Modulation Of Acc Synthase Improves Plant Yield Under Low Nitrogen Conditions

Bate; Nicholas J. ;   et al.

Patent Application Summary

U.S. patent application number 14/618118 was filed with the patent office on 2015-10-08 for modulation of acc synthase improves plant yield under low nitrogen conditions. The applicant listed for this patent is Pioneer Hi-Bred International, Inc.. Invention is credited to Nicholas J. Bate, Sarah T. Collinson, Jeffrey Erwin Habben, Honor Renee Lafitte, Kellie Reimann.

Application Number20150284737 14/618118
Document ID /
Family ID42308267
Filed Date2015-10-08

United States Patent Application 20150284737
Kind Code A1
Bate; Nicholas J. ;   et al. October 8, 2015

MODULATION OF ACC SYNTHASE IMPROVES PLANT YIELD UNDER LOW NITROGEN CONDITIONS

Abstract

The invention provides methods for improving plant yield, particularly under nitrogen limiting conditions. According to the invention, applicants have discovered that modulating ACC synthase activity in plants improves yield of plants, even when grown under low nitrogen conditions. The same plants, while demonstrating improved yield over non-modified plants, exhibited no deleterious effects under normal nitrogen conditions. The invention further provides methods using recombinant expression cassettes, host cells and transgenic plants.


Inventors: Bate; Nicholas J.; (Urbandale, IA) ; Collinson; Sarah T.; (Woodland, CA) ; Habben; Jeffrey Erwin; (Urbandale, IA) ; Lafitte; Honor Renee; (Davis, CA) ; Reimann; Kellie; (Ankeny, IA)
Applicant:
Name City State Country Type

Pioneer Hi-Bred International, Inc.

Johnston

IA

US
Family ID: 42308267
Appl. No.: 14/618118
Filed: February 10, 2015

Related U.S. Patent Documents

Application Number Filing Date Patent Number
12760019 Apr 14, 2010 8987553
14618118
61290902 Dec 30, 2009
61248060 Oct 2, 2009
61169082 Apr 14, 2009

Current U.S. Class: 800/283 ; 435/320.1; 435/412; 435/415; 435/416; 435/419
Current CPC Class: C12N 15/8218 20130101; C12N 15/8271 20130101; C12N 15/8249 20130101
International Class: C12N 15/82 20060101 C12N015/82

Claims



1. A method of improving nitrogen stress tolerance in a maize plant comprising: a) inhibiting ethylene synthesis in a plant by introducing into a maize plant a heterologous polynucleotide that reduces the activity of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase 6 (ACS6) upon expression of said heterologous polynucleotide; wherein said heterologous polynucleotide comprises a nucleic acid selected from the group consisting of: i) a nucleic acid comprising a maize ACS6 nucleic acid; ii) a nucleic acid comprising at least 15 contiguous nucleotides of the complement of a maize ACS6 nucleic acid; and iii) a nucleic acid encoding a transcript that is capable of forming a double-stranded RNA and mediating RNA interference of a maize ACS6 nucleic acid, wherein said nucleic acid comprises: (1) a first nucleotide sequence comprising at least 21 contiguous nucleotides of a maize ACS6 nucleic acid; and (2) a second nucleotide sequence comprising the complement of said first nucleotide sequence; b) growing said plant under nitrogen limiting conditions; and c) selecting plants exhibiting greater tolerance to low nitrogen levels, whereby said heterologous polynucleotide is expressed and said plant demonstrates improved nitrogen stress tolerance comprising reduced anthesis-silking interval, reduced barren count, and/or increased biomass, compared to a control plant.

2. The method of claim 1, wherein said heterologous polynucleotide comprises a nucleotide sequence selected from the group consisting of: a) the nucleotide sequence set forth in SEQ ID NO: 2 or 5, or complete complement thereof; b) a nucleotide sequence having at least 90% sequence identity to SEQ ID NO: 2 or 5, or a complete complement thereof; c) a nucleotide sequence encoding the polypeptide sequence of SEQ ID NO: 8, or a complete complement thereof; d) a nucleotide sequence encoding a polypeptide sequence having at least 95% identity to SEQ ID NO: 8, or a complete complement thereof; e) a nucleotide sequence comprising at least 15 contiguous nucleotides of the complement of SEQ ID NO: 2 or 5; and f) a nucleotide sequence encoding a transcript that is capable of forming a double-stranded RNA and mediating RNA interference of an ACC synthase nucleic acid, wherein said nucleotide sequence comprises at least 21 contiguous nucleotides of SEQ ID NO: 2 or 5, and the complement thereof.

3. The method of claim 2, wherein said plant comprises an endogenous mRNA transcribed from a polynucleotide having the sequence set forth in SEQ ID NO: 2 or 5, wherein expression of said heterologous polynucleotide inhibits the expression of the endogenous mRNA.

4. The method of claim 1, wherein said heterologous polynucleotide is operably linked to a promoter that functions in plants.

5. The method of claim 4, wherein the promoter that functions in plants is a tissue-preferred promoter, tissue-specific promoter, or an inducible promoter.

6. A recombinant expression cassette comprising a nucleotide sequence selected from the group consisting of: a) the nucleotide sequence set forth in SEQ ID NO: 51; b) the nucleotide sequence set forth in SEQ ID NO: 52 c) the nucleotide sequence set forth in SEQ ID NO: 53; d) the nucleotide sequence set forth in SEQ ID NO: 54; c) the nucleotide sequence set forth in SEQ ID NO:55; d) the nucleotide sequence set forth in SEQ ID NO:56; and e) the nucleotide sequence set forth in SEQ ID NO:57.

7. A plant cell comprising the recombinant expression cassette of claim 6.

8. The plant cell of claim 7, wherein the plant cell is from Zea mays, wheat, rice, sorghum, barley, oat, lawn grass, rye, soybean, sugarcane, Brassica or sunflower.

9. A plant regenerated from the plant cell of claim 8.

10. A method of inhibiting ethylene production in a plant, the method comprising inhibiting expression of one or more ACC synthase genes in the plant by introducing into the plant a heterologous polynucleotide having a nucleotide sequence selected from the group consisting of: a) the nucleotide sequence set forth in SEQ ID NO: 51; b) the nucleotide sequence set forth in SEQ ID NO: 52; c) the nucleotide sequence set forth in SEQ ID NO: 53; d) the nucleotide sequence set forth in SEQ ID NO: 54; e) the nucleotide sequence set forth in SEQ ID NO: 55; f) the nucleotide sequence set forth in SEQ ID NO: 56; g) the nucleotide sequence set forth in SEQ ID NO: 57; and h) the nucleotide sequences set forth in SEQ ID NO:51 and 52.
Description



CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. application Ser. No. 12/760,019 filed Apr. 14, 2010; U.S. Application 61/290,902, filed Dec. 30, 2009; U.S. Provisional Application No. 61/248,060, filed Oct. 2, 2009; and U.S. Provisional Application No. 61/169,082, filed Apr. 14, 2009, each of which is herein incorporated by reference in its entirety.

REFERENCE TO A SEQUENCE LISTING SUBMITTED AS A TEXT FILE VIA EFS-WEB

[0002] The official copy of the sequence listing is submitted concurrently with the specification as a text file via EFS-Web, in compliance with the American Standard Code for Information Interchange (ASCII). The sequence listing has a file name of 3139USCNT_SeqListing.TXT and a size of 201 KB and was last modified on Jan. 26, 2015. The sequence listing filed via EFS-Web is part of the specification and is incorporated by reference in its entirety.

FIELD OF THE INVENTION

[0003] The invention relates generally to the field of molecular biology, specifically the modulation of ACC synthase activity to improve plant yield and nitrogen stress tolerance.

BACKGROUND OF THE INVENTION

[0004] The domestication of many plants has correlated with dramatic increases in yield. Most phenotypic variation occurring in natural populations is continuous and is effected by multiple gene influences. The identification of specific genes responsible for the dramatic differences in yield in domesticated plants has become an important focus of agricultural research.

[0005] Nitrogen utilization efficiency (NUE) genes affect yield and have utility for improving the use of nitrogen in crop plants, especially maize. Increased nitrogen use efficiency can result from enhanced uptake and assimilation of nitrogen fertilizer and/or the subsequent remobilization and reutilization of accumulated nitrogen reserves, as well as increased tolerance of plants to stress situations such as low nitrogen environments. The genes can be used to alter the genetic composition of the plants, rendering them more productive with current fertilizer application standards or maintaining their productive rates with significantly reduced fertilizer or reduced nitrogen availability. Improving NUE in corn would increase corn harvestable yield per unit of input nitrogen fertilizer, both in developing nations where access to nitrogen fertilizer is limited and in developed nations where the level of nitrogen use remains high. Nitrogen utilization improvement also allows decreases in on-farm input costs, decreased use and dependence on the non-renewable energy sources required for nitrogen fertilizer production and reduces the environmental impact of nitrogen fertilizer manufacturing and agricultural use.

SUMMARY OF THE INVENTION

[0006] Methods and compositions for improving plant yield are provided. In some embodiments, plant yield is improved under stress, particularly abiotic stress, such as nitrogen limiting conditions. Methods of improving plant yield include inhibiting the ethylene synthesis pathway, such as, for example, inhibiting the activity of at least one 1-aminocyclopropane-1-carboxylic acid (ACC) synthase. The activity of an ACC synthase can be inhibited using any method known in the art, including but not limited to the disruption of an ACC synthase gene, or a decrease in the expression of the gene through the use of co-suppression, antisense, or RNA silencing or interference.

[0007] Inhibiting the activity of at least one ACC synthase in a plant can improve the nitrogen stress tolerance of the plant and such plants can maintain their productive rates with significantly less nitrogen fertilizer input and/or exhibit enhanced uptake and assimilation of nitrogen fertilizer and/or remobilization and reutilization of accumulated nitrogen reserves. In addition to an overall increase in yield, the improvement of nitrogen stress tolerance through the inhibition of ACC synthase can also result in increased root mass and/or length, increased ear, leaf, seed, and/or endosperm size, and/or improved standability. Accordingly, in some embodiments, the methods further comprise growing said plants under nitrogen limiting conditions and optionally selecting those plants exhibiting greater tolerance to the low nitrogen levels.

[0008] Further, methods and compositions are provided for improving yield under abiotic stress, which include evaluating the environmental conditions of an area of cultivation for abiotic stressors (e.g., low nitrogen levels in the soil) and planting seeds or plants having reduced ethylene synthesis, which in some embodiments, is due to reduced activity of at least one ACC synthase, in stressful environments.

[0009] Constructs and expression cassettes comprising nucleotide sequences that can efficiently reduce the expression of an ACC synthase are also provided herein.

DESCRIPTION OF THE FIGURES

[0010] FIG. 1 is a schematic illustration of the ethylene biosynthetic and signaling genes in plants, e.g., Arabidopsis. Ethylene is generated from methionine by a well-defined pathway involving the conversion of S-adenosyl-L-methionine (SAM or Ado Met) to the cyclic amino acid 1-aminocyclopropane-1-carboxylic acid (ACC) which is facilitated by ACC synthase. ACC synthase is an aminotransferase which catalyzes the rate limiting step in the formation of ethylene by converting S-adenosylmethionine to ACC.

[0011] Ethylene is then produced from the oxidation of ACC through the action of ACC oxidase (also known as the ethylene forming enzyme) with hydrogen cyanide as a secondary product that is detoxified by .beta.-cyanoalanine synthase. Finally, ethylene is metabolized by oxidation to CO.sub.2 or to ethylene oxide and ethylene glycol.

[0012] FIGS. 2A-2C illustrate the ACS2 hairpin construct. FIG. 2A is a schematic diagram of a PHP plasmid containing an ubiquitin promoter (UBI1ZM PRO) driving expression of the ACS2 hairpin (a terminal repeat consisting of TR1 and TR2). RB represents the Agrobacterium right border sequence. A 4126 bp fragment of the 49682 bp cassette is illustrated. FIG. 2B presents the sequence of ZM-ACS2 TR1 (SEQ ID NO: 12) and FIG. 2C presents the sequence of ZM-ACS2 TR2 (SEQ ID NO: 13).

[0013] FIGS. 3A-3C illustrate the ACS6 hairpin construct. FIG. 3A is a schematic diagram of a PHP plasmid containing an ubiquitin promoter (UBI1ZM PRO) driving expression of the ACS6 hairpin (a terminal repeat consisting of TR1 and TR2). RB represents the Agrobacterium right border sequence. A 3564 bp fragment of the 49108 bp cassette is illustrated. FIG. 3B presents the sequence of ZM-ACS6 TR1 (SEQ ID NO: 14) and FIG. 3C presents the sequence of ZM-ACS6 TR2 (SEQ ID NO: 15).

[0014] FIG. 4 is a schematic of an improved ACS6 inhibition expression cassette, which is set forth in SEQ ID NO:57.

[0015] FIG. 5 shows the yield of transformed plants of the invention under flowering stress in Environment 1. Each bar represents a separate transformation event. Average yield of transgene-negative segregants is shown (139 bu/a) as control (CN). A total of 74% of the events yielded nominally more than the control plants. Plants representing 18 transgenic events outyielded the control at P<0.10.

[0016] FIG. 6 shows the yield of transformed plants of the invention under grain-fill stress in Environment 2. Each bar represents a separate transformation event. Average yield of transgene-negative segregants is shown (176 bu/a) as control (CN). Thirteen events out-yielded the CN at P<0.10. Of these, eight had also shown significant improvement under flowering stress.

[0017] FIG. 7 shows the yield, as a percent of control, of transformed plants of the invention (indicated by a circle), as well as plants transformed using an alternative ACS6 inhibition vector (indicated by a square) under grain fill stress in Environment 3. Each data point represents a separate transformation event. NS=not significant. The control plants are bulked trans gene-negative segregants. As can be seen, 64% of the events of the invention had significantly superior yield; only 17% of the alternative ACS6 inhibition events had significantly superior yield, relative to the control.

[0018] FIG. 8 shows the yield, as a percent of control, of transformed plants of the invention (indicated by a circle), as well as plants transformed using an alternative ACS6 inhibition vector (indicated by a square) under rain-fed conditions in Environment 4. Each data point represents a separate transformation event. NS=not significant. The control plants are bulked transgene-negative segregants. As can be seen, all points exhibiting statistically significant increases in yield represent events of the invention disclosed herein. In addition, all points exhibiting statistically significant decreases in yield are events containing the alternative ACS6 inhibition vector.

DETAILED DESCRIPTION OF THE INVENTION

[0019] The present invention is based on the surprising finding that modulation of ACC synthase (ACS) improves plant responses in low nitrogen conditions, with no deleterious effect on plant performance under normal nitrogen conditions. In fact, plants with ACS inhibition constructs actually had superior yield not only in low nitrogen conditions, but also under normal nitrogen conditions. Accordingly, methods for improving plant yield, particularly under abiotic stress, by modulating the ethylene synthesis pathway are provided.

[0020] Ethylene is generated from methionine by a well-defined pathway involving the conversion of S-adenosyl-L-methionine (SAM or Ado Met) to the cyclic amino acid 1-aminocyclopropane-1-carboxylic acid (ACC) which is facilitated by ACC synthase. ACC synthase is an aminotransferase which catalyzes the rate limiting step in the formation of ethylene by converting S-adenosylmethionine to ACC. Ethylene is then produced from the oxidation of ACC through the action of ACC oxidase (also known as the ethylene forming enzyme) with hydrogen cyanide as a secondary product that is detoxified by .beta.-cyanoalanine synthase. ACC oxidase is encoded by multigene families in which individual member's exhibit tissue-specific regulation and/or are induced in response to environmental and chemical stimuli. Activity of ACC oxidase can be inhibited by anoxia and cobalt ions. The ACC oxidase enzyme is stereospecific and uses cofactors, e.g., Fe.sup.+2, O.sub.2, ascorbate, etc. Finally, ethylene is metabolized by oxidation to carbon dioxide (CO.sub.2) or to ethylene oxide and ethylene glycol. See, FIG. 1.

[0021] In some embodiments of the presently disclosed methods, the activity of at least one ACC synthase is modulated or inhibited to enhance plant yield and improve nitrogen stress tolerance. An "ACC synthase" is an enzyme having amino transferase activity that catalyzes the conversion of S-adenosylmethionine to ACC. Non-limiting examples of ACC synthases include ACS 1 through ACS11. In maize, this includes ACS2, ACS6 and/or ACS 7. In dicots, ACC synthase is part of a larger superfamily of amino transferases with nine members being ACS genes. The genes fall into three different classes which are distinguished by their C-terminal structure and their post-translational regulation. In maize and other monocots, there are only 3 members and one member falls into each class. See, Table 4 in Example 16 for a non-limiting list of some publically available ACS sequences which may be used for the invention.

[0022] The term "ACC synthase polypeptide" refers to one or more amino acid sequences and is inclusive of fragments, variants, homologs, alleles or precursors (e.g., preproproteins or proproteins) thereof that retain the function of catalyzing the conversion of S-adenosylmethionine to ACC. An "ACC synthase protein" comprises an ACC synthase polypeptide. Unless otherwise stated, the term "ACC synthase nucleic acid" means a nucleic acid comprising a polynucleotide ("ACC synthase polynucleotide") encoding an ACC synthase polypeptide.

[0023] As used herein the term "modulation of ACC synthase activity" shall be interpreted to mean any change in an ACC synthase biological activity, which can include an altered level of ACC synthase present in a plant cell, altered efficacy of the enzyme or any other means which affects one or more of the biological properties of ACC synthase in relation to its role in converting S-adenosylmethionine to ACC in the formation of ethylene. Accordingly, "inhibition of ACC synthase activity" encompasses a reduction in the efficacy of the enzyme, or a reduction in the level of ACC synthase present in a plant cell, for example, due to a reduction in the expression of an ACC synthase gene.

[0024] In other embodiments, other steps along the ethylene synthesis pathway could be modulated to improve plant yield or nitrogen stress tolerance of a plant. For example, the rate of conversion of SAM to polyamines could be increased, or the level or activity of ACC oxidase could be decreased, or the level or activity of ACC could be increased, or the level or activity of SAM could be increased, or some combination of these and/or other modifications in the ethylene synthesis pathway could occur as a result of the genetic modulation described herein. While not wishing to be bound by any theory, it is postulated that modification of one or more steps towards ethylene synthesis results in decreased ethylene activity. In any event, the invention is directed to increasing plant yield under abiotic stress conditions, and in some embodiments, improving nitrogen stress tolerance, resulting from modulated expression of an ACC synthase gene, regardless of the precise effect of that modulation on the ethylene synthesis pathway, ethylene production or ethylene activity.

[0025] The methods of the invention provide for an improved yield of plants. As used herein, "yield" may include reference to bushels per acre of a grain crop at harvest, as adjusted for grain moisture (15% typically for maize, for example) and/or the volume of biomass generated (for forage crops such as alfalfa and plant root size for multiple crops). Grain moisture is measured in the grain at harvest. The adjusted test weight of grain is determined to be the weight in pounds per bushel, adjusted for grain moisture level at harvest. Biomass is measured as the weight of harvestable plant material generated.

[0026] In some embodiments of the presently disclosed methods, the modulation of the ethylene synthesis pathway results in improved nitrogen stress tolerance of a plant. As used herein, a plant having "improved nitrogen stress tolerance" shall include but is not limited to, plants that have improved tolerance to low nitrogen conditions, plants that maintain their productive rates with significantly less nitrogen fertilizer input, enhanced uptake and assimilation of nitrogen fertilizer and/or remobilization and reutilization of accumulated nitrogen reserves, or any combination thereof, compared to a corresponding control plant (e.g., non-modified plant).

[0027] The term "low nitrogen conditions" or "nitrogen limiting conditions" as used herein shall be interpreted to mean any environmental condition in which plant-available nitrogen is less than would be optimal for expression of maximum yield potential.

[0028] The methods of the invention provide for improved plant performance in nitrogen limiting conditions. This performance may be demonstrated in a number of ways including a modulation of root development, shoot and leaf development, and/or reproductive tissue development.

[0029] Accordingly, methods for modulating root development in a plant are provided. By "modulating root development" is intended any alteration in the development of the plant root under nitrogen limiting conditions when compared to a control plant. Such alterations in root development include, but are not limited to, alterations in the growth rate of the primary root, the fresh root weight, the extent of lateral and adventitious root formation, the vasculature system, meristem development or radial expansion.

[0030] Methods for modulating root development of a plant in nitrogen limiting conditions are provided. The methods comprise modulating the level and/or activity of an ACC synthase polypeptide in the plant. In one method, an ACC synthase sequence inhibition construct is provided to the plant. In another method, the nucleotide sequence is provided by introducing into the plant a polynucleotide comprising an ACC synthase inhibiting nucleotide sequence, expressing the same and thereby modifying root development under conditions of low nitrogen. In still other methods, the ACC synthase inhibition nucleotide construct introduced into the plant is stably incorporated into the genome of the plant. A change in ACC synthase activity can result in at least one or more of the following alterations to root development, including, but not limited to, alterations in root biomass and length when the plant is grown under nitrogen limiting conditions.

[0031] As used herein, "root growth" encompasses all aspects of growth of the different parts that make up the root system at different stages of its development in both monocotyledonous and dicotyledonous plants. It is to be understood that enhanced root growth can result from enhanced growth of one or more of its parts including the primary root, lateral roots, adventitious roots, etc.

[0032] Methods of measuring such developmental alterations in the root system are known in the art. See, for example, US Patent Application Publication Number 2003/0074698 and Werner, et al., (2001) PNAS 18:10487-10492, both of which are herein incorporated by reference.

[0033] As discussed elsewhere herein, one of skill will recognize the appropriate promoter to use to modulate root development in the plant. Exemplary promoters for this embodiment include constitutive promoters and root-preferred promoters. Exemplary root-preferred promoters have been disclosed elsewhere herein.

[0034] Stimulating root growth and increasing root mass in the presence of low nitrogen or nitrogen associated stress by decreasing the activity and/or level of an ACC synthase polypeptide also finds use in improving the standability of a plant. The term "resistance to lodging" or "standability" refers to the ability of a plant to fix itself to the soil. For plants with an erect or semi-erect growth habit, this term also refers to the ability to maintain an upright position under adverse (environmental) conditions. This trait relates to the size, depth and morphology of the root system. In addition, stimulating root growth and increasing root mass in nitrogen limiting conditions by altering the level and/or activity of the ACC synthase polypeptide also finds use in promoting in vitro propagation of explants.

[0035] Furthermore, higher root biomass production has a direct effect on the yield and an indirect effect of production of compounds produced by root cells or transgenic root cells or cell cultures of said transgenic root cells.

[0036] Accordingly, the present invention further provides plants having modulated root development in nitrogen limiting conditions when compared to the root development of a control plant. In normal conditions no such modulation is observed.

[0037] Methods are also provided for modulating shoot and leaf development in a plant, particularly under nitrogen limiting conditions. By "modulating shoot and/or leaf development" is intended any alteration in the development of the plant shoot and/or leaf in nitrogen limiting conditions. Such alterations in shoot and/or leaf development include, but are not limited to, alterations in shoot meristem development, in leaf number, leaf size, leaf and stem vasculature, internode length and leaf senescence. As used herein, "leaf development" and "shoot development" encompasses all aspects of growth of the different parts that make up the leaf system and the shoot system, respectively, at different stages of their development, both in monocotyledonous and dicotyledonous plants. Methods for measuring such developmental alterations in the shoot and leaf system are known in the art. See, for example, Werner, et al., (2001) PNAS 98:10487-10492 and US Patent Application Publication Number 2003/0074698, each of which is herein incorporated by reference.

[0038] The method for modulating shoot and/or leaf development in a plant in low nitrogen conditions comprises modulating the activity and/or level of an ACC synthase polypeptide. In one embodiment, an ACC synthase nucleotide sequence can be provided by introducing into the plant a polynucleotide comprising an ACC synthase nucleotide sequence inhibition construct, expressing the same and thereby modifying shoot and/or leaf development in nitrogen limiting conditions. In other embodiments, the ACC synthase inhibition nucleotide construct introduced into the plant is stably incorporated into the genome of the plant.

[0039] A change in ACC synthase activity can result in at least one or more of the following alterations in shoot and/or leaf development under low nitrogen conditions, including, but not limited to, changes in leaf number, altered leaf surface, altered vasculature, internodes and plant growth and alterations in leaf senescence, when compared to a control plant in the same conditions.

[0040] As discussed elsewhere herein, one of skill will recognize the appropriate promoter to use to modulate shoot and leaf development of the plant. Exemplary promoters for this embodiment include constitutive promoters, shoot-preferred promoters, shoot meristem-preferred promoters and leaf-preferred promoters. Exemplary promoters have been disclosed elsewhere herein.

[0041] Methods for modulating reproductive tissue development, particularly under nitrogen limiting conditions are provided. In one embodiment, methods are provided to modulate floral development in a plant. By "modulating floral development" is intended any alteration in a structure of a plant's reproductive tissue as compared to a control plant in which the activity or level of the ACC synthase polypeptide has not been modulated. "Modulating floral development" further includes any alteration in the timing of the development of a plant's reproductive tissue (i.e., a delayed or an accelerated timing of floral development) when compared to a control plant in which the activity or level of the ACC synthase polypeptide has not been modulated. Macroscopic alterations may include changes in size, shape, number or location of reproductive organs, the developmental time period that these structures form or the ability to maintain or proceed through the flowering process in times of environmental stress. Microscopic alterations may include changes to the types or shapes of cells that make up the reproductive organs.

[0042] The method for modulating floral development in a plant comprises modulating ACC synthase activity in a plant. Such methods can comprise introducing an ACC synthase nucleotide sequence into the plant and changing the activity of the ACC synthase polypeptide. In some embodiments, the ACC synthase nucleotide construct introduced into the plant is stably incorporated into the genome of the plant. Altering expression of the ACC synthase sequence of the invention can modulate floral development during periods of stress. Such methods are described elsewhere herein. Accordingly, the present invention further provides plants having modulated floral development when compared to the floral development of a control plant. Compositions include plants having an altered level/activity of ACC synthase polypeptide and having an altered floral development. Compositions also include plants having a modified level/activity of the ACC synthase polypeptide wherein the plant maintains or proceeds through the flowering process in times of stress.

[0043] As discussed elsewhere herein, one of skill will recognize the appropriate promoter to use to modulate floral development of the plant or to increase seed size and/or seed weight. Exemplary promoters of this embodiment include constitutive promoters, inducible promoters, seed-preferred promoters, embryo-preferred promoters and endosperm-preferred promoters.

[0044] Thus, a plant having reduced ACC synthase activity can have at least one of the following phenotypes in nitrogen limiting conditions, including but not limited to: increased overall plant yield, increased root mass, increased root length, increased leaf size, increased ear size, increased seed size, increased endosperm size, improved standability, alterations in the relative size of embryos and endosperms leading to changes in the relative levels of protein, oil and/or starch in the seeds, altered floral development, changes in leaf number, altered leaf surface, altered vasculature, altered internodes, alterations in leaf senescence, absence of tassels, absence of functional pollen bearing tassels, or increased plant size when compared to a non-modified plant under conditions of low nitrogen.

[0045] Any method known in the art to reduce or eliminate the activity of an ACC synthase polypeptide can be used to improve nitrogen stress tolerance of a plant. In some embodiments, a polynucleotide is introduced into a plant that may inhibit the expression of the ACC synthase polypeptide directly, by preventing transcription or translation of the ACC synthase messenger RNA, or indirectly, by encoding a polypeptide that inhibits the transcription or translation of an ACC synthase gene encoding an ACC synthase polypeptide. Methods for inhibiting or eliminating the expression of a gene in a plant are well known in the art, and any such method may be used in the present invention to inhibit the expression of the ACC synthase polypeptide. In other embodiments, a polynucleotide that encodes a polypeptide that inhibits the activity of an ACC synthase polypeptide is introduced into a plant. In yet other embodiments, the activity of an ACC synthase is inhibited through disruption of an ACC synthase gene. Many methods may be used to reduce or eliminate the activity of an ACC synthase polypeptide. In addition, more than one method may be used to reduce the activity of a single ACC synthase polypeptide.

[0046] In some embodiments, the ACC synthase activity is reduced through the disruption of at least one ACC synthase gene or a reduction in the expression of at least one ACC synthase gene. As used herein, an "ACC synthase gene" refers to a gene that encodes an ACC synthase polypeptide. An ACC synthase gene can encode one or more ACC synthases and in some embodiments can comprise, e.g., at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, at least about 99.5% or more sequence identity to SEQ ID NO: 1 (gACS2), SEQ ID NO: 2 (gACS6) or SEQ ID NO: 3 (gACS7). Many ACS genes are known to those of skill in the art and are readily available through sources such as GENBANK and the like and Table 4 in Example 16 lists several. The expression of any ACS gene may be reduced according to the invention.

[0047] In accordance with the present invention, the expression of an ACC synthase is inhibited if the transcript or protein level of the ACC synthase is statistically lower than the transcript or protein level of the same ACC synthase in a plant that has not been genetically modified or mutagenized to inhibit the expression of that ACC synthase. In particular embodiments of the invention, the transcript or protein level of the ACC synthase in a modified plant according to the invention is less than 95%, less than 90%, less than 85%, less than 80%, less than 75%, less than 70%, less than 60%, less than 50%, less than 40%, less than 30%, less than 20%, less than 10%, or less than 5% of the protein level of the same ACC synthase in a plant that is not a mutant or that has not been genetically modified to inhibit the expression of that ACC synthase. The expression level of the ACC synthase may be measured directly, for example, by assaying for the level of ACC synthase expressed in the cell or plant, or indirectly, for example, by measuring the ACC synthase activity in the cell or plant. The activity of an ACC synthase protein is "eliminated" according to the invention when it is not detectable by at least one assay method. Methods for assessing ACC synthase activity are known in the art and include measuring levels of ACC or ethylene, which can be recovered and assayed from cell extracts. For example, internal concentrations of ACC can be assayed by gas chromatography-mass spectroscopy, in acidic plant extracts as ethylene after decomposition in alkaline hypochlorite solution, etc. The concentration of ethylene can be determined by, e.g., gas chromatography-mass spectroscopy, etc. See, e.g., Nagahama, et al., (1991) J. Gen. Microbiol. 137:22812286. For example, ethylene can be measured with a gas chromatograph equipped with, e.g., an alumina based column (such as an HP-PLOT A1203 capillary column) and a flame ionization detector. methods.

[0048] In other embodiments of the invention, the activity of one or more ACC synthases is reduced or eliminated by transforming a plant cell with an expression cassette comprising a polynucleotide encoding a polypeptide that inhibits the activity of one or more ACC synthases. The activity of an ACC synthase is inhibited according to the present invention if the activity of that ACC synthase in the transformed plant or cell is statistically lower than the activity of that ACC synthase in a plant that has not been genetically modified to inhibit the activity of at least one ACC synthase. In particular embodiments of the invention, an ACC synthase activity of a modified plant according to the invention is less than 95%, less than 90%, less than 85%, less than 80%, less than 75%, less than 70%, less than 60%, less than 50%, less than 40%, less than 30%, less than 20%, less than 10%, or less than 5% of that ACC synthase activity in an appropriate control plant that has not been genetically modified to inhibit the expression or activity of that ACC synthase.

[0049] In other embodiments, the activity of an ACC synthase may be reduced or eliminated by disrupting at least one gene encoding the ACC synthase. The disruption inhibits expression or activity of at least one ACC synthase protein compared to a corresponding control plant cell lacking the disruption. In one embodiment, the at least one endogenous ACC synthase gene comprises two or more endogenous ACC synthase genes or subsequences thereof (e.g., any two or more of ACS2, ACS6 and ACS7, e.g., ACS2 and ACS6). Similarly, in another embodiment, the at least one endogenous ACC synthase gene comprises three or more endogenous ACC synthase genes. In certain embodiments, the disruption results in reduced or decreased ethylene production by the knockout plant cell as compared to the control plant cell. The disruption results in the plant's improved performance in low nitrogen conditions as compared to a control plant in similar conditions.

[0050] In another embodiment, the disruption step comprises insertion of one or more transposons, where the one or more transposons are inserted into the at least one endogenous ACC synthase gene. In yet another embodiment, the disruption comprises one or more point mutations in the at least one endogenous ACC synthase gene. The disruption can be a homozygous disruption in the at least one ACC synthase gene. Alternatively, the disruption is a heterozygous disruption in the at least one ACC synthase gene. In certain embodiments, when more than one ACC synthase gene is involved, there is more than one disruption, which can include homozygous disruptions, heterozygous disruptions or a combination of homozygous disruptions and heterozygous disruptions.

[0051] Detection of expression products is performed either qualitatively (by detecting presence or absence of one or more product of interest) or quantitatively (by monitoring the level of expression of one or more product of interest). In one embodiment, the expression product is an RNA expression product. Aspects of the invention optionally include monitoring an expression level of a nucleic acid, polypeptide or chemical (e.g., ACC, ethylene, etc.) as noted herein for detection of ACC synthase, ethylene production, nitrogen utilization or tolerance to low nitrogen conditions, etc. in a plant or in a population of plants.

[0052] Thus, many methods may be used to reduce or eliminate the activity of an ACC synthase. More than one method may be used to reduce the activity of a single plant ACC synthase. In addition, combinations of methods may be employed to reduce or eliminate the activity of two or more different ACC synthases. Non-limiting examples of methods of reducing or eliminating the expression of a plant ACC synthase are given below.

[0053] In some embodiments of the present invention, a polynucleotide is introduced into a plant that upon introduction or expression, inhibits the expression of an ACC synthase polypeptide of the invention. The term "expression" as used herein refers to the biosynthesis of a gene product, including the transcription and/or translation of said gene product. For example, for the purposes of the present invention, an expression cassette capable of expressing a polynucleotide that inhibits the expression of at least one ACC synthase polypeptide is an expression cassette capable of producing an RNA molecule that inhibits the transcription and/or translation of at least one ACC synthase polypeptide of the invention. The "expression" or "production" of a protein or polypeptide from a DNA molecule refers to the transcription and translation of the coding sequence to produce the protein or polypeptide, while the "expression" or "production" of a protein or polypeptide from an RNA molecule refers to the translation of the RNA coding sequence to produce the protein or polypeptide. Further, "expression" of a gene can refer to the transcription of the gene into a non-protein coding transcript.

[0054] As used herein, "polynucleotide" includes reference to a deoxyribopolynucleotide, ribopolynucleotide or analogs thereof that have the essential nature of a natural ribonucleotide in that they hybridize, under stringent hybridization conditions, to substantially the same nucleotide sequence as naturally occurring nucleotides and/or allow translation into the same amino acid(s) as the naturally occurring nucleotide(s). A polynucleotide can be full-length or a subsequence of a native or heterologous structural or regulatory gene. Unless otherwise indicated, the term includes reference to the specified sequence as well as the complementary sequence thereof. Thus, DNAs or RNAs with backbones modified for stability or for other reasons are "polynucleotides" as that term is intended herein. Moreover, DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritylated bases, to name just two examples, are polynucleotides as the term is used herein. It will be appreciated that a great variety of modifications have been made to DNA and RNA that serve many useful purposes known to those of skill in the art. The term polynucleotide as it is employed herein embraces such chemically, enzymatically or metabolically modified forms of polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including inter alia, simple and complex cells.

[0055] As used herein, "nucleic acid" includes reference to a deoxyribonucleotide or ribonucleotide polymer in either single- or double-stranded form, and unless otherwise limited, encompasses known analogues having the essential nature of natural nucleotides in that they hybridize to single-stranded nucleic acids in a manner similar to naturally occurring nucleotides (e.g., peptide nucleic acids).

[0056] By "encoding" or "encoded," with respect to a specified nucleic acid, is meant comprising the information for transcription into a RNA and in some embodiments, translation into the specified protein. A nucleic acid encoding a protein may comprise non-translated sequences (e.g., introns) within translated regions of the nucleic acid, or may lack such intervening non-translated sequences (e.g., as in cDNA). The information by which a protein is encoded is specified by the use of codons. Typically, the amino acid sequence is encoded by the nucleic acid using the "universal" genetic code. However, variants of the universal code, such as is present in some plant, animal, and fungal mitochondria, the bacterium Mycoplasma capricolum (Yamao, et al., (1985) Proc. Natl. Acad. Sci. USA 82:2306-9) or the ciliate Macronucleus, may be used when the nucleic acid is expressed using these organisms.

[0057] Examples of polynucleotides that inhibit the expression of an ACC synthase polypeptide are given below.

[0058] In some embodiments of the invention, inhibition of the expression of an ACC synthase polypeptide may be obtained by sense suppression or cosuppression. For cosuppression, an expression cassette is designed to express an RNA molecule corresponding to all or part of a messenger RNA encoding an ACC synthase polypeptide in the "sense" orientation. Over expression of the RNA molecule can result in reduced expression of the native gene. Accordingly, multiple plant lines transformed with the cosuppression expression cassette are screened to identify those that show the greatest inhibition of ACC synthase polypeptide expression.

[0059] The polynucleotide used for cosuppression may correspond to all or part of the sequence encoding the ACC synthase polypeptide, all or part of the 5' and/or 3' untranslated region of an ACC synthase polypeptide transcript or all or part of both the coding sequence and the untranslated regions of a transcript encoding an ACC synthase polypeptide. A polynucleotide used for cosuppression or other gene silencing methods may share 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, 90%, 89%, 88%, 87%, 85%, 80%, or less sequence identity with the target sequence, which in some embodiments is SEQ ID NO:4, 5, or 6. When portions of the polynucleotides (e.g., SEQ ID NO:4, 5, or 6) are used to disrupt the expression of the target gene, generally, sequences of at least 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 200, 300, 400, 450, 500, 550, 600, 650, 700, 750, 800, 900, or 1000 contiguous nucleotides or greater may be used. In some embodiments where the polynucleotide comprises all or part of the coding region for the ACC synthase polypeptide, the expression cassette is designed to eliminate the start codon of the polynucleotide so that no protein product will be translated.

[0060] Cosuppression may be used to inhibit the expression of plant genes to produce plants having undetectable protein levels for the proteins encoded by these genes. See, for example, Broin, et al., (2002) Plant Cell 14:1417-1432. Cosuppression may also be used to inhibit the expression of multiple proteins in the same plant. See, for example, U.S. Pat. No. 5,942,657. Methods for using cosuppression to inhibit the expression of endogenous genes in plants are described in Flavell, et al., (1994) Proc. Natl. Acad. Sci. USA 91:3490-3496; Jorgensen, et al., (1996) Plant Mol. Biol. 31:957-973; Johansen and Carrington, (2001) Plant Physiol. 126:930-938; Broin, et al., (2002) Plant Cell 14:1417-1432; Stoutjesdijk, et al., (2002) Plant Physiol. 129:1723-1731; Yu, et al., (2003) Phytochemistry 63:753-763 and U.S. Pat. Nos. 5,034,323, 5,283,184 and 5,942,657, each of which is herein incorporated by reference. The efficiency of cosuppression may be increased by including a poly-dT region in the expression cassette at a position 3' to the sense sequence and 5' of the polyadenylation signal. See, US Patent Publication Number 2002/0048814, herein incorporated by reference. Typically, such a nucleotide sequence has substantial sequence identity to the sequence of the transcript of the endogenous gene, optimally greater than about 65% sequence identity, more optimally greater than about 85% sequence identity, most optimally greater than about 95% sequence identity. See, U.S. Pat. Nos. 5,283,184 and 5,034,323, herein incorporated by reference.

[0061] In some embodiments of the invention, inhibition of the expression of the ACC synthase polypeptide may be obtained by antisense suppression. For antisense suppression, the expression cassette is designed to express an RNA molecule complementary to all or part of a messenger RNA encoding the ACC synthase polypeptide. Over expression of the antisense RNA molecule can result in reduced expression of the native gene. Accordingly, multiple plant lines transformed with the antisense suppression expression cassette are screened to identify those that show the greatest inhibition ACC synthase polypeptide expression.

[0062] The polynucleotide for use in antisense suppression may correspond to all or part of the complement of the sequence encoding the ACC synthase polypeptide, all or part of the complement of the 5' and/or 3' untranslated region of the ACC synthase transcript or all or part of the complement of both the coding sequence and the untranslated regions of a transcript encoding the ACC synthase polypeptide.

[0063] In addition, the antisense polynucleotide may be fully complementary (i.e., 100% identical to the complement of the target sequence) or partially complementary (i.e., less than 100%, including but not limited to, 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, 90%, 89%, 88%, 87%, 85%, 80%, identical to the complement of the target sequence, which in some embodiments is SEQ ID NO:4, 5, or 6) to the target sequence. Antisense suppression may be used to inhibit the expression of multiple proteins in the same plant. See, for example, U.S. Pat. No. 5,942,657. Furthermore, portions of the antisense nucleotides may be used to disrupt the expression of the target gene. Generally, sequences of at least 50 nucleotides, 100 nucleotides, 200 nucleotides, 300, 400, 450, 500, 550 or greater may be used.

[0064] Methods for using antisense suppression to inhibit the expression of endogenous genes in plants are described, for example, in Liu, et al., (2002) Plant Physiol. 129:1732-1743 and U.S. Pat. Nos. 5,759,829 and 5,942,657, each of which is herein incorporated by reference. Efficiency of antisense suppression may be increased by including a poly-dT region in the expression cassette at a position 3' to the antisense sequence and 5' of the polyadenylation signal. See, US Patent Application Publication Number 2002/0048814, herein incorporated by reference.

[0065] In some embodiments of the invention, inhibition of the expression of an ACC synthase polypeptide may be obtained by double-stranded RNA (dsRNA) interference. For dsRNA interference, a sense RNA molecule like that described above for cosuppression and an antisense RNA molecule that is fully or partially complementary to the sense RNA molecule are expressed in the same cell, resulting in inhibition of the expression of the corresponding endogenous messenger RNA.

[0066] Expression of the sense and antisense molecules can be accomplished by designing the expression cassette to comprise both a sense sequence and an antisense sequence. Alternatively, separate expression cassettes may be used for the sense and antisense sequences. Multiple plant lines transformed with the dsRNA interference expression cassette or expression cassettes are then screened to identify plant lines that show the greatest inhibition of ACC synthase polypeptide expression. Methods for using dsRNA interference to inhibit the expression of endogenous plant genes are described in Waterhouse, et al., (1998) Proc. Natl. Acad. Sci. USA 95:13959-13964, Liu, et al., (2002) Plant Physiol. 129:1732-1743 and WO 99/49029, WO 99/53050, WO 99/61631 and WO 00/49035, each of which is herein incorporated by reference.

[0067] In some embodiments of the invention, inhibition of the expression of an ACC synthase polypeptide may be obtained by hairpin RNA (hpRNA) interference or intron-containing hairpin RNA (ihpRNA) interference. These methods are highly efficient at inhibiting the expression of endogenous genes. See, Waterhouse and Helliwell, (2003) Nat. Rev. Genet. 4:29-38 and the references cited therein.

[0068] For hpRNA interference, the expression cassette is designed to express an RNA molecule that hybridizes with itself to form a hairpin structure that comprises a single-stranded loop region and a base-paired stem. The base-paired stem region comprises a sense sequence corresponding to all or part of the endogenous messenger RNA encoding the gene whose expression is to be inhibited, and an antisense sequence that is fully or partially complementary to the sense sequence. The antisense sequence may be located "upstream" of the sense sequence (i.e., the antisense sequence may be closer to the promoter driving expression of the hairpin RNA than the sense sequence). The base-paired stem region may correspond to a portion of a promoter sequence controlling expression of the gene to be inhibited. A polynucleotide designed to express an RNA molecule having a hairpin structure comprises a first nucleotide sequence and a second nucleotide sequence that is the complement of the first nucleotide sequence, and wherein the second nucleotide sequence is in an inverted orientation relative to the first nucleotide sequence.

[0069] Thus, the base-paired stem region of the molecule generally determines the specificity of the RNA interference. The sense sequence and the antisense sequence are generally of similar lengths but may differ in length. Thus, these sequences may be portions or fragments of at least 10, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 50, 70, 90, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400, 500, 600, 700, 800, 900 nucleotides in length, or at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 kb in length. The loop region of the expression cassette may vary in length. Thus, the loop region may be at least 100, 200, 300, 400, 500, 600, 700, 800, 900 nucleotides in length, or at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 kb in length.

[0070] hpRNA molecules are highly efficient at inhibiting the expression of endogenous genes and the RNA interference they induce is inherited by subsequent generations of plants. See, for example, Chuang and Meyerowitz, (2000) Proc. Natl. Acad. Sci. USA 97:4985-4990; Stoutjesdijk, et al., (2002) Plant Physiol. 129:1723-1731 and Waterhouse and Helliwell, (2003) Nat. Rev. Genet. 4:29-38. Methods for using hpRNA interference to inhibit or silence the expression of genes are described, for example, in Chuang and Meyerowitz, (2000) Proc. Natl. Acad. Sci. USA 97:4985-4990; Stoutjesdijk, et al., (2002) Plant Physiol. 129:1723-1731; Waterhouse and Helliwell, (2003) Nat. Rev. Genet. 4:29-38; Pandolfini et al., BMC Biotechnology 3:7 and US Patent Application Publication Number 2003/0175965, each of which is herein incorporated by reference. A transient assay for the efficiency of hpRNA constructs to silence gene expression in vivo has been described by Panstruga, et al., (2003) Mol. Biol. Rep. 30:135-140, herein incorporated by reference.

[0071] For ihpRNA, the interfering molecules have the same general structure as for hpRNA, but the RNA molecule additionally comprises an intron in the loop of the hairpin that is capable of being spliced in the cell in which the ihpRNA is expressed. The use of an intron minimizes the size of the loop in the hairpin RNA molecule following splicing, and this increases the efficiency of interference. See, for example, Smith, et al., (2000) Nature 407:319-320. In fact, Smith, et al., show 100% suppression of endogenous gene expression using ihpRNA-mediated interference. In some embodiments, the intron is the ADH1 intron 1. Methods for using ihpRNA interference to inhibit the expression of endogenous plant genes are described, for example, in Smith, et al., (2000) Nature 407:319-320; Wesley, et al., (2001) Plant J. 27:581-590; Wang and Waterhouse, (2001) Curr. Opin. Plant Biol. 5:146-150; Waterhouse and Helliwell, (2003) Nat. Rev. Genet. 4:29-38; Helliwell and Waterhouse, (2003) Methods 30:289-295 and US Patent Application Publication Number 2003/0180945, each of which is herein incorporated by reference.

[0072] The expression cassette for hpRNA interference may also be designed such that the sense sequence and the antisense sequence do not correspond to an endogenous RNA. In this embodiment, the sense and antisense sequence flank a loop sequence that comprises a nucleotide sequence corresponding to all or part of the endogenous messenger RNA of the target gene. Thus, it is the loop region that determines the specificity of the RNA interference. See, for example, WO 02/00904; Mette, et al., (2000) EMBO J 19:5194-5201; Matzke, et al., (2001) Curr. Opin. Genet. Devel. 11:221-227; Scheid, et al., (2002) Proc. Natl. Acad. Sci., USA 99:13659-13662; Aufsaftz, et al., (2002) Proc. Nat'l. Acad. Sci. 99(4):16499-16506; Sijen, et al., Curr. Biol. (2001) 11:436-440), herein incorporated by reference.

[0073] Amplicon expression cassettes comprise a plant virus-derived sequence that contains all or part of the target gene but generally not all of the genes of the native virus. The viral sequences present in the transcription product of the expression cassette allow the transcription product to direct its own replication. The transcripts produced by the amplicon may be either sense or antisense relative to the target sequence (i.e., the messenger RNA for the ACC synthase polypeptide). Methods of using amplicons to inhibit the expression of endogenous plant genes are described, for example, in Angell and Baulcombe, (1997) EMBO J. 16:3675-3684, Angell and Baulcombe, (1999) Plant J. 20:357-362 and U.S. Pat. No. 6,635,805, each of which is herein incorporated by reference.

[0074] In some embodiments, the polynucleotide expressed by the expression cassette of the invention is catalytic RNA or has ribozyme activity specific for the messenger RNA of the ACC synthase polypeptide. Thus, the polynucleotide causes the degradation of the endogenous messenger RNA, resulting in reduced expression of the ACC synthase polypeptide. This method is described, for example, in U.S. Pat. No. 4,987,071, herein incorporated by reference.

[0075] In some embodiments of the invention, inhibition of the expression of an ACC synthase polypeptide may be obtained by RNA interference by expression of a polynucleotide encoding a micro RNA (miRNA). miRNAs are regulatory agents consisting of about 22 ribonucleotides. miRNA are highly efficient at inhibiting the expression of endogenous genes. See, for example Javier, et al., (2003) Nature 425:257-263, herein incorporated by reference.

[0076] For miRNA interference, the expression cassette is designed to express an RNA molecule that is modeled on an endogenous miRNA gene. The miRNA gene encodes an RNA that forms a hairpin structure containing a 22-nucleotide sequence that is complementary to another endogenous gene (target sequence). For suppression of ACC synthase expression, the 22-nucleotide sequence is selected from an ACC synthase transcript sequence and contains 22 nucleotides of said ACC synthase sequence in sense orientation and 21 nucleotides of a corresponding antisense sequence that is complementary to the sense sequence. miRNA molecules are highly efficient at inhibiting the expression of endogenous genes, and the RNA interference they induce is inherited by subsequent generations of plants.

[0077] In some embodiments, polypeptides or polynucleotide encoding polypeptides can be introduced into a plant, wherein the polypeptide is capable of inhibiting the activity of an ACC synthase polypeptide. The terms "polypeptide," "peptide" and "protein" are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical analogue of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers.

[0078] The terms "residue" or "amino acid residue" or "amino acid" are used interchangeably herein to refer to an amino acid that is incorporated into a protein, polypeptide, or peptide (collectively "protein"). The amino acid may be a naturally occurring amino acid and, unless otherwise limited, may encompass known analogs of natural amino acids that can function in a similar manner as naturally occurring amino acids.

[0079] In one embodiment, the polynucleotide encodes a zinc finger protein that binds to a gene encoding an ACC synthase polypeptide, resulting in reduced expression of the gene. In particular embodiments, the zinc finger protein binds to a regulatory region of an ACC synthase gene. In other embodiments, the zinc finger protein binds to a messenger RNA encoding an ACC synthase polypeptide and prevents its translation. Methods of selecting sites for targeting by zinc finger proteins have been described, for example, in U.S. Pat. No. 6,453,242, and methods for using zinc finger proteins to inhibit the expression of genes in plants are described, for example, in US Patent Application Publication Number 2003/0037355, each of which is herein incorporated by reference.

[0080] In some embodiments of the invention, the polynucleotide encodes an antibody that binds to at least one ACC synthase polypeptide and reduces the activity of the ACC synthase polypeptide. In another embodiment, the binding of the antibody results in increased turnover of the antibody-ACC synthase complex by cellular quality control mechanisms. The expression of antibodies in plant cells and the inhibition of molecular pathways by expression and binding of antibodies to proteins in plant cells are well known in the art. See, for example, Conrad and Sonnewald, (2003) Nature Biotech. 21:35-36, incorporated herein by reference.

[0081] In some embodiments of the present invention, the activity of an ACC synthase polypeptide is reduced or eliminated by disrupting the gene encoding the ACC synthase polypeptide. The gene encoding the ACC synthase polypeptide may be disrupted by any method known in the art. For example, in one embodiment, the gene is disrupted by transposon tagging. In another embodiment, the gene is disrupted by mutagenizing plants using random or targeted mutagenesis and selecting for plants that have reduced nitrogen utilization activity.

[0082] In one embodiment of the invention, transposon tagging is used to reduce or eliminate the ACC synthase activity of one or more ACC synthase polypeptides. Transposon tagging comprises inserting a transposon within an endogenous ACC synthase gene to reduce or eliminate expression of the ACC synthase polypeptide.

[0083] In this embodiment, the expression of one or more ACC synthase polypeptides is reduced or eliminated by inserting a transposon within a regulatory region or coding region of the gene encoding the ACC synthase polypeptide. A transposon that is within an exon, intron, 5' or 3' untranslated sequence, a promoter or any other regulatory sequence of an ACC synthase gene may be used to reduce or eliminate the expression and/or activity of the encoded ACC synthase polypeptide.

[0084] Methods for the transposon tagging of specific genes in plants are well known in the art. See, for example, Maes, et al., (1999) Trends Plant Sci. 4:90-96; Dharmapuri and Sonti, (1999) FEMS Microbiol. Lett. 179:53-59; Meissner, et al., (2000) Plant J. 22:265-274; Phogat, et al., (2000) J. Biosci. 25:57-63; Walbot, (2000) Curr. Opin. Plant Biol. 2:103-107; Gai, et al., (2000) Nucleic Acids Res. 28:94-96; Fitzmaurice, et al., (1999) Genetics 153:1919-1928). In addition, the TUSC process for selecting Mu insertions in selected genes has been described in Bensen, et al., (1995) Plant Cell 7:75-84; Mena, et al., (1996) Science 274:1537-1540 and U.S. Pat. No. 5,962,764, each of which is herein incorporated by reference.

[0085] Additional methods for decreasing or eliminating the expression of endogenous genes in plants are also known in the art and can be similarly applied to the instant invention. These methods include other forms of mutagenesis, such as ethyl methanesulfonate-induced mutagenesis, deletion mutagenesis and fast neutron deletion mutagenesis used in a reverse genetics sense (with PCR) to identify plant lines in which the endogenous gene has been deleted. For examples of these methods see, Ohshima, et al., (1998) Virology 243:472-481; Okubara, et al., (1994) Genetics 137:867-874 and Quesada, et al., (2000) Genetics 154:421-436, each of which is herein incorporated by reference. In addition, a fast and automatable method for screening for chemically induced mutations, TILLING (Targeting Induced Local Lesions In Genomes), using denaturing HPLC or selective endonuclease digestion of selected PCR products is also applicable to the instant invention. See, McCallum, et al., (2000) Nat. Biotechnol. 18:455-457, herein incorporated by reference.

[0086] Mutations that impact gene expression or that interfere with the function of the encoded protein are well known in the art. Insertional mutations in gene exons usually result in null-mutants. Mutations in conserved residues are particularly effective in inhibiting the activity of the encoded protein. Conserved residues of plant ACC synthase polypeptides suitable for mutagenesis with the goal to eliminate ACC synthase activity have been described. Such mutants can be isolated according to well-known procedures, and mutations in different ACC synthase loci can be stacked by genetic crossing. See, for example, Gruis, et al., (2002) Plant Cell 14:2863-2882.

[0087] In another embodiment of this invention, dominant mutants can be used to trigger RNA silencing due to gene inversion and recombination of a duplicated gene locus. See, for example, Kusaba, et al., (2003) Plant Cell 15:1455-1467.

[0088] The invention encompasses additional methods for reducing or eliminating the activity of one or more ACC synthase polypeptides. Examples of other methods for altering or mutating a genomic nucleotide sequence in a plant are known in the art and include, but are not limited to, the use of RNA:DNA vectors, RNA:DNA mutational vectors, RNA:DNA repair vectors, mixed-duplex oligonucleotides, self-complementary RNA:DNA oligonucleotides and recombinogenic oligonucleobases. Such vectors and methods of use are known in the art. See, for example, U.S. Pat. Nos. 5,565,350; 5,731,181; 5,756,325; 5,760,012; 5,795,972 and 5,871,984, each of which are herein incorporated by reference. See also, WO 98/49350, WO 99/07865, WO 99/25821 and Beetham, et al., (1999) Proc. Natl. Acad. Sci. USA 96:8774-8778, each of which is herein incorporated by reference.

[0089] Where polynucleotides are used to decrease or inhibit ACC synthase activity, it is recognized that modifications of the exemplary sequences disclosed herein may be made as long as the sequences act to decrease or inhibit expression of the corresponding mRNA. Thus, for example, polynucleotides having at least 70%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the exemplary sequences disclosed herein (e.g., SEQ ID NO:4, 5, or 6) may be used. Furthermore, portions or fragments of the exemplary sequences or portions or fragments of polynucleotides sharing a particular percent sequence identity to the exemplary sequences may be used to disrupt the expression of the target gene. Generally, fragments or sequences of at least 10, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 220, 240, 250, 260, 280, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, or more contiguous nucleotides, or greater of, for example, SEQ ID NO:4, 5, or 6 may be used. It is recognized that in particular embodiments, the complementary sequence of such sequences may be used. For example, hairpin constructs comprise both a sense sequence fragment and a complementary, or antisense, sequence fragment corresponding to the gene of interest. Antisense constructs may share less than 100% sequence identity with the gene of interest, and may comprise portions or fragments of the gene of interest, so long as the object of the embodiment is achieved, i.e., so long as expression of the gene of interest is decreased.

[0090] The ACC synthase nucleic acids that may be used for the present invention comprise at least one ACC synthase polynucleotide selected from the group consisting of: [0091] (a) a polynucleotide encoding an ACC synthase polypeptide and conservatively modified and polymorphic variants thereof; [0092] (b) a polynucleotide having at least 70% sequence identity with polynucleotides of (a); [0093] (c) a fragment of a polynucleotide encoding an ACC synthase polypeptide; and [0094] (d) complementary sequences of polynucleotides of (a), (b), or (c).

[0095] Thus, in some embodiments, the method comprises introducing at least one polynucleotide sequence comprising an ACC synthase nucleic acid sequence, or subsequence thereof, into a plant cell, such that the at least one polynucleotide sequence is linked to a promoter in a sense or antisense orientation, and where the at least one polynucleotide sequence comprises, e.g., at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, about 99.5% or more sequence identity to SEQ ID NO: 1 (gACS2), SEQ ID NO: 2 (gACS6) or SEQ ID NO: 3 (gACS7) or a subsequence thereof or a complement thereof. In another embodiment, the disruption is effected by introducing into the plant cell at least one polynucleotide sequence comprising one or more subsequences of an ACC synthase nucleic acid sequence configured for RNA silencing or interference.

[0096] In other embodiments, the methods of the invention are practiced with a polynucleotide comprising a member selected from the group consisting of: (a) a polynucleotide or a complement thereof, comprising, e.g., at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, about 99.5% or more sequence identity to SEQ ID NO: 1 (gACS2), SEQ ID NO: 2 (gACS6), SEQ ID NO: 3 (gACS7), SEQ ID NO: 4 (ACS2 cDNA), SEQ ID NO: 5 (ACS6 cDNA), or SEQ ID NO: 6 (ACS7 cDNA) or a subsequence thereof, or a conservative variation thereof; (b) a polynucleotide, or a complement thereof, encoding a polypeptide sequence of SEQ ID NO: 7 (ACS 2), SEQ ID NO: 8 (ACS6) or SEQ ID NO: 9 (ACS7) or a subsequence thereof, or a conservative variation thereof; (c) a polynucleotide, or a complement thereof, that hybridizes under stringent conditions over substantially the entire length of a polynucleotide subsequence comprising at least 100 contiguous nucleotides of SEQ ID NO: 1 (gACS2), SEQ ID NO: 2 (gACS6), SEQ ID NO: 3 (gACS7), SEQ ID NO: 4 (ACS2 cDNA), SEQ ID NO: 5 (ACS6 cDNA), or SEQ ID NO: 6 (ACS7 cDNA) or that hybridizes to a polynucleotide sequence of (a) or (b); and (d) a polynucleotide that is at least about 85% identical to a polynucleotide sequence of (a), (b) or (c). In certain embodiments, the polynucleotide inhibits ethylene production when expressed in a plant.

[0097] In particular embodiments, a heterologous polynucleotide is introduced into a plant, wherein the heterologous polynucleotide is selected from the group consisting of: a) a nucleic acid comprising an ACC synthase nucleic acid; b) a nucleic acid comprising at least 15 contiguous nucleotides of the complement of an ACC synthase nucleic acid; and c) a nucleic acid encoding a transcript that is capable of forming a double-stranded RNA (e.g., a hairpin) and mediated RNA interference of an ACC synthase nucleic acid, wherein said nucleic acid comprises a first nucleotide sequence comprising at least 21 contiguous nucleotides of an ACC synthase nucleic acid, and a second nucleotide sequence comprising the complement of said first nucleotide sequence.

[0098] In other particular embodiments, the methods comprise introducing into a plant a heterologous polynucleotide selected from the group consisting of: a) the nucleotide sequence set forth in SEQ ID NO:1, 2, 3, 4, 5, or 6, or a complete complement thereof; b) a nucleotide sequence having at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or greater sequence identity to SEQ ID NO: 1, 2, 3, 4, 5, or 6, or a complete complement thereof; c) a nucleotide sequence encoding the polypeptide sequence of SEQ ID NO: 7, 8, or 9; d) a nucleotide sequence encoding a polypeptide sequence having at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or greater sequence identity to SEQ ID NO: 7, 8, or 9; e) a nucleotide sequence comprising at least 15 contiguous nucleotides of SEQ ID NO:1, 2, 3, 4, 5, or 6; f) a nucleotide sequence comprising at least 15 contiguous nucleotides of the complement of SEQ ID NO:1, 2, 3, 4, 5, or 6; and g) a nucleotide sequence encoding a transcript that is capable of forming a double-stranded RNA (e.g., hairpin) and mediating RNA interference of an ACC synthase nucleic acid, wherein said nucleotide sequence comprises at least 21 contiguous nucleotides of SEQ ID NO:1, 2, 3, 4, 5, or 6, and the complement thereof. In other embodiments, the heterologous polynucleotide comprises at least 500 contiguous nucleotides of SEQ ID NO: 1, 2, 3, 4, 5, or 6 and the complement thereof. In some of these embodiments, the heterologous polynucleotide encodes a transcript that is capable of forming a double-stranded RNA (e.g., hairpin) and mediating RNA interference of an ACC synthase nucleic acid. In some of these embodiments, the plant comprises an mRNA encoded by a polynucleotide having the target sequence set forth in SEQ ID NO:1, 2, 3, 4, 5, or 6.

[0099] In yet other particular embodiments, the methods comprise introducing into a plant a heterologous polynucleotide comprising a sequence that encodes a transcript having a hairpin structure, wherein the sequence comprises a first nucleotide sequence having the sequence set forth in SEQ ID NO:14 and a second nucleotide sequence having the sequence set forth in SEQ ID NO:15. In other embodiments, the heterologous polynucleotide that comprises a sequence that encodes a transcript having a hairpin structure comprises a first nucleotide sequence having the sequence set forth in SEQ ID NO: 51 and a second nucleotide sequence having the sequence set forth in SEQ ID NO:52. In other embodiments, the methods comprise introducing into a plant a construct comprising SEQ ID NO:53, 54, 55, 56, or 57.

[0100] Methods are provided for improving yield under low nitrogen conditions comprising planting seeds or plants having a reduced activity of at least one ACC synthase in an area of cultivation having nitrogen limiting conditions.

[0101] Prior to the planting of the seeds or plants in the area of cultivation having nitrogen limiting conditions, the environment can be evaluated to determine if nitrogen limiting conditions are present, including measuring the amount of nitrogen or nitrogen fertilizer in the soil. As used herein, an "area of cultivation" comprises any region in which one desires to grow a plant. Such areas of cultivations include, but are not limited to, a field in which a plant is cultivated (such as a crop field, a sod field, a tree field, a managed forest, a field for culturing fruits and vegetables, etc), a greenhouse, a growth chamber, etc.

[0102] The present invention provides methods utilizing, inter alia, isolated nucleic acids of RNA, DNA, homologs, paralogs and orthologs and/or chimeras thereof, comprising an ACC synthase polynucleotide. This includes naturally occurring as well as synthetic variants and homologs of the sequences.

[0103] The terms "isolated" or "isolated nucleic acid" or "isolated protein" refer to material, such as a nucleic acid or a protein, which is substantially or essentially free from components which normally accompany or interact with it as found in its naturally occurring environment. The isolated material optionally comprises material not found with the material in its natural environment. Preferably, an "isolated" nucleic acid is free of sequences (preferably protein encoding sequences) that naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated nucleic acid molecule can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb, or 0.1 kb of nucleotide sequences that naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived.

[0104] Sequences homologous, i.e., that share significant sequence identity or similarity, to those provided herein derived from maize, Arabidopsis thaliana or from other plants of choice, can also be used in the methods of the invention. Homologous sequences can be derived from any plant including monocots and dicots and in particular agriculturally important plant species, including but not limited to, crops such as soybean, wheat, corn (maize), potato, cotton, rice, rape, oilseed rape (including canola), sunflower, alfalfa, clover, sugarcane and turf, or fruits and vegetables, such as banana, blackberry, blueberry, strawberry and raspberry, cantaloupe, carrot, cauliflower, coffee, cucumber, eggplant, grapes, honeydew, lettuce, mango, melon, onion, papaya, peas, peppers, pineapple, pumpkin, spinach, squash, sweet corn, tobacco, tomato, tomatillo, watermelon, rosaceous fruits (such as apple, peach, pear, cherry and plum) and vegetable brassicas (such as broccoli, cabbage, cauliflower, Brussels sprouts and kohlrabi). Other crops, including fruits and vegetables, whose phenotype can be changed and which comprise homologous sequences include barley; rye; millet; sorghum; currant; avocado; citrus fruits such as oranges, lemons, grapefruit and tangerines, artichoke, cherries; nuts such as the walnut and peanut; endive; leek; roots such as arrowroot, beet, cassava, turnip, radish, yam and sweet potato and beans. The homologous sequences may also be derived from woody species, such pine, poplar and eucalyptus or mint or other labiates. In addition, homologous sequences may be derived from plants that are evolutionarily-related to crop plants, but which may not have yet been used as crop plants. Examples include deadly nightshade (Atropa belladona), related to tomato; jimson weed (Datura strommium), related to peyote, and teosinte (Zea species), related to corn (maize).

[0105] Homologous sequences as described above can comprise orthologous or paralogous sequences. Several different methods are known by those of skill in the art for identifying and defining these functionally homologous sequences. Three general methods for defining orthologs and paralogs are described; an ortholog, paralog or homolog may be identified by one or more of the methods described below.

[0106] Orthologs and paralogs are evolutionarily related genes that have similar sequence and similar functions. Orthologs are structurally related genes in different species that are derived by a speciation event. Paralogs are structurally related genes within a single species that are derived by a duplication event.

[0107] Within a single plant species, gene duplication may result in two copies of a particular gene, giving rise to two or more genes with similar sequence and often similar function known as paralogs. A paralog is therefore a similar gene formed by duplication within the same species. Paralogs typically cluster together or in the same Glade (a group of similar genes) when a gene family phylogeny is analyzed using programs such as CLUSTAL (Thompson, et al., (1994) Nucleic Acids Res. 22:4673-4680; Higgins, et al., (1996) Methods Enzymol. 266:383-402). Groups of similar genes can also be identified with pair-wise BLAST analysis (Feng and Doolittle, (1987) J. Mol. Evol. 25:351-360).

[0108] For example, a Glade of very similar MADS domain transcription factors from Arabidopsis all share a common function in flowering time (Ratcliffe, et al., (2001) Plant Physiol. 126:122-132) and a group of very similar AP2 domain transcription factors from Arabidopsis are involved in tolerance of plants to freezing (Gilmour, et al., (1998) Plant J. 16:433-442). Analysis of groups of similar genes with similar function that fall within one Glade can yield sub-sequences that are particular to the Glade. These sub-sequences, known as consensus sequences, can not only be used to define the sequences within each Glade, but define the functions of these genes; genes within a Glade may contain paralogous sequences, or orthologous sequences that share the same function (see also, for example, Mount, (2001), in Bioinformatics: Sequence and Genome Analysis Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., page 543.)

[0109] Speciation, the production of new species from a parental species, can also give rise to two or more genes with similar sequence and similar function. These genes, termed orthologs, often have an identical function within their host plants and are often interchangeable between species without losing function. Because plants have common ancestors, many genes in any plant species will have a corresponding orthologous gene in another plant species. Once a phylogenic tree for a gene family of one species has been constructed using a program such as CLUSTAL (Thompson, et al., (1994) Nucleic Acids Res. 22:4673-4680; Higgins, et al., (1996) supra) potential orthologous sequences can be placed into the phylogenetic tree and their relationship to genes from the species of interest can be determined. Orthologous sequences can also be identified by a reciprocal BLAST strategy. Once an orthologous sequence has been identified, the function of the ortholog can be deduced from the identified function of the reference sequence.

[0110] Orthologous genes from different organisms have highly conserved functions, and very often essentially identical functions (Lee, et al., (2002) Genome Res. 12:493-502; Remm, et al., (2001) J. Mol. Biol. 314:1041-1052). Paralogous genes, which have diverged through gene duplication, may retain similar functions of the encoded proteins. In such cases, paralogs can be used interchangeably with respect to certain embodiments of the instant invention (for example, transgenic expression of a coding sequence).

[0111] ACC synthase polynucleotides, such as those disclosed herein, can be used to isolate homologs, paralogs and orthologs. In this manner, methods such as PCR, hybridization, and the like can be used to identify such sequences based on their sequence homology to the ACC synthase polynucleotide.

[0112] In a PCR approach, oligonucleotide primers can be designed for use in PCR reactions to amplify corresponding DNA sequences from cDNA or genomic DNA extracted from any plant of interest. Methods for designing PCR primers and PCR cloning are generally known in the art and are disclosed in Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, N.Y.). See also Innis et al., eds. (1990) PCR Protocols: A Guide to Methods and Applications (Academic Press, New York); Innis and Gelfand, eds. (1995) PCR Strategies (Academic Press, New York); and Innis and Gelfand, eds. (1999) PCR Methods Manual (Academic Press, New York). Known methods of PCR include, but are not limited to, methods using paired primers, nested primers, single specific primers, degenerate primers, gene-specific primers, vector-specific primers, partially-mismatched primers, and the like. By "amplified" is meant the construction of multiple copies of a nucleic acid sequence or multiple copies complementary to the nucleic acid sequence using at least one of the nucleic acid sequences as a template. Amplification systems include the polymerase chain reaction (PCR) system, ligase chain reaction (LCR) system, nucleic acid sequence based amplification (NASBA, Cangene, Mississauga, Ontario), Q-Beta Replicase systems, transcription-based amplification system (TAS) and strand displacement amplification (SDA). See, e.g., Diagnostic Molecular Microbiology: Principles and Applications, Persing, et al., eds., American Society for Microbiology, Washington, D.C. (1993). The product of amplification is termed an amplicon.

[0113] In hybridization techniques, all or part of a known polynucleotide is used as a probe that selectively hybridizes to other nucleic acids comprising corresponding nucleotide sequences present in a population of cloned genomic DNA fragments or cDNA fragments (i.e., genomic or cDNA libraries) from a chosen organism. The hybridization probes may be genomic DNA fragments, cDNA fragments, RNA fragments, or other oligonucleotides, and may be labeled with a detectable group such as .sup.32P, or any other detectable marker. Thus, for example, probes for hybridization can be made by labeling synthetic oligonucleotides based on the ACC synthase sequences disclosed herein. Methods for preparation of probes for hybridization and for construction of cDNA and genomic libraries are generally known in the art and are disclosed in Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, N.Y.).

[0114] For example, the entire ACC synthase sequences disclosed herein, or one or more portions thereof, may be used as probes capable of specifically hybridizing to corresponding ACC synthase sequences and messenger RNAs. To achieve specific hybridization under a variety of conditions, such probes include sequences that are unique among ACC synthase sequences and are at least about 10, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 50, 60, 70, 80, 90, or more nucleotides in length. Such probes may be used to amplify corresponding ACC synthase sequences from a chosen plant by PCR. This technique may be used to isolate additional coding sequences from a desired plant or as a diagnostic assay to determine the presence of coding sequences in a plant. Hybridization techniques include hybridization screening of plated nucleic acid (e.g., DNA) libraries (either plaques or colonies; see, for example, Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, N.Y.). By "nucleic acid library" is meant a collection of isolated DNA or RNA molecules, which comprise and substantially represent the entire transcribed fraction of a genome of a specified organism. Construction of exemplary nucleic acid libraries, such as genomic and cDNA libraries, is taught in standard molecular biology references such as Berger and Kimmel, (1987) Guide To Molecular Cloning Techniques, from the series Methods in Enzymology, vol. 152, Academic Press, Inc., San Diego, Calif.; Sambrook, et al., (1989) Molecular Cloning: A Laboratory Manual, 2.sup.nd ed., vols. 1-3; and Current Protocols in Molecular Biology, Ausubel, et al., eds, Current Protocols, a joint venture between Greene Publishing Associates, Inc. and John Wiley & Sons, Inc. (1994 Supplement).

[0115] Hybridization of such sequences may be carried out under stringent conditions. The terms "stringent conditions" or "stringent hybridization conditions" include reference to conditions under which a probe will hybridize to its target sequence, to a detectably greater degree than other sequences (e.g., at least 2-fold over background). Stringent conditions are sequence-dependent and will be different in different circumstances. By controlling the stringency of the hybridization and/or washing conditions, target sequences can be identified which can be up to 100% complementary to the probe (homologous probing). Alternatively, stringency conditions can be adjusted to allow some mismatching in sequences so that lower degrees of similarity are detected (heterologous probing). Optimally, the probe is approximately 500 nucleotides in length, but can vary greatly in length from less than 500 nucleotides to equal to the entire length of the target sequence.

[0116] Typically, stringent conditions will be those in which the salt concentration is less than about 1.5 M Na ion, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30.degree. C. for short probes (e.g., 10 to 50 nucleotides) and at least about 60.degree. C. for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide or Denhardt's. Exemplary low stringency conditions include hybridization with a buffer solution of 30 to 35% formamide, 1 M NaCl, 1% SDS (sodium dodecyl sulphate) at 37.degree. C., and a wash in 1.times. to 2.times.SSC (20.times.SSC=3.0 M NaCl/0.3 M trisodium citrate) at 50 to 55.degree. C. Exemplary moderate stringency conditions include hybridization in 40 to 45% formamide, 1 M NaCl, 1% SDS at 37.degree. C. and a wash in 0.5.times. to 1.times.SSC at 55 to 60.degree. C. Exemplary high stringency conditions include hybridization in 50% formamide, 1 M NaCl, 1% SDS at 37.degree. C. and a wash in 0.1.times.SSC at 60 to 65.degree. C. Specificity is typically the function of post-hybridization washes, the critical factors being the ionic strength and temperature of the final wash solution. For DNA-DNA hybrids, the T.sub.m can be approximated from the equation of Meinkoth and Wahl, (1984) Anal. Biochem., 138:267-84: T.sub.m=81.5.degree. C.+16.6 (log M)+0.41 (% GC)-0.61 (% form)-500/L; where M is the molarity of monovalent cations, % GC is the percentage of guanosine and cytosine nucleotides in the DNA, % form is the percentage of formamide in the hybridization solution, and L is the length of the hybrid in base pairs. The T.sub.m is the temperature (under defined ionic strength and pH) at which 50% of a complementary target sequence hybridizes to a perfectly matched probe. T.sub.m is reduced by about 1.degree. C. for each 1% of mismatching; thus, T.sub.m, hybridization and/or wash conditions can be adjusted to hybridize to sequences of the desired identity. For example, if sequences with .gtoreq.90% identity are sought, the T.sub.m can be decreased 10.degree. C. Generally, stringent conditions are selected to be about 5.degree. C. lower than the thermal melting point (T.sub.m) for the specific sequence and its complement at a defined ionic strength and pH. However, severely stringent conditions can utilize a hybridization and/or wash at 1, 2, 3 or 4.degree. C. lower than the thermal melting point (T.sub.m); moderately stringent conditions can utilize a hybridization and/or wash at 6, 7, 8, 9 or 10.degree. C. lower than the thermal melting point (T.sub.m); low stringency conditions can utilize a hybridization and/or wash at 11, 12, 13, 14, 15 or 20.degree. C. lower than the thermal melting point (T.sub.m). Using the equation, hybridization and wash compositions and desired T.sub.m, those of ordinary skill will understand that variations in the stringency of hybridization and/or wash solutions are inherently described. If the desired degree of mismatching results in a T.sub.m of less than 45.degree. C. (aqueous solution) or 32.degree. C. (formamide solution) it is preferred to increase the SSC concentration so that a higher temperature can be used. An extensive guide to the hybridization of nucleic acids is found in Tijssen, Laboratory Techniques in Biochemistry and Molecular Biology--Hybridization with Nucleic Acid Probes, part I, chapter 2, "Overview of principles of hybridization and the strategy of nucleic acid probe assays," Elsevier, New York (1993); and Current Protocols in Molecular Biology, chapter 2, Ausubel, et al., eds, Greene Publishing and Wiley-Interscience, New York (1995). Unless otherwise stated, in the present application high stringency is defined as hybridization in 4.times.SSC, 5.times.Denhardt's (5 g Ficoll, 5 g polyvinypyrrolidone, 5 g bovine serum albumin in 500 ml of water), 0.1 mg/ml boiled salmon sperm DNA and 25 mM Na phosphate at 65.degree. C. and a wash in 0.1.times.SSC, 0.1% SDS at 65.degree. C.

[0117] The term "selectively hybridizes" includes reference to hybridization, under stringent hybridization conditions, of a nucleic acid sequence to a specified nucleic acid target sequence to a detectably greater degree (e.g., at least 2-fold over background) than its hybridization to non-target nucleic acid sequences and to the substantial exclusion of non-target nucleic acids. Selectively hybridizing sequences typically have about at least 40% sequence identity, preferably 60-90% sequence identity and most preferably 100% sequence identity (i.e., complementary) with each other.

[0118] The term "hybridization complex" includes reference to a duplex nucleic acid structure formed by two single-stranded nucleic acid sequences selectively hybridized with each other.

[0119] As used herein, "consisting essentially of" means the inclusion of additional sequences to an object polynucleotide where the additional sequences do not selectively hybridize, under stringent hybridization conditions, to the same cDNA as the polynucleotide and where the hybridization conditions include a wash step in 0.1.times.SSC and 0.1% sodium dodecyl sulfate at 65.degree. C.

[0120] The ACC synthase nucleotide sequences can be used to generate variant nucleotide sequences having the nucleotide sequence of the 5'-untranslated region, 3'-untranslated region, or promoter region that is approximately 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, and 99% identical to the original nucleotide sequence. These variants are then associated with natural variation in the germplasm for component traits related to NUE. The associated variants are used as marker haplotypes to select for the desirable traits.

[0121] Variant amino acid sequences of the ACC synthase polypeptides are generated. In this example, one or more amino acid is altered. Specifically, the open reading frames are reviewed to determine the appropriate amino acid alteration. The selection of the amino acid to change is made by consulting the protein alignment (with the other orthologs and other gene family members from various species). An amino acid is selected that is deemed not to be under high selection pressure (not highly conserved) and which is rather easily substituted by an amino acid with similar chemical characteristics (i.e., similar functional side-chain). Using a protein alignment, an appropriate amino acid can be changed. Once the targeted amino acid is identified, the procedure outlined herein is followed. Variants having about 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or higher nucleic acid sequence identity are generated using this method. These variants are then associated with natural variation in the germplasm for component traits related to NUE. The associated variants are used as marker haplotypes to select for the desirable traits.

[0122] The present invention also includes polynucleotides optimized for expression in different organisms. For example, for expression of the polynucleotide in a maize plant, the sequence can be altered to account for specific codon preferences and to alter GC content as according to Murray, et al, supra. Maize codon usage for 28 genes from maize plants is listed in Table 4 of Murray, et al., supra.

[0123] The term "conservatively modified variants" applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variants refer to those nucleic acids that encode identical or conservatively modified variants of the amino acid sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode any given protein. For instance, the codons GCA, GCC, GCG and GCU all encode the amino acid alanine. Thus, at every position where an alanine is specified by a codon, the codon can be altered to any of the corresponding codons described without altering the encoded polypeptide. Such nucleic acid variations are "silent variations" and represent one species of conservatively modified variation. Every nucleic acid sequence herein that encodes a polypeptide also describes every possible silent variation of the nucleic acid. One of ordinary skill will recognize that each codon in a nucleic acid (except AUG, which is ordinarily the only codon for methionine; one exception is Micrococcus rubens, for which GTG is the methionine codon (Ishizuka, et al., (1993) J. Gen. Microbiol. 139:425-32) can be modified to yield a functionally identical molecule. Accordingly, each silent variation of a nucleic acid, which encodes a polypeptide of the present invention, is implicit in each described polypeptide sequence and incorporated herein by reference.

[0124] As to amino acid sequences, one of skill will recognize that individual substitutions, deletions or additions to a nucleic acid, peptide, polypeptide or protein sequence which alters, adds or deletes a single amino acid or a small percentage of amino acids in the encoded sequence is a "conservatively modified variant" when the alteration results in the substitution of an amino acid with a chemically similar amino acid. Thus, any number of amino acid residues selected from the group of integers consisting of from 1 to 15 can be so altered. Thus, for example, 1, 2, 3, 4, 5, 7 or 10 alterations can be made. Conservatively modified variants typically provide similar biological activity as the unmodified polypeptide sequence from which they are derived. For example, substrate specificity, enzyme activity or ligand/receptor binding is generally at least 30%, 40%, 50%, 60%, 70%, 80% or 90%, preferably 60-90% of the native protein for its native substrate. Conservative substitution tables providing functionally similar amino acids are well known in the art.

[0125] The following six groups each contain amino acids that are conservative substitutions for one another:

[0126] 1) Alanine (A), Serine (S), Threonine (T);

[0127] 2) Aspartic acid (D), Glutamic acid (E);

[0128] 3) Asparagine (N), Glutamine (Q);

[0129] 4) Arginine (R), Lysine (K);

[0130] 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); and

[0131] 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W).

See also, Creighton, Proteins, W.H. Freeman and Co. (1984).

[0132] The following terms are used to describe the sequence relationships between two or more nucleic acids or polynucleotides or polypeptides: (a) "reference sequence," (b) "comparison window," (c) "sequence identity," (d) "percentage of sequence identity" and (e) "substantial identity."

[0133] As used herein, "reference sequence" is a defined sequence used as a basis for sequence comparison. A reference sequence may be a subset or the entirety of a specified sequence; for example, as a segment of a full-length cDNA or gene sequence or the complete cDNA or gene sequence.

[0134] As used herein, "comparison window" means includes reference to a contiguous and specified segment of a polynucleotide sequence, wherein the polynucleotide sequence may be compared to a reference sequence and wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. Generally, the comparison window is at least 20 contiguous nucleotides in length, and optionally can be 30, 40, 50, 100 or longer. Those of skill in the art understand that to avoid a high similarity to a reference sequence due to inclusion of gaps in the polynucleotide sequence a gap penalty is typically introduced and is subtracted from the number of matches.

[0135] Methods of alignment of nucleotide and amino acid sequences for comparison are well known in the art. The local homology algorithm (BESTFIT) of Smith and Waterman, (1981) Adv. Appl. Math 2:482, may conduct optimal alignment of sequences for comparison; by the homology alignment algorithm (GAP) of Needleman and Wunsch, (1970) J. Mol. Biol. 48:443-53; by the search for similarity method (Tfasta and Fasta) of Pearson and Lipman, (1988) Proc. Natl. Acad. Sci. USA 85:2444; by computerized implementations of these algorithms, including, but not limited to: CLUSTAL in the PC/Gene program by Intelligenetics, Mountain View, Calif., GAP, BESTFIT, BLAST, FASTA and TFASTA in the Wisconsin Genetics Software Package.RTM., Version 8 (available from Genetics Computer Group (GCG.RTM. programs (Accelrys, Inc., San Diego, Calif.).). The CLUSTAL program is well described by Higgins and Sharp, (1988) Gene 73:237-44; Higgins and Sharp, (1989) CABIOS 5:151-3; Corpet, et al., (1988) Nucleic Acids Res. 16:10881-90; Huang, et al., (1992) Computer Applications in the Biosciences 8:155-65, and Pearson, et al., (1994) Meth. Mol. Biol. 24:307-31. The preferred program to use for optimal global alignment of multiple sequences is PileUp (Feng and Doolittle, (1987) J. Mol. Evol., 25:351-60 which is similar to the method described by Higgins and Sharp, (1989) CABIOS 5:151-53 and hereby incorporated by reference). The BLAST family of programs which can be used for database similarity searches includes: BLASTN for nucleotide query sequences against nucleotide database sequences; BLASTX for nucleotide query sequences against protein database sequences; BLASTP for protein query sequences against protein database sequences; TBLASTN for protein query sequences against nucleotide database sequences and TBLASTX for nucleotide query sequences against nucleotide database sequences. See, Current Protocols in Molecular Biology, Chapter 19, Ausubel et al., eds., Greene Publishing and Wiley-Interscience, New York (1995).

[0136] GAP uses the algorithm of Needleman and Wunsch, supra, to find the alignment of two complete sequences that maximizes the number of matches and minimizes the number of gaps. GAP considers all possible alignments and gap positions and creates the alignment with the largest number of matched bases and the fewest gaps. It allows for the provision of a gap creation penalty and a gap extension penalty in units of matched bases. GAP must make a profit of gap creation penalty number of matches for each gap it inserts. If a gap extension penalty greater than zero is chosen, GAP must, in addition, make a profit for each gap inserted of the length of the gap times the gap extension penalty. Default gap creation penalty values and gap extension penalty values in Version 10 of the Wisconsin Genetics Software Package.RTM. are 8 and 2, respectively. The gap creation and gap extension penalties can be expressed as an integer selected from the group of integers consisting of from 0 to 100. Thus, for example, the gap creation and gap extension penalties can be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50 or greater.

[0137] GAP presents one member of the family of best alignments. There may be many members of this family, but no other member has a better quality. GAP displays four figures of merit for alignments: Quality, Ratio, Identity and Similarity. The Quality is the metric maximized in order to align the sequences. Ratio is the quality divided by the number of bases in the shorter segment. Percent Identity is the percent of the symbols that actually match. Percent Similarity is the percent of the symbols that are similar. Symbols that are across from gaps are ignored. A similarity is scored when the scoring matrix value for a pair of symbols is greater than or equal to 0.50, the similarity threshold. The scoring matrix used in Version 10 of the Wisconsin Genetics Software Package.RTM. is BLOSUM62 (see, Henikoff and Henikoff, (1989) Proc. Natl. Acad. Sci. USA 89:10915).

[0138] Unless otherwise stated, sequence identity/similarity values provided herein refer to the value obtained using the BLAST 2.0 suite of programs using default parameters (Altschul, et al., (1997) Nucleic Acids Res. 25:3389-402).

[0139] As those of ordinary skill in the art will understand, BLAST searches assume that proteins can be modeled as random sequences. However, many real proteins comprise regions of nonrandom sequences, which may be homopolymeric tracts, short-period repeats, or regions enriched in one or more amino acids. Such low-complexity regions may be aligned between unrelated proteins even though other regions of the protein are entirely dissimilar. A number of low-complexity filter programs can be employed to reduce such low-complexity alignments. For example, the SEG (Wooten and Federhen, (1993) Comput. Chem. 17:149-63) and XNU (Claverie and States, (1993) Comput. Chem. 17:191-201) low-complexity filters can be employed alone or in combination.

[0140] As used herein, "sequence identity" or "identity" in the context of two nucleic acid or polypeptide sequences includes reference to the residues in the two sequences, which are the same when aligned for maximum correspondence over a specified comparison window. When percentage of sequence identity is used in reference to proteins it is recognized that residue positions which are not identical often differ by conservative amino acid substitutions, where amino acid residues are substituted for other amino acid residues with similar chemical properties (e.g., charge or hydrophobicity) and therefore do not change the functional properties of the molecule. Where sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Sequences, which differ by such conservative substitutions, are said to have "sequence similarity" or "similarity." Means for making this adjustment are well known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1. The scoring of conservative substitutions is calculated, e.g., according to the algorithm of Meyers and Miller, (1988) Computer Applic. Biol. Sci. 4:11-17, e.g., as implemented in the program PC/GENE (Intelligenetics, Mountain View, Calif., USA).

[0141] As used herein, "percentage of sequence identity" means the value determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the result by 100 to yield the percentage of sequence identity.

[0142] The term "substantial identity" of polynucleotide sequences means that a polynucleotide comprises a sequence that has between 50-100% sequence identity, preferably at least 50% sequence identity, preferably at least 60% sequence identity, preferably at least 70%, more preferably at least 80%, more preferably at least 90% and most preferably at least 95%, compared to a reference sequence using one of the alignment programs described using standard parameters. One of skill will recognize that these values can be appropriately adjusted to determine corresponding identity of proteins encoded by two nucleotide sequences by taking into account codon degeneracy, amino acid similarity, reading frame positioning and the like. Substantial identity of amino acid sequences for these purposes normally means sequence identity of between 55-100%, preferably at least 55%, preferably at least 60%, more preferably at least 70%, 80%, 90% and most preferably at least 95%.

[0143] Another indication that nucleotide sequences are substantially identical is if two nucleic acid molecules hybridize to each other under stringent conditions as described elsewhere herein. However, the degeneracy of the genetic code allows for many nucleic acid substitutions that lead to variety in the nucleotide sequence that code for the same amino acid, hence it is possible that the DNA sequence could code for the same polypeptide but not hybridize to each other under stringent conditions. This may occur, e.g., when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. One indication that two nucleic acid sequences are substantially identical is that the polypeptide which the first nucleic acid encodes is immunologically cross-reactive with the polypeptide encoded by the second nucleic acid.

[0144] The term "substantial identity" in the context of a peptide indicates that a peptide comprises a sequence with between 55-100% sequence identity to a reference sequence; in some embodiments, at least 55% sequence identity, 60%, 70%, 80%, at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to the reference sequence over a specified comparison window. In some embodiments, optimal alignment is conducted using the homology alignment algorithm of Needleman and Wunsch, supra. An indication that two peptide sequences are substantially identical is that one peptide is immunologically reactive with antibodies raised against the second peptide. Thus, a peptide is substantially identical to a second peptide, for example, where the two peptides differ only by a conservative substitution. In addition, a peptide can be substantially identical to a second peptide when they differ by a non-conservative change if the epitope that the antibody recognizes is substantially identical. Peptides which are "substantially similar" share sequences as noted above, except that residue positions which are not identical may differ by conservative amino acid changes.

[0145] The nucleic acids used in the presently disclosed methods can be made using (a) standard recombinant methods, (b) synthetic techniques, or combinations thereof. In some embodiments, the polynucleotides of the present invention will be cloned, amplified or otherwise constructed from a fungus or bacteria.

[0146] The nucleic acids may conveniently comprise sequences in addition to a polynucleotide useful in the methods of the present invention. For example, a multi-cloning site comprising one or more endonuclease restriction sites may be inserted into the nucleic acid to aid in isolation of the polynucleotide. Also, translatable sequences may be inserted to aid in the isolation of the translated polynucleotide useful in the methods of the present invention. For example, a hexa-histidine marker sequence provides a convenient means to purify proteins useful in the methods of the present invention. The nucleic acid useful in the methods of the present invention--excluding the polynucleotide sequence--is optionally a vector, adapter or linker for cloning and/or expression of a polynucleotide of the present invention. Additional sequences may be added to such cloning and/or expression sequences to optimize their function in cloning and/or expression, to aid in isolation of the polynucleotide, or to improve the introduction of the polynucleotide into a cell. Typically, the length of a nucleic acid for use in the methods of the present invention less the length of its polynucleotide of the present invention is less than 20 kilobase pairs, often less than 15 kb and frequently less than 10 kb. Use of cloning vectors, expression vectors, adapters and linkers is well known in the art. Exemplary nucleic acids include such vectors as: M13, lambda ZAP Express, lambda ZAP II, lambda gt10, lambda gt11, pBK-CMV, pBK-RSV, pBluescript II, lambda DASH II, lambda EMBL 3, lambda EMBL 4, pWE15, SuperCos 1, SurfZap, Uni-ZAP, pBC, pBS+/-, pSG5, pBK, pCR-Script, pET, pSPUTK, p3'SS, pGEM, pSK+/-, pGEX, pSPORTI and II, pOPRSVI CAT, pOPI3 CAT, pXT1, pSG5, pPbac, pMbac, pMClneo, pOG44, pOG45, pFRT.beta.GAL, pNEO.beta.GAL, pRS403, pRS404, pRS405, pRS406, pRS413, pRS414, pRS415, pRS416, lambda MOSSlox and lambda MOSElox. Optional vectors for the present invention, include but are not limited to, lambda ZAP II and pGEX. For a description of various nucleic acids see, e.g., Stratagene Cloning Systems, Catalogs 1995, 1996, 1997 (La Jolla, Calif.) and Amersham Life Sciences, Inc, Catalog '97 (Arlington Heights, Ill.).

[0147] The nucleic acids used in the methods of the present invention can also be prepared by direct chemical synthesis by methods such as the phosphotriester method of Narang, et al., (1979) Meth. Enzymol. 68:90-9; the phosphodiester method of Brown, et al., (1979) Meth. Enzymol. 68:109-51; the diethylphosphoramidite method of Beaucage, et al., (1981) Tetra. Letts. 22(20):1859-62; the solid phase phosphoramidite triester method described by Beaucage, et al., supra, e.g., using an automated synthesizer, e.g., as described in Needham-VanDevanter, et al., (1984) Nucleic Acids Res. 12:6159-68 and the solid support method of U.S. Pat. No. 4,458,066. Chemical synthesis generally produces a single stranded oligonucleotide. This may be converted into double stranded DNA by hybridization with a complementary sequence or by polymerization with a DNA polymerase using the single strand as a template. One of skill will recognize that while chemical synthesis of DNA is limited to sequences of about 100 bases, longer sequences may be obtained by the ligation of shorter sequences.

[0148] In general, translational efficiency has been found to be regulated by specific sequence elements in the 5' non-coding or untranslated region (5' UTR) of the RNA. Positive sequence motifs include translational initiation consensus sequences (Kozak, (1987) Nucleic Acids Res 0.15:8125) and the 5<G>7 methyl GpppG RNA cap structure (Drummond, et al., (1985) Nucleic Acids Res. 13:7375). Negative elements include stable intramolecular 5' UTR stem-loop structures (Muesing, et al., (1987) Cell 48:691) and AUG sequences or short open reading frames preceded by an appropriate AUG in the 5' UTR (Kozak, supra, Rao, et al., (1988) Mol. and Cell. Biol. 8:284). Accordingly, the present invention provides 5' and/or 3' UTR regions for modulation of translation of heterologous coding sequences.

[0149] Further, the polypeptide-encoding segments of the polynucleotides used in the present invention can be modified to alter codon usage. Altered codon usage can be employed to alter translational efficiency and/or to optimize the coding sequence for expression in a desired host or to optimize the codon usage in a heterologous sequence for expression in maize. Codon usage in the coding regions of the polynucleotides useful in the methods of the present invention can be analyzed statistically using commercially available software packages such as "Codon Preference" available from the University of Wisconsin Genetics Computer Group. See, Devereaux, et al., (1984) Nucleic Acids Res. 12:387-395); or MacVector 4.1 (Eastman Kodak Co., New Haven, Conn.). Thus, the present invention provides a codon usage frequency characteristic of the coding region of at least one of the polynucleotides useful in the methods of the present invention. The number of polynucleotides (3 nucleotides per amino acid) that can be used to determine a codon usage frequency can be any integer from 3 to the number of polynucleotides of the present invention as provided herein. Optionally, the polynucleotides will be full-length sequences. An exemplary number of sequences for statistical analysis can be at least 1, 5, 10, 20, 50 or 100.

[0150] When the nucleic acid is prepared or altered synthetically, advantage can be taken of known codon preferences of the intended host where the nucleic acid is to be expressed. For example, although nucleic acid sequences of the present invention may be expressed in both monocotyledonous and dicotyledonous plant species, sequences can be modified to account for the specific codon preferences and GC content preferences of monocotyledonous plants or dicotyledonous plants as these preferences have been shown to differ (Murray, et al., (1989) Nucleic Acids Res. 17:477-98, herein incorporated by reference). Thus, the maize preferred codon for a particular amino acid might be derived from known gene sequences from maize. Maize codon usage for 28 genes from maize plants is listed in Table 4 of Murray, et al., supra.

[0151] Polynucleotides used in the methods of the present invention can be obtained through sequence shuffling using ACC synthase-encoding polynucleotides. Sequence shuffling is described in PCT Publication Number 96/19256. See also, Zhang, et al., (1997) Proc. Natl. Acad. Sci. USA 94:4504-9 and Zhao, et al., (1998) Nature Biotech 16:258-61. Generally, sequence shuffling provides a means for generating libraries of polynucleotides having a desired characteristic, which can be selected or screened for. Libraries of recombinant polynucleotides are generated from a population of related sequence polynucleotides, which comprise sequence regions, which have substantial sequence identity and can be homologously recombined in vitro or in vivo. The population of sequence-recombined polynucleotides comprises a subpopulation of polynucleotides which possess desired or advantageous characteristics and which can be selected by a suitable selection or screening method. The characteristics can be any property or attribute capable of being selected for or detected in a screening system, and may include properties of: an encoded protein, a transcriptional element, a sequence controlling transcription, RNA processing, RNA stability, chromatin conformation, translation, or other expression property of a gene or transgene, a replicative element, a protein-binding element, or the like, such as any feature which confers a selectable or detectable property. In some embodiments, the selected characteristic will be an altered K.sub.m and/or K.sub.cat over the wild-type protein as provided herein. In other embodiments, a protein or polynucleotide generated from sequence shuffling will have a ligand binding affinity greater than the non-shuffled wild-type polynucleotide. In yet other embodiments, a protein or polynucleotide generated from sequence shuffling will have an altered pH optimum as compared to the non-shuffled wild-type polynucleotide. The increase in such properties can be at least 110%, 120%, 130%, 140% or greater than 150% of the wild-type value.

[0152] The components for practicing the methods of the invention may be included in a kit, comprising polynucleotides encoding ACC synthase or their complements or nucleic acids configured for RNA interference of ACC synthase, with instructional materials for improving plant yield under low nitrogen conditions. In some of these embodiments, the kit comprises a nucleic acid comprising the sequence of SEQ ID NO:1, 2, 3, 4, 5, or 6, or a complete complement thereof; a nucleic acid comprising at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or greater sequence identity to SEQ ID NO:1, 2, 3, 4, 5, or 6, or a complete complement thereof; a nucleic acid encoding the polypeptide sequence of SEQ ID NO:8 or a polypeptide sequence having at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or greater sequence identity to SEQ ID NO:8; or a nucleic acid configured for RNA silencing or interference, wherein said nucleic acid comprises a polynucleotide with at least 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, or more contiguous nucleotides of SEQ ID NO:1, 2, 3, 4, 5, or 6, and the complement of said polynucleotide.

[0153] The present invention further provides the use of recombinant expression cassettes comprising a nucleic acid useful in the methods of the present invention. As used herein, a "recombinant expression cassette" is a nucleic acid construct, generated recombinantly or synthetically, with a series of specified nucleic acid elements, which permit transcription of a particular nucleic acid in a target cell. The recombinant expression cassette can be incorporated into a plasmid, chromosome, mitochondrial DNA, plastid DNA, virus or nucleic acid fragment. Typically, the recombinant expression cassette portion of an expression vector includes, among other sequences, a nucleic acid to be transcribed and a promoter.

[0154] A nucleic acid sequence coding for the desired polynucleotide or polypeptide useful in the methods of the present invention, for example a polynucleotide encoding a nucleic acid that can reduce the expression of an ACC synthase gene, can be used to construct a recombinant expression cassette which can be introduced into the desired host cell. A recombinant expression cassette will typically comprise a polynucleotide useful in the methods of the present invention operably linked to transcriptional initiation regulatory sequences which will direct the transcription of the polynucleotide in the intended host cell, such as tissues of a transformed plant.

[0155] For example, plant expression vectors may include (1) a cloned plant gene under the transcriptional control of 5' and 3' regulatory sequences and (2) a dominant selectable marker. Such plant expression vectors may also contain, if desired, a promoter regulatory region (e.g., one conferring inducible or constitutive, environmentally- or developmentally-regulated, or cell- or tissue-specific/selective expression), a transcription initiation start site, a ribosome binding site, an RNA processing signal, a transcription termination site and/or a polyadenylation signal.

[0156] As used herein "operably linked" includes reference to a functional linkage between a first sequence, such as a promoter, and a second sequence, wherein the promoter sequence initiates and mediates transcription of the DNA corresponding to the second sequence. Generally, operably linked means that the nucleic acid sequences being linked are contiguous and, where necessary to join two protein coding regions, contiguous and in the same reading frame.

[0157] As used herein "promoter" includes reference to a region of DNA upstream from the start of transcription and involved in recognition and binding of RNA polymerase and other proteins to initiate transcription. A "plant promoter" is a promoter capable of initiating transcription in plant cells. Exemplary plant promoters include, but are not limited to, those that are obtained from plants, plant viruses, and bacteria which comprise genes expressed in plant cells such Agrobacterium or Rhizobium. Examples are promoters that preferentially initiate transcription in certain tissues, such as leaves, roots, seeds, fibres, xylem vessels, tracheids or sclerenchyma. Such promoters are referred to as "tissue-preferred." A "cell type" specific promoter primarily drives expression in certain cell types in one or more organs, for example, vascular cells in roots or leaves. An "inducible" or "regulatable" promoter is a promoter which is under environmental control. Examples of environmental conditions that may effect transcription by inducible promoters include anaerobic conditions or the presence of light. Another type of promoter is a developmentally regulated promoter, for example, a promoter that drives expression during pollen development. Tissue preferred, cell type specific, developmentally regulated and inducible promoters constitute the class of "non-constitutive" promoters. A "constitutive" promoter is a promoter, which is active under most environmental conditions. Constitutive promoters are classified as providing for a range of constitutive expression. Thus, some are weak constitutive promoters and others are strong constitutive promoters. Generally, by "weak promoter" is intended a promoter that drives expression of a coding sequence at a low level. By "low level" is intended at levels of about 1/10,000 transcripts to about 1/100,000 transcripts to about 1/500,000 transcripts. Conversely, a "strong promoter" drives expression of a coding sequence at a "high level," or about 1/10 transcripts to about 1/100 transcripts to about 1/1,000 transcripts.

[0158] A plant promoter fragment can be employed which will direct expression of a polynucleotide useful in the methods of the present invention in all tissues of a regenerated plant. Such promoters are referred to herein as "constitutive" promoters and are active under most environmental conditions and states of development or cell differentiation. Examples of constitutive promoters include the core promoter of the Rsyn7 promoter and other constitutive promoters disclosed in WO 99/43838 and U.S. Pat. No. 6,072,050; the 1'- or 2'-promoter derived from T-DNA of Agrobacterium tumefaciens, the Smas promoter, the cinnamyl alcohol dehydrogenase promoter (U.S. Pat. No. 5,633,439), the Nos promoter, the rubisco promoter, the GRP1-8 promoter, the 35S promoter from cauliflower mosaic virus (CaMV), as described in Odell, et al., (1985) Nature 313:810-2; rice actin (McElroy, et al., (1990) Plant Cell 163-171); ubiquitin (Christensen, et al., (1992) Plant Mol. Biol. 12:619-632 and Christensen, et al., (1992) Plant Mol. Biol. 18:675-89); pEMU (Last, et al., (1991) Theor. Appl. Genet. 81:581-8); MAS (Velten, et al., (1984) EMBO J. 3:2723-30) and maize H3 histone (Lepetit, et al., (1992) Mol. Gen. Genet. 231:276-85 and Atanassvoa, et al., (1992) Plant Journal 2(3):291-300); ALS promoter, as described in PCT Application Number WO 96/30530 and other transcription initiation regions from various plant genes known to those of skill Other constitutive promoters include, for example, U.S. Pat. Nos. 5,608,149; 5,608,144; 5,604,121; 5,569,597; 5,466,785; 5,399,680; 5,268,463; 5,608,142; and 6,177,611. In some embodiments, the ubiquitin promoter is used for expression in monocot plants.

[0159] Alternatively, the plant promoter can direct expression of a polynucleotide of the present invention in a specific tissue or may be otherwise under more precise environmental or developmental control. Such promoters are referred to here as "inducible" promoters. Environmental conditions that may effect transcription by inducible promoters include pathogen attack, anaerobic conditions or the presence of light. Examples of inducible promoters are the Adh1 promoter, which is inducible by hypoxia or cold stress, the Hsp70 promoter, which is inducible by heat stress and the PPDK promoter, which is inducible by light.

[0160] Generally, it will be beneficial to express the gene from an inducible promoter, particularly from a pathogen-inducible promoter. Such promoters include those from pathogenesis-related proteins (PR proteins), which are induced following infection by a pathogen; e.g., PR proteins, SAR proteins, beta-1,3-glucanase, chitinase, etc. See, for example, Redolfi et al. (1983) Neth. J. Plant Pathol. 89:245-254; Uknes et al. (1992) Plant Cell 4:645-656; and Van Loon (1985) Plant Mol. Virol. 4:111-116. See also WO 99/43819, herein incorporated by reference.

[0161] Of interest are promoters that are expressed locally at or near the site of pathogen infection. See, for example, Marineau et al. (1987) Plant Mol. Biol. 9:335-342; Matton et al. (1989) Molecular Plant-Microbe Interactions 2:325-331; Somsisch et al. (1986) Proc. Natl. Acad. Sci. USA 83:2427-2430; Somsisch et al. (1988) Mol. Gen. Genet. 2:93-98; and Yang (1996) Proc. Natl. Acad. Sci. USA 93:14972-14977. See also, Chen et al. (1996) Plant J. 10:955-966; Zhang et al. (1994) Proc. Natl. Acad. Sci. USA 91:2507-2511; Warner et al. (1993) Plant J. 3:191-201; Siebertz et al. (1989) Plant Cell 1:961-968; U.S. Pat. No. 5,750,386 (nematode-inducible); and the references cited therein. Of particular interest is the inducible promoter for the maize PRms gene, whose expression is induced by the pathogen Fusarium moniliforme (see, for example, Cordero et al. (1992) Physiol. Mol. Plant Path. 41:189-200).

[0162] Additionally, as pathogens find entry into plants through wounds or insect damage, a wound-inducible promoter may be used in the constructions of the invention. Such wound-inducible promoters include potato proteinase inhibitor (pin II) gene (Ryan (1990) Ann. Rev. Phytopath. 28:425-449; Duan et al. (1996) Nature Biotechnology 14:494-498); wun1 and wun2, U.S. Pat. No. 5,428,148; win1 and win2 (Stanford et al. (1989) Mol. Gen. Genet. 215:200-208); systemin (McGurl et al. (1992) Science 225:1570-1573); WIP1 (Rohmeier et al. (1993) Plant Mol. Biol. 22:783-792; Eckelkamp et al. (1993) FEBS Letters 323:73-76); MPI gene (Corderok et al. (1994) Plant J. 6(2):141-150); and the like, herein incorporated by reference.

[0163] Chemical-regulated promoters can be used to modulate the expression of a gene in a plant through the application of an exogenous chemical regulator. Depending upon the objective, the promoter may be a chemical-inducible promoter, where application of the chemical induces gene expression, or a chemical-repressible promoter, where application of the chemical represses gene expression. Chemical-inducible promoters are known in the art and include, but are not limited to, the maize In2-2 promoter, which is activated by benzenesulfonamide herbicide safeners, the maize GST promoter, which is activated by hydrophobic electrophilic compounds that are used as pre-emergent herbicides, and the tobacco PR-la promoter, which is activated by salicylic acid. Other chemical-regulated promoters of interest include steroid-responsive promoters (see, for example, the glucocorticoid-inducible promoter in Schena et al. (1991) Proc. Natl. Acad. Sci. USA 88:10421-10425 and McNellis et al. (1998) Plant J. 14(2):247-257) and tetracycline-inducible and tetracycline-repressible promoters (see, for example, Gatz et al. (1991) Mol. Gen. Genet. 227:229-237, and U.S. Pat. Nos. 5,814,618 and 5,789,156), herein incorporated by reference.

[0164] Examples of promoters under developmental control include promoters that initiate transcription only, or preferentially, in certain tissues, such as leaves, roots, fruit, seeds or flowers. The operation of a promoter may also vary depending on its location in the genome. Thus, an inducible promoter may become fully or partially constitutive in certain locations.

[0165] Tissue-preferred promoters can be utilized to target expression of a polynucleotide useful in methods of the present invention within a particular plant tissue. Tissue-preferred promoters include Yamamoto et al. (1997) Plant J. 12(2):255-265; Kawamata et al. (1997) Plant Cell Physiol. 38(7):792-803; Hansen et al. (1997) Mol. Gen Genet. 254(3):337-343; Russell et al. (1997) Transgenic Res. 6(2):157-168; Rinehart et al. (1996) Plant Physiol. 112(3):1331-1341; Van Camp et al. (1996) Plant Physiol. 112(2):525-535; Canevascini et al. (1996) Plant Physiol. 112(2):513-524; Yamamoto et al. (1994) Plant Cell Physiol. 35(5):773-778; Lam (1994) Results Probl. Cell Differ. 20:181-196; Orozco et al. (1993) Plant Mol Biol. 23(6):1129-1138; Matsuoka et al. (1993) Proc Natl. Acad. Sci. USA 90(20):9586-9590; and Guevara-Garcia et al. (1993) Plant J. 4(3):495-505. Such promoters can be modified, if necessary, for weak expression.

[0166] Leaf-preferred promoters are known in the art. See, for example, Yamamoto et al. (1997) Plant J. 12(2):255-265; Kwon et al. (1994) Plant Physiol. 105:357-67; Yamamoto et al. (1994) Plant Cell Physiol. 35(5):773-778; Gotor et al. (1993) Plant J. 3:509-18; Orozco et al. (1993) Plant Mol. Biol. 23(6):1129-1138; and Matsuoka et al. (1993) Proc. Natl. Acad. Sci. USA 90(20):9586-9590.

[0167] Root-preferred promoters are known and can be selected from the many available from the literature or isolated de novo from various compatible species. See, for example, Hire et al. (1992) Plant Mol. Biol. 20(2):207-218 (soybean root-specific glutamine synthetase gene); Keller and Baumgartner (1991) Plant Cell 3(10):1051-1061 (root-specific control element in the GRP 1.8 gene of French bean); Sanger et al. (1990) Plant Mol. Biol. 14(3):433-443 (root-specific promoter of the mannopine synthase (MAS) gene of Agrobacterium tumefaciens); and Miao et al. (1991) Plant Cell 3(1):11-22 (full-length cDNA clone encoding cytosolic glutamine synthetase (GS), which is expressed in roots and root nodules of soybean). See also Bogusz et al. (1990) Plant Cell 2(7):633-641, where two root-specific promoters isolated from hemoglobin genes from the nitrogen-fixing nonlegume Parasponia andersonii and the related non-nitrogen-fixing nonlegume Trema tomentosa are described. The promoters of these genes were linked to a .beta.-glucuronidase reporter gene and introduced into both the nonlegume Nicotiana tabacum and the legume Lotus corniculatus, and in both instances root-specific promoter activity was preserved. Leach and Aoyagi (1991) describe their analysis of the promoters of the highly expressed rolC and rolD root-inducing genes of Agrobacterium rhizogenes (see Plant Science (Limerick) 79(1):69-76). They concluded that enhancer and tissue-preferred DNA determinants are dissociated in those promoters. Teeri et al. (1989) used gene fusion to lacZ to show that the Agrobacterium T-DNA gene encoding octopine synthase is especially active in the epidermis of the root tip and that the TR2' gene is root specific in the intact plant and stimulated by wounding in leaf tissue, an especially desirable combination of characteristics for use with an insecticidal or larvicidal gene (see EMBO J. 8(2):343-350). The TR1' gene, fused to nptII (neomycin phosphotransferase II) showed similar characteristics. Additional root-preferred promoters include the VfENOD-GRP3 gene promoter (Kuster et al. (1995) Plant Mol. Biol. 29(4):759-772); and rolB promoter (Capana et al. (1994) Plant Mol. Biol. 25(4):681-691. See also U.S. Pat. Nos. 5,837,876; 5,750,386; 5,633,363; 5,459,252; 5,401,836; 5,110,732; and 5,023,179.

[0168] "Seed-preferred" promoters include both "seed-specific" promoters (those promoters active during seed development such as promoters of seed storage proteins) as well as "seed-germinating" promoters (those promoters active during seed germination). See Thompson et al. (1989) BioEssays 10:108, herein incorporated by reference. Such seed-preferred promoters include, but are not limited to, Cim1 (cytokinin-induced message); cZ19B1 (maize 19 kDa zein); milps (myo-inositol-1-phosphate synthase) (see WO 00/11177 and U.S. Pat. No. 6,225,529; herein incorporated by reference). Gamma-zein is an endosperm-specific promoter. Globulin 1 (Glb-1) is a representative embryo-specific promoter. For dicots, seed-specific promoters include, but are not limited to, bean .beta.-phaseolin, napin, .beta.-conglycinin, soybean lectin, cruciferin, and the like. For monocots, seed-specific promoters include, but are not limited to, maize 15 kDa zein, 22 kDa zein, 27 kDa zein, gamma-zein, waxy, shrunken 1, shrunken 2, Globulin 1, etc. See also WO 00/12733, where seed-preferred promoters from end1 and end2 genes are disclosed; herein incorporated by reference.

[0169] The regulatory regions (i.e., promoters, transcriptional regulatory regions, and translational termination regions) and/or the ACC synthase polynucleotide may be native/analogous to the host cell or to each other. Alternatively, the regulatory regions and/or the ACC synthase polynucleotide may be heterologous to the host cell or to each other. As used herein, "heterologous" in reference to a sequence is a sequence that originates from a foreign species, or, if from the same species, is substantially modified from its native form in composition and/or genomic locus by deliberate human intervention. For example, a promoter operably linked to a heterologous polynucleotide is from a species different from that from which the polynucleotide was derived, or, if from the same/analogous species, one or both are substantially modified from their original form, or the promoter is not the native promoter for the operably linked polynucleotide. Likewise, a heterologous protein may originate from a foreign species or, if from the same species, is substantially modified from its original form by deliberate human intervention.

[0170] If polypeptide expression is desired, it is generally desirable to include a polyadenylation region at the 3'-end of a polynucleotide coding region. The polyadenylation region can be derived from a variety of plant genes, or from T-DNA. The 3' end sequence to be added can be derived from, for example, the nopaline synthase or octopine synthase genes, or alternatively from another plant gene, or less preferably from any other eukaryotic gene. Examples of such regulatory elements include, but are not limited to, 3' termination and/or polyadenylation regions such as those of the Agrobacterium tumefaciens nopaline synthase (nos) gene (Bevan, et al., (1983) Nucleic Acids Res. 12:369-85); the potato proteinase inhibitor II (PINII) gene (Keil, et al., (1986) Nucleic Acids Res. 14:5641-50 and An, et al., (1989) Plant Cell 1:115-22) and the CaMV 19S gene (Mogen, et al., (1990) Plant Cell 2:1261-72).

[0171] An intron sequence can be added to the 5' untranslated region or the coding sequence of the partial coding sequence to increase the amount of the mature message that accumulates in the cytosol. Inclusion of a spliceable intron in the transcription unit in both plant and animal expression constructs has been shown to increase gene expression at both the mRNA and protein levels up to 1000-fold (Buchman and Berg, (1988) Mol. Cell Biol. 8:4395-4405; Callis, et al., (1987) Genes Dev. 1:1183-200). Such intron enhancement of gene expression is typically greatest when placed near the 5' end of the transcription unit. Use of maize introns Adh1-S intron 1, 2 and 6, the Bronze-1 intron are known in the art. See generally, The Maize Handbook, Chapter 116, Freeling and Walbot, eds., Springer, New York (1994).

[0172] Plant signal sequences, including, but not limited to, signal-peptide encoding DNA/RNA sequences which target proteins to the extracellular matrix of the plant cell (Dratewka-Kos, et al., (1989) J. Biol. Chem. 264:4896-900), such as the Nicotiana plumbaginifolia extension gene (DeLoose, et al., (1991) Gene 99:95-100); signal peptides which target proteins to the vacuole, such as the sweet potato sporamin gene (Matsuka, et al., (1991) Proc. Natl. Acad. Sci. USA 88:834) and the barley lectin gene (Wilkins, et al., (1990) Plant Cell, 2:301-13); signal peptides which cause proteins to be secreted, such as that of PRIb (Lind, et al., (1992) Plant Mol. Biol. 18:47-53) or the barley alpha amylase (BAA) (Rahmatullah, et al., (1989) Plant Mol. Biol. 12:119, and hereby incorporated by reference) or signal peptides which target proteins to the plastids such as that of rapeseed enoyl-Acp reductase (Verwaert, et al., (1994) Plant Mol. Biol. 26:189-202) are useful in the invention.

[0173] The vector comprising the sequences from a polynucleotide useful in the methods of the present invention will typically comprise a marker gene, which confers a selectable phenotype on plant cells. Usually, the selectable marker gene will encode antibiotic resistance, with suitable genes including genes coding for resistance to the antibiotic spectinomycin (e.g., the aada gene), the streptomycin phosphotransferase (SPT) gene coding for streptomycin resistance, the neomycin phosphotransferase (NPTII) gene encoding kanamycin or geneticin resistance, the hygromycin phosphotransferase (HPT) gene coding for hygromycin resistance, genes coding for resistance to herbicides which act to inhibit the action of acetolactate synthase (ALS), in particular the sulfonylurea-type herbicides (e.g., the acetolactate synthase (ALS) gene containing mutations leading to such resistance in particular the S4 and/or Hra mutations), genes coding for resistance to herbicides which act to inhibit action of glutamine synthase, such as phosphinothricin or basta (e.g., the bar gene), or other such genes known in the art. The bar gene encodes resistance to the herbicide basta, and the ALS gene encodes resistance to the herbicide chlorsulfuron. Other genes that confer resistance to herbicidal compounds, such as such as glufosinate ammonium, bromoxynil, imidazolinones, and 2,4-dichlorophenoxyacetate (2,4-D) can be used. Additional selectable markers include phenotypic markers such as .beta.-galactosidase and fluorescent proteins such as green fluorescent protein (GFP) (Su et al. (2004) Biotechnol Bioeng 85:610-9 and Fetter et al. (2004) Plant Cell 16:215-28), cyan florescent protein (CYP) (Bolte et al. (2004) J. Cell Science 117:943-54 and Kato et al. (2002) Plant Physiol 129:913-42), and yellow florescent protein (PhiYFP.TM. from Evrogen, see, Bolte et al. (2004) J. Cell Science 117:943-54). For additional selectable markers, see generally, Yarranton (1992) Curr. Opin. Biotech. 3:506-511; Christopherson et al. (1992) Proc. Natl. Acad. Sci. USA 89:6314-6318; Yao et al. (1992) Cell 71:63-72; Reznikoff (1992) Mol. Microbiol. 6:2419-2422; Barkley et al. (1980) in The Operon, pp. 177-220; Hu et al. (1987) Cell 48:555-566; Brown et al. (1987) Cell 49:603-612; Figge et al. (1988) Cell 52:713-722; Deuschle et al. (1989) Proc. Natl. Acad. Aci. USA 86:5400-5404; Fuerst et al. (1989) Proc. Natl. Acad. Sci. USA 86:2549-2553; Deuschle et al. (1990) Science 248:480-483; Gossen (1993) Ph.D. Thesis, University of Heidelberg; Reines et al. (1993) Proc. Natl. Acad. Sci. USA 90:1917-1921; Labow et al. (1990) Mol. Cell. Biol. 10:3343-3356; Zambretti et al. (1992) Proc. Natl. Acad. Sci. USA 89:3952-3956; Baim et al. (1991) Proc. Natl. Acad. Sci. USA 88:5072-5076; Wyborski et al. (1991) Nucleic Acids Res. 19:4647-4653; Hillenand-Wissman (1989) Topics Mol. Struc. Biol. 10:143-162; Degenkolb et al. (1991) Antimicrob. Agents Chemother. 35:1591-1595; Kleinschnidt et al. (1988) Biochemistry 27:1094-1104; Bonin (1993) Ph.D. Thesis, University of Heidelberg; Gossen et al. (1992) Proc. Natl. Acad. Sci. USA 89:5547-5551; Oliva et al. (1992) Antimicrob. Agents Chemother. 36:913-919; Hlavka et al. (1985) Handbook of Experimental Pharmacology, Vol. 78 (Springer-Verlag, Berlin); Gill et al. (1988) Nature 334:721-724. Such disclosures are herein incorporated by reference.

[0174] The above list of selectable marker genes is not meant to be limiting. Any selectable marker gene can be used in the present invention.

[0175] Typical vectors useful for expression of genes in higher plants are well known in the art and include vectors derived from the tumor-inducing (Ti) plasmid of Agrobacterium tumefaciens described by Rogers, et al. (1987), Meth. Enzymol. 153:253-77. These vectors are plant integrating vectors in that on transformation, the vectors integrate a portion of vector DNA into the genome of the host plant. Exemplary A. tumefaciens vectors useful herein are plasmids pKYLX6 and pKYLX7 of Schardl, et al., (1987) Gene 61:1-11 and Berger, et al., (1989) Proc. Natl. Acad. Sci. USA, 86:8402-6. Another useful vector herein is plasmid pBI101.2 that is available from CLONTECH Laboratories, Inc. (Palo Alto, Calif.). As used herein, "vector" includes reference to a nucleic acid used in transfection of a host cell and into which can be inserted a polynucleotide. Vectors are often replicons. Expression vectors permit transcription of a nucleic acid inserted therein as described elsewhere herein.

[0176] One may express a protein in a recombinantly engineered cell such as bacteria, yeast, insect, mammalian or preferably plant cells. The cells produce the protein in a non-natural condition (e.g., in quantity, composition, location and/or time), because they have been genetically altered through human intervention to do so.

[0177] By "host cell" is meant a cell, which comprises a heterologous nucleic acid sequence of the invention, which contains a vector and supports the replication and/or expression of the expression vector. Host cells may be prokaryotic cells such as E. coli, or eukaryotic cells such as yeast, insect, plant, amphibian or mammalian cells. Preferably, host cells are monocotyledonous or dicotyledonous plant cells, including but not limited to maize, sorghum, sunflower, soybean, wheat, alfalfa, rice, cotton, sugarcane, canola, lawn grass, barley, millet and tomato. In some embodiments, the monocotyledonous host cell is a maize host cell.

[0178] As used herein "recombinant" includes reference to a cell or vector that has been modified by the introduction of a heterologous nucleic acid, or that the cell is derived from a cell so modified. Thus, for example, recombinant cells express genes that are not found in identical form within the native (non-recombinant) form of the cell or express native genes that are otherwise abnormally expressed, under expressed or not expressed at all as a result of deliberate human intervention or may have reduced or eliminated expression of a native gene. The term "recombinant" as used herein does not encompass the alteration of the cell or vector by naturally occurring events (e.g., spontaneous mutation, natural transformation/transduction/transposition) such as those occurring without deliberate human intervention.

[0179] It is expected that those of skill in the art are knowledgeable in the numerous expression systems available for expression of a nucleic acid encoding a protein useful in the methods of the present invention. No attempt to describe in detail the various methods known for the expression of proteins in prokaryotes or eukaryotes will be made.

[0180] In brief summary, the expression of isolated nucleic acids encoding a protein of the present invention will typically be achieved by operably linking, for example, the DNA or cDNA to a promoter (which is either constitutive or inducible), followed by incorporation into an expression vector. The vectors can be suitable for replication and integration in either prokaryotes or eukaryotes. As described above, typical expression vectors contain transcription and translation terminators, initiation sequences and promoters useful for regulation of the expression of the DNA encoding a protein useful in the methods of the present invention. To obtain high level expression of a cloned gene, it is desirable to construct expression vectors which contain, at the minimum, a strong promoter, such as ubiquitin, to direct transcription, a ribosome binding site for translational initiation and a transcription/translation terminator.

[0181] One of skill would recognize that modifications could be made to a protein useful in the methods of the present invention without diminishing its biological activity. Some modifications may be made to facilitate the cloning, expression or incorporation of the targeting molecule into a fusion protein. Such modifications are well known to those of skill in the art and include, for example, a methionine added at the amino terminus to provide an initiation site or additional amino acids (e.g., poly His) placed on either terminus to create conveniently located restriction sites or termination codons or purification sequences.

[0182] Prokaryotic cells may be used as hosts for expression. Prokaryotes most frequently are represented by various strains of E. coli; however, other microbial strains may also be used. Commonly used prokaryotic control sequences which are defined herein to include promoters for transcription initiation, optionally with an operator, along with ribosome binding site sequences, include such commonly used promoters as the beta lactamase (penicillinase) and lactose (lac) promoter systems (Chang, et al., (1977) Nature 198:1056), the tryptophan (trp) promoter system (Goeddel, et al., (1980) Nucleic Acids Res. 8:4057) and the lambda derived P L promoter and N-gene ribosome binding site (Shimatake, et al., (1981) Nature 292:128). The inclusion of selection markers in DNA vectors transfected in E. coli is also useful. Examples of such markers include genes specifying resistance to ampicillin, tetracycline or chloramphenicol.

[0183] The vector is selected to allow introduction of the gene of interest into the appropriate host cell. Bacterial vectors are typically of plasmid or phage origin. Appropriate bacterial cells are infected with phage vector particles or transfected with naked phage vector DNA. If a plasmid vector is used, the bacterial cells are transfected with the plasmid vector DNA. Expression systems for expressing a protein useful in the methods of the present invention are available using Bacillus sp. and Salmonella (Palva, et al., (1983) Gene 22:229-35; Mosbach, et al., (1983) Nature 302:543-5). The pGEX-4T-1 plasmid vector from Pharmacia is the preferred E. coli expression vector for the present invention.

[0184] A variety of eukaryotic expression systems such as yeast, insect cell lines, plant and mammalian cells, are known to those of skill in the art. As explained briefly below, the present invention can be expressed in these eukaryotic systems. In some embodiments, transformed/transfected plant cells, as discussed infra, are employed as expression systems for production of the proteins of the instant invention.

[0185] Synthesis of heterologous proteins in yeast is well known. Sherman, et al., (1982) Methods in Yeast Genetics, Cold Spring Harbor Laboratory is a well recognized work describing the various methods available to produce the protein in yeast. Two widely utilized yeasts for production of eukaryotic proteins are Saccharomyces cerevisiae and Pichia pastoris. Vectors, strains and protocols for expression in Saccharomyces and Pichia are known in the art and available from commercial suppliers (e.g., Invitrogen). Suitable vectors usually have expression control sequences, such as promoters, including 3-phosphoglycerate kinase or alcohol oxidase and an origin of replication, termination sequences and the like as desired.

[0186] A protein useful in the methods of the present invention, once expressed, can be isolated from yeast by lysing the cells and applying standard protein isolation techniques to the lysates or the pellets. The monitoring of the purification process can be accomplished by using Western blot techniques or radioimmunoassay of other standard immunoassay techniques.

[0187] The sequences encoding proteins useful in the methods of the present invention can also be ligated to various expression vectors for use in transfecting cell cultures of, for instance, mammalian, insect or plant origin. Mammalian cell systems often will be in the form of monolayers of cells although mammalian cell suspensions may also be used. A number of suitable host cell lines capable of expressing intact proteins have been developed in the art, and include the HEK293, BHK21 and CHO cell lines. Expression vectors for these cells can include expression control sequences, such as an origin of replication, a promoter (e.g., the CMV promoter, a HSV tk promoter or pgk (phosphoglycerate kinase) promoter), an enhancer (Queen, et al., (1986) Immunol. Rev. 89:49) and necessary processing information sites, such as ribosome binding sites, RNA splice sites, polyadenylation sites (e.g., an SV40 large T Ag poly A addition site) and transcriptional terminator sequences. Other animal cells useful for production of proteins of the present invention are available, for instance, from the American Type Culture Collection Catalogue of Cell Lines and Hybridomas (7.sup.th ed., 1992).

[0188] Appropriate vectors for expressing proteins of the present invention in insect cells are usually derived from the SF9 baculovirus. Suitable insect cell lines include mosquito larvae, silkworm, armyworm, moth and Drosophila cell lines such as a Schneider cell line (see, e.g., Schneider, (1987) J. Embryol. Exp. Morphol. 27:353-65).

[0189] As with yeast, when higher animal or plant host cells are employed, polyadenlyation or transcription terminator sequences are typically incorporated into the vector. An example of a terminator sequence is the polyadenlyation sequence from the bovine growth hormone gene. Sequences for accurate splicing of the transcript may also be included. An example of a splicing sequence is the VP1 intron from SV40 (Sprague, et al., (1983) J. Virol. 45:773-81). Additionally, gene sequences to control replication in the host cell may be incorporated into the vector such as those found in bovine papilloma virus type-vectors (Saveria-Campo, "Bovine Papilloma Virus DNA a Eukaryotic Cloning Vector," in DNA Cloning: A Practical Approach, vol. II, Glover, ed., IRL Press, Arlington, Va., pp. 213-38 (1985)).

[0190] In addition, the ACC synthase polynucleotide placed in the appropriate plant expression vector can be used to transform plant cells. The polypeptide can then be isolated from plant callus or the transformed cells can be used to regenerate transgenic plants. Such transgenic plants can be harvested, and the appropriate tissues (seed or leaves, for example) can be subjected to large scale protein extraction and purification techniques.

[0191] Numerous methods for introducing foreign polynucleotides into plants are known and can be used to insert an ACC synthase polynucleotide into a plant host, including biological and physical plant transformation protocols. See, e.g., Miki, et al., "Procedure for Introducing Foreign DNA into Plants," in Methods in Plant Molecular Biology and Biotechnology, Glick and Thompson, eds., CRC Press, Inc., Boca Raton, pp. 67-88 (1993). The methods chosen vary with the host plant and include chemical transfection methods such as calcium phosphate, microorganism-mediated gene transfer such as Agrobacterium (Horsch, et al., Science 227:1229-31 (1985)), electroporation, micro-injection and biolistic bombardment.

[0192] The term "introduced" in the context of inserting a nucleic acid into a cell, means "transfection" or "transformation" or "transduction" and includes reference to the incorporation of a nucleic acid into a eukaryotic or prokaryotic cell where the nucleic acid may be incorporated into the genome of the cell (e.g., chromosome, plasmid, plastid or mitochondrial DNA), converted into an autonomous replicon or transiently expressed (e.g., transfected mRNA). When a polynucleotide or polypeptide is introduced into a plant, "introducing" is intended to mean presenting to the plant the polynucleotide or polypeptide in such a manner that the sequence gains access to the interior of a cell of the plant. The methods of the invention do not depend on a particular method for introducing a sequence into a plant, only that the polynucleotide or polypeptides gains access to the interior of at least one cell of the plant. Methods for introducing polynucleotide or polypeptides into plants are known in the art, including, but not limited to, stable transformation methods, transient transformation methods, and virus-mediated methods.

[0193] Expression cassettes and vectors and in vitro culture methods for plant cell or tissue transformation and regeneration of plants are known and available. See, e.g., Gruber, et al., "Vectors for Plant Transformation," in Methods in Plant Molecular Biology and Biotechnology, supra, pp. 89-119.

[0194] The polynucleotides or polypeptides may be introduced into the plant by one or more techniques typically used for direct delivery into cells. Such protocols may vary depending on the type of organism, cell, plant or plant cell, i.e. monocot or dicot, targeted for gene modification. Suitable methods of transforming plant cells include microinjection (Crossway, et al., (1986) Biotechniques 4:320-334 and U.S. Pat. No. 6,300,543), electroporation (Riggs, et al., (1986) Proc. Natl. Acad. Sci. USA 83:5602-5606, direct gene transfer (Paszkowski et al., (1984) EMBO J. 3:2717-2722) and ballistic particle acceleration (see, for example, Sanford, et al., U.S. Pat. No. 4,945,050; WO 91/10725 and McCabe, et al., (1988) Biotechnology 6:923-926). Also see, Tomes, et al., "Direct DNA Transfer into Intact Plant Cells Via Microprojectile Bombardment". pp. 197-213 in Plant Cell, Tissue and Organ Culture, Fundamental Methods. eds. Gamborg and Phillips, Springer-Verlag Berlin Heidelberg New York, 1995; U.S. Pat. No. 5,736,369 (meristem); Weissinger, et al., (1988) Ann. Rev. Genet. 22:421-477; Sanford, et al., (1987) Particulate Science and Technology 5:27-37 (onion); Christou, et al., (1988) Plant Physiol. 87:671-674 (soybean); Datta, et al., (1990) Biotechnology 8:736-740 (rice); Klein, et al., (1988) Proc. Natl. Acad. Sci. USA 85:4305-4309 (maize); Klein, et al., (1988) Biotechnology 6:559-563 (maize); WO 91/10725 (maize); Klein, et al., (1988) Plant Physiol. 91:440-444 (maize); Fromm, et al., (1990) Biotechnology 8:833-839 and Gordon-Kamm, et al., (1990) Plant Cell 2:603-618 (maize); Hooydaas-Van Slogteren and Hooykaas, (1984) Nature (London) 311:763-764; Bytebierm, et al., (1987) Proc. Natl. Acad. Sci. USA 84:5345-5349 (Liliaceae); De Wet, et al., (1985) In The Experimental Manipulation of Ovule Tissues, ed. Chapman, et al., pp. 197-209, Longman, N.Y. (pollen); Kaeppler, et al., (1990) Plant Cell Reports 9:415-418; and Kaeppler, et al., (1992) Theor. Appl. Genet. 84:560-566 (whisker-mediated transformation); U.S. Pat. No. 5,693,512 (sonication); D'Halluin, et al., (1992) Plant Cell 4:1495-1505 (electroporation); Li, et al., (1993) Plant Cell Reports 12:250-255 and Christou and Ford, (1995) Annals of Botany 75:407-413 (rice); Osjoda, et al., (1996) Nature Biotech. 14:745-750; Agrobacterium mediated maize transformation (U.S. Pat. No. 5,981,840); silicon carbide whisker methods (Frame, et al., (1994) Plant J. 6:941-948); laser methods (Guo, et al., (1995) Physiologia Plantarum 93:19-24); sonication methods (Bao, et al., (1997) Ultrasound in Medicine & Biology 23:953-959; Finer and Finer, (2000) Lett Appl Microbiol. 30:406-10; Amoah, et al., (2001) J Exp Bot 52:1135-42); polyethylene glycol methods (Krens, et al., (1982) Nature 296:72-77); protoplasts of monocot and dicot cells can be transformed using electroporation (Fromm, et al., (1985) Proc. Natl. Acad. Sci. USA 82:5824-5828) and microinjection (Crossway, et al., (1986) Mol. Gen. Genet. 202:179-185), all of which are herein incorporated by reference.

[0195] The most widely utilized method for introducing an expression vector into plants is based on the natural transformation system of Agrobacterium. A. tumefaciens and A. rhizogenes are plant pathogenic soil bacteria, which genetically transform plant cells. The Ti and Ri plasmids of A. tumefaciens and A. rhizogenes, respectively, carry genes responsible for genetic transformation of plants. See, e.g., Kado, (1991) Crit. Rev. Plant Sci. 10:1. Descriptions of the Agrobacterium vector systems and methods for Agrobacterium-mediated gene transfer are provided in Gruber, et al., supra; Miki, et al., supra and Moloney, et al., (1989) Plant Cell Reports 8:238.

[0196] Similarly, the gene can be inserted into the T-DNA region of a Ti or Ri plasmid derived from A. tumefaciens or A. rhizogenes, respectively. Thus, expression cassettes can be constructed as above, using these plasmids. Many control sequences are known which when coupled to a heterologous coding sequence and transformed into a host organism show fidelity in gene expression with respect to tissue/organ specificity of the original coding sequence. See, e.g., Benfey and Chua, (1989) Science 244:174-81. Particularly suitable control sequences for use in these plasmids are promoters for constitutive leaf-specific expression of the gene in the various target plants. Other useful control sequences include a promoter and terminator from the nopaline synthase gene (NOS). The NOS promoter and terminator are present in the plasmid pARC2, available from the American Type Culture Collection and designated ATCC Deposit Number 67238. If such a system is used, the virulence (vir) gene from either the Ti or Ri plasmid must also be present, either along with the T-DNA portion or via a binary system where the vir gene is present on a separate vector. Such systems, vectors for use therein and methods of transforming plant cells are described in U.S. Pat. No. 4,658,082; US Patent Application Serial Number 913,914, filed Oct. 1, 1986, as referenced in U.S. Pat. No. 5,262,306, issued Nov. 16, 1993 and Simpson, et al., (1986) Plant Mol. Biol. 6:403-15 (also referenced in the '306 patent), all incorporated by reference in their entirety.

[0197] Once constructed, these plasmids can be placed into A. rhizogenes or A. tumefaciens and these vectors used to transform cells of plant species, which are ordinarily susceptible to Fusarium or Alternaria infection. Several other transgenic plants are also contemplated by the present invention including but not limited to soybean, corn, sorghum, alfalfa, rice, clover, cabbage, banana, coffee, celery, tobacco, cowpea, cotton, melon and pepper. The selection of either A. tumefaciens or A. rhizogenes will depend on the plant being transformed thereby. In general A. tumefaciens is the preferred organism for transformation. Most dicotyledonous plants, some gymnosperms, and a few monocotyledonous plants (e.g., certain members of the Liliales and Arales) are susceptible to infection with A. tumefaciens. A. rhizogenes also has a wide host range, embracing most dicots and some gymnosperms, which includes members of the Leguminosae, Compositae and Chenopodiaceae. Monocot plants can now be transformed with some success. EP Patent Application Number 604 662 A1 discloses a method for transforming monocots using Agrobacterium. EP Patent Application Number 672 752 A1 discloses a method for transforming monocots with Agrobacterium using the scutellum of immature embryos. Ishida, et al., discuss a method for transforming maize by exposing immature embryos to A. tumefaciens (Nature Biotechnology 14:745-50 (1996)).

[0198] Once transformed, these cells can be used to regenerate transgenic plants. As used herein, "transgenic plant" includes reference to a plant, which comprises within its genome a heterologous polynucleotide. Generally, the heterologous polynucleotide is stably integrated within the genome such that the polynucleotide is passed on to successive generations. The heterologous polynucleotide may be integrated into the genome alone or as part of a recombinant expression cassette. "Transgenic" is used herein to include any cell, cell line, callus, tissue, plant part or plant, the genotype of which has been altered by the presence of heterologous nucleic acid including those transgenics initially so altered as well as those created by sexual crosses or asexual propagation from the initial transgenic. The term "transgenic" as used herein does not encompass the alteration of the genome (chromosomal or extra-chromosomal) by conventional plant breeding methods or by naturally occurring events such as random cross-fertilization, non-recombinant viral infection, non-recombinant bacterial transformation, non-recombinant transposition or spontaneous mutation.

[0199] For example, whole plants can be infected with these vectors by wounding the plant and then introducing the vector into the wound site. Any part of the plant can be wounded, including leaves, stems and roots. Alternatively, plant tissue, in the form of an explant, such as cotyledonary tissue or leaf disks, can be inoculated with these vectors, and cultured under conditions, which promote plant regeneration. Roots or shoots transformed by inoculation of plant tissue with A. rhizogenes or A. tumefaciens, containing the gene coding for the fumonisin degradation enzyme, can be used as a source of plant tissue to regenerate fumonisin-resistant transgenic plants, either via somatic embryogenesis or organogenesis. Examples of such methods for regenerating plant tissue are disclosed in Shahin, (1985) Theor. Appl. Genet. 69:235-40; U.S. Pat. No. 4,658,082; Simpson, et al., supra and US Patent Application Serial Numbers 913,913 and 913,914, both filed Oct. 1, 1986, as referenced in U.S. Pat. No. 5,262,306, issued Nov. 16, 1993, the entire disclosures therein incorporated herein by reference.

[0200] Despite the fact that the host range for Agrobacterium-mediated transformation is broad, some major cereal crop species and gymnosperms have generally been recalcitrant to this mode of gene transfer, even though some success has recently been achieved in rice (Hiei, et al., (1994) The Plant Journal 6:271-82). Several methods of plant transformation, collectively referred to as direct gene transfer, have been developed as an alternative to Agrobacterium-mediated transformation.

[0201] A generally applicable method of plant transformation is microprojectile-mediated transformation, where DNA is carried on the surface of microprojectiles measuring about 1 to 4 p.m. The expression vector is introduced into plant tissues with a biolistic device that accelerates the microprojectiles to speeds of 300 to 600 m/s which is sufficient to penetrate the plant cell walls and membranes (Sanford, et al., (1987) Part. Sci. Technol. 5:27; Sanford, (1988) Trends Biotech 6:299; Sanford, (1990) Physiol. Plant 79:206 and Klein, et al., (1992) Biotechnology 10:268).

[0202] Another method for physical delivery of DNA to plants is sonication of target cells as described in Zang, et al., (1991) BioTechnology 9:996. Alternatively, liposome or spheroplast fusions have been used to introduce expression vectors into plants. See, e.g., Deshayes, et al., (1985) EMBO J. 4:2731 and Christou, et al., (1987) Proc. Natl. Acad. Sci. USA 84:3962. Direct uptake of DNA into protoplasts using CaCl.sub.2 precipitation, polyvinyl alcohol, or poly-L-ornithine has also been reported. See, e.g., Hain, et al., (1985) Mol. Gen. Genet. 199:161 and Draper, et al., (1982) Plant Cell Physiol. 23:451.

[0203] Electroporation of protoplasts and whole cells and tissues has also been described. See, e.g., Donn, et al., (1990) Abstracts of the VIIth Int'l. Congress on Plant Cell and Tissue Culture IAPTC, A2-38, p. 53; D'Halluin, et al., (1992) Plant Cell 4:1495-505 and Spencer, et al., (1994) Plant Mol. Biol. 24:51-61.

[0204] In addition to modulating ethylene synthesis, the methods of the invention can be used along with sequences or methods that alter additional phenotypes in the plant. Various changes in phenotype are of interest including modifying the fatty acid composition in a plant, altering the amino acid content of a plant, altering a plant's pathogen defense mechanism, and the like. These results can be achieved by providing expression of heterologous products or increased expression of endogenous products in plants. Alternatively, the results can be achieved by providing for a reduction of expression of one or more endogenous products, particularly enzymes or cofactors in the plant. These changes result in a change in phenotype of the transformed plant.

[0205] Genes of interest are reflective of the commercial markets and interests of those involved in the development of the crop. Crops and markets of interest change, and as developing nations open up world markets, new crops and technologies will emerge also. In addition, as our understanding of agronomic traits and characteristics such as yield and heterosis increase, the choice of genes for transformation will change accordingly. General categories of genes of interest include, for example, those genes involved in information, such as zinc fingers, those involved in communication, such as kinases and those involved in housekeeping, such as heat shock proteins. More specific categories of transgenes, for example, include genes encoding important traits for agronomics, insect resistance, disease resistance, herbicide resistance, sterility, grain characteristics and commercial products. Genes of interest include, generally, those involved in oil, starch, carbohydrate or nutrient metabolism as well as those affecting kernel size, sucrose loading and the like.

[0206] In certain embodiments the nucleic acid sequences of the present invention can be used in combination ("stacked") with other polynucleotide sequences of interest in order to create plants with a desired phenotype. The combinations generated can include multiple copies of any one or more of the polynucleotides of interest. The polynucleotides of the present invention may be stacked with any gene or combination of genes to produce plants with a variety of desired trait combinations, including but not limited to traits desirable for animal feed such as high oil genes (e.g., U.S. Pat. No. 6,232,529); balanced amino acids (e.g., hordothionins (U.S. Pat. Nos. 5,990,389; 5,885,801; 5,885,802 and 5,703,049); barley high lysine (Williamson, et al., (1987) Eur. J. Biochem. 165:99-106 and WO 98/20122) and high methionine proteins (Pedersen, et al., (1986) J. Biol. Chem. 261:6279; Kirihara, et al., (1988) Gene 71:359 and Musumura, et al., (1989) Plant Mol. Biol. 12:123)); increased digestibility (e.g., modified storage proteins (U.S. patent application Ser. No. 10/053,410, filed Nov. 7, 2001) and thioredoxins (U.S. patent application Ser. No. 10/005,429, filed Dec. 3, 2001)), the disclosures of which are herein incorporated by reference. The polynucleotides of the present invention can also be stacked with traits desirable for insect, disease or herbicide resistance (e.g., Bacillus thuringiensis toxic proteins (U.S. Pat. Nos. 5,366,892; 5,747,450; 5,736,514; 5,723,756; 5,593,881; Geiser, et al., (1986) Gene 48:109); lectins (Van Damme, et al., (1994) Plant Mol. Biol. 24:825); fumonisin detoxification genes (U.S. Pat. No. 5,792,931); avirulence and disease resistance genes (Jones, et al., (1994) Science 266:789; Martin, et al., (1993) Science 262:1432; Mindrinos, et al., (1994) Cell 78:1089); acetolactate synthase (ALS) mutants that lead to herbicide resistance such as the S4 and/or Hra mutations; inhibitors of glutamine synthase such as phosphinothricin or basta (e.g., bar gene); and glyphosate resistance (EPSPS gene)) and traits desirable for processing or process products such as high oil (e.g., U.S. Pat. No. 6,232,529); modified oils (e.g., fatty acid desaturase genes (U.S. Pat. No. 5,952,544; WO 94/11516)); modified starches (e.g., ADPG pyrophosphorylases (AGPase), starch synthases (SS), starch branching enzymes (SBE) and starch debranching enzymes (SDBE)) and polymers or bioplastics (e.g., U.S. Pat. No. 5,602,321; beta-ketothiolase, polyhydroxybutyrate synthase and acetoacetyl-CoA reductase (Schubert, et al., (1988) J. Bacteriol. 170:5837-5847) facilitate expression of polyhydroxyalkanoates (PHAs)), the disclosures of which are herein incorporated by reference. One could also combine the polynucleotides of the present invention with polynucleotides affecting agronomic traits such as male sterility (e.g., see, U.S. Pat. No. 5,583,210), stalk strength, flowering time or transformation technology traits such as cell cycle regulation or gene targeting (e.g., WO 99/61619; WO 00/17364; WO 99/25821), the disclosures of which are herein incorporated by reference.

[0207] In one embodiment, sequences of interest improve plant growth and/or crop yields. For example, sequences of interest include agronomically important genes that result in improved primary or lateral root systems. Such genes include, but are not limited to, nutrient/water transporters and growth induces. Examples of such genes, include but are not limited to, maize plasma membrane H.sup.+-ATPase (MHA2) (Frias, et al., (1996) Plant Cell 8:1533-44); AKT1, a component of the potassium uptake apparatus in Arabidopsis, (Spalding, et al., (1999) J Gen Physiol 113:909-18); RML genes which activate cell division cycle in the root apical cells (Cheng, et al., (1995) Plant Physiol 108:881); maize glutamine synthetase genes (Sukanya, et al., (1994) Plant Mol Biol 26:1935-46) and hemoglobin (Duff, et al., (1997) J. Biol. Chem 27:16749-16752, Arredondo-Peter, et al., (1997) Plant Physiol. 115:1259-1266; Arredondo-Peter, et al., (1997) Plant Physiol 114:493-500 and references sited therein). The sequence of interest may also be useful in expressing antisense nucleotide sequences of genes that that negatively affects root development.

[0208] Additional, agronomically important traits such as oil, starch and protein content can be genetically altered in addition to using traditional breeding methods. Modifications include increasing content of oleic acid, saturated and unsaturated oils, increasing levels of lysine and sulfur, providing essential amino acids and also modification of starch. Hordothionin protein modifications are described in U.S. Pat. Nos. 5,703,049, 5,885,801, 5,885,802 and 5,990,389, herein incorporated by reference. Another example is lysine and/or sulfur rich seed protein encoded by the soybean 2S albumin described in U.S. Pat. No. 5,850,016, and the chymotrypsin inhibitor from barley, described in Williamson, et al., (1987) Eur. J. Biochem. 165:99-106, the disclosures of which are herein incorporated by reference.

[0209] Derivatives of the coding sequences can be made by site-directed mutagenesis to increase the level of preselected amino acids in the encoded polypeptide. For example, the gene encoding the barley high lysine polypeptide (BHL) is derived from barley chymotrypsin inhibitor, U.S. patent application Ser. No. 08/740,682, filed Nov. 1, 1996 and WO 98/20133, the disclosures of which are herein incorporated by reference. Other proteins include methionine-rich plant proteins such as from sunflower seed (Lilley, et al., (1989) Proceedings of the World Congress on Vegetable Protein Utilization in Human Foods and Animal Feedstuffs, ed. Applewhite (American Oil Chemists Society, Champaign, Ill.), pp. 497-502, herein incorporated by reference); corn (Pedersen, et al., (1986) J. Biol. Chem. 261:6279; Kirihara, et al., (1988) Gene 71:359, both of which are herein incorporated by reference) and rice (Musumura, et al., (1989) Plant Mol. Biol. 12:123, herein incorporated by reference). Other agronomically important genes encode latex, Floury 2, growth factors, seed storage factors and transcription factors.

[0210] Insect resistance genes may encode resistance to pests that have great yield drag such as rootworm, cutworm, European Corn Borer and the like. Such genes include, for example, Bacillus thuringiensis toxic protein genes (U.S. Pat. Nos. 5,366,892; 5,747,450; 5,736,514; 5,723,756; 5,593,881 and Geiser, et al., (1986) Gene 48:109) and the like.

[0211] Genes encoding disease resistance traits include detoxification genes, such as against fumonosin (U.S. Pat. No. 5,792,931); avirulence (avr) and disease resistance (R) genes (Jones, et al., (1994) Science 266:789; Martin, et al., (1993) Science 262:1432 and Mindrinos, et al., (1994) Cell 78:1089) and the like.

[0212] Herbicide resistance traits may include genes coding for resistance to herbicides that act to inhibit the action of acetolactate synthase (ALS), in particular the sulfonylurea-type herbicides (e.g., the acetolactate synthase (ALS) gene containing mutations leading to such resistance, in particular the S4 and/or Hra mutations), genes coding for resistance to herbicides that act to inhibit action of glutamine synthase, such as phosphinothricin or basta (e.g., the bar gene) or other such genes known in the art. The bar gene encodes resistance to the herbicide basta, the nptII gene encodes resistance to the antibiotics kanamycin and geneticin and the ALS-gene mutants encode resistance to the herbicide chlorsulfuron.

[0213] Sterility genes can also be encoded in an expression cassette and provide an alternative to physical detasseling. Examples of genes used in such ways include male tissue-preferred genes and genes with male sterility phenotypes such as QM, described in U.S. Pat. No. 5,583,210. Other genes include kinases and those encoding compounds toxic to either male or female gametophytic development.

[0214] The quality of grain is reflected in traits such as levels and types of oils, saturated and unsaturated, quality and quantity of essential amino acids and levels of cellulose. In corn, modified hordothionin proteins are described in U.S. Pat. Nos. 5,703,049, 5,885,801, 5,885,802 and 5,990,389.

[0215] Commercial traits can also be encoded on a gene or genes that could increase for example, starch for ethanol production, or provide expression of proteins. Another important commercial use of transformed plants is the production of polymers and bioplastics such as described in U.S. Pat. No. 5,602,321. Genes such as 13-Ketothiolase, PHBase (polyhydroxyburyrate synthase) and acetoacetyl-CoA reductase (see, Schubert, et al., (1988) J. Bacteriol. 170:5837-5847) facilitate expression of polyhyroxyalkanoates (PHAs).

[0216] Exogenous products include plant enzymes and products as well as those from other sources including procaryotes and other eukaryotes. Such products include enzymes, cofactors, hormones, and the like. The level of proteins, particularly modified proteins having improved amino acid distribution to improve the nutrient value of the plant, can be increased. This is achieved by the expression of such proteins having enhanced amino acid content.

[0217] The cells that have been transformed may be grown into plants in accordance with conventional ways. See, for example, McCormick et al. (1986) Plant Cell Reports 5: 81-84. These plants may then be grown and either pollinated with the same transformed strain or different strains; the resulting progeny having the desired phenotypic characteristic can then be identified. Two or more generations may be grown to ensure that the desired phenotypic characteristic is stably maintained and inherited and then seeds harvested to ensure that stable transformants exhibiting the desired phenotypic characteristic have been achieved. In this manner, the present invention provides transformed seed (also referred to as "transgenic seed") having a nucleotide construct of the invention, for example, a cassette of the invention, stably incorporated into their genome.

[0218] As used herein, the term "plant" includes reference to whole plants, plant organs (e.g., leaves, stems, roots, etc.), seeds and plant cells and progeny of same. The term plant also includes plant protoplasts, plant calli, and plant clumps. Plant cell, as used herein includes, without limitation, cells in or from seeds, suspension cultures, embryos, meristematic regions, callus tissue, leaves, roots, shoots, gametophytes, sporophytes, pollen and microspores. Plant cells can be part of an intact plant or part of a plant, such as embryos, pollen, ovules, seeds, leaves, flowers, branches, fruit, kernels, ears, cobs, husks, stalks, roots, root tips, anthers, and the like. Grain is intended to mean the mature seed produced by commercial growers for purposes other than growing or reproducing the species. Progeny, variants, and mutants of the regenerated plants are also included within the scope of the invention, provided that these parts comprise the introduced polynucleotides.

[0219] The present invention may be used for transformation of any plant species, including, but not limited to, monocots and dicots. Examples of plant species of interest include, but are not limited to, corn (Zea mays), Brassica sp. (e.g., B. napus, B. rapa, B. juncea), particularly those Brassica species useful as sources of seed oil, alfalfa (Medicago sativa), rice (Oryza sativa), rye (Secale cereale), sorghum (Sorghum bicolor, Sorghum vulgare), millet (e.g., pearl millet (Pennisetum glaucum), proso millet (Panicum miliaceum), foxtail millet (Setaria italica), finger millet (Eleusine coracana)), sunflower (Helianthus annuus), safflower (Carthamus tinctorius), wheat (Triticum aestivum), soybean (Glycine max), tobacco (Nicotiana tabacum), potato (Solanum tuberosum), peanuts (Arachis hypogaea), cotton (Gossypium barbadense, Gossypium hirsutum), sweet potato (Ipomoea batatus), cassava (Manihot esculenta), coffee (Coffea spp.), coconut (Cocos nucifera), pineapple (Ananas comosus), citrus trees (Citrus spp.), cocoa (Theobroma cacao), tea (Camellia sinensis), banana (Musa spp.), avocado (Persea americana), fig (Ficus casica), guava (Psidium guajava), mango (Mangifera indica), olive (Olea europaea), papaya (Carica papaya), cashew (Anacardium occidentale), macadamia (Macadamia integrifolia), almond (Prunus amygdalus), sugar beets (Beta vulgaris), sugarcane (Saccharum spp.), oats, barley, vegetables, ornamentals, and conifers. In particular embodiments of the presently disclosed methods, the plant is Zea mays.

[0220] Vegetables include tomatoes (Lycopersicon esculentum), lettuce (e.g., Lactuca sativa), green beans (Phaseolus vulgaris), lima beans (Phaseolus limensis), peas (Lathyrus spp.), and members of the genus Cucumis such as cucumber (C. sativus), cantaloupe (C. cantalupensis), and musk melon (C. melo). Ornamentals include azalea (Rhododendron spp.), hydrangea (Macrophylla hydrangea), hibiscus (Hibiscus rosasanensis), roses (Rosa spp.), tulips (Tulipa spp.), daffodils (Narcissus spp.), petunias (Petunia hybrida), carnation (Dianthus caryophyllus), poinsettia (Euphorbia pulcherrima), and chrysanthemum.

[0221] Conifers that may be employed in practicing the present invention include, for example, pines such as loblolly pine (Pinus taeda), slash pine (Pinus elliotii), ponderosa pine (Pinus ponderosa), lodgepole pine (Pinus contorta), and Monterey pine (Pinus radiata); Douglas-fir (Pseudotsuga menziesii); Western hemlock (Tsuga canadensis); Sitka spruce (Picea glauca); redwood (Sequoia sempervirens); true firs such as silver fir (Abies amabilis) and balsam fir (Abies balsamea); and cedars such as Western red cedar (Thuja plicata) and Alaska yellow-cedar (Chamaecyparis nootkatensis). In specific embodiments, plants of the present invention are crop plants (for example, corn, alfalfa, sunflower, Brassica, soybean, cotton, safflower, peanut, sorghum, wheat, millet, tobacco, etc.). In other embodiments, corn and soybean and sugarcane plants are optimal, and in yet other embodiments corn plants are optimal.

[0222] Other plants of interest include grain plants that provide seeds of interest, oil-seed plants, and leguminous plants. Seeds of interest include grain seeds, such as corn, wheat, barley, rice, sorghum, rye, etc. Oil-seed plants include cotton, soybean, safflower, sunflower, Brassica, maize, alfalfa, palm, coconut, etc. Leguminous plants include beans and peas. Beans include guar, locust bean, fenugreek, soybean, garden beans, cowpea, mungbean, lima bean, fava bean, lentils, chickpea, etc.

[0223] The practice of the present invention will employ, unless otherwise indicated, conventional techniques of botany, microbiology, tissue culture, molecular biology, chemistry, biochemistry and recombinant DNA technology, which are within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Langenheim and Thimann, (1982) Botany: Plant Biology and Its Relation to Human Affairs, John Wiley; Cell Culture and Somatic Cell Genetics of Plants, vol. 1, Vasil, ed. (1984); Stanier, et al., (1986) The Microbial World, 5.sup.th ed., Prentice-Hall; Dhringra and Sinclair, (1985) Basic Plant Pathology Methods, CRC Press; Maniatis, et al., (1982) Molecular Cloning: A Laboratory Manual; DNA Cloning, vols. I and II, Glover, ed. (1985); Oligonucleotide Synthesis, Gait, ed. (1984); Nucleic Acid Hybridization, Hames and Higgins, eds. (1984) and the series Methods in Enzymology, Colowick and Kaplan, eds, Academic Press, Inc., San Diego, Calif.

[0224] Units, prefixes and symbols may be denoted in their SI accepted form. Unless otherwise indicated, nucleic acids are written left to right in 5' to 3' orientation; amino acid sequences are written left to right in amino to carboxy orientation, respectively. Numeric ranges are inclusive of the numbers defining the range. Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.

[0225] It is to be noted that the term "a" or "an" entity refers to one or more of that entity; for example, "a polypeptide" is understood to represent one or more polypeptides. As such, the terms "a" (or "an"), "one or more," and "at least one" can be used interchangeably herein.

[0226] Throughout this specification and the claims, the words "comprise," "comprises," and "comprising" are used in a non-exclusive sense, except where the context requires otherwise.

[0227] As used herein, the term "about," when referring to a value is meant to encompass variations of, in some embodiments .+-.50%, in some embodiments .+-.20%, in some embodiments .+-.10%, in some embodiments .+-.5%, in some embodiments .+-.1%, in some embodiments .+-.0.5%, and in some embodiments .+-.0.1% from the specified amount, as such variations are appropriate to perform the disclosed methods or employ the disclosed compositions.

[0228] Further, when an amount, concentration, or other value or parameter is given as either a range, preferred range, or a list of upper preferable values and lower preferable values, this is to be understood as specifically disclosing all ranges formed from any pair of any upper range limit or preferred value and any lower range limit or preferred value, regardless of whether ranges are separately disclosed. Where a range of numerical values is recited herein, unless otherwise stated, the range is intended to include the endpoints thereof, and all integers and fractions within the range. It is not intended that the scope of the presently disclosed subject matter be limited to the specific values recited when defining a range.

[0229] This invention can be better understood by reference to the following non-limiting examples. It will be appreciated by those skilled in the art that other embodiments of the invention may be practiced without departing from the spirit and the scope of the invention as herein disclosed and claimed.

EXAMPLES

Example 1

ACC Synthase Knockouts by Hairpin RNA Expression

[0230] As noted previously, knockout plant cells and plants can be produced, for example, by introduction of an ACC synthase polynucleotide sequence configured for RNA silencing or interference. This example describes hairpin RNA expression cassettes for improving plant nitrogen utilization phenotype, e.g., in maize. As noted previously, knockout of ACC synthase(s), e.g., by hpRNA expression, can result in plants or plant cells having reduced expression (up to and including no detectable expression) of one or more ACC synthases.

[0231] Expression of hairpin RNA (hpRNA) molecules specific for regions of ACC synthase genes (e.g., promoters, other untranslated regions or coding regions) in plants can alter nitrogen utilization potential of the plants, e.g., through RNA interference and/or silencing.

[0232] hpRNA constructs of ACS2 and ACS6 were generated by linking a ubiquitin promoter to an inverted repeat of a portion of the coding sequence of either the ACS2 or ACS6 gene (see, FIGS. 2 and 3). Each construct was transformed into maize using Agrobacterium-mediated transformation techniques. Nucleic acid molecules and methods for preparing the constructs and transforming maize were as previously described and known in the art and as described herein.

[0233] Expression of hpRNA specific for either ACS2 or ACS6 coding sequences resulted in maize plants that displayed no abnormalities in vegetative and reproductive growth. A total of 36 and 40 individual maize transgenic events were generated for ACS2- and ACS6-hairpin constructs, respectively.

[0234] Approximately 10 low-copy-number events per hpRNA construct were selected for additional backcrossing and transgene evaluation. Nitrogen utilization potential phenotype is evaluated for the backcrossed lines comprising the hpRNA transgene(s), e.g., as described herein (for example, by visual inspection, measurements of photosynthetic activity, determination of chlorophyll or protein content, grain yield, or the like, under normal conditions or under nitrogen-depleted, drought or other stress conditions).

[0235] Corn hybrids containing the inhibition constructs and nulls were planted in the field under nitrogen stress and normal nitrogen conditions. The planting density was 36,000 plants per acre and plants were fully irrigated. Under normal nitrogen conditions, 100 lbs nitrogen per acre was applied in the form of urea ammonium nitrate (UAN) pre-plant, then another 150 lbs per acre UAN was applied as a sidedress at the V6 stage of development. Nitrogen stress was achieved through depletion of soil nitrogen reserves by planting corn with no added nitrogen for two years. After each season of depletion, corn grain and stover were removed to deplete organic matter sources of nitrogen through mineralization. Soil nitrate reserves were monitored to assess the level of depletion. To achieve the target level of stress, UAN was applied by fertigation between V2 and VT, for a total of 150 lbs nitrogen.

[0236] Transgenic events from the construct were nested together with the null to minimize the spatial effects of field variation. The grain yield of events containing the transgene was compared to the yield of a transgenic null. Statistical analysis was conducted to assess whether there is a significant improvement in yield compared with the transgenic null, taking into account row and column spatial effects. [0237] Treatments: Low nitrogen (LN) and Normal N (NN) [0238] Nested design, 6 reps in LN, 4 reps in NN Table 1 below shows yield data (bushels per acre) of 7 events with the RNAi inhibition construct Ubi:ACS6 and wild type controls.

TABLE-US-00001 [0238] TABLE 1 EVENT Low Nitrogen Normal Nitrogen E5678.29.1.20 128 266* E5678.29.1.22 162* 256* E5678.29.1.26 148* 251* E5678.29.1.3 150* 244 E5678.29.1.30 151* 236 E5678.29.1.32 160* 276* E5678.29.1.33 125 265* wild type 117 231 Lsd .sup. 14.9 .sup. 20.0 *significantly different from wild type (P < 0.1)

[0239] As can be seen, 5 out of 7 events showed superior yield to wild type in low nitrogen. Also interestingly, 5 out of 7 events also showed superior yield in normal nitrogen.

Example 2

Improved ACC Synthase Inhibition by Hairpin RNA Expression

[0240] An improved hpRNA construct, the sequence of which is set forth in SEQ ID NO:53 (the expression cassette is set forth in SEQ ID NO:57 and depicted in FIG. 4), was generated by linking a ubiquitin promoter to a portion of the coding sequence of the ACS6 gene and its inverted repeat (SEQ ID NOs: 51 and 52), separated by an ADH1 intron.

[0241] Provided below is a general description of the improved hpRNA plasmid (SEQ ID NO:53):

[0242] DNA SEQ ID NO:53

[0243] UBI:ZM-ACS6 RNAi+UBI:MOPAT:PINII Co-integrate.

[0244] length: 51280 bp

[0245] storage type: Basic

[0246] form: Circular

Functional Map

[0247] CDS (10 signals) [0248] MO-PAT [0249] Start: 7109 End: 7660 [0250] SPC [0251] Start: 9525 End: 10313 (Complementary) [0252] SPECTINOMYCIN RESISTANCE [0253] TET [0254] Start: 14622 End: 15272 (Complementary) [0255] tetracycline resistance [0256] TET [0257] Start: 15378 End: 16028 (Complementary) [0258] tetracycline resistance [0259] TRF A [0260] Start: 17208 End: 19397 (Complementary) [0261] CTL [0262] Start: 24763 End: 31033 (Complementary) [0263] VIR C1 [0264] Start: 34264 End: 34958 [0265] VIR C2 [0266] Start: 34961 End: 35569 [0267] VIR G [0268] Start: 35680 End: 36483 (Complementary) [0269] Agrobacterium virG (region approximated) [0270] VIR B [0271] Start: 36615 End: 46051 (Complementary) [0272] Agrobacterium virB (region approximated)

[0273] Intron (3 signals) [0274] UBI1ZM INTRON1 (PHI) [0275] Start: 2196 End: 3208 [0276] ADH1 INTRON1 (PHI) [0277] Start: 3791 End: 4327 [0278] Isolated from B73 at Pioneer (Notebook 4136.51) [0279] UBI1ZM INTRON1 (PHI) [0280] Start: 6060 End: 7072

[0281] Misc_feature (11 signals) [0282] RB [0283] Start: 1 End: 25 [0284] ALL STOPS [0285] Start: 306 End: 339 [0286] A synthetic sequence of stop codons designed to stop all 6 open reading frames. [0287] FRT5 [0288] Start: 452 End: 499 [0289] ALL STOPS [0290] Start: 910 End: 943 [0291] A synthetic sequence of stop codons designed to stop all 6 open reading frames. [0292] ATTB1 [0293] Start: 1155 End: 1175 [0294] ATTB2 [0295] Start: 4931 End: 4951 (Complementary) [0296] FRT12 [0297] Start: 4998 End: 5045 [0298] FLP recombination target 12 [0299] FRT1 [0300] Start: 8004 End: 8051 [0301] PSB1 [0302] Start: 8052 End: 8146 [0303] A synthetic sequence designed to facilitate PCR analysis of recombined FRT sites. [0304] ALL STOPS [0305] Start: 8147 End: 8180 [0306] A synthetic sequence of stop codons designed to stop all 6 open reading frames. [0307] LB [0308] Start: 8325 End: 8350 [0309] tDNA Left border sequence from Japan Tobacco

[0310] Promoter_prokaryotic (2 signals) [0311] UBI1ZM PRO [0312] Start: 1218 End: 2113 [0313] Maize ubiquitin promoter [0314] UBI1ZM PRO [0315] Start: 5082 End: 5977 [0316] Maize ubiquitin promoter

[0317] Rep_origin (2 signals) [0318] COLE1 ORI [0319] Start: 11588 End: 11857 (Complementary) [0320] ORI V [0321] Start: 32041 End: 32751 (Complementary)

[0322] Terminator (2 signals) [0323] IN2-1 (B) TERM [0324] Start: 505 End: 902 (Complementary) [0325] 98 bp deletion from 3'-end of the terminator. IN stands for INducible and 2-1 relates to an internal code used to designate the same [0326] PINII TERM [0327] Start: 7671 End: 7989 [0328] Potato PINII terminator

[0329] 5'UTR (2 signals) [0330] UBI1ZM 5UTR (PHI) [0331] Start: 2114 End: 2195 [0332] UBI1ZM 5UTR (PHI) [0333] Start: 5978 End: 6059

[0334] Misc_RNA (2 signals) [0335] ZM-ACS6 (TR3) [0336] Start: 3272 End: 3776 (Complementary) [0337] Maize ACC synthase 6 (Aminocyclopropane carboxylate synthase) Truncated fragment for gene silencing. PCR'd from genomic [0338] ZM-ACS6 (TR4) [0339] Start: 4332 End: 4874 [0340] Maize ACC synthase 6 (Aminocyclopropane carboxylate synthase) Truncated fragment for gene silencing. PCR'd from genomic

Restriction Map

TABLE-US-00002 [0341] ApaLI: 14 G|TGCAC sites CACGT|G N1: 287 N2: 2517 N3: 3704 N4: 4391 N5: 6381 N6: 10036 N7: 10810 N8: 11376 N9: 11874 N10: 13564 N11: 45696 N12: 48291 N13: 48789 N14: 50471 AvaI: 37 C|YCGRG sites GRGCY|C N1: 1144 N2: 1909 N3: 3318 N4: 3666 N5: 4429 N6: 4777 N7: 4922 N8: 5072 N9: 5773 N10: 7116 N11: 10391 N12: 15995 N13: 16761 N14: 17741 N15: 20628 N16: 21650 N17: 22422 N18: 24908 N19: 28599 N20: 30815 N21: 31984 N22: 33215 N23: 33223 N24: 33231 N25: 34047 N26: 34545 N27: 35022 N28: 35445 N29: 35491 N30: 36128 N31: 36869 N32: 37358 N33: 37895 N34: 38948 N35: 41282 N36: 43949 N37: 51174 BamHI: 11 G|GATCC sites CCTAG|G N1: 3230 N2: 4329 N3: 4865 N4: 5066 N5: 7094 N6: 34434 N7: 35775 N8: 37634 N9: 38570 N10: 38770 N11: 43916 ClaI: 18 AT|CGAT sites TAGC|TA N1: 2445 N2: 2710 N3: 2935 N4: 6309 N5: 6574 N6: 6799 N7: 33943 N8: 34189 N9: 34622 N10: 36384 N11: 36728 N12: 36855 N13: 41483 N14: 42530 N15: 44527 N16: 46781 N17: 47943 N18: 48057 EcoRI: 11 G|AATTC sites CTTAA|G N1: 2609 N2: 3261 N3: 4834 N4: 4877 N5: 6473 N6: 13890 N7: 37680 N8: 40564 N9: 40976 N10: 42287 N11: 43685 HindIII: 8 A|AGCTT sites TTCGA|A N1: 649 N2: 1202 N3: 3864 N4: 33254 N5: 44317 N6: 45226 N7: 46347 N8: 47862 NcoI: 2 C|CATGG sites GGTAC|C N1: 17026 N2: 17554 PstI: 15 CTGCA|G sites G|ACGTC N1: 1218 N2: 3208 N3: 3777 N4: 5082 N5: 7072 N6: 12698 N7: 13142 N8: 33407 N9: 38321 N10: 41155 N11: 42206 N12: 42791

N13: 48045 N14: 49613 N15: 50049 SmaI: 10 CCC|GGG sites GGG|CCC N1: 1146 N2: 3320 N3: 3668 N4: 4431 N5: 4779 N6: 4924 N7: 5074 N8: 15997 N9: 16763 N10: 34049

[0342] Each construct was transformed into maize using Agrobacterium-mediated transformation techniques. Nucleic acid molecules and methods for preparing the constructs and transforming maize are as previously described and known in the art.

[0343] Transformed plants of the invention were evaluated for yield under four environments. Eight reps were grown under flowering stress in Environment 1, 6 reps were grown under grain fill stress in Environment 2, 6 reps were grown under grain fill stress in Environment 3, and 4 reps were grown under rain-fed conditions in Environment 4. Yields were compared with a highly repeated construct null (CN). The data are shown in FIGS. 5-8.

[0344] FIG. 5 shows the yield of transformed plants of the invention under flowering stress in Environment 1. Each bar represents a separate transformation event. Average yield of transgene-negative segregants is shown (139 bu/a) as control (CN). A total of 74% of the events yielded nominally more than the control plants. Plants representing 18 transgenic events outyielded the control at P<0.10.

[0345] FIG. 6 shows the yield of transformed plants of the invention under grain-fill stress in Environment 2. Each bar represents a separate transformation event. Average yield of transgene-negative segregants is shown (176 bu/a) as control (CN). Thirteen events out-yielded the CN at P<0.10. Of these, eight had also shown significant improvement under flowering stress.

[0346] FIG. 7 shows the yield, as a percent of control, of transformed plants of the invention (indicated by a circle), as well as plants transformed using an alternative ACS6 inhibition vector (indicated by a square) under grain fill stress in Environment 3. Each data point represents a separate transformation event. NS=not significant. The control plants are bulked trans gene-negative segregants. As can be seen, 64% of the events of the invention had significantly superior yield; only 17% of the alternative ACS6 inhibition events had significantly superior yield, relative to the control.

[0347] FIG. 8 shows the yield, as a percent of control, of transformed plants of the invention (indicated by a circle), as well as plants transformed using an alternative ACS6 inhibition vector (indicated by a square) under rain-fed conditions in Environment 4. Each data point represents a separate transformation event. NS=not significant. The control plants are bulked transgene-negative segregants. As can be seen, all points exhibiting statistically significant increases in yield represent events of the invention disclosed herein. In addition, all points exhibiting statistically significant decreases in yield are events containing the alternative ACS6 inhibition vector.

[0348] Without being limited to any particular theory, it is speculated that the construct of the invention provides the documented improvement in yield by refining the modulation of ACS expression. For example, inclusion of the Adh1 intron within the ACS6 hairpin may result in ACS6 being downregulated to a lesser extent in plants of the invention than in plants transformed with the previous (alternative) ACS6 inhibition vector. Alternatively or additionally, the construct of the invention may impact expression of genes other than ACS6, for example ACS2.

Methods:

Protein Extraction

[0349] For total protein isolation, leaves of B73 or mutant plants are collected at the indicated times, quick-frozen in liquid nitrogen and ground to a fine powder. One ml of extraction buffer (20 mM HEPES (pH 7.6), 100 mM KCl, 10% Glycerol) is added to approximately 0.1 g frozen powder and mixed thoroughly. Samples are centrifuged 10 minutes at 10,000 rpm, the supernatant removed to a new tube and the concentration determined spectrophotometrically according to the methods of Bradford, (1976). See, Bradford, (1976) Anal. Biochem. 72:248-254.

Chlorophyll Extraction

[0350] Leaves are frozen in liquid nitrogen and ground to a fine powder. Samples of approximately 0.1 g are removed to a 1.5 ml tube and weighed. Chlorophyll is extracted 5.times. with 1 ml (or 0.8 ml) of 80% acetone. Individual extractions are combined and the final volume adjusted to 10 ml (or 15 ml) with additional 80% acetone. Chlorophyll content (a+b) is determined spectrophotometrically according to the methods of Wellburn, (1994). See, Wellburn, (1994) J. Plant Physiol. 144:307-313.

Measurement of Photosynthesis

[0351] Plants are grown in the field under normal and drought-stress conditions. Under normal conditions, plants are watered for eight hours twice a week. For drought-stressed plants, water is limited to approximately four hours per week for a period starting approximately one week before pollination and continuing through three weeks after pollination. During the period of limited water availability, drought-stressed plants may show visible signs of wilting and leaf rolling. Transpiration, stomatal conductance and CO.sub.2 assimilation are determined with a portable TPS-1 Photosynthesis System (PP Systems). Each leaf on a plant is measured at forty days after pollination. Values typically represent a mean of six determinations.

DNA and RNA Purification

[0352] For total nucleic acid isolation, leaves of B73 are collected at desired times, quick-frozen in liquid nitrogen and ground to a fine powder. Ten ml of extraction buffer (100 mM Tris (pH 8.0), 50 mM EDTA, 200 mM NaCl, 1% SDS, 10 .mu./ml .beta.-mercaptoethanol) is added and mixed thoroughly until thawed. Ten ml of Phenol/Chloroform (1:1, vol:vol) is added and mixed thoroughly. Samples are centrifuged 10 min at 8,000 rpm, the supernatant is removed to a new tube and the nucleic acid is precipitated at -20.degree. C. following addition of 1/10 vol 3M sodium acetate and 1 vol isopropanol. Total nucleic acid is pelleted by centrifugation at 8,000 rpm and resuspended in 1 ml TE. One half of the prep is used for DNA purification and the remaining half is used for RNA purification. (Alternatively, DNA or total nucleic acids can be extracted from 1 cm.sup.2 of seedling leaf, quick-frozen in liquid nitrogen, and ground to a fine powder. 600 .mu.l of extraction buffer [100 mM Tris (pH 8.0), 50 mM EDTA, 200 mM NaCl, 1% SDS, 10 .mu.l/ml .beta.-mercaptoethanol] is added and the sample mixed. The sample is extracted with 700 .mu.l phenol/chloroform (1:1) and centrifuged for 10 minutes at 12,000 rpm. DNA is precipitated and resuspended in 600 .mu.l H2O.)

[0353] For DNA purification, 500 .mu.g Dnase-free Rnase is added to the tube and incubated at 37.degree. C. for 1 hr. Following Rnase digestion, an equal volume of Phenol/Chloroform (1:1, vol:vol) is added and mixed thoroughly. Samples are centrifuged 10 min at 10,000 rpm, the supernatant is removed to a new tube and the DNA precipitated at -20.degree. C. following addition of 1/10 vol 3M sodium acetate and 1 vol isopropanol. DNA is resuspended in sterile water and the concentration is determined spectrophotometrically. To determine DNA integrity, 20 mg of DNA is separated on a 1.8% agarose gel and visualized following staining with ethidium bromide. RNA is purified by 2 rounds of LiCl.sub.2 precipitation according to methods described by Sambrook, et al., supra.

Real-Time RT-PCR Analysis

[0354] Fifty .mu.g total RNA is treated with RQ1.TM. Dnase (Promega) to ensure that no contaminating DNA is present. Two .mu.g total RNA is used directly for cDNA synthesis using the Omniscript.TM. reverse transcription kit (Qiagen) with oligo-dT(20) as the primer.

[0355] Analysis of transcript abundance is accomplished using the QuantiTect.TM. SYBR Green PCR kit (Qiagen). Reactions contain 1.times. buffer, 0.5 .mu.l of the reverse transcription reaction (equivalent to 50 ng total RNA) and 0.25 .mu.M (final concentration) forward and reverse primers in a total reaction volume of 25 .mu.l.

[0356] Reactions are carried out using an ABI PRISM 7700 sequence detection system under the following conditions: 95.degree. C./15 minutes (1 cycle); 95 C/30 sec, 62.degree. C./30 sec, 72.degree. C./2 minute (50 cycles); 72.degree. C./5 minutes (1 cycle). Each gene is analyzed a minimum of four times.

[0357] All the primer combinations are initially run and visualized on an agarose gel to confirm the presence of a single product of the correct size. All amplification products are subcloned into the pGEM-T Easy vector system (Promega) to use for generation of standard curves to facilitate conversion of expression data to a copy/.mu.g RNA basis.

Ethylene Determination

[0358] Ethylene is measured from the second fully-expanded leaf of seedlings at the 4-leaf stage or from the terminal 15 cm of leaves of plants 20, 30 or 40 days after pollination (DAP). Leaves are harvested at the indicated times and allowed to recover for 2 hr prior to collecting ethylene, between moist paper towels. Leaves are placed into glass vials and capped with a rubber septum. Following a 3- to 4-hour incubation, 0.9 mL of headspace is sampled from each vial and the ethylene content measured using a 6850 series gas chromatography system (Hewlett-Packard, Palo Alto, Calif.) equipped with a HP Plot alumina-based capillary column (Agilent Technologies, Palo Alto, Calif.). Tissue fresh weight is measured for each sample. Three replicates are typically measured and the average and standard deviation reported.

Western Blot Analysis

[0359] B73 leaves are collected at the indicated times and ground in liquid nitrogen to a fine powder. One ml of extraction buffer [20 mM HEPES (pH 7.6), 100 mM KCl, 10% glycerol, 1 mM PMSF] is added to approximately 0.1 g frozen powder and mixed thoroughly. Cell debris is pelleted by centrifugation at 10,000 rpm for 10 min and the protein concentration determined as described (Bradford, 1976). Antiserum raised against the large subunit of rice Rubisco is obtained from Dr. Tadahiko Mae (Tohoku University, Sendai, Japan). Protein extracts are resolved using standard SDS-PAGE and the protein transferred to 0.22 .mu.m nitrocellulose membrane by electroblotting. Following transfer, the membranes are blocked in 5% milk, 0.01% thimerosal in TPBS (0.1% TWEEN.RTM. 20, 13.7 mM NaCl, 0.27 mM KCl, 1 mM Na2HPO4, 0.14 mM KH2PO4) followed by incubation with primary antibodies diluted typically 1:1000 to 1:2000 in TPBS with 1% milk for 1.5 hrs. The blots are then washed twice with TPBS and incubated with goat anti-rabbit horseradish peroxidase-conjugated antibodies (Southern Biotechnology Associates, Inc.) diluted to 1:5000 to 1:10,000 for 1 hr. The blots are washed twice with TPBS and the signal detected typically between 1 to 15 min using chemiluminescence (Amersham Corp).

Example 3

Yield of Plants Comprising Improved ACS6 Inhibition Construct Under Reduced Nitrogen

[0360] Plants comprising the improved ACS6 inhibition construct described in Example 2 were planted in the field under nitrogen-stress and normal-nitrogen conditions.

[0361] Nitrogen stress was achieved through targeted depletion of soil nitrogen reserves by previous corn production and/or limited application of nitrogen fertilizer. In addition to cropping history, soil type and other environmental factors were taken into consideration in creating appropriate nitrogen-stress conditions.

[0362] The grain yield of plants containing the transgene was compared to the yield of a wild-type or transgenic null. The test used a randomized complete block design with six replications. Statistical analysis was conducted using ASReml to assess differences in yield, taking into account row and column spatial effects and autoregressive (AR1) adjustments.

[0363] Table 2 provides yield data in bushels/acre for plants representing 19 transformation events under nitrogen-stress conditions in two geographic locations. Yields marked with an asterisk are significantly greater than the control at P<0.1.

TABLE-US-00003 TABLE 2 Event Location 1 Location 2 2.12 121 202* 2.29 124* 199 2.32 123 211* 113.2.7 124* 206* 4.3 124* 204* 4.8 125* 203* 1.23 127* 208* 1.44 126* 207* 2.15 124* 205* 2.2 124 201 2.24 124* 198 2.38 125* 204* 2.49 123 202* 1.14 125* 210* 2.18 126* 206* 2.22 124* 208* 2.8 125* 205* 2.1 125* 206* 66.2.7 124* 202* Control 120 197

[0364] Additional measurements were taken at Location 2, as follows. Average yield of the transgenic plants under normal-nitrogen conditions was 232 bushels per acre; under nitrogen-stress conditions, the average yield was 203 bushels per acre. Under nitrogen stress, growing-degree-units to pollen shed was 1273, compared to 1330 under normal-nitrogen conditions. In addition, plants grown in the nitrogen-stress environment showed a reduction in anthesis-silking interval (ASI) of 18. Barren count in the low-nitrogen environment was 1 on a 1 to 10 scale, where 10 is least favorable.

Example 4

Low Nitrogen Seedling Assay Protocol

[0365] Seeds produced by transgenic plants are separated into transgene (heterozygous) and Null Seed Using a Seed Color Marker. Two Different Random Assignments of treatments are made to each block of 54 pots, arranged as 6 rows of 9 columns and using 9 replicates of all treatments. In one case, null seed of 5 events of the same construct are mixed and used as control for comparison of the 5 positive events in this block, making up 6 treatment combinations in each block. In the second case, 3 transgenic positive treatments and their corresponding nulls are randomly assigned to the 54 pots of the block, making 6 treatment combinations for each block, containing 9 replicates of all treatment combinations. In the first case transgenic parameters are compared to a bulked construct null; in the second case, transgenic parameters are compared to the corresponding event null. In cases where there are 10, 15 or 20 events in a construct, the events are assigned in groups of 5 events, the variances calculated for each block of 54 pots, but the block null means are pooled across blocks before mean comparisons are made.

[0366] Two seeds of each treatment are planted in 4-inch-square pots containing TURFACE.RTM.-MVP on 8-inch, staggered centers and watered four times each day with a solution containing the following nutrients:

TABLE-US-00004 1 mM CaCl2 2 mM MgSO4 0.5 mM KH2PO4 83 ppm Sprint330 3 mM KCl 1 mM KNO3 1 uM ZnSO4 1 uM MnCl2 3 uM H3BO4 1 uM MnCl2 0.1 uM CuSO4 0.1 uM NaMoO4

[0367] After emergence the plants are thinned to one seed per pot. Treatments routinely are planted on a Monday, emerge the following Friday and are harvested 18 days after planting. At harvest, plants are removed from the pots and the Turface.RTM. washed from the roots. The roots are separated from the shoot, placed in a paper bag and dried at 70.degree. C. for 70 hr. The dried plant parts (roots and shoots) are weighed and placed in a 50 ml conical tube with approximately 20 5/32 inch steel balls and ground by shaking in a paint shaker. Approximately, 30 mg of the ground tissue (weight recorded for later adjustment) is hydrolyzed in 2 ml of 20% H.sub.2O.sub.2 and 6M H.sub.2SO.sub.4 for 30 min at 170.degree. C. After cooling, water is added to 20 ml, mixed thoroughly, and a 50 .mu.l aliquot removed and added to 950 .mu.l 1M Na.sub.2CO.sub.3. The ammonia in this solution is used to estimate total reduced plant nitrogen by placing 100 .mu.l of this solution in individual wells of a 96 well plate followed by adding 50 .mu.l of OPA solution. Fluorescence, excitation=360 nM/emission=530 nM, is determined and compared to NH.sub.4Cl standards dissolved in a similar solution and treated with OPA solution.

[0368] OPA solution-5 .mu.l Mercaptoethanol+1 ml OPA stock solution (make fresh, daily) OPA stock-50 mg o-phthadialdehyde (OPA-Sigma #P0657) dissolved in 1.5 ml methanol+4.4 ml 1M Borate buffer pH9.5 (3.09 g H.sub.3BO.sub.4+1 g NaOH in 50 ml water)+0.55 ml 20% SDS (make fresh weekly)

[0369] Using these data the following parameters are measured and means are compared to null mean parameters using a Student's t test: [0370] Total Plant Biomass [0371] Root Biomass [0372] Shoot Biomass [0373] Root/Shoot Ratio [0374] Plant N concentration [0375] Total Plant N

[0376] Variance is calculated within each block using a nearest neighbor calculation as well as by Analysis of Variance (ANOV) using a completely random design (CRD) model. An overall treatment effect for each block was calculated using an F statistic by dividing overall block treatment mean square by the overall block error mean square.

Example 5

Screening of Gaspe Bay Flint Derived Maize Lines Under Nitrogen Limiting Conditions

[0377] Transgenic plants will contain two or three doses of Gaspe Flint-3 with one dose of GS3 (GS3/(Gaspe-3)2.times. or GS3/(Gaspe-3)3.times.) and will segregate 1:1 for a dominant transgene. Plants will be planted in TURFACE.RTM., a commercial potting medium and watered four times each day with 1 mM KNO.sub.3 growth medium and with 2 mM KNO.sub.3 or higher, growth medium. Control plants grown in 1 mM KNO.sub.3 medium will be less green, produce less biomass and have a smaller ear at anthesis. Results are analyzed for statistical significance.

[0378] Expression of a transgene will result in plants with improved plant growth in 1 mM KNO.sub.3 when compared to a transgenic null. Thus biomass and greenness will be monitored during growth and compared to a transgenic null. Improvements in growth, greenness and ear size at anthesis will be indications of increased nitrogen utilization efficiency.

Example 6

Assays to Determine Alterations of Root Architecture in Maize

[0379] Transgenic maize plants are assayed for changes in root architecture at seedling stage, flowering time or maturity. Assays to measure alterations of root architecture of maize plants include, but are not limited to the methods outlined below. To facilitate manual or automated assays of root architecture alterations, corn plants can be grown in clear pots. [0380] 1) Root mass (dry weights). Plants are grown in Turface.RTM., a growth medium that allows easy separation of roots. Oven-dried shoot and root tissues are weighed and a root/shoot ratio calculated. [0381] 2) Levels of lateral root branching. The extent of lateral root branching (e.g., lateral root number, lateral root length) is determined by sub-sampling a complete root system, imaging with a flat-bed scanner or a digital camera and analyzing with WinRHIZO.TM. software (Regent Instruments Inc.). [0382] 3) Root band width measurements. The root band is the band or mass of roots that forms at the bottom of greenhouse pots as the plants mature. The thickness of the root band is measured in mm at maturity as a rough estimate of root mass. [0383] 4) Nodal root count. The number of crown roots coming off the upper nodes can be determined after separating the root from the support medium (e.g., potting mix). In addition the angle of crown roots and/or brace roots can be measured. Digital analysis of the nodal roots and amount of branching of nodal roots form another extension to the aforementioned manual method.

[0384] All data taken on root phenotype are subjected to statistical analysis, normally a t-test to compare the transgenic roots with those of non-transgenic sibling plants. One-way ANOVA may also be used in cases where multiple events and/or constructs are involved in the analysis.

Example 7

NUE Assay of Plant Growth

[0385] Seeds of Arabidopsis thaliana (control and transgenic line), ecotype Columbia, are surface sterilized (Sanchez, et al., 2002) and then plated on to Murashige and Skoog (MS) medium containing 0.8% (w/v) Bacto.TM.-Agar (Difco). Plates are incubated for 3 days in darkness at 4.degree. C. to break dormancy (stratification) and transferred thereafter to growth chambers (Conviron, Manitoba, Canada) at a temperature of 20.degree. C. under a 16-h light/8-h dark cycle. The average light intensity is 120 .mu.E/m2/s. Seedling are grown for 12 days and then transferred to soil based pots. Potted plants are grown on a nutrient-free soil LB2 Metro-Mix.RTM. 200 (Scott's Sierra Horticultural Products, Marysville, Ohio, USA) in individual 1.5-in pots (Arabidopsis system; Lehle Seeds, Round Rock, Tex., USA) in growth chambers, as described above. Plants are watered with 0.6 or 6.5 mM potassium nitrate in the nutrient solution based on Murashige and Skoog (MS free Nitrogen) medium. The relative humidity is maintained around 70%. 16-18 days later plant shoots are collected for evaluation of biomass and SPAD readings.

Example 8

Agrobacterium Mediated Transformation into Maize

[0386] Maize plants can be transformed to overexpress a nucleic acid sequence of interest in order to examine the resulting phenotype.

[0387] Agrobacterium-mediated transformation of maize is performed essentially as described by Zhao, et al., (2006) Meth. Mol. Biol. 318:315-323 (see also, Zhao, et al., (2001) Mol. Breed. 8:323-333 and U.S. Pat. No. 5,981,840 issued Nov. 9, 1999, incorporated herein by reference). The transformation process involves bacterium inoculation, co-cultivation, resting, selection and plant regeneration.

1. Immature Embryo Preparation

[0388] Immature embryos are dissected from caryopses and placed in a 2 mL microtube containing 2 mL PHI-A medium.

2. Agrobacterium Infection and Co-Cultivation of Embryos

[0389] 2.1 Infection Step

[0390] PHI-A medium is removed with 1 mL micropipettor and 1 mL Agrobacterium suspension is added. Tube is gently inverted to mix. The mixture is incubated for 5 min at room temperature.

[0391] 2.2 Co-Culture Step

[0392] The Agrobacterium suspension is removed from the infection step with a 1 mL micropipettor. Using a sterile spatula the embryos are scraped from the tube and transferred to a plate of PHI-B medium in a 100.times.15 mm Petri dish. The embryos are oriented with the embryonic axis down on the surface of the medium. Plates with the embryos are cultured at 20.degree. C., in darkness, for 3 days. L-Cysteine can be used in the co-cultivation phase. With the standard binary vector, the co-cultivation medium supplied with 100-400 mg/L L-cysteine is critical for recovering stable transgenic events.

3. Selection of Putative Transgenic Events

[0393] To each plate of PHI-D medium in a 100.times.15 mm Petri dish, 10 embryos are transferred, maintaining orientation, and the dishes are sealed with Parafilm.RTM.. The plates are incubated in darkness at 28.degree. C. Actively growing putative events, as pale yellow embryonic tissue are expected to be visible in 6-8 weeks. Embryos that produce no events may be brown and necrotic, and little friable tissue growth is evident. Putative transgenic embryonic tissue is subcultured to fresh PHI-D plates at 2-3 week intervals, depending on growth rate. The events are recorded.

4. Regeneration of T0 Plants

[0394] Embryonic tissue propagated on PHI-D medium is subcultured to PHI-E medium (somatic embryo maturation medium); in 100.times.25 mm Petri dishes and incubated at 28.degree. C., in darkness, until somatic embryos mature, for about 10-18 days. Individual, matured somatic embryos with well-defined scutellum and coleoptile are transferred to PHI-F embryo germination medium and incubated at 28.degree. C. in the light (about 80 .mu.E from cool white or equivalent fluorescent lamps). In 7-10 days, regenerated plants, about 10 cm tall, are potted in horticultural mix and hardened-off using standard horticultural methods.

Media for Plant Transformation

[0395] 1. PHI-A: 4 g/L CHU basal salts, 1.0 mL/L 1000.times. Eriksson's vitamin mix, 0.5 mg/L thiamin HCL, 1.5 mg/L 2,4-D, 0.69 g/L L-proline, 68.5 g/L sucrose, 36 g/L glucose, pH 5.2. Add 100 .mu.M acetosyringone, filter-sterilized before using. [0396] 2. PHI-B: PHI-A without glucose, increased 2,4-D to 2 mg/L, reduced sucrose to 30 g/L and supplemented with 0.85 mg/L silver nitrate (filter-sterilized), 3.0 g/L Gelrite.RTM., 100 .mu.M acetosyringone (filter-sterilized), pH 5.8. [0397] 3. PHI-C: PHI-B without Gelrite.RTM. and acetosyringone, reduced 2,4-D to 1.5 mg/L and supplemented with 8.0 g/L agar, 0.5 g/L Ms-morpholino ethane sulfonic acid (MES) buffer, 100 mg/L carbenicillin (filter-sterilized). [0398] 4. PHI-D: PHI-C supplemented with 3 mg/L bialaphos (filter-sterilized). [0399] 5. PHI-E: 4.3 g/L of Murashige and Skoog (MS) salts, (Gibco, BRL 11117-074), 0.5 mg/L nicotinic acid, 0.1 mg/L thiamine HCl, 0.5 mg/L pyridoxine HCl, 2.0 mg/L glycine, 0.1 g/L myo-inositol, 0.5 mg/L zeatin (Sigma, cat. no. Z-0164), 1 mg/L indole acetic acid (IAA), 26.4 .mu.g/L abscisic acid (ABA), 60 g/L sucrose, 3 mg/L bialaphos (filter-sterilized), 100 mg/L carbenicillin (fileter-sterilized), 8 g/L agar, pH 5.6. [0400] 6. PHI-F: PHI-E without zeatin, IAA, ABA; sucrose reduced to 40 g/L; replacing agar with 1.5 g/L Gelrite.RTM.; pH 5.6.

[0401] Plants can be regenerated from the transgenic callus by first transferring clusters of tissue to N6 medium supplemented with 0.2 mg per liter of 2,4-D. After two weeks the tissue can be transferred to regeneration medium (Fromm, et al., (1990) Bio/Technology 8:833-839).

[0402] Phenotypic analysis of transgenic T0 plants and T1 plants can be performed.

[0403] T1 plants can be analyzed for phenotypic changes. Using image analysis T1 plants can be analyzed for phenotypical changes in plant area, volume, growth rate and color analysis at multiple times during growth of the plants. Alteration in root architecture can be assayed as described herein.

[0404] Subsequent analysis of alterations in agronomic characteristics can be done to determine whether plants containing the nucleic acid sequence of interest have an improvement of at least one agronomic characteristic, when compared to the control (or reference) plants that have not been so transformed. The alterations may also be studied under various environmental conditions.

[0405] Expression constructs containing the nucleic acid sequence of interest that result in a significant alteration in root and/or shoot biomass, improved green color, larger ear at anthesis or yield will be considered evidence that the nucleic acid sequence of interest functions in maize to alter nitrogen use efficiency.

Example 9

Electroporation of Agrobacterium tumefaciens LBA4404

[0406] Electroporation competent cells (40 .mu.l), such as Agrobacterium tumefaciens LBA4404 (containing PHP10523), are thawed on ice (20-30 min). PHP10523 contains VIR genes for T-DNA transfer, an Agrobacterium low copy number plasmid origin of replication, a tetracycline resistance gene and a cos site for in vivo DNA biomolecular recombination. Meanwhile the electroporation cuvette is chilled on ice. The electroporator settings are adjusted to 2.1 kV.

[0407] A DNA aliquot (0.5 .mu.L JT (U.S. Pat. No. 7,087,812) parental DNA at a concentration of 0.2 .mu.g-1.0 .mu.g in low salt buffer or twice distilled H.sub.2O) is mixed with the thawed Agrobacterium cells while still on ice. The mix is transferred to the bottom of electroporation cuvette and kept at rest on ice for 1-2 min. The cells are electroporated (Eppendorf electroporator 2510) by pushing "Pulse" button twice (ideally achieving a 4.0 msec pulse). Subsequently 0.5 ml 2.times.YT medium (or SOCmedium) are added to cuvette and transferred to a 15 ml Falcon tube. The cells are incubated at 28-30.degree. C., 200-250 rpm for 3 h.

[0408] Aliquots of 250 .mu.l are spread onto #30B (YM+50 .mu.g/mL Spectinomycin) plates and incubated 3 days at 28-30.degree. C. To increase the number of transformants one of two optional steps can be performed:

[0409] Option 1: overlay plates with 30 .mu.l of 15 mg/ml Rifampicin. LBA4404 has a chromosomal resistance gene for Rifampicin. This additional selection eliminates some contaminating colonies observed when using poorer preparations of LBA4404 competent cells.

[0410] Option 2: Perform two replicates of the electroporation to compensate for poorer electrocompetent cells.

Identification of Transformants:

[0411] Four independent colonies are picked and streaked on AB minimal medium plus 50 mg/mL Spectinomycin plates (#12S medium) for isolation of single colonies. The plates are incubated at 28.degree. C. for 2-3 days.

[0412] A single colony for each putative co-integrate is picked and inoculated with 4 ml #60A with 50 mg/l Spectinomycin. The mix is incubated for 24 h at 28.degree. C. with shaking. Plasmid DNA from 4 ml of culture is isolated using Qiagen Miniprep+optional PB wash. The DNA is eluted in 30 .mu.l. Aliquots of 2 .mu.l are used to electroporate 20 .mu.l of DH10b+20 .mu.l of dd H.sub.2O as per above.

[0413] Optionally a 15 .mu.l aliquot can be used to transform 75-100 .mu.l of Invitrogen.TM. Library Efficiency DH5.alpha.. The cells are spread on LB medium plus 50 mg/mL Spectinomycin plates (#34T medium) and incubated at 37.degree. C. overnight.

[0414] Three to four independent colonies are picked for each putative co-integrate and inoculated 4 ml of 2.times.YT (#60A) with 50 .mu.g/ml Spectinomycin. The cells are incubated at 37.degree. C. overnight with shaking.

[0415] The plasmid DNA is isolated from 4 ml of culture using QIAprep.RTM. Miniprep with optional PB wash (elute in 50 .mu.l) and 8 .mu.l are used for digestion with SalI (using JT parent and PHP10523 as controls).

[0416] Three more digestions using restriction enzymes BamHI, EcoRI and HindIII are performed for 4 plasmids that represent 2 putative co-integrates with correct SalI digestion pattern (using parental DNA and PHP10523 as controls). Electronic gels are recommended for comparison.

Example 10

Particle-Mediated Bombardment for Transformation of Maize

[0417] A vector can be transformed into embryogenic maize callus by particle bombardment, generally as described by Tomes, et al., Plant Cell, Tissue and Organ Culture: Fundamental Methods, Eds. Gamborg and Phillips, Chapter 8, pgs. 197-213 (1995) and as briefly outlined below. Transgenic maize plants can be produced by bombardment of embryogenically responsive immature embryos with tungsten particles associated with DNA plasmids. The plasmids typically comprise or consist of a selectable marker and an unselected structural gene, or a selectable marker and an ACC synthase polynucleotide sequence or subsequence, or the like.

[0418] Preparation of Particles

[0419] Fifteen mg of tungsten particles (General Electric), 0.5 to 1.8.mu., preferably 1 to 1.8.mu., and most preferably 1.mu., are added to 2 ml of concentrated nitric acid. This suspension is sonicated at 0.degree. C. for 20 minutes (Branson Sonifier Model 450, 40% output, constant duty cycle). Tungsten particles are pelleted by centrifugation at 10000 rpm (Biofuge) for one minute and the supernatant is removed. Two milliliters of sterile distilled water are added to the pellet, and brief sonication is used to resuspend the particles. The suspension is pelleted, one milliliter of absolute ethanol is added to the pellet and brief sonication is used to resuspend the particles. Rinsing, pelleting and resuspending of the particles are performed two more times with sterile distilled water and finally the particles are resuspended in two milliliters of sterile distilled water. The particles are subdivided into 250-.mu.l aliquots and stored frozen.

[0420] Preparation of Particle-Plasmid DNA Association

[0421] The stock of tungsten particles are sonicated briefly in a water bath sonicator (Branson Sonifier Model 450, 20% output, constant duty cycle) and 50 .mu.l is transferred to a microfuge tube. The vectors are typically cis: that is, the selectable marker and the gene (or other polynucleotide sequence) of interest are on the same plasmid.

[0422] Plasmid DNA is added to the particles for a final DNA amount of 0.1 to 10 .mu.g in 10 .mu.L total volume and briefly sonicated. Preferably, 10 .mu.g (1 .mu.g/.mu.L in TE buffer) total DNA is used to mix DNA and particles for bombardment. Fifty microliters (50 .mu.L) of sterile aqueous 2.5 M CaCl.sub.2 are added and the mixture is briefly sonicated and vortexed. Twenty microliters (20 .mu.L) of sterile aqueous 0.1 M spermidine are added and the mixture is briefly sonicated and vortexed. The mixture is incubated at room temperature for 20 minutes with intermittent brief sonication. The particle suspension is centrifuged and the supernatant is removed. Two hundred fifty microliters (250 .mu.L) of absolute ethanol are added to the pellet, followed by brief sonication. The suspension is pelleted, the supernatant is removed and 60 .mu.l of absolute ethanol are added. The suspension is sonicated briefly before loading the particle-DNA agglomeration onto macrocarriers.

[0423] Preparation of Tissue

[0424] Immature embryos of maize are the target for particle bombardment-mediated transformation. Ears from F1 plants are selfed or sibbed and embryos are aseptically dissected from developing caryopses when the scutellum first becomes opaque. This stage occurs about 9 13 days post-pollination and most generally about 10 days post-pollination, depending on growth conditions. The embryos are about 0.75 to 1.5 millimeters long. Ears are surface sterilized with 20 50% Clorox.RTM. for 30 minutes, followed by three rinses with sterile distilled water.

[0425] Immature embryos are cultured with the scutellum oriented upward, on embryogenic induction medium comprised of N6 basal salts, Eriksson vitamins, 0.5 mg/l thiamine HCl, 30 gm/l sucrose, 2.88 gm/l L-proline, 1 mg/l 2,4-dichlorophenoxyacetic acid, 2 gm/l Gelrite.RTM. and 8.5 mg/l AgNO.sub.3. Chu, et al., (1975) Sci. Sin. 18:659; Eriksson, (1965) Physiol. Plant 18:976. The medium is sterilized by autoclaving at 121.degree. C. for 15 minutes and dispensed into 100.times.25 mm Petri dishes. AgNO.sub.3 is filter-sterilized and added to the medium after autoclaving. The tissues are cultured in complete darkness at 28.degree. C. After about 3 to 7 days, most usually about 4 days, the scutellum of the embryo swells to about double its original size and the protuberances at the coleorhizal surface of the scutellum indicate the inception of embryogenic tissue. Up to 100% of the embryos display this response, but most commonly, the embryogenic response frequency is about 80%.

[0426] When the embryogenic response is observed, the embryos are transferred to a medium comprised of induction medium modified to contain 120 gm/l sucrose. The embryos are oriented with the coleorhizal pole, the embryogenically responsive tissue, upwards from the culture medium. Ten embryos per Petri dish are located in the center of a Petri dish in an area about 2 cm in diameter. The embryos are maintained on this medium for 3 to 16 hours, preferably 4 hours, in complete darkness at 28.degree. C. just prior to bombardment with particles associated with plasmid DNAs containing the selectable and unselectable marker genes.

[0427] To effect particle bombardment of embryos, the particle-DNA agglomerates are accelerated using a DuPont PDS-1000 particle acceleration device. The particle-DNA agglomeration is briefly sonicated and 10 .mu.l are deposited on macrocarriers and the ethanol is allowed to evaporate. The macrocarrier is accelerated onto a stainless-steel stopping screen by the rupture of a polymer diaphragm (rupture disk). Rupture is effected by pressurized helium. The velocity of particle-DNA acceleration is determined based on the rupture disk breaking pressure. Rupture disk pressures of 200 to 1800 psi are used, with 650 to 1100 psi being preferred and about 900 psi being most highly preferred. Multiple disks are used to effect a range of rupture pressures.

[0428] The shelf containing the plate with embryos is placed 5.1 cm below the bottom of the macrocarrier platform (shelf #3). To effect particle bombardment of cultured immature embryos, a rupture disk and a macrocarrier with dried particle-DNA agglomerates are installed in the device. The He pressure delivered to the device is adjusted to 200 psi above the rupture disk breaking pressure. A Petri dish with the target embryos is placed into the vacuum chamber and located in the projected path of accelerated particles. A vacuum is created in the chamber, preferably about 28 in Hg. After operation of the device, the vacuum is released and the Petri dish is removed.

[0429] Bombarded embryos remain on the osmotically-adjusted medium during bombardment, and 1 to 4 days subsequently. The embryos are transferred to selection medium comprised of N6 basal salts, Eriksson vitamins, 0.5 mg/l thiamine HCl, 30 gm/l sucrose, 1 mg/l 2,4-dichlorophenoxyacetic acid, 2 gm/l Gelrite.RTM., 0.85 mg/l Ag NO.sub.3 and 3 mg/l bialaphos (Herbiace, Meiji). Bialaphos is added filter-sterilized. The embryos are subcultured to fresh selection medium at 10 to 14 day intervals. After about 7 weeks, embryogenic tissue, putatively transformed for both selectable and unselected marker genes, proliferates from a fraction of the bombarded embryos. Putative transgenic tissue is rescued and that tissue derived from individual embryos is considered to be an event and is propagated independently on selection medium. Two cycles of clonal propagation are achieved by visual selection for the smallest contiguous fragments of organized embryogenic tissue.

[0430] A sample of tissue from each event is processed to recover DNA. The DNA is restricted with a restriction endonuclease and probed with primer sequences designed to amplify DNA sequences overlapping the ACC synthase and non-ACC synthase portion of the plasmid. Embryogenic tissue with amplifiable sequence is advanced to plant regeneration.

[0431] For regeneration of transgenic plants, embryogenic tissue is subcultured to a medium comprising MS salts and vitamins (Murashige and Skoog, (1962) Physiol. Plant 15:473), 100 mg/l myo-inositol, 60 gm/l sucrose, 3 gm/l Gelrite.RTM., 0.5 mg/l zeatin, 1 mg/l indole-3-acetic acid, 26.4 ng/l cis-trans-abscissic acid and 3 mg/l bialaphos in 100.times.25 mm Petri dishes and is incubated in darkness at 28.degree. C. until the development of well-formed, matured somatic embryos is seen. This requires about 14 days. Well-formed somatic embryos are opaque and cream-colored and are comprised of an identifiable scutellum and coleoptile. The embryos are individually subcultured to a germination medium comprising MS salts and vitamins, 100 mg/l myo-inositol, 40 gm/l sucrose and 1.5 gm/l Gelrite.RTM. in 100.times.25 mm Petri dishes and incubated under a 16 hour light:8 hour dark photoperiod and 40 meinsteinsm.sup.-2 sec.sup.-1 from cool-white fluorescent tubes. After about 7 days, the somatic embryos germinate and produce a well-defined shoot and root. The individual plants are subcultured to germination medium in 125.times.25 mm glass tubes to allow further plant development. The plants are maintained under a 16 hour light:8 hour dark photoperiod and 40 meinsteinsm.sup.-2 sec-1 from cool-white fluorescent tubes. After about 7 days, the plants are well-established and are transplanted to horticultural soil, hardened off and potted into commercial greenhouse soil mixture and grown to sexual maturity in a greenhouse. An elite inbred line is used as a male to pollinate regenerated trans genic plants.

Example 11

Soybean Embryo Transformation

[0432] Soybean embryos are bombarded with a plasmid comprising a preferred promoter operably linked to a heterologous nucleotide sequence comprising an ACC synthase polynucleotide sequence or subsequence (e.g., SEQ ID NOS: 1 and 2), as follows. To induce somatic embryos, cotyledons of 3 5 mm in length are dissected from surface-sterilized, immature seeds of the soybean cultivar A2872, then cultured in the light or dark at 26.degree. C. on an appropriate agar medium for six to ten weeks. Somatic embryos producing secondary embryos are then excised and placed into a suitable liquid medium. After repeated selection for clusters of somatic embryos that multiply as early, globular-staged embryos, the suspensions are maintained as described below.

[0433] Soybean embryogenic suspension cultures can be maintained in 35 ml liquid media on a rotary shaker, 150 rpm, at 26.degree. C. with fluorescent lights on a 16:8 hour day/night schedule. Cultures are sub-cultured every two weeks by inoculating approximately 35 mg of tissue into 35 ml of liquid medium.

[0434] Soybean embryogenic suspension cultures may then be transformed by the method of particle gun bombardment (Klein, et al., (1987) Nature (London) 327:70-73, U.S. Pat. No. 4,945,050). A DuPont Biolistic.TM. PDS 1000/HE instrument (helium retrofit) can be used for these transformations.

[0435] A selectable marker gene that can be used to facilitate soybean transformation is a transgene composed of the 35S promoter from Cauliflower Mosaic Virus (Odell, et al., (1985) Nature 313:810-812), the hygromycin phosphotransferase gene from plasmid pJR225 (from E. coli; Gritz, et al., (1983) Gene 25:179-188) and the 3' region of the nopaline synthase gene from the T-DNA of the Ti plasmid of Agrobacterium tumefaciens. The expression cassette of interest, comprising the preferred promoter and a heterologous ACC synthase polynucleotide, can be isolated as a restriction fragment. This fragment can then be inserted into a unique restriction site of the vector carrying the marker gene.

[0436] To 50 .mu.l of a 60 mg/ml 1 .mu.m gold particle suspension is added (in order): 5 .mu.l DNA (1 .mu.g/.mu.l), 20 .mu.l spermidine (0.1 M) and 50 .mu.l CaCl.sub.2 (2.5 M). The particle preparation is then agitated for three minutes, spun in a microfuge for 10 seconds and the supernatant removed. The DNA-coated particles are then washed once in 400 .mu.l 70% ethanol and resuspended in 40 .mu.l of anhydrous ethanol. The DNA/particle suspension can be sonicated three times for one second each. Five microliters of the DNA-coated gold particles are then loaded on each macro carrier disk.

[0437] Approximately 300 400 mg of a two-week-old suspension culture is placed in an empty 60.times.5 mm petri dish and the residual liquid removed from the tissue with a pipette. For each transformation experiment, approximately 5-10 plates of tissue are normally bombarded. Membrane rupture pressure is set at 1100 psi, and the chamber is evacuated to a vacuum of 28 inches mercury. The tissue is placed approximately 3.5 inches away from the retaining screen and bombarded three times. Following bombardment, the tissue can be divided in half and placed back into liquid and cultured as described above.

[0438] Five to seven days post bombardment, the liquid media may be exchanged with fresh media and eleven to twelve days post-bombardment with fresh media containing 50 mg/ml hygromycin. This selective media can be refreshed weekly. Seven to eight weeks post-bombardment, green, transformed tissue may be observed growing from untransformed, necrotic embryogenic clusters. Isolated green tissue is removed and inoculated into individual flasks to generate new, clonally propagated, transformed embryogenic suspension cultures. Each new line may be treated as an independent transformation event. These suspensions can then be subcultured and maintained as clusters of immature embryos or regenerated into whole plants by maturation and germination of individual somatic embryos.

Example 12

Composition of cDNA Libraries; Isolation and Sequencing of cDNA Clones

[0439] cDNA libraries representing mRNAs from various tissues of Canna edulis (Canna), Momordica charantia (balsam pear), Brassica (mustard), Cyamopsis tetragonoloba (guar), Zea mays (maize), Oryza sativa (rice), Glycine max (soybean), Helianthus annuus (sunflower) and Triticum aestivum (wheat) are prepared. cDNA libraries may be prepared by any one of many methods available. For example, the cDNAs may be introduced into plasmid vectors by first preparing the cDNA libraries in Uni-ZAP.TM. XR vectors according to the manufacturer's protocol (Stratagene Cloning Systems, La Jolla, Calif.).

[0440] Full-insert sequence (FIS) data is generated utilizing a modified transposition protocol. Clones identified for FIS are recovered from archived glycerol stocks as single colonies, and plasmid DNAs are isolated via alkaline lysis. Isolated DNA templates are reacted with vector primed M13 forward and reverse oligonucleotides in a PCR-based sequencing reaction and loaded onto automated sequencers. Confirmation of clone identification is performed by sequence alignment to the original EST sequence from which the FIS request is made.

[0441] Confirmed templates are transposed via the Primer Island transposition kit (PE Applied Biosystems, Foster City, Calif.) which is based upon the Saccharomyces cerevisiae Ty1 transposable element (Devine and Boeke, (1994) Nucleic Acids Res. 22:3765-3772). The in vitro transposition system places unique binding sites randomly throughout a population of large DNA molecules. Multiple subclones are randomly selected from each transposition reaction, plasmid DNAs are prepared via alkaline lysis and templates are sequenced (ABI Prism dye-terminator ReadyReaction mix) outward from the transposition event site, utilizing unique primers specific to the binding sites within the transposon.

[0442] Sequence data is collected (ABI Prism Collections) and assembled using Phred and Phrap (Ewing, et al., (1998) Genome Res. 8:175-185; Ewing and Green, (1998) Genome Res. 8:186-194). The resulting DNA fragment is ligated into a pBluescript vector using a commercial kit and following the manufacturer's protocol. This kit is selected from many available from several vendors including Invitrogen.TM. (Carlsbad, Calif.), Promega Biotech (Madison, Wis.) and Gibco-BRL (Gaithersburg, Md.). The plasmid DNA is isolated by alkaline lysis method and submitted for sequencing and assembly using Phred/Phrap, as above.

Example 13

Identification of cDNA Clones

[0443] cDNA clones encoding ACC synthase-like polypeptides were identified by conducting BLAST (Basic Local Alignment Search Tool; Altschul, et al., (1993) J. Mol. Biol. 215:403-410; see also, the explanation of the BLAST algorithm on the world wide web site for the National Center for Biotechnology Information at the National Library of Medicine of the National Institutes of Health) searches for similarity to sequences contained in the BLAST "nr" database (comprising all non-redundant GenBank CDS translations, sequences derived from the 3-dimensional structure Brookhaven Protein Data Bank, the last major release of the SWISS-PROT protein sequence database, EMBL and DDBJ databases). The cDNA sequences obtained as described in Example 11 were analyzed for similarity to all publicly available DNA sequences contained in the "nr" database using the BLASTN algorithm provided by the National Center for Biotechnology Information (NCBI). The DNA sequences were translated in all reading frames and compared for similarity to all publicly available protein sequences contained in the "nr" database using the BLASTX algorithm (Gish and States, (1993) Nat. Genet. 3:266-272) provided by the NCBI. For convenience, the P-values (probability) of observing a match of a cDNA sequence to a sequence contained in the searched databases merely by chance as calculated by BLAST are reported herein as "pLog" values, which represent the negative of the logarithm of the reported P-value. Accordingly, the greater the pLog value, the greater the likelihood that the cDNA sequence and the BLAST "hit" represent homologous proteins.

[0444] ESTs submitted for analysis are compared to the Genbank database as described above. ESTs that contain sequences more 5- or 3-prime can be found by using the BLASTn algorithm (Altschul, et al., (1997) Nucleic Acids Res. 25:3389-3402.) against the Du Pont proprietary database comparing nucleotide sequences that share common or overlapping regions of sequence homology. Where common or overlapping sequences exist between two or more nucleic acid fragments, the sequences can be assembled into a single contiguous nucleotide sequence, thus extending the original fragment in either the 5- or 3-prime direction. Once the most 5-prime EST is identified, its complete sequence can be determined by Full Insert Sequencing. Homologous genes belonging to different species can be found by comparing the amino acid sequence of a known gene (from either a proprietary source or a public database) against an EST database using the tBLASTn algorithm. The tBLASTn algorithm searches an amino acid query against a nucleotide database that is translated in all 6 reading frames. This search allows for differences in nucleotide codon usage between different species and for codon degeneracy.

Example 14

Preparation of a Plant Expression Vector

[0445] A PCR product obtained using methods that are known by one skilled in the art can be combined with the Gateway.RTM. donor vector, such as pDONR.TM./Zeo (Invitrogen.TM.). Using the Invitrogen.TM. Gateway.RTM. Clonase.TM. technology, the homologous gene can then be transferred to a suitable destination vector to obtain a plant expression vector for use with Arabidopsis and corn.

Example 15

Variants of ACC Synthase Sequences

[0446] A. Variant Nucleotide Sequences of ACC Synthase Proteins that do not Alter the Encoded Amino Acid Sequence

[0447] The ACC synthase nucleotide sequences are used to generate variant nucleotide sequences having the nucleotide sequence of the open reading frame with about 70%, 75%, 80%, 85%, 90% and 95% nucleotide sequence identity when compared to the starting unaltered ORF nucleotide sequence of the corresponding SEQ ID NO. These functional variants are generated using a standard codon table. While the nucleotide sequences of the variants are altered, the amino acid sequence encoded by the open reading frames does not change.

[0448] B. Variant Amino Acid Sequences of ACC Synthase Polypeptides

[0449] Variant amino acid sequences of the ACC synthase polypeptides are generated. In this example, one amino acid is altered. Specifically, the open reading frames are reviewed to determine the appropriate amino acid alteration. The selection of the amino acid to change is made by consulting the protein alignment (with the other orthologs and other gene family members from various species). An amino acid is selected that is deemed not to be under high selection pressure (not highly conserved) and which is rather easily substituted by an amino acid with similar chemical characteristics (i.e., similar functional side-chain). Using the protein alignment, an appropriate amino acid can be changed. Once the targeted amino acid is identified, the procedure outlined in the following section C is followed. Variants having about 70%, 75%, 80%, 85%, 90% and 95% nucleic acid sequence identity are generated using this method.

[0450] C. Additional Variant Amino Acid Sequences of ACC Synthase Polypeptides

[0451] In this example, artificial protein sequences are created having 80%, 85%, 90% and 95% identity relative to the reference protein sequence. This latter effort requires identifying conserved and variable regions from the alignment and then the judicious application of an amino acid substitutions table. These parts will be discussed in more detail below.

[0452] Largely, the determination of which amino acid sequences are altered is made based on the conserved regions among ACC synthase protein or among the other ACC synthase polypeptides. It is recognized that conservative substitutions can be made in the conserved regions below without altering function. In addition, one of skill will understand that functional variants of the ACC synthase sequence of the invention can have minor non-conserved amino acid alterations in the conserved domain.

[0453] Artificial protein sequences are then created that are different from the original in the intervals of 80-85%, 85-90%, 90-95% and 95-100% identity. Midpoints of these intervals are targeted, with liberal latitude of plus or minus 1%, for example. The amino acids substitutions will be effected by a custom Perl script. The substitution table is provided below in Table 3.

TABLE-US-00005 TABLE 3 Substitution Table Strongly Similar Rank of Amino and Optimal Order to Acid Substitution Change Comment I L, V 1 50:50 substitution L I, V 2 50:50 substitution V I, L 3 50:50 substitution A G 4 G A 5 D E 6 E D 7 W Y 8 Y W 9 S T 10 T S 11 K R 12 R K 13 N Q 14 Q N 15 F Y 16 M L 17 First methionine cannot change H Na No good substitutes C Na No good substitutes P Na No good substitutes

[0454] First, any conserved amino acids in the protein that should not be changed is identified and "marked off" for insulation from the substitution. The start methionine will of course be added to this list automatically. Next, the changes are made.

[0455] H, C and P are not changed in any circumstance. The changes will occur with isoleucine first, sweeping N-terminal to C-terminal. Then leucine, and so on down the list until the desired target it reached. Interim number substitutions can be made so as not to cause reversal of changes. The list is ordered 1-17, so start with as many isoleucine changes as needed before leucine, and so on down to methionine. Clearly many amino acids will in this manner not need to be changed. L, I and V will involve a 50:50 substitution of the two alternate optimal substitutions.

[0456] The variant amino acid sequences are written as output. Perl script is used to calculate the percent identities. Using this procedure, variants of the ACC synthase polypeptides are generating having about 80%, 85%, 90% and 95% amino acid identity to the starting unaltered ORF nucleotide sequence of SEQ ID NO: 1, 2 or 3.

Example 16

ACS Sequences from Genbank

[0457] The following are examples of publicly available ACS genes from Genbank which may be used for various crop species according to the invention.

TABLE-US-00006 TABLE 4 Crop Genbank Accession Number SEQ ID NO Arabidopsis NM_116016-ACS1 16 Arabidopsis NM_100030-ACS2 17 Arabidopsis NM_179241-ACS2 18 Arabidopsis AF334719-ACS2 19 Arabidopsis NM_122719-ACS-3 20 Arabidopsis NM_127846-ACS4 21 Arabidopsis AF332404-ACS4 22 Arabidopsis AK229087-ACS5 23 Arabidopsis AF334720-ACS5 24 Arabidopsis NM_125977-ACS5 25 Arabidopsis NM_117199-ACS6 26 Arabidopsis NM_118753-ACS7 27 Arabidopsis NM_119939-ACS8 28 Arabidopsis AF334712-ACS8 29 Arabidopsis AF332391-ACS9 30 Arabidopsis NM_104974-ACS10 31 Arabidopsis NM_116873-ACS11 32 Oryza sativa Z27244-ACC synthase 33 Oryza sativa Z27243-ACC synthase 34 Oryza sativa Z27242-ACC synthase 35 Oryza sativa Z27241-ACC synthase 36 Oryza sativa U65704-ACS5 37 Oryza sativa U65703-ACS4 38 Oryza sativa U65702-ACS3 39 Oryza sativa U65701-ACS2 40 Oryza sativa M96673-(ACC1 synthase) 41 Oryza sativa M96672-(ACC1 synthase) 42 Glycine max EU604829-ACS 43 Glycine max X67100-ACC synthase 44 Glycine max DQ273841-ACS 45 Glycine max DQ273840-ACS 46 Potato Z27235-ACS2 47 Potato Z27234-ACS 48 Potato L20634-ACS 49 Potato U70842-ACS 50

TABLE-US-00007 TABLE 5 Sequence Listing Summary SEQ ID NO NT or PP DESCRIPTION 1 nucleotide maize ACS 2 (genomic) 2 nucleotide maize ACS 6 (genomic) 3 nucleotide maize ACS 7 (genomic) 4 nucleotide maize ACS 2(cDNA) 5 nucleotide maize ACS 6(cDNA) 6 nucleotide maize ACS 7(cDNA) 7 polypeptide maize ACS 2 8 polypeptide maize ACS 6 9 polypeptide maize ACS 7 10 nucleotide maize ACC 11 polypeptide maize ACC 12 nucleotide ACS 2 RNAi hairpin TR1 13 nucleotide ACS 2 RNAi hairpin TR2 14 nucleotide ACS 6 RNAi hairpin TR1 15 nucleotide ACS 6 RNAi hairpin TR2 16 nucleotide NM_116016-ACS1 17 nucleotide NM_100030ACS2 18 nucleotide NM179241-ACS2 19 nucleotide AF334719ACS2 20 nucleotide NM_122719ACS3 21 nucleotide NM_127846-ACS4 22 nucleotide AF332404-ACS4 23 nucleotide AK229087ACS5 24 nucleotide AF334720ACS5 25 nucleotide NM_125977-ACS5 26 nucleotide NM_117199-ACS6 27 nucleotide NM_118753ACS7 28 nucleotide NM_119939-ACS8 29 nucleotide AF334712-ACS8 30 nucleotide AF332391-ACS9 31 nucleotide NM_104974-ACS10 32 nucleotide NM_116873ACS11 33 nucleotide Z27244 ACC synthase 34 nucleotide Z27243 ACC synthase 35 nucleotide Z27242 ACC synthase 36 nucleotide Z27241-ACC synthase 37 nucleotide U65704-ACS5 38 nucleotide U65703ACS4 39 nucleotide U65702ACS3 40 nucleotide U65701ACS2 41 nucleotide M96673 (ACC1synthase) 42 nucleotide M96672 (ACC1synthase) 43 nucleotide EU604829-ACS 44 nucleotide X67100-ACC synthase 45 nucleotide DQ273841-ACS 46 nucleotide DQ273840-ACS 47 nucleotide Z27235-ACS2 48 nucleotide Z27234-ACS 49 nucleotide L20634-ACS 50 nucleotide U70842-ACS 51 nucleotide improved ACS 6 RNAi hairpin TR3 (3272-3776 of SEQ ID NO: 54) 52 nucleotide improved ACS 6 RNAi hairpin TR4 (4332-4874 of SEQ ID NO: 54) 53 nucleotide Entire improved ACS6 inhibition plasmid construct 54 nucleotide Fragment of improved ACS6 inhibition construct comprising TR3, ADH1 intron 1, and TR4 (3272- 4874 of SEQ ID NO: 53) 55 nucleotide Fragment of improved ACS6 inhibition construct comprising UBIZm promoter, UBIZm 5' UTR, UBI1Zm Intron 1, TR3, ADH1 intron 1, and TR4 (1218-4874 of SEQ ID NO: 53) 56 nucleotide Fragment of improved ACS6 inhibition construct comprising UBIZm promoter, UBIZm 5'UTR, UBIZm Intron 1, TR3, ADH1 intron 1, TR4, ATTB2, FRT12, UBIZm promoter, UBIZm 5'UTR, UBIZm Intron 1, MO-PAT, and PinII terminator (1218- 7989 of SEQ ID NO: 53) 57 nucleotide Complete improved ACS6 inhibition expression cassette (1-8350 of SEQ ID NO: 53)

[0458] All publications and patent applications in this specification are indicative of the level of ordinary skill in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated by reference.

[0459] Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the inventions are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

Sequence CWU 1 SEQUENCE LISTING <160> NUMBER OF SEQ ID NOS: 57 <210> SEQ ID NO 1 <211> LENGTH: 5115 <212> TYPE: DNA <213> ORGANISM: Zea mays <400> SEQUENCE: 1 aaacttcata ccggtcggtg ccttacgttc tctggcgttc ttatcctttc ctccgctttt 60 agtcgatgat tatagtagtt tctacaacaa gctttcaacg ccattgacta ttttttcccc 120 cattgaaaac gaacaccacc attgacactg ataaatgtag tacagcattt gacaacatac 180 tttcctagaa agtaaccagc agagactgga cgctacgtac taccacacca ttggagcagc 240 caatttaatc gtgtatagaa ctccgtatcg aaatttgtct gtgaatggac cttcatttgc 300 atctaggtct agtacaatgg atttcgaaca ggacagcgcc gatctggcaa tacacacacg 360 cacgacgtag cacagctgtt cttcgttcca cgcgttaatt gaaggcaaag cgactgtagt 420 tgctgttggt ggccaagttg tttaatgcta tagtagcagc cagtcactcc tagggcaaat 480 tttaggactt ttgcattgca ttgccgccat gtagaggttg actgcacacc gagaatatcg 540 agcattcatt aggctccttg acttgttgct gtgaactccg gccatctgtc acagtacgta 600 tatgaccaga tcggcaccat ttgtctcggc ctgacaatct cgcgcgccat tggccatgca 660 aagctgtcct gccgttcgga gagactagag agccagttgg caaattgaca tttgcgatag 720 gtggggcggc tttgactatg acatgatgac agatccagat ggtcctccgc tagtcccccc 780 gagcccgagg acagcacact agctcacacg aactgacagc gcggaggagg acacgtaccg 840 ggatgacacc gccacccatt tgctggcaag ccggggtgcg ccggcggttc aggttgaatc 900 cttcctaatg gtcgtgctag caaaccccgc aagctcagtg cgggtccaaa acccattaat 960 tatcccacaa agccgccgtt agacgtagaa tcgacgccgc gcgccacggc cggcggcggc 1020 tacctggctc ttaccaccat cattcgcttg tccgttccgt cgcccccgcc accctctcag 1080 agatggaggc ggttaagtgc ctgtcgacta ttgcagaacg tcgtcaggct cgctagttcg 1140 accgagcatc ctagatacat aatccaaatt ccgctcggcg attataggag ggtgatagta 1200 ctgagtacag ggcgaaaaac gttgaaaagg tcagcgaggc ccccacatgt ctcccccggt 1260 cgcgttcgca ttcaacaccc tctgcgctgc gtttcatgga agtttccagc agccacgccc 1320 acgcgcatgg acgcggctga tcttataaag gtggcgcgcg tcccaacctc gggagccatc 1380 atttcaccag aagctgcaaa ttgcaagctc tcctccctag ctagcctctc cagcagccca 1440 accacagcct gcagctgcag ctcgcgttgg cacagcgccg cctgaacgcg tgctaattta 1500 agctctgtcg tagctcaacg cggccgccgg gctttcgccg acgacgtcaa aatggccggt 1560 ggtagcagtg ccgagcagct cctatccagg atcgcctccg gcgatggcca cggcgagaac 1620 tcgtcctact tcgacgggtg gaaggcctac gacatggacc ctttcgacct gcgccacaac 1680 cgcgacggcg tcatccagat gggcctcgcc gagaaccaag tacgtgacgt agccctgccg 1740 catgcagcta cagctacacc ctttcgacct gcgcaacaac cgcgacggcg tcatccagat 1800 gggcctgctg tcgatggaat gctcatgtaa ttaaaccacc ggccggggcg tgttttgcag 1860 ctgtccctgg acctgatcga gcaatggagc atggagcacc cggaggcgtc catctgcacg 1920 gcgcagggag cgtcgcagtt caggaggata gccaacttcc aggactacca cggcctgccg 1980 gagttcagag aggtattaat taagttaact aacagctcgg ctaaggaaac gccagaatca 2040 ttgattaggt ttgctgctct ctaatggcga ctgcgaaaac gacggagcag ctaccggcca 2100 gccggccggc ggttagctag cactagcagc cgccttcctg acagatcatc catgacgttt 2160 tgattgttgc aggcgatggc caagttcatg ggccaggtga gggccgggaa ggtgacgttc 2220 gaccccgacc gcgtcgtcat gtgcggaggc gccaccggcg cgcaggacac tctcgccttc 2280 tgcctcgctg acccgggcga cgcctacctc gtgccgacgc catactaccc agcgtatgtc 2340 tcgaccaacg tcatccttgt acttgtacca aaattagtca cccgttgaca cgaaagttgg 2400 taagagggta agagcaggga aaggcagagc taaggccctg tttggtttga ggtgactaaa 2460 gtttagtgac taatatttag tcacttttag tctctaaaga agtaaacatg gtgactaaag 2520 tgaagtgact aaattttagt tctttagtca ctaagaggct gactaaaagg gactaaagta 2580 gtatttttac cttatttgtc ctctccactt tcttcttata gcaaacatct attaattaat 2640 agggataaaa taatcattat tcacagcaat taatgccctt tagtccggtt tagtcactgg 2700 aaccaaacgg gatactttag cgactaaact ttagtcacta aaatttagtc tagtgactaa 2760 gggaaccaaa caggacctaa ttcgagtgtg atgtcaacaa gacaacaaat aatagccaat 2820 tgtagcccct cgccatcttt ccttgtttgg gtaacgtttc aaaatttagg gggtgtttgg 2880 tttctaggga ctaatgttta gtcccttcat tttattccat tttagtatat aaattgtcaa 2940 atataaaaac caaaatagag ttttagtttc tatatttgac aattttagaa ctaaaatgaa 3000 ataaaatgta gggactaaag tataaactaa acaccccctt acctcgatca cgaacctcta 3060 aaagtaagta gcaccctcct cccccacagt caaatcaaca taatacagta caatagacct 3120 tgttagtcgc atggatgatt gtcgtcaagt gggcaacgca atctagtcac gtaaggaaaa 3180 ccatgcacgt tgttcataca cggtctgttt ccatgcgact ttaatttcca cgcacgtttg 3240 catcgttgac caaccaactg aacgtgcctg taggtcccgc acagcaacgt aagcatatgc 3300 atgcacgtac gacgtacggc acgggaaaaa aattctgcac accgtatttt acagctcttc 3360 atatccacca catgtagcgg ccccacaaaa aacagattaa aatttgcaac ttaatcctta 3420 agtaatttgt ttttcttcta tttatataga ttatcagttg atggatgtgt gaagttgtaa 3480 aagagattat ttgtatccag gattaaaata attttccgta cggcacgcct gcagtactca 3540 ttctcgccag ccctgagccc ctgatatatg acacgctttt cattgttcac acagtttcga 3600 ccgtgactgt tgctggaggt caggcgtgaa gctgctgccc atcgaatgcc acagctcaaa 3660 caacttcacc ctcacacggg aggcgctcgt gtcggcctac gacggcgcgc ggaggcaggg 3720 cgtccgcgtc aagggcgtcc tcatcaccaa cccctccaac ccgctgggca ccaccatgga 3780 ccgcgccacg ctggcgatgc tcgccaggtt cgccacggag caccgtgtcc acctcatctg 3840 cgacgagatc tacgcgggct ccgtcttcgc caagccggac ttcgtgagca tcgccgaggt 3900 catcgagcgc gacgtcccgg gctgcaacag ggacctcatc cacatcgcgt acagcctctc 3960 caaggacttc ggcctcccgg gcttccgcgt cggcatcgtc tactcgtaca acgacgacgt 4020 cgtggcctgc gcgcgcaaga tgtccagctt cggcctcgtc tcctcgcaga cgcagcactt 4080 cctggcgaag atgctgtcgg acgcggagtt catggcccgc ttcctcgcgg agagcgcgcg 4140 gcggctggcg gcgcgccacg accgcttcgt cgcgggactc cgcgaggtcg gcatcgcgtg 4200 cctgcccggc aacgcggggc tcttctcgtg gatggacctg cggggcatgc tccgggacaa 4260 gacgcacgac gcggagctgg agctgtggcg ggtcatcgta cacaaggtga agctcaacgt 4320 gtcgcccggc acgtcgttcc actgcaacga gcccggctgg ttccgcgtct gccacgctaa 4380 catggacgac gagaccatgg aggtcgcgct cgacaggatc cgccgcttcg tgcgccagca 4440 ccagcacaag gccaaggccg agcgctgggc ggccacgcgg cccatgcgcc tcagcttgcc 4500 gcgccgggga ggcgccaccg cttcgcacct ccccatctcc agccccatgg cgttgctgtc 4560 gccgcagtcc ccgatggttc acgccagcta gtcaccgagc atccggcaag actggctgta 4620 gggtgtgccc gtacatccgt acgtacacct ttttttccca ttcacgtgac tgcaatcaag 4680 tctatgggat ggttgacaaa agactatcta gacaagagtg ggcgtagtac gtaactagtt 4740 tgacgttgta caggcgtcag caggtatcgg taagcagcta gtcaaaagca cgcaagcagg 4800 acgcatttgt cctcgatact ttcgtgtaaa tctctctcta tttttttttg cgaaattcgc 4860 gtgtatggtt tgttttgacg ttggtataaa gtatggtaga ataacgatgg gaaatggcaa 4920 tttagtcctc ccgatcaatt gttattgtaa accactgacg aaagttaaga acagaagctg 4980 taccagaagg gtgaataaaa ataccacata ggtattgaat taataatcta tgtatttcga 5040 gttactcctg caagatatct attttttcat gctgtgctgg ccacatttgc ctcttcttca 5100 aactagtttc tcgca 5115 <210> SEQ ID NO 2 <211> LENGTH: 3749 <212> TYPE: DNA <213> ORGANISM: Zea mays <400> SEQUENCE: 2 cggctagttt tgatagttag acgatgttct gacagcgcac cagacagtaa ccagtgacag 60 tccggtgcct ggctaaatat cgagccagcg aacagcgcgc tctcgggttt ctacgggggc 120 agagggttgc tctcggggca ttcttgtgct cactgtcagg gggagcacca gacagtccgg 180 tgcacagcga acagtctgat gcccctaggt cagcaagtca aagttctctt ccttagattt 240 ttctaaaccg ttttcgtttt aacttgtgag tgagttatcg agtgacacct agcactagtt 300 gtgagtatga acaccaacac tatattagat ttctcttggt caaactactc atccacaacc 360 actctttata gtacggctaa aataaaaata gaagtcctaa ctttatacca agtgtcaaca 420 actccttcgg acacttagaa tataaagtcc ttcatctttt gtttcgcctt tttccgccgt 480 cgcttcaagt tctcatccga gggattgttt tatcgttgta gtgcaacttc atgcaatgtg 540 acctaacttg ccatttgctc ttcaaaacac acgttagtca tataatatta cgttgtcatt 600 aatctctatc gatatttttc acccattacg ttgtcactag atgctttcac ccatttcgat 660 ttcagacgat gtcttcggac gttgcgggcc atgtgtccaa acgtggttaa gtgtggtcgg 720 gaaatacccg atcgaggttg agttcggcct tcgctccgac acccagccgt gtcattactg 780 tcatatatat tgtagcaatg tcaaaaaaaa tcaaaacatt gagtatgacg tatagggcac 840 atatgtcatt aaacttattc agtgtaatga tatattatca tcacgggact tttttttaat 900 gtatgtatta gattacctct gccatgcact atacaaacag ctacgccgca gtcgcaagca 960 aacaggctct aaaaggcttc agtcggagaa ggatatgaga gcggtgagta ccaaacgggt 1020 atcttcccct tccaaatgat ataagcctac ttgtttgacc ccagcccgca ggcagtcatc 1080 tgctataata ggctaataca acttgtgtac tctagtctgc tctcgccgcg ttgtccgcat 1140 gctgaacccg cgatgttaac acctccctga acgagtcctc tgttcctcaa ctgaaattca 1200 gcaataaaag gaaaaatccg cggtccctgt ccctgtccag caccgcactc tcgcacttgt 1260 gctgcaggct tctgagctcg gcacctgctg ctagctgctg ctatatatag acgcgttttg 1320 gggtcaccaa aaccaccagc tgatcaacag ctagcttcat tcctctgcct ctctctccct 1380 ccttcgccaa ctggccatct ctgttgtctc tcgctagcta gctcgctcgc tcgctcgcca 1440 gtcaccacac acacacacac acactgtgtg tctgtgcctg acgccgcccc ccagtttcaa 1500 acgaacgacc cagccagaaa cgcgcgcgcg ccaaagctac gtgagtgacg tggcagcatg 1560 gtgagcatga tcgccgacga gaagccgcag ccgcagctgc tgtccaagaa ggccgcctgc 1620 aacagccacg gccaggactc gtcctacttc ctggggtggg aggagtatga gaaaaaccca 1680 tacgaccccg tcgccaaccc cggcggcatc atccagatgg gcctcgccga gaaccagctg 1740 tccttcgacc tgctggaggc gtggctggag gccaacccgg acgcgctcgg cctccgccgg 1800 ggaggcgcct ctgtattccg cgagctcgcg ctcttccagg actaccacgg catgccggcc 1860 ttcaagaatg tgagtgcctg ctagcttact cattcccagg caggcaggca gccagccacg 1920 gcatgccgaa ccagtctgac ctctctcgcg cacatgaatg cgtgattccc gcaggcattg 1980 gcgaggttca tgtcggagca acgtgggtac cgggtgacct tcgaccccag caacatcgtg 2040 ctcaccgccg gagccacctc ggccaacgag gccctcatgt tctgcctcgc cgaccacgga 2100 gacgcctttc tcatccccac gccatactac ccagggtatg tgtgtgtgtt gccttgtact 2160 tactcgtcgc cgcaagtact tgcagtaggg aacgtgcaag tggcggcggg gcggcgtctg 2220 ggtgtcgccg cgatgcacgt tactgctatt aaagtagtag tagtacacta atagctaggc 2280 ccaccacagc acacgatgac atgacgaacg atggatggga acggctgctg actgggcctg 2340 cttgctcttg tctgcaggtt cgaccgtgac ctcaagtggc gcaccggcgc ggagatcgtc 2400 cccgtgcact gcacgagcgg caacggcttc cggctgacgc gcgccgcgct ggacgacgcg 2460 taccggcgcg cgcagaagct gcggctgcgc gtcaagggcg tgctcatcac caacccttcc 2520 aacccgctgg gcaccacgtc gccgcgcgcc gacctggaga tgctggtgga cttcgtggcc 2580 gccaagggca tccacctggt gagcgacgag atatactcgg gcacggtctt cgcggacccg 2640 ggcttcgtga gcgtcctcga ggtggtggcc gcgcgcgccg ccacggacga cggcgtcgtc 2700 ggcgttgggc cgctgtcgga ccgcgtgcac gtggtgtaca gcctgtccaa ggacctgggc 2760 ctcccggggt tccgcgtggg cgccatctac tcgtccaacg ccggcgtggt ctccgcggcc 2820 accaagatgt cgagcttcgg cctggtgtcg tcccagacgc agcacctcct ggcgtcgctc 2880 ctgggcgaca gggacttcac gcggaggtac atcgcggaga acacgcggcg gatcagggag 2940 cggcgcgagc agctggcgga gggcctggcg gccgtgggca tcgagtgcct ggagagcaac 3000 gcggggctct tctgctgggt caacatgcgg cgcctgatgc ggagccggtc gttcgagggc 3060 gagatggagc tgtggaagaa ggtggtcttc gaggtggggc tcaacatctc cccgggctcc 3120 tcctgccact gccgggagcc cggctggttc cgcgtctgct tcgccaacat gtccgccaag 3180 acgctcgacg tcgcgctcca gcgcctgggc gccttcgcgg aggccgccac cgcggggcgc 3240 cgcgtgcttg cccccgccag gagcatcagc ctcccggtcc gcttcagctg ggctaaccgc 3300 ctcaccccgg gctccgccgc cgaccggaag gccgagcggt agccggtccc cgtccgcgcc 3360 gaccgcacgt gctcagctca gcagcttcac agctcaccac cagtcaccac caccaccacc 3420 accaccacct ggggtggagg cgtggagcaa gcaatgttca tagaaaccac ggtcacgtac 3480 tatacaatac tactaccgta ccacaccaca cggcagcatc attagcagta ggagattagt 3540 agtaatcatt aattccttat tgggttcttg taatttcgta tataccacgc cgccattttt 3600 ccttggggcc aggccagccg ataggtgccc gagggccact gcactgcact gctgtattag 3660 gtaggagcag gagtggtggg tagcgaatcc accttccagc agcaggcatc acatttgtgt 3720 atttttcgac tgggtctccc ggttgtttt 3749 <210> SEQ ID NO 3 <211> LENGTH: 5105 <212> TYPE: DNA <213> ORGANISM: Zea mays <400> SEQUENCE: 3 gctggtagct tctttaactg atctcaatgg ggcatttcgg tggctagcaa ttcacattaa 60 taatttaaaa gtgaatttca ggtgtacatt tgatggcctc cgatatggtg cagccttcaa 120 tcctctacaa tgtgcgagaa tgttgctccg gagggtagag gcgattaacg gctgaacaca 180 gatgacctcc tcggagtcat gtttctaatt atctacacta cgattctctt tccgttgata 240 aaatatttgt tttattgtcc tgtgagctaa tgataacatt gatggtaagt aaatatagtc 300 catgcatatt ctcatcacag atggctgaaa aactcccggt gctgctacac tactagagtc 360 ttcatgtgca tacttacttc aagaactcaa ggtacacaaa gttttctcaa cagaagaatg 420 tgtatctgtt tgattccagc tgaaatgctt actaaactca gtgtgtcgct ttagatgata 480 tgagatgaag ttgggcaaga ccaaagtgaa agggagagaa taacggaaga acttgttcgc 540 caacttggag aaaccaatac taaaactcag tgaatatatg tgtggatttg gaagcaagtg 600 aattttacag aaaagttttt tgagagtgtt tatatgaatc gtactcatct gtttattttg 660 atgactgcaa tataactact tgtatttata gtttgagatc aagaaaataa gttattattt 720 agaaataata aaaaattata gtgatgtttg ttgttccgta tcaatgtttc atacaaatgt 780 tttacttccg tcgcaacaca cgggaatata cctataatat atattgttat catgttatta 840 tacggttccg ttgcaacgca cgggcacata cctagtacaa aaataattac gcatcccgca 900 gttgacatct gggagcgcta caaataatga aggcagctgg tccaccacac gaactgacag 960 cgcggagaag ggagtgcacc ggcccaccgg gatggcaccg cgaatcagcc tcggcagcgc 1020 catactgccc acccattttt tctggcgaat ccgggtgcgg cgggcggttg aggatgaatt 1080 gaataatact ctacttccta atggtcgtgc tagcagaccc tggaagctca gtgtggctcc 1140 aaaacccatt aattaattaa accacaaagc cgccgccgtt agacctagaa ccaccgctgc 1200 gctcgccggg cgccggctac ccggcgtaac tgccgtcacc atccaccacc tggccgctcc 1260 gttctttcct ccaccccaag atggagccgg ttaacctgtc caatcttacc tcatatgcgt 1320 aatcaactat tttaactttc actatatata tatgttaata tttataatat ataatttgta 1380 gtataagata aatatttgaa tttgttttta taataaacgt attttgacat ataaatattg 1440 gtaatatttt ttttttacaa atctgactag attttaaatc tgtaacgagg agtacatagt 1500 acgaaatgtt gaaaagtcag cgtgtctttg gtcgcgttcg cattcattct ttctttacct 1560 cagccaccca cctgccacac cctgtgggcc gtggcgcctt cacggaaggt tcgccggcca 1620 cgcatggagg cggctcttta taaagctggt gcgcgggcgg gaggggagag ggcaccagaa 1680 gcagccagca agctcatgcc cttcaaaagc ctccggcagc ccagcgcccc agccagctag 1740 tggtgatctc tcatctcagc agcgcgcctg aacgtgtgct ccctgctaag ctctgcgcct 1800 cgataggcaa aggaaaatca aaccgatcgt cgtcagatta aatggccggt agcagcgcgg 1860 agcagctcct ctccaggatc gccgccggcg acggccacgg cgagaactcg tcctacttcg 1920 acgggtggaa ggcctacgac atgaaccctt tcgacctgcg ccacaaccgc gacggcgtca 1980 tccagatggg cctcgccgag aaccaagtac gtacctatag cgtgtaccta cccttccgat 2040 ctgtagtact gcccacactt gctgcatgct gctgccgatc caagtccaat gctcatgtaa 2100 actggcgtgc tgcagctgtc gttggacctg atcgagcaat ggagcgtgga ccacccggag 2160 gcgtccatct gcacggcgca gggcgcgccg cagttccgga ggatagccaa cttccaggac 2220 taccacggcc tgccggagtt cagagaggta actaactagt agtgattaac aagcaaataa 2280 acgccaggat cactgcatcg attagctagg tttgctgctg ctgctgctgc tgtctaatat 2340 aatggcgact gcacgcgaaa agcgacggag cagctaccgg ccggcggcta gctagctagc 2400 tggcactggc agcgcagtcg ccttcatgag tccacgcacg cgcggctacg tcttaatgat 2460 cgatcggctc gtcgtttgtt gcaggcgatg gccaagttca tggggcaggt gaggggcggc 2520 aaggtgacgt tcgaccccga ccgcgtcgtc atgtgcggag gagccaccgg cgcgcaggac 2580 actctcgcct tctgcctcgc tgacccgggc gacgcctacc tcgtgccgac gccttattac 2640 ccagcgtatg ttctgacgtc acccttgtac tgccaaacta ctactcaggt cctagtcata 2700 tccgtagaca cgaaagggtg ggtgggtctg ggttgttggt tggtcaagag cacgcaaaat 2760 tgagctaatt cgactacgta cgtgtcaatg tcaactagcc acttatcttt ccttgtttgg 2820 gtaaagtttc aaaacttatt aactcgatca ggaacctctc taaaaagcat tcacctattt 2880 ttcccccgta aggcggtaac caaatctaaa cgatataccc ttgttagtcg cactgatgac 2940 tgcattgtcg tcaagtggac aacgcaatct agtcacgcga cctctaagga aaaccacgca 3000 cgtatacgca cttcgtgcac ggtctgttcc acgcgacttt agtttccatg cacgtttaca 3060 tcgttgacca tccgcagtcc gcacagcaac gtaagcataa acatgcacgc acgacgtacg 3120 gcacaccgta cctgttcctc tcgagggctg agaccctgac acgttttttt cgttgtgtgg 3180 tgatcacagt ttcgaccgcg actgttgctg gaggtcagga gtgaagctgc tgcccatcga 3240 atgccacagc tcgaacaact tcaccctcac cagggaggcg ctcgtgtcgg cctacgacgg 3300 cgcgcggagg cagggcgtcc gcgtcagggg catcctcatc accaacccct ccaacccgct 3360 gggcaccacc atggaccgcg gcacgctggc gatgctcgcc gcgttcgcca cagagcgccg 3420 cgtccacctc atctgcgacg agatctacgc gggctccgtc ttcgccaagc cgggcttcgt 3480 gagcatcgcc gaggtcatcg agcgcggcga cgccccgggc tgcaacaggg acctcgtcca 3540 catcgcgtac agcctctcca aggacttcgg cctcccgggc ttccgcgtcg gcatcgtcta 3600 ctcctacaac gacgacgtgg tggcctgcgc gcgcaagatg tccagcttcg gcctcgtctc 3660 gtcgcagacg cagcacttcc tggcgatgat gctcgccgac gcggagttca tggcacgctt 3720 cctcgcggag agcgcgcggc ggctggcggc gcgccacgac cgcttcgtcg cgggcctccg 3780 cgaggtcggc atcgcgtgcc tgccgggcaa cgcgggcctc ttctcgtgga tggacctgcg 3840 gggcatgctc cgggagaaga cgcacgacgc ggagctcgag ctgtggcggg tcatcgtaca 3900 cagggtgaag ctcaacgtgt cgcccggcac gtcgttccac tgcaacgagc ccggctggtt 3960 ccgcgtctgc tacgccaaca tggacgacga caccatggag gtcgcgctcg accggatccg 4020 ccgcttcgtg cgccagcacc agcacagcaa ggccaaggcc gagcgctggg cggccacgcg 4080 gccccttcgc ctcagcttgc cgcgccgggg agcaaccacc gcttcgcatc tcgccatctc 4140 cagccccttg gcgttgctgt cgccgcagtc cccgatggtc cacgccagct aggtagtcac 4200 cgagcgttcg gtaagactgg ctgtaggttg tgccctcaca tgactgcaaa caagtggaca 4260 aaaaaaaaga caagactaat aaagggcgta cgtagctagc ttgacattac acagagtgac 4320 agagacgttg cacaggcgtc agcaggcgtc ggcggtaagc agctagtcaa gtaggacgca 4380 tttgtcctcg attttttcgt gttttttttt tgacgaaggg gcgaagcccc ctatttcatt 4440 aagaaatagg aaagtatgaa acaaccgcac ccacgcggta ggacctccaa aaagaacagc 4500 cacggccaga aagtaatcta gactctaaac actatcgcta gatcagtgaa gagactatga 4560 taacagggaa agttttggcc tacgaagagc tacataagac tttcttatat acaaccaacc 4620 aagacaggca gaagccacaa aagacctgaa cagaatggcc aacaaaagac agacaactat 4680 cccaacaagg tttcacagct tcagcatctt tgtcatccag aaatccgcct gtcaagagga 4740 caccacccca aggccctccc gaaagcttca cttgccgtct ttcggattaa cctgcttcct 4800 agcaccacca ttctttgctc cttctttttc tgacgaatcg cccaagaatc caaccagaag 4860 cagcaaagaa aaatgatgtt agatgggtca agtaaatgac tattcccaaa acaccaatca 4920 ttcctagtgc gccaaatagc ccagaataaa gcaccacaac caaataacac caactgagcc 4980 atcgtgtctt ttggtttaca aaaccaattg tcatacaaat ctttgatatt ttttggaata 5040 gatctcaaat tcagggccac ttgaataact ctccacatgt attgagcaat ggggcaatag 5100 aaaaa 5105 <210> SEQ ID NO 4 <211> LENGTH: 1455 <212> TYPE: DNA <213> ORGANISM: Zea mays <400> SEQUENCE: 4 atggccggtg gtagcagtgc cgagcagctc ctatccagga tcgcctccgg cgatggccac 60 ggcgagaact cgtcctactt cgacgggtgg aaggcctacg acatggaccc tttcgacctg 120 cgccacaacc gcgacggcgt catccagatg ggcctcgccg agaaccaact gtccctggac 180 ctgatcgagc aatggagcat ggagcacccg gaggcgtcca tctgcacggc gcagggagcg 240 tcgcagttca ggaggatagc caacttccag gactaccacg gcctgccgga gttcagagag 300 gcgatggcca agttcatggg ccaggtgagg gccgggaagg tgacgttcga ccccgaccgc 360 gtcgtcatgt gcggaggcgc caccggcgcg caggacactc tcgccttctg cctcgctgac 420 ccgggcgacg cctacctcgt gccgacgcca tactacccag cgttcgaccg tgactgttgc 480 tggaggtcag gcgtgaagct gctgcccatc gaatgccaca gctcaaacaa cttcaccctc 540 acacgggagg cgctcgtgtc ggcctacgac ggcgcgcgga ggcagggcgt ccgcgtcaag 600 ggcgtcctca tcaccaaccc ctccaacccg ctgggcacca ccatggaccg cgccacgctg 660 gcgatgctcg ccaggttcgc cacggagcac cgtgtccacc tcatctgcga cgagatctac 720 gcgggctccg tcttcgccaa gccggacttc gtgagcatcg ccgaggtcat cgagcgcgac 780 gtcccgggct gcaacaggga cctcatccac atcgcgtaca gcctctccaa ggacttcggc 840 ctcccgggct tccgcgtcgg catcgtctac tcgtacaacg acgacgtcgt ggcctgcgcg 900 cgcaagatgt ccagcttcgg cctcgtctcc tcgcagacgc agcacttcct ggcgaagatg 960 ctgtcggacg cggagttcat ggcccgcttc ctcgcggaga gcgcgcggcg gctggcggcg 1020 cgccacgacc gcttcgtcgc gggactccgc gaggtcggca tcgcgtgcct gcccggcaac 1080 gcggggctct tctcgtggat ggacctgcgg ggcatgctcc gggacaagac gcacgacgcg 1140 gagctggagc tgtggcgggt catcgtacac aaggtgaagc tcaacgtgtc gcccggcacg 1200 tcgttccact gcaacgagcc cggctggttc cgcgtctgcc acgctaacat ggacgacgag 1260 accatggagg tcgcgctcga caggatccgc cgcttcgtgc gccagcacca gcacaaggcc 1320 aaggccgagc gctgggcggc cacgcggccc atgcgcctca gcttgccgcg ccggggaggc 1380 gccaccgctt cgcacctccc catctccagc cccatggcgt tgctgtcgcc gcagtccccg 1440 atggttcacg ccagc 1455 <210> SEQ ID NO 5 <211> LENGTH: 1446 <212> TYPE: DNA <213> ORGANISM: Zea mays <400> SEQUENCE: 5 atgatcgccg acgagaagcc gcagccgcag ctgctgtcca agaaggccgc ctgcaacagc 60 cacggccagg actcgtccta cttcctgggg tgggaggagt atgagaaaaa cccatacgac 120 cccgtcgcca accccggcgg catcatccag atgggcctcg ccgagaacca gctgtccttc 180 gacctgctgg aggcgtggct ggaggccaac ccggacgcgc tcggcctccg ccggggaggc 240 gcctctgtat tccgcgagct cgcgctcttc caggactacc acggcatgcc ggccttcaag 300 aatgcattgg cgaggttcat gtcggagcaa cgtgggtacc gggtgacctt cgaccccagc 360 aacatcgtgc tcaccgccgg agccacctcg gccaacgagg ccctcatgtt ctgcctcgcc 420 gaccacggag acgcctttct catccccacg ccatactacc cagggttcga ccgtgacctc 480 aagtggcgca ccggcgcgga gatcgtcccc gtgcactgca cgagcggcaa cggcttccgg 540 ctgacgcgcg ccgcgctgga cgacgcgtac cggcgcgcgc agaagctgcg gctgcgcgtc 600 aagggcgtgc tcatcaccaa cccttccaac ccgctgggca ccacgtcgcc gcgcgccgac 660 ctggagatgc tggtggactt cgtggccgcc aagggcatcc acctggtgag cgacgagata 720 tactcgggca cggtcttcgc ggacccgggc ttcgtgagcg tcctcgaggt ggtggccgcg 780 cgcgccgcca cggacgacgg cgtcgtcggc gttgggccgc tgtcggaccg cgtgcacgtg 840 gtgtacagcc tgtccaagga cctgggcctc ccggggttcc gcgtgggcgc catctactcg 900 tccaacgccg gcgtggtctc cgcggccacc aagatgtcga gcttcggcct ggtgtcgtcc 960 cagacgcagc acctcctggc gtcgctcctg ggcgacaggg acttcacgcg gaggtacatc 1020 gcggagaaca cgcggcggat cagggagcgg cgcgagcagc tggcggaggg cctggcggcc 1080 gtgggcatcg agtgcctgga gagcaacgcg gggctcttct gctgggtcaa catgcggcgc 1140 ctgatgcgga gccggtcgtt cgagggcgag atggagctgt ggaagaaggt ggtcttcgag 1200 gtggggctca acatctcccc gggctcctcc tgccactgcc gggagcccgg ctggttccgc 1260 gtctgcttcg ccaacatgtc cgccaagacg ctcgacgtcg cgctccagcg cctgggcgcc 1320 ttcgcggagg ccgccaccgc ggggcgccgc gtgcttgccc ccgccaggag catcagcctc 1380 ccggtccgct tcagctgggc taaccgcctc accccgggct ccgccgccga ccggaaggcc 1440 gagcgg 1446 <210> SEQ ID NO 6 <211> LENGTH: 1458 <212> TYPE: DNA <213> ORGANISM: Zea mays <400> SEQUENCE: 6 atggccggta gcagcgcgga gcagctcctc tccaggatcg ccgccggcga cggccacggc 60 gagaactcgt cctacttcga cgggtggaag gcctacgaca tgaacccttt cgacctgcgc 120 cacaaccgcg acggcgtcat ccagatgggc ctcgccgaga accaactgtc gttggacctg 180 atcgagcaat ggagcgtgga ccacccggag gcgtccatct gcacggcgca gggcgcgccg 240 cagttccgga ggatagccaa cttccaggac taccacggcc tgccggagtt cagagaggcg 300 atggccaagt tcatggggca ggtgaggggc ggcaaggtga cgttcgaccc cgaccgcgtc 360 gtcatgtgcg gaggagccac cggcgcgcag gacactctcg ccttctgcct cgctgacccg 420 ggcgacgcct acctcgtgcc gacgccttat tacccagcgt tcgaccgcga ctgttgctgg 480 aggtcaggag tgaagctgct gcccatcgaa tgccacagct cgaacaactt caccctcacc 540 agggaggcgc tcgtgtcggc ctacgacggc gcgcggaggc agggcgtccg cgtcaggggc 600 atcctcatca ccaacccctc caacccgctg ggcaccacca tggaccgcgg cacgctggcg 660 atgctcgccg cgttcgccac agagcgccgc gtccacctca tctgcgacga gatctacgcg 720 ggctccgtct tcgccaagcc gggcttcgtg agcatcgccg aggtcatcga gcgcggcgac 780 gccccgggct gcaacaggga cctcgtccac atcgcgtaca gcctctccaa ggacttcggc 840 ctcccgggct tccgcgtcgg catcgtctac tcctacaacg acgacgtggt ggcctgcgcg 900 cgcaagatgt ccagcttcgg cctcgtctcg tcgcagacgc agcacttcct ggcgatgatg 960 ctcgccgacg cggagttcat ggcacgcttc ctcgcggaga gcgcgcggcg gctggcggcg 1020 cgccacgacc gcttcgtcgc gggcctccgc gaggtcggca tcgcgtgcct gccgggcaac 1080 gcgggcctct tctcgtggat ggacctgcgg ggcatgctcc gggagaagac gcacgacgcg 1140 gagctcgagc tgtggcgggt catcgtacac agggtgaagc tcaacgtgtc gcccggcacg 1200 tcgttccact gcaacgagcc cggctggttc cgcgtctgct acgccaacat ggacgacgac 1260 accatggagg tcgcgctcga ccggatccgc cgcttcgtgc gccagcacca gcacagcaag 1320 gccaaggccg agcgctgggc ggccacgcgg ccccttcgcc tcagcttgcc gcgccgggga 1380 gcaaccaccg cttcgcatct cgccatctcc agccccttgg cgttgctgtc gccgcagtcc 1440 ccgatggtcc acgccagc 1458 <210> SEQ ID NO 7 <211> LENGTH: 485 <212> TYPE: PRT <213> ORGANISM: Zea mays <400> SEQUENCE: 7 Met Ala Gly Gly Ser Ser Ala Glu Gln Leu Leu Ser Arg Ile Ala Ser 1 5 10 15 Gly Asp Gly His Gly Glu Asn Ser Ser Tyr Phe Asp Gly Trp Lys Ala 20 25 30 Tyr Asp Met Asp Pro Phe Asp Leu Arg His Asn Arg Asp Gly Val Ile 35 40 45 Gln Met Gly Leu Ala Glu Asn Gln Leu Ser Leu Asp Leu Ile Glu Gln 50 55 60 Trp Ser Met Glu His Pro Glu Ala Ser Ile Cys Thr Ala Gln Gly Ala 65 70 75 80 Ser Gln Phe Arg Arg Ile Ala Asn Phe Gln Asp Tyr His Gly Leu Pro 85 90 95 Glu Phe Arg Glu Ala Met Ala Lys Phe Met Gly Gln Val Arg Ala Gly 100 105 110 Lys Val Thr Phe Asp Pro Asp Arg Val Val Met Cys Gly Gly Ala Thr 115 120 125 Gly Ala Gln Asp Thr Leu Ala Phe Cys Leu Ala Asp Pro Gly Asp Ala 130 135 140 Tyr Leu Val Pro Thr Pro Tyr Tyr Pro Ala Phe Asp Arg Asp Cys Cys 145 150 155 160 Trp Arg Ser Gly Val Lys Leu Leu Pro Ile Glu Cys His Ser Ser Asn 165 170 175 Asn Phe Thr Leu Thr Arg Glu Ala Leu Val Ser Ala Tyr Asp Gly Ala 180 185 190 Arg Arg Gln Gly Val Arg Val Lys Gly Val Leu Ile Thr Asn Pro Ser 195 200 205 Asn Pro Leu Gly Thr Thr Met Asp Arg Ala Thr Leu Ala Met Leu Ala 210 215 220 Arg Phe Ala Thr Glu His Arg Val His Leu Ile Cys Asp Glu Ile Tyr 225 230 235 240 Ala Gly Ser Val Phe Ala Lys Pro Asp Phe Val Ser Ile Ala Glu Val 245 250 255 Ile Glu Arg Asp Val Pro Gly Cys Asn Arg Asp Leu Ile His Ile Ala 260 265 270 Tyr Ser Leu Ser Lys Asp Phe Gly Leu Pro Gly Phe Arg Val Gly Ile 275 280 285 Val Tyr Ser Tyr Asn Asp Asp Val Val Ala Cys Ala Arg Lys Met Ser 290 295 300 Ser Phe Gly Leu Val Ser Ser Gln Thr Gln His Phe Leu Ala Lys Met 305 310 315 320 Leu Ser Asp Ala Glu Phe Met Ala Arg Phe Leu Ala Glu Ser Ala Arg 325 330 335 Arg Leu Ala Ala Arg His Asp Arg Phe Val Ala Gly Leu Arg Glu Val 340 345 350 Gly Ile Ala Cys Leu Pro Gly Asn Ala Gly Leu Phe Ser Trp Met Asp 355 360 365 Leu Arg Gly Met Leu Arg Asp Lys Thr His Asp Ala Glu Leu Glu Leu 370 375 380 Trp Arg Val Ile Val His Lys Val Lys Leu Asn Val Ser Pro Gly Thr 385 390 395 400 Ser Phe His Cys Asn Glu Pro Gly Trp Phe Arg Val Cys His Ala Asn 405 410 415 Met Asp Asp Glu Thr Met Glu Val Ala Leu Asp Arg Ile Arg Arg Phe 420 425 430 Val Arg Gln His Gln His Lys Ala Lys Ala Glu Arg Trp Ala Ala Thr 435 440 445 Arg Pro Met Arg Leu Ser Leu Pro Arg Arg Gly Gly Ala Thr Ala Ser 450 455 460 His Leu Pro Ile Ser Ser Pro Met Ala Leu Leu Ser Pro Gln Ser Pro 465 470 475 480 Met Val His Ala Ser 485 <210> SEQ ID NO 8 <211> LENGTH: 482 <212> TYPE: PRT <213> ORGANISM: Zea mays <400> SEQUENCE: 8 Met Ile Ala Asp Glu Lys Pro Gln Pro Gln Leu Leu Ser Lys Lys Ala 1 5 10 15 Ala Cys Asn Ser His Gly Gln Asp Ser Ser Tyr Phe Leu Gly Trp Glu 20 25 30 Glu Tyr Glu Lys Asn Pro Tyr Asp Pro Val Ala Asn Pro Gly Gly Ile 35 40 45 Ile Gln Met Gly Leu Ala Glu Asn Gln Leu Ser Phe Asp Leu Leu Glu 50 55 60 Ala Trp Leu Glu Ala Asn Pro Asp Ala Leu Gly Leu Arg Arg Gly Gly 65 70 75 80 Ala Ser Val Phe Arg Glu Leu Ala Leu Phe Gln Asp Tyr His Gly Met 85 90 95 Pro Ala Phe Lys Asn Ala Leu Ala Arg Phe Met Ser Glu Gln Arg Gly 100 105 110 Tyr Arg Val Thr Phe Asp Pro Ser Asn Ile Val Leu Thr Ala Gly Ala 115 120 125 Thr Ser Ala Asn Glu Ala Leu Met Phe Cys Leu Ala Asp His Gly Asp 130 135 140 Ala Phe Leu Ile Pro Thr Pro Tyr Tyr Pro Gly Phe Asp Arg Asp Leu 145 150 155 160 Lys Trp Arg Thr Gly Ala Glu Ile Val Pro Val His Cys Thr Ser Gly 165 170 175 Asn Gly Phe Arg Leu Thr Arg Ala Ala Leu Asp Asp Ala Tyr Arg Arg 180 185 190 Ala Gln Lys Leu Arg Leu Arg Val Lys Gly Val Leu Ile Thr Asn Pro 195 200 205 Ser Asn Pro Leu Gly Thr Thr Ser Pro Arg Ala Asp Leu Glu Met Leu 210 215 220 Val Asp Phe Val Ala Ala Lys Gly Ile His Leu Val Ser Asp Glu Ile 225 230 235 240 Tyr Ser Gly Thr Val Phe Ala Asp Pro Gly Phe Val Ser Val Leu Glu 245 250 255 Val Val Ala Ala Arg Ala Ala Thr Asp Asp Gly Val Val Gly Val Gly 260 265 270 Pro Leu Ser Asp Arg Val His Val Val Tyr Ser Leu Ser Lys Asp Leu 275 280 285 Gly Leu Pro Gly Phe Arg Val Gly Ala Ile Tyr Ser Ser Asn Ala Gly 290 295 300 Val Val Ser Ala Ala Thr Lys Met Ser Ser Phe Gly Leu Val Ser Ser 305 310 315 320 Gln Thr Gln His Leu Leu Ala Ser Leu Leu Gly Asp Arg Asp Phe Thr 325 330 335 Arg Arg Tyr Ile Ala Glu Asn Thr Arg Arg Ile Arg Glu Arg Arg Glu 340 345 350 Gln Leu Ala Glu Gly Leu Ala Ala Val Gly Ile Glu Cys Leu Glu Ser 355 360 365 Asn Ala Gly Leu Phe Cys Trp Val Asn Met Arg Arg Leu Met Arg Ser 370 375 380 Arg Ser Phe Glu Gly Glu Met Glu Leu Trp Lys Lys Val Val Phe Glu 385 390 395 400 Val Gly Leu Asn Ile Ser Pro Gly Ser Ser Cys His Cys Arg Glu Pro 405 410 415 Gly Trp Phe Arg Val Cys Phe Ala Asn Met Ser Ala Lys Thr Leu Asp 420 425 430 Val Ala Leu Gln Arg Leu Gly Ala Phe Ala Glu Ala Ala Thr Ala Gly 435 440 445 Arg Arg Val Leu Ala Pro Ala Arg Ser Ile Ser Leu Pro Val Arg Phe 450 455 460 Ser Trp Ala Asn Arg Leu Thr Pro Gly Ser Ala Ala Asp Arg Lys Ala 465 470 475 480 Glu Arg <210> SEQ ID NO 9 <211> LENGTH: 486 <212> TYPE: PRT <213> ORGANISM: Zea mays <400> SEQUENCE: 9 Met Ala Gly Ser Ser Ala Glu Gln Leu Leu Ser Arg Ile Ala Ala Gly 1 5 10 15 Asp Gly His Gly Glu Asn Ser Ser Tyr Phe Asp Gly Trp Lys Ala Tyr 20 25 30 Asp Met Asn Pro Phe Asp Leu Arg His Asn Arg Asp Gly Val Ile Gln 35 40 45 Met Gly Leu Ala Glu Asn Gln Leu Ser Leu Asp Leu Ile Glu Gln Trp 50 55 60 Ser Val Asp His Pro Glu Ala Ser Ile Cys Thr Ala Gln Gly Ala Pro 65 70 75 80 Gln Phe Arg Arg Ile Ala Asn Phe Gln Asp Tyr His Gly Leu Pro Glu 85 90 95 Phe Arg Glu Ala Met Ala Lys Phe Met Gly Gln Val Arg Gly Gly Lys 100 105 110 Val Thr Phe Asp Pro Asp Arg Val Val Met Cys Gly Gly Ala Thr Gly 115 120 125 Ala Gln Asp Thr Leu Ala Phe Cys Leu Ala Asp Pro Gly Asp Ala Tyr 130 135 140 Leu Val Pro Thr Pro Tyr Tyr Pro Ala Phe Asp Arg Asp Cys Cys Trp 145 150 155 160 Arg Ser Gly Val Lys Leu Leu Pro Ile Glu Cys His Ser Ser Asn Asn 165 170 175 Phe Thr Leu Thr Arg Glu Ala Leu Val Ser Ala Tyr Asp Gly Ala Arg 180 185 190 Arg Gln Gly Val Arg Val Arg Gly Ile Leu Ile Thr Asn Pro Ser Asn 195 200 205 Pro Leu Gly Thr Thr Met Asp Arg Gly Thr Leu Ala Met Leu Ala Ala 210 215 220 Phe Ala Thr Glu Arg Arg Val His Leu Ile Cys Asp Glu Ile Tyr Ala 225 230 235 240 Gly Ser Val Phe Ala Lys Pro Gly Phe Val Ser Ile Ala Glu Val Ile 245 250 255 Glu Arg Gly Asp Ala Pro Gly Cys Asn Arg Asp Leu Val His Ile Ala 260 265 270 Tyr Ser Leu Ser Lys Asp Phe Gly Leu Pro Gly Phe Arg Val Gly Ile 275 280 285 Val Tyr Ser Tyr Asn Asp Asp Val Val Ala Cys Ala Arg Lys Met Ser 290 295 300 Ser Phe Gly Leu Val Ser Ser Gln Thr Gln His Phe Leu Ala Met Met 305 310 315 320 Leu Ala Asp Ala Glu Phe Met Ala Arg Phe Leu Ala Glu Ser Ala Arg 325 330 335 Arg Leu Ala Ala Arg His Asp Arg Phe Val Ala Gly Leu Arg Glu Val 340 345 350 Gly Ile Ala Cys Leu Pro Gly Asn Ala Gly Leu Phe Ser Trp Met Asp 355 360 365 Leu Arg Gly Met Leu Arg Glu Lys Thr His Asp Ala Glu Leu Glu Leu 370 375 380 Trp Arg Val Ile Val His Arg Val Lys Leu Asn Val Ser Pro Gly Thr 385 390 395 400 Ser Phe His Cys Asn Glu Pro Gly Trp Phe Arg Val Cys Tyr Ala Asn 405 410 415 Met Asp Asp Asp Thr Met Glu Val Ala Leu Asp Arg Ile Arg Arg Phe 420 425 430 Val Arg Gln His Gln His Ser Lys Ala Lys Ala Glu Arg Trp Ala Ala 435 440 445 Thr Arg Pro Leu Arg Leu Ser Leu Pro Arg Arg Gly Ala Thr Thr Ala 450 455 460 Ser His Leu Ala Ile Ser Ser Pro Leu Ala Leu Leu Ser Pro Gln Ser 465 470 475 480 Pro Met Val His Ala Ser 485 <210> SEQ ID NO 10 <211> LENGTH: 2120 <212> TYPE: DNA <213> ORGANISM: Zea mays <400> SEQUENCE: 10 atgaccatga ttacgccaag ctctaatacg actcactata gggaaagctg gtacgcctgc 60 aggtaccggt ccggaattcc cgggtcgacc cacgcgtccg cagcaagctc atccccttca 120 aaaccctccg gcagcccagc cagctagtgg tgatctctca gcagcgcgcc tgaacgtgtg 180 ctccctgcta aactctgcgc ctcggtaggc aaggaaaatt aaaccggtcg tcgtcagatt 240 aaatggccgg tagcagcgcg gagcagctcc tctccaggat cgccgccggc gatggccacg 300 gcgagaactc gtcctacttc gacgggtgga aggcctacga cacgaaccct ttcgacctgc 360 gccacaaccg cgacggcgtc atccagatgg gactcgccga gaaccaactg tcgctggacc 420 tgatcgagca atggagcgtg gaccacccgg aggcgtccat ctgcacggcg cagggcgcgc 480 cgcagttccg gaggatagcc aacttccagg actaccacgg cctgccggag ttcagagagg 540 cgatggccaa gttcatgggg caggtgaggg gcggcaaggt gacgttcgac cccgaccgcg 600 tcgtcatgtg cgggggagcc accggcgcgc aggacactct cgccttctgc ctcgctgacc 660 cgggcgacgc ctacctcgtg ccgacgcctt attacccagc tttcgaccgc gactgttgct 720 ggaggtcagg agtgaagctg ctgcccatcg aatgccacag ctcgaacaac ttcaccctca 780 ccagggaggc gctcgtgtcg gcctacgacg gcgcgcggag gcagggcgtc cgcgtcaggg 840 gcatcctcat caccaacccc tccaacccgc tgggcaccac aatggaccgc ggcacgctgg 900 cgatgctcgc cgcgttcgcc acagagcgcc gcgtccacct catctgcgac gagatctacg 960 cgggctccgt cttcgccaag ccgggcttcg tgagcatcgc cgaggtcatc gagcgcggcg 1020 acgccccggg ctgcaacagg gacctcgtcc acatcgcgta cagcctctcc aaggacttcg 1080 gcctcccggg cttccgcgtc ggcatcgtct actcctacaa cgacgacgtg gtggcctgcg 1140 cgcgcaagat gtccagcttc ggcctcgtct cgtcgcagac gcagcacttc ctggcgatga 1200 tgctcgccga cgcggagttc atggcacgct tcctcgcgga gagcgcgcgg cggctggcgg 1260 cgcgccacga ccgcttcgtc gcgggcctcc gcgaggtcgg catcgcgtgc ctgccgggca 1320 acgcgggcct cttctcgtgg atggacctgc ggggcatgct ccgggagagg acgcacgacg 1380 cggagctgga gctgtggcgg gtcatcgtac acagggtgaa gctcaacgtg tcgcccggca 1440 cgtcgttcca ctgcaacgag cccggctggt tccgcgtctg ctacgccaac atggacgacg 1500 acaccatgga ggtcgcgctc gaccggatcc gccgcttcgt gcgccagcac cagcacagca 1560 aggccaaggc cgagcgctgg gcggccacgc ggcccctccg cctcagcttg ccgcgccggg 1620 gagcaaccac cgcttcgcac ctcgccatcc ccagcccctt ggcgttgctg tcgccgcagt 1680 ccccgatggt ccacgccagc tagctagtca ccgagcgttc ggtaagactg gctgtagggt 1740 gtgccctcac ataactgcaa acaagtggac aaaaaatatt agacaagact aataaagggc 1800 attagtagct agcttgacat tacacagaga cgttgcacag gcgtcagcag gcgtcggcgg 1860 taagcagcta gtcaagcagg acgcatttgt cctcgatttt ttcgtgtata tatgttcttt 1920 tttctgtttt gccaaatcgc atgtatggtt tggtttaacg ttagtacacg gtagaataac 1980 gatcgggtat ggtaatttag acctcccgat caattgttgt tgaaaacctg tcacgtaact 2040 tcaggacaca gaaggcgtag ctcaagggtg aataaaagac cagtttacat atcaaaaaaa 2100 aaaaaaaaaa aaaaaaaaaa 2120 <210> SEQ ID NO 11 <211> LENGTH: 486 <212> TYPE: PRT <213> ORGANISM: Zea mays <400> SEQUENCE: 11 Met Ala Gly Ser Ser Ala Glu Gln Leu Leu Ser Arg Ile Ala Ala Gly 1 5 10 15 Asp Gly His Gly Glu Asn Ser Ser Tyr Phe Asp Gly Trp Lys Ala Tyr 20 25 30 Asp Thr Asn Pro Phe Asp Leu Arg His Asn Arg Asp Gly Val Ile Gln 35 40 45 Met Gly Leu Ala Glu Asn Gln Leu Ser Leu Asp Leu Ile Glu Gln Trp 50 55 60 Ser Val Asp His Pro Glu Ala Ser Ile Cys Thr Ala Gln Gly Ala Pro 65 70 75 80 Gln Phe Arg Arg Ile Ala Asn Phe Gln Asp Tyr His Gly Leu Pro Glu 85 90 95 Phe Arg Glu Ala Met Ala Lys Phe Met Gly Gln Val Arg Gly Gly Lys 100 105 110 Val Thr Phe Asp Pro Asp Arg Val Val Met Cys Gly Gly Ala Thr Gly 115 120 125 Ala Gln Asp Thr Leu Ala Phe Cys Leu Ala Asp Pro Gly Asp Ala Tyr 130 135 140 Leu Val Pro Thr Pro Tyr Tyr Pro Ala Phe Asp Arg Asp Cys Cys Trp 145 150 155 160 Arg Ser Gly Val Lys Leu Leu Pro Ile Glu Cys His Ser Ser Asn Asn 165 170 175 Phe Thr Leu Thr Arg Glu Ala Leu Val Ser Ala Tyr Asp Gly Ala Arg 180 185 190 Arg Gln Gly Val Arg Val Arg Gly Ile Leu Ile Thr Asn Pro Ser Asn 195 200 205 Pro Leu Gly Thr Thr Met Asp Arg Gly Thr Leu Ala Met Leu Ala Ala 210 215 220 Phe Ala Thr Glu Arg Arg Val His Leu Ile Cys Asp Glu Ile Tyr Ala 225 230 235 240 Gly Ser Val Phe Ala Lys Pro Gly Phe Val Ser Ile Ala Glu Val Ile 245 250 255 Glu Arg Gly Asp Ala Pro Gly Cys Asn Arg Asp Leu Val His Ile Ala 260 265 270 Tyr Ser Leu Ser Lys Asp Phe Gly Leu Pro Gly Phe Arg Val Gly Ile 275 280 285 Val Tyr Ser Tyr Asn Asp Asp Val Val Ala Cys Ala Arg Lys Met Ser 290 295 300 Ser Phe Gly Leu Val Ser Ser Gln Thr Gln His Phe Leu Ala Met Met 305 310 315 320 Leu Ala Asp Ala Glu Phe Met Ala Arg Phe Leu Ala Glu Ser Ala Arg 325 330 335 Arg Leu Ala Ala Arg His Asp Arg Phe Val Ala Gly Leu Arg Glu Val 340 345 350 Gly Ile Ala Cys Leu Pro Gly Asn Ala Gly Leu Phe Ser Trp Met Asp 355 360 365 Leu Arg Gly Met Leu Arg Glu Arg Thr His Asp Ala Glu Leu Glu Leu 370 375 380 Trp Arg Val Ile Val His Arg Val Lys Leu Asn Val Ser Pro Gly Thr 385 390 395 400 Ser Phe His Cys Asn Glu Pro Gly Trp Phe Arg Val Cys Tyr Ala Asn 405 410 415 Met Asp Asp Asp Thr Met Glu Val Ala Leu Asp Arg Ile Arg Arg Phe 420 425 430 Val Arg Gln His Gln His Ser Lys Ala Lys Ala Glu Arg Trp Ala Ala 435 440 445 Thr Arg Pro Leu Arg Leu Ser Leu Pro Arg Arg Gly Ala Thr Thr Ala 450 455 460 Ser His Leu Ala Ile Pro Ser Pro Leu Ala Leu Leu Ser Pro Gln Ser 465 470 475 480 Pro Met Val His Ala Ser 485 <210> SEQ ID NO 12 <211> LENGTH: 1173 <212> TYPE: DNA <213> ORGANISM: Zea mays <400> SEQUENCE: 12 ggccgccctt tttttttttt tttttttttt ttttttgata tgtaaactgg tcttttattc 60 acccttgagc tacgccttct gtgtcctgaa gttacgtgac aggttttcaa caacaattga 120 tcgggaggtc taaattacca tacccgatcg ttattctacc gtgtactaac gttaaaccaa 180 accatacatg cgatttggca aaacagaaaa aagaacatat atacacgaaa aaatcgagga 240 caaatgcgtc ctgcttgact agctgcttac cgccgacgcc tgctgacgcc tgtgcaacgt 300 ctctgtgtaa tgtcaagcta gctactaatg ccctttatta gtcttgtcta atattttttg 360 tccacttgtt tgcagttatg tgagggcaca ccctacagcc agtcttaccg aacgctcggt 420 gactagctag ctggcgtgga ccatcgggga ctgcggcgac agcaacgcca aggggctggg 480 gatggcgagg tgcgaagcgg tggttgctcc ccggcgcggc aagctgaggc ggaggggccg 540 cgtggccgcc cagcgctcgg ccttggcctt gctgtgctgg tgctggcgca cgaagcggcg 600 gatccggtcg agcgcgacct ccatggtgtc gtcgtccatg ttggcgtagc agacgcggaa 660 ccagccgggc tcgttgcagt ggaacgacgt gccgggcgac acgttgagct tcaccctgtg 720 tacgatgacc cgccacagct ccagctccgc gtcgtgcgtc ctctcccgga gcatgccccg 780 caggtccatc cacgagaaga ggcccgcgtt gcccggcagg cacgcgatgc cgacctcgcg 840 gaggcccgcg acgaagcggt cgtggcgcgc cgccagccgc cgcgcgctct ccgcgaggaa 900 gcgtgccatg aactccgcgt cggcgagcat catcgccagg aagtgctgcg tctgcgacga 960 gacgaggccg aagctggaca tcttgcgcgc gcaggccacc acgtcgtcgt tgtaggagta 1020 gacgatgccg acgcggaagc ccgggaggcc gaagtccttg gagaggctgt acgcgatgtg 1080 gacgaggtcc ctgttgcagc ccggggcgtc gccgcgctcg atgacctcgg cgatgctcac 1140 gaagcccggc ttggcgaaga cggagcccgc gta 1173 <210> SEQ ID NO 13 <211> LENGTH: 600 <212> TYPE: DNA <213> ORGANISM: Zea mays <400> SEQUENCE: 13 gatccgccgc ttcgtgcgcc agcaccagca cagcaaggcc aaggccgagc gctgggcggc 60 cacgcggccc ctccgcctca gcttgccgcg ccggggagca accaccgctt cgcacctcgc 120 catccccagc cccttggcgt tgctgtcgcc gcagtccccg atggtccacg ccagctagct 180 agtcaccgag cgttcggtaa gactggctgt agggtgtgcc ctcacataac tgcaaacaag 240 tggacaaaaa atattagaca agactaataa agggcattag tagctagctt gacattacac 300 agagacgttg cacaggcgtc agcaggcgtc ggcggtaagc agctagtcaa gcaggacgca 360 tttgtcctcg attttttcgt gtatatatgt tcttttttct gttttgccaa atcgcatgta 420 tggtttggtt taacgttagt acacggtaga ataacgatcg ggtatggtaa tttagacctc 480 ccgatcaatt gttgttgaaa acctgtcacg taacttcagg acacagaagg cgtagctcaa 540 gggtgaataa aagaccagtt tacatatcaa aaaaaaaaaa aaaaaaaaaa aaaaaagggc 600 <210> SEQ ID NO 14 <211> LENGTH: 701 <212> TYPE: DNA <213> ORGANISM: Zea mays <400> SEQUENCE: 14 tagcagacgc ggaaccagcc gggctcccgg cagtggcagg aggagcccgg ggagatgttg 60 agccccacct cgaagaccac cttcttccac agctccatct cgccctcgaa cgaccggctc 120 cgcatcaggc gccgcatgtt gacccagcag aagagccccg cgttgctctc caggcactcg 180 atgcccacgg ccgccaggcc ctccgccagc tgctcgcgcc gctccctgat ccgccgcgtg 240 ttctccgcga tgtacctccg cgtgaagtcc ctgtcgccca ggagcgacgc caggaggtgc 300 tgcgtctggg acgacaccag gccgaagctc gacatcttgg tggccgcgga gaccacgccg 360 gcgttggacg agtagatggc gcccacgcgg aaccccggga ggcccaggtc cttggacagg 420 ctgtacacca cgtgcacgcg gtccgacagc ggcccaacgc cgacgacgcc gtcgtccgtg 480 gcggcgcgcg cggccaccac ctcgaggacg ctcacgaagc ccgggtccgc gaagaccgtg 540 cccgagtata tctcgtcgct caccaggtgg atgcccttgg cggccacgaa gtccaccagc 600 atctccaggt cggcgcgcgg cgacgtggtg cccagcgggt tggaagggtt ggtgatgagc 660 acgcccttga cgcgcagccg cagcttctgc gcgcgccggt a 701 <210> SEQ ID NO 15 <211> LENGTH: 489 <212> TYPE: DNA <213> ORGANISM: Zea mays <400> SEQUENCE: 15 cgcgccgcca cggacgacgg cgtcgtcggc gttgggccgc tgtcggaccg cgtgcacgtg 60 gtgtacagcc tgtccaagga cctgggcctc ccggggttcc gcgtgggcgc catctactcg 120 tccaacgccg gcgtggtctc cgcggccacc aagatgtcga gcttcggcct ggtgtcgtcc 180 cagacgcagc acctcctggc gtcgctcctg ggcgacaggg acttcacgcg gaggtacatc 240 gcggagaaca cgcggcggat cagggagcgg cgcgagcagc tggcggaggg cctggcggcc 300 gtgggcatcg agtgcctgga gagcaacgcg gggctcttct gctgggtcaa catgcggcgc 360 ctgatgcgga gccggtcgtt cgagggcgag atggagctgt ggaagaaggt ggtcttcgag 420 gtggggctca acatctcccc gggctcctcc tgccactgcc gggagcccgg ctggttccgc 480 gtctgctaa 489 <210> SEQ ID NO 16 <211> LENGTH: 1467 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 16 atgtctcagg gtgcatgtga gaatcaactt ctatccaaat tagctttgag tgacaaacat 60 ggagaagctt cgccgtactt ccatggctgg aaagcttacg acaataatcc ttttcatcca 120 actcataatc cacaaggagt tattcaaatg ggtctcgccg aaaatcaact ttgttcagat 180 ttgatcaaag aatggataaa ggaaaatcca caggcatcta tttgtacggc ggagggaatt 240 gactctttct ccgacattgc tgtttttcaa gattatcacg gtctcaaaca atttagacag 300 gcgattgcga cgtttatgga gagagcgaga ggcgggcggg tgaggtttga ggcggagagg 360 gtggtgatga gcggaggagc caccggagca aatgagacga tcatgttctg tcttgctgat 420 cccggcgacg cttttctcgt ccctactcct tattatgctg cattcgatag agacttaagg 480 tggagaactg gagttagaat aatccctgtg gagtgtagca gctcaaacaa tttccagatt 540 acaaaacaag ccctagaatc agcgtacctt aaggcccaag aaaccggtat caagatcaaa 600 ggcctgatca tctcaaaccc tcttggaaca tctctcgatc gagaaactct tgaaagcctt 660 gtcagcttca tcaacgacaa gcaaattcac ttagtatgcg acgaaatata cgcagcaacg 720 gtttttgcgg aaccgggatt catcagtgtt gcagagatca tccaagagat gtattatgtt 780 aaccgtgatc tgattcatat cgtctacagt ctttcaaagg acatgggtct tcccggtttc 840 cgggttggag tggtttactc ttacaacgat gttgttgtgt cctgcgcaag gaggatgtcg 900 agttttggat tggtctcgtc gcagacacaa agttttctag ctgctatgtt gtctgatcag 960 agttttgtcg ataactttct tgttgaggtt tcgaaaagag tagcgaagag acaccatatg 1020 ttcacggaag ggcttgaaga gatggggatt tcttgcttga gaagcaacgc gggtttattc 1080 gttttgatgg atttgaggca tatgcttaag gatcagacat ttgattccga aatggcgctt 1140 tggcgagtta ttatcaataa ggtcaagatt aatgtctctc ctggctcgtc gtttcactgc 1200 tctgagcctg gttggttccg agtctgcttt gctaatatgg acgaagacac actccaaatt 1260 gcacttgaac gaatcaaaga ctttgtggtt ggagacagag ccaacaagaa caagaactgt 1320 aactgcattt gcaacaacaa aagggagaac aagaaacgta agagttttca aaagaatctc 1380 aagctgagtt tatcttcgat gaggtacgag gaacatgtta ggtcaccaaa gttgatgtct 1440 cctcattcac cattgcttcg agcttaa 1467 <210> SEQ ID NO 17 <211> LENGTH: 1920 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 17 aaaacttgtc ataagatcaa tatcgatacc cccaaaaaaa aaaaaaaaca gctacaaaga 60 agtgagaatt gacacagcaa atgggtcttc cgggaaaaaa taaaggtgca gttttgtcga 120 agatagcgac taacaatcaa cacggagaga actcagagta ctttgatgga tggaaagctt 180 acgacaaaga tccttttcat ctttcccgta acccccatgg gatcatccaa atgggtcttg 240 cagagaatca gctttgctta gatttgatca aagattgggt caaagagaac ccagaagctt 300 ctatttgcac ccttgaaggt attcatcagt ttagcgacat cgctaatttc caagactacc 360 atggtcttaa gaagtttaga caggcaattg cacatttcat gggaaaagct agaggtggaa 420 gagtgacttt tgatccggag agggtggtta tgagcggagg agccaccgga gccaatgaaa 480 caatcatgtt ctgccttgcg gatcccggcg acgttttcct cattccctcc ccgtactatg 540 ccgcatttga tagagacttg aggtggcgga caggtgtcga gataatcccg gttccttgtt 600 caagctccga caatttcaaa ttaaccgttg acgccgcgga atgggcttat aaaaaagccc 660 aagagtccaa taaaaaagtc aaaggtctga ttttgaccaa cccatcaaat ccactcggta 720 caatgttgga taaggacaca ctcacgaact tggtccggtt tgtcacgagg aagaacattc 780 acctagtcgt cgacgagatc tacgccgcca cagtcttcgc cggaggagat ttcgtgagcg 840 ttgctgaggt ggtcaatgat gtggacatct ccgaagtcaa cgttgacttg attcacattg 900 tctatagtct ttctaaagat atgggacttc ctggttttag agtcgggata gtctattctt 960 tcaatgactc ggtcgtgtct tgcgcaagaa aaatgtcaag tttcggactt gtttcgtctc 1020 agacacaact catgcttgct tcgatgttgt ccgatgatca gtttgtggat aattttctaa 1080 tggaaagctc gagaaggttg gggataaggc ataaagtttt taccacgggg atcaagaaag 1140 cagatattgc ttgtttgaca agcaacgctg gtttatttgc gtggatggat ttgagacatc 1200 tactgagaga tcgtaactcg tttgaatctg agatcgagct ttggcatata atcatcgata 1260 gagttaagct caatgtgtct cctggctctt ccttccgttg cacggaacct ggatggttta 1320 ggatttgctt tgccaacatg gacgatgata ctctccatgt ggcgcttgga cggatccaag 1380 atttcgtgtc taagaacaag aacaagatcg tcgagaaagc atctgaaaat gatcaggtaa 1440 tccagaacaa gagtgctaaa aagctgaaat ggacgcagac caatcttcga ctaagtttcc 1500 gacgacttta cgaggatggt ctctcgtctc cagggataat gtcaccacac tcacctcttc 1560 tccgagcatg aaaatcttaa ggcataacgt ctgagagatt ggattaactc gtccgcgttt 1620 cactccgtgt taattaatct taaattagta agtgattaag taaatgtttt ttctttcatt 1680 gtaagattgg aataattcaa tttcgacatt agggttgttt ttgacggcca gcttttttcc 1740 tggggtcaaa tggtaacttt taagatttta tgtgtttgat tctgtttctt ttttccgctt 1800 aggattttaa tcgatggatt gtcctagtgg tgctggtgtg tagcatatat gcttttctta 1860 tatgtttttg tgtgtaataa atgaaacatt gtcttttgat aaggatcacc agagtttatt 1920 <210> SEQ ID NO 18 <211> LENGTH: 1735 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 18 accttttttt cttcttttca agtcaagtta aatacttaat aacacatttt tctaaacttc 60 ttacagcttt gcttagattt gatcaaagat tgggtcaaag agaacccaga agcttctatt 120 tgcacccttg aaggtattca tcagtttagc gacatcgcta atttccaaga ctaccatggt 180 cttaagaagt ttagacaggc aattgcacat ttcatgggaa aagctagagg tggaagagtg 240 acttttgatc cggagagggt ggttatgagc ggaggagcca ccggagccaa tgaaacaatc 300 atgttctgcc ttgcggatcc cggcgacgtt ttcctcattc cctccccgta ctatgccgca 360 tttgatagag acttgaggtg gcggacaggt gtcgagataa tcccggttcc ttgttcaagc 420 tccgacaatt tcaaattaac cgttgacgcc gcggaatggg cttataaaaa agcccaagag 480 tccaataaaa aagtcaaagg tctgattttg accaacccat caaatccact cggtacaatg 540 ttggataagg acacactcac gaacttggtc cggtttgtca cgaggaagaa cattcaccta 600 gtcgtcgacg agatctacgc cgccacagtc ttcgccggag gagatttcgt gagcgttgct 660 gaggtggtca atgatgtgga catctccgaa gtcaacgttg acttgattca cattgtctat 720 agtctttcta aagatatggg acttcctggt tttagagtcg ggatagtcta ttctttcaat 780 gactcggtcg tgtcttgcgc aagaaaaatg tcaagtttcg gacttgtttc gtctcagaca 840 caactcatgc ttgcttcgat gttgtccgat gatcagtttg tggataattt tctaatggaa 900 agctcgagaa ggttggggat aaggcataaa gtttttacca cggggatcaa gaaagcagat 960 attgcttgtt tgacaagcaa cgctggttta tttgcgtgga tggatttgag acatctactg 1020 agagatcgta actcgtttga atctgagatc gagctttggc atataatcat cgatagagtt 1080 aagctcaatg tgtctcctgg ctcttccttc cgttgcacgg aacctggatg gtttaggatt 1140 tgctttgcca acatggacga tgatactctc catgtggcgc ttggacggat ccaagatttc 1200 gtgtctaaga acaagaacaa gatcgtcgag aaagcatctg aaaatgatca ggtaatccag 1260 aacaagagtg ctaaaaagct gaaatggacg cagaccaatc ttcgactaag tttccgacga 1320 ctttacgagg atggtctctc gtctccaggg ataatgtcac cacactcacc tcttctccga 1380 gcatgaaaat cttaaggcat aacgtctgag agattggatt aactcgtccg cgtttcactc 1440 cgtgttaatt aatcttaaat tagtaagtga ttaagtaaat gttttttctt tcattgtaag 1500 attggaataa ttcaatttcg acattagggt tgtttttgac ggccagcttt tttcctgggg 1560 tcaaatggta acttttaaga ttttatgtgt ttgattctgt ttcttttttc cgcttaggat 1620 tttaatcgat ggattgtcct agtggtgctg gtgtgtagca tatatgcttt tcttatatgt 1680 ttttgtgtgt aataaatgaa acattgtctt ttgataagga tcaccagagt ttatt 1735 <210> SEQ ID NO 19 <211> LENGTH: 2003 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 1492 <223> OTHER INFORMATION: n = A,T,C or G <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 1493 <223> OTHER INFORMATION: m = A,T,C or G <400> SEQUENCE: 19 atgggtcttc cgggaaaaaa taaaggtgca gttttgtcga agatagcgac taacaatcaa 60 cacggagaga actcagagta ctttgatgga tggaaagctt acgacaaaga tccttttcat 120 ctttcccgta acccccatgg gatcatccaa atgggtcttg cagagaatca gctttgctta 180 gatttgatca aagattgggt caaagagaac ccagaagctt ctatttgcac ccttgaaggt 240 attcatcagt ttagcgacat cgctaatttc caagactacc atggtcttaa gaagtttaga 300 caggcaattg cacatttcat gggaaaagct agaggtggaa gagtgacttt tgatccggag 360 agggtggtta tgagcggagg agccaccgga gccaatgaaa caatcatgtt ctgccttgcg 420 gatcccggcg acgttttcct cattccctcc ccgtactatg ccgcatttga tagagacttg 480 aggtggcgga caggtgtcga gataatcccg gttccttgtt caagctccga caatttcaaa 540 ttaaccgttg acgccgcgga atgggcttat aaaaaagccc aagagtccaa taaaaaagtc 600 aaaggtctga ttttgaccaa cccatcaaat ccactcggta caatgttgga taaggacaca 660 ctcacgaact tggtccggtt tgtcacgagg aagaacattc acctagtcgt cgacgagatc 720 tacgccgcca cagtcttcgc cggaggagat ttcgtgagcg ttgctgaggt ggtcaatgat 780 gtggacatct ccgaagtcaa cgttgacttg attcacattg tctatagtct ttctaaagat 840 atgggacttc ctggttttag agtcgggata gtctattctt tcaatgactc ggtcgtgtct 900 tgcgcaagaa aaatgtcaag tttcggactt gtttcgtctc agacacaact catgcttgct 960 tcgatgttgt ccgatgatca gtttgtggat aattttctaa tggaaagctc gagaaggttg 1020 gggataaggc ataaagtttt taccacgggg atcaagaaag cagatattgc ttgtttgaca 1080 agcaacgctg gtttatttgc gtggatggat ttgagacatc tactgagaga tcgtaactcg 1140 tttgaatctg agatcgagct ttggcatata atcatcgata gagttaagct caatgtgtct 1200 cctggctctt ccttccgttg cacggaacct ggatggttta ggatttgctt tgccaacatg 1260 gacgatgata ctctccatgt ggcgcttgga cggatccaag atttcgtgtc taagaacaag 1320 aacaagatcg tcgagaaagc atctgaaaat gatcaggtaa tccagaacaa gagtgctaaa 1380 aagctgaaat ggacgcagac caatcttcga ctaagtttcc gacgacttta cgaggatggt 1440 ctctcgtctc cagggataat gtcaccacac tcacctcttc tccgagcatg anmacsatgt 1500 ctcagggtgc atgtgagaat caacttctat ccaaattagc tttgagtgac aaacatggag 1560 aagcttcgcc gtacttccat ggctggaaag cttacgacaa taatcctttt catccaactc 1620 ataatccaca aggagttatt caaatgggtc tcgccgaaaa tcaactttgt tcagatttga 1680 tcaaagaatg gataaaggaa aatccacatg catctatttg tacggcggag ggaattgact 1740 ctttctccga cattgctgtt tttcaagatt atcacggtct caaacaattt agacaggcga 1800 ttgcgacgtt tatggagaga gcgagaggcg ggcgggtgag gtttgaggcg gagagggtgg 1860 tgatgagcgg aggagccacc ggagcaaatg agacgatcat gttctgtctt gctgatcccg 1920 gcgacgcttt tctcgtccct actccttatt atgctgcgta cagagagaaa gagaattact 1980 tgagacttgt gagccctttg tga 2003 <210> SEQ ID NO 20 <211> LENGTH: 1425 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 20 atggttcaat tgtcaagaaa agctacatgc aacagccatg gccaagtctc ttcgtatttc 60 cttggttggg aagagtacga gaagaatcct tacgacgtta ccaagaaccc tcaaggcatt 120 atccagatgg gtcttgcgga aaatcagcta tgctttgatc tactagagtc atggcttgca 180 caaaacacag acgcagcctg tttcaagaga gatggccagt ctgttttccg ggaactcgct 240 ctctttcaag actaccatgg cctctcttcc ttcaaaaatg cctttgctga tttcatgtca 300 gaaaatagag gaaatcgagt ttcttttgat tcaaacaacc ttgtgctcac tgctggagcc 360 acttccgcaa acgagactct aatgttttgt cttgcagatc ccggtgacgc tttcttgctt 420 cccacgccat attatccagg gtttgatagg gatctaaaat ggcgaaccgg ggttgagatt 480 gtaccaatcc aaagctcaag tactaacggg tttcgcataa cgaaacttgc actcgaagaa 540 gcctacgagc aagccaagaa gcttgaccta aacgtcaaag gaatactcat caccaaccca 600 tctaaccctt tgggtacgac aacaacccaa accgaactca acattctatt tgatttcatc 660 accaagaata agaatataca tttagtaagt gacgagatat attcgggcac agtattcaac 720 tcttcagaat tcatcagcgt catggagatt ctaaaaaata atcaactcga aaacaccgat 780 gttttgaacc gagtccacat tgtttgtagc ttatctaaag atctaggcct ccctggtttt 840 agagttggag ccatttactc caatgacaaa gatgtcatct ctgccgctac aaaaatgtca 900 agtttcggcc ttgtctcctc ccagacacaa tacctactat cctcattatt atctgacaag 960 aagttcacta agaactacct tagagagaac caaaaacggc tcaagaacag acagagaaag 1020 ctcgtgttgg gtctagaggc catcgggatc aaatgtctga agagtaatgc gggactcttt 1080 tgttgggtcg acatgagacc tctccttaga tctaaaacgt tcgaagcgga aatggatctt 1140 tggaagaaga ttgtttacga agtgaagctc aacatctctc ctggttcgtc gtgccattgt 1200 gaagaaccgg gttggtttag agtttgtttc gcgaacatga ttgatgagac attaaagctt 1260 gctttaaaga gattgaagat gttggttgat gatgaaaact caagtagaag atgccaaaag 1320 agtaaaagcg aaagactaaa cggttcgagg aagaagacga tgtcaaatgt ctctaactgg 1380 gttttccgac tatcgtttca cgaccgtgag gctgaggaac gatag 1425 <210> SEQ ID NO 21 <211> LENGTH: 1425 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 21 atggttcaat tgtcaagaaa agctacatgc aacagccatg gccaagtctc ttcgtatttc 60 cttggttggg aagagtacga gaagaatcct tacgacgtta ccaagaaccc tcaaggcatt 120 atccagatgg gtcttgcgga aaatcagcta tgctttgatc tactagagtc atggcttgca 180 caaaacacag acgcagcctg tttcaagaga gatggccagt ctgttttccg ggaactcgct 240 ctctttcaag actaccatgg cctctcttcc ttcaaaaatg cctttgctga tttcatgtca 300 gaaaatagag gaaatcgagt ttcttttgat tcaaacaacc ttgtgctcac tgctggagcc 360 acttccgcaa acgagactct aatgttttgt cttgcagatc ccggtgacgc tttcttgctt 420 cccacgccat attatccagg gtttgatagg gatctaaaat ggcgaaccgg ggttgagatt 480 gtaccaatcc aaagctcaag tactaacggg tttcgcataa cgaaacttgc actcgaagaa 540 gcctacgagc aagccaagaa gcttgaccta aacgtcaaag gaatactcat caccaaccca 600 tctaaccctt tgggtacgac aacaacccaa accgaactca acattctatt tgatttcatc 660 accaagaata agaatataca tttagtaagt gacgagatat attcgggcac agtattcaac 720 tcttcagaat tcatcagcgt catggagatt ctaaaaaata atcaactcga aaacaccgat 780 gttttgaacc gagtccacat tgtttgtagc ttatctaaag atctaggcct ccctggtttt 840 agagttggag ccatttactc caatgacaaa gatgtcatct ctgccgctac aaaaatgtca 900 agtttcggcc ttgtctcctc ccagacacaa tacctactat cctcattatt atctgacaag 960 aagttcacta agaactacct tagagagaac caaaaacggc tcaagaacag acagagaaag 1020 ctcgtgttgg gtctagaggc catcgggatc aaatgtctga agagtaatgc gggactcttt 1080 tgttgggtcg acatgagacc tctccttaga tctaaaacgt tcgaagcgga aatggatctt 1140 tggaagaaga ttgtttacga agtgaagctc aacatctctc ctggttcgtc gtgccattgt 1200 gaagaaccgg gttggtttag agtttgtttc gcgaacatga ttgatgagac attaaagctt 1260 gctttaaaga gattgaagat gttggttgat gatgaaaact caagtagaag atgccaaaag 1320 agtaaaagcg aaagactaaa cggttcgagg aagaagacga tgtcaaatgt ctctaactgg 1380 gttttccgac tatcgtttca cgaccgtgag gctgaggaac gatag 1425 <210> SEQ ID NO 22 <211> LENGTH: 1888 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 22 acatctcact cttcaccaac ttaaacccta attcaagatc tcttcttttc gttctctcct 60 tcacccacat tagtcttctc tacgaccaaa atctcttgac tttaaaaaca gagaatgaaa 120 cagctttcga caaaagtgac aagcaatggt catggacaag actcatccta cttcttggga 180 tgggaagagt acgagaagaa tccttatgat gagatcaaga accctaatgg gatgatccag 240 atgggtctag ccgaaaacca gctatgtttc gatctaatcg agtcatggtt aactaagaac 300 ccagacgcgg caagtctcaa gaggaacggt caatccattt tcagagagct tgctctattt 360 caagactatc atggcatgcc tgaattcaaa aaagctatgg ctgagtttat ggaagagata 420 agaggaaacc gtgtcacgtt cgatccaaaa aagattgttt tagcggctgg ttcgacatct 480 gcgaatgaga ctctcatgtt ttgccttgca gagcctggcg atgctttcct tttgcctact 540 ccttactatc ctggatttga tagagatctt aaatggagaa ccggagcaga gatagtaccc 600 attcactgct caagctctaa tggcttccaa atcacggaat cagctctgca acaagcttac 660 caacaagccc agaaacttga tctcaaagtc aaaggagttc ttgtcacgaa tccatctaac 720 ccacttggca ctgcgttgac cagacgtgaa cttaaccttc tcgttgactt catcacttcc 780 aagaacattc atctcattag cgacgagatc tattcaggca ctatgttcgg gtttgaacag 840 ttcataagcg taatggatgt cttgaaagac aagaaactcg aagacacgga ggtttcaaaa 900 cgagtccacg tcgtttatag cctttctaaa gatctgggac ttcctggttt ccgtgtggga 960 gcgatctact ccaacgacga aatgatcgtt tcagcagcta caaaaatgtc aagttttggt 1020 cttgtttctt ctcagacaca ataccttctc tctgcattgc tctccgacaa gaagttcact 1080 agccaatacc tcgaagagaa ccagaaacga ctcaagtcca gacagagacg cctcgtgtct 1140 ggtcttgagt ctgcagggat tacttgcctg agaagcaacg cgggtttgtt ctgttgggtc 1200 gacatgagac accttttgga cacaaacaca tttgaagcag agcttgacct ctggaaaaag 1260 attgtttaca acgtgaaact aaacatatca cccggttctt catgtcactg caccgaaccg 1320 ggttggttta gggtttgttt cgctaatatg agcgaggaca cactcgattt ggccttgaag 1380 aggctcaaaa ctttcgtaga atccacagac tgtggacgaa tgatatcaag aagcagccat 1440 gaaaggctca agagtttgag gaagaagaca gtctctaact gggttttccg ggtttcatgg 1500 accgatcgtg tacctgatga acgatgaaat tattcatctc cctaagtttg agacgacgaa 1560 caaaagaaaa cttcacggtt ttttcttctt ctttatttcc ttcatttttt atattttggg 1620 aaagtatttt taattttcca agatatctat aatcatatca ttatatatgt aatatttttt 1680 ttaatgtttg ggtgagtctt taatttatgc aatttttcgg gtgtaaaatt gttactatgt 1740 gttattatat gtttttaatg cactcaatcc gaatgtggat ttgcagtggc tatatatata 1800 aataaatata tatcccgttg taattttagt gaaacgtttg tgtgtattgt acccatatat 1860 aaaaatgtaa ttcactcgaa aaaaaaaa 1888 <210> SEQ ID NO 23 <211> LENGTH: 1888 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 23 acatctcact cttcaccaac ttaaacccta attcaagatc tcttcttttc gttctctcct 60 tcacccacat tagtcttctc tacgaccaaa atctcttgac tttaaaaaca gagaatgaaa 120 cagctttcga caaaagtgac aagcaatggt catggacaag actcatccta cttcttggga 180 tgggaagagt acgagaagaa tccttatgat gagatcaaga accctaatgg gatgatccag 240 atgggtctag ccgaaaacca gctatgtttc gatctaatcg agtcatggtt aactaagaac 300 ccagacgcgg caagtctcaa gaggaacggt caatccattt tcagagagct tgctctattt 360 caagactatc atggcatgcc tgaattcaaa aaagctatgg ctgagtttat ggaagagata 420 agaggaaacc gtgtcacgtt cgatccaaaa aagattgttt tagcggctgg ttcgacatct 480 gcgaatgaga ctctcatgtt ttgccttgca gagcctggcg atgctttcct tttgcctact 540 ccttactatc ctggatttga tagagatctt aaatggagaa ccggagcaga gatagtaccc 600 attcactgct caagctctaa tggcttccaa atcacggaat cagctctgca acaagcttac 660 caacaagccc agaaacttga tctcaaagtc aaaggagttc ttgtcacgaa tccatctaac 720 ccacttggca ctgcgttgac cagacgtgaa cttaaccttc tcgttgactt catcacttcc 780 aagaacattc atctcattag cgacgagatc tattcaggca ctatgttcgg gtttgaacag 840 ttcataagcg taatggatgt cttgaaagac aagaaactcg aagacacgga ggtttcaaaa 900 cgagtccacg tcgtttatag cctttctaaa gatctgggac ttcctggttt ccgtgtggga 960 gcgatctact ccaacgacga aatgatcgtt tcagcagcta caaaaatgtc aagttttggt 1020 cttgtttctt ctcagacaca ataccttctc tctgcattgc tctccgacaa gaagttcact 1080 agccaatacc tcgaagagaa ccagaaacga ctcaagtcca gacagagacg cctcgtgtct 1140 ggtcttgagt ctgcagggat tacttgcctg agaagcaacg cgggtttgtt ctgttgggtc 1200 gacatgagac accttttgga cacaaacaca tttgaagcag agcttgacct ctggaaaaag 1260 attgtttaca acgtgaaact aaacatatca cccggttctt catgtcactg caccgaaccg 1320 ggttggttta gggtttgttt cgctaatatg agcgaggaca cactcgattt ggccttgaag 1380 aggctcaaaa ctttcgtaga atccacagac tgtggacgaa tgatatcaag aagcagccat 1440 gaaaggctca agagtttgag gaagaagaca gtctctaact gggttttccg ggtttcatgg 1500 accgatcgtg tacctgatga acgatgaaat tattcatctc cctaagtttg agacgacgaa 1560 caaaagaaaa cttcacggtt ttttcttctt ctttatttcc ttcatttttt atattttggg 1620 aaagtatttt taattttcca agatatctat aatcatatca ttatatatgt aatatttttt 1680 ttaatgtttg ggtgagtctt taatttatgc aatttttcgg gtgtaaaatt gttactatgt 1740 gttattatat gtttttaatg cactcaatcc gaatgtggat ttgcagtggc tatatatata 1800 aataaatata tatcccgttg taattttagt gaaacgtttg tgtgtattgt acccatatat 1860 aaaaatgtaa ttcactcgaa aaaaaaaa 1888 <210> SEQ ID NO 24 <211> LENGTH: 1413 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 24 atgaaacagc tttcgacaaa agtgacaagc aatggtcatg gacaagactc atcctacttc 60 ttgggatggg aagagtacga gaagaatcct tatgatgaga tcaagaaccc taatgggatg 120 atccagatgg gtctagccga aaaccagcta tgtttcgatc taatcgagtc atggttaact 180 aagaacccag acgcggcaag tctcaagagg aacggtcaat ccattttcag agagcttgct 240 ctatttcaag actatcatgg catgcctgaa ttcaaaaaag ctatggctga gtttatggaa 300 gagataagag gaaaccgtgt cacgttcgat ccaaaaaaga ttgttttagc ggctggttcg 360 acatctgcga atgagactct catgttttgc cttgcagagc ctggcgatgc tttccttttg 420 cctactcctt actatcctgg atttgataga gatcttaaat ggagaaccgg agcagagata 480 gtacccattc actgctcaag ctctaatggc ttccaaatca cggaatcagc tctgcaacaa 540 gcttaccaac aagcccagaa acttgatctc aaagtcaaag gagttcttgt cacgaatcca 600 tctaacccac ttggcactgc gttgaccaga cgtgaactta accttctcgt tgacttcatc 660 acttccaaga acattcatct cattagcgac gagatctatt caggcactat gttcgggttt 720 gaacagttca taagcgtaat ggatgtcttg aaagacaaga aactcgaaga cacggaggtt 780 tcaaaacgag tccacgtcgt ttatagcctt tctaaagatc tgggacttcc tggtttccgt 840 gtgggagcga tctactccaa cgacgaaatg atcgtttcag cagctacaaa aatgtcaagt 900 tttggtcttg tttcttctca gacacaatac cttctctctg cattgctctc cgacaagaag 960 ttcactagcc aatacctcga agagaaccag aaacgactca agtccagaca gagacgcctc 1020 gtgtctggtc ttgagtctgc agggattact tgcctgagaa gcaacgcggg tttgttctgt 1080 tgggtcgaca tgagacacct tttggacaca aacacatttg aagcagagct tgacctctgg 1140 aaaaagattg tttacaacgt gaaactaaac atatcacccg gttcttcatg tcactgcacc 1200 gaaccgggtt ggtttagggt ttgtttcgct aatatgagcg aggacacact cgatttggcc 1260 ttgaagaggc tcaaaacttt cgtagaatcc acagactgtg gacgaatgat atcaagaagc 1320 agccatgaaa ggctcaagag tttgaggaag aagacagtct ctaactgggt tttccgggtt 1380 tcatggaccg atcgtgtacc tgatgaacga tga 1413 <210> SEQ ID NO 25 <211> LENGTH: 1877 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 25 acatctcact cttcaccaac ttaaacccta attcaagatc tcttcttttc gttctctcct 60 tcacccacat tagtcttctc tacgaccaaa atctcttgac tttaaaaaca gagaatgaaa 120 cagctttcga caaaagtgac aagcaatggt catggacaag actcatccta cttcttggga 180 tgggaagagt acgagaagaa tccttatgat gagatcaaga accctaatgg gatgatccag 240 atgggtctag ccgaaaacca gctatgtttc gatctaatcg agtcatggtt aactaagaac 300 ccagacgcgg caagtctcaa gaggaacggt caatccattt tcagagagct tgctctattt 360 caagactatc atggcatgcc tgaattcaaa aaagctatgg ctgagtttat ggaagagata 420 agaggaaacc gtgtcacgtt cgatccaaaa aagattgttt tagcggctgg ttcgacatct 480 gcgaatgaga ctctcatgtt ttgccttgca gagcctggcg atgctttcct tttgcctact 540 ccttactatc ctggatttga tagagatctt aaatggagaa ccggagcaga gatagtaccc 600 attcactgct caagctctaa tggcttccaa atcacggaat cagctctgca acaagcttac 660 caacaagccc agaaacttga tctcaaagtc aaaggagttc ttgtcacgaa tccatctaac 720 ccacttggca ctgcgttgac cagacgtgaa cttaaccttc tcgttgactt catcacttcc 780 aagaacattc atctcattag cgacgagatc tattcaggca ctatgttcgg gtttgaacag 840 ttcataagcg taatggatgt cttgaaagac aagaaactcg aagacacgga ggtttcaaaa 900 cgagtccacg tcgtttatag cctttctaaa gatctgggac ttcctggttt ccgtgtggga 960 gcgatctact ccaacgacga aatgatcgtt tcagcagcta caaaaatgtc aagttttggt 1020 cttgtttctt ctcagacaca ataccttctc tctgcattgc tctccgacaa gaagttcact 1080 agccaatacc tcgaagagaa ccagaaacga ctcaagtcca gacagagacg cctcgtgtct 1140 ggtcttgagt ctgcagggat tacttgcctg agaagcaacg cgggtttgtt ctgttgggtc 1200 gacatgagac accttttgga cacaaacaca tttgaagcag agcttgacct ctggaaaaag 1260 attgtttaca acgtgaaact aaacatatca cccggttctt catgtcactg caccgaaccg 1320 ggttggttta gggtttgttt cgctaatatg agcgaggaca cactcgattt ggccttgaag 1380 aggctcaaaa ctttcgtaga atccacagac tgtggacgaa tgatatcaag aagcagccat 1440 gaaaggctca agagtttgag gaagaagaca gtctctaact gggttttccg ggtttcatgg 1500 accgatcgtg tacctgatga acgatgaaat tattcatctc cctaagtttg agacgacgaa 1560 caaaagaaaa cttcacggtt ttttcttctt ctttatttcc ttcatttttt atattttggg 1620 aaagtatttt taattttcca agatatctat aatcatatca ttatatatgt aatatttttt 1680 ttaatgtttg ggtgagtctt taatttatgc aatttttcgg gtgtaaaatt gttactatgt 1740 gttattatat gtttttaatg cactcaatcc gaatgtggat ttgcagtggc tatatatata 1800 aataaatata tatcccgttg taattttagt gaaacgtttg tgtgtattgt acccatatat 1860 aaaaatgtaa ttcactc 1877 <210> SEQ ID NO 26 <211> LENGTH: 1753 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 26 atcaaaccat aacttccaaa tctcaacaga accaaaaaca aaagaaacct atattaaaga 60 agaaacaaaa aatggtggct tttgcaacag agaagaagca agatctgaat ctattgtcta 120 aaatcgcctc cggtgacggt cacggcgaga attcctctta tttcgatggt tggaaagctt 180 atgaagaaaa cccatttcac ccaattgata gacctgacgg agttattcaa atgggtctcg 240 ctgaaaatca gctttgtgga gatttgatgc gtaaatgggt tttaaaacat ccagaagctt 300 cgatttgtac atcagaaggt gtgaatcaat tcagtgacat tgccattttt caagattatc 360 atggcttgcc tgaattcaga caagctgtag cgaaatttat ggagaagact agaaataaca 420 aagttaagtt tgatcctgac cggattgtta tgagcggcgg cgcaaccgga gcacacgaga 480 cggttgcttt ctgtttagct aatcccggcg atggtttctt agttccaacc ccttattatc 540 cagggtttga tagagatttg agatggagaa ccggagtgaa tcttgtaccg gttacttgtc 600 atagctctaa tgggttcaag attacggtgg aagccttgga agctgcttac gaaaacgcga 660 gaaaatcgaa tattccggtt aagggtttac ttgtaaccaa tccttcaaac ccgcttggta 720 cgacgttaga ccgggaatgt ttgaagtctc ttgttaactt cactaatgac aaagggattc 780 atcttattgc tgatgagatt tatgctgcta ctacttttgg tcaatccgag ttcataagtg 840 ttgcggaagt aatcgaggag atcgaagatt gtaaccgcga tttgatacat attgtgtata 900 gtctatctaa agatatgggt ctgcctggtt taagagttgg tatagtatac tcttacaatg 960 acagggtggt tcagatcgca aggaaaatgt cgagtttcgg tcttgtttcg tcacaaacgc 1020 agcatttgat cgctaaaatg ttatccgatg aagagtttgt agacgagttt atccgcgaga 1080 gcaaattgcg gttagctgca aggcacgctg agataaccac cggtttagat ggtttaggga 1140 ttggttggtt aaaggccaaa gccggtttgt tcttgtggat ggatttaaga aatcttttga 1200 agacagcaac gtttgattcg gaaaccgaac tatggcgtgt gattgttcac caagtgaagc 1260 tcaacgtgtc tccaggcggt tcgttccatt gccatgaacc gggatggttt agagtatgtt 1320 ttgcgaatat ggaccataag acgatggaga cagctctaga gaggattaga gtgttcacta 1380 gccaacttga ggaggagact aaaccgatgg ctgcaacaac tatgatggct aaaaagaaga 1440 agaagtgttg gcagagtaac ctcaggttaa gctttagtga cacgaggcgg ttcgatgatg 1500 gcttcttctc gcctcattcg cctgtgccgc cttctccgct agtccgtgca cagacttaag 1560 accgtctcat attttgacta gaccagtcgt cgttaattaa aaagtcaatt ctttagattg 1620 attttgacac atttatctga ttaaatcaaa tgtatagcta cgactatcaa gttgattttt 1680 tctttctttt aattttgtat ctcatgtaat tttaaccggg tgaataatat gaatttgaaa 1740 tcagaatttg ttt 1753 <210> SEQ ID NO 27 <211> LENGTH: 1586 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 27 atgggtcttc ctctaatgat ggagagatca tcaaacaaca acaacgtcga gctttctcga 60 gtggcggttt cagacactca cggcgaagac tcaccgtact tcgccggctg gaaagcttac 120 gacgaaaatc cttacgacga atctcataac ccttccggtg tcatccaaat gggtctcgct 180 gagaatcagg tctcgtttga tcttcttgaa acttacttgg agaagaagaa tccagaaggt 240 tcgatgtggg gatcaaaagg agctcctggg ttccgtgaaa acgcattgtt tcaagactac 300 cacggtctca aaactttcag acaagccatg gctagtttca tggaacagat tcgaggaggc 360 aaagctagat ttgatcctga ccggatcgtc ctcaccgccg gagccaccgc cgctaacgaa 420 ctcttaactt tcattctcgc cgatcctaac gacgcccttc tagttcccac accgtattat 480 ccaggattcg atagagattt gagatggaga accggagtga aaatagtacc catccactgc 540 gacagctcga accatttcca gataaccccg gaggcgctag agtcggcgta ccaaacggct 600 cgtgacgcga acattagagt ccgaggagtg ctcataacca acccatcgaa cccattaggg 660 gcgacggtcc aaaagaaggt tctagaagat ctccttgact tctgcgtacg caagaatatt 720 cacttggtct cagacgagat ctactccggc tccgtcttcc atgcctccga gttcacaagc 780 gttgccgaga tcgtagaaaa catagatgac gtgtcagtaa aggaacgagt tcacatcgtc 840 tacagtctct ccaaggatct tggtcttcct ggtttccgcg tgggaactat atactcgtac 900 aacgataatg ttgttcggac agcgagaagg atgtcgagct tcacgcttgt ctcgtctcag 960 acacaacata tgctggcttc tatgttgtcg gatgaggagt ttacggagaa gtacattagg 1020 ataaaccggg aaagacttag aagacggtac gataccattg tggaagggct taagaaggca 1080 gggattgagt gtttgaaagg gaacgcaggg ctattttgtt ggatgaattt gggtttcttg 1140 ctcgaaaaga aaactaaaga cggcgagctc cagctttggg atgtgatctt aaaggagctg 1200 aacctgaata tatctccggg atcttcgtgc cactgctcgg aggtcggatg gtttagggtt 1260 tgttttgcta atatgagtga gaacactttg gagattgcgt tgaagagaat acatgagttc 1320 atggaccgac gaaggaggtt ttgaaatgtt aaaaaaaaaa gtaaagtaaa tccgtttttt 1380 tggtggttaa atatatgggg gaggggtaat taatttttta ggaaagagaa gataattaat 1440 ttaaacccat tgatgtaaaa tgggttttga tttgtttctc ttttctagat attattgttt 1500 gttttcttgc ttggacaaag caagttaatt tcatgttcat caaggttgat ttgtaatatt 1560 tattgttata aacgaatttt ttaaaa 1586 <210> SEQ ID NO 28 <211> LENGTH: 1780 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 28 gatcgtagct tacctacaaa caacactcac aatccaatca aaacaaaaca ctttttattc 60 tctctcaaaa tcttcatatc tactttattc tcctactcat ccatctctgt ctctctatct 120 ctagagctaa ttaagaaaat gggtctcttg tcaaagaaag ctagttgcaa cacgcacggc 180 caagattctt cgtatttttg gggttgggaa gagtatgaaa aaaatcctta cgacgagatc 240 aagaacccag acggcattat ccaaatgggt ctagcagaaa atcagttgtc tttcgatctc 300 attgagtcat ggcttgctaa gaaccccgac gcagccaatt tccaaagaga aggccaatcc 360 atatttcggg aattagctct ctttcaagat tatcatggcc ttccttcctt caagaatgct 420 atggcggatt tcatgtcgga aaatagagga aatcgagttt ctttcaatcc aaacaagctt 480 gtcctcaccg ctggtgctac tccggctaac gagactctca tgttttgtct cgctgatcct 540 ggagatgctt tcttgctccc tacgccgtat tatccaggat ttgataggga tttgaaatgg 600 agaaccggag ctgagattgt accgatccag tgtaagagtg caaacggttt ccgcatcaca 660 aaagtagcac ttgaagaagc ctacgagcaa gctcaaaagc ttaacctaaa agttaaagga 720 gtccttataa ccaacccatc taacccgttg ggcactacaa cgacacgaac cgaactaaac 780 catctcttgg acttcatctc acgtaagaag atacatttga taagcgacga gatctattcg 840 ggtaccgttt tcaccaatcc cggattcatt agcgtaatgg aagtcctcaa agacagaaag 900 ctcgaaaaca ccgatgtttt cgaccgtgtc cacattgttt acagtttgtc taaagatcta 960 ggcctacctg gttttcgcgt tggggtgatt tactccaacg atgattttgt tgtctccgca 1020 gcgacaaaaa tgtccagttt cggtctaatc tcttctcaaa cacaatacct cttgtccgca 1080 ttgttatcag acaagacctt caccaaaaac tacctcgaag aaaaccaaat ccggctcaag 1140 aacagacaca agaagctcgt ctcgggtcta gaggctgcag gcatcgagtg tctcaagagc 1200 aacgccggac tcttctgttg ggttgacatg agacacctat taaaatcaaa cacgttcgaa 1260 gccgagattg agctatggaa aaagatcgtt tacgaggtta agctcaatat ctctcccggt 1320 tcttcgtgcc attgcaacga accgggttgg tttagggttt gttttgcgaa tttgagcgaa 1380 gagacattaa aggtagcgtt ggatagattg aagaggttcg ttgatggacc gtcgcctact 1440 agaagaagtc aaagtgaaca tcaaagacta aagaatctaa ggaagatgaa agtctctaat 1500 tgggttttcc ggctatcgtt tcacgaccgt gaacccgagg aacgatagtc tgtttttaaa 1560 aaaaagttaa agtgtaataa gtatgttttt ttggtcatta tttacaagtg attgttgggc 1620 aaatgtatat tttttttaat atcagaattt gatattttgg tatagttttt tttagggaga 1680 aagttcactc attccgtaag tgtaacggat aatgcagtgt ggcttttctt atgtataatt 1740 tactgtcact ttctaatgat atttaaaagt aataattgtc 1780 <210> SEQ ID NO 29 <211> LENGTH: 1410 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 29 atgggtctct tgtcaaagaa agctagttgc aacacgcacg gccaagattc ttcgtatttt 60 tggggttggg aagagtatga aaaaaatcct tacgacgaga tcaagaaccc agacggcatt 120 atccaaatgg gtctagcaga aaatcagttg tctttcgatc tcattgagtc atggcttgct 180 aagaaccccg acgcagccaa tttccaaaga gaaggccaat ccatatttcg ggaattagct 240 ctctttcaag attatcatgg ccttccttcc ttcaagaatg ctatggcgga tttcatgtcg 300 gaaaatagag gaaatcgagt ttctttcaat ccaaacaagc ttgtcctcac cgctggtgct 360 actccggcta acgagactct catgttttgt ctcgctgatc ctggagatgc tttcttgctc 420 cctacgccgt attatccagg atttgatagg gatttgaaat ggagaaccgg agctgagatt 480 gtaccgatcc agtgtaagag tgcaaacggt ttccgcatca caaaagtagc acttgaagaa 540 gcctacgagc aagctcaaaa gcttaaccta aaagttaaag gagtccttat aaccaaccca 600 tctaacccgt tgggcactac aacgacacga accgaactaa accatctctt ggacttcatc 660 tcacgtaaga agatacattt gataagcgac gagatctatt cgggtaccgt tttcaccaat 720 cccggattca ttagcgtaat ggaagtcctc aaagacagaa agctcgaaaa caccgatgtt 780 ttcgaccgtg tccacattgt ttacagtttg tctaaagatc taggcctacc tggttttcgc 840 gttggggtga tttactccaa cgatgatttt gttgtctccg cagcgacaaa aatgtccagt 900 ttcggtctaa tctcttctca aacacaatac ctcttgtccg cattgttatc agacaagacc 960 ttcaccaaaa actacctcga agaaaaccaa atccggctca agaacagaca caagaagctc 1020 gtctcgggtc tagaggctgc aggcatcgag tgtctcaaga gcaacgccgg actcttctgt 1080 tgggttgaca tgagacacct attaaaatca aacacgttcg aagccgagat tgagctatgg 1140 aaaaagatcg tttacgaggt taagctcaat atctctcccg gttcttcgtg ccattgcaac 1200 gaaccgggtt ggtttagggt ttgttttgcg aatttgagcg aagagacatt aaaggtagcg 1260 ttggatagat tgaagaggtt cgttgatgga ccgtcgccta ctagaagaag tcaaagtgaa 1320 catcaaagac taaagaatct aaggaagatg aaagtctcta attgggtttt ccggctatcg 1380 tttcacgacc gtgaacccga ggaacgatag 1410 <210> SEQ ID NO 30 <211> LENGTH: 1413 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 30 atgaaacaac tgtcgagaaa agtgacaagc aatgctcatg gacaagactc ttcctacttc 60 ttgggatggg aagaatacga gaagaaccct tacgacgaaa tcaagaaccc taatgggatt 120 attcaaatgg gtcttgccga aaatcagcta tgttttgatc tcatagagac atggttagct 180 aagaatccgg acgcagccgg actaaaaaag gacggccaat ccattttcaa agagcttgct 240 ctctttcaag actatcatgg cctacccgaa ttcaagaaag ctttggcaga gtttatggag 300 gaaatcagag gaaatagagt aacatttgat ccaagcaaga ttgtcctagc tgctggttca 360 acatctgcca acgaaactct catgttttgt ctcgccgaac ccggggacgc tttcctttta 420 ccaactcctt actatccagg attcgataga gacttgaaat ggagaacggg agcagagatc 480 gtacctattc attgctcaag ctctaatggg ttccaaataa cagagtcagc tcttcaacaa 540 gcttatcaac aagctcaaaa gcttgatctt aaggtcaaag gagttcttgt taccaacccg 600 tctaaccctc ttggcacaat gttgaccaga agagaactta accttctcgt tgacttcatt 660 acttccaaaa acattcatct cataagcgac gagatctatt caggtaccgt ttttgggttt 720 gaacagtttg taagtgtcat ggatgtctta aaagacaaga acctcgagaa cagcgaagtc 780 tccaaacgag ttcatattgt ttatagtctt tccaaagatc tcggtttacc aggttttcgc 840 gtaggagcaa tttactccaa cgacgaaatg gttgtttccg ctgcaacaaa aatgtcaagt 900 ttcggtctcg tgtcttctca aacacagtac cttctctctg cattgctttc agacaagaag 960 ttcacaagta catacctcga cgaaaaccag aaaagactca agattcgtca gaagaaactc 1020 gtgtccggtc tagaagctgc agggattact tgtcttaaaa gcaacgctgg tttgttctgt 1080 tgggttgaca tgagacatct tttggacaca aacacattcg aagcagaact tgagctatgg 1140 aagaagattg tatatgacgt caagctgaat atttcacctg gttcatcgtg ccattgtact 1200 gaaccgggtt ggtttagggt ttgtttcgcc aacatgagtg aagatacgct tgatttggcg 1260 atgaagaggc tcaaagagta cgtagagtca acagatagta gaagagtgat ttcaaaaagc 1320 agtcatgata ggatcaagag tttgaggaag agaactgtct ccaactgggt tttccgggtt 1380 tcatggaccg accgtgtacc tgatgaacga tga 1413 <210> SEQ ID NO 31 <211> LENGTH: 1845 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 31 cgacccgtta aaaaaccttc aaagtggctc cgattttgat ttcaaacact aaaatattta 60 tttacctaaa aacatgagtt cactacaatg acccgtaccg aaccaaaccg gagccggagc 120 tccaattccg attccgataa gaattccggt aacgtcggcg gaggtagaac caccgggatg 180 agggttattg ttccgttaca aggtgtggta caaggtcgtg gtggtttatt cttaggctct 240 gtgattcctt gtgctttctt ctactttctt cagttttacc taaaacgaaa tcgtaaaaac 300 gacgaatcag ataattccgg tgaacaaaac tcctcagctt cttcttcttc ttctcctaat 360 tcgggtttac cggatcccac ccggtcacaa tccgctggtc atctcacgga gcttactggt 420 ttacctcgtt ctctctctcg tattctcctc tcgccgagaa attccggtgg agctgtttcg 480 gtttcgggtc gggttaattg tgtactcaaa ggtggagatt cttcgcctta ctacgttggt 540 caaaaacggg tcgaggatga tccgtatgat gagttgggta acccggacgg agttatccaa 600 cttggtttag ctcaaaacaa caagttgagt ttggatgatt gggttttaga gaatccaaaa 660 gaagcaattt cagatggatt gagtattagt ggcattgctt cttatgagcc ttctgatgga 720 cttttggaac tgaaaatggc tgtggcagga tttatgactg aagctaccaa aaactcggtg 780 acttttgatc catcacagtt agtgttaact tctggtgcat catctgctat tgagattctt 840 tccttctgct tagctgattc gggaaacgcc ttccttgttc caactccgtg ttctcccgga 900 tatgataggg atgttaaatg gcgaacagga gttgacatta tacacgttcc atgtagaagt 960 gcggataatt tcaatatgtc gatggtcgtg cttgatcgag cattctatca agctaagaaa 1020 cgaggtgtaa gaatccgcgg cattataatc tcgaatcctt caaatcccat gggaagccta 1080 ctgagcagag agaatctcta tgcgcttttg gactttgccc gtgagaggaa cattcatatt 1140 atatcaaacg aaatctttgc tgggtcagtc cacggagaag aaggagagtt tgttagcatg 1200 gctgaaatag ttgacacgga agagaatatc gacagggaaa gagttcatat cgtgtatgac 1260 ctttcgaaag acttgtcttt ccgggggctt agatccgctg ctatctactc gttcaacgag 1320 agtgttttat ccgcttcaag aaagctcacg acgctctcac ctgtctcatc tccaacccaa 1380 catttgctga tatccgcaat ctccaatcca aaaaatgttc agagatttgt gaaaaccaac 1440 aggcagagat tgcagagtat ctacacggag ctcgtggagg ggttgaaaga gttagggatc 1500 gagtgcacaa gaagcaatgg agggttctac tgttgggctg atatgcgagg attgatttca 1560 tcttacagcg aaaaaggcga gattgagctg tggaacaagc tcttgaacat tggcaagatc 1620 aatgtcatac caggatcttg ttgtcactgt atcgaaccag gatggttccg tatctgtttc 1680 agtaatttgt ctgagagaga tgtgccagta gttatgaacc gcattagaaa agtttgtgaa 1740 acatgtaaat ctcaaaattg attacaattt gattatttgg tttattctga atcagactct 1800 ttatatcagt aaaccggata atatcaatcc agaatcggtt taagg 1845 <210> SEQ ID NO 32 <211> LENGTH: 1383 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 32 atgttgtcaa gcaaagttgt tggcgactct catggacaag actcatccta cttccttgga 60 tggcaagaat acgagaagaa tcctttccac gagtcgttta acactagtgg gattgttcaa 120 atgggtcttg ctgaaaacca gctttctttt gacctaatag agaaatggct tgaagagcat 180 ccagaagtct tgggtttgaa gaaaaatgat gagtcggtgt ttagacaatt agctctgttc 240 caagattacc atggcttgcc agctttcaag gatgccatgg cgaagttcat ggggaaaatc 300 agagagaaca aagtgaaatt cgatacgaac aagatggttc ttacagctgg atcaacctcg 360 gctaacgaga ctctaatgtt ctgtcttgct aatccaggag atgcctttct tatccctgca 420 ccttattatc cagggtttga tagagatctc aaatggagga caggagtaga gattgttcct 480 atccattgcg taagctcaaa tgggtacaag ataaccgagg atgcattaga agatgcctac 540 gaacgagctc tcaaacataa cctaaatgtt aaaggagttc tcataaccaa cccttcaaac 600 ccacttggaa cctctaccac ccgtgaagag cttgatcttc ttctgacctt cacatcaacc 660 aagaaaatcc atatggttag cgatgagatc tactcgggaa cggttttcga ctctcctgag 720 ttcaccagcg ttctagaagt ggctaaggac aagaacatgg gtttagatgg taaaatccat 780 gttgtttaca gcttgtccaa agatctaggc ctccccggat ttcgtgttgg cttgatttac 840 tcaaacaatg agaaagtggt gtcagccgcg actaaaatgt cgagttttgg actcatttct 900 tcccaaactc aacatttgct agccaatttg ctgtctgatg aaagattcac gaccaactat 960 ttggaagaga acaagaagag gctgagagag agaaaggata ggctggtttc gggtctaaag 1020 gaagcgggta tcagttgttt gaagagtaac gcaggtttgt tctgttgggt tgacttaaga 1080 cacctcttga aatccaacac ttttgaggcc gagcattctt tatggacaaa gattgtgtgt 1140 gaagttggtc ttaacatctc tccaggctca tcgtgtcatt gcgatgaacc tggttggttt 1200 agagtttgtt tcgcgaatat gtcggaccaa acgatggagg ttgctatgga ccgtgttaaa 1260 ggttttgttg acaacaataa tggtggtaaa caaaagagaa ccatgtggga tacaaggaga 1320 agatctctta tcaacaaatg ggtctccaag ctttcctctg ttacttgtga atcagaacgt 1380 tga 1383 <210> SEQ ID NO 33 <211> LENGTH: 372 <212> TYPE: DNA <213> ORGANISM: Oryza sativa <400> SEQUENCE: 33 gttggtatag tatactctta caatgaccgg gtggttcaga tcgcaaggaa aatgtcgagt 60 ttcggtcttg tttcgtcaca aacgcagcat ttgatcgcta aaatgttatc cgatgaagag 120 tttgtagacg agtttatccg cgagagcaaa ttgcggttag ctgcaaggca cgctgagata 180 accaccggtt tagatggttt agggattggt tggttaaagg ccaaagccgg tttgttcttg 240 tggatggatt taagaaatct tttgaagaca gcaacgtttg attcggaaac cgaactatgg 300 cgtgtgattg ttcaccaagt gaagctcaac gtgtctccag gcggttcgtt ccattgccat 360 gaaccgggat gg 372 <210> SEQ ID NO 34 <211> LENGTH: 372 <212> TYPE: DNA <213> ORGANISM: Oryza sativa <400> SEQUENCE: 34 gttggagtgg tttactctta caacgatgtt gttgtgtcct gcgcaaggag gatgtcgagt 60 tttggattgg tctcgtcgca gacacaaagt tttctagctg ctatgttgtc tgatcagagt 120 tttgtcgata actttcttgt tgaggtttcg aaaagagtag cgaagagaca ccatatgttc 180 acggaagggc ttgaagagat ggggatttct tgcttgagaa gcaacgcggg tttattcgtt 240 ttgatggatt tgaggcatat gcttaaggat cagacatttg attccgaaat ggcgctttgg 300 cgagttacta tcaataaggt caagattaat gtctctcctg gctcgtcgtt tcactgctct 360 gagcctggtt gg 372 <210> SEQ ID NO 35 <211> LENGTH: 735 <212> TYPE: DNA <213> ORGANISM: Oryza sativa <400> SEQUENCE: 35 ctttctctgg acctgatcga gaatgagcaa gaccaccccg aggcatccat ttgcacaccg 60 gagggcgtct cgcagttcaa gaggatcgcc aattttcagg actatcatgg cctcccggag 120 ttcagaaagg cgatggccca gtttatgggg caggtgaggg gaggcaaggc aacgtttgac 180 cccgaccgtg tcgtcatgag cggcggcgcc accggcgccc aggagacgct cgccttctgc 240 ctcgccaacc ccggcgaggc cttcctcgtg cccacgccat actacccagc tttcgaccgc 300 gactgttgct ggaggtcagg aataaagctg ctgccgatcg agtgccacag cttcaacgac 360 ttcaggctca ccaaggaggc cctcgtgtcg gcgtacgacg gcgcacggag gcagggcatc 420 tccgtcaagg ggatcctcat caccaacccg tccaacccgc tcggcaccat caccgaccgc 480 gacacgctgg ccatgctcgc caccttcgcc accgagcacc gcgtccacct cgtctgcgac 540 gagatctacg cggggtcggt gttcgccacg ccggagtacg tgagcatcgc cgaggtcatc 600 gagcgcgacg tgccgtggtg caacagggac ctgatccacg tcgtgtacag cctctctaag 660 gacatcggcc tccccggctt ccgcgtcggc atcatctact cgtacaacga cgccgtcgtg 720 gcggccgcgc gcagg 735 <210> SEQ ID NO 36 <211> LENGTH: 192 <212> TYPE: DNA <213> ORGANISM: Oryza sativa <400> SEQUENCE: 36 acgacgttag accgggaatg tttgaagtct cttgttaact tcactaatga caaagggatt 60 catcttattg ctgatgagat ttatgctgct actacttttg gtcaatccga gttcataagt 120 gttgcggaag taatcgagga gatcgaagat tgtaaccgcg atttgatcca tattgtgtat 180 agtctatcta aa 192 <210> SEQ ID NO 37 <211> LENGTH: 102 <212> TYPE: DNA <213> ORGANISM: Oryza sativa <400> SEQUENCE: 37 gtctccttcg acctcctcga ggcctacctc cgtgaccacc cggaggccgc cggctggagc 60 accggcggcg ccggcgccgg tagcttcagg gacaacgcgc tg 102 <210> SEQ ID NO 38 <211> LENGTH: 105 <212> TYPE: DNA <213> ORGANISM: Oryza sativa <400> SEQUENCE: 38 gtctccatcg acctcctcga gggctacctc cgggagcacc cggaggccgc cgcctggggc 60 gtcgccggcg acggcggcgg cgacagcttc agggacaatg cgctg 105 <210> SEQ ID NO 39 <211> LENGTH: 208 <212> TYPE: DNA <213> ORGANISM: Oryza sativa <400> SEQUENCE: 39 gtgatcttag ttgctaaaat cttaattgtt cttacttcaa actaatcgaa aacgcgttaa 60 tgcgttatat atatcatgtg tatcgatcgt taagacgcaa taacttttac gtttcctgtg 120 ttaggtttcc tttgatcttc tagaggaata catgagggag cacccggagg cgtcggattg 180 cggcgccggg tttcgagaga acgccctc 208 <210> SEQ ID NO 40 <211> LENGTH: 189 <212> TYPE: DNA <213> ORGANISM: Oryza sativa <400> SEQUENCE: 40 gtacgcgcac agacctgtgt atactcattt ctgaattaag gatcgttctc gacaaagtgc 60 taatccgtct ttgttgccct gtaaatgtca cagctttctc tggacctgat cgaggaatgg 120 agcaagaacc accccgaggc atccatttgc acaccggagg gcgtctcgca gttcaagagg 180 atcgccaac 189 <210> SEQ ID NO 41 <211> LENGTH: 2778 <212> TYPE: DNA <213> ORGANISM: Oryza sativa <400> SEQUENCE: 41 gaattcgaag cagcagcagc agcagaagga gaagcttctt aattcgttcg cgtttaacaa 60 ccccatcccc gtagacgacg acgaggagga gaacgatggc atggcatggc atccctgtcg 120 gcgtgcagta acacctcact ctgctgctgt cccgacgtta acctctcccc tcactgacgc 180 taagcacact ggcagtcgcg tactacacgc ggttagagcg agcttccatt agcccccgag 240 aaattaacaa aaagcaaaag cagaaggaaa aaaaaagaaa aacgtcactc gcatcacagc 300 actagccgcg ctctctctct ctcctcacca gattctatat aagcagctcg tccaaccttg 360 ggaggcaccc agcagcagcc agctagctag ctactcctac tcagcagcag cagcagctca 420 ggtctctcca gtgttcttcg agctatacac tagctctcac agatttttgc tccgactcat 480 caagcggatt gattcgatcg gctgttagag agagaaaaaa ggagagttgg agatggtgag 540 ccaagtggtc gccgaggaga agccgcagct gctgtccaag aaggccgggt gcaacagcca 600 cggccaggac tcgtcctact tcctggggtg gcaggagtac gagaaaaacc cgttcgaccc 660 cgtctccaac ccttccggca tcatccagat gggcctcgcc gagaaccagg tacgcacacg 720 cgcgtgccac acctgcatgt acacacttgt acatgtgtgt acactgtctc tgacgacatg 780 gttgctctgc cttggctgtt gcagctgtcg ttcgacctgc ttgaggagtg gctggagaag 840 aacccccacg cgctcggcct ccggcgagag ggcggcggcg cctccgtctt ccgcgagctc 900 gcgctgttcc aggactacca cggcctcccg gctttcaaaa atgtaattaa ttaaatcaac 960 tgtactctgg ttcgcgtaca cggtcgtcaa aagttacagt tggctaaccc cccgagcata 1020 tgcgcacgtg gattgcacag gcattggcgc ggttcatgtc ggagcagaga gggtacaagg 1080 tggtgttcga ccccagcaac atcgtgctca ccgccggcgc cacctcggct aacgaggcgc 1140 tcatgttctg cctcgccgac cacggcgacg ccttcctcat ccccacccca tactacccag 1200 ggtacgcact ggcactgccg ctgctgctac acctttttac catacgcgac aacgtgcatg 1260 gtggcgcatg gctaacggtg gatggatggg tggatgcagg ttcgaccgcg acctcaagtg 1320 gcgcaccggc gcggagatcg tacccgtgca ctgcgcgagc gcgaacgggt tccgggtgac 1380 gcgcgccgcg ctggacgacg cgtaccgccg cgcgcagaag cgccggctgc gcgtcaaggg 1440 ggtgctgatc accaacccgt ccaacccgct cggcaccgcg tcgccgcgcg ccgacctcga 1500 gacgatcgtc gacttcgtcg ccgccaaggg catccacctc atcagcgacg agatctacgc 1560 cggcacggcg ttcgccgagc cgcccgcggg cttcgtcagc gcgctcgagg tcgtggccgg 1620 gcgcgacggc ggcggcgctg acgtgtccga ccgcgtgcac gtcgtgtaca gcctgtccaa 1680 ggacctcggc ctcccggggt tccgcgtcgg cgccatctac tccgccaacg ccgccgtcgt 1740 gtccgcggcg accaagatgt ccagcttcgg cctcgtgtcg tcccagacgc agtacctcct 1800 cgcggcgctg ctcggcgaca gggacttcac ccggagctac gtcgcggaga acaagcggcg 1860 gatcaaggag cggcacgacc agctcgtgga cgggctcagg gagatcggca ttgggtgcct 1920 gcccagcaac gccggcctct tctgctgggt ggacatgagc cacctgatgc ggagccggtc 1980 gttcgccggc gagatggagc tctggaagaa ggtggtgttc gaggtcggcc tcaacatctc 2040 ccccgggtcg tcgtgccact gccgcgagcc cggctggttc cgcgtctgct tcgccaacat 2100 gtcggccaag accctcgacg tcgccatgca gcgcctcagg tcgttcgtcg actccgccac 2160 cggcggcggc gacaacgccg ccctccgccg cgccgccgtc cccgtcagga gcgtcagctg 2220 cccgctcgcc atcaagtggg cgctccgcct caccccgtcc atcgccgacc ggaaggccga 2280 gagataatcg ccaagaacaa aaccacacca tgtccattac tattaccagt agtagcacat 2340 actagtacat tactacgtca cagtacacta tactagtagc agcagtagca gattcctttc 2400 gtttcttgta atcttttggc gccatttttt tttcctcgga tcgaggcgtg catgcccgat 2460 ggtctcggat gatcacatat cgatccattc catcagccgg catcggatcg atcccgtatt 2520 tttcactggg aattttcagt tttcccccga cactgaattt ctcccagttg ttgtaaccta 2580 tggaaagtat tattgctcgt caataaaagc tagtgcccac cacttgtagt tcacgactac 2640 cactcccaca tttgggctcg gtcgcatcca tccatcgcgt gttttcgccg ccgctgtcat 2700 ataaaagtca accgttgcag cgaaaccact tgggccaatg gcgtttttta acccccatct 2760 gctccgtatt gcatgcga 2778 <210> SEQ ID NO 42 <211> LENGTH: 1485 <212> TYPE: DNA <213> ORGANISM: Oryza sativa <400> SEQUENCE: 42 gatggtgagc caagtggtcg ccgaggagaa gccgcagctg ctgtccaaga aggccgggtg 60 caacagccac ggccaggact cgtcctactt cctggggtgg caggagtacg agaaaaaccc 120 gttcgacccc gtctccaacc cttccggcat catccagatg ggcctcgccg agaaccagct 180 gtcgttcgac ctgcttgagg agtggctgga gaagaacccc cacgcgctcg gcctccggcg 240 agagggcggc ggcgcctccg tcttccgcga gctcgcgctg ttccaggact accacggcct 300 cccggctttc aaaaatgcat tggcgcggtt catgtcggag cagagagggt acaaggtggt 360 gttcgacccc agcaacatcg tgctcaacgc cggcgccacc tcggctaacg aggcgctcat 420 gttctgcctc gccgaccacg gcgacgcctt cttcatcccc accccatact acccagggtt 480 cgaccgcgac ctcaagtggc gcaccggcgc ggagatcgta cccgtgcact gcgcgagcgc 540 gaacgggttc cgggtgacgc gcgccgcgct ggacgacgcg taccgccgcg cgcagaagcg 600 ccggctgcgc gtcaaggggg tgctgatcac caacccgtcc aacccgctcg gcaccgcgtc 660 gccgcgcgcc gacctcgaga cgatcgtcga cttcgtcgcc gccaagggca tccacctcat 720 cagcgacgag atctacgccg gcacggcgtt cgccgagccg cccgcgggct tcgtcagcgc 780 gctcgaggtc gtggccgggc gcgacggcgg cggcgctggc gtgtccgacc gcgtgcacgt 840 cgtgtacagc ctgtccaagg acctcggcct cccggggttc cgcgtcggcg ccatctactc 900 cgccaacgcc gccgtcgtgt ccgcggcgac caagatgtcc agcttcggcc tcgtgtcgtc 960 ccagacgcag tacctcctcg cggcgctgct cggcgacagg gacttcaccc ggagctacgt 1020 cgcggagaac aagcggcgga tcaaggagcg gcacgaccag ctcgtggacg ggctcaggga 1080 gatcggcatt gggtgcctgc ccagcaacgc cggcctcttc tgctgggtgg acatgagcca 1140 cctgatgcgg agccggtcgt tcgccggcga gatggagctc tggaagaagg tggtgttcga 1200 ggtcggcctc aacatctccc ccgggtcgtc gtgccactgc cgcgagcccg gctggttccg 1260 cgtctgcttc gccaacatgt cggccaagac cctcgacgtc gccatgcagc gcctcaggtc 1320 gttcgtcgac tccgccaccg gcggcggcga caacgccgcc ctccgccgcg ccgccgtccc 1380 cgtcaggagc gtcagctgcc cgctcgccat caagtgggcg ctccgcctca ccccgtccat 1440 cgccgaccgg aaggccgaga gataatcgcc aagaacaaaa ccaca 1485 <210> SEQ ID NO 43 <211> LENGTH: 4303 <212> TYPE: DNA <213> ORGANISM: Glycine max <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 1550, 1742, 1776, 1838, 2351, 2992, 3113, 3233, 3267, 3335, 3353, 3540, 3624, 3625, 3631, 3640, 3645, 3661, 3662, 3684, 3699, 3727, 3766, 3809, 3814, 3824, 3830, 3839, 3856, 3868, 3875, 3879, 3881, 3906 <223> OTHER INFORMATION: n = A,T,C or G <400> SEQUENCE: 43 ccagtttgca cgcctgccgt tcgacgatca taagtgtggt tttgtgggct cctgtctatg 60 acaggataat tgttcccatt acaaggaaat tcaccggcaa tgaaaggaga atttcagtgc 120 tgcaaagagt aagcattggc tacttcattt cagtcctgtc catgttgtag tgttggtgag 180 gaagtttagt ttttctttgg ggcttgaatt ttgtccattc aatgttctgt tgtgctttgt 240 cttctctgta gatgttgagg attggatctt ctatcttgca tttcattgac gaaaaatata 300 tccttttgtt tgttagtttg tttttacata ttgaataact aaaatcaaga agatattttg 360 ctgtgcttta cccctttctt tctcttggac tcataatgag cattagagct ataattccct 420 tatgattatt ttctcttttg aattgatagc atgacggttt gaaagttgaa agtacagaat 480 cctgctaact cccccattgc tttaatctcc tcgaaagttc ttttcaattt ctgttatggc 540 tatagtatgc ttttatttta ctttgagctt ttgtaaaaat gatattttga ttattttctg 600 tttgtatttc tacttgatat tttttttgtc tttgatttta ttgtagaagt tgcctgacat 660 ggcttcgtac accccaaaga atatcctcat tactggggcg gctggattta ttgcgtctca 720 tgttgccaac cggcttgtcc ggagctaccc tgactacaaa attgttgtgc ttgacaaact 780 tgattattgt tctagtctga agaacctcct tccttcaaaa tcatctccta acttcaaatt 840 tgtgaagggg gatattggta gtgctgatct tgtcaactac cttctcatca ccgaatccat 900 tgacactata atgcatttcg ctgcccaaac ccatgttgac aactcgtttg gtaatagctt 960 tgagttcacc aagaacaaca tatacggaac tcatgtccta ttagaagcct gcaaggttac 1020 tggccagatc agaaggttca ttcatgtgag cactgatgag gtctatggag agacggaaga 1080 ggatgctgtt gttggaaacc atgaggcctc tcaacttctt cccactaacc cgtactctgc 1140 tacaaaagct ggggctgaaa tgcttgtcat ggcttatggt aggtcatatg ggctacctgt 1200 tattacaact cgtggaaaca atgtttatgg gcccaatcag tttcctgaga agttaattcc 1260 aaagttcatc ctcctggcta tgcagggaaa gaatcttcca attcatgggg atggttcaaa 1320 tgtgaggagt tatttatatt gtgaagatgt tgctgaggct tttgaagttg tcctgcacaa 1380 gggtgaggtt ggccatgttt acaatatcgg gacaaagaag gaaaggagag ttgtcgatgt 1440 agccaaagat atatgcagac ttttctcaat ggacccagaa acttgtataa aatttgtaga 1500 gaacagacca tttaacgacc agagatactt tcttgatgat caaaagctgn aggacttggg 1560 ttggtctgag aggaccactt gggaagaagg cttgaagaaa accatggatt ggtatatcaa 1620 taaccctgat tggtggggtg atgttactgg ggcattgctt cctcatccta ggatgctgat 1680 gatgcctggt gggttggaga ggcatttcga gggatctgaa gagggaaaac ctgcatcttt 1740 tngctcaagt aataccagga tagtggttcc atcatncaag aacaccagct ctcaacagaa 1800 acatcctttt atgttcttga tctatggtag aacagggngg attgggggtt tgctggggaa 1860 attgtgtgaa aagcaaggaa ttccgtatga atatggaaag ggtcgcctag aggaccgctc 1920 ctcactcttg gctgatcttc agaatgtgaa gcctacacat gtttttaatg ctgcaggagt 1980 gaccggcaga cccaatgttg attggtgtga atcccataaa acagaaacca tccgcaccaa 2040 tgttgctggt accttaacaa tggctgatgt ctgcagagag catgggatct tgatgataaa 2100 ttatgctact gggtgcatat tcgagtacaa tgcaacacat cccgagggct ctggcattgg 2160 ttttaaggag gaagacaagc ccaatttcat tggctctttc tattccaaaa ctaaagctat 2220 ggtaagtttc ttacatgtta tggattaatt atatctgttc ataatgaatt atcataataa 2280 tttttatgtg aacattgaca ggttgaggag ctcttgagag actatgacaa tgtatgcaca 2340 ctcagggttc ncatgccaat ttcgtcagac ctgagcaacc cgcgcaactt cataacaaag 2400 atttctcgtt ataacaaagt ggtcaacatt ccaaacagta tgactatttt ggatgaactt 2460 ctgcctatct caattgagat ggcaaagagg aacttgaagg gaatctggaa cttcacaaat 2520 ccaggggttg tgagccacaa tgagatcctt gagatgtaca gggattacat tgacccaaac 2580 ttcaagtggt ctaacttcac ccttgaagag caagcaaagg tgattgttgc tcctcgaagc 2640 aacaatgaga tggacgcatc aaaattgaag acagaattcc cagaattgct ttccatcaag 2700 gaatcactca tcaaatatgt ctttgagcca aacaagaaaa cataagcagg tttatgttat 2760 tcagacaagg cagttatgtg ttcaggctat atagaccagt gaaattggat tttctaacta 2820 agttattgta aaaaaaaaaa aactgatgaa agggaagaac atcattagat attgttgata 2880 aattccatta ctattagtac accaaatgtg gcaaatatgt tctgctcata tgttatccat 2940 tgacctttct cacctcatcc gtatatattt tttggacttg tgttgatgag cnacttttct 3000 gccggtagtt cgttctcctt ggtttttggt tcccgttaat caaacacaat gaacataaaa 3060 aaaatcaaaa tttctaattt tttttagccc aaataatctg atgtcattta cancttatat 3120 atgtgatttt tgcactgtac agaacgtgtc atttacaact tatatatgag gatgtatatc 3180 cctttgtact agtacctctg gtactgtttt gatcatatat atataatata ttnagttttg 3240 ctgatcaaaa aaaaaactaa caatttncct atatcactat atgtgtagta agcaacctga 3300 tcagaacatg cttcaactca taatagatgt ctganaaatc ttaagaagtc ttngtctgct 3360 tgtacctttt ggcagcaaca atgtatacca acatatttaa gaagctaagt ccagctaaaa 3420 gcaagaaaaa ataatcgaga tgacccttgt tcaaattatc aggaatccag ccaagctttc 3480 caccttgtgt ggtgaagtaa gtcaccatag taagaatgaa agagctcaag taatttcccn 3540 acgcaaaata caaaggtgac agtgctgtac ctaaagtctt catagtatct ggagattgat 3600 catagaagaa ctcaagcagt cccnngaatg ngaatacttn tgctnccccc aataagaagt 3660 nntgagggat ttgccaaagt atantgagtg gtacagcanc aggttcatca acaagatcaa 3720 ggtctcntgc aagccgcaga cgcataatct ccacaacaac agctgntaac atggacagga 3780 ctgaaatgaa gtagccaatg cttactctnt gcancactga aatncccctn tcattgccng 3840 tgaatttcct tgtaanggga acaattancc tgtcntagnc nggagcccac aaaaccacac 3900 ttatgncatc aacagttgcc agggaagctg ggggtatttc aaaggagcca atgtgtgtgt 3960 tcatcactgt tccttgctcc acaaacaatg ttgacatctg ggtataaaca gcagaaaaaa 4020 cggccccagt agcccacatt ggaaacatgc agatcaagat tttcaattcc tctcactcac 4080 taggacaatc attatttcta attaatagtg gggctagtct gcgtaccaac tactgcctaa 4140 ttttcaaacc aaagaagcat catagctgat gttgaactct tctctctttc gtgggaacct 4200 tcatttaatt tgaactaaag agattcctgt ctctgaaggt caaggtgaat ttgtgcacta 4260 cattataaat aagcacccct ctcggtgttg ttcattgcta gac 4303 <210> SEQ ID NO 44 <211> LENGTH: 1789 <212> TYPE: DNA <213> ORGANISM: Glycine max <400> SEQUENCE: 44 gaattcggca cgagatttcc tctgaaaatt attcatagca tatttctaac cacactcaaa 60 aggcttccct tcctgacttg gatttcatta cattgctaaa ctatattatt tttattggtg 120 aattgctaca ctatattcta aggacaatta aacatagact atatggggtt gatggatgtg 180 gaccaaactc aattgttgtc taagatggtc atcggagatg gacatggtga agcatcacca 240 tactttgatg gatggaaggc ttatgatgaa aacccctttc atcccaaaga gaatcctaac 300 ggggttatcc aaatgggtct tgctgagaat cagcttactt ctgatttggt tgaagattgg 360 atactgaata acccagaggc ctccatttgc acaccagaag gaataaatga tttcagggcc 420 atagctaact ttcaggatta tcatggtctg cccgagttca gaaatgctgt ggctaaattc 480 atgggtagaa caagaggaaa cagagtcacg tttgatcctg accgtattgt catgagcggt 540 ggagcaactg gagcacacga agtcactacc ttttgtttgg cagaccctgg tgacgcattt 600 ttggtgccca ttccttatta tccaggtttt gaccgggatt tgaggtggag aacaggaatt 660 aaacttgttc cagttatgtg cgatagctca aacaatttca agttgacaaa gcaagcattg 720 gaagatgcgt atgagaaggc caaagaggat aatataagag taaagggctt gctcatcacc 780 aatccatcaa acccattagg cacagtcatg gacagaaaca cactaagaac cgtgatgagc 840 ttcatcaacg agaagcgtat ccaccttgta tctgatgaaa tatactctgc aacagttttt 900 agccacccca gtttcataag cattgctgag atattagagg aagacacaga catcgaatgt 960 gaccgcaacc tcgttcacat tgtttatagt ctttcaaagg atatggggtt ccctggcttc 1020 agagttggca tcatatactc ttacaatgat gctgtggtcc attgtgcacg caaaatgtca 1080 agctttggat tggtgtcaac acagactcag tatcttttag catcaatgct aaatgatgat 1140 gagtttgtgg aaagttttct ggtagagagt gcaaaaaggc tggcacaaag gcatagagtt 1200 ttcactgggg ggttggccaa agttggcata aagtgcttgc aaagcaatgc tggtctcttt 1260 gtgtggatgg atttaaggca acttctcaag aagccaacgc ttgactctga aatggagctt 1320 tggagagtga tcattgatga ggttaagatc aatgtttcac ctggctcctc tttccattgc 1380 actgagccag ggtggtttag ggtgtgctat gccaacatgg atgatatggc tgtgcaaatt 1440 gcattgcaaa gaattcgtaa ctttgtgctt caaaacaagg agatcatggt gcctaacaag 1500 aaacattgtt ggcacagtaa cttgaggttg agcctcaaaa ccagaaggtt tgatgatatc 1560 atgatgtcac ctcactcccc catacctcag tcacctctgg ttaaagccac aatttgagtt 1620 ggcatatttc tctgaaccct ctagaagaag taactgatat atgatgatta tttggctctt 1680 tgacttgttg ttttggcaag gtacataaag tgcttgagtt tgttattttt aacagcagta 1740 acaggcaatg cctgatattg tttttgttac caaaaaaaaa aaaaaaaaa 1789 <210> SEQ ID NO 45 <211> LENGTH: 1473 <212> TYPE: DNA <213> ORGANISM: Glycine max <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 1400 <223> OTHER INFORMATION: n = A,T,C or G <400> SEQUENCE: 45 caattaaaca tagactatat ggggttgatg gctgcgaacc aaactcaatt gttgtctaag 60 atggccatcg gagatggaca tggtgaagca tccccatatt ttgatggatg gaaggcttat 120 gatgaaaacc cctttcatcc caaagagaat cctaacgggg ttattcaaat gggtcttgct 180 gagaatcagc ttacttctga tttggttgaa gattggatac tgaataaccc agaggcctcc 240 atttgcactc cagaaggaat aaatgatttc agggcaatag ctaactttca ggattatcat 300 ggtctacccg agttcagaaa tgctgtggct aaattcatgg gtagaacaag aggaaacaga 360 gtcacgtttg atcctgatcg tattgtcatg agcggtggag caactggagc acacgaagtc 420 actacctttt gtttggcaga ccccggtgac gcatttttgg tgccaattcc ttattatcca 480 ggttttgacc gggatttgag gtggagaaca ggaattaaac ttgttccagt tatgtgcgat 540 agctcaaaca atttcaagtt gacaaagcaa gcattggaag atgcgtatgt gaaagccaaa 600 gaggataaca ttagagtgaa gggcatgctc atcaccaatc cttcaaaccc attaggcaca 660 gtcatggaca gaaacacact aagaaccgtg gtgagcttca tcaatgagaa gcgtatccat 720 cttgtatctc atgaaatata ctctgcaaca gtttttagcc gtcccagttt cataagcatt 780 gctgagatac tagaggaaga cacagacatc gaatgtgacc gcaacctcgt tcacattgtt 840 tatagtcttt caaaggatat ggggttccct ggcttcagag ttggcatcat atactcttac 900 aatgatgctg tggtcaattg tgcacgcaaa atgtcaagct ttgggttggt gtcaacacag 960 actcagcatc ttttagcatc aatgctaaat gatgatgagt ttgtggaaag gtttctggaa 1020 gagagtgcaa aaaggttggc acaaaggcat agagttttca cttcggggtt ggccaaagta 1080 ggcataaagt gcttgcaaag caatgctggt ctctttgtgt ggatggattt aaggcaactt 1140 ctcaagaagc caacgcttga ctctgaaatg gagctttgga gagtgatcat tcatgaggtt 1200 aagatcaatg tttcacctgg ctcttctttc cattgcactg agccagggtg gtttagggtg 1260 tgctatgcca acatggatga tatggctgtg caaattgcat tgcaaagaat tcgaaccttc 1320 gtgcttcaaa acaaggaggt catggttcct aacaagaaac attgctggca cagtaacttg 1380 aggttgagcc tcaaaaccan aaggtttgat gatatcatga tgtcacctca ctcccctata 1440 cctcagtccc ctttggttaa agccacaatt tga 1473 <210> SEQ ID NO 46 <211> LENGTH: 2161 <212> TYPE: DNA <213> ORGANISM: Glycine max <400> SEQUENCE: 46 gggttgatgg atgtggacca aactcaattg ttgtctaaga tggtcatcgg agatggacat 60 ggtgaagcat caccatactt tgatggatgg aaggcttatg atgaaaaccc ctttcatccc 120 aaagagaatc ctaacggggt tatccaaatg ggtcttgctg agaatcaggt atatagcata 180 taaagtttct ttccaaagtc atgcaatttt gactacttac tacaattgca taaatttgga 240 gaataatagt atatgtacat attatttaat tattttccca tgttaattag ttctaattaa 300 ttcaattatc ttaaattttt gcagcttact tctgatttgg ttgaagattg gatactgaat 360 aacccagagg cctccatttg cacaccagaa ggaataaatg atttcagggc catagctaac 420 tttcaggatt atcatggtct gcccgagttc agaaatgtga gtacaataat aatatgtgaa 480 atttgatcat atcactcatt ttatccataa attaacaagt tgagttcaac tagtgataat 540 attttataca caaattaaag gtgaattgaa aacttgcaca ggctgtggct aaattcatgg 600 gtagaacaag aggaaacaga gtcacgtttg atcctgaccg tattgtcatg agcggtggag 660 caactggagc acacgaagtc actacctttt gtttggcaga ccctggtgac gcatttttgg 720 tgcccattcc ttattatcca gggtcagtat tcaattcaat ttcaccctcc tttttcattt 780 ttcattaatt tagaatacaa tgatgaagta tggcttacgt gcgtcattac gtttttcaat 840 taaagtaaat ttgatctccc ctgagttgcc tttctattaa tttaacattc cattagggcg 900 tatagccccc acaaagtgga attctggatt agaaaccagg ataatgagat ttgatggcac 960 tactttgcaa tttcaacctt catctattgc agtagtcaac gatcatatca aacataaaaa 1020 aatccttaaa taaaagtcaa attcacccca caattgaata gcaatttggc catgaatatt 1080 atttgattta atcatgttat tgtatgatat ttagccatat agtatatatt aaattttttt 1140 tgcatctaca tgttaatatt tgtttctaat aagaagctga atttccttgt gcagttttga 1200 ccgggatttg aggtggagaa caggaattaa acttgttcca gttatgtgcg atagctcaaa 1260 caatttcaag ttgacaaagc aagcattgga agatgcgtat gagaaggcca aagaggataa 1320 tataagagta aagggcttgc tcatcaccaa tccatcaaac ccattaggca cagtcatgga 1380 cagaaacaca ctaagaaccg tgatgagctt catcaacgag aagcgtatcc accttgtatc 1440 tgatgaaata tactctgcaa cagtttttag ccaccccagt ttcataagca ttgctgagat 1500 attagaggaa gacacagaca tcgaatgtga ccgcaacctc gttcacattg tttatagtct 1560 ttcaaaggat atggggttcc ctggcttcag agttggcatc atatactctt acaatgatgc 1620 tgtggtccat tgtgcacgca aaatgtcaag ctttggattg gtgtcaacac agactcagta 1680 tcttttagca tcaatgctaa atgatgatga gtttgtggaa agttttctgg tagagagtgc 1740 aaaaaggctg gcacaaaggc atagagtttt cactgggggg ttggccaaag ttggcataaa 1800 gtgcttgcaa agcaatgctg gtctctttgt gtggatggat ttaaggcaac ttctcaagaa 1860 gccaacgctt gactctgaaa tggagctttg gagagtgatc attgatgagg ttaagatcaa 1920 tgtttcacct ggctcctctt tccattgcac tgagccaggg tggtttaggg tgtgctatgc 1980 caacatggat gatatggctg tgcaaattgc attgcaaaga attcgtaact ttgtgcttca 2040 aaacaaggag atcatggtgc ctaacaagaa acattgttgg cacagtaact tgaggttgag 2100 cctcaaaacc agaaggtttg atgatatcat gatgtcacct cactccccca tacctcagtc 2160 a 2161 <210> SEQ ID NO 47 <211> LENGTH: 4036 <212> TYPE: DNA <213> ORGANISM: Solanum tuberosum <400> SEQUENCE: 47 gaattccacc taactcatcc tgagctagaa tttatggctg ttcaaagttg gccaaaaatt 60 cacattttcc atacttagcc aaaatttcca aaactttaaa attcttccca aaaatgaaaa 120 tttcaaattc taagcctctt ccaagctatt tcaaattgtc ggatgttaca aaattttaga 180 tatgaaattc tctcgatgtt tcgaatttaa aaaaaaatat aatttgatta aaacaattca 240 tgtttgcggt acgtcgaatt tcttttaaga agaagaagaa gaagaagagt agtaaatata 300 aaaaattgga gtaagaaaag gtaactaaag tttatgggct gatattttgt ataatatttc 360 ctaaaagttt tacaataata atttattttg acatgctata acaaattaat taacatctct 420 ttttattcaa ttactcaaat aatgtgtgag tggagtattt gtcaattttg acatctttct 480 gcatgcacaa aatcttcgta tgaaaattac cacaagccat gtatgaacag ttatcactat 540 atatatccaa ttctcttcat caactacgca cgtgtttgat aggtggacaa ggcaagcata 600 ctattacttt ttaaatggcc gtggtactca agtaatacta gttacttata ataaaattgg 660 tataattcca aaaggccagg agataatgac tttcatttgt ccataagagt tatgtttaat 720 tttaaatgca ttcatgtcgt tcgttttatg caatgcccct gttatatgta tatttcaaaa 780 gtgtatggag gattttgttg aaaatactta tgaatgactt tgaatctttt tttctcgtta 840 tggttctttt cagaagtgaa gagactataa tttggtcctt aattgggaaa aagtcacttc 900 ttagtaaggg aagatattgt cttgggattc aaggtgtcaa aaagggccta cgacaacttc 960 tccttttctt gagcatcact ttctcaatct tggataacaa ttcctactgt agtatcacta 1020 cggtacgcgg cgcctgacac gtgtccctta tattaataag aattgattct aataacaata 1080 ctataaaata atatttaaaa gatgtatttg tgtaaaaata taaaaattta aaaataaaat 1140 tataaattat aaatttcaat tgacaaatga tcagttatat tactatgttc atatataatg 1200 tagccttagt atttagagtg tgctttcgtg catcaataca aacataattt ttattttaat 1260 caatgataaa attttgttca ttacatttaa tttttatcct taattgttag tgtgttggtg 1320 agttatcata ttccttttta agtacactta tttcttgaaa attttaagtt atatttttta 1380 caagtctatc gagagtactg taaaagaatc tgaatggaga gggataatta ataaagtaag 1440 tttgcatgtt taaaaattgg aggtagttaa gttaaaattt taagagccac ccagatcaac 1500 caccccattt gatttgggga tcttttggag attgagaata tacaaaaact ctgaataaga 1560 tgacagaaac taacagttgt caccagccat ttaaacaata gttgtaaaag gtgagcgttg 1620 atcttgcttc atctatataa tcaatcattg gttcctttat ttttttgtga gaaatttatc 1680 atcttgttga gggccccttt attaaactac tttctatata agttgctctt tgccaaaaaa 1740 agttcatatt caaacactaa ttctttcttc attttttccc ccactattca catttatatt 1800 atcttccata gcctctttct tgattaagag taccctaatt agccaaaaac aaattaaaac 1860 aataagttaa ttatggccat agagattgag caacgtccaa cagtagttcg tctatcaaac 1920 gttgcaacgt ctgacactca tggagaagac tcaccttact ttgctggatg gaaagcatat 1980 gatgaaaatc catttgatga agttcacaac ccatctggag ttattcaaat ggcattagcc 2040 gaaaatcaag taagttttcg atcatcatta ttggccatgc taaacttaac attaaatatt 2100 gaacttgaaa atcatttctt gtactgtatt gtattgtatt gtaggtgtca tttgatttgc 2160 tggaagagta cttggaaaag aagaaagacg atggcattgc tgaaatttct agattcaggg 2220 aaaatgcttt gttccaagat tatcatggac ttgtttgttt tagaaaggca atggctacct 2280 tcatggaaca agtaagaggt ggaagggcaa gatttgatcc tgatagagtt gttattacag 2340 ctggtgccac tgcagctaat gagttgttaa ctttcatttt agctgatcct ggtgatgctt 2400 tgcttgttcc aactccttac tatcctgggt aagtaccata tatatatttt gtcttctaat 2460 tacatgggga aaggaaatat gagtatgagt ggtggtgaga ttcgatctca acacttctgc 2520 ctgctctgat atttcatgtt caagtgtgtg aacactttta ttagttaatt atattctcaa 2580 caattactaa atattttttt tacagatttg acagagactt gaggtggaga acgggtgtga 2640 aaatcattcc agtccattgt gacagttcaa ataatttcca agtcactcta caggccttgg 2700 aagaagccta caaggatgca gaatccaaca acatcaaagt gagaggggtt cttataacaa 2760 acccctcaaa ccctttgggt accacagttc aaagatgtgt tcttgaggaa attcttgaat 2820 tcgtcgcaag aaaaaacatc catcttgtat ctgatgaaat ctactcaggt tcagcctttt 2880 gttgctccga atttgtcagt attgctgaaa tacttgaatc gagaaactac aaggattcag 2940 agagggtaca cattgtgtac agcctctcta aagacttggg actccccggg tttcgagttg 3000 gtacaatcta ctcatacaat gacaaagtag tcacaacggc aagaagaatg tcaagtttta 3060 cattgatttc ttctcagaca caacaactct tggcttccat gttgtctgat gagaaattca 3120 ctgagaatta cataaagaag aatcgcgaaa ggctgagaag gagatatgaa atgatgattg 3180 aagggctgag gagtgctggg attgagtgct tgagagggaa tgcgggattg ttttgctgga 3240 tgaatttaag tactttgttg gaaaagccta caaaggaatg tgaattggaa gtgtggaaca 3300 caatattgca tgaagtgaaa ctgaatattt ctccaggttc ttcttgtcat tgctcagagc 3360 caggctggtt cagggtttgt tttgctaaca tgagtgaaaa taccctagaa attgcactca 3420 aaagaataca ccatttcatg gaaacaaggg gcatacttca aaaatactaa ttactcatca 3480 tcattattta caaaaaaaat taattttttg atttgttttt ttttgtcttt tttggtttgg 3540 ggattttttt tttccagtta ggattggcta ctggattatt cttcaattat acccattcca 3600 agtattggat ttttccctcg agccttgtac ctcggattga gtggttcata gtttaagatg 3660 aatgtttgat tttgtttttt catatttgtc ttttccttta ttaaaatttt atattttcta 3720 aggtataaat tgactattta tacagtgata tttatgattt cacaaacaat aatgaaaatt 3780 atggttaaaa ttatgtcttt aaatgttttt ctaattaata ggtgtgtatt gcctcacaaa 3840 ttcacttaat atggaataga ggaagtacta tatatatata tatatatact agttttgatg 3900 cacgtgtgtt gcacgtgaat atcaaatcat gcattacatt aataataatg tgaatattat 3960 taaattaaaa aattatgtaa acaattataa aatgaatgat aaagcataag ttcctatgaa 4020 tagtggatgt aagctt 4036 <210> SEQ ID NO 48 <211> LENGTH: 4153 <212> TYPE: DNA <213> ORGANISM: Solanum tuberosum <400> SEQUENCE: 48 taacttttta atggaattat ttctatgtct cttcttcact tccctaatcg acatgtaatg 60 tattaagcta atcaaacata agttacatat tttgttcatt ccaaaactat gataagattt 120 caagttccct atatgatcta catttctaat ttcaaacatt tactttgaat agagagtggg 180 ccttttactt tcattacact atcatattga tatggcttgc ttcgtgaaat agataaaaaa 240 gaattattag aacttggatt taaaaaaatt atttttccta tgagttggat aacatatgtt 300 tatacgtatt cctatatatt gtgatcactt atctaattat aaaaagatta tcaaggatta 360 ttgtgggtat gaatagaatt tctttaatct taaattaaag gtatattttt caagtctttg 420 aatgtatttt cttttttggt aagaaacaat ttttccttta ataaatttta cacaactcga 480 atttgaatta gataggacca caaaaaatgt ccacacatct agtgagaaac taaaaaaaat 540 gcccatttaa taatttaaat taaattatta gagatgatcg actcactttt atttgtttag 600 ataaattata tatttgttaa tatatgcctt cattagaagc gtgattactt cattttagtt 660 taagttgtta catatctagg gcccactctt aatatattca atcataaatt taatcaattg 720 gacttaaata taccccgatt ttgtcatatg agtgaaatat accctaaaat tctcgccaag 780 tttatgatgt tttcaacatt ctcttgactt tttattaaga gttttatttt cgagtgtgag 840 accacttaat atgtcatgtg gtagatcata agtatatcta aatttagtta gtcaaataaa 900 aatgtatttt taagactgta aataatcgag aataacacta ataatttgtg gcaagtgtat 960 aaccaatact tctctcaaat agaaaatatt ggtactaatt cagcgcagta ttatactagc 1020 agactaacag catcaacatt gacagtaggc agtagcatca ccattcacca agagtccaag 1080 acatcacttg ttatgttttt cgaagtgttt ttttaccaaa aatgttgatg gatttgacat 1140 tagtcccacc cttttgttac acccttagac aaggcagtac aaaattgatc cctaaatgtc 1200 cctatgacaa ataaaacatt caattataat atacgactaa aaaagcgcgt ccaattagtg 1260 tatacatccc aaacacagta aaattaattg ttttattttg gggacaaaaa agtagaaaaa 1320 aacaaaaatt gtatagtcaa agtttgaaaa catatggtga tatgtttggt tcttcattgc 1380 taatctctta tacatatata tatatatacc tcaccatgat atatgccaga cacatagcaa 1440 caatctccat tcaatatttt ctttcttctt atttctgcct ctcaaaacaa acataaaatt 1500 caagtgctta ctcagaaaaa atgaagctcc tatcgaagaa agccatgtgt aactcacatg 1560 gacaagattc ttcctacttc ctaggatggg aagagtatga gaaaaaccca tacgatgaaa 1620 ctcgtaatcc taaaggaatc attcagatgg gtctcgcaga gaatcagctc tctttcgatt 1680 tattagagtc atggcttact caaaatccag atgcagctgc atttaaaaga aatggtgact 1740 caatatttag agaccttgcc ttatttcaag attaccatgg tcttcccgct ttcaaagatg 1800 taagttggtc attacaatag aatttaactt atatacactg actaacgtaa ctgactcatc 1860 atatatttat cattaacttc acaatctcac attgtaatgt atatttttgt gcaggcattg 1920 gttcaattca tgtctgaaat cagagggaac aaagtgagtt ttgattcaaa caagcttgta 1980 cttacagctg gtgctacttc tgcaaatgag acactcatgt tttgccttgc tgatcctggc 2040 gatgcttttc tccttcctac tccatactac cctgggtacg tttagtttaa tttatatgca 2100 ctgactatta gtcatgtatt ttaacttgtt ataacagatg aactatgttc cttactaatt 2160 atatatgata ttgtgtaata atgcagattt gatagagacc taaaatggag aaccggagct 2220 gagattgttc caatacaatg tacaagttca aacggcttta gaatcacaga atcagctctt 2280 gaagaagctt acaaagaagc cgaaaggcgg aaccttagag tgaaaggggt tttagtcact 2340 aacccttcga acccattagg cacaacatta accaaaaaag aactccaact tcttctaacc 2400 ttcgtatcta caaaacaaat ccatctcatc agtgacgaga tatattctgg cactgttttt 2460 aactcgccta aattcgttag tgtcatggaa gtattaatcg aaaataacta catgtacact 2520 gaagtatggg atcgagttca cattgtctat agtctttcta aagatttggg tcttccagga 2580 tttcgagttg gtgccattta ttccaacgac gttatgatcg tctctgcagc cacaaaaatg 2640 tctagttttg gattaatttc atctcaaact caatacctcc tttccgcttt gctatcagac 2700 aaaaaattca cgaaaaaata cgtgtctgaa aatcaaaaga ggcttaagaa acgtcatgaa 2760 atgctagttg gtggtcttaa acaaattgga atcagatgcc ttgagagcaa tgctggattg 2820 ttttgttggg tggatatgag acatcttcta agttcaaaca catttgatgg agaaatggaa 2880 ttatggaaga aaatagtgta cgaagtaggc ctaaatattt cacctggatc gtcatgccac 2940 tgtacagaac cgggttggtt tcgtgcatgt tttgctaaca tgtccgaaga taccctaaat 3000 atcgctatac aacgtttgaa ggcttttgtt gattcaaggg ataacaagga tgatattcaa 3060 aatcagaagc attctaataa gaagaagtca ttttccaagt gggtttttcg actatcgttc 3120 aatgaacgtc aaagagaacg atagtctaga catgtgaaag ttcctaaatg attctttttt 3180 ttttatctct acatttagtt agatcaatgt tgagtttcta aatttttgta tcatatataa 3240 tacatacatt ttgtagaggg gcactccgtc catgtgatcg atataggacg agaagtgctt 3300 atcatacata ttgtaatgaa tccacattat caatattctt cacaaaatgt tcaattaatt 3360 ctattactcc atttcaatta catttgtctg taccatataa ctttccatat ctaatttaat 3420 atgtaaacta aacatagagt gataatctat tattacggtt aaattacatt aataatataa 3480 tttatttttt taactgaaag ttgggtgttg gtatatttaa cctctgaaaa tgatattctt 3540 aagtagaaaa agatacgatg ttgttatgta gcacacaaag tgtcaacaga cacatgtgtc 3600 atgtgttgcc catagccagc tagtccagaa tgtgattgtt ttattcgaag tgttaattat 3660 taaaaaaata tttttattca tttaattatg tttttaacat ttatttttaa aaaaatcatc 3720 aactatgcaa gtgggtagag cctttttttc ccgaggagat attactaagt tacaatttac 3780 aaacattaga aattaaactt gatcatttgc aagtaaaatg attgggttta cttcacaggg 3840 agcaagatta gttcaaatag cactataact catttatctt actttgatgt caattttcta 3900 attagcaatt ataattgttt catgttaata aagaatttga aatgtgaaat ttaatcacaa 3960 ttaagattac gtacataaga aaagaaacct gcattttaaa ccacaattga attgtacatt 4020 agtattatac tagtatagaa tgaacaataa tatatacaca cactaacata gtttttttgg 4080 ttctttaatt tccatattgt ttaattatgt ttgagtaagt actctatgta tgtgcccgaa 4140 aataaaatct aga 4153 <210> SEQ ID NO 49 <211> LENGTH: 1571 <212> TYPE: DNA <213> ORGANISM: Solanum tuberosum <400> SEQUENCE: 49 aaagcatacg atagcgatcc tttccaccct ctaaagaacc caaatggagt tatccaaatg 60 ggacttgctg aaaatcagct ttgtttagac ttgatagagg attggattaa gagaaaccca 120 aaagcttcaa tttgttccaa tgaaggaatc aaatcattca gggccattgc caactttcaa 180 gattatcatg gcttgcctga attcagaaga gcgattgcga aatttatgga gaaaacaaga 240 ggaggaagag ttagatttga tccagaaaga gttgttatgg ctggtggtgc cactggagct 300 aatgagacaa ttatattttg tttggctgat ccaggcgatg catttttagt accttcacca 360 tattacccag catttaacag agatctaaga tggagaactg gagtacaact tcttccaatt 420 cactgtgaga gctccaacaa tttcaaaatt acttcaaaag cagtaaaaga agcatatgaa 480 aatgcacaaa aatcaaacat caaagtaaga ggtttgattt tgaccaatcc atcaaatcca 540 ttgggtacca ctttggacaa atacacactg aaaagtctct tgagtttcac caaccaacac 600 aacatccacc ttgtttgcga cgaaatctac gcagccacgg tcttcgacac gcctcaattc 660 gtcagcatag ctgaagtcct cgatgaaaag gaaatgactt attgcaacaa agatttagtt 720 cacatcgtct atagtctttc aaaagacatg gggttaccag gatttagaat cggaatcgta 780 tattctttta acgatgacgt cgttaattgc gctagaaaaa tgtcgagttt cggtttagtg 840 tcaactcaaa cgcaatattt tttagccgct atgctatcgg acgaaaaatt cgtcgataat 900 tttctgacag aaagtgcgat aaggttagct aaaagacaca aacattttac caatggactc 960 gaagaagtgg gaattaaatg cttgaaaaat aatgcggggc ttttttgttg gatggatttg 1020 cgtccgcttt taagggaatc gactttcgat agtgaaatgt cgttatggag agttattata 1080 aacgacgtaa agctcaacgt ctcgcctgga tcatcgtttg aatgtcaaga gccagggtgg 1140 ttccgagttt gttttgcgaa tatggatgat ggaacggtgg atatcgcgct agcgcggatt 1200 cggaggtttg tacgtgttga gaaaagtgga gatgaatcga gcgcgatgga aaagaagcaa 1260 caatggaaga agaataattt aagacttagt ttttcgaaaa gaatgtatga tgaaagtgtt 1320 ttgtcaccac tttcgtctcc tattccaccc tcaccactag ttcgatagga cttaattaaa 1380 agggaagaat ttaatttatg tttttttata tttgaaaaat atttgtaaga ataagattat 1440 agaaggaaat ctaggaggag tattttcaga aatagttgtt agcgtatgta ttgacaactg 1500 atctatgtac tttgacatca taatttgtct atctaattaa ttaatgaaat gtaaaagtaa 1560 agttatgtta a 1571 <210> SEQ ID NO 50 <211> LENGTH: 1098 <212> TYPE: DNA <213> ORGANISM: Solanum tuberosum <400> SEQUENCE: 50 cagatgggtc tagccgagaa tcagctttgt tttgatttaa ttcaagaatg gatagtcaac 60 aacccaaaag cctcaatttg tacctatgaa ggagttcaag attttcaaga tattgctatt 120 ttccaagact atcatggctt gccagaattt agaaaggcag ttgcaagatt catggagaaa 180 gtgagaggag atagagtcac atttgatcca gaaagaatag ttatgagtgg aggagcaaca 240 ggagctcatg aaagtttggc cttttgtttg gctgatcctg gtgatgcatt tctagttcct 300 acaccatatt atccaggatt tgatagagat ttgaggtgga gaacaggagt acaacttttt 360 cctgttgttt gtgagagttc taacaacttc aaggtgacaa aagaagcctt agaagaagca 420 tataaaaaag ctcaagaatc aaatatcaaa gtaaaaggat tacttataaa caatccatca 480 aatccattag gtacaatttt ggacaaggaa acattaaaag acatacttag attcatcaat 540 gacaaaaaca tacatctagt atgtgatgaa atctatgcag caaccgcgtt ttgtcaacct 600 tcattcatca gtatatcaga agtcatgaat gaagttgttg gatgcaacga tgatttagta 660 catatagtgt atagtctctc caaagatcta gggttccctg gatttagggt tgggattatt 720 tactcgtaca atgatgttgt tgtcaatatt gcacgtcaga tgtcaagttt tggacttgtt 780 tcaacacaaa cacaacggtt aattgcttcc atgctatcag acactatctt tgttgaaaat 840 ttcatcgcga agagcgcgat gaaattgtca caaagacatg atttgttcac taaaggatta 900 ggacaagttg gaattacaac attgaagagt aatgctggcc tatttatttg gatggatttg 960 agaaggtttc ttgaaaattc aacatttgat aatgaattga aactttggca tataattatt 1020 aataaagtga aacttaatgt ttcacctggt tgttcatttc attgctcaga gccaggttgg 1080 tttagagtat gcttcgct 1098 <210> SEQ ID NO 51 <211> LENGTH: 505 <212> TYPE: DNA <213> ORGANISM: Zea mays <400> SEQUENCE: 51 tagcagacgc ggaaccagcc gggctcccgg cagtggcagg aggagcccgg ggagatgttg 60 agccccacct cgaagaccac cctcttccac agctccatct cgccctcgaa cgaccggctc 120 cgcatcaggc gccgcatgtt gacccagcag aagagccccg cgttgctctc caggcactcg 180 atgcccacgg ccgccaggcc ctccgccagc tgctcgcgcc gctccctgat ccgccgcgtg 240 ttctccgcga tgtacctccg cgtgaagtcc ctgtcgccca ggagcgacgc caggaggtgc 300 tgcgtctggg acgacaccag gccgaagctc gacatcttgg tggccgcgga gaccacgccg 360 gcgttggacg agtagatggc gcccacgcgg aaccccggga ggcccaggtc cttggacagg 420 ctgtacacca cgtgcacgcg gtccgacagc ggcccaacgc cgacgacgcc gtcgtccgtg 480 gcggcgcgcg cggccaccac ctgca 505 <210> SEQ ID NO 52 <211> LENGTH: 543 <212> TYPE: DNA <213> ORGANISM: Zea mays <400> SEQUENCE: 52 cccggtacgc gccgccacgg acgacggcgt cgtcggcgtt gggccgctgt cggaccgcgt 60 gcacgtggtg tacagcctgt ccaaggacct gggcctcccg gggttccgcg tgggcgccat 120 ctactcgtcc aacgccggcg tggtctccgc ggccaccaag atgtcgagct tcggcctggt 180 gtcgtcccag acgcagcacc tcctggcgtc gctcctgggc gacagggact tcacgcggag 240 gtacatcgcg gagaacacgc ggcggatcag ggagcggcgc gagcagctgg cggagggcct 300 ggcggccgtg ggcatcgagt gcctggagag caacgcgggg ctcttctgct gggtcaacat 360 gcggcgcctg atgcggagcc ggtcgttcga gggcgagatg gagctgtgga agagggtggt 420 cttcgaggtg gggctcaaca tctccccggg ctcctcctgc cactgccggg agcccggctg 480 gttccgcgtc tgctaaaggg cgaattccag cacactggcg gccgttacta gtggatccga 540 gct 543 <210> SEQ ID NO 53 <211> LENGTH: 51280 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: improved ACS6 inhibition plasmid <400> SEQUENCE: 53 gtttacccgc caatatatcc tgtcaaacac tgatagttta aactgaaggc gggaaacgac 60 aatctgatca tgagcggaga attaagggag tcacgttatg acccccgccg atgacgcggg 120 acaagccgtt ttacgtttgg aactgacaga accgcaacgt tgaaggagcc actcagcaag 180 ctggtacgat tgtaatacga ctcactatag ggcgaattga gcgctgttta aacgctcttc 240 aactggaaga gcggttacta ccggctggat ggcggggcct tgatcgtgca ccgccggcgt 300 ccggataagt gactagggtc acgtgaccct agtcacttat cgagctagtt accctatgag 360 gtgacatgaa gcgctcacgg ttactatgac ggttagcttc acgactgttg gtggcagtag 420 cgtacgactt agctatagtt ccggtagatc tgaagttcct attccgaagt tcctattctt 480 caaaaggtat aggaacttcc tcgaattgtt gtggtggggt atagaggttt gatataggtg 540 gaactgctgt agagcgtgga gatatagggg gaaagagaac gctgatgtga caagtgagtg 600 agatataggg ggagaaattt agggggaacg ccgaacacag tctaaagaag cttgggaccc 660 aaagcactct gttcgggggt tttttttttt gtctttcaac tttttgctgt aatgttattc 720 aaaataagaa aagcacttgg catggctaag aaatagagtt caacaactga acagtacagt 780 gtattatcaa tggcataaaa aacaaccctt acagcattgc cgtattttat tgatcaaaca 840 ttcaactcaa cactgacgag tggtcttcca ccgatcaacg gactaatgct gctttgtcag 900 atcaccggtt aagtgactag ggtcacgtga ccctagtcac ttaggttacc agagctggtc 960 acctttgtcc accaagatgg aactgcggcc gctcattaat taagtcaggc gcgcctctag 1020 ttgaagacac gttcatgtct tcatcgtaag aagacactca gtagtcttcg gccagaatgg 1080 ccatctggat tcagcaggcc tagaaggcca tttaaatcct gaggatctgg tcttcctaag 1140 gacccgggat atcacaagtt tgtacaaaaa agcaggctcc ggccagagtt acccggaccg 1200 aagcttgcat gcctgcagtg cagcgtgacc cggtcgtgcc cctctctaga gataatgagc 1260 attgcatgtc taagttataa aaaattacca catatttttt ttgtcacact tgtttgaagt 1320 gcagtttatc tatctttata catatattta aactttactc tacgaataat ataatctata 1380 gtactacaat aatatcagtg ttttagagaa tcatataaat gaacagttag acatggtcta 1440 aaggacaatt gagtattttg acaacaggac tctacagttt tatcttttta gtgtgcatgt 1500 gttctccttt ttttttgcaa atagcttcac ctatataata cttcatccat tttattagta 1560 catccattta gggtttaggg ttaatggttt ttatagacta atttttttag tacatctatt 1620 ttattctatt ttagcctcta aattaagaaa actaaaactc tattttagtt tttttattta 1680 ataatttaga tataaaatag aataaaataa agtgactaaa aattaaacaa atacccttta 1740 agaaattaaa aaaactaagg aaacattttt cttgtttcga gtagataatg ccagcctgtt 1800 aaacgccgtc gacgagtcta acggacacca accagcgaac cagcagcgtc gcgtcgggcc 1860 aagcgaagca gacggcacgg catctctgtc gctgcctctg gacccctctc gagagttccg 1920 ctccaccgtt ggacttgctc cgctgtcggc atccagaaat tgcgtggcgg agcggcagac 1980 gtgagccggc acggcaggcg gcctcctcct cctctcacgg caccggcagc tacgggggat 2040 tcctttccca ccgctccttc gctttccctt cctcgcccgc cgtaataaat agacaccccc 2100 tccacaccct ctttccccaa cctcgtgttg ttcggagcgc acacacacac aaccagatct 2160 cccccaaatc cacccgtcgg cacctccgct tcaaggtacg ccgctcgtcc tccccccccc 2220 ccctctctac cttctctaga tcggcgttcc ggtccatgca tggttagggc ccggtagttc 2280 tacttctgtt catgtttgtg ttagatccgt gtttgtgtta gatccgtgct gctagcgttc 2340 gtacacggat gcgacctgta cgtcagacac gttctgattg ctaacttgcc agtgtttctc 2400 tttggggaat cctgggatgg ctctagccgt tccgcagacg ggatcgattt catgattttt 2460 tttgtttcgt tgcatagggt ttggtttgcc cttttccttt atttcaatat atgccgtgca 2520 cttgtttgtc gggtcatctt ttcatgcttt tttttgtctt ggttgtgatg atgtggtctg 2580 gttgggcggt cgttctagat cggagtagaa ttctgtttca aactacctgg tggatttatt 2640 aattttggat ctgtatgtgt gtgccataca tattcatagt tacgaattga agatgatgga 2700 tggaaatatc gatctaggat aggtatacat gttgatgcgg gttttactga tgcatataca 2760 gagatgcttt ttgttcgctt ggttgtgatg atgtggtgtg gttgggcggt cgttcattcg 2820 ttctagatcg gagtagaata ctgtttcaaa ctacctggtg tatttattaa ttttggaact 2880 gtatgtgtgt gtcatacatc ttcatagtta cgagtttaag atggatggaa atatcgatct 2940 aggataggta tacatgttga tgtgggtttt actgatgcat atacatgatg gcatatgcag 3000 catctattca tatgctctaa ccttgagtac ctatctatta taataaacaa gtatgtttta 3060 taattatttt gatcttgata tacttggatg atggcatatg cagcagctat atgtggattt 3120 ttttagccct gccttcatac gctatttatt tgcttggtac tgtttctttt gtcgatgctc 3180 accctgttgt ttggtgttac ttctgcaggt cgactttaac ttagcctagg atccactagt 3240 aacggccgcc agtgtgctgg aattcgccct ttagcagacg cggaaccagc cgggctcccg 3300 gcagtggcag gaggagcccg gggagatgtt gagccccacc tcgaagacca ccctcttcca 3360 cagctccatc tcgccctcga acgaccggct ccgcatcagg cgccgcatgt tgacccagca 3420 gaagagcccc gcgttgctct ccaggcactc gatgcccacg gccgccaggc cctccgccag 3480 ctgctcgcgc cgctccctga tccgccgcgt gttctccgcg atgtacctcc gcgtgaagtc 3540 cctgtcgccc aggagcgacg ccaggaggtg ctgcgtctgg gacgacacca ggccgaagct 3600 cgacatcttg gtggccgcgg agaccacgcc ggcgttggac gagtagatgg cgcccacgcg 3660 gaaccccggg aggcccaggt ccttggacag gctgtacacc acgtgcacgc ggtccgacag 3720 cggcccaacg ccgacgacgc cgtcgtccgt ggcggcgcgc gcggccacca cctgcagtcg 3780 acgtgcaaag gtccgccttg tttctcctct gtctcttgat ctgactaatc ttggtttatg 3840 attcgttgag taattttggg gaaagcttcg tccacagttt tttttcgatg aacagtgccg 3900 cagtggcgct gatcttgtat gctatcctgc aatcgtggtg aacttatttc ttttatatcc 3960 tttactccca tgaaaaggct agtaatcttt ctcgatgtaa catcgtccag cactgctatt 4020 accgtgtggt ccatccgaca gtctggctga acacatcata cgatctatgg agcaaaaatc 4080 tatcttccct gttctttaat gaaggacgtc attttcatta gtatgatcta ggaatgttgc 4140 aacttgcaag gaggcgtttc tttctttgaa tttaactaac tcgttgagtg gccctgtttc 4200 tcggacgtaa ggcctttgct gctccacaca tgtccattcg aattttaccg tgtttagcaa 4260 gggcgaaaag tttgcatctt gatgatttag cttgactatg cgattgcttt cctggacccg 4320 tgcagctgga tcccggtacg cgccgccacg gacgacggcg tcgtcggcgt tgggccgctg 4380 tcggaccgcg tgcacgtggt gtacagcctg tccaaggacc tgggcctccc ggggttccgc 4440 gtgggcgcca tctactcgtc caacgccggc gtggtctccg cggccaccaa gatgtcgagc 4500 ttcggcctgg tgtcgtccca gacgcagcac ctcctggcgt cgctcctggg cgacagggac 4560 ttcacgcgga ggtacatcgc ggagaacacg cggcggatca gggagcggcg cgagcagctg 4620 gcggagggcc tggcggccgt gggcatcgag tgcctggaga gcaacgcggg gctcttctgc 4680 tgggtcaaca tgcggcgcct gatgcggagc cggtcgttcg agggcgagat ggagctgtgg 4740 aagagggtgg tcttcgaggt ggggctcaac atctccccgg gctcctcctg ccactgccgg 4800 gagcccggct ggttccgcgt ctgctaaagg gcgaattcca gcacactggc ggccgttact 4860 agtggatccg agctcgaatt ccggtccggg tcacccggtc cgggcctaga aggccgatct 4920 cccgggcacc cagctttctt gtacaaagtg gtgatatcgg accgattaaa ctttaattcg 4980 gtccgatgca tgtatacgaa gttcctattc cgaagttcct attctacata gagtatagga 5040 acttcacctg gtggcgccgc tagtggatcc cccgggctgc agtgcagcgt gacccggtcg 5100 tgcccctctc tagagataat gagcattgca tgtctaagtt ataaaaaatt accacatatt 5160 ttttttgtca cacttgtttg aagtgcagtt tatctatctt tatacatata tttaaacttt 5220 actctacgaa taatataatc tatagtacta caataatatc agtgttttag agaatcatat 5280 aaatgaacag ttagacatgg tctaaaggac aattgagtat tttgacaaca ggactctaca 5340 gttttatctt tttagtgtgc atgtgttctc cttttttttt gcaaatagct tcacctatat 5400 aatacttcat ccattttatt agtacatcca tttagggttt agggttaatg gtttttatag 5460 actaattttt ttagtacatc tattttattc tattttagcc tctaaattaa gaaaactaaa 5520 actctatttt agttttttta tttaataatt tagatataaa atagaataaa ataaagtgac 5580 taaaaattaa acaaataccc tttaagaaat taaaaaaact aaggaaacat ttttcttgtt 5640 tcgagtagat aatgccagcc tgttaaacgc cgtcgacgag tctaacggac accaaccagc 5700 gaaccagcag cgtcgcgtcg ggccaagcga agcagacggc acggcatctc tgtcgctgcc 5760 tctggacccc tctcgagagt tccgctccac cgttggactt gctccgctgt cggcatccag 5820 aaattgcgtg gcggagcggc agacgtgagc cggcacggca ggcggcctcc tcctcctctc 5880 acggcaccgg cagctacggg ggattccttt cccaccgctc cttcgctttc ccttcctcgc 5940 ccgccgtaat aaatagacac cccctccaca ccctctttcc ccaacctcgt gttgttcgga 6000 gcgcacacac acacaaccag atctccccca aatccacccg tcggcacctc cgcttcaagg 6060 tacgccgctc gtcctccccc ccccccctct ctaccttctc tagatcggcg ttccggtcca 6120 tgcatggtta gggcccggta gttctacttc tgttcatgtt tgtgttagat ccgtgtttgt 6180 gttagatccg tgctgctagc gttcgtacac ggatgcgacc tgtacgtcag acacgttctg 6240 attgctaact tgccagtgtt tctctttggg gaatcctggg atggctctag ccgttccgca 6300 gacgggatcg atttcatgat tttttttgtt tcgttgcata gggtttggtt tgcccttttc 6360 ctttatttca atatatgccg tgcacttgtt tgtcgggtca tcttttcatg cttttttttg 6420 tcttggttgt gatgatgtgg tctggttggg cggtcgttct agatcggagt agaattctgt 6480 ttcaaactac ctggtggatt tattaatttt ggatctgtat gtgtgtgcca tacatattca 6540 tagttacgaa ttgaagatga tggatggaaa tatcgatcta ggataggtat acatgttgat 6600 gcgggtttta ctgatgcata tacagagatg ctttttgttc gcttggttgt gatgatgtgg 6660 tgtggttggg cggtcgttca ttcgttctag atcggagtag aatactgttt caaactacct 6720 ggtgtattta ttaattttgg aactgtatgt gtgtgtcata catcttcata gttacgagtt 6780 taagatggat ggaaatatcg atctaggata ggtatacatg ttgatgtggg ttttactgat 6840 gcatatacat gatggcatat gcagcatcta ttcatatgct ctaaccttga gtacctatct 6900 attataataa acaagtatgt tttataatta ttttgatctt gatatacttg gatgatggca 6960 tatgcagcag ctatatgtgg atttttttag ccctgccttc atacgctatt tatttgcttg 7020 gtactgtttc ttttgtcgat gctcaccctg ttgtttggtg ttacttctgc aggtcgactt 7080 taacttagcc taggatccac acgacaccat gtcccccgag cgccgccccg tcgagatccg 7140 cccggccacc gccgccgaca tggccgccgt gtgcgacatc gtgaaccact acatcgagac 7200 ctccaccgtg aacttccgca ccgagccgca gaccccgcag gagtggatcg acgacctgga 7260 gcgcctccag gaccgctacc cgtggctcgt ggccgaggtg gagggcgtgg tggccggcat 7320 cgcctacgcc ggcccgtgga aggcccgcaa cgcctacgac tggaccgtgg agtccaccgt 7380 gtacgtgtcc caccgccacc agcgcctcgg cctcggctcc accctctaca cccacctcct 7440 caagagcatg gaggcccagg gcttcaagtc cgtggtggcc gtgatcggcc tcccgaacga 7500 cccgtccgtg cgcctccacg aggccctcgg ctacaccgcc cgcggcaccc tccgcgccgc 7560 cggctacaag cacggcggct ggcacgacgt cggcttctgg cagcgcgact tcgagctgcc 7620 ggccccgccg cgcccggtgc gcccggtgac gcagatctga gtcgaaacct agacttgtcc 7680 atcttctgga ttggccaact taattaatgt atgaaataaa aggatgcaca catagtgaca 7740 tgctaatcac tataatgtgg gcatcaaagt tgtgtgttat gtgtaattac tagttatctg 7800 aataaaagag aaagagatca tccatatttc ttatcctaaa tgaatgtcac gtgtctttat 7860 aattctttga tgaaccagat gcatttcatt aaccaaatcc atatacatat aaatattaat 7920 catatataat taatatcaat tgggttagca aaacaaatct agtctaggtg tgttttgcga 7980 attgcggccg ctctagcgta tacgaagttc ctattccgaa gttcctattc tctagaaagt 8040 ataggaactt ctgattccga tgacttcgta ggttcctagc tcaagccgct cgtgtccaag 8100 cgtcacttac gattagctaa tgattacggc atctaggacc gactagtaag tgactagggt 8160 cacgtgaccc tagtcactta tacgtagaat taattcattc cgattaatcg tggcctcttg 8220 ctcttcagga tgaagagcta tgtttaaacg tgcaagcgct actagacaat tcagtacatt 8280 aaaaacgtcc gcaatgtgtt attaagttgt ctaagcgtca atttgtttac accacaatat 8340 atcctgccac cagccagcca acagctcccc gaccggcagc tcggcacaaa atcaccactc 8400 gatacaggca gcccatcagt ccgggacggc gtcagcggga gagccgttgt aaggcggcag 8460 actttgctca tgttaccgat gctattcgga agaacggcaa ctaagctgcc gggtttgaaa 8520 cacggatgat ctcgcggagg gtagcatgtt gattgtaacg atgacagagc gttgctgcct 8580 gtgatcaaat atcatctccc tcgcagagat ccgaattatc agccttctta ttcatttctc 8640 gcttaaccgt gacaggctgt cgatcttgag aactatgccg acataatagg aaatcgctgg 8700 ataaagccgc tgaggaagct gagtggcgct atttctttag aagtgaacgt tgacgatcgt 8760 cgaccgtacc ccgatgaatt aattcggacg tacgttctga acacagctgg atacttactt 8820 gggcgattgt catacatgac atcaacaatg tacccgtttg tgtaaccgtc tcttggaggt 8880 tcgtatgaca ctagtggttc ccctcagctt gcgactagat gttgaggcct aacattttat 8940 tagagagcag gctagttgct tagatacatg atcttcaggc cgttatctgt cagggcaagc 9000 gaaaattggc catttatgac gaccaatgcc ccgcagaagc tcccatcttt gccgccatag 9060 acgccgcgcc ccccttttgg ggtgtagaac atccttttgc cagatgtgga aaagaagttc 9120 gttgtcccat tgttggcaat gacgtagtag ccggcgaaag tgcgagaccc atttgcgcta 9180 tatataagcc tacgatttcc gttgcgacta ttgtcgtaat tggatgaact attatcgtag 9240 ttgctctcag agttgtcgta atttgatgga ctattgtcgt aattgcttat ggagttgtcg 9300 tagttgcttg gagaaatgtc gtagttggat ggggagtagt catagggaag acgagcttca 9360 tccactaaaa caattggcag gtcagcaagt gcctgccccg atgccatcgc aagtacgagg 9420 cttagaacca ccttcaacag atcgcgcata gtcttcccca gctctctaac gcttgagtta 9480 agccgcgccg cgaagcggcg tcggcttgaa cgaattgtta gacattattt gccgactacc 9540 ttggtgatct cgcctttcac gtagtgaaca aattcttcca actgatctgc gcgcgaggcc 9600 aagcgatctt cttgtccaag ataagcctgc ctagcttcaa gtatgacggg ctgatactgg 9660 gccggcaggc gctccattgc ccagtcggca gcgacatcct tcggcgcgat tttgccggtt 9720 actgcgctgt accaaatgcg ggacaacgta agcactacat ttcgctcatc gccagcccag 9780 tcgggcggcg agttccatag cgttaaggtt tcatttagcg cctcaaatag atcctgttca 9840 ggaaccggat caaagagttc ctccgccgct ggacctacca aggcaacgct atgttctctt 9900 gcttttgtca gcaagatagc cagatcaatg tcgatcgtgg ctggctcgaa gatacctgca 9960 agaatgtcat tgcgctgcca ttctccaaat tgcagttcgc gcttagctgg ataacgccac 10020 ggaatgatgt cgtcgtgcac aacaatggtg acttctacag cgcggagaat ctcgctctct 10080 ccaggggaag ccgaagtttc caaaaggtcg ttgatcaaag ctcgccgcgt tgtttcatca 10140 agccttacag tcaccgtaac cagcaaatca atatcactgt gtggcttcag gccgccatcc 10200 actgcggagc cgtacaaatg tacggccagc aacgtcggtt cgagatggcg ctcgatgacg 10260 ccaactacct ctgatagttg agtcgatact tcggcgatca ccgcttccct catgatgttt 10320 aactcctgaa ttaagccgcg ccgcgaagcg gtgtcggctt gaatgaattg ttaggcgtca 10380 tcctgtgctc ccgagaacca gtaccagtac atcgctgttt cgttcgagac ttgaggtcta 10440 gttttatacg tgaacaggtc aatgccgccg agagtaaagc cacattttgc gtacaaattg 10500 caggcaggta cattgttcgt ttgtgtctct aatcgtatgc caaggagctg tctgcttagt 10560 gcccactttt tcgcaaattc gatgagactg tgcgcgactc ctttgcctcg gtgcgtgtgc 10620 gacacaacaa tgtgttcgat agaggctaga tcgttccatg ttgagttgag ttcaatcttc 10680 ccgacaagct cttggtcgat gaatgcgcca tagcaagcag agtcttcatc agagtcatca 10740 tccgagatgt aatccttccg gtaggggctc acacttctgg tagatagttc aaagccttgg 10800 tcggataggt gcacatcgaa cacttcacga acaatgaaat ggttctcagc atccaatgtt 10860 tccgccacct gctcagggat caccgaaatc ttcatatgac gcctaacgcc tggcacagcg 10920 gatcgcaaac ctggcgcggc ttttggcaca aaaggcgtga caggtttgcg aatccgttgc 10980 tgccacttgt taaccctttt gccagatttg gtaactataa tttatgttag aggcgaagtc 11040 ttgggtaaaa actggcctaa aattgctggg gatttcagga aagtaaacat caccttccgg 11100 ctcgatgtct attgtagata tatgtagtgt atctacttga tcgggggatc tgctgcctcg 11160 cgcgtttcgg tgatgacggt gaaaacctct gacacatgca gctcccggag acggtcacag 11220 cttgtctgta agcggatgcc gggagcagac aagcccgtca gggcgcgtca gcgggtgttg 11280 gcgggtgtcg gggcgcagcc atgacccagt cacgtagcga tagcggagtg tatactggct 11340 taactatgcg gcatcagagc agattgtact gagagtgcac catatgcggt gtgaaatacc 11400 gcacagatgc gtaaggagaa aataccgcat caggcgctct tccgcttcct cgctcactga 11460 ctcgctgcgc tcggtcgttc ggctgcggcg agcggtatca gctcactcaa aggcggtaat 11520 acggttatcc acagaatcag gggataacgc aggaaagaac atgtgagcaa aaggccagca 11580 aaaggccagg aaccgtaaaa aggccgcgtt gctggcgttt ttccataggc tccgcccccc 11640 tgacgagcat cacaaaaatc gacgctcaag tcagaggtgg cgaaacccga caggactata 11700 aagataccag gcgtttcccc ctggaagctc cctcgtgcgc tctcctgttc cgaccctgcc 11760 gcttaccgga tacctgtccg cctttctccc ttcgggaagc gtggcgcttt ctcatagctc 11820 acgctgtagg tatctcagtt cggtgtaggt cgttcgctcc aagctgggct gtgtgcacga 11880 accccccgtt cagcccgacc gctgcgcctt atccggtaac tatcgtcttg agtccaaccc 11940 ggtaagacac gacttatcgc cactggcagc agccactggt aacaggatta gcagagcgag 12000 gtatgtaggc ggtgctacag agttcttgaa gtggtggcct aactacggct acactagaag 12060 gacagtattt ggtatctgcg ctctgctgaa gccagttacc ttcggaaaaa gagttggtag 12120 ctcttgatcc ggcaaacaaa ccaccgctgg tagcggtggt ttttttgttt gcaagcagca 12180 gattacgcgc agaaaaaaag gatctcaaga agatcctttg atcttttcta cggggtctga 12240 cgctcagtgg aacgaaaact cacgttaagg gattttggtc atgagattat caaaaaggat 12300 cttcacctag atccttttaa attaaaaatg aagttttaaa tcaatctaaa gtatatatga 12360 gtaaacttgg tctgacagtt accaatgctt aatcagtgag gcacctatct cagcgatctg 12420 tctatttcgt tcatccatag ttgcctgact ccccgtcgtg tagataacta cgatacggga 12480 gggcttacca tctggcccca gtgctgcaat gataccgcga gacccacgct caccggctcc 12540 agatttatca gcaataaacc agccagccgg aagggccgag cgcagaagtg gtcctgcaac 12600 tttatccgcc tccatccagt ctattaattg ttgccgggaa gctagagtaa gtagttcgcc 12660 agttaatagt ttgcgcaacg ttgttgccat tgctgcaggg gggggggggg ggggggactt 12720 ccattgttca ttccacggac aaaaacagag aaaggaaacg acagaggcca aaaagcctcg 12780 ctttcagcac ctgtcgtttc ctttcttttc agagggtatt ttaaataaaa acattaagtt 12840 atgacgaaga agaacggaaa cgccttaaac cggaaaattt tcataaatag cgaaaacccg 12900 cgaggtcgcc gccccgtaac acctgtcgga tcaccggaaa ggacccgtaa agtgataatg 12960 attatcatct acatatcaca acgtgcgtgg aggccatcaa accacgtcaa ataatcaatt 13020 atgacgcagg tatcgtatta attgatctgc atcaacttaa cgtaaaaaca acttcagaca 13080 atacaaatca gcgacactga atacggggca acctcatgtc cccccccccc ccccccctgc 13140 aggcatcgtg gtgtcacgct cgtcgtttgg tatggcttca ttcagctccg gttcccaacg 13200 atcaaggcga gttacatgat cccccatgtt gtgcaaaaaa gcggttagct ccttcggtcc 13260 tccgatcgtt gtcagaagta agttggccgc agtgttatca ctcatggtta tggcagcact 13320 gcataattct cttactgtca tgccatccgt aagatgcttt tctgtgactg gtgagtactc 13380 aaccaagtca ttctgagaat agtgtatgcg gcgaccgagt tgctcttgcc cggcgtcaac 13440 acgggataat accgcgccac atagcagaac tttaaaagtg ctcatcattg gaaaacgttc 13500 ttcggggcga aaactctcaa ggatcttacc gctgttgaga tccagttcga tgtaacccac 13560 tcgtgcaccc aactgatctt cagcatcttt tactttcacc agcgtttctg ggtgagcaaa 13620 aacaggaagg caaaatgccg caaaaaaggg aataagggcg acacggaaat gttgaatact 13680 catactcttc ctttttcaat attattgaag catttatcag ggttattgtc tcatgagcgg 13740 atacatattt gaatgtattt agaaaaataa acaaataggg gttccgcgca catttccccg 13800 aaaagtgcca cctgacgtct aagaaaccat tattatcatg acattaacct ataaaaatag 13860 gcgtatcacg aggccctttc gtcttcaaga attcggagct tttgccattc tcaccggatt 13920 cagtcgtcac tcatggtgat ttctcacttg ataaccttat ttttgacgag gggaaattaa 13980 taggttgtat tgatgttgga cgagtcggaa tcgcagaccg ataccaggat cttgccatcc 14040 tatggaactg cctcggtgag ttttctcctt cattacagaa acggcttttt caaaaatatg 14100 gtattgataa tcctgatatg aataaattgc agtttcattt gatgctcgat gagtttttct 14160 aatcagaatt ggttaattgg ttgtaacact ggcagagcat tacgctgact tgacgggacg 14220 gcggctttgt tgaataaatc gaacttttgc tgagttgaag gatcagatca cgcatcttcc 14280 cgacaacgca gaccgttccg tggcaaagca aaagttcaaa atcaccaact ggtccaccta 14340 caacaaagct ctcatcaacc gtggctccct cactttctgg ctggatgatg gggcgattca 14400 ggcctggtat gagtcagcaa caccttcttc acgaggcaga cctcagcgcc agaaggccgc 14460 cagagaggcc gagcgcggcc gtgaggcttg gacgctaggg cagggcatga aaaagcccgt 14520 agcgggctgc tacgggcgtc tgacgcggtg gaaaggggga ggggatgttg tctacatggc 14580 tctgctgtag tgagtgggtt gcgctccggc agcggtcctg atcaatcgtc accctttctc 14640 ggtccttcaa cgttcctgac aacgagcctc cttttcgcca atccatcgac aatcaccgcg 14700 agtccctgct cgaacgctgc gtccggaccg gcttcgtcga aggcgtctat cgcggcccgc 14760 aacagcggcg agagcggagc ctgttcaacg gtgccgccgc gctcgccggc atcgctgtcg 14820 ccggcctgct cctcaagcac ggccccaaca gtgaagtagc tgattgtcat cagcgcattg 14880 acggcgtccc cggccgaaaa acccgcctcg cagaggaagc gaagctgcgc gtcggccgtt 14940 tccatctgcg gtgcgcccgg tcgcgtgccg gcatggatgc gcgcgccatc gcggtaggcg 15000 agcagcgcct gcctgaagct gcgggcattc ccgatcagaa atgagcgcca gtcgtcgtcg 15060 gctctcggca ccgaatgcgt atgattctcc gccagcatgg cttcggccag tgcgtcgagc 15120 agcgcccgct tgttcctgaa gtgccagtaa agcgccggct gctgaacccc caaccgttcc 15180 gccagtttgc gtgtcgtcag accgtctacg ccgacctcgt tcaacaggtc cagggcggca 15240 cggatcactg tattcggctg caactttgtc atgcttgaca ctttatcact gataaacata 15300 atatgtccac caacttatca gtgataaaga atccgcgcgt tcaatcggac cagcggaggc 15360 tggtccggag gccagacgtg aaacccaaca tacccctgat cgtaattctg agcactgtcg 15420 cgctcgacgc tgtcggcatc ggcctgatta tgccggtgct gccgggcctc ctgcgcgatc 15480 tggttcactc gaacgacgtc accgcccact atggcattct gctggcgctg tatgcgttgg 15540 tgcaatttgc ctgcgcacct gtgctgggcg cgctgtcgga tcgtttcggg cggcggccaa 15600 tcttgctcgt ctcgctggcc ggcgccactg tcgactacgc catcatggcg acagcgcctt 15660 tcctttgggt tctctatatc gggcggatcg tggccggcat caccggggcg actggggcgg 15720 tagccggcgc ttatattgcc gatatcactg atggcgatga gcgcgcgcgg cacttcggct 15780 tcatgagcgc ctgtttcggg ttcgggatgg tcgcgggacc tgtgctcggt gggctgatgg 15840 gcggtttctc cccccacgct ccgttcttcg ccgcggcagc cttgaacggc ctcaatttcc 15900 tgacgggctg tttccttttg ccggagtcgc acaaaggcga acgccggccg ttacgccggg 15960 aggctctcaa cccgctcgct tcgttccggt gggcccgggg catgaccgtc gtcgccgccc 16020 tgatggcggt cttcttcatc atgcaacttg tcggacaggt gccggccgcg ctttgggtca 16080 ttttcggcga ggatcgcttt cactgggacg cgaccacgat cggcatttcg cttgccgcat 16140 ttggcattct gcattcactc gcccaggcaa tgatcaccgg ccctgtagcc gcccggctcg 16200 gcgaaaggcg ggcactcatg ctcggaatga ttgccgacgg cacaggctac atcctgcttg 16260 ccttcgcgac acggggatgg atggcgttcc cgatcatggt cctgcttgct tcgggtggca 16320 tcggaatgcc ggcgctgcaa gcaatgttgt ccaggcaggt ggatgaggaa cgtcaggggc 16380 agctgcaagg ctcactggcg gcgctcacca gcctgacctc gatcgtcgga cccctcctct 16440 tcacggcgat ctatgcggct tctataacaa cgtggaacgg gtgggcatgg attgcaggcg 16500 ctgccctcta cttgctctgc ctgccggcgc tgcgtcgcgg gctttggagc ggcgcagggc 16560 aacgagccga tcgctgatcg tggaaacgat aggcctatgc catgcgggtc aaggcgactt 16620 ccggcaagct atacgcgccc taggagtgcg gttggaacgt tggcccagcc agatactccc 16680 gatcacgagc aggacgccga tgatttgaag cgcactcagc gtctgatcca agaacaacca 16740 tcctagcaac acggcggtcc ccgggctgag aaagcccagt aaggaaacaa ctgtaggttc 16800 gagtcgcgag atcccccgga accaaaggaa gtaggttaaa cccgctccga tcaggccgag 16860 ccacgccagg ccgagaacat tggttcctgt aggcatcggg attggcggat caaacactaa 16920 agctactgga acgagcagaa gtcctccggc cgccagttgc caggcggtaa aggtgagcag 16980 aggcacggga ggttgccact tgcgggtcag cacggttccg aacgccatgg aaaccgcccc 17040 cgccaggccc gctgcgacgc cgacaggatc tagcgctgcg tttggtgtca acaccaacag 17100 cgccacgccc gcagttccgc aaatagcccc caggaccgcc atcaatcgta tcgggctacc 17160 tagcagagcg gcagagatga acacgaccat cagcggctgc acagcgccta ccgtcgccgc 17220 gaccccgccc ggcaggcggt agaccgaaat aaacaacaag ctccagaata gcgaaatatt 17280 aagtgcgccg aggatgaaga tgcgcatcca ccagattccc gttggaatct gtcggacgat 17340 catcacgagc aataaacccg ccggcaacgc ccgcagcagc ataccggcga cccctcggcc 17400 tcgctgttcg ggctccacga aaacgccgga cagatgcgcc ttgtgagcgt ccttggggcc 17460 gtcctcctgt ttgaagaccg acagcccaat gatctcgccg tcgatgtagg cgccgaatgc 17520 cacggcatct cgcaaccgtt cagcgaacgc ctccatgggc tttttctcct cgtgctcgta 17580 aacggacccg aacatctctg gagctttctt cagggccgac aatcggatct cgcggaaatc 17640 ctgcacgtcg gccgctccaa gccgtcgaat ctgagcctta atcacaattg tcaattttaa 17700 tcctctgttt atcggcagtt cgtagagcgc gccgtgcgtc ccgagcgata ctgagcgaag 17760 caagtgcgtc gagcagtgcc cgcttgttcc tgaaatgcca gtaaagcgct ggctgctgaa 17820 cccccagccg gaactgaccc cacaaggccc tagcgtttgc aatgcaccag gtcatcattg 17880 acccaggcgt gttccaccag gccgctgcct cgcaactctt cgcaggcttc gccgacctgc 17940 tcgcgccact tcttcacgcg ggtggaatcc gatccgcaca tgaggcggaa ggtttccagc 18000 ttgagcgggt acggctcccg gtgcgagctg aaatagtcga acatccgtcg ggccgtcggc 18060 gacagcttgc ggtacttctc ccatatgaat ttcgtgtagt ggtcgccagc aaacagcacg 18120 acgatttcct cgtcgatcag gacctggcaa cgggacgttt tcttgccacg gtccaggacg 18180 cggaagcggt gcagcagcga caccgattcc aggtgcccaa cgcggtcgga cgtgaagccc 18240 atcgccgtcg cctgtaggcg cgacaggcat tcctcggcct tcgtgtaata ccggccattg 18300 atcgaccagc ccaggtcctg gcaaagctcg tagaacgtga aggtgatcgg ctcgccgata 18360 ggggtgcgct tcgcgtactc caacacctgc tgccacacca gttcgtcatc gtcggcccgc 18420 agctcgacgc cggtgtaggt gatcttcacg tccttgttga cgtggaaaat gaccttgttt 18480 tgcagcgcct cgcgcgggat tttcttgttg cgcgtggtga acagggcaga gcgggccgtg 18540 tcgtttggca tcgctcgcat cgtgtccggc cacggcgcaa tatcgaacaa ggaaagctgc 18600 atttccttga tctgctgctt cgtgtgtttc agcaacgcgg cctgcttggc ctcgctgacc 18660 tgttttgcca ggtcctcgcc ggcggttttt cgcttcttgg tcgtcatagt tcctcgcgtg 18720 tcgatggtca tcgacttcgc caaacctgcc gcctcctgtt cgagacgacg cgaacgctcc 18780 acggcggccg atggcgcggg cagggcaggg ggagccagtt gcacgctgtc gcgctcgatc 18840 ttggccgtag cttgctggac catcgagccg acggactgga aggtttcgcg gggcgcacgc 18900 atgacggtgc ggcttgcgat ggtttcggca tcctcggcgg aaaaccccgc gtcgatcagt 18960 tcttgcctgt atgccttccg gtcaaacgtc cgattcattc accctccttg cgggattgcc 19020 ccgactcacg ccggggcaat gtgcccttat tcctgatttg acccgcctgg tgccttggtg 19080 tccagataat ccaccttatc ggcaatgaag tcggtcccgt agaccgtctg gccgtccttc 19140 tcgtacttgg tattccgaat cttgccctgc acgaatacca gcgacccctt gcccaaatac 19200 ttgccgtggg cctcggcctg agagccaaaa cacttgatgc ggaagaagtc ggtgcgctcc 19260 tgcttgtcgc cggcatcgtt gcgccactct tcattaaccg ctatatcgaa aattgcttgc 19320 ggcttgttag aattgccatg acgtacctcg gtgtcacggg taagattacc gataaactgg 19380 aactgattat ggctcatatc gaaagtctcc ttgagaaagg agactctagt ttagctaaac 19440 attggttccg ctgtcaagaa ctttagcggc taaaattttg cgggccgcga ccaaaggtgc 19500 gaggggcggc ttccgctgtg tacaaccaga tatttttcac caacatcctt cgtctgctcg 19560 atgagcgggg catgacgaaa catgagctgt cggagagggc aggggtttca atttcgtttt 19620 tatcagactt aaccaacggt aaggccaacc cctcgttgaa ggtgatggag gccattgccg 19680 acgccctgga aactccccta cctcttctcc tggagtccac cgaccttgac cgcgaggcac 19740 tcgcggagat tgcgggtcat cctttcaaga gcagcgtgcc gcccggatac gaacgcatca 19800 gtgtggtttt gccgtcacat aaggcgttta tcgtaaagaa atggggcgac gacacccgaa 19860 aaaagctgcg tggaaggctc tgacgccaag ggttagggct tgcacttcct tctttagccg 19920 ctaaaacggc cccttctctg cgggccgtcg gctcgcgcat catatcgaca tcctcaacgg 19980 aagccgtgcc gcgaatggca tcgggcgggt gcgctttgac agttgttttc tatcagaacc 20040 cctacgtcgt gcggttcgat tagctgtttg tcttgcaggc taaacacttt cggtatatcg 20100 tttgcctgtg cgataatgtt gctaatgatt tgttgcgtag gggttactga aaagtgagcg 20160 ggaaagaaga gtttcagacc atcaaggagc gggccaagcg caagctggaa cgcgacatgg 20220 gtgcggacct gttggccgcg ctcaacgacc cgaaaaccgt tgaagtcatg ctcaacgcgg 20280 acggcaaggt gtggcacgaa cgccttggcg agccgatgcg gtacatctgc gacatgcggc 20340 ccagccagtc gcaggcgatt atagaaacgg tggccggatt ccacggcaaa gaggtcacgc 20400 ggcattcgcc catcctggaa ggcgagttcc ccttggatgg cagccgcttt gccggccaat 20460 tgccgccggt cgtggccgcg ccaacctttg cgatccgcaa gcgcgcggtc gccatcttca 20520 cgctggaaca gtacgtcgag gcgggcatca tgacccgcga gcaatacgag gtcattaaaa 20580 gcgccgtcgc ggcgcatcga aacatcctcg tcattggcgg tactggctcg ggcaagacca 20640 cgctcgtcaa cgcgatcatc aatgaaatgg tcgccttcaa cccgtctgag cgcgtcgtca 20700 tcatcgagga caccggcgaa atccagtgcg ccgcagagaa cgccgtccaa taccacacca 20760 gcatcgacgt ctcgatgacg ctgctgctca agacaacgct gcgtatgcgc cccgaccgca 20820 tcctggtcgg tgaggtacgt ggccccgaag cccttgatct gttgatggcc tggaacaccg 20880 ggcatgaagg aggtgccgcc accctgcacg caaacaaccc caaagcgggc ctgagccggc 20940 tcgccatgct tatcagcatg cacccggatt caccgaaacc cattgagccg ctgattggcg 21000 aggcggttca tgtggtcgtc catatcgcca ggacccctag cggccgtcga gtgcaagaaa 21060 ttctcgaagt tcttggttac gagaacggcc agtacatcac caaaaccctg taaggagtat 21120 ttccaatgac aacggctgtt ccgttccgtc tgaccatgaa tcgcggcatt ttgttctacc 21180 ttgccgtgtt cttcgttctc gctctcgcgt tatccgcgca tccggcgatg gcctcggaag 21240 gcaccggcgg cagcttgcca tatgagagct ggctgacgaa cctgcgcaac tccgtaaccg 21300 gcccggtggc cttcgcgctg tccatcatcg gcatcgtcgt cgccggcggc gtgctgatct 21360 tcggcggcga actcaacgcc ttcttccgaa ccctgatctt cctggttctg gtgatggcgc 21420 tgctggtcgg cgcgcagaac gtgatgagca ccttcttcgg tcgtggtgcc gaaatcgcgg 21480 ccctcggcaa cggggcgctg caccaggtgc aagtcgcggc ggcggatgcc gtgcgtgcgg 21540 tagcggctgg acggctcgcc taatcatggc tctgcgcacg atccccatcc gtcgcgcagg 21600 caaccgagaa aacctgttca tgggtggtga tcgtgaactg gtgatgttct cgggcctgat 21660 ggcgtttgcg ctgattttca gcgcccaaga gctgcgggcc accgtggtcg gtctgatcct 21720 gtggttcggg gcgctctatg cgttccgaat catggcgaag gccgatccga agatgcggtt 21780 cgtgtacctg cgtcaccgcc ggtacaagcc gtattacccg gcccgctcga ccccgttccg 21840 cgagaacacc aatagccaag ggaagcaata ccgatgatcc aagcaattgc gattgcaatc 21900 gcgggcctcg gcgcgcttct gttgttcatc ctctttgccc gcatccgcgc ggtcgatgcc 21960 gaactgaaac tgaaaaagca tcgttccaag gacgccggcc tggccgatct gctcaactac 22020 gccgctgtcg tcgatgacgg cgtaatcgtg ggcaagaacg gcagctttat ggctgcctgg 22080 ctgtacaagg gcgatgacaa cgcaagcagc accgaccagc agcgcgaagt agtgtccgcc 22140 cgcatcaacc aggccctcgc gggcctggga agtgggtgga tgatccatgt ggacgccgtg 22200 cggcgtcctg ctccgaacta cgcggagcgg ggcctgtcgg cgttccctga ccgtctgacg 22260 gcagcgattg aagaagagcg ctcggtcttg ccttgctcgt cggtgatgta cttcaccagc 22320 tccgcgaagt cgctcttctt gatggagcgc atggggacgt gcttggcaat cacgcgcacc 22380 ccccggccgt tttagcggct aaaaaagtca tggctctgcc ctcgggcgga ccacgcccat 22440 catgaccttg ccaagctcgt cctgcttctc ttcgatcttc gccagcaggg cgaggatcgt 22500 ggcatcaccg aaccgcgccg tgcgcgggtc gtcggtgagc cagagtttca gcaggccgcc 22560 caggcggccc aggtcgccat tgatgcgggc cagctcgcgg acgtgctcat agtccacgac 22620 gcccgtgatt ttgtagccct ggccgacggc cagcaggtag gccgacaggc tcatgccggc 22680 cgccgccgcc ttttcctcaa tcgctcttcg ttcgtctgga aggcagtaca ccttgatagg 22740 tgggctgccc ttcctggttg gcttggtttc atcagccatc cgcttgccct catctgttac 22800 gccggcggta gccggccagc ctcgcagagc aggattcccg ttgagcaccg ccaggtgcga 22860 ataagggaca gtgaagaagg aacacccgct cgcgggtggg cctacttcac ctatcctgcc 22920 cggctgacgc cgttggatac accaaggaaa gtctacacga accctttggc aaaatcctgt 22980 atatcgtgcg aaaaaggatg gatataccga aaaaatcgct ataatgaccc cgaagcaggg 23040 ttatgcagcg gaaaagcgct gcttccctgc tgttttgtgg aatatctacc gactggaaac 23100 aggcaaatgc aggaaattac tgaactgagg ggacaggcga gagacgatgc caaagagcta 23160 caccgacgag ctggccgagt gggttgaatc ccgcgcggcc aagaagcgcc ggcgtgatga 23220 ggctgcggtt gcgttcctgg cggtgagggc ggatgtcgag gcggcgttag cgtccggcta 23280 tgcgctcgtc accatttggg agcacatgcg ggaaacgggg aaggtcaagt tctcctacga 23340 gacgttccgc tcgcacgcca ggcggcacat caaggccaag cccgccgatg tgcccgcacc 23400 gcaggccaag gctgcggaac ccgcgccggc acccaagacg ccggagccac ggcggccgaa 23460 gcaggggggc aaggctgaaa agccggcccc cgctgcggcc ccgaccggct tcaccttcaa 23520 cccaacaccg gacaaaaagg atctactgta atggcgaaaa ttcacatggt tttgcagggc 23580 aagggcgggg tcggcaagtc ggccatcgcc gcgatcattg cgcagtacaa gatggacaag 23640 gggcagacac ccttgtgcat cgacaccgac ccggtgaacg cgacgttcga gggctacaag 23700 gccctgaacg tccgccggct gaacatcatg gccggcgacg aaattaactc gcgcaacttc 23760 gacaccctgg tcgagctgat tgcgccgacc aaggatgacg tggtgatcga caacggtgcc 23820 agctcgttcg tgcctctgtc gcattacctc atcagcaacc aggtgccggc tctgctgcaa 23880 gaaatggggc atgagctggt catccatacc gtcgtcaccg gcggccaggc tctcctggac 23940 acggtgagcg gcttcgccca gctcgccagc cagttcccgg ccgaagcgct tttcgtggtc 24000 tggctgaacc cgtattgggg gcctatcgag catgagggca agagctttga gcagatgaag 24060 gcgtacacgg ccaacaaggc ccgcgtgtcg tccatcatcc agattccggc cctcaaggaa 24120 gaaacctacg gccgcgattt cagcgacatg ctgcaagagc ggctgacgtt cgaccaggcg 24180 ctggccgatg aatcgctcac gatcatgacg cggcaacgcc tcaagatcgt gcggcgcggc 24240 ctgtttgaac agctcgacgc ggcggccgtg ctatgagcga ccagattgaa gagctgatcc 24300 gggagattgc ggccaagcac ggcatcgccg tcggccgcga cgacccggtg ctgatcctgc 24360 ataccatcaa cgcccggctc atggccgaca gtgcggccaa gcaagaggaa atccttgccg 24420 cgttcaagga agagctggaa gggatcgccc atcgttgggg cgaggacgcc aaggccaaag 24480 cggagcggat gctgaacgcg gccctggcgg ccagcaagga cgcaatggcg aaggtaatga 24540 aggacagcgc cgcgcaggcg gccgaagcga tccgcaggga aatcgacgac ggccttggcc 24600 gccagctcgc ggccaaggtc gcggacgcgc ggcgcgtggc gatgatgaac atgatcgccg 24660 gcggcatggt gttgttcgcg gccgccctgg tggtgtgggc ctcgttatga atcgcagagg 24720 cgcagatgaa aaagcccggc gttgccgggc tttgtttttg cgttagctgg gcttgtttga 24780 caggcccaag ctctgactgc gcccgcgctc gcgctcctgg gcctgtttct tctcctgctc 24840 ctgcttgcgc atcagggcct ggtgccgtcg ggctgcttca cgcatcgaat cccagtcgcc 24900 ggccagctcg ggatgctccg cgcgcatctt gcgcgtcgcc agttcctcga tcttgggcgc 24960 gtgaatgccc atgccttcct tgatttcgcg caccatgtcc agccgcgtgt gcagggtctg 25020 caagcgggct tgctgttggg cctgctgctg ctgccaggcg gcctttgtac gcggcaggga 25080 cagcaagccg ggggcattgg actgtagctg ctgcaaacgc gcctgctgac ggtctacgag 25140 ctgttctagg cggtcctcga tgcgctccac ctggtcatgc tttgcctgca cgtagagcgc 25200 aagggtctgc tggtaggtct gctcgatggg cgcggattct aagagggcct gctgttccgt 25260 ctcggcctcc tgggccgcct gtagcaaatc ctcgccgctg ttgccgctgg actgctttac 25320 tgccggggac tgctgttgcc ctgctcgcgc cgtcgtcgca gttcggcttg cccccactcg 25380 attgactgct tcatttcgag ccgcagcgat gcgatctcgg attgcgtcaa cggacggggc 25440 agcgcggagg tgtccggctt ctccttgggt gagtcggtcg atgccatagc caaaggtttc 25500 cttccaaaat gcgtccattg ctggaccgtg tttctcattg atgcccgcaa gcatcttcgg 25560 cttgaccgcc aggtcaagcg cgccttcatg ggcggtcatg acggacgccg ccatgacctt 25620 gccgccgttg ttctcgatgt agccgcgtaa tgaggcaatg gtgccgccca tcgtcagcgt 25680 gtcatcgaca acgatgtact tctggccggg gatcacctcc ccctcgaaag tcgggttgaa 25740 cgccaggcga tgatctgaac cggctccggt tcgggcgacc ttctcccgct gcacaatgtc 25800 cgtttcgacc tcaaggccaa ggcggtcggc cagaacgacc gccatcatgg ccggaatctt 25860 gttgttcccc gccgcctcga cggcgaggac tggaacgatg cggggcttgt cgtcgccgat 25920 cagcgtcttg agctgggcaa cagtgtcgtc cgaaatcagg cgctcgacca aattaagcgc 25980 cgcttccgcg tcgccctgct tcgcagcctg gtattcaggc tcgttggtca aagaaccaag 26040 gtcgccgttg cgaaccacct tcgggaagtc tccccacggt gcgcgctcgg ctctgctgta 26100 gctgctcaag acgcctccct ttttagccgc taaaactcta acgagtgcgc ccgcgactca 26160 acttgacgct ttcggcactt acctgtgcct tgccacttgc gtcataggtg atgcttttcg 26220 cactcccgat ttcaggtact ttatcgaaat ctgaccgggc gtgcattaca aagttcttcc 26280 ccacctgttg gtaaatgctg ccgctatctg cgtggacgat gctgccgtcg tggcgctgcg 26340 acttatcggc cttttgggcc atatagatgt tgtaaatgcc aggtttcagg gccccggctt 26400 tatctacctt ctggttcgtc catgcgcctt ggttctcggt ctggacaatt ctttgcccat 26460 tcatgaccag gaggcggtgt ttcattgggt gactcctgac ggttgcctct ggtgttaaac 26520 gtgtcctggt cgcttgccgg ctaaaaaaaa gccgacctcg gcagttcgag gccggctttc 26580 cctagagccg ggcgcgtcaa ggttgttcca tctattttag tgaactgcgt tcgatttatc 26640 agttactttc ctcccgcttt gtgtttcctc ccactcgttt ccgcgtctag ccgacccctc 26700 aacatagcgg cctcttcttg ggctgccttt gcctcttgcc gcgcttcgtc acgctcggct 26760 tgcaccgtcg taaagcgctc ggcctgcctg gccgcctctt gcgccgccaa cttcctttgc 26820 tcctggtggg cctcggcgtc ggcctgcgcc ttcgctttca ccgctgccaa ctccgtgcgc 26880 aaactctccg cttcgcgcct ggtggcgtcg cgctcgccgc gaagcgcctg catttcctgg 26940 ttggccgcgt ccagggtctt gcggctctct tctttgaatg cgcgggcgtc ctggtgagcg 27000 tagtccagct cggcgcgcag ctcctgcgct cgacgctcca cctcgtcggc ccgctgcgtc 27060 gccagcgcgg cccgctgctc ggctcctgcc agggcggtgc gtgcttcggc cagggcttgc 27120 cgctggcgtg cggccagctc ggccgcctcg gcggcctgct gctctagcaa tgtaacgcgc 27180 gcctgggctt cttccagctc gcgggcctgc gcctcgaagg cgtcggccag ctccccgcgc 27240 acggcttcca actcgttgcg ctcacgatcc cagccggctt gcgctgcctg caacgattca 27300 ttggcaaggg cctgggcggc ttgccagagg gcggccacgg cctggttgcc ggcctgctgc 27360 accgcgtccg gcacctggac tgccagcggg gcggcctgcg ccgtgcgctg gcgtcgccat 27420 tcgcgcatgc cggcgctggc gtcgttcatg ttgacgcggg cggccttacg cactgcatcc 27480 acggtcggga agttctcccg gtcgccttgc tcgaacagct cgtccgcagc cgcaaaaatg 27540 cggtcgcgcg tctctttgtt cagttccatg ttggctccgg taattggtaa gaataataat 27600 actcttacct accttatcag cgcaagagtt tagctgaaca gttctcgact taacggcagg 27660 ttttttagcg gctgaagggc aggcaaaaaa agccccgcac ggtcggcggg ggcaaagggt 27720 cagcgggaag gggattagcg ggcgtcgggc ttcttcatgc gtcggggccg cgcttcttgg 27780 gatggagcac gacgaagcgc gcacgcgcat cgtcctcggc cctatcggcc cgcgtcgcgg 27840 tcaggaactt gtcgcgcgct aggtcctccc tggtgggcac caggggcatg aactcggcct 27900 gctcgatgta ggtccactcc atgaccgcat cgcagtcgag gccgcgttcc ttcaccgtct 27960 cttgcaggtc gcggtacgcc cgctcgttga gcggctggta acgggccaat tggtcgtaaa 28020 tggctgtcgg ccatgagcgg cctttcctgt tgagccagca gccgacgacg aagccggcaa 28080 tgcaggcccc tggcacaacc aggccgacgc cgggggcagg ggatggcagc agctcgccaa 28140 ccaggaaccc cgccgcgatg atgccgatgc cggtcaacca gcccttgaaa ctatccggcc 28200 ccgaaacacc cctgcgcatt gcctggatgc tgcgccggat agcttgcaac atcaggagcc 28260 gtttcttttg ttcgtcagtc atggtccgcc ctcaccagtt gttcgtatcg gtgtcggacg 28320 aactgaaatc gcaagagctg ccggtatcgg tccagccgct gtccgtgtcg ctgctgccga 28380 agcacggcga ggggtccgcg aacgccgcag acggcgtatc cggccgcagc gcatcgccca 28440 gcatggcccc ggtcagcgag ccgccggcca ggtagcccag catggtgctg ttggtcgccc 28500 cggccaccag ggccgacgtg acgaaatcgc cgtcattccc tctggattgt tcgctgctcg 28560 gcggggcagt gcgccgcgcc ggcggcgtcg tggatggctc gggttggctg gcctgcgacg 28620 gccggcgaaa ggtgcgcagc agctcgttat cgaccggctg cggcgtcggg gccgccgcct 28680 tgcgctgcgg tcggtgttcc ttcttcggct cgcgcagctt gaacagcatg atcgcggaaa 28740 ccagcagcaa cgccgcgcct acgcctcccg cgatgtagaa cagcatcgga ttcattcttc 28800 ggtcctcctt gtagcggaac cgttgtctgt gcggcgcggg tggcccgcgc cgctgtcttt 28860 ggggatcagc cctcgatgag cgcgaccagt ttcacgtcgg caaggttcgc ctcgaactcc 28920 tggccgtcgt cctcgtactt caaccaggca tagccttccg ccggcggccg acggttgagg 28980 ataaggcggg cagggcgctc gtcgtgctcg acctggacga tggccttttt cagcttgtcc 29040 gggtccggct ccttcgcgcc cttttccttg gcgtccttac cgtcctggtc gccgtcctcg 29100 ccgtcctggc cgtcgccggc ctccgcgtca cgctcggcat cagtctggcc gttgaaggca 29160 tcgacggtgt tgggatcgcg gcccttctcg tccaggaact cgcgcagcag cttgaccgtg 29220 ccgcgcgtga tttcctgggt gtcgtcgtca agccacgcct cgacttcctc cgggcgcttc 29280 ttgaaggccg tcaccagctc gttcaccacg gtcacgtcgc gcacgcggcc ggtgttgaac 29340 gcatcggcga tcttctccgg caggtccagc agcgtgacgt gctgggtgat gaacgccggc 29400 gacttgccga tttccttggc gatatcgcct ttcttcttgc ccttcgccag ctcgcggcca 29460 atgaagtcgg caatttcgcg cggggtcagc tcgttgcgtt gcaggttctc gataacctgg 29520 tcggcttcgt tgtagtcgtt gtcgatgaac gccgggatgg acttcttgcc ggcccacttc 29580 gagccacggt agcggcgggc gccgtgattg atgatatagc ggcccggctg ctcctggttc 29640 tcgcgcaccg aaatgggtga cttcaccccg cgctctttga tcgtggcacc gatttccgcg 29700 atgctctccg gggaaaagcc ggggttgtcg gccgtccgcg gctgatgcgg atcttcgtcg 29760 atcaggtcca ggtccagctc gatagggccg gaaccgccct gagacgccgc aggagcgtcc 29820 aggaggctcg acaggtcgcc gatgctatcc aaccccaggc cggacggctg cgccgcgcct 29880 gcggcttcct gagcggccgc agcggtgttt ttcttggtgg tcttggcttg agccgcagtc 29940 attgggaaat ctccatcttc gtgaacacgt aatcagccag ggcgcgaacc tctttcgatg 30000 ccttgcgcgc ggccgttttc ttgatcttcc agaccggcac accggatgcg agggcatcgg 30060 cgatgctgct gcgcaggcca acggtggccg gaatcatcat cttggggtac gcggccagca 30120 gctcggcttg gtggcgcgcg tggcgcggat tccgcgcatc gaccttgctg ggcaccatgc 30180 caaggaattg cagcttggcg ttcttctggc gcacgttcgc aatggtcgtg accatcttct 30240 tgatgccctg gatgctgtac gcctcaagct cgatggggga cagcacatag tcggccgcga 30300 agagggcggc cgccaggccg acgccaaggg tcggggccgt gtcgatcagg cacacgtcga 30360 agccttggtt cgccagggcc ttgatgttcg ccccgaacag ctcgcgggcg tcgtccagcg 30420 acagccgttc ggcgttcgcc agtaccgggt tggactcgat gagggcgagg cgcgcggcct 30480 ggccgtcgcc ggctgcgggt gcggtttcgg tccagccgcc ggcagggaca gcgccgaaca 30540 gcttgcttgc atgcaggccg gtagcaaagt ccttgagcgt gtaggacgca ttgccctggg 30600 ggtccaggtc gatcacggca acccgcaagc cgcgctcgaa aaagtcgaag gcaagatgca 30660 caagggtcga agtcttgccg acgccgcctt tctggttggc cgtgaccaaa gttttcatcg 30720 tttggtttcc tgttttttct tggcgtccgc ttcccacttc cggacgatgt acgcctgatg 30780 ttccggcaga accgccgtta cccgcgcgta cccctcgggc aagttcttgt cctcgaacgc 30840 ggcccacacg cgatgcaccg cttgcgacac tgcgcccctg gtcagtccca gcgacgttgc 30900 gaacgtcgcc tgtggcttcc catcgactaa gacgccccgc gctatctcga tggtctgctg 30960 ccccacttcc agcccctgga tcgcctcctg gaactggctt tcggtaagcc gtttcttcat 31020 ggataacacc cataatttgc tccgcgcctt ggttgaacat agcggtgaca gccgccagca 31080 catgagagaa gtttagctaa acatttctcg cacgtcaaca cctttagccg ctaaaactcg 31140 tccttggcgt aacaaaacaa aagcccggaa accgggcttt cgtctcttgc cgcttatggc 31200 tctgcacccg gctccatcac caacaggtcg cgcacgcgct tcactcggtt gcggatcgac 31260 actgccagcc caacaaagcc ggttgccgcc gccgccagga tcgcgccgat gatgccggcc 31320 acaccggcca tcgcccacca ggtcgccgcc ttccggttcc attcctgctg gtactgcttc 31380 gcaatgctgg acctcggctc accataggct gaccgctcga tggcgtatgc cgcttctccc 31440 cttggcgtaa aacccagcgc cgcaggcggc attgccatgc tgcccgccgc tttcccgacc 31500 acgacgcgcg caccaggctt gcggtccaga ccttcggcca cggcgagctg cgcaaggaca 31560 taatcagccg ccgacttggc tccacgcgcc tcgatcagct cttgcactcg cgcgaaatcc 31620 ttggcctcca cggccgccat gaatcgcgca cgcggcgaag gctccgcagg gccggcgtcg 31680 tgatcgccgc cgagaatgcc cttcaccaag ttcgacgaca cgaaaatcat gctgacggct 31740 atcaccatca tgcagacgga tcgcacgaac ccgctgaatt gaacacgagc acggcacccg 31800 cgaccactat gccaagaatg cccaaggtaa aaattgccgg ccccgccatg aagtccgtga 31860 atgccccgac ggccgaagtg aagggcaggc cgccacccag gccgccgccc tcactgcccg 31920 gcacctggtc gctgaatgtc gatgccagca cctgcggcac gtcaatgctt ccgggcgtcg 31980 cgctcgggct gatcgcccat cccgttactg ccccgatccc ggcaatggca aggactgcca 32040 gcgctgccat ttttggggtg aggccgttcg cggccgaggg gcgcagcccc tggggggatg 32100 ggaggcccgc gttagcgggc cgggagggtt cgagaagggg gggcaccccc cttcggcgtg 32160 cgcggtcacg cgcacagggc gcagccctgg ttaaaaacaa ggtttataaa tattggttta 32220 aaagcaggtt aaaagacagg ttagcggtgg ccgaaaaacg ggcggaaacc cttgcaaatg 32280 ctggattttc tgcctgtgga cagcccctca aatgtcaata ggtgcgcccc tcatctgtca 32340 gcactctgcc cctcaagtgt caaggatcgc gcccctcatc tgtcagtagt cgcgcccctc 32400 aagtgtcaat accgcagggc acttatcccc aggcttgtcc acatcatctg tgggaaactc 32460 gcgtaaaatc aggcgttttc gccgatttgc gaggctggcc agctccacgt cgccggccga 32520 aatcgagcct gcccctcatc tgtcaacgcc gcgccgggtg agtcggcccc tcaagtgtca 32580 acgtccgccc ctcatctgtc agtgagggcc aagttttccg cgaggtatcc acaacgccgg 32640 cggccgcggt gtctcgcaca cggcttcgac ggcgtttctg gcgcgtttgc agggccatag 32700 acggccgcca gcccagcggc gagggcaacc agcccggtga gcgtcggaaa ggcgctggaa 32760 gccccgtagc gacgcggaga ggggcgagac aagccaaggg cgcaggctcg atgcgcagca 32820 cgacatagcc ggttctcgca aggacgagaa tttccctgcg gtgcccctca agtgtcaatg 32880 aaagtttcca acgcgagcca ttcgcgagag ccttgagtcc acgctagatg agagctttgt 32940 tgtaggtgga ccagttggtg attttgaact tttgctttgc cacggaacgg tctgcgttgt 33000 cgggaagatg cgtgatctga tccttcaact cagcaaaagt tcgatttatt caacaaagcc 33060 acgttgtgtc tcaaaatctc tgatgttaca ttgcacaaga taaaaatata tcatcatgaa 33120 caataaaact gtctgcttac ataaacagta atacaagggg tgttatgagc catattcaac 33180 gggaaacgtc ttgctcgact ctagagctcg ttcctcgagg cctcgaggcc tcgaggaacg 33240 gtacctgcgg ggaagcttac aataatgtgt gttgttaagt cttgttgcct gtcatcgtct 33300 gactgacttt cgtcataaat cccggcctcc gtaacccagc tttgggcaag ctcacggatt 33360 tgatccggcg gaacgggaat atcgagatgc cgggctgaac gctgcagttc cagctttccc 33420 tttcgggaca ggtactccag ctgattgatt atctgctgaa gggtcttggt tccacctcct 33480 ggcacaatgc gaatgattac ttgagcgcga tcgggcatcc aattttctcc cgtcaggtgc 33540 gtggtcaagt gctacaaggc acctttcagt aacgagcgac cgtcgatccg tcgccgggat 33600 acggacaaaa tggagcgcag tagtccatcg agggcggcga aagcctcgcc aaaagcaata 33660 cgttcatctc gcacagcctc cagatccgat cgagggtctt cggcgtaggc agatagaagc 33720 atggatacat tgcttgagag tattccgatg gactgaagta tggcttccat cttttctcgt 33780 gtgtctgcat ctatttcgag aaagcccccg atgcggcgca ccgcaacgcg aattgccata 33840 ctatccgaaa gtcccagcag gcgcgcttga taggaaaagg tttcatactc ggccgatcgc 33900 agacgggcac tcacgacctt gaacccttca actttcaggg atcgatgctg gttgatggta 33960 gtctcactcg acgtggctct ggtgtgtttt gacatagctt cctccaaaga aagcggaagg 34020 tctggatact ccagcacgaa atgtgcccgg gtagacggat ggaagtctag ccctgctcaa 34080 tatgaaatca acagtacatt tacagtcaat actgaatata cttgctacat ttgcaattgt 34140 cttataacga atgtgaaata aaaatagtgt aacaacgctt ttactcatcg ataatcacaa 34200 aaacatttat acgaacaaaa atacaaatgc actccggttt cacaggatag gcgggatcag 34260 aatatgcaac ttttgacgtt ttgttctttc aaagggggtg ctggcaaaac caccgcactc 34320 atgggccttt gcgctgcttt ggcaaatgac ggtaaacgag tggccctctt tgatgccgac 34380 gaaaaccggc ctctgacgcg atggagagaa aacgccttac aaagcagtac tgggatcctc 34440 gctgtgaagt ctattccgcc gacgaaatgc cccttcttga agcagcctat gaaaatgccg 34500 agctcgaagg atttgattat gcgttggccg atacgcgtgg cggctcgagc gagctcaaca 34560 acacaatcat cgctagctca aacctgcttc tgatccccac catgctaacg ccgctcgaca 34620 tcgatgaggc actatctacc taccgctacg tcatcgagct gctgttgagt gaaaatttgg 34680 caattcctac agctgttttg cgccaacgcg tcccggtcgg ccgattgaca acatcgcaac 34740 gcaggatgtc agagacgcta gagagccttc cagttgtacc gtctcccatg catgaaagag 34800 atgcatttgc cgcgatgaaa gaacgcggca tgttgcatct tacattacta aacacgggaa 34860 ctgatccgac gatgcgcctc atagagagga atcttcggat tgcgatggag gaagtcgtgg 34920 tcatttcgaa actgatcagc aaaatcttgg aggcttgaag atggcaattc gcaagcccgc 34980 attgtcggtc ggcgaagcac ggcggcttgc tggtgctcga cccgagatcc accatcccaa 35040 cccgacactt gttccccaga agctggacct ccagcacttg cctgaaaaag ccgacgagaa 35100 agaccagcaa cgtgagcctc tcgtcgccga tcacatttac agtcccgatc gacaacttaa 35160 gctaactgtg gatgccctta gtccacctcc gtccccgaaa aagctccagg tttttctttc 35220 agcgcgaccg cccgcgcctc aagtgtcgaa aacatatgac aacctcgttc ggcaatacag 35280 tccctcgaag tcgctacaaa tgattttaag gcgcgcgttg gacgatttcg aaagcatgct 35340 ggcagatgga tcatttcgcg tggccccgaa aagttatccg atcccttcaa ctacagaaaa 35400 atccgttctc gttcagacct cacgcatgtt cccggttgcg ttgctcgagg tcgctcgaag 35460 tcattttgat ccgttggggt tggagaccgc tcgagctttc ggccacaagc tggctaccgc 35520 cgcgctcgcg tcattctttg ctggagagaa gccatcgagc aattggtgaa gagggaccta 35580 tcggaacccc tcaccaaata ttgagtgtag gtttgaggcc gctggccgcg tcctcagtca 35640 ccttttgagc cagataatta agagccaaat gcaattggct caggctgcca tcgtcccccc 35700 gtgcgaaacc tgcacgtccg cgtcaaagaa ataaccggca cctcttgctg tttttatcag 35760 ttgagggctt gacggatccg cctcaagttt gcggcgcagc cgcaaaatga gaacatctat 35820 actcctgtcg taaacctcct cgtcgcgtac tcgactggca atgagaagtt gctcgcgcga 35880 tagaacgtcg cggggtttct ctaaaaacgc gaggagaaga ttgaactcac ctgccgtaag 35940 tttcacctca ccgccagctt cggacatcaa gcgacgttgc ctgagattaa gtgtccagtc 36000 agtaaaacaa aaagaccgtc ggtctttgga gcggacaacg ttggggcgca cgcgcaaggc 36060 aacccgaatg cgtgcaagaa actctctcgt actaaacggc ttagcgataa aatcacttgc 36120 tcctagctcg agtgcaacaa ctttatccgt ctcctcaagg cggtcgccac tgataattat 36180 gattggaata tcagactttg ccgccagatt tcgaacgatc tcaagcccat cttcacgacc 36240 taaatttaga tcaacaacca cgacatcgac cgtcgcggaa gagagtactc tagtgaactg 36300 ggtgctgtcg gctaccgcgg tcactttgaa ggcgtggatc gtaaggtatt cgataataag 36360 atgccgcata gcgacatcgt catcgataag aagaacgtgt ttcaacggct cacctttcaa 36420 tctaaaatct gaacccttgt tcacagcgct tgagaaattt tcacgtgaag gatgtacaat 36480 catctccagc taaatgggca gttcgtcaga attgcggctg accgcggatg acgaaaatgc 36540 gaaccaagta tttcaatttt atgacaaaag ttctcaatcg ttgttacaag tgaaacgctt 36600 cgaggttaca gctactattg attaaggaga tcgcctatgg tctcgccccg gcgtcgtgcg 36660 tccgccgcga gccagatctc gcctacttca taaacgtcct cataggcacg gaatggaatg 36720 atgacatcga tcgccgtaga gagcatgtca atcagtgtgc gatcttccaa gctagcacct 36780 tgggcgctac ttttgacaag ggaaaacagt ttcttgaatc cttggattgg attcgcgccg 36840 tgtattgttg aaatcgatcc cggatgtccc gagacgactt cactcagata agcccatgct 36900 gcatcgtcgc gcatctcgcc aagcaatatc cggtccggcc gcatacgcag acttgcttgg 36960 agcaagtgct cggcgctcac agcacccagc ccagcaccgt tcttggagta gagtagtcta 37020 acatgattat cgtgtggaat gacgagttcg agcgtatctt ctatggtgat tagcctttcc 37080 tgggggggga tggcgctgat caaggtcttg ctcattgttg tcttgccgct tccggtaggg 37140 ccacatagca acatcgtcag tcggctgacg acgcatgcgt gcagaaacgc ttccaaatcc 37200 ccgttgtcaa aatgctgaag gatagcttca tcatcctgat tttggcgttt ccttcgtgtc 37260 tgccactggt tccacctcga agcatcataa cgggaggaga cttctttaag accagaaaca 37320 cgcgagcttg gccgtcgaat ggtcaagctg acggtgcccg agggaacggt cggcggcaga 37380 cagatttgta gtcgttcacc accaggaagt tcagtggcgc agagggggtt acgtggtccg 37440 acatcctgct ttctcagcgc gcccgctaaa atagcgatat cttcaagatc atcataagag 37500 acgggcaaag gcatcttggt aaaaatgccg gcttggcgca caaatgcctc tccaggtcga 37560 ttgatcgcaa tttcttcagt cttcgggtca tcgagccatt ccaaaatcgg cttcagaaga 37620 aagcgtagtt gcggatccac ttccatttac aatgtatcct atctctaagc ggaaatttga 37680 attcattaag agcggcggtt cctcccccgc gtggcgccgc cagtcaggcg gagctggtaa 37740 acaccaaaga aatcgaggtc ccgtgctacg aaaatggaaa cggtgtcacc ctgattcttc 37800 ttcagggttg gcggtatgtt gatggttgcc ttaagggctg tctcagttgt ctgctcaccg 37860 ttattttgaa agctgttgaa gctcatcccg ccacccgagc tgccggcgta ggtgctagct 37920 gcctggaagg cgccttgaac aacactcaag agcatagctc cgctaaaacg ctgccagaag 37980 tggctgtcga ccgagcccgg caatcctgag cgaccgagtt cgtccgcgct tggcgatgtt 38040 aacgagatca tcgcatggtc aggtgtctcg gcgcgatccc acaacacaaa aacgcgccca 38100 tctccctgtt gcaagccacg ctgtatttcg ccaacaacgg tggtgccacg atcaagaagc 38160 acgatattgt tcgttgttcc acgaatatcc tgaggcaaga cacactttac atagcctgcc 38220 aaatttgtgt cgattgcggt ttgcaagatg cacggaatta ttgtcccttg cgttaccata 38280 aaatcggggt gcggcaagag cgtggcgctg ctgggctgca gctcggtggg tttcatacgt 38340 atcgacaaat cgttctcgcc ggacacttcg ccattcggca aggagttgtc gtcacgcttg 38400 ccttcttgtc ttcggcccgt gtcgccctga atggcgcgtt tgctgacccc ttgatcgccg 38460 ctgctatatg caaaaatcgg tgtttcttcc ggccgtggct catgccgctc cggttcgccc 38520 ctcggcggta gaggagcagc aggctgaaca gcctcttgaa ccgctggagg atccggcggc 38580 acctcaatcg gagctggatg aaatggcttg gtgtttgttg cgatcaaagt tgacggcgat 38640 gcgttctcat tcaccttctt ttggcgccca cctagccaaa tgaggcttaa tgataacgcg 38700 agaacgacac ctccgacgat caatttctga gaccccgaaa gacgccggcg atgtttgtcg 38760 gagaccaggg atccagatgc atcaacctca tgtgccgctt gctgactatc gttattcatc 38820 ccttcgcccc cttcaggacg cgtttcacat cgggcctcac cgtgcccgtt tgcggccttt 38880 ggccaacggg atcgtaagcg gtgttccaga tacatagtac tgtgtggcca tccctcagac 38940 gccaacctcg ggaaaccgaa gaaatctcga catcgctccc tttaactgaa tagttggcaa 39000 cagcttcctt gccatcagga ttgatggtgt agatggaggg tatgcgtaca ttgcccggaa 39060 agtggaatac cgtcgtaaat ccattgtcga agacttcgag tggcaacagc gaacgatcgc 39120 cttgggcgac gtagtgccaa ttactgtccg ccgcaccaag ggctgtgaca ggctgatcca 39180 ataaattctc agctttccgt tgatattgtg cttccgcgtg tagtctgtcc acaacagcct 39240 tctgttgtgc ctcccttcgc cgagccgccg catcgtcggc ggggtaggcg aattggacgc 39300 tgtaatagag atcgggctgc tctttatcga ggtgggacag agtcttggaa cttatactga 39360 aaacataacg gcgcatcccg gagtcgcttg cggttagcac gattactggc tgaggcgtga 39420 ggacctggct tgccttgaaa aatagataat ttccccgcgg tagggctgct agatctttgc 39480 tatttgaaac ggcaaccgct gtcaccgttt cgttcgtggc gaatgttacg accaaagtag 39540 ctccaaccgc cgtcgagagg cgcaccactt gatcgggatt gtaagccaaa taacgcatgc 39600 gcggatctag cttgcccgcc attggagtgt cttcagcctc cgcaccagtc gcagcggcaa 39660 ataaacatgc taaaatgaaa agtgcttttc tgatcatggt tcgctgtggc ctacgtttga 39720 aacggtatct tccgatgtct gataggaggt gacaaccaga cctgccgggt tggttagtct 39780 caatctgccg ggcaagctgg tcaccttttc gtagcgaact gtcgcggtcc acgtactcac 39840 cacaggcatt ttgccgtcaa cgacgagggt ccttttatag cgaatttgct gcgtgcttgg 39900 agttacatca tttgaagcga tgtgctcgac ctccaccctg ccgcgtttgc caagaatgac 39960 ttgaggcgaa ctgggattgg gatagttgaa gaattgctgg taatcctggc gcactgttgg 40020 ggcactgaag ttcgatacca ggtcgtaggc gtactgagcg gtgtcggcat cataactctc 40080 gcgcaggcga acgtactccc acaatgaggc gttaacgacg gcctcctctt gagttgcagg 40140 caatcgcgag acagacacct cgctgtcaac ggtgccgtcc ggccgtatcc atagatatac 40200 gggcacaagc ctgctcaacg gcaccattgt ggctatagcg aacgcttgag caacatttcc 40260 caaaatcgcg atagctgcga cagctgcaat gagtttggag agacgtcgcg ccgatttcgc 40320 tcgcgcggtt tgaaaggctt ctacttcctt atagtgctcg gcaaggcttt cgcgcgccac 40380 tagcatggca tattcaggcc ccgtcatagc gtccacccga attgccgagc tgaagatctg 40440 acggagtagg ctgccatcgc cccacattca gcgggaagat cgggcctttg cagctcgcta 40500 atgtgtcgtt tgtctggcag ccgctcaaag cgacaactag gcacagcagg caatacttca 40560 tagaattctc cattgaggcg aatttttgcg cgacctagcc tcgctcaacc tgagcgaagc 40620 gacggtacaa gctgctggca gattgggttg cgccgctcca gtaactgcct ccaatgttgc 40680 cggcgatcgc cggcaaagcg acaatgagcg catcccctgt cagaaaaaac atatcgagtt 40740 cgtaaagacc aatgatcttg gccgcggtcg taccggcgaa ggtgattaca ccaagcataa 40800 gggtgagcgc agtcgcttcg gttaggatga cgatcgttgc cacgaggttt aagaggagaa 40860 gcaagagacc gtaggtgata agttgcccga tccacttagc tgcgatgtcc cgcgtgcgat 40920 caaaaatata tccgacgagg atcagaggcc cgatcgcgag aagcactttc gtgagaattc 40980 caacggcgtc gtaaactccg aaggcagacc agagcgtgcc gtaaaggacc cactgtgccc 41040 cttggaaagc aaggatgtcc tggtcgttca tcggaccgat ttcggatgcg attttctgaa 41100 aaacggcctg ggtcacggcg aacattgtat ccaactgtgc cggaacagtc tgcagaggca 41160 agccggttac actaaactgc tgaacaaagt ttgggaccgt cttttcgaag atggaaacca 41220 catagtcttg gtagttagcc tgcccaacaa ttagagcaac aacgatggtg accgtgatca 41280 cccgagtgat accgctacgg gtatcgactt cgccgcgtat gactaaaata ccctgaacaa 41340 taatccaaag agtgacacag gcgatcaatg gcgcactcac cgcctcctgg atagtctcaa 41400 gcatcgagtc caagcctgtc gtgaaggcta catcgaagat cgtatgaatg gccgtaaacg 41460 gcgccggaat cgtgaaattc atcgattgga cctgaacttg actggtttgt cgcataatgt 41520 tggataaaat gagctcgcat tcggcgagga tgcgggcgga tgaacaaatc gcccagcctt 41580 aggggagggc accaaagatg acagcggtct tttgatgctc cttgcgttga gcggccgcct 41640 cttccgcctc gtgaaggccg gcctgcgcgg tagtcatcgt taataggctt gtcgcctgta 41700 cattttgaat cattgcgtca tggatctgct tgagaagcaa accattggtc acggttgcct 41760 gcatgatatt gcgagatcgg gaaagctgag cagacgtatc agcattcgcc gtcaagcgtt 41820 tgtccatcgt ttccagattg tcagccgcaa tgccagcgct gtttgcggaa ccggtgatct 41880 gcgatcgcaa caggtccgct tcagcatcac tacccacgac tgcacgatct gtatcgctgg 41940 tgatcgcacg tgccgtggtc gacattggca ttcgcggcga aaacatttca ttgtctaggt 42000 ccttcgtcga aggatactga tttttctggt tgagcgaagt cagtagtcca gtaacgccgt 42060 aggccgacgt caacatcgta accatcgcta tagtctgagt gagattctcc gcagtcgcga 42120 gcgcagtcgc gagcgtctca gcctccgttg ccgggtcgct aacaacaaac tgcgcccgcg 42180 cgggctgaat atatagaaag ctgcaggtca aaactgttgc aataagttgc gtcgtcttca 42240 tcgtttccta ccttatcaat cttctgcctc gtggtgacgg gccatgaatt cgctgagcca 42300 gccagatgag ttgccttctt gtgcctcgcg tagtcgagtt gcaaagcgca ccgtgttggc 42360 acgccccgaa agcacggcga catattcacg catatcccgc agatcaaatt cgcagatgac 42420 gcttccactt tctcgtttaa gaagaaactt acggctgccg accgtcatgt cttcacggat 42480 cgcctgaaat tccttttcgg tacatttcag tccatcgaca taagccgatc gatctgcggt 42540 tggtgatgga tagaaaatct tcgtcataca ttgcgcaacc aagctggctc ctagcggcga 42600 ttccagaaca tgctctggtt gctgcgttgc cagtattagc atcccgttgt tttttcgaac 42660 ggtcaggagg aatttgtcga cgacagtcga aaatttaggg tttaacaaat aggcgcgaaa 42720 ctcatcgcag ctcatcacaa aacggcggcc gtcgatcatg gctccaatcc gatgcaggag 42780 atatgctgca gcgggagcgc atacttcctc gtattcgaga agatgcgtca tgtcgaagcc 42840 ggtaatcgac ggatctaact ttacttcgtc aacttcgccg tcaaatgccc agccaagcgc 42900 atggccccgg caccagcgtt ggagccgcgc tcctgcgcct tcggcgggcc catgcaacaa 42960 aaattcacgt aaccccgcga ttgaacgcat ttgtggatca aacgagagct gacgatggat 43020 accacggacc agacggcggt tctcttccgg agaaatccca ccccgaccat cactctcgat 43080 gagagccacg atccattcgc gcagaaaatc gtgtgaggct gctgtgtttt ctaggccacg 43140 caacggcgcc aacccgctgg gtgtgcctct gtgaagtgcc aaatatgttc ctcctgtggc 43200 gcgaaccagc aattcgccac cccggtcctt gtcaaagaac acgaccgtac ctgcacggtc 43260 gaccatgctc tgttcgagca tggctagaac aaacatcatg agcgtcgtct tacccctccc 43320 gataggcccg aatattgccg tcatgccaac atcgtgctca tgcgggatat agtcgaaagg 43380 cgttccgcca ttggtacgaa atcgggcaat cgcgttgccc cagtggcctg agctggcgcc 43440 ctctggaaag ttttcgaaag agacaaaccc tgcgaaattg cgtgaagtga ttgcgccagg 43500 gcgtgtgcgc cacttaaaat tccccggcaa ttgggaccaa taggccgctt ccataccaat 43560 accttcttgg acaaccacgg cacctgcatc cgccattcgt gtccgagccc gcgcgcccct 43620 gtccccaaga ctattgagat cgtctgcata gacgcaaagg ctcaaatgat gtgagcccat 43680 aacgaattcg ttgctcgcaa gtgcgtcctc agcctcggat aatttgccga tttgagtcac 43740 ggctttatcg ccggaactca gcatctggct cgatttgagg ctaagtttcg cgtgcgcttg 43800 cgggcgagtc aggaacgaaa aactctgcgt gagaacaagt ggaaaatcga gggatagcag 43860 cgcgttgagc atgcccggcc gtgtttttgc agggtattcg cgaaacgaat agatggatcc 43920 aacgtaactg tcttttggcg ttctgatctc gagtcctcgc ttgccgcaaa tgactctgtc 43980 ggtataaatc gaagcgccga gtgagccgct gacgaccgga accggtgtga accgaccagt 44040 catgatcaac cgtagcgctt cgccaatttc ggtgaagagc acaccctgct tctcgcggat 44100 gccaagacga tgcaggccat acgctttaag agagccagcg acaacatgcc aaagatcttc 44160 catgttcctg atctggcccg tgagatcgtt ttcccttttt ccgcttagct tggtgaacct 44220 cctctttacc ttccctaaag ccgcctgtgg gtagacaatc aacgtaagga agtgttcatt 44280 gcggaggagt tggccggaga gcacgcgctg ttcaaaagct tcgttcaggc tagcggcgaa 44340 aacactacgg aagtgtcgcg gcgccgatga tggcacgtcg gcatgacgta cgaggtgagc 44400 atatattgac acatgatcat cagcgatatt gcgcaacagc gtgttgaacg cacgacaacg 44460 cgcattgcgc atttcagttt cctcaagctc gaatgcaacg ccatcaattc tcgcaatggt 44520 catgatcgat ccgtcttcaa gaaggacgat atggtcgctg aggtggccaa tataagggag 44580 atagatctca ccggatcttt cggtcgttcc actcgcgccg agcatcacac cattcctctc 44640 cctcgtgggg gaaccctaat tggatttggg ctaacagtag cgccccccca aactgcacta 44700 tcaatgcttc ttcccgcggt ccgcaaaaat agcaggacga cgctcgccgc attgtagtct 44760 cgctccacga tgagccgggc tgcaaaccat aacggcacga gaacgacttc gtagagcggg 44820 ttctgaacga taacgatgac aaagccggcg aacatcatga ataaccctgc caatgtcagt 44880 ggcaccccaa gaaacaatgc gggccgtgtg gctgcgaggt aaagggtcga ttcttccaaa 44940 cgatcagcca tcaactaccg ccagtgagcg tttggccgag gaagctcgcc ccaaacatga 45000 taacaatgcc gccgacgacg ccggcaacca gcccaagcga agcccgcccg aacatccagg 45060 agatcccgat agcgacaatg ccgagaacag cgagtgactg gccgaacgga ccaaggataa 45120 acgtgcatat attgttaacc attgtggcgg ggtcagtgcc gccacccgca gattgcgctg 45180 cggcgggtcc ggatgaggaa atgctccatg caattgcacc gcacaagctt ggggcgcagc 45240 tcgatatcac gcgcatcatc gcattcgaga gcgagaggcg atttagatgt aaacggtatc 45300 tctcaaagca tcgcatcaat gcgcacctcc ttagtataag tcgaataaga cttgattgtc 45360 gtctgcggat ttgccgttgt cctggtgtgg cggtggcgga gcgattaaac cgccagcgcc 45420 atcctcctgc gagcggcgct gatatgaccc ccaaacatcc cacgtctctt cggattttag 45480 cgcctcgtga tcgtcttttg gaggctcgat taacgcgggc accagcgatt gagcagctgt 45540 ttcaactttt cgcacgtagc cgtttgcaaa accgccgatg aaattaccgg tgttgtaagc 45600 ggagatcgcc cgacgaagcg caaattgctt ctcgtcaatc gtttcgccgc ctgcataacg 45660 acttttcagc atgtttgcag cggcagataa tgatgtgcac gcctggagcg caccgtcagg 45720 tgtcagaccg agcatagaaa aatttcgaga gtttatttgc atgaggccaa catccagcga 45780 atgccgtgca tcgagacggt gcctgacgac ttgggttgct tggctgtgat cttgccagtg 45840 aagcgtttcg ccggtcgtgt tgtcatgaat cgctaaagga tcaaagcgac tctccacctt 45900 agctatcgcc gcaagcgtag atgtcgcaac tgatggggca cacttgcgag caacatggtc 45960 aaactcagca gatgagagtg gcgtggcaag gctcgacgaa cagaaggaga ccatcaaggc 46020 aagagaaagc gaccccgatc tcttaagcat accttatctc cttagctcgc aactaacacc 46080 gcctctcccg ttggaagaag tgcgttgttt tatgttgaag attatcggga gggtcggtta 46140 ctcgaaaatt ttcaattgct tctttatgat ttcaattgaa gcgagaaacc tcgcccggcg 46200 tcttggaacg caacatggac cgagaaccgc gcatccatga ctaagcaacc ggatcgacct 46260 attcaggccg cagttggtca ggtcaggctc agaacgaaaa tgctcggcga ggttacgctg 46320 tctgtaaacc cattcgatga acgggaagct tccttccgat tgctcttggc aggaatattg 46380 gcccatgcct gcttgcgctt tgcaaatgct cttatcgcgt tggtatcata tgccttgtcc 46440 gccagcagaa acgcactcta agcgattatt tgtaaaaatg tttcggtcat gcggcggtca 46500 tgggcttgac ccgctgtcag cgcaagacgg atcggtcaac cgtcggcatc gacaacagcg 46560 tgaatcttgg tggtcaaacc gccacgggaa cgtcccatac agccatcgtc ttgatcccgc 46620 tgtttcccgt cgccgcatgt tggtggacgc ggacacagga actgtcaatc atgacgacat 46680 tctatcgaaa gccttggaaa tcacactcag aatatgatcc cagacgtctg cctcacgcca 46740 tcgtacaaag cgattgtagc aggttgtaca ggaaccgtat cgatcaggaa cgtctgccca 46800 gggcgggccc gtccggaagc gccacaagat gacattgatc acccgcgtca acgcgcggca 46860 cgcgacgcgg cttatttggg aacaaaggac tgaacaacag tccattcgaa atcggtgaca 46920 tcaaagcggg gacgggttat cagtggcctc caagtcaagc ctcaatgaat caaaatcaga 46980 ccgatttgca aacctgattt atgagtgtgc ggcctaaatg atgaaatcgt ccttctagat 47040 cgcctccgtg gtgtagcaac acctcgcagt atcgccgtgc tgaccttggc cagggaattg 47100 actggcaagg gtgctttcac atgaccgctc ttttggccgc gatagatgat ttcgttgctg 47160 ctttgggcac gtagaaggag agaagtcata tcggagaaat tcctcctggc gcgagagcct 47220 gctctatcgc gacggcatcc cactgtcggg aacagaccgg atcattcacg aggcgaaagt 47280 cgtcaacaca tgcgttatag gcatcttccc ttgaaggatg atcttgttgc tgccaatctg 47340 gaggtgcggc agccgcaggc agatgcgatc tcagcgcaac ttgcggcaaa acatctcact 47400 cacctgaaaa ccactagcga gtctcgcgat cagacgaagg ccttttactt aacgacacaa 47460 tatccgatgt ctgcatcaca ggcgtcgcta tcccagtcaa tactaaagcg gtgcaggaac 47520 taaagattac tgatgactta ggcgtgccac gaggcctgag acgacgcgcg tagacagttt 47580 tttgaaatca ttatcaaagt gatggcctcc gctgaagcct atcacctctg cgccggtctg 47640 tcggagagat gggcaagcat tattacggtc ttcgcgcccg tacatgcatt ggacgattgc 47700 agggtcaatg gatctgagat catccagagg attgccgccc ttaccttccg tttcgagttg 47760 gagccagccc ctaaatgaga cgacatagtc gacttgatgt gacaatgcca agagagagat 47820 ttgcttaacc cgattttttt gctcaagcgt aagcctattg aagcttgccg gcatgacgtc 47880 cgcgccgaaa gaatatccta caagtaaaac attctgcaca ccgaaatgct tggtgtagac 47940 atcgattatg tgaccaagat ccttagcagt ttcgcttggg gaccgctccg accagaaata 48000 ccgaagtgaa ctgacgccaa tgacaggaat cccttccgtc tgcagatagg taccatcgat 48060 agatctgctg cctcgcgcgt ttcggtgatg acggtgaaaa cctctgacac atgcagctcc 48120 cggagacggt cacagcttgt ctgtaagcgg atgccgggag cagacaagcc cgtcagggcg 48180 cgtcagcggg tgttggcggg tgtcggggcg cagccatgac ccagtcacgt agcgatagcg 48240 gagtgtatac tggcttaact atgcggcatc agagcagatt gtactgagag tgcaccatat 48300 gcggtgtgaa ataccgcaca gatgcgtaag gagaaaatac cgcatcaggc gctcttccgc 48360 ttcctcgctc actgactcgc tgcgctcggt cgttcggctg cggcgagcgg tatcagctca 48420 ctcaaaggcg gtaatacggt tatccacaga atcaggggat aacgcaggaa agaacatgtg 48480 agcaaaaggc cagcaaaagg ccaggaaccg taaaaaggcc gcgttgctgg cgtttttcca 48540 taggctccgc ccccctgacg agcatcacaa aaatcgacgc tcaagtcaga ggtggcgaaa 48600 cccgacagga ctataaagat accaggcgtt tccccctgga agctccctcg tgcgctctcc 48660 tgttccgacc ctgccgctta ccggatacct gtccgccttt ctcccttcgg gaagcgtggc 48720 gctttctcat agctcacgct gtaggtatct cagttcggtg taggtcgttc gctccaagct 48780 gggctgtgtg cacgaacccc ccgttcagcc cgaccgctgc gccttatccg gtaactatcg 48840 tcttgagtcc aacccggtaa gacacgactt atcgccactg gcagcagcca ctggtaacag 48900 gattagcaga gcgaggtatg taggcggtgc tacagagttc ttgaagtggt ggcctaacta 48960 cggctacact agaaggacag tatttggtat ctgcgctctg ctgaagccag ttaccttcgg 49020 aaaaagagtt ggtagctctt gatccggcaa acaaaccacc gctggtagcg gtggtttttt 49080 tgtttgcaag cagcagatta cgcgcagaaa aaaaggatct caagaagatc ctttgatctt 49140 ttctacgggg tctgacgctc agtggaacga aaactcacgt taagggattt tggtcatgag 49200 attatcaaaa aggatcttca cctagatcct tttaaattaa aaatgaagtt ttaaatcaat 49260 ctaaagtata tatgagtaaa cttggtctga cagttaccaa tgcttaatca gtgaggcacc 49320 tatctcagcg atctgtctat ttcgttcatc catagttgcc tgactccccg tcgtgtagat 49380 aactacgata cgggagggct taccatctgg ccccagtgct gcaatgatac cgcgagaccc 49440 acgctcaccg gctccagatt tatcagcaat aaaccagcca gccggaaggg ccgagcgcag 49500 aagtggtcct gcaactttat ccgcctccat ccagtctatt aattgttgcc gggaagctag 49560 agtaagtagt tcgccagtta atagtttgcg caacgttgtt gccattgctg cagggggggg 49620 gggggggggg ttccattgtt cattccacgg acaaaaacag agaaaggaaa cgacagaggc 49680 caaaaagctc gctttcagca cctgtcgttt cctttctttt cagagggtat tttaaataaa 49740 aacattaagt tatgacgaag aagaacggaa acgccttaaa ccggaaaatt ttcataaata 49800 gcgaaaaccc gcgaggtcgc cgccccgtac tgtcggatca ccggaaagga cccgtaaagt 49860 gataatgatt atcatctaca tatcacaacg tgcgtggagg ccatcaaacc acgtcaaata 49920 atcaattatg acgcaggtat cgtattaatt gatctgcatc aacttaacgt aaaaacaact 49980 tcagacaata caaatcagcg acactgaata cggggcaacc tcatgtcccc cccccccccc 50040 cccctgcagg catcgtggtg tcacgctcgt cgtttggtat ggcttcattc agctccggtt 50100 cccaacgatc aaggcgagtt acatgatccc ccatgttgtg caaaaaagcg gttagctcct 50160 tcggtcctcc gatcgttgtc agaagtaagt tggccgcagt gttatcactc atggttatgg 50220 cagcactgca taattctctt actgtcatgc catccgtaag atgcttttct gtgactggtg 50280 agtactcaac caagtcattc tgagaatagt gtatgcggcg accgagttgc tcttgcccgg 50340 cgtcaacacg ggataatacc gcgccacata gcagaacttt aaaagtgctc atcattggaa 50400 aacgttcttc ggggcgaaaa ctctcaagga tcttaccgct gttgagatcc agttcgatgt 50460 aacccactcg tgcacccaac tgatcttcag catcttttac tttcaccagc gtttctgggt 50520 gagcaaaaac aggaaggcaa aatgccgcaa aaaagggaat aagggcgaca cggaaatgtt 50580 gaatactcat actcttcctt tttcaatatt attgaagcat ttatcagggt tattgtctca 50640 tgagcggata catatttgaa tgtatttaga aaaataaaca aataggggtt ccgcgcacat 50700 ttccccgaaa agtgccacct gacgtctaag aaaccattat tatcatgaca ttaacctata 50760 aaaataggcg tatcacgagg ccctttcgtc ttcaagaatt ggtcgacgat cttgctgcgt 50820 tcggatattt tcgtggagtt cccgccacag acccggattg aaggcgagat ccagcaactc 50880 gcgccagatc atcctgtgac ggaactttgg cgcgtgatga ctggccagga cgtcggccga 50940 aagagcgaca agcagatcac gcttttcgac agcgtcggat ttgcgatcga ggatttttcg 51000 gcgctgcgct acgtccgcga ccgcgttgag ggatcaagcc acagcagccc actcgacctt 51060 ctagccgacc cagacgagcc aagggatctt tttggaatgc tgctccgtcg tcaggctttc 51120 cgacgtttgg gtggttgaac agaagtcatt atcgtacgga atgccaagca ctcccgaggg 51180 gaaccctgtg gttggcatgc acatacaaat ggacgaacgg ataaaccttt tcacgccctt 51240 ttaaatatcc gttattctaa taaacgctct tttctcttag 51280 <210> SEQ ID NO 54 <211> LENGTH: 1603 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Fragment of improved ACS6 inhibition plasmid comprising TR3, ADH1 intron 1, and TR4 <400> SEQUENCE: 54 tagcagacgc ggaaccagcc gggctcccgg cagtggcagg aggagcccgg ggagatgttg 60 agccccacct cgaagaccac cctcttccac agctccatct cgccctcgaa cgaccggctc 120 cgcatcaggc gccgcatgtt gacccagcag aagagccccg cgttgctctc caggcactcg 180 atgcccacgg ccgccaggcc ctccgccagc tgctcgcgcc gctccctgat ccgccgcgtg 240 ttctccgcga tgtacctccg cgtgaagtcc ctgtcgccca ggagcgacgc caggaggtgc 300 tgcgtctggg acgacaccag gccgaagctc gacatcttgg tggccgcgga gaccacgccg 360 gcgttggacg agtagatggc gcccacgcgg aaccccggga ggcccaggtc cttggacagg 420 ctgtacacca cgtgcacgcg gtccgacagc ggcccaacgc cgacgacgcc gtcgtccgtg 480 gcggcgcgcg cggccaccac ctgcagtcga cgtgcaaagg tccgccttgt ttctcctctg 540 tctcttgatc tgactaatct tggtttatga ttcgttgagt aattttgggg aaagcttcgt 600 ccacagtttt ttttcgatga acagtgccgc agtggcgctg atcttgtatg ctatcctgca 660 atcgtggtga acttatttct tttatatcct ttactcccat gaaaaggcta gtaatctttc 720 tcgatgtaac atcgtccagc actgctatta ccgtgtggtc catccgacag tctggctgaa 780 cacatcatac gatctatgga gcaaaaatct atcttccctg ttctttaatg aaggacgtca 840 ttttcattag tatgatctag gaatgttgca acttgcaagg aggcgtttct ttctttgaat 900 ttaactaact cgttgagtgg ccctgtttct cggacgtaag gcctttgctg ctccacacat 960 gtccattcga attttaccgt gtttagcaag ggcgaaaagt ttgcatcttg atgatttagc 1020 ttgactatgc gattgctttc ctggacccgt gcagctggat cccggtacgc gccgccacgg 1080 acgacggcgt cgtcggcgtt gggccgctgt cggaccgcgt gcacgtggtg tacagcctgt 1140 ccaaggacct gggcctcccg gggttccgcg tgggcgccat ctactcgtcc aacgccggcg 1200 tggtctccgc ggccaccaag atgtcgagct tcggcctggt gtcgtcccag acgcagcacc 1260 tcctggcgtc gctcctgggc gacagggact tcacgcggag gtacatcgcg gagaacacgc 1320 ggcggatcag ggagcggcgc gagcagctgg cggagggcct ggcggccgtg ggcatcgagt 1380 gcctggagag caacgcgggg ctcttctgct gggtcaacat gcggcgcctg atgcggagcc 1440 ggtcgttcga gggcgagatg gagctgtgga agagggtggt cttcgaggtg gggctcaaca 1500 tctccccggg ctcctcctgc cactgccggg agcccggctg gttccgcgtc tgctaaaggg 1560 cgaattccag cacactggcg gccgttacta gtggatccga gct 1603 <210> SEQ ID NO 55 <211> LENGTH: 3657 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Fragment of improved ACS6 inhibition plasmid comprising UBIZm promoter, UBIZm 5'UTR, UBIZm Intron 1, TR3, ADH1 intron 1, and TR4 <400> SEQUENCE: 55 gtgcagcgtg acccggtcgt gcccctctct agagataatg agcattgcat gtctaagtta 60 taaaaaatta ccacatattt tttttgtcac acttgtttga agtgcagttt atctatcttt 120 atacatatat ttaaacttta ctctacgaat aatataatct atagtactac aataatatca 180 gtgttttaga gaatcatata aatgaacagt tagacatggt ctaaaggaca attgagtatt 240 ttgacaacag gactctacag ttttatcttt ttagtgtgca tgtgttctcc tttttttttg 300 caaatagctt cacctatata atacttcatc cattttatta gtacatccat ttagggttta 360 gggttaatgg tttttataga ctaatttttt tagtacatct attttattct attttagcct 420 ctaaattaag aaaactaaaa ctctatttta gtttttttat ttaataattt agatataaaa 480 tagaataaaa taaagtgact aaaaattaaa caaataccct ttaagaaatt aaaaaaacta 540 aggaaacatt tttcttgttt cgagtagata atgccagcct gttaaacgcc gtcgacgagt 600 ctaacggaca ccaaccagcg aaccagcagc gtcgcgtcgg gccaagcgaa gcagacggca 660 cggcatctct gtcgctgcct ctggacccct ctcgagagtt ccgctccacc gttggacttg 720 ctccgctgtc ggcatccaga aattgcgtgg cggagcggca gacgtgagcc ggcacggcag 780 gcggcctcct cctcctctca cggcaccggc agctacgggg gattcctttc ccaccgctcc 840 ttcgctttcc cttcctcgcc cgccgtaata aatagacacc ccctccacac cctctttccc 900 caacctcgtg ttgttcggag cgcacacaca cacaaccaga tctcccccaa atccacccgt 960 cggcacctcc gcttcaaggt acgccgctcg tcctcccccc cccccctctc taccttctct 1020 agatcggcgt tccggtccat gcatggttag ggcccggtag ttctacttct gttcatgttt 1080 gtgttagatc cgtgtttgtg ttagatccgt gctgctagcg ttcgtacacg gatgcgacct 1140 gtacgtcaga cacgttctga ttgctaactt gccagtgttt ctctttgggg aatcctggga 1200 tggctctagc cgttccgcag acgggatcga tttcatgatt ttttttgttt cgttgcatag 1260 ggtttggttt gcccttttcc tttatttcaa tatatgccgt gcacttgttt gtcgggtcat 1320 cttttcatgc ttttttttgt cttggttgtg atgatgtggt ctggttgggc ggtcgttcta 1380 gatcggagta gaattctgtt tcaaactacc tggtggattt attaattttg gatctgtatg 1440 tgtgtgccat acatattcat agttacgaat tgaagatgat ggatggaaat atcgatctag 1500 gataggtata catgttgatg cgggttttac tgatgcatat acagagatgc tttttgttcg 1560 cttggttgtg atgatgtggt gtggttgggc ggtcgttcat tcgttctaga tcggagtaga 1620 atactgtttc aaactacctg gtgtatttat taattttgga actgtatgtg tgtgtcatac 1680 atcttcatag ttacgagttt aagatggatg gaaatatcga tctaggatag gtatacatgt 1740 tgatgtgggt tttactgatg catatacatg atggcatatg cagcatctat tcatatgctc 1800 taaccttgag tacctatcta ttataataaa caagtatgtt ttataattat tttgatcttg 1860 atatacttgg atgatggcat atgcagcagc tatatgtgga tttttttagc cctgccttca 1920 tacgctattt atttgcttgg tactgtttct tttgtcgatg ctcaccctgt tgtttggtgt 1980 tacttctgca ggtcgacttt aacttagcct aggatccact agtaacggcc gccagtgtgc 2040 tggaattcgc cctttagcag acgcggaacc agccgggctc ccggcagtgg caggaggagc 2100 ccggggagat gttgagcccc acctcgaaga ccaccctctt ccacagctcc atctcgccct 2160 cgaacgaccg gctccgcatc aggcgccgca tgttgaccca gcagaagagc cccgcgttgc 2220 tctccaggca ctcgatgccc acggccgcca ggccctccgc cagctgctcg cgccgctccc 2280 tgatccgccg cgtgttctcc gcgatgtacc tccgcgtgaa gtccctgtcg cccaggagcg 2340 acgccaggag gtgctgcgtc tgggacgaca ccaggccgaa gctcgacatc ttggtggccg 2400 cggagaccac gccggcgttg gacgagtaga tggcgcccac gcggaacccc gggaggccca 2460 ggtccttgga caggctgtac accacgtgca cgcggtccga cagcggccca acgccgacga 2520 cgccgtcgtc cgtggcggcg cgcgcggcca ccacctgcag tcgacgtgca aaggtccgcc 2580 ttgtttctcc tctgtctctt gatctgacta atcttggttt atgattcgtt gagtaatttt 2640 ggggaaagct tcgtccacag ttttttttcg atgaacagtg ccgcagtggc gctgatcttg 2700 tatgctatcc tgcaatcgtg gtgaacttat ttcttttata tcctttactc ccatgaaaag 2760 gctagtaatc tttctcgatg taacatcgtc cagcactgct attaccgtgt ggtccatccg 2820 acagtctggc tgaacacatc atacgatcta tggagcaaaa atctatcttc cctgttcttt 2880 aatgaaggac gtcattttca ttagtatgat ctaggaatgt tgcaacttgc aaggaggcgt 2940 ttctttcttt gaatttaact aactcgttga gtggccctgt ttctcggacg taaggccttt 3000 gctgctccac acatgtccat tcgaatttta ccgtgtttag caagggcgaa aagtttgcat 3060 cttgatgatt tagcttgact atgcgattgc tttcctggac ccgtgcagct ggatcccggt 3120 acgcgccgcc acggacgacg gcgtcgtcgg cgttgggccg ctgtcggacc gcgtgcacgt 3180 ggtgtacagc ctgtccaagg acctgggcct cccggggttc cgcgtgggcg ccatctactc 3240 gtccaacgcc ggcgtggtct ccgcggccac caagatgtcg agcttcggcc tggtgtcgtc 3300 ccagacgcag cacctcctgg cgtcgctcct gggcgacagg gacttcacgc ggaggtacat 3360 cgcggagaac acgcggcgga tcagggagcg gcgcgagcag ctggcggagg gcctggcggc 3420 cgtgggcatc gagtgcctgg agagcaacgc ggggctcttc tgctgggtca acatgcggcg 3480 cctgatgcgg agccggtcgt tcgagggcga gatggagctg tggaagaggg tggtcttcga 3540 ggtggggctc aacatctccc cgggctcctc ctgccactgc cgggagcccg gctggttccg 3600 cgtctgctaa agggcgaatt ccagcacact ggcggccgtt actagtggat ccgagct 3657 <210> SEQ ID NO 56 <211> LENGTH: 6772 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Fragment of improved ACS6 inhibition construct <400> SEQUENCE: 56 gtgcagcgtg acccggtcgt gcccctctct agagataatg agcattgcat gtctaagtta 60 taaaaaatta ccacatattt tttttgtcac acttgtttga agtgcagttt atctatcttt 120 atacatatat ttaaacttta ctctacgaat aatataatct atagtactac aataatatca 180 gtgttttaga gaatcatata aatgaacagt tagacatggt ctaaaggaca attgagtatt 240 ttgacaacag gactctacag ttttatcttt ttagtgtgca tgtgttctcc tttttttttg 300 caaatagctt cacctatata atacttcatc cattttatta gtacatccat ttagggttta 360 gggttaatgg tttttataga ctaatttttt tagtacatct attttattct attttagcct 420 ctaaattaag aaaactaaaa ctctatttta gtttttttat ttaataattt agatataaaa 480 tagaataaaa taaagtgact aaaaattaaa caaataccct ttaagaaatt aaaaaaacta 540 aggaaacatt tttcttgttt cgagtagata atgccagcct gttaaacgcc gtcgacgagt 600 ctaacggaca ccaaccagcg aaccagcagc gtcgcgtcgg gccaagcgaa gcagacggca 660 cggcatctct gtcgctgcct ctggacccct ctcgagagtt ccgctccacc gttggacttg 720 ctccgctgtc ggcatccaga aattgcgtgg cggagcggca gacgtgagcc ggcacggcag 780 gcggcctcct cctcctctca cggcaccggc agctacgggg gattcctttc ccaccgctcc 840 ttcgctttcc cttcctcgcc cgccgtaata aatagacacc ccctccacac cctctttccc 900 caacctcgtg ttgttcggag cgcacacaca cacaaccaga tctcccccaa atccacccgt 960 cggcacctcc gcttcaaggt acgccgctcg tcctcccccc cccccctctc taccttctct 1020 agatcggcgt tccggtccat gcatggttag ggcccggtag ttctacttct gttcatgttt 1080 gtgttagatc cgtgtttgtg ttagatccgt gctgctagcg ttcgtacacg gatgcgacct 1140 gtacgtcaga cacgttctga ttgctaactt gccagtgttt ctctttgggg aatcctggga 1200 tggctctagc cgttccgcag acgggatcga tttcatgatt ttttttgttt cgttgcatag 1260 ggtttggttt gcccttttcc tttatttcaa tatatgccgt gcacttgttt gtcgggtcat 1320 cttttcatgc ttttttttgt cttggttgtg atgatgtggt ctggttgggc ggtcgttcta 1380 gatcggagta gaattctgtt tcaaactacc tggtggattt attaattttg gatctgtatg 1440 tgtgtgccat acatattcat agttacgaat tgaagatgat ggatggaaat atcgatctag 1500 gataggtata catgttgatg cgggttttac tgatgcatat acagagatgc tttttgttcg 1560 cttggttgtg atgatgtggt gtggttgggc ggtcgttcat tcgttctaga tcggagtaga 1620 atactgtttc aaactacctg gtgtatttat taattttgga actgtatgtg tgtgtcatac 1680 atcttcatag ttacgagttt aagatggatg gaaatatcga tctaggatag gtatacatgt 1740 tgatgtgggt tttactgatg catatacatg atggcatatg cagcatctat tcatatgctc 1800 taaccttgag tacctatcta ttataataaa caagtatgtt ttataattat tttgatcttg 1860 atatacttgg atgatggcat atgcagcagc tatatgtgga tttttttagc cctgccttca 1920 tacgctattt atttgcttgg tactgtttct tttgtcgatg ctcaccctgt tgtttggtgt 1980 tacttctgca ggtcgacttt aacttagcct aggatccact agtaacggcc gccagtgtgc 2040 tggaattcgc cctttagcag acgcggaacc agccgggctc ccggcagtgg caggaggagc 2100 ccggggagat gttgagcccc acctcgaaga ccaccctctt ccacagctcc atctcgccct 2160 cgaacgaccg gctccgcatc aggcgccgca tgttgaccca gcagaagagc cccgcgttgc 2220 tctccaggca ctcgatgccc acggccgcca ggccctccgc cagctgctcg cgccgctccc 2280 tgatccgccg cgtgttctcc gcgatgtacc tccgcgtgaa gtccctgtcg cccaggagcg 2340 acgccaggag gtgctgcgtc tgggacgaca ccaggccgaa gctcgacatc ttggtggccg 2400 cggagaccac gccggcgttg gacgagtaga tggcgcccac gcggaacccc gggaggccca 2460 ggtccttgga caggctgtac accacgtgca cgcggtccga cagcggccca acgccgacga 2520 cgccgtcgtc cgtggcggcg cgcgcggcca ccacctgcag tcgacgtgca aaggtccgcc 2580 ttgtttctcc tctgtctctt gatctgacta atcttggttt atgattcgtt gagtaatttt 2640 ggggaaagct tcgtccacag ttttttttcg atgaacagtg ccgcagtggc gctgatcttg 2700 tatgctatcc tgcaatcgtg gtgaacttat ttcttttata tcctttactc ccatgaaaag 2760 gctagtaatc tttctcgatg taacatcgtc cagcactgct attaccgtgt ggtccatccg 2820 acagtctggc tgaacacatc atacgatcta tggagcaaaa atctatcttc cctgttcttt 2880 aatgaaggac gtcattttca ttagtatgat ctaggaatgt tgcaacttgc aaggaggcgt 2940 ttctttcttt gaatttaact aactcgttga gtggccctgt ttctcggacg taaggccttt 3000 gctgctccac acatgtccat tcgaatttta ccgtgtttag caagggcgaa aagtttgcat 3060 cttgatgatt tagcttgact atgcgattgc tttcctggac ccgtgcagct ggatcccggt 3120 acgcgccgcc acggacgacg gcgtcgtcgg cgttgggccg ctgtcggacc gcgtgcacgt 3180 ggtgtacagc ctgtccaagg acctgggcct cccggggttc cgcgtgggcg ccatctactc 3240 gtccaacgcc ggcgtggtct ccgcggccac caagatgtcg agcttcggcc tggtgtcgtc 3300 ccagacgcag cacctcctgg cgtcgctcct gggcgacagg gacttcacgc ggaggtacat 3360 cgcggagaac acgcggcgga tcagggagcg gcgcgagcag ctggcggagg gcctggcggc 3420 cgtgggcatc gagtgcctgg agagcaacgc ggggctcttc tgctgggtca acatgcggcg 3480 cctgatgcgg agccggtcgt tcgagggcga gatggagctg tggaagaggg tggtcttcga 3540 ggtggggctc aacatctccc cgggctcctc ctgccactgc cgggagcccg gctggttccg 3600 cgtctgctaa agggcgaatt ccagcacact ggcggccgtt actagtggat ccgagctcga 3660 attccggtcc gggtcacccg gtccgggcct agaaggccga tctcccgggc acccagcttt 3720 cttgtacaaa gtggtgatat cggaccgatt aaactttaat tcggtccgat gcatgtatac 3780 gaagttccta ttccgaagtt cctattctac atagagtata ggaacttcac ctggtggcgc 3840 cgctagtgga tcccccgggc tgcagtgcag cgtgacccgg tcgtgcccct ctctagagat 3900 aatgagcatt gcatgtctaa gttataaaaa attaccacat attttttttg tcacacttgt 3960 ttgaagtgca gtttatctat ctttatacat atatttaaac tttactctac gaataatata 4020 atctatagta ctacaataat atcagtgttt tagagaatca tataaatgaa cagttagaca 4080 tggtctaaag gacaattgag tattttgaca acaggactct acagttttat ctttttagtg 4140 tgcatgtgtt ctcctttttt tttgcaaata gcttcaccta tataatactt catccatttt 4200 attagtacat ccatttaggg tttagggtta atggttttta tagactaatt tttttagtac 4260 atctatttta ttctatttta gcctctaaat taagaaaact aaaactctat tttagttttt 4320 ttatttaata atttagatat aaaatagaat aaaataaagt gactaaaaat taaacaaata 4380 ccctttaaga aattaaaaaa actaaggaaa catttttctt gtttcgagta gataatgcca 4440 gcctgttaaa cgccgtcgac gagtctaacg gacaccaacc agcgaaccag cagcgtcgcg 4500 tcgggccaag cgaagcagac ggcacggcat ctctgtcgct gcctctggac ccctctcgag 4560 agttccgctc caccgttgga cttgctccgc tgtcggcatc cagaaattgc gtggcggagc 4620 ggcagacgtg agccggcacg gcaggcggcc tcctcctcct ctcacggcac cggcagctac 4680 gggggattcc tttcccaccg ctccttcgct ttcccttcct cgcccgccgt aataaataga 4740 caccccctcc acaccctctt tccccaacct cgtgttgttc ggagcgcaca cacacacaac 4800 cagatctccc ccaaatccac ccgtcggcac ctccgcttca aggtacgccg ctcgtcctcc 4860 cccccccccc tctctacctt ctctagatcg gcgttccggt ccatgcatgg ttagggcccg 4920 gtagttctac ttctgttcat gtttgtgtta gatccgtgtt tgtgttagat ccgtgctgct 4980 agcgttcgta cacggatgcg acctgtacgt cagacacgtt ctgattgcta acttgccagt 5040 gtttctcttt ggggaatcct gggatggctc tagccgttcc gcagacggga tcgatttcat 5100 gatttttttt gtttcgttgc atagggtttg gtttgccctt ttcctttatt tcaatatatg 5160 ccgtgcactt gtttgtcggg tcatcttttc atgctttttt ttgtcttggt tgtgatgatg 5220 tggtctggtt gggcggtcgt tctagatcgg agtagaattc tgtttcaaac tacctggtgg 5280 atttattaat tttggatctg tatgtgtgtg ccatacatat tcatagttac gaattgaaga 5340 tgatggatgg aaatatcgat ctaggatagg tatacatgtt gatgcgggtt ttactgatgc 5400 atatacagag atgctttttg ttcgcttggt tgtgatgatg tggtgtggtt gggcggtcgt 5460 tcattcgttc tagatcggag tagaatactg tttcaaacta cctggtgtat ttattaattt 5520 tggaactgta tgtgtgtgtc atacatcttc atagttacga gtttaagatg gatggaaata 5580 tcgatctagg ataggtatac atgttgatgt gggttttact gatgcatata catgatggca 5640 tatgcagcat ctattcatat gctctaacct tgagtaccta tctattataa taaacaagta 5700 tgttttataa ttattttgat cttgatatac ttggatgatg gcatatgcag cagctatatg 5760 tggatttttt tagccctgcc ttcatacgct atttatttgc ttggtactgt ttcttttgtc 5820 gatgctcacc ctgttgtttg gtgttacttc tgcaggtcga ctttaactta gcctaggatc 5880 cacacgacac catgtccccc gagcgccgcc ccgtcgagat ccgcccggcc accgccgccg 5940 acatggccgc cgtgtgcgac atcgtgaacc actacatcga gacctccacc gtgaacttcc 6000 gcaccgagcc gcagaccccg caggagtgga tcgacgacct ggagcgcctc caggaccgct 6060 acccgtggct cgtggccgag gtggagggcg tggtggccgg catcgcctac gccggcccgt 6120 ggaaggcccg caacgcctac gactggaccg tggagtccac cgtgtacgtg tcccaccgcc 6180 accagcgcct cggcctcggc tccaccctct acacccacct cctcaagagc atggaggccc 6240 agggcttcaa gtccgtggtg gccgtgatcg gcctcccgaa cgacccgtcc gtgcgcctcc 6300 acgaggccct cggctacacc gcccgcggca ccctccgcgc cgccggctac aagcacggcg 6360 gctggcacga cgtcggcttc tggcagcgcg acttcgagct gccggccccg ccgcgcccgg 6420 tgcgcccggt gacgcagatc tgagtcgaaa cctagacttg tccatcttct ggattggcca 6480 acttaattaa tgtatgaaat aaaaggatgc acacatagtg acatgctaat cactataatg 6540 tgggcatcaa agttgtgtgt tatgtgtaat tactagttat ctgaataaaa gagaaagaga 6600 tcatccatat ttcttatcct aaatgaatgt cacgtgtctt tataattctt tgatgaacca 6660 gatgcatttc attaaccaaa tccatataca tataaatatt aatcatatat aattaatatc 6720 aattgggtta gcaaaacaaa tctagtctag gtgtgttttg cgaattgcgg cc 6772 <210> SEQ ID NO 57 <211> LENGTH: 8350 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Improved ACS6 inhibition expression cassette <400> SEQUENCE: 57 gtttacccgc caatatatcc tgtcaaacac tgatagttta aactgaaggc gggaaacgac 60 aatctgatca tgagcggaga attaagggag tcacgttatg acccccgccg atgacgcggg 120 acaagccgtt ttacgtttgg aactgacaga accgcaacgt tgaaggagcc actcagcaag 180 ctggtacgat tgtaatacga ctcactatag ggcgaattga gcgctgttta aacgctcttc 240 aactggaaga gcggttacta ccggctggat ggcggggcct tgatcgtgca ccgccggcgt 300 ccggataagt gactagggtc acgtgaccct agtcacttat cgagctagtt accctatgag 360 gtgacatgaa gcgctcacgg ttactatgac ggttagcttc acgactgttg gtggcagtag 420 cgtacgactt agctatagtt ccggtagatc tgaagttcct attccgaagt tcctattctt 480 caaaaggtat aggaacttcc tcgaattgtt gtggtggggt atagaggttt gatataggtg 540 gaactgctgt agagcgtgga gatatagggg gaaagagaac gctgatgtga caagtgagtg 600 agatataggg ggagaaattt agggggaacg ccgaacacag tctaaagaag cttgggaccc 660 aaagcactct gttcgggggt tttttttttt gtctttcaac tttttgctgt aatgttattc 720 aaaataagaa aagcacttgg catggctaag aaatagagtt caacaactga acagtacagt 780 gtattatcaa tggcataaaa aacaaccctt acagcattgc cgtattttat tgatcaaaca 840 ttcaactcaa cactgacgag tggtcttcca ccgatcaacg gactaatgct gctttgtcag 900 atcaccggtt aagtgactag ggtcacgtga ccctagtcac ttaggttacc agagctggtc 960 acctttgtcc accaagatgg aactgcggcc gctcattaat taagtcaggc gcgcctctag 1020 ttgaagacac gttcatgtct tcatcgtaag aagacactca gtagtcttcg gccagaatgg 1080 ccatctggat tcagcaggcc tagaaggcca tttaaatcct gaggatctgg tcttcctaag 1140 gacccgggat atcacaagtt tgtacaaaaa agcaggctcc ggccagagtt acccggaccg 1200 aagcttgcat gcctgcagtg cagcgtgacc cggtcgtgcc cctctctaga gataatgagc 1260 attgcatgtc taagttataa aaaattacca catatttttt ttgtcacact tgtttgaagt 1320 gcagtttatc tatctttata catatattta aactttactc tacgaataat ataatctata 1380 gtactacaat aatatcagtg ttttagagaa tcatataaat gaacagttag acatggtcta 1440 aaggacaatt gagtattttg acaacaggac tctacagttt tatcttttta gtgtgcatgt 1500 gttctccttt ttttttgcaa atagcttcac ctatataata cttcatccat tttattagta 1560 catccattta gggtttaggg ttaatggttt ttatagacta atttttttag tacatctatt 1620 ttattctatt ttagcctcta aattaagaaa actaaaactc tattttagtt tttttattta 1680 ataatttaga tataaaatag aataaaataa agtgactaaa aattaaacaa atacccttta 1740 agaaattaaa aaaactaagg aaacattttt cttgtttcga gtagataatg ccagcctgtt 1800 aaacgccgtc gacgagtcta acggacacca accagcgaac cagcagcgtc gcgtcgggcc 1860 aagcgaagca gacggcacgg catctctgtc gctgcctctg gacccctctc gagagttccg 1920 ctccaccgtt ggacttgctc cgctgtcggc atccagaaat tgcgtggcgg agcggcagac 1980 gtgagccggc acggcaggcg gcctcctcct cctctcacgg caccggcagc tacgggggat 2040 tcctttccca ccgctccttc gctttccctt cctcgcccgc cgtaataaat agacaccccc 2100 tccacaccct ctttccccaa cctcgtgttg ttcggagcgc acacacacac aaccagatct 2160 cccccaaatc cacccgtcgg cacctccgct tcaaggtacg ccgctcgtcc tccccccccc 2220 ccctctctac cttctctaga tcggcgttcc ggtccatgca tggttagggc ccggtagttc 2280 tacttctgtt catgtttgtg ttagatccgt gtttgtgtta gatccgtgct gctagcgttc 2340 gtacacggat gcgacctgta cgtcagacac gttctgattg ctaacttgcc agtgtttctc 2400 tttggggaat cctgggatgg ctctagccgt tccgcagacg ggatcgattt catgattttt 2460 tttgtttcgt tgcatagggt ttggtttgcc cttttccttt atttcaatat atgccgtgca 2520 cttgtttgtc gggtcatctt ttcatgcttt tttttgtctt ggttgtgatg atgtggtctg 2580 gttgggcggt cgttctagat cggagtagaa ttctgtttca aactacctgg tggatttatt 2640 aattttggat ctgtatgtgt gtgccataca tattcatagt tacgaattga agatgatgga 2700 tggaaatatc gatctaggat aggtatacat gttgatgcgg gttttactga tgcatataca 2760 gagatgcttt ttgttcgctt ggttgtgatg atgtggtgtg gttgggcggt cgttcattcg 2820 ttctagatcg gagtagaata ctgtttcaaa ctacctggtg tatttattaa ttttggaact 2880 gtatgtgtgt gtcatacatc ttcatagtta cgagtttaag atggatggaa atatcgatct 2940 aggataggta tacatgttga tgtgggtttt actgatgcat atacatgatg gcatatgcag 3000 catctattca tatgctctaa ccttgagtac ctatctatta taataaacaa gtatgtttta 3060 taattatttt gatcttgata tacttggatg atggcatatg cagcagctat atgtggattt 3120 ttttagccct gccttcatac gctatttatt tgcttggtac tgtttctttt gtcgatgctc 3180 accctgttgt ttggtgttac ttctgcaggt cgactttaac ttagcctagg atccactagt 3240 aacggccgcc agtgtgctgg aattcgccct ttagcagacg cggaaccagc cgggctcccg 3300 gcagtggcag gaggagcccg gggagatgtt gagccccacc tcgaagacca ccctcttcca 3360 cagctccatc tcgccctcga acgaccggct ccgcatcagg cgccgcatgt tgacccagca 3420 gaagagcccc gcgttgctct ccaggcactc gatgcccacg gccgccaggc cctccgccag 3480 ctgctcgcgc cgctccctga tccgccgcgt gttctccgcg atgtacctcc gcgtgaagtc 3540 cctgtcgccc aggagcgacg ccaggaggtg ctgcgtctgg gacgacacca ggccgaagct 3600 cgacatcttg gtggccgcgg agaccacgcc ggcgttggac gagtagatgg cgcccacgcg 3660 gaaccccggg aggcccaggt ccttggacag gctgtacacc acgtgcacgc ggtccgacag 3720 cggcccaacg ccgacgacgc cgtcgtccgt ggcggcgcgc gcggccacca cctgcagtcg 3780 acgtgcaaag gtccgccttg tttctcctct gtctcttgat ctgactaatc ttggtttatg 3840 attcgttgag taattttggg gaaagcttcg tccacagttt tttttcgatg aacagtgccg 3900 cagtggcgct gatcttgtat gctatcctgc aatcgtggtg aacttatttc ttttatatcc 3960 tttactccca tgaaaaggct agtaatcttt ctcgatgtaa catcgtccag cactgctatt 4020 accgtgtggt ccatccgaca gtctggctga acacatcata cgatctatgg agcaaaaatc 4080 tatcttccct gttctttaat gaaggacgtc attttcatta gtatgatcta ggaatgttgc 4140 aacttgcaag gaggcgtttc tttctttgaa tttaactaac tcgttgagtg gccctgtttc 4200 tcggacgtaa ggcctttgct gctccacaca tgtccattcg aattttaccg tgtttagcaa 4260 gggcgaaaag tttgcatctt gatgatttag cttgactatg cgattgcttt cctggacccg 4320 tgcagctgga tcccggtacg cgccgccacg gacgacggcg tcgtcggcgt tgggccgctg 4380 tcggaccgcg tgcacgtggt gtacagcctg tccaaggacc tgggcctccc ggggttccgc 4440 gtgggcgcca tctactcgtc caacgccggc gtggtctccg cggccaccaa gatgtcgagc 4500 ttcggcctgg tgtcgtccca gacgcagcac ctcctggcgt cgctcctggg cgacagggac 4560 ttcacgcgga ggtacatcgc ggagaacacg cggcggatca gggagcggcg cgagcagctg 4620 gcggagggcc tggcggccgt gggcatcgag tgcctggaga gcaacgcggg gctcttctgc 4680 tgggtcaaca tgcggcgcct gatgcggagc cggtcgttcg agggcgagat ggagctgtgg 4740 aagagggtgg tcttcgaggt ggggctcaac atctccccgg gctcctcctg ccactgccgg 4800 gagcccggct ggttccgcgt ctgctaaagg gcgaattcca gcacactggc ggccgttact 4860 agtggatccg agctcgaatt ccggtccggg tcacccggtc cgggcctaga aggccgatct 4920 cccgggcacc cagctttctt gtacaaagtg gtgatatcgg accgattaaa ctttaattcg 4980 gtccgatgca tgtatacgaa gttcctattc cgaagttcct attctacata gagtatagga 5040 acttcacctg gtggcgccgc tagtggatcc cccgggctgc agtgcagcgt gacccggtcg 5100 tgcccctctc tagagataat gagcattgca tgtctaagtt ataaaaaatt accacatatt 5160 ttttttgtca cacttgtttg aagtgcagtt tatctatctt tatacatata tttaaacttt 5220 actctacgaa taatataatc tatagtacta caataatatc agtgttttag agaatcatat 5280 aaatgaacag ttagacatgg tctaaaggac aattgagtat tttgacaaca ggactctaca 5340 gttttatctt tttagtgtgc atgtgttctc cttttttttt gcaaatagct tcacctatat 5400 aatacttcat ccattttatt agtacatcca tttagggttt agggttaatg gtttttatag 5460 actaattttt ttagtacatc tattttattc tattttagcc tctaaattaa gaaaactaaa 5520 actctatttt agttttttta tttaataatt tagatataaa atagaataaa ataaagtgac 5580 taaaaattaa acaaataccc tttaagaaat taaaaaaact aaggaaacat ttttcttgtt 5640 tcgagtagat aatgccagcc tgttaaacgc cgtcgacgag tctaacggac accaaccagc 5700 gaaccagcag cgtcgcgtcg ggccaagcga agcagacggc acggcatctc tgtcgctgcc 5760 tctggacccc tctcgagagt tccgctccac cgttggactt gctccgctgt cggcatccag 5820 aaattgcgtg gcggagcggc agacgtgagc cggcacggca ggcggcctcc tcctcctctc 5880 acggcaccgg cagctacggg ggattccttt cccaccgctc cttcgctttc ccttcctcgc 5940 ccgccgtaat aaatagacac cccctccaca ccctctttcc ccaacctcgt gttgttcgga 6000 gcgcacacac acacaaccag atctccccca aatccacccg tcggcacctc cgcttcaagg 6060 tacgccgctc gtcctccccc ccccccctct ctaccttctc tagatcggcg ttccggtcca 6120 tgcatggtta gggcccggta gttctacttc tgttcatgtt tgtgttagat ccgtgtttgt 6180 gttagatccg tgctgctagc gttcgtacac ggatgcgacc tgtacgtcag acacgttctg 6240 attgctaact tgccagtgtt tctctttggg gaatcctggg atggctctag ccgttccgca 6300 gacgggatcg atttcatgat tttttttgtt tcgttgcata gggtttggtt tgcccttttc 6360 ctttatttca atatatgccg tgcacttgtt tgtcgggtca tcttttcatg cttttttttg 6420 tcttggttgt gatgatgtgg tctggttggg cggtcgttct agatcggagt agaattctgt 6480 ttcaaactac ctggtggatt tattaatttt ggatctgtat gtgtgtgcca tacatattca 6540 tagttacgaa ttgaagatga tggatggaaa tatcgatcta ggataggtat acatgttgat 6600 gcgggtttta ctgatgcata tacagagatg ctttttgttc gcttggttgt gatgatgtgg 6660 tgtggttggg cggtcgttca ttcgttctag atcggagtag aatactgttt caaactacct 6720 ggtgtattta ttaattttgg aactgtatgt gtgtgtcata catcttcata gttacgagtt 6780 taagatggat ggaaatatcg atctaggata ggtatacatg ttgatgtggg ttttactgat 6840 gcatatacat gatggcatat gcagcatcta ttcatatgct ctaaccttga gtacctatct 6900 attataataa acaagtatgt tttataatta ttttgatctt gatatacttg gatgatggca 6960 tatgcagcag ctatatgtgg atttttttag ccctgccttc atacgctatt tatttgcttg 7020 gtactgtttc ttttgtcgat gctcaccctg ttgtttggtg ttacttctgc aggtcgactt 7080 taacttagcc taggatccac acgacaccat gtcccccgag cgccgccccg tcgagatccg 7140 cccggccacc gccgccgaca tggccgccgt gtgcgacatc gtgaaccact acatcgagac 7200 ctccaccgtg aacttccgca ccgagccgca gaccccgcag gagtggatcg acgacctgga 7260 gcgcctccag gaccgctacc cgtggctcgt ggccgaggtg gagggcgtgg tggccggcat 7320 cgcctacgcc ggcccgtgga aggcccgcaa cgcctacgac tggaccgtgg agtccaccgt 7380 gtacgtgtcc caccgccacc agcgcctcgg cctcggctcc accctctaca cccacctcct 7440 caagagcatg gaggcccagg gcttcaagtc cgtggtggcc gtgatcggcc tcccgaacga 7500 cccgtccgtg cgcctccacg aggccctcgg ctacaccgcc cgcggcaccc tccgcgccgc 7560 cggctacaag cacggcggct ggcacgacgt cggcttctgg cagcgcgact tcgagctgcc 7620 ggccccgccg cgcccggtgc gcccggtgac gcagatctga gtcgaaacct agacttgtcc 7680 atcttctgga ttggccaact taattaatgt atgaaataaa aggatgcaca catagtgaca 7740 tgctaatcac tataatgtgg gcatcaaagt tgtgtgttat gtgtaattac tagttatctg 7800 aataaaagag aaagagatca tccatatttc ttatcctaaa tgaatgtcac gtgtctttat 7860 aattctttga tgaaccagat gcatttcatt aaccaaatcc atatacatat aaatattaat 7920 catatataat taatatcaat tgggttagca aaacaaatct agtctaggtg tgttttgcga 7980 attgcggccg ctctagcgta tacgaagttc ctattccgaa gttcctattc tctagaaagt 8040 ataggaactt ctgattccga tgacttcgta ggttcctagc tcaagccgct cgtgtccaag 8100 cgtcacttac gattagctaa tgattacggc atctaggacc gactagtaag tgactagggt 8160 cacgtgaccc tagtcactta tacgtagaat taattcattc cgattaatcg tggcctcttg 8220 ctcttcagga tgaagagcta tgtttaaacg tgcaagcgct actagacaat tcagtacatt 8280 aaaaacgtcc gcaatgtgtt attaagttgt ctaagcgtca atttgtttac accacaatat 8340 atcctgccac 8350

1 SEQUENCE LISTING <160> NUMBER OF SEQ ID NOS: 57 <210> SEQ ID NO 1 <211> LENGTH: 5115 <212> TYPE: DNA <213> ORGANISM: Zea mays <400> SEQUENCE: 1 aaacttcata ccggtcggtg ccttacgttc tctggcgttc ttatcctttc ctccgctttt 60 agtcgatgat tatagtagtt tctacaacaa gctttcaacg ccattgacta ttttttcccc 120 cattgaaaac gaacaccacc attgacactg ataaatgtag tacagcattt gacaacatac 180 tttcctagaa agtaaccagc agagactgga cgctacgtac taccacacca ttggagcagc 240 caatttaatc gtgtatagaa ctccgtatcg aaatttgtct gtgaatggac cttcatttgc 300 atctaggtct agtacaatgg atttcgaaca ggacagcgcc gatctggcaa tacacacacg 360 cacgacgtag cacagctgtt cttcgttcca cgcgttaatt gaaggcaaag cgactgtagt 420 tgctgttggt ggccaagttg tttaatgcta tagtagcagc cagtcactcc tagggcaaat 480 tttaggactt ttgcattgca ttgccgccat gtagaggttg actgcacacc gagaatatcg 540 agcattcatt aggctccttg acttgttgct gtgaactccg gccatctgtc acagtacgta 600 tatgaccaga tcggcaccat ttgtctcggc ctgacaatct cgcgcgccat tggccatgca 660 aagctgtcct gccgttcgga gagactagag agccagttgg caaattgaca tttgcgatag 720 gtggggcggc tttgactatg acatgatgac agatccagat ggtcctccgc tagtcccccc 780 gagcccgagg acagcacact agctcacacg aactgacagc gcggaggagg acacgtaccg 840 ggatgacacc gccacccatt tgctggcaag ccggggtgcg ccggcggttc aggttgaatc 900 cttcctaatg gtcgtgctag caaaccccgc aagctcagtg cgggtccaaa acccattaat 960 tatcccacaa agccgccgtt agacgtagaa tcgacgccgc gcgccacggc cggcggcggc 1020 tacctggctc ttaccaccat cattcgcttg tccgttccgt cgcccccgcc accctctcag 1080 agatggaggc ggttaagtgc ctgtcgacta ttgcagaacg tcgtcaggct cgctagttcg 1140 accgagcatc ctagatacat aatccaaatt ccgctcggcg attataggag ggtgatagta 1200 ctgagtacag ggcgaaaaac gttgaaaagg tcagcgaggc ccccacatgt ctcccccggt 1260 cgcgttcgca ttcaacaccc tctgcgctgc gtttcatgga agtttccagc agccacgccc 1320 acgcgcatgg acgcggctga tcttataaag gtggcgcgcg tcccaacctc gggagccatc 1380 atttcaccag aagctgcaaa ttgcaagctc tcctccctag ctagcctctc cagcagccca 1440 accacagcct gcagctgcag ctcgcgttgg cacagcgccg cctgaacgcg tgctaattta 1500 agctctgtcg tagctcaacg cggccgccgg gctttcgccg acgacgtcaa aatggccggt 1560 ggtagcagtg ccgagcagct cctatccagg atcgcctccg gcgatggcca cggcgagaac 1620 tcgtcctact tcgacgggtg gaaggcctac gacatggacc ctttcgacct gcgccacaac 1680 cgcgacggcg tcatccagat gggcctcgcc gagaaccaag tacgtgacgt agccctgccg 1740 catgcagcta cagctacacc ctttcgacct gcgcaacaac cgcgacggcg tcatccagat 1800 gggcctgctg tcgatggaat gctcatgtaa ttaaaccacc ggccggggcg tgttttgcag 1860 ctgtccctgg acctgatcga gcaatggagc atggagcacc cggaggcgtc catctgcacg 1920 gcgcagggag cgtcgcagtt caggaggata gccaacttcc aggactacca cggcctgccg 1980 gagttcagag aggtattaat taagttaact aacagctcgg ctaaggaaac gccagaatca 2040 ttgattaggt ttgctgctct ctaatggcga ctgcgaaaac gacggagcag ctaccggcca 2100 gccggccggc ggttagctag cactagcagc cgccttcctg acagatcatc catgacgttt 2160 tgattgttgc aggcgatggc caagttcatg ggccaggtga gggccgggaa ggtgacgttc 2220 gaccccgacc gcgtcgtcat gtgcggaggc gccaccggcg cgcaggacac tctcgccttc 2280 tgcctcgctg acccgggcga cgcctacctc gtgccgacgc catactaccc agcgtatgtc 2340 tcgaccaacg tcatccttgt acttgtacca aaattagtca cccgttgaca cgaaagttgg 2400 taagagggta agagcaggga aaggcagagc taaggccctg tttggtttga ggtgactaaa 2460 gtttagtgac taatatttag tcacttttag tctctaaaga agtaaacatg gtgactaaag 2520 tgaagtgact aaattttagt tctttagtca ctaagaggct gactaaaagg gactaaagta 2580 gtatttttac cttatttgtc ctctccactt tcttcttata gcaaacatct attaattaat 2640 agggataaaa taatcattat tcacagcaat taatgccctt tagtccggtt tagtcactgg 2700 aaccaaacgg gatactttag cgactaaact ttagtcacta aaatttagtc tagtgactaa 2760 gggaaccaaa caggacctaa ttcgagtgtg atgtcaacaa gacaacaaat aatagccaat 2820 tgtagcccct cgccatcttt ccttgtttgg gtaacgtttc aaaatttagg gggtgtttgg 2880 tttctaggga ctaatgttta gtcccttcat tttattccat tttagtatat aaattgtcaa 2940 atataaaaac caaaatagag ttttagtttc tatatttgac aattttagaa ctaaaatgaa 3000 ataaaatgta gggactaaag tataaactaa acaccccctt acctcgatca cgaacctcta 3060 aaagtaagta gcaccctcct cccccacagt caaatcaaca taatacagta caatagacct 3120 tgttagtcgc atggatgatt gtcgtcaagt gggcaacgca atctagtcac gtaaggaaaa 3180 ccatgcacgt tgttcataca cggtctgttt ccatgcgact ttaatttcca cgcacgtttg 3240 catcgttgac caaccaactg aacgtgcctg taggtcccgc acagcaacgt aagcatatgc 3300 atgcacgtac gacgtacggc acgggaaaaa aattctgcac accgtatttt acagctcttc 3360 atatccacca catgtagcgg ccccacaaaa aacagattaa aatttgcaac ttaatcctta 3420 agtaatttgt ttttcttcta tttatataga ttatcagttg atggatgtgt gaagttgtaa 3480 aagagattat ttgtatccag gattaaaata attttccgta cggcacgcct gcagtactca 3540 ttctcgccag ccctgagccc ctgatatatg acacgctttt cattgttcac acagtttcga 3600 ccgtgactgt tgctggaggt caggcgtgaa gctgctgccc atcgaatgcc acagctcaaa 3660 caacttcacc ctcacacggg aggcgctcgt gtcggcctac gacggcgcgc ggaggcaggg 3720 cgtccgcgtc aagggcgtcc tcatcaccaa cccctccaac ccgctgggca ccaccatgga 3780 ccgcgccacg ctggcgatgc tcgccaggtt cgccacggag caccgtgtcc acctcatctg 3840 cgacgagatc tacgcgggct ccgtcttcgc caagccggac ttcgtgagca tcgccgaggt 3900 catcgagcgc gacgtcccgg gctgcaacag ggacctcatc cacatcgcgt acagcctctc 3960 caaggacttc ggcctcccgg gcttccgcgt cggcatcgtc tactcgtaca acgacgacgt 4020 cgtggcctgc gcgcgcaaga tgtccagctt cggcctcgtc tcctcgcaga cgcagcactt 4080 cctggcgaag atgctgtcgg acgcggagtt catggcccgc ttcctcgcgg agagcgcgcg 4140 gcggctggcg gcgcgccacg accgcttcgt cgcgggactc cgcgaggtcg gcatcgcgtg 4200 cctgcccggc aacgcggggc tcttctcgtg gatggacctg cggggcatgc tccgggacaa 4260 gacgcacgac gcggagctgg agctgtggcg ggtcatcgta cacaaggtga agctcaacgt 4320 gtcgcccggc acgtcgttcc actgcaacga gcccggctgg ttccgcgtct gccacgctaa 4380 catggacgac gagaccatgg aggtcgcgct cgacaggatc cgccgcttcg tgcgccagca 4440 ccagcacaag gccaaggccg agcgctgggc ggccacgcgg cccatgcgcc tcagcttgcc 4500 gcgccgggga ggcgccaccg cttcgcacct ccccatctcc agccccatgg cgttgctgtc 4560 gccgcagtcc ccgatggttc acgccagcta gtcaccgagc atccggcaag actggctgta 4620 gggtgtgccc gtacatccgt acgtacacct ttttttccca ttcacgtgac tgcaatcaag 4680 tctatgggat ggttgacaaa agactatcta gacaagagtg ggcgtagtac gtaactagtt 4740 tgacgttgta caggcgtcag caggtatcgg taagcagcta gtcaaaagca cgcaagcagg 4800 acgcatttgt cctcgatact ttcgtgtaaa tctctctcta tttttttttg cgaaattcgc 4860 gtgtatggtt tgttttgacg ttggtataaa gtatggtaga ataacgatgg gaaatggcaa 4920 tttagtcctc ccgatcaatt gttattgtaa accactgacg aaagttaaga acagaagctg 4980 taccagaagg gtgaataaaa ataccacata ggtattgaat taataatcta tgtatttcga 5040 gttactcctg caagatatct attttttcat gctgtgctgg ccacatttgc ctcttcttca 5100 aactagtttc tcgca 5115 <210> SEQ ID NO 2 <211> LENGTH: 3749 <212> TYPE: DNA <213> ORGANISM: Zea mays <400> SEQUENCE: 2 cggctagttt tgatagttag acgatgttct gacagcgcac cagacagtaa ccagtgacag 60 tccggtgcct ggctaaatat cgagccagcg aacagcgcgc tctcgggttt ctacgggggc 120 agagggttgc tctcggggca ttcttgtgct cactgtcagg gggagcacca gacagtccgg 180 tgcacagcga acagtctgat gcccctaggt cagcaagtca aagttctctt ccttagattt 240 ttctaaaccg ttttcgtttt aacttgtgag tgagttatcg agtgacacct agcactagtt 300 gtgagtatga acaccaacac tatattagat ttctcttggt caaactactc atccacaacc 360 actctttata gtacggctaa aataaaaata gaagtcctaa ctttatacca agtgtcaaca 420 actccttcgg acacttagaa tataaagtcc ttcatctttt gtttcgcctt tttccgccgt 480 cgcttcaagt tctcatccga gggattgttt tatcgttgta gtgcaacttc atgcaatgtg 540 acctaacttg ccatttgctc ttcaaaacac acgttagtca tataatatta cgttgtcatt 600 aatctctatc gatatttttc acccattacg ttgtcactag atgctttcac ccatttcgat 660 ttcagacgat gtcttcggac gttgcgggcc atgtgtccaa acgtggttaa gtgtggtcgg 720 gaaatacccg atcgaggttg agttcggcct tcgctccgac acccagccgt gtcattactg 780 tcatatatat tgtagcaatg tcaaaaaaaa tcaaaacatt gagtatgacg tatagggcac 840 atatgtcatt aaacttattc agtgtaatga tatattatca tcacgggact tttttttaat 900 gtatgtatta gattacctct gccatgcact atacaaacag ctacgccgca gtcgcaagca 960 aacaggctct aaaaggcttc agtcggagaa ggatatgaga gcggtgagta ccaaacgggt 1020 atcttcccct tccaaatgat ataagcctac ttgtttgacc ccagcccgca ggcagtcatc 1080 tgctataata ggctaataca acttgtgtac tctagtctgc tctcgccgcg ttgtccgcat 1140 gctgaacccg cgatgttaac acctccctga acgagtcctc tgttcctcaa ctgaaattca 1200 gcaataaaag gaaaaatccg cggtccctgt ccctgtccag caccgcactc tcgcacttgt 1260 gctgcaggct tctgagctcg gcacctgctg ctagctgctg ctatatatag acgcgttttg 1320 gggtcaccaa aaccaccagc tgatcaacag ctagcttcat tcctctgcct ctctctccct 1380 ccttcgccaa ctggccatct ctgttgtctc tcgctagcta gctcgctcgc tcgctcgcca 1440 gtcaccacac acacacacac acactgtgtg tctgtgcctg acgccgcccc ccagtttcaa 1500 acgaacgacc cagccagaaa cgcgcgcgcg ccaaagctac gtgagtgacg tggcagcatg 1560 gtgagcatga tcgccgacga gaagccgcag ccgcagctgc tgtccaagaa ggccgcctgc 1620 aacagccacg gccaggactc gtcctacttc ctggggtggg aggagtatga gaaaaaccca 1680 tacgaccccg tcgccaaccc cggcggcatc atccagatgg gcctcgccga gaaccagctg 1740

tccttcgacc tgctggaggc gtggctggag gccaacccgg acgcgctcgg cctccgccgg 1800 ggaggcgcct ctgtattccg cgagctcgcg ctcttccagg actaccacgg catgccggcc 1860 ttcaagaatg tgagtgcctg ctagcttact cattcccagg caggcaggca gccagccacg 1920 gcatgccgaa ccagtctgac ctctctcgcg cacatgaatg cgtgattccc gcaggcattg 1980 gcgaggttca tgtcggagca acgtgggtac cgggtgacct tcgaccccag caacatcgtg 2040 ctcaccgccg gagccacctc ggccaacgag gccctcatgt tctgcctcgc cgaccacgga 2100 gacgcctttc tcatccccac gccatactac ccagggtatg tgtgtgtgtt gccttgtact 2160 tactcgtcgc cgcaagtact tgcagtaggg aacgtgcaag tggcggcggg gcggcgtctg 2220 ggtgtcgccg cgatgcacgt tactgctatt aaagtagtag tagtacacta atagctaggc 2280 ccaccacagc acacgatgac atgacgaacg atggatggga acggctgctg actgggcctg 2340 cttgctcttg tctgcaggtt cgaccgtgac ctcaagtggc gcaccggcgc ggagatcgtc 2400 cccgtgcact gcacgagcgg caacggcttc cggctgacgc gcgccgcgct ggacgacgcg 2460 taccggcgcg cgcagaagct gcggctgcgc gtcaagggcg tgctcatcac caacccttcc 2520 aacccgctgg gcaccacgtc gccgcgcgcc gacctggaga tgctggtgga cttcgtggcc 2580 gccaagggca tccacctggt gagcgacgag atatactcgg gcacggtctt cgcggacccg 2640 ggcttcgtga gcgtcctcga ggtggtggcc gcgcgcgccg ccacggacga cggcgtcgtc 2700 ggcgttgggc cgctgtcgga ccgcgtgcac gtggtgtaca gcctgtccaa ggacctgggc 2760 ctcccggggt tccgcgtggg cgccatctac tcgtccaacg ccggcgtggt ctccgcggcc 2820 accaagatgt cgagcttcgg cctggtgtcg tcccagacgc agcacctcct ggcgtcgctc 2880 ctgggcgaca gggacttcac gcggaggtac atcgcggaga acacgcggcg gatcagggag 2940 cggcgcgagc agctggcgga gggcctggcg gccgtgggca tcgagtgcct ggagagcaac 3000 gcggggctct tctgctgggt caacatgcgg cgcctgatgc ggagccggtc gttcgagggc 3060 gagatggagc tgtggaagaa ggtggtcttc gaggtggggc tcaacatctc cccgggctcc 3120 tcctgccact gccgggagcc cggctggttc cgcgtctgct tcgccaacat gtccgccaag 3180 acgctcgacg tcgcgctcca gcgcctgggc gccttcgcgg aggccgccac cgcggggcgc 3240 cgcgtgcttg cccccgccag gagcatcagc ctcccggtcc gcttcagctg ggctaaccgc 3300 ctcaccccgg gctccgccgc cgaccggaag gccgagcggt agccggtccc cgtccgcgcc 3360 gaccgcacgt gctcagctca gcagcttcac agctcaccac cagtcaccac caccaccacc 3420 accaccacct ggggtggagg cgtggagcaa gcaatgttca tagaaaccac ggtcacgtac 3480 tatacaatac tactaccgta ccacaccaca cggcagcatc attagcagta ggagattagt 3540 agtaatcatt aattccttat tgggttcttg taatttcgta tataccacgc cgccattttt 3600 ccttggggcc aggccagccg ataggtgccc gagggccact gcactgcact gctgtattag 3660 gtaggagcag gagtggtggg tagcgaatcc accttccagc agcaggcatc acatttgtgt 3720 atttttcgac tgggtctccc ggttgtttt 3749 <210> SEQ ID NO 3 <211> LENGTH: 5105 <212> TYPE: DNA <213> ORGANISM: Zea mays <400> SEQUENCE: 3 gctggtagct tctttaactg atctcaatgg ggcatttcgg tggctagcaa ttcacattaa 60 taatttaaaa gtgaatttca ggtgtacatt tgatggcctc cgatatggtg cagccttcaa 120 tcctctacaa tgtgcgagaa tgttgctccg gagggtagag gcgattaacg gctgaacaca 180 gatgacctcc tcggagtcat gtttctaatt atctacacta cgattctctt tccgttgata 240 aaatatttgt tttattgtcc tgtgagctaa tgataacatt gatggtaagt aaatatagtc 300 catgcatatt ctcatcacag atggctgaaa aactcccggt gctgctacac tactagagtc 360 ttcatgtgca tacttacttc aagaactcaa ggtacacaaa gttttctcaa cagaagaatg 420 tgtatctgtt tgattccagc tgaaatgctt actaaactca gtgtgtcgct ttagatgata 480 tgagatgaag ttgggcaaga ccaaagtgaa agggagagaa taacggaaga acttgttcgc 540 caacttggag aaaccaatac taaaactcag tgaatatatg tgtggatttg gaagcaagtg 600 aattttacag aaaagttttt tgagagtgtt tatatgaatc gtactcatct gtttattttg 660 atgactgcaa tataactact tgtatttata gtttgagatc aagaaaataa gttattattt 720 agaaataata aaaaattata gtgatgtttg ttgttccgta tcaatgtttc atacaaatgt 780 tttacttccg tcgcaacaca cgggaatata cctataatat atattgttat catgttatta 840 tacggttccg ttgcaacgca cgggcacata cctagtacaa aaataattac gcatcccgca 900 gttgacatct gggagcgcta caaataatga aggcagctgg tccaccacac gaactgacag 960 cgcggagaag ggagtgcacc ggcccaccgg gatggcaccg cgaatcagcc tcggcagcgc 1020 catactgccc acccattttt tctggcgaat ccgggtgcgg cgggcggttg aggatgaatt 1080 gaataatact ctacttccta atggtcgtgc tagcagaccc tggaagctca gtgtggctcc 1140 aaaacccatt aattaattaa accacaaagc cgccgccgtt agacctagaa ccaccgctgc 1200 gctcgccggg cgccggctac ccggcgtaac tgccgtcacc atccaccacc tggccgctcc 1260 gttctttcct ccaccccaag atggagccgg ttaacctgtc caatcttacc tcatatgcgt 1320 aatcaactat tttaactttc actatatata tatgttaata tttataatat ataatttgta 1380 gtataagata aatatttgaa tttgttttta taataaacgt attttgacat ataaatattg 1440 gtaatatttt ttttttacaa atctgactag attttaaatc tgtaacgagg agtacatagt 1500 acgaaatgtt gaaaagtcag cgtgtctttg gtcgcgttcg cattcattct ttctttacct 1560 cagccaccca cctgccacac cctgtgggcc gtggcgcctt cacggaaggt tcgccggcca 1620 cgcatggagg cggctcttta taaagctggt gcgcgggcgg gaggggagag ggcaccagaa 1680 gcagccagca agctcatgcc cttcaaaagc ctccggcagc ccagcgcccc agccagctag 1740 tggtgatctc tcatctcagc agcgcgcctg aacgtgtgct ccctgctaag ctctgcgcct 1800 cgataggcaa aggaaaatca aaccgatcgt cgtcagatta aatggccggt agcagcgcgg 1860 agcagctcct ctccaggatc gccgccggcg acggccacgg cgagaactcg tcctacttcg 1920 acgggtggaa ggcctacgac atgaaccctt tcgacctgcg ccacaaccgc gacggcgtca 1980 tccagatggg cctcgccgag aaccaagtac gtacctatag cgtgtaccta cccttccgat 2040 ctgtagtact gcccacactt gctgcatgct gctgccgatc caagtccaat gctcatgtaa 2100 actggcgtgc tgcagctgtc gttggacctg atcgagcaat ggagcgtgga ccacccggag 2160 gcgtccatct gcacggcgca gggcgcgccg cagttccgga ggatagccaa cttccaggac 2220 taccacggcc tgccggagtt cagagaggta actaactagt agtgattaac aagcaaataa 2280 acgccaggat cactgcatcg attagctagg tttgctgctg ctgctgctgc tgtctaatat 2340 aatggcgact gcacgcgaaa agcgacggag cagctaccgg ccggcggcta gctagctagc 2400 tggcactggc agcgcagtcg ccttcatgag tccacgcacg cgcggctacg tcttaatgat 2460 cgatcggctc gtcgtttgtt gcaggcgatg gccaagttca tggggcaggt gaggggcggc 2520 aaggtgacgt tcgaccccga ccgcgtcgtc atgtgcggag gagccaccgg cgcgcaggac 2580 actctcgcct tctgcctcgc tgacccgggc gacgcctacc tcgtgccgac gccttattac 2640 ccagcgtatg ttctgacgtc acccttgtac tgccaaacta ctactcaggt cctagtcata 2700 tccgtagaca cgaaagggtg ggtgggtctg ggttgttggt tggtcaagag cacgcaaaat 2760 tgagctaatt cgactacgta cgtgtcaatg tcaactagcc acttatcttt ccttgtttgg 2820 gtaaagtttc aaaacttatt aactcgatca ggaacctctc taaaaagcat tcacctattt 2880 ttcccccgta aggcggtaac caaatctaaa cgatataccc ttgttagtcg cactgatgac 2940 tgcattgtcg tcaagtggac aacgcaatct agtcacgcga cctctaagga aaaccacgca 3000 cgtatacgca cttcgtgcac ggtctgttcc acgcgacttt agtttccatg cacgtttaca 3060 tcgttgacca tccgcagtcc gcacagcaac gtaagcataa acatgcacgc acgacgtacg 3120 gcacaccgta cctgttcctc tcgagggctg agaccctgac acgttttttt cgttgtgtgg 3180 tgatcacagt ttcgaccgcg actgttgctg gaggtcagga gtgaagctgc tgcccatcga 3240 atgccacagc tcgaacaact tcaccctcac cagggaggcg ctcgtgtcgg cctacgacgg 3300 cgcgcggagg cagggcgtcc gcgtcagggg catcctcatc accaacccct ccaacccgct 3360 gggcaccacc atggaccgcg gcacgctggc gatgctcgcc gcgttcgcca cagagcgccg 3420 cgtccacctc atctgcgacg agatctacgc gggctccgtc ttcgccaagc cgggcttcgt 3480 gagcatcgcc gaggtcatcg agcgcggcga cgccccgggc tgcaacaggg acctcgtcca 3540 catcgcgtac agcctctcca aggacttcgg cctcccgggc ttccgcgtcg gcatcgtcta 3600 ctcctacaac gacgacgtgg tggcctgcgc gcgcaagatg tccagcttcg gcctcgtctc 3660 gtcgcagacg cagcacttcc tggcgatgat gctcgccgac gcggagttca tggcacgctt 3720 cctcgcggag agcgcgcggc ggctggcggc gcgccacgac cgcttcgtcg cgggcctccg 3780 cgaggtcggc atcgcgtgcc tgccgggcaa cgcgggcctc ttctcgtgga tggacctgcg 3840 gggcatgctc cgggagaaga cgcacgacgc ggagctcgag ctgtggcggg tcatcgtaca 3900 cagggtgaag ctcaacgtgt cgcccggcac gtcgttccac tgcaacgagc ccggctggtt 3960 ccgcgtctgc tacgccaaca tggacgacga caccatggag gtcgcgctcg accggatccg 4020 ccgcttcgtg cgccagcacc agcacagcaa ggccaaggcc gagcgctggg cggccacgcg 4080 gccccttcgc ctcagcttgc cgcgccgggg agcaaccacc gcttcgcatc tcgccatctc 4140 cagccccttg gcgttgctgt cgccgcagtc cccgatggtc cacgccagct aggtagtcac 4200 cgagcgttcg gtaagactgg ctgtaggttg tgccctcaca tgactgcaaa caagtggaca 4260 aaaaaaaaga caagactaat aaagggcgta cgtagctagc ttgacattac acagagtgac 4320 agagacgttg cacaggcgtc agcaggcgtc ggcggtaagc agctagtcaa gtaggacgca 4380 tttgtcctcg attttttcgt gttttttttt tgacgaaggg gcgaagcccc ctatttcatt 4440 aagaaatagg aaagtatgaa acaaccgcac ccacgcggta ggacctccaa aaagaacagc 4500 cacggccaga aagtaatcta gactctaaac actatcgcta gatcagtgaa gagactatga 4560 taacagggaa agttttggcc tacgaagagc tacataagac tttcttatat acaaccaacc 4620 aagacaggca gaagccacaa aagacctgaa cagaatggcc aacaaaagac agacaactat 4680 cccaacaagg tttcacagct tcagcatctt tgtcatccag aaatccgcct gtcaagagga 4740 caccacccca aggccctccc gaaagcttca cttgccgtct ttcggattaa cctgcttcct 4800 agcaccacca ttctttgctc cttctttttc tgacgaatcg cccaagaatc caaccagaag 4860 cagcaaagaa aaatgatgtt agatgggtca agtaaatgac tattcccaaa acaccaatca 4920 ttcctagtgc gccaaatagc ccagaataaa gcaccacaac caaataacac caactgagcc 4980 atcgtgtctt ttggtttaca aaaccaattg tcatacaaat ctttgatatt ttttggaata 5040 gatctcaaat tcagggccac ttgaataact ctccacatgt attgagcaat ggggcaatag 5100 aaaaa 5105 <210> SEQ ID NO 4

<211> LENGTH: 1455 <212> TYPE: DNA <213> ORGANISM: Zea mays <400> SEQUENCE: 4 atggccggtg gtagcagtgc cgagcagctc ctatccagga tcgcctccgg cgatggccac 60 ggcgagaact cgtcctactt cgacgggtgg aaggcctacg acatggaccc tttcgacctg 120 cgccacaacc gcgacggcgt catccagatg ggcctcgccg agaaccaact gtccctggac 180 ctgatcgagc aatggagcat ggagcacccg gaggcgtcca tctgcacggc gcagggagcg 240 tcgcagttca ggaggatagc caacttccag gactaccacg gcctgccgga gttcagagag 300 gcgatggcca agttcatggg ccaggtgagg gccgggaagg tgacgttcga ccccgaccgc 360 gtcgtcatgt gcggaggcgc caccggcgcg caggacactc tcgccttctg cctcgctgac 420 ccgggcgacg cctacctcgt gccgacgcca tactacccag cgttcgaccg tgactgttgc 480 tggaggtcag gcgtgaagct gctgcccatc gaatgccaca gctcaaacaa cttcaccctc 540 acacgggagg cgctcgtgtc ggcctacgac ggcgcgcgga ggcagggcgt ccgcgtcaag 600 ggcgtcctca tcaccaaccc ctccaacccg ctgggcacca ccatggaccg cgccacgctg 660 gcgatgctcg ccaggttcgc cacggagcac cgtgtccacc tcatctgcga cgagatctac 720 gcgggctccg tcttcgccaa gccggacttc gtgagcatcg ccgaggtcat cgagcgcgac 780 gtcccgggct gcaacaggga cctcatccac atcgcgtaca gcctctccaa ggacttcggc 840 ctcccgggct tccgcgtcgg catcgtctac tcgtacaacg acgacgtcgt ggcctgcgcg 900 cgcaagatgt ccagcttcgg cctcgtctcc tcgcagacgc agcacttcct ggcgaagatg 960 ctgtcggacg cggagttcat ggcccgcttc ctcgcggaga gcgcgcggcg gctggcggcg 1020 cgccacgacc gcttcgtcgc gggactccgc gaggtcggca tcgcgtgcct gcccggcaac 1080 gcggggctct tctcgtggat ggacctgcgg ggcatgctcc gggacaagac gcacgacgcg 1140 gagctggagc tgtggcgggt catcgtacac aaggtgaagc tcaacgtgtc gcccggcacg 1200 tcgttccact gcaacgagcc cggctggttc cgcgtctgcc acgctaacat ggacgacgag 1260 accatggagg tcgcgctcga caggatccgc cgcttcgtgc gccagcacca gcacaaggcc 1320 aaggccgagc gctgggcggc cacgcggccc atgcgcctca gcttgccgcg ccggggaggc 1380 gccaccgctt cgcacctccc catctccagc cccatggcgt tgctgtcgcc gcagtccccg 1440 atggttcacg ccagc 1455 <210> SEQ ID NO 5 <211> LENGTH: 1446 <212> TYPE: DNA <213> ORGANISM: Zea mays <400> SEQUENCE: 5 atgatcgccg acgagaagcc gcagccgcag ctgctgtcca agaaggccgc ctgcaacagc 60 cacggccagg actcgtccta cttcctgggg tgggaggagt atgagaaaaa cccatacgac 120 cccgtcgcca accccggcgg catcatccag atgggcctcg ccgagaacca gctgtccttc 180 gacctgctgg aggcgtggct ggaggccaac ccggacgcgc tcggcctccg ccggggaggc 240 gcctctgtat tccgcgagct cgcgctcttc caggactacc acggcatgcc ggccttcaag 300 aatgcattgg cgaggttcat gtcggagcaa cgtgggtacc gggtgacctt cgaccccagc 360 aacatcgtgc tcaccgccgg agccacctcg gccaacgagg ccctcatgtt ctgcctcgcc 420 gaccacggag acgcctttct catccccacg ccatactacc cagggttcga ccgtgacctc 480 aagtggcgca ccggcgcgga gatcgtcccc gtgcactgca cgagcggcaa cggcttccgg 540 ctgacgcgcg ccgcgctgga cgacgcgtac cggcgcgcgc agaagctgcg gctgcgcgtc 600 aagggcgtgc tcatcaccaa cccttccaac ccgctgggca ccacgtcgcc gcgcgccgac 660 ctggagatgc tggtggactt cgtggccgcc aagggcatcc acctggtgag cgacgagata 720 tactcgggca cggtcttcgc ggacccgggc ttcgtgagcg tcctcgaggt ggtggccgcg 780 cgcgccgcca cggacgacgg cgtcgtcggc gttgggccgc tgtcggaccg cgtgcacgtg 840 gtgtacagcc tgtccaagga cctgggcctc ccggggttcc gcgtgggcgc catctactcg 900 tccaacgccg gcgtggtctc cgcggccacc aagatgtcga gcttcggcct ggtgtcgtcc 960 cagacgcagc acctcctggc gtcgctcctg ggcgacaggg acttcacgcg gaggtacatc 1020 gcggagaaca cgcggcggat cagggagcgg cgcgagcagc tggcggaggg cctggcggcc 1080 gtgggcatcg agtgcctgga gagcaacgcg gggctcttct gctgggtcaa catgcggcgc 1140 ctgatgcgga gccggtcgtt cgagggcgag atggagctgt ggaagaaggt ggtcttcgag 1200 gtggggctca acatctcccc gggctcctcc tgccactgcc gggagcccgg ctggttccgc 1260 gtctgcttcg ccaacatgtc cgccaagacg ctcgacgtcg cgctccagcg cctgggcgcc 1320 ttcgcggagg ccgccaccgc ggggcgccgc gtgcttgccc ccgccaggag catcagcctc 1380 ccggtccgct tcagctgggc taaccgcctc accccgggct ccgccgccga ccggaaggcc 1440 gagcgg 1446 <210> SEQ ID NO 6 <211> LENGTH: 1458 <212> TYPE: DNA <213> ORGANISM: Zea mays <400> SEQUENCE: 6 atggccggta gcagcgcgga gcagctcctc tccaggatcg ccgccggcga cggccacggc 60 gagaactcgt cctacttcga cgggtggaag gcctacgaca tgaacccttt cgacctgcgc 120 cacaaccgcg acggcgtcat ccagatgggc ctcgccgaga accaactgtc gttggacctg 180 atcgagcaat ggagcgtgga ccacccggag gcgtccatct gcacggcgca gggcgcgccg 240 cagttccgga ggatagccaa cttccaggac taccacggcc tgccggagtt cagagaggcg 300 atggccaagt tcatggggca ggtgaggggc ggcaaggtga cgttcgaccc cgaccgcgtc 360 gtcatgtgcg gaggagccac cggcgcgcag gacactctcg ccttctgcct cgctgacccg 420 ggcgacgcct acctcgtgcc gacgccttat tacccagcgt tcgaccgcga ctgttgctgg 480 aggtcaggag tgaagctgct gcccatcgaa tgccacagct cgaacaactt caccctcacc 540 agggaggcgc tcgtgtcggc ctacgacggc gcgcggaggc agggcgtccg cgtcaggggc 600 atcctcatca ccaacccctc caacccgctg ggcaccacca tggaccgcgg cacgctggcg 660 atgctcgccg cgttcgccac agagcgccgc gtccacctca tctgcgacga gatctacgcg 720 ggctccgtct tcgccaagcc gggcttcgtg agcatcgccg aggtcatcga gcgcggcgac 780 gccccgggct gcaacaggga cctcgtccac atcgcgtaca gcctctccaa ggacttcggc 840 ctcccgggct tccgcgtcgg catcgtctac tcctacaacg acgacgtggt ggcctgcgcg 900 cgcaagatgt ccagcttcgg cctcgtctcg tcgcagacgc agcacttcct ggcgatgatg 960 ctcgccgacg cggagttcat ggcacgcttc ctcgcggaga gcgcgcggcg gctggcggcg 1020 cgccacgacc gcttcgtcgc gggcctccgc gaggtcggca tcgcgtgcct gccgggcaac 1080 gcgggcctct tctcgtggat ggacctgcgg ggcatgctcc gggagaagac gcacgacgcg 1140 gagctcgagc tgtggcgggt catcgtacac agggtgaagc tcaacgtgtc gcccggcacg 1200 tcgttccact gcaacgagcc cggctggttc cgcgtctgct acgccaacat ggacgacgac 1260 accatggagg tcgcgctcga ccggatccgc cgcttcgtgc gccagcacca gcacagcaag 1320 gccaaggccg agcgctgggc ggccacgcgg ccccttcgcc tcagcttgcc gcgccgggga 1380 gcaaccaccg cttcgcatct cgccatctcc agccccttgg cgttgctgtc gccgcagtcc 1440 ccgatggtcc acgccagc 1458 <210> SEQ ID NO 7 <211> LENGTH: 485 <212> TYPE: PRT <213> ORGANISM: Zea mays <400> SEQUENCE: 7 Met Ala Gly Gly Ser Ser Ala Glu Gln Leu Leu Ser Arg Ile Ala Ser 1 5 10 15 Gly Asp Gly His Gly Glu Asn Ser Ser Tyr Phe Asp Gly Trp Lys Ala 20 25 30 Tyr Asp Met Asp Pro Phe Asp Leu Arg His Asn Arg Asp Gly Val Ile 35 40 45 Gln Met Gly Leu Ala Glu Asn Gln Leu Ser Leu Asp Leu Ile Glu Gln 50 55 60 Trp Ser Met Glu His Pro Glu Ala Ser Ile Cys Thr Ala Gln Gly Ala 65 70 75 80 Ser Gln Phe Arg Arg Ile Ala Asn Phe Gln Asp Tyr His Gly Leu Pro 85 90 95 Glu Phe Arg Glu Ala Met Ala Lys Phe Met Gly Gln Val Arg Ala Gly 100 105 110 Lys Val Thr Phe Asp Pro Asp Arg Val Val Met Cys Gly Gly Ala Thr 115 120 125 Gly Ala Gln Asp Thr Leu Ala Phe Cys Leu Ala Asp Pro Gly Asp Ala 130 135 140 Tyr Leu Val Pro Thr Pro Tyr Tyr Pro Ala Phe Asp Arg Asp Cys Cys 145 150 155 160 Trp Arg Ser Gly Val Lys Leu Leu Pro Ile Glu Cys His Ser Ser Asn 165 170 175 Asn Phe Thr Leu Thr Arg Glu Ala Leu Val Ser Ala Tyr Asp Gly Ala 180 185 190 Arg Arg Gln Gly Val Arg Val Lys Gly Val Leu Ile Thr Asn Pro Ser 195 200 205 Asn Pro Leu Gly Thr Thr Met Asp Arg Ala Thr Leu Ala Met Leu Ala 210 215 220 Arg Phe Ala Thr Glu His Arg Val His Leu Ile Cys Asp Glu Ile Tyr 225 230 235 240 Ala Gly Ser Val Phe Ala Lys Pro Asp Phe Val Ser Ile Ala Glu Val 245 250 255 Ile Glu Arg Asp Val Pro Gly Cys Asn Arg Asp Leu Ile His Ile Ala 260 265 270 Tyr Ser Leu Ser Lys Asp Phe Gly Leu Pro Gly Phe Arg Val Gly Ile 275 280 285 Val Tyr Ser Tyr Asn Asp Asp Val Val Ala Cys Ala Arg Lys Met Ser 290 295 300 Ser Phe Gly Leu Val Ser Ser Gln Thr Gln His Phe Leu Ala Lys Met 305 310 315 320 Leu Ser Asp Ala Glu Phe Met Ala Arg Phe Leu Ala Glu Ser Ala Arg 325 330 335 Arg Leu Ala Ala Arg His Asp Arg Phe Val Ala Gly Leu Arg Glu Val 340 345 350 Gly Ile Ala Cys Leu Pro Gly Asn Ala Gly Leu Phe Ser Trp Met Asp 355 360 365 Leu Arg Gly Met Leu Arg Asp Lys Thr His Asp Ala Glu Leu Glu Leu 370 375 380

Trp Arg Val Ile Val His Lys Val Lys Leu Asn Val Ser Pro Gly Thr 385 390 395 400 Ser Phe His Cys Asn Glu Pro Gly Trp Phe Arg Val Cys His Ala Asn 405 410 415 Met Asp Asp Glu Thr Met Glu Val Ala Leu Asp Arg Ile Arg Arg Phe 420 425 430 Val Arg Gln His Gln His Lys Ala Lys Ala Glu Arg Trp Ala Ala Thr 435 440 445 Arg Pro Met Arg Leu Ser Leu Pro Arg Arg Gly Gly Ala Thr Ala Ser 450 455 460 His Leu Pro Ile Ser Ser Pro Met Ala Leu Leu Ser Pro Gln Ser Pro 465 470 475 480 Met Val His Ala Ser 485 <210> SEQ ID NO 8 <211> LENGTH: 482 <212> TYPE: PRT <213> ORGANISM: Zea mays <400> SEQUENCE: 8 Met Ile Ala Asp Glu Lys Pro Gln Pro Gln Leu Leu Ser Lys Lys Ala 1 5 10 15 Ala Cys Asn Ser His Gly Gln Asp Ser Ser Tyr Phe Leu Gly Trp Glu 20 25 30 Glu Tyr Glu Lys Asn Pro Tyr Asp Pro Val Ala Asn Pro Gly Gly Ile 35 40 45 Ile Gln Met Gly Leu Ala Glu Asn Gln Leu Ser Phe Asp Leu Leu Glu 50 55 60 Ala Trp Leu Glu Ala Asn Pro Asp Ala Leu Gly Leu Arg Arg Gly Gly 65 70 75 80 Ala Ser Val Phe Arg Glu Leu Ala Leu Phe Gln Asp Tyr His Gly Met 85 90 95 Pro Ala Phe Lys Asn Ala Leu Ala Arg Phe Met Ser Glu Gln Arg Gly 100 105 110 Tyr Arg Val Thr Phe Asp Pro Ser Asn Ile Val Leu Thr Ala Gly Ala 115 120 125 Thr Ser Ala Asn Glu Ala Leu Met Phe Cys Leu Ala Asp His Gly Asp 130 135 140 Ala Phe Leu Ile Pro Thr Pro Tyr Tyr Pro Gly Phe Asp Arg Asp Leu 145 150 155 160 Lys Trp Arg Thr Gly Ala Glu Ile Val Pro Val His Cys Thr Ser Gly 165 170 175 Asn Gly Phe Arg Leu Thr Arg Ala Ala Leu Asp Asp Ala Tyr Arg Arg 180 185 190 Ala Gln Lys Leu Arg Leu Arg Val Lys Gly Val Leu Ile Thr Asn Pro 195 200 205 Ser Asn Pro Leu Gly Thr Thr Ser Pro Arg Ala Asp Leu Glu Met Leu 210 215 220 Val Asp Phe Val Ala Ala Lys Gly Ile His Leu Val Ser Asp Glu Ile 225 230 235 240 Tyr Ser Gly Thr Val Phe Ala Asp Pro Gly Phe Val Ser Val Leu Glu 245 250 255 Val Val Ala Ala Arg Ala Ala Thr Asp Asp Gly Val Val Gly Val Gly 260 265 270 Pro Leu Ser Asp Arg Val His Val Val Tyr Ser Leu Ser Lys Asp Leu 275 280 285 Gly Leu Pro Gly Phe Arg Val Gly Ala Ile Tyr Ser Ser Asn Ala Gly 290 295 300 Val Val Ser Ala Ala Thr Lys Met Ser Ser Phe Gly Leu Val Ser Ser 305 310 315 320 Gln Thr Gln His Leu Leu Ala Ser Leu Leu Gly Asp Arg Asp Phe Thr 325 330 335 Arg Arg Tyr Ile Ala Glu Asn Thr Arg Arg Ile Arg Glu Arg Arg Glu 340 345 350 Gln Leu Ala Glu Gly Leu Ala Ala Val Gly Ile Glu Cys Leu Glu Ser 355 360 365 Asn Ala Gly Leu Phe Cys Trp Val Asn Met Arg Arg Leu Met Arg Ser 370 375 380 Arg Ser Phe Glu Gly Glu Met Glu Leu Trp Lys Lys Val Val Phe Glu 385 390 395 400 Val Gly Leu Asn Ile Ser Pro Gly Ser Ser Cys His Cys Arg Glu Pro 405 410 415 Gly Trp Phe Arg Val Cys Phe Ala Asn Met Ser Ala Lys Thr Leu Asp 420 425 430 Val Ala Leu Gln Arg Leu Gly Ala Phe Ala Glu Ala Ala Thr Ala Gly 435 440 445 Arg Arg Val Leu Ala Pro Ala Arg Ser Ile Ser Leu Pro Val Arg Phe 450 455 460 Ser Trp Ala Asn Arg Leu Thr Pro Gly Ser Ala Ala Asp Arg Lys Ala 465 470 475 480 Glu Arg <210> SEQ ID NO 9 <211> LENGTH: 486 <212> TYPE: PRT <213> ORGANISM: Zea mays <400> SEQUENCE: 9 Met Ala Gly Ser Ser Ala Glu Gln Leu Leu Ser Arg Ile Ala Ala Gly 1 5 10 15 Asp Gly His Gly Glu Asn Ser Ser Tyr Phe Asp Gly Trp Lys Ala Tyr 20 25 30 Asp Met Asn Pro Phe Asp Leu Arg His Asn Arg Asp Gly Val Ile Gln 35 40 45 Met Gly Leu Ala Glu Asn Gln Leu Ser Leu Asp Leu Ile Glu Gln Trp 50 55 60 Ser Val Asp His Pro Glu Ala Ser Ile Cys Thr Ala Gln Gly Ala Pro 65 70 75 80 Gln Phe Arg Arg Ile Ala Asn Phe Gln Asp Tyr His Gly Leu Pro Glu 85 90 95 Phe Arg Glu Ala Met Ala Lys Phe Met Gly Gln Val Arg Gly Gly Lys 100 105 110 Val Thr Phe Asp Pro Asp Arg Val Val Met Cys Gly Gly Ala Thr Gly 115 120 125 Ala Gln Asp Thr Leu Ala Phe Cys Leu Ala Asp Pro Gly Asp Ala Tyr 130 135 140 Leu Val Pro Thr Pro Tyr Tyr Pro Ala Phe Asp Arg Asp Cys Cys Trp 145 150 155 160 Arg Ser Gly Val Lys Leu Leu Pro Ile Glu Cys His Ser Ser Asn Asn 165 170 175 Phe Thr Leu Thr Arg Glu Ala Leu Val Ser Ala Tyr Asp Gly Ala Arg 180 185 190 Arg Gln Gly Val Arg Val Arg Gly Ile Leu Ile Thr Asn Pro Ser Asn 195 200 205 Pro Leu Gly Thr Thr Met Asp Arg Gly Thr Leu Ala Met Leu Ala Ala 210 215 220 Phe Ala Thr Glu Arg Arg Val His Leu Ile Cys Asp Glu Ile Tyr Ala 225 230 235 240 Gly Ser Val Phe Ala Lys Pro Gly Phe Val Ser Ile Ala Glu Val Ile 245 250 255 Glu Arg Gly Asp Ala Pro Gly Cys Asn Arg Asp Leu Val His Ile Ala 260 265 270 Tyr Ser Leu Ser Lys Asp Phe Gly Leu Pro Gly Phe Arg Val Gly Ile 275 280 285 Val Tyr Ser Tyr Asn Asp Asp Val Val Ala Cys Ala Arg Lys Met Ser 290 295 300 Ser Phe Gly Leu Val Ser Ser Gln Thr Gln His Phe Leu Ala Met Met 305 310 315 320 Leu Ala Asp Ala Glu Phe Met Ala Arg Phe Leu Ala Glu Ser Ala Arg 325 330 335 Arg Leu Ala Ala Arg His Asp Arg Phe Val Ala Gly Leu Arg Glu Val 340 345 350 Gly Ile Ala Cys Leu Pro Gly Asn Ala Gly Leu Phe Ser Trp Met Asp 355 360 365 Leu Arg Gly Met Leu Arg Glu Lys Thr His Asp Ala Glu Leu Glu Leu 370 375 380 Trp Arg Val Ile Val His Arg Val Lys Leu Asn Val Ser Pro Gly Thr 385 390 395 400 Ser Phe His Cys Asn Glu Pro Gly Trp Phe Arg Val Cys Tyr Ala Asn 405 410 415 Met Asp Asp Asp Thr Met Glu Val Ala Leu Asp Arg Ile Arg Arg Phe 420 425 430 Val Arg Gln His Gln His Ser Lys Ala Lys Ala Glu Arg Trp Ala Ala 435 440 445 Thr Arg Pro Leu Arg Leu Ser Leu Pro Arg Arg Gly Ala Thr Thr Ala 450 455 460 Ser His Leu Ala Ile Ser Ser Pro Leu Ala Leu Leu Ser Pro Gln Ser 465 470 475 480 Pro Met Val His Ala Ser 485 <210> SEQ ID NO 10 <211> LENGTH: 2120 <212> TYPE: DNA <213> ORGANISM: Zea mays <400> SEQUENCE: 10 atgaccatga ttacgccaag ctctaatacg actcactata gggaaagctg gtacgcctgc 60 aggtaccggt ccggaattcc cgggtcgacc cacgcgtccg cagcaagctc atccccttca 120 aaaccctccg gcagcccagc cagctagtgg tgatctctca gcagcgcgcc tgaacgtgtg 180 ctccctgcta aactctgcgc ctcggtaggc aaggaaaatt aaaccggtcg tcgtcagatt 240 aaatggccgg tagcagcgcg gagcagctcc tctccaggat cgccgccggc gatggccacg 300 gcgagaactc gtcctacttc gacgggtgga aggcctacga cacgaaccct ttcgacctgc 360 gccacaaccg cgacggcgtc atccagatgg gactcgccga gaaccaactg tcgctggacc 420 tgatcgagca atggagcgtg gaccacccgg aggcgtccat ctgcacggcg cagggcgcgc 480 cgcagttccg gaggatagcc aacttccagg actaccacgg cctgccggag ttcagagagg 540 cgatggccaa gttcatgggg caggtgaggg gcggcaaggt gacgttcgac cccgaccgcg 600 tcgtcatgtg cgggggagcc accggcgcgc aggacactct cgccttctgc ctcgctgacc 660

cgggcgacgc ctacctcgtg ccgacgcctt attacccagc tttcgaccgc gactgttgct 720 ggaggtcagg agtgaagctg ctgcccatcg aatgccacag ctcgaacaac ttcaccctca 780 ccagggaggc gctcgtgtcg gcctacgacg gcgcgcggag gcagggcgtc cgcgtcaggg 840 gcatcctcat caccaacccc tccaacccgc tgggcaccac aatggaccgc ggcacgctgg 900 cgatgctcgc cgcgttcgcc acagagcgcc gcgtccacct catctgcgac gagatctacg 960 cgggctccgt cttcgccaag ccgggcttcg tgagcatcgc cgaggtcatc gagcgcggcg 1020 acgccccggg ctgcaacagg gacctcgtcc acatcgcgta cagcctctcc aaggacttcg 1080 gcctcccggg cttccgcgtc ggcatcgtct actcctacaa cgacgacgtg gtggcctgcg 1140 cgcgcaagat gtccagcttc ggcctcgtct cgtcgcagac gcagcacttc ctggcgatga 1200 tgctcgccga cgcggagttc atggcacgct tcctcgcgga gagcgcgcgg cggctggcgg 1260 cgcgccacga ccgcttcgtc gcgggcctcc gcgaggtcgg catcgcgtgc ctgccgggca 1320 acgcgggcct cttctcgtgg atggacctgc ggggcatgct ccgggagagg acgcacgacg 1380 cggagctgga gctgtggcgg gtcatcgtac acagggtgaa gctcaacgtg tcgcccggca 1440 cgtcgttcca ctgcaacgag cccggctggt tccgcgtctg ctacgccaac atggacgacg 1500 acaccatgga ggtcgcgctc gaccggatcc gccgcttcgt gcgccagcac cagcacagca 1560 aggccaaggc cgagcgctgg gcggccacgc ggcccctccg cctcagcttg ccgcgccggg 1620 gagcaaccac cgcttcgcac ctcgccatcc ccagcccctt ggcgttgctg tcgccgcagt 1680 ccccgatggt ccacgccagc tagctagtca ccgagcgttc ggtaagactg gctgtagggt 1740 gtgccctcac ataactgcaa acaagtggac aaaaaatatt agacaagact aataaagggc 1800 attagtagct agcttgacat tacacagaga cgttgcacag gcgtcagcag gcgtcggcgg 1860 taagcagcta gtcaagcagg acgcatttgt cctcgatttt ttcgtgtata tatgttcttt 1920 tttctgtttt gccaaatcgc atgtatggtt tggtttaacg ttagtacacg gtagaataac 1980 gatcgggtat ggtaatttag acctcccgat caattgttgt tgaaaacctg tcacgtaact 2040 tcaggacaca gaaggcgtag ctcaagggtg aataaaagac cagtttacat atcaaaaaaa 2100 aaaaaaaaaa aaaaaaaaaa 2120 <210> SEQ ID NO 11 <211> LENGTH: 486 <212> TYPE: PRT <213> ORGANISM: Zea mays <400> SEQUENCE: 11 Met Ala Gly Ser Ser Ala Glu Gln Leu Leu Ser Arg Ile Ala Ala Gly 1 5 10 15 Asp Gly His Gly Glu Asn Ser Ser Tyr Phe Asp Gly Trp Lys Ala Tyr 20 25 30 Asp Thr Asn Pro Phe Asp Leu Arg His Asn Arg Asp Gly Val Ile Gln 35 40 45 Met Gly Leu Ala Glu Asn Gln Leu Ser Leu Asp Leu Ile Glu Gln Trp 50 55 60 Ser Val Asp His Pro Glu Ala Ser Ile Cys Thr Ala Gln Gly Ala Pro 65 70 75 80 Gln Phe Arg Arg Ile Ala Asn Phe Gln Asp Tyr His Gly Leu Pro Glu 85 90 95 Phe Arg Glu Ala Met Ala Lys Phe Met Gly Gln Val Arg Gly Gly Lys 100 105 110 Val Thr Phe Asp Pro Asp Arg Val Val Met Cys Gly Gly Ala Thr Gly 115 120 125 Ala Gln Asp Thr Leu Ala Phe Cys Leu Ala Asp Pro Gly Asp Ala Tyr 130 135 140 Leu Val Pro Thr Pro Tyr Tyr Pro Ala Phe Asp Arg Asp Cys Cys Trp 145 150 155 160 Arg Ser Gly Val Lys Leu Leu Pro Ile Glu Cys His Ser Ser Asn Asn 165 170 175 Phe Thr Leu Thr Arg Glu Ala Leu Val Ser Ala Tyr Asp Gly Ala Arg 180 185 190 Arg Gln Gly Val Arg Val Arg Gly Ile Leu Ile Thr Asn Pro Ser Asn 195 200 205 Pro Leu Gly Thr Thr Met Asp Arg Gly Thr Leu Ala Met Leu Ala Ala 210 215 220 Phe Ala Thr Glu Arg Arg Val His Leu Ile Cys Asp Glu Ile Tyr Ala 225 230 235 240 Gly Ser Val Phe Ala Lys Pro Gly Phe Val Ser Ile Ala Glu Val Ile 245 250 255 Glu Arg Gly Asp Ala Pro Gly Cys Asn Arg Asp Leu Val His Ile Ala 260 265 270 Tyr Ser Leu Ser Lys Asp Phe Gly Leu Pro Gly Phe Arg Val Gly Ile 275 280 285 Val Tyr Ser Tyr Asn Asp Asp Val Val Ala Cys Ala Arg Lys Met Ser 290 295 300 Ser Phe Gly Leu Val Ser Ser Gln Thr Gln His Phe Leu Ala Met Met 305 310 315 320 Leu Ala Asp Ala Glu Phe Met Ala Arg Phe Leu Ala Glu Ser Ala Arg 325 330 335 Arg Leu Ala Ala Arg His Asp Arg Phe Val Ala Gly Leu Arg Glu Val 340 345 350 Gly Ile Ala Cys Leu Pro Gly Asn Ala Gly Leu Phe Ser Trp Met Asp 355 360 365 Leu Arg Gly Met Leu Arg Glu Arg Thr His Asp Ala Glu Leu Glu Leu 370 375 380 Trp Arg Val Ile Val His Arg Val Lys Leu Asn Val Ser Pro Gly Thr 385 390 395 400 Ser Phe His Cys Asn Glu Pro Gly Trp Phe Arg Val Cys Tyr Ala Asn 405 410 415 Met Asp Asp Asp Thr Met Glu Val Ala Leu Asp Arg Ile Arg Arg Phe 420 425 430 Val Arg Gln His Gln His Ser Lys Ala Lys Ala Glu Arg Trp Ala Ala 435 440 445 Thr Arg Pro Leu Arg Leu Ser Leu Pro Arg Arg Gly Ala Thr Thr Ala 450 455 460 Ser His Leu Ala Ile Pro Ser Pro Leu Ala Leu Leu Ser Pro Gln Ser 465 470 475 480 Pro Met Val His Ala Ser 485 <210> SEQ ID NO 12 <211> LENGTH: 1173 <212> TYPE: DNA <213> ORGANISM: Zea mays <400> SEQUENCE: 12 ggccgccctt tttttttttt tttttttttt ttttttgata tgtaaactgg tcttttattc 60 acccttgagc tacgccttct gtgtcctgaa gttacgtgac aggttttcaa caacaattga 120 tcgggaggtc taaattacca tacccgatcg ttattctacc gtgtactaac gttaaaccaa 180 accatacatg cgatttggca aaacagaaaa aagaacatat atacacgaaa aaatcgagga 240 caaatgcgtc ctgcttgact agctgcttac cgccgacgcc tgctgacgcc tgtgcaacgt 300 ctctgtgtaa tgtcaagcta gctactaatg ccctttatta gtcttgtcta atattttttg 360 tccacttgtt tgcagttatg tgagggcaca ccctacagcc agtcttaccg aacgctcggt 420 gactagctag ctggcgtgga ccatcgggga ctgcggcgac agcaacgcca aggggctggg 480 gatggcgagg tgcgaagcgg tggttgctcc ccggcgcggc aagctgaggc ggaggggccg 540 cgtggccgcc cagcgctcgg ccttggcctt gctgtgctgg tgctggcgca cgaagcggcg 600 gatccggtcg agcgcgacct ccatggtgtc gtcgtccatg ttggcgtagc agacgcggaa 660 ccagccgggc tcgttgcagt ggaacgacgt gccgggcgac acgttgagct tcaccctgtg 720 tacgatgacc cgccacagct ccagctccgc gtcgtgcgtc ctctcccgga gcatgccccg 780 caggtccatc cacgagaaga ggcccgcgtt gcccggcagg cacgcgatgc cgacctcgcg 840 gaggcccgcg acgaagcggt cgtggcgcgc cgccagccgc cgcgcgctct ccgcgaggaa 900 gcgtgccatg aactccgcgt cggcgagcat catcgccagg aagtgctgcg tctgcgacga 960 gacgaggccg aagctggaca tcttgcgcgc gcaggccacc acgtcgtcgt tgtaggagta 1020 gacgatgccg acgcggaagc ccgggaggcc gaagtccttg gagaggctgt acgcgatgtg 1080 gacgaggtcc ctgttgcagc ccggggcgtc gccgcgctcg atgacctcgg cgatgctcac 1140 gaagcccggc ttggcgaaga cggagcccgc gta 1173 <210> SEQ ID NO 13 <211> LENGTH: 600 <212> TYPE: DNA <213> ORGANISM: Zea mays <400> SEQUENCE: 13 gatccgccgc ttcgtgcgcc agcaccagca cagcaaggcc aaggccgagc gctgggcggc 60 cacgcggccc ctccgcctca gcttgccgcg ccggggagca accaccgctt cgcacctcgc 120 catccccagc cccttggcgt tgctgtcgcc gcagtccccg atggtccacg ccagctagct 180 agtcaccgag cgttcggtaa gactggctgt agggtgtgcc ctcacataac tgcaaacaag 240 tggacaaaaa atattagaca agactaataa agggcattag tagctagctt gacattacac 300 agagacgttg cacaggcgtc agcaggcgtc ggcggtaagc agctagtcaa gcaggacgca 360 tttgtcctcg attttttcgt gtatatatgt tcttttttct gttttgccaa atcgcatgta 420 tggtttggtt taacgttagt acacggtaga ataacgatcg ggtatggtaa tttagacctc 480 ccgatcaatt gttgttgaaa acctgtcacg taacttcagg acacagaagg cgtagctcaa 540 gggtgaataa aagaccagtt tacatatcaa aaaaaaaaaa aaaaaaaaaa aaaaaagggc 600 <210> SEQ ID NO 14 <211> LENGTH: 701 <212> TYPE: DNA <213> ORGANISM: Zea mays <400> SEQUENCE: 14 tagcagacgc ggaaccagcc gggctcccgg cagtggcagg aggagcccgg ggagatgttg 60 agccccacct cgaagaccac cttcttccac agctccatct cgccctcgaa cgaccggctc 120 cgcatcaggc gccgcatgtt gacccagcag aagagccccg cgttgctctc caggcactcg 180 atgcccacgg ccgccaggcc ctccgccagc tgctcgcgcc gctccctgat ccgccgcgtg 240 ttctccgcga tgtacctccg cgtgaagtcc ctgtcgccca ggagcgacgc caggaggtgc 300 tgcgtctggg acgacaccag gccgaagctc gacatcttgg tggccgcgga gaccacgccg 360 gcgttggacg agtagatggc gcccacgcgg aaccccggga ggcccaggtc cttggacagg 420 ctgtacacca cgtgcacgcg gtccgacagc ggcccaacgc cgacgacgcc gtcgtccgtg 480

gcggcgcgcg cggccaccac ctcgaggacg ctcacgaagc ccgggtccgc gaagaccgtg 540 cccgagtata tctcgtcgct caccaggtgg atgcccttgg cggccacgaa gtccaccagc 600 atctccaggt cggcgcgcgg cgacgtggtg cccagcgggt tggaagggtt ggtgatgagc 660 acgcccttga cgcgcagccg cagcttctgc gcgcgccggt a 701 <210> SEQ ID NO 15 <211> LENGTH: 489 <212> TYPE: DNA <213> ORGANISM: Zea mays <400> SEQUENCE: 15 cgcgccgcca cggacgacgg cgtcgtcggc gttgggccgc tgtcggaccg cgtgcacgtg 60 gtgtacagcc tgtccaagga cctgggcctc ccggggttcc gcgtgggcgc catctactcg 120 tccaacgccg gcgtggtctc cgcggccacc aagatgtcga gcttcggcct ggtgtcgtcc 180 cagacgcagc acctcctggc gtcgctcctg ggcgacaggg acttcacgcg gaggtacatc 240 gcggagaaca cgcggcggat cagggagcgg cgcgagcagc tggcggaggg cctggcggcc 300 gtgggcatcg agtgcctgga gagcaacgcg gggctcttct gctgggtcaa catgcggcgc 360 ctgatgcgga gccggtcgtt cgagggcgag atggagctgt ggaagaaggt ggtcttcgag 420 gtggggctca acatctcccc gggctcctcc tgccactgcc gggagcccgg ctggttccgc 480 gtctgctaa 489 <210> SEQ ID NO 16 <211> LENGTH: 1467 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 16 atgtctcagg gtgcatgtga gaatcaactt ctatccaaat tagctttgag tgacaaacat 60 ggagaagctt cgccgtactt ccatggctgg aaagcttacg acaataatcc ttttcatcca 120 actcataatc cacaaggagt tattcaaatg ggtctcgccg aaaatcaact ttgttcagat 180 ttgatcaaag aatggataaa ggaaaatcca caggcatcta tttgtacggc ggagggaatt 240 gactctttct ccgacattgc tgtttttcaa gattatcacg gtctcaaaca atttagacag 300 gcgattgcga cgtttatgga gagagcgaga ggcgggcggg tgaggtttga ggcggagagg 360 gtggtgatga gcggaggagc caccggagca aatgagacga tcatgttctg tcttgctgat 420 cccggcgacg cttttctcgt ccctactcct tattatgctg cattcgatag agacttaagg 480 tggagaactg gagttagaat aatccctgtg gagtgtagca gctcaaacaa tttccagatt 540 acaaaacaag ccctagaatc agcgtacctt aaggcccaag aaaccggtat caagatcaaa 600 ggcctgatca tctcaaaccc tcttggaaca tctctcgatc gagaaactct tgaaagcctt 660 gtcagcttca tcaacgacaa gcaaattcac ttagtatgcg acgaaatata cgcagcaacg 720 gtttttgcgg aaccgggatt catcagtgtt gcagagatca tccaagagat gtattatgtt 780 aaccgtgatc tgattcatat cgtctacagt ctttcaaagg acatgggtct tcccggtttc 840 cgggttggag tggtttactc ttacaacgat gttgttgtgt cctgcgcaag gaggatgtcg 900 agttttggat tggtctcgtc gcagacacaa agttttctag ctgctatgtt gtctgatcag 960 agttttgtcg ataactttct tgttgaggtt tcgaaaagag tagcgaagag acaccatatg 1020 ttcacggaag ggcttgaaga gatggggatt tcttgcttga gaagcaacgc gggtttattc 1080 gttttgatgg atttgaggca tatgcttaag gatcagacat ttgattccga aatggcgctt 1140 tggcgagtta ttatcaataa ggtcaagatt aatgtctctc ctggctcgtc gtttcactgc 1200 tctgagcctg gttggttccg agtctgcttt gctaatatgg acgaagacac actccaaatt 1260 gcacttgaac gaatcaaaga ctttgtggtt ggagacagag ccaacaagaa caagaactgt 1320 aactgcattt gcaacaacaa aagggagaac aagaaacgta agagttttca aaagaatctc 1380 aagctgagtt tatcttcgat gaggtacgag gaacatgtta ggtcaccaaa gttgatgtct 1440 cctcattcac cattgcttcg agcttaa 1467 <210> SEQ ID NO 17 <211> LENGTH: 1920 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 17 aaaacttgtc ataagatcaa tatcgatacc cccaaaaaaa aaaaaaaaca gctacaaaga 60 agtgagaatt gacacagcaa atgggtcttc cgggaaaaaa taaaggtgca gttttgtcga 120 agatagcgac taacaatcaa cacggagaga actcagagta ctttgatgga tggaaagctt 180 acgacaaaga tccttttcat ctttcccgta acccccatgg gatcatccaa atgggtcttg 240 cagagaatca gctttgctta gatttgatca aagattgggt caaagagaac ccagaagctt 300 ctatttgcac ccttgaaggt attcatcagt ttagcgacat cgctaatttc caagactacc 360 atggtcttaa gaagtttaga caggcaattg cacatttcat gggaaaagct agaggtggaa 420 gagtgacttt tgatccggag agggtggtta tgagcggagg agccaccgga gccaatgaaa 480 caatcatgtt ctgccttgcg gatcccggcg acgttttcct cattccctcc ccgtactatg 540 ccgcatttga tagagacttg aggtggcgga caggtgtcga gataatcccg gttccttgtt 600 caagctccga caatttcaaa ttaaccgttg acgccgcgga atgggcttat aaaaaagccc 660 aagagtccaa taaaaaagtc aaaggtctga ttttgaccaa cccatcaaat ccactcggta 720 caatgttgga taaggacaca ctcacgaact tggtccggtt tgtcacgagg aagaacattc 780 acctagtcgt cgacgagatc tacgccgcca cagtcttcgc cggaggagat ttcgtgagcg 840 ttgctgaggt ggtcaatgat gtggacatct ccgaagtcaa cgttgacttg attcacattg 900 tctatagtct ttctaaagat atgggacttc ctggttttag agtcgggata gtctattctt 960 tcaatgactc ggtcgtgtct tgcgcaagaa aaatgtcaag tttcggactt gtttcgtctc 1020 agacacaact catgcttgct tcgatgttgt ccgatgatca gtttgtggat aattttctaa 1080 tggaaagctc gagaaggttg gggataaggc ataaagtttt taccacgggg atcaagaaag 1140 cagatattgc ttgtttgaca agcaacgctg gtttatttgc gtggatggat ttgagacatc 1200 tactgagaga tcgtaactcg tttgaatctg agatcgagct ttggcatata atcatcgata 1260 gagttaagct caatgtgtct cctggctctt ccttccgttg cacggaacct ggatggttta 1320 ggatttgctt tgccaacatg gacgatgata ctctccatgt ggcgcttgga cggatccaag 1380 atttcgtgtc taagaacaag aacaagatcg tcgagaaagc atctgaaaat gatcaggtaa 1440 tccagaacaa gagtgctaaa aagctgaaat ggacgcagac caatcttcga ctaagtttcc 1500 gacgacttta cgaggatggt ctctcgtctc cagggataat gtcaccacac tcacctcttc 1560 tccgagcatg aaaatcttaa ggcataacgt ctgagagatt ggattaactc gtccgcgttt 1620 cactccgtgt taattaatct taaattagta agtgattaag taaatgtttt ttctttcatt 1680 gtaagattgg aataattcaa tttcgacatt agggttgttt ttgacggcca gcttttttcc 1740 tggggtcaaa tggtaacttt taagatttta tgtgtttgat tctgtttctt ttttccgctt 1800 aggattttaa tcgatggatt gtcctagtgg tgctggtgtg tagcatatat gcttttctta 1860 tatgtttttg tgtgtaataa atgaaacatt gtcttttgat aaggatcacc agagtttatt 1920 <210> SEQ ID NO 18 <211> LENGTH: 1735 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 18 accttttttt cttcttttca agtcaagtta aatacttaat aacacatttt tctaaacttc 60 ttacagcttt gcttagattt gatcaaagat tgggtcaaag agaacccaga agcttctatt 120 tgcacccttg aaggtattca tcagtttagc gacatcgcta atttccaaga ctaccatggt 180 cttaagaagt ttagacaggc aattgcacat ttcatgggaa aagctagagg tggaagagtg 240 acttttgatc cggagagggt ggttatgagc ggaggagcca ccggagccaa tgaaacaatc 300 atgttctgcc ttgcggatcc cggcgacgtt ttcctcattc cctccccgta ctatgccgca 360 tttgatagag acttgaggtg gcggacaggt gtcgagataa tcccggttcc ttgttcaagc 420 tccgacaatt tcaaattaac cgttgacgcc gcggaatggg cttataaaaa agcccaagag 480 tccaataaaa aagtcaaagg tctgattttg accaacccat caaatccact cggtacaatg 540 ttggataagg acacactcac gaacttggtc cggtttgtca cgaggaagaa cattcaccta 600 gtcgtcgacg agatctacgc cgccacagtc ttcgccggag gagatttcgt gagcgttgct 660 gaggtggtca atgatgtgga catctccgaa gtcaacgttg acttgattca cattgtctat 720 agtctttcta aagatatggg acttcctggt tttagagtcg ggatagtcta ttctttcaat 780 gactcggtcg tgtcttgcgc aagaaaaatg tcaagtttcg gacttgtttc gtctcagaca 840 caactcatgc ttgcttcgat gttgtccgat gatcagtttg tggataattt tctaatggaa 900 agctcgagaa ggttggggat aaggcataaa gtttttacca cggggatcaa gaaagcagat 960 attgcttgtt tgacaagcaa cgctggttta tttgcgtgga tggatttgag acatctactg 1020 agagatcgta actcgtttga atctgagatc gagctttggc atataatcat cgatagagtt 1080 aagctcaatg tgtctcctgg ctcttccttc cgttgcacgg aacctggatg gtttaggatt 1140 tgctttgcca acatggacga tgatactctc catgtggcgc ttggacggat ccaagatttc 1200 gtgtctaaga acaagaacaa gatcgtcgag aaagcatctg aaaatgatca ggtaatccag 1260 aacaagagtg ctaaaaagct gaaatggacg cagaccaatc ttcgactaag tttccgacga 1320 ctttacgagg atggtctctc gtctccaggg ataatgtcac cacactcacc tcttctccga 1380 gcatgaaaat cttaaggcat aacgtctgag agattggatt aactcgtccg cgtttcactc 1440 cgtgttaatt aatcttaaat tagtaagtga ttaagtaaat gttttttctt tcattgtaag 1500 attggaataa ttcaatttcg acattagggt tgtttttgac ggccagcttt tttcctgggg 1560 tcaaatggta acttttaaga ttttatgtgt ttgattctgt ttcttttttc cgcttaggat 1620 tttaatcgat ggattgtcct agtggtgctg gtgtgtagca tatatgcttt tcttatatgt 1680 ttttgtgtgt aataaatgaa acattgtctt ttgataagga tcaccagagt ttatt 1735 <210> SEQ ID NO 19 <211> LENGTH: 2003 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 1492 <223> OTHER INFORMATION: n = A,T,C or G <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 1493 <223> OTHER INFORMATION: m = A,T,C or G <400> SEQUENCE: 19 atgggtcttc cgggaaaaaa taaaggtgca gttttgtcga agatagcgac taacaatcaa 60 cacggagaga actcagagta ctttgatgga tggaaagctt acgacaaaga tccttttcat 120 ctttcccgta acccccatgg gatcatccaa atgggtcttg cagagaatca gctttgctta 180

gatttgatca aagattgggt caaagagaac ccagaagctt ctatttgcac ccttgaaggt 240 attcatcagt ttagcgacat cgctaatttc caagactacc atggtcttaa gaagtttaga 300 caggcaattg cacatttcat gggaaaagct agaggtggaa gagtgacttt tgatccggag 360 agggtggtta tgagcggagg agccaccgga gccaatgaaa caatcatgtt ctgccttgcg 420 gatcccggcg acgttttcct cattccctcc ccgtactatg ccgcatttga tagagacttg 480 aggtggcgga caggtgtcga gataatcccg gttccttgtt caagctccga caatttcaaa 540 ttaaccgttg acgccgcgga atgggcttat aaaaaagccc aagagtccaa taaaaaagtc 600 aaaggtctga ttttgaccaa cccatcaaat ccactcggta caatgttgga taaggacaca 660 ctcacgaact tggtccggtt tgtcacgagg aagaacattc acctagtcgt cgacgagatc 720 tacgccgcca cagtcttcgc cggaggagat ttcgtgagcg ttgctgaggt ggtcaatgat 780 gtggacatct ccgaagtcaa cgttgacttg attcacattg tctatagtct ttctaaagat 840 atgggacttc ctggttttag agtcgggata gtctattctt tcaatgactc ggtcgtgtct 900 tgcgcaagaa aaatgtcaag tttcggactt gtttcgtctc agacacaact catgcttgct 960 tcgatgttgt ccgatgatca gtttgtggat aattttctaa tggaaagctc gagaaggttg 1020 gggataaggc ataaagtttt taccacgggg atcaagaaag cagatattgc ttgtttgaca 1080 agcaacgctg gtttatttgc gtggatggat ttgagacatc tactgagaga tcgtaactcg 1140 tttgaatctg agatcgagct ttggcatata atcatcgata gagttaagct caatgtgtct 1200 cctggctctt ccttccgttg cacggaacct ggatggttta ggatttgctt tgccaacatg 1260 gacgatgata ctctccatgt ggcgcttgga cggatccaag atttcgtgtc taagaacaag 1320 aacaagatcg tcgagaaagc atctgaaaat gatcaggtaa tccagaacaa gagtgctaaa 1380 aagctgaaat ggacgcagac caatcttcga ctaagtttcc gacgacttta cgaggatggt 1440 ctctcgtctc cagggataat gtcaccacac tcacctcttc tccgagcatg anmacsatgt 1500 ctcagggtgc atgtgagaat caacttctat ccaaattagc tttgagtgac aaacatggag 1560 aagcttcgcc gtacttccat ggctggaaag cttacgacaa taatcctttt catccaactc 1620 ataatccaca aggagttatt caaatgggtc tcgccgaaaa tcaactttgt tcagatttga 1680 tcaaagaatg gataaaggaa aatccacatg catctatttg tacggcggag ggaattgact 1740 ctttctccga cattgctgtt tttcaagatt atcacggtct caaacaattt agacaggcga 1800 ttgcgacgtt tatggagaga gcgagaggcg ggcgggtgag gtttgaggcg gagagggtgg 1860 tgatgagcgg aggagccacc ggagcaaatg agacgatcat gttctgtctt gctgatcccg 1920 gcgacgcttt tctcgtccct actccttatt atgctgcgta cagagagaaa gagaattact 1980 tgagacttgt gagccctttg tga 2003 <210> SEQ ID NO 20 <211> LENGTH: 1425 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 20 atggttcaat tgtcaagaaa agctacatgc aacagccatg gccaagtctc ttcgtatttc 60 cttggttggg aagagtacga gaagaatcct tacgacgtta ccaagaaccc tcaaggcatt 120 atccagatgg gtcttgcgga aaatcagcta tgctttgatc tactagagtc atggcttgca 180 caaaacacag acgcagcctg tttcaagaga gatggccagt ctgttttccg ggaactcgct 240 ctctttcaag actaccatgg cctctcttcc ttcaaaaatg cctttgctga tttcatgtca 300 gaaaatagag gaaatcgagt ttcttttgat tcaaacaacc ttgtgctcac tgctggagcc 360 acttccgcaa acgagactct aatgttttgt cttgcagatc ccggtgacgc tttcttgctt 420 cccacgccat attatccagg gtttgatagg gatctaaaat ggcgaaccgg ggttgagatt 480 gtaccaatcc aaagctcaag tactaacggg tttcgcataa cgaaacttgc actcgaagaa 540 gcctacgagc aagccaagaa gcttgaccta aacgtcaaag gaatactcat caccaaccca 600 tctaaccctt tgggtacgac aacaacccaa accgaactca acattctatt tgatttcatc 660 accaagaata agaatataca tttagtaagt gacgagatat attcgggcac agtattcaac 720 tcttcagaat tcatcagcgt catggagatt ctaaaaaata atcaactcga aaacaccgat 780 gttttgaacc gagtccacat tgtttgtagc ttatctaaag atctaggcct ccctggtttt 840 agagttggag ccatttactc caatgacaaa gatgtcatct ctgccgctac aaaaatgtca 900 agtttcggcc ttgtctcctc ccagacacaa tacctactat cctcattatt atctgacaag 960 aagttcacta agaactacct tagagagaac caaaaacggc tcaagaacag acagagaaag 1020 ctcgtgttgg gtctagaggc catcgggatc aaatgtctga agagtaatgc gggactcttt 1080 tgttgggtcg acatgagacc tctccttaga tctaaaacgt tcgaagcgga aatggatctt 1140 tggaagaaga ttgtttacga agtgaagctc aacatctctc ctggttcgtc gtgccattgt 1200 gaagaaccgg gttggtttag agtttgtttc gcgaacatga ttgatgagac attaaagctt 1260 gctttaaaga gattgaagat gttggttgat gatgaaaact caagtagaag atgccaaaag 1320 agtaaaagcg aaagactaaa cggttcgagg aagaagacga tgtcaaatgt ctctaactgg 1380 gttttccgac tatcgtttca cgaccgtgag gctgaggaac gatag 1425 <210> SEQ ID NO 21 <211> LENGTH: 1425 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 21 atggttcaat tgtcaagaaa agctacatgc aacagccatg gccaagtctc ttcgtatttc 60 cttggttggg aagagtacga gaagaatcct tacgacgtta ccaagaaccc tcaaggcatt 120 atccagatgg gtcttgcgga aaatcagcta tgctttgatc tactagagtc atggcttgca 180 caaaacacag acgcagcctg tttcaagaga gatggccagt ctgttttccg ggaactcgct 240 ctctttcaag actaccatgg cctctcttcc ttcaaaaatg cctttgctga tttcatgtca 300 gaaaatagag gaaatcgagt ttcttttgat tcaaacaacc ttgtgctcac tgctggagcc 360 acttccgcaa acgagactct aatgttttgt cttgcagatc ccggtgacgc tttcttgctt 420 cccacgccat attatccagg gtttgatagg gatctaaaat ggcgaaccgg ggttgagatt 480 gtaccaatcc aaagctcaag tactaacggg tttcgcataa cgaaacttgc actcgaagaa 540 gcctacgagc aagccaagaa gcttgaccta aacgtcaaag gaatactcat caccaaccca 600 tctaaccctt tgggtacgac aacaacccaa accgaactca acattctatt tgatttcatc 660 accaagaata agaatataca tttagtaagt gacgagatat attcgggcac agtattcaac 720 tcttcagaat tcatcagcgt catggagatt ctaaaaaata atcaactcga aaacaccgat 780 gttttgaacc gagtccacat tgtttgtagc ttatctaaag atctaggcct ccctggtttt 840 agagttggag ccatttactc caatgacaaa gatgtcatct ctgccgctac aaaaatgtca 900 agtttcggcc ttgtctcctc ccagacacaa tacctactat cctcattatt atctgacaag 960 aagttcacta agaactacct tagagagaac caaaaacggc tcaagaacag acagagaaag 1020 ctcgtgttgg gtctagaggc catcgggatc aaatgtctga agagtaatgc gggactcttt 1080 tgttgggtcg acatgagacc tctccttaga tctaaaacgt tcgaagcgga aatggatctt 1140 tggaagaaga ttgtttacga agtgaagctc aacatctctc ctggttcgtc gtgccattgt 1200 gaagaaccgg gttggtttag agtttgtttc gcgaacatga ttgatgagac attaaagctt 1260 gctttaaaga gattgaagat gttggttgat gatgaaaact caagtagaag atgccaaaag 1320 agtaaaagcg aaagactaaa cggttcgagg aagaagacga tgtcaaatgt ctctaactgg 1380 gttttccgac tatcgtttca cgaccgtgag gctgaggaac gatag 1425 <210> SEQ ID NO 22 <211> LENGTH: 1888 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 22 acatctcact cttcaccaac ttaaacccta attcaagatc tcttcttttc gttctctcct 60 tcacccacat tagtcttctc tacgaccaaa atctcttgac tttaaaaaca gagaatgaaa 120 cagctttcga caaaagtgac aagcaatggt catggacaag actcatccta cttcttggga 180 tgggaagagt acgagaagaa tccttatgat gagatcaaga accctaatgg gatgatccag 240 atgggtctag ccgaaaacca gctatgtttc gatctaatcg agtcatggtt aactaagaac 300 ccagacgcgg caagtctcaa gaggaacggt caatccattt tcagagagct tgctctattt 360 caagactatc atggcatgcc tgaattcaaa aaagctatgg ctgagtttat ggaagagata 420 agaggaaacc gtgtcacgtt cgatccaaaa aagattgttt tagcggctgg ttcgacatct 480 gcgaatgaga ctctcatgtt ttgccttgca gagcctggcg atgctttcct tttgcctact 540 ccttactatc ctggatttga tagagatctt aaatggagaa ccggagcaga gatagtaccc 600 attcactgct caagctctaa tggcttccaa atcacggaat cagctctgca acaagcttac 660 caacaagccc agaaacttga tctcaaagtc aaaggagttc ttgtcacgaa tccatctaac 720 ccacttggca ctgcgttgac cagacgtgaa cttaaccttc tcgttgactt catcacttcc 780 aagaacattc atctcattag cgacgagatc tattcaggca ctatgttcgg gtttgaacag 840 ttcataagcg taatggatgt cttgaaagac aagaaactcg aagacacgga ggtttcaaaa 900 cgagtccacg tcgtttatag cctttctaaa gatctgggac ttcctggttt ccgtgtggga 960 gcgatctact ccaacgacga aatgatcgtt tcagcagcta caaaaatgtc aagttttggt 1020 cttgtttctt ctcagacaca ataccttctc tctgcattgc tctccgacaa gaagttcact 1080 agccaatacc tcgaagagaa ccagaaacga ctcaagtcca gacagagacg cctcgtgtct 1140 ggtcttgagt ctgcagggat tacttgcctg agaagcaacg cgggtttgtt ctgttgggtc 1200 gacatgagac accttttgga cacaaacaca tttgaagcag agcttgacct ctggaaaaag 1260 attgtttaca acgtgaaact aaacatatca cccggttctt catgtcactg caccgaaccg 1320 ggttggttta gggtttgttt cgctaatatg agcgaggaca cactcgattt ggccttgaag 1380 aggctcaaaa ctttcgtaga atccacagac tgtggacgaa tgatatcaag aagcagccat 1440 gaaaggctca agagtttgag gaagaagaca gtctctaact gggttttccg ggtttcatgg 1500 accgatcgtg tacctgatga acgatgaaat tattcatctc cctaagtttg agacgacgaa 1560 caaaagaaaa cttcacggtt ttttcttctt ctttatttcc ttcatttttt atattttggg 1620 aaagtatttt taattttcca agatatctat aatcatatca ttatatatgt aatatttttt 1680 ttaatgtttg ggtgagtctt taatttatgc aatttttcgg gtgtaaaatt gttactatgt 1740 gttattatat gtttttaatg cactcaatcc gaatgtggat ttgcagtggc tatatatata 1800 aataaatata tatcccgttg taattttagt gaaacgtttg tgtgtattgt acccatatat 1860 aaaaatgtaa ttcactcgaa aaaaaaaa 1888 <210> SEQ ID NO 23 <211> LENGTH: 1888 <212> TYPE: DNA

<213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 23 acatctcact cttcaccaac ttaaacccta attcaagatc tcttcttttc gttctctcct 60 tcacccacat tagtcttctc tacgaccaaa atctcttgac tttaaaaaca gagaatgaaa 120 cagctttcga caaaagtgac aagcaatggt catggacaag actcatccta cttcttggga 180 tgggaagagt acgagaagaa tccttatgat gagatcaaga accctaatgg gatgatccag 240 atgggtctag ccgaaaacca gctatgtttc gatctaatcg agtcatggtt aactaagaac 300 ccagacgcgg caagtctcaa gaggaacggt caatccattt tcagagagct tgctctattt 360 caagactatc atggcatgcc tgaattcaaa aaagctatgg ctgagtttat ggaagagata 420 agaggaaacc gtgtcacgtt cgatccaaaa aagattgttt tagcggctgg ttcgacatct 480 gcgaatgaga ctctcatgtt ttgccttgca gagcctggcg atgctttcct tttgcctact 540 ccttactatc ctggatttga tagagatctt aaatggagaa ccggagcaga gatagtaccc 600 attcactgct caagctctaa tggcttccaa atcacggaat cagctctgca acaagcttac 660 caacaagccc agaaacttga tctcaaagtc aaaggagttc ttgtcacgaa tccatctaac 720 ccacttggca ctgcgttgac cagacgtgaa cttaaccttc tcgttgactt catcacttcc 780 aagaacattc atctcattag cgacgagatc tattcaggca ctatgttcgg gtttgaacag 840 ttcataagcg taatggatgt cttgaaagac aagaaactcg aagacacgga ggtttcaaaa 900 cgagtccacg tcgtttatag cctttctaaa gatctgggac ttcctggttt ccgtgtggga 960 gcgatctact ccaacgacga aatgatcgtt tcagcagcta caaaaatgtc aagttttggt 1020 cttgtttctt ctcagacaca ataccttctc tctgcattgc tctccgacaa gaagttcact 1080 agccaatacc tcgaagagaa ccagaaacga ctcaagtcca gacagagacg cctcgtgtct 1140 ggtcttgagt ctgcagggat tacttgcctg agaagcaacg cgggtttgtt ctgttgggtc 1200 gacatgagac accttttgga cacaaacaca tttgaagcag agcttgacct ctggaaaaag 1260 attgtttaca acgtgaaact aaacatatca cccggttctt catgtcactg caccgaaccg 1320 ggttggttta gggtttgttt cgctaatatg agcgaggaca cactcgattt ggccttgaag 1380 aggctcaaaa ctttcgtaga atccacagac tgtggacgaa tgatatcaag aagcagccat 1440 gaaaggctca agagtttgag gaagaagaca gtctctaact gggttttccg ggtttcatgg 1500 accgatcgtg tacctgatga acgatgaaat tattcatctc cctaagtttg agacgacgaa 1560 caaaagaaaa cttcacggtt ttttcttctt ctttatttcc ttcatttttt atattttggg 1620 aaagtatttt taattttcca agatatctat aatcatatca ttatatatgt aatatttttt 1680 ttaatgtttg ggtgagtctt taatttatgc aatttttcgg gtgtaaaatt gttactatgt 1740 gttattatat gtttttaatg cactcaatcc gaatgtggat ttgcagtggc tatatatata 1800 aataaatata tatcccgttg taattttagt gaaacgtttg tgtgtattgt acccatatat 1860 aaaaatgtaa ttcactcgaa aaaaaaaa 1888 <210> SEQ ID NO 24 <211> LENGTH: 1413 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 24 atgaaacagc tttcgacaaa agtgacaagc aatggtcatg gacaagactc atcctacttc 60 ttgggatggg aagagtacga gaagaatcct tatgatgaga tcaagaaccc taatgggatg 120 atccagatgg gtctagccga aaaccagcta tgtttcgatc taatcgagtc atggttaact 180 aagaacccag acgcggcaag tctcaagagg aacggtcaat ccattttcag agagcttgct 240 ctatttcaag actatcatgg catgcctgaa ttcaaaaaag ctatggctga gtttatggaa 300 gagataagag gaaaccgtgt cacgttcgat ccaaaaaaga ttgttttagc ggctggttcg 360 acatctgcga atgagactct catgttttgc cttgcagagc ctggcgatgc tttccttttg 420 cctactcctt actatcctgg atttgataga gatcttaaat ggagaaccgg agcagagata 480 gtacccattc actgctcaag ctctaatggc ttccaaatca cggaatcagc tctgcaacaa 540 gcttaccaac aagcccagaa acttgatctc aaagtcaaag gagttcttgt cacgaatcca 600 tctaacccac ttggcactgc gttgaccaga cgtgaactta accttctcgt tgacttcatc 660 acttccaaga acattcatct cattagcgac gagatctatt caggcactat gttcgggttt 720 gaacagttca taagcgtaat ggatgtcttg aaagacaaga aactcgaaga cacggaggtt 780 tcaaaacgag tccacgtcgt ttatagcctt tctaaagatc tgggacttcc tggtttccgt 840 gtgggagcga tctactccaa cgacgaaatg atcgtttcag cagctacaaa aatgtcaagt 900 tttggtcttg tttcttctca gacacaatac cttctctctg cattgctctc cgacaagaag 960 ttcactagcc aatacctcga agagaaccag aaacgactca agtccagaca gagacgcctc 1020 gtgtctggtc ttgagtctgc agggattact tgcctgagaa gcaacgcggg tttgttctgt 1080 tgggtcgaca tgagacacct tttggacaca aacacatttg aagcagagct tgacctctgg 1140 aaaaagattg tttacaacgt gaaactaaac atatcacccg gttcttcatg tcactgcacc 1200 gaaccgggtt ggtttagggt ttgtttcgct aatatgagcg aggacacact cgatttggcc 1260 ttgaagaggc tcaaaacttt cgtagaatcc acagactgtg gacgaatgat atcaagaagc 1320 agccatgaaa ggctcaagag tttgaggaag aagacagtct ctaactgggt tttccgggtt 1380 tcatggaccg atcgtgtacc tgatgaacga tga 1413 <210> SEQ ID NO 25 <211> LENGTH: 1877 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 25 acatctcact cttcaccaac ttaaacccta attcaagatc tcttcttttc gttctctcct 60 tcacccacat tagtcttctc tacgaccaaa atctcttgac tttaaaaaca gagaatgaaa 120 cagctttcga caaaagtgac aagcaatggt catggacaag actcatccta cttcttggga 180 tgggaagagt acgagaagaa tccttatgat gagatcaaga accctaatgg gatgatccag 240 atgggtctag ccgaaaacca gctatgtttc gatctaatcg agtcatggtt aactaagaac 300 ccagacgcgg caagtctcaa gaggaacggt caatccattt tcagagagct tgctctattt 360 caagactatc atggcatgcc tgaattcaaa aaagctatgg ctgagtttat ggaagagata 420 agaggaaacc gtgtcacgtt cgatccaaaa aagattgttt tagcggctgg ttcgacatct 480 gcgaatgaga ctctcatgtt ttgccttgca gagcctggcg atgctttcct tttgcctact 540 ccttactatc ctggatttga tagagatctt aaatggagaa ccggagcaga gatagtaccc 600 attcactgct caagctctaa tggcttccaa atcacggaat cagctctgca acaagcttac 660 caacaagccc agaaacttga tctcaaagtc aaaggagttc ttgtcacgaa tccatctaac 720 ccacttggca ctgcgttgac cagacgtgaa cttaaccttc tcgttgactt catcacttcc 780 aagaacattc atctcattag cgacgagatc tattcaggca ctatgttcgg gtttgaacag 840 ttcataagcg taatggatgt cttgaaagac aagaaactcg aagacacgga ggtttcaaaa 900 cgagtccacg tcgtttatag cctttctaaa gatctgggac ttcctggttt ccgtgtggga 960 gcgatctact ccaacgacga aatgatcgtt tcagcagcta caaaaatgtc aagttttggt 1020 cttgtttctt ctcagacaca ataccttctc tctgcattgc tctccgacaa gaagttcact 1080 agccaatacc tcgaagagaa ccagaaacga ctcaagtcca gacagagacg cctcgtgtct 1140 ggtcttgagt ctgcagggat tacttgcctg agaagcaacg cgggtttgtt ctgttgggtc 1200 gacatgagac accttttgga cacaaacaca tttgaagcag agcttgacct ctggaaaaag 1260 attgtttaca acgtgaaact aaacatatca cccggttctt catgtcactg caccgaaccg 1320 ggttggttta gggtttgttt cgctaatatg agcgaggaca cactcgattt ggccttgaag 1380 aggctcaaaa ctttcgtaga atccacagac tgtggacgaa tgatatcaag aagcagccat 1440 gaaaggctca agagtttgag gaagaagaca gtctctaact gggttttccg ggtttcatgg 1500 accgatcgtg tacctgatga acgatgaaat tattcatctc cctaagtttg agacgacgaa 1560 caaaagaaaa cttcacggtt ttttcttctt ctttatttcc ttcatttttt atattttggg 1620 aaagtatttt taattttcca agatatctat aatcatatca ttatatatgt aatatttttt 1680 ttaatgtttg ggtgagtctt taatttatgc aatttttcgg gtgtaaaatt gttactatgt 1740 gttattatat gtttttaatg cactcaatcc gaatgtggat ttgcagtggc tatatatata 1800 aataaatata tatcccgttg taattttagt gaaacgtttg tgtgtattgt acccatatat 1860 aaaaatgtaa ttcactc 1877 <210> SEQ ID NO 26 <211> LENGTH: 1753 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 26 atcaaaccat aacttccaaa tctcaacaga accaaaaaca aaagaaacct atattaaaga 60 agaaacaaaa aatggtggct tttgcaacag agaagaagca agatctgaat ctattgtcta 120 aaatcgcctc cggtgacggt cacggcgaga attcctctta tttcgatggt tggaaagctt 180 atgaagaaaa cccatttcac ccaattgata gacctgacgg agttattcaa atgggtctcg 240 ctgaaaatca gctttgtgga gatttgatgc gtaaatgggt tttaaaacat ccagaagctt 300 cgatttgtac atcagaaggt gtgaatcaat tcagtgacat tgccattttt caagattatc 360 atggcttgcc tgaattcaga caagctgtag cgaaatttat ggagaagact agaaataaca 420 aagttaagtt tgatcctgac cggattgtta tgagcggcgg cgcaaccgga gcacacgaga 480 cggttgcttt ctgtttagct aatcccggcg atggtttctt agttccaacc ccttattatc 540 cagggtttga tagagatttg agatggagaa ccggagtgaa tcttgtaccg gttacttgtc 600 atagctctaa tgggttcaag attacggtgg aagccttgga agctgcttac gaaaacgcga 660 gaaaatcgaa tattccggtt aagggtttac ttgtaaccaa tccttcaaac ccgcttggta 720 cgacgttaga ccgggaatgt ttgaagtctc ttgttaactt cactaatgac aaagggattc 780 atcttattgc tgatgagatt tatgctgcta ctacttttgg tcaatccgag ttcataagtg 840 ttgcggaagt aatcgaggag atcgaagatt gtaaccgcga tttgatacat attgtgtata 900 gtctatctaa agatatgggt ctgcctggtt taagagttgg tatagtatac tcttacaatg 960 acagggtggt tcagatcgca aggaaaatgt cgagtttcgg tcttgtttcg tcacaaacgc 1020 agcatttgat cgctaaaatg ttatccgatg aagagtttgt agacgagttt atccgcgaga 1080 gcaaattgcg gttagctgca aggcacgctg agataaccac cggtttagat ggtttaggga 1140 ttggttggtt aaaggccaaa gccggtttgt tcttgtggat ggatttaaga aatcttttga 1200 agacagcaac gtttgattcg gaaaccgaac tatggcgtgt gattgttcac caagtgaagc 1260 tcaacgtgtc tccaggcggt tcgttccatt gccatgaacc gggatggttt agagtatgtt 1320 ttgcgaatat ggaccataag acgatggaga cagctctaga gaggattaga gtgttcacta 1380 gccaacttga ggaggagact aaaccgatgg ctgcaacaac tatgatggct aaaaagaaga 1440

agaagtgttg gcagagtaac ctcaggttaa gctttagtga cacgaggcgg ttcgatgatg 1500 gcttcttctc gcctcattcg cctgtgccgc cttctccgct agtccgtgca cagacttaag 1560 accgtctcat attttgacta gaccagtcgt cgttaattaa aaagtcaatt ctttagattg 1620 attttgacac atttatctga ttaaatcaaa tgtatagcta cgactatcaa gttgattttt 1680 tctttctttt aattttgtat ctcatgtaat tttaaccggg tgaataatat gaatttgaaa 1740 tcagaatttg ttt 1753 <210> SEQ ID NO 27 <211> LENGTH: 1586 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 27 atgggtcttc ctctaatgat ggagagatca tcaaacaaca acaacgtcga gctttctcga 60 gtggcggttt cagacactca cggcgaagac tcaccgtact tcgccggctg gaaagcttac 120 gacgaaaatc cttacgacga atctcataac ccttccggtg tcatccaaat gggtctcgct 180 gagaatcagg tctcgtttga tcttcttgaa acttacttgg agaagaagaa tccagaaggt 240 tcgatgtggg gatcaaaagg agctcctggg ttccgtgaaa acgcattgtt tcaagactac 300 cacggtctca aaactttcag acaagccatg gctagtttca tggaacagat tcgaggaggc 360 aaagctagat ttgatcctga ccggatcgtc ctcaccgccg gagccaccgc cgctaacgaa 420 ctcttaactt tcattctcgc cgatcctaac gacgcccttc tagttcccac accgtattat 480 ccaggattcg atagagattt gagatggaga accggagtga aaatagtacc catccactgc 540 gacagctcga accatttcca gataaccccg gaggcgctag agtcggcgta ccaaacggct 600 cgtgacgcga acattagagt ccgaggagtg ctcataacca acccatcgaa cccattaggg 660 gcgacggtcc aaaagaaggt tctagaagat ctccttgact tctgcgtacg caagaatatt 720 cacttggtct cagacgagat ctactccggc tccgtcttcc atgcctccga gttcacaagc 780 gttgccgaga tcgtagaaaa catagatgac gtgtcagtaa aggaacgagt tcacatcgtc 840 tacagtctct ccaaggatct tggtcttcct ggtttccgcg tgggaactat atactcgtac 900 aacgataatg ttgttcggac agcgagaagg atgtcgagct tcacgcttgt ctcgtctcag 960 acacaacata tgctggcttc tatgttgtcg gatgaggagt ttacggagaa gtacattagg 1020 ataaaccggg aaagacttag aagacggtac gataccattg tggaagggct taagaaggca 1080 gggattgagt gtttgaaagg gaacgcaggg ctattttgtt ggatgaattt gggtttcttg 1140 ctcgaaaaga aaactaaaga cggcgagctc cagctttggg atgtgatctt aaaggagctg 1200 aacctgaata tatctccggg atcttcgtgc cactgctcgg aggtcggatg gtttagggtt 1260 tgttttgcta atatgagtga gaacactttg gagattgcgt tgaagagaat acatgagttc 1320 atggaccgac gaaggaggtt ttgaaatgtt aaaaaaaaaa gtaaagtaaa tccgtttttt 1380 tggtggttaa atatatgggg gaggggtaat taatttttta ggaaagagaa gataattaat 1440 ttaaacccat tgatgtaaaa tgggttttga tttgtttctc ttttctagat attattgttt 1500 gttttcttgc ttggacaaag caagttaatt tcatgttcat caaggttgat ttgtaatatt 1560 tattgttata aacgaatttt ttaaaa 1586 <210> SEQ ID NO 28 <211> LENGTH: 1780 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 28 gatcgtagct tacctacaaa caacactcac aatccaatca aaacaaaaca ctttttattc 60 tctctcaaaa tcttcatatc tactttattc tcctactcat ccatctctgt ctctctatct 120 ctagagctaa ttaagaaaat gggtctcttg tcaaagaaag ctagttgcaa cacgcacggc 180 caagattctt cgtatttttg gggttgggaa gagtatgaaa aaaatcctta cgacgagatc 240 aagaacccag acggcattat ccaaatgggt ctagcagaaa atcagttgtc tttcgatctc 300 attgagtcat ggcttgctaa gaaccccgac gcagccaatt tccaaagaga aggccaatcc 360 atatttcggg aattagctct ctttcaagat tatcatggcc ttccttcctt caagaatgct 420 atggcggatt tcatgtcgga aaatagagga aatcgagttt ctttcaatcc aaacaagctt 480 gtcctcaccg ctggtgctac tccggctaac gagactctca tgttttgtct cgctgatcct 540 ggagatgctt tcttgctccc tacgccgtat tatccaggat ttgataggga tttgaaatgg 600 agaaccggag ctgagattgt accgatccag tgtaagagtg caaacggttt ccgcatcaca 660 aaagtagcac ttgaagaagc ctacgagcaa gctcaaaagc ttaacctaaa agttaaagga 720 gtccttataa ccaacccatc taacccgttg ggcactacaa cgacacgaac cgaactaaac 780 catctcttgg acttcatctc acgtaagaag atacatttga taagcgacga gatctattcg 840 ggtaccgttt tcaccaatcc cggattcatt agcgtaatgg aagtcctcaa agacagaaag 900 ctcgaaaaca ccgatgtttt cgaccgtgtc cacattgttt acagtttgtc taaagatcta 960 ggcctacctg gttttcgcgt tggggtgatt tactccaacg atgattttgt tgtctccgca 1020 gcgacaaaaa tgtccagttt cggtctaatc tcttctcaaa cacaatacct cttgtccgca 1080 ttgttatcag acaagacctt caccaaaaac tacctcgaag aaaaccaaat ccggctcaag 1140 aacagacaca agaagctcgt ctcgggtcta gaggctgcag gcatcgagtg tctcaagagc 1200 aacgccggac tcttctgttg ggttgacatg agacacctat taaaatcaaa cacgttcgaa 1260 gccgagattg agctatggaa aaagatcgtt tacgaggtta agctcaatat ctctcccggt 1320 tcttcgtgcc attgcaacga accgggttgg tttagggttt gttttgcgaa tttgagcgaa 1380 gagacattaa aggtagcgtt ggatagattg aagaggttcg ttgatggacc gtcgcctact 1440 agaagaagtc aaagtgaaca tcaaagacta aagaatctaa ggaagatgaa agtctctaat 1500 tgggttttcc ggctatcgtt tcacgaccgt gaacccgagg aacgatagtc tgtttttaaa 1560 aaaaagttaa agtgtaataa gtatgttttt ttggtcatta tttacaagtg attgttgggc 1620 aaatgtatat tttttttaat atcagaattt gatattttgg tatagttttt tttagggaga 1680 aagttcactc attccgtaag tgtaacggat aatgcagtgt ggcttttctt atgtataatt 1740 tactgtcact ttctaatgat atttaaaagt aataattgtc 1780 <210> SEQ ID NO 29 <211> LENGTH: 1410 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 29 atgggtctct tgtcaaagaa agctagttgc aacacgcacg gccaagattc ttcgtatttt 60 tggggttggg aagagtatga aaaaaatcct tacgacgaga tcaagaaccc agacggcatt 120 atccaaatgg gtctagcaga aaatcagttg tctttcgatc tcattgagtc atggcttgct 180 aagaaccccg acgcagccaa tttccaaaga gaaggccaat ccatatttcg ggaattagct 240 ctctttcaag attatcatgg ccttccttcc ttcaagaatg ctatggcgga tttcatgtcg 300 gaaaatagag gaaatcgagt ttctttcaat ccaaacaagc ttgtcctcac cgctggtgct 360 actccggcta acgagactct catgttttgt ctcgctgatc ctggagatgc tttcttgctc 420 cctacgccgt attatccagg atttgatagg gatttgaaat ggagaaccgg agctgagatt 480 gtaccgatcc agtgtaagag tgcaaacggt ttccgcatca caaaagtagc acttgaagaa 540 gcctacgagc aagctcaaaa gcttaaccta aaagttaaag gagtccttat aaccaaccca 600 tctaacccgt tgggcactac aacgacacga accgaactaa accatctctt ggacttcatc 660 tcacgtaaga agatacattt gataagcgac gagatctatt cgggtaccgt tttcaccaat 720 cccggattca ttagcgtaat ggaagtcctc aaagacagaa agctcgaaaa caccgatgtt 780 ttcgaccgtg tccacattgt ttacagtttg tctaaagatc taggcctacc tggttttcgc 840 gttggggtga tttactccaa cgatgatttt gttgtctccg cagcgacaaa aatgtccagt 900 ttcggtctaa tctcttctca aacacaatac ctcttgtccg cattgttatc agacaagacc 960 ttcaccaaaa actacctcga agaaaaccaa atccggctca agaacagaca caagaagctc 1020 gtctcgggtc tagaggctgc aggcatcgag tgtctcaaga gcaacgccgg actcttctgt 1080 tgggttgaca tgagacacct attaaaatca aacacgttcg aagccgagat tgagctatgg 1140 aaaaagatcg tttacgaggt taagctcaat atctctcccg gttcttcgtg ccattgcaac 1200 gaaccgggtt ggtttagggt ttgttttgcg aatttgagcg aagagacatt aaaggtagcg 1260 ttggatagat tgaagaggtt cgttgatgga ccgtcgccta ctagaagaag tcaaagtgaa 1320 catcaaagac taaagaatct aaggaagatg aaagtctcta attgggtttt ccggctatcg 1380 tttcacgacc gtgaacccga ggaacgatag 1410 <210> SEQ ID NO 30 <211> LENGTH: 1413 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 30 atgaaacaac tgtcgagaaa agtgacaagc aatgctcatg gacaagactc ttcctacttc 60 ttgggatggg aagaatacga gaagaaccct tacgacgaaa tcaagaaccc taatgggatt 120 attcaaatgg gtcttgccga aaatcagcta tgttttgatc tcatagagac atggttagct 180 aagaatccgg acgcagccgg actaaaaaag gacggccaat ccattttcaa agagcttgct 240 ctctttcaag actatcatgg cctacccgaa ttcaagaaag ctttggcaga gtttatggag 300 gaaatcagag gaaatagagt aacatttgat ccaagcaaga ttgtcctagc tgctggttca 360 acatctgcca acgaaactct catgttttgt ctcgccgaac ccggggacgc tttcctttta 420 ccaactcctt actatccagg attcgataga gacttgaaat ggagaacggg agcagagatc 480 gtacctattc attgctcaag ctctaatggg ttccaaataa cagagtcagc tcttcaacaa 540 gcttatcaac aagctcaaaa gcttgatctt aaggtcaaag gagttcttgt taccaacccg 600 tctaaccctc ttggcacaat gttgaccaga agagaactta accttctcgt tgacttcatt 660 acttccaaaa acattcatct cataagcgac gagatctatt caggtaccgt ttttgggttt 720 gaacagtttg taagtgtcat ggatgtctta aaagacaaga acctcgagaa cagcgaagtc 780 tccaaacgag ttcatattgt ttatagtctt tccaaagatc tcggtttacc aggttttcgc 840 gtaggagcaa tttactccaa cgacgaaatg gttgtttccg ctgcaacaaa aatgtcaagt 900 ttcggtctcg tgtcttctca aacacagtac cttctctctg cattgctttc agacaagaag 960 ttcacaagta catacctcga cgaaaaccag aaaagactca agattcgtca gaagaaactc 1020 gtgtccggtc tagaagctgc agggattact tgtcttaaaa gcaacgctgg tttgttctgt 1080 tgggttgaca tgagacatct tttggacaca aacacattcg aagcagaact tgagctatgg 1140 aagaagattg tatatgacgt caagctgaat atttcacctg gttcatcgtg ccattgtact 1200 gaaccgggtt ggtttagggt ttgtttcgcc aacatgagtg aagatacgct tgatttggcg 1260 atgaagaggc tcaaagagta cgtagagtca acagatagta gaagagtgat ttcaaaaagc 1320

agtcatgata ggatcaagag tttgaggaag agaactgtct ccaactgggt tttccgggtt 1380 tcatggaccg accgtgtacc tgatgaacga tga 1413 <210> SEQ ID NO 31 <211> LENGTH: 1845 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 31 cgacccgtta aaaaaccttc aaagtggctc cgattttgat ttcaaacact aaaatattta 60 tttacctaaa aacatgagtt cactacaatg acccgtaccg aaccaaaccg gagccggagc 120 tccaattccg attccgataa gaattccggt aacgtcggcg gaggtagaac caccgggatg 180 agggttattg ttccgttaca aggtgtggta caaggtcgtg gtggtttatt cttaggctct 240 gtgattcctt gtgctttctt ctactttctt cagttttacc taaaacgaaa tcgtaaaaac 300 gacgaatcag ataattccgg tgaacaaaac tcctcagctt cttcttcttc ttctcctaat 360 tcgggtttac cggatcccac ccggtcacaa tccgctggtc atctcacgga gcttactggt 420 ttacctcgtt ctctctctcg tattctcctc tcgccgagaa attccggtgg agctgtttcg 480 gtttcgggtc gggttaattg tgtactcaaa ggtggagatt cttcgcctta ctacgttggt 540 caaaaacggg tcgaggatga tccgtatgat gagttgggta acccggacgg agttatccaa 600 cttggtttag ctcaaaacaa caagttgagt ttggatgatt gggttttaga gaatccaaaa 660 gaagcaattt cagatggatt gagtattagt ggcattgctt cttatgagcc ttctgatgga 720 cttttggaac tgaaaatggc tgtggcagga tttatgactg aagctaccaa aaactcggtg 780 acttttgatc catcacagtt agtgttaact tctggtgcat catctgctat tgagattctt 840 tccttctgct tagctgattc gggaaacgcc ttccttgttc caactccgtg ttctcccgga 900 tatgataggg atgttaaatg gcgaacagga gttgacatta tacacgttcc atgtagaagt 960 gcggataatt tcaatatgtc gatggtcgtg cttgatcgag cattctatca agctaagaaa 1020 cgaggtgtaa gaatccgcgg cattataatc tcgaatcctt caaatcccat gggaagccta 1080 ctgagcagag agaatctcta tgcgcttttg gactttgccc gtgagaggaa cattcatatt 1140 atatcaaacg aaatctttgc tgggtcagtc cacggagaag aaggagagtt tgttagcatg 1200 gctgaaatag ttgacacgga agagaatatc gacagggaaa gagttcatat cgtgtatgac 1260 ctttcgaaag acttgtcttt ccgggggctt agatccgctg ctatctactc gttcaacgag 1320 agtgttttat ccgcttcaag aaagctcacg acgctctcac ctgtctcatc tccaacccaa 1380 catttgctga tatccgcaat ctccaatcca aaaaatgttc agagatttgt gaaaaccaac 1440 aggcagagat tgcagagtat ctacacggag ctcgtggagg ggttgaaaga gttagggatc 1500 gagtgcacaa gaagcaatgg agggttctac tgttgggctg atatgcgagg attgatttca 1560 tcttacagcg aaaaaggcga gattgagctg tggaacaagc tcttgaacat tggcaagatc 1620 aatgtcatac caggatcttg ttgtcactgt atcgaaccag gatggttccg tatctgtttc 1680 agtaatttgt ctgagagaga tgtgccagta gttatgaacc gcattagaaa agtttgtgaa 1740 acatgtaaat ctcaaaattg attacaattt gattatttgg tttattctga atcagactct 1800 ttatatcagt aaaccggata atatcaatcc agaatcggtt taagg 1845 <210> SEQ ID NO 32 <211> LENGTH: 1383 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 32 atgttgtcaa gcaaagttgt tggcgactct catggacaag actcatccta cttccttgga 60 tggcaagaat acgagaagaa tcctttccac gagtcgttta acactagtgg gattgttcaa 120 atgggtcttg ctgaaaacca gctttctttt gacctaatag agaaatggct tgaagagcat 180 ccagaagtct tgggtttgaa gaaaaatgat gagtcggtgt ttagacaatt agctctgttc 240 caagattacc atggcttgcc agctttcaag gatgccatgg cgaagttcat ggggaaaatc 300 agagagaaca aagtgaaatt cgatacgaac aagatggttc ttacagctgg atcaacctcg 360 gctaacgaga ctctaatgtt ctgtcttgct aatccaggag atgcctttct tatccctgca 420 ccttattatc cagggtttga tagagatctc aaatggagga caggagtaga gattgttcct 480 atccattgcg taagctcaaa tgggtacaag ataaccgagg atgcattaga agatgcctac 540 gaacgagctc tcaaacataa cctaaatgtt aaaggagttc tcataaccaa cccttcaaac 600 ccacttggaa cctctaccac ccgtgaagag cttgatcttc ttctgacctt cacatcaacc 660 aagaaaatcc atatggttag cgatgagatc tactcgggaa cggttttcga ctctcctgag 720 ttcaccagcg ttctagaagt ggctaaggac aagaacatgg gtttagatgg taaaatccat 780 gttgtttaca gcttgtccaa agatctaggc ctccccggat ttcgtgttgg cttgatttac 840 tcaaacaatg agaaagtggt gtcagccgcg actaaaatgt cgagttttgg actcatttct 900 tcccaaactc aacatttgct agccaatttg ctgtctgatg aaagattcac gaccaactat 960 ttggaagaga acaagaagag gctgagagag agaaaggata ggctggtttc gggtctaaag 1020 gaagcgggta tcagttgttt gaagagtaac gcaggtttgt tctgttgggt tgacttaaga 1080 cacctcttga aatccaacac ttttgaggcc gagcattctt tatggacaaa gattgtgtgt 1140 gaagttggtc ttaacatctc tccaggctca tcgtgtcatt gcgatgaacc tggttggttt 1200 agagtttgtt tcgcgaatat gtcggaccaa acgatggagg ttgctatgga ccgtgttaaa 1260 ggttttgttg acaacaataa tggtggtaaa caaaagagaa ccatgtggga tacaaggaga 1320 agatctctta tcaacaaatg ggtctccaag ctttcctctg ttacttgtga atcagaacgt 1380 tga 1383 <210> SEQ ID NO 33 <211> LENGTH: 372 <212> TYPE: DNA <213> ORGANISM: Oryza sativa <400> SEQUENCE: 33 gttggtatag tatactctta caatgaccgg gtggttcaga tcgcaaggaa aatgtcgagt 60 ttcggtcttg tttcgtcaca aacgcagcat ttgatcgcta aaatgttatc cgatgaagag 120 tttgtagacg agtttatccg cgagagcaaa ttgcggttag ctgcaaggca cgctgagata 180 accaccggtt tagatggttt agggattggt tggttaaagg ccaaagccgg tttgttcttg 240 tggatggatt taagaaatct tttgaagaca gcaacgtttg attcggaaac cgaactatgg 300 cgtgtgattg ttcaccaagt gaagctcaac gtgtctccag gcggttcgtt ccattgccat 360 gaaccgggat gg 372 <210> SEQ ID NO 34 <211> LENGTH: 372 <212> TYPE: DNA <213> ORGANISM: Oryza sativa <400> SEQUENCE: 34 gttggagtgg tttactctta caacgatgtt gttgtgtcct gcgcaaggag gatgtcgagt 60 tttggattgg tctcgtcgca gacacaaagt tttctagctg ctatgttgtc tgatcagagt 120 tttgtcgata actttcttgt tgaggtttcg aaaagagtag cgaagagaca ccatatgttc 180 acggaagggc ttgaagagat ggggatttct tgcttgagaa gcaacgcggg tttattcgtt 240 ttgatggatt tgaggcatat gcttaaggat cagacatttg attccgaaat ggcgctttgg 300 cgagttacta tcaataaggt caagattaat gtctctcctg gctcgtcgtt tcactgctct 360 gagcctggtt gg 372 <210> SEQ ID NO 35 <211> LENGTH: 735 <212> TYPE: DNA <213> ORGANISM: Oryza sativa <400> SEQUENCE: 35 ctttctctgg acctgatcga gaatgagcaa gaccaccccg aggcatccat ttgcacaccg 60 gagggcgtct cgcagttcaa gaggatcgcc aattttcagg actatcatgg cctcccggag 120 ttcagaaagg cgatggccca gtttatgggg caggtgaggg gaggcaaggc aacgtttgac 180 cccgaccgtg tcgtcatgag cggcggcgcc accggcgccc aggagacgct cgccttctgc 240 ctcgccaacc ccggcgaggc cttcctcgtg cccacgccat actacccagc tttcgaccgc 300 gactgttgct ggaggtcagg aataaagctg ctgccgatcg agtgccacag cttcaacgac 360 ttcaggctca ccaaggaggc cctcgtgtcg gcgtacgacg gcgcacggag gcagggcatc 420 tccgtcaagg ggatcctcat caccaacccg tccaacccgc tcggcaccat caccgaccgc 480 gacacgctgg ccatgctcgc caccttcgcc accgagcacc gcgtccacct cgtctgcgac 540 gagatctacg cggggtcggt gttcgccacg ccggagtacg tgagcatcgc cgaggtcatc 600 gagcgcgacg tgccgtggtg caacagggac ctgatccacg tcgtgtacag cctctctaag 660 gacatcggcc tccccggctt ccgcgtcggc atcatctact cgtacaacga cgccgtcgtg 720 gcggccgcgc gcagg 735 <210> SEQ ID NO 36 <211> LENGTH: 192 <212> TYPE: DNA <213> ORGANISM: Oryza sativa <400> SEQUENCE: 36 acgacgttag accgggaatg tttgaagtct cttgttaact tcactaatga caaagggatt 60 catcttattg ctgatgagat ttatgctgct actacttttg gtcaatccga gttcataagt 120 gttgcggaag taatcgagga gatcgaagat tgtaaccgcg atttgatcca tattgtgtat 180 agtctatcta aa 192 <210> SEQ ID NO 37 <211> LENGTH: 102 <212> TYPE: DNA <213> ORGANISM: Oryza sativa <400> SEQUENCE: 37 gtctccttcg acctcctcga ggcctacctc cgtgaccacc cggaggccgc cggctggagc 60 accggcggcg ccggcgccgg tagcttcagg gacaacgcgc tg 102 <210> SEQ ID NO 38 <211> LENGTH: 105 <212> TYPE: DNA <213> ORGANISM: Oryza sativa <400> SEQUENCE: 38 gtctccatcg acctcctcga gggctacctc cgggagcacc cggaggccgc cgcctggggc 60 gtcgccggcg acggcggcgg cgacagcttc agggacaatg cgctg 105 <210> SEQ ID NO 39 <211> LENGTH: 208

<212> TYPE: DNA <213> ORGANISM: Oryza sativa <400> SEQUENCE: 39 gtgatcttag ttgctaaaat cttaattgtt cttacttcaa actaatcgaa aacgcgttaa 60 tgcgttatat atatcatgtg tatcgatcgt taagacgcaa taacttttac gtttcctgtg 120 ttaggtttcc tttgatcttc tagaggaata catgagggag cacccggagg cgtcggattg 180 cggcgccggg tttcgagaga acgccctc 208 <210> SEQ ID NO 40 <211> LENGTH: 189 <212> TYPE: DNA <213> ORGANISM: Oryza sativa <400> SEQUENCE: 40 gtacgcgcac agacctgtgt atactcattt ctgaattaag gatcgttctc gacaaagtgc 60 taatccgtct ttgttgccct gtaaatgtca cagctttctc tggacctgat cgaggaatgg 120 agcaagaacc accccgaggc atccatttgc acaccggagg gcgtctcgca gttcaagagg 180 atcgccaac 189 <210> SEQ ID NO 41 <211> LENGTH: 2778 <212> TYPE: DNA <213> ORGANISM: Oryza sativa <400> SEQUENCE: 41 gaattcgaag cagcagcagc agcagaagga gaagcttctt aattcgttcg cgtttaacaa 60 ccccatcccc gtagacgacg acgaggagga gaacgatggc atggcatggc atccctgtcg 120 gcgtgcagta acacctcact ctgctgctgt cccgacgtta acctctcccc tcactgacgc 180 taagcacact ggcagtcgcg tactacacgc ggttagagcg agcttccatt agcccccgag 240 aaattaacaa aaagcaaaag cagaaggaaa aaaaaagaaa aacgtcactc gcatcacagc 300 actagccgcg ctctctctct ctcctcacca gattctatat aagcagctcg tccaaccttg 360 ggaggcaccc agcagcagcc agctagctag ctactcctac tcagcagcag cagcagctca 420 ggtctctcca gtgttcttcg agctatacac tagctctcac agatttttgc tccgactcat 480 caagcggatt gattcgatcg gctgttagag agagaaaaaa ggagagttgg agatggtgag 540 ccaagtggtc gccgaggaga agccgcagct gctgtccaag aaggccgggt gcaacagcca 600 cggccaggac tcgtcctact tcctggggtg gcaggagtac gagaaaaacc cgttcgaccc 660 cgtctccaac ccttccggca tcatccagat gggcctcgcc gagaaccagg tacgcacacg 720 cgcgtgccac acctgcatgt acacacttgt acatgtgtgt acactgtctc tgacgacatg 780 gttgctctgc cttggctgtt gcagctgtcg ttcgacctgc ttgaggagtg gctggagaag 840 aacccccacg cgctcggcct ccggcgagag ggcggcggcg cctccgtctt ccgcgagctc 900 gcgctgttcc aggactacca cggcctcccg gctttcaaaa atgtaattaa ttaaatcaac 960 tgtactctgg ttcgcgtaca cggtcgtcaa aagttacagt tggctaaccc cccgagcata 1020 tgcgcacgtg gattgcacag gcattggcgc ggttcatgtc ggagcagaga gggtacaagg 1080 tggtgttcga ccccagcaac atcgtgctca ccgccggcgc cacctcggct aacgaggcgc 1140 tcatgttctg cctcgccgac cacggcgacg ccttcctcat ccccacccca tactacccag 1200 ggtacgcact ggcactgccg ctgctgctac acctttttac catacgcgac aacgtgcatg 1260 gtggcgcatg gctaacggtg gatggatggg tggatgcagg ttcgaccgcg acctcaagtg 1320 gcgcaccggc gcggagatcg tacccgtgca ctgcgcgagc gcgaacgggt tccgggtgac 1380 gcgcgccgcg ctggacgacg cgtaccgccg cgcgcagaag cgccggctgc gcgtcaaggg 1440 ggtgctgatc accaacccgt ccaacccgct cggcaccgcg tcgccgcgcg ccgacctcga 1500 gacgatcgtc gacttcgtcg ccgccaaggg catccacctc atcagcgacg agatctacgc 1560 cggcacggcg ttcgccgagc cgcccgcggg cttcgtcagc gcgctcgagg tcgtggccgg 1620 gcgcgacggc ggcggcgctg acgtgtccga ccgcgtgcac gtcgtgtaca gcctgtccaa 1680 ggacctcggc ctcccggggt tccgcgtcgg cgccatctac tccgccaacg ccgccgtcgt 1740 gtccgcggcg accaagatgt ccagcttcgg cctcgtgtcg tcccagacgc agtacctcct 1800 cgcggcgctg ctcggcgaca gggacttcac ccggagctac gtcgcggaga acaagcggcg 1860 gatcaaggag cggcacgacc agctcgtgga cgggctcagg gagatcggca ttgggtgcct 1920 gcccagcaac gccggcctct tctgctgggt ggacatgagc cacctgatgc ggagccggtc 1980 gttcgccggc gagatggagc tctggaagaa ggtggtgttc gaggtcggcc tcaacatctc 2040 ccccgggtcg tcgtgccact gccgcgagcc cggctggttc cgcgtctgct tcgccaacat 2100 gtcggccaag accctcgacg tcgccatgca gcgcctcagg tcgttcgtcg actccgccac 2160 cggcggcggc gacaacgccg ccctccgccg cgccgccgtc cccgtcagga gcgtcagctg 2220 cccgctcgcc atcaagtggg cgctccgcct caccccgtcc atcgccgacc ggaaggccga 2280 gagataatcg ccaagaacaa aaccacacca tgtccattac tattaccagt agtagcacat 2340 actagtacat tactacgtca cagtacacta tactagtagc agcagtagca gattcctttc 2400 gtttcttgta atcttttggc gccatttttt tttcctcgga tcgaggcgtg catgcccgat 2460 ggtctcggat gatcacatat cgatccattc catcagccgg catcggatcg atcccgtatt 2520 tttcactggg aattttcagt tttcccccga cactgaattt ctcccagttg ttgtaaccta 2580 tggaaagtat tattgctcgt caataaaagc tagtgcccac cacttgtagt tcacgactac 2640 cactcccaca tttgggctcg gtcgcatcca tccatcgcgt gttttcgccg ccgctgtcat 2700 ataaaagtca accgttgcag cgaaaccact tgggccaatg gcgtttttta acccccatct 2760 gctccgtatt gcatgcga 2778 <210> SEQ ID NO 42 <211> LENGTH: 1485 <212> TYPE: DNA <213> ORGANISM: Oryza sativa <400> SEQUENCE: 42 gatggtgagc caagtggtcg ccgaggagaa gccgcagctg ctgtccaaga aggccgggtg 60 caacagccac ggccaggact cgtcctactt cctggggtgg caggagtacg agaaaaaccc 120 gttcgacccc gtctccaacc cttccggcat catccagatg ggcctcgccg agaaccagct 180 gtcgttcgac ctgcttgagg agtggctgga gaagaacccc cacgcgctcg gcctccggcg 240 agagggcggc ggcgcctccg tcttccgcga gctcgcgctg ttccaggact accacggcct 300 cccggctttc aaaaatgcat tggcgcggtt catgtcggag cagagagggt acaaggtggt 360 gttcgacccc agcaacatcg tgctcaacgc cggcgccacc tcggctaacg aggcgctcat 420 gttctgcctc gccgaccacg gcgacgcctt cttcatcccc accccatact acccagggtt 480 cgaccgcgac ctcaagtggc gcaccggcgc ggagatcgta cccgtgcact gcgcgagcgc 540 gaacgggttc cgggtgacgc gcgccgcgct ggacgacgcg taccgccgcg cgcagaagcg 600 ccggctgcgc gtcaaggggg tgctgatcac caacccgtcc aacccgctcg gcaccgcgtc 660 gccgcgcgcc gacctcgaga cgatcgtcga cttcgtcgcc gccaagggca tccacctcat 720 cagcgacgag atctacgccg gcacggcgtt cgccgagccg cccgcgggct tcgtcagcgc 780 gctcgaggtc gtggccgggc gcgacggcgg cggcgctggc gtgtccgacc gcgtgcacgt 840 cgtgtacagc ctgtccaagg acctcggcct cccggggttc cgcgtcggcg ccatctactc 900 cgccaacgcc gccgtcgtgt ccgcggcgac caagatgtcc agcttcggcc tcgtgtcgtc 960 ccagacgcag tacctcctcg cggcgctgct cggcgacagg gacttcaccc ggagctacgt 1020 cgcggagaac aagcggcgga tcaaggagcg gcacgaccag ctcgtggacg ggctcaggga 1080 gatcggcatt gggtgcctgc ccagcaacgc cggcctcttc tgctgggtgg acatgagcca 1140 cctgatgcgg agccggtcgt tcgccggcga gatggagctc tggaagaagg tggtgttcga 1200 ggtcggcctc aacatctccc ccgggtcgtc gtgccactgc cgcgagcccg gctggttccg 1260 cgtctgcttc gccaacatgt cggccaagac cctcgacgtc gccatgcagc gcctcaggtc 1320 gttcgtcgac tccgccaccg gcggcggcga caacgccgcc ctccgccgcg ccgccgtccc 1380 cgtcaggagc gtcagctgcc cgctcgccat caagtgggcg ctccgcctca ccccgtccat 1440 cgccgaccgg aaggccgaga gataatcgcc aagaacaaaa ccaca 1485 <210> SEQ ID NO 43 <211> LENGTH: 4303 <212> TYPE: DNA <213> ORGANISM: Glycine max <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 1550, 1742, 1776, 1838, 2351, 2992, 3113, 3233, 3267, 3335, 3353, 3540, 3624, 3625, 3631, 3640, 3645, 3661, 3662, 3684, 3699, 3727, 3766, 3809, 3814, 3824, 3830, 3839, 3856, 3868, 3875, 3879, 3881, 3906 <223> OTHER INFORMATION: n = A,T,C or G <400> SEQUENCE: 43 ccagtttgca cgcctgccgt tcgacgatca taagtgtggt tttgtgggct cctgtctatg 60 acaggataat tgttcccatt acaaggaaat tcaccggcaa tgaaaggaga atttcagtgc 120 tgcaaagagt aagcattggc tacttcattt cagtcctgtc catgttgtag tgttggtgag 180 gaagtttagt ttttctttgg ggcttgaatt ttgtccattc aatgttctgt tgtgctttgt 240 cttctctgta gatgttgagg attggatctt ctatcttgca tttcattgac gaaaaatata 300 tccttttgtt tgttagtttg tttttacata ttgaataact aaaatcaaga agatattttg 360 ctgtgcttta cccctttctt tctcttggac tcataatgag cattagagct ataattccct 420 tatgattatt ttctcttttg aattgatagc atgacggttt gaaagttgaa agtacagaat 480 cctgctaact cccccattgc tttaatctcc tcgaaagttc ttttcaattt ctgttatggc 540 tatagtatgc ttttatttta ctttgagctt ttgtaaaaat gatattttga ttattttctg 600 tttgtatttc tacttgatat tttttttgtc tttgatttta ttgtagaagt tgcctgacat 660 ggcttcgtac accccaaaga atatcctcat tactggggcg gctggattta ttgcgtctca 720 tgttgccaac cggcttgtcc ggagctaccc tgactacaaa attgttgtgc ttgacaaact 780 tgattattgt tctagtctga agaacctcct tccttcaaaa tcatctccta acttcaaatt 840 tgtgaagggg gatattggta gtgctgatct tgtcaactac cttctcatca ccgaatccat 900 tgacactata atgcatttcg ctgcccaaac ccatgttgac aactcgtttg gtaatagctt 960 tgagttcacc aagaacaaca tatacggaac tcatgtccta ttagaagcct gcaaggttac 1020 tggccagatc agaaggttca ttcatgtgag cactgatgag gtctatggag agacggaaga 1080 ggatgctgtt gttggaaacc atgaggcctc tcaacttctt cccactaacc cgtactctgc 1140 tacaaaagct ggggctgaaa tgcttgtcat ggcttatggt aggtcatatg ggctacctgt 1200 tattacaact cgtggaaaca atgtttatgg gcccaatcag tttcctgaga agttaattcc 1260 aaagttcatc ctcctggcta tgcagggaaa gaatcttcca attcatgggg atggttcaaa 1320 tgtgaggagt tatttatatt gtgaagatgt tgctgaggct tttgaagttg tcctgcacaa 1380

gggtgaggtt ggccatgttt acaatatcgg gacaaagaag gaaaggagag ttgtcgatgt 1440 agccaaagat atatgcagac ttttctcaat ggacccagaa acttgtataa aatttgtaga 1500 gaacagacca tttaacgacc agagatactt tcttgatgat caaaagctgn aggacttggg 1560 ttggtctgag aggaccactt gggaagaagg cttgaagaaa accatggatt ggtatatcaa 1620 taaccctgat tggtggggtg atgttactgg ggcattgctt cctcatccta ggatgctgat 1680 gatgcctggt gggttggaga ggcatttcga gggatctgaa gagggaaaac ctgcatcttt 1740 tngctcaagt aataccagga tagtggttcc atcatncaag aacaccagct ctcaacagaa 1800 acatcctttt atgttcttga tctatggtag aacagggngg attgggggtt tgctggggaa 1860 attgtgtgaa aagcaaggaa ttccgtatga atatggaaag ggtcgcctag aggaccgctc 1920 ctcactcttg gctgatcttc agaatgtgaa gcctacacat gtttttaatg ctgcaggagt 1980 gaccggcaga cccaatgttg attggtgtga atcccataaa acagaaacca tccgcaccaa 2040 tgttgctggt accttaacaa tggctgatgt ctgcagagag catgggatct tgatgataaa 2100 ttatgctact gggtgcatat tcgagtacaa tgcaacacat cccgagggct ctggcattgg 2160 ttttaaggag gaagacaagc ccaatttcat tggctctttc tattccaaaa ctaaagctat 2220 ggtaagtttc ttacatgtta tggattaatt atatctgttc ataatgaatt atcataataa 2280 tttttatgtg aacattgaca ggttgaggag ctcttgagag actatgacaa tgtatgcaca 2340 ctcagggttc ncatgccaat ttcgtcagac ctgagcaacc cgcgcaactt cataacaaag 2400 atttctcgtt ataacaaagt ggtcaacatt ccaaacagta tgactatttt ggatgaactt 2460 ctgcctatct caattgagat ggcaaagagg aacttgaagg gaatctggaa cttcacaaat 2520 ccaggggttg tgagccacaa tgagatcctt gagatgtaca gggattacat tgacccaaac 2580 ttcaagtggt ctaacttcac ccttgaagag caagcaaagg tgattgttgc tcctcgaagc 2640 aacaatgaga tggacgcatc aaaattgaag acagaattcc cagaattgct ttccatcaag 2700 gaatcactca tcaaatatgt ctttgagcca aacaagaaaa cataagcagg tttatgttat 2760 tcagacaagg cagttatgtg ttcaggctat atagaccagt gaaattggat tttctaacta 2820 agttattgta aaaaaaaaaa aactgatgaa agggaagaac atcattagat attgttgata 2880 aattccatta ctattagtac accaaatgtg gcaaatatgt tctgctcata tgttatccat 2940 tgacctttct cacctcatcc gtatatattt tttggacttg tgttgatgag cnacttttct 3000 gccggtagtt cgttctcctt ggtttttggt tcccgttaat caaacacaat gaacataaaa 3060 aaaatcaaaa tttctaattt tttttagccc aaataatctg atgtcattta cancttatat 3120 atgtgatttt tgcactgtac agaacgtgtc atttacaact tatatatgag gatgtatatc 3180 cctttgtact agtacctctg gtactgtttt gatcatatat atataatata ttnagttttg 3240 ctgatcaaaa aaaaaactaa caatttncct atatcactat atgtgtagta agcaacctga 3300 tcagaacatg cttcaactca taatagatgt ctganaaatc ttaagaagtc ttngtctgct 3360 tgtacctttt ggcagcaaca atgtatacca acatatttaa gaagctaagt ccagctaaaa 3420 gcaagaaaaa ataatcgaga tgacccttgt tcaaattatc aggaatccag ccaagctttc 3480 caccttgtgt ggtgaagtaa gtcaccatag taagaatgaa agagctcaag taatttcccn 3540 acgcaaaata caaaggtgac agtgctgtac ctaaagtctt catagtatct ggagattgat 3600 catagaagaa ctcaagcagt cccnngaatg ngaatacttn tgctnccccc aataagaagt 3660 nntgagggat ttgccaaagt atantgagtg gtacagcanc aggttcatca acaagatcaa 3720 ggtctcntgc aagccgcaga cgcataatct ccacaacaac agctgntaac atggacagga 3780 ctgaaatgaa gtagccaatg cttactctnt gcancactga aatncccctn tcattgccng 3840 tgaatttcct tgtaanggga acaattancc tgtcntagnc nggagcccac aaaaccacac 3900 ttatgncatc aacagttgcc agggaagctg ggggtatttc aaaggagcca atgtgtgtgt 3960 tcatcactgt tccttgctcc acaaacaatg ttgacatctg ggtataaaca gcagaaaaaa 4020 cggccccagt agcccacatt ggaaacatgc agatcaagat tttcaattcc tctcactcac 4080 taggacaatc attatttcta attaatagtg gggctagtct gcgtaccaac tactgcctaa 4140 ttttcaaacc aaagaagcat catagctgat gttgaactct tctctctttc gtgggaacct 4200 tcatttaatt tgaactaaag agattcctgt ctctgaaggt caaggtgaat ttgtgcacta 4260 cattataaat aagcacccct ctcggtgttg ttcattgcta gac 4303 <210> SEQ ID NO 44 <211> LENGTH: 1789 <212> TYPE: DNA <213> ORGANISM: Glycine max <400> SEQUENCE: 44 gaattcggca cgagatttcc tctgaaaatt attcatagca tatttctaac cacactcaaa 60 aggcttccct tcctgacttg gatttcatta cattgctaaa ctatattatt tttattggtg 120 aattgctaca ctatattcta aggacaatta aacatagact atatggggtt gatggatgtg 180 gaccaaactc aattgttgtc taagatggtc atcggagatg gacatggtga agcatcacca 240 tactttgatg gatggaaggc ttatgatgaa aacccctttc atcccaaaga gaatcctaac 300 ggggttatcc aaatgggtct tgctgagaat cagcttactt ctgatttggt tgaagattgg 360 atactgaata acccagaggc ctccatttgc acaccagaag gaataaatga tttcagggcc 420 atagctaact ttcaggatta tcatggtctg cccgagttca gaaatgctgt ggctaaattc 480 atgggtagaa caagaggaaa cagagtcacg tttgatcctg accgtattgt catgagcggt 540 ggagcaactg gagcacacga agtcactacc ttttgtttgg cagaccctgg tgacgcattt 600 ttggtgccca ttccttatta tccaggtttt gaccgggatt tgaggtggag aacaggaatt 660 aaacttgttc cagttatgtg cgatagctca aacaatttca agttgacaaa gcaagcattg 720 gaagatgcgt atgagaaggc caaagaggat aatataagag taaagggctt gctcatcacc 780 aatccatcaa acccattagg cacagtcatg gacagaaaca cactaagaac cgtgatgagc 840 ttcatcaacg agaagcgtat ccaccttgta tctgatgaaa tatactctgc aacagttttt 900 agccacccca gtttcataag cattgctgag atattagagg aagacacaga catcgaatgt 960 gaccgcaacc tcgttcacat tgtttatagt ctttcaaagg atatggggtt ccctggcttc 1020 agagttggca tcatatactc ttacaatgat gctgtggtcc attgtgcacg caaaatgtca 1080 agctttggat tggtgtcaac acagactcag tatcttttag catcaatgct aaatgatgat 1140 gagtttgtgg aaagttttct ggtagagagt gcaaaaaggc tggcacaaag gcatagagtt 1200 ttcactgggg ggttggccaa agttggcata aagtgcttgc aaagcaatgc tggtctcttt 1260 gtgtggatgg atttaaggca acttctcaag aagccaacgc ttgactctga aatggagctt 1320 tggagagtga tcattgatga ggttaagatc aatgtttcac ctggctcctc tttccattgc 1380 actgagccag ggtggtttag ggtgtgctat gccaacatgg atgatatggc tgtgcaaatt 1440 gcattgcaaa gaattcgtaa ctttgtgctt caaaacaagg agatcatggt gcctaacaag 1500 aaacattgtt ggcacagtaa cttgaggttg agcctcaaaa ccagaaggtt tgatgatatc 1560 atgatgtcac ctcactcccc catacctcag tcacctctgg ttaaagccac aatttgagtt 1620 ggcatatttc tctgaaccct ctagaagaag taactgatat atgatgatta tttggctctt 1680 tgacttgttg ttttggcaag gtacataaag tgcttgagtt tgttattttt aacagcagta 1740 acaggcaatg cctgatattg tttttgttac caaaaaaaaa aaaaaaaaa 1789 <210> SEQ ID NO 45 <211> LENGTH: 1473 <212> TYPE: DNA <213> ORGANISM: Glycine max <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 1400 <223> OTHER INFORMATION: n = A,T,C or G <400> SEQUENCE: 45 caattaaaca tagactatat ggggttgatg gctgcgaacc aaactcaatt gttgtctaag 60 atggccatcg gagatggaca tggtgaagca tccccatatt ttgatggatg gaaggcttat 120 gatgaaaacc cctttcatcc caaagagaat cctaacgggg ttattcaaat gggtcttgct 180 gagaatcagc ttacttctga tttggttgaa gattggatac tgaataaccc agaggcctcc 240 atttgcactc cagaaggaat aaatgatttc agggcaatag ctaactttca ggattatcat 300 ggtctacccg agttcagaaa tgctgtggct aaattcatgg gtagaacaag aggaaacaga 360 gtcacgtttg atcctgatcg tattgtcatg agcggtggag caactggagc acacgaagtc 420 actacctttt gtttggcaga ccccggtgac gcatttttgg tgccaattcc ttattatcca 480 ggttttgacc gggatttgag gtggagaaca ggaattaaac ttgttccagt tatgtgcgat 540 agctcaaaca atttcaagtt gacaaagcaa gcattggaag atgcgtatgt gaaagccaaa 600 gaggataaca ttagagtgaa gggcatgctc atcaccaatc cttcaaaccc attaggcaca 660 gtcatggaca gaaacacact aagaaccgtg gtgagcttca tcaatgagaa gcgtatccat 720 cttgtatctc atgaaatata ctctgcaaca gtttttagcc gtcccagttt cataagcatt 780 gctgagatac tagaggaaga cacagacatc gaatgtgacc gcaacctcgt tcacattgtt 840 tatagtcttt caaaggatat ggggttccct ggcttcagag ttggcatcat atactcttac 900 aatgatgctg tggtcaattg tgcacgcaaa atgtcaagct ttgggttggt gtcaacacag 960 actcagcatc ttttagcatc aatgctaaat gatgatgagt ttgtggaaag gtttctggaa 1020 gagagtgcaa aaaggttggc acaaaggcat agagttttca cttcggggtt ggccaaagta 1080 ggcataaagt gcttgcaaag caatgctggt ctctttgtgt ggatggattt aaggcaactt 1140 ctcaagaagc caacgcttga ctctgaaatg gagctttgga gagtgatcat tcatgaggtt 1200 aagatcaatg tttcacctgg ctcttctttc cattgcactg agccagggtg gtttagggtg 1260 tgctatgcca acatggatga tatggctgtg caaattgcat tgcaaagaat tcgaaccttc 1320 gtgcttcaaa acaaggaggt catggttcct aacaagaaac attgctggca cagtaacttg 1380 aggttgagcc tcaaaaccan aaggtttgat gatatcatga tgtcacctca ctcccctata 1440 cctcagtccc ctttggttaa agccacaatt tga 1473 <210> SEQ ID NO 46 <211> LENGTH: 2161 <212> TYPE: DNA <213> ORGANISM: Glycine max <400> SEQUENCE: 46 gggttgatgg atgtggacca aactcaattg ttgtctaaga tggtcatcgg agatggacat 60 ggtgaagcat caccatactt tgatggatgg aaggcttatg atgaaaaccc ctttcatccc 120 aaagagaatc ctaacggggt tatccaaatg ggtcttgctg agaatcaggt atatagcata 180 taaagtttct ttccaaagtc atgcaatttt gactacttac tacaattgca taaatttgga 240 gaataatagt atatgtacat attatttaat tattttccca tgttaattag ttctaattaa 300 ttcaattatc ttaaattttt gcagcttact tctgatttgg ttgaagattg gatactgaat 360 aacccagagg cctccatttg cacaccagaa ggaataaatg atttcagggc catagctaac 420 tttcaggatt atcatggtct gcccgagttc agaaatgtga gtacaataat aatatgtgaa 480

atttgatcat atcactcatt ttatccataa attaacaagt tgagttcaac tagtgataat 540 attttataca caaattaaag gtgaattgaa aacttgcaca ggctgtggct aaattcatgg 600 gtagaacaag aggaaacaga gtcacgtttg atcctgaccg tattgtcatg agcggtggag 660 caactggagc acacgaagtc actacctttt gtttggcaga ccctggtgac gcatttttgg 720 tgcccattcc ttattatcca gggtcagtat tcaattcaat ttcaccctcc tttttcattt 780 ttcattaatt tagaatacaa tgatgaagta tggcttacgt gcgtcattac gtttttcaat 840 taaagtaaat ttgatctccc ctgagttgcc tttctattaa tttaacattc cattagggcg 900 tatagccccc acaaagtgga attctggatt agaaaccagg ataatgagat ttgatggcac 960 tactttgcaa tttcaacctt catctattgc agtagtcaac gatcatatca aacataaaaa 1020 aatccttaaa taaaagtcaa attcacccca caattgaata gcaatttggc catgaatatt 1080 atttgattta atcatgttat tgtatgatat ttagccatat agtatatatt aaattttttt 1140 tgcatctaca tgttaatatt tgtttctaat aagaagctga atttccttgt gcagttttga 1200 ccgggatttg aggtggagaa caggaattaa acttgttcca gttatgtgcg atagctcaaa 1260 caatttcaag ttgacaaagc aagcattgga agatgcgtat gagaaggcca aagaggataa 1320 tataagagta aagggcttgc tcatcaccaa tccatcaaac ccattaggca cagtcatgga 1380 cagaaacaca ctaagaaccg tgatgagctt catcaacgag aagcgtatcc accttgtatc 1440 tgatgaaata tactctgcaa cagtttttag ccaccccagt ttcataagca ttgctgagat 1500 attagaggaa gacacagaca tcgaatgtga ccgcaacctc gttcacattg tttatagtct 1560 ttcaaaggat atggggttcc ctggcttcag agttggcatc atatactctt acaatgatgc 1620 tgtggtccat tgtgcacgca aaatgtcaag ctttggattg gtgtcaacac agactcagta 1680 tcttttagca tcaatgctaa atgatgatga gtttgtggaa agttttctgg tagagagtgc 1740 aaaaaggctg gcacaaaggc atagagtttt cactgggggg ttggccaaag ttggcataaa 1800 gtgcttgcaa agcaatgctg gtctctttgt gtggatggat ttaaggcaac ttctcaagaa 1860 gccaacgctt gactctgaaa tggagctttg gagagtgatc attgatgagg ttaagatcaa 1920 tgtttcacct ggctcctctt tccattgcac tgagccaggg tggtttaggg tgtgctatgc 1980 caacatggat gatatggctg tgcaaattgc attgcaaaga attcgtaact ttgtgcttca 2040 aaacaaggag atcatggtgc ctaacaagaa acattgttgg cacagtaact tgaggttgag 2100 cctcaaaacc agaaggtttg atgatatcat gatgtcacct cactccccca tacctcagtc 2160 a 2161 <210> SEQ ID NO 47 <211> LENGTH: 4036 <212> TYPE: DNA <213> ORGANISM: Solanum tuberosum <400> SEQUENCE: 47 gaattccacc taactcatcc tgagctagaa tttatggctg ttcaaagttg gccaaaaatt 60 cacattttcc atacttagcc aaaatttcca aaactttaaa attcttccca aaaatgaaaa 120 tttcaaattc taagcctctt ccaagctatt tcaaattgtc ggatgttaca aaattttaga 180 tatgaaattc tctcgatgtt tcgaatttaa aaaaaaatat aatttgatta aaacaattca 240 tgtttgcggt acgtcgaatt tcttttaaga agaagaagaa gaagaagagt agtaaatata 300 aaaaattgga gtaagaaaag gtaactaaag tttatgggct gatattttgt ataatatttc 360 ctaaaagttt tacaataata atttattttg acatgctata acaaattaat taacatctct 420 ttttattcaa ttactcaaat aatgtgtgag tggagtattt gtcaattttg acatctttct 480 gcatgcacaa aatcttcgta tgaaaattac cacaagccat gtatgaacag ttatcactat 540 atatatccaa ttctcttcat caactacgca cgtgtttgat aggtggacaa ggcaagcata 600 ctattacttt ttaaatggcc gtggtactca agtaatacta gttacttata ataaaattgg 660 tataattcca aaaggccagg agataatgac tttcatttgt ccataagagt tatgtttaat 720 tttaaatgca ttcatgtcgt tcgttttatg caatgcccct gttatatgta tatttcaaaa 780 gtgtatggag gattttgttg aaaatactta tgaatgactt tgaatctttt tttctcgtta 840 tggttctttt cagaagtgaa gagactataa tttggtcctt aattgggaaa aagtcacttc 900 ttagtaaggg aagatattgt cttgggattc aaggtgtcaa aaagggccta cgacaacttc 960 tccttttctt gagcatcact ttctcaatct tggataacaa ttcctactgt agtatcacta 1020 cggtacgcgg cgcctgacac gtgtccctta tattaataag aattgattct aataacaata 1080 ctataaaata atatttaaaa gatgtatttg tgtaaaaata taaaaattta aaaataaaat 1140 tataaattat aaatttcaat tgacaaatga tcagttatat tactatgttc atatataatg 1200 tagccttagt atttagagtg tgctttcgtg catcaataca aacataattt ttattttaat 1260 caatgataaa attttgttca ttacatttaa tttttatcct taattgttag tgtgttggtg 1320 agttatcata ttccttttta agtacactta tttcttgaaa attttaagtt atatttttta 1380 caagtctatc gagagtactg taaaagaatc tgaatggaga gggataatta ataaagtaag 1440 tttgcatgtt taaaaattgg aggtagttaa gttaaaattt taagagccac ccagatcaac 1500 caccccattt gatttgggga tcttttggag attgagaata tacaaaaact ctgaataaga 1560 tgacagaaac taacagttgt caccagccat ttaaacaata gttgtaaaag gtgagcgttg 1620 atcttgcttc atctatataa tcaatcattg gttcctttat ttttttgtga gaaatttatc 1680 atcttgttga gggccccttt attaaactac tttctatata agttgctctt tgccaaaaaa 1740 agttcatatt caaacactaa ttctttcttc attttttccc ccactattca catttatatt 1800 atcttccata gcctctttct tgattaagag taccctaatt agccaaaaac aaattaaaac 1860 aataagttaa ttatggccat agagattgag caacgtccaa cagtagttcg tctatcaaac 1920 gttgcaacgt ctgacactca tggagaagac tcaccttact ttgctggatg gaaagcatat 1980 gatgaaaatc catttgatga agttcacaac ccatctggag ttattcaaat ggcattagcc 2040 gaaaatcaag taagttttcg atcatcatta ttggccatgc taaacttaac attaaatatt 2100 gaacttgaaa atcatttctt gtactgtatt gtattgtatt gtaggtgtca tttgatttgc 2160 tggaagagta cttggaaaag aagaaagacg atggcattgc tgaaatttct agattcaggg 2220 aaaatgcttt gttccaagat tatcatggac ttgtttgttt tagaaaggca atggctacct 2280 tcatggaaca agtaagaggt ggaagggcaa gatttgatcc tgatagagtt gttattacag 2340 ctggtgccac tgcagctaat gagttgttaa ctttcatttt agctgatcct ggtgatgctt 2400 tgcttgttcc aactccttac tatcctgggt aagtaccata tatatatttt gtcttctaat 2460 tacatgggga aaggaaatat gagtatgagt ggtggtgaga ttcgatctca acacttctgc 2520 ctgctctgat atttcatgtt caagtgtgtg aacactttta ttagttaatt atattctcaa 2580 caattactaa atattttttt tacagatttg acagagactt gaggtggaga acgggtgtga 2640 aaatcattcc agtccattgt gacagttcaa ataatttcca agtcactcta caggccttgg 2700 aagaagccta caaggatgca gaatccaaca acatcaaagt gagaggggtt cttataacaa 2760 acccctcaaa ccctttgggt accacagttc aaagatgtgt tcttgaggaa attcttgaat 2820 tcgtcgcaag aaaaaacatc catcttgtat ctgatgaaat ctactcaggt tcagcctttt 2880 gttgctccga atttgtcagt attgctgaaa tacttgaatc gagaaactac aaggattcag 2940 agagggtaca cattgtgtac agcctctcta aagacttggg actccccggg tttcgagttg 3000 gtacaatcta ctcatacaat gacaaagtag tcacaacggc aagaagaatg tcaagtttta 3060 cattgatttc ttctcagaca caacaactct tggcttccat gttgtctgat gagaaattca 3120 ctgagaatta cataaagaag aatcgcgaaa ggctgagaag gagatatgaa atgatgattg 3180 aagggctgag gagtgctggg attgagtgct tgagagggaa tgcgggattg ttttgctgga 3240 tgaatttaag tactttgttg gaaaagccta caaaggaatg tgaattggaa gtgtggaaca 3300 caatattgca tgaagtgaaa ctgaatattt ctccaggttc ttcttgtcat tgctcagagc 3360 caggctggtt cagggtttgt tttgctaaca tgagtgaaaa taccctagaa attgcactca 3420 aaagaataca ccatttcatg gaaacaaggg gcatacttca aaaatactaa ttactcatca 3480 tcattattta caaaaaaaat taattttttg atttgttttt ttttgtcttt tttggtttgg 3540 ggattttttt tttccagtta ggattggcta ctggattatt cttcaattat acccattcca 3600 agtattggat ttttccctcg agccttgtac ctcggattga gtggttcata gtttaagatg 3660 aatgtttgat tttgtttttt catatttgtc ttttccttta ttaaaatttt atattttcta 3720 aggtataaat tgactattta tacagtgata tttatgattt cacaaacaat aatgaaaatt 3780 atggttaaaa ttatgtcttt aaatgttttt ctaattaata ggtgtgtatt gcctcacaaa 3840 ttcacttaat atggaataga ggaagtacta tatatatata tatatatact agttttgatg 3900 cacgtgtgtt gcacgtgaat atcaaatcat gcattacatt aataataatg tgaatattat 3960 taaattaaaa aattatgtaa acaattataa aatgaatgat aaagcataag ttcctatgaa 4020 tagtggatgt aagctt 4036 <210> SEQ ID NO 48 <211> LENGTH: 4153 <212> TYPE: DNA <213> ORGANISM: Solanum tuberosum <400> SEQUENCE: 48 taacttttta atggaattat ttctatgtct cttcttcact tccctaatcg acatgtaatg 60 tattaagcta atcaaacata agttacatat tttgttcatt ccaaaactat gataagattt 120 caagttccct atatgatcta catttctaat ttcaaacatt tactttgaat agagagtggg 180 ccttttactt tcattacact atcatattga tatggcttgc ttcgtgaaat agataaaaaa 240 gaattattag aacttggatt taaaaaaatt atttttccta tgagttggat aacatatgtt 300 tatacgtatt cctatatatt gtgatcactt atctaattat aaaaagatta tcaaggatta 360 ttgtgggtat gaatagaatt tctttaatct taaattaaag gtatattttt caagtctttg 420 aatgtatttt cttttttggt aagaaacaat ttttccttta ataaatttta cacaactcga 480 atttgaatta gataggacca caaaaaatgt ccacacatct agtgagaaac taaaaaaaat 540 gcccatttaa taatttaaat taaattatta gagatgatcg actcactttt atttgtttag 600 ataaattata tatttgttaa tatatgcctt cattagaagc gtgattactt cattttagtt 660 taagttgtta catatctagg gcccactctt aatatattca atcataaatt taatcaattg 720 gacttaaata taccccgatt ttgtcatatg agtgaaatat accctaaaat tctcgccaag 780 tttatgatgt tttcaacatt ctcttgactt tttattaaga gttttatttt cgagtgtgag 840 accacttaat atgtcatgtg gtagatcata agtatatcta aatttagtta gtcaaataaa 900 aatgtatttt taagactgta aataatcgag aataacacta ataatttgtg gcaagtgtat 960 aaccaatact tctctcaaat agaaaatatt ggtactaatt cagcgcagta ttatactagc 1020 agactaacag catcaacatt gacagtaggc agtagcatca ccattcacca agagtccaag 1080 acatcacttg ttatgttttt cgaagtgttt ttttaccaaa aatgttgatg gatttgacat 1140 tagtcccacc cttttgttac acccttagac aaggcagtac aaaattgatc cctaaatgtc 1200

cctatgacaa ataaaacatt caattataat atacgactaa aaaagcgcgt ccaattagtg 1260 tatacatccc aaacacagta aaattaattg ttttattttg gggacaaaaa agtagaaaaa 1320 aacaaaaatt gtatagtcaa agtttgaaaa catatggtga tatgtttggt tcttcattgc 1380 taatctctta tacatatata tatatatacc tcaccatgat atatgccaga cacatagcaa 1440 caatctccat tcaatatttt ctttcttctt atttctgcct ctcaaaacaa acataaaatt 1500 caagtgctta ctcagaaaaa atgaagctcc tatcgaagaa agccatgtgt aactcacatg 1560 gacaagattc ttcctacttc ctaggatggg aagagtatga gaaaaaccca tacgatgaaa 1620 ctcgtaatcc taaaggaatc attcagatgg gtctcgcaga gaatcagctc tctttcgatt 1680 tattagagtc atggcttact caaaatccag atgcagctgc atttaaaaga aatggtgact 1740 caatatttag agaccttgcc ttatttcaag attaccatgg tcttcccgct ttcaaagatg 1800 taagttggtc attacaatag aatttaactt atatacactg actaacgtaa ctgactcatc 1860 atatatttat cattaacttc acaatctcac attgtaatgt atatttttgt gcaggcattg 1920 gttcaattca tgtctgaaat cagagggaac aaagtgagtt ttgattcaaa caagcttgta 1980 cttacagctg gtgctacttc tgcaaatgag acactcatgt tttgccttgc tgatcctggc 2040 gatgcttttc tccttcctac tccatactac cctgggtacg tttagtttaa tttatatgca 2100 ctgactatta gtcatgtatt ttaacttgtt ataacagatg aactatgttc cttactaatt 2160 atatatgata ttgtgtaata atgcagattt gatagagacc taaaatggag aaccggagct 2220 gagattgttc caatacaatg tacaagttca aacggcttta gaatcacaga atcagctctt 2280 gaagaagctt acaaagaagc cgaaaggcgg aaccttagag tgaaaggggt tttagtcact 2340 aacccttcga acccattagg cacaacatta accaaaaaag aactccaact tcttctaacc 2400 ttcgtatcta caaaacaaat ccatctcatc agtgacgaga tatattctgg cactgttttt 2460 aactcgccta aattcgttag tgtcatggaa gtattaatcg aaaataacta catgtacact 2520 gaagtatggg atcgagttca cattgtctat agtctttcta aagatttggg tcttccagga 2580 tttcgagttg gtgccattta ttccaacgac gttatgatcg tctctgcagc cacaaaaatg 2640 tctagttttg gattaatttc atctcaaact caatacctcc tttccgcttt gctatcagac 2700 aaaaaattca cgaaaaaata cgtgtctgaa aatcaaaaga ggcttaagaa acgtcatgaa 2760 atgctagttg gtggtcttaa acaaattgga atcagatgcc ttgagagcaa tgctggattg 2820 ttttgttggg tggatatgag acatcttcta agttcaaaca catttgatgg agaaatggaa 2880 ttatggaaga aaatagtgta cgaagtaggc ctaaatattt cacctggatc gtcatgccac 2940 tgtacagaac cgggttggtt tcgtgcatgt tttgctaaca tgtccgaaga taccctaaat 3000 atcgctatac aacgtttgaa ggcttttgtt gattcaaggg ataacaagga tgatattcaa 3060 aatcagaagc attctaataa gaagaagtca ttttccaagt gggtttttcg actatcgttc 3120 aatgaacgtc aaagagaacg atagtctaga catgtgaaag ttcctaaatg attctttttt 3180 ttttatctct acatttagtt agatcaatgt tgagtttcta aatttttgta tcatatataa 3240 tacatacatt ttgtagaggg gcactccgtc catgtgatcg atataggacg agaagtgctt 3300 atcatacata ttgtaatgaa tccacattat caatattctt cacaaaatgt tcaattaatt 3360 ctattactcc atttcaatta catttgtctg taccatataa ctttccatat ctaatttaat 3420 atgtaaacta aacatagagt gataatctat tattacggtt aaattacatt aataatataa 3480 tttatttttt taactgaaag ttgggtgttg gtatatttaa cctctgaaaa tgatattctt 3540 aagtagaaaa agatacgatg ttgttatgta gcacacaaag tgtcaacaga cacatgtgtc 3600 atgtgttgcc catagccagc tagtccagaa tgtgattgtt ttattcgaag tgttaattat 3660 taaaaaaata tttttattca tttaattatg tttttaacat ttatttttaa aaaaatcatc 3720 aactatgcaa gtgggtagag cctttttttc ccgaggagat attactaagt tacaatttac 3780 aaacattaga aattaaactt gatcatttgc aagtaaaatg attgggttta cttcacaggg 3840 agcaagatta gttcaaatag cactataact catttatctt actttgatgt caattttcta 3900 attagcaatt ataattgttt catgttaata aagaatttga aatgtgaaat ttaatcacaa 3960 ttaagattac gtacataaga aaagaaacct gcattttaaa ccacaattga attgtacatt 4020 agtattatac tagtatagaa tgaacaataa tatatacaca cactaacata gtttttttgg 4080 ttctttaatt tccatattgt ttaattatgt ttgagtaagt actctatgta tgtgcccgaa 4140 aataaaatct aga 4153 <210> SEQ ID NO 49 <211> LENGTH: 1571 <212> TYPE: DNA <213> ORGANISM: Solanum tuberosum <400> SEQUENCE: 49 aaagcatacg atagcgatcc tttccaccct ctaaagaacc caaatggagt tatccaaatg 60 ggacttgctg aaaatcagct ttgtttagac ttgatagagg attggattaa gagaaaccca 120 aaagcttcaa tttgttccaa tgaaggaatc aaatcattca gggccattgc caactttcaa 180 gattatcatg gcttgcctga attcagaaga gcgattgcga aatttatgga gaaaacaaga 240 ggaggaagag ttagatttga tccagaaaga gttgttatgg ctggtggtgc cactggagct 300 aatgagacaa ttatattttg tttggctgat ccaggcgatg catttttagt accttcacca 360 tattacccag catttaacag agatctaaga tggagaactg gagtacaact tcttccaatt 420 cactgtgaga gctccaacaa tttcaaaatt acttcaaaag cagtaaaaga agcatatgaa 480 aatgcacaaa aatcaaacat caaagtaaga ggtttgattt tgaccaatcc atcaaatcca 540 ttgggtacca ctttggacaa atacacactg aaaagtctct tgagtttcac caaccaacac 600 aacatccacc ttgtttgcga cgaaatctac gcagccacgg tcttcgacac gcctcaattc 660 gtcagcatag ctgaagtcct cgatgaaaag gaaatgactt attgcaacaa agatttagtt 720 cacatcgtct atagtctttc aaaagacatg gggttaccag gatttagaat cggaatcgta 780 tattctttta acgatgacgt cgttaattgc gctagaaaaa tgtcgagttt cggtttagtg 840 tcaactcaaa cgcaatattt tttagccgct atgctatcgg acgaaaaatt cgtcgataat 900 tttctgacag aaagtgcgat aaggttagct aaaagacaca aacattttac caatggactc 960 gaagaagtgg gaattaaatg cttgaaaaat aatgcggggc ttttttgttg gatggatttg 1020 cgtccgcttt taagggaatc gactttcgat agtgaaatgt cgttatggag agttattata 1080 aacgacgtaa agctcaacgt ctcgcctgga tcatcgtttg aatgtcaaga gccagggtgg 1140 ttccgagttt gttttgcgaa tatggatgat ggaacggtgg atatcgcgct agcgcggatt 1200 cggaggtttg tacgtgttga gaaaagtgga gatgaatcga gcgcgatgga aaagaagcaa 1260 caatggaaga agaataattt aagacttagt ttttcgaaaa gaatgtatga tgaaagtgtt 1320 ttgtcaccac tttcgtctcc tattccaccc tcaccactag ttcgatagga cttaattaaa 1380 agggaagaat ttaatttatg tttttttata tttgaaaaat atttgtaaga ataagattat 1440 agaaggaaat ctaggaggag tattttcaga aatagttgtt agcgtatgta ttgacaactg 1500 atctatgtac tttgacatca taatttgtct atctaattaa ttaatgaaat gtaaaagtaa 1560 agttatgtta a 1571 <210> SEQ ID NO 50 <211> LENGTH: 1098 <212> TYPE: DNA <213> ORGANISM: Solanum tuberosum <400> SEQUENCE: 50 cagatgggtc tagccgagaa tcagctttgt tttgatttaa ttcaagaatg gatagtcaac 60 aacccaaaag cctcaatttg tacctatgaa ggagttcaag attttcaaga tattgctatt 120 ttccaagact atcatggctt gccagaattt agaaaggcag ttgcaagatt catggagaaa 180 gtgagaggag atagagtcac atttgatcca gaaagaatag ttatgagtgg aggagcaaca 240 ggagctcatg aaagtttggc cttttgtttg gctgatcctg gtgatgcatt tctagttcct 300 acaccatatt atccaggatt tgatagagat ttgaggtgga gaacaggagt acaacttttt 360 cctgttgttt gtgagagttc taacaacttc aaggtgacaa aagaagcctt agaagaagca 420 tataaaaaag ctcaagaatc aaatatcaaa gtaaaaggat tacttataaa caatccatca 480 aatccattag gtacaatttt ggacaaggaa acattaaaag acatacttag attcatcaat 540 gacaaaaaca tacatctagt atgtgatgaa atctatgcag caaccgcgtt ttgtcaacct 600 tcattcatca gtatatcaga agtcatgaat gaagttgttg gatgcaacga tgatttagta 660 catatagtgt atagtctctc caaagatcta gggttccctg gatttagggt tgggattatt 720 tactcgtaca atgatgttgt tgtcaatatt gcacgtcaga tgtcaagttt tggacttgtt 780 tcaacacaaa cacaacggtt aattgcttcc atgctatcag acactatctt tgttgaaaat 840 ttcatcgcga agagcgcgat gaaattgtca caaagacatg atttgttcac taaaggatta 900 ggacaagttg gaattacaac attgaagagt aatgctggcc tatttatttg gatggatttg 960 agaaggtttc ttgaaaattc aacatttgat aatgaattga aactttggca tataattatt 1020 aataaagtga aacttaatgt ttcacctggt tgttcatttc attgctcaga gccaggttgg 1080 tttagagtat gcttcgct 1098 <210> SEQ ID NO 51 <211> LENGTH: 505 <212> TYPE: DNA <213> ORGANISM: Zea mays <400> SEQUENCE: 51 tagcagacgc ggaaccagcc gggctcccgg cagtggcagg aggagcccgg ggagatgttg 60 agccccacct cgaagaccac cctcttccac agctccatct cgccctcgaa cgaccggctc 120 cgcatcaggc gccgcatgtt gacccagcag aagagccccg cgttgctctc caggcactcg 180 atgcccacgg ccgccaggcc ctccgccagc tgctcgcgcc gctccctgat ccgccgcgtg 240 ttctccgcga tgtacctccg cgtgaagtcc ctgtcgccca ggagcgacgc caggaggtgc 300 tgcgtctggg acgacaccag gccgaagctc gacatcttgg tggccgcgga gaccacgccg 360 gcgttggacg agtagatggc gcccacgcgg aaccccggga ggcccaggtc cttggacagg 420 ctgtacacca cgtgcacgcg gtccgacagc ggcccaacgc cgacgacgcc gtcgtccgtg 480 gcggcgcgcg cggccaccac ctgca 505 <210> SEQ ID NO 52 <211> LENGTH: 543 <212> TYPE: DNA <213> ORGANISM: Zea mays <400> SEQUENCE: 52 cccggtacgc gccgccacgg acgacggcgt cgtcggcgtt gggccgctgt cggaccgcgt 60 gcacgtggtg tacagcctgt ccaaggacct gggcctcccg gggttccgcg tgggcgccat 120 ctactcgtcc aacgccggcg tggtctccgc ggccaccaag atgtcgagct tcggcctggt 180 gtcgtcccag acgcagcacc tcctggcgtc gctcctgggc gacagggact tcacgcggag 240 gtacatcgcg gagaacacgc ggcggatcag ggagcggcgc gagcagctgg cggagggcct 300

ggcggccgtg ggcatcgagt gcctggagag caacgcgggg ctcttctgct gggtcaacat 360 gcggcgcctg atgcggagcc ggtcgttcga gggcgagatg gagctgtgga agagggtggt 420 cttcgaggtg gggctcaaca tctccccggg ctcctcctgc cactgccggg agcccggctg 480 gttccgcgtc tgctaaaggg cgaattccag cacactggcg gccgttacta gtggatccga 540 gct 543 <210> SEQ ID NO 53 <211> LENGTH: 51280 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: improved ACS6 inhibition plasmid <400> SEQUENCE: 53 gtttacccgc caatatatcc tgtcaaacac tgatagttta aactgaaggc gggaaacgac 60 aatctgatca tgagcggaga attaagggag tcacgttatg acccccgccg atgacgcggg 120 acaagccgtt ttacgtttgg aactgacaga accgcaacgt tgaaggagcc actcagcaag 180 ctggtacgat tgtaatacga ctcactatag ggcgaattga gcgctgttta aacgctcttc 240 aactggaaga gcggttacta ccggctggat ggcggggcct tgatcgtgca ccgccggcgt 300 ccggataagt gactagggtc acgtgaccct agtcacttat cgagctagtt accctatgag 360 gtgacatgaa gcgctcacgg ttactatgac ggttagcttc acgactgttg gtggcagtag 420 cgtacgactt agctatagtt ccggtagatc tgaagttcct attccgaagt tcctattctt 480 caaaaggtat aggaacttcc tcgaattgtt gtggtggggt atagaggttt gatataggtg 540 gaactgctgt agagcgtgga gatatagggg gaaagagaac gctgatgtga caagtgagtg 600 agatataggg ggagaaattt agggggaacg ccgaacacag tctaaagaag cttgggaccc 660 aaagcactct gttcgggggt tttttttttt gtctttcaac tttttgctgt aatgttattc 720 aaaataagaa aagcacttgg catggctaag aaatagagtt caacaactga acagtacagt 780 gtattatcaa tggcataaaa aacaaccctt acagcattgc cgtattttat tgatcaaaca 840 ttcaactcaa cactgacgag tggtcttcca ccgatcaacg gactaatgct gctttgtcag 900 atcaccggtt aagtgactag ggtcacgtga ccctagtcac ttaggttacc agagctggtc 960 acctttgtcc accaagatgg aactgcggcc gctcattaat taagtcaggc gcgcctctag 1020 ttgaagacac gttcatgtct tcatcgtaag aagacactca gtagtcttcg gccagaatgg 1080 ccatctggat tcagcaggcc tagaaggcca tttaaatcct gaggatctgg tcttcctaag 1140 gacccgggat atcacaagtt tgtacaaaaa agcaggctcc ggccagagtt acccggaccg 1200 aagcttgcat gcctgcagtg cagcgtgacc cggtcgtgcc cctctctaga gataatgagc 1260 attgcatgtc taagttataa aaaattacca catatttttt ttgtcacact tgtttgaagt 1320 gcagtttatc tatctttata catatattta aactttactc tacgaataat ataatctata 1380 gtactacaat aatatcagtg ttttagagaa tcatataaat gaacagttag acatggtcta 1440 aaggacaatt gagtattttg acaacaggac tctacagttt tatcttttta gtgtgcatgt 1500 gttctccttt ttttttgcaa atagcttcac ctatataata cttcatccat tttattagta 1560 catccattta gggtttaggg ttaatggttt ttatagacta atttttttag tacatctatt 1620 ttattctatt ttagcctcta aattaagaaa actaaaactc tattttagtt tttttattta 1680 ataatttaga tataaaatag aataaaataa agtgactaaa aattaaacaa atacccttta 1740 agaaattaaa aaaactaagg aaacattttt cttgtttcga gtagataatg ccagcctgtt 1800 aaacgccgtc gacgagtcta acggacacca accagcgaac cagcagcgtc gcgtcgggcc 1860 aagcgaagca gacggcacgg catctctgtc gctgcctctg gacccctctc gagagttccg 1920 ctccaccgtt ggacttgctc cgctgtcggc atccagaaat tgcgtggcgg agcggcagac 1980 gtgagccggc acggcaggcg gcctcctcct cctctcacgg caccggcagc tacgggggat 2040 tcctttccca ccgctccttc gctttccctt cctcgcccgc cgtaataaat agacaccccc 2100 tccacaccct ctttccccaa cctcgtgttg ttcggagcgc acacacacac aaccagatct 2160 cccccaaatc cacccgtcgg cacctccgct tcaaggtacg ccgctcgtcc tccccccccc 2220 ccctctctac cttctctaga tcggcgttcc ggtccatgca tggttagggc ccggtagttc 2280 tacttctgtt catgtttgtg ttagatccgt gtttgtgtta gatccgtgct gctagcgttc 2340 gtacacggat gcgacctgta cgtcagacac gttctgattg ctaacttgcc agtgtttctc 2400 tttggggaat cctgggatgg ctctagccgt tccgcagacg ggatcgattt catgattttt 2460 tttgtttcgt tgcatagggt ttggtttgcc cttttccttt atttcaatat atgccgtgca 2520 cttgtttgtc gggtcatctt ttcatgcttt tttttgtctt ggttgtgatg atgtggtctg 2580 gttgggcggt cgttctagat cggagtagaa ttctgtttca aactacctgg tggatttatt 2640 aattttggat ctgtatgtgt gtgccataca tattcatagt tacgaattga agatgatgga 2700 tggaaatatc gatctaggat aggtatacat gttgatgcgg gttttactga tgcatataca 2760 gagatgcttt ttgttcgctt ggttgtgatg atgtggtgtg gttgggcggt cgttcattcg 2820 ttctagatcg gagtagaata ctgtttcaaa ctacctggtg tatttattaa ttttggaact 2880 gtatgtgtgt gtcatacatc ttcatagtta cgagtttaag atggatggaa atatcgatct 2940 aggataggta tacatgttga tgtgggtttt actgatgcat atacatgatg gcatatgcag 3000 catctattca tatgctctaa ccttgagtac ctatctatta taataaacaa gtatgtttta 3060 taattatttt gatcttgata tacttggatg atggcatatg cagcagctat atgtggattt 3120 ttttagccct gccttcatac gctatttatt tgcttggtac tgtttctttt gtcgatgctc 3180 accctgttgt ttggtgttac ttctgcaggt cgactttaac ttagcctagg atccactagt 3240 aacggccgcc agtgtgctgg aattcgccct ttagcagacg cggaaccagc cgggctcccg 3300 gcagtggcag gaggagcccg gggagatgtt gagccccacc tcgaagacca ccctcttcca 3360 cagctccatc tcgccctcga acgaccggct ccgcatcagg cgccgcatgt tgacccagca 3420 gaagagcccc gcgttgctct ccaggcactc gatgcccacg gccgccaggc cctccgccag 3480 ctgctcgcgc cgctccctga tccgccgcgt gttctccgcg atgtacctcc gcgtgaagtc 3540 cctgtcgccc aggagcgacg ccaggaggtg ctgcgtctgg gacgacacca ggccgaagct 3600 cgacatcttg gtggccgcgg agaccacgcc ggcgttggac gagtagatgg cgcccacgcg 3660 gaaccccggg aggcccaggt ccttggacag gctgtacacc acgtgcacgc ggtccgacag 3720 cggcccaacg ccgacgacgc cgtcgtccgt ggcggcgcgc gcggccacca cctgcagtcg 3780 acgtgcaaag gtccgccttg tttctcctct gtctcttgat ctgactaatc ttggtttatg 3840 attcgttgag taattttggg gaaagcttcg tccacagttt tttttcgatg aacagtgccg 3900 cagtggcgct gatcttgtat gctatcctgc aatcgtggtg aacttatttc ttttatatcc 3960 tttactccca tgaaaaggct agtaatcttt ctcgatgtaa catcgtccag cactgctatt 4020 accgtgtggt ccatccgaca gtctggctga acacatcata cgatctatgg agcaaaaatc 4080 tatcttccct gttctttaat gaaggacgtc attttcatta gtatgatcta ggaatgttgc 4140 aacttgcaag gaggcgtttc tttctttgaa tttaactaac tcgttgagtg gccctgtttc 4200 tcggacgtaa ggcctttgct gctccacaca tgtccattcg aattttaccg tgtttagcaa 4260 gggcgaaaag tttgcatctt gatgatttag cttgactatg cgattgcttt cctggacccg 4320 tgcagctgga tcccggtacg cgccgccacg gacgacggcg tcgtcggcgt tgggccgctg 4380 tcggaccgcg tgcacgtggt gtacagcctg tccaaggacc tgggcctccc ggggttccgc 4440 gtgggcgcca tctactcgtc caacgccggc gtggtctccg cggccaccaa gatgtcgagc 4500 ttcggcctgg tgtcgtccca gacgcagcac ctcctggcgt cgctcctggg cgacagggac 4560 ttcacgcgga ggtacatcgc ggagaacacg cggcggatca gggagcggcg cgagcagctg 4620 gcggagggcc tggcggccgt gggcatcgag tgcctggaga gcaacgcggg gctcttctgc 4680 tgggtcaaca tgcggcgcct gatgcggagc cggtcgttcg agggcgagat ggagctgtgg 4740 aagagggtgg tcttcgaggt ggggctcaac atctccccgg gctcctcctg ccactgccgg 4800 gagcccggct ggttccgcgt ctgctaaagg gcgaattcca gcacactggc ggccgttact 4860 agtggatccg agctcgaatt ccggtccggg tcacccggtc cgggcctaga aggccgatct 4920 cccgggcacc cagctttctt gtacaaagtg gtgatatcgg accgattaaa ctttaattcg 4980 gtccgatgca tgtatacgaa gttcctattc cgaagttcct attctacata gagtatagga 5040 acttcacctg gtggcgccgc tagtggatcc cccgggctgc agtgcagcgt gacccggtcg 5100 tgcccctctc tagagataat gagcattgca tgtctaagtt ataaaaaatt accacatatt 5160 ttttttgtca cacttgtttg aagtgcagtt tatctatctt tatacatata tttaaacttt 5220 actctacgaa taatataatc tatagtacta caataatatc agtgttttag agaatcatat 5280 aaatgaacag ttagacatgg tctaaaggac aattgagtat tttgacaaca ggactctaca 5340 gttttatctt tttagtgtgc atgtgttctc cttttttttt gcaaatagct tcacctatat 5400 aatacttcat ccattttatt agtacatcca tttagggttt agggttaatg gtttttatag 5460 actaattttt ttagtacatc tattttattc tattttagcc tctaaattaa gaaaactaaa 5520 actctatttt agttttttta tttaataatt tagatataaa atagaataaa ataaagtgac 5580 taaaaattaa acaaataccc tttaagaaat taaaaaaact aaggaaacat ttttcttgtt 5640 tcgagtagat aatgccagcc tgttaaacgc cgtcgacgag tctaacggac accaaccagc 5700 gaaccagcag cgtcgcgtcg ggccaagcga agcagacggc acggcatctc tgtcgctgcc 5760 tctggacccc tctcgagagt tccgctccac cgttggactt gctccgctgt cggcatccag 5820 aaattgcgtg gcggagcggc agacgtgagc cggcacggca ggcggcctcc tcctcctctc 5880 acggcaccgg cagctacggg ggattccttt cccaccgctc cttcgctttc ccttcctcgc 5940 ccgccgtaat aaatagacac cccctccaca ccctctttcc ccaacctcgt gttgttcgga 6000 gcgcacacac acacaaccag atctccccca aatccacccg tcggcacctc cgcttcaagg 6060 tacgccgctc gtcctccccc ccccccctct ctaccttctc tagatcggcg ttccggtcca 6120 tgcatggtta gggcccggta gttctacttc tgttcatgtt tgtgttagat ccgtgtttgt 6180 gttagatccg tgctgctagc gttcgtacac ggatgcgacc tgtacgtcag acacgttctg 6240 attgctaact tgccagtgtt tctctttggg gaatcctggg atggctctag ccgttccgca 6300 gacgggatcg atttcatgat tttttttgtt tcgttgcata gggtttggtt tgcccttttc 6360 ctttatttca atatatgccg tgcacttgtt tgtcgggtca tcttttcatg cttttttttg 6420 tcttggttgt gatgatgtgg tctggttggg cggtcgttct agatcggagt agaattctgt 6480 ttcaaactac ctggtggatt tattaatttt ggatctgtat gtgtgtgcca tacatattca 6540 tagttacgaa ttgaagatga tggatggaaa tatcgatcta ggataggtat acatgttgat 6600 gcgggtttta ctgatgcata tacagagatg ctttttgttc gcttggttgt gatgatgtgg 6660 tgtggttggg cggtcgttca ttcgttctag atcggagtag aatactgttt caaactacct 6720 ggtgtattta ttaattttgg aactgtatgt gtgtgtcata catcttcata gttacgagtt 6780 taagatggat ggaaatatcg atctaggata ggtatacatg ttgatgtggg ttttactgat 6840 gcatatacat gatggcatat gcagcatcta ttcatatgct ctaaccttga gtacctatct 6900

attataataa acaagtatgt tttataatta ttttgatctt gatatacttg gatgatggca 6960 tatgcagcag ctatatgtgg atttttttag ccctgccttc atacgctatt tatttgcttg 7020 gtactgtttc ttttgtcgat gctcaccctg ttgtttggtg ttacttctgc aggtcgactt 7080 taacttagcc taggatccac acgacaccat gtcccccgag cgccgccccg tcgagatccg 7140 cccggccacc gccgccgaca tggccgccgt gtgcgacatc gtgaaccact acatcgagac 7200 ctccaccgtg aacttccgca ccgagccgca gaccccgcag gagtggatcg acgacctgga 7260 gcgcctccag gaccgctacc cgtggctcgt ggccgaggtg gagggcgtgg tggccggcat 7320 cgcctacgcc ggcccgtgga aggcccgcaa cgcctacgac tggaccgtgg agtccaccgt 7380 gtacgtgtcc caccgccacc agcgcctcgg cctcggctcc accctctaca cccacctcct 7440 caagagcatg gaggcccagg gcttcaagtc cgtggtggcc gtgatcggcc tcccgaacga 7500 cccgtccgtg cgcctccacg aggccctcgg ctacaccgcc cgcggcaccc tccgcgccgc 7560 cggctacaag cacggcggct ggcacgacgt cggcttctgg cagcgcgact tcgagctgcc 7620 ggccccgccg cgcccggtgc gcccggtgac gcagatctga gtcgaaacct agacttgtcc 7680 atcttctgga ttggccaact taattaatgt atgaaataaa aggatgcaca catagtgaca 7740 tgctaatcac tataatgtgg gcatcaaagt tgtgtgttat gtgtaattac tagttatctg 7800 aataaaagag aaagagatca tccatatttc ttatcctaaa tgaatgtcac gtgtctttat 7860 aattctttga tgaaccagat gcatttcatt aaccaaatcc atatacatat aaatattaat 7920 catatataat taatatcaat tgggttagca aaacaaatct agtctaggtg tgttttgcga 7980 attgcggccg ctctagcgta tacgaagttc ctattccgaa gttcctattc tctagaaagt 8040 ataggaactt ctgattccga tgacttcgta ggttcctagc tcaagccgct cgtgtccaag 8100 cgtcacttac gattagctaa tgattacggc atctaggacc gactagtaag tgactagggt 8160 cacgtgaccc tagtcactta tacgtagaat taattcattc cgattaatcg tggcctcttg 8220 ctcttcagga tgaagagcta tgtttaaacg tgcaagcgct actagacaat tcagtacatt 8280 aaaaacgtcc gcaatgtgtt attaagttgt ctaagcgtca atttgtttac accacaatat 8340 atcctgccac cagccagcca acagctcccc gaccggcagc tcggcacaaa atcaccactc 8400 gatacaggca gcccatcagt ccgggacggc gtcagcggga gagccgttgt aaggcggcag 8460 actttgctca tgttaccgat gctattcgga agaacggcaa ctaagctgcc gggtttgaaa 8520 cacggatgat ctcgcggagg gtagcatgtt gattgtaacg atgacagagc gttgctgcct 8580 gtgatcaaat atcatctccc tcgcagagat ccgaattatc agccttctta ttcatttctc 8640 gcttaaccgt gacaggctgt cgatcttgag aactatgccg acataatagg aaatcgctgg 8700 ataaagccgc tgaggaagct gagtggcgct atttctttag aagtgaacgt tgacgatcgt 8760 cgaccgtacc ccgatgaatt aattcggacg tacgttctga acacagctgg atacttactt 8820 gggcgattgt catacatgac atcaacaatg tacccgtttg tgtaaccgtc tcttggaggt 8880 tcgtatgaca ctagtggttc ccctcagctt gcgactagat gttgaggcct aacattttat 8940 tagagagcag gctagttgct tagatacatg atcttcaggc cgttatctgt cagggcaagc 9000 gaaaattggc catttatgac gaccaatgcc ccgcagaagc tcccatcttt gccgccatag 9060 acgccgcgcc ccccttttgg ggtgtagaac atccttttgc cagatgtgga aaagaagttc 9120 gttgtcccat tgttggcaat gacgtagtag ccggcgaaag tgcgagaccc atttgcgcta 9180 tatataagcc tacgatttcc gttgcgacta ttgtcgtaat tggatgaact attatcgtag 9240 ttgctctcag agttgtcgta atttgatgga ctattgtcgt aattgcttat ggagttgtcg 9300 tagttgcttg gagaaatgtc gtagttggat ggggagtagt catagggaag acgagcttca 9360 tccactaaaa caattggcag gtcagcaagt gcctgccccg atgccatcgc aagtacgagg 9420 cttagaacca ccttcaacag atcgcgcata gtcttcccca gctctctaac gcttgagtta 9480 agccgcgccg cgaagcggcg tcggcttgaa cgaattgtta gacattattt gccgactacc 9540 ttggtgatct cgcctttcac gtagtgaaca aattcttcca actgatctgc gcgcgaggcc 9600 aagcgatctt cttgtccaag ataagcctgc ctagcttcaa gtatgacggg ctgatactgg 9660 gccggcaggc gctccattgc ccagtcggca gcgacatcct tcggcgcgat tttgccggtt 9720 actgcgctgt accaaatgcg ggacaacgta agcactacat ttcgctcatc gccagcccag 9780 tcgggcggcg agttccatag cgttaaggtt tcatttagcg cctcaaatag atcctgttca 9840 ggaaccggat caaagagttc ctccgccgct ggacctacca aggcaacgct atgttctctt 9900 gcttttgtca gcaagatagc cagatcaatg tcgatcgtgg ctggctcgaa gatacctgca 9960 agaatgtcat tgcgctgcca ttctccaaat tgcagttcgc gcttagctgg ataacgccac 10020 ggaatgatgt cgtcgtgcac aacaatggtg acttctacag cgcggagaat ctcgctctct 10080 ccaggggaag ccgaagtttc caaaaggtcg ttgatcaaag ctcgccgcgt tgtttcatca 10140 agccttacag tcaccgtaac cagcaaatca atatcactgt gtggcttcag gccgccatcc 10200 actgcggagc cgtacaaatg tacggccagc aacgtcggtt cgagatggcg ctcgatgacg 10260 ccaactacct ctgatagttg agtcgatact tcggcgatca ccgcttccct catgatgttt 10320 aactcctgaa ttaagccgcg ccgcgaagcg gtgtcggctt gaatgaattg ttaggcgtca 10380 tcctgtgctc ccgagaacca gtaccagtac atcgctgttt cgttcgagac ttgaggtcta 10440 gttttatacg tgaacaggtc aatgccgccg agagtaaagc cacattttgc gtacaaattg 10500 caggcaggta cattgttcgt ttgtgtctct aatcgtatgc caaggagctg tctgcttagt 10560 gcccactttt tcgcaaattc gatgagactg tgcgcgactc ctttgcctcg gtgcgtgtgc 10620 gacacaacaa tgtgttcgat agaggctaga tcgttccatg ttgagttgag ttcaatcttc 10680 ccgacaagct cttggtcgat gaatgcgcca tagcaagcag agtcttcatc agagtcatca 10740 tccgagatgt aatccttccg gtaggggctc acacttctgg tagatagttc aaagccttgg 10800 tcggataggt gcacatcgaa cacttcacga acaatgaaat ggttctcagc atccaatgtt 10860 tccgccacct gctcagggat caccgaaatc ttcatatgac gcctaacgcc tggcacagcg 10920 gatcgcaaac ctggcgcggc ttttggcaca aaaggcgtga caggtttgcg aatccgttgc 10980 tgccacttgt taaccctttt gccagatttg gtaactataa tttatgttag aggcgaagtc 11040 ttgggtaaaa actggcctaa aattgctggg gatttcagga aagtaaacat caccttccgg 11100 ctcgatgtct attgtagata tatgtagtgt atctacttga tcgggggatc tgctgcctcg 11160 cgcgtttcgg tgatgacggt gaaaacctct gacacatgca gctcccggag acggtcacag 11220 cttgtctgta agcggatgcc gggagcagac aagcccgtca gggcgcgtca gcgggtgttg 11280 gcgggtgtcg gggcgcagcc atgacccagt cacgtagcga tagcggagtg tatactggct 11340 taactatgcg gcatcagagc agattgtact gagagtgcac catatgcggt gtgaaatacc 11400 gcacagatgc gtaaggagaa aataccgcat caggcgctct tccgcttcct cgctcactga 11460 ctcgctgcgc tcggtcgttc ggctgcggcg agcggtatca gctcactcaa aggcggtaat 11520 acggttatcc acagaatcag gggataacgc aggaaagaac atgtgagcaa aaggccagca 11580 aaaggccagg aaccgtaaaa aggccgcgtt gctggcgttt ttccataggc tccgcccccc 11640 tgacgagcat cacaaaaatc gacgctcaag tcagaggtgg cgaaacccga caggactata 11700 aagataccag gcgtttcccc ctggaagctc cctcgtgcgc tctcctgttc cgaccctgcc 11760 gcttaccgga tacctgtccg cctttctccc ttcgggaagc gtggcgcttt ctcatagctc 11820 acgctgtagg tatctcagtt cggtgtaggt cgttcgctcc aagctgggct gtgtgcacga 11880 accccccgtt cagcccgacc gctgcgcctt atccggtaac tatcgtcttg agtccaaccc 11940 ggtaagacac gacttatcgc cactggcagc agccactggt aacaggatta gcagagcgag 12000 gtatgtaggc ggtgctacag agttcttgaa gtggtggcct aactacggct acactagaag 12060 gacagtattt ggtatctgcg ctctgctgaa gccagttacc ttcggaaaaa gagttggtag 12120 ctcttgatcc ggcaaacaaa ccaccgctgg tagcggtggt ttttttgttt gcaagcagca 12180 gattacgcgc agaaaaaaag gatctcaaga agatcctttg atcttttcta cggggtctga 12240 cgctcagtgg aacgaaaact cacgttaagg gattttggtc atgagattat caaaaaggat 12300 cttcacctag atccttttaa attaaaaatg aagttttaaa tcaatctaaa gtatatatga 12360 gtaaacttgg tctgacagtt accaatgctt aatcagtgag gcacctatct cagcgatctg 12420 tctatttcgt tcatccatag ttgcctgact ccccgtcgtg tagataacta cgatacggga 12480 gggcttacca tctggcccca gtgctgcaat gataccgcga gacccacgct caccggctcc 12540 agatttatca gcaataaacc agccagccgg aagggccgag cgcagaagtg gtcctgcaac 12600 tttatccgcc tccatccagt ctattaattg ttgccgggaa gctagagtaa gtagttcgcc 12660 agttaatagt ttgcgcaacg ttgttgccat tgctgcaggg gggggggggg ggggggactt 12720 ccattgttca ttccacggac aaaaacagag aaaggaaacg acagaggcca aaaagcctcg 12780 ctttcagcac ctgtcgtttc ctttcttttc agagggtatt ttaaataaaa acattaagtt 12840 atgacgaaga agaacggaaa cgccttaaac cggaaaattt tcataaatag cgaaaacccg 12900 cgaggtcgcc gccccgtaac acctgtcgga tcaccggaaa ggacccgtaa agtgataatg 12960 attatcatct acatatcaca acgtgcgtgg aggccatcaa accacgtcaa ataatcaatt 13020 atgacgcagg tatcgtatta attgatctgc atcaacttaa cgtaaaaaca acttcagaca 13080 atacaaatca gcgacactga atacggggca acctcatgtc cccccccccc ccccccctgc 13140 aggcatcgtg gtgtcacgct cgtcgtttgg tatggcttca ttcagctccg gttcccaacg 13200 atcaaggcga gttacatgat cccccatgtt gtgcaaaaaa gcggttagct ccttcggtcc 13260 tccgatcgtt gtcagaagta agttggccgc agtgttatca ctcatggtta tggcagcact 13320 gcataattct cttactgtca tgccatccgt aagatgcttt tctgtgactg gtgagtactc 13380 aaccaagtca ttctgagaat agtgtatgcg gcgaccgagt tgctcttgcc cggcgtcaac 13440 acgggataat accgcgccac atagcagaac tttaaaagtg ctcatcattg gaaaacgttc 13500 ttcggggcga aaactctcaa ggatcttacc gctgttgaga tccagttcga tgtaacccac 13560 tcgtgcaccc aactgatctt cagcatcttt tactttcacc agcgtttctg ggtgagcaaa 13620 aacaggaagg caaaatgccg caaaaaaggg aataagggcg acacggaaat gttgaatact 13680 catactcttc ctttttcaat attattgaag catttatcag ggttattgtc tcatgagcgg 13740 atacatattt gaatgtattt agaaaaataa acaaataggg gttccgcgca catttccccg 13800 aaaagtgcca cctgacgtct aagaaaccat tattatcatg acattaacct ataaaaatag 13860 gcgtatcacg aggccctttc gtcttcaaga attcggagct tttgccattc tcaccggatt 13920 cagtcgtcac tcatggtgat ttctcacttg ataaccttat ttttgacgag gggaaattaa 13980 taggttgtat tgatgttgga cgagtcggaa tcgcagaccg ataccaggat cttgccatcc 14040 tatggaactg cctcggtgag ttttctcctt cattacagaa acggcttttt caaaaatatg 14100 gtattgataa tcctgatatg aataaattgc agtttcattt gatgctcgat gagtttttct 14160 aatcagaatt ggttaattgg ttgtaacact ggcagagcat tacgctgact tgacgggacg 14220 gcggctttgt tgaataaatc gaacttttgc tgagttgaag gatcagatca cgcatcttcc 14280 cgacaacgca gaccgttccg tggcaaagca aaagttcaaa atcaccaact ggtccaccta 14340 caacaaagct ctcatcaacc gtggctccct cactttctgg ctggatgatg gggcgattca 14400 ggcctggtat gagtcagcaa caccttcttc acgaggcaga cctcagcgcc agaaggccgc 14460

cagagaggcc gagcgcggcc gtgaggcttg gacgctaggg cagggcatga aaaagcccgt 14520 agcgggctgc tacgggcgtc tgacgcggtg gaaaggggga ggggatgttg tctacatggc 14580 tctgctgtag tgagtgggtt gcgctccggc agcggtcctg atcaatcgtc accctttctc 14640 ggtccttcaa cgttcctgac aacgagcctc cttttcgcca atccatcgac aatcaccgcg 14700 agtccctgct cgaacgctgc gtccggaccg gcttcgtcga aggcgtctat cgcggcccgc 14760 aacagcggcg agagcggagc ctgttcaacg gtgccgccgc gctcgccggc atcgctgtcg 14820 ccggcctgct cctcaagcac ggccccaaca gtgaagtagc tgattgtcat cagcgcattg 14880 acggcgtccc cggccgaaaa acccgcctcg cagaggaagc gaagctgcgc gtcggccgtt 14940 tccatctgcg gtgcgcccgg tcgcgtgccg gcatggatgc gcgcgccatc gcggtaggcg 15000 agcagcgcct gcctgaagct gcgggcattc ccgatcagaa atgagcgcca gtcgtcgtcg 15060 gctctcggca ccgaatgcgt atgattctcc gccagcatgg cttcggccag tgcgtcgagc 15120 agcgcccgct tgttcctgaa gtgccagtaa agcgccggct gctgaacccc caaccgttcc 15180 gccagtttgc gtgtcgtcag accgtctacg ccgacctcgt tcaacaggtc cagggcggca 15240 cggatcactg tattcggctg caactttgtc atgcttgaca ctttatcact gataaacata 15300 atatgtccac caacttatca gtgataaaga atccgcgcgt tcaatcggac cagcggaggc 15360 tggtccggag gccagacgtg aaacccaaca tacccctgat cgtaattctg agcactgtcg 15420 cgctcgacgc tgtcggcatc ggcctgatta tgccggtgct gccgggcctc ctgcgcgatc 15480 tggttcactc gaacgacgtc accgcccact atggcattct gctggcgctg tatgcgttgg 15540 tgcaatttgc ctgcgcacct gtgctgggcg cgctgtcgga tcgtttcggg cggcggccaa 15600 tcttgctcgt ctcgctggcc ggcgccactg tcgactacgc catcatggcg acagcgcctt 15660 tcctttgggt tctctatatc gggcggatcg tggccggcat caccggggcg actggggcgg 15720 tagccggcgc ttatattgcc gatatcactg atggcgatga gcgcgcgcgg cacttcggct 15780 tcatgagcgc ctgtttcggg ttcgggatgg tcgcgggacc tgtgctcggt gggctgatgg 15840 gcggtttctc cccccacgct ccgttcttcg ccgcggcagc cttgaacggc ctcaatttcc 15900 tgacgggctg tttccttttg ccggagtcgc acaaaggcga acgccggccg ttacgccggg 15960 aggctctcaa cccgctcgct tcgttccggt gggcccgggg catgaccgtc gtcgccgccc 16020 tgatggcggt cttcttcatc atgcaacttg tcggacaggt gccggccgcg ctttgggtca 16080 ttttcggcga ggatcgcttt cactgggacg cgaccacgat cggcatttcg cttgccgcat 16140 ttggcattct gcattcactc gcccaggcaa tgatcaccgg ccctgtagcc gcccggctcg 16200 gcgaaaggcg ggcactcatg ctcggaatga ttgccgacgg cacaggctac atcctgcttg 16260 ccttcgcgac acggggatgg atggcgttcc cgatcatggt cctgcttgct tcgggtggca 16320 tcggaatgcc ggcgctgcaa gcaatgttgt ccaggcaggt ggatgaggaa cgtcaggggc 16380 agctgcaagg ctcactggcg gcgctcacca gcctgacctc gatcgtcgga cccctcctct 16440 tcacggcgat ctatgcggct tctataacaa cgtggaacgg gtgggcatgg attgcaggcg 16500 ctgccctcta cttgctctgc ctgccggcgc tgcgtcgcgg gctttggagc ggcgcagggc 16560 aacgagccga tcgctgatcg tggaaacgat aggcctatgc catgcgggtc aaggcgactt 16620 ccggcaagct atacgcgccc taggagtgcg gttggaacgt tggcccagcc agatactccc 16680 gatcacgagc aggacgccga tgatttgaag cgcactcagc gtctgatcca agaacaacca 16740 tcctagcaac acggcggtcc ccgggctgag aaagcccagt aaggaaacaa ctgtaggttc 16800 gagtcgcgag atcccccgga accaaaggaa gtaggttaaa cccgctccga tcaggccgag 16860 ccacgccagg ccgagaacat tggttcctgt aggcatcggg attggcggat caaacactaa 16920 agctactgga acgagcagaa gtcctccggc cgccagttgc caggcggtaa aggtgagcag 16980 aggcacggga ggttgccact tgcgggtcag cacggttccg aacgccatgg aaaccgcccc 17040 cgccaggccc gctgcgacgc cgacaggatc tagcgctgcg tttggtgtca acaccaacag 17100 cgccacgccc gcagttccgc aaatagcccc caggaccgcc atcaatcgta tcgggctacc 17160 tagcagagcg gcagagatga acacgaccat cagcggctgc acagcgccta ccgtcgccgc 17220 gaccccgccc ggcaggcggt agaccgaaat aaacaacaag ctccagaata gcgaaatatt 17280 aagtgcgccg aggatgaaga tgcgcatcca ccagattccc gttggaatct gtcggacgat 17340 catcacgagc aataaacccg ccggcaacgc ccgcagcagc ataccggcga cccctcggcc 17400 tcgctgttcg ggctccacga aaacgccgga cagatgcgcc ttgtgagcgt ccttggggcc 17460 gtcctcctgt ttgaagaccg acagcccaat gatctcgccg tcgatgtagg cgccgaatgc 17520 cacggcatct cgcaaccgtt cagcgaacgc ctccatgggc tttttctcct cgtgctcgta 17580 aacggacccg aacatctctg gagctttctt cagggccgac aatcggatct cgcggaaatc 17640 ctgcacgtcg gccgctccaa gccgtcgaat ctgagcctta atcacaattg tcaattttaa 17700 tcctctgttt atcggcagtt cgtagagcgc gccgtgcgtc ccgagcgata ctgagcgaag 17760 caagtgcgtc gagcagtgcc cgcttgttcc tgaaatgcca gtaaagcgct ggctgctgaa 17820 cccccagccg gaactgaccc cacaaggccc tagcgtttgc aatgcaccag gtcatcattg 17880 acccaggcgt gttccaccag gccgctgcct cgcaactctt cgcaggcttc gccgacctgc 17940 tcgcgccact tcttcacgcg ggtggaatcc gatccgcaca tgaggcggaa ggtttccagc 18000 ttgagcgggt acggctcccg gtgcgagctg aaatagtcga acatccgtcg ggccgtcggc 18060 gacagcttgc ggtacttctc ccatatgaat ttcgtgtagt ggtcgccagc aaacagcacg 18120 acgatttcct cgtcgatcag gacctggcaa cgggacgttt tcttgccacg gtccaggacg 18180 cggaagcggt gcagcagcga caccgattcc aggtgcccaa cgcggtcgga cgtgaagccc 18240 atcgccgtcg cctgtaggcg cgacaggcat tcctcggcct tcgtgtaata ccggccattg 18300 atcgaccagc ccaggtcctg gcaaagctcg tagaacgtga aggtgatcgg ctcgccgata 18360 ggggtgcgct tcgcgtactc caacacctgc tgccacacca gttcgtcatc gtcggcccgc 18420 agctcgacgc cggtgtaggt gatcttcacg tccttgttga cgtggaaaat gaccttgttt 18480 tgcagcgcct cgcgcgggat tttcttgttg cgcgtggtga acagggcaga gcgggccgtg 18540 tcgtttggca tcgctcgcat cgtgtccggc cacggcgcaa tatcgaacaa ggaaagctgc 18600 atttccttga tctgctgctt cgtgtgtttc agcaacgcgg cctgcttggc ctcgctgacc 18660 tgttttgcca ggtcctcgcc ggcggttttt cgcttcttgg tcgtcatagt tcctcgcgtg 18720 tcgatggtca tcgacttcgc caaacctgcc gcctcctgtt cgagacgacg cgaacgctcc 18780 acggcggccg atggcgcggg cagggcaggg ggagccagtt gcacgctgtc gcgctcgatc 18840 ttggccgtag cttgctggac catcgagccg acggactgga aggtttcgcg gggcgcacgc 18900 atgacggtgc ggcttgcgat ggtttcggca tcctcggcgg aaaaccccgc gtcgatcagt 18960 tcttgcctgt atgccttccg gtcaaacgtc cgattcattc accctccttg cgggattgcc 19020 ccgactcacg ccggggcaat gtgcccttat tcctgatttg acccgcctgg tgccttggtg 19080 tccagataat ccaccttatc ggcaatgaag tcggtcccgt agaccgtctg gccgtccttc 19140 tcgtacttgg tattccgaat cttgccctgc acgaatacca gcgacccctt gcccaaatac 19200 ttgccgtggg cctcggcctg agagccaaaa cacttgatgc ggaagaagtc ggtgcgctcc 19260 tgcttgtcgc cggcatcgtt gcgccactct tcattaaccg ctatatcgaa aattgcttgc 19320 ggcttgttag aattgccatg acgtacctcg gtgtcacggg taagattacc gataaactgg 19380 aactgattat ggctcatatc gaaagtctcc ttgagaaagg agactctagt ttagctaaac 19440 attggttccg ctgtcaagaa ctttagcggc taaaattttg cgggccgcga ccaaaggtgc 19500 gaggggcggc ttccgctgtg tacaaccaga tatttttcac caacatcctt cgtctgctcg 19560 atgagcgggg catgacgaaa catgagctgt cggagagggc aggggtttca atttcgtttt 19620 tatcagactt aaccaacggt aaggccaacc cctcgttgaa ggtgatggag gccattgccg 19680 acgccctgga aactccccta cctcttctcc tggagtccac cgaccttgac cgcgaggcac 19740 tcgcggagat tgcgggtcat cctttcaaga gcagcgtgcc gcccggatac gaacgcatca 19800 gtgtggtttt gccgtcacat aaggcgttta tcgtaaagaa atggggcgac gacacccgaa 19860 aaaagctgcg tggaaggctc tgacgccaag ggttagggct tgcacttcct tctttagccg 19920 ctaaaacggc cccttctctg cgggccgtcg gctcgcgcat catatcgaca tcctcaacgg 19980 aagccgtgcc gcgaatggca tcgggcgggt gcgctttgac agttgttttc tatcagaacc 20040 cctacgtcgt gcggttcgat tagctgtttg tcttgcaggc taaacacttt cggtatatcg 20100 tttgcctgtg cgataatgtt gctaatgatt tgttgcgtag gggttactga aaagtgagcg 20160 ggaaagaaga gtttcagacc atcaaggagc gggccaagcg caagctggaa cgcgacatgg 20220 gtgcggacct gttggccgcg ctcaacgacc cgaaaaccgt tgaagtcatg ctcaacgcgg 20280 acggcaaggt gtggcacgaa cgccttggcg agccgatgcg gtacatctgc gacatgcggc 20340 ccagccagtc gcaggcgatt atagaaacgg tggccggatt ccacggcaaa gaggtcacgc 20400 ggcattcgcc catcctggaa ggcgagttcc ccttggatgg cagccgcttt gccggccaat 20460 tgccgccggt cgtggccgcg ccaacctttg cgatccgcaa gcgcgcggtc gccatcttca 20520 cgctggaaca gtacgtcgag gcgggcatca tgacccgcga gcaatacgag gtcattaaaa 20580 gcgccgtcgc ggcgcatcga aacatcctcg tcattggcgg tactggctcg ggcaagacca 20640 cgctcgtcaa cgcgatcatc aatgaaatgg tcgccttcaa cccgtctgag cgcgtcgtca 20700 tcatcgagga caccggcgaa atccagtgcg ccgcagagaa cgccgtccaa taccacacca 20760 gcatcgacgt ctcgatgacg ctgctgctca agacaacgct gcgtatgcgc cccgaccgca 20820 tcctggtcgg tgaggtacgt ggccccgaag cccttgatct gttgatggcc tggaacaccg 20880 ggcatgaagg aggtgccgcc accctgcacg caaacaaccc caaagcgggc ctgagccggc 20940 tcgccatgct tatcagcatg cacccggatt caccgaaacc cattgagccg ctgattggcg 21000 aggcggttca tgtggtcgtc catatcgcca ggacccctag cggccgtcga gtgcaagaaa 21060 ttctcgaagt tcttggttac gagaacggcc agtacatcac caaaaccctg taaggagtat 21120 ttccaatgac aacggctgtt ccgttccgtc tgaccatgaa tcgcggcatt ttgttctacc 21180 ttgccgtgtt cttcgttctc gctctcgcgt tatccgcgca tccggcgatg gcctcggaag 21240 gcaccggcgg cagcttgcca tatgagagct ggctgacgaa cctgcgcaac tccgtaaccg 21300 gcccggtggc cttcgcgctg tccatcatcg gcatcgtcgt cgccggcggc gtgctgatct 21360 tcggcggcga actcaacgcc ttcttccgaa ccctgatctt cctggttctg gtgatggcgc 21420 tgctggtcgg cgcgcagaac gtgatgagca ccttcttcgg tcgtggtgcc gaaatcgcgg 21480 ccctcggcaa cggggcgctg caccaggtgc aagtcgcggc ggcggatgcc gtgcgtgcgg 21540 tagcggctgg acggctcgcc taatcatggc tctgcgcacg atccccatcc gtcgcgcagg 21600 caaccgagaa aacctgttca tgggtggtga tcgtgaactg gtgatgttct cgggcctgat 21660 ggcgtttgcg ctgattttca gcgcccaaga gctgcgggcc accgtggtcg gtctgatcct 21720 gtggttcggg gcgctctatg cgttccgaat catggcgaag gccgatccga agatgcggtt 21780 cgtgtacctg cgtcaccgcc ggtacaagcc gtattacccg gcccgctcga ccccgttccg 21840 cgagaacacc aatagccaag ggaagcaata ccgatgatcc aagcaattgc gattgcaatc 21900 gcgggcctcg gcgcgcttct gttgttcatc ctctttgccc gcatccgcgc ggtcgatgcc 21960

gaactgaaac tgaaaaagca tcgttccaag gacgccggcc tggccgatct gctcaactac 22020 gccgctgtcg tcgatgacgg cgtaatcgtg ggcaagaacg gcagctttat ggctgcctgg 22080 ctgtacaagg gcgatgacaa cgcaagcagc accgaccagc agcgcgaagt agtgtccgcc 22140 cgcatcaacc aggccctcgc gggcctggga agtgggtgga tgatccatgt ggacgccgtg 22200 cggcgtcctg ctccgaacta cgcggagcgg ggcctgtcgg cgttccctga ccgtctgacg 22260 gcagcgattg aagaagagcg ctcggtcttg ccttgctcgt cggtgatgta cttcaccagc 22320 tccgcgaagt cgctcttctt gatggagcgc atggggacgt gcttggcaat cacgcgcacc 22380 ccccggccgt tttagcggct aaaaaagtca tggctctgcc ctcgggcgga ccacgcccat 22440 catgaccttg ccaagctcgt cctgcttctc ttcgatcttc gccagcaggg cgaggatcgt 22500 ggcatcaccg aaccgcgccg tgcgcgggtc gtcggtgagc cagagtttca gcaggccgcc 22560 caggcggccc aggtcgccat tgatgcgggc cagctcgcgg acgtgctcat agtccacgac 22620 gcccgtgatt ttgtagccct ggccgacggc cagcaggtag gccgacaggc tcatgccggc 22680 cgccgccgcc ttttcctcaa tcgctcttcg ttcgtctgga aggcagtaca ccttgatagg 22740 tgggctgccc ttcctggttg gcttggtttc atcagccatc cgcttgccct catctgttac 22800 gccggcggta gccggccagc ctcgcagagc aggattcccg ttgagcaccg ccaggtgcga 22860 ataagggaca gtgaagaagg aacacccgct cgcgggtggg cctacttcac ctatcctgcc 22920 cggctgacgc cgttggatac accaaggaaa gtctacacga accctttggc aaaatcctgt 22980 atatcgtgcg aaaaaggatg gatataccga aaaaatcgct ataatgaccc cgaagcaggg 23040 ttatgcagcg gaaaagcgct gcttccctgc tgttttgtgg aatatctacc gactggaaac 23100 aggcaaatgc aggaaattac tgaactgagg ggacaggcga gagacgatgc caaagagcta 23160 caccgacgag ctggccgagt gggttgaatc ccgcgcggcc aagaagcgcc ggcgtgatga 23220 ggctgcggtt gcgttcctgg cggtgagggc ggatgtcgag gcggcgttag cgtccggcta 23280 tgcgctcgtc accatttggg agcacatgcg ggaaacgggg aaggtcaagt tctcctacga 23340 gacgttccgc tcgcacgcca ggcggcacat caaggccaag cccgccgatg tgcccgcacc 23400 gcaggccaag gctgcggaac ccgcgccggc acccaagacg ccggagccac ggcggccgaa 23460 gcaggggggc aaggctgaaa agccggcccc cgctgcggcc ccgaccggct tcaccttcaa 23520 cccaacaccg gacaaaaagg atctactgta atggcgaaaa ttcacatggt tttgcagggc 23580 aagggcgggg tcggcaagtc ggccatcgcc gcgatcattg cgcagtacaa gatggacaag 23640 gggcagacac ccttgtgcat cgacaccgac ccggtgaacg cgacgttcga gggctacaag 23700 gccctgaacg tccgccggct gaacatcatg gccggcgacg aaattaactc gcgcaacttc 23760 gacaccctgg tcgagctgat tgcgccgacc aaggatgacg tggtgatcga caacggtgcc 23820 agctcgttcg tgcctctgtc gcattacctc atcagcaacc aggtgccggc tctgctgcaa 23880 gaaatggggc atgagctggt catccatacc gtcgtcaccg gcggccaggc tctcctggac 23940 acggtgagcg gcttcgccca gctcgccagc cagttcccgg ccgaagcgct tttcgtggtc 24000 tggctgaacc cgtattgggg gcctatcgag catgagggca agagctttga gcagatgaag 24060 gcgtacacgg ccaacaaggc ccgcgtgtcg tccatcatcc agattccggc cctcaaggaa 24120 gaaacctacg gccgcgattt cagcgacatg ctgcaagagc ggctgacgtt cgaccaggcg 24180 ctggccgatg aatcgctcac gatcatgacg cggcaacgcc tcaagatcgt gcggcgcggc 24240 ctgtttgaac agctcgacgc ggcggccgtg ctatgagcga ccagattgaa gagctgatcc 24300 gggagattgc ggccaagcac ggcatcgccg tcggccgcga cgacccggtg ctgatcctgc 24360 ataccatcaa cgcccggctc atggccgaca gtgcggccaa gcaagaggaa atccttgccg 24420 cgttcaagga agagctggaa gggatcgccc atcgttgggg cgaggacgcc aaggccaaag 24480 cggagcggat gctgaacgcg gccctggcgg ccagcaagga cgcaatggcg aaggtaatga 24540 aggacagcgc cgcgcaggcg gccgaagcga tccgcaggga aatcgacgac ggccttggcc 24600 gccagctcgc ggccaaggtc gcggacgcgc ggcgcgtggc gatgatgaac atgatcgccg 24660 gcggcatggt gttgttcgcg gccgccctgg tggtgtgggc ctcgttatga atcgcagagg 24720 cgcagatgaa aaagcccggc gttgccgggc tttgtttttg cgttagctgg gcttgtttga 24780 caggcccaag ctctgactgc gcccgcgctc gcgctcctgg gcctgtttct tctcctgctc 24840 ctgcttgcgc atcagggcct ggtgccgtcg ggctgcttca cgcatcgaat cccagtcgcc 24900 ggccagctcg ggatgctccg cgcgcatctt gcgcgtcgcc agttcctcga tcttgggcgc 24960 gtgaatgccc atgccttcct tgatttcgcg caccatgtcc agccgcgtgt gcagggtctg 25020 caagcgggct tgctgttggg cctgctgctg ctgccaggcg gcctttgtac gcggcaggga 25080 cagcaagccg ggggcattgg actgtagctg ctgcaaacgc gcctgctgac ggtctacgag 25140 ctgttctagg cggtcctcga tgcgctccac ctggtcatgc tttgcctgca cgtagagcgc 25200 aagggtctgc tggtaggtct gctcgatggg cgcggattct aagagggcct gctgttccgt 25260 ctcggcctcc tgggccgcct gtagcaaatc ctcgccgctg ttgccgctgg actgctttac 25320 tgccggggac tgctgttgcc ctgctcgcgc cgtcgtcgca gttcggcttg cccccactcg 25380 attgactgct tcatttcgag ccgcagcgat gcgatctcgg attgcgtcaa cggacggggc 25440 agcgcggagg tgtccggctt ctccttgggt gagtcggtcg atgccatagc caaaggtttc 25500 cttccaaaat gcgtccattg ctggaccgtg tttctcattg atgcccgcaa gcatcttcgg 25560 cttgaccgcc aggtcaagcg cgccttcatg ggcggtcatg acggacgccg ccatgacctt 25620 gccgccgttg ttctcgatgt agccgcgtaa tgaggcaatg gtgccgccca tcgtcagcgt 25680 gtcatcgaca acgatgtact tctggccggg gatcacctcc ccctcgaaag tcgggttgaa 25740 cgccaggcga tgatctgaac cggctccggt tcgggcgacc ttctcccgct gcacaatgtc 25800 cgtttcgacc tcaaggccaa ggcggtcggc cagaacgacc gccatcatgg ccggaatctt 25860 gttgttcccc gccgcctcga cggcgaggac tggaacgatg cggggcttgt cgtcgccgat 25920 cagcgtcttg agctgggcaa cagtgtcgtc cgaaatcagg cgctcgacca aattaagcgc 25980 cgcttccgcg tcgccctgct tcgcagcctg gtattcaggc tcgttggtca aagaaccaag 26040 gtcgccgttg cgaaccacct tcgggaagtc tccccacggt gcgcgctcgg ctctgctgta 26100 gctgctcaag acgcctccct ttttagccgc taaaactcta acgagtgcgc ccgcgactca 26160 acttgacgct ttcggcactt acctgtgcct tgccacttgc gtcataggtg atgcttttcg 26220 cactcccgat ttcaggtact ttatcgaaat ctgaccgggc gtgcattaca aagttcttcc 26280 ccacctgttg gtaaatgctg ccgctatctg cgtggacgat gctgccgtcg tggcgctgcg 26340 acttatcggc cttttgggcc atatagatgt tgtaaatgcc aggtttcagg gccccggctt 26400 tatctacctt ctggttcgtc catgcgcctt ggttctcggt ctggacaatt ctttgcccat 26460 tcatgaccag gaggcggtgt ttcattgggt gactcctgac ggttgcctct ggtgttaaac 26520 gtgtcctggt cgcttgccgg ctaaaaaaaa gccgacctcg gcagttcgag gccggctttc 26580 cctagagccg ggcgcgtcaa ggttgttcca tctattttag tgaactgcgt tcgatttatc 26640 agttactttc ctcccgcttt gtgtttcctc ccactcgttt ccgcgtctag ccgacccctc 26700 aacatagcgg cctcttcttg ggctgccttt gcctcttgcc gcgcttcgtc acgctcggct 26760 tgcaccgtcg taaagcgctc ggcctgcctg gccgcctctt gcgccgccaa cttcctttgc 26820 tcctggtggg cctcggcgtc ggcctgcgcc ttcgctttca ccgctgccaa ctccgtgcgc 26880 aaactctccg cttcgcgcct ggtggcgtcg cgctcgccgc gaagcgcctg catttcctgg 26940 ttggccgcgt ccagggtctt gcggctctct tctttgaatg cgcgggcgtc ctggtgagcg 27000 tagtccagct cggcgcgcag ctcctgcgct cgacgctcca cctcgtcggc ccgctgcgtc 27060 gccagcgcgg cccgctgctc ggctcctgcc agggcggtgc gtgcttcggc cagggcttgc 27120 cgctggcgtg cggccagctc ggccgcctcg gcggcctgct gctctagcaa tgtaacgcgc 27180 gcctgggctt cttccagctc gcgggcctgc gcctcgaagg cgtcggccag ctccccgcgc 27240 acggcttcca actcgttgcg ctcacgatcc cagccggctt gcgctgcctg caacgattca 27300 ttggcaaggg cctgggcggc ttgccagagg gcggccacgg cctggttgcc ggcctgctgc 27360 accgcgtccg gcacctggac tgccagcggg gcggcctgcg ccgtgcgctg gcgtcgccat 27420 tcgcgcatgc cggcgctggc gtcgttcatg ttgacgcggg cggccttacg cactgcatcc 27480 acggtcggga agttctcccg gtcgccttgc tcgaacagct cgtccgcagc cgcaaaaatg 27540 cggtcgcgcg tctctttgtt cagttccatg ttggctccgg taattggtaa gaataataat 27600 actcttacct accttatcag cgcaagagtt tagctgaaca gttctcgact taacggcagg 27660 ttttttagcg gctgaagggc aggcaaaaaa agccccgcac ggtcggcggg ggcaaagggt 27720 cagcgggaag gggattagcg ggcgtcgggc ttcttcatgc gtcggggccg cgcttcttgg 27780 gatggagcac gacgaagcgc gcacgcgcat cgtcctcggc cctatcggcc cgcgtcgcgg 27840 tcaggaactt gtcgcgcgct aggtcctccc tggtgggcac caggggcatg aactcggcct 27900 gctcgatgta ggtccactcc atgaccgcat cgcagtcgag gccgcgttcc ttcaccgtct 27960 cttgcaggtc gcggtacgcc cgctcgttga gcggctggta acgggccaat tggtcgtaaa 28020 tggctgtcgg ccatgagcgg cctttcctgt tgagccagca gccgacgacg aagccggcaa 28080 tgcaggcccc tggcacaacc aggccgacgc cgggggcagg ggatggcagc agctcgccaa 28140 ccaggaaccc cgccgcgatg atgccgatgc cggtcaacca gcccttgaaa ctatccggcc 28200 ccgaaacacc cctgcgcatt gcctggatgc tgcgccggat agcttgcaac atcaggagcc 28260 gtttcttttg ttcgtcagtc atggtccgcc ctcaccagtt gttcgtatcg gtgtcggacg 28320 aactgaaatc gcaagagctg ccggtatcgg tccagccgct gtccgtgtcg ctgctgccga 28380 agcacggcga ggggtccgcg aacgccgcag acggcgtatc cggccgcagc gcatcgccca 28440 gcatggcccc ggtcagcgag ccgccggcca ggtagcccag catggtgctg ttggtcgccc 28500 cggccaccag ggccgacgtg acgaaatcgc cgtcattccc tctggattgt tcgctgctcg 28560 gcggggcagt gcgccgcgcc ggcggcgtcg tggatggctc gggttggctg gcctgcgacg 28620 gccggcgaaa ggtgcgcagc agctcgttat cgaccggctg cggcgtcggg gccgccgcct 28680 tgcgctgcgg tcggtgttcc ttcttcggct cgcgcagctt gaacagcatg atcgcggaaa 28740 ccagcagcaa cgccgcgcct acgcctcccg cgatgtagaa cagcatcgga ttcattcttc 28800 ggtcctcctt gtagcggaac cgttgtctgt gcggcgcggg tggcccgcgc cgctgtcttt 28860 ggggatcagc cctcgatgag cgcgaccagt ttcacgtcgg caaggttcgc ctcgaactcc 28920 tggccgtcgt cctcgtactt caaccaggca tagccttccg ccggcggccg acggttgagg 28980 ataaggcggg cagggcgctc gtcgtgctcg acctggacga tggccttttt cagcttgtcc 29040 gggtccggct ccttcgcgcc cttttccttg gcgtccttac cgtcctggtc gccgtcctcg 29100 ccgtcctggc cgtcgccggc ctccgcgtca cgctcggcat cagtctggcc gttgaaggca 29160 tcgacggtgt tgggatcgcg gcccttctcg tccaggaact cgcgcagcag cttgaccgtg 29220 ccgcgcgtga tttcctgggt gtcgtcgtca agccacgcct cgacttcctc cgggcgcttc 29280 ttgaaggccg tcaccagctc gttcaccacg gtcacgtcgc gcacgcggcc ggtgttgaac 29340 gcatcggcga tcttctccgg caggtccagc agcgtgacgt gctgggtgat gaacgccggc 29400 gacttgccga tttccttggc gatatcgcct ttcttcttgc ccttcgccag ctcgcggcca 29460 atgaagtcgg caatttcgcg cggggtcagc tcgttgcgtt gcaggttctc gataacctgg 29520

tcggcttcgt tgtagtcgtt gtcgatgaac gccgggatgg acttcttgcc ggcccacttc 29580 gagccacggt agcggcgggc gccgtgattg atgatatagc ggcccggctg ctcctggttc 29640 tcgcgcaccg aaatgggtga cttcaccccg cgctctttga tcgtggcacc gatttccgcg 29700 atgctctccg gggaaaagcc ggggttgtcg gccgtccgcg gctgatgcgg atcttcgtcg 29760 atcaggtcca ggtccagctc gatagggccg gaaccgccct gagacgccgc aggagcgtcc 29820 aggaggctcg acaggtcgcc gatgctatcc aaccccaggc cggacggctg cgccgcgcct 29880 gcggcttcct gagcggccgc agcggtgttt ttcttggtgg tcttggcttg agccgcagtc 29940 attgggaaat ctccatcttc gtgaacacgt aatcagccag ggcgcgaacc tctttcgatg 30000 ccttgcgcgc ggccgttttc ttgatcttcc agaccggcac accggatgcg agggcatcgg 30060 cgatgctgct gcgcaggcca acggtggccg gaatcatcat cttggggtac gcggccagca 30120 gctcggcttg gtggcgcgcg tggcgcggat tccgcgcatc gaccttgctg ggcaccatgc 30180 caaggaattg cagcttggcg ttcttctggc gcacgttcgc aatggtcgtg accatcttct 30240 tgatgccctg gatgctgtac gcctcaagct cgatggggga cagcacatag tcggccgcga 30300 agagggcggc cgccaggccg acgccaaggg tcggggccgt gtcgatcagg cacacgtcga 30360 agccttggtt cgccagggcc ttgatgttcg ccccgaacag ctcgcgggcg tcgtccagcg 30420 acagccgttc ggcgttcgcc agtaccgggt tggactcgat gagggcgagg cgcgcggcct 30480 ggccgtcgcc ggctgcgggt gcggtttcgg tccagccgcc ggcagggaca gcgccgaaca 30540 gcttgcttgc atgcaggccg gtagcaaagt ccttgagcgt gtaggacgca ttgccctggg 30600 ggtccaggtc gatcacggca acccgcaagc cgcgctcgaa aaagtcgaag gcaagatgca 30660 caagggtcga agtcttgccg acgccgcctt tctggttggc cgtgaccaaa gttttcatcg 30720 tttggtttcc tgttttttct tggcgtccgc ttcccacttc cggacgatgt acgcctgatg 30780 ttccggcaga accgccgtta cccgcgcgta cccctcgggc aagttcttgt cctcgaacgc 30840 ggcccacacg cgatgcaccg cttgcgacac tgcgcccctg gtcagtccca gcgacgttgc 30900 gaacgtcgcc tgtggcttcc catcgactaa gacgccccgc gctatctcga tggtctgctg 30960 ccccacttcc agcccctgga tcgcctcctg gaactggctt tcggtaagcc gtttcttcat 31020 ggataacacc cataatttgc tccgcgcctt ggttgaacat agcggtgaca gccgccagca 31080 catgagagaa gtttagctaa acatttctcg cacgtcaaca cctttagccg ctaaaactcg 31140 tccttggcgt aacaaaacaa aagcccggaa accgggcttt cgtctcttgc cgcttatggc 31200 tctgcacccg gctccatcac caacaggtcg cgcacgcgct tcactcggtt gcggatcgac 31260 actgccagcc caacaaagcc ggttgccgcc gccgccagga tcgcgccgat gatgccggcc 31320 acaccggcca tcgcccacca ggtcgccgcc ttccggttcc attcctgctg gtactgcttc 31380 gcaatgctgg acctcggctc accataggct gaccgctcga tggcgtatgc cgcttctccc 31440 cttggcgtaa aacccagcgc cgcaggcggc attgccatgc tgcccgccgc tttcccgacc 31500 acgacgcgcg caccaggctt gcggtccaga ccttcggcca cggcgagctg cgcaaggaca 31560 taatcagccg ccgacttggc tccacgcgcc tcgatcagct cttgcactcg cgcgaaatcc 31620 ttggcctcca cggccgccat gaatcgcgca cgcggcgaag gctccgcagg gccggcgtcg 31680 tgatcgccgc cgagaatgcc cttcaccaag ttcgacgaca cgaaaatcat gctgacggct 31740 atcaccatca tgcagacgga tcgcacgaac ccgctgaatt gaacacgagc acggcacccg 31800 cgaccactat gccaagaatg cccaaggtaa aaattgccgg ccccgccatg aagtccgtga 31860 atgccccgac ggccgaagtg aagggcaggc cgccacccag gccgccgccc tcactgcccg 31920 gcacctggtc gctgaatgtc gatgccagca cctgcggcac gtcaatgctt ccgggcgtcg 31980 cgctcgggct gatcgcccat cccgttactg ccccgatccc ggcaatggca aggactgcca 32040 gcgctgccat ttttggggtg aggccgttcg cggccgaggg gcgcagcccc tggggggatg 32100 ggaggcccgc gttagcgggc cgggagggtt cgagaagggg gggcaccccc cttcggcgtg 32160 cgcggtcacg cgcacagggc gcagccctgg ttaaaaacaa ggtttataaa tattggttta 32220 aaagcaggtt aaaagacagg ttagcggtgg ccgaaaaacg ggcggaaacc cttgcaaatg 32280 ctggattttc tgcctgtgga cagcccctca aatgtcaata ggtgcgcccc tcatctgtca 32340 gcactctgcc cctcaagtgt caaggatcgc gcccctcatc tgtcagtagt cgcgcccctc 32400 aagtgtcaat accgcagggc acttatcccc aggcttgtcc acatcatctg tgggaaactc 32460 gcgtaaaatc aggcgttttc gccgatttgc gaggctggcc agctccacgt cgccggccga 32520 aatcgagcct gcccctcatc tgtcaacgcc gcgccgggtg agtcggcccc tcaagtgtca 32580 acgtccgccc ctcatctgtc agtgagggcc aagttttccg cgaggtatcc acaacgccgg 32640 cggccgcggt gtctcgcaca cggcttcgac ggcgtttctg gcgcgtttgc agggccatag 32700 acggccgcca gcccagcggc gagggcaacc agcccggtga gcgtcggaaa ggcgctggaa 32760 gccccgtagc gacgcggaga ggggcgagac aagccaaggg cgcaggctcg atgcgcagca 32820 cgacatagcc ggttctcgca aggacgagaa tttccctgcg gtgcccctca agtgtcaatg 32880 aaagtttcca acgcgagcca ttcgcgagag ccttgagtcc acgctagatg agagctttgt 32940 tgtaggtgga ccagttggtg attttgaact tttgctttgc cacggaacgg tctgcgttgt 33000 cgggaagatg cgtgatctga tccttcaact cagcaaaagt tcgatttatt caacaaagcc 33060 acgttgtgtc tcaaaatctc tgatgttaca ttgcacaaga taaaaatata tcatcatgaa 33120 caataaaact gtctgcttac ataaacagta atacaagggg tgttatgagc catattcaac 33180 gggaaacgtc ttgctcgact ctagagctcg ttcctcgagg cctcgaggcc tcgaggaacg 33240 gtacctgcgg ggaagcttac aataatgtgt gttgttaagt cttgttgcct gtcatcgtct 33300 gactgacttt cgtcataaat cccggcctcc gtaacccagc tttgggcaag ctcacggatt 33360 tgatccggcg gaacgggaat atcgagatgc cgggctgaac gctgcagttc cagctttccc 33420 tttcgggaca ggtactccag ctgattgatt atctgctgaa gggtcttggt tccacctcct 33480 ggcacaatgc gaatgattac ttgagcgcga tcgggcatcc aattttctcc cgtcaggtgc 33540 gtggtcaagt gctacaaggc acctttcagt aacgagcgac cgtcgatccg tcgccgggat 33600 acggacaaaa tggagcgcag tagtccatcg agggcggcga aagcctcgcc aaaagcaata 33660 cgttcatctc gcacagcctc cagatccgat cgagggtctt cggcgtaggc agatagaagc 33720 atggatacat tgcttgagag tattccgatg gactgaagta tggcttccat cttttctcgt 33780 gtgtctgcat ctatttcgag aaagcccccg atgcggcgca ccgcaacgcg aattgccata 33840 ctatccgaaa gtcccagcag gcgcgcttga taggaaaagg tttcatactc ggccgatcgc 33900 agacgggcac tcacgacctt gaacccttca actttcaggg atcgatgctg gttgatggta 33960 gtctcactcg acgtggctct ggtgtgtttt gacatagctt cctccaaaga aagcggaagg 34020 tctggatact ccagcacgaa atgtgcccgg gtagacggat ggaagtctag ccctgctcaa 34080 tatgaaatca acagtacatt tacagtcaat actgaatata cttgctacat ttgcaattgt 34140 cttataacga atgtgaaata aaaatagtgt aacaacgctt ttactcatcg ataatcacaa 34200 aaacatttat acgaacaaaa atacaaatgc actccggttt cacaggatag gcgggatcag 34260 aatatgcaac ttttgacgtt ttgttctttc aaagggggtg ctggcaaaac caccgcactc 34320 atgggccttt gcgctgcttt ggcaaatgac ggtaaacgag tggccctctt tgatgccgac 34380 gaaaaccggc ctctgacgcg atggagagaa aacgccttac aaagcagtac tgggatcctc 34440 gctgtgaagt ctattccgcc gacgaaatgc cccttcttga agcagcctat gaaaatgccg 34500 agctcgaagg atttgattat gcgttggccg atacgcgtgg cggctcgagc gagctcaaca 34560 acacaatcat cgctagctca aacctgcttc tgatccccac catgctaacg ccgctcgaca 34620 tcgatgaggc actatctacc taccgctacg tcatcgagct gctgttgagt gaaaatttgg 34680 caattcctac agctgttttg cgccaacgcg tcccggtcgg ccgattgaca acatcgcaac 34740 gcaggatgtc agagacgcta gagagccttc cagttgtacc gtctcccatg catgaaagag 34800 atgcatttgc cgcgatgaaa gaacgcggca tgttgcatct tacattacta aacacgggaa 34860 ctgatccgac gatgcgcctc atagagagga atcttcggat tgcgatggag gaagtcgtgg 34920 tcatttcgaa actgatcagc aaaatcttgg aggcttgaag atggcaattc gcaagcccgc 34980 attgtcggtc ggcgaagcac ggcggcttgc tggtgctcga cccgagatcc accatcccaa 35040 cccgacactt gttccccaga agctggacct ccagcacttg cctgaaaaag ccgacgagaa 35100 agaccagcaa cgtgagcctc tcgtcgccga tcacatttac agtcccgatc gacaacttaa 35160 gctaactgtg gatgccctta gtccacctcc gtccccgaaa aagctccagg tttttctttc 35220 agcgcgaccg cccgcgcctc aagtgtcgaa aacatatgac aacctcgttc ggcaatacag 35280 tccctcgaag tcgctacaaa tgattttaag gcgcgcgttg gacgatttcg aaagcatgct 35340 ggcagatgga tcatttcgcg tggccccgaa aagttatccg atcccttcaa ctacagaaaa 35400 atccgttctc gttcagacct cacgcatgtt cccggttgcg ttgctcgagg tcgctcgaag 35460 tcattttgat ccgttggggt tggagaccgc tcgagctttc ggccacaagc tggctaccgc 35520 cgcgctcgcg tcattctttg ctggagagaa gccatcgagc aattggtgaa gagggaccta 35580 tcggaacccc tcaccaaata ttgagtgtag gtttgaggcc gctggccgcg tcctcagtca 35640 ccttttgagc cagataatta agagccaaat gcaattggct caggctgcca tcgtcccccc 35700 gtgcgaaacc tgcacgtccg cgtcaaagaa ataaccggca cctcttgctg tttttatcag 35760 ttgagggctt gacggatccg cctcaagttt gcggcgcagc cgcaaaatga gaacatctat 35820 actcctgtcg taaacctcct cgtcgcgtac tcgactggca atgagaagtt gctcgcgcga 35880 tagaacgtcg cggggtttct ctaaaaacgc gaggagaaga ttgaactcac ctgccgtaag 35940 tttcacctca ccgccagctt cggacatcaa gcgacgttgc ctgagattaa gtgtccagtc 36000 agtaaaacaa aaagaccgtc ggtctttgga gcggacaacg ttggggcgca cgcgcaaggc 36060 aacccgaatg cgtgcaagaa actctctcgt actaaacggc ttagcgataa aatcacttgc 36120 tcctagctcg agtgcaacaa ctttatccgt ctcctcaagg cggtcgccac tgataattat 36180 gattggaata tcagactttg ccgccagatt tcgaacgatc tcaagcccat cttcacgacc 36240 taaatttaga tcaacaacca cgacatcgac cgtcgcggaa gagagtactc tagtgaactg 36300 ggtgctgtcg gctaccgcgg tcactttgaa ggcgtggatc gtaaggtatt cgataataag 36360 atgccgcata gcgacatcgt catcgataag aagaacgtgt ttcaacggct cacctttcaa 36420 tctaaaatct gaacccttgt tcacagcgct tgagaaattt tcacgtgaag gatgtacaat 36480 catctccagc taaatgggca gttcgtcaga attgcggctg accgcggatg acgaaaatgc 36540 gaaccaagta tttcaatttt atgacaaaag ttctcaatcg ttgttacaag tgaaacgctt 36600 cgaggttaca gctactattg attaaggaga tcgcctatgg tctcgccccg gcgtcgtgcg 36660 tccgccgcga gccagatctc gcctacttca taaacgtcct cataggcacg gaatggaatg 36720 atgacatcga tcgccgtaga gagcatgtca atcagtgtgc gatcttccaa gctagcacct 36780 tgggcgctac ttttgacaag ggaaaacagt ttcttgaatc cttggattgg attcgcgccg 36840 tgtattgttg aaatcgatcc cggatgtccc gagacgactt cactcagata agcccatgct 36900 gcatcgtcgc gcatctcgcc aagcaatatc cggtccggcc gcatacgcag acttgcttgg 36960 agcaagtgct cggcgctcac agcacccagc ccagcaccgt tcttggagta gagtagtcta 37020

acatgattat cgtgtggaat gacgagttcg agcgtatctt ctatggtgat tagcctttcc 37080 tgggggggga tggcgctgat caaggtcttg ctcattgttg tcttgccgct tccggtaggg 37140 ccacatagca acatcgtcag tcggctgacg acgcatgcgt gcagaaacgc ttccaaatcc 37200 ccgttgtcaa aatgctgaag gatagcttca tcatcctgat tttggcgttt ccttcgtgtc 37260 tgccactggt tccacctcga agcatcataa cgggaggaga cttctttaag accagaaaca 37320 cgcgagcttg gccgtcgaat ggtcaagctg acggtgcccg agggaacggt cggcggcaga 37380 cagatttgta gtcgttcacc accaggaagt tcagtggcgc agagggggtt acgtggtccg 37440 acatcctgct ttctcagcgc gcccgctaaa atagcgatat cttcaagatc atcataagag 37500 acgggcaaag gcatcttggt aaaaatgccg gcttggcgca caaatgcctc tccaggtcga 37560 ttgatcgcaa tttcttcagt cttcgggtca tcgagccatt ccaaaatcgg cttcagaaga 37620 aagcgtagtt gcggatccac ttccatttac aatgtatcct atctctaagc ggaaatttga 37680 attcattaag agcggcggtt cctcccccgc gtggcgccgc cagtcaggcg gagctggtaa 37740 acaccaaaga aatcgaggtc ccgtgctacg aaaatggaaa cggtgtcacc ctgattcttc 37800 ttcagggttg gcggtatgtt gatggttgcc ttaagggctg tctcagttgt ctgctcaccg 37860 ttattttgaa agctgttgaa gctcatcccg ccacccgagc tgccggcgta ggtgctagct 37920 gcctggaagg cgccttgaac aacactcaag agcatagctc cgctaaaacg ctgccagaag 37980 tggctgtcga ccgagcccgg caatcctgag cgaccgagtt cgtccgcgct tggcgatgtt 38040 aacgagatca tcgcatggtc aggtgtctcg gcgcgatccc acaacacaaa aacgcgccca 38100 tctccctgtt gcaagccacg ctgtatttcg ccaacaacgg tggtgccacg atcaagaagc 38160 acgatattgt tcgttgttcc acgaatatcc tgaggcaaga cacactttac atagcctgcc 38220 aaatttgtgt cgattgcggt ttgcaagatg cacggaatta ttgtcccttg cgttaccata 38280 aaatcggggt gcggcaagag cgtggcgctg ctgggctgca gctcggtggg tttcatacgt 38340 atcgacaaat cgttctcgcc ggacacttcg ccattcggca aggagttgtc gtcacgcttg 38400 ccttcttgtc ttcggcccgt gtcgccctga atggcgcgtt tgctgacccc ttgatcgccg 38460 ctgctatatg caaaaatcgg tgtttcttcc ggccgtggct catgccgctc cggttcgccc 38520 ctcggcggta gaggagcagc aggctgaaca gcctcttgaa ccgctggagg atccggcggc 38580 acctcaatcg gagctggatg aaatggcttg gtgtttgttg cgatcaaagt tgacggcgat 38640 gcgttctcat tcaccttctt ttggcgccca cctagccaaa tgaggcttaa tgataacgcg 38700 agaacgacac ctccgacgat caatttctga gaccccgaaa gacgccggcg atgtttgtcg 38760 gagaccaggg atccagatgc atcaacctca tgtgccgctt gctgactatc gttattcatc 38820 ccttcgcccc cttcaggacg cgtttcacat cgggcctcac cgtgcccgtt tgcggccttt 38880 ggccaacggg atcgtaagcg gtgttccaga tacatagtac tgtgtggcca tccctcagac 38940 gccaacctcg ggaaaccgaa gaaatctcga catcgctccc tttaactgaa tagttggcaa 39000 cagcttcctt gccatcagga ttgatggtgt agatggaggg tatgcgtaca ttgcccggaa 39060 agtggaatac cgtcgtaaat ccattgtcga agacttcgag tggcaacagc gaacgatcgc 39120 cttgggcgac gtagtgccaa ttactgtccg ccgcaccaag ggctgtgaca ggctgatcca 39180 ataaattctc agctttccgt tgatattgtg cttccgcgtg tagtctgtcc acaacagcct 39240 tctgttgtgc ctcccttcgc cgagccgccg catcgtcggc ggggtaggcg aattggacgc 39300 tgtaatagag atcgggctgc tctttatcga ggtgggacag agtcttggaa cttatactga 39360 aaacataacg gcgcatcccg gagtcgcttg cggttagcac gattactggc tgaggcgtga 39420 ggacctggct tgccttgaaa aatagataat ttccccgcgg tagggctgct agatctttgc 39480 tatttgaaac ggcaaccgct gtcaccgttt cgttcgtggc gaatgttacg accaaagtag 39540 ctccaaccgc cgtcgagagg cgcaccactt gatcgggatt gtaagccaaa taacgcatgc 39600 gcggatctag cttgcccgcc attggagtgt cttcagcctc cgcaccagtc gcagcggcaa 39660 ataaacatgc taaaatgaaa agtgcttttc tgatcatggt tcgctgtggc ctacgtttga 39720 aacggtatct tccgatgtct gataggaggt gacaaccaga cctgccgggt tggttagtct 39780 caatctgccg ggcaagctgg tcaccttttc gtagcgaact gtcgcggtcc acgtactcac 39840 cacaggcatt ttgccgtcaa cgacgagggt ccttttatag cgaatttgct gcgtgcttgg 39900 agttacatca tttgaagcga tgtgctcgac ctccaccctg ccgcgtttgc caagaatgac 39960 ttgaggcgaa ctgggattgg gatagttgaa gaattgctgg taatcctggc gcactgttgg 40020 ggcactgaag ttcgatacca ggtcgtaggc gtactgagcg gtgtcggcat cataactctc 40080 gcgcaggcga acgtactccc acaatgaggc gttaacgacg gcctcctctt gagttgcagg 40140 caatcgcgag acagacacct cgctgtcaac ggtgccgtcc ggccgtatcc atagatatac 40200 gggcacaagc ctgctcaacg gcaccattgt ggctatagcg aacgcttgag caacatttcc 40260 caaaatcgcg atagctgcga cagctgcaat gagtttggag agacgtcgcg ccgatttcgc 40320 tcgcgcggtt tgaaaggctt ctacttcctt atagtgctcg gcaaggcttt cgcgcgccac 40380 tagcatggca tattcaggcc ccgtcatagc gtccacccga attgccgagc tgaagatctg 40440 acggagtagg ctgccatcgc cccacattca gcgggaagat cgggcctttg cagctcgcta 40500 atgtgtcgtt tgtctggcag ccgctcaaag cgacaactag gcacagcagg caatacttca 40560 tagaattctc cattgaggcg aatttttgcg cgacctagcc tcgctcaacc tgagcgaagc 40620 gacggtacaa gctgctggca gattgggttg cgccgctcca gtaactgcct ccaatgttgc 40680 cggcgatcgc cggcaaagcg acaatgagcg catcccctgt cagaaaaaac atatcgagtt 40740 cgtaaagacc aatgatcttg gccgcggtcg taccggcgaa ggtgattaca ccaagcataa 40800 gggtgagcgc agtcgcttcg gttaggatga cgatcgttgc cacgaggttt aagaggagaa 40860 gcaagagacc gtaggtgata agttgcccga tccacttagc tgcgatgtcc cgcgtgcgat 40920 caaaaatata tccgacgagg atcagaggcc cgatcgcgag aagcactttc gtgagaattc 40980 caacggcgtc gtaaactccg aaggcagacc agagcgtgcc gtaaaggacc cactgtgccc 41040 cttggaaagc aaggatgtcc tggtcgttca tcggaccgat ttcggatgcg attttctgaa 41100 aaacggcctg ggtcacggcg aacattgtat ccaactgtgc cggaacagtc tgcagaggca 41160 agccggttac actaaactgc tgaacaaagt ttgggaccgt cttttcgaag atggaaacca 41220 catagtcttg gtagttagcc tgcccaacaa ttagagcaac aacgatggtg accgtgatca 41280 cccgagtgat accgctacgg gtatcgactt cgccgcgtat gactaaaata ccctgaacaa 41340 taatccaaag agtgacacag gcgatcaatg gcgcactcac cgcctcctgg atagtctcaa 41400 gcatcgagtc caagcctgtc gtgaaggcta catcgaagat cgtatgaatg gccgtaaacg 41460 gcgccggaat cgtgaaattc atcgattgga cctgaacttg actggtttgt cgcataatgt 41520 tggataaaat gagctcgcat tcggcgagga tgcgggcgga tgaacaaatc gcccagcctt 41580 aggggagggc accaaagatg acagcggtct tttgatgctc cttgcgttga gcggccgcct 41640 cttccgcctc gtgaaggccg gcctgcgcgg tagtcatcgt taataggctt gtcgcctgta 41700 cattttgaat cattgcgtca tggatctgct tgagaagcaa accattggtc acggttgcct 41760 gcatgatatt gcgagatcgg gaaagctgag cagacgtatc agcattcgcc gtcaagcgtt 41820 tgtccatcgt ttccagattg tcagccgcaa tgccagcgct gtttgcggaa ccggtgatct 41880 gcgatcgcaa caggtccgct tcagcatcac tacccacgac tgcacgatct gtatcgctgg 41940 tgatcgcacg tgccgtggtc gacattggca ttcgcggcga aaacatttca ttgtctaggt 42000 ccttcgtcga aggatactga tttttctggt tgagcgaagt cagtagtcca gtaacgccgt 42060 aggccgacgt caacatcgta accatcgcta tagtctgagt gagattctcc gcagtcgcga 42120 gcgcagtcgc gagcgtctca gcctccgttg ccgggtcgct aacaacaaac tgcgcccgcg 42180 cgggctgaat atatagaaag ctgcaggtca aaactgttgc aataagttgc gtcgtcttca 42240 tcgtttccta ccttatcaat cttctgcctc gtggtgacgg gccatgaatt cgctgagcca 42300 gccagatgag ttgccttctt gtgcctcgcg tagtcgagtt gcaaagcgca ccgtgttggc 42360 acgccccgaa agcacggcga catattcacg catatcccgc agatcaaatt cgcagatgac 42420 gcttccactt tctcgtttaa gaagaaactt acggctgccg accgtcatgt cttcacggat 42480 cgcctgaaat tccttttcgg tacatttcag tccatcgaca taagccgatc gatctgcggt 42540 tggtgatgga tagaaaatct tcgtcataca ttgcgcaacc aagctggctc ctagcggcga 42600 ttccagaaca tgctctggtt gctgcgttgc cagtattagc atcccgttgt tttttcgaac 42660 ggtcaggagg aatttgtcga cgacagtcga aaatttaggg tttaacaaat aggcgcgaaa 42720 ctcatcgcag ctcatcacaa aacggcggcc gtcgatcatg gctccaatcc gatgcaggag 42780 atatgctgca gcgggagcgc atacttcctc gtattcgaga agatgcgtca tgtcgaagcc 42840 ggtaatcgac ggatctaact ttacttcgtc aacttcgccg tcaaatgccc agccaagcgc 42900 atggccccgg caccagcgtt ggagccgcgc tcctgcgcct tcggcgggcc catgcaacaa 42960 aaattcacgt aaccccgcga ttgaacgcat ttgtggatca aacgagagct gacgatggat 43020 accacggacc agacggcggt tctcttccgg agaaatccca ccccgaccat cactctcgat 43080 gagagccacg atccattcgc gcagaaaatc gtgtgaggct gctgtgtttt ctaggccacg 43140 caacggcgcc aacccgctgg gtgtgcctct gtgaagtgcc aaatatgttc ctcctgtggc 43200 gcgaaccagc aattcgccac cccggtcctt gtcaaagaac acgaccgtac ctgcacggtc 43260 gaccatgctc tgttcgagca tggctagaac aaacatcatg agcgtcgtct tacccctccc 43320 gataggcccg aatattgccg tcatgccaac atcgtgctca tgcgggatat agtcgaaagg 43380 cgttccgcca ttggtacgaa atcgggcaat cgcgttgccc cagtggcctg agctggcgcc 43440 ctctggaaag ttttcgaaag agacaaaccc tgcgaaattg cgtgaagtga ttgcgccagg 43500 gcgtgtgcgc cacttaaaat tccccggcaa ttgggaccaa taggccgctt ccataccaat 43560 accttcttgg acaaccacgg cacctgcatc cgccattcgt gtccgagccc gcgcgcccct 43620 gtccccaaga ctattgagat cgtctgcata gacgcaaagg ctcaaatgat gtgagcccat 43680 aacgaattcg ttgctcgcaa gtgcgtcctc agcctcggat aatttgccga tttgagtcac 43740 ggctttatcg ccggaactca gcatctggct cgatttgagg ctaagtttcg cgtgcgcttg 43800 cgggcgagtc aggaacgaaa aactctgcgt gagaacaagt ggaaaatcga gggatagcag 43860 cgcgttgagc atgcccggcc gtgtttttgc agggtattcg cgaaacgaat agatggatcc 43920 aacgtaactg tcttttggcg ttctgatctc gagtcctcgc ttgccgcaaa tgactctgtc 43980 ggtataaatc gaagcgccga gtgagccgct gacgaccgga accggtgtga accgaccagt 44040 catgatcaac cgtagcgctt cgccaatttc ggtgaagagc acaccctgct tctcgcggat 44100 gccaagacga tgcaggccat acgctttaag agagccagcg acaacatgcc aaagatcttc 44160 catgttcctg atctggcccg tgagatcgtt ttcccttttt ccgcttagct tggtgaacct 44220 cctctttacc ttccctaaag ccgcctgtgg gtagacaatc aacgtaagga agtgttcatt 44280 gcggaggagt tggccggaga gcacgcgctg ttcaaaagct tcgttcaggc tagcggcgaa 44340 aacactacgg aagtgtcgcg gcgccgatga tggcacgtcg gcatgacgta cgaggtgagc 44400 atatattgac acatgatcat cagcgatatt gcgcaacagc gtgttgaacg cacgacaacg 44460 cgcattgcgc atttcagttt cctcaagctc gaatgcaacg ccatcaattc tcgcaatggt 44520 catgatcgat ccgtcttcaa gaaggacgat atggtcgctg aggtggccaa tataagggag 44580

atagatctca ccggatcttt cggtcgttcc actcgcgccg agcatcacac cattcctctc 44640 cctcgtgggg gaaccctaat tggatttggg ctaacagtag cgccccccca aactgcacta 44700 tcaatgcttc ttcccgcggt ccgcaaaaat agcaggacga cgctcgccgc attgtagtct 44760 cgctccacga tgagccgggc tgcaaaccat aacggcacga gaacgacttc gtagagcggg 44820 ttctgaacga taacgatgac aaagccggcg aacatcatga ataaccctgc caatgtcagt 44880 ggcaccccaa gaaacaatgc gggccgtgtg gctgcgaggt aaagggtcga ttcttccaaa 44940 cgatcagcca tcaactaccg ccagtgagcg tttggccgag gaagctcgcc ccaaacatga 45000 taacaatgcc gccgacgacg ccggcaacca gcccaagcga agcccgcccg aacatccagg 45060 agatcccgat agcgacaatg ccgagaacag cgagtgactg gccgaacgga ccaaggataa 45120 acgtgcatat attgttaacc attgtggcgg ggtcagtgcc gccacccgca gattgcgctg 45180 cggcgggtcc ggatgaggaa atgctccatg caattgcacc gcacaagctt ggggcgcagc 45240 tcgatatcac gcgcatcatc gcattcgaga gcgagaggcg atttagatgt aaacggtatc 45300 tctcaaagca tcgcatcaat gcgcacctcc ttagtataag tcgaataaga cttgattgtc 45360 gtctgcggat ttgccgttgt cctggtgtgg cggtggcgga gcgattaaac cgccagcgcc 45420 atcctcctgc gagcggcgct gatatgaccc ccaaacatcc cacgtctctt cggattttag 45480 cgcctcgtga tcgtcttttg gaggctcgat taacgcgggc accagcgatt gagcagctgt 45540 ttcaactttt cgcacgtagc cgtttgcaaa accgccgatg aaattaccgg tgttgtaagc 45600 ggagatcgcc cgacgaagcg caaattgctt ctcgtcaatc gtttcgccgc ctgcataacg 45660 acttttcagc atgtttgcag cggcagataa tgatgtgcac gcctggagcg caccgtcagg 45720 tgtcagaccg agcatagaaa aatttcgaga gtttatttgc atgaggccaa catccagcga 45780 atgccgtgca tcgagacggt gcctgacgac ttgggttgct tggctgtgat cttgccagtg 45840 aagcgtttcg ccggtcgtgt tgtcatgaat cgctaaagga tcaaagcgac tctccacctt 45900 agctatcgcc gcaagcgtag atgtcgcaac tgatggggca cacttgcgag caacatggtc 45960 aaactcagca gatgagagtg gcgtggcaag gctcgacgaa cagaaggaga ccatcaaggc 46020 aagagaaagc gaccccgatc tcttaagcat accttatctc cttagctcgc aactaacacc 46080 gcctctcccg ttggaagaag tgcgttgttt tatgttgaag attatcggga gggtcggtta 46140 ctcgaaaatt ttcaattgct tctttatgat ttcaattgaa gcgagaaacc tcgcccggcg 46200 tcttggaacg caacatggac cgagaaccgc gcatccatga ctaagcaacc ggatcgacct 46260 attcaggccg cagttggtca ggtcaggctc agaacgaaaa tgctcggcga ggttacgctg 46320 tctgtaaacc cattcgatga acgggaagct tccttccgat tgctcttggc aggaatattg 46380 gcccatgcct gcttgcgctt tgcaaatgct cttatcgcgt tggtatcata tgccttgtcc 46440 gccagcagaa acgcactcta agcgattatt tgtaaaaatg tttcggtcat gcggcggtca 46500 tgggcttgac ccgctgtcag cgcaagacgg atcggtcaac cgtcggcatc gacaacagcg 46560 tgaatcttgg tggtcaaacc gccacgggaa cgtcccatac agccatcgtc ttgatcccgc 46620 tgtttcccgt cgccgcatgt tggtggacgc ggacacagga actgtcaatc atgacgacat 46680 tctatcgaaa gccttggaaa tcacactcag aatatgatcc cagacgtctg cctcacgcca 46740 tcgtacaaag cgattgtagc aggttgtaca ggaaccgtat cgatcaggaa cgtctgccca 46800 gggcgggccc gtccggaagc gccacaagat gacattgatc acccgcgtca acgcgcggca 46860 cgcgacgcgg cttatttggg aacaaaggac tgaacaacag tccattcgaa atcggtgaca 46920 tcaaagcggg gacgggttat cagtggcctc caagtcaagc ctcaatgaat caaaatcaga 46980 ccgatttgca aacctgattt atgagtgtgc ggcctaaatg atgaaatcgt ccttctagat 47040 cgcctccgtg gtgtagcaac acctcgcagt atcgccgtgc tgaccttggc cagggaattg 47100 actggcaagg gtgctttcac atgaccgctc ttttggccgc gatagatgat ttcgttgctg 47160 ctttgggcac gtagaaggag agaagtcata tcggagaaat tcctcctggc gcgagagcct 47220 gctctatcgc gacggcatcc cactgtcggg aacagaccgg atcattcacg aggcgaaagt 47280 cgtcaacaca tgcgttatag gcatcttccc ttgaaggatg atcttgttgc tgccaatctg 47340 gaggtgcggc agccgcaggc agatgcgatc tcagcgcaac ttgcggcaaa acatctcact 47400 cacctgaaaa ccactagcga gtctcgcgat cagacgaagg ccttttactt aacgacacaa 47460 tatccgatgt ctgcatcaca ggcgtcgcta tcccagtcaa tactaaagcg gtgcaggaac 47520 taaagattac tgatgactta ggcgtgccac gaggcctgag acgacgcgcg tagacagttt 47580 tttgaaatca ttatcaaagt gatggcctcc gctgaagcct atcacctctg cgccggtctg 47640 tcggagagat gggcaagcat tattacggtc ttcgcgcccg tacatgcatt ggacgattgc 47700 agggtcaatg gatctgagat catccagagg attgccgccc ttaccttccg tttcgagttg 47760 gagccagccc ctaaatgaga cgacatagtc gacttgatgt gacaatgcca agagagagat 47820 ttgcttaacc cgattttttt gctcaagcgt aagcctattg aagcttgccg gcatgacgtc 47880 cgcgccgaaa gaatatccta caagtaaaac attctgcaca ccgaaatgct tggtgtagac 47940 atcgattatg tgaccaagat ccttagcagt ttcgcttggg gaccgctccg accagaaata 48000 ccgaagtgaa ctgacgccaa tgacaggaat cccttccgtc tgcagatagg taccatcgat 48060 agatctgctg cctcgcgcgt ttcggtgatg acggtgaaaa cctctgacac atgcagctcc 48120 cggagacggt cacagcttgt ctgtaagcgg atgccgggag cagacaagcc cgtcagggcg 48180 cgtcagcggg tgttggcggg tgtcggggcg cagccatgac ccagtcacgt agcgatagcg 48240 gagtgtatac tggcttaact atgcggcatc agagcagatt gtactgagag tgcaccatat 48300 gcggtgtgaa ataccgcaca gatgcgtaag gagaaaatac cgcatcaggc gctcttccgc 48360 ttcctcgctc actgactcgc tgcgctcggt cgttcggctg cggcgagcgg tatcagctca 48420 ctcaaaggcg gtaatacggt tatccacaga atcaggggat aacgcaggaa agaacatgtg 48480 agcaaaaggc cagcaaaagg ccaggaaccg taaaaaggcc gcgttgctgg cgtttttcca 48540 taggctccgc ccccctgacg agcatcacaa aaatcgacgc tcaagtcaga ggtggcgaaa 48600 cccgacagga ctataaagat accaggcgtt tccccctgga agctccctcg tgcgctctcc 48660 tgttccgacc ctgccgctta ccggatacct gtccgccttt ctcccttcgg gaagcgtggc 48720 gctttctcat agctcacgct gtaggtatct cagttcggtg taggtcgttc gctccaagct 48780 gggctgtgtg cacgaacccc ccgttcagcc cgaccgctgc gccttatccg gtaactatcg 48840 tcttgagtcc aacccggtaa gacacgactt atcgccactg gcagcagcca ctggtaacag 48900 gattagcaga gcgaggtatg taggcggtgc tacagagttc ttgaagtggt ggcctaacta 48960 cggctacact agaaggacag tatttggtat ctgcgctctg ctgaagccag ttaccttcgg 49020 aaaaagagtt ggtagctctt gatccggcaa acaaaccacc gctggtagcg gtggtttttt 49080 tgtttgcaag cagcagatta cgcgcagaaa aaaaggatct caagaagatc ctttgatctt 49140 ttctacgggg tctgacgctc agtggaacga aaactcacgt taagggattt tggtcatgag 49200 attatcaaaa aggatcttca cctagatcct tttaaattaa aaatgaagtt ttaaatcaat 49260 ctaaagtata tatgagtaaa cttggtctga cagttaccaa tgcttaatca gtgaggcacc 49320 tatctcagcg atctgtctat ttcgttcatc catagttgcc tgactccccg tcgtgtagat 49380 aactacgata cgggagggct taccatctgg ccccagtgct gcaatgatac cgcgagaccc 49440 acgctcaccg gctccagatt tatcagcaat aaaccagcca gccggaaggg ccgagcgcag 49500 aagtggtcct gcaactttat ccgcctccat ccagtctatt aattgttgcc gggaagctag 49560 agtaagtagt tcgccagtta atagtttgcg caacgttgtt gccattgctg cagggggggg 49620 gggggggggg ttccattgtt cattccacgg acaaaaacag agaaaggaaa cgacagaggc 49680 caaaaagctc gctttcagca cctgtcgttt cctttctttt cagagggtat tttaaataaa 49740 aacattaagt tatgacgaag aagaacggaa acgccttaaa ccggaaaatt ttcataaata 49800 gcgaaaaccc gcgaggtcgc cgccccgtac tgtcggatca ccggaaagga cccgtaaagt 49860 gataatgatt atcatctaca tatcacaacg tgcgtggagg ccatcaaacc acgtcaaata 49920 atcaattatg acgcaggtat cgtattaatt gatctgcatc aacttaacgt aaaaacaact 49980 tcagacaata caaatcagcg acactgaata cggggcaacc tcatgtcccc cccccccccc 50040 cccctgcagg catcgtggtg tcacgctcgt cgtttggtat ggcttcattc agctccggtt 50100 cccaacgatc aaggcgagtt acatgatccc ccatgttgtg caaaaaagcg gttagctcct 50160 tcggtcctcc gatcgttgtc agaagtaagt tggccgcagt gttatcactc atggttatgg 50220 cagcactgca taattctctt actgtcatgc catccgtaag atgcttttct gtgactggtg 50280 agtactcaac caagtcattc tgagaatagt gtatgcggcg accgagttgc tcttgcccgg 50340 cgtcaacacg ggataatacc gcgccacata gcagaacttt aaaagtgctc atcattggaa 50400 aacgttcttc ggggcgaaaa ctctcaagga tcttaccgct gttgagatcc agttcgatgt 50460 aacccactcg tgcacccaac tgatcttcag catcttttac tttcaccagc gtttctgggt 50520 gagcaaaaac aggaaggcaa aatgccgcaa aaaagggaat aagggcgaca cggaaatgtt 50580 gaatactcat actcttcctt tttcaatatt attgaagcat ttatcagggt tattgtctca 50640 tgagcggata catatttgaa tgtatttaga aaaataaaca aataggggtt ccgcgcacat 50700 ttccccgaaa agtgccacct gacgtctaag aaaccattat tatcatgaca ttaacctata 50760 aaaataggcg tatcacgagg ccctttcgtc ttcaagaatt ggtcgacgat cttgctgcgt 50820 tcggatattt tcgtggagtt cccgccacag acccggattg aaggcgagat ccagcaactc 50880 gcgccagatc atcctgtgac ggaactttgg cgcgtgatga ctggccagga cgtcggccga 50940 aagagcgaca agcagatcac gcttttcgac agcgtcggat ttgcgatcga ggatttttcg 51000 gcgctgcgct acgtccgcga ccgcgttgag ggatcaagcc acagcagccc actcgacctt 51060 ctagccgacc cagacgagcc aagggatctt tttggaatgc tgctccgtcg tcaggctttc 51120 cgacgtttgg gtggttgaac agaagtcatt atcgtacgga atgccaagca ctcccgaggg 51180 gaaccctgtg gttggcatgc acatacaaat ggacgaacgg ataaaccttt tcacgccctt 51240 ttaaatatcc gttattctaa taaacgctct tttctcttag 51280 <210> SEQ ID NO 54 <211> LENGTH: 1603 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Fragment of improved ACS6 inhibition plasmid comprising TR3, ADH1 intron 1, and TR4 <400> SEQUENCE: 54 tagcagacgc ggaaccagcc gggctcccgg cagtggcagg aggagcccgg ggagatgttg 60 agccccacct cgaagaccac cctcttccac agctccatct cgccctcgaa cgaccggctc 120 cgcatcaggc gccgcatgtt gacccagcag aagagccccg cgttgctctc caggcactcg 180 atgcccacgg ccgccaggcc ctccgccagc tgctcgcgcc gctccctgat ccgccgcgtg 240 ttctccgcga tgtacctccg cgtgaagtcc ctgtcgccca ggagcgacgc caggaggtgc 300 tgcgtctggg acgacaccag gccgaagctc gacatcttgg tggccgcgga gaccacgccg 360 gcgttggacg agtagatggc gcccacgcgg aaccccggga ggcccaggtc cttggacagg 420

ctgtacacca cgtgcacgcg gtccgacagc ggcccaacgc cgacgacgcc gtcgtccgtg 480 gcggcgcgcg cggccaccac ctgcagtcga cgtgcaaagg tccgccttgt ttctcctctg 540 tctcttgatc tgactaatct tggtttatga ttcgttgagt aattttgggg aaagcttcgt 600 ccacagtttt ttttcgatga acagtgccgc agtggcgctg atcttgtatg ctatcctgca 660 atcgtggtga acttatttct tttatatcct ttactcccat gaaaaggcta gtaatctttc 720 tcgatgtaac atcgtccagc actgctatta ccgtgtggtc catccgacag tctggctgaa 780 cacatcatac gatctatgga gcaaaaatct atcttccctg ttctttaatg aaggacgtca 840 ttttcattag tatgatctag gaatgttgca acttgcaagg aggcgtttct ttctttgaat 900 ttaactaact cgttgagtgg ccctgtttct cggacgtaag gcctttgctg ctccacacat 960 gtccattcga attttaccgt gtttagcaag ggcgaaaagt ttgcatcttg atgatttagc 1020 ttgactatgc gattgctttc ctggacccgt gcagctggat cccggtacgc gccgccacgg 1080 acgacggcgt cgtcggcgtt gggccgctgt cggaccgcgt gcacgtggtg tacagcctgt 1140 ccaaggacct gggcctcccg gggttccgcg tgggcgccat ctactcgtcc aacgccggcg 1200 tggtctccgc ggccaccaag atgtcgagct tcggcctggt gtcgtcccag acgcagcacc 1260 tcctggcgtc gctcctgggc gacagggact tcacgcggag gtacatcgcg gagaacacgc 1320 ggcggatcag ggagcggcgc gagcagctgg cggagggcct ggcggccgtg ggcatcgagt 1380 gcctggagag caacgcgggg ctcttctgct gggtcaacat gcggcgcctg atgcggagcc 1440 ggtcgttcga gggcgagatg gagctgtgga agagggtggt cttcgaggtg gggctcaaca 1500 tctccccggg ctcctcctgc cactgccggg agcccggctg gttccgcgtc tgctaaaggg 1560 cgaattccag cacactggcg gccgttacta gtggatccga gct 1603 <210> SEQ ID NO 55 <211> LENGTH: 3657 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Fragment of improved ACS6 inhibition plasmid comprising UBIZm promoter, UBIZm 5'UTR, UBIZm Intron 1, TR3, ADH1 intron 1, and TR4 <400> SEQUENCE: 55 gtgcagcgtg acccggtcgt gcccctctct agagataatg agcattgcat gtctaagtta 60 taaaaaatta ccacatattt tttttgtcac acttgtttga agtgcagttt atctatcttt 120 atacatatat ttaaacttta ctctacgaat aatataatct atagtactac aataatatca 180 gtgttttaga gaatcatata aatgaacagt tagacatggt ctaaaggaca attgagtatt 240 ttgacaacag gactctacag ttttatcttt ttagtgtgca tgtgttctcc tttttttttg 300 caaatagctt cacctatata atacttcatc cattttatta gtacatccat ttagggttta 360 gggttaatgg tttttataga ctaatttttt tagtacatct attttattct attttagcct 420 ctaaattaag aaaactaaaa ctctatttta gtttttttat ttaataattt agatataaaa 480 tagaataaaa taaagtgact aaaaattaaa caaataccct ttaagaaatt aaaaaaacta 540 aggaaacatt tttcttgttt cgagtagata atgccagcct gttaaacgcc gtcgacgagt 600 ctaacggaca ccaaccagcg aaccagcagc gtcgcgtcgg gccaagcgaa gcagacggca 660 cggcatctct gtcgctgcct ctggacccct ctcgagagtt ccgctccacc gttggacttg 720 ctccgctgtc ggcatccaga aattgcgtgg cggagcggca gacgtgagcc ggcacggcag 780 gcggcctcct cctcctctca cggcaccggc agctacgggg gattcctttc ccaccgctcc 840 ttcgctttcc cttcctcgcc cgccgtaata aatagacacc ccctccacac cctctttccc 900 caacctcgtg ttgttcggag cgcacacaca cacaaccaga tctcccccaa atccacccgt 960 cggcacctcc gcttcaaggt acgccgctcg tcctcccccc cccccctctc taccttctct 1020 agatcggcgt tccggtccat gcatggttag ggcccggtag ttctacttct gttcatgttt 1080 gtgttagatc cgtgtttgtg ttagatccgt gctgctagcg ttcgtacacg gatgcgacct 1140 gtacgtcaga cacgttctga ttgctaactt gccagtgttt ctctttgggg aatcctggga 1200 tggctctagc cgttccgcag acgggatcga tttcatgatt ttttttgttt cgttgcatag 1260 ggtttggttt gcccttttcc tttatttcaa tatatgccgt gcacttgttt gtcgggtcat 1320 cttttcatgc ttttttttgt cttggttgtg atgatgtggt ctggttgggc ggtcgttcta 1380 gatcggagta gaattctgtt tcaaactacc tggtggattt attaattttg gatctgtatg 1440 tgtgtgccat acatattcat agttacgaat tgaagatgat ggatggaaat atcgatctag 1500 gataggtata catgttgatg cgggttttac tgatgcatat acagagatgc tttttgttcg 1560 cttggttgtg atgatgtggt gtggttgggc ggtcgttcat tcgttctaga tcggagtaga 1620 atactgtttc aaactacctg gtgtatttat taattttgga actgtatgtg tgtgtcatac 1680 atcttcatag ttacgagttt aagatggatg gaaatatcga tctaggatag gtatacatgt 1740 tgatgtgggt tttactgatg catatacatg atggcatatg cagcatctat tcatatgctc 1800 taaccttgag tacctatcta ttataataaa caagtatgtt ttataattat tttgatcttg 1860 atatacttgg atgatggcat atgcagcagc tatatgtgga tttttttagc cctgccttca 1920 tacgctattt atttgcttgg tactgtttct tttgtcgatg ctcaccctgt tgtttggtgt 1980 tacttctgca ggtcgacttt aacttagcct aggatccact agtaacggcc gccagtgtgc 2040 tggaattcgc cctttagcag acgcggaacc agccgggctc ccggcagtgg caggaggagc 2100 ccggggagat gttgagcccc acctcgaaga ccaccctctt ccacagctcc atctcgccct 2160 cgaacgaccg gctccgcatc aggcgccgca tgttgaccca gcagaagagc cccgcgttgc 2220 tctccaggca ctcgatgccc acggccgcca ggccctccgc cagctgctcg cgccgctccc 2280 tgatccgccg cgtgttctcc gcgatgtacc tccgcgtgaa gtccctgtcg cccaggagcg 2340 acgccaggag gtgctgcgtc tgggacgaca ccaggccgaa gctcgacatc ttggtggccg 2400 cggagaccac gccggcgttg gacgagtaga tggcgcccac gcggaacccc gggaggccca 2460 ggtccttgga caggctgtac accacgtgca cgcggtccga cagcggccca acgccgacga 2520 cgccgtcgtc cgtggcggcg cgcgcggcca ccacctgcag tcgacgtgca aaggtccgcc 2580 ttgtttctcc tctgtctctt gatctgacta atcttggttt atgattcgtt gagtaatttt 2640 ggggaaagct tcgtccacag ttttttttcg atgaacagtg ccgcagtggc gctgatcttg 2700 tatgctatcc tgcaatcgtg gtgaacttat ttcttttata tcctttactc ccatgaaaag 2760 gctagtaatc tttctcgatg taacatcgtc cagcactgct attaccgtgt ggtccatccg 2820 acagtctggc tgaacacatc atacgatcta tggagcaaaa atctatcttc cctgttcttt 2880 aatgaaggac gtcattttca ttagtatgat ctaggaatgt tgcaacttgc aaggaggcgt 2940 ttctttcttt gaatttaact aactcgttga gtggccctgt ttctcggacg taaggccttt 3000 gctgctccac acatgtccat tcgaatttta ccgtgtttag caagggcgaa aagtttgcat 3060 cttgatgatt tagcttgact atgcgattgc tttcctggac ccgtgcagct ggatcccggt 3120 acgcgccgcc acggacgacg gcgtcgtcgg cgttgggccg ctgtcggacc gcgtgcacgt 3180 ggtgtacagc ctgtccaagg acctgggcct cccggggttc cgcgtgggcg ccatctactc 3240 gtccaacgcc ggcgtggtct ccgcggccac caagatgtcg agcttcggcc tggtgtcgtc 3300 ccagacgcag cacctcctgg cgtcgctcct gggcgacagg gacttcacgc ggaggtacat 3360 cgcggagaac acgcggcgga tcagggagcg gcgcgagcag ctggcggagg gcctggcggc 3420 cgtgggcatc gagtgcctgg agagcaacgc ggggctcttc tgctgggtca acatgcggcg 3480 cctgatgcgg agccggtcgt tcgagggcga gatggagctg tggaagaggg tggtcttcga 3540 ggtggggctc aacatctccc cgggctcctc ctgccactgc cgggagcccg gctggttccg 3600 cgtctgctaa agggcgaatt ccagcacact ggcggccgtt actagtggat ccgagct 3657 <210> SEQ ID NO 56 <211> LENGTH: 6772 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Fragment of improved ACS6 inhibition construct <400> SEQUENCE: 56 gtgcagcgtg acccggtcgt gcccctctct agagataatg agcattgcat gtctaagtta 60 taaaaaatta ccacatattt tttttgtcac acttgtttga agtgcagttt atctatcttt 120 atacatatat ttaaacttta ctctacgaat aatataatct atagtactac aataatatca 180 gtgttttaga gaatcatata aatgaacagt tagacatggt ctaaaggaca attgagtatt 240 ttgacaacag gactctacag ttttatcttt ttagtgtgca tgtgttctcc tttttttttg 300 caaatagctt cacctatata atacttcatc cattttatta gtacatccat ttagggttta 360 gggttaatgg tttttataga ctaatttttt tagtacatct attttattct attttagcct 420 ctaaattaag aaaactaaaa ctctatttta gtttttttat ttaataattt agatataaaa 480 tagaataaaa taaagtgact aaaaattaaa caaataccct ttaagaaatt aaaaaaacta 540 aggaaacatt tttcttgttt cgagtagata atgccagcct gttaaacgcc gtcgacgagt 600 ctaacggaca ccaaccagcg aaccagcagc gtcgcgtcgg gccaagcgaa gcagacggca 660 cggcatctct gtcgctgcct ctggacccct ctcgagagtt ccgctccacc gttggacttg 720 ctccgctgtc ggcatccaga aattgcgtgg cggagcggca gacgtgagcc ggcacggcag 780 gcggcctcct cctcctctca cggcaccggc agctacgggg gattcctttc ccaccgctcc 840 ttcgctttcc cttcctcgcc cgccgtaata aatagacacc ccctccacac cctctttccc 900 caacctcgtg ttgttcggag cgcacacaca cacaaccaga tctcccccaa atccacccgt 960 cggcacctcc gcttcaaggt acgccgctcg tcctcccccc cccccctctc taccttctct 1020 agatcggcgt tccggtccat gcatggttag ggcccggtag ttctacttct gttcatgttt 1080 gtgttagatc cgtgtttgtg ttagatccgt gctgctagcg ttcgtacacg gatgcgacct 1140 gtacgtcaga cacgttctga ttgctaactt gccagtgttt ctctttgggg aatcctggga 1200 tggctctagc cgttccgcag acgggatcga tttcatgatt ttttttgttt cgttgcatag 1260 ggtttggttt gcccttttcc tttatttcaa tatatgccgt gcacttgttt gtcgggtcat 1320 cttttcatgc ttttttttgt cttggttgtg atgatgtggt ctggttgggc ggtcgttcta 1380 gatcggagta gaattctgtt tcaaactacc tggtggattt attaattttg gatctgtatg 1440 tgtgtgccat acatattcat agttacgaat tgaagatgat ggatggaaat atcgatctag 1500 gataggtata catgttgatg cgggttttac tgatgcatat acagagatgc tttttgttcg 1560 cttggttgtg atgatgtggt gtggttgggc ggtcgttcat tcgttctaga tcggagtaga 1620 atactgtttc aaactacctg gtgtatttat taattttgga actgtatgtg tgtgtcatac 1680 atcttcatag ttacgagttt aagatggatg gaaatatcga tctaggatag gtatacatgt 1740 tgatgtgggt tttactgatg catatacatg atggcatatg cagcatctat tcatatgctc 1800 taaccttgag tacctatcta ttataataaa caagtatgtt ttataattat tttgatcttg 1860 atatacttgg atgatggcat atgcagcagc tatatgtgga tttttttagc cctgccttca 1920 tacgctattt atttgcttgg tactgtttct tttgtcgatg ctcaccctgt tgtttggtgt 1980

tacttctgca ggtcgacttt aacttagcct aggatccact agtaacggcc gccagtgtgc 2040 tggaattcgc cctttagcag acgcggaacc agccgggctc ccggcagtgg caggaggagc 2100 ccggggagat gttgagcccc acctcgaaga ccaccctctt ccacagctcc atctcgccct 2160 cgaacgaccg gctccgcatc aggcgccgca tgttgaccca gcagaagagc cccgcgttgc 2220 tctccaggca ctcgatgccc acggccgcca ggccctccgc cagctgctcg cgccgctccc 2280 tgatccgccg cgtgttctcc gcgatgtacc tccgcgtgaa gtccctgtcg cccaggagcg 2340 acgccaggag gtgctgcgtc tgggacgaca ccaggccgaa gctcgacatc ttggtggccg 2400 cggagaccac gccggcgttg gacgagtaga tggcgcccac gcggaacccc gggaggccca 2460 ggtccttgga caggctgtac accacgtgca cgcggtccga cagcggccca acgccgacga 2520 cgccgtcgtc cgtggcggcg cgcgcggcca ccacctgcag tcgacgtgca aaggtccgcc 2580 ttgtttctcc tctgtctctt gatctgacta atcttggttt atgattcgtt gagtaatttt 2640 ggggaaagct tcgtccacag ttttttttcg atgaacagtg ccgcagtggc gctgatcttg 2700 tatgctatcc tgcaatcgtg gtgaacttat ttcttttata tcctttactc ccatgaaaag 2760 gctagtaatc tttctcgatg taacatcgtc cagcactgct attaccgtgt ggtccatccg 2820 acagtctggc tgaacacatc atacgatcta tggagcaaaa atctatcttc cctgttcttt 2880 aatgaaggac gtcattttca ttagtatgat ctaggaatgt tgcaacttgc aaggaggcgt 2940 ttctttcttt gaatttaact aactcgttga gtggccctgt ttctcggacg taaggccttt 3000 gctgctccac acatgtccat tcgaatttta ccgtgtttag caagggcgaa aagtttgcat 3060 cttgatgatt tagcttgact atgcgattgc tttcctggac ccgtgcagct ggatcccggt 3120 acgcgccgcc acggacgacg gcgtcgtcgg cgttgggccg ctgtcggacc gcgtgcacgt 3180 ggtgtacagc ctgtccaagg acctgggcct cccggggttc cgcgtgggcg ccatctactc 3240 gtccaacgcc ggcgtggtct ccgcggccac caagatgtcg agcttcggcc tggtgtcgtc 3300 ccagacgcag cacctcctgg cgtcgctcct gggcgacagg gacttcacgc ggaggtacat 3360 cgcggagaac acgcggcgga tcagggagcg gcgcgagcag ctggcggagg gcctggcggc 3420 cgtgggcatc gagtgcctgg agagcaacgc ggggctcttc tgctgggtca acatgcggcg 3480 cctgatgcgg agccggtcgt tcgagggcga gatggagctg tggaagaggg tggtcttcga 3540 ggtggggctc aacatctccc cgggctcctc ctgccactgc cgggagcccg gctggttccg 3600 cgtctgctaa agggcgaatt ccagcacact ggcggccgtt actagtggat ccgagctcga 3660 attccggtcc gggtcacccg gtccgggcct agaaggccga tctcccgggc acccagcttt 3720 cttgtacaaa gtggtgatat cggaccgatt aaactttaat tcggtccgat gcatgtatac 3780 gaagttccta ttccgaagtt cctattctac atagagtata ggaacttcac ctggtggcgc 3840 cgctagtgga tcccccgggc tgcagtgcag cgtgacccgg tcgtgcccct ctctagagat 3900 aatgagcatt gcatgtctaa gttataaaaa attaccacat attttttttg tcacacttgt 3960 ttgaagtgca gtttatctat ctttatacat atatttaaac tttactctac gaataatata 4020 atctatagta ctacaataat atcagtgttt tagagaatca tataaatgaa cagttagaca 4080 tggtctaaag gacaattgag tattttgaca acaggactct acagttttat ctttttagtg 4140 tgcatgtgtt ctcctttttt tttgcaaata gcttcaccta tataatactt catccatttt 4200 attagtacat ccatttaggg tttagggtta atggttttta tagactaatt tttttagtac 4260 atctatttta ttctatttta gcctctaaat taagaaaact aaaactctat tttagttttt 4320 ttatttaata atttagatat aaaatagaat aaaataaagt gactaaaaat taaacaaata 4380 ccctttaaga aattaaaaaa actaaggaaa catttttctt gtttcgagta gataatgcca 4440 gcctgttaaa cgccgtcgac gagtctaacg gacaccaacc agcgaaccag cagcgtcgcg 4500 tcgggccaag cgaagcagac ggcacggcat ctctgtcgct gcctctggac ccctctcgag 4560 agttccgctc caccgttgga cttgctccgc tgtcggcatc cagaaattgc gtggcggagc 4620 ggcagacgtg agccggcacg gcaggcggcc tcctcctcct ctcacggcac cggcagctac 4680 gggggattcc tttcccaccg ctccttcgct ttcccttcct cgcccgccgt aataaataga 4740 caccccctcc acaccctctt tccccaacct cgtgttgttc ggagcgcaca cacacacaac 4800 cagatctccc ccaaatccac ccgtcggcac ctccgcttca aggtacgccg ctcgtcctcc 4860 cccccccccc tctctacctt ctctagatcg gcgttccggt ccatgcatgg ttagggcccg 4920 gtagttctac ttctgttcat gtttgtgtta gatccgtgtt tgtgttagat ccgtgctgct 4980 agcgttcgta cacggatgcg acctgtacgt cagacacgtt ctgattgcta acttgccagt 5040 gtttctcttt ggggaatcct gggatggctc tagccgttcc gcagacggga tcgatttcat 5100 gatttttttt gtttcgttgc atagggtttg gtttgccctt ttcctttatt tcaatatatg 5160 ccgtgcactt gtttgtcggg tcatcttttc atgctttttt ttgtcttggt tgtgatgatg 5220 tggtctggtt gggcggtcgt tctagatcgg agtagaattc tgtttcaaac tacctggtgg 5280 atttattaat tttggatctg tatgtgtgtg ccatacatat tcatagttac gaattgaaga 5340 tgatggatgg aaatatcgat ctaggatagg tatacatgtt gatgcgggtt ttactgatgc 5400 atatacagag atgctttttg ttcgcttggt tgtgatgatg tggtgtggtt gggcggtcgt 5460 tcattcgttc tagatcggag tagaatactg tttcaaacta cctggtgtat ttattaattt 5520 tggaactgta tgtgtgtgtc atacatcttc atagttacga gtttaagatg gatggaaata 5580 tcgatctagg ataggtatac atgttgatgt gggttttact gatgcatata catgatggca 5640 tatgcagcat ctattcatat gctctaacct tgagtaccta tctattataa taaacaagta 5700 tgttttataa ttattttgat cttgatatac ttggatgatg gcatatgcag cagctatatg 5760 tggatttttt tagccctgcc ttcatacgct atttatttgc ttggtactgt ttcttttgtc 5820 gatgctcacc ctgttgtttg gtgttacttc tgcaggtcga ctttaactta gcctaggatc 5880 cacacgacac catgtccccc gagcgccgcc ccgtcgagat ccgcccggcc accgccgccg 5940 acatggccgc cgtgtgcgac atcgtgaacc actacatcga gacctccacc gtgaacttcc 6000 gcaccgagcc gcagaccccg caggagtgga tcgacgacct ggagcgcctc caggaccgct 6060 acccgtggct cgtggccgag gtggagggcg tggtggccgg catcgcctac gccggcccgt 6120 ggaaggcccg caacgcctac gactggaccg tggagtccac cgtgtacgtg tcccaccgcc 6180 accagcgcct cggcctcggc tccaccctct acacccacct cctcaagagc atggaggccc 6240 agggcttcaa gtccgtggtg gccgtgatcg gcctcccgaa cgacccgtcc gtgcgcctcc 6300 acgaggccct cggctacacc gcccgcggca ccctccgcgc cgccggctac aagcacggcg 6360 gctggcacga cgtcggcttc tggcagcgcg acttcgagct gccggccccg ccgcgcccgg 6420 tgcgcccggt gacgcagatc tgagtcgaaa cctagacttg tccatcttct ggattggcca 6480 acttaattaa tgtatgaaat aaaaggatgc acacatagtg acatgctaat cactataatg 6540 tgggcatcaa agttgtgtgt tatgtgtaat tactagttat ctgaataaaa gagaaagaga 6600 tcatccatat ttcttatcct aaatgaatgt cacgtgtctt tataattctt tgatgaacca 6660 gatgcatttc attaaccaaa tccatataca tataaatatt aatcatatat aattaatatc 6720 aattgggtta gcaaaacaaa tctagtctag gtgtgttttg cgaattgcgg cc 6772 <210> SEQ ID NO 57 <211> LENGTH: 8350 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Improved ACS6 inhibition expression cassette <400> SEQUENCE: 57 gtttacccgc caatatatcc tgtcaaacac tgatagttta aactgaaggc gggaaacgac 60 aatctgatca tgagcggaga attaagggag tcacgttatg acccccgccg atgacgcggg 120 acaagccgtt ttacgtttgg aactgacaga accgcaacgt tgaaggagcc actcagcaag 180 ctggtacgat tgtaatacga ctcactatag ggcgaattga gcgctgttta aacgctcttc 240 aactggaaga gcggttacta ccggctggat ggcggggcct tgatcgtgca ccgccggcgt 300 ccggataagt gactagggtc acgtgaccct agtcacttat cgagctagtt accctatgag 360 gtgacatgaa gcgctcacgg ttactatgac ggttagcttc acgactgttg gtggcagtag 420 cgtacgactt agctatagtt ccggtagatc tgaagttcct attccgaagt tcctattctt 480 caaaaggtat aggaacttcc tcgaattgtt gtggtggggt atagaggttt gatataggtg 540 gaactgctgt agagcgtgga gatatagggg gaaagagaac gctgatgtga caagtgagtg 600 agatataggg ggagaaattt agggggaacg ccgaacacag tctaaagaag cttgggaccc 660 aaagcactct gttcgggggt tttttttttt gtctttcaac tttttgctgt aatgttattc 720 aaaataagaa aagcacttgg catggctaag aaatagagtt caacaactga acagtacagt 780 gtattatcaa tggcataaaa aacaaccctt acagcattgc cgtattttat tgatcaaaca 840 ttcaactcaa cactgacgag tggtcttcca ccgatcaacg gactaatgct gctttgtcag 900 atcaccggtt aagtgactag ggtcacgtga ccctagtcac ttaggttacc agagctggtc 960 acctttgtcc accaagatgg aactgcggcc gctcattaat taagtcaggc gcgcctctag 1020 ttgaagacac gttcatgtct tcatcgtaag aagacactca gtagtcttcg gccagaatgg 1080 ccatctggat tcagcaggcc tagaaggcca tttaaatcct gaggatctgg tcttcctaag 1140 gacccgggat atcacaagtt tgtacaaaaa agcaggctcc ggccagagtt acccggaccg 1200 aagcttgcat gcctgcagtg cagcgtgacc cggtcgtgcc cctctctaga gataatgagc 1260 attgcatgtc taagttataa aaaattacca catatttttt ttgtcacact tgtttgaagt 1320 gcagtttatc tatctttata catatattta aactttactc tacgaataat ataatctata 1380 gtactacaat aatatcagtg ttttagagaa tcatataaat gaacagttag acatggtcta 1440 aaggacaatt gagtattttg acaacaggac tctacagttt tatcttttta gtgtgcatgt 1500 gttctccttt ttttttgcaa atagcttcac ctatataata cttcatccat tttattagta 1560 catccattta gggtttaggg ttaatggttt ttatagacta atttttttag tacatctatt 1620 ttattctatt ttagcctcta aattaagaaa actaaaactc tattttagtt tttttattta 1680 ataatttaga tataaaatag aataaaataa agtgactaaa aattaaacaa atacccttta 1740 agaaattaaa aaaactaagg aaacattttt cttgtttcga gtagataatg ccagcctgtt 1800 aaacgccgtc gacgagtcta acggacacca accagcgaac cagcagcgtc gcgtcgggcc 1860 aagcgaagca gacggcacgg catctctgtc gctgcctctg gacccctctc gagagttccg 1920 ctccaccgtt ggacttgctc cgctgtcggc atccagaaat tgcgtggcgg agcggcagac 1980 gtgagccggc acggcaggcg gcctcctcct cctctcacgg caccggcagc tacgggggat 2040 tcctttccca ccgctccttc gctttccctt cctcgcccgc cgtaataaat agacaccccc 2100 tccacaccct ctttccccaa cctcgtgttg ttcggagcgc acacacacac aaccagatct 2160 cccccaaatc cacccgtcgg cacctccgct tcaaggtacg ccgctcgtcc tccccccccc 2220 ccctctctac cttctctaga tcggcgttcc ggtccatgca tggttagggc ccggtagttc 2280 tacttctgtt catgtttgtg ttagatccgt gtttgtgtta gatccgtgct gctagcgttc 2340 gtacacggat gcgacctgta cgtcagacac gttctgattg ctaacttgcc agtgtttctc 2400

tttggggaat cctgggatgg ctctagccgt tccgcagacg ggatcgattt catgattttt 2460 tttgtttcgt tgcatagggt ttggtttgcc cttttccttt atttcaatat atgccgtgca 2520 cttgtttgtc gggtcatctt ttcatgcttt tttttgtctt ggttgtgatg atgtggtctg 2580 gttgggcggt cgttctagat cggagtagaa ttctgtttca aactacctgg tggatttatt 2640 aattttggat ctgtatgtgt gtgccataca tattcatagt tacgaattga agatgatgga 2700 tggaaatatc gatctaggat aggtatacat gttgatgcgg gttttactga tgcatataca 2760 gagatgcttt ttgttcgctt ggttgtgatg atgtggtgtg gttgggcggt cgttcattcg 2820 ttctagatcg gagtagaata ctgtttcaaa ctacctggtg tatttattaa ttttggaact 2880 gtatgtgtgt gtcatacatc ttcatagtta cgagtttaag atggatggaa atatcgatct 2940 aggataggta tacatgttga tgtgggtttt actgatgcat atacatgatg gcatatgcag 3000 catctattca tatgctctaa ccttgagtac ctatctatta taataaacaa gtatgtttta 3060 taattatttt gatcttgata tacttggatg atggcatatg cagcagctat atgtggattt 3120 ttttagccct gccttcatac gctatttatt tgcttggtac tgtttctttt gtcgatgctc 3180 accctgttgt ttggtgttac ttctgcaggt cgactttaac ttagcctagg atccactagt 3240 aacggccgcc agtgtgctgg aattcgccct ttagcagacg cggaaccagc cgggctcccg 3300 gcagtggcag gaggagcccg gggagatgtt gagccccacc tcgaagacca ccctcttcca 3360 cagctccatc tcgccctcga acgaccggct ccgcatcagg cgccgcatgt tgacccagca 3420 gaagagcccc gcgttgctct ccaggcactc gatgcccacg gccgccaggc cctccgccag 3480 ctgctcgcgc cgctccctga tccgccgcgt gttctccgcg atgtacctcc gcgtgaagtc 3540 cctgtcgccc aggagcgacg ccaggaggtg ctgcgtctgg gacgacacca ggccgaagct 3600 cgacatcttg gtggccgcgg agaccacgcc ggcgttggac gagtagatgg cgcccacgcg 3660 gaaccccggg aggcccaggt ccttggacag gctgtacacc acgtgcacgc ggtccgacag 3720 cggcccaacg ccgacgacgc cgtcgtccgt ggcggcgcgc gcggccacca cctgcagtcg 3780 acgtgcaaag gtccgccttg tttctcctct gtctcttgat ctgactaatc ttggtttatg 3840 attcgttgag taattttggg gaaagcttcg tccacagttt tttttcgatg aacagtgccg 3900 cagtggcgct gatcttgtat gctatcctgc aatcgtggtg aacttatttc ttttatatcc 3960 tttactccca tgaaaaggct agtaatcttt ctcgatgtaa catcgtccag cactgctatt 4020 accgtgtggt ccatccgaca gtctggctga acacatcata cgatctatgg agcaaaaatc 4080 tatcttccct gttctttaat gaaggacgtc attttcatta gtatgatcta ggaatgttgc 4140 aacttgcaag gaggcgtttc tttctttgaa tttaactaac tcgttgagtg gccctgtttc 4200 tcggacgtaa ggcctttgct gctccacaca tgtccattcg aattttaccg tgtttagcaa 4260 gggcgaaaag tttgcatctt gatgatttag cttgactatg cgattgcttt cctggacccg 4320 tgcagctgga tcccggtacg cgccgccacg gacgacggcg tcgtcggcgt tgggccgctg 4380 tcggaccgcg tgcacgtggt gtacagcctg tccaaggacc tgggcctccc ggggttccgc 4440 gtgggcgcca tctactcgtc caacgccggc gtggtctccg cggccaccaa gatgtcgagc 4500 ttcggcctgg tgtcgtccca gacgcagcac ctcctggcgt cgctcctggg cgacagggac 4560 ttcacgcgga ggtacatcgc ggagaacacg cggcggatca gggagcggcg cgagcagctg 4620 gcggagggcc tggcggccgt gggcatcgag tgcctggaga gcaacgcggg gctcttctgc 4680 tgggtcaaca tgcggcgcct gatgcggagc cggtcgttcg agggcgagat ggagctgtgg 4740 aagagggtgg tcttcgaggt ggggctcaac atctccccgg gctcctcctg ccactgccgg 4800 gagcccggct ggttccgcgt ctgctaaagg gcgaattcca gcacactggc ggccgttact 4860 agtggatccg agctcgaatt ccggtccggg tcacccggtc cgggcctaga aggccgatct 4920 cccgggcacc cagctttctt gtacaaagtg gtgatatcgg accgattaaa ctttaattcg 4980 gtccgatgca tgtatacgaa gttcctattc cgaagttcct attctacata gagtatagga 5040 acttcacctg gtggcgccgc tagtggatcc cccgggctgc agtgcagcgt gacccggtcg 5100 tgcccctctc tagagataat gagcattgca tgtctaagtt ataaaaaatt accacatatt 5160 ttttttgtca cacttgtttg aagtgcagtt tatctatctt tatacatata tttaaacttt 5220 actctacgaa taatataatc tatagtacta caataatatc agtgttttag agaatcatat 5280 aaatgaacag ttagacatgg tctaaaggac aattgagtat tttgacaaca ggactctaca 5340 gttttatctt tttagtgtgc atgtgttctc cttttttttt gcaaatagct tcacctatat 5400 aatacttcat ccattttatt agtacatcca tttagggttt agggttaatg gtttttatag 5460 actaattttt ttagtacatc tattttattc tattttagcc tctaaattaa gaaaactaaa 5520 actctatttt agttttttta tttaataatt tagatataaa atagaataaa ataaagtgac 5580 taaaaattaa acaaataccc tttaagaaat taaaaaaact aaggaaacat ttttcttgtt 5640 tcgagtagat aatgccagcc tgttaaacgc cgtcgacgag tctaacggac accaaccagc 5700 gaaccagcag cgtcgcgtcg ggccaagcga agcagacggc acggcatctc tgtcgctgcc 5760 tctggacccc tctcgagagt tccgctccac cgttggactt gctccgctgt cggcatccag 5820 aaattgcgtg gcggagcggc agacgtgagc cggcacggca ggcggcctcc tcctcctctc 5880 acggcaccgg cagctacggg ggattccttt cccaccgctc cttcgctttc ccttcctcgc 5940 ccgccgtaat aaatagacac cccctccaca ccctctttcc ccaacctcgt gttgttcgga 6000 gcgcacacac acacaaccag atctccccca aatccacccg tcggcacctc cgcttcaagg 6060 tacgccgctc gtcctccccc ccccccctct ctaccttctc tagatcggcg ttccggtcca 6120 tgcatggtta gggcccggta gttctacttc tgttcatgtt tgtgttagat ccgtgtttgt 6180 gttagatccg tgctgctagc gttcgtacac ggatgcgacc tgtacgtcag acacgttctg 6240 attgctaact tgccagtgtt tctctttggg gaatcctggg atggctctag ccgttccgca 6300 gacgggatcg atttcatgat tttttttgtt tcgttgcata gggtttggtt tgcccttttc 6360 ctttatttca atatatgccg tgcacttgtt tgtcgggtca tcttttcatg cttttttttg 6420 tcttggttgt gatgatgtgg tctggttggg cggtcgttct agatcggagt agaattctgt 6480 ttcaaactac ctggtggatt tattaatttt ggatctgtat gtgtgtgcca tacatattca 6540 tagttacgaa ttgaagatga tggatggaaa tatcgatcta ggataggtat acatgttgat 6600 gcgggtttta ctgatgcata tacagagatg ctttttgttc gcttggttgt gatgatgtgg 6660 tgtggttggg cggtcgttca ttcgttctag atcggagtag aatactgttt caaactacct 6720 ggtgtattta ttaattttgg aactgtatgt gtgtgtcata catcttcata gttacgagtt 6780 taagatggat ggaaatatcg atctaggata ggtatacatg ttgatgtggg ttttactgat 6840 gcatatacat gatggcatat gcagcatcta ttcatatgct ctaaccttga gtacctatct 6900 attataataa acaagtatgt tttataatta ttttgatctt gatatacttg gatgatggca 6960 tatgcagcag ctatatgtgg atttttttag ccctgccttc atacgctatt tatttgcttg 7020 gtactgtttc ttttgtcgat gctcaccctg ttgtttggtg ttacttctgc aggtcgactt 7080 taacttagcc taggatccac acgacaccat gtcccccgag cgccgccccg tcgagatccg 7140 cccggccacc gccgccgaca tggccgccgt gtgcgacatc gtgaaccact acatcgagac 7200 ctccaccgtg aacttccgca ccgagccgca gaccccgcag gagtggatcg acgacctgga 7260 gcgcctccag gaccgctacc cgtggctcgt ggccgaggtg gagggcgtgg tggccggcat 7320 cgcctacgcc ggcccgtgga aggcccgcaa cgcctacgac tggaccgtgg agtccaccgt 7380 gtacgtgtcc caccgccacc agcgcctcgg cctcggctcc accctctaca cccacctcct 7440 caagagcatg gaggcccagg gcttcaagtc cgtggtggcc gtgatcggcc tcccgaacga 7500 cccgtccgtg cgcctccacg aggccctcgg ctacaccgcc cgcggcaccc tccgcgccgc 7560 cggctacaag cacggcggct ggcacgacgt cggcttctgg cagcgcgact tcgagctgcc 7620 ggccccgccg cgcccggtgc gcccggtgac gcagatctga gtcgaaacct agacttgtcc 7680 atcttctgga ttggccaact taattaatgt atgaaataaa aggatgcaca catagtgaca 7740 tgctaatcac tataatgtgg gcatcaaagt tgtgtgttat gtgtaattac tagttatctg 7800 aataaaagag aaagagatca tccatatttc ttatcctaaa tgaatgtcac gtgtctttat 7860 aattctttga tgaaccagat gcatttcatt aaccaaatcc atatacatat aaatattaat 7920 catatataat taatatcaat tgggttagca aaacaaatct agtctaggtg tgttttgcga 7980 attgcggccg ctctagcgta tacgaagttc ctattccgaa gttcctattc tctagaaagt 8040 ataggaactt ctgattccga tgacttcgta ggttcctagc tcaagccgct cgtgtccaag 8100 cgtcacttac gattagctaa tgattacggc atctaggacc gactagtaag tgactagggt 8160 cacgtgaccc tagtcactta tacgtagaat taattcattc cgattaatcg tggcctcttg 8220 ctcttcagga tgaagagcta tgtttaaacg tgcaagcgct actagacaat tcagtacatt 8280 aaaaacgtcc gcaatgtgtt attaagttgt ctaagcgtca atttgtttac accacaatat 8340 atcctgccac 8350

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed