Heat-dissipation Film

BI; Yuxin ;   et al.

Patent Application Summary

U.S. patent application number 14/568659 was filed with the patent office on 2015-11-19 for heat-dissipation film. The applicant listed for this patent is BOE TECHNOLOGY GROUP CO., LTD.. Invention is credited to Yuxin BI, Shou LI, Jianing LU.

Application Number20150330698 14/568659
Document ID /
Family ID51467567
Filed Date2015-11-19

United States Patent Application 20150330698
Kind Code A1
BI; Yuxin ;   et al. November 19, 2015

HEAT-DISSIPATION FILM

Abstract

The invention provides a heat-dissipation film, belonging to the technical field of heat-dissipation, which can solve the problem that the heat-dissipation film in the prior art dissipates heat in a single heat-dissipation way, and the heat-dissipation effect thereof is not good in the case that much heat or a fire source exists. The heat-dissipation film of the invention includes a first heat-dissipation sheet and an endothermic reaction module; wherein one surface of the first heat-dissipation sheet is in contact with a heating object, and the other surface of the first heat-dissipation is attached to the endothermic reaction module for absorbing heat generated by the heating object. The invention can improve the heat-dissipation effect of the heat-dissipation film.


Inventors: BI; Yuxin; (Beijing, CN) ; LI; Shou; (Beijing, CN) ; LU; Jianing; (Beijing, CN)
Applicant:
Name City State Country Type

BOE TECHNOLOGY GROUP CO., LTD.

Beijing

CN
Family ID: 51467567
Appl. No.: 14/568659
Filed: December 12, 2014

Current U.S. Class: 62/4 ; 165/185
Current CPC Class: H05K 7/20481 20130101; F28F 21/081 20130101; F28F 21/02 20130101; F25D 5/00 20130101
International Class: F25D 5/00 20060101 F25D005/00; F28F 21/08 20060101 F28F021/08; F28F 21/02 20060101 F28F021/02

Foreign Application Data

Date Code Application Number
May 15, 2014 CN 201410205651.4

Claims



1. A heat-dissipation film, including a first heat-dissipation sheet and an endothermic reaction module disposed on the first heat-dissipation sheet, or including a first heat-dissipation sheet and a second heat-dissipation sheet which are disposed opposite to each other with a spacing therebetween, and an endothermic reaction module disposed between the first heat-dissipation sheet and the second heat-dissipation sheet, wherein one surface of the first heat-dissipation sheet is in contact with a heating object, and the other surface of the first heat-dissipation sheet is attached to the endothermic reaction module for absorbing heat generated by the heating object.

2. The heat-dissipation film of claim 1, wherein the first heat-dissipation sheet is attached to the endothermic reaction module by thermal conductive adhesive.

3. The heat-dissipation film of claim 1 wherein the endothermic reaction module includes at least one accommodating chamber which accommodates endothermic reaction material.

4. The heat-dissipation film of claim 3, wherein the endothermic reaction material includes a material, endothermic chemical reaction of which is reversible, and the material includes sodium bicarbonate or five hydrated copper sulfate.

5. The heat-dissipation film of claim 3, wherein the endothermic reaction module includes one discharging conduit and one accommodating chamber, and reactant generated by reaction of the endothermic reaction material is discharged outside the heat-dissipation film via the discharging conduit.

6. The heat-dissipation film of claim 3, wherein the endothermic reaction module includes one discharging conduit, a plurality of accommodating chambers and a plurality of heat-resistant conduits, and every two adjacent accommodating chambers communicate with each other via one heat-resistant conduit, and one of the plurality of accommodating chambers is connected to the discharging conduit for discharging reactant generated by reaction of the endothermic reaction material outside the heat-dissipation film.

7. The heat-dissipation film of claim 6, wherein the heat-resistant conduit is made of metal.

8. The heat-dissipation film of claim 7, wherein the metal includes one or more selecting from a group consisting of copper, aluminum, and silver.

9. The heat-dissipation film of claim 5, wherein the discharging conduit is made of metal.

10. The heat-dissipation film of claim 9, wherein the metal includes one or more selecting from a group consisting of copper, aluminum, and silver.

11. The heat-dissipation film of claim 6, wherein the discharging conduit is made of metal.

12. The heat-dissipation film of claim 11, wherein the metal includes one or more selecting from a group consisting of copper, aluminum, and silver.

13. The heat-dissipation film of claim 3, wherein the first heat-dissipation sheet and the accommodating chamber are made of any one selecting from a group consisting of metal, graphite film and grapheme.

14. The heat-dissipation film of claim 13, wherein the metal includes one or more selecting from a group consisting of copper, aluminum, and silver.

15. The heat-dissipation film of claim 1, including a first heat-dissipation sheet and a second heat-dissipation sheet which are disposed opposite to each other with a spacing therebetween, and an endothermic reaction module disposed between the first heat-dissipation sheet and the second heat-dissipation sheet, wherein the endothermic reaction module is attached to the second heat-dissipation sheet by thermal conductive adhesive.

16. The heat-dissipation film of claim 3, including a first heat-dissipation sheet and a second heat-dissipation sheet winch are disposed opposite to each other with a spacing therebetween, and an endothermic reaction module disposed between the first heat-dissipation sheet and the second heat-dissipation sheet, wherein the first heat-dissipation sheet, the second heat-dissipation sheet and the accommodating chamber are made of any one selecting from a group consisting of metal, graphite film and graphene.

17. The heat-dissipation film of claim 16, wherein the metal includes one or more selecting from a group consisting of copper, aluminum, and silver.

18. The heat-dissipation film of claim 5, wherein the endothermic reaction material includes a material, endothermic chemical reaction of which is reversible, and the material includes sodium bicarbonate or five hydrated copper sulfate.

19. The heat-dissipation film of claim 6, wherein the endothermic reaction material includes a material, endothermic chemical reaction of which is reversible, and the material includes sodium bicarbonate or five hydrated copper sulfate.
Description



FIELD OF THE INVENTION

[0001] The invention relates to the technical field of heat-dissipation, and particularly to a heat-dissipation film.

BACKGROUND OF THE INVENTION

[0002] In the mechanical, electronic, electric power, communication, chemical and many other fields, during manufacturing, processing and using the product, there are many cases in which high temperature and much heat are generated. As for some cases, if the generated heat cannot be effectively dissipated in a certain heat-dissipation way (for example, using a heat-dissipation film), then it will have adverse effect on the manufacturing, processing and use of the product, as well as people's lives and health, and even endanger the people's life safety.

[0003] At present, the heat-dissipation material widely used in the heat-dissipation film usually includes metal, such as copper, aluminum, silver, and metal has good thermal conductivity, which is approximately between 200.about.500 W/mK. Compared with metal, a graphite film material and a graphene material manufactured by using carbon element hake higher heat-dissipation capacities, for example, the graphite film has a thermal conductivity up to 1500.about.1750 W/mK, and the graphene material has a thermal conductivity up to 5000 W/mK.

[0004] In order to improve the heat-dissipation effect of the heat-dissipation film, a method of changing the material of the heat-dissipation film (such as, the material with good heat-dissipation capability is used to replace the material with poor heat-dissipation capacity) or a method of adjusting the composition of the material of the heat-dissipation film (such as, an alloy is used to replace metal with a single component) is used to improve the thermal conductivity, so as to increase the effect of heat-dissipation.

[0005] The inventor(s) found that there is at least the following problem existing in the prior art: the heat-dissipation effect of the heat-dissipation film is generally improved by increasing the thermal conductivity of the heat-dissipation film. However, such a heat-dissipation film dissipates heat in a single heat-dissipation way, and the heat-dissipation effect thereof is not good in the case that much heat or a fire source exists.

SUMMARY OF THE INVENTION

[0006] The technical problem to be solved by the invention is to provide a heat-dissipation film which can dissipate heat in a plurality of ways and can achieve excellent heat-dissipation effect, so as to overcome the problem that the heat-dissipation film in the prior art dissipates heat in a single heat-dissipation way, and the heat-dissipation effect thereof is not good in the case that much heat or a fire source exists.

[0007] The technical solution employed to solve the technical problem is a heat-dissipation film, including a first heat-dissipation sheet and an endothermic reaction module disposed on the first heat-dissipation sheet, or including a first heat-dissipation sheet and a second heat-dissipation sheet which are disposed opposite to each other with a spacing therebetween, and an endothermic reaction module disposed between the first heat-dissipation sheet and the second heat-dissipation sheet, wherein,

[0008] one surface of the first heat-dissipation sheet is in contact with a heating object, and the other surface of the first heat-dissipation sheet is attached to the endothermic reaction module for absorbing heat generated by the heating object.

[0009] In the heat-dissipation film of the invention, since one surface of the first heat-dissipation sheet is in contact with a heating object, and the other surface of the first heat-dissipation sheet is attached to the endothermic reaction module, and the endothermic reaction module is used to absorb heat generated by the heating object, thus, when the heat-dissipation film of the invention is used to dissipate heat, the first heat-dissipation sheet dissipates heat in a thermal conduction way, and the endothermic reaction module dissipates heat in thermal absorption way. Therefore, the heat-dissipation film of the invention dissipates heat in various ways to achieve a good heat-dissipation effect, and is particularly suitable to be used in the case that much heat or a fire source exists.

[0010] Preferably, the first heat-dissipation is attached to the endothermic reaction module by thermal conductive adhesive.

[0011] Preferably, the endothermic reaction module includes at least one accommodating chamber which accommodates endothermic reaction material.

[0012] Further preferably, the endothermic reaction material includes a material, endothermic chemical reaction of which is reversible, the material includes sodium bicarbonate or five hydrated copper sulfate.

[0013] Further preferably, the endothermic reaction module includes one discharging conduit and one accommodating chamber, and reactant generated by reaction of the endothermic reaction material is discharged outside the heat-dissipation film via the discharging conduit.

[0014] As an alternative, the endothermic reaction module includes one discharging conduit, a plurality of accommodating chambers and a plurality of heat-resistant conduits, and every two adjacent accommodating chambers communicate with each other via one heat-resistant conduit, and one of the plurality of accommodating chambers is connected to the discharging conduit fir discharging reactant generated by reaction of the endothermic reaction material outside the heat-dissipation film.

[0015] Further preferably, the heat-resistant conduit is made of metal. The metal may include one or more selecting from a group consisting of copper, aluminum, and silver.

[0016] Further preferably, wherein the discharging conduit is made of metal. The metal may include one or more selecting from a group consisting of copper, aluminum, and silver.

[0017] Further preferably, the first heat-dissipation sheet, the second heat-dissipation sheet and the accommodating chamber are made of any one selecting from a group consisting of metal, graphite film and graphene. The metal may include one or more selecting from a group consisting of copper, aluminum, and silver.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] FIG. 1 is a schematic view of a structure of a heat-dissipation film provided Embodiment 1 of the present invention;

[0019] FIG. 2 is a sectional view of the heat-dissipation film provided by Embodiment 1 of the present invention taken along the A-A line; and

[0020] FIG. 3 is a schematic view of a structure of a heat-dissipation film provided by Embodiment 2 of the present invention;

REFERENCE SIGNS

[0021] 1. first heat-dissipation sheet; 2. second heat-dissipation sheet; 3. accommodating chamber; 4. heat-resistant conduit; and 5. discharging conduit.

DETAILED DESCRIPTION OF THE INVENTION

[0022] In order to make persons skilled in the art better understand the technical solutions of the invention, the invention will be described in detail it conjunction with the drawings and the specific embodiments hereinafter. Obviously, the described embodiments are a part of the embodiments of the invention, and not all the embodiments. Based on the described embodiments, all the other embodiments obtained by the person having ordinary skill in the art without creative effort should belong to the protection scope of the invention.

Embodiment 1

[0023] The embodiment provides a heat-dissipation film, suitable for dissipating heat for a product, a component and the like. As shown in FIGS. 1 and 2, the heat-dissipation film of Embodiment 1 of the invention includes a first heat-dissipation sheet 1 and an endothermic reaction module, wherein one surface of the first heat-dissipation sheet 1 is in contact with a heating object, and the other surface of the first heat-dissipation sheet 1 is attached to the endothermic reaction module for absorbing heat generated by the heating object.

[0024] It should be pointed out that, the first heat-dissipation sheet 1 is generally made of a material with high thermal conductivity so that it can effectively dissipate heat generated by the heating object when is in contact with the heating object.

[0025] The heat-dissipation film of the embodiment not only includes the first beat-dissipation sheet 1, but also includes the endothermic reaction module disposed on the first heat-dissipation sheet 1, and the first heat-dissipation sheet 1 and the endothermic reaction chamber cooperate with each other to effectively dissipate heat generated by the heating object. In particular, when the heating object generates a certain amount of heat, since the first heat-dissipation sheet 1 has high thermal conductivity, it can transfer heat generated by the heating object to the endothermic reaction module, and then the endothermic reaction chamber module absorbs the heat so that heat from the heating object is dissipated.

[0026] For example, the first heat-dissipation sheet 1 is preferably connected to the endothermic reaction module by thermal conducive adhesive, which can not only reliably fix the first heat-dissipation sheet 1 to the endothermic reaction module, but also has good thermal conductive capability to transfer heat generated by the heating object from the first heat-dissipation sheet 1 to the endothermic reaction module so as to achieve the object of dissipating heat. Of course, the first heat-dissipation sheet 1 and the endothermic reaction module may be integrally formed, that is, the first heat-dissipation sheet 1 and the endothermic reaction module are formed simultaneously so that they are completely in contact with each other.

Embodiment 2

[0027] As shown in FIG. 3, the heat-dissipation film of Embodiment 2 of the invention includes a first heat-dissipation sheet 1, a second heat-dissipation sheet 2 and an endothermic reaction module, wherein the first heat-dissipation sheet 1 and the second heat-dissipation sheet 2 are disposed opposite to each other with a spacing therbetween; the endothermic reaction module is disposed between the first heat-dissipation sheet 1 and the second heat-dissipation sheet 2, and is attached to the second heat-dissipation sheet 2 by thermal conductive adhesive. Since the endothermic reaction module is disposed between the first heat-dissipation sheet 1 and the second heat-dissipation sheet 2, after a part of heat generated by the heating object is absorbed by the endothermic reaction module, the remaining heat may be further dissipated by the second heat-dissipation sheet 2. The heat-dissipation film with such configuration can further improve the heat-dissipation effect.

[0028] In the embodiment, the first heat-dissipation sheet 1 and the second heat-dissipation sheet 2 may be made of material with high thermal conductivity. For example, the first heat-dissipation sheet 1 and the second heat-dissipation sheet 2 may be preferably made of graphite film or graphene material with excellent thermal conductive capability, or may be preferably made of metal such as copper, aluminum, and silver. For example, the first heat-dissipation sheet 1 may be bonded to the second heat-dissipation sheet 2 by high-temperature resistant thermal conductive adhesive, or the first heat-dissipation sheet 1 may be hot-pressed onto the second heat-dissipation sheet 2, so as to form an integratedly structured heat-dissipation film.

[0029] The endothermic reaction module of the heat-dissipation film in the embodiment includes at least one accommodating chamber 3 which accommodates endothermic reaction material. The endothermic reaction material includes a material, endothermic chemical reaction of which is reversible, and the material includes sodium bicarbonate or five hydrated copper sulfate.

[0030] In particular, when the endothermic reaction material is sodium bicarbonate (NaHCO.sub.3), a following reaction will occur when sodium bicarbonate is heated: 2NaHCO.sub.3.fwdarw.Na.sub.2CO.sub.3+H.sub.2O+CO.sub.2, the reaction generates water and carbon dioxide gas while absorbing heat, and the reactants (water and carbon dioxide gas) also have the effects of absorbing heat or eliminating the fire source on the heat or the fire source generating heat, so the heat-dissipation effect of the heat-dissipation film is improved. Accordingly, further preferably, an opening (not shown in the drawings) is further provided on a side surface of the accommodating chamber 3 to discharge the reactants generated by the reaction of the endothermic reaction material, so as to further improve the heat-dissipation effect.

[0031] The endothermic reaction material accommodated inside the accommodating chamber 3 may be five hydrated copper sulfate (CuSO.sub.4.5H.sub.2O). A following reaction will occur when five hydrated copper sulfate is heated: CuSO.sub.4.5H.sub.2O.dbd.CuSO.sub.4+5H.sub.20, the reaction generates water while absorbing heat, and the reactant (water) also has the effects of absorbing heat or eliminating the tire source on the heat or the tire source generating heat, so the heat-dissipation effect of the heat-dissipation film is improved; the other reactant CuSO.sub.4 can absorb water at room temperatures to generate five hydrated copper sulfate, so that the heat-dissipation film may be reused, improving practicability of the heat-dissipation film.

[0032] It should be pointed out that, the embodiment is described taking sodium bicarbonate and five hydrated copper sulfate as examples. However, the material, endothermic chemical reaction of which is reversible, is not limited to the two materials, and any other material, endothermic chemical reaction of which is reversible, is also feasible, and the description thereof will be omitted.

[0033] As an instance of the embodiment, the endothermic reaction module includes a discharging conduit 5. One accommodating chamber 3 included in the endothermic reaction module is connected to the discharging conduit 5 for discharging reactant generated by the reaction of the endothermic reaction material outside the heat-dissipation film. It should be understood that, with the above chemical reaction, reactants generated by the reaction of the endothermic reaction material include water (liquid) and gas, and the water (liquid) and gas will have a certain influence on the heat-dissipation film itself, and can be discharged outside the heat-dissipation film by the discharging conduit 5 to avoid the influence of the reactants on the performance of the heat-dissipation film itself.

[0034] As another instance of the embodiment, the number of the accommodating chambers 3 may be set according to a size of the required heat-dissipation film (the heat-dissipation film shown in FIG. 2 includes four accommodating chambers). When the heat-dissipation film has a large size, the endothermic reaction module includes a plurality of accommodating chambers 3, in which case every two adjacent accommodating chambers 3 communicate with each other via a heat resistant conduit 4, and one of the plurality of accommodating chambers 3 is also connected to the discharging conduit 5 for discharging reactants generated by the reaction of the endothermic reaction material outside the heat-dissipation film. The heat-dissipation film with such a configuration dissipates heat in the same way as that with accommodating chamber 3, and just for simplifying structure, all the accommodating chambers 3 communicate with each other via the heat resistant conduits 4, reactants generated by the chemical reaction in all the accommodating chamber 3 are collected together via the heat resistant conduits 4 for communicating all the accommodating chambers 3, and all the reactants generated by the chemical reaction of the endothermic reaction material are then discharged outside the heat-dissipation film via one discharging conduit 5.

[0035] Further preferably, all the heat resistant conduits 4 and the discharging conduit 5 are made of metal such as copper, aluminum and silver. All the heat resistant conduits 4 and the discharging conduit 5 are welded to or chemically bonded to the accommodating chamber 3.

[0036] It should be pointed out that, the accommodating chamber $ may be in the shape of a cuboid, an ellipsoid and the like, and in the embodiment the shape of the accommodating chamber 3 is not specially limited. The accommodating chamber 3 may be made of a material with high thermal conductivity, and may preferably be made of any one of metal, graphite film and graphene. in order to make the production process simple and reduce the production cost, the accommodating chamber 3 is preferably made of any one or more selected from copper, aluminum, and silver, and further preferably, the accommodating chamber 3 is made of copper.

[0037] When the heat-dissipation film of other size is needed, a plurality of pieces of heat-dissipation film can be jointed together, that is, an edge of one piece of heat-dissipation film is hot-pressed onto an edge of its adjacent heat-dissipation film so as to connect the two pieces of heat-dissipation film together. Thus, the heat-dissipation film of other size can be obtained.

[0038] The heat-dissipation film of the invention includes the first heat-dissipation sheet 1 and the endothermic reaction module disposed on the first heat-dissipation sheet 1, or includes the first heat-dissipation sheet 1 and a second heat-dissipation sheet 2 which are disposed opposite to each other with the endothermic reaction module therebetween. Thus, when the heat-dissipation film of the invention is used to dissipate heat, the first heat-dissipation sheet 1 or the first and second heat-dissipation sheets 1 and 2 dissipate heat by conducting heat, and at the same time the endothermic reaction module also functions to dissipate heat by absorbing heat to make a reaction occur. Thus, the heat-dissipation film of the invention dissipates heat in various ways to achieve a better heat-dissipation effect, and is particularly suitable for the case in which much heat or a fire source exists.

[0039] It should be understood that, the above embodiments are described only to illustrate the principle of the invention, and the invention is not limited thereto. Persons skilled in the art can make various modifications and improvements without departing from the principle and substance of the invention, and these modifications and improvements should be considered to be within the protection scope of the invention.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed