Methods For Administering Hypoglycemic Agents

Bush; Mark A. ;   et al.

Patent Application Summary

U.S. patent application number 14/813885 was filed with the patent office on 2016-01-28 for methods for administering hypoglycemic agents. This patent application is currently assigned to GlaxoSmithKline LLC. The applicant listed for this patent is GlaxoSmithKline LLC. Invention is credited to Mark A. Bush, Mary Colleen O'Neill.

Application Number20160022781 14/813885
Document ID /
Family ID38024051
Filed Date2016-01-28

United States Patent Application 20160022781
Kind Code A1
Bush; Mark A. ;   et al. January 28, 2016

METHODS FOR ADMINISTERING HYPOGLYCEMIC AGENTS

Abstract

The present invention relates to methods of administering hypoglycemic agents and/or GLP-1 agonists.


Inventors: Bush; Mark A.; (Research Triangle Park, NC) ; O'Neill; Mary Colleen; (San Francisco, CA)
Applicant:
Name City State Country Type

GlaxoSmithKline LLC

Wilmington

DE

US
Assignee: GlaxoSmithKline LLC

Family ID: 38024051
Appl. No.: 14/813885
Filed: July 30, 2015

Related U.S. Patent Documents

Application Number Filing Date Patent Number
13464045 May 4, 2012
14813885
12092433 May 2, 2008 8202837
PCT/US2006/060508 Nov 3, 2006
13464045
60742600 Dec 6, 2005
60733920 Nov 4, 2005

Current U.S. Class: 514/5.2 ; 514/6.8; 514/7.2
Current CPC Class: A61P 3/10 20180101; A61K 38/26 20130101; A61P 3/04 20180101; A61K 38/28 20130101; A61K 31/426 20130101; A61K 31/64 20130101; A61K 38/385 20130101; A61K 45/06 20130101; A61K 9/0019 20130101; A61K 31/155 20130101
International Class: A61K 38/26 20060101 A61K038/26; A61K 9/00 20060101 A61K009/00

Claims



1. A method for treating a disease selected from the group consisting of Type 1 diabetes, Type II diabetes, obesity and hyperglycemia in a human in need thereof comprising administering a composition comprising a polypeptide having GLP-1 activity as a subcutaneous injection once weekly to said human via an injection device comprising a tube having a gauge of 28, 29 or, 30 wherein the composition comprises about 0.01 mg to about 104 mg of the polypeptide having GLP-1 activity and wherein the polypeptide having GLP-1 activity comprises two fragment and variant polypeptides of human GLP-1, wherein said fragment and variant polypeptides of human GLP-1 are tandemly oriented and covalently bound by a chemical linker.

2. The method of claim 1 wherein the disease is Type II diabetes.

3. The method of claim 1 wherein the needle has a gauge selected from is 29.

4. The method of claim 1, wherein said two fragment and variant polypeptides of human GLP-1 are separated by other amino acids sequences.

5. The method of claim 1 wherein the chemical linker is a disulphide bond.

6. The method of claim 1, wherein the fragment and variant polypeptides of human GLP-1 comprise a substitution of the alanine residue analogous to alanine 8 of wild type GLP-1.

7. The method of claim 7 wherein the alanine at position 8 is substituted with glycine.

8. The method of claim 1 wherein the polypeptide is administered to said human at a dose selected from about 0.5 mg/week, 0.8 mg/week, 1.0 mg/week and 2 mg/week.

9. The method of claim 1 wherein the GLP-1 activity is selected from stimulating glucose-dependent insulin secretion, suppressing glucagon secretion, delaying gastric emptying, and promoting beta cell competence and neogenesis.
Description



[0001] This Application is a continuation of U.S. Ser. No. 13/464, 045 which is a divisional application of U.S. Ser. No. 12/092,433, now U.S. Pat. No. 8,202,837, which is a .sctn.371 of International Application No. PCT/US2006/060508, filed 3 Nov. 2006, which claims priority of U.S. Provisional Application No. 60/733,920, filed 4 Nov. 2005 and U.S. Provisional Application No. 60/742,600, filed 6 Dec. 2005.

BACKGROUND

[0002] Hypoglycemic agents may be used in the treatment of both Type I and Type II diabetes to lower glucose concentration in blood. Insulinotropic peptides have been implicated as possible therapeutic agents for the treatment of diabetes. Insulinotropic peptides include incretin hormones such as, but are not limited to, gastric inhibitory peptide (GIP) and glucagon like peptide-1 (GLP-1) as well as fragments, variants, and conjugates thereof. Insulinotropic peptides also include exendin 3 and exendin 4. GLP-1 is a 30 amino acid long incretin hormone secreted by the L-cells in the intestine. GLP-1 has been shown to stimulate insulin secretion in a physiological and glucose-dependent manner, decrease glucagon secretion, inhibit gastric emptying, decrease appetite, and stimulate proliferation of .beta.-cells.

[0003] Insulin and insulinotrpoic peptides may be administered via subcutaneous injection, such as with a needle containing device, for example, a pen injector, and/or syringe. Patients may need to inject several times a day to control blood glucose, which can be burdensome as well as painful. Thus, there is a need for methods of administering hypoglycemic agents less frequently and by methods that will minimize such burdensome regimens as well as site injection pain.

SUMMARY OF THE INVENTION

[0004] In one embodiment of the present invention, methods are provided for administering a GLP-1 agonist composition comprising at least one polypeptide to a patient in need thereof, comprising the step of injecting the GLP-1 agonist composition via an injection device comprising a tube having a gauge of about 28 or greater, wherein said polypeptide is administered no more than once daily. The polypeptide may be, but is not limited to, GLP-1 or a fragment, variant, and/or conjugate thereof. Certain embodiments of a GLP-1 or a fragment, variant, or conjugate thereof comprise human serum albumin. Human serum albumin, variants and/or fragments thereof, may be conjugated to a GLP-1 or fragment or variant thereof Human serum albumin may be conjugated through a chemical linker, including but not limited to naturally occurring or engineered disulfide bonds, or by genetic fusion to GLP-1, or a fragment or variant thereof

[0005] In another aspect of the present invention, methods are provided for administering a hypoglycemic agent comprising at least one polypeptide to a patient in need thereof, comprising the step of injecting the hypoglycemic agent via an injection device comprising a tube having a gauge of about 28 or greater, wherein said polypeptide is administered no more than once daily.

[0006] In another aspect of the present invention, methods are provided for treating or preventing a disease in a mammal in need thereof comprising administering a composition comprising at least one polypeptide having GLP-1 agonist activity once weekly, wherein the composition comprises about 0.25 mg to about 104 mg of at least one polypeptide having GLP-1 activity. The mammal may suffer from one or more of the following diseases: Type 1 diabetes, Type II diabetes, obesity and hyperglycemia.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] FIG. 1: A device for delivery of lyophilized hypoglycemic agent and/or GLP-1 agonist

[0008] FIG. 2: SEQ ID NO:1 which comprises two tandemly oriented GLP-1(7-36)(A8G) fused to the N-Terminus of human serum albumin.

DEFINITIONS

[0009] "GLP-1 agonist composition" as used herein means any composition capable of stimulating the secretion of insulin, including, but not limited to an incretin hormone.

[0010] "Incretin hormone" as used herein means any hormone that potentiates insulin secretion. One example of an incretin hormone is GLP-1. GLP-1 is an incretin secreted by intestinal L cells in response to ingestion of food. In a healthy individual, GLP-1 plays an important role regulating post-prandial blood glucose levels by stimulating glucose-dependent insulin secretion by the pancreas resulting in increased glucose absorption in the periphery. GLP-1 also suppresses glucagon secretion, leading to reduced hepatic glucose output. In addition, GLP-1 delays gastric emptying time and slows small bowel motility delaying food absorption. GLP-1 promotes continued beta cell competence by stimulating transcription of genes involved in glucose dependent insulin secretion and by promoting beta-cell neogenesis (Meier, et al. "Glucagon-Like Peptide 1 and Gastric Inhibitory Polypeptide Potential Applications in Type 2 Diabetes Mellitus" Biodrugs 2003; 17 (2): 93-102). "GLP-1 activity" as used herein means one or more of the activities of naturally occurring human GLP-1, including but not limited to, stimulating glucose-dependent insulin secretion, suppressing glucagon secretion, delaying gastric emptying, and promoting beta cell competence and neogenesis.

[0011] An "incretin mimetic" as used herein is a compound capable of potentiating insulin secretion. An incretin mimetic may be capable of stimulating insulin secretion, increasing beta cell neogenesis, inhibiting beta cell apoptosis, inhibiting glucagon secretion, delaying gastric emptying and inducing satiety in a mammal. An incretin mimetic may include, but is not limited to, any polypeptide which has GLP-1 activity, including but not limited to, exendin 3 and exendin 4, including any fragments and/or variants and/or conjugates thereof

[0012] "Hypoglycemic agent" as used herein means any compound or composition comprising a compound capable of reducing blood glucose. A hypoglycemic agent may include, but is not limited to, any GLP-1 agonist including incretin hormones or incretin mimetics, GLP-1 or fragment, variant and/or conjugate thereof. Other hypoglycemic agents include, but are not limited to, drugs that increase insulin secretion (e.g., sulfonylureas (SU) and meglitinides), increase glucose utilization (e.g., glitazones), reduce hepatic glucose production (e.g., metformin), and delay glucose absorption (e.g., a-glucosidase inhibitors).

[0013] "Polypeptide" refers to any peptide or protein comprising two or more amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres. "Polypeptide" refers to both short chains, commonly referred to as peptides, oligopeptides or oligomers, and to longer chains, generally referred to as proteins. Polypeptides may contain amino acids other than the 20 gene-encoded amino acids. "Polypeptides" include amino acid sequences modified either by natural processes, such as posttranslational processing, or by chemical modification techniques that are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. Polypeptides may be branched as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched and branched cyclic polypeptides may result from posttranslation natural processes or may be made by synthetic methods. Modifications include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination. See, for instance, PROTEINS--STRUCTURE AND MOLECULAR PROPERTIES, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York, 1993 and Wold, F., Posttranslational Protein Modifications: Perspectives and Prospects, pgs. 1-12 in POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS, B. C. Johnson, Ed., Academic Press, New York, 1983; Seifter, et al., "Analysis for protein modifications and nonprotein cofactors", Meth. Enzymol. (1990) 182:626-646 and Rattan, et al., "Protein Synthesis: Posttranslational Modifications and Aging", Ann NY Acad Sci (1992) 663:48-62.

[0014] "Variant" as the term is used herein, is a polynucleotide or polypeptide that differs from a reference polynucleotide or polypeptide respectively, but retains essential properties. A typical variant of a polynucleotide differs in nucleotide sequence from another, reference polynucleotide. Changes in the nucleotide sequence of the variant may or may not alter the amino acid sequence of a polypeptide encoded by the reference polynucleotide. Nucleotide changes may result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference sequence, as discussed below. A typical variant of a polypeptide differs in amino acid sequence from another, reference polypeptide. Generally, differences are limited so that the sequences of the reference polypeptide and the variant are closely similar overall and, in many regions, identical. A variant and reference polypeptide may differ in amino acid sequence by one or more substitutions, additions, deletions in any combination. A substituted or inserted amino acid residue may or may not be one encoded by the genetic code. A variant of a polynucleotide or polypeptide may be a naturally occurring such as an allelic variant, or it may be a variant that is not known to occur naturally. Non-naturally occurring variants of polynucleotides and polypeptides may be made by mutagenesis techniques or by direct synthesis.

[0015] As used herein "conjugate" or "conjugated" refers to two molecules that are bound to each other. For example, a first polypeptide may be covalently or non-covalently bounded to a second polypeptide. The first polypeptide may be covalently bound by a chemical linker or may be fused genetically to the second polypeptide, wherein the first and second polypeptide share a common polypeptide backbone.

[0016] As used herein "tandemly oriented" refers to two or more polypeptides that are adjacent to one another as part of the same molecule. They may be linked either covalently or non-covalently. Two or more tandemly oriented polypeptides may form part of the same polypeptide backbone. Tandemly oriented polypeptides may have direct or inverted orientation and/or may be separated by other amino acid sequences.

[0017] As used herein "fragment," when used in reference to a polypeptide, is a polypeptide having an amino acid sequence that is the same as part but not all of the amino acid sequence of the entire naturally occurring polypeptide. Fragments may be "free-standing" or comprised within a larger polypeptide of which they form a part or region as a single continuous region in a single larger polypeptide. By way of example, a fragment of naturally occurring GLP-1 would include amino acids 7 to 36 of naturally occurring amino acids 1 to 36. Furthermore, fragments of a polypeptide may also be variants of the naturally occurring partial sequence. For instance, a fragment of GLP-1 comprising amino acids 7-30 of naturally occurring GLP-1 may also be a variant having amino acid substitutions within its partial sequence.

[0018] As used herein, "reduce" or "reducing" blood glucose refers to a decrease in the amount of blood glucose observed in the blood of a patient after administration a hypoglycemic agent.

[0019] As used herein "disease associated with elevated blood glucose" include, but are not limited to, Type I and Type II diabetes and hyperglycemia.

[0020] As used herein "co-administration" or "co-administering" as used herein refers to administration of two or more compounds to the same patient. Co-administration of such compounds may be at about the same time (e.g., within the same hour) or it may be within several hours or days of one another. For example, a first compound may be administered once weekly while a second compound is co-administered daily.

DETAILED DESCRIPTION OF THE INVENTION

[0021] In one embodiment of the present invention, methods are provided for administering a GLP-1 agonist composition comprising at least one polypeptide to a patient in need thereof, comprising the step of injecting the GLP-1 agonist composition via an injection device comprising a tube having a gauge of about 28 or greater, wherein said polypeptide is administered no more than once daily. As is understood in the art, examples of needles with gauges of 28 or greater include, but are not limited to, 28, 29 and 30 gauge needles. As is also understood in the art, the higher the needle gauge the smaller the needle aperture. An embodiment of the invention comprises a polypeptide that may be, but is not limited to, GLP-1 or a fragment, variant, or conjugate thereof. A GLP-1 or a fragment, variant, or conjugate thereof may comprise human serum albumin. Human serum albumin may be conjugated to the GLP-1 or fragment or variant thereof. Human serum albumin may be conjugated through a chemical linker or genetically fused to the GLP-1 fragment or variant. Examples of GLP-1, fragments or variants, fused with human serum albumin are provided in the following PCT applications: WO 2003/060071, WO 2003/59934, WO 2005/003296, WO 2005/077042.

[0022] A further embodiment of the invention comprises one, two, three, four, five, or more tandemly oriented molecules of GLP-1 fused to the N- or C-terminus of human serum albumin or variant thereof. GLP-1 fragments may include, but are not limited to, molecules of GLP-1 comprising, or alternatively consisting of, amino acids 7 to 36 of GLP-1 (hereinafter designated as "GLP-1(7-36)"). Variants of GLP-1 or fragments of GLP-1 may include, but are not limited to, substitutions of an alanine residue analogous to alanine 8 of wild type GLP-1, such alanine being mutated to a glycine (hereinafter designated as "A8G") (See for Example, the mutants disclosed in U.S. Pat. No. 5,545,618, herein incorporated by reference in its entirety). Other embodiments have such A8G polypetides fused to the N- or C-terminus of albumin or variant thereof. An example of two tandemly oriented GLP-1(7-36)(A8G) fragments/variants fused to the N-terminus of human serum albumin comprises SEQ ID NO:1, which is presented in FIG. 2.

[0023] In another aspect of the present invention, the GLP-1 agonist composition further comprises one or more compounds selected from the group of: peroxisome proliferating activated receptor (PPAR) ligand, thiazolidinedione, metformin, insulin, and sulfonylurea. In another aspect, methods are provided comprising the step of co-administering at least one GLP-1 agonist with one or more compounds selected from the group of: peroxisome proliferating activated receptor (PPAR) ligand, thiazolidinedione, metformin, insulin, and sulfonylurea. The GLP-1 agonist composition may have one or more of these compounds in addition to at least one polypeptide.

[0024] In another aspect, the GLP-1 agonist composition is lyophilized. In another aspect of this invention, methods are provided that further comprise admixing said GLP-1 agonist composition with a liquid prior to administration of said GLP-1 agonist composition. In yet another aspect, the GLP-1 agonist composition is in solution form, and may be an aqueous solution.

[0025] In yet another aspect of the present invention, at least one polypeptide of a GLP-1 agonist composition may be administered to said patient once weekly, twice weekly, once every two weeks, and/or once monthly. In another aspect, the patient suffers from Type II diabetes. An injection device of the invention may be reusable and/or disposable. In one aspect, an injection device comprises a needle. In another aspect the injection a delivery device of the invention comprises a catheter.

[0026] In yet another aspect, GLP-1 agonist composition is administered via subcutaneous injection. In another aspect, the injection may be intramuscular or intravenous, intraperitoneal, intranasal, transmucosal or topical. In another aspect, GLP-1 agonist composition is self-administered, meaning a patient receiving an injection administers a GLP-1 agonist composition to himself or herself. Subcutaneous, injections may be administered, for example, at the abdomen, upper arm, and/or thigh.

[0027] In another aspect of the present invention, methods are provided for administering a hypoglycemic agent comprising at least one polypeptide to a patient in need thereof, comprising the step of injecting a hypoglycemic agent via an injection device comprising a tube having a gauge of about 28 or greater, wherein said polypeptide is administered no more than once daily. The needle may have a 29 or 30 gauge. In another aspect, the polypeptide of the invention is not insulin. P In another aspect of the present invention methods are provided for treating or preventing a disease in a mammal in need thereof comprising administering a composition comprising at least one polypeptide having GLP-1 agonist activity once weekly, wherein the composition comprises about 0.010 mg to about 104 mg of at least one polypeptide having GLP-1 activity. The disease may be selected from the group consisting of Type 1 diabetes, Type II diabetes, obesity and hyperglycemia. In one aspect, the disease is Type II diabetes.

[0028] In another aspect of the present invention, the polypeptide having GLP-1 activity comprises at least one fragment or variant of human GLP-1 genetically fused with human serum albumin. This fragment or variant of GLP-1 may comprise GLP-1(7-36(A8G)). At least one fragment or variant of GLP-1 may be genetically fused to human serum albumin. In another aspect, the polypeptide having GLP-1 activity comprises at least two GLP-1(7-36(A8G)) tandemly and genetically fused to the human serum albumin. In another aspect, the two GLP-1(7-36(A8G)) are genetically fused at the N-terminus of the human serum albumin. In another aspect, at least one polypeptide having GLP-1 activity comprises SEQ ID No.: 1. At least one polypeptide having GLP-1 activity may be administered at a dose of about 0.25 mg to about 32 mg weekly. Some examples of doses for a once weekly administration of a polypeptide having GLP-1 activity include, but are not limited to, 0.010 mg/week, 0.25 mg/week, 0.5 mg/week, 0.8 mg/week, 1.0 mg/week, 2 mg/week, 3.2 mg/week, 8 mg/week, 12.8 mg/week, 32 mg/week, 51.2 mg/week, and/or 104 mg/week.

EXAMPLES

[0029] The following examples illustrate various aspects of this invention. These examples do not limit the scope of this invention which is defined by the appended claims.

Example 1

[0030] The following devices may be used to deliver a hypoglycemic and/or a GLP-1 agonist composition: [0031] 1. STATdose.RTM., GSK, Liquid Drug Product Reusable Auto-injector; [0032] 2. Autoject mini.RTM., Owen Mumford, Liquid Drug Product Reusable Auto-injector; [0033] 3. Penlet.RTM., Becton Dickinson, Liquid Drug Product Disposable Auto-injector; [0034] 4. Tigerlily/Snapdragon.RTM., Owen Mumford, Liquid Drug Product Disposable Auto-injector; [0035] 5. AutoSafety Injector.RTM., The Medical House, Liquid Drug Product Disposable Auto-injector; [0036] 6. Liquid Dry Injector.RTM. Becton Dickinson, Lyophilised Drug Product Disposable Pen Injector; and/or [0037] 7. Pre-filled syringes.

Example 2

[0038] A lyophilized hypoglycemic agent and/or GLP-1 agonist composition may be delivered by a device as shown in FIG. 1. This device system can contain a powder comprising a lyophilized hypoglycemic agent and/or GLP-1 agonist and a liquid. This device system can be held upright to mix a contained powder and liquid. The two halves of an injection pen can be pressed together firmly until the powder completely dissolves. Once dissolved the hypoglycemic agent and/or GLP-1 agonist composition can be administered to the patient.

Example 3

[0039] A hypoglycemic agent and/or GLP-1 agonist composition can comprise a polypeptide having GLP-1 activity. A hypoglycemic agent and/or GLP-1 agonist composition comprising a polypeptide having GLP-1 activity can be delivered by subcutaneous injection to a person in need thereof, wherein the agent or composition comprises polypeptide having GLP-1 activity at a dose in the range of about 0.010 mg to about 104 mg once weekly. Some examples of doses for a once weekly administration of a GLP-1 agonist composition comprising a polypeptide having GLP-1 activity include, but are not limited to, 010 mg/week, 0.25 mg/week, 0.5 mg/week, 0.8 mg/week, 1.0 mg/week, 2 mg/week, 3.2 mg/week, 8 mg/week, 12.8 mg/week, 32 mg/week, 51.2 mg/week, and/or 104 mg/week.

Example 4

[0040] A lyophilized hypoglycemic agent and/or GLP-1 agonist composition can be reconstituted with water for injection. Examples of excipients that can be included in the composition include, but are not limited to, trehalose dehydrate, mannitol, sodium phosphate (such as dibasic, anhydrous and monobasic, monohydrate), polysorbate 80, sodium hydroxide, phosphoric acid, and water for injection.

[0041] All patent applications to which this application claims priority are incorporated by reference herein in their entirety as if each application is specifically and individually being fully set forth.

Sequence CWU 1

1

11645PRTHomo sapiens 1His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly1 5 10 15 Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Arg His Gly 20 25 30 Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala 35 40 45 Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Arg Asp Ala His Lys 50 55 60 Ser Glu Val Ala His Arg Phe Lys Asp Leu Gly Glu Glu Asn Phe Lys65 70 75 80 Ala Leu Val Leu Ile Ala Phe Ala Gln Tyr Leu Gln Gln Cys Pro Phe 85 90 95 Glu Asp His Val Lys Leu Val Asn Glu Val Thr Glu Phe Ala Lys Thr 100 105 110 Cys Val Ala Asp Glu Ser Ala Glu Asn Cys Asp Lys Ser Leu His Thr 115 120 125 Leu Phe Gly Asp Lys Leu Cys Thr Val Ala Thr Leu Arg Glu Thr Tyr 130 135 140 Gly Glu Met Ala Asp Cys Cys Ala Lys Gln Glu Pro Glu Arg Asn Glu145 150 155 160 Cys Phe Leu Gln His Lys Asp Asp Asn Pro Asn Leu Pro Arg Leu Val 165 170 175 Arg Pro Glu Val Asp Val Met Cys Thr Ala Phe His Asp Asn Glu Glu 180 185 190 Thr Phe Leu Lys Lys Tyr Leu Tyr Glu Ile Ala Arg Arg His Pro Tyr 195 200 205 Phe Tyr Ala Pro Glu Leu Leu Phe Phe Ala Lys Arg Tyr Lys Ala Ala 210 215 220 Phe Thr Glu Cys Cys Gln Ala Ala Asp Lys Ala Ala Cys Leu Leu Pro225 230 235 240 Lys Leu Asp Glu Leu Arg Asp Glu Gly Lys Ala Ser Ser Ala Lys Gln 245 250 255 Arg Leu Lys Cys Ala Ser Leu Gln Lys Phe Gly Glu Arg Ala Phe Lys 260 265 270 Ala Trp Ala Val Ala Arg Leu Ser Gln Arg Phe Pro Lys Ala Glu Phe 275 280 285 Ala Glu Val Ser Lys Leu Val Thr Asp Leu Thr Lys Val His Thr Glu 290 295 300 Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp Arg Ala Asp Leu305 310 315 320 Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ile Ser Ser Lys Leu Lys 325 330 335 Glu Cys Cys Glu Lys Pro Leu Leu Glu Lys Ser His Cys Ile Ala Glu 340 345 350 Val Glu Asn Asp Glu Met Pro Ala Asp Leu Pro Ser Leu Ala Ala Asp 355 360 365 Phe Val Glu Ser Lys Asp Val Cys Lys Asn Tyr Ala Glu Ala Lys Asp 370 375 380 Val Phe Leu Gly Met Phe Leu Tyr Glu Tyr Ala Arg Arg His Pro Asp385 390 395 400 Tyr Ser Val Val Leu Leu Leu Arg Leu Ala Lys Thr Tyr Glu Thr Thr 405 410 415 Leu Glu Lys Cys Cys Ala Ala Ala Asp Pro His Glu Cys Tyr Ala Lys 420 425 430 Val Phe Asp Glu Phe Lys Pro Leu Val Glu Glu Pro Gln Asn Leu Ile 435 440 445 Lys Gln Asn Cys Glu Leu Phe Glu Gln Leu Gly Glu Tyr Lys Phe Gln 450 455 460 Asn Ala Leu Leu Val Arg Tyr Thr Lys Lys Val Pro Gln Val Ser Thr465 470 475 480 Pro Thr Leu Val Glu Val Ser Arg Asn Leu Gly Lys Val Gly Ser Lys 485 490 495 Cys Cys Lys His Pro Glu Ala Lys Arg Met Pro Cys Ala Glu Asp Tyr 500 505 510 Leu Ser Val Val Leu Asn Gln Leu Cys Val Leu His Glu Lys Thr Pro 515 520 525 Val Ser Asp Arg Val Thr Lys Cys Cys Thr Glu Ser Leu Val Asn Arg 530 535 540 Arg Pro Cys Phe Ser Ala Leu Glu Val Asp Glu Thr Tyr Val Pro Lys545 550 555 560 Glu Phe Asn Ala Glu Thr Phe Thr Phe His Ala Asp Ile Cys Thr Leu 565 570 575 Ser Glu Lys Glu Arg Gln Ile Lys Lys Gln Thr Ala Leu Val Glu Leu 580 585 590 Val Lys His Lys Pro Lys Ala Thr Lys Glu Gln Leu Lys Ala Val Met 595 600 605 Asp Asp Phe Ala Ala Phe Val Glu Lys Cys Cys Lys Ala Asp Asp Lys 610 615 620 Glu Thr Cys Phe Ala Glu Glu Gly Lys Lys Leu Val Ala Ala Ser Gln625 630 635 640 Ala Ala Leu Gly Leu 645

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed