Immunogenic Compositions Of Staphylococcus Epidermidis Polypeptide Antigens

Sellman; Bret Richard ;   et al.

Patent Application Summary

U.S. patent application number 14/674512 was filed with the patent office on 2015-07-16 for immunogenic compositions of staphylococcus epidermidis polypeptide antigens. The applicant listed for this patent is Wyeth LLC. Invention is credited to Steven Morris Baker, Bret Richard Sellman.

Application Number20150196629 14/674512
Document ID /
Family ID37595601
Filed Date2015-07-16

United States Patent Application 20150196629
Kind Code A1
Sellman; Bret Richard ;   et al. July 16, 2015

Immunogenic Compositions Of Staphylococcus Epidermidis Polypeptide Antigens

Abstract

The present invention relates to immunogenic compositions, comprising polypeptides isolated from Staphylococcus epidermidis. The invention also relates to polynucleotides encoding Staphylococcus epidermidis polypeptides and their use in immunogenic compositions. In addition, the invention relates to methods of inducing an immune response in mammals against Staphylococcus epidermidis and Staphylococcus aureus using immunogenic compositions of the Staphylococcus epidermidis polypeptides and polynucleotides. The invention also relates to methods for detecting Staphylococcus epidermidis in a biological sample.


Inventors: Sellman; Bret Richard; (North Potomac, MD) ; Baker; Steven Morris; (Springwater, NY)
Applicant:
Name City State Country Type

Wyeth LLC

New York

NY

US
Family ID: 37595601
Appl. No.: 14/674512
Filed: March 31, 2015

Related U.S. Patent Documents

Application Number Filing Date Patent Number
13866288 Apr 19, 2013
14674512
11665940 Apr 20, 2007 8445000
PCT/US2005/037746 Oct 19, 2005
13866288
60620788 Oct 21, 2004

Current U.S. Class: 424/190.1
Current CPC Class: A61K 45/06 20130101; A61K 39/085 20130101; A61K 31/445 20130101; G01N 2469/20 20130101; A61P 31/04 20180101; G01N 2333/31 20130101; G01N 33/56938 20130101; A61P 37/00 20180101; A61K 39/00 20130101; A61P 37/04 20180101; A61K 2039/53 20130101
International Class: A61K 39/085 20060101 A61K039/085; A61K 31/445 20060101 A61K031/445; A61K 45/06 20060101 A61K045/06

Claims



1-29. (canceled)

30. A method of inducing an immune response against Staphylococcus epidermidis or Staphylococcus aureus comprising administering to a mammal an immunogenic amount of a composition comprising an isolated polypeptide having at least about 95% identity to an amino acid sequence chosen from one or more of SEQ ID NO: 1 through SEQ ID NO: 32 or a biological equivalent thereof, or a fragment thereof, and a pharmaceutically acceptable carrier.

31. The method of claim 30, wherein the polypeptide further comprises heterologous amino acids.

32. The method of claim 31, wherein the polypeptide is a fusion polypeptide.

33. The method of claim 30, wherein the composition further comprises an adjuvant.

34. The method of claim 30, wherein the polypeptide is a recombinant polypeptide.

35. A method of inducing an immune response against Staphylococcus epidermidis or Staphylococcus aureus comprising administering to a mammal an immunogenic amount of a composition comprising an isolated polypeptide encoded by a polynucleotide having at least about 95% identity to a nucleotide sequence chosen from one or more of SEQ ID NO: 33 through SEQ ID NO: 64, a degenerate variant thereof, or a fragment thereof and a pharmaceutically acceptable carrier.

36-37. (canceled)

38. The method of claim 35, wherein the polynucleotide is a recombinant polynucleotide.

39. The method of claim 35, wherein the polynucleotide further comprises heterologous nucleotides.

40. (canceled)

41. The method of claim 35, wherein the composition further comprises an adjuvant.

42. The method of claim 35, wherein said composition further comprises a transfection facilitating agent.

43. The method of claim 42, wherein said transfection facilitating agent is bupivicaine.

44-48. (canceled)

49. The method of claim 30, wherein said polypeptide has an amino acid sequence chosen from one or more of SEQ ID NO: 1 through SEQ ID NO: 32.

50. The method of claim 35, wherein said polynucleotide has a nucleotide sequence chosen from one or more of SEQ ID NO: 33 through SEQ ID NO: 64.
Description



FIELD OF THE INVENTION

[0001] The present invention relates to immunogenic compositions, comprising polypeptides isolated from Staphylococcus epidermidis. The invention also relates to polynucleotides encoding Staphylococcus epidermidis polypeptides and their use in immunogenic compositions. In addition, the invention relates to methods of inducing an immune response in mammals against Staphylococcus epidermidis and Staphylococcus aureus using immunogenic compositions of the Staphylococcus epidermidis polypeptides and polynucleotides. The invention also relates to methods for detecting Staphylococcus epidermidis in a biological sample.

BACKGROUND OF THE INVENTION

[0002] Staphylococcus epidermidis is a major component of the normal human microbial flora on the skin and mucous membranes and was once considered only a contaminant when cultured from an infected patient. See Heilmann, C. and G. Peters, Biology and pathogenicity of Staphylococcus epidermidis, in Gram-positive pathogens, V. A. Fischetti, Editor. 2000, American Society for Microbiology: Washington, D.C. p. 442-449; von Eiff, C., et al., Lancet Infect Dis, 2(11): p. 677-85 (2002). It is now widely accepted to be an opportunistic pathogen of great importance and a leading cause of nosocomial bloodstream infections. See Am J Infect Control, 27: p. 520-32 (1999); Diekema, D. J., et al., Int J Antimicrob Agents, 20(6): p. 412-8 (2002); Edmond, M. B., et al., Clin Infect Dis, 29(2): p. 239-44 (1999). These infections are primarily associated with the presence of an indwelling foreign polymer body such as a venous catheter, prosthetic joint or prosthetic heart valve. See Heilmann, C. and G. Peters, Biology and pathogenicity of Staphylococcus epidermidis, in Gram-positive pathogens, V. A. Fischetti, Editor. 2000, American Society for Microbiology: Washington, D.C. p. 442-449; von Eiff, C., et al., Lancet Infect Dis, 2(11): p. 677-85 (2002). Infection is thought to result from introduction of Staphylcoccus epidermidis from the patient's skin upon insertion of the prosthetic device. Colonization and subsequent biofilm formation can lead to bacteremia with the potential for hematogenous spread to other sites in the body. These infections are often difficult to treat, arising from the reduced killing of bacteria within a biofilm by antibiotics and also an increase in antibiotic resistance among clinical isolates. See Diekema, D. J., et al., Int J Antimicrob Agents, 20(6): p. 412-8 (2002); Edmond, M. B., et al., Clin Infect Dis, 29(2): p. 239-44 (1999); Lewis, K., Antimicrob Agents Chemother, 45(4): p. 999-1007 (2001); Raad, I. et al., Clin Infect Dis, 26(5): p. 1182-7 (1998). Staphylcoccus epidermidis with reduced susceptibility to vancomycin have been reported. See Sanyal, D. and D. Greenwood, J Med Microbiol., 39(3): p. 204-10 (1993); Sanyal, D., et al., Lancet, 337(8732): p. 54 (1991). Difficulty treating these infections necessitates the use of immunization as a means to prevent infection.

[0003] Biofilm formation is a major virulence determinant for Staphylcoccus epidermidis infections. Consequently, research on Staphylcoccus epidermidis surface proteins has focused on those proteins involved in biofilm formation. These proteins have been subdivided into groups based on their involvement in the two major steps of biofilm formation: 1) primary attachment, staphylococcal surface protein-1 (SSP-1), autolysin (AtIE), Fbe (SdrG) and GehD and 2) bacterial cell accumulation, Bap homologous protein (Bhp), accumulation associated protein (AAP) and autolysin (AtIE). See von Eiff, C., et al., Lancet Infect Dis, 2002. 2(11): p. 677-85; Vuong, C., et al., J Infect Dis, 188(5): p. 706-18 (2003); Veenstra, G. J., et al., J Bacteriol., 178(2): p. 537-41 (1996); Rupp, M. E., et al., J Infect Dis, 183(7): p. 1038-42 (2001); Hussain, M., et al., Infect Immun, 65(2): p. 519-24 (1997); Nilsson, M., et al., Infect Immun, 66(6): p. 2666-73 (1998); Davis, S. L., et al., J Biol Chem, 276(30): p. 27799-805 (2001); and Bowden, M. G., et al., J Biol Chem, 277(45): p. 43017-43023 (2002). Comparatively less effort has been exerted towards the identification of surface proteins expressed upon exposure to the environmental cues within the host or those involved in host-parasite interactions.

[0004] Staphylcoccus epidermidis must undergo a transition from commensal to pathogen and adapt to its microenvironment within the host. For a commensal to transition to a pathogen it must gain access to host tissue, sense changes in its environment, alter gene expression so that it is able to evade host defenses, attach and adhere to host factors, grow and divide in the presence of different nutrients and host defenses. Proteins on the bacterial surface make initial contact with the new environment within the host. The many functions of these proteins include sensing the environment, scavenging and transporting nutrients, defending against the host immune system and binding host proteins. Surface exposed proteins can also serve as points of contact or recognition by the host immune system and can be targets for a humoral immune response against the bacterium. Josefsson, E., et al., J Infect Dis, 184(12): p. 1572-80 (2001); Swiatlo, E., et al., Infect Immun, 71(12): p. 7149-53 (2003); Grifantini, R., et al., Nat Biotechnol, 20(9): p. 914-21 (2002). Thus, there is an immediate need for identifying promising candidates among Staphylococcus epidermidis proteins for use in immunogenic compositions that induce immune responses to disease causing serotypes of Staphylococcus epidermidis.

SUMMARY OF THE INVENTION

[0005] The present invention provides an immunogenic composition comprising a polypeptide having an amino acid sequence chosen from one or more of SEQ ID NO: 1 through SEQ ID NO: 32, a biological equivalent thereof, or a fragment thereof. In a particular embodiment, the polypeptide is immunoreactive with antibodies in the serum of rabbits infected with Staphylococcus epidermidis. In another embodiment, the polypeptide binds to one or more rabbit serum proteins.

[0006] In certain embodiments, the immunogenic composition further comprises a pharmaceutically acceptable carrier. In other embodiments, the immunogenic compositions of the invention also comprise one or more adjuvants. In still another embodiment, the immunogenic composition further comprises a Staphylococcus epidermidis polysaccharide antigen. In still another embodiment, the immunogenic composition further comprises a Staphylococcus aureus polysaccharide or polypeptide antigen.

[0007] The present invention provides immunogenic compositions, comprising a polypeptide isolated from Staphylococcus epidermidis.

[0008] The present invention provides an immunogenic composition comprising a Staphylococcus epidermidis polypeptide wherein the polypeptide further comprises heterologous amino acids. In a particular embodiment, the polypeptide is a fusion polypeptide. In another embodiment, the polypeptide is a recombinant polypeptide. In still another embodiment, the invention provides an immunogenic composition comprising a Staphylococcus epidermidis polypeptide wherein the polypeptide comprises a neutralizing epitope of Staphylococcus epidermidis. In a certain embodiment, the polypeptide is a lipoprotein.

[0009] The present invention further provides immunogenic compositions, comprising a Staphylococcus epidermidis polypeptide, wherein the polypeptide is encoded by a polynucleotide comprising a nucleotide sequence having at least about 95% identity to a nucleotide sequence chosen from one of SEQ ID NO: 33 through SEQ ID NO: 64 or a degenerate variant thereof, or a fragment thereof. In a particular embodiment, the Staphylococcus epidermidis polynucleotide sequence is selected from the group consisting of SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 43, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 50, SEQ ID NO: 51, SEQ ID NO: 52, SEQ ID NO: 55, SEQ ID NO: 58, SEQ ID NO: 59, and SEQ ID NO: 62, or a degenerate variant thereof, or a fragment thereof.

[0010] The present invention provides an immunogenic composition, wherein the polynucleotide is derived from Staphylococcus epidermidis. In a particular embodiment, the polynucleotide further comprises heterologous nucleotides. In another embodiment, the polynucleotide is in an expression vector. In still another embodiment, the expression vector is plasmid DNA. In a certain embodiment, the polynucleotide is a recombinant polynucleotide. In another embodiment, the polynucleotide is operatively linked to one or more gene expression regulatory elements. In still another embodiment, the polynucleotide directs the expression of a neutralizing epitope of Staphylococcus epidermidis.

[0011] The invention also provides an immunogenic composition comprising a Staphylococcus epidermidis polypeptide encoded by a polynucleotide, wherein the immunogenic composition further comprises a transfection facilitating agent. In a particular embodiment, said transfection facilitating agent is bupivicaine.

[0012] The present invention also provides a method of inducing an immune response against Staphylococcus epidermidis comprising administering to a mammal an immunogenic amount of a composition comprising: a polypeptide having an amino acid sequence chosen from one or more of SEQ ID NO: 1 through SEQ ID NO: 32 or a biological equivalent thereof, or a fragment thereof, and a pharmaceutically acceptable carrier.

[0013] In addition, the present invention provides a method of inducing an immune response against Staphylococcus epidermidis comprising administering to a mammal an immunogenic amount of a composition comprising: a polynucleotide having a nucleotide sequence chosen from one or more of SEQ ID NO: 33 through SEQ ID NO: 64, a degenerate variant thereof, or a fragment thereof and a pharmaceutically acceptable carrier.

[0014] In one embodiment, the invention provides an immunogenic composition comprising a polynucleotide having a nucleotide sequence chosen from one of SEQ ID NO: 33 through SEQ ID NO: 64, a degenerate variant thereof, or a fragment thereof and is comprised in an expression vector. In another embodiment, the polynucleotide is derived from Staphylococcus epidermidis. In still another embodiment the polynucleotide comprises heterologous nucleotides.

[0015] In a certain embodiment, the invention provides a method for the detection and/or identification of Staphylococcus epidermidis in a biological sample comprising: (a) contacting the sample with an oligonucleotide probe of a polynucleotide comprising the nucleotide sequence chosen from one of SEQ ID NO:33 through SEQ ID NO: 64, or a degenerate variant thereof, or a fragment thereof, under conditions permitting hybridization; and (b) detecting the presence of hybridization complexes in the sample, wherein hybridization complexes indicate the presence of Staphylococcus epidermidis in the sample.

[0016] In other embodiments, the invention provides a method for the detection and/or identification of antibodies to Staphylococcus epidermidis in a biological sample comprising: (a) contacting the sample with a polypeptide comprising an amino acid sequence chosen from one of SEQ ID NO: 1 through SEQ ID NO: 32 or a biological equivalent thereof, or a fragment thereof, under conditions permitting immune complex formation; and detecting the presence of immune complexes in the sample, wherein immune complexes indicate the presence of Streptococcus pneumoniae in the sample.

[0017] In a particular embodiment, the immunogenic composition comprises a Staphylococcus epidermidis polypeptide sequence selected from the group consisting of SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 23, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 30, a biological equivalent thereof, or a fragment thereof. In another embodiment, the immunogenic composition comprises a Staphylococcus epidermidis polynucleotide sequence selected from the group consisting of SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 43, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 50, SEQ ID NO: 51, SEQ ID NO: 52, SEQ ID NO: 55, SEQ ID NO: 58, SEQ ID NO: 59, SEQ ID NO: 62, or a degenerate variant thereof, or a fragment thereof.

[0018] In yet another embodiment, the invention provides a method of inducing an immune response against Staphylococcus aureus comprising administering to a mammal an immunogenic amount of a composition comprising: a Staphylococcus epidermidis polypeptide sequence selected from the group consisting of SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 23, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 30, a biological equivalent thereof, or a fragment thereof.

[0019] In a particular embodiment, the invention provides a method of inducing an immune response against Staphylococcus aureus comprising administering to a mammal an immunogenic amount of a composition comprising: a Staphylococcus epidermidis polynucleotide sequence selected from the group consisting of SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 43, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 50, SEQ ID NO: 51, SEQ ID NO: 52, SEQ ID NO: 55, SEQ ID NO: 58, SEQ ID NO: 59, SEQ ID NO: 62, or a degenerate variant thereof, or a fragment thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] FIG. 1 depicts protein expression profiles of cell wall fractions from S. epidermidis 0-47 grown in TSB (1A and 10) or 70% rabbit serum (1B and 1D), which were compared by 2D gel electrophoresis. Proteins were separated on pH 4-7 IPG strips in the first dimension followed by SDS-PAGE in the second dimension, transferred to nitrocellulose and detected by fluorescent stain (1A and 10). Immunoreactive proteins were visualized with immune sera (1B and 1D) from rabbits infected with S. epidermidis 0-47. Molecular weight markers are labeled to the left.

[0021] FIG. 2 depicts fluorescent stained blot (2A) and immunoblot (2B) of a cell surface fraction from S. epidermidis 0-47 grown in 70% rabbit serum separated on pH 4-7 IPG strips in the first dimension and SDS-PAGE in the second dimension. The proteins in the spots were identified by mass spec analysis.

[0022] FIG. 3 depicts proteins, which were eluted from the surface of S. epidermidis 0-47 grown in TSB or 70% rabbit serum with increasing concentrations of NaCl or 4.0M urea. Asteriks indicate enriched proteins eluted from the surface of S. Epi grown in the presence of serum. Bacteria were washed 3.times. with TBS then sequentially with 0.5M and 1.0 M NaCl and 4.0 M urea. Protein concentrations were determined for each of the samples and 0.75 .mu.g was run on a 4-20% gradient gel. No protein was detected by protein assay in the samples eluted from the surface of TSB-grown bacteria (lanes 2-5), so 25 .mu.l was loaded onto the gel. Lane 1, rabbit serum; Lanes 2 and 6-0.15M NaCl eluate; Lanes 3 and 7-0.5M NaCl, Lanes 4 and 8-1.0 M NaCl; Lane 5 and 9-4.0 M urea.

[0023] FIG. 4 depicts a 2D transfer of cell surface proteins from S. epidermidis, which was fluorescently stained for protein (4A) and probed with biotinylated serum proteins (4B) eluted from S. epidermidis grown in 70% rabbit serum. The spots were visualized with a streptavidin-alkaline phosphatase conjugate. The proteins in the spots were identified by mass spectroscopy.

DETAILED DESCRIPTION OF THE INVENTION

[0024] Upon exposure to the bloodstream of the host, invading bacteria encounter environmental cues specific to the new environment. These cues are detected by the bacteria and signal adaptive changes in protein expression that may be detectable in cell wall purified proteins. Often, proteins and carbohydrates at the bacterial cell wall are candidates for inclusion in immunogenic compositions for treating or preventing bacterial infections. Whether an upregulated protein interacts with the host or plays a role in nutrient acquisition, it is important to the bacteria and therefore plays a role in survival of the bacteria and pathogenesis. Growth of bacteria in body fluids (ie. serum, peritoneal dialysate fluid, and urine) has been used as a model system to mimic some of the signals bacteria encounter within the host. See Wiltshire, M. D. and S. J. Foster, Infect Immun, 69(8): p. 5198-202 (2001); Shepard, B. D. and M. S. Gilmore, Infect Immun, 70(8): p. 4344-52 (2002); Smith, D. G., et al., Infect Immun, 59(2): p. 617-24 (1991); McDermid, K. P., et al., Infect Immun, 61(5): p. 1743-9 (1993). One or more of these culture conditions was found to alter gene expression in Enterococcus faecalis, S. aureus and Staphylcoccus epidermidis and those proteins identified as being increased in expression in the altered culture conditions were found to belong to different classes of proteins having a variety of functions. See Wiltshire, M. D. and S. J. Foster, Infect Immun, 69(8): p. 5198-202 (2001); Shepard, B. D. and M. S. Gilmore, Infect Immun, 70(8): p. 4344-52 (2002).

[0025] The most common predisposing factor for a Staphylcoccus epidermidis infection is the implantation of a prosthetic device. An implanted prosthetic device becomes coated with plasma and matrix proteins including fibrinogen, vitronectin, von Willebrand factor and fibronectin. See von Eiff, C., et al., Eur J Clin Microbiol Infect Dis, 18(12): p. 843-6 (1999). These proteins often act as ligands for Staphylococcal epidermidis surface proteins, thus allowing the bacteria to bind and colonize the prosthetic device. Staphylcoccus epidermidis is known to express proteins that bind to fibrinogen, vitronectin and fibronectin. See Nilsson, M., et al., A fibrinogen-binding protein of Staphylococcus epidermidis. Infect Immun, 66(6), p. 2666-73 (1998); Davis, S. L., et al., J Biol Chem, 276(30), p. 27799-805 (2001); Williams, R. J., et al., Infect Immun., 70(12), p. 6805-10 (2002); Heilmann, C., et al., Mol Microbiol, 24(5), p. 1013-24 (1997). It is reasonable to expect that Staphylcoccus epidermidis will bind additional serum proteins in making the transition from commensal to pathogen.

[0026] The invention described hereinafter addresses the need for Staphylococcus epidermidis immunogenic compositions that effectively prevent or treat most or all of the disease caused by serotypes of Staphylococcus epidermidis. The invention further addresses the need for methods of diagnosing Staphylococcus epidermidis infection. The present invention has identified Staphylococcus epidermidis open reading frames, hereinafter ORFs, which encode antigenic polypeptides. More particularly, the Staphylococcus epidermidis ORFs encode polypeptides that serve as potential antigenic polypeptides in immunogenic compositions. In certain embodiments, the invention comprises Staphylococcus epidermidis polynucleotide ORFs encoding surface localized, exposed, secreted or membrane associated polypeptide antigens.

[0027] In other embodiments, the invention comprises vectors comprising ORF sequences and host cells or animals transformed, transfected or infected with these vectors. The invention also comprises transcriptional gene products of Staphylococcus epidermidis ORFs, such as, for example, mRNA, antisense RNA, antisense oligonucleotides and ribozyme molecules, which can be used to inhibit or control growth of the microorganism. The invention relates also to methods of detecting these nucleic acids or polypeptides and kits for diagnosing Staphylococcus epidermidis infection. The invention also relates to immunogenic compositions for the prevention and/or treatment of bacterial infection, in particular infection caused by or exacerbated by Staphylococcus epidermidis. In particular embodiments, the immunogenic compositions are used for the treatment or prevention of systemic diseases, which are induced or exacerbated by Staphylococcus epidermidis. In other embodiments, the immunogenic compositions are used for the treatment or prevention of non-systemic diseases, which are induced or exacerbated by Staphylococcus epidermidis.

A. Staphylococcus epidermidis ORF Polynucleotides and Polypeptides

[0028] Isolated and purified Staphylococcus epidermidis ORF polynucleotides are identified which are used in the production of Staphylococcus epidermidis polypeptides for inclusion in immunogenic compoitions. More specifically, in certain embodiments, the ORFs encode Staphylococcus epidermidis surface localized, exposed, membrane associated or secreted polypeptides, particularly antigenic polypeptides. Thus, in one aspect, the present invention identifies isolated and purified polynucleotides (ORFs) that encode Staphylococcus epidermidis surface localized, exposed, membrane associated or secreted polypeptides for inclusion in immunogenic compositions. In particular embodiments, a polynucleotide of the present invention is a DNA molecule, wherein the DNA may be genomic DNA, chromosomal DNA, plasmid DNA or cDNA. In another embodiment, a polynucleotide is a recombinant polynucleotide, which encodes a Staphylococcus epidermidis polypeptide comprising an amino acid sequence that has at least 95% identity to an amino acid sequence of one of SEQ ID NO: 1 through SEQ ID NO: 32 or a fragment thereof. In another embodiment, an isolated and purified ORF polynucleotide comprises a nucleotide sequence that has at least 95% identity to one of the ORF nucleotide sequences of SEQ ID NO: 33 through SEQ ID NO: 64, a degenerate variant thereof, or a complement thereof. In one embodiment, an ORF polynucleotide of one of SEQ ID NO: 33 through SEQ ID NO: 64 is comprised in a plasmid vector and expressed in a prokaryotic host cell.

[0029] As used hereinafter, the term "polynucleotide" means a sequence of nucleotides connected by phosphodiester linkages. Polynucleotides are presented hereinafter in the direction from the 5' to the 3' direction. A polynucleotide of the present invention can comprise from about 10 to about several hundred thousand base pairs. In one embodiment, a polynucleotide comprises from about 10 to about 3,000 base pairs. Example lengths of particular polynucleotide are set forth hereinafter.

[0030] A polynucleotide as described herein can be a deoxyribonucleic acid (DNA) molecule, a ribonucleic acid (RNA) molecule, or analogs of the DNA or RNA generated using nucleotide analogs. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA. Where a polynucleotide is a DNA molecule, that molecule can be a gene, a cDNA molecule or a genomic DNA molecule. Nucleotide bases are indicated hereinafter by a single letter code: adenine (A), guanine (G), thymine (T), cytosine (C), inosine (I) and uracil (U).

[0031] "Isolated" means altered "by the hand of man" from the natural state. If a composition or substance occurs in nature, in order for it to be considered "Isolated" it must have been changed or removed from its original environment, or both. For example, a polynucleotide or a polypeptide naturally present in a living animal is not "isolated," but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is "isolated," as the term is employed hereinafter.

[0032] As used herein, an "isolated" polynucleotide is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated Staphylococcus epidermidis nucleic acid molecule can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived. However, the Staphylococcus epidermidis nucleic acid molecule can be fused to other protein encoding or regulatory sequences and still be considered isolated.

[0033] ORF polynucleotides and thus the polypeptides described herein may be obtained using standard cloning and screening techniques from a cDNA library derived from mRNA. Polynucleotides of the invention can also be obtained from natural sources such as genomic DNA libraries (e.g., a Staphylococcus epidermidis library) or can be synthesized using well known and commercially available techniques.

[0034] Also encompassed herein are nucleic acid molecules that differ from the nucleotide sequences shown in SEQ ID NO:33 through SEQ ID NO:64 (and fragments thereof) due to degeneracy of the genetic code and thus encode the same Staphylococcus epidermidis polypeptide as that encoded by the nucleotide sequence shown in SEQ ID NO:33 through SEQ ID NO:64.

[0035] Orthologues and allelic variants of the Staphylococcus epidermidis polynucleotides can readily be identified using methods well known in the art. Allelic variants and orthologues of the polynucleotides will comprise a nucleotide sequence that is typically at least about 70-75%, more typically at least about 80-85%, and most typically at least about 90-95% or more homologous to the nucleotide sequence shown in SEQ ID NO:33 through SEQ ID NO:64, or a fragment of these nucleotide sequences. Such nucleic acid molecules can readily be identified as being able to hybridize under stringent conditions, to the nucleotide sequence shown in SEQ ID NO:33 through SEQ ID NO:64, or a fragment of these nucleotide sequences.

[0036] Moreover, the polynucleotides can comprise only a fragment of the coding region of a Staphylococcus epidermidis polynucleotide or gene, such as a fragment of one of SEQ ID NO:33 through SEQ ID NO:64. In certain embodiments, such fragments encode immunogenic fragments.

[0037] When these Staphylococcus epidermidis ORF polynucleotides of the invention are used for the recombinant production of Staphylococcus epidermidis polypeptides for inclusion in immunogenic compositions, the polynucleotide may include the coding sequence for the mature polypeptide, by itself, or the coding sequence for the mature polypeptide in reading frame with other coding sequences, such as those encoding a leader or secretory sequence, a pre-, or pro- or prepro-protein sequence, or other fusion peptide portions. For example, a marker sequence which facilitates purification of the fused polypeptide can be linked to the coding sequence (see Gentz et al., Proc. Natl. Acad. Sci. USA, 86:821-824, 1989, incorporated by reference hereinafter in its entirety). Thus, contemplated herein is the preparation of polynucleotides encoding fusion polypeptides permitting His-tag purification of expression products. The polynucleotide may also contain non-coding 5' and 3' sequences, such as transcribed, non-translated sequences, splicing and polyadenylation signals.

[0038] Thus, a polynucleotide encoding a polypeptide for inclusion in immunogenic compositions of the present invention, including homologs and orthologs from species other than Staphylococcus epidermidis, such as Staphylococcus aureus may be obtained by a process which comprises the steps of screening an appropriate library under stringent hybridization conditions with a labeled probe having the sequence of one of SEQ ID NO:33 through SEQ ID NO:64, a fragment thereof; and isolating full-length cDNA and genomic clones containing the polynucleotide sequence. Such hybridization techniques are well known to the skilled artisan. The skilled artisan will appreciate that, in many cases, an isolated cDNA sequence will be incomplete, in that the region coding for the polypeptide is cut short at the 5' end of the cDNA. This is a consequence of reverse transcriptase, an enzyme with inherently low "processivity" (a measure of the ability of the enzyme to remain attached to the template during the polymerization reaction), failing to complete a DNA copy of the mRNA template during first strand cDNA synthesis.

[0039] Thus, in certain embodiments, the polynucleotide sequence information provided herein allows for the preparation of relatively short DNA (or RNA) oligonucleotide sequences having the ability to specifically hybridize to gene sequences of the selected polynucleotides disclosed hereinafter. The term "oligonucleotide" as used hereinafter is defined as a molecule comprised of two or more deoxyribonucleotides or ribonucleotides, usually more than three (3), and typically more than ten (10) and up to one hundred (100) or more (although preferably between twenty and thirty). The exact size will depend on many factors, which in turn depends on the ultimate function or use of the oligonucleotide. Thus, in particular embodiments, nucleic acid probes of an appropriate length are prepared based on a consideration of a selected nucleotide sequence, e.g., a sequence such as that shown in SEQ ID NO:33 through SEQ ID NO:64. The ability of such nucleic acid probes to specifically hybridize to a polynucleotide encoding a Staphylococcus epidermidis polypeptide lends them particular utility in a variety of embodiments. Most importantly, the probes can be used in a variety of assays for detecting the presence of complementary sequences in a given sample.

[0040] In certain embodiments, it is advantageous to use oligonucleotide primers. These primers may be generated in any manner, including chemical synthesis, DNA replication, reverse transcription, or a combination thereof. The sequence of such primers is designed using a polynucleotide described herein for use in detecting, amplifying or mutating a defined segment of an ORF polynucleotide that encodes a Staphylococcus epidermidis polypeptide from prokaryotic cells using polymerase chain reaction (PCR) technology.

[0041] In certain embodiments, it is advantageous to employ a polynucleotide described herein in combination with an appropriate label for detecting hybrid formation. A wide variety of appropriate labels are known in the art, including radioactive, enzymatic or other ligands, such as avidin/biotin, which are capable of giving a detectable signal.

[0042] Polynucleotides which are identical or sufficiently identical to a nucleotide sequence contained in one of SEQ ID NO:33 through SEQ ID NO:64, or a fragment thereof, may be used as hybridization probes for cDNA and genomnic DNA or as primers for a nucleic acid amplification (PCR) reaction, to isolate full-length cDNAs and genomic clones encoding polypeptides described herein and to isolate cDNA and genomic clones of other genes (including genes encoding homologs and orthologs from species other than Staphylococcus epidermidis) that have a high sequence similarity to the polynucleotide sequences set forth in of SEQ ID NO:33 through SEQ ID NO:64, or a fragment thereof. Typically these nucleotide sequences are from at least about 70% identical to at least about 95% identical to that of the reference polynucleotide sequence. The probes or primers will generally comprise at least 15 nucleotides, preferably, at least 30 nucleotides and may have at least 50 nucleotides. Particularly preferred probes will have between 30 and 50 nucleotides.

[0043] There are several methods available and well known to those skilled in the art to obtain full-length cDNAs, or extend short cDNAs, for example those based on the method of Rapid Amplification of cDNA ends (RACE). See Frohman et al., Proc. Natl. Acad. Sci. USA 85, 8998-9002, 1988. Recent modifications of the technique, exemplified by the Marathon.TM. technology (Clontech Laboratories Inc.) for example, have significantly simplified the search for longer cDNAs. In the Marathon.TM. technology, cDNAs have been prepared from mRNA extracted from a chosen tissue and an "adaptor" sequence ligated onto each end. Nucleic acid amplification (PCR) is then carried out to amplify the "missing" 5' end of the cDNA using a combination of gene specific and adaptor specific oligonucleotide primers. The PCR reaction is then repeated using "nested" primers, that is, primers designed to anneal within the amplified product (typically an adaptor specific primer that anneals further 3' in the adaptor sequence and a gene specific primer that anneals further 5' in the known gene sequence). The products of this reaction can then be analyzed by DNA sequencing and a full-length cDNA constructed either by joining the product directly to the existing cDNA to give a complete sequence, or carrying out a separate full-length PCR using the new sequence information for the design of the 5' primer.

[0044] To provide certain of the advantages in accordance with the present invention, a preferred nucleic acid sequence employed for hybridization studies or assays includes probe molecules that are complementary to at least a 10 to about 70 nucleotides long stretch of a polynucleotide that encodes a Staphylococcus epidermidis polypeptide, such as that shown in one of SEQ ID NO:33 through SEQ ID NO:64. A size of at least 10 nucleotides in length helps to ensure that the fragment will be of sufficient length to form a duplex molecule that is both stable and selective. Molecules having complementary sequences over stretches greater than 10 bases in length are generally preferred, though, in order to increase stability and selectivity of the hybrid, and thereby improve the quality and degree of specific hybrid molecules obtained. One will generally prefer to design nucleic acid molecules having gene-complementary stretches of 25 to 40 nucleotides, 55 to 70 nucleotides, or even longer where desired. Such fragments can be readily prepared by, for example, directly synthesizing the fragment by chemical means, by application of nucleic acid reproduction technology, such as the PCR technology of (U.S. Pat. No. 4,683,202, incorporated hereinafter by reference) or by excising selected DNA fragments from recombinant plasmids containing appropriate inserts and suitable restriction enzyme sites.

[0045] In another embodiment, it is contemplated that an isolated and purified polynucleotide comprises a nucleotide sequence that is identical or complementary to a segment of at least 10 contiguous bases of one of SEQ ID NO:33 through SEQ ID NO:64, wherein the polynucleotide hybridizes to a polynucleotide that encodes a Staphylococcus epidermidis polypeptide. Preferably, the isolated and purified polynucleotide comprises a base sequence that is identical or complementary to a segment of at least 25 to about 70 contiguous bases of one of SEQ ID NO:33 through SEQ ID NO:64. For example, the polynucleotide can comprise a segment of bases identical or complementary to 40 or 55 contiguous bases of the disclosed nucleotide sequences.

[0046] Accordingly, a polynucleotide probe molecule can be used for its ability to selectively form duplex molecules with complementary stretches of the gene. Depending on the application envisioned, one will desire to employ varying conditions of hybridization to achieve varying degree of selectivity of the probe toward the target sequence (see Table 1 below). For applications requiring a high degree of selectivity, one will typically desire to employ relatively stringent conditions to form the hybrids. For some applications, for example, where one desires to prepare mutants employing a mutant primer strand hybridized to an underlying template or where one seeks to isolate a Staphylococcus epidermidis homologous polypeptide coding sequence from other cells, functional equivalents, or the like, less stringent hybridization conditions are typically needed to allow formation of the heteroduplex (see Table 1). Cross-hybridizing species can thereby be readily identified as positively hybridizing signals with respect to control hybridizations. Thus, hybridization conditions are readily manipulated, and thus will generally be a method of choice depending on the desired results.

[0047] For some applications, for example, where one desires to prepare mutants employing a mutant primer strand hybridized to an underlying template or where one seeks to isolate a homologous polypeptide coding sequence from other cells, functional equivalents, or the like, less stringent hybridization conditions are typically needed to allow formation of the heteroduplex. Cross-hybridizing species are thereby readily identified as positively hybridizing signals with respect to control hybridizations. In any case, it is generally appreciated that conditions can be rendered more stringent by the addition of increasing amounts of formamide, which serves to destabilize the hybrid duplex in the same manner as increased temperature. Thus, hybridization conditions are readily manipulated, and thus will generally be a method of choice depending on the desired results.

[0048] Also described herein are polynucleotides capable of hybridizing under reduced stringency conditions, more preferably stringent conditions, and most preferably highly stringent conditions, to polynucleotides described hereinafter. Examples of stringency conditions are shown in Table 1 below: highly stringent conditions are those that are at least as stringent as, for example, conditions A-F; stringent conditions are at least as stringent as, for example, conditions G-L; and reduced stringency conditions are at least as stringent as, for example, conditions M-R.

TABLE-US-00001 TABLE 1 Stringency Conditions Hybrid Hybridization Wash Stringency Polynucleotide Length Temperature Temperature Condition Hybrid (bp).sup.1 and Buffer.sup.H and Buffer.sup.H A DNA:DNA >50 65.degree. C.; 1xSSC -or- 65.degree. C.; 42.degree. C.; 1xSSC, 50% 0.3xSSC formamide B DNA:DNA <50 T.sub.B; 1 XSSC T.sub.B; 1 XSSC C DNA:RNA >50 67.degree. C.; 1xSSC -or- 67.degree. C.; 45.degree. C.; 1xSSC, 50% 0.3xSSC formamide D DNA:RNA <50 T.sub.D; 1xSSC T.sub.D; 1xSSC E RNA:RNA >50 70.degree. C.; 1xSSC -or- 70.degree. C.; 50.degree. C.; 1xSSC, 50% 0.3xSSC formamide F RNA:RNA <50 T.sub.F; 1xSSC T.sub.F; 1xSSC G DNA:DNA >50 65.degree. C.; 4xSSC -or- 65.degree. C.; 1xSSC 42.degree. C.; 4xSSC, 50% formamide H DNA:DNA <50 T.sub.H; 4xSSC T.sub.H; 4xSSC I DNA:RNA >50 67.degree. C.; 4xSSC -or- 67.degree. C.; 1xSSC 45.degree. C.; 4xSSC, 50% formamide J DNA:RNA <50 T.sub.J; 4xSSC T.sub.J; 4xSSC K RNA:RNA >50 70.degree. C.; 4xSSC -or- 67.degree. C.; 1xSSC 50.degree. C.; 4xSSC, 50% formamide L RNA:RNA <50 T.sub.L; 2xSSC T.sub.L; 2xSSC M DNA:DNA >50 50.degree. C.; 4xSSC -or- 50.degree. C.; 2xSSC 40.degree. C.; 6xSSC, 50% formamide N DNA:DNA <50 T.sub.N; 6xSSC T.sub.N; 6xSSC O DNA:RNA >50 55.degree. C.; 4xSSC -or- 55.degree. C.; 2xSSC 42.degree. C.; 6xSSC, 50% formamide P DNA:RNA <50 T.sub.P; 6xSSC T.sub.P; 6xSSC Q RNA:RNA >50 60.degree. C.; 4xSSC -or- 60.degree. C.; 2xSSC 45.degree. C.; 6xSSC, 50% formamide R RNA:RNA <50 T.sub.R; 4xSSC T.sub.R; 4xSSC (bp).sup.1: The hybrid length is that anticipated for the hybridized region(s) of the hybridizing polynucleotides. When hybridizing a polynucleotide to a target polynucleotide of unknown sequence, the hybrid length is assumed to be that of the hybridizing polynucleotide. When polynucleotides of known sequence are hybridized, the hybrid length can be 3 determined by aligning the sequences of the polynucleotides and identifying the region or regions of optimal sequence complementarity. Buffer.sup.H: SSPE (1xSSPE is 0.15M NaCl, 10 mM NaH.sub.2PO.sub.4, and 1.25 mM EDTA, pH 7.4) can be substituted for SSC (1xSSC is 0.15M NaCl and 15 mM sodium citrate) in the hybridization and wash buffers; washes are performed for 15 minutes after hybridization is complete. T.sub.B through T.sub.R: The hybridization temperature for hybrids anticipated to be less than 50 base pairs in length should be 5-10.degree. C. less than the melting temperature (T.sub.m) of the hybrid, where T.sub.m is determined according to the following equations. For hybrids less than 18 base pairs in length, T.sub.m(.degree. C.) = 2(# of A + T bases) + 4(# of G + C bases). For hybrids between 18 and 49 base pairs in length, T.sub.m(.degree. C.) = 81.5 + 16.6(log.sub.10 + [Na.sup.+]) + 0.41(% G + C) - (600/N), where N is the number of bases in the hybrid, and [Na.sup.+] is the concentration of sodium ions in the hybridization buffer ([Na.sup.+] for 1xSSC = 0.165M).

[0049] Additional examples of stringency conditions for polynucleotide hybridization are provided in Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., chapters 9 and 11, and Ausubel et al., 1995, Current Protocols in Molecular Biology, eds., John Wiley & Sons, Inc., sections 2.10 and 6.3-6.4, incorporated hereinafter by reference.

B. Staphylococcus epidermidis Polypeptides

[0050] In particular embodiments, the present invention provides isolated and purified Staphylococcus epidermidis polypeptides for use in immunogenic compositions. Preferably, a Staphylococcus epidermidis polypeptide used in an immunogenic composition of the invention is a recombinant polypeptide. In certain embodiments, a Staphylococcus epidermidis polypeptide comprises the amino acid sequence that has at least 95% identity to the amino acid sequence of one of SEQ ID NO: 1 through SEQ ID NO: 32, a biological equivalent thereof, or a fragment thereof.

[0051] A Staphylococcus epidermidis polypeptide used in an immunogenic composition of the present invention encompasses a polypeptide that comprises: 1) the amino acid sequence shown in one of SEQ ID NO: 1 through SEQ ID NO: 32; 2) functional and non-functional naturally occurring variants or biological equivalents of Staphylococcus epidermidis polypeptides of SEQ ID NO: 1 through SEQ ID NO: 32; 3) recombinantly produced variants or biological equivalents of Staphylococcus epidermidis polypeptides of SEQ ID NO: 1 through SEQ ID NO: 32; and 4) polypeptides isolated from organisms other than Staphylococcus epidermidis (orthologues of Staphylococcus epidermidis polypeptides).

[0052] A biological equivalent or variant of such a Staphylococcus epidermidis polypeptide encompasses 1) a polypeptide isolated from Staphylococcus epidermidis; and 2) a polypeptide that contains substantially homology to a Staphylococcus epidermidis polypeptide.

[0053] Biological equivalents or variants of Staphylococcus epidermidis include both functional and non-functional Staphylococcus epidermidis polypeptides. Functional biological equivalents or variants are naturally occurring amino acid sequence variants of a Staphylococcus epidermidis polypeptide that maintains the ability to elicit an immunological or antigenic response in a subject. Functional variants will typically contain only conservative substitutions of one or more amino acids of one of SEQ ID NO: 1 through SEQ ID NO: 32, or substitution, deletion or insertion of non-critical residues in non-critical regions of the polypeptide (e.g., not in regions containing antigenic determinants or protective epitopes).

[0054] The present invention further provides non-Staphylococcus epidermidis orthologues of Staphylococcus epidermidis polypeptides. Orthologues of Staphylococcus epidermidis polypeptides are polypeptides that are isolated from non-Staphylococcus epidermidis organisms and possess antigenic capabilities of the Staphylococcus epidermidis polypeptide. Orthologues of a Staphylococcus epidermidis polypeptide can readily be identified as comprising an amino acid sequence that is substantially homologous to one of SEQ ID NO: 1 through SEQ ID NO: 32.

[0055] Modifications and changes can be made in the structure of a polypeptide of the present invention and still obtain a molecule having Staphylococcus epidermidis antigenicity. For example, certain amino acids can be substituted for other amino acids in a sequence without appreciable loss of antigenicity. Because it is the interactive capacity and nature of a polypeptide that defines that polypeptide's biological functional activity, certain amino acid sequence substitutions can be made in a polypeptide sequence (or, of course, its underlying DNA coding sequence) and nevertheless obtain a polypeptide with like properties.

[0056] In making such changes, the hydropathic index of amino acids can be considered. The importance of the hydropathic amino acid index in conferring interactive biologic function on a polypeptide is generally understood in the art (Kyte and Doolittle, J Mol Biol, 157: p. 105-132, 1982). It is known that certain amino acids can be substituted for other amino acids having a similar hydropathic index or score and still result in a polypeptide with similar biological activity. Each amino acid has been assigned a hydropathic index on the basis of its hydrophobicity and charge characteristics. Those indices are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine (-0.4); threonine (-0.7); serine (-0.8); tryptophan (-0.9); tyrosine (-1.3); proline (-1.6); histidine (-3.2); glutamate (-3.5); glutamine (-3.5); aspartate (-3.5); asparagine (-3.5); lysine (-3.9); and arginine (-4.5).

[0057] It is believed that the relative hydropathic character of the amino acid residue determines the secondary and tertiary structure of the resultant polypeptide, which in turn defines the interaction of the polypeptide with other molecules, such as enzymes, substrates, receptors, antibodies, antigens, and the like. It is known in the art that an amino acid can be substituted by another amino acid having a similar hydropathic index and still obtain a functionally equivalent polypeptide. In such changes, the substitution of amino acids whose hydropathic indices are within +/-2 is preferred, those that are within +/-1 are particularly preferred, and those within +/-0.5 are even more particularly preferred.

[0058] Substitution of like amino acids can also be made on the basis of hydrophilicity, particularly where the biological functional equivalent polypeptide or peptide thereby created is intended for use in immunological embodiments. U.S. Pat. No. 4,554,101, incorporated hereinafter by reference, states that the greatest local average hydrophilicity of a polypeptide, as governed by the hydrophilicity of its adjacent amino acids, correlates with its immunogenicity and antigenicity, i.e. with a biological property of the polypeptide.

[0059] As detailed in U.S. Pat. No. 4,554,101, the following hydrophilicity values have been assigned to amino acid residues: arginine (+3.0); lysine (+3.0); aspartate (+3.0.+-.1); glutamate (+3.0.+-.1); serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); proline (-0.5.+-.1); threonine (-0.4); alanine (-0.5); histidine (-0.5); cysteine (-1.0); methionine (-1.3); valine (-1.5); leucine (-1.8); isoleucine (-1.8); tyrosine (-2.3); phenylalanine (-2.5); tryptophan (-3.4). It is understood that an amino acid can be substituted for another having a similar hydrophilicity value and still obtain a biologically equivalent, and in particular, an immunologically equivalent polypeptide. In such changes, the substitution of amino acids whose hydrophilicity values are within .+-.2 is preferred, those that are within .+-.1 are particularly preferred, and those within .+-.0.5 are even more particularly preferred.

[0060] As outlined above, amino acid substitutions are generally therefore based on the relative similarity of the amino acid side-chain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, and the like. Exemplary substitutions which take various of the foregoing characteristics into consideration are well known to those of skill in the art and include: arginine and lysine; glutamate and aspartate; serine and threonine; glutamine and asparagine; and valine, leucine and isoleucine (See Table 2, below). The present invention thus contemplates immunogenic compositions comprising functional or biological equivalents of a Staphylococcus epidermidis polypeptide as set forth above.

TABLE-US-00002 TABLE 2 Amino Acid Substitutions Original Exemplary Residue Residue Substitution Ala Gly; Ser Arg Lys Asn Gln; His Asp Glu Cys Ser Gln Asn Glu Asp Gly Ala His Asn; Gln Ile Leu; Val Leu Ile; Val Lys Arg Met Leu; Tyr Ser Thr Thr Ser Trp Tyr Tyr Trp; Phe Val Ile; Leu

[0061] Biological or functional equivalents of a polypeptide can also be prepared using site-specific mutagenesis. Site-specific mutagenesis is a technique useful in the preparation of second generation polypeptides, or biologically functional equivalent polypeptides or peptides, derived from the sequences thereof, through specific mutagenesis of the encoding DNA. As noted above, such changes can be desirable where amino acid substitutions are desirable. The technique further provides a ready ability to prepare and test sequence variants, for example, incorporating one or more of the foregoing considerations, by introducing one or more nucleotide sequence changes into the DNA. Site-specific mutagenesis allows the production of mutants through the use of specific oligonucleotide sequences which encode the DNA sequence of the desired mutation, as well as a sufficient number of adjacent nucleotides, to provide a primer sequence of sufficient size and sequence complexity to form a stable duplex on both sides of the deletion junction being traversed. Typically, a primer of about 17 to 25 nucleotides in length is preferred, with about 5 to 10 residues on both sides of the junction of the sequence being altered.

[0062] In general, the technique of site-specific mutagenesis is well known in the art. As will be appreciated, the technique typically employs a phage vector which can exist in both a single stranded and double stranded form. Typically, site-directed mutagenesis in accordance herewith is performed by first obtaining a single-stranded vector which includes within its sequence a DNA sequence which encodes all or a portion of the Staphylococcus epidermidis polypeptide sequence selected. An oligonucleotide primer bearing the desired mutated sequence is prepared (e.g., synthetically). This primer is then annealed to the singled-stranded vector, and extended by the use of enzymes such as E. coli polymerase I Klenow fragment, in order to complete the synthesis of the mutation-bearing strand. Thus, a heteroduplex is formed wherein one strand encodes the original non-mutated sequence and the second strand bears the desired mutation. This heteroduplex vector is then used to transform appropriate cells such as E. coli cells and clones are selected which include recombinant vectors bearing the mutation. Commercially available kits come with all the reagents necessary, except the oligonucleotide primers.

[0063] A Staphylococcus epidermidis polypeptide or polypeptide antigen used in an immunogenic composition of the present invention is understood to be any Staphylococcus epidermidis polypeptide comprising substantial sequence similarity, structural similarity and/or functional similarity to a Staphylococcus epidermidis polypeptide comprising the amino acid sequence of one of SEQ ID NO: 1 through SEQ ID NO: 32. In addition, such a Staphylococcus epidermidis polypeptide or polypeptide antigen is not limited to a particular source. Thus, the invention provides for the general detection and isolation of the polypeptides from a variety of sources.

[0064] It is contemplated in the present invention, that a Staphylococcus epidermidis polypeptide may advantageously be cleaved into fragments for use in further structural or functional analysis, or in the generation of reagents such as Staphylococcus epidermidis-related polypeptides and Staphylococcus epidermidis-specific antibodies. This can be accomplished by treating purified or unpurified Staphylococcus epidermidis polypeptides with a peptidase such as endoproteinase glu-C (Boehringer, Indianapolis, Ind.). Treatment with CNBr is another method by which peptide fragments may be produced from natural Staphylococcus epidermidis polypeptides. Recombinant techniques also can be used to produce specific fragments of a Staphylococcus epidermidis polypeptide.

[0065] Fragments of the Staphylococcus epidermidis polypeptides are also included in the immunogenic compositions of the invention. A fragment is a polypeptide having an amino acid sequence that is entirely the same as part, but not all, of the amino acid sequence. The fragment can comprise, for example, at least 7 or more (e.g., 8, 10, 12, 14, 16, 18, 20, or more) contiguous amino acids of an amino acid sequence of one of SEQ ID NO: 1 through SEQ ID NO: 32. Fragments may be "freestanding" or comprised within a larger polypeptide of which they form a part or region, most preferably as a single, continuous region. In one embodiment, the fragments include at least one epitope of the mature polypeptide sequence.

[0066] "Fusion protein" refers to a protein or polypeptide encoded by two, often unrelated, fused genes or fragments thereof. For example, fusion proteins or polypeptides comprising various portions of constant region of immunoglobulin molecules together with another human protein or part thereof have been described. In many cases, employing an immunoglobulin Fc region as a part of a fusion protein or polypeptide is advantageous for use in therapy and diagnosis resulting in, for example, improved pharmacokinetic properties (see e.g., International Application EP-A 0232 2621). On the other hand, for some uses it is desirable to be able to delete the Fc part after the fusion protein or polypeptide has been expressed, detected and purified.

[0067] It is contemplated that Staphylococcus epidermidis polypeptides may be isolated from Staphylococcus epidermidis or prepared recombinantly as described herein.

C. Staphylococcus epidermidis Polynucleotide and Polypeptide Variants

[0068] "Variant" as the term is used hereinafter, is a polynucleotide or polypeptide that differs from a reference polynucleotide or polypeptide respectively, but retains essential properties. A typical variant of a polynucleotide differs in nucleotide sequence from another, reference polynucleotide. Changes in the nucleotide sequence of the variant may or may not alter the amino acid sequence of a polypeptide encoded by the reference polynucleotide. Nucleotide changes may result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference sequence, as discussed below. A typical variant of a polypeptide differs in amino acid sequence from another, reference polypeptide. Generally, differences are limited so that the sequences of the reference polypeptide and the variant are closely similar overall and, in many regions, identical. A variant and reference polypeptide may differ in amino acid sequence by one or more substitutions, additions, deletions in any combination. A substituted or inserted amino acid residue may or may not be one encoded by the genetic code. A variant of a polynucleotide or polypeptide may be a naturally occurring such as an allelic variant, or it may be a variant that is not known to occur naturally. Non-naturally occurring variants of polynucleotides and polypeptides may be made by mutagenesis techniques or by direct synthesis.

[0069] "Identity," as known in the art, is a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, as determined by comparing the sequences. In the art, "identity" also means the degree of sequence relatedness between polypeptide or polynucleotide sequences, as the case may be, as determined by the match between strings of such sequences. "Identity" and "similarity" can be readily calculated by known methods, including but not limited to those described in (Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part I, Griffin, A. M., and Griffin, H. G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991; and Carillo, H., and Lipman, D., SIAM J. Applied Math., 48: 1073 (1988). Methods to determine identity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are codified in publicly available computer programs. Computer program methods to determine identity and similarity between two sequences include, but are not limited to, the GCG program package (Devereux et al., Nucleic Acids Research 12(1):387, 1984), BLASTP, BLASTN, TBLASTN and FASTA (Altschul et al., J. Molec. Biol. 215:403-410, 1990). The BLASTX program is publicly available from NCBI and other sources (BLAST Manual, Altschul, S., et al., NCBI NLM NIH Bethesda, Md. 20894; Altschul et al., J. Molec. Biol. 215:403-410, 1990.). The well known Smith-Waterman algorithm may also be used to determine identity.

[0070] By way of example, a polynucleotide sequence described herein may be identical to the reference sequence of one of SEQ ID NO: 33 through SEQ ID NO: 64, that is be 100% identical, or it may include up to a certain integer number of nucleotide alterations as compared to the reference sequence. Such alterations are selected from the group consisting of at least one nucleotide deletion, substitution, including transition and transversion, or insertion, and wherein said alterations may occur at the 5' or 3' terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among the nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence. The number of nucleotide alterations is determined by multiplying the total number of nucleotides in one of SEQ ID NO: 33 through SEQ ID NO: 64 by the numerical percent of the respective percent identity (divided by 100) and subtracting that product from said total number of nucleotides in one of SEQ ID NO: 33 through SEQ ID NO: 64.

[0071] For example, an isolated Staphylococcus epidermidis polynucleotide comprising a polynucleotide sequence that has at least 70% identity to the nucleic acid sequence of one of SEQ ID NO: 33 through SEQ ID NO: 64; a degenerate variant thereof or a fragment thereof, wherein the polynucleotide sequence may include up to n.sub.n nucleic acid alterations over the entire polynucleotide region of the nucleic acid sequence of one of SEQ ID NO: 33 through SEQ ID NO: 64, wherein n.sub.n is the maximum number of alterations and is calculated by the formula:

n.sub.n.ltoreq.x.sub.n-(x.sub.ny),

in which x.sub.n is the total number of nucleic acids of one of SEQ ID NO: 33 through SEQ ID NO: 64 and y has a value of 0.70, wherein any non-integer product of x.sub.n and y is rounded down to the nearest integer prior to subtracting such product from x.sub.n. Of course, y may also have a value of 0.80 for 80%, 0.85 for 85%, 0.90 for 90% 0.95 for 95%, etc. Alterations of a polynucleotide sequence encoding one of the polypeptides of SEQ ID NO: 1 through SEQ ID NO: 32 may create nonsense, missense or frameshift mutations in this coding sequence and thereby alter the polypeptide encoded by the polynucleotide following such alterations.

[0072] Similarly, a polypeptide sequence described herein may be identical to the reference sequence of SEQ ID NO: 1 through SEQ ID NO: 32, that is be 100% identical, or it may include up to a certain integer number of amino acid alterations as compared to the reference sequence such that the % identity is less than 100%. Such alterations are selected from the group consisting of at least one amino acid deletion, substitution, including conservative and non-conservative substitution, or insertion, and wherein said alterations may occur at the amino- or carboxy-terminal positions of the reference polypeptide sequence or anywhere between those terminal positions, interspersed either individually among the amino acids in the reference sequence or in one or more contiguous groups within the reference sequence. The number of amino acid alterations for a given % identity is determined by multiplying the total number of amino acids in one of SEQ ID NO: 1 through SEQ ID NO: 32 by the numerical percent of the respective percent identity (divided by 100) and then subtracting that product from said total number of amino acids in one of SEQ ID NO: 1 through SEQ ID NO: 32, or:

n.sub.a.ltoreq.x.sub.a-(x.sub.a-y),

wherein n.sub.a is the number of amino acid alterations, x.sub.a is the total number of amino acids in one of SEQ ID NO: 1 through SEQ ID NO: 32, and y is, for instance 0.70 for 70%, 0.80 for 80%, 0.85 for 85% etc., and wherein any non-integer product of x.sub.a and y is rounded down to the nearest integer prior to subtracting it from x.sub.a. D. Vectors, Host Cells And Recombinant Staphylococcus epidermidis Polypeptides

[0073] In one embodiment, the present invention provides expression vectors comprising ORF polynucleotides that encode Staphylococcus epidermidis polypeptides for use in immunogenic compositions. The Staphylococcus epidermidis expression vectors comprise ORF polynucleotides that encode Staphylococcus epidermidis polypeptides comprising the amino acid residue sequence of one of SEQ ID NO: 1 through SEQ ID NO: 32. Alternatively, the expression vectors comprise a polynucleotide comprising the nucleotide base sequence of one of SEQ ID NO: 33 through SEQ ID NO: 64. In other embodiments, the expression vectors of the invention comprise a polynucleotide operatively linked to an enhancer-promoter. In still other embodiments, the expression vectors comprise a polynucleotide operatively linked to a prokaryotic promoter. Alternatively, the expression vectors comprise a polynucleotide operatively linked to an enhancer-promoter that is a eukaryotic promoter. The expression vectors further comprise a polyadenylation signal that is positioned 3' of the carboxy-terminal amino acid and within a transcriptional unit of the encoded polypeptide.

[0074] Expression of proteins in prokaryotes is most often carried out in E. coli with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Such fusion vectors typically serve three purposes: 1) to increase expression of recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase.

[0075] Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson, Gene 67:31-40, 1988), pMAL (New England Biolabs, Beverly; MA) and pRIT5 (Pharmacia, Piscataway, N.J.) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein.

[0076] In one embodiment, the coding sequence of the Staphylococcus epidermidis polynucleotide is cloned into a pGEX expression vector to create a vector encoding a fusion protein comprising, from the N-terminus to the C-terminus, GST-thrombin cleavage site-Staphylococcus epidermidis polypeptide. The fusion protein can be purified by affinity chromatography using glutathione-agarose resin. Recombinant Staphylococcus epidermidis polypeptide unfused to GST can be recovered by cleavage of the fusion protein with thrombin.

[0077] Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amann et al., Gene 69:301-315, 1988), pET IId (Studier et al. "Gene Expression Technology" Methods in Enzymology 185, 60-89, 1990), pBAD and pCRT7. Target gene expression from the pTrc vector relies on host RNA polymerase transcription from a hybrid trp-lac fusion promoter. Target gene expression from the pET IId vector relies on transcription from a T7 gn1 0-lac fusion promoter mediated by a coexpressed viral RNA polymerase J7 gnl. This viral polymerase is supplied by host strains BL21 (DE3) or HMS I 74(DE3) from a resident prophage harboring a T7 gnl gene under the transcriptional control of the lacUV 5 promoter.

[0078] One strategy to maximize recombinant protein expression in E. coli is to express the protein in a host bacterium with an impaired capacity to proteolytically cleave the recombinant protein. Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in E. coli. Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA mutagenesis or synthesis techniques.

[0079] In another embodiment, the Staphylococcus epidermidis polynucleotide expression vector is a yeast expression vector. Examples of vectors for expression in yeast S. cerevisiae include pYepSec I (Baldari, et al., Embo J, 6: p. 229-234, 1987), pMFa (Kurjan and Herskowitz, Cell, p. 933-943, 1982), pJRY88 (Schultz et al., Gene, 54: p. 113-123, 1987), and pYES2 (Invitrogen Corporation, San Diego, Calif.).

[0080] Alternatively, a Staphylococcus epidermidis polynucleotide can be expressed in insect cells using, for example, baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith et al., Mol Cell Biol, 3: p. 2156-2165, 1983) and the pVL series (Lucklow and Summers, Virology, 170: p. 31-39, 1989).

[0081] In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, Nature, 329: p. 840, 1987) and pMT2PC (Kaufman et al., EMBO J, 6: p. 187-195, 1987). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements.

[0082] As used hereinafter, a promoter is a region of a DNA molecule typically within about 100 nucleotide pairs in front of (upstream of) the point at which transcription begins (i.e., a transcription start site). That region typically contains several types of DNA sequence elements that are located in similar relative positions in different genes. As used hereinafter, the term "promoter" includes what is referred to in the art as an upstream promoter region, a promoter region or a promoter of a generalized eukaryotic RNA Polymerase II transcription unit.

[0083] Another type of discrete transcription regulatory sequence element is an enhancer. An enhancer provides specificity of time, location and expression level for a particular encoding region (e.g., gene). A major function of an enhancer is to increase the level of transcription of a coding sequence in a cell that contains one or more transcription factors that bind to that enhancer. Unlike a promoter, an enhancer can function when located at variable distances from transcription start sites so long as a promoter is present.

[0084] As used hereinafter, the phrase "enhancer-promoter" means a composite unit that contains both enhancer and promoter elements. An enhancer-promoter is operatively linked to a coding sequence that encodes at least one gene product. As used hereinafter, the phrase "operatively linked" means that an enhancer-promoter is connected to a coding sequence in such a way that the transcription of that coding sequence is controlled and regulated by that enhancer-promoter. Means for operatively linking an enhancer-promoter to a coding sequence are well known in the art. As is also well known in the art, the precise orientation and location relative to a coding sequence whose transcription is controlled, is dependent inter alia upon the specific nature of the enhancer-promoter. Thus, a TATA box minimal promoter is typically located from about 25 to about 30 base pairs upstream of a transcription initiation site and an upstream promoter element is typically located from about 100 to about 200 base pairs upstream of a transcription initiation site. In contrast, an enhancer can be located downstream from the initiation site and can be at a considerable distance from that site.

[0085] An enhancer-promoter used in a vector construct described herein can be any enhancer-promoter that drives expression in a cell to be transfected. By employing an enhancer-promoter with well-known properties, the level and pattern of gene product expression can be optimized.

[0086] For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells see chapters 16 and 17 of Sambrook et al., "Molecular Cloning: A Laboratory Manual" 2nd, ed, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989, incorporated hereinafter by reference.

[0087] In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al., Genes Dev, 1: p. 268-277, 1987), lymphoid-specific promoters (Calame and Eaton, Adv Immunol, 43: p. 235-275, 1988), in particular, promoters of T cell receptors (Winoto and Baltimore, EMBO J, 8: p. 729-733, 1989) and immunoglobulins (Banerji et al., Cell, 33: p. 729-740, 1983), (Queen and Baltimore, Cell, 33: p. 741-748, 1983), neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle, PNAS, 86: p. 5473-5477, 1989), pancreas-specific promoters (Edlund et al., Science, 230: p. 912-916, 1985), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Pat. No. 4,873,316 and International Application EP 264,166). Developmentally-regulated promoters are also encompassed, for example the murine hox promoters (Kessel and Gruss, Science, 249: p. 374-379, 1990) and the .alpha.-fetoprotein promoter (Campes and Tilghman, Genes Dev, 3: p. 537-546, 1989).

[0088] Also provided herein is a recombinant expression vector comprising a DNA molecule encoding a Staphylococcus epidermidis polypeptide cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively linked to a regulatory sequence in a manner which allows for expression (by transcription of the DNA molecule) of an RNA molecule which is antisense to Staphylococcus epidermidis mRNA. Regulatory sequences operatively linked to a nucleic acid cloned in the antisense orientation can be chosen which direct the continuous expression of the antisense RNA molecule in a variety of cell types. For instance viral promoters and/or enhancers, or regulatory sequences can be chosen which direct constitutive, tissue specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced.

[0089] The recombinant expression vectors described herein may be inserted into any suitable host cell. The terms "host cell" and "recombinant host cell" are used interchangeably hereinafter. It is understood that such terms refer not only to the particular subject cell, but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used hereinafter. A host cell can be any prokaryotic or eukaryotic cell. For example, a Staphylococcus epidermidis polypeptide can be expressed in bacterial cells such as E. coli, insect cells (such as Sf9, Sf21), yeast or mammalian cells (such as Chinese hamster ovary cells (CHO), VERO, chick embryo fibroblasts, BHK cells or COS cells). Other suitable host cells are known to those skilled in the art.

[0090] Vector DNA is introduced into prokaryotic or eukaryotic cells via conventional transformation, infection or transfection techniques. As used hereinafter, the terms "transformation" and "transfection" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, ultrasound or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. ("Molecular Cloning: A Laboratory Manual" 2nd, ed, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989), and other laboratory manuals.

[0091] A host cell described herein, such as a prokaryotic or eukaryotic host cell in culture, is used to produce (i.e., express) a Staphylococcus epidermidis polypeptide. Accordingly, also described herein are methods for producing a Staphylococcus epidermidis polypeptide using such host cells. In one embodiment, the method comprises culturing the host cell (into which a recombinant expression vector encoding a Staphylococcus epidermidis polypeptide has been introduced) in a suitable medium until the Staphylococcus epidermidis polypeptide is produced. In another embodiment, the method further comprises isolating the Staphylococcus epidermidis polypeptide from the medium or the host cell.

[0092] A coding sequence of an expression vector is operatively linked to a transcription termination region. RNA polymerase transcribes an encoding DNA sequence through a site where polyadenylation occurs. Typically, DNA sequences located a few hundred base pairs downstream of the polyadenylation site serve to terminate transcription. Those DNA sequences are referred to hereinafter as transcription-termination regions. Those regions are required for efficient polyadenylation of transcribed messenger RNA (mRNA). Transcription-termination regions are well known in the art. Examples of such transcription-termination regions are the polyadenylation signal of SV40 and the protamine gene.

[0093] An expression vector comprises a polynucleotide that encodes a Staphylococcus epidermidis polypeptide. Such a polypeptide is meant to include a sequence of nucleotide bases encoding a Staphylococcus epidermidis polypeptide sufficient in length to distinguish the segment from a polynucleotide segment encoding a non-Staphylococcus epidermidis polypeptide. Such a polypeptide can also encode biologically functional polypeptides or peptides which have variant amino acid sequences, such as with changes selected based on considerations such as the relative hydropathic score of the amino acids being exchanged. These variant sequences are those isolated from natural sources or induced in the sequences disclosed hereinafter using a mutagenic procedure such as site-directed mutagenesis.

[0094] In certain embodiments, the expression vectors described herein comprise polynucleotides that encode polypeptides comprising the amino acid residue sequence of one of SEQ ID NO: 1 through SEQ ID NO: 32. An expression vector can include a Staphylococcus epidermidis polypeptide coding region itself of any of the Staphylococcus epidermidis polypeptides noted above or it can contain coding regions bearing selected alterations or modifications in the basic coding region of such a Staphylococcus epidermidis polypeptide. Alternatively, such vectors or fragments can encode larger polypeptides or polypeptides which nevertheless include the basic coding region. In any event, it should be appreciated that due to codon redundancy as well as biological functional equivalence, this aspect is not limited to the particular DNA molecules corresponding to the polypeptide sequences noted above.

[0095] Exemplary vectors include the mammalian expression vectors of the pCMV family including pCMV6b and pCMV6c (Chiron Corp., Emeryville Calif.). In certain cases, and specifically in the case of these individual mammalian expression vectors, the resulting constructs can require co-transfection with a vector containing a selectable marker such as pSV2neo. Via co-transfection into a dihydrofolate reductase-deficient Chinese hamster ovary cell line, such as DG44, clones expressing Staphylococcus epidermidis polypeptides by virtue of DNA incorporated into such expression vectors can be detected.

[0096] A DNA molecule can be incorporated into a vector by a number of techniques that are well known in the art. For instance, the vector pUC18 has been demonstrated to be of particular value in cloning and expression of genes. Likewise, the related vectors M13mp18 and M13mp19 can be used in certain embodiments of the invention, in particular, in performing dideoxy sequencing.

[0097] An expression vector described herein is useful both as a means for preparing quantities of the Staphylococcus epidermidis polypeptide-encoding DNA itself, and as a means for preparing the encoded polypeptide and peptides. It is contemplated that where Staphylococcus epidermidis polypeptides are made by recombinant means, one can employ either prokaryotic or eukaryotic expression vectors as shuttle systems.

[0098] In another aspect, the recombinant host cells are prokaryotic host cells. Preferably, the recombinant host cells of the invention are bacterial cells of the DH5 a strain of Escherichia coli. In general, prokaryotes are preferred for the initial cloning of DNA sequences and constructing the vectors useful in the invention. For example, E. coli K12 strains can be particularly useful. Other microbial strains that can be used include E. coli B, and E. coli.sub.x 1976 (ATCC No. 31537). These examples are, of course, intended to be illustrative rather than limiting.

[0099] The aforementioned strains, as well as E. coli W3110 (ATCC No. 273325), E. coli BL21(DE3), E. coli Top10, bacilli such as Bacillus subtilis, or other enterobacteriaceae such as Salmonella typhimurium (or other attenuated Salmonella strains as described in U.S. Pat. No. 4,837,151) or Serratia marcesans, and various Pseudomonas species can be used.

[0100] In general, plasmid vectors containing replicon and control sequences, which are derived from species compatible with the host cell are used in connection with these hosts. The vector ordinarily carries a replication site, as well as marking sequences which are capable of providing phenotypic selection in transformed cells. For example, E. coli can be transformed using pBR322, a plasmid derived from an E. coli species (Bolivar, et al. 1977). pBR322 contains genes for ampicillin and tetracycline resistance and thus provides easy means for identifying transformed cells. The pBR plasmid, or other microbial plasmid or phage must also contain, or be modified to contain, promoters which can be used by the microbial organism for expression of its own polypeptides.

[0101] Those promoters most commonly used in recombinant DNA construction include the .beta.-lactamase (penicillinase) and lactose promoter systems (Chang, et al. 1978; Itakura., et al. 1977, Goeddel, et al. 1979; Goeddel, et al. 1980) and a tryptophan (TRP) promoter system (EP 0036776; Siebwenlist et al. 1980). While these are the most commonly used, other microbial promoters have been discovered and utilized, and details concerning their nucleotide sequences have been published, enabling a skilled worker to introduce functional promoters into plasmid vectors (Siebwenlist, et al. 1980).

[0102] In addition to prokaryotes, eukaryotic microbes such as yeast can also be used. Saccharomyces cerevisiae or common baker's yeast is the most commonly used among eukaryotic microorganisms, although a number of other strains are commonly available. For expression in Saccharomyces, the plasmid YRp7, for example, is commonly used (Stinchcomb, et al. 1979; Kingsman, et al. 1979; Tschemper, et al. 1980). This plasmid already contains the trpl gene which provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example ATCC No. 44076 or PEP4-1 (Jones, 1977). The presence of the trpl lesion as a characteristic of the yeast host cell genome then provides an effective environment for detecting transformation by growth in the absence of tryptophan.

[0103] Suitable promoter sequences in yeast vectors include the promoters for 3-phosphoglycerate kinase (Hitzeman., et al. 1980) or other glycolytic enzymes (Hess, et al. 1968; Holland, et al. 1978) such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase. In constructing suitable expression plasmids, the termination sequences associated with these genes are also introduced into the expression vector downstream from the sequences to be expressed to provide polyadenylation of the mRNA and termination. Other promoters, which have the additional advantage of transcription controlled by growth conditions are the promoter region for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, and the aforementioned glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Any plasmid vector containing a yeast-compatible promoter, origin or replication and termination sequences are suitable.

[0104] In addition to microorganisms, cultures of cells derived from multicellular organisms can also be used as hosts. In principle, any such cell culture is workable, whether from vertebrate or invertebrate culture. However, interest has been greatest in vertebrate cells, and propagation of vertebrate cells in culture (tissue culture) has become a routine procedure in recent years. Examples of such useful host cell lines are AtT-20, VERO, HeLa, NSO, PER C6, Chinese hamster ovary (CHO) cell lines, and W138, BHK, COSM6, COS-7, 293 and MDCK cell lines. Expression vectors for such cells ordinarily include (if necessary) an origin of replication, a promoter located upstream of the gene to be expressed, along with any necessary ribosome binding sites, RNA splice sites, polyadenylation site, and transcriptional terminator sequences.

[0105] Where expression of recombinant Staphylococcus epidermidis polypeptides is desired and a eukaryotic host is contemplated, it is most desirable to employ a vector such as a plasmid that incorporates a eukaryotic origin of replication. Additionally, for the purposes of expression in eukaryotic systems, one desires to position the Staphylococcus epidermidis encoding sequence adjacent to and under the control of an effective eukaryotic promoter such as promoters used in combination with Chinese hamster ovary cells. To bring a coding sequence under control of a promoter, whether it is eukaryotic or prokaryotic, the 5' end of the translation initiation region of the proper translational reading frame of the polypeptide must be positioned between about 1 and about 50 nucleotides 3' of or downstream with respect to the promoter chosen. Furthermore, where eukaryotic expression is anticipated, one would typically desire to incorporate into the transcriptional unit a polynucleotide which encodes the Staphylococcus epidermidis polypeptide.

[0106] Means of transforming or transfecting cells with exogenous polynucleotide such as DNA molecules are well known in the art and include techniques such as calcium-phosphate- or DEAE-dextran-mediated transfection, protoplast fusion, electroporation, liposome mediated transfection, direct microinjection and adenovirus infection (see e.g., Sambrook, Fritsch and Maniatis, 1989).

[0107] The most widely used method is transfection mediated by either calcium phosphate or DEAE-dextran. Although the mechanism remains obscure, it is believed that the transfected DNA enters the cytoplasm of the cell by endocytosis and is transported to the nucleus. Depending on the cell type, up to 90% of a population of cultured cells can be transfected at any one time. Because of its high efficiency, transfection mediated by calcium phosphate or DEAE-dextran is the method of choice for experiments that require transient expression of the foreign DNA in large numbers of cells. Calcium phosphate-mediated transfection is also used to establish cell lines that integrate copies of the foreign DNA, which are usually arranged in head-to-tail tandem arrays into the host cell genome.

[0108] In the protoplast fusion method, protoplasts derived from bacteria carrying high numbers of copies of a plasmid of interest are mixed directly with cultured mammalian cells. After fusion of the cell membranes (usually with polyethylene glycol), the contents of the bacteria are delivered into the cytoplasm of the mammalian cells and the plasmid DNA is transported to the nucleus. Protoplast fusion is not as efficient as transfection for many of the cell lines that are commonly used for transient expression assays, but it is useful for cell lines in which endocytosis of DNA occurs inefficiently. Protoplast fusion frequently yields multiple copies of the plasmid DNA tandemly integrated into the host chromosome.

[0109] The application of brief, high-voltage electric pulses to a variety of mammalian and plant cells leads to the formation of nanometer-sized pores in the plasma membrane. DNA is taken directly into the cell cytoplasm either through these pores or as a consequence of the redistribution of membrane components that accompanies closure of the pores. Electroporation can be extremely efficient and can be used both for transient expression of cloned genes and for establishment of cell lines that carry integrated copies of the gene of interest. Electroporation, in contrast to calcium phosphate-mediated transfection and protoplast fusion, frequently gives rise to cell lines that carry one, or at most a few, integrated copies of the foreign DNA.

[0110] Liposome transfection involves encapsulation of DNA and RNA within liposomes, followed by fusion of the liposomes with the cell membrane. The mechanism of how DNA is delivered into the cell is unclear but transfection efficiencies can be as high as 90%.

[0111] Direct microinjection of a DNA molecule into nuclei has the advantage of not exposing DNA to cellular compartments such as low-pH endosomes. Microinjection is therefore used primarily as a method to establish lines of cells that carry integrated copies of the DNA of interest.

[0112] The use of adenovirus as a vector for cell transfection is well known in the art. Adenovirus vector-mediated cell transfection has been reported for various cells (Stratford-Perricaudet, et al. 1992).

[0113] A transfected cell can be prokaryotic or eukaryotic. Preferably, the host cells of the invention are prokaryotic host cells. Where it is of interest to produce a Staphylococcus epidermidis polypeptide, cultured prokaryotic host cells are of particular interest.

[0114] Also contemplated herein is a process or method of preparing Staphylococcus epidermidis polypeptides comprising transforming, transfecting or infecting cells with a polynucleotide that encodes a Staphylococcus epidermidis polypeptide to produce transformed host cells; and maintaining the transformed host cells under biological conditions sufficient for expression of the polypeptide. In a particular embodiment, the transformed host cells are prokaryotic cells. Alternatively, the host cells are eukaryotic cells. More particularly, the prokaryotic cells are bacterial cells of the DH5-.alpha. strain of Escherichia coli. Alternatively, the polynucleotide transfected into the transformed cells comprise the nucleic acid sequence of one of SEQ ID NO: 33 through SEQ ID NO: 64. Additionally, transfection is accomplished using an expression vector disclosed above. A host cell used in the process is capable of expressing a functional, recombinant Staphylococcus epidermidis polypeptide.

[0115] Following transfection, the cell is maintained under culture conditions for a period of time sufficient for expression of a Staphylococcus epidermidis polypeptide. Culture conditions are well known in the art and include ionic composition and concentration, temperature, pH and the like. Typically, transfected cells are maintained under culture conditions in a culture medium. Suitable media for various cell types are well known in the art. In certain embodiments, culture temperature is from about 20.degree. C. to about 50.degree. C., more preferably from about 30.degree. C. to about 40.degree. C. and, even more preferably about 37.degree. C.

[0116] The pH is preferably from about a value of 6.0 to a value of about 8.0, more preferably from about a value of about 6.8 to a value of about 7.8 and, most preferably about 7.4. Osmolality is preferably from about 200 milliosmols per liter (mosm/L) to about 400 mosm/I and, more preferably from about 290 mosm/L to about 310 mosm/L. Other biological conditions needed for transfection and expression of an encoded protein are well known in the art.

[0117] Transfected cells are maintained for a period of time sufficient for expression of a Staphylococcus epidermidis polypeptide. A suitable time depends inter alia upon the cell type used and is readily determinable by a skilled artisan. Typically, maintenance time is from about 2 to about 14 days.

[0118] Recombinant Staphylococcus epidermidis polypeptide is recovered or collected either from the transfected cells or the medium in which those cells are cultured. Recovery comprises isolating and purifying the Staphylococcus epidermidis polypeptide. Isolation and purification techniques for polypeptides are well known in the art and include such procedures as precipitation, filtration, chromatography, electrophoresis and the like.

E. Immunogenic Compositions

[0119] The present invention provides immunogenic compositions comprising one or more Staphylococcus epidermidis polypeptides selected as described in the Examples below, and physiologically acceptable carriers. In certain embodiments, the immunogenic compositions comprise one or more Staphylococcus epidermidis polypeptides comprising the amino acid residue sequence of one or more of SEQ ID NO: 1 through SEQ ID NO: 32. In other embodiments, the immunogenic compositions of the invention comprise polynucleotides that encode Staphylococcus epidermidis polypeptides, and physiologically acceptable carriers. For example, the immunogenic compositions of the present invention comprise Staphylococcus epidermidis polypeptides comprising the amino acid sequence of one or more of SEQ ID NO: 1 through SEQ ID NO: 32. Alternatively, the immunogenic compositions comprise polynucleotides comprising the nucleotide sequence of one or more of SEQ ID NO: 33 through SEQ ID NO: 64.

[0120] Various tests are used to assess the in vitro immunogenicity of the polypeptides of the invention. For example, an in vitro opsonic assay is conducted by incubating together a mixture of Staphylococcus epidermidis cells, heat inactivated human serum containing specific antibodies to the polypeptide in question, and an exogenous complement source. Opsonophagocytosis proceeds during incubation of freshly isolated human polymorphonuclear cells (PMN's) and the antibody/complement/Staphylococcus cell mixture. Bacterial cells that are coated with antibody and complement are killed upon opsonophagocytosis. Colony forming units (cfu) of surviving bacteria that escape from opsonophagocytosis are determined by plating the assay mixture. Titers are reported as the reciprocal of the highest dilution that gives .gtoreq.50% bacterial killing, as determined by comparison to assay controls. Specimens that demonstrate less than 50% killing at the lowest serum dilution tested (1:8), are reported as having an OPA titer of 4. The highest dilution tested is 1:2560. Samples with >50% killing at the highest dilution are repeated, beginning with a higher initial dilution. The method described above is a modification of Gray's method (Gray, Conjugate Vaccines Supplement, p. 694-697, 1990).

[0121] A test serum control, which contains test serum plus bacterial cells and heat inactivated complement, is included for each individual serum. This control is used to assess whether the presence of antibiotics or other serum components are capable of killing the bacterial strain directly (i.e. in the absence of complement or PMN's). A human serum with known opsonic titer is used as a positive human serum control. The opsonic antibody titer for each unknown serum is calculated as the reciprocal of the initial dilution of serum giving 50% cfu reduction compared to the control without serum.

[0122] A whole cell ELISA assay is also used to assess in vitro immunogenicity and surface exposure of the polypeptide antigen, wherein the bacterial strain of interest (Staphylococcus epidermidis) is coated onto a plate, such as a 96 well plate, and test sera from an immunized animal is reacted with the bacterial cells. If any antibody, specific for the test polypeptide antigen, is reactive with a surface exposed epitope of the polypeptide antigen, it can be detected by standard methods known to one skilled in the art.

[0123] Any polypeptide demonstrating the desired in vitro activity is then tested in an in vivo animal challenge model. In certain embodiments, immunogenic compositions are used in the immunization of an animal (e.g., a mouse) by methods and routes of immunization known to those of skill in the art (e.g., intranasal, parenteral, oral, rectal, vaginal, transdermal, intraperitoneal, intravenous, subcutaneous, etc.). Following immunization of the animal with a particular Staphylococcus epidermidis immunogenic composition, the animal is challenged with Staphylococcus epidermidis and assayed for resistance to Staphylococcus epidermidis infection.

[0124] The Staphylococcus epidermidis polynucleotides and polypeptides are incorporated into immunogenic compositions suitable for administration to a subject, e.g., a human. Such compositions typically comprise the nucleic acid molecule or protein, together with a pharmaceutically acceptable carrier. As used hereinafter the language "pharmaceutically acceptable carrier" is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, such media can be used in the compositions of the invention. Supplementary active compounds can also be incorporated into the compositions.

[0125] An immunogenic composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral (e.g., intravenous, intradermal, subcutaneous, intraperitoneal), transmucosal (e.g., oral, rectal, intranasal, vaginal, respiratory) and transdermal (topical). Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.

[0126] Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL.TM. (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyetheylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, and the like. In many cases, isotonic agents are included, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.

[0127] Sterile injectable solutions can be prepared by incorporating the active compound (e.g., a Staphylococcus epidermidis polypeptide or anti-Staphylococcus epidermidis antibody) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

[0128] Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.

[0129] For administration by inhalation, the compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer. Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.

[0130] The compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.

[0131] In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems.

[0132] Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811, which is incorporated hereinafter by reference.

[0133] It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used hereinafter refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.

[0134] Combination immunogenic compositions are provided by including two or more of the polypeptides of the invention, as well as by combining one or more of the polypeptides of the invention with one or more known non-Staphylococcus epidermidis polypeptides such as Staphylococcus aureus polypeptides.

[0135] The following twelve Staphylococcus epidermidis polypeptide sequences SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 23, SEQ ID NO: 26, SEQ ID NO: 27, and SEQ ID NO: 30 have polypeptide sequences with at least 90% identity to the homologs from Staphylococcus aureus. Therefore, these twelve polypeptides may also be used in immunogenic compositions against Staphylococcus aureus. In addition, the following twelve Staphylococcus epidermidis polynucleotide sequences encoding the polypeptides with at least 90% identity to the Staphylococcus aureus homologs may also be used in immunogenic compositions: SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 43, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 50, SEQ ID NO: 51, SEQ ID NO: 52, SEQ ID NO: 55, SEQ ID NO: 58, SEQ ID NO: 59, and SEQ ID NO: 62, or a degenerate variant thereof, or a fragment thereof.

[0136] In other embodiments, combination immunogenic compositions are provided by combining one or more of the polypeptides of the invention with one or more known S. epidermidis polysaccharides or polysaccharide-protein conjugates. See, for example, the Staphylococcus epidermidis and Staphylococcus aureus capsular polysaccharide adhesin, PNSG, poly-N-succinyl beta-1-6 N-acetyl glucosamine (also known as PIA, PS/A, PNAG). See Mckenney, D., et al., Infect. Immun. 66:4711 (1998) and Mckenney, D., et al., Science 284:1523 (1998), the disclosures of which are hereby incorporated by reference in their entirety.

[0137] In other embodiments, combination immunogenic compositions are provided by combining one or more polypeptides of the invention with one or more known S. aureus polysaccharides or S. aureus polysaccharide-protein conjugates. For example, of the 12 known capsular serotypes of S. aureus, serotype 5 (CP5) and serotype 8 (CP8) account for approximately 85-90% of all clinical isolates [ ]. Most methicillin-resistant S. aureus isolates express CP5]. Antibodies to CP5 and CP8 induce type-specific opsonophagocytic killing by human polymorphonuclear neutrophils in vitro and confer protection in animals [Karakawa, W. W., Sutton, A., et al., Infect Immun 56(5):1090-1095 (1988); Fattom, A. I., Sarwar, J., et al., Infection & Immunity 64(5):1659-1665 (1996)]. Several laboratories have synthesized immunogenic conjugates consisting of CP5 and CP8 covalently linked to protein. These conjugates are highly immunogenic in mice and humans and induce antibodies that opsonize microencapsulated S. aureus for phagocytosis [Fattom, A., Schneerson, R, et al., Infect Immun 61(3):1023-1032 (1993); Gilbert, F. B., Poutrel, B., et al., Vaccine 12(4):369-374 (1994); Reynaud-Rondier, L., Voiland, A., et al., FEMS Microbiol Immunol 3(4):193-199 (1991)]. Monovalent immunogenic compositions containing CP5 conjugated to Pseudomonas aeruginosa recombinant exotoxin A are immunogenic and well tolerated in healthy adults and in patients with end-stage renal disease [Welch, P. G., Fattom, A., Moore, J. Jr., et al., J. Am. Soc. Nephrol. 7:247-253 [Abstract] (1996)]. In a double-blind trial involving patients with end-stage renal disease who were receiving hemodialysis, a bivalent conjugate vaccine composed of CP5 and CP8 covalently bound to Pseudomonas aeruginosa recombinant exotoxin A conferred partial immunity against S. aureus bacteremia for approximately 40 weeks, after which protection decreased as antibody levels decreased [Shinefield, H., Black, S., et al., N Engl J Med 346(7):491-496 (2002)]. The outcome of this trial indicates a need for an improved immunogenic composition that could contribute to broader and more complete protection.

[0138] As described above, in certain embodiments, combination immunogenic compositions are provided by combining one or more polypeptides of the invention with one or more known S. aureus polysaccharide-protein conjugates. The "protein component" of the carbohydrate-protein conjugates is known as a carrier protein. The term "carrier proteins", as a group are preferably proteins that are non-toxic and non-reactogenic and obtainable in sufficient amount and purity. Carrier proteins should be amenable to standard conjugation procedures. In a particular embodiment of the present invention, CRM.sub.197 is used as the carrier protein. CRM.sub.197 (Wyeth, Sanford, N.C.) is a non-toxic variant (i.e., toxoid) of diphtheria toxin isolated from cultures of Corynebacterium diphtheria strain C7 03197) grown in casamino acids and yeast extract-based medium. CRM.sub.197 is purified through ultra-filtration, ammonium sulfate precipitation, and ion-exchange chromatography. Other diphtheria toxoids are also suitable for use as carrier proteins. The immunogenic composition may further comprise an adjuvant, such as an aluminum-based adjuvant, such as aluminum phosphate, aluminum sulfate and aluminum hydroxide.

[0139] Other suitable carrier proteins include inactivated bacterial toxins such as tetanus toxoid, pertussis toxoid, cholera toxoid (e.g., as described in International Patent Application WO2004/083251 [38]), E. coli LT, E. coli ST, and exotoxin A from Pseudomonas aeruginosa. Bacterial outer membrane proteins such as outer membrane complex c (OMPC), porins, transferrin binding proteins, pneumolysis, pneumococcal surface protein A (PspA), pneumococcal adhesin protein (PsaA), or Haemophilus influenzae protein D, can also be used. Other proteins, such as ovalbumin, keyhole limpet hemocyanin (KLH), bovine serum albumin (BSA) or purified protein derivative of tuberculin (PPD) can also be used as carrier proteins.

[0140] Immunogenic compositions comprising polynucleotides are delivered to the recipient by a variety of vectors and expression systems. Such systems include, among others, chromosomal, episomal and virus-derived systems, e.g., vectors derived from bacterial plasmids, attenuated bacteria such as Salmonella (U.S. Pat. No. 4,837,151), from bacteriophage, from transposons, from yeast episomes, from insertion elements, from yeast chromosomal elements, from viruses such as vaccinia and other poxviruses, adenovirus, baculoviruses, papova viruses, such as SV40, fowl pox viruses, pseudorabies viruses and retroviruses, alphaviruses such as Venezuelan equine encephalitis virus (U.S. Pat. No. 5,643,576), sindbis virus and semiliki forest virus, nonsegmented negative-stranded RNA viruses such as vesicular stomatitis virus (U.S. Pat. No. 6,168,943), and vectors derived from combinations thereof, such as those derived from plasmid and bacteriophage genetic elements, such as cosmids and phagemids. The expression systems should include control regions that regulate as well as engender expression, such as promoters and other regulatory elements (such as a polyadenylation signal). Generally, any system or vector suitable to maintain, propagate or express polynucleotides to produce a polypeptide in a host may be used. The appropriate nucleotide sequence may be inserted into an expression system by any of a variety of well-known and routine techniques, such as, for example, those set forth in Sambrook et al., "Molecular Cloning: A Laboratory Manual" 2nd, ed, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.

[0141] A pharmaceutically acceptable vehicle is understood to designate a compound or a combination of compounds entering into a pharmaceutical or immunogenic composition which does not cause side effects and which makes it possible, for example, to facilitate the administration of the active compound, to increase its life and/or its efficacy in the body, to increase its solubility in solution or alternatively to enhance its preservation. These pharmaceutically acceptable vehicles are well known and will be adapted by persons skilled in the art according to the nature and the mode of administration of the active compound chosen.

[0142] As defined hereinafter, an "adjuvant" is a substance that serves to enhance the immunogenicity of an "antigen" or the immunogenic compositions comprising one or more polypeptide antigens having an amino acid sequence chosen from one of SEQ ID NO: 1 through SEQ ID NO: 32. Thus, adjuvants are often given to boost or modulate the immune response and are well known to the skilled artisan. Examples of adjuvants contemplated in the present invention include, but are not limited to, aluminum salts (alum) such as aluminum phosphate and aluminum hydroxide, Mycobacterium tuberculosis, bacterial lipopolysaccharides, aminoalkyl glucosamine phosphate compounds (AGP), or derivatives or analogs thereof, which are available from Corixa (Hamilton, Mont.), and which are described in U.S. Pat. No. 6,113,918; one such AGP is 2-[(R)-3-Tetradecanoyloxytetradecanoylamino]ethyl 2-Deoxy-4-O-phosphono-3-O-[(R)-3-tetradecanoyoxytetradecanoyl]-2-[(R)-3-t- etradecanoyoxytetradecanoylamino]-b-D-glucopyranoside, which is also known as 529 (formerly known as RC529), which is formulated as an aqueous form or as a stable emulsion, MPL.TM. (3-O-deacylated monophosphoryl lipid A) (Corixa) described in U.S. Pat. No. 4,912,094, synthetic polynucleotides such as oligonucleotides containing a CpG motif (U.S. Pat. No. 6,207,646), polypeptides, saponins such as Quil A or STIMULON.TM. QS-21 (Antigenics, Framingham, Mass.), described in U.S. Pat. No. 5,057,540, a pertussis toxin (PT), or an E. coli heat-labile toxin (LT), particularly LT-K63, LT-R72, CT-5109, PT-K9/G129; see, e.g., International Patent Publication Nos. WO 93/13302 and WO 92/19265, cholera toxin (either in a wild-type or mutant form, e.g., wherein the glutamic acid at amino acid position 29 is replaced by another amino acid, preferably a histidine, in accordance with published International Patent Application number WO 00/18434). Similar cholera toxin mutants are described in published International Patent Application number WO 02/098368 (wherein the isoleucine at amino acid position 16 is replaced by another amino acid, either alone or in combination with the replacement of the serine at amino acid position 68 by another amino acid; and/or wherein the valine at amino acid position 72 is replaced by another amino acid). Other cholera toxin mutants are described in published International Patent Application number WO 02/098369 (wherein the arginine at amino acid position 25 is replaced by another amino acid; and/or an amino acid is inserted at amino acid position 49; and/or two amino acids are inserted at amino acid positions 35 and 36).

[0143] Various cytokines and lymphokines are suitable for use as adjuvants. One such adjuvant is granulocyte-macrophage colony stimulating factor (GM-CSF), which has a nucleotide sequence as described in U.S. Pat. No. 5,078,996. A plasmid containing GM-CSF cDNA has been transformed into E. coli and has been deposited with the American Type Culture Collection (ATCC), 1081 University Boulevard, Manassas, Va. 20110-2209, under Accession Number 39900. The cytokine Interleukin-12 (IL-12) is another adjuvant which is described in U.S. Pat. No. 5,723,127. Other cytokines or lymphokines have been shown to have immune modulating activity, including, but not limited to, the interleukins 1-alpha, 1-beta, 2, 4, 5, 6, 7, 8, 10, 13, 14, 15, 16, 17 and 18, the interferons-alpha, beta and gamma, granulocyte colony stimulating factor, and the tumor necrosis factors alpha and beta, and are suitable for use as adjuvants.

[0144] A composition of the present invention is typically administered parenterally in unit dosage formulations containing standard, well-known nontoxic physiologically acceptable carriers, adjuvants, and vehicles as desired.

[0145] Injectable preparations, for example sterile injectable aqueous or oleaginous suspensions, are formulated according to the known art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation can also be a sterile injectable solution or suspension in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol.

[0146] Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil can be employed including synthetic mono- or di-glycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.

[0147] Preferred carriers include neutral saline solutions buffered with phosphate, lactate, Tris, and the like. Of course, when administering viral vectors, one purifies the vector sufficiently to render it essentially free of undesirable contaminants, such as defective interfering adenovirus particles or endotoxins and other pyrogens such that it does not cause any untoward reactions in the individual receiving the vector construct. A preferred means of purifying the vector involves the use of buoyant density gradients, such as cesium chloride gradient centrifugation.

[0148] A carrier can also be a liposome. Means for using liposomes as delivery vehicles are well known in the art (see, e.g. Gabizon et al., 1990; Ferruti et al., 1986; and Ranade, 1989).

[0149] The immunogenic compositions of this invention also comprise a polynucleotide sequence of this invention operatively associated with a regulatory sequence that controls gene expression. The polynucleotide sequence of interest is engineered into an expression vector, such as a plasmid, under the control of regulatory elements which will promote expression of the DNA, that is, promoter and/or enhancer elements. In a preferred embodiment, the human cytomegalovirus immediate-early promoter/enhancer is used (U.S. Pat. No. 5,168,062). The promoter may be cell-specific and permit substantial transcription of the polynucleotide only in predetermined cells.

[0150] The polynucleotides of the invention are introduced directly into the host either as "naked" DNA (U.S. Pat. No. 5,580,859) or formulated in compositions with facilitating agents, such as bupivicaine and other local anesthetics (U.S. Pat. No. 5,593,972) and cationic polyamines (U.S. Pat. No. 6,127,170), which are hereby incorporated by reference in their entirety.

[0151] In this polynucleotide immunization procedure, the polypeptides of the invention are expressed on a transient basis in vivo; no genetic material is inserted or integrated into the chromosomes of the host. This procedure is to be distinguished from gene therapy, where the goal is to insert or integrate the genetic material of interest into the chromosome. An assay is used to confirm that the polynucleotides administered by immunization do not give rise to a transformed phenotype in the host (U.S. Pat. No. 6,168,918).

H. Uses and Methods of the Invention

[0152] The Staphylococcus epidermidis polynucleotides, polypeptides and polypeptide homologues described herein are used in methods of immunization. The isolated polynucleotides are used to express Staphylococcus epidermidis polypeptides (e.g., via a recombinant expression vector in a host cell or in polynucleotide immunization applications).

[0153] As described in detail in the Examples herein, Staphylococcus epidermidis was grown in the presence of serum to stimulate the expression of proteins and carbohydrates at the bacterial cell wall that may be significant to systemic bacterial infection. As a result, thirty two polypeptides and the corresponding polynucleotides were identified as expressed by Staphylococcus epidermidis when grown in 70% serum. In addition, twenty-four of these proteins were found to be reactive with immune sera from rabbits infected with Staphylococcus epidermidis.

[0154] The genes corresponding to the proteins expressed when Staphylococcus epidermidis was grown in serum were cloned and used to express the proteins recombinantly. The recombinant proteins were used to immunize mice and twenty five of twenty six proteins induced antibodies that reacted with whole cell lysates of Staphylococcus epidermidis. In addition, eighteen of these sera also reacted with whole cell lysates of Staphylococcus aureus. Finally, when immunized mice were challenged with Staphylococcus epidermidis it was found that eleven of the proteins had induced antibodies that reduced the amount of detectable bacteria found in the spleen after challenge.

[0155] The invention further provides immunogenic compositions comprising one or more polypeptides just described, which have an amino acid sequence chosen from one SEQ ID NO: 1 through SEQ ID NO: 32, a biological equivalent thereof or a fragment thereof. The immunogenic composition may further comprise a pharmaceutically acceptable carrier. In certain embodiments, the immunogenic composition will comprise one or more adjuvants.

[0156] In another embodiment, the invention provides immunogenic compositions comprising a polynucleotide having a nucleotide sequence chosen from one of SEQ ID NO: 33 through SEQ ID NO: 64, wherein the polynucleotide is comprised in a recombinant expression vector. Preferably the vector is plasmid DNA. The polynucleotide may further comprise heterologous nucleotides, e.g., the polynucleotide is operatively linked to one or more gene expression regulatory elements, and further comprise one or more adjuvants. In a preferred embodiment, the immunogenic polynucleotide composition directs the expression of one or more neutralizing epitopes of Staphylococcus epidermidis.

[0157] Provided also are methods for immunizing a host against Staphylococcus epidermidis infection. In a preferred embodiment, the host is human. Thus, a host or subject is administered an immunizing amount of an immunogenic composition comprising a polypeptide having an amino acid sequence chosen from one of SEQ ID NO: 1 through SEQ ID NO: 32, a biological equivalent thereof or a fragment thereof and a pharmaceutically acceptable carrier. An immunizing amount of an immunogenic composition is determined by performing a dose response study in which subjects are immunized with gradually increasing amounts of the immunogenic composition and the immune response analyzed to determine the optimal dosage. Starting points for the study are inferred from immunization data in animal models. The dosage amount can vary depending upon specific conditions of the individual. The amount is determined in routine trials by means known to those skilled in the art.

[0158] An immunologically effective amount of the immunogenic composition in an appropriate number of doses is administered to the subject to elicit an immune response. Immunologically effective amount, as used herein, means the administration of that amount to a mammalian host (preferably human), either in a single dose or as part of a series of doses, sufficient to at least cause the immune system of the individual treated to generate a response that reduces the clinical impact of the bacterial infection. Ideally, the treated individual will not exhibit the more serious clinical manifestations of the Staphloccocal epidermidis or Staphlocccal aureus infection. The dosage amount can vary depending upon specific conditions of the individual, such as age and weight. This amount can be determined in routine trials by means known to those skilled in the art.

[0159] All patents and publications cited herein are hereby incorporated by reference.

EXAMPLES

[0160] The following examples were carried out using standard techniques, which are well known and routine to those of skill in the art, except where otherwise described in detail. All chemicals were obtained from Sigma (Sigma Chemical Co., St. Louis, Mo.) unless stated otherwise. The following examples are presented for illustrative purpose, and should not be construed in any way limiting the scope of this invention.

Example 1

Bacterial Growth in 70% Serum

[0161] The following examples were performed using the clinical isolate Staphylcoccus epidermidis 0-47. The unannotated genomic sequence was available for this isolate from Incyte Corporation of Palo Alto, Calif. See Heilmann, C., et al., Infect Immun, 64(1): p. 277-82 (1996). To stimulate the expression of proteins, which may be clinically relevant to pathogenicity, cultures of bacteria were grown overnight in either 100% tryptic soy broth (TSB) or 70: 30 rabbit serum:TSB with shaking (200 rpm) at 37.degree. C. The rabbit serum was obtained from Life Technologies, Rockville, Md. Bacteria were diluted from an overnight culture to an OD.sub.600 .about.0.1 and grown for 4 h until mid log phase. At mid log phase, the cells were harvested by centrifugation and further processed as described in the following examples.

Example 2

Preparation of Cell Wall Fractions for 2-D Gel Electrophoresis

[0162] The cell walls of Staphylcoccus epidermidis 0-47 grown as described in Example 1 were isolated and then prepared for two-dimensional gel electrophoresis. Bacterial pellets were resuspended to an OD.sub.600.about.20 and washed twice with rocking for 15 minutes at 4.degree. C. using Tris buffered saline (TBS, 20 mM Tris, pH 8.0, 150 mM NaCl). Serum proteins bound to the surface of the bacteria were removed by washing for 15 minutes at 4.degree. C. with 20 mM Tris, pH 8.0 containing 1M NaCl. Bacteria grown in TSB were treated in the same manner as the bacteria grown in serum. The bacteria were again pelleted by centrifugation. To create protoplasts, the bacteria were then resuspended to OD.sub.600.about.40 in TBS containing 30% sucrose, 100 .mu.g/ml lysostaphin, 10 .mu.g/ml DNase, 1 .mu.g/ml Pefablock (Boehringer Mannheim, Indianapolis, Ind.), 10 .mu.g/ml lysozyme and 100 units/ml mutanolysin and incubated at 37.degree. C. for 1 hour. The resulting protoplasts were pelleted by centrifugation at 5000 rpm for 10 minutes and the supernatant containing the cell wall material was decanted. The decanted supernatants containing the cell wall fractions were supplemented with Complete Mini protease inhibitor tablets (Roche Diagnostics, Indianapolis, Ind.) and dialyzed overnight against water at 4.degree. C. using a 10,000 kD MWCO dialysis membrane (Pierce Biotechnology, Inc., Rockford, Ill.). After dialysis, the cell wall fractions were frozen at -20.degree. C.

[0163] Following isolation, the cell wall fraction samples were prepared for 2-D gel electrophoresis as follows: the frozen cell wall extracts were thawed and precipitated with 70% acetone on ice for 4 hours. The protein precipitate was pelleted, dried in a SpeedVac (Thermo Savant, Holbrook, N.Y.) and solubilized with ReadyPrep (BioRad) SEQUENTIAL EXTRACTION REAGENT 3, which contains 5 M urea, 2 M thiourea, 2% (w/v) CHAPS, 2% (w/v) SB 3-10, 40 mM Tris and 0.2% Bio-Lyte 3/10.

[0164] The prepared cell wall fraction samples were loaded onto 11 cm immobilized pH gradient (IPG) strips, pH 4-7 (BioRad) by allowing each sample to re-hydrate a gel strip during an overnight incubation at room temperature. The sample size was 250 .mu.g in a total volume of 200 .mu.l. During the overnight incubation, the strips were covered with mineral oil (BioRad) to prevent evaporation. Following completion of rehydration of the strips, excess mineral oil was removed onto blotting paper that was saturated with water and the hydrated strips were then loaded into a pHaser Iso-electric focusing (IEF) apparatus (Genomic Solutions Inc., Ann Arbor, Mich.). The strips were prefocused with a current limit of 50 mA/strip with the voltage gradually increasing from 250 V to 5,000 V. Voltage was then held constant at 5,000 V for a total 50 kVh (.about.16 h). Second dimension SDS-PAGE was carried out using 12.5% Criterion precast gels (BioRad). For mass spectrometric analysis, gels were stained with Sypro Ruby protein gel stain (BioRad) according to the manufacturer's instructions.

[0165] Two-dimensional (2D) gel profiles of cell wall associated proteins from Staphylococcus epidermidis grown in TSB or 70% rabbit serum were compared. See FIG. 1. Growth in 70% rabbit serum resulted in a change in the protein expression profile of cell wall associated proteins from Staphylcoccus epidermidis that was easily detectable in fluorescent stained transfers of 2D gels (FIGS. 1A and 1B).

[0166] Eight proteins were detected by fluorescent stain to be differentially regulated between Staphylcoccus epidermidis grown in TSB or in the presence of rabbit serum. See Table 3 and FIG. 1. Most notable was an increase in the fluorescent staining of three protein streaks between 25 kDa and 37 kDa in the cells grown in 70% serum (FIG. 1B, spots e, g and h).

TABLE-US-00003 TABLE 3 List of Spots Identified.sup.a Protein .sup.cMethod of .sup.bSpot # SEQ ID NO: detection 1,2 12 I,S 3 12 I,S 3 19 I,S .sup. 4.sup.c 11 I,S 4 18 I,S 5-7, 9 11 I,S 8 21 I .sup. 10.sup.c 11 I,S 10 18 I,S 10 28 I,S 11 3 I,S 12 10 I,S 13 10 I,S 13 26 I,S 14 dNGID I,S 15-16 10 I,S 17 25 I 18 4 I 19 17 I,S 19 23 I,S 20-23, 25 17 I,S 24 30 I,S 26 30 I,S 26 8 I,S 26 7 I,S 27, 30-32 2 I,S 28, 33 22 I,S 29 5 I,S 34 13 I,S 35 NGID I 36 NGID I 37 NGID I,S 38 29 I,S 38 3 I, S 39 32 I,S 40 14 S 40 20 S 40 27 S 41 14 S 42 6 I 43 32 S 43 16 S 43 24 S 44 15 S .sup.aListof spots detected on 2D blots by reactivity with immune sera or binding toserum components. .sup.bSome spots contained more that one protein. .sup.cMethod by which the spot was detected following transfer to nitrocellulose, reactive immune sera from infected rabbits, I, or binding serum components, S. .sup.dNGID = no gene in database

Example 3

Binding of Immune Serum and Biotinylated Serum Proteins to Cell Wall Proteins

[0167] After completion of the first and second dimensions of electrophoresis, the protein content of the gels was transferred onto nitrocellulose for binding assays. Specifically, the protein content of the gels was electro-blotted to nitrocellulose membranes (BioRad) using a semi-dry blotting apparatus (Owl Separations Systems, Portsmouth, N.H.) at 12V for 1 hour. The protein containing nitrocellulose membranes (blots) were then stained with Sypro Ruby protein blot stain (BioRad) following the manufacturer's instructions and visualized in a FluorS Imager (BioRad). Each blot was incubated in blocking buffer (PBS with 0.05% Tween 20 and 5% dry milk) for 10 minutes at room temperature then incubated overnight with either a 1:2000 dilution of immune sera (Western blot) or 40 .mu.g/ml biotinylated serum proteins (see below). Following overnight incubation, blots were washed 3.times. with wash buffer (PBS with 0.5% Tween 20) and incubated with either goat anti-rabbit IgG alkaline phosphatase conjugate (Biosource International, Camarillo, Calif.) or streptavidin alkaline phosphatase conjugate (Biosource) for 2 hours at room temperature in blocking buffer. Blots were again washed three times with wash buffer and visualized with BCIP/NBT membrane phosphatase substrate system (KPL, Inc., Gaithersburg, Md.). Pictures were taken in the FluorS. All analysis of 2D gels was performed using Melanie 3.0 software.

[0168] Protein concentration was assayed using the BioRad protein assay kit (BioRad).

[0169] Changes in the protein expression profile of cell wall associated proteins was more pronounced by considering the Western blots of the nitrocellulose membranes containing the proteins transferred from the 2D gels. In the Western blots, the nitrocellulose membranes were incubated with pooled immune sera from rabbits repeatedly infected with Staphylcoccus epidermidis 0-47. See FIGS. 1C and 1D. These upregulated proteins are also strongly immunoreactive, suggesting they were expressed during infection of the rabbits. Five other immunoreactive streaks or spots from the serum-grown cells were expressed at either lower or undetectable levels in TSB grown cells. See FIG. 1, spots a, b, c, d and f.

Example 4

Analysis of Serum Proteins that Interact With Staphylcoccus epidermidis Cell Wall Associated Proteins

[0170] Elution of Serum Proteins from Staphylcoccus epidermidis

[0171] Staphylcoccus epidermidis 0-47 was grown in 70% rabbit serum at 37.degree. C. to OD.sub.600.about.0.8 and the cells were pelleted. The cells were resuspended at OD.sub.600.about.20 and washed three times with TBS while rocking at 4.degree. C. The bound serum proteins were eluted sequentially with 20 mM Tris, pH 8.0 containing either 0.5 M NaCl, 1.0 M NaCl or 4.0 M urea for 1 hour with rocking at 4.degree. C. The bacteria were then removed by centrifugation and the supernatant collected. The supernatants contained the serum proteins eluted from the surface of the bacteria. Proteins eluted under the different conditions were analyzed by SDS-PAGE using 4-20% gradient Tris-glycine gels (Cambrex Biosciences Rockland, Inc., Rockland, Me.)

Biotinylation of Serum Proteins

[0172] The eluted serum proteins were dialyzed overnight against PBS at 4.degree. C. IgG's were depleted by overnight incubation with protein G sepharose (Amersham-Pharmacia, Piscataway, N.J.) at 4.degree. C. Assuming an average protein mass of 50 kDa in the eluted fraction, the proteins were labeled with a 15-molar excess of EZ-Link.RTM. NHS-biotin (Pierce Biotechnology) for 1.5 hour at 4.degree. C. The reaction was quenched with excess glycine and dialyzed (10,0000 MWCO, Pierce) overnight against PBS.

Identification of Serum Proteins Bound to the Surface of Staphylcoccus epidermidis

[0173] Serum proteins eluted from the bacteria under these conditions were compared by SDS-PAGE to normal rabbit serum and to the bacterial proteins eluted from the surface of Staphylcoccus epidermidis grown in TSB. See FIG. 3. Buffers containing 0.5 NaCl, 1M NaCl and 4M urea each eluted bound serum proteins from the bacterial cells. These eluted serum proteins represent a pool of proteins eluted from the bacterial surface that is enriched for serum proteins. Some bacterial proteins are likely present in this pool, however no bacterial proteins detectable by protein assay were eluted from bacteria grown in TSB. Although some faint protein bands were detected by silver stain to be eluted from TSB grown bacteria, they did not correspond to the more intensely stained proteins eluted from the surface of the bacteria grown in serum. Elution with 1M NaCl was the least denaturing condition that eluted the most proteins and was used to elute proteins for the following examples.

[0174] In order to identify cell wall associated proteins involved in binding serum components, biotin labeled serum proteins were used to probe 2D transfers by incubating a solution of the labeled proteins with the nitrocellulose bound cell wall proteins transferred from a 2D gel. To isolate serum proteins that bind to Staphylcoccus epidermidis, bacteria grown in 70% rabbit serum were washed with 1 M NaCl. The eluted serum proteins were collected and dialyzed into PBS. Next, the naturally occurring immune IgG that may be present in the eluted serum proteins was depleted by incubation with protein G sepharose. Removal of IgG reduces the likelihood of identifying a protein that is reactive with host antibodies. The eluted serum proteins were then biotin labeled as described above and used to probe a 2D blot of Staphylcoccus epidermidis cell surface proteins. See FIGS. 4A and 4B. Thirty-four spots and regions were visualized by this method and are likely involved in the interaction of Staphylcoccus epidermidis with host serum proteins. Of the 34 spots consistently found to interact with serum components all but 4 were found to react with the immune sera from infected rabbits. See FIG. 2 and Table 3.

[0175] Staphylcoccus epidermidis grown in serum had serum proteins bound to bacterial surface proteins that were eluted with 0.5M and 1M NaCl. Under the same conditions few staphylococcal proteins were eluted from bacteria grown in TSB however it is possible that a staphylococcal protein expressed only in the serum is eluted by the high salt treatment.

Example 5

Mass Spectroscopy Identification of Serum Upregulated Proteins

[0176] Bacteria grown in 70% serum were used in subsequent proteomic experiments and analyses, working under the assumption that the changes detected during growth in serum may more accurately reflect alterations in gene expression made by the bacteria in response to environmental cues seen within a host. In the following mass spectroscopy studies, proteins isolated from spots on 2D gel electrophoresis separations were first subjected to time-of-flight mass spectroscopy. If a positive, unambiguous identification was obtained then no further mass spectrometric analysis was performed. See Table 4. In the cases where some ambiguity remained after time-of-flight mass spectroscopy, such as when multiple proteins resolved to the same spot on the 2D gel, then electrospray mass spectroscopy was performed to resolve the ambiguity. See Table 4.

TABLE-US-00004 TABLE 4 Proteins Identified by Mass Spectroscopy Protein DNA 2-D Gel Orf SEQ ID NO: SEQ ID NO: Spot Number 121 1 33 38 305 2 34 27, 30-32 321 3 35 11 373 4 36 18 554 5 37 29 639 6 38 42 608 7 39 26, 702 8 40 26 793 9 41 39 847 10 42 12, 13, 15, 16 854 11 43 4, 5-7, 9, 10 1015 12 44 1, 2, 3 1069 13 45 34 1238 14 46 40, 41 1382 15 47 44 1405 16 48 43 1450 17 49 19, 20-23, 25 1522 18 50 4, 10 1545 19 51 3 1653 20 52 40, 1690 21 53 8 1703 22 54 28, 33 2006 23 55 19 2180 24 56 43 2214 25 57 17 2482 26 58 13 2580 27 59 40 2649 28 60 10 2653 29 61 38 2736 30 62 24, 26 2907 31 63 2975 32 64 39, 43

Sample Preparation

[0177] Prior to performing mass spectrometry, the target protein spots were subjected to in-gel tryptic digestion. Protein spots were removed from the gel and cut into .about.1 mm pieces. The gel pieces were washed three times with 0.2 ml of 50% (v/v) acetonitrile (Burdick & Jackson, Muskegon, Mich.) in 10 mM ammonium bicarbonate (J.T. Baker, Phillipsburg, N.J.) for 15 minutes with occasional vortexing. The gel pieces were dehydrated with acetonitrile for 5 minutes, lyophylized, and stored frozen at -20.degree. C. Proteins in the gel were then digested with 50 .mu.l of 12 ng/ml sequencing grade modified trypsin (Promega Corporation, Madison, Wis.) overnight at 37.degree. C. The trypsin solution was then removed and the gel again dehydrated in 50 .mu.l acetonitrile. The peptide-containing acetonitrile was then removed and the gel pieces washed in 50 .mu.l 5% formic acid (Riedel-de Haen, Seelze, Germany) for 15 minutes at room temperature in a bath sonicator (Branson Cleaning Equipment Co., Shelton, Conn.). The peptide-containing supernatant was removed and combined with the initial acetonitrile wash. The gel was again washed in acetonitrile and the supernatant combined with two previous extraction steps and dried in a SpeedVac (Thermo Savant) to .about.10 .mu.l, then diluted to 100 .mu.l with 0.1% (v/v) aqueous formic acid. The sample was then loaded onto a Zip-Tip.sub.C18 P10 column (Waters Corporation, Milford, Mass.) and eluted in 50 .mu.l of 50% acetonitrile/0.1% formic acid. Samples were transferred to a 96.times.2 well Teflon coated stainless steel plate (PerSeptive Biosystems, Framingham, Mass.) for mass fingerprinting analysis on the MALDI-ToF instrument (PerSeptive Biosystems) glass nanospray tips (New Objective Inc., Woburn, Mass.) to be sprayed in the orifice of the ion trap mass spectrometer.

Peptide Mass Fingerprinting Using ToF Mass Spectrometry

[0178] Each sample was applied to the Teflon coated stainless steel 96.times.2 well plate with the .alpha.-cyano-4-hydroxycinnamic acid thin-layer application. The samples were allowed to dry at room temperature. Mass spectral data were acquired on a Voyager DE-STR MALDI-ToF mass spectrometer (PerSeptive Biosystems) equipped with delayed extraction technology, and a reflector. The mass spectrometer was equipped with a nitrogen laser at 337 nm and a laser rate of 3 Hz. Accelerating voltage was set at 20 kV, mode of operation (reflector), extraction mode (delayed), polarity (positive), grid voltage (65%), mirror voltage ratio (1.12), extraction delay time (200 nsec), mass range (800-3500 Da), and laser shots per spectrum (200).

Static Nanospray Ion Trap-Mass Spectrometry

[0179] Mass spectral data were acquired on a ThermoFinnigan LCQ DECA quadrupole ion trap mass spectrometer (ThermoFinnigan, San Jose, Calif.) equipped with a nano-electrospray interface. The nano-electrospray interface consisted of a silica spray needle, .about.27 mm length by 120/69 .mu.m OD/ID, 2 .mu.m orifice diameter (New Objective Inc.). The glass tip was mounted in a x,y,z axis holder (ThermoFinnigan) held on a base positioned at the front of the mass spectrometer detector. Electrical current was applied to the standard coating of the glass tip to supply an electrical connection for the electrospray interface through a metal connection on the static nanospray probe (ThermoFinnigan). The nanospray delivered a flow of 20-80 nl/min.

[0180] Two to five microliters of the tryptic digest was analyzed using a nanospray glass tip spraying directly into the orifice of the mass spectrometer. Peptide analyses were conducted on the LCQ-DECA ion trap mass spectrometer (Thermofinnigan) operating at a variable spray voltage of .about.1 kV, and using a heated capillary temperature of 200.degree. C. Data sets were acquired in automated MS/MS mode using the data acquisition software provided with the instrument. The acquisition method included 1 MS scan (400-1800 m/z) followed by MS/MS scans of the top three most abundant ions in the MS scan. The dynamic exclusion function was employed to increase the number of peptide ions that were analyzed (settings: 3 amu=exclusion width, 0.5 minutes=exclusion duration). The current experiment was analyzed in groups of samples and in a manual fashion.

[0181] Automated analysis of mass fingerprinting data was performed using MSFIT (Protein Prospector) and MASCOT (Matrix Science) software database search engines using Incyte's PathoSeq(c) Staphylcoccus epidermidis 0-47 database. The resultant spectra were processed with baseline correction, noise removal, and peak de-isotoping before utilizing the search engines. The database search parameters were set at the following levels: MW (1000-150 kDa), pl (3.about.10), Digest (trypsin), max. number of missed cleavages (2), missed cleavages pfactor (0.4), static modification (cysteine modified by acrylamide), N terminus (hydrogen), C terminus (free acid), variable mods (oxidation of methionine, N-terminus acetylation, phosphorylation of serine, threonine, and tyrosine), Mass (monoisotopic), min. number of peptides required to match (4) with a mass tolerance of 300 ppm, and the application of iterative calibration (Intelcast) with a mass tolerance of 15 ppm. Protein identifications were determined by MOWSE score and a 95% confidence score by MS-FIT and MASCOT respectively.

[0182] Automated analysis of MS/MS data was performed using SEQUEST incorporated into the Finnigan Bioworks data analysis package (ThermoFinnigan). See Eng, J. K., et al., J Amer Soc Mass Spec, 5(11): p. 976-89 (1994). The following variable modifications were allowed in the software: cysteine acrylamide modification and oxidation of methionine. The search parameters were set at the following designations: mass range (400-3500 Da), lower intensity MS signal (1e.sup.+5), peptide tolerance (2.0 Da), min. number of fragment ions (15), min. number of scans in a group (1), and maximum number of missed cleavages (2). All protein identifications were manually verified for accuracy.

Identification of Proteins by Mass Spectrometry

[0183] Spots consistently detected on both fluorescent and immunostained transfers from Staphylcoccus epidermidis grown in 70% serum, were located and labeled for identification by mass spectrometry. See FIGS. 2A and 2B. A total of 40 immunoreactive spots were cut and subjected to mass spectrometric analysis for identification. See Table 4. The complete protein sequences are shown in the sequence listing (SEQ ID NOS:1-32). The protein-containing gel spots were cut out of a gel and identified by mass fingerprint analysis using MALDI-TOF followed by searching Incyte's PathSeq(c) Staphylcoccus epidermidis 0-47 database for the corresponding coding region. See Table 4. Spots with multiple protein hits or questionable signal were further analyzed using static nanospray. A total of 32 proteins was identified, with some spots containing more than one protein. See Tables 3 and 4. Twenty-four of the proteins identified were immunoreactive, 26 bound to serum components and 20 of the proteins were both immunoreactive and serum binding. This large overlap was expected, as most proteins on the surface of Staphylcoccus epidermidis involved in binding to serum factors would likely elicit an immune response.

[0184] Six proteins were consistently present in immunostained blots, but no corresponding spots were visibly present on the fluorescent stained transfers. See FIG. 2B, white circles and arrow. Although these proteins are likely expressed during an infection and elicit an immune response they are not expressed at levels that allow for their detection by fluorescent protein staining under the conditions used in these experiments.

Example 6

Prediction of Protein Function

[0185] The predicted function of the proteins was determined by comparison with complete genome homologs from ATCC12228. See Zhang, Y. Q., et al., Mol Microbiol, 49(6), p. 1577-93 (2003). The predicted functions shown in Table 5, are attributed to the respective ORFs by prior publications involving the specific protein or by homology to previously characterized proteins occurring in other organisms.

TABLE-US-00005 TABLE 5 Predicted Functions of S. epidermidis proteins Protein .sup.bMethod of Spot # .sup.aPredicted function SEQ ID NO: detection 1,2 dihydrolipoamide dehydrogenase 12 I,S 3 dihydrolipoamide dehydrogenase 12 I,S glutamate-1-semialdehyde 2,1- aminomutase 19 I,S 4 enolase 11 I,S elongation factor TU (EF-TU) 18 I,S 5-7, 9 enolase 11 I,S 8 phosphogluconate dehydrogenase 21 I 10 enolase 11 I,S elongation factor TU (EF-TU) 18 I,S Na+/H+ antiporter 28 I,S 11 alanine dehydrogenase 3 I,S 12 glyceraldehyde-3-phosphate dehydro (GAPDH) 10 I,S 13 glyceraldehyde-3-phosphate dehydro IS (GAPDH) elongation factor (EF-TS) 26 I,S 14 no match I,S 15-16 glyceraldehyde-3-phosphate dehydro (GAPDH) 10 I,S 17 acetyl-CoA C-acetyltransferase 25 I 18 cystathionine gamma-synthase 4 I 19 ferrichrome binding lipoprotein 17 I,S oligopeptide permease 23 I,S 20-23, ferrichrome binding lipoprotein 17 I,S 25 24 fructose-bisphosphate aldolase 30 I,S 26 fructose-bisphosphate aldolase I,S hypothetical protein 8 I,S hypothetical protein 7 I,S 27, 30- lipoprotein (SitC) 2 I,S 32 28, 33 amino acid-binding lipoprotein 22 I,S 29 putative hexulose-6-phosphate synthase 5 I,S 34 lipoate ligase 13 I,S 35 no match I 36 no match I 37 no match I,S 38 immunodominant antigen A 29 I,S Putative protein 1 I, S 39 extracellular matrix binding protein 32 I,S (Embp) 40 cysteine synthase 14 S fructose-bisphosphate aldolase homologue 20 S thioredoxine reductase 27 S 41 cysteine synthase 14 S 42 putative transaldolase 6 I 43 extracellular matrix binding protein 32 S (Embp) transketolase 16 S hypothetical protein 24 S 44 glutamyl-tRNAGln amidotransferase 15 S subunit .sup.aThe predicted function of the proteins was determined by comparison with complete genome homologs from ATCC12228. .sup.bMethod by which the spot was detected following transfer to nitrocellulose, reactive immune sera from infected rabbits, I, or binding serum components, S.

[0186] As discussed above, the expression profile of cell wall associated proteins from Staphylococcus epidermidis 0-47 grown in 70% rabbit serum was analyzed by 2D gel electrophoresis. The overall expression profile in serum was determined to be significantly different from that occurring following growth in TSB. Numerous proteins that were upregulated during growth in serum were identified by mass spectroscopy and their functions predicted by sequence comparison. See Table 5. Three proteins predicted to be involved in nutrient acquisition, 305, 1450, and 1703 were all significantly increased. See Tables 4 and 5. All three proteins form streaks across the gel. See FIG. 4. Without being bound by theory, this may be the consequence of multiple charge isomers or related to their predicted lipoprotein composition. Additionally, all three proteins are highly reactive with immune sera from rabbits infected with Staphylcoccus epidermidis 0-47 suggesting that these proteins are also expressed in the host during an infection. See FIG. 2 and Table 5. In total, 24 of these proteins were identified as reactive with immune sera from infected rabbits. Not only are these proteins expressed during growth in serum, but they also elicited an immune response in an infected animal. See Example 8. Taken together, these data suggest that these antigens are all expressed during an infection. Expression of the transcripts from these ORFs within the bloodstream of an infected mouse was confirmed by RT-PCR for all of the identified proteins (data not shown).

Example 7

Cloning and Expression of Recombinant Proteins

[0187] Genes were cloned using primers designed based on the proteins identified by mass spectrometry of the expressed proteins and the Staphylcoccus epidermidis 0-47 database. Individual genes were amplified by polymerase chain reaction (PCR) using Pfu Turbo DNA polymerase (Stratagene, La Jolla, Calif.) and adenine overhangs were added with Taq DNA polymerase (Roche Diagnostics). The reaction products were cloned into pCRT7/NT-TOPO or pBAD/TOPOThio (Invitrogen, Carlsbad, Calif.) following the manufacturer's instructions and transformed into E. coli Top10 (Invitrogen). Positive clones were detected by colony PCR using ReddyMix PCR mastermix (ABgene, Rochester, N.Y.) and sequenced to ensure that no spurious mutations had arisen. Plasmids from pCRT7 clones were purified and transformed into E. coli BL21 (DE3) (Invitrogen) for expression using the T7 polymerase. Proteins were expressed by growth of the positive clones in HySoy broth (1% HySoy, Quest Intl, Stockbridge, Ga.), 0.5% yeast extract, 100 mM NaCl, 50 mM Na.sub.2HPO.sub.4-7H.sub.2O, 40 mM NaH.sub.2PO.sub.4--H.sub.2O) supplemented with 100 .mu.g/ml ampicillin at 37.degree. C. with shaking (200 rpm) until OD.sub.600.about.1.0. Protein expression was induced with either 1 mM IPTG (pCRT7) or 0.2% arabinose (pBAD) and the cultures were grown an additional 3 hours. The cells were then harvested by centrifugation and expression was assessed by SDS-PAGE of whole cell lysates.

Purification of Recombinant Proteins

[0188] Cell pellets were resuspended in 100 ml TBS (20 mM Tris, pH 8.0, 150 mM NaCl) and lysed by one passage through a French pressure cell (SLM-Aminco, Rochester, N.Y.). Samples were then separated into a soluble fraction or insoluble pellet by centrifugation at 10,000.times.g for 10 minutes. The location of recombinant protein was assessed by SDS-PAGE. If a recombinant protein was in the soluble fraction, then the protein was loaded onto iminodiacetic acid agarose resin charged with Ni.sup.2+. See Table 6. Next, the column was washed with 30 mM imidazole in TBS. Bound proteins were eluted with 300 mM imidazole in TBS. If an additional purification step was required, the proteins were dialyzed into 20 mM Tris, pH 8.0, containing 50 mM NaCl, 1 mM EDTA and loaded onto a column packed with POROS-Q resin (Applied Biosystems, Foster City, Calif.). Bound proteins were eluted with a 50 mM to 500 mM NaCl gradient in 20 mM Tris, pH 8.0, 1 mM EDTA. Fractions containing the protein of interest were determined by SDS-PAGE and frozen at -20.degree. C.

[0189] If a recombinant protein was found in the insoluble fraction, then the insoluble fraction was treated with 100 ml 1% Triton X-100 in TBS for 4 hours at 4.degree. C. See Table 6. The insoluble proteins were pelleted by centrifugation and the supernatant discarded. The insoluble pellet was then extracted with 100 ml of 8 M urea in TBS for at least 8 hours at room temperature. Insoluble debris was pelleted and the protein was purified as above except all buffers contained 2M urea. Following purification Triton X-100 was added to a final concentration of 0.1%. The proteins were then dialyzed into TBS containing 0.1% Triton and stored at -20.degree. C.

[0190] All liquid chromatography was performed using an AKTA explorer (Amersham-Pharmacia Biotech, Piscataway, N.J.). All SDS-PAGE was performed using 4-20% gradient Tris-glycine gels (Cambrex).

TABLE-US-00006 TABLE 6 Recombinant Protein Solubility Protein Location of Recombinant Protein Orf SEQ ID NO: Soluble Fraction Insoluble Fraction 121 1 X 305 2 X 321 3 X 373 4 X 554 5 X 639 6 X 608 7 X 702 8 X 793 9 X 847 10 X 854 11 X 1015 12 X 1069 13 X 1238 14 X 1382 15 X 1405 16 X 1450 17 X 1522 18 X 1545 19 X 1653 20 X 1690 21 X 1703 22 X 2006 23 NT 2180 24 X 2214 25 X 2482 26 X 2580 27 X 2649 28 X 2653 29 X 2736 30 X 2907 31 NT 2975 32 NT X indicates the protein was found in that fraction. NT indicates not tested.

Example 8

Immunogenic Compositions Using Recombinant Staphylcoccus epidermidis Proteins

[0191] Four week-old female Balb/C mice (Charles River Laboratories, Wilmington, Mass.) were immunized at 0, 3 and 6 weeks with 10 .mu.g recombinant protein formulated with 20 .mu.g STIMULON.TM. QS-21 by subcutaneous injection. The mice were bled on week 0 prior to the first immunization and on week 8. Two days following the final bleed, the mice were challenged by intraperitoneal injection of 5.times.10.sup.8 cfu Staphylcoccus epidermidis 0-47 grown overnight on Columbia salt agar (lx Columbia agar, 0.1% glucose, 1% yeast extract, 0.5% NaCl). Twenty-four hours following challenge, the mice were sacrificed and the bacteria were enumerated in the spleen and blood.

Active Immunization of Mice with Recombinant Proteins

[0192] Twenty-seven oils encoding either serum-binding or immunoreactive proteins were cloned from Staphylococcus epidermidis 0-47 and the recombinant proteins were expressed in E. coli with a hexahistidine tag (The His-tag was used as a matter of convenience; an immunogenic composition of this invention would contain proteins expressed without a His-tag). See Table 7. These proteins were purified using a Ni.sup.2+ chelate column followed by ion exchange chromatography. The three remaining cloned oils (2006, 2975 and 2907) were cloned but not expressed at levels sufficient for purification. Balb/C mice were immunized at 0, 3 and 6 weeks with individual recombinant proteins. The animals were bled at 0 and 8 weeks and challenged (i.p.) on week 8 with Staphylcoccus epidermidis 0-47. Twenty-four hours following challenge, the animals were euthanized and the number of bacteria present in the blood and spleen enumerated. This initial screen of immunogenic composition candidates was performed on groups of 5 animals to enable for the screening of numerous proteins. The resulting data are not statistically significant but they did provide valuable information as to the immunogenic composition potential of a large number of candidates. Eight of twenty-seven recombinant proteins reduced the number of bacteria recovered from the spleen and/or blood by one log or more. See Table 7 (NT=not tested).

TABLE-US-00007 TABLE 7 Reductions in Bacterial Counts Following Immunization Protein Log CFU Reduction Orf SEQ ID NO: Spleen Blood 121 1 NT NT 305 2 0.8 1 321 3 0 1 373 4 0 0 554 5 0.5 0 639 6 0 0 608 7 0.5 0 702 8 0 0 793 9 NT NT 847 10 0 0 854 11 1.5 0.7 1015 12 0 0 1069 13 1.1 0 1238 14 1 0.8 1382 15 0 0 1405 16 0 0 1450 17 0 0 1522 18 0 0 1545 19 0 0 1653 20 1 0 1690 21 0 0 1703 22 2 0 2006 23 NT NT 2180 24 0 0 2214 25 1.2 0.9 2482 26 0 0 2580 27 0 0 2649 28 0.9 0 2653 29 0 0 2736 30 0 0 2907 31 NT NT 2975 32 NT NT NT indicates not tested.

[0193] The sera obtained from the immunized mice were evaluated for antibody reactivity to the bacterial proteins. See Table 8. Twenty-three of twenty-four immune sera tested reacted with the native proteins, as determined by western blots of whole cell lysates of Staphylcoccus epidermidis grown to mid-log phase in rabbit serum. See Table 8 (NT=not tested).

TABLE-US-00008 TABLE 8 Antibody Reactivity to Staphylococcal Protein Antibody Reactivity to Protein Staphylococcal Protein Orf SEQ ID NO: S. epidermidis S. aureus 121 1 NT NT 305 2 + + 321 3 + - 373 4 + NT 554 5 - NT 639 6 + - 608 7 + + 702 8 + + 793 9 + + 847 10 + + 854 11 + 1015 12 + + 1069 13 + + 1238 14 + NT 1382 15 + + 1405 16 + + 1450 17 + + 1522 18 + + 1545 19 + + 1653 20 + NT 1690 21 + + 1703 22 + + 2006 23 NT NT 2180 24 NT NT 2214 25 + + 2482 26 + + 2580 27 + NT 2649 28 + + 2653 29 - NT 2736 30 + + 2907 31 NT NT 2975 32 NT NT NT indicates not tested.

[0194] As shown in Table 8, many of the animals immunized with Staphylcoccus epidermidis antigens also developed antibody responses to Staphylcoccus aureus. Therefore, immunogenic compositions against Staphylcoccus epidermidis antigens could be effective in the treatment or prevention of Staphylcoccus aureus as well as Staphylcoccus epidermidis. See Table 8.

[0195] A subset of the recombinant proteins used in immunogenic compositions above were used to immunize larger groups of mice. Groups of 10 female (4 week-old) Balb/C mice were immunized by subcutaneous injection with saline or 10 .mu.g of antigen with 20 .mu.g STIMULON.TM. QS-21 as adjuvant. Two weeks following the last immunization, the mice were challenged with .about.5.times.10.sup.8 cfu S. epidermidis 0-47 by intraperitoneal injection. Twenty-four hours after challenge, bacteria were enumerated in the blood and spleen. See Table 9. Reduction in log CFU was determined as compared to a control of STIMULON.TM. QS-21 in saline. Data were analyzed by student's-T test with resulting p-values of *0.05 or 0.01.

TABLE-US-00009 TABLE 9 Proteins Used in Immunogenic Compositions LOG CFU REDUCTION Orf Spleen Blood 305 0.5 321 0.7 1.2* 554 -- 608 0.3 793 0.7 854 0.9 1069 1.6** 1238 1.2* 1.2* 1653 0.4 1703 0.8 2214 1.4* 2649 1.2* *p-value < 0.05 **p-value < 0.01

[0196] The Staphylcoccus epidermidis proteins shown in Table 9 showed the greatest effectiveness when used in immunogenic compositions that reduced the severity of a bacterial infection following a subsequent challenge.

Example 9

Protection from Staphylcoccus Aureus Challenge Following Immunization with Staphylcoccus epidermidis Proteins

[0197] As suggested by the antibody binding data in Example 8, (Table 8), immunogenic compositions against Staphylcoccus epidermidis antigens could be effective in the treatment or prevention of Staphylcoccus aureus. Therefore, a challenge was performed using Staphylcoccus aureus following immunization with immunogenic compositions of Staphylcoccus epidermidis antigens.

[0198] Four week-old female CD-1 mice (Charles River Laboratories, Wilmington, Mass.) were immunized at 0, 3 and 6 weeks with 10 .mu.g recombinant protein in 20 .mu.g STIMULON.TM. QS-21 by subcutaneous injection. The mice were bled on week 0 prior to the first immunization and on week 8. Two days following the final bleed the mice were challenged by intraperitoneal injection of 3.times.10.sup.8 cfu S. aureus Reynolds grown overnight on Columbia salt agar (1.times. Columbia agar, 0.1% glucose, 1% yeast extract, 0.5% NaCl). Twenty-four hours following challenge, the mice were sacrificed and the bacteria were enumerated in the kidney.

TABLE-US-00010 TABLE 10 Challenge with Staphylococcus. aureus Protein Predicted CFU ORF SEQ ID NO: Function reduction 2653 29 immunodominant Ag A 0.9 log 321 3 alanine dehydrogenase 0.7 log 1015 12 dihydrolipoamide none dehydrogenase 608 7 unknown 0.6 log 1069 13 lipoate ligase 1.7 log 639 6 hypothetical none

[0199] As shown in Table 10, certain Staphylcoccus epidermidis antigens were effective in inducing antibodies that recognized and bound to Staphylcoccus aureus. In addition, the induced antibodies had the beneficial effect of reducing the level of bacteria enumerated after a Staphylcoccus aureus challenge.

[0200] The percent identity of the amino acid sequence of the Staphylcoccus epidermidis polypeptide antigens of SEQ ID NOS:1 through SEQ ID NO:32 was compared to the amino acid sequence of their homologs from Staphylcoccus aureus. The results are shown in Table 11.

TABLE-US-00011 TABLE 11 Identity between Staphylococcus epidermidis andStaphylococcus aureus Polypeptide .sup.a% Identity with Homolog Orf SEQ ID NO: in S. aureus 121 1 33% 305 2 76% 321 3 85% 373 4 81% 554 5 87% 639 6 62% 608 7 89% 702 8 97% 793 9 23% 847 10 95% 854 11 94% 1015 12 96% 1069 13 82% 1238 14 94% 1382 15 93% 1405 16 82% 1450 17 71% 1522 18 96% 1545 19 91% 1653 20 95% 1690 21 89% 1703 22 82% 2006 23 90% 2180 24 87% 2214 25 73% 2482 26 91% 2580 27 91% 2649 28 78% 2653 29 62% 2736 30 92% 2907 31 2975 32 32% Homology was determined between polypeptide sequences

Sequence CWU 1

1

641338PRTStaphylococcus epidermidis 1Leu Arg Lys Asp Val Ile Glu Val Val Asn Lys Val Glu Asp Tyr Tyr 1 5 10 15 Phe Lys Ser Tyr Pro Ile Gln Tyr Asn Pro Ile Ile Glu Tyr Phe Asn 20 25 30 Gln Ile Lys Asn Lys Lys Val Ile Val Ser Leu Lys Ile Tyr Lys Val 35 40 45 Tyr Lys Lys Ile Val Glu Asn Ile His Asp Thr Glu Ser Gln Trp Ile 50 55 60 Tyr Ser Pro Glu His Ala Leu His Pro Ile Glu Phe Ile Glu Ser Phe 65 70 75 80 Cys Lys His Ile Lys Gly Lys Tyr Ala Gly Thr Pro Ile Glu Leu Glu 85 90 95 Leu Trp Gln Lys Ala Gly Ile Ala Thr Ile Phe Gly Phe Ile Asn Lys 100 105 110 Lys Thr Lys Glu Arg Lys Tyr Gln Glu Ile Phe Trp Val Val Ala Arg 115 120 125 Lys Asn Gly Lys Ser Thr Ile Ser Ser Gly Ile Ala Leu Tyr Leu Leu 130 135 140 Gly Ala Asp Gly Glu Gly Gly Pro Glu Val Tyr Thr Val Ala Thr Lys 145 150 155 160 Lys Asp Gln Ala Lys Ile Val Trp Asn Asp Ala Lys Lys Met Val Asn 165 170 175 Lys Ser Pro Leu Leu Lys Leu Asp Phe Val Thr Lys Val Ala Glu Ile 180 185 190 Leu Thr Pro Phe Asn Asp Gly Gln Leu Ile Pro Leu Gly Arg Asp Ser 195 200 205 Asp Thr Thr Asp Gly Leu Asn Val His Gly Ala Ile Met Asp Glu Val 210 215 220 His Ala Trp Lys Thr Met Gln Met Tyr Asp Val Val Phe Asp Gly Ile 225 230 235 240 Ser Ala Arg Asp Asn Pro Leu Ile Leu Ala Ile Thr Thr Ala Gly Thr 245 250 255 Ile Arg Asn Ser Val Tyr Asp Ile Lys Tyr Glu Glu Ser Glu Asn Ile 260 265 270 Ile Asn Gly Leu Trp Glu Asp Glu Gly Tyr Lys Asn Glu Arg Phe Leu 275 280 285 Pro Leu Ile Tyr Glu Leu Asp Ser Arg Glu Glu Trp Ile Asp Glu Ser 290 295 300 Cys Trp Leu Lys Ala Asn Pro Gly Leu Gly Ser Ile Lys Lys Ile Asp 305 310 315 320 Ala Ile Lys Thr Lys Val Asn Arg Ala Lys Lys Asn Ala Leu Phe Arg 325 330 335 Ala Thr 2309PRTStaphylococcus epidermidis 2Val Lys Lys Ile Leu Ala Leu Ala Ile Ala Phe Leu Ile Ile Leu Ala 1 5 10 15 Ala Cys Gly Asn His Ser Asn His Glu His His Ser His Glu Gly Lys 20 25 30 Leu Lys Val Val Thr Thr Asn Ser Ile Leu Tyr Asp Met Val Lys Arg 35 40 45 Val Gly Gly Asn Lys Val Asp Val His Ser Ile Val Pro Val Gly Gln 50 55 60 Asp Pro His Glu Tyr Glu Val Lys Pro Lys Asp Ile Lys Ala Leu Thr 65 70 75 80 Asp Ala Asp Val Val Phe Tyr Asn Gly Leu Asn Leu Glu Thr Gly Asn 85 90 95 Gly Trp Phe Glu Lys Ala Leu Asp Gln Ala Gly Lys Ser Thr Lys Asp 100 105 110 Lys Asn Val Ile Ala Ala Ser Asn Asn Val Lys Pro Ile Tyr Leu Asn 115 120 125 Gly Glu Glu Gly Asn Lys Asn Lys Gln Asp Pro His Ala Trp Leu Ser 130 135 140 Leu Glu Asn Gly Ile Lys Tyr Val Lys Thr Ile Gln Lys Ser Leu Glu 145 150 155 160 His His Asp Lys Lys Asp Lys Ser Thr Tyr Glu Lys Gln Gly Asn Ala 165 170 175 Tyr Ile Ser Lys Leu Glu Glu Leu Asn Lys Asp Ser Lys Asn Lys Phe 180 185 190 Asp Asp Ile Pro Lys Asn Gln Arg Ala Met Met Thr Ser Glu Gly Ala 195 200 205 Phe Lys Tyr Phe Ala Gln Gln Phe Asp Val Lys Pro Gly Tyr Ile Trp 210 215 220 Glu Ile Asn Thr Glu Lys Gln Gly Thr Pro Gly Gln Met Lys Gln Ala 225 230 235 240 Ile Lys Phe Val Lys Asp Asn His Leu Lys His Leu Leu Val Glu Thr 245 250 255 Ser Val Asp Lys Lys Ala Met Gln Ser Leu Ser Glu Glu Thr Lys Lys 260 265 270 Asp Ile Tyr Gly Glu Val Phe Thr Asp Ser Ile Gly Lys Ala Gly Thr 275 280 285 Lys Gly Asp Ser Tyr Tyr Lys Met Met Lys Ser Asn Ile Asp Thr Ile 290 295 300 His Gly Ser Met Lys 305 3376PRTStaphylococcus epidermidis 3Leu Glu Val Asp Asn Met Lys Ile Gly Ile Pro Lys Glu Ile Lys Asn 1 5 10 15 Asn Glu Asn Arg Val Gly Leu Ser Pro Ser Gly Val His Ala Leu Val 20 25 30 Asp Gln Gly His Glu Val Leu Val Glu Thr Asn Ala Gly Leu Gly Ser 35 40 45 Tyr Phe Glu Asp Gly Asp Tyr Gln Glu Ala Gly Ala Lys Ile Val Asp 50 55 60 Glu Gln Ser Lys Ala Trp Asp Val Asp Met Val Ile Lys Val Lys Glu 65 70 75 80 Pro Leu Glu Ser Glu Tyr Lys Phe Phe Lys Glu Glu Leu Ile Leu Phe 85 90 95 Thr Tyr Leu His Leu Ala Asn Glu Gln Lys Leu Thr Gln Ala Leu Val 100 105 110 Asp Asn Lys Val Ile Ser Ile Ala Tyr Glu Thr Val Gln Leu Pro Asp 115 120 125 Gly Ser Leu Pro Leu Leu Thr Pro Met Ser Glu Val Ala Gly Arg Met 130 135 140 Ser Thr Gln Val Gly Ala Glu Phe Leu Gln Arg Phe Asn Gly Gly Met 145 150 155 160 Gly Ile Leu Leu Gly Gly Ile Pro Gly Val Pro Lys Gly Lys Val Thr 165 170 175 Ile Ile Gly Gly Gly Gln Ala Gly Thr Asn Ala Ala Lys Ile Ala Leu 180 185 190 Gly Leu Gly Ala Glu Val Thr Ile Leu Asp Val Asn Pro Lys Arg Leu 195 200 205 Glu Glu Leu Glu Asp Leu Phe Asp Gly Arg Val Arg Thr Ile Met Ser 210 215 220 Asn Pro Leu Asn Ile Glu Met Tyr Val Lys Glu Ser Asp Leu Val Ile 225 230 235 240 Gly Ala Val Leu Ile Pro Gly Ala Lys Ala Pro Asn Leu Val Thr Glu 245 250 255 Asp Met Ile Lys Glu Met Lys Asp Gly Ser Val Ile Val Asp Ile Ala 260 265 270 Ile Asp Gln Gly Gly Ile Phe Glu Thr Thr Asp Lys Ile Thr Thr His 275 280 285 Asp Asn Pro Thr Tyr Thr Lys His Gly Val Val His Tyr Ala Val Ala 290 295 300 Asn Met Pro Gly Ala Val Pro Arg Thr Ser Thr Ile Gly Leu Asn Asn 305 310 315 320 Ala Thr Leu Pro Tyr Ala Gln Leu Leu Ala Asn Lys Gly Tyr Arg Glu 325 330 335 Ala Phe Lys Val Asn His Pro Leu Ser Leu Gly Leu Asn Thr Phe Asn 340 345 350 Gly His Val Thr Asn Lys Asn Val Ala Asp Thr Phe Asn Phe Glu Tyr 355 360 365 Thr Ser Ile Glu Asp Ala Leu Lys 370 375 4400PRTStaphylococcus epidermidis 4Met Glu Ala Ile Asp Thr Cys Pro Asn Lys Tyr Ser Thr Ile Arg Arg 1 5 10 15 Val Leu Ile Met Asn Lys Lys Thr Gln Met Ile His Gly Gly His Thr 20 25 30 Thr Asp Asn Tyr Thr Gly Ala Val Thr Thr Pro Ile Tyr Gln Thr Ser 35 40 45 Thr Tyr Leu Gln Asp Asp Ile Gly Asp Leu Arg Gln Gly Tyr Glu Tyr 50 55 60 Ser Arg Thr Ala Asn Pro Thr Arg Ala Ser Leu Glu Ser Val Ile Ala 65 70 75 80 Asn Leu Glu His Gly Lys His Gly Phe Ala Phe Gly Ser Gly Met Ala 85 90 95 Ala Ile Ser Ala Val Ile Met Leu Leu Asp Lys Gly Asp His Leu Val 100 105 110 Leu Asn Ser Asp Val Tyr Gly Gly Thr Tyr Arg Ala Leu Thr Lys Val 115 120 125 Phe Thr Arg Phe Gly Ile Asp Val Asp Phe Val Asp Thr Thr Lys Ile 130 135 140 Glu Asn Ile Glu Gln Tyr Ile Lys Pro Glu Thr Lys Met Leu Tyr Val 145 150 155 160 Glu Thr Pro Ser Asn Pro Leu Leu Arg Val Thr Asp Ile Lys Ala Ser 165 170 175 Ala Lys Ile Ala Lys Lys Tyr Asp Leu Ile Ser Val Val Asp Asn Thr 180 185 190 Phe Met Thr Pro Tyr Tyr Gln Asn Pro Leu Asp Phe Gly Ile Asp Ile 195 200 205 Val Leu His Ser Ala Thr Lys Tyr Ile Gly Gly His Ser Asp Val Val 210 215 220 Ala Gly Leu Val Ala Thr Ala Asp Asp Asp Leu Ala Glu Arg Leu Gly 225 230 235 240 Phe Ile Ser Asn Ser Thr Gly Gly Val Leu Gly Pro Gln Asp Ser Tyr 245 250 255 Leu Leu Ile Arg Gly Ile Lys Thr Leu Gly Leu Arg Met Glu Gln Ile 260 265 270 Asn Arg Asn Val Glu Gly Ile Val Gln Met Leu Gln Lys His Pro Lys 275 280 285 Val Gln Gln Val Phe His Pro Ser Ile Lys Glu His Met Asn Tyr Thr 290 295 300 Ile His Gln Asn Gln Ala Thr Gly His Thr Gly Val Val Ser Phe Glu 305 310 315 320 Val Lys Asp Thr Glu Ala Ala Lys Gln Val Ile His Ala Thr Asn Tyr 325 330 335 Phe Thr Leu Ala Glu Ser Leu Gly Ala Val Glu Ser Leu Ile Ser Val 340 345 350 Pro Ala Leu Met Thr His Ala Ser Ile Pro Ser Asp Val Arg Ala Lys 355 360 365 Glu Gly Ile Thr Asp Gly Leu Ile Arg Leu Ser Ile Gly Ile Glu Asp 370 375 380 Thr Glu Asp Leu Val Asn Asp Leu Glu Gln Ala Leu Asn Thr Leu Arg 385 390 395 400 5210PRTStaphylococcus epidermidis 5Leu Glu Leu Gln Leu Ala Ile Asp Leu Leu Asn Lys Glu Glu Ala Ala 1 5 10 15 Lys Leu Ala Gln Lys Val Glu Glu Tyr Val Asp Ile Val Glu Ile Gly 20 25 30 Thr Pro Ile Val Ile Asn Glu Gly Leu Pro Ala Val Gln His Leu Asn 35 40 45 Glu Asn Ile Asn Asn Ala Lys Val Leu Ala Asp Leu Lys Ile Met Asp 50 55 60 Ala Ala Asp Tyr Glu Val Ser Gln Ala Val Lys Tyr Gly Ala Asp Ile 65 70 75 80 Val Thr Ile Leu Gly Val Ala Glu Asp Ala Ser Ile Lys Ala Ala Val 85 90 95 Glu Glu Ala His Lys His Gly Lys Ala Leu Leu Val Asp Met Ile Ala 100 105 110 Val Gln Asn Leu Glu Gln Arg Ala Lys Glu Leu Asp Glu Met Gly Ala 115 120 125 Asp Tyr Ile Ala Val His Thr Gly Tyr Asp Leu Gln Ala Glu Gly Lys 130 135 140 Ser Pro Leu Asp Ser Leu Arg Thr Val Lys Ser Val Ile Lys Asn Ser 145 150 155 160 Lys Val Ala Val Ala Gly Gly Ile Lys Pro Asp Thr Ile Lys Asp Ile 165 170 175 Val Ala Glu Asp Pro Asp Leu Val Ile Val Gly Gly Gly Ile Ala Asn 180 185 190 Ala Asp Asp Pro Val Glu Ala Ala Lys Gln Cys Arg Ala Ala Ile Glu 195 200 205 Gly Lys 210 6237PRTStaphylococcus epidermidis 6Met Thr Lys Leu Asn Val Lys Val Phe Ala Asp Gly Ala Asp Ile Glu 1 5 10 15 Glu Met Lys Ser Ala Tyr Lys Asn Gln Leu Val Asp Gly Phe Thr Thr 20 25 30 Asn Pro Ser Leu Met Ala Lys Ala Gly Val Thr Asp Tyr Lys Ala Phe 35 40 45 Ala Glu Glu Val Val Ser Glu Ile Pro Asp Ala Ser Ile Ser Phe Glu 50 55 60 Val Phe Ala Asp Asp Leu Pro Thr Met Glu Lys Glu Ala Glu Ile Leu 65 70 75 80 Lys Gln Tyr Gly Asp Asn Val Phe Val Lys Ile Pro Ile Val Thr Thr 85 90 95 Thr Gly Glu Ser Thr Leu Pro Leu Ile Lys Arg Leu Ser Ser Lys Gln 100 105 110 Val Arg Leu Asn Val Thr Ala Val Tyr Thr Ile Glu Gln Val Lys Ala 115 120 125 Ile Thr Asp Ala Val Thr Glu Gly Val Pro Thr Tyr Val Ser Val Phe 130 135 140 Ala Gly Arg Ile Ala Asp Thr Gly Val Asp Pro Leu Pro Leu Met Lys 145 150 155 160 Glu Ser Val Lys Val Thr His Ser Lys Glu Gly Val Gln Leu Leu Trp 165 170 175 Ala Ser Cys Arg Glu Val Tyr Asn Val Ile Gln Ala Asp Glu Ile Gly 180 185 190 Ala Asp Ile Ile Thr Cys Pro Ala Asp Val Val Lys Lys Val Asn Asn 195 200 205 Asn Leu Gly Arg Asp Ile Gly Glu Leu Ser Val Asp Thr Val Lys Gly 210 215 220 Phe Ala Lys Asp Ile Gln Ser Ser Gly Leu Ser Ile Leu 225 230 235 7264PRTStaphylococcus epidermidis 7Val Asn Ile Leu Lys Ile Gln Ile Leu Gln Phe Asn Val Glu Arg Gly 1 5 10 15 Asn Val Asp Lys Asn Met Gln Asn Ile Lys Thr Lys Phe Asn Gln Tyr 20 25 30 Leu Asp Lys Asp Thr Ser Val Val Val Leu Pro Glu Met Trp Asn Asn 35 40 45 Gly Tyr Ala Leu Glu Glu Leu Glu Gln Lys Ala Asp Lys Asn Leu Lys 50 55 60 Asp Ser Ser Leu Phe Ile Lys Asp Leu Ala His Thr Phe Asn Val Asp 65 70 75 80 Ile Ile Ala Gly Ser Val Ser Asn Ile Arg Glu Asn His Ile Tyr Asn 85 90 95 Thr Ala Phe Ala Ile Asn Lys Asn Lys Glu Leu Ile Asn Glu Tyr Asp 100 105 110 Lys Val His Leu Val Pro Met Leu Arg Glu Pro Asp Phe Leu Cys Gly 115 120 125 Gly Asn Val Val Pro Glu Pro Phe Tyr Leu Ser Asp Gln Thr Leu Val 130 135 140 Thr Gln Ile Ile Cys Tyr Asp Leu Arg Phe Pro Glu Ile Leu Arg Tyr 145 150 155 160 Pro Ala Arg Lys Gly Ala Lys Ile Ala Phe Tyr Val Ala Gln Trp Pro 165 170 175 Ser Ser Arg Leu Asp His Trp Leu Ser Leu Leu Lys Ala Arg Ala Ile 180 185 190 Glu Asn Asp Ile Phe Ile Val Ala Cys Asn Ser Cys Gly Asp Asp Gly 195 200 205 His Thr Asn Tyr Ala Gly Asn Ser Ile Val Ile Asn Pro Asn Gly Glu 210 215 220 Ile Leu Gly His Leu Asp Asp Lys Glu Gly Val Leu Thr Thr His Ile 225 230 235 240 Asp Val Asp Leu Val Asp Gln Gln Arg Glu Tyr Ile Pro Val Phe Arg 245 250 255 Asn Leu Lys Pro His Leu Tyr Lys 260 8295PRTStaphylococcus epidermidis 8Met Ser Lys Ile Val Gly Ser Asp Arg Val Lys Arg Gly Met Ala Glu 1 5 10 15 Met Gln Lys Gly Gly Val Ile Met Asp Val Val Asn Ala Glu Gln Ala 20 25 30 Lys Ile Ala Glu Glu Ala Gly Ala Val Ala Val Met Ala Leu Glu Arg 35 40 45 Val Pro Ser Asp Ile Arg Ala Ala Gly Gly Val Ala Arg Met Ala Asn 50 55 60 Pro Lys Ile Val Glu Glu Val Met Asn Ala Val Ser Ile Pro Val Met 65 70 75 80 Ala Lys Ala Arg Ile Gly His Ile Thr Glu Ala Arg Val Leu Glu Ser 85 90 95 Met Gly Val Asp Tyr Ile Asp Glu Ser Glu Val Leu Thr Pro Ala Asp 100 105 110 Glu Glu Tyr His Leu Arg Lys Asp Gln Phe Thr Val Pro Phe Val Cys 115 120 125 Gly Cys Arg Asn

Leu Gly Glu Ala Ala Arg Arg Ile Gly Glu Gly Ala 130 135 140 Ala Met Leu Arg Thr Lys Gly Glu Pro Gly Thr Gly Asn Ile Val Glu 145 150 155 160 Ala Val Arg His Met Arg Arg Val Asn Ser Glu Val Ser Arg Leu Thr 165 170 175 Val Met Asn Asp Asp Glu Ile Met Thr Phe Ala Lys Asp Leu Gly Ala 180 185 190 Pro Tyr Glu Val Leu Lys Gln Ile Lys Asp Asn Gly Arg Leu Pro Val 195 200 205 Val Asn Phe Ala Ala Gly Gly Val Ala Thr Pro Gln Asp Ala Ala Leu 210 215 220 Met Met Glu Leu Gly Ala Asp Gly Val Phe Val Gly Ser Gly Ile Phe 225 230 235 240 Lys Ser Glu Asp Pro Glu Lys Phe Ala Lys Ala Ile Val Gln Ala Thr 245 250 255 Thr His Tyr Gln Asp Tyr Glu Leu Ile Gly Lys Leu Ala Ser Glu Leu 260 265 270 Gly Thr Ala Met Lys Gly Leu Asp Ile Asn Gln Ile Ser Leu Glu Glu 275 280 285 Arg Met Gln Glu Arg Gly Trp 290 295 9581PRTStaphylococcus epidermidis 9Met Glu Asp Ala Val Val Glu Met Asp Ala Val Lys Tyr Leu Asn Lys 1 5 10 15 Leu Asn Leu Asp Asn Ile Glu Leu Thr Lys Tyr Leu Phe Phe Thr Gly 20 25 30 Lys Gly Gly Val Gly Lys Thr Thr Ile Ser Ser Phe Ile Ala Leu Asn 35 40 45 Leu Ala Glu Asn Gly Lys Lys Val Ala Leu Val Ser Thr Asp Pro Ala 50 55 60 Ser Asn Leu Gln Asp Val Phe Gln Met Glu Leu Ser Asn Lys Leu Thr 65 70 75 80 Lys Tyr Gln Pro Ile Pro Asn Leu Ser Ile Ala Asn Phe Asp Pro Ile 85 90 95 Val Ala Ala Asp Asp Tyr Lys Ala Gln Ser Ile Glu Pro Tyr Glu Gly 100 105 110 Ile Leu Pro Glu Asp Val Leu Ser Glu Met Lys Glu Gln Leu Ser Gly 115 120 125 Ser Cys Thr Val Glu Val Ala Ala Phe Asn Glu Phe Thr Asn Phe Leu 130 135 140 Ser Asp Lys Thr Leu Glu Gln Glu Phe Asp Phe Ile Ile Phe Asp Thr 145 150 155 160 Ala Pro Thr Gly His Thr Leu Arg Met Leu Glu Leu Pro Ser Ala Trp 165 170 175 Thr Asp Tyr Leu Asn Thr Thr Ser Asn Asp Ala Ser Cys Leu Gly Gln 180 185 190 Leu Ser Gly Leu Asn Glu Asn Arg Val Lys Tyr Asn Ser Ala Leu Glu 195 200 205 Lys Leu Arg Asn Gln Asp Asp Thr Thr Met Met Leu Val Ala Arg Pro 210 215 220 Thr His Ser Ser Ile Tyr Glu Ile Gln Arg Ala Gln Gln Glu Leu Gln 225 230 235 240 Gln Leu Ser Ile Ser Lys Phe Lys Val Ile Ile Asn Asn Tyr Ile Glu 245 250 255 Glu Ser His Gly Leu Ile Ser Ser Gln Met Lys Ser Glu Gln Asp Lys 260 265 270 Asn Ile Asn His Phe Thr Glu Trp Leu Asn Asn Asn His Ala Tyr Tyr 275 280 285 Val Pro Tyr Lys Asn Gln Lys Glu Glu Gly Ile Glu Ser Leu Thr Asn 290 295 300 Leu Leu Asn Asp Asp Asn Leu Ile Glu Asn Asp Asp Phe Ile Val Glu 305 310 315 320 Asp His Pro Gln Phe Asn Lys Leu Ile Asp Glu Ile Glu Asn Ser Lys 325 330 335 Val Gln Tyr Leu Phe Thr Met Gly Lys Gly Gly Val Gly Lys Thr Thr 340 345 350 Val Ala Thr Gln Leu Ala Thr Thr Leu Ser Asn Lys Gly Tyr Arg Val 355 360 365 Leu Leu Ala Thr Thr Asp Pro Thr Lys Glu Ile Asn Val Glu Thr Thr 370 375 380 Ser Asn Leu Asn Thr Ala Tyr Ile Asp Glu Glu Gln Ala Leu Glu Lys 385 390 395 400 Tyr Lys Lys Glu Val Leu Ala Thr Val Asn Asp Asp Thr Pro Gln Asp 405 410 415 Asp Ile Asp Tyr Ile Met Glu Asp Leu Lys Ser Pro Cys Thr Glu Glu 420 425 430 Ile Ala Phe Phe Lys Ala Phe Ser Asp Ile Met Glu Asn Gln Asp Asp 435 440 445 Met Asp Tyr Val Ile Val Asp Thr Ala Pro Thr Gly His Thr Leu Leu 450 455 460 Leu Leu Asp Ser Ser Glu Asn His His Arg Glu Leu Lys Lys Lys Ser 465 470 475 480 Thr Gln Thr Thr Ser Asn Val Glu Thr Leu Leu Pro Lys Ile Gln Asn 485 490 495 Lys Asn Leu Thr Gln Met Ile Ile Val Thr Leu Ala Glu Lys Thr Pro 500 505 510 Tyr Leu Glu Ser Lys Arg Leu Val Glu Asp Leu Asn Arg Ala Asn Ile 515 520 525 Gly His Asn Trp Trp Val Val Asn Gln Ser Leu Val Thr Leu Asn Gln 530 535 540 Arg Asp Asp Leu Phe Ser Asn Lys Lys Glu Asp Glu Ser Phe Trp Ile 545 550 555 560 Asn Lys Ile Lys Asn Glu Ser Leu Asp Asn Tyr Phe Val Ile Pro Tyr 565 570 575 Arg Val Leu Glu Tyr 580 10336PRTStaphylococcus epidermidis 10Met Ala Ile Lys Val Ala Ile Asn Gly Phe Gly Arg Ile Gly Arg Leu 1 5 10 15 Ala Phe Arg Arg Ile Gln Asp Val Glu Gly Leu Glu Val Val Ala Val 20 25 30 Asn Asp Leu Thr Asp Asp Asp Met Leu Ala His Leu Leu Lys Tyr Asp 35 40 45 Thr Met Gln Gly Arg Phe Thr Gly Glu Val Glu Val Ile Glu Gly Gly 50 55 60 Phe Arg Val Asn Gly Lys Glu Ile Lys Ser Phe Asp Glu Pro Asp Ala 65 70 75 80 Gly Lys Leu Pro Trp Gly Asp Leu Asp Ile Asp Val Val Leu Glu Cys 85 90 95 Thr Gly Phe Tyr Thr Asp Lys Glu Lys Ala Gln Ala His Ile Asp Ala 100 105 110 Gly Ala Lys Lys Val Leu Ile Ser Ala Pro Ala Lys Gly Asp Val Lys 115 120 125 Thr Ile Val Phe Asn Thr Asn His Asp Thr Leu Asp Gly Ser Glu Thr 130 135 140 Val Val Ser Gly Ala Ser Cys Thr Thr Asn Ser Leu Ala Pro Val Ala 145 150 155 160 Lys Val Leu Ser Asp Glu Phe Gly Leu Val Glu Gly Phe Met Thr Thr 165 170 175 Ile His Ala Tyr Thr Gly Asp Gln Asn Thr Gln Asp Ala Pro His Arg 180 185 190 Lys Gly Asp Lys Arg Arg Ala Arg Ala Ala Ala Glu Asn Ile Ile Pro 195 200 205 Asn Ser Thr Gly Ala Ala Lys Ala Ile Gly Lys Val Ile Pro Glu Ile 210 215 220 Asp Gly Lys Leu Asp Gly Gly Ala Gln Arg Val Pro Val Ala Thr Gly 225 230 235 240 Ser Leu Thr Glu Leu Thr Val Val Leu Asp Lys Gln Asp Val Thr Val 245 250 255 Asp Gln Val Asn Ser Ala Met Lys Gln Ala Ser Asp Glu Ser Phe Gly 260 265 270 Tyr Thr Glu Asp Glu Ile Val Ser Ser Asp Ile Val Gly Met Thr Tyr 275 280 285 Gly Ser Leu Phe Asp Ala Thr Gln Thr Arg Val Met Thr Val Gly Asp 290 295 300 Arg Gln Leu Val Lys Val Ala Ala Trp Tyr Asp Asn Glu Met Ser Tyr 305 310 315 320 Thr Ala Gln Leu Val Arg Thr Leu Ala His Leu Ala Glu Leu Ser Lys 325 330 335 11434PRTStaphylococcus epidermidis 11Met Pro Ile Ile Thr Asp Val Tyr Ala Arg Glu Val Leu Asp Ser Arg 1 5 10 15 Gly Asn Pro Thr Val Glu Val Glu Val Leu Thr Glu Ser Gly Ala Phe 20 25 30 Gly Arg Ala Leu Val Pro Ser Gly Ala Ser Thr Gly Glu His Glu Ala 35 40 45 Val Glu Leu Arg Asp Gly Asp Lys Ser Arg Tyr Leu Gly Lys Gly Val 50 55 60 Thr Lys Ala Val Glu Asn Val Asn Glu Met Ile Ala Pro Glu Ile Val 65 70 75 80 Glu Gly Glu Phe Ser Val Leu Asp Gln Val Ser Ile Asp Lys Met Met 85 90 95 Ile Gln Leu Asp Gly Thr His Asn Lys Gly Lys Leu Gly Ala Asn Ala 100 105 110 Ile Leu Gly Val Ser Ile Ala Val Ala Arg Ala Ala Ala Asp Leu Leu 115 120 125 Gly Gln Pro Leu Tyr Lys Tyr Leu Gly Gly Phe Asn Gly Lys Gln Leu 130 135 140 Pro Val Pro Met Met Asn Ile Val Asn Gly Gly Ser His Ser Asp Ala 145 150 155 160 Pro Ile Ala Phe Gln Glu Phe Met Ile Leu Pro Val Gly Ala Glu Ser 165 170 175 Phe Lys Glu Ser Leu Arg Trp Gly Ala Glu Ile Phe His Asn Leu Lys 180 185 190 Ser Ile Leu Ser Glu Arg Gly Leu Glu Thr Ala Val Gly Asp Glu Gly 195 200 205 Gly Phe Ala Pro Arg Phe Glu Gly Thr Glu Asp Ala Val Glu Thr Ile 210 215 220 Ile Lys Ala Ile Glu Lys Ala Gly Tyr Lys Pro Gly Glu Asp Val Phe 225 230 235 240 Leu Gly Phe Asp Cys Ala Ser Ser Glu Phe Tyr Glu Asn Gly Val Tyr 245 250 255 Asp Tyr Thr Lys Phe Glu Gly Glu His Gly Ala Lys Arg Ser Ala Ala 260 265 270 Glu Gln Val Asp Tyr Leu Glu Glu Leu Ile Gly Lys Tyr Pro Ile Ile 275 280 285 Thr Ile Glu Asp Gly Met Asp Glu Asn Asp Trp Glu Gly Trp Lys Gln 290 295 300 Leu Thr Asp Arg Ile Gly Asp Lys Val Gln Leu Val Gly Asp Asp Leu 305 310 315 320 Phe Val Thr Asn Thr Glu Ile Leu Ser Lys Gly Ile Glu Gln Gly Ile 325 330 335 Gly Asn Ser Ile Leu Ile Lys Val Asn Gln Ile Gly Thr Leu Thr Glu 340 345 350 Thr Phe Asp Ala Ile Glu Met Ala Gln Lys Ala Gly Tyr Thr Ala Val 355 360 365 Val Ser His Arg Ser Gly Glu Thr Glu Asp Thr Thr Ile Ala Asp Ile 370 375 380 Ala Val Ala Thr Asn Ala Gly Gln Ile Lys Thr Gly Ser Leu Ser Arg 385 390 395 400 Thr Asp Arg Ile Ala Lys Tyr Asn Gln Leu Leu Arg Ile Glu Asp Glu 405 410 415 Leu Tyr Glu Thr Ala Lys Phe Glu Gly Ile Lys Ser Phe Tyr Asn Leu 420 425 430 Asp Lys 12468PRTStaphylococcus epidermidis 12Met Val Val Gly Asp Phe Pro Ile Glu Thr Asp Thr Ile Val Ile Gly 1 5 10 15 Ala Gly Pro Gly Gly Tyr Val Ala Ala Ile Arg Ala Ala Gln Leu Gly 20 25 30 Gln Lys Val Thr Ile Val Glu Lys Gly Asn Leu Gly Gly Val Cys Leu 35 40 45 Asn Val Gly Cys Ile Pro Ser Lys Ala Leu Leu His Ala Ser His Arg 50 55 60 Phe Val Glu Ala Gln Asn Ser Glu Asn Leu Gly Val Ile Ala Glu Ser 65 70 75 80 Val Ser Leu Asn Tyr Gln Lys Val Gln Glu Phe Lys Thr Ser Val Val 85 90 95 Asn Lys Leu Thr Gly Gly Val Glu Gly Leu Leu Lys Gly Asn Lys Val 100 105 110 Glu Ile Val Arg Gly Glu Ala Tyr Phe Val Asp Asn Asn Ser Leu Arg 115 120 125 Val Met Asp Glu Lys Ser Ala Gln Thr Tyr Asn Phe Lys His Ala Ile 130 135 140 Ile Ala Thr Gly Ser Arg Pro Ile Glu Ile Pro Asn Phe Glu Phe Gly 145 150 155 160 Lys Arg Val Ile Asp Ser Thr Gly Ala Leu Asn Leu Gln Glu Val Pro 165 170 175 Asn Lys Leu Val Val Val Gly Gly Gly Tyr Ile Gly Ser Glu Leu Gly 180 185 190 Thr Ala Phe Ala Asn Phe Gly Ser Glu Val Thr Ile Leu Glu Gly Ala 195 200 205 Lys Asp Ile Leu Gly Gly Phe Glu Lys Gln Met Thr Gln Pro Val Lys 210 215 220 Lys Gly Met Lys Glu Lys Gly Ile Glu Ile Val Thr Glu Ala Met Ala 225 230 235 240 Lys Ser Ala Glu Glu Thr Glu Asn Gly Val Lys Val Thr Tyr Glu Ala 245 250 255 Lys Gly Glu Glu Gln Thr Ile Glu Ala Asp Tyr Val Leu Val Thr Val 260 265 270 Gly Arg Arg Pro Asn Thr Asp Glu Leu Gly Leu Glu Glu Leu Gly Leu 275 280 285 Lys Phe Ala Asp Arg Gly Leu Leu Glu Val Asp Lys Gln Ser Arg Thr 290 295 300 Ser Ile Glu Asn Ile Phe Ala Ile Gly Asp Ile Val Pro Gly Leu Pro 305 310 315 320 Leu Ala His Lys Ala Ser Tyr Glu Gly Lys Val Ala Ala Glu Ala Ile 325 330 335 Asp Gly Gln Ala Ala Glu Val Asp Tyr Ile Gly Met Pro Ala Val Cys 340 345 350 Phe Thr Glu Pro Glu Leu Ala Gln Val Gly Tyr Thr Glu Ala Gln Ala 355 360 365 Lys Glu Glu Gly Leu Ser Ile Lys Ala Ser Lys Phe Pro Tyr Ala Ala 370 375 380 Asn Gly Arg Ala Leu Ser Leu Asp Asp Thr Asn Gly Phe Val Lys Leu 385 390 395 400 Ile Thr Leu Lys Glu Asp Asp Thr Leu Ile Gly Ala Gln Val Val Gly 405 410 415 Thr Gly Ala Ser Asp Ile Ile Ser Glu Leu Gly Leu Ala Ile Glu Ser 420 425 430 Gly Met Asn Ala Glu Asp Ile Ala Leu Thr Val His Ala His Pro Thr 435 440 445 Leu Gly Glu Met Thr Met Glu Ala Ala Glu Lys Ala Ile Gly Tyr Pro 450 455 460 Ile His Thr Met 465 13279PRTStaphylococcus epidermidis 13Met Asp Leu Ala Thr Lys Tyr Phe Asn Gln Ile Asn Trp Arg Tyr Val 1 5 10 15 Asp His Ser Ser Gly Leu Glu Pro Met Gln Ser Phe Ala Phe Asp Asp 20 25 30 Thr Phe Ser Glu Ser Val Gly Lys Asp Leu Ser Cys Asn Val Val Arg 35 40 45 Thr Trp Ile His Gln His Thr Val Ile Leu Gly Ile His Asp Ser Arg 50 55 60 Leu Pro Phe Leu Ser Asp Gly Ile Arg Phe Leu Thr Asp Glu Gln Gly 65 70 75 80 Tyr Asn Ala Ile Val Arg Asn Ser Gly Gly Leu Gly Val Val Leu Asp 85 90 95 Gln Gly Ile Leu Asn Ile Ser Leu Ile Phe Lys Gly Gln Thr Glu Thr 100 105 110 Thr Ile Asp Glu Ala Phe Thr Val Met Tyr Leu Leu Ile Asn Lys Met 115 120 125 Phe Glu Asp Glu Asp Val Ser Ile Asp Thr Lys Glu Ile Glu Gln Ser 130 135 140 Tyr Cys Pro Gly Lys Phe Asp Leu Ser Ile Asn Asp Lys Lys Phe Ala 145 150 155 160 Gly Ile Ser Gln Arg Arg Val Arg Gly Gly Ile Ala Val Gln Ile Tyr 165 170 175 Leu Cys Ile Glu Gly Ser Gly Ser Glu Arg Ala Leu Met Met Gln Gln 180 185 190 Phe Tyr Gln Arg Ala Leu Lys Gly Glu Thr Thr Lys Phe His Tyr Pro 195 200 205 Asp Ile Asp Pro Ser Cys Met Ala Ser Leu Glu Thr Leu Leu Asn Arg 210 215 220 Glu Ile Lys Val Gln Asp Val Met Phe Leu Leu Leu Tyr Ala Leu Lys 225 230 235 240 Asp Leu Gly Ala Asn Leu Asn Met Asp Pro Ile Thr Glu Asp Glu Trp 245 250 255 Thr Arg Tyr Glu Gly Tyr Tyr Asp Lys Met Leu Glu Arg Asn Ala Lys 260 265 270 Met Asn Glu Lys Leu Asp Phe 275 14310PRTStaphylococcus epidermidis 14Met Ala Gln Lys Pro Val Asp Tyr Val Thr Gln Ile Ile Gly Asn Thr 1 5

10 15 Pro Val Val Lys Leu Arg Asn Val Val Asp Asp Asp Ala Ala Asp Ile 20 25 30 Tyr Val Lys Leu Glu Tyr Gln Asn Pro Gly Gly Ser Val Lys Asp Arg 35 40 45 Ile Ala Leu Ala Met Ile Glu Lys Ala Glu Arg Glu Gly Lys Ile Lys 50 55 60 Pro Gly Asp Thr Ile Val Glu Pro Thr Ser Gly Asn Thr Gly Ile Gly 65 70 75 80 Leu Ala Phe Val Cys Ala Ala Lys Gly Tyr Lys Ala Val Phe Thr Met 85 90 95 Pro Glu Thr Met Ser Gln Glu Arg Arg Asn Leu Leu Lys Ala Tyr Gly 100 105 110 Ala Glu Leu Val Leu Thr Pro Gly Ser Glu Ala Met Lys Gly Ala Ile 115 120 125 Lys Lys Ala Lys Glu Leu Lys Glu Glu His Gly Tyr Phe Glu Pro Gln 130 135 140 Gln Phe Glu Asn Pro Ala Asn Pro Glu Ile His Glu Leu Thr Thr Gly 145 150 155 160 Pro Glu Leu Val Glu Gln Phe Glu Gly Arg Gln Ile Asp Ala Phe Leu 165 170 175 Ala Gly Val Gly Thr Gly Gly Thr Leu Ser Gly Val Gly Lys Val Leu 180 185 190 Lys Lys Glu Tyr Pro Asn Val Glu Ile Val Ala Ile Glu Pro Glu Ala 195 200 205 Ser Pro Val Leu Ser Gly Gly Glu Pro Gly Pro His Lys Leu Gln Gly 210 215 220 Leu Gly Ala Gly Phe Val Pro Asp Thr Leu Asn Thr Glu Val Tyr Asp 225 230 235 240 Ser Ile Ile Lys Val Gly Asn Asp Thr Ala Met Asp Met Ala Arg Arg 245 250 255 Val Ala Arg Glu Glu Gly Ile Leu Ala Gly Ile Ser Ser Gly Ala Ala 260 265 270 Ile Tyr Ala Ala Ile Gln Lys Ala Lys Glu Leu Gly Lys Gly Lys Thr 275 280 285 Val Val Thr Val Leu Pro Ser Asn Gly Glu Arg Tyr Leu Ser Thr Pro 290 295 300 Leu Tyr Ser Phe Asp Asn 305 310 15475PRTStaphylococcus epidermidis 15Met His Phe Glu Thr Val Ile Gly Leu Glu Val His Val Glu Leu Lys 1 5 10 15 Thr Asp Ser Lys Met Phe Ser Pro Ser Pro Ala His Phe Gly Ala Glu 20 25 30 Pro Asn Ser Asn Thr Asn Val Ile Asp Leu Ala Tyr Pro Gly Val Leu 35 40 45 Pro Val Val Asn Arg Arg Ala Val Asp Trp Ala Met Arg Ala Ser Met 50 55 60 Ala Leu Asn Met Asp Ile Ala Thr Asn Ser Lys Phe Asp Arg Lys Asn 65 70 75 80 Tyr Phe Tyr Pro Asp Asn Pro Lys Ala Tyr Gln Ile Ser Gln Phe Asp 85 90 95 Gln Pro Ile Gly Glu Asn Gly Tyr Ile Asp Ile Glu Val Asp Gly Glu 100 105 110 Thr Lys Arg Ile Gly Ile Thr Arg Leu His Met Glu Glu Asp Ala Gly 115 120 125 Lys Ser Thr His Lys Asp Gly Tyr Ser Leu Val Asp Leu Asn Arg Gln 130 135 140 Gly Thr Pro Leu Ile Glu Ile Val Ser Glu Pro Asp Ile Arg Ser Pro 145 150 155 160 Lys Glu Ala Tyr Ala Tyr Leu Glu Lys Leu Arg Ser Ile Ile Gln Tyr 165 170 175 Thr Gly Val Ser Asp Cys Lys Met Glu Glu Gly Ser Leu Arg Cys Asp 180 185 190 Ala Asn Ile Ser Leu Arg Pro Tyr Gly Gln Lys Glu Phe Gly Thr Lys 195 200 205 Thr Glu Leu Lys Asn Leu Asn Ser Phe Asn Tyr Val Lys Lys Gly Leu 210 215 220 Glu Tyr Glu Glu Lys Arg Gln Glu Glu Glu Leu Leu Asn Gly Gly Glu 225 230 235 240 Ile Gly Gln Glu Thr Arg Arg Phe Asp Glu Ser Thr Gly Lys Thr Ile 245 250 255 Leu Met Arg Val Lys Glu Gly Ser Asp Asp Tyr Arg Tyr Phe Pro Glu 260 265 270 Pro Asp Ile Val Pro Leu Tyr Val Asp Glu Asp Trp Lys Ala Arg Val 275 280 285 Arg Glu Thr Ile Pro Glu Leu Pro Asp Glu Arg Lys Ala Lys Tyr Val 290 295 300 Asn Asp Leu Gly Leu Pro Glu Tyr Asp Ala His Val Leu Thr Leu Thr 305 310 315 320 Lys Glu Met Ser Asp Phe Phe Glu Gly Ala Ile Asp His Gly Ala Asp 325 330 335 Val Lys Leu Thr Ser Asn Trp Leu Met Gly Gly Val Asn Glu Tyr Leu 340 345 350 Asn Lys Asn Gln Val Glu Leu Lys Asp Thr Gln Leu Thr Pro Glu Asn 355 360 365 Leu Ala Gly Met Ile Lys Leu Ile Glu Asp Gly Thr Met Ser Ser Lys 370 375 380 Ile Ala Lys Lys Val Phe Pro Glu Leu Ala Glu Asn Gly Gly Asp Ala 385 390 395 400 Lys Gln Ile Met Glu Asp Lys Gly Leu Val Gln Ile Ser Asp Glu Ala 405 410 415 Thr Leu Leu Lys Phe Val Thr Asp Ala Leu Asp Asn Asn Pro Gln Ser 420 425 430 Ile Glu Asp Tyr Lys Asn Gly Lys Gly Lys Ala Met Gly Phe Leu Val 435 440 445 Gly Gln Ile Met Lys Ala Ser Lys Gly Gln Ala Asn Pro Gln Lys Val 450 455 460 Asn Ser Leu Leu Lys Gln Glu Leu Asp Asn Arg 465 470 475 16364PRTStaphylococcus epidermidis 16Met Leu Lys Arg Ala Asn Glu Asn Glu Glu Ala Trp Asn Asn Met Leu 1 5 10 15 Lys Asn Tyr Ser Glu Ala Tyr Pro Glu Leu Ala Glu Glu Phe Lys Leu 20 25 30 Ala Met Ser Gly Lys Leu Pro Asn Asn Tyr Ala Asp Ala Leu Pro Glu 35 40 45 Tyr Asp Leu Asn His Ser Gly Ala Ser Arg Ala Asp Ser Gly Glu Ile 50 55 60 Ile Gln Lys Leu Ser Glu Phe Val Pro Ser Phe Phe Gly Gly Ser Ala 65 70 75 80 Asp Leu Ala Gly Ser Asn Lys Ser Asn Val Lys Glu Ala Lys Asp Tyr 85 90 95 Asn Lys Asp Thr Pro Glu Gly Lys Asn Val Trp Phe Gly Val Arg Glu 100 105 110 Phe Ala Met Gly Ala Ala Ile Asn Gly Met Ala Ala His Gly Gly Leu 115 120 125 His Pro Tyr Ala Ala Thr Phe Phe Val Phe Ser Asp Tyr Leu Lys Pro 130 135 140 Ala Leu Arg Leu Ser Ser Ile Met Gly Leu Asn Ser Thr Phe Ile Phe 145 150 155 160 Thr His Asp Ser Ile Ala Val Gly Glu Asp Gly Pro Thr His Glu Pro 165 170 175 Ile Glu Gln Leu Ala Gly Leu Arg Ala Ile Pro Asn Met Asn Val Ile 180 185 190 Arg Pro Ala Asp Gly Asn Glu Thr Arg Val Ala Trp Glu Val Ala Leu 195 200 205 Glu Ser Glu Gln Thr Pro Thr Ser Leu Val Leu Thr Arg Gln Asn Leu 210 215 220 Pro Thr Leu Asp Val Asp Lys Gln Thr Val Glu Asn Gly Val Arg Lys 225 230 235 240 Gly Ala Tyr Ile Val Phe Glu Thr Glu Gln Gln Leu Glu Tyr Leu Leu 245 250 255 Leu Ala Ser Gly Ser Glu Val Asn Leu Ala Val Glu Ala Ala Lys Glu 260 265 270 Leu Glu Gln Gln Gly Lys Gly Val Arg Val Ile Ser Met Pro Asn Trp 275 280 285 Tyr Ala Phe Glu Gln Gln Ser Ser Glu Tyr Lys Glu Ser Ile Leu Pro 290 295 300 Ser Asp Val Thr Lys Arg Ile Ala Ile Glu Met Ala Ser Pro Leu Gly 305 310 315 320 Trp His Lys Tyr Val Gly Ile Glu Gly Lys Val Ile Gly Ile Asn Ser 325 330 335 Phe Gly Ala Ser Ala Pro Gly Asp Leu Val Val Glu Lys Tyr Gly Phe 340 345 350 Thr Lys Glu Asn Ile Leu Lys Gln Val Arg Ser Leu 355 360 17334PRTStaphylococcus epidermidis 17Val Glu Ser Val Arg Gly Leu Lys Ile Leu Ser Val Ile Gly Leu Leu 1 5 10 15 Phe Val Leu Ile Ala Thr Ala Ala Cys Gly Asn Asn Ser Ser Ser Asn 20 25 30 Ser Ser Lys Glu Ser Ser Lys Asp Gly Val Glu Ile Lys His Glu Glu 35 40 45 Gly Thr Thr Lys Val Pro Lys His Pro Lys Arg Val Val Val Leu Glu 50 55 60 Tyr Ser Phe Val Asp Ala Leu Val Ala Leu Asp Val Lys Pro Val Gly 65 70 75 80 Ile Ala Asp Asp Asn Lys Lys Asn Arg Ile Ile Lys Pro Leu Arg Asp 85 90 95 Lys Ile Gly Lys Tyr Thr Ser Val Gly Thr Arg Lys Pro Pro Asn Leu 100 105 110 Glu Glu Ile Ser Lys Leu Lys Pro Asp Leu Ile Ile Ala Asp Asn Asn 115 120 125 Arg His Lys Gly Ile Tyr Lys Asp Leu Asn Lys Ile Ala Pro Thr Ile 130 135 140 Glu Leu Lys Ser Phe Asp Gly Asp Tyr Asn Glu Asn Ile Asp Ala Phe 145 150 155 160 Lys Thr Ile Ser Lys Ala Leu Gly Lys Glu Glu Glu Gly Lys Lys Arg 165 170 175 Leu Glu Glu His Asp Lys Lys Ile Glu Glu Tyr Lys Lys Glu Ile Thr 180 185 190 Met Asp Lys Asn Gln Lys Val Leu Pro Ala Val Ala Ala Lys Ser Gly 195 200 205 Leu Leu Ala His Pro Ser Asn Ser Tyr Val Gly Gln Phe Leu Ser Gln 210 215 220 Leu Gly Phe Lys Glu Ala Leu Ser Asp Asp Val Thr Lys Gly Leu Ser 225 230 235 240 Lys Tyr Leu Lys Gly Pro Tyr Leu Gln Met Asn Thr Glu Thr Leu Ser 245 250 255 Gln Val Asn Pro Glu Arg Met Phe Ile Met Thr Asn Lys Ala Ser Ser 260 265 270 Asn Glu Pro Ser Leu Lys Glu Leu Glu Lys Asp Pro Val Trp Lys Lys 275 280 285 Leu Asn Ala Val Lys Asn Gln Arg Val Asp Ile Leu Asp Arg Asp Leu 290 295 300 Trp Ala Arg Ser Arg Gly Leu Ile Ser Ser Glu Glu Met Ala Lys Glu 305 310 315 320 Leu Val Glu Leu Ser Lys Thr Asp Ser Lys Lys Asp Asn Lys 325 330 18411PRTStaphylococcus epidermidis 18Met Arg Asp Lys Phe Glu Ile Thr Phe Ile Lys Asn Arg Arg Asp Leu 1 5 10 15 Ile Met Ala Lys Glu Lys Phe Asp Arg Ser Lys Glu His Ala Asn Ile 20 25 30 Gly Thr Ile Gly His Val Asp His Gly Lys Thr Thr Leu Thr Ala Ala 35 40 45 Ile Ala Thr Val Leu Ala Lys Asn Gly Asp Thr Val Ala Gln Ser Tyr 50 55 60 Asp Met Ile Asp Asn Ala Pro Glu Glu Lys Glu Arg Gly Ile Thr Ile 65 70 75 80 Asn Thr Ala His Ile Glu Tyr Gln Thr Asp Lys Arg His Tyr Ala His 85 90 95 Val Asp Cys Pro Gly His Ala Asp Tyr Val Lys Asn Met Ile Thr Gly 100 105 110 Ala Ala Gln Met Asp Gly Gly Ile Leu Val Val Ser Ala Ala Asp Gly 115 120 125 Pro Met Pro Gln Thr Arg Glu His Ile Leu Leu Ser Arg Asn Val Gly 130 135 140 Val Pro Ala Leu Val Val Phe Leu Asn Lys Val Asp Met Val Asp Asp 145 150 155 160 Glu Glu Leu Leu Glu Leu Val Glu Met Glu Val Arg Asp Leu Leu Ser 165 170 175 Glu Tyr Asp Phe Pro Gly Asp Asp Val Pro Val Ile Ala Gly Ser Ala 180 185 190 Leu Lys Ala Leu Glu Gly Asp Ala Glu Tyr Glu Gln Lys Ile Leu Asp 195 200 205 Leu Met Gln Ala Val Asp Asp Tyr Ile Pro Thr Pro Glu Arg Asp Ser 210 215 220 Asp Lys Pro Phe Met Met Pro Val Glu Asp Val Phe Ser Ile Thr Gly 225 230 235 240 Arg Gly Thr Val Ala Thr Gly Arg Val Glu Arg Gly Gln Ile Lys Val 245 250 255 Gly Glu Glu Val Glu Ile Ile Gly Met His Glu Thr Ser Lys Thr Thr 260 265 270 Val Thr Gly Val Glu Met Phe Arg Lys Leu Leu Asp Tyr Ala Glu Ala 275 280 285 Gly Asp Asn Ile Gly Ala Leu Leu Arg Gly Val Ala Arg Glu Asp Val 290 295 300 Gln Arg Gly Gln Val Leu Ala Ala Pro Gly Ser Ile Thr Pro His Thr 305 310 315 320 Lys Phe Lys Ala Glu Val Tyr Val Leu Ser Lys Asp Glu Gly Gly Arg 325 330 335 His Thr Pro Phe Phe Thr Asn Tyr Arg Pro Gln Phe Tyr Phe Arg Thr 340 345 350 Thr Asp Val Thr Gly Val Val Asn Leu Pro Glu Gly Thr Glu Met Val 355 360 365 Met Pro Gly Asp Asn Val Glu Met Thr Val Glu Leu Ile Ala Pro Ile 370 375 380 Ala Ile Glu Asp Gly Thr Arg Phe Ser Ile Arg Glu Gly Gly Arg Thr 385 390 395 400 Val Gly Ser Gly Val Val Thr Glu Ile Phe Glu 405 410 19428PRTStaphylococcus epidermidis 19Met Met Ser Phe Glu Lys Ser Ile Lys Ala Met Glu Gln Ala Glu Lys 1 5 10 15 Leu Met Pro Gly Gly Val Asn Ser Pro Val Arg Ala Phe Lys Ser Val 20 25 30 Asp Thr Pro Ala Ile Phe Met Asp His Gly Glu Gly Ser Lys Ile Tyr 35 40 45 Asp Ile Asp Gly Asn Glu Tyr Ile Asp Tyr Val Leu Ser Trp Gly Pro 50 55 60 Leu Ile Leu Gly His Lys Asn Gln Gln Val Ile Ser Lys Leu His Glu 65 70 75 80 Ala Val Asp Lys Gly Thr Ser Phe Gly Ala Ser Thr Leu Gln Glu Asn 85 90 95 Lys Leu Ala Glu Leu Val Ile Asp Arg Val Pro Ser Ile Glu Lys Val 100 105 110 Arg Met Val Ser Ser Gly Thr Glu Ala Thr Leu Asp Thr Leu Arg Leu 115 120 125 Ala Arg Gly Tyr Thr Gly Arg Asn Lys Ile Ile Lys Phe Glu Gly Cys 130 135 140 Tyr His Gly His Ser Asp Ser Leu Leu Ile Lys Ala Gly Ser Gly Val 145 150 155 160 Ala Thr Leu Gly Leu Pro Asp Ser Pro Gly Val Pro Glu Gly Ile Ala 165 170 175 Lys Asn Thr Ile Thr Val Pro Tyr Asn Asp Leu Asp Ser Leu Lys Leu 180 185 190 Ala Phe Glu Lys Tyr Gly Asp Asp Ile Ala Gly Val Ile Val Glu Pro 195 200 205 Val Ala Gly Asn Met Gly Val Val Pro Pro Val Asn Gly Phe Leu Gln 210 215 220 Gly Leu Arg Asp Ile Thr Asn Glu Tyr Gly Ala Leu Leu Ile Phe Asp 225 230 235 240 Glu Val Met Thr Gly Phe Arg Val Gly Tyr Asn Cys Ala Gln Gly Tyr 245 250 255 Phe Gly Val Thr Pro Asp Leu Thr Cys Leu Gly Lys Val Ile Gly Gly 260 265 270 Gly Leu Pro Val Gly Ala Phe Gly Gly Lys Lys Glu Ile Met Asp Tyr 275 280 285 Ile Ala Pro Val Gly Thr Ile Tyr Gln Ala Gly Thr Leu Ser Gly Asn 290 295 300 Pro Leu Ala Met Thr Ser Gly Tyr Glu Thr Leu Ser Gln Leu Thr Pro 305 310 315 320 Glu Ser Tyr Glu Tyr Phe Asn Ser Leu Gly Asp Ile Leu Glu Lys Gly 325 330 335 Leu Lys Glu Val Phe Ala Lys Tyr Asn Val Pro Ile Thr Val Asn Arg 340 345 350 Ala Gly Ser Met Ile Gly Tyr Phe Leu Asn Glu Gly Pro Val Thr Asn 355 360 365 Phe Glu Glu Ala Asn Lys Ser Asp Leu Lys Leu Phe Ser Asn Met Tyr 370 375 380 Arg Glu Met Ala Lys Glu Gly Val Tyr Ile Pro Pro Ser Gln Phe Glu 385 390

395 400 Gly Thr Phe Leu Ser Thr Ala His Thr Lys Asp Asp Ile Glu Lys Thr 405 410 415 Ile Gln Ala Phe Asp Asn Ala Leu Ser Arg Ile Val 420 425 20286PRTStaphylococcus epidermidis 20Met Pro Leu Val Ser Met Lys Glu Met Leu Ile Asp Ala Lys Glu Asn 1 5 10 15 Gly Tyr Ala Val Gly Gln Tyr Asn Leu Asn Asn Leu Glu Phe Thr Gln 20 25 30 Ala Ile Leu Glu Ala Ser Gln Glu Glu Asn Ala Pro Val Ile Leu Gly 35 40 45 Val Ser Glu Gly Ala Ala Arg Tyr Met Ser Gly Phe Tyr Thr Val Val 50 55 60 Lys Met Val Glu Gly Leu Met His Asp Leu Asn Ile Thr Ile Pro Val 65 70 75 80 Ala Ile His Leu Asp His Gly Ser Ser Phe Glu Lys Cys Lys Glu Ala 85 90 95 Ile Asp Ala Gly Phe Thr Ser Val Met Ile Asp Ala Ser His Ser Pro 100 105 110 Phe Glu Glu Asn Val Glu Ile Thr Ser Lys Val Val Glu Tyr Ala His 115 120 125 Asp Arg Gly Val Ser Val Glu Ala Glu Leu Gly Thr Val Gly Gly Gln 130 135 140 Glu Asp Asp Val Val Ala Asp Gly Val Ile Tyr Ala Asp Pro Lys Glu 145 150 155 160 Cys Gln Glu Leu Val Glu Lys Thr Gly Ile Asp Thr Leu Ala Pro Ala 165 170 175 Leu Gly Ser Val His Gly Pro Tyr Lys Gly Glu Pro Lys Leu Gly Phe 180 185 190 Lys Glu Met Glu Glu Ile Gly Ala Ser Thr Gly Leu Pro Leu Val Leu 195 200 205 His Gly Gly Thr Gly Ile Pro Thr Lys Asp Ile Gln Lys Ala Ile Pro 210 215 220 Tyr Gly Thr Ala Lys Ile Asn Val Asn Thr Glu Asn Gln Ile Ala Ser 225 230 235 240 Ala Lys Ala Val Arg Glu Val Leu Asn Asn Asp Lys Asp Val Tyr Asp 245 250 255 Pro Arg Lys Tyr Leu Gly Pro Ala Arg Glu Ala Ile Lys Glu Thr Val 260 265 270 Lys Gly Lys Ile Arg Glu Phe Gly Thr Ser Asn Arg Ala Lys 275 280 285 21468PRTStaphylococcus epidermidis 21Met Thr Gln Gln Ile Gly Val Val Gly Leu Ala Val Met Gly Lys Asn 1 5 10 15 Leu Ala Trp Asn Ile Glu Ser Arg Gly Tyr Ser Val Ser Val Tyr Asn 20 25 30 Arg Ser Arg Gln Lys Thr Asp Glu Met Val Lys Glu Ser Pro Gly Arg 35 40 45 Glu Ile Tyr Pro Thr Tyr Ser Leu Glu Glu Phe Val Glu Ser Leu Glu 50 55 60 Lys Pro Arg Lys Ile Leu Leu Met Val Lys Ala Gly Pro Ala Thr Asp 65 70 75 80 Ala Thr Ile Asp Gly Leu Leu Pro Leu Leu Asp Asp Asp Asp Ile Leu 85 90 95 Ile Asp Gly Gly Asn Thr Asn Tyr Gln Asp Thr Ile Arg Arg Asn Lys 100 105 110 Ala Leu Ala Glu Ser Ser Ile Asn Phe Ile Gly Met Gly Val Ser Gly 115 120 125 Gly Glu Ile Gly Ala Leu Thr Gly Pro Ser Leu Met Pro Gly Gly Gln 130 135 140 Lys Asp Ala Tyr Asn Lys Val Ser Asp Ile Leu Asp Ala Ile Ala Ala 145 150 155 160 Lys Ala Gln Asp Gly Ala Ser Cys Val Thr Tyr Ile Gly Pro Asn Gly 165 170 175 Ala Gly His Tyr Val Lys Met Val His Asn Gly Ile Glu Tyr Ala Asp 180 185 190 Met Gln Leu Ile Ala Glu Ser Tyr Ala Met Met Lys Asp Leu Leu Gly 195 200 205 Met Ser His Lys Glu Ile Ser Gln Thr Phe Lys Glu Trp Asn Ala Gly 210 215 220 Glu Leu Glu Ser Tyr Leu Ile Glu Ile Thr Gly Asp Ile Phe Asn Lys 225 230 235 240 Leu Asp Asp Asp Asn Glu Ala Leu Val Glu Lys Ile Leu Asp Thr Ala 245 250 255 Gly Gln Lys Gly Thr Gly Lys Trp Thr Ser Ile Asn Ala Leu Glu Leu 260 265 270 Gly Val Pro Leu Thr Ile Ile Thr Glu Ser Val Phe Ala Arg Phe Ile 275 280 285 Ser Ser Ile Lys Glu Glu Arg Val Thr Ala Ser Lys Ser Leu Lys Gly 290 295 300 Pro Lys Ala His Phe Glu Gly Asp Lys Lys Thr Phe Leu Glu Lys Ile 305 310 315 320 Arg Lys Ala Leu Tyr Met Ser Lys Ile Cys Ser Tyr Ala Gln Gly Phe 325 330 335 Ala Gln Met Arg Lys Ala Ser Glu Asp Asn Glu Trp Asn Leu Lys Leu 340 345 350 Gly Glu Leu Ala Met Ile Trp Arg Glu Gly Cys Ile Ile Arg Ala Gln 355 360 365 Phe Leu Gln Lys Ile Lys Asp Ala Tyr Asp Asn Asn Glu Asn Leu Gln 370 375 380 Asn Leu Leu Leu Asp Pro Tyr Phe Lys Asn Ile Val Met Glu Tyr Gln 385 390 395 400 Asp Ala Leu Arg Glu Val Val Ala Thr Ser Val Tyr Asn Gly Val Pro 405 410 415 Thr Pro Gly Phe Ser Ala Ser Ile Asn Tyr Tyr Asp Ser Tyr Arg Ser 420 425 430 Glu Asp Leu Pro Ala Asn Leu Ile Gln Ala Gln Arg Asp Tyr Phe Gly 435 440 445 Ala His Thr Tyr Glu Arg Lys Asp Arg Glu Gly Ile Phe His Thr Gln 450 455 460 Trp Val Glu Glu 465 22262PRTStaphylococcus epidermidis 22Met Lys Arg Leu Leu Leu Cys Ile Val Ala Leu Val Phe Val Leu Ala 1 5 10 15 Ala Cys Gly Asn Asn Ser Ser Asn Asn Lys Asp Asn Gln Ser Ser Ser 20 25 30 Lys Asp Lys Asp Thr Leu Arg Val Gly Thr Glu Gly Thr Tyr Ala Pro 35 40 45 Phe Thr Tyr His Asn Lys Lys Asp Gln Leu Thr Gly Tyr Asp Ile Asp 50 55 60 Val Ile Lys Ala Val Ala Lys Glu Glu Asn Leu Lys Leu Lys Phe Asn 65 70 75 80 Glu Thr Ser Trp Asp Ser Met Phe Ala Gly Leu Asp Ala Gly Arg Phe 85 90 95 Asp Val Ile Ala Asn Gln Val Gly Val Asn Lys Asp Arg Glu Lys Lys 100 105 110 Tyr Lys Phe Ser Glu Pro Tyr Thr Tyr Ser Ser Ala Val Leu Val Val 115 120 125 Arg Glu Asn Glu Lys Asp Ile Thr Ser Phe Asn Asp Val Lys Gly Lys 130 135 140 Lys Leu Ala Gln Thr Phe Thr Ser Asn Tyr Gly Gln Leu Ala Lys Asp 145 150 155 160 Lys Gly Ala Asp Ile Thr Lys Val Asp Gly Phe Asn Gln Ser Met Asp 165 170 175 Leu Leu Leu Ser Lys Arg Val Asp Gly Thr Phe Asn Asp Ser Leu Ser 180 185 190 Tyr Leu Asp Tyr Arg Lys Gln Lys Pro Asn Ala Lys Ile Lys Ala Ile 195 200 205 Lys Gly His Ala Glu Gln Asn Lys Ser Ala Phe Ala Phe Ser Lys Lys 210 215 220 Val Asp Glu Lys Thr Ile Glu Lys Phe Asn Lys Gly Leu Glu Lys Ile 225 230 235 240 Arg Asp Asn Gly Glu Leu Ala Lys Ile Gly Lys Lys Trp Phe Gly Gln 245 250 255 Asp Val Ser Lys Pro Glu 260 23310PRTStaphylococcus epidermidis 23Val Tyr Met Thr Lys Tyr Val Leu Lys Arg Leu Cys Tyr Met Phe Val 1 5 10 15 Ser Leu Phe Ile Val Ile Thr Ile Thr Phe Phe Leu Met Lys Leu Met 20 25 30 Pro Gly Ser Pro Phe Asn Asp Thr Lys Leu Asn Ala Gln Gln Lys Glu 35 40 45 Ile Leu Asn Glu Lys Tyr Gly Leu Asn Asp Pro Val Ala Leu Gln Tyr 50 55 60 Val Asn Tyr Leu Lys Asn Val Val Thr Gly Asp Phe Gly Asn Ser Phe 65 70 75 80 Gln Tyr His Asn Met Pro Val Trp Asp Leu Val Lys Pro Arg Leu Ile 85 90 95 Pro Ser Met Glu Met Gly Ile Thr Ala Met Val Ile Gly Val Val Leu 100 105 110 Gly Leu Val Leu Gly Val Ala Ala Ala Thr Lys Gln Asn Thr Trp Val 115 120 125 Asp Tyr Thr Thr Thr Ile Ile Ser Val Ile Ala Val Ser Val Pro Ser 130 135 140 Phe Val Leu Ala Val Leu Leu Gln Tyr Val Phe Ala Val Lys Leu Glu 145 150 155 160 Trp Phe Pro Val Ala Gly Trp Glu Gly Phe Ser Thr Ala Ile Leu Pro 165 170 175 Ser Leu Ala Leu Ser Ala Thr Val Leu Ala Thr Val Ala Arg Tyr Ile 180 185 190 Arg Ala Glu Met Ile Glu Val Leu Ser Ser Asp Tyr Ile Leu Leu Ala 195 200 205 Arg Ala Lys Gly Asn Ser Thr Leu Lys Val Leu Phe Gly His Ala Leu 210 215 220 Arg Asn Ala Leu Ile Pro Ile Ile Thr Ile Ile Val Pro Met Leu Ala 225 230 235 240 Gly Ile Leu Thr Gly Thr Leu Thr Ile Glu Asn Ile Phe Gly Val Pro 245 250 255 Gly Leu Gly Asp Gln Phe Val Arg Ser Ile Thr Thr Asn Asp Phe Ser 260 265 270 Val Ile Met Ala Thr Thr Ile Leu Phe Ser Thr Leu Phe Ile Val Ser 275 280 285 Ile Phe Ile Val Asp Ile Leu Tyr Gly Val Ile Asp Pro Arg Ile Arg 290 295 300 Val Gln Gly Gly Lys Lys 305 310 24514PRTStaphylococcus epidermidis 24Val Asn Glu Glu Gln Arg Lys Ala Gly Thr Ile Asn Ile Leu Ala Glu 1 5 10 15 Arg Asp Arg Lys Ala Glu Lys Asp Tyr Ser Lys Tyr Phe Glu Gln Val 20 25 30 Tyr Gln Pro Pro Ser Leu Lys Glu Ala Lys Lys Arg Gly Lys Gln Glu 35 40 45 Val Gln Tyr Asn Arg Asp Phe His Ile Asp Glu Lys Tyr Lys Gly Met 50 55 60 Gly Lys Gly Arg Thr Phe Leu Ile Lys Thr Tyr Gly Cys Gln Met Asn 65 70 75 80 Ala His Asp Thr Glu Val Met Ala Gly Ile Leu Asn Ala Leu Gly Tyr 85 90 95 Ser Ala Thr Ser Asp Ile Asn Glu Ala Asp Val Ile Leu Ile Asn Thr 100 105 110 Cys Ala Ile Arg Glu Asn Ala Glu Asn Lys Val Phe Ser Glu Ile Gly 115 120 125 Asn Leu Lys His Leu Lys Lys Glu Arg Pro Asp Cys Leu Ile Gly Val 130 135 140 Cys Gly Cys Met Ser Gln Glu Glu Ser Val Val Asn Lys Ile Leu Lys 145 150 155 160 Ser Tyr Gln Asn Val Asp Met Val Phe Gly Thr His Asn Ile His His 165 170 175 Leu Pro Glu Ile Leu Glu Glu Ala Tyr Leu Ser Lys Ala Met Val Val 180 185 190 Glu Val Trp Ser Lys Glu Gly Asp Ile Ile Glu Asn Leu Pro Lys Val 195 200 205 Arg Asp Gly His Ile Lys Ala Trp Val Asn Ile Met Tyr Gly Cys Asp 210 215 220 Lys Phe Cys Thr Tyr Cys Ile Val Pro Phe Thr Arg Gly Lys Glu Arg 225 230 235 240 Ser Arg Arg Pro Glu Asp Ile Ile Asp Glu Val Arg Glu Leu Ala Arg 245 250 255 Glu Gly Tyr Gln Glu Ile Thr Leu Leu Gly Gln Asn Val Asn Ser Tyr 260 265 270 Gly Lys Asp Ile Glu Gly Leu Asp Tyr Glu Leu Gly Asp Leu Leu Glu 275 280 285 Asp Ile Ser Lys Ile Asp Ile Pro Arg Val Arg Phe Thr Thr Ser His 290 295 300 Pro Trp Asp Phe Thr Asp Arg Met Ile Glu Val Ile Ala Lys Gly Gly 305 310 315 320 Asn Ile Val Pro His Ile His Leu Pro Val Gln Ser Gly Asn Asn Gln 325 330 335 Val Leu Lys Ile Met Gly Arg Lys Tyr Thr Arg Glu Ser Tyr Leu Asp 340 345 350 Leu Val Ser Arg Ile Lys Glu Ala Ile Pro Asn Val Ala Leu Thr Thr 355 360 365 Asp Ile Ile Val Gly Tyr Pro Asn Glu Thr Val Glu Gln Phe Glu Glu 370 375 380 Thr Leu Ser Leu Tyr Asp Asp Val Gln Phe Glu His Ala Tyr Thr Tyr 385 390 395 400 Leu Tyr Ser Gln Arg Asp Gly Thr Pro Ala Ala Lys Met Lys Asp Asn 405 410 415 Val Pro Leu Glu Val Lys Lys Glu Arg Leu Gln Arg Leu Asn Lys Lys 420 425 430 Val Gly Ile Tyr Ser Gln Gln Ala Met Ser Gln Tyr Glu Gly Lys Ile 435 440 445 Val Thr Val Leu Cys Glu Gly Ser Ser Lys Lys Asp Glu Asn Val Leu 450 455 460 Ala Gly Tyr Thr Asp Lys Asn Lys Leu Val Asn Phe Lys Gly Pro Arg 465 470 475 480 Glu Ser Ile Gly Lys Leu Val Asp Val Lys Ile Asp Glu Ala Lys Gln 485 490 495 Tyr Ser Leu Asn Gly Thr Phe Ile Gln Glu His Gln Arg Ser Met Val 500 505 510 Thr Gln 25394PRTStaphylococcus epidermidis 25Met Ser Arg Ile Val Leu Ala Glu Ala Tyr Arg Thr Pro Ile Gly Val 1 5 10 15 Phe Gly Gly Val Phe Lys Asp Ile Pro Ala Tyr Glu Leu Gly Ala Thr 20 25 30 Val Ile Arg Gln Ile Leu Glu His Ser Gln Ile Asp Pro Asn Glu Ile 35 40 45 Asn Glu Val Ile Leu Gly Asn Val Leu Gln Ala Gly Gln Gly Gln Asn 50 55 60 Pro Ala Arg Ile Ala Ala Ile His Gly Gly Val Pro Glu Ala Val Pro 65 70 75 80 Ser Phe Thr Val Asn Lys Val Cys Gly Ser Gly Leu Lys Ala Ile Gln 85 90 95 Leu Ala Tyr Gln Ser Ile Val Ala Gly Asp Asn Glu Ile Val Ile Ala 100 105 110 Gly Gly Met Glu Ser Met Ser Gln Ser Pro Met Leu Leu Lys Asn Ser 115 120 125 Arg Phe Gly Phe Lys Met Gly Asn Gln Thr Leu Glu Asp Ser Met Ile 130 135 140 Ala Asp Gly Leu Thr Asp Lys Phe Asn Asp Tyr His Met Gly Ile Thr 145 150 155 160 Ala Glu Asn Leu Val Glu Gln Tyr Gln Ile Ser Arg Lys Glu Gln Asp 165 170 175 Gln Phe Ala Phe Asp Ser Gln Gln Lys Ala Ser Arg Ala Gln Gln Ala 180 185 190 Gly Val Phe Asp Ala Glu Ile Val Pro Val Glu Val Pro Gln Arg Lys 195 200 205 Gly Asp Pro Leu Ile Ile Ser Gln Asp Glu Gly Ile Arg Pro Gln Thr 210 215 220 Thr Ile Asp Lys Leu Ala Gln Leu Arg Pro Ala Phe Lys Lys Asp Gly 225 230 235 240 Ser Val Thr Ala Gly Asn Ala Ser Gly Ile Asn Asp Gly Ala Ala Ala 245 250 255 Met Leu Val Met Thr Glu Asp Lys Ala Lys Ala Leu Gly Leu Gln Pro 260 265 270 Ile Ala Val Leu Asp Ser Phe Gly Ala Ser Gly Val Ala Pro Ser Ile 275 280 285 Met Gly Ile Gly Pro Val Glu Ala Ile His Lys Ala Leu Lys Arg Ser 290 295 300 Asn Lys Val Ile Asn Asp Val Asp Ile Phe Glu Leu Asn Glu Ala Phe 305 310 315 320 Ala Ala Gln Ser Ile Ala Val Asn Arg Glu Leu Gln Leu Pro Gln Asp 325 330 335 Lys Val Asn Val Asn Gly Gly Ala Ile Ala Leu Gly His Pro Ile Gly 340 345 350 Ala Ser Gly Ala Arg Thr Leu Val Ser Leu Leu His Gln Leu Ser Asp 355 360 365 Ala Lys Pro Thr Gly Val Ala Ser Leu Cys Ile Gly Gly Gly Gln Gly 370 375 380 Ile Ala Thr Val Val Ser Lys Tyr Glu Val 385 390 26292PRTStaphylococcus epidermidis 26Met Ala Ile Ser Ala Lys Leu Val Lys Glu Leu Arg Glu Lys Thr Gly 1

5 10 15 Ala Gly Met Met Asp Cys Lys Lys Ala Leu Thr Glu Thr Asp Gly Asp 20 25 30 Ile Asp Lys Ala Ile Asp Tyr Leu Arg Glu Lys Gly Ile Ala Lys Ala 35 40 45 Ala Lys Lys Ala Asp Arg Ile Ala Ala Glu Gly Leu Val His Val Glu 50 55 60 Val Lys Asp Asn Glu Ala Ala Ile Val Glu Ile Asn Ser Glu Thr Asp 65 70 75 80 Phe Val Ala Arg Asn Glu Gly Phe Gln Glu Leu Val Lys Glu Ile Ala 85 90 95 Asn His Ile Leu Asp Ser Lys Val Glu Thr Val Asp Ala Leu Met Glu 100 105 110 Ser Lys Leu Ser Ser Gly Lys Thr Val Asp Glu Arg Met Lys Glu Ala 115 120 125 Ile Ser Thr Ile Gly Glu Lys Leu Ser Ile Arg Arg Phe Ser Ile Arg 130 135 140 Thr Lys Thr Asp Asn Asp Ala Phe Gly Ala Tyr Leu His Met Gly Gly 145 150 155 160 Arg Ile Gly Val Leu Thr Val Val Glu Gly Thr Thr Asp Glu Glu Ala 165 170 175 Ala Lys Asp Val Ala Met His Ile Ala Ala Ile Asn Pro Lys Tyr Val 180 185 190 Ser Ser Glu Gln Val Ser Glu Glu Glu Ile Asn His Glu Arg Glu Val 195 200 205 Leu Lys Gln Gln Ala Leu Asn Glu Gly Lys Pro Glu Lys Ile Val Glu 210 215 220 Lys Met Val Glu Gly Arg Leu Arg Lys Tyr Leu Gln Glu Ile Cys Ala 225 230 235 240 Val Asp Gln Asn Phe Val Lys Asn Pro Asp Glu Thr Val Glu Ala Phe 245 250 255 Leu Lys Ala Lys Gly Gly Lys Leu Thr Asp Phe Val Arg Tyr Glu Val 260 265 270 Gly Glu Gly Met Glu Lys Arg Glu Glu Asn Phe Ala Glu Glu Val Lys 275 280 285 Gly Gln Met Lys 290 27310PRTStaphylococcus epidermidis 27Met Thr Glu Val Asp Phe Asp Val Ala Ile Ile Gly Ala Gly Pro Ala 1 5 10 15 Gly Met Thr Ala Ala Val Tyr Ala Ser Arg Ala Asn Leu Lys Thr Val 20 25 30 Met Ile Glu Arg Gly Met Pro Gly Gly Gln Met Ala Asn Thr Glu Glu 35 40 45 Val Glu Asn Phe Pro Gly Phe Glu Met Ile Thr Gly Pro Asp Leu Ser 50 55 60 Thr Lys Met Phe Glu His Ala Lys Lys Phe Gly Ala Glu Tyr Gln Tyr 65 70 75 80 Gly Asp Ile Lys Ser Val Glu Asp Lys Gly Asp Tyr Lys Val Ile Asn 85 90 95 Leu Gly Asn Lys Glu Ile Thr Ala His Ala Val Ile Ile Ser Thr Gly 100 105 110 Ala Glu Tyr Lys Lys Ile Gly Val Pro Gly Glu Gln Glu Leu Gly Gly 115 120 125 Arg Gly Val Ser Tyr Cys Ala Val Cys Asp Gly Ala Phe Phe Lys Asn 130 135 140 Lys Arg Leu Phe Val Ile Gly Gly Gly Asp Ser Ala Val Glu Glu Gly 145 150 155 160 Thr Phe Leu Thr Lys Phe Ala Asp Lys Val Thr Ile Val His Arg Arg 165 170 175 Asp Glu Leu Arg Ala Gln Asn Ile Leu Gln Glu Arg Ala Phe Lys Asn 180 185 190 Asp Lys Val Asp Phe Ile Trp Ser His Thr Leu Lys Thr Ile Asn Glu 195 200 205 Lys Asp Gly Lys Val Gly Ser Val Thr Leu Glu Ser Thr Lys Asp Gly 210 215 220 Ala Glu Gln Thr Tyr Asp Ala Asp Gly Val Phe Ile Tyr Ile Gly Met 225 230 235 240 Lys Pro Leu Thr Ala Pro Phe Lys Asn Leu Gly Ile Thr Asn Asp Ala 245 250 255 Gly Tyr Ile Val Thr Gln Asp Asp Met Ser Thr Lys Val Arg Gly Ile 260 265 270 Phe Ala Ala Gly Asp Val Arg Asp Lys Gly Leu Arg Gln Ile Val Thr 275 280 285 Ala Thr Gly Asp Gly Ser Ile Ala Ala Gln Ser Ala Ala Asp Tyr Ile 290 295 300 Thr Glu Leu Lys Asp Asn 305 310 28465PRTStaphylococcus epidermidis 28Met Thr Gln Lys Tyr Arg Tyr Pro Thr Phe Leu Glu Ser Ile Ser Thr 1 5 10 15 Ile Leu Val Met Val Val Val Val Val Ile Gly Phe Val Phe Phe Asn 20 25 30 Val Pro Ile Gln Ile Leu Leu Leu Ile Ser Ser Ala Tyr Ala Ala Leu 35 40 45 Ile Ala His Arg Val Gly Leu Lys Trp Lys Asp Leu Glu Glu Gly Ile 50 55 60 Thr His Arg Leu Ser Thr Ala Met Pro Ala Ile Phe Ile Ile Leu Ala 65 70 75 80 Val Gly Ile Ile Val Gly Ser Trp Met Tyr Ser Gly Thr Val Pro Ala 85 90 95 Leu Ile Tyr Tyr Gly Leu Lys Phe Leu Asn Pro Ser Tyr Leu Leu Val 100 105 110 Ser Ala Phe Ile Ile Ser Ala Met Thr Ser Ile Ala Thr Gly Thr Ala 115 120 125 Trp Gly Ser Ala Ser Thr Ala Gly Ile Ala Leu Ile Ser Ile Ala Asn 130 135 140 Gln Leu Gly Val Pro Ala Gly Met Ala Ala Gly Ala Ile Ile Ala Gly 145 150 155 160 Ala Val Phe Gly Asp Lys Met Ser Pro Leu Ser Asp Thr Thr Asn Leu 165 170 175 Ala Ala Leu Val Thr Lys Val Asn Ile Phe Ala His Ile Lys Ser Met 180 185 190 Met Trp Thr Thr Ile Pro Ala Ser Ile Ile Gly Leu Ala Ile Trp Phe 195 200 205 Ile Val Gly Leu Gln Tyr Lys Gly Asp Ala Asn Thr Gln Gln Ile Gln 210 215 220 Asn Leu Leu Lys Glu Leu Thr Thr Ile Tyr Asn Leu Asn Phe Trp Val 225 230 235 240 Trp Ile Pro Leu Ile Ile Ile Val Leu Cys Leu Ile Phe Arg Ile Ser 245 250 255 Thr Val Pro Ser Met Leu Ile Ser Ser Ile Ser Ala Leu Val Ile Gly 260 265 270 Thr Phe Asp His Gln Phe Asn Met Lys Asp Gly Phe Lys Ala Ser Phe 275 280 285 Asp Gly Phe Asn His Thr Met Leu His Gln Ser His Ile Ser Asp Asn 290 295 300 Ala Lys Thr Leu Ile Glu Gln Gly Gly Met Met Ser Met Thr Gln Ile 305 310 315 320 Ile Val Thr Ile Phe Cys Gly Tyr Ala Phe Ala Gly Ile Val Glu Lys 325 330 335 Ala Gly Cys Leu Asp Val Ile Leu Glu Thr Ile Ala Lys Gly Val Lys 340 345 350 Ser Val Gly Thr Leu Ile Leu Ile Thr Val Val Cys Ser Ile Met Leu 355 360 365 Val Phe Ala Ala Gly Val Ala Ser Ile Val Ile Ile Met Val Gly Val 370 375 380 Leu Met Lys Asp Met Phe Glu Lys Met Asn Val Ser Lys Ser Val Leu 385 390 395 400 Ser Arg Thr Leu Glu Asp Ser Ser Thr Met Val Leu Pro Leu Ile Pro 405 410 415 Trp Gly Thr Ser Gly Ile Tyr Tyr Ala His Gln Leu Asn Val Ser Val 420 425 430 Asp Gln Phe Phe Ile Trp Ala Ile Pro Cys Tyr Leu Cys Ala Phe Ile 435 440 445 Ala Ile Ile Tyr Gly Phe Thr Gly Ile Gly Ile Lys Lys Ile Ser Arg 450 455 460 Lys 465 29235PRTStaphylococcus epidermidis 29Met Lys Lys Thr Val Ile Ala Ser Thr Leu Ala Val Ser Leu Gly Ile 1 5 10 15 Ala Gly Tyr Gly Leu Ser Gly His Glu Ala His Ala Ser Glu Thr Thr 20 25 30 Asn Val Asp Lys Ala His Leu Val Asp Leu Ala Gln His Asn Pro Glu 35 40 45 Glu Leu Asn Ala Lys Pro Val Gln Ala Gly Ala Tyr Asp Ile His Phe 50 55 60 Val Asp Asn Gly Tyr Gln Tyr Asn Phe Thr Ser Asn Gly Ser Glu Trp 65 70 75 80 Ser Trp Ser Tyr Ala Val Ala Gly Ser Asp Ala Asp Tyr Thr Glu Ser 85 90 95 Ser Ser Asn Gln Glu Val Ser Ala Asn Thr Gln Ser Ser Asn Thr Asn 100 105 110 Val Gln Ala Val Ser Ala Pro Thr Ser Ser Glu Ser Arg Ser Tyr Ser 115 120 125 Thr Ser Thr Thr Ser Tyr Ser Ala Pro Ser His Asn Tyr Ser Ser His 130 135 140 Ser Ser Ser Val Arg Leu Ser Asn Gly Asn Thr Ala Gly Ser Val Gly 145 150 155 160 Ser Tyr Ala Ala Ala Gln Met Ala Ala Arg Thr Gly Val Ser Ala Ser 165 170 175 Thr Trp Glu His Ile Ile Ala Arg Glu Ser Asn Gly Gln Leu His Ala 180 185 190 Arg Asn Ala Ser Gly Ala Ala Gly Leu Phe Gln Thr Met Pro Gly Trp 195 200 205 Gly Ser Thr Gly Ser Val Asn Asp Gln Ile Asn Ala Ala Tyr Lys Ala 210 215 220 Tyr Lys Ala Gln Gly Leu Ser Ala Trp Gly Met 225 230 235 30296PRTStaphylococcus epidermidis 30Met Asn Lys Glu Gln Leu Glu Lys Met Thr His Gly Lys Gly Phe Ile 1 5 10 15 Ala Ala Leu Asp Gln Ser Gly Gly Ser Thr Pro Lys Ala Leu Lys Glu 20 25 30 Tyr Gly Val Asn Glu Asp Gln Tyr Ser Asn Glu Asp Glu Met Phe Gln 35 40 45 Leu Val His Asp Met Arg Thr Arg Val Val Thr Ser Pro Ser Phe Ser 50 55 60 Pro Asp Lys Ile Leu Gly Ala Ile Leu Phe Glu Gln Thr Met Asp Arg 65 70 75 80 Glu Val Glu Gly Lys Tyr Thr Gly Asp Tyr Leu Ala Asp Lys Gly Val 85 90 95 Val Pro Phe Leu Lys Val Asp Lys Gly Leu Ala Glu Glu Lys Asn Gly 100 105 110 Val Gln Leu Met Lys Pro Ile Asp Asp Leu Asp Glu Thr Leu Asp Arg 115 120 125 Ala Asn Glu Arg His Ile Phe Gly Thr Lys Met Arg Ser Asn Ile Leu 130 135 140 Glu Leu Asn Glu Gln Gly Ile Lys Asp Val Val Glu Gln Gln Phe Glu 145 150 155 160 Phe Ala Lys Lys Ile Ile Ala Lys Gly Leu Val Pro Ile Ile Glu Pro 165 170 175 Glu Val Asn Ile Asn Ala Lys Asp Lys Ser Glu Ile Glu Lys Val Leu 180 185 190 Lys Ala Glu Ile Lys Lys Gly Leu Asp Ser Leu Asn Asp Asp Gln Leu 195 200 205 Val Met Leu Lys Leu Thr Ile Pro Thr Glu Ala Asn Leu Tyr Lys Asp 210 215 220 Leu Ala Asp His Pro Asn Val Val Arg Val Val Val Leu Ser Gly Gly 225 230 235 240 Tyr Ser Arg Asp Glu Ala Asn Lys Leu Leu Lys Asp Asn Asp Glu Leu 245 250 255 Ile Ala Ser Phe Ser Arg Ala Leu Ala Ser Asp Leu Arg Ala Ser Gln 260 265 270 Ser Gln Glu Glu Phe Asp Lys Ala Leu Gly Asp Ala Val Asp Ser Ile 275 280 285 Tyr Asp Ala Ser Val Asn Lys Asn 290 295 31263PRTStaphylococcus epidermidis 31Leu Lys Glu Arg Phe Ile Lys Lys Thr His Tyr Leu Asp Tyr Gln Phe 1 5 10 15 Asp Glu Pro Thr Asp Ile Lys Leu Gly Phe Thr Thr Arg Glu Asn Gly 20 25 30 Leu Ser Pro Tyr Pro Asn His Ser Phe Asn Met Ala Arg Tyr Ile Ser 35 40 45 Asp Ser Ala His His Ile Thr His His Gln Asp Ile Leu Ala Asn Leu 50 55 60 Ile Gly Tyr Pro Arg Asp Glu Trp Val Phe Pro Ile Gln Thr His Asp 65 70 75 80 Ser Arg Ile Val Glu Val Thr Ser Glu His Lys Gly Thr Asn Ile Asp 85 90 95 Glu Leu Thr Asp Asp Leu His Gly Ile Asp Gly Met Tyr Thr Phe Asp 100 105 110 Ser His Ile Leu Leu Thr Met Cys Tyr Ala Asp Cys Val Pro Val Tyr 115 120 125 Phe Tyr Ser Glu Pro His Gly Tyr Ile Gly Leu Ala His Ala Gly Trp 130 135 140 Arg Gly Thr Tyr Gly Gln Ile Val Lys Asp Met Leu Lys Lys Val Asp 145 150 155 160 Phe Asp Tyr Glu Asp Leu Lys Ile Val Ile Gly Pro Ala Thr Ser Asn 165 170 175 Ser Tyr Glu Ile Asn Asp Asp Ile Lys Asn Lys Phe Glu Glu Leu Thr 180 185 190 Ile Asp Ser Thr Leu Tyr Ile Glu Thr Arg Gly Lys Asn Gln His Gly 195 200 205 Ile Asp Leu Lys Asn Ala Asn Ala Leu Leu Leu Glu Glu Ala Gly Val 210 215 220 Pro Ser Lys Asn Ile Tyr Val Thr Glu Tyr Ala Thr Ser Glu Asn Leu 225 230 235 240 Asp Leu Phe Phe Ser Tyr Arg Val Glu Lys Gly Gln Thr Gly Arg Met 245 250 255 Leu Ala Phe Ile Gly Arg Lys 260 3210203PRTStaphylococcus epidermidis 32Met Lys Ser Lys Pro Lys Leu Asn Gly Arg Asn Ile Cys Ser Phe Leu 1 5 10 15 Leu Ser Lys Cys Met Ser Tyr Ser Leu Ser Lys Leu Ser Thr Leu Lys 20 25 30 Thr Tyr Asn Phe Gln Ile Thr Ser Asn Asn Lys Glu Lys Thr Ser Arg 35 40 45 Ile Gly Val Ala Ile Ala Leu Asn Asn Arg Asp Lys Leu Gln Lys Phe 50 55 60 Ser Ile Arg Lys Tyr Ala Ile Gly Thr Phe Ser Thr Val Ile Ala Thr 65 70 75 80 Leu Val Phe Met Gly Ile Asn Thr Asn His Ala Ser Ala Asp Glu Leu 85 90 95 Asn Gln Asn Gln Lys Leu Ile Lys Gln Leu Asn Gln Thr Asp Asp Asp 100 105 110 Asp Ser Asn Thr His Ser Gln Glu Ile Glu Asn Asn Lys Gln Asn Ser 115 120 125 Ser Gly Gln Thr Glu Ser Leu Arg Ser Ser Thr Ser Gln Asn Gln Ala 130 135 140 Asn Ala Arg Leu Ser Asp Gln Phe Lys Asp Thr Asn Glu Thr Ser Gln 145 150 155 160 Gln Leu Pro Thr Asn Val Ser Asp Asp Ser Ile Asn Gln Ser His Ser 165 170 175 Glu Ala Asn Met Asn Asn Glu Pro Leu Lys Val Asp Asn Ser Thr Met 180 185 190 Gln Ala His Ser Lys Ile Val Ser Asp Ser Asp Gly Asn Ala Ser Glu 195 200 205 Asn Lys His His Lys Leu Thr Glu Asn Val Leu Ala Glu Ser Arg Ala 210 215 220 Ser Lys Asn Asp Lys Glu Lys Glu Asn Leu Gln Glu Lys Asp Lys Ser 225 230 235 240 Gln Gln Val His Pro Pro Leu Asp Lys Asn Ala Leu Gln Ala Phe Phe 245 250 255 Asp Ala Ser Tyr His Asn Tyr Arg Met Ile Asp Arg Asp Arg Ala Asp 260 265 270 Ala Thr Glu Tyr Gln Lys Val Lys Ser Thr Phe Asp Tyr Val Asn Asp 275 280 285 Leu Leu Gly Asn Asn Gln Asn Ile Pro Ser Glu Gln Leu Val Ser Ala 290 295 300 Tyr Gln Gln Leu Glu Lys Ala Leu Glu Leu Ala Arg Thr Leu Ser Gln 305 310 315 320 Arg Ser Thr Thr Glu Lys Arg Gly Arg Arg Ser Thr Arg Ser Val Val 325 330 335 Glu Asn Arg Ser Ser Arg Ser Asp Tyr Leu Asp Ala Arg Thr Glu Tyr 340 345 350 Tyr Val Ser Lys Asp Asp Asp Asp Ser Gly Phe Pro Pro Gly Thr Phe 355 360 365 Phe His Ala Ser Asn Arg Arg Trp Pro Tyr Asn Leu Pro Arg Ser Arg 370 375 380 Asn Ile Leu Arg Ala Ser Asp Val Gln Gly Asn Ala Tyr Ile Thr Thr 385 390 395 400 Lys Arg Leu Lys Asp Gly Tyr Gln Trp Asp Ile Leu Phe Asn Ser Asn 405 410 415 His Lys Gly His Glu Tyr Met Tyr Tyr

Trp Phe Gly Leu Pro Ser Asp 420 425 430 Gln Thr Pro Thr Gly Pro Val Thr Phe Thr Ile Ile Asn Arg Asp Gly 435 440 445 Ser Ser Thr Ser Thr Gly Gly Val Gly Phe Gly Ser Gly Ala Pro Leu 450 455 460 Pro Gln Phe Trp Arg Ser Ala Gly Ala Ile Asn Ser Ser Val Ala Asn 465 470 475 480 Asp Phe Lys His Gly Ser Ala Thr Asn Tyr Ala Phe Tyr Asp Gly Val 485 490 495 Asn Asn Phe Ser Asp Phe Ala Arg Gly Gly Glu Leu Tyr Phe Asp Arg 500 505 510 Glu Gly Ala Thr Gln Thr Asn Lys Tyr Tyr Gly Asp Glu Asn Phe Ala 515 520 525 Leu Leu Asn Ser Glu Lys Pro Asp Gln Ile Arg Gly Leu Asp Thr Ile 530 535 540 Tyr Ser Phe Lys Gly Ser Gly Asp Val Ser Tyr Arg Ile Ser Phe Lys 545 550 555 560 Thr Gln Gly Ala Pro Thr Ala Arg Leu Tyr Tyr Ala Ala Gly Ala Arg 565 570 575 Ser Gly Glu Tyr Arg Gln Ala Thr Asn Tyr Asn Gln Leu Tyr Val Glu 580 585 590 Pro Tyr Lys Asn Tyr Arg Asn Arg Val Gln Ser Asn Val Gln Val Lys 595 600 605 Asn Arg Thr Leu His Leu Lys Arg Thr Ile Arg Gln Phe Asp Pro Thr 610 615 620 Leu Gln Arg Thr Thr Asp Val Pro Ile Leu Asp Ser Asp Gly Ser Gly 625 630 635 640 Ser Ile Asp Ser Val Tyr Asp Pro Leu Ser Tyr Val Lys Asn Val Thr 645 650 655 Gly Thr Val Leu Gly Ile Tyr Pro Ser Tyr Leu Pro Tyr Asn Gln Glu 660 665 670 Arg Trp Gln Gly Ala Asn Ala Met Asn Ala Tyr Gln Ile Glu Glu Leu 675 680 685 Phe Ser Gln Glu Asn Leu Gln Asn Ala Ala Arg Ser Gly Arg Pro Ile 690 695 700 Gln Phe Leu Val Gly Phe Asp Val Glu Asp Ser His His Asn Pro Glu 705 710 715 720 Thr Leu Leu Pro Val Asn Leu Tyr Val Lys Pro Glu Leu Lys His Thr 725 730 735 Ile Glu Leu Tyr His Asp Asn Glu Lys Gln Asn Arg Lys Glu Phe Ser 740 745 750 Val Ser Lys Arg Ala Gly His Gly Val Phe Gln Ile Met Ser Gly Thr 755 760 765 Leu His Asn Thr Val Gly Ser Gly Ile Leu Pro Tyr Gln Gln Glu Ile 770 775 780 Arg Ile Lys Leu Thr Ser Asn Glu Pro Ile Lys Asp Ser Glu Trp Ser 785 790 795 800 Ile Thr Gly Tyr Pro Asn Thr Leu Thr Leu Gln Asn Ala Val Gly Arg 805 810 815 Thr Asn Asn Ala Thr Glu Lys Asn Leu Ala Leu Val Gly His Ile Asp 820 825 830 Pro Gly Asn Tyr Phe Ile Thr Val Lys Phe Gly Asp Lys Val Glu Gln 835 840 845 Phe Glu Ile Arg Ser Lys Pro Thr Pro Pro Arg Ile Ile Thr Thr Ala 850 855 860 Asn Glu Leu Arg Gly Asn Pro Asn His Lys Pro Glu Ile Arg Val Thr 865 870 875 880 Asp Ile Pro Asn Asp Thr Thr Ala Lys Ile Lys Leu Val Met Gly Gly 885 890 895 Thr Asp Gly Asp His Asp Pro Glu Ile Asn Pro Tyr Thr Val Pro Glu 900 905 910 Asn Tyr Thr Val Val Ala Glu Ala Tyr His Asp Asn Asp Pro Ser Lys 915 920 925 Asn Gly Val Leu Thr Phe Arg Ser Ser Asp Tyr Leu Lys Asp Leu Pro 930 935 940 Leu Ser Gly Glu Leu Lys Ala Ile Val Tyr Tyr Asn Gln Tyr Val Gln 945 950 955 960 Ser Asn Phe Ser Asn Ser Val Pro Phe Ser Ser Asp Thr Thr Pro Pro 965 970 975 Thr Ile Asn Glu Pro Ala Gly Leu Val His Lys Tyr Tyr Arg Gly Asp 980 985 990 His Val Glu Ile Thr Leu Pro Val Thr Asp Asn Thr Gly Gly Ser Gly 995 1000 1005 Leu Arg Asp Val Asn Val Asn Leu Pro Gln Gly Trp Thr Lys Thr 1010 1015 1020 Phe Thr Ile Asn Pro Asn Asn Asn Thr Glu Gly Thr Leu Lys Leu 1025 1030 1035 Ile Gly Asn Ile Pro Ser Asn Glu Ala Tyr Asn Thr Thr Tyr His 1040 1045 1050 Phe Asn Ile Thr Ala Thr Asp Asn Ser Gly Asn Thr Thr Asn Pro 1055 1060 1065 Ala Lys Thr Phe Ile Leu Asn Val Gly Lys Leu Ala Asp Asp Leu 1070 1075 1080 Asn Pro Val Gly Leu Ser Arg Asp Gln Leu Gln Leu Val Thr Asp 1085 1090 1095 Pro Ser Ser Leu Ser Asn Ser Glu Arg Glu Glu Val Lys Arg Lys 1100 1105 1110 Ile Ser Glu Ala Asn Ala Asn Ile Arg Ser Tyr Leu Leu Gln Asn 1115 1120 1125 Asn Pro Ile Leu Ala Gly Val Asn Gly Asp Val Thr Phe Tyr Tyr 1130 1135 1140 Arg Asp Gly Ser Val Asp Val Ile Asp Ala Glu Asn Val Ile Thr 1145 1150 1155 Tyr Glu Pro Glu Arg Lys Ser Ile Phe Ser Glu Asn Gly Asn Thr 1160 1165 1170 Asn Lys Lys Glu Ala Val Ile Thr Ile Ala Arg Gly Gln Asn Tyr 1175 1180 1185 Thr Ile Gly Pro Asn Leu Arg Lys Tyr Phe Ser Leu Ser Asn Gly 1190 1195 1200 Ser Asp Leu Pro Asn Arg Asp Phe Thr Ser Ile Ser Ala Ile Gly 1205 1210 1215 Ser Leu Pro Ser Ser Ser Glu Ile Ser Arg Leu Asn Val Gly Asn 1220 1225 1230 Tyr Asn Tyr Arg Val Asn Ala Lys Asn Ala Tyr His Lys Thr Gln 1235 1240 1245 Gln Glu Leu Asn Leu Lys Leu Lys Ile Val Glu Val Asn Ala Pro 1250 1255 1260 Thr Gly Asn Asn Arg Val Tyr Arg Val Ser Thr Tyr Asn Leu Thr 1265 1270 1275 Asn Asp Glu Ile Asn Lys Ile Lys Gln Ala Phe Lys Ala Ala Asn 1280 1285 1290 Ser Gly Leu Asn Leu Asn Asp Asn Asp Ile Thr Val Ser Asn Asn 1295 1300 1305 Phe Asp His Arg Asn Val Ser Ser Val Thr Val Thr Ile Arg Lys 1310 1315 1320 Gly Asp Leu Ile Lys Glu Phe Ser Ser Asn Leu Asn Asn Met Asn 1325 1330 1335 Phe Leu Arg Trp Val Asn Ile Arg Asp Asp Tyr Thr Ile Ser Trp 1340 1345 1350 Thr Ser Ser Lys Ile Gln Gly Arg Asn Thr Asp Gly Gly Leu Glu 1355 1360 1365 Trp Ser Pro Asp His Lys Ser Leu Ile Tyr Lys Tyr Asp Ala Thr 1370 1375 1380 Leu Gly Arg Gln Ile Asn Thr Asn Asp Val Leu Thr Leu Leu Gln 1385 1390 1395 Ala Thr Ala Lys Asn Ser Asn Leu Arg Ser Asn Ile Asn Ser Asn 1400 1405 1410 Glu Lys Gln Leu Ala Glu Arg Gly Ser Asn Gly Tyr Ser Lys Ser 1415 1420 1425 Ile Ile Arg Asp Asp Gly Glu Lys Ser Tyr Leu Leu Asn Ser Asn 1430 1435 1440 Pro Ile Gln Val Leu Asp Leu Val Glu Pro Asp Asn Gly Tyr Gly 1445 1450 1455 Gly Arg Gln Val Ser His Ser Asn Val Ile Tyr Asn Glu Lys Asn 1460 1465 1470 Ser Ser Ile Val Asn Gly Gln Val Pro Glu Ala Asn Gly Ala Ser 1475 1480 1485 Ala Phe Asn Ile Asp Lys Val Val Lys Ala Asn Ala Ala Asn Asn 1490 1495 1500 Gly Ile Met Gly Val Ile Tyr Lys Ala Gln Leu Tyr Leu Ala Pro 1505 1510 1515 Tyr Ser Pro Lys Gly Tyr Ile Glu Lys Leu Gly Gln Asn Leu Ser 1520 1525 1530 Asn Thr Asn Asn Val Ile Asn Val Tyr Phe Val Pro Ser Asp Lys 1535 1540 1545 Val Asn Pro Ser Ile Thr Val Gly Asn Tyr Asp His His Thr Val 1550 1555 1560 Tyr Ser Gly Glu Thr Phe Lys Asn Thr Ile Asn Val Asn Asp Asn 1565 1570 1575 Tyr Gly Leu Asn Thr Val Ala Ser Thr Ser Asp Ser Ala Ile Thr 1580 1585 1590 Met Thr Arg Asn Asn Asn Glu Leu Val Gly Gln Ala Pro Asn Val 1595 1600 1605 Thr Asn Ser Thr Asn Lys Ile Val Lys Val Lys Ala Thr Asp Lys 1610 1615 1620 Ser Gly Asn Glu Ser Ile Val Ser Phe Thr Val Asn Ile Lys Pro 1625 1630 1635 Leu Asn Glu Lys Tyr Arg Ile Thr Thr Ser Ser Ser Asn Gln Thr 1640 1645 1650 Pro Val Arg Ile Ser Asn Ile Gln Asn Asn Ala Asn Leu Ser Ile 1655 1660 1665 Glu Asp Gln Asn Arg Val Lys Ser Ser Leu Ser Met Thr Lys Ile 1670 1675 1680 Leu Gly Thr Arg Asn Tyr Val Asn Glu Ser Asn Asn Asp Val Arg 1685 1690 1695 Ser Gln Val Val Ser Lys Val Asn Arg Ser Gly Asn Asn Ala Thr 1700 1705 1710 Val Asn Val Thr Thr Thr Phe Ser Asp Gly Thr Thr Asn Thr Ile 1715 1720 1725 Thr Val Pro Val Lys His Val Leu Leu Glu Val Val Pro Thr Thr 1730 1735 1740 Arg Thr Thr Val Arg Gly Gln Gln Phe Pro Thr Gly Lys Gly Thr 1745 1750 1755 Ser Pro Asn Asp Phe Phe Ser Leu Arg Thr Gly Gly Pro Val Asp 1760 1765 1770 Ala Arg Ile Val Trp Val Asn Asn Gln Gly Pro Asp Ile Asn Ser 1775 1780 1785 Asn Gln Ile Gly Arg Asp Leu Thr Leu His Ala Glu Ile Phe Phe 1790 1795 1800 Asp Gly Glu Thr Thr Pro Ile Arg Lys Asp Thr Thr Tyr Lys Leu 1805 1810 1815 Ser Gln Ser Ile Pro Lys Gln Ile Tyr Glu Thr Thr Ile Asn Gly 1820 1825 1830 Arg Phe Asn Ser Ser Gly Asp Ala Tyr Pro Gly Asn Phe Val Gln 1835 1840 1845 Ala Val Asn Gln Tyr Trp Pro Glu His Met Asp Phe Arg Trp Ala 1850 1855 1860 Gln Gly Ser Gly Thr Pro Ser Ser Arg Asn Ala Gly Ser Phe Thr 1865 1870 1875 Lys Thr Val Thr Val Val Tyr Gln Asn Gly Gln Thr Glu Asn Val 1880 1885 1890 Asn Val Leu Phe Lys Val Lys Pro Asn Lys Pro Val Ile Asp Ser 1895 1900 1905 Asn Ser Val Ile Ser Lys Gly Gln Leu Asn Gly Gln Gln Ile Leu 1910 1915 1920 Val Arg Asn Val Pro Gln Asn Ala Gln Val Thr Leu Tyr Gln Ser 1925 1930 1935 Asn Gly Thr Val Ile Pro Asn Thr Asn Thr Thr Ile Asp Ser Asn 1940 1945 1950 Gly Ile Ala Thr Val Thr Ile Gln Gly Thr Leu Pro Thr Gly Asn 1955 1960 1965 Ile Thr Ala Lys Thr Ser Met Thr Asn Asn Val Thr Tyr Thr Lys 1970 1975 1980 Gln Asn Ser Ser Gly Ile Ala Ser Asn Thr Thr Glu Asp Ile Ser 1985 1990 1995 Val Phe Ser Glu Asn Ser Asp Gln Val Asn Val Thr Ala Gly Met 2000 2005 2010 Gln Ala Lys Asn Asp Gly Ile Lys Ile Ile Lys Gly Thr Asn Tyr 2015 2020 2025 Asn Phe Asn Asp Phe Asn Ser Phe Ile Ser Asn Ile Pro Ala His 2030 2035 2040 Ser Thr Leu Thr Trp Asn Glu Glu Pro Asn Ser Trp Lys Asn Asn 2045 2050 2055 Ile Gly Thr Thr Thr Lys Thr Val Thr Val Thr Leu Pro Asn His 2060 2065 2070 Gln Gly Thr Arg Thr Val Asp Ile Pro Ile Thr Ile Tyr Pro Thr 2075 2080 2085 Val Thr Ala Lys Asn Pro Val Arg Asp Gln Lys Gly Arg Asn Leu 2090 2095 2100 Thr Asn Gly Thr Asp Val Tyr Asn Tyr Ile Ile Phe Glu Asn Asn 2105 2110 2115 Asn Arg Leu Gly Gly Thr Ala Ser Trp Lys Asp Asn Arg Gln Pro 2120 2125 2130 Asp Lys Asn Ile Ala Gly Val Gln Asn Leu Ile Ala Leu Val Asn 2135 2140 2145 Tyr Pro Gly Ile Ser Thr Pro Leu Glu Val Pro Val Lys Val Trp 2150 2155 2160 Val Tyr Asn Phe Asp Phe Thr Gln Pro Ile Tyr Lys Ile Gln Val 2165 2170 2175 Gly Asp Thr Phe Pro Lys Gly Thr Trp Ala Gly Tyr Tyr Lys His 2180 2185 2190 Leu Glu Asn Gly Glu Gly Leu Pro Ile Asp Gly Trp Lys Phe Tyr 2195 2200 2205 Trp Asn Gln Gln Ser Thr Gly Thr Thr Ser Asp Gln Trp Gln Ser 2210 2215 2220 Leu Ala Tyr Thr Arg Thr Pro Phe Val Lys Thr Gly Thr Tyr Asp 2225 2230 2235 Val Val Asn Pro Ser Asn Trp Gly Val Trp Gln Thr Ser Gln Ser 2240 2245 2250 Ala Lys Phe Ile Val Thr Asn Ala Lys Pro Asn Gln Pro Thr Ile 2255 2260 2265 Thr Gln Ser Lys Thr Gly Asp Val Thr Val Thr Pro Gly Ala Val 2270 2275 2280 Arg Asn Ile Leu Ile Ser Gly Thr Asn Asp Tyr Ile Gln Ala Ser 2285 2290 2295 Ala Asp Lys Ile Val Ile Asn Lys Asn Gly Asn Lys Leu Thr Thr 2300 2305 2310 Phe Val Lys Asn Asn Asp Gly Arg Trp Thr Val Glu Thr Gly Ser 2315 2320 2325 Pro Asp Ile Asn Gly Ile Gly Pro Thr Asn Asn Gly Thr Ala Ile 2330 2335 2340 Ser Leu Ser Arg Leu Ala Val Arg Pro Gly Asp Ser Ile Glu Ala 2345 2350 2355 Ile Ala Thr Glu Gly Ser Gly Glu Thr Ile Ser Thr Ser Ala Thr 2360 2365 2370 Ser Glu Ile Tyr Ile Val Lys Ala Pro Gln Pro Glu Gln Val Ala 2375 2380 2385 Thr His Thr Tyr Asp Asn Gly Thr Phe Asp Ile Leu Pro Asp Asn 2390 2395 2400 Ser Arg Asn Ser Leu Asn Pro Thr Glu Arg Val Glu Ile Asn Tyr 2405 2410 2415 Thr Glu Lys Leu Asn Gly Asn Glu Thr Gln Lys Ser Phe Thr Ile 2420 2425 2430 Thr Lys Asn Asn Asn Gly Lys Trp Thr Ile Asn Asn Lys Pro Asn 2435 2440 2445 Tyr Val Glu Phe Asn Gln Asp Asn Gly Lys Val Val Phe Ser Ala 2450 2455 2460 Asn Thr Ile Lys Pro Asn Ser Gln Ile Thr Ile Thr Pro Lys Ala 2465 2470 2475 Gly Gln Gly Asn Thr Glu Asn Thr Asn Pro Thr Val Ile Gln Ala 2480 2485 2490 Pro Ala Gln His Thr Leu Thr Ile Asn Glu Ile Val Lys Glu Gln 2495 2500 2505 Gly Gln Asn Val Thr Asn Asp Asp Ile Asn Asn Ala Val Gln Val 2510 2515 2520 Pro Asn Lys Asn Arg Val Ala Ile Lys Gln Gly Asn Ala Leu Pro 2525 2530 2535 Thr Asn Leu Ala Gly Gly Ser Thr Ser His Ile Pro Val Val Ile 2540 2545 2550 Tyr Tyr Ser Asp Gly Ser Ser Glu Glu Ala Thr Glu Thr Val Arg 2555 2560 2565 Thr Lys Val Asn Lys Thr Glu Leu Ile Asn Ala Arg Arg Arg Leu 2570 2575 2580 Asp Glu Glu Ile Ser Lys Glu Asn Lys Thr Pro Ser Ser Ile Arg 2585 2590 2595 Asn Phe Asp Gln Ala Met Asn Arg Ala Gln Ser Gln Ile Asn Thr 2600 2605 2610 Ala Lys Ser Asp Ala Asp Gln Val Ile Gly Thr Glu Phe Ala Thr 2615 2620 2625 Pro Gln Gln Val Asn Ser Ala Leu Ser Lys Val Gln Ala Ala Gln 2630 2635 2640 Asn Lys

Ile Asn Glu Ala Lys Ala Leu Leu Gln Asn Lys Ala Asp 2645 2650 2655 Asn Ser Gln Leu Val Arg Ala Lys Glu Gln Leu Gln Gln Ser Ile 2660 2665 2670 Gln Pro Ala Ala Ser Thr Asp Gly Met Thr Gln Asp Ser Thr Arg 2675 2680 2685 Asn Tyr Lys Asn Lys Arg Gln Ala Ala Glu Gln Ala Ile Gln His 2690 2695 2700 Ala Asn Ser Val Ile Asn Asn Gly Asp Ala Thr Ser Gln Gln Ile 2705 2710 2715 Asn Asp Ala Lys Asn Thr Val Glu Gln Ala Gln Arg Asp Tyr Val 2720 2725 2730 Glu Ala Lys Ser Asn Leu Arg Ala Asp Lys Ser Gln Leu Gln Ser 2735 2740 2745 Ala Tyr Asp Thr Leu Asn Arg Asp Val Leu Thr Asn Asp Lys Lys 2750 2755 2760 Pro Ala Ser Val Arg Arg Tyr Asn Glu Ala Ile Ser Asn Ile Arg 2765 2770 2775 Lys Glu Leu Asp Thr Ala Lys Ala Asp Ala Ser Ser Thr Leu Arg 2780 2785 2790 Asn Thr Asn Pro Ser Val Glu Gln Val Arg Asp Ala Leu Asn Lys 2795 2800 2805 Ile Asn Thr Val Gln Pro Lys Val Asn Gln Ala Ile Ala Leu Leu 2810 2815 2820 Gln Pro Lys Glu Asn Asn Ser Glu Leu Val Gln Ala Lys Lys Arg 2825 2830 2835 Leu Gln Asp Ala Val Asn Asp Ile Pro Gln Thr Gln Gly Met Thr 2840 2845 2850 Gln Gln Thr Ile Asn Asn Tyr Asn Asp Lys Gln Arg Glu Ala Glu 2855 2860 2865 Arg Ala Leu Thr Ser Ala Gln Arg Val Ile Asp Asn Gly Asp Ala 2870 2875 2880 Thr Thr Gln Glu Ile Thr Ser Glu Lys Ser Lys Val Glu Gln Ala 2885 2890 2895 Met Gln Ala Leu Thr Asn Ala Lys Ser Asn Leu Arg Ala Asp Lys 2900 2905 2910 Asn Glu Leu Gln Thr Ala Tyr Asn Lys Leu Ile Glu Asn Val Ser 2915 2920 2925 Thr Asn Gly Lys Lys Pro Ala Ser Ile Arg Gln Tyr Glu Thr Ala 2930 2935 2940 Lys Ala Arg Ile Gln Asn Gln Ile Asn Asp Ala Lys Asn Glu Ala 2945 2950 2955 Glu Arg Ile Leu Gly Asn Asp Asn Pro Gln Val Ser Gln Val Thr 2960 2965 2970 Gln Ala Leu Asn Lys Ile Lys Ala Ile Gln Pro Lys Leu Thr Glu 2975 2980 2985 Ala Ile Asn Met Leu Gln Asn Lys Glu Asn Asn Thr Glu Leu Val 2990 2995 3000 Asn Ala Lys Asn Arg Leu Glu Asn Ala Val Asn Asp Thr Asp Pro 3005 3010 3015 Thr His Gly Met Thr Gln Glu Thr Ile Asn Asn Tyr Asn Ala Lys 3020 3025 3030 Lys Arg Glu Ala Gln Asn Glu Ile Gln Lys Ala Asn Met Ile Ile 3035 3040 3045 Asn Asn Gly Asp Ala Thr Ala Gln Asp Ile Ser Ser Glu Lys Ser 3050 3055 3060 Lys Val Glu Gln Val Leu Gln Ala Leu Gln Asn Ala Lys Asn Asp 3065 3070 3075 Leu Arg Ala Asp Lys Arg Glu Leu Gln Thr Ala Tyr Asn Lys Leu 3080 3085 3090 Ile Gln Asn Val Asn Thr Asn Gly Lys Lys Pro Ser Ser Ile Gln 3095 3100 3105 Asn Tyr Lys Ser Ala Arg Arg Asn Ile Glu Asn Gln Tyr Asn Thr 3110 3115 3120 Ala Lys Asn Glu Ala His Asn Val Leu Glu Asn Thr Asn Pro Thr 3125 3130 3135 Val Asn Ala Val Glu Asp Ala Leu Arg Lys Ile Asn Ala Ile Gln 3140 3145 3150 Pro Glu Val Thr Lys Ala Ile Asn Ile Leu Gln Asp Lys Glu Asp 3155 3160 3165 Asn Ser Glu Leu Val Arg Ala Lys Glu Lys Leu Asp Gln Ala Ile 3170 3175 3180 Asn Ser Gln Pro Ser Leu Asn Gly Met Thr Gln Glu Ser Ile Asn 3185 3190 3195 Asn Tyr Thr Thr Lys Arg Arg Glu Ala Gln Asn Ile Ala Ser Ser 3200 3205 3210 Ala Asp Thr Ile Ile Asn Asn Gly Asp Ala Ser Ile Glu Gln Ile 3215 3220 3225 Thr Glu Asn Lys Ile Arg Val Glu Glu Ala Thr Asn Ala Leu Asn 3230 3235 3240 Glu Ala Lys Gln His Leu Thr Ala Asp Thr Thr Ser Leu Lys Thr 3245 3250 3255 Glu Val Arg Lys Leu Ser Arg Arg Gly Asp Thr Asn Asn Lys Lys 3260 3265 3270 Pro Ser Ser Val Ser Ala Tyr Asn Asn Thr Ile His Ser Leu Gln 3275 3280 3285 Ser Glu Ile Thr Gln Thr Glu Asn Arg Ala Asn Thr Ile Ile Asn 3290 3295 3300 Lys Pro Ile Arg Ser Val Glu Glu Val Asn Asn Ala Leu His Glu 3305 3310 3315 Val Asn Gln Leu Asn Gln Arg Leu Thr Asp Thr Ile Asn Leu Leu 3320 3325 3330 Gln Pro Leu Ala Asn Lys Glu Ser Leu Lys Glu Ala Arg Asn Arg 3335 3340 3345 Leu Glu Ser Lys Ile Asn Glu Thr Val Gln Thr Asp Gly Met Thr 3350 3355 3360 Gln Gln Ser Val Glu Asn Tyr Lys Gln Ala Lys Ile Lys Ala Gln 3365 3370 3375 Asn Glu Ser Ser Ile Ala Gln Thr Leu Ile Asn Asn Gly Asp Ala 3380 3385 3390 Ser Asp Gln Glu Val Ser Thr Glu Ile Glu Lys Leu Asn Gln Lys 3395 3400 3405 Leu Ser Glu Leu Thr Asn Ser Ile Asn His Leu Thr Val Asn Lys 3410 3415 3420 Glu Pro Leu Glu Thr Ala Lys Asn Gln Leu Gln Ala Asn Ile Asp 3425 3430 3435 Gln Lys Pro Ser Thr Asp Gly Met Thr Gln Gln Ser Val Gln Ser 3440 3445 3450 Tyr Glu Arg Lys Leu Gln Glu Ala Lys Asp Lys Ile Asn Ser Ile 3455 3460 3465 Asn Asn Val Leu Ala Asn Asn Pro Asp Val Asn Ala Ile Arg Thr 3470 3475 3480 Asn Lys Val Glu Thr Glu Gln Ile Asn Asn Glu Leu Thr Gln Ala 3485 3490 3495 Lys Gln Gly Leu Thr Val Asp Lys Gln Pro Leu Ile Asn Ala Lys 3500 3505 3510 Thr Ala Leu Gln Gln Ser Leu Asp Asn Gln Pro Ser Thr Thr Gly 3515 3520 3525 Met Thr Glu Ala Thr Ile Gln Asn Tyr Asn Ala Lys Arg Gln Lys 3530 3535 3540 Ala Glu Gln Val Ile Gln Asn Ala Asn Lys Ile Ile Glu Asn Ala 3545 3550 3555 Gln Pro Ser Val Gln Gln Val Ser Asp Glu Lys Ser Lys Val Glu 3560 3565 3570 Gln Ala Leu Ser Glu Leu Asn Asn Ala Lys Ser Ala Leu Arg Ala 3575 3580 3585 Asp Lys Gln Glu Leu Gln Gln Ala Tyr Asn Gln Leu Ile Gln Pro 3590 3595 3600 Thr Asp Leu Asn Asn Lys Lys Pro Ala Ser Ile Thr Ala Tyr Asn 3605 3610 3615 Gln Arg Tyr Gln Gln Phe Ser Asn Glu Leu Asn Ser Thr Lys Thr 3620 3625 3630 Asn Thr Asp Arg Ile Leu Lys Glu Gln Asn Pro Ser Val Ala Asp 3635 3640 3645 Val Asn Asn Ala Leu Asn Lys Val Arg Glu Val Gln Gln Lys Leu 3650 3655 3660 Asn Glu Ala Arg Ala Leu Leu Gln Asn Lys Glu Asp Asn Ser Ala 3665 3670 3675 Leu Val Arg Ala Lys Glu Gln Leu Gln Gln Ala Val Asp Gln Val 3680 3685 3690 Pro Ser Thr Glu Gly Met Thr Gln Gln Thr Lys Asp Asp Tyr Asn 3695 3700 3705 Ser Lys Gln Gln Ala Ala Gln Gln Glu Ile Ser Lys Ala Gln Gln 3710 3715 3720 Val Ile Asp Asn Gly Asp Ala Thr Thr Gln Gln Ile Ser Asn Ala 3725 3730 3735 Lys Thr Asn Val Glu Arg Ala Leu Glu Ala Leu Asn Asn Ala Lys 3740 3745 3750 Thr Gly Leu Arg Ala Asp Lys Glu Glu Leu Gln Asn Ala Tyr Asn 3755 3760 3765 Gln Leu Thr Gln Asn Ile Asp Thr Ser Gly Lys Thr Pro Ala Ser 3770 3775 3780 Ile Arg Lys Tyr Asn Glu Ala Lys Ser Arg Ile Gln Thr Gln Ile 3785 3790 3795 Asp Ser Ala Lys Asn Glu Ala Asn Ser Ile Leu Thr Asn Asp Asn 3800 3805 3810 Pro Gln Val Ser Gln Val Thr Ala Ala Leu Asn Lys Ile Lys Ala 3815 3820 3825 Val Gln Pro Glu Leu Asp Lys Ala Ile Ala Met Leu Lys Asn Lys 3830 3835 3840 Glu Asn Asn Asn Ala Leu Val Gln Ala Lys Gln Gln Leu Gln Gln 3845 3850 3855 Ile Val Asn Glu Val Asp Pro Thr Gln Gly Met Thr Thr Asp Thr 3860 3865 3870 Ala Asn Asn Tyr Lys Ser Lys Lys Arg Glu Ala Glu Asp Glu Ile 3875 3880 3885 Gln Lys Ala Gln Gln Ile Ile Asn Asn Gly Asp Ala Thr Glu Gln 3890 3895 3900 Gln Ile Thr Asn Glu Thr Asn Arg Val Asn Gln Ala Ile Asn Ala 3905 3910 3915 Ile Asn Lys Ala Lys Asn Asp Leu Arg Ala Asp Lys Ser Gln Leu 3920 3925 3930 Glu Asn Ala Tyr Asn Gln Leu Ile Gln Asn Val Asp Thr Asn Gly 3935 3940 3945 Lys Lys Pro Ala Ser Ile Gln Gln Tyr Gln Ala Ala Arg Gln Ala 3950 3955 3960 Ile Glu Thr Gln Tyr Asn Asn Ala Lys Ser Glu Ala His Gln Ile 3965 3970 3975 Leu Glu Asn Ser Asn Pro Ser Val Asn Glu Val Ala Gln Ala Leu 3980 3985 3990 Gln Lys Val Glu Ala Val Gln Leu Lys Val Asn Asp Ala Ile His 3995 4000 4005 Ile Leu Gln Asn Lys Asp Asn Asn Ser Ala Leu Val Thr Ala Lys 4010 4015 4020 Asn Gln Leu Gln Gln Ser Val Asn Asp Gln Pro Leu Thr Thr Gly 4025 4030 4035 Met Thr Gln Asp Ser Ile Asn Asn Tyr Glu Ala Lys Arg Asn Glu 4040 4045 4050 Ala Gln Ser Ala Ile Arg Asn Ala Glu Ala Val Ile Asn Asn Gly 4055 4060 4065 Asp Ala Thr Ala Lys Gln Ile Ser Asp Glu Lys Ser Lys Val Glu 4070 4075 4080 Gln Ala Leu Ala His Leu Asn Asp Ala Lys Gln Gln Leu Thr Ala 4085 4090 4095 Asp Thr Thr Glu Leu Gln Thr Ala Val Gln Gln Leu Asn Arg Arg 4100 4105 4110 Gly Asp Thr Asn Asn Lys Lys Pro Arg Ser Ile Asn Ala Tyr Asn 4115 4120 4125 Lys Ala Ile Gln Ser Leu Glu Thr Gln Ile Thr Ser Ala Lys Asp 4130 4135 4140 Asn Ala Asn Ala Val Ile Gln Lys Pro Ile Arg Thr Val Gln Glu 4145 4150 4155 Val Asn Asn Ala Leu Gln Gln Val Asn Gln Leu Asn Gln Gln Leu 4160 4165 4170 Thr Glu Ala Ile Asn Gln Leu Gln Pro Leu Ser Asn Asn Asp Ala 4175 4180 4185 Leu Lys Ala Ala Lys Leu Asn Leu Glu Asn Lys Ile Asn Gln Thr 4190 4195 4200 Val Gln Thr Asp Gly Met Thr Gln Gln Ser Ile Glu Ala Tyr Gln 4205 4210 4215 Asn Ala Lys Arg Val Ala Gln Asn Glu Ser Asn Thr Ala Leu Ala 4220 4225 4230 Leu Ile Asn Asn Gly Asp Ala Asp Glu Gln Gln Ile Thr Thr Glu 4235 4240 4245 Thr Asp Arg Val Asn Gln Gln Thr Thr Asn Leu Thr Gln Ala Ile 4250 4255 4260 Asn Gly Leu Thr Val Asn Lys Glu Pro Leu Glu Thr Ala Lys Thr 4265 4270 4275 Ala Leu Gln Asn Asn Ile Asp Gln Val Pro Ser Thr Asp Gly Met 4280 4285 4290 Thr Gln Gln Ser Val Ala Asn Tyr Asn Gln Lys Leu Gln Ile Ala 4295 4300 4305 Lys Asn Glu Ile Asn Thr Ile Asn Asn Val Leu Ala Asn Asn Pro 4310 4315 4320 Asp Val Asn Ala Ile Lys Thr Asn Lys Ala Glu Ala Glu Arg Ile 4325 4330 4335 Ser Asn Asp Leu Thr Gln Ala Lys Asn Asn Leu Gln Val Asp Thr 4340 4345 4350 Gln Pro Leu Glu Lys Ile Lys Arg Gln Leu Gln Asp Glu Ile Asp 4355 4360 4365 Gln Gly Thr Asn Thr Asp Gly Met Thr Gln Asp Ser Val Asp Asn 4370 4375 4380 Tyr Asn Asp Ser Leu Ser Ala Ala Ile Ile Glu Lys Gly Lys Val 4385 4390 4395 Asn Lys Leu Leu Lys Arg Asn Pro Thr Val Glu Gln Val Lys Glu 4400 4405 4410 Ser Val Ala Asn Ala Gln Gln Val Ile Gln Asp Leu Gln Asn Ala 4415 4420 4425 Arg Thr Ser Leu Val Pro Asp Lys Thr Gln Leu Gln Glu Ala Lys 4430 4435 4440 Asn Arg Leu Glu Asn Ser Ile Asn Gln Gln Thr Asp Thr Asp Gly 4445 4450 4455 Met Thr Gln Asp Ser Leu Asn Asn Tyr Asn Asp Lys Leu Ala Lys 4460 4465 4470 Ala Arg Gln Asn Leu Glu Lys Ile Ser Lys Val Leu Gly Gly Gln 4475 4480 4485 Pro Thr Val Ala Glu Ile Arg Gln Asn Thr Asp Glu Ala Asn Ala 4490 4495 4500 His Lys Gln Ala Leu Asp Thr Ala Arg Ser Gln Leu Thr Leu Asn 4505 4510 4515 Arg Glu Pro Tyr Ile Asn His Ile Asn Asn Glu Ser His Leu Asn 4520 4525 4530 Asn Ala Gln Lys Asp Asn Phe Lys Ala Gln Val Asn Ser Ala Pro 4535 4540 4545 Asn His Asn Thr Leu Glu Thr Ile Lys Asn Lys Ala Asp Thr Leu 4550 4555 4560 Asn Gln Ser Met Thr Ala Leu Ser Glu Ser Ile Ala Asp Tyr Glu 4565 4570 4575 Asn Gln Lys Gln Gln Glu Asn Tyr Leu Asp Ala Ser Asn Asn Lys 4580 4585 4590 Arg Gln Asp Tyr Asp Asn Ala Val Asn Ala Ala Lys Gly Ile Leu 4595 4600 4605 Asn Gln Thr Gln Ser Pro Thr Met Ser Ala Asp Val Ile Asp Gln 4610 4615 4620 Lys Ala Glu Asp Val Lys Arg Thr Lys Thr Ala Leu Asp Gly Asn 4625 4630 4635 Gln Arg Leu Glu Val Ala Lys Gln Gln Ala Leu Asn His Leu Asn 4640 4645 4650 Thr Leu Asn Asp Leu Asn Asp Ala Gln Arg Gln Thr Leu Thr Asp 4655 4660 4665 Thr Ile Asn His Ser Pro Asn Ile Asn Ser Val Asn Gln Ala Lys 4670 4675 4680 Glu Lys Ala Asn Thr Val Asn Thr Ala Met Thr Gln Leu Lys Gln 4685 4690 4695 Thr Ile Ala Asn Tyr Asp Asp Glu Leu His Asp Gly Asn Tyr Ile 4700 4705 4710 Asn Ala Asp Lys Asp Lys Lys Asp Ala Tyr Asn Asn Ala Val Asn 4715 4720 4725 Asn Ala Lys Gln Leu Ile Asn Gln Ser Asp Ala Asn Gln Ala Gln 4730 4735 4740 Leu Asp Pro Ala Glu Ile Asn Lys Val Thr Gln Arg Val Asn Thr 4745 4750 4755 Thr Lys Asn Asp Leu Asn Gly Asn Asp Lys Leu Ala Glu Ala Lys 4760 4765 4770 Arg Asp Ala Asn Thr Thr Ile Asp Gly Leu Thr Tyr Leu Asn Glu 4775 4780 4785 Ala Gln Arg Asn Lys Ala Lys Glu Asn Val Gly Lys Ala Ser Thr 4790 4795 4800 Lys Thr Asn Ile Thr Ser Gln Leu Gln Asp Tyr Asn Gln Leu Asn 4805 4810 4815 Ile Ala Met Gln Ala Leu Arg Asn Ser Val Asn Asp Val Asn Asn 4820 4825 4830 Val Lys Ala Asn Ser Asn Tyr Ile Asn Glu Asp Asn Gly Pro Lys

4835 4840 4845 Glu Ala Tyr Asn Gln Ala Val Thr His Ala Gln Thr Leu Ile Asn 4850 4855 4860 Ala Gln Ser Asn Pro Glu Met Ser Arg Asp Val Val Asn Gln Lys 4865 4870 4875 Thr Gln Ala Val Asn Thr Ala His Gln Asn Leu His Gly Gln Gln 4880 4885 4890 Lys Leu Glu Gln Ala Gln Ser Ser Ala Asn Thr Glu Ile Gly Asn 4895 4900 4905 Leu Pro Asn Leu Thr Asn Thr Gln Lys Ala Lys Glu Lys Glu Leu 4910 4915 4920 Val Asn Ser Lys Gln Thr Arg Thr Glu Val Gln Glu Gln Leu Asn 4925 4930 4935 Gln Ala Lys Ser Leu Asp Ser Ser Met Gly Thr Leu Lys Ser Leu 4940 4945 4950 Val Ala Lys Gln Pro Thr Val Gln Lys Thr Ser Val Tyr Ile Asn 4955 4960 4965 Glu Asp Gln Pro Glu Gln Ser Ala Tyr Asn Asp Ser Ile Thr Met 4970 4975 4980 Gly Gln Thr Ile Ile Asn Lys Thr Ala Asp Pro Val Leu Asp Lys 4985 4990 4995 Thr Leu Val Asp Asn Ala Ile Ser Asn Ile Ser Thr Lys Glu Asn 5000 5005 5010 Ala Leu His Gly Glu Gln Lys Leu Thr Thr Ala Lys Thr Glu Ala 5015 5020 5025 Ile Asn Ala Leu Asn Thr Leu Ala Asp Leu Asn Thr Pro Gln Lys 5030 5035 5040 Glu Ala Ile Lys Thr Ala Ile Asn Thr Ala His Thr Arg Thr Asp 5045 5050 5055 Val Thr Ala Glu Gln Ser Lys Ala Asn Gln Ile Asn Ser Ala Met 5060 5065 5070 His Thr Leu Arg Gln Asn Ile Ser Asp Asn Glu Ser Val Thr Asn 5075 5080 5085 Glu Ser Asn Tyr Ile Asn Ala Glu Pro Glu Lys Gln His Ala Phe 5090 5095 5100 Thr Glu Ala Leu Asn Asn Ala Lys Glu Ile Val Asn Glu Gln Gln 5105 5110 5115 Ala Thr Leu Asp Ala Asn Ser Ile Asn Gln Lys Ala Gln Ala Ile 5120 5125 5130 Leu Thr Thr Lys Asn Ala Leu Asp Gly Glu Glu Gln Leu Arg Arg 5135 5140 5145 Ala Lys Glu Asn Ala Asp Gln Glu Ile Asn Thr Leu Asn Gln Leu 5150 5155 5160 Thr Asp Ala Gln Arg Asn Ser Glu Lys Gly Leu Val Asn Ser Ser 5165 5170 5175 Gln Thr Arg Thr Glu Val Ala Ser Gln Leu Ala Lys Ala Lys Glu 5180 5185 5190 Leu Asn Lys Val Met Glu Gln Leu Asn His Leu Ile Asn Gly Lys 5195 5200 5205 Asn Gln Met Ile Asn Ser Ser Lys Phe Ile Asn Glu Asp Ala Asn 5210 5215 5220 Gln Gln Gln Ala Tyr Ser Asn Ala Ile Ala Ser Ala Glu Ala Leu 5225 5230 5235 Lys Asn Lys Ser Gln Asn Pro Glu Leu Asp Lys Val Thr Ile Glu 5240 5245 5250 Gln Ala Ile Asn Asn Ile Asn Ser Ala Ile Asn Asn Leu Asn Gly 5255 5260 5265 Glu Ala Lys Leu Thr Lys Ala Lys Glu Asp Ala Val Ala Ser Ile 5270 5275 5280 Asn Asn Leu Ser Gly Leu Thr Asn Glu Gln Lys Thr Lys Glu Asn 5285 5290 5295 Gln Ala Val Asn Gly Ala Gln Thr Arg Asp Gln Val Ala Asn Lys 5300 5305 5310 Leu Arg Asp Ala Glu Ala Leu Asp Gln Ser Met Gln Thr Leu Arg 5315 5320 5325 Asp Leu Val Asn Asn Gln Asn Ala Ile His Ser Thr Ser Asn Tyr 5330 5335 5340 Phe Asn Glu Asp Ser Thr Gln Lys Asn Thr Tyr Asp Asn Ala Ile 5345 5350 5355 Asp Asn Gly Ser Thr Tyr Ile Thr Gly Gln His Asn Pro Glu Leu 5360 5365 5370 Asn Lys Ser Thr Ile Asp Gln Thr Ile Ser Arg Ile Asn Thr Ala 5375 5380 5385 Lys Asn Asp Leu His Gly Val Glu Lys Leu Gln Arg Asp Lys Gly 5390 5395 5400 Thr Ala Asn Gln Glu Ile Gly Gln Leu Gly Tyr Leu Asn Asp Pro 5405 5410 5415 Gln Lys Ser Gly Glu Glu Ser Leu Val Asn Gly Ser Asn Thr Arg 5420 5425 5430 Ser Glu Val Glu Glu His Leu Asn Glu Ala Lys Ser Leu Asn Asn 5435 5440 5445 Ala Met Lys Gln Leu Arg Asp Lys Val Ala Glu Lys Thr Asn Val 5450 5455 5460 Lys Gln Ser Ser Asp Tyr Ile Asn Asp Ser Thr Glu His Gln Arg 5465 5470 5475 Gly Tyr Asp Gln Ala Leu Gln Glu Ala Glu Asn Ile Ile Asn Glu 5480 5485 5490 Ile Gly Asn Pro Thr Leu Asn Lys Ser Glu Ile Glu Gln Lys Leu 5495 5500 5505 Gln Gln Leu Thr Asp Ala Gln Asn Ala Leu Gln Gly Ser His Leu 5510 5515 5520 Leu Glu Glu Ala Lys Asn Asn Ala Ile Thr Gly Ile Asn Lys Leu 5525 5530 5535 Thr Ala Leu Asn Asp Ala Gln Arg Gln Lys Ala Ile Glu Asn Val 5540 5545 5550 Gln Ala Gln Gln Thr Ile Pro Ala Val Asn Gln Gln Leu Thr Leu 5555 5560 5565 Asp Arg Glu Ile Asn Thr Ala Met Gln Ala Leu Arg Asp Lys Val 5570 5575 5580 Gly Gln Gln Asn Asn Val His Gln Gln Ser Asn Tyr Phe Asn Glu 5585 5590 5595 Asp Glu Gln Pro Lys His Asn Tyr Asp Asn Ser Val Gln Ala Gly 5600 5605 5610 Gln Thr Ile Ile Asp Lys Leu Gln Asp Pro Ile Met Asn Lys Asn 5615 5620 5625 Glu Ile Glu Gln Ala Ile Asn Gln Ile Asn Thr Thr Gln Thr Ala 5630 5635 5640 Leu Ser Gly Glu Asn Lys Leu His Thr Asp Gln Glu Ser Thr Asn 5645 5650 5655 Arg Gln Ile Glu Gly Leu Ser Ser Leu Asn Thr Ala Gln Ile Asn 5660 5665 5670 Ala Glu Lys Asp Leu Val Asn Gln Ala Lys Thr Arg Thr Asp Val 5675 5680 5685 Ala Gln Lys Leu Ala Ala Ala Lys Glu Ile Asn Ser Ala Met Ser 5690 5695 5700 Asn Leu Arg Asp Gly Ile Gln Asn Lys Glu Asp Ile Lys Arg Ser 5705 5710 5715 Ser Ala Tyr Ile Asn Ala Asp Pro Thr Lys Val Thr Ala Tyr Asp 5720 5725 5730 Gln Ala Leu Gln Asn Ala Glu Asn Ile Ile Asn Ala Thr Pro Asn 5735 5740 5745 Val Glu Leu Asn Lys Ala Thr Ile Glu Gln Ala Leu Ser Arg Val 5750 5755 5760 Gln Gln Ala Gln Gln Asp Leu Asp Gly Val Gln Gln Leu Ala Asn 5765 5770 5775 Ala Lys Gln Gln Ala Thr Gln Thr Val Asn Gly Leu Asn Ser Leu 5780 5785 5790 Asn Asp Gly Gln Lys Arg Glu Leu Asn Leu Leu Ile Asn Ser Ala 5795 5800 5805 Asn Thr Arg Thr Lys Val Gln Glu Glu Leu Asn Lys Ala Thr Glu 5810 5815 5820 Leu Asn His Ala Met Glu Ala Leu Arg Asn Ser Val Gln Asn Val 5825 5830 5835 Asp Gln Val Lys Gln Ser Ser Asn Tyr Val Asn Glu Asp Gln Pro 5840 5845 5850 Glu Gln His Asn Tyr Asp Asn Ala Val Asn Glu Ala Gln Ala Thr 5855 5860 5865 Ile Asn Asn Asn Ala Gln Pro Val Leu Asp Lys Leu Ala Ile Glu 5870 5875 5880 Arg Leu Thr Gln Thr Val Asn Thr Thr Lys Asp Ala Leu His Gly 5885 5890 5895 Ala Gln Lys Leu Thr Gln Asp Gln Gln Ala Ala Glu Thr Gly Ile 5900 5905 5910 Arg Gly Leu Thr Ser Leu Asn Glu Pro Gln Lys Asn Ala Glu Val 5915 5920 5925 Ala Lys Val Thr Ala Ala Thr Thr Arg Asp Glu Val Arg Asn Ile 5930 5935 5940 Arg Gln Glu Ala Thr Thr Leu Asp Thr Ala Met Leu Gly Leu Arg 5945 5950 5955 Lys Ser Ile Lys Asp Lys Asn Asp Thr Lys Asn Ser Ser Lys Tyr 5960 5965 5970 Ile Asn Glu Asp His Asp Gln Gln Gln Ala Tyr Asp Asn Ala Val 5975 5980 5985 Asn Asn Ala Gln Gln Val Ile Asp Glu Thr Gln Ala Thr Leu Ser 5990 5995 6000 Ser Asp Thr Ile Asn Gln Leu Ala Asn Ala Val Thr Gln Ala Lys 6005 6010 6015 Ser Asn Leu His Gly Asp Thr Lys Leu Gln His Asp Lys Asp Ser 6020 6025 6030 Ala Lys Gln Thr Ile Ala Gln Leu Gln Asn Leu Asn Ser Ala Gln 6035 6040 6045 Lys His Met Glu Asp Ser Leu Ile Asp Asn Glu Ser Thr Arg Thr 6050 6055 6060 Gln Val Gln His Asp Leu Thr Glu Ala Gln Ala Leu Asp Gly Leu 6065 6070 6075 Met Gly Ala Leu Lys Glu Ser Ile Lys Asp Tyr Thr Asn Ile Val 6080 6085 6090 Ser Asn Gly Asn Tyr Ile Asn Ala Glu Pro Ser Lys Lys Gln Ala 6095 6100 6105 Tyr Asp Ala Ala Val Gln Asn Ala Gln Asn Ile Ile Asn Gly Thr 6110 6115 6120 Asn Gln Pro Thr Ile Asn Lys Gly Asn Val Thr Thr Ala Thr Gln 6125 6130 6135 Thr Val Lys Asn Thr Lys Asp Ala Leu Asp Gly Asp His Arg Leu 6140 6145 6150 Glu Glu Ala Lys Asn Asn Ala Asn Gln Thr Ile Arg Asn Leu Ser 6155 6160 6165 Asn Leu Asn Asn Ala Gln Lys Asp Ala Glu Lys Asn Leu Val Asn 6170 6175 6180 Ser Ala Ser Thr Leu Glu Gln Val Gln Gln Asn Leu Gln Thr Ala 6185 6190 6195 Gln Gln Leu Asp Asn Ala Met Gly Glu Leu Arg Gln Ser Ile Ala 6200 6205 6210 Lys Lys Asp Gln Val Lys Ala Asp Ser Lys Tyr Leu Asn Glu Asp 6215 6220 6225 Pro Gln Ile Lys Gln Asn Tyr Asp Asp Ala Val Gln Arg Val Glu 6230 6235 6240 Thr Ile Ile Asn Glu Thr Gln Asn Pro Glu Leu Leu Lys Ala Asn 6245 6250 6255 Ile Asp Gln Ala Thr Gln Ser Val Gln Asn Ala Glu Gln Ala Leu 6260 6265 6270 His Gly Ala Glu Lys Leu Asn Gln Asp Lys Gln Thr Ser Ser Thr 6275 6280 6285 Glu Leu Asp Gly Leu Thr Asp Leu Thr Asp Ala Gln Arg Glu Lys 6290 6295 6300 Leu Arg Glu Gln Ile Asn Thr Ser Asn Ser Arg Asp Asp Ile Lys 6305 6310 6315 Gln Lys Ile Glu Gln Ala Lys Ala Leu Asn Asp Ala Met Lys Lys 6320 6325 6330 Leu Lys Glu Gln Val Ala Gln Lys Asp Gly Val His Ala Asn Ser 6335 6340 6345 Asp Tyr Thr Asn Glu Asp Ser Ala Gln Lys Asp Ala Tyr Asn Asn 6350 6355 6360 Ala Leu Lys Gln Ala Glu Asp Ile Ile Asn Asn Ser Ser Asn Pro 6365 6370 6375 Asn Leu Asn Ala Gln Asp Ile Thr Asn Ala Leu Asn Asn Ile Lys 6380 6385 6390 Gln Ala Gln Asp Asn Leu His Gly Ala Gln Lys Leu Gln Gln Asp 6395 6400 6405 Lys Asn Thr Thr Asn Gln Ala Ile Gly Asn Leu Asn His Leu Asn 6410 6415 6420 Gln Pro Gln Lys Asp Ala Leu Ile Gln Ala Ile Asn Gly Ala Thr 6425 6430 6435 Ser Arg Asp Gln Val Ala Glu Lys Leu Lys Glu Ala Glu Ala Leu 6440 6445 6450 Asp Glu Ala Met Lys Gln Leu Glu Asp Gln Val Asn Gln Asp Asp 6455 6460 6465 Gln Ile Ser Asn Ser Ser Pro Phe Ile Asn Glu Asp Ser Asp Lys 6470 6475 6480 Gln Lys Thr Tyr Asn Asp Lys Ile Gln Ala Ala Lys Glu Ile Ile 6485 6490 6495 Asn Gln Thr Ser Asn Pro Thr Leu Asp Lys Gln Lys Ile Ala Asp 6500 6505 6510 Thr Leu Gln Asn Ile Lys Asp Ala Val Asn Asn Leu His Gly Asp 6515 6520 6525 Gln Lys Leu Ala Gln Ser Lys Gln Asp Ala Asn Asn Gln Leu Asn 6530 6535 6540 His Leu Asp Asp Leu Thr Glu Glu Gln Lys Asn His Phe Lys Pro 6545 6550 6555 Leu Ile Asn Asn Ala Asp Thr Arg Asp Glu Val Asn Lys Gln Leu 6560 6565 6570 Glu Ile Ala Lys Gln Leu Asn Gly Asp Met Ser Thr Leu His Lys 6575 6580 6585 Val Ile Asn Asp Lys Asp Gln Ile Gln His Leu Ser Asn Tyr Ile 6590 6595 6600 Asn Ala Asp Asn Asp Lys Lys Gln Asn Tyr Asp Asn Ala Ile Lys 6605 6610 6615 Glu Ala Glu Asp Leu Ile His Asn His Pro Asp Thr Leu Asp His 6620 6625 6630 Lys Ala Leu Gln Asp Leu Leu Asn Lys Ile Asp Gln Ala His Asn 6635 6640 6645 Glu Leu Asn Gly Glu Ser Arg Phe Lys Gln Ala Leu Asp Asn Ala 6650 6655 6660 Leu Asn Asp Ile Asp Ser Leu Asn Ser Leu Asn Val Pro Gln Arg 6665 6670 6675 Gln Thr Val Lys Asp Asn Ile Asn His Val Thr Thr Leu Glu Ser 6680 6685 6690 Leu Ala Gln Glu Leu Gln Lys Ala Lys Glu Leu Asn Asp Ala Met 6695 6700 6705 Lys Ala Met Arg Asp Ser Ile Met Asn Gln Glu Gln Ile Arg Lys 6710 6715 6720 Asn Ser Asn Tyr Thr Asn Glu Asp Leu Ala Gln Gln Asn Ala Tyr 6725 6730 6735 Asn His Ala Val Asp Lys Ile Asn Asn Ile Ile Gly Glu Asp Asn 6740 6745 6750 Ala Thr Met Asp Pro Gln Ile Ile Lys Gln Ala Thr Gln Asp Ile 6755 6760 6765 Asn Thr Ala Ile Asn Gly Leu Asn Gly Asp Gln Lys Leu Gln Asp 6770 6775 6780 Ala Lys Thr Asp Ala Lys Gln Gln Ile Thr Asn Phe Thr Gly Leu 6785 6790 6795 Thr Glu Pro Gln Lys Gln Ala Leu Glu Asn Ile Ile Asn Gln Gln 6800 6805 6810 Thr Ser Arg Ala Asn Val Ala Lys Gln Leu Ser His Ala Lys Phe 6815 6820 6825 Leu Asn Gly Lys Met Glu Glu Leu Lys Val Ala Val Ala Lys Ala 6830 6835 6840 Ser Leu Val Arg Gln Asn Ser Asn Tyr Ile Asn Glu Asp Val Ser 6845 6850 6855 Glu Lys Glu Ala Tyr Glu Gln Ala Ile Ala Lys Gly Gln Glu Ile 6860 6865 6870 Ile Asn Ser Glu Asn Asn Pro Thr Ile Ser Ser Thr Asp Ile Asn 6875 6880 6885 Arg Thr Ile Gln Glu Ile Asn Asp Ala Glu Gln Asn Leu His Gly 6890 6895 6900 Asp Asn Lys Leu Arg Gln Ala Gln Glu Ile Ala Lys Asn Glu Ile 6905 6910 6915 Gln Asn Leu Asp Gly Leu Asn Ser Ala Gln Ile Thr Lys Leu Ile 6920 6925 6930 Gln Asp Ile Gly Arg Thr Thr Thr Lys Pro Ala Val Thr Gln Lys 6935 6940 6945 Leu Glu Glu Ala Lys Ala Ile Asn Gln Ala Met Gln Gln Leu Lys 6950 6955 6960 Gln Ser Ile Ala Asp Lys Asp Ala Thr Leu Asn Ser Ser Asn Tyr 6965 6970 6975 Leu Asn Glu Asp Ser Glu Lys Lys Leu Ala Tyr Asp Asn Ala Val 6980 6985 6990 Ser Gln Ala Glu Gln Leu Ile Asn Gln Leu Asn Asp Pro Thr Met 6995 7000 7005 Asp Ile Ser Asn Ile Gln Ala Ile Thr Gln Lys Val Ile Gln Ala 7010 7015 7020 Lys Asp Ser Leu His Gly Ala Asn Lys Leu Ala Gln Asn Gln Ala 7025 7030 7035

Asp Ser Asn Leu Ile Ile Asn Gln Ser Thr Asn Leu Asn Asp Lys 7040 7045 7050 Gln Lys Gln Ala Leu Asn Asp Leu Ile Asn His Ala Gln Thr Lys 7055 7060 7065 Gln Gln Val Ala Glu Ile Ile Ala Gln Ala Asn Lys Leu Asn Asn 7070 7075 7080 Glu Met Gly Thr Leu Lys Thr Leu Val Glu Glu Gln Ser Asn Val 7085 7090 7095 His Gln Gln Ser Lys Tyr Ile Asn Glu Asp Pro Gln Val Gln Asn 7100 7105 7110 Ile Tyr Asn Asp Ser Ile Gln Lys Gly Arg Glu Ile Leu Asn Gly 7115 7120 7125 Thr Thr Asp Asp Val Leu Asn Asn Asn Lys Ile Ala Asp Ala Ile 7130 7135 7140 Gln Asn Ile His Leu Thr Lys Asn Asp Leu His Gly Asp Gln Lys 7145 7150 7155 Leu Gln Lys Ala Gln Gln Asp Ala Thr Asn Glu Leu Asn Tyr Leu 7160 7165 7170 Thr Asn Leu Asn Asn Ser Gln Arg Gln Ser Glu His Asp Glu Ile 7175 7180 7185 Asn Ser Ala Pro Ser Arg Thr Glu Val Ser Asn Asp Leu Asn His 7190 7195 7200 Ala Lys Ala Leu Asn Glu Ala Met Arg Gln Leu Glu Asn Glu Val 7205 7210 7215 Ala Leu Glu Asn Ser Val Lys Lys Leu Ser Asp Phe Ile Asn Glu 7220 7225 7230 Asp Glu Ala Ala Gln Asn Glu Tyr Ser Asn Ala Leu Gln Lys Ala 7235 7240 7245 Lys Asp Ile Ile Asn Gly Val Pro Ser Ser Thr Leu Asp Lys Ala 7250 7255 7260 Thr Ile Glu Asp Ala Leu Leu Glu Leu Gln Asn Ala Arg Glu Ser 7265 7270 7275 Leu His Gly Glu Gln Lys Leu Gln Glu Ala Lys Asn Gln Ala Val 7280 7285 7290 Ala Glu Ile Asp Asn Leu Gln Ala Leu Asn Pro Gly Gln Val Leu 7295 7300 7305 Ala Glu Lys Thr Leu Val Asn Gln Ala Ser Thr Lys Pro Glu Val 7310 7315 7320 Gln Glu Ala Leu Gln Lys Ala Lys Glu Leu Asn Glu Ala Met Lys 7325 7330 7335 Ala Leu Lys Thr Glu Ile Asn Lys Lys Glu Gln Ile Lys Ala Asp 7340 7345 7350 Ser Arg Tyr Val Asn Ala Asp Ser Gly Leu Gln Ala Asn Tyr Asn 7355 7360 7365 Ser Ala Leu Asn Tyr Gly Ser Gln Ile Ile Ala Thr Thr Gln Pro 7370 7375 7380 Pro Glu Leu Asn Lys Asp Val Ile Asn Arg Ala Thr Gln Thr Ile 7385 7390 7395 Lys Thr Ala Glu Asn Asn Leu Asn Gly Gln Ser Lys Leu Ala Glu 7400 7405 7410 Ala Lys Ser Asp Gly Asn Gln Ser Ile Glu His Leu Gln Gly Leu 7415 7420 7425 Thr Gln Ser Gln Lys Asp Lys Gln His Asp Leu Ile Asn Gln Ala 7430 7435 7440 Gln Thr Lys Gln Gln Val Asp Asp Ile Val Asn Asn Ser Lys Gln 7445 7450 7455 Leu Asp Asn Ser Met Asn Gln Leu Gln Gln Ile Val Asn Asn Asp 7460 7465 7470 Asn Thr Val Lys Gln Asn Ser Asp Phe Ile Asn Glu Asp Ser Ser 7475 7480 7485 Gln Gln Asp Ala Tyr Asn His Ala Ile Gln Ala Ala Lys Asp Leu 7490 7495 7500 Ile Thr Ala His Pro Thr Ile Met Asp Lys Asn Gln Ile Asp Gln 7505 7510 7515 Ala Ile Glu Asn Ile Lys Gln Ala Leu Asn Asp Leu His Gly Ser 7520 7525 7530 Asn Lys Leu Ser Glu Asp Lys Lys Glu Ala Ser Glu Gln Leu Gln 7535 7540 7545 Asn Leu Asn Ser Leu Thr Asn Gly Gln Lys Asp Thr Ile Leu Asn 7550 7555 7560 His Ile Phe Ser Ala Pro Thr Arg Ser Gln Val Gly Glu Lys Ile 7565 7570 7575 Ala Ser Ala Lys Gln Leu Asn Asn Thr Met Lys Ala Leu Arg Asp 7580 7585 7590 Ser Ile Ala Asp Asn Asn Glu Ile Leu Gln Ser Ser Lys Tyr Phe 7595 7600 7605 Asn Glu Asp Ser Glu Gln Gln Asn Ala Tyr Asn Gln Ala Val Asn 7610 7615 7620 Lys Ala Lys Asn Ile Ile Asn Asp Gln Pro Thr Pro Val Met Ala 7625 7630 7635 Asn Asp Glu Ile Gln Ser Val Leu Asn Glu Val Lys Gln Thr Lys 7640 7645 7650 Asp Asn Leu His Gly Asp Gln Lys Leu Ala Asn Asp Lys Thr Asp 7655 7660 7665 Ala Gln Ala Thr Leu Asn Ala Leu Asn Tyr Leu Asn Gln Ala Gln 7670 7675 7680 Arg Gly Asn Leu Glu Thr Lys Val Gln Asn Ser Asn Ser Arg Pro 7685 7690 7695 Glu Val Gln Lys Val Val Gln Leu Ala Asn Gln Leu Asn Asp Ala 7700 7705 7710 Met Lys Lys Leu Asp Asp Ala Leu Thr Gly Asn Asp Ala Ile Lys 7715 7720 7725 Gln Thr Ser Asn Tyr Ile Asn Glu Asp Thr Ser Gln Gln Val Asn 7730 7735 7740 Phe Asp Glu Tyr Thr Asp Arg Gly Lys Asn Ile Val Ala Glu Gln 7745 7750 7755 Thr Asn Pro Asn Met Ser Pro Thr Asn Ile Asn Thr Ile Ala Asp 7760 7765 7770 Lys Ile Thr Glu Ala Lys Asn Asp Leu His Gly Val Gln Lys Leu 7775 7780 7785 Glu Gln Ala Gln Gln Gln Ser Ile Asn Thr Ile Asn Gln Met Thr 7790 7795 7800 Gly Leu Asn Gln Ala Gln Lys Glu Gln Leu Asn Gln Glu Ile Gln 7805 7810 7815 Gln Thr Gln Thr Arg Ser Glu Val His Gln Val Ile Lys Lys Ala 7820 7825 7830 Gln Ala Leu Asn Asp Ser Met Asn Thr Leu Arg Gln Ser Ile Thr 7835 7840 7845 Asp Glu Asn Glu Val Lys Gln Thr Ser Asn Tyr Ile Asn Glu Thr 7850 7855 7860 Val Gly Asn Gln Thr Ala Tyr Asn Asn Ala Val Asp Arg Val Lys 7865 7870 7875 Gln Ile Ile Asn Gln Thr Ser Asn Pro Thr Met Asn Pro Leu Glu 7880 7885 7890 Val Glu Arg Ala Thr Ser Asn Val Lys Thr Ser Lys Asp Ala Leu 7895 7900 7905 His Gly Glu Arg Glu Leu Asn Asp Asn Lys Asn Ser Lys Thr Phe 7910 7915 7920 Ala Val Asn His Leu Asp Asn Leu Asn Gln Ala Gln Lys Glu Ala 7925 7930 7935 Leu Thr His Glu Ile Glu Gln Ala Thr Ile Val Ser Gln Val Asn 7940 7945 7950 Asn Ile Tyr Asn Lys Ala Lys Ala Leu Asn Asn Asp Met Lys Lys 7955 7960 7965 Leu Lys Asp Ile Val Ala Gln Gln Asp Asn Val Arg Gln Ser Asn 7970 7975 7980 Asn Tyr Ile Asn Glu Asp Ser Thr Pro Gln Asn Met Tyr Asn Asp 7985 7990 7995 Thr Ile Asn His Ala Gln Ser Ile Ile Asp Gln Val Ala Asn Pro 8000 8005 8010 Thr Met Ser His Asp Glu Ile Glu Asn Ala Ile Asn Asn Ile Lys 8015 8020 8025 His Ala Ile Asn Ala Leu Asp Gly Glu His Lys Leu Gln Gln Ala 8030 8035 8040 Lys Glu Asn Ala Asn Leu Leu Ile Asn Ser Leu Asn Asp Leu Asn 8045 8050 8055 Ala Pro Gln Arg Asp Ala Ile Asn Arg Leu Val Asn Glu Ala Gln 8060 8065 8070 Thr Arg Glu Lys Val Ala Glu Gln Leu Gln Ser Ala Gln Ala Leu 8075 8080 8085 Asn Asp Ala Met Lys His Leu Arg Asn Ser Ile Gln Asn Gln Ser 8090 8095 8100 Ser Val Arg Gln Glu Ser Lys Tyr Ile Asn Ala Ser Asp Ala Lys 8105 8110 8115 Lys Glu Gln Tyr Asn His Ala Val Arg Glu Val Glu Asn Ile Ile 8120 8125 8130 Asn Glu Gln His Pro Thr Leu Asp Lys Glu Ile Ile Lys Gln Leu 8135 8140 8145 Thr Asp Ala Val Asn Gln Ala Asn Asn Asp Leu Asn Gly Val Glu 8150 8155 8160 Leu Leu Asp Ala Asp Lys Gln Asn Ala His Gln Ser Ile Pro Thr 8165 8170 8175 Leu Met His Leu Asn Gln Ala Gln Gln Asn Ala Leu Asn Glu Lys 8180 8185 8190 Ile Asn Asn Ala Val Thr Arg Ala Glu Val Ala Ala Ile Ile Gly 8195 8200 8205 Gln Ala Lys Ile Leu Asp His Ala Met Glu Asn Leu Glu Glu Ser 8210 8215 8220 Ile Lys Asp Lys Glu Gln Val Lys Gln Ser Ser Asn Tyr Ile Asn 8225 8230 8235 Glu Asp Pro Asp Val Gln Glu Thr Tyr Asn Asn Ala Val Asp His 8240 8245 8250 Val Thr Glu Ile Leu Asn Gln Thr Val Asn Pro Thr Leu Ser Ile 8255 8260 8265 Glu Asp Ile Glu His Ala Ile Asn Glu Val Asn Gln Ala Lys Lys 8270 8275 8280 Gln Leu Arg Gly Lys Gln Lys Leu Tyr Gln Thr Ile Asp Leu Ala 8285 8290 8295 Asp Lys Glu Leu Ser Lys Leu Asp Asp Leu Thr Ser Gln Gln Ser 8300 8305 8310 Ser Ser Ile Ser Asn Gln Ile Tyr Thr Ala Lys Thr Arg Thr Glu 8315 8320 8325 Val Ala Gln Ala Ile Glu Lys Ala Lys Ser Leu Asn His Ala Met 8330 8335 8340 Lys Ala Leu Asn Lys Val Tyr Lys Asn Thr Asp Lys Val Leu Asp 8345 8350 8355 Ser Ser Arg Phe Ile Asn Glu Asp Gln Pro Glu Lys Glu Ala Tyr 8360 8365 8370 Gln Gln Ala Ile Asn His Val Asp Ser Ile Ile His Arg Gln Thr 8375 8380 8385 Asn Pro Glu Met Asp Pro Thr Val Ile Asn Ser Ile Thr His Glu 8390 8395 8400 Leu Glu Thr Ala Gln Asn Asn Leu His Gly Asp Gln Lys Leu Ala 8405 8410 8415 His Ala Gln Gln Asp Ala Ala Asn Val Ile Asn Gly Leu Ile His 8420 8425 8430 Leu Asn Val Ala Gln Arg Glu Val Met Ile Asn Ala Asn Thr Asn 8435 8440 8445 Ala Thr Thr Arg Glu Lys Val Ala Lys Asn Leu Asp Asn Ala Gln 8450 8455 8460 Ala Leu Asp Lys Ala Met Glu Thr Leu Gln Gln Val Val Ala His 8465 8470 8475 Lys Asn Asn Ile Leu Asn Asp Ser Lys Tyr Leu Asn Glu Asp Ser 8480 8485 8490 Lys Tyr Gln Gln Gln Tyr Asp Arg Val Val Ala Asp Ala Glu Gln 8495 8500 8505 Leu Leu Asn Gln Thr Thr Asn Pro Thr Leu Glu Pro Tyr Lys Ile 8510 8515 8520 Asp Ile Val Lys Asp Asn Val Leu Ala Asn Glu Lys Ile Leu Phe 8525 8530 8535 Gly Ala Glu Lys Leu Ser Tyr Asp Lys Ser Asn Ala Asn Asp Glu 8540 8545 8550 Ile Lys His Met Asn Tyr Leu Asn Asn Ala Gln Lys Gln Ser Ile 8555 8560 8565 Lys Asp Met Ile Ser His Ala Ala Leu Arg Thr Glu Val Lys Gln 8570 8575 8580 Leu Leu Gln Gln Ala Lys Thr Leu Asp Glu Ala Met Lys Ser Leu 8585 8590 8595 Glu Asp Lys Thr Gln Val Val Ile Thr Asp Thr Thr Leu Ser Asn 8600 8605 8610 Tyr Thr Glu Ala Ser Glu Asp Lys Lys Glu Lys Val Asp Gln Thr 8615 8620 8625 Val Ser His Ala Gln Ala Ile Ile Asp Lys Ile Asn Gly Ser Asn 8630 8635 8640 Val Ser Leu Asp Gln Val Arg Gln Ala Leu Glu Gln Leu Thr Gln 8645 8650 8655 Ala Ser Glu Asn Leu Asp Gly Asp Gln Arg Val Glu Glu Ala Lys 8660 8665 8670 Val His Ala Asn Gln Thr Ile Asp Gln Leu Thr His Leu Asn Ser 8675 8680 8685 Leu Gln Gln Gln Thr Ala Lys Glu Ser Val Lys Asn Ala Thr Lys 8690 8695 8700 Leu Glu Glu Ile Ala Thr Ala Ser Asn Asp Ala Leu Ala Leu Asn 8705 8710 8715 Lys Val Met Gly Lys Leu Glu Gln Phe Ile Asn His Ala Asp Ser 8720 8725 8730 Val Glu Asn Ser Asp Asn Tyr Arg Gln Ala Asp Asp Asp Lys Ile 8735 8740 8745 Ile Ala Tyr Asp Asp Ala Leu Glu His Gly Gln Asp Ile Gln Lys 8750 8755 8760 Ser Asn Ala Thr Gln Asn Glu Ala Lys Gln Ala Leu Gln Gln Leu 8765 8770 8775 Ile Asn Ala Glu Thr Ser Leu Asn Gly Phe Glu Arg Leu Asn His 8780 8785 8790 Ala Arg Pro Arg Ala Leu Glu Tyr Ile Lys Ser Leu Glu Lys Ile 8795 8800 8805 Asn Asn Ala Gln Lys Ser Ala Leu Glu Asp Lys Val Thr Gln Ser 8810 8815 8820 His Asp Leu Leu Glu Leu Glu His Leu Val Asn Glu Gly Thr Asn 8825 8830 8835 Leu Asn Asp Ile Met Gly Glu Leu Ala Asn Ala Ile Val Asn Asn 8840 8845 8850 Tyr Ala Pro Thr Lys Ala Ser Ile Asn Tyr Ile Asn Ala Asp Asn 8855 8860 8865 Leu Arg Lys Asp Asn Phe Thr Gln Ala Ile Asn Asn Ala Arg Asp 8870 8875 8880 Ala Leu Asn Lys Thr Gln Gly Gln Asn Leu Asp Phe Asn Ala Ile 8885 8890 8895 Asp Thr Phe Lys Asp Asp Ile Phe Lys Thr Lys Asp Ala Leu Asn 8900 8905 8910 Gly Ile Glu Arg Leu Thr Ala Ala Lys Ser Lys Ala Glu Lys Leu 8915 8920 8925 Ile Asp Ser Leu Lys Phe Ile Asn Lys Ala Gln Phe Thr His Ala 8930 8935 8940 Asn Asp Glu Ile Met Asn Thr Asn Ser Ile Ala Gln Leu Ser Arg 8945 8950 8955 Ile Val Asn Gln Ala Phe Asp Leu Asn Asp Ala Met Lys Ser Leu 8960 8965 8970 Arg Asp Glu Leu Asn Asn Lys Ala Phe Pro Val Gln Ala Ser Ser 8975 8980 8985 Asn Tyr Ile Asn Ser Asp Glu Asp Leu Lys Gln Gln Phe Asp His 8990 8995 9000 Ala Leu Ser Asn Ala Arg Lys Val Leu Ala Lys Glu Asn Gly Lys 9005 9010 9015 Asn Leu Asp Glu Ile Gln Ile Glu Gly Leu Lys Gln Val Ile Glu 9020 9025 9030 Asp Thr Lys Asp Ala Leu Asn Gly Ile Gln Arg Leu Ser Lys Ala 9035 9040 9045 Lys Ala Lys Ala Ile Gln Tyr Val Gln Ser Leu Ser Tyr Ile Asn 9050 9055 9060 Asp Ala Gln Arg His Ile Ala Glu Asn Asn Ile His Asn Ser Asp 9065 9070 9075 Asp Leu Ser Ser Leu Ala Asn Thr Leu Ser Lys Ala Ser Asp Leu 9080 9085 9090 Asp Asn Ala Met Lys Asp Leu Arg Asp Thr Leu Glu Ser Asn Ser 9095 9100 9105 Thr Ser Val Pro Asn Ser Val Asn Tyr Ile Asn Ala Asp Lys Asn 9110 9115 9120 Phe Gln Ile Glu Phe Asp Glu Ala Leu Gln Gln Ala Ser Ala Thr 9125 9130 9135 Ser Ser Lys Thr Ser Glu Asn Pro Ala Thr Ile Glu Glu Val Leu 9140 9145 9150 Gly Leu Ser Gln Ala Ile Tyr Asp Thr Lys Asn Ala Leu Asn Gly 9155 9160 9165 Glu Gln Arg Leu Ala Thr Glu Lys Ser Lys Asp Leu Lys Leu Ile 9170 9175 9180 Lys Gly Leu Lys Asp Leu Asn Lys Ala Gln Leu Glu Asp Val Thr 9185 9190 9195 Asn Lys Val Asn Ser Ala Asn Thr Leu Thr Glu Leu Ser Gln Leu 9200 9205 9210 Thr Gln Ser Thr Leu Lys Leu Asn Asp Lys Met Lys Leu Leu Arg 9215 9220 9225 Asp Lys Leu Lys Thr Leu Val Asn Pro Val

Lys Ala Ser Leu Asn 9230 9235 9240 Tyr Arg Asn Ala Asp Tyr Asn Leu Lys Arg Gln Phe Asn Lys Ala 9245 9250 9255 Leu Lys Glu Ala Lys Gly Ile Leu Asn Lys Asn Ser Gly Pro Asn 9260 9265 9270 Val Asn Ile Asn Asp Ile Gln His Leu Leu Thr Gln Ile Asp Asn 9275 9280 9285 Ala Lys Asp Gln Leu Asn Gly Glu Arg Arg Leu Lys Glu His Gln 9290 9295 9300 Gln Lys Ser Glu Val Phe Ile Ile Lys Glu Leu Asp Ile Leu Asn 9305 9310 9315 Asn Ala Gln Lys Ala Ala Ile Ile Asn Gln Ile Arg Ala Ser Lys 9320 9325 9330 Asp Ile Lys Ile Ile Asn Gln Ile Val Asp Asn Ala Ile Glu Leu 9335 9340 9345 Asn Asp Ala Met Gln Gly Leu Lys Glu His Val Ala Gln Leu Thr 9350 9355 9360 Ala Thr Thr Lys Asp Asn Ile Glu Tyr Leu Asn Ala Asp Glu Asp 9365 9370 9375 Leu Lys Leu Gln Tyr Asp Tyr Ala Ile Asn Leu Ala Asn Asn Val 9380 9385 9390 Leu Asp Lys Glu Asn Gly Thr Asn Lys Asp Ala Asn Ile Ile Ile 9395 9400 9405 Gly Met Ile Gln Asn Met Asp Asp Ala Arg Ala Leu Leu Asn Gly 9410 9415 9420 Ile Glu Arg Leu Lys Asp Ala Gln Thr Lys Ala His Asn Asp Ile 9425 9430 9435 Lys Asp Thr Leu Lys Arg Gln Leu Asp Glu Ile Glu His Ala Asn 9440 9445 9450 Ala Thr Ser Asn Ser Lys Ala Gln Ala Lys Gln Met Val Asn Glu 9455 9460 9465 Glu Ala Arg Lys Ala Phe Ser Asn Ile Asn His Ala Thr Ser Asn 9470 9475 9480 Asp Leu Val Asn Gln Ala Lys Asp Glu Gly Gln Ser Ala Ile Glu 9485 9490 9495 His Ile His Ala Asp Glu Leu Pro Lys Ala Lys Leu Asp Ala Asn 9500 9505 9510 Gln Met Ile Asp Gln Lys Val Glu Asp Ile Asn His Leu Ile Ser 9515 9520 9525 Gln Asn Pro Asn Leu Ser His Asp Glu Lys Asn Lys Leu Ile Ser 9530 9535 9540 Gln Ile Asn Lys Leu Val Asn Gly Ile Lys Asp Glu Ile Gln Gln 9545 9550 9555 Ala Ile Asn Lys Gln Gln Ile Glu Asn Ala Thr Thr Lys Leu Asp 9560 9565 9570 Glu Val Ile Glu Thr Thr Lys Lys Leu Ile Ile Ala Lys Ala Glu 9575 9580 9585 Ala Lys Gln Val Ile Lys Glu Leu Ser Gln Lys Lys Arg Asp Ala 9590 9595 9600 Ile Asn Asn Asn Thr Asp Leu Thr Pro Ser Gln Lys Ala His Ala 9605 9610 9615 Leu Ala Asp Ile Asp Lys Thr Glu Lys Asp Ala Leu Gln His Ile 9620 9625 9630 Glu Asn Ser Asn Ser Ile Asp Asp Ile Asn Asn Asn Lys Lys His 9635 9640 9645 Ala Phe Asn Thr Leu Ala His Ile Ile Ile Trp Asp Thr Asp Gln 9650 9655 9660 Gln Pro Leu Val Phe Glu Leu Pro Glu Leu Ser Leu Gln Asn Ala 9665 9670 9675 Leu Val Thr Ser Glu Val Val Val His Arg Asp Glu Thr Ile Ser 9680 9685 9690 Leu Glu Ser Ile Ile Gly Ala Met Thr Leu Thr Asp Glu Leu Lys 9695 9700 9705 Val Asn Ile Val Ser Leu Pro Asn Thr Asp Lys Val Ala Asp His 9710 9715 9720 Leu Thr Ala Lys Val Lys Val Ile Leu Ala Asp Gly Ser Tyr Val 9725 9730 9735 Thr Val Asn Val Pro Val Lys Val Val Glu Lys Glu Leu Gln Ile 9740 9745 9750 Ala Lys Lys Asp Ala Ile Lys Thr Ile Asp Val Leu Val Lys Gln 9755 9760 9765 Lys Ile Lys Asp Ile Asp Ser Asn Asn Glu Leu Thr Ser Thr Gln 9770 9775 9780 Arg Glu Asp Ala Lys Ala Glu Ile Glu Arg Leu Lys Lys Gln Ala 9785 9790 9795 Ile Asp Lys Val Asn His Ser Lys Ser Ile Lys Asp Ile Glu Thr 9800 9805 9810 Val Lys Arg Thr Asp Phe Glu Glu Ile Asp Gln Phe Asp Pro Lys 9815 9820 9825 Arg Phe Thr Leu Asn Lys Ala Lys Lys Asp Ile Ile Thr Asp Val 9830 9835 9840 Asn Thr Gln Ile Gln Asn Gly Phe Lys Glu Ile Glu Thr Ile Lys 9845 9850 9855 Gly Leu Thr Ser Asn Glu Lys Thr Gln Phe Asp Lys Gln Leu Thr 9860 9865 9870 Glu Leu Gln Lys Glu Phe Leu Glu Lys Val Glu His Ala His Asn 9875 9880 9885 Leu Val Glu Leu Asn Gln Leu Gln Gln Glu Phe Asn Asn Arg Tyr 9890 9895 9900 Lys His Ile Leu Asn Gln Ala His Leu Leu Gly Glu Lys His Ile 9905 9910 9915 Ala Glu His Lys Leu Gly Tyr Val Val Val Asn Lys Thr Gln Gln 9920 9925 9930 Ile Leu Asn Asn Gln Ser Ala Ser Tyr Phe Ile Lys Gln Trp Ala 9935 9940 9945 Leu Asp Arg Ile Lys Gln Ile Gln Leu Glu Thr Met Asn Ser Ile 9950 9955 9960 Arg Gly Ala His Thr Val Gln Asp Val His Lys Ala Leu Leu Gln 9965 9970 9975 Gly Ile Glu Gln Ile Leu Lys Val Asn Val Ser Ile Ile Asn Gln 9980 9985 9990 Ser Phe Asn Asp Ser Leu His Asn Phe Asn Tyr Leu His Ser Lys 9995 10000 10005 Phe Asp Ala Arg Leu Arg Glu Lys Asp Val Ala Asn His Ile Val 10010 10015 10020 Gln Thr Glu Thr Phe Lys Glu Val Leu Lys Gly Thr Gly Val Glu 10025 10030 10035 Pro Gly Lys Ile Asn Lys Glu Thr Gln Gln Pro Lys Leu His Lys 10040 10045 10050 Asn Asp Asn Asp Ser Leu Phe Lys His Leu Val Asp Asn Phe Gly 10055 10060 10065 Lys Thr Val Gly Val Ile Thr Leu Thr Gly Leu Leu Ser Ser Phe 10070 10075 10080 Trp Leu Val Leu Ala Lys Arg Arg Lys Lys Glu Glu Glu Glu Lys 10085 10090 10095 Gln Ser Ile Lys Asn His His Lys Asp Ile Arg Leu Ser Asp Thr 10100 10105 10110 Asp Lys Ile Asp Pro Ile Val Ile Thr Lys Arg Lys Ile Asp Lys 10115 10120 10125 Glu Glu Gln Ile Gln Asn Asp Asp Lys His Ser Ile Pro Val Ala 10130 10135 10140 Lys His Lys Lys Ser Lys Glu Lys Gln Leu Ser Glu Glu Asp Ile 10145 10150 10155 His Ser Ile Pro Val Val Lys Arg Lys Gln Asn Ser Asp Asn Lys 10160 10165 10170 Asp Thr Lys Gln Lys Lys Val Thr Ser Lys Lys Lys Lys Thr Pro 10175 10180 10185 Gln Ser Thr Lys Lys Val Val Lys Thr Lys Lys Arg Ser Lys Lys 10190 10195 10200 331014DNAStaphylococcus epidermidis 33ttgcgaaaag acgtgataga agtggttaat aaagttgaag attactactt taaaagttat 60ccaattcaat acaatccaat aattgaatat tttaaccaaa ttaaaaataa aaaagtaatt 120gtgtcattaa aaatatataa ggtttataaa aaaattgtgg aaaatattca tgatactgaa 180agtcaatgga tatattctcc tgaacatgca ttacacccaa tagaatttat agaatcattt 240tgtaaacata taaagggaaa gtatgctgga acaccaattg aattagaatt atggcaaaaa 300gcaggaatag caactatttt tggtttcatt aataaaaaaa ctaaagaaag aaaatatcaa 360gaaatctttt gggtggtggc tcgtaaaaat ggtaagtcaa ctatatctag tggaatagcg 420ttatatttgc tcggtgctga tggtgaaggt ggcccagaag tatacacagt ggctaccaaa 480aaagatcaag caaaaatagt atggaacgat gctaaaaaga tggtgaataa atcgccgtta 540ttaaaactcg atttcgtaac taaagtagct gagatattaa caccttttaa tgatggacaa 600ttaattcccc ttggtcgaga tagtgatact acagatgggt taaatgtaca tggtgctatt 660atggatgaag tgcatgcttg gaaaacaatg caaatgtacg atgtggtttt tgacggaata 720tctgcacgtg ataatccttt aattctagca ataactactg cgggaacaat aagaaactct 780gtgtatgata taaaatatga agaatcagaa aatataatca atgggttatg ggaagatgaa 840ggatataaaa atgaacgatt tttacctttg atatatgaat tagattcacg agaagaatgg 900atagatgaaa gttgttggct aaaagccaat ccaggattag gttcaataaa gaaaatagat 960gctatcaaaa ctaaagtaaa tagagctaag aagaatgctt tatttagagc aacc 101434930DNAStaphylococcus epidermidis 34gtgaaaaaaa ttctcgcttt agcaatagca tttttaatta tccttgccgc atgtgggaat 60cacagtaacc atgaacatca ctcacatgaa ggaaaattaa aagttgtaac tacaaactct 120attctctatg acatggttaa acgtgtcggt ggaaataagg tcgatgttca tagcatcgtt 180ccagtaggac aagatccaca tgaatatgag gttaaaccta aagatattaa agcattaaca 240gatgctgacg ttgtatttta taatggttta aacctagaaa ctggaaatgg ttggtttgaa 300aaagcacttg accaagcagg aaaatcaaca aaagataaaa atgtgatagc agcatcaaat 360aatgttaaac caatatactt aaatggtgag gaaggtaaca aaaacaaaca agatccacat 420gcatggttaa gtttagagaa tggaattaaa tacgtaaaaa caatacaaaa atcactagaa 480catcatgata aaaaagataa gtctacatat gaaaaacaag ggaatgcata tatatcaaaa 540ttagaagaac ttaataaaga tagtaaaaat aaatttgatg acatacccaa aaatcaacgt 600gccatgatga caagtgaagg tgcatttaaa tattttgctc aacaattcga tgttaaacca 660ggttatattt gggagataaa cacagaaaaa caaggtacac ctggtcaaat gaaacaagcc 720attaaatttg ttaaagataa tcatttaaaa catttattag tcgaaacaag cgtagataaa 780aaagctatgc aaagtttatc agaagaaact aagaaagata tttatggtga agtatttacc 840gactctatag gtaaggcagg tactaaaggt gactcatact ataaaatgat gaaatctaat 900attgatacaa tacatggtag tatgaaataa 930351131DNAStaphylococcus epidermidis 35ttggaggtag ataatatgaa aattgggatt cctaaagaaa taaagaataa tgagaatcga 60gtggggttat ccccaagtgg tgtacatgca cttgtagacc aaggacatga agttttagta 120gaaacaaatg ctggtctagg atcttacttt gaagatggtg attatcaaga agccggtgcc 180aaaattgttg atgagcagtc aaaagcttgg gatgttgata tggtcatcaa agttaaagaa 240ccacttgaat cggaatacaa attctttaaa gaagagttaa tcttatttac ttatttacac 300cttgcgaatg aacagaaatt aactcaggca cttgtggaca acaaggttat atctattgcc 360tatgaaactg tacaattacc agacggttct ttaccgttat taacaccaat gagtgaagtg 420gctggtagaa tgtctacaca agtgggagct gaatttttac aaagatttaa tggaggtatg 480ggtatcttac taggtggcat acctggagta cctaaaggca aagtcactat cattggtggt 540ggtcaagcag gtacaaatgc agctaagata gctttaggat tgggagctga agtgacaata 600ctagatgtta atcctaaacg tttagaagaa ttagaggact tatttgatgg cagagtaaga 660acaattatgt ctaatccatt aaatatagaa atgtatgtga aagaaagcga tttagtgatt 720ggagcagtcc ttattccagg tgctaaagct ccaaacttag tgactgaaga tatgataaaa 780gaaatgaaag atggatcagt gattgtagat attgcgatag atcaaggtgg aatttttgaa 840acaactgata agattactac tcatgataat ccgacttaca ctaaacatgg tgtcgtgcat 900tatgctgtag ctaatatgcc aggtgccgtt ccacgtacat ctacaattgg attgaacaat 960gcaacattac cttatgcgca attattggct aataaaggtt atcgtgaagc atttaaagta 1020aatcatccat tatctctagg tctgaataca tttaatggac atgtgactaa taagaatgta 1080gctgatacat ttaattttga atacacttca attgaagatg cattgaaata a 1131361203DNAStaphylococcus epidermidis 36atggaagcga tcgatacatg tccaaacaaa tattcaacta taaggagagt tttaataatg 60aataaaaaaa cgcaaatgat acatggggga catacgacag acaactatac tggagcagtg 120acaacaccta tttatcaaac aagtacttat ttacaagatg atattggtga tttaagacaa 180gggtacgaat attcacgtac tgcaaatcct acacgtgcgt ctcttgaaag tgttattgct 240aatttagaac atggtaagca tggttttgct tttggttcag gaatggcagc aattagtgca 300gttatcatgt tattagataa aggagatcac ttagttctta attctgatgt ttatggtggc 360acatatcgtg cattaactaa agtatttact cgctttggta tagacgtaga ttttgttgat 420acaactaaaa ttgaaaacat tgaacaatat attaaacctg aaactaaaat gttatatgta 480gaaacacctt caaatccatt attgcgtgtg actgatatta aagcatcagc aaaaattgca 540aaaaaatatg atttgatatc tgtagtcgat aatacattta tgacacctta ctaccaaaac 600cctttagact ttggtattga tatcgtattg cattcggcta ctaaatatat tggaggccat 660agtgatgttg tagctggtct tgttgctact gctgatgatg atttagcaga acgtctaggc 720tttatttcaa attctacagg tggtgtactt ggacctcaag atagctattt attaatcaga 780ggtattaaaa cgctaggtct aagaatggag caaataaacc gaaacgttga aggtattgtg 840caaatgttac aaaagcaccc taaagttcaa caagtattcc atcctagtat taaggaacat 900atgaactata ctatccatca aaatcaagca actgggcata caggggtagt atcttttgaa 960gttaaagata cagaagcggc taaacaagtg attcacgcaa caaactactt tacactggca 1020gagagtttag gggcagttga aagtctaatt tctgtaccgg cacttatgac gcatgcgtcc 1080atcccatcag atgtaagagc caaggaaggt attacggatg gtctcattcg tttatctatt 1140ggtattgaag acacagaaga cttagttaat gatttagaac aagccttaaa tactttgaga 1200taa 120337633DNAStaphylococcus epidermidis 37ttggaactac aattagccat tgatttatta aataaagaag aagcagcaaa attagctcaa 60aaagttgaag aatatgtaga tattgttgaa attggtacgc caattgtaat taatgaaggg 120ttacctgcag ttcaacattt aaatgaaaat attaataatg ctaaagtatt agctgacttg 180aaaattatgg atgcagcaga ttacgaagtg agccaagcag taaaatatgg tgcagatatt 240gttacaattt taggtgttgc tgaagatgct tcaattaaag cagcagttga agaagcgcat 300aaacatggaa aagcattgct tgttgatatg atagcagtgc aaaacttaga acaacgtgct 360aaagaactag atgagatggg tgcagactat atcgcagttc atacaggtta cgacttacaa 420gctgaaggaa aatctccatt agacagcttg cgtacagtta aatctgttat caaaaactct 480aaggttgcag tagcaggtgg tattaaacca gatactatca aagatattgt tgctgaagat 540ccagatttag ttattgttgg tggcggtatt gcgaatgctg acgatcctgt agaagcagca 600aaacaatgta gagcagctat tgaaggtaaa taa 63338714DNAStaphylococcus epidermidis 38atgacaaaat taaatgttaa agtgtttgcg gatggtgcag atattgaaga aatgaaatca 60gcatataaga atcaactcgt tgatggtttt acaacgaatc caagcttgat ggctaaagcg 120ggtgtaactg attataaagc ttttgcagag gaagtggtta gtgaaatacc agacgcttca 180atttcttttg aggtgtttgc tgacgattta cctactatgg aaaaagaagc tgagatttta 240aaacaatatg gtgataatgt atttgtaaaa attcctattg ttacaacaac tggtgagtct 300acactaccat taattaaacg tttatcatcg aaacaggtaa ggttgaatgt cacggctgtc 360tatactatag agcaagtaaa agcaattact gacgctgtaa ctgaaggtgt gccaacatat 420gtgtcagtat ttgcaggacg cattgcagat actggggttg atccacttcc tttgatgaaa 480gaatcagtta aggtaactca tagtaaagaa ggcgttcaat tattatgggc aagttgtcgt 540gaagtatata atgtaatcca agctgatgaa attggagctg atattattac ttgcccagct 600gatgttgtaa aaaaggttaa taacaattta ggccgggata taggagaact ttcagtagat 660acagtcaaag gttttgccaa agacattcaa agttccggtt tgtcaatttt ataa 71439795DNAStaphylococcus epidermidis 39gtgaatatat tgaaaatcca aatacttcaa ttcaatgtag aacgtggaaa tgttgataaa 60aatatgcaaa atatcaaaac taagtttaat caatacttag ataaagatac cagtgtcgtc 120gtgcttccag aaatgtggaa taacggttat gcattagaag aattagaaca aaaagctgat 180aaaaatctta aagacagctc tctctttata aaagacttag cacatacatt taatgtagat 240atcattgcag gttcagtatc aaatataaga gaaaaccata tatataatac tgcttttgca 300attaataaaa acaaagaatt gattaatgaa tatgacaaag tacatctcgt gccaatgtta 360cgtgagccag actttttatg tggtggaaat gtagtccctg aaccttttta tttatctgat 420caaacacttg tgacgcaaat catttgttat gacttacgat ttccagagat attgcgctat 480ccagctagaa aaggtgctaa aattgctttt tatgtagcac agtggcctag ctcaagacta 540gatcattggt tatcattact aaaagcgaga gcaatcgaaa atgatatttt tattgtagct 600tgtaatagtt gtggtgatga tggtcacacc aattatgctg gaaattcaat tgtcattaat 660cctaatggtg aaattttagg ccatttagat gataaagaag gtgtactaac aacacatatc 720gatgtagact tagtagatca acaaagagaa tatattccag ttttcagaaa tctaaaacca 780catctttata aatag 79540888DNAStaphylococcus epidermidis 40atgtctaaaa tagtaggatc agatcgagtt aaaagaggaa tggctgaaat gcaaaaaggc 60ggtgtcatta tggacgtcgt taatgcagaa caagctaaaa ttgctgaaga agccggagct 120gttgccgtaa tggcattaga gcgtgtacca tcagatattc gtgctgctgg cggtgttgca 180cgtatggcga atcctaaaat agttgaagaa gttatgaatg ccgtatcaat tccggttatg 240gctaaagcca gaattggtca tattacagaa gctagagttt tagaatcgat gggtgttgac 300tatatagatg agtctgaagt attaacgcct gcagacgaag aatatcattt aagaaaagat 360caatttacag ttccttttgt gtgtggctgt cgtaacttag gtgaagcagc acgacgcatt 420ggtgaaggtg cggcgatgtt gcgtacgaaa ggtgaacctg gtactggtaa tattgttgaa 480gctgtccgtc atatgagacg tgttaattct gaagttagcc gcttaacagt tatgaatgat 540gatgaaatta tgacatttgc aaaagatttg ggtgcacctt atgaagtatt aaaacaaatt 600aaagataatg gacgtcttcc tgtagttaat tttgcagctg gtggtgttgc tacgcctcag 660gatgcagcac taatgatgga attaggtgca gatggtgtat ttgttggttc aggtatattt 720aaatctgaag atcctgaaaa atttgctaaa gctatcgttc aagctacaac acattatcaa 780gattatgagt taatcggaaa attggctagt gagctaggta cggctatgaa aggtctagat 840attaatcaaa tttcactaga agaaagaatg caagagcgtg gttggtaa 888411746DNAStaphylococcus epidermidis 41atggaggatg ctgtggtgga gatggatgct gttaaatact taaataaatt gaatttagat 60aacattgagt taacaaaata tttgtttttt actggtaaag gcggcgtagg taaaacgacg 120atatcaagtt ttattgcttt aaacttagca gagaatggaa agaaagtagc tttagtaagt 180actgatccag ctagtaattt acaagatgta tttcaaatgg aattatctaa taaattaact 240aaatatcaac ctatacctaa tctctctata gccaattttg acccgattgt tgctgcagac 300gattataaag cacaatctat agaaccttat gagggtattc taccagaaga tgtgctttct 360gaaatgaaag aacagttaag tggttcatgt acagttgaag tagcagcatt taatgaattt 420acaaattttt tatccgataa aactttagaa caagaatttg atttcattat atttgataca 480gctcccacag gtcacacctt gagaatgctt gaattacctt ctgcatggac

agattattta 540aatacaacga gtaatgacgc ttcttgctta ggtcaattat caggtttaaa tgaaaataga 600gttaaatata attcagcact tgaaaaacta cgtaaccaag atgatacgac catgatgtta 660gttgcgagac ctactcactc ttctatatat gaaattcaaa gagcgcaaca agaattacaa 720caactgtcaa tttctaaatt caaagtaatc attaacaact atatagaaga aagtcacggt 780ttaatttcga gtcagatgaa atcagaacaa gataaaaaca ttaatcattt tactgaatgg 840ttaaataaca atcatgctta ttacgttcca tataaaaatc agaaagaaga aggtatagaa 900agtttaacta atctattaaa tgatgataac ttaattgaaa atgatgactt tattgttgaa 960gatcatccgc aattcaataa attaatcgat gaaattgaaa atagtaaagt tcaatattta 1020tttacaatgg gaaaaggtgg cgttggtaaa acgacagtag caacgcaatt agctacaacg 1080ttatctaata aaggatatcg tgttctttta gcaactactg accctactaa agaaattaat 1140gttgaaacta caagtaattt aaatactgct tatattgatg aagaacaagc attagaaaag 1200tataaaaaag aagtactagc cacagtgaat gatgatacac cacaagacga tattgattat 1260attatggaag atttaaaatc accttgtaca gaagaaatag catttttcaa agcctttagt 1320gacattatgg agaatcaaga cgacatggat tacgtcattg tagatacagc tcctacaggc 1380cataccttgc tgttacttga ttctagtgaa aatcatcata gagaattaaa gaaaaaatca 1440actcaaacta ccagtaatgt tgaaacatta ttacccaaaa ttcaaaataa aaatttaaca 1500cagatgataa ttgtaacatt agcagaaaaa acaccttatt tagaatctaa acgtttagta 1560gaagatttaa atagagctaa tataggccat aattggtggg ttgttaatca atcgttagtt 1620acgctaaatc aacgtgatga cctttttagt aacaaaaaag aagatgaatc attttggata 1680aacaagatta aaaatgaaag tcttgataat tactttgtca taccttatcg agtattagaa 1740tattga 1746421011DNAStaphylococcus epidermidis 42atggcaatta aagtagcaat taatggtttt ggtagaattg gtcgtttagc attcagaaga 60attcaagatg tagaaggtct tgaagtagtt gcagttaacg acttaacaga tgacgatatg 120ttagctcatt tattaaaata cgatactatg caaggtcgtt tcactggaga agttgaagtt 180atcgaaggtg gattccgtgt gaacggtaaa gaaattaaat cattcgatga accagatgct 240ggtaaattac catggggcga tttagatatc gacgtagtat tagaatgtac tggtttctat 300actgataaag aaaaagcaca agctcacatc gatgcaggtg ctaaaaaagt attaatctca 360gctccagcta aaggtgatgt aaaaacaatc gtattcaaca ctaaccatga tacattagat 420ggttcagaaa cagttgtttc aggtgcttct tgtactacta actcattagc accagttgca 480aaagttttaa gtgacgaatt cggtttagtt gaaggtttca tgactacaat tcacgcttac 540actggtgacc aaaatacaca agacgcacct cacagaaaag gtgacaaacg tcgtgcacgt 600gcagcagctg aaaatattat ccctaactca acaggtgctg ctaaagctat cggtaaagtt 660attccagaaa tcgatggtaa attagacggt ggagcacaac gtgttccagt tgctactggt 720tctttaactg aattaactgt agtattagac aaacaagatg taactgttga ccaagttaac 780agtgctatga aacaagcttc tgacgaatca ttcggttaca ctgaagacga aatcgtatct 840tctgatattg ttggtatgac ttacggttca ttatttgatg cgactcaaac tcgtgttatg 900actgttggag atcgtcaatt agttaaagtt gcagcttggt acgacaatga aatgtcttac 960actgctcaat tagtacgtac attagctcac ttagctgaac tttctaaata a 1011431305DNAStaphylococcus epidermidis 43atgccaatta ttacagatgt ttacgctcgc gaagtcttag actcacgtgg taacccaaca 60gttgaagttg aagtattaac tgaaagcggt gctttcggac gtgcattagt accttctggt 120gcttctactg gtgaacatga agcagttgaa ttacgtgatg gagataaatc acgttattta 180ggtaaaggtg tgactaaagc ggtagaaaat gttaacgaaa tgatcgcacc agaaatcgtt 240gaaggtgaat tttcagtttt agatcaagta tctattgata aaatgatgat tcaattagac 300ggtacacaca acaaaggtaa attaggtgca aatgccattt taggtgtttc tattgccgta 360gctcgtgcag ctgctgactt attaggtcaa ccattatata aatatttagg tggatttaat 420ggtaaacaat tgccagtacc tatgatgaat attgttaatg gtggttctca ctcagatgca 480ccaattgctt tccaagagtt catgatttta cctgtaggtg ctgagtcatt caaagaatca 540ttacgttggg gtgcagaaat cttccataac cttaaatcaa tcttaagtga acgtggttta 600gaaactgcag taggtgatga aggtggtttc gctcctagat ttgaaggcac tgaagacgct 660gtagaaacta ttattaaagc tatcgaaaaa gcaggataca aaccaggtga agatgtattc 720ttaggatttg actgtgcttc ttctgaattc tatgaaaatg gtgtttatga ttacactaaa 780ttcgaaggtg aacacggtgc taaacgtagt gcagcagagc aagttgacta cttagaagaa 840ttaattggta aatatccaat catcactatt gaagatggta tggatgaaaa cgattgggaa 900ggttggaaac aattaactga tcgtatcggt gataaagttc aattagttgg tgatgattta 960ttcgtaacta acactgaaat tttatctaaa ggtatcgaac aaggtattgg taactcaatc 1020ttaatcaaag taaaccaaat cggtacatta actgaaacat tcgatgctat tgaaatggct 1080caaaaagctg gatatactgc ggttgtatct caccgttctg gtgaaactga agatactaca 1140attgctgata tcgcagttgc tacaaatgca ggccaaatta aaacaggttc attatctaga 1200actgaccgta ttgctaaata caatcaatta ttacgtattg aagatgaatt atacgaaaca 1260gctaaatttg aaggaattaa atctttctac aatttagata aataa 1305441407DNAStaphylococcus epidermidis 44atggtagttg gagatttccc aattgaaaca gatactattg taataggagc aggtccaggt 60ggatatgtcg cagccattcg cgcggctcaa ttaggacaaa aggtaacaat cgttgagaaa 120ggtaatttag gtggtgtatg cttaaacgtt ggttgtatac cttcaaaagc attactacat 180gcttctcatc gctttgttga agcgcaaaat tcagaaaact taggggtaat tgctgaaagc 240gtttcgttaa actatcaaaa agttcaagaa ttcaagactt ctgtagttaa taaattaact 300ggcggtgttg aaggactttt aaaaggtaac aaagtagaga ttgttagagg tgaagcttat 360ttcgttgata acaatagttt acgtgtcatg gacgaaaaga gtgctcaaac ttacaatttc 420aaacatgcga ttatagctac aggttcaaga ccaattgaaa ttccaaattt tgaatttggt 480aaacgtgtta tcgattcaac aggagcttta aatctacaag aagtacctaa caaactagtt 540gtagttggtg gcggatatat cggttctgaa ttaggtactg cttttgcaaa ctttggctct 600gaagttacta tccttgaagg tgcaaaagat attttaggcg gatttgaaaa gcaaatgaca 660caacctgtta aaaaaggtat gaaagaaaaa ggtatcgaaa tcgttactga agcaatggca 720aaatctgcag aagaaactga aaatggtgtc aaagtaactt atgaggcaaa aggtgaggaa 780caaactatcg aagctgatta tgtattagtt acagttggcc gtcgccctaa tactgatgaa 840ttaggattag aagaacttgg tctgaaattt gctgatcgtg gattactaga agtggacaaa 900caaagtcgta cttctattga aaatatcttt gcgattggag atattgtacc tggattacca 960ttagctcaca aagctagtta tgaaggtaaa gttgctgctg aagcgataga tggtcaagcc 1020gcagaggtag actatattgg tatgccagca gtttgcttta cagaaccaga attagcacaa 1080gttggttata ctgaagctca agcaaaagaa gaaggtttat caattaaagc ttctaaattc 1140ccttatgcag ctaatggacg agctttatca ttagatgata caaatggttt tgttaagtta 1200attacactta aagaagatga tacgcttatt ggagcacaag ttgtaggtac tggcgcatct 1260gatattatct ctgaattagg tttagctatt gagtcaggta tgaatgctga agatatcgca 1320ttaactgtac atgcacaccc aactttaggt gaaatgacaa tggaagctgc tgaaaaagca 1380attggttatc caattcatac tatgtaa 140745840DNAStaphylococcus epidermidis 45atggacttag caactaaata ttttaatcaa atcaactggc gttatgtcga tcattcaagt 60ggtttagagc ccatgcaatc ttttgcgttt gatgacactt tttccgaaag cgttggtaaa 120gatttatctt gtaatgtagt acgaacgtgg atacatcaac acaccgtgat tttgggcatt 180catgattcgc gtttaccatt tttaagtgat ggtattcgtt ttcttacaga tgaacaagga 240tataatgcaa ttgttaggaa ttctggtggc ttgggtgtcg tattagatca aggaatttta 300aacatatctt tgatttttaa aggacaaacc gaaacgacta ttgatgaagc ctttacagtg 360atgtatttat tgattaataa aatgtttgag gatgaagatg ttagtatcga tactaaagaa 420attgagcaat cgtattgccc aggaaaattt gatttaagta ttaatgataa gaaatttgcc 480gggatttcgc agcgacgagt acgtggtggt atcgcagtgc aaatatactt atgtattgaa 540ggttctggct cagaacgggc attaatgatg caacagtttt atcaacgtgc gcttaaaggg 600gagactacta aatttcacta tccagacata gatccctcat gtatggcatc tttagaaacc 660cttttaaata gagaaattaa agtgcaagat gttatgtttt tattattata tgcactaaaa 720gatttagggg caaacttaaa tatggatcct attacagaag acgagtggac acgttacgaa 780gggtattatg ataagatgtt agaacgcaat gcgaaaatga atgaaaaatt agatttttag 84046933DNAStaphylococcus epidermidis 46atggcacaaa aacctgtaga ttatgttaca caaattattg ggaatacacc tgtagtcaaa 60ttaagaaacg ttgttgatga tgatgcagct gatatttatg ttaagttaga atatcaaaat 120ccaggtggtt cggtaaaaga tcgtatcgct ttagcgatga ttgaaaaagc tgagcgtgaa 180gggaaaatta aacctggtga tacaatcgtt gagcctacga gtggtaacac tggtataggt 240ctagcatttg tatgtgctgc caaggggtac aaagcagttt ttacaatgcc tgaaacaatg 300agccaagagc gccgtaactt attaaaagct tatggtgctg aactagtatt aacaccagga 360tctgaagcta tgaaaggtgc aataaaaaaa gctaaagaat taaaagaaga gcacggctat 420tttgaaccac aacaattcga aaatccagca aatcctgaaa ttcatgaact tacaactgga 480ccagaattag ttgaacaatt tgaaggtcga caaattgatg catttttagc tggtgtagga 540actggtggta cgttatctgg tgttggtaaa gtattgaaga aagaatatcc aaatgtggaa 600atagtagcta ttgaacctga agcttctcca gtattaagcg gtggtgaacc aggccctcat 660aaattacaag gattgggagc aggtttcgta cctgatactt taaatacaga agtttatgac 720agcatcatca aagtaggtaa tgatactgct atggatatgg cacgtcgtgt tgctagagaa 780gaaggtatat tagcaggtat ttcatctggt gctgcaatat atgctgctat tcaaaaagca 840aaagaattag gtaaaggtaa aacagttgta acagtattac caagtaatgg ggaacgttac 900ttatcaacac cattatattc atttgataat taa 933471428DNAStaphylococcus epidermidis 47atgcattttg aaacagtaat cggacttgaa gttcatgttg agttaaaaac ggactcaaaa 60atgttctctc catcacccgc acattttgga gctgaaccaa attcaaatac aaatgttatc 120gacttagctt atccaggtgt attaccagta gttaatagac gtgcagtaga ttgggcaatg 180agagcttcaa tggcattaaa tatggatatt gctacaaatt caaaatttga tcgtaaaaac 240tatttctatc cagataatcc aaaagcatat caaatttctc agtttgatca acctattgga 300gaaaatggct atattgatat tgaagttgat ggagaaacaa aacgtatcgg tattacacgt 360cttcatatgg aagaagatgc aggtaaatca acacataaag atggttattc tctagtagac 420ttaaaccgtc aaggtacgcc attaattgaa attgtatctg aacccgatat tcgttcacct 480aaagaagcat atgcttatct agaaaaacta cgttcaatca ttcaatatac aggtgtatct 540gattgtaaaa tggaagaggg atccctacgt tgtgatgcta atatttcact tcgtccatat 600ggtcaaaagg aatttggtac aaaaactgaa ttgaaaaacc ttaactcatt taactacgtt 660aaaaaaggtt tagaatatga agagaaacgt caagaagaag aattattaaa tggtggagag 720attggtcaag aaacacgtcg atttgatgaa tctactggta aaacaatttt aatgcgtgtg 780aaagaaggtt cagatgatta tagatatttc cctgaaccag atattgtacc attatatgta 840gatgaagatt ggaaagcacg tgtaagagaa acaattccag aattgccaga tgaacgtaaa 900gctaaatacg taaatgatct tggactacca gaatatgatg cgcatgtatt aacattaact 960aaagaaatgt ctgatttctt tgaaggcgca attgaccatg gtgcagatgt taaacttact 1020tccaactggt taatgggagg tgttaacgag tatcttaata aaaatcaagt tgaattaaaa 1080gatacgcaac taacacctga aaatttagct ggtatgatta aattaataga agacggaaca 1140atgagtagta aaatcgctaa aaaagttttt ccagaactag cagaaaatgg tggagatgct 1200aaacaaatta tggaagataa aggtttagta caaatttctg atgaagcaac actacttaaa 1260tttgtaacag atgcattaga taataatcca caatcaatag aagattataa aaatggtaaa 1320ggtaaagcta tgggattctt agtgggccaa attatgaaag cttctaaagg tcaagctaac 1380ccacaaaaag ttaatagcct attaaaacaa gaattagata accgttaa 1428481095DNAStaphylococcus epidermidis 48atgttaaaac gtgcaaatga aaatgaagag gcttggaata atatgcttaa aaattatagt 60gaagcctatc cggaattagc tgaagaattt aaattagcaa tgagtggtaa gttaccaaat 120aattacgctg atgccttacc agaatatgat ttaaatcaca gtggtgcttc tagagctgat 180tcaggagaaa taattcaaaa attaagcgag tttgtacctt cattctttgg tggatcagca 240gacttagcag gttcaaataa atctaacgtt aaagaagcta aagattataa taaagatact 300ccagaaggta aaaacgtatg gtttggtgta cgtgaatttg caatgggagc agcaataaac 360ggcatggcag cacatggtgg acttcatcca tatgcagcaa cattctttgt attcagtgat 420tacctaaaac cagctttacg attatcatca atcatgggac tcaattcaac gttcatcttt 480actcatgatt caattgctgt aggtgaagat ggccctacac acgaacctat tgaacaatta 540gcaggtcttc gtgctattcc taacatgaat gttattcgtc cagctgatgg taatgaaaca 600cgtgtagctt gggaagttgc acttgaatca gaacaaacac caacatcatt agtgttaact 660cgtcaaaatt taccaacttt ggatgttgat aaacaaacag ttgaaaatgg tgtgagaaaa 720ggtgcatata ttgtttttga aacagaacaa caacttgaat atttattatt ggcatctgga 780tcagaagtta atttagctgt agaagccgca aaagaattag agcaacaagg taaaggtgta 840cgagttattt ctatgccaaa ctggtacgca tttgaacaac aatcttctga atataaagaa 900tcaattttac cttctgatgt tactaaacgt atagctatcg aaatggcatc accacttggt 960tggcataaat atgttggaat tgaaggtaaa gtcattggta taaatagttt tggcgctagt 1020gctcctggag atttagtagt tgaaaagtat ggattcacta aagaaaatat tttaaaacaa 1080gtccgttcat tataa 1095491005DNAStaphylococcus epidermidis 49gtggaatcag tgagaggttt aaaaatttta agtgtaattg gcttattgtt tgttttaatt 60gcaactgcag catgtggaaa taatagttca agtaactcaa gtaaagagtc atcaaaagat 120ggagttgaaa tcaagcacga agaaggtact acgaaagtac ctaaacaccc taaacgtgtt 180gttgttcttg agtattcatt tgttgatgcg ttagttgctt tagatgttaa acctgttggg 240atagcggatg ataacaaaaa aaatcgtatt attaaaccat taagagataa aattggaaaa 300tacacttctg taggaacacg taagccacct aacttagaag aaatcagtaa acttaaacca 360gatttaatta ttgctgataa taatagacac aaaggtattt ataaagactt aaataaaatt 420gctcctacga ttgaactgaa aagtttcgat ggagattata atgaaaatat tgatgctttt 480aaaacaattt caaaagcttt aggtaaagaa gaagaaggta aaaaacgctt agaagaacac 540gataagaaaa ttgaagaata taaaaaagaa ataactatgg ataaaaatca aaaggtattg 600cctgcagtag ctgctaaatc aggtttgctt gctcatccaa gcaactctta tgttggtcaa 660ttcctaagtc aactaggttt taaagaagca ttaagtgatg atgttactaa aggtttaagt 720aagtatctta aaggacctta cttacaaatg aacactgaaa ctttatctca agtgaatcct 780gagcgtatgt tcataatgac aaacaaagca agttctaacg aaccttcact aaaagaacta 840gaaaaagatc ctgtatggaa gaaattaaac gctgtgaaaa atcaacgtgt tgatatttta 900gaccgtgact tatgggcaag atcacgtggt ttaatttctt cagaagaaat ggcaaaagaa 960cttgttgaat tatctaagac agatagtaaa aaagataata agtaa 1005501236DNAStaphylococcus epidermidis 50atgagagata aatttgaaat aacttttatt aagaatagga gagatttaat aatggcaaaa 60gaaaaatttg atcgctcaaa agaacatgcc aatattggta ctatcggtca cgttgaccat 120ggtaaaacaa ctttaacagc tgctatcgca actgtattag ctaaaaatgg tgacactgtt 180gcacaatcat acgatatgat tgacaacgct ccagaagaaa aagaacgtgg tattacaatc 240aatactgcac atatcgaata ccaaactgac aaacgtcact atgctcacgt tgactgccca 300ggacacgctg actatgttaa aaacatgatc actggtgcag ctcaaatgga cggcggtatc 360ttagttgtat ctgctgctga cggtccaatg ccacaaactc gtgaacacat cttattatca 420cgtaacgttg gtgtaccagc attagttgta ttcttaaaca aagttgacat ggtagacgac 480gaagaattat tagaattagt tgaaatggaa gttcgtgact tattaagcga atatgacttc 540ccaggtgacg atgtacctgt aatcgctggt tctgcattaa aagcattaga aggcgatgct 600gaatacgaac aaaaaatctt agacttaatg caagcagttg atgattacat tccaactcca 660gaacgtgatt ctgacaaacc attcatgatg ccagttgagg acgtattctc aatcactggt 720cgtggtactg ttgctacagg ccgtgttgaa cgtggtcaaa tcaaagttgg tgaagaagtt 780gaaatcatcg gtatgcacga aacttctaaa acaactgtta ctggtgtaga aatgttccgt 840aaattattag actacgctga agctggtgac aacatcggtg ctttattacg tggtgttgca 900cgtgaagacg tacaacgtgg tcaagtatta gctgctcctg gttctattac accacacaca 960aaattcaaag ctgaagtata cgtattatct aaagatgaag gtggacgtca cactccattc 1020ttcactaact atcgcccaca attctatttc cgtactactg acgtaactgg tgttgtaaac 1080ttaccagaag gtacagaaat ggttatgcct ggcgacaacg ttgaaatgac agttgaatta 1140atcgctccaa tcgctatcga agacggaact cgtttctcaa ttcgtgaagg tggacgtact 1200gttggatcag gcgttgtaac tgaaatcttt gaataa 1236511287DNAStaphylococcus epidermidis 51atgatgagtt ttgaaaaatc tattaaagca atggagcaag ctgagaaatt aatgcctggc 60ggtgttaaca gtcccgtaag agcatttaaa tcagtagaca caccagctat ttttatggat 120catggtgaag gatctaaaat atatgatatt gatggaaatg aatacattga ttatgtgcta 180agttggggcc cattaattct gggacataaa aatcaacaag ttatatccaa attacatgaa 240gcagtagata aaggtacaag cttcggcgct tcaacacttc aagaaaataa acttgctgaa 300cttgtgattg accgtgtacc ttcaattgaa aaagtaagaa tggtttcctc aggaactgaa 360gctactttag acacacttcg tttagctagg ggttatacag gacgtaataa aattataaaa 420tttgaagggt gttatcatgg acacagtgat tctttattga ttaaagcagg atcaggtgtt 480gcaacactag gtttacctga ttcaccaggc gtccctgaag gtattgctaa aaacactatc 540acggtgccat ataatgattt agattcactt aaattagcgt tcgaaaaata tggcgatgat 600attgctggtg ttattgttga accggttgct ggaaatatgg gtgtagtgcc tccagtgaat 660ggatttctac aaggtttaag agatattact aatgaatatg gagcattact tatatttgat 720gaagtgatga ctggtttccg tgtaggttat aattgtgcgc aaggatactt tggtgtaaca 780cctgatttaa cttgcttagg aaaagtgata ggtggaggtt tacccgttgg agcttttggt 840ggtaaaaaag aaattatgga ttacattgct cctgttggga ctatttatca agctggcaca 900ctttcaggta atcctttagc aatgactagt ggttatgaaa cattgagtca acttactcct 960gaatcttatg agtattttaa ttctctagga gatatacttg aaaaaggatt aaaagaggta 1020tttgctaagt ataatgttcc aatcacagta aatcgcgctg gttcaatgat tggttacttc 1080ttaaatgagg ggcctgtaac aaattttgag gaagcaaata aaagtgattt aaaattattt 1140agtaatatgt atagagaaat ggctaaggaa ggtgtttaca taccaccttc acaatttgaa 1200ggaacatttt tatcaactgc acatactaaa gatgatattg agaaaactat ccaagcattt 1260gataatgcat taagtcgtat tgtgtga 128752861DNAStaphylococcus epidermidis 52atgcctttag tttcaatgaa agaaatgtta atcgatgcga aagaaaacgg ttatgcggtt 60ggtcaataca atcttaataa cctcgaattt acacaagcta ttttagaagc gtctcaagaa 120gagaatgcgc cagttatttt aggtgtttct gaaggggcag ctcgttatat gagtggtttt 180tatacagttg tgaaaatggt agaaggttta atgcatgact taaacatcac aatcccagta 240gcaattcatt tagaccacgg ttcaagcttt gaaaaatgta aagaagcaat tgatgctgga 300ttcacatctg taatgattga tgcatctcat agtccttttg aagaaaatgt tgaaatcact 360tctaaagtag ttgagtatgc tcatgataga ggcgtttctg tagaagctga attaggtaca 420gttggtggac aagaagacga cgtagttgct gatggcgtta tctatgcaga ccctaaagaa 480tgtcaagaat tagtagaaaa aactggaatt gatactttag ctccagcatt aggttctgta 540catggaccat ataaaggtga acctaaatta ggatttaaag agatggaaga aattggtgct 600tcaactggat tacctttagt attacacggt ggtacaggta ttccaactaa agatattcaa 660aaagctattc cttatggtac tgctaaaatt aacgtgaata ctgaaaatca aattgcgtct 720gctaaagcag ttcgtgaagt attaaacaac gacaaagatg tgtatgatcc acgtaaatat 780ttaggaccag cacgtgaagc aattaaagag acagttaaag gtaaaattag agaattcggt 840acttctaatc gcgctaaata a 861531407DNAStaphylococcus epidermidis 53atgacacaac aaattggagt agtgggttta gcagtaatgg ggaaaaacct agcttggaat 60attgaatcac gtggttatag tgtttctgtt tataaccgat caagacaaaa aactgatgaa 120atggttaaag aatcgcctgg aagagaaatt tacccaacat actcattaga agaatttgta 180gaatctttag agaaacctcg taagatttta ttaatggtaa aagctggacc tgcaacagat 240gccactatag atggtttatt acctttatta gacgatgatg atattttaat tgatggtggt 300aatactaatt accaagatac gattcgtcga aataaagctt tagctgaaag tagtattaac 360tttattggta tgggagtttc tggtggagaa atcggcgcac tcacgggccc ttctttaatg 420ccaggtggtc aaaaagatgc ttataacaaa gtcagcgata tcttggacgc aattgctgct 480aaggcacaag atggtgcttc atgtgtaact tacattggcc ctaatggtgc aggacattat 540gttaagatgg tacacaatgg tatcgaatat gcagatatgc aattaattgc tgaaagttat 600gcaatgatga aagatttatt aggcatgtca cataaagaaa tttctcaaac ttttaaagaa 660tggaatgctg

gagaacttga aagttattta atagaaatta caggtgatat tttcaataaa 720ttagatgatg acaatgaagc acttgtagaa aaaatattag atactgcagg tcaaaaaggc 780acaggtaaat ggacttcaat taacgcacta gaattaggtg ttcctttaac aatcattaca 840gaatctgtat ttgcgagatt catctcatca attaaagaag aacgtgttac tgcttctaaa 900tctttaaaag gacctaaagc acattttgaa ggcgataaaa aaacattctt agaaaaaata 960cgtaaggcac tttatatgag taaaatatgc tcatatgcac aaggtttcgc tcaaatgaga 1020aaagccagtg aagataatga gtggaatttg aaattaggcg aattagcaat gatttggcgt 1080gaaggttgta ttattcgtgc acaattccta caaaaaatta aagatgccta cgataataat 1140gaaaacttac aaaacttatt attagaccct tacttcaaaa acattgttat ggaatatcaa 1200gatgcactac gtgaagtagt agctactagc gtgtacaatg gcgtgccaac acctggtttt 1260tcagcaagta taaattatta tgatagttat cgctcagagg atttacctgc aaacttaatt 1320caagcacaac gtgattactt tggcgcacat acttatgaac gtaaagaccg tgaaggtatt 1380ttccatacac aatgggtaga agaataa 140754789DNAStaphylococcus epidermidis 54atgaaaagac ttttactttg cattgttgca cttgtttttg ttttagcagc ctgtggcaac 60aattcatcta acaataaaga taatcaatca agcagtaaag acaaggatac gttaagagtt 120ggtacggaag gtacatatgc gccctttact taccataata aaaaagatca attaacaggt 180tatgatattg atgtgattaa agcagttgca aaagaagaaa atcttaaact taagtttaat 240gaaacgtcat gggattcaat gtttgcagga ttagatgctg gtcgttttga tgttattgca 300aatcaagtgg gtgtgaataa agatagagag aaaaaatata aattctctga accttacaca 360tattcaagtg ctgtacttgt tgttcgtgaa aatgaaaaag atattacatc attcaatgat 420gtaaaaggta aaaagttagc acaaacgttt acgtctaatt atggtcaatt ggctaaagat 480aagggtgcgg acattactaa ggtagatgga tttaatcaat caatggactt actattatct 540aaacgtgtag atggtacatt taacgacagt ttatcttact tagattacag aaaacaaaag 600cctaatgcta aaattaaagc aatcaaagga catgcagaac aaaataaatc agcatttgca 660ttctctaaga aggttgatga aaaaacgatt gagaaattta ataaaggcct agaaaaaatt 720agagataatg gtgaattagc taaaattggt aagaaatggt ttggtcaaga tgtttctaaa 780cctgaataa 78955933DNAStaphylococcus epidermidis 55gtgtatatga ctaaatatgt gttgaaacga ttgtgttata tgtttgtgtc gttatttatt 60gttataacaa ttacattttt cttaatgaaa ttaatgccag gatctccgtt taatgacaca 120aaacttaatg cgcaacaaaa agaaatatta aatgaaaagt acggtttgaa tgatccagta 180gcattacaat atgttaatta tttgaaaaat gtagtaacag gtgattttgg caactcattt 240caatatcata atatgccagt gtgggattta gttaaaccac gattgatacc ttcaatggag 300atgggaataa cagctatggt tattggtgtt gttttaggtt tagtattagg tgttgctgct 360gctactaaac aaaatacatg ggtagactat acaacaacaa ttatctctgt tatcgcagta 420tcagtgccgt catttgtctt agcagtttta ttgcagtatg tatttgcagt taagttagaa 480tggtttccag ttgcaggatg ggaaggtttt tctacagcta ttttaccttc tctagcacta 540tcagctacag ttttagcaac tgttgcaaga tatattagag ctgaaatgat tgaagtactc 600agttcagatt acatactttt agctcgagct aaaggaaatt ctactttaaa agtgctcttt 660ggacatgcat tacgaaatgc attaattcct attattacaa tcattgtacc tatgttagca 720ggtatattaa caggaacatt aacaattgaa aatatctttg gtgttccagg attaggtgat 780caatttgttc gttctataac tacaaatgat ttttcagtca tcatggctac aacgatatta 840ttcagtactt tatttattgt ttcgatcttt attgtagaca ttttatatgg tgttatcgat 900ccaagaattc gtgtacaagg gggcaagaaa taa 933561545DNAStaphylococcus epidermidis 56gtgaatgaag agcaaagaaa ggctggaacg ataaatattc tagcagaacg tgatcgtaaa 60gctgagaaag attatagtaa atactttgaa caagtgtatc agccacctag cttaaaagaa 120gctaaaaaaa gaggaaaaca agaagttcaa tataacagag attttcatat agatgaaaaa 180tacaaaggta tgggtaaagg tcgcactttt ttaattaaaa catatggatg tcaaatgaat 240gcacatgaca ctgaagttat ggcaggaata ttaaatgcat taggatatag tgctacttcg 300gatattaatg aagcggatgt gattttaatt aatacatgcg ccattagaga aaatgctgaa 360aataaagtct ttagtgaaat aggaaattta aaacatttaa aaaaagaacg cccagattgt 420ttaattgggg tgtgtggttg catgtctcaa gaagaatcag tcgtaaataa aatattaaaa 480tcttatcaaa atgtagatat ggtttttggg acacacaaca ttcatcattt acctgagatt 540ttagaagagg catatttatc taaagcgatg gtagttgaag tatggtctaa agagggagac 600atcatcgaaa atttacctaa agtgcgtgac ggtcacatta aagcttgggt taatattatg 660tatggttgcg ataagttttg tacttattgt attgttccat ttactagagg aaaagaacgt 720agtcgtcgtc cagaggacat cattgatgag gttagagaat tagcaagaga aggttatcaa 780gaaattacct tattaggtca aaatgtaaat tcatatggta aagatatcga aggtctggat 840tatgaattag gtgacttatt ggaagatatt tctaaaattg atatacctcg tgttcgtttt 900acaacaagtc atccttggga ctttacagat cgaatgattg aagttatagc taaaggtggg 960aacatagtac cgcatatcca tttaccggta caatcaggta ataaccaagt attaaagata 1020atggggcgta aatatacaag agagagttat cttgatttag tttcaagaat aaaggaagct 1080atccctaacg tagctctaac tactgatatc atagtaggtt atcctaatga aactgtagaa 1140caatttgaag aaacattatc attatatgat gacgttcaat ttgagcatgc atacacatat 1200ttatattcac aaagagatgg aacaccagca gctaaaatga aggataacgt acctttagaa 1260gtgaaaaaag aacgtttgca aaggcttaat aagaaggttg gaatatattc tcaacaagca 1320atgagtcagt atgaaggtaa gattgttacg gtattatgtg aaggttctag taaaaaagat 1380gagaatgttc tagcaggcta tactgataaa aataaacttg tgaattttaa aggaccaaga 1440gagagcattg gtaaactcgt tgatgtcaaa attgacgagg caaaacaata ttctttaaat 1500ggaacattta tacaagaaca tcaacgttca atggtgacac aataa 1545571185DNAStaphylococcus epidermidis 57atgtcacgca tagtattagc tgaagcatat cgaacaccta taggcgtgtt tggtggtgta 60tttaaggata tacctgccta tgaactaggt gcaacagtta ttcgtcaaat tttagaacat 120agtcaaatag atcctaatga aatcaatgaa gttattctag gaaacgtatt acaggcaggt 180caaggacaaa atcctgctcg tattgctgcg attcatggtg gtgtgccaga agcggtacct 240tcttttactg taaataaagt ttgcggttct ggattaaaag cgattcaact tgcctatcaa 300tctattgtag cgggagataa tgagattgtt atcgctggag gcatggaaag tatgtctcaa 360tctccaatgc ttcttaaaaa tagtcgtttc ggttttaaaa tgggaaatca aactttagaa 420gatagtatga tagctgatgg tttaactgat aagtttaatg attaccatat gggtatcaca 480gccgaaaatc tagttgaaca gtatcagatt agtcgtaaag aacaagatca atttgcattc 540gattctcaac aaaaagcatc acgtgcacaa caagctggtg tatttgatgc tgaaattgta 600cctgtagagg taccacaacg taaaggcgac cccctaatta tttctcaaga tgaaggcatt 660agacctcaaa cgacaattga taagttagca caactccgtc cagcatttaa aaaagatgga 720tcagtaactg ctggtaatgc atccggtatc aatgacggtg ctgctgctat gctcgttatg 780acggaggaca aagcgaaagc attgggctta caacctatag ctgtattaga tagttttggt 840gcgagtggtg tggcgccttc aattatgggt attggtccag ttgaagcgat acataaagct 900ttaaaacgtt ctaataaagt gataaatgat gttgatattt ttgaattaaa cgaagctttt 960gcagcgcaat caattgctgt aaaccgtgag ttgcaattac cgcaagataa agtcaatgtt 1020aatggtggtg cgattgcact aggacatccg ataggggctt cgggtgcgcg tactttagtt 1080tcattattac atcaattaag tgatgctaag ccaacaggtg tggcatcttt atgtatcggt 1140ggcggtcaag gtatcgctac ggttgtatct aaatatgaag tttaa 118558879DNAStaphylococcus epidermidis 58atggcaattt cagcaaaact tgttaaagaa ttacgtgaaa aaactggcgc aggaatgatg 60gattgtaaaa aagcgctaac tgaaactgat ggtgacatcg ataaagcgat tgactactta 120cgtgaaaaag gtattgcaaa agcagctaaa aaagctgacc gtatcgcagc agaaggactt 180gtacacgttg aagtaaaaga taatgaagct gcaatcgttg agattaattc agaaacagac 240ttcgtagcac gtaacgaagg tttccaagaa ttagttaaag aaattgctaa ccatatttta 300gatagcaagg tagaaacagt agacgctttg atggaatcta aattatctag cggtaaaact 360gttgatgaaa gaatgaaaga agctatctca acaattggtg aaaaattaag tatccgtcgt 420ttctctatca gaacaaaaac tgataatgat gcatttggtg catatttaca catgggtgga 480cgtattggtg tgttaactgt agtggaaggt actactgatg aagaagctgc taaagacgta 540gcaatgcaca ttgcggcaat caaccctaag tatgtttctt ctgaacaagt aagcgaagaa 600gaaatcaatc atgaaagaga agtattaaaa caacaagcat taaacgaagg taaaccagag 660aaaatcgttg aaaaaatggt tgaaggtcgt ttacgtaaat atttacaaga aatttgtgct 720gtagatcaaa acttcgttaa aaatccagac gaaactgttg aagctttctt aaaagctaaa 780ggtggtaaac ttactgattt cgttcgttat gaagttggag aaggtatgga aaaacgtgaa 840gaaaactttg ctgaagaagt taaaggacaa atgaaataa 87959933DNAStaphylococcus epidermidis 59atgactgaag tagattttga tgtagcaata atcggtgcag gtcctgccgg tatgacagca 60gcagtatatg catctcgtgc caatttaaaa actgtcatga ttgaacgcgg tatgccaggc 120ggtcaaatgg caaacactga agaagtagag aattttccag gatttgagat gatcacaggt 180cctgacttat ctactaaaat gtttgaacat gctaaaaaat ttggtgcgga ataccaatat 240ggcgatatta aatctgttga agataaaggc gactataaag ttatcaattt agggaataaa 300gagataacag cacatgcagt tattatctca actggagcag agtataaaaa gattggcgtt 360cctggtgaac aagaattagg aggacgtgga gtaagttatt gtgcggtttg tgatggagca 420ttctttaaaa ataaacgtct tttcgtaatt ggcggcggag attcagcggt agaagaaggt 480actttcttaa ctaaatttgc agataaagta acgattgttc accgtagaga tgaattacgt 540gcacaaaaca tcttgcaaga acgtgccttc aaaaatgata aagttgactt tatttggagt 600catacactta aaacaattaa tgaaaaagat ggtaaagttg gttcagttac acttgaatca 660actaaagatg gtgctgaaca gacttatgat gccgacggtg tattcattta tattggaatg 720aaaccactca cagcaccatt taaaaatctt ggtattacaa atgacgcggg atacattgtc 780acacaagatg acatgagtac taaagtacga ggtatttttg ctgcaggtga cgttcgtgat 840aaagggttac gtcaaattgt tactgctaca ggagacggta gtattgcggc tcaaagtgca 900gctgattata ttacagaatt aaaagataat taa 933601398DNAStaphylococcus epidermidis 60atgactcaaa agtatagata tcctactttt ttagaatcta tttctactat tttagttatg 60gttgtcgttg tagtaattgg ttttgttttc tttaatgtcc cgatacaaat attattatta 120atttcttcag cttatgcagc attgattgca catagagtgg gattaaaatg gaaggattta 180gaagagggga ttactcatcg attgagcacg gcgatgccag ctatctttat tattttagct 240gttggaatca ttgtaggaag ttggatgtat tctggaacag ttccagcgtt aatttactat 300ggacttaaat ttttaaaccc aagttattta ttagtatctg catttataat cagtgcaatg 360acttcaatcg ctacaggaac ggcttgggga tcggcatcta cagcaggcat tgcactcata 420tcaattgcta atcaattagg tgtgccagca ggtatggctg ctggtgccat tattgcaggg 480gcggtttttg gtgataaaat gtctccatta tctgatacta caaatttggc agctcttgta 540actaaagtta atatttttgc tcacattaaa tcgatgatgt ggacaacaat ccctgcttct 600ataataggat tggctatatg gtttattgtt ggattacaat ataagggaga cgcaaataca 660caacaaattc aaaatctatt aaaagaatta acaacaattt ataacttgaa tttttgggta 720tggatcccac ttattatcat agttttatgt ttaatattta gaatctctac agtaccgtca 780atgcttatct ctagtatcag tgctttagtt attggaacat tcgatcatca atttaatatg 840aaagatggtt ttaaagcttc ttttgatgga tttaatcata caatgctaca ccagtctcat 900atttcagata atgctaagac gttgattgag cagggtggta tgatgagtat gactcaaatc 960attgtaacta tattttgtgg ttatgctttt gctggtattg ttgaaaaggc aggttgttta 1020gacgtaattt tagagacaat agctaaaggc gtaaagtcag ttggaacact aatattaata 1080actgtagttt gtagtattat gctagtattt gcagctggag ttgcttcaat agttattatt 1140atggtaggcg tacttatgaa agatatgttc gaaaagatga atgtctcaaa gtcagtgtta 1200tctcgtacac ttgaagattc aagtacaatg gtattgccac tcattccatg gggcacatct 1260ggtatatatt atgcacacca acttaatgtt tcagttgatc agttctttat atgggcaatc 1320ccatgttact tatgtgcatt cattgcaata atttatggct ttacaggtat aggaattaaa 1380aaaataagta gaaaataa 139861708DNAStaphylococcus epidermidis 61atgaaaaaaa cagttatcgc ttctacatta gcagtatctt taggaattgc aggttacggt 60ttatcaggac atgaagcaca cgcttcagaa actacaaacg ttgataaagc acacttagta 120gatttagcac aacataatcc tgaagaatta aatgctaaac cagttcaagc tggtgcttac 180gatattcatt tcgtagacaa tggataccaa tacaacttca cttcaaatgg ttctgaatgg 240tcatggagct acgctgtagc tggttcagat gctgattaca cagaatcatc atcaaaccaa 300gaagtaagtg caaatacaca atctagtaac acaaatgtac aagctgtttc agctccaact 360tcttcagaaa gtcgtagcta cagcacatca actacttcat actcagcacc aagccataac 420tacagctctc acagtagttc agtaagatta tcaaatggta atactgctgg ttctgtaggt 480tcatatgctg ctgctcaaat ggctgcacgt actggtgtat ctgcttcaac atgggaacac 540atcattgcta gagaatcaaa tggtcaatta catgcacgta atgcttcagg tgctgctgga 600ttattccaaa ctatgccagg ttggggttca actggttcag taaatgatca aatcaatgcc 660gcttataaag catataaagc acaaggttta tctgcttggg gtatgtaa 70862891DNAStaphylococcus epidermidis 62atgaataaag aacaattaga aaaaatgact catggtaaag gattcattgc tgcattagac 60caaagtggtg gtagtacacc taaagcactt aaagaatatg gtgtgaatga agaccaatac 120agtaatgaag acgaaatgtt ccaacttgtt cacgatatgc gtacacgtgt tgtaacttca 180ccttcatttt cacctgataa aattttaggt gcgattttat tcgaacaaac tatggatcgc 240gaagttgaag gtaaatacac tggagactat ttagcggaca aaggcgttgt tcctttctta 300aaagtcgaca aaggtcttgc tgaagagaaa aatggcgtac aattaatgaa acctattgat 360gatttagatg aaactttaga tcgtgcaaat gaacgtcata tcttcggtac taaaatgcgt 420tctaacatcc ttgaacttaa tgaacaagga atcaaagatg ttgttgaaca acaatttgaa 480ttcgctaaaa aaatcatcgc taaaggttta gtacctatta tcgaaccaga agttaatatt 540aatgctaaag ataaatctga aattgagaaa gttttaaaag ctgaaatcaa aaaaggttta 600gattcattaa acgatgatca attagttatg ttaaaattaa ctattcctac tgaagctaac 660ttatataaag atttagctga ccaccctaat gttgtacgtg tagtagtatt atcaggtggt 720tacagccgag atgaagctaa caaattgtta aaagataacg atgaattaat tgcaagcttc 780tcacgtgcat tagcaagtga cttacgtgct agccaatcac aagaagaatt cgataaagca 840ttaggcgatg ctgtagattc aatctatgat gcgtcagtaa ataaaaacta a 89163792DNAStaphylococcus epidermidis 63ttgaaagaga gatttattaa gaaaactcat tatttagact atcaatttga tgagcctact 60gatattaagt taggtttcac tactcgagaa aatgggttaa gtccttatcc taatcatagt 120tttaatatgg cgagatatat cagtgacagt gcacatcata ttacacatca tcaagatatc 180ttagcgaatc ttattggtta tccaagagat gaatgggttt ttcctataca aacacatgat 240agtcgtatcg ttgaagttac aagtgaacat aaaggaacaa atattgatga actaactgat 300gatttacatg gcatagatgg aatgtatact tttgattctc acattcttct tactatgtgt 360tatgcggatt gcgtacctgt atatttttat agtgaaccac atggatatat aggattagca 420catgcaggtt ggcgaggaac atatggtcaa atagtaaaag acatgctaaa aaaagtggat 480tttgattatg aagacttaaa gattgtaatt ggtccagcaa cttcaaattc ttatgaaatc 540aatgatgata taaaaaataa gtttgaggaa ttaaccattg attcaacttt atatattgag 600accagaggta aaaatcaaca tggtattgat ttgaaaaacg ctaacgcact tcttctagaa 660gaagctggag ttccatcaaa aaacatatac gttacggaat atgcaacttc agaaaactta 720gatttattct tttcatatcg tgttgaaaaa ggacagacgg gacgtatgtt agcatttatt 780ggacggaagt aa 7926430612DNAStaphylococcus epidermidis 64atgaagagca aaccgaaatt aaacggtcgg aacatctgct cttttttatt gagcaaatgt 60atgagttatt cattgtcaaa attatcaaca ttaaaaacgt ataattttca aatcacatca 120aacaacaaag aaaaaacatc aagaatagga gtggcaatag ctttgaataa tcgtgataaa 180ttacaaaaat ttagtattcg aaaatacgca attggaacat tttctactgt gattgcaaca 240cttgtgttca tgggtatcaa tacaaaccat gcaagtgccg acgagttgaa tcaaaatcaa 300aagttaatta aacaattaaa tcaaacagat gatgatgatt cgaatacgca tagtcaagaa 360atcgaaaata acaaacaaaa ttctagtggg cagactgaat cattacgttc atcaactagt 420caaaatcaag caaatgcacg actgtcggat caattcaaag acactaatga aacatcgcaa 480caattaccta caaatgtttc ggatgatagt atcaatcaat cgcatagtga agcaaatatg 540aataacgaac cattgaaagt tgataatagt actatgcaag cacatagtaa aatagtaagc 600gatagcgatg ggaatgcttc tgaaaataaa catcataaac taacagaaaa tgtacttgca 660gaaagccgag caagtaaaaa tgacaaagag aaagagaatc tacaagagaa agataaatcg 720cagcaagtac atccaccatt agataaaaat gcattacaag ctttttttga cgcatcatat 780cacaattaca gaatgattga tagagatcgt gcggatgcaa cagaatatca aaaagtcaaa 840tctacttttg actacgtcaa tgacttacta ggtaataatc aaaatattcc ttcagaacag 900cttgtttcgg catatcaaca attagagaaa gcattagaac ttgcacgtac gttatcacaa 960cgatctacta cagaaaaacg tggtagaaga agtacgagaa gtgttgttga gaatcgttca 1020tcaagaagcg attacttaga tgctagaact gaatattatg tttcaaaaga cgatgatgat 1080tctggtttcc ctcctggtac tttcttccat gcttcaaata gaagatggcc ttataattta 1140ccaagatcta ggaacatctt acgtgcttct gatgtacaag gtaatgctta tatcactaca 1200aaacgactta aagatggata tcaatgggat attttattta atagtaatca taaagggcat 1260gaatatatgt actattggtt tggacttcca agtgatcaaa caccaactgg tccagtaact 1320ttcactatta tcaaccgtga tggttcaagt acatctactg gtggcgttgg atttggatca 1380ggtgcaccac tacctcaatt ttggagatca gcaggtgcta ttaattctag cgtagcgaat 1440gattttaaac atggctccgc tacaaattat gcattttatg atggtgttaa taatttttct 1500gactttgcta gagggggaga attatacttc gacagagaag gcgctacaca aactaataaa 1560tattatggcg atgaaaactt cgcattgcta aatagtgaga aaccagatca aataagagga 1620ttagatacaa tatatagttt taaaggtagt ggtgatgtaa gttatcgtat ttcatttaaa 1680actcaaggag ctccaactgc aagattgtat tatgctgctg gcgcgcgttc tggtgaatat 1740agacaagcaa cgaactataa ccaactctat gtcgaacctt ataagaatta tcgaaatcga 1800gtacagtcaa atgtccaagt taaaaatcgt acacttcatt taaaaagaac aatcagacaa 1860ttcgatccta cattacagag aactactgat gttcctattt tggatagtga cggttccgga 1920agtattgatt cggtatacga cccattaagt tatgtaaaga atgtgactgg tacagtccta 1980ggtatttatc catcttatct tccgtataat caggaaagat ggcagggagc taatgcaatg 2040aatgcctatc aaattgaaga acttttttca caagaaaatc ttcaaaatgc agcacgttca 2100ggtcgtccaa ttcaatttct tgtaggtttt gatgttgaag atagccatca taaccctgaa 2160actcttttac cagtaaattt atatgtaaaa cctgagttaa aacatacaat tgagttatat 2220cacgataatg aaaaacaaaa tagaaaggaa ttttcagtat cgaaacgagc gggccatggt 2280gttttccaaa taatgagtgg aacgcttcat aacactgtag gatcaggaat attaccttat 2340caacaagaga ttcgtatcaa acttactagt aatgaaccaa ttaaagatag tgaatggtct 2400attacaggat atcctaacac gcttacatta caaaacgctg tgggtagaac aaataatgct 2460actgaaaaaa acttagctct tgttggtcat attgatccag gaaattattt catcactgtt 2520aagtttggtg ataaagtaga acaatttgaa attagatcaa aaccaactcc accaagaatc 2580attacaactg ctaatgaatt acgtggaaat cctaaccaca agcctgaaat aagagtaaca 2640gatataccaa atgatactac tgctaaaatc aaacttgtga tgggcggaac cgatggtgat 2700catgatccag aaataaatcc atatactgtc cctgaaaact acacagtagt tgcagaagca 2760taccatgata atgatccaag taaaaatggg gtcttaacat tccgttcatc agactacctt 2820aaagatctac cattaagcgg tgaattaaag gcaattgttt attacaatca atatgtacaa 2880tcaaacttta gtaatagcgt tccgtttagt agcgatacaa caccacctac aattaatgaa 2940ccagcaggac tagttcataa gtattacagg ggagatcatg tagaaattac tcttccagtc 3000actgataata ctggcggttc aggtttaaga gatgtaaacg tcaatttacc tcaaggttgg 3060acaaaaacct ttacaatcaa tcctaataat aatactgagg gtacgcttaa gttaattggt 3120aatataccta gtaatgaagc atataatacg acatatcatt tcaatattac tgcaaccgat 3180aattctggaa atacaacaaa tccagctaaa acctttattt taaatgttgg taagttggct 3240gatgatttaa atccagtcgg attatctaga gatcaactac aattagtgac agacccttct 3300tcattatcta attccgaacg agaagaggta aaaagaaaaa taagtgaagc aaatgctaat 3360ataagatcat atttattaca aaataaccca atactcgctg gagtaaacgg cgatgttaca 3420ttttattata gagatggttc tgtagatgtt attgatgctg aaaatgtaat cacatatgag 3480cccgaaagaa aatccatttt cagtgaaaat ggtaatacaa ataaaaaaga agcagtaatc 3540actattgcta gaggacaaaa ctataccatt ggtccaaact taagaaaata tttctcatta

3600agtaatggtt cggatttacc taatagagat ttcacctcta tatcagctat tggatcttta 3660ccttcatcga gtgaaattag tcgactcaat gttggaaatt ataactatag agttaatgct 3720aaaaatgctt atcataagac tcaacaagaa cttaatttaa aacttaaaat agtagaggtt 3780aatgcaccta ctggtaataa tcgtgtatat agagttagta cttataattt aactaatgat 3840gaaatcaata aaatcaaaca agcatttaaa gcagctaatt ctggacttaa tttaaacgat 3900aacgatatca ctgtttcgaa taactttgac catagaaatg ttagtagtgt gacagtaact 3960atacgtaagg gcgatttgat aaaagagttt tcatcaaatc tcaataatat gaatttctta 4020cgttgggtta atataaggga tgattatacc atttcgtgga cttctagtaa gattcaaggt 4080agaaatacag atggtggatt agaatggtca ccagatcata aatcacttat ttataaatat 4140gatgcaacat taggtagaca aataaatact aatgacgtgt taactttact tcaagcaaca 4200gctaaaaact caaatttacg ttcaaatatc aatagtaatg aaaaacagtt agcagaacga 4260gggtctaatg ggtattctaa atctataatt agagatgatg gcgagaaatc ttatttactt 4320aactcaaatc ctattcaagt attagactta gtagaaccag ataatggtta cggtggacgt 4380caagtcagtc attctaacgt tatatataat gaaaaaaatt cttctatcgt aaatggtcaa 4440gttccagaag ctaatggggc atccgctttt aatattgata aagttgttaa agctaatgcg 4500gcaaataatg gtattatggg tgttatctat aaggcacaat tatacttagc accatacagt 4560ccaaaaggtt acattgaaaa attaggccaa aatttaagca ataccaataa cgtgattaat 4620gtttattttg tgccttctga taaagtaaat cctagtataa ctgtaggtaa ttacgaccat 4680catacggtat attctggtga aacatttaaa aatactatca atgtaaatga taattatgga 4740ttaaatacag tagcttctac aagtgatagt gcaattacta tgaccagaaa caacaacgag 4800ttagtaggtc aggctcctaa tgttactaat agcacaaata aaattgtaaa agttaaagcc 4860acagataaaa gtggaaatga aagtattgtt tctttcacag taaatataaa accattaaac 4920gagaaatata gaataacaac ttcatcaagt aatcaaacac cagtgagaat tagtaatatt 4980caaaacaatg ctaacctttc aattgaagat caaaatagag taaaatcttc actcagcatg 5040actaaaattt taggtacaag aaattatgtc aatgagtcaa ataatgacgt tcgtagtcaa 5100gttgtaagta aagtaaatag aagtgggaac aatgctacag ttaatgttac aactacattt 5160tctgatggta caactaatac aataaccgtt ccagttaaac atgtgttatt agaagttgta 5220cctactacta gaacaacagt aagaggacaa caatttccaa ccggcaaagg aacttcccca 5280aatgatttct ttagtttaag aacgggaggt ccagttgatg cgagaatagt ttgggttaat 5340aatcagggac ccgatataaa tagtaatcaa attggtagag atttaacatt acacgctgaa 5400atattctttg atggtgaaac aacaccaatt agaaaagata cgacttacaa acttagtcaa 5460tctattccaa agcaaatata tgaaacaact atcaatggtc gatttaattc atcaggtgat 5520gcatatccag gaaattttgt tcaagcagta aatcaatatt ggccagaaca tatggacttc 5580agatgggccc aaggatcagg cacaccaagt tctcgtaatg caggttcatt tactaaaaca 5640gttacggtag tttatcaaaa cggccaaact gaaaacgtta atgtactatt caaagtcaaa 5700ccaaataaac ctgttattga tagtaatagt gtgatttcaa aaggacaatt aaatggtcaa 5760caaattttag ttcgaaatgt tccacaaaat gcacaagtca ctctatatca atcaaatgga 5820actgttattc ctaatacaaa tacaactata gattctaatg gtatagctac tgtaacaatt 5880caaggcactc taccaaccgg aaatattact gctaaaacct caatgacaaa taatgtaacg 5940tacactaaac aaaatagtag tggaattgct tcaaatacaa ctgaagatat aagtgttttt 6000tcagaaaaca gtgatcaagt aaatgttacc gctggcatgc aagctaaaaa tgatggtatt 6060aaaataatta aaggtacaaa ctataatttt aatgacttca atagtttcat aagtaatata 6120ccagcccatt ctactcttac atggaacgag gagcctaata gttggaaaaa caacatcggt 6180actacaacaa aaactgttac agttactcta cctaatcatc aaggtacgag aactgtagat 6240attccaataa caatctatcc aacagttaca gctaagaatc cagtaagaga tcaaaaagga 6300cgaaacttaa ccaatggtac tgacgtttat aattatatta tttttgaaaa taataaccgt 6360cttggaggaa cagcttcttg gaaagacaat cgtcaacctg ataaaaacat agccggtgta 6420caaaatttaa ttgcacttgt taattatcct ggcatatcta caccattaga agttcctgtt 6480aaagtgtggg tatataattt tgatttcact caacctatct acaaaattca agtaggagat 6540acattcccta aaggaacatg ggcaggctat tacaaacatc ttgaaaatgg agagggatta 6600ccaatagatg gttggaaatt ttattggaac cagcaaagta caggaactac tagtgatcaa 6660tggcaatcat tagcatatac tagaactcct tttgttaaaa ctggtactta tgatgtcgtt 6720aatcctagca actggggtgt ttggcaaaca tcacaatcag ctaaatttat agttacaaat 6780gctaaaccta atcaaccaac cataactcag tctaaaactg gtgatgtaac agtaacacct 6840ggtgctgtgc gtaatatact aataagtggg acaaatgatt atatccaagc atctgcagat 6900aagattgtta ttaataaaaa tggaaataaa ttaactacat ttgttaagaa taatgatggt 6960cgttggactg ttgaaactgg gtcacctgac ataaatggta tcggaccaac aaataacgga 7020actgctatat ctttaagtcg attagcagtt agacctgggg attcaataga agcaatagcg 7080actgaaggtt ccggagaaac tataagtact tcagcaacta gtgaaattta tattgtcaaa 7140gctccacaac ctgaacaagt agcaactcat acttatgata atggaacatt cgatatatta 7200cctgacaatt cacgtaattc tttaaatcca actgaacgtg tcgaaattaa ttacactgaa 7260aaattaaatg gcaatgaaac acaaaaatca ttcactatta ctaaaaataa caacggcaaa 7320tggacgataa ataataaacc aaattatgtc gagttcaatc aggataatgg taaagttgta 7380ttttcggcca atacaattaa acctaattct caaattacaa taactcctaa agcaggtcag 7440ggtaacactg aaaacacaaa tcctactgta attcaagcac ctgcgcaaca tactttaaca 7500atcaatgaaa ttgttaaaga acagggtcaa aatgtgacta atgatgatat taataatgcg 7560gttcaagtgc caaataaaaa tagagttgcg attaaacaag gaaacgctct tccaacaaat 7620ttagctggtg gtagtacatc acatattcca gtagttattt attacagtga tggaagttct 7680gaagaagcta ctgagactgt tagaactaaa gttaataaaa ccgaattaat caatgctcgt 7740cgtcgactag atgaagaaat tagtaaagag aacaaaacac catcaagtat cagaaacttt 7800gatcaagcta tgaatcgtgc tcaatcacaa attaatacag ctaaaagtga tgctgaccaa 7860gttataggca cagaatttgc aacacctcaa caagtaaatt cagctttatc taaagttcaa 7920gcggcacaaa ataaaataaa tgaagctaaa gcattattac aaaacaaggc tgataatagt 7980caacttgtga gagcaaaaga acaattacaa caatcgattc aaccagccgc ttcaactgat 8040ggtatgactc aagatagcac aaggaactac aaaaataaac gccaagcagc tgaacaagca 8100atacaacatg caaatagcgt tataaataat ggagatgcaa catcccaaca aattaatgat 8160gctaaaaaca cagttgaaca ggcacagaga gattatgttg aagctaaaag caacttacgt 8220gctgataagt cacagttaca aagcgcttat gatacgttaa atagagatgt tttaacaaat 8280gataaaaagc cagcatctgt aagacgctat aatgaagcca tttcaaatat tagaaaagaa 8340ttagatacag ctaaagcgga tgcaagtagt actttgcgaa acaccaatcc ttccgttgaa 8400caagttagag acgctttaaa taaaataaat actgttcaac ctaaagtgaa tcaagcaatt 8460gctttacttc aaccaaaaga aaataattca gaacttgtac aagctaaaaa acgtttacaa 8520gacgctgtaa atgacatacc tcaaacacaa ggtatgacac aacaaacaat taataattat 8580aatgacaaac aacgtgaagc tgaaagagca cttacatctg cacaaagagt gattgataat 8640ggggatgcta caactcaaga aattacttct gaaaaatcta aagtagagca agcaatgcaa 8700gctttaacta atgctaaaag taatctgaga gctgataaga atgagttaca gactgcatat 8760aacaaattaa ttgagaacgt atctaccaat ggtaaaaaac cggcgagtat acgtcaatac 8820gaaacagcca aagccagaat acaaaatcaa attaatgatg ctaaaaatga agcggagcga 8880attttaggta atgataatcc acaagtatca caagtaactc aagcattgaa caaaatcaaa 8940gctattcaac caaaattaac agaagctatc aacatgcttc aaaacaaaga aaataataca 9000gaattagtca atgctaaaaa cagacttgaa aatgcagtaa atgatacaga tccaacacac 9060ggtatgactc aagaaacaat taataattac aacgctaaaa agcgagaagc tcaaaatgaa 9120atacaaaaag cgaacatgat tattaataat ggagatgcta ctgctcaaga tatttcttct 9180gaaaaatcta aagtagagca agtattacaa gcattacaaa atgctaagaa tgacttaaga 9240gctgataaaa gagaattaca gactgcatac aataaactta tacaaaatgt taataccaat 9300ggtaaaaaac catctagtat tcaaaactat aagtctgcaa gacgaaatat cgaaaaccaa 9360tataataccg ctaaaaatga agcacataat gttcttgaaa atacaaaccc tactgtaaat 9420gcagtagaag atgctttacg taagataaat gcaattcaac cagaggttac aaaagctatt 9480aatatacttc aagataaaga agataatagc gaacttgtta gagcaaaaga aaaattagat 9540caagcgatta atagtcaacc atcactaaat ggtatgactc aagaatctat taataattac 9600acaacaaaac gtagagaagc acaaaatata gcaagttctg ctgacactat tattaataat 9660ggggatgcat ctattgaaca aataacagaa aataaaattc gagttgaaga ggcaactaat 9720gcacttaacg aagcaaaaca acatttaacg gcagatacaa cttctttaaa aactgaagta 9780cggaaattaa gtaggagagg cgacacaaac aacaaaaagc ctagcagtgt tagtgcttat 9840aacaatacta ttcattcgct acaatctgaa attacacaga ctgaaaatag agcaaatact 9900atcatcaata agcctattcg ttctgttgaa gaagtaaata atgcattgca tgaagtaaac 9960caattgaacc aacgcttaac agatacaatt aacttattac aacctttagc gaataaagaa 10020agcttaaaag aagctcgtaa tcgacttgaa agtaaaatta atgaaaccgt tcaaacagac 10080ggtatgactc aacaatctgt tgagaattat aagcaagcta aaataaaagc tcaaaatgaa 10140tctagtattg cacaaactct tattaataat ggtgatgcat ctgatcaaga agtttctaca 10200gaaatagaaa aattaaatca aaagctgtct gaattaacaa attcaatcaa tcacttaaca 10260gttaataaag aacctttaga aactgccaaa aatcagttac aagcaaatat tgaccaaaaa 10320cctagcactg atggtatgac gcaacaatct gtacaaagct atgaacgtaa actacaagaa 10380gccaaagata aaataaactc aattaataat gtcttagcta acaatccaga tgttaatgct 10440atcagaacaa acaaagttga gacggaacaa atcaataatg aattaacaca ggcgaaacaa 10500ggtcttactg ttgataaaca accattgatt aatgcaaaaa ctgctttgca acaaagtcta 10560gataatcaac caagtactac tggtatgact gaagcaacaa ttcaaaatta taacgctaaa 10620cgtcaaaaag cagagcaagt tatacaaaat gcaaataaaa ttattgaaaa cgctcaacct 10680agtgtacaac aagtgtctga tgagaaatct aaggtagagc aagcactcag tgaattgaac 10740aacgccaaat cagcgcttag agctgataaa caagaattac agcaagcata taatcagttg 10800attcaaccaa cggatttaaa taataagaaa ccagcttcta tcactgcgta caatcaaaga 10860tatcaacaat ttagtaacga attgaacagc actaaaacaa atacagatcg cattttaaaa 10920gagcaaaatc caagtgtagc tgatgtcaac aatgcactaa ataaagtaag agaagtacaa 10980caaaaattaa acgaagccag agcactttta caaaataaag aagataatag tgcactagtt 11040cgagccaaag aacaacttca acaggcagtt gaccaagtcc cttcaacaga aggtatgacg 11100caacaaacta aagatgatta caattcaaaa caacaagctg ctcaacaaga aatatcaaaa 11160gcacaacaag ttatcgataa tggcgatgcg actacacaac aaatttctaa cgccaaaaca 11220aatgttgaac gcgctttaga agcattaaat aatgcaaaaa ctggtttaag agcagataaa 11280gaggaacttc aaaatgcata taatcaatta actcaaaata ttgatacgag cggtaaaacg 11340cctgcaagta tcaggaaata caatgaagct aagtcacgta ttcaaactca aattgattca 11400gctaaaaatg aagcaaacag tattttaaca aatgacaatc ctcaagtatc acaagtgact 11460gctgcgttaa acaaaataaa agctgttcaa cctgaattag ataaagcgat agcaatgctt 11520aaaaataaag agaataataa tgcattggtt caagcgaaac aacaacttca acaaattgtt 11580aatgaagtag atccaacaca aggcatgaca acagatactg ctaataacta taaatcaaaa 11640aaacgtgaag ctgaagatga aatacaaaaa gctcaacaaa tcattaacaa tggcgatgcc 11700actgagcaac aaattactaa cgaaacaaat agagtaaatc aagcgattaa tgcaataaac 11760aaagccaaaa acgatttacg tgctgataag tctcaattgg aaaatgctta taaccaatta 11820atacaaaatg ttgatacaaa tggtaaaaaa cctgctagta ttcaacaata ccaagctgct 11880cgacaagcta ttgagacgca atacaataac gctaaatcag aagcacatca aattcttgaa 11940aatagtaacc cttcagttaa tgaagtagca caagcattac aaaaagttga agctgtacaa 12000cttaaagtta atgacgcgat tcatatactt caaaataaag ataataatag tgcacttgtc 12060acagctaaaa atcaacttca gcaatcagtt aatgatcaac cattaacaac aggtatgact 12120caagattcta ttaataacta tgaagctaag agaaatgagg ctcaaagtgc tatcagaaat 12180gcagaagctg tcatcaacaa tggcgatgca actgcaaaac aaatttcaga cgagaaatct 12240aaagttgaac aagcactagc acatttgaat gatgctaaac agcaattaac tgcagatact 12300actgaattac aaacagcagt tcaacaatta aacagaagag gcgatacaaa taataaaaag 12360ccaagaagta tcaatgcata taataaagca attcaatcat tagaaacaca aattacttct 12420gctaaagata atgccaacgc tgtgatacaa aaacctatac gtactgttca agaggtaaat 12480aatgcattac aacaagtaaa tcagttgaat caacaattaa ctgaagcaat taatcaactt 12540caaccgctat caaataatga tgcattaaaa gctgcaaaat taaatttaga aaataaaatt 12600aatcaaactg tacaaactga tggtatgaca caacaatcta tagaggctta tcaaaacgct 12660aaacgcgtag cccaaaatga atctaacact gctttagcat taattaataa cggcgatgcc 12720gatgaacaac aaattacaac tgaaacagac cgagtcaatc agcaaactac aaacttaact 12780caagcaatta acgggttaac agttaataaa gaaccattag aaaccgctaa aacagcgtta 12840caaaataaca tcgaccaggt acctagtaca gatggtatga ctcagcaatc tgttgcaaat 12900tataatcaaa aactacaaat agctaaaaac gaaattaaca caattaataa cgttttagcg 12960aacaatccag atgttaatgc aatcaaaacg aataaagcag aagcggaacg aatcagtaac 13020gatttaacac aagctaagaa taacttacaa gttgatactc aacctttaga aaaaataaaa 13080agacaacttc aagatgaaat tgatcaaggt actaacacag atggaatgac tcaagattca 13140gtggataatt acaatgatag cttaagtgca gcaattatag aaaaaggcaa agtaaataaa 13200ttacttaaac gtaatccgac agtagaacaa gttaaagaga gcgttgctaa tgcacaacaa 13260gtcatacaag atttacaaaa tgctcgaact tcacttgttc cagacaaaac tcaacttcaa 13320gaagctaaaa atagattaga aaacagtatt aaccaacaaa cagatactga cggcatgact 13380caagattcgc ttaacaatta taatgataaa ttagcaaaag ctagacaaaa ccttgaaaaa 13440atatctaaag ttttaggtgg tcaacctact gtagctgaaa ttagacaaaa tacagatgaa 13500gcaaatgcac ataaacaagc attagacact gcacgttctc aacttacatt aaatagagag 13560ccatatatca atcatattaa taatgaaagt catttaaata acgcgcaaaa agataatttt 13620aaagctcaag ttaactcagc acctaatcat aatactttag aaacgattaa aaataaggct 13680gatactttaa atcaatctat gacagcatta agtgaaagta ttgcagatta cgaaaatcaa 13740aaacaacaag aaaattattt agatgcatct aacaataaac gtcaagacta tgacaatgca 13800gtcaatgcgg ctaaaggtat tttaaaccaa actcaaagtc cgacaatgag tgctgatgtg 13860attgatcaaa aagctgaaga tgttaaacgt acgaaaactg cgttagatgg aaatcaaaga 13920ttagaagttg ctaaacaaca agcacttaat catttaaata ccttaaatga tttaaacgat 13980gctcagcgac aaactttaac tgatactata aatcactctc caaacatcaa ttcagtgaat 14040caagctaaag aaaaagctaa tactgttaac acagcaatga ctcaactgaa acaaactatt 14100gctaactatg acgatgaatt gcatgacggc aattacatta atgcagataa agacaaaaaa 14160gatgcttata ataacgctgt taacaatgct aaacaactga ttaatcaatc tgatgctaat 14220caagcacaac ttgatccagc tgaaattaat aaagttacac aaagagtcaa tacgactaaa 14280aatgatctaa atggtaatga caaattggct gaagctaaaa gagatgctaa tacaaccatt 14340gatggtttaa cttatctaaa tgaagctcaa cgtaacaaag ctaaagaaaa tgtaggcaaa 14400gcttctacaa aaacaaatat tacgagtcag ttacaagatt acaatcaatt gaatattgct 14460atgcaagcat tacgtaacag tgtgaacgac gttaacaatg ttaaagcaaa tagcaattat 14520ataaatgaag ataatggtcc aaaagaagct tacaatcaag ccgttactca tgctcaaaca 14580ttgataaatg cacaatctaa ccctgaaatg agccgtgacg tagtaaatca aaaaacacaa 14640gcagtaaata ctgcccatca gaatttacat ggacaacaaa agttagaaca agcacaaagt 14700agtgctaata cagaaatcgg taacttacca aacttaacta atactcaaaa agctaaagaa 14760aaggaactgg taaatagtaa acaaactcgt acggaagtac aagaacaact taaccaagct 14820aagtcactag atagttctat gggcacgtta aaatcattag ttgctaaaca acctacagta 14880caaaaaacaa gtgtttatat taacgaagat caacctgagc aatctgccta caatgattcc 14940attacaatgg gacaaactat aattaataaa acagctgatc cagtacttga taaaacttta 15000gttgataacg caatcagtaa catttcaact aaagagaatg cactgcatgg tgaacaaaaa 15060ttaacaactg ctaaaacgga agcaattaat gcacttaata cattagctga tttaaacaca 15120cctcagaaag aggctattaa aacagctatt aacactgctc atacaagaac tgatgtaact 15180gcagagcaaa gtaaggctaa tcaaataaat agtgcaatgc acacgttgag acaaaacatt 15240tctgacaacg aatcagtaac aaacgaaagt aattatatta acgctgaacc cgaaaaacaa 15300catgccttta ctgaggctct aaataatgct aaagaaatag ttaatgaaca acaagccact 15360cttgatgcca attcaattaa ccaaaaagca caagcgattc ttactactaa aaatgcttta 15420gatggtgaag aacaattacg tcgtgctaaa gaaaatgccg atcaagaaat caatacgtta 15480aatcaattga ctgatgcgca aagaaatagt gaaaaaggtt tagtcaacag ttctcaaact 15540agaacagaag ttgcttctca attagcaaaa gctaaagaac taaataaggt gatggaacaa 15600ctgaatcacc ttatcaatgg taaaaaccaa atgataaata gcagtaaatt tatcaatgaa 15660gatgcgaacc aacaacaagc atattcaaat gcgattgcaa gtgcagaagc gcttaaaaac 15720aaatcacaaa accctgaatt agataaagta acaattgaac aagcaattaa taatattaat 15780tctgcaatta acaatctaaa cggtgaagct aaactgacta aagctaaaga agatgctgtt 15840gcttcaataa acaacctaag cggattaaca aacgagcaaa aaacaaaaga aaatcaagcc 15900gttaatggcg ctcaaactag agaccaagtt gctaataaat tacgtgatgc tgaagcatta 15960gatcaatcaa tgcaaacatt acgtgactta gttaacaatc aaaatgcaat acattcaaca 16020agtaattatt ttaacgagga ttcaactcaa aagaatactt atgataatgc aattgataat 16080ggctcgacat atataactgg tcaacacaat ccagaattaa ataaatctac tattgatcaa 16140acgattagcc gaattaacac agctaaaaat gatttacatg gtgtagaaaa gttacaaaga 16200gataagggaa ctgctaatca agaaattgga caattaggtt atttaaatga ccctcaaaaa 16260tctggtgagg aatccttagt caacggttca aatacacgtt ctgaagtaga agagcatctt 16320aatgaagcta aatcattaaa taatgcaatg aaacaattaa gagataaagt agctgaaaag 16380actaatgtca aacaaagtag cgattacatt aatgattcaa ctgaacatca acgtgggtat 16440gatcaagcac ttcaagaagc agaaaatatt attaatgaaa tcggtaatcc aacattaaat 16500aaatcggaaa ttgaacaaaa gttacaacaa ttgactgacg ctcaaaatgc gttacaaggt 16560tcacatctat tagaagaagc taaaaataat gcgattactg gaatcaataa acttacagca 16620ttaaatgatg cacaacgtca aaaagcaatt gaaaatgttc aagcacagca gacaatccca 16680gcagttaatc aacaattaac tttggataga gaaataaata ctgcaatgca agctttacga 16740gataaagtag gccaacaaaa taacgttcac caacaaagta attatttcaa tgaagatgaa 16800caaccaaaac ataactatga taattctgta caagccggtc aaactattat tgataaactt 16860caagatccaa tcatgaacaa aaatgaaatt gagcaggcta ttaatcaaat caatacgact 16920caaacagcgt taagtggaga aaataaatta cacactgacc aagaaagcac aaatagacaa 16980atagaaggtt tatctagttt gaacacagct caaatcaacg ccgaaaaaga tttagtcaat 17040caagctaaaa caagaacaga tgttgctcaa aagttagctg cagctaaaga aataaattct 17100gctatgagta atttaagaga tggcattcaa aataaagagg acatcaaacg tagcagtgca 17160tatatcaacg cagatccgac taaagttaca gcttacgatc aagcactaca gaacgcagaa 17220aatatcatca atgccacacc aaacgtagag cttaataaag ctacaattga acaagcgcta 17280tcacgcgttc aacaagcaca acaagatctt gatggtgttc aacaattagc taatgctaaa 17340caacaagcta cacaaactgt caatgggtta aatagcttaa atgacggtca aaagcgtgaa 17400ttaaatctat taattaattc agctaatacc cgtacaaaag tacaagaaga attaaacaaa 17460gcaactgaat tgaaccatgc gatggaagct ttaagaaaca gtgttcaaaa cgttgatcaa 17520gtaaaacaaa gtagcaatta tgtcaatgaa gatcaacctg aacagcacaa ttatgataat 17580gctgtcaatg aagctcaagc tacaatcaac aacaatgctc aacctgttct agacaaatta 17640gctatagaac gtttaactca aactgttaac actacaaaag atgcattaca tggtgctcaa 17700aaactgacac aagaccaaca agctgctgaa actggaatac gtggtttaac gagtctcaat 17760gaacctcaga aaaatgctga agtagctaaa gtaactgcag caacaacacg tgatgaagtg 17820agaaatattc gtcaagaagc aacaacatta gatactgcaa tgcttggttt acgtaaaagc 17880attaaagata aaaacgatac taaaaatagt agtaaatata ttaatgagga tcatgaccaa 17940caacaagctt atgacaatgc tgtaaataat gctcaacaag ttatcgatga aactcaagca 18000acgttaagct cagatacaat caatcaattg gcaaatgccg taactcaagc taaatctaat 18060cttcatggag atactaaact acaacacgat aaagatagtg ctaaacaaac gattgctcaa 18120ttacagaatt tgaattcagc tcaaaaacat atggaagatt ctttaattga taatgaatct 18180acacgtacgc aagtccaaca cgatttaaca gaagctcaag ctttagatgg tttaatgggt 18240gccttaaaag aaagtattaa agattatact aatattgttt caaacggtaa ttacatcaat 18300gcggaaccat ctaagaaaca agcatatgat gcagctgtac aaaatgctca aaatataata 18360aatggaacga atcaaccaac aattaataaa ggtaatgtca ctacagcaac acaaaccgtg 18420aaaaatacta aagatgcctt agacggtgat catagattag aggaagctaa aaataatgcc 18480aatcaaacaa tcagaaatct atctaatttg aacaatgccc aaaaagatgc agagaaaaat 18540ctagttaata gcgcatcaac attagaacaa gttcaacaaa acttacaaac cgctcaacaa 18600ttagataatg ctatgggtga gttacgacaa agtattgcta aaaaagatca agtgaaagca

18660gatagtaaat atctaaatga agatcctcaa attaagcaaa actatgatga tgcagttcaa 18720cgtgttgaaa ctattattaa cgaaactcaa aaccctgaat tacttaaagc aaacattgac 18780caagcaactc aatccgttca aaatgcagaa caagctttac atggtgctga aaaattaaat 18840caagacaaac aaacgtcttc gacagaacta gatggattaa cagatttaac agatgcacaa 18900cgtgaaaaac tcagagaaca aattaacact tctaatagta gagatgatat taagcaaaaa 18960attgagcaag caaaagcact aaatgacgca atgaaaaaac ttaaagaaca agttgcgcaa 19020aaagatggtg ttcatgctaa cagtgattat acaaatgaag attctgcaca aaaagatgcg 19080tataataatg cacttaaaca agcggaagac attattaata acagctcaaa tcctaactta 19140aatgcacaag acattactaa tgctttaaat aatattaaac aagcacaaga taaccttcat 19200ggagctcaaa aattacagca agacaaaaat acaactaatc aagccattgg taacttaaat 19260catcttaatc aacctcaaaa agatgcgctt atacaagcta ttaatggagc tacatctagg 19320gaccaagttg cagaaaaact taaagaggcc gaagcgcttg atgaagctat gaaacaactt 19380gaagatcaag tgaatcaaga tgatcaaatt tcaaatagca gcccattcat aaatgaagac 19440tcagacaaac aaaaaactta taatgataaa atccaagctg caaaagaaat aattaatcaa 19500acatctaatc caaccttaga taaacaaaaa attgctgata cacttcaaaa tattaaagat 19560gcagtgaata atttacatgg tgatcaaaaa ttagctcaat ctaaacaaga tgctaataat 19620caattaaatc atttagatga cttaaccgaa gaacaaaaaa accattttaa accgttaatt 19680aataatgctg atactcgaga tgaggtaaat aaacaactag agattgctaa acaattaaat 19740ggtgatatga gtacacttca taaagtcata aatgataaag atcaaattca acatttaagc 19800aattacatta atgctgataa tgataaaaaa caaaattatg ataatgctat taaagaagct 19860gaggatttaa ttcataatca tccagataca ttagatcata aagcattaca agatttatta 19920aacaagatag accaagcgca taacgaatta aatggagaat ccagatttaa acaggcttta 19980gacaatgctt taaacgacat agatagctta aacagtctca atgttccaca acgccaaact 20040gttaaggata acatcaacca tgtgacaact ctagaaagtt tagctcaaga attgcagaaa 20100gcaaaagagc ttaatgatgc tatgaaagca atgagagata gcattatgaa tcaagagcaa 20160attcgtaaaa atagcaatta tactaatgaa gacttagctc aacaaaatgc ctataatcat 20220gcagtagata aaataaataa cattattggt gaagacaatg cgacgatgga tcctcaaata 20280atcaaacaag caactcaaga tataaataca gctataaatg gattaaatgg agatcaaaaa 20340cttcaagatg caaagacaga tgctaaacaa caaattacta actttactgg tttaactgaa 20400ccacaaaaac aagcattgga aaacatcatt aaccaacaaa caagcagagc aaatgttgct 20460aaacagttaa gtcatgctaa attcttaaat ggaaaaatgg aagaattaaa agttgcagta 20520gccaaagcgt cattagtaag acaaaatagt aactatatta atgaagatgt ctctgaaaaa 20580gaagcatatg aacaagctat cgcaaaaggt caggaaataa ttaattcaga aaataatcca 20640acaataagta gtactgatat caatcgtacc attcaagaaa ttaatgatgc tgaacaaaat 20700cttcatggtg ataataaatt aagacaagca caggaaattg caaagaatga aatacaaaat 20760ctagacggat taaattcagc tcaaataaca aaattaatcc aagatatagg cagaacaaca 20820actaaacctg cagtaactca gaaactagaa gaagcaaaag caataaacca agctatgcaa 20880caacttaaac aaagtatagc cgataaggat gctactctaa attctagtaa ctatctcaat 20940gaagattctg agaaaaagtt agcgtacgat aatgctgtaa gccaagctga acaactcata 21000aatcaactta acgacccaac tatggatata agtaatattc aagctattac tcaaaaggtc 21060attcaagcaa aagattcatt gcacggtgcg aataaacttg cacaaaatca agcagattca 21120aatttaataa taaatcaatc aacaaattta aatgataaac aaaagcaagc attaaatgac 21180ttaattaatc atgctcaaac taaacagcaa gtggcagaaa taattgcaca agctaataag 21240ttaaataacg aaatgggcac actaaaaaca ctcgtagaag aacagtcaaa cgttcatcaa 21300caaagtaaat atattaatga agatccgcaa gttcaaaata tttataatga ctccattcaa 21360aaaggtcgag aaatattaaa cggcactaca gatgatgttt taaacaacaa taaaatagca 21420gatgccattc aaaacattca tttaactaaa aacgatttac atggtgatca aaaattacaa 21480aaagcacaac aagatgcaac caatgaatta aactatttaa caaatctaaa caattctcaa 21540agacaaagcg agcatgatga gattaactct gctccttcaa gaactgaagt ttctaatgat 21600ttaaatcatg ctaaagcact taatgaagct atgcgtcaac ttgagaatga agttgctctt 21660gaaaacagtg ttaaaaaatt aagcgacttt atcaatgaag atgaagcggc acaaaatgaa 21720tatagtaatg cacttcaaaa agctaaagac attatcaacg gcgttccaag tagcacttta 21780gataaagcta caattgaaga tgctttatta gaattgcaaa atgctagaga aagtttacat 21840ggtgagcaaa aacttcaaga ggctaaaaat caagctgttg ctgaaattga taatttacaa 21900gcattaaatc ctggacaggt tcttgctgaa aaaacattag ttaaccaagc atcaaccaaa 21960ccagaagttc aagaagcctt acaaaaagca aaagaactta atgaagctat gaaagcactg 22020aaaactgaaa taaataaaaa agaacaaatc aaggctgata gtagatatgt aaatgctgac 22080agtggtcttc aagcaaatta caattctgcg ttaaattatg gttctcaaat tattgcaact 22140acccaaccac cagagcttaa taaagatgta ataaatagag caactcaaac gattaaaact 22200gctgaaaata atttaaatgg gcaatctaaa ttagcagagg ctaagtcaga cggaaatcaa 22260agcatcgaac atttgcaagg attaacacaa tcacaaaaag ataaacaaca tgatttaatt 22320aatcaagctc aaactaaaca acaggtagat gatatcgtaa ataactctaa acaattagat 22380aactctatga atcaactaca acaaattgtt aacaatgaca atacagtaaa acaaaatagt 22440gatttcatta atgaagattc cagccaacag gatgcttata atcatgcaat tcaagcagca 22500aaagatttga taactgctca tcctactatc atggataaaa atcaaataga tcaagctatt 22560gaaaatatca aacaagcact taatgattta cacggtagta ataaactatc agaagataaa 22620aaagaagctt cagaacaact acaaaacctt aatagcttga cgaacgggca aaaagatacg 22680attttaaatc atattttcag tgcaccaaca agaagccaag taggagaaaa aattgcaagt 22740gctaaacaat taaataatac aatgaaagca cttagagatt ctattgctga taataatgaa 22800attttacaaa gtagtaagta cttcaatgaa gattctgaac aacaaaatgc ttataatcaa 22860gccgtaaata aagctaaaaa tataattaat gatcaaccaa caccagtaat ggcaaatgat 22920gagattcaaa gtgtcctaaa tgaagttaaa caaactaaag ataatttaca tggtgatcaa 22980aaacttgcta acgacaagac agatgcccaa gcaacattaa atgcgttaaa ttacttaaat 23040caagcgcaaa gaggtaatct tgaaactaaa gttcaaaact ctaattctag accagaagta 23100caaaaagtag ttcaattagc aaatcaactt aatgatgcga tgaaaaaatt agatgatgct 23160ttaactggta atgacgcaat aaaacaaacg agtaattata ttaatgaaga tacttctcaa 23220caagttaact ttgatgagta tacagataga ggtaaaaaca tagttgctga acaaacaaat 23280ccaaatatgt ctccaactaa tattaacact attgctgata aaattactga agctaaaaat 23340gatttacatg gcgtacaaaa actagaacaa gctcaacaac agtccatcaa tactattaat 23400caaatgactg gtctaaacca agctcaaaaa gaacaattaa atcaagaaat tcaacaaact 23460caaacccgtt ctgaagtaca tcaagtaatt aaaaaagcac aagctttaaa tgattcaatg 23520aatactttac gtcaaagtat cactgatgag aatgaagtta aacaaacaag taactacatc 23580aatgaaactg ttggtaatca aactgcatat aacaatgccg ttgatcgtgt aaaacaaata 23640atcaatcaaa catctaatcc aactatgaat cctttagagg tggaacgtgc aacatcaaat 23700gtaaaaactt ctaaagatgc acttcatggt gaacgtgaat tgaatgacaa taaaaattca 23760aaaacttttg cagtcaatca cttagataac ctcaatcaag ctcaaaaaga agcattaact 23820catgaaattg aacaagcaac tatagtttca caagtaaata atatctataa caaagcgaaa 23880gctttaaata atgatatgaa aaaacttaaa gatatcgttg ctcaacaaga taatgtgaga 23940caatcaaaca attatataaa cgaggatagt acacctcaaa atatgtacaa cgatacaatt 24000aatcatgcac aatcaatcat tgatcaagta gcaaacccta cgatgtctca tgacgaaata 24060gagaatgcaa tcaataacat aaagcatgcc atcaatgcac tcgatggaga acataaatta 24120caacaagcaa aagaaaatgc aaacttattg attaatagtt taaacgattt aaatgcacca 24180caaagagatg ccataaatag attggttaat gaagctcaaa caagagaaaa agtagctgaa 24240caacttcaaa gtgctcaagc tctaaatgat gctatgaagc atttaagaaa cagcattcaa 24300aatcaatcat ccgtaagaca agagagcaaa tatattaatg caagtgatgc taaaaaagag 24360caatataatc acgcagttag agaagtcgaa aatattatca atgaacaaca tccaacattg 24420gataaagaaa taattaagca actaacggat gctgtaaatc aagcgaataa tgacttaaat 24480ggcgttgaat tattagatgc tgataagcaa aacgcacatc aatcgatacc tacattgatg 24540cacttaaatc aagcacaaca aaacgcatta aatgaaaaaa ttaataacgc agttaccaga 24600gctgaagttg cggctattat tggccaagca aaaatactcg atcatgctat ggagaattta 24660gaagaaagta tcaaagataa agagcaagtc aaacagtcaa gtaactatat taatgaagac 24720cctgatgttc aagaaacata caataacgcc gttgatcatg tgacagaaat acttaatcaa 24780acagtaaatc caactttatc tattgaagat atagagcatg ctatcaacga agttaatcaa 24840gcgaaaaaac aactcagagg taaacaaaaa ctttatcaaa ctatcgattt agctgataaa 24900gaattaagta aattggatga tttaacatca caacaaagca gttcaatatc taatcaaata 24960tatactgcta aaacgagaac agaagttgcc caagcaattg aaaaagcaaa atcattaaat 25020catgcaatga aagcacttaa caaagtatat aaaaatacag ataaagtgtt agatagtagt 25080cgattcatta acgaagatca acccgaaaaa gaggcgtatc aacaagctat aaatcacgtt 25140gattcaatca ttcatagaca aacaaatcct gaaatggatc caacagtaat caatagcata 25200actcatgaac tcgaaacagc tcaaaataac ttacatggtg atcagaaact tgctcatgca 25260caacaagatg ccgctaatgt aattaatggt ctaattcatc ttaatgttgc tcaacgcgag 25320gtaatgataa atgcgaatac aaatgctaca acacgcgaaa aagttgcaaa gaacttagat 25380aatgctcaag ctcttgataa agctatggaa acactacaac aagtagttgc tcataaaaat 25440aatatattga acgatagtaa atatttaaat gaagattcaa aatatcaaca acaatacgat 25500cgagttgttg ctgacgccga acaactactt aatcagacaa caaatccaac attagaacct 25560tataaaatcg atattgttaa ggataatgtc ctagctaacg aaaaaatact atttggcgca 25620gaaaaactat catatgacaa atcaaatgca aatgatgaaa ttaaacatat gaattatctt 25680aataatgcac aaaagcaatc tataaaagat atgatttctc acgcagcatt aagaactgaa 25740gttaaacaac ttctgcaaca agctaaaacc cttgatgaag ctatgaaatc acttgaagat 25800aaaactcaag tagtgattac agatactact ttgtctaatt acactgaagc ttcagaggat 25860aaaaaggaaa aagtagacca aactgtatca catgctcaag caatcattga taaaataaat 25920ggctcaaatg taagtttaga tcaagtacga caagcactag aacaattaac tcaagcatca 25980gaaaacctcg atggtgatca gcgagttgaa gaagctaaag ttcatgctaa tcaaacaatt 26040gaccaattaa cacatcttaa ttcattacaa caacaaactg cgaaagaaag tgttaaaaac 26100gcaacaaaac tagaagaaat cgctactgct agtaacgatg ctctggcatt aaacaaagta 26160atgggtaaat tagaacaatt cattaatcat gctgattctg ttgaaaatag tgataattat 26220agacaagccg acgacgacaa aattatcgct tatgatgatg cactagaaca tggacaagat 26280atacaaaaat ctaatgcaac ccaaaatgaa gcaaaacaag cgttacaaca attaataaat 26340gcagaaacat cgttaaatgg tttcgaaaga ttaaatcatg ctagaccacg agctttagaa 26400tatattaaat cactagaaaa aataaacaat gctcaaaagt ctgctttaga ggataaagta 26460acgcaatcgc atgatttatt agaattagaa catcttgtca acgagggcac aaacctcaat 26520gacattatgg gtgaattagc taacgcaatc gttaataact atgctccaac caaagcaagt 26580ataaattata ttaacgccga taacctacgc aaagataact ttactcaagc tatcaacaat 26640gcacgtgatg cactcaacaa aactcaaggt cagaacttag atttcaatgc aattgataca 26700tttaaagatg atatattcaa aactaaagat gcacttaacg gtattgaacg tttaacagct 26760gcaaaatcaa aagcagaaaa actaattgat agtttaaaat ttattaataa agctcaattc 26820acacatgcaa atgatgaaat tatgaatact aattctattg cacaattgtc tagaatcgtg 26880aatcaagcat ttgatttaaa tgatgcaatg aaatctttaa gagatgaact taataataaa 26940gcttttcctg tccaagcaag ctcaaattat ataaattcag atgaagattt aaaacaacaa 27000tttgaccatg ctttaagtaa tgctcgaaaa gtacttgcaa aagaaaatgg taaaaattta 27060gatgaaatac aaattgaggg actcaaacaa gtgattgagg atactaaaga tgctttaaat 27120ggtatccaac gtttatcaaa agctaaagct aaagcaattc aatacgtaca atctttatct 27180tatatcaatg atgcacagcg tcatattgct gaaaataata ttcacaactc tgatgattta 27240tcatctttag caaatacatt atctaaagct agtgatttag ataatgcaat gaaagactta 27300cgagatactc tagaaagtaa ttcaacttct gttccaaata gtgtgaatta tattaatgct 27360gataagaatt ttcaaattga atttgatgag gcgctacaac aagcaagtgc aacaagttct 27420aaaacttcag aaaatccagc aacgattgaa gaagtattag gtcttagtca agccatttac 27480gatacaaaaa atgcattgaa tggtgaacaa cgacttgcaa ctgagaagag caaagatcta 27540aaattaataa aaggattaaa agatttaaat aaagcacaac ttgaagatgt cacaaacaag 27600gtaaattcag caaatacttt aacagagtta tctcagctca ctcaatcaac gttaaaatta 27660aacgataaaa tgaaattatt gagagataag cttaaaacct tagtaaatcc tgttaaagca 27720agtttaaatt atagaaacgc tgattataat ttaaaacgtc aatttaacaa agctttaaaa 27780gaagctaaag gcatattaaa taaaaatagc ggtccaaatg tcaatatcaa tgacattcaa 27840catcttttaa cacaaataga taatgctaaa gaccaattaa atggtgaacg acgtctaaaa 27900gaacatcaac aaaaatctga agtatttatt attaaagaat tagatatact taataatgct 27960caaaaagctg caataattaa tcagattaga gcgtctaaag acattaaaat aattaatcaa 28020atcgttgata atgcaataga attaaatgat gctatgcaag gtttaaaaga acatgtagct 28080caattaacag caactacaaa agacaacatt gaatatttaa atgctgatga agaccttaaa 28140ttacaatatg attacgctat caacttagcg aataatgttc ttgacaaaga aaacggtaca 28200aataaagacg ctaatatcat aattggaatg attcaaaaca tggatgatgc tagagcactt 28260ctaaatggaa ttgaaagact taaagatgct caaacaaaag cacataatga cattaaagat 28320acgctcaaac gtcaacttga tgaaattgaa cacgctaatg caacatcaaa ttctaaggct 28380caagcaaaac aaatggtaaa tgaggaagct agaaaagcgt tttctaatat taatcacgca 28440acatcaaatg atttagttaa tcaagcaaaa gatgaagggc aatctgcaat tgaacacata 28500catgcagatg aattacctaa agcgaaacta gatgctaatc aaatgattga ccaaaaagtt 28560gaagatataa atcacttaat tagtcaaaat ccaaacttat cacatgatga aaaaaataaa 28620ctaatatctc aaattaataa gttagtaaat ggaattaagg atgaaattca acaagctata 28680aacaaacaac aaatagaaaa tgctacaaca aaactagatg aagtcattga aactactaaa 28740aaattaatta tcgccaaagc tgaagctaaa caagtgataa aagagttatc acaaaagaaa 28800cgagatgcaa taaataacaa cactgattta acaccttctc aaaaggcaca tgctttagca 28860gatattgata aaacagaaaa agatgcactt caacatatcg aaaattctaa ttcaattgat 28920gatatcaata acaataaaaa gcatgcattt aatactttag ctcatatcat tatttgggat 28980actgatcagc aaccattagt ttttgaacta cctgaattga gccttcaaaa tgctttagta 29040acaagtgagg tggttgttca cagagatgaa actatttcat tagaatctat aattggagct 29100atgactttaa ctgatgaact taaagtcaat attgtttcat taccgaacac tgataaagta 29160gctgatcacc taaccgctaa agttaaggtt attttagctg atggctcata tgtcactgta 29220aatgttccag tcaaagttgt agaaaaagaa ttacaaatag ctaaaaagga tgctataaaa 29280acaattgatg ttctggtaaa acaaaaaatc aaagatatag attctaataa cgaattaacg 29340tctactcaac gtgaagatgc aaaagctgaa attgaaagat tgaaaaagca agccatcgat 29400aaagtgaatc attcaaaatc gattaaagat attgaaacag taaaacgaac tgattttgaa 29460gaaatagatc agtttgatcc taaacgcttt acgctaaata aagctaaaaa ggatatcatt 29520actgatgtta atactcaaat ccaaaatggt ttcaaagaaa ttgaaacaat aaaaggttta 29580acttctaatg aaaaaactca gtttgataaa caattaactg aactacaaaa agaattttta 29640gaaaaagtcg agcatgctca taatttagta gaattaaatc aattacaaca agagtttaat 29700aatagatata aacatatttt aaaccaagca catttactag gtgaaaaaca tatagcagaa 29760cataaattag gatatgttgt agtaaacaaa actcagcaaa tactaaataa tcaatctgct 29820tcttacttta taaaacaatg ggcacttgat agaattaaac aaattcaact agaaacgatg 29880aattcaattc gtggtgcgca taccgtacaa gatgtacaca aagcattatt acaaggtata 29940gagcaaatct tgaaagtaaa tgtaagtatt ataaatcaat ctttcaacga ttccttgcat 30000aactttaatt atcttcattc aaaatttgat gctagattaa gagaaaagga tgttgcaaac 30060catatcgtac aaactgaaac attcaaagaa gttctaaaag gaacgggtgt tgaaccaggt 30120aaaatcaaca aagaaacaca gcaaccaaaa cttcataaga atgataatga tagcctattc 30180aaacatttag ttgataattt cggcaaaact gtaggtgtta ttacattaac tggtttactt 30240tctagtttct ggttagtttt ggctaaaaga cgtaaaaaag aagaagaaga aaaacaatcg 30300ataaaaaatc atcacaaaga tattcgtctt tcagatactg ataaaataga tccaattgta 30360ataactaagc gtaaaataga taaagaagaa caaattcaaa acgatgacaa acattcaatt 30420ccagttgcta aacataagaa atctaaagaa aagcaattga gtgaagagga tattcattca 30480atccccgtcg ttaagcgtaa acaaaacagt gataacaaag atacaaaaca gaagaaagtt 30540acttctaaaa agaagaaaac gcctcaatca actaaaaaag ttgtaaaaac caaaaagcgt 30600tctaaaaagt aa 30612

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed