Antibodies To Human Transmembrane Proteins

Tang; Y. Tom ;   et al.

Patent Application Summary

U.S. patent application number 14/471727 was filed with the patent office on 2015-01-15 for antibodies to human transmembrane proteins. This patent application is currently assigned to Incyte Corporation. The applicant listed for this patent is Incyte Corporation. Invention is credited to Chandra S. Arvizu, Janice K. Au-Young, Olga Bandman, Mariah R. Baughn, Neil C. Corley, Karl J. Guegler, Jennifer L. Jackson, Matthew R. Kaser, Preeti G. Lal, Gina A. Gorgone Simone, Y. Tom Tang, Henry Yue.

Application Number20150017173 14/471727
Document ID /
Family ID27492120
Filed Date2015-01-15

United States Patent Application 20150017173
Kind Code A1
Tang; Y. Tom ;   et al. January 15, 2015

ANTIBODIES TO HUMAN TRANSMEMBRANE PROTEINS

Abstract

The invention provides human transmembrane proteins (HTMPN) and polynucleotides which identify and encode HTMPN. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with expression of HTMPN.


Inventors: Tang; Y. Tom; (San Jose, CA) ; Lal; Preeti G.; (Burlingame, CA) ; Jackson; Jennifer L.; (Santa Cruz, CA) ; Yue; Henry; (Sunnyvale, CA) ; Guegler; Karl J.; (Menlo Park, CA) ; Corley; Neil C.; (Castro Valley, CA) ; Bandman; Olga; (Mountain View, CA) ; Arvizu; Chandra S.; (San Diego, CA) ; Simone; Gina A. Gorgone; (Earleville, MD) ; Kaser; Matthew R.; (Castro Valley, CA) ; Baughn; Mariah R.; (San Diego, CA) ; Au-Young; Janice K.; (Brisbane, CA)
Applicant:
Name City State Country Type

Incyte Corporation

Wilmington

DE

US
Assignee: Incyte Corporation
Wilmington
DE

Family ID: 27492120
Appl. No.: 14/471727
Filed: August 28, 2014

Related U.S. Patent Documents

Application Number Filing Date Patent Number
13477843 May 22, 2012
14471727
11594148 Nov 8, 2006 8206947
13477843
09700590 Apr 16, 2001
PCT/US99/11904 May 28, 1999
11594148
60087260 May 29, 1998
60091674 Jul 2, 1998
60102954 Oct 2, 1998
60109869 Nov 24, 1998

Current U.S. Class: 424/139.1 ; 435/188; 435/7.21; 436/501; 530/387.3; 530/387.9; 530/391.3
Current CPC Class: A61P 31/04 20180101; A61P 37/02 20180101; A61P 17/06 20180101; A61P 19/02 20180101; A61P 33/00 20180101; C07K 2317/622 20130101; C07K 16/28 20130101; A61P 1/04 20180101; A61P 9/10 20180101; C07K 14/705 20130101; A61P 1/08 20180101; A61P 25/16 20180101; A61P 7/06 20180101; A61P 35/00 20180101; A61P 1/12 20180101; A61P 25/14 20180101; A61P 25/06 20180101; C07K 2317/76 20130101; A61P 25/00 20180101; A61P 7/02 20180101; A61P 3/10 20180101; A61P 1/16 20180101; A61P 15/08 20180101; A61P 15/10 20180101; A61P 11/06 20180101; G01N 33/68 20130101; A61K 38/00 20130101; A61P 1/10 20180101; C07K 2317/24 20130101; A61P 31/10 20180101; A61P 25/28 20180101; A61P 31/12 20180101; A61P 5/24 20180101
Class at Publication: 424/139.1 ; 530/387.9; 530/387.3; 530/391.3; 435/188; 435/7.21; 436/501
International Class: C07K 16/28 20060101 C07K016/28; G01N 33/68 20060101 G01N033/68

Claims



1.-20. (canceled)

21. An isolated antibody or fragment thereof that specifically binds to a polypeptide having at least 95% sequence identity to the amino acid sequence of SEQ ID NO:74.

22. The isolated antibody or fragment thereof of claim 21, wherein the polypeptide comprises the amino acid sequence of SEQ ID NO:74.

23. The isolated antibody or fragment thereof of claim 21, wherein the polypeptide consists of the amino acid sequence of SEQ ID NO:74.

24. The isolated antibody or fragment thereof of claim 21, which is a monoclonal antibody.

25. The isolated antibody or fragment thereof of claim 21, which is a Fab fragment.

26. The isolated antibody or fragment thereof of claim 21, which is a F(ab')2 fragment.

27. The isolated antibody or fragment thereof of claim 21, which is a single-chain antibody.

28. The isolated antibody or fragment thereof of claim 21, which is a chimeric antibody.

29. The isolated antibody or fragment thereof of claim 21, which is a humanized antibody.

30. The isolated antibody or fragment thereof of claim 21, which is labeled.

31. The isolated antibody or fragment thereof of claim 30, wherein the antibody or fragment thereof is labeled by covalent or non-covalent attachment of a reporter molecule.

32. The isolated antibody or fragment thereof of claim 31, wherein the reporter molecule is selected from the group consisting of radionuclides, enzymes, fluorescent, chemiluminescent, chromogenic agents, substrates, cofactors, inhibitors, and magnetic particles.

33. A composition comprising the antibody or fragment thereof of claim 21, and a pharmaceutically acceptable carrier.

34. A method for detecting in a sample the presence of a polypeptide having at least 95% sequence identity to the amino acid sequence of SEQ ID NO:74, wherein the method comprises: (a) contacting the sample with the antibody or fragment thereof of claim 21 under conditions suitable for antibody-antigen complex formation; and (b) detecting the complex formation, wherein the complex formation indicates the presence of the polypeptide in the sample.

35. The method of claim 34, wherein the antibody or fragment thereof is labeled.

36. The method of claim 35, wherein the antibody or fragment thereof is labeled by covalent or non-covalent attachment of a reporter molecule.

37. The method of claim 36, wherein the reporter molecule is selected from the group consisting of radionuclides, enzymes, fluorescent, chemiluminescent, chromogenic agents, substrates, cofactors, inhibitors, and magnetic particles.
Description



TECHNICAL FIELD

[0001] This invention relates to nucleic acid and amino acid sequences of human transmembrane proteins and to the use of these sequences in the diagnosis, treatment, and prevention of immune, reproductive, smooth muscle, neurological, gastrointestinal, developmental, and cell proliferative disorders.

BACKGROUND OF THE INVENTION

[0002] Eukaryotic organisms are distinct from prokaryotes in possessing many intracellular organelle and vesicle structures. Many of the metabolic reactions which distinguish eukaryotic biochemistry from prokaryotic biochemistry take place within these structures. In particular, many cellular functions require very stringent reaction conditions, and the organelles and vesicles enable compartmentalization and isolation of reactions which might otherwise disrupt cytosolic metabolic processes. The organelles include mitochondria, smooth and rough endoplasmic reticula, sarcoplasmic reticulum, and the Golgi body. The vesicles include phagosomes, lysosomes, endosomes, peroxisomes, and secretory vesicles. Organelles and vesicles are bounded by single or double membranes.

[0003] Biological membranes are highly selective permeable barriers made up of lipid bilayer sheets composed of phosphoglycerides, fatty acids, cholesterol, phospholipids, glycolipids, proteoglycans, and proteins. Membranes contain ion pumps, ion channels, and specific receptors for external stimuli which transmit biochemical signals across the membranes. These membranes also contain second messenger proteins which interact with these pumps, channels, and receptors to amplify and regulate transmission of these signals.

Plasma Membrane Proteins

[0004] Plasma membrane proteins (MPs) are divided into two groups based upon methods of protein extraction from the membrane. Extrinsic or peripheral membrane proteins can be released using extremes of ionic strength or pH, urea, or other disruptors of protein interactions. Intrinsic or integral membrane proteins are released only when the lipid bilayer of the membrane is dissolved by detergent.

[0005] Transmembrane proteins (TM) are characterized by an extracellular, a transmembrane, and an intracellular domain. TM domains are typically comprised of 15 to 25 hydrophobic amino acids which are predicted to adopt an .alpha.-helical conformation. TM proteins are classified as bitopic (Types I and II) proteins, which span the membrane once, and polytopic (Types III and IV) (Singer, S. J. (1990) Annu. Rev. Cell Biol. 6:247-96) proteins which contain multiple membrane-spanning segments. TM proteins that act as cell-surface receptor proteins involved in signal transduction include growth and differentiation factor receptors, and receptor-interacting proteins such as Drosophila pecanex and frizzled proteins, LIV-1 protein, NF2 protein, and GNS1/SUR4 eukaryotic integral membrane proteins. TM proteins also act as transporters of ions or metabolites, such as gap junction channels (connexins), and ion channels, and as cell anchoring proteins, such as lectins, integrins, and fibronectins. TM proteins are found in vesicle organelle-forming molecules, such as calveolins; or cell recognition molecules, such as cluster of differentiation (CD) antigens, glycoproteins, and mucins.

[0006] Many membrane proteins (MPs) contain amino acid sequence motifs that serve to localize proteins to specific subcellular sites. Examples of these motifs include PDZ domains. KDEL, RGD, NGR, and GSL sequence motifs, von Willebrand factor A (vWFA) domains, and EGF-like domains. RGD, NGR, and GSL motif-containing peptides have been used as drug delivery agents in targeted cancer treatment of tumor vasculature (Arap, W. et al. (1998) Science, 279:377-380). Membrane proteins may also contain amino acid sequence motifs that serve to interact with extracellular or intracellular molecules, such as carbohydrate recognition domains.

[0007] Chemical modification of amino acid residue side chains alters the manner in which MPs interact with other molecules, for example, phospholipid membranes. Examples of such chemical modifications to amino acid residue side chains are covalent bond formation with glycosaminoglycans, oligosaccharides, phospholipids, acetyl and palmitoyl moieties, ADP-ribose, phosphate, and sulphate groups.

[0008] RNA-encoding membrane proteins may have alternative splice sites which give rise to proteins encoded by the same gene but with different messenger RNA and amino acid sequences. Splice variant membrane proteins may interact with other ligand and protein isoforms.

G-Protein Coupled Receptors

[0009] G-protein coupled receptors (GPCR) are a superfamily of integral membrane proteins which transduce extracellular signals. GPCRs include receptors for biogenic amines, lipid mediators of inflammation, peptide hormones, and sensory signal mediators.

[0010] The structure of these highly-conserved receptors consists of seven hydrophobic transmembrane (serpentine) regions, cysteine disulfide bridges between the second and third extracellular loops, an extracellular N-terminus, and a cytoplasmic C-terminus. Three extracellular loops alternate with three intracellular loops to link the seven transmembrane regions. The most conserved parts of these proteins are the transmembrane regions and the first two cytoplasmic loops. A conserved, acidic-Arg-aromatic residue triplet present in the second cytoplasmic loop may interact with G proteins. A GPCR consensus pattern is characteristic of most proteins belonging to this superfamily (ExPASy PROSITE document PS00237; and Watson, S, and S. Arkinstall (1994) The G-protein Linked Receptor Facts Book, Academic Press, San Diego, Calif., pp 2-6). Mutations and changes in transcriptional activation of GPCR-encoding genes have been associated with neurological disorders such as schizophrenia, Parkinson's disease, Alzheimer's disease, drug addiction, and feeding disorders.

Scavenger Receptors

[0011] Macrophage scavenger receptors with broad ligand specificity may participate in the binding of low density lipoproteins (LDL) and foreign antigens. Scavenger receptors types I and II are trimeric membrane proteins with each subunit containing a small N-terminal intracellular domain, a transmembrane domain, a large extracellular domain, and a C-terminal cysteine-rich domain. The extracellular domain contains a short spacer domain, an .alpha.-helical coiled-coil domain, and a triple helical collagenous domain. These receptors have been shown to bind a spectrum of ligands, including chemically modified lipoproteins and albumin, polyribonucleotides, polysaccharides, phospholipids, and asbestos (Matsumoto, A. et al. (1990) Proc. Natl. Acad. Sci. 87:9133-9137; and Elomaa, O. et al. (1995) Cell 80:603-609). The scavenger receptors are thought to play a key role in atherogenesis by mediating uptake of modified LDL in arterial walls, and in host defense by binding bacterial endotoxins, bacteria, and protozoa.

Tetraspan Family Proteins

[0012] The transmembrane 4 superfamily (TM4SF) or tetraspan family is a multigene family encoding type III integral membrane proteins (Wright, M. D. and Tomlinson, M. G. (1994) Immunol. Today 15:588). TM4SF is comprised of membrane proteins which traverse the cell membrane four times. Members of the TM4SF include platelet and endothelial cell membrane proteins, melanoma-associated antigens, leukocyte surface glycoproteins, colonal carcinoma antigens, tumor-associated antigens, and surface proteins of the schistosome parasites (Jankowski, S. A. (1994) Oncogene 9:1205-1211). Members of the TM4SF share about 25-30% amino acid sequence identity with one another.

[0013] A number of TM4SF members have been implicated in signal transduction, control of cell adhesion, regulation of cell growth and proliferation, including development and oncogenesis, and cell motility, including tumor cell metastasis. Expression of TM4SF proteins is associated with a variety of tumors and the level of expression may be altered when cells are growing or activated.

Tumor Antigens

[0014] Tumor antigens are surface molecules that are differentially expressed in tumor cells relative to normal cells. Tumor antigens distinguish tumor cells immunologically from normal cells and provide diagnostic and therapeutic targets for human cancers (Takagi, S. et al. (1995) Int. J. Cancer 61: 706-715; Liu, E. et al. (1992) Oncogene 7: 1027-1032).

Ion Channels

[0015] Ion channels are found in the plasma membranes of virtually every cell in the body. For example, chloride channels mediate a variety of cellular functions including regulation of membrane potentials and absorption and secretion of ions across epithelial membranes. When present in intracellular membranes of the Golgi apparatus and endocytic vesicles, chloride channels also regulate organelle pH (see, e.g., Greger, R. (1988) Annu. Rev. Physiol. 50:111-122). Electrophysiological and pharmacological properties of chloride channels, including ion conductance, current-voltage relationships, and sensitivity to modulators, suggest that different chloride channels exist in muscles, neurons, fibroblasts, epithelial cells, and lymphocytes.

[0016] Many channels have sites for phosphorylation by one or more protein kinases including protein kinase A, protein kinase C, tyrosine kinase, and casein kinase II, all of which regulate ion channel activity in cells. Inappropriate phosphorylation of proteins in cells has been linked to changes in cell cycle progression and cell differentiation. Changes in the cell cycle have been linked to induction of apoptosis or cancer. Changes in cell differentiation have been linked to diseases and disorders of the reproductive system, immune system, and skeletal muscle.

Proton Pumps

[0017] Proton ATPases are a large class of membrane proteins that use the energy of ATP hydrolysis to generate an electrochemical proton gradient across a membrane. The resultant gradient may be used to transport other ions across the membrane (Na.sup.+, K.sup.+, or Cl.sup.-) or to maintain organelle pH. Proton ATPases are further subdivided into the mitochondrial F-ATPases, the plasma membrane ATPases, and the vacuolar ATPases. The vacuolar ATPases establish and maintain an acidic pH within various vesicles involved in the processes of endocytosis and exocytosis (Mellman, I. et al. (1986) Ann. Rev. Biochem. 55:663-700).

[0018] Proton-coupled, 12 membrane-spanning domain transporters such as PEPT 1 and PEPT 2 are responsible for gastrointestinal absorption and for renal reabsorbtion of peptides using an electrochemical H.sup.+ gradient as the driving force. Another type of peptide transporter, the TAP transporter, is a heterodimer consisting of TAP 1 and TAP 2 and is associated with antigen processing. Peptide antigens are transported across the membrane of the endoplasmic reticulum by TAP so they can be expressed on the cell surface in association with MHC molecules. Each TAP protein consists of multiple hydrophobic membrane spanning segments and a highly conserved ATP-binding cassette (Boll, M. et al. (1996) Proc. Natl. Acad. Sci. 93:284-289). Pathogenic microorganisms, such as herpes simplex virus, may encode inhibitors of TAP-mediated peptide transport in order to evade immune surveillance (Marusina, K. and Manaco, J. J. (1996) Curr. Opin. Hematol. 3:19-26).

ABC Transporters

[0019] The ATP-binding cassette (ABC) transporters, also called the "traffic ATPases", comprise a superfamily of membrane proteins that mediate transport and channel functions in prokaryotes and eukaryotes (Higgins, C. F. (1992) Annu. Rev. Cell Biol. 8:67-113). ABC proteins share a similar overall structure and significant sequence homology. All ABC proteins contain a conserved domain of approximately two hundred amino acid residues which includes one or more nucleotide binding domains. Mutations in ABC transporter genes are associated with various disorders, such as hyperbilirubinemia II/Dubin-Johnson syndrome, recessive Stargardt's disease, X-linked adrenoluekodystrophy, multidrug resistance, celiac disease, and cystic fibrosis.

Membrane Proteins Associated with Intercellular Communication

[0020] Intercellular communication is essential for the development and survival of multicellular organisms. Cells communicate with one another through the secretion and uptake of protein signaling molecules. The uptake of proteins into the cell is achieved by endocytosis, in which the interaction of signaling molecules with the plasma membrane surface, often via binding to specific receptors, results in the formation of plasma membrane-derived vesicles that enclose and transport the molecules into the cytosol. The secretion of proteins from the cell is achieved by exocytosis, in which molecules inside of the cell are packaged into membrane-bound transport vesicles derived from the trans-Golgi network. These vesicles fuse with the plasma membrane and release their contents into the surrounding extracellular space. Endocytosis and exocytosis result in the removal and addition of plasma membrane components and the recycling of these components is essential to maintain the integrity, identity, and functionality of both the plasma membrane and internal membrane-bound compartments.

[0021] Lysosomes are the site of degradation of intracellular material during autophagy and of extracellular molecules following endocytosis. Lysosomal enzymes are packaged into vesicles which bud from the trans-Golgi network. These vesicles fuse with endosomes to form the mature lysosome in which hydrolytic digestion of endocytosed material occurs. Lysosomes can fuse with autophagosomes to form a unique compartment in which the degradation of organelles and other intracellular components occurs. Protein sorting by transport vesicles, such as the endosome, has important consequences for a variety of physiological processes including cell surface growth, the biogenesis of distinct intracellular organelles, endocytosis, and the controlled secretion of hormones and neurotransmitters (Rothman, J. E. and Wieland, F. T. (1996) Science 272:227-234). In particular, neurodegenerative disorders and other neuronal pathologies are associated with biochemical flaws during endosomal protein sorting or endosomal biogenesis (Mayer R. J. et al. (1996) Adv. Exp. Med. Biol. 389:261-269).

[0022] Peroxisomes are organelles independent from the secretory pathway. They are the site of many peroxide-generating oxidative reactions in the cell. Peroxisomes are unique among eukaryotic organelles in that their size, number, and enzyme content vary depending upon organism, cell type, and metabolic needs. The majority of peroxisome-associated proteins are membrane-bound or are found proximal to the cytosolic or the lumenal side of the peroxisome membrane (Waterham, H. R. and Cregg, J. M. (1997) BioEssays 19:57-66).

[0023] Genetic defects in peroxisome proteins which result in peroxisomal deficiencies have been linked to a number of human pathologies, including Zellweger syndrome, rhizomelic chonrodysplasia punctata, X-linked adrenoleukodystrophy, acyl-CoA oxidase deficiency, bifunctional enzyme deficiency, classical Refsum's disease, DHAP alkyl transferase deficiency, and acatalasemia (Moser, H. W. and Moser, A. B. (1996) Ann. NY Acad. Sci. 804:427-441). In addition, Gartner, J. et al. (1991; Pediatr. Res. 29:141-146) found a 22 kDa integral membrane protein associated with lower density peroxisome-like subcellular fractions in patients with Zellweger syndrome.

[0024] Normal embryonic development and control of germ cell maturation is modulated by a number of secretory proteins which interact with their respective membrane-bound receptors. Cell fate during embryonic development is determined by members of the activin/TGF-.beta. superfamily, cadherins, IGF-2, and other morphogens. In addition, proliferation, maturation, and redifferentiation of germ cell and reproductive tissues are regulated, for example, by IGF-2, inhibins, activins, and follistatins (Petraglia, F. (1997) Placenta 18:3-8; Mather, J. P. et al. (1997) Proc. Soc. Exp. Biol. Med. 215:209-222).

Endoplasmic Reticulum Membrane Proteins

[0025] The normal functioning of the eukaryotic cell requires that all newly synthesized proteins be correctly folded, modified, and delivered to specific intra- and extracellular sites. Newly synthesized membrane and secretory proteins enter a cellular sorting and distribution network during or immediately after synthesis and are routed to specific locations inside and outside of the cell. The initial compartment in this process is the endoplasmic reticulum (ER) where proteins undergo modifications such as glycosylation, disulfide bond formation, and assembly into oligomers. The modified proteins are then transported through a series of membrane-bound compartments which include the various cisternae of the Golgi complex, where further carbohydrate modifications occur. Transport between compartments occurs by means of vesicles that bud and fuse in a manner specific to the type of protein being transported. Once within the secretory pathway, proteins do not have to cross a membrane to reach the cell surface.

[0026] Although the majority of proteins processed through the ER are transported out of the organelle, some are retained. The signal for retention in the ER in mammalian cells consists of the tetrapeptide sequence, KDEL, located at the carboxyl terminus of proteins (Munro, S. (1986) Cell 46:291-300). Proteins containing this sequence leave the ER but are quickly retrieved from the early Golgi cisternae and returned to the ER, while proteins lacking this signal continue through the secretory pathway.

[0027] Disruptions in the cellular secretory pathway have been implicated in several human diseases. In familial hypercholesterolemia the low density lipoprotein receptors remain in the ER, rather than moving to the cell surface (Pathak, R. K. (1988) J. Cell Biol. 106:1831-1841). Altered transport and processing of the .beta.-amyloid precursor protein (.beta.APP) involves the putative vesicle transport protein presenilin, and may play a role in early-onset Alzheimer's disease (Levy-Lahad. E. et al. (1995) Science 269:973-977). Changes in ER-derived calcium homeostasis have been associated with diseases such as cardiomyopathy, cardiac hypertrophy, myotonic dystrophy, Brody disease, Smith-McCort dysplasia, and diabetes mellitus.

Mitochondrial Membrane Proteins

[0028] The mitochondrial electron transport (or respiratory) chain is a series of three enzyme complexes in the mitochondrial membrane that is responsible for the transport of electrons from NADH to oxygen and the coupling of this oxidation to the synthesis of ATP (oxidative phosphorylation). ATP then provides the primary source of energy for driving the many energy-requiring reactions of a cell.

[0029] Most of the protein components of the mitochondrial respiratory chain are the products of nuclear encoded genes that are imported into the mitochondria and the remainder are products of mitochondrial genes. Defects and altered expression of enzymes in the respiratory chain are associated with a variety of disease conditions in man, including, for example, neurodegenerative diseases, myopathies, and cancer.

Lymphocyte and Leukocyte Membrane Proteins

[0030] The B-cell response to antigens, which is modulated through receptors, is an essential component of the normal immune system. Mature B cells recognize foreign antigens through B cell receptors (BCR) which are membrane-bound, specific antibodies that bind foreign antigens. The antigen/receptor complex is internalized and the antigen is proteolytically processed. To generate an efficient response to complex antigens, the BCR, BCR-associated proteins, and T cell response are all required. Proteolytic fragments of the antigen are complexed with major histocompatability complex-II (MHCII) molecules on the surface of the B cells where the complex can be recognized by T cells. In contrast, macrophages and other lymphoid cells present antigens in association with MHCI molecules to T cells. T cells recognize and are activated by the MHCI-antigen complex through interactions with the T cell receptor/CD3 complex, a T cell-surface multimeric protein located in the plasma membrane. T cells activated by antigen presentation secrete a variety of lymphokines that induce B cell maturation and T cell proliferation and activate macrophages, which kill target cells.

[0031] Leukocytes have a fundamental role in the inflammatory and immune response and include monocytes/macrophages, mast cells, polymorphonucleoleukocytes, natural killer cells, neutrophils, eosinophils, basophils, and myeloid precursors. Leukocyte membrane proteins include members of the CD antigens, N-CAM, I-CAM, human leukocyte antigen (HLA) class I and HLA class II gene products, immunoglobulins, immunoglobulin receptors, complement, complement receptors, interferons, interferon receptors, interleukin receptors, and chemokine receptors.

[0032] Abnormal lymphocyte and leukocyte activity has been associated with acute disorders, such as AIDS, immune hypersensitivity, leukemias, leukopenia, systemic lupus, granulomatous disease, and eosinophilia.

Apoptosis-Associated Membrane Proteins

[0033] A variety of ligands, receptors, enzymes, tumor suppressors, viral gene products, pharmacological agents, and inorganic ions have important positive or negative roles in regulating and implementing the apoptotic destruction of a cell. Although some specific components of the apoptotic pathway have been identified and characterized, many interactions between the proteins involved are undefined, leaving major aspects of the pathway unknown.

[0034] A requirement for calcium in apoptosis was previously suggested by studies showing the involvement of calcium levels in DNA cleavage and Fas-mediated cell death (Hewish, D. R. and L. A. Burgoyne (1973) Biochem. Biophys. Res. Comm. 52:504-510; Vignaux, F. et al. (1995) J. Exp. Med. 181:781-786; Oshimi, Y. and S. Miyazaki (1995) J. Immunol. 154:599-609). Other studies show that intracellular calcium concentrations increase when apoptosis is triggered in thymocytes by either T cell receptor cross-linking or by glucocorticoids and cell death can be prevented by blocking this increase (McConkey, D. J. et al. (1989) J. Immunol. 143:1801-1806; McConkey, D. J. et al. (1989) Arch. Biochem. Biophys. 269:365-370). Therefore, membrane proteins such as calcium channels are important for the apopoptic response.

Tumorgenesis

[0035] Tumorgenesis is associated with the activation of oncogenes which are derived from normal cellular genes. These oncogenes encode oncoproteins which are capable of converting normal cells into malignant cells. Some oncoproteins are mutant isoforms of the normal protein and other oncoproteins are abnormally expressed with respect to location or level of expression. The latter category of oncoprotein causes cancer by altering transcriptional control of cell proliferation. Five classes of oncoproteins are known to affect the cell cycle controls. These classes include growth factors, growth factor receptors, intracellular signal transducers, nuclear transcription factors, and cell-cycle control proteins. These proteins include those which are modified by glycosylation, phosphorylation, glycosaminoglycan attachment, sulphation, and lipidation.

[0036] Modulation of factors which act in the coordination of the human cell division cycle may provide an important means to reduce tumorgenesis. An example of the metastasis-associated proteins is the lysosomal membrane glycoprotein P2B/LAMP-1 which is also expressed in normal tissues. (Heffernan, M. et al. (1989) Cancer Res. 49:6077-6084.) In addition, mammalian proteins homologous to the plant pathogenesis-related proteins have been identified in hyperplastic glioma. (Murphy, E. V. et al. (1995) Gene 159:131-135.)

[0037] The discovery of new human transmembrane proteins and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of immune, reproductive, smooth muscle, neurological, gastrointestinal, developmental, and cell proliferative disorders.

SUMMARY OF THE INVENTION

[0038] The invention features substantially purified polypeptides, human transmembrane proteins, referred to collectively as "HTMPN" and individually as "HTMPN-1", "HTMPN-2", "HTMPN-3", "HTMPN-4", "HTMPN-5", "HTMPN-6", "HTMPN-7", "HTMPN-8", "HTMPN-9", "HTMPN-10", "HTMPN-11", "HTMPN-12", "HTMPN-13", "HTMPN-14", "HTMPN-15", "HTMPN-16", "HTMPN-17", "HTMPN-18", "HTMPN-19", "HTMPN-20", "HTMPN-21", "HTMPN-22", "HTMPN-23", "HTMPN-24", "HTMPN-25", "HTMPN-26", "HTMPN-27", "HTMPN-28", "HTMPN-29", "HTMPN-30", "HTMPN-31", "HTMPN-32", "HTMPN-33", "HTMPN-34", "HTMPN-35", "HTMPN-36", "HTMPN-37", "HTMPN-38", "HTMPN-39", "HTMPN-40", "HTMPN-41", "HTMPN-42", "HTMPN-43", "HTMPN-44", "HTMPN-45", "HTMPN-46", "HTMPN-47", "HTMPN-48", "HTMPN-49", "HTMPN-50", "HTMPN-51", "HTMPN-52", "HTMPN-53", "HTMPN-54", "HTMPN-55", "HTMPN-56", "HTMPN-57", "HTMPN-58", "HTMPN-59", "HTMPN-60", "HTMPN-61", "HTMPN-62", "HTMPN-63", "HTMPN-64", "HTMPN-65", "HTMPN-66", "HTMPN-67", "HTMPN-68", "HTMPN-69". "HTMPN-70", "HTMPN-71", "HTMPN-72", "HTMPN-73", "HTMPN-74", "HTMPN-75", "HTMPN-76", "HTMPN-77", "HTMPN-78", and "HTMPN-79". In one aspect, the invention provides a substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, and SEQ ID NO:79 (SEQ ID NO:1-79), and fragments thereof.

[0039] The invention further provides a substantially purified variant having at least 90% amino acid identity to at least one of the amino acid sequences selected from the group consisting of SEQ ID NO:1-79, and fragments thereof. The invention also provides an isolated and purified polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-79, and fragments thereof. The invention also includes an isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-79, and fragments thereof.

[0040] Additionally, the invention provides an isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-79, and fragments thereof. The invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide encoding the polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:1-79, and fragments thereof.

[0041] The invention also provides an isolated and purified polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEQ ID NO:88, SEQ ID NO:89, SEQ ID NO:90, SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ ID NO:98, SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:101, SEQ ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, SEQ ID NO:106, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:109, SEQ ID NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:113, SEQ ID NO:114, SEQ ID NO:115, SEQ ID NO:116, SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:119, SEQ ID NO:120, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:133, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEQ ID NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:143, SEQ ID NO:144, SEQ ID NO:145, SEQ ID NO:146, SEQ ID NO:147, SEQ ID NO:148, SEQ ID NO:149, SEQ ID NO:150, SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:153, SEQ ID NO:154, SEQ ID NO:155, SEQ ID NO:156, SEQ ID NO:157, and SEQ ID NO:158 (SEQ ID NO:80-158), and fragments thereof. The invention further provides an isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide sequence selected from the group consisting of SEQ ID NO:80-158, and fragments thereof. The invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:80-158, and fragments thereof.

[0042] The invention also provides a method for detecting a polynucleotide in a sample containing nucleic acids, the method comprising the steps of (a) hybridizing the complement of the polynucleotide sequence to at least one of the polynucleotides of the sample, thereby forming a hybridization complex; and (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of a polynucleotide in the sample. In one aspect, the method further comprises amplifying the polynucleotide prior to hybridization.

[0043] The invention further provides an expression vector containing at least a fragment of the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-79, and fragments thereof. In another aspect, the expression vector is contained within a host cell.

[0044] The invention also provides a method for producing a polypeptide, the method comprising the steps of: (a) culturing the host cell containing an expression vector containing at least a fragment of a polynucleotide under conditions suitable for the expression of the polypeptide; and (b) recovering the polypeptide from the host cell culture.

[0045] The invention also provides a pharmaceutical composition comprising a substantially purified polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:1-79, and fragments thereof, in conjunction with a suitable pharmaceutical carrier.

[0046] The invention further includes a purified antibody which binds to a polypeptide selected from the group consisting of SEQ ID NO:1-79, and fragments thereof. The invention also provides a purified agonist and a purified antagonist to the polypeptide.

[0047] The invention also provides a method for treating or preventing a disorder associated with decreased expression or activity of HTMPN, the method comprising administering to a subject in need of such treatment an effective amount of a pharmaceutical composition comprising a substantially purified polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:1-79, and fragments thereof, in conjunction with a suitable pharmaceutical carrier.

[0048] The invention also provides a method for treating or preventing a disorder associated with increased expression or activity of HTMPN, the method comprising administering to a subject in need of such treatment an effective amount of an antagonist of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-79, and fragments thereof.

BRIEF DESCRIPTION OF THE TABLES

[0049] Table 1 shows nucleotide and polypeptide sequence identification numbers (SEQ ID NOs), clone identification numbers (clone ID), cDNA libraries, and cDNA fragments used to assemble full-length sequences encoding HTMPN.

[0050] Table 2 shows features of each polypeptide sequence including predicted transmembrane sequences, potential motifs, homologous sequences, and methods and algorithms used for identification of HTMPN.

[0051] Table 3 shows the tissue-specific expression patterns of each nucleic acid sequence as determined by northern analysis, diseases, disorders, or conditions associated with these tissues, and the vector into which each cDNA was cloned.

[0052] Table 4 describes the tissues used to construct the cDNA libraries from which Incyte cDNA clones encoding HTMPN were isolated.

[0053] Table 5 shows the programs, their descriptions, references, and threshold parameters used to analyze HTMPN.

DESCRIPTION OF THE INVENTION

[0054] Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

[0055] It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

[0056] Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

DEFINITIONS

[0057] "HTMPN" refers to the amino acid sequences of substantially purified HTMPN obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and preferably the human species, from any source, whether natural, synthetic, semi-synthetic, or recombinant.

[0058] The term "agonist" refers to a molecule which, when bound to HTMPN, increases or prolongs the duration of the effect of HTMPN. Agonists may include proteins, nucleic acids, carbohydrates, or any other molecules which bind to and modulate the effect of HTMPN.

[0059] An "allelic variant" is an alternative form of the gene encoding HTMPN. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. Any given natural or recombinant gene may have none, one, or many allelic forms. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.

[0060] "Altered" nucleic acid sequences encoding HTMPN include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polynucleotide the same as HTMPN or a polypeptide with at least one functional characteristic of HTMPN. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding HTMPN, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding HTMPN. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent HTMPN. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of HTMPN is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, positively charged amino acids may include lysine and arginine, and amino acids with uncharged polar head groups having similar hydrophilicity values may include leucine, isoleucine, and valine; glycine and alanine; asparagine and glutamine; serine and threonine; and phenylalanine and tyrosine.

[0061] The terms "amino acid" or "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. In this context, "fragments," "immunogenic fragments," or "antigenic fragments" refer to fragments of HTMPN which are preferably at least 5 to about 15 amino acids in length, most preferably at least 14 amino acids, and which retain some biological activity or immunological activity of HTMPN. Where "amino acid sequence" is recited to refer to an amino acid sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

[0062] "Amplification" relates to the production of additional copies of a nucleic acid sequence. Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.

[0063] The term "antagonist" refers to a molecule which, when bound to HTMPN, decreases the amount or the duration of the effect of the biological or immunological activity of HTMPN. Antagonists may include proteins, nucleic acids, carbohydrates, antibodies, or any other molecules which decrease the effect of HTMPN.

[0064] The term "antibody" refers to intact molecules as well as to fragments thereof, such as Fab, F(ab').sub.2, and Fv fragments, which are capable of binding the epitopic determinant. Antibodies that bind HTMPN polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.

[0065] The term "antigenic determinant" refers to that fragment of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (given regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.

[0066] The term "antisense" refers to any composition containing a nucleic acid sequence which is complementary to the "sense" strand of a specific nucleic acid sequence. Antisense molecules may be produced by any method including synthesis or transcription. Once introduced into a cell, the complementary nucleotides combine with natural sequences produced by the cell to form duplexes and to block either transcription or translation. The designation "negative" can refer to the antisense strand, and the designation "positive" can refer to the sense strand.

[0067] The term "biologically active," refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" refers to the capability of the natural, recombinant, or synthetic HTMPN, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

[0068] The terms "complementary" or "complementarity" refer to the natural binding of polynucleotides by base pairing. For example, the sequence "5' A-G-T 3'" bonds to the complementary sequence "3' T-C-A 5'." Complementarity between two single-stranded molecules may be "partial," such that only some of the nucleic acids bind, or it may be "complete," such that total complementarity exists between the single stranded molecules. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands. This is of particular importance in amplification reactions, which depend upon binding between nucleic acids strands, and in the design and use of peptide nucleic acid (PNA) molecules.

[0069] A "composition comprising a given polynucleotide sequence" or a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution. Compositions comprising polynucleotide sequences encoding HTMPN or fragments of HTMPN may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).

[0070] "Consensus sequence" refers to a nucleic acid sequence which has been resequenced to resolve uncalled bases, extended using XL-PCR kit (Perkin-Elmer, Norwalk Conn.) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from the overlapping sequences of more than one Incyte Clone using a computer program for fragment assembly, such as the GELVIEW Fragment Assembly system (GCG, Madison Wis.). Some sequences have been both extended and assembled to produce the consensus sequence.

[0071] The term "correlates with expression of a polynucleotide" indicates that the detection of the presence of nucleic acids, the same or related to a nucleic acid sequence encoding HTMPN, by northern analysis is indicative of the presence of nucleic acids encoding HTMPN in a sample, and thereby correlates with expression of the transcript from the polynucleotide encoding HTMPN.

[0072] A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.

[0073] The term "derivative" refers to the chemical modification of a polypeptide sequence, or a polynucleotide sequence. Chemical modifications of a polynucleotide sequence can include, for example, replacement of hydrogen by an alkyl, acyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.

[0074] The term "similarity" refers to a degree of complementarity. There may be partial similarity or complete similarity. The word "identity" may substitute for the word "similarity." A partially complementary sequence that at least partially inhibits an identical sequence from hybridizing to a target nucleic acid is referred to as "substantially similar." The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or northern blot, solution hybridization, and the like) under conditions of reduced stringency. A substantially similar sequence or hybridization probe will compete for and inhibit the binding of a completely similar (identical) sequence to the target sequence under conditions of reduced stringency. This is not to say that conditions of reduced stringency are such that non-specific binding is permitted, as reduced stringency conditions require that the binding of two sequences to one another be a specific (i.e., a selective) interaction. The absence of non-specific binding may be tested by the use of a second target sequence which lacks even a partial degree of complementarity (e.g., less than about 30% similarity or identity). In the absence of non-specific binding, the substantially similar sequence or probe will not hybridize to the second non-complementary target sequence.

[0075] The phrases "percent identity" or "% identity" refer to the percentage of sequence similarity found in a comparison of two or more amino acid or nucleic acid sequences. Percent identity can be determined electronically, e.g., by using the MEGALIGN program (DNASTAR, Madison Wis.) which creates alignments between two or more sequences according to methods selected by the user, e.g., the clustal method. (See, e.g., Higgins, D. G. and P. M. Sharp (1988) Gene 73:237-244.) The clustal algorithm groups sequences into clusters by examining the distances between all pairs. The clusters are aligned pairwise and then in groups. The percentage similarity between two amino acid sequences, e.g., sequence A and sequence B, is calculated by dividing the length of sequence A, minus the number of gap residues in sequence A, minus the number of gap residues in sequence B, into the sum of the residue matches between sequence A and sequence B, times one hundred. Gaps of low or of no similarity between the two amino acid sequences are not included in determining percentage similarity. Percent identity between nucleic acid sequences can also be counted or calculated by other methods known in the art, e.g., the Jotun Hein method. (See, e.g., Hein, J. (1990) Methods Enzymol. 183:626-645.) Identity between sequences can also be determined by other methods known in the art, e.g., by varying hybridization conditions.

[0076] "Human artificial chromosomes" (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size, and which contain all of the elements required for stable mitotic chromosome segregation and maintenance.

[0077] The term "humanized antibody" refers to antibody molecules in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.

[0078] "Hybridization" refers to any process by which a strand of nucleic acid binds with a complementary strand through base pairing.

[0079] The term "hybridization complex" refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., C.sub.0t or R.sub.0t analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).

[0080] The words "insertion" or "addition" refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively, to the sequence found in the naturally occurring molecule.

[0081] "Immune response" can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.

[0082] The term "microarray" refers to an arrangement of distinct polynucleotides on a substrate.

[0083] The terms "element" or "array element" in a microarray context, refer to hybridizable polynucleotides arranged on the surface of a substrate.

[0084] The term "modulate" refers to a change in the activity of HTMPN. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of HTMPN.

[0085] The phrases "nucleic acid" or "nucleic acid sequence" refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material. In this context, "fragments" refers to those nucleic acid sequences which, when translated, would produce polypeptides retaining some functional characteristic, e.g., antigenicity, or structural domain characteristic, e.g., ATP-binding site, of the full-length polypeptide.

[0086] The terms "operably associated" or "operably linked" refer to functionally related nucleic acid sequences. A promoter is operably associated or operably linked with a coding sequence if the promoter controls the translation of the encoded polypeptide. While operably associated or operably linked nucleic acid sequences can be contiguous and in the same reading frame, certain genetic elements, e.g., repressor genes, are not contiguously linked to the sequence encoding the polypeptide but still bind to operator sequences that control expression of the polypeptide.

[0087] The term "oligonucleotide" refers to a nucleic acid sequence of at least about 6 nucleotides to 60 nucleotides, preferably about 15 to 30 nucleotides, and most preferably about 20 to 25 nucleotides, which can be used in PCR amplification or in a hybridization assay or microarray. "Oligonucleotide" is substantially equivalent to the terms "amplimer," "primer." "oligomer," and "probe," as these terms are commonly defined in the art.

[0088] "Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.

[0089] The term "sample" is used in its broadest sense. A sample suspected of containing nucleic acids encoding HTMPN, or fragments thereof, or HTMPN itself, may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.

[0090] The terms "specific binding" or "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, or an antagonist. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the presence of a polypeptide containing the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.

[0091] The term "stringent conditions" refers to conditions which permit hybridization between polynucleotides and the claimed polynucleotides. Stringent conditions can be defined by salt concentration, the concentration of organic solvent, e.g., formamide, temperature, and other conditions well known in the art. In particular, stringency can be increased by reducing the concentration of salt, increasing the concentration of formamide, or raising the hybridization temperature.

[0092] The term "substantially purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least about 60% free, preferably about 75% free, and most preferably about 90% free from other components with which they are naturally associated.

[0093] A "substitution" refers to the replacement of one or more amino acids or nucleotides by different amino acids or nucleotides, respectively.

[0094] "Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.

[0095] "Transformation" describes a process by which exogenous DNA enters and changes a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term "transformed" cells includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.

[0096] A "variant" of HTMPN polypeptides refers to an amino acid sequence that is altered by one or more amino acid residues. The variant may have "conservative" changes, wherein a substituted amino acid has similar structural or chemical properties (e.g., replacement of leucine with isoleucine). More rarely, a variant may have "nonconservative" changes (e.g., replacement of glycine with tryptophan). Analogous minor variations may also include amino acid deletions or insertions, or both. Guidance in determining which amino acid residues may be substituted, inserted, or deleted without abolishing biological or immunological activity may be found using computer programs well known in the art, for example, LASERGENE software (DNASTAR).

[0097] The term "variant," when used in the context of a polynucleotide sequence, may encompass a polynucleotide sequence related to HTMPN. This definition may also include, for example, "allelic" (as defined above), "splice," "species," or "polymorphic" variants. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or an absence of domains. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides generally will have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.

THE INVENTION

[0098] The invention is based on the discovery of new human transmembrane proteins (HTMPN), the polynucleotides encoding HTMPN, and the use of these compositions for the diagnosis, treatment, or prevention of immune, reproductive, smooth muscle, neurological, gastrointestinal, developmental, and cell proliferative disorders.

[0099] Table 1 lists the Incyte Clones used to derive full length nucleotide sequences encoding HTMPN. Columns 1 and 2 show the sequence identification numbers (SEQ ID NOs) of the amino acid and nucleic acid sequences, respectively. Column 3 shows the Clone ID of the Incyte Clone in which nucleic acids encoding each HTMPN were identified, and column 4, the cDNA libraries from which these clones were isolated. Column 5 shows Incyte clones, their corresponding cDNA libraries, and shotgun sequences. The clones and shotgun sequences are part of the consensus nucleotide sequence of each HTMPN and are useful as fragments in hybridization technologies.

[0100] The columns of Table 2 show various properties of the polypeptides of the invention: column 1 references the SEQ ID NO; column 2 shows the number of amino acid residues in each polypeptide; column 3, potential phosphorylation sites; column 4, potential glycosylation sites; column 5, the amino acid residues comprising signature sequences and motifs; column 6, the identity of each protein; and column 7, analytical methods used to identify each protein through sequence homology and protein motifs. Hidden Markov Model analysis indicates the presence of one or more potential transmembrane motifs in each of SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO: 66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO: 75, SEQ ID NO:76, SEQ ID NO:77, and SEQ ID NO: 79; as well as the presence of one or more potential signal peptide motifs in each of SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:75, SEQ ID NO:77, and SEQ ID NO:79.

Motifs analysis indicates the presence of a potential ATP/GTP binding site in SEQ ID NO:68, a potential calcium-binding site also in SEQ ID NO:68, a potential leucine zipper gene regulatory motif in each of SEQ ID NO:68 and SEQ ID NO:73; and a potential microbody (single-membraned organelle) targeting signal site in SEQ ID NO:78. BLOCKS analysis indicates the presence of two potential PMP-22 integral membrane glycoprotein motifs and a trehalase motif, all in SEQ ID NO:77, as well as a potential protein-splicing motif in SEQ ID NO:66. PRINTS analysis indicates the presence of a potential G-protein coupled receptor motif in SEQ ID NO:79.

[0101] The columns of Table 3 show the tissue-specificity and diseases, disorders, or conditions associated with nucleotide sequences encoding HTMPN. The first column of Table 3 lists the nucleotide sequence identifiers. The second column lists tissue categories which express HTMPN as a fraction of total tissue categories expressing HTMPN. The third column lists the diseases, disorders, or conditions associated with those tissues expressing HTMPN. The fourth column lists the vectors used to subclone the cDNA library. Of particular note is the expression of HTMPN in tissue involved in inflammation and the immune response and with cell proliferative conditions including cancer, and in reproductive, gastrointestinal, fetal, smooth muscle, cardiovascular, urologic, endocrine, developmental, and nervous tissue.

[0102] The following fragments of the nucleotide sequences encoding HTMPN are useful in hybridization or amplification technologies to identify SEQ ID NO:121-158 and to distinguish between SEQ ID NO:121-158 and related polynucleotide sequences. The useful fragments are the fragment of SEQ ID NO:121 from about nucleotide 151 to about nucleotide 189; the fragment of SEQ ID NO:122 from about nucleotide 280 to about nucleotide 318; the fragment of SEQ ID NO:123 from about nucleotide 505 to about nucleotide 558; the fragments of SEQ ID NO:124 from about nucleotide 1 to about nucleotide 21 and from about nucleotide 694 to about nucleotide 720; the fragment of SEQ ID NO:125 from about nucleotide 331 to about nucleotide 378; the fragment of SEQ ID NO:126 from about nucleotide 1012 to about nucleotide 1047; the fragment of SEQ ID NO:127 from about nucleotide 1070 to about nucleotide 1106; the fragment of SEQ ID NO:128 from about nucleotide 133 to about nucleotide 186; the fragment of SEQ ID NO:129 from about nucleotide 432 to about nucleotide 482; the fragments of SEQ ID NO:130 from about nucleotide 1745 to about nucleotide 1795 and from about nucleotide 1910 to about nucleotide 1979; the fragment of SEQ ID NO:131 from about nucleotide 322 to about nucleotide 375; the fragment of SEQ ID NO:132 from about nucleotide 147 to about nucleotide 203; the fragment of SEQ ID NO:133 from about nucleotide 557 to about nucleotide 613; the fragment of SEQ ID NO:134 from about nucleotide 509 to about nucleotide 595; the fragment of SEQ ID NO:135 from about nucleotide 808 to about nucleotide 848; the fragment of SEQ ID NO:136 from about nucleotide 216 to about nucleotide 260; the fragment of SEQ ID NO:137 from about nucleotide 132 to about nucleotide 188; the fragment of SEQ ID NO:138 from about nucleotide 231 to about nucleotide 278; the fragment of SEQ ID NO:139 from about nucleotide 303 to about nucleotide 350; the fragment of SEQ ID NO:140 from about nucleotide 507 to about nucleotide 550; the fragment of SEQ ID NO:141 from about nucleotide 433 to about nucleotide 477; the fragment of SEQ ID NO:142 from about nucleotide 266 to about nucleotide 314; the fragment of SEQ ID: 143 from about nucleotide 3 to about nucleotide 48; the fragment of SEQ ID NO:144 from about nucleotide 76 to about nucleotide 122; the fragment of SEQ ID NO:145 from about nucleotide 93 to about nucleotide 139; the fragment of SEQ ID NO:146 from about nucleotide 241 to about nucleotide 286; the fragment of SEQ ID NO:147 from about nucleotide 43 to about nucleotide 89; the fragment of SEQ ID NO:148 from about nucleotide 219 to about nucleotide 265; the fragment of SEQ ID NO:149 from about nucleotide 619 to about nucleotide 663; the fragment of SEQ ID NO:150 from about nucleotide 25 to about nucleotide 69; the fragment of SEQ ID NO:151 from about nucleotide 175 to about nucleotide 221; the fragment of SEQ ID NO:152 from about nucleotide 94 to about nucleotide 138; the fragment of SEQ ID NO:153 from about nucleotide 46 to about nucleotide 90; the fragment of SEQ ID NO:154 from about nucleotide 1081 to about nucleotide 1127; the fragment of SEQ ID NO:155 from about nucleotide 31 to about nucleotide 77; the fragment of SEQ ID NO:156 from about nucleotide 157 to about nucleotide 201; the fragment of SEQ ID NO:157 from about nucleotide 216 to about nucleotide 259; and the fragment of SEQ ID NO:158 from about nucleotide 517 to about nucleotide 561. The polypeptides encoded by these fragments may be useful, for example, as antigenic polypeptides.

[0103] The invention also encompasses HTMPN variants. A preferred HTMPN variant is one which has at least about 80%, more preferably at least about 90%, and most preferably at least about 95% amino acid sequence identity to the HTMPN amino acid sequence, and which contains at least one functional or structural characteristic of HTMPN.

[0104] The invention also encompasses polynucleotides which encode HTMPN. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:80-158, which encodes HTMPN.

[0105] The invention also encompasses a variant of a polynucleotide sequence encoding HTMPN. In particular, such a variant polynucleotide sequence will have at least about 80%, more preferably at least about 90%, and most preferably at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding HTMPN. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:80-158 which has at least about 80%, more preferably at least about 90%, and most preferably at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:80-158. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of HTMPN.

[0106] It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding HTMPN, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring HTMPN, and all such variations are to be considered as being specifically disclosed.

[0107] Although nucleotide sequences which encode HTMPN and its variants are preferably capable of hybridizing to the nucleotide sequence of the naturally occurring HTMPN under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding HTMPN or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding HTMPN and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.

[0108] The invention also encompasses production of DNA sequences which encode HTMPN and HTMPN derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding HTMPN or any fragment thereof.

[0109] Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:80-158 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G. M. and S. L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A. R. (1987) Methods Enzymol. 152:507-511.) For example, stringent salt concentration will ordinarily be less than about 750 mM NaCl and 75 mM trisodium citrate, preferably less than about 500 mM NaCl and 50 mM trisodium citrate, and most preferably less than about 250 mM NaCl and 25 mM trisodium citrate. Low stringency hybridization can be obtained in the absence of organic solvent, e.g., formamide, while high stringency hybridization can be obtained in the presence of at least about 35% formamide, and most preferably at least about 50% formamide. Stringent temperature conditions will ordinarily include temperatures of at least about 30.degree. C., more preferably of at least about 37.degree. C., and most preferably of at least about 42.degree. C. Varying additional parameters, such as hybridization time, the concentration of detergent, e.g., sodium dodecyl sulfate (SDS), and the inclusion or exclusion of carrier DNA, are well known to those skilled in the art. Various levels of stringency are accomplished by combining these various conditions as needed. In a preferred embodiment, hybridization will occur at 30.degree. C. in 750 mM NaCl, 75 mM trisodium citrate, and 1% SDS. In a more preferred embodiment, hybridization will occur at 37.degree. C. in 500 mM NaCl, 50 mM trisodium citrate, 1% SDS, 35% formamide, and 100 .mu.g/ml denatured salmon sperm DNA (ssDNA). In a most preferred embodiment, hybridization will occur at 42.degree. C. in 250 mM NaCl, 25 mM trisodium citrate, 1% SDS. 50% formamide, and 200 .mu.g/ml ssDNA. Useful variations on these conditions will be readily apparent to those skilled in the art.

[0110] The washing steps which follow hybridization can also vary in stringency. Wash stringency conditions can be defined by salt concentration and by temperature. As above, wash stringency can be increased by decreasing salt concentration or by increasing temperature. For example, stringent salt concentration for the wash steps will preferably be less than about 30 mM NaCl and 3 mM trisodium citrate, and most preferably less than about 15 mM NaCl and 1.5 mM trisodium citrate. Stringent temperature conditions for the wash steps will ordinarily include temperature of at least about 25.degree. C., more preferably of at least about 42.degree. C., and most preferably of at least about 68.degree. C. In a preferred embodiment, wash steps will occur at 25.degree. C. in 30 mM NaCl, 3 mM trisodium citrate, and 0.1% SDS. In a more preferred embodiment, wash steps will occur at 42.degree. C. in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. In a most preferred embodiment, wash steps will occur at 68.degree. C. in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. Additional variations on these conditions will be readily apparent to those skilled in the art.

[0111] Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland Ohio), Taq polymerase (Perkin-Elmer), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway N.J.), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg Md.). Preferably, sequence preparation is automated with machines such as the Hamilton MICROLAB 2200 (Hamilton, Reno Nev.), Peltier Thermal Cycler 200 (PTC200; MJ Research, Watertown Mass.) and the ABI CATALYST 800 (Perkin-Elmer). Sequencing is then carried out using either ABI 373 or 377 DNA sequencing systems (Perkin-Elmer) or the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale Calif.). The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F. M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York N.Y., unit 7.7; Meyers, R. A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York N.Y., pp. 856-853.)

[0112] The nucleic acid sequences encoding HTMPN may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic. 2:318-322.) Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119.) In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J. D. et al. (1991) Nucleic Acids Res. 19:3055-306). Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto Calif.) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 Primer Analysis software (National Biosciences, Plymouth Minn.) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68.degree. C. to 72.degree. C.

[0113] When screening for full-length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.

[0114] Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Perkin-Elmer), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.

[0115] In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode HTMPN may be cloned in recombinant DNA molecules that direct expression of HTMPN, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express HTMPN.

[0116] The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter HTMPN-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

[0117] In another embodiment, sequences encoding HTMPN may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M. H. et al. (1980) Nucl. Acids Res. Symp. Ser. 215-223, and Horn, T. et al. (1980) Nucl. Acids Res. Symp. Ser. 225-232.) Alternatively, HTMPN itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solid-phase techniques. (See, e.g., Roberge, J. Y. et al. (1995) Science 269:202-204.) Automated synthesis may be achieved using the ABI 431A Peptide Synthesizer (Perkin-Elmer). Additionally, the amino acid sequence of HTMPN, or any part thereof may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide.

[0118] The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g, Chiez, R. M. and F. Z. Regnier (1990) Methods Enzymol. 182:392-421.) The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH Freeman, New York N.Y.)

[0119] In order to express a biologically active HTMPN, the nucleotide sequences encoding HTMPN or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding HTMPN. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding HTMPN. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding HTMPN and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162.)

[0120] Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding HTMPN and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview N.Y., ch. 4, 8, and 16-17; Ausubel, F. M. et al. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York N.Y., ch. 9, 13, and 16.)

[0121] A variety of expression vector/host systems may be utilized to contain and express sequences encoding HTMPN. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. The invention is not limited by the host cell employed.

[0122] In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding HTMPN. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding HTMPN can be achieved using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla Calif.) or pSPORT1 plasmid (Life Technologies). Ligation of sequences encoding HTMPN into the vector's multiple cloning site disrupts the lacZ gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S. M. Schuster (1989) J. Biol. Chem. 264:5503-5509.) When large quantities of HTMPN are needed, e.g. for the production of antibodies, vectors which direct high level expression of HTMPN may be used. For example, vectors containing the strong, inducible T5 or T7 bacteriophage promoter may be used.

[0123] Yeast expression systems may be used for production of HTMPN. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g. Ausubel, 1995, supra; Grant et al. (1987) Methods Enzymol. 153:516-54; and Scorer, C. A. et al. (1994) Bio/Technology 12:181-184.)

[0124] Plant systems may also be used for expression of HTMPN. Transcription of sequences encoding HTMPN may be driven viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (See, e.g., The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York N.Y., pp. 191-196.)

[0125] In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding HTMPN may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses HTMPN in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.

[0126] Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J. J. et al. (1997) Nat. Genet. 15:345-355.)

[0127] For long term production of recombinant proteins in mammalian systems, stable expression of HTMPN in cell lines is preferred. For example, sequences encoding HTMPN can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.

[0128] Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in tk.sup.- or apr.sup.- cells, respectively. (See, e.g., Wigler. M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, dhfr confers resistance to methotrexate; neo confers resistance to the aminoglycosides, neomycin and G-418; and als or pat confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14.) Additional selectable genes have been described, e.g., trpB and hisD, which alter cellular requirements for metabolites. (See, e.g., Hartman, S. C. and R. C. Mulligan (1988) Proc. Natl. Acad. Sci. 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), .beta. glucuronidase and its substrate .beta.-glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, C. A. (1995) Methods Mol. Biol. 55:121-131.)

[0129] Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding HTMPN is inserted within a marker gene sequence, transformed cells containing sequences encoding HTMPN can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding HTMPN under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.

[0130] In general, host cells that contain the nucleic acid sequence encoding HTMPN and that express HTMPN may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.

[0131] Immunological methods for detecting and measuring the expression of HTMPN using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on HTMPN is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St Paul Minn., Sect. IV; Coligan, J. E. et al. (1997) Current Protocols in Immunology, Greene Pub. Associates and Wiley-Interscience, New York N.Y.; and Pound, J. D. (1998) Immunochemical Protocols, Humana Press, Totowa N.J.).

[0132] A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding HTMPN include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, the sequences encoding HTMPN, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega (Madison Wis.), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

[0133] Host cells transformed with nucleotide sequences encoding HTMPN may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode HTMPN may be designed to contain signal sequences which direct secretion of HTMPN through a prokaryotic or eukaryotic cell membrane.

[0134] In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38), are available from the American Type Culture Collection (ATCC, Bethesda Md.) and may be chosen to ensure the correct modification and processing of the foreign protein.

[0135] In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding HTMPN may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric HTMPN protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of HTMPN activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, c-myc, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, c-myc, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the HTMPN encoding sequence and the heterologous protein sequence, so that HTMPN may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, supra, ch 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

[0136] In a further embodiment of the invention, synthesis of radiolabeled HTMPN may be achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract systems (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, preferably .sup.35S-methionine.

[0137] Fragments of HTMPN may be produced not only by recombinant production, but also by direct peptide synthesis using solid-phase techniques. (See, e.g., Creighton, supra., pp. 55-60.) Protein synthesis may be performed by manual techniques or by automation. Automated synthesis may be achieved, for example, using the ABI 431A Peptide Synthesizer (Perkin-Elmer). Various fragments of HTMPN may be synthesized separately and then combined to produce the full length molecule.

Therapeutics

[0138] Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of HTMPN and human transmembrane proteins. In addition, the expression of HTMPN is closely associated with tissue involved in inflammation and the immune response and with cell proliferative conditions including cancer, and in reproductive, gastrointestinal, fetal, smooth muscle, cardiovascular, developmental, and nervous tissue. Therefore, HTMPN appears to play a role in immune, reproductive, smooth muscle, neurological, gastrointestinal, developmental, and cell proliferative disorders. In the treatment of immune, reproductive, smooth muscle, neurological, gastrointestinal, developmental, and cell proliferative disorders associated with increased HTMPN expression or activity, it is desirable to decrease the expression or activity of HTMPN. In the treatment of the above conditions associated with decreased HTMPN expression or activity, it is desirable to increase the expression or activity of HTMPN.

[0139] Therefore, in one embodiment, HTMPN or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HTMPN. Examples of such disorders include, but are not limited to, an immune disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyenodocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjogren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; a reproductive disorder such as a disorder of prolactin production; infertility, including tubal disease, ovulatory defects, and endometriosis; a disruption of the estrous cycle, a disruption of the menstrual cycle, polycystic ovary syndrome, ovarian hyperstimulation syndrome, endometrial and ovarian tumors, uterine fibroids, autoimmune disorders, ectopic pregnancies, and teratogenesis; cancer of the breast, fibrocystic breast disease, and galactorrhea; disruptions of spermatogenesis, abnormal sperm physiology, cancer of the testis, cancer of the prostate, benign prostatic hyperplasia, prostatitis, Peyronie's disease, impotence, carcinoma of the male breast, and gynecomastia; a smooth muscle disorder such as angina, anaphylactic shock, arrhythmias, asthma, cardiovascular shock, Cushing's syndrome, hypertension, hypoglycemia, myocardial infarction, migraine, and pheochromocytoma, and myopathies including cardiomyopathy, encephalopathy, epilepsy, Kearns-Sayre syndrome, lactic acidosis, myoclonic disorder, and ophthalmoplegia; a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease. Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease; prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome; fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis; inherited, metabolic, endocrine, and toxic myopathies; myasthenia gravis, periodic paralysis; mental disorders including mood, anxiety, and schizophrenic disorders; akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, and Tourette's disorder; a gastrointestinal disorder such as dysphagia, peptic esophagitis, esophageal spasm, esophageal stricture, esophageal carcinoma, dyspepsia, indigestion, gastritis, gastric carcinoma, anorexia, nausea, emesis, gastroparesis, antral or pyloric edema, abdominal angina, pyrosis, gastroenteritis, intestinal obstruction, infections of the intestinal tract, peptic ulcer, cholelithiasis, cholecystitis, cholestasis, pancreatitis, pancreatic carcinoma, biliary tract disease, hepatoma, infectious colitis, ulcerative colitis, ulcerative proctitis, Crohn's disease, Whipple's disease, Mallory-Weiss syndrome, colonic carcinoma, colonic obstruction, irritable bowel syndrome, short bowel syndrome, diarrhea, constipation, gastrointestinal hemorrhage, and acquired immunodeficiency syndrome (AIDS) enteropathy, cirrhosis, jaundice, cholestasis, hereditary hyperbilirubinemia, hepatic encephalopathy, hepatorenal syndrome, hepatitis, hepatic steatosis, hemochromatosis, Wilson's disease, .alpha..sub.1-antitrypsin deficiency, Reye's syndrome, primary sclerosing cholangitis, liver infarction, portal vein obstruction and thrombosis, passive congestion, centrilobular necrosis, peliosis hepatis, hepatic vein thrombosis, veno-occlusive disease, preeclampsia, eclampsia, acute fatty liver of pregnancy, intrahepatic cholestasis of pregnancy, and hepatic tumors including nodular hyperplasias, adenomas, and carcinomas; a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hernoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; and a developmental disorder including, but not limited to, those listed above.

[0140] In another embodiment, a vector capable of expressing HTMPN or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HTMPN including, but not limited to, those described above.

[0141] In a further embodiment, a pharmaceutical composition comprising a substantially purified HTMPN in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HTMPN including, but not limited to, those provided above.

[0142] In still another embodiment, an agonist which modulates the activity of HTMPN may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HTMPN including, but not limited to, those listed above.

[0143] In a further embodiment, an antagonist of HTMPN may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of HTMPN. Examples of such disorders include, but are not limited to, those described above. In one aspect, an antibody which specifically binds HTMPN may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissue which express HTMPN.

[0144] In an additional embodiment, a vector expressing the complement of the polynucleotide encoding HTMPN may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of HTMPN including, but not limited to, those described above.

[0145] In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

[0146] An antagonist of HTMPN may be produced using methods which are generally known in the art. In particular, purified HTMPN may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind HTMPN. Antibodies to HTMPN may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are especially preferred for therapeutic use.

[0147] For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with HTMPN or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.

[0148] It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to HTMPN have an amino acid sequence consisting of at least about 5 amino acids, and, more preferably, of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein and contain the entire amino acid sequence of a small, naturally occurring molecule. Short stretches of HTMPN amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.

[0149] Monoclonal antibodies to HTMPN may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J. Immunol. Methods 81:31-42; Cote, R. J. et al. (1983) Proc. Natl. Acad. Sci. 80:2026-2030; and Cole, S. P. et al. (1984) Mol. Cell Biol. 62:109-120.)

[0150] In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S. L. et al. (1984) Proc. Natl. Acad. Sci. 81:6851-6855; Neuberger, M. S. et al. (1984) Nature 312:604-608; and Takeda, S. et al. (1985) Nature 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce HTMPN-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton D. R. (1991) Proc. Natl. Acad. Sci. 88:10134-10137.)

[0151] Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. 86: 3833-3837; Winter, G. et al. (1991) Nature 349:293-299.)

[0152] Antibody fragments which contain specific binding sites for HTMPN may also be generated. For example, such fragments include, but are not limited to, F(ab')2 fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W. D. et al. (1989) Science 246:1275-1281.)

[0153] Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between HTMPN and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering HTMPN epitopes is preferred, but a competitive binding assay may also be employed (Pound, supra).

[0154] Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for HTMPN. Affinity is expressed as an association constant, K.sub.a, which is defined as the molar concentration of HTMPN-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The K.sub.a determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple HTMPN epitopes, represents the average affinity, or avidity, of the antibodies for HTMPN. The K.sub.a determined for a preparation of monoclonal antibodies, which are monospecific for a particular HTMPN epitope, represents a true measure of affinity. High-affinity antibody preparations with K.sub.a ranging from about 10.sup.9 to 10.sup.12 L/mole are preferred for use in immunoassays in which the HTMPN-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with K.sub.a ranging from about 10.sup.6 to 10.sup.7 L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of HTMPN, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL Press, Washington, D.C.; Liddell. J. E. and Cryer, A. (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York N.Y.).

[0155] The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is preferred for use in procedures requiring precipitation of HTMPN-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., Catty, supra, and Coligan et al. supra.)

[0156] In another embodiment of the invention, the polynucleotides encoding HTMPN, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, the complement of the polynucleotide encoding HTMPN may be used in situations in which it would be desirable to block the transcription of the mRNA. In particular, cells may be transformed with sequences complementary to polynucleotides encoding HTMPN. Thus, complementary molecules or fragments may be used to modulate HTMPN activity, or to achieve regulation of gene function. Such technology is now well known in the art, and sense or antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding HTMPN.

[0157] Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. Methods which are well known to those skilled in the art can be used to construct vectors to express nucleic acid sequences complementary to the polynucleotides encoding HTMPN. (See, e.g., Sambrook, supra; Ausubel, 1995, supra.)

[0158] Genes encoding HTMPN can be turned off by transforming a cell or tissue with expression vectors which express high levels of a polynucleotide, or fragment thereof, encoding HTMPN. Such constructs may be used to introduce untranslatable sense or antisense sequences into a cell. Even in the absence of integration into the DNA, such vectors may continue to transcribe RNA molecules until they are disabled by endogenous nucleases. Transient expression may last for a month or more with a non-replicating vector, and may last even longer if appropriate replication elements are part of the vector system.

[0159] As mentioned above, modifications of gene expression can be obtained by designing complementary sequences or antisense molecules (DNA, RNA, or PNA) to the control, 5', or regulatory regions of the gene encoding HTMPN. Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, are preferred. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J. E. et al. (1994) in Huber, B. E. and B. I. Carr, Molecular and Immunologic Approaches, Futura Publishing, Mt. Kisco N.Y., pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.

[0160] Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding HTMPN.

[0161] Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

[0162] Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding HTMPN. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.

[0163] RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.

[0164] Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See. e.g., Goldman, C. K. et al. (1997) Nature Biotechnology 15:462-466.)

[0165] Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans.

[0166] An additional embodiment of the invention relates to the administration of a pharmaceutical or sterile composition, in conjunction with a pharmaceutically acceptable carrier, for any of the therapeutic effects discussed above. Such pharmaceutical compositions may consist of HTMPN, antibodies to HTMPN, and mimetics, agonists, antagonists, or inhibitors of HTMPN. The compositions may be administered alone or in combination with at least one other agent, such as a stabilizing compound, which may be administered in any sterile, biocompatible pharmaceutical carrier including, but not limited to, saline, buffered saline, dextrose, and water. The compositions may be administered to a patient alone, or in combination with other agents, drugs, or hormones.

[0167] The pharmaceutical compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

[0168] In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on techniques for formulation and administration may be found in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton Pa.).

[0169] Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.

[0170] Pharmaceutical preparations for oral use can be obtained through combining active compounds with solid excipient and processing the resultant mixture of granules (optionally, after grinding) to obtain tablets or dragee cores. Suitable auxiliaries can be added, if desired. Suitable excipients include carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, and sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums, including arabic and tragacanth; and proteins, such as gelatin and collagen. If desired, disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, and alginic acid or a salt thereof, such as sodium alginate.

[0171] Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.

[0172] Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with fillers or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.

[0173] Pharmaceutical formulations suitable for parenteral administration may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils, such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate, triglycerides, or liposomes. Non-lipid polycationic amino polymers may also be used for delivery. Optionally, the suspension may also contain suitable stabilizers or agents to increase the solubility of the compounds and allow for the preparation of highly concentrated solutions.

[0174] For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

[0175] The pharmaceutical compositions of the present invention may be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes.

[0176] The pharmaceutical composition may be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, and succinic acid. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms. In other cases, the preferred preparation may be a lyophilized powder which may contain any or all of the following: 1 mM to 50 mM histidine, 0.1% to 2% sucrose, and 2% to 7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.

[0177] After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. For administration of HTMPN, such labeling would include amount, frequency, and method of administration.

[0178] Pharmaceutical compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

[0179] For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells or in animal models such as mice, rats, rabbits, dogs, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

[0180] A therapeutically effective dose refers to that amount of active ingredient, for example HTMPN or fragments thereof, antibodies of HTMPN, and agonists, antagonists or inhibitors of HTMPN, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED.sub.50 (the dose therapeutically effective in 50% of the population) or LD.sub.50 (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, and it can be expressed as the LD.sub.50/ED.sub.50 ratio. Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED.sub.50 with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.

[0181] The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.

[0182] Normal dosage amounts may vary from about 0.1 .mu.g to 100.000 .mu.g, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

Diagnostics

[0183] In another embodiment, antibodies which specifically bind HTMPN may be used for the diagnosis of disorders characterized by expression of HTMPN, or in assays to monitor patients being treated with HTMPN or agonists, antagonists, or inhibitors of HTMPN. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for HTMPN include methods which utilize the antibody and a label to detect HTMPN in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.

[0184] A variety of protocols for measuring HTMPN, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of HTMPN expression. Normal or standard values for HTMPN expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, preferably human, with antibody to HTMPN under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, preferably by photometric means. Quantities of HTMPN expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.

[0185] In another embodiment of the invention, the polynucleotides encoding HTMPN may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantitate gene expression in biopsied tissues in which expression of HTMPN may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of HTMPN, and to monitor regulation of HTMPN levels during therapeutic intervention.

[0186] In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding HTMPN or closely related molecules may be used to identify nucleic acid sequences which encode HTMPN. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification (maximal, high, intermediate, or low), will determine whether the probe identifies only naturally occurring sequences encoding HTMPN, allelic variants, or related sequences.

[0187] Probes may also be used for the detection of related sequences, and should preferably have at least 50% sequence identity to any of the HTMPN encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:80-158 or from genomic sequences including promoters, enhancers, and introns of the HTMPN gene.

[0188] Means for producing specific hybridization probes for DNAs encoding HTMPN include the cloning of polynucleotide sequences encoding HTMPN or HTMPN derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as .sup.32P or .sup.35S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

[0189] Polynucleotide sequences encoding HTMPN may be used for the diagnosis of disorders associated with expression of HTMPN. Examples of such disorders include, but are not limited to, an immune disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyenodocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjogren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; a reproductive disorder such as a disorder of prolactin production; infertility, including tubal disease, ovulatory defects, and endometriosis; a disruption of the estrous cycle, a disruption of the menstrual cycle, polycystic ovary syndrome, ovarian hyperstimulation syndrome, endometrial and ovarian tumors, uterine fibroids, autoimmune disorders, ectopic pregnancies, and teratogenesis; cancer of the breast, fibrocystic breast disease, and galactorrhea; disruptions of spermatogenesis, abnormal sperm physiology, cancer of the testis, cancer of the prostate, benign prostatic hyperplasia, prostatitis, Peyronie's disease, impotence, carcinoma of the male breast, and gynecomastia; a smooth muscle disorder such as angina, anaphylactic shock, arrhythmias, asthma, cardiovascular shock, Cushing's syndrome, hypertension, hypoglycemia, myocardial infarction, migraine, and pheochromocytoma, and myopathies including cardiomyopathy, encephalopathy, epilepsy, Kearns-Sayre syndrome, lactic acidosis, myoclonic disorder, and ophthalmoplegia; a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxia& multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease; prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome; fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis; inherited, metabolic, endocrine, and toxic myopathies; myasthenia gravis, periodic paralysis; mental disorders including mood, anxiety, and schizophrenic disorders; akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, and Tourette's disorder; a gastrointestinal disorder such as dysphagia, peptic esophagitis, esophageal spasm, esophageal stricture, esophageal carcinoma, dyspepsia, indigestion, gastritis, gastric carcinoma, anorexia, nausea, emesis, gastroparesis, antral or pyloric edema, abdominal angina, pyrosis, gastroenteritis, intestinal obstruction, infections of the intestinal tract, peptic ulcer, cholelithiasis, cholecystitis, cholestasis, pancreatitis, pancreatic carcinoma, biliary tract disease, hepatoma, infectious colitis, ulcerative colitis, ulcerative proctitis, Crohn's disease, Whipple's disease, Mallory-Weiss syndrome, colonic carcinoma, colonic obstruction, irritable bowel syndrome, short bowel syndrome, diarrhea, constipation, gastrointestinal hemorrhage, and acquired immunodeficiency syndrome (AIDS) enteropathy, cirrhosis, jaundice, cholestasis, hereditary hyperbilirubinemia, hepatic encephalopathy, hepatorenal syndrome, hepatitis, hepatic steatosis, hemochromatosis, Wilson's disease, .alpha..sub.1-antitrypsin deficiency, Reye's syndrome, primary sclerosing cholangitis, liver infarction, portal vein obstruction and thrombosis, passive congestion, centrilobular necrosis, peliosis hepatis, hepatic vein thrombosis, veno-occlusive disease, preeclampsia, eclampsia, acute fatty liver of pregnancy, intrahepatic cholestasis of pregnancy, and hepatic tumors including nodular hyperplasias, adenomas, and carcinomas; a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; and a developmental disorder including, but not limited to, those listed above. The polynucleotide sequences encoding HTMPN may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered HTMPN expression. Such qualitative or quantitative methods are well known in the art.

[0190] In a particular aspect, the nucleotide sequences encoding HTMPN may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding HTMPN may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantitated and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding HTMPN in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.

[0191] In order to provide a basis for the diagnosis of a disorder associated with expression of HTMPN, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding HTMPN, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.

[0192] Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.

[0193] With respect to cancer, the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

[0194] Additional diagnostic uses for oligonucleotides designed from the sequences encoding HTMPN may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding HTMPN, or a fragment of a polynucleotide complementary to the polynucleotide encoding HTMPN, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantitation of closely related DNA or RNA sequences.

[0195] Methods which may also be used to quantitate the expression of HTMPN include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P. C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236.)

[0196] The speed of quantitation of multiple samples may be accelerated by running the assay in an ELISA format where the oligomer of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.

[0197] In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as targets in a microarray. The microarray can be used to monitor the expression level of large numbers of genes simultaneously and to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, and to develop and monitor the activities of therapeutic agents.

[0198] Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T. M. et al. (1995) U.S. Pat. No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. 93:10614-10619; Baldeschweiler et al. (1995) PCT application WO95/251116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R. A. et al. (1997) Proc. Natl. Acad. Sci. 94:2150-2155; and Heller, M. J. et al. (1997) U.S. Pat. No. 5,605,662.)

[0199] In another embodiment of the invention, nucleic acid sequences encoding HTMPN may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J. J. et al. (1997) Nat. Genet. 15:345-355; Price, C. M. (1993) Blood Rev. 7:127-134; and Trask, B. J. (1991) Trends Genet. 7:149-154.)

[0200] Fluorescent in situ hybridization (FISH) may be correlated with other physical chromosome mapping techniques and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, supra, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) site. Correlation between the location of the gene encoding HTMPN on a physical chromosomal map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder. The nucleotide sequences of the invention may be used to detect differences in gene sequences among normal, carrier, and affected individuals.

[0201] In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another to mammalian species, such as mouse, may reveal associated markers even if the number or arm of a particular human chromosome is not known. New sequences can be assigned to chromosomal arms by physical mapping. This provides valuable information to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the disease or syndrome has been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R. A. et al. (1988) Nature 336:577-580.) The nucleotide sequence of the subject invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.

[0202] In another embodiment of the invention, HTMPN, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between HTMPN and the agent being tested may be measured.

[0203] Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT application WO84/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with HTMPN, or fragments thereof, and washed. Bound HTMPN is then detected by methods well known in the art. Purified HTMPN can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.

[0204] In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding HTMPN specifically compete with a test compound for binding HTMPN. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with HTMPN.

[0205] In additional embodiments, the nucleotide sequences which encode HTMPN may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.

[0206] Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.

[0207] The entire disclosure of all applications, patents, and publications, cited above and below, and of U.S. provisional application 60/087,260 (filed May 29, 1998), 60/091,674 (filed Jul. 2, 1998), 60/102,954 (filed Oct. 2, 1998), and 60/109,869 (filed Nov. 24, 1998) is hereby incorporated by reference.

EXAMPLES

I. Construction of cDNA Libraries

[0208] RNA was purchased from Clontech or isolated from tissues described in Table 4. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.

[0209] Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In some cases, RNA was treated with DNase. For most libraries, poly(A+) RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Valencia Calif.), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin Tex.).

[0210] In some cases, Stratagene was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, supra, units 5.1-6.6). Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), pSPORT1 plasmid (Life Technologies), or pINCY (Incyte Pharmaceuticals, Palo Alto Calif.). Recombinant plasmids were transformed into competent E. coli cells including XL1-Blue, XL1-BlueMRF, or SOLR from Stratagene or DH5.alpha., DH10B, or ElectroMAX DH10B from Life Technologies.

II. Isolation of cDNA Clones

[0211] Plasmids were recovered from host cells by in vivo excision, using the UNIZAP vector system (Stratagene) or cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg Md.); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the REAL Prep 96 plasmid kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4.degree. C.

[0212] Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V. B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene Oreg.) and a Fluoroskan II fluorescence scanner (Labsystems Oy, Helsinki, Finland).

III. Sequencing and Analysis

[0213] The cDNAs were prepared for sequencing using the ABI CATALYST 800 (Perkin-Elmer) or the HYDRA microdispenser (Robbins Scientific) or MICROLAB 2200 (Hamilton) systems in combination with the PTC-200 thermal cyclers (MJ Research). The cDNAs were sequenced using the ABI PRISM 373 or 377 sequencing systems (Perkin-Elmer) and standard ABI protocols, base calling software, and kits. In one alternative, cDNAs were sequenced using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics). In another alternative, the cDNAs were amplified and sequenced using the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer). In yet another alternative. cDNAs were sequenced using solutions and dyes from Amersham Pharmacia Biotech. Reading frames for the ESTs were determined using standard methods (reviewed in Ausubel, 1997, supra. unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example V.

[0214] The polynucleotide sequences derived from cDNA, extension, and shotgun sequencing were assembled and analyzed using a combination of software programs which utilize algorithms well known to those skilled in the art. Table 5 summarizes the software programs, descriptions, references, and threshold parameters used. The first column of Table 5 shows the tools, programs, and algorithms used, the second column provides a brief description thereof, the third column presents the references which are incorporated by reference herein, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the probability the greater the homology). Sequences were analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco Calif.) and LASERGENE software (DNASTAR).

[0215] The polynucleotide sequences were validated by removing vector, linker, and polyA sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programming, and dinucleotide nearest neighbor analysis. The sequences were then queried against a selection of public databases such as GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS to acquire annotation, using programs based on BLAST, FASTA, and BLIMPS. The sequences were assembled into full length polynucleotide sequences using programs based on Phred, Phrap, and Consed, and were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive the corresponding full length amino acid sequences, and these full length sequences were subsequently analyzed by querying against databases such as the GenBank databases (described above), SwissProt, BLOCKS, PRINTS, Prosite, and Hidden Markov Model (HMM)-based protein family databases such as PFAM. HMM is a probalistic approach which analyzes consensus primary structures of gene families. (See, e.g., Eddy, S. R. (1996) Cur. Opin. Str. Biol. 6:361-365.)

[0216] The programs described above for the assembly and analysis of full length polynucleotide and amino acid sequences were also used to identify polynucleotide sequence fragments from SEQ ID NO:80-158. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies were described in The Invention section above.

IV. Northern Analysis

[0217] Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, supra, ch. 7; Ausubel, 1995, supra, ch. 4 and 16.)

[0218] Analogous computer techniques applying BLAST were used to search for identical or related molecules in nucleotide databases such as GenBank or LIFESEQ database (Incyte Pharmaceuticals). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as:

% sequence identity .times. % maximum BLAST score 100 ##EQU00001##

The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. For example, with a product score of 40, the match will be exact within a 1% to 2% error, and, with a product score of 70, the match will be exact. Similar molecules are usually identified by selecting those which show product scores between 15 and 40, although lower scores may identify related molecules.

[0219] The results of northern analyses are reported as a percentage distribution of libraries in which the transcript encoding HTMPN occurred. Analysis involved the categorization of cDNA libraries by organ/tissue and disease. The organ/tissue categories included cardiovascular, dermatologic, developmental, endocrine, gastrointestinal, hematopoietic/immune, musculoskeletal, nervous, reproductive, and urologic. The disease/condition categories included cancer, inflammation/trauma, cell proliferation, neurological, and pooled. For each category, the number of libraries expressing the sequence of interest was counted and divided by the total number of libraries across all categories. Percentage values of tissue-specific and disease- or condition-specific expression are reported in Table 3.

V. Extension of HTMPN Encoding Polynucleotides

[0220] Full length nucleic acid sequences of SEQ ID NOs:80-120 were produced by extension of the component fragments described in Table 1, column 5, using oligonucleotide primers based on these fragments. For each nucleic acid sequence, one primer was synthesized to initiate extension of an antisense polynucleotide, and the other was synthesized to initiate extension of a sense polynucleotide. Primers were used to facilitate the extension of the known sequence "outward" generating amplicons containing new unknown nucleotide sequence for the region of interest. The initial primers were designed from the cDNA using OLIGO.TM. 4.06 (National Biosciences, Plymouth, Minn.), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68.degree. C. to about 72.degree. C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

[0221] Selected human cDNA libraries (GIBCO BRL) were used to extend the sequence. If more than one extension is necessary or desired, additional sets of primers are designed to further extend the known region.

[0222] High fidelity amplification was obtained by following the instructions for the XL-PCR.TM. kit (The Perkin-Elmer Corp., Norwalk, Conn.) and thoroughly mixing the enzyme and reaction mix. PCR was performed using the PTC-200 thermal cycler (MJ Research, Inc., Watertown, Mass.), beginning with 40 pmol of each primer and the recommended concentrations of all other components of the kit, with the following parameters:

TABLE-US-00001 Step 1 94.degree. C. for 1 min (initial denaturation) Step 2 65.degree. C. for 1 min Step 3 68.degree. C. for 6 min Step 4 94.degree. C. for 15 sec Step 5 65.degree. C. for 1 min Step 6 68.degree. C. for 7 min Step 7 Repeat steps 4 through 6 for an additional 15 cycles Step 8 94.degree. C. for 15 sec Step 9 65.degree. C. for 1 min Step 10 68.degree. C. for 7:15 min Step 11 Repeat steps 8 through 10 for an additional 12 cycles Step 12 72.degree. C. for 8 min Step 13 4.degree. C. (and holding)

[0223] A 5 .mu.l to 10 .mu.l aliquot of the reaction mixture was analyzed by electrophoresis on a low concentration (about 0.6% to 0.8%) agarose mini-gel to determine which reactions were successful in extending the sequence. Bands thought to contain the largest products were excised from the gel, purified using QIAQUICK.TM. (QIAGEN Inc.), and trimmed of overhangs using Klenow enzyme to facilitate religation and cloning.

[0224] After ethanol precipitation, the products were redissolved in 13 .mu.l of ligation buffer, 1 .mu.l T4-DNA ligase (15 units) and 1 .mu.l T4 polynucleotide kinase were added, and the mixture was incubated at room temperature for 2 to 3 hours, or overnight at 16.degree. C. Competent E. coli cells (in 40 .mu.l of appropriate media) were transformed with 3 .mu.l of ligation mixture and cultured in 80 .mu.l of SOC medium. (See, e.g., Sambrook, supra, Appendix A, p. 2.) After incubation for one hour at 37.degree. C., the E. coli mixture was plated on Luria Bertani (LB) agar (See, e.g., Sambrook, supra, Appendix A, p. 1) containing carbenicillin (2.times. carb). The following day, several colonies were randomly picked from each plate and cultured in 150 .mu.l of liquid LB/2.times. carb medium placed in an individual well of an appropriate commercially-available sterile 96-well microtiter plate. The following day, 5 .mu.l of each overnight culture was transferred into a non-sterile 96-well plate and, after dilution 1:10 with water, 5 .mu.l from each sample was transferred into a PCR array.

[0225] For PCR amplification, 18 .mu.l of concentrated PCR reaction mix (3.3.times.) containing 4 units of rTth DNA polymerase, a vector primer, and one or both of the gene specific primers used for the extension reaction were added to each well. Amplification was performed using the following conditions:

TABLE-US-00002 Step 1 94.degree. C. for 60 sec Step 2 94.degree. C. for 20 sec Step 3 55.degree. C. for 30 sec Step 4 72.degree. C. for 90 sec Step 5 Repeat steps 2 through 4 for an additional 29 cycles Step 6 72.degree. C. for 180 sec Step 7 4.degree. C. (and holding)

[0226] Aliquots of the PCR reactions were run on agarose gels together with molecular weight markers. The sizes of the PCR products were compared to the original partial cDNAs, and appropriate clones were selected, ligated into plasmid, and sequenced.

[0227] The full length nucleic acid sequences of SEQ ID NO:121-158 were produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer, to initiate 3' extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68.degree. C. to about 72.degree. C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

[0228] Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.

[0229] High fidelity amplification was obtained by PCR using methods well known in the art. PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg.sup.2+, (NH.sub.4).sub.2SO.sub.4, and .beta.-mercaptoethanol. Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94.degree. C., 3 min: Step 2: 94.degree. C., 15 sec; Step 3: 60.degree. C., 1 min; Step 4: 68.degree. C., 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68.degree. C., 5 min; Step 7: storage at 4.degree. C. In the alternative, the parameters for primer pair T7 and SK+ were as follows: Step 1: 94.degree. C., 3 min; Step 2: 94.degree. C., 15 sec; Step 3: 57.degree. C., 1 min; Step 4: 68.degree. C., 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68.degree. C., 5 min; Step 7: storage at 4.degree. C.

[0230] The concentration of DNA in each well was determined by dispensing 100 .mu.l PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene Oreg.) dissolved in 1.times.TE and 0.5 .mu.l of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton Mass.), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 .mu.l to 10 .mu.l aliquot of the reaction mixture was analyzed by electrophoresis on a 1% agarose mini-gel to determine which reactions were successful in extending the sequence.

[0231] The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison Wis.), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly Mass.) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent E. coli cells. Transformed cells were selected on antibiotic-containing media, individual colonies were picked and cultured overnight at 37.degree. C. in 384-well plates in LB/2.times. carb liquid media.

[0232] The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94.degree. C., 3 min; Step 2: 94.degree. C., 15 sec; Step 3: 60.degree. C., 1 min; Step 4: 72.degree. C., 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72.degree. C., 5 min; Step 7: storage at 4.degree. C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above. Samples were diluted with 20% dimethysulphoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer).

[0233] In like manner, the nucleotide sequences of SEQ ID NO:80-158 are used to obtain 5' regulatory sequences using the procedure above, oligonucleotides designed for such extension, and an appropriate genomic library.

VI. Labeling and Use of Individual Hybridization Probes

[0234] Hybridization probes derived from SEQ ID NO:80-158 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 .mu.Ci of [.gamma.-.sup.32P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston Mass.). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aliquot containing 10.sup.7 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, XbaI, or Pvu II (DuPont NEN).

[0235] The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham N.H.). Hybridization is carried out for 16 hours at 40.degree. C. To remove nonspecific signals, blots are sequentially washed at room temperature under increasingly stringent conditions up to 0.1.times. saline sodium citrate and 0.5% sodium dodecyl sulfate. After XOMAT-AR film (Eastman Kodak, Rochester N.Y.) is exposed to the blots to film for several hours, hybridization patterns are compared visually.

VII. Microarrays

[0236] A chemical coupling procedure and an ink jet device can be used to synthesize array elements on the surface of a substrate. (See, e.g., Baldeschweiler, supra.) An array analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced by hand or using available methods and machines and contain any appropriate number of elements. After hybridization, nonhybridized probes are removed and a scanner used to determine the levels and patterns of fluorescence. The degree of complementarity and the relative abundance of each probe which hybridizes to an element on the microarray may be assessed through analysis of the scanned images.

[0237] Full-length cDNAs, Expressed Sequence Tags (ESTs), or fragments thereof may comprise the elements of the microarray. Fragments suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). Full-length cDNAs, ESTs, or fragments thereof corresponding to one of the nucleotide sequences of the present invention, or selected at random from a cDNA library relevant to the present invention, are arranged on an appropriate substrate, e.g., a glass slide. The cDNA is fixed to the slide using, e.g., UV cross-linking followed by thermal and chemical treatments and subsequent drying. (See, e.g., Schena. M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645.) Fluorescent probes are prepared and used for hybridization to the elements on the substrate. The substrate is analyzed by procedures described above.

VIII. Complementary Polynucleotides

[0238] Sequences complementary to the HTMPN-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring HTMPN. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of HTMPN. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the HTMPN-encoding transcript.

IX. Expression of HTMPN

[0239] Expression and purification of HTMPN is achieved using bacterial or virus-based expression systems. For expression of HTMPN in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the trp-lac (tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express HTMPN upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG). Expression of HTMPN in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant Autographica californica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding HTMPN by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E. K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945.)

[0240] In most expression systems, HTMPN is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from Schistosoma japonicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from HTMPN at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, supra, ch 10 and 16). Purified HTMPN obtained by these methods can be used directly in the following activity assay.

X. Demonstration of HTMPN Activity

[0241] Given the chemical and structural similarity between the HTMPN and other members of the transmembrane protein families, HTMPN is identified as a new member of the membrane spanning proteins and is presumed to be involved in the regulation of cell growth. To demonstrate that increased levels of HTMPN expression correlates with decreased cell motility and increased cell proliferation, expression vectors encoding HTMPN are electroporated into highly motile cell lines, such as U-937 (ATCC CRL 1593), HEL 92.1.7 (ATCC TIB 180) and MAC10, and the motility of the electroporated and control cells are compared. Methods for the design and construction of an expression vector capable of expressing HTMPN in the desired mammalian cell line(s) chosen are well known to the art. Assays for examining the motility of cells in culture are known to the art (cf Miyake, M. et al. (1991) J. Exp. Med. 174:1347-1354 and Ikeyama, S. et al. (1993) J. Exp. Med. 177:1231-1237). Increasing the level of HTMPN in highly motile cell lines by transfection with an HTMPN expression vector inhibits or reduces the motility of these cell lines, and the amount of this inhibition is proportional to the activity of HTMPN in the assay.

[0242] Alternatively, the activity of HTMPN may be measured using an assay based upon the property of MPs to support in vitro proliferation of fibroblasts and tumor cells under serum-free conditions. (Chiquet-Ehrismann, R. et al. (1986) Cell 47:131-139.) Wells in 96 well cluster plates (Falcon, Fisher Scientific, Santa Clara, Calif.) are coated with HTMPN by incubation with solutions at 50-100 .mu.g HTMPN/ml for 15 min at ambient temperature. The coating solution is aspirated, and the wells washed with Dulbecco's medium before cells are plated. Rat fibroblast cultures or rat mammary tumor cells are prepared as described. (Chiquet-Ehrismann, R. et al. supra.) and plated at a density of 10.sup.4-10.sup.5 cells/ml in Dulbecco's medium supplemented with 10% fetal calf serum.

[0243] After three days the medium is removed, and the cells washed three times with phosphate-buffered saline (PBS), pH 7.0, before addition of serum-free Dulbecco's medium containing 0.25 mg/ml bovine serum albumin (BSA, Fraction V, Sigma Chemical Company, St. Louis. MO). After 2 days the medium is aspirated, and 100 .mu.l of [.sup.3H]thymidine (NEN) at 2 .mu.Ci/ml in fresh Dulbecco's medium containing 0.25 mg/ml BSA is added. Parallel plates are fixed and stained to determine cell numbers. After 16 hr, the medium is aspirated, the cell layer washed with PBS, and the 10% trichloroacetic acid-precipitable radioactivity in the cell layer determined by liquid scintillation counting (normalized to relative cell numbers; Chiquet-Ehrismann, R. et al. supra). The amount of radioisotope-labeled DNA incorporated into chromatin under serum-free conditions is proportional to the activity of HTMPN.

[0244] Alternatively. HTMPN, or biologically active fragments thereof, are labeled with .sup.125I Bolton-Hunter reagent (See, e.g., Bolton et al. (1973) Biochem. J. 133:529). Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled HTMPN, washed, and any wells with labeled HTMPN complex are assayed. Data obtained using different concentrations of HTMPN are used to calculate values for the number, affinity, and association of HTMPN with the candidate molecules.

XI. Functional Assays

[0245] HTMPN function is assessed by expressing the sequences encoding HTMPN at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include pCMV SPORT (Life Technologies) and pCR3.1 (Invitrogen, Carlsbad Calif.), both of which contain the cytomegalovirus promoter. 5-10 .mu.g of recombinant vector are transiently transfected into a human cell line, preferably of endothelial or hematopoietic origin, using either liposome formulations or electroporation. 1-2 .mu.g of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-based technique, is used to identify transfected cells expressing GFP or CD64-GFP, and to evaluate properties, for example, their apoptotic state. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M. G. (1994) Flow Cytometry, Oxford, New York N.Y.

[0246] The influence of HTMPN on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding HTMPN and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success N.Y.). mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding HTMPN and other genes of interest can be analyzed by northern analysis or microarray techniques.

XII. Production of HTMPN Specific Antibodies

[0247] HTMPN substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M. G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.

[0248] Alternatively, the HTMPN amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, supra, ch. 11.)

[0249] Typically, oligopeptides 15 residues in length are synthesized using an ABI 431A Peptide Synthesizer (Perkin-Elmer) using fmoc-chemistry and coupled to KLH (Sigma-Aldrich, St. Louis Mo.) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, supra.) Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide activity by, for example, binding the peptide to plastic, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.

XIII. Purification of Naturally Occurring HTMPN Using Specific Antibodies

[0250] Naturally occurring or recombinant HTMPN is substantially purified by immunoaffinity chromatography using antibodies specific for HTMPN. An immunoaffinity column is constructed by covalently coupling anti-HTMPN antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

[0251] Media containing HTMPN are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of HTMPN (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/HTMPN binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and HTMPN is collected.

XIV. Identification of Molecules which Interact with HTMPN

[0252] HTMPN, or biologically active fragments thereof, are labeled with .sup.125I Bolton-Hunter reagent (See, e.g., Bolton et al. (1973) Biochem. J. 133:529). Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled HTMPN, washed, and any wells with labeled HTMPN complex are assayed. Data obtained using different concentrations of HTMPN are used to calculate values for the number, affinity, and association of HTMPN with the candidate molecules.

[0253] Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

TABLE-US-00003 TABLE 1 Nucle- Protein otide SEQ ID SEQ ID NO: NO: Clone ID Library Fragments 1 80 153831 THPIPLB02 153831 (THPIPLB02), 2700741H1 (OVARTUT10), 881348R1 (THYRNOT02), 1856588F6 (PROSNOT18) 2 81 350629 LVENNOT01 350629 and 350629T6 (LVENNOT01), 3499109H1 (PROSTUT13) 3 82 729171 LUNGNOT03 729171 and 729171R6 (LUNGNOT03), 1645343H1 (HEARFET01), 680519X2 and 680519X1 (UTRSNOT02), 625051R6 (PGANNOT01), 1459466F1 (COLNFET02), 1225759T1 (COLNNOT01), 2590526H1 (LUNGNOT22), 2807811H1 (BLADTUT08) 4 83 1273641 TESTTUT02 1273641 and 1273641F6 (TESTTUT02), 1308181F6 and 1308181F1 (COLNFET02), 1427606F1 (SINTBST01), 756171H1 (BRAITUT02), 2416518F6 (HNT3AZT01), 4242346H1 (SYNWDIT01) 5 84 1427389 SINTBST01 1427389 (SINTBST01), 3097151H1 (CERVNOT03), 723779R1 (SYNOOAT01) 6 85 1458357 COLNFET02 1458357 (COLNFET02), SAOA01955F1, SAOA03146F1, SAOA03356F1, SAOA00213F1 7 86 1482837 CORPNOT02 1482837 and 1482837T6 (CORPNOT02), 869453H1 (LUNGAST01), 3564972F6 (SKINNOT05), 663983H1 (SCORNOT01), 1315073F6 (BLADTUT02), 3809242H1 (CONTTUT01), 311459T6 (LUNGNOT02), 1798893F6 (COLNNOT27) 8 87 1517434 PANCTUT01 1517434 (PANCTUT01), 2848842H1 (BRSTTUT13), 586843X1 (UTRSNOT01), 1261245R1 (SYNORAT05), 1554505F1 (BLADTUT04) 9 88 1536052 SPLNNOT04 1536052 and 1531447T6 (SPLNNOT04), 1729124T6 (BRSTTUT08) 10 89 1666118 BRSTNOT09 1666118 (BRSTNOT09), 907075R2 (COLNNOT08), 1524914T1 (UCMCL5T01), 1283459F6 (COLNNOT16) 11 90 1675560 BLADNOT05 1675560 and 1675560T6 (BLADNOT05) 12 91 1687323 PROSTUT10 1687323 and 1687323F6(PROSTUT10), 2292356R3 (BRAINON01) 13 92 1692236 PROSTUT10 1692236 (PROSTUT10), 2786557F6 (BRSTNOT13), 602869R6 and 602869T6 (BRSTTUT01), 2258230H1 (OVARTUT01), 780083T1 (MYOMNOT01), 2057230T6 (BEPINOT01), 288105R1 (EOSIHET02) 14 93 1720847 BLADNOT06 1720847, 1722250F6, and 1722250T6 (BLADNOT06) 15 94 1752821 LIVRTUT01 1752821 (LIVRTUT01), 3180328H1 (TLYJNOT01), 1969457T6 (BRSTNOT04), 2608504H1 (BONTNOT01), 2455688T6 and 2455688F6 (ENDANOT01), 1816354F6 (PROSNOT20) 16 95 1810923 PROSTUT12 1810923 and 1810923T6 (PROSTUT12), 3221260H1 (COLNNON03) 17 96 1822315 GBLATUT01 1822315 (GBLATUT01), 1841726H1 (COLNNOT07), 1598582T6 (BLADNOT03), 1264125R1 (SYNORAT05), 645048H1 (BRSTTUT02), 1474782H1 (LUNGTUT03), 352739F1 (LVENNOT01), 876001R1 (LUNGAST01) 18 97 1877777 LEUKNOT03 1877777 (LEUKNOT03), 1219656H1 (NEUTGMT01), 1471553T1 (LUNGTUT03) 19 98 1879819 LEUKNOT03 1879819 (LEUKNOT03), 1734538H1 (COLNNOT22), 1428615F6 (SINTBST01), 3558710H1 (LUNGNOT31), 1996096R6 (BRSTTUT03) 20 99 1932945 COLNNOT16 1932945 (COLNNOT16), 2383333H1 (ISLTNOT01), 2706050F6 (PONSAZT01), 21 100 2061026 OVARNOT03 2061026 (OVARNOT03) 22 101 2096687 BRAITUT02 2096687 (BRAITUT02), 2204640H1 (SPLNFET02) 23 102 2100530 BRAITUT02 2100530 (BRAITUT02), 2740969F6 (BRSTTUT14) 24 103 2357636 LUNGNOT20 2357636 (LUNGNOT20), 2693537H1 (LUNGNOT23), 1794235T6 (PROSTUT05), 235425R6 (SINTNOT02), 760091R1 (BRAITUT02), 887877R1 (PANCNOT05) 25 104 2365230 ADRENOT07 2365230 (ADRENOT07), 2921195H1 (SININOT04) 26 105 2455121 ENDANOT01 2455121 and 2455121F6 (ENDANOT01) 27 106 2472514 THPINOT03 2472514 (THPINOT03), 3212904H1 (BLADNOT08) 28 107 2543486 UTRSNOT11 2543486 (UTRSNOT11), 2374764H1 (ISLTNOT01), 1359576F1 (LUNGNOT12), 1357170H1 (LUNGNOT09) 29 108 2778171 OVARTUT03 2778171 (OVARTUT03), 1822045H1 (GBLATUT01), 1692535F6 (COLNNOT23), 1905275F6 (OVARNOT07) 30 109 2799575 PENCNOT01 2799575 (PENCNOT01), 874115H1 (LUNGAST01), 967837R1 (BRSTNOT05), 3235248T6 and 3235248F6 (COLNUCT03) 31 110 2804955 BLADTUT08 2804955 (BLADTUT08), 732534H1 (LUNGNOT03), 402168R1 (TMLR3DT01), 3481814H1 (K1DNNOT31), 1485989F1 (CORPNOT02) 32 111 2806395 BLADTUT08 2806395 (BLADTUT08), 1579109H1 (DUODNOT01), 1533572F1 (SPLNNOT04), 1889837F6 and 1889837T6 (BLADTUT07), 2414178F6 (HNT3AZT01) 33 112 2836858 TLYMNOT03 2836858 and 2836858CT1 (TLYMNOT03), 2127516H1 (KIDNNOT05) 34 113 2844513 DRGLNOT01 2844513 and 2844513T6 (DRGLNOT01), 388885T6 (THYMNOT02), 287344F1 (EOSIHET02), 3867626H1 (BMARNOT03) 35 114 3000380 TLYMNOT06 3000380 (TLYMNOT06), 1930658H1 (COLNTUT03), 2395295F6 (THP1AZT01), 1242456R6 (LUNGNOT03) 36 115 182532 PLACNOB01 062374H1, 062962R6, 064457R6, and 182532H1 (PLACNOB01), 3144248X12F1 (HNT2AZS07) 37 116 239589 HIPONOT01 239589H1 and 239589X13 (HIPONOT01), 264805R6 (HNT2AGT01), 552683X17 (SCORNOT01), 1595053F1 (BRAINOT14) 38 117 1671302 BMARNOT03 399804H1 (PITUNOT02), 1458549H1 (COLNFET02), 1671302F6 and 1671302H1 (BMARNOT03), 2093453R6 (PANCNOT04), 2498385F6 and 2498385T6 (ADRETUT05) 39 118 2041858 HIPONON02 063184R1 (PLACNOB01), 1294823F1 (PGANNOT03), 1303974F1 (PLACNOT02), 1648770F6 (PROSTUT09), 2041858H1 (HIPONON02) 40 119 2198863 SPLNFET02 1880470F6 (LEUKNOT03), 1888946F6 (BLADTUT07), 2198863F6 and 2198863H1 (SPLNFET02) 41 120 3250703 SEMVNOT03 1317728H1, 1318433H1, 1319354H1, 1319380F1, 1320494H1, and 1320812F1 (BLADNOT04), 3247874H1, 3249188H1, 3249385H1, and 3250703H1 (SEMVNOT03) 42 121 350287 LVENNOT01 062018F1 (PLACNOB01), 350287H1 (LVENNOT01), 869320R1 (LUNGAST01), 1416927F6 (BRAINOT12), 3083789H1 (OVARTUN01) 43 122 1618171 BRAITUT12 1618171F6 and 1618171H1 (BRAITUT12), 3316315F6 (PROSBPT03) 44 123 1625863 COLNPOT01 1625863H1 and 1625863T6 (COLNPOT01), 2100364R6 (BRA1TUT02) 45 124 1638353 UTRSNOT06 1638353H1 (UTRSNOT06), 3733085H1 (SMCCNOS01), 3882774T6 (SPLNNOT11), 1626195T6 (COLNPOT01), 1495745H1 (PROSNON01) 46 125 1726843 PROSNOT14 826000T1 (PROSNOT06), 1726843F6 and 1726843H1 (PROSNOT14), 2225762F6 (SEMVNOT01), 2480248H1 (SMCANOT01), 2600692F6 (UTRSNOT10), 2728257F6 (OVARTUT05) 47 126 1754506 LIVRTUT01 907854R2 (COLNNOT09), 1354345F1 (LUNGNOT09), 1359472F1 (LUNGNOT12), 1397284F1 (BRAITUT08), 1557921F1 (BLADTUT04), 1754506F6 and 1754506H1 (LIVRTUT01) 48 127 1831378 THP1AZT01 441541R1 (MPHGNOT03), 712292R6 (SYNORAT04), 1311835F1 (COLNFET02), 1555765F6 (BLADTUT04), 1831378H1 (THPIAZT01), 1865502F6 (PROSNOT19), 3077521H1 (BONEUNT01), 3555043H1 (SYNONOT01), 3774618H1 (BRSTNOT25) 49 128 1864943 PROSNOT19 714070F1 (PROSTUT01), 736327R1 (TONSNOT01), 1864943H1 (PROSNOT19), 2672921F6 (KIDNNOT19) 50 129 1911316 CONNTUT01 777070F1 (COLNNOT05), 1911316H1 and 1911316T6 (CONNTUT01) 51 130 1943120 HIPONOT01 1516263F1 (PANCTUT01), 1943120H1 (HIPONOT01), 2469009F6 (THYRNOT08), 2522459F6 (BRAITUT21), 3202972F6 (PENCNOT02), 4383679H1 (BRAVUTT02) 52 131 2314236 NGANNOT01 2314236H1 (NGANNOT01), 2812085F6 (OVARNOT10), 3949704T6 (DRGCNOT01) 53 132 2479409 SMCANOT01 2479409F6 and 2479409H1 (SMCANOT01) 54 133 2683149 S1N1UCT01 760389H1 (BRAITUT02), 1634372F6 (COLNNOT19), 1695052F6 (COLNNOT23), 1736429F6 (COLNNOT22), 2048429F6 (LIVRFET02), 2683149H1 (SINIUCT01), 3282234F6 (STOMFET02) 55 134 2774051 PANCNOT15 1852505F6 (LUNGFET03), 2774051F6 and 2774051H1 (PANCNOT15) 56 135 2869038 THYRNOT10 536017R6 (ADRENOT03), 2770632F6 (COLANOT02), 2795420F6 (NPOLNOT01), 2869038F6 and 2869038H1 (THYRNOT10), 3323992H1 (PTHYNOT03) 57 136 2918334 THYMFET03 2918334H1 (THYMFET03), SBNA01788F1 58 137 2949916 KIDNFET01 2949916H1 (KIDNFET01), SBMA00738F1 59 138 2989375 KIDNFET02 437481R6 and 437481T6 (THYRNOT01), 2989375H1 (KIDNFET02) 60 139 3316764 PROSBPT03 1328462F1 (PANCNOT07), 1691807F6 (PROSTUT10), 1851237F6 (LUNGFET03), 3316764H1 (PROSBPT03), 5092348H1 (UTRSTMR01) 61 140 3359559 PROSTUT16 943684 and 943564 (ADRENOT03), 1697079F6 (COLNNOT23), 2717735H1 (THYRNOT09), 2792705H1 (COLNTUT16), 3359559H1 (PROSTUT16) 62 141 4289208 BRABDIR01 3990421R6 (LUNGNON03), 4289208H1 (BRABDIR01) 63 142 2454013 ENDANOT01 014571R1 (THP1PLB01), 1303790T1 (PLACNOT02), 1342791T1 (COLNTUT03), 1351680F1 (LATRTUT02), 1359607T1 (LUNGNOT12), 2454013F6 and 2454013H1 (ENDANOT01) 64 143 2454048 ENDANOT01 551329R1 and 2056675R6 (BEPINOT01), 819281R1 (KERANOT02), 2454048H1 (ENDANOT01), 3143588H1 (HNT2AZS07) 65 144 2479282 SMCANOT01 873307R1 (LUNGAST01), 2479282H1 and 2479282T6 (SMCANOT01), 2610082F6 (COLNTUTI5), SANA03636F1 66 145 2483432 SMCANOT01 940455T1 (ADRENOT03), 1863558T6 (PROSNOT19), 2483432H1 (SMCANOT01), 2641345H1 (LUNGTUT08), 3245089T6 (BRAINOT19), SBCA02765F1 67 146 2493824 ADRETUT05 489685F1 (HNT2AGT01), 530794H1 (BRAINOT03), 735826R1 (TONSNOT01), 2056809R6 (BEPINOT01), 2493824H1 (ADRETUT05), 2763162F6 (BRSTNOT12), 2812426H1 (OVARNOT10) 68 147 2555823 THYMNOT03 1266972F6 (BRAINOT09), 1335461T1 (COLNNOT13), 1900947F6 (BLADTUT06), 1942256T6 (HIPONOT01), 2555823H1 (THYMNOT03), SARB01019F1, SARB01303F1 69 148 2598242 OVARTUT02 320268F1 (EOSIHET02), 738915R1 (PANCNOT04), 1250161F1 (LUNGFET03), 2598242F6 and 2598242H1 (OVARTUT02), 5020793H1 (OVARNON03), SASA00178F1 70 149 2634120 COLNTUT15 1398694F1 (BRAITUT08), 1506594F1 (BRAITUT07), 2120954F6 (BRSTNOT07), 2634120F6 and 2634120H1 (COLNTUT15), 2761586H1 (BRAINOS12), 2806841F6 (BLADTUT08) 71 150 2765411 BRSTNOT12 2765236T6 and 27654HH1 (BRSTNOT12), 4058218H1 (SPLNNOT13) 72 151 2769412 COLANOT02 1715480F6 (UCMCNOT02), 2769412H1 (COLANOT02), SBDA04076F1 73 152 2842779 DRGLNOT01 12627HR1 (SYNORAT05), 1710449T6 (PROSNOT16), 2842779F6 (DRGLNOT01), 2842779H1 (DRGLNOT01), 2850941F6 (BRSTTUT13), 3123378H1 (LNODNOT05), 3457873H1 (293TF1T01), SBGA04623F1, SAOA02667F1 74 153 2966260 SCORNOT04 530242H1 (BRAINOT03), 2113607H1 (BRAITUT03), 2125619F6 (BRSTNOT07), 2155349H1 and 2156022H1 (BRAINOT09), 2966260F6, 2966260H1, and 2966260T6 (SCORNOT04), 3270731H1 (BRAINOT20), 3272328F6 (PROSBPT06) 75 154 2993326 KIDNFET02 190217F1 (SYNORAB01), 815990R1 and 815990T1 (OVARTUT01), 2993326H1 (KIDNFET02), 3629860H1 (COLNNOT38) 76 155 3001124 TLYMNOT06 2123347T6 (BRSTNOT07), 3001124H1 (TLYMNOT06), SBEA07088F3 77 156 3120070 LUNGTUT13 021565F1 (ADENINB01), 144798R1 (TLYMNOR01), 1216676H1 (BRSTTUT01), 2024357H1 (KERANOT02), 2616322H1 (GBLANOT01), 2742604H1 (BRSTTUT14), 2746025H1 (LUNGTUT11), 2924884H1 (SININOT04), 3120070H1 (LUNGTUT13) 78 157 3133035 SMCCNOT01 1478001F1 and 1482667H1 (CORPNOT02), 2812193F6 and 2812193T6 (OVARNOT10), 3133035H1 and 3133035T6 (SMCCNOT01), 5025075F6 (OVARNON03) 79 158 3436879 PENCNOT05 3323031F6 (PTHYNOT03), 3436879F6 and 3436879H1 (PENCNOT05), 4247733H1 (BRABDIT01)

TABLE-US-00004 TABLE 2 SEQ Amino Potential ID Acid Glycosylation Analytical NO: Residues Potential Phosphorylation Sites Sites Signature Sequence Identification Methods 1 240 S233 S159 T194 T43 T77 T129 N73 N101 N167 S33-G36 Somatostatin receptor BLAST, T134 S171 L198-L219 tyrosine kinase BLOCKS, HMM 2 100 S6 S64 Meningioma-expressed BLAST, antigen 11 PRINTS, HMM 3 416 S14 S62 T109 T177 T340 S365 N144 N277 PMP-22/EMP/MP20 family BLOCKS, S380 S6 T7 T205 S327 T331 PRINTS, HMM Y56 4 224 T31 T57 S86 S173 S214 B cell growth factor BLAST 5 247 S103 T60 S113 S235 5-hydroxytryptamine PRINTS receptor 6 72 Frizzled protein PRINTS, HMM 7 106 S97 S9 S24 T31 Dopamine 2 receptor BLAST, PRINTS, HMM 8 239 S233 N230 PB39 protein BLAST, HMM 9 150 S53 S111 T127 CD44 antigen precursor PRINTS, HMM 10 110 S12 N92 Anion exchanger BLOCKS, PRINTS, HMM 11 58 N5 N9 Neurofibromatosis type 2 BLAST, PRINTS, HMM 12 221 S35 S178 S60 S183 mitsugumin 23 BLAST, HMM 13 262 T33 S94 S150 T225 T245 T14 N104 C5a-anaphylatoxin receptor PRINTS, HMM S22 T30 T57 S137 T201 S207 T230 14 90 S67 T52 Frizzled protein PRINTS, HMM 15 208 T119 T123 T132 S56 S142 N121 Rieske iron-sulphur protein BLOCKS, PRINTS, HMM 16 97 S61 T2 Endothelin B receptor PRINTS, HMM 17 243 S82 T104 S168 T181 S6 S99 Thromboxane receptor PRINTS, HMM T195 Y24 18 162 S26 N6 G protein-couple receptor BLOCKS, PRINTS, HMM 19 470 S285 S29 T136 S145 T167 N118 N298 N466 R306-D308 Molluscan rhodopsin C- PRINTS, HMM T168 S199 S236 S249 T401 terminus S172 S209 S254 T264 S335 T385 20 144 S42 S21 T72 N30 N36 Lysosome-associated PRINTS, HMM membrane protein 21 221 S75 T82 S151-G154 Glycoprotein hormone BLAST, receptor PRINTS, HMM 22 688 T60 T186 T103 T298 S405 N198 N576 N577 S5-G8 Ring3 BLAST, S484 S488 S492 S494 S498 N582 A80-N140 PRINTS S499 S503 S584 S601 S611 S647 T663 T109 T188 T284 T315 S324 S347 T402 T573 S643 T658 T681 Y118 23 439 T75 T257 S397 S424 S210 N227 S365-G368 Prostanoid EP3 receptor BLOCKS, S435 PRINTS 24 192 S20 S44 N68 PMP-22/EMP/MP20 family BLOCKS, PRINTS, HMM 25 175 T171 T43 S136 T7 Progesterone receptor PRINTS 26 91 S34 S19 S29 Similar to mouse BLAST, dishevelled-3(Dvl-3). BLOCKS, PRINTS, HMM 27 214 T34 S83 T118 T152 S17 Somatostatin receptor BLOCKS, tyrosine kinasre PRINTS, HMM 28 250 S64 S132 T154 Sec22 homolog BLAST, HMM 29 84 T80 T3 S76 DPM2 protein BLAST, HMM 30 277 T140 S217 S19 S85 T129 Somatomedin B domain BLOCKS, protein PRINTS, HMM 31 273 S64 S4 S114 S179 S256 S14 N187 Anion exchanger family BLOCKS, T167 T218 PRINTS, HMM 32 524 T190 S5 T131 S148 S171 S262 N152 N471 N501 L46-L67 G protein-coupled receptor BLOCKS, S275 T302 S356 S404 S473 N513 PRINTS, HMM S177 S207 T492 33 257 S48 S52 S55 T64 S82 T90 S96 N98 N187 Nucleoporin p62 homolog BLAST T97 S123 T129 T144 S192 S224 T227 S250 34 274 S16 T84 S249 S56 S113 N234 Molluscan rhodopsin C- PRINTS terminus 35 281 S52 T150 S165 S263 T48 S116 G125-S132 ABC-2 type transport BLOCKS, T167 T226 T241 S185-G188 protein PRINTS, HMM 36 335 S96 T113 T131 T308 T14 T146 N104 N111 E296 to A307 pregnancy-specific beta 1- Blast, BLOCKS, T292 S302 S312 T317 Y258 R127 to G129 glycoprotein 4 precursor PRINTS, Motifs 37 280 T41 S102 T135 S148 N35 N53 N127 T56 to Y70 lysosomal membrane Blast, BLOCKS, glycoprotein-type A PRINTS, Motifs precursor 38 210 S50 S143 S151 S63 S107 S153 Butyrophilin Blast 39 279 T90 N66 N171 Plasma membrane Blast glycoprotein CIG30 40 154 T75 S121 S48 S58 T112 Y84 G101 to G122 Pathogenesis-related protein Blast, BLOCKS, Y90 V115 to F130 PR-1 PRINTS 41 582 S160 S255 T256 S291 S292 G520 to S527 semenogelin II Blast, Motifs S316 S351 S352 S411 S412 S471 S472 T485 S533 T559 S79 T93 S96 S151 S231 42 71 S17 T45 T50 M1 to T50 Integral membrane protein BLOCKS, P5 to C29 PRINTS 43 102 T44 S33 T75 S6 to L24 TM4SF BLOCKS, S33 to G36 PRINTS, HMM I49 to I74 A2 to S29 44 226 S60 T3 T4 S85 T169 N46 N82 N83 I184 to R205 Cation-dependant mannose PRINTS, HMM G128 to Q152 transporter protein Y179 to Y201 45 154 T145 T148 S33 T134 T141 M1 to A22 Frizzled protein PRINTS, HMM S152 P56 to M78 P58 to M82 L91 to S110 L109 to L125 46 167 S154 S3 T25 T29 T126 S140 E72 to F103 GPCR BLOCKS, PRINTS, HMM 47 545 T257 S513 S10 T11 S47 S166 N8 N406 E376 to K410 Human secreted protein Blast, BLOCKS, S408 S495 K640 variant PRINTS, HMM 48 570 T529 S128 S130 T184 T235 N27 N61 N75 V296 to C309 GPCR Blast, BLOCKS, T161 S293 Y199 N87 N264 F321 to F332 PRINTS, HMM 49 127 S24 T118 N10 to G30 Anion exchanger PRINTS, HMM 50 152 T49 S16 L78 to L99 TM4SF BLOCKS, L85 to L106 GNS1/SUR4 family HMM, Motifs V47 to Y63 Y45 to V94 51 777 T48 S66 S162 T268 S272 T322 N64 N205 N470 T20 to D34 pecanex protein Blast, PRINTS, T355 S393 S471 S559 S574 N706 R122 to L132 Motifs S624 S660 S700 T742 S750 L598 to L619 S11 T12 S196 S346 T400 S423 D331 to L349 T493 T579 T582 S599 S723 R565 to T582 52 108 S52 T31 T105 L76 to Y92 GNS1/SUR4 family BLOCKS, PRINTS, PROFILESCAN 53 66 S4 S35 N2 F22 to G58 NF2 protein Blast, BLOCKS, PRINTS, HMM 54 540 S135 S149 T527 T82 T94 T177 N50 N92 N160 S115 to G118 LIV-1 protein Blast, PRINTS, S441 N334 N395 L295 to L308 HMM, Motifs L490 to L518 55 87 T4 S13 S37 S68 S69 I46 to L82 calvcolin BLOCKS, HMM 56 100 S94 I7 to N34 ammonium ion transporters BLOCKS, G8 to F21 PRINTS, HMM K65 to N91 T78 to C97 57 58 T43 shox protein BLAST, HMM 58 61 S51 S58 S42 R2 to L23 carboxyl ester lipase Blast, PRINTS, HMM 59 50 S9 C33 to W45 Lipoxygenase; growth BLOCKS, C11 to L40 factor and cytokines PRINTS, HMM, receptor family Motifs 60 310 T46 T156 S301 T81 S108 S166 A153 to S166 C4 methyl-sterol oxidase Blast, PRINTS, S305 HMM 61 160 S114 L71 to W84 C5A-anaphylatoxin receptor Blast, BLOCKS, Y143 to T154 PRINTS, HMM 62 35 K11 to M34 steroid hormone receptor PRINTS 63 323 T92 S105 S182 T263 S301 N90 M1-G31 Signal Peptide Signal Peptide Containing Motifs S271 M1-A27 Signal Peptide Transmembrane Protein SPScan L234-L254 TM Protein HMM 64 129 T112 T117 S5 S54 M1-G27 Signal Peptide Signal Peptide Containing Motifs M1-G27 Signal Peptide Transmembrane Protein SPScan I81-V100 TM Prot. HMM 65 461 T56 T41 S47 T56 T127 S146 N193 N236 Signal Peptide Containing Motifs S147 S197 S198 T407 S8 S47 Transmembrane Protein T51 T284 T341 T407 66 264 S243 T264 S33 T211 S260 S22 N172 N250 M1-A17 Signal Peptide Protein Splicing Protein Motifs S243 S260 M1-S22 Signal Peptide SPScan L173-Y195TM Prot. HMM M1-L21 TM Prot. BLOCKS L25-R30 Prot. Splicing 67 339 T99 S119 S157 S166 S321 T54 N172 M1-G30 Signal Peptide Signal Peptide Containing Motifs S55 T77 S149 S211 S279 T336 M1-G26 Signal Peptide Transmembrane Protein SPScan Y105 L176-L194 TM, Prot. HMM 68 397 S104 T148 T166 T259 S303 G202-S209 ATP/GTP Gene Regulatory Protein Motifs S317 T127 T191 S302 binding SPScan L10-L31 Leucine zipper BLAST D106-L108 Ca binding HMM S367-L384 Signal Peptide M1-G29 Transmembr. Prot. 69 301 T7 S52 S100 S133 S239 T155 N162 N211 V12-A32 TM. Prot. Aminoacyl tRNA ligase Motifs T206 V282-G300 TMr. Prot. HMM L59-V64 aatRNA ligase BLOCKS 70 217 S8 S142 T112 T197 W73-I99 TM. Prot. Cell Proliferation Protein Motifs HMM 71 143 S81 T120 S139 S116 M1-C26 Signal Peptide Signal Peptide Containing Motifs M1-R25 Signal Peptide Transmembrane Protein SPScan M1-V22 TM Prot. HMM 72 186 T50 S132 T151 S116 Y43 N29 N104 M1-S25 Signal Peptide T-cell Receptor Interacting Motifs M1-S31 Signal Peptide Molecule SPScan F9-F28 TM Prot. HMM A27-G891 T-cell receptor BLAST interacting molecule 73 364 S172 S213 S243 S302 N229 L234-L255 Leucine Gene Regulatory Protein Motifs zipper SPScan M1-G28 Signal Peptide HMM L151-L170 TM Prot. L72-E92 TM Prot. 74 605 S46 T54 S108 S129 S195 S220 N106 N193 N395 M1-A32 Signal Peptide 2-Membrane Spanning Motifs S231 T254 T261 S316 S440 N480 V494-I515 TM. Prot. Signal Peptide Containing SPScan S472 S536 S560 T124 L17-E36 TM Prot. Transmembrane Protein HMM 75 97 T2 S87 M1-G26 Signal Peptide 2-Membrane Spanning Motifs M1-G23 Signal Peptide Signal Peptide Containing SPScan V35-M54 TM. Prot. Transmembrane Protein HMM I11-I34 TM Prot. 76 247 S160 T204 S165 F72-L90 Transmembr. 2-Membrane Spanning Motifs Prot. Signal Peptide Containing HMM L45-T64 Transmembr. Transmembrane Protein Prot. 77 193 S60 S67 M1-D26 Signal Peptide Peripheral Myclin Protein Motifs M1-A31 Signal Peptide 22 SPScan M80-M104 TM Prot. HMM R109-Y129 TM Prot. BLOCKS S67-L108 PMP-22 Y149-Y176 PMP-22 N150-A159 Trehalase 78 128 S30 S30 S50 N71 N84 N91 N126-L128 microbodies Microbody Protein Motifs targeting motif 79 115 S109 M1-S16 Signal Peptide G Protein Receptor Motifs M1-T24 Signal Peptide SPScan M1-W19 TM Prot. HMM V27-Y46 TM Prot. PRINTS V5-V15 G Prot. Receptor

TABLE-US-00005 TABLE 3 Nucleotide SEQ ID NO: Tissue Expression (Fraction of Total) Disease Class (Fraction of Total) Vector 80 Reproductive (0.321) Cardiovascular (0.143) Cancer (0.527) Inflammation (0.232) Fetal (0.170) pBLUESCRIPT Gastrointestinal (0.134) 81 Cardiovascular (0.500) Gastrointestinal (0.250) Other Cancer (0.500) Fetal (0.250) Other (0.250) pBLUESCRIPT (0.250) 82 Reproductive (0.260) Cardiovascular (0.220) Cancer (0.500) Inflammation (0.180) Fetal (0.160) pSPORT I Gastrointestinal (0.120) 83 Nervous (0.400) Gastrointestinal (0.300) Developmental Cancer (0.500) Inflammation (0.300) Fetal (0.200) pINCY I (0.100) 84 Reproductive (0.266) Gastrointestinal (0.141) Cancer (0.469) Inflammation (0.250) Fetal (0.195) pINCY I Cardiovascular (0.125) 85 Reproductive (0.750) Developmental (0.250) Cancer (0.750) Fetal (0.250) pINCY I 86 Reproductive (0.250) Cardiovascular (0.143) Nervous Inflammation (0.321) Trauma (0.286) Cancer (0.250) pINCY I (0.143) 87 Reproductive (0.368) Developmental (0.158) Cancer (0.421) Fetal (0.368) Inflammation (0.211) pINCY I Cardiovascular (0.105) 88 Hematopoietic/Immune (0.417) Cardiovascular (0.250) Inflammation (0.417) Cancer (0.333) Fetal (0.167) pINCY I Reproductive (0.167) 89 Cardiovascular (0.220) Nervous (0.171) Reproductive Cancer (0.463) Inflammation (0.195) Trauma (0.171) pINCY I (0.122) 90 Gastrointestinal (0.200) Reproductive (0.200) Urologic Cancer (0.500) Inflammation (0.300) Other (0.100) pINCY I (0.200) 91 Reproductive (0.306) Cardiovascular (0.204) Nervous Cancer (0.510) Inflammation (0.204) Fetal (0.143) pINCY I (0.122) 92 Reproductive (0.227) Hematopoietic/Immune (0.182) Cancer (0.432) Fetal (0.273) Inflammation (0.273) pINCY I Cardiovascular (0.136) 93 Gastrointestinal (0.375) Reproductive (0.188) Cancer (0.500) Inflammation (0.250) Trauma (0.125) pINCY I Cardiovascular (0.125) 94 Reproductive (0.333) Cardiovascular (0.214) Cancer (0.548) Inflammation (0.167) Fetal (0.143) pINCY I Gastrointestinal (0.143) 95 Cardiovascular (0.231) Gastrointestinal (0.231) Cancer (0.500) Inflammation (0.231) Fetal (0.154) pINCY I Reproductive (0.192) 96 Gastrointestinal (0.208) Cardiovascular (0.167) Cancer (0.542) Inflammation (0.292) Other (0.083) pINCY I Reproductive (0.167) 97 Hematopoietic/Immune (0.341) Reproductive (0.268) Cancer (0.415) Inflammation (0.415) Fetal (0.195) pINCY I Cardiovascular (0.122) 98 Gastrointestinal (0.346) Reproductive (0.231) Inflammation (0.462) Cancer (0.385) Fetal (0.115) pSPORT I Hematopoietic/Immune (0.154) 99 Gastrointestinal (0.400) Developmental (0.200) Nervous Cancer (0.400) Fetal (0.200) Neurological (0.200) pSPORT I (0.200) 100 Reproductive (0.231) Nervous (0.168) Cardiovascular Cancer (0.441) Inflammation (0.231) Fetal (0.133) pSPORT 1 (0.140) 101 Hematopoietic/Immune (0.225) Reproductive (0.225) Cancer (0.475) Inflammation (0.325) Fetal (0.175) pINCY I Gastrointestinal (0.125) 102 Reproductive (0.333) Gastrointestinal (0.185) Nervous Cancer (0.630) Fetal (0.185) Inflammation (0.111) pINCY I (0.148) 103 Gastrointestinal (0.242) Reproductive (0.182) Cancer (0.455) Inflammation (0.364) Fetal (0.182) pINCY I Developmental (0.121) 104 Gastrointestinal (0.188) Hematopoietic/Immune (0.188) Inflammation (0.438) Cancer (0.281) Fetal (0.250) pINCY I Urologic (0.188) 105 Urologic (0.250) Cardiovascular (0.167) Gastrointestinal Fetal (0.500) Cancer (0.417) Inflammation (0.333) pINCY I (0.167) 106 Hematopoietic/Immune (0.333) Urologic (0.333) Cancer (0.333) Fetal (0.333) Inflammation (0.333) pINCY I 107 Reproductive (0.286) Cardiovascular (0.204) Nervous Cancer (0.592) Fetal (0.143) Inflammation (0.143) pINCY I (0.184) 108 Reproductive (0.231) Gastrointestinal (0.215) Cancer (0.462) Inflammation (0.292) Fetal (0.185) pINCY I Hematopoietic/Immune (0.154) 109 Reproductive (0.304) Cardiovascular (0.261) Cancer (0.609) Inflammation (0.174) Trauma (0.087) pINCY I Gastrointestinal (0.130) 110 Reproductive (0.256) Gastrointestinal (0.186) Cancer (0.558) Inflammation (0.349) Trauma (0.070) pINCY I Hematopoietic/Immune (0.186) 111 Nervous (0.200) Reproductive (0.200) Gastrointestinal Cancer (0.550) Fetal (0.175) Inflammation (0.150) pINCY I (0.175) 112 Developmental (0.222) Endocrine (0.222) Cancer (0.222) Inflammation (0.222) Fetal (0.222) pINCY I Hematopoietic/Immune (0.222) 113 Hematopoietic/Immune (0.267) Nervous (0.200) Cancer (0.467) Trauma (0.267) Inflammation (0.200) pINCY I Gastrointestinal (0.133) 114 Hematopoietic/Immune (0.304) Gastrointestinal (0.130) Inflammation (0.391) Cancer (0.304) Fetal (0.130) pINCY I Nervous (0.130) 115 Developmental (0.333) Cardiovascular (0.167) Fetal (0.667) Inflammation (0.500) pBLUESCRIPT Dermatologic (0.167) 116 Nervous (0.478) Gastrointestinal (0.130) Cancer (0.565) Fetal (0.217) Inflammation (0.217) pBLUESCRIPT Hematopoietic/Immune (0.130) 117 Reproductive (0.222) Hematopoietic/Immune (0.200) Cancer (0.422) Inflammation (0.311) Fetal (0.178) pINCY Nervous (0.156) 118 Reproductive (0.256) Gastrointestinal (0.148) Nervous Cancer (0.430) Inflammation (0.259) Fetal (0.196) pSPORT1 (0.125) 119 Reproductive (0.190) Nervous (0.167) Developmental Cancer (0.381) Inflammation (0.333) Fetal (0.262) pINCY (0.143) 120 Reproductive (0.800) Urologic (0.100) Cancer (0.900) Trauma (0.100) pINCY 121 Reproductive (0.295) Nervous (0.182) Cardiovascular Cancer (0.455) Inflammation (0.182) pBLUESCRIPT (0.159) Cell Proliferation (0.159) 122 Developmental (0.250) Musculoskeletal (0.250) Nervous Cancer (0.500) Cell Proliferation (0.250) Inflammation pINCY (0.250) (0.250) 123 Gastrointestinal (0.786) Developmental (0.071) Nervous Cancer (0.500) Inflammation (0.429) pINCY (0.071) Cell Proliferation (0.071) 124 Reproductive (0.348) Cardiovascular (0.159) Cancer (0.493) Inflammation (0.246) pINCY Hematopoietic/Immune (0.130) Cell Proliferation (0.145) 125 Nervous (0.405) Reproductive (0.324) Cardiovascular Cancer (0.459) Proliferation (0.189) Inflammation (0.108) pINCY (0.108) 126 Reproductive (0.275) Nervous (0.231) Gastrointestinal Cancer (0.549) Inflammation (0.220) pINCY (0.154) Cell Proliferation (0.154) 127 Reproductive (0.250) Nervous (0.150) Cardiovascular Cancer (0.517) Cell Proliferation (0.350) Inflammation pINCY (0.133) (0.233) 128 Nervous (0.333) Reproductive (0.333) Cancer (0.593) Inflammation (0.259) Neurological pINCY Hematopoietic/Immune (0.111) (0.111) 129 Hematopoietic/Immune (0.304) Gastrointestinal (0.214) Cancer (0.446) Inflammation (0.446) pINCY Reproductive (0.196) Cell Proliferation (0.161) 130 Nervous (0.400) Reproductive (0.300) Endocrine (0.100) Cancer (0.300) Inflammation (0.300) pBLUESCRIPT Cell Proliferation (0.200) 131 Reproductive (0.364) Cardiovascular (0.227) Nervous Cancer (0.545) Inflammation (0.318) pSPORT1 (0.227) Cell Proliferation (0.091) 132 Cardiovascular (0.667) Nervous (0.333) Cell Proliferation (1.000) Cancer (0.333) pINCY 133 Gastrointestinal (0.750) Developmental (0.125) Cancer (0.375) Cell Proliferation (0.292) Inflammation pINCY Reproductive (0.083) (0.250) 134 Cardiovascular (0.250) Developmental (0.250) Cancer (0.500) Cell Proliferation (0.500) Inflammation pINCY Gastrointestinal (0.250) (0.250) 135 Reproductive (0.250) Nervous (0.208) Endocrine (0.167) Inflammation (0.417) Cancer (0.208) Trauma (0.167) pINCY 136 Developmental (0.500) Reproductive (0.500) Cancer (0.500) Cell Proliferation (0.500) pINCY 137 Developmental (1.000) Cell Proliferation (1.000) pINCY 138 Developmental (0.333) Endocrine (0.333) Gastrointestinal Cancer (0.666) Fetal (0.333) pINCY (0.333) 139 Reproductive (0.538) Developmental (0.154) Cancer (0.462) Inflammation (0.231) pINCY Gastrointestinal (0.154) Cell Proliferation (0.154) 140 Gastrointestinal (0.385) Endocrine (0.231) Reproductive Cancer (0.308) Inflammation (0.308) pINCY (0.231) Cell Proliferation (0.077) 141 Nervous (0.500) Cardiovascular (0.167) Gastrointestinal Cancer (0.333) Trauma (0.333) Neurological (0.167) pINCY (0.167) 142 Reproductive (0.220) Gastrointestinal (0.155) Nervous Cell Proliferation (0.637) Inflammation (0.312) pBLUESCRIPT (0.152) 143 Cardiovascular (0.202) Reproductive (0.190) Cell Proliferation (0.583) Inflammation (0.322) pBLUESCRIPT Gastrointestinal (0.179) 144 Reproductive (0.242) Nervous (0.158) Gastrointestinal Cell Proliferation (0.632) Inflammation (0.379) pINCY (0.116) 145 Cardiovascular (0.238) Reproductive (0.238) Nervous Cell Proliferation (0.619) Inflammation (0.476) pINCY (0.143) 146 Reproductive (0.235) Nervous (0.189) Cell Proliferation (0.625) Inflammation (0.348) pINCY Hematopoietic/Immune (0.131) 147 Reproductive (0.191) Hematopoietic/Immune (0.173) Cell Proliferation (0.582) Inflammation (0.455) pINCY Nervous (0.145) 148 Reproductive (0.279) Hematopoietic/Immune (0.140) Cell Proliferation (0.674) Inflammation (0.232) pINCY Nervous (0.128) 149 Reproductive (0.286) Nervous (0.214) Cardiovascular Cell Proliferation (0.834) Inflammation (0.215) pINCY (0.095) 150 Hematopoietic/Immune (0.400) Endocrine (0.200) Cell Proliferation (0.200) Inflammation (0.800) pINCY Gastrointestinal (0.200) 151 Hematopoietic/Immune (0.667) Gastrointestinal (0.167) Cell Proliferation (0.167) Inflammation (0.667) pINCY Musculoskeletal (0.167) 152 Reproductive (0.240) Nervous (0.173) Cell Proliferation (0.546) Inflammation (0.360) pINCY Hematopoietic/Immune (0.133) 153 Reproductive (0.308) Nervous (0.231) Gastrointestinal Cell Proliferation (0.885) Inflammation (0.154) pINCY (0.115) 154 Nervous (0.455) Reproductive (0.182) Developmental Cell Proliferation (0.682) Inflammation (0.181) pINCY (0.136) 155 Reproductive (0.286) Urologic (0.286) Cardiovascular Cell Proliferation (0.857) Inflammation (0.429) pINCY (0.143) 156 Reproductive (0.299) Gastrointestinal (0.216) Cell Proliferation (0.767) Inflammation (0.246) pINCY Cardiovascular (0.120) 157 Nervous (0.222) Reproductive (0.222) Cell Proliferation (0.333) Inflammation (0.222) pINCY 158 Reproductive (0.429) Nervous (0.357) Cell Proliferation (0.286) Inflammation (0.357) pINCY

TABLE-US-00006 TABLE 4 Clone ID Library Library Comment Nu- cleo- tide SEQ ID NO: 80 153831 THP1PLB02 The THP1PLB02 library was constructed by reamplification of THP1PLB01, which was made using RNA isolated from THP-1 cells cultured for 48 hours with 100 ng/ml phorbol ester (PMA), followed by a 4-hour culture in media containing 1 g/ml LPS. THP-1 (ATCC TIB 202) is a human promonocyte line derived from the peripheral blood of a 1-year-old male with acute monocytic leukemia (ref: Int. J. Cancer (1980) 26: 171). 81 350629 LVENNOT01 The LVENNOT01 library was constructed using RNA isolated from the left ventricle of a 51-year-old Caucasian female, who died from an intracranial bleed. 82 729171 LUNGNOT03 The LUNGNOT03 library was constructed using polyA RNA isolated from nontumorous lung tissue of a 79-year- old Caucasian male. Tissue had been removed from the upper and lower left lobes of the lung, superior (left paratracheal) and inferior (subclavian) mediastinal lymph nodes, and the right paratracheal region. Pathology for the associated tumor tissue indicated grade 4 carcinoma. Patient history included a benign prostate neoplasm, atherosclerosis, benign hypertension, and tobacco use. 83 1273641 TESTTUT02 The TESTTUT02 library was constructed using polyA RNA isolated from a testicular tumor removed from a 31-year-old Caucasian male during unilateral orchiectomy. Pathology indicated embryonal carcinoma forming a largely necrotic mass involving the entire testicle. Rare foci of residual testicle showed intralobular germ cell neoplasia and tumor was identified at the spermatic cord margin. 84 1427389 SINTBST01 The SINTBST01 library was constructed using polyA RNA isolated from the ileum tissue of an 18-year-old Caucasian female with irritable bowel syndrome (IBS). Pathology indicated Crohn's disease of the ileum, involving 15 cm of the small bowel. Patient history included osteoporosis of the vertebra and abnormal blood chemistry. Family history included cerebrovascular disease and atherosclerotic coronary artery disease. 85 1458357 COLNFET02 The COLNFET02 library was constructed using RNA isolated from the colon tissue of a Caucasian female fetus, who died at 20 weeks' gestation from fetal demise. Serology was negative. 86 1482837 CORPNOT02 The CORPNOT02 library was constructed using polyA RNA isolated from diseased corpus callosum tissue removed from the brain of a 74-year-old Caucasian male, who died from Alzheimer's disease. Serologies were negative. Pro- tein SEQ ID NO: 87 1517434 PANCTUT01 The PANCTUT01 library was constructed using polyA RNA isolated from pancreatic tumor tissue removed from a 65-year-old Caucasian female during radical subtotal pancreatectomy. Pathology indicated an invasive grade 2 adenocarcinoma. Patient history included osteoarthritis, benign hypertension, atherosclerotic coronary artery disease, an acute myocardial infarction, benign neoplasm in the large bowel, and a cataract disorder. Family history included benign hypertension and atherosclerotic coronary artery disease, Type II diabetes, impaired renal function, and stomach cancer. 88 1536052 SPLNNOT04 The SPLNNOT04 library was constructed using polyA RNA isolated from the spleen tissue of a 2-year-old Hispanic male, who died from cerebral anoxia. Past medical history and serologies were negative. 89 1666118 BRSTNOT09 The BRSTNOT09 library was constructed using polyA RNA isolated from nontumor breast tissue removed from a 45-year-old Caucasian female during unilateral extended simple mastectomy. Pathology for the associated tumor tissue indicated invasive nuclear grade 2-3 adenocarcinoma in the same breast, with 3 of 23 lymph nodes positive for metastatic disease. There were also positive estrogen/progesterone receptors and uninvolved tissue showing proliferative changes. Patient history included valvuloplasty of mitral valve without replacement, rheumatic mitral insufficiency, rheumatic heart disease, and tobacco use. Family history included acute myocardial infarction, atherosclerotic coronary artery disease, and Type II diabetes. 90 1675560 BLADNOT05 The BLADNOT05 library was constructed using polyA RNA isolated from nontumorous bladder tissue removed from a 60-year-old Caucasian male during a radical cystectomy, prostatectomy, and vasectomy. Pathology for the associated tumor tissue indicated grade 3 transitional cell carcinoma. The patient presented with dysuria. Family history included Type I diabetes, a malignant neoplasm of the stomach, atherosclerotic coronary artery disease, and an acute myocardial infarction. 91 1687323 PROSTUT10 The PROSTUT10 library was constructed using polyA RNA isolated from prostatic tumor tissue removed from a 66-year-old Caucasian male during radical prostatectomy and regional lymph node excision. Pathology indicated an adenocarcinoma (Gleason grade 2 + 3). Adenofibromatous hyperplasia was also present. The patient presented with elevated prostate specific antigen (PSA). Family history included prostate cancer, secondary bone cancer, and benign hypertension. 92 1692236 PROSTUT10 The PROSTUT10 library was constructed using polyA RNA isolated from prostatic tumor tissue removed from a 66-year-old Caucasian male during radical prostatectomy and regional lymph node excision. Pathology indicated an adenocarcinoma (Gleason grade 2 + 3). Adenofibromatous hyperplasia was also present. The patient presented with elevated prostate specific antigen (PSA). Family history included prostate cancer, secondary bone cancer, and benign hypertension. 93 1720847 BLADNOT06 The BLADNOT06 library was constructed using polyA RNA isolated from the posterior wall bladder tissue removed from a 66-year-old Caucasian male during a radical prostatectomy, radical cystectomy, and urinary diversion. Pathology for the associated tumor tissue indicated grade 3 transitional cell carcinoma. The patient presented with prostatic inflammatory disease. Family history included a malignant breast neoplasm, benign hypertension, cerebrovascular disease, atherosclerotic coronary artery disease, and lung cancer. 94 1752821 LIVRTUT01 The LIVRTUT01 library was constructed using polyA RNA isolated from liver tumor tissue removed from a 51-year-old Caucasian female during a hepatic lobectomy. Pathology indicated metastatic grade 3 adenocarcinoma consistent with colon cancer. Patient history included thrombophlebitis and pure hypercholesterolemia. Patient medications included Premarin and Provera. The patient had also received 8 cycles of fluorouracil and leucovorin in the two years prior to surgery. Family history included a malignant neoplasm of the liver. 95 1810923 PROSTUT12 The PROSTUT12 library was constructed using polyA RNA isolated from prostate tumor tissue removed from a 65-year-old Caucasian male during a radical prostatectomy. Pathology indicated an adenocarcinoma (Gleason grade 2 + 2). Adenofibromatous hyperplasia was also present. The patient presented with elevated prostate specific antigen (PSA). 96 1822315 GBLATUT01 The GBLATUT01 library was constructed using polyA RNA isolated from gallbladder tumor tissue removed from a 78-year-old Caucasian female during a cholecystectomy. Pathology indicated invasive grade 3 transitional cell carcinoma. The patient was taking Indural (propranolol hydrochloride) for hypertension. Family history included a cholecystectomy, atherosclerosis, hyperlipidemia, and benign hypertension. 97 1877777 LEUKNOT03 The LEUKNOT03 library was constructed using polyA RNA isolated from white blood cells of a 27-year-old female with blood type A+. The donor tested negative for cytomegalovirus (CMV). 98 1879819 LEUKNOT03 The LEUKNOT03 library was constructed using polyA RNA isolated from white blood cells of a 27-year-old female with blood type A+. The donor tested negative for cytomegalovirus (CMV). 99 1932945 COLNNOT16 The COLNNOT16 library was constructed using polyA RNA isolated from nontumorous sigmoid colon tissue removed from a 62-year-old Caucasian male during a sigmoidectomy and permanent colostomy. Pathology for the associated tumor tissue indicated invasive grade 2 adenocarcinoma. Family history included benign hypertension, atherosclerotic coronary artery disease, hyperlipidemia, breast cancer, and prostate cancer. 100 2061026 OVARNOT03 The OVARNOT03 library was constructed using polyA RNA isolated from nontumorous ovarian tissue removed from a 43-year-old Caucasian female during a bilateral salpingo-oopherectomy. Pathology for the associated tumor tissue indicated grade 2 mucinous cystadenocarcinoma. Family history included atherosclerotic coronary artery disease, pancreatic cancer, stress reaction, cerebrovascular disease, breast cancer, and uterine cancer. 101 2096687 BRAITUT02 The BRAITUT02 library was constructed using polyA RNA isolated from brain tumor tissue removed from the frontal lobe of a 58-year-old Caucasian male during excision of a cerebral meningeal lesion. Pathology indicated a grade 2 metastatic hypernephroma. Patient history included a grade 2 renal cell carcinoma, insomnia, and chronic airway obstruction. Previous surgeries included a nephroureterectomy. Patient medications included Decadron (dexamethasone) and Dilantin (phenytoin). Family history included a malignant neoplasm of the kidney. 102 2100530 BRAITUT02 The BRAITUT02 library was constructed using polyA RNA isolated from brain tumor tissue removed from the frontal lobe of a 58-year-old Caucasian male during excision of a cerebral meningeal lesion. Pathology indicated a grade 2 metastatic hypernephroma. Patient history included a grade 2 renal cell carcinoma, insomnia, and chronic airway obstruction. Previous surgeries included a nephroureterectomy. Patient medications included Decadron (dexamethasone) and Dilantin (phenytoin). Family history included a malignant neoplasm of the kidney. 103 2357636 LUNGNOT20 The LUNGNOT20 library was constructed using polyA RNA isolated from lung tissue removed from the right upper lobe a 61-year-old Caucasian male during a segmental lung resection. Pathology indicated panacinal emphysema. Family history included a subdural hemorrhage, cancer at an unidentified site, benign hypertension, atherosclerotic coronary artery disease, pneumonia, and an unspecified muscle disorder. 104 2365230 ADRENOT07 The ADRENOT07 library was constructed using polyA RNA isolated from adrenal tissue removed from a 61-year-old female during a bilateral adrenalectomy. Patient history included an unspecified disorder of the adrenal glands, depressive disorder, benign hypertension, vocal cord paralysis, hemiplegia, subarachnoid hemorrhage, communicating hydrocephalus, neoplasm of uncertain behavior of pituitary gland, hyperlipidemia, Type II diabetes, a benign neoplasm of the colon, osteoarthritis, Meckel's diverticulum, and tobacco use. Previous surgeries included total excision of the pituitary gland and a unilateral thyroid lobectomy. Patient medications included Calderol and Premarin (conjugated estrogen). Family history included prostate cancer, benign hypertension, myocardial infarction, atherosclerotic coronary artery disease, congestive heart failure, hyperlipidemia, depression, anxiety disorder, colon cancer, and gas gangrene. 105 2455121 ENDANOT01 The ENDANOT01 library was constructed using polyA RNA isolated from aortic endothelial cell tissue from an explanted heart removed from a male during a heart transplant. 106 2472514 THP1NOT03 The THP1NOT03 library was constructed using polyA RNA isolated from untreated THP-1 cells. THP-1 (ATCC TIB 202) is a human promonocyte line derived from the peripheral blood of a 1-year-old Caucasian male with acute monocytic leukemia (ref: Int. J. Cancer (1980) 26: 171). 107 2543486 UTRSNOT11 The UTRSNOT11 library was constructed using polyA RNA isolated from uterine myometrial tissue removed from a 43-year-old female during a vaginal hysterectomy and salpingo-oopherectomy. The endometrium was in proliferative phase. Family history included benign hypertension, hyperlipidemia, colon cancer, Type II diabetes, and atherosclerotic coronary artery disease. 108 2778171 OVARTUT03 The OVARTUT03 library was constructed using polyA RNA isolated from ovarian tumor tissue removed from the left ovary of a 52-year-old mixed ethnicity female during a total abdominal hysterectomy, bilateral salpingo-oopherectomy, peritoneal and lymphatic structure biopsy, regional lymph node excision, and peritoneal tissue destruction. Pathology indicated an invasive grade 3 (of 4) seroanaplastic carcinoma. Pathology also indicated a metastatic grade 3 seroanaplastic carcinoma. Patient history included breast cancer, chronic peptic ulcer, joint pain, and a normal delivery. Family history included colon cancer, cerebrovascular disease, breast cancer, Type II diabetes, esophagus cancer, and depressive disorder. 109 2799575 PENCNOT01 The PENCNOT01 library was constructed using polyA RNA isolated from penis corpus cavernosum tissue removed from a 53-year-old male. Patient history included an untreated penile carcinoma.

110 2804955 BLADTUT08 The BLADTUT08 library was constructed using polyA RNA isolated from bladder tumor tissue removed from a 72-year-old Caucasian male during a radical cystectomy and prostatectomy. Pathology indicated an invasive grade 3 (of 3) transitional cell carcinoma. Family history included myocardial infarction, cerebrovascular disease, and brain cancer. 111 2806395 BLADTUT08 The BLADTUT08 library was constructed using polyA RNA isolated from bladder tumor tissue removed from a 72-year-old Caucasian male during a radical cystectomy and prostatectomy. Pathology indicated an invasive grade 3 (of 3) transitional cell carcinoma. Family history included myocardial infarction, cerebrovascular disease, and brain cancer. 112 2836858 TLYMNOT03 The TLYMNOT03 library was constructed using polyA RNA isolated from nonactivated Th1 cells. These cells were differentiated from umbilical cord CD4 T cells with IL-12 and B7-transfected COS cells. 113 2844513 DRGLNOT01 The DRGLNOT01 library was constructed using polyA RNA isolated from dorsal root ganglion tissue removed from the low thoracic/high lumbar region of a 32-year-old Caucasian male, who died from acute pulmonary edema, acute bronchopneumonia, bilateral pleural effusions, pericardial effusion, and malignant lymphoma (natural killer cell type). Patient medications included Difulcan (fluconazole), Deltasone (prednisone), hydrocodone, Lortab, Alprazolam, Reazodone, Cytabom, Etoposide, Cisplatin, Cytarabine, and dexamethasome. The patient received radiation therapy and multiple blood transfusions. 114 3000380 TLYMNOT06 The TLYMNOT06 library was constructed using polyA RNA isolated from activated Th2 cells. These cells were differentiated from umbilical cord CD4 T cells with IL-4 in the presence of anti-IL-12 antibodies and B7-transfected COS cells, and then activated for six hours with anti-CD3 and anti-CD28 antibodies. 115 182532 PLACNOB01 The PLACNOB01 library was constructed using RNA isolated from placenta. 116 239589 HIPONOT01 The HIPONOT01 library was constructed using RNA isolated from the hippocampus tissue of a 72-year-old Caucasian female who died from an intracranial bleed. Patient history included nose cancer, hypertension, and arthritis. 117 1671302 BMARNOT03 The BMARNOT03 library was constructed using RNA isolated from the left tibial bone marrow tissue of a 16-year- old Caucasian male during a partial left tibial ostectomy with free skin graft. Patient history included an abnormality of the red blood cells. Family history included osteoarthritis. 118 2041858 HIPONON02 This normalized hippocampus library was constructed from 1.13M independent clones from HIPONOT01 library. RNA was isolated from the hippocampus tissue of a 72-year-old Caucasian female who died from an intracranial bleed. Patient history included nose cancer, hypertension, and arthritis. The normalization and hybridization conditions were adapted from Soares et al. (PNAS (1994) 91: 9928). 119 2198863 SPLNFET02 The SPLNFET02 library was constructed using RNA isolated from spleen tissue removed from a Caucasian male fetus, who died at 23 weeks gestation. 120 3250703 SEMVNOT03 The SEMVNOT03 library was constructed using RNA isolated from seminal vesicle tissue removed from a 56-year- old male during a radical prostatectomy. Pathology for the associated tumor tissue indicated adenocarcinoma (Gleason grade 3 + 3). 121 350287 LVENNOT01 The LVENNOT01 library was constructed using RNA isolated from the left ventricle of a 51-year-old Caucasian female who died from intracranial bleeding. 122 1618171 BRAITUT12 The BRAITUT12 library was constructed using RNA isolated from brain tumor tissue removed from the left frontal lobe of a 40-year-old Caucasian female during excision of a cerebral meningeal lesion. Pathology indicated grade 4 gemistocytic astrocytoma. Medications included dexamethasone and phenytoin sodium. 123 1625863 COLNPOT01 The COLNPOT01 library was constructed using RNA isolated from colon polyp tissue removed from a 40-year-old Caucasian female during a total colectomy. Pathology indicated an inflammatory pseudopolyp; this tissue was associated with a focally invasive grade 2 adenocarcinoma and multiple tubuvillous adenomas. Patient history included a benign neoplasm of the bowel. Medications included Zantac, betamethasone, furosamide, and amiodarone. 124 1638353 UTRSNOT06 The UTRSNOT06 library was constructed using RNA isolated from myometrial tissue removed from a 50-year-old Caucasian female during a vaginal hysterectomy. Pathology indicated residual atypical complex endometrial hyperplasia. Pathology for the associated tissue removed during dilation and curettage indicated fragments of atypical complex hyperplasia and a single microscopic focus suspicious for grade 1 adenocarcinoma. Patient history included benign breast neoplasm, hypothyroid disease, polypectomy, and arthralgia. 125 1726843 PROSNOT14 The PROSNOT14 library was constructed using RNA isolated from diseased prostate tissue removed from a 60- year-old Caucasian male during radical prostatectomy and regional lymph node excision. Pathology indicated adenofibromatous hyperplasia. Pathology for the associated tumor tissue indicated an adenocarcinoma (Gleason grade 3 + 4). The patient presented with elevated prostate specific antigen (PSA). Patient history included a kidney cyst and hematuria. Family history included benign hypertension, cerebrovascular disease, and arteriosclerotic coronary artery disease. 126 1754506 LIVRTUT01 The LIVRTUT01 library was constructed using RNA isolated from liver tumor tissue removed from a 51-year-old Caucasian female during a hepatic lobectomy. Pathology indicated metastatic grade 3 adenocarcinoma consistent with colon cancer. Medications included Premarin, Provera, and earlier, fluorouracil, and leucovorin. Family history included a malignant neoplasm of the liver. 127 1831378 THP1AZT01 The THP1AZT01 library was constructed using RNA isolated from THP-1 promonocyte cells treated for 3 days with 0.8 micromolar 5-aza-2'-deoxycitidine. THP-1 (ATCC TIB 202) is a human promonocyte line derived from peripheral blood of a one-year-old Caucasian male with acute monocytic leukemia (Int. J. Cancer (1980) 26: 171). 128 1864943 PROSNOT19 The PROSNOT19 library was constructed using RNA isolated from diseased prostate tissue removed from a 59- year-old Caucasian male during a radical prostatectomy with regional lymph node excision. Pathology indicated adenofibromatous hyperplasia. Pathology for the associated tumor tissue indicated an adenocarcinoma (Gleason grade 3 + 3). The patient presented with elevated prostate-specific antigen (PSA). Family history included benign hypertension, multiple myeloma, hyperlipidemia, and rheumatoid arthritis. 129 1911316 CONNTUT01 The CONNTUT01 library was constructed using RNA isolated from a soft tissue tumor removed from the clival area of the skull of a 30-year-old Caucasian female. Pathology indicated chondroid chordoma with neoplastic cells reactive for keratin. Medications included medroxyprogesterone acetate. 130 1943120 HIPONOT01 The HIPONOT01 library was constructed using RNA isolated from the hippocampus tissue of a 72-year-old Caucasian female who died from intracranial bleeding. Patient history included nose cancer, hypertension, and arthritis. 131 2314236 NGANNOT01 The NGANNOT01 library was constructed using RNA isolated from tumorous neuroganglion tissue removed from a 9-year-old Caucasian male during a soft tissue excision of the chest wall. Pathology indicated a ganglioneuroma forming an encapsulated lobulated mass. The tissue from the medial aspect pleura surrounding the tumor showed fibrotic tissue with chronic inflammation. Family history included asthma. 132 2479409 SMCANOT01 The SMCANOT01 library was constructed using RNA isolated from an aortic smooth muscle cell line derived from the explanted heart of a male during a heart transplant. 133 2683149 SINIUCT01 The SINIUCT01 library was constructed using RNA isolated from ileum tissue obtained from a 42-year-old Caucasian male during a total intra-abdominal colectomy and endoscopic jejunostomy. Previous surgeries included polypectomy, colonoscopy, and spinal canal exploration. Medications included Prednisone, mesalamine, and Deltasone. Family history included cerebrovascular disease, benign hypertension, atherosclerotic coronary artery disease, and type II diabetes. 134 2774051 PANCNOT15 The PANCNOT15 library was constructed using RNA isolated from diseased pancreatic tissue removed from a 15- year-old Caucasian male during an exploratory laparotomy with distal pancreatectomy and total splenectomy. Pathology indicated islet cell hyperplasia. A single pancreatic lymph node was negative. Family history included prostate cancer and cardiovacular disease. 135 2869038 THYRNOT10 The THYRNOT10 library was constructed using RNA isolated from the diseased left thyroid tissue removed from a 30-year-old Caucasian female during a unilateral thyroid lobectomy and parathyroid reimplantation. Pathology indicated lymphocytic thyroiditis. Pathology for the associated tumor indicated grade 1 (of 4) papillary carcinoma of the right thyroid gland, follicular variant. Multiple perithyroidal and other lymph nodes were negative. Patient history included hyperlipidemia and benign ovary neoplasm. Medications included Premarian, Provera, and Anaprox. 136 2918334 THYMFET03 The THYMFET03 library was constructed using RNA isolated from thymus tissue removed from a Caucasian male fetus who died at premature birth. Serology was negative. 137 2949916 KIDNFET01 The KIDNFET01 library was constructed using RNA isolated from kidney tissue removed from a Caucasian female fetus, who died at 17 weeks gestation from anencephalus. Serology was negative. 138 2989375 KIDNFET02 The KIDNFET02 library was constructed using RNA isolated from kidney tissue removed from a Caucasian male fetus who was stillborn with a hypoplastic left heart at 23 weeks gestation. Serology was negative. 139 3316764 PROSBPT03 The PROSBPT03 library was constructed using RNA isolated from diseased prostate tissue removed from a 59-year- old Caucasian male during a radical prostatectomy and regional lymph node excision. Pathology indicated benign prostatic hyperplasia. Pathology for the associated tumor indicated adenocarcinoma, Gleason grade 3 + 3. The patient presented with elevated prostate specific antigen (PSA), benign hypertension, and hyperlipidemia. Medications included Lotensin and Pravachol. Family history included cerebrovascular disease, benign hypertension, and prostate cancer. 140 3359559 PROSTUT16 The PROSTUT16 library was constructed using RNA isolated from prostate tumor tissue removed from a 55-year- old Caucasian male. Pathology indicated adenocarcinoma, Gleason grade 5 + 4. Adenofibromatous hyperplasia was also present. The patient presented with elevated prostate specific antigen (PSA). Patient history included calculus of the kidney. Family history included lung cancer and breast cancer. 141 4289208 BRABDIR01 The BRABDIR01 library was constructed using RNA isolated from diseased cerebellum tissue removed from the brain of a 57-year-old Caucasian male who died from a cerebrovascular accident. Patient history included Huntington's disease, emphysema, and long-term tobacco use. 142 2454013 ENDANOT01 The ENDANOT01 library was constructed using RNA isolated from aortic endothelial cell tissue from an explanted heart removed from a male during a heart transplant. 143 2454048 ENDANOT01 The ENDANOT01 library was constructed using RNA isolated from aortic endothelial cell tissue from an explanted heart removed from a male during a heart transplant. 144 2479282 SMCANOT01 The SMCANOT01 library was constructed using RNA isolated from an aortic smooth muscle cell line derived from the explanted heart of a male during a heart transplant. 145 2483432 SMCANOT01 The SMCANOT01 library was constructed using RNA isolated from an aortic smooth muscle cell line derived from the explanted heart of a male during a heart transplant. 146 2493824 ADRETUT05 The ADRETUT05 library was constructed using RNA isolated from adrenal tumor tissue removed from a 52-year- old Caucasian female during a unilateral adrenalectomy. Pathology indicated a pheochromocytoma. 147 2555823 THYMNOT03 The THYMNOT03 library was constructed using 0.5 micrograms of polyA RNA isolated from thymus tissue removed from a 21-year-old Caucasian male during a thymectomy. Pathology indicated an unremarkable thymus and a benign parathyroid adenoma in the right inferior parathyroid. Patient history included atopic dermatitis, a benign neoplasm of the parathyroid, and tobacco use. Patient medications included multivitamins. Family history included atherosclerotic coronary artery disease and benign hypertension. 148 2598242 OVARTUT02 The OVARTUT02 library was constructed using RNA isolated from ovarian tumor tissue removed from a 51-year- old Caucasian female during an exploratory laparotomy, total abdominal hysterectomy, salpingo-oophorectomy, and an incidental appendectomy. Pathology indicated mucinous cystadenoma presenting as a multiloculated neoplasm involving the entire left ovary. The right ovary contained a follicular cyst and a hemorrhagic corpus luteum. The uterus showed proliferative endometrium and a single intramural leiomyoma. The peritoneal biopsy indicated benign glandular inclusions consistent with endosalpingiosis. Family history included atherosclerotic coronary artery disease, benign hypertension, breast cancer, and uterine cancer. 149 2634120 COLNTUT15 The COLNTUT15 library was constructed using RNA isolated from colon tumor tissue obtained from a 64-year-old Caucasian female during a right hemicolectomy with ileostomy and bilateral salpingo-oophorectomy (removal of the fallopian tubes and ovaries). Pathology indicated an invasive grade 3 adenocarcinoma. Patient history included

hypothyroidism, depression, and anemia. Family history included colon cancer and uterine cancer. 150 2765411 BRSTNOT12 The BRSTNOT12 library was constructed using RNA isolated from diseased breast tissue removed from a 32-year- old Caucasian female during a bilateral reduction mammoplasty. Pathology indicated nonproliferative fibrocystic disease. Family history included benign hypertension and atherosclerotic coronary artery disease. 151 2769412 COLANOT02 The COLANOT02 library was constructed using RNA isolated from diseased ascending colon tissue removed from a 25-year-old Caucasian female during a multiple segmental resection of the large bowel. Pathology indicated moderately to severely active chronic ulcerative colitis, involving the entire colectomy specimen and sparing 2 cm of the attached ileum. Grossly, the specimen showed continuous involvement from the rectum proximally; marked mucosal atrophy and no skip areas were identified. Microscopically, the specimen showed dense, predominantly mucosal inflammation and crypt abscesses. Patient history included benign large bowel neoplasm. 152 2842779 DRGLNOT01 The DRGLNOT01 library was constructed using RNA isolated from dorsal root ganglion tissue removed from the low thoracic/high lumbar region of a 32-year-old Caucasian male who died from acute pulmonary edema and bronchopneumonia, bilateral pleural and pericardial effusions, and malignant lymphoma (natural killer cell type). Patient history included probable cytomegalovirus, infection, hepatic congestion and steatosis, splenomegaly, hemorrhagic cystitis, thyroid hemorrhage, and Bell's palsy. 153 2966260 SCORNOT04 The SCORNOT04 library was constructed using RNA isolated from cervical spinal cord tissue removed from a 32- year-old Caucasian male who died from acute pulmonary edema and bronchopneumonia, bilateral pleural and pericardial effusions, and malignant lymphoma (natural killer cell type). Patient history included probable cytomegalovirus, infection, hepatic congestion and steatosis, splenomegaly, hemorrhagic cystitis, thyroid hemorrhage, and Bell's palsy. 154 2993326 KIDNFET02 The KIDNFET02 library was constructed using RNA isolated from kidney tissue removed from a Caucasian male fetus, who was stillborn with a hypoplastic left heart and died at 23 weeks' gestation. 155 3001124 TLYMNOT06 The TLYMNOT06 library was constructed using 0.5 micrograms of polyA RNA isolated from activated Th2 cells. These cells were differentiated from umbilical cord CD4 T cells with IL-4 in the presence of anti-IL-12 antibodies and B7-transfected COS cells, and then activated for six hours with anti-CD3 and anti-CD28 antibodies. 156 3120070 LUNGTUT13 The LUNGTUT13 library was constructed using RNA isolated from tumorous lung tissue removed from the right upper lobe of a 47-year-old Caucasian male during a segmental lung resection. Pathology indicated invasive grade 3 (of 4) adenocarcinoma. Family history included atherosclerotic coronary artery disease, and type II diabetes. 157 3133035 SMCCNOT01 The SMCCNOT01 library was constructed using RNA isolated from smooth muscle cells removed from the coronary artery of a 3-year-old Caucasian male. 158 3436879 PENCNOT05 The PENCNOT05 library was constructed using RNA isolated from penis left corpus cavernosum tissue.

TABLE-US-00007 TABLE 5 Program Description Reference Parameter Threshold ABI/FACTURA A program that removes vector sequences and masks Perkin-Elmer Applied Biosystems, ambiguous bases in nucleic acid sequences. Foster City, CA. ABI/PARACEL FDF A Fast Data Finder useful in comparing and annotating Perkin-Elmer Applied Biosystems, Mismatch <50% amino acid or nucleic acid sequences. Foster City, CA; Paracel Inc., Pasadena, CA. ABI/AutoAssembler A program that assembles nucleic acid sequences. Perkin-Elmer Applied Biosystems, Foster City, CA. BLAST A Basic Local Alignment Search Tool useful in sequence Altschul, S. F. et al. (1990) J. Mol. Biol. ESTs: Probability value = 1.0E-8 similarity search for amino acid and nucleic acid sequences. 215: 403-410; Altschul, S. F. et al. (1997) or less BLAST includes five functions: blastp, blastn, blastx, tblastn, and tblastx. Nucleic Acids Res. 25: 3389-3402. Full Length sequences: Probability value = 1.0E-10 or less FASTA A Pearson and Lipman algorithm that searches for Pearson, W. R. and D. J. Lipman (1988) Proc. ESTs: fasta E value = 1.06E-6 similarity between a query sequence and a group of Natl. Acad Sci. 85: 2444-2448; Pearson, W. R. Assembled ESTs: fasta Identity = sequences of the same type. FASTA comprises as least (1990) Methods Enzymol. 183: 63-98; and 95% or greater and Match five functions: fasta, tfasta, fastx, tfastx, and ssearch. Smith, T. F. and M. S. Waterman (1981) Adv. length = 200 bases or greater; fastx Appl. Math. 2: 482-489. E value = 1.0E-8 or less Full Length sequences: fastx score = 100 or greater BLIMPS A BLocks IMProved Searcher that matches a sequence Henikoff, S and J. G. Henikoff, Nucl. Acid Res., Score = 1000 or greater; Ratio of against those in BLOCKS and PRINTS databases to search 19: 6565-72, 1991. J. G. Henikoff and S. Henikoff Score/Strength = 0.75 or larger; for gene families, sequence homology, and structural fingerprint regions. (1996) Methods Enzymol. 266: 88-105; and Probability value = 1.0E-3 or less and Attwood, T. K. et al. (1997) J. Chem. Inf. Comput. Sci. 37: 417-424. PFAM A Hidden Markov Models-based application useful for protein family search. Krogh, A. et al. (1994) J. Mol. Biol., 235: 1501-1531; Score = 10-50 bits, depending Sonnhammer, E. L. L. et al. (1988) on individual protein families Nucleic Acids Res. 26: 320-322. ProfileScan An algorithm that searches for structural and sequence Gribskov, M. et al. (1988) CABIOS 4: 61-66; Score = 4.0 or greater motifs in protein sequences that match sequence patterns Gribskov, et al. (1989) Methods Enzymol. defined in Prosite. 183: 146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25: 217-221. Phred A base-calling algorithm that examines automated Ewing, B. et al. (1998) Genome sequencer traces with high sensitivity and probability. Res. 8: 175-185; Ewing, B. and P. Green (1998) Genome Res. 8: 186-194. Phrap A Phils Revised Assembly Program including SWAT and Smith, T. F. and M. S. Waterman (1981) Adv. Score = 120 or greater; Match CrossMatch, programs based on efficient implementation of Appl. Math. 2: 482-489; Smith, T. F. and M. S. Waterman length = 56 or greater the Smith-Waterman algorithm, useful in searching (1981) J. Mol. Biol. 147: 195-197; sequence homology and assembling DNA sequences. and Green, P., University of Washington, Seattle, WA. Consed A graphical tool for viewing and editing Phrap assemblies Gordon, D. et al. (1998) Genome Res. 8: 195-202. SPScan A weight matrix analysis program that scans protein sequences for the presence of Nielson, H. et al. (1997) Protein Engineering Score = 5 or greater secretory signal peptides. 10: 1-6; Claverie, J. M. and S. Audic (1997) CABIOS 12: 431-439. Motifs A program that searches amino acid sequences for patterns that matched those Bairoch et al. supra; Wisconsin defined in Prosite. Package Program Manual, version 9, page M51-59, Genetics Computer Group, Madison, WI.

Sequence CWU 1

1

1581240PRTHomo sapiensmisc_featureIncyte ID No 153831 1Met Gly Asn Cys Gln Ala Gly His Asn Leu His Leu Cys Leu Ala 1 5 10 15His His Pro Pro Leu Val Cys Ala Thr Leu Ile Leu Leu Leu Leu 20 25 30Gly Leu Ser Gly Leu Gly Leu Gly Ser Phe Leu Leu Thr His Arg 35 40 45Thr Gly Leu Arg Ser Pro Asp Ile Pro Gln Asp Trp Val Ser Phe 50 55 60Leu Arg Ser Phe Gly Gln Leu Thr Leu Cys Pro Arg Asn Gly Thr 65 70 75Val Thr Gly Lys Trp Arg Gly Ser His Val Val Gly Leu Leu Thr 80 85 90Thr Leu Asn Phe Gly Asp Gly Pro Asp Arg Asn Lys Thr Arg Thr 95 100 105Phe Gln Ala Thr Val Leu Gly Ser Gln Met Gly Leu Lys Gly Ser 110 115 120Ser Ala Gly Gln Leu Val Leu Ile Thr Ala Arg Val Thr Thr Glu 125 130 135Arg Thr Ala Gly Thr Cys Leu Tyr Phe Ser Ala Val Pro Gly Ile 140 145 150Leu Pro Ser Ser Gln Pro Pro Ile Ser Cys Ser Glu Glu Gly Ala 155 160 165Gly Asn Ala Thr Leu Ser Pro Arg Met Gly Glu Glu Cys Val Ser 170 175 180Val Trp Ser His Glu Gly Leu Val Leu Thr Lys Leu Leu Thr Ser 185 190 195Glu Glu Leu Ala Leu Cys Gly Ser Arg Leu Leu Val Leu Gly Ser 200 205 210Phe Leu Leu Leu Phe Cys Gly Leu Leu Cys Cys Val Thr Ala Met 215 220 225Cys Phe His Pro Arg Arg Glu Ser His Trp Ser Arg Thr Arg Leu 230 235 2402100PRTHomo sapiensmisc_featureIncyte ID No 350629 2Met Glu Gly Leu Arg Ser Ser Val Glu Leu Asp Pro Glu Leu Thr 1 5 10 15Pro Gly Lys Leu Asp Glu Glu Met Val Gly Leu Pro Pro His Asp 20 25 30Ala Ser Pro Gln Val Thr Phe His Ser Leu Asp Gly Lys Thr Val 35 40 45Val Cys Pro His Phe Met Gly Leu Leu Leu Gly Leu Leu Leu Leu 50 55 60Leu Thr Leu Ser Val Arg Asn Gln Leu Cys Val Arg Gly Glu Arg 65 70 75Gln Leu Ala Glu Thr Leu His Ser Gln Val Lys Glu Lys Ser Gln 80 85 90Leu Ile Gly Lys Lys Thr Asp Cys Arg Asp 95 1003416PRTHomo sapiensmisc_featureIncyte ID No 729171 3Met Ser Gly His Arg Ser Thr Arg Lys Arg Cys Gly Asp Ser His 1 5 10 15Pro Glu Ser Pro Val Gly Phe Gly His Met Ser Thr Thr Gly Cys 20 25 30Val Leu Asn Lys Leu Phe Gln Leu Pro Thr Pro Pro Leu Ser Arg 35 40 45His Gln Leu Lys Arg Leu Glu Glu His Arg Tyr Gln Ser Ala Gly 50 55 60Arg Ser Leu Leu Glu Pro Leu Val Gln Gly Tyr Trp Glu Trp Leu 65 70 75Val Arg Arg Val Pro Ser Trp Ile Ala Pro Asn Leu Ile Thr Ile 80 85 90Ile Gly Leu Ser Ile Asn Ile Cys Thr Thr Ile Leu Leu Val Phe 95 100 105Tyr Cys Pro Thr Ala Thr Glu Gln Ala Pro Leu Trp Ala Tyr Ile 110 115 120Ala Cys Ala Cys Gly Leu Phe Ile Tyr Gln Ser Leu Asp Ala Ile 125 130 135Gly Gly Lys Gln Ala Arg Arg Thr Asn Ser Ser Ser Pro Leu Gly 140 145 150Glu Leu Phe Asp His Gly Cys Asp Ser Leu Ser Thr Val Phe Val 155 160 165Val Leu Gly Thr Cys Ile Ala Val Gln Leu Gly Thr Asn Pro Asp 170 175 180Trp Met Phe Phe Cys Cys Phe Ala Gly Thr Phe Met Phe Tyr Cys 185 190 195Ala His Trp Gln Thr Tyr Val Ser Gly Thr Leu Arg Phe Gly Ile 200 205 210Ile Asp Val Thr Glu Val Gln Ile Phe Ile Ile Ile Met His Leu 215 220 225Leu Ala Val Met Gly Gly Pro Pro Phe Trp Gln Ser Met Ile Pro 230 235 240Val Leu Asn Ile Gln Met Lys Ile Phe Pro Ala Leu Cys Thr Val 245 250 255Ala Gly Thr Ile Phe Pro Val Thr Asn Tyr Phe Arg Val Ile Phe 260 265 270Thr Gly Gly Val Gly Lys Asn Gly Ser Thr Ile Ala Gly Thr Ser 275 280 285Val Leu Ser Pro Phe Leu His Ile Gly Ser Val Ile Thr Leu Ala 290 295 300Ala Met Ile Tyr Lys Lys Ser Ala Val Gln Leu Phe Glu Lys His 305 310 315Pro Cys Leu Tyr Ile Leu Thr Phe Gly Phe Val Ser Ala Lys Ile 320 325 330Thr Asn Lys Leu Val Val Ala His Met Thr Lys Ser Glu Met His 335 340 345Leu His Asp Thr Ala Phe Ile Gly Pro Ala Leu Leu Phe Leu Asp 350 355 360Gln Tyr Phe Asn Ser Phe Ile Asp Glu Tyr Ile Val Leu Trp Ile 365 370 375Ala Leu Val Phe Ser Phe Phe Asp Leu Ile Arg Tyr Cys Val Ser 380 385 390Val Cys Asn Gln Ile Ala Ser His Leu His Ile His Val Phe Arg 395 400 405Ile Lys Val Ser Thr Ala His Ser Asn His His 410 4154224PRTHomo sapiensmisc_featureIncyte ID No 1273641 4Met Thr Ile Thr Ser Phe Tyr Ala Val Cys Phe Tyr Leu Leu Met 1 5 10 15Leu Val Met Val Glu Gly Phe Gly Gly Lys Glu Ala Val Leu Arg 20 25 30Thr Leu Arg Asp Thr Pro Met Met Val His Thr Gly Pro Cys Cys 35 40 45Cys Cys Cys Pro Cys Cys Gln Arg Leu Leu Leu Thr Arg Lys Lys 50 55 60Leu Gln Leu Leu Met Leu Gly Pro Phe Gln Tyr Ala Phe Leu Lys 65 70 75Ile Thr Leu Thr Trp Trp Ala Leu Phe Ser Ser Pro Thr Glu Ser 80 85 90Tyr Asp Pro Ala Asp Ile Ser Glu Gly Ser Thr Ala Leu Trp Ile 95 100 105Asn Thr Phe Leu Gly Val Ser Thr Leu Leu Ala Leu Trp Thr Leu 110 115 120Gly Ile Ile Ser Arg Gln Ala Arg Leu His Leu Gly Glu Gln Asn 125 130 135Met Gly Ala Lys Phe Ala Leu Phe Gln Val Leu Leu Ile Leu Thr 140 145 150Ala Leu Gln Pro Ser Ile Phe Ser Val Leu Ala Asn Gly Gly Gln 155 160 165Ile Ala Cys Ser Pro Pro Tyr Ser Ser Lys Thr Arg Ser Gln Val 170 175 180Met Asn Cys His Leu Leu Ile Leu Glu Thr Phe Leu Met Thr Val 185 190 195Leu Thr Arg Met Tyr Tyr Arg Arg Lys Asp His Lys Val Gly Tyr 200 205 210Glu Thr Phe Ser Ser Pro Asp Leu Asp Leu Asn Leu Lys Ala 215 2205247PRTHomo sapiensmisc_featureIncyte ID No 1427389 5Met Gly Ala Ala Val Phe Phe Gly Cys Thr Phe Val Ala Phe Gly 1 5 10 15Pro Ala Phe Ala Leu Phe Leu Ile Thr Val Ala Gly Asp Pro Leu 20 25 30Arg Val Ile Ile Leu Val Ala Gly Ala Phe Phe Trp Leu Val Ser 35 40 45Leu Leu Leu Ala Ser Val Val Trp Phe Ile Leu Val His Val Thr 50 55 60Asp Arg Ser Asp Ala Arg Leu Gln Tyr Gly Leu Leu Ile Phe Gly 65 70 75Ala Ala Val Ser Val Leu Leu Gln Glu Val Phe Arg Phe Ala Tyr 80 85 90Tyr Lys Leu Leu Lys Lys Ala Asp Glu Gly Leu Ala Ser Leu Ser 95 100 105Glu Asp Gly Arg Ser Pro Ile Ser Ile Arg Gln Met Ala Tyr Val 110 115 120Ser Gly Leu Ser Phe Gly Ile Ile Ser Gly Val Phe Ser Val Ile 125 130 135Asn Ile Leu Ala Asp Ala Leu Gly Pro Gly Val Val Gly Ile His 140 145 150Gly Asp Ser Pro Tyr Tyr Phe Leu Thr Ser Ala Phe Leu Thr Ala 155 160 165Ala Ile Ile Leu Leu His Thr Phe Trp Gly Val Val Phe Phe Asp 170 175 180Ala Cys Glu Arg Arg Arg Tyr Trp Ala Leu Gly Leu Val Val Gly 185 190 195Ser His Leu Leu Thr Ser Gly Leu Thr Phe Leu Asn Pro Trp Tyr 200 205 210Glu Ala Ser Leu Leu Pro Ile Tyr Ala Val Thr Val Ser Met Gly 215 220 225Leu Trp Ala Phe Ile Thr Ala Gly Gly Ser Leu Arg Ser Ile Gln 230 235 240Arg Ser Leu Leu Cys Lys Asp 245672PRTHomo sapiensmisc_featureIncyte ID No 1458357 6Met Tyr Trp Leu His Gln Asp Met Phe Trp Leu Leu Val Leu Ile 1 5 10 15Leu Ile Cys Leu Val Thr His Leu Ile Thr Arg Glu Thr Ile Tyr 20 25 30Val Lys Ser Leu Phe Tyr Phe Lys Ile Leu Phe Val Tyr Leu Glu 35 40 45Ser Lys Pro Ala His Cys Asn Leu Cys Leu Tyr Ala Lys Glu Leu 50 55 60Asp Phe Phe Val Phe Val Leu Phe Phe Lys Leu Leu 65 707106PRTHomo sapiensmisc_featureIncyte ID No 1482837 7Met His Tyr Gly Phe Leu Leu Trp Ser Gly Lys Lys Arg Gly Leu 1 5 10 15Ala Gly Pro Gln Gly Ile Cys Lys Ser Gln Lys Thr Val Phe Leu 20 25 30Thr Ala Arg Cys His Ser Thr Leu Val Gly Lys Glu Glu Lys Lys 35 40 45Ile Lys Leu Phe His Arg Thr Ser Trp Pro Pro His Ser His Ala 50 55 60Leu Pro Thr Gln Pro Gly Pro Leu Pro Ala Pro Phe Ile Lys Ala 65 70 75Glu Arg Val Glu Leu Ile Phe Thr Asn Cys Asn Ile Phe Val Val 80 85 90Ser Val Ser Ser Phe Val Ser Ser Ala Glu Pro Cys Pro Phe Leu 95 100 105Leu8239PRTHomo sapiensmisc_featureIncyte ID No 1517434 8Met Cys Val Thr Gln Leu Arg Leu Ile Phe Tyr Met Gly Ala Met 1 5 10 15Asn Asn Ile Leu Lys Phe Leu Val Ser Gly Asp Gln Lys Thr Val 20 25 30Gly Leu Tyr Thr Ser Ile Phe Gly Val Leu Gln Leu Leu Cys Leu 35 40 45Leu Thr Ala Pro Val Ile Gly Tyr Ile Met Asp Trp Arg Leu Lys 50 55 60Glu Cys Glu Asp Ala Ser Glu Glu Pro Glu Glu Lys Asp Ala Asn 65 70 75Gln Gly Glu Lys Lys Lys Lys Lys Arg Asp Arg Gln Ile Gln Lys 80 85 90Ile Thr Asn Ala Met Arg Ala Phe Ala Phe Thr Asn Leu Leu Leu 95 100 105Val Gly Phe Gly Val Thr Cys Leu Ile Pro Asn Leu Pro Leu Gln 110 115 120Ile Leu Ser Phe Ile Leu His Thr Ile Val Arg Gly Phe Ile His 125 130 135Ser Ala Val Gly Gly Leu Tyr Ala Ala Val Tyr Pro Ser Thr Gln 140 145 150Phe Gly Ser Leu Thr Gly Leu Gln Ser Leu Ile Ser Ala Leu Phe 155 160 165Ala Leu Leu Gln Gln Pro Leu Phe Leu Ala Met Met Gly Pro Leu 170 175 180Gln Gly Asp Pro Leu Trp Val Asn Val Gly Leu Leu Leu Leu Ser 185 190 195Leu Leu Gly Phe Cys Leu Pro Leu Tyr Leu Ile Cys Tyr Arg Arg 200 205 210Gln Leu Glu Arg Gln Leu Gln Gln Arg Gln Glu Asp Asp Lys Leu 215 220 225Phe Leu Lys Ile Asn Gly Ser Ser Asn Gln Glu Ala Phe Val 230 2359150PRTHomo sapiensmisc_featureIncyte ID No 1536052 9Met Trp Leu Pro Trp Ala Leu Leu Leu Leu Trp Val Pro Ala Ser 1 5 10 15Thr Ser Met Thr Pro Ala Ser Ile Thr Ala Ala Lys Thr Ser Thr 20 25 30Ile Thr Thr Ala Phe Pro Pro Val Ser Ser Thr Thr Leu Phe Ala 35 40 45Val Gly Ala Thr His Ser Ala Ser Ile Gln Glu Glu Thr Glu Glu 50 55 60Val Val Asn Ser Gln Leu Pro Leu Leu Leu Ser Leu Leu Ala Leu 65 70 75Leu Leu Leu Leu Leu Val Gly Ala Ser Leu Leu Ala Trp Arg Met 80 85 90Phe Gln Lys Trp Ile Lys Ala Gly Asp His Ser Glu Leu Ser Gln 95 100 105Asn Pro Lys Gln Ala Ser Pro Arg Glu Glu Leu His Tyr Ala Ser 110 115 120Val Val Phe Asp Ser Asn Thr Asn Arg Ile Ala Ala Gln Arg Pro 125 130 135Arg Glu Glu Glu Pro Asp Ser Asp Tyr Ser Val Ile Arg Lys Thr 140 145 15010110PRTHomo sapiensmisc_featureIncyte ID No 1666118 10Met Pro Ala Cys Ile Leu Glu Asp Val Glu Ile Ser Phe Arg Gln 1 5 10 15Lys Trp Ser Ile Asn Ser Asp Thr Leu Leu Gly Cys Leu Thr Leu 20 25 30Phe Ile Ser Ala Phe Phe Ala Ser Glu Thr Trp Gln Lys Leu Val 35 40 45Ser Gln Ser Thr Ala Phe Leu Thr Met Cys Gly Val Thr Tyr Ala 50 55 60Trp Tyr Met Pro Leu Leu Leu Leu Lys Phe Tyr Ser Leu Leu Leu 65 70 75Ala Gln Val Leu Leu Asn Pro Phe Leu Met Cys Thr Gly Trp Arg 80 85 90Lys Asn Tyr Ser Gln His Phe Glu Arg Lys Val Phe Arg Asn Asn 95 100 105Ile Asn Trp His Tyr 1101158PRTHomo sapiensmisc_featureIncyte ID No 1675560 11Met Leu Val Thr Asn Ile Thr Val Asn Arg Ser Leu Leu His Ala 1 5 10 15Lys Asp Gln Cys Asp Leu Trp Met Glu Met Ile Val Met Lys Phe 20 25 30Leu Phe His Gly Ala Val Phe Leu Phe Ile Ser Leu Gly Ser Arg 35 40 45Phe Ser Glu Ala Val Arg Cys Cys Cys Cys Gly Phe Leu 50 5512221PRTHomo sapiensmisc_featureIncyte ID No 1687323 12Met Ala Ala Ser Ser Ile Ser Ser Pro Trp Gly Lys His Val Phe 1 5 10 15Lys Ala Ile Leu Met Val Leu Val Ala Leu Ile Leu Leu His Ser 20 25 30Ala Leu Ala Gln Ser Arg Arg Asp Phe Ala Pro Pro Gly Gln Gln 35 40 45Lys Arg Glu Ala Pro Val Asp Val Leu Thr Gln Ile Gly Arg Ser 50 55 60Val Arg Gly Thr Leu Asp Ala Trp Ile Gly Pro Glu Thr Met His 65 70 75Leu Val Ser Glu Ser Ser Ser Gln Val Leu Trp Ala Ile Ser Ser 80 85 90Ala Ile Ser Val Ala Phe Phe Ala Leu Ser Gly Ile Ala Ala Gln 95 100 105Leu Leu Asn Ala Leu Gly Leu Ala Gly Asp Tyr Leu Ala Gln Gly 110 115 120Leu Lys Leu Ser Pro Gly Gln Val Gln Thr Phe Leu Leu Trp Gly 125 130 135Ala Gly Ala Leu Val Val Tyr Trp Leu Leu Ser Leu Leu Leu Gly 140 145 150Leu Val Leu Ala Leu Leu Gly Arg Ile Leu Trp Gly Leu Lys Leu 155 160 165Val Ile Phe Leu Ala Gly Phe Val Ala Leu Met Arg Ser Val Pro 170 175 180Asp Pro Ser Thr Arg Ala Leu Leu Leu Leu Ala Leu Leu Ile Leu 185 190 195Tyr Ala Leu Leu Ser Arg Leu Thr Gly Ser Arg Ala Ser Gly Ala 200 205 210Gln Leu Glu Ala Lys Val Arg Gly Leu Glu Arg 215 22013262PRTHomo sapiensmisc_featureIncyte ID No 1692236 13Met Ala Leu Gly Leu Lys Cys Phe Arg Met Val His Pro Thr Phe 1 5 10 15Arg Asn Tyr Leu Ala Ala Ser Ile Arg Pro Val Ser Glu Val Thr 20 25 30Leu Lys Thr Val His Glu Arg Gln His Gly His Arg Gln Tyr Met 35 40 45Ala Tyr Ser Ala Val Pro Val Arg His Phe Ala Thr Lys Lys Ala 50 55

60Lys Ala Lys Gly Lys Gly Gln Ser Gln Thr Arg Val Asn Ile Asn 65 70 75Ala Ala Leu Val Glu Asp Ile Ile Asn Leu Glu Glu Val Asn Glu 80 85 90Glu Met Lys Ser Val Ile Glu Ala Leu Lys Asp Asn Phe Asn Leu 95 100 105Thr Leu Asn Ile Arg Ala Ser Pro Gly Ser Leu Asp Lys Ile Ala 110 115 120Val Val Thr Ala Asp Gly Lys Leu Ala Leu Asn Gln Ile Ser Gln 125 130 135Ile Ser Met Lys Ser Pro Gln Leu Ile Leu Val Asn Met Ala Ser 140 145 150Phe Pro Glu Cys Thr Ala Ala Ala Ile Lys Ala Ile Arg Glu Ser 155 160 165Gly Met Asn Leu Asn Pro Glu Val Glu Gly Thr Leu Ile Arg Val 170 175 180Pro Ile Pro Gln Val Thr Arg Glu His Arg Glu Met Leu Val Lys 185 190 195Leu Ala Lys Gln Asn Thr Asn Lys Ala Lys Asp Ser Leu Arg Lys 200 205 210Val Arg Thr Asn Ser Met Asn Lys Leu Lys Lys Ser Lys Asp Thr 215 220 225Val Ser Glu Asp Thr Ile Arg Leu Ile Glu Lys Gln Ile Ser Gln 230 235 240Met Ala Asp Asp Thr Val Ala Glu Leu Asp Arg His Leu Ala Val 245 250 255Lys Thr Lys Glu Leu Leu Gly 2601490PRTHomo sapiensmisc_featureIncyte ID No 1720847 14Met Glu Ala Ala Met Glu Trp Glu Gly Gly Ala Ile Arg His Pro 1 5 10 15Ser Thr Glu Leu Gly Ile Met Gly Ser Trp Phe Tyr Leu Phe Leu 20 25 30Ala Pro Leu Phe Lys Gly Leu Ala Gly Ser Leu Pro Phe Gly Cys 35 40 45Leu Ser Leu Leu Gln Pro Thr Glu Lys Thr Ala Leu Gln Arg Trp 50 55 60Arg Val Phe Met Lys His Ser Cys Gln Glu Pro Arg His Arg Ala 65 70 75Gly Gly Leu Glu Lys Gly Gly His Thr Gly Gly Gly Arg Ser Trp 80 85 9015208PRTHomo sapiensmisc_featureIncyte ID No 1752821 15Met Ala Ser Ser Leu Leu Ala Gly Glu Arg Leu Val Arg Ala Leu 1 5 10 15Gly Pro Gly Gly Glu Leu Glu Pro Glu Arg Leu Pro Arg Lys Leu 20 25 30Arg Ala Glu Leu Glu Ala Ala Leu Gly Lys Lys His Lys Gly Gly 35 40 45Asp Ser Ser Ser Gly Pro Gln Arg Leu Val Ser Phe Arg Leu Ile 50 55 60Arg Asp Leu His Gln His Leu Arg Glu Arg Asp Ser Lys Leu Tyr 65 70 75Leu His Glu Leu Leu Glu Gly Ser Glu Ile Tyr Leu Pro Glu Val 80 85 90Val Lys Pro Pro Arg Asn Pro Glu Leu Val Ala Arg Leu Glu Lys 95 100 105Ile Lys Ile Gln Leu Ala Asn Glu Glu Tyr Lys Arg Ile Thr Arg 110 115 120Asn Val Thr Cys Gln Asp Thr Arg His Gly Gly Thr Leu Ser Asp 125 130 135Leu Gly Lys Gln Val Arg Ser Leu Lys Ala Leu Val Ile Thr Ile 140 145 150Phe Asn Phe Ile Val Thr Val Val Ala Ala Phe Val Cys Thr Tyr 155 160 165Leu Gly Ser Gln Tyr Ile Phe Thr Glu Met Ala Ser Arg Val Leu 170 175 180Ala Ala Leu Ile Val Ala Ser Val Val Gly Leu Ala Glu Leu Tyr 185 190 195Val Met Val Arg Ala Met Glu Gly Glu Leu Gly Glu Leu 200 2051697PRTHomo sapiensmisc_featureIncyte ID No 1810923 16Met Thr Lys Lys Lys Arg Glu Asn Leu Gly Val Ala Leu Glu Ile 1 5 10 15Asp Gly Leu Glu Glu Lys Leu Ser Gln Cys Arg Arg Asp Leu Glu 20 25 30Ala Val Asn Ser Arg Leu His Ser Arg Glu Leu Ser Pro Glu Ala 35 40 45Arg Arg Ser Leu Glu Lys Glu Lys Asn Ser Leu Met Asn Lys Ala 50 55 60Ser Asn Tyr Glu Lys Glu Leu Lys Phe Leu Arg Gln Glu Asn Arg 65 70 75Lys Asn Met Leu Leu Ser Val Ala Ile Phe Ile Leu Leu Thr Leu 80 85 90Val Tyr Ala Tyr Trp Thr Met 9517243PRTHomo sapiensmisc_featureIncyte ID No 1822315 17Met Phe Phe Leu Ser Ser Ser Lys Leu Thr Lys Trp Lys Gly Glu 1 5 10 15Val Lys Lys Arg Leu Asp Ser Glu Tyr Lys Glu Gly Gly Gln Arg 20 25 30Asn Trp Val Gln Val Phe Cys Asn Gly Ala Val Pro Thr Glu Leu 35 40 45Ala Leu Leu Tyr Met Ile Glu Asn Gly Pro Gly Glu Ile Pro Val 50 55 60Asp Phe Ser Lys Gln Tyr Ser Ala Ser Trp Met Cys Leu Ser Leu 65 70 75Leu Ala Ala Leu Ala Cys Ser Ala Gly Asp Thr Trp Ala Ser Glu 80 85 90Val Gly Pro Val Leu Ser Lys Ser Ser Pro Arg Leu Ile Thr Thr 95 100 105Trp Glu Lys Val Pro Val Gly Thr Asn Gly Gly Val Thr Val Val 110 115 120Gly Leu Val Ser Ser Leu Leu Gly Gly Thr Phe Val Gly Ile Ala 125 130 135Tyr Phe Leu Thr Gln Leu Ile Phe Val Asn Asp Leu Asp Ile Ser 140 145 150Ala Pro Gln Trp Pro Ile Ile Ala Phe Gly Gly Leu Ala Gly Leu 155 160 165Leu Gly Ser Ile Val Asp Ser Tyr Leu Gly Ala Thr Met Gln Tyr 170 175 180Thr Gly Leu Asp Glu Ser Thr Gly Met Val Val Asn Ser Pro Thr 185 190 195Asn Lys Ala Arg His Ile Ala Gly Lys Pro Ile Leu Asp Asn Asn 200 205 210Ala Trp Ile Cys Phe Leu Leu Phe Leu Leu Pro Ser Cys Ser Gln 215 220 225Leu Leu Leu Gly Val Phe Gly Pro Gly Gly Glu Leu Tyr Phe Ile 230 235 240Ser Thr Gly18162PRTHomo sapiensmisc_featureIncyte ID No 1877777 18Met Leu Gln Thr Ser Asn Tyr Ser Leu Val Leu Ser Leu Gln Phe 1 5 10 15Leu Leu Leu Ser Tyr Asp Leu Phe Val Asn Ser Phe Ser Glu Leu 20 25 30Leu Gln Lys Thr Pro Val Ile Gln Leu Val Leu Phe Ile Ile Gln 35 40 45Asp Ile Ala Val Leu Phe Asn Ile Ile Ile Ile Phe Leu Met Phe 50 55 60Phe Asn Thr Phe Val Phe Gln Ala Gly Leu Val Asn Leu Leu Phe 65 70 75His Lys Phe Lys Gly Thr Ile Ile Leu Thr Ala Val Tyr Phe Ala 80 85 90Leu Ser Ile Ser Leu His Val Trp Val Met Asn Leu Arg Trp Lys 95 100 105Asn Ser Asn Ser Phe Ile Trp Thr Asp Gly Leu Gln Met Leu Phe 110 115 120Val Phe Gln Arg Leu Ala Ala Val Leu Tyr Cys Tyr Phe Tyr Lys 125 130 135Arg Thr Ala Val Arg Leu Gly Asp Pro His Phe Tyr Gln Asp Ser 140 145 150Leu Trp Leu Arg Lys Glu Phe Met Gln Val Arg Arg 155 16019470PRTHomo sapiensmisc_featureIncyte ID No 1879819 19Met Leu Ser Pro Ser Pro Gly Lys Gly Pro Pro Pro Ala Val Ala 1 5 10 15Pro Arg Pro Lys Ala Pro Leu Gln Leu Gly Pro Ser Ser Ser Ile 20 25 30Lys Glu Lys Gln Gly Pro Leu Leu Asp Leu Phe Gly Gln Lys Leu 35 40 45Pro Ile Ala His Thr Pro Pro Pro Pro Pro Ala Pro Pro Leu Pro 50 55 60Leu Pro Glu Asp Pro Gly Thr Leu Ser Ala Glu Arg Arg Cys Leu 65 70 75Thr Gln Pro Val Glu Asp Gln Gly Val Ser Thr Gln Leu Leu Ala 80 85 90Pro Ser Gly Ser Val Cys Phe Ser Tyr Thr Gly Thr Pro Trp Lys 95 100 105Leu Phe Leu Arg Lys Glu Val Phe Tyr Pro Arg Glu Asn Phe Ser 110 115 120His Pro Tyr Tyr Leu Arg Leu Leu Cys Glu Gln Ile Leu Arg Asp 125 130 135Thr Phe Ser Glu Ser Cys Ile Arg Ile Ser Gln Asn Glu Arg Arg 140 145 150Lys Met Lys Asp Leu Leu Gly Gly Leu Glu Val Asp Leu Asp Ser 155 160 165Leu Thr Thr Thr Glu Asp Ser Val Lys Lys Arg Ile Val Val Ala 170 175 180Ala Arg Asp Asn Trp Ala Asn Tyr Phe Ser Arg Phe Phe Pro Val 185 190 195Ser Gly Glu Ser Gly Ser Asp Val Gln Leu Leu Ala Val Ser His 200 205 210Arg Gly Leu Arg Leu Leu Lys Val Thr Gln Gly Pro Gly Leu Arg 215 220 225Pro Asp Gln Leu Lys Ile Leu Cys Ser Tyr Ser Phe Ala Glu Val 230 235 240Leu Gly Val Glu Cys Arg Gly Gly Ser Thr Leu Glu Leu Ser Leu 245 250 255Lys Ser Glu Gln Leu Val Leu His Thr Ala Arg Ala Arg Ala Ile 260 265 270Glu Ala Leu Val Glu Leu Phe Leu Asn Glu Leu Lys Lys Asp Ser 275 280 285Gly Tyr Val Ile Ala Leu Arg Ser Tyr Ile Thr Asp Asn Cys Ser 290 295 300Leu Leu Ser Phe His Arg Gly Asp Leu Ile Lys Leu Leu Pro Val 305 310 315Cys His Pro Gly Ala Arg Leu Ala Val Trp Leu Cys Arg Gly Pro 320 325 330Phe Arg Thr Leu Ser Cys Arg His Ser Ala Ala Gly Cys Arg Ser 335 340 345Arg Leu Phe Leu Leu Gln Gly Ala Glu Glu Trp Leu Ala Gln Gly 350 355 360Ser Ala Val Gln Arg Gly Thr Arg Ala Gly Ser Val Gly Gln Gly 365 370 375Leu Arg Gly Glu Glu Asp Gly Arg Gly Thr Ser Arg Gly Lys Ala 380 385 390Cys Leu Arg Leu Arg Lys Glu Arg Gly Leu Thr Thr Pro Glu Ala 395 400 405Ala Met Arg Trp Asp His Pro Ala Val Arg Leu Leu Trp Leu Pro 410 415 420Leu Cys Pro Leu Leu Met Ala Arg Leu Val Ser Pro Ala Arg Leu 425 430 435Cys Thr Pro Cys Arg Gln Gly Leu Gly Trp Met Leu Leu Leu Cys 440 445 450Pro Thr Trp Tyr Leu Val Gln Gly Cys Pro Ser Arg Cys Leu Ile 455 460 465Asn Ser Ser Ser Leu 47020144PRTHomo sapiensmisc_featureIncyte ID No 1932945 20Met Glu Arg Glu Gly Ser Gly Gly Ser Gly Gly Ser Ala Gly Leu 1 5 10 15Leu Gln Gln Ile Leu Ser Leu Lys Val Val Pro Arg Val Gly Asn 20 25 30Gly Thr Leu Cys Pro Asn Ser Thr Ser Leu Cys Ser Phe Pro Glu 35 40 45Met Trp Tyr Gly Val Phe Leu Trp Ala Leu Val Ser Ser Leu Phe 50 55 60Phe His Val Pro Ala Gly Leu Leu Ala Leu Phe Thr Leu Arg His 65 70 75His Lys Tyr Gly Arg Phe Met Ser Val Ser Ile Leu Leu Met Gly 80 85 90Ile Val Gly Pro Ile Thr Ala Gly Ile Leu Thr Ser Ala Ala Ile 95 100 105Ala Gly Val Tyr Arg Ala Ala Gly Lys Glu Met Ile Pro Phe Glu 110 115 120Ala Leu Thr Leu Gly Thr Gly Gln Thr Phe Cys Val Leu Val Val 125 130 135Ser Phe Leu Arg Ile Leu Ala Thr Leu 14021221PRTHomo sapiensmisc_featureIncyte ID No 2061026 21Met Ala Leu Ala Leu Ala Ala Leu Ala Ala Val Glu Pro Ala Cys 1 5 10 15Gly Ser Arg Tyr Gln Gln Leu Gln Asn Glu Glu Glu Ser Gly Glu 20 25 30Pro Glu Gln Ala Ala Gly Asp Ala Pro Pro Pro Tyr Ser Ser Ile 35 40 45Ser Ala Glu Ser Ala Ala Tyr Phe Asp Tyr Lys Asp Glu Ser Gly 50 55 60Phe Pro Lys Pro Pro Ser Tyr Asn Val Ala Thr Thr Leu Pro Ser 65 70 75Tyr Asp Glu Ala Glu Arg Thr Lys Ala Glu Ala Thr Ile Pro Leu 80 85 90Val Pro Gly Arg Asp Glu Asp Phe Val Gly Arg Asp Asp Phe Asp 95 100 105Asp Ala Asp Gln Leu Arg Ile Gly Asn Asp Gly Ile Phe Met Leu 110 115 120Thr Phe Phe Met Ala Phe Leu Phe Asn Trp Ile Gly Phe Phe Leu 125 130 135Ser Phe Cys Leu Thr Thr Ser Ala Ala Gly Arg Tyr Gly Ala Ile 140 145 150Ser Gly Phe Gly Leu Ser Leu Ile Lys Trp Ile Leu Ile Val Arg 155 160 165Phe Ser Thr Tyr Phe Pro Gly Tyr Phe Asp Gly Gln Tyr Trp Leu 170 175 180Trp Trp Val Phe Leu Val Leu Gly Phe Leu Leu Phe Leu Arg Gly 185 190 195Phe Ile Asn Tyr Ala Lys Val Arg Lys Met Pro Glu Thr Phe Ser 200 205 210Asn Leu Pro Arg Thr Arg Val Leu Phe Ile Tyr 215 22022688PRTHomo sapiensmisc_featureIncyte ID No 2096687 22Met Ser Ala Glu Ser Gly Pro Gly Thr Arg Leu Arg Asn Leu Pro 1 5 10 15Val Met Gly Asp Gly Leu Glu Thr Ser Gln Met Ser Thr Thr Gln 20 25 30Ala Gln Ala Gln Pro Gln Pro Ala Asn Ala Ala Ser Thr Asn Pro 35 40 45Pro Pro Pro Glu Thr Ser Asn Pro Asn Lys Pro Lys Arg Gln Thr 50 55 60Asn Gln Leu Gln Tyr Leu Leu Arg Val Val Leu Lys Thr Leu Trp 65 70 75Lys His Gln Phe Ala Trp Pro Phe Gln Gln Pro Val Asp Ala Val 80 85 90Lys Leu Asn Leu Pro Asp Tyr Tyr Lys Ile Ile Lys Thr Pro Met 95 100 105Asp Met Gly Thr Ile Lys Lys Arg Leu Glu Asn Asn Tyr Tyr Trp 110 115 120Asn Ala Gln Glu Cys Ile Gln Asp Phe Asn Thr Met Phe Thr Asn 125 130 135Cys Tyr Ile Tyr Asn Lys Pro Gly Asp Asp Ile Val Leu Met Ala 140 145 150Glu Ala Leu Glu Lys Leu Phe Leu Gln Lys Ile Asn Glu Leu Pro 155 160 165Thr Glu Glu Thr Glu Ile Met Ile Val Gln Ala Lys Gly Arg Gly 170 175 180Arg Gly Arg Lys Glu Thr Gly Thr Ala Lys Pro Gly Val Ser Thr 185 190 195Val Pro Asn Thr Thr Gln Ala Ser Thr Pro Pro Gln Thr Gln Thr 200 205 210Pro Gln Pro Asn Pro Pro Pro Val Gln Ala Thr Pro His Pro Phe 215 220 225Pro Ala Val Thr Pro Asp Leu Ile Val Gln Thr Pro Val Met Thr 230 235 240Val Val Pro Pro Gln Pro Leu Gln Thr Pro Pro Pro Val Pro Pro 245 250 255Gln Pro Gln Pro Pro Pro Ala Pro Ala Pro Gln Pro Val Gln Ser 260 265 270His Pro Pro Ile Ile Ala Ala Thr Pro Gln Pro Val Lys Thr Lys 275 280 285Lys Gly Val Lys Arg Lys Ala Asp Thr Thr Thr Pro Thr Thr Ile 290 295 300Asp Pro Ile His Glu Pro Pro Ser Leu Pro Pro Glu Pro Lys Thr 305 310 315Thr Lys Leu Gly Gln Arg Arg Glu Ser Ser Arg Pro Val Lys Pro 320 325 330Pro Lys Lys Asp Val Pro Asp Ser Gln Gln His Pro Ala Pro Glu 335 340 345Lys Ser Ser Lys Val Ser Glu Gln Leu Lys Cys Cys Ser Gly Ile 350 355 360Leu Lys Glu Met Phe Ala Lys Lys His Ala Ala Tyr Ala Trp Pro 365 370 375Phe Tyr Lys Pro Val Asp Val Glu Ala Leu Gly Leu His Asp Tyr 380 385 390Cys Asp Ile Ile Lys His Pro Met Asp Met Ser Thr Ile Lys Ser 395 400 405Lys Leu Glu Ala Arg Glu Tyr Arg Asp Ala Gln Glu Phe Gly Ala 410 415 420Asp Val Arg Leu Met Phe Ser Asn Cys Tyr Lys Tyr Asn Pro Pro 425 430

435Asp His Glu Val Val Ala Met Ala Arg Lys Leu Gln Asp Val Phe 440 445 450Glu Met Arg Phe Ala Lys Met Pro Asp Glu Pro Glu Glu Pro Val 455 460 465Val Ala Val Ser Ser Pro Ala Val Pro Pro Pro Thr Lys Val Val 470 475 480Ala Pro Pro Ser Ser Ser Asp Ser Ser Ser Asp Ser Ser Ser Asp 485 490 495Ser Asp Ser Ser Thr Asp Asp Ser Glu Glu Glu Arg Ala Gln Arg 500 505 510Leu Ala Glu Leu Gln Glu Gln Leu Lys Ala Val His Glu Gln Leu 515 520 525Ala Ala Leu Ser Gln Pro Gln Gln Asn Lys Pro Lys Lys Lys Glu 530 535 540Lys Asp Lys Lys Glu Lys Lys Lys Glu Lys His Lys Arg Lys Glu 545 550 555Glu Val Glu Glu Asn Lys Lys Ser Lys Ala Lys Glu Pro Pro Pro 560 565 570Lys Lys Thr Lys Lys Asn Asn Ser Ser Asn Ser Asn Val Ser Lys 575 580 585Lys Glu Pro Ala Pro Met Lys Ser Lys Pro Pro Pro Thr Tyr Glu 590 595 600Ser Glu Glu Glu Asp Lys Cys Lys Pro Met Ser Tyr Glu Glu Lys 605 610 615Arg Gln Leu Ser Leu Asp Ile Asn Lys Leu Pro Gly Glu Lys Leu 620 625 630Gly Arg Val Val His Ile Ile Gln Ser Arg Glu Pro Ser Leu Lys 635 640 645Asn Ser Asn Pro Asp Glu Ile Glu Ile Asp Phe Glu Thr Leu Lys 650 655 660Pro Ser Thr Leu Arg Glu Leu Gly Ala Leu Cys His Leu Leu Phe 665 670 675Ala Glu Glu Lys Glu Thr Phe Lys Leu Arg Lys Leu Met 680 68523439PRTHomo sapiensmisc_featureIncyte ID No 2100530 23Met Gly Ser Gln Glu Val Leu Gly His Ala Ala Arg Leu Ala Ser 1 5 10 15Ser Gly Leu Leu Leu Gln Val Leu Phe Arg Leu Ile Thr Phe Val 20 25 30Leu Asn Ala Phe Ile Leu Arg Phe Leu Ser Lys Glu Ile Val Gly 35 40 45Val Val Asn Val Arg Leu Thr Leu Leu Tyr Ser Thr Thr Leu Phe 50 55 60Leu Ala Arg Glu Ala Phe Arg Arg Ala Cys Leu Ser Gly Gly Thr 65 70 75Gln Arg Asp Trp Ser Gln Thr Leu Asn Leu Leu Trp Leu Thr Val 80 85 90Pro Leu Gly Val Phe Trp Ser Leu Phe Leu Gly Trp Ile Trp Leu 95 100 105Gln Leu Leu Glu Val Pro Asp Pro Asn Val Val Pro His Tyr Ala 110 115 120Thr Gly Val Val Leu Phe Gly Leu Ser Ala Val Val Glu Leu Leu 125 130 135Gly Glu Pro Phe Trp Val Leu Ala Gln Ala His Met Phe Val Lys 140 145 150Leu Lys Val Ile Ala Glu Ser Leu Ser Val Ile Leu Lys Ser Val 155 160 165Leu Thr Ala Phe Leu Val Leu Trp Leu Pro His Trp Gly Leu Tyr 170 175 180Ile Phe Ser Leu Ala Gln Leu Phe Tyr Thr Thr Val Leu Val Leu 185 190 195Cys Tyr Val Ile Tyr Phe Thr Lys Leu Leu Gly Ser Pro Glu Ser 200 205 210Thr Lys Leu Gln Thr Leu Pro Val Ser Arg Ile Thr Asp Leu Leu 215 220 225Pro Asn Ile Thr Arg Asn Gly Ala Phe Ile Asn Trp Lys Glu Ala 230 235 240Lys Leu Thr Trp Ser Phe Phe Lys Gln Ser Phe Leu Lys Gln Ile 245 250 255Leu Thr Glu Gly Glu Arg Tyr Val Met Thr Phe Leu Asn Val Leu 260 265 270Asn Phe Gly Asp Gln Gly Val Tyr Asp Ile Val Asn Asn Leu Gly 275 280 285Ser Leu Val Ala Arg Leu Ile Phe Gln Pro Ile Glu Glu Ser Phe 290 295 300Tyr Ile Phe Phe Ala Lys Val Leu Glu Arg Gly Lys Asp Ala Thr 305 310 315Leu Gln Lys Gln Glu Asp Val Ala Val Ala Ala Ala Val Leu Glu 320 325 330Ser Leu Leu Lys Leu Ala Leu Leu Ala Gly Leu Thr Ile Thr Val 335 340 345Phe Gly Phe Ala Tyr Ser Gln Leu Ala Leu Asp Ile Tyr Gly Gly 350 355 360Thr Met Leu Ser Ser Gly Ser Gly Pro Val Leu Leu Arg Ser Tyr 365 370 375Cys Leu Tyr Val Leu Leu Leu Ala Ile Asn Gly Val Thr Glu Cys 380 385 390Phe Thr Phe Ala Ala Met Ser Lys Glu Glu Val Asp Arg Tyr Ser 395 400 405Ser Ala Val Ser Arg Ala Gly Gln Pro Asp Trp His Thr Leu Leu 410 415 420Trp Gly Pro Ser Val Trp Glu Gln Leu Ser Gly Gln His Xaa Ser 425 430 435Gln Arg Pro Ser24192PRTHomo sapiensmisc_featureIncyte ID No 2357636 24Met Thr Ala Val Gly Val Gln Ala Gln Arg Pro Leu Gly Gln Arg 1 5 10 15Gln Pro Arg Arg Ser Phe Phe Glu Ser Phe Ile Arg Thr Leu Ile 20 25 30Ile Thr Cys Val Ala Leu Ala Val Val Leu Ser Ser Val Ser Ile 35 40 45Cys Asp Gly His Trp Leu Leu Ala Glu Asp Arg Leu Phe Gly Leu 50 55 60Trp His Phe Cys Thr Thr Thr Asn Gln Ser Val Pro Ile Cys Phe 65 70 75Arg Asp Leu Gly Gln Ala His Val Pro Gly Leu Ala Val Gly Met 80 85 90Gly Leu Val Arg Ser Val Gly Ala Leu Ala Val Val Ala Ala Ile 95 100 105Phe Gly Leu Glu Phe Leu Met Val Ser Gln Leu Cys Glu Asp Lys 110 115 120His Ser Gln Cys Lys Trp Val Met Gly Ser Ile Leu Leu Leu Val 125 130 135Ser Phe Val Leu Ser Ser Gly Gly Leu Leu Gly Phe Val Ile Leu 140 145 150Leu Arg Asn Gln Val Thr Leu Ile Gly Phe Thr Leu Met Phe Trp 155 160 165Cys Glu Phe Thr Ala Ser Phe Leu Leu Phe Leu Asn Ala Ile Ser 170 175 180Gly Leu His Ile Asn Ser Ile Thr His Pro Trp Glu 185 19025175PRTHomo sapiensmisc_featureIncyte ID No 2365230 25Met Lys Glu Val Thr Arg Thr Trp Lys Ile Val Gly Gly Val Thr 1 5 10 15His Ala Asn Ser Tyr Tyr Lys Asn Gly Trp Ile Val Met Ile Ala 20 25 30Ile Gly Trp Ala Arg Gly Ala Gly Gly Thr Ile Ile Thr Asn Phe 35 40 45Glu Arg Leu Val Lys Gly Asp Trp Lys Pro Glu Gly Asp Glu Trp 50 55 60Leu Lys Met Ser Tyr Pro Ala Lys Val Thr Leu Leu Gly Ser Val 65 70 75Ile Phe Thr Phe Gln His Thr Gln His Leu Ala Ile Ser Lys His 80 85 90Asn Leu Met Phe Leu Tyr Thr Ile Phe Ile Val Ala Thr Lys Ile 95 100 105Thr Met Met Thr Thr Gln Thr Ser Thr Met Thr Phe Ala Pro Phe 110 115 120Glu Asp Thr Leu Ser Trp Met Leu Phe Gly Trp Gln Gln Pro Phe 125 130 135Ser Ser Cys Glu Lys Lys Ser Glu Ala Lys Ser Pro Ser Asn Gly 140 145 150Val Gly Ser Leu Ala Ser Lys Pro Val Asp Val Ala Ser Asp Asn 155 160 165Val Lys Lys Lys His Thr Lys Lys Asn Glu 170 1752691PRTHomo sapiensmisc_featureIncyte ID No 2455121 26Met Tyr Pro Pro Pro Pro Pro Pro Pro His Arg Asp Phe Ile Ser 1 5 10 15Val Thr Leu Ser Phe Gly Glu Ser Tyr Asp Asn Ser Lys Ser Trp 20 25 30Arg Arg Arg Ser Cys Trp Arg Lys Trp Lys Gln Leu Ser Arg Leu 35 40 45Gln Arg Asn Met Ile Leu Phe Leu Leu Ala Phe Leu Leu Phe Cys 50 55 60Gly Leu Leu Phe Tyr Ile Asn Leu Ala Asp His Trp Lys Ala Leu 65 70 75Ala Phe Arg Leu Gly Glu Glu Gln Lys Met Arg Pro Glu Ile Ala 80 85 90Gly27214PRTHomo sapiensmisc_featureIncyte ID No 2472514 27Met Gln Pro Thr Ser Trp Ala Val Ser Cys Gly Leu Arg Pro Leu 1 5 10 15Pro Ser Trp Lys Pro Gln Gly Gly Glu Gly Arg Gly Gly Glu Glu 20 25 30Arg Arg Gly Thr Val Met Gly Pro Trp Ser Arg Val Arg Val Ala 35 40 45Lys Cys Gln Met Leu Val Thr Cys Phe Phe Ile Leu Leu Leu Gly 50 55 60Leu Ser Val Ala Thr Met Val Thr Leu Thr Tyr Phe Gly Ala His 65 70 75Phe Ala Val Ile Arg Arg Ala Ser Leu Glu Lys Asn Pro Tyr Gln 80 85 90Ala Val His Gln Trp Ala Phe Ser Ala Gly Leu Ser Leu Val Gly 95 100 105Leu Leu Thr Leu Gly Ala Val Leu Ser Ala Ala Ala Thr Val Arg 110 115 120Glu Ala Gln Gly Leu Met Ala Gly Gly Phe Leu Cys Phe Ser Leu 125 130 135Ala Phe Cys Ala Gln Val Gln Val Val Phe Trp Arg Leu His Ser 140 145 150Pro Thr Gln Val Glu Asp Ala Met Leu Asp Thr Tyr Asp Leu Val 155 160 165Tyr Glu Gln Ala Met Lys Gly Thr Ser His Val Arg Arg Gln Glu 170 175 180Leu Ala Ala Ile Gln Asp Val Val Ser Val Gly Thr Ala Gly Trp 185 190 195Gln Gly Gly Gln Leu Leu Leu Gly Leu Gln Phe Arg Glu Gln Ala 200 205 210Gln Gly Gly Gln28250PRTHomo sapiensmisc_featureIncyte ID No 2543486 28Met Ser Val Ile Phe Phe Ala Cys Val Val Arg Val Arg Asp Gly 1 5 10 15Leu Pro Leu Ser Ala Ser Thr Asp Phe Tyr His Thr Gln Asp Phe 20 25 30Leu Glu Trp Arg Arg Arg Leu Lys Ser Leu Ala Leu Arg Leu Ala 35 40 45Gln Tyr Pro Gly Arg Gly Ser Ala Glu Gly Cys Asp Phe Ser Ile 50 55 60His Phe Ser Ser Phe Gly Asp Val Ala Cys Met Ala Ile Cys Ser 65 70 75Cys Gln Cys Pro Ala Ala Met Ala Phe Cys Phe Leu Glu Thr Leu 80 85 90Trp Trp Glu Phe Thr Ala Ser Tyr Asp Thr Thr Cys Ile Gly Leu 95 100 105Ala Ser Arg Pro Tyr Ala Phe Leu Glu Phe Asp Ser Ile Ile Gln 110 115 120Lys Val Lys Trp His Phe Asn Tyr Val Ser Ser Ser Gln Met Glu 125 130 135Cys Ser Leu Glu Lys Ile Gln Glu Glu Leu Lys Leu Gln Pro Pro 140 145 150Ala Val Leu Thr Leu Glu Asp Thr Asp Val Ala Asn Gly Val Met 155 160 165Asn Gly His Thr Pro Met His Leu Glu Pro Ala Pro Asn Phe Arg 170 175 180Met Glu Pro Val Thr Ala Leu Gly Ile Leu Ser Leu Ile Leu Asn 185 190 195Ile Met Cys Ala Ala Leu Asn Leu Ile Arg Gly Val His Leu Ala 200 205 210Glu His Ser Leu Gln Val Ala His Glu Glu Ile Gly Asn Ile Leu 215 220 225Ala Phe Leu Val Pro Phe Val Ala Cys Ile Phe Gln Asp Pro Arg 230 235 240Ser Trp Phe Cys Trp Leu Asp Gln Thr Ser 245 2502984PRTHomo sapiensmisc_featureIncyte ID No 2778171 29Met Ala Thr Gly Thr Asp Gln Val Val Gly Leu Gly Leu Val Ala 1 5 10 15Val Ser Leu Ile Ile Phe Thr Tyr Tyr Thr Ala Trp Val Ile Leu 20 25 30Leu Pro Phe Ile Asp Ser Gln His Val Ile His Lys Tyr Phe Leu 35 40 45Pro Arg Ala Tyr Ala Val Ala Ile Pro Leu Ala Ala Gly Leu Leu 50 55 60Leu Leu Leu Phe Val Gly Leu Phe Ile Ser Tyr Val Met Leu Lys 65 70 75Ser Lys Arg Val Thr Lys Lys Ala Gln 8030277PRTHomo sapiensmisc_featureIncyte ID No 2799575 30Met Ala Ser Ala Glu Leu Asp Tyr Thr Ile Glu Ile Pro Asp Gln 1 5 10 15Pro Cys Trp Ser Gln Lys Asn Ser Pro Ser Pro Gly Gly Lys Glu 20 25 30Ala Glu Thr Arg Gln Pro Val Val Ile Leu Leu Gly Trp Gly Gly 35 40 45Cys Lys Asp Lys Asn Leu Ala Lys Tyr Ser Ala Ile Tyr His Lys 50 55 60Arg Gly Cys Ile Val Ile Arg Tyr Thr Ala Pro Trp His Met Val 65 70 75Phe Phe Ser Glu Ser Leu Gly Ile Pro Ser Leu Arg Val Leu Ala 80 85 90Gln Lys Leu Leu Glu Leu Leu Phe Asp Tyr Glu Ile Glu Lys Glu 95 100 105Pro Leu Leu Phe His Val Phe Ser Asn Gly Gly Val Met Leu Tyr 110 115 120Arg Tyr Val Leu Glu Leu Leu Gln Thr Arg Arg Phe Cys Arg Leu 125 130 135Arg Val Val Gly Thr Ile Phe Asp Ser Ala Pro Gly Asp Ser Asn 140 145 150Leu Val Gly Ala Leu Arg Ala Leu Ala Ala Ile Leu Glu Arg Arg 155 160 165Ala Ala Met Leu Arg Leu Leu Leu Leu Val Ala Phe Ala Leu Val 170 175 180Val Val Leu Phe His Val Leu Leu Ala Pro Ile Thr Ala Leu Phe 185 190 195His Thr His Phe Tyr Asp Arg Leu Gln Asp Ala Gly Ser Arg Trp 200 205 210Pro Glu Leu Tyr Leu Tyr Ser Arg Ala Asp Glu Val Val Leu Ala 215 220 225Arg Asp Ile Glu Arg Met Val Glu Ala Arg Leu Ala Arg Arg Val 230 235 240Leu Ala Arg Ser Val Asp Phe Val Ser Ser Ala His Val Ser His 245 250 255Leu Arg Asp Tyr Pro Thr Tyr Tyr Thr Ser Leu Cys Val Asp Phe 260 265 270Met Arg Asn Cys Val Arg Cys 27531273PRTHomo sapiensmisc_featureIncyte ID No 2804955 31Met Ser Gly Ser Gln Ser Glu Val Ala Pro Ser Pro Gln Ser Pro 1 5 10 15Arg Ser Pro Glu Met Gly Arg Asp Leu Arg Pro Gly Ser Arg Val 20 25 30Leu Leu Leu Leu Leu Leu Leu Leu Leu Val Tyr Leu Thr Gln Pro 35 40 45Gly Asn Gly Asn Glu Gly Ser Val Thr Gly Ser Cys Tyr Cys Gly 50 55 60Lys Arg Ile Ser Ser Asp Ser Pro Pro Ser Val Gln Phe Met Asn 65 70 75Arg Leu Arg Lys His Leu Arg Ala Tyr His Arg Cys Leu Tyr Tyr 80 85 90Thr Arg Phe Gln Leu Leu Ser Trp Ser Val Cys Gly Gly Asn Lys 95 100 105Asp Pro Trp Val Gln Glu Leu Met Ser Cys Leu Asp Leu Lys Glu 110 115 120Cys Gly His Ala Tyr Ser Gly Ile Val Ala His Gln Lys His Leu 125 130 135Leu Pro Thr Ser Pro Pro Ile Ser Gln Ala Ser Glu Gly Ala Ser 140 145 150Ser Asp Ile His Thr Pro Ala Gln Met Leu Leu Ser Thr Leu Gln 155 160 165Ser Thr Gln Arg Pro Thr Leu Pro Val Gly Ser Leu Ser Ser Asp 170 175 180Lys Glu Leu Thr Arg Pro Asn Glu Thr Thr Ile His Thr Ala Gly 185 190 195His Ser Leu Ala Ala Gly Pro Glu Ala Gly Glu Asn Gln Lys Gln 200 205 210Pro Glu Lys Asn Ala Gly Pro Thr Ala Arg Thr Ser Ala Thr Val 215 220 225Pro Val Leu Cys Leu Leu Ala Ile Ile Phe Ile Leu Thr Ala Ala 230 235 240Leu Ser Tyr Val Leu Cys Lys Arg Arg Arg Gly Gln Ser Pro Gln 245 250 255Ser Ser Pro Asp Leu Pro Val His Tyr Ile Pro Val Ala Pro Asp 260 265 270Ser Asn Thr32524PRTHomo sapiensmisc_featureIncyte ID No 2806395 32Met Ser Gln Gly Ser Pro Gly Asp Trp Ala Pro Leu Asp Pro Thr 1 5 10 15Pro Gly Pro

Pro Ala Ser Pro Asn Pro Phe Val His Glu Leu His 20 25 30Leu Ser Arg Leu Gln Arg Val Lys Phe Cys Leu Leu Gly Ala Leu 35 40 45Leu Ala Pro Ile Arg Val Leu Leu Ala Phe Ile Val Leu Phe Leu 50 55 60Leu Trp Pro Phe Ala Trp Leu Gln Val Ala Gly Leu Ser Glu Glu 65 70 75Gln Leu Gln Glu Pro Ile Thr Gly Trp Arg Lys Thr Val Cys His 80 85 90Asn Gly Val Leu Gly Leu Ser Arg Leu Leu Phe Phe Leu Leu Gly 95 100 105Phe Leu Arg Ile Arg Val Arg Gly Gln Arg Ala Ser Arg Leu Gln 110 115 120Ala Pro Val Leu Val Ala Ala Pro His Ser Thr Phe Phe Asp Pro 125 130 135Ile Val Leu Leu Pro Cys Asp Leu Pro Lys Val Val Ser Arg Ala 140 145 150Glu Asn Leu Ser Val Pro Val Ile Gly Ala Leu Leu Arg Phe Asn 155 160 165Gln Ala Ile Leu Val Ser Arg His Asp Pro Ala Ser Arg Arg Arg 170 175 180Val Val Glu Glu Val Arg Arg Arg Ala Thr Ser Gly Gly Lys Trp 185 190 195Pro Gln Val Leu Phe Phe Pro Glu Gly Thr Cys Ser Asn Lys Lys 200 205 210Ala Leu Leu Lys Phe Lys Pro Gly Ala Phe Ile Ala Gly Val Pro 215 220 225Val Gln Pro Val Leu Ile Arg Tyr Pro Asn Ser Leu Asp Thr Thr 230 235 240Ser Trp Ala Trp Arg Gly Pro Gly Val Leu Lys Val Leu Trp Leu 245 250 255Thr Ala Ser Gln Pro Cys Ser Ile Val Asp Val Glu Phe Leu Pro 260 265 270Val Tyr His Pro Ser Pro Glu Glu Ser Arg Asp Pro Thr Leu Tyr 275 280 285Ala Asn Asn Val Gln Arg Val Met Ala Gln Ala Leu Gly Ile Pro 290 295 300Ala Thr Glu Cys Glu Phe Val Gly Ser Leu Pro Val Ile Val Val 305 310 315Gly Arg Leu Lys Val Ala Leu Glu Pro Gln Leu Trp Glu Leu Gly 320 325 330Lys Val Leu Arg Lys Ala Gly Leu Ser Ala Gly Tyr Val Asp Ala 335 340 345Gly Ala Glu Pro Gly Arg Ser Arg Met Ile Ser Gln Glu Glu Phe 350 355 360Ala Arg Gln Leu Gln Leu Ser Asp Pro Gln Thr Val Ala Gly Ala 365 370 375Phe Gly Tyr Phe Gln Gln Asp Thr Lys Gly Leu Val Asp Phe Arg 380 385 390Asp Val Ala Leu Ala Leu Ala Ala Leu Asp Gly Gly Arg Ser Leu 395 400 405Glu Glu Leu Thr Arg Leu Ala Phe Glu Leu Phe Ala Glu Glu Gln 410 415 420Ala Glu Gly Pro Asn Arg Leu Leu Tyr Lys Asp Gly Phe Ser Thr 425 430 435Ile Leu His Leu Leu Leu Gly Ser Pro His Pro Ala Ala Thr Ala 440 445 450Leu His Ala Glu Leu Cys Gln Ala Gly Ser Ser Gln Gly Leu Ser 455 460 465Leu Cys Gln Phe Gln Asn Phe Ser Leu His Asp Pro Leu Tyr Gly 470 475 480Lys Leu Phe Ser Thr Tyr Leu Arg Pro Pro His Thr Ser Arg Gly 485 490 495Thr Ser Gln Thr Pro Asn Ala Ser Ser Pro Gly Asn Pro Thr Ala 500 505 510Leu Ala Asn Gly Thr Val Gln Ala Pro Lys Gln Lys Gly Asp 515 52033257PRTHomo sapiensmisc_featureIncyte ID No 2836858 33Met Asp Phe Ser Arg Leu His Met Tyr Ser Pro Pro Gln Cys Val 1 5 10 15Pro Glu Asn Thr Gly Tyr Thr Tyr Ala Leu Ser Ser Ser Tyr Ser 20 25 30Ser Asp Ala Leu Asp Phe Glu Thr Glu His Lys Leu Asp Pro Val 35 40 45Phe Asp Ser Pro Arg Met Ser Arg Arg Ser Leu Arg Leu Ala Thr 50 55 60Thr Ala Cys Thr Leu Gly Asp Gly Glu Ala Val Gly Ala Asp Ser 65 70 75Gly Thr Ser Ser Ala Val Ser Leu Lys Asn Arg Ala Ala Arg Thr 80 85 90Thr Lys Gln Arg Arg Ser Thr Asn Lys Ser Ala Phe Ser Ile Asn 95 100 105His Val Ser Arg Gln Val Thr Ser Ser Gly Val Ser His Gly Gly 110 115 120Thr Val Ser Leu Gln Asp Ala Val Thr Arg Arg Pro Pro Val Leu 125 130 135Asp Glu Ser Trp Ile Arg Glu Gln Thr Thr Val Asp His Phe Trp 140 145 150Gly Leu Asp Asp Asp Gly Asp Leu Lys Gly Gly Asn Lys Ala Ala 155 160 165Ile Gln Gly Asn Gly Asp Val Gly Ala Ala Ala Ala Thr Ala His 170 175 180Asn Gly Phe Ser Cys Ser Asn Cys Ser Met Leu Ser Glu Arg Lys 185 190 195Asp Val Leu Thr Ala His Pro Ala Ala Pro Gly Pro Val Ser Arg 200 205 210Val Tyr Ser Arg Asp Arg Asn Gln Lys Cys Lys Ser Gln Ser Phe 215 220 225Lys Thr Gln Lys Lys Val Cys Phe Pro Asn Leu Ile Phe Pro Phe 230 235 240Cys Lys Ser Gln Cys Leu His Tyr Leu Ser Trp Arg Leu Lys Ile 245 250 255Ile Pro34274PRTHomo sapiensmisc_featureIncyte ID No 2844513 34Met Arg Ala Ala Gly Val Gly Leu Val Asp Cys His Cys His Leu 1 5 10 15Ser Ala Pro Asp Phe Asp Arg Asp Leu Asp Asp Val Leu Glu Lys 20 25 30Ala Lys Lys Ala Asn Val Val Ala Leu Val Ala Val Ala Glu His 35 40 45Ser Gly Glu Phe Glu Lys Ile Met Gln Leu Ser Glu Arg Tyr Asn 50 55 60Gly Phe Val Leu Pro Cys Leu Gly Val His Pro Val Gln Gly Leu 65 70 75Pro Pro Glu Asp Gln Arg Ser Val Thr Leu Lys Asp Leu Asp Val 80 85 90Ala Leu Pro Ile Ile Glu Asn Tyr Lys Asp Arg Leu Leu Ala Ile 95 100 105Gly Glu Val Gly Leu Asp Phe Ser Pro Arg Phe Ala Gly Thr Gly 110 115 120Glu Gln Lys Glu Glu Gln Arg Gln Val Leu Ile Arg Gln Ile Gln 125 130 135Leu Ala Lys Arg Leu Asn Leu Pro Val Asn Val His Ser Arg Ser 140 145 150Ala Gly Arg Pro Thr Ile Asn Leu Leu Gln Glu Gln Gly Ala Glu 155 160 165Lys Val Leu Leu His Ala Phe Asp Gly Arg Pro Ser Val Ala Met 170 175 180Glu Gly Val Arg Ala Gly Tyr Phe Phe Ser Ile Pro Pro Ser Ile 185 190 195Ile Arg Ser Gly Gln Lys Gln Lys Leu Val Lys Gln Leu Pro Leu 200 205 210Thr Ser Ile Cys Leu Glu Thr Asp Ser Pro Ala Leu Gly Pro Glu 215 220 225Lys Gln Val Arg Asn Glu Pro Trp Asn Ile Ser Ile Ser Ala Glu 230 235 240Tyr Ile Ala Gln Val Lys Gly Ile Ser Val Glu Glu Val Ile Glu 245 250 255Val Thr Thr Gln Asn Ala Leu Lys Leu Phe Pro Lys Leu Arg His 260 265 270Leu Leu Gln Lys35281PRTHomo sapiensmisc_featureIncyte ID No 3000380 35Met Ser Glu Pro Gln Pro Asp Leu Glu Pro Pro Gln His Gly Leu 1 5 10 15Tyr Met Leu Phe Leu Leu Val Leu Val Phe Phe Leu Met Gly Leu 20 25 30Val Gly Phe Met Ile Cys His Val Leu Lys Lys Lys Gly Tyr Arg 35 40 45Cys Arg Thr Ser Arg Gly Ser Glu Pro Asp Asp Ala Gln Leu Gln 50 55 60Pro Pro Glu Asp Asp Asp Met Asn Glu Asp Thr Val Glu Arg Ile 65 70 75Val Arg Cys Ile Ile Gln Asn Glu Val Trp Met Pro Pro Pro Ala 80 85 90Cys Arg Thr Glu Pro Pro Pro Ile Ile Thr Gln Cys Thr Trp Ala 95 100 105Leu Gln Pro Leu Ala Val His Cys Ser Arg Ser Lys Arg Pro Pro 110 115 120Leu Val Arg Gln Gly Arg Ser Lys Glu Gly Lys Ser Arg Pro Arg 125 130 135Thr Gly Glu Thr Thr Val Phe Ser Val Gly Arg Phe Arg Val Thr 140 145 150His Ile Glu Lys Arg Tyr Gly Leu His Glu His Arg Asp Gly Ser 155 160 165Pro Thr Asp Arg Ser Trp Gly Ser Arg Gly Gly Gln Asp Pro Gly 170 175 180Gly Gly Gln Gly Ser Gly Gly Gly His Pro Lys Ala Gly Met Leu 185 190 195Pro Trp Arg Gly Cys Pro Pro Glu Arg Pro Gln Pro Gln Val Leu 200 205 210Ala Ser Pro Pro Val Gln Asn Gly Gly Leu Arg Asp Ser Ser Leu 215 220 225Thr Pro Arg Ala Leu Glu Gly Asn Pro Arg Ala Ser Ala Glu Pro 230 235 240Thr Leu Arg Ala Gly Gly Arg Gly Pro Ser Pro Gly Leu Pro Thr 245 250 255Gln Glu Ala Asn Gly Gln Pro Ser Lys Pro Asp Thr Ser Asp His 260 265 270Gln Val Ser Leu Pro Gln Gly Ala Gly Ser Met 275 28036335PRTHomo sapiensmisc_featureIncyte ID No 182532 36Met Gly Pro Leu Ser Ala Pro Pro Cys Thr His Leu Ile Thr Trp 1 5 10 15Lys Gly Val Leu Leu Thr Ala Ser Leu Leu Asn Phe Trp Asn Pro 20 25 30Pro Thr Thr Ala Gln Val Thr Ile Glu Ala Gln Pro Pro Lys Val 35 40 45Ser Glu Gly Lys Asp Val Leu Leu Leu Val His Asn Leu Pro Gln 50 55 60Asn Leu Ala Gly Tyr Ile Trp Tyr Lys Gly Gln Met Thr Tyr Val 65 70 75Tyr His Tyr Ile Ile Ser Tyr Ile Val Asp Gly Lys Ile Ile Ile 80 85 90Tyr Gly Pro Ala Tyr Ser Gly Arg Glu Arg Val Tyr Ser Asn Ala 95 100 105Ser Leu Leu Ile Gln Asn Val Thr Gln Glu Asp Ala Gly Ser Tyr 110 115 120Thr Leu His Ile Ile Lys Arg Gly Asp Gly Thr Arg Gly Glu Thr 125 130 135Gly His Phe Thr Phe Thr Leu Tyr Leu Glu Thr Pro Lys Pro Ser 140 145 150Ile Ser Ser Ser Asn Leu Tyr Pro Arg Glu Asp Met Glu Ala Val 155 160 165Ser Leu Thr Cys Asp Pro Glu Thr Pro Asp Ala Ser Tyr Leu Trp 170 175 180Trp Met Asn Gly Gln Ser Leu Pro Met Thr His Ser Leu Gln Leu 185 190 195Ser Lys Asn Lys Arg Thr Leu Phe Leu Phe Gly Val Thr Lys Tyr 200 205 210Thr Ala Gly Pro Tyr Glu Cys Glu Ile Arg Asn Pro Val Ser Gly 215 220 225Ile Arg Ser Asp Pro Val Thr Leu Asn Val Leu Tyr Gly Pro Asp 230 235 240Leu Pro Ser Ile Tyr Pro Ser Phe Thr Tyr Tyr Arg Ser Gly Glu 245 250 255Asn Leu Tyr Leu Ser Cys Phe Ala Glu Ser Asn Pro Arg Ala Gln 260 265 270Tyr Ser Trp Thr Ile Asn Gly Lys Phe Gln Leu Ser Gly Gln Lys 275 280 285Leu Phe Ile Pro Gln Ile Thr Thr Lys His Ser Gly Leu Tyr Ala 290 295 300Cys Ser Val Arg Asn Ser Ala Thr Gly Met Glu Ser Ser Lys Ser 305 310 315Met Thr Val Lys Val Ser Ala Pro Ser Gly Thr Gly His Leu Pro 320 325 330Gly Leu Asn Pro Leu 33537280PRTHomo sapiensmisc_featureIncyte ID No 239589 37Met Asp Leu Gln Gly Arg Gly Val Pro Ser Ile Asp Arg Leu Arg 1 5 10 15Val Leu Leu Met Leu Phe His Thr Met Ala Gln Ile Met Ala Glu 20 25 30Gln Glu Val Glu Asn Leu Ser Gly Leu Ser Thr Asn Pro Glu Lys 35 40 45Asp Ile Phe Val Val Arg Glu Asn Gly Thr Thr Cys Leu Met Ala 50 55 60Glu Phe Ala Ala Lys Phe Ile Val Pro Tyr Asp Val Trp Ala Ser 65 70 75Asn Tyr Val Asp Leu Ile Thr Glu Gln Ala Asp Ile Ala Leu Thr 80 85 90Arg Gly Ala Glu Val Lys Gly Arg Cys Gly His Ser Gln Ser Glu 95 100 105Leu Gln Val Phe Trp Val Asp Arg Ala Tyr Ala Leu Lys Met Leu 110 115 120Phe Val Lys Glu Ser His Asn Met Ser Lys Gly Pro Glu Ala Thr 125 130 135Trp Arg Leu Ser Lys Val Gln Phe Val Tyr Asp Ser Ser Glu Lys 140 145 150Thr His Phe Lys Asp Ala Val Ser Ala Gly Lys His Thr Ala Asn 155 160 165Ser His His Leu Ser Ala Leu Val Thr Pro Ala Gly Lys Ser Tyr 170 175 180Glu Cys Gln Ala Gln Gln Thr Ile Ser Leu Ala Ser Ser Asp Pro 185 190 195Gln Lys Thr Val Thr Met Ile Leu Ser Ala Val His Ile Gln Pro 200 205 210Phe Asp Ile Ile Ser Asp Phe Val Phe Ser Glu Glu His Lys Cys 215 220 225Pro Val Asp Glu Arg Glu Gln Leu Glu Glu Thr Leu Pro Leu Ile 230 235 240Leu Gly Leu Ile Leu Gly Leu Val Ile Met Val Thr Leu Ala Ile 245 250 255Tyr His Val His His Lys Met Thr Ala Asn Gln Val Gln Ile Pro 260 265 270Arg Asp Arg Ser Gln Tyr Lys His Met Gly 275 28038210PRTHomo sapiensmisc_featureIncyte ID No 1671302 38Met Ser Arg Met Phe Cys Gln Ala Ala Arg Val Asp Leu Thr Leu 1 5 10 15Asp Pro Asp Thr Ala His Pro Ala Leu Met Leu Ser Pro Asp Arg 20 25 30Arg Gly Val Arg Leu Ala Glu Arg Arg Gln Glu Val Ala Asp His 35 40 45Pro Lys Arg Phe Ser Ala Asp Cys Cys Val Leu Gly Ala Gln Gly 50 55 60Phe Arg Ser Gly Arg His Tyr Trp Glu Val Glu Val Gly Gly Arg 65 70 75Arg Gly Trp Ala Val Gly Ala Ala Arg Glu Ser Thr His His Lys 80 85 90Glu Lys Val Gly Pro Gly Gly Ser Ser Val Gly Ser Gly Asp Ala 95 100 105Ser Ser Ser Arg His His His Arg Arg Arg Arg Leu His Leu Pro 110 115 120Gln Gln Pro Leu Leu Gln Arg Glu Val Trp Cys Val Gly Thr Asn 125 130 135Gly Lys Arg Tyr Gln Ala Gln Ser Ser Thr Glu Gln Thr Leu Leu 140 145 150Ser Pro Ser Glu Lys Pro Arg Arg Phe Gly Val Tyr Leu Asp Tyr 155 160 165Glu Ala Gly Arg Leu Gly Phe Tyr Asn Ala Glu Thr Leu Ala His 170 175 180Val His Thr Phe Ser Ala Ala Phe Leu Gly Glu Arg Val Phe Pro 185 190 195Phe Phe Arg Val Leu Ser Lys Gly Thr Arg Ile Lys Leu Cys Pro 200 205 21039279PRTHomo sapiensmisc_featureIncyte ID No 2041858 39Met Glu Ala Val Val Asn Leu Tyr Gln Glu Val Met Lys His Ala 1 5 10 15Asp Pro Arg Ile Gln Gly Tyr Pro Leu Met Gly Ser Pro Leu Leu 20 25 30Met Thr Ser Ile Leu Leu Thr Tyr Val Tyr Phe Val Leu Ser Leu 35 40 45Gly Pro Arg Ile Met Ala Asn Arg Lys Pro Phe Gln Leu Arg Gly 50 55 60Phe Met Ile Val Tyr Asn Phe Ser Leu Val Ala Leu Ser Leu Tyr 65 70 75Ile Val Tyr Glu Phe Leu Met Ser Gly Trp Leu Ser Thr Tyr Thr 80 85 90Trp Arg Cys Asp Pro Val Asp Tyr Ser Asn Ser Pro Glu Ala Leu 95 100 105Arg Met Val Arg Val Ala Trp Leu Phe Leu Phe Ser Lys Phe Ile 110 115 120Glu Leu Met Asp Thr Val Ile Phe Ile Leu Arg Lys Lys Asp Gly 125

130 135Gln Val Thr Phe Leu His Val Phe His His Ser Val Leu Pro Trp 140 145 150Ser Trp Trp Trp Gly Val Lys Ile Ala Pro Gly Gly Met Gly Ser 155 160 165Phe His Ala Met Ile Asn Ser Ser Val His Val Ile Met Tyr Leu 170 175 180Tyr Tyr Gly Leu Ser Ala Phe Gly Pro Val Ala Gln Pro Tyr Leu 185 190 195Trp Trp Lys Lys His Met Thr Ala Ile Gln Leu Ile Gln Phe Val 200 205 210Leu Val Ser Leu His Ile Ser Gln Tyr Tyr Phe Met Ser Ser Cys 215 220 225Asn Tyr Gln Tyr Pro Val Ile Ile His Leu Ile Trp Met Tyr Gly 230 235 240Thr Ile Phe Phe Met Leu Phe Ser Asn Phe Trp Tyr His Ser Tyr 245 250 255Thr Lys Gly Lys Arg Leu Pro Arg Ala Leu Gln Gln Asn Gly Ala 260 265 270Pro Gly Ile Ala Lys Val Lys Ala Asn 27540154PRTHomo sapiensmisc_featureIncyte ID No 2198863 40Met Gly Lys Ser Ala Ser Lys Gln Phe His Asn Glu Val Leu Lys 1 5 10 15Ala His Asn Glu Tyr Arg Gln Lys His Gly Val Pro Pro Leu Lys 20 25 30Leu Cys Lys Asn Leu Asn Arg Glu Ala Gln Gln Tyr Ser Glu Ala 35 40 45Leu Ala Ser Thr Arg Ile Leu Lys His Ser Pro Glu Ser Ser Arg 50 55 60Gly Gln Cys Gly Glu Asn Leu Ala Trp Ala Ser Tyr Asp Gln Thr 65 70 75Gly Lys Glu Val Ala Asp Arg Trp Tyr Ser Glu Ile Lys Asn Tyr 80 85 90Asn Phe Gln Gln Pro Gly Phe Thr Ser Gly Thr Gly His Phe Thr 95 100 105Ala Met Val Trp Lys Asn Thr Lys Lys Met Gly Val Gly Lys Ala 110 115 120Ser Ala Ser Asp Gly Ser Ser Phe Val Val Ala Arg Tyr Phe Pro 125 130 135Ala Gly Asn Val Val Asn Glu Gly Phe Phe Glu Glu Asn Val Leu 140 145 150Pro Pro Lys Lys41582PRTHomo sapiensmisc_featureIncyte ID No 3250703 41Met Lys Pro Asn Ile Ile Phe Val Leu Ser Leu Leu Leu Ile Leu 1 5 10 15Glu Lys Gln Ala Ala Val Met Gly Gln Lys Gly Gly Ser Lys Gly 20 25 30Arg Leu Pro Ser Glu Phe Ser Gln Phe Pro His Gly Gln Lys Gly 35 40 45Gln His Tyr Ser Gly Gln Lys Gly Lys Gln Gln Thr Glu Ser Lys 50 55 60Gly Ser Phe Ser Ile Gln Tyr Thr Tyr His Val Asp Ala Asn Asp 65 70 75His Asp Gln Ser Arg Lys Ser Gln Gln Tyr Asp Leu Asn Ala Leu 80 85 90His Lys Thr Thr Lys Ser Gln Arg His Leu Gly Gly Ser Gln Gln 95 100 105Leu Leu His Asn Lys Gln Glu Gly Arg Asp His Asp Lys Ser Lys 110 115 120Gly His Phe His Arg Val Val Ile His His Lys Gly Gly Lys Ala 125 130 135His Arg Gly Thr Gln Asn Pro Ser Gln Asp Gln Gly Asn Ser Pro 140 145 150Ser Gly Lys Gly Ile Ser Ser Gln Tyr Ser Asn Thr Glu Glu Arg 155 160 165Leu Trp Val His Gly Leu Ser Lys Glu Gln Thr Ser Val Ser Gly 170 175 180Ala Gln Lys Gly Arg Lys Gln Gly Gly Ser Gln Ser Ser Tyr Val 185 190 195Leu Gln Thr Glu Glu Leu Val Ala Asn Lys Gln Gln Arg Glu Thr 200 205 210Lys Asn Ser His Gln Asn Lys Gly His Tyr Gln Asn Val Val Glu 215 220 225Val Arg Glu Glu His Ser Ser Lys Val Gln Thr Ser Leu Cys Pro 230 235 240Ala His Gln Asp Lys Leu Gln His Gly Ser Lys Asp Ile Phe Ser 245 250 255Thr Gln Asp Glu Leu Leu Val Tyr Asn Lys Asn Gln His Gln Thr 260 265 270Lys Asn Leu Asn Gln Asp Gln Gln His Gly Arg Lys Ala Asn Lys 275 280 285Ile Ser Tyr Gln Ser Ser Ser Thr Glu Glu Arg Arg Leu His Tyr 290 295 300Gly Glu Asn Gly Val Gln Lys Asp Val Ser Gln Ser Ser Ile Tyr 305 310 315Ser Gln Thr Glu Glu Lys Ile His Gly Lys Ser Gln Asn Gln Val 320 325 330Thr Ile His Ser Gln Asp Gln Glu His Gly His Lys Glu Asn Lys 335 340 345Ile Ser Tyr Gln Ser Ser Ser Thr Glu Glu Arg His Leu Asn Cys 350 355 360Gly Glu Lys Gly Ile Gln Lys Gly Val Ser Lys Gly Ser Ile Ser 365 370 375Ile Gln Thr Glu Glu Gln Ile His Gly Lys Ser Gln Asn Gln Val 380 385 390Arg Ile Pro Ser Gln Ala Gln Glu Tyr Gly His Lys Glu Asn Lys 395 400 405Ile Ser Tyr Gln Ser Ser Ser Thr Glu Glu Arg Arg Leu Asn Ser 410 415 420Gly Glu Lys Asp Val Gln Lys Gly Val Ser Lys Gly Ser Ile Ser 425 430 435Ile Gln Thr Glu Glu Lys Ile His Gly Lys Ser Gln Asn Gln Val 440 445 450Thr Ile Pro Ser Gln Asp Gln Glu His Gly His Lys Glu Asn Lys 455 460 465Met Ser Tyr Gln Ser Ser Ser Thr Glu Glu Arg Arg Leu Asn Tyr 470 475 480Gly Gly Lys Ser Thr Gln Lys Asp Val Ser Gln Ser Ser Ile Ser 485 490 495Phe Gln Ile Glu Lys Leu Val Glu Gly Lys Ser Gln Ile Gln Thr 500 505 510Pro Asn Pro Asn Gln Asp Gln Trp Ser Gly Gln Asn Ala Lys Gly 515 520 525Lys Ser Gly Gln Ser Ala Asp Ser Lys Gln Asp Leu Leu Ser His 530 535 540Glu Gln Lys Gly Arg Tyr Lys Gln Glu Ser Ser Glu Ser His Asn 545 550 555Ile Val Ile Thr Glu His Glu Val Ala Gln Asp Asp His Leu Thr 560 565 570Gln Gln Tyr Asn Glu Asp Arg Asn Pro Ile Ser Thr 575 5804271PRTHomo sapiensmisc_featureIncyte ID No 350287 42Met Phe Thr Ala Pro Leu Phe Phe Phe Phe Phe Phe Glu Ile Ile 1 5 10 15Asn Ser Met Arg Asn Leu Gly Leu Asn Ile Cys Leu Leu Cys Leu 20 25 30Leu Ile Glu His His Ser Arg Pro Ser Val Cys Leu Pro Phe Thr 35 40 45Pro Lys Ile Phe Thr Lys Lys Ile Leu Arg Gln Gln Val Thr Ile 50 55 60Tyr Arg Cys Leu Asn Asp Phe Leu Ile Phe Ile 65 7043102PRTHomo sapiensmisc_featureIncyte ID No 1618171 43Met Ala Val Leu Pro Ser Val Leu Leu Val Tyr Ser Leu Phe Phe 1 5 10 15Cys Leu Arg Phe Cys Met Leu Leu Leu Leu Pro Ser Tyr Ser His 20 25 30Ser Arg Ser Gly Arg Gly Pro Gly Arg Tyr Gly His Ile Thr Leu 35 40 45Ile Asp Val Ile His Val Ser Val Tyr Trp Phe Phe Glu Ala Leu 50 55 60Ser Thr Phe Gln Ile Phe Tyr Tyr Cys Ile Thr Arg Thr Ile Thr 65 70 75Val Arg Lys Gly Ile Val Val Ser Arg His Val Asn Glu Ala Gly 80 85 90Val Ser Phe Val Ser Tyr Leu Cys Ile Asn Phe Lys 95 10044226PRTHomo sapiensmisc_featureIncyte ID No 1625863 44Met Pro Thr Thr Lys Lys Thr Leu Met Phe Leu Ser Ser Phe Phe 1 5 10 15Thr Ser Leu Gly Ser Phe Ile Val Ile Cys Ser Ile Leu Gly Thr 20 25 30Gln Ala Trp Ile Thr Ser Thr Ile Ala Val Arg Asp Ser Ala Ser 35 40 45Asn Gly Ser Ile Phe Ile Thr Tyr Gly Leu Phe Arg Gly Glu Ser 50 55 60Ser Glu Glu Leu Ser His Gly Leu Ala Glu Pro Lys Lys Lys Phe 65 70 75Ala Val Leu Glu Ile Leu Asn Asn Ser Ser Gln Lys Thr Leu His 80 85 90Ser Val Thr Ile Leu Phe Leu Val Leu Ser Leu Ile Thr Ser Leu 95 100 105Leu Ser Ser Gly Phe Thr Phe Tyr Asn Ser Ile Ser Asn Pro Tyr 110 115 120Gln Thr Phe Leu Gly Pro Thr Gly Val Tyr Thr Trp Asn Gly Leu 125 130 135Gly Ala Ser Phe Val Phe Val Thr Met Ile Leu Phe Val Ala Asn 140 145 150Thr Gln Ser Asn Gln Leu Ser Glu Glu Leu Phe Gln Met Leu Tyr 155 160 165Pro Ala Thr Thr Ser Lys Gly Thr Thr His Ser Tyr Gly Tyr Ser 170 175 180Phe Trp Leu Ile Leu Leu Val Ile Leu Leu Asn Ile Val Thr Val 185 190 195Thr Ile Ile Ile Phe Tyr Gln Lys Ala Arg Tyr Gln Arg Lys Gln 200 205 210Glu Gln Arg Lys Pro Met Glu Tyr Ala Pro Arg Asp Gly Ile Leu 215 220 225Phe45154PRTHomo sapiensmisc_featureIncyte ID No 1638353 45Met Ala Leu Leu Leu Ser Val Leu Arg Val Leu Leu Gly Gly Phe 1 5 10 15Phe Ala Leu Val Gly Leu Ala Lys Leu Ser Glu Glu Ile Ser Ala 20 25 30Pro Val Ser Glu Arg Met Asn Ala Leu Phe Val Gln Phe Ala Glu 35 40 45Val Phe Pro Leu Lys Val Phe Gly Tyr Gln Pro Asp Pro Leu Asn 50 55 60Tyr Gln Ile Ala Val Gly Phe Leu Glu Leu Leu Ala Gly Leu Leu 65 70 75Leu Val Met Gly Pro Pro Met Leu Gln Glu Ile Ser Asn Leu Phe 80 85 90Leu Ile Leu Leu Met Met Gly Ala Ile Phe Thr Leu Ala Ala Leu 95 100 105Lys Glu Ser Leu Ser Thr Cys Ile Pro Ala Ile Val Cys Leu Gly 110 115 120Phe Leu Leu Leu Leu Asn Val Gly Gln Leu Leu Ala Gln Thr Lys 125 130 135Lys Val Val Arg Pro Thr Arg Lys Lys Thr Leu Ser Thr Phe Lys 140 145 150Glu Ser Trp Lys46167PRTHomo sapiensmisc_featureIncyte ID No 1726843 46Met Ala Ser Pro Arg Thr Val Thr Ile Val Ala Leu Ser Val Ala 1 5 10 15Leu Gly Leu Phe Phe Val Phe Met Gly Thr Ile Lys Leu Thr Pro 20 25 30Arg Leu Ser Lys Asp Ala Tyr Ser Glu Met Lys Arg Ala Tyr Lys 35 40 45Ser Tyr Val Arg Ala Leu Pro Leu Leu Lys Lys Met Gly Ile Asn 50 55 60Ser Ile Leu Leu Arg Lys Ser Ile Gly Ala Leu Glu Val Ala Cys 65 70 75Gly Ile Val Met Thr Leu Val Pro Gly Arg Pro Lys Asp Val Ala 80 85 90Asn Phe Phe Leu Leu Leu Leu Val Leu Ala Val Leu Phe Phe His 95 100 105Gln Leu Val Gly Asp Pro Leu Lys Arg Tyr Ala His Ala Leu Val 110 115 120Phe Gly Ile Leu Leu Thr Cys Arg Leu Leu Ile Ala Arg Lys Pro 125 130 135Glu Asp Arg Ser Ser Glu Lys Lys Pro Leu Pro Gly Asn Ala Glu 140 145 150Glu Gln Pro Ser Leu Tyr Glu Lys Ala Pro Gln Gly Lys Val Lys 155 160 165Val Ser47545PRTHomo sapiensmisc_featureIncyte ID No 1754506 47Met Ala Gly Ala Ile Ile Glu Asn Met Ser Thr Lys Lys Leu Cys 1 5 10 15Ile Val Gly Gly Ile Leu Leu Val Phe Gln Ile Ile Ala Phe Leu 20 25 30Val Gly Gly Leu Ile Ala Pro Gly Pro Thr Thr Ala Val Ser Tyr 35 40 45Met Ser Val Lys Cys Val Asp Ala Arg Lys Asn His His Lys Thr 50 55 60Lys Trp Phe Val Pro Trp Gly Pro Asn His Cys Asp Lys Ile Arg 65 70 75Asp Ile Glu Glu Ala Ile Pro Arg Glu Ile Glu Ala Asn Asp Ile 80 85 90Val Phe Ser Val His Ile Pro Leu Pro His Met Glu Met Ser Pro 95 100 105Trp Phe Gln Phe Met Leu Phe Ile Leu Gln Leu Asp Ile Ala Phe 110 115 120Lys Leu Asn Asn Gln Ile Arg Glu Asn Ala Glu Val Ser Met Asp 125 130 135Val Ser Leu Ala Tyr Arg Asp Asp Ala Phe Ala Glu Trp Thr Glu 140 145 150Met Ala His Glu Arg Val Pro Arg Lys Leu Lys Cys Thr Phe Thr 155 160 165Ser Pro Lys Thr Pro Glu His Glu Gly Arg Tyr Tyr Glu Cys Asp 170 175 180Val Leu Pro Phe Met Glu Ile Gly Ser Val Ala His Lys Phe Tyr 185 190 195Leu Leu Asn Ile Arg Leu Pro Val Asn Glu Lys Lys Lys Ile Asn 200 205 210Val Gly Ile Gly Glu Ile Lys Asp Ile Arg Leu Val Gly Ile His 215 220 225Gln Asn Gly Gly Phe Thr Lys Val Trp Phe Ala Met Lys Thr Phe 230 235 240Leu Thr Pro Ser Ile Phe Ile Ile Met Val Trp Tyr Trp Arg Arg 245 250 255Ile Thr Met Met Ser Arg Pro Pro Val Leu Leu Glu Lys Val Ile 260 265 270Phe Ala Leu Gly Ile Ser Met Thr Phe Ile Asn Ile Pro Val Glu 275 280 285Trp Phe Ser Ile Gly Phe Asp Trp Thr Trp Met Leu Leu Phe Gly 290 295 300Asp Ile Arg Gln Gly Ile Phe Tyr Ala Met Leu Leu Ser Phe Trp 305 310 315Ile Ile Phe Cys Gly Glu His Met Met Asp Gln His Glu Arg Asn 320 325 330His Ile Ala Gly Tyr Trp Lys Gln Val Gly Pro Ile Ala Val Gly 335 340 345Ser Phe Cys Leu Phe Ile Phe Asp Met Cys Glu Arg Gly Val Gln 350 355 360Leu Thr Asn Pro Phe Tyr Ser Ile Trp Thr Thr Asp Ile Gly Thr 365 370 375Glu Leu Ala Met Ala Phe Ile Ile Val Ala Gly Ile Cys Leu Cys 380 385 390Leu Tyr Phe Leu Phe Leu Cys Phe Met Val Phe Gln Val Phe Arg 395 400 405Asn Ile Ser Gly Lys Gln Ser Ser Leu Pro Ala Met Ser Lys Val 410 415 420Arg Arg Leu His Tyr Glu Gly Leu Ile Phe Arg Phe Lys Phe Leu 425 430 435Met Leu Ile Thr Leu Ala Cys Ala Ala Met Thr Val Ile Phe Phe 440 445 450Ile Val Ser Gln Val Thr Glu Gly His Trp Lys Trp Gly Gly Val 455 460 465Thr Val Gln Val Asn Ser Ala Phe Phe Thr Gly Ile Tyr Gly Met 470 475 480Trp Asn Leu Tyr Val Phe Ala Leu Met Phe Leu Tyr Ala Pro Ser 485 490 495His Lys Asn Tyr Gly Glu Asp Gln Ser Asn Gly Met Gln Leu Pro 500 505 510Cys Lys Ser Arg Glu Asp Cys Ala Leu Phe Val Ser Glu Leu Tyr 515 520 525Gln Glu Leu Phe Ser Ala Ser Lys Tyr Ser Phe Ile Asn Asp Asn 530 535 540Ala Ala Ser Gly Ile 54548570PRTHomo sapiensmisc_featureIncyte ID No 1831378 48Met Gly Phe Leu Gln Leu Leu Val Val Ala Val Leu Ala Ser Glu 1 5 10 15His Arg Val Ala Gly Ala Ala Glu Val Phe Gly Asn Ser Ser Glu 20 25 30Gly Leu Ile Glu Phe Ser Val Gly Lys Phe Arg Tyr Phe Glu Leu 35 40 45Asn Arg Pro Phe Pro Glu Glu Ala Ile Leu His Asp Ile Ser Ser 50 55 60Asn Val Thr Phe Leu Ile Phe Gln Ile His Ser Gln Tyr Gln Asn 65 70 75Thr Thr Val Ser Phe Ser Pro Thr Leu Leu Ser Asn Ser Ser Glu 80 85 90Thr Gly Thr Ala Ser Gly Leu Val Phe Ile Leu Arg Pro Glu Gln 95 100 105Ser Thr Cys Thr Trp Tyr Leu Gly Thr Ser Gly Ile Gln Pro Val 110 115

120Gln Asn Met Ala Ile Leu Leu Ser Tyr Ser Glu Arg Asp Pro Val 125 130 135Pro Gly Gly Cys Asn Leu Glu Phe Asp Leu Asp Ile Asp Pro Asn 140 145 150Ile Tyr Leu Glu Tyr Asn Phe Phe Glu Thr Thr Ile Lys Phe Ala 155 160 165Pro Ala Asn Leu Gly Tyr Ala Arg Gly Val Asp Pro Pro Pro Cys 170 175 180Asp Ala Gly Thr Asp Gln Asp Ser Arg Trp Arg Leu Gln Tyr Asp 185 190 195Val Tyr Gln Tyr Phe Leu Pro Glu Asn Asp Leu Thr Glu Glu Met 200 205 210Leu Leu Lys His Leu Gln Arg Met Val Ser Val Pro Gln Val Lys 215 220 225Ala Ser Ala Leu Lys Val Val Thr Leu Thr Ala Asn Asp Lys Thr 230 235 240Ser Val Ser Phe Ser Ser Leu Pro Gly Gln Gly Val Ile Tyr Asn 245 250 255Val Ile Val Trp Asp Pro Phe Leu Asn Thr Ser Ala Ala Tyr Ile 260 265 270Pro Ala His Thr Tyr Ala Cys Ser Phe Glu Ala Gly Glu Gly Ser 275 280 285Cys Ala Ser Leu Gly Arg Val Ser Ser Lys Val Phe Phe Thr Leu 290 295 300Phe Ala Leu Leu Gly Phe Phe Ile Cys Phe Phe Gly His Arg Phe 305 310 315Trp Lys Thr Glu Leu Phe Phe Ile Gly Phe Ile Ile Met Gly Phe 320 325 330Phe Phe Tyr Ile Leu Ile Thr Arg Leu Thr Pro Ile Lys Tyr Asp 335 340 345Val Asn Leu Ile Leu Thr Ala Val Thr Gly Ser Val Gly Gly Met 350 355 360Phe Leu Val Ala Val Trp Trp Arg Phe Gly Ile Leu Ser Ile Cys 365 370 375Met Leu Cys Val Gly Leu Val Leu Gly Phe Leu Ile Ser Ser Val 380 385 390Thr Phe Phe Thr Pro Leu Gly Asn Leu Lys Ile Phe His Asp Asp 395 400 405Gly Val Phe Trp Val Thr Phe Ser Cys Ile Ala Ile Leu Ile Pro 410 415 420Val Val Phe Met Gly Cys Leu Arg Ile Leu Asn Ile Leu Thr Cys 425 430 435Gly Val Ile Gly Ser Tyr Ser Val Val Leu Ala Ile Asp Ser Tyr 440 445 450Trp Ser Thr Ser Leu Ser Tyr Ile Thr Leu Asn Val Leu Lys Arg 455 460 465Ala Leu Asn Lys Asp Phe His Arg Ala Phe Thr Asn Val Pro Phe 470 475 480Gln Thr Asn Asp Phe Ile Ile Leu Ala Val Trp Gly Met Leu Ala 485 490 495Val Ser Gly Ile Thr Leu Gln Ile Arg Arg Glu Arg Gly Arg Pro 500 505 510Phe Phe Pro Pro His Pro Tyr Lys Leu Trp Lys Gln Glu Arg Glu 515 520 525Arg Arg Val Thr Asn Ile Leu Asp Pro Ser Tyr His Ile Pro Pro 530 535 540Leu Arg Glu Arg Leu Tyr Gly Arg Leu Thr Gln Ile Lys Gly Leu 545 550 555Phe Gln Lys Glu Gln Pro Ala Gly Glu Arg Thr Pro Leu Leu Leu 560 565 57049127PRTHomo sapiensmisc_featureIncyte ID No 1864943 49Met Arg Arg Arg Phe Trp Gly Val Phe Asn Cys Leu Cys Ala Gly 1 5 10 15Ala Phe Gly Ala Leu Ala Ala Ala Ser Ala Lys Leu Ala Phe Gly 20 25 30Ser Glu Val Ser Met Gly Leu Cys Val Leu Gly Ile Ile Val Met 35 40 45Ala Ser Thr Asn Ser Leu Met Trp Thr Phe Phe Ser Arg Gly Leu 50 55 60Ser Phe Ser Met Ser Ser Ala Ile Ala Ser Val Thr Val Thr Phe 65 70 75Ser Asn Ile Leu Ser Ser Ala Phe Leu Gly Tyr Val Leu Tyr Gly 80 85 90Glu Cys Gln Glu Val Leu Trp Trp Gly Gly Val Phe Leu Ile Leu 95 100 105Cys Gly Leu Thr Leu Ile His Arg Lys Leu Pro Pro Thr Trp Lys 110 115 120Pro Leu Pro His Lys Gln Gln 12550152PRTHomo sapiensmisc_featureIncyte ID No 1911316 50Met Asp Asn Val Gln Pro Lys Ile Lys His Arg Pro Phe Cys Phe 1 5 10 15Ser Val Lys Gly His Val Lys Met Leu Arg Leu Ala Leu Thr Val 20 25 30Thr Ser Met Thr Phe Phe Ile Ile Ala Gln Ala Pro Glu Pro Tyr 35 40 45Ile Val Ile Thr Gly Phe Glu Val Thr Val Ile Leu Phe Phe Ile 50 55 60Leu Leu Tyr Val Leu Arg Leu Asp Arg Leu Met Lys Trp Leu Phe 65 70 75Trp Pro Leu Leu Asp Ile Ile Asn Ser Leu Val Thr Thr Val Phe 80 85 90Met Leu Ile Val Ser Val Leu Ala Leu Ile Pro Glu Thr Thr Thr 95 100 105Leu Thr Val Gly Gly Gly Val Phe Ala Leu Val Thr Ala Val Cys 110 115 120Cys Leu Ala Asp Gly Ala Leu Ile Tyr Arg Lys Leu Leu Phe Asn 125 130 135Pro Ser Gly Pro Tyr Gln Lys Lys Pro Val His Glu Lys Lys Glu 140 145 150Val Leu51777PRTHomo sapiensmisc_featureIncyte ID No 1943120 51Met Thr Phe Tyr Pro Phe Val Ala Ser Ser Ser Thr Arg Arg Val 1 5 10 15Asp Asn Ser Asn Thr Arg Leu Ala Val Gln Ile Glu Arg Asp Pro 20 25 30Gly Asn Asp Asp Asn Asn Leu Asn Ser Ile Phe Tyr Glu His Leu 35 40 45Thr Arg Thr Leu Leu Glu Ser Leu Cys Gly Asp Leu Val Leu Gly 50 55 60Arg Trp Gly Asn Tyr Ser Ser Gly Asp Cys Phe Ile Leu Ala Ser 65 70 75Asp Asp Leu Asn Ala Phe Val His Leu Ile Glu Ile Gly Asn Gly 80 85 90Leu Val Thr Phe Gln Leu Arg Gly Leu Glu Phe Arg Gly Thr Tyr 95 100 105Cys Gln Gln Arg Glu Val Glu Ala Ile Met Glu Gly Asp Glu Glu 110 115 120Asp Arg Gly Cys Cys Cys Cys Lys Pro Gly His Leu Pro His Leu 125 130 135Leu Ser Arg Asn Ala Ala Phe His Leu Arg Trp Leu Thr Trp Glu 140 145 150Ile Thr Gln Thr Gln Tyr Ile Leu Glu Gly Tyr Ser Ile Leu Asp 155 160 165Asn Asn Ala Ala Thr Met Leu Gln Val Phe Asp Leu Arg Arg Ile 170 175 180Leu Ile Arg Tyr Tyr Ile Lys Ser Ile Ile Tyr Tyr Met Val Thr 185 190 195Ser Pro Lys Leu Leu Ser Trp Ile Lys Asn Glu Ser Leu Leu Lys 200 205 210Ser Leu Gln Pro Phe Ala Lys Trp His Tyr Ile Glu Arg Asp Leu 215 220 225Ala Met Phe Asn Ile Asn Ile Asp Asp Asp Tyr Val Pro Cys Leu 230 235 240Gln Gly Ile Thr Arg Ala Ser Phe Cys Asn Val Tyr Leu Glu Trp 245 250 255Ile Gln His Cys Ala Arg Lys Arg Gln Glu Pro Ser Thr Thr Leu 260 265 270Asp Ser Asp Glu Asp Ser Pro Leu Val Thr Leu Ser Phe Ala Leu 275 280 285Cys Thr Leu Gly Arg Arg Ala Leu Gly Thr Ala Ala His Asn Met 290 295 300Ala Ile Ser Leu Asp Ser Phe Leu Tyr Gly Leu His Val Leu Phe 305 310 315Lys Gly Asp Phe Arg Ile Thr Ala Arg Asp Glu Trp Val Phe Ala 320 325 330Asp Met Asp Leu Leu His Lys Val Val Ala Pro Ala Ile Arg Met 335 340 345Ser Leu Lys Leu His Gln Asp Gln Phe Thr Cys Pro Asp Glu Tyr 350 355 360Glu Asp Pro Ala Val Leu Tyr Glu Ala Ile Gln Ser Phe Glu Lys 365 370 375Lys Val Val Ile Cys His Glu Gly Asp Pro Ala Trp Arg Gly Ala 380 385 390Val Leu Ser Asn Lys Glu Glu Leu Leu Thr Leu Arg His Val Val 395 400 405Asp Glu Gly Ala Asp Glu Tyr Lys Val Ile Met Leu His Arg Ser 410 415 420Phe Leu Ser Phe Lys Val Ile Lys Val Asn Lys Glu Cys Val Arg 425 430 435Gly Leu Trp Ala Gly Gln Gln Gln Glu Leu Ile Phe Leu Arg Asn 440 445 450Arg Asn Pro Glu Arg Gly Ser Ile Gln Asn Asn Lys Gln Val Leu 455 460 465Arg Asn Leu Ile Asn Ser Ser Cys Asp Gln Pro Leu Gly Tyr Pro 470 475 480Met Tyr Val Ser Pro Leu Thr Thr Ser Tyr Leu Gly Thr His Arg 485 490 495Gln Leu Lys Asn Ile Trp Gly Gly Pro Ile Thr Leu Asp Arg Ile 500 505 510Arg Thr Trp Phe Trp Thr Lys Trp Val Arg Met Arg Lys Asp Cys 515 520 525Asn Ala Arg Gln His Ser Gly Gly Asn Ile Glu Asp Val Asp Gly 530 535 540Gly Gly Ala Pro Thr Thr Gly Gly Asn Asn Ala Pro Asn Gly Gly 545 550 555Ser Gln Glu Ser Ser Ala Glu Gln Pro Arg Lys Gly Gly Ala Gln 560 565 570His Gly Val Ser Ser Cys Glu Gly Thr Gln Arg Thr Gly Arg Arg 575 580 585Lys Gly Arg Ser Gln Ser Val Gln Ala His Ser Ala Leu Ser Gln 590 595 600Arg Pro Pro Met Leu Ser Ser Ser Gly Pro Ile Leu Glu Ser Arg 605 610 615Gln Thr Phe Leu Gln Thr Ser Thr Ser Val His Glu Leu Ala Gln 620 625 630Arg Leu Ser Gly Ser Arg Leu Ser Leu His Ala Ser Ala Thr Ser 635 640 645Leu His Ser Gln Pro Pro Pro Val Thr Thr Thr Gly His Leu Ser 650 655 660Val Arg Glu Arg Ala Glu Ala Leu Ile Arg Ser Ser Leu Gly Ser 665 670 675Ser Thr Ser Ser Thr Leu Ser Phe Leu Phe Gly Lys Arg Ser Phe 680 685 690Ser Ser Ala Leu Val Ile Ser Gly Leu Ser Ala Ala Glu Gly Gly 695 700 705Asn Thr Ser Asp Thr Gln Ser Ser Ser Ser Val Asn Ile Val Met 710 715 720Gly Pro Ser Ala Arg Ala Ala Ser Gln Ala Thr Arg Val Arg Gly 725 730 735Trp Ala Gly Leu Thr Arg Thr Gly Trp Asp Gly Gly Thr Gly Ser 740 745 750Trp Pro Glu Arg Gly Thr Cys Leu Ala Phe Pro Pro Phe Cys Leu 755 760 765Gln Asn Pro Ile Pro Phe Ser Met Gly Leu Pro Glu 770 77552108PRTHomo sapiensmisc_featureIncyte ID No 2314236 52Met Phe Lys His Glu Leu Glu Glu Leu Arg Thr Thr Ile Met Tyr 1 5 10 15Arg Asp Ser His Ser Val Leu Ala Leu Asn Trp Lys Val Val Ala 20 25 30Thr Leu Lys Tyr Phe Leu Leu Tyr Val Ile Ile Leu Tyr Asn Leu 35 40 45Glu Arg Asp Asn Gly His Ser Asn Tyr Glu Asn Tyr Glu Leu Gly 50 55 60Asp Lys Ser Leu Asn Leu Leu Leu Phe Tyr Asn Ser Met Tyr Lys 65 70 75Leu Val Phe Pro Tyr Ile Phe Thr Phe Ser Ser Phe Leu Ile Ser 80 85 90Ser Tyr Thr Ser Ile Leu Tyr Lys Met Phe Tyr Ile Gln Arg Thr 95 100 105Val Lys Ser5366PRTHomo sapiensmisc_featureIncyte ID No 2479409 53Met Asn Leu Ser Lys Lys Ser Ile Leu Leu Thr Gln Val Ile Lys 1 5 10 15Phe Val Asp Ile Arg Leu Phe Ile Met Val Pro Ser Tyr Pro Phe 20 25 30Asn Val Phe Arg Ser Cys Val Asp Asn Phe Leu Phe Ile Met Ile 35 40 45Leu Val Ile Ser Val Leu Thr Phe Leu Ile Arg Leu Gly Arg Gly 50 55 60Leu Ser Val Leu Leu Ile 6554540PRTHomo sapiensmisc_featureIncyte ID No 2683149 54Met Met Gly Ser Pro Val Ser His Leu Leu Ala Gly Phe Cys Val 1 5 10 15Trp Val Val Leu Gly Trp Val Gly Gly Ser Val Pro Asn Leu Gly 20 25 30Pro Ala Glu Gln Glu Gln Asn His Tyr Leu Ala Gln Leu Phe Gly 35 40 45Leu Tyr Gly Glu Asn Gly Thr Leu Thr Ala Gly Gly Leu Ala Arg 50 55 60Leu Leu His Ser Leu Gly Leu Gly Arg Val Gln Gly Leu Arg Leu 65 70 75Gly Gln His Gly Pro Leu Thr Gly Arg Ala Ala Ser Pro Ala Ala 80 85 90Asp Asn Ser Thr His Arg Pro Gln Asn Pro Glu Leu Ser Val Asp 95 100 105Val Trp Ala Gly Met Pro Leu Gly Pro Ser Gly Trp Gly Asp Leu 110 115 120Glu Glu Ser Lys Ala Pro His Leu Pro Arg Gly Pro Ala Pro Ser 125 130 135Gly Leu Asp Leu Leu His Arg Leu Leu Leu Leu Asp His Ser Leu 140 145 150Ala Asp His Leu Asn Glu Asp Cys Leu Asn Gly Ser Gln Leu Leu 155 160 165Val Asn Phe Gly Leu Ser Pro Ala Ala Pro Leu Thr Pro Arg Gln 170 175 180Phe Ala Leu Leu Cys Pro Ala Leu Leu Tyr Gln Ile Asp Ser Arg 185 190 195Val Cys Ile Gly Ala Pro Ala Pro Ala Pro Pro Gly Asp Leu Leu 200 205 210Ser Ala Leu Leu Gln Ser Ala Leu Ala Val Leu Leu Leu Ser Leu 215 220 225Pro Ser Pro Leu Ser Leu Leu Leu Leu Arg Leu Leu Gly Pro Arg 230 235 240Leu Leu Arg Pro Leu Leu Gly Phe Leu Gly Ala Leu Ala Val Gly 245 250 255Thr Leu Cys Gly Asp Ala Leu Leu His Leu Leu Pro His Ala Gln 260 265 270Glu Gly Arg His Ala Gly Pro Gly Gly Leu Pro Glu Lys Asp Leu 275 280 285Gly Pro Gly Leu Ser Val Leu Gly Gly Leu Phe Leu Leu Phe Val 290 295 300Leu Glu Asn Met Leu Gly Leu Leu Arg His Arg Gly Leu Arg Pro 305 310 315Arg Cys Cys Arg Arg Lys Arg Arg Asn Leu Glu Thr Arg Asn Leu 320 325 330Asp Pro Glu Asn Gly Ser Gly Met Ala Leu Gln Pro Leu Gln Ala 335 340 345Ala Pro Glu Pro Gly Ala Gln Gly Gln Arg Glu Lys Asn Ser Gln 350 355 360His Pro Pro Ala Leu Ala Pro Pro Gly His Gln Gly His Ser His 365 370 375Gly His Gln Gly Gly Thr Asp Ile Thr Trp Met Val Leu Leu Gly 380 385 390Asp Gly Leu His Asn Leu Thr Asp Gly Leu Ala Ile Gly Ala Ala 395 400 405Phe Ser Asp Gly Phe Ser Ser Gly Leu Ser Thr Thr Leu Ala Val 410 415 420Phe Cys His Glu Leu Pro His Glu Leu Gly Asp Phe Ala Met Leu 425 430 435Leu Gln Ser Gly Leu Ser Phe Arg Arg Leu Leu Leu Leu Ser Leu 440 445 450Val Ser Gly Ala Leu Gly Leu Gly Gly Ala Val Leu Gly Val Gly 455 460 465Leu Ser Leu Gly Pro Val Pro Leu Thr Pro Trp Val Phe Gly Val 470 475 480Thr Ala Gly Val Phe Leu Tyr Val Ala Leu Val Asp Met Leu Pro 485 490 495Ala Leu Leu Arg Pro Pro Glu Pro Leu Pro Thr Pro His Val Leu 500 505 510Leu Gln Gly Leu Gly Leu Leu Leu Gly Gly Gly Leu Met Leu Ala 515 520 525Ile Thr Leu Leu Glu Glu Arg Leu Leu Pro Val Thr Thr Glu Gly 530 535 5405587PRTHomo sapiensmisc_featureIncyte ID No 2774051 55Met Pro Phe Thr Leu Asp Asp Tyr Gly Ala Tyr Ser Ser Gln Lys 1 5 10 15Gln Tyr Thr Cys Gln Phe Pro Ser Thr Ile Ala Ile His Ala Glu 20 25 30Asp Lys Arg Pro Pro Gln Ser Arg Arg Gly Ile Val Leu Gly Pro 35 40 45Ile Phe Leu Ile Val Leu Lys Ile Ile Ile Arg Trp Thr Val Phe

50 55 60Cys Glu Asp Phe Leu Phe Pro Ser Ser Lys Lys Pro Cys Gly Lys 65 70 75Asn Ser Leu Ile Thr Val Leu Ile Phe Phe Phe Phe 80 8556100PRTHomo sapiensmisc_featureIncyte ID No 2869038 56Met Ile Met Ala Gln Lys Ile Gly Gly Leu Thr Trp Trp Ala Ile 1 5 10 15Met Phe Ile Ile Leu Phe Glu Ile Thr Gly Thr Ser Ser Ser Phe 20 25 30Leu Arg Ile Asn Ala Leu Pro His Phe Ser Met Asn Arg Cys Gly 35 40 45Glu Ala Tyr Phe Pro Phe Ser Tyr Leu Tyr Thr Ser Leu Gln Lys 50 55 60Gln Phe Leu Met Lys Val Ser Gly Ile Val Lys Asn Leu Arg Gly 65 70 75Met Met Thr Gly Gly Val Trp Gly Phe Phe Leu Tyr Ser Phe Phe 80 85 90Asn Glu Lys Ser Phe Lys Cys Ser Thr Gly 95 1005758PRTHomo sapiensmisc_featureIncyte ID No 2918334 57Met Asp Leu Leu Tyr Glu Ile Leu Leu Ala Leu Tyr Tyr Asn Ile 1 5 10 15Cys Tyr Asp Ile Pro Phe Ile Phe Phe Asn Leu Asn Met Met Phe 20 25 30Tyr Ile Val Leu Asp Leu Arg Ile Val Phe Phe Arg Thr Ile Arg 35 40 45Glu Tyr Leu Ser Pro Pro Ser Leu Ser Phe Tyr Ile Tyr 50 555861PRTHomo sapiensmisc_featureIncyte ID No 2949916 58Met Arg Arg Ile Ile Arg Leu Arg Leu Arg Phe Ser Asp Thr Phe 1 5 10 15Met Ala Ala Phe Leu Leu Cys Leu Gly Phe Val Leu Met Leu Phe 20 25 30Pro Ser Leu Leu Arg Asp Gly Gly Ser Ile Ser Ser Cys Arg Asn 35 40 45Ser Cys Ser Ser Pro Ser Ser Glu Glu Arg His Phe Ser Asn Leu 50 55 60Glu5950PRTHomo sapiensmisc_featureIncyte ID No 2989375 59Met Cys Leu Thr Pro His Arg Asp Ser Met Cys Glu Asp Ser Pro 1 5 10 15Phe Thr His Gln Ile Ile Ser Met Ala Thr Ala Cys Ser Leu Leu 20 25 30Leu Glu Cys Phe Val Leu Ala Ala Ser Leu Leu Val Cys Val Trp 35 40 45Ser Glu Trp Arg Arg 5060310PRTHomo sapiensmisc_featureIncyte ID No 3316764 60Met Arg Arg Thr Ala Phe Ile Leu Gly Ser Gly Leu Leu Ser Phe 1 5 10 15Val Ala Phe Trp Asn Ser Val Thr Trp His Leu Gln Arg Phe Trp 20 25 30Gly Ala Ser Gly Tyr Phe Trp Gln Ala Gln Trp Glu Arg Leu Leu 35 40 45Thr Thr Phe Glu Gly Lys Glu Trp Ile Leu Phe Phe Ile Gly Ala 50 55 60Ile Gln Val Pro Cys Leu Phe Phe Trp Ser Phe Asn Gly Leu Leu 65 70 75Leu Val Val Asp Thr Thr Gly Lys Pro Asn Phe Ile Ser Arg Tyr 80 85 90Arg Ile Gln Val Gly Lys Asn Glu Pro Val Asp Pro Val Lys Leu 95 100 105Arg Gln Ser Ile Arg Thr Val Leu Phe Asn Gln Cys Met Ile Ser 110 115 120Phe Pro Met Val Val Phe Leu Tyr Pro Phe Leu Lys Trp Trp Arg 125 130 135Asp Pro Cys Arg Arg Glu Leu Pro Thr Phe His Trp Phe Leu Leu 140 145 150Glu Leu Ala Ile Phe Thr Leu Ile Glu Glu Val Leu Phe Tyr Tyr 155 160 165Ser His Arg Leu Leu His His Pro Thr Phe Tyr Lys Lys Ile His 170 175 180Lys Lys His His Glu Trp Thr Ala Pro Ile Gly Val Ile Ser Leu 185 190 195Tyr Ala His Pro Ile Glu His Ala Val Ser Asn Met Leu Pro Val 200 205 210Ile Val Gly Pro Leu Val Met Gly Ser His Leu Ser Ser Ile Thr 215 220 225Met Trp Phe Ser Leu Ala Leu Ile Ile Thr Thr Ile Ser His Cys 230 235 240Gly Tyr His Leu Pro Phe Leu Pro Ser Pro Glu Phe His Asp Tyr 245 250 255His His Leu Lys Phe Asn Gln Cys Tyr Gly Val Leu Gly Val Leu 260 265 270Asp His Leu His Gly Thr Asp Thr Met Phe Lys Gln Thr Lys Ala 275 280 285Tyr Glu Arg His Val Leu Leu Leu Gly Phe Thr Pro Leu Ser Glu 290 295 300Ser Ile Pro Asp Ser Pro Lys Arg Met Glu 305 31061160PRTHomo sapiensmisc_featureIncyte ID No 3359559 61Met Ala Pro Ala Leu Trp Arg Ala Cys Asn Gly Leu Met Ala Ala 1 5 10 15Phe Phe Ala Leu Ala Ala Leu Val Gln Val Asn Asp Pro Asp Ala 20 25 30Glu Val Trp Val Val Val Tyr Thr Ile Pro Ala Val Leu Thr Leu 35 40 45Leu Val Gly Leu Asn Pro Glu Val Thr Gly Asn Val Ile Trp Lys 50 55 60Ser Ile Ser Ala Ile His Ile Leu Phe Cys Thr Val Trp Ala Val 65 70 75Gly Leu Ala Ser Tyr Leu Leu His Arg Thr Gln Gln Asn Ile Leu 80 85 90His Glu Glu Glu Gly Arg Glu Leu Ser Gly Leu Val Ile Ile Thr 95 100 105Ala Trp Ile Ile Leu Cys His Ser Ser Ser Lys Asn Pro Val Gly 110 115 120Gly Arg Ile Gln Leu Ala Ile Ala Ile Val Ile Thr Leu Phe Pro 125 130 135Phe Ile Ser Trp Val Tyr Ile Tyr Ile Asn Lys Glu Met Arg Ser 140 145 150Ser Trp Pro Thr His Cys Lys Thr Val Ile 155 1606235PRTHomo sapiensmisc_featureIncyte ID No 4289208 62Met Ala Val Val Asp Ala Gly Asn Asn Gly Lys Val Leu Asp Arg 1 5 10 15Val Cys Val Arg Ser Val Pro Ala Leu Phe Leu Ser Lys Cys Ile 20 25 30Ser Leu Asp Met Glu 3563323PRTHomo sapiensmisc_featureIncyte ID No 2454013 63Met Ala Ala Pro Lys Gly Ser Leu Trp Val Arg Thr Gln Leu Gly 1 5 10 15Leu Pro Pro Leu Leu Leu Leu Thr Met Ala Leu Ala Gly Gly Ser 20 25 30Gly Thr Ala Ser Ala Glu Ala Phe Asp Ser Val Leu Gly Asp Thr 35 40 45Ala Ser Cys His Arg Ala Cys Gln Leu Thr Tyr Pro Leu His Thr 50 55 60Tyr Pro Lys Glu Glu Glu Leu Tyr Ala Cys Gln Arg Gly Cys Arg 65 70 75Leu Phe Ser Ile Cys Gln Phe Val Asp Asp Gly Ile Asp Leu Asn 80 85 90Arg Thr Lys Leu Glu Cys Glu Ser Ala Cys Thr Glu Ala Tyr Ser 95 100 105Gln Ser Asp Glu Gln Tyr Ala Cys His Leu Gly Cys Gln Asn Gln 110 115 120Leu Pro Phe Ala Glu Leu Arg Gln Glu Gln Leu Met Ser Leu Met 125 130 135Pro Lys Met His Leu Leu Phe Pro Leu Thr Leu Val Arg Ser Phe 140 145 150Trp Ser Asp Met Met Asp Ser Ala Gln Ser Phe Ile Thr Ser Ser 155 160 165Trp Thr Phe Tyr Leu Gln Ala Asp Asp Gly Lys Ile Val Ile Phe 170 175 180Gln Ser Lys Pro Glu Ile Gln Tyr Ala Pro His Leu Glu Gln Glu 185 190 195Pro Thr Asn Leu Arg Glu Ser Ser Leu Ser Lys Met Ser Tyr Leu 200 205 210Gln Met Arg Asn Ser Gln Ala His Arg Asn Phe Leu Glu Asp Gly 215 220 225Glu Ser Asp Gly Phe Leu Arg Cys Leu Ser Leu Asn Ser Gly Trp 230 235 240Ile Leu Thr Thr Thr Leu Val Leu Ser Val Met Val Leu Leu Trp 245 250 255Ile Cys Cys Ala Thr Val Ala Thr Ala Val Glu Gln Tyr Val Pro 260 265 270Ser Glu Lys Leu Ser Ile Tyr Gly Asp Leu Glu Phe Met Asn Glu 275 280 285Gln Lys Leu Asn Arg Tyr Pro Ala Ser Ser Leu Val Val Val Arg 290 295 300Ser Lys Thr Glu Asp His Glu Glu Ala Gly Pro Leu Pro Thr Lys 305 310 315Val Asn Leu Ala His Ser Glu Ile 32064129PRTHomo sapiensmisc_featureIncyte ID No 2454048 64Met Ala Arg Gly Ser Leu Arg Arg Leu Leu Arg Leu Leu Val Leu 1 5 10 15Gly Leu Trp Leu Ala Leu Leu Arg Ser Val Ala Gly Glu Gln Ala 20 25 30Pro Gly Thr Ala Pro Cys Ser Arg Gly Ser Ser Trp Ser Ala Asp 35 40 45Leu Asp Lys Cys Met Asp Cys Ala Ser Cys Arg Ala Arg Pro His 50 55 60Ser Asp Phe Cys Leu Gly Cys Ala Ala Ala Pro Pro Ala Pro Phe 65 70 75Arg Leu Leu Trp Pro Ile Leu Gly Gly Ala Leu Ser Leu Thr Phe 80 85 90Val Leu Gly Leu Leu Ser Gly Phe Leu Val Trp Arg Arg Cys Arg 95 100 105Arg Arg Glu Lys Phe Thr Thr Pro Ile Glu Glu Thr Gly Gly Glu 110 115 120Gly Cys Pro Ala Val Ala Leu Ile Gln 12565461PRTHomo sapiensmisc_featureIncyte ID No 2479282 65Met Ala Pro Gln Ser Leu Pro Ser Ser Arg Met Ala Pro Leu Gly 1 5 10 15Met Leu Leu Gly Leu Leu Met Ala Ala Cys Phe Thr Phe Cys Leu 20 25 30Ser His Gln Asn Leu Lys Glu Phe Ala Leu Thr Asn Pro Glu Lys 35 40 45Ser Ser Thr Lys Glu Thr Glu Arg Lys Glu Thr Lys Ala Glu Glu 50 55 60Glu Leu Asp Ala Glu Val Leu Glu Val Phe His Pro Thr His Glu 65 70 75Trp Gln Ala Leu Gln Pro Gly Gln Ala Val Pro Ala Gly Ser His 80 85 90Val Arg Leu Asn Leu Gln Thr Gly Glu Arg Glu Ala Lys Leu Gln 95 100 105Tyr Glu Asp Lys Phe Arg Asn Asn Leu Lys Gly Lys Arg Leu Asp 110 115 120Ile Asn Thr Asn Thr Tyr Thr Ser Gln Asp Leu Lys Ser Ala Leu 125 130 135Ala Lys Phe Lys Glu Gly Ala Glu Met Glu Ser Ser Lys Glu Asp 140 145 150Lys Ala Arg Gln Ala Glu Val Lys Arg Leu Phe Arg Pro Ile Glu 155 160 165Glu Leu Lys Lys Asp Phe Asp Glu Leu Asn Val Val Ile Glu Thr 170 175 180Asp Met Gln Ile Met Val Arg Leu Ile Asn Lys Phe Asn Ser Ser 185 190 195Ser Ser Ser Leu Glu Glu Lys Ile Ala Ala Leu Phe Asp Leu Glu 200 205 210Tyr Tyr Val His Gln Met Asp Asn Ala Gln Asp Leu Leu Ser Phe 215 220 225Gly Gly Leu Gln Val Val Ile Asn Gly Leu Asn Ser Thr Glu Pro 230 235 240Leu Val Lys Glu Tyr Ala Ala Phe Val Leu Gly Ala Ala Phe Ser 245 250 255Ser Asn Pro Lys Val Gln Val Glu Ala Ile Glu Gly Gly Ala Leu 260 265 270Gln Lys Leu Leu Val Ile Leu Ala Thr Glu Gln Pro Leu Thr Ala 275 280 285Lys Lys Lys Val Leu Phe Ala Leu Cys Ser Leu Leu Arg His Phe 290 295 300Pro Tyr Ala Gln Arg Gln Phe Leu Lys Leu Gly Gly Leu Gln Val 305 310 315Leu Arg Thr Leu Val Gln Glu Lys Gly Thr Glu Val Leu Ala Val 320 325 330Arg Val Val Thr Leu Leu Tyr Asp Leu Val Thr Glu Lys Met Phe 335 340 345Ala Glu Glu Glu Ala Glu Leu Thr Gln Glu Met Ser Pro Glu Lys 350 355 360Leu Gln Gln Tyr Arg Gln Val His Leu Leu Pro Gly Leu Trp Glu 365 370 375Gln Gly Trp Cys Glu Ile Thr Ala His Leu Leu Ala Leu Pro Glu 380 385 390His Asp Ala Arg Glu Lys Val Leu Gln Thr Leu Gly Val Leu Leu 395 400 405Thr Thr Cys Arg Asp Arg Tyr Arg Gln Asp Pro Gln Leu Gly Arg 410 415 420Thr Leu Ala Ser Leu Gln Ala Glu Tyr Gln Val Leu Ala Ser Leu 425 430 435Glu Leu Gln Asp Gly Glu Asp Glu Gly Tyr Phe Gln Glu Leu Leu 440 445 450Gly Ser Val Asn Ser Leu Leu Lys Glu Leu Arg 455 46066264PRTHomo sapiensmisc_featureIncyte ID No 2483432 66Met Arg Pro Leu Leu Gly Leu Leu Leu Val Phe Ala Gly Cys Thr 1 5 10 15Phe Ala Leu Tyr Leu Leu Ser Thr Arg Leu Pro Arg Gly Arg Arg 20 25 30Leu Gly Ser Thr Glu Glu Ala Gly Gly Arg Ser Leu Trp Phe Pro 35 40 45Ser Asp Leu Ala Glu Leu Arg Glu Leu Ser Glu Val Leu Arg Glu 50 55 60Tyr Arg Lys Glu His Gln Ala Tyr Val Phe Leu Leu Phe Cys Gly 65 70 75Ala Tyr Leu Tyr Lys Gln Gly Phe Ala Ile Pro Gly Ser Ser Phe 80 85 90Leu Asn Val Leu Ala Gly Ala Leu Phe Gly Pro Trp Leu Gly Leu 95 100 105Leu Leu Cys Cys Val Leu Thr Ser Val Gly Ala Thr Cys Cys Tyr 110 115 120Leu Leu Ser Ser Ile Phe Gly Lys Gln Leu Val Val Ser Tyr Phe 125 130 135Pro Asp Lys Val Ala Leu Leu Gln Arg Lys Val Glu Glu Asn Arg 140 145 150Asn Ser Leu Phe Phe Phe Leu Leu Phe Leu Arg Leu Phe Pro Met 155 160 165Thr Pro Asn Trp Phe Leu Asn Leu Ser Ala Pro Ile Leu Asn Ile 170 175 180Pro Ile Val Gln Phe Phe Phe Ser Val Leu Ile Gly Leu Ile Pro 185 190 195Tyr Asn Phe Ile Cys Val Gln Thr Gly Ser Ile Leu Ser Thr Leu 200 205 210Thr Ser Leu Asp Ala Leu Phe Ser Trp Asp Thr Val Phe Lys Leu 215 220 225Leu Ala Ile Ala Met Val Ala Leu Ile Pro Gly Thr Leu Ile Lys 230 235 240Lys Phe Ser Gln Lys His Leu Gln Leu Asn Glu Thr Ser Thr Ala 245 250 255Asn His Ile His Ser Arg Lys Asp Thr 26067339PRTHomo sapiensmisc_featureIncyte ID No 2493824 67Met Ala Ala Ala Cys Gly Pro Gly Ala Ala Gly Tyr Cys Leu Leu 1 5 10 15Leu Gly Leu His Leu Phe Leu Leu Thr Ala Gly Pro Ala Leu Gly 20 25 30Trp Asn Asp Pro Asp Arg Met Leu Leu Arg Asp Val Lys Ala Leu 35 40 45Thr Leu His Tyr Asp Arg Tyr Thr Thr Ser Arg Arg Leu Asp Pro 50 55 60Ile Pro Gln Leu Lys Cys Val Gly Gly Thr Ala Gly Cys Asp Ser 65 70 75Tyr Thr Pro Lys Val Ile Gln Cys Gln Asn Lys Gly Trp Asp Gly 80 85 90Tyr Asp Val Gln Trp Glu Cys Lys Thr Asp Leu Asp Ile Ala Tyr 95 100 105Lys Phe Gly Lys Thr Val Val Ser Cys Glu Gly Tyr Glu Ser Ser 110 115 120Glu Asp Gln Tyr Val Leu Arg Gly Ser Cys Gly Leu Glu Tyr Asn 125 130 135Leu Asp Tyr Thr Glu Leu Gly Leu Gln Lys Leu Lys Glu Ser Gly 140 145 150Lys Gln His Gly Phe Ala Ser Phe Ser Asp Tyr Tyr Tyr Lys Trp 155 160 165Ser Ser Ala Asp Ser Cys Asn Met Ser Gly Leu Ile Thr Ile Val 170 175 180Val Leu Leu Gly Ile Ala Phe Val Val Tyr Lys Leu Phe Leu Ser 185 190 195Asp Gly Gln Tyr Ser Pro Pro Pro Tyr Ser Glu Tyr Pro Pro Phe 200 205 210Ser His Arg Tyr Gln Arg Phe Thr Asn Ser Ala Gly Pro Pro Pro 215 220 225Pro Gly Phe Lys Ser Glu Phe Thr Gly Pro Gln Asn Thr Gly His 230 235 240Gly Ala Thr Ser Gly Phe Gly Ser Ala Phe Thr Gly Gln Gln Gly 245 250 255Tyr Glu Asn Ser Gly Pro Gly Phe Trp Thr Gly Leu Gly Thr Gly

260 265 270Gly Ile Leu Gly Tyr Leu Phe Gly Ser Asn Arg Ala Ala Thr Pro 275 280 285Phe Ser Asp Ser Trp Tyr Tyr Pro Ser Tyr Pro Pro Ser Tyr Pro 290 295 300Gly Thr Trp Asn Arg Ala Tyr Ser Pro Leu His Gly Gly Ser Gly 305 310 315Ser Tyr Ser Val Cys Ser Asn Ser Asp Thr Lys Thr Arg Thr Ala 320 325 330Ser Gly Tyr Gly Gly Thr Arg Arg Arg 33568397PRTHomo sapiensmisc_featureIncyte ID No 2555823 68Met Val Arg Pro Gly Ala Arg Leu Cys Leu Gly Ser Val Gly Arg 1 5 10 15Gly Leu Cys Leu Val Leu Pro Leu Leu Cys Leu Gly Ala Gly Phe 20 25 30Leu Phe Leu Asn Thr Leu Phe Ile Gln Arg Gly Arg His Glu Thr 35 40 45Thr Trp Thr Ile Leu Arg Arg Phe Gly Tyr Ser Asp Ala Leu Glu 50 55 60Leu Thr Ala Asp Tyr Leu Ser Pro Leu Ile His Val Pro Pro Gly 65 70 75Cys Ser Thr Glu Leu Asn His Leu Gly Tyr Gln Phe Val Gln Arg 80 85 90Val Phe Glu Lys His Asp Gln Asp Arg Asp Gly Ala Leu Ser Pro 95 100 105Val Glu Leu Gln Ser Leu Phe Ser Val Phe Pro Ala Ala Pro Trp 110 115 120Gly Pro Glu Leu Pro Arg Thr Val Arg Thr Glu Ala Gly Arg Leu 125 130 135Pro Leu His Gly Tyr Leu Cys Gln Trp Thr Leu Val Thr Tyr Leu 140 145 150Asp Val Arg Ser Cys Leu Gly His Leu Gly Tyr Leu Gly Tyr Pro 155 160 165Thr Leu Cys Glu Gln Asp Gln Ala His Ala Ile Thr Val Thr Arg 170 175 180Glu Lys Arg Leu Asp Gln Glu Lys Gly Gln Thr Gln Arg Ser Val 185 190 195Leu Leu Cys Lys Val Val Gly Ala Arg Gly Val Gly Lys Ser Ala 200 205 210Phe Leu Gln Ala Phe Leu Gly Arg Gly Leu Gly His Gln Asp Thr 215 220 225Arg Glu Gln Pro Pro Gly Tyr Ala Ile Asp Thr Val Gln Val Asn 230 235 240Gly Gln Glu Lys Tyr Leu Ile Leu Cys Glu Val Gly Thr Asp Gly 245 250 255Leu Leu Ala Thr Ser Leu Asp Ala Thr Cys Asp Val Ala Cys Leu 260 265 270Met Phe Asp Gly Ser Asp Pro Lys Ser Phe Ala His Cys Ala Ser 275 280 285Val Tyr Lys His His Tyr Met Asp Gly Gln Thr Pro Cys Leu Phe 290 295 300Val Ser Ser Lys Ala Asp Leu Pro Glu Gly Val Ala Val Ser Gly 305 310 315Pro Ser Pro Ala Glu Phe Cys Arg Lys His Arg Leu Pro Ala Pro 320 325 330Val Pro Phe Ser Cys Ala Gly Pro Ala Glu Pro Ser Thr Thr Ile 335 340 345Phe Thr Gln Leu Ala Thr Met Ala Ala Phe Pro His Leu Val His 350 355 360Ala Glu Leu His Pro Ser Ser Phe Trp Leu Arg Gly Leu Leu Gly 365 370 375Val Val Gly Ala Ala Val Ala Ala Val Leu Ser Phe Ser Leu Tyr 380 385 390Arg Val Leu Val Lys Ser Gln 39569301PRTHomo sapiensmisc_featureIncyte ID No 2598242 69Met Glu Leu Ser Asp Val Thr Leu Ile Glu Gly Val Gly Asn Glu 1 5 10 15Val Met Val Val Ala Gly Val Val Val Leu Ile Leu Ala Leu Val 20 25 30Leu Ala Trp Leu Ser Thr Tyr Val Ala Asp Ser Gly Ser Asn Gln 35 40 45Leu Leu Gly Ala Ile Val Ser Ala Gly Asp Thr Ser Val Leu His 50 55 60Leu Gly His Val Asp His Leu Val Ala Gly Gln Gly Asn Pro Glu 65 70 75Pro Thr Glu Leu Pro His Pro Ser Glu Gly Asn Asp Glu Lys Ala 80 85 90Glu Glu Ala Gly Glu Gly Arg Gly Asp Ser Thr Gly Glu Ala Gly 95 100 105Ala Gly Gly Gly Val Glu Pro Ser Leu Glu His Leu Leu Asp Ile 110 115 120Gln Gly Leu Pro Lys Arg Gln Ala Gly Ala Gly Ser Ser Ser Pro 125 130 135Glu Ala Pro Leu Arg Ser Glu Asp Ser Thr Cys Leu Pro Pro Ser 140 145 150Pro Gly Leu Ile Thr Val Arg Leu Lys Phe Leu Asn Asp Thr Glu 155 160 165Glu Leu Ala Val Ala Arg Pro Glu Asp Thr Val Gly Ala Leu Lys 170 175 180Ser Lys Tyr Phe Pro Gly Gln Glu Ser Gln Met Lys Leu Ile Tyr 185 190 195Gln Gly Arg Leu Leu Gln Asp Pro Ala Arg Thr Leu Arg Ser Leu 200 205 210Asn Ile Thr Asp Asn Cys Val Ile His Cys His Arg Ser Pro Pro 215 220 225Gly Ser Ala Val Pro Gly Pro Ser Ala Ser Leu Ala Pro Ser Ala 230 235 240Thr Glu Pro Pro Ser Leu Gly Val Asn Val Gly Ser Leu Met Val 245 250 255Pro Val Phe Val Val Leu Leu Gly Val Val Trp Tyr Phe Arg Ile 260 265 270Asn Tyr Arg Gln Phe Phe Thr Ala Pro Ala Thr Val Ser Leu Val 275 280 285Gly Val Thr Val Phe Phe Ser Phe Leu Val Phe Gly Met Tyr Gly 290 295 300Arg70217PRTHomo sapiensmisc_featureIncyte ID No 2634120 70Met Val Glu Val Gln Leu Glu Ser Asp His Glu Tyr Pro Pro Gly 1 5 10 15Leu Leu Val Ala Phe Ser Ala Cys Thr Thr Val Leu Val Ala Val 20 25 30His Leu Phe Ala Leu Met Val Ser Thr Cys Leu Leu Pro His Ile 35 40 45Glu Ala Val Ser Asn Ile His Asn Leu Asn Ser Val His Gln Ser 50 55 60Pro His Gln Arg Leu His Arg Tyr Val Glu Leu Ala Trp Gly Phe 65 70 75Ser Thr Ala Leu Gly Thr Phe Leu Phe Leu Ala Glu Val Val Leu 80 85 90Val Gly Trp Val Lys Phe Val Pro Ile Gly Ala Pro Leu Asp Thr 95 100 105Pro Thr Pro Met Val Pro Thr Ser Arg Val Pro Gly Thr Leu Ala 110 115 120Pro Val Ala Thr Ser Leu Ser Pro Ala Ser Asn Leu Pro Arg Ser 125 130 135Ser Ala Ser Ala Ala Pro Ser Gln Ala Glu Pro Ala Cys Pro Pro 140 145 150Arg Gln Ala Cys Gly Gly Gly Gly Ala His Gly Pro Gly Trp Gln 155 160 165Ala Ala Met Ala Ser Thr Ala Ile Met Val Pro Val Gly Leu Val 170 175 180Phe Val Ala Phe Ala Leu His Phe Tyr Arg Ser Leu Val Ala His 185 190 195Lys Thr Asp Arg Tyr Lys Gln Glu Leu Glu Glu Leu Asn Arg Leu 200 205 210Gln Gly Glu Leu Gln Ala Val 21571143PRTHomo sapiensmisc_featureIncyte ID No 2765411 71Met Phe Pro Val Leu Gly Trp Ile Leu Ile Ala Val Val Ile Ile 1 5 10 15Ile Leu Leu Ile Phe Thr Ser Val Thr Arg Cys Leu Ser Pro Val 20 25 30Ser Phe Leu Gln Leu Lys Phe Trp Lys Ile Tyr Leu Glu Gln Glu 35 40 45Gln Gln Ile Leu Lys Ser Lys Ala Thr Glu His Ala Thr Glu Leu 50 55 60Ala Lys Glu Asn Ile Lys Cys Phe Phe Glu Gly Ser His Pro Lys 65 70 75Glu Tyr Asn Thr Pro Ser Met Lys Glu Trp Gln Gln Ile Ser Ser 80 85 90Leu Tyr Thr Phe Asn Pro Lys Gly Gln Tyr Tyr Ser Met Leu His 95 100 105Lys Tyr Val Asn Arg Lys Glu Lys Thr His Ser Ile Arg Ser Thr 110 115 120Glu Gly Asp Thr Val Ile Pro Val Leu Gly Phe Val Asp Ser Ser 125 130 135Gly Ile Asn Ser Thr Pro Glu Leu 14072186PRTHomo sapiensmisc_featureIncyte ID No 2769412 72Met Ser Gly Ile Ser Gly Cys Pro Phe Phe Leu Trp Gly Leu Leu 1 5 10 15Ala Leu Leu Gly Leu Ala Leu Val Ile Ser Leu Ile Phe Asn Ile 20 25 30Ser His Tyr Val Glu Lys Gln Arg Gln Asp Lys Met Tyr Ser Tyr 35 40 45Ser Ser Asp His Thr Arg Val Asp Glu Tyr Tyr Ile Glu Asp Thr 50 55 60Pro Ile Tyr Gly Asn Leu Asp Asp Met Ile Ser Glu Pro Met Asp 65 70 75Glu Asn Cys Tyr Glu Gln Met Lys Ala Arg Pro Glu Lys Ser Val 80 85 90Asn Lys Met Gln Glu Ala Thr Pro Ser Ala Gln Ala Thr Asn Glu 95 100 105Thr Gln Met Cys Tyr Ala Ser Leu Asp His Ser Val Lys Gly Lys 110 115 120Arg Arg Lys Pro Arg Lys Gln Asn Thr His Phe Ser Asp Lys Asp 125 130 135Gly Asp Glu Gln Leu His Ala Ile Asp Ala Ser Val Ser Lys Thr 140 145 150Thr Leu Val Asp Ser Phe Ser Pro Glu Ser Gln Ala Val Glu Glu 155 160 165Asn Ile His Asp Asp Pro Ile Arg Leu Phe Gly Leu Ile Arg Ala 170 175 180Lys Arg Glu Pro Ile Asn 18573364PRTHomo sapiensmisc_featureIncyte ID No 2842779 73Met Pro Gly Cys Pro Cys Pro Gly Cys Gly Met Ala Gly Pro Arg 1 5 10 15Leu Leu Phe Leu Thr Ala Leu Ala Leu Glu Leu Leu Gly Arg Ala 20 25 30Gly Gly Ser Gln Pro Ala Leu Arg Ser Arg Gly Thr Ala Thr Ala 35 40 45Cys Arg Leu Asp Asn Lys Glu Ser Glu Ser Trp Gly Ala Leu Leu 50 55 60Ser Gly Glu Arg Leu Asp Thr Trp Ile Cys Ser Leu Leu Gly Ser 65 70 75Leu Met Val Gly Leu Ser Gly Val Phe Pro Leu Leu Val Ile Pro 80 85 90Leu Glu Met Gly Thr Met Leu Arg Ser Glu Ala Gly Ala Trp Arg 95 100 105Leu Lys Gln Leu Leu Ser Phe Ala Leu Gly Gly Leu Leu Gly Asn 110 115 120Val Phe Leu His Leu Leu Pro Glu Ala Trp Ala Tyr Thr Cys Ser 125 130 135Ala Ser Pro Gly Gly Glu Gly Gln Ser Leu Gln Gln Gln Gln Gln 140 145 150Leu Gly Leu Trp Val Ile Ala Gly Ile Leu Thr Phe Leu Ala Leu 155 160 165Glu Lys Met Phe Leu Asp Ser Lys Glu Glu Gly Thr Ser Gln Ala 170 175 180Pro Asn Lys Asp Pro Thr Ala Ala Ala Ala Ala Leu Asn Gly Gly 185 190 195His Cys Leu Ala Gln Pro Ala Ala Glu Pro Gly Leu Gly Ala Val 200 205 210Val Arg Ser Ile Lys Val Ser Gly Tyr Leu Asn Leu Leu Ala Asn 215 220 225Thr Ile Asp Asn Phe Thr His Gly Leu Ala Val Ala Ala Ser Phe 230 235 240Leu Val Ser Lys Lys Ile Gly Leu Leu Thr Thr Met Ala Ile Leu 245 250 255Leu His Glu Ile Pro His Glu Val Gly Asp Phe Ala Ile Leu Leu 260 265 270Arg Ala Gly Phe Asp Arg Trp Ser Ala Ala Lys Leu Gln Leu Ser 275 280 285Thr Ala Leu Gly Gly Leu Leu Gly Ala Gly Phe Ala Ile Cys Thr 290 295 300Gln Ser Pro Lys Gly Val Glu Glu Thr Ala Ala Trp Val Leu Pro 305 310 315Phe Thr Ser Gly Gly Phe Leu Tyr Ile Ala Leu Val Asn Val Leu 320 325 330Pro Asp Leu Leu Glu Glu Glu Asp Pro Trp Arg Ser Leu Gln Gln 335 340 345Leu Leu Leu Leu Cys Ala Gly Ile Val Val Met Val Leu Phe Ser 350 355 360Leu Phe Val Asp74605PRTHomo sapiensmisc_featureIncyte ID No 2966260 74Met Gly Arg Leu Leu Arg Ala Ala Arg Leu Pro Pro Leu Leu Ser 1 5 10 15Pro Leu Leu Leu Leu Leu Val Gly Gly Ala Phe Leu Gly Ala Cys 20 25 30Val Ala Gly Ser Asp Glu Pro Gly Pro Glu Gly Leu Thr Ser Thr 35 40 45Ser Leu Leu Asp Leu Leu Leu Pro Thr Gly Leu Glu Pro Leu Asp 50 55 60Ser Glu Glu Pro Ser Glu Thr Met Gly Leu Gly Ala Gly Leu Gly 65 70 75Ala Pro Gly Ser Gly Phe Pro Ser Glu Glu Asn Glu Glu Ser Arg 80 85 90Ile Leu Gln Pro Pro Gln Tyr Phe Trp Glu Glu Glu Glu Glu Leu 95 100 105Asn Asp Ser Ser Leu Asp Leu Gly Pro Thr Ala Asp Tyr Val Phe 110 115 120Pro Asp Leu Thr Glu Lys Ala Gly Ser Ile Glu Asp Thr Ser Gln 125 130 135Ala Gln Glu Leu Pro Asn Leu Pro Ser Pro Leu Pro Lys Met Asn 140 145 150Leu Val Glu Pro Pro Trp His Met Pro Pro Arg Glu Glu Glu Glu 155 160 165Glu Glu Glu Glu Glu Glu Glu Met Glu Lys Glu Glu Val Glu Lys 170 175 180Gln Asp Val Glu Glu Glu Glu Glu Leu Leu Pro Val Asn Gly Ser 185 190 195Gln Glu Glu Ala Lys Pro Gln Val Arg Asp Phe Ser Leu Thr Ser 200 205 210Ser Ser Gln Thr Pro Gly Ala Thr Lys Ser Arg His Glu Asp Ser 215 220 225Gly Asp Gln Ala Ser Ser Gly Val Glu Val Glu Ser Ser Met Gly 230 235 240Pro Ser Leu Leu Leu Pro Ser Val Thr Pro Thr Ile Val Thr Pro 245 250 255Gly Asp Gln Asp Ser Thr Ser Gln Glu Ala Glu Ala Thr Val Leu 260 265 270Pro Ala Ala Gly Leu Gly Val Glu Phe Glu Ala Pro Gln Glu Ala 275 280 285Ser Glu Glu Ala Thr Ala Gly Ala Ala Gly Leu Ser Gly Gln His 290 295 300Glu Glu Val Pro Ala Leu Pro Ser Phe Pro Gln Thr Thr Ala Pro 305 310 315Ser Gly Ala Glu His Pro Asp Glu Asp Pro Leu Gly Ser Arg Thr 320 325 330Ser Ala Ser Ser Pro Leu Ala Pro Gly Asp Met Glu Leu Thr Pro 335 340 345Ser Ser Ala Thr Leu Gly Gln Glu Asp Leu Asn Gln Gln Leu Leu 350 355 360Glu Gly Gln Ala Ala Glu Ala Gln Ser Arg Ile Pro Trp Asp Ser 365 370 375Thr Gln Val Ile Cys Lys Asp Trp Ser Asn Leu Ala Gly Lys Asn 380 385 390Tyr Ile Ile Leu Asn Met Thr Glu Asn Ile Asp Cys Glu Val Phe 395 400 405Arg Gln His Arg Gly Pro Gln Leu Leu Ala Leu Val Glu Glu Val 410 415 420Leu Pro Arg His Gly Ser Gly His His Gly Ala Trp His Ile Ser 425 430 435Leu Ser Lys Pro Ser Glu Lys Glu Gln His Leu Leu Met Thr Leu 440 445 450Val Gly Glu Gln Gly Val Val Pro Thr Gln Asp Val Leu Ser Met 455 460 465Leu Gly Asp Ile Arg Arg Ser Leu Glu Glu Ile Gly Ile Gln Asn 470 475 480Tyr Ser Thr Thr Ser Ser Cys Gln Ala Arg Ala Ser Gln Val Arg 485 490 495Ser Asp Tyr Gly Thr Leu Phe Val Val Leu Val Val Ile Gly Ala 500 505 510Ile Cys Ile Ile Ile Ile Ala Leu Gly Leu Leu Tyr Asn Cys Trp 515 520 525Gln Arg Arg Leu Pro Lys Leu Lys His Val Ser His Gly Glu Glu 530 535 540Leu Arg Phe Val Glu Asn Gly Cys His Asp Asn Pro Thr Leu Asp 545 550 555Val Ala Ser Asp Ser Gln Ser Glu Met Gln Glu Lys His Pro Ser 560 565 570Leu Asn Gly Gly Gly Ala Leu Asn Gly Pro Gly Ser Trp Gly Ala 575 580 585Leu Met Gly Gly Lys Arg Asp Pro Glu Asp Ser Asp Val Phe Glu 590

595 600Glu Asp Thr His Leu 6057597PRTHomo sapiensmisc_featureIncyte ID No 2993326 75Met Thr Gly Arg Phe Lys Ala Cys Gln Val Ile Leu Gly Leu Leu 1 5 10 15Val Ala Ile Ser Leu Ala Ala Gly Thr Gly Gly Ala Ala Gly Ala 20 25 30Ala Leu Val Ile Val Phe Ile Gly Ala Phe Leu Val Leu Leu Phe 35 40 45Leu Gly Arg Leu Thr Thr Gly Gly Ser Met Ala Arg Glu Ser Leu 50 55 60Val Ala Ala Asn Arg Val Cys Ile Ser Arg Thr Leu Ser Ser Ser 65 70 75Val Val Ser Val Cys Ile Ser Gly Gly Lys Gly Ser Pro Arg Leu 80 85 90Pro Gly Gly Gly Arg Gly Pro 9576247PRTHomo sapiensmisc_featureIncyte ID No 3001124 76Met Val Thr Leu Val Ser Asp Thr Ala Met Thr Pro Ile Ala Ser 1 5 10 15Val Asp Thr Ile Ala Val Cys Leu Phe Ala Gly Ala Trp Gly Gly 20 25 30Ala Met Val Pro Met His Leu Leu Gly Arg Leu Glu Lys Pro Leu 35 40 45Leu Leu Leu Cys Cys Ala Ser Phe Leu Leu Gly Leu Ala Leu Leu 50 55 60Gly Ile Lys Thr Asp Ile Thr Pro Val Ala Tyr Phe Phe Leu Thr 65 70 75Leu Gly Gly Phe Phe Leu Phe Ala Tyr Leu Leu Val Arg Phe Leu 80 85 90Glu Trp Gly Leu Arg Ser Gln Leu Gln Ser Met Gln Thr Glu Ser 95 100 105Pro Gly Pro Ser Gly Asn Ala Arg Asp Asn Glu Ala Phe Glu Val 110 115 120Pro Val Tyr Glu Glu Ala Val Val Gly Leu Glu Ser Gln Cys Arg 125 130 135Pro Gln Glu Leu Asp Gln Pro Pro Pro Tyr Ser Thr Val Val Ile 140 145 150Pro Pro Ala Pro Glu Glu Glu Gln Pro Ser His Pro Glu Gly Ser 155 160 165Arg Arg Ala Lys Leu Glu Gln Arg Arg Met Ala Ser Glu Gly Ser 170 175 180Met Ala Gln Glu Gly Ser Pro Gly Arg Ala Pro Ile Asn Leu Arg 185 190 195Leu Arg Gly Pro Arg Ala Val Ser Thr Ala Pro Asp Leu Gln Ser 200 205 210Leu Ala Ala Val Pro Thr Leu Glu Pro Leu Thr Pro Pro Pro Ala 215 220 225Tyr Asp Val Cys Phe Gly His Pro Asp Asp Asp Ser Val Phe Tyr 230 235 240Glu Asp Asn Trp Ala Pro Pro 24577193PRTHomo sapiensmisc_featureIncyte ID No 3120070 77Met Ile Arg Cys Gly Leu Ala Cys Glu Arg Cys Arg Trp Ile Leu 1 5 10 15Pro Leu Leu Leu Leu Ser Ala Ile Ala Phe Asp Ile Ile Ala Leu 20 25 30Ala Gly Arg Gly Trp Leu Gln Ser Ser Asp His Gly Gln Thr Ser 35 40 45Ser Leu Trp Trp Lys Cys Ser Gln Glu Gly Gly Gly Ser Gly Ser 50 55 60Tyr Glu Glu Gly Cys Gln Ser Leu Met Glu Tyr Ala Trp Gly Arg 65 70 75Ala Ala Ala Ala Met Leu Phe Cys Gly Phe Ile Ile Leu Val Ile 80 85 90Cys Phe Ile Leu Ser Phe Phe Ala Leu Cys Gly Pro Gln Met Leu 95 100 105Val Phe Leu Arg Val Ile Gly Gly Leu Leu Ala Leu Ala Ala Val 110 115 120Phe Gln Ile Ile Ser Leu Val Ile Tyr Pro Val Lys Tyr Thr Gln 125 130 135Thr Phe Thr Leu His Ala Asn Pro Ala Val Thr Tyr Ile Tyr Asn 140 145 150Trp Ala Tyr Gly Phe Gly Trp Ala Ala Thr Ile Ile Leu Ile Gly 155 160 165Cys Ala Phe Phe Phe Cys Cys Leu Pro Asn Tyr Glu Asp Asp Leu 170 175 180Leu Gly Asn Ala Lys Pro Arg Tyr Phe Tyr Thr Ser Ala 185 19078128PRTHomo sapiensmisc_featureIncyte ID No 3133035 78Met Asn Met Lys Gln Lys Ser Val Tyr Gln Gln Thr Lys Ala Leu 1 5 10 15Leu Cys Lys Asn Phe Leu Lys Lys Trp Arg Met Lys Arg Glu Ser 20 25 30Leu Leu Glu Trp Gly Leu Ser Ile Leu Leu Gly Leu Cys Ile Ala 35 40 45Leu Phe Ser Ser Ser Met Arg Asn Val Gln Phe Pro Gly Met Ala 50 55 60Pro Gln Asn Leu Gly Arg Val Asp Lys Phe Asn Ser Ser Ser Leu 65 70 75Met Val Val Tyr Thr Pro Ile Ser Asn Leu Thr Gln Gln Ile Met 80 85 90Asn Lys Thr Ala Leu Ala Pro Leu Leu Lys Gly Thr Ser Val Ile 95 100 105Gly Ala Gln Ile Ile His Thr Trp Thr Lys Tyr Phe Trp Lys Ile 110 115 120Tyr Ile Cys Tyr Gly Asn His Leu 12579115PRTHomo sapiensmisc_featureIncyte ID No 3436879 79Met Ala Val Ala Val Leu Leu Cys Gly Cys Ile Val Ala Thr Val 1 5 10 15Ser Phe Phe Trp Glu Glu Ser Leu Thr Gln His Val Ala Gly Leu 20 25 30Leu Phe Leu Met Thr Gly Ile Phe Cys Thr Ile Ser Leu Cys Thr 35 40 45Tyr Ala Ala Ser Ile Ser Tyr Asp Leu Asn Arg Leu Pro Lys Leu 50 55 60Ile Tyr Ser Leu Pro Ala Asp Val Glu His Gly Tyr Ser Trp Ser 65 70 75Ile Phe Cys Ala Trp Cys Ser Leu Gly Phe Ile Val Ala Ala Gly 80 85 90Gly Leu Cys Ile Ala Tyr Pro Phe Ile Ser Arg Thr Lys Ile Ala 95 100 105Gln Leu Lys Ser Gly Arg Asp Ser Thr Val 110 115801869DNAHomo sapiensmisc_featureIncyte ID No 153831 80gcgagcggct ggcggatccg acgcgcgaga ccgggagggg acgagggcgt tgcaatcgtt 60cggggcgggg gctttccggg gagggggtgc tcaggtgcac cagcggcggc ggaccctcag 120actctgccct cccctccctt taaccccctt ccagccggac gggaggcggg gcagggctga 180gcatttgtga cacctacatt tccgtggctc ccttcttttc ccccgacccc tgtttatctc 240ttcgccttcc agaagttctt ttccatcagg ccgtcgcacc ttgcgtggga aggagcaccc 300cacttggaag caggaggcgg ggttcagatc ttggccctac ccctcctgtg ttaaagtccg 360cgagcctcag tttccctcac agtatttttt gcctcgcctt acccggtttt gaggatctgt 420acgagaaaga gaaaggaagt ggacatttgt tgaattcctg catggccaaa taccacgcag 480actgcttcat ccgccacgtt taatccttat tacttggtgt tctcagaact cccatttcat 540ggattcttaa gctcacagag tcagtgaata acagaaaggg attcagatct agccgtttag 600ctgcacagtg gagttcttct ccagagtctt cccttgtctg ggctctggct ggaactattc 660ctcagccaaa tcctcgcccc agaacagtgc ttcctgtttc tccagctgag aagtctccct 720ttcagtttcc ttcttccagc acggagtaca ctgctctgcc tccacttaga ttacttcaga 780aatgaaatgc agcaaatatt tatccagcag tgcagggagt tgaacttttg gagtcgggaa 840ccttggattc ttgttctggc tctgccactt actgtgtggc cttgggaagt cctttgtctt 900ctctgagctt tcttttctct ttgcgtaaaa gcggtgctct tgtcccattc tccctccctg 960tcttccagca ggctctcccc ggaggctcag ccccctctgc tccccatggg caactgccag 1020gcagggcaca acctgcacct gtgtctggcc caccacccac ctctggtctg tgccactttg 1080atcctgctgc tccttggcct ctctggcctg ggccttggca gcttcctcct cacccacagg 1140actggcctgc gcagccctga catcccccag gactgggtct cttttttgag atcttttggc 1200cagctgaccc tgtgtcccag gaatgggaca gtcacaggga agtggcgagg gtctcacgtc 1260gtgggcttgc tgaccacctt gaacttcgga gacggtccag acaggaacaa gacccggaca 1320ttccaggcca cagtcctggg aagtcagatg ggattgaaag gatcttctgc aggacaactg 1380gtccttatca cagccagggt gaccacagaa aggactgcag gaacctgcct atattttagt 1440gctgttccag gaatcctacc ctccagccag ccacccatat cctgctcaga ggagggggct 1500ggaaatgcca ccctgagccc tagaatgggt gaggaatgtg ttagtgtctg gagccatgaa 1560ggccttgtgc tgaccaagct gctcacctcg gaggagctgg ctctgtgtgg ctccaggctg 1620ctggtcttgg gctccttcct gcttctcttc tgtggccttc tctgctgtgt cactgctatg 1680tgcttccacc cgcgccggga gtcccactgg tctagaaccc ggctctgagg gcactggcct 1740agttcccgac ttgtttctca ggtgtgaatc aacttcttgg gccttggctc tgagttggaa 1800aaggttttag aaaaagtgaa gagctggaat gtgggggaaa ataaaaagct tttttgccca 1860aaaaaaaaa 1869811044DNAHomo sapiensmisc_featureIncyte ID No 350629 81tgcagttaac atctgcacac ttcactatat tttaagtttt tgttaatata aaagaataag 60aaaacagaaa agtattactg ttaaacaata atagagaaat gtatacttta tttacaaatt 120tctccctcta gctgatcata cagttgacca gttcagggtg cccgctgctg gttggatgcc 180aggcggaatg tcagggtgtt ctctggtgtc tgttgtggct gtgggatcca cggttactgg 240gcggagcctg tggtggctgt ggtgccatgg aggggctgcg atcttctgtg gagctggacc 300ctgagctgac tccagggaag ctggatgagg agatggtggg gctgccaccc catgacgcga 360gtcctcaagt cactttccac agcctcgatg ggaagacagt ggtgtgtcca cacttcatgg 420gcttactgct gggtctctta cttttattga ctttgtctgt taggaaccaa ctctgtgtaa 480gaggtgaaag gcagcttgca gaaacactgc attcacaggt gaaggagaaa tcccagctca 540ttggcaagaa aacagattgt agagactgag gcatctttaa aagatgtcag ggtacagaaa 600aagtctttca acacccccgg ctttgtagat gcctacaaga aggtgaatag caccaacgag 660atgctgatgg agaaatttac caccctcgtt caagaactga aagaagagac atcctccaga 720ctctcctcaa tgggcggtgc ctccaaatct aaagaatatg gaggtcctgg agcacaccaa 780gaaatgaggg actttttctt tgcagaaagt ttgaattctg tcttaatgag acagaatgcc 840atacttgagc acctcatctt ttgctcaaat tgaaatgtca tcgaactgta tttctcaagt 900caatggtctg taaatatgat ttatgtatta atctcctaag tgaacaattt atattttatc 960ctctacataa ttatcgtatt atgctttaaa tatatattta gtttatcaat aaagacattc 1020agtactcaat agcaaaaaaa aaaa 1044823079DNAHomo sapiensmisc_featureIncyte ID No 729171 82cggctcgagg tcggctggag tcggaggcga tatttctagg ggtgtacttg ttggggtcag 60ggtaagcacc agccacaaaa acctacaaaa gaagggaaat tactgtcttt aaatattaaa 120aaaaaacaag atccatgagt gggcatcgat caacaaggaa aagatgtgga gattcccacc 180cggagtcccc agtgggcttc gggcatatga gtactacagg atgtgtatta aataaattgt 240ttcagttacc aacaccacca ttgtcaagac accaactaaa gcggctagaa gaacacagat 300atcaaagtgc tggacggtcc ctgcttgagc ccttagtgca agggtattgg gaatggctcg 360ttagaagagt tccctcctgg attgccccaa atctcatcac catcattgga ctgtcaataa 420acatctgtac aactatttta ttagtcttct actgccctac agctacagag caggcacctc 480tgtgggcata tattgcttgt gcctgtggcc ttttcattta ccagtctttg gatgctattg 540gtgggaaaca ggcaagaaga accaatagta gttctcctct gggagaactt tttgatcatg 600gctgtgattc actatcaaca gtttttgtgg ttcttggaac ttgtatagca gtgcagctgg 660ggacaaaccc tgattggatg tttttttgtt gttttgcggg gacatttatg ttctattgtg 720cgcactggca aacgtatgtt tctggaacat tgcgatttgg aataattgat gtgactgaag 780tgcaaatctt cataataatc atgcatttgc tggcagtgat gggaggacca cctttttggc 840aatctatgat tccagtgctg aatattcaaa tgaaaatttt tcctgcactt tgtactgtag 900cagggaccat atttcctgta acaaattact tccgtgtaat cttcacaggt ggtgttggca 960aaaatggatc aacaatagca ggaacaagtg tcctttctcc ttttctccat attggatcag 1020tgattacatt agctgcaatg atctacaaga aatctgcagt tcagcttttt gaaaagcatc 1080cctgtcttta tatactgaca tttggttttg tgtctgctaa aatcactaat aagcttgtgg 1140ttgcacacat gacgaaaagt gaaatgcatt tgcatgacac agcattcata ggtccggcac 1200ttttgtttct ggaccagtat tttaacagct ttattgatga atatattgta ctttggattg 1260ccctggtttt ctctttcttt gatttgatcc gctactgtgt cagtgtttgc aatcagattg 1320cgtctcacct gcacatacat gtcttcagaa tcaaggtctc tacagctcat tctaatcatc 1380attaatgatg taattggtat ataggaacat catgttttct gcaggaaaga aagtaacata 1440ttaaggagaa tgggggtgga taagaacaaa tataatttat aataatcaat gttgtataac 1500ttttattctt tattattggt aacacgccct aactatcctg tgtgagaatg ggaatttcaa 1560gtcccatctt gtaaattgta tatgttgtca tgcagggttt gggccaagaa agcatgcaga 1620aaaaaatgcc atgtgattgt aattatcctg gattcagaat aatactgtga tggggagcca 1680gatccgcagt ggtggagagt tctaatgttg actgtttgca ggccaaaaga tgattgcttt 1740ataattttaa caaatcattg tcttttagta acatccttgt ttagtgtctt ctcaagcttt 1800ctttactgag gaattcagct tgtgacacag atacatccca ctagcttgtg aggtggaact 1860agtaataaag accttgaatt tggattgaaa agtttcctat ctttacattg ttgaggaagt 1920cctttttttt tttttttttt tttttaattg ctcaagaaat gattctctca caggcttggg 1980aaatcctgtt agcatgcaga ataatgtggt aactttgtca atttcccatt ttattttttt 2040aaataaatat atgatctaaa agccaacttt ttctcagttt tactcagtgg aaagataaac 2100taagttttaa tgttattttt ttaaatttaa gcaaaattta tttctgttct ttaataaata 2160agaaaatgtg gtccactgca ttgttgtgat gtgtcttgtg acatttctat tttgtagaaa 2220ctttaaaaag gagaactatg ttcatttttc ctgtcaatgg tttttttgtg ttgtagttgt 2280cacctgtgtg attatcaatc atttagaaat ctcataccct tcccctaaat tttcagcaag 2340tgcctgggcc tctctaagag gtcactttgt actctccttt tctggcagtc tcctctttgg 2400tatctgtact atcgtttgaa atgggaacca gatatgtttc cattttatac agataattca 2460gttgcttgaa gaagagggac acaggagaaa agatttaaac tattggctaa aatgaggtgt 2520cttattattg attttcatct atatcttgtc ccataatcag gaataaacag tagctacact 2580gccttgtatg gcagccagag cgctgcttgc ttgcactttt aatgattcca tcaataccat 2640gtagattgaa ttagcaagga gaagtaaacc tttcatttct ttgccagact atattgggaa 2700atgaaaatcc gtcattactt ttccttgcta gcaattgttc gaatatctgg gataaagaaa 2760tacatacagg aaaatgttag ggcagaccaa gtattaaaag ctaggacaga gcaggacaaa 2820ggaggaagga taattctact tgtttggcaa agttacatca gttgtcttac tgacacatca 2880ggtactatct atagtggaaa ttgaggcccg gagaggttaa atggcatgcc agtgtcactt 2940gctatttttc agaacaaaaa ttagaatcca gatctgaatc ctggtgcagt gttctctcct 3000atgccctact gggctttagt gggctaaagt tctgaagcaa gatgttaagg gctaattgaa 3060atgcgtttat tctcctaga 3079831298DNAHomo sapiensmisc_featureIncyte ID No 1273641 83cccggtgcct gcgggattgc tggagagaac gcggcgatgg agccgggcag gacccagata 60aagcttgacc ccaggtacac agcagatctt ctggaggtgc tgaagaccaa ttacggcatc 120ccctccgcct gcttctctca gcctcccaca gcagcccact cctgagagcc ctgggccctg 180tggaacttgc cctcactagc atcctgacct tgctggcgct gggctccatt gccatcttcc 240tggaggatgc cgtctacctg tacaagaaca ccctttgccc catcaagagg cggactctgc 300tctggaagag ctcggcaccc acggtggtgt ctgtgctgtg ctgctttggt ctctggatcc 360ctcgttccct ggtgctggtg gaaatgacca tcacctcgtt ttatgccgtg tgcttttacc 420tgctgatgct ggtcatggtg gaaggctttg gggggaagga ggcagtgctg aggacgctga 480gggacacccc gatgatggtc cacacaggcc cctgctgctg ctgctgcccc tgctgtcaac 540ggctgctgct caccaggaag aagcttcagc tgctgatgtt gggccctttc caatacgcct 600tcttgaagat aacgctgacc tggtgggcct tgttctcgtc cccgacggaa tcttatgacc 660cagcagacat ttctgagggg agcacagctc tatggatcaa cactttcctt ggcgtgtcca 720cactgctggc tctctggacc ctgggcatca tttcccgtca agccaggcta cacctgggtg 780agcagaacat gggagccaaa tttgctctgt tccaggttct cctcatcctg actgccctac 840agccctccat cttctcagtc ttggccaacg gtgggcagat tgcttgttcg cctccctatt 900cctctaaaac caggtctcaa gtgatgaatt gccacctcct catactggag acttttctaa 960tgactgtgct gacacgaatg tactaccgaa ggaaagacca caaggttggg tatgaaactt 1020tctcttctcc agacctggac ttgaacctca aagcctaagg tggatggctt ggacaatgaa 1080aggatgctgt actcattaga atacaagatt cctttactgt ccctcaacct tgaccaaatg 1140ggaagcattc ccccttgtca acacaagctg gcagatacat ttgactctac agatgaaggt 1200gaacaatgtt aggataaaat tgctttggat cttgcctgga aggtgtttta agttttgtaa 1260taaacaagat gatgtctgaa aatgtgaaaa aaaaaaaa 1298842106DNAHomo sapiensmisc_featureIncyte ID No 1427389 84gtggggctgc ggccgggatt tgtcccctct tcggcttccg tagaggaagt ggcgcggacc 60ttcatttggg gtttcggttc ccccccttcc ccttccccgg ggtctggggg tgacattgca 120ccgcgcccct cgtggggtcg cgttgccacc ccacgcggac tccccagctg gcgcgcccct 180cccatttgcc tgtcctggtc aggcccccac cccccttccc acctgaccag ccatgggggc 240tgcggtgttt ttcggctgca ctttcgtcgc gttcggcccg gccttcgcgc ttttcttgat 300cactgtggct ggggacccgc ttcgcgttat catcctggtc gcaggggcat ttttctggct 360ggtctccctg ctcctggcct ctgtggtctg gttcatcttg gtccatgtga ccgaccggtc 420agatgcccgg ctccagtacg gcctcctgat ttttggtgct gctgtctctg tccttctaca 480ggaggtgttc cgctttgcct actacaagct gcttaagaag gcagatgagg ggttagcatc 540gctgagtgag gacggaagat cacccatctc catccgccag atggcctatg tttctggtct 600ctccttcggt atcatcagtg gtgtcttctc tgttatcaat attttggctg atgcacttgg 660gccaggtgtg gttgggatcc atggagactc accctattac ttcctgactt cagcctttct 720gacagcagcc attatcctgc tccatacctt ttggggagtt gtgttctttg atgcctgtga 780gaggagacgg tactgggctt tgggcctggt ggttgggagt cacctactga catcgggact 840gacattcctg aacccctggt atgaggccag cctgctgccc atctatgcag tcactgtttc 900catggggctc tgggccttca tcacagctgg agggtccctc cgaagtattc agcgcagcct 960cttgtgtaag gactgactac ctggactgat cgcctgacag atcccacctg cctgtccact 1020gcccatgact gagcccagcc ccagcccggg tccattgccc acattctctg tctccttctc 1080gtcggtctac cccactacct ccagggtttt gctttgtcct tttgtgaccg ttagtctcta 1140agctttacca ggagcagcct gggttcagcc agtcagtgac tggtgggttt gaatctgcac 1200ttatccccac cacctgggga cccccttgtt gtgtccagga ctccccctgt gtcagtgctc 1260tgctctcacc ctgcccaaga ctcacctccc ttcccctctg caggccgacg gcaggaggac 1320agtcgggtga tggtgtattc tgccctgcgc atcccacccg aggactgagg gaacctaggg 1380gggacccctg ggcctggggt gccctcctga tgtcctcgcc ctgtatttct ccatctccag 1440ttctggacag tgcaggttgc caagaaaagg gacctagttt agccattgcc ctggagatga 1500aattaatgga ggctcaagga tagatgagct ctgagtttct cagtactccc tcaagactgg 1560acatcttggt ctttttctca ggcctgaggg ggaaccattt ttggtgtgat aaatacccta 1620aactgccttt ttttcttttt tgaggtgggg ggagggagga ggtatattgg aactcttcta 1680acctccttgg gctatatttt ctctcctcga gttgctcctc atggctgggc tcatttcggt 1740ccctttctcc ttggtcccag accttggggg aaaggaagga agtgcatgtt tgggaactgg 1800cattactgga actaatggtt ttaacctcct taaccaccag catccctcct ctccccaagg 1860tgaagtggag ggtgctgtgg tgagctggcc actccagagc tgcagtgcca ctggaggagt 1920cagactacca tgacatcgta gggaaggagg ggagattttt ttgtagtttt taattggggt 1980gtgggagggg cggggaggtt ttctataaac tgtatcattt tctgctgagg gtggagtgtc 2040ccatcctttt

aatcaaggtg attgtgattt tgactaataa aaaagaattt gtaaaaaaaa 2100aaaaaa 210685899DNAHomo sapiensmisc_featureIncyte ID No 1458357 85gctgtattca ggtccccgat gggcatatac atcttagccg gtgatacact acctcttacg 60tgttgcctct ttgtgttgct tggtgctctt tcgaaaacaa ggtgcttatg gctttcatag 120actatttcct ttttcatctt tgtcattctt taaaagtgta tgtactggtt acatcaagat 180atgttttggt tgttagtact tattttaatt tgtttggtca cacacttaat aacacgtgaa 240actatttatg tgaagtcctt gttttatttt aaaattctct ttgtgtattt ggaatcaaag 300ccagcacatt gtaacctgtg cttgtacgca aaagaattag atttctttgt ttttgtttta 360ttttttaaat tgttgtaaaa attattatag gccagctaca tctagtagta ggtttggggt 420acagattggg ggttgtgcca tactgttttt aaagttcatg atcatctgga atgatactta 480gtgtatatat attttgtaaa gttttaattc agcaaatttt ttgaaattgc tgctgtttta 540aattataaaa cctttatatt tctgctttgt agaaattata tgttttgtag tattcattga 600ttttctttca ctgtacttaa atttagtgtt agtactttaa aatttttaat ttaccagtct 660ttaaagcaac atccagaaaa aaaaaagtct tttcccattt aaaataggct cagccagttc 720aatgtcgcct tgttatcaga gaaatattag ttcaatactg aaagaaaaat attatacctc 780ttggtatcta gaaaaacttg ttcatccatt ataaatatat ctttagccac agcaaaccac 840acttaaccta tctataataa aaatgtgctt taaataaaac caaaaaaaga aaaaaaaaa 899862000DNAHomo sapiensmisc_featureIncyte ID No 1482837 86tttgtccagt tgttcttttg ttcctttccc gcctcccatt ctgctgctct tcctccctct 60tttccccaac ctcccccgac cctcctgaat tttggaaagc acatttgcaa tattcgtgtt 120tgctttggga cggaccctcc gtttcatctc atgctttatg tgtaagagtt ttttattatt 180attttttctt tcctttctct ctctgagaaa gttgtggctg cgttttgatc ttaggtttta 240caaagtggtt tagggaagcg gttttgggga gaaggatcac gaggaatgta gggaagccgg 300agggatgggt gctgctgcga cgaccccccc gtccctcggc cccagccctc ctgccctccc 360cgtcaatctc atccaccaaa tctgaaggcc ttaaaattgt gtgttgggag gatgtgaatt 420gggaggacgg tgtcactaga ctgtggatta gggatggtaa agtagggagg atgctatttt 480gcaactatag taacgactta gtgttttgga aaggaaaaga agttaaactt gaaatacgtg 540actagaacag ttgtcatgtt tataatgtga aaagggtgaa atcatttaga ggaggggccg 600tctgtaagaa atcattatgc actatggctt cctcctctgg tctgggaaga agcggggact 660ggctggccct caggggatct gtaaatccca gaaaacagta tttttaacag caagatgtca 720ttcaacattg gtggggaagg aagagaaaaa aatcaaacta ttccatagaa ctagctggcc 780ccctcactcc catgcccttc ccactcagcc tgggcccctc cccgctccat tcataaaagc 840tgagagggtt gagctaatct tcacaaattg taatattttt gtagtatctg ttagttcctt 900cgtcagttct gcagaacctt gccctttcct tttgtaatgt gaataggaag acaaaagaca 960aaaaaaaaat ccaccaccac caaaatatcc ctttgtacat gtatgtgcgt gtgcgcgtgt 1020gctttgtgtg tgtggttgtg tgttaaatca tgcagtattg tcgtaatctg gtgttgcagc 1080aatggatggt actaaatcag cacctggatg ccccacccaa ccccgtgggc cctgcagacc 1140ccagtaggga ggtatgggga gagctcaggg gagtgtggtt tctgagggct actgtctggg 1200gacacctctg aacttactgt accttcctct ccccatgaag acacctgaat agagtctaac 1260atgcctcttc tccaacttcc tacctacaac aacagaacag ttctaatgtt gcacggccta 1320gtggccaggg ggcaagctaa gaggctgtct ggaggcttta tatgtgtctg gagttaaggg 1380gagaggagga gggtagacag gggtctctcc ccaggtggga tctgaatatc tgtcctcccc 1440tcttcttcat gccacctgac tccttcggcc ccctggctgc ctttagctgt ggtactgctg 1500acaaccctgc ttgctactgc cttatccagc acagtgaaaa acttctccag cctggcaagg 1560ccacgttggt taatagtccc tttcccatgt ccagctccta caaatatgtc ccttaatgca 1620tttggtgaca tttacacctc actcatgtgc tctttcccta ttcactcctt cactcattca 1680aagcattaaa atcctatgta tatataggat agacaaatat atagatatat agatatatat 1740atatatagca agagattgat ataaaatagt aaatatcatt gctgctttgg gctgctttgg 1800aggaggaggc catgaatatg gggaaggcag atctggggtg caggggtagg tagggaggct 1860gggggaccca gtgattcagt acaatccaag ggatgcaacg cgggcttgtt taatctttgt 1920gcctgaacag tttttccatg ttgagaaaac tgttcaggca cagagattaa acagttttct 1980caacatggga aaaaaaaaaa 2000871359DNAHomo sapiensmisc_featureIncyte ID No 1517434 87tgcccatcct gctgctcagc ctggtcacca tgtgcgtcac gcagctgcgg ctcatcttct 60acatgggggc tatgaacaac atcctcaagt tcctggtcag cggcgaccag aagacagttg 120gcctctacac ctccatcttc ggcgtgctcc agctgctgtg cctgctgacg gcccccgtca 180ttggctacat catggactgg aggctgaagg agtgtgaaga cgcctccgag gagcccgagg 240agaaagacgc caaccaaggc gagaagaaaa agaagaagcg ggaccggcag atccagaaga 300tcactaatgc catgcgggcc ttcgccttca ccaacctgct gctcgtgggc tttggggtga 360cctgcctcat tcccaacctg cctctccaga tcctctcctt catcctgcac acaatcgtgc 420gaggattcat ccactccgct gtcgggggcc tgtacgctgc cgtgtacccc tccacccagt 480tcggcagcct cacgggactg cagtctctga tcagcgcgct cttcgccctt ctgcagcagc 540cgctgtttct ggccatgatg ggtcctctcc agggagaccc tctgtgggtg aacgtggggc 600tgctccttct cagcctgctg ggcttctgcc tcccgctcta cctgatctgc taccggcgcc 660agctggagcg gcagctgcag cagaggcagg aggatgacaa actcttcctc aaaatcaacg 720gctcgtccaa ccaggaggcc ttcgtgtagt ggctgccgcc tcggaactgc ggtctcctgc 780ctgtgcttca gtgactgacc cctgtcctgc ccctccagag taccccacgc acccccagga 840ccttcgccgt ctccgtgcca gcgttcacgc tccctcccgg ggccctgcct cggagctctg 900tggtggaagg acgggagagg gccccggaca cgcgcgtttt ctcctgccga acgcaggggc 960tgccctgact ttgctctgcc gccccccggg gacccggggc ctggggtctc tgtggtgcct 1020gcagcaggag ccaggaacgc ccggcaggca ggcgctctcc cgccagtgtc tggattctgc 1080ctcttgccaa agcagagggg gctgccatcc cctgcctgcc acctgcccct cggctgcatg 1140cccacagccg tacctgcctg aggacaaagg cttgcactgt ctcgcccgcg cctggccccc 1200accccctccc cgaccagcct gatcaacatg gtgaagcccc gtctctacta aagatacaaa 1260aattaggggg gcatggtggt ggatgcctgt aatcccggct gctcgggagg ctgaggcgga 1320tgaatcgctt gaaccaggag gtggaggttg cagtgaggg 1359881397DNAHomo sapiensmisc_featureIncyte ID No 1536052 88gctggggaag ggaccatgtg gctgccttgg gctctgttgc ttctctgggt cccagcatca 60acgtcaatga cacctgcaag tatcactgcg gccaagacct caacaatcac aactgcattt 120ccacctgtat catccactac cctgtttgca gtgggtgcca cccacagtgc cagcatccag 180gaggaaactg aggaggtggt gaactcacag ctcccgctgc tcctctccct gctggcattg 240ttgctgcttc tgttggtggg ggcctccctg ctagcctgga ggatgtttca gaaatggatc 300aaagctggtg accattcaga gctgtcccag aaccccaagc aggcctcccc cagggaagaa 360cttcactatg cctcggtggt gtttgattct aacaccaaca ggatagctgc tcagaggcct 420cgggaggagg aaccagattc agattacagt gtgataagga agacataggc ttttgtcctg 480cctcgccatc ggagctctca tgggccccag gaagtccagg gacagctccc ttatacctgg 540cccacgtcct tctcagcctg ccctcgacaa cagtgaccaa cagacaggca gctgggtttc 600ccaggccatc cctctgttgc catcagcttg attggcttcc ccgagggcca gcagggctgg 660gggctccgga gagcagcagg aagcactccc agccaccagt gcctgtcacc tctttcccct 720ttgcccctgc ttcatcccag ctctgtgtgt ggaggacaaa gcttcttcct gcgtggctcc 780aggaaaagat gtggctcacg taggtggcac ctgccaatag ctttgtcaat cacagcccca 840taggaacgtc tggaattgct tgggagttgg ggagaactgt caagaagagt gaagagagtg 900ccaaagcgga gatctgttca cctgggggcc atggaggggg gacccactaa agatcaagat 960caaagattct ccccatctca cagacaagga aactgaggcc agagggagga gagaattgct 1020catggctcca gaactggtgg caagtttctc tggactctta ggtttatttt taatatgaaa 1080tataaaaaca gtttcaaata tcttattgag ggagaagtaa aaacttattt aaacaataaa 1140aaaataaaaa aaaggggcgg gggtcccgag cccgaatccg aaatcaggta aaagctgttc 1200cctgtgtaaa attgttaccc gcccaaaatt ccacaaaata taggaccggg agccttaaag 1260tttaaacccc tgggggccca aattgggtgg gccatccccc atttaattgg cttggccccc 1320aatggccggt tttcacattg ggggaaacct ttttggccca acggctttta atgaaatcgg 1380cccaaaccgc gggggaa 1397891570DNAHomo sapiensmisc_featureIncyte ID No 1666118 89atgtccatca tgtcagcagg tgcaaatcac ttttcccctt tgcatgatct gaggcacctc 60ctcagttgtt tcactgccaa ctcttatttc agaacctgtt tacaaacaag ccttccagtt 120ggtgaatggt tagccattgg agctcctacc ctgtacatca gcacatcttc tggtttacaa 180gttgggtaac aatgaaagct ggagatacta aatggaaatc cagcattgca tacccttaga 240cctgatcaca taccagtaaa agccttaatt tagatgttag ttgtatgtgt tggacagatc 300cttgcaaaag tgtgtctgtc tattagttgt aaatttgaaa attataaatc tctgaatctg 360ctactatcca agtttcatcc cttttgaaga tgaggcatga gcctattaaa atatttataa 420tcatttttcg tcccctactg caagactttt agattcttac aaatgattac tacaggaata 480gtggccactt aatgtcagtt actccggtgg aagaatttat ctagtttttt ttcttttctt 540ttttggaagg atggtgtgaa aaatagcaag attagagaat gagttgtata gttttttcta 600tcacatttca tctaaaatga tttgaaggac ttttgaagat ttttaccaac atccttaaat 660caactccagg ttggatgaac aactgattta aaacaaacta agagaacatt aactagatgt 720gggcttttta aaatatatag gtattgcatt tcctaccttg ttatttattc cactttgaat 780actttagagg gcttaacttt caactcttta aggtagtaat ggatagtttt atacttgttc 840tcacaaaatt gttatggtca gtttatatca ttgctccatg cattgattat aaaaattcag 900tattaatttt ttctgatctt ataagcttta taggagtttt cttttctctt ataaagtgtt 960tcaccttatg taaaacaaat gcctgcttgc atattggaag atgttgaaat tagttttaga 1020caaaagtggt ccatcaattc agacactctg cttggatgcc ttaccctttt cattagtgca 1080ttctttgctt ctgaaacttg gcagaaactc gttagccagt ccactgcctt tctgacaatg 1140tgtggagtca cgtatgcttg gtatatgcct ttactacttt taaagttcta cagtttatta 1200cttgcccaag tgttactaaa tccttttctt atgtgtactg gatggagaaa aaattatagc 1260cagcactttg agaggaaagt tttcagaaac aatattaact ggcactacta actgaaggcc 1320acaggagatg ctatcaatgt tatttgtaat ctgaagattg aacaaggctg tgaggctcat 1380ttcaaactat tttgaggtgt taaaatatat atatgctgtt tctcagctgt tccactcaaa 1440ccgtgttagg actctcaaag gtaaaatgtc acaggggctt ttcagttgtt acagagctca 1500gcagctgtgg ttgcccctgt tctacaccaa tttcagttca ataaaaatgt taactttgaa 1560aaaaaaaaaa 157090718DNAHomo sapiensmisc_featureIncyte ID No 1675560 90ggtggtgcgt gcctgtaatc ccaactactt gggaggctga ggcaggagaa tcgcttgaac 60ctgggaggca gcggttgcag taagccaaga ctatgccact gcactcccgc ctgggtgaca 120aagcaatatt ctgtgtcaaa taaataaatt cattcttctg ctctcctgac ttagagaaat 180ggtttgctta aaatgctagt aacaaacatc acagtcaaca ggagcttgct tcatgcgaag 240gatcaatgtg atttgtggat ggagatgata gtgatgaaat tcctgtttca tggggctgtt 300tttcttttca tctcactggg cagcaggttt agtgaggcag tgagatgctg ctgctgtgga 360ttcttgtagc tatgcctcgg cttcttggca tatcaggtag gaacctgtta caagtgaaat 420acttgaaacc tctctgacca agagcctctg atggagtggg aggtgagcta attctctgac 480cagcttaggg cactgtttca gccactggtc acattccttg cttcaaactg aaattcagtt 540tggctttgag tatagggata catggtggat tcatgtactt cagtgtttgt tttgaccaaa 600gtttattttt ctagtgcatt ttctaagtca aagtggtgaa aatatgtaat aattttagta 660tgcatgactc agtctgaaac aataaaaatc tctgaaaaat gaaaaaaaaa aaaaaagg 71891904DNAHomo sapiensmisc_featureIncyte ID No 1687323 91gcttgtgggg ggaaaaagaa acgcaataga taaagcgggg cgcatgcgct cccggcacag 60gcttcgattg tgaggaaggc cggctagtct ccgagctcat cccgccttgc gcatgcggag 120aaggtaaacc agcgccccga gttgaggcgc gggtttggtg gcgcgtttca gcgaagtcgc 180acgtgaagga tagcagtggc ctgagaaaga cccagtcatg gcagcctcca gcatcagttc 240accatgggga aagcatgtgt tcaaagccat tctgatggtc ctagtggccc ttatcctcct 300ccactcagca ttggcccagt cccgtcgaga ctttgcacca ccaggccaac agaagagaga 360agccccagtt gatgtcttga cccagatagg tcgatctgtg cgagggacac tggatgcctg 420gattgggcca gagaccatgc acctggtgtc agagtcttcg tcccaagtgt tgtgggccat 480ctcatcagcc atttctgtgg ccttctttgc tctgtctggg atcgccgcac agctgctgaa 540tgccttggga ctagctggtg attacctcgc ccagggcctg aagctcagcc ctggccaggt 600ccagaccttc ctgctgtggg gagcaggggc cctggtcgtc tactggctgc tgtctctgct 660cctcggcttg gtcttggcct tgctggggcg gatcctgtgg ggcctgaagc ttgtcatctt 720cctggccggc ttcgtggccc tgatgaggtc ggtgcccgac ccttccaccc gggccctgct 780actcctggcc ttgctgatcc tctacgccct gctgagccgg ctcactggct cccgagcctc 840tggggcccaa ctcgaggcca aggtgcgagg gctggaacgc taggtggagg agctgcgctg 900gcgc 904921948DNAHomo sapiensmisc_featureIncyte ID No 1692236 92gaagacctct tagcgggccc atcgctgagg tgcagggaca tgtcgcggcc gaactcacct 60cgtggcctcg gcgtggtgct ctcagctcat gcccggaaac caggtcccga cgccgcggtc 120agacggacct ctagacgcgt ccgcctcaat gccgccagct gccaggccgc ccgtgacgcg 180ttacgcctgc gccgcctcct ggcttcgtga cgtcacgacg tccgcgcagt gcggtcgccg 240ccgtcgcacg agtctttcct tagtaacctg ggcgatactg tggatgtttc caaggattgt 300cttcagtcat ggccttggga ttaaagtgct tccgcatggt ccaccctacc tttcgcaatt 360atcttgcagc ctctatcaga cccgtttcag aagttacact gaagacagtg catgaaagac 420aacatggcca taggcaatac atggcctatt cagctgtacc agtccgccat tttgctacca 480agaaagccaa agccaaaggg aaaggacagt cccaaaccag agtgaatatt aatgctgcct 540tggttgagga tataatcaac ttggaagagg tgaatgaaga aatgaagtct gtgatagaag 600ctctcaagga taatttcaat ctgactctca atataagggc ctcaccagga tcccttgaca 660agattgctgt ggtaactgct gacgggaagc ttgctttaaa ccagattagc cagatctcca 720tgaagtcgcc acagctgatt ttggtgaata tggccagctt cccagagtgt acagctgcag 780ctatcaaggc tataagagaa agtggaatga atctgaaccc agaagtggaa gggacgctaa 840ttcgggtacc cattccccaa gtaaccagag agcacagaga aatgctggtg aaactggcca 900aacagaacac caacaaggcc aaagactctt tacggaaggt tcgcaccaac tcaatgaaca 960agctgaagaa atccaaggat acagtctcag aggacaccat taggctaata gagaaacaga 1020tcagccaaat ggccgatgac acagtggcag aactggacag gcatctggca gtgaagacca 1080aagaactcct tggatgaaag tccactgggg ccagcaatac tccagagccc agtttctgct 1140ggatcccatg ggtggcacat tgggacttct ctccctcccc catctacaca gaagactgtc 1200accatgctga cagaagcctg tccttgtaag gcccagcctt ccaggggaac actcagacat 1260gttcattctc ttcctgcttc tgctctgggc cggtgggtgg ctctcagaaa atacttgctg 1320ctggcaaaag gcctgtactc aggcatttgc tttgacttga tgttgccaag ggactgaggc 1380cattggcagg cttagtacca cctgctcctc atcttaggag tctccttttc aaataattag 1440gctctgttcc cattttaaaa ctctgatatt ggccttcacc tgtgactgga cactttacta 1500gaggcccatt ttcactaaac aataaaatct aaataaattg gaaggaataa caaccacaaa 1560ggaaagaata gagttggtct ggattgatga tcactgagga tctgtatgtg aggcacccat 1620aacagtagtt ttgcctgtga gtcgtcttca cacatgctgt tttctctgcc tggctctctc 1680ttcccctcct tacctggcca gtcctgttta tcatcaggcc ttgtcttgga tatcacgtcc 1740tctgggaagt cttcttttcc cctctaacct aggaccctca ttaccggctc tcatagcaca 1800gtctactgct ttgtacgaat tctaagtatt cttgttgcac ttaattagcc tgtatatcct 1860cagaactttg tgtaatgcct ggagcatagt aggcagtcat atgttgtatc gtgaataaat 1920tgcacatagt agctacccaa aaaaaaaa 194893990DNAHomo sapiensmisc_featureIncyte ID No 1720847 93acagagactg gcacaggacc tcttcattgc aggaagatgg tagtgtaggc aggtaacatt 60gagctctttt caaaaaagga gagctcttct tcaagataag gaagtggtag ttatggtggt 120aacccccggc tatcagtccg gatggttgcc acccctcctg ctgtaggatg gaagcagcca 180tggagtggga gggaggcgca ataagacacc cctccacaga gcttggcatc atgggaagct 240ggttctacct cttcctggct cctttgttta aaggcctggc tgggagcctt ccttttgggt 300gtctttctct tctccaacca acagaaaaga ctgctcttca aaggtggagg gtcttcatga 360aacacagctg ccaggagccc aggcacaggg ctgggggcct ggaaaaagga gggcacacag 420gaggagggag gagctggtag ggagatgctg gctttaccta aggtctcgaa acaaggaggg 480cagaataggc agaggcctct ccgttccagg cccatttttg acagatggcg ggacggaaat 540gcaatagacc agcctgcaag aaagacatgt gttttgatga caggcagtgt ggccgggtgg 600aacaagcaca ggccttggaa tccaatggac tgaatcagaa ccctaggcct gccatctgtc 660agccgggtga cctgggtcaa ttttagcctc taaaagcctc agtctcctta tctgcaaaat 720gaggcttgtg atacctgttt tgaagggttg ctgagaaaat taaagataag ggtatccaaa 780atagtctacg gccataccac cctgaacgtg cctaatctcg taagctaagc agggtcaggc 840ctggttagta cctggatggg gagagtatgg aaaacatacc tgcccgcagt tggagttgga 900ctctgtctta acagtagcgt ggcacacaga aggcactcag taaatacttg ttgaataaat 960gaagtagcga tttggtgtga aaaaaaaaaa 990941638DNAHomo sapiensmisc_featureIncyte ID No 1752821 94tagatatggc gtcctctttg cttgcgggcg agcgattggt gcgtgctttg ggccccggcg 60gggagctgga gccagagcgg ctaccccgaa agctgcgggc cgagcttgag gccgcgctgg 120ggaagaagca caagggcggt gatagctcca gtggccccca acgcttggtt tctttccgtc 180tcatccggga tctgcaccag catctgagag aaagggattc caaactatac ctccatgagc 240tcctagaagg cagtgaaatc tatctcccag aggttgtgaa gcctccacgg aacccagaac 300tagttgcccg gctggagaag attaagatac agctggccaa tgaggaatat aaacggatca 360cccgcaacgt cacttgtcag gatacaagac atggtgggac tctcagcgac ctgggaaagc 420aagtgagatc attgaaggct ctggtcatca ccatcttcaa tttcattgtc acggtggttg 480ctgccttcgt ctgcacttac cttggaagcc aatatatctt cacagaaatg gcctcgcggg 540tgctagctgc attgatcgtc gcctctgtgg tgggtctggc cgagctgtat gtcatggtgc 600gggcaatgga aggcgagctg ggagaactgt aactggtgct tcatcatcaa gtctagagaa 660gactttgggg gcttcaggct ccaattggca gtcaccgact cagtcaaccc atcagacttt 720ttgtattcag ctccagttag tcagaagacc agcccaggcc agctgctgtt tctgtgggga 780gccctaatct tctgtgaatt tccaaaggga gcattggagg agattgagat aacacatctt 840taaaacagaa agaactggtc ttggtctatc agtacctctt cctgaatctg gtacccatct 900gccttctcca gttcattcta aacactgctg ggactagggt ttttccatca ggagcaaatg 960gaatccaggc cttcccagaa gtagaccata ctgccttgaa cttgtccata tgtacaaact 1020aatcaccagc tttctccata catttttaat gcagacctgt aattgagttc agaagcctcc 1080aagaaaacag aaaggatccc ctttctccag tttgtgctgg aagaggagct gatcagagac 1140atcaaataag agaaagatgg gttgctagag gatggtagaa ctggaagcaa ggcagctacc 1200tttttgcaaa aggaaatggt gttaggcccc ttttccagaa gataagacag actcatagag 1260attaaatgat cactatggtc cttcttctgt taaatggagc caaagacgcc tatgttgttc 1320tgaagtcttg taatgtttaa cttctgagaa cttagattag tggtgtgatg atagagtctg 1380tataacgcat tgaaaagggt atcaggctta gttatttatc caataaatat ttattgtatg 1440cagggtattc ctattttaac tcctgtgaca acacaaagca tagcgatttc catagttcta 1500actgttcagg gtctgctcct cctggtacac tctttttggt tcactgtatg tactcctgtt 1560gtcttttttt ttttttccaa agcacttttc tgttttcata aattatatac tcattcactc 1620agtggacaaa aaaaaaaa 163895595DNAHomo sapiensmisc_featureIncyte ID No 1810923 95gtgggcgcgt ccagtgatga ctgggggatc ccggcaagta acatgactaa aaagaagcgg 60gagaatctgg gcgtcgctct agagatcgat gggctagagg agaagctgtc ccagtgtcgg 120agagacctgg aggccgtgaa ctccagactc cacagccggg agctgagccc agaggccagg 180aggtccctgg agaaggagaa aaacagccta atgaacaaag cctccaacta cgagaaggaa 240ctgaagtttc ttcggcaaga gaaccggaag aacatgctgc tctctgtggc catctttatc 300ctcctgacgc tcgtctatgc ctactggacc atgtgagcct ggcacttccc cacaaccagc 360acaggcttcc acttggcccc ttgatcagga tcaagcaggc acttcaagcc tcaataggac 420caaggtgctg gggtgttccc ctcccaacct agtgttcaag catggcttcc tggcggccca 480ggccttgcct ccctggcctg ctggggggtt ccgggtctcc agaaggacat ggtgctggtc 540cctcccttag cccaagggag

aggcaataaa gaacacaaag ctgtaaaaaa aaaaa 595961858DNAHomo sapiensmisc_featureIncyte ID No 1822315 96aaaagtctag atcacagtgg ggctctagga gggctagtcg ttggatttat cctaaccatt 60gcaaatttca gcttttttac ctctttgctg atgtttttct tgtcttcttc gaaactcact 120aaatggaagg gagaagtgaa gaagcgtcta gattcagaat ataaggaagg tgggcaaagg 180aattgggttc aggtgttctg taatggagct gtacccacag aactggccct gctgtacatg 240atagaaaatg gccccgggga aatcccagtc gatttttcca agcagtactc cgcttcctgg 300atgtgtttgt ctctcttggc tgcactggcc tgctctgctg gagacacatg ggcttcagaa 360gttggcccag ttctgagtaa aagttctcca agactgataa caacctggga gaaagttcca 420gttggtacca atggaggagt tacagtggtg ggccttgtct ccagtctcct tggtggtacc 480tttgtgggca ttgcatactt cctcacacag ctgatttttg tgaatgattt agacatttct 540gccccgcagt ggccaattat tgcatttggt ggtttagctg gattactagg atcaattgtg 600gactcatact taggggctac aatgcagtat actgggttgg atgaaagcac tggcatggtg 660gtcaacagcc caacaaataa ggcaaggcac atagcaggga aacccattct tgataacaac 720gcgtggatct gttttcttct gttcttattg ccctcttgct cccaactgct gcttggggtt 780tttggcccag ggggtgaact ttatttcatt tccacaggtt gaaactggtg agtccagcta 840aatttgcaat tccaactttc atcctaagaa taataactgt aatggcaaag cggaaatgcc 900agttcctcct gtattccatt gagatgggat ttcacatttt cctctcatca actcccctgt 960aatagctagc gtctttctag tgaaagagaa gaattcctag aacttatgca tttttttcct 1020gctgaatgga agtcttgagc aatgaagcta tattgtccct acatattact atatattgaa 1080ctgaaagttc ttacataatc aatgtcaagt tttgtcttat tttgttttgt ttgtttaaac 1140cagtgtagga aataaaagtg atgatattta aaatagttct cagttgaagc agagaaatgc 1200cactgtgcta gttgcccaaa tgttgtatct attttaaata gtttaagctg atgtgtatgg 1260gagcctaaac aagtgtagta tcctgaactt ctcccattaa ttgctattca caattgggaa 1320aagtgtggag attggttcct agtgagtttt gtggcctact ccacatttgt tcttccttcc 1380tcagggttag tgatgaaaaa aagtaaatat ctttttcata tgtccattag aatgtatgaa 1440aaaaatcatt ttaactaaaa gcaaaagaat tttatcttat atctaaaaaa tatataactt 1500actatatgtt tcagttgctc tctgaacaaa aattatcttc aatttaatat gtggaatgtg 1560ttttctagct ttctttgaat tatgtatggc aacctggttt agcactggca tcctgaacag 1620ttaagagtca ctgggaaatt attgtatttc tttataaatt tactgtcata tcaattgctg 1680gaaaatgcta tgatttttct attattacct tctaagttgt attctctctt acactgtagc 1740ctcaactaag gcaattctgc tatgtttgtt cttcactatg atttactgtg tgccaaagga 1800gttttgacag ggtacagagt attttactaa aagtattttt aaatgttaaa aaaaaaaa 185897698DNAHomo sapiensmisc_featureIncyte ID No 1877777 97tgggtgtccg catgacaacc gacgttggag tttggaggtg cttgccttag agcaagggaa 60acagctctca ttcaaaggaa ctagaagcct ctccctcagt ggtagggaga cagccaggag 120cggttttctg ggaactgtgg gatgtgccct tgggggcccg agaaaacaga aggaagatgc 180tccagaccag taactacagc ctggtgctct ctctgcagtt cctgctgctg tcctatgacc 240tctttgtcaa ttccttctca gaactgctcc aaaagactcc tgtcatccag cttgtgctct 300tcatcatcca ggatattgca gtcctcttca acatcatcat cattttcctc atgttcttca 360acaccttcgt cttccaggct ggcctggtca acctcctatt ccataagttc aaagggacca 420tcatcctgac agctgtgtac tttgccctca gcatctccct tcatgtctgg gtcatgaact 480tacgctggaa aaactccaac agcttcatat ggacagatgg acttcaaatg ctgtttgtat 540tccagagact agcagcagtg ttgtactgct acttctataa acggacagcc gtaagactag 600gcgatcctca cttctaccag gactctttgt ggctgcgcaa ggagttcatg caagttcgaa 660ggtgacctct tgtcacactg atggatactt ttccttcc 698981476DNAHomo sapiensmisc_featureIncyte ID No 1879819 98caaggacgag gctctggcca agctgggtat caacggtgcc cactcgtccc cgccgatgct 60gtcccccagc ccaggaaagg gccccccgcc agctgtggct cctcgaccca aggccccgct 120acagcttggg ccctctagct ccatcaagga aaagcagggg ccccttctgg acctgtttgg 180ccagaagctg cctattgccc acacaccccc acctccacca gcgccaccac tgcctctgcc 240cgaggaccca gggacccttt cagcagagcg tcgttgcttg acacagcccg tggaggacca 300gggggtctcc acccagctac tcgcgccctc tggcagcgtg tgcttctcct acaccggcac 360gccctggaag ttgttcctac gcaaggaggt gttctaccca cgggagaact tcagccatcc 420ctactacctg aggctcctct gtgagcagat cctacgggac accttctccg agtcctgtat 480ccggatttcc cagaatgagc ggcggaaaat gaaagacctg ctgggaggct tggaggtgga 540cctggattct ctcaccacca ccgaagacag cgtcaagaag cgcatcgtgg tggccgctcg 600ggacaactgg gccaattact tctcccgctt ctttcctgtc tcgggcgaga gtggcagcga 660cgtgcagctg ttagccgtgt cccaccgtgg gctgcgactg ctcaaggtga cccaaggccc 720cggcctccgc cccgaccagc tgaagattct ctgctcatac agctttgcgg aggtgctggg 780tgtggagtgc cggggcggct ccaccctgga gctgtcactg aagagcgagc agctggtgct 840gcacacagcc cgggcaaggg ccatcgaggc gctggttgag ctattcctga atgagcttaa 900gaaggactcc ggctatgtca tcgccctgcg cagctacatc actgacaact gcagcctcct 960cagcttccac cgtggggacc tcatcaagct gctgccggtg tgccaccctg gagccaggct 1020ggcagtttgg ctctgccggg ggccgttccg gactctttcc tgccgacata gtgcagccgg 1080ctgccgctcc cgacttttcc ttctccaagg agcagaggag tggctggcac aagggtcagc 1140tgtccaacgg ggaaccaggg ctggctcggt gggacagggc ctcagaggtg aggaagatgg 1200gagagggaca agcagaggca aggcctgcct gagactgagg aaggaaaggg gtttgaccac 1260tcccgaggct gccatgcggt gggaccaccc tgctgtccgt ctcctgtggc tgcccctctg 1320cccgctcctg atggctcgcc ttgtctctcc agcaagactg tgcactcctt gcaggcaggg 1380gctgggctgg atgctgctct tgtgtcccac gtggtactta gttcaaggct gccccagcag 1440atgcttaata aacagctctt cactttaaaa aaaaaa 147699646DNAHomo sapiensmisc_featureIncyte ID No 1932945 99ccggctggag gtgacgctga ggcggcgagg gtgagtcggc gccggccgct accgcacttc 60gggcgctcgt ccctcatttc tctgtggtga atggcgacgg gatggagcgc gaggggagcg 120gcggcagcgg cgggtcggcc gggctcctgc agcagatcct gagcctgaag gttgtgccgc 180gggtgggcaa cgggaccctg tgccccaact ctacttccct ctgctccttc ccagagatgt 240ggtatggtgt attcctgtgg gcactggtgt cttctctctt ctttcatgtc cctgctggat 300tactggccct cttcaccctc agacatcaca aatatggtag gttcatgtct gtaagcatcc 360tgttgatggg catcgtggga ccaattactg ctggaatctt gacaagtgca gctattgctg 420gagtttaccg agcagcaggg aaggaaatga taccatttga agccctcaca ctgggcactg 480gacagacatt ttgcgtcttg gtggtctcct ttttacggat tttagctact ctatagcata 540catccttatg ctgagatgtt gaacttaaac tttatggaat cctccaaaag aatacattat 600ggagtgtagt gttttcttag ttcttccaaa gggagccact tggatg 6461001735DNAHomo sapiensmisc_featureIncyte ID No 2061026 100gccggctgcg ccatggcgtt ggcgttggcg gcgctggcgg cggtcgagcc ggcctgcggc 60agccggtacc agcagttgca gaatgaagaa gagtctggag aacctgaaca ggctgcaggt 120gatgctcctc caccttacag cagcatttct gcagagagcg cagcatattt tgactacaag 180gatgagtctg ggtttccaaa gcccccatct tacaatgtag ctacaacact gcccagttat 240gatgaagcgg agaggaccaa ggctgaagct actatccctt tggttcctgg gagagatgag 300gattttgtgg gtcgggatga ttttgatgat gctgaccagc tgaggatagg aaatgatggg 360attttcatgt taactttttt catggcattc ctctttaact ggattgggtt tttcctgtct 420ttttgcctga ccacttcagc tgcaggaagg tatggggcca tttcaggatt tggtctctct 480ctaattaaat ggatcctgat tgtcaggttt tccacctatt tccctggata ttttgatggt 540cagtactggc tctggtgggt gttccttgtt ttaggctttc tcctgtttct cagaggattt 600atcaattatg caaaagttcg gaagatgcca gaaactttct caaatctccc caggaccaga 660gttctcttta tttattaaag atgttttctg gcaaaggcct tcctgcattt atgaattctc 720tctcaagaag caagagaaca cctgcaggaa gtgaatcaag atgcagaaca cagaggaata 780atcacctgct ttaaaaaaat aaagtactgt tgaaaagatc atttctctct atttgttcct 840aggtgtaaaa ttttaatagt taatgcagaa ttctgtaatc attgaatcat tagtggttaa 900tgtttgaaaa agctcttgca atcaagtctg tgatgtatta ataatgcctt atatattgtt 960tgtagtcatt ttaagtagca tgagccatgt ccctgtagtc ggtagggggc agtcttgctt 1020tattcatcct ccatctcaaa atgaacttgg aattaaatat tgtaagatat gtataatgct 1080ggccatttta aaggggtttt ctcaaaagtt aaacttttgt tatgactgtg tttttgcaca 1140taatccatat ttgctgttca agttaatcta gaaatttatt caattctgta tgaacacctg 1200gaagcaaaat catagtgcaa aaatacattt aaggtgtggt caaaaataag tctttaattg 1260gtaaataata agcattaatt ttttatagcc tgtattcaca attctgcggt accttattgt 1320acctaaggga ttctaaaggt gttgtcactg tataaaacag aaagcactag gatacaaatg 1380aagcttaatt actaaaatgt aattcttgac actctttcta taattagcgt tcttcacccc 1440cacccccacc cccacccccc ttattttcct tttgtctcct ggtgattagg ccaaagtctg 1500ggagtaagga gaggattagg tacttaggag caaagaaaga agtagcttgg aacttttgag 1560atgatcccta acatactgta ctacttgctt ttacaatgtg ttagcagaaa ccagtgggtt 1620ataatgtaga atgatgtgct ttctgcccaa gtggtaattc atcttggttt gctatgttaa 1680aactgtaaat acaacagaac attaataaat atctcttgtg tagcaaaaaa aaaaa 17351012329DNAHomo sapiensmisc_featureIncyte ID No 2096687 101gcagggatca ctagcatgtc tgcggagagc ggccctggga cgagattgag aaatctgcca 60gtaatggggg atggactaga aacttcccaa atgtctacaa cacaggccca ggcccaaccc 120cagccagcca acgcagccag caccaacccc ccgcccccag agacctccaa ccctaacaag 180cccaagaggc agaccaacca actgcaatac ctgctcagag tggtgctcaa gacactatgg 240aaacaccagt ttgcatggcc tttccagcag cctgtggatg ccgtcaagct gaacctccct 300gattactata agatcattaa aacgcctatg gatatgggaa caataaagaa gcgcttggaa 360aacaactatt actggaatgc tcaggaatgt atccaggact tcaacactat gtttacaaat 420tgttacatct acaacaagcc tggagatgac atagtcttaa tggcagaagc tctggaaaag 480ctcttcttgc aaaaaataaa tgagctaccc acagaagaaa ccgagatcat gatagtccag 540gcaaaaggaa gaggacgtgg gaggaaagaa acagggacag caaaacctgg cgtttccacg 600gtaccaaaca caactcaagc atcgactcct ccgcagaccc agacccctca gccgaatcct 660cctcctgtgc aggccacgcc tcaccccttc cctgccgtca ccccggacct catcgtccag 720acccctgtca tgacagtggt gcctccccag ccactgcaga cgcccccgcc agtgcccccc 780cagccacaac ccccacccgc tccagctccc cagcccgtac agagccaccc acccatcatc 840gcggccaccc cacagcctgt gaagacaaag aagggagtga agaggaaagc agacaccacc 900acccccacca ccattgaccc cattcacgag ccaccctcgc tgcccccgga gcccaagacc 960accaagctgg gccagcggcg ggagagcagc cggcctgtga aacctccaaa gaaggacgtg 1020cccgactctc agcagcaccc agcaccagag aagagcagca aggtctcgga gcagctcaag 1080tgctgcagcg gcatcctcaa ggagatgttt gccaagaagc acgccgccta cgcctggccc 1140ttctacaagc ctgtggacgt ggaggcactg ggcctacacg actactgtga catcatcaag 1200caccccatgg acatgagcac aatcaagtct aaactggagg cccgtgagta ccgtgatgct 1260caggagtttg gtgctgacgt ccgattgatg ttctccaact gctataagta caaccctcct 1320gaccatgagg tggtggccat ggcccgcaag ctccaggatg tgttcgaaat gcgctttgcc 1380aagatgccgg acgagcctga ggagccagtg gtggccgtgt cctccccggc agtgccccct 1440cccaccaagg ttgtggcccc gccctcatcc agcgacagca gcagcgatag ctcctcggac 1500agtgacagtt cgactgatga ctctgaggag gagcgagccc agcggctggc tgagctccag 1560gagcagctca aagccgtgca cgagcagctt gcagccctct ctcagcccca gcagaacaaa 1620ccaaagaaaa aggagaaaga caagaaggaa aagaaaaaag aaaagcacaa aaggaaagag 1680gaagtggaag agaataaaaa aagcaaagcc aaggaacctc ctcctaaaaa gacgaagaaa 1740aataatagca gcaacagcaa tgtgagcaag aaggagccag cgcccatgaa gagcaagccc 1800cctcccacgt atgagtcgga ggaagaggac aagtgcaagc ctatgtccta tgaggagaag 1860cggcagctca gcttggacat caacaagctc cccggcgaga agctgggccg cgtggtgcac 1920atcatccagt cacgggagcc ctccctgaag aattccaacc ccgacgagat tgaaatcgac 1980tttgagaccc tgaagccgtc cacactgcgt gagcttggag cgctatgtca cctcctgttt 2040gcggaagaaa aggaaacctt caagctgaga aagttgatgt gatntgccgg gttcctccaa 2100natgaaaggn ttctcggtct tcaagagncg ggagagnctc ccagttgaat tccaanttct 2160tttgacaagc ggaaganttc cggaaaacaa agggtccttg gccttaaatt caatttggga 2220aaaccnggga cttccttaaa tttaaaaaaa gggggctttt caagntttcc caaggaattt 2280ccttttcccc caaggnaaag gcntaattan gcctttaaaa ggttnccca 23291021451DNAHomo sapiensmisc_featureIncyte ID No 2100530 102ctcgagcggc ggcatttcct ggtgtctgag cctggcgcgg aggctatggg cagccaggag 60gtgctgggcc acgcggcccg gctggcctcc tccggtctcc tcctgcaggt gttgtttcgg 120ttgatcacct ttgtcttgaa tgcatttatt cttcgcttcc tgtcaaagga aatcgttggc 180gtagtaaatg taagactaac gctgctttac tcaaccaccc tcttcctggc cagagaggcc 240ttccgcagag catgtctcag tgggggcacc cagcgagact ggagccagac cctcaacctg 300ctgtggctaa cagtccccct gggtgtgttt tggtccttat tcctgggctg gatctggttg 360cagctgcttg aagtgcctga tcctaatgtt gtccctcact atgcaactgg agtggtgctg 420tttggtctct cggcagtggt ggagcttcta ggagagccct tttgggtctt ggcacaagca 480catatgtttg tgaagctcaa ggtgattgca gagagcctgt cggtaattct taagagcgtt 540ctgacagctt ttctcgtgct gtggttgcct cactggggat tgtacatttt ctctttggcc 600cagcttttct ataccacagt tctggtgctc tgctatgtta tttatttcac aaagttactg 660ggttccccag aatcaaccaa gcttcaaact cttcctgtct ccagaataac agatctgtta 720cccaatatta caagaaatgg agcgtttata aactggaaag aggctaaact gacttggagt 780tttttcaaac agtctttctt gaaacagatt ttgacagaag gcgagcgata tgtgatgaca 840tttttgaatg tattgaactt tggtgatcag ggtgtgtatg atatagtgaa taatcttggc 900tcccttgtgg ccagattaat tttccagcca atagaggaaa gtttttatat attttttgct 960aaggtgctgg agaggggaaa ggatgccaca cttcagaagc aggaggacgt tgctgtggct 1020gctgcagtct tggagtccct gctcaagctg gccctgctgg ccggcctgac catcactgtt 1080tttggctttg cctattctca gctggctctg gatatctacg gagggaccat gcttagctca 1140ggatccggtc ctgttttgct gcgttcctac tgtctctatg ttctcctgct tgccatcaat 1200ggagtgacag agtgtttcac atttgctgcc atgagcaaag aggaggtcga caggtattcc 1260tctgctgtga gcagggctgg ccagccagac tggcacacat tgctgtgggg gccttctgtc 1320tgggagcaac tctcgggaca gcattnctca cagagaccaa gctgatccat ttnctcagga 1380ctcagttagg tgtgcccaga cggactgaca aaatgacgtg acttcagggn aggctgggac 1440aaacgaggca a 14511031685DNAHomo sapiensmisc_featureIncyte ID No 2357636 103gcgatcgagg ctgcagcgcg gccgccgggc gcacatgact gccgtcggcg tgcaggccca 60gaggcctttg ggccaaaggc agccccgccg gtccttcttt gaatccttca tccggaccct 120catcatcacg tgtgtggccc tggctgtggt cctgtcctcg gtctccattt gtgatgggca 180ctggctcctg gctgaggacc gcctcttcgg gctctggcac ttctgcacca ccaccaacca 240gagtgtgccg atctgcttca gagacctggg ccaggcccat gtgcccgggc tggccgtggg 300catgggcctg gtacgcagcg tgggcgcctt ggccgtggtg gccgccattt ttggcctgga 360gttcctcatg gtgtcccagt tgtgcgagga caaacactca cagtgcaagt gggtcatggg 420ttccatcctc ctcctggtgt ctttcgtcct ctcctccggc gggctcctgg gttttgtgat 480cctcctcagg aaccaagtca cactcatcgg cttcacccta atgttttggt gcgaattcac 540tgcctccttc ctcctcttcc tgaacgccat cagcggcctt cacatcaaca gcatcaccca 600tccctgggaa tgaccgtgga aattttaggc cccctccagg gacatcagat tccacaagaa 660aatatggtca aaatgggact tttccagcat gtggcctctg gtggggctgg gttggacaag 720ggccttgaaa cggctgcctg tttgccgata acttgtgggt ggtcagccag aaatggccgg 780ggggcctctg cacctggtct gcagggccag aggccaggag ggtgcctcag tgccaccaac 840tgcacaggct tagccagatg ttgattttag aggaagaaaa aaacatttta aaactccttc 900ttgaattttc ttccctggac tggaatacag ttggaagcac aggggtaact ggtacctgag 960ctagctgcac agccaaggat agttcatgcc tgtttcattg acacgtgctg ggataggggc 1020tgcagaatcc ctggggctcc cagggttgtt aagaatggat cattcttcca gctaagggtc 1080caatcagtgc ctattcttcc accagctcaa agggccttcg tatgtatgtc cctggcttca 1140gctttggtca tgccaaagag gcagagttca ggattccctc agaatgccct gcacacagta 1200ggtttccaaa ccatttgact cggtttgcct ccctgcccgt tgtttaaacc ttacaaaccc 1260tggataaccc catcttctag cagctggctg tcccctctgg gagctctgcc tatcagaacc 1320ctaccttaag gtgggtttcc ttccgagaag agttcttgag caagctctcc caggagggcc 1380cacctgactg ctaatacaca gccctcccca aggcccgtgt gtgcatgtgt ctgtcttttg 1440tgagggttag acagcctcag ggcaccattt ttaatcccag aacacatttc aaagagcacg 1500tatctagacc tgctggactc tgcagggggt gagggggaac agcgagagct tgggtaatga 1560ttaacaccca tgctggggat gcatggaggt gaagggggcc aggaaccagt ggagatttcc 1620atccttgcca gcacgtctgt acttctgttc attaaagtgc tccctttcta gtcaaaaaaa 1680aaaaa 16851042674DNAHomo sapiensmisc_featureIncyte ID No 2365230 104ctactcctca ccgcgcgagc gcggggaacc agtagccgcg gctgcttcgg ttgccgcggt 60cggtggtcgt tatggattct ccatgggacg agttggctct ggccttctcc cgcacgtcca 120tgtttccctt ttttgacatc gcgcactatc tagtgtcagt gatggcggtg aaacgtcagc 180cgggagcagc tgcattggca tggaagaatc ctatttcaag ctggtttact gctatgctcc 240actgttttgg tggaggaatt ttatcctgtc tactgcttgc agagcctcca ttgaagtttc 300ttgcaaacca cactaacata ttactggcat cttcaatctg ggtatattac atttttttgc 360ccgcatgacc tagtttccca gggctattca tatctacctg ttcaactact ggcttcggga 420atgaaggaag tgaccagaac ttggaaaata gtaggtggag tcacacatgc taatagctat 480tacaaaaatg gctggatagt catgatagct attggatggg cccgaggtgc aggtggtacc 540attataacga attttgagag gttggtaaaa ggagattgga aaccagaagg tgatgaatgg 600ctgaagatgt cataccctgc caaggtaacc ctgctggggt cagttatctt cacattccag 660cacacccagc atctggcaat atcaaagcat aatcttatgt tcctttatac catctttatt 720gtggccacaa agataaccat gatgactaca cagacttcta ctatgacatt tgctcctttt 780gaggatacat tgagttggat gctatttggc tggcagcagc cgttttcatc atgtgagaag 840aaaagtgaag caaagtcacc ttccaatggc gttgggtcat tggcctcaaa gccggtagat 900gttgcctcag ataatgttaa aaagaaacat actaagaaga atgaataaat ttacgtgatg 960agctctagca agccaaaaat tttttttctt atctacctgt tatattgtgc taattttcta 1020tgtatgtgat gtgaaatgaa gactatatat atggaatgga ggtgacagaa agaaagaaat 1080tctttgtttg agggagactt cccctttctg gattgtattt gtagagtgtt acgagtgtat 1140catgtgatta tgctttaccg gtataagaga ttctgttgtg attatttgaa tagttttata 1200ttaataaaag aagacaaaat tttttaaatg ttagaaaaag cagatctgtc attgcaaagt 1260aacaaaaatt ttaagctttt aaaaatgtag atttttcata tttttaaaat ttgaatctat 1320ttgagcttta gttcagcaga attaaatttt tacttgacat tatcattaaa attgctaggt 1380atggagaaca attcctattt tattttgaac actgagaaga gtaaactttt cctaaaacac 1440tttatattat aaatgaaaat aaattgctag tttatatttt agatataaac atcatatttt 1500ttattaatac ctacatcaaa tggaaaatat ctgaaatttt ttttccatag caggtatttt 1560ctactagaag tagttttact acttttcatt tagaacagag tatgagtctt aatctgaagt 1620ctttttcatg cccttgtttt aaaaaaacta ctttttttgg cctcaaaaaa atcaagggtg 1680taatttttaa taaattgtta atcctatgtt ttgtaatttt cattttagga gcttgactta 1740ttttttttct ctctcataaa aacacatttg ttttaattgt aggagaaatt ttctcagcat 1800tttgcatgtt ctttctaatc tttgttggtc tgaatatatt ggtagtaatt actgtaatta 1860ttcaacaaaa agcatatccg ttcaaaaatt tttccactat gtcttttttc tagtggctac 1920tgttttagtt ttctagttga atatctctga caagctttcg tatggttttg ttatattttc 1980atctacatgt aatgtgttat taattttatt aaatgaaaac taatcacctt catgtggaaa 2040tgctctgaga attgtcctta ggcatttggt agtaaccagc taaccaagaa gaaacagaga 2100aaccagaact tcatatggca gtccatttag atgaagaatg atgatataaa atctggttcc 2160ttcttagcaa aataaaaaac aaacaagaaa agatactaaa tgatgttaat tttcttactt 2220tatgatttag aagtccagtt ataatattaa aactctgtga catagtttct tttaccaaaa 2280ccatgaacct actccccgta tcaggtattt tcgatggttt agaagtactc aagtcacatc 2340acattcaagt tagaagtttt ttttttgttg ttgttatttt aaatttttaa caaatataaa 2400caccagcaga tactattact

tgcttaaaaa attgggaggg ggcacttttc atagtcttgg 2460aatgctaaga agttttattt ttaatattgt gacagaaagc tttaagtatt taagagctct 2520gtattatatt tgatactctt acagttaaaa acttttcaaa attaatacat tgttaattat 2580tgaccagttt tgaagtttgg gtttaactgt agttgaaatg gaaggactct tgttttacac 2640ttgtattaaa gataaattta ttaaaataag ttat 2674105488DNAHomo sapiensmisc_featureIncyte ID No 2455121 105gactacgggg ctgttgacgg cgctgcgatg gctgcctgcg agggcaggag aagcggactc 60tcggttcctc tcagtcggac ttcctgacgc cgccagttgg cggggcccct tgggccgtcg 120ccaccactgt agtcatgtac ccaccgccgc cgccgccgcc tcatcgggac ttcatctcgg 180tgacgctgag ctttggcgag agctatgaca acagcaagag ttggcggcgg cgctcgtgct 240ggaggaaatg gaagcaactg tcgagattgc agcggaatat gattctcttc ctccttgcct 300ttctgctttt ctgtggactc ctcttctaca tcaacttggc tgaccattgg aaagctctgg 360ctttcaggct aggggaagag cagaagatga ggccagaaat tgctgggtaa aaccagcaaa 420tccacccgtc ttaccagctc ctcagaaggc ggacaccggc cctgagaact tacctgagat 480ttcgtcac 4881061028DNAHomo sapiensmisc_featureIncyte ID No 2472514 106ccagcagctc ggtcctaggg cgatgttgac agacagacag aggggcggat gcagcctacc 60tcctgggcag tgagctgcgg tctgaggccc ctgcccagct ggaaaccaca gggaggggaa 120gggaggggag gagaggagag gagaggaacc gtcatggggc cttggagtcg agtcagggtt 180gccaaatgcc agatgctggt cacctgcttc tttatcttgc tgctgggcct ctctgtggcc 240accatggtga ctcttaccta cttcggggcc cactttgctg tcatccgccg agcgtccctg 300gagaagaacc cgtaccaggc tgtgcaccaa tgggccttct ctgcggggtt gagcctggtg 360ggcctcctga ctctgggagc cgtgctgagc gctgcagcca ccgtgaggga ggcccagggc 420ctcatggcag ggggcttcct gtgcttctcc ctggcgttct gcgcacaggt gcaggtggtg 480ttctggagac tccacagccc cacccaggtg gaggacgcca tgctggacac ctacgacctg 540gtatatgagc aggcgatgaa aggtacgtcc cacgtccggc ggcaggagct ggcggccatc 600caggacgtgg tgagcgtggg gacggctggg tggcagggcg gtcagcttct gcttggactg 660cagttcagag aacaggcgca gggtggccag tgagaggtct ggccaggcac cgagggggtt 720ccaggacaca ggccagagtt gcccctcagg gctgggggca aaaagctccc accctctgtc 780tgcccaggac aaggccgcct accagattct cgaggcccag tgcaaaacga gagggcaggg 840ccctgtattc agaaacactg aaggatttca agagcattaa agcaaatacg gggccgaaca 900tagtggctca cacctgtaat cccagcactt tgggaggagg ttgaggcagg tgaattgctt 960gagcccagga gttcgagacc agcctgagca acatagggag accttgtctc tactttaaaa 1020aaaaaaaa 10281071551DNAHomo sapiensmisc_featureIncyte ID No 2543486 107ctgcgcctgg gctgccggtg acctgggccg agccctcccg gtcggctaag attgctgagg 60aggcggcggg tagctggcag gcgccgactt ccgaaggccg ccgtccgggc gaggtgtcct 120catgacttct cttgtggacc atgtccgtga tcttttttgc ctgcgtggta cgggtaaggg 180atggactgcc cctctcagcc tctactgatt tttaccacac ccaagatttt ttggaatgga 240ggagacggct caagagttta gccttgcgac tggcccagta tccaggtcga ggttctgcag 300aaggttgtga ctttagtata catttttctt ctttcgggga cgtggcctgc atggctatct 360gctcctgcca gtgtccagca gccatggcct tctgcttcct ggagaccctg tggtgggaat 420tcacagcttc ctatgacact acctgcattg gcctagcctc caggccatac gcttttcttg 480agtttgacag catcattcag aaagtgaagt ggcattttaa ctatgtaagt tcctctcaga 540tggagtgcag cttggaaaaa attcaggagg agctcaagtt gcagcctcca gcggttctca 600ctctggagga cacagatgtg gcaaatgggg tgatgaatgg tcacacaccg atgcacttgg 660agcctgctcc taatttccga atggaaccag tgacagccct gggtatcctc tccctcattc 720tcaacatcat gtgtgctgcc ctgaatctca ttcgaggagt tcaccttgca gaacattctt 780tacaggttgc ccatgaggaa attggaaaca ttctggcttt tcttgttcct ttcgtagcct 840gcattttcca ggatccaagg agctggttct gctggttgga ccaaacctcg tgagccagcc 900acccctgacc caaatgagga gagctctgat tctcccatcc gggagcagtg atgtcaaact 960tctgctgctg gggaaatctc atcagcaggg agcctgtgga aaagggcatg tcagtgaaat 1020ctgggaatgg ctggattcgg aaacatctgc ccatgtgtat tgatggcaga gctgttgccc 1080acaagcgcct tttatttagg gtaaaattaa caaatccatt ctattcctct gacccatgct 1140tagtacatat gacctttaac ccttacattt atatgattct ggggttgctt cagaagtgtt 1200atttcatgaa tcattcatat gatttgatcc cccaggattc tattttgttt aatgggcttt 1260tctactaaaa gcataaaata ctgaggctga tttagtcagg gcaaaaccat ttactttaca 1320tattcgtttt caatacttgc tgttcatgtt acacaagctt cttacggttt tcttgtaaca 1380ataaatattt tgagtaaata atgggtacat tttaacaaac tcagtagtac aacctaaact 1440tgtataaaag tgtgtaaaaa tgtatagcca tttatatcct atgtataaat taaatgaggt 1500ggcttcagaa atggcagaat aaatctaaag tgtttattaa caaaaaaaaa a 1551108922DNAHomo sapiensmisc_featureIncyte ID No 2778171 108gcttgcggct cgggtggctg agcgcgcggg gaaatggcca cggggacaga ccaggtggtg 60ggactcggcc tcgtcgccgt tagcctgatc atcttcacct actacaccgc ctgggtgatt 120ctcttgccat tcatcgacag tcagcatgtc atccacaagt atttcctgcc ccgagcctat 180gctgtcgcca tcccactggc tgcaggcctc ctgctgctcc tgtttgtggg actgttcatc 240tcctacgtga tgctgaagag caagagagtg accaagaagg ctcagtgaag gtcccgcagg 300atgaggctgc cagccccttc tctgcttccc ctccagcaca gggaccaagt gggggagcct 360gcagaacctg tccaggcaca gtggctcctc aagcctgcct gtcctgcaga gtccccatgg 420catggagctt acacctgact gactggagcc ccctccccga ctcccacttc cagaagctag 480gagggaggga tacctggaag actccggtca cctccttctt gctcagggcc taaaagatgc 540tggtcctccc aacctcactc tcagactccc tgccaccttt tcccctgggt tctgccgtct 600tgcctcactt cccctcctgt cacatgctga cgttggactt agcaggttct aaggccacat 660gtgtgacctc tctgacttct cttcctccac caaggcagct ttccttaccc tgacacagcc 720ccagacccca caaagccttc tggacctgga aagcctgggg aaggactgac agaccccagg 780accagccctg gggctcaggg cagccacccc gggccgctga ccgactgacc tctcctcacg 840gaggcccagc cccaaagccc cagggctggc ccgtttggga cagctgacca ataaacactg 900atggtgtgtt aaaaaaaaaa aa 922109985DNAHomo sapiensmisc_featureIncyte ID No 2799575 109gcccaggagg cgcccgggtg aggcacgggt gcgcaagcga ggagttccgg ctggagaccc 60gtgctctggg ccggcgcctt caccatggcc tcggcagagc tggactacac catcgagatc 120ccggatcagc cctgctggag ccagaagaac agccccagcc caggtgggaa ggaggcagaa 180actcggcagc ctgtggtgat tctcttgggc tggggtggct gcaaggacaa gaaccttgcc 240aagtacagtg ccatctacca caaaaggggc tgcatcgtaa tccgatacac agccccgtgg 300cacatggtct tcttctccga gtcactgggt atcccttcac ttcgtgtttt ggcccagaag 360ctgctcgagc tgctctttga ttatgagatt gagaaggagc ccctgctctt ccatgtcttc 420agcaacggtg gcgtcatgct gtaccgctac gtgctggagc tcctgcagac ccgtcgcttc 480tgccgcctgc gtgtggtggg caccatcttt gacagcgctc ctggtgacag caacctggta 540ggggctctgc gggccctggc agccatcctg gagcgccggg ccgccatgct gcgcctgttg 600ctgctggtgg cctttgccct ggtggtcgtc ctgttccacg tcctgcttgc tcccatcaca 660gccctcttcc acacccactt ctatgacagg ctacaggacg cgggctctcg ctggcccgag 720ctctacctct actcgagggc tgacgaagta gtcctggcca gagacataga acgcatggtg 780gaggcacgcc tggcacgccg ggtcctggcg cgttctgtgg atttcgtgtc atctgcacac 840gtcagccacc tccgtgacta ccctacttac tacacaagcc tctgtgtcga cttcatgcgc 900aactgcgtcc gctgctgagg ccattgctcc atctcacctc tgctccagaa ataaatgcct 960gacacctccc cacaaaaaaa aaaaa 9851101562DNAHomo sapiensmisc_featureIncyte ID No 2804955 110tgcgtccaga ggctggcatg gcgcgggccg agtactgagc gcacggtcgg ggcacagcag 60ggccggtggg tgcagctggc tcgcgcctcc tctccggccg ccgtctcctc cggtccccgg 120cgaaagcatt gagacaccag ctggacgtca cgcgccggag catgtctggg agtcagagcg 180aggtggctcc atccccgcag agtccgcgga gccccgagat gggacgggac ttgcggcccg 240ggtcccgcgt gctcctgctc ctgcttctgc tcctgctggt gtacctgact cagccaggca 300atggcaacga gggcagcgtc actggaagtt gttattgtgg taaaagaatt tcttccgact 360ccccgccatc ggttcagttc atgaatcgtc tccggaaaca cctgagagct taccatcggt 420gtctatacta cacgaggttc cagctccttt cctggagcgt gtgtggaggc aacaaggacc 480catgggttca ggaattgatg agctgtcttg atctcaaaga atgtggacat gcttactcgg 540ggattgtggc ccaccagaag catttacttc ctaccagccc cccaatttct caggcctcag 600agggggcatc ttcagatatc cacacccctg cccagatgct cctgtccacc ttgcagtcca 660ctcagcgccc caccctccca gtaggatcac tgtcctcgga caaagagctc actcgtccca 720atgaaaccac cattcacact gcgggccaca gtctggcagc tgggcctgag gctggggaga 780accagaagca gccggaaaaa aatgctggtc ccacagccag gacatcagcc acagtgccag 840tcctgtgcct cctggccatc atcttcatcc tcaccgcagc cctttcctat gtgctgtgca 900agaggaggag ggggcagtca ccgcagtcct ctccagatct gccggttcat tatatacctg 960tggcacctga ctctaatacc tgagccaaga atggaagttt gtgaggagac ggactctatg 1020ttgcccaggc tgttatggaa ctcctgagtc aagtgatcct cccaccttgg cctctgaagg 1080tgcgaggatt ataggcgtca cctaccacat ccagcctaca cgtatttgtt aatatctaac 1140ataggactaa ccagccactg ccctctctta ggcccctcat ttaaaaacgg ttatactata 1200aaatctgctt ttcacactgg gtgataataa cttggacaaa ttctatgtgt attttgtttt 1260gttttgcttt gctttgtttt gagacggagt ctcgctctgt catccaggct ggagtgcagt 1320ggcatgatct cggctcactg caacccccat ctcccaggtt caagcgattc tcctgcctcc 1380tcctaagtag ctgggactac aggtgctcac caccacaccc ggctaatttt ttgtattttt 1440agtagagacg gggtttcacc atgttgacca ggctggtctc gaactcctga cctggtgatc 1500tgcccaccag gcctcccaaa gtgctgggat taaaggtgtg agccacatgg ctggcctatg 1560tt 15621111851DNAHomo sapiensmisc_featureIncyte ID No 2806395 111gctctgcaga gtggtggccg gggccagggc cggggtgccc tccctcccac cttctcccgc 60catgagccag ggaagtccgg gggactgggc ccccctagat cccacccccg gacccccagc 120atcccccaac cccttcgtgc atgagttaca tctctctcgc ctccagaggg ttaagttctg 180cctcctgggg gcattgctgg cccccatccg agtgcttctg gcctttatcg tcctctttct 240cctctggccc tttgcctggc ttcaagtggc cggtcttagt gaggagcagc ttcaggagcc 300aattacagga tggaggaaga ctgtgtgcca caacggggtg ctaggcctga gccgcctgct 360gtttttcctg ctgggcttcc tccggattcg cgttcgtggc cagcgagcct ctcgccttca 420agcccctgtc cttgttgctg ccccacactc cactttcttt gaccccattg ttctgctgcc 480ctgtgacctg cccaaagttg tgtcccgagc tgagaacctt tccgttcctg tcattggagc 540ccttcttcga ttcaaccaag ccatcctggt atcccggcat gacccggctt ctcgacgcag 600agtggtggag gaggtccgaa ggcgggccac ctcaggaggc aagtggccgc aggtgctatt 660ctttcctgag ggcacctgtt ccaacaagaa ggctttgctt aagttcaaac caggagcctt 720catcgcaggg gtgcctgtgc agcctgtcct catccgctac cccaacagtc tggacaccac 780cagctgggca tggaggggtc ctggagtact caaagtcctc tggctcacag cctctcagcc 840ctgcagcatt gtggatgtgg agttccttcc tgtgtatcac cccagccctg aggagagcag 900ggaccccacc ctctatgcca acaatgttca gagggtcatg gcacaggctc tgggcattcc 960agccaccgaa tgtgagtttg tagggagctt acctgtgatt gtggtgggcc ggctgaaggt 1020ggcgttggaa ccacagctct gggaactggg aaaagtgctt cggaaggctg ggctgtccgc 1080tggctatgtg gacgctgggg cagagccagg ccggagtcga atgatcagcc aggaagagtt 1140tgccaggcag ctacagctct ctgatcctca gacggtggct ggtgcctttg gctacttcca 1200gcaggatacc aagggtttgg tggacttccg agatgtggcc cttgcactag cagctctgga 1260tgggggcagg agcctggaag agctaactcg tctggccttt gagctctttg ctgaagagca 1320agcagagggt cccaaccgcc tgctgtacaa agacggcttc agcaccatcc tgcacctgct 1380gctgggttca ccccaccctg ctgccacagc tttgcatgct gagctgtgcc aggcaggatc 1440cagccaaggc ctctccctct gtcagttcca gaacttctcc ctccatgacc cactctatgg 1500gaaactcttc agcacctacc tgcgcccccc acacacctct cgaggcacct cccagacacc 1560aaatgcctca tccccaggca accccactgc tctggccaat gggactgtgc aagcacccaa 1620gcagaaggga gactgagtgc ctcagcctct caccccctcc tcctcagggc agcgctaggg 1680gcctccccta tgcctcagcc ccatctctgc tcctgtttga attttgttat tgttgtttgg 1740ttgttgtttt tttaagttga ttttaatttt ttgtttggtt gatttttttg taaaaaacta 1800ttttatatat aaatataaat ctatatctat atctattaaa aaaaatgaat t 1851112992DNAHomo sapiensmisc_featureIncyte ID No 2836858 112ggcgcgaggc agtatggttt gaagtggtga acatggattt ttctcggctt cacatgtaca 60gtcctcccca gtgtgtgccg gagaacacgg gctacacgta tgcgctcagt tccagctatt 120cttcagatgc tctggatttt gagacggagc acaaattgga ccctgtattt gattctccac 180ggatgtcccg ccgtagtttg cgcctggcca cgacagcatg caccctgggg gatggtgagg 240ctgtgggtgc cgacagcggc accagcagcg ctgtctccct gaagaaccga gcggccagaa 300caacaaaaca gcgcagaagc acaaacaaat cagcttttag tatcaaccac gtgtcaaggc 360aggtcacgtc ctctggcgtc agccacggcg gcactgtcag cctgcaggat gctgtgactc 420gacggcctcc tgtattggac gagtcttgga ttcgtgaaca gaccacagtg gaccacttct 480ggggtcttga tgatgatggt gatcttaaag gtggaaataa agctgccatt cagggaaacg 540gggatgtggg agccgccgcc gccaccgcgc acaacggctt ctcctgcagc aactgcagca 600tgctgtccga gcgcaaggac gtgctcacgg cgcaccccgc ggcccccggg cccgtgtcga 660gagtttattc tagggacagg aatcaaaaat gtaagtctca gtcctttaaa actcagaaaa 720aggtgtgttt tccaaattta atatttcctt tctgtaagtc tcagtgtctg cactatttgt 780cttggagact taaaattatc ccttgaaagc ataagaagta caccccaaac cagctttgtc 840cttcctgtcc tcttctagtt tacattttat gtggttagta attttgtacc taaaagtatt 900tgaaattcta taaatttgga cttgacgtga gcaaaagaaa atttctacgt aagcgaaact 960aataaaacta cagtcacttt caaaaaaaaa aa 9921131251DNAHomo sapiensmisc_featureIncyte ID No 2844513 113ctctgctggc cggtctaaag cggcagccgc cggggcgcaa tgcgagcggc tggcgtaggc 60ttggtggact gtcactgcca cctctccgcc ccggactttg accgcgattt ggatgatgtg 120ttggagaaag ccaagaaggc caatgttgtg gcccttgtgg cagttgccga acattcagga 180gaatttgaaa agattatgca actttcagaa aggtataatg ggtttgtcct gccatgcttg 240ggtgttcatc cagttcaagg acttccacca gaagaccaaa gaagtgtcac actaaaggat 300ttggatgtag ctttgcccat tattgagaat tataaggatc ggttgttggc aattggagag 360gttggactag atttctcccc cagatttgct ggcactggtg aacagaagga agagcaaaga 420caagtcctaa tcagacagat ccagttagcc aaaagactaa atttgcctgt aaatgtgcac 480tcacgctctg ctggaagacc taccatcaac cttttacaag agcaaggtgc tgagaaggta 540ctgctgcatg catttgatgg tcggccatct gtagccatgg aaggagtaag agctgggtac 600ttcttctcaa ttcccccttc tatcataaga agtggacaga agcagaaact tgtgaaacaa 660ttgcctttaa cttctatatg cttagaaaca gattcacctg cactaggacc agaaaaacag 720gtacggaatg agccctggaa catttctatt tcagcagaat atattgccca ggtgaaaggg 780atctcagtgg aagaagttat agaagtgacg acacagaatg cattaaaact gtttcctaag 840ctccgacact tgctccagaa atagcttcaa aaccatccat tacaaaatcg aatcaactgc 900agggggcagc atttgaaaaa tagaaatgtt ctgatgaaga atctgaactg aagaagctgt 960tttatagggt tatagaagat tgtaattgta gagaaatatt tctcttagaa ataaaactgg 1020gcttggatcc tgaaaccctg ggttctgatt ctagccttgt gctgcttttc aattagccga 1080gttctggcag gatattggga aaatactgct acttcttaca ttgccctttt atatagaacc 1140accacctgaa ctgaaaccat tgctactggg aagggtggct cccacaggaa gagtataagc 1200actactgtga tgaggatgga gtaagctaaa gtatactttt tttttttttt g 12511141397DNAHomo sapiensmisc_featureIncyte ID No 3000380 114ctaggacgcc cctggagccg gaaccccagc agaagccgga accagaacca aatcaccggt 60accggctgca gccccctaaa cccaggaggc gccctggccc gcgctcgccc cccagggcct 120catgtcggaa ccacagcctg acctggaacc gccccaacat gggctatata tgctcttcct 180gcttgtgctg gtcttcttcc tcatgggcct ggtaggcttc atgatctgcc acgtgctcaa 240gaagaagggc taccgctgcc gcacgtcgag gggctctgag cctgacgatg cccagcttca 300gccccctgag gacgatgaca tgaatgagga cacagtagag aggattgttc gctgcatcat 360ccagaatgaa gtgtggatgc cacctccagc ctgcaggacg gagccccctc ccatcatcac 420acagtgcacc tgggctctgc agccccttgc cgtccattgc agccgcagca agaggcctcc 480acttgtccgt cagggacgct ccaaggaagg aaaaagccgc ccccggacag gggagaccac 540tgtgttctct gtgggcaggt tccgggtgac acacattgag aagcgctatg gactgcacga 600acaccgtgat ggctccccca cagacaggag ctggggctct cgtgggggac aggacccagg 660gggtggtcag gggtctgggg gagggcaccc caaggcaggg atgctgccat ggagaggctg 720cccccctgag aggccacagc cccaggtcct agccagcccc ccagtacaga atggaggact 780cagggacagc agcctaaccc ctcgtgcact tgaagggaac cccagagctt ctgcagagcc 840aacactgagg gccggaggga ggggcccaag cccagggctg cccactcaag aggcaaatgg 900gcagccaagc aaaccagaca cttctgatca ccaggtgtct ctaccacagg gagcagggag 960tatgtgagtc tccttcattg tgctgatgga ctaccagctg gcagggccag ggggtgggtg 1020ggcgtgaaag ccctcccctc cactggacag cactgccccc cagctgaggg accagctcta 1080cttccacctg gagttgcaca gtctcaggct gggggcctca ggagaggtca cagcccctca 1140gtctcttctc cttcccctgc ctgcaacagg ctgcctgccc cgccttcccc aacacctcgc 1200tccatatgat agagcgtggc agctgggagc aggcccctgc ccgtggtggg cccctaaagc 1260aatagcaccg taggccccct gccctcttag cacaagaggc ccaggccctg gcctggcctt 1320cgtgcccttt attcattgtc aataaatccg ctcagaccat taaaaaatac aactcaaggg 1380gtagccaaaa aaaaaaa 13971151581DNAHomo sapiensmisc_featureIncyte ID No 182532 115acagcacagc tgacagccgt actcaggaag cttctggtat cctaggctta tctccacaga 60ggagaacaca caagcagcag agaccatggg gcccctctca gcccctccct gcacacacct 120catcacttgg aagggggtcc tgctcacagc atcactttta aacttctgga atccgcccac 180aactgcccaa gtcacgattg aagcccagcc acccaaagtt tctgagggga aggatgttct 240tctacttgtc cacaatttgc cccagaatct tgctggctac atttggtaca aagggcaaat 300gacatacgtc taccattaca ttatatcgta tatagttgat ggtaaaataa ttatatatgg 360gcctgcatac agtggaagag aaagagtata ttccaatgca tccctgctga tccagaatgt 420cacgcaggag gatgcaggat cctacacctt acacatcata aagcgaggtg atgggactag 480aggagaaact ggacatttca ccttcacctt atacctggag actcccaagc cctccatctc 540cagcagcaac ttatacccca gggaggacat ggaggctgtg agcttaacct gtgatcctga 600gactccggac gcaagctacc tgtggtggat gaatggtcag agcctcccta tgactcacag 660cttgcagttg tccaaaaaca aaaggaccct ctttctattt ggtgtcacaa agtacactgc 720aggaccctat gaatgtgaaa tacggaaccc agtgagtggc atccgcagtg acccagtcac 780cctgaatgtc ctctatggtc cagacctccc cagcatttac ccttcattca cctattaccg 840ttcaggagaa aacctctact tgtcctgctt cgccgagtct aacccacggg cacaatattc 900ttggacaatt aatgggaagt ttcagctatc aggacaaaag ctctttatcc cccaaattac 960tacaaagcat agtgggctct atgcttgctc tgttcgtaac tcagccactg gcatggaaag 1020ctccaaatcc atgacagtca aagtctctgc tccttcagga acaggacatc ttcctggcct 1080taatccatta tagcagccgt gatgtcattt ctgtatttca ggaagactgg cagacagttg 1140ctttcattct tcctcaaagt atttaccatc agctacagtc caaaattgct ttttgttcaa 1200ggagatttat gaaaagactc tgacaaggac tcttgaatac aagttcctga taacttcaag 1260atcataccac tggactaaga actttcaaaa ttttaatgaa caggctgata cttcatgaaa 1320ttcaagacaa agaaaaaaac ccaattttat tggactaaat agtcaaaaca atgttttcat 1380aattttctat ttgaaaatgt gctgattctt tgaatgtttt attctccaga tttatgcact 1440ttttttcttc agcaattggt aaagtatact tttgtaaaca aaaattgaaa catttgcttt 1500tgctccctaa gtgccccaga attgggaaac tattcatgag tattcatatg tttatggtaa 1560taaagttatc tgcacaagtt c 15811161566DNAHomo sapiensmisc_featureIncyte ID No 239589 116cggctcgagt atggatctcc aaggaagagg ggtccccagc atcgacagac ttcgagttct 60cctgatgttg ttccatacaa

tggctcaaat catggcagaa caagaagtgg aaaatctctc 120aggcctttcc actaaccctg aaaaagatat atttgtggtg cgggaaaatg ggacgacgtg 180tctcatggca gagtttgcag ccaaatttat tgtaccttat gatgtgtggg ccagcaacta 240cgtagatctg atcacagaac aggccgatat cgcattgacc cggggagctg aggtgaaggg 300ccgctgtggc cacagccagt cggagctgca agtgttctgg gtggatcgcg catatgcact 360caaaatgctc tttgtaaagg aaagccacaa catgtccaag ggacctgagg cgacttggag 420gctgagcaaa gtgcagtttg tctacgactc ctcggagaaa acccacttca aagacgcagt 480cagtgctggg aagcacacag ccaactcgca ccacctctct gccttggtca cccccgctgg 540gaagtcctat gagtgtcaag ctcaacaaac catttcactg gcctctagtg atccgcagaa 600gacggtcacc atgatcctgt ctgcggtcca catccaacct tttgacatta tctcagattt 660tgtcttcagt gaagagcata aatgcccagt ggatgagcgg gagcaactgg aagaaacctt 720gcccctgatt ttggggctca tcttgggcct cgtcatcatg gtaacactcg cgatttacca 780cgtccaccac aaaatgactg ccaaccaggt gcagatccct cgggacagat cccagtataa 840gcacatgggc tagaggccgt taggcaggca ccccctattc ctgctccccc aactggatca 900ggtagaacaa caaaagcact tttccatctt gtacacgaga tacaccaaca tagctacaat 960caaacaggcc tgggtatctg aggcttgctt ggcttgtgtc catgcttaaa cccacggaag 1020ggggagactc tttcggattt gtagggtgaa atggcaatta ttctctccat gctggggagg 1080aggggaggag ggtctcagac agctttcgtg ctcatggtgg cttggctttg actctccaaa 1140gagcaataaa tgccacttgg agctgtatct ggccccaaag tttagggatt gaaaacatgc 1200ttctttgagg aggaaacccc tttaggttca gaagaatatg gggtgctttg ctcccttgga 1260cacagctggc ttatcctata cagttgtcaa tgcacacaga atacaacctc atgctccctg 1320cagcaagacc cctgaaagtg attcatgctt ctggctggca ttctgcatgt ttagtgattg 1380tcttgggaat gtttcactgc tacccgcatc cagcgactgc agcaccagaa aacgactaat 1440gtaactatgc agagttgttt ggacttcttc ctgtgccagg tccaagtcgg gggacctgaa 1500gaatcaatct gtgtgagtct gtttttcaaa atgaaataaa acacactatt ctctggcaaa 1560aaaaaa 15661171815DNAHomo sapiensmisc_featureIncyte ID No 1671302 117tttgtttctc ttattcccag gacatcaagg agactttcaa taggtgtgaa gaggtacagc 60tgcagccccc agaggtctgg tcccctgacc cgtgccaacc ccatagccat gacttcctga 120cagatgccat cgtgaggaaa atgagccgga tgttctgtca ggctgcgaga gtggacctga 180cgctggaccc tgacacggct cacccggccc tgatgctgtc ccctgaccgc cggggggtcc 240gcctggcaga gcggcggcag gaggttgctg accatcccaa gcgcttctcg gccgactgct 300gcgtactggg ggcccagggc ttccgctccg gccggcacta ctgggaggta gaggtgggcg 360ggcggcgggg ctgggcggtg ggtgctgccc gtgaatcaac ccatcataag gaaaaggtgg 420gccctggggg ttcctccgtg ggcagcgggg atgccagctc ctcgcgccat caccatcgcc 480gccgccggct ccacctgccc cagcagcccc tgctccagcg ggaagtgtgg tgcgtgggca 540ccaacggcaa acgctatcag gcccagagct ccacagaaca gacgctgctg agccccagtg 600agaaaccaag gcgctttggt gtgtacctgg actatgaagc tgggcgcctg ggcttctaca 660acgcagagac tctagcccac gtgcacacct tctcggctgc cttcctgggc gagcgtgtct 720ttcctttctt ccgggtgctc tccaagggca cccgcatcaa gctctgccct tgattatcct 780gccacccgca gggcccctct gtcagcactt ggggggtggg tggtggaggg tggcccgtaa 840gtttgagggc tcaaaggctc ttcccactgc ttgttactgt gttgcttccc actccccctt 900gaccccaggc ccctgcttct ccctctagga gcctaaagaa ccctcctggc ctccagctca 960gccttctctc acctactatg tctgtccaac aggtctgcat gggtccctga taatgagaac 1020agctgcctgg tcttctctcc cagtctgcct agcccagccc tgggactgga atttgagtag 1080gggatgaggg gaaattgtaa tttcattcct taacttcctt ttccccaccc ctgctcttca 1140acctctttat cagttctgag gctggagggt ttgggcaagg caacatcccc attccaattc 1200cattttctga tgcagatttt agctgaggga tttggaagcc atttggggag gcaggctggg 1260ccaaagggta gagctgggta ataaatgtct attctcctgg ggaggaggga ttctaaactt 1320tccttccgtc ctcaatttct acctccatag accggccaga atttagcttc acttgagaga 1380gatctggaat ggtcgccatg attgaaacca cgcaccatta catcatcatt acattaatta 1440catcaacata aattatttct tcccccttcc cttttccagc actcaaccaa ggagcaaagc 1500tcatcccacc ccacacccct cccaggtctg ctcactgcca ggctcctctc ccctttgttc 1560agtggagctg gcttttctcc cagccccttt ccatgccttt cactccattt ggcaagctct 1620gagggggagc ctggggacgg gtttgggtcc ccaggaggag agccttgggt ataatctatt 1680tttctaggag cctcttgcct tgtcacttgc agctttcgcc ctctgctttg atggctgagg 1740tgaactcatg ttctttggga aaagggaagg cgtgctgtgg aaataaaatg tttatttgct 1800tctctaaaaa aaaaa 18151181566DNAHomo sapiensmisc_featureIncyte ID No 2041858 118caaagagcca ggctccagga gaggaagggc tctgcgagag gagagaggag agcgctggag 60aggagaggct ggaggtgaga gtcccaggaa aggcagagga gaatcgtagg gacataagtg 120tcccagcaca ggcaaggagg aatccgagga taaggttctg gagggacaga agggcccaga 180gagagtcctt agccaggatg gaggctgttg tgaacttgta ccaagaggtg atgaagcacg 240cagatccccg gatccagggc taccctctga tggggtcccc cttgctaatg acctccattc 300tcctgaccta cgtgtacttc gttctctcac ttgggcctcg catcatggct aatcggaagc 360ccttccagct ccgtggcttc atgattgtct acaacttctc actggtggca ctctccctct 420acattgtcta tgagttcctg atgtcgggct ggctgagcac ctatacctgg cgctgtgacc 480ctgtggacta ttccaacagc cctgaggcac ttaggatggt tcgggtggcc tggctcttcc 540tcttctccaa gttcattgag ctgatggaca cagtgatctt tattctccga aagaaagacg 600ggcaggtgac cttcctacat gtcttccatc actctgtgct tccctggagc tggtggtggg 660gggtaaagat tgccccggga ggaatgggct ctttccatgc catgataaac tcttccgtgc 720atgtcataat gtacctgtac tacggattat ctgcctttgg ccctgtggca caaccctacc 780tttggtggaa aaagcacatg acagccattc agctgatcca gtttgtcctg gtctcactgc 840acatctccca gtactacttt atgtccagct gtaactacca gtacccagtc attattcacc 900tcatctggat gtatggcacc atcttcttca tgctgttctc caacttctgg tatcactctt 960ataccaaggg caagcggctg ccccgtgcac ttcagcaaaa tggagctcca ggtattgcca 1020aggtcaaggc caactgagaa gcatggccta gataggcgcc cacctaagtg cctcaggact 1080gcaccttagg gcagtgtccg tcagtgccct ctccacctac acctgtgacc aaggcttatg 1140tggtcaggac tgagcagggg actggccctc ccctccccac agctgctcta cagggaccac 1200ggctttggtt cctcacccac ttcccccggg cagctccagg gatgtggcct cattgctgtc 1260tgccactcca gagctggggg ctaaaagggc tgtacagtta tttccccctc cctgccttaa 1320aacttgggag aggagcactc agggctggcc ccacaaaggg tctcgtggcc tttttcctca 1380cacagaagag gtcagcaata atgtcactgt ggacccagtc tcactcctcc accccacaca 1440ctgaagcagt agcttctggg ccaaaggtca gggtgggcgg gggcctggga atacagcctg 1500tggaggctgc ttactcaact tgtgtcttaa ttaaaagtga cagaggaaac cacggaaaaa 1560aaaaaa 15661191055DNAHomo sapiensmisc_featureIncyte ID No 2198863 119tcagcagcca gcaaggtctt tgagaaacac atggagctca ctgccctgct ccctttcagt 60ggcttcccat tgccttggat aaagacccaa atgcctaaca gggcccataa ggccccacat 120gatccacggg ctttagatgt gcagagatgt ggagcgcgat gccaggtagg gtgagcagtg 180gcgtggagca gggccacttg gctggggtgc caggtgttgg aggggagcag cagcctgtcc 240acatggccta aggtttgagc tgggtgttgc tgctgggccg ggcgagcgca gtgcagcgca 300ccgcggggag cgaggagcgc gcggaccggc catgggcaag tcagcttcca aacagtttca 360taatgaggtc ctgaaggccc acaatgagta ccggcagaag cacggcgtcc ccccactgaa 420gctctgcaag aacctcaacc gggaggctca acagtattct gaggccctgg ccagcacgag 480gatcctcaag cacagcccgg agtccagccg tggccagtgt ggggagaacc ttgcatgggc 540atcctatgat cagacaggaa aggaggtggc tgatagatgg tacagtgaaa tcaagaacta 600taacttccag cagcctggct tcacctcggg gactggacac ttcacggcca tggtatggaa 660gaacaccaag aagatgggcg tggggaaggc gtccgcaagt gacgggtcct cctttgtggt 720ggccagatac ttcccagcgg ggaatgttgt caatgagggc ttcttcgaag aaaacgtcct 780gccgccgaag aagtaacttg ttaaatgtaa tgggaaggtg gcagacttaa gaacgtggat 840atgaagtgcc tagaaccacc acaacctggc tgtgcgtctg tccctgtggg tgaatgtgct 900tgtgtgtgtg atgcatgtga gcgtctctgg cacacacatt ggcatacagt tccgtgttcg 960cccatcttat tacaggagtg agcaaaggaa gcatttaccc cgatggttac ctagaccacg 1020attaattgga tnccccngaa anggggatcg gtttt 10551201956DNAHomo sapiensmisc_featureIncyte ID No 3250703 120cactcaagga agatataaat gacaaggtcg gctcagctct cagacaaggt tttccaagca 60agatgaagcc caacatcatc tttgtacttt ccctgctcct catcttggag aagcaagcag 120ctgtgatggg acaaaaaggt ggatcaaaag gccgattacc aagtgaattt tcccaatttc 180cacacggaca aaagggccag cactattctg gacaaaaagg caagcaacaa actgaatcca 240aaggcagttt ttctattcaa tacacatatc atgtagatgc caatgatcat gaccagtccc 300gaaaaagtca gcaatatgat ttgaatgccc tacataagac gacaaaatca caacgacatc 360taggtggaag tcaacaactg ctccataata aacaagaagg cagagaccat gataaatcaa 420aaggtcattt tcacagggta gttatacacc ataaaggagg caaagctcat cgtgggacac 480aaaatccttc tcaagatcag gggaatagcc catctggaaa gggaatatcc agtcaatatt 540caaacacaga agaaaggctg tgggttcatg gactaagtaa agaacaaact tccgtctctg 600gtgcacaaaa aggtagaaaa caaggcggat cccaaagcag ttatgttctc caaactgaag 660agctagtagc taacaaacaa caacgtgaga ctaaaaattc tcatcaaaat aaagggcatt 720accaaaatgt ggttgaagtg agagaggaac attcaagtaa agtacaaacc tcactctgtc 780ctgcgcacca agacaaactc caacatggat ccaaagacat tttttctacc caagatgagc 840tcctagtata taacaagaat caacaccaga caaaaaatct caatcaagat caacagcatg 900gccgaaaggc aaataaaata tcataccaat cttcaagtac agaagaaaga cgactccact 960atggagaaaa tggtgtgcag aaagatgtat cccaaagcag tatttatagc caaactgaag 1020agaaaataca tggcaagtct caaaaccagg taacaattca tagtcaagat caagagcatg 1080gccataagga aaataaaata tcataccaat cttcaagtac agaagaaaga catctcaact 1140gtggagaaaa gggcatccag aaaggtgtat ccaaaggcag tatttcgatc caaactgaag 1200agcaaataca tggcaagtct caaaaccagg taagaattcc tagtcaagct caagagtatg 1260gccataagga aaataaaata tcataccaat cttcgagtac agaagaaaga cgtctcaaca 1320gtggagaaaa ggatgtacag aaaggtgtat ccaaaggcag tatttctatc caaactgaag 1380agaaaataca tggcaagtct caaaaccagg taacaattcc tagtcaagat caagagcatg 1440gccataagga aaataaaatg tcataccaat cttcaagtac agaagaaaga cgactcaact 1500atggaggaaa gagcacgcag aaagatgtat cccaaagcag tatttctttc caaattgaaa 1560agctagtaga aggcaagtct caaatccaga caccaaatcc taatcaagat caatggtctg 1620gccaaaatgc aaaaggaaag tctggtcaat ctgcagatag caaacaagac ctactcagtc 1680atgaacaaaa aggcagatac aaacaggaat ccagtgagtc acataatatt gtaattactg 1740agcatgaggt tgcccaagat gatcatttga cacaacaata taatgaagac agaaatccaa 1800tatctacata gccctgttgc ttagcaaccc attgaaaagc tggaccaata gcaaggtgtc 1860accccgacct cagtgagtta gggttcgttt ganccngant aggaangggt nccggaaggc 1920naaaannnnt anttnagccn ctgttgtntn nanacc 19561211737DNAHomo sapiensmisc_featureIncyte ID No 350287 121gaaatacagt ggctctttat taaaaataat agttggataa tataaactga actatttatg 60catttttata tacttataaa tccttccaaa tagttttaat tctatccttt tacatataaa 120taacttaata agtgtgctgg aaaaacacag atgttcacag caccactgtt tttttttttt 180ttttttgaga taataaattc catgagaaat ctgggtttga atatttgttt actttgtctc 240ctaattgaac accactccag gccttctgtc tgtctcccct ttacccccaa aatattcaca 300aaaaaaattt taagacaaca agtaaccata tataggtgtt tgaatgattt tctcattttt 360atctaatttc atttcataag tcccgagtaa tttacctacc ataggctact atactgataa 420tataaatgaa accgaacatt ttttgctact aactctcccc aatttaatgt gttttcgaaa 480taaaaattta aatttttttc cttttaatta aaaagtcatc tttgaagtcc ttattggctg 540tacattttac atgtttgctg gtactattat tttgtcagtg agttaaagct ggcatgtaca 600gctcttggct ttaatgaaaa gcacattgac ataatgttag taaattccaa accccggcac 660agaatgtgag ttaaaattaa gtcttgctgg gttagtgtac aataaactat acctacagac 720ttttttttaa tagaaagaag acaaagctgc tggtatagga tttgttcctt tgaagaaaaa 780atgagggaaa caaacacaaa aacctcaatg cagtgtataa ataacatttt gttcaactac 840ctcttaatgt ggaattatct actttaatag tttcctgaca gtaatgttaa atagtaactg 900ccaaatttgt tattttccca tctctcttaa aaaagtcttt atgattattt tatatagttt 960tgagaacttt aaagccactt ttttttaacc ttacatttgc ataaaaatgt ttagctttta 1020agtagagagc aaattatgat catatatttt gatattcatg acctgtttga ctataggatt 1080ttttttaaaa aaatgcactt tggctataaa accatggatg atttgatcca taagatttaa 1140atgtgccacc attatagtat tcctagacat gagcttgatg aatggtattc tgtaattata 1200acgtgccaca cattattgtg tcttaattgc ccttagcctg aattttaatg atcaatttgt 1260tattgttgca gatgtgaata ttgtgcataa acttactaaa tttatgtaaa attgtataaa 1320atagaattag aagtcactaa gttctttctg tgtagaagta ataaatttat tgtaacacaa 1380tgcagttgtg tatatgacat tctgtaattc cttgaactgg atcatatatt cataagttct 1440gtagatactt atgcatgaac attttctcat ttagttcttg ggttcattat ttgtattgtg 1500tttactactt gtgatcatgt agttgtgcct tactttgtga gaaaggttag ctcagtaaat 1560actgcaattt ctaaactcag tgattggaag gttattaatt ataaatgtaa ctgataaagt 1620acgtgacagc atttaaatct gtataaagaa caatggaagg atccttattg aattgttgct 1680tttttttaat atgtttaaat attatattaa aaacatttct ttctaaaaaa aaaaaaa 1737122789DNAHomo sapiensmisc_featureIncyte ID No 1618171 122caagatataa agtagcagtt ggctacctaa aatgaaaaga gcaatgttcc atggcacctg 60aaatgttaaa aatattagaa actctcccca ccccatattc ctcccacccc aattgagtct 120ctcgcaataa tcttctcgct tctctaacta gttgactttc attatggatg gggataggct 180aaaaaacggg cccctgggat ggctgtgctg ccatcagtgc tgttggttta ctcactcttt 240ttctgtcttc gtttttgcat gctactgctc ctgccctctt acagccacag tagaagcggt 300agaggcccgg gaaggtatgg ccatattact ctgatagatg tgatccatgt gtctgtgtac 360tggtttttcg aagctttatc aacatttcaa atattttatt attgcatcac cagaactata 420acagtgagaa aaggtatagt tgtttctagg catgttaacg aagcaggtgt ttcctttgtg 480tcctatcttt gcattaattt taaataacct tcaccacagc tacagttttt tttctgggct 540ctatcagctt taatgcaacg gcagaagctt aagcaactgg tcatgagagg tcaagtggtt 600tacttctgta tcccttccat gtacaagaga catccatttg attctcaaga gagccaaata 660ggtcagcctc ttcagcgatt ctaaaagatt tcaagagcag aggcaggaag taggactggg 720aatttagttc aattcattat ctgaggttgc cctaaggtag ggcaagttta aatttaactt 780tgtttctat 7891231116DNAHomo sapiensmisc_featureIncyte ID No 1625863 123tttatatttg acaataaagt gttagactcc atttctaaat accagacttc aaaagataag 60gttcaaaagt gttataagaa gatattcctt tttttgtcct agagaactta ttttcctgtg 120aaaatgccta ccacaaagaa gacattgatg ttcttatcaa gctttttcac cagccttggg 180tccttcattg taatttgctc tattcttggg acacaagcat ggatcaccag tacaattgct 240gttagagact ctgcttcaaa tgggagcatt ttcatcactt acggactttt tcgtggggag 300agtagtgaag aattgagtca cggacttgca gaaccaaaga aaaagtttgc agttttagag 360atactgaata attcttccca aaaaactctg cattcggtga ctatcctgtt cctggtcctg 420agtttgatca cgtcgctgct gagctctggg tttaccttct acaacagcat cagcaaccct 480taccagacat tcctggggcc gacgggggtg tacacctgga acgggctcgg tgcatccttc 540gtttttgtga ccatgatact gtttgtggcg aacacgcagt ccaaccaact ctccgaagag 600ttgttccaaa tgctttaccc ggcaaccacc agtaaaggaa cgacccacag ttacggatac 660tcgttctggc tcatactgct cgtcattctt ctaaatatag tcactgtaac catcatcatt 720ttctaccaga aggccagata ccagcggaag caggagcaga gaaagccaat ggaatatgct 780ccaagggacg gaattttatt ctgaattctc tttcatctca ttttggcgtt gcatctattg 840tacatcagcc ctgagtagta actggttagc ttctctggac aattcagcat ggtaacgtga 900ctgtcatctg tgacagcatt tgtgtttcat gacactgtgt tcttcattga tgctgtactc 960ctgaaaattt ttcccacaag gttggggaaa tgaatgggaa atgtcgctgg tctgtgtggt 1020attcaaagca gtagtatcat gatgagcgta acgacccttc tgacctggtc tcacgatctg 1080aaataataaa aggctgtgtc atgtttcttt tcaaaa 1116124914DNAHomo sapiensmisc_featureIncyte ID No 1638353 124ggccaaccca cggtgggggg agcgcggcca tggcgctcct gctttcggtg ctgcgtgtac 60tgctgggcgg cttcttcgcg ctcgtggggt tggccaagct ctcggaggag atctcggctc 120cagtttcgga gcggatgaat gccctgttcg tgcagtttgc tgaggtgttc ccgctgaagg 180tatttggcta ccagccagat cccctgaact accaaatagc tgtgggcttt ctggaactgc 240tggctgggtt gctgctggtc atgggcccac cgatgctgca agagatcagt aacttgttct 300tgattctgct catgatgggg gctatcttca ccttggcagc tctgaaagag tcactaagca 360cctgtatccc agccattgtc tgcctggggt tcctgctgct gctgaatgtc ggccagctct 420tagcccagac taagaaggtg gtcagaccca ctaggaagaa gactctaagt acattcaagg 480aatcctggaa gtagagcatc tctgtctctt tatgccatgc agctgtcaca gcaggaacat 540ggtagaacac agagtctatc atcttgttac cagtataata tccagggtca gccagtgttg 600aaagagacat tttgtctacc tggcactgct ttctcttttt agctttacta ctcttttgtg 660aggagtacat gttatgcata ttaacattcc tcatgtcata tgaaaataca aaataagcag 720aaaagaaatt taaatcaacc aaaattctga tgccccaaat aaccactttt aatgccttgg 780tgtaagtata cctctgaact tttttctgtg cctttaaaca gatatatatt ttttttaaat 840gaaaataaaa ccatatatcc tattttattt cctcctttta aaaccttata aactataaca 900ctgtaaaaaa aaaa 9141252016DNAHomo sapiensmisc_featureIncyte ID No 1726843 125gctgcctgct gcctccgcag cgtcccccca gctctccctg tgctaactgc ctgcaccttg 60gacagagcgg gtgcgcaaat cagaaggatt agttgggacc tgccttggcg accccatggc 120atcccccaga accgtaacta ttgtggccct ctcagtggcc ctgggactct tctttgtttt 180catggggact atcaagctga cccccaggct cagcaaggat gcctacagtg agatgaaacg 240tgcttacaag agctatgttc gagccctccc tctgctgaag aaaatgggga tcaattccat 300tctcctccga aaaagcattg gtgcccttga agtggcctgt ggcatcgtca tgacccttgt 360gcctgggcgt cccaaagatg tggccaactt cttcctactg ttgctggtgt tggctgtgct 420cttcttccac cagctggtcg gtgatcctct caaacgctac gcccatgctc tggtgtttgg 480aatcctgctc acttgccgcc tgctgattgc tcgcaagccc gaagaccggt cttctgagaa 540gaagcctttg ccagggaatg ctgaggagca accctcctta tatgagaagg cccctcaggg 600caaagtgaag gtgtcataga aaagtggaag tgcaaagagt ggaccttcca ggcagttgcg 660tccatgacac caggaagatg tcagtgtgtg tttttcattt gatttattta tcttggggaa 720agtgaaaaat gtaatctgca agttaatgac cctattggct tgtgtacatc tatatgctaa 780aatgacttcc ccacattgac atttgtgcgc cacctttaat cactctgggg caactctcac 840atcttgctgc atgtacatgt atacggctac tattgaagtg taattgtgag atggactcca 900acaagcatgt gactgtgaga ttgtgtgtgg gaaaatgtat ttaactactc tgtgtgtgtg 960tgtgtgtgtg tgtgtgcgcg cgcgcgcacg cgcacacact cacgcacaca caagcagaga 1020aggcgctgat cttgaactaa tcctgcacag gcatccttcc ctttatagat tgattccagc 1080aaaggcggaa taaaacaaat ttcctatgaa gagaatcctg atatgaaaca agtcatgtag 1140tctcatggcc gggaatctct ccacagatac taacaactta aacttactac tttaggagaa 1200aaaaaaaaac attcaatttc ggacactgag ttatatatga aattaattag gctctagtcc 1260aacagttgtt tacattttaa atagtccata ttgaatttaa ttaaaacaag ggatgcatgc 1320agtcaaattg atagtttaat tcttcaagtg ataatatgga agtttcacct tgcctttgtc 1380caagccccac ctattaaaac cctttactca cagtttgaaa ctgaagcagt aaacttgttt 1440ccagacatct ttttcagatt gtcttaagcc caaagttgcc tcacttccac tattctcagc 1500agccaaccag gatttggcag ctgctccact gttacggttg agggaacagg gatcagtcct 1560gttagaagtc tgtgagcctc aaactctacc tgttctctgc aatcatccaa aatttgaaaa 1620agaagctata tccagtgttt cactgccaaa cagattcact actcttactg attcttcact 1680gagctttgct agtataagca gagttccaag tctcccctag ggttgtctct acatttcttt 1740atcattccag tgggtagggt

ttagctgggg gaaggacatt tcataagggt tagttggact 1800gagcagtatg gacatttgct tttttcatta cgtactgttg tttttccttg ttaggtgtgc 1860tttggtggtt ttaatattat tgtgccaggg atggggaaat ggggggggtt gtgtgggaag 1920agtacttatt attgtgtttt cttcagtgta attgttcttg gtaattgata cctctctgtt 1980ttatttctct cattctttca aaataaaact ttttgt 20161262067DNAHomo sapiensmisc_featureIncyte ID No 1754506 126tgctccttta agcgtccaca ggcggcggac ggccacaatc acagctccgg gcattggggg 60aacccgagcc ggctgcgccg ggggaatccg tgcgggcgcc ttccgtcccg gtcccatcct 120cgccgcgctc cagcacctct gaagttttgc agcgcccaga aaggaggcga ggaaggaggg 180agtgtgtgag aggagggagc aaaaagctca ccctaaaaca tttatttcaa ggagaaaaga 240aaaagggggg gcgcaaaaat ggctggggca attatagaaa acatgagcac caagaagctg 300tgcattgttg gtgggattct gctcgtgttc caaatcatcg cctttctggt gggaggcttg 360attgctccag ggcccacaac ggcagtgtcc tacatgtcgg tgaaatgtgt ggatgcccgt 420aagaaccatc acaagacaaa atggttcgtg ccttggggac ccaatcattg tgacaagatc 480cgagacattg aagaggcaat tccaagggaa attgaagcca atgacatcgt gttttctgtt 540cacattcccc tcccccacat ggagatgagt ccttggttcc aattcatgct gtttatcctg 600cagctggaca ttgccttcaa gctaaacaac caaatcagag aaaatgcaga agtctccatg 660gacgtttccc tggcttaccg tgatgacgcg tttgctgagt ggactgaaat ggcccatgaa 720agagtaccac ggaaactcaa atgcaccttc acatctccca agactccaga gcatgagggc 780cgttactatg aatgtgatgt ccttcctttc atggaaattg ggtctgtggc ccataagttt 840taccttttaa acatccggct gcctgtgaat gagaagaaga aaatcaatgt gggaattggg 900gagataaagg atatccggtt ggtggggatc caccaaaatg gaggcttcac caaggtgtgg 960tttgccatga agaccttcct tacgcccagc atcttcatca ttatggtgtg gtattggagg 1020aggatcacca tgatgtcccg acccccagtg cttctggaaa aagtcatctt tgcccttggg 1080atttccatga cctttatcaa tatcccagtg gaatggtttt ccatcgggtt tgactggacc 1140tggatgctgc tgtttggtga catccgacag ggcatcttct atgcgatgct tctgtccttc 1200tggatcatct tctgtggcga gcacatgatg gatcagcacg agcggaacca catcgcaggg 1260tattggaagc aagtcggacc cattgccgtt ggctccttct gcctcttcat atttgacatg 1320tgtgagagag gggtacaact cacgaatccc ttctacagta tctggactac agacattgga 1380acagagctgg ccatggcctt catcatcgtg gctggaatct gcctctgcct ctacttcctg 1440tttctatgct tcatggtatt tcaggtgttt cggaacatca gtgggaagca gtccagcctg 1500ccagctatga gcaaagtccg gcggctacac tatgaggggc taatttttag gttcaagttc 1560ctcatgctta tcaccttggc ctgcgctgcc atgactgtca tcttcttcat cgttagtcag 1620gtaacggaag gccattggaa atggggcggc gtcacagtcc aagtgaacag tgcctttttc 1680acaggcatct atgggatgtg gaatctgtat gtctttgctc tgatgttctt gtatgcacca 1740tcccataaaa actatggaga agaccagtcc aatggaatgc aactcccatg taaatcgagg 1800gaagattgtg ctttgtttgt ttcggaactt tatcaagaat tgttcagcgc ttcgaaatat 1860tccttcatca atgacaacgc agcttctggt atttgagtca acaaggcaac acatgtttat 1920cagctttgca tttgcagttg tcacagtcac attgattgta cttgtatacg cacacaaata 1980cactcattta gcctttatct caaaatgtta aatataagga aaaaagcgtc aacaataaat 2040attctttgag tattgaaaaa aaaaaaa 20671272180DNAHomo sapiensmisc_featureIncyte ID No 1831378 127gcgaacgtct gcacctggcg ggcgatgacg cccgatgcgg gcgccccggg atagcgtggg 60cgaggctgcg gggccccggc gcgcacgccc gcacctctcc ccagccctgg cgtgggccca 120gcccggccca ggcagcaatg gggttcctgc agctgctggt cgtagcggtg ctggcatccg 180aacaccgggt ggctggtgca gccgaggtct tcgggaattc cagcgagggt cttattgaat 240tttctgtggg gaaatttaga tacttcgagc tcaataggcc ctttccagag gaagctattt 300tgcatgatat ttcaagcaat gtgacttttc ttattttcca aatacactca cagtatcaga 360atacaactgt ttccttttct ccgactctcc tttccaattc ctcggaaaca ggcactgcca 420gtggactggt tttcatcctt agaccagagc agagtacatg cacttggtac ttggggactt 480caggcataca gcctgtccag aatatggcta tcctactctc ctactcagaa agagatcctg 540tccctggagg ctgtaatttg gagttcgatt tagatattga tcccaacatt tacttggagt 600ataatttctt tgaaacgact atcaagtttg ccccagcaaa cctaggctat gcgagaggcg 660tagatccccc accatgtgac gctgggacag accaggactc caggtggagg ttgcagtatg 720atgtctatca gtattttctg cctgagaatg acctcactga ggagatgttg ctgaagcatc 780tgcagaggat ggtcagtgtg ccccaggtga aggccagtgc tctcaaggtg gttaccctaa 840cagctaatga taagacaagt gtttccttct cctccctccc gggacaaggt gtcatataca 900atgtcattgt ttgggacccg tttctaaata catctgctgc ctacattcct gctcacacat 960acgcttgcag ctttgaggca ggagagggta gttgtgcttc cctaggaaga gtgtcttcca 1020aagtgttctt cactcttttt gccctgcttg gtttcttcat ttgtttcttt ggacacagat 1080tctggaaaac agaattattc ttcataggct ttatcatcat gggattcttc ttttatatac 1140tgattacaag actgacacct atcaagtatg atgtgaatct gattctgaca gctgtcactg 1200gaagcgtcgg tggaatgttc ttggtagctg tgtggtggcg atttggaatc ctctcgatct 1260gcatgctctg tgttggacta gtgctggggt tcctcatctc gtcagtgact ttctttactc 1320cactgggaaa cctaaagatt tttcatgatg atggtgtatt ctgggtcact ttctcttgca 1380tagctatcct cattccagta gttttcatgg gctgcctaag aatactgaac atactgactt 1440gtggagtcat tggctcctat tcggtggttt tagccattga cagttactgg tccacaagcc 1500tttcctacat cactttgaac gtactcaaga gagcgctcaa caaggatttc cacagagctt 1560tcacaaatgt gccttttcaa actaatgact tcattatcct ggcagtatgg ggcatgctgg 1620ctgtaagtgg aattacgtta cagattcgaa gagagagagg acgaccgttc ttccctcccc 1680acccatacaa gttatggaag caagagagag agcgccgagt gacaaacatt ctggacccta 1740gctaccacat tcctccattg agagagaggc tctatggccg attaacccag attaaagggc 1800tcttccagaa ggagcagcca gctggagaga gaacgccttt gcttctgtag atgcccaggg 1860gcttggtcag tgtgcctcag ctttggagtt catgcctgga gtggttcaac agtctctggt 1920gcaagtctaa taagagatca ggcatatata tctgttcttt gcataatatt atggtgccct 1980tattgatata tggtaagggt gtactagggg attaggatga ttgtaagaga atgagaaaga 2040tgaccaaaag gttggtggta gggaggcttt ttcttatttc caaatacttg agaaattacc 2100ttttggttta caaatctatg atcaacttat tccattaaat agatacatta aaaaaattaa 2160aaactgaaaa aaaaaaaaaa 2180128991DNAHomo sapiensmisc_featureIncyte ID No 1864943 128cacggtgtca gcaggcaaca tggccgagag gcggggcctc cgggcggcgc cgtgtccgcg 60accgcgtacc ctgacacccc cgcggaattc cctccgcacc tccaggcggg tgcgatgcgg 120cgccgctttt ggggcgtatt caactgtctg tgcgccggcg cgttcggggc cctggccgcc 180gcctccgcca agctggcctt cggcagcgag gtgagcatgg gtttatgcgt cttaggcatt 240attgtgatgg cgagcaccaa ttctctgatg tggaccttct ttagccgggg cctcagtttc 300tccatgtctt cagccattgc atctgtcaca gtgacttttt caaatatcct cagctcggcc 360ttcctgggct atgtgctgta tggagagtgc caggaggtct tgtggtgggg aggagtgttc 420cttattctct gcggactcac cctaatccac aggaagctcc cacccacctg gaagcccctt 480ccacacaagc agcagtagca ccacttggct agacggacca gctggaaaga tcatgatggt 540ggcccagcct tgggatgtca tgtgggactg tgtcctaggg cgatccagtt gtgcagcctt 600ctgaccatca gccaagggaa gcaggcctct gatggagcag gctctggctc tgtaaggaga 660ggtgcagctg cagcagtgtt ctaccggaag tgttttgatc atctgtacag tgctttggat 720tcttcctccc aggcctaccc cagtgagcct tcgcagatgc tggagatcct ggggttggtc 780tgctttgtgt atggtacttg aaaccacgct gtaattattg tcctgttgcc aaacaaaagc 840cagtcatgta actctagaag cagtgactgg tggggctttc tgacagttcc atgctgatgt 900atcaggccat ctgtgtcatg cttatgtatt atggcaagaa gaggaaaact ggattaataa 960atacgttttt ttgtaagtta aaaaaaaaaa a 991129637DNAHomo sapiensmisc_featureIncyte ID No 1911316 129ggagggcggt gctccgccgc ggtggcggtt gctatcgctt cgcagaacct actcaggcag 60ccagctgaga agagttgagg gaaagtgctg ctgctgggtc tgcagacgcg atggataacg 120tgcagccgaa aataaaacat cgccccttct gcttcagtgt gaaaggccac gtgaagatgc 180tgcggctggc actaactgtg acatctatga ccttttttat catcgcacaa gcccctgaac 240catatattgt tatcactgga tttgaagtca ccgttatctt atttttcata cttttatatg 300tactcagact tgatcgatta atgaagtggt tattttggcc tttgcttgat attatcaact 360cactggtaac aacagtattc atgctcatcg tatctgtgtt ggcactgata ccagaaacca 420caacattgac agttggtgga ggggtgtttg cacttgtgac agcagtatgc tgtcttgccg 480acggggccct tatttaccgg aagcttctgt tcaatcccag cggtccttac cagaaaaagc 540ctgtgcatga aaaaaaagaa gttttgtaat tttatattac tttttagttt gatactaagt 600attaaacata tttctgtatt cttccaaaaa aaaaaaa 6371302631DNAHomo sapiensmisc_featureIncyte ID No 1943120 130ctctcttcct gcagtgtggt aaaactacag caatcgtctt aacctgtgag atctgtcacc 60tttgcatttt ccactcatgc agctggttct ataaaccaac tcttctgctt ggggggatct 120aatcatgacc ttttaccctt ttgtggcctc ttctagtaca aggcgagtgg ataattccaa 180cacaagactg gcagtccaaa ttgaaagaga tccagggaat gatgacaaca atctcaattc 240cattttttat gaacacttga caaggaccct cctggagtcc ctctgtggag acttagttct 300tggacgttgg ggcaactaca gctctggcga ttgctttatt ttggcttcag atgacctcaa 360tgcctttgtt cacctgattg aaattggaaa tggtcttgtc acctttcaac ttcgaggact 420ggaattccga ggaacctact gccagcagag ggaggtagaa gccatcatgg agggcgacga 480ggaggacaga ggctgctgct gctgcaaacc aggccacttg cctcacctgc tgtcccgcaa 540cgctgccttt cacctccgct ggctcacctg ggaaatcacg cagacccagt acatcctgga 600gggctacagc atcctggaca acaacgcggc caccatgctg caggtgtttg acctccgaag 660gatcctcatc cgctactaca tcaagagtat aatatactat atggtaacgt ctcccaaact 720cctctcctgg atcaaaaatg aatcacttct gaagtccctg cagccctttg ccaagtggca 780ttacattgag cgtgaccttg caatgttcaa cattaacatt gatgatgact acgtcccgtg 840tctccagggg atcacacgag ctagcttctg caatgtttat ctagaatgga ttcaacactg 900tgcacggaaa agacaagagc cttcaacgac cctggacagt gacgaggact ctcccttggt 960gactctgtcc ttcgccctgt gcaccctggg gaggagagct ctgggaacag ccgctcacaa 1020tatggccatc agcctggatt ctttcctgta tggcctccat gtcctcttca aaggtgactt 1080cagaataaca gcacgtgacg agtgggtatt tgctgacatg gacctactgc ataaagttgt 1140agctccagct atcaggatgt ccctgaaact tcaccaggac cagttcactt gccctgacga 1200gtatgaagac ccagcagtcc tctacgaggc catccagtcc ttcgagaaga aggtggtcat 1260ctgccacgag ggcgacccgg cctggcgggg cgcagtgctg tccaacaagg aagagctgct 1320caccctgcgg cacgtggtgg acgagggtgc cgacgagtac aaggtcatca tgctccacag 1380aagcttcctg agcttcaagg tgatcaaggt taacaaagaa tgcgtccgag gactttgggc 1440cgggcagcag caggagctta tatttcttcg caaccgcaat ccggagcgcg gcagtatcca 1500gaacaataag caggtcctgc ggaacttgat taactcctcc tgcgatcagc ccctggggta 1560ccccatgtat gtctccccac taaccacatc ctacctaggg acacacaggc agctgaagaa 1620catctggggt ggacccatca ctttggacag aattaggacc tggttctgga ccaagtgggt 1680aaggatgcgg aaggattgca atgcccgcca gcacagtggc ggcaacattg aagacgtgga 1740cggaggaggg gccccgacga caggtggcaa caatgccccg aatggtggca gccaggagag 1800cagcgcagaa cagcccagaa aaggcggtgc tcagcacggg gtgtcatcct gtgaagggac 1860acagagaaca ggcaggagga aaggcaggag ccagtccgtg caggcacact cagcgctaag 1920ccaaaggccg cccatgctga gctcatctgg ccccatctta gagagccgcc aaacattcct 1980ccagacgtcc acctcagtgc acgagctggc ccagaggctc tcgggcagcc ggctctcctt 2040gcacgcctcg gccacgtccc tgcactctca gcccccgccc gtcaccacca ccggccacct 2100gagtgtccgt gagcgggccg aggcgctcat caggtccagc ctgggctcct ccaccagctc 2160caccctgagc ttcctcttcg gcaagaggag cttttccagc gcgctcgtca tttccggact 2220ctctgctgcg gaggggggca ataccagtga cacccagtca tccagcagcg tcaacatcgt 2280gatgggcccc tcagccaggg ctgccagcca ggccactcgg gtaaggggct gggcagggct 2340caccaggaca ggctgggatg gtggcacggg ctcctggcct gagcgtggca cctgccttgc 2400gttcccaccc ttctgcctgc agaaccccat ccccttctct atggggctcc cagagtgaca 2460aaggacagtg attagacacg aagtggctta gctgctcttg aaagcagaca agatacagag 2520cagatatcct gtaaacgata atgcccaggc aggcactgaa aggagtcacc ggatacagag 2580gttctgcaga actgtggcca tctgccctac accggggcat gacggagaat g 2631131646DNAHomo sapiensmisc_featureIncyte ID No 2314236 131tacatttact aaaatgatgt aataaataac atgttaatag actcaagctt taccttatga 60aattgatgta tttttaccag ttatttctaa tgtaacattg aatatataag atctgacaaa 120tgtatgttta aacatgaatt agaagagttg agaactacca ttatgtatag ggattctcat 180agtgtcttgg cccttaattg gaaagttgtg gcaactttaa agtacttttt actgtatgtt 240ataattcttt ataacttaga gagagacaat ggtcactcaa actatgagaa ctatgaatta 300ggagataaaa gtttaaattt gttgttgttt tataacagta tgtacaagtt agttttccct 360tatatattta cgttttcaag ttttttaatc tcatcatata catccatact ctataaaatg 420ttttatattc aaagaactgt aaaatcctaa acattagttt tcactattga aattgttttt 480taaagatagg cataaatagt tgtccttaga cttattcata caaatatagt catttacttc 540tatgtagttt gagattctga gagttattcc aactttatga agattgattt caatgtgcct 600gctaagtcct aaaagattca gaaagaaaat ttatatatta ttgatt 646132541DNAHomo sapiensmisc_featureIncyte ID No 2479409 132ttcacatttt ttggtttgat cttggtgtca tttaggtaat gaatctatcc aagaaatcta 60tccttttgac ccaggttatc aaatttgtag acataaggtt atttataatg gtcccttctt 120acccttttaa tgtctttagg agctgtgttg ataatttcct tttcattatg atactggtaa 180tttctgttct cactttccta atcaggttgg gtaggggttt atcagtttta ctgatctgac 240tttttatttt attttatttt ttttgagaca gtcttacact gtctcccagg ctggagtgca 300gtggcgcgat ctcggcttac tgcaagctct gccttccggg ttcatgccat tctcctgcct 360cagcctcccc agtagctggg actacaggct cccacaacac gcccggctaa ttttttaaat 420tcttagtgga gactggggtt caccggggta accaagaatg gctcggatct ctttaacccc 480ggggtccacc cgcctcagcc tcccaaaagt gctggggatt acaggggtga gcaccgggcc 540c 5411331922DNAHomo sapiensmisc_featureIncyte ID No 2683149 133tggcctccga tccacctgga cacctggagg ctaagcctgg attccccctt ccctgactca 60ggaactgctt aacgtctaca gcaaggccta ataggggacc tgagggcaca gtcctcagga 120tgtttcgggg agaataggag ccagaacctg agcccctaag ccattcccct caccaatgat 180ggggtcccca gtgagtcatc tgctggccgg cttctgtgtg tgggtcgtct tgggctgggt 240agggggctca gtccccaacc tgggccctgc tgagcaggag cagaaccatt acctggccca 300gctgtttggc ctgtacggcg agaatgggac gctgactgca gggggcttgg cgcggcttct 360ccacagcctg gggctaggcc gagttcaggg gcttcgcctg ggacagcatg ggcctctgac 420tggacgggct gcatccccag ctgcagacaa ttccacacac aggccacaga accctgagct 480gagtgtggat gtctgggcag ggatgcctct gggtccctca gggtggggtg acctggaaga 540gtcaaaggcc cctcacctac cccgtgggcc agccccctcg ggcctggacc tgcttcacag 600gcttctgttg ctggaccact cattggctga ccacctgaat gaggattgtc tgaacggctc 660ccagctgctg gtcaattttg gcttgagccc cgctgctcct ctgacccctc gtcagtttgc 720tctgctgtgc ccagccctgc tttatcagat cgacagccgc gtctgcatcg gcgctccggc 780ccctgcaccc ccaggggatc tactatctgc cctgcttcag agtgccctgg cagtcctgtt 840gctcagcctc ccttctcccc tatccctgct gctgctgcgg ctcctgggac ctcgtctact 900acggcccttg ctgggcttcc tgggggccct ggcggtgggc actctttgtg gggatgcact 960gctacatctg ctaccgcatg cacaagaagg gcggcacgca ggacctggcg gactaccaga 1020gaaggacctg ggcccggggc tgtcagtgct cggaggcctc ttcctgctct ttgtgctgga 1080gaacatgctg gggcttttgc ggcaccgagg gctcaggcca agatgctgca ggcgaaaacg 1140aaggaatctc gaaacacgca acttggatcc ggagaatggc agtgggatgg cccttcagcc 1200cctacaggca gctccagagc caggggctca gggccagagg gagaagaaca gccagcaccc 1260accagctctg gcccctcctg ggcaccaagg ccacagtcat gggcaccagg gtggcactga 1320tatcacgtgg atggtcctcc tgggagatgg tctacacaac ctcactgatg ggctggccat 1380aggtgctgcc ttctctgatg gcttctccag cggcctcagt accaccttag cggtcttctg 1440ccatgagctg ccccacgaac tgggtgactt tgccatgctg ctccagtcag ggctgtcctt 1500tcggcggctg ctgctgctga gcctcgtgtc tggagccctg ggattggggg gtgcagtcct 1560gggggtgggg ctcagcctgg gccctgtccc cctcactccc tgggtgtttg gggtcactgc 1620tggggtcttc ctctatgtgg cccttgtgga catgctacca gccctgcttc gtcctccgga 1680gcccctgcct acgccccatg tgctcctgca ggggctgggg ctgctgctgg ggggcggcct 1740catgcttgcc ataaccctgc tggaggagcg gctactgccc gtgaccactg agggctgatg 1800gggccagtgg aaaggggtcg ggttgccctt ccttcccccc aaccacagga atggaggcgg 1860gacacagggc cagtaggagc aataggattt taataaacag aacccatccc aaaaaaaaaa 1920aa 1922134840DNAHomo sapiensmisc_featureIncyte ID No 2774051 134ggtaattcgt actggtcatc ttctctgggt gtgagtcaaa tataagttta acaattagct 60ctgaaaacat tccattgagc tggggaatgc aacagtctta ttacctcatc atggaattct 120ctagcttagt taatttaaat attgtttctt agtttctggg tcaattaaat ttaaatgatg 180tagtttatgc ttcgtgacca attaaattac taggttatta caaaaaaaat tatcatcttt 240tttgattaaa gagctgtggg tacagtatat tttataagca attttcatta gttcaaaaat 300gttcctttag gctagattaa gcagccattc attgttagag cctggagacc ttattcgaag 360gtgttcatcg tattcacagt gcactattac ttagaactaa agccaattga acctacttag 420caatagcgtt atgcctttca cccttgatga ttatggagct tatagctctc agaaacaata 480cacctgtcag tttccatcaa ctatagcaat ccatgcagaa gacaagaggc cccctcaaag 540caggaggggt attgttttag gtccaatttt tcttattgtt ctcaaaatca ttataaggtg 600gacagtgttt tgtgaagatt ttcttttccc cagctctaag aaaccatgtg gaaagaattc 660attgataact gttttgattt ttttcttttt ttaagtacag gttttgctaa gtaatcaccc 720ttagtgagcc tgtgtagttc agctgcctgt gagatgtttg gtgaccagct cagtggtatc 780ttgtattcct gatagagaat atttcagggg acanagtgct ctttcagaca gactcaaata 8401351344DNAHomo sapiensmisc_featureIncyte ID No 2869038 135gcaaattgat ctaaaagcca ctaataaatt ctagggtttg agtctagaag ccaagcaaac 60tgtcaccaat gtcagttgta aattagaatg caacatgagg cttcagactc atgacaatga 120tatacatgaa aacaaaaata taattgtgtc taccttccta ctttcccttt tgacatatgt 180agttggaatt ttacatagtc ttaaaatcca tatttagaat cttacctgtt tctataataa 240ttagtaaaat gccaaagtag tgatagaata ttgtggcatt gaagtagccg aaaaattgtt 300agttttagca tcaaaaaagt aaatagatgt tgaaatgaat ttttgtatgt gccaggttga 360agagagtgtg ccagtgacag gaagtagtct aaaaaattaa cagttatggt tttaatagga 420tctgaaagac aatctttaaa gaaatgggag aaattggggg tatcagtgaa cctataccaa 480cctctctttg tacataaata tggtgatgta gctagatata aaaatcagtg tcttactggc 540accatttaca gtttagaaaa caatcttttt cttaaaaatg cccatctgat ttctattttt 600aggagctact tggatttgta tgtatttttt ctacgtgaaa atatatgtac tcttcacttt 660tgttccagta ctataattgc tcatgcactc tttctcccct ttgagaacat tcagtgaaat 720acaacttcat caaagatttg ctcaaaggag aagaatcgca tgagtgtgaa aagtagatgc 780tcgtagccag aacagaaaag gttacacatg atcatggcac agaagatagg aggtttgact 840tggtgggcca taatgtttat tatccttttt gaaataacag ggaccagcag cagttttctc 900aggataaatg ctctacccca cttctctatg aacaggtgtg gggaggctta ctttccattt 960tcatatttat acacctctct acaaaagcaa tttttaatga aggttagtgg aattgttaaa 1020aatctgagag gaatgatgac tggaggtgtt tggggttttt ttctgtattc attttttaat 1080gagaaaagtt ttaaatgtag tacaggttag acccaactac taccttacta ttataggacg 1140attctatgtt tctgttaaag tattcaagta gctttctctg ggggaaaaag taccacttgg 1200acacttaaag gaattgggat ttttgtctac tttggataag gcagttgact tcttaagtaa 1260aagcaatagt gtaaaatgtc attttgtttg gaatgttaag tgagcaaata aaaaacatgt 1320tgaaattgtt gtaaaaaaaa aaaa 1344136443DNAHomo sapiensmisc_featureIncyte ID No 2918334 136ctcgagattt tttatattta

tgcatgccat ttagtttgct cctaaaaata gtgatactgg 60ttttagtttt ttacttacta aatcagtata gccaaatgtc catcttccta gtggtaatat 120gcgatcagaa tttctgagat tatttatgtg actatttttg gaaaagtttc ttttgataaa 180acatggattt attatatgaa attcttcttg cactgtatta caatatatgc tatgatatcc 240cttttatttt tttcaactta aatatgatgt tttatattgt tttagactta cgaatcgtgt 300ttttcagaac cataagggaa tatctatctc ctccctcact ttccttttac atatattgaa 360aagtctatga aattcaagtc tagcatttga attctctatg ctatcattgc atttacctaa 420ttatttactt ttaaatttta ggg 443137467DNAHomo sapiensmisc_featureIncyte ID No 2949916 137gccatttaag gagatctgtt ttgcttgaat attctgactg tcagtccgca gacataggga 60gtgtgtgagt gtgagtgtgt accaagatga ggaggataat caggctccgg ctccgttttt 120ctgacacttt tatggctgcc tttcttctgt gcctgggctt cgttctcatg ctctttccct 180cgttgttgcg ggatggtggc agcatcagca gctgcagaaa ctcttgttca tctcctagct 240ccgaggagcg tcatttctcc aacttggaat aaaagcccat cctctacctg attgggccac 300tcagatcaag ggcttaacac tagcaacagt tgctaaggca ctgctagata ccgattagct 360gaagcctggg tgtctgaacc aatcattgcc aagggggcgg gacttgcccc atccctggaa 420ctatgaatgt ctcagcccct tgagatcacc tgggcgtgga agaaagt 467138902DNAHomo sapiensmisc_featureIncyte ID No 2989375 138cactgcactc cagtctaggt gacagagaag gactcgtctc aaaaaataaa aataaataaa 60aaggaagcaa ggctaatcat cagtatgtgc ttgttacaag agctatgatg aaggcactcc 120ttcgagttta accaaatgag atcatctctg tcatgtgcct cacgcctcac agggactcca 180tgtgtgaaga ttcccccttc actcaccaga tcatctccat ggcaacagct tgcagcctgc 240tcttggagtg ctttgttttg gcagcttctc tgctagtttg tgtatggagt gaatggagga 300ggtaaatcca cagattaaga atatgctgtc aggagtcagg cagccaaggt cagaagccag 360ctctgcttct cagtgctttc tctttacaac acaggacttt gcaaggaaca tataattctg 420tgactagcgc catttggaaa atgttgaaac tgaagtagag atgagagatc ttacgtctgc 480ctacccagtg agatacgagg aaggtcaagg gaaaaaaaat tccaagctct tctttatctg 540ctataggaaa tgaacattca attttttgca tgcaacgaca agaggtcaag gaccccagaa 600gccagcccgc tacttccaag ttgagagccc ctggtcatac cctccagttg agctcagatt 660tgtcacaaat ttacccctct cctttccttc cattccccat gacctgcaga gagagatgtc 720agataccttc ctcttggcct cccatgggca tccataagaa acttacttga agcaagaagc 780ccagtatagg tgtctgggca gttggacatt tcctctagcc agatctgtcc gaatagagcc 840atctgggtac atgacgcaga gggcatttga taaataactg gaaaagtcaa taaatctttg 900tc 9021391332DNAHomo sapiensmisc_featureIncyte ID No 3316764 139cgcagatgtg ccttcctggt tggttgagat gctgatccta cagcactccc gctgtgcctc 60agcagtgagc tgggtgtaaa ggcaggaggc ttgctggggt ctgacacttc cctgccctcc 120tccaggaggg acacatctgg ggctctatga ggaggacagc tttcatcctg ggctctggac 180ttctctcatt tgtggccttc tggaactcag tgacatggca tcttcagaga ttttggggtg 240cttctggcta cttttggcaa gcccagtggg agaggctgct gactacattt gaagggaagg 300agtggatcct cttctttata ggtgccatcc aagtgccttg tctcttcttc tggagcttca 360atgggcttct attggtggtt gacacaacag gaaaacctaa cttcatctct cgctaccgaa 420ttcaggtcgg caagaatgaa cctgtggatc ctgtgaaact gcgccagtct atccgcacag 480ttcttttcaa ccagtgcatg atatctttcc ccatggtggt cttcctctat cccttcctca 540aatggtggag agacccctgc cgccgtgagc tacccacctt ccactggttc ctcctggagc 600tggccatctt cacgctgatc gaggaagtct tgttctacta ttcacaccgg ctccttcacc 660acccaacatt ctacaagaaa atccacaaga aacaccatga gtggacagct cccattggcg 720tgatctctct ctatgcccac cctatagagc atgcagtctc caacatgcta ccggtgatag 780tgggcccatt agtaatgggc tcccacttgt cctccatcac catgtggttt tccttggccc 840tcatcatcac caccatctcc cactgtggct accaccttcc cttcctgcct tcgcctgaat 900tccacgacta ccaccatctc aagttcaacc agtgctatgg ggtgctgggt gtgctggacc 960acctccatgg gactgacacc atgttcaagc agaccaaggc ctacgagaga catgtcctcc 1020tgctgggctt caccccgctc tctgagagca tcccagactc cccaaagagg atggagtgag 1080agacagccta agtgtcatcc tggctgtccc tcagccatgg gatgcagaca cggcttcctg 1140attgcaccta acaatttgcc tccttcggcc acacgcccta atgatggcac caccagggta 1200gagggaaggt cggcttcccg gaaaagcagg gccaaggatg aggctttctt caaactactg 1260cccttgatgt ccctcaatgg gatcaggagt tagcttaaaa aaaaaaaaaa acaactgcgg 1320ccgcaagctt at 13321401252DNAHomo sapiensmisc_featureIncyte ID No 3359559 140gtgaggaagg tagctttagt gaaaacaggg tttggagttg aacctatacg ggttcaaatt 60cgacttccgt ccaccaccga gacctgcgct ccctgaggga ctcgctttcc catccgcgaa 120accaggacgg cgccgcctac accccgcggc gttcggggcg ggctgaatgg gtcgctgagt 180aggggctaca cccacgccct tcgctccccg cccccggcac ggagcgacgg ccacggcagt 240gtccccaagg caccgaaacc gaggcggggg tctcggtccc tccgcgcaag gagggaggcg 300gaccgtacgt ggcaggactc accgccccgc acgtggcagg actcaccgcc ccgcgccgtg 360ttctccgagc catggcgcca gcgctgtggc gggcctgcaa cggactcatg gccgccttct 420tcgcgctggc ggccttggtg caggtaaatg acccagatgc agaggtgtgg gtggtggtgt 480acacaatccc tgcagtactg accctgcttg ttggacttaa ccctgaagtc acaggtaatg 540ttatttggaa aagtatctct gcaatacaca tactcttttg tacggtgtgg gctgttggct 600tggcgtccta cctcttgcat cgtacacaac agaacatctt acatgaggaa gaaggcaggg 660agctgtctgg tctggtgatt attacagcat ggattatcct gtgccacagt tcctcaaaga 720atccagttgg tggaagaatt caattggcta ttgccattgt aatcacactt ttcccattta 780tctcatgggt ctacatatat attaacaagg aaatgcggtc ctcttggcca actcactgca 840agacagtaat ttaaataaat tcaagaactt cgtttttaaa atgaatattt tcaatcaatt 900ttttataaac attaggggaa caagccagga gtttatttca ggtaatttgg gctaatagtt 960ttaaaactcc aaataacttt ttaagggtgc atataattcg atgtaagatt ggatgggaca 1020agtaagagat ggtctgatat tttccagacg actttctgca gggtcttgtg tcataatgta 1080gtggaaaagg ctagagaata gaagtttaaa aatacgagtt ctaacttaac tttgtaacta 1140tgtaatttgg gcaaatatat aaacctcctg gtggatattt atctataaaa taggattaat 1200gccagagtgt acttacttac acagtaacaa ggatcaatct agataatgta tg 1252141721DNAHomo sapiensmisc_featureIncyte ID No 4289208 141ggagactgca ttccctgccc tgaaggaatg tatttctaag gcaaataggc aacttggtac 60tatcttattc tgagtagaga gtggagaaag tattttcaga ctgaagaaaa ctttgaaaag 120tcaggagcta agctgctcgg agctcagtgc cgcagcatgg ctgtggtgga cgcgggaaac 180aacgggaaag ttcttgacag agtctgtgtc cgctcagtcc ctgcactttt cctttccaaa 240tgcatctcgt tggatatgga atagatcgta gatgttgtag actgagattt gggactatgt 300tgggaccgta caggtgaatg tgccacctcc acaaatggct tctccgagtg agtcacgtca 360cctggtgcgt ggaggtggag ctgcggctgg agtaaggctt gctgtgggac gccctcgtac 420tttgctcccc ttgcgggtgg ttgccgaccc gagagcattg ggatcctccc ccgactggtg 480gctaagtttg tcctgtcccg ggttggctgg ggaaaggggg gttgtgggtt cgggaaaaaa 540aagttccggg gaaattcctc ctggcaaaat tccggttggt tcacattggg aacctggtta 600acctaaattt gggtaaaagg ggtccctaat aattcgccct gggaaattcg tgggggggtt 660ccccaaggaa ccccctcgga gtcccagggg ggagaaattt gaagagcccc tttcgaaatg 720g 7211421704DNAHomo sapiensmisc_featureIncyte ID No 2454013 142cgcttcgcgc taacgcttgc gatggttgaa ttcccctcct cacgccagcc taggagaaga 60agttcgtagt cccagaggtg aggcaggagg cggcagtttc tggcgggtga gggcggagct 120gaagtgacag cggaggcgga agcaacggtc ggtggggcgg agaagggggc tggccccagg 180aggaggagga aacccttccg agaaaacagc aacaagctga gctgctgtga cagaggggaa 240caagatggcg gcgccgaagg ggagcctctg ggtgaggacc caactggggc tcccgccgct 300gctgctgctg accatggcct tggccggagg ttcggggacc gcttcggctg aagcatttga 360ctcggtcttg ggtgatacgg cgtcttgcca ccgggcctgt cagttgacct accccttgca 420cacctaccct aaggaagagg agttgtacgc atgtcagaga ggttgcaggc tgttttcaat 480ttgtcagttt gtggatgatg gaattgactt aaatcgaact aaattggaat gtgaatctgc 540atgtacagaa gcatattccc aatctgatga gcaatatgct tgccatcttg gttgccagaa 600tcagctgcca ttcgctgaac tgagacaaga acaacttatg tccctgatgc caaaaatgca 660cctactcttt cctctaactc tggtgaggtc attctggagt gacatgatgg actccgcaca 720gagcttcata acctcttcat ggacttttta tcttcaagcc gatgacggaa aaatagttat 780attccagtct aagccagaaa tccagtacgc accacatttg gagcaggagc ctacaaattt 840gagagaatca tctctaagca aaatgtccta tctgcaaatg agaaattcac aagcgcacag 900gaattttctt gaagatggag aaagtgatgg ctttttaaga tgcctctctc ttaactctgg 960gtggatttta actacaactc ttgtcctctc ggtgatggta ttgctttgga tttgttgtgc 1020aactgttgct acagctgtgg agcagtatgt tccctctgag aagctgagta tctatggtga 1080cttggagttt atgaatgaac aaaagctaaa cagatatcca gcttcttctc ttgtggttgt 1140tagatctaaa actgaagatc atgaagaagc agggcctcta cctacaaaag tgaatcttgc 1200tcattctgaa atttaagcat ttttctttta aaagacaagt gtaatagaca tctaaaattc 1260cactcctcat agagctttta aaatggtttc attggatata ggccttaaga aatcactata 1320aaatgcaaat aaagttactc aaatctgtga agactgtatt tgctataact ttattggtat 1380tgtttttgta gtaatttaag aggtggatgt ttgggattgt attattattt tactaatatc 1440tgtagctatt ttgttttttg ctttggttat tgtttttttc ccttttctta gctatgagct 1500gatcattgct ccttctcacc tcctgccatg atactgtcag ttaccttagt taacaagctg 1560aatatttagt agaaatgatg cttctgctca ggaatggccc acaaatctgt aatttgaaat 1620ttagcaggaa atgaccttta atgacactac attttcagga actgaaatca ttaaaatttt 1680atttgaataa ttaaaaaaaa aaaa 1704143964DNAHomo sapiensmisc_featureIncyte ID No 2454048 143cagacagcgg cgggcgcagg acgtgcacta tggctcgggg ctcgctgcgc cggttgctgc 60ggctcctcgt gctggggctc tggctggcgt tgctgcgctc cgtggccggg gagcaagcgc 120caggcaccgc cccctgctcc cgcggcagct cctggagcgc ggacctggac aagtgcatgg 180actgcgcgtc ttgcagggcg cgaccgcaca gcgacttctg cctgggctgc gctgcagcac 240ctcctgcccc cttccggctg ctttggccca tccttggggg cgctctgagc ctgaccttcg 300tgctggggct gctttctggc tttttggtct ggagacgatg ccgcaggaga gagaagttca 360ccacccccat agaggagacc ggcggagagg gctgcccagc tgtggcgctg atccagtgac 420aatgtgcccc ctgccagccg gggctcgccc actcatcatt cattcatcca ttctagagcc 480agtctctgcc tcccagacgc ggcgggagcc aagctcctcc aaccacaagg ggggtggggg 540gcggtgaatc acctctgagg cctgggccca gggttcaggg gaaccttcca aggtgtctgg 600ttgccctgcc tctggctcca gaacagaaag ggagcctcac gctggctcac acaaaacagc 660tgacactgac taaggaactg cagcatttgc acaggggagg ggggtgccct ccttcctaga 720ggccctgggg gccaggctga cttggggggc agacttgaca ctaggcccca ctcactcaga 780tgtcctgaaa ttccaccacg ggggtcaccc tggggggtta gggacctatt tttaacacta 840gggggctggc ccactaggag ggctggccct aagatacaga cccccccaac tccccaaagc 900ggggaggaga tatttatttt ggggagagtt tggaggggag ggagaattta ttaataaaag 960aatc 9641441564DNAHomo sapiensmisc_featureIncyte ID No 2479282 144ggaattgtgg gagttgtgtc tgccactcgg ctgccggagg ccgaaggtcc ctgactatgg 60ctccccagag cctgccttca tctaggatgg ctcctctggg catgctgctt gggctgctga 120tggccgcctg cttcaccttc tgcctcagtc atcagaacct gaaggagttt gccctgacca 180acccagagaa gagcagcacc aaagaaacag agagaaaaga aaccaaagcc gaggaggagc 240tggatgccga agtcctggag gtgttccacc cgacgcatga gtggcaggcc cttcagccag 300ggcaggctgt ccctgcagga tcccacgtac ggctgaatct tcagactggg gaaagagagg 360caaaactcca atatgaggac aagttccgaa ataatttgaa aggcaaaagg ctggatatca 420acaccaacac ctacacatct caggatctca agagtgcact ggcaaaattc aaggaggggg 480cagagatgga gagttcaaag gaagacaagg caaggcaggc tgaggtaaag cggctcttcc 540gccccattga ggaactgaag aaagactttg atgagctgaa tgttgtcatt gagactgaca 600tgcagatcat ggtacggctg atcaacaagt tcaatagttc cagctccagt ttggaagaga 660agattgctgc gctctttgat cttgaatatt atgtccatca gatggacaat gcgcaggacc 720tgctttcctt tggtggtctt caagtggtga tcaatgggct gaacagcaca gagcccctcg 780tgaaggagta tgctgcgttt gtgctgggcg ctgccttttc cagcaacccc aaggtccagg 840tggaggccat cgaaggggga gccctgcaga agctgctggt catcctggcc acggagcagc 900cgctcactgc aaagaagaag gtcctgtttg cactgtgctc cctgctgcgc cacttcccct 960atgcccagcg gcagttcctg aagctcgggg ggctgcaggt cctgaggacc ctggtgcagg 1020agaagggcac ggaggtgctc gccgtgcgcg tggtcacact gctctacgac ctggtcacgg 1080agaagatgtt cgccgaggag gaggctgagc tgacccagga gatgtcccca gagaagctgc 1140agcagtatcg ccaggtacac ctcctgccag gcctgtggga acagggctgg tgcgagatca 1200cggcccacct cctggcgctg cccgagcatg atgcccgtga gaaggtgctg cagacactgg 1260gcgtcctcct gaccacctgc cgggaccgct accgtcagga cccccagctc ggcaggacac 1320tggccagcct gcaggctgag taccaggtgc tggccagcct ggagctgcag gatggtgagg 1380acgagggcta cttccaggag ctgctgggct ctgtcaacag cttgctgaag gagctgagat 1440gaggccccac accaggactg gactgggatg ccgctagtga ggctgagggg tgccagcgtg 1500ggtgggcttc tcaggcagga ggacatcttg gcagtgctgg cttggccatt aaatggaaac 1560ctgg 15641451385DNAHomo sapiensmisc_featureIncyte ID No 2483432 145gtccgcccgc cgctgcgtcc cggagtgcaa gtgagcttct cggctgcccc gcgggccggg 60gtgcggagcc gacatgcgcc cgcttctcgg cctccttctg gtcttcgccg gctgcacctt 120cgccttgtac ttgctgtcga cgcgactgcc ccgcgggcgg agactgggct ccaccgagga 180ggctggaggc aggtcgctgt ggttcccctc cgacctggca gagctgcggg agctctctga 240ggtccttcga gagtaccgga aggagcacca ggcctacgtg ttcctgctct tctgcggcgc 300ctacctctac aaacagggct ttgccatccc cggctccagc ttcctgaatg ttttagctgg 360tgccttgttt gggccatggc tggggcttct gctgtgctgt gtgttgacct cggtgggtgc 420cacatgctgc tacctgctct ccagtatttt tggcaaacag ttggtggtgt cctactttcc 480tgataaagtg gccctgctgc agagaaaggt ggaggagaac agaaacagct tgtttttttt 540cttattgttt ttgagacttt tccccatgac accaaactgg ttcttgaacc tctcggcccc 600aattctgaac attcccatcg tgcagttctt cttctcagtt cttatcggtt tgatcccata 660taatttcatc tgtgtgcaga cagggtccat cctgtcaacc ctaacctctc tggatgctct 720tttctcctgg gacactgtct ttaagctgtt ggccattgcc atggtggcat taattcctgg 780aaccctcatt aaaaaattta gtcagaaaca tctgcaattg aatgaaacaa gtactgctaa 840tcatatacac agtagaaaag acacatgatc tggattttct gtttgccaca tccctggact 900cagttgctta tttgtgtaat ggatgtggtc ctctaaagcc cctcattgtt tttgattgcc 960ttctataggt gatgtggaca ctgtgcatca atgtgcagtg tcttttcaga aaggacactc 1020tgctcttgaa ggtgtattac atcaggtttt caaaccagcc ctggtgtagc agacactgca 1080acagatgcct cctagaaaat gctgtttgtg gccgggcgcg gtggctcacg cctgtaatcc 1140cagcactttg ggaggccgag gccggtgatt cacaaggtca ggagttcaag accagcctgg 1200ccaagatggt gaaatcctgt ctctaataaa aatacaaaaa ttagccaggc gtggtggcag 1260gcacctgtaa tcccagctac tcgggaggct gaggcaggag aattgcttga accaaggtgg 1320cagaggttgc agtaagccaa gatcacacca ctgcactcca gcctgggtga tagagtgaga 1380ccaca 13851462031DNAHomo sapiensmisc_featureIncyte ID No 2493824 146tgggcggggg cccacggcgg ccactcactg agccccacgg gccgcagcgg cagtgacgta 60gggttggcgc acggatccgt tgcggctgca gctctgcagt cgggccgttc cttcgccgcc 120gccaggggta gcggtgtagc tgcgcagcgt cgcgcgcgct accgcaccca ggttcggccc 180ataggcgtct ggcagcccgg cgccatcttc atcgagcgcc atggccgcag cctgcgggcc 240gggagcggcc gggtactgct tgctcctcgg cttgcatttg tttctgctga ccgcgggccc 300tgccctgggc tggaacgacc ctgacagaat gttgctgcgg gatgtaaaag ctcttaccct 360ccactatgac cgctatacca cctcccgcag gctggatccc atcccacagt tgaaatgtgt 420tggaggcaca gctggttgtg attcttatac cccaaaagtc atacagtgtc agaacaaagg 480ctgggatggg tatgatgtac agtgggaatg taagacggac ttagatattg catacaaatt 540tggaaaaact gtggtgagct gtgaaggcta tgagtcctct gaagaccagt atgtactaag 600aggttcttgt ggcttggagt ataatttaga ttatacagaa cttggcctgc agaaactgaa 660ggagtctgga aagcagcacg gctttgcctc tttctctgat tattattata agtggtcctc 720ggcggattcc tgtaacatga gtggattgat taccatcgtg gtactccttg ggatcgcctt 780tgtagtctat aagctgttcc tgagtgacgg gcagtattct cctccaccgt actctgagta 840tcctccattt tcccaccgtt accagagatt caccaactca gcaggacctc ctcccccagg 900ctttaagtct gagttcacag gaccacagaa tactggccat ggtgcaactt ctggttttgg 960cagtgctttt acaggacaac aaggatatga aaattcagga ccagggttct ggacaggctt 1020gggaactggt ggaatactag gatatttgtt tggcagcaat agagcggcaa cacccttctc 1080agactcgtgg tactacccgt cctatcctcc ctcctaccct ggcacgtgga atagggctta 1140ctcacccctt catggaggct cgggcagcta ttcggtatgt tcaaactcag acacgaaaac 1200cagaactgca tcaggatatg gtggtaccag gagacgataa agtagaaagt tggagtcaaa 1260cactggatgc agaaattttg gatttttcat cactttctct ttagaaaaaa agtactacct 1320gttaacaatt gggaaaaggg gatattcaaa agttctgtgg tgttatgtcc agtgtagctt 1380tttgtattct attatttgag gctaaaagtt gatgtgtgac aaaatactta tgtgttgtat 1440gtcagtgtaa catgcagatg tatattgcag tttttgaaag tgatcattac tgtggaatgc 1500taaaaataca ttaatttcta aaacctgtga tgccctaaga agcattaaga atgaaggtgt 1560tgtactaata gaaactaagt acagaaaatt tcagttttag gtggttgtag ctgatgagtt 1620attacctcat agagactata atattctatt tggtattata ttatttgatg tttgctgttc 1680ttcaaacatt taaatcaagc tttggactaa ttatgctaat ttgtgagttc tgatcacttt 1740tgagctctga agctttgaat cattcagtgg tggagatggc cttctggtaa ctgaatatta 1800ccttctgtag gaaaaggtgg aaaataagca tctagaaggt tgttgtgaat gactctgtgc 1860tggcaaaaat gcttgaaacc tctatatttc tttcgttcat aagaggtaaa ggtcaaattt 1920ttcaacaaaa gtcttttaat aacaaaagca tgcagttctc tgtgaaatct caaatattgt 1980tgtaatagtc tgtttcaatc ttaaaaagaa tcaataaaaa caaaaaaaaa a 20311471790DNAHomo sapiensmisc_featureIncyte ID No 2555823 147gcgggaggac cggctgaccc tggatggtga ggccgggtgc ccgcctgtgc ctggggagtg 60tggggagggg gctgtgcctg gtgctccccc tgctttgtct cggtgcaggt ttcctcttcc 120tgaacacgct cttcatccag cgcggccggc acgagaccac ctggaccatc ctgcggcgct 180tcggctacag cgatgccctg gagctgactg cggactatct ctcccctctg atccacgtgc 240cccccggctg cagcacggag ctcaaccacc ttggctacca gtttgtgcag agagtgtttg 300agaagcacga ccaggaccgc gacggcgccc tctcgcccgt ggagctgcaa agccttttca 360gtgtgttccc agcagcgccc tggggccccg agctcccacg cacagtccgc acagaggccg 420gccggttgcc cctgcacgga tacctctgcc agtggaccct ggtgacctac ctggacgtcc 480ggagctgcct tggacaccta ggctacctgg gctaccccac cctctgtgag caggaccagg 540cccatgccat cacagtcact cgtgagaaga ggctggacca ggagaaggga cagacgcagc 600ggagcgtcct cctgtgcaag gtggtagggg cccgtggagt gggcaagtct gccttcctgc 660aggcctttct cggccgcggc ctggggcacc aggacacgag ggagcagcct cccggctacg 720ccatcgacac ggtgcaggtc aatggacagg agaagtactt gatcctctgt gaggtgggca 780cagatggtct gctggccaca tcgctggacg ccacctgtga cgttgcctgc ttgatgtttg 840atggcagtga cccaaagtcc tttgcacatt gtgccagcgt ctacaagcac cattacatgg 900acgggcagac cccctgcctc tttgtctcct ccaaggccga cctgcccgaa ggtgtcgcgg 960tgtctggccc atcaccggcc gagttttgcc gcaagcaccg gctacccgct cccgtgccgt 1020tctcctgtgc tggcccagcc gagcccagca ccaccatctt cacccagctc gccaccatgg 1080ccgccttccc acatttggtc cacgcagagc tgcatccctc ttccttctgg ctccgggggc 1140tgctgggggt tgtcggggcc gccgtggccg cagtcctcag cttctcactc tacagggtcc 1200tggtgaagag ccagtgaggc

ccctggtacc caagccccct cccctgacct gggtgtgcct 1260cgctgctggg gctctgcagg ggcagcacag ctggggtgca ggccaggctg ccactccggg 1320aacgcctttg cgccgggact ttttgtttct gaaggcagtc gatctgcagc ggggccttat 1380gctgccatgc actgccctgg ctcctgccgg acccccaggg tgggccgtgg caggtggctg 1440agcaggagct cccaagtgcc ggccaccgct gtcagggatt gcccacccct gggcatcatg 1500tgtgtggggc cggggagcac aggtgtggga gctggtgacc ccagacccag aattctcagg 1560gctctacccc cctttcctgg tcctaggtgg ccagtgggta tgaggagggc tggaaggcag 1620agctttgggc caaaagcagg cgttgggggg tcccccctca agtttggagc cgtttccgtg 1680gttgtagcag aggaccggag gttgggttcc tgattaaact tcactgtgtg ttttctatct 1740cggatcccag tctctgaaga caacttgctt tgattcaacc taaaaaaaaa 17901481979DNAHomo sapiensmisc_featureIncyte ID No 2598242 148ctactcctca ctggccggga caactggtct tatcacggag gctggggcca ggcagccctt 60cggttcgggt gggcccatgg accccagtcc aacgccgagg gaataggacc atccaaaagc 120ggaaccttcg cctcagaaaa agggtgcggg acccctcctc accgtgcggt cacgcgtgga 180ccctgccagc agccaggcca tggagctctc tgatgtcacc ctcattgagg gtgtgggtaa 240tgaggtgatg gtggtggcag gtgtggtggt gctgattcta gccttggtcc tagcttggct 300ctctacctac gtagcagaca gcggtagcaa ccagctcctg ggcgctattg tgtcagcagg 360cgacacatcc gtcctccacc tggggcatgt ggaccacctg gtggcaggcc aaggcaaccc 420cgagccaact gaactccccc atccatcaga gggtaatgat gagaaggctg aagaggcggg 480tgaaggtcgg ggagactcca ctggggaggc tggagctggg ggtggtgttg agcccagcct 540tgagcatctc cttgacatcc aaggcctgcc caaaagacaa gcaggtgcag gcagcagcag 600tccagaggcc cccctgagat ctgaggatag cacctgcctc cctcccagcc ctggcctcat 660cactgtgcgg ctcaaattcc tcaatgatac cgaggagctg gctgtggcta ggccagagga 720taccgtgggt gccctgaaga gcaaatactt ccctggacaa gaaagccaga tgaaactgat 780ctaccagggc cgcctgctac aagacccagc ccgcacactg cgttctctga acattaccga 840caactgtgtg attcactgcc accgctcacc cccagggtca gctgttccag gcccctcagc 900ctccttggcc ccctcggcca ctgagccacc cagccttggt gtcaatgtgg gcagcctcat 960ggtgcctgtc tttgtggtgc tgttgggtgt ggtctggtac ttccgaatca attaccgcca 1020attcttcaca gcacctgcca ctgtctccct ggtgggagtc accgtcttct tcagcttcct 1080agtatttggg atgtatggac gataaggaca taggaagaaa atgaaaggca tggtctttct 1140cctttatggc ctccccactt ttcctggcca gagctgggcc caagggccgg ggagggaggg 1200gtggaaagga tgtgatggaa atctcctcca taggacacag gaggcaagta tgcggcctcc 1260ccttctcatc cacaggagta cagatgtccc tcccgtgcga gcacaactca ggtagaaatg 1320aggatgtcat cttccttcac ttttagggtc ctctgaagga gttcaaagct gctggccaag 1380ctcagtgggg agcctgggct ctgagattcc ctcccacctg tggttctgac tcttcccagt 1440gtcctgcatg tctgccccca gcacccaggg ctgcctgcaa gggcagctca gcatggcccc 1500agcacaactc cgtagggagc ctggagtatc cttccatttc tcagccaaat actcatcttt 1560tgagactgaa atcacactgg cgggaatgaa gattgtgcca gccttctctt atgggcacct 1620agccgccttc accttcttcc tctacccctt agcaggaata gggtgtcctc ccttctttca 1680aagcactttg cttgcatttt attttatttt tttaagagtc cttcatagag ctcagtcagg 1740aaggggatgg ggcaccaagc caagccccca gcattgggag cggccaggcc acagctgctg 1800ctcccgtagt cctcaggctg taagcaagag acagcactgg cccttggcca gcgtcctacc 1860ctgcccaact ccaaggactg ggtatggatt gctgggccct aggctcttgc ttctggggct 1920attggagggt cagtgtctgt gactgaataa agttccattt tgtggtcaaa aaaaaaaaa 19791491810DNAHomo sapiensmisc_featureIncyte ID No 2634120 149ccccctgccc gcctctccgc acaatacttg aacattcatc tgtactgaag tgttacttga 60accgggggaa tctcggacct gggggagccg gggtgtgagg ggactggacc agcttggact 120gagacctgag accgggccgg tgggcgccca tttgggactg cgccaccccc aggcttgttc 180ttgttttact gtattgagcg gcggcacccg ccggacccgc attatggctg ggggcgccag 240ccaagaatgg ggaccatggg actcctccag cctggctctt cccactcttt catcgtcatg 300gaaacttgta tcccatttgc ccagggaact gccactcctg gttgccatgg aaatagcagc 360caacggacac ctcccgatgc cagtgctaag gctggaaatg gccccctctt agttgccatg 420ggaacctagt aacagactct gctggccctc cttccctgcc ccttcctcga gcgcggggtg 480gggcttcggg accccgggga tgagccgggc caggtcccgc ccctccgcgc aggcctccgg 540ggggccgggg cttaccatgt aggggagggg agatctatcc acatacctca ggtggccatg 600gtggaggtgc agctggagag tgaccacgag tacccaccag gcctgctggt ggccttcagt 660gcctgcacca ccgtgctggt ggctgtgcac ctctttgcac tcatggtctc cacgtgtctg 720ctgccccaca ttgaagctgt gagcaacatc cacaacctca actctgtcca ccagtcgcca 780caccagagac tgcaccgcta cgtggagctg gcctggggct tctccactgc cctgggcacc 840tttctcttcc ttgctgaagt tgtcctggtt ggttgggtca agtttgtgcc cattggggct 900cccttggaca caccgacccc catggtgccc acatcccggg tgcccgggac tctggcacca 960gtggctacct cccttagtcc agcttccaat ctcccacggt cctctgcgtc tgcagcaccg 1020tcccaggctg agccagcctg cccaccccgg caagcctgtg gtggtggtgg ggcccatggg 1080ccaggctggc aagcagccat ggcctccaca gccatcatgg tacccgtggg gctcgtgttt 1140gtggcctttg ccctgcattt ctaccgctcc ttggtggcac acaagacaga ccgctacaag 1200caggaactag aggaactgaa tcgcctgcag ggggagctgc aggctgtgtg agactggtgt 1260tagccaccgc tcactgcaag cactgcctcc ctccggggtc tgtaagaggc cgcaggggcc 1320tacagacctc atccccccat cccctggctg gagccacttc cagtggccac tctcaggcag 1380agttcagatt cctgcccgca ggtcctctgg gctgggcctt ggggcagctc ccacattccc 1440agggattttc cccatcagtc tgtcccttgg gttttgcaag ctactctgca cctgggctgg 1500cctcagttga aggatcatgc agtagataga ggggaggcag ggagagcttg tgggaccttc 1560agtgctgact ttagccacca tttccattcc tatacaggat gtgaaggtca gaaggcagcc 1620aattgttggt ttaatttttt ttttttttga gacagtctgt ttcccaggct ggagtgtagt 1680gatacagtca cagctcactg tagcctcgac cttccaggct caaaagatgc tcccaccaca 1740gcctcccagg tagtgagtag ctggtactac aggtgtgtgc tgccacaccc gactaatttt 1800tttgtagaga 1810150535DNAHomo sapiensmisc_featureIncyte ID No 2765411 150gaggaaccag aaatttgtcc ttgaataatg tttcccgtgt tgggctggat cttgatagca 60gttgttatca tcattcttct gatttttaca tctgtcaccc gatgcctatc tccagttagt 120tttctgcagc tgaaattctg gaaaatctat ttggaacagg agcagcagat ccttaaaagt 180aaagccacag agcatgcaac tgaattggca aaagagaata ttaaatgttt ctttgagggc 240tcgcatccaa aagaatataa cactccaagc atgaaagagt ggcagcaaat ttcatcactg 300tatactttca atccgaaggg ccagtactac agcatgttgc acaaatatgt caacagaaaa 360gagaagactc acagtatcag gtctactgaa ggagatacgg tgattcctgt tcttggcttt 420gtagattcat ctggtataaa cagcactcct gagttatgac cttttgaatg agtagaaaaa 480aaaattgttt tgaattattg ctttattaaa aaataaacat tggtaaaaaa aaaaa 535151891DNAHomo sapiensmisc_featureIncyte ID No 2769412 151gaaaagaatc cgaggcacag ataaagataa gttttactgt catgctgctt ttaacataac 60agagcaacat cacctaggaa aaaagtttgt aggaggattt ttaatccata tatttgtctt 120atggctagat aaagatttct ctgaaaaaaa gaagcatgtc aggaatctct gggtgcccct 180ttttcctctg gggacttcta gcattgttgg gcttggcttt ggttatatca ctgatcttca 240atatttccca ctatgtggaa aagcaacgac aagataaaat gtacagctac tccagtgacc 300acaccagggt tgatgagtat tatattgaag acacaccaat ttatggtaac ttagatgata 360tgatttcaga accaatggat gaaaattgct atgaacaaat gaaagcccga ccagagaaat 420ctgtaaataa gatgcaggaa gccaccccat ctgcacaggc aaccaatgaa acacagatgt 480gctacgcctc acttgatcac agcgttaagg ggaagcgtag aaagcccagg aaacagaata 540ctcatttctc agacaaggat ggagatgagc aactacatgc aatagatgcc agcgtttcta 600agaccacctt agtagacagt ttctccccag aaagccaggc agtagaggaa aacattcatg 660atgatcccat cagactgttt ggattgatcc gtgctaagag agaacctata aactagctgg 720accatgatct agttcaatga tttggctcct attgaagatg gcttctaaga aaacaagatg 780cacagaggac acagaaggac ttggcagcag ggtgatgacc tgatcatttg ttgatgggat 840ggtggcttac ctcttattca cagcttacac ttatgcatgc caaatgtaag g 8911522311DNAHomo sapiensmisc_featureIncyte ID No 2842779 152gggcgcggca ccgcagctgg atggctgggg ccgcccggat cgccgccgcc gccgccgccg 60cacgtacgtg gcatgcctgg atgtccctgc cctggctgtg gcatggcggg cccaaggctc 120ctcttcctca ctgcccttgc cctggagctc ttgggaaggg ctgggggttc ccagccggcc 180ctccggagcc gggggactgc gacggcctgt cgcctggaca acaaggaaag cgagtcctgg 240ggggctctgc tgagcggaga gcggctggac acctggatct gctccctcct gggttccctc 300atggtggggc tcagtggggt cttcccgttg cttgtcattc ccctagagat ggggaccatg 360ctgcgctcag aagctggggc ctggcgcctg aagcagctgc tcagcttcgc cctgggggga 420ctcttgggca atgtgtttct gcatctgctg cccgaagcct gggcctacac gtgcagcgcc 480agccctggtg gtgaggggca gagcctgcag cagcagcaac agctggggct gtgggtcatt 540gctggcatcc tgaccttcct ggcgttggag aagatgttcc tggacagcaa ggaggagggg 600accagccagg cccccaacaa agaccccact gctgctgccg ccgcactcaa tggaggccac 660tgtctggccc agccggctgc agagcccggc ctcggtgccg tggtccggag catcaaagtc 720agcggctacc tcaacctgct ggccaacacc atcgataact tcacccacgg gctggctgtg 780gctgccagct tccttgtgag caagaagatc gggctcctga caaccatggc catcctcctg 840catgagatcc cccatgaggt gggcgacttt gccatcctgc tccgggccgg ctttgaccga 900tggagcgcag ccaagctgca actctcaaca gcgctggggg gcctactggg cgctggcttc 960gccatctgta cccagtcccc caagggagta gaggagacgg cagcctgggt cctgcccttc 1020acctctggcg gctttctcta catcgccttg gtgaacgtgc tccctgacct cttggaagaa 1080gaggacccgt ggcgctccct gcagcagctg cttctgctct gtgcgggcat cgtggtaatg 1140gtgctgttct cgctcttcgt ggattaactt tccctgatgc cgacgcccct gccccctgca 1200gcaataagat gctcggattc actctgtgac cgcatatgtg agaggcagag agggcgagtg 1260gctgcgagag agaatgagcc tcccgccaga caggagggag gtgcgtgtgg atgtatgtgg 1320tgtgcacatg tggccagagg tgtgtgcgcg agaccgacac tgtgatccct gtgctgggtc 1380cggggcccag tgtagcgcct gtccccagcc atgctgtggt tacctctcct tgccgccctg 1440tcaccttcac ctcctggagt aagcagcgag gaagagcagc actggtccca agcagaggcc 1500ttgccctgct gggaccccgg gagtgagagc agcccaagga tcccagggtg cagggaactc 1560cagagctgcc cacctcccac tgccccctca gcacacacac agtccccagg cggcctaggg 1620gccaaggctg gggcggcttt ggtccctttt cctggccctt ccttccccac ttctaagcca 1680aagaaaggag aggcaggtgc tcctgtaccc cagccccact cagcactgac agtccccagc 1740tcctagtagt gagctgggag gcgcttccta agaccctttc ctcagggctg ccctgggagc 1800tcattcctgg ccaacacgcc ctggcagcac cagcagctct tgccacctcc agctgccaaa 1860cagcagcctg ccgggcaggg agcagcccca ggccagagag gcctcccggt ccagctcagg 1920gatgctcctg ccagcacagg ggccagggac tcctggagca ggcacatagt gagcccgggc 1980agccctgccc agctcaggcc cctttccttc cccattgagg ttggggtagg tgggggcggt 2040gagggctcca cgttgtcagc gctcaggaat gtgctccggc agagtgctga agccataatc 2100cccaaccatt tcccttgtct gacgcccagg tactcagctg gcccactcca cagccaggcc 2160tggccctgcc cttcaccgtg gatgttttca gaagtggcca tcgagaggtc tggatggttt 2220tatagcaact ttgctgtgat tccgtttgta tctgtaaata tttgttctat agataagata 2280caaataaata ttatccacat aaaaaaaaaa a 23111532169DNAHomo sapiensmisc_featureIncyte ID No 2966260 153gctgcaggcg gcgacggcta caccatgggc cggctgctgc gggccgcccg gctgccgccg 60ctgctttcgc cgctgctgct tctgctggtt gggggagcgt tcctgggtgc ctgtgtggct 120gggtctgatg agcctggccc agagggcctc acctccacct ccctgctaga cctcctgctg 180cccactggct tggagccact ggactcagag gagcctagtg agaccatggg cctgggagct 240gggctgggag cccctggctc aggcttcccc agcgaagaga atgaagagtc tcggattctg 300cagccaccac agtacttctg ggaagaggag gaagagctga atgactcaag tctggacctg 360ggacccactg cagattatgt ttttcctgac ttaactgaga aggcaggttc cattgaagac 420accagccagg ctcaagagct gccaaacctc ccctctccct tgcccaagat gaatctggtt 480gagcctccct ggcatatgcc tcccagagag gaggaagaag aggaagagga agaggaggag 540atggagaagg aagaggtaga gaaacaagat gtggaggaag aggaggagct gctccctgtg 600aatggatccc aagaagaagc caagcctcag gtccgtgact tttctctcac cagcagcagc 660cagaccccag gggccaccaa aagcaggcat gaagactccg gggaccaggc ctcatcaggt 720gtggaggtgg agagcagcat ggggcccagc ttgctgctgc cttcagtcac cccaactata 780gtgactccgg gggaccagga ctccaccagc caagaggcag aggccacagt gctgccagct 840gcagggcttg gggtagagtt cgaggctcct caggaagcaa gcgaggaagc cactgcagga 900gcagctggtt tgtctggcca gcacgaggag gtgccggcct tgccttcatt ccctcaaacc 960acagctccca gtggggccga gcacccagat gaagatcccc ttggctctag aacctcagcc 1020tcttccccac tggcccctgg agacatggaa ctgacacctt cctctgctac cttgggacaa 1080gaagatctca accagcagct cctagaaggg caggcagctg aagctcaatc caggataccc 1140tgggattcta cgcaggtgat ctgcaaggac tggagcaatc tggctgggaa aaactacatc 1200attctgaaca tgacagagaa catagactgt gaggtgttcc ggcagcaccg ggggccacag 1260ctcctggccc tggtggaaga ggtgctgccc cgccatggca gtggccacca tggggcctgg 1320cacatctctc tgagcaagcc cagcgagaag gagcagcacc ttctcatgac actggtgggc 1380gagcaggggg tggtgcccac tcaagatgtc ctttccatgc tgggtgacat ccgcaggagc 1440ctggaggaga ttggcatcca gaactattcc acaaccagca gctgccaggc gcgggccagc 1500caggtgcgca gcgactacgg cacgctcttc gtggtgctgg tggtcattgg ggccatctgc 1560atcatcatca ttgcgcttgg cctgctctac aactgctggc agcgccggct gcccaagctc 1620aagcacgtgt cgcacggcga ggagctgcgc ttcgtggaga acggctgcca cgacaacccc 1680acgctggacg tggccagcga cagccagtcg gagatgcagg agaagcaccc cagcctgaac 1740ggcggcgggg ccctcaacgg cccggggagc tggggggcgc tcatgggggg caagcgggac 1800cccgaggact cggacgtgtt cgaggaggac acgcacctgt gagcgcagcc gaggcgcagg 1860ccgagtgggc cgccaggacc aagcgaggtg gaccccgaaa cggacggccc ggagccagca 1920caagccccga gcctacccgg gccgcccccg cggcctggcc ctcggcgcgg gctccttccc 1980gcttcccccg acttcacacg gcggacttcg gaccaactcc ctcactcccg cccgaggggc 2040aggcctcaaa gcccgccttg gccccgcttt cccgcccctg aaccccggcc ccgcgggcgg 2100cgggcggcgc ttcctgcgcc ccgggactca attaaacccg cccggagacc acgccgggcc 2160cagcgaaaa 21691541480DNAHomo sapiensmisc_featureIncyte ID No 2993326 154ggatggggat ctttgtctgg tccttaacca acaggtattt caccaactta ttagcccttt 60cttgtaaaat ggccacatct cgcggtggtg caggcctccg gccccatggg atccgcctgt 120aattactgcc acttctctca tccccattca gatgcttgga ctttcggttt cttttgcccc 180gggtcctggt tgtgggctcc aggctcaact gagccagata gtcatctgcc agggcctgga 240cagcagcagc aacctgagtc tcaagggcac ttacgttggt ctgagcagag gctatcttgg 300cctgggcccc ttggtcagca tttggagtct ggctttcagt tgcccgagcc ttagtggcag 360ccttccgagc cctagaccct ctcttgaccc gcagggtggc tgccagggct tggtttgtga 420ctatctgagt ggcaagtggg gcctcagaga tctcagagac agaatttggg cccctgctgg 480cagccttctt gcccttggat tttttgggcc tgatagccac tactgaggcc tcaatctgcc 540tggtagctgc gtcagtgaca tttagagcct ctatatgctc agtgtcagta tttatgacct 600tagcaattgt cttcctggct ttggaggctt tcttggttcg gatggaggct gctgtggtgt 660ggatactggc tgtctcattg gtaatttggc cttgggtggt agctgtatgg gtggcagttg 720cagccagcga gacctcggtg gcactagcta tggccttatt tgcagccttc ttagccttgg 780aagctttctt aggcttgata gaggttatca aggcttggga actggctgac tcattggcaa 840ttggagcgtg aatattctgt gagatgactg gtagctttag gacctgcaag ggtgacttca 900gctgtatagt gccaccctca tggccagttg gggattggga gccttgggct gccttggcag 960taactctctt catcttgttg gctttcttag gctgagcagt gactgaagaa gcctgagtat 1020tggttacctc agtggtaggt aaagcctggc tgatctgggt aatgactggc aggtttaaag 1080cctgccaagt tattttgggc ttgttggtgg caatctcatt ggcagctggg actggagggg 1140cagcaggtgc agccttagta atagtcttta taggggcctt cttggtcttg cttttcttag 1200gccggttgac aactggtggg tccatggcca gggagtcctt ggttgccgcc aacagggtat 1260gcatcagcag gacactgtcc tcttctgtgg tctcagtctg tatatctgga gggaagggaa 1320gccccaggct ccccggggga ggcagagggc cctgaaatag aggcacccta tatccgtagt 1380catttctcct atccatcttt ctgggaggcc gagtaacagg tgagcctcgt cttcttgaat 1440ccagaaggcg tctgctctct ccaagtctgc tctctccaag 14801551222DNAHomo sapiensmisc_featureIncyte ID No 3001124 155agaaatatca tatggttact ttggtatctg acacagccat gacaccaatt gctagtgtag 60acacaatagc tgtgtgtctt tttgcaggag cctggggagg ggccatggtg ccaatgcact 120tactggggag actggagaag ccgcttctcc tcctgtgctg cgcctccttc ctactggggc 180tggctttgct gggcataaag acggacatca cccccgttgc ttatttcttt ctcacattgg 240gtggcttctt cttgtttgcc tatctcctgg tccggtttct ggaatggggg cttcggtccc 300agctccaatc aatgcagact gagagcccag ggccctcagg caatgcacgg gacaatgaag 360cctttgaagt gccagtctat gaagaggccg tggtgggact agaatcccag tgccgccccc 420aagagttgga ccaaccaccc ccctacagca ctgttgtgat acccccagca cctgaggagg 480aacaacctag ccatccagag gggtccagga gagccaaact ggaacagagg cgaatggcct 540cagaggggtc catggcccag gaaggaagcc ctggaagagc tccaatcaac cttcggcttc 600ggggaccacg ggctgtgtcc actgctcctg atctgcagag cttggcggca gtccccacat 660tagagcctct gactccaccc cctgcctatg atgtctgctt tggtcaccct gatgatgata 720gtgtttttta tgaggacaac tgggcacccc cttaaatgac tctcccaaga tttctcttct 780ctccacacca gacctcgttc atttgactaa cattttccag cgcctactat gtgtcagaaa 840caagtgtttc tgcctggaca tcataaatgg ggacttggac cctgaggaga gtcaggccac 900ggtaagccct tcccagctga gatatgggtg gcataatttg agtcttctgg caacatttgg 960tgacctaccc catatccaat atttccagcg ttagattgag gatgaggtag ggaggtgatc 1020cagagaaggc ggagaaggaa gaagtaacct ctgagtggcg gctattgctt ctgttccagg 1080tgctgttcga gctgttagaa cccttaggct tgacagcttt gtgagttatt attgaaaaat 1140gaggattcca agagtcagag gagtttgata atgtgcacga gggcacactg ctagtaaata 1200acattaaaat aactcgaatg ac 12221561983DNAHomo sapiensmisc_featureIncyte ID No 3120070 156ggaaccgcct ccccgcggcc tcttcgcttt tgtggcggcg cccgcgctcg caggccactc 60tctgctgtcg cccgtcccgc gcgctcctcc gacccgctcc gctccgctcc gctcggcccc 120gcgccgcccg tcaacatgat ccgctgcggc ctggcctgcg agcgctgccg ctggatcctg 180cccctgctcc tactcagcgc catcgccttc gacatcatcg cgctggccgg ccgcggctgg 240ttgcagtcta gcgaccacgg ccagacgtcc tcgctgtggt ggaaatgctc ccaagagggc 300ggcggcagcg ggtcctacga ggagggctgt cagagcctca tggagtacgc gtggggtaga 360gcagcggctg ccatgctctt ctgtggcttc atcatcctgg tgatctgttt catcctctcc 420ttcttcgccc tctgtggacc ccagatgctt gtcttcctga gagtgattgg aggtctcctt 480gccttggctg ctgtgttcca gatcatctcc ctggtaattt accccgtgaa gtacacccag 540accttcaccc ttcatgccaa ccctgctgtc acttacatct ataactgggc ctacggcttt 600gggtgggcag ccacgattat cctgattggc tgtgccttct tcttctgctg cctccccaac 660tacgaagatg accttctggg caatgccaag cccaggtact tctacacatc tgcctaactt 720gggaatgaat gtgggagaaa atcgctgctg ctgagatgga ctccagaaga agaaactgtt 780tctccaggcg actttgaacc cattttttgg cagtgttcat attattaaac tagtcaaaaa 840tgctaaaata atttgggaga aaatattttt taagtagtgt tatagtttca tgtttatctt 900ttattatgtt ttgtgaagtt gtgtcttttc actaattacc tatactatgc caatatttcc 960ttatatctat ccataacatt tatactacat ttgtaagaga atatgcacgt gaaacttaac 1020actttataag gtaaaaatga ggtttccaag atttaataat ctgatcaagt tcttgttatt 1080tccaaataga atggactcgg tctgttaagg gctaaggaga agaggaagat aaggttaaaa 1140gttgttaatg accaaacatt ctaaaagaaa tgcaaaaaaa aagtttattt tcaagccttc 1200gaactattta aggaaagcaa aatcatttcc taaatgcata tcatttgtga gaatttctca 1260ttaatatcct gaatcattca tttcagctaa ggcttcatgt tgactcgata tgtcatctag 1320gaaagtacta tttcatggtc

caaacctgtt gccatagttg gtaaggcttt cctttaagtg 1380tgaaatattt agatgaaatt ttctctttta aagttcttta tagggttagg gtgtgggaaa 1440atgctatatt aataaatctg tagtgttttg tgtttatatg ttcagaacca gagtagactg 1500gattgaaaga tggactgggt ctaatttatc atgactgata gatctggtta agttgtgtag 1560taaagcatta gggtcattcc tgtcacaaaa gtgccactaa aacagcctca ggagaataaa 1620tgacttgctt ttctaaatct caggtttatc tgggctctat catatagaca ggcttctgat 1680agtttgcaac tgtaagcaga aacctacata tagttaaaat cctggtcttt cttggtaaac 1740agattttaaa tgtctgatat aaaacatgcc acaggagaat tcggggattt gagtttctct 1800gaatagcata tatatgatgc atcggatagg tcattatgat tttttaccat ttcgacttac 1860ataatgaaaa ccaattcatt ttaaatatca gattattatt ttgtaagttg tggaaaaagc 1920taattgtagt tttcattatg aagttttccc aataaaccag gtattctaaa cttgaaaaaa 1980aaa 19831571835DNAHomo sapiensmisc_featureIncyte ID No 3133035 157accaggctgt gtaagagctg ctggagtagg cacccattta aagaaaaaat gaagaagcag 60caataaagaa gttgtaatcg ttacctagac aaacagagaa ctggttttga cagtgtttct 120agagtgcttt ttattatttt cctgacagtt gtgttccacc atgattactt tctccttcag 180cgaataggct aaatgaatat gaaacagaaa agcgtgtatc agcaaaccaa agcacttctg 240tgcaagaatt ttcttaagaa atggaggatg aaaagagaga gcttattgga atggggcctc 300tcaatacttc taggactgtg tattgctctg ttttccagtt ccatgagaaa tgtccagttt 360cctggaatgg ctcctcagaa tctgggaagg gtagataaat ttaatagctc ttctttaatg 420gttgtgtata caccaatatc taatttaacc cagcagataa tgaataaaac agcacttgct 480cctcttttga aaggaacaag tgtcattggg gcacaaataa tacacacatg gacgaaatac 540ttctggaaaa tttacatatg ctatgggaat catctttaat gaaactttct cttataagtt 600aatatttttc cagggatata acagtccact ttggaaagaa gatttctcag gtgactttcc 660atatcaaata tcattatgga atttttcatg ttttcaacat aaagaacaga ggaggttggg 720caacagagat gctttcaatg acacatgaga aaacagggaa agcccatttc attgctgaac 780ttatttcaag gtcaatcgta tgttcctact acaggatgac tgcaaaaatt gtagagtcat 840ccaacatata tgtgttgagc atgcagatgc atgtgtcaaa ggacacatga gtaacccaag 900actgacaggc cccagcctca ggtgagattc caggttagca gcaaagacag acattgaaca 960attaatgaca agtacaagaa aaagtgtttc atgggcactt agaccagggg ttcctaatag 1020tgggacctag agaagtccta cctggggaaa tgatgtttaa agggagacca gaatgaatag 1080caggtgtgag gtgctagaag cattgtgttt cagatagaag aaaggtaatt gtgaagaccc 1140tgaggtgaga aaggacatct gttcctagat ctggaagaag agcagtatag ctgaacaagg 1200aacatgaaaa ggaatgtaat gggagagtga agctgaagtc actcaagtgc tacctcctgt 1260ggcatcttgt aaacctaggc aaggaatagc cactgagtca ctttaatcac ggcaaaagtg 1320taattcggtt tccaaaatta ggggaacact ccagatatag cccggggaat agattgccaa 1380gaggctatgg agaatgtcaa gaaacaagga gtccattatg gctggagcag agtgtttgct 1440ttcatctcct ttttattttc taagactttc taagcatgct gtggtctgca agaataaaat 1500tgctttatta aaaactttca tttatttgct tcctttttct atgtagttaa aagtctactg 1560gtgggccagc catggtggct cacacctgta atcccagcac tttgagaggc cgaggtgcac 1620ggatcacctg aggtcaggag ttcgagacca gcctggccaa catggtgaaa gcctgtctct 1680actaaaaata caaaaattag ctagacaacg tggcctgtgc ctataatccc agctttggga 1740ggctgaggta ggagaatcac ttgaacccag gaggtggagg ttgcagtgag ctgagatcgc 1800accactgcac tccagcatgg gcaacagagt gagat 1835158819DNAHomo sapiensmisc_featureIncyte ID No 3436879 158cacgactcac tatagggaat ttggccctcg aggcaagaat tcggcacgag gtcgacaccc 60tcatcctgaa aggtattgcg cacgatgcac ggccatcaag taccactttt ctcagcccat 120ccgcttgcga aacattcctt ttaatttaac caagaccata cagcaagatg agtggcacct 180gcttcattta agaagaatca ctgctggctt cctcggcatg gccgtagccg tccttctctg 240cggctgcatt gtggccacag tcagtttctt ctgggaggag agcttgaccc agcacgtggc 300tggactcctg ttcctcatga cagggatatt ttgcaccatt tccctctgta cttatgccgc 360cagtatctcg tatgatttga accggctccc aaagctaatt tatagcctgc ctgctgatgt 420ggaacatggt tacagctggt ccatcttttg cgcctggtgc agtttaggct ttattgtggc 480agctggaggt ctctgcatcg cttatccgtt tattagccgg accaagattg cacagctaaa 540gtctggcaga gactccacgg tatgactgtc ctcactgggc ctgtccacag tgcgagcgac 600tcctgagggg aacagcgcgg agttcaggag tccaagcaca aagcggtctt ttacattcca 660acctgttgcc tgccagccct ttctggatta ctgatagaaa atcatgcaaa acctcccaac 720ctttctaagg acaagactac tgtggattca agtgctttaa tgactattta tgcgttgact 780gtgagaatag ggagccatgc catgggacat ttctaggtg 819

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed