally substituted heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen, wherein R.sup.3 and R.sup.4 are independently from each other a C.sub.1-6 alkyl group.

[0063] Further preferably, L.sup.4 is absent or a group of formula --CONH--, --NHCO--, --SO.sub.2NH--, --NHSO.sub.2--, --CH.dbd.CH--, --CR.sup.3.dbd.CR.sup.4-- or an optionally substituted heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen, wherein R.sup.3 and R.sup.4 are independently from each other a C.sub.1-6 alkyl group.

[0064] Further preferably, L.sup.1 is NHCO (wherein the nitrogen atom is bound to Ar.sup.1) or a group of the following formula:

##STR00004##

(wherein the NH group is bound to Ar.sup.1), wherein R.sup.30 is a hydrogen atom or a C.sub.1-3 alkyl group.

[0065] Especially preferably, L.sup.1 is NHCO (wherein the nitrogen atom is bound to Ar.sup.1).

[0066] Moreover preferably, L.sup.2 is NHCO (wherein the nitrogen atom is bound to Ar.sup.2) or a group of the following formula:

##STR00005##

(wherein the NH group is bound to Ar.sup.2), wherein R.sup.30 is a hydrogen atom or a C.sub.1-3 alkyl group.

[0067] Especially preferably, L.sup.2 is NHCO (wherein the nitrogen atom is bound to Ar.sup.1).

[0068] Further preferably, L.sup.3 is absent or a group of the following formula:

##STR00006##

(wherein the NH group is bound to Ar.sup.3), wherein R.sup.30 is a hydrogen atom or a C.sub.1-3alkyl group.

[0069] Further preferably, L.sup.4 is absent or NHCO (wherein the nitrogen atom is bound to Ar.sup.4).

[0070] Moreover preferably, R.sup.30 is a hydrogen atom.

[0071] Further preferably, R.sup.1 is a hydrogen atom, a halogen atom or a group of formula --OH, --NH.sub.2, --COOH, --SO.sub.2NH.sub.2, --CONH.sub.2, --NO.sub.2, --CN, -alkyl (e.g. --CF.sub.3), --O-alkyl, --O--CO-alkyl, --NH-alkyl, --NH--CO-alkyl, or an optionally substituted heteroaryl group having 5 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen, or an optionally substituted heterocycloalkyl group having 5 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen.

[0072] Moreover preferably, R.sup.2 is a hydrogen atom, a halogen atom or a group of formula --OH, --NH.sub.2, --COOH, --SO.sub.2NH.sub.2, --CONH.sub.2, --NO.sub.2, --CN, -alkyl (e.g. --CF.sub.3), --O-alkyl, --O--CO-alkyl, --NH-alkyl, --NH--CO-alkyl, or an optionally substituted heteroaryl group having 5 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen, or an optionally substituted heterocycloalkyl group having 5 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen.

[0073] Preferred examples of optionally substituted heteroaryl groups having 5 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen and of optionally substituted heterocycloalkyl groups having 5 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen as groups R.sup.1 and R.sup.2 are isosteres of carboxylic acid such as groups of the following formulas:

##STR00007##

all these groups may optionally be further substituted.

[0074] Especially preferably, R.sup.1 is a group of formula --NH.sub.2, --NO.sub.2, COOR.sup.11, or --CONR.sup.12R.sup.13; wherein R.sup.11, R.sup.12 and R.sup.13 are independently a hydrogen atom or a C.sub.1-6 alkyl group; moreover preferably, R.sup.1 is a group of formula --COOH.

[0075] Further especially preferably, R.sup.2 is a group of formula --NH.sub.2, --NO.sub.2, COOR.sup.11a, or --CONR.sup.12aR.sup.13a; wherein R.sup.11a, R.sup.12a and R.sup.13a are independently a hydrogen atom or a C.sub.1-6 alkyl group; moreover preferably, R.sup.2 is a group of formula --NH.sub.2 or --NO.sub.2.

[0076] Further especially preferably, R.sup.1 is a heteroaryl group having 5 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen, and which is substituted by a hydroxy group.

[0077] Further especially preferably, R.sup.2 is a heteroaryl group having 5 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen, and which is substituted by a hydroxy group.

[0078] Especially preferred are compounds of formula (I)

##STR00008##

wherein

[0079] Ar.sup.1 is an optionally substituted 1,4-phenylene group;

[0080] Ar.sup.2 is an optionally substituted 1,4-phenylene group;

[0081] Ar.sup.3 is an optionally substituted 1,4-phenylene group;

[0082] Ar.sup.4 is absent or an optionally substituted 1,4-phenylene group;

[0083] Ar.sup.5 is absent or an optionally substituted 1,4-phenylene group;

[0084] L.sup.1 is a group of formula --CONH--, --NHCO--, --SO.sub.2NH-- or --NHSO.sub.2-- or a group of the following formula:

##STR00009##

(wherein the NH group is bound to Ar.sup.1);

[0085] L.sup.2 is a group of formula --CONH--, --NHCO--, --SO.sub.2NH-- or --NHSO.sub.2--;

[0086] L.sup.3 is absent or a group of formula --CONH--, --NHCO--, --SO.sub.2NH-- or --NHSO.sub.2-- or a group of the following formula:

##STR00010##

(wherein the NH group is bound to Ar.sup.3);

[0087] L.sup.4 is absent or a group of formula --CONH--, --NHCO--, --SO.sub.2NH-- or --NHSO.sub.2--;

[0088] R.sup.30 is a hydrogen atom or a C.sub.1-3 alkyl group (especially preferably, a hydrogen atom);

[0089] R.sup.1 is a group of formula --NH.sub.2, --NO.sub.2, COOR.sup.11, or --CONR.sup.12R.sup.11; wherein R.sup.11, R.sup.12 and R.sup.13 are independently a hydrogen atom or a C.sub.1-6 alkyl group (especially preferably, R.sup.1 is a group of formula --COOH); and

[0090] R.sup.2 is a group of formula --NH.sub.2, --NO.sub.2, COOR.sup.11a, or --CONR.sup.12aR.sup.13a; wherein R.sup.11a, R.sup.12a and R.sup.13a are independently a hydrogen atom or a C.sub.1-6 alkyl group (especially preferably, R.sup.2 is a group of formula --NH.sub.2 or --NO.sub.2);

[0091] or a pharmaceutically acceptable salt, solvate or hydrate or a pharmaceutically acceptable formulation thereof.

[0092] Therein, preferably, L.sup.1 is a group of formula --CONH--, --NHCO--, --SO.sub.2NH-- or --NHSO.sub.2--, and L.sup.3 is absent or a group of the following formula:

##STR00011##

(wherein the NH group is bound to Ar.sup.3).

[0093] Further preferred are compounds of formula (II)

##STR00012##

wherein Ar.sup.1, Ar.sup.2, Ar.sup.3, L.sup.1, L.sup.2, R.sup.1 and R.sup.2 are as defined above.

[0094] Moreover preferred are compounds of formula (III)

##STR00013##

wherein

[0095] n is 0, 1, 2, 3 or 4;

[0096] m is 0, 1, 2, 3 or 4;

[0097] p is 0, 1, 2, 3 or 4;

group(s) R.sup.21 are independently selected from halogen atoms, hydroxy groups, groups of formula --O-alkyl (e.g. --O--C.sub.1-6alkyl such as --OMe, --OEt, --O-nPr, --O-iPr, --O-nBu, --O-iBu or --O-tBu), --NH.sub.2, --NR.sup.5aR.sup.6a (wherein R.sup.5a and R.sup.6a independently from each other are a hydrogen atom or an alkyl group such as a C.sub.1-6 alkyl group), --SO.sub.2NH.sub.2, --CONH.sub.2, --CN, -alkyl (e.g. --C.sub.1-6alkyl, --CF.sub.3), --SH, --S-alkyl (e.g. --S--C.sub.1-6alkyl); group(s) R.sup.22 are independently selected from halogen atoms, hydroxy groups, groups of formula --O-alkyl (e.g. --O--C.sub.1-6alkyl such as --OMe, --OEt, --O-nPr, --O-iPr, --O-nBu, --O-iBu or --O-tBu), --NH.sub.2, --NR.sup.5aR.sup.6a (wherein R.sup.5a and R.sup.6a independently from each other are a hydrogen atom or an alkyl group such as a C.sub.1-6 alkyl group), --SO.sub.2NH.sub.2, --CONH.sub.2, --CN, -alkyl (e.g. --C.sub.1-6alkyl, --CF.sub.3), --SH, --S-alkyl (e.g. --S--C.sub.1-6 alkyl); group(s) R.sup.23 are independently selected from halogen atoms, hydroxy groups, groups of formula --O-alkyl (e.g. --O--C.sub.1-6alkyl such as --OMe, --OEt, --O-nPr, --O-iPr, --O-nBu, --O-iBu or --O-tBu), --NH.sub.2, --NR.sup.5aR.sup.6a (wherein R.sup.5a and R.sup.6a independently from each other are a hydrogen atom or an alkyl group such as a C.sub.1-6 alkyl group), --SO.sub.2NH.sub.2, --CONH.sub.2, --CN, -alkyl (e.g. --C.sub.1-6alkyl, --CF.sub.3), --SH, --S-alkyl (e.g. --S--C.sub.1-6 alkyl); and

[0098] R.sup.1, R.sup.2, L.sup.1 and L.sup.2 are as defined above.

[0099] Further preferred are compounds of formula (IV)

##STR00014##

wherein

[0100] R.sup.5 is a group of formula --O--C.sub.1-6alkyl;

[0101] R.sup.6 is a hydroxy group;

[0102] R.sup.7 is a group of formula --O--C.sub.1-6alkyl; and

[0103] R.sup.8 is a hydrogen atom, an alkyl, an alkenyl, an alkynyl, a heteroalkyl, a cycloalkyl, a heterocycloalkyl, an alkylcycloalkyl, a heteroalkylcycloalkyl, an aryl, a heteroaryl, an aralkyl or a heteroaralkyl group.

[0104] Preferably, R.sup.8 is a hydrogen atom or a group of the following formula:

##STR00015##

wherein R.sup.9 is COOH or CONH.sub.2 and R.sup.10 is COOH or CONH.sub.2.

[0105] Moreover preferably, R.sup.5 is a group of formula --O--C.sub.1-4 alkyl and R.sup.7 is a group of formula --O--C.sub.1-4 alkyl.

[0106] Further preferred are compounds of formula (V)

##STR00016##

wherein

[0107] R.sup.51 is a hydrogen atom, or a C.sub.1-6 alkyl group;

[0108] R.sup.52 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl;

[0109] R.sup.53 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl;

[0110] R.sup.54 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6alkyl;

[0111] R.sup.55 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl;

[0112] D is N or CR.sup.56;

[0113] E is N or CR.sup.57;

[0114] G is N or CR.sup.58;

[0115] M is N or CR.sup.59;

[0116] R.sup.56 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl;

[0117] R.sup.57 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl;

[0118] R.sup.58 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6alkyl;

[0119] R.sup.59 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl; and

[0120] Ar.sup.6 is an optionally substituted (by one, two or more substituents such as e.g. R.sup.2, R.sup.8 or NHR.sup.8) phenyl group or an optionally substituted (by one, two or more substituents such as e.g. R.sup.2, R.sup.8 or NHR.sup.8) heteroaryl group having 5 or 6 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen;

[0121] or a pharmaceutically acceptable salt, solvate or hydrate or a pharmaceutically acceptable formulation thereof.

[0122] Especially preferred are compounds of Formula (V) wherein:

[0123] R.sup.51 is a hydrogen atom, or a C.sub.1-4 alkyl group;

[0124] R.sup.52 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-4 alkyl group or a group of formula --O--C.sub.1-4 alkyl;

[0125] R.sup.53 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-4 alkyl group or a group of formula --O--C.sub.1-4alkyl;

[0126] R.sup.54 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-4 alkyl group or a group of formula --O--C.sub.1-4 alkyl;

[0127] R.sup.55 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-4 alkyl group or a group of formula --O--C.sub.1-4 alkyl;

[0128] D is N or CR.sup.56;

[0129] E is N or CR.sup.57;

[0130] G is N or CR.sup.58;

[0131] M is N or CR.sup.56;

[0132] R.sup.56 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-4 alkyl group or a group of formula --O--C.sub.1-4 alkyl;

[0133] R.sup.57 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-4 alkyl group or a group of formula --O--C.sub.1-4 alkyl;

[0134] R.sup.58 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-4 alkyl group or a group of formula --O--C.sub.1-4 alkyl; and

[0135] R.sup.59 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-4 alkyl.

[0136] Especially preferably, only one or two (especially only one) of D, E, G and M is/are N.

[0137] Further preferred are compounds of formula (VI)

##STR00017##

wherein

[0138] R.sup.51 is a hydrogen atom, or a C.sub.1-6 alkyl group;

[0139] R.sup.53 is F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl (especially preferably a group of formula --O--C.sub.1-6 alkyl);

[0140] D is N or CR.sup.56;

[0141] R.sup.56 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl;

[0142] R.sup.57 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl;

[0143] R.sup.58 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl;

[0144] R.sup.59 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6alkyl; and

[0145] Ar.sup.6 is an optionally substituted (by one, two or more substituents such as e.g. R.sup.2, R.sup.8 or NHR.sup.8) phenyl group or an optionally substituted (by one, two or more substituents such as e.g. R.sup.2, R.sup.8 or NHR.sup.8) heteroaryl group having 5 or 6 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen;

[0146] or a pharmaceutically acceptable salt, solvate or hydrate or a pharmaceutically acceptable formulation thereof.

[0147] Especially preferred are compounds of Formula (VI) wherein:

[0148] R.sup.51 is a hydrogen atom, or a C.sub.1-4 alkyl group;

[0149] R.sup.53 is F, Cl, a hydroxy group, a C.sub.1-4 alkyl group or a group of formula --O--C.sub.1-4 alkyl (especially preferably a group of formula --O--C.sub.1-4 alkyl);

[0150] D is N or CR.sup.58;

[0151] R.sup.56 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-4 alkyl group or a group of formula --O--C.sub.1-4 alkyl;

[0152] R.sup.57 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-4 alkyl group or a group of formula --O--C.sub.1-4alkyl;

[0153] R.sup.58 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-4 alkyl group or a group of formula --O--C.sub.1-4 alkyl; and

[0154] R.sup.59 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-4 alkyl group or a group of formula --O--C.sub.1-4 alkyl.

[0155] Further preferred are compounds of formula (VII)

##STR00018##

wherein

[0156] R.sup.51 is a hydrogen atom, or a C.sub.1-6 alkyl group;

[0157] R.sup.53 is F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl (especially preferably a group of formula --O--C.sub.1-6 alkyl);

[0158] D is N or CR.sup.56;

[0159] R.sup.56 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl;

[0160] R.sup.57 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6alkyl;

[0161] R.sup.58 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl;

[0162] R.sup.59 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6 alkyl;

[0163] R.sup.60 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6alkyl;

[0164] R.sup.61 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-6 alkyl group or a group of formula --O--C.sub.1-6alkyl; and

[0165] R.sup.8 is a hydrogen atom, an alkyl, an alkenyl, an alkynyl, a heteroalkyl, a cycloalkyl, a heterocycloalkyl, an alkylcycloalkyl, a heteroalkylcycloalkyl, an aryl, a heteroaryl, an aralkyl or a heteroaralkyl group.

[0166] or a pharmaceutically acceptable salt, solvate or hydrate or a pharmaceutically acceptable formulation thereof.

[0167] Especially preferred are compounds of Formula (VII) wherein:

[0168] R.sup.51 is a hydrogen atom, or a C.sub.1-4 alkyl group;

[0169] R.sup.53 is F, Cl, a hydroxy group, a C.sub.1-4alkyl group or a group of formula --O--C.sub.1-4 alkyl (especially preferably a group of formula --O--C.sub.1-4 alkyl);

[0170] D is N or CR.sup.66;

[0171] R.sup.56 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-4 alkyl group or a group of formula --O--C.sub.1-4alkyl;

[0172] R.sup.57 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-4 alkyl group or a group of formula --O--C.sub.1-4alkyl;

[0173] R.sup.58 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-4 alkyl group or a group of formula --O--C.sub.1-4 alkyl;

[0174] R.sup.59 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-4 alkyl group or a group of formula --O--C.sub.1-4 alkyl;

[0175] R.sup.60 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-4 alkyl group or a group of formula --O--C.sub.1-4 alkyl; and

[0176] R.sup.61 is a hydrogen atom, F, Cl, a hydroxy group, a C.sub.1-4 alkyl group or a group of formula --O--C.sub.1-4 alkyl.

[0177] Preferably, R.sup.8 is a hydrogen atom or a group of the following formula:

##STR00019##

wherein R.sup.9 is COOH or CONH.sub.2 and R.sup.10 is COOH or CONH.sub.2.

[0178] Especially preferred are the following compounds:

##STR00020## ##STR00021##

[0179] Moreover especially preferred are the following compounds:

##STR00022## ##STR00023##

[0180] Moreover preferred are the following compounds:

##STR00024## ##STR00025## ##STR00026## ##STR00027## ##STR00028## ##STR00029## ##STR00030## ##STR00031## ##STR00032##

[0181] The present invention further provides pharmaceutical compositions comprising one or more compounds described herein or a pharmaceutically acceptable salt, solvate or hydrate thereof, optionally in combination with one or more carrier substances and/or one or more adjuvants.

[0182] The present invention furthermore provides compounds or pharmaceutical compositions as described herein for use in the treatment and/or prophylaxis of bacterial infections, especially caused by E. coli, P. aeruginosa, A. baumannii, other Gram-negative bacteria, and Gram-positive bacteria.

[0183] Moreover preferably, the present invention provides compounds for use in the treatment and/or prophylaxis of bacterial infections, especially caused by Pseudomonas aeruginosa and other Gram-negative bacteria.

[0184] It is a further object of the present invention to provide a compound as described herein or a pharmaceutical composition as defined herein for the preparation of a medicament for the treatment and/or prophylaxis of bacterial infections, especially caused by selected Gram-negative bacteria and Gram-positive bacteria.

[0185] Examples of pharmacologically acceptable salts of sufficiently basic compounds are salts of physiologically acceptable mineral acids like hydrochloric, hydrobromic, sulfuric and phosphoric acid; or salts of organic acids like methanesulfonic, p-toluenesulfonic, lactic, acetic, trifluoroacetic, citric, succinic, fumaric, maleic and salicylic acid. Further, a sufficiently acidic compound may form alkali or earth alkali metal salts, for example sodium, potassium, lithium, calcium or magnesium salts; ammonium salts; or organic base salts, for example methylamine, dimethylamine, trimethylamine, triethylamine, ethylenediamine, ethanolamine, choline hydroxide, meglumin, piperidine, morpholine, tris-(2-hydroxyethyl)amine, lysine or arginine salts; all of which are also further examples of salts of the compounds described herein. The compounds described herein may be solvated, especially hydrated. The hydratization/hydration may occur during the process of production or as a consequence of the hygroscopic nature of the initially water free compounds. The solvates and/or hydrates may e.g. be present in solid or liquid form.

[0186] The therapeutic use of the compounds described herein, their pharmacologically acceptable salts, solvates and hydrates, respectively, as well as formulations and pharmaceutical compositions also lie within the scope of the present invention.

[0187] The pharmaceutical compositions according to the present invention comprise at least one compound described herein and, optionally, one or more carrier substances and/or adjuvants.

[0188] As mentioned above, therapeutically useful agents that contain compounds described herein, their solvates, salts or formulations are also comprised in the scope of the present invention. In general, the compounds described herein will be administered by using the known and acceptable modes known in the art, either alone or in combination with any other therapeutic agent.

[0189] For oral administration such therapeutically useful agents can be administered by one of the following routes: oral, e.g. as tablets, dragees, coated tablets, pills, semisolids, soft or hard capsules, for example soft and hard gelatine capsules, aqueous or oily solutions, emulsions, suspensions or syrups, parenteral including intravenous, intramuscular and subcutaneous injection, e.g. as an injectable solution or suspension, rectal as suppositories, by inhalation or insufflation, e.g. as a powder formulation, as microcrystals or as a spray (e.g. liquid aerosol), transdermal, for example via an transdermal delivery system (TDS) such as a plaster containing the active ingredient or intranasal. For the production of such tablets, pills, semisolids, coated tablets, dragees and hard, e.g. gelatine, capsules the therapeutically useful product may be mixed with pharmaceutically inert, inorganic or organic excipients as are e.g. lactose, sucrose, glucose, gelatine, malt, silica gel, starch or derivatives thereof, talc, stearinic acid or their salts, dried skim milk, and the like. For the production of soft capsules one may use excipients as are e.g. vegetable, petroleum, animal or synthetic oils, wax, fat, and polyols. For the production of liquid solutions, emulsions or suspensions or syrups one may use as excipients e.g. water, alcohols, aqueous saline, aqueous dextrose, polyols, glycerin, lipids, phospholipids, cyclodextrins, vegetable, petroleum, animal or synthetic oils. Especially preferred are lipids and more preferred are phospholipids (preferred of natural origin; especially preferred with a particle size between 300 to 350 nm) preferred in phosphate buffered saline (pH=7 to 8, preferred 7.4). For suppositories one may use excipients as are e.g. vegetable, petroleum, animal or synthetic oils, wax, fat and polyols. For aerosol formulations one may use compressed gases suitable for this purpose, as are e.g. oxygen, nitrogen and carbon dioxide. The pharmaceutically useful agents may also contain additives for conservation, stabilization, e.g. UV stabilizers, emulsifiers, sweetener, aromatizers, salts to change the osmotic pressure, buffers, coating additives and antioxidants.

[0190] In general, in the case of oral or parenteral administration to adult humans weighing approximately 80 kg, a daily dosage of about 1 mg to about 10,000 mg, preferably from about 5 mg to about 1,000 mg, should be appropriate, although the upper limit may be exceeded when indicated. The daily dosage can be administered as a single dose or in divided doses, or for parenteral administration, it may be given as continuous infusion or subcutaneous injection.

[0191] The compounds of the present invention can be prepared by fermentation (e.g. by fermentation of strain MCy8071 DSM27004) or by chemical synthesis applying procedures known to a person skilled in the art.

[0192] For example the compounds of the present invention can be prepared according to the following procedures:

[0193] Starting from the respective optionally substituted building blocks (e.g. Ar.sup.1, Ar.sup.2, Ar.sup.3, Ar.sup.4 and Ar.sup.5), these building blocks can be linked to each other using acid chlorides or coupling reagents which are known to a person skilled in the art, e.g. according to the following reaction scheme:

R.sup.1--Ar.sup.1--NH.sub.2+HOOC--Ar.sup.2-L.sup.2-Ar.sup.3-L.sup.3-Ar.s- up.4-L.sup.4-Ar.sup.5--R.sup.2

R.sup.1--Ar.sup.1--NH.sub.2+HO.sub.3SC--Ar.sup.2-L.sup.2-Ar.sup.3-L.sup.- 3-Ar.sup.4-L.sup.4-Ar.sup.5--R.sup.2

[0194] If L.sup.1, L.sup.2, L.sup.3 and/or L.sup.4 is a group of formula --CH.dbd.CH-- (or another olefine group), the respective optionally substituted building blocks (e.g. Ar.sup.1, Ar.sup.2, Ar.sup.3, Ar.sup.4 and Ar.sup.5) can be linked to each other using a Wittig or a Homer reaction, e.g. according to the following reaction scheme:

R.sup.1--Ar.sup.1--CHO+BrPh.sub.3P--CH.sub.2--Ar.sup.2-L.sup.2-Ar.sup.3-- L.sup.3-Ar.sup.4-L.sup.4-Ar.sup.5--R.sup.2

R.sup.1--Ar.sup.1--CHO+(EtO).sub.2OPCH.sub.2--Ar.sup.2-L.sup.2-Ar.sup.3-- L.sup.3-Ar.sup.4-L.sup.4-Ar.sup.5--R.sup.2

[0195] If L.sup.1, L.sup.2, L.sup.3 and/or L.sup.4 is a heterocycloalkyl or a heteroaryl group, the respective optionally substituted building blocks (e.g. Ar.sup.1, Ar.sup.2, Ar.sup.3, Ar.sup.4 and Ar.sup.5) can be linked to each other applying similar reaction conditions.

[0196] Identification of the cystobactamide biosynthesis gene cluster:

[0197] The genome of the cystobactamid producer has been sequenced by shotgun-sequencing. As the main building block of the cystobactamides is the non-proteinogenic amino acid p-aminobenzoic acid (PABA), p-aminobenzoic acid synthase (query, NP_415614) was used as query for the identification of a putative cystobactamide biosynthetic cluster in the genome of Cbv34. Importantly, a p-aminobenzoic acid synthase homologue could be identified (CysD, FIG. 12 and table A), which is forming an operon with non-ribosomal peptide synthases (CysG, H and K) in the context of an in silico predicted .about.48 kb large NRPS cluster (FIG. 12, assignment: table A). The genes in this NRPS cluster have been analysed by pfam, NCBI BLAST and phyre2. Aside the p-aminobenzoic acid synthase homologue, two further PABA biosynthetic enzymes can be found in the cluster: an aminodeoxychorismate lyase (Cysl) and a 3-deoxy-d-arabino-heptulosonate-7-phosphate (DAHP) synthase (CysN). DAHP synthase (CysN) is a key enzyme for the production of shikimate and chorismate. In the main trunk of the shikimate pathway, D-erythrose 4-phosphate and phosphoenolpyruvate (DAHP synthase) are converted via shikimate to chorismate. Cysl and CysD allow the direct biosynthesis of PABA from chorismate. Furthermore, the cluster contains a p-aminobenzoic acid N-oxygenase homologue (CysR).

[0198] FIG. 12 shows the cystobactamide biosynthetic cluster of the invention.

[0199] A recombinant biosynthesis cluster capable of synthesizing a cystobactamide selected from the group consisting of cystobactamide A, B, C, D, E, F, G and H, wherein the cluster comprises all of the polypeptides, or a functional variant thereof, according to SEQ ID NOs. 40 to 73.

[0200] The term "functional variant" as used herein denotes a polypeptide having a sequence that is at least 85%, 90%, 95% or 99% identical to a polypeptide sequence described herein. A "functional variant" of a polypeptide may retain amino acids residues recognized as conserved for the polypeptide in nature, and/or may have non-conserved amino acid residues. Amino acids can be, relative to the native polypeptide, substituted (different), inserted, or deleted, but the variant has generally similar (enzymatic) activity or function as compared to a polypeptide described herein. A "functional variant" may be found in nature or be an engineered mutant (recombinant) thereof.

[0201] The term "identity" refers to a property of sequences that measures their similarity or relationship. Identity is measured by dividing the number of identical residues by the total number of residues and multiplying the product by 100.

[0202] The terms "protein", "polypeptide", "peptide" as used herein define an organic compound made of two or more amino acid residues arranged in a linear chain, wherein the individual amino acids in the organic compound are linked by peptide bonds, i.e. an amide bond formed between adjacent amino acid residues. By convention, the primary structure of a protein is reported starting from the amino-terminal (N) end to the carboxyl-terminal (C) end.

[0203] As used herein, "comprising", "including", "containing", "characterized by", and grammatical equivalents thereof are inclusive or open-ended terms that do not exclude additional, unrecited elements or method steps. "Comprising", etc. is to be interpreted as including the more restrictive term "consisting of".

[0204] As used herein, "consisting of" excludes any element, step, or ingredient not specified in the claim.

[0205] When trade names are used herein, it is intended to independently include the trade name product formulation, the generic drug, and the active pharmaceutical ingredient(s) of the trade name product.

[0206] In general, unless defined otherwise, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs, and are consistent with general textbooks and dictionaries.

[0207] Preferably, the NRPS enzyme of the invention is a not naturally occurring NRPS. The NRPS of the invention may also be a hybrid NRPS comprising modules, domains, and/or portions thereof, or functional variants thereof, from two or more NRPSs or from one or more polyketide synthase(s) (PKSs).

[0208] The cystobactamide biosynthesis cluster of the invention preferably includes the elements of Table A.

TABLE-US-00001 TABLE A Cystobactamide gene cluster of the invention. Gene and NRPS domain annotation with the gene cluster sequence corresponding to SEQ ID NO. 1. NRPS location within the location within the gene cluster sequence protein sequence location within the gene cluster sequence (bp) (bp) (aa) Name Min. Max. direction Length aa Domains length Min. Max. length Min. Max. Orf1 15 845 reverse 831 276 Orf2 912 1148 reverse 237 78 Orf3 1339 1827 reverse 489 162 Orf4 1907 2170 reverse 264 87 Orf5 2347 2796 reverse 450 149 CysT 3035 6838 reverse 3804 1267 CysS 7049 8977 reverse 1929 642 CysR 9086 10087 reverse 1002 333 CysQ 10162 10956 reverse 795 264 CysP 11029 11730 reverse 702 233 CysO 11764 12375 reverse 612 203 CysA 12715 12927 forward 213 70 CysB 12996 13949 forward 954 317 CysC 13959 15338 forward 138 45 CysD 15464 17662 forward 2199 732 CysE 17749 18480 forward 732 243 CysF 18503 19540 forward 1038 345 CysG 19580 25558 forward 5979 1992 AMP-binding 1451 19694 21145 483 39 521 domain PCP domain 209 21221 21430 69 548 616 Condensation_L 893 21485 22378 297 636 932 CL domain AMP-binding 1451 22880 24331 483 1101 1583 domain PCP domain 215 24404 24619 71 1609 1679 Thioesterase 788 24728 25516 262 1717 1978 domain CysH 25626 28553 forward 2928 975 AMP-binding 1199 25737 26936 399 38 436 domain novel domain 332 27231 27563 110 536 645 type AMP binding 170 28032 28202 56 803 858 domain C- terminus PCP domain 197 28284 28481 65 887 951 CysI 28555 29373 forward 819 272 CysJ 29392 30375 forward 984 327 CysK 30450 44087 forward 13638 4545 Condensation_L 323 30459 30782 107 4 110 CL domain AMP-binding 1505 31239 32744 501 264 764 domain PCP domain 197 32820 33017 65 791 855 Condensation_L 893 33072 33965 297 875 1171 CL domain AMP-binding 1505 34461 35966 501 1338 1838 domain PCP domain 197 36042 36239 65 1865 1929 Condensation_L 890 36285 37175 296 1946 2241 CL domain AMP-binding 1574 37668 39242 524 2407 2930 domain PCP domain 359 39165 39524 119 2906 3024 Condensation_L 893 39579 40472 297 3044 3340 CL domain AMP-binding 1505 40968 42473 501 3507 4007 domain PCP domain 197 42549 42746 65 4034 4098 Condensation_L 896 42801 43697 298 4118 4415 CL domain CysL 44084 47155 forward 3072 1023 AMP-binding 1445 45665 47110 481 528 1008 domain CysM 47152 47268 forward 117 38 CysN 47280 48353 forward 1074 357 Orf6 48490 50067 reverse 1578 525 Orf7 50064 50849 reverse 786 261 Orf8 50855 52156 reverse 1302 433 Orf9 52161 54266 reverse 2106 701 Orf10 54266 55027 reverse 762 253 Orf11 55486 56679 forward 1194 397 Orf12 56760 57134 forward 375 124 Orf13 57166 57504 reverse 339 112 Orf14 57504 58418 reverse 915 304

[0209] The present invention also provides isolated, synthetic or recombinant nucleic acids that encode NRPSs of the invention. Said nucleic acids include nucleic acids that include a portion or all of a NRPS of the invention, nucleic acids that further include regulatory sequences, such as promoter and translation initiation and termination sequences, and can further include sequences that facilitate stable maintenance in a host cell, i.e., sequences that provide the function of an origin of replication or facilitate integration into host cell chromosomal or other DNA by homologous recombination. These NRPSs may be used as research tools or as modules in recombinant NRPS or PKS clusters.

[0210] Preferably, the invention relates to an isolated, synthetic or recombinant nucleic acid comprising: [0211] (i) a sequence encoding a cystobactamide biosynthesis cluster, wherein the sequence has a sequence identity to the full-length sequence of SEQ ID NO. 1 from at least 85%, 90%, 95%, 96%, 97%, 98%, 98.5%, 99%, or 99.5% to 100%; [0212] (ii) a sequence encoding a NRPS, wherein the sequence has a sequence identity to the full-length sequence of any of SEQ ID NOs. 8, 9, 12 or 13 from at least 85%, 90%, 95%, 96%, 97%, 98%, 98.5%, 99%, or 99.5% to 100%; [0213] (iii) a sequence completely complementary to the full length sequence of any nucleic acid sequence of (i) or (ii); or [0214] (iv) a sequence encoding a polypeptide according to any of SEQ ID NOs. 46, 47, 50 or 51.

[0215] The phrases "nucleic acid" or "nucleic acid sequence" as used herein refer to an oligonucleotide, nucleotide, polynucleotide, or to a fragment of any of these, to DNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent a sense or antisense strand, natural or synthetic in origin. "Oligonucleotide" includes either a single stranded polydeoxynucleotide or two complementary polydeoxynucleotide strands that may be chemically synthesized. Such synthetic oligonucleotides have no 5' phosphate and thus will not ligate to another oligonucleotide without adding a phosphate with an ATP in the presence of a kinase. A synthetic oligonucleotide can ligate to a fragment that has not been dephosphorylated. A "coding sequence" of or a "nucleotide sequence encoding" a particular polypeptide or protein, is a nucleic acid sequence which is transcribed and translated into a polypeptide or protein when placed under the control of appropriate regulatory sequences. The nucleic acids used to practice this invention may be isolated from a variety of sources, genetically engineered, amplified, and/or expressed/generated recombinantly. Techniques for the manipulation of nucleic acids, such as, e.g., subcloning, labeling probes (e.g., random-primer labeling using Klenow polymerase, nick translation, amplification), sequencing, hybridization and the like are well described in the scientific and patent literature, see, e.g., Sambrook, ed., MOLECULAR CLONING: A LABORATORY MANUAL (2ND ED.), Vols. 1-3, Cold Spring Harbor Laboratory, (1989); CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, Ausubel, ed. John Wiley & Sons, Inc., New York (1997); LABORATORY TECHNIQUES IN BIOCHEMISTRY AND MOLECULAR BIOLOGY: HYBRIDIZATION WITH NUCLEIC ACID PROBES, Part I. Theory and Nucleic Acid Preparation, Tijssen, ed. Elsevier, N.Y. (1993). A nucleic acid encoding a polypeptide of the invention is assembled in appropriate phase with a leader sequence capable of directing secretion of the translated polypeptide or fragment thereof.

[0216] The term "isolated" as used herein means that the material, e.g., a nucleic acid, a polypeptide, a vector, a cell, is removed from its original environment, e.g., the natural environment if it is naturally occurring. For example, a naturally-occurring polynucleotide or polypeptide present in a living animal is not isolated, but the same polynucleotide or polypeptide, separated from some or all of the coexisting materials in the natural system, is isolated. Such polynucleotides could be part of a vector and/or such polynucleotides or polypeptides could be part of a composition and still be isolated in that such vector or composition is not part of its natural environment.

[0217] The term "synthetic" as used herein means that the material, e.g. a nucleic acid, has been synthesized in vitro by well-known chemical synthesis techniques, as described in, e.g., Adams (1983) J. Am. Chem. Soc. 105:661; Belousov (1997) Nucleic Acids Res. 25:3440-3444; Frenkel (1995) Free Radic. Biol. Med. 19:373-380; Blommers (1994) Biochemistry 33:7886-7896; Narang (1979) Meth. Enzymol. 68:90; Brown (1979) Meth. Enzymol. 68:109; Beaucage (1981) Tetra. Lett. 22: 1859.

[0218] The term "recombinant" means that the nucleic acid is adjacent to a "backbone" nucleic acid to which it is not adjacent in its natural environment. Backbone molecules according to the invention include nucleic acids such as cloning and expression vectors, self-replicating nucleic acids, viruses, integrating nucleic acids and other vectors or nucleic acids used to maintain or manipulate a nucleic acid insert of interest. Recombinant polypeptides of the invention, generated from these nucleic acids can be individually isolated or cloned and tested for a desired activity. Any recombinant expression system can be used, including bacterial, mammalian, yeast, insect or plant cell expression systems.

[0219] Also provided is a vector comprising at least one nucleic acid according to the invention. The vector may be a cloning vector, an expression vector or an artificial chromosome.

[0220] As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. Vectors, including cloning and expression vectors, comprise a nucleic acid of the invention or a functional equivalent thereof. Nucleic acids of the invention can be incorporated into a recombinant replicable vector, for example a cloning or expression vector. The vector may be used to replicate the nucleic acid in a compatible host cell. Thus, the invention also provides a method of making polynucleotides of the invention by introducing a polynucleotide of the invention into a replicable vector, introducing the vector into a compatible host cell, and growing the host cell under conditions which bring about replication of the vector. The vector may be recovered from the host cell. Suitable host cells are described below. The vector into which the expression cassette or nucleic acid of the invention is inserted may be any vector which may conveniently be subjected to recombinant DNA procedures, and the choice of the vector will often depend on the host cell into which it is to be introduced. A variety of cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook, et al, Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor, N. Y., (1989).

[0221] A vector according to the invention may be an autonomously replicating vector, i.e. a vector which exists as an extra-chromosomal entity, the replication of which is independent of chromosomal replication, e.g. a plasmid. Alternatively, the vector may be one which, when introduced into a host cell, is integrated into the host cell genome and replicated together with the chromosome(s) into which it has been integrated.

[0222] One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication, and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "expression vectors". In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. The terms "plasmid" and "vector" can be used interchangeably herein as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as cosmid, viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses) and phage vectors which serve equivalent functions.

[0223] Vectors according to the invention may be used in vitro, for example for the production of RNA or used to transfect or transform a host cell.

[0224] A vector of the invention may comprise two or more, for example three, four or five, nucleic acids of the invention, for example for overexpression.

[0225] The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vector includes one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operationally linked to the nucleic acid sequence to be expressed.

[0226] Within a vector, such as an expression vector, "operationally linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell), i.e. the term "operationally linked" refers to a juxtaposition wherein the components described are in a relationship permitting them to function in their intended manner. A regulatory sequence such as a promoter, enhancer or other expression regulation signal "operationally linked" to a coding sequence is positioned in such a way that expression of the coding sequence is achieved under condition compatible with the control sequences or the sequences are arranged so that they function in concert for their intended purpose, for example transcription initiates at a promoter and proceeds through the DNA sequence encoding the polypeptide.

[0227] The term "regulatory sequence" or "control sequence" is intended to include promoters, operators, enhancers, attenuators and other expression control elements (e.g., polyadenylation signal). Such regulatory sequences are described, for example, in Goeddel; Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990).

[0228] The term regulatory or control sequences includes those sequences which direct constitutive expression of a nucleotide sequence in many types of host cells and those which direct expression of the nucleotide sequence only in a certain host cell (e.g. tissue-specific regulatory sequences).

[0229] A vector or expression construct for a given host cell may thus comprise the following elements operationally linked to each other in a consecutive order from the 5'-end to 3'-end relative to the coding strand of the sequence encoding the polypeptide of the invention: (i) a promoter sequence capable of directing transcription of the nucleotide sequence encoding the polypeptide in the given host cell; (ii) optionally, a signal sequence capable of directing secretion of the polypeptide from the given host cell into a culture medium; (iii) optionally, a sequence encoding for a C-terminal, N-terminal or internal epitope tag sequence or a combination of the aforementioned allowing purification, detection or labeling of the polypeptide; (iv) a nucleic acid sequence of the invention encoding a polypeptide of the invention; and preferably also (v) a transcription termination region (terminator) capable of terminating transcription downstream of the nucleotide sequence encoding the polypeptide. Particular named bacterial promoters include lad, lacZ, T3, T7, SP6, K1F, tac, tet, gpt, lambda P.sub.R, P.sub.L and trp. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art. Downstream of the nucleotide sequence according to the invention there may be a 3' untranslated region containing one or more transcription termination sites (e.g. a terminator). The origin of the terminator is less critical. The terminator can, for example, be native to the DNA sequence encoding the polypeptide. Preferably, the terminator is endogenous to the host cell (in which the nucleotide sequence encoding the polypeptide is to be expressed). In the transcribed region, a ribosome binding site for translation may be present. The coding portion of the mature transcripts expressed by the constructs will include a translation initiating AUG (or TUG or GUG in prokaryotes) at the beginning and a termination codon appropriately positioned at the end of the polypeptide to be translated.

[0230] Enhanced expression of a polynucleotide of the invention may also be achieved by the selection of heterologous regulatory regions, e.g. promoter, secretion leader and/or terminator regions, which may serve to increase expression and, if desired, secretion levels of the protein of interest from the expression host and/or to provide for the inducible control of the expression of a polypeptide of the invention. It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. The vectors, such as expression vectors, of the invention can be introduced into host cells to thereby produce proteins or peptides, encoded by nucleic acids as described herein.

[0231] The vectors, such as recombinant expression vectors, of the invention can be designed for expression of a portion or all of a NRPS of the invention in prokaryotic or eukaryotic cells. For example, a portion or all of a NRPS of the invention can be expressed in bacterial cells such as E. coli, Bacillus strains, insect cells (using baculovirus expression vectors), filamentous fungi, yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990). Representative examples of appropriate hosts are described hereafter. Appropriate culture media and conditions for the above-described host cells are known in the art.

[0232] As set out above, the term "control sequences" or "regulatory sequences" is defined herein to include at least any component which may be necessary and/or advantageous for the expression of a polypeptide. Any control sequence may be native or foreign to the nucleic acid sequence of the invention encoding a polypeptide. Such control sequences may include, but are not limited to, a promoter, a leader, optimal translation initiation sequences (as described in Kozak, 1991, J. Biol. Chem. 266:19867-19870), a secretion signal sequence, a pro-peptide sequence, a polyadenylation sequence, a transcription terminator. At a minimum, the control sequences typically include a promoter, and transcriptional and translational stop signals. A stably transformed microorganism is one that has had one or more DNA fragments introduced such that the introduced molecules are maintained, replicated and segregated in a growing culture. Stable transformation may be due to multiple or single chromosomal integration(s) or by (an) extrachromosomal element(s) such as (a) plasmid vector(s). A plasmid vector is capable of directing the expression of polypeptides encoded by particular DNA fragments. Expression may be constitutive or regulated by inducible (or repressible) promoters that enable high levels of transcription of functionally associated DNA fragments encoding specific polypeptides.

[0233] Expression vectors of the invention may also include a selectable marker gene to allow for the selection of bacterial strains that have been transformed, e.g., genes which render the bacteria resistant to drugs such as chloramphenicol, erythromycin, kanamycin, neomycin, tetracycline, as well as ampicillin and other penicillin derivatives like carbenicillin. Selectable markers can also include biosynthetic genes, such as those in the histidine, tryptophan and leucine biosynthetic pathways.

[0234] The appropriate polynucleotide sequence may be inserted into the vector by a variety of procedures. In general, the polynucleotide sequence is ligated to the desired position in the vector following digestion of the insert and the vector with appropriate restriction endonucleases. Alternatively, blunt ends in both the insert and the vector may be ligated. A variety of cloning techniques are disclosed in Ausubel et al. Current Protocols in Molecular Biology, John Wiley 503 Sons, Inc. 1997 and Sambrook et al, Molecular Cloning: A Laboratory Manual 2nd Ed., Cold Spring Harbor Laboratory Press (1989). The polynucleotide sequence may also be cloned using homologous recombination techniques including in vitro as well as in vivo recombination. Such procedures and others are deemed to be within the scope of those skilled in the art. The vector may be, for example, in the form of a plasmid, a viral particle, or a phage. Other vectors include chromosomal, nonchromosomal and synthetic polynucleotide sequences, derivatives of SV40; bacterial plasmids, phage DNA, baculovirus, yeast plasmids, vectors derived from combinations of plasmids and bacteriophage DNA, viral DNA such as vaccinia, adenovirus, fowl pox virus and pseudorabies.

[0235] The invention also provides an engineered or recombinant host cell, i.e. a transformed cell comprising a nucleic acid sequence of the invention as a heterologous or non-native polynucleotide, e.g. a sequence encoding the cystobactamide biosynthesis cluster or a NRPS of the invention, or a vector of the invention. The host cell may be any of the host cells familiar to those skilled in the art, including prokaryotic cells, eukaryotic cells, such as bacterial cells, fungal cells, yeast cells, mammalian cells, insect cells, or plant cells.

[0236] Preferred mammalian cells include e.g. Chinese hamster ovary (CHO) cells, COS cells, 293 cells, PerC6 cells, hybridomas, Bowes melanoma or any mouse or any human cell line. Exemplary insect cells include any species of Spodoptera or Drosophila, including Drosophila S2 and Spodoptera Sf-9. Exemplary fungal cells include any species of Aspergillus. Preferred yeast cell include, e.g. a cell from a Candida, Hansenula, Kluyveromyces, Pichia, Saccharomyces, Schizosaccharomyces, or Yarrowia strain. More preferably from Kluyveromyces lactis, S. cerevisiae, Hansenula polymorpha, Yarrowia lipolytica, or Pichia pastoris. According to the invention, the host cell may be a prokaryotic cell. Preferably, the prokaryotic host cell is a bacterial cell. The term "bacterial cell" includes both Gram-negative and Gram-positive as well as archaeal microorganisms. Suitable bacteria may be selected from e.g. Escherichia, Anabaena, Caulobacter, Gluconobacter, Rhodobacter, Pseudomonas, Paracoccus, Bacillus, Brevibacterium, Corynebacterium, Rhizobium (Sinorhizobium), Flavobacterium, Klebsiella, Enterobacter, Lactobacillus, Lactococcus, Methylobacterium, Staphylococcus or Streptomyces. Preferably, the bacterial cell is selected from the group consisting of B. subtilis, B. amyloliquefaciens, B. licheniformis, B. puntis, B. megaterium, B. halodurans, B. pumilus, G. oxydans, Caulobacter crescentus CB 15, Methylobacterium extorquens, Rhodobacter sphaeroides, Pseudomonas putida, Paracoccus zeaxanthinifaciens, Paracoccus denitrificans, E. coli, C. glutamicum, Staphylococcus carnosus, Streptomyces lividans, Sinorhizobium melioti and Rhizobium radiobacter. The selection of an appropriate host is within the abilities of those skilled in the art.

[0237] The vector can be introduced into the host cells using any of a variety of techniques, including transformation, transfection, transduction, viral infection, gene guns, or Ti-mediated gene transfer. Particular methods include calcium phosphate transfection, DEAE-Dextran mediated transfection, lipofection, or electroporation (Davis, L., Dibner, M., Battey, I., Basic Methods in Molecular Biology, (1986)). The nucleic acids or vectors of the invention may be introduced into the cells for screening, thus, the nucleic acids enter the cells in a manner suitable for subsequent expression of the nucleic acid. The method of introduction is largely dictated by the targeted cell type.

[0238] Exemplary methods include CaPO.sub.4 precipitation, liposome fusion, lipofection (e.g., LIPOFECTIN.TM.), electroporation, viral infection, etc. The candidate nucleic acids may stably integrate into the genome of the host cell (for example, with retroviral introduction) or may exist either transiently or stably in the cytoplasm (i.e. through the use of traditional plasmids, utilizing standard regulatory sequences, selection markers, etc.). As many pharmaceutically important screens require human or model mammalian cell targets, retroviral vectors capable of transfecting such targets can be used.

[0239] Where appropriate, the engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying the nucleic acids of the invention. Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter may be induced by appropriate means (e.g., temperature shift or chemical induction) and the cells may be cultured for an additional period to allow them to produce the desired polypeptide or fragment thereof. Cells can be harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract is retained for further purification. Microbial cells employed for expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents. Such methods are well known to those skilled in the art. The expressed polypeptide or fragment thereof can be recovered and purified from recombinant cell cultures by methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Protein refolding steps can be used, as necessary, in completing configuration of the polypeptide. If desired, high performance liquid chromatography (HPLC) can be employed for final purification steps. The constructs in host cells can be used in a conventional manner to produce the gene product encoded by the recombinant sequence. Depending upon the host employed in a recombinant production procedure, the polypeptides produced by host cells containing the vector may be glycosylated or may be non-glycosylated. Polypeptides of the invention may or may not also include an initial methionine amino acid residue. Cell-free translation systems can also be employed to produce a polypeptide of the invention. Cell-free translation systems can use mRNAs transcribed from a DNA construct comprising a promoter operationally linked to a nucleic acid encoding the polypeptide or fragment thereof. In some aspects, the DNA construct may be linearized prior to conducting an in vitro transcription reaction. The transcribed mRNA is then incubated with an appropriate cell-free translation extract, such as a rabbit reticulocyte extract, to produce the desired polypeptide or fragment thereof.

[0240] Host cells containing the polynucleotides of interest, e.g., nucleic acids of the invention, can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying genes. The culture conditions such as temperature, pH and the like, are those previously used with the host cell selected for expression and will be apparent to the ordinarily skilled artisan. The clones which are identified as having the specified enzyme activity may then be sequenced to identify the polynucleotide sequence encoding a portion or all of a NRPS of the invention.

[0241] Recombinant DNA can be introduced into the host cell by any means, including, but not limited to, plasmids, cosmids, phages, yeast artificial chromosomes or other vectors that mediate transfer of genetic elements into a host cell. These vectors can include an origin of replication, along with cis-acting control elements that control replication of the vector and the genetic elements carried by the vector. Selectable markers can be present on the vector to aid in the identification of host cells into which genetic elements have been introduced. Means for introducing genetic elements into a host cell (e.g. cloning) are well known to the skilled artisan. Other cloning methods include, but are not limited to, direct integration of the genetic material into the chromosome. This can occur by a variety of means, including cloning the genetic elements described herein on non-replicating plasmids flanked by homologous DNA sequences of the host chromosome; upon transforming said recombinant plasmid into a host the genetic elements can be introduced into the chromosome by DNA recombination. Such recombinant strains can be recovered if the integrating DNA fragments contain a selectable marker, such as antibiotic resistance. Alternatively, the genetic elements can be directly introduced into the chromosome of a host cell without use of a non-replicating plasmid. This can be done by synthetically producing DNA fragments of the genetic elements in accordance to the present invention that also contain homologous DNA sequences of the host chromosome. Again if these synthetic DNA fragments also contain a selectable marker, the genetic elements can be inserted into the host chromosome.

[0242] The cystobactamide biosynthesis cluster or a NRPS of the invention may be favorably expressed in any of the above host cells. Thus, the present invention provides a wide variety of host cells comprising one or more of the isolated, synthetic or recombinant nucleic acids and/or NRPSs of the present invention. The host cell, when cultured under suitable conditions, is capable of producing a cystobactamide selected from the group consisting of cystobactamide A, B, C, D, E, F, G and H that it otherwise does not produce, or produces at a lower level, in the absence of a nucleic acid of the invention.

[0243] The invention also relates to an isolated, synthetic or recombinant polypeptide having an amino acid sequence according to any of SEQ ID NOs. 40 to 73, or an amino acid sequence encoded by a nucleic acid of the invention.

[0244] The present invention further provides a method for the preparation of a cystobactamide selected from the group consisting of cystobactamide A, B, C, D, E, F, G and H, said method generally comprising: providing a host cell of the present invention, and culturing said host cell in a suitable culture medium under suitable conditions such that at least one cystobactamide selected from the group consisting of cystobactamide A, B, C, D, E, F, G and His produced. The method may further comprise a step of isolating a cystobactamide selected from the group consisting of cystobactamide A, B, C, D, E, F, G and H, i.e. separating and retaining the compound from the culture broth. The isolation step may be carried out using affinity chromatography, anion exchange chromatography, or reversed phase chromatography.

EXAMPLES

Conditions of Production

Strain for Production

[0245] The strain Cystobacter velatus MCy8071 belongs to the order Myxococcales (Myxobacteria), suborder Cystobacterineae, family Cystobacteraceae, genus Cystobacter. The comparison of the partial 16S rRNA gene sequences with sequences of a public database (BLAST, Basic Local Alignment Search Tool provided by NCBI, National Center for Biotechnology Information) revealed 100% similarity to Cystobacter velatus strain DSM 14718.

[0246] MCy8071 was isolated at the Helmholtz Centre for Infection Research (HZI, formerly GBF) from a Chinese soil sample collected in 1982. The strain was deposited at the German Collection of Microorganisms in Braunschweig (DSM) in March 2013 under the designation DSM 27004.

Cultivation

[0247] The strain MCy8071 grows well on yeast-agar (VY/2: 0.5% Saccharomyces cerevisiae, 0.14% CaCl.sub.2.times.2 H.sub.2O, 0.5 .mu.g vitamine B.sub.12/l, 1.5% agar, pH 7.4), CY-agar (casitone 0.3%, yeast extract 0.1%, CaCl.sub.2.times.2 H.sub.2O 0.1%, agar 1.5%, pH 7.2) and P-agar (peptone Marcor 0.2%, starch 0.8%, single cell protein probione 0.4%, yeast extract 0.2%, CaCl.sub.2.times.2 H.sub.2O 0.1%, MgSO.sub.4 0.1%, Fe-EDTA 8 mg/l, 1.5% agar, pH 7.5). The working culture was nurtured in liquid medium CY/H (50% CY-medium+50 mM Hepes, 50% H-medium: soy flour 0.2%, glucose 0.8%, starch 0.2%, yeast extract 0.2%, CaCl.sub.2.times.2 H.sub.2O 0.1%, MgSO.sub.4 0.1%, Fe-EDTA 8 mg/l, Hepes 50 mM pH 7.4). Liquid cultures were shaken at 180 rpm at 30.degree. C. For conservation aliquots a 2 ml of a three days old culture were stored at -80.degree. C. Reactivation, even after several years, is no problem on the above mentioned agar plates or in 20 ml CY/H-medium (in 100 ml Erlenmeyer flasks with plugs and aluminium-cap). After one-two days the 20 ml cultures can be upscaled to 100 ml.

Morphological Description

[0248] After two days in liquid medium CY/H the rod-shaped cells of strain MCy8071 have a length of 9.0-14.5 .mu.m and width of 0.8-1.0 .mu.m. On the above mentioned agar-plates swarming is circular. On VY/2-agar the swarm is thin and transparent. Yeast degradation is visible on VY/2-agar. On CY-agar the culture looks transparent-orange. On P-agar cell mass production is distinctive and swarming behaviour is reduced. The colony colour is orange-brown. Starch in P-agar is degraded.

[0249] MCy8071 is resistant against the following antibiotics: ampicillin, gentamycin, hygromycin, polymycin, bacitracin, spectinomycin, neomycin, and fusidinic acid. Weak growth is possible with cephalosporin and kasugamycin and no growth is possible with thiostrepton, trimethoprin, kanamycin, and oxytetracycline (final concentration of all antibiotics was adjusted to 50 .mu.g ml.sup.-1).

Production of Cystobactamides A, B, C, D, E, F, G and H

[0250] The strain produces in complex media. He prefers nitrogen containing nutrients like single cell protein (Probion) and products of protein decomposition like peptone, tryptone, yeast extract, soy flour and meat extract. Here the production is better with several of the mentioned proteinmixtures compared to a single one.

[0251] Cystobactamides are produced within the logarithmical to the stationary phase of growth. After two days in 100 liter fermentation (medium E) the amount of products did not increase anymore.

[0252] Cystobactamides are delivered to the medium and bind to XAD-adsorber resin. XAD is sieved by a metal sieve and eluted in acetone. Different production temperatures were tested (21.degree. C., 30.degree. C., 37.degree. C. and 42.degree. C.) whereby at 42.degree. C. no production was possible. The optimal temperature was at 30.degree. C. with maximal aeration.

[0253] Fermentation of MCy8071 was conducted in a 150 liter fermenter with 100 liter medium E (skimmed milk 0.4%, soy flour 0.4%, yeast extract 0.2%, starch 1.0%, MgSO.sub.4 0.1%, Fe-EDTA 8 mg/I, glycerine 0.5%; pH 7.4) and in a 100 liter fermenter with 70 liter medium M (soy-peptone 1.0%, maltose 1.0%, CaCl.sub.2.times.2 H.sub.2O 0.1%, MgSO.sub.4 0.1%, Fe-EDTA 8 mg/I; pH 7.2) for four days at 30.degree. C. The pH was regulated with potassium hydroxide (2.5%) and sulfuric acid between 7.2 and 7.4. The stirrer speed was 100-400 rpm, aerated with 0.05 vvm compressed air. The dissolved oxygen content within the fermentation broth was regulated by the stirrer speed to pO.sub.2 40%. To bind cystobactamides 1% adsorber resin was added to the fermentation broth. The fermenter was inoculated with 5 liter of a three days old pre-culture (E or M-medium, respectively). The production during the fermentation process was checked by HPLC-MS-analyses and serial dilution test of the methanol extract against Escherichia coli. The strain produces Cystobactamides A, B, C, D, E, F, G and H.

Knock-Out Experiments

[0254] To confirm that the cystobactamide biosynthesis gene cluster is responsible for the production of the cystobactamides, a knock-out (KO) experiment was carried out, where CysK (NRPS) and CysL (benzoyl-CoA ligase) was knocked out, respectively. Specifically, PCR products of 1000 bp fragments of CysK and CysL genes were produced from MCy8071 genomic DNA using Taq polymerase. The primers were designed to add 3 stop codons on the extremities of the PCR products.

TABLE-US-00002 CysL KO For TGATTGATTGATCGGCGCGATTCGGCCTCTGG CysL KO Rev TCAATCAATCATCGGGTCGCGGTCTCAGGCTC CysK KO For TGATTGATTGAAAAACAGTCGGAGGAGTTTCTTGTCC CysK KO Rev TCAATCAATCAACTCCCAGTGCCCTCAGCCTC

[0255] The PCR products were gel purified using the Nucleospin.RTM. Gel and PCR Clean-up kit from Macherey-Nagel and cloned into a pCR2.1-TOPO vector. The construct was integrated via heat shock into chemically competent E. coli HS996 and the selection was done on kanamycin-supplemented LB agar plates. Single colonies were screened for correct constructs via alkaline lysis plasmid preparation and restriction digest by EcoRI. The constructs were then sequenced to ensure the sequence homology.

[0256] A correct construct for each KO was transformed into non-methylating chemically competent E. coli SCS110. Plasmids were prepared using the GeneJET Plasmid Miniprep kit from Thermo scientific and integrated into MCy8071 via electroporation. Selection of transformed clones was done on kanamycin-supplemented CTT agar plates. KO mutants and wild type cultures were grown in parallel in the presence of an adsorber resin (XAD-16) and samples of crude extracts of the cultures were analysed.

[0257] The results showed that in the KO mutants there was a complete absence of cystobactamide production indicating that CysK and CysL are essential for the production of the cystobactamides. Furthermore, the result indicates the essential nature of the cystobactamide biosynthesis gene cluster for the production of the cystobactamides.

Structural Analysis:

[0258] HRESI(+)MS analysis of cystobactamide A (1) returned a pseudomolecular formula ion (M+H).sup.+ consistent with the molecular formula C.sub.46H.sub.45N.sub.7O.sub.14, requiring twenty eight double bond equivalents (DBE). The .sup.13C NMR (DMSO-d.sub.6) data revealed seven ester/amide carbonyls (.delta..sub.C 163.7 to 169.6) and a further 30 sp.sup.2 resonances (.delta..sub.C 114.2 to 150.8), accounting for 22 DBE. Consideration of the 1D and 2D NMR data (Table 1) revealed a set of five aromatic spin systems, three of which were attributed to para-substituted, 1,3,4-trisubstituted and 1,2,3,4-tetrasubstituted benzene rings. A set of HMBC correlations from the aromatic signals H-6,6' (.delta..sub.H 7.96) and the NH (.delta..sub.H 8.92) to the amide carbonyl C-4 (.delta..sub.C 166.5); NH (.delta..sub.H 10.82) to C-7/7' (.delta..sub.C 119.8) and to the second amide carbonyl C-10 (.delta..sub.C 164.6); H-12/12 (.delta..sub.H 8.20) to C-10 established the connectivity of two of the para-substituted aromatic ring systems (FIG. 1). Further examination of the .sup.1H and COSY NMR data established the connectivity of the amide NH (.delta..sub.H 8.92) across to the methines H-2 (.delta..sub.H 4.96) and H-1 (.delta..sub.H 4.70). The downfield characteristic of H-1 (.delta..sub.C 79.4) suggested substitution by an oxygen, which was confirmed from a HMBC correlation from H-1 to 1-OMe (.delta..sub.H 3.53, .delta..sub.C 59.6). Also observed were HMBC correlations from H-1 and H-2 to an ester/amide carbonyl (.delta..sub.C 169.6) leading to the construction of subunit A (FIG. 1).

[0259] For the 1,3,4 trisubstituted benzene ring HMBC correlations were observed from H-17 (.delta..sub.H 7.58) to an ester/amide carbonyl C-15 (.delta..sub.C 167.3), an oxy quaternary carbon C-18 (.delta..sub.C 146.8), C-19 (.delta..sub.C 133.6) and C-21 (.delta..sub.C 122.9). The isolated spin system for the 1,2,3,4 tetrasubstituted benzene ring showed HMBC correlations from i) H-25 (.delta..sub.H 7.82, d, 8.7) to an ester/amide carbonyl C-23 (.delta..sub.C 163.7), C-27 (.delta..sub.C 136.2) and a quaternary oxy carbon C-29 (.delta..sub.C 150.8); ii) H-26 (.delta..sub.H 7.42) to C-24 (.delta..sub.C 117.3) and C-28 (.delta..sub.C 139.5) along with the phenolic hydroxyl (.delta..sub.H 11.25) showing correlations to C-24 and C-28) The tri and tetra-substituted benzene rings were attached para to each other by HMBC correlations from the amide NH (.delta..sub.H 10.98) to C-20 (.delta..sub.C 119.8) C-18 (.delta..sub.C 146.7) and C-23 (.delta..sub.C 163.7) (FIG. 1). The last of the para-substituted aromatic spin system H-33/33' (.delta..sub.H 8.11, d, 8.3) and H-34/34' (.delta..sub.H 7.44, d, 8.3) showed attachment to the 1,2,3-trisubstituted benzene ring by HMBC correlations of the amide NH (.delta..sub.H 9.88) and H-33/33' to the amide carbonyl C-31 (.delta..sub.C 164.3). Additional interpretation of the COSY data revealed two sets of isopropoxy residues (H.sub.3-39 (.delta..sub.H 1.38)-H-38 (.delta..sub.H 4.76)-H-40 (.delta..sub.H 1.38)) and (H.sub.3-42 (.delta..sub.H 1.25)-H-41(.delta..sub.H 4.30)-H.sub.3-43(.delta..sub.H 1.25). The two isopropoxy residues were confirmed to be attached to the oxy quaternary carbons C-18 (.delta..sub.C 146.7) and C-28 (.delta..sub.C 139.5) based on ROESY correlations from H-38/H-39 to H-17/NH and H-42/43 to NH/29-OH/H-33/33' (FIG. 1). A link between subunit A and B was not established, however based on structural similarity to cystobactamide B, the point of attachment of subunits A and B were inferred. Having accounted for majority of the resonances, N.sub.2O.sub.3H.sub.2 and 1DBE were left to account for. The UV spectrum of the compound showed a .gamma..sub.max of 301 and 320 nm which suggested a conjugated system which was only possible to have been generated by the attachment of a nitro functionality para- to the aromatic system on subunit A. The remaining MF was adjusted to generate a carboxylic acid residue (C-15) on the 1,2,3-substituted aromatic ring in subunit B generating the 4-amino-3-isopropoxybenzoic acid moiety leading to the construction of the planar structure of cystobactamide A.

[0260] HRESI(+)MS analysis of cystobactamide B (2) returned a pseudomolecular formula ion (M+H).sup.+ consistent with the molecular formula C.sub.46H.sub.44N.sub.6O.sub.15, requiring twenty eight double bond equivalents (DBE). The NMR data (Table 2) of 2 was highly similar to (1) with now the NH (.delta..sub.H 10.19) and the oxymethine H-1 (.delta..sub.H 4.32) seeing the carbonyl C-37 (.delta..sub.C 168.6) confirming the point of attachment of subunits A and B. In addition to this the only change was that the carbonyl amide was now adjusted to a carboxylic acid which was later proven by generation of cystobactamide B dimethyl ester.

[0261] HRESI(+)MS analysis of cystobactamide C (3) returned a pseudomolecular formula ion (M+H).sup.+ consistent with the molecular formula C.sub.27H.sub.29N.sub.3O.sub.7, requiring 15 (DBE). The .sup.1H NMR data for cystobactamide C showed aromatic signals which were reminiscent of cystobactamide A and B, however it lacked aromatic resonances for two sets of para-substituted aromatic units. The COSY data revealed the existing two sets of isopropoxy residues along with one set of para-substituted aromatic ring system. Interpretation of the 1D and 2D NMR data (Table 3, FIG. 2) identified cystobactamide C (3) bearing resemblance to the eastern part of cystobactamide A and B, consisting of 3-isopropoxybenzoic acid, 2-hydroxy-3-isopropoxybenzamide and a para-aminobenzamide unit.

TABLE-US-00003 TABLE 1 NMR (700 MHz, DMSO-d.sub.6) data for cystobactamide A (1) .delta..sub.H, mult pos (J in Hz) .delta..sub.C* COSY HMBC ROESY 1 4.70, d (6.9) 79.4 2 2, 1-OMe, 1-OMe, 3 CO.sub.2NH.sub.2 2 4.96, dd 55.6 1, 3 1, 1-OMe, 3, 34 (8.2, 6.9) CO.sub.2NH.sub.2, 4 3 8.92, d (8.2) 2 4 1, 2, 6' 4 166.5 5 128.6 6, 6' 7.96, d (8.6) 128.9 7, 7' 4, 6, 6', 8 3 7, 7' 7.91, d (8.6) 119.8 6, 6' 5, 7, 7' 9 8 142.2 9 10.82, s 7, 7', 10 7', 12' 10 164.6 11 140.4 12, 12' 8.20, d (8.6) 129.5 13, 13' 12, 12', 10, 14 9 13, 13' 8.39, d (8.6) 123.8 12, 12' 11, 13, 13', 14 14 149.6 15 167.3 16 126.2 17 7.58, s .sup. 114.2 15, 18, 19, 21, 38, 40 18 146.7 19 133.6 20 8.50, d (8.2) 119.8 21 16, 18 21 21 7.60, d (8.2) 122.9 20 15, 17 20 22 10.98, s 18, 20, 23 25, 39 23 163.7 24 117.3 25 7.82, d (8.7) 125.2 26 23, 24, 29 22 26 7.42.sup.a 116.3 25 27, 28 30 27 136.2 28 139.5 29 150.8 30 9.88, s .sup. 26, 27, 31 33, 41 , 42, 43 31 164.3 32 134.0 33, 33' 8.11, d (8.3) 129.5 34, 34' 31, 33, 33', 35 30, 41, 42, 43 34, 34' 7.44.sup.a 125.6 33, 33' 34, 34', 32 1-OMe, 2 35 137.3 36 11.53, s 37 NO 1-OMe 3.53, s .sup. 59.6 1 1, 2 38 .sup. 4.76, spt (6.0) 72.1 39, 40 17 39 1.38, d (6.0) 22.1 38 38, 40 22 40 1.38, d (6.0) 22.1 38 38, 39 17 41 .sup. 4.30, spt (6.0) 76.0 42, 43 30, 42, 43 42 1.25, d (6.0) 22.4 41 41, 43 30, 33' 43 1.25, d (6.0) 22.4 41 41. 42 30, 33' CO.sub.2NH.sub.2 169.6 29-OH 11.25, s 27, 28 .sup.aOverlapping signals, *Assignments supported by HSQC and HMBC experiments.

TABLE-US-00004 TABLE 2 NMR (700 MHz, DMSO-d.sub.6) data for cystobactamide B (2) .delta..sub.H, mult pos (J in Hz) .delta..sub.C COSY HMBC ROESY 1 4.31, m.sup.a 82.0 2 2, 37, CO.sub.2H, 2, 3, 36, 1-OMe, 1-OMe 2 5.07, dd 54.4 1, 3 CO.sub.2H 1, 1-OMe, 3, (8.1, 5.6) 36 3 8.50.sup.b 2 4 1, 2, 6' 4 166.0 5 129.3 6, 6' 7.90, m.sup.c 128.6 7, 7' 6, 6', 8 7, 7' 7.90, m.sup.c 119.8 6, 6' 7, 7' 9 8 141.7 9 10.79, s 7, 7', 10 7', 12' 10 164.5 11 140.5 12, 12' 8.20, d (8.3) 129.6 13, 13' 12, 12', 14, 10 9 13, 13' 8.38, d (8.3) 123.8 12, 12' 11, 14, 13, 13' 14 149.6 15 167.2 16 125.9 17 7.58, s .sup. 114.2 15, 18, 19, 21, 38, 40 18 146.6 19 133.5 20 8.50.sup.b, d (8.4).sup. 119.9 21 16, 18 21 21 7.59, d (8.4) 123.0 20 15, 17 22 10.98, s 20 25, 39 23 163.9 24 116.8 25 7.81, d (8.7) 125.2 26 23, 29 22 26 7.52, d (8.7) 115.6 25 27, 28 30 27 138.8 28 NO 29 150.7 30 9.62, s .sup. 31 33, 33', 26, 41, 43 31 164.5 32 129.3 33, 33' 7.97, d (8.4) 128.6 34, 34' 31, 33, 33' 30, 41, 42, 43 34, 34' 7.90, m.sup.c 119.8 33, 33' 34, 34', 32 1-OMe 35 141.7 36 10.20, s 34, 37 1, 2, 1-OMe 37 168.6 1-OMe 3.49, s .sup. 59.3 1 1, 2, 34, 36 38 .sup. 4.75, spt (6.0) 72.1 39, 40 17 39 1.38, d (6.0) 22.1 38 38, 40 22 40 1.38, d (6.0) 22.1 38 38, 39 17 41 4.30, m.sup.a 76.1 42, 43 30, 42, 43 42 1.25, d (6.0) 22.4 41 41, 43 OH 43 1.25, d (6.0) 22.4 41 41. 42 OH, 30, 33' CO.sub.2H 170.7 OH 11.22, s 28, 29

TABLE-US-00005 TABLE 3 NMR (500 MHz, DMSO-d.sub.6) data for cystobactamide C (3) .delta..sub.H, mult pos (J in Hz) .delta..sub.C* COSY HMBC 1 167.3 2 126.1 3 7.57, s .sup. 114.1 1, 5 4 146.8 5 133.6 6 8.49, d (8.4) 120.0 7 2, 4 7 7.58, d (8.4) 123.0 6 1, 3, 5 8 10.95, s 6 9 164.0 10 116.0 11 150.5 12 137.5 13 NO 14 7.65, d (8.7) 114.5 15 10, 12 15 7.78, d (8.7) 125.3 14 9, 11 16 9.12, s .sup. 14, 17 17 164.7 18 120.4 19/19' 7.69, d (8.8) 129.4 20/20' 19/19', 21, 17 20/20' 6.62, d (8.8) 113.2 19/19' .sup. 18, 20/20' 21 152.8 22 4.75, m .sup. 72.0 23/24 23/24 1.37, d (6.0) 22.1 22 23/24 25 4.33, m .sup. 75.8 26/27 26/27 1.28, d (6.1) 22.5 25 26/27 OH 11.23, s 25 10 NO--Not Observed, *Assignments supported by HSQC and HMBC experiments

[0262] HRESI(+)MS analysis of cystobactamide D (4) revealed a pseudomolecular ion ([M+H].sup.+) indicative of a molecular formula (C.sub.42H.sub.37O.sub.14N.sub.7) requiring twenty eight double bond equivalents. Interpretation of the NMR (DMSO-d.sub.6) data (Table 4) revealed magnetically equivalent aromatic protons H-12'/12 (.delta..sub.H 8.17, d, 8.0) and H-13/13' (.delta..sub.H 8.36, d, 8.0) accounting for the first para-substituted benzene ring. Further interpretation of the .sup.1H-.sup.1H COSY data revealed the presence of two additional para-substituted benzene rings, (H-35/35') (.delta..sub.H 7.80, d, 8.1) and H-36/36' (.delta..sub.H 7.94, d, 8.1); the second set of aromatics were heavily overlapped (H-6/6') and (H-7/7' (.delta..sub.H 7.88). Diagnostic HMBC correlations of the aromatic protons (H-12/12') to an amide carbonyl C-10 (.delta..sub.C 165.1) along with the exchangable (NH) (.delta..sub.H 10.82) coupled to C-10, C-7/7' established the connectivity of the two para-substituted aromatic rings (FIG. 3), which was further corraborated by ROESY correlations between NH/H-12 and NH/H-7. The COSY data revealed an additional spin system from an oxymethine H-1 (.delta..sub.H 4.08, d, 8.0) through an a-proton H-2 (.delta..sub.H 4.91, dd, 8.0, 7.7) to an exchangable proton (NH) O.sub.H 8.47). HMBC correlations from (i) H-2 to three amide carbonyls C-4 (.delta..sub.C 166.4), C-15 (.delta..sub.C 171.8) and C-32 (.delta..sub.C 169.2), (ii) NH (.delta..sub.H 8.48) to C-4, (iii) NH (.delta..sub.H 10.54) to C-35/35' (.delta..sub.C 119.5), (iv) H-6/6' to C-4 further extended the partial structure of cystobactamide D (4). Consideration of the 1-D and 2-D NMR data revealed an additional 1,3,4-trisubstituted and a 1,2,3,4-tetrasubstituted benzene ring. HMBC correlations were observed from the aromatic protons H-27 (.delta..sub.H 7.55) and H-29 (.delta..sub.H 7.60) to the carbonyl C-31 (.delta..sub.C 167.8) and the quaternary carbon C-25 (.delta..sub.C 133.0), while H-30 (.delta..sub.H 8.47, d, 7.0) and a methoxy signal (.delta..sub.H 3.96) were coupled to an oxygen bearing carbon C-26 (.delta..sub.C 149.1), hence revealing a 4-amino-3-methoxybenzoic acid moiety, which was later confirmed by esterification. Moreover, HMBC correlations were observed from the exchangeable proton (NH) (.delta..sub.H 7.46) to the oxygen bearing carbons C-1 (.delta..sub.C 80.8), C-18 (.delta..sub.C 141.0) and the aromatic carbon C-22 (.delta..sub.C 116.2), while H-22 (.delta..sub.H 7.48, d, 8.8) and the methoxy showed couplings to C-18 and H-21 (.delta..sub.H 7.77, d, 8.8) coupled to an amide carbonyl C-23 (.delta..sub.C 164.8). The presence of a hydroxyl functionality ortho to the methoxy was later confirmed by esterification (4a) (FIG. 4), revealing the presence of a 4-amino-2-hydroxy-3-methoxybenzamide. The attachment of the 4-amino-3-methoxybenzoic acid and 4-amin0-2-hydroxy-3-methoxybenzamide substituents were confirmed by ROESY and HMBC correlations from the exchangeable NH's observed from the cystobactamide D dimethyl ester (4a). The missing substituents were to be assigned at C-14 (.delta..sub.C 150.0) and the carbonyl C-38. The .lamda..sub.max (320 nm) and the downfield chemical shift of C-14 was suggestive of a nitro substituent at C-14 and the primary amine attached to the carbonyl C-38, generating the planar structure of 4.

TABLE-US-00006 TABLE 4 NMR (700 MHz, DMSO-d.sub.6) data for cystobactamide D (4) .delta..sub.H, mult pos (J in Hz) .delta..sub.C COSY ROESY HMBC 1 4.08, d (8.0) 80.7 2 32 2 4.91, dd 56.4 1, 3 33 1, 4, 15, 32 (8.0, 7.7) 3 8.47.sup.a 2 4 4 166.4 5 129.5 6/6' 7.91, m.sup.b 129.0 7/7' 4, 8, 6/6' 7/7' 7.91, m.sup.b 120.4 6/6' .sup. 5, 7/7' 8 142.4 9 10.82, s 12/12', 7/7' 7, 10 10 165.1 11 140.9 12/12' 8.17, d (8.0) 129.9 13/13' 9 10, 12/12', 14 13/13' 8.36, d (8.0) 124.3 12/12' 9 11, 13/13', 14 14 150.0 15 171.8 16 NO 17 129.5 18 141.0 19 NO 20 116.5 21 7.77, d (8.8) 125.8 22 23 22 7.48, d (8.8) 115.3 21 18, 20 23 164.8 24 NO 25 133.0 26 149.1 27 7.55, s .sup. 111.7 25, 26, 31 28 126.3 29 7.60.sup.c, d 123.3 30 25, 27, 31 (7.0) 30 8.47.sup.a, d, 120.1 29 26, 28 (7.0) 31 167.8 32 169.2 33 10.54, s 2, 35/35' 34 142.7 35/35' 7.80, d, 119.5 36/36' 33 35/35', 37 .sup. (8.1) 36/36' 7.94, d, 129.3 35/35' 34, 36/36', 38 (8.1) 37 129.4 38 165.5 1-OMe 3.30, s .sup. 58.4 1 18-OMe 3.76, s .sup. 61.0 18 26-OMe 3.95, s .sup. 56.8 26 .sup.a,b,coverlapping signals, .sup.13C shifts obtained from 2D HSQC and HMBC experiments. NO--not observed

TABLE-US-00007 TABLE 5 NMR (700 MHz, DMSO-d.sub.6) data for cystobactamide D dimethyl ester (4a) .delta..sub.H, mult pos (J in Hz) .delta..sub.C COSY ROESY HMBC 1 4.10.sup.a 80.4 2 3 2 2 4.92, dd 56.1 1, 3 3, 33 1, 32 (8.0, 7.8) 3 8.50, d(7.8) 2 1, 2, 6/6' 4 165.6 5 129.4 6/6' 7.91, m.sup.b 128.8 7/7' 3 4, 8 7/7' 7.91, m.sup.b 120.1 6/6' 8 142.0 9 10.82, s 12/12', 7/7' 7/7' 10 164.8 11 140.8 12/12' 8.21, d (8.7) 129.7 13/13' 9, 13/13' 10, 12/12', 14 13/13' 8.39, d (8.7) 124.0 12/12' 12/12' 11, 13/13', 14 14 149.9 15 NO 16 9.65, s .sup. 18-OMe, 38 36/36' 17 129.5 18 144.7 19 152.1 20 121.8 21 7.88, d (8.8) 126.1 22 19, 23 22 7.95, d (8.8) 118.9 21 18, 20 23 162.6 24 10.94, s 19-OMe 30 25 132.8 26 148.3 27 7.60, s .sup. 111.2 26-OMe 25, 29, 31 28 124.9 29 7.67, d (8.6) 123.2 30 30 27 30 8.61, d (8.6) 119.1 29 29 31 166.4 32 169.2 33 10.59, s 2, 35/35' 34 142.8 35/35' 7.83, d, 119.2 36/36' 33 35/35', 37 (8.1) 36/36' 7.97, d, 129.1 35/35' 16 34, 36/36', 37, (8.1) 38 37 129.3 38 165.5 1-OMe 3.31 58.1 18-OMe 3.91, s .sup. 61.2 16 18 19-OMe 4.10.sup.a, s .sup. 62.0 24 19 26-OMe 4.05 56.7 27 CO.sub.2Me 3.86, s .sup. 52.4 31 .sup.a,boverlapping signals, .sup.13C shifts obtained from 2D HSQC and HMBC experiments. NO--not observed

[0263] HRESI(+)MS analysis of cystobactamide E (5) revealed a pseudomolecular ion ([M+H].sup.+) indicative of a molecular formula (C.sub.26H.sub.23O.sub.9N.sub.5) requiring eighteen double bond equivalents. The .sup.1H NMR spectrum was similar to cystobactamide D with the principle difference being the absence of signals reminiscent for the 4-amino-3-methoxybenzoic acid and 4-amino-2-hydroxy-3-methoxybenzamide moieties. Detailed analysis of the 1-D and 2-D NMR data (Table 6) lead to the planar structure of cystobactamide E (5).

TABLE-US-00008 TABLE 6 NMR (700 MHz, DMSO-d.sup.6) data for cystobactamide E (5) .delta..sub.H, mult pos (J in Hz) .delta..sub.C COSY ROESY HMBC 1 4.08, d (8.2) 80.2 2 1-OMe, 2 2 4.90, dd 56.1 1, 3 17 1, 4, 15, 16 (8.2, 7.7) 3 8.50, d (7.7) 2 6/6' 4 4 165.5 5 129.2 6/6' 7.91, m.sup.a 128.6 7/7' 3 4, 6/6', 8 7/7' 7.91, m.sup.a 120.0 6/6' 9 5, 7/7' 8 142.0 9 10.82, s 7/7', 12/12' 7/7', 10 10 164.6 11 140.5 12/12' 8.21, d (8.4) 129.6 13/13' 9 10, 12/12', 14 13/13' 8.38, d (8.4) 123.9 12/12' 11, 13/13', 14 14 149.9 15 171.2 16 168.9 17 10.54, s 2, 19/19', 16, 19/19' 20/20' 18 142.8 19/19' 7.77, d (8.2) 119.0 20/20' 17 19/19', 21 20/20' 7.90, m.sup.a 130.6 19/19' 17 18, 20/20', 22 21 125.6 22 167.2 1-OMe 3.29 58.1 1 .sup.aoverlapping signals, .sup.13C shifts obtained from 2D HSQC and HMBC experiments

[0264] HRESI(+)MS analysis of cystobactamide F (6) returned a pseudomolecular ion (M+H).sup.+ consistent with the molecular Formula C.sub.43H.sub.39N.sub.7O.sub.13, requiring 28 DBE. Interpretation of the NMR (DMSO-d.sub.6) data (Table 7) revealed three sets of magnetically equivalent aromatic protons which could be connected via COSY (6/6' and 7/7', 12/12' and 13/13', 33/33' and 34/34') and additionally in contrast to all other cystobactamides a set of magnetically equivalent aromatic protons (26/26' and 27/27') which could be also connected via COSY. These four sets accounted for four para-substituted benzene rings in the molecule instead of three as found in all other cystobactamides. Only one 1,2,3,4-tetrasubsituted benzene ring could be detected where HMBC correlations of the aromatic proton H-22 (d.sub.H 7.22) could be observed to the carbon C-18 (d.sub.C 137.1) and C-20 (d.sub.H 114.0) and from the aromatic proton H-21 (d.sub.H 7.51) to C-23 (d.sub.C 167.3). Protons H-21 and H-22 could be connected via COSY correlations. Since carbons C-17, C-19 and C-22 were not observable, the HR-MS/MS mass of all peptide-fragments has been established and revealed the presence of 7 carbons, 11 protons, one nitrogen and three oxygen in the respective fragment, confirming the presence of a 1,2,3,4 substituted para-amino benzene moiety on this position (see FIG. 1). HMBC data further confirmed the connection of H-37 (d.sub.H 4.93) to C-18 (d.sub.C 137.1). HMBC and COSY data confirmed an identical linker between the two aromatic parts of the molecule as found in cystobactamide D. HMBC correlations from the exchangeable protons H-9 (d.sub.H 10.82) to C-10 (d.sub.C 163.9) and C-7/7' (d.sub.C 119.4), H-3 (d.sub.H 8.49) to C-4 (d.sub.C 165.1), H-31 (d.sub.H 10.56) to C-30 (d.sub.C 168.3) and C-32 (d.sub.C 141.5) and H-16 (d.sub.H 8.91) to C-36 (d.sub.C 163.1) and C-18 (d.sub.C 137.1) and COSY correlations from H-2 (d.sub.H 4.92) to the exchangeable proton H-3 (d.sub.H 8.49) as well as HRMS fragment data established the serial connectivity of all fragments. The location of the nitro-group and the presence of the free amide group in the linker between the aromatic chains was established using HR-MS/MS fragments to generate the sum-formula of the respective fragments.

TABLE-US-00009 TABLE 7 NMR (700 MHz, DMSO-d.sub.6) data for cystobactamide F (6) .delta..sub.H, mult pos (J in Hz) .delta..sub.C* COSY ROESY HMBC 1 4.10, d(8.08) 79.7 2 1-OMe, 3 1-OMe, 2, 15, 30 2 4.92, 55.9 1, 3 31 1, 4, 15, 30 dd(4.10, 4.10) 3 8.49, d(8.14) 2 1 1, 2, 4 4 165.1 5 128.7 6/6' 7.91, m.sup.a 128.1 7/7' 4, 6/6', 8 7/7' 7.91, m.sup.a 119.4 6/6' 9 5, 7/7' 8 141.6 9 10.82, s 7/7', 12/12' 7/7', 8, 10 10 163.9 11 140 12/12' 8.21, d(8.71) 129.1 13/13' 9 10, 12/12', 14 13/13' 8.39, d(8.71) 123.3 12/12' 11, 13/13' 14 149 15 170.6 16 8.91, s 34/34', 38/38' 18, 36 17 NO 18 137.1 19 NO 20 114.9 21 7.51, d(9.02) 127.5 22 23 22 7.22, d(9.02) NO 21 18, 20 23 167.3 24 15 very broad s 25 144.5 26/26' 7.78. d(8.57) 118.4 27/27' 26/26', 28 27/27' 7.86, m.sup.a 130.1 26/26' 25, 27/27', 29 28 123.4 29 167.3 30 168.3 31 10.56, s 2, 33/33' 30, 33/33' 32 141.5 33/33' 7.83, m.sup.a 118.9 34/34' 33/33', 35 34/34' 7.87, m.sup.a 127.5 33/33' 16 32, 34/34', 36 35 129.2 36 163.1 37 4.93, m.sup.a 71 38/38' 18 38/38' 1.21, d(6.18) 22.4 37 16 37 1-OMe 3.31, s 57.4 1 1 .sup.aOverlapping signals, NO = Not Observed, *Assignments supported by HSQC and HMBC experiments.

[0265] HRESI(+)MS analysis of cystobactamide G (7) returned a pseudomolecular ion (M+H).sup.+ consistent with the molecular Formula C.sub.44H.sub.41N.sub.7O.sub.14, requiring 28 DBE. Due to overlapping aromatic signals in DMSO-d.sub.6 the NMR data acquired in Methanol-d.sub.4 was used to establish the partial structures of the aromatic and the linker fragment (Table 8). The para-substituted benzene rings could be established via COSY, HSQC and HMBC correlations. The configuration of the 1,3,4-trisubstituted benzene ring (4-amino-3methoxy-benzamide) and the methoxy-substituent (1-OMe, (d.sub.C 55.2, d.sub.H 3.50) was established via HSQC, COSY and HMBC correlations. Since not all signals on the 1,2,3,4-substituted benzene moiety could be detected in methanol-d.sub.4 the NMR data measured in DMSO-d.sub.6 was interpreted to establish a 4-amino-3-isopropoxy-2-hydroxy-benzamide and an identical linker between the aromatic parts as identified in cystobactamide D. The connection between C-39 (d.sub.C 74.4) and the carbons C-40/40' (d.sub.C 22.7) was established by COSY correlations of H-39 (d.sub.H 4.82) and H-40/40' (d.sub.H 1.31) and the connectivity between the 1,2,3,4-substituted benzene ring and H-39 (d.sub.H 4.82) was established via HMBC correlations of h-39 to C-18 (d.sub.C 137.3 in DMSO-d.sub.6). The configuration of this benzene moiety was further confirmed with HMBC correlations in DMSO-d.sub.6 of H-22 (d.sub.H 7.04) to C-18 (d.sub.C 137.3) and C-20 (d.sub.C 116.1) and HMBC correlations of H-21 (d.sub.H 7.45) to C-23 (d.sub.C 165.4) as well as COSY correlations from H-21 to H-22. The overall sequence, the location of the nitro-group and the presence of the free amide group in the linker between the aromatic chains was established using HR-MS/MS fragments to generate the sum-formula of the respective fragments.

TABLE-US-00010 TABLE 8 NMR (700 MHz, Methanol-d.sub.4) data for cystobactamide G (7), including (700 MHz, DMSO-d.sub.6) data for dos. 17-23 and 39-40/40'. .delta..sub.H, mult pos (J in Hz) .delta..sub.C* COSY ROESY HMBC 1 4.17, d(7.45) 82.1 2 1-OMe, 2, 15, 32 2 5.08, d(7.37) 57.2 1 1, 4, 15, 32 3 NO 4 168.9 5 130.5 6/6' 7.93, m.sup.a 129.4 7/7' 4, 6/6', 8 7/7' 7.89, d(8.83) 121.1 6/6' 5, 7/7' 8 142.9 9 NO 10 166.5 11 141.6 12/12' 8.16, d(8.77) 129.9 13/13' 10, 12/12', 14 13/13' 8.38, d(8.74) 124.5 12/12' .sup. 11, 13/13' 14 150.9 15 174.4 16 NO 17 139.4 18 NO NO 19 NO 20 NO 21 7.74, d(8.83) 125.4 22 23, 17 22 .sup. 7.51, broad d NO 23 168.7 24 NO 25 133.5 26 149.9 27 7.67, s 112.7 25, 26, 28. 29, 31 28 131.8 29 7.61, d(8.22) 129.9 30 27, 30, 31 30 .sup. 8.45, broad d 120.5 29 31 174.8 32 169.5 33 NO 34 142.8 35/35' 7.83, d(8.64) 120.8 36/36' 35/35', 37 .sup. 36/36' 7.93, m.sup.a 128.9 35/35' 34, 36/36', 38 37 131.2 38 166.4 39 4.82, .sup. 74.4 40/40' 40 water peak 40/40' 1.31, d(6.13) 22.7 39 39 1-Ome 3.50, s 55.2 1 26-Ome 4.02, s 55.9 26 17 NO 18 137.3 19 NO 20 116.1 21 7.45, d(8.83) 123.9 22 23 22 7.04, d(8.66) 99.7 21 18, 20 23 165.4 39 5.05, m .sup. 69.7 40/40' .sup. 18, 40/40' 40/40' 1.17, d(5.98) 22.5 39 39 .sup.aOverlapping signals, NO = Not Observed, *Assignments supported by HSQC and HMBC experiments.

[0266] HRESI(+)MS analysis of cystobactamide H (8) returned a pseudomolecular ion (M+H).sup.+ consistent with the molecular Formula C.sub.43H.sub.39N.sub.7O.sub.14, requiring 28 DBE. The linker configuration between the aromatic chains was found to be identical as the one found in cystobactamide D. interpretation of HSQC, HMBC and COSY data acquired in DMSO-d.sub.6 revealed three para-substituted benzene units as found in cystobactamide A, B, D, F and G. Further interpretation of the COSY, HSGC and HMBC data revealed a identical 1,3,4-trisubstituted benzene moiety which showed HMBC correlations to a methoxy group as found in all other cystobactamides except cystobactamide F (confirmed by HMBC correlation of 1-OMe (d.sub.H 3.27) to C-26 (d.sub.C 147.4)). Analysis of the NMR data revealed--in accordance with the other cystobactamides--a 1,2,3,4-substituted benzene moiety. Significant change came from the establishment of a ethoxy unit via COSY correlation of methylene protons H-39 (d.sub.H 4.17) to methyl group H-40 (d.sub.H 1.27) and the HMBC correlations of methylene group H-39 (d.sub.H 4.17) to C-18 (d.sub.C 139.5) expanding thereby the substitution pattern of the 4-amino-2-hydroxy-3-X-benzamide moiety to X=methoxy, isoproropoxy or ethoxy on position 3. The sequential sequence of cystobactamide H was established by HMBC correlations of the exchangeable protons H-9 (d.sub.H 10.93) to C-10 (d.sub.C 163.9) and C-7/7' (d.sub.C 119.6), H-33 (d.sub.H 10.85) to C-32 (d.sub.C 168.7) and C-35/35' (d.sub.C 118.8), H-16 (d.sub.H 8.91) to C-38 (d.sub.C 163.1), C-18 (d.sub.C 139.5) and C-22 (d.sub.C 100.4) and H-24 (d.sub.H 14.71) to C-20 (d.sub.C 116.1), C-25 (d.sub.C 131.0), C-26 (d.sub.C 147.4) and C-30 (d.sub.C 118.5) and H-2 (d.sub.H 4.85) to C-4 (d.sub.C 165.5) as well as HR-MS2 fragmentation-data which also enabled the localisation of the nitro-group and the establishment of the free amide group in the linker moiety.

TABLE-US-00011 TABLE 9 NMR (700 MHz, DMSO-d.sub.6) data for cystobactamide H (8) .DELTA..sub.H, mult pos (J in Hz) .delta..sub.C* COSY ROESY HMBC 1 4.22, d (8.60) 79.8 2 3, 33 2, 32, 1-OMe 2 4.85, 56.3 1,3 3, 33 1, 4, 15, 32 dd (8.42, 8.42) 3 9.02 s 2 4 165.5 5 128.8 6/6' 7.93 m.sup.a 128.3 7/7' 4, 6/6', 8 7/7' 7.91 m.sup.a 119.6 6/6' 5, 7/7' 8 141.7 9 10.93 s 7/7', 12/12' 10 163.9 11 140.3 12/12' 8.22, d(8.72) 129.4 13/13' 10, 12/12', 14 13/13' 8.38, d(8.72) 123.5 12/12' .sup. 11, 13/13' 14 149.2 15 170.7 16 8.91 s 22, 39, 40 18, 22, 38 17 NO 18 139.5 19 NO 20 116.1 21 7.45, d(8.63) 124.1 22 18, 23 22 6.95, d(8.66) 100.4 21 16 18 23 165.8 24 14.71 s 26-OMe, 39 23, 25, 26, 30 25 131.0 26 147.4 27 7.46, s 111.1 25, 26, 29, 28, 31 28 133.9 29 7.38, m.sup.a 121.3 30 27, 28, 30 30 8.44, d(8.29) 118.5 29 25, 26, 28, 31 169.9 32 168.7 33 10.85 s 1, 2, 35/35' 35/35' 34 141.9 35/35' 7.85, m.sup.a 118.8 36/36' 37 36/36' 7.85, m.sup.a 127.7 35/35' 34, 38 37 129.5 38 163.1 39 4.17, q(7.03) 65.4 40 18, 40 40 1.27, t(7.07) 15.7 39 39 1-Ome 3.27, s 57.4 1 26-Ome 3.84, s 55.2 26 .sup.aOverlapping signals, NO = Not Observed, *Assignments supported by HSQC and HMBC experiments.

FIGURES

[0267] FIG. 1: Key 2D NMR correlations (700 MHz, DMSO-d.sub.6) for cystobactamide A (1)

[0268] FIG. 2: Key 2D NMR correlations (500 MHz, DMSO-d.sub.6) for cystobactamide C (3)

[0269] FIG. 3: Key 2D NMR correlations (700 MHz, DMSO-d.sub.6) for cystobactamide D (4)

[0270] FIG. 4: Key 2D NMR correlations of cystobactamide D dimethyl ester (4a)

[0271] FIG. 5: Key 2D NMR correlations of cystobactamide E (5)

[0272] FIG. 6: Key 2D NMR correlations (700 MHz, DMSO-d.sub.6) of cystobactamide F (6)

[0273] FIG. 7: Key 2D NMR correlations (700 MHz, MeOH-d.sub.4) of cystobactamide G (7)

[0274] FIG. 8: Key 2D NMR correlations (700 MHz, DMSO-d.sub.6) of cystobactamide H (8)

BIOLOGICAL EVALUATION OF CYSTOBACTAMIDES

[0275] As summarized in Tables 10a/b, cystobactamides were evaluated against several microorganisms and cell lines. All derivatives demonstrated a potent inhibitory effect on various E. coli strains, including a nalidixic acid resistant (NAL.sup.R) isolate. Overall potency (average MIC values) of the tested derivatives increased in the following order: CysA1, CysC<CysB<CysA, CysG<CysF. Importantly, the pathogenic Gram-negative strains A. baumannii and P. aeruginosa were also inhibited by the most active derivatives, CysA, CysB, CysG, and CysF, in the low .mu.g/ml range, which is in terms of MIC values only by one order of magnitude higher than for the reference drug ciprofloxacin.

[0276] Average MIC values on Gram-positive bacteria, such as E. faecalis, S. aureus, and S. pneumonia were partly in the sub-.mu.g/ml range and the average potency of CysA and CysB exceeded that of ciprofloxacin.

[0277] Furthermore, it was shown that cystobactamides do not inhibit the growth of yeast and mammalian cells, respectively. Thus, the cystobactamides did not cause apparent cytotoxicity.

Susceptibility of Mutant E. coli Strains to Cystobactamides

[0278] Quinolones are a widely used class of antibiotics that target the type II topoisomerases, DNA gyrase and topoisomerase IV. Resistance to quinolones is thereby often mediated by mutations in chromosomal genes that lead to alterations in the drug targets. In GyrA the quinolone-resistance determining region (QRDR) is located between amino acids 67 and 106, whereas amino acids 83 (Ser) and 87 (Asp) are most often involved..sup.[1,2] In analogous regions of ParC, the secondary target of quinolones, changes of amino acid 80 (Ser) are found to confer quinolone resistance..sup.[3,4]

[0279] Cystobactamides were screened using a panel of E. coli strains with typical mutations in gyrA and parC genes (Table 11). With ciprofloxacin the MIC values increase approximately by factor 30 for the single-step gyrA mutations (strain MI and WT-3.2). However, a combination of both gyrA mutations (strain WT-3) results already in nearly clinical resistance (1 mg/L). A parC mutation (strain WT-4 M2.1) leads to a two-fold increase of the MIC of ciprofloxacin. However, MIC values for cystobactamides did not or only marginally increase for gyrA and parC mutant E. coli strains, which suggests that cystobactamides might interfere with amino acids 87 and 83 of GyrA and amino acid 80 of ParC to a lower extent than observed for ciprofloxacin.

[0280] High-level quinolone resistance often results from a combination of several target site mutations and altered efflux mechanisms. The in vitro selected mutant WT III (marR .DELTA.74 bp) does not produce functional MarR, which acts as a repressor of marA expression. This, in turn, leads to overproduction of MarA and AcrAB and overexpression of the AcrAB efflux pump is associated with the MAR (multiple antibiotic resistance) phenotype..sup.[5] E. coli strain WT III was less susceptible to ciprofloxacin treatment by a factor of ca. 4 (cp. E. coli WT). In comparison, MIC values of cystobactamides B, F, and G were still in the .mu.g/ml range. Notably, the MIC of CysF on strain E. coli WT III only increased by factor 2 compared to wildtype E. coli DSM-1116, whereas the MIC of ciprofloxacin increased by ca. factor 10.

TABLE-US-00012 TABLE 10a Antimicrobial activity of cystobactamides (Cys). CysA CysA1 CysB CysC Test organism MIC [.mu.g/ml] Acinetobacter baumannii 7.4 58.9 3.7 32.5 DSM-30008 Burkholderia cenocepacia >59 >59 >59 >65 DSM-16553 Chromobacterium violaceum >59 >59 14.7 16.3 DSM-30191 Escherichia coli DSM-1116 0.9 14.7 1.8 16.3 Escherichia coli DSM-12242 0.9 29.4 3.7 8.1 (NAL.sup.R) Escherichia coli DSM-26863 (tolC3) 0.5 7.4 1.8 4.1 Escherichia coli ATCC35218 0.9 14.7 1.8 16.3 Escherichia coli ATCC25922 0.5 7.4 0.9 8.1 Enterobacter aerogenes DSM-30053 >59 >59 >59 >33 Klebsiella pneumoniae DSM-30104 >59 >59 >59 65 Pseudomonas aeruginosa PA14 >59 58.9 14.7 65 Pseudomonas aeruginosa >59 58.9 14.7 65 ATCC27853 Mycobacterium smegmatis >59 >59 >59 >65 mc.sup.2155 ATCC700084 Bacillus subtilis DSM-10 0.12 1.8 0.46 2.0 Enterococcus faecalis ATCC29212 0.06 3.7 0.23 4.1 Micrococcus luteus DSM-1790 0.06 7.4 0.23 4.1 Staphylococcus aureus ATCC29213 0.12 14.7 0.12 8.1 Streptococcus pneumoniae 0.23 14.7 0.46 8.1 DSM-20566 Candida albicans DSM-1665 >59 >59 >59 >65 Pichia anomala DSM-6766 >59 >59 >59 >65 Test organism CysF CysG CIP Acinetobacter baumannii -- -- 0.2 DSM-30008 Burkholderia cenocepacia -- -- 6.4 DSM-16553 Chromobacterium violaceum -- -- 0.006 DSM-30191 Escherichia coli DSM-1116 0.4 0.9 0.006 Escherichia coli DSM-12242 -- 0.05 (NAL.sup.R) Escherichia coli DSM-26863 (tolC3) 0.4 0.9 .ltoreq.0.003 Escherichia coli ATCC35218 -- -- 0.006 Escherichia coli ATCC25922 -- -- .ltoreq.0.003 Enterobacter aerogenes DSM-30053 -- -- 0.2 Klebsiella pneumoniae DSM-30104 -- -- 0.025 Pseudomonas aeruginosa PA14 3.4 7.1 0.1 Pseudomonas aeruginosa -- -- 0.1 ATCC27853 Mycobacterium smegmatis -- -- 0.4 mc.sup.2155 ATCC700084 Bacillus subtilis DSM-10 -- -- 0.1 Enterococcus faecalis ATCC29212 -- -- 0.8 Micrococcus luteus DSM-1790 -- -- 1.6 Staphylococcus aureus ATCC29213 -- -- 0.1 Streptococcus pneumoniae -- -- 1.6 DSM-20566 Candida albicans DSM-1665 -- -- >6.4 Pichia anomala DSM-6766 -- -- >6.4 CIP reference antibiotic ciprofloxacin -- not determined

TABLE-US-00013 TABLE 10b Cytotoxicity of cystobactamides (Cys). GI.sub.50 [.mu.M] Cell lines and primary cells CysA CysA1 CysB CHO-K1 (Chinese hamster ovary) 37-111 >111 >111 HCT-116 (human colon carcinoma) -- -- >50 HUVEC (human umbilical vein -- -- >50 endothelial cells) GI.sub.50 [.mu.M] Cell lines and primary cells CysC CysF CysG CHO-K1 (Chinese hamster ovary) ca. 111 >111 37-111 HCT-116 (human colon carcinoma) -- -- -- HUVEC (human umbilical vein -- -- -- endothelial cells) -- not determined

TABLE-US-00014 TABLE 11 Antimicrobial activity of cystobactamides (Cys) against E. coli mutant strains. CysA CysA1 CysB CysC Test organism [resistance mutations] MIC [.mu.g/ml] Escherichia coli WT 0.5 14.7 1.8 8.1 Escherichia coli MI [gyrA(S83L)] 3.7 29.4 3.7 16.3 Escherichia coli WT-3.2 [gyrA(D87G)] 3.7 29.4 3.7 32.5 Escherichia coli WT-3 14.7 >59 7.4 >33 [gyrA(S83L, D87G)] Escherichia coli WT-4 M2.1 [parC(S80I)] 0.5 14.7 1.8 8.1 Escherichia coli MI-4 [gryM(S83L), 0.5 14.7 1.8 16.3 parC(S80I)] Escherichia coli WTIII [marR.DELTA.74bp] 14.7 58.9 3.7 65 CysF CysG CIP Test organism [resistance mutations] MIC [.mu.g/ml] Escherichia coli WT -- -- 0.013 Escherichia coli MI [gyrA(S83L)] -- -- 0.4 Escherichia coli WT-3.2 [gyrA(D87G)] -- -- 0.4 Escherichia coli WT-3 -- -- 0.8 [gyrA(S83L, D87G)] Escherichia coli WT-4 M2.1 [parC(S80I)] -- -- 0.025 Escherichia coli MI-4 [gyrA(S83L), -- -- 0.4 parC(S80I)] Escherichia coli WTIII [marR.DELTA.74bp] 0.9 3.6 0.05 CIP reference antibiotic ciprofloxacin -- not determined

Experimental Procedures Cell-Based Assays

[0281] Cell lines and primary cells. Human HCT-116 colon carcinoma cells (CCL-247) were obtained from the American Type Culture Collection (ATCC) and Chinese hamster ovary CHO-K1 cells (ACC-110) were obtained from the German Collection of Microorganisms and Cell Cultures (DSMZ). Both cell lines were cultured under the conditions recommended by the respective depositor. Primary HUVEC (human umbilical vein endothelial cells; single donor) were purchased from PromoCell (Heidelberg, Germany) and cultured in Endothelial Cell Growth Medium (PromoCell) containing the following supplements: 2% FCS, 0.4% ECGS, 0.1 ng/ml EGF, 1 ng/ml bFGF, 90 .mu.g/ml heparin, 1 .mu.g/ml hydrocortisone.

[0282] Bacterial Strains.

[0283] Bacterial wildtype strains used in susceptibility assays were either part of our strain collection or purchased from the German Collection of Microorgansims and Cell Cultures (DSMZ) or from the American Type Culture Collection (ATCC). E. coli strain WT.sup.[6] and E. coli mutants were kindly provided by Prof. Dr. P. Heisig, Pharmaceutical Biology and Microbiology, University of Hamburg.

[0284] Cytotoxicity Assay.

[0285] Cells were seeded at 6.times.10.sup.3 cells per well of 96-well plates (Corning CellBind.RTM.) in complete medium (180 .mu.l) and directly treated with cystobactamides dissolved in methanol in a serial dilution. Compound were tested in duplicate for 5 d, as well as the internal solvent control. After 5 d incubation, 5 mg/ml MTT in PBS (20 .mu.L) was added per well and it was further incubated for 2 h at 37.degree. C..sup.[7] The medium was then discarded and cells were washed with PBS (100 .mu.l) before adding 2-propanol/10N HCl (250:1, v/v; 100 .mu.l) in order to dissolve formazan granules. The absorbance at 570 nm was measured using a microplate reader (EL808, Bio-Tek Instruments Inc.).

[0286] Susceptibility Testing.

[0287] MIC values were determined in microdilution assays. Overnight cultures were diluted in the appropriate growth medium to achieve an inoculum of 10.sup.4-10.sup.6 cfu/mL. Yeasts were grown in Myc medium (1% phytone peptone, 1% glucose, 50 mM HEPES, pH 7.0), S. pneumonia and E. faecalis in tryptic soy broth (TSB: 1.7% peptone casein, 0.3% peptone soymeal, 0.25% glucose, 0.5% NaCl, 0.25% K.sub.2HPO.sub.4; pH 7.3); M. smegmatis in Middlebrook 7H9 medium supplemented with 10% Middlebrook ADC enrichment and 2 ml/l glycerol). All other listed bacteria were grown in Muller-Hinton broth (0.2% beef infusion solids, 1.75% casein hydrolysate, 0.15% starch, pH 7.4). Cystobactamides and reference drugs were added directly to the cultures in sterile 96-well plates as duplicates and serial dilutions were prepared. Microorganisms were grown on a microplate shaker (750 rpm, 30-37.degree. C., 18-48 h), except S. pneumonia, which was grown at non-shaking conditions (37.degree. C., 5% CO.sub.2, 18 h). Growth inhibition was assessed by visual inspection and the MIC was defined as the lowest concentration of compound that inhibited visible growth.

Target Identification

[0288] To test the anti-gyrase activity of cystobactamides, commercial E. coli gyrase supercoiling kits (Inspiralis) were used. Cystobactamide A inhibited the E. coli gyrase (20.5 nM eq. 1 unit) showing an apparent IC.sub.50 of 6 .mu.M. Cystobactamide A1 inhibited the E. coli gyrase (20.5 nM eq. 1 unit) showing an apparent IC.sub.50 of 2.5 .mu.M. Cystobactamide D inhibited the E. coli gyrase (20.5 nM eq. 1 unit) showing an apparent IC.sub.50 of 1 .mu.M. Cystobactamide C inhibited the E. coli gyrase (20.5 nM eq. 1 unit) showing an apparent IC.sub.50 of 7.7 .mu.M. Cystobactamides thus are novel inhibitors of bacterial DNA gyrase.

[0289] IC.sub.50 values of cystobactamide A-D in the Gyrase inhibition assay:

TABLE-US-00015 Compound IC.sub.50/.mu.M cystobactamide A .sup. 6 +/- 1.4 cystobactamide A1 2.5 +/- 0.8 cystobactamide C 7.2 +/- 0.74 cystobactamide D 0.7 +/- 0.4

[0290] FIG. 9a show the results of the Gyrase inhibition assay. The gyrase reactions were titrated with varying concentrations of cystobactamide A, A1, C and D and resolved by agarose gel electrophoresis. For IC.sub.50 determination the band intensity of the supercoiled plasmid was determined using Adobe Photoshop, plotted vs. [cystobactamide] and fitted using Hill's equation.

[0291] Prokaryotic DNA gyrase and topoisomerase IV share a high degree of homology and gyrase inhibitors typically show a topoisomerase IV inhibitory activity..sup.8 To test the influence of the cystobactamides on topoisomerase IV a commercial E. coli topoisomerase IV kit (Inspiralis) was used.

[0292] Cystobactamide A inhibited the activity of E. coli topo IV only at the highest tested concentration of 815 .mu.M. Cystobactamide A1 inhibited E. coli topo IV showing an IC.sub.50 value of 6.4+/-1.8 .mu.M. Cystobactamide C inhibited the activity of E. coli topo IV only at the highest tested concentration of 300 .mu.M. Cystobactamide D inhibited E. coli topo IV showing an IC.sub.50 value of 10+/-3 .mu.M.

[0293] IC.sub.50 values for cystobactamide A-D in the E. coli Topoisomerase IV inhibition assay:

TABLE-US-00016 Compound IC.sub.50/.mu.M cystobactamide A >160 cystobactamide A1 6.4 +/- 1.8 cystobactamide C >60 cystobactamide D 10 +/- 3

[0294] FIG. 9b shows the result of the Topoisomerase IV inhibition assay. The topo IV reactions were titrated with varying concentrations of A-D and resolved by agarose gel electrophoresis. For IC.sub.50 determination the band intensity of the supercoiled plasmid was determined using Adobe Photoshop, plotted vs. [cystobactamide] and fitted using Hill's equation.

[0295] Prokaryotic DNA topoisomerase IV and eukaryotic topoisomerase II share a high degree of homology (type IIa topoisomerases) and inhibitors of the prokaryotic enzyme often also inhibits the eukaryotic counterpart..sup.8 To test the influence of the cystobactamides on eukaryotic topoisomerase IV a commercial H. sapiens topoisomerase II kit (Inspiralis) was used.

[0296] Cystobactamide A inhibited the activity of human topo II only at the highest tested concentration of 815 .mu.M. Cystobactamide A1 inhibited human topo II showing an IC.sub.50 value of 9+/-0.03 .mu.M. Cystobactamide C inhibited the activity of human topo II only at the highest tested concentration of 300 .mu.M. Cystobactamide D inhibited human topo II showing an IC.sub.50 value of 41.2+/-3 .mu.M

[0297] IC.sub.50 values for cystobactamide A-D in the H. sapiens Topoisomerase II inhibition assay:

TABLE-US-00017 Compound IC.sub.50/.mu.M cystobactamide A >160 cystobactamide A1 9 +/- 0.03 cystobactamide C >60 cystobactamide D 41.2 +/- 3

[0298] FIG. 9c shows the result of the Topoisomerase II inhibition assay. The topo II reactions were titrated with varying concentrations of A-D and resolved by agarose gel electrophoresis. For IC.sub.50 determination the band intensity of the supercoiled plasmid was determined using Adobe Photoshop, plotted vs. [cystobactamide] and fitted using Hill's equation.

[0299] Aside the ATP-dependent type IIa topoisomerases like E. coli gyrase, topolV and human topoII, the activity of cystobactamides on the ATP-independent human topoisomerase I was tested as well.

[0300] IC.sub.50 values for cystobactamide A-D in the H. sapiens Topoisomerase I inhibition assay:

TABLE-US-00018 Compound IC.sub.50/.mu.M cystobactamide A ~10 cystobactamide A1 ~0.7 cystobactamide C ~6 cystobactamide D ~33.6

[0301] FIG. 9d shows the result of the Topoisomerase I inhibition assay. The topo I reactions were titrated with varying concentrations of A-D and resolved by agarose gel electrophoresis. For IC.sub.50 determination the band intensity of the supercoiled plasmid was determined using Adobe Photoshop, plotted vs. [cystobactamide] and fitted using Hill's equation.

[0302] IC.sub.50(gyrase) vs. IC.sub.50(topoisomerase IV) value comparison of cystobactamide A-D:

TABLE-US-00019 IC.sub.50/.mu.M ratios ratios gyrase Topo IV IC.sub.50(topo IV)/IC.sub.50(gyrase) cystobactamide A 6 ~815 ~136 cystobactamide A1 2.5 6.4 ~2.6 cystobactamide D 0.7 10 ~14 cystobactamide C 7.2 ~300 ~42

[0303] Cystobactamides A and C show a strong preference for gyrase as molecular target (40-100 fold stronger preference for gyrase). A1 and D both target gyrase and topoisomerase IV almost equally well (2.6-10 fold stronger preference for gyrase).

[0304] Generally, there are two described inhibition modes/binding sites for gyrase inhibitors:

[0305] 1. Compounds like the fluoroquinolones bind to the GyrA DNA complex and avoid the religation of the nicked dsDNA (gyrase poisoning); and

[0306] 2. Aminocoumarins on the other hand bind to the ATP binding pocket on GyrB (competitive inhibition).8

[0307] To test if cystobactamides follow any of those two inhibition modes, DNA/gyrase complex linearization assays (A) and ATP competition assays (B) were performed using cystobactamide D. (A) Here, the complex of DNA and gyrase is trapped using SDS and the gyrase is digested using proteinase K. If the gyrase/DNA complex is trapped by a gyrase inhibitor of type 1 this will lead to the formation of linearized plasmid (as the religation is inhibited). Type 2 inhibitor-bound or compound-free samples will not show the formation of linearized plasmids. The results of the assay are shown in FIG. 10a. Ciprofloxacin (a known gyrase/DNA stabilizer) and cystobactamide D show the formation of linearized plasmid after proteinase K treatment. This effect is not seen for the untreated control. Therefore, it appears likely that cystobactamides stabilize the covalent GyrA-DNA complex in a fashion comparable to the fluoroquionolones. (B) Here, standard gyrase reactions were inhibited using a constant amount of cystobactamide D and titrated with increasing amounts of ATP. If ATP and cystobactamide D would compete for binding at the ATP binding pocket on the gyrase GyrB subunit, increasing amounts of ATP would lead to the formation of supercoiled plasmid in the assay. FIG. 10b shows the assay results. Even at the highest ATP concentration of 10 mM (2000 fold cystobactamide concentration) the gyrase activity is not regained, indicating that the ATP binding pocket is not the binding site of the cystobactamides. This result is in line with the linearization assay results.

[0308] FIG. 11 shows the results of the DNA/gyrase complex linearization assay.

Experimental Procedures

Gyrase Supercoiling Assay

[0309] To test the anti-gyrase activity of cystobactamides, commercial E. coli gyrase supercoiling kits (Inspiralis, Norwich, UK) were used.3 For standard reactions 0.5 .mu.g relaxed plasmid were mixed with 1 unit (.about.20.5 nM) E. coli gyrase in 1.times. reaction buffer (30 .mu.l final volume, see kit manual) and incubated for 30 minutes at 37.degree. C. The reactions were quenched by the addition of DNA gel loading buffer containing 10% (w/v) SDS. The samples were separated on 0.8% (w/v) agarose gels and DNA was visualized using Roti-GelStain (Carl Roth).

[0310] All natural products stock solutions and dilutions were prepared in 100% DMSO and added to the supercoiling reactions giving a final DMSO concentration of 5% (v/v). Ciprofloxacin stock solutions and Dilutions were prepared in 10 mM HCl and 50% DMSO and used 1:10 in the final assay.

[0311] Following natural product concentrations were used in the assay:

[0312] Cystobactamide A: 815.8 .mu.M; 163 .mu.M; 80 .mu.M, 16 .mu.M; 8 .mu.M; 1.6 .mu.M; 0.8 .mu.M; 0.16 .mu.M; 0.08 .mu.M; 0.016 .mu.M

[0313] Cystobactamide A1: 543.5 .mu.M; 108.7 .mu.M; 54 .mu.M; 10.8 .mu.M; 5.4 .mu.M; 1.087 .mu.M; 0.54 .mu.M; 0.108 .mu.M; 0.054 .mu.M; 0.0108 .mu.M

[0314] Cystobactamide C: 300 .mu.M; 60 .mu.M; 30 .mu.M; 6 .mu.M; 3 .mu.M; 0.6 .mu.M; 0.3 .mu.M; 0.06 .mu.M; 0.03 .mu.M; 0.006 .mu.M

[0315] Cystobactamide D: 347 .mu.M; 173.5 .mu.M; 86.75 .mu.M; 43.38 .mu.M; 21.69 .mu.M; 10.84 .mu.M; 5.42 .mu.M; 2.71 .mu.M; 1.36 .mu.M; 0.68 .mu.M; 0.34 .mu.M; 0.17 .mu.M; 0.085 .mu.M; 0.042 .mu.M; 0.021 .mu.M; 0.0106 .mu.M; 0.0053 .mu.M

[0316] Control reactions were: no enzyme and a standard reaction in presence of 5% (v/v) DMSO.

[0317] All reaction samples were equilibrated for 10 minutes at room-temperature in the absence of DNA. Then the relaxed plasmid was added to start the reaction.

Proteinase K Linearization Assay

[0318] To test if cystobactamides stabilize the covalent complex between DNA gyrase and the nicked DNA substrate, proteinase K linearization assay were performed (see a). Standard gyrase supercoiling assays were run in the presence of cystobactamide D (18 .mu.M; 1.8 .mu.M). Control reactions contained no gyrase, no inhibitor or the known gyrase/DNA complex stabilizer ciprofloxacin (1 .mu.M). The reactions were quenched by the addition of 1/10 volume of 10% SDS. To linearize the nicked DNA-gyrase complexes, 50 .mu.g/ml proteinase K were added to the reactions and incubated for 30 minutes at 37.degree. C. The samples were separated on 0.8% (w/v) agarose gels and DNA was visualized using Roti-GelStain (Carl Roth). To detect linearized plasmid bands the relaxed plasmid was digested by the single-cutting restriction enzyme Ndel.

Gyrase Supercoiling Assay with Varying ATP Concentrations

[0319] To test if cystobactamides compete with ATP for binding to the ATP binding pocket on GyrB, standard gyrase supercoiling assays (see a) with varying ATP concentrations were performed. Standard reaction mixes (1 mM ATP) were supplemented with ATP (0.5M ATP stock solution, ATP was purchased from Sigma-Aldrich) to final ATP concentrations of 2.5; 5 and 10 mM. All reactions were performed in triplicates.

Topoisomerase IV Relaxation Assay

[0320] To test the anti-topoisomerase IV activity of cystobactamides, commercial E. coli topoisomerase IV relaxing kits (lnspiralis, Norwich, UK) were used.4 For standard reactions 0.5 .mu.g supercoiled plasmid were mixed with 1 unit (.about.20.5 nM) E. coli topoisomerase IV in 1.times. reaction buffer (see kit manual) and incubated for 30 minutes at 37.degree. C. The reactions were quenched by the addition of DNA gel loading buffer containing 10% (w/v) SDS. The samples were separated on 0.8% (w/v) agarose gels and DNA was visualized using Roti-GelStain (Carl Roth).

[0321] Following natural product concentrations were used in the assay:

[0322] Cystobactamide A: 815.8 .mu.M; 163 .mu.M; 80 .mu.M, 16 .mu.M; 8 .mu.M; 1.6 .mu.M; 0.8 .mu.M; 0.16 .mu.M; 0.08 .mu.M; 0.016 .mu.M

[0323] Cystobactamide A1: 543.5 .mu.M; 108.7 .mu.M; 54 .mu.M; 10.8 .mu.M; 5.4 .mu.M; 1.087 .mu.M; 0.54 .mu.M; 0.108 .mu.M; 0.054 .mu.M; 0.0108 .mu.M

[0324] Cystobactamide C: 300 .mu.M; 60 .mu.M; 30 .mu.M; 6 .mu.M; 3 .mu.M; 0.6 .mu.M; 0.3 .mu.M; 0.06 .mu.M; 0.03 .mu.M; 0.006 .mu.M

[0325] Cystobactamide D: 347 .mu.M; 173.5 .mu.M; 86.75 .mu.M; 43.38 .mu.M; 21.69 .mu.M; 10.84 .mu.M; 5.42 .mu.M; 2.71 .mu.M; 1.36 .mu.M; 0.68 .mu.M; 0.34 .mu.M; 0.17 .mu.M; 0.085 .mu.M; 0.042 .mu.M; 0.021 .mu.M; 0.0106 .mu.M; 0.0053 .mu.M

[0326] Control reactions were: no enzyme and a standard reaction in presence of 5% (v/v) DMSO. All reaction samples were equilibrated for 10 minutes at room-temperature in the absence of DNA. Then the relaxed plasmid was added to start the reaction.

Topoisomerase II Relaxation Assay

[0327] To test the anti-topoisomerase II activity of cystobactamides, commercial human topoisomerase IV relaxing kits (Inspiralis, Norwich, UK) were used.4 For standard reactions 0.5 .mu.g supercoiled plasmid were mixed with 1 unit (.about.20.5 nM) E. coli topoisomerase II in 1.times. reaction buffer (see kit manual) and incubated for 30 minutes at 37.degree. C. The reactions were quenched by the addition of DNA gel loading buffer containing 10% (w/v) SDS. The samples were separated on 0.8% (w/v) agarose gels and DNA was visualized using Roti-GelStain (Carl Roth).

[0328] Following natural product concentrations were used in the assay:

[0329] Cystobactamide A: 815.8 .mu.M; 163 .mu.M; 80 .mu.M, 16 .mu.M; 8 .mu.M; 1.6 .mu.M; 0.8 .mu.M; 0.16 .mu.M; 0.08 .mu.M; 0.016 .mu.M

[0330] Cystobactamide A1: 543.5 .mu.M; 108.7 .mu.M; 54 .mu.M; 10.8 .mu.M; 5.4 .mu.M; 1.087 .mu.M; 0.54 .mu.M; 0.108 .mu.M; 0.054 .mu.M; 0.0108 .mu.M

[0331] Cystobactamide C: 300 .mu.M; 60 .mu.M; 30 .mu.M; 6 .mu.M; 3 .mu.M; 0.6 .mu.M; 0.3 .mu.M; 0.06 .mu.M; 0.03 .mu.M; 0.006 .mu.M

[0332] Cystobactamide D: 347 .mu.M; 173.5 .mu.M; 86.75 .mu.M; 43.38 .mu.M; 21.69 .mu.M; 10.84 .mu.M; 5.42 .mu.M; 2.71 .mu.M; 1.36 .mu.M; 0.68 .mu.M; 0.34 .mu.M; 0.17 .mu.M; 0.085 .mu.M; 0.042 .mu.M; 0.021 .mu.M; 0.0106 .mu.M; 0.0053 .mu.M

[0333] Control reactions were: no enzyme and a standard reaction in presence of 5% (v/v) DMSO. All reaction samples were equilibrated for 10 minutes at room-temperature in the absence of DNA. Then the relaxed plasmid was added to start the reaction.

Topoisomerase I Relaxation Assay

[0334] To test the anti-topoisomerase II activity of cystobactamides, commercial H. sapiens topoisomerase I relaxing kits (Inspiralis, Norwich, UK) were used.4 For standard reactions 0.5 .mu.g supercoiled plasmid were mixed with 1 unit (.about.20.5 nM) H. sapiens topoisomerase I in 1.times. reaction buffer (see kit manual) and incubated for 30 minutes at 37.degree. C. The reactions were quenched by the addition of DNA gel loading buffer containing 10% (w/v) SDS. The samples were separated on 0.8% (w/v) agarose gels and DNA was visualized using Roti-GelStain (Carl Roth).

[0335] Following natural product concentrations were used in the assay:

[0336] Cystobactamide A: 815 .mu.M; 81.5 .mu.M; 8.15 .mu.M

[0337] Cystobactamide A1: 543 .mu.M; 54.3 .mu.M; 5.43 .mu.M

[0338] Cystobactamide C: 300 .mu.M; 30 .mu.M; 3 .mu.M

[0339] Cystobactamide D: 277 .mu.M; 27.2 .mu.M; 2.77 .mu.M

[0340] Control reactions were: no enzyme and a standard reaction in presence of 5% (v/v) DMSO. All reaction samples were equilibrated for 10 minutes at room-temperature in the absence of DNA. Then the relaxed plasmid was added to start the reaction

Quantification and Analysis

[0341] To determine IC50 values, the formation of supercoiled (gyrase) or relaxed (topoisomerase I, II IV) plasmid was quantified using Adobe Photoshop (Histogram mode). Plotting of these values versus the compound concentration yielded sigmoidal shaped curves, which were fitted using Hill's equation (Origin Pro 8.5). All determined IC50 values are the averages of three independent experiments.

REFERENCES

[0342] [1] T. Gruger, J. L. Nitiss, A. Maxwell, E. L. Zechiedrich, P. Heisig, S. Seeber, Y. Pommier, D. Strumberg, Antimicrob. Agents Chemother. 48, 2004, 4495-4504. [0343] [2] H. Schedletzky, B. Wiedemann, P. Heisig, J. Antimicrob. Chemother. 43, 1999, 31-37. [0344] [3] A. B. Khodursky, E. L. Zechiedrich, N. R. Cozzarelli, Proc. Natl. Acad. Sci. USA 92, 1995, 11801-11805. [0345] [4] A. Schulte, P. Heisig, J. Antimicrob. Chemother. 46, 2000, 1037-1046. [0346] [5] D. Keeney, A. Ruzin, F. McAleese, E. Murphy, P. A. Bradford, J. Antimicrob. Chemother. 61, 2008, 46-53. [0347] [6] P. Heisig, H. Schedletzky, H. Falkenstein-Paul, Antimicrob. Agents Chemother. 37, 1993, 669-701. [0348] [7] T. Mosmann, J. Immunol. Meth. 65, 1983, 55-63. [0349] [8] Pommier, Y.; Leo, E.; Zhang, H.; Marchand, C. Chemistry & Biology 2010, 17, 421.

Synthesis of Cystobactamide A and C

[0350] First, the synthesis of cystobactamide C is described which can further be elaborated to the other cystobactamides.

1.1. Cystobactamide C

[0351] The following Schemes 1 and 2 provide an overview on the synthesis of individual aromatic building blocks followed by assembling these to generate cystobactamide C.

[0352] Alternatively, step e) in Scheme 1 can be modified by using another alcohol (R'OH) instead of .sup.iPrOH. If for example EtOH is used, building blocks of cystobactamide H can be prepared. The same applies for step b) in the second reaction sequence given in Scheme 1. Here, also .sup.iPrOH can be exchanged by any other alcohol (R'OH). If for example MeOH is used, building blocks of cystobactamides C, G and H can be prepared. For the preparation of cystobactamide F, p-amino-benzoic acid derivatives such as p-aminobenzoic acid or corresponding N-protected aminobenzoic acid derivatives and p-nitrobenzoic acids are employed instead of building block B.

##STR00033## ##STR00034##

##STR00035##

1.2 Cystobactamide A

[0353] The more complex cystobactamides consist of the bisamide that represents cystobactamide C, a bisarylamide (fragment C) and a chiral linker element. In this section fragment C and the chiral linker element are reported first which is followed by the assembling of all three elements to provide cystobactamide A.

1.2.1 Synthesis of Bisarene C.

##STR00036##

[0354] 1.2.2 Synthesis of the Chiral Building Block D with Bisarene C Attached

[0355] The synthesis starts from methyl cinnamate and chirality is introduced by the Sharpless asymmetric dihydroxylation. The phenyl ring serves as protecting group for the second carboxylate which is oxidatively liberated. Finally, building block C is attached to the free amino group. The corresponding enantiomeric fragment (ent)-D was prepared using AD mix .alpha. instead of AD mix .beta..

##STR00037##

##STR00038##

2. EXPERIMENTALS

2.1 General Experimental Information

[0356] All reactions were performed in oven dried glassware under an atmosphere of nitrogen gas unless otherwise stated. .sup.1H-NMR spectra were recorded at 400 MHz with a Bruker AVS-400 or at 500 MHz with a Bruker DRX-500. .sup.13C-NMR spectra were recorded at 100 MHz with a Bruker AVS-400 and at 125 MHz with a Bruker DRX-500. Multiplicities are described using the following abbreviations: s=singlet, d=doublet, t=triplet, q=quartet, m=multiplet, b=broad. Chemical shift values of .sup.1H and .sup.13C NMR spectra are commonly reported as values in ppm relative to residual solvent signal as internal standard. The multiplicities refer to the resonances in the off-resonance decoupled spectra. These were elucidated using the distortionless enhancement by polarization transfer (DEPT) spectral editing technique, with secondary pulses at 90.degree. and 135.degree.. Multiplicities are reported using the following abbreviations: s=singlet (due to quaternary carbon), d=doublet (methine), t=triplet (methylene), q=quartet (methyl). Mass spectra (EI) were obtained at 70 eV with a type VG Autospec spectrometer (Micromass), with a type LCT (ESI) (Micromass) or with a type Q-TOF (Micromass) spectrometer in combination with a Waters Aquity Ultraperformance LC system. Analytical thin-layer chromatography was performed using precoated silica gel 60 F.sub.254 plates (Merck, Darmstadt), and the spots were visualized with UV light at 254 nm or alternatively by staining with potassium permanganate, phosphomolybdic acid, 2,4-dinitrophenol or p-anisaldehyde solutions. Tetrahydrofuran (THF) was distilled under nitrogen from sodium/benzophenone. Dichloromethane (CH.sub.2Cl.sub.2) was dried using a Solvent Purification System (SPS). Commercially available reagents were used as supplied. Preparative high performance liquid chromatography using a Merck Hitachi LaChrom system (pump L-7150, interface D-7000, diode array detector L-7450 (A=220-400 nm, preferred monitoring at .lamda.=230 nm)) with column (abbreviation referred to in the experimental part given in parentheses): Trentec Reprosil-Pur 120 C18 AQ 5 .mu.m, 250.times.8 mm, with guard column, 40.times.8 mm (C18-SP). Flash column chromatography was performed on Merck silica gel 60 (230-400 mesh). Eluents used for flash chromatography were distilled prior to use. Melting points were measured using a SRS OptiMelt apparatus. Optical rotations [.alpha.] were measured on a Polarimeter 341 (Perkin Elmer) at a wavelength of 589 nm and are given in 10.sup.-1 deg cm.sup.2 g.sup.-1.

2.2 Specific Procedures

4-Aminomethylbenzoate

##STR00039##

[0358] MeOH (200 mL) was provided in a flask and acetyl chloride (2.6 mL, 36.5 mmol, 1 eq) was slowly added. Then 4-aminobenzoic acid (5.00 g, 36.5 mmol) was added and the solution was stirred 7 days at room temperature. The solvent was removed under reduced pressure and 4-aminomethylbenzoate (5.38 g, 35.59 mmol, quantitative) was obtained as a beige solid.

[0359] The titled compound decomposes before reaching its melting point.

[0360] ATR-IR (neat): =2828, 2015, 1724, 1612, 1558, 1508, 1430, 1316, 1280, 1181, 1109, 1072, 1022, 984, 959, 853, 786, 757, 686, 653 cm.sup.-1.

[0361] .sup.1H-NMR (400 MHz, CD.sub.3OD): .delta. 8.19-8.13 (m, 2H), 7.53-7.48 (m, 2H), 3.93 (s, 3H) ppm.

[0362] .sup.13C-NMR (100 MHz, CD.sub.3OD): .delta. 167.2 137.0, 132.4, 131.7, 124.2, 53.0 ppm

[0363] HRMS (ESI): Calculated for C.sub.8H.sub.10NO.sub.2 (M+H).sup.+: 152.0712. found: 152.0706.

4-(4-Nitrobenzamido)methyl benzoate

##STR00040##

[0365] A solution of P(OMe).sub.3 (3.5 mL, 29.8 mmol) in CH.sub.2Cl.sub.2 (100 mL) was cooled with an ice bath, then I.sub.2 (7.56 g, 29.8 mmol) was added. After the solid iodine was completely dissolved, p-nitrobenzoic acid (5.52 g, 29.8 mmol) and Et.sub.3N (4.70 mL, 33.7 mmol) were added in sequential order, and the solution was stirred for 10 minutes in a cooling bath. 4-aminomethylbenzoate (3.00 gr, 19.9 mmol) was added and the mixture was stirred for 10 minutes. After removing the cooling bath, the reaction mixture was stirred for 3 days at room temperature, then diluted with saturated aqueous NaHCO.sub.3 and extracted with dichloromethane (3.times.). The combined, organic layer was sequentially washed with H.sub.2O, 1 M HCl, H.sub.2O, and brine. The combined organic layers were dried with anhydrous MgSO.sub.4 and the solvent concentrated in vacuo, yielding the title compound (4.4 g, 14.65 mmol, 75%) as a beige solid. mp: 245-246.degree. C.

[0366] .sup.1H NMR (400 MHz, DMSO) .delta. 10.87 (s, 1H.sub.NH), 8.39 (d, J=8.8 Hz, 2H), 8.20 (d, J=8.8 Hz, 2H), 7.99 (d, J=8.8 Hz, 2H), 7.95 (d, J=8.8 Hz, 2H), 3.84 (s, 3H.sub.OMe) ppm.

[0367] .sup.13C NMR (100 MHz, DMSO) .delta. 166.2, 164.9, 149.77, 143.6, 140.7, 130.7, 129.8, 125.3, 124.2, 120.2, 52.4 ppm.

[0368] HRMS (ESI): Calculated for C.sub.15H.sub.13N.sub.2O.sub.2Na (M+H).sup.+: 301.0824. found: 301.0828.

4-(4-Nitrobenzamido)benzoate

##STR00041##

[0370] 4-(4-Nitrobenzamido)methyl benzoate (4.32 g, 14.38 mmol) was dissolved in a mixture 1/1 of THF/H.sub.2O (77/77 mL). Then, solid LiOH (5.16 g, 215.66 mmol) was added and the system was stirred at room temperature for 17 hours. 1M HCl was added until pH-1 and the resulting solid was filtered and dried in vacuo. The title compound (3.3 g, 11.54 mmol, 80%) was obtained as a pale yellow solid. mp: 322-324.degree. C.

[0371] .sup.1H NMR (400 MHz, C.sub.6D.sub.6) .delta. 10.83 (s, 1H.sub.CO2H), 8.34 (d, J=8.6 Hz, 1H), 8.29 (d, J=8.6 Hz, 1H), 8.13 (d, J=8.6 Hz, 1H), 8.06 (d, J=8.6 Hz, 1H), 7.75 (s, 1H.sub.NH) ppm.

[0372] .sup.13C NMR (100 MHz, C.sub.6D.sub.6) .delta. 168.2, 164.6, 162.2, 149.7, 143.9, 141.1, 131.1, 129.8, 123.5, 120.4 ppm.

[0373] HRMS (ESI): Calculated for C.sub.14H.sub.9N.sub.2O.sub.5(M-H).sup.-: 285.0511. found: 285.0506.

(Ethyl carbonic) 4-(4-nitrobenzamido)benzoic anhydride

##STR00042##

[0375] To a stirred solution of 4-aminobenzoic acid (1.5 g, 10.9 mmol) and N, N-dimethylaniline (2.0 g, 10.9 mmol) in acetone was added 4-nitrobenzoyl chloride at 0.degree. C. Then, the reaction mixture was allowed to warm to room temperature and stirred for another hour. The resulting solid was filtered and purified by recrystallization in DMF to afford 4-(4-nitro-benzoylamino)-benzoic acid (2.75 g, 88%).

[0376] 4-(4-Nitro-benzoylamino)-benzoic acid (0.6 g, 2.1 mmol) was dissolved in 14 ml CH.sub.3CN. Then Et.sub.3N (0.31 ml, 2.2 mmol) was added at 0.degree. C. To this resulting solution ethyl chloroformate was added. After stirring for 30 min at 0.degree. C., the white precipitate was filtered and washed with cold CH.sub.3CN, then dried under high vacuum at room temperature to afford the title anhydride 0.5 g, 67%.

[0377] .sup.1H-NMR (400 MHz, DMSO, DMSO=2.50 ppm): .delta.=1.33 (dd, J=7.2 Hz, 3H), 4.37 (q, J=7.2 Hz, 2H), 8.02-8.09 (m, 4H), 8.21 (d, J=8.8 Hz, 2H), 8.40 (d, J=8.8 Hz, 2H), 11.01 (s, 1H).

3-Hydroxy-4-nitromethylbenzoate

##STR00043##

[0379] TMSCHN.sub.2 (2.0 M in Et.sub.2O, 13.20 mL, 26.48 mmol) was added to a solution of 3-hydroxy-2-nitrobenzoic acid (2.50 g, 13.65 mmol) in a mixture of toluene/methanol (81/36 mL) at 0.degree. C. After stirring at 0.degree. C. for 30 minutes, the solvent was evaporated in vacuo to give an oily residue, which was purified by flash chromatography (petroleum ether/ethyl acetate=9:1) to yield the title compound (2.43 g, 12.33 mmol, 90%) as a yellow solid.

[0380] mp: 91-92.degree. C.

[0381] .sup.1H NMR (400 MHz, CDCl.sub.3) .delta. 10.49 (s, 1H.sub.--OH), 8.17 (d, J=8.8 Hz, 1H), 7.83 (d, J=1.8 Hz, 1H), 7.61 (dd, J=8.8, 1.8 Hz, 1H), 3.96 (s, 3H) ppm. .sup.13C NMR (100 MHz, CDCl.sub.3) .delta. 165.0, 154.8, 138.1, 125.4, 121.8, 120.74, 53.1 ppm. HRMS (ESI): Calculated for C.sub.8H.sub.6NO.sub.5 (M-H).sup.-: 196.0246. found: 196.0249.

3-Isopropoxy-4-nitromethylbenzoate

##STR00044##

[0383] 3-Hydroxy-4-nitromethylbenzoate (2.30 g, 10.89 mmol) was dissolved in THF (100 mL). .sup.iPrOH (1.10 mL, 14.16 mmol) and PPh.sub.3 (3.90 g, 14.70 mmol) were added, and the mixture was stirred until all components were dissolved. DEAD (2.2 M in toluene, 14.16 mmol, 6.50 mL) was added and the mixture was stirred at room temperature 17 hours. The solvent was evaporated in vacuo to give an oily residue, which was purified by flash chromatography (petroleum ether/ethyl acetate=95:5) to yield the title compound (2.61 g, 10.91 mmol, quantitative) as a yellow oil.

[0384] .sup.1H NMR (400 MHz, CDCl.sub.3) .delta. 7.75 (d, J=8.4 Hz, 2H), 7.64 (dd, J=8.3, 1.6 Hz, 1H), 4.77 (hept, J=6.1 Hz, 1H), 3.95 (s, 3H), 1.41 (s, 3H), 1.40 (s, 3H) ppm.

[0385] .sup.13C NMR (100 MHz, CDCl.sub.3) .delta. 165.5, 150.9, 134.6, 125.2, 121.2, 117.1, 73.2, 52.9, 21.9 ppm.

[0386] HRMS (Qtof): Calculated for C.sub.8H.sub.6NO.sub.5 (M+Na).sup.+: 262.0691. found: 262.0700.

3-Isopropoxy-4-aminomethylbenzoate

##STR00045##

[0388] 3-Isopropoxy-4-nitromethylbenzoate (2.60 g, 10.87 mmol) was dissolved in MeOH (91.0 mL) and degassed. Pd/C (10% wt., 0.58 g, 0.54 mmol) was added and vacuum was applied under cooling to remove air. The flask was flushed with H.sub.2 and the suspension was stirred for 17 hours at room temperature. The catalyst was filtered over Celite.RTM., washed with MeOH and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether/EtOAc=7/3). 3-Isopropoxy-4-aminomethylbenzoate was obtained (2.27 g, 10.85 mmol, quantitative) as a light orange solid.

[0389] mp: 55-57.degree. C.

[0390] .sup.1H NMR (400 MHz, CDCl.sub.3) .delta. 7.51 (dd, J=8.2, 1.7 Hz, 1H), 7.46 (d, J=1.7 Hz, 1H), 6.66 (dd, J=8.2, 5.1 Hz, 1H), 4.63 (sept, J=5.1 Hz, 1H), 3.85 (s, 3H), 1.36 (s, 3H), 1.35 (s, 3H) ppm.

[0391] .sup.13C NMR (100 MHz, CDCl.sub.3) .delta. 167.5, 144.24, 142.3, 124.0, 119.5, 114.1, 113.5, 70.9, 51.8, 22.3 ppm.

[0392] HRMS (ESI): Calculated for C.sub.11H.sub.16NO.sub.3 (M+H).sup.+: 210.1130. found: 210.1126.

6-Bromo-2,3-dihydroxybenzaldehyde

##STR00046##

[0394] To a solution of 6-bromo-2-hydroxy-3-methoxybenzaldehyde (25.0 g, 108.2 mmol) in CH.sub.2Cl.sub.2 (270 mL) at -30.degree. C. was slowly added BBr.sub.3 (1 M in CH.sub.2Cl.sub.2, 200.0 mL, 200.0 mmol) via additional funnel over a period of 45 minutes. The solution was allowed to warm to room temperature and stirred 17 hours. H.sub.2O was added and the reaction mixture was stirred for additional 30 minutes. The solution was then extracted with EtOAc (3.times.) and washed with H.sub.2O. The combined, organic layers were dried over anhydrous MgSO.sub.4, filtered and concentrated in vacuo to give the title compound (22.16 g, 102.11 mmol, 95%) as a yellow solid. mp: 135-136.degree. C.

[0395] .sup.1H NMR (400 MHz, CDCl.sub.3) .delta. 12.13 (d, J=0.5 Hz, 1H.sub.--OH), 10.27 (s, 1H.sub.--CHO), 7.07 (d, J=8.5 Hz, 1H), 7.02 (dd, J=8.5, 0.5 Hz, 1H), 5.67 (s, 1H.sub.--OH) ppm.

[0396] .sup.13C NMR (100 MHz, CDCl.sub.3) .delta. 198.4, 151.2, 145.0, 124.4, 122.0, 117.5, 116.1 ppm. HRMS (ESI): Calculated for C.sub.7H.sub.4BrO.sub.3 (M-H).sup.-: 214.3943. found: 214.9344.

4-Bromo-3-hydroxymethylbenzene-1,2-diol

##STR00047##

[0398] A solution of 6-bromo-2,3-dihydroxybenzaldehyde (22.16 g, 102.10 mmol) in THF (650 mL) at -40.degree. C. was treated with NaBH.sub.4 (3.86 g, 102.10 mmol) portion wise (3.times.). The resulting mixture was stirred for 30 minutes at room temperature. A saturated aqueous solution of NH.sub.4Cl was added and the mixture was stirred for another 10 minutes, before being finally treated with 1M HCl. After 10 minutes of additional stirring, the aqueous phase was extracted with EtOAc (3.times.). The combined, organic extracts were dried over anhydrous MgSO.sub.4 and filtered. The solvent was removed under reduced pressure to yield the title compound (20.27 g, 92.53 mmol, 91%) as a colorless solid.

[0399] mp: 90-92.degree. C.

[0400] .sup.1H NMR (400 MHz, MeOD) .delta. 6.88 (d, J=8.5 Hz, 1H), 6.64 (d, J=8.5 Hz, 1H), 4.82 (s, 2H) ppm.

[0401] .sup.13C NMR (100 MHz, MeOD) .delta. 147.1, 146.1, 126.9, 123.9, 116.6, 114.4, 61.1 ppm. HRMS (ESI): Calculated for C.sub.7H.sub.6BrO.sub.3 (M-H).sup.-: 216.9500. found: 216.9505.

5-Bromo-2-phenyl-4H-benzo-[1,3]-dioxin-8-ol

##STR00048##

[0403] A solution of 4-bromo-3-hydroxymethylbenzene-1,2-diol (20.27 g, 92.53 mmol) in THF (550 mL) was treated with PhCH(OMe).sub.2 (20.8 mL, 138.8 mmol) and pTSA.H.sub.2O (0.19 g, 1.02 mmol). The mixture was stirred at room temperature for 5 days. CH.sub.2Cl.sub.2 was added and then washed successively with 5% aqueous NaHCO.sub.3 and brine. The aqueous phase was extracted with EtOAc (3.times.). The combined, organic extracts were dried over anhydrous MgSO.sub.4, filtered and the solvent was removed under reduced pressure. Purification by flash chromatography (petroleum ether/EtOAc=95/5) afforded 5-bromo-2-phenyl-4H-benzo-[1,3]-dioxin-8-ol (16.02 g, 52.16 mmol, 56%) as a colorless solid.

[0404] mp: 89-91.degree. C.

[0405] .sup.1H NMR (400 MHz, CDCl.sub.3) .delta. 7.62-7.55 (m, 2H), 7.50-7.43 (m, 3H), 7.07 (d, J=8.6 Hz, 1H), 6.78 (d, J=8.6 Hz, 1H), 5.97 (s, 1H), 5.40 (s, 1H.sub.--OH), 4.99 (s, 2H) ppm.

[0406] .sup.13C NMR (100 MHz, CDCl.sub.3) .delta. 144.0, 141.8, 136.1, 130.1, 128.8, 126.7, 124.9, 121.0, 115.0, 109.4, 100.0, 67.8 ppm.

[0407] HRMS (ESI): Calculated for C.sub.14H.sub.10BrO.sub.3 (M-H).sup.-: 304.9813. found: 304.9813.

5-Bromo-7-nitro-2-phenyl-4H-benzo-[1,3]-dioxin-8-ol

##STR00049##

[0409] 5-Bromo-2-phenyl-4H-benzo-[1,3]-dioxin-8-ol (6.00 g, 19.54 mmol; max. amount) was dissolved in acetone (250 mL). Then, Ni(NO.sub.3).sub.2.5H.sub.2O (5.68 g, 19.54 mmol) and pTSA.H.sub.2O (3.72 g, 19.54 mmol) were added. The mixture was stirred at room temperature for 2.5 h. The reaction mixture was filtered over Celite.RTM., washed with CH.sub.2Cl.sub.2 and concentrated in vacuo. Purification by flash chromatography (dry load: SiO.sub.2+CH.sub.2Cl.sub.2; petroleum ether/ethyl acetate=9:1) yielded the titel compound (5.08 g, 14.43 mmol, 74%) as a bright yellow solid.

[0410] mp: 154-156.degree. C.

[0411] .sup.1H NMR (400 MHz, CDCl.sub.3) .delta. 10.60 (s, 1H.sub.--OH), 7.96 (s, 1H), 7.65-7.57 (m, 2H), 7.48-7.42 (m, 3H), 6.02 (s, 1H), 4.99 (s, 2H) ppm.

[0412] .sup.13C NMR (100 MHz, CDCl.sub.3) .delta. 144.9, 135.5, 133.2, 130.2, 129.0, 128.9, 126.7, 119.2, 109.2, 99.9, 67.4 ppm.

[0413] HRMS (ESI): Calculated for C.sub.14H.sub.9BrNO.sub.5 (M-H).sup.-: 359.9664. found: 349.9660.

5-Bromo-8-isopropoxy-7-nitro-2-phenyl-4H-benzo-[1,3]-dioxine

##STR00050##

[0415] 5-Bromo-7-nitro-2-phenyl-4H-benzo-[1,3]-dioxin-8-ol (13.79 g, 39.16 mmol) was dissolved in THF (429 mL). iPrOH (4.00 mL, 50.91 mmol) and PPh.sub.3 (13.87 g, 52.87 mmol) were added, and the mixture was stirred until all components were dissolved. DEAD (2.2 M in toluene, 23.1 mL, 50.91 mmol) was slowly added (via syringe pump) and the mixture was stirred at room temperature 17 hours. The solvent was evaporated in vacuo to give an oily residue, which was purified by flash chromatography (petroleum ether/ethyl acetate=96:4) to yield the title compound (13.08 g, 33.18 mmol, 85%) as a colorless solid.

[0416] mp: 87-89.degree. C.

[0417] .sup.1H NMR (400 MHz, CDCl.sub.3) .delta. 7.59 (s, 1H), 7.59-7.54 (m, 2H), 7.50-7.43 (m, 3H), 5.97 (s, 1H), 5.00 (s, 2H), 4.69 (hept, J=6.2 Hz, 1H), 1.31 (d, J=6.2 Hz, 3H), 1.28 (d, J=6.2 Hz, 3H) ppm.

[0418] .sup.13C NMR (100 MHz, CDCl.sub.3) .delta. 216.8, 149.0, 144.5, 139.9, 135.7, 130.1, 128.8, 126.4, 126.2, 119.8, 112.7, 99.7, 78.1, 67.6, 22.6, 22.4 ppm.

[0419] HRMS (Qtof): Calculated for C.sub.14H.sub.9BrNO.sub.5 (M+Na).sup.+: 416.0110. found: 416.0101.

8-Isopropoxy-7-nitro-2-phenyl-4H-benzo-[1,3]-dioxin, 73

##STR00051##

[0421] 5-Bromo-8-isopropoxy-7-nitro-2-phenyl-4H-benzo-[1,3]-dioxine 72 (4.00 g, 10.15 mmol), Pd.sub.2(dba).sub.3 (0.93 g, 1.01 mmol), (PhO).sub.3P (0.53 mL, 2.03 mmol), Cs.sub.2CO.sub.3 (4.30 g, 13.19 mmol) and .sup.iPrOH (4.7 mL, 60.88 mmol) were dissolved in 1,4-dioxane (28 mL). The oil bath was preheated to 60.degree. C. and the mixture was stirred at 80.degree. C. for 1.5 hours. The reaction mixture was filtered through Celite.RTM. and washed with EtOAc. The combined, organic extracts were dried over anhydrous MgSO.sub.4 and concentrated in vacuo. The crude material was purified by flash chromatography (petroleum ether/ethyl acetate=96:4) to yield the title compound (2.24 g, 7.10 mmol, 70%) as a pale yellow solid.

[0422] mp: 80-82.degree. C.

[0423] .sup.1H NMR (400 MHz, CDCl.sub.3) .delta. 7.65-7.55 (m, 2H), 7.51-7.41 (m, 3H), 7.37 (d, J=8.5 Hz, 1H), 6.81 (d, J=8.5 Hz, 1H), 6.01 (s, 1H), 5.19 (d, J=15.5 Hz, 1H), 5.03 (d, J=15.5 Hz, 1H), 4.71 (hept, J=6.2 Hz, 1H), 1.32 (d, J=6.2 Hz, 3H), 1.28 (d, J=6.2 Hz, 3H) ppm.

[0424] .sup.13C NMR (100 MHz, CDCl.sub.3) .delta. 147.67, 144.27, 140.55, 136.26, 129.85, 128.72, 126.54, 126.34, 118.82, 116.69, 99.61, 77.71, 66.44, 22.65, 22.41 ppm. HRMS (QTof): Calculated for C.sub.17H.sub.17NO.sub.5Na (M+Na).sup.+: 338.1004. Found: 338.1003.

6-Hydroxymethyl-2-isopropoxy-3-nitrophenol

##STR00052##

[0426] To a mixture of 8-isopropoxy-7-nitro-2-phenyl-4H-benzo[1,3]-dioxine (4.24 g, 13.43 mmol) in MeOH (102 mL) and CH.sub.2Cl.sub.2 (42 mL) at 0.degree. C. was added camphor sulfonic acid (3.12 g, 13.43 mmol). The mixture was stirred at room temperature for 17 hours. The reaction mixture was quenched with Et.sub.3N until pH-8, concentrated in vacuo and purified by flash chromatography (petroleum ether/ethyl acetate=7:3) to yield the title compound (2.75 g, 12.09 mmol, 90%) as a brownish solid.

[0427] mp: 39-41.degree. C.

[0428] .sup.1H NMR (400 MHz, CDCl.sub.3) .delta. 7.46 (d, J=7.4 Hz, 1H), 7.12 (d, J=7.4 Hz, 1H), 6.61 (s, 1H.sub.--OH), 4.81 (d, J=3.5 Hz, 2H), 4.39 (hept, J=7.4 Hz, 1H), 1.36 (s, 3H), 1.35 (s, 3H) ppm.

[0429] .sup.13C NMR (100 MHz, CDCl.sub.3) .delta. 148.9, 138.5, 132.4, 122.1, 116.5, 79.2, 61.3, 22.5 ppm.

[0430] HRMS (ESI): Calculated for C.sub.10H.sub.12NO.sub.5 (M-H).sup.-: 226.0715. found: 226.0717.

2-Hydroxy-3-isopropoxy-4-nitrobenzaldehyde

##STR00053##

[0432] 6-Hydroxymethyl-2-isopropoxy-3-nitrophenol (2.97 g, 13.05 mmol) was dissolved in CH.sub.2Cl.sub.2 (58 mL). Then MnO.sub.2 (11.35 g, 130.53 mmol) was added and the mixture was stirred at rt 17 h. The mixture was filtered over Celite.RTM. and washed with CH.sub.2Cl.sub.2. The solvent was concentrated to give the title compound (2.38 g, 10.57 mmol, 81%) as a brown oil.

[0433] .sup.1H NMR (400 MHz, CDCl.sub.3) .delta. 11.44 (s, 1H.sub.--CHO), 9.97 (s, 1H.sub.--OH), 7.39 (d, J=8.4 Hz, 1H), 7.23 (d, J=8.4 Hz, 1H), 4.88 (hept, J=6.2 Hz, 1H), 1.33 (s, 3H), 1.32 (s, 3H) ppm.

[0434] .sup.13C NMR (100 MHz, CDCl.sub.3) .delta. 196.39, 156.53, 149.36, 139.74, 127.28, 122.57, 114.32, 77.42, 77.16, 22.51. ppm.

[0435] HRMS (ESI): Calculated for C.sub.10H.sub.10NO.sub.5 (M-H).sup.-: 224.0559. Found: 224.0535.

2-Hydroxy-3-isopropoxy-4-nitrobenzoic acid

##STR00054##

[0437] 2-Hydroxy-3-isopropoxy-4-nitrobenzaldehyde (2.36 g, 10.49 mmol) was dissolved in tert-buthanol (71 mL). 2-Methyl-2-butene (2M in THF, 36.7 mL, 73.45 mmol) and a solution of NaClO.sub.2 (2.85 g, 31.48 mmol) and NaH.sub.2PO.sub.4 (6.32 g, 47.22 mmol) in H.sub.2O (51 mL) were added in sequential order. The reaction mixture was stirred at room temperature for 17 hours. 6M NaOH was added until ph-10 and the solvent was concentrated in vacuo. H.sub.2O was added and the organic layer was extracted with petroleum ether (2.times.). The aqueous layer was acidified with 6M HCl until pH-1 and extracted with ethyl acetate (3.times.). The organic extracts were combined, dried over MgSO.sub.4 and filtered. The solvent was concentrated in vacuo to yield the title compound (1.90 g, 7.87 mmol, 75%) as a dark wax.

[0438] .sup.1H NMR (400 MHz, MeOD) .delta. 7.72 (d, J=8.7 Hz, 1H), 7.15 (d, J=8.7 Hz, 1H), 4.86-4.82 (m, 1H), 1.28 (s, 3H), 1.26 (s, 3H) ppm.

[0439] .sup.13C NMR (100 MHz, MeOD) .delta. 172.7, 158.0, 140.0, 125.8, 117.4, 113.8, 77.5, 22.6 ppm.

[0440] HRMS (ESI): Calculated for C.sub.10H.sub.10NO.sub.6 (M-H).sup.-: 240.0508. found: 240.0510.

2-Hydroxy-3-isopropoxy-4-nitrobenzoate

##STR00055##

[0442] TMSCHN.sub.2 (2.0 M in Et.sub.2O, 0.87 mL, 1.75 mmol) was added to a solution of 2-hydroxy-3-isopropoxy-4-nitrobenzoic acid (0.32 g, 1.35 mmol) in a mixture of toluene/methanol (10.4/2 mL) at 0.degree. C. After stirring at 0.degree. C. for 30 minutes, the solvent was evaporated in vacuo to give an oily residue, which was purified by flash chromatography (SiO.sub.2.Et.sub.3N; petroleum ether/ethyl acetate=95:5) to yield the title compound (0.24 g, 0.94 mmol, 57%) as a yellow oil.

[0443] .sup.1H NMR (400 MHz, CDCl.sub.3) .delta. 11.29 (s, 1H.sub.--OH), 7.63 (d, J=8.8 Hz, 1H), 7.12 (d, J=8.8 Hz, 1H), 4.84 (hept, J=6.2 Hz, 1H), 4.00 (s, 3H), 1.32 (s, 3H), 1.31 (s, 3H) ppm.

[0444] .sup.13C NMR (100 MHz, CDCl.sub.3) .delta. 198.2, 188.9, 176.1, 170.0, 157.0, 149.2, 139.8, 123.9, 115.7, 113.4, 77.4, 53.2, 22.5 ppm.

[0445] HRMS (ESI): Calculated for C.sub.11H.sub.12NO.sub.6 (M-H).sup.-: 254.0665. found: 254.0666.

2-Benzyloxy-3-isopropoxy-4-nitrobenzoate

##STR00056##

[0447] 2-Hydroxy-3-isopropoxy-4-nitrobenzoate (0.17 g, 0.69 mmol) was dissolved in THF (7.5 mL). BnOH (92.6 .mu.L, 0.89 mmol) and PPh.sub.3 (0.24 g, 0.93 mmol) were added, and the mixture was stirred until all components are dissolved. DEAD (2.2 M in toluene, 0.41 mL, 0.89 mmol) was slowly added (via syringe pump) and the mixture was stirred at room temperature 17 hours. The solvent was evaporated in vacuo to give an oily residue, which was purified by flash chromatography (petroleum ether/ethyl acetate=95:5) to yield the title compound (0.20 g, 0.58 mmol, 85%) as a colorless oil.

[0448] .sup.1H NMR (400 MHz, CDCl.sub.3) .delta. 7.53 (d, J=8.6 Hz, 1H), 7.50 (d, J=8.6 Hz, 1H), 7.48-7.44 (m, 2H), 7.42-7.35 (m, 3H), 5.14 (s, 2H), 4.74 (hept, J=6.2 Hz, 1H), 3.86 (s, 3H), 1.28 (s, 3H), 1.26 (s, 3H) ppm.

[0449] .sup.13C NMR (100 MHz, CDCl.sub.3) .delta. 165.3, 153.4, 148.4, 145.7, 136.4, 130.9, 128.7, 128.7, 128.7, 125.1, 119.3, 78.2, 76.4, 52.8, 22.5 ppm.

[0450] HRMS (QTof): Calculated for C.sub.18H.sub.19NO.sub.6Na (M+Na).sup.+: 368.1110. found: 368.1112.

2-Benzyloxy-3-isopropoxy-4-nitrobenzoic acid

##STR00057##

[0452] 2-Benzyloxy-3-isopropoxy-4-nitrobenzoate (0.23 g, 0.67 mmol) was dissolved in a mixture 1/1 of THF/H.sub.2O (3.5/3.5 mL). Then, solid LiOH (0.16 g, 6.67 mmol) was added and the reaction mixture was stirred at room temperature for 17 hours. The aqueous layer was acidified with 1M HCl until pH-1 and extracted with EtOAc (3.times.). The organic extracts were combined, dried over anhydrous MgSO.sub.4 and filtered. The solvent was concentrated in vacuo to yield the title compound (0.21 g, 0.63 mmol, 95%) as a yellow wax.

[0453] .sup.1H NMR (400 MHz, CDCl.sub.3) .delta. 7.91 (d, J=8.7 Hz, 1H), 7.58 (d, J=8.7 Hz, 1H), 7.41 (s, 5H), 5.35 (s, 2H), 4.71-4.62 (m, 1H), 1.36 (s, 3H), 1.35 (s, 3H) ppm.

[0454] .sup.13C NMR (100 MHz, CDCl.sub.3) .delta. 164.3, 152.8, 149.7, 144.7, 134.1, 129.8, 129.4, 129.2, 126.98, 120.0, 79.1, 77.7, 22.5 ppm.

[0455] HRMS (ESI): Calculated for C.sub.17H.sub.16NO.sub.6 (M-H).sup.-: 330.0978. found: 330.0976.

4-(2-(Benzyloxy)-3-isopropoxy-4-nitrobenzamido)-3-isopropoxybenzoate

##STR00058##

[0457] 2-Benzyloxy-3-isopropoxy-4-nitrobenzoic acid (51.5 mg, 0.16 mmol) was dissolved in CH.sub.2Cl.sub.2 (8 mL) and preactivated with Ghosez's reagent (66.0 .mu.L, 0.50 mmol) for 3 hours at 40.degree. C. 3-Isopropoxy-4-aminomethylbenzoate (0.12 g, 0.55 mmol) was dissolved in CH.sub.2Cl.sub.2 (8 mL) and N,N-diisopropylethylamine (DIPEA) was added (0.20 mL, 1.12 mmol). The solution containing the acid chloride was then added and the reaction mixture stirred for 2 days at 40.degree. C. The solvent was then removed and the crude product was purified by preparative HPLC (RP-18; run time 100 min; H.sub.2O/MeCN=100:0.fwdarw.0:100; tr=80 min) providing the title compound (56.9 mg, 0.11 mmol, 68%) as a light yellow oil.

[0458] .sup.1H NMR (400 MHz, CDCl.sub.3) .delta. 10.33 (s, 1H.sub.--NH), 8.55 (d, J=8.5 Hz, 1H), 7.85 (d, J=8.7 Hz, 1H), 7.70 (dd, J=8.5, 1.7 Hz, 1H), 7.59 (d, J=8.7 Hz, 1H), 7.57 (d, J=1.7 Hz, 1H), 7.25-7.12 (m, 5H), 5.25 (s, 2H), 4.75-4.67 (m, 1H), 4.67-4.59 (m, 1H), 3.93 (s, 3H), 1.40 (d, J=6.2 Hz, 6H), 1.28 (d, J=6.0 Hz, 6H) ppm.

[0459] .sup.13C NMR (100 MHz, CDCl.sub.3) .delta. 167.0, 161.4, 151.1, 147.9, 146.1, 145.2, 134.1, 132.9, 132.9, 130.0, 129.4, 128.7, 125.79, 125.6, 123.3, 120.1, 119.5, 113.3, 78.9, 77.4, 71.7, 52.3, 22.6, 22.1 ppm.

[0460] HRMS (ESI): Calculated for C.sub.28H.sub.31N.sub.2O.sub.8 (M+H).sup.+: 523.2080. found: 523.2075.

4-(4-Amino-2-hydroxy-3-isopropoxybenzamido)-3-isopropoxybenzoate

##STR00059##

[0462] 4-[2-(Benzyloxy)-3-isopropoxy-4-nitrobenzamido]-3-isopropoxy-benzoa- te (7.9 mg, 0.015 mmol) was dissolved in MeOH (0.5 mL) and degassed. Pd/C (10% wt., 2 mg, 0.0014 mmol) was added and vacuum was applied under cooling to remove air. The flask was flushed with H.sub.2 and the suspension was stirred for 3 hours at room temperature. The catalyst was filtered off over Celite.RTM., washed with MeOH and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether/ethyl acetate=7:3) and the title compound was obtained (5.8 g, 0.014 mmol, 96%) as a yellow oil.

[0463] .sup.1H NMR (400 MHz, CDCl.sub.3) .delta. 12.21 (s, 1H.sub.--OH), 8.81 (s, 1H.sub.--NH), 8.49 (d, J=8.5 Hz, 1H), 7.69 (dd, J=8.5, 1.8 Hz, 1H), 7.58 (d, J=1.7 Hz, 1H), 7.07 (d, J=8.8 Hz, 1H), 6.28 (d, J=8.7 Hz, 1H), 4.80-4.72 (m, 1H), 4.72-4.63 (m, 1H), 4.28 (s, 2H.sub.--NH2), 3.91 (s, 3H), 1.44 (d, J=6.1 Hz, 6H), 1.34 (d, J=6.2 Hz, 7H) ppm.

[0464] .sup.13C NMR (100 MHz, CDCl.sub.3) .delta. 168.5, 166.9, 156.4, 146.5, 146.0, 132.7, 132.0, 125.1, 123.40, 121.5, 119.1, 113.4, 106.5, 106.3, 77.4, 74.4, 72.0, 52.3, 22.9, 22.4 ppm.

[0465] HRMS (ESI): Calculated for C.sub.21H.sub.25N.sub.2O.sub.6 (M-H).sup.-: 401.1713. found: 401.1716.

4-(tert-butoxycarbonylamino)benzoic acid

##STR00060##

[0467] 4-Aminobenzoic acid (1.00 g, 7.29 mmol) was dissolved in 1,4-dioxane (15 mL) and H.sub.2O (7 mL). Et.sub.3N (2.0 mL, 14.58 mmol) was added to the solution and the reaction mixture was stirred for 5 minutes at room temperature. Di-tert-butyl dicarbonate (3.18 g, 14.58 m mol) was then added to the solution in one portion and the reaction mixture was stirred for 24 hours. Following removal of the solvent in vacuo, 3M HCl was added to the residue yielding a white precipitate. The slurry was then filtered and washed with H.sub.2O before drying in under high vacuum. Recrystallization from hot methanol yielded the titled compound as a colorless solid (1.63 g, 6.85 mmol, 94% yield).

[0468] mp: 192-194.degree. C.

[0469] .sup.1H NMR (400 MHz, DMSO) .delta. 9.73 (s, 1H.sub.--CO2H), 7.83 (d, 2H, J=8.9 Hz), 7.55 (d, 2H, J=8.9 Hz), 1.47 (s, 9H) ppm.

[0470] .sup.13C NMR (100 MHz, CDCl.sub.3) .delta. 167.1, 152.6, 143.8, 130.4, 124.0, 117.2, 79.7, 28.1 ppm.

[0471] HRMS (ESI): Calculated for C.sub.12H.sub.15NnaO.sub.4 (M+Na).sup.+: 260.0893. found: 260.0897.

[0472] The spectroscopic data are in accordance with those reported in the literature (J. Am. Chem. Soc. 2012, 134, 7406-7413).

Methyl-4-(4-(4-(tert-butoxycarbonyl)amino)benzamido)-2-hydroxy-3-isopropxy- benzamido)-3-isopropoxybenzoate

##STR00061##

[0474] 4-(Tert-butoxycarbonylamino)benzoic acid (40.0 mg, 0.17 mmol) was dissolved in CH.sub.2Cl.sub.2 (8.4 mL) and preactivated with Ghosez's reagent (22.5 .mu.L, 0.17 mmol) for 2 hours at room temperature. 4-(4-Amino-2-hydroxy-3-isopropoxybenzamido)-3-isopropoxybenzoate (68.4 mg, 0.17 mmol) was dissolved in CH.sub.2Cl.sub.2 (8.4 mL) and N,N-diisopropylethylamine (DIPEA) was added (59.2 .mu.L, 0.34 mmol). The solution containing the acid chloride was then added and the reaction mixture stirred for 1 day at room temperaturet. The solvent was then removed and the crude product was purified by preparative HPLC (RP-18; run time 100 min; H.sub.2O/MeCN=100:0.fwdarw.0:100; tr=70 min) providing the title compound as a light yellow oil (47.3 mg, 0.076 mmol, 72%).

[0475] .sup.1H NMR (400 MHz, CDCl.sub.3) .delta. 7.98 (d, J=7.5 Hz, 2H), 7.78 (d, J=1.4 Hz, 1H), 7.72 (dd, J=7.5, 1.4 Hz, 1H), 7.69 (s, 1H.sub.--NH), 7.68 (d, J=7.3 Hz, 3H), 7.56 (d, J=7.5 Hz, 1H), 7.17 (d, J=7.5 Hz, 1H), 5.72 (s, 1H.sub.--NH), 5.49 (s, 1H.sub.--NH), 4.02-3.96 (m, 2H), 3.95 (d, J=3.7 Hz, 3H), 1.49 (s, 9H), 1.46 (d, J=5.6 Hz, 6H), 1.41 (d, J=5.5 Hz, 6H) ppm.

[0476] .sup.13C NMR (100 MHz, CDCl.sub.3) .delta. 166.89, 166.67, 166.61, 158.88, 154.93, 146.90, 141.47, 135.07, 134.68, 131.70, 130.38, 130.38, 127.26, 127.17, 123.25, 121.40, 120.63, 120.63, 115.87, 114.85, 113.39, 106.06, 80.65, 75.89, 74.13, 52.08, 28.41, 28.41, 28.41, 21.80, 21.80, 21.80, 21.80 ppm.

[0477] HRMS (ESI): Calculated for C.sub.33H.sub.38N.sub.3O.sub.9 (M-H).sup.-: 620.2687. found: 620.2689.

Methyl-4-(4-(4-aminobenzamido)-2-hydroxy-3-isopropxybenzamido)-3-isopropox- ybenzoate

##STR00062##

[0479] Methyl-4-(4-(4-(tert-butoxycarbonyl)amino)benzamido)-2-hydroxy-3-is- opropxybenzamido)-3-isopropoxybenzoate (40.0 mg, 0.064 mmol) was dissolved in a mixture 10/1 dichloromethane/trifluoroacetic acid (1 mL) and stirred 17 hours at room temperature. The solvent was removed under reduced pressure and the residual acid was removed under high vacuum to give the titled compound (33.4 mg, 0.064 mmol, quantitative) as yellow oil.

[0480] .sup.1H NMR (400 MHz, CDCl.sub.3) .delta. 7.86 (d, J=1.4 Hz, 1H), 7.83 (s, 1H.sub.--NH), 7.79 (dd, J=7.5, 1.4 Hz, 1H), 7.75 (d, J=7.5 Hz, 1H), 7.70 (d, J=7.5 Hz, 2H), 7.65 (d, J=7.5 Hz, 1H), 7.05 (d, J=7.5 Hz, 1H), 6.94 (s, 1H.sub.--NH), 6.75 (d, J=7.5 Hz, 2H), 6.09 (s, 1H.sub.--OH), 4.02-3.97 (m, 1H), 3.95-3.89 (s, 3H), 3.92 (m, 1H), 3.85 (s, 2H.sub.--NH), 1.47 (d, J=5.7 Hz, 6H), 1.40 (d, J=5.5 Hz, 6H) ppm.

[0481] .sup.13C NMR (100 MHz, CDCl.sub.3) .delta. 166.89, 166.67, 166.61, 158.88, 152.59, 146.90, 135.07, 134.68, 131.70, 130.93, 130.93, 127.17, 123.25, 122.42, 121.40, 115.87, 114.85, 114.35, 114.35, 113.39, 106.06, 75.89, 74.13, 52.08, 21.80, 21.80, 21.80, 21.80 ppm.

[0482] HRMS (ESI): Calculated for C.sub.28H.sub.32N.sub.3O.sub.7(M+H).sup.+: 522.2162. found: 522.2160.

Cystobactamide C

##STR00063##

[0484] Methyl-4-[4-(4-aminobenzamido)-2-hyd roxy-3-isopropxybenzamido]-3-isopropoxybenzoate (30.0 mg, 0.058 mmol) was dissolved in a mixture 1/1 of THF/H.sub.2O (0.3/0.3 mL). Then, solid LiOH (13.9 mg, 0.58 mmol) was added and the reaction mixture was stirred at room temperature for 17 hours. The aqueous layer was acidified with 1M HCl until pH-1 and extracted with ethyl acetate (3.times.). The organic extracts were combined, dried over anhydrous MgSO.sub.4 and filtered. The solvent was concentrated in vacuo to yield the title compound (27.4 mg, 0.054 mmol, 93%) as a yellow oil.

[0485] .sup.1H NMR (400 MHz, CDCl.sub.3) .delta. 7.91 (d, J=1.4 Hz, 1H), 7.87 (dd, J=7.5, 1.4 Hz, 1H), 7.70 (d, J=7.5 Hz, 2H), 7.65 (d, J=7.5 Hz, 1H), 7.53 (d, J=7.5 Hz, 1H), 7.05 (d, J=7.5 Hz, 1H), 6.95 (s, 1H.sub.--NH), 6.77 (s, 1H.sub.--NH), 6.75 (d, J=7.5 Hz, 2H), 6.12 (s, 1H.sub.--OH), 3.97-3.89 (m, 2H), 3.85 (s, 2H.sub.--NH), 1.40 (d, J=5.5 Hz, 6H), 1.39 (d, J=5.5 Hz, 6H) ppm.

[0486] .sup.13C NMR (100 MHz, CDCl.sub.3) .delta. 167.79, 166.67, 166.61, 158.88, 152.59, 149.81, 136.38, 135.07, 134.68, 130.93, 130.93, 125.08, 123.25, 122.80, 122.42, 120.37, 114.35, 114.35, 113.76, 113.39, 106.06, 75.89, 74.13, 21.80, 21.80, 21.80, 21.80 ppm.

[0487] HRMS (ESI): Calculated for C.sub.28H.sub.32N.sub.3O.sub.7 (M+H).sup.+: 508.2006. found: 508.2008.

(2S,3R)-Methyl 2,3-dihydroxy-3-phenylpropanoate

##STR00064##

[0489] AD mix .beta. (20.0 g) was dissolved in a mixture of tBuOH/H.sub.2O (1:1; 142 mL) at 25.degree. C. Afterwards, CH.sub.3SO.sub.2NH.sub.2 (1.36 g, 14.3 mmol, 1.0 eq.) was added and the reaction mixture cooled to 0.degree. C. Then, methylcinnamate (2.31 g, 14.3 mmol, 1.0 eq.) was added and the resulting mixture was vigorously stirred for 16 h at 0.degree. C. Stirring was continued for additional 6 h at 25.degree. C. The reaction mixture was hydrolyzed by addition of an aqueous Na.sub.2SO.sub.3 solution (21.4 g, 170 mmol, 12.0 eq.) and stirring was continued for additional 2.5 h. The reaction mixture was diluted with ethyl acetate and the layers were separated. The aqueous layer was extracted with EtOAc (3.times.). The combined organic layers were washed with H.sub.2O (1.times.) and dried over Na.sub.2SO.sub.4, filtered and concentrated under reduced pressure. Purification by flash chromatography (petroleum ether/ethyl acetate=1:1) afforded the desired diol (2.21 g, 11.3 mmol, 79%) as a colorless solid. The spectroscopic data are in accordance with those reported in the literature.

[0490] R.sub.f=0.38 (PE/EtOAc 1:1); m.p.=84-85.degree. C. (lit: m.p.=80-81.degree. C.); [.alpha.].sub.D.sup.20=-9.8.degree. (c 1.28, CHCl.sub.3) {lit.: [.alpha.].sub.D.sup.26=-9.8.degree. (c 1.07, CHCl.sub.3)};

[0491] .sup.1H-NMR (400 MHz, CDCl.sub.3, CHCl.sub.3=7.26 ppm): .delta.=7.42-7.29 (5H, m, ArH), 5.03 (1H, dd, J=2.7, 7.2 Hz, H-3), 4.38 (1H, dd, J=2.7, 6.0 Hz, H-2), 3.82 (3H, s, H-8), 3.12 (1H, d, J=6.0 Hz, OH-.quadrature.), 2.76 (1H, d, J=7.2 Hz, OH-.beta.) ppm;

[0492] .sup.13C-NMR (100 MHz, CDCl.sub.3, CHCl.sub.3=77.16 ppm): .delta.=173.3 (q, C-1), 140.1 (q, C-4), 128.6 (2C, t, C-6), 128.3 (t, C-7), 126.3 (2C, t, C-5), 74.8 (t, C-2), 74.6 (t, C-3), 53.1 (p, C-8) ppm; HRMS (ESI): m/z calculated for C.sub.10H.sub.12O.sub.4Na [M+Na].sup.+: 219.0633. found 219.0633.

(2R,3S)-Methyl 2-acetoxy-3-bromo-3-phenylpropanoate (3)

##STR00065##

[0494] To (2S,3R)-Methyl 2,3-dihydroxy-3-phenylpropanoate (2.15 g, 10.9 mmol, 1.0 eq.) was added HBr/HOAc (33%; 16.9 mL) dropwise at 25.degree. C. The resulting mixture was heated to 45.degree. C. and stirred for 30 min. Then, the reaction mixture was cooled to 25.degree. C. and poured into an ice-cooled NaHCO.sub.3-solution (40 mL). The aqueous layer was extracted with Et.sub.2O (3.times.). The combined organic layers were washed with H.sub.2O (1.times.) and with brine. Then, the combined organic layers were dried over Na.sub.2SO.sub.4, filtered and concentrated under reduced pressure. Purification by flash chromatography (petroleum ether/ethyl acetate=12.5:1) gave the title compound (2.32 g, 7.71 mmol, 71%) as a colorless solid. The spectroscopic data are in accordance with those reported in the literature.

[0495] R.sub.f=0.79 (PE/EtOAc 1:1); m.p.=78-82.degree. C. (lit: m.p.=78-79.degree. C.); [.alpha.].sub.D.sup.20=+89.9.degree. (c 1.74, CHCl.sub.3) {Lit.: [.alpha.].sub.D.sup.26=+100.3.degree. (c 1.36, CHCl.sub.3)};

[0496] .sup.1H-NMR (400 MHz, CDCl.sub.3, CHCl.sub.3=7.26 ppm): .delta.=7.46-7.44 (2H, m, H-6), 7.36-7.30 (3H, m, H-5, H-7), 5.65 (1H, d, J=6.3 Hz, H-3), 5.35 (1H, d, J=6.3 Hz, H-2), 3.71 (3H, s, H-9), 2.11 (3H, s, H-10) ppm;

[0497] .sup.13C-NMR (100 MHz, CDCl.sub.3, CHCl.sub.3=77.16 ppm): .delta.=169.7 (q, C-1), 167.5 (q, C-8), 136.8 (q, C-4), 129.3 (t, C-7), 128.7 (4C, t, C-5, C-6), 75.4 (t, C-3), 52.9 (p, C-9), 49.3 (t, C-2), 20.6 (p, C-10) ppm;

[0498] HRMS (ESI): m/z calculated for C.sub.12H.sub.13O.sub.4BrNa [M+Na]: 322.9895. found 322.9891.

(2S,3R)-Methyl 2-acetoxy-3-azido-3-phenylpropanoate

##STR00066##

[0500] (2S,3R)-Methyl 2-acetoxy-3-azido-3-phenylpropanoate (2.27 g, 7.55 mmol, 1.0 eq.) was dissolved in DMF (27.0 mL) at 25.degree. C. Then, NaN.sub.3 (1.96 g, 30.2 mmol, 4.0 eq.) was added and the resulting mixture was heated up to 40.degree. C. for 3 h. After cooling the reaction mixture was cooled to 25.degree. C. and EtOAc was added. The organic layer was washed with H.sub.2O (2.times.), followed by brine (1.times.). The combined, organic phases were dried over Na.sub.2SO.sub.4, filtered and concentrated under reduced pressure. Purification by flash chromatography (petroleum ether/ethyl acetate=10:1) afforded the title compound (1.77 g, 6.71 mmol, 89%) as yellow oil. The spectroscopic data are in accordance with those reported in the literature.

[0501] R.sub.f=0.24 (PE/EtOAc=10:1); [.alpha.].sub.D.sup.20=-97.8.degree. (c 2.3, CHCl.sub.3); {lit.: [.alpha.].sub.D.sup.26=-104.2.degree. (c 2.33, CHCl.sub.3)};

[0502] IR: {tilde over (v)}=2955 (w), 2103 (s, azide), 1747 (s, C.dbd.O), 1495 (w), 1454 (m), 1437 (m), 1373 (m), 1210 (s), 1099 (m), 1030 (m), 910 (m), 751 (m), 701 (s) cm.sup.-1;

[0503] .sup.1H-NMR (400 MHz, CDCl.sub.3, CHCl.sub.3=7.26 ppm): .delta.=7.42-7.33 (5H, m, ArH), 5.24 (1H, d, J=4.8 Hz, H-2), 5.07 (1H, d, J=4.8 Hz, H-3), 3.69 (3H, s, H-9), 2.14 (3H, s, H-10) ppm;

[0504] .sup.13C-NMR (100 MHz, CDCl.sub.3, CHCl.sub.3=77.16 ppm): .delta.=169.9 (q, C-1), 168.0 (q, C-8), 134.6 (q, C-4), 129.3 (t, C-7), 129.0 (2C, t, C-6), 127.6 (2C, t, C-5), 74.9 (t, C-2), 65.4 (t, C-3), 52.8 (p, C-9), 20.5 (p, C-10) ppm;

[0505] HRMS (ESI): m/z calculated for C.sub.12H.sub.13N.sub.3O.sub.4Na [M+Na].sup.+: 286.0804. found 286.0805.

(2S,3R)-Methyl 3-azido-2-methoxy-3-phenylpropanoate

##STR00067##

[0507] (2S,3R)-Methyl 2-acetoxy-3-azido-3-phenylpropanoate (2.5 g, 1.0 eq) was dissolved in 190 ml THF at 0.degree. C. Then a solution of KOH (0.5M, 10.0 eq) was added dropwise and the reaction mixture was stirred at 0.degree. C. for 5 h. Afterwards, aqueous 2N HCl was added to the reaction mixture and the aqueous phase was extracted with ethyl acetate. The organic phases were combined and dried over Na.sub.2SO.sub.4, filtered and concentrated under reduced pressure to afford the crude acid which was directly used for the next step without further purification. The crude material (0.5 g, 1.0 eq) was dissolved in 17 ml methyl iodide. Then, CaSO.sub.4 (2.6 g, 8.0 eq) and Ag.sub.2O (1.7 g, 3.0 eq) were added and stirring of the suspension was carried out in the dark at room temperature for 22 h. Then, the crude mixture was filtered and concentrated in vacuum to give the title compound (70% yield) which can be directly used in the next step without further purification.

[0508] [.alpha.].sub.D.sup.20=-143.7.degree. (c 1.1, CHCl.sub.3);

[0509] .sup.1H-NMR (400 MHz, CDCl.sub.3, CHCl.sub.3=7.26 ppm): .delta.=3.44 (s, 3H), 3.61 (s, 3H), 3.94 (d, J=6.4 Hz, 1H), 4.79 (d, J=6.4 Hz, 1H), 7.35-7.36 (m, 5H);

[0510] .sup.13C-NMR (100 MHz, CDCl.sub.3, CHCl.sub.3=77.0 ppm): .delta.=52.2, 59.1, 66.9, 84.7, 127.7, 128.7, 128.9, 135.1, 170.0;

[0511] HRMS (ESI): m/z calculated for C.sub.11H.sub.13N.sub.3O.sub.3Na [M+Na].sup.+: 258.0855. found 258.0852.

(2S,3S)-tert-Butyl 3-azido-2-methoxy-3-phenylpropanoate

##STR00068##

[0513] To a stirred solution of (2S,3R)-Methyl 3-azido-2-methoxy-3-phenylpropanoate (1.2 g, 1.0 eq) in 100 ml THF was added an aqueous solution of KOH (0.5 M, 10.0 eq) dropwise. The reaction mixture was stirred for 5 h at rt and hydrolyzed by addition of 2N HCl. The aqueous phase was extracted with ethyl acetate and the combined organic phases were dried over Na.sub.2SO.sub.4 and concentrated under reduced pressure to give carboxylic acid (1.2 g, 98% yield) which was subjected to the next reaction without further purification. Crude acid (0.3 g, 1.0 eq) and 3.9 ml dimethylformamide di-tert-butyl acetal (3.9 ml, 12 eq) were dissolved in 8 ml toluene at room temperature. The resulting reaction mixture was heated up to 80.degree. C. and stirred for 7 h. The solvent was removed under reduced pressure and the crude product was purified by flash column chromatography (petroleum ether/ethyl acetate=30:1) to afford the title compound (0.34 g, 89% yield).

[0514] [.alpha.].sub.D.sup.20=-113.3.degree. (c 1.0, CHCl.sub.3);

[0515] .sup.1H-NMR (400 MHz, CDCl.sub.3, CHCl.sub.3=7.26 ppm): .delta.=1.26 (s, 9H), 3.45 (s, 3H), 3.85 (d, J=7.2 Hz, 1H), 4.70 (d, J=7.2 Hz, 1H), 7.34-7.35 (m, 5H);

[0516] .sup.13C-NMR (100 MHz, CDCl.sub.3, CHCl.sub.3=77.0 ppm): .delta.=27.7, 58.6, 67.2, 82.3, 85.1, 128.2, 128.6, 128.9, 135.2, 168.5;

[0517] HRMS (ESI): m/z calculated for C.sub.14H.sub.19O.sub.3N.sub.3Na [M+Na].sup.+: 300.1324. found 300.1332.

(2S,3S)-4-tert-Butyl 1-methyl 2-azido-3-methoxysuccinate

##STR00069##

[0519] To a stirred solution of (2S,3S)-tert-butyl 3-azido-2-methoxy-3-phenylpropanoate (310 mg, 1.0 eq) in a solvent mixture of 3 ml CHCl.sub.3, 13 ml CH.sub.3CN and 26 ml H.sub.2O NalO.sub.4 (7.2 g, 30 eq) and RuCl.sub.3 (0.3 eq, 69 mg) were added portionwise at room temperature. The reaction mixture was heated under refluxing conditions for 3 h. A white precipitate formed upon cooling to room temperature. The solid was filtered off and the filtrate was extracted with diethyl ether. The combined organic phases were concentrated under reduced pressure to yield the crude product. This material was dissolved in 9 ml methyl iodide. Then, CaSO.sub.4 (1.2 g, 8.0 eq) and Ag.sub.2O (778 mg, 3.0 eq) were added and the reaction mixture was stirred in the dark at room temperature for 22 h. After filtration the filtrate was concentrated under reduced pressure to afford the title compound in pure form so that it can directly be employed in the next step without further purification.

[0520] .sup.1H-NMR (400 MHz, CDCl.sub.3, CHCl.sub.3=7.26 ppm): .delta.=1.51 (s, 3H), 3.48 (s, 3H), 4.15 (d, J=3.6 Hz, 1H), 4.21 (d, J=4.0 Hz, 1H);

[0521] .sup.13C-NMR (100 MHz, CDCl.sub.3, CHCl.sub.3=77.0 ppm): .delta.=28.1, 53.0, 59.5, 63.4, 81.2, 83.0, 167.7, 168.3.

(2S,3R)-1-tert-Butyl 4-methyl 2-methoxy-3-[4-(4-nitrobenzamido)benzamido]succinate

##STR00070##

[0523] The crude mixture (2S,3S)-4-tert-butyl 1-methyl 2-azido-3-methoxysuccinate was dissolved in 12 ml THF, then 0.5 ml water and PPh.sub.3 (881 mg, 3.0 eq) were added. The resulting reaction mixture was warmed up to 50.degree. C. and stirring was continued for 12 hours. Then, the solvent was removed under reduced pressure to afford the crude product which was pure enough to be used directly in the next step. The crude product was dissolved in 5 ml DMF and (ethyl carbonic) 4-(4-nitrobenzamido)benzoic anhydride (481 mg, 1.2 eq) was added at room temperature. After stirring for 20 h, water was added and the aqueous solution was extracted with ethyl acetate. The combined organic phases were concentrated under reduced pressure. Purification by flash column chromatography (petroleum ether/ethyl acetate=2:1) afforded the title compound (81 mg, 16% over four steps).

[0524] [.alpha.].sub.D.sup.20=-11.8.degree. (c 1.1, CHCl.sub.3);

[0525] .sup.1H-NMR (400 MHz, CDCl.sub.3, CHCl.sub.3=7.26 ppm): .delta.=1.41 (s, 9H), 3.45 (s, 3H), 3.78 (s, 3H), 4.34 (d, J=2.4 Hz, 1H), 5.29 (dd, J=2.4, 9.6 Hz, 1H), 6.76 (d, J=9.6 Hz, 1H), 7.27-7.35 (m, 4H), 8.07 (d, J=8.8 Hz, 2H), 8.26 (2, J=8.8 Hz, 2H), 8.83 (s, 1H);

[0526] .sup.13C-NMR (100 MHz, CDCl.sub.3, CHCl.sub.3=77.0 ppm): .delta.=27.9, 52.9, 54.8, 59.1, 79.8, 83.2, 120.1, 123.8, 128.3, 128.7, 129.6, 140.3, 141.1, 149.7, 164.1, 166.9, 168.0, 169.7.

[0527] HRMS (ESI): m/z calculated for C.sub.24H.sub.27O.sub.9N.sub.3Na [M+Na].sup.+: 524.1645. found 524.1647.

##STR00071##

[0528] To a stirred solution of (2S,3R)-1-tert-Butyl 4-methyl 2-methoxy-3-[4-(4-nitrobenzamido)benzamido]succinate (74.3 mg, 0.15 mmol) in 2.5 ml CH.sub.2Cl.sub.2 was added 1.5 ml TFA at room temperature. After stirring for 5 h, the reaction mixture was added water and extracted with ethyl acetate. The combined organic phases were washed with water (three times), dried over Na.sub.2SO.sub.4 and concentrated under reduced pressure to give the title compound in quantitative yield (65.9 mg, quant.).

[0529] [.alpha.].sub.D.sup.20=-16.4.degree. (c 1.1, EtOAc);

[0530] .sup.1H-NMR (400 MHz, DMSO, DMSO=2.50 ppm): .delta.=3.37 (s, 3H), 3.69 (s, J=3H), 4.34 (d, J=4.4 Hz, 1H), 5.09 (dd, J=4.8, 8.8 Hz, 1H), 7.89-7.90 (m, 4H), 8.21 (dd, J=2, 6.8 Hz, 1H), 8.39 (dd, J=2, 6.8 Hz, 1H), 8.55 (d, J=8.8 Hz, 1H), 10.8 (s, 1H).

[0531] .sup.13C-NMR (100 MHz, DMSO, DMSO=40.0 ppm): .delta.=52.9, 54.8, 58.7, 79.5, 120.0, 124.1, 129.0, 129.2, 129.8, 140.8, 142.2, 149.8, 164.7, 166.6, 170.2, 170.9. HRMS (ESI): m/z calculated for C.sub.20H.sub.19O.sub.9N.sub.3Na [M+Na].sup.+: 468.1019. found 468.1016.

[0532] Optical rotation of other enantiomer:

##STR00072##

[0533] [.alpha.].sub.D.sup.20=+13.9.degree. (c 1.1, EtOAc);

[0534] Methyl-4-(4-(4-((2S,3S)-2,4-dimethoxy-3-(4-(4-nitrobenzamido)benzam- ido)-4-oxobutanamido)benzamido)-2-hydroxy-3-isopropxybenzamido)-3-isopropo- xybenzoate

##STR00073##

[0535] Methyl-4-[4-(4-aminobenzamido)-2-hydroxy-3-isopropoxybenzamido]-3-i- sopropoxybenzoate (15.3 mg, 0.029 mmol) and (2S,3R)-2,4-dimethoxy-3-[4-(4-nitrobenzamido)benzamido]succinate (14.2 mg, 0.032 mmol) were dissolved in CH.sub.2Cl.sub.2 (3.4 mL) and cooled to 0.degree. C. Then, HOAt (5.9 mg, 0.044 mmol), DIPEA (7.7 .mu.L, 0.044 mmol), and EDC.HCl (6.9 mg, 0.036 mmol) were added. The mixture was stirred from 0.degree. C. to room temperature for 17 hours. The solvent was concentrated in vacuo to give an oily residue, which was purified by flash chromatography (petroleum ether/ethyl acetate=94/6) to yield the title compound (20.1 mg, 0.021 mmol, 73%) as a colourless oil.

[0536] .sup.1H NMR (400 MHz, CDCl.sub.3) .delta. 9.07 (s, 1H.sub.--OH), 8.37 (d, J=7.5 Hz, 2H), 8.20 (d, J=7.5 Hz, 2H), 8.11 (s, 1H.sub.--NH), 8.02 (s, 1H.sub.--NH), 8.01 (d, J=1.4 Hz, 2H), 7.98 (d, J=7.5 Hz, 2H), 7.90 (d, J=1.3 Hz, 1H), 7.81 (dd, J=7.5, 1.4 Hz, 1H), 7.78 (d, J=7.4 Hz, 1H), 7.69 (d, J=7.5 Hz, 1H), 7.61 (d, J=7.5 Hz, 2H), 7.55 (s, 1H), 7.54 (s, 1H.sub.--NH), 7.53 (s, 1H), 7.41 (d, J=7.5 Hz, 1H), 5.72 (s, 1H.sub.--NH), 5.63 (s, 1H.sub.--NH), 5.10 (d, J=3.8 Hz, 1H), 4.76 (d, J=3.8 Hz, 1H), 4.04-3.98 (m, 2H), 3.97 (s, J=3.1 Hz, 3H), 3.74 (s, 3H), 3.32 (s, 3H), 1.47 (d, J=5.7 Hz, 6H), 1.39 (d, J=5.7 Hz, 6H) ppm.

[0537] .sup.13C NMR (100 MHz, CDCl.sub.3) .delta. 173.30, 168.15, 168.07, 167.77, 166.93, 166.88, 166.82, 158.83, 151.01, 146.97, 140.78, 139.42, 138.71, 134.97, 134.55, 131.57, 130.00, 130.00, 129.41, 129.41, 129.39, 129.39, 128.12, 127.53, 127.24, 124.17, 124.17, 123.28, 122.61, 122.61, 121.78, 121.78, 121.44, 115.94, 114.88, 113.30, 106.09, 78.00, 75.89, 74.13, 58.51, 56.50, 52.17, 52.08, 21.80, 21.80, 21.80, 21.80 ppm.

[0538] HRMS (ESI): Calculated for C.sub.48H.sub.47N.sub.6O.sub.15 (M-H).sup.-: 947.3178. found: 947.3175.

Cystobactamide A

##STR00074##

[0540] Methyl-4-4-[4-((2S,3S)-2,4-dimethoxy-3-(4-(4-nitrobenzamido)benzami- do)-4-oxobutanamido]benzamido)-2-hydroxy-3-isopropxybenzamido)-3-isopropox- ybenzoate (15.2 mg, 0.016 mmol) was dissolved in a mixture 1/1 of THF/H.sub.2O (0.2/0.2 mL). Then, solid LiOH (3.8 mg, 0.16 mmol) was added and the reaction mixture was stirred at room temperature for 17 hours. The aqueous layer was acidified with 1M HCl until pH-1 and extracted with ethyl acetate (3.times.). The organic extracts were combined, dried over MgSO.sub.4 and filtered. The solvent was concentrated in vacuo to yield the title compound (13.3 mg, 0.014 mmol, 90%) as a yellow wax.

[0541] [.alpha.].sub.D.sup.20=-19.1.degree. (c 1.1, EtOAc)

[0542] .sup.1H NMR (400 MHz, CDCl.sub.3) .delta. 8.35 (d, J=7.5 Hz, 2H), 8.15 (d, J=7.5 Hz, 2H), 8.00 (d, J=1.8 Hz, 2H), 7.98 (d, J=1.8 Hz, 2H), 7.90 (d, J=1.8 Hz, 1H), 7.86 (dd, J=7.5, 1.8 Hz, 1H), 7.78 (d, J=7.5 Hz, 1H), 7.65 (s, 1H), 7.63 (d, J=7.5 Hz, 2H), 7.58 (s, 1H.sub.--NH), 7.54 (d, J=7.5 Hz, 2H), 7.51 (s, 1H.sub.--NH), 7.10 (s, 1H.sub.--NH), 7.03 (d, J=7.5 Hz, 1H), 6.35 (s, 1H.sub.--NH), 5.57 (s, 1H.sub.--NH), 5.42 (s, 1H.sub.--OH), 4.93 (s, 1H), 4.70 (s, 1H), 4.01 (hept, J=5.6 Hz, 1H), 3.95 (hept, J=5.6 Hz, 1H), 3.38 (s, 3H), 1.48 (s, 6H), 1.47 (s, 6H) ppm.

[0543] .sup.13C NMR (100 MHz CDCl.sub.3) .delta. 173.30, 169.54, 168.18, 168.07, 167.77, 166.88, 166.82, 158.83, 151.01, 149.88, 140.78, 139.42, 138.71, 136.26, 134.97, 134.55, 130.00, 130.00, 129.41, 129.41, 129.39, 129.39, 128.12, 127.53, 125.15, 124.17, 124.17, 123.28, 122.84, 122.61, 122.61, 121.78, 121.78, 120.41, 113.82, 113.30, 106.09, 77.86, 75.89, 74.13, 58.51, 54.58, 21.80, 21.80, 21.80, 21.80 ppm.

[0544] HRMS (ESI): Calculated for C.sub.46H.sub.43N.sub.6O.sub.15 (M-H).sup.-: 920.2865. found: 920.2866.

Synthesis of Cystobactamide C Derivatives

##STR00075## ##STR00076## ##STR00077## ##STR00078## ##STR00079## ##STR00080## ##STR00081## ##STR00082## ##STR00083##

[0545] 1.1. Synthesis of the Different Used Individual Rings

[0546] The preparation of the different individual rings that were used during the synthesis of the cystobactamide C derivatives is described here.

Preparation of Ring C

##STR00084##

[0547] Preparation of Ring B

##STR00085##

[0548] Preparation of Ring A

##STR00086##

[0549] 1.2. Coupling of Ring B and C to Give the Different Prepared BC Fragments

##STR00087## ##STR00088## ##STR00089##

[0550] 1.3. Coupling of Ring a with BC Fragments

[0551] 1.3.1. Coupling of Ring A with BC Fragments (BC1, BC2, BC3, BC5, BC6, BC7) to Synthesize the Cystobactamide C Derivatives (1a)-(23a)

##STR00090##

TABLE-US-00020 Compound Scaffold R R.sub.1 R.sub.2 R.sub.3 (1a) I iPr iPr 2-OH H (2a) I iPr iPr 2-OH 2-OH (3a) I iPr iPr 2-OH 2-OiPr (4a) I iPr iPr 2-OH 2-F (5a) I iPr iPr 3-OiPr 2-OH (6a) II -- iPr 2-OH H (7a) II -- iPr 2-OH 2-OH (8a) II -- iPr 2-OH 2-OiPr (9a) II -- iPr 2-OH 2-OMe (10a) II -- iPr 3-OiPr 2-OH (11a) III iPr iPr 2-OH H (12a) III iPr iPr 2-OH 2-OH (13a) III iPr iPr 2-OH 2-OiPr (14a) III iPr iPr 3-OiPr 2-OH (15a) IV -- iPr 2-OH H (16a) IV -- iPr 2-OH 2-OH (17a) IV -- iPr 2-OH 2-OiPr (18a) IV -- iPr 3-OiPr H (19a) IV -- Me 3-OMe H (20a) II -- Me 2-OH, H 3OMe (21a) IV -- Me 2-OH, H 3OMe (22a) IV -- Me 2-OMe, H 3OH (23a) IV -- iPr 2,3-diOMe H

1.3.2. Coupling of Ring a with BC1 Fragment to Synthesize the Cystobactamide C Derivatives (24a)-(31a)

##STR00091##

TABLE-US-00021 Compound Scaffold R3 (24a) V ##STR00092## (25a) V ##STR00093## (26a) V ##STR00094## (27a) V ##STR00095## (28a) VI ##STR00096## (29a) VI ##STR00097## (30a) VI ##STR00098## (31a) VI ##STR00099##

1.3.3. Coupling of Ring a with BC4 Fragment to Synthesize the Cystobactamide C Derivatives (32a)-(33a)

##STR00100##

2. EXPERIMENTAL

2.1. General Experimental Information

[0552] Starting materials and solvents were purchased from commercial suppliers, and used without further purification. All chemical yields refer to purified compounds, and not optimized. Reaction progress was monitored using TLC Silica gel 60 F.sub.254 aluminium sheets, and visualization was accomplished by UV at 254 nm. Flash chromatography was performed using silica gel 60 .ANG. (40-63 .mu.m). Preparative RP-HPLC was carried out on a Waters Corporation setup contains a 2767 sample manager, a 2545 binary gradient module, a 2998 PDA detector and a 3100 electron spray mass spectrometer. Purification was performed using a Waters XBridge column (C18, 150.times.19 mm, 5 .mu.m), a binary solvent system A and B (A=water with 0.1% formic acid; B=MeCN with 0.1% formic acid) as eluent, a flow rate of 20 mL/min and a gradient of 60% to 95% B in 8 min were applied. Melting points were determined on a Stuart Scientific melting point apparatus SMP3 (Bibby Sterilin, UK), and are uncorrected. NMR spectra were recorded either on Bruker DRX-500 (.sup.1H, 500 MHz; .sup.13C, 126 MHz), or Bruker Fourier 300 (.sup.1H, 300 MHz; .sup.13C, 75 MHz) spectrometer at 300 K. Chemical shifts are recorded as 6 values in ppm units by reference to the hydrogenated residues of deuterated solvent as internal standard (CDCl.sub.3: .delta.=7.26, 77.02; DMSO-d.sub..delta.: 6=2.50, 39.99). Splitting patterns describe apparent multiplicities and are designated as s (singlet), br s (broad singlet), d (doublet), dd (doublet of doublet), t (triplet), q (quartet), m (multiplet). Coupling constants (J) are given in Hertz (Hz). Purity of all compounds used in biological assays was 95% as measured by LC/MS Finnigan Surveyor MSQ Plus (Thermo Fisher Scientific, Dreieich, Germany). The system consists of LC pump, autosampler, PDA detector, and single-quadrupole MS detector, as well as the standard software Xcalibur for operation. RP C18 Nucleodur 100-5 (125.times.3 mm) column (Macherey-Nagel GmbH, Duhren, Germany) was used as stationary phase, and a binary solvent system A and B (A=water with 0.1% TFA; B=MeCN with 0.1% TFA) was used as mobile phase. In a gradient run the percentage of B was increased from an initial concentration of 0% at 0 min to 100% at 15 min and kept at 100% for 5 min. The injection volume was 10 .mu.L and flow rate was set to 800 .mu.L/min. MS (ESI) analysis was carried out at a spray voltage of 3800 V, a capillary temperature of 350.degree. C. and a source CID of 10 V. Spectra were acquired in positive mode from 100 to 1000 m/z and at 254 nm for UV tracing.

2.2. LC/MS Data for the Triaryl Derivatives

TABLE-US-00022 [0553] Compound LC/MS m/z (ESI+) (1a) 521.99 [M + H].sup.+ (2a) 537.87 [M + H].sup.+ (3a) 579.90 [M + H].sup.+ (4a) 540.07 [M + H].sup.+ (5a) 580.11 [M + H].sup.+ (6a) 479.98 [M + H].sup.+ (7a) 496.02 [M + H].sup.+ (8a) 537.99 [M + H].sup.+ (9a) 509.98 [M + H].sup.+ (10a) 538.11 [M + H].sup.+ (11a) 492.02 [M + H].sup.+ (12a) 508.01 [M + H].sup.+ (13a) 550.02 [M + H].sup.+ (14a) 550.13 [M + H].sup.+ (15a) 449.87 [M + H].sup.+ (16a) 465.93 [M + H].sup.+ (17a) 508.07 [M + H].sup.+ (18a) 492 [M + H].sup.+ (19a) 435 [M].sup.+ (20a) 482 [M + H].sup.+ (21a) 452 [M + H].sup.+ (22a) 452 [M + H].sup.+ (23a) 494 [M + H].sup.+ (24a) 466.20 [M + H].sup.+ (25a) 478.07 [M + H].sup.+ (26a) 493.17 [M + H].sup.+ (27a) 509.12 [M + H].sup.+ (28a) 423.53 [M + H].sup.+ (29a) 436.13 [M + H].sup.+ (30a) 451.10 [M + H].sup.+ (31a) 467.11 [M + H].sup.+ (32a) .sup. 535 [M + H]+ (33a) .sup. 493 [M + H]+

2.3 General Synthetic Procedures

[0554] a) A mixture of the acid (25 mmol), isopropyl bromide (52 mmol) and potassium carbonate (52 mmol) in 100 ml DMF were heated overnight at 90.degree. C. Excess DMF was then removed under reduced pressure and the remaining residue was partitioned between water and ethyl acetate. The organic layer was dried over sodium sulphate and the excess solvent was then removed under reduced pressure to give the pure product.

[0555] c) To a stirred solution of the nitro derivative (10 mmol) in EtOH (60 mL), iron powder (2.80 g, 50 mmol) was added at 55.degree. C. followed by NH.sub.4Cl (266 mg, 5 mmol) solution in water (30 mL). The reaction was refluxed for 1-2 h, then iron was filtered while hot and the filtrate was concentrated under vacuum till dryness. The residue was diluted with water (30 mL) and basified by NaHCO.sub.3 (saturated aqueous solution) to pH 7-8. The mixture was extracted with EtOAc. The combined organic extract was washed with brine, dried (MgSO.sub.4), and the solvent was removed by vacuum distillation. The obtained crude material was triturated with n-hexane, and collected by filtration.

[0556] d) Ester hydrolysis was done according to the following reported procedure..sup.1 The ester (0.1 mmol), sodium hydroxide 1M (3 mL) and anhydrous methanol were heated overnight at 45.degree. C. On cooling, the reaction mixture was acidified to pH 1 (3 mL, hydrochloric acid 1 M) and extracted with dichloromethane (3.times.150 mL). The organic was dried over sodium sulphate and the solvent removed under reduced pressure to leave give the pure product.

[0557] m) Amide formation was done according to the following reported procedure..sup.2 A boiling solution of the acid (1 mmol) and the amine (1 mmol) in xylenes 2.5 ml was treated with a 2M solution of PCl.sub.3 in CH.sub.2Cl.sub.2 (0.4 mmol). After 2 hours the excess solvent was evaporated and the residue was purified using column chromatography.

[0558] n) To a stirred solution of the acid (2 mmol), amine (2.4 mmol) in anhydrous CHCl.sub.3 (50 mL) under a nitrogen atmosphere, dichlorotriphenylphosphorane (3.0 g, 9 mmol) was added. The reaction was heated at 80.degree. C. for 5 h. Solvent was removed by vacuum distillation. The residue was then purified using flash chromatography.

2.4 Specific Synthetic Procedures

Methyl 3-methoxy-4-nitrobenzoate

##STR00101##

[0560] To a stirred mixture of 3-hydroxy-4-nitrobenzoic acid (9.16 g, 50 mmol) and K.sub.2CO.sub.3 (15.2 g, 110 mmol) in DMF (150 mL), dimethyl sulfate (25.2 g, 200 mmol) was added portion wise then the reaction was stirred at 90.degree. C. overnight. After cooling the mixture was poured on to ice cooled water (400 mL), the precipitate was filtered, washed with cold water then n-hexane.

[0561] Yield 95% (pale yellow solid), m/z (ESI+) 212 [M+H].sup.+.

3-Methoxy-4-nitrobenzoic acid

##STR00102##

[0563] To a stirred solution of methyl 3-methoxy-4-nitrobenzoate (2.11 g, 10 mmol) in MeOH (30 mL), KOH (1.68 g, 30 mmol) in water (30 mL) was added. The reaction was refluxed for 2 h then MeOH was evaporated by vacuum distillation. The residue was diluted with water (20 mL). The solution was cooled in an ice bath and acidified by KHSO.sub.4 (saturated aqueous solution) to pH 3-4. The precipitated solid was collected by filtration, washed with cold water then n-hexane.

[0564] Yield 96% (off-white solid), m/z (ESI+) 198 [M+H].sup.+.

6-Chloro-2-isopropoxy-3-nitropyridine

##STR00103##

[0566] To a stirred solution of 2,6-dichloro-3-nitropyridine (3.86 g, 20 mmol) in toluene (30 mL), isopropanol (1.44 g, 24 mmol) was added. The mixture was stirred at 0.degree. C. for 15 min. then NaH (50-60% in mineral oil, 1.22 g, 28 mmol) was added portion wise under a nitrogen atmosphere, and the reaction was allowed to stir at room temperature overnight. The reaction was quenched with brine, then diluted with water and extracted with EtOAc. The combined organic extract was washed with brine, dried (MgSO.sub.4), and the solvent was removed by vacuum distillation. The residue was dissolved in toluene and purified using flash chromatography (SiO.sub.2, n-hexane-EtOAc=5:1).

[0567] Yield 70% (yellowish white crystals), m/z (ESI+) 217 [M+H].sup.+.

2-Isopropoxy-3-nitro-6-vinylpyridine

##STR00104##

[0569] To a stirred solution of 6-chloro-2-isopropoxy-3-nitropyridine (650 mg, 3 mmol), and tributyl(vinyl)tin (1.0 g, 3.15 mmol) in toluene (20 mL) under a nitrogen atmosphere, tetrakis(triphenylphosphine) palladium(0) (180 mg, 5% eq.) was added. The reaction was refluxed overnight. Brine was added, and the reaction was extracted with EtOAc. The combined organic extract was washed with brine, dried (MgSO.sub.4), and the solvent was removed by vacuum distillation. The crude product was used directly in the next step without further purification. Yield 90% (yellow liquid), m/z (ESI+) 208 [M].sup.+.

6-Isopropoxy-5-nitropyridine-2-carboxylic acid

##STR00105##

[0571] To a stirred solution of 2-isopropoxy-3-nitro-6-vinylpyridine (625 mg, 3 mmol) in acetone (10 mL), KMnO.sub.4 (1.9 g, 12 mmol) solution in 50% aq. acetone (50 mL) was added. The reaction was stirred at room temperature for 24 h. NaOH 0.5 M (5 mL) was added, then the mixture was filtered and filtrate was concentrated under vacuum. The residue was cooled in an ice bath and carefully acidified by KHSO.sub.4 (saturated aqueous solution) to pH 4-5, then extracted with EtOAc. The combined organic extract was washed with brine, dried (MgSO.sub.4), and the solvent was removed by vacuum distillation. The obtained crude material was triturated with n-hexane, and collected by filtration.

[0572] Yield 75% (beige solid), m/z (ESI+) 227 [M+H].sup.+.

Isopropyl 3-isopropoxy-4-{[(6-isopropoxy-5-nitropyridin-2-yl)carbonyl]amin- o}benzoate

##STR00106##

[0574] To a stirred solution of 6-isopropoxy-5-nitropyridine-2-carboxylic acid (226 mg, 1 mmol), and isopropyl 4-amino-3-isopropoxybenzoate (237 mg, 1 mmol) in a mixture of anhydrous CHCl.sub.3 (50 mL) and DMF (1 mL) under a nitrogen atmosphere, HOBt (676 mg, 5 mmol) was added at 0.degree. C. followed by EDC.HCl (958 mg, 5 mmol). The reaction was allowed to stir at 0.degree. C. for 2 h. then at room temperature overnight. Solvent was removed by vacuum distillation. The residue was dissolved in toluene and purified using flash chromatography (SiO.sub.2, n-hexane--EtOAc=2:1). Yield 70% (pale yellow solid), m/z (ESI+) 446 [M+H].sup.+.

2-formyl-6-methoxyphenyl acetate

##STR00107##

[0576] To a stirred solution of 3-methoxysalicylaldehyde (4.56 g, 30 mmol), and pyridine (2.43 mL, 30 mmol) in DCM (40 mL), acetyl chloride (2.36 g, 30 mmol) was added drop wise. The reaction was stirred at room temperature overnight then the solvent was removed by vacuum distillation. The residue was triturated in cold dil. HCl and filtered, washed with cold water then n-hexane.

[0577] Yield 94% (off-white solid), m/z (ESI+) 195 [M+H].sup.+.

6-formyl-2-methoxy-3-nitrophenyl acetate

##STR00108##

[0579] To a stirred ice-cooled suspension of 2-formyl-6-methoxyphenyl acetate (1.94 g, 10 mmol), and KNO.sub.3 (1.01 g, 10 mmol) in CHCl.sub.3 (15 mL), trifluoroacetic anhydride (12 mL) was added. The reaction was stirred in an ice bath for 2 h. then at room temperature overnight. The reaction was diluted very carefully with water (50 mL) and extracted with CHCl.sub.3. The combined organic extract was dried (MgSO.sub.4), and the solvent was removed by vacuum distillation. The residue was dissolved in toluene and purified using flash chromatography (SiO.sub.2, n-hexane--EtOAc=3:1). Yield 45% (yellow semisolid), m/z (ESI+) 239 [M].sup.+.

2-hydroxy-3-methoxy-4-nitrobenzaldehyde

##STR00109##

[0581] To a stirred suspension of 6-formyl-2-methoxy-3-nitrophenyl acetate (957 mg, 4 mmol) in water (30 mL), NaOH (0.8 g, 20 mmol) was added. The reaction was refluxed for 2 h then allowed to stir at room temperature overnight. The solution was cooled in an ice bath and acidified by HCl 2 M to pH 3-4. The precipitated solid was collected by filtration, washed with cold water then n-hexane.

[0582] Yield 90% (yellowish brown solid), m/z (ESI+) 197 [M].sup.+.

2-hydroxy-3-methoxy-4-nitrobenzoic acid

##STR00110##

[0584] To a stirred solution of 2-hydroxy-3-methoxy-4-nitrobenzaldehyde (788 mg, 4 mmol), and NaOH (0.8 g, 20 mmol) in water (50 mL), AgNO.sub.3 (3.4 g, 20 mmol) was added portion wise. The reaction was refluxed overnight, then allowed to cool and filtered through celite. Filtrate was cooled in an ice bath and acidified with HCl 37% to pH 3-4. The precipitated solid was collected by filtration, washed with cold water then n-hexane.

[0585] Yield 65% (beige solid), m/z (ESI+) 213 [M].sup.+.

Isopropyl 3-isopropoxy-4[({6-isopropoxy-5-[(4-nitrobenzoyl)amino]pyridin-2- -yl}carbonyl)amino]benzoate

##STR00111##

[0587] To a stirred solution of isopropyl 4-{[(5-amino-6-isopropoxypyridin-2-yl)carbonyl]amino}-3-isopropoxybenzoat- e (207 mg, 0.5 mmol), and pyridine (0.1 mL) in DCM (20 mL), 4-nitrobenzoyl chloride (185 mg, 1 mmol) was added. The reaction was stirred at room temperature overnight then the HCl 2 M (20 mL) was added. The mixture was extracted with DCM then EtOAc. The combined organic extract was dried (MgSO.sub.4), and the solvent was removed by vacuum distillation. The residue was dissolved in toluene and purified using flash chromatography (SiO.sub.2, n-hexane--EtOAc=1:1). Yield 80% (yellow crystals), m/z (ESI+) 565 [M+H].sup.+.

5. REFERENCES

[0588] 1) Valeria Azzarito, Panchami Prabhakaran, Alice I. Bartlett, Natasha Murphy, Michaele J. Hardie, Colin A. Kilner, Thomas A. Edwards, Stuart L. Warriner, Andrew J. Wilson. 2-O-Alkylated Para-Benzamide .alpha.-Helix Mimetics: The Role of Scaffold Curvature. Org. Biomol. Chem., 2012, 10, 6469. [0589] 2) Alina Fomovska, Richard D. Wood, Ernest Mui, Jitenter P. Dubey, Leandra R. Ferreira, Mark R. Hickman, Patricia J. Lee, Susan E. Leed, Jennifer M. Auschwitz, William J. Welsh, Caroline Sommerville, Stuart Woods, Craig Roberts, and Rima McLeod. Salicylanilide Inhibitors of Toxoplasma gondii. J. Med. Chem., 2012, 55 (19), pp 8375-8391.

6. ACTIVITY OF THESE COMPOUNDS

[0590] Several of these compounds were tested for their activity against an E. coli strain (TolC-deficient) according to the procedures described above. Most tested compounds showed an activity (MIC) of from 1 to 320 .mu.M.

Sequence CWU 1

1

73158456DNACystobacter velatusmisc_feature(1)..(58456)Cystobactamide biosynthetic gene cluster 1gtagacgccg cggctcagag ggcggtgccg cagtgcttgc agtggtgcgc gtccaggtcg 60tggccctgca ggccgcagcc gggacaggcg cgcgggtcga tggcgtgctg ccgggtcgcc 120tgggcgagct ccacggacac gatgcccgtg ggcaccgcga ggatgccgta gcccatgatc 180atcaacaccg aggcgatgaa ctgtccgggc accgtcttgg gcgagaggtc tccgtagccc 240accgtggtca tcgtcacgat ggcccaatac atcccccgcg ggatgctgtc gaagccgttg 300gcgcgcccct ccaccatgta catcaccgcg cccatgatga cgaccgtgct cagcaccgcc 360ccgaggaaga cgatgatctt ccgccgactg gcccggagcg cggtgagcag cacgtccgcc 420tccccgagga agctggcgag cttgagtacg cggaagacgc gcagcaggcg gaacacccgc 480accaccagca gggactgcat gccgggcagc atcaagctca gcaccgaggg caggatggcc 540agcagatcca ccagcccgaa gaagctcagc gcatagcgca gcggccgttt caccgacagc 600agccgcagca cgtactccag tgtgaagagc ccggtgaaac accactcgag gacgcggatg 660gtctgcccat gctggacgct gatggactcc acgctctcga gcatcaccgc gaggacgctg 720agcacgatgg cccacagcaa tgccacatcg aaggcgcggc ccgccggggt gtccgactcg 780aagatgattt cgtgcagccg cgcccggagt cccgacggag cgctctgctc ggatggatgt 840ggcacgaggg cagtctagcc ctccacggcg cggcgggggc ggaatgcggt ccgcccaccg 900tgacgcgccg gctactggga gcccgccttg gagctgccgg gggcatgcag ttgccgccgg 960tcttccttgc cgcccttgtt ggggcctccg tgggtgccga actcgcccgc gttgcgctgc 1020ttggggtatt cctcgtcggg ccgccgctcg cggccccggc ccgagacgtc acccgagtcg 1080accttcgggt gcagcctctc cttgtccgcg tcggaatgca gcttctccct gtcctggtcc 1140tgtgccatcg ggcacctccg tttcctggag gaaacatggg gacggaagac gggagcggct 1200caggagtgcc gccgcttcgc ggggagggcg ggccgccggg cgtctggagg gaaagccgct 1260gtcgccagtt gggcgttccc tcccgccgca cggaccagcc gcgggaccgg gctcgcggcc 1320ggcccccgcc aggcgcactc agcgcttctt cgcggacttg cgcgcggcgg cggtcttcac 1380ggcgcgcgcc acggtcttct tcgccgcgac cgcggcccga gtcaccacct tgcgcccgat 1440gctacccacg agccccgtgg cgctcagctt cttgcgcgcg ggggccttcg gctcggtctc 1500ctcccgcgct tgacgggtag gggccttggc ggtggcctct tgcgtcgcca ccttccgggt 1560gggcttcgcc ttgggggcgg ccttcttcgc ccgggtagcg ggggtcttgg gctccgtgcg 1620cttcttctcc gcgcgggcgc ggtagcgctt cacggtctcg gcgtgggcct gtccatagcc 1680ggtgggcgtg tcaggcaggg ccgccttctc ctcttccttg gtgagggcga tcttgtgttc 1740ttcattgccg agccggggac ccgagccctt gtaggtctgc gcgggttgct gcgacaagaa 1800gggttcgaaa ctgtaggttc ttcccatggc tgtctcctgc ctgcgtgact gggatgtctt 1860gaagaaataa gtaaggagtg gtccctgatt ttggaatggg cccctctcaa ggcgcctcgc 1920ggtccccgta ccaggactct tcctcttccc cgtccaggta gcgcaccacg aggcccgcgg 1980gcttgtgctg gcgagccagc ctgcgcccgc cgtggatggc ctgggtcacg ttggaatacc 2040ggccgagctg acggttgccc tcgaatcgga cgtaccaacc ccggccatcc gtcgccacga 2100tcacccgccg tgcgtgtgtg gcggagccca cttcgtgctg cttgctctcc ttgcgtcttg 2160ccgggctcat gaaagcaaac tgtcaacccg gagcggaggt cgcattgtcc cagggatcag 2220ggtgcgcgga ttcaggtcgc ccaggagcat gagacggccc cggggacttc aacggccccc 2280ggagccctcc tgctgcccgg cgcacgggtc ctgccagcga gccatcgtgc gccagggagc 2340gcggcgtcag cggctggtgt cgtcttcgga gcccgtgccg ctcatgttgc cgctggagtc 2400cgtgctgccg gagccgtcca cgtcactgcc ggtgccggag ccgcccaggt cgctgtccac 2460gcccgaggcg tcggggctga aaccgcccgg ttcactggac acgcccgagc cgccggagcc 2520gcccacgtcg ctaccggagc ccgtgctgcc actgctcgaa ccgtcgatgt cgccagcacc 2580tgttccgccg gtgcctccgc ccgtggtgtc accaccttcc gtggtgcctc cggtcgttcc 2640ggttccggtc gtctcacttc cggtcatggt gccgccctga gacgtatcgc tcccgcccgt 2700tccttgattc ccagcaccgc ccgtcgtctg acatcccacg ccgaagagca gagccgcgga 2760caacgcaccc accaccaccg ccttgatgtg tttcatgcgc tttcctctcc tccagttgga 2820cacctgtgga ggctaggaat ggctccacac gggtgcattg gacgtgaaga cagctccccc 2880gctcggtgtc ccactgatgg tggctcggat tcttccttgc cctccgagcg atgaggcacc 2940ccgtcgtggt gcgatgggtt cgacccgcgt ggggtcctca gggcgaggcc tggcgcgagg 3000agccgggtgg cttcgcgcgc cagacccggt ccggctactt ccaggtgtcg ttgagggtcg 3060cggtccccga ggcggggatc gtggtcgagc ggttggcgcc gctctcccag gtgacgttcc 3120cggagccgtc cttcttgatg tacttgtatt cgagggccgt cgagccgggc aggctgagcg 3180tcacgctcca cttcgggtag ctggccggag acaggaggat ggcggcgccg gtgttccagt 3240tgccgagcgc ggcatggtta cccacgaggt agacgttctg tcccacgacg gtgctggccg 3300tcacgttgaa ggtgacggag gtggccgagg aggtgctcgt ggtgacgctc agggcggtgc 3360tctgggcgga ggcattgccc gcggtgtcgc gcgcgcgcac ggtgtagcgg taggtcgtgc 3420cggcactcag gtcgctgtcg gtgtagctgg tggagacggg tgagcccacc agcgagccat 3480cgcggtacac gtcatatccg gcgatgccgc tggcatccgt ggaggcgctc caggagagcg 3540acacggagga ggacgtcttg gacgccgccg tgaggcccga ggggacggag ggtgcggtgg 3600tgtcgagcgc gggcgctccg ctggagacga cgccgtcctt caccgtggag gtgcccgcgg 3660gcaggaggta gttgttgccc ttgttgttgt cccaggtgcc cttgccatcg ttgaagacac 3720actcgagctg ggtggccgct cccagattga cggtgtattt ggcgtagccc ggcacctcgg 3780aggtggccat gacgttgccg ggcacggtcg tccacgtgcc accgccgatg cggaagtgga 3840tgtatttgag ggcgaagttg ttgttgaaat agtagacggt ggcgctgttg cccgtctggg 3900tggtgacgga cagggccgtg ctgggcgagg agacattgcc cgccgcgtcc cgggcgcgca 3960cggtgtagct gtaggtggtg ctcggcgaga ggccggtatc cgagtaggtc gtccccgtga 4020cggacgcgac ctgggtgccg tttcggagca cctcgtagtt cgcgacgccg tagttgtcgg 4080tggaggccgt ccaggcgagg gccaccgagg agctcgtcgt gcccgacgcc gtcaggcccg 4140agggaacgga gggtggggtg gtgtccggcg tcagggtggc gacgctcagg gcggtgctct 4200gggcggacgc gttgcccgcc gcgtcccggg cgcgcacggt gtagctgtat tgagtgctcg 4260gggagaggcc gctgtcggta taggccgtgc tggtgctcga gcccacctgc gtgccatcgc 4320ggaagacgtc atagccgctc accgccacgt tgtccgaggc cgcgctccag ctcagggtca 4380ccgagcggtc cgtcttcgcc ttcgcggtca gtcccgaggg gaccgagggc gcggtggtgt 4440ccaccacgag gaagggatgc gttccctgta ccgtgccgtt ggggtcctcg atgtacttgc 4500cgcccaccag gttgtaccgg cccgagccca cgtagacgga ctggatctct ccccgggtga 4560tgttgccccg gctgtcggtg gcctcgatgt agtagtcgag gagctggtcg cggtagttgc 4620ccaggtagac gtagtagagg tcgccgatct cctgcgcggg caccttggcc atgacgggca 4680ggtaggcggg ctgccaggaa acaccattca tgacaggctt caggtcgcgc cgggtgagcg 4740ggtagtccac ccaggcgccc acgcgggccg gatcgatgtt gggaacaccc gcggccttgc 4800gcgccgccgg atcatagacc ttgtgggtgt tgtcgagcgg gtcgatgctc ttgtgggtgt 4860gcacccggac gcgggccttg atggaggaga tgccgctcgc gtcgtaggcg taggtgtaga 4920gggcgaagtg gttgttgaag aagtggagcg tccagccctc ggacttgtcg gtgttggcgc 4980tgccggggtt gtagggccag cgctgggccc accagacgga ggggcccgtc ttgtcctggg 5040cgatgcgctg ctgcacgtag ggcttggaga agtagaggga ttgattgaag gacagcgtgg 5100gcttgacgtt gtcgtcctgg ttctcgtcgt agtagccgaa gcccgagtcc atggcgggca 5160gcaggaagta ccaggcgagt tccgcggggt tggcgccgcc cgcccagtcg ttgttcacgt 5220cgcccttgac gggaaaggac atcatccacg ggttgagctg gttgcccgtg tgggtgatct 5280gcttgtcgat cgcggtggtg ggcgaccagt gattggggtg cgcgtcgagc cagatctgct 5340cggcggtctt cgcgtagttg agggcggcct ggagcagggc gaagttgcgc tcgaggtagt 5400gccagccgtg ctcgagggag accgtcatgc cctcctgcac gccgctgagg ttcgtcttgg 5460gagagagatt gaggccggtg gcggcgttga aggcggggaa ctgacccttc cagatgccga 5520agggcagctt ccagtggtgc cactggggat ccgaggagga gtcgcgcgtg tccacccacg 5580agccgtcctg gacgtgcacc acgtcggtgg aggcgggggt gtggtggacg aggtactcgg 5640agatgcccac gcactgcacg ccattggcgc aggtgacgga gcggccgttg taccaggtgg 5700agtcggagcc ggcgcgtccg ctcgagttgt cgccatcatg cgcgatgacg aagaactgcc 5760gctggggaac gaggccctcg aagctcttga ggttgacgac gtcgacggtg gcctcgcctt 5820cccagccctc gagccaggag ccgttctggt tgacggggat gccgacgacg cgcgactcgg 5880cgcccgtggc ggggtccacg tagcgcaccc agtggggagt ggaggcgaag gggtacttgt 5940tcttgatgac ctgctgctcg tgggccatct gggcgctcac ccaggagccc acggagctgg 6000tgttctggag atcggcgcgg ttgggcgggg agacgagcgt gtcggagccc ggatcgttga 6060ggtaggggta gtccttgagg gtgcgggaga agtggttgtc gccgatgacg gcccactgca 6120cgccgagctt ggagagggtg gggatgaggc gctcggagaa gccgagctcg gtggggaaga 6180agcccttgga ggactggaag gagccgccga ggaagtaggg ctgggcgagc gtggcgctct 6240ggtagatgag atccttgagg aagtagtcgg gaccgaccag gggccccatg gagtggtggc 6300cggtgaagtg gatgagatcc agggtgcggt tgcccgcggg ggtgagcagg gcgctgtagc 6360ggtccttcca ggaggcgccc cagttcggat tgtcgtagcc ggggacgttc ttcagggtga 6420cgagatcctg gacattgttc accacggcgc cggacatggt gacgtgcacc tggccggtgg 6480gggcattggt tttcatgtcc gaggcgacgc ttggaggcca gtacaggtag gcacccgtct 6540tcgcgttgtg cgagtaatag gtgacgaggt catcgtgcgg catgggcgcg cccgatggca 6600ggtagtatgt gtaattggac gggggattct tcttcaggtt gatgacctgc gcgtcataca 6660tgtaccggat ggggccgccg gtgggcgtgg acgcgtattg gcccaggtcg tagtaggccc 6720agaagttggg catgtggttg tggtagacgt gggccgcggc gatctgcgcc ctggcgggca 6780gggcacacag caacagcgcc gacaggacgg gccctatcaa cggcttcact cgatgcatgg 6840gggttcctct ggggtaagga ggagcgcacc ctagtggagc cgtccggact ttcctcgttt 6900tctgatgaaa aaggatttgc cgcatcgcgg caatcgtttg gcagcagact ggaacgtcag 6960cgaggagcaa caacagccac tggcggcacg cgcggctctt ctccagagag aagagccgcg 7020cgtgggggag cgaaagcctg gaggcctgtc agcccgcgac ggccacttgt ggccgccgga 7080ccggtgtgcg cgaagggacg gccgactccc agaccggaag tatgcttccc atcttgtgga 7140gcttcgcctc gcagtaggag aggttgtcct cgtacggctt gttcgccatg aacggcattt 7200gagtcccgcg gtacttcacg cgcaggctcg tgctgggagc gccctcgagc ccgagtagct 7260cagacgtgag ctgcgcgtac ttttcgggaa cgcgcaggac aatggcatcc ttctccttcg 7320agacgaccgt cacgtgtttc agcaaccctt cgccattatt gatgggcgtg ttgctgtaca 7380cgtgcggacg gttgaggaga tccatctcga acaggaactc cagcagctca tcgttcatca 7440tgcccagggt ttgaatgaac ccgaagagca gttggtcgaa ctctctgcgg aactcgtgaa 7500gtgtgacgtg gaagatgccg ccgttggcgc tgaacttcga ctggctggtc ccgtcgatca 7560cgctggtgat gtactgcgtg taggggtggt cagggttccg cttgcagtac tccgagaacg 7620aggagatcaa gtccttgaag gccagccgcc cctgcttgtc gaggtacctc ccgacgaagc 7680ggagtgcgcg caggctgtac aggctcgtga gatgataccc gaaccgcaca ccctccttgt 7740attcctcgcg ggtaacgtcc ttcgtcgcga cgacgacctg cgcctcgctg ttcgggtctt 7800catcattcga cacctccagc ttgaactcct cgcgctggct gttcatcggc acgttgttga 7860tgagcaggag gtggtggatg aggatcgcgt cggcgtcgta gctgcagagc ttcccgatgc 7920cctccctgaa ggtctccagc gtctcgccgg gaagcggcca gatcatctcc acgaacgagg 7980agagcttgct gcggtgcagt tcttcctgga ggctcaggta ggcgctctcc ttgatgttgc 8040cgcgcttcac gctcttcagc gtgttcgcgt ccatcgtctg gagcgagacc ggctgggtgg 8100agatcaaacc ctcctggctc aggatccgcg tgatctgcgt gacccggtca ggcgagttct 8160tcgccgcgct cagccaaatg gtgagcggat agccatactt ccgcttgcac tcggcgatgt 8220gctgggcgat ctcaatgtcg cgggtcagca tgccgaaatt cgcgtcggtg atgaagatgt 8280agaacgcccg gtgctggctg agccaggtga tctccgcctt gacccggtcc atgtcggact 8340tgaacacgcg cgagttggtc gccgcccccc agaagcagta ggtgcactgg taggggcatc 8400cccggttcgt ctcaaggggc gcccacacgt acttctcgct gtcgaagtag ccttccaggt 8460agggagatgg gaccgtgttc agatcctgga tgcgcgcttg gggctcggtc gtgatcagct 8520ctccgttccg gtagaaggag aggcccttga ccttgccaag gtcgggctgg ggggagcaga 8580gttcggccag gtagttcgcg aaggtatact caccctcacc gttgcagagc accacccgct 8640cgttgcccgg atccaggtac tgcgccccgt ggttcatcac ctgcggaccg ccaaggatga 8700tgtgcgcgtt gggcttgcgg gcggtgaggg tggggagcca ccgcttcacg aagcccatgt 8760tccagacata gcaagagatc gcgtagacat cggcatcgat cttgttgagc ttgtcttcga 8820atcggtcgtc gttgatgcag atcgagtgga tttcgaagct gcacgactcc ctgatcaagg 8880ggttctgctc ggccacgcca cgcatgtagc cagaggccaa gggataaacg ccagagaaga 8940ccgtcaactc aatgaatgcg acccgctggt tggccatgac acacgctccc cgttacctac 9000aaattggtat attgccaaca tgatggcggg caggctagct gaaaaattta ctctccggca 9060ctctcatgtt cctgggtctc cgggctcagt gggcgagcag cttgaatcgg cggaacgcct 9120cgcgcgtcgg cgcgtgcgac aggacgtcgc actgcatcag cacgtagacc aggtacccgg 9180agaggggata tcgcgcgcgg aaatcctcca gcggcggctc cgagtacgtc tcggagagga 9240tccgctcgat gtgctcggcc gctagaccga gctgctccag cacgacgcgc tcgtactccg 9300ccatcatctt cgggctgagg tactcgcgga tgaactctgg cagcagctga ccgatggcga 9360gccgggcgct ctcctccatc tcactccaca ccagcttgag cacgttcatg aagaggaccg 9420cgtggcggcc ctcgtcgcga acatggtcct ccatcacctg atggagcact tcgttgaagg 9480acttctcacc cgtcaggttc agcagatcct tggtgagtgt gttttccccg atgcagacgg 9540cgatgatttc ccagagcccg tgcagcgtct cgggcagccg gtgcttgccg aaagccatgg 9600ccctggacag gtccgtttcc gttcccaggg gcagcggctt gacgcccgtg cgctgctcga 9660tctgccgcat gaagtcgcgt gccacgtagg cgtgataggc ctcatcgatg atgacggtga 9720gcgcgtcgtg gcggatgtcg tccgggaacg tgatgggcgt gtgaccgttg gcgatcttca 9780tcgccacctc gttgacggtc tccgtctcga agatggcgat gtcccccatg aacttgtagg 9840cggagtggat gaagaacagc cgcagcgtct cgggcggaag gttcttcatg agcgggtggg 9900tgagcagggc cgccttggcc ggcgggtaca ggtgcccgac cacgtccccc tccggcagta 9960cgcgccgggg cttgctgcgt gtggcggcaa gcgaatccca caccaactcc ttggacttgt 10020agtccctcgg ggaaatcgcg cccgaccttt ctgctaccaa ccctgtcttc cctgtcgtcc 10080cattcactct ggcttctccg acggcaccgt attgctgcat tgaaagggga gcgagcgcct 10140gcgggcgctg gtcgcgcgcg ctcagcgctt gactccgtgc accaggtatc cctggggcac 10200accgggggtg ccgcgtggcg ccacggggaa gggccagcgc ccgagctgct tcccgatggc 10260cgcggtggtg tagacgtggg ggtcccagcc aatcggcctt agaatcacct cgggctcgtc 10320ggtgccgaac tggcgggcga ggtcgtgcat caacttgacg cgcgaggagt ccaaaatcga 10380acggccaacg acgtcgatga ggacgatgct ctcgggaacg ctcagggcgt tgacacgggc 10440catgagcagc gtgacctgcg cctcggtgag gtagacgagc aatccctcga tgagccacag 10500ggtgggcacg ccgggatcga atccgctttt cttcagcgcc gccggccagt catcggccag 10560atcgaccgac acggcatgtc gctcacattt cggcgcgacg ccggtcagct tcgcctcctt 10620gtcctggagc acggcgtcgt ggtcgagctc gaacagccgc gtgtctcccg gccaggccaa 10680acggtaggcg cgggcatcca ttcccgcggc gaggatgacg atctggcgga tgccgcggcc 10740caaccccagc gtgatctgat catcgagcca gcgcgtgcga acctcgatgg cgggaggcat 10800ggcgccctca ccggcattgc ggcgccgcag ctcctcgacg agcgtgtcac cggcgagtcg 10860acgggcaaag ggatcccgga acagtgggtt ggaacgctcg gtctcaagcg cgcgcattcc 10920cgccacccaa agtgccgtct ggccgatctc ttgcatatgt tttatgaccg ccgcctcgtg 10980agatgggtta agggttcggc aacacgtcaa ctcgcaacga cggagcgctc agcgtccgtg 11040gctggattcg cgaagcgcga acgccgcccg ttgcggatcc tcgcacacgg cgatgcgatc 11100gccattcgga agttccatgg ggccgatgac gacgcctccg gccttgcgga cgacctccat 11160cgcgggatcg agcgcggcga cgcggaaatg gaacagccag tgtgaatgga cccccttgag 11220ccccgccacg tccacgaccg agccggcgct cggctcgtcc gagcgccagg tgaactcctg 11280gtgaaccccc agcgcaccaa ggtcgcggcg atccgagagc cgccatccga acaggtcgca 11340atacgaggcg gccgtctgtt gcacgttcgc ggcatagagc tgctgccaga ccacctccgg 11400ctggagcgct ctcgtcgttg ccggtgccgt cgccacggcg aaggtcgccc ctccaggatc 11460gcggaggatc gcgacgcgcc cgccgtcgtt cgtcgggtgg gtcgggccga gctgggtcgc 11520cccgcgcccc acgaacgagc gcaccgcttc atcgacgtcc tcgacgccga cgtaacccag 11580ccaatgggcg ggtgcgccgc gggcaatcgc ctgctcgggc agcggcacga tgtctgcgtt 11640ggcggcgccc tcaccgaaca gagccgtgta gaacgcccgt gccgcgggga cgttggtggt 11700gcgcaactgg agcttgaaga accgtttcat accacgtgac ctcgttaccg ccggggggcc 11760ggctcagggt gtctgatagc cgtcgaccac cattcccaac gcctgggcga gggcgacggc 11820ggtctccacg ccaacacgcg tccctttgac ctggttcgcc ttcgggtcga agatgaaatt 11880ggtcgatcga gcaaaattgg tcttggtgag gacgcagccc tgcatggtgc atcctggcat 11940atcggtgccg gtgaagtccg actcggcgag gtccacgtca atgaagttgg cttcgcgcgc 12000ggagcagcca acgaaccgcg tcttgcgtag attcaacttc aagaaggagc tgtagcgcag 12060atcgcactgt tcgaactgga cgtccggcat ggttccgagt ccactccagt ccacgcccat 12120gaggcgggtg tctttgaagg tcacgcttcg cagcgcgagc ttctccggta ccatccgcag 12180gagatcgcat ccctcgaata cacaatcctc caggcggctc cggacccagc ggctttcggg 12240caacttgcac cgccggaacg tgcagcgctc gaattccttg ccggagagat cagccgactc 12300gatcgagaga tcagaaaacg tgacgtcggc gaaaaagtcg ccactttcca gagagggagt 12360ggagcgggcg ggcatatgtc ctcatggctg acacgacgag cggcccctaa taccagtgcg 12420tgcgctaggg atccagcaca gtcagtccta tgtcctccaa ccgacatatc gtctagatga 12480gtcaaactta agttgactcc acaacacgta tgtgccttga atcgagcata actgaactcg 12540tggcgtgcgc gggccgaatg ccgagtgcgt cggcctgtcc ggaaacgcct gcctcgtccg 12600gagacggccg caactgggcg cgacgcgccc tggtggctcg gtggacgcag ggcaggaagc 12660gtatttggcc gaaccgcaag ttgccgggcc gcgaggctcg gcaggggaac gacgatgagc 12720atgaacgggg acgaagccga gtacgttgtc ttgatcaacg gcgaagagca gtactcgctc 12780tggcccgtgc accgcgaaat tccgggcggt tggaagaccg ttgggcccaa gggaagcaag 12840gaaacgtgtc agtcctacat ccaggaggtc tggacggaca tgaggccgaa atcgctacgg 12900gaagccctga cgcgcagcaa ctgctgatcc cgctgcctcg ggggctcctg taccgccgtc 12960gtctccagat gaggattgca gcgaggccac aaccaatgag tacgccagca gcaggagcga 13020agccgtccta tctcgcgggt attgaaacgg tgatggtcga acctgagctt gaggaggttc 13080gctacctgac cgtggagagc ggcgacggac ggcagagtac cctctatgag ttcggtccga 13140aggacgcgga gaaggtcgtg gtcttgccgc cctacggagt caccttcttg ctggtggcgc 13200gactcgcccg gctcctctcc cagcgattcc atgtcttgat ttgggagtca agggggtgtc 13260cggactccgc catcccggtg tatgacacgg accttgggct cgccgaccag tcaaggcatt 13320tctccgaggt cctcaagcag cagggcttcg aggcgtttca cttcgtcggc tggtgtcagg 13380cggcgcagct ggccgtgcat gccaccgcca gcggccaggt caagccgcgg acgatgtctt 13440ggattgcccc ggcggggctg ggttactcgc tggtcaagtc cgagttcgat cgatgtgcac 13500tgcccatcta cctggagatc gagaagcatg gcctgttgca cgccgagaag ctcggcaggc 13560ttctgaacaa atacaatggc gttcccgcga cggcgcagaa cgcggcggaa aagctgacga 13620tgcgccattt ggccgacccg cggatgacat acgtcttctc caggtacatg aaggcgtatg 13680aagacaacag gctcctcgcc aagcaatttg tctcgaccgc gctcgactcg gtgccgacgc 13740tggccattca ctgccgggac gacacgtaca gccacttctc ggagtccgtt cagctctcga 13800agctgcatcc atccctcgag cttcgcctac tcggtaaggg cggccatctg cagatcttca 13860acgaccccgc cacactggcg gagtacgttc tcggtttcat cgacaccagg gcgtcgcagg 13920ctgccgctcc tgcggtggcg ggagcgtagg gagacaacat gatacttccc aacaacatcg 13980gcctcgacga gcggacgcag ctcgcacggc agatctcctc gtaccagaag aagttccacg 14040tgtggtggcg cgagcggggg cccaccgagt tcctcgatcg gcagatgcgc cttcgcacgc 14100cgaccggggc ggtcagcggc gtggactggg ccgagtacaa gacgatgcgt cccgacgagt 14160atcgctgggg cctcttcatg gtgccgatgg accaggacga gatcgccttc ggcgaccacc 14220gtggcaagaa ggcgtgggag gaggttccga gcgaataccg cacgctgctg ctgcagcaca 14280tctgcgtgca ggccgacgtg gagaacgccg ccgtcgagca gagccggctg ctgacgcaga 14340tggcgccgag caacccggac ctggagaacg tgttccagtt cttcctcgag gaggggcgcc 14400acacctgggc catggttcac ctcctgctcg cccacttcgg tgaggacggg gtcgtcgagg 14460ccgaagcgct cctggagcgg ctgagcggtg acccgaggaa cccccgcttg ctggaggcgt 14520tcaactatcc gaccgaggac tggctgtccc acttcatgtg gtgcttgctg gccgaccggg 14580ttggcaagta ccagatacat gcagtgaccg aggcttcgtt cgccccgttg gcccgggcgg 14640cgaagttcat gatgttcgag gaaccgctcc acatcgccat gggcgccgtg ggtctggaac 14700gagtgctggc caggaccgcc gaggtcaccc tgcgtgaggg gacgttcgat acgttccacg 14760cgggggcgat tccgttcccg gttgtccaga agtatctcaa ttattgggcg ccgaaggtct 14820acgacctctt cggaaacgac ggctccgaac gctcgaacga actcttccgg gctgggctcc 14880ggaggccgcg gaatttcgtg ggaagcgaat cgcagatcgt tcgcatcgat gagcgcatgg 14940gcgacggact gaccgtcgtg gaagtggaag gggagtgggc

gatcaacgcc atcatgcgac 15000gacagttcat cgccgaagtg caaacgctca ttgatcgctg gaacgccagc ctgcgagcgc 15060tgggcgtcga cttccagttg tacctccctc acgagcgctt cagcaggacc tatggcccct 15120gcgccggtct gcccttcgac gtggacggaa aactgctccc ccgcggcacg gaggcgaagc 15180tcgccgagta cttccccaca cctcgcgaac tcgcgaacgt ccgctcgctg atgcagcggg 15240agctggctcc cgggcagtac tcctcgtgga tcgccccgtc cgcgacgcgg ctgagcgcgc 15300tggtccaggg caggaacacg cccaaggagc acgaatgaaa cgaagccgtc ggatcgttga 15360cgggagaaga gcgagcagtt cgtgggaacg ggagaggggc tcgccatgag cggcaagctg 15420cctcctcgta tgtgtccgac accccggaaa gagcactcat cacatgcgtt gcctcatcat 15480cgacaactac gattcgttca cctggaatct ggcggactac gttgcgcaga cgttcgggag 15540cgagccgttg gtcgtccgca acgaccagca tacctggcaa gaaatcaagg ccttgggctc 15600cttcggatgc atcctggttt ctccgggtcc gggctcggtg accaatccga aggatttcaa 15660tgtctcgcga gacgcgctcg agcaggatga gttcccggtg tttggggtct gcctgggcca 15720tcaagggctg gcgtacatct acgggggcga gatcactcac gctccggttc cgttccacgg 15780caggacgtcg accatctacc atgacggcac gggcgtgttt cagggactcc cgccgagctt 15840cgacgcggtg agatatcact cgctggtcgt gcggccggag tcgcttcccg cgaacctggt 15900cgtcaccgct cggacggaat gcggcctgat catggggttg cggcacgtga gtcgcccgaa 15960gtggggcgtc cagttccatc ccgagtcgat tctgactgcg cacggcttgc agctcatctc 16020caatttccgt gacgaggcgt accgatacgc ggggaaagag gttccgtcgc gccgtcccca 16080ttcgactgcc ggcaacggtg tcggcgcagg tgctgccagg cgtgacccga gcgcccgccg 16140cacaccggag cggagaaggg aacttcagac gttcaccagg cggctggcga cgtctctcga 16200ggccgagacc gttttcctgg gcctgtatgc gggccgcgag cactgcttct ggctcgacag 16260ccagtccgtg agagaaggga tatcccggtt ctccttcatg ggctgcgtgc cggagggctc 16320gctgctgacg tacggcgctg cggaagcggc gtcagagggg ggcgccgagc ggtacctggc 16380ggcgctggag cgggcgctcg aaagccgtat cgttgttcgc cccgtggatg ggctgccatt 16440cgagtttcat ggcggctaca tcggcttcat gacctacgaa atgaaggagg cgtttggggc 16500cgcgacgacg cacaagaaca ctattcccga cgccttgtgg atgcacgtga agcggttcct 16560ggcgttcgac cactcgacgc gagaagtgtg gctggtcgcc atcgcggagc tcgaggagag 16620cgcgagcgtc ctcgcctgga tggacgagac cgccgacgct ctgaagtcgc ttccgcgcgg 16680cacccgttcg ccccagtccc tggggttgaa atccatctcg gtatcaatgg attgtggacg 16740ggatgactac ttcgccgcca tcgagcgctg caaggagaag atcgtcgatg gggagtccta 16800cgaggtctgc ttgacgaacg gtttctcgtt cgatctgaag ctggatcccg tcgagctgta 16860cgtgacgatg cggagaggca atcccgcccc gttcggcgct ttcatcaaga caggcaagac 16920ctgcgtcctc agtacctccc cggagcgctt cctgaaggtg gatgaggatg ggacggtcca 16980ggccaagccc atcaagggga cctgcgcgcg ctctgacgac cccgccaccg acagcacgaa 17040tgccgcgcgg ctggccgcct cggagaagga ccgggcggag aacctgatga tcgtggacct 17100gatgcggaac gacctcggac gggtgtccgt gccgggcagc gtccatgtct ccaatctaat 17160ggacatcgag agcttcaaga cggtccatca gatggtcagc accgtcgaat cgaccttgac 17220gccggagtgc agcctcgttg acctcctgcg cgcggtcttc ccggggggat ccatcaccgg 17280ggctcccaag atccgcacga tggagatcat cgatcggctc gagaagagcc ctcggggcat 17340ctactgcggc acgatcggct acctcgggta caaccggatc gccgacctga acatcgccat 17400ccgcaccttg tcctacgacg gcaccctcgt gaagttcggt gccggcggag ccatcaccta 17460cttgtcacag ccggaggggg agtttcagga gatcctgctc aaggcggaat ccatcctccg 17520gccgatttgg cagtacatca atggcgcggg tgctcccttc gaaccccagt tgcgcgaccg 17580ggttctgtgc ctggaggaga agccgcgaag ggtcattcgt ggccacgggt cggcaattga 17640tgcagtggag cctagcgcgt gaagcctacg tcgagtcgag acctgcccat tcgcgcgtca 17700agcccccagg gaccatccga accgcgtgcg cgtccccggg gccagtggat gattgcgttc 17760aacccgcagg cgcggcccag gctgcggctc ttctgctttc cgtacgccgg tggcgacgcg 17820aacatcttcc gggactgggc cgcggcgatg cccgaggggg tcgaggtcct cggcgttcag 17880taccccgggc gcggtaccaa cctggcgttg ccgccgatca gcgactgtga cgagatggcg 17940tcacaactgc tggcggtgat gacgccgttg cttggcatca acttcgcttt tttcggccac 18000agcaatggcg ccttgatcag cttcgaggtg gcgcgaaggc tccacgacga actgaagggc 18060cgcatgcggc atcacttcct gtcggccaag tccgcccctc actacccgaa caacaggagt 18120aagatcagcg gcctcaacga cgaggacttt ctccgggcga tccggaagat gggcggtacg 18180ccccaggaag tgctcgacga cgcccggctg atgcagattc tgctgccaag actgcgcgcg 18240gacttcgcgc tcggcgagac gtatgtgttt cgccccggac ccaccctgac gtgcgacgtc 18300agcatcctgc gaggcgagag cgaccacctg gtcgacggcg agttcgtcca gcggtggtcc 18360gagctgacga cgggcggcgc gagccagtac gcaatagatg gtggccattt cttcctgaat 18420tcccacaagt cgcaggtcgt ggcgctcgtg cgagcggcac tgcttgagtg tgtgttgtag 18480cgagaaaacg gattcccaaa taatgaccgc tcagaaccaa gcctccgcgt tttctttcga 18540tctcttctac acgacggtca atgcgtacta ccggaccgcc gccgtcaagg cggccatcga 18600gctcggcgtg ttcgacgtcg ttggcgagaa gggcaagacc ctggccgaga tcgcgaaggc 18660ctgcaacgcg tcgccgcgtg gcatccgcat tctctgccgg ttcctcgtgt cgatcgggtt 18720cctcaagaat gcgggtgagt tgttcttcct cacgcgagag atggccctgt ttctggacaa 18780gaagtcgccc ggctatctgg gcggcagcat tgatttcctt ctgtcgccgt acatcatgga 18840cggcttcaag gacctcgcgt cggtggtgcg gacgggcgag ttgacgctgc cggaaaaagg 18900ggtggtggcg ccagatcatc cgcagtgggt gacgttcgcg cgcgcgatgg cgccgatgat 18960gtccctgcca tccctcctgc tcgcggaact ggcggaccgc caggcgaacc agccgctcaa 19020ggtgctcgat gtcgccgccg gccacggcct cttcggcctg gccatcgccc agcggaatcc 19080gaaggcgcat gtgacgttcc tcgactggga aaacgtgcta caggtggcgc gcgagaacgc 19140gacgaaggcg ggagttctcg acagggtcga gttccgcccg ggagatgcct tctccgtgga 19200cttcggcaag gagctggacg tcatcctcct gacgaacttc ttgcatcact tcgacgaggc 19260gggctgcgag aagatcctca agaaggccca cgctgccctg aaggagggcg gccgtgtgct 19320gacgttcgag ttcatcgcga acgaggaccg gacgtcgcct ccgcttgccg ccacgttcag 19380catgatgatg ctcggcacga cgcccggcgg tgagacctac gcctactccg atctggagcg 19440gatgttcaag aacacgggtt acgatcaagt cgagctcaag gccattcctc ccgcgatgga 19500gaaggtcgtc gtttcgatca agggcaaagc gcagctctga gcaacattca gcacaatagg 19560acctcctggg agatttcgaa tggccaccaa attgtctgac ttcgcgctcc tcgactccga 19620agacgccaac gtcatctccc gctcgaacga gacggggata tcgctggatc tgtccaagag 19680cgtggttgac ttgttcaacc tccaggtcga gagggcgcct gacgccacgg cgtgtctcgg 19740ccgccagggg cgcttgactt acggagaact caaccggcgg acgaaccagc tcgcgcatca 19800cctgatcgcg cgaggcgtcg ggccggatgt tcccgtgggc gtcctgttcg agcgctccgc 19860cgagcagctc atcgccatcc tgggcgtcct caaggcgggc gggtgttatg tcccgttgga 19920tccgcagtac cccgccgatt acatgcagca ggtcctgacg gacgcccggc cgcggatggt 19980ggtgtcgagc cgggcgctcg gcgagcgcct ccgctcgggc gaggagcaga tcgtctacct 20040cgatgacgaa cagctcctgg cgcgcgagac ccgcgacccg cctgtgaagg tgttgccgga 20100gcagctcgcg tacgtgatgt acacgtcggg ctcgtccgga gtgccgaagg gcgtcatggt 20160gccccatcgc cagatcctca actggctgca tgcactcctg gcgcgggtgc cgttcggcga 20220gaacgaagtg gtggcccaga agacgtccac gtcattcgcc atctcagtga aggaactctt 20280cgcgggattg gtcgcgggtg tcccgcaggt cttcatcgac gatgcgactg tccgcgacgt 20340tgccagcttc gttcgtgagc tggagcagtg gcgcgtcacg cggctctata cttttccctc 20400ccagctggcg gcgattctct cgagcgtgaa tggcgcgtac gagcgcctcc gctcgctgcg 20460ccacctgtac atctcgatcg agccctgccc aacagagctg ctggcgaagc tccgggcggc 20520gatgccgtgg gtcaccccct ggtacatcta tggctgcacc gagatcaacg acgtcaccta 20580ctgcgaccca ggggaccagg ctggcaacac gggcttcgtg ccgatcgggc ggcccatccg 20640caacacgcgg gtgttcgtcc tcgacgaaga gctccggatg gtgcccgtcg gcgcgatggg 20700tgagatgtac gtggagagcc tgagcacggc gcggggctac tggggccttc ccgagttgac 20760ggcggagcgg ttcatcgcca accctcacgc ggaggacggt tcgcgcctgt acaagacagg 20820cgacctcgcc cgctacctgc cggatggttc cctggagttc ctcgggcgcc gggactacga 20880ggtgaagatc cgcgggtatc gcgtggacgt ccggcaggtc gagaaggtcc tcggggcgca 20940tcccgacatc ctcgaggtgg cggtggtggg ctggccgctc ggcggggcga atccacaact 21000ggtcgcctac gtcgtgccga gggcgaaggg ggctgctccc atccaggaga tccgggacta 21060cctgtcggcg tccctgccgg cctacatggt gccgacgatc ttccaggtgc tggcggcgct 21120gccacgtctt cccaatgaca aggtggatcg gttgagcctg cccgacccca aggtggagga 21180gcagaccgag gggtacgtgg cgcctcgcac ggaaaccgag aaggtactgg ccgaaatctg 21240gagcgacgtc ctcagccagg gccgggcccc cctgaccgtc ggcgcgacgc acaacttttt 21300cgaactggga ggccattcgc ttctcgccgc ccagatgttc tcgcggatcc ggcagaagtt 21360cgatctcgaa ctgcccatca acaccctgtt cgagaccccc gtgctggagg gctttgcgag 21420cgccgtcgac gcggctcttg ccgagcggaa cggtccggcg cagaggctga tcagcatgac 21480ggaccgcggc caggcgcttc cgctgtcgca cgtccaggag cggctctggt tcgtgcacga 21540gcacatggtc gagcagcgga gcagctacaa cgttgccttc gcctgccaca tgcgtggcaa 21600ggggctgtcg atgccggcgc tgcgcgccgc catcaacggg ctggtggctc gccacgagac 21660cttgcggacg acgttcgtcg tctccgaggg cggaggagat cccgtccagc ggatcgccga 21720ctccctgtgg atcgaggttc cgctatatga ggtcgatgcg tcggaagtcc cggcccgcat 21780ggcggcccac gcgggccacg tgttcgacct tgcgaagggc cccctgctga agacctcggt 21840cctgcgggtg acgcccgatc accacgtgtt cttgatgaac atgcatcaca tcatctgtga 21900tgggtggtcg atcgacatcc tgctgcggga cctctacgag ttctacaagg cggccgagac 21960gggctcgcag ccgaacctgc cggtcctgcc aatccagtat gccgactact ccgtgtggca 22020gcgtcagcag gacctcagca gtcacctcga ctactggaag aagacgctcg agggctacca 22080ggaagggttg tcgcttccgt acgacttcgc ccgcccgtcc aacaggacct ggcgtgccgc 22140gagtgtccgg caccagtacc cggcggaact cgccacccgt ctgtcggagg tgagcaagag 22200ccatcaggcg acggtgttca tgacgttgat ggccagcacg gcaatcgtgc tgaaccggta 22260cacgggtcgg gatgatctgt gcgtgggtgc cacggtggcg ggccgtgacc acttcgagct 22320cgagaacctg attggcttct tcgtcaacat cctcgccatc aggctcgacc tcagcgggaa 22380tcccacggcc gagacggtgc tgcagcgggc gcgagcgcag gtgctggaag gcatgaagca 22440tcgcgacctg ccgttcgagc acatcctggc ggcgctgcag aagcagcgcg acagcagcca 22500gattcccctg gtgccggtga tggtccgcca ccagaacttc ccgacagtga cctcgcagga 22560gcaggggctc gacctgggta tcggggagat cgagtttggt gagcggacga cgcccaacga 22620gctcgacatc cagttcatcg gcgagggaag cacgctggag gtggtggtcg agtacgcgaa 22680ggatctgttc tccgagcgca cgatccagcg gctcatcacg cacttgcagc aggtgctgca 22740gactctcgtg gacaagccgg actgccggct gacggatttt ccgctggtgg ccggggacgc 22800gctgcagggc ggtgtgtcgg gctccggggg cgcgacgaag accggcaagc tcgacgtgtc 22860gaagagcccg gtcgagttgt tcaacgagcg ggtagaggcc tcgccggacg cggtcgcctg 22920catgggcgcg gacggaagcc tgacctaccg ggagctggac cgaagggcca atcaggtcgc 22980ccgccacctg atggggcgag gggtggggcg ggagacgcgg gtggggttgt ggttcgagcg 23040ctcgccggac ctgctggtcg cactcctggg catactcaag gcggggggct gcttcgttcc 23100gctcgatccg agctatccgc aggagtacat caacaacatc gtcgccgatg cgcagccgct 23160tctggtgatg tcgagccggg cgctgggctc acgcctgtca ctggaggcag ggcggctggt 23220gtacctcgat gacgcgctgg cggcgtccac cgatgcgagc gatccccagg tgcgcatcga 23280cccggagcag ctcatctacg tcatgtacac ctccggttcc accggtctgc cgaagggggt 23340gctcgttccc catcggcaga tcctgaactg gctgtacccg ctgtgggcga tggtgccctt 23400cgggcaggac gaggtggtgg cgcagaagac atccacggcc ttcgcggtct cgatgaagga 23460gctcttcacg gggctgctgg cgggcgtgcc ccaggtattc atcgacggca ccgtggtcaa 23520ggacgcggcg gccttcgtgc tccacctgga gcgatggcgg gtcacccggc tgtacacgct 23580cccgtcgcac ctcgatgcca tcctgtccca cgtcgacggg gcggcggagc gcctgcggtc 23640cctgcggcat gtcatcctcg cgggggagcc gtgccccgtt gagctgatgg agaagctgcg 23700cgagaccctg ccgtcgtgca cggcgtggtt caactacggc tgtaccgagg tcaacgacat 23760ctcctactgc gtcccgaacg agcagttcca cagctcgggg ttcgtgccga tcggccggcc 23820catccagtac acccgggcgc tggtgctcga cgacgagctg cggacggtgc cggtgggcat 23880catgggggag atttacgtcg agagcccggg gacggcgcgg ggctactgga ggcagccgga 23940tttgacggcc gagcggttca tccccaaccc gttcggcgag ccgggtagcc gtctctaccg 24000tacgggcgat atggcgcgat gccttgagga tggctcgctg gagttcttgg ggcgccggga 24060ctacgaggtc aagatccgtg gccatcgcgt ggacgtccgc caggtcgaga agatcctcgc 24120gagccacccg gaagtcctcg agtcggcggt gttgggctgg ccacgggggg cgaagaaccc 24180tcagttgctt gcctacgccg ccacgaagcc gggccgtccc ctgtcgactg aaaacgtgcg 24240ggagtacctg tcggcccgct tgccgacgta catggtgcca acgctctacc agttcctgcc 24300agcgctgccg cgcctgccca atggcaagct cgaccgcttc gggctgcccg atcacaagaa 24360agtcgaggtg ggcggcgtct acgtcgcccc gcagacgccg acggagaagg tcttggcggg 24420actgtgggcc gagtgcctca agcagggcga catgcccgcg ccgcaggttg gccgcttgca 24480caacttcttc gacctcggtg ggcactcgct gctcgccaat cgcgtactga tgcaggtgca 24540gcggcatttc ggggtcagcc tgggcatcag tgcgttgttc ggttctccgg tgctgaatga 24600cttcgcggcg gccatcgaca aggcgctcgg gaccgaggag ccaggcgagg aaggttcgag 24660cgacgcacga gaggtcgctg cgaaggacac ctccgtgctc gtgccgctct ccacccacgg 24720gacgctgccg agcctgttct gcgtccatcc ggtgggcggg caggtccatg cctaccgcga 24780gctcgcccag gcgatggaga agcacgccag catgtacgcg ctccagtcgg agggcgcccg 24840tgagttcgac acaatcgaga ccttggcgcg cttctacgcc gatgcgatcc gcggggctca 24900gcccgacggg agctaccgtc tcctcggatg gtcttctggt gggctcatca ccctggcgat 24960tgctcgcgag ctggagcacc agggctgcgc cgtggagtac gtgggcctcg tggattcaaa 25020gccaatcccg cggttggcgg gtgagcgcgg ctgggcgtcg ctgatcgcgg cgacgaacat 25080cctgggcgcg atgcgggggc gcggcttctc ggtcgccgag gtcgatgctg ccgggaagat 25140cctcgagtcg cgcggatgga cggaggagtc cttcgactcg gaggggcatg cggcgttgga 25200ggagttggct cggcacttcg gcatcaccgt cgcgcaagag tcatcggagt acctcctggc 25260ccggttcaag accacgaagt actacttgtc gctgttcgct ggcttcaagc cggcggcgct 25320cgggccggag acgtacctct atgaggcttc agagcgggtc ggagccacct cgaacgacga 25380cacgggcgag tggggggacg cgctggatcg caaggccctg cgggcgaaca tcgtgcaggt 25440gccaggcaat cactatactg tcctgcaggg agagaacgtg ctgcaactgg cggggcggat 25500cgccgaagcc ttgtctgcga tcgacaactc ggtggtaacg aggacgcgag cttcgtgacc 25560ctttcgccct cgggttcgcc aagaggcaac aaacgctgat tcaccggcaa gggaattccg 25620tgcagatgga caatcgagag atcgcaccca cccaatcggc gcgcacgcgt gatgcgtaca 25680cggcggtacc accagccaag gccgagtatc cgtcggacgt ctgtgtgcac caactgttcg 25740agttgcaggc ggacaggatt cccgacgccg ttgcggcgag ggcggggaac gagtccctga 25800cctaccggga gctgaacttc cgggcgaatc agctcgcccg gtaccttgtt gcgaaaggcg 25860tggtcccgcg aggctcggtg gccgtgctga tgaaccggac ccctgcgtgt ctggtctcac 25920tgctcgccat catcaaggcg ggcgcggcgt acgttccggt ggacgccgga ttgcccgcca 25980aacgggtgga ctacattctg acggacagcg gcgcgacctg cgtcctgacc gacagggaga 26040cgcggtcact cctcgacgag ccgcggtcgg cttcgacgct cgtcatcgac gtggatgatc 26100catccatcta ttcgggcgag accagcaacc tcgggctcgc tgtcgatccc gagcagcagg 26160tctactgcat ctacacctcg ggttcgacgg gccttcccaa aggcgtgatg gtccagcacc 26220gcgcgctgat gaactacgtc tggtgggcga agaagcagta cgtcaccgac gcggtcgaga 26280gttttgccct gtactcctcg ttgtcgttcg acctcacggt cacctccatc ttcgttccgc 26340tgatctccgg acgctgcatc gatgtgtacc cggacctggg cgaggacgtc cccgtcatca 26400accgggtact ggaggacaat aaggtcgatg tcgtgaagct cacgccggcc caccttgccc 26460tgctcaggaa cacggaccta tcgcaaagcc ggctgaaagt gctcatcctg ggaggagagg 26520acctccgagc ggagacggcg ggggacgtcc acaagcggct ggacggccgg gcggtgatct 26580acaacgagta cggccccacg gagaccgtcg tggggtgcat gattcaccgc tacgaccccg 26640cggtggatct gcacgggtcg gtgccgattg gagtgggcat cgacaacatg cggatctact 26700tgctcgacga ccgtcggcgt cccgtcaagc caggagaggt tggcgagatt tacatcggag 26760gcgacggtgt gaccctgggg tacaaggaca agcctcaagt cacggcggac cacttcatct 26820ccaatccgtt cgtggaaggg gagcggttgt acgccagtgg cgacctcggc cgggtgaatg 26880agcgcggcgc gctcgtcttc ctcggccgga aggatttgca gatcaagctg cgggggtacc 26940ggatcgagct gggcgagatc gagagcgccc ttctctccta tccggggatc aaggaatgca 27000tcgtcgattc gaccaagacc gcgcagagcc aggccgccgc tcagctcacc tactgcacca 27060agtgtggtct ggcgtcgagc ttcccgaata cgacgtactc cgccgagggg gtctgcaacc 27120actgcgaggc cttcgacaag taccgcagcg tcgtcgacga ctacttcagc acgatggatg 27180agctgcagtc gatcgtcacc gagatgaaga gcatccacaa ctcgaagtac gactgcatcg 27240tggcgctcag cggcggaaaa gacagcacgt atgcactctg ccggatgatc gaaaccggtg 27300cccgtgtatt ggccttcacg ttggataacg gctacatctc ggaggaggcg aagcagaaca 27360tcaaccgggt cgttgcccgg ctgggagtgg atcaccgcta tctctcgacc ggccacatga 27420aggagatctt cgtcgacagc ctgaagcgac acagcaatgt gtgcaacggc tgcttcaaga 27480ccatctacac gtttgcgatc aacctggcgc aggaggtcgg cgtcaagcac gtggtcatgg 27540ggttgtcaaa gggccaactg ttcgaaacgc gcctctcggc cttgttccgc acgtcgacct 27600tcgacaacgc cgccttcgag aagagcctcg tcgacgcgcg aaagatctac catcgcatcg 27660atgatgccgt gagccgcctg ctcgacacta cttgcgtcaa gaacgacaag gtcatcgaga 27720acatcaggtt cgtggacttc tatcgttatt gccacgccag ccgtcaggag atgtacgact 27780acatccagga gagagtcggg tgggccaggc cgattgacac cgggcggtcg acgaactgtc 27840tcctcaatga tgttggcatc tacgttcaca acaaggagcg caggtaccac aactactccc 27900tgccctacag ctgggacgtc cggatgggcc acatcagcag ggaagaggcg atgagagagc 27960tcgacgactc ggccgacatc gacgtcgaga gggtcgaggg catcatcaag gaccttggct 28020acgagctgaa cgaccaggtg gtgggctcgg cggaagccca gctggtcgcc tactatgtct 28080ccgcggagga gttccccgcg tccgacctgc ggcagttcct gtcggagatt ctgccggagt 28140acatggtacc caggtcgttc gtccagctgg acagcatccc gctgacgccc aatggcaagg 28200tcaatcgtca ggccctgccg aagcctgacc tgcttcggaa ggccggcacc gacggacaag 28260ccgcaccccg aacaccggtg gagaagcagt tggcggagct gtggaaggag gtgctgcagg 28320tcgacagtgt cgggatccac gacaacttct tcgagatggg cgggcactcg cttccggcgc 28380tcatgctgct ctacaagatc gacagtcagt tccataagac gatcagcatc caggagttct 28440cgaaggtccc caccatcagc gcgctcgcgg cgcatctcgg cagtgacacc gaagcggtgc 28500cgccagggct gggcgaggtc gtcgatcaga gcgcgcctgc atacagggga taacgtgcgc 28560ttcgtcactg tcaatggtga ggactcggca gtttgctcgg tgctggatcg cggactccag 28620ttcggagatg gcctgttcga gacgatgctg tgtgttggcg gtgcgccggt cgacttcccg 28680gaacactggg cgcggcttga tgagggctgc cgccggctgg gaatcgaatg cccggacatc 28740cggcgcgaag tgaccgctgc gatcgccagg tggggtgctc ccagggcggt cgccaagctc 28800gtcgtcactc ggggaagcac ggagcgggga taccggtgcg ccccttccgt ccggccgaac 28860tggatcctca ccatcacgga tgccccgaag tatccgctgg cccacgagga cagaggcgtg 28920gccgtcaaac tctgccgaac gctcgtctcg ctcgatgacc cacagctggc cgggttgaag 28980cacctcaacc ggttgcccca ggtgctcgcg aggagggagt gggacgacga gtaccacgat 29040ggcctgctga ccgaccacgg tggtcacctc gtcgagggtt gcacgagcaa cctgttcctc 29100gttgccgacg gagccttgag gacgcccgat ctgactgcgt gcggtgtgcg cggtatcgtg 29160cggcagaagg tcctcgacca ctcgaaggca atcgggatcc gctgcgaggt aaccaccctg 29220aagctacgag atctcgaaca cgcggacgag gtcttcctga cgaactctgt ctacgggatt 29280gtgccggttg gtagcgtcga tggtatgagg taccggatag gtccgacgac ggcgcgtttg 29340ctgaaagacc tttgccaggg tgtgtacttt tgaggctccg tggaggacgg tatgaccggt 29400aatttggata gcgcggcatg gcccgtaatc atcacgcctg gccagcagcc agcggcgctg 29460gaggattggg tctcagcgaa ccgtgacgga ctcgagcggc agttgaccga gtgtaaggcc 29520attctctttc gaggcttccg tagcaggaat ggcttcgaga gcattgccaa cagcttcttc 29580gaccggcgcc tcaactatac ctatcggtcg acgccccgta cggacctggg gcagaacctc 29640tacacggcga cggagtaccc gaagcagctg tcgattccgc agcattgcga gaacgcctac 29700cagcgcgact ggccgatgaa gctgctgttc cactgcgtgg agccggcgag caaaggcggc 29760cggacgccct tggccgacat gacgaaggta acggcgatga tccccgccga aatcaaggag 29820gagttcgcgc ggaagaaggt cgggtacgtg cggaactacc gtgctggagt ggatctgcct 29880tgggaagagg tgtttggaac gagcaacaag gcagaggttg agaagttctg cgtcgagaat 29940ggcatagagt accactggac cgagggtggc ttgaagacca tccaggtctg ccaggcgttc 30000gcttcgcatc cactcaccgg tgagacgatc tggttcaatc

aggcccacct gtttcacctt 30060tccgcattgg acccggcttc acagaagatg atgctttcct tcttcggtga gggcggcctc 30120ccgcgcaact cgtacttcgg agacgggtcg gccatcggga gcgacgtcct cgaccagatc 30180cgctccgctt acgaacgcaa caaggtctcg ttcgagtggc agaaggacga cgtgttgctg 30240atcgacaaca tgctggtttc tcacggacga gatccgttcg aaggcagccg gcgggtgctg 30300gtctgcatgg cggagccgta ttcggaagtc cagcggcggg gattcgccgg ggcaacgaac 30360tcagggcgct cgtaagggcc gggctcgatg gtggtgtcgc tttcgccgtt gcgcaaaaca 30420gtcggaggag tttcttgtcc cgaatttcga tgctgctgga gggagagctg gaggggtacg 30480aggacgggtt ggaactgccg tacgacttcc cgcggacgtc gaatagggcg tggagagcgg 30540cgacgttcca gcatagctac ccgcccgagc tggcgaggaa ggtggcggag ctcagccggg 30600agcagcagtc cacgctgttc atgagcctgg tggcgagcct ggcggtggtg ttgaaccggt 30660acacgggccg cgaggacgtg tgcatcggga cgacggtggc gggccgagcg caggtggggg 30720cgttggggga tctgagcggg tccaccgtcg acatcctccc gctgaggctg gacctgtcgg 30780gcgctccgag ccttcacgag gtgctgcgga ggacgaaggc ggtggtgctg gagggattcg 30840agcacgaggc gttgccgtgc cagattccct tggtgccggt ggtggtgagg caccagaact 30900tcccgatggc gcgtctggag ggctggagtg agggggtgga gctgaagaag ttcgagctgg 30960cgggggaaag gacgacggcg agcgagcagg actggcagtt cttcggggac gggtcctcgc 31020tggagctgag cctggagtac gcggcggagc tgttcagcga gaagacggtg aagaggatgg 31080tggagcacca ccagcgagtg ctggaggcgc tggtggaggg gctggaggag gtgcggctgc 31140acgaggtgcg gctgctgacg gaggaggagg aggggctgca cgggaggttg aacgacacgg 31200cgcgagagct ggaggagcgc tggagcctgg cggagacgtt cgagcgtcag gtgagggaga 31260caccggaggc ggtggcttgc gttggcgtgg aggtggcgac gggagggcac tcgcggccga 31320cataccggca gctgacatac cggcagctga atgcgcgagc caaccaggtg gcacggaggc 31380tgagggcact gggagtgggc gcggagacac gggtcgcggt cttgagcgac cgctcgccgg 31440agctgctggt ggcgatgctg gcgatattca aggccggggg ctgctacgtg ccggtggacc 31500cacagtaccc gggaagctac atcgagcaga tactggagga tgcggcaccg caggtggtgt 31560tgggcaagag gggaagagcg gacggggtgc gggtggatgt gtggctggag ctggatggag 31620cgcaacggct gacggacgag gcgctggcgg cacaggaaga gggagagctg gagggggcgg 31680agaggccgga gagccagcag ttggcgtgtt tgatgtacac gtcgggctcc acgggcagac 31740cgaagggggt gatggtgccg tacagccagt tgcacaactg gctggaggcg gggaaggagc 31800gctcgccgct cgagcgtggg gaagtaatgt tgcagaagac ggcaatcgcg ttcgcggtgt 31860cggtgaagga gctgctgagc ggattgctgg cgggagtggc gcaggtgatg gtgccggaga 31920cgctggtgaa ggacagcgtg gcgctggcgc aggagataga gcggtggcgg gtgacgagaa 31980tccacctggt gccatcgcac ctgggagcac tgctggaggg ggcgggggaa gaggcgaagg 32040ggctgaggtc gctgaagtac gtcataacgg cgggggaggc actggcgcag ggggtgaggg 32100aggaggcgag gaggaagctg ccgggggcgc agttgtggaa caactacggg tgcacggagc 32160tgaatgacgt gacgtaccac cccgcgagcg aggggggagg ggacacggta ttcgtgccaa 32220tcgggcggcc catcgcgaac acgcgggtgt acgtgttgga cgagcagttg aggcgggtgc 32280cggtgggggt gatgggggag ttgtatgtgg acagcgtggg gatggcgagg gggtattggg 32340gccagccagc gctgacggcg gagcgcttca tcgcgaaccc gtacgcgagc cagcccggag 32400cgaggttgta ccggacggga gacatggtga gggtgctggc ggacggctcg ctggagtacc 32460tggggaggcg agactacgag ataaaggtga gagggcaccg ggtggacgtg cgccaggtgg 32520agaaggtggc gaacgcgcat ccagccatcc gccaggcggt ggtgtcggga tggccgttgg 32580gctcgagcaa cgcgcagttg gtggcctacc tggtgccgca ggcgggcgcg acggtggggc 32640cgcggcaggt gagggattac ctggcggagt cgctgccggc gtacatggtg ccaacgctat 32700acacggtgtt ggaggagttg ccgcggctgc cgaacgggaa gctggaccgg ttgtcgctgc 32760cggagccgga cctgtcgagc agccgagagg agtacgtcgc gccccacggc gaggtcgagc 32820ggaagctggc ggaaatcttc ggcaacctcc tggggctcga acatgtcggc gtccacgaca 32880acttcttcag cctcggcggg cactccctcc tggctgccca gctgatttcg cgcatacggg 32940cgaccttccg cgtggaagtg gcgatggcca cggtgttcga gtcccccacg gtggagccgc 33000tcgcccgcca catcgaggag aagctcaagg acgagtctcg ggtccagctc tccaacgttg 33060tgccggtcga gcggacgcag gagattccgc tctcctacct gcaggagcgg ctgtggttcg 33120tgcacgagca catgaaggag cagcggacca gctataacat cacctggacg ttgcacttcg 33180ccggcaaggg tttctcggtg gaggcgttgc ggacggcctt cgatgagctg gtggccagac 33240acgagacact gcgcacgtgg ttccaggtgg gggaggggac agagcaggcc gtacaggtca 33300tcggggagcc ctggtcgatg gagctgccgc tgagagaggt ggcggggacg gaggtgacgg 33360cggcaatcaa tgagatgtcc cgacaggtct tcgacttgag agcgggacgg ttgctgacgg 33420cggcggtcct gagggtggcg gaggatgagc acatcctcgt cagcaacatc caccacatca 33480tcacggacgg ctggtcgttc ggggtgatgc tgcgggagct gagggagttg tacgaggcag 33540cggtgcgggg gaagagagcg gagctgccgc cgctgacggt gcagtacggc gactatgcgg 33600tgtggcagag gaagcaggac ctgagcgagc acctggcgta ctggaagggg aaggtggagg 33660agtacgagga cgggttggag ctgccgtacg acttcccgcg gacgtcgaat agggcgtgga 33720gagcggcgac gttccagtat agctacccac ccgagctggc gaggaaggtg gcggagctca 33780gccgggagca gcagtccacg ctgttcatga gcctggtggc gagcctggcg gtggtgttga 33840accggtacac gggccgccag gacgtgtgca tcgggacgac ggtggcgggc cgagcgcagg 33900tggagctgga gagcctcatc gggttcttca tcaacatcct cccgctgagg ctggacctgt 33960cgggcgctcc gagccttcac gaggtgctgc ggaggacgaa ggcggtggtg ctggagggat 34020tcgagcacca ggagttgccg ttcgagcacc tgctgaaggc gctgaggcgg cagcgggaca 34080gcagccagat tcccttggtg ccagtggtgg tgaggcacca gaacttcccg atggcgcgtc 34140tggagggctg gagtgagggg gtggagctga agaagttcga gctggcgggg gaaaggacga 34200cggcgagcga gcaggactgg cagttcttcg gggacgggtc ctcgctggag ctgagcctgg 34260agtacgcggc ggagctgttc agcgagaaga cggtgaggag gatggtggag caccaccagc 34320gagtgctgga ggcgctggtg gaggggctgg aggaggggct gcacgaggtg cggctgctga 34380cggaggagga ggaggggctg cacgggaggt tgaacgacac ggcgcgagag ctggaggagc 34440gctggagcct ggcggagacg ttcgagcgtc aggtgaggga gacaccggag gcggtggctt 34500gcgttggcgt ggaggtggcg acgggagggc actcgcggcc gacataccgg cagctgacat 34560accggcagct gaatgcgcga gccaaccagg tggcacggag gctgagggca ctgggagtgg 34620gcgcggagac acgggtcgcg gtcttgagcg accgctcgcc ggagctgctg gtggcgatgc 34680tggcgatatt caaggccggg ggctgctacg tgccggtgga cccacagtac ccgggacact 34740acatcgagca gatattggag gatgcggcac cgcaggtggt gttgggcaag aggggaagag 34800cggacggggt gcgggtggat gtgtggttgg agctggatgg agcgcaacgg ctgacggacg 34860aggcgctggc ggcacaggaa gagggggagc tggagggggc ggagaggccg gagagccagc 34920agttggcgtg tttgatgtac acgtcgggct ccacgggcag gccgaagggg gtgatggtgc 34980cgtacagcca gttgcacaac tggctggagg cggggaagga gcgctcgccg ctcgagcgtg 35040gggaagtaat gttgcagaag acggcaatcg cgttcgcggt gtcggtgaag gagctgctga 35100gcggattgct ggcgggagtg gcgcaggtga tggtgccgga gacgctggtg aaggacagcg 35160tggcgctggc gcaggagata gagcggtggc gggtgacgag aatccacctg gtgccatcgc 35220acctgggagc actgctggag ggggcggggg aagaggcgaa ggggctgagg tcgctgaagt 35280acgtcataac ggcgggggag gcactggcgc agggggtgag ggaggaggcg aggaggaagc 35340tgccgggggc gcagttgtgg aacaactacg ggtgcacgga gctgaatgac gtgacgtacc 35400accccgcgag cgagggggga ggggacacgg tattcgtgcc aatcgggcgg cccatcgcga 35460acacgcgggt gtacgtgttg gacgagcagt tgaggcgggt gccggtgggg gtgatggggg 35520agttgtatgt ggacagcgtg gggatggcga gggggtattg gggccagcca gcgctgacgg 35580cggagcgctt catcgcgaac ccgtacgcga gccagcccgg agcgaggttg taccggacgg 35640gagacatggt gagggtgctg gcggacggct cgctggagta cctggggagg cgagactacg 35700agataaaggt gagagggcac cgggtggacg tgcgccaggt ggagaaggtg gcgaacgcgc 35760atccagccat ccgccaggcg gtggtgtcgg gatggccgtt gggctcgagc aacgcgcagt 35820tggtggccta cctggtgccg caggcgggcg cgacggtggg gccgcggcag gtgagggatt 35880acctggcgga gtcgctgcca gcgtacatgg tgccaacgct atacacggtg ttggaggagt 35940tgccgcggtt gccgaacggg aagctggacc ggctgtcgtt gccggagccg gacctgtcga 36000gcagccgaga ggagtacgtc gcgccccacg gcgaggtcga gcggaagctg gcggaaatct 36060tcggcaacct cctggggctc gaacatgtcg gcgtccacga caacttcttc agcctcggcg 36120ggcactccct cctggctgcc caggtggtct caaggattgg caaggagctt ggcactcaga 36180tctcgatcgc cgatctgttt caaaggccca cgattgaaca gctctgtgag ctgattggag 36240gactggacga tcagacccag agggagctcg ccctcgctcc gtcggggaac accgaggcgg 36300tgctctcgtt cgcgcaagag cgcatgtggt tcctgcacaa cttcgtcaag ggcatgccct 36360acaacacgcc agggctcgac cacctgacgg gtgagctcga tgtcgcggcg ctagaaaagg 36420ccatccgcgc ggtcatccgt cgccacgagc ccctgcggac gaatttcgtc gagaaggacg 36480gggtgctgtc ccagttggtg gggacggaag aacgcttccg cctgaccgtg actcccatcc 36540gcgacgagag cgaggtcgcg cggctcatgg aagccgtgat ccaaacgcca gtcgatctgg 36600agcgggagtt gatgatccgg gcttatctct accgggtcga cccgcggaat cactacctgt 36660tcaccaccat ccatcacatc gccttcgatg gctggtcgac atcgatcttc taccgtgagc 36720tggctgcgta ctacgccgcg tttctccggc gcgaagacag tccgctgccc gcgctggaaa 36780tctcctatca ggactatgcc cgctgggagc gggcccattt ccaggacgag gtgttggcgg 36840aaaaactgag gtactggcgg cagcggctgt cgggcgctcg gcccctcgta cttccgacca 36900cctaccatcg gccgcccatc cagagtttcg ctggcgccgt cgtgaacttc gagatcgatc 36960gctccatcac cgagcggttg aagacgctgt tcgccgagtc gggcaccacg atgtacatgg 37020tgttgctcgg cgcgttctcc gtggtgctgc agcgctactc cggtcaggac gacatctgca 37080tcggctcccc cgtggcgaac cggggtcaca tccagacaga agggctgatc ggcttgttcg 37140tcaacaccct ggtgatgagg gtggatgccg ccgggaatcc ccgtttcatc gacctgctgg 37200cgcgcattca acggacagcc atcgatgctt acgcgaacca agaagtgccc ttcgagaaga 37260tcgtggacga cctgcaggtc gcgagagaca cggcccgatc tccgctcgtg caggtcattc 37320tcaacttcca caacacgcct cctcaatccg agctggaact gcagggggtg accctcacgc 37380ggatgccggt gcacaacggc acggccaagt tcgagctctc catcgacgtc gcggagacga 37440gcgccggtct aacgggattc gtggagtacg cgacggatct gttcagcgag aacttcatcc 37500ggcggatgat cggccacctc gaggtggtgc tggacgcggt cggtcgcgat ccgcgggcgc 37560ctatccatga gttgccactg ctcacccggc aggatcagtt ggacctactg tcgcggagcg 37620gccacacagc ccccgcggtg gaacacgtcg agttgatccc tcatacgttc gagcggcgcg 37680tccaggagag ccctcaagcg attgccctgg tctgcggtga cgagcgcgtc acctactccg 37740cgctcaaccg ccgggccagc cagattgccc gccgcctgcg cgccgcaggg atcggaccgg 37800acaccctcgt cgggctttgc gcggggcgct ccatcgagct ggtctgcggc gtccttggca 37860tcttgaaggc gggcggtgcg tacgtgccaa tcgaccccac ctcctcgccc gaggtgatct 37920acgacgtcct gtatgagtcg aaggtgcggc atctgttgac cgagtcgcgc ctggtcgggg 37980gactgccggt cgatgaccag gaaatcctgc tcctggatac ccccgcggac ggtgaagggg 38040acaaggctgt tgctgaccgg gaggagccac ctgaccttgg cgaggtcagc ctcactcccg 38100agtgcttggc gtacgtcaac ttcacctccg actccggtgg ggcgccgagg ggcatcgccg 38160tccgccatgg ggcgctggct cgccggatgg ccgccggcca cgcacagtac ctggccaatt 38220ccgccgtacg tttcctgctg aaggcgccgc tcacgttcga cctggcggtc gcggagctgt 38280tccagtggat cgtcagcggc ggcagcctga gcatcctcga ccccaatgcc gaccgcgacg 38340cctctgcctt cctcgcgcag gtgcgcaggg actcgattgg cgtcctctac tgcgtcccct 38400ccgaactctc gacgctggtg agccacctgg agcgcgagcg tgaaagggtg catgagctga 38460acaccctccg gttcatcttc tgcggcgggg ataccctggc ggttaccgtc gtcgagcgtc 38520tcggggtact ggtgcgggcc ggccagctcc cgctgcggct ggtcaacgtc tatgggacga 38580aggagacggg aatcggcgcg ggttgcttcg agtgcgcgct ggacgcgaac gaccccagcg 38640ccgaactccc gccgggacgg ctctcgcatg agcggatgcc catcggcggg cccgcccaga 38700acctgtggtt ctatgtggtg caacccaacg gtggcctggc tccgttgggc atcccggggg 38760aactgtacgt cggcggcgcg caactcgccg acgcccgttt cggcgacgag cccacggcga 38820cccaccccgg cttcgtcccg aaccccttcc ggagcggagc ggagaaggac tggctgtaca 38880agacggggga cctcgtccgc tggctgcctc aggggccgct cgagctggtc agcgcggctc 38940gggagcgcga cggaggcggg gaccaccggc tcgatcgcgg cttcatcgag gcgcgcatgc 39000gtcgtgtggc cattgtccgc gacgccgtgg tggcctacgt cccggatcgc caggacaggg 39060cccggttggt ggcctacgtc gttctgaagg agtcgcccgc ggcggacgtg gagccgcgcg 39120aagggcggga aacgctgaag gctcggatca gcgccgaact tgggagcacg ttgccggagt 39180acatgcttcc ggccgcctac gtgttcatgg acagcctgcc gttgacggct tacgggagga 39240tcgaccggaa agccctgccc gagccggagg atgaccgcca cggtggtagt gcgatcgcct 39300acgtggcccc gcgcgggccc acggagaagg cactggcgca catttggcag caagtgctga 39360aacgccccca ggtcggactg cgagacaact tctttgagct gggcgggcac tcagtggcgg 39420ccatccaact ggtgtccgtg agccggaagc acctggaggt cgaagtcccc ctcagcctga 39480tcttcgaatc gccggtcctg gaggcgatgg cgcgcggcat cgaagcgctg caacagcagg 39540gccgcagcgg cgcggtgtcg tcgatccatc gggtggagcg gaccggaccg ctgcctctgg 39600cgtacgtgca ggagaggctg tggttcgtgc acgagcacat gaaggagcag cggaccagct 39660ataacatcac ctggacgttg cacttcgccg gcaagggttt ctcggtggag gcgttgcgga 39720cggccttcga tgagctggtg gccagacacg agacactgcg cacgtggttc caggtggggg 39780aggggacaga gcaggccgta caggtcatcg gggagccctg gtcgatggag ctgccgctga 39840gagaggtggc ggggacggag gtgacggcgg caatcaatga gatgtcccgg caggtcttcg 39900acttgagagc gggacggttg ctgacggcgg cggtcctgag ggtggcggag gatgagcaca 39960tcctcgtcag caacatccac cacatcatca cggacggctg gtcgttcggg gtgatgctgc 40020gggagctgag ggagttgtac gaggccgcgg tgcgggggga gcgagcggag ctgccgccgc 40080tgacggtgca gtacggcgac tatgcggtat ggcagaggaa gcaggacctg agcgagcacc 40140tggcgtactg gaaggggaag gtggaggggg acgaggacgg gttggagctg ccgtacgact 40200tcccgcggac gtcgaatagg gcgtggagag cggcgacgtt ccagtatagc taccaccccg 40260agctggcgag gaaggtggcg gagctcagcc gggagcagca gtccacgctg ttcatgagcc 40320tggtggcgag cctggcggtg gtgttgaacc ggtacacggg ccgcgaggac ctgtgcatcg 40380ggacgacggt ggcgggccga gcgcaggtgg aactggagag cctcatcggg ttcttcatca 40440acatcctccc gctgaggctg gacctgtcgg gcgctccgag ccttcacgag gtgctgcgga 40500ggacgaaggt ggtggtgctg gagggattcg agcaccagga gttgccgttc gagcacctgc 40560tgaaggcgct gaggcggcag cgggacagca gccagattcc cttggtgcca gtggtggtga 40620ggcaccagaa cttcccgatg gcgcgtctgg agggctggag tgagggggtg gagctgaaga 40680agttcgagct ggcgggggaa aggacgacgg cgagcgagca ggactggcag ttcttcgggg 40740acgggtcctc gctggagctg agcctggagt acgcggcgga gctgttcagc gagaagacgg 40800tgaggaggat ggtggagcac caccaacgag tgctggaggc gctggtggag gggctggagg 40860aggggctgca cgaagtgcgg ctgctgacgg aggaggagga ggggctgcac gggaggttga 40920acgacacggc gcgagagctg gaggagcgct ggagcctggc ggagacgttc gagcgtcagg 40980tgagggagac accggaggcg gtggcttgcg ttggcgtgga ggtggcgacg ggagggcact 41040cgcggccgac ataccggcag ctgacatacc ggcagctgaa tgcgcgagcc aaccaggtgg 41100cacggaggct gagggcactg ggagtgggcg cggagacacg ggtcgcggtc ttgagcgacc 41160gctcgccgga gctgctggtg gcgatgctgg cgatattcaa ggccgggggc tgctacgtgc 41220cggtggaccc acagtacccg ggaagctaca tcgagcagat actggaggat gcggcaccgc 41280aggtggtgtt gggcaagagg ggaagagcgg acggggtgcg ggtggatgtg tggctggagc 41340tggatggagc gcaacggctg acggacgagg cgctggcggc acaggaagag ggagagctgg 41400agggggcgga gaggccggag agccagcagt tggcgtgttt gatgtacacg tcgggctcca 41460cgggcagacc gaagggggtg atggtgccgt acagccagtt gcacaactgg ctggaggcgg 41520ggaaggagcg ctcgccgctc gagcgtgggg aagtaatgtt gcagaagacg gcaatcgcgt 41580tcgcggtgtc ggtgaaggag ctgctgagcg gattgctggc gggagtggcg caggtgatgg 41640tgccggagac gctggtgaag gacagcgtgg cgctggcgca ggagatagag cggtggcggg 41700tgacgagaat ccacctggtg ccatcgcacc tgggagcact gctggagggg gcgggggaag 41760aggcgaaggg gctgaggtcg ctgaagtacg tcataacggc gggggaggca ctggcgcagg 41820gggtgaggga ggaggcgagg aggaagctgc cgggggcgca gttgtggaac aactacgggt 41880gcacggagct gaatgacgtg acgtaccacc ccgcgagcga ggggggaggg gacacggtat 41940tcgtgccaat cgggcggccc atcgcgaaca cgcgggtgta cgtgttggac gagcagttga 42000ggcgggtgcc ggtgggggtg atgggggagt tgtatgtgga cagcgtgggg atggcgaggg 42060ggtattgggg ccagccagcg ctgacggcgg agcgcttcat cgcgaacccg tacgcgagcc 42120agcccggagc gaggttgtac cggacgggag acatggtgag ggtgctggcg gacggctcgc 42180tggagtacct ggggaggcga gactacgaga taaaggtgag agggcaccgg gtggacgtgc 42240gccaggtgga gaaggtggcg aacgcgcatc cagccatccg ccaggcggtg gtgtcgggat 42300ggccgttggg ctcgagcaac gcgcagttgg tggcctacct ggtgccgcag gcgggcgcga 42360cggtggggcc gcggcaggtg agggattacc tggcggagtc gctgccagcg tacatggtgc 42420caacgctata cacggtgttg gaggagttgc cgcggttgcc gaacgggaag ctggaccggc 42480tgtcgttgcc ggagccggac ctgtcgagca gccgagagga gtacgtcgcg ccccacggcg 42540aggtcgagcg gaagctggcg gaaatcttcg gcaacctcct ggggctcgaa catgtcggcg 42600tccacgacaa cttcttcaac ctcggcgggc actccctcct ggcttcccag ctgatttcgc 42660gcatacgggc gaccttccgc gtggaagtgg cgatggccac ggtgttcgag tcccccacgg 42720tggagccgct cgcccgccac atcgaggaga agctcaagga cgagtctcgg gtccagctct 42780ccaacgttgt gccggtcgag cggacgcagg agcttccgct ctcctacctg caggagaggc 42840tgtggttcgt gcacgagcac atgaaggagc agcggaccag ctataacgga acgatcgggc 42900tccggcttcg gggtcctctg tcaatccccg cgctcagggc caccttccac gatctggtcg 42960cccgtcacga gagcctgcgc accgtcttcc gggtccccga aggccgcacc acgccggtgc 43020aggtgattct tgattcgatg gatctggaca tcccggtccg cgatgcaacc gaggccgaca 43080tcatcccggg catggatgag ctggcgggtc acatctacga catggagaag ggtccgctgt 43140tcatggttcg cctcttgcgg ctggccgagg actcccacgt tctcctgatg gggatgcatc 43200acatcgtcta cgacgcatgg tcacagttca atgtgatgag tcgcgatatc aacctgctct 43260actcggcgca cgtgacggga atcgaggcac ggcttcccgc gcttcccatc cagtacgccg 43320acttctcggt gtggcagcgc cagcaggact tccgtcacca cctggactac tggaagtcca 43380cactgggcga ctaccgggat gatctcgagc tgccgtatga ctacccgcgg ccgcccagcc 43440ggacatggca cgcgacccga ttcaccttcc ggtatccgga tgcactggcg cgcgcgttcg 43500ccaggttcaa tcagtcccat cagtcgacgc tgttcatggg gctgctgacc agcttcgcga 43560tcgtgctcag gcactacacc ggccggaacg acatctgcat cggaacgaca acggcggggc 43620gcgcccagtt ggagttggag aacctcgttg gcttcttcat caacatcctg ccgttgcgca 43680tcaatctggc gggtgacccc gacatcagcg agctcatgaa tcgagcgaag aagagcgtct 43740tgggcgcctt cgagcatcaa gctctgccgt tcgagcgtct cctcagtgcc ctcaacaaac 43800agcgtgacag cagccatatc ccgctggttc ccgtcatgtt gcgccaccag aacttcccga 43860cggcgatgac cggcaagtgg gccgatggtg tggacatgga ggtcatcgag cgcgacgagc 43920gcacgacgcc caacgagctg gacctccagt tctttggcga cgacacctac ttgcatgctg 43980tcgtcgagtt ccccgcgcag ctcttctccg aggtgaccgt ccggcgtctg atgcagcgtc 44040accagaaggt catagagttc atgtgcgcga cgctgggggc tcggtgaacg tgctcgctag 44100gcattccacc ggctcccacg acgagccggt ggccggcgac gtcgaactcc gcgtcggtgg 44160ccccggtgtg ccggacgctc attccagcga gagcgttgaa gtgctggcgc ggtggctgcg 44220gaccgccgag gagaagtacc cgggcgtcat gggcccgatc cgccaggagg gcccctggtt 44280cgccatcccg ttgacctgcc cgcgcggtgc ccggtcggcg cgattcggcc tctggctcgg 44340ggaactagac cgtcagggac agctcctcca catggtcgcc tcgtatctgg cggccgtgca 44400ccacgtgctg gtcagcgttc gcgagcccag cgccaacgtg ctggaggtgc tggtctctga 44460ctcaacaacg ccatctgggc tcaaccggtt cctgaacggc ctggactccg tcctggagat 44520cctggctcac gggcgcagcg acctcctcct gcagcatctc acgggccggc tgccccccga 44580cgagatgccc ttcgtggagg accgtgagga gcgcgaggag cacccggcca ccgatgtcga 44640ggccgatgcg gttgtctccg tcctgttcca accagttgac ttcccgagcc tggcgaggct 44700ggacgcgagc ctcctcgcgt atgacgacga ggatgccggc gcggtgggcc gggtcctggg 44760ggagctcctc cagccgttcc tgctcgactc cgccaggatg accgtggggc gaaaggcggt 44820gagggtcgat cacatctgcc tgcctggctt gttgcgagcc gacagcagag cggcggagga 44880gtcggttctc gcgcccgcct tgcgcttggc gacgaagccc ggtcggcatt tcgtcgcgtt 44940gtgccggaac accgccctgc ggctgggaga caggctgccc cacttgctcg cgcagggccc 45000gctctgcgat ggcgcgtcaa cggcgctcct tctgttgcaa cgggtgctgg acacgcttat 45060cgggagcggg ggactgaagg accatcgcct cacgctcgag

ctggttggcg ccgatccacg 45120gaccgaggcc gcgtttcggg cccggactcc gtggctggtg gcggaacggg ccgcttcggc 45180tgcatcaacg gatgcaccgc gcgtcgacgt cgtcgtcctg ttcccggcgg cacggccgag 45240cgcgctcgag ctgcggccag acagcgtcgt catcgacctt tttggcacct ggagcctgag 45300accgcgaccc gaggttctgg cgaagaacat cgtctacgtg cgaggggcct cggtccgtct 45360cgccggagag gccgtcgtct cgactccctc cttcgcgccg gatcgagtgg agccggcgct 45420cctcgaggcg cttctccggg aactcgacgc ggaggccagt agtgacgggc tcgcccacga 45480gcaccgcctt gagattggcg gcattcgcgg gttctggggt gagatccgcc gggcggagtg 45540ggacgccttt cattcgcgcc gccgggggga gctggcgagg tttcaggtgt cggggcaggt 45600gaccgccgcc aatccggggc tcgccagcct gcccgatggg gcgacgaaca tctgcgaata 45660catcttccgg gaagcgcacc ttcgctccgg ctcgtgcctc gtcgatcccc agagcggcca 45720gtccgcgacc tacgccgagc tgcggcgact ggcggcagcg tacgcgcggc ggtttcgggc 45780attggggctc cgccagggag acgtcgtggc gctcgcggcg ccggatggga tttcgtccgt 45840cgcggtgatg ctgggttgct tcctgggcgg gtgggtcttc gcgccgctca accacaccgc 45900ctcggccgtg aacttcgagg cgatgttgag ttccgccagt ccccgcctgg tgctccatgc 45960cgcgtcgacg gtcgcccgcc atctgccggt cctgagcacg cggcgatgcg cggaactcgc 46020gtccttcctg ccgccggacg cgctggacgg cgtggagggg gacgtcaccc ccctgccagt 46080gtcaccggaa gcccccgccg tcatgctgtt cacctcgggc tccacggggg ggccgaaggc 46140agtgacgcac acccacgccg acttcatcac ctgcagtcgc aactacgcac cctatgtcgt 46200cgaactcaga ccggacgatc gtgtctatac gccgtccccg accttcttcg cctatggatt 46260gaacaacttg ctgctgtccc tcagcgcggg ggccacgcac gtgatctcgg tccctcgcaa 46320cggcgggatg ggtgtcgcgg agatcctcgc gcggaacgaa gtaaccgtgc tcttcgcggt 46380tcccgccgtc tataagctga tcatctcgaa gaacgaccgg ggcctgcggt tgccgaagtt 46440gagattgtgc atctctgctg gcgagaagct gccattgaag ctgtatcggg aggcgcgaag 46500cttcttcagc gtgaacgtac tggacgggat cgggtgcacc gaagccatct cgacgttcat 46560ctcgaaccgg gagagttatg tcgcgcccgg gtgcacgggc gtggtggtcc cggggttcga 46620ggtcaagctg gtgaacccgc gtggcgagct ctgccgggtg ggagaggtgg gcgtcctctg 46680ggttcggggt ggggcgctga cccggggcta cgtgaacgcc cccgatctga cagagaagca 46740cttcgtggac ggctggttca acacccagga catgttcttc atggatgccg agtaccggct 46800ctacaacgtg ggcagggctg gttcggtcat caagatcaat tcctgctggt tctcaccgga 46860gatgatggag tcggtcctgc aatcccatcc agcggtgaag gagtgtgccg tctgcgtcgt 46920cattgacgac tacgggttgc caaggccgaa ggcattcatc gtcaccggcg agcatgagcg 46980ctccgagccg gagctcgagc acttgtgggc cgagttgcgc gttctgtcga aagagaagct 47040tgggaaggac cactacccgc atctgttcgc gaccatcaaa acgcttcccc ggacctccag 47100cgggaagctg atgcggtccg aactcgcgaa gctgctcacc agcgggcccc catgaatcca 47160aagttcctcg gaggcctggg ggcaggggtg tgcatcgcct ctttgttcca gacggtcatg 47220cggaccgtgc cgctcaagga cgccggctcc ggcgacaggg cttgttagac ttgctgccaa 47280tgtcgactcg caccaagaac ttcaatgtca tgggaatcga ctggatgcct tcctccgcgg 47340agttcaagcg acgcgtcccg cggacccagc gggcggcaga ggccgtgctc gccggacgga 47400gatgcttgat ggatatcctg gaccgcgggg atcctcgcct cttcgtcatc gtggggccct 47460gctccattca cgatccggtg gcggggctgg actatgcgaa gcggctgcgg aaactcgctg 47520atgaggttcg cgagaccctg ttcgtggtga tgcgcgtgta cttcgaaaag ccgcgcacca 47580ccacgggttg gaaaggcttc atcaatgacc cgcgcatgga tggctctttc cacatcgagg 47640agggcatgga gcggggacgt cgcttcctgc tcgacgtggc cgaggagggt ctacccgctg 47700ccaccgaggc gctggacccc atcgcgtcgc agtactacgg cgacctcatt tcctggacgg 47760ccattggcgc gcgcaccgcc gagtcgcaga cgcaccgcga gatggcgtcc ggcctttcca 47820ccccagtagg cttcaagaac ggcacggacg gctcgctgga tgcggccgtc aatggcatca 47880tctccgcttc acacccgcac agcttcctgg gggtgagcga aaatggcgcg tgcgccatca 47940tccgcacgcg cggcaacacc tacggccacc tggtgctgcg cggcggtggt gggcggccca 48000actacgacgc cgtgtcggtg gcgcttgcgg agaaggcgct tgccaaggcc aggctaccca 48060ccaacatcgt ggtggactgc tctcacgcca actcctggaa gaatcccgag ctccagccgc 48120tggtgatgcg ggacgtggtg caccagattc gcgagggcaa ccgctcggtg gtgggcctga 48180tgatcgagag cttcatcgag gcaggcaacc agcccatccc ggcggacctg tcgcaactgc 48240gctacggctg ctcggtcact gatgcatgtg tggactggaa gaccaccgag aagatgctgt 48300acagcgcgca cgaggagctg ctccacattc tgccccgtag caaggtggct tgacgcccga 48360gggttgaggt gtggttgctt cccagcaggg gttccccggc caggtggcgg cggcgcacgg 48420cctggtacac gcagcggcgt tgagctttac ggagagctcg ggcgccggac tgggctgctg 48480gcgcctgatt caaaggtcga tgcgcagacc caccccggcc tggatggtag gtggagcgac 48540ggcgatggga ggcgtcacct gctcgcccat gcgcagggcc ggcaggttga gcgcgaagcg 48600gaactcgcca ccccgctggc catagttggc ggcgatgaag gcctcgatgc tgagatagcg 48660cagggcccgg tgcgtcacgt ccaaccgtgt gatgaaagaa cggtcagaga ggttgcccag 48720gttggacagg atgaagttgg tgttgtccca ggatcccgga ccggacagga acgcgtagac 48780ggcggcgtag tgccggccga ggtagaaggg ctgatactgg ccctggagga tgaggtaggg 48840gtaggccagc gagccgggat agcccatcga attgtagaag tactcgacgc ccacggtggc 48900ggtgtcgctc tccgagtagg cgaacgtcca ggtcgcgccg ccgctcacct gcggcgtgta 48960accctcgggg tagtacgcct ctatggggag cgcgcccagg tcgggaggca tgccgccatt 49020gccctggaac tgaccgagca ggtctccgag ggagacacct tggggcatgc ggaacatggg 49080cgcatccgag cccttcttga gggcgagttc gccgtagatg tcgatggggc cgagcccgga 49140ggagaggtcg agcccgaagc ggggcttgcg gccgtgttgg agcacggcat cgacgccgag 49200ttccgtatgg ccgagcacca cctcggcgcg agcagcgccc ccgacgcggc cgagcgtatt 49260ggccgggccg gcgttgtcga gcaggccgag gacgtagaag ttccagcctt tcgcctccca 49320gggcatgtgc atcttgagca tggtcgcgcc ggtgcgcgtg tccaagaggg cgagcggatc 49380cctgcgctgg ggcgagagga agtcggtggg gttccagaag cgcgaggtgc cccacttcac 49440gtgctgcttg ccgacggtga tgaagagctt gtggtccagg tcgaagcgca gccaggcctg 49500atccaacagc acgaccggat ccgcagcgac gttggaggtg gacgtgctcg tggggacgat 49560gccgagggag cccgccttgc gggtcggatc gaaggtgagc cgtccgagca cgaagccgcg 49620cagccgctcg gtggggcggg catcgaagta gccgtccacc agcatggggg cggagaaggt 49680ggtgttgctg aaggacaccc cttcgttggc ctgtgagtag gcgcgcaggt agaagcggcc 49740gccgatcttc agcggatcct cgacggcctc ctcggtgtcg aaggcgttgg tggccgacgg 49800gccaccgagc gcctgcgcat cccggtcctg gggcgtggcg gagggcttgt cgggggccgc 49860ggtggccgcc gcgctctgtg cggccggggt ggacgcgggg gtgtcaccga agagggaact 49920ctcgtcgggg cggggcgcat cggccggagc gggcttcgtc tctggagtgt cgccgccgaa 49980gaggtcgccc tcgctgggac gctcctgggc gagcgcgggc agcgcggcga gggacgcggc 50040cagggccagg gaggtgcgcg tgctcatcgg cttttgctct cgaaccaggc cttggtgaag 50100atgttctcct cgagcgagcg caggtccacg ctcttcacga cgatgacggt ggagttggtc 50160ttctccacct cgtcatagaa gcgcatctcc tgcgggtacc agacgtcggc cttcttggac 50220tcgctgaaga gcttcatcca cttggggaag taggaggtgc gcatcaggcg gccggaaagg 50280gcgaactcct ggcgcttgag gatgttgttc gtgtccttct ccacccacag gtgtaccacg 50340gggtaggcga cgtccacgtt cggcttggcg gtgaggacga gcttccaggt ggtgaacttg 50400ccgagtttct cctcgccctc gaacttgcca tcgagctcct cggccaggcg cgactcgtcg 50460aagtcggcgc ggcggctgtc ggtgccggcg atacgctcac gctcggtgcg ccggtcccac 50520ttgccggtgt tcgggtcgta gctccagagg ttcttgtcca gccgcaggta gcccttgccg 50580gcctcgccct tgggcttggt catgaggatc atcagctgat ccttctcgtc gcgccggtag 50640acgacggcct cgcgcacgac gtctgttttg tccttctcct tctgctcgat atacaccagc 50700gacttgtagt cgccgccgtt gcgctggcgg ttgtcgagcg tctccaggag cttcttgatc 50760tcggcggggt cggtgaggtc cgcgcgagcg gtcggagcgg ccagcagcag cgcggcgaac 50820agggcgccga ggaggttgcg cagggtcatg gtcgtcaccc gatgtggtgc atcgccgtga 50880tgggcttcat ccgcgcggcg aggaaagagg gaatgagcga gatgaaggtg gtgcacagcg 50940tgatgaacgc gatggctctc atcaccgatc cgggcttcac gatgaggtgg agcttgtcgg 51000agaggatgaa gagctggacg ggcacgggca cggaggggtc cacggcgttg atgagcaggc 51060acacgcccat gcccacgagg gcgcccaccg tggtgccgag cagtccgagc acgagcgcct 51120ccaggaggaa catcaccagc acgtaccagc gctgcatgcc gatggcgcgc agggtgccga 51180tttcccgggt gcgctcgcgg atggcgatcc acagggtgtt catgatgccc accgcgatga 51240tgatgagcag cacgaagatg aggacgccgg tgagggcgtc catcgccgac acggtccact 51300tgatgaagga gatctcgtcc tcccagttgg tgatgtccag cttctgcccc gtccaggcct 51360cgcggttgac ggtctggaac ttcatgaaga aggcccgggg gtcatgctcc agcacctgat 51420aacccaactc gggcagacgc ttgtagaggc gcgcctgcac gctggggatg gcgctcatgt 51480ccttgaggtg gagcatgagg gcgccggtgg agtcctcgcg cagctggtag agggcgcgca 51540gggtggcgtt gggcaccaag acgttgaagg aactcagcat gcccacgttg gcggcgatgg 51600ccaccacacg tacgtccacg gtgttgctga tcccgcgcat ggtggacgcg gagagggtga 51660cgctgtcacc caccttgacc tcgagccgct tcgcctgctc gtcgaagagg aggagggtat 51720tgggttgcgc caggtcttcc aaccgaccct cccgcaactg cagcaccttg cggatgccag 51780tctcggccgc tacgtcgatg ccgccgattc ccgtctgcac ggagccagac tcgctcacca 51840acttgaccca gccgcgcgtg cgctggacgg agaagtccag ctcggggact tccttgcgca 51900gctgctcgag cagcttgggg taggaggtca ccacgggcgc agactggccg gccgtcacct 51960tgtagaagcc agccacgttg acgtgcccgg tcaccagcgt ggtggcggac cggagcatcg 52020tgtccttcat gccgttggac aggcccatga ggatgacgag cagggccgtg acaccggcga 52080tggcgccgcc cagcagaagc gtacggcgct tgtgggtgcc caggttgcgc actgcgatga 52140ggaggagctg ttgcatggct tcactcgtcc gtctgcatcg cctggagagg cgagacccgg 52200gtcgcgaggt acgcggggta gaaggtggag agggcggaca ccacgagcac gatgacgaag 52260gccgccacga ggtttgacag gtggagactg gggaagaggc ggggtcccga gaagaagaag 52320tagagcgcct cgttgccggc ggggatgccc acgtggccga gcatgttcat gatggcacct 52380cccatggcgg ctcccagcac gccgaagacg agccccagca ccaccgtttc caccagcacc 52440atgctcagca cgaacgagcg ctgcgcgccg atggcccgca gggtgcccac ctcgcgcacc 52500cgctgcagcg tggccatcat catcgcgttg ttgatgatga cgagcgccac cacgaagatg 52560atgaagacgg cgaagtagag caccagcttg gcgaccagga cgaactggcc gatcgtgccg 52620gaggccttct gccaggagat gatccgcaag ggtagtttcg cgtcgtccgc cgatttccgc 52680agctcggcca gggtctgctc cagcttctcc ggatgcttca gcagaaccgc ggtgctgagc 52740accacgccgc tttcgatttc ctgctgcgtg tacacccggg aggcgagctc ctcgcggtgc 52800agcttctggg cgagcccgtc gagttgcttg tcctcgtcga tctggccggc ggtcccctcg 52860gccaccagcg aggcgctgcc ctgctcgcca aagagcgccg tctcggcgtc ctcgcgcttc 52920acctgctgca ccccgctggc cttctgcagg cccgcgagct cggccttctt ctcagcggtg 52980agatagccgt acagctcgcg gaaggacatc aggtccagca ggttgagggc tccggcgacc 53040gcggacttct ccagcccgtc gaactggtag gtgccgtaga tcttcacgtt cacgctctgc 53100acatagccgg tgcgcgagaa tgcggtgatg gtgaggtcgt ccccgatgcg gatgcggtac 53160aggtcgagca gcgtcgccag ctcggagtag aactgctggt agcgcgtgtc gaagttggcg 53220tcatccatgg tgaagaaggc gggcagtagc ttgcccaggt ccgtctcctg gctgcccagc 53280acgcgctgga gccgctccac ggcctgcttc gtcttgaggt cgtcgagctg gaagaggatc 53340tcccgcgtct gggtctggtt ctccttcacc cagcgctgga gttgcggatc catcgcgatg 53400gtcttgtggt tggtatcacg cgcctccttg atgagatcca accggtgcgc cgtcttcagc 53460ttgaagtcgt tctcgtaggt gaacttggag agcatcatgc cgcggtgccc cgggggcacc 53520ggcgtgccct ccacgatgcg catgcggtcg aaggtcttct ggaagttgac caggtcggtg 53580cctacatagc gcagggacaa catgtccccg tccgtcatat acggggcgat gcggttctcc 53640aggaactcga gcgagtcgaa tggcttctcg tcgaagtccg cccagaaggc ctcggaacgg 53700gcgcgggcca tggcctccgc gtccgcgggg tccgtggtct tgtcgtcgat gatttccctg 53760cgccgcttca tatcctcctc gagcaaggtg atgatgtgac gcacatgcgc ctggaggctg 53820tggatctgcc cgcggagttc gggtgtgtcg ccctgtgctg ctttcttgta gaggtcgcgc 53880aggcgcgcca aggtcaggtc gatggtgttt cccgagttga tgaacgtggc gccggtgccc 53940atgggcacca ccgtcttcac gttggggtgc tgctgtacca gttgcttgat gcgcgagaag 54000tcatccagcg cgctcaggtc cggttcgcgg cccatctgcc cgaagagcga gagctcgtcc 54060ttggagtggg ccgagtacac ctggaggtgg ccggcgacgc tgccgataat gctgcggctc 54120atcgcctcgt ccacgctgtc gacgagggag ccgcccacca ccaccagcac ggtgccgaag 54180aagatgatgc ctccgatgag gaggttgatc ctgctcacga acaagttgcg cagggccact 54240tggagcagga gcttgagttg gcccattagt ggcccccctc gctcacggcc atgaccttct 54300gggcctcggc cggcgtgatg cggtcgagga tcttcccgtc cgccaggcgc accacggcgt 54360tggcgtgggt catcaccttg gcgtcgtggg tggagaagat gaaggtggtg ccctccttgc 54420ggttgagctc cttcatcagg tcgatgatgt tctggccggt gacggagtcg aggttggcgg 54480tgggctcgtc ggcgagcacc agcttgggcc gggtgacgag agcgcgcgcc acggccacgc 54540gctggcgctg gcctccagac agctcattgg ggcggtgttt ggcgtgcttc tccaggccca 54600cctgctccag cagcgtcatc acgcgcgtgc ggcgctcgga ggcgttgagc ttgcgctgca 54660gcagcagggg gaactctacg ttctggaaga cgctgagcac cgagacgagg ttgaagctct 54720ggaagatgaa gccgatggtg tgcagccgca agtgggtgag ctgccgctcg gtgagcttct 54780tggtgtcctg gccatccacg ctcaccacgc ccgaggaggc cgtgtccacg cagccgatga 54840gattgagcgc cgtcgtcttg ccactgcccg atgggccggc gatggagatg aactctcccg 54900ggtacacctc tagcgtcacg cctcggagtg cgggcacctg caccttaccc agggagtacg 54960tcttggtaac ctcggtgagg gagacgatcg gctgggtgct gccggggagg gcagtgacct 55020ggctcatgat tgtttggatc ctttccgcga aacggaggga tggggtgggg gacgcctggg 55080aggggggcgc ctcggcgtgg gcgtgcgcgg gacgagggtg atggcactgg gtattgaatt 55140cgcagatgcg cggctccccc tggtattccc ccaccggggc aaaagttgcg cgcttgtctg 55200actactggcg tcaagacatt gagtcaacgc cgaaggagag cgcattccaa aagaggcagc 55260gtccatggag cgaaggcagc ggcgcagtgg gcatgcgctc agaggggaaa acagggtcgg 55320taggacagag gaatcgaacc tcccggggac atgtctccat gccccccacc ggttttgaag 55380gctggtgtgg tcagtggggt tctccctcgg agattgcatc tggttccact cggctgtatc 55440ccagggacgt aatagggacg taatcccgaa tccgatgggt gcagcatgcc gcagaagttc 55500gtggggaagt ggaagggcgg gcgggtcaag ctcgtcgatg gtcggaaggt gtggctcctc 55560gagaagatgg tctccggggc ccggttctcg gtctccttgg cggtctccaa cgaggaggac 55620gcgctggccg agctggccct gttccggcgc gaccgggacg cctacctggc caaggtgaag 55680gccgacaggt cggaggaagt ccaggcatcc actgtagccg gggcagttcc tctgtcgggg 55740gatgtggggc ctcggctcga tgccgattct gtccgggagt tcctccgaca cttgacccag 55800cgggggcgaa cggagggtta ccggcgggac gcccgaacct acctgtcgca atgggccgag 55860gttctggccg gaagggacct gagtaccgtc agcctcctcg agttgcgccg cgccctgagc 55920caatggccca cggccaggaa gatgcggatc atcacgctca agagcttctt ctcgtggctg 55980agggaagagg atcgcctcaa ggctgctgaa gaccccacgt tgtccctcaa ggtgccgccc 56040gcggtcgcgg agaaggggag acgggccaag gggtattcga tggcccaagt ggagaagctc 56100tacgcggcca tcggctccca gacggtgagg gacgtgctgt gtctgcgggc caagaccggc 56160atgcacgact cggagatcgc ccgcctggca tcgggcaagg gggaactgcg cgtcgtcaat 56220gacccctccg gcatcgccgg tactgcgcgg tttctgcaca agaacggccg cgttcacatc 56280ctcagtctgg atgcccaggc ccttgctgcc gcgcagcggc tccaggttcg gggcagggcg 56340cccatcagga acaccgtccg ggagtccatc gggtatgcgt cggcgcgcat tgggcagtcg 56400cccatccatc ccagcgagct ccgccacagc ttcaccacct gggccacgaa tgagggccag 56460gtcgtgaggg caacccgggg cggagtgcca ctcgatgtcg ttgcctcggt tcttggccat 56520cagtccacac gggcgaccaa gaagttctat gacgggaccg aaattccccc gatgatcacc 56580gtcccgctca agctgcatca tccacaggac ccagcggtga tgcagctgag gcgtaactgc 56640tcgccggacc ccgtcgtgac gagagaggca gaggcgtgag acgtccaggc catcaacctg 56700gaggtacacg tggagacgtc cggggctcct ccccgcacct ccttcgaggt tgatttcctg 56760tgctcctcgc attcccctcc ggcctcctgt cgctggcgct cctgtccact accaccgaaa 56820tctctgcggc tcttcccgtg gacgagtgcg agtcggcgag cctgcgcatc gagctgcccg 56880ctacgccagg gggaaagcca cccgtggtgt gtctcggtcc aggtctgccc attcatttcc 56940gcttcgactc cgcgctccaa cagaagtccc tgaggattca ggatcggggc tggttcgagg 57000attgggcttt gggccagcag acgctcgtac tgactcctca cgacaacctg gtggctggga 57060agcgatctga agtggaggtg tgcttcgcgg atggtgccgc cccggcgtgc gcttccttcg 57120tgctccggcg ctgaggcgag tgcaccgcac tgattcagtt cctcttcaac cccggtaccg 57180ctcggccacg cggtagagct gggtgaggga gtagtccagc aacgattcgc acgagcgcat 57240gtagtggtga gcccgcgcaa acggcaacca cacacggttg ccgacgagca cctgggcctc 57300gtcgagtttc tggcgaggta tccacttgcc gcccaggtta cgcaccagca cctcgcccaa 57360gtacgcgcca atggcgggca ccgcgtgcgc gtcgatgtgc tgccgctcga acaccctcgg 57420gaagtcctca tgccagaact ggtagtccac gtcactgaga gactcgggcg ttgcctcgaa 57480gacggagggc accttcgtgt gcatcagcgc cacgaggtgc tcagccagag ttctgtaatg 57540ctcgttagcg cgctccaggt tttccacatc cggatggcga cgctatccac cacgtgagag 57600aggagtggcg ctacatccgg gtggaagcag ggctcaacgg gagcgagcgc ggcgctacgc 57660tcgtgcaggg ttcgcagcac cgtgtcgaag cggaggtccg gccggaggtg aacgtgcgcg 57720cgcgcctgtg cgtgccgtgc ctcggcgccc gcgaagtccg cagcggtggg ccacgtcacc 57780aggaggatgg agccattggg cagttcctcc acccggtgag ctggcgtgga cagcatgcgc 57840tcgcggccca cggcttccac caacttgggg ccgaagacgt tgagccagaa gatctcgtag 57900attctgtcga acccgtctct ccgtgcggtc cgcgcatcgc gtccaaaatc gggcgcacct 57960gccaacgccc tgtcagccac gctgtgggct gcggcgtgag tgaccgggta gcaagaggcc 58020caggtgcgta ccatttctac gaattggcgg cagcgctcct tctccgcgaa gcgggtgagc 58080ggttgcaccg tagtcattac gtccaaagcg ggcggaagcg gcggaaacca gagatgcagc 58140gacatctcca gtgtcggccg ctgtgtgcgg tagagccagg tgtctgtgct tcgttcatcg 58200cgccgctcct ccagagcctt ccagatattg gctcgggagt atttgagtcg ccgcctgcca 58260ctgacgactt ccggcatcca atcgcctgca tattcctcca gcgcctggaa aaatggctcg 58320agaactttct caagcgcagc ctgcggatca agcgcaccct caaaagtgag ccggagactg 58380tcctccgact tcacgtcacc aagccccagc accttcattg aaacaggacc tccactcccg 58440gaactgcctt ctcagt 584562213DNACystobacter velatusmisc_feature(1)..(213)CysA 2atgagcatga acggggacga agccgagtac gttgtcttga tcaacggcga agagcagtac 60tcgctctggc ccgtgcaccg cgaaattccg ggcggttgga agaccgttgg gcccaaggga 120agcaaggaaa cgtgtcagtc ctacatccag gaggtctgga cggacatgag gccgaaatcg 180ctacgggaag ccctgacgcg cagcaactgc tga 2133954DNACystobacter velatusmisc_feature(1)..(954)CysB 3atgagtacgc cagcagcagg agcgaagccg tcctatctcg cgggtattga aacggtgatg 60gtcgaacctg agcttgagga ggttcgctac ctgaccgtgg agagcggcga cggacggcag 120agtaccctct atgagttcgg tccgaaggac gcggagaagg tcgtggtctt gccgccctac 180ggagtcacct tcttgctggt ggcgcgactc gcccggctcc tctcccagcg attccatgtc 240ttgatttggg agtcaagggg gtgtccggac tccgccatcc cggtgtatga cacggacctt 300gggctcgccg accagtcaag gcatttctcc gaggtcctca agcagcaggg cttcgaggcg 360tttcacttcg tcggctggtg tcaggcggcg cagctggccg tgcatgccac cgccagcggc 420caggtcaagc cgcggacgat gtcttggatt gccccggcgg ggctgggtta ctcgctggtc 480aagtccgagt tcgatcgatg tgcactgccc atctacctgg agatcgagaa gcatggcctg 540ttgcacgccg agaagctcgg caggcttctg aacaaataca atggcgttcc cgcgacggcg 600cagaacgcgg cggaaaagct gacgatgcgc catttggccg acccgcggat gacatacgtc 660ttctccaggt acatgaaggc gtatgaagac aacaggctcc tcgccaagca atttgtctcg 720accgcgctcg actcggtgcc gacgctggcc attcactgcc gggacgacac gtacagccac 780ttctcggagt ccgttcagct ctcgaagctg catccatccc tcgagcttcg cctactcggt 840aagggcggcc atctgcagat cttcaacgac cccgccacac tggcggagta cgttctcggt 900ttcatcgaca ccagggcgtc gcaggctgcc gctcctgcgg tggcgggagc gtag 95441380DNACystobacter velatusmisc_feature(1)..(1380)CysC 4atgatacttc ccaacaacat cggcctcgac gagcggacgc agctcgcacg gcagatctcc 60tcgtaccaga agaagttcca cgtgtggtgg cgcgagcggg ggcccaccga gttcctcgat 120cggcagatgc gccttcgcac gccgaccggg gcggtcagcg gcgtggactg ggccgagtac 180aagacgatgc gtcccgacga gtatcgctgg ggcctcttca tggtgccgat ggaccaggac 240gagatcgcct tcggcgacca ccgtggcaag

aaggcgtggg aggaggttcc gagcgaatac 300cgcacgctgc tgctgcagca catctgcgtg caggccgacg tggagaacgc cgccgtcgag 360cagagccggc tgctgacgca gatggcgccg agcaacccgg acctggagaa cgtgttccag 420ttcttcctcg aggaggggcg ccacacctgg gccatggttc acctcctgct cgcccacttc 480ggtgaggacg gggtcgtcga ggccgaagcg ctcctggagc ggctgagcgg tgacccgagg 540aacccccgct tgctggaggc gttcaactat ccgaccgagg actggctgtc ccacttcatg 600tggtgcttgc tggccgaccg ggttggcaag taccagatac atgcagtgac cgaggcttcg 660ttcgccccgt tggcccgggc ggcgaagttc atgatgttcg aggaaccgct ccacatcgcc 720atgggcgccg tgggtctgga acgagtgctg gccaggaccg ccgaggtcac cctgcgtgag 780gggacgttcg atacgttcca cgcgggggcg attccgttcc cggttgtcca gaagtatctc 840aattattggg cgccgaaggt ctacgacctc ttcggaaacg acggctccga acgctcgaac 900gaactcttcc gggctgggct ccggaggccg cggaatttcg tgggaagcga atcgcagatc 960gttcgcatcg atgagcgcat gggcgacgga ctgaccgtcg tggaagtgga aggggagtgg 1020gcgatcaacg ccatcatgcg acgacagttc atcgccgaag tgcaaacgct cattgatcgc 1080tggaacgcca gcctgcgagc gctgggcgtc gacttccagt tgtacctccc tcacgagcgc 1140ttcagcagga cctatggccc ctgcgccggt ctgcccttcg acgtggacgg aaaactgctc 1200ccccgcggca cggaggcgaa gctcgccgag tacttcccca cacctcgcga actcgcgaac 1260gtccgctcgc tgatgcagcg ggagctggct cccgggcagt actcctcgtg gatcgccccg 1320tccgcgacgc ggctgagcgc gctggtccag ggcaggaaca cgcccaagga gcacgaatga 138052199DNACystobacter velatusmisc_feature(1)..(2199)CysD 5atgcgttgcc tcatcatcga caactacgat tcgttcacct ggaatctggc ggactacgtt 60gcgcagacgt tcgggagcga gccgttggtc gtccgcaacg accagcatac ctggcaagaa 120atcaaggcct tgggctcctt cggatgcatc ctggtttctc cgggtccggg ctcggtgacc 180aatccgaagg atttcaatgt ctcgcgagac gcgctcgagc aggatgagtt cccggtgttt 240ggggtctgcc tgggccatca agggctggcg tacatctacg ggggcgagat cactcacgct 300ccggttccgt tccacggcag gacgtcgacc atctaccatg acggcacggg cgtgtttcag 360ggactcccgc cgagcttcga cgcggtgaga tatcactcgc tggtcgtgcg gccggagtcg 420cttcccgcga acctggtcgt caccgctcgg acggaatgcg gcctgatcat ggggttgcgg 480cacgtgagtc gcccgaagtg gggcgtccag ttccatcccg agtcgattct gactgcgcac 540ggcttgcagc tcatctccaa tttccgtgac gaggcgtacc gatacgcggg gaaagaggtt 600ccgtcgcgcc gtccccattc gactgccggc aacggtgtcg gcgcaggtgc tgccaggcgt 660gacccgagcg cccgccgcac accggagcgg agaagggaac ttcagacgtt caccaggcgg 720ctggcgacgt ctctcgaggc cgagaccgtt ttcctgggcc tgtatgcggg ccgcgagcac 780tgcttctggc tcgacagcca gtccgtgaga gaagggatat cccggttctc cttcatgggc 840tgcgtgccgg agggctcgct gctgacgtac ggcgctgcgg aagcggcgtc agaggggggc 900gccgagcggt acctggcggc gctggagcgg gcgctcgaaa gccgtatcgt tgttcgcccc 960gtggatgggc tgccattcga gtttcatggc ggctacatcg gcttcatgac ctacgaaatg 1020aaggaggcgt ttggggccgc gacgacgcac aagaacacta ttcccgacgc cttgtggatg 1080cacgtgaagc ggttcctggc gttcgaccac tcgacgcgag aagtgtggct ggtcgccatc 1140gcggagctcg aggagagcgc gagcgtcctc gcctggatgg acgagaccgc cgacgctctg 1200aagtcgcttc cgcgcggcac ccgttcgccc cagtccctgg ggttgaaatc catctcggta 1260tcaatggatt gtggacggga tgactacttc gccgccatcg agcgctgcaa ggagaagatc 1320gtcgatgggg agtcctacga ggtctgcttg acgaacggtt tctcgttcga tctgaagctg 1380gatcccgtcg agctgtacgt gacgatgcgg agaggcaatc ccgccccgtt cggcgctttc 1440atcaagacag gcaagacctg cgtcctcagt acctccccgg agcgcttcct gaaggtggat 1500gaggatggga cggtccaggc caagcccatc aaggggacct gcgcgcgctc tgacgacccc 1560gccaccgaca gcacgaatgc cgcgcggctg gccgcctcgg agaaggaccg ggcggagaac 1620ctgatgatcg tggacctgat gcggaacgac ctcggacggg tgtccgtgcc gggcagcgtc 1680catgtctcca atctaatgga catcgagagc ttcaagacgg tccatcagat ggtcagcacc 1740gtcgaatcga ccttgacgcc ggagtgcagc ctcgttgacc tcctgcgcgc ggtcttcccg 1800gggggatcca tcaccggggc tcccaagatc cgcacgatgg agatcatcga tcggctcgag 1860aagagccctc ggggcatcta ctgcggcacg atcggctacc tcgggtacaa ccggatcgcc 1920gacctgaaca tcgccatccg caccttgtcc tacgacggca ccctcgtgaa gttcggtgcc 1980ggcggagcca tcacctactt gtcacagccg gagggggagt ttcaggagat cctgctcaag 2040gcggaatcca tcctccggcc gatttggcag tacatcaatg gcgcgggtgc tcccttcgaa 2100ccccagttgc gcgaccgggt tctgtgcctg gaggagaagc cgcgaagggt cattcgtggc 2160cacgggtcgg caattgatgc agtggagcct agcgcgtga 21996732DNACystobacter velatusmisc_feature(1)..(732)CysE 6atgattgcgt tcaacccgca ggcgcggccc aggctgcggc tcttctgctt tccgtacgcc 60ggtggcgacg cgaacatctt ccgggactgg gccgcggcga tgcccgaggg ggtcgaggtc 120ctcggcgttc agtaccccgg gcgcggtacc aacctggcgt tgccgccgat cagcgactgt 180gacgagatgg cgtcacaact gctggcggtg atgacgccgt tgcttggcat caacttcgct 240tttttcggcc acagcaatgg cgccttgatc agcttcgagg tggcgcgaag gctccacgac 300gaactgaagg gccgcatgcg gcatcacttc ctgtcggcca agtccgcccc tcactacccg 360aacaacagga gtaagatcag cggcctcaac gacgaggact ttctccgggc gatccggaag 420atgggcggta cgccccagga agtgctcgac gacgcccggc tgatgcagat tctgctgcca 480agactgcgcg cggacttcgc gctcggcgag acgtatgtgt ttcgccccgg acccaccctg 540acgtgcgacg tcagcatcct gcgaggcgag agcgaccacc tggtcgacgg cgagttcgtc 600cagcggtggt ccgagctgac gacgggcggc gcgagccagt acgcaataga tggtggccat 660ttcttcctga attcccacaa gtcgcaggtc gtggcgctcg tgcgagcggc actgcttgag 720tgtgtgttgt ag 73271038DNACystobacter velatusmisc_feature(1)..(1038)CysF 7atgaccgctc agaaccaagc ctccgcgttt tctttcgatc tcttctacac gacggtcaat 60gcgtactacc ggaccgccgc cgtcaaggcg gccatcgagc tcggcgtgtt cgacgtcgtt 120ggcgagaagg gcaagaccct ggccgagatc gcgaaggcct gcaacgcgtc gccgcgtggc 180atccgcattc tctgccggtt cctcgtgtcg atcgggttcc tcaagaatgc gggtgagttg 240ttcttcctca cgcgagagat ggccctgttt ctggacaaga agtcgcccgg ctatctgggc 300ggcagcattg atttccttct gtcgccgtac atcatggacg gcttcaagga cctcgcgtcg 360gtggtgcgga cgggcgagtt gacgctgccg gaaaaagggg tggtggcgcc agatcatccg 420cagtgggtga cgttcgcgcg cgcgatggcg ccgatgatgt ccctgccatc cctcctgctc 480gcggaactgg cggaccgcca ggcgaaccag ccgctcaagg tgctcgatgt cgccgccggc 540cacggcctct tcggcctggc catcgcccag cggaatccga aggcgcatgt gacgttcctc 600gactgggaaa acgtgctaca ggtggcgcgc gagaacgcga cgaaggcggg agttctcgac 660agggtcgagt tccgcccggg agatgccttc tccgtggact tcggcaagga gctggacgtc 720atcctcctga cgaacttctt gcatcacttc gacgaggcgg gctgcgagaa gatcctcaag 780aaggcccacg ctgccctgaa ggagggcggc cgtgtgctga cgttcgagtt catcgcgaac 840gaggaccgga cgtcgcctcc gcttgccgcc acgttcagca tgatgatgct cggcacgacg 900cccggcggtg agacctacgc ctactccgat ctggagcgga tgttcaagaa cacgggttac 960gatcaagtcg agctcaaggc cattcctccc gcgatggaga aggtcgtcgt ttcgatcaag 1020ggcaaagcgc agctctga 103885979DNACystobacter velatusmisc_feature(1)..(5979)CysG 8atggccacca aattgtctga cttcgcgctc ctcgactccg aagacgccaa cgtcatctcc 60cgctcgaacg agacggggat atcgctggat ctgtccaaga gcgtggttga cttgttcaac 120ctccaggtcg agagggcgcc tgacgccacg gcgtgtctcg gccgccaggg gcgcttgact 180tacggagaac tcaaccggcg gacgaaccag ctcgcgcatc acctgatcgc gcgaggcgtc 240gggccggatg ttcccgtggg cgtcctgttc gagcgctccg ccgagcagct catcgccatc 300ctgggcgtcc tcaaggcggg cgggtgttat gtcccgttgg atccgcagta ccccgccgat 360tacatgcagc aggtcctgac ggacgcccgg ccgcggatgg tggtgtcgag ccgggcgctc 420ggcgagcgcc tccgctcggg cgaggagcag atcgtctacc tcgatgacga acagctcctg 480gcgcgcgaga cccgcgaccc gcctgtgaag gtgttgccgg agcagctcgc gtacgtgatg 540tacacgtcgg gctcgtccgg agtgccgaag ggcgtcatgg tgccccatcg ccagatcctc 600aactggctgc atgcactcct ggcgcgggtg ccgttcggcg agaacgaagt ggtggcccag 660aagacgtcca cgtcattcgc catctcagtg aaggaactct tcgcgggatt ggtcgcgggt 720gtcccgcagg tcttcatcga cgatgcgact gtccgcgacg ttgccagctt cgttcgtgag 780ctggagcagt ggcgcgtcac gcggctctat acttttccct cccagctggc ggcgattctc 840tcgagcgtga atggcgcgta cgagcgcctc cgctcgctgc gccacctgta catctcgatc 900gagccctgcc caacagagct gctggcgaag ctccgggcgg cgatgccgtg ggtcaccccc 960tggtacatct atggctgcac cgagatcaac gacgtcacct actgcgaccc aggggaccag 1020gctggcaaca cgggcttcgt gccgatcggg cggcccatcc gcaacacgcg ggtgttcgtc 1080ctcgacgaag agctccggat ggtgcccgtc ggcgcgatgg gtgagatgta cgtggagagc 1140ctgagcacgg cgcggggcta ctggggcctt cccgagttga cggcggagcg gttcatcgcc 1200aaccctcacg cggaggacgg ttcgcgcctg tacaagacag gcgacctcgc ccgctacctg 1260ccggatggtt ccctggagtt cctcgggcgc cgggactacg aggtgaagat ccgcgggtat 1320cgcgtggacg tccggcaggt cgagaaggtc ctcggggcgc atcccgacat cctcgaggtg 1380gcggtggtgg gctggccgct cggcggggcg aatccacaac tggtcgccta cgtcgtgccg 1440agggcgaagg gggctgctcc catccaggag atccgggact acctgtcggc gtccctgccg 1500gcctacatgg tgccgacgat cttccaggtg ctggcggcgc tgccacgtct tcccaatgac 1560aaggtggatc ggttgagcct gcccgacccc aaggtggagg agcagaccga ggggtacgtg 1620gcgcctcgca cggaaaccga gaaggtactg gccgaaatct ggagcgacgt cctcagccag 1680ggccgggccc ccctgaccgt cggcgcgacg cacaactttt tcgaactggg aggccattcg 1740cttctcgccg cccagatgtt ctcgcggatc cggcagaagt tcgatctcga actgcccatc 1800aacaccctgt tcgagacccc cgtgctggag ggctttgcga gcgccgtcga cgcggctctt 1860gccgagcgga acggtccggc gcagaggctg atcagcatga cggaccgcgg ccaggcgctt 1920ccgctgtcgc acgtccagga gcggctctgg ttcgtgcacg agcacatggt cgagcagcgg 1980agcagctaca acgttgcctt cgcctgccac atgcgtggca aggggctgtc gatgccggcg 2040ctgcgcgccg ccatcaacgg gctggtggct cgccacgaga ccttgcggac gacgttcgtc 2100gtctccgagg gcggaggaga tcccgtccag cggatcgccg actccctgtg gatcgaggtt 2160ccgctatatg aggtcgatgc gtcggaagtc ccggcccgca tggcggccca cgcgggccac 2220gtgttcgacc ttgcgaaggg ccccctgctg aagacctcgg tcctgcgggt gacgcccgat 2280caccacgtgt tcttgatgaa catgcatcac atcatctgtg atgggtggtc gatcgacatc 2340ctgctgcggg acctctacga gttctacaag gcggccgaga cgggctcgca gccgaacctg 2400ccggtcctgc caatccagta tgccgactac tccgtgtggc agcgtcagca ggacctcagc 2460agtcacctcg actactggaa gaagacgctc gagggctacc aggaagggtt gtcgcttccg 2520tacgacttcg cccgcccgtc caacaggacc tggcgtgccg cgagtgtccg gcaccagtac 2580ccggcggaac tcgccacccg tctgtcggag gtgagcaaga gccatcaggc gacggtgttc 2640atgacgttga tggccagcac ggcaatcgtg ctgaaccggt acacgggtcg ggatgatctg 2700tgcgtgggtg ccacggtggc gggccgtgac cacttcgagc tcgagaacct gattggcttc 2760ttcgtcaaca tcctcgccat caggctcgac ctcagcggga atcccacggc cgagacggtg 2820ctgcagcggg cgcgagcgca ggtgctggaa ggcatgaagc atcgcgacct gccgttcgag 2880cacatcctgg cggcgctgca gaagcagcgc gacagcagcc agattcccct ggtgccggtg 2940atggtccgcc accagaactt cccgacagtg acctcgcagg agcaggggct cgacctgggt 3000atcggggaga tcgagtttgg tgagcggacg acgcccaacg agctcgacat ccagttcatc 3060ggcgagggaa gcacgctgga ggtggtggtc gagtacgcga aggatctgtt ctccgagcgc 3120acgatccagc ggctcatcac gcacttgcag caggtgctgc agactctcgt ggacaagccg 3180gactgccggc tgacggattt tccgctggtg gccggggacg cgctgcaggg cggtgtgtcg 3240ggctccgggg gcgcgacgaa gaccggcaag ctcgacgtgt cgaagagccc ggtcgagttg 3300ttcaacgagc gggtagaggc ctcgccggac gcggtcgcct gcatgggcgc ggacggaagc 3360ctgacctacc gggagctgga ccgaagggcc aatcaggtcg cccgccacct gatggggcga 3420ggggtggggc gggagacgcg ggtggggttg tggttcgagc gctcgccgga cctgctggtc 3480gcactcctgg gcatactcaa ggcggggggc tgcttcgttc cgctcgatcc gagctatccg 3540caggagtaca tcaacaacat cgtcgccgat gcgcagccgc ttctggtgat gtcgagccgg 3600gcgctgggct cacgcctgtc actggaggca gggcggctgg tgtacctcga tgacgcgctg 3660gcggcgtcca ccgatgcgag cgatccccag gtgcgcatcg acccggagca gctcatctac 3720gtcatgtaca cctccggttc caccggtctg ccgaaggggg tgctcgttcc ccatcggcag 3780atcctgaact ggctgtaccc gctgtgggcg atggtgccct tcgggcagga cgaggtggtg 3840gcgcagaaga catccacggc cttcgcggtc tcgatgaagg agctcttcac ggggctgctg 3900gcgggcgtgc cccaggtatt catcgacggc accgtggtca aggacgcggc ggccttcgtg 3960ctccacctgg agcgatggcg ggtcacccgg ctgtacacgc tcccgtcgca cctcgatgcc 4020atcctgtccc acgtcgacgg ggcggcggag cgcctgcggt ccctgcggca tgtcatcctc 4080gcgggggagc cgtgccccgt tgagctgatg gagaagctgc gcgagaccct gccgtcgtgc 4140acggcgtggt tcaactacgg ctgtaccgag gtcaacgaca tctcctactg cgtcccgaac 4200gagcagttcc acagctcggg gttcgtgccg atcggccggc ccatccagta cacccgggcg 4260ctggtgctcg acgacgagct gcggacggtg ccggtgggca tcatggggga gatttacgtc 4320gagagcccgg ggacggcgcg gggctactgg aggcagccgg atttgacggc cgagcggttc 4380atccccaacc cgttcggcga gccgggtagc cgtctctacc gtacgggcga tatggcgcga 4440tgccttgagg atggctcgct ggagttcttg gggcgccggg actacgaggt caagatccgt 4500ggccatcgcg tggacgtccg ccaggtcgag aagatcctcg cgagccaccc ggaagtcctc 4560gagtcggcgg tgttgggctg gccacggggg gcgaagaacc ctcagttgct tgcctacgcc 4620gccacgaagc cgggccgtcc cctgtcgact gaaaacgtgc gggagtacct gtcggcccgc 4680ttgccgacgt acatggtgcc aacgctctac cagttcctgc cagcgctgcc gcgcctgccc 4740aatggcaagc tcgaccgctt cgggctgccc gatcacaaga aagtcgaggt gggcggcgtc 4800tacgtcgccc cgcagacgcc gacggagaag gtcttggcgg gactgtgggc cgagtgcctc 4860aagcagggcg acatgcccgc gccgcaggtt ggccgcttgc acaacttctt cgacctcggt 4920gggcactcgc tgctcgccaa tcgcgtactg atgcaggtgc agcggcattt cggggtcagc 4980ctgggcatca gtgcgttgtt cggttctccg gtgctgaatg acttcgcggc ggccatcgac 5040aaggcgctcg ggaccgagga gccaggcgag gaaggttcga gcgacgcacg agaggtcgct 5100gcgaaggaca cctccgtgct cgtgccgctc tccacccacg ggacgctgcc gagcctgttc 5160tgcgtccatc cggtgggcgg gcaggtccat gcctaccgcg agctcgccca ggcgatggag 5220aagcacgcca gcatgtacgc gctccagtcg gagggcgccc gtgagttcga cacaatcgag 5280accttggcgc gcttctacgc cgatgcgatc cgcggggctc agcccgacgg gagctaccgt 5340ctcctcggat ggtcttctgg tgggctcatc accctggcga ttgctcgcga gctggagcac 5400cagggctgcg ccgtggagta cgtgggcctc gtggattcaa agccaatccc gcggttggcg 5460ggtgagcgcg gctgggcgtc gctgatcgcg gcgacgaaca tcctgggcgc gatgcggggg 5520cgcggcttct cggtcgccga ggtcgatgct gccgggaaga tcctcgagtc gcgcggatgg 5580acggaggagt ccttcgactc ggaggggcat gcggcgttgg aggagttggc tcggcacttc 5640ggcatcaccg tcgcgcaaga gtcatcggag tacctcctgg cccggttcaa gaccacgaag 5700tactacttgt cgctgttcgc tggcttcaag ccggcggcgc tcgggccgga gacgtacctc 5760tatgaggctt cagagcgggt cggagccacc tcgaacgacg acacgggcga gtggggggac 5820gcgctggatc gcaaggccct gcgggcgaac atcgtgcagg tgccaggcaa tcactatact 5880gtcctgcagg gagagaacgt gctgcaactg gcggggcgga tcgccgaagc cttgtctgcg 5940atcgacaact cggtggtaac gaggacgcga gcttcgtga 597992928DNACystobacter velatusmisc_feature(1)..(2928)CysH 9atggacaatc gagagatcgc acccacccaa tcggcgcgca cgcgtgatgc gtacacggcg 60gtaccaccag ccaaggccga gtatccgtcg gacgtctgtg tgcaccaact gttcgagttg 120caggcggaca ggattcccga cgccgttgcg gcgagggcgg ggaacgagtc cctgacctac 180cgggagctga acttccgggc gaatcagctc gcccggtacc ttgttgcgaa aggcgtggtc 240ccgcgaggct cggtggccgt gctgatgaac cggacccctg cgtgtctggt ctcactgctc 300gccatcatca aggcgggcgc ggcgtacgtt ccggtggacg ccggattgcc cgccaaacgg 360gtggactaca ttctgacgga cagcggcgcg acctgcgtcc tgaccgacag ggagacgcgg 420tcactcctcg acgagccgcg gtcggcttcg acgctcgtca tcgacgtgga tgatccatcc 480atctattcgg gcgagaccag caacctcggg ctcgctgtcg atcccgagca gcaggtctac 540tgcatctaca cctcgggttc gacgggcctt cccaaaggcg tgatggtcca gcaccgcgcg 600ctgatgaact acgtctggtg ggcgaagaag cagtacgtca ccgacgcggt cgagagtttt 660gccctgtact cctcgttgtc gttcgacctc acggtcacct ccatcttcgt tccgctgatc 720tccggacgct gcatcgatgt gtacccggac ctgggcgagg acgtccccgt catcaaccgg 780gtactggagg acaataaggt cgatgtcgtg aagctcacgc cggcccacct tgccctgctc 840aggaacacgg acctatcgca aagccggctg aaagtgctca tcctgggagg agaggacctc 900cgagcggaga cggcggggga cgtccacaag cggctggacg gccgggcggt gatctacaac 960gagtacggcc ccacggagac cgtcgtgggg tgcatgattc accgctacga ccccgcggtg 1020gatctgcacg ggtcggtgcc gattggagtg ggcatcgaca acatgcggat ctacttgctc 1080gacgaccgtc ggcgtcccgt caagccagga gaggttggcg agatttacat cggaggcgac 1140ggtgtgaccc tggggtacaa ggacaagcct caagtcacgg cggaccactt catctccaat 1200ccgttcgtgg aaggggagcg gttgtacgcc agtggcgacc tcggccgggt gaatgagcgc 1260ggcgcgctcg tcttcctcgg ccggaaggat ttgcagatca agctgcgggg gtaccggatc 1320gagctgggcg agatcgagag cgcccttctc tcctatccgg ggatcaagga atgcatcgtc 1380gattcgacca agaccgcgca gagccaggcc gccgctcagc tcacctactg caccaagtgt 1440ggtctggcgt cgagcttccc gaatacgacg tactccgccg agggggtctg caaccactgc 1500gaggccttcg acaagtaccg cagcgtcgtc gacgactact tcagcacgat ggatgagctg 1560cagtcgatcg tcaccgagat gaagagcatc cacaactcga agtacgactg catcgtggcg 1620ctcagcggcg gaaaagacag cacgtatgca ctctgccgga tgatcgaaac cggtgcccgt 1680gtattggcct tcacgttgga taacggctac atctcggagg aggcgaagca gaacatcaac 1740cgggtcgttg cccggctggg agtggatcac cgctatctct cgaccggcca catgaaggag 1800atcttcgtcg acagcctgaa gcgacacagc aatgtgtgca acggctgctt caagaccatc 1860tacacgtttg cgatcaacct ggcgcaggag gtcggcgtca agcacgtggt catggggttg 1920tcaaagggcc aactgttcga aacgcgcctc tcggccttgt tccgcacgtc gaccttcgac 1980aacgccgcct tcgagaagag cctcgtcgac gcgcgaaaga tctaccatcg catcgatgat 2040gccgtgagcc gcctgctcga cactacttgc gtcaagaacg acaaggtcat cgagaacatc 2100aggttcgtgg acttctatcg ttattgccac gccagccgtc aggagatgta cgactacatc 2160caggagagag tcgggtgggc caggccgatt gacaccgggc ggtcgacgaa ctgtctcctc 2220aatgatgttg gcatctacgt tcacaacaag gagcgcaggt accacaacta ctccctgccc 2280tacagctggg acgtccggat gggccacatc agcagggaag aggcgatgag agagctcgac 2340gactcggccg acatcgacgt cgagagggtc gagggcatca tcaaggacct tggctacgag 2400ctgaacgacc aggtggtggg ctcggcggaa gcccagctgg tcgcctacta tgtctccgcg 2460gaggagttcc ccgcgtccga cctgcggcag ttcctgtcgg agattctgcc ggagtacatg 2520gtacccaggt cgttcgtcca gctggacagc atcccgctga cgcccaatgg caaggtcaat 2580cgtcaggccc tgccgaagcc tgacctgctt cggaaggccg gcaccgacgg acaagccgca 2640ccccgaacac cggtggagaa gcagttggcg gagctgtgga aggaggtgct gcaggtcgac 2700agtgtcggga tccacgacaa cttcttcgag atgggcgggc actcgcttcc ggcgctcatg 2760ctgctctaca agatcgacag tcagttccat aagacgatca gcatccagga gttctcgaag 2820gtccccacca tcagcgcgct cgcggcgcat ctcggcagtg acaccgaagc ggtgccgcca 2880gggctgggcg aggtcgtcga tcagagcgcg cctgcataca ggggataa 292810819DNACystobacter velatusmisc_feature(1)..(819)CysI 10gtgcgcttcg tcactgtcaa tggtgaggac tcggcagttt gctcggtgct ggatcgcgga 60ctccagttcg gagatggcct gttcgagacg atgctgtgtg ttggcggtgc gccggtcgac 120ttcccggaac actgggcgcg gcttgatgag ggctgccgcc ggctgggaat cgaatgcccg 180gacatccggc gcgaagtgac cgctgcgatc gccaggtggg gtgctcccag ggcggtcgcc 240aagctcgtcg tcactcgggg aagcacggag cggggatacc ggtgcgcccc ttccgtccgg 300ccgaactgga tcctcaccat cacggatgcc ccgaagtatc cgctggccca cgaggacaga 360ggcgtggccg tcaaactctg ccgaacgctc gtctcgctcg atgacccaca gctggccggg 420ttgaagcacc tcaaccggtt gccccaggtg ctcgcgagga gggagtggga cgacgagtac 480cacgatggcc tgctgaccga ccacggtggt cacctcgtcg agggttgcac gagcaacctg 540ttcctcgttg ccgacggagc cttgaggacg

cccgatctga ctgcgtgcgg tgtgcgcggt 600atcgtgcggc agaaggtcct cgaccactcg aaggcaatcg ggatccgctg cgaggtaacc 660accctgaagc tacgagatct cgaacacgcg gacgaggtct tcctgacgaa ctctgtctac 720gggattgtgc cggttggtag cgtcgatggt atgaggtacc ggataggtcc gacgacggcg 780cgtttgctga aagacctttg ccagggtgtg tacttttga 81911984DNACystobacter velatusmisc_feature(1)..(984)CysJ 11atgaccggta atttggatag cgcggcatgg cccgtaatca tcacgcctgg ccagcagcca 60gcggcgctgg aggattgggt ctcagcgaac cgtgacggac tcgagcggca gttgaccgag 120tgtaaggcca ttctctttcg aggcttccgt agcaggaatg gcttcgagag cattgccaac 180agcttcttcg accggcgcct caactatacc tatcggtcga cgccccgtac ggacctgggg 240cagaacctct acacggcgac ggagtacccg aagcagctgt cgattccgca gcattgcgag 300aacgcctacc agcgcgactg gccgatgaag ctgctgttcc actgcgtgga gccggcgagc 360aaaggcggcc ggacgccctt ggccgacatg acgaaggtaa cggcgatgat ccccgccgaa 420atcaaggagg agttcgcgcg gaagaaggtc gggtacgtgc ggaactaccg tgctggagtg 480gatctgcctt gggaagaggt gtttggaacg agcaacaagg cagaggttga gaagttctgc 540gtcgagaatg gcatagagta ccactggacc gagggtggct tgaagaccat ccaggtctgc 600caggcgttcg cttcgcatcc actcaccggt gagacgatct ggttcaatca ggcccacctg 660tttcaccttt ccgcattgga cccggcttca cagaagatga tgctttcctt cttcggtgag 720ggcggcctcc cgcgcaactc gtacttcgga gacgggtcgg ccatcgggag cgacgtcctc 780gaccagatcc gctccgctta cgaacgcaac aaggtctcgt tcgagtggca gaaggacgac 840gtgttgctga tcgacaacat gctggtttct cacggacgag atccgttcga aggcagccgg 900cgggtgctgg tctgcatggc ggagccgtat tcggaagtcc agcggcgggg attcgccggg 960gcaacgaact cagggcgctc gtaa 9841213638DNACystobacter velatusmisc_feature(1)..(13638)CysK 12atgctgctgg agggagagct ggaggggtac gaggacgggt tggaactgcc gtacgacttc 60ccgcggacgt cgaatagggc gtggagagcg gcgacgttcc agcatagcta cccgcccgag 120ctggcgagga aggtggcgga gctcagccgg gagcagcagt ccacgctgtt catgagcctg 180gtggcgagcc tggcggtggt gttgaaccgg tacacgggcc gcgaggacgt gtgcatcggg 240acgacggtgg cgggccgagc gcaggtgggg gcgttggggg atctgagcgg gtccaccgtc 300gacatcctcc cgctgaggct ggacctgtcg ggcgctccga gccttcacga ggtgctgcgg 360aggacgaagg cggtggtgct ggagggattc gagcacgagg cgttgccgtg ccagattccc 420ttggtgccgg tggtggtgag gcaccagaac ttcccgatgg cgcgtctgga gggctggagt 480gagggggtgg agctgaagaa gttcgagctg gcgggggaaa ggacgacggc gagcgagcag 540gactggcagt tcttcgggga cgggtcctcg ctggagctga gcctggagta cgcggcggag 600ctgttcagcg agaagacggt gaagaggatg gtggagcacc accagcgagt gctggaggcg 660ctggtggagg ggctggagga ggtgcggctg cacgaggtgc ggctgctgac ggaggaggag 720gaggggctgc acgggaggtt gaacgacacg gcgcgagagc tggaggagcg ctggagcctg 780gcggagacgt tcgagcgtca ggtgagggag acaccggagg cggtggcttg cgttggcgtg 840gaggtggcga cgggagggca ctcgcggccg acataccggc agctgacata ccggcagctg 900aatgcgcgag ccaaccaggt ggcacggagg ctgagggcac tgggagtggg cgcggagaca 960cgggtcgcgg tcttgagcga ccgctcgccg gagctgctgg tggcgatgct ggcgatattc 1020aaggccgggg gctgctacgt gccggtggac ccacagtacc cgggaagcta catcgagcag 1080atactggagg atgcggcacc gcaggtggtg ttgggcaaga ggggaagagc ggacggggtg 1140cgggtggatg tgtggctgga gctggatgga gcgcaacggc tgacggacga ggcgctggcg 1200gcacaggaag agggagagct ggagggggcg gagaggccgg agagccagca gttggcgtgt 1260ttgatgtaca cgtcgggctc cacgggcaga ccgaaggggg tgatggtgcc gtacagccag 1320ttgcacaact ggctggaggc ggggaaggag cgctcgccgc tcgagcgtgg ggaagtaatg 1380ttgcagaaga cggcaatcgc gttcgcggtg tcggtgaagg agctgctgag cggattgctg 1440gcgggagtgg cgcaggtgat ggtgccggag acgctggtga aggacagcgt ggcgctggcg 1500caggagatag agcggtggcg ggtgacgaga atccacctgg tgccatcgca cctgggagca 1560ctgctggagg gggcggggga agaggcgaag gggctgaggt cgctgaagta cgtcataacg 1620gcgggggagg cactggcgca gggggtgagg gaggaggcga ggaggaagct gccgggggcg 1680cagttgtgga acaactacgg gtgcacggag ctgaatgacg tgacgtacca ccccgcgagc 1740gaggggggag gggacacggt attcgtgcca atcgggcggc ccatcgcgaa cacgcgggtg 1800tacgtgttgg acgagcagtt gaggcgggtg ccggtggggg tgatggggga gttgtatgtg 1860gacagcgtgg ggatggcgag ggggtattgg ggccagccag cgctgacggc ggagcgcttc 1920atcgcgaacc cgtacgcgag ccagcccgga gcgaggttgt accggacggg agacatggtg 1980agggtgctgg cggacggctc gctggagtac ctggggaggc gagactacga gataaaggtg 2040agagggcacc gggtggacgt gcgccaggtg gagaaggtgg cgaacgcgca tccagccatc 2100cgccaggcgg tggtgtcggg atggccgttg ggctcgagca acgcgcagtt ggtggcctac 2160ctggtgccgc aggcgggcgc gacggtgggg ccgcggcagg tgagggatta cctggcggag 2220tcgctgccgg cgtacatggt gccaacgcta tacacggtgt tggaggagtt gccgcggctg 2280ccgaacggga agctggaccg gttgtcgctg ccggagccgg acctgtcgag cagccgagag 2340gagtacgtcg cgccccacgg cgaggtcgag cggaagctgg cggaaatctt cggcaacctc 2400ctggggctcg aacatgtcgg cgtccacgac aacttcttca gcctcggcgg gcactccctc 2460ctggctgccc agctgatttc gcgcatacgg gcgaccttcc gcgtggaagt ggcgatggcc 2520acggtgttcg agtcccccac ggtggagccg ctcgcccgcc acatcgagga gaagctcaag 2580gacgagtctc gggtccagct ctccaacgtt gtgccggtcg agcggacgca ggagattccg 2640ctctcctacc tgcaggagcg gctgtggttc gtgcacgagc acatgaagga gcagcggacc 2700agctataaca tcacctggac gttgcacttc gccggcaagg gtttctcggt ggaggcgttg 2760cggacggcct tcgatgagct ggtggccaga cacgagacac tgcgcacgtg gttccaggtg 2820ggggagggga cagagcaggc cgtacaggtc atcggggagc cctggtcgat ggagctgccg 2880ctgagagagg tggcggggac ggaggtgacg gcggcaatca atgagatgtc ccgacaggtc 2940ttcgacttga gagcgggacg gttgctgacg gcggcggtcc tgagggtggc ggaggatgag 3000cacatcctcg tcagcaacat ccaccacatc atcacggacg gctggtcgtt cggggtgatg 3060ctgcgggagc tgagggagtt gtacgaggca gcggtgcggg ggaagagagc ggagctgccg 3120ccgctgacgg tgcagtacgg cgactatgcg gtgtggcaga ggaagcagga cctgagcgag 3180cacctggcgt actggaaggg gaaggtggag gagtacgagg acgggttgga gctgccgtac 3240gacttcccgc ggacgtcgaa tagggcgtgg agagcggcga cgttccagta tagctaccca 3300cccgagctgg cgaggaaggt ggcggagctc agccgggagc agcagtccac gctgttcatg 3360agcctggtgg cgagcctggc ggtggtgttg aaccggtaca cgggccgcca ggacgtgtgc 3420atcgggacga cggtggcggg ccgagcgcag gtggagctgg agagcctcat cgggttcttc 3480atcaacatcc tcccgctgag gctggacctg tcgggcgctc cgagccttca cgaggtgctg 3540cggaggacga aggcggtggt gctggaggga ttcgagcacc aggagttgcc gttcgagcac 3600ctgctgaagg cgctgaggcg gcagcgggac agcagccaga ttcccttggt gccagtggtg 3660gtgaggcacc agaacttccc gatggcgcgt ctggagggct ggagtgaggg ggtggagctg 3720aagaagttcg agctggcggg ggaaaggacg acggcgagcg agcaggactg gcagttcttc 3780ggggacgggt cctcgctgga gctgagcctg gagtacgcgg cggagctgtt cagcgagaag 3840acggtgagga ggatggtgga gcaccaccag cgagtgctgg aggcgctggt ggaggggctg 3900gaggaggggc tgcacgaggt gcggctgctg acggaggagg aggaggggct gcacgggagg 3960ttgaacgaca cggcgcgaga gctggaggag cgctggagcc tggcggagac gttcgagcgt 4020caggtgaggg agacaccgga ggcggtggct tgcgttggcg tggaggtggc gacgggaggg 4080cactcgcggc cgacataccg gcagctgaca taccggcagc tgaatgcgcg agccaaccag 4140gtggcacgga ggctgagggc actgggagtg ggcgcggaga cacgggtcgc ggtcttgagc 4200gaccgctcgc cggagctgct ggtggcgatg ctggcgatat tcaaggccgg gggctgctac 4260gtgccggtgg acccacagta cccgggacac tacatcgagc agatattgga ggatgcggca 4320ccgcaggtgg tgttgggcaa gaggggaaga gcggacgggg tgcgggtgga tgtgtggttg 4380gagctggatg gagcgcaacg gctgacggac gaggcgctgg cggcacagga agagggggag 4440ctggaggggg cggagaggcc ggagagccag cagttggcgt gtttgatgta cacgtcgggc 4500tccacgggca ggccgaaggg ggtgatggtg ccgtacagcc agttgcacaa ctggctggag 4560gcggggaagg agcgctcgcc gctcgagcgt ggggaagtaa tgttgcagaa gacggcaatc 4620gcgttcgcgg tgtcggtgaa ggagctgctg agcggattgc tggcgggagt ggcgcaggtg 4680atggtgccgg agacgctggt gaaggacagc gtggcgctgg cgcaggagat agagcggtgg 4740cgggtgacga gaatccacct ggtgccatcg cacctgggag cactgctgga gggggcgggg 4800gaagaggcga aggggctgag gtcgctgaag tacgtcataa cggcggggga ggcactggcg 4860cagggggtga gggaggaggc gaggaggaag ctgccggggg cgcagttgtg gaacaactac 4920gggtgcacgg agctgaatga cgtgacgtac caccccgcga gcgagggggg aggggacacg 4980gtattcgtgc caatcgggcg gcccatcgcg aacacgcggg tgtacgtgtt ggacgagcag 5040ttgaggcggg tgccggtggg ggtgatgggg gagttgtatg tggacagcgt ggggatggcg 5100agggggtatt ggggccagcc agcgctgacg gcggagcgct tcatcgcgaa cccgtacgcg 5160agccagcccg gagcgaggtt gtaccggacg ggagacatgg tgagggtgct ggcggacggc 5220tcgctggagt acctggggag gcgagactac gagataaagg tgagagggca ccgggtggac 5280gtgcgccagg tggagaaggt ggcgaacgcg catccagcca tccgccaggc ggtggtgtcg 5340ggatggccgt tgggctcgag caacgcgcag ttggtggcct acctggtgcc gcaggcgggc 5400gcgacggtgg ggccgcggca ggtgagggat tacctggcgg agtcgctgcc agcgtacatg 5460gtgccaacgc tatacacggt gttggaggag ttgccgcggt tgccgaacgg gaagctggac 5520cggctgtcgt tgccggagcc ggacctgtcg agcagccgag aggagtacgt cgcgccccac 5580ggcgaggtcg agcggaagct ggcggaaatc ttcggcaacc tcctggggct cgaacatgtc 5640ggcgtccacg acaacttctt cagcctcggc gggcactccc tcctggctgc ccaggtggtc 5700tcaaggattg gcaaggagct tggcactcag atctcgatcg ccgatctgtt tcaaaggccc 5760acgattgaac agctctgtga gctgattgga ggactggacg atcagaccca gagggagctc 5820gccctcgctc cgtcggggaa caccgaggcg gtgctctcgt tcgcgcaaga gcgcatgtgg 5880ttcctgcaca acttcgtcaa gggcatgccc tacaacacgc cagggctcga ccacctgacg 5940ggtgagctcg atgtcgcggc gctagaaaag gccatccgcg cggtcatccg tcgccacgag 6000cccctgcgga cgaatttcgt cgagaaggac ggggtgctgt cccagttggt ggggacggaa 6060gaacgcttcc gcctgaccgt gactcccatc cgcgacgaga gcgaggtcgc gcggctcatg 6120gaagccgtga tccaaacgcc agtcgatctg gagcgggagt tgatgatccg ggcttatctc 6180taccgggtcg acccgcggaa tcactacctg ttcaccacca tccatcacat cgccttcgat 6240ggctggtcga catcgatctt ctaccgtgag ctggctgcgt actacgccgc gtttctccgg 6300cgcgaagaca gtccgctgcc cgcgctggaa atctcctatc aggactatgc ccgctgggag 6360cgggcccatt tccaggacga ggtgttggcg gaaaaactga ggtactggcg gcagcggctg 6420tcgggcgctc ggcccctcgt acttccgacc acctaccatc ggccgcccat ccagagtttc 6480gctggcgccg tcgtgaactt cgagatcgat cgctccatca ccgagcggtt gaagacgctg 6540ttcgccgagt cgggcaccac gatgtacatg gtgttgctcg gcgcgttctc cgtggtgctg 6600cagcgctact ccggtcagga cgacatctgc atcggctccc ccgtggcgaa ccggggtcac 6660atccagacag aagggctgat cggcttgttc gtcaacaccc tggtgatgag ggtggatgcc 6720gccgggaatc cccgtttcat cgacctgctg gcgcgcattc aacggacagc catcgatgct 6780tacgcgaacc aagaagtgcc cttcgagaag atcgtggacg acctgcaggt cgcgagagac 6840acggcccgat ctccgctcgt gcaggtcatt ctcaacttcc acaacacgcc tcctcaatcc 6900gagctggaac tgcagggggt gaccctcacg cggatgccgg tgcacaacgg cacggccaag 6960ttcgagctct ccatcgacgt cgcggagacg agcgccggtc taacgggatt cgtggagtac 7020gcgacggatc tgttcagcga gaacttcatc cggcggatga tcggccacct cgaggtggtg 7080ctggacgcgg tcggtcgcga tccgcgggcg cctatccatg agttgccact gctcacccgg 7140caggatcagt tggacctact gtcgcggagc ggccacacag cccccgcggt ggaacacgtc 7200gagttgatcc ctcatacgtt cgagcggcgc gtccaggaga gccctcaagc gattgccctg 7260gtctgcggtg acgagcgcgt cacctactcc gcgctcaacc gccgggccag ccagattgcc 7320cgccgcctgc gcgccgcagg gatcggaccg gacaccctcg tcgggctttg cgcggggcgc 7380tccatcgagc tggtctgcgg cgtccttggc atcttgaagg cgggcggtgc gtacgtgcca 7440atcgacccca cctcctcgcc cgaggtgatc tacgacgtcc tgtatgagtc gaaggtgcgg 7500catctgttga ccgagtcgcg cctggtcggg ggactgccgg tcgatgacca ggaaatcctg 7560ctcctggata cccccgcgga cggtgaaggg gacaaggctg ttgctgaccg ggaggagcca 7620cctgaccttg gcgaggtcag cctcactccc gagtgcttgg cgtacgtcaa cttcacctcc 7680gactccggtg gggcgccgag gggcatcgcc gtccgccatg gggcgctggc tcgccggatg 7740gccgccggcc acgcacagta cctggccaat tccgccgtac gtttcctgct gaaggcgccg 7800ctcacgttcg acctggcggt cgcggagctg ttccagtgga tcgtcagcgg cggcagcctg 7860agcatcctcg accccaatgc cgaccgcgac gcctctgcct tcctcgcgca ggtgcgcagg 7920gactcgattg gcgtcctcta ctgcgtcccc tccgaactct cgacgctggt gagccacctg 7980gagcgcgagc gtgaaagggt gcatgagctg aacaccctcc ggttcatctt ctgcggcggg 8040gataccctgg cggttaccgt cgtcgagcgt ctcggggtac tggtgcgggc cggccagctc 8100ccgctgcggc tggtcaacgt ctatgggacg aaggagacgg gaatcggcgc gggttgcttc 8160gagtgcgcgc tggacgcgaa cgaccccagc gccgaactcc cgccgggacg gctctcgcat 8220gagcggatgc ccatcggcgg gcccgcccag aacctgtggt tctatgtggt gcaacccaac 8280ggtggcctgg ctccgttggg catcccgggg gaactgtacg tcggcggcgc gcaactcgcc 8340gacgcccgtt tcggcgacga gcccacggcg acccaccccg gcttcgtccc gaaccccttc 8400cggagcggag cggagaagga ctggctgtac aagacggggg acctcgtccg ctggctgcct 8460caggggccgc tcgagctggt cagcgcggct cgggagcgcg acggaggcgg ggaccaccgg 8520ctcgatcgcg gcttcatcga ggcgcgcatg cgtcgtgtgg ccattgtccg cgacgccgtg 8580gtggcctacg tcccggatcg ccaggacagg gcccggttgg tggcctacgt cgttctgaag 8640gagtcgcccg cggcggacgt ggagccgcgc gaagggcggg aaacgctgaa ggctcggatc 8700agcgccgaac ttgggagcac gttgccggag tacatgcttc cggccgccta cgtgttcatg 8760gacagcctgc cgttgacggc ttacgggagg atcgaccgga aagccctgcc cgagccggag 8820gatgaccgcc acggtggtag tgcgatcgcc tacgtggccc cgcgcgggcc cacggagaag 8880gcactggcgc acatttggca gcaagtgctg aaacgccccc aggtcggact gcgagacaac 8940ttctttgagc tgggcgggca ctcagtggcg gccatccaac tggtgtccgt gagccggaag 9000cacctggagg tcgaagtccc cctcagcctg atcttcgaat cgccggtcct ggaggcgatg 9060gcgcgcggca tcgaagcgct gcaacagcag ggccgcagcg gcgcggtgtc gtcgatccat 9120cgggtggagc ggaccggacc gctgcctctg gcgtacgtgc aggagaggct gtggttcgtg 9180cacgagcaca tgaaggagca gcggaccagc tataacatca cctggacgtt gcacttcgcc 9240ggcaagggtt tctcggtgga ggcgttgcgg acggccttcg atgagctggt ggccagacac 9300gagacactgc gcacgtggtt ccaggtgggg gaggggacag agcaggccgt acaggtcatc 9360ggggagccct ggtcgatgga gctgccgctg agagaggtgg cggggacgga ggtgacggcg 9420gcaatcaatg agatgtcccg gcaggtcttc gacttgagag cgggacggtt gctgacggcg 9480gcggtcctga gggtggcgga ggatgagcac atcctcgtca gcaacatcca ccacatcatc 9540acggacggct ggtcgttcgg ggtgatgctg cgggagctga gggagttgta cgaggccgcg 9600gtgcgggggg agcgagcgga gctgccgccg ctgacggtgc agtacggcga ctatgcggta 9660tggcagagga agcaggacct gagcgagcac ctggcgtact ggaaggggaa ggtggagggg 9720gacgaggacg ggttggagct gccgtacgac ttcccgcgga cgtcgaatag ggcgtggaga 9780gcggcgacgt tccagtatag ctaccacccc gagctggcga ggaaggtggc ggagctcagc 9840cgggagcagc agtccacgct gttcatgagc ctggtggcga gcctggcggt ggtgttgaac 9900cggtacacgg gccgcgagga cctgtgcatc gggacgacgg tggcgggccg agcgcaggtg 9960gaactggaga gcctcatcgg gttcttcatc aacatcctcc cgctgaggct ggacctgtcg 10020ggcgctccga gccttcacga ggtgctgcgg aggacgaagg tggtggtgct ggagggattc 10080gagcaccagg agttgccgtt cgagcacctg ctgaaggcgc tgaggcggca gcgggacagc 10140agccagattc ccttggtgcc agtggtggtg aggcaccaga acttcccgat ggcgcgtctg 10200gagggctgga gtgagggggt ggagctgaag aagttcgagc tggcggggga aaggacgacg 10260gcgagcgagc aggactggca gttcttcggg gacgggtcct cgctggagct gagcctggag 10320tacgcggcgg agctgttcag cgagaagacg gtgaggagga tggtggagca ccaccaacga 10380gtgctggagg cgctggtgga ggggctggag gaggggctgc acgaagtgcg gctgctgacg 10440gaggaggagg aggggctgca cgggaggttg aacgacacgg cgcgagagct ggaggagcgc 10500tggagcctgg cggagacgtt cgagcgtcag gtgagggaga caccggaggc ggtggcttgc 10560gttggcgtgg aggtggcgac gggagggcac tcgcggccga cataccggca gctgacatac 10620cggcagctga atgcgcgagc caaccaggtg gcacggaggc tgagggcact gggagtgggc 10680gcggagacac gggtcgcggt cttgagcgac cgctcgccgg agctgctggt ggcgatgctg 10740gcgatattca aggccggggg ctgctacgtg ccggtggacc cacagtaccc gggaagctac 10800atcgagcaga tactggagga tgcggcaccg caggtggtgt tgggcaagag gggaagagcg 10860gacggggtgc gggtggatgt gtggctggag ctggatggag cgcaacggct gacggacgag 10920gcgctggcgg cacaggaaga gggagagctg gagggggcgg agaggccgga gagccagcag 10980ttggcgtgtt tgatgtacac gtcgggctcc acgggcagac cgaagggggt gatggtgccg 11040tacagccagt tgcacaactg gctggaggcg gggaaggagc gctcgccgct cgagcgtggg 11100gaagtaatgt tgcagaagac ggcaatcgcg ttcgcggtgt cggtgaagga gctgctgagc 11160ggattgctgg cgggagtggc gcaggtgatg gtgccggaga cgctggtgaa ggacagcgtg 11220gcgctggcgc aggagataga gcggtggcgg gtgacgagaa tccacctggt gccatcgcac 11280ctgggagcac tgctggaggg ggcgggggaa gaggcgaagg ggctgaggtc gctgaagtac 11340gtcataacgg cgggggaggc actggcgcag ggggtgaggg aggaggcgag gaggaagctg 11400ccgggggcgc agttgtggaa caactacggg tgcacggagc tgaatgacgt gacgtaccac 11460cccgcgagcg aggggggagg ggacacggta ttcgtgccaa tcgggcggcc catcgcgaac 11520acgcgggtgt acgtgttgga cgagcagttg aggcgggtgc cggtgggggt gatgggggag 11580ttgtatgtgg acagcgtggg gatggcgagg gggtattggg gccagccagc gctgacggcg 11640gagcgcttca tcgcgaaccc gtacgcgagc cagcccggag cgaggttgta ccggacggga 11700gacatggtga gggtgctggc ggacggctcg ctggagtacc tggggaggcg agactacgag 11760ataaaggtga gagggcaccg ggtggacgtg cgccaggtgg agaaggtggc gaacgcgcat 11820ccagccatcc gccaggcggt ggtgtcggga tggccgttgg gctcgagcaa cgcgcagttg 11880gtggcctacc tggtgccgca ggcgggcgcg acggtggggc cgcggcaggt gagggattac 11940ctggcggagt cgctgccagc gtacatggtg ccaacgctat acacggtgtt ggaggagttg 12000ccgcggttgc cgaacgggaa gctggaccgg ctgtcgttgc cggagccgga cctgtcgagc 12060agccgagagg agtacgtcgc gccccacggc gaggtcgagc ggaagctggc ggaaatcttc 12120ggcaacctcc tggggctcga acatgtcggc gtccacgaca acttcttcaa cctcggcggg 12180cactccctcc tggcttccca gctgatttcg cgcatacggg cgaccttccg cgtggaagtg 12240gcgatggcca cggtgttcga gtcccccacg gtggagccgc tcgcccgcca catcgaggag 12300aagctcaagg acgagtctcg ggtccagctc tccaacgttg tgccggtcga gcggacgcag 12360gagcttccgc tctcctacct gcaggagagg ctgtggttcg tgcacgagca catgaaggag 12420cagcggacca gctataacgg aacgatcggg ctccggcttc ggggtcctct gtcaatcccc 12480gcgctcaggg ccaccttcca cgatctggtc gcccgtcacg agagcctgcg caccgtcttc 12540cgggtccccg aaggccgcac cacgccggtg caggtgattc ttgattcgat ggatctggac 12600atcccggtcc gcgatgcaac cgaggccgac atcatcccgg gcatggatga gctggcgggt 12660cacatctacg acatggagaa gggtccgctg ttcatggttc gcctcttgcg gctggccgag 12720gactcccacg ttctcctgat ggggatgcat cacatcgtct acgacgcatg gtcacagttc 12780aatgtgatga gtcgcgatat caacctgctc tactcggcgc acgtgacggg aatcgaggca 12840cggcttcccg cgcttcccat ccagtacgcc gacttctcgg tgtggcagcg ccagcaggac 12900ttccgtcacc acctggacta ctggaagtcc acactgggcg actaccggga tgatctcgag 12960ctgccgtatg actacccgcg gccgcccagc cggacatggc acgcgacccg attcaccttc 13020cggtatccgg atgcactggc gcgcgcgttc gccaggttca atcagtccca tcagtcgacg 13080ctgttcatgg ggctgctgac cagcttcgcg atcgtgctca ggcactacac cggccggaac 13140gacatctgca tcggaacgac aacggcgggg cgcgcccagt tggagttgga gaacctcgtt 13200ggcttcttca tcaacatcct gccgttgcgc atcaatctgg cgggtgaccc cgacatcagc 13260gagctcatga atcgagcgaa gaagagcgtc ttgggcgcct tcgagcatca agctctgccg 13320ttcgagcgtc tcctcagtgc cctcaacaaa cagcgtgaca gcagccatat cccgctggtt 13380cccgtcatgt tgcgccacca gaacttcccg acggcgatga ccggcaagtg ggccgatggt 13440gtggacatgg aggtcatcga gcgcgacgag cgcacgacgc ccaacgagct ggacctccag 13500ttctttggcg acgacaccta cttgcatgct gtcgtcgagt tccccgcgca gctcttctcc 13560gaggtgaccg tccggcgtct gatgcagcgt caccagaagg tcatagagtt catgtgcgcg 13620acgctggggg ctcggtga

13638133072DNACystobacter velatusmisc_feature(1)..(3072)CysL 13gtgaacgtgc tcgctaggca ttccaccggc tcccacgacg agccggtggc cggcgacgtc 60gaactccgcg tcggtggccc cggtgtgccg gacgctcatt ccagcgagag cgttgaagtg 120ctggcgcggt ggctgcggac cgccgaggag aagtacccgg gcgtcatggg cccgatccgc 180caggagggcc cctggttcgc catcccgttg acctgcccgc gcggtgcccg gtcggcgcga 240ttcggcctct ggctcgggga actagaccgt cagggacagc tcctccacat ggtcgcctcg 300tatctggcgg ccgtgcacca cgtgctggtc agcgttcgcg agcccagcgc caacgtgctg 360gaggtgctgg tctctgactc aacaacgcca tctgggctca accggttcct gaacggcctg 420gactccgtcc tggagatcct ggctcacggg cgcagcgacc tcctcctgca gcatctcacg 480ggccggctgc cccccgacga gatgcccttc gtggaggacc gtgaggagcg cgaggagcac 540ccggccaccg atgtcgaggc cgatgcggtt gtctccgtcc tgttccaacc agttgacttc 600ccgagcctgg cgaggctgga cgcgagcctc ctcgcgtatg acgacgagga tgccggcgcg 660gtgggccggg tcctggggga gctcctccag ccgttcctgc tcgactccgc caggatgacc 720gtggggcgaa aggcggtgag ggtcgatcac atctgcctgc ctggcttgtt gcgagccgac 780agcagagcgg cggaggagtc ggttctcgcg cccgccttgc gcttggcgac gaagcccggt 840cggcatttcg tcgcgttgtg ccggaacacc gccctgcggc tgggagacag gctgccccac 900ttgctcgcgc agggcccgct ctgcgatggc gcgtcaacgg cgctccttct gttgcaacgg 960gtgctggaca cgcttatcgg gagcggggga ctgaaggacc atcgcctcac gctcgagctg 1020gttggcgccg atccacggac cgaggccgcg tttcgggccc ggactccgtg gctggtggcg 1080gaacgggccg cttcggctgc atcaacggat gcaccgcgcg tcgacgtcgt cgtcctgttc 1140ccggcggcac ggccgagcgc gctcgagctg cggccagaca gcgtcgtcat cgaccttttt 1200ggcacctgga gcctgagacc gcgacccgag gttctggcga agaacatcgt ctacgtgcga 1260ggggcctcgg tccgtctcgc cggagaggcc gtcgtctcga ctccctcctt cgcgccggat 1320cgagtggagc cggcgctcct cgaggcgctt ctccgggaac tcgacgcgga ggccagtagt 1380gacgggctcg cccacgagca ccgccttgag attggcggca ttcgcgggtt ctggggtgag 1440atccgccggg cggagtggga cgcctttcat tcgcgccgcc ggggggagct ggcgaggttt 1500caggtgtcgg ggcaggtgac cgccgccaat ccggggctcg ccagcctgcc cgatggggcg 1560acgaacatct gcgaatacat cttccgggaa gcgcaccttc gctccggctc gtgcctcgtc 1620gatccccaga gcggccagtc cgcgacctac gccgagctgc ggcgactggc ggcagcgtac 1680gcgcggcggt ttcgggcatt ggggctccgc cagggagacg tcgtggcgct cgcggcgccg 1740gatgggattt cgtccgtcgc ggtgatgctg ggttgcttcc tgggcgggtg ggtcttcgcg 1800ccgctcaacc acaccgcctc ggccgtgaac ttcgaggcga tgttgagttc cgccagtccc 1860cgcctggtgc tccatgccgc gtcgacggtc gcccgccatc tgccggtcct gagcacgcgg 1920cgatgcgcgg aactcgcgtc cttcctgccg ccggacgcgc tggacggcgt ggagggggac 1980gtcacccccc tgccagtgtc accggaagcc cccgccgtca tgctgttcac ctcgggctcc 2040acgggggggc cgaaggcagt gacgcacacc cacgccgact tcatcacctg cagtcgcaac 2100tacgcaccct atgtcgtcga actcagaccg gacgatcgtg tctatacgcc gtccccgacc 2160ttcttcgcct atggattgaa caacttgctg ctgtccctca gcgcgggggc cacgcacgtg 2220atctcggtcc ctcgcaacgg cgggatgggt gtcgcggaga tcctcgcgcg gaacgaagta 2280accgtgctct tcgcggttcc cgccgtctat aagctgatca tctcgaagaa cgaccggggc 2340ctgcggttgc cgaagttgag attgtgcatc tctgctggcg agaagctgcc attgaagctg 2400tatcgggagg cgcgaagctt cttcagcgtg aacgtactgg acgggatcgg gtgcaccgaa 2460gccatctcga cgttcatctc gaaccgggag agttatgtcg cgcccgggtg cacgggcgtg 2520gtggtcccgg ggttcgaggt caagctggtg aacccgcgtg gcgagctctg ccgggtggga 2580gaggtgggcg tcctctgggt tcggggtggg gcgctgaccc ggggctacgt gaacgccccc 2640gatctgacag agaagcactt cgtggacggc tggttcaaca cccaggacat gttcttcatg 2700gatgccgagt accggctcta caacgtgggc agggctggtt cggtcatcaa gatcaattcc 2760tgctggttct caccggagat gatggagtcg gtcctgcaat cccatccagc ggtgaaggag 2820tgtgccgtct gcgtcgtcat tgacgactac gggttgccaa ggccgaaggc attcatcgtc 2880accggcgagc atgagcgctc cgagccggag ctcgagcact tgtgggccga gttgcgcgtt 2940ctgtcgaaag agaagcttgg gaaggaccac tacccgcatc tgttcgcgac catcaaaacg 3000cttccccgga cctccagcgg gaagctgatg cggtccgaac tcgcgaagct gctcaccagc 3060gggcccccat ga 307214117DNACystobacter velatusmisc_feature(1)..(117)CysM 14atgaatccaa agttcctcgg aggcctgggg gcaggggtgt gcatcgcctc tttgttccag 60acggtcatgc ggaccgtgcc gctcaaggac gccggctccg gcgacagggc ttgttag 117151074DNACystobacter velatusmisc_feature(1)..(1074)CysN 15atgtcgactc gcaccaagaa cttcaatgtc atgggaatcg actggatgcc ttcctccgcg 60gagttcaagc gacgcgtccc gcggacccag cgggcggcag aggccgtgct cgccggacgg 120agatgcttga tggatatcct ggaccgcggg gatcctcgcc tcttcgtcat cgtggggccc 180tgctccattc acgatccggt ggcggggctg gactatgcga agcggctgcg gaaactcgct 240gatgaggttc gcgagaccct gttcgtggtg atgcgcgtgt acttcgaaaa gccgcgcacc 300accacgggtt ggaaaggctt catcaatgac ccgcgcatgg atggctcttt ccacatcgag 360gagggcatgg agcggggacg tcgcttcctg ctcgacgtgg ccgaggaggg tctacccgct 420gccaccgagg cgctggaccc catcgcgtcg cagtactacg gcgacctcat ttcctggacg 480gccattggcg cgcgcaccgc cgagtcgcag acgcaccgcg agatggcgtc cggcctttcc 540accccagtag gcttcaagaa cggcacggac ggctcgctgg atgcggccgt caatggcatc 600atctccgctt cacacccgca cagcttcctg ggggtgagcg aaaatggcgc gtgcgccatc 660atccgcacgc gcggcaacac ctacggccac ctggtgctgc gcggcggtgg tgggcggccc 720aactacgacg ccgtgtcggt ggcgcttgcg gagaaggcgc ttgccaaggc caggctaccc 780accaacatcg tggtggactg ctctcacgcc aactcctgga agaatcccga gctccagccg 840ctggtgatgc gggacgtggt gcaccagatt cgcgagggca accgctcggt ggtgggcctg 900atgatcgaga gcttcatcga ggcaggcaac cagcccatcc cggcggacct gtcgcaactg 960cgctacggct gctcggtcac tgatgcatgt gtggactgga agaccaccga gaagatgctg 1020tacagcgcgc acgaggagct gctccacatt ctgccccgta gcaaggtggc ttga 107416612DNACystobacter velatusmisc_feature(1)..(612)CysO 16atgcccgccc gctccactcc ctctctggaa agtggcgact ttttcgccga cgtcacgttt 60tctgatctct cgatcgagtc ggctgatctc tccggcaagg aattcgagcg ctgcacgttc 120cggcggtgca agttgcccga aagccgctgg gtccggagcc gcctggagga ttgtgtattc 180gagggatgcg atctcctgcg gatggtaccg gagaagctcg cgctgcgaag cgtgaccttc 240aaagacaccc gcctcatggg cgtggactgg agtggactcg gaaccatgcc ggacgtccag 300ttcgaacagt gcgatctgcg ctacagctcc ttcttgaagt tgaatctacg caagacgcgg 360ttcgttggct gctccgcgcg cgaagccaac ttcattgacg tggacctcgc cgagtcggac 420ttcaccggca ccgatatgcc aggatgcacc atgcagggct gcgtcctcac caagaccaat 480tttgctcgat cgaccaattt catcttcgac ccgaaggcga accaggtcaa agggacgcgt 540gttggcgtgg agaccgccgt cgccctcgcc caggcgttgg gaatggtggt cgacggctat 600cagacaccct ga 61217702DNACystobacter velatusmisc_feature(1)..(702)CysP 17atgaaacggt tcttcaagct ccagttgcgc accaccaacg tccccgcggc acgggcgttc 60tacacggctc tgttcggtga gggcgccgcc aacgcagaca tcgtgccgct gcccgagcag 120gcgattgccc gcggcgcacc cgcccattgg ctgggttacg tcggcgtcga ggacgtcgat 180gaagcggtgc gctcgttcgt ggggcgcggg gcgacccagc tcggcccgac ccacccgacg 240aacgacggcg ggcgcgtcgc gatcctccgc gatcctggag gggcgacctt cgccgtggcg 300acggcaccgg caacgacgag agcgctccag ccggaggtgg tctggcagca gctctatgcc 360gcgaacgtgc aacagacggc cgcctcgtat tgcgacctgt tcggatggcg gctctcggat 420cgccgcgacc ttggtgcgct gggggttcac caggagttca cctggcgctc ggacgagccg 480agcgccggct cggtcgtgga cgtggcgggg ctcaaggggg tccattcaca ctggctgttc 540catttccgcg tcgccgcgct cgatcccgcg atggaggtcg tccgcaaggc cggaggcgtc 600gtcatcggcc ccatggaact tccgaatggc gatcgcatcg ccgtgtgcga ggatccgcaa 660cgggcggcgt tcgcgcttcg cgaatccagc cacggacgct ga 70218795DNACystobacter velatusmisc_feature(1)..(795)CysQ 18atgcaagaga tcggccagac ggcactttgg gtggcgggaa tgcgcgcgct tgagaccgag 60cgttccaacc cactgttccg ggatcccttt gcccgtcgac tcgccggtga cacgctcgtc 120gaggagctgc ggcgccgcaa tgccggtgag ggcgccatgc ctcccgccat cgaggttcgc 180acgcgctggc tcgatgatca gatcacgctg gggttgggcc gcggcatccg ccagatcgtc 240atcctcgccg cgggaatgga tgcccgcgcc taccgtttgg cctggccggg agacacgcgg 300ctgttcgagc tcgaccacga cgccgtgctc caggacaagg aggcgaagct gaccggcgtc 360gcgccgaaat gtgagcgaca tgccgtgtcg gtcgatctgg ccgatgactg gccggcggcg 420ctgaagaaaa gcggattcga tcccggcgtg cccaccctgt ggctcatcga gggattgctc 480gtctacctca ccgaggcgca ggtcacgctg ctcatggccc gtgtcaacgc cctgagcgtt 540cccgagagca tcgtcctcat cgacgtcgtt ggccgttcga ttttggactc ctcgcgcgtc 600aagttgatgc acgacctcgc ccgccagttc ggcaccgacg agcccgaggt gattctaagg 660ccgattggct gggaccccca cgtctacacc accgcggcca tcgggaagca gctcgggcgc 720tggcccttcc ccgtggcgcc acgcggcacc cccggtgtgc cccagggata cctggtgcac 780ggagtcaagc gctga 795191002DNACystobacter velatusmisc_feature(1)..(1002)CysR 19gtgaatggga cgacagggaa gacagggttg gtagcagaaa ggtcgggcgc gatttccccg 60agggactaca agtccaagga gttggtgtgg gattcgcttg ccgccacacg cagcaagccc 120cggcgcgtac tgccggaggg ggacgtggtc gggcacctgt acccgccggc caaggcggcc 180ctgctcaccc acccgctcat gaagaacctt ccgcccgaga cgctgcggct gttcttcatc 240cactccgcct acaagttcat gggggacatc gccatcttcg agacggagac cgtcaacgag 300gtggcgatga agatcgccaa cggtcacacg cccatcacgt tcccggacga catccgccac 360gacgcgctca ccgtcatcat cgatgaggcc tatcacgcct acgtggcacg cgacttcatg 420cggcagatcg agcagcgcac gggcgtcaag ccgctgcccc tgggaacgga aacggacctg 480tccagggcca tggctttcgg caagcaccgg ctgcccgaga cgctgcacgg gctctgggaa 540atcatcgccg tctgcatcgg ggaaaacaca ctcaccaagg atctgctgaa cctgacgggt 600gagaagtcct tcaacgaagt gctccatcag gtgatggagg accatgttcg cgacgagggc 660cgccacgcgg tcctcttcat gaacgtgctc aagctggtgt ggagtgagat ggaggagagc 720gcccggctcg ccatcggtca gctgctgcca gagttcatcc gcgagtacct cagcccgaag 780atgatggcgg agtacgagcg cgtcgtgctg gagcagctcg gtctagcggc cgagcacatc 840gagcggatcc tctccgagac gtactcggag ccgccgctgg aggatttccg cgcgcgatat 900cccctctccg ggtacctggt ctacgtgctg atgcagtgcg acgtcctgtc gcacgcgccg 960acgcgcgagg cgttccgccg attcaagctg ctcgcccact ga 1002201929DNACystobacter velatusmisc_feature(1)..(1929)CysS 20atggccaacc agcgggtcgc attcattgag ttgacggtct tctctggcgt ttatcccttg 60gcctctggct acatgcgtgg cgtggccgag cagaacccct tgatcaggga gtcgtgcagc 120ttcgaaatcc actcgatctg catcaacgac gaccgattcg aagacaagct caacaagatc 180gatgccgatg tctacgcgat ctcttgctat gtctggaaca tgggcttcgt gaagcggtgg 240ctccccaccc tcaccgcccg caagcccaac gcgcacatca tccttggcgg tccgcaggtg 300atgaaccacg gggcgcagta cctggatccg ggcaacgagc gggtggtgct ctgcaacggt 360gagggtgagt ataccttcgc gaactacctg gccgaactct gctcccccca gcccgacctt 420ggcaaggtca agggcctctc cttctaccgg aacggagagc tgatcacgac cgagccccaa 480gcgcgcatcc aggatctgaa cacggtccca tctccctacc tggaaggcta cttcgacagc 540gagaagtacg tgtgggcgcc ccttgagacg aaccggggat gcccctacca gtgcacctac 600tgcttctggg gggcggcgac caactcgcgc gtgttcaagt ccgacatgga ccgggtcaag 660gcggagatca cctggctcag ccagcaccgg gcgttctaca tcttcatcac cgacgcgaat 720ttcggcatgc tgacccgcga cattgagatc gcccagcaca tcgccgagtg caagcggaag 780tatggctatc cgctcaccat ttggctgagc gcggcgaaga actcgcctga ccgggtcacg 840cagatcacgc ggatcctgag ccaggagggt ttgatctcca cccagccggt ctcgctccag 900acgatggacg cgaacacgct gaagagcgtg aagcgcggca acatcaagga gagcgcctac 960ctgagcctcc aggaagaact gcaccgcagc aagctctcct cgttcgtgga gatgatctgg 1020ccgcttcccg gcgagacgct ggagaccttc agggagggca tcgggaagct ctgcagctac 1080gacgccgacg cgatcctcat ccaccacctc ctgctcatca acaacgtgcc gatgaacagc 1140cagcgcgagg agttcaagct ggaggtgtcg aatgatgaag acccgaacag cgaggcgcag 1200gtcgtcgtcg cgacgaagga cgttacccgc gaggaataca aggagggtgt gcggttcggg 1260tatcatctca cgagcctgta cagcctgcgc gcactccgct tcgtcgggag gtacctcgac 1320aagcaggggc ggctggcctt caaggacttg atctcctcgt tctcggagta ctgcaagcgg 1380aaccctgacc acccctacac gcagtacatc accagcgtga tcgacgggac cagccagtcg 1440aagttcagcg ccaacggcgg catcttccac gtcacacttc acgagttccg cagagagttc 1500gaccaactgc tcttcgggtt cattcaaacc ctgggcatga tgaacgatga gctgctggag 1560ttcctgttcg agatggatct cctcaaccgt ccgcacgtgt acagcaacac gcccatcaat 1620aatggcgaag ggttgctgaa acacgtgacg gtcgtctcga aggagaagga tgccattgtc 1680ctgcgcgttc ccgaaaagta cgcgcagctc acgtctgagc tactcgggct cgagggcgct 1740cccagcacga gcctgcgcgt gaagtaccgc gggactcaaa tgccgttcat ggcgaacaag 1800ccgtacgagg acaacctctc ctactgcgag gcgaagctcc acaagatggg aagcatactt 1860ccggtctggg agtcggccgt cccttcgcgc acaccggtcc ggcggccaca agtggccgtc 1920gcgggctga 1929213804DNACystobacter velatusmisc_feature(1)..(3804)CysT 21atgcatcgag tgaagccgtt gatagggccc gtcctgtcgg cgctgttgct gtgtgccctg 60cccgccaggg cgcagatcgc cgcggcccac gtctaccaca accacatgcc caacttctgg 120gcctactacg acctgggcca atacgcgtcc acgcccaccg gcggccccat ccggtacatg 180tatgacgcgc aggtcatcaa cctgaagaag aatcccccgt ccaattacac atactacctg 240ccatcgggcg cgcccatgcc gcacgatgac ctcgtcacct attactcgca caacgcgaag 300acgggtgcct acctgtactg gcctccaagc gtcgcctcgg acatgaaaac caatgccccc 360accggccagg tgcacgtcac catgtccggc gccgtggtga acaatgtcca ggatctcgtc 420accctgaaga acgtccccgg ctacgacaat ccgaactggg gcgcctcctg gaaggaccgc 480tacagcgccc tgctcacccc cgcgggcaac cgcaccctgg atctcatcca cttcaccggc 540caccactcca tggggcccct ggtcggtccc gactacttcc tcaaggatct catctaccag 600agcgccacgc tcgcccagcc ctacttcctc ggcggctcct tccagtcctc caagggcttc 660ttccccaccg agctcggctt ctccgagcgc ctcatcccca ccctctccaa gctcggcgtg 720cagtgggccg tcatcggcga caaccacttc tcccgcaccc tcaaggacta cccctacctc 780aacgatccgg gctccgacac gctcgtctcc ccgcccaacc gcgccgatct ccagaacacc 840agctccgtgg gctcctgggt gagcgcccag atggcccacg agcagcaggt catcaagaac 900aagtacccct tcgcctccac tccccactgg gtgcgctacg tggaccccgc cacgggcgcc 960gagtcgcgcg tcgtcggcat ccccgtcaac cagaacggct cctggctcga gggctgggaa 1020ggcgaggcca ccgtcgacgt cgtcaacctc aagagcttcg agggcctcgt tccccagcgg 1080cagttcttcg tcatcgcgca tgatggcgac aactcgagcg gacgcgccgg ctccgactcc 1140acctggtaca acggccgctc cgtcacctgc gccaatggcg tgcagtgcgt gggcatctcc 1200gagtacctcg tccaccacac ccccgcctcc accgacgtgg tgcacgtcca ggacggctcg 1260tgggtggaca cgcgcgactc ctcctcggat ccccagtggc accactggaa gctgcccttc 1320ggcatctgga agggtcagtt ccccgccttc aacgccgcca ccggcctcaa tctctctccc 1380aagacgaacc tcagcggcgt gcaggagggc atgacggtct ccctcgagca cggctggcac 1440tacctcgagc gcaacttcgc cctgctccag gccgccctca actacgcgaa gaccgccgag 1500cagatctggc tcgacgcgca ccccaatcac tggtcgccca ccaccgcgat cgacaagcag 1560atcacccaca cgggcaacca gctcaacccg tggatgatgt cctttcccgt caagggcgac 1620gtgaacaacg actgggcggg cggcgccaac cccgcggaac tcgcctggta cttcctgctg 1680cccgccatgg actcgggctt cggctactac gacgagaacc aggacgacaa cgtcaagccc 1740acgctgtcct tcaatcaatc cctctacttc tccaagccct acgtgcagca gcgcatcgcc 1800caggacaaga cgggcccctc cgtctggtgg gcccagcgct ggccctacaa ccccggcagc 1860gccaacaccg acaagtccga gggctggacg ctccacttct tcaacaacca cttcgccctc 1920tacacctacg cctacgacgc gagcggcatc tcctccatca aggcccgcgt ccgggtgcac 1980acccacaaga gcatcgaccc gctcgacaac acccacaagg tctatgatcc ggcggcgcgc 2040aaggccgcgg gtgttcccaa catcgatccg gcccgcgtgg gcgcctgggt ggactacccg 2100ctcacccggc gcgacctgaa gcctgtcatg aatggtgttt cctggcagcc cgcctacctg 2160cccgtcatgg ccaaggtgcc cgcgcaggag atcggcgacc tctactacgt ctacctgggc 2220aactaccgcg accagctcct cgactactac atcgaggcca ccgacagccg gggcaacatc 2280acccggggag agatccagtc cgtctacgtg ggctcgggcc ggtacaacct ggtgggcggc 2340aagtacatcg aggaccccaa cggcacggta cagggaacgc atcccttcct cgtggtggac 2400accaccgcgc cctcggtccc ctcgggactg accgcgaagg cgaagacgga ccgctcggtg 2460accctgagct ggagcgcggc ctcggacaac gtggcggtga gcggctatga cgtcttccgc 2520gatggcacgc aggtgggctc gagcaccagc acggcctata ccgacagcgg cctctccccg 2580agcactcaat acagctacac cgtgcgcgcc cgggacgcgg cgggcaacgc gtccgcccag 2640agcaccgccc tgagcgtcgc caccctgacg ccggacacca ccccaccctc cgttccctcg 2700ggcctgacgg cgtcgggcac gacgagctcc tcggtggccc tcgcctggac ggcctccacc 2760gacaactacg gcgtcgcgaa ctacgaggtg ctccgaaacg gcacccaggt cgcgtccgtc 2820acggggacga cctactcgga taccggcctc tcgccgagca ccacctacag ctacaccgtg 2880cgcgcccggg acgcggcggg caatgtctcc tcgcccagca cggccctgtc cgtcaccacc 2940cagacgggca acagcgccac cgtctactat ttcaacaaca acttcgccct caaatacatc 3000cacttccgca tcggcggtgg cacgtggacg accgtgcccg gcaacgtcat ggccacctcc 3060gaggtgccgg gctacgccaa atacaccgtc aatctgggag cggccaccca gctcgagtgt 3120gtcttcaacg atggcaaggg cacctgggac aacaacaagg gcaacaacta cctcctgccc 3180gcgggcacct ccacggtgaa ggacggcgtc gtctccagcg gagcgcccgc gctcgacacc 3240accgcaccct ccgtcccctc gggcctcacg gcggcgtcca agacgtcctc ctccgtgtcg 3300ctctcctgga gcgcctccac ggatgccagc ggcatcgccg gatatgacgt gtaccgcgat 3360ggctcgctgg tgggctcacc cgtctccacc agctacaccg acagcgacct gagtgccggc 3420acgacctacc gctacaccgt gcgcgcgcgc gacaccgcgg gcaatgcctc cgcccagagc 3480accgccctga gcgtcaccac gagcacctcc tcggccacct ccgtcacctt caacgtgacg 3540gccagcaccg tcgtgggaca gaacgtctac ctcgtgggta accatgccgc gctcggcaac 3600tggaacaccg gcgccgccat cctcctgtct ccggccagct acccgaagtg gagcgtgacg 3660ctcagcctgc ccggctcgac ggccctcgaa tacaagtaca tcaagaagga cggctccggg 3720aacgtcacct gggagagcgg cgccaaccgc tcgaccacga tccccgcctc ggggaccgcg 3780accctcaacg acacctggaa gtag 380422831DNACystobacter velatusmisc_feature(1)..(831)ORF1 22gtgccacatc catccgagca gagcgctccg tcgggactcc gggcgcggct gcacgaaatc 60atcttcgagt cggacacccc ggcgggccgc gccttcgatg tggcattgct gtgggccatc 120gtgctcagcg tcctcgcggt gatgctcgag agcgtggagt ccatcagcgt ccagcatggg 180cagaccatcc gcgtcctcga gtggtgtttc accgggctct tcacactgga gtacgtgctg 240cggctgctgt cggtgaaacg gccgctgcgc tatgcgctga gcttcttcgg gctggtggat 300ctgctggcca tcctgccctc ggtgctgagc ttgatgctgc ccggcatgca gtccctgctg 360gtggtgcggg tgttccgcct gctgcgcgtc ttccgcgtac tcaagctcgc cagcttcctc 420ggggaggcgg acgtgctgct caccgcgctc cgggccagtc ggcggaagat catcgtcttc 480ctcggggcgg tgctgagcac ggtcgtcatc atgggcgcgg tgatgtacat ggtggagggg 540cgcgccaacg gcttcgacag catcccgcgg gggatgtatt gggccatcgt gacgatgacc 600acggtgggct acggagacct ctcgcccaag acggtgcccg gacagttcat cgcctcggtg 660ttgatgatca tgggctacgg catcctcgcg gtgcccacgg gcatcgtgtc cgtggagctc 720gcccaggcga cccggcagca cgccatcgac ccgcgcgcct gtcccggctg cggcctgcag 780ggccacgacc tggacgcgca ccactgcaag cactgcggca ccgccctctg a 83123237DNACystobacter velatusmisc_feature(1)..(237)ORF2 23atggcacagg accaggacag ggagaagctg cattccgacg cggacaagga gaggctgcac 60ccgaaggtcg actcgggtga cgtctcgggc cggggccgcg agcggcggcc cgacgaggaa 120taccccaagc agcgcaacgc gggcgagttc

ggcacccacg gaggccccaa caagggcggc 180aaggaagacc ggcggcaact gcatgccccc ggcagctcca aggcgggctc ccagtag 23724489DNACystobacter velatusmisc_feature(1)..(489)ORF3 24atgggaagaa cctacagttt cgaacccttc ttgtcgcagc aacccgcgca gacctacaag 60ggctcgggtc cccggctcgg caatgaagaa cacaagatcg ccctcaccaa ggaagaggag 120aaggcggccc tgcctgacac gcccaccggc tatggacagg cccacgccga gaccgtgaag 180cgctaccgcg cccgcgcgga gaagaagcgc acggagccca agacccccgc tacccgggcg 240aagaaggccg cccccaaggc gaagcccacc cggaaggtgg cgacgcaaga ggccaccgcc 300aaggccccta cccgtcaagc gcgggaggag accgagccga aggcccccgc gcgcaagaag 360ctgagcgcca cggggctcgt gggtagcatc gggcgcaagg tggtgactcg ggccgcggtc 420gcggcgaaga agaccgtggc gcgcgccgtg aagaccgccg ccgcgcgcaa gtccgcgaag 480aagcgctga 48925264DNACystobacter velatusmisc_feature(1)..(264)ORF4 25atgagcccgg caagacgcaa ggagagcaag cagcacgaag tgggctccgc cacacacgca 60cggcgggtga tcgtggcgac ggatggccgg ggttggtacg tccgattcga gggcaaccgt 120cagctcggcc ggtattccaa cgtgacccag gccatccacg gcgggcgcag gctggctcgc 180cagcacaagc ccgcgggcct cgtggtgcgc tacctggacg gggaagagga agagtcctgg 240tacggggacc gcgaggcgcc ttga 26426450DNACystobacter velatusmisc_feature(1)..(450)ORF5 26atgaaacaca tcaaggcggt ggtggtgggt gcgttgtccg cggctctgct cttcggcgtg 60ggatgtcaga cgacgggcgg tgctgggaat caaggaacgg gcgggagcga tacgtctcag 120ggcggcacca tgaccggaag tgagacgacc ggaaccggaa cgaccggagg caccacggaa 180ggtggtgaca ccacgggcgg aggcaccggc ggaacaggtg ctggcgacat cgacggttcg 240agcagtggca gcacgggctc cggtagcgac gtgggcggct ccggcggctc gggcgtgtcc 300agtgaaccgg gcggtttcag ccccgacgcc tcgggcgtgg acagcgacct gggcggctcc 360ggcaccggca gtgacgtgga cggctccggc agcacggact ccagcggcaa catgagcggc 420acgggctccg aagacgacac cagccgctga 450271578DNACystobacter velatusmisc_feature(1)..(1578)ORF6 27atgagcacgc gcacctccct ggccctggcc gcgtccctcg ccgcgctgcc cgcgctcgcc 60caggagcgtc ccagcgaggg cgacctcttc ggcggcgaca ctccagagac gaagcccgct 120ccggccgatg cgccccgccc cgacgagagt tccctcttcg gtgacacccc cgcgtccacc 180ccggccgcac agagcgcggc ggccaccgcg gcccccgaca agccctccgc cacgccccag 240gaccgggatg cgcaggcgct cggtggcccg tcggccacca acgccttcga caccgaggag 300gccgtcgagg atccgctgaa gatcggcggc cgcttctacc tgcgcgccta ctcacaggcc 360aacgaagggg tgtccttcag caacaccacc ttctccgccc ccatgctggt ggacggctac 420ttcgatgccc gccccaccga gcggctgcgc ggcttcgtgc tcggacggct caccttcgat 480ccgacccgca aggcgggctc cctcggcatc gtccccacga gcacgtccac ctccaacgtc 540gctgcggatc cggtcgtgct gttggatcag gcctggctgc gcttcgacct ggaccacaag 600ctcttcatca ccgtcggcaa gcagcacgtg aagtggggca cctcgcgctt ctggaacccc 660accgacttcc tctcgcccca gcgcagggat ccgctcgccc tcttggacac gcgcaccggc 720gcgaccatgc tcaagatgca catgccctgg gaggcgaaag gctggaactt ctacgtcctc 780ggcctgctcg acaacgccgg cccggccaat acgctcggcc gcgtcggggg cgctgctcgc 840gccgaggtgg tgctcggcca tacggaactc ggcgtcgatg ccgtgctcca acacggccgc 900aagccccgct tcgggctcga cctctcctcc gggctcggcc ccatcgacat ctacggcgaa 960ctcgccctca agaagggctc ggatgcgccc atgttccgca tgccccaagg tgtctccctc 1020ggagacctgc tcggtcagtt ccagggcaat ggcggcatgc ctcccgacct gggcgcgctc 1080cccatagagg cgtactaccc cgagggttac acgccgcagg tgagcggcgg cgcgacctgg 1140acgttcgcct actcggagag cgacaccgcc accgtgggcg tcgagtactt ctacaattcg 1200atgggctatc ccggctcgct ggcctacccc tacctcatcc tccagggcca gtatcagccc 1260ttctacctcg gccggcacta cgccgccgtc tacgcgttcc tgtccggtcc gggatcctgg 1320gacaacacca acttcatcct gtccaacctg ggcaacctct ctgaccgttc tttcatcaca 1380cggttggacg tgacgcaccg ggccctgcgc tatctcagca tcgaggcctt catcgccgcc 1440aactatggcc agcggggtgg cgagttccgc ttcgcgctca acctgccggc cctgcgcatg 1500ggcgagcagg tgacgcctcc catcgccgtc gctccaccta ccatccaggc cggggtgggt 1560ctgcgcatcg acctttga 157828786DNACystobacter velatusmisc_feature(1)..(786)ORF7 28atgaccctgc gcaacctcct cggcgccctg ttcgccgcgc tgctgctggc cgctccgacc 60gctcgcgcgg acctcaccga ccccgccgag atcaagaagc tcctggagac gctcgacaac 120cgccagcgca acggcggcga ctacaagtcg ctggtgtata tcgagcagaa ggagaaggac 180aaaacagacg tcgtgcgcga ggccgtcgtc taccggcgcg acgagaagga tcagctgatg 240atcctcatga ccaagcccaa gggcgaggcc ggcaagggct acctgcggct ggacaagaac 300ctctggagct acgacccgaa caccggcaag tgggaccggc gcaccgagcg tgagcgtatc 360gccggcaccg acagccgccg cgccgacttc gacgagtcgc gcctggccga ggagctcgat 420ggcaagttcg agggcgagga gaaactcggc aagttcacca cctggaagct cgtcctcacc 480gccaagccga acgtggacgt cgcctacccc gtggtacacc tgtgggtgga gaaggacacg 540aacaacatcc tcaagcgcca ggagttcgcc ctttccggcc gcctgatgcg cacctcctac 600ttccccaagt ggatgaagct cttcagcgag tccaagaagg ccgacgtctg gtacccgcag 660gagatgcgct tctatgacga ggtggagaag accaactcca ccgtcatcgt cgtgaagagc 720gtggacctgc gctcgctcga ggagaacatc ttcaccaagg cctggttcga gagcaaaagc 780cgatga 786291302DNACystobacter velatusmisc_feature(1)..(1302)ORF8 29atgcaacagc tcctcctcat cgcagtgcgc aacctgggca cccacaagcg ccgtacgctt 60ctgctgggcg gcgccatcgc cggtgtcacg gccctgctcg tcatcctcat gggcctgtcc 120aacggcatga aggacacgat gctccggtcc gccaccacgc tggtgaccgg gcacgtcaac 180gtggctggct tctacaaggt gacggccggc cagtctgcgc ccgtggtgac ctcctacccc 240aagctgctcg agcagctgcg caaggaagtc cccgagctgg acttctccgt ccagcgcacg 300cgcggctggg tcaagttggt gagcgagtct ggctccgtgc agacgggaat cggcggcatc 360gacgtagcgg ccgagactgg catccgcaag gtgctgcagt tgcgggaggg tcggttggaa 420gacctggcgc aacccaatac cctcctcctc ttcgacgagc aggcgaagcg gctcgaggtc 480aaggtgggtg acagcgtcac cctctccgcg tccaccatgc gcgggatcag caacaccgtg 540gacgtacgtg tggtggccat cgccgccaac gtgggcatgc tgagttcctt caacgtcttg 600gtgcccaacg ccaccctgcg cgccctctac cagctgcgcg aggactccac cggcgccctc 660atgctccacc tcaaggacat gagcgccatc cccagcgtgc aggcgcgcct ctacaagcgt 720ctgcccgagt tgggttatca ggtgctggag catgaccccc gggccttctt catgaagttc 780cagaccgtca accgcgaggc ctggacgggg cagaagctgg acatcaccaa ctgggaggac 840gagatctcct tcatcaagtg gaccgtgtcg gcgatggacg ccctcaccgg cgtcctcatc 900ttcgtgctgc tcatcatcat cgcggtgggc atcatgaaca ccctgtggat cgccatccgc 960gagcgcaccc gggaaatcgg caccctgcgc gccatcggca tgcagcgctg gtacgtgctg 1020gtgatgttcc tcctggaggc gctcgtgctc ggactgctcg gcaccacggt gggcgccctc 1080gtgggcatgg gcgtgtgcct gctcatcaac gccgtggacc cctccgtgcc cgtgcccgtc 1140cagctcttca tcctctccga caagctccac ctcatcgtga agcccggatc ggtgatgaga 1200gccatcgcgt tcatcacgct gtgcaccacc ttcatctcgc tcattccctc tttcctcgcc 1260gcgcggatga agcccatcac ggcgatgcac cacatcgggt ga 1302302106DNACystobacter velatusmisc_feature(1)..(2106)ORF9 30atgggccaac tcaagctcct gctccaagtg gccctgcgca acttgttcgt gagcaggatc 60aacctcctca tcggaggcat catcttcttc ggcaccgtgc tggtggtggt gggcggctcc 120ctcgtcgaca gcgtggacga ggcgatgagc cgcagcatta tcggcagcgt cgccggccac 180ctccaggtgt actcggccca ctccaaggac gagctctcgc tcttcgggca gatgggccgc 240gaaccggacc tgagcgcgct ggatgacttc tcgcgcatca agcaactggt acagcagcac 300cccaacgtga agacggtggt gcccatgggc accggcgcca cgttcatcaa ctcgggaaac 360accatcgacc tgaccttggc gcgcctgcgc gacctctaca agaaagcagc acagggcgac 420acacccgaac tccgcgggca gatccacagc ctccaggcgc atgtgcgtca catcatcacc 480ttgctcgagg aggatatgaa gcggcgcagg gaaatcatcg acgacaagac cacggacccc 540gcggacgcgg aggccatggc ccgcgcccgt tccgaggcct tctgggcgga cttcgacgag 600aagccattcg actcgctcga gttcctggag aaccgcatcg ccccgtatat gacggacggg 660gacatgttgt ccctgcgcta tgtaggcacc gacctggtca acttccagaa gaccttcgac 720cgcatgcgca tcgtggaggg cacgccggtg cccccggggc accgcggcat gatgctctcc 780aagttcacct acgagaacga cttcaagctg aagacggcgc accggttgga tctcatcaag 840gaggcgcgtg ataccaacca caagaccatc gcgatggatc cgcaactcca gcgctgggtg 900aaggagaacc agacccagac gcgggagatc ctcttccagc tcgacgacct caagacgaag 960caggccgtgg agcggctcca gcgcgtgctg ggcagccagg agacggacct gggcaagcta 1020ctgcccgcct tcttcaccat ggatgacgcc aacttcgaca cgcgctacca gcagttctac 1080tccgagctgg cgacgctgct cgacctgtac cgcatccgca tcggggacga cctcaccatc 1140accgcattct cgcgcaccgg ctatgtgcag agcgtgaacg tgaagatcta cggcacctac 1200cagttcgacg ggctggagaa gtccgcggtc gccggagccc tcaacctgct ggacctgatg 1260tccttccgcg agctgtacgg ctatctcacc gctgagaaga aggccgagct cgcgggcctg 1320cagaaggcca gcggggtgca gcaggtgaag cgcgaggacg ccgagacggc gctctttggc 1380gagcagggca gcgcctcgct ggtggccgag gggaccgccg gccagatcga cgaggacaag 1440caactcgacg ggctcgccca gaagctgcac cgcgaggagc tcgcctcccg ggtgtacacg 1500cagcaggaaa tcgaaagcgg cgtggtgctc agcaccgcgg ttctgctgaa gcatccggag 1560aagctggagc agaccctggc cgagctgcgg aaatcggcgg acgacgcgaa actacccttg 1620cggatcatct cctggcagaa ggcctccggc acgatcggcc agttcgtcct ggtcgccaag 1680ctggtgctct acttcgccgt cttcatcatc ttcgtggtgg cgctcgtcat catcaacaac 1740gcgatgatga tggccacgct gcagcgggtg cgcgaggtgg gcaccctgcg ggccatcggc 1800gcgcagcgct cgttcgtgct gagcatggtg ctggtggaaa cggtggtgct ggggctcgtc 1860ttcggcgtgc tgggagccgc catgggaggt gccatcatga acatgctcgg ccacgtgggc 1920atccccgccg gcaacgaggc gctctacttc ttcttctcgg gaccccgcct cttccccagt 1980ctccacctgt caaacctcgt ggcggccttc gtcatcgtgc tcgtggtgtc cgccctctcc 2040accttctacc ccgcgtacct cgcgacccgg gtctcgcctc tccaggcgat gcagacggac 2100gagtga 210631762DNACystobacter velatusmisc_feature(1)..(762)ORF10 31atgagccagg tcactgccct ccccggcagc acccagccga tcgtctccct caccgaggtt 60accaagacgt actccctggg taaggtgcag gtgcccgcac tccgaggcgt gacgctagag 120gtgtacccgg gagagttcat ctccatcgcc ggcccatcgg gcagtggcaa gacgacggcg 180ctcaatctca tcggctgcgt ggacacggcc tcctcgggcg tggtgagcgt ggatggccag 240gacaccaaga agctcaccga gcggcagctc acccacttgc ggctgcacac catcggcttc 300atcttccaga gcttcaacct cgtctcggtg ctcagcgtct tccagaacgt agagttcccc 360ctgctgctgc agcgcaagct caacgcctcc gagcgccgca cgcgcgtgat gacgctgctg 420gagcaggtgg gcctggagaa gcacgccaaa caccgcccca atgagctgtc tggaggccag 480cgccagcgcg tggccgtggc gcgcgctctc gtcacccggc ccaagctggt gctcgccgac 540gagcccaccg ccaacctcga ctccgtcacc ggccagaaca tcatcgacct gatgaaggag 600ctcaaccgca aggagggcac caccttcatc ttctccaccc acgacgccaa ggtgatgacc 660cacgccaacg ccgtggtgcg cctggcggac gggaagatcc tcgaccgcat cacgccggcc 720gaggcccaga aggtcatggc cgtgagcgag gggggccact aa 762321194DNACystobacter velatusmisc_feature(1)..(1194)ORF11 32atgccgcaga agttcgtggg gaagtggaag ggcgggcggg tcaagctcgt cgatggtcgg 60aaggtgtggc tcctcgagaa gatggtctcc ggggcccggt tctcggtctc cttggcggtc 120tccaacgagg aggacgcgct ggccgagctg gccctgttcc ggcgcgaccg ggacgcctac 180ctggccaagg tgaaggccga caggtcggag gaagtccagg catccactgt agccggggca 240gttcctctgt cgggggatgt ggggcctcgg ctcgatgccg attctgtccg ggagttcctc 300cgacacttga cccagcgggg gcgaacggag ggttaccggc gggacgcccg aacctacctg 360tcgcaatggg ccgaggttct ggccggaagg gacctgagta ccgtcagcct cctcgagttg 420cgccgcgccc tgagccaatg gcccacggcc aggaagatgc ggatcatcac gctcaagagc 480ttcttctcgt ggctgaggga agaggatcgc ctcaaggctg ctgaagaccc cacgttgtcc 540ctcaaggtgc cgcccgcggt cgcggagaag gggagacggg ccaaggggta ttcgatggcc 600caagtggaga agctctacgc ggccatcggc tcccagacgg tgagggacgt gctgtgtctg 660cgggccaaga ccggcatgca cgactcggag atcgcccgcc tggcatcggg caagggggaa 720ctgcgcgtcg tcaatgaccc ctccggcatc gccggtactg cgcggtttct gcacaagaac 780ggccgcgttc acatcctcag tctggatgcc caggcccttg ctgccgcgca gcggctccag 840gttcggggca gggcgcccat caggaacacc gtccgggagt ccatcgggta tgcgtcggcg 900cgcattgggc agtcgcccat ccatcccagc gagctccgcc acagcttcac cacctgggcc 960acgaatgagg gccaggtcgt gagggcaacc cggggcggag tgccactcga tgtcgttgcc 1020tcggttcttg gccatcagtc cacacgggcg accaagaagt tctatgacgg gaccgaaatt 1080cccccgatga tcaccgtccc gctcaagctg catcatccac aggacccagc ggtgatgcag 1140ctgaggcgta actgctcgcc ggaccccgtc gtgacgagag aggcagaggc gtga 119433375DNACystobacter velatusmisc_feature(1)..(375)ORF12 33gtgctcctcg cattcccctc cggcctcctg tcgctggcgc tcctgtccac taccaccgaa 60atctctgcgg ctcttcccgt ggacgagtgc gagtcggcga gcctgcgcat cgagctgccc 120gctacgccag ggggaaagcc acccgtggtg tgtctcggtc caggtctgcc cattcatttc 180cgcttcgact ccgcgctcca acagaagtcc ctgaggattc aggatcgggg ctggttcgag 240gattgggctt tgggccagca gacgctcgta ctgactcctc acgacaacct ggtggctggg 300aagcgatctg aagtggaggt gtgcttcgcg gatggtgccg ccccggcgtg cgcttccttc 360gtgctccggc gctga 37534339DNACystobacter velatusmisc_feature(1)..(339)ORF13 34atgcacacga aggtgccctc cgtcttcgag gcaacgcccg agtctctcag tgacgtggac 60taccagttct ggcatgagga cttcccgagg gtgttcgagc ggcagcacat cgacgcgcac 120gcggtgcccg ccattggcgc gtacttgggc gaggtgctgg tgcgtaacct gggcggcaag 180tggatacctc gccagaaact cgacgaggcc caggtgctcg tcggcaaccg tgtgtggttg 240ccgtttgcgc gggctcacca ctacatgcgc tcgtgcgaat cgttgctgga ctactccctc 300acccagctct accgcgtggc cgagcggtac cggggttga 33935915DNACystobacter velatusmisc_feature(1)..(915)ORF 14 35atgaaggtgc tggggcttgg tgacgtgaag tcggaggaca gtctccggct cacttttgag 60ggtgcgcttg atccgcaggc tgcgcttgag aaagttctcg agccattttt ccaggcgctg 120gaggaatatg caggcgattg gatgccggaa gtcgtcagtg gcaggcggcg actcaaatac 180tcccgagcca atatctggaa ggctctggag gagcggcgcg atgaacgaag cacagacacc 240tggctctacc gcacacagcg gccgacactg gagatgtcgc tgcatctctg gtttccgccg 300cttccgcccg ctttggacgt aatgactacg gtgcaaccgc tcacccgctt cgcggagaag 360gagcgctgcc gccaattcgt agaaatggta cgcacctggg cctcttgcta cccggtcact 420cacgccgcag cccacagcgt ggctgacagg gcgttggcag gtgcgcccga ttttggacgc 480gatgcgcgga ccgcacggag agacgggttc gacagaatct acgagatctt ctggctcaac 540gtcttcggcc ccaagttggt ggaagccgtg ggccgcgagc gcatgctgtc cacgccagct 600caccgggtgg aggaactgcc caatggctcc atcctcctgg tgacgtggcc caccgctgcg 660gacttcgcgg gcgccgaggc acggcacgca caggcgcgcg cgcacgttca cctccggccg 720gacctccgct tcgacacggt gctgcgaacc ctgcacgagc gtagcgccgc gctcgctccc 780gttgagccct gcttccaccc ggatgtagcg ccactcctct ctcacgtggt ggatagcgtc 840gccatccgga tgtggaaaac ctggagcgcg ctaacgagca ttacagaact ctggctgagc 900acctcgtggc gctga 9153632DNAArtificial SequencePrimer 36tgattgattg atcggcgcga ttcggcctct gg 323732DNAArtificial SequencePrimer 37tcaatcaatc atcgggtcgc ggtctcaggc tc 323837DNAArtificial SequencePrimer 38tgattgattg aaaaacagtc ggaggagttt cttgtcc 373932DNAArtificial SequencePrimer 39tcaatcaatc aactcccagt gccctcagcc tc 324070PRTCystobacter velatusMISC_FEATURE(1)..(70)CysA 40Met Ser Met Asn Gly Asp Glu Ala Glu Tyr Val Val Leu Ile Asn Gly 1 5 10 15 Glu Glu Gln Tyr Ser Leu Trp Pro Val His Arg Glu Ile Pro Gly Gly 20 25 30 Trp Lys Thr Val Gly Pro Lys Gly Ser Lys Glu Thr Cys Gln Ser Tyr 35 40 45 Ile Gln Glu Val Trp Thr Asp Met Arg Pro Lys Ser Leu Arg Glu Ala 50 55 60 Leu Thr Arg Ser Asn Cys 65 70 41317PRTCystobacter velatusMISC_FEATURE(1)..(317)CysB 41Met Ser Thr Pro Ala Ala Gly Ala Lys Pro Ser Tyr Leu Ala Gly Ile 1 5 10 15 Glu Thr Val Met Val Glu Pro Glu Leu Glu Glu Val Arg Tyr Leu Thr 20 25 30 Val Glu Ser Gly Asp Gly Arg Gln Ser Thr Leu Tyr Glu Phe Gly Pro 35 40 45 Lys Asp Ala Glu Lys Val Val Val Leu Pro Pro Tyr Gly Val Thr Phe 50 55 60 Leu Leu Val Ala Arg Leu Ala Arg Leu Leu Ser Gln Arg Phe His Val 65 70 75 80 Leu Ile Trp Glu Ser Arg Gly Cys Pro Asp Ser Ala Ile Pro Val Tyr 85 90 95 Asp Thr Asp Leu Gly Leu Ala Asp Gln Ser Arg His Phe Ser Glu Val 100 105 110 Leu Lys Gln Gln Gly Phe Glu Ala Phe His Phe Val Gly Trp Cys Gln 115 120 125 Ala Ala Gln Leu Ala Val His Ala Thr Ala Ser Gly Gln Val Lys Pro 130 135 140 Arg Thr Met Ser Trp Ile Ala Pro Ala Gly Leu Gly Tyr Ser Leu Val 145 150 155 160 Lys Ser Glu Phe Asp Arg Cys Ala Leu Pro Ile Tyr Leu Glu Ile Glu 165 170 175 Lys His Gly Leu Leu His Ala Glu Lys Leu Gly Arg Leu Leu Asn Lys 180 185 190 Tyr Asn Gly Val Pro Ala Thr Ala Gln Asn Ala Ala Glu Lys Leu Thr 195 200 205 Met Arg His Leu Ala Asp Pro Arg Met Thr Tyr Val Phe Ser Arg Tyr 210 215 220 Met Lys Ala Tyr Glu Asp Asn Arg Leu Leu Ala Lys Gln Phe Val Ser 225 230 235 240 Thr Ala Leu Asp Ser Val Pro Thr Leu Ala Ile His Cys Arg Asp Asp 245 250 255 Thr Tyr Ser His Phe Ser Glu Ser Val Gln Leu Ser Lys Leu His Pro 260 265 270 Ser Leu Glu Leu Arg Leu Leu Gly Lys Gly Gly His Leu Gln Ile Phe 275 280 285 Asn Asp Pro Ala Thr Leu Ala Glu Tyr Val Leu Gly Phe Ile Asp Thr 290 295 300 Arg Ala Ser Gln Ala Ala Ala Pro Ala Val Ala Gly Ala 305 310 315 42459PRTCystobacter velatusMISC_FEATURE(1)..(459)CysC 42Met Ile Leu Pro Asn Asn Ile Gly Leu Asp Glu Arg Thr Gln Leu Ala 1 5 10 15 Arg Gln Ile Ser Ser Tyr Gln Lys Lys Phe His Val Trp Trp Arg Glu 20 25 30

Arg Gly Pro Thr Glu Phe Leu Asp Arg Gln Met Arg Leu Arg Thr Pro 35 40 45 Thr Gly Ala Val Ser Gly Val Asp Trp Ala Glu Tyr Lys Thr Met Arg 50 55 60 Pro Asp Glu Tyr Arg Trp Gly Leu Phe Met Val Pro Met Asp Gln Asp 65 70 75 80 Glu Ile Ala Phe Gly Asp His Arg Gly Lys Lys Ala Trp Glu Glu Val 85 90 95 Pro Ser Glu Tyr Arg Thr Leu Leu Leu Gln His Ile Cys Val Gln Ala 100 105 110 Asp Val Glu Asn Ala Ala Val Glu Gln Ser Arg Leu Leu Thr Gln Met 115 120 125 Ala Pro Ser Asn Pro Asp Leu Glu Asn Val Phe Gln Phe Phe Leu Glu 130 135 140 Glu Gly Arg His Thr Trp Ala Met Val His Leu Leu Leu Ala His Phe 145 150 155 160 Gly Glu Asp Gly Val Val Glu Ala Glu Ala Leu Leu Glu Arg Leu Ser 165 170 175 Gly Asp Pro Arg Asn Pro Arg Leu Leu Glu Ala Phe Asn Tyr Pro Thr 180 185 190 Glu Asp Trp Leu Ser His Phe Met Trp Cys Leu Leu Ala Asp Arg Val 195 200 205 Gly Lys Tyr Gln Ile His Ala Val Thr Glu Ala Ser Phe Ala Pro Leu 210 215 220 Ala Arg Ala Ala Lys Phe Met Met Phe Glu Glu Pro Leu His Ile Ala 225 230 235 240 Met Gly Ala Val Gly Leu Glu Arg Val Leu Ala Arg Thr Ala Glu Val 245 250 255 Thr Leu Arg Glu Gly Thr Phe Asp Thr Phe His Ala Gly Ala Ile Pro 260 265 270 Phe Pro Val Val Gln Lys Tyr Leu Asn Tyr Trp Ala Pro Lys Val Tyr 275 280 285 Asp Leu Phe Gly Asn Asp Gly Ser Glu Arg Ser Asn Glu Leu Phe Arg 290 295 300 Ala Gly Leu Arg Arg Pro Arg Asn Phe Val Gly Ser Glu Ser Gln Ile 305 310 315 320 Val Arg Ile Asp Glu Arg Met Gly Asp Gly Leu Thr Val Val Glu Val 325 330 335 Glu Gly Glu Trp Ala Ile Asn Ala Ile Met Arg Arg Gln Phe Ile Ala 340 345 350 Glu Val Gln Thr Leu Ile Asp Arg Trp Asn Ala Ser Leu Arg Ala Leu 355 360 365 Gly Val Asp Phe Gln Leu Tyr Leu Pro His Glu Arg Phe Ser Arg Thr 370 375 380 Tyr Gly Pro Cys Ala Gly Leu Pro Phe Asp Val Asp Gly Lys Leu Leu 385 390 395 400 Pro Arg Gly Thr Glu Ala Lys Leu Ala Glu Tyr Phe Pro Thr Pro Arg 405 410 415 Glu Leu Ala Asn Val Arg Ser Leu Met Gln Arg Glu Leu Ala Pro Gly 420 425 430 Gln Tyr Ser Ser Trp Ile Ala Pro Ser Ala Thr Arg Leu Ser Ala Leu 435 440 445 Val Gln Gly Arg Asn Thr Pro Lys Glu His Glu 450 455 43732PRTCystobacter velatusMISC_FEATURE(1)..(732)CysD 43Met Arg Cys Leu Ile Ile Asp Asn Tyr Asp Ser Phe Thr Trp Asn Leu 1 5 10 15 Ala Asp Tyr Val Ala Gln Thr Phe Gly Ser Glu Pro Leu Val Val Arg 20 25 30 Asn Asp Gln His Thr Trp Gln Glu Ile Lys Ala Leu Gly Ser Phe Gly 35 40 45 Cys Ile Leu Val Ser Pro Gly Pro Gly Ser Val Thr Asn Pro Lys Asp 50 55 60 Phe Asn Val Ser Arg Asp Ala Leu Glu Gln Asp Glu Phe Pro Val Phe 65 70 75 80 Gly Val Cys Leu Gly His Gln Gly Leu Ala Tyr Ile Tyr Gly Gly Glu 85 90 95 Ile Thr His Ala Pro Val Pro Phe His Gly Arg Thr Ser Thr Ile Tyr 100 105 110 His Asp Gly Thr Gly Val Phe Gln Gly Leu Pro Pro Ser Phe Asp Ala 115 120 125 Val Arg Tyr His Ser Leu Val Val Arg Pro Glu Ser Leu Pro Ala Asn 130 135 140 Leu Val Val Thr Ala Arg Thr Glu Cys Gly Leu Ile Met Gly Leu Arg 145 150 155 160 His Val Ser Arg Pro Lys Trp Gly Val Gln Phe His Pro Glu Ser Ile 165 170 175 Leu Thr Ala His Gly Leu Gln Leu Ile Ser Asn Phe Arg Asp Glu Ala 180 185 190 Tyr Arg Tyr Ala Gly Lys Glu Val Pro Ser Arg Arg Pro His Ser Thr 195 200 205 Ala Gly Asn Gly Val Gly Ala Gly Ala Ala Arg Arg Asp Pro Ser Ala 210 215 220 Arg Arg Thr Pro Glu Arg Arg Arg Glu Leu Gln Thr Phe Thr Arg Arg 225 230 235 240 Leu Ala Thr Ser Leu Glu Ala Glu Thr Val Phe Leu Gly Leu Tyr Ala 245 250 255 Gly Arg Glu His Cys Phe Trp Leu Asp Ser Gln Ser Val Arg Glu Gly 260 265 270 Ile Ser Arg Phe Ser Phe Met Gly Cys Val Pro Glu Gly Ser Leu Leu 275 280 285 Thr Tyr Gly Ala Ala Glu Ala Ala Ser Glu Gly Gly Ala Glu Arg Tyr 290 295 300 Leu Ala Ala Leu Glu Arg Ala Leu Glu Ser Arg Ile Val Val Arg Pro 305 310 315 320 Val Asp Gly Leu Pro Phe Glu Phe His Gly Gly Tyr Ile Gly Phe Met 325 330 335 Thr Tyr Glu Met Lys Glu Ala Phe Gly Ala Ala Thr Thr His Lys Asn 340 345 350 Thr Ile Pro Asp Ala Leu Trp Met His Val Lys Arg Phe Leu Ala Phe 355 360 365 Asp His Ser Thr Arg Glu Val Trp Leu Val Ala Ile Ala Glu Leu Glu 370 375 380 Glu Ser Ala Ser Val Leu Ala Trp Met Asp Glu Thr Ala Asp Ala Leu 385 390 395 400 Lys Ser Leu Pro Arg Gly Thr Arg Ser Pro Gln Ser Leu Gly Leu Lys 405 410 415 Ser Ile Ser Val Ser Met Asp Cys Gly Arg Asp Asp Tyr Phe Ala Ala 420 425 430 Ile Glu Arg Cys Lys Glu Lys Ile Val Asp Gly Glu Ser Tyr Glu Val 435 440 445 Cys Leu Thr Asn Gly Phe Ser Phe Asp Leu Lys Leu Asp Pro Val Glu 450 455 460 Leu Tyr Val Thr Met Arg Arg Gly Asn Pro Ala Pro Phe Gly Ala Phe 465 470 475 480 Ile Lys Thr Gly Lys Thr Cys Val Leu Ser Thr Ser Pro Glu Arg Phe 485 490 495 Leu Lys Val Asp Glu Asp Gly Thr Val Gln Ala Lys Pro Ile Lys Gly 500 505 510 Thr Cys Ala Arg Ser Asp Asp Pro Ala Thr Asp Ser Thr Asn Ala Ala 515 520 525 Arg Leu Ala Ala Ser Glu Lys Asp Arg Ala Glu Asn Leu Met Ile Val 530 535 540 Asp Leu Met Arg Asn Asp Leu Gly Arg Val Ser Val Pro Gly Ser Val 545 550 555 560 His Val Ser Asn Leu Met Asp Ile Glu Ser Phe Lys Thr Val His Gln 565 570 575 Met Val Ser Thr Val Glu Ser Thr Leu Thr Pro Glu Cys Ser Leu Val 580 585 590 Asp Leu Leu Arg Ala Val Phe Pro Gly Gly Ser Ile Thr Gly Ala Pro 595 600 605 Lys Ile Arg Thr Met Glu Ile Ile Asp Arg Leu Glu Lys Ser Pro Arg 610 615 620 Gly Ile Tyr Cys Gly Thr Ile Gly Tyr Leu Gly Tyr Asn Arg Ile Ala 625 630 635 640 Asp Leu Asn Ile Ala Ile Arg Thr Leu Ser Tyr Asp Gly Thr Leu Val 645 650 655 Lys Phe Gly Ala Gly Gly Ala Ile Thr Tyr Leu Ser Gln Pro Glu Gly 660 665 670 Glu Phe Gln Glu Ile Leu Leu Lys Ala Glu Ser Ile Leu Arg Pro Ile 675 680 685 Trp Gln Tyr Ile Asn Gly Ala Gly Ala Pro Phe Glu Pro Gln Leu Arg 690 695 700 Asp Arg Val Leu Cys Leu Glu Glu Lys Pro Arg Arg Val Ile Arg Gly 705 710 715 720 His Gly Ser Ala Ile Asp Ala Val Glu Pro Ser Ala 725 730 44243PRTCystobacter velatusMISC_FEATURE(1)..(243)CysE 44Met Ile Ala Phe Asn Pro Gln Ala Arg Pro Arg Leu Arg Leu Phe Cys 1 5 10 15 Phe Pro Tyr Ala Gly Gly Asp Ala Asn Ile Phe Arg Asp Trp Ala Ala 20 25 30 Ala Met Pro Glu Gly Val Glu Val Leu Gly Val Gln Tyr Pro Gly Arg 35 40 45 Gly Thr Asn Leu Ala Leu Pro Pro Ile Ser Asp Cys Asp Glu Met Ala 50 55 60 Ser Gln Leu Leu Ala Val Met Thr Pro Leu Leu Gly Ile Asn Phe Ala 65 70 75 80 Phe Phe Gly His Ser Asn Gly Ala Leu Ile Ser Phe Glu Val Ala Arg 85 90 95 Arg Leu His Asp Glu Leu Lys Gly Arg Met Arg His His Phe Leu Ser 100 105 110 Ala Lys Ser Ala Pro His Tyr Pro Asn Asn Arg Ser Lys Ile Ser Gly 115 120 125 Leu Asn Asp Glu Asp Phe Leu Arg Ala Ile Arg Lys Met Gly Gly Thr 130 135 140 Pro Gln Glu Val Leu Asp Asp Ala Arg Leu Met Gln Ile Leu Leu Pro 145 150 155 160 Arg Leu Arg Ala Asp Phe Ala Leu Gly Glu Thr Tyr Val Phe Arg Pro 165 170 175 Gly Pro Thr Leu Thr Cys Asp Val Ser Ile Leu Arg Gly Glu Ser Asp 180 185 190 His Leu Val Asp Gly Glu Phe Val Gln Arg Trp Ser Glu Leu Thr Thr 195 200 205 Gly Gly Ala Ser Gln Tyr Ala Ile Asp Gly Gly His Phe Phe Leu Asn 210 215 220 Ser His Lys Ser Gln Val Val Ala Leu Val Arg Ala Ala Leu Leu Glu 225 230 235 240 Cys Val Leu 45345PRTCystobacter velatusMISC_FEATURE(1)..(345)CysF 45Met Thr Ala Gln Asn Gln Ala Ser Ala Phe Ser Phe Asp Leu Phe Tyr 1 5 10 15 Thr Thr Val Asn Ala Tyr Tyr Arg Thr Ala Ala Val Lys Ala Ala Ile 20 25 30 Glu Leu Gly Val Phe Asp Val Val Gly Glu Lys Gly Lys Thr Leu Ala 35 40 45 Glu Ile Ala Lys Ala Cys Asn Ala Ser Pro Arg Gly Ile Arg Ile Leu 50 55 60 Cys Arg Phe Leu Val Ser Ile Gly Phe Leu Lys Asn Ala Gly Glu Leu 65 70 75 80 Phe Phe Leu Thr Arg Glu Met Ala Leu Phe Leu Asp Lys Lys Ser Pro 85 90 95 Gly Tyr Leu Gly Gly Ser Ile Asp Phe Leu Leu Ser Pro Tyr Ile Met 100 105 110 Asp Gly Phe Lys Asp Leu Ala Ser Val Val Arg Thr Gly Glu Leu Thr 115 120 125 Leu Pro Glu Lys Gly Val Val Ala Pro Asp His Pro Gln Trp Val Thr 130 135 140 Phe Ala Arg Ala Met Ala Pro Met Met Ser Leu Pro Ser Leu Leu Leu 145 150 155 160 Ala Glu Leu Ala Asp Arg Gln Ala Asn Gln Pro Leu Lys Val Leu Asp 165 170 175 Val Ala Ala Gly His Gly Leu Phe Gly Leu Ala Ile Ala Gln Arg Asn 180 185 190 Pro Lys Ala His Val Thr Phe Leu Asp Trp Glu Asn Val Leu Gln Val 195 200 205 Ala Arg Glu Asn Ala Thr Lys Ala Gly Val Leu Asp Arg Val Glu Phe 210 215 220 Arg Pro Gly Asp Ala Phe Ser Val Asp Phe Gly Lys Glu Leu Asp Val 225 230 235 240 Ile Leu Leu Thr Asn Phe Leu His His Phe Asp Glu Ala Gly Cys Glu 245 250 255 Lys Ile Leu Lys Lys Ala His Ala Ala Leu Lys Glu Gly Gly Arg Val 260 265 270 Leu Thr Phe Glu Phe Ile Ala Asn Glu Asp Arg Thr Ser Pro Pro Leu 275 280 285 Ala Ala Thr Phe Ser Met Met Met Leu Gly Thr Thr Pro Gly Gly Glu 290 295 300 Thr Tyr Ala Tyr Ser Asp Leu Glu Arg Met Phe Lys Asn Thr Gly Tyr 305 310 315 320 Asp Gln Val Glu Leu Lys Ala Ile Pro Pro Ala Met Glu Lys Val Val 325 330 335 Val Ser Ile Lys Gly Lys Ala Gln Leu 340 345 461992PRTCystobacter velatusMISC_FEATURE(1)..(1992)CysG 46Met Ala Thr Lys Leu Ser Asp Phe Ala Leu Leu Asp Ser Glu Asp Ala 1 5 10 15 Asn Val Ile Ser Arg Ser Asn Glu Thr Gly Ile Ser Leu Asp Leu Ser 20 25 30 Lys Ser Val Val Asp Leu Phe Asn Leu Gln Val Glu Arg Ala Pro Asp 35 40 45 Ala Thr Ala Cys Leu Gly Arg Gln Gly Arg Leu Thr Tyr Gly Glu Leu 50 55 60 Asn Arg Arg Thr Asn Gln Leu Ala His His Leu Ile Ala Arg Gly Val 65 70 75 80 Gly Pro Asp Val Pro Val Gly Val Leu Phe Glu Arg Ser Ala Glu Gln 85 90 95 Leu Ile Ala Ile Leu Gly Val Leu Lys Ala Gly Gly Cys Tyr Val Pro 100 105 110 Leu Asp Pro Gln Tyr Pro Ala Asp Tyr Met Gln Gln Val Leu Thr Asp 115 120 125 Ala Arg Pro Arg Met Val Val Ser Ser Arg Ala Leu Gly Glu Arg Leu 130 135 140 Arg Ser Gly Glu Glu Gln Ile Val Tyr Leu Asp Asp Glu Gln Leu Leu 145 150 155 160 Ala Arg Glu Thr Arg Asp Pro Pro Val Lys Val Leu Pro Glu Gln Leu 165 170 175 Ala Tyr Val Met Tyr Thr Ser Gly Ser Ser Gly Val Pro Lys Gly Val 180 185 190 Met Val Pro His Arg Gln Ile Leu Asn Trp Leu His Ala Leu Leu Ala 195 200 205 Arg Val Pro Phe Gly Glu Asn Glu Val Val Ala Gln Lys Thr Ser Thr 210 215 220 Ser Phe Ala Ile Ser Val Lys Glu Leu Phe Ala Gly Leu Val Ala Gly 225 230 235 240 Val Pro Gln Val Phe Ile Asp Asp Ala Thr Val Arg Asp Val Ala Ser 245 250 255 Phe Val Arg Glu Leu Glu Gln Trp Arg Val Thr Arg Leu Tyr Thr Phe 260 265 270 Pro Ser Gln Leu Ala Ala Ile Leu Ser Ser Val Asn Gly Ala Tyr Glu 275 280 285 Arg Leu Arg Ser Leu Arg His Leu Tyr Ile Ser Ile Glu Pro Cys Pro 290 295 300 Thr Glu Leu Leu Ala Lys Leu Arg Ala Ala Met Pro Trp Val Thr Pro 305 310 315 320 Trp Tyr Ile Tyr Gly Cys Thr Glu Ile Asn Asp Val Thr Tyr Cys Asp 325 330 335 Pro Gly Asp Gln Ala Gly Asn Thr Gly Phe Val Pro Ile Gly Arg Pro 340 345 350 Ile Arg Asn Thr Arg Val Phe Val Leu Asp Glu Glu Leu Arg Met Val 355 360 365 Pro Val Gly Ala Met Gly Glu Met Tyr Val Glu Ser Leu Ser Thr Ala 370 375 380 Arg Gly Tyr Trp Gly Leu Pro Glu Leu Thr Ala Glu Arg Phe Ile Ala 385 390 395 400 Asn Pro His Ala Glu Asp Gly Ser Arg Leu Tyr Lys Thr Gly Asp Leu 405 410 415 Ala Arg Tyr Leu Pro Asp Gly Ser Leu Glu Phe Leu Gly Arg Arg Asp 420 425 430 Tyr Glu Val Lys Ile Arg Gly Tyr Arg Val Asp Val Arg Gln Val Glu 435 440 445 Lys Val Leu Gly Ala His Pro Asp Ile Leu Glu Val Ala Val Val Gly 450 455 460 Trp Pro Leu Gly Gly Ala Asn Pro Gln Leu Val Ala Tyr Val Val Pro 465 470 475 480 Arg Ala Lys Gly Ala Ala Pro Ile Gln Glu Ile Arg Asp Tyr Leu Ser 485 490 495 Ala Ser Leu Pro Ala Tyr Met Val Pro Thr Ile Phe Gln Val Leu Ala 500 505 510 Ala Leu Pro Arg Leu Pro Asn Asp Lys Val Asp Arg Leu Ser Leu Pro 515 520 525

Asp Pro Lys Val Glu Glu Gln Thr Glu Gly Tyr Val Ala Pro Arg Thr 530 535 540 Glu Thr Glu Lys Val Leu Ala Glu Ile Trp Ser Asp Val Leu Ser Gln 545 550 555 560 Gly Arg Ala Pro Leu Thr Val Gly Ala Thr His Asn Phe Phe Glu Leu 565 570 575 Gly Gly His Ser Leu Leu Ala Ala Gln Met Phe Ser Arg Ile Arg Gln 580 585 590 Lys Phe Asp Leu Glu Leu Pro Ile Asn Thr Leu Phe Glu Thr Pro Val 595 600 605 Leu Glu Gly Phe Ala Ser Ala Val Asp Ala Ala Leu Ala Glu Arg Asn 610 615 620 Gly Pro Ala Gln Arg Leu Ile Ser Met Thr Asp Arg Gly Gln Ala Leu 625 630 635 640 Pro Leu Ser His Val Gln Glu Arg Leu Trp Phe Val His Glu His Met 645 650 655 Val Glu Gln Arg Ser Ser Tyr Asn Val Ala Phe Ala Cys His Met Arg 660 665 670 Gly Lys Gly Leu Ser Met Pro Ala Leu Arg Ala Ala Ile Asn Gly Leu 675 680 685 Val Ala Arg His Glu Thr Leu Arg Thr Thr Phe Val Val Ser Glu Gly 690 695 700 Gly Gly Asp Pro Val Gln Arg Ile Ala Asp Ser Leu Trp Ile Glu Val 705 710 715 720 Pro Leu Tyr Glu Val Asp Ala Ser Glu Val Pro Ala Arg Met Ala Ala 725 730 735 His Ala Gly His Val Phe Asp Leu Ala Lys Gly Pro Leu Leu Lys Thr 740 745 750 Ser Val Leu Arg Val Thr Pro Asp His His Val Phe Leu Met Asn Met 755 760 765 His His Ile Ile Cys Asp Gly Trp Ser Ile Asp Ile Leu Leu Arg Asp 770 775 780 Leu Tyr Glu Phe Tyr Lys Ala Ala Glu Thr Gly Ser Gln Pro Asn Leu 785 790 795 800 Pro Val Leu Pro Ile Gln Tyr Ala Asp Tyr Ser Val Trp Gln Arg Gln 805 810 815 Gln Asp Leu Ser Ser His Leu Asp Tyr Trp Lys Lys Thr Leu Glu Gly 820 825 830 Tyr Gln Glu Gly Leu Ser Leu Pro Tyr Asp Phe Ala Arg Pro Ser Asn 835 840 845 Arg Thr Trp Arg Ala Ala Ser Val Arg His Gln Tyr Pro Ala Glu Leu 850 855 860 Ala Thr Arg Leu Ser Glu Val Ser Lys Ser His Gln Ala Thr Val Phe 865 870 875 880 Met Thr Leu Met Ala Ser Thr Ala Ile Val Leu Asn Arg Tyr Thr Gly 885 890 895 Arg Asp Asp Leu Cys Val Gly Ala Thr Val Ala Gly Arg Asp His Phe 900 905 910 Glu Leu Glu Asn Leu Ile Gly Phe Phe Val Asn Ile Leu Ala Ile Arg 915 920 925 Leu Asp Leu Ser Gly Asn Pro Thr Ala Glu Thr Val Leu Gln Arg Ala 930 935 940 Arg Ala Gln Val Leu Glu Gly Met Lys His Arg Asp Leu Pro Phe Glu 945 950 955 960 His Ile Leu Ala Ala Leu Gln Lys Gln Arg Asp Ser Ser Gln Ile Pro 965 970 975 Leu Val Pro Val Met Val Arg His Gln Asn Phe Pro Thr Val Thr Ser 980 985 990 Gln Glu Gln Gly Leu Asp Leu Gly Ile Gly Glu Ile Glu Phe Gly Glu 995 1000 1005 Arg Thr Thr Pro Asn Glu Leu Asp Ile Gln Phe Ile Gly Glu Gly 1010 1015 1020 Ser Thr Leu Glu Val Val Val Glu Tyr Ala Lys Asp Leu Phe Ser 1025 1030 1035 Glu Arg Thr Ile Gln Arg Leu Ile Thr His Leu Gln Gln Val Leu 1040 1045 1050 Gln Thr Leu Val Asp Lys Pro Asp Cys Arg Leu Thr Asp Phe Pro 1055 1060 1065 Leu Val Ala Gly Asp Ala Leu Gln Gly Gly Val Ser Gly Ser Gly 1070 1075 1080 Gly Ala Thr Lys Thr Gly Lys Leu Asp Val Ser Lys Ser Pro Val 1085 1090 1095 Glu Leu Phe Asn Glu Arg Val Glu Ala Ser Pro Asp Ala Val Ala 1100 1105 1110 Cys Met Gly Ala Asp Gly Ser Leu Thr Tyr Arg Glu Leu Asp Arg 1115 1120 1125 Arg Ala Asn Gln Val Ala Arg His Leu Met Gly Arg Gly Val Gly 1130 1135 1140 Arg Glu Thr Arg Val Gly Leu Trp Phe Glu Arg Ser Pro Asp Leu 1145 1150 1155 Leu Val Ala Leu Leu Gly Ile Leu Lys Ala Gly Gly Cys Phe Val 1160 1165 1170 Pro Leu Asp Pro Ser Tyr Pro Gln Glu Tyr Ile Asn Asn Ile Val 1175 1180 1185 Ala Asp Ala Gln Pro Leu Leu Val Met Ser Ser Arg Ala Leu Gly 1190 1195 1200 Ser Arg Leu Ser Leu Glu Ala Gly Arg Leu Val Tyr Leu Asp Asp 1205 1210 1215 Ala Leu Ala Ala Ser Thr Asp Ala Ser Asp Pro Gln Val Arg Ile 1220 1225 1230 Asp Pro Glu Gln Leu Ile Tyr Val Met Tyr Thr Ser Gly Ser Thr 1235 1240 1245 Gly Leu Pro Lys Gly Val Leu Val Pro His Arg Gln Ile Leu Asn 1250 1255 1260 Trp Leu Tyr Pro Leu Trp Ala Met Val Pro Phe Gly Gln Asp Glu 1265 1270 1275 Val Val Ala Gln Lys Thr Ser Thr Ala Phe Ala Val Ser Met Lys 1280 1285 1290 Glu Leu Phe Thr Gly Leu Leu Ala Gly Val Pro Gln Val Phe Ile 1295 1300 1305 Asp Gly Thr Val Val Lys Asp Ala Ala Ala Phe Val Leu His Leu 1310 1315 1320 Glu Arg Trp Arg Val Thr Arg Leu Tyr Thr Leu Pro Ser His Leu 1325 1330 1335 Asp Ala Ile Leu Ser His Val Asp Gly Ala Ala Glu Arg Leu Arg 1340 1345 1350 Ser Leu Arg His Val Ile Leu Ala Gly Glu Pro Cys Pro Val Glu 1355 1360 1365 Leu Met Glu Lys Leu Arg Glu Thr Leu Pro Ser Cys Thr Ala Trp 1370 1375 1380 Phe Asn Tyr Gly Cys Thr Glu Val Asn Asp Ile Ser Tyr Cys Val 1385 1390 1395 Pro Asn Glu Gln Phe His Ser Ser Gly Phe Val Pro Ile Gly Arg 1400 1405 1410 Pro Ile Gln Tyr Thr Arg Ala Leu Val Leu Asp Asp Glu Leu Arg 1415 1420 1425 Thr Val Pro Val Gly Ile Met Gly Glu Ile Tyr Val Glu Ser Pro 1430 1435 1440 Gly Thr Ala Arg Gly Tyr Trp Arg Gln Pro Asp Leu Thr Ala Glu 1445 1450 1455 Arg Phe Ile Pro Asn Pro Phe Gly Glu Pro Gly Ser Arg Leu Tyr 1460 1465 1470 Arg Thr Gly Asp Met Ala Arg Cys Leu Glu Asp Gly Ser Leu Glu 1475 1480 1485 Phe Leu Gly Arg Arg Asp Tyr Glu Val Lys Ile Arg Gly His Arg 1490 1495 1500 Val Asp Val Arg Gln Val Glu Lys Ile Leu Ala Ser His Pro Glu 1505 1510 1515 Val Leu Glu Ser Ala Val Leu Gly Trp Pro Arg Gly Ala Lys Asn 1520 1525 1530 Pro Gln Leu Leu Ala Tyr Ala Ala Thr Lys Pro Gly Arg Pro Leu 1535 1540 1545 Ser Thr Glu Asn Val Arg Glu Tyr Leu Ser Ala Arg Leu Pro Thr 1550 1555 1560 Tyr Met Val Pro Thr Leu Tyr Gln Phe Leu Pro Ala Leu Pro Arg 1565 1570 1575 Leu Pro Asn Gly Lys Leu Asp Arg Phe Gly Leu Pro Asp His Lys 1580 1585 1590 Lys Val Glu Val Gly Gly Val Tyr Val Ala Pro Gln Thr Pro Thr 1595 1600 1605 Glu Lys Val Leu Ala Gly Leu Trp Ala Glu Cys Leu Lys Gln Gly 1610 1615 1620 Asp Met Pro Ala Pro Gln Val Gly Arg Leu His Asn Phe Phe Asp 1625 1630 1635 Leu Gly Gly His Ser Leu Leu Ala Asn Arg Val Leu Met Gln Val 1640 1645 1650 Gln Arg His Phe Gly Val Ser Leu Gly Ile Ser Ala Leu Phe Gly 1655 1660 1665 Ser Pro Val Leu Asn Asp Phe Ala Ala Ala Ile Asp Lys Ala Leu 1670 1675 1680 Gly Thr Glu Glu Pro Gly Glu Glu Gly Ser Ser Asp Ala Arg Glu 1685 1690 1695 Val Ala Ala Lys Asp Thr Ser Val Leu Val Pro Leu Ser Thr His 1700 1705 1710 Gly Thr Leu Pro Ser Leu Phe Cys Val His Pro Val Gly Gly Gln 1715 1720 1725 Val His Ala Tyr Arg Glu Leu Ala Gln Ala Met Glu Lys His Ala 1730 1735 1740 Ser Met Tyr Ala Leu Gln Ser Glu Gly Ala Arg Glu Phe Asp Thr 1745 1750 1755 Ile Glu Thr Leu Ala Arg Phe Tyr Ala Asp Ala Ile Arg Gly Ala 1760 1765 1770 Gln Pro Asp Gly Ser Tyr Arg Leu Leu Gly Trp Ser Ser Gly Gly 1775 1780 1785 Leu Ile Thr Leu Ala Ile Ala Arg Glu Leu Glu His Gln Gly Cys 1790 1795 1800 Ala Val Glu Tyr Val Gly Leu Val Asp Ser Lys Pro Ile Pro Arg 1805 1810 1815 Leu Ala Gly Glu Arg Gly Trp Ala Ser Leu Ile Ala Ala Thr Asn 1820 1825 1830 Ile Leu Gly Ala Met Arg Gly Arg Gly Phe Ser Val Ala Glu Val 1835 1840 1845 Asp Ala Ala Gly Lys Ile Leu Glu Ser Arg Gly Trp Thr Glu Glu 1850 1855 1860 Ser Phe Asp Ser Glu Gly His Ala Ala Leu Glu Glu Leu Ala Arg 1865 1870 1875 His Phe Gly Ile Thr Val Ala Gln Glu Ser Ser Glu Tyr Leu Leu 1880 1885 1890 Ala Arg Phe Lys Thr Thr Lys Tyr Tyr Leu Ser Leu Phe Ala Gly 1895 1900 1905 Phe Lys Pro Ala Ala Leu Gly Pro Glu Thr Tyr Leu Tyr Glu Ala 1910 1915 1920 Ser Glu Arg Val Gly Ala Thr Ser Asn Asp Asp Thr Gly Glu Trp 1925 1930 1935 Gly Asp Ala Leu Asp Arg Lys Ala Leu Arg Ala Asn Ile Val Gln 1940 1945 1950 Val Pro Gly Asn His Tyr Thr Val Leu Gln Gly Glu Asn Val Leu 1955 1960 1965 Gln Leu Ala Gly Arg Ile Ala Glu Ala Leu Ser Ala Ile Asp Asn 1970 1975 1980 Ser Val Val Thr Arg Thr Arg Ala Ser 1985 1990 47975PRTCystobacter velatusMISC_FEATURE(1)..(975)CysH 47Met Asp Asn Arg Glu Ile Ala Pro Thr Gln Ser Ala Arg Thr Arg Asp 1 5 10 15 Ala Tyr Thr Ala Val Pro Pro Ala Lys Ala Glu Tyr Pro Ser Asp Val 20 25 30 Cys Val His Gln Leu Phe Glu Leu Gln Ala Asp Arg Ile Pro Asp Ala 35 40 45 Val Ala Ala Arg Ala Gly Asn Glu Ser Leu Thr Tyr Arg Glu Leu Asn 50 55 60 Phe Arg Ala Asn Gln Leu Ala Arg Tyr Leu Val Ala Lys Gly Val Val 65 70 75 80 Pro Arg Gly Ser Val Ala Val Leu Met Asn Arg Thr Pro Ala Cys Leu 85 90 95 Val Ser Leu Leu Ala Ile Ile Lys Ala Gly Ala Ala Tyr Val Pro Val 100 105 110 Asp Ala Gly Leu Pro Ala Lys Arg Val Asp Tyr Ile Leu Thr Asp Ser 115 120 125 Gly Ala Thr Cys Val Leu Thr Asp Arg Glu Thr Arg Ser Leu Leu Asp 130 135 140 Glu Pro Arg Ser Ala Ser Thr Leu Val Ile Asp Val Asp Asp Pro Ser 145 150 155 160 Ile Tyr Ser Gly Glu Thr Ser Asn Leu Gly Leu Ala Val Asp Pro Glu 165 170 175 Gln Gln Val Tyr Cys Ile Tyr Thr Ser Gly Ser Thr Gly Leu Pro Lys 180 185 190 Gly Val Met Val Gln His Arg Ala Leu Met Asn Tyr Val Trp Trp Ala 195 200 205 Lys Lys Gln Tyr Val Thr Asp Ala Val Glu Ser Phe Ala Leu Tyr Ser 210 215 220 Ser Leu Ser Phe Asp Leu Thr Val Thr Ser Ile Phe Val Pro Leu Ile 225 230 235 240 Ser Gly Arg Cys Ile Asp Val Tyr Pro Asp Leu Gly Glu Asp Val Pro 245 250 255 Val Ile Asn Arg Val Leu Glu Asp Asn Lys Val Asp Val Val Lys Leu 260 265 270 Thr Pro Ala His Leu Ala Leu Leu Arg Asn Thr Asp Leu Ser Gln Ser 275 280 285 Arg Leu Lys Val Leu Ile Leu Gly Gly Glu Asp Leu Arg Ala Glu Thr 290 295 300 Ala Gly Asp Val His Lys Arg Leu Asp Gly Arg Ala Val Ile Tyr Asn 305 310 315 320 Glu Tyr Gly Pro Thr Glu Thr Val Val Gly Cys Met Ile His Arg Tyr 325 330 335 Asp Pro Ala Val Asp Leu His Gly Ser Val Pro Ile Gly Val Gly Ile 340 345 350 Asp Asn Met Arg Ile Tyr Leu Leu Asp Asp Arg Arg Arg Pro Val Lys 355 360 365 Pro Gly Glu Val Gly Glu Ile Tyr Ile Gly Gly Asp Gly Val Thr Leu 370 375 380 Gly Tyr Lys Asp Lys Pro Gln Val Thr Ala Asp His Phe Ile Ser Asn 385 390 395 400 Pro Phe Val Glu Gly Glu Arg Leu Tyr Ala Ser Gly Asp Leu Gly Arg 405 410 415 Val Asn Glu Arg Gly Ala Leu Val Phe Leu Gly Arg Lys Asp Leu Gln 420 425 430 Ile Lys Leu Arg Gly Tyr Arg Ile Glu Leu Gly Glu Ile Glu Ser Ala 435 440 445 Leu Leu Ser Tyr Pro Gly Ile Lys Glu Cys Ile Val Asp Ser Thr Lys 450 455 460 Thr Ala Gln Ser Gln Ala Ala Ala Gln Leu Thr Tyr Cys Thr Lys Cys 465 470 475 480 Gly Leu Ala Ser Ser Phe Pro Asn Thr Thr Tyr Ser Ala Glu Gly Val 485 490 495 Cys Asn His Cys Glu Ala Phe Asp Lys Tyr Arg Ser Val Val Asp Asp 500 505 510 Tyr Phe Ser Thr Met Asp Glu Leu Gln Ser Ile Val Thr Glu Met Lys 515 520 525 Ser Ile His Asn Ser Lys Tyr Asp Cys Ile Val Ala Leu Ser Gly Gly 530 535 540 Lys Asp Ser Thr Tyr Ala Leu Cys Arg Met Ile Glu Thr Gly Ala Arg 545 550 555 560 Val Leu Ala Phe Thr Leu Asp Asn Gly Tyr Ile Ser Glu Glu Ala Lys 565 570 575 Gln Asn Ile Asn Arg Val Val Ala Arg Leu Gly Val Asp His Arg Tyr 580 585 590 Leu Ser Thr Gly His Met Lys Glu Ile Phe Val Asp Ser Leu Lys Arg 595 600 605 His Ser Asn Val Cys Asn Gly Cys Phe Lys Thr Ile Tyr Thr Phe Ala 610 615 620 Ile Asn Leu Ala Gln Glu Val Gly Val Lys His Val Val Met Gly Leu 625 630 635 640 Ser Lys Gly Gln Leu Phe Glu Thr Arg Leu Ser Ala Leu Phe Arg Thr 645 650 655 Ser Thr Phe Asp Asn Ala Ala Phe Glu Lys Ser Leu Val Asp Ala Arg 660 665 670 Lys Ile Tyr His Arg Ile Asp Asp Ala Val Ser Arg Leu Leu Asp Thr 675 680 685 Thr Cys Val Lys Asn Asp Lys Val Ile Glu Asn Ile Arg Phe Val Asp 690 695 700 Phe Tyr Arg Tyr Cys His Ala Ser Arg Gln Glu Met Tyr Asp Tyr Ile 705 710 715 720 Gln Glu Arg Val Gly Trp Ala Arg Pro Ile Asp Thr Gly Arg Ser Thr 725 730 735 Asn Cys Leu Leu Asn Asp Val Gly Ile Tyr Val His Asn Lys Glu Arg 740 745 750 Arg Tyr His Asn Tyr Ser Leu Pro Tyr Ser Trp Asp Val Arg Met Gly 755 760 765 His Ile Ser Arg Glu Glu Ala Met Arg Glu Leu Asp Asp Ser Ala Asp 770 775 780

Ile Asp Val Glu Arg Val Glu Gly Ile Ile Lys Asp Leu Gly Tyr Glu 785 790 795 800 Leu Asn Asp Gln Val Val Gly Ser Ala Glu Ala Gln Leu Val Ala Tyr 805 810 815 Tyr Val Ser Ala Glu Glu Phe Pro Ala Ser Asp Leu Arg Gln Phe Leu 820 825 830 Ser Glu Ile Leu Pro Glu Tyr Met Val Pro Arg Ser Phe Val Gln Leu 835 840 845 Asp Ser Ile Pro Leu Thr Pro Asn Gly Lys Val Asn Arg Gln Ala Leu 850 855 860 Pro Lys Pro Asp Leu Leu Arg Lys Ala Gly Thr Asp Gly Gln Ala Ala 865 870 875 880 Pro Arg Thr Pro Val Glu Lys Gln Leu Ala Glu Leu Trp Lys Glu Val 885 890 895 Leu Gln Val Asp Ser Val Gly Ile His Asp Asn Phe Phe Glu Met Gly 900 905 910 Gly His Ser Leu Pro Ala Leu Met Leu Leu Tyr Lys Ile Asp Ser Gln 915 920 925 Phe His Lys Thr Ile Ser Ile Gln Glu Phe Ser Lys Val Pro Thr Ile 930 935 940 Ser Ala Leu Ala Ala His Leu Gly Ser Asp Thr Glu Ala Val Pro Pro 945 950 955 960 Gly Leu Gly Glu Val Val Asp Gln Ser Ala Pro Ala Tyr Arg Gly 965 970 975 48272PRTCystobacter velatusMISC_FEATURE(1)..(272)CysI 48Val Arg Phe Val Thr Val Asn Gly Glu Asp Ser Ala Val Cys Ser Val 1 5 10 15 Leu Asp Arg Gly Leu Gln Phe Gly Asp Gly Leu Phe Glu Thr Met Leu 20 25 30 Cys Val Gly Gly Ala Pro Val Asp Phe Pro Glu His Trp Ala Arg Leu 35 40 45 Asp Glu Gly Cys Arg Arg Leu Gly Ile Glu Cys Pro Asp Ile Arg Arg 50 55 60 Glu Val Thr Ala Ala Ile Ala Arg Trp Gly Ala Pro Arg Ala Val Ala 65 70 75 80 Lys Leu Val Val Thr Arg Gly Ser Thr Glu Arg Gly Tyr Arg Cys Ala 85 90 95 Pro Ser Val Arg Pro Asn Trp Ile Leu Thr Ile Thr Asp Ala Pro Lys 100 105 110 Tyr Pro Leu Ala His Glu Asp Arg Gly Val Ala Val Lys Leu Cys Arg 115 120 125 Thr Leu Val Ser Leu Asp Asp Pro Gln Leu Ala Gly Leu Lys His Leu 130 135 140 Asn Arg Leu Pro Gln Val Leu Ala Arg Arg Glu Trp Asp Asp Glu Tyr 145 150 155 160 His Asp Gly Leu Leu Thr Asp His Gly Gly His Leu Val Glu Gly Cys 165 170 175 Thr Ser Asn Leu Phe Leu Val Ala Asp Gly Ala Leu Arg Thr Pro Asp 180 185 190 Leu Thr Ala Cys Gly Val Arg Gly Ile Val Arg Gln Lys Val Leu Asp 195 200 205 His Ser Lys Ala Ile Gly Ile Arg Cys Glu Val Thr Thr Leu Lys Leu 210 215 220 Arg Asp Leu Glu His Ala Asp Glu Val Phe Leu Thr Asn Ser Val Tyr 225 230 235 240 Gly Ile Val Pro Val Gly Ser Val Asp Gly Met Arg Tyr Arg Ile Gly 245 250 255 Pro Thr Thr Ala Arg Leu Leu Lys Asp Leu Cys Gln Gly Val Tyr Phe 260 265 270 49327PRTCystobacter velatusMISC_FEATURE(1)..(327)CysJ 49Met Thr Gly Asn Leu Asp Ser Ala Ala Trp Pro Val Ile Ile Thr Pro 1 5 10 15 Gly Gln Gln Pro Ala Ala Leu Glu Asp Trp Val Ser Ala Asn Arg Asp 20 25 30 Gly Leu Glu Arg Gln Leu Thr Glu Cys Lys Ala Ile Leu Phe Arg Gly 35 40 45 Phe Arg Ser Arg Asn Gly Phe Glu Ser Ile Ala Asn Ser Phe Phe Asp 50 55 60 Arg Arg Leu Asn Tyr Thr Tyr Arg Ser Thr Pro Arg Thr Asp Leu Gly 65 70 75 80 Gln Asn Leu Tyr Thr Ala Thr Glu Tyr Pro Lys Gln Leu Ser Ile Pro 85 90 95 Gln His Cys Glu Asn Ala Tyr Gln Arg Asp Trp Pro Met Lys Leu Leu 100 105 110 Phe His Cys Val Glu Pro Ala Ser Lys Gly Gly Arg Thr Pro Leu Ala 115 120 125 Asp Met Thr Lys Val Thr Ala Met Ile Pro Ala Glu Ile Lys Glu Glu 130 135 140 Phe Ala Arg Lys Lys Val Gly Tyr Val Arg Asn Tyr Arg Ala Gly Val 145 150 155 160 Asp Leu Pro Trp Glu Glu Val Phe Gly Thr Ser Asn Lys Ala Glu Val 165 170 175 Glu Lys Phe Cys Val Glu Asn Gly Ile Glu Tyr His Trp Thr Glu Gly 180 185 190 Gly Leu Lys Thr Ile Gln Val Cys Gln Ala Phe Ala Ser His Pro Leu 195 200 205 Thr Gly Glu Thr Ile Trp Phe Asn Gln Ala His Leu Phe His Leu Ser 210 215 220 Ala Leu Asp Pro Ala Ser Gln Lys Met Met Leu Ser Phe Phe Gly Glu 225 230 235 240 Gly Gly Leu Pro Arg Asn Ser Tyr Phe Gly Asp Gly Ser Ala Ile Gly 245 250 255 Ser Asp Val Leu Asp Gln Ile Arg Ser Ala Tyr Glu Arg Asn Lys Val 260 265 270 Ser Phe Glu Trp Gln Lys Asp Asp Val Leu Leu Ile Asp Asn Met Leu 275 280 285 Val Ser His Gly Arg Asp Pro Phe Glu Gly Ser Arg Arg Val Leu Val 290 295 300 Cys Met Ala Glu Pro Tyr Ser Glu Val Gln Arg Arg Gly Phe Ala Gly 305 310 315 320 Ala Thr Asn Ser Gly Arg Ser 325 504545PRTCystobacter velatusMISC_FEATURE(1)..(4140)CysK 50Met Leu Leu Glu Gly Glu Leu Glu Gly Tyr Glu Asp Gly Leu Glu Leu 1 5 10 15 Pro Tyr Asp Phe Pro Arg Thr Ser Asn Arg Ala Trp Arg Ala Ala Thr 20 25 30 Phe Gln His Ser Tyr Pro Pro Glu Leu Ala Arg Lys Val Ala Glu Leu 35 40 45 Ser Arg Glu Gln Gln Ser Thr Leu Phe Met Ser Leu Val Ala Ser Leu 50 55 60 Ala Val Val Leu Asn Arg Tyr Thr Gly Arg Glu Asp Val Cys Ile Gly 65 70 75 80 Thr Thr Val Ala Gly Arg Ala Gln Val Gly Ala Leu Gly Asp Leu Ser 85 90 95 Gly Ser Thr Val Asp Ile Leu Pro Leu Arg Leu Asp Leu Ser Gly Ala 100 105 110 Pro Ser Leu His Glu Val Leu Arg Arg Thr Lys Ala Val Val Leu Glu 115 120 125 Gly Phe Glu His Glu Ala Leu Pro Cys Gln Ile Pro Leu Val Pro Val 130 135 140 Val Val Arg His Gln Asn Phe Pro Met Ala Arg Leu Glu Gly Trp Ser 145 150 155 160 Glu Gly Val Glu Leu Lys Lys Phe Glu Leu Ala Gly Glu Arg Thr Thr 165 170 175 Ala Ser Glu Gln Asp Trp Gln Phe Phe Gly Asp Gly Ser Ser Leu Glu 180 185 190 Leu Ser Leu Glu Tyr Ala Ala Glu Leu Phe Ser Glu Lys Thr Val Lys 195 200 205 Arg Met Val Glu His His Gln Arg Val Leu Glu Ala Leu Val Glu Gly 210 215 220 Leu Glu Glu Val Arg Leu His Glu Val Arg Leu Leu Thr Glu Glu Glu 225 230 235 240 Glu Gly Leu His Gly Arg Leu Asn Asp Thr Ala Arg Glu Leu Glu Glu 245 250 255 Arg Trp Ser Leu Ala Glu Thr Phe Glu Arg Gln Val Arg Glu Thr Pro 260 265 270 Glu Ala Val Ala Cys Val Gly Val Glu Val Ala Thr Gly Gly His Ser 275 280 285 Arg Pro Thr Tyr Arg Gln Leu Thr Tyr Arg Gln Leu Asn Ala Arg Ala 290 295 300 Asn Gln Val Ala Arg Arg Leu Arg Ala Leu Gly Val Gly Ala Glu Thr 305 310 315 320 Arg Val Ala Val Leu Ser Asp Arg Ser Pro Glu Leu Leu Val Ala Met 325 330 335 Leu Ala Ile Phe Lys Ala Gly Gly Cys Tyr Val Pro Val Asp Pro Gln 340 345 350 Tyr Pro Gly Ser Tyr Ile Glu Gln Ile Leu Glu Asp Ala Ala Pro Gln 355 360 365 Val Val Leu Gly Lys Arg Gly Arg Ala Asp Gly Val Arg Val Asp Val 370 375 380 Trp Leu Glu Leu Asp Gly Ala Gln Arg Leu Thr Asp Glu Ala Leu Ala 385 390 395 400 Ala Gln Glu Glu Gly Glu Leu Glu Gly Ala Glu Arg Pro Glu Ser Gln 405 410 415 Gln Leu Ala Cys Leu Met Tyr Thr Ser Gly Ser Thr Gly Arg Pro Lys 420 425 430 Gly Val Met Val Pro Tyr Ser Gln Leu His Asn Trp Leu Glu Ala Gly 435 440 445 Lys Glu Arg Ser Pro Leu Glu Arg Gly Glu Val Met Leu Gln Lys Thr 450 455 460 Ala Ile Ala Phe Ala Val Ser Val Lys Glu Leu Leu Ser Gly Leu Leu 465 470 475 480 Ala Gly Val Ala Gln Val Met Val Pro Glu Thr Leu Val Lys Asp Ser 485 490 495 Val Ala Leu Ala Gln Glu Ile Glu Arg Trp Arg Val Thr Arg Ile His 500 505 510 Leu Val Pro Ser His Leu Gly Ala Leu Leu Glu Gly Ala Gly Glu Glu 515 520 525 Ala Lys Gly Leu Arg Ser Leu Lys Tyr Val Ile Thr Ala Gly Glu Ala 530 535 540 Leu Ala Gln Gly Val Arg Glu Glu Ala Arg Arg Lys Leu Pro Gly Ala 545 550 555 560 Gln Leu Trp Asn Asn Tyr Gly Cys Thr Glu Leu Asn Asp Val Thr Tyr 565 570 575 His Pro Ala Ser Glu Gly Gly Gly Asp Thr Val Phe Val Pro Ile Gly 580 585 590 Arg Pro Ile Ala Asn Thr Arg Val Tyr Val Leu Asp Glu Gln Leu Arg 595 600 605 Arg Val Pro Val Gly Val Met Gly Glu Leu Tyr Val Asp Ser Val Gly 610 615 620 Met Ala Arg Gly Tyr Trp Gly Gln Pro Ala Leu Thr Ala Glu Arg Phe 625 630 635 640 Ile Ala Asn Pro Tyr Ala Ser Gln Pro Gly Ala Arg Leu Tyr Arg Thr 645 650 655 Gly Asp Met Val Arg Val Leu Ala Asp Gly Ser Leu Glu Tyr Leu Gly 660 665 670 Arg Arg Asp Tyr Glu Ile Lys Val Arg Gly His Arg Val Asp Val Arg 675 680 685 Gln Val Glu Lys Val Ala Asn Ala His Pro Ala Ile Arg Gln Ala Val 690 695 700 Val Ser Gly Trp Pro Leu Gly Ser Ser Asn Ala Gln Leu Val Ala Tyr 705 710 715 720 Leu Val Pro Gln Ala Gly Ala Thr Val Gly Pro Arg Gln Val Arg Asp 725 730 735 Tyr Leu Ala Glu Ser Leu Pro Ala Tyr Met Val Pro Thr Leu Tyr Thr 740 745 750 Val Leu Glu Glu Leu Pro Arg Leu Pro Asn Gly Lys Leu Asp Arg Leu 755 760 765 Ser Leu Pro Glu Pro Asp Leu Ser Ser Ser Arg Glu Glu Tyr Val Ala 770 775 780 Pro His Gly Glu Val Glu Arg Lys Leu Ala Glu Ile Phe Gly Asn Leu 785 790 795 800 Leu Gly Leu Glu His Val Gly Val His Asp Asn Phe Phe Ser Leu Gly 805 810 815 Gly His Ser Leu Leu Ala Ala Gln Leu Ile Ser Arg Ile Arg Ala Thr 820 825 830 Phe Arg Val Glu Val Ala Met Ala Thr Val Phe Glu Ser Pro Thr Val 835 840 845 Glu Pro Leu Ala Arg His Ile Glu Glu Lys Leu Lys Asp Glu Ser Arg 850 855 860 Val Gln Leu Ser Asn Val Val Pro Val Glu Arg Thr Gln Glu Ile Pro 865 870 875 880 Leu Ser Tyr Leu Gln Glu Arg Leu Trp Phe Val His Glu His Met Lys 885 890 895 Glu Gln Arg Thr Ser Tyr Asn Ile Thr Trp Thr Leu His Phe Ala Gly 900 905 910 Lys Gly Phe Ser Val Glu Ala Leu Arg Thr Ala Phe Asp Glu Leu Val 915 920 925 Ala Arg His Glu Thr Leu Arg Thr Trp Phe Gln Val Gly Glu Gly Thr 930 935 940 Glu Gln Ala Val Gln Val Ile Gly Glu Pro Trp Ser Met Glu Leu Pro 945 950 955 960 Leu Arg Glu Val Ala Gly Thr Glu Val Thr Ala Ala Ile Asn Glu Met 965 970 975 Ser Arg Gln Val Phe Asp Leu Arg Ala Gly Arg Leu Leu Thr Ala Ala 980 985 990 Val Leu Arg Val Ala Glu Asp Glu His Ile Leu Val Ser Asn Ile His 995 1000 1005 His Ile Ile Thr Asp Gly Trp Ser Phe Gly Val Met Leu Arg Glu 1010 1015 1020 Leu Arg Glu Leu Tyr Glu Ala Ala Val Arg Gly Lys Arg Ala Glu 1025 1030 1035 Leu Pro Pro Leu Thr Val Gln Tyr Gly Asp Tyr Ala Val Trp Gln 1040 1045 1050 Arg Lys Gln Asp Leu Ser Glu His Leu Ala Tyr Trp Lys Gly Lys 1055 1060 1065 Val Glu Glu Tyr Glu Asp Gly Leu Glu Leu Pro Tyr Asp Phe Pro 1070 1075 1080 Arg Thr Ser Asn Arg Ala Trp Arg Ala Ala Thr Phe Gln Tyr Ser 1085 1090 1095 Tyr Pro Pro Glu Leu Ala Arg Lys Val Ala Glu Leu Ser Arg Glu 1100 1105 1110 Gln Gln Ser Thr Leu Phe Met Ser Leu Val Ala Ser Leu Ala Val 1115 1120 1125 Val Leu Asn Arg Tyr Thr Gly Arg Gln Asp Val Cys Ile Gly Thr 1130 1135 1140 Thr Val Ala Gly Arg Ala Gln Val Glu Leu Glu Ser Leu Ile Gly 1145 1150 1155 Phe Phe Ile Asn Ile Leu Pro Leu Arg Leu Asp Leu Ser Gly Ala 1160 1165 1170 Pro Ser Leu His Glu Val Leu Arg Arg Thr Lys Ala Val Val Leu 1175 1180 1185 Glu Gly Phe Glu His Gln Glu Leu Pro Phe Glu His Leu Leu Lys 1190 1195 1200 Ala Leu Arg Arg Gln Arg Asp Ser Ser Gln Ile Pro Leu Val Pro 1205 1210 1215 Val Val Val Arg His Gln Asn Phe Pro Met Ala Arg Leu Glu Gly 1220 1225 1230 Trp Ser Glu Gly Val Glu Leu Lys Lys Phe Glu Leu Ala Gly Glu 1235 1240 1245 Arg Thr Thr Ala Ser Glu Gln Asp Trp Gln Phe Phe Gly Asp Gly 1250 1255 1260 Ser Ser Leu Glu Leu Ser Leu Glu Tyr Ala Ala Glu Leu Phe Ser 1265 1270 1275 Glu Lys Thr Val Arg Arg Met Val Glu His His Gln Arg Val Leu 1280 1285 1290 Glu Ala Leu Val Glu Gly Leu Glu Glu Gly Leu His Glu Val Arg 1295 1300 1305 Leu Leu Thr Glu Glu Glu Glu Gly Leu His Gly Arg Leu Asn Asp 1310 1315 1320 Thr Ala Arg Glu Leu Glu Glu Arg Trp Ser Leu Ala Glu Thr Phe 1325 1330 1335 Glu Arg Gln Val Arg Glu Thr Pro Glu Ala Val Ala Cys Val Gly 1340 1345 1350 Val Glu Val Ala Thr Gly Gly His Ser Arg Pro Thr Tyr Arg Gln 1355 1360 1365 Leu Thr Tyr Arg Gln Leu Asn Ala Arg Ala Asn Gln Val Ala Arg 1370 1375 1380 Arg Leu Arg Ala Leu Gly Val Gly Ala Glu Thr Arg Val Ala Val 1385 1390 1395 Leu Ser Asp Arg Ser Pro Glu Leu Leu Val Ala Met Leu Ala Ile 1400 1405 1410 Phe Lys Ala Gly Gly Cys Tyr Val Pro Val Asp Pro Gln Tyr Pro 1415 1420 1425 Gly His Tyr Ile Glu Gln Ile Leu Glu Asp Ala Ala Pro Gln Val 1430 1435 1440 Val Leu Gly Lys Arg Gly Arg Ala Asp Gly Val Arg Val Asp Val 1445 1450 1455 Trp Leu Glu Leu Asp Gly Ala Gln Arg Leu Thr Asp Glu Ala Leu

1460 1465 1470 Ala Ala Gln Glu Glu Gly Glu Leu Glu Gly Ala Glu Arg Pro Glu 1475 1480 1485 Ser Gln Gln Leu Ala Cys Leu Met Tyr Thr Ser Gly Ser Thr Gly 1490 1495 1500 Arg Pro Lys Gly Val Met Val Pro Tyr Ser Gln Leu His Asn Trp 1505 1510 1515 Leu Glu Ala Gly Lys Glu Arg Ser Pro Leu Glu Arg Gly Glu Val 1520 1525 1530 Met Leu Gln Lys Thr Ala Ile Ala Phe Ala Val Ser Val Lys Glu 1535 1540 1545 Leu Leu Ser Gly Leu Leu Ala Gly Val Ala Gln Val Met Val Pro 1550 1555 1560 Glu Thr Leu Val Lys Asp Ser Val Ala Leu Ala Gln Glu Ile Glu 1565 1570 1575 Arg Trp Arg Val Thr Arg Ile His Leu Val Pro Ser His Leu Gly 1580 1585 1590 Ala Leu Leu Glu Gly Ala Gly Glu Glu Ala Lys Gly Leu Arg Ser 1595 1600 1605 Leu Lys Tyr Val Ile Thr Ala Gly Glu Ala Leu Ala Gln Gly Val 1610 1615 1620 Arg Glu Glu Ala Arg Arg Lys Leu Pro Gly Ala Gln Leu Trp Asn 1625 1630 1635 Asn Tyr Gly Cys Thr Glu Leu Asn Asp Val Thr Tyr His Pro Ala 1640 1645 1650 Ser Glu Gly Gly Gly Asp Thr Val Phe Val Pro Ile Gly Arg Pro 1655 1660 1665 Ile Ala Asn Thr Arg Val Tyr Val Leu Asp Glu Gln Leu Arg Arg 1670 1675 1680 Val Pro Val Gly Val Met Gly Glu Leu Tyr Val Asp Ser Val Gly 1685 1690 1695 Met Ala Arg Gly Tyr Trp Gly Gln Pro Ala Leu Thr Ala Glu Arg 1700 1705 1710 Phe Ile Ala Asn Pro Tyr Ala Ser Gln Pro Gly Ala Arg Leu Tyr 1715 1720 1725 Arg Thr Gly Asp Met Val Arg Val Leu Ala Asp Gly Ser Leu Glu 1730 1735 1740 Tyr Leu Gly Arg Arg Asp Tyr Glu Ile Lys Val Arg Gly His Arg 1745 1750 1755 Val Asp Val Arg Gln Val Glu Lys Val Ala Asn Ala His Pro Ala 1760 1765 1770 Ile Arg Gln Ala Val Val Ser Gly Trp Pro Leu Gly Ser Ser Asn 1775 1780 1785 Ala Gln Leu Val Ala Tyr Leu Val Pro Gln Ala Gly Ala Thr Val 1790 1795 1800 Gly Pro Arg Gln Val Arg Asp Tyr Leu Ala Glu Ser Leu Pro Ala 1805 1810 1815 Tyr Met Val Pro Thr Leu Tyr Thr Val Leu Glu Glu Leu Pro Arg 1820 1825 1830 Leu Pro Asn Gly Lys Leu Asp Arg Leu Ser Leu Pro Glu Pro Asp 1835 1840 1845 Leu Ser Ser Ser Arg Glu Glu Tyr Val Ala Pro His Gly Glu Val 1850 1855 1860 Glu Arg Lys Leu Ala Glu Ile Phe Gly Asn Leu Leu Gly Leu Glu 1865 1870 1875 His Val Gly Val His Asp Asn Phe Phe Ser Leu Gly Gly His Ser 1880 1885 1890 Leu Leu Ala Ala Gln Val Val Ser Arg Ile Gly Lys Glu Leu Gly 1895 1900 1905 Thr Gln Ile Ser Ile Ala Asp Leu Phe Gln Arg Pro Thr Ile Glu 1910 1915 1920 Gln Leu Cys Glu Leu Ile Gly Gly Leu Asp Asp Gln Thr Gln Arg 1925 1930 1935 Glu Leu Ala Leu Ala Pro Ser Gly Asn Thr Glu Ala Val Leu Ser 1940 1945 1950 Phe Ala Gln Glu Arg Met Trp Phe Leu His Asn Phe Val Lys Gly 1955 1960 1965 Met Pro Tyr Asn Thr Pro Gly Leu Asp His Leu Thr Gly Glu Leu 1970 1975 1980 Asp Val Ala Ala Leu Glu Lys Ala Ile Arg Ala Val Ile Arg Arg 1985 1990 1995 His Glu Pro Leu Arg Thr Asn Phe Val Glu Lys Asp Gly Val Leu 2000 2005 2010 Ser Gln Leu Val Gly Thr Glu Glu Arg Phe Arg Leu Thr Val Thr 2015 2020 2025 Pro Ile Arg Asp Glu Ser Glu Val Ala Arg Leu Met Glu Ala Val 2030 2035 2040 Ile Gln Thr Pro Val Asp Leu Glu Arg Glu Leu Met Ile Arg Ala 2045 2050 2055 Tyr Leu Tyr Arg Val Asp Pro Arg Asn His Tyr Leu Phe Thr Thr 2060 2065 2070 Ile His His Ile Ala Phe Asp Gly Trp Ser Thr Ser Ile Phe Tyr 2075 2080 2085 Arg Glu Leu Ala Ala Tyr Tyr Ala Ala Phe Leu Arg Arg Glu Asp 2090 2095 2100 Ser Pro Leu Pro Ala Leu Glu Ile Ser Tyr Gln Asp Tyr Ala Arg 2105 2110 2115 Trp Glu Arg Ala His Phe Gln Asp Glu Val Leu Ala Glu Lys Leu 2120 2125 2130 Arg Tyr Trp Arg Gln Arg Leu Ser Gly Ala Arg Pro Leu Val Leu 2135 2140 2145 Pro Thr Thr Tyr His Arg Pro Pro Ile Gln Ser Phe Ala Gly Ala 2150 2155 2160 Val Val Asn Phe Glu Ile Asp Arg Ser Ile Thr Glu Arg Leu Lys 2165 2170 2175 Thr Leu Phe Ala Glu Ser Gly Thr Thr Met Tyr Met Val Leu Leu 2180 2185 2190 Gly Ala Phe Ser Val Val Leu Gln Arg Tyr Ser Gly Gln Asp Asp 2195 2200 2205 Ile Cys Ile Gly Ser Pro Val Ala Asn Arg Gly His Ile Gln Thr 2210 2215 2220 Glu Gly Leu Ile Gly Leu Phe Val Asn Thr Leu Val Met Arg Val 2225 2230 2235 Asp Ala Ala Gly Asn Pro Arg Phe Ile Asp Leu Leu Ala Arg Ile 2240 2245 2250 Gln Arg Thr Ala Ile Asp Ala Tyr Ala Asn Gln Glu Val Pro Phe 2255 2260 2265 Glu Lys Ile Val Asp Asp Leu Gln Val Ala Arg Asp Thr Ala Arg 2270 2275 2280 Ser Pro Leu Val Gln Val Ile Leu Asn Phe His Asn Thr Pro Pro 2285 2290 2295 Gln Ser Glu Leu Glu Leu Gln Gly Val Thr Leu Thr Arg Met Pro 2300 2305 2310 Val His Asn Gly Thr Ala Lys Phe Glu Leu Ser Ile Asp Val Ala 2315 2320 2325 Glu Thr Ser Ala Gly Leu Thr Gly Phe Val Glu Tyr Ala Thr Asp 2330 2335 2340 Leu Phe Ser Glu Asn Phe Ile Arg Arg Met Ile Gly His Leu Glu 2345 2350 2355 Val Val Leu Asp Ala Val Gly Arg Asp Pro Arg Ala Pro Ile His 2360 2365 2370 Glu Leu Pro Leu Leu Thr Arg Gln Asp Gln Leu Asp Leu Leu Ser 2375 2380 2385 Arg Ser Gly His Thr Ala Pro Ala Val Glu His Val Glu Leu Ile 2390 2395 2400 Pro His Thr Phe Glu Arg Arg Val Gln Glu Ser Pro Gln Ala Ile 2405 2410 2415 Ala Leu Val Cys Gly Asp Glu Arg Val Thr Tyr Ser Ala Leu Asn 2420 2425 2430 Arg Arg Ala Ser Gln Ile Ala Arg Arg Leu Arg Ala Ala Gly Ile 2435 2440 2445 Gly Pro Asp Thr Leu Val Gly Leu Cys Ala Gly Arg Ser Ile Glu 2450 2455 2460 Leu Val Cys Gly Val Leu Gly Ile Leu Lys Ala Gly Gly Ala Tyr 2465 2470 2475 Val Pro Ile Asp Pro Thr Ser Ser Pro Glu Val Ile Tyr Asp Val 2480 2485 2490 Leu Tyr Glu Ser Lys Val Arg His Leu Leu Thr Glu Ser Arg Leu 2495 2500 2505 Val Gly Gly Leu Pro Val Asp Asp Gln Glu Ile Leu Leu Leu Asp 2510 2515 2520 Thr Pro Ala Asp Gly Glu Gly Asp Lys Ala Val Ala Asp Arg Glu 2525 2530 2535 Glu Pro Pro Asp Leu Gly Glu Val Ser Leu Thr Pro Glu Cys Leu 2540 2545 2550 Ala Tyr Val Asn Phe Thr Ser Asp Ser Gly Gly Ala Pro Arg Gly 2555 2560 2565 Ile Ala Val Arg His Gly Ala Leu Ala Arg Arg Met Ala Ala Gly 2570 2575 2580 His Ala Gln Tyr Leu Ala Asn Ser Ala Val Arg Phe Leu Leu Lys 2585 2590 2595 Ala Pro Leu Thr Phe Asp Leu Ala Val Ala Glu Leu Phe Gln Trp 2600 2605 2610 Ile Val Ser Gly Gly Ser Leu Ser Ile Leu Asp Pro Asn Ala Asp 2615 2620 2625 Arg Asp Ala Ser Ala Phe Leu Ala Gln Val Arg Arg Asp Ser Ile 2630 2635 2640 Gly Val Leu Tyr Cys Val Pro Ser Glu Leu Ser Thr Leu Val Ser 2645 2650 2655 His Leu Glu Arg Glu Arg Glu Arg Val His Glu Leu Asn Thr Leu 2660 2665 2670 Arg Phe Ile Phe Cys Gly Gly Asp Thr Leu Ala Val Thr Val Val 2675 2680 2685 Glu Arg Leu Gly Val Leu Val Arg Ala Gly Gln Leu Pro Leu Arg 2690 2695 2700 Leu Val Asn Val Tyr Gly Thr Lys Glu Thr Gly Ile Gly Ala Gly 2705 2710 2715 Cys Phe Glu Cys Ala Leu Asp Ala Asn Asp Pro Ser Ala Glu Leu 2720 2725 2730 Pro Pro Gly Arg Leu Ser His Glu Arg Met Pro Ile Gly Gly Pro 2735 2740 2745 Ala Gln Asn Leu Trp Phe Tyr Val Val Gln Pro Asn Gly Gly Leu 2750 2755 2760 Ala Pro Leu Gly Ile Pro Gly Glu Leu Tyr Val Gly Gly Ala Gln 2765 2770 2775 Leu Ala Asp Ala Arg Phe Gly Asp Glu Pro Thr Ala Thr His Pro 2780 2785 2790 Gly Phe Val Pro Asn Pro Phe Arg Ser Gly Ala Glu Lys Asp Trp 2795 2800 2805 Leu Tyr Lys Thr Gly Asp Leu Val Arg Trp Leu Pro Gln Gly Pro 2810 2815 2820 Leu Glu Leu Val Ser Ala Ala Arg Glu Arg Asp Gly Gly Gly Asp 2825 2830 2835 His Arg Leu Asp Arg Gly Phe Ile Glu Ala Arg Met Arg Arg Val 2840 2845 2850 Ala Ile Val Arg Asp Ala Val Val Ala Tyr Val Pro Asp Arg Gln 2855 2860 2865 Asp Arg Ala Arg Leu Val Ala Tyr Val Val Leu Lys Glu Ser Pro 2870 2875 2880 Ala Ala Asp Val Glu Pro Arg Glu Gly Arg Glu Thr Leu Lys Ala 2885 2890 2895 Arg Ile Ser Ala Glu Leu Gly Ser Thr Leu Pro Glu Tyr Met Leu 2900 2905 2910 Pro Ala Ala Tyr Val Phe Met Asp Ser Leu Pro Leu Thr Ala Tyr 2915 2920 2925 Gly Arg Ile Asp Arg Lys Ala Leu Pro Glu Pro Glu Asp Asp Arg 2930 2935 2940 His Gly Gly Ser Ala Ile Ala Tyr Val Ala Pro Arg Gly Pro Thr 2945 2950 2955 Glu Lys Ala Leu Ala His Ile Trp Gln Gln Val Leu Lys Arg Pro 2960 2965 2970 Gln Val Gly Leu Arg Asp Asn Phe Phe Glu Leu Gly Gly His Ser 2975 2980 2985 Val Ala Ala Ile Gln Leu Val Ser Val Ser Arg Lys His Leu Glu 2990 2995 3000 Val Glu Val Pro Leu Ser Leu Ile Phe Glu Ser Pro Val Leu Glu 3005 3010 3015 Ala Met Ala Arg Gly Ile Glu Ala Leu Gln Gln Gln Gly Arg Ser 3020 3025 3030 Gly Ala Val Ser Ser Ile His Arg Val Glu Arg Thr Gly Pro Leu 3035 3040 3045 Pro Leu Ala Tyr Val Gln Glu Arg Leu Trp Phe Val His Glu His 3050 3055 3060 Met Lys Glu Gln Arg Thr Ser Tyr Asn Ile Thr Trp Thr Leu His 3065 3070 3075 Phe Ala Gly Lys Gly Phe Ser Val Glu Ala Leu Arg Thr Ala Phe 3080 3085 3090 Asp Glu Leu Val Ala Arg His Glu Thr Leu Arg Thr Trp Phe Gln 3095 3100 3105 Val Gly Glu Gly Thr Glu Gln Ala Val Gln Val Ile Gly Glu Pro 3110 3115 3120 Trp Ser Met Glu Leu Pro Leu Arg Glu Val Ala Gly Thr Glu Val 3125 3130 3135 Thr Ala Ala Ile Asn Glu Met Ser Arg Gln Val Phe Asp Leu Arg 3140 3145 3150 Ala Gly Arg Leu Leu Thr Ala Ala Val Leu Arg Val Ala Glu Asp 3155 3160 3165 Glu His Ile Leu Val Ser Asn Ile His His Ile Ile Thr Asp Gly 3170 3175 3180 Trp Ser Phe Gly Val Met Leu Arg Glu Leu Arg Glu Leu Tyr Glu 3185 3190 3195 Ala Ala Val Arg Gly Glu Arg Ala Glu Leu Pro Pro Leu Thr Val 3200 3205 3210 Gln Tyr Gly Asp Tyr Ala Val Trp Gln Arg Lys Gln Asp Leu Ser 3215 3220 3225 Glu His Leu Ala Tyr Trp Lys Gly Lys Val Glu Gly Asp Glu Asp 3230 3235 3240 Gly Leu Glu Leu Pro Tyr Asp Phe Pro Arg Thr Ser Asn Arg Ala 3245 3250 3255 Trp Arg Ala Ala Thr Phe Gln Tyr Ser Tyr His Pro Glu Leu Ala 3260 3265 3270 Arg Lys Val Ala Glu Leu Ser Arg Glu Gln Gln Ser Thr Leu Phe 3275 3280 3285 Met Ser Leu Val Ala Ser Leu Ala Val Val Leu Asn Arg Tyr Thr 3290 3295 3300 Gly Arg Glu Asp Leu Cys Ile Gly Thr Thr Val Ala Gly Arg Ala 3305 3310 3315 Gln Val Glu Leu Glu Ser Leu Ile Gly Phe Phe Ile Asn Ile Leu 3320 3325 3330 Pro Leu Arg Leu Asp Leu Ser Gly Ala Pro Ser Leu His Glu Val 3335 3340 3345 Leu Arg Arg Thr Lys Val Val Val Leu Glu Gly Phe Glu His Gln 3350 3355 3360 Glu Leu Pro Phe Glu His Leu Leu Lys Ala Leu Arg Arg Gln Arg 3365 3370 3375 Asp Ser Ser Gln Ile Pro Leu Val Pro Val Val Val Arg His Gln 3380 3385 3390 Asn Phe Pro Met Ala Arg Leu Glu Gly Trp Ser Glu Gly Val Glu 3395 3400 3405 Leu Lys Lys Phe Glu Leu Ala Gly Glu Arg Thr Thr Ala Ser Glu 3410 3415 3420 Gln Asp Trp Gln Phe Phe Gly Asp Gly Ser Ser Leu Glu Leu Ser 3425 3430 3435 Leu Glu Tyr Ala Ala Glu Leu Phe Ser Glu Lys Thr Val Arg Arg 3440 3445 3450 Met Val Glu His His Gln Arg Val Leu Glu Ala Leu Val Glu Gly 3455 3460 3465 Leu Glu Glu Gly Leu His Glu Val Arg Leu Leu Thr Glu Glu Glu 3470 3475 3480 Glu Gly Leu His Gly Arg Leu Asn Asp Thr Ala Arg Glu Leu Glu 3485 3490 3495 Glu Arg Trp Ser Leu Ala Glu Thr Phe Glu Arg Gln Val Arg Glu 3500 3505 3510 Thr Pro Glu Ala Val Ala Cys Val Gly Val Glu Val Ala Thr Gly 3515 3520 3525 Gly His Ser Arg Pro Thr Tyr Arg Gln Leu Thr Tyr Arg Gln Leu 3530 3535 3540 Asn Ala Arg Ala Asn Gln Val Ala Arg Arg Leu Arg Ala Leu Gly 3545 3550 3555 Val Gly Ala Glu Thr Arg Val Ala Val Leu Ser Asp Arg Ser Pro 3560 3565 3570 Glu Leu Leu Val Ala Met Leu Ala Ile Phe Lys Ala Gly Gly Cys 3575 3580 3585 Tyr Val Pro Val Asp Pro Gln Tyr Pro Gly Ser Tyr Ile Glu Gln 3590 3595 3600 Ile Leu Glu Asp Ala Ala Pro Gln Val Val Leu Gly Lys Arg Gly 3605 3610 3615 Arg Ala Asp Gly Val Arg Val Asp Val Trp Leu Glu Leu Asp Gly 3620 3625 3630 Ala Gln Arg Leu Thr Asp Glu Ala Leu Ala Ala Gln Glu Glu Gly 3635 3640 3645 Glu Leu Glu Gly Ala Glu Arg Pro Glu Ser Gln Gln Leu Ala Cys 3650 3655 3660

Leu Met Tyr Thr Ser Gly Ser Thr Gly Arg Pro Lys Gly Val Met 3665 3670 3675 Val Pro Tyr Ser Gln Leu His Asn Trp Leu Glu Ala Gly Lys Glu 3680 3685 3690 Arg Ser Pro Leu Glu Arg Gly Glu Val Met Leu Gln Lys Thr Ala 3695 3700 3705 Ile Ala Phe Ala Val Ser Val Lys Glu Leu Leu Ser Gly Leu Leu 3710 3715 3720 Ala Gly Val Ala Gln Val Met Val Pro Glu Thr Leu Val Lys Asp 3725 3730 3735 Ser Val Ala Leu Ala Gln Glu Ile Glu Arg Trp Arg Val Thr Arg 3740 3745 3750 Ile His Leu Val Pro Ser His Leu Gly Ala Leu Leu Glu Gly Ala 3755 3760 3765 Gly Glu Glu Ala Lys Gly Leu Arg Ser Leu Lys Tyr Val Ile Thr 3770 3775 3780 Ala Gly Glu Ala Leu Ala Gln Gly Val Arg Glu Glu Ala Arg Arg 3785 3790 3795 Lys Leu Pro Gly Ala Gln Leu Trp Asn Asn Tyr Gly Cys Thr Glu 3800 3805 3810 Leu Asn Asp Val Thr Tyr His Pro Ala Ser Glu Gly Gly Gly Asp 3815 3820 3825 Thr Val Phe Val Pro Ile Gly Arg Pro Ile Ala Asn Thr Arg Val 3830 3835 3840 Tyr Val Leu Asp Glu Gln Leu Arg Arg Val Pro Val Gly Val Met 3845 3850 3855 Gly Glu Leu Tyr Val Asp Ser Val Gly Met Ala Arg Gly Tyr Trp 3860 3865 3870 Gly Gln Pro Ala Leu Thr Ala Glu Arg Phe Ile Ala Asn Pro Tyr 3875 3880 3885 Ala Ser Gln Pro Gly Ala Arg Leu Tyr Arg Thr Gly Asp Met Val 3890 3895 3900 Arg Val Leu Ala Asp Gly Ser Leu Glu Tyr Leu Gly Arg Arg Asp 3905 3910 3915 Tyr Glu Ile Lys Val Arg Gly His Arg Val Asp Val Arg Gln Val 3920 3925 3930 Glu Lys Val Ala Asn Ala His Pro Ala Ile Arg Gln Ala Val Val 3935 3940 3945 Ser Gly Trp Pro Leu Gly Ser Ser Asn Ala Gln Leu Val Ala Tyr 3950 3955 3960 Leu Val Pro Gln Ala Gly Ala Thr Val Gly Pro Arg Gln Val Arg 3965 3970 3975 Asp Tyr Leu Ala Glu Ser Leu Pro Ala Tyr Met Val Pro Thr Leu 3980 3985 3990 Tyr Thr Val Leu Glu Glu Leu Pro Arg Leu Pro Asn Gly Lys Leu 3995 4000 4005 Asp Arg Leu Ser Leu Pro Glu Pro Asp Leu Ser Ser Ser Arg Glu 4010 4015 4020 Glu Tyr Val Ala Pro His Gly Glu Val Glu Arg Lys Leu Ala Glu 4025 4030 4035 Ile Phe Gly Asn Leu Leu Gly Leu Glu His Val Gly Val His Asp 4040 4045 4050 Asn Phe Phe Asn Leu Gly Gly His Ser Leu Leu Ala Ser Gln Leu 4055 4060 4065 Ile Ser Arg Ile Arg Ala Thr Phe Arg Val Glu Val Ala Met Ala 4070 4075 4080 Thr Val Phe Glu Ser Pro Thr Val Glu Pro Leu Ala Arg His Ile 4085 4090 4095 Glu Glu Lys Leu Lys Asp Glu Ser Arg Val Gln Leu Ser Asn Val 4100 4105 4110 Val Pro Val Glu Arg Thr Gln Glu Leu Pro Leu Ser Tyr Leu Gln 4115 4120 4125 Glu Arg Leu Trp Phe Val His Glu His Met Lys Glu Gln Arg Thr 4130 4135 4140 Ser Tyr Asn Gly Thr Ile Gly Leu Arg Leu Arg Gly Pro Leu Ser 4145 4150 4155 Ile Pro Ala Leu Arg Ala Thr Phe His Asp Leu Val Ala Arg His 4160 4165 4170 Glu Ser Leu Arg Thr Val Phe Arg Val Pro Glu Gly Arg Thr Thr 4175 4180 4185 Pro Val Gln Val Ile Leu Asp Ser Met Asp Leu Asp Ile Pro Val 4190 4195 4200 Arg Asp Ala Thr Glu Ala Asp Ile Ile Pro Gly Met Asp Glu Leu 4205 4210 4215 Ala Gly His Ile Tyr Asp Met Glu Lys Gly Pro Leu Phe Met Val 4220 4225 4230 Arg Leu Leu Arg Leu Ala Glu Asp Ser His Val Leu Leu Met Gly 4235 4240 4245 Met His His Ile Val Tyr Asp Ala Trp Ser Gln Phe Asn Val Met 4250 4255 4260 Ser Arg Asp Ile Asn Leu Leu Tyr Ser Ala His Val Thr Gly Ile 4265 4270 4275 Glu Ala Arg Leu Pro Ala Leu Pro Ile Gln Tyr Ala Asp Phe Ser 4280 4285 4290 Val Trp Gln Arg Gln Gln Asp Phe Arg His His Leu Asp Tyr Trp 4295 4300 4305 Lys Ser Thr Leu Gly Asp Tyr Arg Asp Asp Leu Glu Leu Pro Tyr 4310 4315 4320 Asp Tyr Pro Arg Pro Pro Ser Arg Thr Trp His Ala Thr Arg Phe 4325 4330 4335 Thr Phe Arg Tyr Pro Asp Ala Leu Ala Arg Ala Phe Ala Arg Phe 4340 4345 4350 Asn Gln Ser His Gln Ser Thr Leu Phe Met Gly Leu Leu Thr Ser 4355 4360 4365 Phe Ala Ile Val Leu Arg His Tyr Thr Gly Arg Asn Asp Ile Cys 4370 4375 4380 Ile Gly Thr Thr Thr Ala Gly Arg Ala Gln Leu Glu Leu Glu Asn 4385 4390 4395 Leu Val Gly Phe Phe Ile Asn Ile Leu Pro Leu Arg Ile Asn Leu 4400 4405 4410 Ala Gly Asp Pro Asp Ile Ser Glu Leu Met Asn Arg Ala Lys Lys 4415 4420 4425 Ser Val Leu Gly Ala Phe Glu His Gln Ala Leu Pro Phe Glu Arg 4430 4435 4440 Leu Leu Ser Ala Leu Asn Lys Gln Arg Asp Ser Ser His Ile Pro 4445 4450 4455 Leu Val Pro Val Met Leu Arg His Gln Asn Phe Pro Thr Ala Met 4460 4465 4470 Thr Gly Lys Trp Ala Asp Gly Val Asp Met Glu Val Ile Glu Arg 4475 4480 4485 Asp Glu Arg Thr Thr Pro Asn Glu Leu Asp Leu Gln Phe Phe Gly 4490 4495 4500 Asp Asp Thr Tyr Leu His Ala Val Val Glu Phe Pro Ala Gln Leu 4505 4510 4515 Phe Ser Glu Val Thr Val Arg Arg Leu Met Gln Arg His Gln Lys 4520 4525 4530 Val Ile Glu Phe Met Cys Ala Thr Leu Gly Ala Arg 4535 4540 4545 511023PRTCystobacter velatusMISC_FEATURE(1)..(1023)CysL 51Val Asn Val Leu Ala Arg His Ser Thr Gly Ser His Asp Glu Pro Val 1 5 10 15 Ala Gly Asp Val Glu Leu Arg Val Gly Gly Pro Gly Val Pro Asp Ala 20 25 30 His Ser Ser Glu Ser Val Glu Val Leu Ala Arg Trp Leu Arg Thr Ala 35 40 45 Glu Glu Lys Tyr Pro Gly Val Met Gly Pro Ile Arg Gln Glu Gly Pro 50 55 60 Trp Phe Ala Ile Pro Leu Thr Cys Pro Arg Gly Ala Arg Ser Ala Arg 65 70 75 80 Phe Gly Leu Trp Leu Gly Glu Leu Asp Arg Gln Gly Gln Leu Leu His 85 90 95 Met Val Ala Ser Tyr Leu Ala Ala Val His His Val Leu Val Ser Val 100 105 110 Arg Glu Pro Ser Ala Asn Val Leu Glu Val Leu Val Ser Asp Ser Thr 115 120 125 Thr Pro Ser Gly Leu Asn Arg Phe Leu Asn Gly Leu Asp Ser Val Leu 130 135 140 Glu Ile Leu Ala His Gly Arg Ser Asp Leu Leu Leu Gln His Leu Thr 145 150 155 160 Gly Arg Leu Pro Pro Asp Glu Met Pro Phe Val Glu Asp Arg Glu Glu 165 170 175 Arg Glu Glu His Pro Ala Thr Asp Val Glu Ala Asp Ala Val Val Ser 180 185 190 Val Leu Phe Gln Pro Val Asp Phe Pro Ser Leu Ala Arg Leu Asp Ala 195 200 205 Ser Leu Leu Ala Tyr Asp Asp Glu Asp Ala Gly Ala Val Gly Arg Val 210 215 220 Leu Gly Glu Leu Leu Gln Pro Phe Leu Leu Asp Ser Ala Arg Met Thr 225 230 235 240 Val Gly Arg Lys Ala Val Arg Val Asp His Ile Cys Leu Pro Gly Leu 245 250 255 Leu Arg Ala Asp Ser Arg Ala Ala Glu Glu Ser Val Leu Ala Pro Ala 260 265 270 Leu Arg Leu Ala Thr Lys Pro Gly Arg His Phe Val Ala Leu Cys Arg 275 280 285 Asn Thr Ala Leu Arg Leu Gly Asp Arg Leu Pro His Leu Leu Ala Gln 290 295 300 Gly Pro Leu Cys Asp Gly Ala Ser Thr Ala Leu Leu Leu Leu Gln Arg 305 310 315 320 Val Leu Asp Thr Leu Ile Gly Ser Gly Gly Leu Lys Asp His Arg Leu 325 330 335 Thr Leu Glu Leu Val Gly Ala Asp Pro Arg Thr Glu Ala Ala Phe Arg 340 345 350 Ala Arg Thr Pro Trp Leu Val Ala Glu Arg Ala Ala Ser Ala Ala Ser 355 360 365 Thr Asp Ala Pro Arg Val Asp Val Val Val Leu Phe Pro Ala Ala Arg 370 375 380 Pro Ser Ala Leu Glu Leu Arg Pro Asp Ser Val Val Ile Asp Leu Phe 385 390 395 400 Gly Thr Trp Ser Leu Arg Pro Arg Pro Glu Val Leu Ala Lys Asn Ile 405 410 415 Val Tyr Val Arg Gly Ala Ser Val Arg Leu Ala Gly Glu Ala Val Val 420 425 430 Ser Thr Pro Ser Phe Ala Pro Asp Arg Val Glu Pro Ala Leu Leu Glu 435 440 445 Ala Leu Leu Arg Glu Leu Asp Ala Glu Ala Ser Ser Asp Gly Leu Ala 450 455 460 His Glu His Arg Leu Glu Ile Gly Gly Ile Arg Gly Phe Trp Gly Glu 465 470 475 480 Ile Arg Arg Ala Glu Trp Asp Ala Phe His Ser Arg Arg Arg Gly Glu 485 490 495 Leu Ala Arg Phe Gln Val Ser Gly Gln Val Thr Ala Ala Asn Pro Gly 500 505 510 Leu Ala Ser Leu Pro Asp Gly Ala Thr Asn Ile Cys Glu Tyr Ile Phe 515 520 525 Arg Glu Ala His Leu Arg Ser Gly Ser Cys Leu Val Asp Pro Gln Ser 530 535 540 Gly Gln Ser Ala Thr Tyr Ala Glu Leu Arg Arg Leu Ala Ala Ala Tyr 545 550 555 560 Ala Arg Arg Phe Arg Ala Leu Gly Leu Arg Gln Gly Asp Val Val Ala 565 570 575 Leu Ala Ala Pro Asp Gly Ile Ser Ser Val Ala Val Met Leu Gly Cys 580 585 590 Phe Leu Gly Gly Trp Val Phe Ala Pro Leu Asn His Thr Ala Ser Ala 595 600 605 Val Asn Phe Glu Ala Met Leu Ser Ser Ala Ser Pro Arg Leu Val Leu 610 615 620 His Ala Ala Ser Thr Val Ala Arg His Leu Pro Val Leu Ser Thr Arg 625 630 635 640 Arg Cys Ala Glu Leu Ala Ser Phe Leu Pro Pro Asp Ala Leu Asp Gly 645 650 655 Val Glu Gly Asp Val Thr Pro Leu Pro Val Ser Pro Glu Ala Pro Ala 660 665 670 Val Met Leu Phe Thr Ser Gly Ser Thr Gly Gly Pro Lys Ala Val Thr 675 680 685 His Thr His Ala Asp Phe Ile Thr Cys Ser Arg Asn Tyr Ala Pro Tyr 690 695 700 Val Val Glu Leu Arg Pro Asp Asp Arg Val Tyr Thr Pro Ser Pro Thr 705 710 715 720 Phe Phe Ala Tyr Gly Leu Asn Asn Leu Leu Leu Ser Leu Ser Ala Gly 725 730 735 Ala Thr His Val Ile Ser Val Pro Arg Asn Gly Gly Met Gly Val Ala 740 745 750 Glu Ile Leu Ala Arg Asn Glu Val Thr Val Leu Phe Ala Val Pro Ala 755 760 765 Val Tyr Lys Leu Ile Ile Ser Lys Asn Asp Arg Gly Leu Arg Leu Pro 770 775 780 Lys Leu Arg Leu Cys Ile Ser Ala Gly Glu Lys Leu Pro Leu Lys Leu 785 790 795 800 Tyr Arg Glu Ala Arg Ser Phe Phe Ser Val Asn Val Leu Asp Gly Ile 805 810 815 Gly Cys Thr Glu Ala Ile Ser Thr Phe Ile Ser Asn Arg Glu Ser Tyr 820 825 830 Val Ala Pro Gly Cys Thr Gly Val Val Val Pro Gly Phe Glu Val Lys 835 840 845 Leu Val Asn Pro Arg Gly Glu Leu Cys Arg Val Gly Glu Val Gly Val 850 855 860 Leu Trp Val Arg Gly Gly Ala Leu Thr Arg Gly Tyr Val Asn Ala Pro 865 870 875 880 Asp Leu Thr Glu Lys His Phe Val Asp Gly Trp Phe Asn Thr Gln Asp 885 890 895 Met Phe Phe Met Asp Ala Glu Tyr Arg Leu Tyr Asn Val Gly Arg Ala 900 905 910 Gly Ser Val Ile Lys Ile Asn Ser Cys Trp Phe Ser Pro Glu Met Met 915 920 925 Glu Ser Val Leu Gln Ser His Pro Ala Val Lys Glu Cys Ala Val Cys 930 935 940 Val Val Ile Asp Asp Tyr Gly Leu Pro Arg Pro Lys Ala Phe Ile Val 945 950 955 960 Thr Gly Glu His Glu Arg Ser Glu Pro Glu Leu Glu His Leu Trp Ala 965 970 975 Glu Leu Arg Val Leu Ser Lys Glu Lys Leu Gly Lys Asp His Tyr Pro 980 985 990 His Leu Phe Ala Thr Ile Lys Thr Leu Pro Arg Thr Ser Ser Gly Lys 995 1000 1005 Leu Met Arg Ser Glu Leu Ala Lys Leu Leu Thr Ser Gly Pro Pro 1010 1015 1020 5238PRTCystobacter velatusMISC_FEATURE(1)..(38)CysM 52Met Asn Pro Lys Phe Leu Gly Gly Leu Gly Ala Gly Val Cys Ile Ala 1 5 10 15 Ser Leu Phe Gln Thr Val Met Arg Thr Val Pro Leu Lys Asp Ala Gly 20 25 30 Ser Gly Asp Arg Ala Cys 35 53357PRTCystobacter velatusMISC_FEATURE(1)..(357)CysN 53Met Ser Thr Arg Thr Lys Asn Phe Asn Val Met Gly Ile Asp Trp Met 1 5 10 15 Pro Ser Ser Ala Glu Phe Lys Arg Arg Val Pro Arg Thr Gln Arg Ala 20 25 30 Ala Glu Ala Val Leu Ala Gly Arg Arg Cys Leu Met Asp Ile Leu Asp 35 40 45 Arg Gly Asp Pro Arg Leu Phe Val Ile Val Gly Pro Cys Ser Ile His 50 55 60 Asp Pro Val Ala Gly Leu Asp Tyr Ala Lys Arg Leu Arg Lys Leu Ala 65 70 75 80 Asp Glu Val Arg Glu Thr Leu Phe Val Val Met Arg Val Tyr Phe Glu 85 90 95 Lys Pro Arg Thr Thr Thr Gly Trp Lys Gly Phe Ile Asn Asp Pro Arg 100 105 110 Met Asp Gly Ser Phe His Ile Glu Glu Gly Met Glu Arg Gly Arg Arg 115 120 125 Phe Leu Leu Asp Val Ala Glu Glu Gly Leu Pro Ala Ala Thr Glu Ala 130 135 140 Leu Asp Pro Ile Ala Ser Gln Tyr Tyr Gly Asp Leu Ile Ser Trp Thr 145 150 155 160 Ala Ile Gly Ala Arg Thr Ala Glu Ser Gln Thr His Arg Glu Met Ala 165 170 175 Ser Gly Leu Ser Thr Pro Val Gly Phe Lys Asn Gly Thr Asp Gly Ser 180 185 190 Leu Asp Ala Ala Val Asn Gly Ile Ile Ser Ala Ser His Pro His Ser 195 200 205 Phe Leu Gly Val Ser Glu Asn Gly Ala Cys Ala Ile Ile Arg Thr Arg 210 215 220 Gly Asn Thr Tyr Gly His Leu Val Leu Arg Gly Gly Gly Gly Arg Pro 225 230 235 240 Asn Tyr Asp Ala Val Ser Val Ala Leu Ala Glu Lys Ala Leu Ala Lys 245 250 255 Ala Arg Leu Pro Thr Asn Ile Val Val Asp Cys Ser His Ala Asn Ser 260 265 270 Trp Lys Asn Pro Glu Leu Gln Pro Leu Val Met Arg Asp Val Val His 275 280 285 Gln Ile Arg Glu Gly Asn Arg Ser Val Val Gly Leu Met Ile Glu Ser 290

295 300 Phe Ile Glu Ala Gly Asn Gln Pro Ile Pro Ala Asp Leu Ser Gln Leu 305 310 315 320 Arg Tyr Gly Cys Ser Val Thr Asp Ala Cys Val Asp Trp Lys Thr Thr 325 330 335 Glu Lys Met Leu Tyr Ser Ala His Glu Glu Leu Leu His Ile Leu Pro 340 345 350 Arg Ser Lys Val Ala 355 54203PRTCystobacter velatusMISC_FEATURE(1)..(203)CysO 54Met Pro Ala Arg Ser Thr Pro Ser Leu Glu Ser Gly Asp Phe Phe Ala 1 5 10 15 Asp Val Thr Phe Ser Asp Leu Ser Ile Glu Ser Ala Asp Leu Ser Gly 20 25 30 Lys Glu Phe Glu Arg Cys Thr Phe Arg Arg Cys Lys Leu Pro Glu Ser 35 40 45 Arg Trp Val Arg Ser Arg Leu Glu Asp Cys Val Phe Glu Gly Cys Asp 50 55 60 Leu Leu Arg Met Val Pro Glu Lys Leu Ala Leu Arg Ser Val Thr Phe 65 70 75 80 Lys Asp Thr Arg Leu Met Gly Val Asp Trp Ser Gly Leu Gly Thr Met 85 90 95 Pro Asp Val Gln Phe Glu Gln Cys Asp Leu Arg Tyr Ser Ser Phe Leu 100 105 110 Lys Leu Asn Leu Arg Lys Thr Arg Phe Val Gly Cys Ser Ala Arg Glu 115 120 125 Ala Asn Phe Ile Asp Val Asp Leu Ala Glu Ser Asp Phe Thr Gly Thr 130 135 140 Asp Met Pro Gly Cys Thr Met Gln Gly Cys Val Leu Thr Lys Thr Asn 145 150 155 160 Phe Ala Arg Ser Thr Asn Phe Ile Phe Asp Pro Lys Ala Asn Gln Val 165 170 175 Lys Gly Thr Arg Val Gly Val Glu Thr Ala Val Ala Leu Ala Gln Ala 180 185 190 Leu Gly Met Val Val Asp Gly Tyr Gln Thr Pro 195 200 55233PRTCystobacter velatusMISC_FEATURE(1)..(233)CysP 55Met Lys Arg Phe Phe Lys Leu Gln Leu Arg Thr Thr Asn Val Pro Ala 1 5 10 15 Ala Arg Ala Phe Tyr Thr Ala Leu Phe Gly Glu Gly Ala Ala Asn Ala 20 25 30 Asp Ile Val Pro Leu Pro Glu Gln Ala Ile Ala Arg Gly Ala Pro Ala 35 40 45 His Trp Leu Gly Tyr Val Gly Val Glu Asp Val Asp Glu Ala Val Arg 50 55 60 Ser Phe Val Gly Arg Gly Ala Thr Gln Leu Gly Pro Thr His Pro Thr 65 70 75 80 Asn Asp Gly Gly Arg Val Ala Ile Leu Arg Asp Pro Gly Gly Ala Thr 85 90 95 Phe Ala Val Ala Thr Ala Pro Ala Thr Thr Arg Ala Leu Gln Pro Glu 100 105 110 Val Val Trp Gln Gln Leu Tyr Ala Ala Asn Val Gln Gln Thr Ala Ala 115 120 125 Ser Tyr Cys Asp Leu Phe Gly Trp Arg Leu Ser Asp Arg Arg Asp Leu 130 135 140 Gly Ala Leu Gly Val His Gln Glu Phe Thr Trp Arg Ser Asp Glu Pro 145 150 155 160 Ser Ala Gly Ser Val Val Asp Val Ala Gly Leu Lys Gly Val His Ser 165 170 175 His Trp Leu Phe His Phe Arg Val Ala Ala Leu Asp Pro Ala Met Glu 180 185 190 Val Val Arg Lys Ala Gly Gly Val Val Ile Gly Pro Met Glu Leu Pro 195 200 205 Asn Gly Asp Arg Ile Ala Val Cys Glu Asp Pro Gln Arg Ala Ala Phe 210 215 220 Ala Leu Arg Glu Ser Ser His Gly Arg 225 230 56264PRTCystobacter velatusMISC_FEATURE(1)..(264)CysQ 56Met Gln Glu Ile Gly Gln Thr Ala Leu Trp Val Ala Gly Met Arg Ala 1 5 10 15 Leu Glu Thr Glu Arg Ser Asn Pro Leu Phe Arg Asp Pro Phe Ala Arg 20 25 30 Arg Leu Ala Gly Asp Thr Leu Val Glu Glu Leu Arg Arg Arg Asn Ala 35 40 45 Gly Glu Gly Ala Met Pro Pro Ala Ile Glu Val Arg Thr Arg Trp Leu 50 55 60 Asp Asp Gln Ile Thr Leu Gly Leu Gly Arg Gly Ile Arg Gln Ile Val 65 70 75 80 Ile Leu Ala Ala Gly Met Asp Ala Arg Ala Tyr Arg Leu Ala Trp Pro 85 90 95 Gly Asp Thr Arg Leu Phe Glu Leu Asp His Asp Ala Val Leu Gln Asp 100 105 110 Lys Glu Ala Lys Leu Thr Gly Val Ala Pro Lys Cys Glu Arg His Ala 115 120 125 Val Ser Val Asp Leu Ala Asp Asp Trp Pro Ala Ala Leu Lys Lys Ser 130 135 140 Gly Phe Asp Pro Gly Val Pro Thr Leu Trp Leu Ile Glu Gly Leu Leu 145 150 155 160 Val Tyr Leu Thr Glu Ala Gln Val Thr Leu Leu Met Ala Arg Val Asn 165 170 175 Ala Leu Ser Val Pro Glu Ser Ile Val Leu Ile Asp Val Val Gly Arg 180 185 190 Ser Ile Leu Asp Ser Ser Arg Val Lys Leu Met His Asp Leu Ala Arg 195 200 205 Gln Phe Gly Thr Asp Glu Pro Glu Val Ile Leu Arg Pro Ile Gly Trp 210 215 220 Asp Pro His Val Tyr Thr Thr Ala Ala Ile Gly Lys Gln Leu Gly Arg 225 230 235 240 Trp Pro Phe Pro Val Ala Pro Arg Gly Thr Pro Gly Val Pro Gln Gly 245 250 255 Tyr Leu Val His Gly Val Lys Arg 260 57333PRTCystobacter velatusMISC_FEATURE(1)..(333)CysR 57Val Asn Gly Thr Thr Gly Lys Thr Gly Leu Val Ala Glu Arg Ser Gly 1 5 10 15 Ala Ile Ser Pro Arg Asp Tyr Lys Ser Lys Glu Leu Val Trp Asp Ser 20 25 30 Leu Ala Ala Thr Arg Ser Lys Pro Arg Arg Val Leu Pro Glu Gly Asp 35 40 45 Val Val Gly His Leu Tyr Pro Pro Ala Lys Ala Ala Leu Leu Thr His 50 55 60 Pro Leu Met Lys Asn Leu Pro Pro Glu Thr Leu Arg Leu Phe Phe Ile 65 70 75 80 His Ser Ala Tyr Lys Phe Met Gly Asp Ile Ala Ile Phe Glu Thr Glu 85 90 95 Thr Val Asn Glu Val Ala Met Lys Ile Ala Asn Gly His Thr Pro Ile 100 105 110 Thr Phe Pro Asp Asp Ile Arg His Asp Ala Leu Thr Val Ile Ile Asp 115 120 125 Glu Ala Tyr His Ala Tyr Val Ala Arg Asp Phe Met Arg Gln Ile Glu 130 135 140 Gln Arg Thr Gly Val Lys Pro Leu Pro Leu Gly Thr Glu Thr Asp Leu 145 150 155 160 Ser Arg Ala Met Ala Phe Gly Lys His Arg Leu Pro Glu Thr Leu His 165 170 175 Gly Leu Trp Glu Ile Ile Ala Val Cys Ile Gly Glu Asn Thr Leu Thr 180 185 190 Lys Asp Leu Leu Asn Leu Thr Gly Glu Lys Ser Phe Asn Glu Val Leu 195 200 205 His Gln Val Met Glu Asp His Val Arg Asp Glu Gly Arg His Ala Val 210 215 220 Leu Phe Met Asn Val Leu Lys Leu Val Trp Ser Glu Met Glu Glu Ser 225 230 235 240 Ala Arg Leu Ala Ile Gly Gln Leu Leu Pro Glu Phe Ile Arg Glu Tyr 245 250 255 Leu Ser Pro Lys Met Met Ala Glu Tyr Glu Arg Val Val Leu Glu Gln 260 265 270 Leu Gly Leu Ala Ala Glu His Ile Glu Arg Ile Leu Ser Glu Thr Tyr 275 280 285 Ser Glu Pro Pro Leu Glu Asp Phe Arg Ala Arg Tyr Pro Leu Ser Gly 290 295 300 Tyr Leu Val Tyr Val Leu Met Gln Cys Asp Val Leu Ser His Ala Pro 305 310 315 320 Thr Arg Glu Ala Phe Arg Arg Phe Lys Leu Leu Ala His 325 330 58642PRTCystobacter velatusMISC_FEATURE(1)..(642)CysS 58Met Ala Asn Gln Arg Val Ala Phe Ile Glu Leu Thr Val Phe Ser Gly 1 5 10 15 Val Tyr Pro Leu Ala Ser Gly Tyr Met Arg Gly Val Ala Glu Gln Asn 20 25 30 Pro Leu Ile Arg Glu Ser Cys Ser Phe Glu Ile His Ser Ile Cys Ile 35 40 45 Asn Asp Asp Arg Phe Glu Asp Lys Leu Asn Lys Ile Asp Ala Asp Val 50 55 60 Tyr Ala Ile Ser Cys Tyr Val Trp Asn Met Gly Phe Val Lys Arg Trp 65 70 75 80 Leu Pro Thr Leu Thr Ala Arg Lys Pro Asn Ala His Ile Ile Leu Gly 85 90 95 Gly Pro Gln Val Met Asn His Gly Ala Gln Tyr Leu Asp Pro Gly Asn 100 105 110 Glu Arg Val Val Leu Cys Asn Gly Glu Gly Glu Tyr Thr Phe Ala Asn 115 120 125 Tyr Leu Ala Glu Leu Cys Ser Pro Gln Pro Asp Leu Gly Lys Val Lys 130 135 140 Gly Leu Ser Phe Tyr Arg Asn Gly Glu Leu Ile Thr Thr Glu Pro Gln 145 150 155 160 Ala Arg Ile Gln Asp Leu Asn Thr Val Pro Ser Pro Tyr Leu Glu Gly 165 170 175 Tyr Phe Asp Ser Glu Lys Tyr Val Trp Ala Pro Leu Glu Thr Asn Arg 180 185 190 Gly Cys Pro Tyr Gln Cys Thr Tyr Cys Phe Trp Gly Ala Ala Thr Asn 195 200 205 Ser Arg Val Phe Lys Ser Asp Met Asp Arg Val Lys Ala Glu Ile Thr 210 215 220 Trp Leu Ser Gln His Arg Ala Phe Tyr Ile Phe Ile Thr Asp Ala Asn 225 230 235 240 Phe Gly Met Leu Thr Arg Asp Ile Glu Ile Ala Gln His Ile Ala Glu 245 250 255 Cys Lys Arg Lys Tyr Gly Tyr Pro Leu Thr Ile Trp Leu Ser Ala Ala 260 265 270 Lys Asn Ser Pro Asp Arg Val Thr Gln Ile Thr Arg Ile Leu Ser Gln 275 280 285 Glu Gly Leu Ile Ser Thr Gln Pro Val Ser Leu Gln Thr Met Asp Ala 290 295 300 Asn Thr Leu Lys Ser Val Lys Arg Gly Asn Ile Lys Glu Ser Ala Tyr 305 310 315 320 Leu Ser Leu Gln Glu Glu Leu His Arg Ser Lys Leu Ser Ser Phe Val 325 330 335 Glu Met Ile Trp Pro Leu Pro Gly Glu Thr Leu Glu Thr Phe Arg Glu 340 345 350 Gly Ile Gly Lys Leu Cys Ser Tyr Asp Ala Asp Ala Ile Leu Ile His 355 360 365 His Leu Leu Leu Ile Asn Asn Val Pro Met Asn Ser Gln Arg Glu Glu 370 375 380 Phe Lys Leu Glu Val Ser Asn Asp Glu Asp Pro Asn Ser Glu Ala Gln 385 390 395 400 Val Val Val Ala Thr Lys Asp Val Thr Arg Glu Glu Tyr Lys Glu Gly 405 410 415 Val Arg Phe Gly Tyr His Leu Thr Ser Leu Tyr Ser Leu Arg Ala Leu 420 425 430 Arg Phe Val Gly Arg Tyr Leu Asp Lys Gln Gly Arg Leu Ala Phe Lys 435 440 445 Asp Leu Ile Ser Ser Phe Ser Glu Tyr Cys Lys Arg Asn Pro Asp His 450 455 460 Pro Tyr Thr Gln Tyr Ile Thr Ser Val Ile Asp Gly Thr Ser Gln Ser 465 470 475 480 Lys Phe Ser Ala Asn Gly Gly Ile Phe His Val Thr Leu His Glu Phe 485 490 495 Arg Arg Glu Phe Asp Gln Leu Leu Phe Gly Phe Ile Gln Thr Leu Gly 500 505 510 Met Met Asn Asp Glu Leu Leu Glu Phe Leu Phe Glu Met Asp Leu Leu 515 520 525 Asn Arg Pro His Val Tyr Ser Asn Thr Pro Ile Asn Asn Gly Glu Gly 530 535 540 Leu Leu Lys His Val Thr Val Val Ser Lys Glu Lys Asp Ala Ile Val 545 550 555 560 Leu Arg Val Pro Glu Lys Tyr Ala Gln Leu Thr Ser Glu Leu Leu Gly 565 570 575 Leu Glu Gly Ala Pro Ser Thr Ser Leu Arg Val Lys Tyr Arg Gly Thr 580 585 590 Gln Met Pro Phe Met Ala Asn Lys Pro Tyr Glu Asp Asn Leu Ser Tyr 595 600 605 Cys Glu Ala Lys Leu His Lys Met Gly Ser Ile Leu Pro Val Trp Glu 610 615 620 Ser Ala Val Pro Ser Arg Thr Pro Val Arg Arg Pro Gln Val Ala Val 625 630 635 640 Ala Gly 591267PRTCystobacter velatusMISC_FEATURE(1)..(1267)CysT 59Met His Arg Val Lys Pro Leu Ile Gly Pro Val Leu Ser Ala Leu Leu 1 5 10 15 Leu Cys Ala Leu Pro Ala Arg Ala Gln Ile Ala Ala Ala His Val Tyr 20 25 30 His Asn His Met Pro Asn Phe Trp Ala Tyr Tyr Asp Leu Gly Gln Tyr 35 40 45 Ala Ser Thr Pro Thr Gly Gly Pro Ile Arg Tyr Met Tyr Asp Ala Gln 50 55 60 Val Ile Asn Leu Lys Lys Asn Pro Pro Ser Asn Tyr Thr Tyr Tyr Leu 65 70 75 80 Pro Ser Gly Ala Pro Met Pro His Asp Asp Leu Val Thr Tyr Tyr Ser 85 90 95 His Asn Ala Lys Thr Gly Ala Tyr Leu Tyr Trp Pro Pro Ser Val Ala 100 105 110 Ser Asp Met Lys Thr Asn Ala Pro Thr Gly Gln Val His Val Thr Met 115 120 125 Ser Gly Ala Val Val Asn Asn Val Gln Asp Leu Val Thr Leu Lys Asn 130 135 140 Val Pro Gly Tyr Asp Asn Pro Asn Trp Gly Ala Ser Trp Lys Asp Arg 145 150 155 160 Tyr Ser Ala Leu Leu Thr Pro Ala Gly Asn Arg Thr Leu Asp Leu Ile 165 170 175 His Phe Thr Gly His His Ser Met Gly Pro Leu Val Gly Pro Asp Tyr 180 185 190 Phe Leu Lys Asp Leu Ile Tyr Gln Ser Ala Thr Leu Ala Gln Pro Tyr 195 200 205 Phe Leu Gly Gly Ser Phe Gln Ser Ser Lys Gly Phe Phe Pro Thr Glu 210 215 220 Leu Gly Phe Ser Glu Arg Leu Ile Pro Thr Leu Ser Lys Leu Gly Val 225 230 235 240 Gln Trp Ala Val Ile Gly Asp Asn His Phe Ser Arg Thr Leu Lys Asp 245 250 255 Tyr Pro Tyr Leu Asn Asp Pro Gly Ser Asp Thr Leu Val Ser Pro Pro 260 265 270 Asn Arg Ala Asp Leu Gln Asn Thr Ser Ser Val Gly Ser Trp Val Ser 275 280 285 Ala Gln Met Ala His Glu Gln Gln Val Ile Lys Asn Lys Tyr Pro Phe 290 295 300 Ala Ser Thr Pro His Trp Val Arg Tyr Val Asp Pro Ala Thr Gly Ala 305 310 315 320 Glu Ser Arg Val Val Gly Ile Pro Val Asn Gln Asn Gly Ser Trp Leu 325 330 335 Glu Gly Trp Glu Gly Glu Ala Thr Val Asp Val Val Asn Leu Lys Ser 340 345 350 Phe Glu Gly Leu Val Pro Gln Arg Gln Phe Phe Val Ile Ala His Asp 355 360 365 Gly Asp Asn Ser Ser Gly Arg Ala Gly Ser Asp Ser Thr Trp Tyr Asn 370 375 380 Gly Arg Ser Val Thr Cys Ala Asn Gly Val Gln Cys Val Gly Ile Ser 385 390 395 400 Glu Tyr Leu Val His His Thr Pro Ala Ser Thr Asp Val Val His Val 405 410 415 Gln Asp Gly Ser Trp Val Asp Thr Arg Asp Ser Ser Ser Asp Pro Gln 420 425 430 Trp His His Trp Lys Leu Pro Phe Gly Ile Trp Lys Gly Gln Phe Pro 435 440 445 Ala Phe Asn Ala Ala Thr Gly Leu Asn Leu Ser Pro Lys Thr Asn Leu 450 455 460 Ser Gly Val Gln Glu Gly Met Thr Val Ser Leu Glu His Gly Trp His 465 470 475 480 Tyr Leu Glu Arg Asn Phe Ala Leu Leu Gln Ala Ala Leu Asn Tyr Ala 485 490 495 Lys Thr Ala Glu Gln Ile Trp Leu Asp Ala His Pro Asn His Trp Ser 500 505 510 Pro Thr Thr Ala Ile Asp Lys Gln Ile Thr His Thr Gly Asn

Gln Leu 515 520 525 Asn Pro Trp Met Met Ser Phe Pro Val Lys Gly Asp Val Asn Asn Asp 530 535 540 Trp Ala Gly Gly Ala Asn Pro Ala Glu Leu Ala Trp Tyr Phe Leu Leu 545 550 555 560 Pro Ala Met Asp Ser Gly Phe Gly Tyr Tyr Asp Glu Asn Gln Asp Asp 565 570 575 Asn Val Lys Pro Thr Leu Ser Phe Asn Gln Ser Leu Tyr Phe Ser Lys 580 585 590 Pro Tyr Val Gln Gln Arg Ile Ala Gln Asp Lys Thr Gly Pro Ser Val 595 600 605 Trp Trp Ala Gln Arg Trp Pro Tyr Asn Pro Gly Ser Ala Asn Thr Asp 610 615 620 Lys Ser Glu Gly Trp Thr Leu His Phe Phe Asn Asn His Phe Ala Leu 625 630 635 640 Tyr Thr Tyr Ala Tyr Asp Ala Ser Gly Ile Ser Ser Ile Lys Ala Arg 645 650 655 Val Arg Val His Thr His Lys Ser Ile Asp Pro Leu Asp Asn Thr His 660 665 670 Lys Val Tyr Asp Pro Ala Ala Arg Lys Ala Ala Gly Val Pro Asn Ile 675 680 685 Asp Pro Ala Arg Val Gly Ala Trp Val Asp Tyr Pro Leu Thr Arg Arg 690 695 700 Asp Leu Lys Pro Val Met Asn Gly Val Ser Trp Gln Pro Ala Tyr Leu 705 710 715 720 Pro Val Met Ala Lys Val Pro Ala Gln Glu Ile Gly Asp Leu Tyr Tyr 725 730 735 Val Tyr Leu Gly Asn Tyr Arg Asp Gln Leu Leu Asp Tyr Tyr Ile Glu 740 745 750 Ala Thr Asp Ser Arg Gly Asn Ile Thr Arg Gly Glu Ile Gln Ser Val 755 760 765 Tyr Val Gly Ser Gly Arg Tyr Asn Leu Val Gly Gly Lys Tyr Ile Glu 770 775 780 Asp Pro Asn Gly Thr Val Gln Gly Thr His Pro Phe Leu Val Val Asp 785 790 795 800 Thr Thr Ala Pro Ser Val Pro Ser Gly Leu Thr Ala Lys Ala Lys Thr 805 810 815 Asp Arg Ser Val Thr Leu Ser Trp Ser Ala Ala Ser Asp Asn Val Ala 820 825 830 Val Ser Gly Tyr Asp Val Phe Arg Asp Gly Thr Gln Val Gly Ser Ser 835 840 845 Thr Ser Thr Ala Tyr Thr Asp Ser Gly Leu Ser Pro Ser Thr Gln Tyr 850 855 860 Ser Tyr Thr Val Arg Ala Arg Asp Ala Ala Gly Asn Ala Ser Ala Gln 865 870 875 880 Ser Thr Ala Leu Ser Val Ala Thr Leu Thr Pro Asp Thr Thr Pro Pro 885 890 895 Ser Val Pro Ser Gly Leu Thr Ala Ser Gly Thr Thr Ser Ser Ser Val 900 905 910 Ala Leu Ala Trp Thr Ala Ser Thr Asp Asn Tyr Gly Val Ala Asn Tyr 915 920 925 Glu Val Leu Arg Asn Gly Thr Gln Val Ala Ser Val Thr Gly Thr Thr 930 935 940 Tyr Ser Asp Thr Gly Leu Ser Pro Ser Thr Thr Tyr Ser Tyr Thr Val 945 950 955 960 Arg Ala Arg Asp Ala Ala Gly Asn Val Ser Ser Pro Ser Thr Ala Leu 965 970 975 Ser Val Thr Thr Gln Thr Gly Asn Ser Ala Thr Val Tyr Tyr Phe Asn 980 985 990 Asn Asn Phe Ala Leu Lys Tyr Ile His Phe Arg Ile Gly Gly Gly Thr 995 1000 1005 Trp Thr Thr Val Pro Gly Asn Val Met Ala Thr Ser Glu Val Pro 1010 1015 1020 Gly Tyr Ala Lys Tyr Thr Val Asn Leu Gly Ala Ala Thr Gln Leu 1025 1030 1035 Glu Cys Val Phe Asn Asp Gly Lys Gly Thr Trp Asp Asn Asn Lys 1040 1045 1050 Gly Asn Asn Tyr Leu Leu Pro Ala Gly Thr Ser Thr Val Lys Asp 1055 1060 1065 Gly Val Val Ser Ser Gly Ala Pro Ala Leu Asp Thr Thr Ala Pro 1070 1075 1080 Ser Val Pro Ser Gly Leu Thr Ala Ala Ser Lys Thr Ser Ser Ser 1085 1090 1095 Val Ser Leu Ser Trp Ser Ala Ser Thr Asp Ala Ser Gly Ile Ala 1100 1105 1110 Gly Tyr Asp Val Tyr Arg Asp Gly Ser Leu Val Gly Ser Pro Val 1115 1120 1125 Ser Thr Ser Tyr Thr Asp Ser Asp Leu Ser Ala Gly Thr Thr Tyr 1130 1135 1140 Arg Tyr Thr Val Arg Ala Arg Asp Thr Ala Gly Asn Ala Ser Ala 1145 1150 1155 Gln Ser Thr Ala Leu Ser Val Thr Thr Ser Thr Ser Ser Ala Thr 1160 1165 1170 Ser Val Thr Phe Asn Val Thr Ala Ser Thr Val Val Gly Gln Asn 1175 1180 1185 Val Tyr Leu Val Gly Asn His Ala Ala Leu Gly Asn Trp Asn Thr 1190 1195 1200 Gly Ala Ala Ile Leu Leu Ser Pro Ala Ser Tyr Pro Lys Trp Ser 1205 1210 1215 Val Thr Leu Ser Leu Pro Gly Ser Thr Ala Leu Glu Tyr Lys Tyr 1220 1225 1230 Ile Lys Lys Asp Gly Ser Gly Asn Val Thr Trp Glu Ser Gly Ala 1235 1240 1245 Asn Arg Ser Thr Thr Ile Pro Ala Ser Gly Thr Ala Thr Leu Asn 1250 1255 1260 Asp Thr Trp Lys 1265 60276PRTCystobacter velatusMISC_FEATURE(1)..(276)ORF1 60Val Pro His Pro Ser Glu Gln Ser Ala Pro Ser Gly Leu Arg Ala Arg 1 5 10 15 Leu His Glu Ile Ile Phe Glu Ser Asp Thr Pro Ala Gly Arg Ala Phe 20 25 30 Asp Val Ala Leu Leu Trp Ala Ile Val Leu Ser Val Leu Ala Val Met 35 40 45 Leu Glu Ser Val Glu Ser Ile Ser Val Gln His Gly Gln Thr Ile Arg 50 55 60 Val Leu Glu Trp Cys Phe Thr Gly Leu Phe Thr Leu Glu Tyr Val Leu 65 70 75 80 Arg Leu Leu Ser Val Lys Arg Pro Leu Arg Tyr Ala Leu Ser Phe Phe 85 90 95 Gly Leu Val Asp Leu Leu Ala Ile Leu Pro Ser Val Leu Ser Leu Met 100 105 110 Leu Pro Gly Met Gln Ser Leu Leu Val Val Arg Val Phe Arg Leu Leu 115 120 125 Arg Val Phe Arg Val Leu Lys Leu Ala Ser Phe Leu Gly Glu Ala Asp 130 135 140 Val Leu Leu Thr Ala Leu Arg Ala Ser Arg Arg Lys Ile Ile Val Phe 145 150 155 160 Leu Gly Ala Val Leu Ser Thr Val Val Ile Met Gly Ala Val Met Tyr 165 170 175 Met Val Glu Gly Arg Ala Asn Gly Phe Asp Ser Ile Pro Arg Gly Met 180 185 190 Tyr Trp Ala Ile Val Thr Met Thr Thr Val Gly Tyr Gly Asp Leu Ser 195 200 205 Pro Lys Thr Val Pro Gly Gln Phe Ile Ala Ser Val Leu Met Ile Met 210 215 220 Gly Tyr Gly Ile Leu Ala Val Pro Thr Gly Ile Val Ser Val Glu Leu 225 230 235 240 Ala Gln Ala Thr Arg Gln His Ala Ile Asp Pro Arg Ala Cys Pro Gly 245 250 255 Cys Gly Leu Gln Gly His Asp Leu Asp Ala His His Cys Lys His Cys 260 265 270 Gly Thr Ala Leu 275 6178PRTCystobacter velatusMISC_FEATURE(1)..(78)ORF2 61Met Ala Gln Asp Gln Asp Arg Glu Lys Leu His Ser Asp Ala Asp Lys 1 5 10 15 Glu Arg Leu His Pro Lys Val Asp Ser Gly Asp Val Ser Gly Arg Gly 20 25 30 Arg Glu Arg Arg Pro Asp Glu Glu Tyr Pro Lys Gln Arg Asn Ala Gly 35 40 45 Glu Phe Gly Thr His Gly Gly Pro Asn Lys Gly Gly Lys Glu Asp Arg 50 55 60 Arg Gln Leu His Ala Pro Gly Ser Ser Lys Ala Gly Ser Gln 65 70 75 62162PRTCystobacter velatusMISC_FEATURE(1)..(162)ORF3 62Met Gly Arg Thr Tyr Ser Phe Glu Pro Phe Leu Ser Gln Gln Pro Ala 1 5 10 15 Gln Thr Tyr Lys Gly Ser Gly Pro Arg Leu Gly Asn Glu Glu His Lys 20 25 30 Ile Ala Leu Thr Lys Glu Glu Glu Lys Ala Ala Leu Pro Asp Thr Pro 35 40 45 Thr Gly Tyr Gly Gln Ala His Ala Glu Thr Val Lys Arg Tyr Arg Ala 50 55 60 Arg Ala Glu Lys Lys Arg Thr Glu Pro Lys Thr Pro Ala Thr Arg Ala 65 70 75 80 Lys Lys Ala Ala Pro Lys Ala Lys Pro Thr Arg Lys Val Ala Thr Gln 85 90 95 Glu Ala Thr Ala Lys Ala Pro Thr Arg Gln Ala Arg Glu Glu Thr Glu 100 105 110 Pro Lys Ala Pro Ala Arg Lys Lys Leu Ser Ala Thr Gly Leu Val Gly 115 120 125 Ser Ile Gly Arg Lys Val Val Thr Arg Ala Ala Val Ala Ala Lys Lys 130 135 140 Thr Val Ala Arg Ala Val Lys Thr Ala Ala Ala Arg Lys Ser Ala Lys 145 150 155 160 Lys Arg 6387PRTCystobacter velatusMISC_FEATURE(1)..(87)ORF4 63Met Ser Pro Ala Arg Arg Lys Glu Ser Lys Gln His Glu Val Gly Ser 1 5 10 15 Ala Thr His Ala Arg Arg Val Ile Val Ala Thr Asp Gly Arg Gly Trp 20 25 30 Tyr Val Arg Phe Glu Gly Asn Arg Gln Leu Gly Arg Tyr Ser Asn Val 35 40 45 Thr Gln Ala Ile His Gly Gly Arg Arg Leu Ala Arg Gln His Lys Pro 50 55 60 Ala Gly Leu Val Val Arg Tyr Leu Asp Gly Glu Glu Glu Glu Ser Trp 65 70 75 80 Tyr Gly Asp Arg Glu Ala Pro 85 64149PRTCystobacter velatusMISC_FEATURE(1)..(149)ORF5 64Met Lys His Ile Lys Ala Val Val Val Gly Ala Leu Ser Ala Ala Leu 1 5 10 15 Leu Phe Gly Val Gly Cys Gln Thr Thr Gly Gly Ala Gly Asn Gln Gly 20 25 30 Thr Gly Gly Ser Asp Thr Ser Gln Gly Gly Thr Met Thr Gly Ser Glu 35 40 45 Thr Thr Gly Thr Gly Thr Thr Gly Gly Thr Thr Glu Gly Gly Asp Thr 50 55 60 Thr Gly Gly Gly Thr Gly Gly Thr Gly Ala Gly Asp Ile Asp Gly Ser 65 70 75 80 Ser Ser Gly Ser Thr Gly Ser Gly Ser Asp Val Gly Gly Ser Gly Gly 85 90 95 Ser Gly Val Ser Ser Glu Pro Gly Gly Phe Ser Pro Asp Ala Ser Gly 100 105 110 Val Asp Ser Asp Leu Gly Gly Ser Gly Thr Gly Ser Asp Val Asp Gly 115 120 125 Ser Gly Ser Thr Asp Ser Ser Gly Asn Met Ser Gly Thr Gly Ser Glu 130 135 140 Asp Asp Thr Ser Arg 145 65525PRTCystobacter velatusMISC_FEATURE(1)..(525)ORF6 65Met Ser Thr Arg Thr Ser Leu Ala Leu Ala Ala Ser Leu Ala Ala Leu 1 5 10 15 Pro Ala Leu Ala Gln Glu Arg Pro Ser Glu Gly Asp Leu Phe Gly Gly 20 25 30 Asp Thr Pro Glu Thr Lys Pro Ala Pro Ala Asp Ala Pro Arg Pro Asp 35 40 45 Glu Ser Ser Leu Phe Gly Asp Thr Pro Ala Ser Thr Pro Ala Ala Gln 50 55 60 Ser Ala Ala Ala Thr Ala Ala Pro Asp Lys Pro Ser Ala Thr Pro Gln 65 70 75 80 Asp Arg Asp Ala Gln Ala Leu Gly Gly Pro Ser Ala Thr Asn Ala Phe 85 90 95 Asp Thr Glu Glu Ala Val Glu Asp Pro Leu Lys Ile Gly Gly Arg Phe 100 105 110 Tyr Leu Arg Ala Tyr Ser Gln Ala Asn Glu Gly Val Ser Phe Ser Asn 115 120 125 Thr Thr Phe Ser Ala Pro Met Leu Val Asp Gly Tyr Phe Asp Ala Arg 130 135 140 Pro Thr Glu Arg Leu Arg Gly Phe Val Leu Gly Arg Leu Thr Phe Asp 145 150 155 160 Pro Thr Arg Lys Ala Gly Ser Leu Gly Ile Val Pro Thr Ser Thr Ser 165 170 175 Thr Ser Asn Val Ala Ala Asp Pro Val Val Leu Leu Asp Gln Ala Trp 180 185 190 Leu Arg Phe Asp Leu Asp His Lys Leu Phe Ile Thr Val Gly Lys Gln 195 200 205 His Val Lys Trp Gly Thr Ser Arg Phe Trp Asn Pro Thr Asp Phe Leu 210 215 220 Ser Pro Gln Arg Arg Asp Pro Leu Ala Leu Leu Asp Thr Arg Thr Gly 225 230 235 240 Ala Thr Met Leu Lys Met His Met Pro Trp Glu Ala Lys Gly Trp Asn 245 250 255 Phe Tyr Val Leu Gly Leu Leu Asp Asn Ala Gly Pro Ala Asn Thr Leu 260 265 270 Gly Arg Val Gly Gly Ala Ala Arg Ala Glu Val Val Leu Gly His Thr 275 280 285 Glu Leu Gly Val Asp Ala Val Leu Gln His Gly Arg Lys Pro Arg Phe 290 295 300 Gly Leu Asp Leu Ser Ser Gly Leu Gly Pro Ile Asp Ile Tyr Gly Glu 305 310 315 320 Leu Ala Leu Lys Lys Gly Ser Asp Ala Pro Met Phe Arg Met Pro Gln 325 330 335 Gly Val Ser Leu Gly Asp Leu Leu Gly Gln Phe Gln Gly Asn Gly Gly 340 345 350 Met Pro Pro Asp Leu Gly Ala Leu Pro Ile Glu Ala Tyr Tyr Pro Glu 355 360 365 Gly Tyr Thr Pro Gln Val Ser Gly Gly Ala Thr Trp Thr Phe Ala Tyr 370 375 380 Ser Glu Ser Asp Thr Ala Thr Val Gly Val Glu Tyr Phe Tyr Asn Ser 385 390 395 400 Met Gly Tyr Pro Gly Ser Leu Ala Tyr Pro Tyr Leu Ile Leu Gln Gly 405 410 415 Gln Tyr Gln Pro Phe Tyr Leu Gly Arg His Tyr Ala Ala Val Tyr Ala 420 425 430 Phe Leu Ser Gly Pro Gly Ser Trp Asp Asn Thr Asn Phe Ile Leu Ser 435 440 445 Asn Leu Gly Asn Leu Ser Asp Arg Ser Phe Ile Thr Arg Leu Asp Val 450 455 460 Thr His Arg Ala Leu Arg Tyr Leu Ser Ile Glu Ala Phe Ile Ala Ala 465 470 475 480 Asn Tyr Gly Gln Arg Gly Gly Glu Phe Arg Phe Ala Leu Asn Leu Pro 485 490 495 Ala Leu Arg Met Gly Glu Gln Val Thr Pro Pro Ile Ala Val Ala Pro 500 505 510 Pro Thr Ile Gln Ala Gly Val Gly Leu Arg Ile Asp Leu 515 520 525 66261PRTCystobacter velatusMISC_FEATURE(1)..(261)ORF7 66Met Thr Leu Arg Asn Leu Leu Gly Ala Leu Phe Ala Ala Leu Leu Leu 1 5 10 15 Ala Ala Pro Thr Ala Arg Ala Asp Leu Thr Asp Pro Ala Glu Ile Lys 20 25 30 Lys Leu Leu Glu Thr Leu Asp Asn Arg Gln Arg Asn Gly Gly Asp Tyr 35 40 45 Lys Ser Leu Val Tyr Ile Glu Gln Lys Glu Lys Asp Lys Thr Asp Val 50 55 60 Val Arg Glu Ala Val Val Tyr Arg Arg Asp Glu Lys Asp Gln Leu Met 65 70 75 80 Ile Leu Met Thr Lys Pro Lys Gly Glu Ala Gly Lys Gly Tyr Leu Arg 85 90 95 Leu Asp Lys Asn Leu Trp Ser Tyr Asp Pro Asn Thr Gly Lys Trp Asp 100 105 110 Arg Arg Thr Glu Arg Glu Arg Ile Ala Gly Thr Asp Ser Arg Arg Ala 115 120 125 Asp Phe Asp Glu Ser Arg Leu Ala Glu Glu Leu Asp Gly Lys Phe Glu 130 135 140 Gly Glu Glu Lys Leu Gly Lys Phe Thr Thr Trp Lys Leu Val Leu Thr 145 150 155 160 Ala Lys Pro Asn Val Asp Val Ala Tyr Pro Val Val His Leu Trp Val 165 170 175 Glu Lys Asp Thr Asn Asn Ile Leu Lys Arg Gln Glu Phe Ala Leu Ser 180 185 190 Gly Arg Leu Met Arg Thr Ser Tyr Phe Pro Lys Trp Met Lys Leu Phe 195 200 205 Ser Glu Ser Lys Lys Ala Asp Val Trp Tyr Pro Gln

Glu Met Arg Phe 210 215 220 Tyr Asp Glu Val Glu Lys Thr Asn Ser Thr Val Ile Val Val Lys Ser 225 230 235 240 Val Asp Leu Arg Ser Leu Glu Glu Asn Ile Phe Thr Lys Ala Trp Phe 245 250 255 Glu Ser Lys Ser Arg 260 67433PRTCystobacter velatusMISC_FEATURE(1)..(433)ORF8 67Met Gln Gln Leu Leu Leu Ile Ala Val Arg Asn Leu Gly Thr His Lys 1 5 10 15 Arg Arg Thr Leu Leu Leu Gly Gly Ala Ile Ala Gly Val Thr Ala Leu 20 25 30 Leu Val Ile Leu Met Gly Leu Ser Asn Gly Met Lys Asp Thr Met Leu 35 40 45 Arg Ser Ala Thr Thr Leu Val Thr Gly His Val Asn Val Ala Gly Phe 50 55 60 Tyr Lys Val Thr Ala Gly Gln Ser Ala Pro Val Val Thr Ser Tyr Pro 65 70 75 80 Lys Leu Leu Glu Gln Leu Arg Lys Glu Val Pro Glu Leu Asp Phe Ser 85 90 95 Val Gln Arg Thr Arg Gly Trp Val Lys Leu Val Ser Glu Ser Gly Ser 100 105 110 Val Gln Thr Gly Ile Gly Gly Ile Asp Val Ala Ala Glu Thr Gly Ile 115 120 125 Arg Lys Val Leu Gln Leu Arg Glu Gly Arg Leu Glu Asp Leu Ala Gln 130 135 140 Pro Asn Thr Leu Leu Leu Phe Asp Glu Gln Ala Lys Arg Leu Glu Val 145 150 155 160 Lys Val Gly Asp Ser Val Thr Leu Ser Ala Ser Thr Met Arg Gly Ile 165 170 175 Ser Asn Thr Val Asp Val Arg Val Val Ala Ile Ala Ala Asn Val Gly 180 185 190 Met Leu Ser Ser Phe Asn Val Leu Val Pro Asn Ala Thr Leu Arg Ala 195 200 205 Leu Tyr Gln Leu Arg Glu Asp Ser Thr Gly Ala Leu Met Leu His Leu 210 215 220 Lys Asp Met Ser Ala Ile Pro Ser Val Gln Ala Arg Leu Tyr Lys Arg 225 230 235 240 Leu Pro Glu Leu Gly Tyr Gln Val Leu Glu His Asp Pro Arg Ala Phe 245 250 255 Phe Met Lys Phe Gln Thr Val Asn Arg Glu Ala Trp Thr Gly Gln Lys 260 265 270 Leu Asp Ile Thr Asn Trp Glu Asp Glu Ile Ser Phe Ile Lys Trp Thr 275 280 285 Val Ser Ala Met Asp Ala Leu Thr Gly Val Leu Ile Phe Val Leu Leu 290 295 300 Ile Ile Ile Ala Val Gly Ile Met Asn Thr Leu Trp Ile Ala Ile Arg 305 310 315 320 Glu Arg Thr Arg Glu Ile Gly Thr Leu Arg Ala Ile Gly Met Gln Arg 325 330 335 Trp Tyr Val Leu Val Met Phe Leu Leu Glu Ala Leu Val Leu Gly Leu 340 345 350 Leu Gly Thr Thr Val Gly Ala Leu Val Gly Met Gly Val Cys Leu Leu 355 360 365 Ile Asn Ala Val Asp Pro Ser Val Pro Val Pro Val Gln Leu Phe Ile 370 375 380 Leu Ser Asp Lys Leu His Leu Ile Val Lys Pro Gly Ser Val Met Arg 385 390 395 400 Ala Ile Ala Phe Ile Thr Leu Cys Thr Thr Phe Ile Ser Leu Ile Pro 405 410 415 Ser Phe Leu Ala Ala Arg Met Lys Pro Ile Thr Ala Met His His Ile 420 425 430 Gly 68701PRTCystobacter velatusMISC_FEATURE(1)..(701)ORF9 68Met Gly Gln Leu Lys Leu Leu Leu Gln Val Ala Leu Arg Asn Leu Phe 1 5 10 15 Val Ser Arg Ile Asn Leu Leu Ile Gly Gly Ile Ile Phe Phe Gly Thr 20 25 30 Val Leu Val Val Val Gly Gly Ser Leu Val Asp Ser Val Asp Glu Ala 35 40 45 Met Ser Arg Ser Ile Ile Gly Ser Val Ala Gly His Leu Gln Val Tyr 50 55 60 Ser Ala His Ser Lys Asp Glu Leu Ser Leu Phe Gly Gln Met Gly Arg 65 70 75 80 Glu Pro Asp Leu Ser Ala Leu Asp Asp Phe Ser Arg Ile Lys Gln Leu 85 90 95 Val Gln Gln His Pro Asn Val Lys Thr Val Val Pro Met Gly Thr Gly 100 105 110 Ala Thr Phe Ile Asn Ser Gly Asn Thr Ile Asp Leu Thr Leu Ala Arg 115 120 125 Leu Arg Asp Leu Tyr Lys Lys Ala Ala Gln Gly Asp Thr Pro Glu Leu 130 135 140 Arg Gly Gln Ile His Ser Leu Gln Ala His Val Arg His Ile Ile Thr 145 150 155 160 Leu Leu Glu Glu Asp Met Lys Arg Arg Arg Glu Ile Ile Asp Asp Lys 165 170 175 Thr Thr Asp Pro Ala Asp Ala Glu Ala Met Ala Arg Ala Arg Ser Glu 180 185 190 Ala Phe Trp Ala Asp Phe Asp Glu Lys Pro Phe Asp Ser Leu Glu Phe 195 200 205 Leu Glu Asn Arg Ile Ala Pro Tyr Met Thr Asp Gly Asp Met Leu Ser 210 215 220 Leu Arg Tyr Val Gly Thr Asp Leu Val Asn Phe Gln Lys Thr Phe Asp 225 230 235 240 Arg Met Arg Ile Val Glu Gly Thr Pro Val Pro Pro Gly His Arg Gly 245 250 255 Met Met Leu Ser Lys Phe Thr Tyr Glu Asn Asp Phe Lys Leu Lys Thr 260 265 270 Ala His Arg Leu Asp Leu Ile Lys Glu Ala Arg Asp Thr Asn His Lys 275 280 285 Thr Ile Ala Met Asp Pro Gln Leu Gln Arg Trp Val Lys Glu Asn Gln 290 295 300 Thr Gln Thr Arg Glu Ile Leu Phe Gln Leu Asp Asp Leu Lys Thr Lys 305 310 315 320 Gln Ala Val Glu Arg Leu Gln Arg Val Leu Gly Ser Gln Glu Thr Asp 325 330 335 Leu Gly Lys Leu Leu Pro Ala Phe Phe Thr Met Asp Asp Ala Asn Phe 340 345 350 Asp Thr Arg Tyr Gln Gln Phe Tyr Ser Glu Leu Ala Thr Leu Leu Asp 355 360 365 Leu Tyr Arg Ile Arg Ile Gly Asp Asp Leu Thr Ile Thr Ala Phe Ser 370 375 380 Arg Thr Gly Tyr Val Gln Ser Val Asn Val Lys Ile Tyr Gly Thr Tyr 385 390 395 400 Gln Phe Asp Gly Leu Glu Lys Ser Ala Val Ala Gly Ala Leu Asn Leu 405 410 415 Leu Asp Leu Met Ser Phe Arg Glu Leu Tyr Gly Tyr Leu Thr Ala Glu 420 425 430 Lys Lys Ala Glu Leu Ala Gly Leu Gln Lys Ala Ser Gly Val Gln Gln 435 440 445 Val Lys Arg Glu Asp Ala Glu Thr Ala Leu Phe Gly Glu Gln Gly Ser 450 455 460 Ala Ser Leu Val Ala Glu Gly Thr Ala Gly Gln Ile Asp Glu Asp Lys 465 470 475 480 Gln Leu Asp Gly Leu Ala Gln Lys Leu His Arg Glu Glu Leu Ala Ser 485 490 495 Arg Val Tyr Thr Gln Gln Glu Ile Glu Ser Gly Val Val Leu Ser Thr 500 505 510 Ala Val Leu Leu Lys His Pro Glu Lys Leu Glu Gln Thr Leu Ala Glu 515 520 525 Leu Arg Lys Ser Ala Asp Asp Ala Lys Leu Pro Leu Arg Ile Ile Ser 530 535 540 Trp Gln Lys Ala Ser Gly Thr Ile Gly Gln Phe Val Leu Val Ala Lys 545 550 555 560 Leu Val Leu Tyr Phe Ala Val Phe Ile Ile Phe Val Val Ala Leu Val 565 570 575 Ile Ile Asn Asn Ala Met Met Met Ala Thr Leu Gln Arg Val Arg Glu 580 585 590 Val Gly Thr Leu Arg Ala Ile Gly Ala Gln Arg Ser Phe Val Leu Ser 595 600 605 Met Val Leu Val Glu Thr Val Val Leu Gly Leu Val Phe Gly Val Leu 610 615 620 Gly Ala Ala Met Gly Gly Ala Ile Met Asn Met Leu Gly His Val Gly 625 630 635 640 Ile Pro Ala Gly Asn Glu Ala Leu Tyr Phe Phe Phe Ser Gly Pro Arg 645 650 655 Leu Phe Pro Ser Leu His Leu Ser Asn Leu Val Ala Ala Phe Val Ile 660 665 670 Val Leu Val Val Ser Ala Leu Ser Thr Phe Tyr Pro Ala Tyr Leu Ala 675 680 685 Thr Arg Val Ser Pro Leu Gln Ala Met Gln Thr Asp Glu 690 695 700 69253PRTCystobacter velatusMISC_FEATURE(1)..(253)ORF10 69Met Ser Gln Val Thr Ala Leu Pro Gly Ser Thr Gln Pro Ile Val Ser 1 5 10 15 Leu Thr Glu Val Thr Lys Thr Tyr Ser Leu Gly Lys Val Gln Val Pro 20 25 30 Ala Leu Arg Gly Val Thr Leu Glu Val Tyr Pro Gly Glu Phe Ile Ser 35 40 45 Ile Ala Gly Pro Ser Gly Ser Gly Lys Thr Thr Ala Leu Asn Leu Ile 50 55 60 Gly Cys Val Asp Thr Ala Ser Ser Gly Val Val Ser Val Asp Gly Gln 65 70 75 80 Asp Thr Lys Lys Leu Thr Glu Arg Gln Leu Thr His Leu Arg Leu His 85 90 95 Thr Ile Gly Phe Ile Phe Gln Ser Phe Asn Leu Val Ser Val Leu Ser 100 105 110 Val Phe Gln Asn Val Glu Phe Pro Leu Leu Leu Gln Arg Lys Leu Asn 115 120 125 Ala Ser Glu Arg Arg Thr Arg Val Met Thr Leu Leu Glu Gln Val Gly 130 135 140 Leu Glu Lys His Ala Lys His Arg Pro Asn Glu Leu Ser Gly Gly Gln 145 150 155 160 Arg Gln Arg Val Ala Val Ala Arg Ala Leu Val Thr Arg Pro Lys Leu 165 170 175 Val Leu Ala Asp Glu Pro Thr Ala Asn Leu Asp Ser Val Thr Gly Gln 180 185 190 Asn Ile Ile Asp Leu Met Lys Glu Leu Asn Arg Lys Glu Gly Thr Thr 195 200 205 Phe Ile Phe Ser Thr His Asp Ala Lys Val Met Thr His Ala Asn Ala 210 215 220 Val Val Arg Leu Ala Asp Gly Lys Ile Leu Asp Arg Ile Thr Pro Ala 225 230 235 240 Glu Ala Gln Lys Val Met Ala Val Ser Glu Gly Gly His 245 250 70397PRTCystobacter velatusMISC_FEATURE(1)..(397)ORF11 70Met Pro Gln Lys Phe Val Gly Lys Trp Lys Gly Gly Arg Val Lys Leu 1 5 10 15 Val Asp Gly Arg Lys Val Trp Leu Leu Glu Lys Met Val Ser Gly Ala 20 25 30 Arg Phe Ser Val Ser Leu Ala Val Ser Asn Glu Glu Asp Ala Leu Ala 35 40 45 Glu Leu Ala Leu Phe Arg Arg Asp Arg Asp Ala Tyr Leu Ala Lys Val 50 55 60 Lys Ala Asp Arg Ser Glu Glu Val Gln Ala Ser Thr Val Ala Gly Ala 65 70 75 80 Val Pro Leu Ser Gly Asp Val Gly Pro Arg Leu Asp Ala Asp Ser Val 85 90 95 Arg Glu Phe Leu Arg His Leu Thr Gln Arg Gly Arg Thr Glu Gly Tyr 100 105 110 Arg Arg Asp Ala Arg Thr Tyr Leu Ser Gln Trp Ala Glu Val Leu Ala 115 120 125 Gly Arg Asp Leu Ser Thr Val Ser Leu Leu Glu Leu Arg Arg Ala Leu 130 135 140 Ser Gln Trp Pro Thr Ala Arg Lys Met Arg Ile Ile Thr Leu Lys Ser 145 150 155 160 Phe Phe Ser Trp Leu Arg Glu Glu Asp Arg Leu Lys Ala Ala Glu Asp 165 170 175 Pro Thr Leu Ser Leu Lys Val Pro Pro Ala Val Ala Glu Lys Gly Arg 180 185 190 Arg Ala Lys Gly Tyr Ser Met Ala Gln Val Glu Lys Leu Tyr Ala Ala 195 200 205 Ile Gly Ser Gln Thr Val Arg Asp Val Leu Cys Leu Arg Ala Lys Thr 210 215 220 Gly Met His Asp Ser Glu Ile Ala Arg Leu Ala Ser Gly Lys Gly Glu 225 230 235 240 Leu Arg Val Val Asn Asp Pro Ser Gly Ile Ala Gly Thr Ala Arg Phe 245 250 255 Leu His Lys Asn Gly Arg Val His Ile Leu Ser Leu Asp Ala Gln Ala 260 265 270 Leu Ala Ala Ala Gln Arg Leu Gln Val Arg Gly Arg Ala Pro Ile Arg 275 280 285 Asn Thr Val Arg Glu Ser Ile Gly Tyr Ala Ser Ala Arg Ile Gly Gln 290 295 300 Ser Pro Ile His Pro Ser Glu Leu Arg His Ser Phe Thr Thr Trp Ala 305 310 315 320 Thr Asn Glu Gly Gln Val Val Arg Ala Thr Arg Gly Gly Val Pro Leu 325 330 335 Asp Val Val Ala Ser Val Leu Gly His Gln Ser Thr Arg Ala Thr Lys 340 345 350 Lys Phe Tyr Asp Gly Thr Glu Ile Pro Pro Met Ile Thr Val Pro Leu 355 360 365 Lys Leu His His Pro Gln Asp Pro Ala Val Met Gln Leu Arg Arg Asn 370 375 380 Cys Ser Pro Asp Pro Val Val Thr Arg Glu Ala Glu Ala 385 390 395 71124PRTCystobacter velatusMISC_FEATURE(1)..(124)ORF12 71Val Leu Leu Ala Phe Pro Ser Gly Leu Leu Ser Leu Ala Leu Leu Ser 1 5 10 15 Thr Thr Thr Glu Ile Ser Ala Ala Leu Pro Val Asp Glu Cys Glu Ser 20 25 30 Ala Ser Leu Arg Ile Glu Leu Pro Ala Thr Pro Gly Gly Lys Pro Pro 35 40 45 Val Val Cys Leu Gly Pro Gly Leu Pro Ile His Phe Arg Phe Asp Ser 50 55 60 Ala Leu Gln Gln Lys Ser Leu Arg Ile Gln Asp Arg Gly Trp Phe Glu 65 70 75 80 Asp Trp Ala Leu Gly Gln Gln Thr Leu Val Leu Thr Pro His Asp Asn 85 90 95 Leu Val Ala Gly Lys Arg Ser Glu Val Glu Val Cys Phe Ala Asp Gly 100 105 110 Ala Ala Pro Ala Cys Ala Ser Phe Val Leu Arg Arg 115 120 72112PRTCystobacter velatusMISC_FEATURE(1)..(112)ORF13 72Met His Thr Lys Val Pro Ser Val Phe Glu Ala Thr Pro Glu Ser Leu 1 5 10 15 Ser Asp Val Asp Tyr Gln Phe Trp His Glu Asp Phe Pro Arg Val Phe 20 25 30 Glu Arg Gln His Ile Asp Ala His Ala Val Pro Ala Ile Gly Ala Tyr 35 40 45 Leu Gly Glu Val Leu Val Arg Asn Leu Gly Gly Lys Trp Ile Pro Arg 50 55 60 Gln Lys Leu Asp Glu Ala Gln Val Leu Val Gly Asn Arg Val Trp Leu 65 70 75 80 Pro Phe Ala Arg Ala His His Tyr Met Arg Ser Cys Glu Ser Leu Leu 85 90 95 Asp Tyr Ser Leu Thr Gln Leu Tyr Arg Val Ala Glu Arg Tyr Arg Gly 100 105 110 73304PRTCystobacter velatusMISC_FEATURE(1)..(304)ORF 14 73Met Lys Val Leu Gly Leu Gly Asp Val Lys Ser Glu Asp Ser Leu Arg 1 5 10 15 Leu Thr Phe Glu Gly Ala Leu Asp Pro Gln Ala Ala Leu Glu Lys Val 20 25 30 Leu Glu Pro Phe Phe Gln Ala Leu Glu Glu Tyr Ala Gly Asp Trp Met 35 40 45 Pro Glu Val Val Ser Gly Arg Arg Arg Leu Lys Tyr Ser Arg Ala Asn 50 55 60 Ile Trp Lys Ala Leu Glu Glu Arg Arg Asp Glu Arg Ser Thr Asp Thr 65 70 75 80 Trp Leu Tyr Arg Thr Gln Arg Pro Thr Leu Glu Met Ser Leu His Leu 85 90 95 Trp Phe Pro Pro Leu Pro Pro Ala Leu Asp Val Met Thr Thr Val Gln 100 105 110 Pro Leu Thr Arg Phe Ala Glu Lys Glu Arg Cys Arg Gln Phe Val Glu 115 120 125 Met Val Arg Thr Trp Ala Ser Cys Tyr Pro Val Thr His Ala Ala Ala 130 135 140 His Ser Val Ala Asp Arg Ala Leu Ala Gly Ala Pro Asp Phe Gly Arg 145 150 155 160 Asp Ala Arg Thr Ala Arg Arg Asp Gly Phe Asp Arg Ile Tyr Glu Ile 165 170 175 Phe Trp

Leu Asn Val Phe Gly Pro Lys Leu Val Glu Ala Val Gly Arg 180 185 190 Glu Arg Met Leu Ser Thr Pro Ala His Arg Val Glu Glu Leu Pro Asn 195 200 205 Gly Ser Ile Leu Leu Val Thr Trp Pro Thr Ala Ala Asp Phe Ala Gly 210 215 220 Ala Glu Ala Arg His Ala Gln Ala Arg Ala His Val His Leu Arg Pro 225 230 235 240 Asp Leu Arg Phe Asp Thr Val Leu Arg Thr Leu His Glu Arg Ser Ala 245 250 255 Ala Leu Ala Pro Val Glu Pro Cys Phe His Pro Asp Val Ala Pro Leu 260 265 270 Leu Ser His Val Val Asp Ser Val Ala Ile Arg Met Trp Lys Thr Trp 275 280 285 Ser Ala Leu Thr Ser Ile Thr Glu Leu Trp Leu Ser Thr Ser Trp Arg 290 295 300

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed