Torque Converter Impeller Including Impeller Shell Having Thinned Section

Resh; Michael ;   et al.

Patent Application Summary

U.S. patent application number 14/482804 was filed with the patent office on 2015-03-12 for torque converter impeller including impeller shell having thinned section. The applicant listed for this patent is Schaeffler Technologies GmbH & Co. KG. Invention is credited to David Burky, JR., Michael Resh.

Application Number20150071789 14/482804
Document ID /
Family ID52478790
Filed Date2015-03-12

United States Patent Application 20150071789
Kind Code A1
Resh; Michael ;   et al. March 12, 2015

TORQUE CONVERTER IMPELLER INCLUDING IMPELLER SHELL HAVING THINNED SECTION

Abstract

An impeller for a torque converter is provided. The impeller includes an impeller shell including an inner circumference, an outer circumference and a radial extension extending radially outward from the inner circumference. The radial extension includes an axially extending groove formed therein. The impeller also includes an impeller hub welded to the impeller shell by a weld. The weld is radially inside of the axially extending groove. The axially extending groove is 5 to 10 millimeters from the weld. A method of forming an impeller for a torque converter is also provided.


Inventors: Resh; Michael; (Massillon, OH) ; Burky, JR.; David; (Massillon, OH)
Applicant:
Name City State Country Type

Schaeffler Technologies GmbH & Co. KG

Herzogenaurach

DE
Family ID: 52478790
Appl. No.: 14/482804
Filed: September 10, 2014

Related U.S. Patent Documents

Application Number Filing Date Patent Number
61876843 Sep 12, 2013

Current U.S. Class: 416/234 ; 29/889.5
Current CPC Class: Y10T 29/4933 20150115; F16H 45/02 20130101; F16H 2045/0205 20130101; F04D 29/18 20130101; F16H 2045/0226 20130101; F16H 2045/0278 20130101
Class at Publication: 416/234 ; 29/889.5
International Class: F04D 29/18 20060101 F04D029/18

Claims



1. An impeller for a torque converter comprising: an impeller shell including an inner circumference, an outer circumference and a radial extension extending radially outward from the inner circumference, the radial extension including an axially extending groove formed therein; and an impeller hub welded to the impeller shell by a weld, the weld being radially inside of the axially extending groove, the axially extending groove being 5 to 10 millimeters from the weld.

2. The impeller as recited in claim 1 wherein the radial extension includes a flat inner radial portion, the weld being formed on the flat inner radial portion, the radial extension protruding slightly axially inward to form an intermediate portion radially outside of the flat inner radial portion, the axially extending groove being formed in the intermediate portion.

3. The impeller as recited in claim 1 wherein the axially extending groove has a curved surface, the curved surface having a radius of curvature of at least 5 millimeters.

4. The impeller as recited in claim 1 wherein the axially extending groove is formed as a ring shaped groove extending circumferentially around the inner circumference.

5. The impeller as recited in claim 1 wherein the axially extending groove is formed in a back surface of the impeller shell, the impeller shell including a machined portion on a front surface of the radial extension opposite the axially extending groove.

6. The impeller as recited in claim 5 wherein the radial extension includes a flat inner radial portion, the weld being formed on the flat inner radial portion, the radial extension protruding slightly axially inward to form an intermediate portion radially outside of the flat inner radial portion, the axially extending groove and the machined portion being formed in the intermediate portion.

7. The impeller as recited in claim 5 wherein the machined portion is thinner than a remainder of the radial extension.

8. The impeller as recited in claim 6 wherein the machined portion is formed as a ring shaped flat surface.

9. The impeller as recited in claim I further comprising impeller blades, the impeller shell including a rounded portion radially outside of the radial extension, the rounded portion supported the impeller blades.

10. The impeller as recited in claim 9 wherein the impeller shell includes an axial extension radially outside of the rounded portion for connected to a torque converter front cover, the axial extension defining the outer circumference.

11. A torque converter comprising the impeller as recited in claim 1.

12. A method of forming an impeller for a torque converter comprising: providing an impeller shell including an inner circumference, an outer circumference and a radial extension extending radially outward from the inner circumference; forming an axially extending groove in the radial extension; and welding an impeller hub to the impeller shell so as to form a weld on a back surface of the radial extension, the weld being radially inside of the axially extending groove, the axially extending groove being 5 to 10 millimeters from the weld.

13. The method as recited in claim 12 wherein the radial extension includes a flat inner radial portion, the weld being formed on the flat inner radial portion, the radial extension protruding slightly axially inward to form an intermediate portion radially outside of the flat inner radial portion, the axially extending groove being formed in the intermediate portion.

14. The method as recited in claim 12 wherein the forming the axially extending groove includes machining the axially extending groove into the radial extension.

15. The method as recited in claim 12 wherein the forming the axially extending groove includes stamping the axially extending groove into the radial extension.

16. The method as recited in claim 12 wherein the axially extending groove is formed in a back surface of the impeller shell, the method further including machining a front surface of the radial extension opposite the axially extending groove.

17. The method as recited in claim 16 wherein the radial extension includes a flat inner radial portion, the weld being formed on the flat inner radial portion, the radial extension protruding slightly axially inward to form an intermediate portion radially outside of the flat inner radial portion, the axially extending groove being formed in a back surface of the intermediate portion, the machining including machining a front surface of the intermediate portion.

18. The method as recited in claim 16 wherein after the forming the axially extending groove and machining the front surface, the radial extension has a thickness of at least 1.7 millimeters at the axially extending groove.

19. The method as recited in claim 12 wherein the axially extending groove has a curved surface, the curved surface having a radius of curvature of at least 5 millimeters.

20. The method as recited in claim 12 wherein the axially extending groove is formed as a ring shaped groove extending circumferentially around the inner circumference.
Description



[0001] This claims the benefit to U.S. Provisional Patent Application No. 61/876,843, filed on Sep. 12, 2013, which is hereby incorporated by reference herein.

[0002] The present disclosure relates generally to torque converters and more specifically to impellers of torque converters.

BACKGROUND OF INVENTION

[0003] U.S. Pub. 2012/0151907 discloses method of connecting an impeller hub and impeller shell.

BRIEF SUMMARY OF THE INVENTION

[0004] An impeller for a torque converter is provided. The impeller includes an impeller shell including an inner circumference, an outer circumference and a radial extension extending radially outward from the inner circumference. The radial extension includes an axially extending groove formed therein. The impeller also includes an impeller hub welded to the impeller shell by a weld. The weld is radially inside of the axially extending groove. The axially extending groove is 5 to 10 millimeters from the weld.

[0005] A method of forming an impeller for a torque converter is provided. The method includes providing an impeller shell including an inner circumference, an outer circumference and a radial extension extending radially outward from the inner circumference; forming an axially extending groove in the radial extension; and welding an impeller hub to the impeller shell so as to form a weld on a back surface of the radial extension. The weld is radially inside of the axially extending groove and the axially extending groove is 5 to 10 millimeters from the weld.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The present invention is described below by reference to the following drawings, in which:

[0007] FIG. 1 shows a schematic cross-sectional side view of a torque converter including an impeller in accordance with an embodiment of the present invention;

[0008] FIG. 2a shows a cross-sectional side view of an impeller shell of the impeller;

[0009] FIG. 2b shows an enlarged view of a radial extension of the impeller shell as shown in the cross-sectional side view shown in FIG. 2a;

[0010] FIG. 2c shows a perspective view of a back surface of the impeller;

[0011] FIG. 3a shows a cross-sectional side view of the impeller after a front surface of impeller shell has been thinned; and

[0012] FIG. 3b shows an enlarged view of the radial extension of the impeller shell as shown in the cross-sectional side view shown in FIG. 3a.

DETAILED DESCRIPTION

[0013] One embodiment of the present invention includes an impeller shell having a particular radius formed therein that is then machined to create a flexible thinned section. Testing has shown that adding flexibility to the impeller shell may improve durability of the impeller hub weld. The impeller shell is thinned by machining the back side of the radius to form a bearing surface.

[0014] FIG. 1 shows a schematic cross-sectional side view of a torque converter 10 including an impeller 12 in accordance with an embodiment of the present invention. Torque converter 10 includes a cover 14 including a front cover 16 and a rear cover 18, which is formed by an impeller shell 20 of impeller 12. Cover 14 houses a lockup clutch 22 and a damper 24, which are both schematically shown, and a turbine 26 opposite of impeller 12. Lockup clutch 22 engages with and disengages from front cover 16 and damper 24 couples turbine 26 to lockup clutch 22 such that turbine 26 is circumferentially driven with front cover 16 when lockup clutch 22 is engaged with front cover 16. Impeller 20 further includes an impeller hub 27 fixed to impeller shell 20 and impeller blades 36 supported by a rounded portion 34 of impeller shell 20.

[0015] FIG. 2a shows a cross-sectional side view of impeller shell 20. Impeller shell 20 includes an inner circumference 28, an outer circumference 30 and a radial extension 32 extending radially from inner circumference 28. Impeller shell 20 includes a rounded portion 34 radially outside of radial extension 32. Rounded portion 34 is configured for supporting impeller blades 36 (FIGS. 1 and 3a) and includes a plurality of slots 38 formed therein for receiving blade tabs of impeller blades 36. Impeller shell 20 includes an axial extension 40 radially outside of rounded portion 34 for connecting to front cover 16 (FIG. 1). An outer radial surface of axial extension 40 defines outer circumference 30.

[0016] FIG. 2b shows an enlarged view of radial extension 32 as shown in the cross-sectional side view shown in FIG. 2a. Radial extension 32 has an axially extending groove 42 formed in a back surface 43 of impeller shell 20 for adding flexibility to impeller shell 20. Axially extending groove 42 also extends circumferentially. In this preferred embodiment, axially extending groove 42 is formed during the stamping of impeller shell 20. In other embodiments, axially extending groove 42 may be machined or stamping into impeller shell 20 after impeller shell 20 has been formed by stamping. Radial extension 32 is substantially plate shaped and includes a flat inner radial portion 44 for connecting to an impeller hub 46 (FIG. 3a). An inner radial surface of flat inner radial portion 44 defines inner circumference 28. Radially outward from flat inner radial portion 44, radial extension 32 protrudes slightly axially inward to form an intermediate portion 46. Intermediate portion 46 is substantially flat, except for axially extending groove 42 and an axial protrusion 48 on a front surface 50 of impeller shell 20 formed by material displaced during the stamping of axially extending groove 42. Axially extending groove 42 has a curved surface, which in this preferred embodiment has a radius of curvature R of at least 5 millimeters. Axially extending groove 42 has a depth D of approximately 0.8 millimeters.

[0017] FIG. 2c shows a perspective view of the back surface 43 of impeller 12. As shown in FIG. 2c, axially extending groove 42 is ring shaped and extends continuously circumferentially around back surface 43.

[0018] FIG. 3a shows a cross-sectional side view of impeller 12 after front surface 50 of impeller shell 20 has been thinned and FIG. 3b shows an enlarged view of radial extension 32 as shown in the cross-sectional side view shown in FIG. 3a. Specifically, front surface 50 has been machined at intermediate portion 46 to remove material from impeller shell 20 opposite of axially extending groove 42. As shown in FIG. 3b, after machining, intermediate portion 46 still protrudes slightly with respect to flat inner radial portion 44. In this preferred embodiment, the thickness X of impeller 20 at axially extending groove 42 is at least 1.7 millimeters after the thinning of front surface 50 of radial extension 32. After the machining, axial protrusion 48 has been removed and a machined portion 52 that is ring shaped and has a flat surface is formed. The machining adds further flexibility to impeller shell 20. As shown in FIG. 3a, rounded portion 34 supports a plurality of impeller blades 36.

[0019] Impeller hub 27 is welded to impeller shell 20 by a weld 54 extending circumferentially around impeller hub 27 at a front end 56 thereof. Front end 56 rests against back surface 43 of impeller shell 20. To add desired flexibility to impeller shell 20, axially extending groove 42 is spaced from weld 54 by a radial distance Y that is between 5 to 10 millimeters. Testing has shown that this adding of flexibility to the impeller shell 20 improves durability of impeller hub weld 54.

[0020] In the preceding specification, the invention has been described with reference to specific exemplary embodiments and examples thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of invention as set forth in the claims that follow. The specification and drawings are accordingly to be regarded in an illustrative manner rather than a restrictive sense.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed