Gh61 Glycoside Hydrolase Protein Variants And Cofactors That Enhance Gh61 Activity

Yang; Jie ;   et al.

Patent Application Summary

U.S. patent application number 14/496979 was filed with the patent office on 2015-01-08 for gh61 glycoside hydrolase protein variants and cofactors that enhance gh61 activity. The applicant listed for this patent is Codexis, Inc.. Invention is credited to Dipnath Baidyaroy, David M. Elgart, John H. Grate, Kripa K. Rao, Jie Yang, Jungjoo Yoon, Xiyun Zhang.

Application Number20150010981 14/496979
Document ID /
Family ID47746817
Filed Date2015-01-08

United States Patent Application 20150010981
Kind Code A1
Yang; Jie ;   et al. January 8, 2015

GH61 GLYCOSIDE HYDROLASE PROTEIN VARIANTS AND COFACTORS THAT ENHANCE GH61 ACTIVITY

Abstract

The present invention provides various GH61 protein variants comprising various amino acid substitutions. The GH61 protein variants have an improved ability to synergize with cellulase enzymes, thereby increasing the yield of fermentable sugars obtained by saccharification of biomass. In some embodiments, sugars obtained from saccharification are fermented to produce numerous end-products, including but not limited to alcohol.


Inventors: Yang; Jie; (Foster City, CA) ; Zhang; Xiyun; (Fremont, CA) ; Yoon; Jungjoo; (Foster City, CA) ; Rao; Kripa K.; (Union City, CA) ; Grate; John H.; (Los Altos, CA) ; Elgart; David M.; (San Mateo, CA) ; Baidyaroy; Dipnath; (Fremont, CA)
Applicant:
Name City State Country Type

Codexis, Inc.

Redwood City

CA

US
Family ID: 47746817
Appl. No.: 14/496979
Filed: September 25, 2014

Related U.S. Patent Documents

Application Number Filing Date Patent Number
13592024 Aug 22, 2012 8877474
14496979
13215193 Aug 22, 2011 8298795
13592024
61526224 Aug 22, 2011
61601997 Feb 22, 2012

Current U.S. Class: 435/198 ; 435/203; 435/205; 435/209; 435/254.11; 435/320.1; 536/23.2
Current CPC Class: C12N 9/2434 20130101; C12N 9/2445 20130101; Y02E 50/10 20130101; C12P 19/14 20130101; C12P 7/10 20130101; Y02E 50/16 20130101; C12N 9/242 20130101; C12N 9/2437 20130101; C12Y 302/01004 20130101; C12Y 302/01091 20130101; C12Y 302/01021 20130101
Class at Publication: 435/198 ; 536/23.2; 435/320.1; 435/254.11; 435/209; 435/203; 435/205
International Class: C12N 9/42 20060101 C12N009/42; C12N 9/30 20060101 C12N009/30

Claims



1. A polynucleotide comprising a nucleic acid sequence encoding a GH61 variant protein that is at least about 90% identical to SEQ ID NO:2 or a polynucleotide that hybridizes under stringent hybridization conditions to the polynucleotide and/or a complement of a polynucleotide encoding said GH61 variant protein.

2. A polynucleotide sequence encoding a GH61 variant protein, wherein said polynucleotide sequence is at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to any of SEQ ID NOS:1, 4, 7, and/or 10, or a polynucleotide that hybridizes under stringent hybridization conditions to the polynucleotide and/or a complement of any of SEQ ID NOS:1, 4, 7, and/or 10.

3. A recombinant nucleic acid construct comprising at least one polynucleotide sequence encoding at least one GH61 protein, wherein the polynucleotide is selected from: (a) a polynucleotide that encodes a polypeptide comprising an amino acid sequence having at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity to SEQ ID NO:2, 3, 5, 6, 8, and/or 9, wherein the amino acid sequence comprises at least one substitution and/or substitution set provided herein; (b) a polynucleotide that hybridizes under stringent hybridization conditions to at least a fragment of a polynucleotide that encodes a polypeptide having the amino acid sequence of SEQ ID NO:2, 3, 5, 6, 8, and/or 9, and wherein said amino acid sequence comprises at least one substitution and/or at least one substitution set provided herein; and/or (c) a polynucleotide that hybridizes under stringent hybridization conditions to the complement of at least a fragment of a polynucleotide that encodes a polypeptide having the amino acid sequence of SEQ ID NO:2, 3, 5, 6, 8, and/or 9, and wherein said amino acid sequence comprises at least one substitution and/or at least one substitution set provided herein.

4. A recombinant nucleic acid construct comprising at least one polynucleotide sequence encoding at least one GH61 protein, wherein the polynucleotide is selected from: (a) a polynucleotide that encodes a polypeptide comprising an amino acid sequence having at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identity to SEQ ID NO:2, wherein the amino acid sequence comprises at least one substitution and/or substitution set provided herein; (b) a polynucleotide that hybridizes under stringent hybridization conditions to a polynucleotide that encodes a polypeptide having the amino acid sequence of SEQ ID NO:2, and wherein said amino acid sequence comprises at least one substitution and/or at least one substitution set provided herein; and/or (c) a polynucleotide that hybridizes under stringent hybridization conditions to the complement of a polynucleotide that encodes a polypeptide having the amino acid sequence of SEQ ID NO:2, and wherein said amino acid sequence comprises at least one substitution and/or at least one substitution set provided herein.

5. The recombinant nucleic acid construct of claim 3, wherein the polynucleotide sequence is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to any of SEQ ID NOS:1, 4, 7, and/or 10, and wherein said polynucleotide sequence comprises at least one mutation and/or at least one mutation set provided herein.

6. The recombinant nucleic acid construct of claim 3, wherein the polynucleotide sequence comprises at least one mutation or mutation set selected from t60c/c573g, t60c/c573g/g1026a, c573g, t60c/c291a/c573g, t60c/c291a, t60c/c876t, a312g, t60c, t379a/c380g/g381c, c300t, t204c/t379a/c380g/g381c/c385t, g1026a, c246t, c597g, c72t, c732g/c843t/c882t, c909t, c912g, g921a, c792t, g972t, g921a, t379a/c380g/g381c/c454a/c456a/c732t/c843t/c849t, c520a/c522g; t60c/c573g; t60c/c288t/c573g; t60c/c198t/c573g; and/or t60c/g399a/c573g.

7. The recombinant nucleic acid construct of claim 3, wherein said nucleic acid sequence is operably linked to a promoter.

8. The nucleic acid construct of claim 3, wherein said construct further encodes at least one enzyme in addition to said GH61 variant protein.

9. The nucleic acid construct of claim 8, wherein said at least one additional enzyme is selected from wild-type GH61 enzymes, endoglucanases (EG), beta-glucosidases (BGL), Type 1 cellobiohydrolases (CBH1), Type 2 cellobiohydrolases (CBH2), cellulases, hemicellulases, xylanases, xylosidases, amylases, glucoamylases, proteases, esterases, and lipases.

10. An expression construct comprising at least one nucleic acid construct of claim 3.

11. A host cell comprising the nucleic acid construct of claim 3.

12. The host cell of claim 11, wherein said host cell further produces at least one enzyme selected from wild-type GH61 enzymes, endoglucanases (EG), beta-glucosidases (BGL), Type 1 cellobiohydrolases (CBH1), Type 2 cellobiohydrolases (CBH2), cellulases, hemicellulases, xylanases, xylosidases, amylases, glucoamylases, proteases, esterases, and lipases.

13. The host cell of claim 11, wherein said host cell is a yeast or filamentous fungal cell.

14. A method of producing at least one GH61 variant protein comprising culturing the host cell set forth in claim 3, under conditions such that said host cell produces at least one of GH61 variant proteins.

15. The method of claim 14, wherein said host cell further produces at least one additional enzyme selected from wild-type GH61 enzymes, endoglucanases (EG), beta-glucosidases (BGL), Type 1 cellobiohydrolases (CBH1), Type 2 cellobiohydrolases (CBH2), cellulases, hemicellulases, xylanases, xylosidases, amylases, glucoamylases, proteases, esterases, and lipases.
Description



[0001] The present application is a Divisional of U.S. patent application Ser. No. 13/592,024, filed Aug. 22, 2013, which claims priority to previously filed U.S. patent application Ser. No. 13/215,193, filed Aug. 22, 2011, U.S. Prov. Appln. Ser. No. 61/526,224, filed Aug. 22, 2011, and U.S. Prov. Appln. Ser. No. 61/601,997, filed Feb. 22, 2012, all of which are hereby incorporated in their entireties for all purposes.

REFERENCE TO A "SEQUENCE LISTING," A TABLE, OR A COMPUTER PROGRAM LISTING APPENDIX SUBMITTED AS AN ASCII TEXT FILE

[0002] The Sequence Listing written in file CX35-101US2A_ST25.TXT, created on Aug. 20, 2012, 416,766 bytes, machine format IBM-PC, MS-Windows operating system, is hereby incorporated by reference.

FIELD OF THE INVENTION

[0003] The invention relates generally to the field of glycolytic enzymes and their use, and to the field of directed enzyme evolution or modification. More specifically, the present invention provides GH61 protein variants, and methods for the use of such protein variants in production of fermentable sugars and ethanol from cellulosic biomass.

BACKGROUND

[0004] Cellulosic biomass is a significant renewable resource for the generation of fermentable sugars. These sugars can be used as substrates for fermentation and other metabolic processes to produce biofuels, chemical compounds and other commercially valuable end-products.

[0005] The conversion of cellulosic biomass to fermentable sugars may begin with chemical, mechanical, enzymatic or other pretreatments to increase the susceptibility of cellulose to hydrolysis. Such pretreatment may be followed by the enzymatic conversion of cellulose to cellobiose, cello-oligosaccharides, glucose, and other sugars and sugar polymers, using enzymes that break down cellulose. These enzymes are collectively referred to as "cellulases" and include endoglucanases, beta-glucosidases and cellobiohydrolases.

SUMMARY OF THE INVENTION

[0006] The invention provides numerous variants of GH61 proteins. In some embodiments, these variants comprise amino acid substitutions as set forth herein. In some embodiments, these variants exhibit an improved ability to synergize with cellulase enzymes, thereby increasing the yield of fermentable sugars obtained by saccharification of cellulose-containing biomass. Sugars obtained from saccharification can be fermented to produce alcohol and other end-products. Thus, the GH61 variant proteins of this invention have important commercial applicability in the production of biofuels and other end-products. In some embodiments, the present invention provides GH61 variant proteins comprising an amino acid sequence that is substantially identical (for example, at least about 70%, about 75%, about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or about 100% identical) to SEQ ID NO:2 or a fragment of SEQ ID NO:2 having GH61 activity as defined below. In some embodiments, the variant protein has one or more amino acid substitutions with respect to SEQ ID NO:2 or a fragment of SEQ ID NO:2. In some embodiments, the GH61 is at least 95% identical to SEQ ID NO:2 or a fragment of SEQ ID NO:2 having GH61 activity. In some embodiments, the GH61 variant proteins have increased thermoactivity compared with the GH61 wild-type protein of SEQ ID NO:2. In some further embodiments, the GH61 variant proteins have increased thermostability compared with the GH61 wild-type protein of SEQ ID NO:2.

[0007] In some embodiments, the present invention provides GH61 variants comprising substitution(s) in at least one of the positions as indicated herein. In some embodiments, the substitution(s) provide GH61 variants that have increased activity as compared to wild-type GH61. In some embodiments, the GH61 variants comprise at least one substitution selected from those listed in Table 1 and/or Table 2 in any combination, wherein the positions are numbered with reference to SEQ ID NO:2.

[0008] In some further embodiments, the GH61 variants provided herein comprise the any one or more of the mutations listed in Table 1 and/or Table 2 in any combination. It is not intended that the present invention be limited to the specific substitutions. Any two, three, four, or more than four substitutions find use in any combination that improves GH61 activity. Non-limiting illustrations of effective combinations are provided herein.

[0009] In some embodiments, a substitution or combination of substitutions in the amino acid sequence as provided herein results in the variant protein having increased GH61 activity in a saccharification reaction. In some embodiments, crystalline cellulose undergoes saccharification by cellulase enzymes that are contained in culture broth from M. thermophila cells. When measured in this manner, a GH61 variant protein of this invention causes increase in yield of fermentable sugars (e.g., glucose) to a degree that is about 1.5-fold, about 2-fold, about 3-fold, about 5-fold, about 8-fold, about 10-fold or more compared with the parental GH61 sequence (SEQ ID NO:2) or biologically active fragment, compared with a reference protein comprising SEQ ID NO:2 or the fragment, without any substitutions. It is not intended that the present invention be limited to the production of any particular fermentable sugar(s). It is also not intended that the present invention be limited to any specific level of improvement in the yield of fermentable sugar using at least one of the variants provided herein.

[0010] This invention also provides GH61 protein variants that are more resistant to the presence of enzyme inhibitors that may be present in commercial sources of biomass, or be generated as a result of pretreatment of the biomass substrate.

[0011] In some embodiments, the present invention provides GH61 variant proteins comprising amino acid sequences that are at least about at least about 60%, at least about 65%, at least about 70%, 75%, at least 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or at least about 100% identical to SEQ ID NO:2 or a fragment of SEQ ID NO:2 having GH61 activity, wherein the amino acid sequence of the variant protein has one or more amino acid substitutions with respect to SEQ ID NO:2 or the fragment.

[0012] In some embodiments, the present invention provides GH61 variant proteins comprising amino acid sequences that are at least about at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:2 or a fragment of SEQ ID NO:2 having GH61 activity, wherein the amino acid sequence of the variant protein has one or more amino acid substitutions with respect to SEQ ID NO:2 or the fragment, and wherein the substitution(s) in the amino acid sequence result in the variant protein having increased GH61 activity in a reaction where crystalline cellulose undergoes saccharification by cellulase enzymes that are contained in culture broth from M. thermophila cells, compared with a reference protein comprising SEQ ID NO:2 or the fragment, without any substitutions.

[0013] In some embodiments, the present invention provides GH61 variant proteins comprising amino acid sequences that are at least about 60%, at least about 65%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or at least about 100% identical to SEQ ID NO:2 or a fragment of SEQ ID NO:2 having GH61 activity, wherein the amino acid sequence of the variant protein has one or more amino acid substitutions with respect to SEQ ID NO:2 or the fragment, and wherein the polynucleotide encoding the GH61 variant protein comprises at least one mutation and/or mutation set selected from those listed in Table 1 and/or Table 2 in any combination, wherein the nucleotide positions of the substitutions are determined by alignment with SEQ ID NO:1.

[0014] In some embodiments, the present invention provides enzyme compositions comprising at least one GH61 variant of the present invention and/or at least one wild-type GH61 protein. In some embodiments, the present invention provides enzyme compositions comprising at least one GH61 variant protein of this invention is combined with one or more cellulase enzyme(s), including but not limited to endoglucanases (EG), beta-glucosidases (BGL), cellobiohydrolases (e.g., CBH1 and/or CBH2), and/or at least one wild-type GH61 protein. In some embodiments, the enzyme compositions further comprise one or more enzymes selected from cellulases, hemicellulases, xylanases, amylases, glucoamylases, proteases, esterases xylosidases, and lipases.

[0015] The invention also includes polynucleotides encoding GH61 variant proteins, recombinant cells expressing such polynucleotides and optionally one or more cellulase enzymes, and methods for increasing yield of fermentable sugars in a saccharification reaction by conducting the reaction in the presence of at least one GH61 protein of this invention.

[0016] In some embodiments, the present invention provides at least one polynucleotide comprising at least one nucleic acid sequence encoding at least one GH61 variant protein; at least one polynucleotide that hybridizes under stringent hybridization conditions to at least one polynucleotide encoding at least one GH61 variant protein; and/or at least one polynucleotide that hybridizes under stringent hybridization conditions to the complement of at least one polynucleotide encoding at least one polypeptide comprising at least one GH61 variant protein.

[0017] The present invention also provides recombinant nucleic acid constructs comprising at least one polynucleotide sequence encoding at least one GH61 protein, wherein the polynucleotide is selected from: (a) a polynucleotide that encodes a polypeptide comprising an amino acid sequence having at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 100% identity to SEQ ID NO:2, wherein the amino acid sequence comprises at least one substitution and/or substitution set provided herein; (b) a polynucleotide that hybridizes under stringent hybridization conditions to at least a fragment of a polynucleotide that encodes a polypeptide having the amino acid sequence of SEQ ID NO:2, and wherein the amino acid sequence comprises at least one substitution and/or at least one substitution set provided herein; and/or (c) a polynucleotide that hybridizes under stringent hybridization conditions to the complement of at least a fragment of a polynucleotide that encodes a polypeptide having the amino acid sequence of SEQ ID NO:2, and wherein the amino acid sequence comprises at least one substitution and/or at least one substitution set provided herein.

[0018] The present invention further provides recombinant nucleic acid constructs comprising at least one polynucleotide sequence encoding at least one GH61 protein, wherein the polynucleotide is selected from: (a) a polynucleotide that encodes a polypeptide comprising an amino acid sequence having at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or at least about 100% identity to SEQ ID NO:2, wherein the amino acid sequence comprises at least one substitution and/or substitution set provided herein; (b) a polynucleotide that hybridizes under stringent hybridization conditions to a polynucleotide that encodes a polypeptide having the amino acid sequence of SEQ ID NO:2, and wherein the amino acid sequence comprises at least one substitution and/or at least one substitution set provided herein; and/or (c) a polynucleotide that hybridizes under stringent hybridization conditions to the complement of a polynucleotide that encodes a polypeptide having the amino acid sequence of SEQ ID NO:2, and wherein the amino acid sequence comprises at least one substitution and/or at least one substitution set provided herein. In some embodiments of the nucleic acid constructs, the polynucleotide sequence is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:1, and wherein the polynucleotide sequence comprises at least one mutation and/or at least one mutation set provided herein. Exemplary are those shown in Table 1 and Table 2, which may be incorporated into the polynucleotide in any combination.

[0019] In some embodiments, the present invention provides polynucleotides and nucleic acid constructs comprising polynucleotides encoding at least one GH61 variant and/or wild-type protein (e.g., any of SEQ ID NOS:2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, 53, 54, 56, 57, 59, 60, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 82, 83, 85, 86, 88, 89, 91, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108), operably linked to promoters. In some embodiments, the promoters are heterologous promoters. In some embodiments, the present invention provides expression constructs comprising polynucleotides and/or nucleic acid constructs that comprise polynucleotides encoding at least one GH61 variant and/or wild-type protein. In some embodiments, the expression constructs comprise at least one nucleic acid sequence operably linked to at least one additional regulatory sequence.

[0020] The present invention also provides recombinant host cells that express at least one polynucleotide sequence encoding at least one GH61 variant protein. In some embodiments, the host cell also expresses at least one polynucleotide sequence encoding at least one GH61 wild-type protein. In some embodiments, the expressed GH61 variant and/or wild-type protein is secreted from the host cell. In some embodiments, the host cell also produces at least one cellulase enzyme selected from endoglucanases (EG), beta-glucosidases (BGL), cellobiohydrolases (e.g., CBH1 and/or CBH2), xylanases, xylosidases, etc. In some embodiments, the host cell is a yeast, while in some other embodiments, the host cell is a filamentous fungal cell. In some further embodiments, the filamentous fungal cell is a Myceliophthora, a Thielavia, a Trichoderma, or an Aspergillus cell. In some embodiments, the filamentous fungal cell is Myceliophthora thermophila. In some additional embodiments, the host cell also produces at least one additional enzyme (e.g., esterase, protease, amylase, laccase, etc.).

[0021] In some additional embodiments, the present invention provides methods for producing at least one end-product from at least one cellulosic substrate. The substrate is contacted with at least one GH61 variant protein of the invention, and one or more cellulase enzymes. The fermentable sugars that are produced as a result are contacted with a microorganism in a fermentation to produce an end-product (e.g., an alcohol such as ethanol). The fermentation may be simultaneous with the saccharification, or may occur subsequently. It is not intended that the fermentation end-product be limited to any specific composition, as various end-products may be obtained from the fermentation reaction, including but not limited to alcohols.

[0022] The present invention also provides methods for producing fermentable sugars from cellulosic substrates, comprising contacting at the cellulosic substrate with at least one enzyme composition provided herein, under culture conditions whereby fermentable sugars are produced. In some embodiments the enzyme composition comprises a plurality of enzymes selected from at least one GH61 variant, at least one wild-type GH61, at least one endoglucanase (EG), at least one beta-glucosidase (BGL), at least one cellobiohydrolase (e.g., CBH1 and/or CBH2), at least one xylanase, at least one xylosidase, and/or at least one esterase. In some embodiments, the CBH1 is CBH1a. In further embodiments, the CBH2 is CHB2b. In some embodiments, the methods further comprise the step of pretreating the cellulosic substrate prior to the contacting step. In some embodiments, the enzyme composition is added concurrently with the pretreating step.

[0023] In some embodiments, the cellulosic substrate comprises wheat grass, wheat straw, barley straw, sorghum, rice grass, sugarcane, sugarcane straw, bagasse, switchgrass, corn stover, corn fiber, grains, or a combination thereof. In further embodiments, the fermentable sugars comprise glucose and/or xylose. In some embodiments, the methods further comprise the step of recovering the fermentable sugars. In some embodiments, the methods further comprise the step of contacting the fermentable sugars with a microorganism under conditions such that the microorganism produces at least one fermentation end product. In further embodiments, the fermentation end product is selected from alcohols, fatty alcohols, fatty acids, lactic acid, acetic acid, 3-hydroxypropionic acid, acrylic acid, succinic acid, citric acid, malic acid, fumaric acid, amino acids, 1,3-propanediol, ethylene, glycerol, butadiene, and/or beta-lactams. In some still further embodiments, the fermentation end product is an alcohol selected from ethanol and butanol. In some embodiments, the alcohol is ethanol. It is not intended that the fermentation end-product be limited to any specific composition(s), as various end-products can be produced using the present invention.

[0024] The present invention also provides methods for producing an end product from a cellulosic substrate, comprising: contacting the cellulosic substrate with at any enzyme composition provided herein, under conditions whereby fermentable sugars are produced from the substrate; and contacting the fermentable sugars with a microorganism in a fermentation to produce an end-product. In some embodiments, the methods comprise simultaneous saccharification and fermentation reactions (SSF). In some alternative embodiments, the methods comprise saccharification of the cellulosic substrate and fermentation in separate reactions (SHF). In some additional embodiments, the methods comprise production of at least one enzyme simultaneously with hydrolysis and/or fermentation (e.g., "consolidated bioprocessing").

[0025] The present invention also provides methods for producing a fermentation end product from a cellulosic substrate, comprising obtaining fermentable sugars produced according to any method provided herein, and contacting the fermentable sugars with a microorganism in a fermentation to produce a fermentation end product. In some embodiments, the fermentation end product is selected from alcohols, fatty alcohols, fatty acids, lactic acid, acetic acid, 3-hydroxypropionic acid, acrylic acid, citric acid, malic acid, fumaric acid, succinic acid, amino acids, 1,3-propanediol, ethylene, glycerol, butadiene, and/or beta-lactams. In some embodiments, the fermentation end product is at least one alcohol selected from ethanol and butanol. In further embodiments, the alcohol is ethanol. In some still further embodiments, the microorganism is a yeast. In some embodiments, the methods further comprise the step of recovering the fermentation end product. It is not intended that the fermentation end-product be limited to any specific composition(s), as various end-products can be produced using the present invention. It is also not intended that the present invention be limited to any particular microorganism. It is further not intended that the present invention be limited to any particular yeast, as any suitable yeast finds use in the present invention.

[0026] The present invention also provides for use of at least one GH61 variant protein as provided herein to produce at least one fermentation end product. The present invention also provides for use of at least one GH61 variant protein provided herein to produce at least one fermentation end product selected from alcohols, fatty alcohols, fatty acids, lactic acid, acetic acid, 3-hydroxypropionic acid, acrylic acid, citric acid, malic acid, fumaric acid, succinic acid, amino acids, 1,3-propanediol, ethylene, glycerol, butadiene, and/or beta-lactams. In some embodiments, the fermentation end product is an alcohol selected from ethanol and butanol. In some embodiments, the alcohol is ethanol. It is not intended that the fermentation end-product be limited to any specific composition(s), as various end-products can be produced using the present invention.

[0027] A further embodiment of the invention is a composition comprising a GH61 protein, one or more cellulase enzymes, a cellulosic substrate, and an effective concentration of Cu.sup.++ and/or gallic acid, as further described and illustrated below. The GH61 protein may be any GH61 protein disclosed herein, such as a protein comprising an amino acid sequence at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or about 100% identical to SEQ ID NO:2, or a fragment thereof with GH61 activity. In some embodiments, the GH61 protein is a variant protein comprising all or part of SEQ ID NO:2 having GH61 activity, wherein the variant comprises one or more of the amino acid substitutions provided herein. In some embodiments, the cellulase enzyme(s) are selected from endoglucanases (EG), beta-glucosidases (BGL), cellobiohydrolases (e.g., CBH1 and/or CBH2), xylanases, xylosidases, etc. In some embodiments, the presence of Cu.sup.++, gallic acid, or both enhances activity of the GH61 protein, thereby increasing the rate of glucose production or reducing the amount of GH61 protein needed to supply GH61 activity in a saccharification reaction.

[0028] In another embodiment, the present invention provides methods for producing fermentable sugars from cellulosic substrate(s), in which a composition comprising at least one GH61, at least one cofactor, at least one additional cellulase enzyme, and at least one cellulosic substrate is cultured or maintained under conditions whereby fermentable sugars are produced from the substrate(s). The fermentable sugars can then be contacted with a microorganism under conditions such that the microorganism produces at least one fermentation end product, such as ethanol. A further embodiment of the invention is use of Cu.sup.++ to increase production of fermentable sugars from a saccharification reaction where cellulase activity is enhanced in the presence of a protein or protein variant with GH61 activity.

The present invention provides GH61 variant proteins comprising amino acid sequences that are at least about 75%, at least about 80%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to SEQ ID NO:2 or a fragment of SEQ ID NO:2 having GH61 activity, wherein the amino acid sequence of the variant protein has one or more amino acid substitutions with respect to SEQ ID NO:2 or the fragment. In some embodiments, the GH61 variant proteins comprise an amino acid sequence that is at least 75%, at least 80%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO:2 or a fragment of SEQ ID NO:2 having GH61 activity, wherein the amino acid sequence of the variant protein has one or more amino acid substitutions with respect to SEQ ID NO:2 or the fragment. In some embodiments, the GH61 variant proteins are at least 95% identical to SEQ ID NO:2 or a fragment of SEQ ID NO:2 having GH61 activity. In some embodiments, the GH61 variant proteins have increased thermoactivity, thermostability, and/or activity, as compared to the GH61 wild-type protein of SEQ ID NO:2. In some further embodiments, the GH61 variant proteins comprise at least one substitution(s) at one or more of the following amino acid positions: 20, 35, 42, 44, 45, 68, 87, 97, 103, 104, 127, 131, 132, 133, 134, 137, 139, 142, 143, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 190, 191, 192, 192, 205, 212, 215, 218, 232, 236, 239, 244, 246, 258, 270, 273, 317, 322, 323, 328, 330, and/or 341, wherein the amino acid positions are numbered with reference to SEQ ID NO:2. In some embodiments, the GH61 variant proteins comprise at least one substitution(s) at one or more of the following amino acid positions: H20, N35, W42, Q44, P45, F68, T87, V97, P103, E104, S127, W131, F132, K133, I134. A137, Y139, A142, A143, I162, P163, S164, D165, L166, K167, A168, G169, N170, Y171, V172, L173, R174, H175, E176, I177, I178, A179, L180, H181, Q190, A191, Y192, Y192, S205, A212, S215, K218, S232, T236, G239, A244, A246, T258, G270, P273, N317, P322, T323, G328, S330, and/or C341, wherein the amino acid positions are numbered with reference to SEQ ID NO:2. In some further embodiments, the GH61 variant proteins comprise at least one substitution(s) at one or more of the following amino acid positions: H20, N35, W42, E104, I134, S164, K167, A168, V172, I177, A179, and/or A191, wherein the amino acid positions are numbered with reference to SEQ ID NO:2. In some additional embodiments, the GH61 variant proteins comprise at least two amino acid substitutions. In still some further embodiments, the GH61 variant proteins comprise at least one substitution set selected from: N35/E104/A168; W42/E104/K167; N35/W42/V97/A191; W42/E104; E104/K167; W42/A191; N35/W42/A191; V97/A191; and N35/E104/A191, wherein the amino acid positions are numbered with reference to SEQ ID NO:2. In some embodiments, the GH61 variant proteins comprise at least one amino acid substitution comprising one or more of the following substitutions numbered with reference to SEQ ID NO:2: H20C/D, N35G, W42P, Q44V, P45T, F68Y, T87P, V97Q, P103E/H, E104C/D/H/Q, S127T, W131X, F132X, K133X, 134X, A137P, Y139L, A142W, A143P, I162X, P163X, S164X, D165X, L166X, K167A/X, A168P/X, G169X, N170X, Y171A/R, V172X, L173X, R174X, H175X, E176X, I177X, I178X, A179X, L180M/W, H181X, Q190E/H, A191N/T, Y192H, Y192Q, S205N, A212P, S215W, K218T, S232A, T236P, G239D, A244D, A246T, T258I, G270S, P273S, N317K, P322L, T323P, G328A, S330R, and/or C341R, wherein the amino acid positions are numbered with reference to SEQ ID NO:2. In some additional embodiments, the GH61 variant proteins comprise one or more of the following substitutions: N35G, W42P, V97Q, E104H, K167A, A168P, and/or A191N, wherein the amino acid positions are numbered with reference to SEQ ID NO:2. In some embodiments, the GH61 variant proteins comprise one or more of the following substitution sets: N35G/E104H/A168P; W42P/E104H/K167A; N35G/W42P/V97Q/A191N; W42P/E104H; E104H/K167A; W42P/A191N; N35G/W42P/A191N; V97Q/A191N; and/or N35G/E104H/A191N, wherein the amino acid positions are numbered with reference to SEQ ID NO:2. In some additional embodiments, the GH61 variant proteins comprise the substitutions N35G/E104H/A168P, wherein the amino acid positions are numbered with reference to SEQ ID NO:2. In some further embodiments, the GH61 variant proteins comprise the sequence set forth in any of SEQ ID NOS:4, 6, and/or 8. In some additional further embodiments, the GH61 variant proteins are encoded by at least one polynucleotide sequence set forth in SEQ ID NOS:3, 5, and/or 7. In some embodiments, the GH61 variant proteins comprise at least one substitution(s) at one or more of the following amino acid positions: 24, 28, 32, 34, 35, 40, 44, 45, 46, 49, 51, 54, 55, 56, 58, 64, 66, 67, 69, 70, 71, 78, 80, 82, 83, 88, 93, 95, 101, 104, 116, 118, 128, 130, 136, 137, 141, 142, 144, 145, 150, 155, 161, 164, 168, 184, 187, 199, 203, 205, 212, 218, 219, 230, 231, 232, 233, 234, 236, 237, 245, 253, 263, 266, 267, 268, 269, 270, 271, 280, 281, 282, 290, 295, 297, 303, 305, 310, 317, 320, 324, 326, 327, 329, 330, 332, 333, 336, 337, and/or 339, wherein the amino acid positions are numbered with reference to SEQ ID NO:2. In some further embodiments, the GH61 variant proteins, comprise at least one substitution(s) at one or more of the following amino acid positions: S24, V28, Y32, R34, N35, T40, Q44, P45, N46, T49, I51, T54, A55, A56, Q58, E64, N66, S67, G69, T70, P71, S78, T80, G82, G83, V88, K93, N95, E101, E104, A116, N118, S128, R130, G136, A137, K141, A142, G144, R145, A150, G155, Q161, S164, A168, Q184, N187, R199, G203, S205, A212, K218, A219, V230, S231, S232, P233, D234, T236, V237, G245, S253, A263, P266, G267, G268, G269, G270, A271, A280, T281, S282, R290, S295, A297, P303, G305, K310, N317, T320, V324, A326, P327, S329, S330, S332, V333, E336, W337, and/or S339, wherein the amino acid positions are numbered with reference to SEQ ID NO:2. In some further embodiments, the GH61 variant proteins comprise a plurality of amino acid substitutions as set forth herein. In some embodiments, the GH61 variant proteins comprise at least one substitution set selected from: N35/T40/E104/A168/P327; N35/P45/E104/A168/N317; N35/E104/A168/N317; N35/E104/A168/N317/S329; N35/E104/A137/A168/S232; N35/E104/A168/N317/T320; N35/E104/A168/D234; N35/T40/E104/A142/A168; N35/E104/R145/A168; N35/T40/S78/V88/E104/S128K/A168/D234; N35/E104/A168/S330; N35/E104/A168/G203/P266; N35/E104/A168/D234; N35/E104/A168/S330; N35/E104/A168/W337; R34/N35/E104/R145/A168; Y32/N35/E64/E104/A168; V28/N35/P45/E104/A168; N35/E104/G144/A168/V333; N35/N66/E104/A168; N35/E104/A168/P327; N35/E104/A168/G203; N35/E104/A168/S339; N35/P45/N46/E104/A150/A168; N35/E104/A168/S231; N35/T40/E104/A168/D234/P327; N35/E104/A168/S231; N35/E104/A168/N317; N35/E104/A168/S330; N35/E104/A168/S329; N35/E104/A168/P327; N35/P45/E104/A168; N35/E104/A116/A168; N35/T40/E104/A168N230/P327; N35/E104/A168/S332; N35/E104/A168/G203; N35/E104/R145/A168/S329; N35/T40/T49/E104/A168/D234; /P327; N35/A56/E104/A168; N35/E104/Q161/A168; N35/E104/A168/S332; N35/P45/T49/E104/A168/N317/T320; N35/E104/A168/V237; N35/E104/A168/E336; N35/E104/A168/P233; N35/E104/R130/A168; N35/E104/A168/P327; N35/E104/A168/N317; N35/Q44/E104/A168; N35/E104/A168/A326; N35/E104/A168/N317; N35/T40/E104/S128/A168; N35/T80/E104/A168/P303; N35/E104/A116/A168; N35/E104/A168/S231/S295; N35/T40/E101/E104/A168/P327; N35/P45/E104/A168/A219/S232; N35/N46/E104/A168; N35/E104/A168/A326; N35/E104/A168/G203/T281; N35/E104/A168/E336; N35/T40/E104/S128/A142/A168; N35/E104/N118/A168; N35/E104/G155/A168; S24/N35/E104/A168/V237/P303; N35/E104/Q161/A168; N35/Q44/S67/E104/A168; V28/N35/E104/A168; N35/E104/A168/Q184; N35/T54/E104/A168; N35/N66/E104/A168; N35/E64/E104/A168; N35/E104/S164/A168/A271; N35/N66/E104/A168; N35/G83/E104/A168; N35/E104/K141/A168; N35/E104/A168/N317/T320; N35/E104/R130/A168; N35/E104/R145/A168; N35/T70/E104/A168; N35/E104/R130/A168; N35/E104/A168/Q184; N35/E104/A168/S329; N35/T49/E104/A168; Y32/N35/E104/A168; N35/E104/A168/S330; N35/Q58/E104/A168; Y32/N35/P71/E104/A168; N35/E104/A168/S330; N35/T80/E104/A168; N35/G82/E104/A168; N35/E104/A168/S295; N35/N66/E104/A168; N35/T54/E104/A168; N35/P45/E104/A168; N35/E104/S128/A168; N35/N66/N95/E104/S164/A168; /G267; N35/T54/E104/A168; N35/P45/E104/K141/A168; N35/E104/A168/S332; N35/E104/A168/A297; N35/E104/K141/R145/A168; N35/Q44/E104/A168/S231; N35/T40/T49/S78/E104/A142; /A168; N35/E104/S164/A168/S295; N35/E104/A168/N317; N35/P45/E104/A168; N35/G82/E104/A168; N35/N46/E104/A168/G203/A263; N35/Q58/E104/A168; N35/G69/E104/A168; N35/S67/E104/A168; N35/E104/A168/R199; N35/E104/A168/G203/G268/G269/G270; N35/E104/A168/V324; N35/E104/A168/P266; N35/E104/A168/G245; N35/N66/E104/A168; S24/N35/Q44/T80/E104/A168; N35/E104/A168/T236; N35/E104/A168/K310; N35/E104/R130/A168; N35/N66/S78/E104/A168/S253; N35/N66/E104/S164/A168/S282; N35/E104/A142/A168; N35/E104/R145/A168; N35/E104/A168/S231; N35/E104/A168/Q184; N35/E104/A168/K218; N35/E104/A168/P233; N35/T49/E104/A168/Q184; N35/T40/E104/A168/P327; N35/T54/E104/A168; N35/N66/E104/S164/A168/S231/S253; N35/E104/A168/G203; N35/T49/E104/A168; N35/E104/A168/P266/G267; N35/Q44/N66/E104/A168; N35/S67/E104/A168; N35/E104/A137/A168; N35/T49/E104/S128/A168; N35/T49/E104/A168/K218/N317; N35/I51/E104/A168; N35/E104/A168/A326; N35/P45/E104/A168/T320; N35/N66/E104/A168; N35/E104/A168/V237/P303; N35/P45/E104/A168/K218/N317; N35/T80/E104/A168; N35/A55/E104/A168; N35/E104/K141/A168/P266; N35/E104/A168/S330; N35/N66/E104/A168/R290; N35/E104/N118/A168; N35/E104/A168/A212; N35/K93/E104/R130/A168; N35/E104/A168/G267; N35/P45/T49/E104/A168/N317; N35/E104/A168/V230; N35/E104/A168/S329; N35/P45/E104/A168/A219; N35/S78/E104/S164/A168; N35/E104/A168/S205; N35/E104/A168/Q184; V28/N35/N46/Q58/E104/A168; N35/E104/A142/A168; N35/E104/A168/E336; N35/E104/A168/A280; N35/E104/A168/A219; N35/E104/A168/P303/G305; R34/N35/E104/A168/A280; N35/E104/A168/N187; N35/E104/G136/A168; N35/E104/A168/Q184; N35/T49/E104/A168/N317; N35/T40/T49/S78/E104/A168; R34/N35/K93/E104/R130/R145/A168/R199/K218/A280; N35/T40/E104/A142/A168; and N35/N66/E104/A168, wherein the amino acid positions are numbered with reference to SEQ ID NO:2. In some further embodiments, the GH61 variant proteins comprise at least one amino acid substitution comprising one or more of the following substitutions numbered with reference to SEQ ID NO:2: S24Q; V28H; Y32S; R34E; N35G; T40A/G/L/S; Q44K; P45D/E/K/R/S; N46E/R; T49A/Q/R/Y; I51A; T54G/M/S/W; A55G; A56S; Q58H/P; E64L/S; N66A/D/G/L/M/Q/R/V; S67G/H/T; G69T; T70A; P71A; S78C/D; T80H/L/V; G82A/S; G83R; V88I; K93N/T; N95E; E101T; E104H; A116Q/S; N118E/S; S128K/L/N; R130E/G/H/K/Y; G136H; A137M/S; K141A/N/P/R; A142D/G/L; G144S; R145H/L/N/Q/T; A150Y; G155N; Q161E/R; S164E; A168P; Q184E/H/L/N/R; N187D; R199E; G203E/V/Y; S205T; A212M; K218L/T; A219R/T; V230I/Q; S231A/H/K/I; S232E; P233F/T; D234E/M/N; T236E; V237I; G245A; S253D/T; A263V; P266S; G267D/V; G268A; G269A; G270A; A271T; A280D/T; T281A; S282D; R290K; S295D/L/T; A297T; P303T; G305D; K310I; N317D/H/I/M/Q/R; T320A; V324M; A326C/Q/V; P327F/K/L/M; S329H/I/Q/T/Y; S330A/H/I/T/V; S332C/F/R; V333Q; E336L/R/S; W337R; and/or S339W, wherein the amino acid positions are numbered with reference to SEQ ID NO:2. In some embodiments, the GH61 variant proteins comprise a plurality of substitutions and/or substitution sets as provided therein. In some additional embodiments, the GH61 variant proteins comprise one or more of the following substitution sets: N35G/T40A/E104H/A168P/P327M; N35G/P45D/E104H/A168P/N317R; N35G/E104H/A168P/N317R; N35G/E104H/A168P/N317D/S329Y; N35G/E104H/A137S/A168P/S232E; N35G/E104H/A168P/N317R/T320A; N35G/E104H/A168P/D234E; N35G/T40S/E104H/A142G/A168P; N35G/E104H/R145L/A168P; N35G/T40S/S78C/V88I/E104H/S128K/A168P/D234M; N35G/E104H/A168P/S330V; N35G/E104H/A168P/G203E/P266S; N35G/E104H/A168P/D234N; N35G/E104H/A168P/S330H; N35G/E104H/A168P/W337R; R34E/N35G/E104H/R145T/A168P; Y32S/N35G/E64S/E104H/A168P; V28H/N35G/P45K/E104H/A168P; N35G/E104H/G144S/A168P/V333Q; N35G/N66Q/E104H/A168P; N35G/E104H/A168P/P327K; N35G/E104H/A168P/G203E; N35G/E104H/A168P/S339W; N35G/P45K/N46E/E104H/A150Y/A168P; N35G/E104H/A168P/S231K; N35G/T40A/E104H/A168P/D234E/P327M; N35G/E104H/A168P/S231H; N35G/E104H/A168P/N317M; N35G/E104H/A168P/S330Y; N35G/E104H/A168P/S329I; N35G/E104H/A168P/P327F; N35G/P45D/E104H/A168P; N35G/E104H/A116S/A168P; N35G/T40A/E104H/A168P/V230I/P327M; N35G/E104H/A168P/S332R; N35G/E104H/A168P/G203V; N35G/E104H/R145N/A168P/S329H; N35G/T40S/T49R/E104H/A168P/D234E; /P327M; N35G/A56S/E104H/A168P; N35G/E104H/Q161R/A168P; N35G/E104H/A168P/S332F; N35G/P45R/T49A/E104H/A168P/N317R/T320A; N35G/E104H/A168P/V237I; N35G/E104H/A168P/E336S; N35G/E104H/A168P/P233T; N35G/E104H/R130H/A168P; N35G/E104H/A168P/P327L; N35G/E104H/A168P/N317I; N35G/Q44K/E104H/A168P; N35G/E104H/A168P/A326V; N35G/E104H/A168P/N317H; N35G/T40L/E104H/S128K/A168P; N35G/T80V/E104H/A168P/P303T; N35G/E104H/A116Q/A168P; N35G/E104H/A168P/S231A/S295L; N35G/T40S/E101T/E104H/A168P/P327M; N35G/P45K/E104H/A168P/A219R/S232E; N35G/N46R/E104H/A168P; N35G/E104H/A168P/A326Q; N35G/E104H/A168P/G203E/T281A; N35G/E104H/A168P/E336R; N35G/T40S/E104H/S128K/A142G/A168P; N35G/E104H/N118S/A168P; N35G/E104H/G155N/A168P; S24Q/N35G/E104H/A168P/V237I/P303T; N35G/E104H/Q161E/A168P; N35G/Q44K/S67T/E104H/A168P; V28H/N35G/E104H/A168P; N35G/E104H/A168P/Q184L; N35G/T54G/E104H/A168P; N35G/N66M/E104H/A168P; N35G/E64L/E104H/A168P; N35G/E104H/S164E/A168P/A271T; N35G/N66A/E104H/A168P; N35G/G83R/E104H/A168P; N35G/E104H/K141A/A168P; N35G/E104H/A168P/N317Q/T320A; N35G/E104H/R130G/A168P; N35G/E104H/R145Q/A168P; N35G/T70A/E104H/A168P; N35G/E104H/R130K/A168P; N35G/E104H/A168P/Q184E; N35G/E104H/A168P/S329T; N35G/T49A/E104H/A168P; Y32S/N35G/E104H/A168P; N35G/E104H/A168P/S330I; N35G/Q58H/E104H/A168P; Y32S/N35G/P71A/E104H/A168P; N35G/E104H/A168P/S330T; N35G/T80V/E104H/A168P; N35G/G82A/E104H/A168P; N35G/E104H/A168P/S295T; N35G/N66G/E104H/A168P; N35G/T54S/E104H/A168P; N35G/P45S/E104H/A168P; N35G/E104H/S128L/A168P; N35G/N66D/N95E/E104H/S164E/A168P; /G267D; N35G/T54W/E104H/A168P; N35G/P45E/E104H/K141R/A168P; N35G/E104H/A168P/S332C; N35G/E104H/A168P/A297T; N35G/E104H/K141P/R145Q/A168P; N35G/Q44K/E104H/A168P/S231T; N35G/T40G/T49R/S78C/E104H/A142G; /A168P; N35G/E104H/S164E/A168P/S295D; N35G/E104H/A168P/N317Q; N35G/P45R/E104H/A168P; N35G/G82S/E104H/A168P; N35G/N46R/E104H/A168P/G203E/A263V; N35G/Q58P/E104H/A168P; N35G/G69T/E104H/A168P; N35G/S67G/E104H/A168P; N35G/E104H/A168P/R199E; N35G/E104H/A168P/G203E/G268A/G269A/G270A; N35G/E104H/A168P/V324M; N35G/E104H/A168P/P266S; N35G/E104H/A168P/G245A; N35G/N66R/E104H/A168P; S24Q/N35G/Q44K/T80H/E104H/A168P; N35G/E104H/A168P/T236E; N35G/E104H/A168P/K310I; N35G/E104H/R130Y/A168P; N35G/N66D/S78D/E104H/A168P/S253D; N35G/N66D/E104H/S164E/A168P/S282D; N35G/E104H/A142L/A168P; N35G/E104H/R145H/A168P; N35G/E104H/A168P/S231T; N35G/E104H/A168P/Q184R; N35G/E104H/A168P/K218L; N35G/E104H/A168P/P233F; N35G/T49A/E104H/A168P/Q184H; N35G/T40S/E104H/A168P/P327M; N35G/T54M/E104H/A168P; N35G/N66D/E104H/S164E/A168P/S231T/S253T; N35G/E104H/A168P/G203Y; N35G/T49Q/E104H/A168P; N35G/E104H/A168P/P266S/G267V; N35G/Q44K/N66V/E104H/A168P; N35G/S67H/E104H/A168P; N35G/E104H/A137M/A168P; N35G/T49A/E104H/S128N/A168P; N35G/T49R/E104H/A168P/K218L/N317Q; N35G/I51A/E104H/A168P; N35G/E104H/A168P/A326C; N35G/P45R/E104H/A168P/T320A; N35G/N66L/E104H/A168P; N35G/E104H/A168P/V237I/P303T; N35G/P45R/E104H/A168P/K218L/N317Q; N35G/T80L/E104H/A168P; N35G/A55G/E104H/A168P; N35G/E104H/K141N/A168P/P266S; N35G/E104H/A168P/S330A; N35G/N66D/E104H/A168P/R290K; N35G/E104H/N118E/A168P; N35G/E104H/A168P/A212M; N35G/K93N/E104H/R130Y/A168P; N35G/E104H/A168P/G267D; N35G/P45R/T49Y/E104H/A168P/N317D; N35G/E104H/A168P/V230Q; N35G/E104H/A168P/S329Q; N35G/P45K/E104H/A168P/A219R; N35G/S78D/E104H/S164E/A168P; N35G/E104H/A168P/S205T; N35G/E104H/A168P/Q184H;

V28H/N35G/N46E/Q58H/E104H/A168P; N35G/E104H/A142D/A168P; N35G/E104H/A168P/E336L; N35G/E104H/A168P/A280T; N35G/E104H/A168P/A219T; N35G/E104H/A168P/P303T/G305D; R34E/N35G/E104H/A168P/A280T; N35G/E104H/A168P/N187D; N35G/E104H/G136H/A168P; N35G/E104H/A168P/Q184N; N35G/T49Y/E104H/A168P/N317R; N35G/T40A/T49Q/S78C/E104H/A168P; R34E/N35G/K93T/E104H/R130E/R145T/A168P/R199E/K218T/A280D; N35G/T40L/E104H/A142G/A168P; and/or N35G/N66G/E104H/A168P, wherein the amino acid positions are numbered with reference to SEQ ID NO:2. In some further embodiments, the GH61 variant proteins comprise a plurality of substitutions as provided herein. In some additional embodiments, the GH61 variant proteins comprise polypeptide sequences that are at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to any of SEQ ID NOS:2, 3, 5, 6, 8, and/or 9, and/or a biologically active fragment of any of SEQ ID NOS: 2, 3, 5, 6, 8, and/or 9, wherein the fragment has GH61 activity. In still some additional embodiments, the GH61 variant proteins comprise polypeptide sequences that are at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to any of SEQ ID NOS:2, 3, 5, 6, 8, and/or 9, and/or a biologically active fragment of any of SEQ ID NOS: 2, 3, 5, 6, 8, and/or 9, wherein the fragment has GH61 activity.

[0030] The present invention also provides GH61 variant proteins comprising amino acid sequences that are at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to any of SEQ ID NOS:2, 3, 5, 6, 8, and/or 9, or a fragment of SEQ ID NOS:2, 3, 5, 6, 8, and/or 9 having GH61 activity, wherein the amino acid sequence of the variant protein has one or more amino acid substitutions with respect to SEQ ID NOS:2, 3, 5, 6, 8, and/or 9 or the fragment, and wherein the substitution(s) in the amino acid sequences result in the variant proteins having increased GH61 activity in a reaction where crystalline cellulose undergoes saccharification by cellulase enzymes that are contained in culture broth from M. thermophila cells, compared with a reference protein comprising SEQ ID NO:2, 3, 5, 6, 8, and/or 9 or the fragment, without any substitutions. In some embodiments, the GH61 variant proteins comprise amino acid sequences that are at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to any of SEQ ID NOS:2, 3, 5, 6, 8, and/or 9, or a fragment of SEQ ID NOS:2, 3, 5, 6, 8, and/or 9 having GH61 activity, wherein the amino acid sequence of the variant protein has one or more amino acid substitutions with respect to SEQ ID NOS:2, 3, 5, 6, 8, and/or 9 or the fragment, and wherein the substitution(s) in the amino acid sequences result in the variant proteins having increased GH61 activity in a reaction where crystalline cellulose undergoes saccharification by cellulase enzymes that are contained in culture broth from M. thermophila cells, compared with a reference protein comprising SEQ ID NO:2, 3, 5, 6, 8, and/or 9 or the fragment, without any substitutions. In some further embodiments, the present invention provides GH61 variant proteins encoded by polynucleotides, wherein the proteins comprise amino acid sequences that are at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to any of SEQ ID NOS:2, 3, 5, 6, 8, and/or 9 or a fragment of SEQ ID NO:2, 3, 5, 6, 8, and/or 9 having GH61 activity, wherein the amino acid sequence of the variant protein has one or more amino acid substitutions with respect to SEQ ID NO:2, 3, 5, 6, 8, and/or 9 or the fragment, and wherein the polynucleotide encoding the GH61 variant protein comprises at least one mutation and/or mutation set selected from t60c/c573g, t60c/c573g/g1026a, c573g, t60c/c291a/c573g, t60c/c291a, t60c/c876t, a312g, t60c, t379a/c380g/g381c, c300t, t204c/t379a/c380g/g381c/c385t, g1026a, c246t, c597g, c72t, c732g/c843t/c882t, c909t, c912g, g921a, c792t, g972t, g921a, t379a/c380g/g381c/c454a/c456a/c732t/c843t/c849t, c520a/c522g, t60c/c573g; t60c/c288t/c573g; t60c/c198t/c573g; and/or t60c/g399a/c573g; wherein the nucleotide positions are numbered with reference to SEQ ID NO:1. In still some further embodiments, the present invention provides GH61 variant proteins encoded by polynucleotides, wherein the proteins comprise amino acid sequences that are at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to any of SEQ ID NOS:2, 3, 5, 6, 8, and/or 9 or a fragment of SEQ ID NO:2, 3, 5, 6, 8, and/or 9 having GH61 activity, wherein the amino acid sequence of the variant protein has one or more amino acid substitutions with respect to SEQ ID NO:2, 3, 5, 6, 8, and/or 9 or the fragment, and wherein the polynucleotide encoding the GH61 variant protein comprises at least one mutation and/or mutation set selected from t60c/c573g, t60c/c573g/g1026a, c573g, t60c/c291a/c573g, t60c/c291a, t60c/c876t, a312g, t60c, t379a/c380g/g381c, c300t, t204c/t379a/c380g/g381c/c385t, g1026a, c246t, c597g, c72t, c732g/c843t/c882t, c909t, c912g, g921a, c792t, g972t, g921a, t379a/c380g/g381c/c454a/c456a/c732t/c843t/c849t, c520a/c522g, t60c/c573g; t60c/c288t/c573g; t60c/c198t/c573g; and/or t60c/g399a/c573g; wherein the nucleotide positions are numbered with reference to SEQ ID NO:1.

[0031] The present invention also provides polynucleotides comprising a nucleic acid sequences encoding the GH61 variant proteins provided herein, as well as polynucleotides that hybridize under stringent hybridization conditions to at least one polynucleotide and/or a complement of at least one polynucleotide encoding GH61 variant proteins provided herein. In some embodiments, the present invention provides polynucleotide sequences encoding GH61 variant proteins, wherein the polynucleotide sequences are at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to any of SEQ ID NOS:1, 4, 7, and/or 10, or at least one polynucleotide that hybridizes under stringent hybridization conditions to at least one polynucleotide and/or complement of any of SEQ ID NOS:1, 4, 7, and/or 10. In some additional embodiments, the present invention provides polynucleotide sequences encoding GH61 variant proteins, wherein the polynucleotide sequences are at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to any of SEQ ID NOS:1, 4, 7, and/or 10, or at least one polynucleotides that hybridizes under stringent hybridization conditions to at least one polynucleotide and/or complement of any of SEQ ID NOS:1, 4, 7, and/or 10.

[0032] The present invention also provides recombinant nucleic acid constructs comprising at least one polynucleotide sequence encoding at least one GH61 protein, wherein the polynucleotide is selected from: (a) a polynucleotide that encodes a polypeptide comprising an amino acid sequence having at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identity to SEQ ID NO:2, 3, 5, 6, 8, and/or 9, wherein the amino acid sequence comprises at least one substitution and/or substitution set provided herein; (b) a polynucleotide that hybridizes under stringent hybridization conditions to at least a fragment of a polynucleotide that encodes a polypeptide having the amino acid sequence of SEQ ID NO:2, 3, 5, 6, 8, and/or 9, and wherein the amino acid sequence comprises at least one substitution and/or at least one substitution set provided herein; and/or (c) a polynucleotide that hybridizes under stringent hybridization conditions to the complement of at least a fragment of a polynucleotide that encodes a polypeptide having the amino acid sequence of SEQ ID NO:2, 3, 5, 6, 8, and/or 9, and wherein the amino acid sequence comprises at least one substitution and/or at least one substitution set provided herein. In some embodiments, the recombinant nucleic acid constructs comprise at least one polynucleotide sequence encoding at least one GH61 protein, wherein the polynucleotide is selected from: (a) a polynucleotide that encodes a polypeptide comprising an amino acid sequence having at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identity to SEQ ID NO:2, wherein the amino acid sequence comprises at least one substitution and/or substitution set provided herein; (b) a polynucleotide that hybridizes under stringent hybridization conditions to a polynucleotide that encodes a polypeptide having the amino acid sequence of SEQ ID NO:2, and wherein the amino acid sequence comprises at least one substitution and/or at least one substitution set provided herein; and/or (c) a polynucleotide that hybridizes under stringent hybridization conditions to the complement of a polynucleotide that encodes a polypeptide having the amino acid sequence of SEQ ID NO:2, and wherein the amino acid sequence comprises at least one substitution and/or at least one substitution set provided herein. In some additional embodiments, the recombinant nucleic acid constructs comprise at least one polynucleotide sequence at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% identical to any of SEQ ID NOS:1, 4, 7, and/or 10, and wherein the polynucleotide sequence comprises at least one mutation and/or at least one mutation set provided herein. In some further additional embodiments, the recombinant nucleic acid constructs comprise polynucleotide sequences that are at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to any of SEQ ID NOS:1, 4, 7, and/or 10, and wherein the polynucleotide sequence comprises at least one mutation and/or at least one mutation set provided herein. In some embodiments, the polynucleotides and/or nucleic acid constructs provided herein comprise at least one polynucleotide sequence comprising at least one mutation or mutation set selected from t60c/c573g, t60c/c573g/g1026a, c573g, t60c/c291a/c573g, t60c/c291a, t60c/c876t, a312g, t60c, t379a/c380g/g381c, c300t, t204c/t379a/c380g/g381c/c385t, g1026a, c246t, c597g, c72t, c732g/c843t/c882t, c909t, c912g, g921a, c792t, g972t, g921a, t379a/c380g/g381c/c454a/c456a/c732t/c843t/c849t, c520a/c522g; t60c/c573g; t60c/c288t/c573g; t60c/c198t/c573g; and/or t60c/g399a/c573g. In some additional embodiments, the polynucleotide and/or nucleic acid construct comprise at least one nucleic acid sequence operably linked to a promoter. In some additional embodiments, the promoter is a heterologous promoter. In some further embodiments, the nucleic acid constructs further encode at least one enzyme in addition to the GH61 variant protein. In some embodiments, the nucleic acid constructs comprise at least one additional enzyme is selected from wild-type GH61 enzymes, endoglucanases (EG), beta-glucosidases (BGL), Type 1 cellobiohydrolases (CBH1), Type 2 cellobiohydrolases (CBH2), cellulases, hemicellulases, xylanases, xylosidases, amylases, glucoamylases, proteases, esterases, and lipases. In some further embodiments, at least one additional enzyme is selected from wild-type GH61 enzymes, endoglucanases (EG), beta-glucosidases (BGL), Type 1 cellobiohydrolases (CBH1), Type 2 cellobiohydrolases (CBH2), xylanases, and xylosidases.

[0033] The present invention also provides expression constructs comprising at least one polynucleotide or nucleic acid construct as provided herein. In some expression construct embodiments, the nucleic acid construct and/or the polynucleotide is operably linked to a promoter. In some embodiments, the promoter is heterologous. In some further embodiments of the expression constructs provided herein, the nucleic acid sequence is operably linked to at least one additional regulatory sequence.

[0034] The present invention also provides host cells that express at least one polynucleotide sequence encoding at least one GH61 variant protein provided herein. In some embodiments, the host cells produce at least one GH61 variant protein provided herein. In some additional embodiments, at least one GH61 variant protein is secreted from the host cells. In some further embodiments, the host cells further produce at least one enzyme selected from wild-type GH61 enzymes, endoglucanases (EG), beta-glucosidases (BGL), Type 1 cellobiohydrolases (CBH1), Type 2 cellobiohydrolases (CBH2), cellulases, hemicellulases, xylanases, xylosidases, amylases, glucoamylases, proteases, esterases, and lipases. In some additional embodiments, the host cell further produces at least one enzyme selected from wild-type GH61 enzymes, endoglucanases (EG), beta-glucosidases (BGL), Type 1 cellobiohydrolases (CBH1), and Type 2 cellobiohydrolases (CBH2). In some embodiments, the host cell is a yeast or filamentous fungal cell. In some embodiments, the filamentous fungal cell is a Myceliophthora, a Chrysosporium a Thielavia, a Trichoderma, or an Aspergillus cell. In some further embodiments, the filamentous fungal cell is Myceliophthora thermophila. In some additional embodiments, the host cell is a yeast cell. In some further additional embodiments, the host cell is Saccharomyces. In some further embodiments, the host cells further comprise at least one polynucleotide, polynucleotide construct, and/or expression construct as provided herein.

[0035] The present invention also provides methods of producing at least one GH61 variant protein comprising culturing the host cell set forth herein under conditions such that the host cell produces at least one GH61 variant proteins as provided herein. In some embodiments of the methods, the host cell further produces at least one additional enzyme selected from wild-type GH61 enzymes, endoglucanases (EG), beta-glucosidases (BGL), Type 1 cellobiohydrolases (CBH1), Type 2 cellobiohydrolases (CBH2), cellulases, hemicellulases, xylanases, xylosidases, amylases, glucoamylases, proteases, esterases, and lipases. In some embodiments of the methods, the host cell further produces at least one EG, at least one BGL, at least one CBH1, at least one CBH2, and/or at least one wild-type GH61 enzyme. In some further embodiments of the methods, the conditions comprise culturing at about pH 5, while in some alternative embodiments of the methods, the conditions comprise culturing at about pH 6.7. In some embodiments of the methods, the filamentous fungal cell is a Myceliophthora, a Chrysosporium, a Thielavia, a Trichoderma, or an Aspergillus cell. In some further embodiments of the methods, the filamentous fungal cell is a Myceliophthora thermophila. In some additional embodiments of the methods, the host cell is a yeast cell. In some further additional embodiments of the methods, the host cell is Saccharomyces.

[0036] The present invention also provides enzyme compositions comprising at least one GH61 variant protein as provided herein. In some embodiments, the enzyme compositions further comprise one or more enzymes selected from wild-type GH61 enzymes, endoglucanases (EG), beta-glucosidases (BGL), Type 1 cellobiohydrolases (CBH1), and/or Type 2 cellobiohydrolases (CBH2), cellulases, hemicellulases, xylanases, xylosidases, amylases, glucoamylases, proteases, esterases, and lipases. In some additional embodiments, the enzyme compositions further comprise at least two additional enzymes selected from wild-type GH61 enzymes, endoglucanases (EG), beta-glucosidases (BGL), Type 1 cellobiohydrolases (CBH1), and/or Type 2 cellobiohydrolases (CBH2), cellulases, hemicellulases, xylanases, xylosidases, amylases, glucoamylases, proteases, esterases, and lipases. In some embodiments, the enzyme compositions are produced by the host cells provided herein. In some additional embodiments, the enzyme compositions further comprise a microorganism. In some further embodiments, the microorganism comprises M. thermophila. In some embodiments, the enzyme compositions further comprise at least one adjunct composition. In some additional embodiments, the enzyme compositions comprise at least one adjunct composition selected from divalent metal cations, reductants, surfactants, buffers, culture media, and enzyme stabilizing systems. In some further embodiments, the enzyme compositions comprise adjunct composition comprising copper and/or gallic acid. In some additional embodiments, the enzyme compositions find use in saccharification reactions.

[0037] The present invention also provides compositions comprising at least one GH61 protein, one or more cellulase enzymes, a cellulosic substrate, and Cu.sup.++, wherein the GH61 protein is at least about 70%, about 75%, about 80%, about 85%, about 86%, about 87%, about 88%, about 89%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or about 100% identical to any of SEQ ID NOS:2, 5, 6, 8, 9, 11, and/or 12, and/or a biologically fragment thereof with GH61 activity. In some embodiments, the present invention provides compositions comprising at least one GH61 protein, one or more cellulase enzymes, a cellulosic substrate, and Cu.sup.++, wherein the GH61 protein is at least 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:2, 5, 6, 8, 9, 11, and/or 12, and/or a biologically fragment thereof with GH61 activity. In some embodiments, the concentration of Cu.sup.++ is at least about 4 .mu.M. In some embodiments, the concentration of Cu.sup.++ is between about 1 .mu.M and about 100 .mu.M, between about 4 .mu.M and about 100 .mu.M, or between about 5 .mu.M and about 100 .mu.M.

[0038] The present invention also provides compositions comprising at least one GH61 protein, one or more cellulase enzymes, a cellulosic substrate, and gallic acid, wherein the GH61 protein is at least about 70%, about 80%, about 85%, about 86%, about 87%, about 88%, about 89%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or about 100% identical to any of SEQ ID NO:2, 5, 6, 8, 9, 11, and/or 12, and/or a biologically fragment thereof with GH61 activity. The present invention also provides compositions comprising at least one GH61 protein, one or more cellulase enzymes, a cellulosic substrate, and gallic acid, wherein the GH61 protein is at least 70%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any of SEQ ID NO:2, 5, 6, 8, 9, 11, and/or 12, and/or a biologically fragment thereof with GH61 activity. In some embodiments, the concentration of gallic acid in the compositions is at least about 0.1 mM. In some embodiments, the compositions comprise gallic acid at a concentration between about 1 mM and about 5 mM. In some embodiments, the concentration of gallic acid in the composition is at least 0.1 mM. In some embodiments, the compositions comprise gallic acid at a concentration between 1 mM and 5 mM. In some embodiments, the compositions comprise at least one GH61 protein comprising SEQ ID NO:2, 5, 6, 8, 9, 11, and/or 12, and/or a biologically active fragment thereof with GH61 activity. In some embodiments, the compositions comprise at least one GH61 variant protein as provided herein. In some embodiments, the compositions comprise at least one cellulase enzyme selected from endoglucanases (EG), beta-glucosidases (BGL), Type 1 cellobiohydrolases (CBH1), and/or Type 2 cellobiohydrolases (CBH2). In some embodiments, the compositions comprise at least one BGL, CBH1, and CBH2. In some additional embodiments, the compositions further comprise at least one additional enzyme. In some further embodiments, at least one additional enzyme is selected from hemicellulases, xylanases, xylosidases, amylases, glucoamylases, proteases, esterases, and lipases. In still some further embodiments of the compositions, the cellulosic substrate is selected from wheat grass, wheat straw, barley straw, sorghum, rice grass, sugarcane straw, bagasse, switchgrass, corn stover, corn fiber, grains, or any combination thereof.

[0039] The present invention also provides methods for producing fermentable sugars from a cellulosic substrate, comprising contacting the cellulosic substrate with at least one enzyme composition as provided herein under conditions whereby fermentable sugars are produced. In some embodiments, the methods further comprise pretreating the cellulosic substrate prior to the contacting. In some additional embodiments of the methods, the enzyme composition is added concurrently with pretreating. In some further embodiments of the methods, the cellulosic substrate comprises wheat grass, wheat straw, barley straw, sorghum, rice grass, sugarcane, sugarcane straw, bagasse, switchgrass, corn stover, corn fiber, grains, or any combination thereof. In some additional embodiments of the methods, the fermentable sugars comprise glucose and/or xylose. In some embodiments, the methods further comprise recovering the fermentable sugars. In some embodiments of the methods, the conditions comprise using continuous, batch, and/or fed-batch culturing conditions. In some further embodiments, the method is a batch process, while in some alternative embodiments, the method is a continuous process, and in some still further embodiments, the method is a fed-batch process. In some embodiments, the methods comprise any combination of batch, continuous, and/or fed-batch processes conducted in any order. In still some further embodiments, the methods are conducted in a reaction volume of at least 10,000 liters, while in some other embodiments, the methods are conducted in a reaction volume of at least 100,000 liters. In some embodiments, the methods further comprise use of at least one adjunct composition. In some embodiments, the adjunct composition is selected from at least one divalent metal cation, gallic acid, and/or at least one surfactant. In some embodiments, the divalent metal cation comprises copper and/or gallic acid. In some additional embodiments, the surfactant is selected from TWEEN.RTM.-20 non-ionic detergent and polyethylene glycol. In some further embodiments, the methods are conducted at about pH 5.0, while in some alternative embodiments, the methods are conducted at about pH 6.0. In some additional embodiments, the pH is in the range of about 4.5 to about 7. In some embodiments, the methods further comprise contacting the fermentable sugars with a microorganism under conditions such that the microorganism produces at least one fermentation end product. In some embodiments, the fermentation end product is selected from alcohols, fatty acids, lactic acid, acetic acid, 3-hydroxypropionic acid, acrylic acid, succinic acid, citric acid, malic acid, fumaric acid, amino acids, 1,3-propanediol, ethylene, glycerol, fatty alcohols, butadiene, and beta-lactams. In some further embodiments, the fermentation product is an alcohol selected from ethanol and butanol. In some still further embodiments, the alcohol is ethanol.

[0040] The present invention also provides methods for increasing production of fermentable sugars from a saccharification reaction comprising combining at least one cellulase substrate, one or more cellulase enzymes, and at least one GH61 protein wherein the protein is at least about 70%, about 75%, about 80%, about 85%, about 86%, about 87%, about 88%, about 89%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or about 100% identical to SEQ ID NO:2, and an adjunct composition in a saccharification reaction, wherein the adjunct composition comprises Cu.sup.++ at a concentration of at least about 4 .mu.M and/or gallic acid at a concentration of at least about 0.5 mM. The present invention also provides methods for increasing production of fermentable sugars from a saccharification reaction comprising combining at least one cellulase substrate, one or more cellulase enzymes, and at least one GH61 protein wherein the protein is at least 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:2, and an adjunct composition in a saccharification reaction, wherein the adjunct composition comprises Cu.sup.++ at a concentration of at least about 4 .mu.M and/or gallic acid at a concentration of at least about 0.5 mM. In some embodiments, at least one GH61 protein comprises SEQ ID NO:2, 5, 6, 8, 9, 11, and/or a biologically active fragment thereof. In some embodiments of the methods, the GH61 protein is at least one GH61 protein variant as provided herein. In some embodiments, the methods further comprise use of at least one surfactant selected from TWEEN.RTM.-20 non-ionic detergent and polyethylene glycol. In some additional embodiments, the methods are conducted at about pH 5.0, while in some other embodiments, the methods are conducted at about pH 6.0.

[0041] The present invention also provides methods of producing at least one end product from at least one cellulosic substrate, comprising: a) providing at least one cellulosic substrate and at least one enzyme composition as provided herein; b) contacting the cellulosic substrate with the enzyme composition under conditions whereby fermentable sugars are produced from the cellulosic substrate in a saccharification reaction; and c) contacting the fermentable sugars with a microorganism under fermentation conditions such that at least one end product is produced. In some embodiments, the method comprises simultaneous saccharification and fermentation reactions (SSF), while in some alternative embodiments of the methods, saccharification of the cellulosic substrate and fermentation are conducted in separate reactions (SHF). In some additional embodiments, the methods comprise production of at least one enzyme simultaneously with hydrolysis and/or fermentation (e.g., "consolidated bioprocessing"; CBP). In some embodiments, the enzyme composition is produced simultaneously with the saccharification and fermentation reactions. In some additional embodiments at least one enzyme of said composition is produced simultaneously with the saccharification and fermentation reactions. In some embodiments, in which at least one enzyme and/or the enzyme composition is produced simultaneously with the saccharification and fermentation reactions, the methods are conducted in a single reaction vessel. In some embodiments, the methods further comprise use of at least one adjunct composition in the saccharification reaction. In some embodiments of the methods, at least one adjunct composition is selected from at least one divalent metal cation, gallic acid, and/or at least one surfactant. In some further embodiments of the methods, the divalent metal cation comprises copper. In some further embodiments of the methods, the adjunct composition comprises gallic acid. In some additional embodiments of the methods, the surfactant is selected from TWEEN.RTM.-20 non-ionic detergent and polyethylene glycol. In some embodiments, the method is conducted at about pH 5.0. In some embodiments, the method is conducted at about pH 6.0. In some further embodiments, the method is conducted at a pH in the range of about 4.5 to about 7.0. In some embodiments, the methods further comprise recovering at least one end product. In some embodiments of the methods the end product comprises at least one fermentation end product. In some further embodiments of the methods, the fermentation end product is selected from alcohols, fatty acids, lactic acid, acetic acid, 3-hydroxypropionic acid, acrylic acid, succinic acid, citric acid, malic acid, fumaric acid, an amino acid, 1,3-propanediol, ethylene, glycerol, fatty alcohols, butadiene, and beta-lactams. In some embodiments of the methods, the fermentation end product is at least one alcohol selected from ethanol and butanol. In some embodiments of the methods, the alcohol is ethanol. In some additional embodiments of the methods, the microorganism is a yeast. In some further embodiments, the yeast is Saccharomyces. In some further additional embodiments, the methods further comprise recovering at least one fermentation end product.

[0042] The present invention also provides for use of at least one GH61 variant protein provided herein to produce at least one fermentation end product. In some embodiments, at least one GH61 variant protein provided herein is used to produce at least one fermentation end product selected from alcohols, fatty acids, lactic acid, acetic acid, 3-hydroxypropionic acid, acrylic acid, citric acid, malic acid, fumaric acid, succinic acid, amino acids, 1,3-propanediol, ethylene, glycerol, butadiene, fatty alcohols, and beta-lactams. In some embodiments, the fermentation end product is at least one alcohol selected from ethanol and butanol. In some further embodiments, the alcohol is ethanol.

[0043] Additional embodiments of the invention are apparent from the present description.

DESCRIPTION OF THE DRAWINGS

[0044] FIG. 1 provides results of an experiment using recombinantly produced GH61a protein having the sequence shown in SEQ ID NO:2. The protein was tested for its ability to promote the activity of cellulases present in culture broth of M. thermophila. The graph shows the improvement in the yield of the fermentable sugar glucose that is attained by adding GH61 to the reaction.

[0045] FIG. 2 shows specific GH61 activity observed in a reaction where a wheat straw substrate was hydrolyzed by cellulase enzymes CBH1, CBH2, and beta-glucosidase. The results show that GH61a Variants 5 and 9 have a 2.0 to 2.9 fold improvement over the parental GH61 sequence (SEQ ID NO:2); and Variant 1 has a 3.0 to 3.9 fold improvement.

[0046] FIG. 3 shows the increase in glucose production in the presence of GH61 protein when Cu.sup.++ is included the reaction. In this Figure, n=4; and mean.+-.SD. Panel A shows the increase with a GH61 variant protein "Variant 5," while Panel B shows the increase with the wild-type GH61a protein (SEQ ID NO:2).

[0047] FIG. 4 shows activity of GH61a pre-incubated with 0 or 50 .mu.M CuSO.sub.4, copper(II) ion at either saccharification pH 5.0 or pH 6.0. Panel A shows glucose production, while Panel B shows the total production of C5 sugars.

[0048] FIG. 5 shows activity of M. thermophila-produced GH61a Variant 1 on cellulosic substrates. Panel A shows the results on AVICEL.RTM. PH microcrystalline cellulose, and Panel B shows the results on phosphoric acid swollen cellulose (PASC), in the presence of ascorbic acid, gallic acid and pretreatment filtrate.

[0049] FIG. 6 provides results showing the effects of surfactants on saccharification. Panel A shows enzymatic hydrolysis activity of a cellulase mixture in the presence of TWEEN.RTM.-20, while Panel B shows the enzymatic hydrolysis activity of a cellulase mixture in the presence of PEG-4000.

DETAILED DESCRIPTION OF THE INVENTION

[0050] As described herein, the present invention provides GH61 proteins of the filamentous fungus Myceliophthora thermophila that have been genetically modified. These GH61 protein variants exhibit improved activity and other benefits, as compared to wild-type GH61 proteins.

[0051] Before modification, the GH61 protein having the sequence shown in SEQ ID NO:2 improves the yield of fermentable sugars produced from a cellulosic substrate through the activity of cellulase enzymes (e.g., endoglucanase, beta-glucosidase (BGL), cellobiohydrolase, and combinations of such enzymes; See, FIG. 1). The GH61 variant proteins of this invention have certain amino acid substitutions in relation to SEQ ID NO:2, either alone or in various combinations. GH61 variant proteins that have gone through one round of optimization, when included in a saccharification assay, improve the yield of fermentable sugars in such reactions by at least about 2-fold, about 3-fold, or more, in relation to the improvement in yield when wild-type GH61a (SEQ ID NO:2) is used instead. (See, FIG. 2). After multiple rounds of optimization, the GH61 activity can be improved by a further 1.5-fold, 2-fold, 3-fold or more.

[0052] The GH61 variant proteins of the present invention have important industrial applicability in the processing of cellulosic biomass to produce fermentable sugars, which in turn can be fermented or processed to produce commercially important fermentation products (e.g., "fermentation end-products" or "end-products"), including but not limited to, at least one alcohol, fatty acid, lactic acid, acetic acid, 3-hydroxypropionic acid, acrylic acid, succinic acid, citric acid, malic acid, fumaric acid, amino acid, 1,3-propanediol, ethylene, glycerol, fatty alcohol, butadiene, and/or beta-lactam. In further embodiments, the alcohol is ethanol, butanol, and/or a fatty alcohol. In some embodiments, the fermentation product is ethanol. In some still further embodiments, the fermentation product is a fatty alcohol that is a C8-C20 fatty alcohol. In some embodiments, the fermentation medium comprises at least one product from a saccharification process.

[0053] GH61 proteins, their production and use are generally described in PCT/US11/488700. This application claims priority to U.S. Ser. No. 61/375,788, both of which are incorporated herein by reference in their entirety. Proteins, procedures, and uses described in these applications find use with the GH61 variant proteins of the present invention.

DEFINITIONS

[0054] All patents and publications, including all sequences disclosed within such patents and publications, referred to herein are expressly incorporated by reference. Unless otherwise indicated, the practice of the present invention involves conventional techniques commonly used in molecular biology, fermentation, microbiology, and related fields, which are known to those of skill in the art. Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are described. Indeed, it is intended that the present invention not be limited to the particular methodology, protocols, and reagents described herein, as these may vary, depending upon the context in which they are used. The headings provided herein are not limitations of the various aspects or embodiments of the present invention.

[0055] Nonetheless, in order to facilitate understanding of the present invention, a number of terms are defined below. Numeric ranges are inclusive of the numbers defining the range. Thus, every numerical range disclosed herein is intended to encompass every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein. It is also intended that every maximum (or minimum) numerical limitation disclosed herein includes every lower (or higher) numerical limitation, as if such lower (or higher) numerical limitations were expressly written herein.

[0056] As used herein, the term "comprising" and its cognates are used in their inclusive sense (i.e., equivalent to the term "including" and its corresponding cognates).

[0057] As used herein and in the appended claims, the singular "a", "an" and "the" include the plural reference unless the context clearly dictates otherwise. Thus, for example, reference to a "host cell" includes a plurality of such host cells.

[0058] Unless otherwise indicated, nucleic acids are written left to right in 5' to 3' orientation; amino acid sequences are written left to right in amino to carboxy orientation, respectively. The headings provided herein are not limitations of the various aspects or embodiments of the invention that can be had by reference to the specification as a whole. Accordingly, the terms defined below are more fully defined by reference to the specification as a whole.

[0059] As used herein, the term "produces" refers to the production of proteins (polypeptides) and/or other compounds by cells. It is intended that the term encompass any step involved in the production of polypeptides including, but not limited to, transcription, post-transcriptional modification, translation, and post-translational modification. In some embodiments, the term also encompasses secretion of the polypeptide from a cell.

[0060] As used in this disclosure, the term "GH61 protein" means a protein that has GH61 activity, including GH61 variants and wild-type GH61 enzymes. In some embodiments, the GH61 proteins have been purified from M. thermophila cells, while in other embodiments, they are structurally related to the amino acid sequences shown in Tables 1 and 2. The terms also encompasses species and strain homologs and orthologs comprising protein sequences listed in Tables 1 and 2, as well as variants, and fragments of such sequences (produced using any suitable means known in the art), having GH61 activity.

[0061] As used herein, the terms "variant," "GH61 variant," refer to a GH61 polypeptide or polynucleotide encoding a GH61 polypeptide comprising one or more modifications relative to wild-type GH61 or the wild-type polynucleotide encoding GH61 (such as substitutions, insertions, deletions, and/or truncations of one or more amino acid residues or of one or more specific nucleotides or codons in the polypeptide or polynucleotide, respectively), and biologically active fragments thereof. In some embodiments, the variant is derived from a M. thermophila polypeptide and comprises one or more modifications relative to wild-type M. thermophila GH61 or the wild-type polynucleotide encoding wild-type M. thermophila GH61, or a biologically active fragment thereof. In some embodiments, a "GH61 variant protein" ("GH61 variant polypeptide") of the present invention is a protein that is structurally related to a reference protein comprising SEQ ID NO:2 or a fragment of SEQ ID NO:2 that has GH61 activity, but has one or more amino acid substitutions in relation to the reference protein. In some embodiments, the GH61 variant is a GH61a variant (i.e., a variant of GH61a enzyme). In some embodiments, the GH61 variant polypeptide is a "polypeptide of interest." In some additional embodiments, the GH61 variant polypeptide is encoded by a "polynucleotide of interest."

[0062] The terms "improved" or "improved properties," as used in the context of describing the properties of a GH61 variant, refers to a GH61 variant polypeptide that exhibits an improvement in a property or properties as compared to the wild-type GH61 (e.g., SEQ ID NO:2) or a specified reference polypeptide. Improved properties may include, but are not limited to increased protein expression, increased thermoactivity, increased thermostability, increased pH activity, increased stability (e.g., increased pH stability or pH tolerance at various pH levels), increased product specificity, increased specific activity, increased substrate specificity, increased resistance to substrate or end-product inhibition, increased chemical stability, reduced inhibition by glucose, increased resistance to inhibitors (e.g., acetic acid, lectins, tannic acids, and phenolic compounds), and altered pH/temperature profile.

[0063] The term "biologically active fragment," as used herein, refers to a polypeptide that has an amino-terminal and/or carboxy-terminal deletion and/or internal deletion, but where the remaining amino acid sequence is identical to the corresponding positions in the sequence to which it is being compared (e.g., a full-length GH61 variant of the invention) and that retains substantially all of the activity of the full-length polypeptide. A biologically active fragment can comprise about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, at about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, or about 99% of a full-length GH61 polypeptide.

[0064] A GH61 variant protein of this invention having "increased GH61 activity" has more GH61 activity when that protein is present in a saccharification reaction with a specified substrate and specified cellulase enzyme(s), compared with a saccharification reaction conducted with the same substrate and enzyme(s) under the same conditions in the presence of a reference protein (e.g., including but not limited to wild-type GH61). The increase is determined by measuring the amount of fermentable sugar produced in the reaction in the presence of the GH61 variant protein, in the presence of the reference protein (Positive Control), and in the absence of either protein (Negative Control). The Improvement Over Positive Control (FIOPC) is calculated as ([Glucose production of the GH61 Variant Protein]-[Glucose production of the Negative Control])/([Glucose production of the Positive Control]-[Glucose production of the Negative Control]).

[0065] As used herein, "GH61 activity" is the functional activity of a GH61 protein that results in production of more fermentable sugar from a polysaccharide substrate when the GH61 protein is present in a saccharification reaction, compared with a saccharification reaction conducted under the same conditions in the absence of the GH61 protein.

[0066] A GH61 variant protein of this invention having "increased GH61 thermoactivity" has more GH61 activity in a saccharification reaction conducted at an elevated temperature (about 50.degree. C., about 55.degree. C., about 60.degree. C., or higher) with a specified substrate and specified cellulase enzyme(s), compared with a saccharification reaction conducted under the same conditions in the presence of the reference protein (e.g., including but not limited to wild-type GH61).

[0067] GH61 proteins of this invention may be said to "enhance", "promote", or "facilitate" activity of one or more cellulase enzymes during hydrolysis of sugar polymers (e.g., cellulosic and/or lignocellulosic biomass) such that the enzyme(s) produce(s) more product over a particular time period, hydrolysis proceeds more rapidly, or goes further to completion when the GH61 protein is present, compared with a similar reaction mixture in which the GH61 protein is absent. This invention may be practiced by following GH61 activity in an empirical fashion using assay methods provided in this disclosure, without knowing the mechanism of operation of the GH61 variant protein being used. However, it is not intended that the present invention be limited to any particular assay system and/or method, as any suitable method known in the art finds use.

[0068] The terms "transform" or "transformation," as used in reference to a cell, mean a cell has a non-native nucleic acid sequence integrated into its genome and/or as an episome (e.g., plasmid) that is maintained through multiple generations.

[0069] The term "introduced," as used in the context of inserting a nucleic acid sequence into a cell, means that the nucleic acid has been conjugated, transfected, transduced or transformed (collectively "transformed") or otherwise incorporated into the genome of and/or maintained as an episome in the cell. Thus, the term encompasses transformation, transduction, conjugation, transfection, and/or any other suitable method(s) known in the art for inserting nucleic acid sequences into host cells. Any suitable means for the introduction of nucleic acid into host cells find use in the present invention.

[0070] The terms "percent identity," "% identity", "percent identical", and "% identical" are used interchangeably to refer to a comparison of two optimally aligned sequences over a comparison window. The comparison window may include additions or deletions in either sequence to optimize alignment. The percentage of identity is the number of positions that are identical between the sequences, divided by the total number of positions in the comparison window (including positions where one of the sequences has a gap). For example, a protein with an amino acid sequence that matches at 310 positions a sequence of GH61a (which has 323 amino acids in the secreted form), would have 310/323=95.9% identity to the reference. Similarly, a protein variant that has 300 residues (i.e., less than full-length) and matches the reference sequence at 280 positions would have 280/300=93.3% identity. Computer-implemented alignment algorithms useful in determining the degree of identity are known in the art, including the BLAST and BLAST 2.0 algorithms (See e.g., Altschul et al., J. Mol. Biol., 215: 403-410 [1990]; and Altschul et al., Nucl. Acids Res., 3389-3402 [1977]).

[0071] As used herein, "polynucleotide" refers to a polymer of deoxyribonucleotides or ribonucleotides in either single- or double-stranded form, and complements thereof.

[0072] As used herein, the term "allelic variant" refers to any of two or more (e.g., several) alternative forms of a gene occupying the same chromosomal locus. In some embodiments, allelic variation arises naturally through mutation and results in genetic polymorphism within populations. In some embodiments, gene mutations are silent (i.e., there is no change in the encoded polypeptide), while in some other embodiments the genes encode polypeptides that have altered amino acid sequences. An "allelic variant of a polypeptide" is a polypeptide encoded by an allelic variant of a gene.

[0073] As used herein, "cDNA" refers to a DNA molecule that can be prepared by reverse transcription from a mature, spliced, mRNA molecule obtained from a eukaryotic or prokaryotic cell. cDNA sequences lack intron sequences that may be present in the corresponding genomic DNA. The initial, primary RNA transcript is a precursor to mRNA that is processed through a series of steps, including splicing, before appearing as mature spliced mRNA.

[0074] As used herein, the term "coding sequence" refers to a polynucleotide that directly specifies the amino acid sequence of a polypeptide. The boundaries of the coding sequence are generally determined by an open reading frame, which begins with a start codon (e.g., ATG, GTG, or TTG) and ends with a stop codon (e.g., TAA, TAG, or TGA). In some embodiments, a coding sequence comprises genomic DNA, while in some alternative embodiments, the coding sequence comprises cDNA, synthetic DNA, and/or a combination thereof.

[0075] As used herein, the terms "control sequences" and "regulatory sequences" refer to nucleic acid sequences necessary and/or useful for expression of a polynucleotide encoding a polypeptide. In some embodiments, control sequences are native (i.e., from the same gene) or foreign (i.e., from a different gene) to the polynucleotide encoding the polypeptide. Control sequences include, but are not limited to leaders, polyadenylation sequences, propeptide sequences, promoters, signal peptide sequences, and transcription terminators. In some embodiments, at a minimum, control sequences include a promoter, and transcriptional and translational stop signals. In some embodiments, control sequences are provided with linkers for the purpose of introducing specific restriction sites facilitating ligation of the control sequences with the coding region of the polynucleotide encoding the polypeptide.

[0076] A nucleic acid construct, nucleic acid (e.g., a polynucleotide), polypeptide, or host cell is referred to herein as "recombinant" when it is non-naturally occurring, artificial or engineered. The present invention also provides recombinant nucleic acid constructs comprising at least one GH61 variant polynucleotide sequence that hybridizes under stringent hybridization conditions to the complement of a polynucleotide which encodes a polypeptide comprising the amino acid sequence of any of SEQ ID NOS:2, 3, 5, 6, 8, 9, 11, and/or 12.

[0077] The term "recombinant nucleic acid" has its conventional meaning. A recombinant nucleic acid, or equivalently, "polynucleotide," is one that is inserted into a heterologous location such that it is not associated with nucleotide sequences that normally flank the nucleic acid as it is found in nature (for example, a nucleic acid inserted into a vector or a genome of a heterologous organism). Likewise, a nucleic acid sequence that does not appear in nature, for example a variant of a naturally occurring gene, is recombinant. A cell containing a recombinant nucleic acid, or protein expressed in vitro or in vivo from a recombinant nucleic acid are also "recombinant" Examples of recombinant nucleic acids include a protein-encoding DNA sequence that is (i) operably linked to a heterologous promoter and/or (ii) encodes a fusion polypeptide with a protein sequence and a heterologous signal peptide sequence.

[0078] For purposes of this disclosure, a promoter is "heterologous" to a gene sequence if the promoter is not associated in nature with the gene. A signal peptide is "heterologous" to a protein sequence when the signal peptide sequence is not associated with the protein in nature. In some embodiments, "hybrid promoters" find use. Hybrid promoters are promoters comprising portions of two or more (e.g., several) promoters that are linked together to generate a sequence that is a fusion of the portions of the two or more promoters, which when operably linked to a coding sequence, mediates the transcription of the coding sequence into mRNA.

[0079] In relation to regulatory sequences (e.g., promoters), the term "operably linked" refers to a configuration in which a regulatory sequence is located at a position relative to a polypeptide encoding sequence such that the regulatory sequence influences the expression of the polypeptide. In relation to a signal sequence, the term "operably linked" refers to a configuration in which the signal sequence encodes an amino-terminal signal peptide fused to the polypeptide, such that expression of the gene produces a pre-protein.

[0080] Nucleic acids "hybridize" when they associate, typically in solution. Nucleic acids hybridize due to a variety of well-characterized physico-chemical forces, such as hydrogen bonding, solvent exclusion, base stacking and the like. As used herein, the term "stringent hybridization wash conditions" in the context of nucleic acid hybridization experiments, such as Southern and Northern hybridizations, are sequence dependent, and are different under different environmental parameters. An extensive guide to the hybridization of nucleic acids is found in Tijssen, 1993, "Laboratory Techniques in Biochemistry and Molecular Biology-Hybridization with Nucleic Acid Probes," Part I, Chapter 2 (Elsevier, New York), which is incorporated herein by reference. For polynucleotides of at least 100 nucleotides in length, low to very high stringency conditions are defined as follows: prehybridization and hybridization at 42.degree. C. in 5.times.SSPE, 0.3% SDS, 200 .mu.g/m sheared and denatured salmon sperm DNA, and either 25% formamide for low stringencies, 35% formamide for medium and medium-high stringencies, or 50% formamide for high and very high stringencies, following standard Southern blotting procedures. For polynucleotides of at least 100 nucleotides in length, the carrier material is finally washed three times each for 15 minutes using 2.times.SSC, 0.2% SDS 50.degree. C. (low stringency), at 55.degree. C. (medium stringency), at 60.degree. C. (medium-high stringency), at 65.degree. C. (high stringency), or at 70.degree. C. (very high stringency).

[0081] As used herein, a "vector" and "nucleic acid construct" comprise nucleic acid (e.g., DNA) constructs for introducing a DNA sequence into a cell. In some embodiments, the vector is an expression vector that is operably linked to a suitable control sequence capable of effecting the expression in a suitable host of the polypeptide encoded in the DNA sequence. The term "expression vector" refers to a DNA molecule, linear or circular, that comprises a segment encoding a polypeptide of the invention, and which is operably linked to additional segments that provide for its transcription (e.g., a promoter, a transcription terminator sequence, enhancers, etc.) and optionally a selectable marker.

[0082] As used herein, the term "isolated" refers to a nucleic acid, polypeptide, or other component that is partially or completely separated from components with which it is normally associated in nature. Thus, the term encompasses a substance in a form or environment that does not occur in nature. Non-limiting examples of isolated substances include, but are not limited to: any non-naturally occurring substance; any substance including, but not limited to, any enzyme, variant, polynucleotide, protein, peptide or cofactor, that is at least partially removed from one or more or all of the naturally occurring constituents with which it is associated in nature; any substance modified by the hand of man relative to that substance found in nature; and/or any substance modified by increasing the amount of the substance relative to other components with which it is naturally associated (e.g., multiple copies of a gene encoding the substance; and/or use of a stronger promoter than the promoter naturally associated with the gene encoding the substance). In some embodiments, a polypeptide of interest is used in industrial applications in the form of a fermentation broth product (i.e., the polypeptide is a component of a fermentation broth) used as a product in industrial applications such as ethanol production. In some embodiments, in addition to the polypeptide of interest (e.g., a GH61 variant polypeptide), the fermentation broth product further comprises ingredients used in the fermentation process (e.g., cells, including the host cells containing the gene encoding the polypeptide of interest and/or the polypeptide of interest), cell debris, biomass, fermentation media, and/or fermentation products. In some embodiments, the fermentation broth is optionally subjected to one or more purification steps (e.g., filtration) to remove or reduce at least one components of a fermentation process. Accordingly, in some embodiments, an isolated substance is present in such a fermentation broth product.

[0083] As used herein, the terms "peptide," "polypeptide," and "protein" are used interchangeably herein to refer to a polymer of amino acid residues.

[0084] As used herein, the term "amino acid" refers to naturally occurring and synthetic amino acids, as well as amino acid analogs. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified (e.g., hydroxyproline, .gamma.-carboxyglutamate, and O-phosphoserine) Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, (i.e., an .alpha.-carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, such as homoserine, norleucine, methionine sulfoxide, and methionine methyl sulfonium). Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid.

[0085] An "amino acid substitution" in a protein sequence is replacement of a single amino acid within that sequence with another amino acid. Unless indicated otherwise, variant GH61 proteins of this invention have substitutions as specifically indicated. In some embodiments, the variant GH61 proteins of the present invention also have other substitutions and/or alterations at any position in any combination with the substitutions specifically indicated.

[0086] Amino acids are referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.

[0087] An amino acid or nucleotide base "position" is denoted by a number that sequentially identifies each amino acid (or nucleotide base) in the reference sequence based on its position relative to the N-terminus (or 5'-end). Due to deletions, insertions, truncations, fusions, and the like that must be taken into account when determining an optimal alignment, the amino acid residue number in a test sequence determined by simply counting from the N-terminus will not necessarily be the same as the number of its corresponding position in the reference sequence. For example, in a case where a test sequence has a deletion relative to an aligned reference sequence, there will be no amino acid in the variant that corresponds to a position in the reference sequence at the site of deletion. Where there is an insertion in an aligned reference sequence, that insertion will not correspond to a numbered amino acid position in the reference sequence. In the case of truncations or fusions there can be stretches of amino acids in either the reference or aligned sequence that do not correspond to any amino acid in the corresponding sequence.

[0088] As used herein, the terms "numbered with reference to" or "corresponding to," when used in the context of the numbering of a given amino acid or polynucleotide sequence, refers to the numbering of the residues of a specified reference sequence when the given amino acid or polynucleotide sequence is compared to the reference sequence.

[0089] As used herein, the term "reference enzyme" refers to an enzyme to which another enzyme of the present invention (e.g., a "test" enzyme) is compared in order to determine the presence of an improved property in the other enzyme being evaluated. In some embodiments, a reference enzyme is a wild-type enzyme (e.g., wild-type GH61). In some embodiments, the reference enzyme is an enzyme with which a test enzyme of the present invention is compared in order to determine the presence of an improved property in the test enzyme being evaluated, including but not limited to improved thermoactivity, improved thermostability, improved activity, and/or improved stability. In some embodiments, a reference enzyme is a wild-type enzyme (e.g., wild-type GH61).

[0090] Amino acid substitutions in a GH61 protein are referred to in this disclosure using the following notation: The single-letter abbreviation for the amino acid being substituted; its position in the reference sequence (e.g., the wild-type "parental sequence" set forth in SEQ ID NO:2); and the single-letter abbreviation for the amino acid that replaces it. Thus, the following nomenclature is used herein to describe substitutions in a reference sequence relative to a reference sequence or a variant polypeptide or nucleic acid sequence: "R-#-V," where # refers to the position in the reference sequence, R refers to the amino acid (or base) at that position in the reference sequence, and V refers to the amino acid (or base) at that position in the variant sequence. In some embodiments, an amino acid (or base) may be called "X," by which is meant any amino acid (or base). As a non-limiting example, for a variant polypeptide described with reference to a wild-type GH61 polypeptide (e.g., SEQ ID NO:2), "N35G" indicates that in the variant polypeptide, the asparagine at position 35 of the reference sequence is replaced by glycine, with amino acid position being determined by optimal alignment of the variant sequence with SEQ ID NO:2. Similarly, "H20C/D" describes two variants: a variant in which the histidine at position 20 of the reference sequence is replaced by cysteine and a variant in which the serine at position 20 of the reference sequence is replaced by aspartic acid. In the example "W141X" indicates that the tryptophan at position 131 has been replaced with any amino acid.

[0091] As used herein in reference to nucleotide and amino acid sequences, the term "mutation" refers to any change in the sequence, as compared to a reference nucleotide or amino acid sequence, including but not limited to substitutions, deletions, additions, truncations, modifications, etc. Indeed, it is intended that any change in a reference (or "parent" or "starting") nucleotide or amino acid sequence comprises a mutation in the sequence.

[0092] As used herein, the terms "amino acid mutation set", "mutation set" when used in the context of amino acid sequences (e.g., polypeptides) refer to a group of amino acid substitutions, insertions, deletions and/or other modifications to the sequence. In some embodiments, "mutation set" refers to the nucleic acid mutation sets present in some of the GH61 variants provided in Table 1 and Table 2.

[0093] The term "amino acid substitution set," "substitution set," and "combination of amino acid substitutions" refer to a group (i.e., set of combinations) of amino acid substitutions. A substitution set can have about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or more amino acid substitutions. In some embodiments, a substitution set refers to the set of amino acid substitutions that is present in any of the variant GH61 enzymes provided herein.

[0094] As used herein, the terms "nucleic acid substitution set" and "substitution set" when used in the context of nucleotide sequences (e.g., polynucleotides) refer to a group of nucleic acid substitutions. In some embodiments, mutation set refers to the nucleic acid substitution sets present in some of the variant GH61 proteins provided in Table 1 and Table 2.

[0095] As used herein, the terms "nucleic acid mutation set" and "mutation set" when used in the context of nucleotide sequences (e.g., polynucleotides) refer to a group of nucleic acid substitutions, insertions, deletions, and/or other modifications to the sequence. In some embodiments, "mutation set" refers to the amino acid mutation sets present in some of the GH61 variants provided in Table 1 and Table 2.

[0096] A "cellulase-engineered" cell is a cell comprising at least one, at least two, at least three, or at least four recombinant sequences encoding a cellulase or cellulase variant, and in which expression of the cellulase(s) or cellulase variant(s) has been modified relative to the wild-type form. Expression of a cellulase is "modified" when a non-naturally occurring cellulase variant is expressed or when a naturally occurring cellulase is over-expressed. One exemplary means to over-express a cellulase is to operably link a strong (optionally constitutive) promoter to the cellulase encoding sequence. Another exemplary way to over-express a cellulase is to increase the copy number of a heterologous, variant, or endogenous cellulase gene. The cellulase-engineered cell may be any suitable fungal cell, including, but not limited to Myceliophthora, Trichoderma, Aspergillus, cells, etc.

[0097] As used herein, the terms "host cell" and "host strain" refer to suitable hosts for expression vectors comprising DNA provided herein. In some embodiments, the host cells are prokaryotic or eukaryotic cells that have been transformed or transfected with vectors constructed using recombinant DNA techniques as known in the art. Transformed hosts are capable of either replicating vectors encoding at least one protein of interest and/or expressing the desired protein of interest. In addition, reference to a cell of a particular strain refers to a parental cell of the strain as well as progeny and genetically modified derivatives. Genetically modified derivatives of a parental cell include progeny cells that contain a modified genome or episomal plasmids that confer for example, antibiotic resistance, improved fermentation, etc. In some embodiments, host cells are genetically modified to have characteristics that improve protein secretion, protein stability or other properties desirable for expression and/or secretion of a protein. For example, knockout of Alp1 function results in a cell that is protease deficient. Knockout of pyr5 function results in a cell with a pyrimidine deficient phenotype. In some embodiments, host cells are modified to delete endogenous cellulase protein-encoding sequences or otherwise eliminate expression of one or more endogenous cellulases. In some embodiments, expression of one or more endogenous cellulases is inhibited to increase production of cellulases of interest. Genetic modification can be achieved by any suitable genetic engineering techniques and/or classical microbiological techniques (e.g., chemical or UV mutagenesis and subsequent selection). Using recombinant technology, nucleic acid molecules can be introduced, deleted, inhibited or modified, in a manner that results in increased yields of GH61 variant(s) within the organism or in the culture. For example, knockout of Alp1 function results in a cell that is protease deficient. Knockout of pyr5 function results in a cell with a pyrimidine deficient phenotype. In some genetic engineering approaches, homologous recombination is used to induce targeted gene modifications by specifically targeting a gene in vivo to suppress expression of the encoded protein. In an alternative approach, siRNA, antisense, and/or ribozyme technology finds use in inhibiting gene expression.

[0098] As used herein, the term "C1" refers to strains of Myceliophthora thermophila, including the fungal strain described by Garg (See, Garg, Mycopathol., 30: 3-4 [1966]). As used herein, "Chrysosporium lucknowense" includes the strains described in U.S. Pat. Nos. 6,015,707, 5,811,381 and 6,573,086; US Pat. Pub. Nos. 2007/0238155, US 2008/0194005, US 2009/0099079; International Pat. Pub. Nos., WO 2008/073914 and WO 98/15633, all of which are incorporated herein by reference, and include, without limitation, Chrysosporium lucknowense Garg 27K, VKM-F 3500 D (Accession No. VKM F-3500-D), C1 strain UV13-6 (Accession No. VKM F-3632 D), C1 strain NG7C-19 (Accession No. VKM F-3633 D), and C1 strain UV18-25 (VKM F-3631 D), all of which have been deposited at the All-Russian Collection of Microorganisms of Russian Academy of Sciences (VKM), Bakhurhina St. 8, Moscow, Russia, 113184, and any derivatives thereof. Although initially described as Chrysosporium lucknowense, C1 may currently be considered a strain of Myceliophthora thermophila. Other C1 strains include cells deposited under accession numbers ATCC 44006, CBS (Centraalbureau voor Schimmelcultures) 122188, CBS 251.72, CBS 143.77, CBS 272.77, CBS122190, CBS122189, and VKM F-3500D. Exemplary C1 derivatives include but are not limited to modified organisms in which one or more endogenous genes or sequences have been deleted or modified and/or one or more heterologous genes or sequences have been introduced. Derivatives include, but are not limited to UV18#100f .DELTA.alp1, UV18#100f .DELTA.pyr5 .DELTA.alp1, UV18#100.f .DELTA.alp1 .DELTA.pep4 .DELTA.alp2, UV18#100.f .DELTA.pyr5 .DELTA.alp1 .DELTA.pep4 .DELTA.alp2 and UV18#100.f .DELTA.pyr4 .DELTA.pyr5 .DELTA.aIp1 .DELTA.pep4 .DELTA.alp2, as described in WO2008073914 and WO2010107303, each of which is incorporated herein by reference.

[0099] As used herein, the term "culturing" refers to growing a population of microbial cells under suitable conditions in a liquid, semi-solid, or solid medium.

[0100] In general, "saccharification" refers to the process in which substrates (e.g., cellulosic biomass and/or lignocellulosic biomass) are broken down via the action of cellulases to produce fermentable sugars (e.g. monosaccharides, including but not limited to glucose and/or xylose). In particular, "saccharification" is an enzyme-catalyzed reaction that results in hydrolysis of a complex carbohydrate to produce shorter-chain carbohydrate polymers and/or fermentable sugar(s) that are more suitable for fermentation or further hydrolysis. In some embodiments, the enzymes comprise cellulase enzyme(s) such as endoglucanases, beta-glucosidases, cellobiohydrolases (e.g., CBH1 and/or CBH1), a synthetic mixture of any of such enzymes, and/or cellulase enzymes contained in culture broth from an organism that produces cellulase enzymes, such as M. thermophila or recombinant yeast cells. Products of saccharification may include disaccharides, and/or monosaccharides such as glucose or xylose.

[0101] In some embodiments, the fermentable sugars produced by the methods of the present invention are used to produce an alcohol (e.g., including but not limited to ethanol, butanol, etc.). The variant GH61 proteins of the present invention find use in any suitable method to generate alcohols and/or other biofuels from cellulose and/or lignocellulose, and are not limited necessarily to those described herein. Two methods commonly employed are the separate saccharification and fermentation (SHF) method (See, Wilke et al., Biotechnol. Bioengin. 6:155-75 [1976]) or the simultaneous saccharification and fermentation (SSF) method (See e.g., U.S. Pat. Nos. 3,990,944 and 3,990,945). An additional method that finds use with the present invention is consolidated bioprocessing (CBP), which encompasses the combination of the biological steps used in the conversion of lignocellulosic biomass to bioethanol (e.g., production of cellulase(s), hydrolysis of the polysaccharides in the biomass, and fermentation of hexose and pentose sugars) in one reactor (See e.g., Vertes et al., Biomass to Biofuels: Strategies for Global Industries, John Wiley & Sons, Ltd., [2010], Hoboken, N.J., pp. 324-325).

[0102] The SHF method of saccharification comprises the steps of contacting cellulase with a cellulose-containing substrate to enzymatically break down cellulose into fermentable sugars (e.g., monosaccharides such as glucose), contacting the fermentable sugars with an alcohol-producing microorganism to produce alcohol (e.g., ethanol or butanol) and recovering the alcohol. In some embodiments, the method of consolidated bioprocessing (CBP) can be used, in which the cellulase production from the host is simultaneous with saccharification and fermentation either from one host or from a mixed cultivation.

[0103] In addition to SHF methods, a SSF method may be used. In some cases, SSF methods result in a higher efficiency of alcohol production than is afforded by the SHF method (See e.g., Drissen et al., Biocat. Biotransform., 27:27-35 [2009]). One disadvantage of SSF over SHF is that higher temperatures are required for SSF than for SHF. In some embodiments, the present invention provides GH61 polypeptides that have higher thermostability than a wild-type GH61 s. Thus, it is contemplated that the present invention will find use in increasing ethanol production in SSF, as well as SHF methods.

[0104] As used herein "fermentable sugars" refers to fermentable sugars (e.g., monosaccharides, disaccharides and short oligosaccharides), including but not limited to glucose, xylose, galactose, arabinose, mannose and sucrose. In general, the term "fermentable sugar" refers to any sugar that a microorganism can utilize or ferment.

[0105] As used herein, the terms "adjunct material," "adjunct composition," and "adjunct compound" refer to any composition suitable for use in the compositions and/or saccharification reactions provided herein, including but not limited to cofactors, surfactants, builders, buffers, enzyme stabilizing systems, chelants, dispersants, colorants, preservatives, antioxidants, solublizing agents, carriers, processing aids, pH control agents, etc. In some embodiments, divalent metal cations are used to supplement saccharification reactions and/or the growth of host cells producing GH61 variant proteins. Any suitable divalent metal cation finds use in the present invention, including but not limited to Cu.sup.++, Mn.sup.++, Co.sup.++, Mg.sup.++, Ni.sup.++, Zn.sup.++, and Ca.sup.++. In addition, any suitable combination of divalent metal cations finds use in the present invention. Furthermore, divalent metal cations find use from any suitable source.

[0106] In some embodiments, the host cells producing GH61 variant proteins of the present invention are grown under culture conditions comprising about pH 5, while in some other embodiments, the host cells are grown at about pH 6.7. In some embodiments, the host cells cultured at pH 5 provide improved saccharification in the presence of supplemented copper, when saccharification is conducted at about pH 5 or about pH 6.7. In some alternative embodiments, the host cells cultured at about pH 6.7 provide improved saccharification in the absence of supplemented copper when saccharification is conducted at about pH 5 or about pH 6.

[0107] As used herein, the terms "biomass," "biomass substrate," "cellulosic biomass," "cellulosic feedstock," and "cellulosic substrate" refer to any materials that contain cellulose. Biomass can be derived from plants, animals, or microorganisms, and may include, but is not limited to agricultural, industrial, and forestry residues, industrial and municipal wastes, and terrestrial and aquatic crops grown for energy purposes. Examples of cellulosic substrates include, but are not limited to, wood, wood pulp, paper pulp, corn fiber, corn grain, corn cobs, crop residues such as corn husks, corn stover, grasses, wheat, wheat straw, barley, barley straw, hay, rice, rice straw, switchgrass, waste paper, paper and pulp processing waste, woody or herbaceous plants, fruit or vegetable pulp, corn cobs, distillers grain, grasses, rice hulls, cotton, hemp, flax, sisal, sugar cane bagasse, sorghum, soy, switchgrass, components obtained from milling of grains, trees, branches, roots, leaves, wood chips, sawdust, shrubs and bushes, vegetables, fruits, and flowers and any suitable mixtures thereofn some embodiments, the cellulosic biomass comprises, but is not limited to cultivated crops (e.g., grasses, including C4 grasses, such as switch grass, cord grass, rye grass, miscanthus, reed canary grass, or any combination thereof), sugar processing residues, for example, but not limited to, bagasse (e.g., sugar cane bagasse, beet pulp [e.g., sugar beet], or a combination thereof), agricultural residues (e.g. soybean stover, corn stover, corn fiber, rice straw, sugar cane straw, rice, rice hulls, barley straw, corn cobs, wheat straw, canola straw, oat straw, oat hulls, corn fiber, hemp, flax, sisal, cotton, or any combination thereof), fruit pulp, vegetable pulp, distillers' grains, forestry biomass (e.g., wood, wood pulp, paper pulp, recycled wood pulp fiber, sawdust, hardwood, such as aspen wood, softwood, or a combination thereof). Furthermore, in some embodiments, the cellulosic biomass comprises cellulosic waste material and/or forestry waste materials, including but not limited to, paper and pulp processing waste, newsprint, cardboard and the like. In some embodiments, the cellulosic biomass comprises one species of fiber, while in some alternative embodiments, the cellulosic biomass comprises a mixture of fibers that originate from different cellulosic biomasses. In some embodiments, the biomass may also comprise transgenic plants that express ligninase and/or cellulase enzymes (US 2008/0104724 A1).

[0108] The terms "lignocellulosic biomass" and "lignocellulosic feedstock" refer to plant biomass that is composed of cellulose and hemicellulose, bound to lignin. The biomass may optionally be pretreated to increase the susceptibility of cellulose to hydrolysis by chemical, physical and biological pretreatments (such as steam explosion, pulping, grinding, acid hydrolysis, solvent exposure, and the like, as well as combinations thereof). Various lignocellulosic feedstocks find use, including those that comprise fresh lignocellulosic feedstock, partially dried lignocellulosic feedstock, fully dried lignocellulosic feedstock, and/or any combination thereof. In some embodiments, lignocellulosic feedstocks comprise cellulose in an amount greater than about 20%, more preferably greater than about 30%, more preferably greater than about 40% (w/w). For example, in some embodiments, the lignocellulosic material comprises from about 20% to about 90% (w/w) cellulose, or any amount therebetween, although in some embodiments, the lignocellulosic material comprises less than about 19%, less than about 18%, less than about 17%, less than about 16%, less than about 15%, less than about 14%, less than about 13%, less than about 12%, less than about 11%, less than about 10%, less than about 9%, less than about 8%, less than about 7%, less than about 6%, or less than about 5% cellulose (w/w).

[0109] Furthermore, in some embodiments, the lignocellulosic feedstock comprises lignin in an amount greater than about 10%, more typically in an amount greater than about 15% (w/w). In some embodiments, the lignocellulosic feedstock comprises small amounts of sucrose, fructose and/or starch. The lignocellulosic feedstock is generally first subjected to size reduction by methods including, but not limited to, milling, grinding, agitation, shredding, compression/expansion, or other types of mechanical action. Size reduction by mechanical action can be performed by any type of equipment adapted for the purpose, for example, but not limited to, hammer mills, tub-grinders, roll presses, refiners and hydrapulpers. In some embodiments, at least 90% by weight of the particles produced from the size reduction have lengths less than between about 1/16 and about 4 in (the measurement may be a volume or a weight average length). In some embodiments, the equipment used to reduce the particle size reduction is a hammer mill or shredder. Subsequent to size reduction, the feedstock is typically slurried in water, as this facilitates pumping of the feedstock. In some embodiments, lignocellulosic feedstocks of particle size less than about 6 inches do not require size reduction.

[0110] As used herein, the term "pretreated lignocellulosic feedstock," refers to lignocellulosic feedstocks that have been subjected to physical and/or chemical processes to make the fiber more accessible and/or receptive to the actions of cellulolytic enzymes, as described above.

[0111] A cellulosic substrate or lignocellulosic substrate is said to be "pretreated" when it has been processed by some physical and/or chemical means to facilitate saccharification. As described further herein, in some embodiments, the biomass substrate is "pretreated," or treated using methods known in the art, such as chemical pretreatment (e.g., ammonia pretreatment, dilute acid pretreatment, dilute alkali pretreatment, or solvent exposure), physical pretreatment (e.g., steam explosion or irradiation), mechanical pretreatment (e.g., grinding or milling) and biological pretreatment (e.g., application of lignin-solubilizing microorganisms) and combinations thereof, to increase the susceptibility of cellulose to hydrolysis. Thus, the term "cellulosic biomass" encompasses any living or dead biological material that contains a polysaccharide substrate, including but not limited to cellulose, starch, other forms of long-chain carbohydrate polymers, and mixtures of such sources. It may or may not be assembled entirely or primarily from glucose or xylose, and may optionally also contain various other pentose or hexose monomers. Xylose is an aldopentose containing five carbon atoms and an aldehyde group. It is the precursor to hemicellulose, and is often a main constituent of biomass. In some embodiments, the substrate is slurried prior to pretreatment. In some embodiments, the consistency of the slurry is between about 2% and about 30% and more typically between about 4% and about 15%. In some embodiments, the slurry is subjected to a water and/or acid soaking operation prior to pretreatment. In some embodiments, the slurry is dewatered using any suitable method to reduce steam and chemical usage prior to pretreatment. Examples of dewatering devices include, but are not limited to pressurized screw presses (See e.g., WO 2010/022511, incorporated herein by reference) pressurized filters and extruders.

[0112] In some embodiments, the pretreatment is carried out to hydrolyze hemicellulose, and/or a portion thereof present in the cellulosic substrate to monomeric pentose and hexose sugars (e.g., xylose, arabinose, mannose, galactose, and/or any combination thereof). In some embodiments, the pretreatment is carried out so that nearly complete hydrolysis of the hemicellulose and a small amount of conversion of cellulose to glucose occurs. In some embodiments, an acid concentration in the aqueous slurry from about 0.02% (w/w) to about 2% (w/w), or any amount therebetween, is typically used for the treatment of the cellulosic substrate. Any suitable acid finds use in these methods, including but not limited to, hydrochloric acid, nitric acid, and/or sulfuric acid. In some embodiments, the acid used during pretreatment is sulfuric acid. Steam explosion is one method of performing acid pretreatment of biomass substrates (See e.g., U.S. Pat. No. 4,461,648). Another method of pretreating the slurry involves continuous pretreatment (i.e., the cellulosic biomass is pumped though a reactor continuously). This methods are well-known to those skilled in the art (See e.g., U.S. Pat. No. 7,754,457).

[0113] In some embodiments, alkali is used in the pretreatment. In contrast to acid pretreatment, pretreatment with alkali may not hydrolyze the hemicellulose component of the biomass. Rather, the alkali reacts with acidic groups present on the hemicellulose to open up the surface of the substrate. In some embodiments, the addition of alkali alters the crystal structure of the cellulose so that it is more amenable to hydrolysis. Examples of alkali that find use in the pretreatment include, but are not limited to ammonia, ammonium hydroxide, potassium hydroxide, and sodium hydroxide. One method of alkali pretreatment is Ammonia Freeze Explosion, Ammonia Fiber Explosion or Ammonia Fiber Expansion ("AFEX" process; See e.g., U.S. Pat. Nos. 5,171,592; 5,037,663; 4,600,590; 6,106,888; 4,356,196; 5,939,544; 6,176,176; 5,037,663 and 5,171,592). During this process, the cellulosic substrate is contacted with ammonia or ammonium hydroxide in a pressure vessel for a sufficient time to enable the ammonia or ammonium hydroxide to alter the crystal structure of the cellulose fibers. The pressure is then rapidly reduced, which allows the ammonia to flash or boil and explode the cellulose fiber structure. In some embodiments, the flashed ammonia is then recovered using methods known in the art. In some alternative methods, dilute ammonia pretreatment is utilized. The dilute ammonia pretreatment method utilizes more dilute solutions of ammonia or ammonium hydroxide than AFEX (See e.g., WO2009/045651 and US 2007/0031953). This pretreatment process may or may not produce any monosaccharides.

[0114] Additional pretreatment processes for use in the present invention include chemical treatment of the cellulosic substrate with organic solvents, in methods such as those utilizing organic liquids in pretreatment systems (See e.g., U.S. Pat. No. 4,556,430; incorporated herein by reference). These methods have the advantage that the low boiling point liquids easily can be recovered and reused. Other pretreatments, such as the Organosolv.TM. process, also use organic liquids (See e.g., U.S. Pat. No. 7,465,791, which is also incorporated herein by reference). Subjecting the substrate to pressurized water may also be a suitable pretreatment method (See e.g., Weil et al., Appl. Biochem. Biotechnol., 68(1-2): 21-40 [1997], which is incorporated herein by reference). In some embodiments, the pretreated cellulosic biomass is processed after pretreatment by any of several steps, such as dilution with water, washing with water, buffering, filtration, or centrifugation, or any combination of these processes, prior to enzymatic hydrolysis, as is familiar to those skilled in the art. The pretreatment produces a pretreated feedstock composition (e.g., a "pretreated feedstock slurry") that contains a soluble component including the sugars resulting from hydrolysis of the hemicellulose, optionally acetic acid and other inhibitors, and solids including unhydrolyzed feedstock and lignin. In some embodiments, the soluble components of the pretreated feedstock composition are separated from the solids to produce a soluble fraction.

[0115] In some embodiments, the soluble fraction, including the sugars released during pretreatment and other soluble components (e.g., inhibitors), is then sent to fermentation. However, in some embodiments in which the hemicellulose is not effectively hydrolyzed during the pretreatment one or more additional steps are included (e.g., a further hydrolysis step(s) and/or enzymatic treatment step(s) and/or further alkali and/or acid treatment) to produce fermentable sugars. In some embodiments, the separation is carried out by washing the pretreated feedstock composition with an aqueous solution to produce a wash stream and a solids stream comprising the unhydrolyzed, pretreated feedstock. Alternatively, the soluble component is separated from the solids by subjecting the pretreated feedstock composition to a solids-liquid separation, using any suitable method (e.g., centrifugation, microfiltration, plate and frame filtration, cross-flow filtration, pressure filtration, vacuum filtration, etc.). Optionally, in some embodiments, a washing step is incorporated into the solids-liquids separation. In some embodiments, the separated solids containing cellulose, then undergo enzymatic hydrolysis with cellulase enzymes in order to convert the cellulose to glucose. In some embodiments, the pretreated feedstock composition is fed into the fermentation process without separation of the solids contained therein. In some embodiments, the unhydrolyzed solids are subjected to enzymatic hydrolysis with cellulase enzymes to convert the cellulose to glucose after the fermentation process. In some embodiments, the pretreated cellulosic feedstock is subjected to enzymatic hydrolysis with cellulase enzymes.

[0116] As used herein, the term "recovered" refers to the harvesting, isolating, collecting, or recovering of protein from a cell and/or culture medium. In the context of saccharification, it is used in reference to the harvesting the fermentable sugars produced during the saccharification reaction from the culture medium and/or cells. In the context of fermentation, it is used in reference to harvesting the fermentation product from the culture medium and/or cells. Thus, a process can be said to comprise "recovering" a product of a reaction (such as a soluble sugar recovered from saccharification) if the process includes separating the product from other components of a reaction mixture subsequent to at least some of the product being generated in the reaction.

[0117] As used herein, the term "slurry" refers to an aqueous solution in which are dispersed one or more solid components, such as a cellulosic substrate.

[0118] "Increasing" yield of a product (such as a fermentable sugar) from a reaction occurs when a particular component present during the reaction (such as a GH61 protein) causes more product to be produced, compared with a reaction conducted under the same conditions with the same substrate and other substituents, but in the absence of the component of interest.

[0119] "Hydrolyzing" cellulose or other polysaccharide occurs when at least some of the glycosidic bonds between two monosaccharides present in the substrate are hydrolyzed, thereby detaching from each other the two monomers that were previously bonded.

[0120] A reaction is said to be "substantially free" of a particular enzyme if the amount of that enzyme compared with other enzymes that participate in catalyzing the reaction is less than about 2%, about 1%, or about 0.1% (wt/wt).

[0121] "Fractionating" a liquid (e.g., a culture broth) means applying a separation process (e.g., salt precipitation, column chromatography, size exclusion, and filtration) or a combination of such processes to provide a solution in which a desired protein (e.g., GH61 protein, cellulase enzyme, or combination thereof) comprises a greater percentage of total protein in the solution than in the initial liquid product.

GH61 Variant Proteins with Improved Activity

[0122] GH61 variant proteins of the present invention have certain amino acid substitutions in relation to wild-type GH61a protein. In saccharification reactions, wild-type GH61a protein increases the yield of fermentable sugars. An equivalent amount of GH61 variant proteins instead of the wild type increases the yield of fermentable sugars still further. The present invention provides numerous GH61 variants, as indicated herein. Substitutions that have been shown to improve GH61 activity are included in Table 1, below.

TABLE-US-00001 TABLE 1 GH61 Variants with Improved Activity Silent Var. Amino Acid Nucleotide No. Changes Changes 1 N35G/E104H/A168P t60c/c573g (SEQ ID NO: 5) 2 W42P/E104H/K167A t60c/c573g/ g1026a 3 N35G/W42P/V97Q/ A191N 4 W42P/E104H c573g 5 E104H/K167A t60c/c291a/ c573g 6 W42P/A191N t60c/c291a 7 N35G/W42P/A191N t60c/c291a 8 H20D 9 V97Q/A191N 10 N35G/E104H/A191N t60c/c876t 11 E104H 12 E104Q 13 H20D/E104D/Q190H/ Y192H 14 H20D/Q190E/Y192Q a312g 15 H20D/E104C 16 H20D/P103H/E104C 17 H20D/P103H a312g 18 N35G/E104H t60c/c573g 19 H20D/P103H/E104Q/ Q190E 20 H20D/P103H/E104C/ Y192Q 21 E104D t60c 22 N35G/W42P t60c/c573g 23 A137P 24 H20D/P103H/E104Q 25 P103E/E104D t60c 26 N35G/F68Y/A191N t379a/c380g/ g381c 27 W42P/A168P 28 H20D/E104C/Q190E/ Y192Q 29 A142W 30 N35G 31 H20C/Q190E 32 W42P/A212P/T236P 33 N35G/W42P/V97Q/ t60c/c573g K167A/ A168P 34 V97Q/A168P c573g 35 S232A 36 W42P/E104H/K167A/ c573g A168P/Q190E 37 W42P/A168P/A212P/ T236P 38 N35G/V97Q/K167A 39 N35G/V97Q 40 N35G/A191N 41 S127T/K167A/ A191N 42 W42P 43 W42P/E104C/K167A/ t60c/c291a/ A168P c573g 44 K167Q 45 W131V 46 E176C 47 K167I/P273S c300t 48 W42P/T87P 49 W42P/A212P 50 K133H 51 D165N 52 D165A 53 A168D 54 K218T 55 P45T 56 Q44V 57 S164W 58 I177F 59 A191N 60 I134P 61 K133F 62 I134D 63 N35G/K167A t60c/c291a/ c573g 64 I162R 65 N35G/K167A t204c/t379a c380g/ g381c/c385t 66 D165W/A246T 67 I162L 68 S164M 69 F132D/A244D 70 H181Q 71 I177G g1026a 72 L166W 73 I162F 74 I134V 75 E176Q 76 H181S 77 I178A 78 K167A 79 V172K 80 I177H 81 I134N 82 K133Y 83 N35G/Y139L 84 A168G 85 T12A/I162G c246t 86 D165E 87 D165M 88 I134M 89 A168P 90 I177D 91 S164P 92 H175T 93 N187K/S330R c597g 94 H175R 95 L166H 96 I178L 97 L173H 98 I177T 99 N170Y 100 H175S 101 K167T 102 L166R 103 V172Y '104 P163S/E176D 105 S164I 106 H175M 107 A168N 108 A179W 109 W131K/H175Q g1026a 110 Y171A 111 N170H 112 P163R 113 A168C 114 G169T 115 R174F 116 W131Y 117 I134L 118 I177V 119 K167E 120 H175C 121 W131I 122 W42P/A143P 123 I178G c72t 124 N170P 125 A179D/N317K c732g/c843t/ c882t/c909t/ c912g 126 I162V 127 I178M 128 V172A 129 K167A/A191N t60c/c291a 130 F132A 131 P163E 132 F132M 133 A179G 134 I177S 135 K167A g921a 136 K167F 137 A168I 138 A179N 139 I134A c792t 140 K167E g972t 141 R174K 142 S164F 143 V172L 144 A168H 145 I134T 146 K167H 147 L166A 148 S164R 149 R174C 150 A179P 151 G169R g1026a 152 L173M 153 D165K 154 E176S 155 F132L 156 F132I/A179I 157 F132P 158 S164Q 159 V172Q 160 W131D 161 W131Q 162 A179H 163 I134H/G270S 164 N170G 165 A168T 166 A179C 167 K133N 168 K167L 169 L180M 170 W131F 171 I134W g1026a 172 I178H 173 N170A 174 V172H 175 A168H/S205N 176 I134H g921a 177 S164C 178 S164K 179 I177C 180 I178Q 181 L180W 182 I177M 183 R174D 184 V172M 185 A179M 186 H175Y 187 I178P 188 L173A 189 N170E 190 N170F 191 N35G/A191N/T258I/ t379a/c380g/ T323P/ g381c/ G328A/C341R c454a/c456a/ c732t/c843t/ c849t 192 A168R 193 D165I 194 I162M 195 K167V 196 A179S 197 E176N 198 I134L/P322L 199 P163L 200 H181D 201 N170S 202 R174G 203 I177R 204 K167C 205 L166Q 206 P163I 207 S164L/L166I 208 Y171R 209 F132P/Q190E/A191T 210 F132Q 211 I134C 212 I177A 213 E176R 214 G169A 215 G169K 216 H181A 217 I177L 218 A168G 219 A179R

220 D165T 221 K167R 222 L166V 223 N170C 224 I178R 225 R174H 226 S164H 227 W131R/L166I 228 I162A/A191T 229 L173F 230 N170Q 231 I177P 232 R174N 233 V172K/S215W 234 D165R 235 G239D c520a/c522g 236 H175V 237 H181R 238 I134Y 239 V172F 240 V172G

[0123] Positions that were changed in variants with improved GH61 activity listed in Table 1 include 20, 34, 35, 42, 44, 45, 68, 87, 97, 103, 104, 127, 131, 132, 133, 137, 139, 142, 143, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 190, 191, 192, 192, 205, 212, 215, 218, 232, 236, 239, 244, 246, 258, 270, 273, 317, 322, 323, 328, 330, and 341, wherein the amino acid positions are numbered with reference to SEQ ID NO:2.

[0124] Residues that were changed in variants with improved GH61 activity listed in Table 1 include H20, I134, N35, W42, Q44, P45, F68, T87, V97, P103, E104, S127, W131, F132, K133, A137, Y139, A142, A143, I162, P163, S164, D165, L166, K167, A168, G169, N170, Y171, V172, L173, R174, H175, E176, I177, I178, A179, L180, H181, Q190, A191, Y192, Y192, S205, A212, S215, K218, S232, T236, G239, A244, A246, T258, G270, P273, N317, P322, T323, G328, S330, and C341, wherein the amino acid positions are numbered with reference to SEQ ID NO:2.

[0125] Substitutions occurring in variants with improved GH61 activity listed in Table 1 include H20C/D, I134X, N35G, W42P, Q44V, P45T, F68Y, T87P, V97Q, P103E/H, E104C/D/H/Q, S127T, W131X, F132X, K133X, A137P, Y139L, A142W, A143P, I162X, P163X, S164X, D165X, L166X, K167A/X, A168P/X, G169X, N170X, Y171A/R, V172X, L173X, R174X, H175X, E176X, I177X, I178X, A179X, L180M/W, H181X, Q190E/H, A191N/T, Y192H, Y192Q, S205N, A212P, S215W, K218T, S232A, T236P, G239D, A244D, A246T, T258I, G270S, P273S, N317K, P322L, T323P, G328A, S330R, and C341R, wherein the amino acid positions are numbered with reference to SEQ ID NO:2.

[0126] As shown herein, the changed residues and substitutions of the GH61 variants of this invention may be combined in a manner that produces an effect that is cumulative or synergistic. Cumulative effects occur when adding an additional mutation increases the effect beyond those of the mutations already present. Synergistic effects occur when having two more mutations in a variant produces an effect than is more than the product of the mutations when incorporated by themselves. This invention includes without limitation any and all combinations of any two, three, four, five, six, seven, eight, nine, ten, or more than ten of the mutations listed in this disclosure.

[0127] Useful combinations include but are not limited to the mutations and mutation sets: N35G/E104H/A168P (SEQ ID NO:5); W42P/E104H/K167A; N35G/W42P/V97Q/A191N; W42P/E104H; E104H/K167A; W42P/A191N; N35G/W42P/A191N; V97Q/A191N; N35G/E104H/A191N; H20D/E104D/Q190H/Y192H; H20D/Q190E/Y192Q; H20D/E104C; H20D/P103H/E104C; H20D/P103H; N35G/E104H; H20D/P103H/E104Q/Q190E; H20D/P103H/E104C/Y192Q; N35G/W42P; H20D/P103H/E104Q; P103E/E104D; N35G/F68Y/A191N; W42P/A168P; H20D/E104C/Q190E/Y192Q; H20C/Q190E; W42P/A212P/T236P; N35G/W42P/V97Q/K167A/V97Q/A168P; W42P/E104H/K167A/A168P/Q190E; W42P/A168P/A212P/T236P; N35G/V97Q/K167A; N35G/V97Q; N35G/A191N; S127T/K167A/A191N; W42P/E104C/K167A/A168P; K167I/P273S; W42P/T87P; W42P/A212P; N35G/K167A; N35G/K167A; D165W/A246T; F132D/A244D; N35G/Y139L; T12A/I162G; N187K/S330R; P163S/E176D; W131K/H175Q; W42P/A143P; A179D/N317K; K167A/A191N; F132I/A179I; I134H/G270S; A168H/S205N; N35G/A191N/T258I/T323P/G328A/C341R; I134L/P322L; S164L/L166I; F132P/Q190E/A191T; W131R/L166I; I162A/A191T; and V172K/S215W, wherein the amino acid positions are numbered with reference to SEQ ID NO:2.

GH61 Variant Proteins Made with Multiple Rounds of Activity Enhancement

[0128] GH61 variant proteins can be generated that have been further optimized by subjecting to multiple rounds of variation and selection. In some embodiments, additional rounds of optimization increase saccharification reaction yields beyond what is achieved with one round of variation and selection. Substitutions improving GH61 activity are compiled in Table 2 below.

[0129] Table 2 shows GH61a variants derived from the GH61a protein designated "Variant 1" (SEQ ID NO:5) in Table 1 with improved thermoactivity. The second-round variants usually retained the alterations of Variant 1 compared with wild-type GH61a (N35G/E104H/A168P), along with additional modifications.

TABLE-US-00002 TABLE 2 GH61 Variants with Improved Activity Compared to Variant 1 Silent Var. Amino Acid Nucleotide No. Changes Changes 241 N35G/T40A/E104H/ t60c/c573g A168P/P327M 242 N35G/P45D/E104H/ t60c/c573g A168P/N317R 243 N35G/E104H/A168P/ t60c/c573g N317R 244 N35G/E104H/A168P/ t60c/c573g N317L 245 N35G/T54H/E104H/ t60c/c573g A168P 246 N35G/E104H/A168P/ t60c/c573g N317D/S329Y 247 N35G/E104H/A137S/ t60c/c573g A168P/S232E 248 N35G/E104H/A168P/ t60c/c573g N317R/T320A 249 N35G/E104H/A168P/ t60c/c573g D234E 250 N35G/T40S/E104H/ t60c/c573g A142G/A168P 251 N35G/T40S/S78C/ t60c/c573g V88I/E104H/S128K/ A168P/D234M 252 N35G/E104H/A168P/ t60c/c573g S330V 253 N35G/E104H/A168P/ t60c/c573g G203E/P266S 254 N35G/E104H/A168P/ t60c/c573g D234N 255 N35G/E104H/A168P/ t60c/c573g S286N/S329H 256 N35G/E104H/A168P/ t60c/c573g S330H 257 N35G/E104H/A168P/ t60c/c573g W337R 258 N35G/N66D/E104H/ t60c/c573g S164E/A168P/G267T 259 N35G/E104H/A168P/ t60c/c573g P233V 260 R34E/N35G/E104H/ t60c/c573g R145T/A168P 261 S24Q/N35G/E104H/ t60c/c573g A168P/V237I 262 Y32S/N35G/E64S/ t60c/c573g E104H/A168P 263 N35G/E104H/A168P/ t60c/c573g V333R 264 N35G/E104H/G144S/ t60c/c573g A168P/V333Q 265 V28H/N35G/P45K/ t60c/c573g E104H/A168P 266 N35G/E104H/A168P/ t60c/c573g P327K 267 N35G/N66Q/E104H/ t60c/c573g A168P 268 N35G/E104H/A168P/ t60c/c573g G203E 269 N35G/E104H/A168P/ t60c/c573g S339W 270 N35G/P45K/N46E/ t60c/c573g E104H/A150Y/ A168P 271 N35G/E104H/R130S/ t60c/c573g A168P 272 N35G/E104H/R145T/ t60c/c573g/ A168P g891a 273 N35G/E104H/A168P/ t60c/c573g S231K 274 N35G/T40A/E104H/ t60c/c573g A168P/D234E/ P327M 275 N35G/E104H/A168P/ t60c/c573g S231H 276 N35G/E104H/A168P/ t60c/c573g N317M 277 N35G/E104H/A168P/ t60c/c573g S330Y 278 N35G/E104H/A168P/ t60c/c573g S329I 279 N35G/E104H/A168P/ t60c/c573g S329R 280 N35G/N66D/E104H/ t60c/c573g A168P/P322R/S329L 281 N35G/E104H/A168P/ t60c/c288t/ P327F c573g 282 N35G/P45D/E104H/ t60c/c573g A168P 283 N35G/E104H/A168P/ t60c/c573g S332R 284 N35G/E104H/A116S/ t60c/c573g A168P 285 N35G/T40A/E104H/ t60c/c573g A168P/V230I/P327M 286 N35G/T49A/E104H/ t60c/c573g A168P 287 N35G/E104H/A168P/ t60c/c573g N317T 288 N35G/N46Y/E104H/ t60c/c573g A168P 289 N35G/E104H/A168P/ t60c/c573g G203V 290 N35G/E104H/A168P/ t60c/c573g S329L 291 N35G/E104H/R145N/ t60c/c573g A168P/S329H 292 N35G/A56S/E104H/ t60c/c573g A168P 293 N35G/T40S/T49R/ t60c/c573g E104H/A168P/ D234E/P327M 294 N35G/E104H/Q161R/ t60c/c573g A168P 295 N35G/E104H/A168P/ t60c/c573g S332F 296 N35G/P45R/T49A/ t60c/c573g E104H/A168P/ N317R/T320A 297 N35G/E104H/A168P/ t60c/c573g V237I 298 N35G/Q44K/T80V/ t60c/c573g E104H/A168P 299 N35G/E104H/A168P/ t60c/c573g E336S 300 N35G/E104H/A168P/ t60c/c573g P233T 301 N35G/E104H/A168P/ t60c/c573g S329Y 302 N35G/E104H/A168P/ t60c/c573g P327L 303 N35G/E104H/A168P/ t60c/c573g N317I 304 N35G/E104H/R130H/ t60c/c573g A168P 305 N35G/Q44K/E104H/ t60c/c573g A168P 306 N35G/N66D/E104H/ t60c/c573g A168P 307 N35G/E104H/A168P/ t60c/c573g S329V 308 N35G/E104H/A168P/ t60c/c573g W337F 309 N35G/E104H/A168P/ t60c/c573g N317H 310 N35G/T40L/E104H/ t60c/c573g S128K/A168P 311 N35G/E104H/A168P/ t60c/c573g A326V 312 N35G/T80V/E104H/ t60c/c573g A168P/P303T 313 N35G/E104H/A168P/ t60c/c573g S231A/S295L 314 N35G/E104H/A116Q/ t60c/c573g A168P 315 N35G/E104H/A168P/ t60c/c573g S330C 316 N35G/T40S/E101T/ t60c/c573g E104H/A168P/ P327M 317 N35G/E104H/A168P t60c/c573g //A326Q 318 N35G/N46R/E104H/ t60c/c573g A168P 319 N35G/P45K/E104H/ t60c/c573g A168P/A219R/ S232E 320 S24Q/N35G/E104H/ t60c/c573g A168P/V237I/P303T 321 N35G/E104H/A168P/ t60c/c573g G203E/T281A 322 N35G/A56N/E104H/ t60c/c573g A168P 323 N35G/E104H/A168P/ t60c/c573g E336G 324 N35G/E104H/A168P/ t60c/c573g E336R 325 N35G/T40S/E104H/ t60c/c573g S128K/A142G/ A168P 326 N35G/Q44K/S67T/ t60c/c198t/ E104H/A168P c573g 327 N35G/E104H/A168P/ t60c/c573g N317A 328 N35G/E104H/G155N/ t60c/c573g A168P 329 N35G/E104H/Q161E/ t60c/c573g A168P 330 N35G/E104H/N118S/ t60c/c573g A168P 331 N35G/P45T/V97Q/ t60c/c573g E104H/A168P/ G267S 332 V28H/N35G/E104H/ t60c/c573g A168P 333 N35G/E104H/A168P/ t60c/c573g Q184L 334 N35G/E104H/A168P/ t60c/c573g N317V 335 N35G/Q44L/E104H/ t60c/c573g A168P 336 N35G/E104H/A168P/ t60c/c573g S330G 337 N35G/E104H/A168P/ t60c/c573g T320A/V333W 338 N35G/E104H/A168P/ t60c/c573g E336A 339 N35G/E104H/A168P/ t60c/c573g N335S 340 N35G/N66M/E104H/ t60c/c573g A168P 341 N35G/T54G/E104H/ t60c/c573g A168P 342 N35G/E104H/A168P/ t60c/c573g N317S 343 N35G/E64L/E104H/ t60c/c573g A168P 344 N35G/E104H/S164E/ t60c/c573g A168P/A271T 345 N35G/N66A/E104H/ t60c/c573g A168P 346 N35G/G83R/E104H/ t60c/c573g A168P 347 N35G/E104H/A168P/ t60c/c573g N317Q/T320A 348 N35G/E104H/K141A/ t60c/c573g A168P 349 N35G/P71T/E104H/ t60c/c573g A168P 350 N35G/P71S/E104H/ t60c/c573g A168P 351 N35G/E104H/R130G/ t60c/c573g A168P 352 N35G/E104H/R145Q/ t60c/c573g A168P 353 N35G/T70A/E104H/ t60c/c573g A168P 354 N35G/E104H/A168P/ t60c/c573g K218R 355 N35G/E104H/A168P/ t60c/c573g Q184E 356 N35G/E104H/R130K/ t60c/c573g A168P 357 N35G/Q58H/E104H/ t60c/c573g A168P

358 Y32S/N35G/E104H/ t60c/c573g A168P 359 N35G/E104H/A168P/ t60c/c573g S329T 360 N35G/E104H/A168P/ t60c/c573g S330I 361 Y32S/N35G/P71A/ t60c/c573g E104H/A168P 362 N35G/E104H/A168P/ t60c/c573g S330T 363 N35G/G82A/E104H/ t60c/c573g A168P 364 N35G/T80V/E104H/ t60c/c573g A168P 365 N35G/E104H/A168P/ t60c/c573g S295T 366 N35G/N66G/E104H/ t60c/c573g A168P 367 N35G/E104H/R145L/ t60c/c573g A168P 368 N35G/S67H/E104H/ t60c/c573g A168P/V230M 369 N35G/E104H/G136E/ t60c/c573g A168P 370 N35G/T54S/E104H/ t60c/c573g A168P 371 N35G/P45S/E104H/ t60c/c573g A168P 372 N35G/E104H/A168P/ t60c/c573g/ A326M c882t 373 N35G/N66D/N95E/ t60c/c573g E104H/S164E/A168P/ G267D 374 N35G/E104H/A168P/ t60c/c573g S332C 375 N35G/E104H/S128L/ t60c/c573g A168P 376 N35G/T54W/E104H/ t60c/c573g A168P 377 N35G/E104H/A168P/ t60c/c573g G268A/G269A/ G270A 378 N35G/Q44K/E104H/ t60c/c573g A168P/S231T 379 R34E/N35G/E104H/ t60c/c573g A168P/A280D 380 N35G/E104H/A168P/ t60c/g399a/ A297T c573g 381 N35G/E104H/K141P/ t60c/c573g R145Q/A168P 382 N35G/P45E/E104H\/ t60c/c573g K141R/A168P 383 N35G/N66T/E104H/ t60c/c573g A168P 384 N35G/E104H/S164E/ t60c/c573g A168P/S295D 385 N35G/E104H/A168P/ t60c/c573g N317F 386 N35G/E104H/A168P/ t60c/c573g N317Q 387 N35G/T40G/T49R/ t60c/c573g S78C/E104H/A142G/ A168P 388 N35G/G82S/E104H/ t60c/c573g A168P 389 N35G/Q58P/E104H/ t60c/c573g A168P 390 N35G/N46R/E104H/ t60c/c573g A168P/G203E/ A263V 391 N35G/P45R/E104H/ t60c/c573g A168P 392 N35G/S67G/E104H/ t60c/c573g A168P 393 N35G/E104H/A168P/ t60c/c573g R199E 394 N35G/G69T/E104H/ t60c/c573g A168P 395 N35G/E104H/A168P/ t60c/c573g G203E/G268A/ G269A/G270A 396 N35G/E104H/A168P/ t60c/c573g P266S 397 N35G/E104H/A168P/ t60c/c573g V324M 398 N35G/E104H/A168P/ t60c/c573g G245A 399 N35G/N66R/E104H/ t60c/c573g A168P 400 N35G/E104H/A168P/ t60c/c573g T236E 401 S24Q/N35G/Q44K/ t60c/c573g T80H/E104H/A168P 402 N35G/E104H/S128D/ t60c/c573g A168P 403 N35G/N66D/S78D/ t60c/c573g E104H/A168P/ S253D 404 N35G/E104H/R130Y/ t60c/c573g A168P 405 N35G/E104H/A168P/ t60c/c573g K310I 406 N35G/E104H/R145E/ t60c/c573g A168P 407 N35G/N66D/E104H/ t60c/c573g S164E/A168P/S282D 408 N35G/E104H/K141P/ t60c/c573g A168P 409 N35G/E104H/A168P/ t60c/c573g Q184R 410 N35G/E104H/A168P/ t60c/c573g S231T 411 N35G/N66V/E104H/ t60c/c573g A168P 412 N35G/E104H/A142L/ t60c/c573g A168P 413 N35G/E104H/R145H/ t60c/c573g A168P 414 N35G/E104H/A168P/ t60c/c573g K218L 415 N35G/E104H/K141T/ t60c/c573g A168P 416 N35G/E104H/A168P/ t60c/c573g P233F 417 N35G/T40S/E104H/ t60c/c573g A168P/P327M 418 N35G/T54M/E104H/ t60c/c573g A168P 419 S24T/N35G/E104H/S164E/ t60c/c573g A168P 420 N35G/P45T/E104H/ t60c/c573g A168P 421 N35G/N66D/E104H/ t60c/c573g S164E/A168P/S231T/ S253T 422 N35G/G69H/E104H/ t60c/c573g A168P 423 N35G/E104H/S128Y/ t60c/c573g A168P 424 N35G/T49Q/E104H/ t60c/c573g A168P 425 N35G/T49A/E104H/ t60c/c573g A168P/Q184H 426 N35G/E104H/A168P/ t60c/c573g G203Y 427 N35G/Q44K/N66V/E104H/ t60c/c573g A168P 428 N35G/E104H/ t60c/c573g A137M/A168P 429 N35G/E104H/A168P/ t60c/c573g P327C 430 N35G/E104H/A168P/ t60c/c573g T236R 431 N35G/I51A/E104H/ t60c/c573g A168P 432 N35G/S67H/E104H/ t60c/c573g A168P 433 N35G/E104H/A168P/ t60c/c573g A326C 434 N35G/T49A/E104H/ t60c/c573g S128N/A168P 435 N35G/T49R/E104H/ t60c/c573g A168P/K218L/ N317Q 436 N35G/E104H/A168P/ t60c/c573g P266S/G267V 437 N35G/E104H/A168P/ t60c/c573g V237I/P303T 438 N35G/T49E/E104H/ t60c/c573g A168P 439 N35G/P45R/E104H/ t60c/c573g A168P/T320A 440 N35G/N66L/E104H/ t60c/c573g A168P 441 N35G/P45R/E104H/ t60c/c573g A168P/K218L/ N317Q 442 N35G/E104H/R145V/ t60c/c573g A168P 443 N35G/N66D/E104H/ t60c/c573g A168P/R290K 444 N35G/T80L/E104H/ t60c/c573g A168P 445 N35G/A55G/E104H/ t60c/c573g A168P 446 N35G/E104H/A168P/ t60c/c573g S330A 447 N35G/E104H/K141N/ t60c/c573g A168P/P266S 448 N35G/E104H/A142S/ t60c/c573g A168P 449 N35G/E104H/A168P/ t60c/c573g Q184G 450 N35G/E104H/N118E/ t60c/c573g A168P 451 N35G/E104H/A168P/ t60c/c573g A212M 452 N35G/E104H/A168P/ t60c/c573g G267D 453 N35G/K93N/E104H/ t60c/c573g R130Y/A168P 454 N35G/P45R/T49Y/ t60c/c573g E104H/A168P/ N317D 455 N35G/E104H/A168P/ t60c/c573g S329Q 456 N35G/E104H/A168P/ t60c/c573g V230Q 457 N35G/P45K/E104H/ t60c/c573g A168P/A219R 458 N35G/E104H/A142G/ t60c/c573g A168P 459 N35G/E104H/A168P/ t60c/c573g S205T 460 N35G/S78D/E104H/ t60c/c573g S164E/A168P 461 N35G/E104H/R130E/ t60c/c573g A168P 462 N35G/E104H/A168P/ t60c/c573g Q184H 463 N35G/E104H/A116P/ t60c/c573g A168P 464 N35G/E104H/A142D/ t60c/c573g A168P 465 V28H/N35G/N46E/ t60c/c573g Q58H/E104H/A168P 466 N35G/E104H/A168P/ t60c/c573g A280T 467 R34E/N35G/E104H/ t60c/c573g A168P/A280T 468 N35G/E104H/A168P/ t60c/c573g E336L 469 N35G/T49D/E104H/ t60c/c573g A168P 470 N35G/E104H/A168P/ t60c/c573g A219T 471 N35G/E104H/A142W/ t60c/c573g A168P 472 N35G/E104H/A168P/ t60c/c573g P303T/G305D 473 N35G/Q44V/E104H/ t60c/c573g A168P 474 N35G/E104H/A168P/ t60c/c573g N187D 475 N35G/E104H/G136H/ t60c/c573g A168P 476 S24Q/N35G/Q44K/E104H/ t60c/c573g A168P/P303T/ S332D 477 N35G/E104H/ t60c/c573g A168P/Q184N

478 N35G/E104H/A168P/ t60c/c573g S332L 479 S24T/N35G/N66D/ t60c/c573g S78D/E104H/A168P/ S205T/S253T 480 N35G/E104H/A168P/ t60c/c573g P327A 481 N35G/T40A/T49Q/ t60c/c573g S78C/E104H/A168P 482 N35G/T40L/E104H/ t60c/c573g A142G/A168P 483 N35G/T49Y/E104H/ t60c/c573g A168P/N317R 484 R34E/N35G/K93T/E104H/ t60c/c573g R130E/R145T/ A168P/R199E/ K218T/A280D

[0130] Positions that were changed in variants with improved GH61 activity listed in Table 2 include 24, 28, 32, 34, 35, 40, 44, 45, 46, 49, 51, 54, 55, 56, 58, 64, 66, 67, 69, 70, 71, 78, 80, 82, 83, 88, 93, 95, 101, 104, 116, 118, 128, 130, 136, 137, 141, 142, 144, 145, 150, 155, 161, 164, 168, 184, 187, 199, 203, 205, 212, 218, 219, 230, 231, 232, 233, 234, 236, 237, 245, 253, 263, 266, 267, 268, 269, 270, 271, 280, 281, 282, 290, 295, 297, 303, 305, 310, 317, 320, 324, 326, 327, 329, 330, 332, 333, 336, 337, and 339, wherein the amino acid positions are numbered with reference to SEQ ID NO:2.

[0131] Residues that were changed in variants with improved GH61 activity listed in Table 2 include S24, V28, Y32, R34, N35, T40, Q44, P45, N46, T49, I51, T54, A55, A56, Q58, E64, N66, S67, G69, T70, P71, S78, T80, G82, G83, V88, K93, N95, E101, E104, A116, N118, S128, R130, G136, A137, K141, A142, G144, R145, A150, G155, Q161, S164, A168, Q184, N187, R199, G203, S205, A212, K218, A219, V230, S231, S232, P233, D234, T236, V237, G245, S253, A263, P266, G267, G268, G269, G270, A271, A280, T281, S282, R290, S295, A297, P303, G305, K310, N317, T320, V324, A326, P327, S329, S330, S332, V333, E336, W337, and S339, wherein the amino acid positions are numbered with reference to SEQ ID NO:2.

[0132] Substitutions occurring in variants with improved GH61 activity listed in Table 2 include S24Q, V28H, Y32S, R34E, N35G, T40A/G/L/S, Q44K, P45D/E/K/R/S, N46E/R, T49A/Q/R/Y, I51A, T54G/M/S/W, A55G, A56S, Q58H/P, E64L/S, N66A/D/G/L/M/Q/R/V, S67G/H/T, G69T, T70A, P71A, S78C/D, T80H/L/V, G82A/S, G83R, V88I, K93N/T, N95E, E101T, E104H, A116Q/S, N118E/S, S128K/L/N, R130E/G/H/K/Y, G136H, A137M/S, K141A/N/P/R, A142D/G/L, G144S, R145H/L/N/Q/T, A150Y, G155N, Q161E/R, S164E, A168P, Q184E/H/L/N/R, N187D, R199E, G203E/V/Y, S205T, A212M, K218L/T, A219R/T, V230I/Q, S231A/H/K/I, S232E, P233F/T, D234E/M/N, T236E, V237I, G245A, S253D/T, A263V, P266S, G267D/V, G268A, G269A, G270A, A271T, A280D/T, T281A, S282D, R290K, S295D/L/T, A297T, P303T, G305D, K310I, N317D/H/I/M/Q/R, T320A, V324M, A326C/Q/V, P327F/K/L/M, S329H/I/Q/T/Y, S330A/H/I/T/V, S332C/F/R, V333Q, E336L/R/S, W337R, and S339W.

[0133] In some embodiments, the changed residues and substitutions of the GH61 variants of this invention may be combined in a manner that produces an effect that is cumulative or synergistic. Cumulative effects occur when adding an additional mutation increases the effect beyond those of the mutations already present. Synergistic effects occur when having two more mutations in a variant produces an effect than is greater than the product of the mutations when incorporated by themselves. This invention includes without limitation any and all combinations of any two, three, four, five, six, seven, eight, nine, ten, or more than ten of the mutations listed in Table 1, Table 2, or both Tables.

[0134] Useful combinations of mutated positions include but are not limited to N35/T40/E104/A168/P327; N35/P45/E104/A168/N317; N35/E104/A168/N317; N35/E104/A168/N317/S329; N35/E104/A137/A168/S232; N35/E104/A168/N317/T320; N35/E104/A168/D234; N35/T40/E104/A142/A168; N35/E104/R145/A168; N35/T40/S78/V88/E104/S128K/A168/D234; N35/E104/A168/S330; N35/E104/A168/G203/P266; N35/E104/A168/D234; N35/E104/A168/S330; N35/E104/A168/W337; R34/N35/E104/R145/A168; Y32/N35/E64/E104/A168; V28/N35/P45/E104/A168; N35/E104/G144/A168/V333; N35/N66/E104/A168; N35/E104/A168/P327; N35/E104/A168/G203; N35/E104/A168/S339; N35/P45/N46/E104/A150/A168; N35/E104/A168/S231; N35/T40/E104/A168/D234/P327; N35/E104/A168/S231; N35/E104/A168/N317; N35/E104/A168/S330; N35/E104/A168/S329; N35/E104/A168/P327; N35/P45/E104/A168; N35/E104/A116/A168; N35/T40/E104/A168N230/P327; and N35/E104/A168/S332.

[0135] Useful combinations of mutated residues further include but are not limited to N35/E104/A168/G203; N35/E104/R145/A168/S329; N35/T40/T49/E104/A168/D234/P327; N35/A56/E104/A168; N35/E104/Q161/A168; N35/E104/A168/S332; N35/P45/T49/E104/A168/N317/T320; N35/E104/A168/V237; N35/E104/A168/E336; N35/E104/A168/P233; N35/E104/R130/A168; N35/E104/A168/P327; N35/E104/A168/N317; N35/Q44/E104/A168; N35/E104/A168/A326; N35/E104/A168/N317; N35/T40/E104/S128/A168; N35/T80/E104/A168/P303; N35/E104/A116/A168; N35/E104/A168/S231/S295; N35/T40/E101/E104/A168/P327; N35/P45/E104/A168/A219/S232; N35/N46/E104/A168; N35/E104/A168/A326; N35/E104/A168/G203/T281; N35/E104/A168/E336; N35/T40/E104/S128/A142/A168; N35/E104/N118/A168; N35/E104/G155/A168; S24/N35/E104/A168/V237/P303; N35/E104/Q161/A168; N35/Q44/S67/E104/A168; V28/N35/E104/A168; N35/E104/A168/Q184; N35/T54/E104/A168; N35/N66/E104/A168; N35/E64/E104/A168; N35/E104/S164/A168/A271; N35/N66/E104/A168; N35/G83/E104/A168; N35/E104/K141/A168; and N35/E104/A168/N317/T320.

[0136] Useful combinations of mutated residues include but are not limited to N35/E104/R130/A168; N35/E104/R145/A168; N35/T70/E104/A168; N35/E104/R130/A168; N35/E104/A168/Q184; N35/E104/A168/S329; N35/T49/E104/A168; Y32/N35/E104/A168; N35/E104/A168/S330; N35/Q58/E104/A168; Y32/N35/P71/E104/A168; N35/E104/A168/S330; N35/T80/E104/A168; N35/G82/E104/A168; N35/E104/A168/S295; N35/N66/E104/A168; N35/T54/E104/A168; N35/P45/E104/A168; N35/E104/S128/A168; N35/N66/N95/E104/S164/A168; /G267; N35/T54/E104/A168; N35/P45/E104/K141/A168; N35/E104/A168/S332; N35/E104/A168/A297; N35/E104/K141/R145/A168; N35/Q44/E104/A168/S231; N35/T40/T49/S78/E104/A142; /A168; N35/E104/S164/A168/S295; N35/E104/A168/N317; N35/P45/E104/A168; N35/G82/E104/A168; N35/N46/E104/A168/G203/A263; N35/Q58/E104/A168; N35/G69/E104/A168; N35/S67/E104/A168; N35/E104/A168/R199; N35/E104/A168/G203/G268/G269/G270; N35/E104/A168/V324; N35/E104/A168/P266; N35/E104/A168/G245; N35/N66/E104/A168; and S24/N35/Q44/T80/E104/A168.

[0137] Useful combinations of mutated residues further include but are not limited to N35/E104/A168/T236; N35/E104/A168/K310; N35/E104/R130/A168; N35/N66/S78/E104/A168/S253; N35/N66/E104/S164/A168/S282; N35/E104/A142/A168; N35/E104/R145/A168; N35/E104/A168/S231; N35/E104/A168/Q184; N35/E104/A168/K218; N35/E104/A168/P233; N35/T49/E104/A168/Q184; N35/T40/E104/A168/P327; N35/T54/E104/A168; N35/N66/E104/S164/A168/S231/S253; N35/E104/A168/G203; N35/T49/E104/A168; N35/E104/A168/P266/G267; N35/Q44/N66/E104/A168; N35/S67/E104/A168; N35/E104/A137/A168; N35/T49/E104/S128/A168; N35/T49/E104/A168/K218/N317; N35/I51/E104/A168; N35/E104/A168/A326; N35/P45/E104/A168/T320; N35/N66/E104/A168; N35/E104/A168/V237/P303; N35/P45/E104/A168/K218/N317; N35/T80/E104/A168; N35/A55/E104/A168; N35/E104/K141/A168/P266; N35/E104/A168/S330; N35/N66/E104/A168/R290; N35/E104/N118/A168; N35/E104/A168/A212; N35/K93/E104/R130/A168; N35/E104/A168/G267; N35/P45/T49/E104/A168/N317; N35/E104/A168/V230; N35/E104/A168/S329; N35/P45/E104/A168/A219; N35/S78/E104/S164/A168; N35/E104/A168/S205; N35/E104/A168/Q184; V28/N35/N46/Q58/E104/A168; N35/E104/A142/A168; N35/E104/A168/E336; N35/E104/A168/A280; N35/E104/A168/A219; N35/E104/A168/P303/G305; R34/N35/E104/A168/A280; N35/E104/A168/N187; N35/E104/G136/A168; N35/E104/A168/Q184; N35/T49/E104/A168/N317; N35/T40/T49/S78/E104/A168; R34/N35/K93/E104/R130/R145/A168/R199/K218/A280; N35/T40/E104/A142/A168; and N35/N66/E104/A168.

[0138] Useful combinations of mutations further include but are not limited to N35G/T40A/E104H/A168P/P327M; N35G/P45D/E104H/A168P/N317R; N35G/E104H/A168P/N317R; N35G/E104H/A168P/N317D/S329Y; N35G/E104H/A137S/A168P/S232E; N35G/E104H/A168P/N317R/T320A; N35G/E104H/A168P/D234E; N35G/T40S/E104H/A142G/A168P; N35G/E104H/R145L/A168P; N35G/T40S/S78C/V88I/E104H/S128K/A168P/D234M; N35G/E104H/A168P/S330V; N35G/E104H/A168P/G203E/P266S; N35G/E104H/A168P/D234N; N35G/E104H/A168P/S330H; N35G/E104H/A168P/W337R; R34E/N35G/E104H/R145T/A168P; Y32S/N35G/E64S/E104H/A168P; V28H/N35G/P45K/E104H/A168P; N35G/E104H/G144S/A168P/V333Q; N35G/N66Q/E104H/A168P; N35G/E104H/A168P/P327K; N35G/E104H/A168P/G203E; N35G/E104H/A168P/S339W; N35G/P45K/N46E/E104H/A150Y/A168P; N35G/E104H/A168P/S231K; N35G/T40A/E104H/A168P/D234E/P327M; N35G/E104H/A168P/S231H; N35G/E104H/A168P/N317M; N35G/E104H/A168P/S330Y; N35G/E104H/A168P/S329I; N35G/E104H/A168P/P327F; N35G/P45D/E104H/A168P; N35G/E104H/A116S/A168P; N35G/T40A/E104H/A168P/V230I/P327M; and N35G/E104H/A168P/S332R.

[0139] Useful combinations of mutations further include but are not limited to N35G/E104H/A168P/G203V; N35G/E104H/R145N/A168P/S329H; N35G/T40S/T49R/E104H/A168P/D234E; /P327M; N35G/A56S/E104H/A168P; N35G/E104H/Q161R/A168P; N35G/E104H/A168P/S332F; N35G/P45R/T49A/E104H/A168P/N317R/T320A; N35G/E104H/A168P/V237I; N35G/E104H/A168P/E336S; N35G/E104H/A168P/P233T; N35G/E104H/R130H/A168P; N35G/E104H/A168P/P327L; N35G/E104H/A168P/N317I; N35G/Q44K/E104H/A168P; N35G/E104H/A168P/A326V; N35G/E104H/A168P/N317H; N35G/T40L/E104H/S128K/A168P; N35G/T80V/E104H/A168P/P303T; N35G/E104H/A116Q/A168P; N35G/E104H/A168P/S231A/S295L; N35G/T40S/E101T/E104H/A168P/P327M; N35G/P45K/E104H/A168P/A219R/S232E; N35G/N46R/E104H/A168P; N35G/E104H/A168P/A326Q; N35G/E104H/A168P/G203E/T281A; N35G/E104H/A168P/E336R; N35G/T40S/E104H/S128K/A142G/A168P; N35G/E104H/N118S/A168P; N35G/E104H/G155N/A168P; S24Q/N35G/E104H/A168P/V237I/P303T; N35G/E104H/Q161E/A168P; N35G/Q44K/S67T/E104H/A168P; V28H/N35G/E104H/A168P; N35G/E104H/A168P/Q184L; N35G/T54G/E104H/A168P; N35G/N66M/E104H/A168P; N35G/E64L/E104H/A168P; N35G/E104H/S164E/A168P/A271T; N35G/N66A/E104H/A168P; N35G/G83R/E104H/A168P; N35G/E104H/K141A/A168P; and N35G/E104H/A168P/N317Q/T320A.

[0140] Useful combinations of mutations further include but are not limited to N35G/E104H/R130G/A168P; N35G/E104H/R145Q/A168P; N35G/T70A/E104H/A168P; N35G/E104H/R130K/A168P; N35G/E104H/A168P/Q184E; N35G/E104H/A168P/S329T; N35G/T49A/E104H/A168P; Y32S/N35G/E104H/A168P; N35G/E104H/A168P/S330I; N35G/Q58H/E104H/A168P; Y32S/N35G/P71A/E104H/A168P; N35G/E104H/A168P/S330T; N35G/T80V/E104H/A168P; N35G/G82A/E104H/A168P; N35G/E104H/A168P/S295T; N35G/N66G/E104H/A168P; N35G/T54S/E104H/A168P; N35G/P45S/E104H/A168P; N35G/E104H/S128L/A168P; N35G/N66D/N95E/E104H/S164E/A168P/G267D; N35G/T54W/E104H/A168P; N35G/P45E/E104H/K141R/A168P; N35G/E104H/A168P/S332C; N35G/E104H/A168P/A297T; N35G/E104H/K141P/R145Q/A168P; N35G/Q44K/E104H/A168P/S231T; N35G/T40G/T49R/S78C/E104H/A142G; /A168P; N35G/E104H/S164E/A168P/S295D; N35G/E104H/A168P/N317Q; N35G/P45R/E104H/A168P; N35G/G82S/E104H/A168P; N35G/N46R/E104H/A168P/G203E/A263V; N35G/Q58P/E104H/A168P; N35G/G69T/E104H/A168P; N35G/S67G/E104H/A168P; N35G/E104H/A168P/R199E; N35G/E104H/A168P/G203E/G268A/G269A/G270A; N35G/E104H/A168P/V324M; N35G/E104H/A168P/P266S; N35G/E104H/A168P/G245A; N35G/N66R/E104H/A168P; and S24Q/N35G/Q44K/T80H/E104H/A168P.

[0141] Useful combinations of mutations further include but are not limited to N35G/E104H/A168P/T236E; N35G/E104H/A168P/K310I; N35G/E104H/R130Y/A168P; N35G/N66D/S78D/E104H/A168P/S253D; N35G/N66D/E104H/S164E/A168P/S282D; N35G/E104H/A142L/A168P; N35G/E104H/R145H/A168P; N35G/E104H/A168P/S231T; N35G/E104H/A168P/Q184R; N35G/E104H/A168P/K218L; N35G/E104H/A168P/P233F; N35G/T49A/E104H/A168P/Q184H; N35G/T40S/E104H/A168P/P327M; N35G/T54M/E104H/A168P; N35G/N66D/E104H/S164E/A168P/S231T/S253T; N35G/E104H/A168P/G203Y; N35G/T49Q/E104H/A168P; N35G/E104H/A168P/P266S/G267V; N35G/Q44K/N66V/E104H/A168P; N35G/S67H/E104H/A168P; N35G/E104H/A137M/A168P; N35G/T49A/E104H/S128N/A168P; N35G/T49R/E104H/A168P/K218L/N317Q; N35G/151A/E104H/A168P; N35G/E104H/A168P/A326C; N35G/P45R/E104H/A168P/T320A; N35G/N66L/E104H/A168P; N35G/E104H/A168P/V237I/P303T; N35G/P45R/E104H/A168P/K218L/N317Q; N35G/T80L/E104H/A168P; N35G/A55G/E104H/A168P; N35G/E104H/K141N/A168P/P266S; N35G/E104H/A168P/S330A; N35G/N66D/E104H/A168P/R290K; N35G/E104H/N118E/A168P; N35G/E104H/A168P/A212M; N35G/K93N/E104H/R130Y/A168P; N35G/E104H/A168P/G267D; N35G/P45R/T49Y/E104H/A168P/N317D; N35G/E104H/A168P/V230Q; N35G/E104H/A168P/S329Q; N35G/P45K/E104H/A168P/A219R; N35G/S78D/E104H/S164E/A168P; N35G/E104H/A168P/S205T; N35G/E104H/A168P/Q184H; V28H/N35G/N46E/Q58H/E104H/A168P; N35G/E104H/A142D/A168P; N35G/E104H/A168P/E336L; N35G/E104H/A168P/A280T; N35G/E104H/A168P/A219T; N35G/E104H/A168P/P303T/G305D; R34E/N35G/E104H/A168P/A280T; N35G/E104H/A168P/N187D; N35G/E104H/G136H/A168P; N35G/E104H/A168P/Q184N; N35G/T49Y/E104H/A168P/N317R; N35G/T40A/T49Q/S78C/E104H/A168P; R34E/N35G/K93T/E104H/R130E/R145T/A168P/R199E/K218T/A280D; N35G/T40L/E104H/A142G/A168P; and N35G/N66G/E104H/A168P.

Production of GH61 Variant Proteins

[0142] In some embodiments, the GH61 variant proteins of this invention are produced by recombinant expression in a host cell. Any suitable method for recombinant expression in any suitable host cell finds use in the present invention. In some embodiments, a nucleotide sequence encoding the protein is obtained, and introduced into a suitable host cell by way of a suitable transfer vector or expression vector. In some embodiments, the nucleotide sequence is operably linked to a promoter that promotes expression in the host cell. The promoter sequence is often selected to optimize in a cell that is not M. thermophila, in which case the promoter is typically heterologous to the GH61 variant protein encoding sequence. In some embodiments, the host cell is a eukaryotic cell and the GH61 variant protein comprises a heterologous signal peptide at the N-terminus.

[0143] Optionally, in some embodiments, the encoding sequence is codon-optimized for the host cell (e.g., a particular species of yeast cell). Any suitable method for obtaining codon-optimized sequences find use in the present invention (e.g., GCG CodonPreference, Genetics Computer Group Wisconsin Package; Codon W, John Peden, University of Nottingham; and McInerney, Bioinform., 14:372-73 [1998]).

[0144] General reference texts relating to gene expression include but are not limited to the most recent editions of Protocols in Molecular Biology (Ausubel et al. eds.); Molecular Cloning: A Laboratory Manual (Sambrook et al. eds.); Advances In Fungal Biotechnology For Industry, Agriculture, And Medicine (Tkacz and Lange, 2004); and Fungi: Biology and Applications (K. Kavanagh ed., 2005).

[0145] In some embodiments, culture broth from GH61 protein-producing cells is collected and combined directly with cellulase enzymes in a saccharification reaction. In some alternative embodiments, the broth is fractionated to any extent desired to provide partially or substantially purified GH61 protein, following the activity during the separation process using a GH61 activity assay, using standard protein separation techniques, and following GH61 activity during fractionation with a suitable GH61 activity assay. Such protocols may combine one or more of the following methods (but are not limited to these particular methods): salt precipitation, solid phase binding, affinity chromatography, ion exchange chromatography, molecular size separation, and/or filtration. Protein separation techniques are generally described in Protein Purification: Principles, High Resolution Methods, and Applications, (J. C. Janson, ed., 2011); High Throughput Protein Expression and Purification: Methods and Protocols (S. A. Doyle ed., 2009).

[0146] The present invention provides GH61 variant protein having an amino acid sequence that is at least about 60%, at least about 65%, at least about 70%, about 75%, about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, or about 99% identical to SEQ ID NO:2 or a fragment of SEQ ID NO:2 having GH61 activity. In some embodiments, the amino acid sequence of the variant proteins have one or more amino acid substitutions with respect to SEQ ID NO:2 or said fragment. In some embodiments, the substitution(s) that are present in the amino acid sequence result in the variant protein having increased GH61 activity in a saccharification reaction by certain cellulase enzymes under specified conditions, compared with a reference protein comprising SEQ ID NO:2 or said fragment, without any of the substitutions.

[0147] In some embodiments, GH61 variant proteins of this invention comprise one or more of SEQ ID NOS:5, 6, 8, 9, 11, and/or 12, or biologically-active fragments of these sequences having GH61 activity. These correspond to Variants 1 (SEQ ID NOS:5 and 6), Variant 5 (SEQ ID NOS: 8 and 9), and Variant 9 (SEQ ID NOS: 11 and 12). In some embodiments, the variants have more than about 2-fold, 3-fold, or more than 3-fold GH61 activity compared with wild-type GH61a (i.e., SEQ ID NO:2). The combined effect of multiple rounds of optimization yield GH61 variant proteins that have about 3-fold, about 5-fold, about 8-fold, or about 10-fold activity compared with the original parental sequence (SEQ ID NO:2).

[0148] Also provided are polynucleotides encoding such GH61 variant proteins, expression vectors comprising such polynucleotides, and host cells that have been transfected with such vectors so as to express the GH61 variant proteins that are encoded.

Fragments and Variants

[0149] GH61 variant proteins of this invention may comprise one or more substitutions, deletions, or additions in the sequence in addition to the substitutions highlighted above. By way of illustration, the GH61 protein may be longer or shorter by at least about 5, 10, 20, 40, 75, 100, 125, 150, or 200 amino acids; or by about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 15%, 30%, 35%, 40%, 45%, 50%, 60%, 70%, or 80% of the total number of amino acids in the polypeptide, compared with SEQ ID NO:2. The variant or any of these fragments may also be part of a fusion protein in which a portion having GH61 activity is joined to one or more other sequences. Providing the protein retains a degree of GH61 activity or other commercial applicability, the variations may comprise any combination of amino acid substitutions at any position that is not specifically indicated otherwise. Depending on the circumstances, a conservative amino acid substitution may be preferred over other types of substitutions.

[0150] Where an amino acid substitution is a "conservative" substitution, the substituted amino acid that shares one or more chemical property with the amino acid it is replacing. Shared properties include the following: Basic amino acids: arginine (R), lysine (K), histidine (H); acidic amino acids: glutamic acid (E) and aspartic acid (D); uncharged polar amino acids: glutamine (Q) and asparagine (N); hydrophobic amino acids: leucine (L), isoleucine (I), valine (V); aromatic amino acids: phenylalanine (F), tryptophan (W), and tyrosine (Y); sulphur-containing amino acids: cysteine (C), methionine (M); small amino acids: glycine (G), alanine (A), serine (S), threonine (T), proline (P), cysteine (C), and methionine (M).

Obtaining Functional Fragments and Variants

[0151] Functional fragments of GH61 protein variants of this invention can be identified by standard methodology for mapping function within a polypeptide. In some embodiments, recombinant protein is expressed that has effectively been trimmed at the N- or C-terminus, and then tested in a GH61 activity assay. Trimming can continue until activity is lost, at which point the minimum functional unit of the protein would be identified. Fragments containing any portion of the protein down to the identified size would typically be functional, as would be fusion constructs containing at least the functional core of the protein.

[0152] To generate further variants that incorporate one or more amino acid changes in a GH61 encoding sequence, the skilled artisan can change particular nucleotides, and then retest the expressed protein for GH61 activity.

[0153] An effective way to generate a large collection of functional variants is to use a random mutation strategy. The standard texts Protocols in Molecular Biology (Ausubel et al. eds.) and Molecular Cloning: A Laboratory Manual (Sambrook et al. eds.) describe techniques employing chemical mutagenesis, cassette mutagenesis, degenerate oligonucleotides, mutually priming oligonucleotides, linker-scanning mutagenesis, alanine-scanning mutagenesis, and error-prone PCR. Other efficient methods include the E. coli mutator strains of Stratagene (See e.g., Greener et al., Methods Mol. Biol. 57:375 [1996]) and the DNA shuffling technique of Maxygen (See e.g., Patten et al., Curr. Opin. Biotechnol., 8:724 [1997]; Harayama, Tr. Biotechnol., 16:76 [1998]; U.S. Pat. Nos. 5,605,793 and 6,132,970). To increase variation, a technology can be used that generates more abrupt changes, such as DNA shuffling techniques.

[0154] Mutagenesis may be performed in accordance with any of the techniques known in the art, including random and site-specific mutagenesis. Directed evolution can be performed with any of the techniques known in the art to screen for production of variants including shuffling. Mutagenesis and directed evolution methods are well known in the art (See e.g., U.S. Pat. Nos. 5,605,793, 5,830,721, 6,132,970, 6,420,175, 6,277,638, 6,365,408, 6,602,986, 7,288,375, 6,287,861, 6,297,053, 6,576,467, 6,444,468, 5,811,238, 6,117,679, 6,165,793, 6,180,406, 6,291,242, 6,995,017, 6,395,547, 6,506,602, 6,519,065, 6,506,603, 6,413,774, 6,573,098, 6,323,030, 6,344,356, 6,372,497, 7,868,138, 5,834,252, 5,928,905, 6,489,146, 6,096,548, 6,387,702, 6,391,552, 6,358,742, 6,482,647, 6,335,160, 6,653,072, 6,355,484, 6,03,344, 6,319,713, 6,613,514, 6,455,253, 6,579,678, 6,586,182, 6,406,855, 6,946,296, 7,534,564, 7,776,598, 5,837,458, 6,391,640, 6,309,883, 7,105,297, 7,795,030, 6,326,204, 6,251,674, 6,716,631, 6,528,311, 6,287,862, 6,335,198, 6,352,859, 6,379,964, 7,148,054, 7,629,170, 7,620,500, 6,365,377, 6,358,740, 6,406,910, 6,413,745, 6,436,675, 6,961,664, 7,430,477, 7,873,499, 7,702,464, 7,783,428, 7,747,391, 7,747,393, 7,751,986, 6,376,246, 6,426,224, 6,423,542, 6,479,652, 6,319,714, 6,521,453, 6,368,861, 7,421,347, 7,058,515, 7,024,312, 7,620,502, 7,853,410, 7,957,912, 7,904,249, and all related US and non-US counterparts; Ling et al., Anal. Biochem., 254(2):157-78 [1997]; Dale et al., Meth. Mol. Biol., 57:369-74 [1996]; Smith, Ann. Rev. Genet., 19:423-462 [1985]; Botstein et al., Science, 229:1193-1201 [1985]; Carter, Biochem. J., 237:1-7 [1986]; Kramer et al., Cell, 38:879-887 [1984]; Wells et al., Gene, 34:315-323 [1985]; Minshull et al., Curr. Op. Chem. Biol., 3:284-290 [1999]; Christians et al., Nat. Biotechnol., 17:259-264 [1999]; Crameri et al., Nature, 391:288-291 [1998]; Crameri, et al., Nat. Biotechnol., 15:436-438 [1997]; Zhang et al., Proc. Nat. Acad. Sci. U.S.A., 94:4504-4509 [1997]; Crameri et al., Nat. Biotechnol., 14:315-319 [1996]; Stemmer, Nature, 370:389-391 [1994]; Stemmer, Proc. Nat. Acad. Sci. USA, 91:10747-10751 [1994]; WO 95/22625; WO 97/0078; WO 97/35966; WO 98/27230; WO 00/42651; WO 01/75767; and WO 2009/152336, all of which are incorporated herein by reference).

[0155] There are commercially available services and kits available to the skilled reader to use in obtaining variants of the claimed proteins. By way of illustration, systems specifically designed for mutagenesis projects include the following: the GeneTailor.TM. Site-Directed Mutagenesis System sold by InVitrogen.TM. Life Technologies; the BD Diversify.TM. PCR Random Mutagenesis Kit.TM., sold by BD Biosciences/Clontech; the Template Generation System.TM., sold by MJ Research Inc., the XL1-Red.TM. mutator strain of E. coli, sold by Stratagene; and the GeneMorph.RTM. Random Mutagenesis Kit, also sold by Stratagene. By employing any of these systems in conjunction with a suitable GH61 activity assay, variants can be generated and tested in a high throughput manner.

[0156] Alternatively or in addition, the user may conduct further evolution of the encoded protein (See e.g., U.S. Pat. No. 7,981,614; US Pat. Appln. Publ. No. 2011/0034342; U.S. Pat. No. 7,795,030; U.S. Pat. No. 7,647,184; U.S. Pat. No. 6,939,689; and U.S. Pat. No. 6,773,900).

[0157] After each iteration of mutagenesis, the user can test and select the desired clones retaining GH61 activity. Optionally, the selected clones can be subject to further rounds of mutagenesis, until the desired degree of variation from the original sequence has been achieved.

Cellulase Enzymes and Compositions

[0158] The GH61 proteins of this invention are useful for increasing the yield of fermentable sugars in a saccharification reaction with one or more cellulase enzymes. The cellulase enzymes can be produced in the same cell as the GH61 protein or in a different cell. In either case, the cellulase enzymes can be expressed from a recombinant encoding region or from a constitutive gene. The cellulase enzymes can be provided in the form of a culture broth (with or without the microorganism producing the enzyme(s)) or supernatant, or purified to any extent desired.

[0159] The terms "cellulase" and "cellulase enzyme" broadly refer to enzymes that catalyze the hydrolysis of the beta-1,4-glycosidic bonds joining individual glucose units in a cellulose containing substrate. Examples of cellulase enzymes suitable for use with the GH61 proteins of this invention are described in more detail later in this section.

[0160] Endoglucanases (EGs), comprise a group of cellulase enzymes classified as E.C. 3.2.1.4. These enzymes catalyze the hydrolysis of internal beta-1,4 glycosidic bonds of cellulose. In some embodiments, the present invention comprises an endogenous M. thermophila endoglucanase such as M. thermophila EG2 (See, WO 2007/109441) or a variant thereof. In some additional embodiments, the EG is from S. avermitilis, having a sequence set forth in GenBank accession NP.sub.--821730, or a variant thereof (See e.g., US Pat. Appln. Publ. No. 2010/0267089 A1). In some additional embodiments, the EG is a Thermoascus aurantiacus EG or variant thereof. In some further embodiments, the EG is an endogenous EG from a bacteria, a yeast, or a filamentous fungus other than M. thermophila. Indeed, it is contemplated that any suitable EG will find use in combination with the GH61 proteins provided herein. It is not intended that the present invention be limited to any specific EG.

[0161] Beta-glucosidases (BGL), comprise a group of cellulase enzymes classified as E.C. 3.2.1.21. These enzymes hydrolyze cellobiose to glucose. In some embodiments, the BGL is an endogenous M. thermophila enzyme, or a variant thereof (See e.g., US Pat. Appln. Publ. No. 2011/0129881 A1; and US Pat. Appln. Publ. No. 2011/0124058 A1). In some alternative embodiments, the BGL is from Azospirillum irakense (CelA), or a variant thereof (See e.g., US Pat. Appln. Publ. No. 2011/0114744 A1; and PCT/US2010/038902). Indeed, it is contemplated that any suitable BGL will find use in combination with the GH61 proteins provided herein. It is not intended that the present invention be limited to any specific BGL.

[0162] Cellobiohydrolases comprise a group of cellulase enzymes classified as E.C. 3.2.1.91. Type 1 cellobiohydrolase (CBH1) hydrolyzes cellobiose processively from the reducing end of cellulose chains. Type 2 cellobiohydrolase (CBH2) hydrolyzes cellobiose processively from the nonreducing end of cellulose chains. In some embodiments, the CBH1 and/or CBH2 enzymes used in the present invention are endogenous to M. thermophila, while in some other embodiments, the CBH1 and/or CBH2 enzymes used in the present invention are obtained from bacteria, yeast, and/or a filamentous fungus other than M. thermophila. Indeed, it is contemplated that any suitable CBHs will find use in combination with the GH61 proteins provided herein. It is not intended that the present invention be limited to any specific CBHs. The invention provides compositions comprising a GH61 variant protein in combination with at least one, at least two, at least three, or more than three cellulases selected from EG, BGL, CBH1, CBH2, xylosidase, and/or xylanase. In some embodiments, enzymes are purified or partly purified before combining them, so that the combined mass of the GH61, EG, BGL, CBH1 and CBH2 is at least about 50% or at least about 70% of the total cell-free protein in compositions.

[0163] In addition to one or more cellulase enzymes such as those listed above, in some embodiments, GH61 variant enzymes are combined with other enzymes to produce mixtures with industrial applicability. Such combinations are useful, for example, in rendering a cellulose-containing source into an intermediate that is more amenable to hydrolysis by the cellulase enzymes in the mixture. For example, in some embodiments, enzymes are selected to digest or hydrolyze other components of a particular cellulosic biomass, such as hemicellulose, arabinogalactan, pectin, rhamnogalacturonan and/or lignin.

[0164] In some embodiments, the compositions comprise enzymes selected from endoxylanases (EC 3.2.1.8); .beta.-xylosidases (EC 3.2.1.37); alpha-L-arabinofuranosidases (EC 3.2.1.55); alpha-glucuronidases (EC 3.2.1.139); acetylxylanesterases (EC 3.1.1.72); feruloyl esterases (EC 3.1.1.73); coumaroyl esterases (EC 3.1.1.73); alpha-galactosidases (EC 3.2.1.22); beta-galactosidases (EC 3.2.1.23); beta-mannanases (EC 3.2.1.78); beta-mannosidases (EC 3.2.1.25); endo-polygalacturonases (EC 3.2.1.15); pectin methyl esterases (EC 3.1.1.11); endo-galactanases (EC 3.2.1.89); pectin acetyl esterases (EC 3.1.1.6); endo-pectin lyases (EC 4.2.2.10); pectate lyases (EC 4.2.2.2); alpha rhamnosidases (EC 3.2.1.40); exo-poly-alpha-galacturonosidase (EC 3.2.1.82); 1,4-alpha-galacturonidase (EC 3.2.1.67); exopolygalacturonate lyases (EC 4.2.2.9); rhamnogalacturonan endolyases EC (4.2.2.B3); rhamnogalacturonan acetylesterases (EC 3.2.1.B11); rhamnogalacturonan galacturonohydrolases (EC 3.2.1.B11); endo-arabinanases (EC 3.2.1.99); laccases (EC 1.10.3.2); manganese-dependent peroxidases (EC 1.10.3.2); amylases (EC 3.2.1.1), glucoamylases (EC 3.2.1.3), proteases, lipases, and lignin peroxidases (EC 1.11.1.14). Any combination of one, two, three, four, five, or more than five enzymes find use in the compositions of the present invention.

[0165] Cellulase mixtures for efficient enzymatic hydrolysis of cellulose are known (See e.g., Viikari et al., Adv. Biochem. Eng. Biotechnol., 108:121-45 [2007]; and US Pat. Publns. 2009/0061484; US 2008/0057541; and US 2009/0209009, each of which is incorporated herein by reference). In some embodiments, mixtures of purified naturally occurring or recombinant enzymes are combined with cellulosic feedstock or a product of cellulose hydrolysis. In some embodiments, one or more cell populations, each producing one or more naturally occurring or recombinant cellulases, are combined with cellulosic feedstock or a product of cellulose hydrolysis.

[0166] In some embodiments, the GH61 variant polypeptides of the present invention are present in mixtures comprising enzymes other than cellulases that degrade cellulose, hemicellulose, pectin, and/or lignocellulose.

[0167] In some embodiments, the present invention provides at least one GH61 variant and at least one endoxylanase. Endoxylanases (EC 3.2.1.8) catalyze the endo hydrolysis of 1,4-beta-D-xylosidic linkages in xylans. This enzyme may also be referred to as endo-1,4-beta-xylanase or 1,4-beta-D-xylan xylanohydrolase. In some embodiments, an alternative is EC 3.2.1.136, a glucuronoarabinoxylan endoxylanase, an enzyme that is able to hydrolyze 1,4 xylosidic linkages in glucuronoarabinoxylans.

[0168] In some embodiments, the present invention provides at least one GH61 variant and at least one beta-xylosidase. Beta-xylosidases (EC 3.2.1.37) catalyze the hydrolysis of 1,4-beta-D-xylans, to remove successive D-xylose residues from the non-reducing termini. This enzyme may also be referred to as xylan 1,4-beta-xylosidase, 1,4-beta-D-xylan xylohydrolase, exo-1,4-beta-xylosidase or xylobiase.

[0169] In some embodiments, the present invention provides at least one GH61 variant and at least one .alpha.-L-arabinofuranosidase. Alpha-L-arabinofuranosidases (EC 3.2.1.55) catalyze the hydrolysis of terminal non-reducing alpha-L-arabinofuranoside residues in alpha-L-arabinosides. The enzyme acts on alpha-L-arabinofuranosides, alpha-L-arabinans containing (1,3)- and/or (1,5)-linkages, arabinoxylans, and arabinogalactans. Alpha-L-arabinofuranosidase is also known as arabinosidase, alpha-arabinosidase, alpha-L-arabinosidase, alpha-arabinofuranosidase, arabinofuranosidase, polysaccharide alpha-L-arabinofuranosidase, alpha-L-arabinofuranoside hydrolase, L-arabinosidase and alpha-L-arabinanase.

[0170] In some embodiments, the present invention provides at least one GH61 variant and at least one alpha-glucuronidase. Alpha-glucuronidases (EC 3.2.1.139) catalyze the hydrolysis of an alpha-D-glucuronoside to D-glucuronate and an alcohol.

[0171] In some embodiments, the present invention provides at least one GH61 variant and at least one acetylxylanesterase. Acetylxylanesterases (EC 3.1.1.72) catalyze the hydrolysis of acetyl groups from polymeric xylan, acetylated xylose, acetylated glucose, alpha-napthyl acetate, and p-nitrophenyl acetate.

[0172] In some embodiments, the present invention provides at least one GH61 variant and at least one feruloyl esterase. Feruloyl esterases (EC 3.1.1.73) have 4-hydroxy-3-methoxycinnamoyl-sugar hydrolase activity (EC 3.1.1.73) that catalyzes the hydrolysis of the 4-hydroxy-3-methoxycinnamoyl (feruloyl) group from an esterified sugar, which is usually arabinose in "natural" substrates, to produce ferulate (4-hydroxy-3-methoxycinnamate). Feruloyl esterase is also known as ferulic acid esterase, hydroxycinnamoyl esterase, FAE-III, cinnamoyl ester hydrolase, FAEA, cinnAE, FAE-I, or FAE-II.

[0173] In some embodiments, the present invention provides at least one GH61 variant and at least one coumaroyl esterase. Coumaroyl esterases (EC 3.1.1.73) catalyze a reaction of the form: coumaroyl-saccharide+H.sub.2O=coumarate+saccharide. In some embodiments, the saccharide is an oligosaccharide or a polysaccharide. This enzyme may also be referred to as trans-4-coumaroyl esterase, trans-p-coumaroyl esterase, p-coumaroyl esterase or p-coumaric acid esterase. The enzyme also falls within EC 3.1.1.73; it may also be referred to as a "feruloyl esterase."

[0174] In some embodiments, the present invention provides at least one GH61 variant and at least one alpha-galactosidase. Alpha-galactosidases (EC 3.2.1.22) catalyze the hydrolysis of terminal, non-reducing alpha-D-galactose residues in alpha-D-galactosides, including galactose oligosaccharides, galactomannans, galactans and arabinogalactans. This enzyme may also be referred to as "melibiase."

[0175] In some embodiments, the present invention provides at least one GH61 variant and at least one beta-galactosidase. Beta-galactosidases (EC 3.2.1.23) catalyze the hydrolysis of terminal non-reducing beta-D-galactose residues in beta-D-galactosides. In some embodiments, the polypeptide is also capable of hydrolyzing alpha-L-arabinosides. This enzyme may also be referred to as exo-(1->4)-beta-D-galactanase or lactase.

[0176] In some embodiments, the present invention provides at least one GH61 variant and at least one beta-mannanase. Beta-mannanases (EC 3.2.1.78) catalyze the random hydrolysis of 1,4-beta-D-mannosidic linkages in mannans, galactomannans and glucomannans. This enzyme may also be referred to as "mannan endo-1,4-beta-mannosidase" or "endo-1,4-mannanase."

[0177] In some embodiments, the present invention provides at least one GH61 variant and at least one beta-mannosidase. Beta-mannosidases (EC 3.2.1.25) catalyze the hydrolysis of terminal, non-reducing beta-D-mannose residues in beta-D-mannosides. This enzyme may also be referred to as mannanase or mannase.

[0178] In some embodiments, the present invention provides at least one GH61 variant and at least one glucoamylase. Glucoamylases (EC 3.2.1.3) catalyzes the release of D-glucose from non-reducing ends of oligo- and poly-saccharide molecules. Glucoamylase is also generally considered a type of amylase known as amylo-glucosidase.

[0179] In some embodiments, the present invention provides at least one GH61 variant and at least one amylase. Amylases (EC 3.2.1.1) are starch cleaving enzymes that degrade starch and related compounds by hydrolyzing the alpha-1,4 and/or alpha-1,6 glucosidic linkages in an endo- or an exo-acting fashion. Amylases include alpha-amylases (EC 3.2.1.1); beta-amylases (3.2.1.2), amylo-amylases (EC 3.2.1.3), alpha-glucosidases (EC 3.2.1.20), pullulanases (EC 3.2.1.41), and isoamylases (EC 3.2.1.68). In some embodiments, the amylase is an alpha-amylase.

[0180] In some embodiments one or more enzymes that degrade pectin are included in enzyme mixtures that comprise at least one GH61 variant of the present invention. Pectinases catalyze the hydrolysis of pectin into smaller units such as oligosaccharide or monomeric saccharides. In some embodiments, the enzyme mixtures comprise any pectinase, for example an endo-polygalacturonase, a pectin methyl esterase, an endo-galactanase, a pectin acetyl esterase, an endo-pectin lyase, pectate lyase, alpha rhamnosidase, an exo-galacturonase, an exo-polygalacturonate lyase, a rhamnogalacturonan hydrolase, a rhamnogalacturonan lyase, a rhamnogalacturonan acetyl esterase, a rhamnogalacturonan galacturonohydrolase and/or a xylogalacturonase.

[0181] In some embodiments, the present invention provides at least one GH61 variant and at least one endo-polygalacturonase. Endo-polygalacturonases (EC 3.2.1.15) catalyze the random hydrolysis of 1,4-alpha-D-galactosiduronic linkages in pectate and other galacturonans. This enzyme may also be referred to as "polygalacturonase pectin depolymerase," "pectinase," "endopolygalacturonase," "pectolase," "pectin hydrolase," "pectin polygalacturonase," "poly-alpha-1,4-galacturonide glycanohydrolase," "endogalacturonase," "endo-D-galacturonase" or "poly(1,4-alpha-D-galacturonide) glycanohydrolase."

[0182] In some embodiments, the present invention provides at least one GH61 variant and at least one pectin methyl esterase. Pectin methyl esterases (EC 3.1.1.11) catalyze the reaction: pectin+n H.sub.2O=n methanol+pectate. The enzyme may also been known as "pectin esterase," "pectin demethoxylase," "pectin methoxylase," "pectin methylesterase," "pectase," "pectinoesterase," or "pectin pectylhydrolase."

[0183] In some embodiments, the present invention provides at least one GH61 variant and at least one endo-galactanase. Endo-galactanases (EC 3.2.1.89) catalyze the endohydrolysis of 1,4-beta-D-galactosidic linkages in arabinogalactans. The enzyme may also be known as "arabinogalactan endo-1,4-beta-galactosidase," "endo-1,4-beta-galactanase," "galactanase," "arabinogalactanase," or "arabinogalactan 4-beta-D-galactanohydrolase."

[0184] In some embodiments, the present invention provides at least one GH61 variant and at least one pectin acetyl esterase. Pectin acetyl esterases catalyze the deacetylation of the acetyl groups at the hydroxyl groups of GaIUA residues of pectin.

[0185] In some embodiments, the present invention provides at least one GH61 variant and at least one endo-pectin lyase. Endo-pectin lyases (EC 4.2.2.10) catalyze the eliminative cleavage of (1.fwdarw.4)-alpha-D-galacturonan methyl ester to give oligosaccharides with 4-deoxy-6-O-methyl-.alpha.-D-galact-4-enuronosyl groups at their non-reducing ends. The enzyme may also be known as "pectin lyase," "pectin trans-eliminase," "endo-pectin lyase," "polymethylgalacturonic transeliminase," "pectin methyltranseliminase," "pectolyase," "PL," "PNL," "PMGL," or "(1.fwdarw.4)-6-O-methyl-alpha-D-galacturonan lyase."

[0186] In some embodiments, the present invention provides at least one GH61 variant and at least one pectate lyase. Pectate lyases (EC 4.2.2.2) catalyze the eliminative cleavage of (1.fwdarw.4)-alpha-D-galacturonan to give oligosaccharides with 4-deoxy-alpha-D-galact-4-enuronosyl groups at their non-reducing ends. The enzyme may also be known "polygalacturonic transeliminase," "pectic acid transeliminase," "polygalacturonate lyase," "endopectin methyltranseliminase," "pectate transeliminase," "endogalacturonate transeliminase," "pectic acid lyase," "pectic lyase," alpha-1,4-D-endopolygalacturonic acid lyase," "PGA lyase," "PPase-N," "endo-alpha-1,4-polygalacturonic acid lyase," "polygalacturonic acid lyase," "pectin trans-eliminase," "polygalacturonic acid trans-eliminase," or "(1.fwdarw.4)-alpha-D-galacturonan lyase."

[0187] In some embodiments, the present invention provides at least one GH61 variant and at least one alpha-rhamnosidase. Alpha-rhamnosidases (EC 3.2.1.40) catalyze the hydrolysis of terminal non-reducing alpha-L-rhamnose residues in alpha-L-rhamnosides or alternatively in rhamnogalacturonan. This enzyme may also be known as "alpha-L-rhamnosidase T," "alpha-L-rhamnosidase N," or "alpha-L-rhamnoside rhamnohydrolase."

[0188] In some embodiments, the present invention provides at least one GH61 variant and at least one exo-galacturonase. Exo-galacturonases (EC 3.2.1.82) hydrolyze pectic acid from the non-reducing end, releasing digalacturonate. The enzyme may also be known as "exo-poly-alpha-galacturonosidase," "exopolygalacturonosidase," or "exopolygalacturanosidase."

[0189] In some embodiments, the present invention provides at least one GH61 variant and at least one -galacturan 1,4-alpha galacturonidase. Exo-galacturonases (EC 3.2.1.67) catalyze a reaction of the following type: (1,4-.alpha.-D-galacturonide)n+H2O=(1,4-.alpha.-D-galacturonide)n-i- +D-galacturonate. The enzyme may also be known as "poly[1->4) alpha-D-galacturonide]galacturonohydrolase," "exopolygalacturonase," "poly(galacturonate) hydrolase," "exo-D-galacturonase," "exo-D-galacturonanase," "exopoly-D-galacturonase," or "poly(1,4-alpha-D-galacturonide) galacturonohydrolase."

[0190] In some embodiments, the present invention provides at least one GH61 variant and at least one exopolygalacturonate lyase. Exopolygalacturonate lyases (EC 4.2.2.9) catalyze eliminative cleavage of 4-(4-deoxy-alpha-D-galact-4-enuronosyl)-D-galacturonate from the reducing end of pectate (i.e., de-esterified pectin). This enzyme may be known as "pectate disaccharide-lyase," "pectate exo-lyase," "exopectic acid transeliminase," "exopectate lyase," "exopolygalacturonic acid-trans-eliminase," "PATE," "exo-PATE," "exo-PGL," or "(1.fwdarw.4)-alpha-D-galacturonan reducing-end-disaccharide-lyase."

[0191] In some embodiments, the present invention provides at least one GH61 variant and at least one rhamnogalacturonanase. Rhamnogalacturonanases hydrolyze the linkage between galactosyluronic acid and rhamnopyranosyl in an endo-fashion in strictly alternating rhamnogalacturonan structures, consisting of the disaccharide [(1,2-alpha-L-rhamnoyl-(1,4)-alpha-galactosyluronic acid].

[0192] In some embodiments, the present invention provides at least one GH61 variant and at least one rhamnogalacturonan lyase Rhamnogalacturonan lyases cleave alpha-L-Rhap-(1.fwdarw.4)-alpha-D-GalpA linkages in an endo-fashion in rhamnogalacturonan by beta-elimination.

[0193] In some embodiments, the present invention provides at least one GH61 variant and at least one rhamnogalacturonan acetyl esterase Rhamnogalacturonan acetyl esterases catalyze the deacetylation of the backbone of alternating rhamnose and galacturonic acid residues in rhamnogalacturonan.

[0194] In some embodiments, the present invention provides at least one GH61 variant and at least one rhamnogalacturonan galacturonohydrolase Rhamnogalacturonan galacturonohydrolases hydrolyze galacturonic acid from the non-reducing end of strictly alternating rhamnogalacturonan structures in an exo-fashion. This enzyme may also be known as "xylogalacturonan hydrolase."

[0195] In some embodiments, the present invention provides at least one GH61 variant and at least one endo-arabinanase. Endo-arabinanases (EC 3.2.1.99) catalyze endohydrolysis of 1,5-alpha-arabinofuranosidic linkages in 1,5-arabinans. The enzyme may also be known as "endo-arabinase," "arabinan endo-1,5-alpha-L-arabinosidase," "endo-1,5-alpha-L-arabinanase," "endo-alpha-1,5-arabanase," "endo-arabanase," or "1,5-alpha-L-arabinan 1,5-alpha-L-arabinanohydrolase."

[0196] In some embodiments, the present invention provides at least one GH61 variant and at least one enzyme that participates in lignin degradation in an enzyme mixture. Enzymatic lignin depolymerization can be accomplished by lignin peroxidases, manganese peroxidases, laccases, and/or cellobiose dehydrogenases (CDH), often working in synergy. These extracellular enzymes are often referred to as "lignin-modifying enzymes" or "LMEs." Three of these enzymes comprise two glycosylated heme-containing peroxidases, namely lignin peroxidase (LIP), Mn-dependent peroxidase (MNP), and copper-containing phenoloxidase laccase (LCC).

[0197] In some embodiments, the present invention provides at least one GH61 variant and at least one laccase. Laccases are copper containing oxidase enzymes that are found in many plants, fungi and microorganisms. Laccases are enzymatically active on phenols and similar molecules and perform a one electron oxidation. Laccases can be polymeric and the enzymatically active form can be a dimer or trimer.

[0198] In some embodiments, the present invention provides at least one GH61 variant and at least one Mn-dependent peroxidase. The enzymatic activity of Mn-dependent peroxidase (MnP) in is dependent on Mn2+. Without being bound by theory, it has been suggested that the main role of this enzyme is to oxidize Mn2+ to Mn3+(See e.g, Glenn et al., Arch. Biochem. Biophys., 251:688-696 [1986]). Subsequently, phenolic substrates are oxidized by the Mn3+ generated.

[0199] In some embodiments, the present invention provides at least one GH61 variant and at least one lignin peroxidase. Lignin peroxidase is an extracellular heme peroxidase that catalyses the oxidative depolymerization of dilute solutions of polymeric lignin in vitro. Some of the substrates of LiP, most notably 3,4-dimethoxybenzyl alcohol (veratryl alcohol, VA), are active redox compounds that have been shown to act as redox mediators. VA is a secondary metabolite produced at the same time as LiP by ligninolytic cultures of P. chrysosporium and without being bound by theory, has been proposed to function as a physiological redox mediator in the LiP-catalyzed oxidation of lignin in vivo (See e.g., Harvey, et al., FEBS Lett., 195:242-246 [1986]).

[0200] In some embodiments, the present invention provides at least one GH61 variant and at least one protease, amylase, glucoamylase, and/or a lipase that participates in cellulose degradation.

[0201] As used herein, the term "protease" includes enzymes that hydrolyze peptide bonds (peptidases), as well as enzymes that hydrolyze bonds between peptides and other moieties, such as sugars (glycopeptidases). Many proteases are characterized under EC 3.4, and are suitable for use in the invention. Some specific types of proteases include, cysteine proteases including pepsin, papain and serine proteases including chymotrypsins, carboxypeptidases and metalloendopeptidases.

[0202] As used herein, the term "lipase" includes enzymes that hydrolyze lipids, fatty acids, and acylglycerides, including phospoglycerides, lipoproteins, diacylglycerols, and the like. In plants, lipids are used as structural components to limit water loss and pathogen infection. These lipids include waxes derived from fatty acids, as well as cutin and suberin.

[0203] In some additional embodiments, the present invention provides at least one GH61 variant and at least one expansin or expansin-like protein, such as a swollenin (See e.g., Salheimo et al., Eur. J. Biochem., 269:4202-4211 [2002]) or a swollenin-like protein. Expansins are implicated in loosening of the cell wall structure during plant cell growth. Expansins have been proposed to disrupt hydrogen bonding between cellulose and other cell wall polysaccharides without having hydrolytic activity. In this way, they are thought to allow the sliding of cellulose fibers and enlargement of the cell wall. Swollenin, an expansin-like protein contains an N-terminal Carbohydrate Binding Module Family 1 domain (CBD) and a C-terminal expansin-like domain. In some embodiments, an expansin-like protein or swollenin-like protein comprises one or both of such domains and/or disrupts the structure of cell walls (such as disrupting cellulose structure), optionally without producing detectable amounts of reducing sugars.

[0204] In some embodiments, the present invention provides at least one GH61 variant and at least one polypeptide product of a cellulose integrating protein, scaffoldin or a scaffoldin-like protein, for example CipA or CipC from Clostridium thermocellum or Clostridium cellulolyticum, respectively. Scaffoldins and cellulose integrating proteins are multi-functional integrating subunits which may organize cellulolytic subunits into a multi-enzyme complex. This is accomplished by the interaction of two complementary classes of domains (i.e. a cohesion domain on scaffoldin and a dockerin domain on each enzymatic unit). The scaffoldin subunit also bears a cellulose-binding module that mediates attachment of the cellulosome to its substrate. A scaffoldin or cellulose integrating protein for the purposes of this invention may comprise one or both such domains.

[0205] In some embodiments, the present invention provides at least one GH61 variant and at least one cellulose induced protein or modulating protein, for example as encoded by a cip1 or cip2 gene or similar genes from Trichoderma reesei (See e.g., Foreman et al., J. Biol. Chem., 278:31988-31997 [2003]).

[0206] In some embodiments, the present invention provides at least one GH61 variant and at least one member of each of the classes of the polypeptides described above, several members of one polypeptide class, or any combination of these polypeptide classes to provide enzyme mixtures suitable for various uses.

[0207] In some embodiments, the enzyme mixture comprises other types of cellulases, selected from but not limited to cellobiohydrolase, endoglucanase, beta-glucosidase, and glycoside hydrolase 61 protein (GH61) cellulases. These enzymes may be wild-type or recombinant enzymes. In some embodiments, the cellobiohydrolase is a type 1 cellobiohydrolase (e.g., a T. reesei cellobiohydrolase I). In some embodiments, the endoglucanase comprises a catalytic domain derived from the catalytic domain of a Streptomyces avermitilis endoglucanase (See e.g., US Pat. Appln. Pub. No. 2010/0267089; U.S. Pat. No. 8,206,960; and U.S. Pat. No. 8,088,608, each of which is incorporated herein by reference). In some embodiments, at least one cellulase in the mixtures of the present invention is derived from Acidothermus cellulolyticus, Thermobifida fusca, Humicola grisea, Myceliophthora thermophila, Chaetomium thermophilum, Acremonium sp., Thielavia sp, Trichoderma reesei, Aspergillus sp., or a Chrysosporium sp. In some embodiments, cellulase enzymes of the cellulase mixture work together resulting in decrystallization and hydrolysis of the cellulose from a biomass substrate to yield fermentable sugars, such as but not limited to glucose.

[0208] Some cellulase mixtures for efficient enzymatic hydrolysis of cellulose are known (See e.g., Viikari et al., Adv. Biochem. Eng. Biotechnol., 108:121-45 [2007]; and US Pat. Appln. Publn. Nos. US 2009/0061484, US 2008/0057541, and US 2009/0209009, each of which is incorporated herein by reference in their entireties). In some embodiments, mixtures of purified naturally occurring or recombinant enzymes are combined with cellulosic feedstock or a product of cellulose hydrolysis. Alternatively or in addition, one or more cell populations, each producing one or more naturally occurring or recombinant cellulase, are combined with cellulosic feedstock or a product of cellulose hydrolysis.

[0209] In some embodiments, the enzyme mixture comprises commercially available purified cellulases. Commercial cellulases are known and available (e.g., C2730 cellulase from Trichoderma reesei ATCC No. 25921 available from Sigma-Aldrich, Inc.) Any suitable commercially available enzyme finds use in the present invention.

[0210] In some embodiments, the enzyme mixture comprises at least one isolated GH61 variant as provided herein and at least one or more isolated enzymes, including but not limited to at least one isolated CBH1a, isolated CBH2b, isolated endoglucanase (EG) (e.g., EG2 and/or EG1), and/or isolated beta-glucosidase (BGL). In some embodiments, at least 5%, at least 10%, at last 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, or at least 50% of the enzyme mixture is GH61. In some embodiments, the enzyme mixture further comprises a cellobiohydrolase type 1a (e.g., CBH1a), and GH61, wherein the enzymes together comprise at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, or at least 80% of the enzyme mixture. In some embodiments, the enzyme mixture further comprises a beta-glucosidase (BGL), GH61, and CBH, wherein the three enzymes together comprise at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, or at least 85% of the enzyme mixture. In some embodiments, the enzyme mixture further comprises an endoglucanase (EG), GH61, CBH2b, CBH1a, BGL, wherein the five enzymes together comprise at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, or at least 90% of the enzyme mixture. In some embodiments, the enzyme mixture comprises GH61, CBH2b, CBH1, BGL, and at least one EG, in any suitable proportion for the desired reaction.

[0211] In some embodiments, the enzyme mixture composition comprises isolated cellulases in the following proportions by weight (wherein the total weight of the cellulases is 100%): about 20%-10% of GH61, about 20%-10% of BGL, about 30%-25% of CBH1a, about 10%-30% of GH61, about 20%-10% of EG, and about 20%-25% of CBH2b. In some embodiments, the enzyme mixture composition comprises isolated cellulases in the following proportions by weight: about 20%-10% of GH61, about 25%-15% of BGL, about 20%-30% of CBH1a, about 10%-15% of EG, and about 25%-30% of CBH2b. In some embodiments, the enzyme mixture composition comprises isolated cellulases in the following proportions by weight: about 30%-20% of GH61, about 15%-10% of BGL, about 25%-10% of CBH1a, about 25%-10% of CBH2b, about 15%-10% of EG. In some embodiments, the enzyme mixture composition comprises isolated cellulases in the following proportions by weight: about 40-30% of GH61, about 15%-10% of BGL, about 20%-10% of CBH1a, about 20%-10% of CBH2b, and about 15%-10% of EG.

[0212] In some embodiments, the enzyme mixture composition comprises isolated cellulases in the following proportions by weight: about 50-40% of GH61, about 15%-10% of BGL, about 20%-5% of CBH1a, about 15%-10% of CBH2b, and about 10%-5% of EG. However, in some embodiments, the enzyme mixture composition comprises no EG (e.g., EG2). In some embodiments, the enzyme mixture composition comprises isolated cellulases in the following proportions by weight: about 10%-15% of GH61, about 20%-25% of BGL, about 30%-20% of CBH1a, about 15%-5% of EG, and about 25%-35% of CBH2b. In some embodiments, the enzyme mixture composition comprises isolated cellulases in the following proportions by weight: about 15%-5% of GH61, about 15%-10% of BGL, about 45%-30% of CBH1a, about 25%-5% of EG, and about 40%-10% of CBH2b. In some embodiments, the enzyme mixture composition comprises isolated cellulases in the following proportions by weight: about 10% of GH61, about 15% of BGL, about 40% of CBH1a, about 25% of EG, and about 10% of CBH2b.

[0213] In some embodiments, the enzyme mixtures provided herein further comprise at least one xylan-active enzyme and/or at least one ester-active enzyme. In some embodiments, the enzyme mixture compositions comprise about 0-25% xylanase (e.g., about 2%-5%, about 1%-10%, about 10%-15%, about 15%-25%, about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, or about 15% xylanase) by weight. In some embodiments, the enzyme mixture compositions comprise about 0-15% xylosidase (e.g., about 2%-5%, about 1%-10%, about 10%-15%, about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, or about 15% xylosidase) by weight. In some embodiments, the enzyme mixture compositions comprise about 0-15% esterase (e.g., about 2%-5%, about 1%-10%, about 10%-15%, about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, or about 15% esterase) by weight. It is contemplated that any suitable combination of enzymes and suitable enzyme concentrations will find use in the present invention, as applied using various saccharification reactions and conditions.

[0214] In some embodiments, the enzyme component comprises more than one CBH1a, CBH2b, EG, BGL, and/or GH61 variant enzyme (e.g., 2, 3 or 4 different enzymes), in any suitable combination. In some embodiments, an enzyme mixture composition of the invention further comprises at least one additional protein and/or enzyme. In some embodiments, enzyme mixture compositions of the present invention further comprise at least one additional enzyme other than at least one GH61 variant, BGL, CBH1a, wild-type GH61, and/or CBH2b. In some embodiments, the enzyme mixture compositions of the invention further comprise at least one additional cellulase, other than at least one GH61 variant, BGL, CBH1a, GH61, and/or CBH2b as described herein. In some embodiments, the GH61 polypeptide variant of the invention is also present in mixtures with non-cellulase enzymes that degrade cellulose, hemicellulose, pectin, and/or lignocellulose.

[0215] In some embodiments, GH61 polypeptide variant of the present invention is used in combination with other optional ingredients such as at least one buffer, surfactant, and/or scouring agent. In some embodiments, at least one buffer is used with the GH61 polypeptide variant of the present invention (optionally combined with other enzymes) to maintain a desired pH within the solution in which the GH61 variant is employed. The exact concentration of buffer employed depends on several factors which the skilled artisan can determine. Suitable buffers are well known in the art. In some embodiments, at least one surfactant is used in with the GH61 variant of the present invention. Suitable surfactants include any surfactant compatible with the GH61 variant and, optionally, with any other enzymes being used in the mixture. Exemplary surfactants include, but are not limited to anionic, non-ionic, and ampholytic surfactants. Suitable anionic surfactants include, but are not limited to, linear or branched alkylbenzenesulfonates; alkyl or alkenyl ether sulfates having linear or branched alkyl groups or alkenyl groups; alkyl or alkenyl sulfates; olefinsulfonates; alkanesulfonates, and the like. Suitable counter ions for anionic surfactants include, for example, alkali metal ions, such as sodium and potassium; alkaline earth metal ions, such as calcium and magnesium; ammonium ion; and alkanolamines having from 1 to 3 alkanol groups of carbon number 2 or 3. Ampholytic surfactants suitable for use in the practice of the present invention include, for example, quaternary ammonium salt sulfonates, betaine-type ampholytic surfactants, and the like. Suitable nonionic surfactants generally include polyoxalkylene ethers, as well as higher fatty acid alkanolamides or alkylene oxide adduct thereof, fatty acid glycerine monoesters, and the like. Mixtures of surfactants also find use in the present invention, as is known in the art.

Exemplary Mixtures of Cellulolytic Enzymes and Cofactors

[0216] As a further guide to the reader, yet without implying any limitation in the practice of the present invention, exemplary mixtures of components that may be used as catalysts in a saccharification reaction to generate fermentable sugars from a cellulosic substrate are provided herein. Concentrations are given in wt/vol of each component in the final reaction volume with the cellulose substrate. Also provided are percentages of each component (wt/wt) in relation to the total mass of the components that are listed for addition into each mixture (the "total protein"). This may be a mixture of purified enzymes and/or enzymes in a culture supernatant.

[0217] By way of example, the invention embodies mixtures that comprise at least four, at least five, or all six of the following components. In some embodiments, cellobiohydrolase 1 (CBH1) finds use; in some embodiments CBH1 is present at a concentration of about 0.14 to about 0.23 g/L (about 15% to about 25% of total protein). Exemplary CBH1 enzymes include, but are not limited to T. emersonii CBH1 (wild-type) (e.g., SEQ ID NO:125), M. thermophila CBH1a (wild-type) (e.g., SEQ ID NO:128), and the variants CBH1a-983 (SEQ ID NO:134) and CBH1a-145 (SEQ ID NO:131). In some embodiments, cellobiohydrolase 2 (CBH2) finds use; in some embodiments, CBH2 is present at a concentration of about 0.14 to about 0.23 g/L (about 15% to about 25% of total protein). Exemplary CBH2 enzymes include but are not limited to CBH2b from M. thermophila (wild-type) (e.g., SEQ ID NO:137). In some embodiments, endoglucanase 2 (EG2) finds use; in some embodiments, EG2 is present at a concentration of 0 to about 0.05 g/L (0 to about 5% of total protein). Exemplary EGs include, but are not limited to M. thermophila EG2 (wild-type) (e.g., SEQ ID NO:113). In some further embodiments, endoglucanase 1 (EG1) finds use; in some embodiments, EG1 is present at a concentration of about 0.05 to about 0.14 g/L (about 5% to about 15% of total protein). Exemplary EGls include, but are not limited to M. thermophila EG1b (wild-type) (e.g., SEQ ID NO:110). In some embodiments, beta-glucosidase (BGL) finds use in the present invention; in some embodiments, BGL is present at a concentration of about 0.05 to about 0.09 g/L (about 5% to about 10% of total protein). Exemplary beta-glucosidases include, but are not limited to M. thermophila BGL1 (wild-type) (e.g., SEQ ID NO:116), variant BGL-900 (SEQ ID NO:122), and variant BGL-883 (SEQ ID NO:119). In some further embodiments, GH61 protein and/or protein variants find use; in some embodiments, GH61 enzymes are present at a concentration of about 0.23 to about 0.33 g/L (about 25% to about 35% of total protein). Exemplary GH61s include, but are not limited to M. thermophila GH61a wild-type (SEQ ID NO:2), Variant 1 (SEQ ID NO:5), Variant 5 (SEQ ID NO:8) and/or Variant 9 (SEQ ID NO:11), and/or any other GH61a variant proteins, as well as any of the other GH61 enzymes (e.g., GH61b, GH61c, GH61d, GH61e, GH61f, GH61g, GH61h, GH161i, GH61j, GH61k, GH61l, GH61m, GH61n, GH61o, GH61p, GH61q, GH61r, GH61s, GH61t, GH61u, GH61v, GH61w, GH61x, and/or GH61y) as provided herein.

[0218] In some embodiments, one, two or more than two enzymes are present in the mixtures of the present invention. In some embodiments, GH61p is present at a concentration of about 0.05 to about 0.14 g/L (e.g, about 1% to about 15% of total protein). Exemplary M. thermophila GH61p enzymes include those set forth in SEQ ID NOS:70 and 73. In some embodiments, GH61f is present at a concentration of about 0.05 to about 0.14 g/L (about 1% to about 15% of total protein). An exemplary M. thermophila GH61f is set forth in SEQ ID NO:29. In some additional embodiments, at least one additional GH61 enzyme provided herein (e.g., GH61b, GH61c, GH61d, GH61e, GH61g, GH61h, GH61i, GH61j, GH61k, GH61l, GH61m, GH61n, GH61n, GH61o, GH61q, GH61r, GH61s, GH61t, GH61u, GH61v, GH61w, GH61x, and/or GH61y, finds use at an appropriate concentration (e.g., about 0.05 to about 0.14 g/L [about 1% to about 15% of total protein]).

[0219] In some embodiments, at least one xylanase at a concentration of about 0.05 to about 0.14 g/L (about 1% to about 15% of total protein) finds use in the present invention. Exemplary xylanases include but are not limited to the M. thermophila xylanase-3 (SEQ ID NO:149), xylanase-2 (SEQ ID NO:152), xylanase-1 (SEQ ID NO:155), xylanase-6 (SEQ ID NO:158), and xylanase-5 (SEQ ID NO:161).

[0220] In some additional embodiments, at least one beta-xylosidase at a concentration of about 0.05 to about 0.14 g/L (e.g., about 1% to about 15% of total protein) finds use in the present invention. Exemplary beta-xylosidases include but are not limited to the M. thermophila beta-xylosidase (SEQ ID NO:164).

[0221] In still some additional embodiments, at least one acetyl xylan esterase at a concentration of about 0.05 to about 0.14 g/L (e.g., about 1% to about 15% of total protein) finds use in the present invention. Exemplary acetylxylan esterases include but are not limited to the M. thermophila acetylxylan esterase (SEQ ID NO:167).

[0222] In some further additional embodiments, at least one ferulic acid esterase at a concentration of about 0.05 to about 0.14 g/L (e.g., about 1% to about 15% of total protein) finds use in the present invention. Exemplary ferulic esterases include but are not limited to the M. thermophila ferulic acid esterase (SEQ ID NO:170).

[0223] In some embodiments, the enzyme mixtures comprise at least one GH61 variant protein as provided herein and at least one cellulase, including but not limited to any of the enzymes described herein. In some embodiments, the enzyme mixtures comprise at least one GH61 variant protein and at least one wild-type GH61 protein. In some embodiments, the enzyme mixtures comprise at least one GH61 variant protein and at least one non-cellulase enzyme. Indeed, it is intended that any combination of enzymes will find use in the enzyme compositions comprising at least one GH61 variant of the present invention.

[0224] The concentrations listed above are appropriate for a final reaction volume with the biomass substrate in which all of the components listed (the "total protein") is about 0.75 g/L, and the amount of glucan is about 93 g/L, subject to routine optimization. The user may empirically adjust the amount of each component and total protein for cellulosic substrates that have different characteristics and/or are processed at a different concentration. Any one or more of the components may be supplemented or substituted with variants with common structural and functional characteristics, as described below.

[0225] Without implying any limitation, the following mixtures further describe some embodiments of the present invention.

[0226] Some mixtures comprise CBH1a within a range of about 15% to about 30% total protein, typically about 20% to about 25%; CBH2 within a range of about 15% to about 30%, typically about 17% to about 22%; EG2 within a range of about 1% to about 10%, typically about 2% to about 5%; BGL1 within a range of about 5% to about 15%, typically about 8% to about 12%; GH61a within a range of about 10% to about 40%, typically about 20% to about 30%; EG1b within a range of about 5% to about 25%, typically about 10% to about 18%; and GH61f within a range of 0% to about 30%; typically about 5% to about 20%.

[0227] In some mixtures, exemplary BGL1s include the BGL1 variant 900 (SEQ ID NO:122) and/or variant 883 (SEQ ID NO:119). In some embodiments, other enzymes are M. thermophila wild-type: CBH1a (SEQ ID NO:128), CBH2b (SEQ ID NO:137), EG2 (SEQ ID NO:113), GH61a (SEQ ID NO:2), EG1b (SEQ ID NO:110) and GH61f (SEQ ID NO:29). Any one or more of the components may be supplemented or substituted with variants having common structural and functional characteristics with the component being substituted or supplemented, as described below. In a saccharification reaction, the amount of glucan is generally about 50 to about 300 g/L, typically about 75 to about 150 g/L. The total protein is about 0.1 to about 10 g/L, typically about 0.5 to about 2 g/L, or about 0.75 g/L.

[0228] Some mixtures comprise CBH1 within a range of about 10% to about 30%, typically about 15% to about 25%; CBH2b within a range of about 10% to about 25%, typically about 15% to about 20%; EG2 within a range of about 1% to about 10%, typically about 2% to about 5%; EG1b within a range of about 2% to about 25%, typically about 6% to about 14%; GH61a within a range of about 5% to about 50%, typically about 10% to about 35%; and BGL1 within a range of about 2% to about 15%, typically about 5% to about 12%. Also included is copper sulfate to generate a final concentration of Cu.sup.++ of about 4 .mu.M to about 200 .mu.M, typically about 25 .mu.M to about 60 .mu.M. However, it is not intended that the added copper be limited to any particular concentration, as any suitable concentration finds use in the present invention and will be determined based on the reaction conditions.

[0229] In an additional mixture, an exemplary CBH1 is wild-type CBH1 from T. emersonii (SEQ ID NO:125), as well as wild-type M. thermophila CBH1a (SEQ ID NO:128), Variant 983 (SEQ ID NO:134), and Variant 145 (SEQ ID NO:131); exemplary CBH2 enzymes include the wild-type (SEQ ID NO:137), Variant 962 (SEQ ID NO:146), Variant 196 (SEQ ID NO:140), and Variant 287 (SEQ ID NO:143); an exemplary EG2 is the wild-type M. thermophila (SEQ ID NO:113); an exemplary EG1b is the wild-type (SEQ ID NO: 110); exemplary GH61a enzymes include wild-type M. thermophila (SEQ ID NO:2), Variant 1 (SEQ ID NO:5), Variant 5 (SEQ ID NO:11), and Variant 9 (SEQ ID NO:11); and exemplary BGLs include wild-type M. thermophila BGL (SEQ ID NO:116), Variant 883 (SEQ ID NO:119), and Variant 900 (SEQ ID NO:122). Any one or more of the components may be supplemented or substituted with other variants having common structural and functional characteristics with the component being substituted or supplemented, as described below. In a saccharification reaction, the amount of glucan is generally about 50 to about 300 g/L, typically about 75 to about 150 g/L. The total protein is about 0.1 to about 10 g/L, typically about 0.5 to about 2 g/L, or about 0.75 g/L.

[0230] Any or all of the components listed in the mixtures referred to above may be supplemented or substituted with variant proteins that are structurally and functionally related, as described herein.

[0231] In some embodiments, the CBH1 cellobiohydrolase used in mixtures of the present invention comprises at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to either SEQ ID NO:128 (M. thermophila), SEQ ID NO:125 (T. emersonii), or a fragment of either SEQ ID NO:128 or SEQ ID NO:125 having cellobiohydrolase activity, as well as variants of M. thermophila CBH1a (e.g., SEQ ID NO:131 and/or SEQ ID NO:133), and variant fragment(s) having cellobiohydrolase activity. Exemplary CBH1 enzymes include, but are not limited to those described in US Pat. Appln. Publn. No. 2012/0003703 A1, which is hereby incorporated herein by reference in its entirety for all purposes.

[0232] In some embodiments, the CBH2b cellobiohydrolase used in the mixtures of the present invention comprises at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to SEQ ID NO:127 or a fragment of SEQ ID NO:127, as well as at least one variant M. thermophila CBH2b enzyme (e.g., SEQ ID NO:140, 143, and/or 146) and/or variant fragment(s) having cellobiohydrolase activity. Exemplary CBH2b enzymes are described in U.S. Patent Appln. Ser. No. 61/479,800, Ser. No. 13/459,038, both of which are hereby incorporated herein by reference in their entirety for all purposes.

[0233] In some embodiments, the EG2 endoglucanase used in the mixtures of the present invention comprises at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to SEQ ID NO:113 or a fragment of SEQ ID NO:113 having endoglucanase activity. Exemplary EG2 enzymes are described in U.S. patent application Ser. No. 13/332,114, and WO 2012/088159, both of which are hereby incorporated herein by reference in their entirety for all purposes.

[0234] In some embodiments, the EG1b endoglucanase used in the mixtures of the present invention comprises at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to SEQ ID NO:110 or a fragment of SEQ ID NO:110 having endoglucanase activity.

[0235] In some embodiments, the BGL1 beta-glucosidase used the mixtures of the present invention comprises at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to SEQ ID NOS:116, 119, and/or 122, or a fragment of SEQ ID NOS:116, 119, and/or 122 having beta-glucosidase activity. Exemplary BGL1 enzymes include, but are not limited to those described in US Pat. Appln. Publ. No. 2011/0129881, WO 2011/041594, and US Pat. Appln. Publ. No. 2011/0124058 A1, all of which are hereby incorporated herein by reference in their entireties for all purposes.

[0236] In some embodiments, the GH61f protein used in the mixtures of the present invention comprises at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to SEQ ID NO:29, or a fragment of SEQ ID NO:29 having GH61 activity, assayed as described elsewhere in this disclosure.

[0237] In some embodiments, the GH61p protein used in the mixtures of the present invention comprises at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to SEQ ID NO:70, SEQ ID NO:73, or a fragment of such sequence having GH61p activity.

[0238] In some embodiments, the xylanase used in the mixtures of the present invention comprises at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to SEQ ID NO:149, SEQ ID NO:151, or a fragment of such sequence having xylanase activity.

GH61 Activity Assays

[0239] The cellulase enhancing activity of GH61 proteins of the invention can be determined using any suitable GH61 activity assay. For example, in some embodiments, a purified and/or recombinant GH61 protein of this invention is obtained, and then assayed for GH61 activity by combining it with cellulase enzymes in a saccharification reaction, and determining if there is an increase in glucose yield, as compared to the same saccharification reaction conducted without the GH61.

[0240] In one approach, GH61 activity can be assayed by combining a cellulosic substrate with cellulase enzymes (e.g., 5-10 mg total weight of cellulase enzymes per gram of substrate) in the presence and absence of GH61 protein. In some embodiments, the cellulase enzymes comprise a defined set of recombinant cellulase enzymes from M. thermophila.

[0241] In another approach, broth from a culture of wild-type M. thermophila is used (with and without supplementation with GH61 protein and/or GH61 variants). GH61 activity is evidenced by enhanced glucose yield in the presence of exogenous GH61 (i.e., beyond any enhancement resulting from endogenous GH61 in the broth). It is also possible to use a broth supplemented with one or more purified enzymes.

[0242] Suitable enzymes include isolated recombinant enzymes cloned from M. thermophila, including but not limited to EG, BGL, CBH1, and/or CBH2, in any combination suitable for the chosen substrate to yield a measurable product.

[0243] In one exemplary assay for measuring GH61 activity from M. thermophila derived GH61 proteins and variant proteins, the cellulase enzymes used are M. thermophila BGL1 (e.g., SEQ ID NOS:116, 119, and/or 122); See e.g., Badhan et al., Biores. Technol., 98:504-10 [2007]); M. thermophila CBH1 (SEQ ID NOS:128, 131, and/or 134); and M. thermophila CBH2 (SEQ ID NOS:137, 140, 143 and/or 146). In some embodiments, endoglucanase is also used, such as M. thermophila EG2 (SEQ ID NO:113; See e.g., Rosgaard et al., Prog., 22:493-8 [2006]; and Badhan et al., supra).

[0244] Alternatively, commercially available preparations comprising a mixture of cellulase enzymes may be used, such as Laminex.TM. and Spezyme.TM. (Genencor), Rohament.TM. (Rohm GmbH), and Celluzyme.TM., Cereflo.TM. and Ultraflo.TM. (Novozymes).

[0245] Assays with cellulose enzymes are typically done at 50.degree. C., but in some embodiments, other temperatures find use (e.g., 35, 45, 55, 60, or 65.degree. C.). In some embodiments, the GH61 enzymes and any other desired enzymes are combined with the substrate and incubated so as to produce fermentable sugars. The sugars are then recovered and quantitated for yield of glucose. One suitable substrate is wheat straw (e.g., pre-treated wheat straw). Other cellulosic substrates listed in this disclosure may be used as an alternative, including corn stover pretreated with sulfuric acid (See e.g., U.S. Pat. No. 7,868,227). Assay methods are known in the art. For example, the method of Harris et al., (Harris et al., Biochem., 49:3305-3316 [2010], incorporated herein by reference) finds use. In this method, corn stover is pretreated with sulfuric acid, washed, incubated with cellulase enzymes and GH61 for several days, and then the yield of sugars quantitated by refraction. Another method is described in U.S. Pat. No. 7,868,227 (incorporated herein by reference). In this method, the cellulosic substrate is PCS (corn stover pretreated with heat and dilute sulfuric acid, as described in WO 2005/074647; and a cellulose enzyme mixture is Cellucast.RTM., a blend of cellulase enzymes from the fungus Trichoderma reesei (Sigma-Aldrich). Hydrolysis of PCS is conducted in a total reaction volume of 1.0 mL and a PCS concentration of 50 mg/mL in 1 mM manganese sulfate, 50 mM sodium acetate buffer pH 5.0. The test protein is combined with the base cellulase mixture at relative concentrations between 0 and 100% total protein. The protein composition is incubated with the PCS at 65.degree. C. for 7 days. The combined yield of glucose and cellobiose is measured by refractive index detection.

[0246] GH61 activity is calculated as an increase in glucose production from the substrate by the cellulase(s) in the presence of GH61 protein, in comparison with the same reaction mixture in the absence of GH61 protein. Typically, the increase is dose-dependent within at least a 3-fold range of concentrations. GH61 activity can be expressed as a degree of "synergy".

Use of GH61 Variant Protein to Promote Saccharification

[0247] The GH61 variant proteins of the present invention can be used industrially to promote or otherwise modulate the activity of cellulase enzymes.

[0248] In some embodiments, suitably prepared lignocellulose is subjected to enzymatic hydrolysis using one or more cellulase enzymes in the presence of one or more GH61 variant proteins or preparations according to this invention. Thus, in some embodiments, saccharification reactions are carried out by exposing biomass to GH61 variant protein and cellulases, which work in concert to break down the biomass. Typically, the cellulases include at least one endoglucanase (EG), at least one beta-glucosidase (BGL), at least one Type 1 cellobiohydrolase (CBH1), and/or at least one Type 2 cellobiohydrolase (CBH2). In some alternative embodiments, a minimum enzyme mixture is used, for example, comprising GH61 protein in combination with BGL and either CBH1 or CBH2, or both, but with substantially no EG.

[0249] Hydrolysis of the hemicellulose and cellulose components of a lignocellulosic feedstock yields a lignocellulosic hydrolysate comprising xylose and glucose. Other sugars typically present include galactose, mannose, arabinose, fucose, rhamnose, or a combination thereof. Regardless of the means of hydrolyzing the lignocellulosic feedstock (e.g., full acid hydrolysis or chemical pretreatment with or without subsequent enzymatic hydrolysis), the xylose and glucose generally make up a large proportion of the sugars present. In some embodiments, if the lignocellulosic hydrolysate is a hemicellulose hydrolysate resulting from acid pretreatment, xylose will likely be the predominant sugar and lesser amounts of glucose will be present. The relative amount of xylose present in the lignocellulosic hydrolysate will depend on the feedstock and the pretreatment that is employed.

[0250] The cells and compositions of the present invention (including culture broth and/or cell lysates) find use in the production of fermentable sugars from cellulosic biomass. The biomass substrate may be converted to a fermentable sugar by (a) optionally pretreating a cellulosic substrate to increase its susceptibility to hydrolysis; (b) contacting the optionally pretreated cellulosic substrate of step (a) with a composition, culture medium or cell lysate containing at least one GH61 variant and any additional cellulases under conditions suitable for the production of cellobiose and fermentable sugars such as glucose.

[0251] In some embodiments, each of the at least one GH61 variant and additional cellulase enzymes described herein are partially or substantially purified, and the purified proteins are added to the biomass. Alternatively or in addition, the various individual enzymes are recombinantly expressed in different cells, and the media containing the secreted proteins are added to the biomass. The GH61 variant protein(s) and cellulase enzymes are then reacted with the biomass at a suitable temperature for a suitable period.

[0252] In some embodiments, sugars produced by methods of this invention are used to produce an end product such as an alcohol, such as ethanol. Other end-products may be produced, such as acetone, amino acid(s) (e.g., glycine, or lysine), organic acids (e.g., lactic acid, acetic acid, formic acid, citric acid, oxalic acid, or uric acid), glycerol, diols (e.g., 1,3 propanediol or butanediol), or at least one hydrocarbon with 1 to 20 carbon atoms. In some embodiments, cellulosic biomass is treated with at least one composition of the present invention to prepare an animal feed.

[0253] In some embodiments, when GH61 protein (e.g., at least one GH61 variant) is used to increase the yield of fermentable sugars in a saccharification reaction, at least one divalent metal cation or additional cofactor or adjunct compound is added to the reaction at a concentration of about 1 to 100 uM. In some embodiments, the divalent metal cation (e.g., copper) is included at a concentration of about 1 to 90 uM, about 10 to 80 uM, about 15 to 75 uM, about 20 to 70 uM, about 30 to 60 uM, about 40 to 50 uM, about 5 to 10 uM, about 10 to 20 .mu.M, about 15 to 25 uM, about 20 to 30 uM, about 25 to 35 uM, about 30 to 40 uM, about 35 to 45 uM, about 40 to 50 uM, about 45 to 55 uM, about 50 to 60 uM, about 55 to 65 uM, about 60 to 70 uM, about 65 to 75 uM, about 70 to 80 uM, about 75 to 85 uM, about 80 to 90 uM, about 85 to 95 uM, about 90 to 100 uM, about 95 to 100 uM, or about 1 uM, about 2 uM, about 3 uM, about 4 uM, about 5 uM, about 6 uM, about 7 uM, about 8 uM, about 9 uM, about 10 uM, about 11 uM, about 12 uM, about 13 uM, about 14 uM, about 15 uM, about 16 uM, about 17 uM, about 18 uM, about 19 uM, about 20 uM, about 25 uM, about 30 uM, about 35 uM, about 40 uM, about 45 uM, about 50 uM, about 55 uM, about 60 uM, about 65 uM, about 70 uM, about 75 uM, about 80 uM, about 85 uM, about 90 uM, about 95 uM, or about 100 uM. Divalent cations present in the reaction include, but are not limited to Cu.sup.++, Mn.sup.++, Co.sup.++, Mg.sup.++, Ni.sup.++, Zn.sup.++, and Ca.sup.++ at concentrations of 0.001 to 50 mM, 1 .mu.M to 1 mM, or 10-50 .mu.M. Indeed, it is not intended that the concentration of divalent metal cation(s) be limited to any particular value, as any suitable concentration finds use in the present invention and will depend upon the reaction conditions, as known in the art.

Fermentation of Sugars

[0254] In some embodiments, once a suitable cellulosic biomass substrate has been treated with cellulase(s) and at least one GH61 variant protein(s) according to this invention, sugars and other components in the product are fermented to produce various fermentation end products, including but not limited to biofuels, such as ethanol or alcohol mixtures. Depending on the substrate used, other components (e.g., long-chain esters) may also be present.

[0255] Fermentation is the process of extracting energy from the oxidation of organic compounds, such as carbohydrates, using an endogenous electron acceptor. Alcoholic fermentation is a process in which sugars such as xylulose, glucose, fructose, and sucrose are converted into a fermentation end product, including but not limited to biofuel. For example, the fermentation product may comprise alcohol (such as ethanol or butanol) and/or a sugar alcohol, such as xylitol.

[0256] In some embodiments, enzyme compositions comprising at least one GH61 variant of the present invention is reacted with a biomass substrate in the range of about 25.degree. C. to 100.degree. C., about 30.degree. C. to 90.degree. C., about 30.degree. C. to 80.degree. C., and about 30.degree. C. to 70.degree. C. In some embodiments, the biomass is reacted with the enzyme compositions at about 25.degree. C., at about 30.degree. C., at about 35.degree. C., at about 40.degree. C., at about 45.degree. C., at about 50.degree. C., at about 55.degree. C., at about 60.degree. C., at about 65.degree. C., at about 70.degree. C., at about 75.degree. C., at about 80.degree. C., at about 85.degree. C., at about 90.degree. C., at about 95.degree. C. and at about 100.degree. C. In general, the pH range is from about pH 3.0 to 8.5, pH 3.5 to 8.5, pH 4.0 to 7.5, pH 4.0 to 7.0 and pH 4.0 to 6.5. The incubation time may vary for example from 1.0 to 240 hours, from 5.0 to 180 hrs and from 10.0 to 150 hrs. For example, the incubation time is generally at least 1 h, at least 5 hrs, at least 10 hrs, at least 15 hrs, at least 25 hrs, at least 50 h, at least 100 hrs, at least 180, or longer. Incubation of the cellulase under these conditions and subsequent contact with the substrate may result in the release of substantial amounts of fermentable sugars from the substrate (e.g., glucose when the cellulase is combined with beta-glucosidase). For example at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90% or more fermentable sugar may be available as compared to the release of sugar by a wild-type polypeptide.

[0257] Any suitable micro-organism finds use in converting sugar in the sugar hydrolysate to ethanol or other fermentation products. These include yeast from the genera Saccharomyces, Hansenula, Pichia, Kluyveromyces, and Candida. Commercially available yeasts also find use, including but not limited to ETHANOLRED.RTM. SAFDISTIL.RTM., THERMOSACC.RTM., FERMIOL.RTM., FERMIVIN.RTM., or Superstart.TM..

[0258] In some embodiments, the yeast is genetically engineered to ferment both hexose and pentose sugars to at least one end-product, including but not limited to ethanol. Alternatively, in some embodiments, the yeast is a strain that has been made capable of xylose and glucose fermentation by one or more non-recombinant methods, such as adaptive evolution or random mutagenesis and selection. For example, in some embodiments, the fermentation is performed with recombinant Saccharomyces. In some embodiments, the recombinant yeast is a strain that has been made capable of xylose fermentation by recombinant incorporation of genes encoding xylose reductase (XR) and xylitol dehydrogenase (XDH) (See e.g., U.S. Pat. Nos. 5,789,210, 5,866,382, 6,582,944 and 7,527,927; and EP 450 530) and/or gene(s) encoding one or more xylose isomerase (XI) (See e.g., U.S. Pat. Nos. 6,475,768 and 7,622,284). In some additional embodiments, the modified yeast strain overexpresses an endogenous and/or heterologous gene encoding xylulokinase (XK). Other yeast can ferment hexose and pentose sugars to at least one end-product, including but not limited to ethanol, such as yeast of the genera Hansenula, Pichia, Kluyveromyces and Candida (See e.g., WO 2008/130603).

[0259] A typical temperature range for the fermentation of xylose to ethanol using Saccharomyces spp. is between about 25.degree. C. to about 37.degree. C., although the temperature may be higher (up to 55.degree. C.) if the yeast is naturally or genetically modified to be thermostable. The pH of a typical fermentation employing Saccharomyces spp. is between about 3 and about 6, depending on the pH optimum of the fermentation microorganism. The sugar hydrolysate may also be supplemented with additional nutrients required for growth and fermentation performance of the fermentation microorganism. For example, yeast extract, specific amino acids, phosphate, nitrogen sources, salts, trace elements and vitamins (See e.g., Verduyn et al., Yeast 8:501-170 [1992]; Jorgensen, Appl. Biochem. Biotechnol., 153:44-57 [2009]; and Zhao et al., J. Biotechnol., 139:55-60 [2009]). In some embodiments, the fermentation is conducted under anaerobic conditions, although aerobic or microaerobic conditions also find use.

Use of Copper, Gallic Acid, and Biomass Pretreatment Filtrate to Enhance GH61 Activity

[0260] In some embodiments, GH61 proteins and variants exhibit increased activity in a saccharification reaction when Cu.sup.++, gallic acid, and/or pretreatment filtrate are added. In some embodiments, wild-type GH61a (SEQ ID NO:2) and/or Variant 1 (SEQ ID NO:5) are used. Similarly, in some embodiments, the present invention encompasses the supplemental addition of Cu.sup.++, gallic acid, and/or pretreatment filtrate as an enhancing agent in saccharification reactions conducted using any of the GH61a variants shown in Tables 1 and 2, any of the other GH61 proteins described herein, and any active variant or fragment thereof such as may be obtained using any suitable method, including but not limited to the methods provided herein. In some embodiments, enhancing GH61 activity allows saccharification reactions to proceed more quickly and/or with less GH61 or cellulase enzyme.

[0261] In some embodiments, Cu.sup.++, gallic acid, and other potential cofactors are tested by titrating into a saccharification reaction comprising a GH61 protein, one or more cellulase enzymes (e.g., CBH1, CBH2, and/or BGL), and a cellulosic substrate, and measuring the relative rate of glucose production. Controls may include the combination of GH61 protein, cellulase enzymes, and substrate in the absence of the putative cofactor (to test the relative enhancement), and combinations of cellulase enzymes and substrate with or without cofactor in the absence of GH61 protein (to determine the effect of the putative cofactor on other enzymes in the reaction).

[0262] As shown herein, in some embodiments, Cu.sup.++ can enhance the activity of GH61a Variant 1 (SEQ ID NO:5). The source of Cu.sup.++ used in the example was CuSO.sub.4, although any effective copper source can be used as an alternative. Effective supplemental copper sources include copper salts and metallic copper, or mixtures thereof. Copper salts include copper(II) (Cu.sup.++) salts and copper(I) (Cu.sup.+) salts. Copper in metallic copper(0) and copper(I) salts can be oxidized to Cu.sup.++ in water by oxygen (e.g., by oxygen present in air). Suitable copper(II) and copper(I) salts include sulfates, chlorides, oxides, hydroxides, nitrates, carbonates, hydroxycarbonates (basic carbonates), oxychlorides, and acetates. Suitable sources of metallic copper include metallic copper refined from copper ores, including copper vessels and piping in contact with water and oxygen (e.g., in air).

[0263] In some embodiments, as shown herein, gallic acid and/or pretreated biomass filtrate can also be used to enhance the activity of GH61 protein. In some embodiments, the gallic acid and/or pretreated biomass filtrate are titrated to the optimal dose for the reaction conditions used. Thus, an effective concentration of gallic acid can be determined empirically by titrating it into the reaction mixture, depending on the enzymes being used and the total biomass. In some embodiments, in which gallic acid is utilized, an effective concentration of gallic acid is within the range of about 0.1 to 20 mM, about 0.5 to 5 mM, or about 1 to 2 mM. However, it is not intended that the present invention be limited to any particular concentration of gallic acid, as any suitable concentration finds use in the present invention, depending upon the reaction conditions.

[0264] A cofactor of GH61 in a reaction volume such as Cu.sup.++ is said to be "supplemented" if it has been added into the reaction volume as a separate reagent, which is in addition to any metal ions that may be bound to GH61 or other reactants beforehand. Depending on the amount or molar ratio of cofactors such as Cu.sup.++ already present in a GH61 preparation, addition of such cofactors into the reaction may increase the amount of glucose produced per weight of GH61 by 25%, 50%, 2-fold, or more.

[0265] Effective concentrations of supplemented Cu.sup.++ in the reaction volume may be readily determined empirically as described herein. Depending on reaction conditions, effective supplemented concentrations include but are not limited to 1 .mu.M to 200 .mu.M, 4 .mu.M to 100 .mu.M, 10 .mu.M to 100 .mu.M, or at least 1 .mu.M, 4 .mu.M, 10 .mu.M, 20 .mu.M, 30 .mu.M, 40 .mu.M, or 50 .mu.M in the reaction volume (i.e., the concentration of supplemented copper in the reaction volume). However, it is not intended that the present invention be limited to any particular copper concentration or range of concentrations, as any suitable concentration finds use and will depend upon the reaction conditions used. In some embodiments, prior to or without copper supplementation, copper is present in the GH61 protein preparation, the other enzymes, the cellulase fermentation production media, the pretreated biomass, and/or any other component of the reaction volume (i.e., in some embodiments, there are other sources of copper present in the reaction than any copper added to the reaction as a supplement). Thus, in some embodiments, the reaction is conducted without the supplemental addition of copper as described herein.

[0266] In some embodiments, inclusion of copper and/or gallic acid in the reaction mixture at an effective concentration or ratio, less GH61 protein is needed to produce the same amount of fermentable sugars from the same cellulase enzymes. In some embodiments, this provides a cost reduction associated with saccharification reactions.

Vectors, Promoters, Other Expression Elements, Host Cells, and Signal Peptides.

[0267] There are numerous general texts that describe molecular biological techniques including the use of vectors, promoters, in vitro amplification methods including the polymerase chain reaction (PCR) and the ligase chain reaction (LCR) (See e.g., Berger and Kimmel, Guide to Molecular Cloning Techniques, Methods in Enzymology, Volume 152 Academic Press, Inc., San Diego, Calif. (Berger); Sambrook et al., Molecular Cloning--A Laboratory Manual (2nd Ed.), Vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1989; and Current Protocols in Molecular Biology, F. M. Ausubel et al., eds., Current Protocols [as supplemented through 2009]). Introduction of a vector or a DNA construct into a host cell can be effected by any suitable method, including but not limited to calcium phosphate transfection, DEAE-Dextran mediated transfection, electroporation, or other common techniques (See Davis et al., 1986, Basic Methods in Molecular Biology). General references on cell culture techniques and nutrient media for fungal host cells include Gene Manipulations in Fungi, Bennett, J. W. et al., Ed., Academic Press, 1985; More Gene Manipulations in Fungi, Bennett, J. W. et al., Ed., Academic Press, 1991; and The Handbook of Microbiological Media, CRC Press, Boca Raton, Fla., 1993.

Vectors

[0268] The present invention makes use of recombinant constructs comprising at least one sequence encoding at least one GH61 variant as described above. In some embodiments, the present invention provides expression vectors comprising at least one GH61 variant polynucleotide operably linked to a heterologous promoter. Expression vectors of the present invention may be used to transform an appropriate host cell to permit the host to express the GH61 variant protein. Methods for recombinant expression of proteins in fungi and other organisms are well known in the art, and a number expression vectors are available or can be constructed using routine methods (See, e.g., Tkacz and Lange, 2004, Advances in fungal biotechnology for industry, agriculture, and medicine, Kluwer Academic/Plenum Publishers, New York; Zhu et al., Plasmid 6:128-33 [2009]; and Kavanagh, K. 2005, Fungi: biology and applications, Wiley, all of which are incorporated herein by reference).

[0269] Nucleic acid constructs of the present invention comprise a vector, such as, a plasmid, a cosmid, a phage, a virus, a bacterial artificial chromosome (BAC), a yeast artificial chromosome (YAC), and the like, into which a nucleic acid sequence of the invention has been inserted. Polynucleotides of the present invention can be incorporated into any one of a variety of expression vectors suitable for expressing a polypeptide. Suitable vectors include, but are not limited to chromosomal, nonchromosomal and synthetic DNA sequences (e.g., derivatives of SV40); bacterial plasmids; phage DNA; baculovirus; yeast plasmids; vectors derived from combinations of plasmids and phage DNA, viral DNA such as vaccinia, adenovirus, fowl pox virus, pseudorabies, adenovirus, adeno-associated virus, retroviruses and many others. Any vector that transduces genetic material into a cell, and, if replication is desired, which is replicable and viable in the relevant host can be used.

[0270] In some embodiments, the construct further comprises regulatory sequences, including, for example, a promoter, operably linked to the protein encoding sequence. Large numbers of suitable vectors and promoters are known to those of skill in the art.

Promoters

[0271] In order to obtain high levels of expression in a particular host it is often useful to express the GH61 variant of the present invention under the control of a heterologous promoter. A promoter sequence may be operably linked to the 5' region of the GH61 variant coding sequence using routine methods.

[0272] Examples of useful promoters for expression of GH61 enzymes include promoters from fungi. In some embodiments, a promoter sequence that drives expression of a gene other than a GH61 gene in a fungal strain may be used. As a non-limiting example, a fungal promoter from a gene encoding an endoglucanase may be used. In some embodiments, a promoter sequence that drives the expression of a GH61 gene in a fungal strain other than the fungal strain from which the GH61 variant was derived may be used. As a non-limiting example, if the GH61 variant is derived from C1, a promoter from a T. reesei GH61 gene may be used or a promoter as described in WO 2010/107303, such as but not limited to the sequences identified as SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, or SEQ ID NO:29 in WO 2010/107303.

[0273] Examples of other suitable promoters useful for directing the transcription of the nucleotide constructs of the present invention in a filamentous fungal host cell are promoters obtained from the genes for Aspergillus oryzae TAKA amylase, Rhizomucor miehei aspartic proteinase, Aspergillus niger neutral alpha-amylase, Aspergillus niger acid stable alpha-amylase, Aspergillus niger or Aspergillus awamori glucoamylase (glaA), Rhizomucor miehei lipase, Aspergillus oryzae alkaline protease, Aspergillus oryzae triose phosphate isomerase, Aspergillus nidulans acetamidase, and Fusarium oxysporum trypsin-like protease (WO 96/00787, which is incorporated herein by reference), as well as the NA2-tpi promoter (a hybrid of the promoters from the genes for Aspergillus niger neutral alpha-amylase and Aspergillus oryzae triose phosphate isomerase), promoters such as cbh1, cbh2, egl1, egl2, pepA, hfb1, hfb2, xyn1, amy, and glaA (Nunberg et al., Mol. Cell Biol., 4:2306-2315 [1984]; Boel et al., EMBO J, 3:1581-85 [1984]; and European Pat. Publ. 137280, all of which are incorporated herein by reference), and mutant, truncated, and hybrid promoters thereof. In a yeast host, useful promoters can be from the genes for Saccharomyces cerevisiae enolase (eno-1), Saccharomyces cerevisiae galactokinase (gal1), Saccharomyces cerevisiae alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase (ADH2/GAP), and S. cerevisiae 3-phosphoglycerate kinase. Other useful promoters for yeast host cells are known (See e.g., Romanos et al., Yeast 8:423-488 [1992], incorporated herein by reference. Promoters associated with chitinase production in fungi may be used (See, e.g., Blaiseau and Lafay, Gene 120243-248 [1992] (filamentous fungus Aphanocladium album); Limon et al., Curr. Genet, 28:478-83 (Trichoderma harzianum), both of which are incorporated herein by reference).

[0274] Promoters known to control expression of genes in prokaryotic or eukaryotic cells or their viruses and which can be used in some embodiments of the invention include SV40 promoter, E. coli lac or trp promoter, phage lambda P.sub.L promoter, tac promoter, T7 promoter, and the like. In bacterial host cells, suitable promoters include the promoters obtained from the E. coli lac operon, Streptomyces coelicolor agarase gene (dagA), Bacillus subtilis levansucranse gene (sacB), Bacillus licheniformis .alpha.-amylase gene (amyl), Bacillus stearothermophilus maltogenic amylase gene (amyM), Bacillus amyloliquefaciens .alpha.-amylase gene (amyQ), Bacillus subtilis xylA and xylB genes and prokaryotic beta-lactamase gene.

[0275] Any other promoter sequence that drives expression in a suitable host cell may be used. Suitable promoter sequences can be identified using well known methods. In one approach, a putative promoter sequence is linked 5' to a sequence encoding a reporter protein, the construct is transfected into the host cell (e.g., M. thermophila) and the level of expression of the reporter is measured. Expression of the reporter can be determined by measuring, for example, mRNA levels of the reporter sequence, an enzymatic activity of the reporter protein, or the amount of reporter protein produced. For example, promoter activity may be determined by using the green fluorescent protein as coding sequence (See e.g., Henriksen et al, Microbiol., 145:729-34 [1999], incorporated herein by reference) or a lacZ reporter gene (Punt et al., Gene, 197:189-93 [1997], incorporated herein by reference). Functional promoters may be derived from naturally occurring promoter sequences by directed evolution methods (See, e.g. Wright et al., Human Gene Therapy, 16:881-892 [2005], incorporated herein by reference.

[0276] Additional promoters include those from M. thermophila, provided in U.S. Prov. Patent Appln. Ser. Nos. 61/375,702, 61/375,745, 61/375,753, 61/375,755, and 61/375,760, all of which were filed on Aug. 20, 2010, and are hereby incorporated by reference in their entireties, as well as WO 2010/107303.

Other Expression Elements

[0277] Cloned GH61 variants may also have a suitable transcription terminator sequence, a sequence recognized by a host cell to terminate transcription. The terminator sequence is operably linked to the 3' terminus of the nucleic acid sequence encoding the polypeptide. Any terminator that is functional in the host cell of choice may be used in the present invention.

[0278] For example, exemplary transcription terminators for filamentous fungal host cells can be obtained from the genes for Aspergillus oryzae TAKA amylase, Aspergillus niger glucoamylase, Aspergillus nidulans anthranilate synthase, Aspergillus niger alpha-glucosidase, and Fusarium oxysporum trypsin-like protease. Suitable transcription terminators are known in the art (See e.g., U.S. Pat. No. 7,399,627, incorporated herein by reference).

[0279] Exemplary terminators for yeast host cells include those obtained from the genes for Saccharomyces cerevisiae enolase, Saccharomyces cerevisiae cytochrome C (CYC1), and Saccharomyces cerevisiae glyceraldehyde-3-phosphate dehydrogenase. Other useful terminators for yeast host cells are known in the art (See e.g., Romanos et al., Yeast 8:423-88 [1992]).

[0280] A suitable leader sequence may be part of a cloned GH61 variant sequence, which is a nontranslated region of an mRNA that is important for translation by the host cell. The leader sequence is operably linked to the 5' terminus of the nucleic acid sequence encoding the polypeptide. Any leader sequence that is functional in the host cell of choice may be used. Exemplary leaders for filamentous fungal host cells are obtained from the genes for Aspergillus oryzae TAKA amylase and Aspergillus nidulans triose phosphate isomerase. Suitable leaders for yeast host cells are obtained from the genes for Saccharomyces cerevisiae enolase (ENO-1), Saccharomyces cerevisiae 3-phosphoglycerate kinase, Saccharomyces cerevisiae alpha-factor, and Saccharomyces cerevisiae alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase (ADH2/GAP).

[0281] In some embodiments, sequences also contain a polyadenylation sequence, which is a sequence operably linked to the 3' terminus of the nucleic acid sequence and which, when transcribed, is recognized by the host cell as a signal to add polyadenosine residues to transcribed mRNA. Any polyadenylation sequence which is functional in the host cell of choice may be used in the present invention. Exemplary polyadenylation sequences for filamentous fungal host cells can be from the genes for Aspergillus oryzae TAKA amylase, Aspergillus niger glucoamylase, Aspergillus nidulans anthranilate synthase, Fusarium oxysporum trypsin-like protease, and Aspergillus niger alpha-glucosidase. Useful polyadenylation sequences for yeast host cells are known in the art (See e.g., Guo and Sherman, Mol. Cell. Biol., 15:5983-5990 [1995]).

[0282] The expression vector of the present invention optionally contains one or more selectable markers, which facilitate easy selection of transformed cells. A selectable marker is a typically gene, the product of which provides for biocide or viral resistance, resistance to heavy metals, prototrophy to auxotrophs, and the like. Selectable markers for use in a filamentous fungal host cell include, but are not limited to, amdS (acetamidase), argB (ornithine carbamoyltransferase), bar (phosphinothricin acetyltransferase), hph (hygromycin phosphotransferase), niaD (nitrate reductase), pyrG (orotidine-5'-phosphate decarboxylase), sC (sulfate adenyltransferase), and trpC (anthranilate synthase), as well as equivalents thereof. Embodiments for use in an Aspergillus cell include the amdS and pyrG genes of Aspergillus nidulans or Aspergillus oryzae and the bar gene of Streptomyces hygroscopicus. Suitable markers for yeast host cells include but are not limited to ADE2, HIS3, LEU2, LYS2, MET3, TRP1, and URA3.

Host Cells

[0283] In some embodiments, at least one GH61 variant protein of the present invention is expressed from a nucleic acid that has been recombinantly introduced into a suitable host cell line. In some embodiments, the host cell also expresses other proteins of interest, particularly one or more cellulase enzymes that work in concert with at least one GH61 variant protein in the process of saccharification. The cellulase enzymes may be constitutively expressed by the parent strain of the host cell, or they may be expressed from other recombinant nucleic acids that were introduced serially or simultaneously with the GH61 variant encoding sequence.

[0284] Rather than expressing at least one GH61 variant protein and at least one additional cellulase enzyme in the same cell, in some embodiments, the invention is practiced by producing at least one GH61 variant protein in one host cell, and producing one or more cellulases together in another host cell, or in a plurality of host cells. Once such cells have been engineered, cells expressing GH61 protein and cells expressing cellulase enzymes can be combined and cultured together to produce compositions of this invention containing both GH61 variant proteins and other cellulase enzymes. Alternatively, the culture supernatant or broth from each cell line can be collected separately, optionally fractionated to enrich for the respective activities, and then mixed together to produce the desired combination.

[0285] Suitable fungal host cells include, but are not limited to Ascomycota, Basidiomycota, Deuteromycota, Zygomycota, and Fungi imperfecti. In some embodiments, preferred fungal host cells are yeast cells, and filamentous fungal cells, including all filamentous forms of the subdivision Eumycotina and Oomycota. Filamentous fungi are characterized by a vegetative mycelium with a cell wall composed of chitin, cellulose and other complex polysaccharides, and are morphologically distinct from yeast. In some embodiments, Trichoderma is a source of one or more cellulases for use in combination with GH61 variant proteins.

[0286] Any suitable host cell finds use in the present invention, including but not limited to host cells that are species of Achlya, Acremonium, Aspergillus, Aureobasidium, Azospirillum, Bjerkandera, Cellulomonas, Cephalosporium, Ceriporiopsis, Chrysosporium, Clostridium, Coccidioides, Cochliobolus, Coprinus, Coriolus, Corynascus, Cryphonectria, Cryptococcus, Dictyostelium, Diplodia, Elizabethkingia, Endothia, Erwinia, Escherichia, Fusarium, Gibberella, Gliocladium, Gluconacetobacter, Humicola, Hypocrea, Kuraishia, Mucor, Myceliophthora, Neurospora, Nicotiana, Paenibacillus, Penicillium, Periconia, Phaeosphaeria, Phlebia, Piromyces, Podospora, Prevotella, Pyricularia, Rhizobium, Rhizomucor, Rhizopus, Ruminococcus, Saccharomycopsis, Salmonella, Schizophyllum, Scytalidium, Septoria, Sporotrichum, Streptomyces, Talaromyces, Thermoanaerobacter, Thermoascus, Thermotoga, Thielavia, Tolypocladium, Trametes, Trichoderma, Tropaeolum, Uromyces, Verticillium, Volvariella, Wickerhamomyces, or corresponding teleomorphs, or anamorphs, and synonyms or taxonomic equivalents thereof.

[0287] An exemplary host cell is yeast, including but not limited to Candida, Hansenula, Saccharomyces, Schizosaccharomyces, Pichia, Kluyveromyces, or Yarrowia. In some embodiments, the yeast cell is Hansenula polymorpha, Saccharomyces cerevisiae, Saccharomyces carlsbergensis, Saccharomyces diastaticus, Saccharomyces norbensis, Saccharomyces kluyveri, Schizosaccharomyces pombe, Pichia pastoris, Pichia finlandica, Pichia trehalophila, Pichia kodamae, Pichia membranaefaciens, Pichia opuntiae, Pichia thermotolerans, Pichia salictaria, Pichia quercuum, Pichia pijperi, Pichia stipitis, Pichia methanolica, Pichia angusta, Kluyveromyces lactis, Candida albicans, or Yarrowia lipolytica.

[0288] Another exemplary host cell is a Myceliophthora species, such as M. thermophila. As used herein, the term "C1" refers to Myceliophthora thermophila, including a fungal strain described by Garg (See, Garg, Mycopathol., 30: 3-4 [1966]). As used herein, "Chrysosporium lucknowense" includes the strains described in U.S. Pat. Nos. 6,015,707, 5,811,381 and 6,573,086; US Pat. Pub. Nos. 2007/0238155, US 2008/0194005, US 2009/0099079; International Pat. Pub. Nos., WO 2008/073914 and WO 98/15633, all of which are incorporated herein by reference, and include, without limitation, Chrysosporium lucknowense Garg 27K, VKM-F 3500 D (Accession No. VKM F-3500-D), C1 strain UV13-6 (Accession No. VKM F-3632 D), C1 strain NG7C-19 (Accession No. VKM F-3633 D), and C1 strain UV18-25 (VKM F-3631 D), all of which have been deposited at the All-Russian Collection of Microorganisms of Russian Academy of Sciences (VKM), Bakhurhina St. 8, Moscow, Russia, 113184, and any derivatives thereof. Although initially described as Chrysosporium lucknowense, C1 may currently be considered a strain of Myceliophthora thermophila. Other C1 strains include cells deposited under accession numbers ATCC 44006, CBS (Centraalbureau voor Schimmelcultures) 122188, CBS 251.72, CBS 143.77, CBS 272.77, CBS122190, CBS122189, and VKM F-3500D. Exemplary C1 derivatives include modified organisms in which one or more endogenous genes or sequences have been deleted or modified and/or one or more heterologous genes or sequences have been introduced. Derivatives include, but are not limited to UV18#100f .DELTA.alp1, UV18#100f .DELTA.pyr5 .DELTA.alp1, UV18#100.f .DELTA.alp1 .DELTA.pep4 .DELTA.alp2, UV18#100.f .DELTA.pyr5 .DELTA.alp1 .DELTA.pep4 .DELTA.alp2 and UV18#100.f .DELTA.pyr4 .DELTA.pyr5 .DELTA.aIp1 .DELTA.pep4 .DELTA.alp2, as described in WO2008073914 and WO2010107303, each of which is incorporated herein by reference.

[0289] In some embodiments, the host cell is a Trichoderma species, such as T. longibrachiatum, T. viride, Hypocrea jecorina or T. reesei, T. koningii, and T. harzianum.

[0290] In some embodiments, the host cell is a Aspergillus species, such as A. awamori, A. funigatus, A. japonicus, A. nidulans, A. niger, A. aculeatus, A. foetidus, A. oryzae, A. sojae, and A. kawachi.

[0291] In some additional embodiments, the host cell is a Fusarium species, such as F. bactridioides, F. cerealis, F. crookwellense, F. culmorum, F. graminearum, F. graminum. F. oxysporum, F. roseum, and F. venenatum.

[0292] The host cell may also be a Neurospora species, such as N. crassa. Alternatively, the host cell is a Humicola species, such as H. insolens, H. grisea, and H. lanuginosa. Alternatively, the host cell is a Mucor species, such as M. miehei and M. circinelloides. Alternatively, the host cell is a Rhizopus species, such as R. oryzae and R. niveus. Alternatively, the host cell is a Penicillum species, such as P. purpurogenum, P. chrysogenum, and P. verruculosum.

[0293] In some embodiments, the host cell is a Thielavia species, such as T. terrestris. Alternatively, the host cell is a Tolypocladium species, such as T. inflatum and T. geodes. Alternatively, the host cell is a the Trametes species, such as T. villosa and T. versicolor.

[0294] In some embodiments, the host cell is of a Chrysosporium species, such as C. lucknowense, C. keratinophilum, C. tropicum, C. merdarium, C. inops, C. pannicola, and C. zonatum. In a particular embodiment the host is C. lucknowense. Alternatively, the host cell is an algae such as Chlamydomonas (e.g., C. reinhardtii) or Phormidium (P. sp. ATCC29409).

[0295] In some alternative embodiments, the host cell is a prokaryotic cell. Suitable prokaryotic cells include Gram-positive, Gram-negative and Gram-variable bacterial cells. Examples of bacterial host cells include, but are not limited to Bacillus (e.g., B. subtilis, B. licheniformis, B. megaterium, B. stearothermophilus and B. amyloliquefaciens), Streptomyces (e.g., S. ambofaciens, S. achromogenes, S. avermitilis, S. coelicolor, S. aureofaciens, S. aureus, S. fungicidicus, S. griseus, and S. lividans), and Streptococcus (e.g., S. equisimiles, S. pyogenes, and S. uberis) species.

[0296] Any suitable eukaryotic or prokaryotic species finds use as host cells, including but not limited to Aspergillus aculeatus, Azospirillum irakense KBC1, Bacillus sp. GL1, Cellulomonas biazotea, Clostridium thermocellum, Thermoanaerobacter brockii, Coccidioides posadasii, Dictyostelium discoideum, Elizabethkingia meningoseptica, Erwinia chrysanthemi, Escherichia coli, Gluconacetobacter xylinus, Hypocrea jecorina, Kuraishia capsulata, Nicotiana tabacum, Paenibacillus sp. C7, Penicillium brasilianum, Periconia sp. BCC 2871, Phaeosphaeria avenaria, Prevotella albensis, Rhizobium leguminosarum, Rhizomucor miehei, Ruminococcus albus, Saccharomycopsis fibuligera, Salmonella typhimurium, Septoria lycopersici, Streptomyces coelicolor, Talaromyces emersonii, Thermotoga maritima, Tropaeolum majus, Uromyces viciae-fabae, and Wickerhamomyces anomalus.

[0297] Strains that may be used in the practice of the invention (both prokaryotic and eukaryotic strains) may be obtained from any suitable source, including but not limited to the American Type Culture Collection (ATCC), or other biological depositories such as Deutsche Sammlung von Mikroorganismen and Zellkulturen GmbH (DSM), Centraalbureau Voor Schimmelcultures (CBS), and the Agricultural Research Service Patent Culture Collection, Northern Regional Research Center (NRRL).

[0298] In some embodiments, host cells are genetically modified to have characteristics that improve genetic manipulation, protein secretion, protein stability or other properties desirable for expression or secretion of a protein. For example, knock-out of Alp1 function results in a cell that is protease deficient. Knock-out of pyr5 function results in a cell with a pyrimidine deficient phenotype. Host cells may be modified to delete endogenous cellulase protein-encoding sequences or otherwise eliminate expression of one or more endogenous cellulases. Expression of one or more unwanted endogenous cellulases may be inhibited to increase the proportion of cellulases of interest, for example, by chemical or UV mutagenesis and subsequent selection. Homologous recombination can be used to induce targeted gene modifications by specifically targeting a gene in vivo to suppress expression of the encoded protein.

Signal Peptides

[0299] In general, polypeptides are secreted from the host cell after being expressed as a pre-protein including a signal peptide (i.e., an amino acid sequence linked to the amino terminus of a polypeptide which directs the encoded polypeptide into the cell's secretory pathway).

[0300] In some embodiments, the secreted part of a GH61 variant is linked at the N-terminal to a heterologous signal peptide, depending on the host cell and other factors. Effective signal peptide coding regions for filamentous fungal host cells include but are not limited to signal peptide coding regions obtained from Aspergillus oryzae TAKA amylase, Aspergillus niger neutral amylase, Aspergillus niger glucoamylase, Rhizomucor miehei aspartic proteinase, Humicola insolens cellulase, Humicola lanuginosa lipase, and T. reesei cellobiohydrolase II (TrCBH2).

[0301] Effective signal peptide coding regions for bacterial host cells include but are not limited to signal peptide coding regions obtained from the genes for Bacillus NClB 11837 maltogenic amylase, Bacillus stearothermophilus alpha-amylase, Bacillus licheniformis subtilisin, Bacillus licheniformis beta-lactamase, Bacillus stearothermophilus neutral proteases (nprT, nprS, nprM), and Bacillus subtilis prsA. Further signal peptides are known in the art (See e.g., described by Simonen and Palva, Microbiol. Rev., 57:109-137 [1993]).

[0302] Useful signal peptides for yeast host cells also include those from the genes for Saccharomyces cerevisiae alpha-factor, Saccharomyces cerevisiae SUC2 invertase (see Taussig and Carlson, Nucl. Acids Res., 11:1943-54 [1983]; SwissProt Accession No. P00724; and Romanos et al., Yeast 8:423-488 [1992]). Variants of these signal peptides and other signal peptides are suitable. In addition, the signal peptides provided herein find use in the present invention.

EXPERIMENTAL

[0303] The present invention is described in further detail in the following Examples, which are not in any way intended to limit the scope of the invention as claimed.

[0304] In the experimental disclosure below, the following abbreviations apply: ppm (parts per million); M (molar); mM (millimolar), uM and .mu.M (micromolar); nM (nanomolar); mol (moles); gm and g (gram); mg (milligrams); ug and .mu.g (micrograms); L and 1 (liter); ml and mL (milliliter); cm (centimeters); mm (millimeters); um and .mu.m (micrometers); sec. (seconds); min(s) (minute(s)); h(s) and hr(s) (hour(s)); U (units); MW (molecular weight); rpm (rotations per minute); .degree. C. (degrees Centigrade); DNA (deoxyribonucleic acid); RNA (ribonucleic acid); HPLC (high pressure liquid chromatography); MES (2-N-morpholino ethanesulfonic acid); FIOPC (fold improvements over positive control); YPD (10 g/L yeast extract, 20 g/L peptone, and 20 g/L dextrose); SOE-PCR (splicing by overlapping extension PCR); PEG (polyethylene glycol); TWEEN.RTM.-20 (TWEEN.RTM. non-ionic surfactant; Sigma-Aldrich); ARS (ARS Culture Collection or NRRL Culture Collection, Peoria, Ill.); Axygen (Axygen, Inc., Union City, Calif.); Lallemand (Lallemand Ethanol Technology, Milwaukee, Wis.); Dual Biosystems (Dual Biosystems AG, Schlieven, Switzerland); US Biological (United States Biological, Swampscott, Mass.); Megazyme (Megazyme International Ireland, Ltd., Wicklow, Ireland); Genetix (Genetix USA, Inc., Beaverton, Oreg.); Sigma-Aldrich (Sigma-Aldrich, St. Louis, Mo.); Dasgip (Dasgip Biotools, LLC, Shrewsbury, Mass.); Difco (Difco Laboratories, BD Diagnostic Systems, Detroit, Mich.); PCRdiagnostics (PCRdiagnostics, by E coli SRO, Slovak Republic); Agilent (Agilent Technologies, Inc., Santa Clara, Calif.); Molecular Devices (Molecular Devices, Sunnyvale, Calif.); Symbio (Symbio, Inc., Menlo Park, Calif.); Newport (Newport Scientific, Australia); and Bio-Rad (Bio-Rad Laboratories, Hercules, Calif.).

[0305] The M. thermophila strains included in the development of the present invention included a "Strain CF-400" (.DELTA.cdh1), which is a derivative of C1 strain ("UV18#100f.DELTA.alp1.DELTA.pyr5"), modified by deletion of cdh1, wherein cdh1 comprises the polynucleotide sequence of SEQ ID NO:5 of U.S. Pat. No. 8,236,551. "Strain CF-401" (.DELTA.cdh1.DELTA.cdh2) (ATCC No. PTA-12255), is a derivative of the C1 strain modified by deletion of both a cdh1 and a cdh2, wherein cdh2 comprises the polynucleotide sequence of SEQ ID NO:7 of U.S. Pat. No. 8,236,551. "Strain CF-402" (+Bgl1) is a derivative of the C1 strain further modified for overexpression of an endogenous beta-glucosidase 1 enzyme (Bgl1). "Strain CF-403" is a derivative of the C1 strain modified with a deletion of cdh1 and further modified to overexpress bgl1. "Strain CF-404" is a derivative of the C1 strain further modified to overexpress bgl1 with a deletion of both cdh1 and cdh2. "Strain CF-416" is a derivative of the CF-404 strain, further modified to overexpress wild-type GH61a enzyme.

[0306] The following sequences are referred to herein and find use in the present invention

Wild-Type M. thermophila C1 GH61a cDNA Sequence:

TABLE-US-00003 (SEQ ID NO: 1) ATGTCCAAGGCCTCTGCTCTCCTCGCTGGCCTGACGGGCGCGGCCCTCG TCGCTGCACATGGCCACGTCAGCCACATCGTCGTCAACGGCGTCTACTA CAGGAACTACGACCCCACGACAGACTGGTACCAGCCCAACCCGCCAACA GTCATCGGCTGGACGGCAGCCGATCAGGATAATGGCTTCGTTGAACCCA ACAGCTTTGGCACGCCAGATATCATCTGCCACAAGAGCGCCACCCCCGG CGGCGGCCACGCTACCGTTGCTGCCGGAGACAAGATCAACATCGTCTGG ACCCCCGAGTGGCCCGAATCCCACATCGGCCCCGTCATTGACTACCTAG CCGCCTGCAACGGTGACTGCGAGACCGTCGACAAGTCGTCGCTGCGCTG GTTCAAGATTGACGGCGCCGGCTACGACAAGGCCGCCGGCCGCTGGGCC GCCGACGCTCTGCGCGCCAACGGCAACAGCTGGCTCGTCCAGATCCCGT CGGATCTCAAGGCCGGCAACTACGTCCTCCGCCACGAGATCATCGCCCT CCACGGTGCTCAGAGCCCCAACGGCGCCCAGGCCTACCCGCAGTGCATC AACCTCCGCGTCACCGGCGGCGGCAGCAACCTGCCCAGCGGCGTCGCCG GCACCTCGCTGTACAAGGCGACCGACCCGGGCATCCTCTTCAACCCCTA CGTCTCCTCCCCGGATTACACCGTCCCCGGCCCGGCCCTCATTGCCGGC GCCGCCAGCTCGATCGCCCAGAGCACGTCGGTCGCCACTGCCACCGGCA CGGCCACCGTTCCCGGCGGCGGCGGCGCCAACCCTACCGCCACCACCAC CGCCGCCACCTCCGCCGCCCCGAGCACCACCCTGAGGACGACCACTACC TCGGCCGCGCAGACTACCGCCCCGCCCTCCGGCGATGTGCAGACCAAGT ACGGCCAGTGTGGTGGCAACGGATGGACGGGCCCGACGGTGTGCGCCCC CGGCTCGAGCTGCTCCGTCCTCAACGAGTGGTACTCCCAGTGTTTGTAA

Wild-Type M. thermophila C1 GH61a Polypeptide Sequence:

TABLE-US-00004 (SEQ ID NO: 2) MSKASALLAGLTGAALVAAHGHVSHIVVNGVYYRNYDPTTDWYQPNPPT VIGWTAADQDNGFVEPNSFGTPDIICHKSATPGGGHATVAAGDKINIVW TPEWPESHIGPVIDYLAACNGDCETVDKSSLRWFKIDGAGYDKAAGRWA ADALRANGNSWLVQIPSDLKAGNYVLRHEIIALHGAQSPNGAQAYPQCI NLRVTGGGSNLPSGVAGTSLYKATDPGILFNPYVSSPDYTVPGPALIAG AASSIAQSTSVATATGTATVPGGGGANPTATTTAATSAAPSTTLRTTTT SAAQTTAPPSGDVQTKYGQCGGNGWTGPTVCAPGSSCSVLNEWYSQCL

Wild-Type M. thermophila C1 GH61a Polypeptide Sequence without the Signal Sequence:

TABLE-US-00005 (SEQ ID NO: 3) HGHVSHIVVNGVYYRNYDPTTDWYQPNPPTVIGWTAADQDNGFVEPNSF GTPDIICHKSATPGGGHATVAAGDKINIVWTPEWPESHIGPVIDYLAAC NGDCETVDKSSLRWFKIDGAGYDKAAGRWAADALRANGNSWLVQIPSDL KAGNYVLRHEIIALHGAQSPNGAQAYPQCINLRVTGGGSNLPSGVAGTS LYKATDPGILFNPYVSSPDYTVPGPALIAGAASSIAQSTSVATATGTAT VPGGGGANPTATTTAATSAAPSTTLRTTTTSAAQTTAPPSGDVQTKYGQ CGGNGWTGPTVCAPGSSCSVLNEWYSQCL

GH61a Variant 1 cDNA Sequence:

TABLE-US-00006 (SEQ ID NO: 4) ATGTCCAAGGCCTCTGCTCTCCTCGCTGGCCTGACGGGCGCGGCCCTC GTCGCTGCACACGGCCACGTCAGCCACATCGTCGTCAACGGCGTCTAC TACAGGGGCTACGACCCCACGACAGACTGGTACCAGCCCAACCCGCCA ACAGTCATCGGCTGGACGGCAGCCGATCAGGATAATGGCTTCGTTGAA CCCAACAGCTTTGGCACGCCAGATATCATCTGCCACAAGAGCGCCACC CCCGGCGGCGGCCACGCTACCGTTGCTGCCGGAGACAAGATCAACATC GTCTGGACCCCCGAGTGGCCCCACTCCCACATCGGCCCCGTCATTGAC TACCTAGCCGCCTGCAACGGTGACTGCGAGACCGTCGACAAGTCGTCG CTGCGCTGGTTCAAGATTGACGGCGCCGGCTACGACAAGGCCGCCGGC CGCTGGGCCGCCGACGCTCTGCGCGCCAACGGCAACAGCTGGCTCGTC CAGATCCCGTCGGATCTCAAGCCCGGCAACTACGTCCTCCGCCACGAG ATCATCGCCCTCCACGGTGCTCAGAGCCCCAACGGCGCCCAGGCGTAC CCGCAGTGCATCAACCTCCGCGTCACCGGCGGCGGCAGCAACCTGCCC AGCGGCGTCGCCGGCACCTCGCTGTACAAGGCGACCGACCCGGGCATC CTCTTCAACCCCTACGTCTCCTCCCCGGATTACACCGTCCCCGGCCCG GCCCTCATTGCCGGCGCCGCCAGCTCGATCGCCCAGAGCACGTCGGTC GCCACTGCCACCGGCACGGCCACCGTTCCCGGCGGCGGCGGCGCCAAC CCTACCGCCACCACCACCGCCGCCACCTCCGCCGCCCCGAGCACCACC CTGAGGACGACCACTACCTCGGCCGCGCAGACTACCGCCCCGCCCTCC GGCGATGTGCAGACCAAGTACGGCCAGTGTGGTGGCAACGGATGGACG GGCCCGACGGTGTGCGCCCCCGGCTCGAGCTGCTCCGTCCTCAACGAG TGGTACTCCCAGTGTTTGTAA

GH61a Variant 1 Polypeptide Sequence:

TABLE-US-00007 [0307] (SEQ ID NO: 5) MSKASALLAGLTGAALVAAHGHVSHIVVNGVYYRGYDPTTDWYQPNPPT VIGWTAADQDNGFVEPNSFGTPDIICHKSATPGGGHATVAAGDKINIVW TPEWPHSHIGPVIDYLAACNGDCETVDKSSLRWFKIDGAGYDKAAGRWA ADALRANGNSWLVQIPSDLKPGNYVLRHEIIALHGAQSPNGAQAYPQCI NLRVTGGGSNLPSGVAGTSLYKATDPGILFNPYVSSPDYTVPGPALIAG AASSIAQSTSVATATGTATVPGGGGANPTATTTAATSAAPSTTLRTTTT SAAQTTAPPSGDVQTKYGQCGGNGWTGPTVCAPGSSCSVLNEWYSQCL

GH61a Variant 1 Polypeptide Sequence without the Signal Sequence:

TABLE-US-00008 (SEQ ID NO: 6) HGHVSHIVVNGVYYRGYDPTTDWYQPNPPTVIGWTAADQDNGFVEPNS FGTPDIICHKSATPGGGHATVAAGDKINIVWTPEWPHSHIGPVIDYLA ACNGDCETVDKSSLRWFKIDGAGYDKAAGRWAADALRANGNSWLVQIP SDLKPGNYVLRHEIIALHGAQSPNGAQAYPQCINLRVTGGGSNLPSGV AGTSLYKATDPGILFNPYVSSPDYTVPGPALIAGAASSIAQSTSVATA TGTATVPGGGGANPTATTTAATSAAPSTTLRTTTTSAAQTTAPPSGDV QTKYGQCGGNGWTGPTVCAPGSSCSVLNEWYSQCL

GH61a Variant 5 cDNA Sequence

TABLE-US-00009 (SEQ ID NO: 7) ACACAAATGTCCAAGGCCTCTGCTCTCCTCGCTGGCCTGACGGGCGCG GCCCTCGTCGCTGCACACGGCCACGTCAGCCACATCGTCGTCAACGGC GTCTACTACAGGAACTACGACCCCACGACAGACTGGTACCAGCCCAAC CCGCCAACAGTCATCGGCTGGACGGCAGCCGATCAGGATAATGGCTTC GTTGAACCCAACAGCTTTGGCACGCCAGATATCATCTGCCACAAGAGC GCCACCCCCGGCGGCGGCCACGCTACCGTTGCTGCCGGAGACAAGATC AACATCGTATGGACCCCCGAGTGGCCCCACTCCCACATCGGCCCCGTC ATTGACTACCTAGCCGCCTGCAACGGTGACTGCGAGACCGTCGACAAG TCGTCGCTGCGCTGGTTCAAGATTGACGGCGCCGGCTACGACAAGGCC GCCGGCCGCTGGGCCGCCGACGCTCTGCGCGCCAACGGCAACAGCTGG CTCGTCCAGATCCCGTCGGATCTCGCGGCCGGCAACTACGTCCTCCGC CACGAGATCATCGCCCTCCACGGTGCTCAGAGCCCCAACGGCGCCCAG GCGTACCCGCAGTGCATCAACCTCCGCGTCACCGGCGGCGGCAGCAAC CTGCCCAGCGGCGTCGCCGGCACCTCGCTGTACAAGGCGACCGACCCG GGCATCCTCTTCAACCCCTACGTCTCCTCCCCGGATTACACCGTCCCC GGCCCGGCCCTCATTGCCGGCGCCGCCAGCTCGATCGCCCAGAGCACG TCGGTCGCCACTGCCACCGGCACGGCCACCGTTCCCGGCGGCGGCGGC GCCAACCCTACCGCCACCACCACCGCCGCCACCTCCGCCGCCCCGAGC ACCACCCTGAGGACGACCACTACCTCGGCCGCGCAGACTACCGCCCCG CCCTCCGGCGATGTGCAGACCAAGTACGGCCAGTGTGGTGGCAACGGA TGGACGGGCCCGACGGTGTGCGCCCCCGGCTCGAGCTGCTCCGTCCTC AACGAGTGGTACTCCCAGTGTTTGTAA

GH61a Variant 5 Polypeptide Sequence:

TABLE-US-00010 [0308] (SEQ ID NO: 8) MSKASALLAGLTGAALVAAHGHVSHIVVNGVYYRNYDPTTDWYQPNPPT VIGWTAADQDNGFVEPNSFGTPDIICHKSATPGGGHATVAAGDKINIVW TPEWPHSHIGPVIDYLAACNGDCETVDKSSLRWFKIDGAGYDKAAGRWA ADALRANGNSWLVQIPSDLAAGNYVLRHEIIALHGAQSPNGAQAYPQCI NLRVTGGGSNLPSGVAGTSLYKATDPGILFNPYVSSPDYTVPGPALIAG AASSIAQSTSVATATGTATVPGGGGANPTATTTAATSAAPSTTLRTTTT SAAQTTAPPSGDVQTKYGQCGGNGWTGPTVCAPGSSCSVLNEWYSQCL

GH61a Variant 5 Polypeptide Sequence without the Signal Sequence:

TABLE-US-00011 (SEQ ID NO: 9) HGHVSHIVVNGVYYRNYDPTTDWYQPNPPTVIGWTAADQDNGFVEPNS FGTPDIICHKSATPGGGHATVAAGDKINIVWTPEWPHSHIGPVIDYLA ACNGDCETVDKSSLRWFKIDGAGYDKAAGRWAADALRANGNSWLVQIP SDLAAGNYVLRHEIIALHGAQSPNGAQAYPQCINLRVTGGGSNLPSGV AGTSLYKATDPGILFNPYVSSPDYTVPGPALIAGAASSIAQSTSVATA TGTATVPGGGGANPTATTTAATSAAPSTTLRTTTTSAAQTTAPPSGDV QTKYGQCGGNGWTGPTVCAPGSSCSVLNEWYSQCL

GH61a Variant 9 cDNA Sequence:

TABLE-US-00012 (SEQ ID NO: 10) ACAAACATGTCCAAGGCCTCTGCTCTCCTCGCTGGCCTGACGGGCGCGG CCCTCGTCGCTGCACATGGCCACGTCAGCCACATCGTCGTCAACGGCGT CTACTACAGGAACTACGACCCCACGACAGACTGGTACCAGCCCAACCCG CCAACAGTCATCGGCTGGACGGCAGCCGATCAGGATAATGGCTTCGTTG AACCCAACAGCTTTGGCACGCCAGATATCATCTGCCACAAGAGCGCCAC CCCCGGCGGCGGCCACGCTACCGTTGCTGCCGGAGACAAGATCAACATC CAGTGGACCCCCGAGTGGCCCGAATCCCACATCGGCCCCGTCATTGACT ACCTAGCCGCCTGCAACGGTGACTGCGAGACCGTCGACAAGTCGTCGCT GCGCTGGTTCAAGATTGACGGCGCCGGCTACGACAAGGCCGCCGGCCGC TGGGCCGCCGACGCTCTGCGCGCCAACGGCAACAGCTGGCTCGTCCAGA TCCCGTCGGATCTCAAGGCCGGCAACTACGTCCTCCGCCACGAGATCAT CGCCCTCCACGGTGCTCAGAGCCCCAACGGCGCCCAGAACTACCCGCAG TGCATCAACCTCCGCGTCACCGGCGGCGGCAGCAACCTGCCCAGCGGCG TCGCCGGCACCTCGCTGTACAAGGCGACCGACCCGGGCATCCTCTTCAA CCCCTACGTCTCCTCCCCGGATTACACCGTCCCCGGCCCGGCCCTCATT GCCGGCGCCGCCAGCTCGATCGCCCAGAGCACGTCGGTCGCCACTGCCA CCGGCACGGCCACCGTTCCCGGCGGCGGCGGCGCCAACCCTACCGCCAC CACCACCGCCGCCACCTCCGCCGCCCCGAGCACCACCCTGAGGACGACC ACTACCTCGGCCGCGCAGACTACCGCCCCGCCCTCCGGCGATGTGCAGA CCAAGTACGGCCAGTGTGGTGGCAACGGATGGACGGGCCCGACGGTGTG CGCCCCCGGCTCGAGCTGCTCCGTCCTCAACGAGTGGTACTCCCAGTGT TTGTAA

GH61a Variant 9 Polypeptide Sequence:

TABLE-US-00013 [0309] (SEQ ID NO: 11) MSKASALLAGLTGAALVAAHGHVSHIVVNGVYYRNYDPTTDWYQPNPPT VIGWTAADQDNGFVEPNSFGTPDIICHKSATPGGGHATVAAGDKINIQW TPEWPESHIGPVIDYLAACNGDCETVDKSSLRWFKIDGAGYDKAAGRWA ADALRANGNSWLVQIPSDLKAGNYVLRHEIIALHGAQSPNGAQNYPQCI NLRVTGGGSNLPSGVAGTSLYKATDPGILFNPYVSSPDYTVPGPALIAG AASSIAQSTSVATATGTATVPGGGGANPTATTTAATSAAPSTTLRTTTT SAAQTTAPPSGDVQTKYGQCGGNGWTGPTVCAPGSSCSVLNEWYSQCL

GH61a Variant 9 Polypeptide Sequence without the Signal Sequence:

TABLE-US-00014 (SEQ ID NO: 12) MSKASALLAGLTGAALVAAHGHVSHIVVNGVYYRNYDPTTDWYQPNPP TVIGWTAADQDNGFVEPNSFGTPDIICHKSATPGGGHATVAAGDKINI QWTPEWPESHIGPVIDYLAACNGDCETVDKSSLRWFKIDGAGYDKAAG RWAADALRANGNSWLVQIPSDLKAGNYVLRHEIIALHGAQSPNGAQNY PQCINLRVTGGGSNLPSGVAGTSLYKATDPGILFNPYVSSPDYTVPGP ALIAGAASSIAQSTSVATATGTATVPGGGGANPTATTTAATSAAPSTT LRTTTTSAAQTTAPPSGDVQTKYGQCGGNGWTGPTVCAPGSSCSVLNE WYSQCL

[0310] The polynucleotide (SEQ ID NO:13) and amino acid (SEQ ID NO:14) sequences of an M. thermophila GH61b are provided below. The signal sequence is shown underlined in SEQ ID NO:14. SEQ ID NO:15 provides the sequence of this GH61b without the signal sequence.

TABLE-US-00015 (SEQ ID NO: 13) ATGAAGCTCTCCCTCTTTTCCGTCCTGGCCACTGCCCTCACCGTCGAG GGGCATGCCATCTTCCAGAAGGTCTCCGTCAACGGAGCGGACCAGGGC TCCCTCACCGGCCTCCGCGCTCCCAACAACAACAACCCCGTGCAGAAT GTCAACAGCCAGGACATGATCTGCGGCCAGTCGGGATCGACGTCGAAC ACTATCATCGAGGTCAAGGCCGGCGATAGGATCGGTGCCTGGTATCAG CATGTCATCGGCGGTGCCCAGTTCCCCAACGACCCAGACAACCCGATT GCCAAGTCGCACAAGGGCCCCGTCATGGCCTACCTCGCCAAGGTTGAC AATGCCGCAACCGCCAGCAAGACGGGCCTGAAGTGGTTCAAGATTTGG GAGGATACCTTTAATCCCAGCACCAAGACCTGGGGTGTCGACAACCTC ATCAACAACAACGGCTGGGTGTACTTCAACCTCCCGCAGTGCATCGCC GACGGCAACTACCTCCTCCGCGTCGAGGTCCTCGCTCTGCACTCGGCC TACTCCCAGGGCCAGGCTCAGTTCTACCAGTCCTGCGCCCAGATCAAC GTATCCGGCGGCGGCTCCTTCACGCCGGCGTCGACTGTCAGCTTCCCG GGTGCCTACAGCGCCAGCGACCCCGGTATCCTGATCAACATCTACGGC GCCACCGGCCAGCCCGACAACAACGGCCAGCCGTACACTGCCCCTGGG CCCGCGCCCATCTCCTGC (SEQ ID NO: 14) MKLSLFSVLATALTVEGHAIFQKVSVNGADQGSLTGLRAPNNNNPVQN VNSQDMICGQSGSTSNTIIEVKAGDRIGAWYQHVIGGAQFPNDPDNPI AKSHKGPVMAYLAKVDNAATASKTGLKWFKIWEDTFNPSTKTWGVDNL INNNGWVYFNLPQCIADGNYLLRVEVLALHSAYSQGQAQFYQSCAQIN VSGGGSFTPASTVSFPGAYSASDPGILINIYGATGQPDNNGQPYTAPG PAPISC (SEQ ID NO: 15) IFQKVSVNGADQGSLTGLRAPNNNNPVQNVNSQDMICGQSGSTSNTII EVKAGDRIGAWYQHVIGGAQFPNDPDNPIAKSHKGPVMAYLAKVDNAA TASKTGLKWFKIWEDTFNPSTKTWGVDNLINNNGWVYFNLPQCIADGN YLLRVEVLALHSAYSQGQAQFYQSCAQINVSGGGSFTPASTVSFPGAY SASDPGILINIYGATGQPDNNGQPYTAPGPAPISC

[0311] The polynucleotide (SEQ ID NO:16) and amino acid (SEQ ID NO:17) sequences of an M. thermophila GH61c are provided below. The signal sequence is shown underlined in SEQ ID NO:17. SEQ ID NO:18 provides the sequence of this GH61c without the signal sequence.

TABLE-US-00016 (SEQ ID NO: 16) ATGGCCCTCCAGCTCTTGGCGAGCTTGGCCCTCCTCTCAGTGCCGGCC CTTGCCCACGGTGGCTTGGCCAACTACACCGTCGGTGATACTTGGTAC AGAGGCTACGACCCAAACCTGCCGCCGGAGACGCAGCTCAACCAGACC TGGATGATCCAGCGGCAATGGGCCACCATCGACCCCGTCTTCACCGTG TCGGAGCCGTACCTGGCCTGCAACAACCCGGGCGCGCCGCCGCCCTCG TACATCCCCATCCGCGCCGGTGACAAGATCACGGCCGTGTACTGGTAC TGGCTGCACGCCATCGGGCCCATGAGCGTCTGGCTCGCGCGGTGCGGC GACACGCCCGCGGCCGACTGCCGCGACGTCGACGTCAACCGGGTCGGC TGGTTCAAGATCTGGGAGGGCGGCCTGCTGGAGGGTCCCAACCTGGCC GAGGGGCTCTGGTACCAAAAGGACTTCCAGCGCTGGGACGGCTCCCCG TCCCTCTGGCCCGTCACGATCCCCAAGGGGCTCAAGAGCGGGACCTAC ATCATCCGGCACGAGATCCTGTCGCTTCACGTCGCCCTCAAGCCCCAG TTTTACCCGGAGTGTGCGCATCTGAATATTACTGGGGGCGGAGACTTG CTGCCACCCGAAGAGACTCTGGTGCGGTTTCCGGGGGTTTACAAAGAG GACGATCCCTCTATCTTCATCGATGTCTACTCGGAGGAGAACGCGAAC CGGACAGATTATACGGTTCCGGGAGGGCCAATCTGGGAAGGG (SEQ ID NO: 17) MALQLLASLALLSVPALAHGGLANYTVGDTWYRGYDPNLPPETQLNQT WMIQRQWATIDPVFTVSEPYLACNNPGAPPPSYIPIRAGDKITAVYWY WLHAIGPMSVWLARCGDTPAADCRDVDVNRVGWFKIWEGGLLEGPNLA EGLWYQKDFQRWDGSPSLWPVTIPKGLKSGTYIIRHEILSLHVALKPQ FYPECAHLNITGGGDLLPPEETLVRFPGVYKEDDPSIFIDVYSEENAN RTDYTVPGGPIWEG (SEQ ID NO: 18) NYTVGDTWYRGYDPNLPPETQLNQTWMIQRQWATIDPVFTVSEPYLAC NNPGAPPPSYIPIRAGDKITAVYWYWLHAIGPMSVWLARCGDTPAADC RDVDVNRVGWFKIWEGGLLEGPNLAEGLWYQKDFQRWDGSPSLWPVTI PKGLKSGTYIIRHEILSLHVALKPQFYPECAHLNITGGGDLLPPEETL VRFPGVYKEDDPSIFIDVYSEENANRTDYTVPGGPIWEG

[0312] The polynucleotide (SEQ ID NO:19) and amino acid (SEQ ID NO:20) sequences of an M. thermophila GH61d are provided below. The signal sequence is shown underlined in SEQ ID NO:20. SEQ ID NO:21 provides the sequence of this GH61d without the signal sequence.

TABLE-US-00017 (SEQ ID NO: 19) ATGAAGGCCCTCTCTCTCCTTGCGGCTGCCGGGGCAGTCTCTGCGCAT ACCATCTTCGTCCAGCTCGAAGCAGACGGCACGAGGTACCCGGTTTCG TACGGGATCCGGGACCCAACCTACGACGGCCCCATCACCGACGTCACA TCCAACGACGTTGCTTGCAACGGCGGTCCGAACCCGACGACCCCCTCC AGCGACGTCATCACCGTCACCGCGGGCACCACCGTCAAGGCCATCTGG AGGCACACCCTCCAATCCGGCCCGGACGATGTCATGGACGCCAGCCAC AAGGGCCCGACCCTGGCCTACATCAAGAAGGTCGGCGATGCCACCAAG GACTCGGGCGTCGGCGGTGGCTGGTTCAAGATCCAGGAGGACGGTTAC AACAACGGCCAGTGGGGCACCAGCACCGTTATCTCCAACGGCGGCGAG CACTACATTGACATCCCGGCCTGCATCCCCGAGGGTCAGTACCTCCTC CGCGCCGAGATGATCGCCCTCCACGCGGCCGGGTCCCCCGGCGGCGCT CAGCTCTACATGGAATGTGCCCAGATCAACATCGTCGGCGGCTCCGGC TCGGTGCCCAGCTCGACGGTCAGCTTCCCCGGCGCGTATAGCCCCAAC GACCCGGGTCTCCTCATCAACATCTATTCCATGTCGCCCTCGAGCTCG TACACCATCCCGGGCCCGCCCGTTTTCAAGTGC (SEQ ID NO: 20) MKALSLLAAAGAVSAHTIFVQLEADGTRYPVSYGIRDPTYDGPITDVT SNDVACNGGPNPTTPSSDVITVTAGTTVKAIWRHTLQSGPDDVMDASH KGPTLAYIKKVGDATKDSGVGGGWFKIQEDGYNNGQWGTSTVISNGGE HYIDIPACIPEGQYLLRAEMIALHAAGSPGGAQLYMECAQINIVGGSG SVPSSTVSFPGAYSPNDPGLLINIYSMSPSSSYTIPGPPVFKC (SEQ ID NO: 21) HTIFVQLEADGTRYPVSYGIRDPTYDGPITDVTSNDVACNGGPNPTTP SSDVITVTAGTTVKAIWRHTLQSGPDDVMDASHKGPTLAYIKKVGDAT KDSGVGGGWFKIQEDGYNNGQWGTSTVISNGGEHYIDIPACIPEGQYL LRAEMIALHAAGSPGGAQLYMECAQINIVGGSGSVPSSTVSFPGAYSP NDPGLLINIYSMSPSSSYTIPGPPVFKC

[0313] The polynucleotide (SEQ ID NO:22) and amino acid (SEQ ID NO:23) sequences of an M. thermophila GH61e are provided below. The signal sequence is shown underlined in SEQ ID NO:23. SEQ ID NO:24 provides the sequence of this GH61d without the signal sequence.

TABLE-US-00018 (SEQ ID NO: 22) ATGAAGTCGTCTACCCCGGCCTTGTTCGCCGCTGGGCTCCTTGCTCAG CATGCTGCGGCCCACTCCATCTTCCAGCAGGCGAGCAGCGGCTCGACC GACTTTGATACGCTGTGCACCCGGATGCCGCCCAACAATAGCCCCGTC ACTAGTGTGACCAGCGGCGACATGACCTGCAAAGTCGGCGGCACCAAG GGGGTGTCCGGCTTCTGCGAGGTGAACGCCGGCGACGAGTTCACGGTT GAGATGCACGCGCAGCCCGGCGACCGCTCGTGCGCCAACGAGGCCATC GGCGGGAACCACTTCGGCCCGGTCCTCATCTACATGAGCAAGGTCGAC GACGCCTCCACCGCCGACGGGTCCGGCGACTGGTTCAAGGTGGACGAG TTCGGCTACGACGCAAGCACCAAGACCTGGGGCACCGACAAGCTCAAC GAGAACTGCGGCAAGCGCACCTTCAACATCCCCAGCCACATCCCCGCG GGCGACTATCTCGTCCGGGCCGAGGCTATCGCGCTACACACTGCCAAC CAGCCAGGCGGCGCGCAGTTCTACATGAGCTGCTATCAAGTCAGGATT TCCGGCGGCGAAGGGGGCCAGCTGCCTGCCGGAGTCAAGATCCCGGGC GCGTACAGTGCCAACGACCCCGGCATCCTTGTCGACATCTGGGGTAAC GATTTCAACGACCCTCCAGGACACTCGGCCCGTCACGCCATCATCATC ATCAGCAGCAGCAGCAACAACAGCGGCGCCAAGATGACCAAGAAGATC CAGGAGCCCACCATCACATCGGTCACGGACCTCCCCACCGACGAGGCC AAGTGGATCGCGCTCCAAAAGATCTCGTACGTGGACCAGACGGGCACG GCGCGGACATACGAGCCGGCGTCGCGCAAGACGCGGTCGCCAAGAGTC TAG (SEQ ID NO: 23) MKSSTPALFAAGLLAQHAAAHSIFQQASSGSTDFDTLCTRMPPNNSPV TSVTSGDMTCKVGGTKGVSGFCEVNAGDEFTVEMHAQPGDRSCANEAI GGNHFGPVLIYMSKVDDASTADGSGDWFKVDEFGYDASTKTWGTDKLN ENCGKRTFNIPSHIPAGDYLVRAEAIALHTANQPGGAQFYMSCYQVRI SGGEGGQLPAGVKIPGAYSANDPGILVDIWGNDFNDPPGHSARHAIII ISSSSNNSGAKMTKKIQEPTITSVTDLPTDEAKWIALQKISYVDQTGT ARTYEPASRKTRSPRV (SEQ ID NO: 24) HSIFQQASSGSTDFDTLCTRMPPNNSPVTSVTSGDMTCKVGGTKGVSG FCEVNAGDEFTVEMHAQPGDRSCANEAIGGNHFGPVLIYMSKVDDAST ADGSGDWFKVDEFGYDASTKTWGTDKLNENCGKRTFNIPSHIPAGDYL VRAEAIALHTANQPGGAQFYMSCYQVRISGGEGGQLPAGVKIPGAYSA NDPGILVDIWGNDFNDPPGHSARHAIIIISSSSNNSGAKMTKKIQEPT ITSVTDLPTDEAKWIALQKISYVDQTGTARTYEPASRKTRSPRV

[0314] The polynucleotide (SEQ ID NO:25) and amino acid (SEQ ID NO:26) sequences of an alternative M. thermophila GH61e are provided below. The signal sequence is shown underlined in SEQ ID NO:26. SEQ ID NO:27 provides the sequence of this GH61e without the signal sequence.

TABLE-US-00019 (SEQ ID NO: 25) ATGAAGTCGTCTACCCCGGCCTTGTTCGCCGCTGGGCTCCTTGCTCAG CATGCTGCGGCCCACTCCATCTTCCAGCAGGCGAGCAGCGGCTCGACC GACTTTGATACGCTGTGCACCCGGATGCCGCCCAACAATAGCCCCGTC ACTAGTGTGACCAGCGGCGACATGACCTGCAACGTCGGCGGCACCAAG GGGGTGTCGGGCTTCTGCGAGGTGAACGCCGGCGACGAGTTCACGGTT GAGATGCACGCGCAGCCCGGCGACCGCTCGTGCGCCAACGAGGCCATC GGCGGGAACCACTTCGGCCCGGTCCTCATCTACATGAGCAAGGTCGAC GACGCCTCCACTGCCGACGGGTCCGGCGACTGGTTCAAGGTGGACGAG TTCGGCTACGACGCAAGCACCAAGACCTGGGGCACCGACAAGCTCAAC GAGAACTGCGGCAAGCGCACCTTCAACATCCCCAGCCACATCCCCGCG GGCGACTATCTCGTCCGGGCCGAGGCTATCGCGCTACACACTGCCAAC CAGCCAGGCGGCGCGCAGTTCTACATGAGCTGCTATCAAGTCAGGATT TCCGGCGGCGAAGGGGGCCAGCTGCCTGCCGGAGTCAAGATCCCGGGC GCGTACAGTGCCAACGACCCCGGCATCCTTGTCGACATCTGGGGTAAC GATTTCAACGAGTACGTTATTCCGGGCCCCCCGGTCATCGACAGCAGC TACTTC (SEQ ID NO: 26) MKSSTPALFAAGLLAQHAAAHSIFQQASSGSTDFDTLCTRMPPNNSPV TSVTSGDMTCNVGGTKGVSGFCEVNAGDEFTVEMHAQPGDRSCANEAI GGNHFGPVLIYMSKVDDASTADGSGDWFKVDEFGYDASTKTWGTDKLN ENCGKRTFNIPSHIPAGDYLVRAEAIALHTANQPGGAQFYMSCYQVRI SGGEGGQLPAGVKIPGAYSANDPGILVDIWGNDFNEYVIPGPPVIDSS YF (SEQ ID NO: 27) HSIFQQASSGSTDFDTLCTRMPPNNSPVTSVTSGDMTCNVGGTKGVSG FCEVNAGDEFTVEMHAQPGDRSCANEAIGGNHFGPVLIYMSKVDDAST ADGSGDWFKVDEFGYDASTKTWGTDKLNENCGKRTFNIPSHIPAGDYL VRAEAIALHTANQPGGAQFYMSCYQVRISGGEGGQLPAGVKIPGAYSA NDPGILVDIWGNDFNEYVIPGPPVIDSSYF

[0315] The polynucleotide (SEQ ID NO:28) and amino acid (SEQ ID NO:29) sequences of a M. thermophila GH61f are provided below. The signal sequence is shown underlined in SEQ ID NO:29. SEQ ID NO:30 provides the sequence of this GH61f without the signal sequence.

TABLE-US-00020 (SEQ ID NO: 28) ATGAAGTCCTTCACCCTCACCACTCTGGCCGCCCTGGCTGGCAACGCC GCCGCTCACGCGACCTTCCAGGCCCTCTGGGTCGACGGCGTCGACTAC GGCGCGCAGTGTGCCCGTCTGCCCGCGTCCAACTCGCCGGTCACCGAC GTGACCTCCAACGCGATCCGCTGCAACGCCAACCCCTCGCCCGCTCGG GGCAAGTGCCCGGTCAAGGCCGGCTCGACCGTTACGGTCGAGATGCAT CAGCAACCCGGTGACCGCTCGTGCAGCAGCGAGGCGATCGGCGGGGCG CACTACGGCCCCGTGATGGTGTACATGTCCAAGGTGTCGGACGCGGCG TCGGCGGACGGGTCGTCGGGCTGGTTCAAGGTGTTCGAGGACGGCTGG GCCAAGAACCCGTCCGGCGGGTCGGGCGACGACGACTACTGGGGCACC AAGGACCTGAACTCGTGCTGCGGGAAGATGAACGTCAAGATCCCCGCC GACCTGCCCTCGGGCGACTACCTGCTCCGGGCCGAGGCCCTCGCGCTG CACACGGCCGGCAGCGCGGGCGGCGCCCAGTTCTACATGACCTGCTAC CAGCTCACCGTGACCGGCTCCGGCAGCGCCAGCCCGCCCACCGTCTCC TTCCCGGGCGCCTACAAGGCCACCGACCCGGGCATCCTCGTCAACATC CACGCCCCGCTGTCCGGCTACACCGTGCCCGGCCCGGCCGTCTACTCG GGCGGCTCCACCAAGAAGGCCGGCAGCGCCTGCACCGGCTGCGAGTCC ACTTGCGCCGTCGGCTCCGGCCCCACCGCCACCGTCTCCCAGTCGCCC GGTTCCACCGCCACCTCGGCCCCCGGCGGCGGCGGCGGCTGCACCGTC CAGAAGTACCAGCAGTGCGGCGGCCAGGGCTACACCGGCTGCACCAAC TGCGCGTCCGGCTCCACCTGCAGCGCGGTCTCGCCGCCCTACTACTCG CAGTGCGTC (SEQ ID NO: 29) MKSFTLTTLAALAGNAAAHATFQALWVDGVDYGAQCARLPASNSPVTD VTSNAIRCNANPSPARGKCPVKAGSTVTVEMHQQPGDRSCSSEAIGGA HYGPVMVYMSKVSDAASADGSSGWFKVFEDGWAKNPSGGSGDDDYWGT KDLNSCCGKMNVKIPADLPSGDYLLRAEALALHTAGSAGGAQFYMTCY QLTVTGSGSASPPTVSFPGAYKATDPGILVNIHAPLSGYTVPGPAVYS GGSTKKAGSACTGCESTCAVGSGPTATVSQSPGSTATSAPGGGGGCTV QKYQQCGGQGYTGCTNCASGSTCSAVSPPYYSQCV (SEQ ID NO: 30) HATFQALWVDGVDYGAQCARLPASNSPVTDVTSNAIRCNANPSPARGK CPVKAGSTVTVEMHQQPGDRSCSSEAIGGAHYGPVMVYMSKVSDAASA DGSSGWFKVFEDGWAKNPSGGSGDDDYWGTKDLNSCCGKMNVKIPADL PSGDYLLRAEALALHTAGSAGGAQFYMTCYQLTVTGSGSASPPTVSFP GAYKATDPGILVNIHAPLSGYTVPGPAVYSGGSTKKAGSACTGCESTC AVGSGPTATVSQSPGSTATSAPGGGGGCTVQKYQQCGGQGYTGCTNCA SGSTCSAVSPPYYSQCV

[0316] The polynucleotide (SEQ ID NO:31) and amino acid (SEQ ID NO:32) sequences of an M. thermophila GH61g are provided below. The signal sequence is shown underlined in SEQ ID NO:32. SEQ ID NO:33 provides the sequence of this GH61g without the signal sequence.

TABLE-US-00021 (SEQ ID NO: 31) ATGAAGGGACTCCTCGGCGCCGCCGCCCTCTCGCTGGCCGTCAGCGAT GTCTCGGCCCACTACATCTTTCAGCAGCTGACGACGGGCGGCGTCAAG CACGCTGTGTACCAGTACATCCGCAAGAACACCAACTATAACTCGCCC GTGACCGATCTGACGTCCAACGACCTCCGCTGCAATGTGGGTGCTACC GGTGCGGGCACCGATACCGTCACGGTGCGCGCCGGCGATTCGTTCACC TTCACGACCGATACGCCCGTTTACCACCAGGGCCCGACCTCGATCTAC ATGTCCAAGGCCCCCGGCAGCGCGTCCGACTACGACGGCAGCGGCGGC TGGTTCAAGATCAAGGACTGGGCTGACTACACCGCCACGATTCCGGAA TGTATTCCCCCCGGCGACTACCTGCTTCGCATCCAGCAACTCGGCATC CACAACCCTTGGCCCGCGGGCATCCCCCAGTTCTACATCTCTTGTGCC CAGATCACCGTGACTGGTGGCGGCAGTGCCAACCCCGGCCCGACCGTC TCCATCCCAGGCGCCTTCAAGGAGACCGACCCGGGCTACACTGTCAAC ATCTACAACAACTTCCACAACTACACCGTCCCTGGCCCAGCCGTCTTC ACCTGCAACGGTAGCGGCGGCAACAACGGCGGCGGCTCCAACCCAGTC ACCACCACCACCACCACCACCACCAGGCCGTCCACCAGCACCGCCCAG TCCCAGCCGTCGTCGAGCCCGACCAGCCCCTCCAGCTGCACCGTCGCG AAGTGGGGCCAGTGCGGAGGACAGGGTTACAGCGGCTGCACCGTGTGC GCGGCCGGGTCGACCTGCCAGAAGACCAACGACTACTACAGCCAGTGC TTGTAG (SEQ ID NO: 32) MKGLLGAAALSLAVSDVSAHYIFQQLTTGGVKHAVYQYIRKNTNYNSP VTDLTSNDLRCNVGATGAGTDTVTVRAGDSFTFTTDTPVYHQGPTSIY MSKAPGSASDYDGSGGWFKIKDWADYTATIPECIPPGDYLLRIQQLGI HNPWPAGIPQFYISCAQITVTGGGSANPGPTVSIPGAFKETDPGYTVN IYNNFHNYTVPGPAVFTCNGSGGNNGGGSNPVTTTTTTTTRPSTSTAQ SQPSSSPTSPSSCTVAKWGQCGGQGYSGCTVCAAGSTCQKTNDYYSQC L (SEQ ID NO: 33) HYIFQQLTTGGVKHAVYQYIRKNTNYNSPVTDLTSNDLRCNVGATGAG TDTVTVRAGDSFTFTTDTPVYHQGPTSIYMSKAPGSASDYDGSGGWFK IKDWADYTATIPECIPPGDYLLRIQQLGIHNPWPAGIPQFYISCAQIT VTGGGSANPGPTVSIPGAFKETDPGYTVNIYNNFHNYTVPGPAVFTCN GSGGNNGGGSNPVTTTTTTTTRPSTSTAQSQPSSSPTSPSSCTVAKWG QCGGQGYSGCTVCAAGSTCQKTNDYYSQCL

[0317] The polynucleotide (SEQ ID NO:34) and amino acid (SEQ ID NO:35) sequences of an alternative M. thermophila GH61g are provided below. The signal sequence is shown underlined in SEQ ID NO:35. SEQ ID NO:36 provides the sequence of this GH61g without the signal sequence.

TABLE-US-00022 (SEQ ID NO: 34) CTGACGACGGGCGGCGTCAAGCACGCTGTGTACCAGTACATCCGCAAG AACACCAACTATAACTCGCCCGTGACCGATCTGACGTCCAACGACCTC CGCTGCAATGTGGGTGCTACCGGTGCGGGCACCGATACCGTCACGGTG CGCGCCGGCGATTCGTTCACCTTCACGACCGATACGCCCGTTTACCAC CAGGGCCCGACCTCGATCTACATGTCCAAGGCCCCCGGCAGCGCGTCC GACTACGACGGCAGCGGCGGCTGGTTCAAGATCAAGGACTGGGGTGCC GACTTTAGCAGCGGCCAGGCCACCTGGACCTTGGCGTCTGACTACACC GCCACGATTCCGGAATGTATTCCCCCCGGCGACTACCTGCTTCGCATC CAGCAACTCGGCATCCACAACCCTTGGCCCGCGGGCATCCCCCAGTTC TACATCTCTTGTGCCCAGATCACCGTGACTGGTGGCGGCAGTGCCAAC CCCGGCCCGACCGTCTCCATCCCAGGCGCCTTCAAGGAGACCGACCCG GGCTACACTGTCAACATCTACAACAACTTCCACAACTACACCGTCCCT GGCCCAGCCGTCTTCACCTGCAACGGTAGCGGCGGCAACAACGGCGGC GGCTCCAACCCAGTCACCACCACCACCACCACCACCACCAGGCCGTCC ACCAGCACCGCCCAGTCCCAGCCGTCGTCGAGCCCGACCAGCCCCTCC AGCTGCACCGTCGCGAAGTGGGGCCAGTGCGGAGGACAGGGTTACAGC GGCTGCACCGTGTGCGCGGCCGGGTCGACCTGCCAGAAGACCAACGAC TACTACAGCCAGTGCTTG (SEQ ID NO: 35) MKGLLGAAALSLAVSDVSAHYIFQQLTTGGVKHAVYQYIRKNTNYNSP VTDLTSNDLRCNVGATGAGTDTVTVRAGDSFTFTTDTPVYHQGPTSIY MSKAPGSASDYDGSGGWFKIKDWGADFSSGQATWTLASDYTATIPECI PPGDYLLRIQQLGIHNPWPAGIPQFYISCAQITVTGGGSANPGPTVSI PGAFKETDPGYTVNIYNNFHNYTVPGPAVFTCNGSGGNNGGGSNPVTT TTTTTTRPSTSTAQSQPSSSPTSPSSCTVAKWGQCGGQGYSGCTVCAA GSTCQKTNDYYSQCL (SEQ ID NO: 36) HYIFQQLTTGGVKHAVYQYIRKNTNYNSPVTDLTSNDLRCNVGATGAG TDTVTVRAGDSFTFTTDTPVYHQGPTSIYMSKAPGSASDYDGSGGWFK IKDWGADFSSGQATWTLASDYTATIPECIPPGDYLLRIQQLGIHNPWP AGIPQFYISCAQITVTGGGSANPGPTVSIPGAFKETDPGYTVNIYNNF HNYTVPGPAVFTCNGSGGNNGGGSNPVTTTTTTTTRPSTSTAQSQPSS SPTSPSSCTVAKWGQCGGQGYSGCTVCAAGSTCQKTNDYYSQCL

[0318] The polynucleotide (SEQ ID NO:37) and amino acid (SEQ ID NO:38) sequences of an M. thermophila GH61h are provided below. The signal sequence is shown underlined in SEQ ID NO:38. SEQ ID NO:39 provides the sequence of this GH61h without the signal sequence.

TABLE-US-00023 (SEQ ID NO: 37) ATGTCTTCCTTCACCTCCAAGGGTCTCCTTTCCGCCCTCATGGGCGCG GCAACGGTTGCCGCCCACGGTCACGTCACCAACATCGTCATCAACGGC GTCTCATACCAGAACTTCGACCCATTCACGCACCCTTATATGCAGAAC CCTCCGACGGTTGTCGGCTGGACCGCGAGCAACACGGACAACGGCTTC GTCGGCCCCGAGTCCTTCTCTAGCCCGGACATCATCTGCCACAAGTCC GCCACCAACGCTGGCGGCCATGCCGTCGTCGCGGCCGGCGATAAGGTC TTCATCCAGTGGGACACCTGGCCCGAGTCGCACCACGGTCCGGTCATC GACTATCTCGCCGACTGCGGCGACGCGGGCTGCGAGAAGGTCGACAAG ACCACGCTCAAGTTCTTCAAGATCAGCGAGTCCGGCCTGCTCGACGGC ACTAACGCCCCCGGCAAGTGGGCGTCCGACACGCTGATCGCCAACAAC AACTCGTGGCTGGTCCAGATCCCGCCCAACATCGCCCCGGGCAACTAC GTCCTGCGCCACGAGATCATCGCCCTGCACAGCGCCGGCCAGCAGAAC GGCGCCCAGAACTACCCTCAGTGCTTCAACCTGCAGGTCACCGGCTCC GGCACTCAGAAGCCCTCCGGCGTCCTCGGCACCGAGCTCTACAAGGCC ACCGACGCCGGCATCCTGGCCAACATCTACACCTCGCCCGTCACCTAC CAGATCCCCGGCCCGGCCATCATCTCGGGCGCCTCCGCCGTCCAGCAG ACCACCTCGGCCATCACCGCCTCTGCTAGCGCCATCACCGGCTCCGCT ACCGCCGCGCCCACGGCTGCCACCACCACCGCCGCCGCCGCCGCCACC ACTACCACCACCGCTGGCTCCGGTGCTACCGCCACGCCCTCGACCGGC GGCTCTCCTTCTTCCGCCCAGCCTGCTCCTACCACCGCTGCCGCTACC TCCAGCCCTGCTCGCCCGACCCGCTGCGCTGGTCTGAAGAAGCGCCGT CGCCACGCCCGTGACGTCAAGGTTGCCCTC (SEQ ID NO: 38) MSSFTSKGLLSALMGAATVAAHGHVTNIVINGVSYQNFDPFTHPYMQN PPTVVGWTASNTDNGFVGPESFSSPDIICHKSATNAGGHAVVAAGDKV FIQWDTWPESHHGPVIDYLADCGDAGCEKVDKTTLKFFKISESGLLDG TNAPGKWASDTLIANNNSWLVQIPPNIAPGNYVLRHEIIALHSAGQQN GAQNYPQCFNLQVTGSGTQKPSGVLGTELYKATDAGILANIYTSPVTY QIPGPAIISGASAVQQTTSAITASASAITGSATAAPTAATTTAAAAAT TTTTAGSGATATPSTGGSPSSAQPAPTTAAATSSPARPTRCAGLKKRR RHARDVKVAL (SEQ ID NO: 39) AHGHVTNIVINGVSYQNFDPFTHPYMQNPPTVVGWTASNTDNGFVGPE SFSSPDIICHKSATNAGGHAVVAAGDKVFIQWDTWPESHHGPVIDYLA DCGDAGCEKVDKTTLKFFKISESGLLDGTNAPGKWASDTLIANNNSWL VQIPPNIAPGNYVLRHEIIALHSAGQQNGAQNYPQCFNLQVTGSGTQK PSGVLGTELYKATDAGILANIYTSPVTYQIPGPAIISGASAVQQTTSA ITASASAITGSATAAPTAATTTAAAAATTTTTAGSGATATPSTGGSPS SAQPAPTTAAATSSPARPTRCAGLKKRRRHARDVKVAL

[0319] The polynucleotide (SEQ ID NO:40) and amino acid (SEQ ID NO:41) sequences of an M. thermophila GH61i are provided below. The signal sequence is shown underlined in SEQ ID NO:41. SEQ ID NO:42 provides the sequence of this GH61i without the signal sequence.

TABLE-US-00024 (SEQ ID NO: 40) ATGAAGACGCTCGCCGCCCTCGTGGTCTCGGCCGCCCTCGTGGCCGCG CACGGCTATGTTGACCACGCCACGATCGGTGGCAAGGATTATCAGTTC TACCAGCCGTACCAGGACCCTTACATGGGCGACAACAAGCCCGATAGG GTTTCCCGCTCCATCCCGGGCAACGGCCCCGTGGAGGACGTCAACTCC ATCGACCTCCAGTGCCACGCCGGTGCCGAACCGGCCAAGCTCCACGCC CCCGCCGCCGCCGGCTCGACCGTGACGCTCTACTGGACCCTCTGGCCC GACTCCCACGTCGGCCCCGTCATCACCTACATGGCTCGCTGCCCCGAC ACCGGCTGCCAGGACTGGTCCCCGGGAACTAAGCCCGTTTGGTTCAAG ATCAAGGAAGGCGGCCGTGAGGGCACCTCCAATACCCCGCTCATGACG GCCCCCTCCGCCTACACCTACACGATCCCGTCCTGCCTCAAGAGCGGC TACTACCTCGTCCGCCACGAGATCATCGCCCTGCACTCGGCCTGGCAG TACCCCGGCGCCCAGTTCTACCCGGGCTGCCACCAGCTCCAGGTCACC GGCGGCGGCTCCACCGTGCCCTCTACCAACCTGGTCTCCTTCCCCGGC GCCTACAAGGGGAGCGACCCCGGCATCACCTACGACGCTTACAAGGCG CAACCTTACACCATCCCTGGCCCGGCCGTGTTTACCTGCTGA (SEQ ID NO: 41) MKTLAALVVSAALVAAHGYVDHATIGGKDYQFYQPYQDPYMGDNKPDR VSRSIPGNGPVEDVNSIDLQCHAGAEPAKLHAPAAAGSTVTLYWTLWP DSHVGPVITYMARCPDTGCQDWSPGTKPVWFKIKEGGREGTSNTPLMT APSAYTYTIPSCLKSGYYLVRHEIIALHSAWQYPGAQFYPGCHQLQVT GGGSTVPSTNLVSFPGAYKGSDPGITYDAYKAQPYTIPGPAVFTC (SEQ ID NO: 42) YVDHATIGGKDYQFYQPYQDPYMGDNKPDRVSRSIPGNGPVEDVNSID LQCHAGAEPAKLHAPAAAGSTVTLYWTLWPDSHVGPVITYMARCPDTG CQDWSPGTKPVWFKIKEGGREGTSNTPLMTAPSAYTYTIPSCLKSGYY LVRHEIIALHSAWQYPGAQFYPGCHQLQVTGGGSTVPSTNLVSFPGAY KGSDPGITYDAYKAQPYTIPGPAVFTC

[0320] The polynucleotide (SEQ ID NO:43) and amino acid (SEQ ID NO:44) sequences of an alternative M. thermophila GH61i are provided below. The signal sequence is shown underlined in SEQ ID NO:44. SEQ ID NO:45 provides the sequence of this GH61i without the signal sequence.

TABLE-US-00025 (SEQ ID NO: 43) ATGAAGACGCTCGCCGCCCTCGTGGTCTCGGCCGCCCTCGTGGCCGCGCA CGGCTATGTTGACCACGCCACGATCGGTGGCAAGGATTATCAGTTCTACC AGCCGTACCAGGACCCTTACATGGGCGACAACAAGCCCGATAGGGTTTCC CGCTCCATCCCGGGCAACGGCCCCGTGGAGGACGTCAACTCCATCGACCT CCAGTGCCACGCCGGTGCCGAACCGGCCAAGCTCCACGCCCCCGCCGCCG CCGGCTCGACCGTGACGCTCTACTGGACCCTCTGGCCCGACTCCCACGTC GGCCCCGTCATCACCTACATGGCTCGCTGCCCCGACACCGGCTGCCAGGA CTGGTCCCCGGGAACTAAGCCCGTTTGGTTCAAGATCAAGGAAGGCGGCC GTGAGGGCACCTCCAATGTCTGGGCTGCTACCCCGCTCATGACGGCCCCC TCCGCCTACACCTACACGATCCCGTCCTGCCTCAAGAGCGGCTACTACCT CGTCCGCCACGAGATCATCGCCCTGCACTCGGCCTGGCAGTACCCCGGCG CCCAGTTCTACCCGGGCTGCCACCAGCTCCAGGTCACCGGCGGCGGCTCC ACCGTGCCCTCTACCAACCTGGTCTCCTTCCCCGGCGCCTACAAGGGGAG CGACCCCGGCATCACCTACGACGCTTACAAGGCGCAACCTTACACCATCC CTGGCCCGGCCGTGTTTACCTGC (SEQ ID NO: 44) MKTLAALVVSAALVAAHGYVDHATIGGKDYQFYQPYQDPYMGDNKPDRVS RSIPGNGPVEDVNSIDLQCHAGAEPAKLHAPAAAGSTVTLYWTLWPDSHV GPVITYMARCPDTGCQDWSPGTKPVWFKIKEGGREGTSNVWAATPLMTAP SAYTYTIPSCLKSGYYLVRHEIIALHSAWQYPGAQFYPGCHQLQVTGGGS TVPSTNLVSFPGAYKGSDPGITYDAYKAQPYTIPGPAVFTC (SEQ ID NO: 45) YVDHATIGGKDYQFYQPYQDPYMGDNKPDRVSRSIPGNGPVEDVNSIDLQ CHAGAEPAKLHAPAAAGSTVTLYWTLWPDSHVGPVITYMARCPDTGCQDW SPGTKPVWFKIKEGGREGTSNVWAATPLMTAPSAYTYTIPSCLKSGYYLV RHEIIALHSAWQYPGAQFYPGCHQLQVTGGGSTVPSTNLVSFPGAYKGSD PGITYDAYKAQPYTIPGPAVFTC

[0321] The polynucleotide (SEQ ID NO:46) and amino acid (SEQ ID NO:47) sequences of an M. thermophila GH61j are provided below. The signal sequence is shown underlined in SEQ ID NO:47. SEQ ID NO:48 provides the sequence of this GH61j without the signal sequence.

TABLE-US-00026 (SEQ ID NO: 46) ATGAGATACTTCCTCCAGCTCGCTGCGGCCGCGGCCTTTGCCGTGAACAG CGCGGCGGGTCACTACATCTTCCAGCAGTTCGCGACGGGCGGGTCCAAGT ACCCGCCCTGGAAGTACATCCGGCGCAACACCAACCCGGACTGGCTGCAG AACGGGCCGGTGACGGACCTGTCGTCGACCGACCTGCGCTGCAACGTGGG CGGGCAGGTCAGCAACGGGACCGAGACCATCACCTTGAACGCCGGCGACG AGTTCAGCTTCATCCTCGACACGCCCGTCTACCATGCCGGCCCCACCTCG CTCTACATGTCCAAGGCGCCCGGAGCTGTGGCCGACTACGACGGCGGCGG GGCCTGGTTCAAGATCTACGACTGGGGTCCGTCGGGGACGAGCTGGACGT TGAGTGGCACGTACACTCAGAGAATTCCCAAGTGCATCCCTGACGGCGAG TACCTCCTCCGCATCCAGCAGATCGGGCTCCACAACCCCGGCGCCGCGCC ACAGTTCTACATCAGCTGCGCTCAAGTCAAGGTCGTCGATGGCGGCAGCA CCAATCCGACCCCGACCGCCCAGATTCCGGGAGCCTTCCACAGCAACGAC CCTGGCTTGACTGTCAATATCTACAACGACCCTCTCACCAACTACGTCGT CCCGGGACCTAGAGTTTCGCACTGG (SEQ ID NO:47) MRYFLQLAAAAAFAVNSAAGHYIFQQFATGGSKYPPWKYIRRNTNPDWLQ NGPVTDLSSTDLRCNVGGQVSNGTETITLNAGDEFSFILDTPVYHAGPTS LYMSKAPGAVADYDGGGAWFKIYDWGPSGTSWTLSGTYTQRIPKCIPDGE YLLRIQQIGLHNPGAAPQFYISCAQVKVVDGGSTNPTPTAQIPGAFHSND PGLTVNIYNDPLTNYVVPGPRVSHW (SEQ ID NO:48) HYIFQQFATGGSKYPPWKYIRRNTNPDWLQNGPVTDLSSTDLRCNVGGQV SNGTETITLNAGDEFSFILDTPVYHAGPTSLYMSKAPGAVADYDGGGAWF KIYDWGPSGTSWTLSGTYTQRIPKCIPDGEYLLRIQQIGLHNPGAAPQFY ISCAQVKVVDGGSTNPTPTAQIPGAFHSNDPGLTVNIYNDPLTNYVVPGP RVSHW

[0322] The polynucleotide (SEQ ID NO:49) and amino acid (SEQ ID NO:50) sequences of an M. thermophila GH61k are provided below. The signal sequence is shown underlined in SEQ ID NO:50. SEQ ID NO:51 provides the sequence of this GH61k without the signal sequence.

TABLE-US-00027 (SEQ ID NO: 49) ATGCACCCCTCCCTTCTTTTCACGCTTGGGCTGGCGAGCGTGCTTGTCCC CCTCTCGTCTGCACACACTACCTTCACGACCCTCTTCGTCAACGATGTCA ACCAAGGTGATGGTACCTGCATTCGCATGGCGAAGAAGGGCAATGTCGCC ACCCATCCTCTCGCAGGCGGTCTCGACTCCGAAGACATGGCCTGTGGTCG GGATGGTCAAGAACCCGTGGCATTTACGTGTCCGGCCCCAGCTGGTGCCA AGTTGACTCTCGAGTTTCGCATGTGGGCCGATGCTTCGCAGTCCGGATCG ATCGATCCATCCCACCTTGGCGTCATGGCCATCTACCTCAAGAAGGTTTC CGACATGAAATCTGACGCGGCCGCTGGCCCGGGCTGGTTCAAGATTTGGG ACCAAGGCTACGACTTGGCGGCCAAGAAGTGGGCCACCGAGAAGCTCATC GACAACAACGGCCTCCTGAGCGTCAACCTTCCAACCGGCTTACCAACCGG CTACTACCTCGCCCGCCAGGAGATCATCACGCTCCAAAACGTTACCAATG ACAGGCCAGAGCCCCAGTTCTACGTCGGCTGCGCACAGCTCTACGTCGAG GGCACCTCGGACTCACCCATCCCCTCGGACAAGACGGTCTCCATTCCCGG CCACATCAGCGACCCGGCCGACCCGGGCCTGACCTTCAACGTCTACACGG GCGACGCATCCACCTACAAGCCGCCCGGCCCCGAGGTTTACTTCCCCACC ACCACCACCACCACCTCCTCCTCCTCCTCCGGAAGCAGCGACAACAAGGG AGCCAGGCGCCAGCAAACCCCCGACGACAAGCAGGCCGACGGCCTCGTTC CAGCCGACTGCCTCGTCAAGAACGCGAACTGGTGCGCCGCTGCCCTGCCG CCGTACACCGACGAGGCCGGCTGCTGGGCCGCCGCCGAGGACTGCAACAA GCAGCTGGACGCGTGCTACACCAGCGCACCCCCCTCGGGCAGCAAGGGGT GCAAGGTCTGGGAGGAGCAGGTGTGCACCGTCGTCTCGCAGAAGTGCGAG GCCGGGGATTTCAAGGGGCCCCCGCAGCTCGGGAAGGAGCTCGGCGAGGG GATCGATGAGCCTATTCCGGGGGGAAAGCTGCCCCCGGCGGTCAACGCGG GAGAGAACGGGAATCATGGCGGAGGTGGTGGTGATGATGGTGATGATGAT AATGATGAGGCCGGGGCTGGGGCAGCGTCGACTCCGACTTTTGCTGCTCC TGGTGCGGCCAAGACTCCCCAACCAAACTCCGAGAGGGCCCGGCGCCGTG AGGCGCATTGGCGGCGACTGGAATCTGCTGAG (SEQ ID NO: 50) MHPSLLFTLGLASVLVPLSSAHTTFTTLFVNDVNQGDGTCIRMAKKGNVA THPLAGGLDSEDMACGRDGQEPVAFTCPAPAGAKLTLEFRMWADASQSGS IDPSHLGVMAIYLKKVSDMKSDAAAGPGWFKIWDQGYDLAAKKWATEKLI DNNGLLSVNLPTGLPTGYYLARQEIITLQNVTNDRPEPQFYVGCAQLYVE GTSDSPIPSDKTVSIPGHISDPADPGLTFNVYTGDASTYKPPGPEVYFPT TTTTTSSSSSGSSDNKGARRQQTPDDKQADGLVPADCLVKNANWCAAALP PYTDEAGCWAAAEDCNKQLDACYTSAPPSGSKGCKVWEEQVCTVVSQKCE AGDFKGPPQLGKELGEGIDEPIPGGKLPPAVNAGENGNHGGGGGDDGDDD NDEAGAGAASTPTFAAPGAAKTPQPNSERARRREAHWRRLESAE (SEQ ID NO: 51) HTTFTTLFVNDVNQGDGTCIRMAKKGNVATHPLAGGLDSEDMACGRDGQE PVAFTCPAPAGAKLTLEFRMWADASQSGSIDPSHLGVMAIYLKKVSDMKS DAAAGPGWFKIWDQGYDLAAKKWATEKLIDNNGLLSVNLPTGLPTGYYLA RQEIITLQNVTNDRPEPQFYVGCAQLYVEGTSDSPIPSDKTVSIPGHISD PADPGLTFNVYTGDASTYKPPGPEVYFPTTTTTTSSSSSGSSDNKGARRQ QTPDDKQADGLVPADCLVKNANWCAAALPPYTDEAGCWAAAEDCNKQLDA CYTSAPPSGSKGCKVWEEQVCTVVSQKCEAGDFKGPPQLGKELGEGIDEP IPGGKLPPAVNAGENGNHGGGGGDDGDDDNDEAGAGAASTPTFAAPGAAK TPQPNSERARRREAHWRRLESAE

[0323] The polynucleotide (SEQ ID NO:52) and amino acid (SEQ ID NO:53) sequences of a M. thermophila GH61l are provided below. The signal sequence is shown underlined in SEQ ID NO:53. SEQ ID NO:54 provides the sequence of this GH61l without the signal sequence.

TABLE-US-00028 (SEQ ID NO: 52) ATGTTTTCTCTCAAGTTCTTTATCTTGGCCGGTGGGCTTGCTGTCCTCAC CGAGGCTCACATAAGACTAGTGTCGCCCGCCCCTTTTACCAACCCTGACC AGGGCCCCAGCCCACTCCTAGAGGCTGGCAGCGACTATCCCTGCCACAAC GGCAATGGGGGCGGTTATCAGGGAACGCCAACCCAGATGGCAAAGGGTTC TAAGCAGCAGCTAGCCTTCCAGGGGTCTGCCGTTCATGGGGGTGGCTCCT GCCAAGTGTCCATCACCTACGACGAAAACCCGACCGCTCAGAGCTCCTTC AAGGTCATTCACTCGATTCAAGGTGGCTGCCCCGCCAGGGCCGAGACGAT CCCGGATTGCAGCGCACAAAATATCAACGCCTGCAATATAAAGCCCGATA ATGCCCAGATGGACACCCCGGATAAGTATGAGTTCACGATCCCGGAGGAT CTCCCCAGTGGCAAGGCCACCCTCGCCTGGACATGGATCAACACTATCGG CAACCGCGAGTTTTATATGGCATGCGCCCCGGTTGAGATCACCGGCGACG GCGGTAGCGAGTCGGCTCTGGCTGCGCTGCCCGACATGGTCATTGCCAAC ATCCCGTCCATCGGAGGAACCTGCGCGACCGAGGAGGGGAAGTACTACGA ATATCCCAACCCCGGTAAGTCGGTCGAAACCATCCCGGGCTGGACCGATT TGGTTCCCCTGCAAGGCGAATGCGGTGCTGCCTCCGGTGTCTCGGGCTCC GGCGGAAACGCCAGCAGTGCTACCCCTGCCGCAGGGGCCGCCCCGACTCC TGCTGTCCGCGGCCGCCGTCCCACCTGGAACGCC (SEQ ID NO: 53) MFSLKFFILAGGLAVLTEAHIRLVSPAPFTNPDQGPSPLLEAGSDYPCHN GNGGGYQGTPTQMAKGSKQQLAFQGSAVHGGGSCQVSITYDENPTAQSSF KVIHSIQGGCPARAETIPDCSAQNINACNIKPDNAQMDTPDKYEFTIPED LPSGKATLAWTWINTIGNREFYMACAPVEITGDGGSESALAALPDMVIAN IPSIGGTCATEEGKYYEYPNPGKSVETIPGWTDLVPLQGECGAASGVSGS GGNASSATPAAGAAPTPAVRGRRPTWNA (SEQ ID NO:54) HIRLVSPAPFTNPDQGPSPLLEAGSDYPCHNGNGGGYQGTPTQMAKGSKQ QLAFQGSAVHGGGSCQVSITYDENPTAQSSFKVIHSIQGGCPARAETIPD CSAQNINACNIKPDNAQMDTPDKYEFTIPEDLPSGKATLAWTWINTIGNR EFYMACAPVEITGDGGSESALAALPDMVIANIPSIGGTCATEEGKYYEYP NPGKSVETIPGWTDLVPLQGECGAASGVSGSGGNASSATPAAGAAPTPAV RGRRPTWNA

[0324] The polynucleotide (SEQ ID NO:55) and amino acid (SEQ ID NO:56) sequences of a M. thermophila GH61m are provided below. The signal sequence is shown underlined in SEQ ID NO:56. SEQ ID NO:57 provides the sequence of this GH61m without the signal sequence.

TABLE-US-00029 (SEQ ID NO: 55) ATGAAGCTCGCCACGCTCCTCGCCGCCCTCACCCTCGGGGTGGCCGACCA GCTCAGCGTCGGGTCCAGAAAGTTTGGCGTGTACGAGCACATTCGCAAGA ACACGAACTACAACTCGCCCGTTACCGACCTGTCGGACACCAACCTGCGC TGCAACGTCGGCGGGGGCTCGGGCACCAGCACCACCGTGCTCGACGTCAA GGCCGGAGACTCGTTCACCTTCTTCAGCGACGTTGCCGTCTACCACCAGG GGCCCATCTCGCTGTGCGTGGACCGGACCAGTGCAGAGAGCATGGATGGA CGGGAACCGGACATGCGCTGCCGAACTGGCTCACAAGCTGGCTACCTGGC GGTGACTGACTACGACGGGTCCGGTGACTGTTTCAAGATCTATGACTGGG GACCGACGTTCAACGGGGGCCAGGCGTCGTGGCCGACGAGGAATTCGTAC GAGTACAGCATCCTCAAGTGCATCAGGGACGGCGAATACCTACTGCGGAT TCAGTCCCTGGCCATCCATAACCCAGGTGCCCTTCCGCAGTTCTACATCA GCTGCGCCCAGGTGAATGTGACGGGCGGAGGCACCGTCACCCCGAGATCA AGGCGACCGATCCTGATCTATTTCAACTTCCACTCGTATATCGTCCCTGG GCCGGCAGTGTTCAAGTGCTAG (SEQ ID NO: 56) MKLATLLAALTLGVADQLSVGSRKFGVYEHIRKNTNYNSPVTDLSDTNLR CNVGGGSGTSTTVLDVKAGDSFTFFSDVAVYHQGPISLCVDRTSAESMDG REPDMRCRTGSQAGYLAVTDYDGSGDCFKIYDWGPTFNGGQASWPTRNSY EYSILKCIRDGEYLLRIQSLAIHNPGALPQFYISCAQVNVTGGGTVTPRS RRPILIYFNFHSYIVPGPAVFKC (SEQ ID NO: 57) DQLSVGSRKFGVYEHIRKNTNYNSPVTDLSDTNLRCNVGGGSGTSTTVLD VKAGDSFTFFSDVAVYHQGPISLCVDRTSAESMDGREPDMRCRTGSQAGY LAVTDYDGSGDCFKIYDWGPTFNGGQASWPTRNSYEYSILKCIRDGEYLL RIQSLAIHNPGALPQFYISCAQVNVTGGGTVTPRSRRPILIYFNFHSYIV PGPAVFKC

[0325] The polynucleotide (SEQ ID NO:58) and amino acid (SEQ ID NO:59) sequences of an alternative M. thermophila GH61m are provided below. The signal sequence is shown underlined in SEQ ID NO:59. SEQ ID NO:60 provides the sequence of this GH61m without the signal sequence.

TABLE-US-00030 (SEQ ID NO: 58) ATGAAGCTCGCCACGCTCCTCGCCGCCCTCACCCTCGGGCTCAGCGTCGG GTCCAGAAAGTTTGGCGTGTACGAGCACATTCGCAAGAACACGAACTACA ACTCGCCCGTTACCGACCTGTCGGACACCAACCTGCGCTGCAACGTCGGC GGGGGCTCGGGCACCAGCACCACCGTGCTCGACGTCAAGGCCGGAGACTC GTTCACCTTCTTCAGCGACGTTGCCGTCTACCACCAGGGGCCCATCTCGC TGTGCGTGGACCGGACCAGTGCAGAGAGCATGGATGGACGGGAACCGGAC ATGCGCTGCCGAACTGGCTCACAAGCTGGCTACCTGGCGGTGACTGTGAT GACTGTGACTGACTACGACGGGTCCGGTGACTGTTTCAAGATCTATGACT GGGGACCGACGTTCAACGGGGGCCAGGCGTCGTGGCCGACGAGGAATTCG TACGAGTACAGCATCCTCAAGTGCATCAGGGACGGCGAATACCTACTGCG GATTCAGTCCCTGGCCATCCATAACCCAGGTGCCCTTCCGCAGTTCTACA TCAGCTGCGCCCAGGTGAATGTGACGGGCGGAGGCACCATCTATTTCAAC TTCCACTCGTATATCGTCCCTGGGCCGGCAGTGTTCAAGTGC (SEQ ID NO: 59) MKLATLLAALTLGLSVGSRKFGVYEHIRKNTNYNSPVTDLSDTNLRCNVG GGSGTSTTVLDVKAGDSFTFFSDVAVYHQGPISLCVDRTSAESMDGREPD MRCRTGSQAGYLAVTVMTVTDYDGSGDCFKIYDWGPTFNGGQASWPTRNS YEYSILKCIRDGEYLLRIQSLAIHNPGALPQFYISCAQVNVTGGGTIYFN FHSYIVPGPAVFKC (SEQ ID NO: 60) RKFGVYEHIRKNTNYNSPVTDLSDTNLRCNVGGGSGTSTTVLDVKAGDSF TFFSDVAVYHQGPISLCVDRTSAESMDGREPDMRCRTGSQAGYLAVTVMT VTDYDGSGDCFKIYDWGPTFNGGQASWPTRNSYEYSILKCIRDGEYLLRI QSLAIHNPGALPQFYISCAQVNVTGGGTIYFNFHSYIVPGPAVFKC

[0326] The polynucleotide (SEQ ID NO:61) and amino acid (SEQ ID NO:62) sequences of a M. thermophila GH61n are provided below.

TABLE-US-00031 (SEQ ID NO: 61) ATGACCAAGAATGCGCAGAGCAAGCAGGGCGTTGAGAACCCAACAAGCGG CGACATCCGCTGCTACACCTCGCAGACGGCGGCCAACGTCGTGACCGTGC CGGCCGGCTCGACCATTCACTACATCTCGACCCAGCAGATCAACCACCCC GGCCCGACTCAGTACTACCTGGCCAAGGTACCCCCCGGCTCGTCGGCCAA GACCTTTGACGGGTCCGGCGCCGTCTGGTTCAAGATCTCGACCACGATGC CTACCGTGGACAGCAACAAGCAGATGTTCTGGCCAGGGCAGAACACTTAT GAGACCTCAAACACCACCATTCCCGCCAACACCCCGGACGGCGAGTACCT CCTTCGCGTCAAGCAGATCGCCCTCCACATGGCGTCTCAGCCCAACAAGG TCCAGTTCTACCTCGCCTGCACCCAGATCAAGATCACCGGTGGTCGCAAC GGCACCCCCAGCCCGCTGGTCGCGCTGCCCGGAGCCTACAAGAGCACCGA CCCCGGCATCCTGGTCGACATCTACTCCATGAAGCCCGAATCGTACCAGC CTCCCGGGCCGCCCGTCTGGCGCGGCTAA (SEQ ID NO: 62) MTKNAQSKQGVENPTSGDIRCYTSQTAANVVTVPAGSTIHYISTQQINHP GPTQYYLAKVPPGSSAKTFDGSGAVWFKISTTMPTVDSNKQMFWPGQNTY ETSNTTIPANTPDGEYLLRVKQIALHMASQPNKVQFYLACTQIKITGGRN GTPSPLVALPGAYKSTDPGILVDIYSMKPESYQPPGPPVWRG

[0327] The polynucleotide (SEQ ID NO:63) and amino acid (SEQ ID NO:64) sequences of an alternative M. thermophila GH61n are provided below. The signal sequence is shown underlined in SEQ ID NO:64. SEQ ID NO:65 provides the sequence of this GH61n without the signal sequence.

TABLE-US-00032 (SEQ ID NO: 63) ATGAGGCTTCTCGCAAGCTTGTTGCTCGCAGCTACGGCTGTTCAAGCTCA CTTTGTTAACGGACAGCCCGAAGAGAGTGACTGGTCAGCCACGCGCATGA CCAAGAATGCGCAGAGCAAGCAGGGCGTTGAGAACCCAACAAGCGGCGAC ATCCGCTGCTACACCTCGCAGACGGCGGCCAACGTCGTGACCGTGCCGGC CGGCTCGACCATTCACTACATCTCGACCCAGCAGATCAACCACCCCGGCC CGACTCAGTACTACCTGGCCAAGGTACCCCCCGGCTCGTCGGCCAAGACC TTTGACGGGTCCGGCGCCGTCTGGTTCAAGATCTCGACCACGATGCCTAC CGTGGACAGCAACAAGCAGATGTTCTGGCCAGGGCAGAACACTTATGAGA CCTCAAACACCACCATTCCCGCCAACACCCCGGACGGCGAGTACCTCCTT CGCGTCAAGCAGATCGCCCTCCACATGGCGTCTCAGCCCAACAAGGTCCA GTTCTACCTCGCCTGCACCCAGATCAAGATCACCGGTGGTCGCAACGGCA CCCCCAGCCCGCTGGTCGCGCTGCCCGGAGCCTACAAGAGCACCGACCCC GGCATCCTGGTCGACATCTACTCCATGAAGCCCGAATCGTACCAGCCTCC CGGGCCGCCCGTCTGGCGCGGC (SEQ ID NO: 64) MRLLASLLLAATAVQAHFVNGQPEESDWSATRMTKNAQSKQGVENPTSGD IRCYTSQTAANVVTVPAGSTIHYISTOQINHPGPTQYYLAKVPPGSSAKT FDGSGAVWFKISTTMPTVDSNKQMFWPGQNTYETSNTTIPANTPDGEYLL RVKQIALHMASQPNKVQFYLACTQIKITGGRNGTPSPLVALPGAYKSTDP GILVDIYSMKPESYQPPGPPVWRG (SEQ ID NO: 65) HFVNGQPEESDWSATRMTKNAQSKQGVENPTSGDIRCYTSQTAANVVTVP AGSTIHYISTQQINHPGPTQYYLAKVPPGSSAKTFDGSGAVWFKISTTMP TVDSNKQMFWPGQNTYETSNTTIPANTPDGEYLLRVKQIALHMASQPNKV QFYLACTQIKITGGRNGTPSPLVALPGAYKSTDPGILVDIYSMKPESYQP PGPPVWRG

[0328] The polynucleotide (SEQ ID NO:66) and amino acid (SEQ ID NO:67) sequences of an alternative M. thermophila GH61o are provided below. The signal sequence is shown underlined in SEQ ID NO:67. SEQ ID NO:68 provides the sequence of this GH61o without the signal sequence.

TABLE-US-00033 (SEQ ID NO: 66) ATGAAGCCCTTTAGCCTCGTCGCCCTGGCGACTGCCGTGAGCGGCCATGC CATCTTCCAGCGGGTGTCGGTCAACGGGCAGGACCAGGGCCAGCTCAAGG GGGTGCGGGCGCCGTCGAGCAACTCCCCGATCCAGAACGTCAACGATGCC AACATGGCCTGCAACGCCAACATTGTGTACCACGACAACACCATCATCAA GGTGCCCGCGGGAGCCCGCGTCGGCGCGTGGTGGCAGCACGTCATCGGCG GGCCGCAGGGCGCCAACGACCCGGACAACCCGATCGCCGCCTCCCACAAG GGCCCCATCCAGGTCTACCTGGCCAAGGTGGACAACGCGGCGACGGCGTC GCCGTCGGGCCTCAAGTGGTTCAAGGTGGCCGAGCGCGGCCTGAACAACG GCGTGTGGGCCTACCTGATGCGCGTCGAGCTGCTCGCCCTGCACAGCGCC TCGAGCCCCGGCGGCGCCCAGTTCTACATGGGCTGTGCACAGATCGAAGT CACTGGCTCCGGCACCAACTCGGGCTCCGACTTTGTCTCGTTCCCCGGCG CCTACTCGGCCAACGACCCGGGCATCTTGCTGAGCATCTACGACAGCTCG GGCAAGCCCAACAATGGCGGGCGCTCGTACCCGATCCCCGGCCCGCGCCC CATCTCCTGCTCCGGCAGCGGCGGCGGCGGCAACAACGGCGGCGACGGCG GCGACGACAACAACGGTGGTGGCAACAACAACGGCGGCGGCAGCGTCCCC CTGTACGGGCAGTGCGGCGGCATCGGCTACACGGGCCCGACCACCTGTGC CCAGGGAACTTGCAAGGTGTCGAACGAATACTACAGCCAGTGCCTCCCC (SEQ ID NO: 67) MKPFSLVALATAVSGHAIFQRVSVNGQDQGQLKGVRAPSSNSPIQNVNDA NMACNANIVYHDNTIIKVPAGARVGAWWQHVIGGPQGANDPDNPIAASHK GPIQVYLAKVDNAATASPSGLKWFKVAERGLNNGVWAYLMRVELLALHSA SSPGGAQFYMGCAQIEVTGSGTNSGSDFVSFPGAYSANDPGILLSIYDSS GKPNNGGRSYPIPGPRPISCSGSGGGGNNGGDGGDDNNGGGNNNGGGSVP LYGQCGGIGYTGPTTCAQGTCKVSNEYYSQCLP (SEQ ID NO: 68) HAIFQRVSVNGQDQGQLKGVRAPSSNSPIQNVNDANMACNANIVYHDNTI IKVPAGARVGAWWQHVIGGPQGANDPDNPIAASHKGPIQVYLAKVDNAAT ASPSGLKWFKVAERGLNNGVWAYLMRVELLALHSASSPGGAQFYMGCAQI EVTGSGTNSGSDFVSFPGAYSANDPGILLSIYDSSGKPNNGGRSYPIPGP RPISCSGSGGGGNNGGDGGDDNNGGGNNNGGGSVPLYGQCGGIGYTGPTT CAQGTCKVSNEYYSQCLP

[0329] The polynucleotide (SEQ ID NO:69) and amino acid (SEQ ID NO:70) sequences of a M. thermophila GH61p are provided below. The signal sequence is shown underlined in SEQ ID NO:70. SEQ ID NO:71 provides the sequence of this GH61p without the signal sequence.

TABLE-US-00034 (SEQ ID NO: 69) ATGAAGCTCACCTCGTCCCTCGCTGTCCTGGCCGCTGCCGGCGCCCAGGC TCACTATACCTTCCCTAGGGCCGGCACTGGTGGTTCGCTCTCTGGCGAGT GGGAGGTGGTCCGCATGACCGAGAACCATTACTCGCACGGCCCGGTCACC GATGTCACCAGCCCCGAGATGACCTGCTATCAGTCCGGCGTGCAGGGTGC GCCCCAGACCGTCCAGGTCAAGGCGGGCTCCCAATTCACCTTCAGCGTGG ATCCCTCCATCGGCCACCCCGGCCCTCTCCAGTTCTACATGGCTAAGGTG CCGTCGGGCCAGACGGCCGCCACCTTTGACGGCACGGGAGCCGTGTGGTT CAAGATCTACCAAGACGGCCCGAACGGCCTCGGCACCGACAGCATTACCT GGCCCAGCGCCGGCAAAACCGAGGTCTCGGTCACCATCCCCAGCTGCATC GAGGATGGCGAGTACCTGCTCCGGGTCGAGCACACCCCCCTCCCTACAGC GCCAGCAGCGCAAAACCGAGCTCGCTCGTCACCATCCCCAGCTGCATACA AGGCCACCGACCCGGGCATCCTCTTCCAGCTCTACTGGCCCATCCCGACC GAGTACATCAACCCCGGCCCGGCCCCCGTCTCTTGCTAA (SEQ ID NO: 70) MKLTSSLAVLAAAGAQAHYTFPRAGTGGSLSGEWEVVRMTENHYSHGPVT DVTSPEMTCYQSGVQGAPQTVQVKAGSQFTFSVDPSIGHPGPLQFYMAKV PSGQTAATFDGTGAVWFKIYQDGPNGLGTDSITWPSAGKTEVSVTIPSCI EDGEYLLRVEHTPLPTAPAAQNRARSSPSPAAYKATDPGILFQLYWPIPT EYINPGPAPVSC (SEQ ID NO: 71) HYTFPRAGTGGSLSGEWEVVRMTENHYSHGPVTDVTSPEMTCYQSGVQGA PQTVQVKAGSQFTFSVDPSIGHPGPLQFYMAKVPSGQTAATFDGTGAVWF KIYQDGPNGLGTDSITWPSAGKTEVSVTIPSCIEDGEYLLRVEHTPLPTA PAAQNRARSSPSPAAYKATDPGILFQLYWPIPTEYINPGPAPVSC

[0330] The polynucleotide (SEQ ID NO:72) and amino acid (SEQ ID NO:73) sequences of an alternative M. thermophila GH61p are provided below. The signal sequence is shown underlined in SEQ ID NO:73. SEQ ID NO:74 provides the sequence of this GH61p without the signal sequence.

TABLE-US-00035 (SEQ ID NO: 72) ATGAAGCTCACCTCGTCCCTCGCTGTCCTGGCCGCTGCCGGCGCCCAGGC TCACTATACCTTCCCTAGGGCCGGCACTGGTGGTTCGCTCTCTGGCGAGT GGGAGGTGGTCCGCATGACCGAGACCATTACTCGCACGGCCCGGTCACCG ATGTCACCAGCCCCGAGATGACCTGCTATCAGTCCGGCGTGCAGGGTGCG CCCCAGACCGTCCAGGTCAAGGCGGGCTCCCAATTCACCTTCAGCGTGGA TCCCTCCATCGGCCACCCCGGCCCTCTCCAGTTCTACATGGCTAAGGTGC CGTCGGGCCAGACGGCCGCCACCTTTGACGGCACGGGAGCCGTGTGGTTC AAGATCTACCAAGACGGCCCGAACGGCCTCGGCACCGACAGCATTACCTG GCCCAGCGCCGGCAAAACCGAGGTCTCGGTCACCATCCCCAGCTGCATCG AGGATGGCGAGTACCTGCTCCGGGTCGAGCACATCGCGCTCCACAGCGCC AGCAGCGTGGGCGGCGCCCAGTTCTACATCGCCTGCGCCCAGCTCTCCGT CACCGGCGGCTCCGGCACCCTCAACACGGGCTCGCTCGTCTCCCTGCCCG GCGCCTACAAGGCCACCGACCCGGGCATCCTCTTCCAGCTCTACTGGCCC ATCCCGACCGAGTACATCAACCCCGGCCCGGCCCCCGTCTCTTGC (SEQ ID NO: 73) MKLTSSLAVLAAAGAQAHYTFPRAGTGGSLSGEWEVVRMTENHYSHGPVT DVTSPEMTCYQSGVQGAPQTVQVKAGSQFTFSVDPSIGHPGPLQFYMAKV PSGQTAATFDGTGAVWFKIYQDGPNGLGTDSITWPSAGKTEVSVTIPSCI EDGEYLLRVEHIALHSASSVGGAQFYIACAQLSVTGGSGTLNTGSLVSLP GAYKATDPGILFQLYWPIPTEYINPGPAPVSC (SEQ ID NO: 74) HYTFPRAGTGGSLSGEWEVVRMTENHYSHGPVTDVTSPEMTCYQSGVQGA PQTVQVKAGSQFTFSVDPSIGHPGPLQFYMAKVPSGQTAATFDGTGAVWF KIYQDGPNGLGTDSITWPSAGKTEVSVTIPSCIEDGEYLLRVEHIALHSA SSVGGAQFYIACAQLSVTGGSGTLNTGSLVSLPGAYKATDPGILFQLYWP IPTEYINPGPAPVSC

[0331] The polynucleotide (SEQ ID NO:75) and amino acid (SEQ ID NO:76) sequences of an alternative M. thermophila GH61q are provided below. The signal sequence is shown underlined in SEQ ID NO:76. SEQ ID NO:77 provides the sequence of this GH61q without the signal sequence.

TABLE-US-00036 (SEQ ID NO: 75) ATGCCGCCACCACGACTGAGCACCCTCCTTCCCCTCCTAGCCTTAATAGC CCCCACCGCCCTGGGGCACTCCCACCTCGGGTACATCATCATCAACGGCG AGGTATACCAAGGATTCGACCCGCGGCCGGAGCAGGCGAACTCGCCGTTG CGCGTGGGCTGGTCGACGGGGGCAATCGACGACGGGTTCGTGGCGCCGGC CAACTACTCGTCGCCCGACATCATCTGCCACATCGAGGGGGCCAGCCCGC CGGCGCACGCGCCCGTCCGGGCGGGCGACCGGGTGCACGTGCAATGGAAC GGCTGGCCGCTCGGACACGTGGGGCCGGTGCTGTCGTACCTGGCGCCCTG CGGCGGGCTGGAGGGGTCCGAGAGCGGGTGCGCCGGGGTGGACAAGCGGC AGCTGCGGTGGACCAAGGTGGACGACTCGCTGCCGGCGATGGAGCTG (SEQ ID NO: 76) MPPPRLSTLLPLLALIAPTALGHSHLGYIIINGEVYQGFDPRPEQANSPL RVGWSTGAIDDGFVAPANYSSPDIICHIEGASPPAHAPVRAGDRVHVQWN GWPLGHVGPVLSYLAPCGGLEGSESGCAGVDKRQLRWTKVDDSLPAMEL (SEQ ID NO: 77) HSHLGYIIINGEVYQGFDPRPEQANSPLRVGWSTGAIDDGFVAPANYSSP DIICHIEGASPPAHAPVRAGDRVHVQWNGWPLGHVGPVLSYLAPCGGLEG SESGCAGVDKRQLRWTKVDDSLPAMEL

[0332] The polynucleotide (SEQ ID NO:78) and amino acid (SEQ ID NO:79) sequences of an alternative M. thermophila GH61q are provided below. The signal sequence is shown underlined in SEQ ID NO:79. SEQ ID NO:80 provides the sequence of this GH61q without the signal sequence.

TABLE-US-00037 (SEQ ID NO: 78) ATGCCGCCACCACGACTGAGCACCCTCCTTCCCCTCCTAGCCTTAATAGC CCCCACCGCCCTGGGGCACTCCCACCTCGGGTACATCATCATCAACGGCG AGGTATACCAAGGATTCGACCCGCGGCCGGAGCAGGCGAACTCGCCGTTG CGCGTGGGCTGGTCGACGGGGGCAATCGACGACGGGTTCGTGGCGCCGGC CAACTACTCGTCGCCCGACATCATCTGCCACATCGAGGGGGCCAGCCCGC CGGCGCACGCGCCCGTCCGGGCGGGCGACCGGGTGCACGTGCAATGGAAA CGGCTGGCCGCTCGGACACGTGGGGCCGGTGCTGTCGTACCTGGCGCCCT GCGGCGGGCTGGAGGGGTCCGAGAGCGGGTGGACGACTCGCTGCCGGCGA TGGAGCTGGTCGGGGCCGCGGGGGGCGCGGGGGGCGAGGACGACGGCAGC GGCAGCGACGGCAGCGGCAGCGGCGGCAGCGGACGCGTCGGCGTGCCCGG GCAGCGCTGGGCCACCGACGTGTTGATCGCGGCCAACAACAGCTGGCAGG TCGAGATCCCGCGCGGGCTGCGGGACGGGCCGTACGTGCTGCGCCACGAG ATCGTCGCGCTGCACTACGCGGCCGAGCCCGGCGGCGCGCAGAACTACCC GCTCTGCGTCAACCTGTGGGTCGAGGGCGGCGACGGCAGCATGGAGCTGG ACCACTTCGACGCCACCCAGTTCTACCGGCCCGACGACCCGGGCATCCTG CTCAACGTGACGGCCGGCCTGCGCTCATACGCCGTGCCGGGCCCGACGCT GGCCGCGGGGGCGACGCCGGTGCCGTACGCGCAGCAGAACATCAGCTCGG CGAGGGCGGATGGAACCCCCGTGATTGTCACCAGGAGCACGGAGACGGTG CCCTTCACCGCGGCACCCACGCCAGCCGAGACGGCAGAAGCCAAAGGGGG GAGGTATGATGACCAAACCCGAACTAAAGACCTAAATGAACGCTTCTTTT ATAGTAGCCGGCCAGAACAGAAGAGGCTGACAGCGACCTCAAGAAGGGAA CTAGTTGATCATCGTACCCGGTACCTCTCCGTAGCTGTCTGCGCAGATTT CGGCGCTCATAAGGCAGCAGAAACCAACCACGAAGCTTTGAGAGGCGGCA ATAAGCACCATGGCGGTGTTTCAGAG (SEQ ID NO: 79) MPPPRLSTLLPLLALIAPTALGHSHLGYIIINGEVYQGFDPRPEQANSPL RVGWSTGAIDDGFVAPANYSSPDIICHIEGASPPAHAPVRAGDRVHVQWK RLAARTRGAGAVVPGALRRAGGVRERVDDSLPAMELVGAAGGAGGEDDGS GSDGSGSGGSGRVGVPGQRWATDVLIAANNSWQVEIPRGLRDGPYVLRHE IVALHYAAEPGGAQNYPLCVNLWVEGGDGSMELDHFDATQFYRPDDPGIL LNVTAGLRSYAVPGPTLAAGATPVPYAQQNISSARADGTPVIVTRSTETV PFTAAPTPAETAEAKGGRYDDQTRTKDLNERFFYSSRPEQKRLTATSRRE LVDHRTRYLSVAVCADFGAHKAAETNHEALRGGNKHHGGVSE (SEQ ID NO: 80) HSHLGYIIINGEVYQGFDPRPEQANSPLRVGWSTGAIDDGFVAPANYSSP DIICHIEGASPPAHAPVRAGDRVHVQWKRLAARTRGAGAVVPGALRRAGG VRERVDDSLPAMELVGAAGGAGGEDDGSGSDGSGSGGSGRVGVPGQRWAT DVLIAANNSWQVEIPRGLRDGPYVLRHEIVALHYAAEPGGAQNYPLCVNL WVEGGDGSMELDHFDATQFYRPDDPGILLNVTAGLRSYAVPGPTLAAGAT PVPYAQQNISSARADGTPVIVTRSTETVPFTAAPTPAETAEAKGGRYDDQ TRTKDLNERFFYSSRPEQKRLTATSRRELVDHRTRYLSVAVCADFGAHKA AETNHEALRGGNKHHGGVSE

[0333] The polynucleotide (SEQ ID NO:81) and amino acid (SEQ ID NO:82) sequences of an M. thermophila GH61r are provided below. The signal sequence is shown underlined in SEQ ID NO:82. SEQ ID NO:83 provides the sequence of this GH61r without the signal sequence.

TABLE-US-00038 (SEQ ID NO: 81) ATGAGGTCGACATTGGCCGGTGCCCTGGCAGCCATCGCTGCTCAGAAAGT AGCCGGCCACGCCACGTTTCAGCAGCTCTGGCACGGCTCCTCCTGTGTCC GCCTTCCGGCTAGCAACTCACCCGTCACCAATGTGGGAAGCAGAGACTTC GTCTGCAACGCTGGCACCCGCCCCGTCAGTGGCAAGTGCCCCGTGAAGGC TGGCGGCACCGTCACCATCGAGATGCACCAGCAACCCGGCGACCGCAGCT GCAACAACGAAGCCATCGGAGGGGCGCATTGGGGCCCCGTCCAGGTGTAC CTGACCAAGGTTCAGGACGCCGCGACGGCCGACGGCTCGACGGGCTGGTT CAAGATCTTCTCCGACTCGTGGTCCAAGAAGCCCGGGGGCAACTTGGGCG ACGACGACAACTGGGGCACGCGCGACCTGAACGCCTGCTGCGGGAAGATG GAC (SEQ ID NO: 82) MRSTLAGALAAIAAQKVAGHATFQQLWHGSSCVRLPASNSPVTNVGSRDF VCNAGTRPVSGKCPVKAGGTVTIEMHQQPGDRSCNNEAIGGAHWGPVQVY LTKVQDAATADGSTGWFKIFSDSWSKKPGGNLGDDDNWGTRDLNACCGKM D (SEQ ID NO: 83) HATFQQLWHGSSCVRLPASNSPVTNVGSRDFVCNAGTRPVSGKCPVKAGG TVTIEMHQQPGDRSCNNEAIGGAHWGPVQVYLTKVQDAATADGSTGWFKI FSDSWSKKPGGNLGDDDNWGTRDLNACCGKMD

[0334] The polynucleotide (SEQ ID NO:84) and amino acid (SEQ ID NO:85) sequences of an alternative M. thermophila GH61r are provided below. The signal sequence is shown underlined in SEQ ID NO:85. SEQ ID NO:86 provides the sequence of this GH61r without the signal sequence.

TABLE-US-00039 (SEQ ID NO: 84) ATGAGGTCGACATTGGCCGGTGCCCTGGCAGCCATCGCTGCTCAGAAAGT AGCCGGCCACGCCACGTTTCAGCAGCTCTGGCACGGCTCCTCCTGTGTCC GCCTTCCGGCTAGCAACTCACCCGTCACCAATGTGGGAAGCAGAGACTTC GTCTGCAACGCTGGCACCCGCCCCGTCAGTGGCAAGTGCCCCGTGAAGGC TGGCGGCACCGTCACCATCGAGATGCACCAGCAACCCGGCGACCGCAGCT GCAACAACGAAGCCATCGGAGGGGCGCATTGGGGCCCCGTCCAGGTGTAC CTGACCAAGGTTCAGGACGCCGCGACGGCCGACGGCTCGACGGGCTGGTT CAAGATCTTCTCCGACTCGTGGTCCAAGAAGCCCGGGGGCAACTCGGGCG ACGACGACAACTGGGGCACGCGCGACCTGAACGCCTGCTGCGGGAAGATG GACGTGGCCATCCCGGCCGACATCGCGTCGGGCGACTACCTGCTGCGGGC CGAGGCGCTGGCCCTGCACACGGCCGGACAGGCCGGCGGCGCCCAGTTCT ACATGAGCTGCTACCAGATGACGGTCGAGGGCGGCTCCGGGACCGCCAAC CCGCCCACCGTCAAGTTCCCGGGCGCCTACAGCGCCAACGACCCGGGCAT CCTCGTCAACATCCACGCCCCCCTTTCCAGCTACACCGCGCCCGGCCCGG CCGTCTACGCGGGCGGCACCATCCGCGAGGCCGGCTCCGCCTGCACCGGC TGCGCGCAGACCTGCAAGGTCGGGTCGTCCCCGAGCGCCGTTGCCCCCGG CAGCGGCGCGGGCAACGGCGGCGGGTTCCAACCCCGA (SEQ ID NO: 85) MRSTLAGALAAIAAQKVAGHATFQQLWHGSSCVRLPASNSPVTNVGSRDF VCNAGTRPVSGKCPVKAGGTVTIEMHQQPGDRSCNNEAIGGAHWGPVQVY LTKVQDAATADGSTGWFKIFSDSWSKKPGGNSGDDDNWGTRDLNACCGKM DVAIPADIASGDYLLRAEALALHTAGQAGGAQFYMSCYQMTVEGGSGTAN PPTVKFPGAYSANDPGILVNIHAPLSSYTAPGPAVYAGGTIREAGSACTG CAQTCKVGSSPSAVAPGSGAGNGGGFQPR (SEQ ID NO: 86) HATFQQLWHGSSCVRLPASNSPVTNVGSRDFVCNAGTRPVSGKCPVKAGG TVTIEMHQQPGDRSCNNEAIGGAHWGPVQVYLTKVQDAATADGSTGWFKI FSDSWSKKPGGNSGDDDNWGTRDLNACCGKMDVAIPADIASGDYLLRAEA LALHTAGQAGGAQFYMSCYQMTVEGGSGTANPPTVKFPGAYSANDPGILV NIHAPLSSYTAPGPAVYAGGTIREAGSACTGCAQTCKVGSSPSAVAPGSG AGNGGGFQPR

[0335] The polynucleotide (SEQ ID NO:87) and amino acid (SEQ ID NO:88) sequences of an M. thermophila GH61s are provided below. The signal sequence is shown underlined in SEQ ID NO:88. SEQ ID NO:89 provides the sequence of this GH61s without the signal sequence.

TABLE-US-00040 (SEQ ID NO: 87) ATGCTCCTCCTCACCCTAGCCACACTCGTCACCCTCCTGGCGCGCCACG TCTCGGCTCACGCCCGGCTGTTCCGCGTCTCTGTCGACGGGAAAGACCA GGGCGACGGGCTGAACAAGTACATCCGCTCGCCGGCGACCAACGACCCC GTGCGCGACCTCTCGAGCGCCGCCATCGTGTGCAACACCCAGGGGTCCA AGGCCGCCCCGGACTTCGTCAGGGCCGCGGCCGGCGACAAGCTGACCTT CCTCTGGGCGCACGACAACCCGGACGACCCGGTCGACTACGTCCTCGAC CCGTCCCACAAGGGCGCCATCCTGACCTACGTCGCCGCCTACCCCTCCG GGGACCCGACCGGCCCCATCTGGAGCAAGCTTGCCGAGGAAGGATTCAC CGGCGGGCAGTGGGCGACCATCAAGATGATCGACAACGGCGGCAAGGTC GACGTGACGCTGCCCGAGGCCCTTGCGCCGGGAAAGTACCTGATCCGCC AGGAGCTGCTGGCCCTGCACCGGGCCGACTTTGCCTGCGACGACCCGGC CCACCCCAACCGCGGCGCCGAGTCGTACCCCAACTGCGTCCAGGTGGAG GTGTCGGGCAGCGGCGACAAGAAGCCGGACCAGAACTTTGACTTCAACA AGGGCTATACCTGCGATAACAAAGGACTCCACTTTAAGATCTACATCGG TCAGGACAGCCAGTATGTGGCCCCGGGGCCGCGGCCTTGGAATGGGAGC (SEQ ID NO: 88) MLLLTLATLVTLLARHVSAHARLFRVSVDGKDQGDGLNKYIRSPATNDP VRDLSSAAIVCNTQGSKAAPDFVRAAAGDKLTFLWAHDNPDDPVDYVLD PSHKGAILTYVAAYPSGDPTGPIWSKLAEEGFTGGQWATIKMIDNGGKV DVTLPEALAPGKYLIRQELLALHRADFACDDPAHPNRGAESYPNCVQVE VSGSGDKKPDQNFDFNKGYTCDNKGLHFKIYIGQDSQYVAPGPRPWNGS (SEQ ID NO: 89) HARLFRVSVDGKDQGDGLNKYIRSPATNDPVRDLSSAAIVCNTQGSKAA PDFVRAAAGDKLTFLWAHDNPDDPVDYVLDPSHKGAILTYVAAYPSGDP TGPIWSKLAEEGFTGGQWATIKMIDNGGKVDVTLPEALAPGKYLIRQEL LALHRADFACDDPAHPNRGAESYPNCVQVEVSGSGDKKPDQNFDFNKGY TCDNKGLHFKIYIGQDSQYVAPGPRPWNGS

[0336] The polynucleotide (SEQ ID NO:90) and amino acid (SEQ ID NO:91) sequences of an M. thermophila GH61t are provided below.

TABLE-US-00041 (SEQ ID NO: 90) ATGTTCACTTCGCTTTGCATCACAGATCATTGGAGGACTCTTAGCAGCC ACTCTGGGCCAGTCATGAACTATCTCGCCCATTGCACCAATGACGACTG CAAGTCTTTCAAGGGCGACAGCGGCAACGTCTGGGTCAAGATCGAGCAG CTCGCGTACAACCCGTCAGCCAACCCCCCCTGGGCGTCTGACCTCCTCC GTGAGCACGGTGCCAAGTGGAAGGTGACGATCCCGCCCAGTCTTGTCCC CGGCGAATATCTGCTGCGGCACGAGATCCTGGGGTTGCACGTCGCAGGA ACCGTGATGGGCGCCCAGTTCTACCCCGGCTGCACCCAGATCAGGGTCA CCGAAGGCGGGAGCACGCAGCTGCCCTCGGGTATTGCGCTCCCAGGCGC TTACGGCCCACAAGACGAGGGTATCTTGGTCGACTTGTGGAGGGTTAAC CAGGGCCAGGTCAACTACACGGCGCCTGGAGGACCCGTTTGGAGCGAAG CGTGGGACACCGAGTTTGGCGGGTCCAACACGACCGAGTGCGCCACCAT GCTCGACGACCTGCTCGACTACATGGCGGCCAACGACGAGTGGATCGGC TGGACGGCCTAG (SEQ ID NO: 91) MFTSLCITDHWRTLSSHSGPVMNYLAHCTNDDCKSFKGDSGNVWVKIEQ LAYNPSANPPWASDLLREHGAKWKVTIPPSLVPGEYLLRHEILGLHVAG TVMGAQFYPGCTQIRVTEGGSTQLPSGIALPGAYGPQDEGILVDLWRVN QGQVNYTAPGGPVWSEAWDTEFGGSNTTECATMLDDLLDYMAANDEWIG WTA

[0337] The polynucleotide (SEQ ID NO:92) and amino acid (SEQ ID NO:93) sequences of an alternative M. thermophila GH61t are provided below.

TABLE-US-00042 (SEQ ID NO: 92) ATGAACTATCTCGCCCATTGCACCAATGACGACTGCAAGTCTTTCAAGG GCGACAGCGGCAACGTCTGGGTCAAGATCGAGCAGCTCGCGTACAACCC GTCAGCCAACCCCCCCTGGGCGTCTGACCTCCTCCGTGAGCACGGTGCC AAGTGGAAGGTGACGATCCCGCCCAGTCTTGTCCCCGGCGAATATCTGC TGCGGCACGAGATCCTGGGGTTGCACGTCGCAGGAACCGTGATGGGCGC CCAGTTCTACCCCGGCTGCACCCAGATCAGGGTCACCGAAGGCGGGAGC ACGCAGCTGCCCTCGGGTATTGCGCTCCCAGGCGCTTACGGCCCACAAG ACGAGGGTATCTTGGTCGACTTGTGGAGGGTTAACCAGGGCCAGGTCAA CTACACGGCGCCTGGAGGACCCGTTTGGAGCGAAGCGTGGGACACCGAG TTTGGCGGGTCCAACACGACCGAGTGCGCCACCATGCTCGACGACCTGC TCGACTACATGGCGGCCAACGACGACCCATGCTGCACCGACCAGAACCA GTTCGGGAGTCTCGAGCCGGGGAGCAAGGCGGCCGGCGGCTCGCCGAGC CTGTACGATACCGTCTTGGTCCCCGTTCTCCAGAAGAAAGTGCCGACAA AGCTGCAGTGGAGCGGACCGGCGAGCGTCAACGGGGATGAGTTGACAGA GAGGCCC (SEQ ID NO: 93) MNYLAHCTNDDCKSFKGDSGNVWVKIEQLAYNPSANPPWASDLLREHGA KWKVTIPPSLVPGEYLLRHEILGLHVAGTVMGAQFYPGCTQIRVTEGGS TQLPSGIALPGAYGPQDEGILVDLWRVNQGQVNYTAPGGPVWSEAWDTE FGGSNTTECATMLDDLLDYMAANDDPCCTDQNQFGSLEPGSKAAGGSPS LYDTVLVPVLQKKVPTKLQWSGPASVNGDELTERP

[0338] The polynucleotide (SEQ ID NO:94) and amino acid (SEQ ID NO:95) sequences of an M. thermophila GH61u are provided below. The signal sequence is shown underlined in SEQ ID NO:95. SEQ ID NO:96 provides the sequence of this GH61u without the signal sequence.

TABLE-US-00043 (SEQ ID NO: 94) ATGAAGCTGAGCGCTGCCATCGCCGTGCTCGCGGCCGCCCTTGCCGAGG GGCACTATACCTTCCCCAGCATCGCCAACACGGCCGACTGGCAATATGT GCGCATCACGACCAACTTCCAGAGCAACGGCCCCGTGACGGACGTCAAC TCGGACCAGATCCGGTGCTACGAGCGCAACCCGGGCACCGGCGCCCCCG GCATCTACAACGTCACGGCCGGCACAACCATCAACTACAACGCCAAGTC GTCCATCTCCCACCCGGGACCCATGGCCTTCTACATTGCCAAGGTTCCC GCCGGCCAGTCGGCCGCCACCTGGGACGGTAAGGGCGCCGTCTGGTCCA AGATCCACCAGGAGATGCCGCACTTTGGCACCAGCCTCACCTGGGACTC CAACGGCCGCACCTCCATGCCCGTCACCATCCCCCGCTGTCTGCAGGAC GGCGAGTATCTGCTGCGTGCAGAGCACATTGCCCTCCACAGCGCCGGCA GCCCCGGCGGCGCCCAGTTCTACATTTCTTGTGCCCAGCTCTCAGTCAC CGGCGGCAGCGGGACCTGGAACCCCAGGAACAAGGTGTCGTTCCCCGGC GCCTACAAGGCCACTGACCCGGGCATCCTGATCAACATCTACTACCCCG TCCCGACTAGCTACACTCCCGCTGGTCCCCCCGTCGACACCTGC (SEQ ID NO: 95) MKLSAAIAVLAAALAEGHYTFPSIANTADWQYVRITTNFQSNGPVTDVN SDQIRCYERNPGTGAPGIYNVTAGTTINYNAKSSISHPGPMAFYIAKVP AGQSAATWDGKGAVWSKIHQEMPHFGTSLTWDSNGRTSMPVTIPRCLQD GEYLLRAEHIALHSAGSPGGAQFYISCAQLSVTGGSGTWNPRNKVSFPG AYKATDPGILINIYYPVPTSYTPAGPPVDTC (SEQ ID NO: 96) HYTFPSIANTADWQYVRITTNFQSNGPVTDVNSDQIRCYERNPGTGAPG IYNVTAGTTINYNAKSSISHPGPMAFYIAKVPAGQSAATWDGKGAVWSK IHQEMPHFGTSLTWDSNGRTSMPVTIPRCLQDGEYLLRAEHIALHSAGS PGGAQFYISCAQLSVTGGSGTWNPRNKVSFPGAYKATDPGILINIYYPV PTSYTPAGPPVDTC

[0339] The polynucleotide (SEQ ID NO:97) and amino acid (SEQ ID NO:98) sequences of an M. thermophila GH61v are provided below. The signal sequence is shown underlined in SEQ ID NO:98. SEQ ID NO:99 provides the sequence of this GH61v without the signal sequence.

TABLE-US-00044 (SEQ ID NO: 97) ATGTACCGCACGCTCGGTTCCATTGCCCTGCTCGCGGGGGGCGCTGCCG CCCACGGCGCCGTGACCAGCTACAACATTGCGGGCAAGGACTACCCTGG ATACTCGGGCTTCGCCCCTACCGGCCAGGATGTCATCCAGTGGCAATGG CCCGACTATAACCCCGTGCTGTCCGCCAGCGACCCCAAGCTCCGCTGCA ACGGCGGCACCGGGGCGGCGCTGTATGCCGAGGCGGCCCCCGGCGACAC CATCACGGCCACCTGGGCCCAGTGGACGCACTCCCAGGGCCCGATCCTG GTGTGGATGTACAAGTGCCCCGGCGACTTCAGCTCCTGCGACGGCTCCG GCGCGGGTTGGTTCAAGATCGACGAGGCCGGCTTCCACGGCGACGGCAC GACCGTCTTCCTCGACACCGAGACCCCCTCGGGCTGGGACATTGCCAAG CTGGTCGGCGGCAACAAGTCGTGGAGCAGCAAGATCCCTGACGGCCTCG CCCCGGGCAATTACCTGGTCCGCCACGAGCTCATCGCCCTGCACCAGGC CAACAACCCGCAATTCTACCCCGAGTGCGCCCAGATCAAGGTCACCGGC TCTGGCACCGCCGAGCCCGCCGCCTCCTACAAGGCCGCCATCCCCGGCT ACTGCCAGCAGAGCGACCCCAACATTTCGTTCAACATCAACGACCACTC CCTCCCGCAGGAGTACAAGATCCCCGGTCCCCCGGTCTTCAAGGGCACC GCCTCCGCCAAGGCTCGCGCTTTCCAGGCC (SEQ ID NO: 98) MYRTLGSIALLAGGAAAHGAVTSYNIAGKDYPGYSGFAPTGQDVIQWQW PDYNPVLSASDPKLRCNGGTGAALYAEAAPGDTITATWAQWTHSQGPIL VWMYKCPGDFSSCDGSGAGWFKIDEAGFHGDGTTVFLDTETPSGWDIAK LVGGNKSWSSKIPDGLAPGNYLVRHELIALHQANNPQFYPECAQIKVTG SGTAEPAASYKAAIPGYCQQSDPNISFNINDHSLPQEYKIPGPPVFKGT ASAKARAFQA (SEQ ID NO: 99) AVTSYNIAGKDYPGYSGFAPTGQDVIQWQWPDYNPVLSASDPKLRCNGG TGAALYAEAAPGDTITATWAQWTHSQGPILVWMYKCPGDFSSCDGSGAG WFKIDEAGFHGDGTTVFLDTETPSGWDIAKLVGGNKSWSSKIPDGLAPG NYLVRHELIALHQANNPQFYPECAQIKVTGSGTAEPAASYKAAIPGYCQ QSDPNISFNINDHSLPQEYKIPGPPVFKGTASAKARAFQA

[0340] The polynucleotide (SEQ ID NO:100) and amino acid (SEQ ID NO:101) sequences of an M. thermophila GH61w are provided below. The signal sequence is shown underlined in SEQ ID NO:101. SEQ ID NO:102 provides the sequence of this GH61w without the signal sequence.

TABLE-US-00045 (SEQ ID NO: 100) ATGCTGACAACAACCTTCGCCCTCCTGACGGCCGCTCTCGGCGTCAGCG CCCATTATACCCTCCCCAGGGTCGGGACCGGTTCCGACTGGCAGCACGT GCGGCGGGCTGACAACTGGCAAAACAACGGCTTCGTCGGCGACGTCAAC TCGGAGCAGATCAGGTGCTTCCAGGCGACCCCTGCCGGCGCCCAAGACG TCTACACTGTTCAGGCGGGATCGACCGTGACCTACCACGCCAACCCCAG TATCTACCACCCCGGCCCCATGCAGTTCTACCTGGCCCGCGTTCCGGAC GGACAGGACGTCAAGTCGTGGACCGGCGAGGGTGCCGTGTGGTTCAAGG TGTACGAGGAGCAGCCTCAATTTGGCGCCCAGCTGACCTGGCCTAGCAA CGGCAAGAGCTCGTTCGAGGTTCCTATCCCCAGCTGCATTCGGGCGGGC AACTACCTCCTCCGCGCTGAGCACATCGCCCTGCACGTTGCCCAAAGCC AGGGCGGCGCCCAGTTCTACATCTCGTGCGCCCAGCTCCAGGTCACTGG TGGCGGCAGCACCGAGCCTTCTCAGAAGGTTTCCTTCCCGGGTGCCTAC AAGTCCACCGACCCCGGCATTCTTATCAACATCAACTACCCCGTCCCTA CCTCGTACCAGAATCCGGGTCCGGCTGTCTTCCGTTGC (SEQ ID NO: 101) MLTTTFALLTAALGVSAHYTLPRVGTGSDWQHVRRADNWQNNGFVGDVN SEQIRCFQATPAGAQDVYTVQAGSTVTYHANPSIYHPGPMQFYLARVPD GQDVKSWTGEGAVWFKVYEEQPQFGAQLTWPSNGKSSFEVPIPSCIRAG NYLLRAEHIALHVAQSQGGAQFYISCAQLQVTGGGSTEPSQKVSFPGAY KSTDPGILININYPVPTSYQNPGPAVFRC (SEQ ID NO: 102) HYTLPRVGTGSDWQHVRRADNWQNNGFVGDVNSEQIRCFQATPAGAQDV YTVQAGSTVTYHANPSIYHPGPMQFYLARVPDGQDVKSWTGEGAVWFKV YEEQPQFGAQLTWPSNGKSSFEVPIPSCIRAGNYLLRAEHIALHVAQSQ GGAQFYISCAQLQVTGGGSTEPSQKVSFPGAYKSTDPGILININYPVPT SYQNPGPAVFRC

[0341] The polynucleotide (SEQ ID NO:103) and amino acid (SEQ ID NO:104) sequences of a M. thermophila GH61x are provided below. The signal sequence is shown underlined in SEQ ID NO:104. SEQ ID NO:105 provides the sequence of this GH61x without the signal sequence.

TABLE-US-00046 (SEQ ID NO: 103) ATGAAGGTTCTCGCGCCCCTGATTCTGGCCGGTGCCGCCAGCGCCCACA CCATCTTCTCATCCCTCGAGGTGGGCGGCGTCAACCAGGGCATCGGGCA GGGTGTCCGCGTGCCGTCGTACAACGGTCCGATCGAGGACGTGACGTCC AACTCGATCGCCTGCAACGGGCCCCCCAACCCGACGACGCCGACCAACA AGGTCATCACGGTCCGGGCCGGCGAGACGGTGACGGCCGTCTGGCGGTA CATGCTGAGCACCACCGGCTCGGCCCCCAACGACATCATGGACAGCAGC CACAAGGGCCCGACCATGGCCTACCTCAAGAAGGTCGACAACGCCACCA CCGACTCGGGCGTCGGCGGCGGCTGGTTCAAGATCCAGGAGGACGGCCT TACCAACGGCGTCTGGGGCACCGAGCGCGTCATCAACGGCCAGGGCCGC CACAACATCAAGATCCCCGAGTGCATCGCCCCCGGCCAGTACCTCCTCC GCGCCGAGATGCTTGCCCTGCACGGAGCTTCCAACTACCCCGGCGCTCA GTTCTACATGGAGTGCGCCCAGCTCAATATCGTCGGCGGCACCGGCAGC AAGACGCCGTCCACCGTCAGCTTCCCGGGCGCTTACAAGGGTACCGACC CCGGAGTCAAGATCAACATCTACTGGCCCCCCGTCACCAGCTACCAGAT TCCCGGCCCCGGCGTGTTCACCTGC (SEQ ID NO: 104) MKVLAPLILAGAASAHTIFSSLEVGGVNQGIGQGVRVPSYNGPIEDVTS NSIACNGPPNPTTPTNKVITVRAGETVTAVWRYMLSTTGSAPNDIMDSS HKGPTMAYLKKVDNATTDSGVGGGWFKIQEDGLTNGVWGTERVINGQGR HNIKIPECIAPGQYLLRAEMLALHGASNYPGAQFYMECAQLNIVGGTGS KTPSTVSFPGAYKGTDPGVKINIYWPPVTSYQIPGPGVFTC (SEQ ID NO: 105) HTIFSSLEVGGVNQGIGQGVRVPSYNGPIEDVTSNSIACNGPPNPTTPT NKVITVRAGETVTAVWRYMLSTTGSAPNDIMDSSHKGPTMAYLKKVDNA TTDSGVGGGWFKIQEDGLTNGVWGTERVINGQGRHNIKIPECIAPGQYL LRAEMLALHGASNYPGAQFYMECAQLNIVGGTGSKTPSTVSFPGAYKGT DPGVKINIYWPPVTSYQIPGPGVFTC

[0342] The polynucleotide (SEQ ID NO:106) and amino acid (SEQ ID NO:107) sequences of an M. thermophila GH61y are provided below. The signal sequence is underlined in SEQ ID NO:107. SEQ ID NO:108 provides the sequence of GH61y, without the signal sequence.

TABLE-US-00047 (SEQ ID NO: 106) ATGATCGACAACCTCCCTGATGACTCCCTACAACCCGCCTGCCTCCGCC CGGGCCACTACCTCGTCCGCCACGAGATCATCGCGCTGCACTCGGCCTG GGCCGAGGGCGAGGCCCAGTTCTACCCCTTCCCCCTTTTTCCTTTTTTT CCCTCCCTTCTTTTGTCCGGTAACTACACGATTCCCGGTCCCGCGATCT GGAAGTGCCCAGAGGCACAGCAGAACGAG (SEQ ID NO: 107) MIDNLPDDSLQPACLRPGHYLVRHEIIALHSAWAEGEAQFYPFPLFPFF PSLLLSGNYTIPGPAIWKCPEAQQNE (SEQ ID NO: 108) HYLVRHEIIALHSAWAEGEAQFYPFPLFPFFPSLLLSGNYTIPGPAIWK CPEAQQNE

[0343] Additional enzymes (i.e., non-GH61 enzymes) that find us in the present invention include, but are not limited to the following enzymes.

[0344] Wild-type EG1b cDNA (SEQ ID NO:109) and amino acid (SEQ ID NO:110) sequences are provided below. The signal sequence is underlined in SEQ ID NO:110. SEQ ID NO:111 provides the sequence of EG1b, without the signal sequence.

TABLE-US-00048 (SEQ ID NO: 109) ATGGGGCAGAAGACTCTCCAGGGGCTGGTGGCGGCGGCGGCACTGGCAG CCTCGGTGGCGAACGCGCAGCAACCGGGCACCTTCACGCCCGAGGTGCA TCCGACGCTGCCGACGTGGAAGTGCACGACGAGCGGCGGGTGCGTCCAG CAGGACACGTCGGTGGTGCTCGACTGGAACTACCGCTGGTTCCACACCG AGGACGGTAGCAAGTCGTGCATCACCTCTAGCGGCGTCGACCGGACCCT GTGCCCGGACGAGGCGACGTGCGCCAAGAACTGCTTCGTCGAGGGCGTC AACTACACGAGCAGCGGGGTCGAGACGTCCGGCAGCTCCCTCACCCTCC GCCAGTTCTTCAAGGGCTCCGACGGCGCCATCAACAGCGTCTCCCCGCG CGTCTACCTGCTCGGGGGAGACGGCAACTATGTCGTGCTCAAGCTCCTC GGCCAGGAGCTGAGCTTCGACGTGGACGTATCGTCGCTCCCGTGCGGCG AGAACGCGGCCCTGTACCTGTCCGAGATGGACGCGACGGGAGGACGGAA CGAGTACAACACGGGCGGGGCCGAGTACGGGTCGGGCTACTGTGACGCC CAGTGCCCCGTGCAGAACTGGAACAACGGGACGCTCAACACGGGCCGGG TGGGCTCGTGCTGCAACGAGATGGACATCCTCGAGGCCAACTCCAAGGC CGAGGCCTTCACGCCGCACCCCTGCATCGGCAACTCGTGCGACAAGAGC GGGTGCGGCTTCAACGCGTACGCGCGCGGTTACCACAACTACTGGGCCC CCGGCGGCACGCTCGACACGTCCCGGCCTTTCACCATGATCACCCGCTT CGTCACCGACGACGGCACCACCTCGGGCAAGCTCGCCCGCATCGAGCGC GTCTACGTCCAGGACGGCAAGAAGGTGCCCAGCGCGGCGCCCGGGGGGG ACGTCATCACGGCCGACGGGTGCACCTCCGCGCAGCCCTACGGCGGCCT TTCCGGCATGGGCGACGCCCTCGGCCGCGGCATGGTCCTGGCCCTGAGC ATCTGGAACGACGCGTCCGGGTACATGAACTGGCTCGACGCCGGCAGCA ACGGCCCCTGCAGCGACACCGAGGGTAACCCGTCCAACATCCTGGCCAA CCACCCGGACGCCCACGTCGTGCTCTCCAACATCCGCTGGGGCGACATC GGCTCCACCGTCGACACCGGCGATGGCGACAACAACGGCGGCGGCCCCA ACCCGTCATCCACCACCACCGCTACCGCTACCACCACCTCCTCCGGCCC GGCCGAGCCTACCCAGACCCACTACGGCCAGTGTGGAGGGAAAGGATGG ACGGGCCCTACCCGCTGCGAGACGCCCTACACCTGCAAGTACCAGAACG ACTGGTACTCGCAGTGCCTGTAG (SEQ ID NO: 110) MGQKTLQGLVAAAALAASVANAQQPGTFTPEVHPTLPTWKCTTSGGCVQ QDTSVVLDWNYRWFHTEDGSKSCITSSGVDRTLCPDEATCAKNCFVEGV NYTSSGVETSGSSLTLRQFFKGSDGAINSVSPRVYLLGGDGNYVVLKLL GQELSFDVDVSSLPCGENAALYLSEMDATGGRNEYNTGGAEYGSGYCDA QCPVQNWNNGTLNTGRVGSCCNEMDILEANSKAEAFTPHPCIGNSCDKS GCGFNAYARGYHNYWAPGGTLDTSRPFTMITRFVTDDGTTSGKLARIER VYVQDGKKVPSAAPGGDVITADGCTSAQPYGGLSGMGDALGRGMVLALS IWNDASGYMNWLDAGSNGPCSDTEGNPSNILANHPDAHVVLSNIRWGDI GSTVDTGDGDNNGGGPNPSSTTTATATTTSSGPAEPTQTHYGQCGGKGW TGPTRCETPYTCKYQNDWYSQCL (SEQ ID NO: 111) QQPGTFTPEVHPTLPTWKCTTSGGCVQQDTSVVLDWNYRWFHTEDGSKS CITSSGVDRTLCPDEATCAKNCFVEGVNYTSSGVETSGSSLTLRQFFKG SDGAINSVSPRVYLLGGDGNYVVLKLLGQELSFDVDVSSLPCGENAALY LSEMDATGGRNEYNTGGAEYGSGYCDAQCPVQNWNNGTLNTGRVGSCCN EMDILEANSKAEAFTPHPCIGNSCDKSGCGFNAYARGYHNYWAPGGTLD TSRPFTMITRFVTDDGTTSGKLARIERVYVQDGKKVPSAAPGGDVITAD GCTSAQPYGGLSGMGDALGRGMVLALSIWNDASGYMNWLDAGSNGPCSD TEGNPSNILANHPDAHVVLSNIRWGDIGSTVDTGDGDNNGGGPNPSSTT TATATTTSSGPAEPTQTHYGQCGGKGWTGPTRCETPYTCKYQNDWYSQC L

[0345] Wild-type M. thermophila EG2 polynucleotide (SEQ ID NO:112) and amino acid (SEQ ID NO:113) sequences are provided below. The signal sequence is underlined in SEQ ID NO:113. SEQ ID NO:114 provides the sequence of EG2, without the signal sequence.

TABLE-US-00049 (SEQ ID NO: 112) ATGAAGTCCTCCATCCTCGCCAGCGTCTTCGCCACGGGCGCCGTGGCTC AAAGTGGTCCGTGGCAGCAATGTGGTGGCATCGGATGGCAAGGATCGAC CGACTGTGTGTCGGGTTACCACTGCGTCTACCAGAACGATTGGTACAGC CAGTGCGTGCCTGGCGCGGCGTCGACAACGCTCCAGACATCTACCACGT CCAGGCCCACCGCCACCAGCACCGCCCCTCCGTCGTCCACCACCTCGCC TAGCAAGGGCAAGCTCAAGTGGCTCGGCAGCAACGAGTCGGGCGCCGAG TTCGGGGAGGGCAACTACCCCGGCCTCTGGGGCAAGCACTTCATCTTCC CGTCGACTTCGGCGATTCAGACGCTCATCAATGATGGATACAACATCTT CCGGATCGACTTCTCGATGGAGCGTCTGGTGCCCAACCAGTTGACGTCG TCCTTCGACGAGGGCTACCTCCGCAACCTGACCGAGGTGGTCAACTTCG TGACGAACGCGGGCAAGTACGCCGTCCTGGACCCGCACAACTACGGCCG GTACTACGGCAACGTCATCACGGACACGAACGCGTTCCGGACCTTCTGG ACCAACCTGGCCAAGCAGTTCGCCTCCAACTCGCTCGTCATCTTCGACA CCAACAACGAGTACAACACGATGGACCAGACCCTGGTGCTCAACCTCAA CCAGGCCGCCATCGACGGCATCCGGGCCGCCGGCGCGACCTCGCAGTAC ATCTTCGTCGAGGGCAACGCGTGGAGCGGGGCCTGGAGCTGGAACACGA CCAACACCAACATGGCCGCCCTGACGGACCCGCAGAACAAGATCGTGTA CGAGATGCACCAGTACCTCGACTCGGACAGCTCGGGCACCCACGCCGAG TGCGTCAGCAGCAACATCGGCGCCCAGCGCGTCGTCGGAGCCACCCAGT GGCTCCGCGCCAACGGCAAGCTCGGCGTCCTCGGCGAGTTCGCCGGCGG CGCCAACGCCGTCTGCCAGCAGGCCGTCACCGGCCTCCTCGACCACCTC CAGGACAACAGCGACGTCTGGCTGGGTGCCCTCTGGTGGGCCGCCGGTC CCTGGTGGGGCGACTACATGTACTCGTTCGAGCCTCCTTCGGGCACCGG CTATGTCAACTACAACTCGATCCTAAAGAAGTACTTGCCGTAA (SEQ ID NO: 113) MKSSILASVFATGAVAQSGPWQQCGGIGWQGSTDCVSGYHCVYQNDWYS QCVPGAASTTLQTSTTSRPTATSTAPPSSTTSPSKGKLKWLGSNESGAE FGEGNYPGLWGKHFIFPSTSAIQTLINDGYNIFRIDFSMERLVPNQLTS SFDEGYLRNLTEVVNFVTNAGKYAVLDPHNYGRYYGNVITDTNAFRTFW TNLAKQFASNSLVIFDTNNEYNTMDQTLVLNLNQAAIDGIRAAGATSQY IFVEGNAWSGAWSWNTTNTNMAALTDPQNKIVYEMHQYLDSDSSGTHAE CVSSNIGAQRVVGATQWLRANGKLGVLGEFAGGANAVCQQAVTGLLDHL QDNSEVWLGALWWAAGPWWGDYMYSFEPPSGTGYVNYNSILKKYLP (SEQ ID NO: 114) QSGPWQQCGGIGWQGSTDCVSGYHCVYQNDWYSQCVPGAASTTLQTSTT SRPTATSTAPPSSTTSPSKGKLKWLGSNESGAEFGEGNYPGLWGKHFIF PSTSAIQTLINDGYNIFRIDFSMERLVPNQLTSSFDEGYLRNLTEVVNF VTNAGKYAVLDPHNYGRYYGNVITDTNAFRTFWTNLAKQFASNSLVIFD TNNEYNTMDQTLVLNLNQAAIDGIRAAGATSQYIFVEGNAWSGAWSWNT TNTNMAALTDPQNKIVYEMHQYLDSDSSGTHAECVSSNIGAQRVVGATQ WLRANGKLGVLGEFAGGANAVCQQAVTGLLDHLQDNSEVWLGALWWAAG PWWGDYMYSFEPPSGTGYVNYNSILKKYLP

[0346] The polynucleotide (SEQ ID NO:115) and amino acid (SEQ ID NO:116) sequences of a wild-type BGL are provided below. The signal sequence is underlined in SEQ ID NO:116. SEQ ID NO:117 provides the polypeptide sequence without the signal sequence.

TABLE-US-00050 (SEQ ID NO: 115) ATGAAGGCTGCTGCGCTTTCCTGCCTCTTCGGCAGTACCCTTGCCGTTGCAGGCGCCATTGAATCGAGAAAGGT- TCA CCAGAAGCCCCTCGCGAGATCTGAACCTTTTTACCCGTCGCCATGGATGAATCCCAACGCCGACGGCTGGGCGG- AGG CCTATGCCCAGGCCAAGTCCTTTGTCTCCCAAATGACTCTGCTAGAGAAGGTCAACTTGACCACGGGAGTCGGC- TGG GGGGCTGAGCAGTGCGTCGGCCAAGTGGGCGCGATCCCTCGCCTTGGACTTCGCAGTCTGTGCATGCATGACTC- CCC TCTCGGCATCCGAGGAGCCGACTACAACTCAGCGTTCCCCTCTGGCCAGACCGTTGCTGCTACCTGGGATCGCG- GTC TGATGTACCGTCGCGGCTACGCAATGGGCCAGGAGGCCAAAGGCAAGGGCATCAATGTCCTTCTCGGACCAGTC- GCC GGCCCCCTTGGCCGCATGCCCGAGGGCGGTCGTAACTGGGAAGGCTTCGCTCCGGATCCCGTCCTTACCGGCAT- CGG CATGTCCGAGACGATCAAGGGCATTCAGGATGCTGGCGTCATCGCTTGTGCGAAGCACTTTATTGGAAACGAGC- AGG AGCACTTCAGACAGGTGCCAGAAGCCCAGGGATACGGTTACAACATCAGCGAAACCCTCTCCTCCAACATTGAC- GAC AAGACCATGCACGAGCTCTACCTTTGGCCGTTTGCCGATGCCGTCCGGGCCGGCGTCGGCTCTGTCATGTGCTC- GTA CCAGCAGGTCAACAACTCGTACGCCTGCCAGAACTCGAAGCTGCTGAACGACCTCCTCAAGAACGAGCTTGGGT- TTC AGGGCTTCGTCATGAGCGACTGGCAGGCACAGCACACTGGCGCAGCAAGCGCCGTGGCTGGTCTCGATATGTCC- ATG CCGGGCGACACCCAGTTCAACACTGGCGTCAGTTTCTGGGGCGCCAATCTCACCCTCGCCGTCCTCAACGGCAC- AGT CCCTGCCTACCGTCTCGACGACATGGCCATGCGCATCATGGCCGCCCTCTTCAAGGTCACCAAGACCACCGACC- TGG AACCGATCAACTTCTCCTTCTGGACCGACGACACTTATGGCCCGATCCACTGGGCCGCCAAGCAGGGCTACCAG- GAG ATTAATTCCCACGTTGACGTCCGCGCCGACCACGGCAACCTCATCCGGGAGATTGCCGCCAAGGGTACGGTGCT- GCT GAAGAATACCGGCTCTCTACCCCTGAACAAGCCAAAGTTCGTGGCCGTCATCGGCGAGGATGCTGGGTCGAGCC- CCA ACGGGCCCAACGGCTGCAGCGACCGCGGCTGTAACGAAGGCACGCTCGCCATGGGCTGGGGATCCGGCACAGCC- AAC TATCCGTACCTCGTTTCCCCCGACGCCGCGCTCCAGGCCCGGGCCATCCAGGACGGCACGAGGTACGAGAGCGT- CCT GTCCAACTACGCCGAGGAAAAGACAAAGGCTCTGGTCTCGCAGGCCAATGCAACCGCCATCGTCTTCGTCAATG- CCG ACTCAGGCGAGGGCTACATCAACGTGGACGGTAACGAGGGCGACCGTAAGAACCTGACTCTCTGGAACAACGGT- GAT ACTCTGGTCAAGAACGTCTCGAGCTGGTGCAGCAACACCATCGTCGTCATCCACTCGGTCGGCCCGGTCCTCCT- GAC CGATTGGTACGACAACCCCAACATCACGGCCATTCTCTGGGCTGGTCTTCCGGGCCAGGAGTCGGGCAACTCCA- TCA CCGACGTGCTTTACGGCAAGGTCAACCCCGCCGCCCGCTCGCCCTTCACTTGGGGCAAGACCCGCGAAAGCTAT- GGC GCGGACGTCCTGTACAAGCCGAATAATGGCAATGGTGCGCCCCAACAGGACTTCACCGAGGGCGTCTTCATCGA- CTA CCGCTACTTCGACAAGGTTGACGATGACTCGGTCATCTACGAGTTCGGCCACGGCCTGAGCTACACCACCTTCG- AGT ACAGCAACATCCGCGTCGTCAAGTCCAACGTCAGCGAGTACCGGCCCACGACGGGCACCACGGCCCAGGCCCCG- ACG TTTGGCAACTTCTCCACCGACCTCGAGGACTATCTCTTCCCCAAGGACGAGTTCCCCTACATCTACCAGTACAT- CTA CCCGTACCTCAACACGACCGACCCCCGGAGGGCCTCGGCCGATCCCCACTACGGCCAGACCGCCGAGGAGTTCC- TCC CGCCCCACGCCACCGATGACGACCCCCAGCCGCTCCTCCGGTCCTCGGGCGGAAACTCCCCCGGCGGCAACCGC- CAG CTGTACGACATTGTCTACACAATCACGGCCGACATCACGAATACGGGCTCCGTTGTAGGCGAGGAGGTACCGCA- GCT CTACGTCTCGCTGGGCGGTCCCGAGGATCCCAAGGTGCAGCTGCGCGACTTTGACAGGATGCGGATCGAACCCG- GCG AGACGAGGCAGTTCACCGGCCGCCTGACGCGCAGAGATCTGAGCAACTGGGACGTCACGGTGCAGGACTGGGTC- ATC AGCAGGTATCCCAAGACGGCATATGTTGGGAGGAGCAGCCGGAAGTTGGATCTCAAGATTGAGCTTCCTTGA (SEQ ID NO: 116) MKAAALSCLFGSTLAVAGAIESRKVHQKPLARSEPFYPSPWMNPNADGWAEAYAQAKSFVSQMTLLEKVNLTTG- VGW GAEQCVGQVGAIPRLGLRSLCMHDSPLGIRGADYNSAFPSGQTVAATWDRGLMYRRGYAMGQEAKGKGINVLLG- PVA GPLGRMPEGGRNWEGFAPDPVLTGIGMSETIKGIQDAGVIACAKHFIGNEQEHFRQVPEAQGYGYNISETLSSN- IDD KTMHELYLWPFADAVRAGVGSVMCSYQQVNNSYACQNSKLLNDLLKNELGFQGFVMSDWQAQHTGAASAVAGLD- MSM PGDTQFNTGVSFWGANLTLAVLNGTVPAYRLDDMAMRIMAALFKVTKTTDLEPINFSFWTDDTYGPIHWAAKQG- YQE INSHVDVRADHGNLIREIAAKGTVLLKNTGSLPLNKPKFVAVIGEDAGSSPNGPNGCSDRGCNEGTLAMGWGSG- TAN YPYLVSPDAALQARAIQDGTRYESVLSNYAEEKTKALVSQANATAIVFVNADSGEGYINVDGNEGDRKNLTLWN- NGD TLVKNVSSWCSNTIVVIHSVGPVLLTDWYDNPNITAILWAGLPGQESGNSITDVLYGKVNPAARSPFTWGKTRE- SYG ADVLYKPNNGNGAPQQDFTEGVFIDYRYFDKVDDDSVIYEFGHGLSYTTFEYSNIRVVKSNVSEYRPTTGTTAQ- APT FGNFSTDLEDYLFPKDEFPYIYQYIYPYLNTTDPRRASADPHYGQTAEEFLPPHATDDDPQPLLRSSGGNSPGG- NRQ LYDIVYTITADITNTGSVVGEEVPQLYVSLGGPEDPKVQLRDFDRMRIEPGETRQFTGRLTRRDLSNWDVTVQD- WVI SRYPKTAYVGRSSRKLDLKIELP (SEQ ID NO: 117) IESRKVHQKPLARSEPFYPSPWMNPNADGWAEAYAQAKSFVSQMTLLEKVNLTTGVGWGAEQCVGQVGAIPRLG- LRS LCMHDSPLGIRGADYNSAFPSGQTVAATWDRGLMYRRGYAMGQEAKGKGINVLLGPVAGPLGRMPEGGRNWEGF- APD PVLTGIGMSETIKGIQDAGVIACAKHFIGNEQEHFRQVPEAQGYGYNISETLSSNIDDKTMHELYLWPFADAVR- AGV GSVMCSYQQVNNSYACQNSKLLNDLLKNELGFQGFVMSDWQAQHTGAASAVAGLDMSMPGDTQFNTGVSFWGAN- LTL AVLNGTVPAYRLDDMAMRIMAALFKVTKTTDLEPINFSFWTDDTYGPIHWAAKQGYQEINSHVDVRADHGNLIR- EIA AKGTVLLKNTGSLPLNKPKFVAVIGEDAGSSPNGPNGCSDRGCNEGTLAMGWGSGTANYPYLVSPDAALQARAI- QDG TRYESVLSNYAEEKTKALVSQANATAIVFVNADSGEGYINVDGNEGDRKNLTLWNNGDTLVKNVSSWCSNTIVV- IHS VGPVLLTDWYDNPNITAILWAGLPGQESGNSITDVLYGKVNPAARSPFTWGKTRESYGADVLYKPNNGNGAPQQ- DFT EGVFIDYRYFDKVDDDSVIYEFGHGLSYTTFEYSNIRVVKSNVSEYRPTTGTTAQAPTFGNFSTDLEDYLFPKD- EFP YIYQYIYPYLNTTDPRRASADPHYGQTAEEFLPPHATDDDPQPLLRSSGGNSPGGNRQLYDIVYTITADITNTG- SVV GEEVPQLYVSLGGPEDPKVQLRDFDRMRIEPGETRQFTGRLTRRDLSNWDVTVQDWVISRYPKTAYVGRSSRKL- DLK IELP

[0347] The polynucleotide (SEQ ID NO:118) and amino acid (SEQ ID NO:119) sequences of a BGL variant ("Variant 883") are provided below. The signal sequence is underlined in SEQ ID NO:119. SEQ ID NO:120 provides the sequence of this BGL variant, without the signal sequence.

TABLE-US-00051 (SEQ ID NO: 118) ATGAAGGCTGCTGCGCTTTCCTGCCTCTTCGGCAGTACCCTTGCCGTTGCAGGCGCCATTGAATCGAGAAAGGT- TCAC CAGAAGCCCCTCGCGAGATCTGAACCTTTTTACCCGTCGCCATGGATGAATCCCAACGCCGACGGCTGGGCGGA- GGCC TATGCCCAGGCCAAGTCCTTTGTCTCCCAAATGACTCTGCTAGAGAAGGTCAACTTGACCACGGGAGTCGGCTG- GGGG GCTGAGCAGTGCGTCGGCCAAGTGGGCGCGATCCCTCGCCTTGGACTTCGCAGTCTGTGCATGCATGACTCCCC- TCTC GGCATCCGAGGAGCCGACTACAACTCAGCGTTCCCCTCTGGCCAGACCGTTGCTGCTACCTGGGATCGCGGTCT- GATG TACCGTCGCGGCTACGCAATGGGCCAGGAGGCCAAAGGCAAGGGCATCAATGTCCTTCTCGGACCAGTCGCCGG- CCCC CTTGGCCGCATGCCCGAGGGCGGTCGTAACTGGGAAGGCTTCGCTCCGGATCCCGTCCTTACCGGCATCGGCAT- GTCC GAGACGATCAAGGGCATTCAGGATGCTGGCGTCATCGCTTGTGCGAAGCACTTTATTGGAAACGAGCAGGAGCA- CTTC AGACAGGTGCCAGAAGCCCAGGGATACGGTTACAACATCAGCGAAACCCTCTCCTCCAACATTGACGACAAGAC- CATG CACGAGCTCTACCTTTGGCCGTTTGCCGATGCCGTCCGGGCCGGCGTCGGCTCTGTCATGTGCTCGTACAACCA- GGTC AACAACTCGTACGCCTGCCAGAACTCGAAGCTGCTGAACGACCTCCTCAAGAACGAGCTTGGGTTTCAGGGCTT- CGTC ATGAGCGACTGGTGGGCACAGCACACTGGCGCAGCAAGCGCCGTGGCTGGTCTCGATATGTCCATGCCGGGCGA- CACC ATGTTCAACACTGGCGTCAGTTTCTGGGGCGCCAATCTCACCCTCGCCGTCCTCAACGGCACAGTCCCTGCCTA- CCGT CTCGACGACATGGCCATGCGCATCATGGCCGCCCTCTTCAAGGTCACCAAGACCACCGACCTGGAACCGATCAA- CTTC TCCTTCTGGACCCGCGACACTTATGGCCCGATCCACTGGGCCGCCAAGCAGGGCTACCAGGAGATTAATTCCCA- CGTT GACGTCCGCGCCGACCACGGCAACCTCATCCGGAACATTGCCGCCAAGGGTACGGTGCTGCTGAAGAATACCGG- CTCT CTACCCCTGAACAAGCCAAAGTTCGTGGCCGTCATCGGCGAGGATGCTGGGCCGAGCCCCAACGGGCCCAACGG- CTGC AGCGACCGCGGCTGTAACGAAGGCACGCTCGCCATGGGCTGGGGATCCGGCACAGCCAACTATCCGTACCTCGT- TTCC CCCGACGCCGCGCTCCAGTTGCGGGCCATCCAGGACGGCACGAGGTACGAGAGCGTCCTGTCCAACTACGCCGA- GGAA AATACAAAGGCTCTGGTCTCGCAGGCCAATGCAACCGCCATCGTCTTCGTCAATGCCGACTCAGGCGAGGGCTA- CATC AACGTGGACGGTAACGAGGGCGACCGTAAGAACCTGACTCTCTGGAACAACGGTGATACTCTGGTCAAGAACGT- CTCG AGCTGGTGCAGCAACACCATCGTCGTCATCCACTCGGTCGGCCCGGTCCTCCTGACCGATTGGTACGACAACCC- CAAC ATCACGGCCATTCTCTGGGCTGGTCTTCCGGGCCAGGAGTCGGGCAACTCCATCACCGACGTGCTTTACGGCAA- GGTC AACCCCGCCGCCCGCTCGCCCTTCACTTGGGGCAAGACCCGCGAAAGCTATGGCGCGGACGTCCTGTACAAGCC- GAAT AATGGCAATTGGGCGCCCCAACAGGACTTCACCGAGGGCGTCTTCATCGACTACCGCTACTTCGACAAGGTTGA- CGAT GACTCGGTCATCTACGAGTTCGGCCACGGCCTGAGCTACACCACCTTCGAGTACAGCAACATCCGCGTCGTCAA- GTCC AACGTCAGCGAGTACCGGCCCACGACGGGCACCACGATTCAGGCCCCGACGTTTGGCAACTTCTCCACCGACCT- CGAG GACTATCTCTTCCCCAAGGACGAGTTCCCCTACATCCCGCAGTACATCTACCCGTACCTCAACACGACCGACCC- CCGG AGGGCCTCGGCCGATCCCCACTACGGCCAGACCGCCGAGGAGTTCCTCCCGCCCCACGCCACCGATGACGACCC- CCAG CCGCTCCTCCGGTCCTCGGGCGGAAACTCCCCCGGCGGCAACCGCCAGCTGTACGACATTGTCTACACAATCAC- GGCC GACATCACGAATACGGGCTCCGTTGTAGGCGAGGAGGTACCGCAGCTCTACGTCTCGCTGGGCGGTCCCGAGGA- TCCC AAGGTGCAGCTGCGCGACTTTGACAGGATGCGGATCGAACCCGGCGAGACGAGGCAGTTCACCGGCCGCCTGAC- GCGC AGAGATCTGAGCAACTGGGACGTCACGGTGCAGGACTGGGTCATCAGCAGGTATCCCAAGACGGCATATGTTGG- GAGG AGCAGCCGGAAGTTGGATCTCAAGATTGAGCTTCCTTGA (SEQ ID NO: 119) MKAAALSCLFGSTLAVAGAIESRKVHQKPLARSEPFYPSPWMNPNADGWAEAYAQAKSFVSQMTLLEKVNLTTG- VGWG AEQCVGQVGAIPRLGLRSLCMHDSPLGIRGADYNSAFPSGQTVAATWDRGLMYRRGYAMGQEAKGKGINVLLGP- VAGP LGRMPEGGRNWEGFAPDPVLTGIGMSETIKGIQDAGVIACAKHFIGNEQEHFRQVPEAQGYGYNISETLSSNID- DKTM HELYLWPFADAVRAGVGSVMCSYNQVNNSYACQNSKLLNDLLKNELGFQGFVMSDWWAQHTGAASAVAGLDMSM- PGDT MFNTGVSFWGANLTLAVLNGTVPAYRLDDMAMRIMAALFKVTKTTDLEPINFSFWTRDTYGPIHWAAKQGYQEI- NSHV DVRADHGNLIRNIAAKGTVLLKNTGSLPLNKPKFVAVIGEDAGPSPNGPNGCSDRGCNEGTLAMGWGSGTANYP- YLVS PDAALQLRAIQDGTRYESVLSNYAEENTKALVSQANATAIVFVNADSGEGYINVDGNEGDRKNLTLWNNGDTLV- KNVS SWCSNTIVVIHSVGPVLLTDWYDNPNITAILWAGLPGQESGNSITDVLYGKVNPAARSPFTWGKTRESYGADVL- YKPN NGNWAPQQDFTEGVFIDYRYFDKVDDDSVIYEFGHGLSYTTFEYSNIRVVKSNVSEYRPTTGTTIQAPTFGNFS- TDLE DYLFPKDEFPYIPQYIYPYLNTTDPRRASADPHYGQTAEEFLPPHATDDDPQPLLRSSGGNSPGGNRQLYDIVY- TITA DITNTGSVVGEEVPQLYVSLGGPEDPKVQLRDFDRMRIEPGETRQFTGRLTRRDLSNWDVTVQDWVISRYPKTA- YVGR SSRKLDLKIELP (SEQ ID NO: 120) IESRKVHQKPLARSEPFYPSPWMNPNADGWAEAYAQAKSFVSQMTLLEKVNLTTGVGWGAEQCVGQVGAIPRLG- LRSL CMHDSPLGIRGADYNSAFPSGQTVAATWDRGLMYRRGYAMGQEAKGKGINVLLGPVAGPLGRMPEGGRNWEGFA- PDPV LTGIGMSETIKGIQDAGVIACAKHFIGNEQEHFRQVPEAQGYGYNISETLSSNIDDKTMHELYLWPFADAVRAG- VGSV MCSYNQVNNSYACQNSKLLNDLLKNELGFQGFVMSDWWAQHTGAASAVAGLDMSMPGDTMFNTGVSFWGANLTL- AVLN GTVPAYRLDDMAMRIMAALFKVTKTTDLEPINFSFWTRDTYGPIHWAAKQGYQEINSHVDVRADHGNLIRNIAA- KGTV LLKNTGSLPLNKPKFVAVIGEDAGPSPNGPNGCSDRGCNEGTLAMGWGSGTANYPYLVSPDAALQLRAIQDGTR- YESV LSNYAEENTKALVSQANATAIVFVNADSGEGYINVDGNEGDRKNLTLWNNGDTLVKNVSSWCSNTIVVIHSVGP- VLLT DWYDNPNITAILWAGLPGQESGNSITDVLYGKVNPAARSPFTWGKTRESYGADVLYKPNNGNWAPQQDFTEGVF- IDYR YFDKVDDDSVIYEFGHGLSYTTFEYSNIRVVKSNVSEYRPTTGTTIQAPTFGNFSTDLEDYLFPKDEFPYIPQY- IYPY LNTTDPRRASADPHYGQTAEEFLPPHATDDDPQPLLRSSGGNSPGGNRQLYDIVYTITADITNTGSVVGEEVPQ- LYVS LGGPEDPKVQLRDFDRMRIEPGETRQFTGRLTRRDLSNWDVTVQDWVISRYPKTAYVGRSSRKLDLKIELP

[0348] The polynucleotide (SEQ ID NO:121) and amino acid (SEQ ID NO:122) sequences of a BGL variant ("Variant 900") are provided below. The signal sequence is underlined in SEQ ID NO:122. SEQ ID NO:123 provides the sequence of this BGL variant, without the signal sequence.

TABLE-US-00052 (SEQ ID NO: 121) ATGAAGGCTGCTGCGCTTTCCTGCCTCTTCGGCAGTACCCTTGCCGTTGCAGGCGCCATTGAATCGAGAAAGGT- TCAC CAGAAGCCCCTCGCGAGATCTGAACCTTTTTACCCGTCGCCATGGATGAATCCCAACGCCATCGGCTGGGCGGA- GGCC TATGCCCAGGCCAAGTCCTTTGTCTCCCAAATGACTCTGCTAGAGAAGGTCAACTTGACCACGGGAGTCGGCTG- GGGG GAGGAGCAGTGCGTCGGCAACGTGGGCGCGATCCCTCGCCTTGGACTTCGCAGTCTGTGCATGCATGACTCCCC- TCTC GGCGTGCGAGGAACCGACTACAACTCAGCGTTCCCCTCTGGCCAGACCGTTGCTGCTACCTGGGATCGCGGTCT- GATG TACCGTCGCGGCTACGCAATGGGCCAGGAGGCCAAAGGCAAGGGCATCAATGTCCTTCTCGGACCAGTCGCCGG- CCCC CTTGGCCGCATGCCCGAGGGCGGTCGTAACTGGGAAGGCTTCGCTCCGGATCCCGTCCTTACCGGCATCGGCAT- GTCC GAGACGATCAAGGGCATTCAGGATGCTGGCGTCATCGCTTGTGCGAAGCACTTTATTGGAAACGAGCAGGAGCA- CTTC AGACAGGTGCCAGAAGCCCAGGGATACGGTTACAACATCAGCGAAACCCTCTCCTCCAACATTGACGACAAGAC- CATG CACGAGCTCTACCTTTGGCCGTTTGCCGATGCCGTCCGGGCCGGCGTCGGCTCTGTCATGTGCTCGTACAACCA- GGGC AACAACTCGTACGCCTGCCAGAACTCGAAGCTGCTGAACGACCTCCTCAAGAACGAGCTTGGGTTTCAGGGCTT- CGTC ATGAGCGACTGGTGGGCACAGCACACTGGCGCAGCAAGCGCCGTGGCTGGTCTCGATATGTCCATGCCGGGCGA- CACC ATGGTCAACACTGGCGTCAGTTTCTGGGGCGCCAATCTCACCCTCGCCGTCCTCAACGGCACAGTCCCTGCCTA- CCGT CTCGACGACATGTGCATGCGCATCATGGCCGCCCTCTTCAAGGTCACCAAGACCACCGACCTGGAACCGATCAA- CTTC TCCTTCTGGACCCGCGACACTTATGGCCCGATCCACTGGGCCGCCAAGCAGGGCTACCAGGAGATTAATTCCCA- CGTT GACGTCCGCGCCGACCACGGCAACCTCATCCGGAACATTGCCGCCAAGGGTACGGTGCTGCTGAAGAATACCGG- CTCT CTACCCCTGAACAAGCCAAAGTTCGTGGCCGTCATCGGCGAGGATGCTGGGCCGAGCCCCAACGGGCCCAACGG- CTGC AGCGACCGCGGCTGTAACGAAGGCACGCTCGCCATGGGCTGGGGATCCGGCACAGCCAACTATCCGTACCTCGT- TTCC CCCGACGCCGCGCTCCAGGCGCGGGCCATCCAGGACGGCACGAGGTACGAGAGCGTCCTGTCCAACTACGCCGA- GGAA AATACAAAGGCTCTGGTCTCGCAGGCCAATGCAACCGCCATCGTCTTCGTCAATGCCGACTCAGGCGAGGGCTA- CATC AACGTGGACGGTAACGAGGGCGACCGTAAGAACCTGACTCTCTGGAACAACGGTGATACTCTGGTCAAGAACGT- CTCG AGCTGGTGCAGCAACACCATCGTCGTCATCCACTCGGTCGGCCCGGTCCTCCTGACCGATTGGTACGACAACCC- CAAC ATCACGGCCATTCTCTGGGCTGGTCTTCCGGGCCAGGAGTCGGGCAACTCCATCACCGACGTGCTTTACGGCAA- GGTC AACCCCGCCGCCCGCTCGCCCTTCACTTGGGGCAAGACCCGCGAAAGCTATGGCGCGGACGTCCTGTACAAGCC- GAAT AATGGCAATTGGGCGCCCCAACAGGACTTCACCGAGGGCGTCTTCATCGACTACCGCTACTTCGACAAGGTTGA- CGAT GACTCGGTCATCTACGAGTTCGGCCACGGCCTGAGCTACACCACCTTCGAGTACAGCAACATCCGCGTCGTCAA- GTCC AACGTCAGCGAGTACCGGCCCACGACGGGCACCACGATTCAGGCCCCGACGTTTGGCAACTTCTCCACCGACCT- CGAG GACTATCTCTTCCCCAAGGACGAGTTCCCCTACATCCCGCAGTACATCTACCCGTACCTCAACACGACCGACCC- CCGG AGGGCCTCGGGCGATCCCCACTACGGCCAGACCGCCGAGGAGTTCCTCCCGCCCCACGCCACCGATGACGACCC- CCAG CCGCTCCTCCGGTCCTCGGGCGGAAACTCCCCCGGCGGCAACCGCCAGCTGTACGACATTGTCTACACAATCAC- GGCC GACATCACGAATACGGGCTCCGTTGTAGGCGAGGAGGTACCGCAGCTCTACGTCTCGCTGGGCGGTCCCGAGGA- TCCC AAGGTGCAGCTGCGCGACTTTGACAGGATGCGGATCGAACCCGGCGAGACGAGGCAGTTCACCGGCCGCCTGAC- GCGC AGAGATCTGAGCAACTGGGACGTCACGGTGCAGGACTGGGTCATCAGCAGGTATCCCAAGACGGCATATGTTGG- GAGG AGCAGCCGGAAGTTGGATCTCAAGATTGAGCTTCCTTGA (SEQ ID NO: 122) MKAAALSCLFGSTLAVAGAIESRKVHQKPLARSEPFYPSPWMNPNAIGWAEAYAQAKSFVSQMTLLEKVNLTTG- VGWG EEQCVGNVGAIPRLGLRSLCMHDSPLGVRGTDYNSAFPSGQTVAATWDRGLMYRRGYAMGQEAKGKGINVLLGP- VAGP LGRMPEGGRNWEGFAPDPVLTGIGMSETIKGIQDAGVIACAKHFIGNEQEHFRQVPEAQGYGYNISETLSSNID- DKTM HELYLWPFADAVRAGVGSVMCSYNQGNNSYACQNSKLLNDLLKNELGFQGFVMSDWWAQHTGAASAVAGLDMSM- PGDT MVNTGVSFWGANLTLAVLNGTVPAYRLDDMCMRIMAALFKVTKTTDLEPINFSFWTRDTYGPIHWAAKQGYQEI- NSHV DVRADHGNLIRNIAAKGTVLLKNTGSLPLNKPKFVAVIGEDAGPSPNGPNGCSDRGCNEGTLAMGWGSGTANYP- YLVS PDAALQARAIQDGTRYESVLSNYAEENTKALVSQANATAIVFVNADSGEGYINVDGNEGDRKNLTLWNNGDTLV- KNVS SWCSNTIVVIHSVGPVLLTDWYDNPNITAILWAGLPGQESGNSITDVLYGKVNPAARSPFTWGKTRESYGADVL- YKPN NGNWAPQQDFTEGVFIDYRYFDKVDDDSVIYEFGHGLSYTTFEYSNIRVVKSNVSEYRPTTGTTIQAPTFGNFS- TDLE DYLFPKDEFPYIPQYIYPYLNTTDPRRASGDPHYGQTAEEFLPPHATDDDPQPLLRSSGGNSPGGNRQLYDIVY- TITA DITNTGSVVGEEVPQLYVSLGGPEDPKVQLRDFDRMRIEPGETRQFTGRLTRRDLSNWDVTVQDWVISRYPKTA- YVGR SSRKLDLKIELP (SEQ ID NO: 123) IESRKVHQKPLARSEPFYPSPWMNPNAIGWAEAYAQAKSFVSQMTLLEKVNLTTGVGWGEEQCVGNVGAIPRLG- LRSL CMHDSPLGVRGTDYNSAFPSGQTVAATWDRGLMYRRGYAMGQEAKGKGINVLLGPVAGPLGRMPEGGRNWEGFA- PDPV LTGIGMSETIKGIQDAGVIACAKHFIGNEQEHFRQVPEAQGYGYNISETLSSNIDDKTMHELYLWPFADAVRAG- VGSV MCSYNQGNNSYACQNSKLLNDLLKNELGFQGFVMSDWWAQHTGAASAVAGLDMSMPGDTMVNTGVSFWGANLTL- AVLN GTVPAYRLDDMCMRIMAALFKVTKTTDLEPINFSFWTRDTYGPIHWAAKQGYQEINSHVDVRADHGNLIRNIAA- KGTV LLKNTGSLPLNKPKFVAVIGEDAGPSPNGPNGCSDRGCNEGTLAMGWGSGTANYPYLVSPDAALQARAIQDGTR- YESV LSNYAEENTKALVSQANATAIVFVNADSGEGYINVDGNEGDRKNLTLWNNGDTLVKNVSSWCSNTIVVIHSVGP- VLLT DWYDNPNITAILWAGLPGQESGNSITDVLYGKVNPAARSPFTWGKTRESYGADVLYKPNNGNWAPQQDFTEGVF- IDYR YFDKVDDDSVIYEFGHGLSYTTFEYSNIRVVKSNVSEYRPTTGTTIQAPTFGNFSTDLEDYLFPKDEFPYIPQY- IYPY LNTTDPRRASGDPHYGQTAEEFLPPHATDDDPQPLLRSSGGNSPGGNRQLYDIVYTITADITNTGSVVGEEVPQ- LYVS LGGPEDPKVQLRDFDRMRIEPGETRQFTGRLTRRDLSNWDVTVQDWVISRYPKTAYVGRSSRKLDLKIELP

[0349] The polynucleotide (SEQ ID NO:124) and amino acid (SEQ ID NO:125) sequences of wild-type Talaromyces emersonii CBH1 are provided below. The signal sequence is shown underlined in SEQ ID NO:125. SEQ ID NO:126 provides the sequence of this CBH1, without the signal sequence.

TABLE-US-00053 (SEQ ID NO: 124) ATGCTTCGACGGGCTCTTCTTCTATCCTCTTCCGCCATCCTTGCTGTCAAGGCACAGCAGGCCGGCACGGCGAC- GG CAGAGAACCACCCGCCCCTGACATGGCAGGAATGCACCGCCCCTGGGAGCTGCACCACCCAGAACGGGGCGGTC- GT TCTTGATGCGAACTGGCGTTGGGTGCACGATGTGAACGGATACACCAACTGCTACACGGGCAATACCTGGGACC- CC ACGTACTGCCCTGACGACGAAACCTGCGCCCAGAACTGTGCGCTGGACGGCGCGGATTACGAGGGCACCTACGG- CG TGACTTCGTCGGGCAGCTCCTTGAAACTCAATTTCGTCACCGGGTCGAACGTCGGATCCCGTCTCTACCTGCTG- CA GGACGACTCGACCTATCAGATCTTCAAGCTTCTGAACCGCGAGTTCAGCTTTGACGTCGATGTCTCCAATCTTC- CG TGCGGATTGAACGGCGCTCTGTACTTTGTCGCCATGGACGCCGACGGCGGCGTGTCCAAGTACCCGAACAACAA- GG CTGGTGCCAAGTACGGAACCGGGTATTGCGACTCCCAATGCCCACGGGACCTCAAGTTCATCGACGGCGAGGCC- AA CGTCGAGGGCTGGCAGCCGTCTTCGAACAACGCCAACACCGGAATTGGCGACCACGGCTCCTGCTGTGCGGAGA- TG GATGTCTGGGAAGCAAACAGCATCTCCAATGCGGTCACTCCGCACCCGTGCGACACGCCAGGCCAGACGATGTG- CT CTGGAGATGACTGCGGTGGCACATACTCTAACGATCGCTACGCGGGAACCTGCGATCCTGACGGCTGTGACTTC- AA CCCTTACCGCATGGGCAACACTTCTTTCTACGGGCCTGGCAAGATCATCGATACCACCAAGCCCTTCACTGTCG- TG ACGCAGTTCCTCACTGATGATGGTACGGATACTGGAACTCTCAGCGAGATCAAGCGCTTCTACATCCAGAACAG- CA ACGTCATTCCGCAGCCCAACTCGGACATCAGTGGCGTGACCGGCAACTCGATCACGACGGAGTTCTGCACTGCT- CA GAAGCAGGCCTTTGGCGACACGGACGACTTCTCTCAGCACGGTGGCCTGGCCAAGATGGGAGCGGCCATGCAGC- AG GGTATGGTCCTGGTGATGAGTTTGTGGGACGACTACGCCGCGCAGATGCTGTGGTTGGATTCCGACTACCCGAC- GG ATGCGGACCCCACGACCCCTGGTATTGCCCGTGGAACGTGTCCGACGGACTCGGGCGTCCCATCGGATGTCGAG- TC GCAGAGCCCCAACTCCTACGTGACCTACTCGAACATTAAGTTTGGTCCGATCAACTCGACCTTCACCGCTTCGT- GA (SEQ ID NO: 125) MLRRALLLSSSAILAVKAQQAGTATAENHPPLTWQECTAPGSCTTQNGAVVLDANWRWVHDVNGYTNCYTGNTW- DP TYCPDDETCAQNCALDGADYEGTYGVTSSGSSLKLNFVTGSNVGSRLYLLQDDSTYQIFKLLNREFSFDVDVSN- LP CGLNGALYFVAMDADGGVSKYPNNKAGAKYGTGYCDSQCPRDLKFIDGEANVEGWQPSSNNANTGIGDHGSCCA- EM DVWEANSISNAVTPHPCDTPGQTMCSGDDCGGTYSNDRYAGTCDPDGCDFNPYRMGNTSFYGPGKIIDTTKPFT- VV TQFLTDDGTDTGTLSEIKRFYIQNSNVIPQPNSDISGVTGNSITTEFCTAQKQAFGDTDDFSQHGGLAKMGAAM- QQ GMVLVMSLWDDYAAQMLWLDSDYPTDADPTTPGIARGTCPTDSGVPSDVESQSPNSYVTYSNIKFGPINSTFTA- S (SEQ ID NO: 126) QQAGTATAENHPPLTWQECTAPGSCTTQNGAVVLDANWRWVHDVNGYTNCYTGNTWDPTYCPDDETCAQNCALD- GA DYEGTYGVTSSGSSLKLNFVTGSNVGSRLYLLQDDSTYQIFKLLNREFSFDVDVSNLPCGLNGALYFVAMDADG- GV SKYPNNKAGAKYGTGYCDSQCPRDLKFIDGEANVEGWQPSSNNANTGIGDHGSCCAEMDVWEANSISNAVTPHP- CD TPGQTMCSGDDCGGTYSNDRYAGTCDPDGCDFNPYRMGNTSFYGPGKIIDTTKPFTVVTQFLTDDGTDTGTLSE- IK RFYIQNSNVIPQPNSDISGVTGNSITTEFCTAQKQAFGDTDDFSQHGGLAKMGAAMQQGMVLVMSLWDDYAAQM- LW LDSDYPTDADPTTPGIARGTCPTDSGVPSDVESQSPNSYVTYSNIKFGPINSTFTAS

[0350] The polynucleotide (SEQ ID NO:127) and amino acid (SEQ ID NO:128) sequences of wild-type M. thermophila CBH1a are provided below. The signal sequence is shown underlined in SEQ ID NO:128. SEQ ID NO:129 provides the sequence of this CBH1a, without the signal sequence.

TABLE-US-00054 (SEQ ID NO: 127) ATGTACGCCAAGTTCGCGACCCTCGCCGCCCTTGTGGCTGGCGCCGCTGCTCAGAACGCCTGCACTCTGACCGC- TGA GAACCACCCCTCGCTGACGTGGTCCAAGTGCACGTCTGGCGGCAGCTGCACCAGCGTCCAGGGTTCCATCACCA- TCG ACGCCAACTGGCGGTGGACTCACCGGACCGATAGCGCCACCAACTGCTACGAGGGCAACAAGTGGGATACTTCG- TAC TGCAGCGATGGTCCTTCTTGCGCCTCCAAGTGCTGCATCGACGGCGCTGACTACTCGAGCACCTATGGCATCAC- CAC GAGCGGTAACTCCCTGAACCTCAAGTTCGTCACCAAGGGCCAGTACTCGACCAACATCGGCTCGCGTACCTACC- TGA TGGAGAGCGACACCAAGTACCAGATGTTCCAGCTCCTCGGCAACGAGTTCACCTTCGATGTCGACGTCTCCAAC- CTC GGCTGCGGCCTCAATGGCGCCCTCTACTTCGTGTCCATGGATGCCGATGGTGGCATGTCCAAGTACTCGGGCAA- CAA GGCAGGTGCCAAGTACGGTACCGGCTACTGTGATTCTCAGTGCCCCCGCGACCTCAAGTTCATCAACGGCGAGG- CCA ACGTAGAGAACTGGCAGAGCTCGACCAACGATGCCAACGCCGGCACGGGCAAGTACGGCAGCTGCTGCTCCGAG- ATG GACGTCTGGGAGGCCAACAACATGGCCGCCGCCTTCACTCCCCACCCTTGCACCGTGATCGGCCAGTCGCGCTG- CGA GGGCGACTCGTGCGGCGGTACCTACAGCACCGACCGCTATGCCGGCATCTGCGACCCCGACGGATGCGACTTCA- ACT CGTACCGCCAGGGCAACAAGACCTTCTACGGCAAGGGCATGACGGTCGACACGACCAAGAAGATCACGGTCGTC- ACC CAGTTCCTCAAGAACTCGGCCGGCGAGCTCTCCGAGATCAAGCGGTTCTACGTCCAGAACGGCAAGGTCATCCC- CAA CTCCGAGTCCACCATCCCGGGCGTCGAGGGCAACTCCATCACCCAGGACTGGTGCGACCGCCAGAAGGCCGCCT- TCG GCGACGTGACCGACTTCCAGGACAAGGGCGGCATGGTCCAGATGGGCAAGGCCCTCGCGGGGCCCATGGTCCTC- GTC ATGTCCATCTGGGACGACCACGCCGTCAACATGCTCTGGCTCGACTCCACCTGGCCCATCGACGGCGCCGGCAA- GCC GGGCGCCGAGCGCGGTGCCTGCCCCACCACCTCGGGCGTCCCCGCTGAGGTCGAGGCCGAGGCCCCCAACTCCA- ACG TCATCTTCTCCAACATCCGCTTCGGCCCCATCGGCTCCACCGTCTCCGGCCTGCCCGACGGCGGCAGCGGCAAC- CCC AACCCGCCCGTCAGCTCGTCCACCCCGGTCCCCTCCTCGTCCACCACATCCTCCGGTTCCTCCGGCCCGACTGG- CGG CACGGGTGTCGCTAAGCACTATGAGCAATGCGGAGGAATCGGGTTCACTGGCCCTACCCAGTGCGAGAGCCCCT- ACA CTTGCACCAAGCTGAATGACTGGTACTCGCAGTGCCTGTAA (SEQ ID NO: 128) MYAKFATLAALVAGAAAQNACTLTAENHPSLTYSKCTSGGSCTSVQGSITIDANWRWTHRTDSATNCYEGNKWD- TSW CSDGPSCASKCCIDGADYSSTYGITTSGNSLNLKFVTKGQYSTNIGSRTYLMESDTKYQMFQLLGNEFTFDVDV- SNL GCGLNGALYFVSMDADGGMSKYSGNKAGAKYGTGYCDSQCPRDLKFINGEANVENWQSSTNDANAGTGKYGSCC- SEM DVWEANNMAAAFTPHPCTVIGQSRCEGDSCGGTYSTDRYAGICDPDGCDFNSYRQGNKTFYGKGMTVDTTKKIT- VVT QFLKNSAGELSEIKRFYVQNGKVIPNSESTIPGVEGNSITQDWCDRQKAAFGDVTDFQDKGGMVQMGKALAGPM- VLV MSIWDDHAVNMLWLDSTWPIDGAGKPGAERGACPTTSGVPAEVEAEAPNSNVIFSNIRFGPIGSTVSGLPDGGS- GNP NPPVSSSTPVPSSSTTSSGSSGPTGGTGVAKHYEQCGGIGFTGPTQCESPYTCTKLNDWYSQCL (SEQ ID NO: 129) QNACTLTAENHPSLTYSKCTSGGSCTSVQGSITIDANWRWTHRTDSATNCYEGNKWDTSWCSDGPSCASKCCID- GAD YSSTYGITTSGNSLNLKFVTKGQYSTNIGSRTYLMESDTKYQMFQLLGNEFTFDVDVSNLGCGLNGALYFVSMD- ADG GMSKYSGNKAGAKYGTGYCDSQCPRDLKFINGEANVENWQSSTNDANAGTGKYGSCCSEMDVWEANNMAAAFTP- HPC TVIGQSRCEGDSCGGTYSTDRYAGICDPDGCDFNSYRQGNKTFYGKGMTVDTTKKITVVTQFLKNSAGELSEIK- RFY VQNGKVIPNSESTIPGVEGNSITQDWCDRQKAAFGDVTDFQDKGGMVQMGKALAGPMVLVMSIWDDHAVNMLWL- DST WPIDGAGKPGAERGACPTTSGVPAEVEAEAPNSNVIFSNIRFGPIGSTVSGLPDGGSGNPNPPVSSSTPVPSSS- TTS SGSSGPTGGTGVAKHYEQCGGIGFTGPTQCESPYTCTKLNDWYSQCL

[0351] The polynucleotide (SEQ ID NO:130) and amino acid (SEQ ID NO:131) sequences of a M. thermophila CBH1a variant ("Variant 145") are provided below. The signal sequence is shown underlined in SEQ ID NO:131. SEQ ID NO:132 provides the sequence of this CBH1a, without the signal sequence.

TABLE-US-00055 (SEQ ID NO: 130) ATGTACGCCAAGTTCGCGACCCTCGCCGCCCTTGTGGCTGGCGCCGCTGCTCAGAACGCCTG CACTCTGACCGCTGAGAACCACCCCTCGCTGACGTGGTCCAAGTGCACGTCTGGCGGCAGCT GCACCAGCGTCCAGGGTTCCATCACCATCGACGCCAACTGGCGGTGGACTCACCGGACCGAT AGCGCCACCAACTGCTACGAGGGCAACAAGTGGGATACTTCGTGGTGCAGCGATGGTCCTTC TTGCGCCTCCAAGTGCTGCATCGACGGCGCTGACTACTCGAGCACCTATGGCATCACCACGA GCGGTAACTCCCTGAACCTCAAGTTCGTCACCAAGGGCCAGTACTCGACCAACATCGGCTCG CGTACCTACCTGATGGAGAGCGACACCAAGTACCAGATGTTCCAGCTCCTCGGCAACGAGTT CACCTTCGATGTCGACGTCTCCAACCTCGGCTGCGGCCTCAATGGCGCCCTCTACTTCGTGTC CATGGATGCCGATGGTGGCATGTCCAAGTACTCGGGCAACAAGGCAGGTGCCAAGTACGGT ACCGGCTACTGTGATTCTCAGTGCCCCCGCGACCTCAAGTTCATCAACGGCGAGGCCAACGT AGAGAACTGGCAGAGCTCGACCAACGATGCCAACGCCGGCACGGGCAAGTACGGCAGCTGC TGCTCCGAGATGGACGTCTGGGAGGCCAACAACATGGCCGCCGCCTTCACTCCCCACCCTTG CACCGTGATCGGCCAGTCGCGCTGCGAGGGCGACTCGTGCGGCGGTACCTACAGCACCGAC CGCTATGCCGGCATCTGCGACCCCGACGGATGCGACTTCAACTCGTACCGCCAGGGCAACAA GACCTTCTACGGCAAGGGCATGACGGTCGACACGACCAAGAAGATCACGGTCGTCACCCAG TTCCTCAAGAACTCGGCCGGCGAGCTCTCCGAGATCAAGCGGTTCTACGTCCAGAACGGCAA GGTCATCCCCAACTCCGAGTCCACCATCCCGGGCGTCGAGGGCAACTCCATCACCCAGGACT GGTGCGACCGCCAGAAGGCCGCCTTCGGCGACGTGACCGACTTCCAGGACAAGGGCGGCAT GGTCCAGATGGGCAAGGCCCTCGCGGGGCCCATGGTCCTCGTCATGTCCATCTGGGACGACC ACGCCGTCAACATGCTCTGGCTCGACTCCACCTGGCCCATCGACGGCGCCGGCAAGCCGGGC GCCGAGCGCGGTGCCTGCCCCACCACCTCGGGCGTCCCCGCTGAGGTCGAGGCCGAGGCCC CCAACTCCAACGTCATCTTCTCCAACATCCGCTTCGGCCCCATCGGCTCCACCGTCTCCGGCC TGCCCGACGGCGGCAGCGGCAACCCCAACCCGCCCGTCAGCTCGTCCACCCCGGTCCCCTCC TCGTCCACCACATCCTCCGGTTCCTCCGGCCCGACTGGCGGCACGGGTGTCGCTAAGCACTA TGAGCAATGCGGAGGAATCGGGTTCACTGGCCCTACCCAGTGCGAGAGCCCCTACACTTGCA CCAAGCTGAATGACTGGTACTCGCAGTGCCTGTAA (SEQ ID NO: 131) MYAKFATLAALVAGAAAQNACTLTAENHPSLTWSKCTSGGSCTSVQGSITIDANWRWTHRTDS ATNCYEGNKWDTSWCSDGPSCASKCCIDGADYSSTYGITTSGNSLNLKFVTKGQYSTNIGSRTY LMESDTKYQMFQLLGNEFTFDVDVSNLGCGLNGALYFVSMDADGGMSKYSGNKAGAKYGTG YCDSQCPRDLKFINGEANVENWQSSTNDANAGTGKYGSCCSEMDVWEANNMAAAFTPHPCTVI GQSRCEGDSCGGTYSTDRYAGICDPDGCDFNSYRQGNKTFYGKGMTVDTTKKITVVTQFLKNS AGELSEIKRFYVQNGKVIPNSESTIPGVEGNSITQDWCDRQKAAFGDVTDFQDKGGMVQMGKA LAGPMVLVMSIWDDHAVNMLWLDSTWPIDGAGKPGAERGACPTTSGVPAEVEAEAPNSNVIFS NIRFGPIGSTVSGLPDGGSGNPNPPVSSSTPVPSSSTTSSGSSGPTGGTGVAKHYEQCGGIGFTGPT QCESPYTCTKLNDWYSQCL (SEQ ID NO: 132) QNACTLTAENHPSLTWSKCTSGGSCTSVQGSITIDANWRWTHRTDSATNCYEGNKWDTSWCSD GPSCASKCCIDGADYSSTYGITTSGNSLNLKFVTKGQYSTNIGSRTYLMESDTKYQMFQLLGNEF TFDVDVSNLGCGLNGALYFVSMDADGGMSKYSGNKAGAKYGTGYCDSQCPRDLKFINGEANV ENWQSSTNDANAGTGKYGSCCSEMDVWEANNMAAAFTPHPCTVIGQSRCEGDSCGGTYSTDR YAGICDPDGCDFNSYRQGNKTFYGKGMTVDTTKKITVVTQFLKNSAGELSEIKRFYVQNGKVIP NSESTIPGVEGNSITQDWCDRQKAAFGDVTDFQDKGGMVQMGKALAGPMVLVMSIWDDHAVN MLWLDSTWPIDGAGKPGAERGACPTTSGVPAEVEAEAPNSNVIFSNIRFGPIGSTVSGLPDGGSG NPNPPVSSSTPVPSSSTTSSGSSGPTGGTGVAKHYEQCGGIGFTGPTQCESPYTCTKLNDWYSQCL

[0352] The polynucleotide (SEQ ID NO:133) and amino acid (SEQ ID NO:134) sequences of a M. thermophila CBH1a variant ("Variant 983") are provided below. The signal sequence is shown underlined in SEQ ID NO:134. SEQ ID NO:135 provides the sequence of this CBH1a variant, without the signal sequence.

TABLE-US-00056 (SEQ ID NO: 133) ATGTACGCCAAGTTCGCGACCCTCGCCGCCCTTGTGGCTGGCGCCGCTGCTCAGAACGCCTG CACTCTGAACGCTGAGAACCACCCCTCGCTGACGTGGTCCAAGTGCACGTCTGGCGGCAGCT GCACCAGCGTCCAGGGTTCCATCACCATCGACGCCAACTGGCGGTGGACTCACCGGACCGAT AGCGCCACCAACTGCTACGAGGGCAACAAGTGGGATACTTCGTACTGCAGCGATGGTCCTTC TTGCGCCTCCAAGTGCTGCATCGACGGCGCTGACTACTCGAGCACCTATGGCATCACCACGA GCGGTAACTCCCTGAACCTCAAGTTCGTCACCAAGGGCCAGTACTCGACCAACATCGGCTCG CGTACCTACCTGATGGAGAGCGACACCAAGTACCAGATGTTCCAGCTCCTCGGCAACGAGTT CACCTTCGATGTCGACGTCTCCAACCTCGGCTGCGGCCTCAATGGCGCCCTCTACTTCGTGTC CATGGATGCCGATGGTGGCATGTCCAAGTACTCGGGCAACAAGGCAGGTGCCAAGTACGGT ACCGGCTACTGTGATTCTCAGTGCCCCCGCGACCTCAAGTTCATCAACGGCGAGGCCAACGT AGAGAACTGGCAGAGCTCGACCAACGATGCCAACGCCGGCACGGGCAAGTACGGCAGCTGC TGCTCCGAGATGGACGTCTGGGAGGCCAACAACATGGCCGCCGCCTTCACTCCCCACCCTTG CACCGTGATCGGCCAGTCGCGCTGCGAGGGCGACTCGTGCGGCGGTACCTACAGCACCGAC CGCTATGCCGGCATCTGCGACCCCGACGGATGCGACTTCAACTCGTACCGCCAGGGCAACAA GACCTTCTACGGCAAGGGCATGACGGTCGACACGACCAAGAAGATCACGGTCGTCACCCAG TTCCTCAAGAACTCGGCCGGCGAGCTCTCCGAGATCAAGCGGTTCTACGTCCAGAACGGCAA GGTCATCCCCAACTCCGAGTCCACCATCCCGGGCGTCGAGGGCAACTCCATCACCCAGGAGT ACTGCGACCGCCAGAAGGCCGCCTTCGGCGACGTGACCGACTTCCAGGACAAGGGCGGCAT GGTCCAGATGGGCAAGGCCCTCGCGGGGCCCATGGTCCTCGTCATGTCCATCTGGGACGACC ACGCCGACAACATGCTCTGGCTCGACTCCACCTGGCCCATCGACGGCGCCGGCAAGCCGGG CGCCGAGCGCGGTGCCTGCCCCACCACCTCGGGCGTCCCCGCTGAGGTCGAGGCCGAGGCC CCCAACTCCAACGTCATCTTCTCCAACATCCGCTTCGGCCCCATCGGCTCCACCGTCTCCGGC CTGCCCGACGGCGGCAGCGGCAACCCCAACCCGCCCGTCAGCTCGTCCACCCCGGTCCCCTC CTCGTCCACCACATCCTCCGGTTCCTCCGGCCCGACTGGCGGCACGGGTGTCGCTAAGCACT ATGAGCAATGCGGAGGAATCGGGTTCACTGGCCCTACCCAGTGCGAGAGCCCCTACACTTGC ACCAAGCTGAATGACTGGTACTCGCAGTGCCTGTAA (SEQ ID NO: 134) MYAKFATLAALVAGAAAQNACTLNAENHPSLTWSKCTSGGSCTSVQGSITIDANWRWTHRTDS ATNCYEGNKWDTSYCSDGPSCASKCCIDGADYSSTYGITTSGNSLNLKFVTKGQYSTNIGSRTYL MESDTKYQMFQLLGNEFTFDVDVSNLGCGLNGALYFVSMDADGGMSKYSGNKAGAKYGTGY CDSQCPRDLKFINGEANVENWQSSTNDANAGTGKYGSCCSEMDVWEANNMAAAFTPHPCTVIG QSRCEGDSCGGTYSTDRYAGICDPDGCDFNSYRQGNKTFYGKGMTVDTTKKITVVTQFLKNSA GELSEIKRFYVQNGKVIPNSESTIPGVEGNSITQEYCDRQKAAFGDVTDFQDKGGMVQMGKALA GPMVLVMSIWDDHADNMLWLDSTWPIDGAGKPGAERGACPTTSGVPAEVEAEAPNSNVIFSNI RFGPIGSTVSGLPDGGSGNPNPPVSSSTPVPSSSTTSSGSSGPTGGTGVAKHYEQCGGIGFTGPTQC ESPYTCTKLNDWYSQCL (SEQ ID NO: 135) QNACTLNAENHPSLTWSKCTSGGSCTSVQGSITIDANWRWTHRTDSATNCYEGNKWDTSYCSD GPSCASKCCIDGADYSSTYGITTSGNSLNLKFVTKGQYSTNIGSRTYLMESDTKYQMFQLLGNEF TFDVDVSNLGCGLNGALYFVSMDADGGMSKYSGNKAGAKYGTGYCDSQCPRDLKFINGEANV ENWQSSTNDANAGTGKYGSCCSEMDVWEANNMAAAFTPHPCTVIGQSRCEGDSCGGTYSTDR YAGICDPDGCDFNSYRQGNKTFYGKGMTVDTTKKITVVTQFLKNSAGELSEIKRFYVQNGKVIP NSESTIPGVEGNSITQEYCDRQKAAFGDVTDFQDKGGMVQMGKALAGPMVLVMSIWDDHADN MLWLDSTWPIDGAGKPGAERGACPTTSGVPAEVEAEAPNSNVIFSNIRFGPIGSTVSGLPDGGSG NPNPPVSSSTPVPSSSTTSSGSSGPTGGTGVAKHYEQCGGIGFTGPTQCESPYTCTKLNDWYSQCL

[0353] The polynucleotide (SEQ ID NO:136) and amino acid (SEQ ID NO:137) sequences of wild-type M. thermophila CBH2b are provided below. The signal sequence is shown underlined in SEQ ID NO:137. SEQ ID NO:138 provides the sequence of this CBH2b, without the signal sequence.

TABLE-US-00057 (SEQ ID NO: 136) ATGGCCAAGAAGCTTTTCATCACCGCCGCGCTTGCGGCTGCCGTGTTGGCGGCCCCCGTCAT TGAGGAGCGCCAGAACTGCGGCGCTGTGTGGACTCAATGCGGCGGTAACGGGTGGCAAGGT CCCACATGCTGCGCCTCGGGCTCGACCTGCGTTGCGCAGAACGAGTGGTACTCTCAGTGCCT GCCCAACAGCCAGGTGACGAGTTCCACCACTCCGTCGTCGACTTCCACCTCGCAGCGCAGCA CCAGCACCTCCAGCAGCACCACCAGGAGCGGCAGCTCCTCCTCCTCCTCCACCACGCCCCCG CCCGTCTCCAGCCCCGTGACCAGCATTCCCGGCGGTGCGACCTCCACGGCGAGCTACTCTGG CAACCCCTTCTCGGGCGTCCGGCTCTTCGCCAACGACTACTACAGGTCCGAGGTCCACAATC TCGCCATTCCTAGCATGACTGGTACTCTGGCGGCCAAGGCTTCCGCCGTCGCCGAAGTCCCT AGCTTCCAGTGGCTCGACCGGAACGTCACCATCGACACCCTGATGGTCCAGACTCTGTCCCA GGTCCGGGCTCTCAATAAGGCCGGTGCCAATCCTCCCTATGCTGCCCAACTCGTCGTCTACG ACCTCCCCGACCGTGACTGTGCCGCCGCTGCGTCCAACGGCGAGTTTTCGATTGCAAACGGC GGCGCCGCCAACTACAGGAGCTACATCGACGCTATCCGCAAGCACATCATTGAGTACTCGG ACATCCGGATCATCCTGGTTATCGAGCCCGACTCGATGGCCAACATGGTGACCAACATGAAC GTGGCCAAGTGCAGCAACGCCGCGTCGACGTACCACGAGTTGACCGTGTACGCGCTCAAGC AGCTGAACCTGCCCAACGTCGCCATGTATCTCGACGCCGGCCACGCCGGCTGGCTCGGCTGG CCCGCCAACATCCAGCCCGCCGCCGAGCTGTTTGCCGGCATCTACAATGATGCCGGCAAGCC GGCTGCCGTCCGCGGCCTGGCCACTAACGTCGCCAACTACAACGCCTGGAGCATCGCTTCGG CCCCGTCGTACACGTCGCCTAACCCTAACTACGACGAGAAGCACTACATCGAGGCCTTCAGC CCGCTCTTGAACTCGGCCGGCTTCCCCGCACGCTTCATTGTCGACACTGGCCGCAACGGCAA ACAACCTACCGGCCAACAACAGTGGGGTGACTGGTGCAATGTCAAGGGCACCGGCTTTGGC GTGCGCCCGACGGCCAACACGGGCCACGAGCTGGTCGATGCCTTTGTCTGGGTCAAGCCCGG CGGCGAGTCCGACGGCACAAGCGACACCAGCGCCGCCCGCTACGACTACCACTGCGGCCTG TCCGATGCCCTGCAGCCTGCCCCCGAGGCTGGACAGTGGTTCCAGGCCTACTTCGAGCAGCT GCTCACCAACGCCAACCCGCCCTTCTAA (SEQ ID NO: 137) MAKKLFITAALAAAVLAAPVIEERQNCGAVWTQCGGNGWQGPTCCASGSTCVAQNEWYSQCL PNSQVTSSTTPSSTSTSQRSTSTSSSTTRSGSSSSSSTTPPPVSSPVTSIPGGATSTASYSGNPFSGVRL FANDYYRSEVHNLAIPSMTGTLAAKASAVAEVPSFQWLDRNVTIDTLMVQTLSQVRALNKAGA NPPYAAQLVVYDLPDRDCAAAASNGEFSIANGGAANYRSYIDAIRKHIIEYSDIRIILVIEPDSMAN MVTNMNVAKCSNAASTYHELTVYALKQLNLPNVAMYLDAGHAGWLGWPANIQPAAELFAGI YNDAGKPAAVRGLATNVANYNAWSIASAPSYTSPNPNYDEKHYIEAFSPLLNSAGFPARFIVDTG RNGKQPTGQQQWGDWCNVKGTGFGVRPTANTGHELVDAFVWVKPGGESDGTSDTSAARYDY HCGLSDALQPAPEAGQWFQAYFEQLLTNANPPF (SEQ ID NO: 138) APVIEERQNCGAVWTQCGGNGWQGPTCCASGSTCVAQNEWYSQCLPNSQVTSSTTPSSTSTSQR STSTSSSTTRSGSSSSSSTTPPPVSSPVTSIPGGATSTASYSGNPFSGVRLFANDYYRSEVHNLAIPS MTGTLAAKASAVAEVPSFQWLDRNVTIDTLMVQTLSQVRALNKAGANPPYAAQLVVYDLPDR DCAAAASNGEFSIANGGAANYRSYIDAIRKHIIEYSDIRIILVIEPDSMANMVTNMNVAKCSNAAS TYHELTVYALKQLNLPNVAMYLDAGHAGWLGWPANIQPAAELFAGIYNDAGKPAAVRGLATN VANYNAWSIASAPSYTSPNPNYDEKHYIEAFSPLLNSAGFPARFIVDTGRNGKQPTGQQQWGDW CNVKGTGFGVRPTANTGHELVDAFVWVKPGGESDGTSDTSAARYDYHCGLSDALQPAPEAGQ WFQAYFEQLLTNANPPF

[0354] The polynucleotide (SEQ ID NO:139) and amino acid (SEQ ID NO:140) sequences of a M. thermophila CBH2b variant ("Variant 196") are provided below. The signal sequence is shown underlined in SEQ ID NO:140. SEQ ID NO:141 provides the sequence of this CBH2b variant, without the signal sequence.

TABLE-US-00058 (SEQ ID NO: 139) ATGGCCAAGAAGCTTTTCATCACCGCCGCGCTTGCGGCTGCCGTGTTGGCGGCCCCCGTCAT TGAGGAGCGCCAGAACTGCGGCGCTGTGTGGACTCAATGCGGCGGTAACGGGTGGCAAGGT CCCACATGCTGCGCCTCGGGCTCGACCTGCGTTGCGCAGAACGAGTGGTACTCTCAGTGCCT GCCCAACAGCCAGGTGACGAGTTCCACCACTCCGTCGTCGACTTCCACCTCGCAGCGCAGCA CCAGCACCTCCAGCAGCACCACCAGGAGCGGCAGCTCCTCCTCCTCCTCCACCACGCCCACC CCCGTCTCCAGCCCCGTGACCAGCATTCCCGGCGGTGCGACCTCCACGGCGAGCTACTCTGG CAACCCCTTCTCGGGCGTCCGGCTCTTCGCCAACGACTACTACAGGTCCGAGGTCCACAATC TCGCCATTCCTAGCATGACTGGTACTCTGGCGGCCAAGGCTTCCGCCGTCGCCGAAGTCCCT AGCTTCCAGTGGCTCGACCGGAACGTCACCATCGACACCCTGATGGTCCCGACTCTGTCCCG CGTCCGGGCTCTCAATAAGGCCGGTGCCAATCCTCCCTATGCTGCCCAACTCGTCGTCTACG ACCTCCCCGACCGTGACTGTGCCGCCGCTGCGTCCAACGGCGAGTTTTCGATTGCAAACGGC GGCGCCGCCAACTACAGGAGCTACATCGACGCTATCCGCAAGCACATCATTGAGTACTCGG ACATCCGGATCATCCTGGTTATCGAGCCCGACTCGATGGCCAACATGGTGACCAACATGAAC GTGGCCAAGTGCAGCAACGCCGCGTCGACGTACCACGAGTTGACCGTGTACGCGCTCAAGC AGCTGAACCTGCCCAACGTCGCCATGTATCTCGACGCCGGCCACGCCGGCTGGCTCGGCTGG CCCGCCAACATCCAGCCCGCCGCCGAGCTGTTTGCCGGCATCTACAATGATGCCGGCAAGCC GGCTGCCGTCCGCGGCCTGGCCACTAACGTCGCCAACTACAACGCCTGGAGCATCGCTTCGG CCCCGTCGTACACGTCGCCTAACCCTAACTACGACGAGAAGCACTACATCGAGGCCTTCAGC CCGCTCTTGAACTCGGCCGGCTTCCCCGCACGCTTCATTGTCGACACTGGCCGCAACGGCAA ACAACCTACCGGCCAACAACAGTGGGGTGACTGGTGCAATGTCAAGGGCACCGGCTTTGGC GTGCGCCCGACGGCCAACACGGGCCACGAGCTGGTCGATGCCTTTGTCTGGGTCAAGCCCGG CGGCGAGTCCGACGGCACAAGCGACACCAGCGCCGCCCGCTACGACTACCACTGCGGCCTG TCCGATGCCCTGCAGCCTGCCCCCGAGGCTGGACAGTGGTTCCAGGCCTACTTCGAGCAGCT GCTCACCAACGCCAACCCGCCCTTCTAA (SEQ ID NO: 140) MAKKLFITAALAAAVLAAPVIEERQNCGAVWTQCGGNGWQGPTCCASGSTCVAQNEWYSQCL PNSQVTSSTTPSSTSTSQRSTSTSSSTTRSGSSSSSSTTPTPVSSPVTSIPGGATSTASYSGNPFSGVR LFANDYYRSEVHNLAIPSMTGTLAAKASAVAEVPSFQWLDRNVTIDTLMVPTLSRVRALNKAG ANPPYAAQLVVYDLPDRDCAAAASNGEFSIANGGAANYRSYIDAIRKHIIEYSDIRIILVIEPDSMA NMVTNMNVAKCSNAASTYHELTVYALKQLNLPNVAMYLDAGHAGWLGWPANIQPAAELFAG IYNDAGKPAAVRGLATNVANYNAWSIASAPSYTSPNPNYDEKHYIEAFSPLLNSAGFPARFIVDT GRNGKQPTGQQQWGDWCNVKGTGFGVRPTANTGHELVDAFVWVKPGGESDGTSDTSAARYD YHCGLSDALQPAPEAGQWFQAYFEQLLTNANPPF (SEQ ID NO: 141) APVIEERQNCGAVWTQCGGNGWQGPTCCASGSTCVAQNEWYSQCLPNSQVTSSTTPSSTSTSQR STSTSSSTTRSGSSSSSSTTPTPVSSPVTSIPGGATSTASYSGNPFSGVRLFANDYYRSEVHNLAIPS MTGTLAAKASAVAEVPSFQWLDRNVTIDTLMVPTLSRVRALNKAGANPPYAAQLVVYDLPDRD CAAAASNGEFSIANGGAANYRSYIDAIRKHIIEYSDIRIILVIEPDSMANMVTNMNVAKCSNAAST YHELTVYALKQLNLPNVAMYLDAGHAGWLGWPANIQPAAELFAGIYNDAGKPAAVRGLATNV ANYNAWSIASAPSYTSPNPNYDEKHYIEAFSPLLNSAGFPARFIVDTGRNGKQPTGQQQWGDWC NVKGTGFGVRPTANTGHELVDAFVWVKPGGESDGTSDTSAARYDYHCGLSDALQPAPEAGQW FQAYFEQLLTNANPPF

[0355] The polynucleotide (SEQ ID NO:142) and amino acid (SEQ ID NO:143) sequences of a M. thermophila CBH2b variant ("Variant 287") are provided below. The signal sequence is shown underlined in SEQ ID NO:143. SEQ ID NO:144 provides the sequence of this CBH2b variant, without the signal sequence.

TABLE-US-00059 (SEQ ID NO: 142) ATGGCCAAGAAGCTTTTCATCACCGCCGCGCTTGCGGCTGCCGTGTTGGCGGCCCCCGTCAT TGAGGAGCGCCAGAACTGCGGCGCTGTGTGGACTCAATGCGGCGGTAACGGGTGGCAAGGT CCCACATGCTGCGCCTCGGGCTCGACCTGCGTTGCGCAGAACGAGTGGTACTCTCAGTGCCT GCCCAACAGCCAGGTGACGAGTTCCACCACTCCGTCGTCGACTTCCACCTCGCAGCGCAGCA CCAGCACCTCCAGCAGCACCACCAGGAGCGGCAGCTCCTCCTCCTCCTCCACCACGCCCCCG CCCGTCTCCAGCCCCGTGACCAGCATTCCCGGCGGTGCGACCTCCACGGCGAGCTACTCTGG CAACCCCTTCTCGGGCGTCCGGCTCTTCGCCAACGACTACTACAGGTCCGAGGTCCACAATC TCGCCATTCCTAGCATGACTGGTACTCTGGCGGCCAAGGCTTCCGCCGTCGCCGAAGTCCCT AGCTTCCAGTGGCTCGACCGGAACGTCACCATCGACACCCTGATGGTCCCGACTCTGTCCCG CGTCCGGGCTCTCAATAAGGCCGGTGCCAATCCTCCCTATGCTGCCCAACTCGTCGTCTACG ACCTCCCCGACCGTGACTGTGCCGCCGCTGCGTCCAACGGCGAGTTTTCGATTGCAAACGGC GGCGCCGCCAACTACAGGAGCTACATCGACGCTATCCGCAAGCACATCAAGGAGTACTCGG ACATCCGGATCATCCTGGTTATCGAGCCCGACTCGATGGCCAACATGGTGACCAACATGAAC GTGGCCAAGTGCAGCAACGCCGCGTCGACGTACCACGAGTTGACCGTGTACGCGCTCAAGC AGCTGAACCTGCCCAACGTCGCCATGTATCTCGACGCCGGCCACGCCGGCTGGCTCGGCTGG CCCGCCAACATCCAGCCCGCCGCCGAGCTGTTTGCCGGCATCTACAATGATGCCGGCAAGCC GGCTGCCGTCCGCGGCCTGGCCACTAACGTCGCCAACTACAACGCCTGGAGCATCGCTTCGG CCCCGTCGTACACGTCGCCTAACCCTAACTACGACGAGAAGCACTACATCGAGGCCTTCAGC CCGCTCTTGAACGACGCCGGCTTCCCCGCACGCTTCATTGTCGACACTGGCCGCAACGGCAA ACAACCTACCGGCCAACAACAGTGGGGTGACTGGTGCAATGTCAAGGGCACCGGCTTTGGC GTGCGCCCGACGGCCAACACGGGCCACGAGCTGGTCGATGCCTTTGTCTGGGTCAAGCCCGG CGGCGAGTCCGACGGCACAAGCGACACCAGCGCCGCCCGCTACGACTACCACTGCGGCCTG TCCGATGCCCTGCAGCCTGCCCCCGAGGCTGGACAGTGGTTCCAGGCCTACTTCGAGCAGCT GCTCACCAACGCCAACCCGCCCTTCTAA (SEQ ID NO: 143) MAKKLFITAALAAAVLAAPVIEERQNCGAVWTQCGGNGWQGPTCCASGSTCVAQNEWYSQCL PNSQVTSSTTPSSTSTSQRSTSTSSSTTRSGSSSSSSTTPPPVSSPVTSIPGGATSTASYSGNPFSGVRL FANDYYRSEVHNLAIPSMTGTLAAKASAVAEVPSFQWLDRNVTIDTLMVPTLSRVRALNKAGA NPPYAAQLVVYDLPDRDCAAAASNGEFSIANGGAANYRSYIDAIRKHIKEYSDIRIILVIEPDSMA NMVTNMNVAKCSNAASTYHELTVYALKQLNLPNVAMYLDAGHAGWLGWPANIQPAAELFAG IYNDAGKPAAVRGLATNVANYNAWSIASAPSYTSPNPNYDEKHYIEAFSPLLNDAGFPARFIVDT GRNGKQPTGQQQWGDWCNVKGTGFGVRPTANTGHELVDAFVWVKPGGESDGTSDTSAARYD YHCGLSDALQPAPEAGQWFQAYFEQLLTNANPPF (SEQ ID NO: 144) APVIEERQNCGAVWTQCGGNGWQGPTCCASGSTCVAQNEWYSQCLPNSQVTSSTTPSSTSTSQR STSTSSSTTRSGSSSSSSTTPPPVSSPVTSIPGGATSTASYSGNPFSGVRLFANDYYRSEVHNLAIPS MTGTLAAKASAVAEVPSFQWLDRNVTIDTLMVPTLSRVRALNKAGANPPYAAQLVVYDLPDRD CAAAASNGEFSIANGGAANYRSYIDAIRKHIKEYSDIRIILVIEPDSMANMVTNMNVAKCSNAAS TYHELTVYALKQLNLPNVAMYLDAGHAGWLGWPANIQPAAELFAGIYNDAGKPAAVRGLATN VANYNAWSIASAPSYTSPNPNYDEKHYIEAFSPLLNDAGFPARFIVDTGRNGKQPTGQQQWGDW CNVKGTGFGVRPTANTGHELVDAFVWVKPGGESDGTSDTSAARYDYHCGLSDALQPAPEAGQ WFQAYFEQLLTNANPPF

[0356] The polynucleotide (SEQ ID NO:145) and amino acid (SEQ ID NO:146) sequences of a M. thermophila CBH2b variant ("Variant 962") are provided below. The signal sequence is shown underlined in SEQ ID NO:146. SEQ ID NO:147 provides the sequence of this CBH2b variant, without the signal sequence.

TABLE-US-00060 (SEQ ID NO: 145) ATGGCCAAGAAGCTTTTCATCACCGCCGCGCTTGCGGCTGCCGTGTTGGCGGCCCCCGTCAT TGAGGAGCGCCAGAACTGCGGCGCTGTGTGGACTCAATGCGGCGGTAACGGGTGGCAAGGT CCCACATGCTGCGCCTCGGGCTCGACCTGCGTTGCGCAGAACGAGTGGTACTCTCAGTGCCT GCCCAACAGCCAGGTGACGAGTTCCACCACTCCGTCGTCGACTTCCACCTCGCAGCGCAGCA CCAGCACCTCCAGCAGCACCACCAGGAGCGGCAGCTCCTCCTCCTCCTCCACCACGCCCACC CCCGTCTCCAGCCCCGTGACCAGCATTCCCGGCGGTGCGACCTCCACGGCGAGCTACTCTGG CAACCCCTTCTCGGGCGTCCGGCTCTTCGCCAACGACTACTACAGGTCCGAGGTCATGAATC TCGCCATTCCTAGCATGACTGGTACTCTGGCGGCCAAGGCTTCCGCCGTCGCCGAAGTCCCT AGCTTCCAGTGGCTCGACCGGAACGTCACCATCGACACCCTGATGGTCACCACTCTGTCCCA GGTCCGGGCTCTCAATAAGGCCGGTGCCAATCCTCCCTATGCTGCCCAACTCGTCGTCTACG ACCTCCCCGACCGTGACTGTGCCGCCGCTGCGTCCAACGGCGAGTTTTCGATTGCAAACGGC GGCAGCGCCAACTACAGGAGCTACATCGACGCTATCCGCAAGCACATCATTGAGTACTCGG ACATCCGGATCATCCTGGTTATCGAGCCCGACTCGATGGCCAACATGGTGACCAACATGAAC GTGGCCAAGTGCAGCAACGCCGCGTCGACGTACCACGAGTTGACCGTGTACGCGCTCAAGC AGCTGAACCTGCCCAACGTCGCCATGTATCTCGACGCCGGCCACGCCGGCTGGCTCGGCTGG CCCGCCAACATCCAGCCCGCCGCCGAGCTGTTTGCCGGCATCTACAATGATGCCGGCAAGCC GGCTGCCGTCCGCGGCCTGGCCACTAACGTCGCCAACTACAACGCCTGGAGCATCGCTTCGG CCCCGTCGTACACGCAGCCTAACCCTAACTACGACGAGAAGCACTACATCGAGGCCTTCAGC CCGCTCTTGAACTCGGCCGGCTTCCCCGCACGCTTCATTGTCGACACTGGCCGCAACGGCAA ACAACCTACCGGCCAACAACAGTGGGGTGACTGGTGCAATGTCAAGGGCACCGGCTTTGGC GTGCGCCCGACGGCCAACACGGGCCACGAGCTGGTCGATGCCTTTGTCTGGGTCAAGCCCGG CGGCGAGTCCGACGGCACAAGCGACACCAGCGCCGCCCGCTACGACTACCACTGCGGCCTG TCCGATGCCCTGCAGCCTGCCCCCGAGGCTGGACAGTGGTTCCAGGCCTACTTCGAGCAGCT GCTCACCAACGCCAACCCGCCCTTCTAA (SEQ ID NO: 146) MAKKLFITAALAAAVLAAPVIEERQNCGAVWTQCGGNGWQGPTCCASGSTCVAQNEWYSQCL PNSQVTSSTTPSSTSTSQRSTSTSSSTTRSGSSSSSSTTPTPVSSPVTSIPGGATSTASYSGNPFSGVR LFANDYYRSEVMNLAIPSMTGTLAAKASAVAEVPSFQWLDRNVTIDTLMVTTLSQVRALNKAG ANPPYAAQLVVYDLPDRDCAAAASNGEFSIANGGSANYRSYIDAIRKHIIEYSDIRIILVIEPDSMA NMVTNMNVAKCSNAASTYHELTVYALKQLNLPNVAMYLDAGHAGWLGWPANIQPAAELFAG IYNDAGKPAAVRGLATNVANYNAWSIASAPSYTQPNPNYDEKHYIEAFSPLLNSAGFPARFIVDT GRNGKQPTGQQQWGDWCNVKGTGFGVRPTANTGHELVDAFVWVKPGGESDGTSDTSAARYD YHCGLSDALQPAPEAGQWFQAYFEQLLTNANPPF (SEQ ID NO: 147) APVIEERQNCGAVWTQCGGNGWQGPTCCASGSTCVAQNEWYSQCLPNSQVTSSTTPSSTS TSQRSTSTSSSTTRSGSSSSSSTTPTPVSSPVTSIPGGATSTASYSGNPFSGVRLFANDY YRSEVMNLAIPSMTGTLAAKASAVAEVPSFQWLDRNVTIDTLMVTTLSQVRALNKAGANP PYAAQLVVYDLPDRDCAAAASNGEFSIANGGSANYRSYIDAIRKHHEYSDIRIILVIEP DSMANMVTNMNVAKCSNAASTYHELTVYALKQLNLPNVAMYLDAGHAGWLGWPANIQPAA ELFAGIYNDAGKPAAVRGLATNVANYNAWSIASAPSYTQPNPNYDEKHYIEAFSPLLNSA GFPARFIVDTGRNGKQPTGQQQWGDWCNVKGTGFGVRPTANTGHELVDAFVWVKPGGESD GTSDTSAARYDYHCGLSDALQPAPEAGQWFQAYFEQLLTNANPPF

[0357] The polynucleotide (SEQ ID NO:148) and amino acid (SEQ ID NO:149) sequences of another wild-type M. thermophila xylanase ("Xyl3") are provided below. The signal sequence is shown underlined in SEQ ID NO:149. SEQ ID NO:150 provides the sequence of this xylanase without the signal sequence.

TABLE-US-00061 (SEQ ID NO: 148) ATGCACTCCAAAGCTTTCTTGGCAGCGCTTCTTGCGCCTGCCGTCTCAGGGCAACTGAACGA CCTCGCCGTCAGGGCTGGACTCAAGTACTTTGGTACTGCTCTTAGCGAGAGCGTCATCAACA GTGATACTCGGTATGCTGCCATCCTCAGCGACAAGAGCATGTTCGGCCAGCTCGTCCCCGAG AATGGCATGAAGTGGGATGCTACTGAGCCGTCCCGTGGCCAGTTCAACTACGCCTCGGGCGA CATCACGGCCAACACGGCCAAGAAGAATGGCCAGGGCATGCGTTGCCACACCATGGTCTGG TACAGCCAGCTCCCGAGCTGGGTCTCCTCGGGCTCGTGGACCAGGGACTCGCTCACCTCGGT CATCGAGACGCACATGAACAACGTCATGGGCCACTACAAGGGCCAATGCTACGCCTGGGAT GTCATCAACGAGGCCATCAATGACGACGGCAACTCCTGGCGCGACAACGTCTTTCTCCGGAC CTTTGGGACCGACTACTTCGCCCTGTCCTTCAACCTAGCCAAGAAGGCCGATCCCGATACCA AGCTGTACTACAACGACTACAACCTCGAGTACAACCAGGCCAAGACGGACCGCGCTGTTGA GCTCGTCAAGATGGTCCAGGCCGCCGGCGCGCCCATCGACGGTGTCGGCTTCCAGGGCCACC TCATTGTCGGCTCGACCCCGACGCGCTCGCAGCTGGCCACCGCCCTCCAGCGCTTCACCGCG CTCGGCCTCGAGGTCGCCTACACCGAGCTCGACATCCGCCACTCGAGCCTGCCGGCCTCTTC GTCGGCGCTCGCGACCCAGGGCAACGACTTCGCCAACGTGGTCGGCTCTTGCCTCGACACCG CCGGCTGCGTCGGCGTCACCGTCTGGGGCTTCACCGATGCGCACTCGTGGATCCCGAACACG TTCCCCGGCCAGGGCGACGCCCTGATCTACGACAGCAACTACAACAAGAAGCCCGCGTGGA CCTCGATCTCGTCCGTCCTGGCCGCCAAGGCCACCGGCGCCCCGCCCGCCTCGTCCTCCACC ACCCTCGTCACCATCACCACCCCTCCGCCGGCATCCACCACCGCCTCCTCCTCCTCCAGTGCC ACGCCCACGAGCGTCCCGACGCAGACGAGGTGGGGACAGTGCGGCGGCATCGGATGGACGG GGCCGACCCAGTGCGAGAGCCCATGGACCTGCCAGAAGCTGAACGACTGGTACTGGCAGTG CCTG (SEQ ID NO: 149) MHSKAFLAALLAPAVSGQLNDLAVRAGLKYFGTALSESVINSDTRYAAILSDKSMFGQLVPENG MKWDATEPSRGQFNYASGDITANTAKKNGQGMRCHTMVWYSQLPSWVSSGSWTRDSLTSVIE THMNNVMGHYKGQCYAWDVINEAINDDGNSWRDNVFLRTFGTDYFALSFNLAKKADPDTKLY YNDYNLEYNQAKTDRAVELVKMVQAAGAPIDGVGFQGHLIVGSTPTRSQLATALQRFTALGLE VAYTELDIRHSSLPASSSALATQGNDFANVVGSCLDTAGCVGVTVWGFTDAHSWIPNTFPGQGD ALIYDSNYNKKPAWTSISSVLAAKATGAPPASSSTTLVTITTPPPASTTASSSSSATPTSVPTQTRW GQCGGIGWTGPTQCESPWTCQKLNDWYWQCL (SEQ ID NO: 150) QLNDLAVRAGLKYFGTALSESVINSDTRYAAILSDKSMFGQLVPENGMKWDATEPSRGQFNYAS GDITANTAKKNGQGMRCHTMVWYSQLPSWVSSGSWTRDSLTSVIETHMNNVMGHYKGQCYA WDVINEAINDDGNSWRDNVFLRTFGTDYFALSFNLAKKADPDTKLYYNDYNLEYNQAKTDRA VELVKMVQAAGAPIDGVGFQGHLIVGSTPTRSQLATALQRFTALGLEVAYTELDIRHSSLPASSS ALATQGNDFANVVGSCLDTAGCVGVTVWGFTDAHSWIPNTFPGQGDALIYDSNYNKKPAWTSI SSVLAAKATGAPPASSSTTLVTITTPPPASTTASSSSSATPTSVPTQTRWGQCGGIGWTGPTQCESP WTCQKLNDWYWQCL

[0358] The polynucleotide (SEQ ID NO:151) and amino acid (SEQ ID NO:152) sequences of a wild-type M. thermophila xylanase ("Xyl 2") are provided below. The signal sequence is shown underlined in SEQ ID NO:152. SEQ ID NO:153 provides the sequence of this xylanase without the signal sequence.

TABLE-US-00062 (SEQ ID NO: 151) ATGGTCTCGTTCACTCTCCTCCTCACGGTCATCGCCGCTGCGGTGACGACGGCCAGCCCTCTC GAGGTGGTCAAGCGCGGCATCCAGCCGGGCACGGGCACCCACGAGGGGTACTTCTACTCGT TCTGGACCGACGGCCGTGGCTCGGTCGACTTCAACCCCGGGCCCCGCGGCTCGTACAGCGTC ACCTGGAACAACGTCAACAACTGGGTTGGCGGCAAGGGCTGGAACCCGGGCCCGCCGCGCA AGATTGCGTACAACGGCACCTGGAACAACTACAACGTGAACAGCTACCTCGCCCTGTACGG CTGGACTCGCAACCCGCTGGTCGAGTATTACATCGTGGAGGCATACGGCACGTACAACCCCT CGTCGGGCACGGCGCGGCTGGGCACCATCGAGGACGACGGCGGCGTGTACGACATCTACAA GACGACGCGGTACAACCAGCCGTCCATCGAGGGGACCTCCACCTTCGACCAGTACTGGTCCG TCCGCCGCCAGAAGCGCGTCGGCGGCACTATCGACACGGGCAAGCACTTTGACGAGTGGAA GCGCCAGGGCAACCTCCAGCTCGGCACCTGGAACTACATGATCATGGCCACCGAGGGCTAC CAGAGCTCTGGTTCGGCCACTATCGAGGTCCGGGAGGCC (SEQ ID NO: 152) MVSFTLLLTVIAAAVTTASPLEVVKRGIQPGTGTHEGYFYSFWTDGRGSVDFNPGPRGSYSVTW NNVNNWVGGKGWNPGPPRKIAYNGTWNNYNVNSYLALYGWTRNPLVEYYIVEAYGTYNPSS GTARLGTIEDDGGVYDIYKTTRYNQPSIEGTSTFDQYWSVRRQKRVGGTIDTGKHFDEWKRQGN LQLGTWNYMIMATEGYQSSGSATIEVREA (SEQ ID NO: 153) MVSFTLLLTVIAAAVTTASPLEVVKRGIQPGTGTHEGYFYSFWTDGRGSVDFNPGPRGSYSVTW NNVNNWVGGKGWNPGPPRKIAYNGTWNNYNVNSYLALYGWTRNPLVEYYIVEAYGTYNPSS GTARLGTIEDDGGVYDIYKTTRYNQPSIEGTSTFDQYWSVRRQKRVGGTIDTGKHFDEWKRQGN LQLGTWNYMIMATEGYQSSGSATIEVREA

[0359] The polynucleotide (SEQ ID NO:154) and amino acid (SEQ ID NO:155) sequences of another wild-type M. thermophila xylanase ("Xyl1") are provided below. The signal sequence is shown underlined in SEQ ID NO:155. SEQ ID NO:156 provides the sequence of this xylanase without the signal sequence.

TABLE-US-00063 (SEQ ID NO: 154) ATGCGTACTCTTACGTTCGTGCTGGCAGCCGCCCCGGTGGCTGTGCTTGCCCAATCTCCTCTG TGGGGCCAGTGCGGCGGTCAAGGCTGGACAGGTCCCACGACCTGCGTTTCTGGCGCAGTATG CCAATTCGTCAATGACTGGTACTCCCAATGCGTGCCCGGATCGAGCAACCCTCCTACGGGCA CCACCAGCAGCACCACTGGAAGCACCCCGGCTCCTACTGGCGGCGGCGGCAGCGGAACCGG CCTCCACGACAAATTCAAGGCCAAGGGCAAGCTCTACTTCGGAACCGAGATCGATCACTACC ATCTCAACAACAATGCCTTGACCAACATTGTCAAGAAAGACTTTGGTCAAGTCACTCACGAG AACAGCTTGAAGTGGGATGCTACTGAGCCGAGCCGCAATCAATTCAACTTTGCCAACGCCGA CGCGGTTGTCAACTTTGCCCAGGCCAACGGCAAGCTCATCCGCGGCCACACCCTCCTCTGGC ACTCTCAGCTGCCGCAGTGGGTGCAGAACATCAACGACCGCAACACCTTGACCCAGGTCATC GAGAACCACGTCACCACCCTTGTCACTCGCTACAAGGGCAAGATCCTCCACTGGGACGTCGT TAACGAGATCTTTGCCGAGGACGGCTCGCTCCGCGACAGCGTCTTCAGCCGCGTCCTCGGCG AGGACTTTGTCGGCATCGCCTTCCGCGCCGCCCGCGCCGCCGATCCCAACGCCAAGCTCTAC ATCAACGACTACAACCTCGACATTGCCAACTACGCCAAGGTGACCCGGGGCATGGTCGAGA AGGTCAACAAGTGGATCGCCCAGGGCATCCCGATCGACGGCATCGGCACCCAGTGCCACCT GGCCGGGCCCGGCGGGTGGAACACGGCCGCCGGCGTCCCCGACGCCCTCAAGGCCCTCGCC GCGGCCAACGTCAAGGAGATCGCCATCACCGAGCTCGACATCGCCGGCGCCTCCGCCAACG ACTACCTCACCGTCATGAACGCCTGCCTCCAGGTCTCCAAGTGCGTCGGCATCACCGTCTGG GGCGTCTCTGACAAGGACAGCTGGAGGTCGAGCAGCAACCCGCTCCTCTTCGACAGCAACT ACCAGCCAAAGGCGGCATACAATGCTCTGATTAATGCCTTGTAA (SEQ ID NO: 155) MRTLTFVLAAAPVAVLAQSPLWGQCGGQGWTGPTTCVSGAVCQFVNDWYSQCVPGSSNPPTG TTSSTTGSTPAPTGGGGSGTGLHDKFKAKGKLYFGTEIDHYHLNNNALTNIVKKDFGQVTHENS LKWDATEPSRNQFNFANADAVVNFAQANGKLIRGHTLLWHSQLPQWVQNINDRNTLTQVIENH VTTLVTRYKGKILHWDVVNEIFAEDGSLRDSVFSRVLGEDFVGIAFRAARAADPNAKLYINDYN LDIANYAKVTRGMVEKVNKWIAQGIPIDGIGTQCHLAGPGGWNTAAGVPDALKALAAANVKEI AITELDIAGASANDYLTVMNACLQVSKCVGITVWGVSDKDSWRSSSNPLLFDSNYQPKAAYNA LINAL (SEQ ID NO: 156) QSPLWGQCGGQGWTGPTTCVSGAVCQFVNDWYSQCVPGSSNPPTGTTSSTTGSTPAPTGGGGS GTGLHDKFKAKGKLYFGTEIDHYHLNNNALTNIVKKDFGQVTHENSLKWDATEPSRNQFNFAN ADAVVNFAQANGKLIRGHTLLWHSQLPQWVQNINDRNTLTQVIENHVTTLVTRYKGKILHWDV VNEIFAEDGSLRDSVFSRVLGEDFVGIAFRAARAADPNAKLYINDYNLDIANYAKVTRGMVEKV NKWIAQGIPIDGIGTQCHLAGPGGWNTAAGVPDALKALAAANVKEIAITELDIAGASANDYLTV MNACLQVSKCVGITVWGVSDKDSWRSSSNPLLFDSNYQPKAAYNALINAL

[0360] The polynucleotide (SEQ ID NO:157) and amino acid (SEQ ID NO:158) sequences of another wild-type M. thermophila xylanase ("Xyl6") are provided below. The signal sequence is shown underlined in SEQ ID NO:158. SEQ ID NO:159 provides the sequence of this xylanase without the signal sequence.

TABLE-US-00064 (SEQ ID NO: 157) ATGGTCTCGCTCAAGTCCCTCCTCCTCGCCGCGGCGGCGACGTTGACGGCGGTGACGGCGCG CCCGTTCGACTTTGACGACGGCAACTCGACCGAGGCGCTGGCCAAGCGCCAGGTCACGCCC AACGCGCAGGGCTACCACTCGGGCTACTTCTACTCGTGGTGGTCCGACGGCGGCGGCCAGGC CACCTTCACCCTGCTCGAGGGCAGCCACTACCAGGTCAACTGGAGGAACACGGGCAACTTTG TCGGTGGCAAGGGCTGGAACCCGGGTACCGGCCGGACCATCAACTACGGCGGCTCGTTCAA CCCGAGCGGCAACGGCTACCTGGCCGTCTACGGCTGGACGCACAACCCGCTGATCGAGTACT ACGTGGTCGAGTCGTACGGGACCTACAACCCGGGCAGCCAGGCCCAGTACAAGGGCAGCTT CCAGAGCGACGGCGGCACCTACAACATCTACGTCTCGACCCGCTACAACGCGCCCTCGATCG AGGGCACCCGCACCTTCCAGCAGTACTGGTCCATCCGCACCTCCAAGCGCGTCGGCGGCTCC GTCACCATGCAGAACCACTTCAACGCCTGGGCCCAGCACGGCATGCCCCTCGGCTCCCACGA CTACCAGATCGTCGCCACCGAGGGCTACCAGAGCAGCGGCTCCTCCGACATCTACGTCCAGA CTCACTAG (SEQ ID NO: 158) MVSLKSLLLAAAATLTAVTARPFDFDDGNSTEALAKRQVTPNAQGYHSGYFYSWWSDGGGQA TFTLLEGSHYQVNWRNTGNFVGGKGWNPGTGRTINYGGSFNPSGNGYLAVYGWTHNPLIEYYV VESYGTYNPGSQAQYKGSFQSDGGTYNIYVSTRYNAPSIEGTRTFQQYWSIRTSKRVGGSVTMQ NHFNAWAQHGMPLGSHDYQIVATEGYQSSGSSDIYVQTH (SEQ ID NO: 159) RPFDFDDGNSTEALAKRQVTPNAQGYHSGYFYSWWSDGGGQATFTLLEGSHYQVNWRNTGNF VGGKGWNPGTGRTINYGGSFNPSGNGYLAVYGWTHNPLIEYYVVESYGTYNPGSQAQYKGSFQ SDGGTYNIYVSTRYNAPSIEGTRTFQQYWSIRTSKRVGGSVTMQNHFNAWAQHGMPLGSHDYQI VATEGYQSSGSSDIYVQTH

[0361] The polynucleotide (SEQ ID NO:160) and amino acid (SEQ ID NO:161) sequences of another wild-type M. thermophila xylanase ("Xyl5") are provided below. The signal sequence is shown underlined in SEQ ID NO:161. SEQ ID NO:162 provides the sequence of this xylanase, without the signal sequence.

TABLE-US-00065 (SEQ ID NO: 160) ATGGTTACCCTCACTCGCCTGGCGGTCGCCGCGGCGGCCATGATCTCCAGCACTGGCCTGGC TGCCCCGACGCCCGAAGCTGGCCCCGACCTTCCCGACTTTGAGCTCGGGGTCAACAACCTCG CCCGCCGCGCGCTGGACTACAACCAGAACTACAGGACCAGCGGCAACGTCAACTACTCGCC CACCGACAACGGCTACTCGGTCAGCTTCTCCAACGCGGGAGATTTTGTCGTCGGGAAGGGCT GGAGGACGGGAGCCACCAGAAACATCACCTTCTCGGGATCGACACAGCATACCTCGGGCAC CGTGCTCGTCTCCGTCTACGGCTGGACCCGGAACCCGCTGATCGAGTACTACGTGCAGGAGT ACACGTCCAACGGGGCCGGCTCCGCTCAGGGCGAGAAGCTGGGCACGGTCGAGAGCGACGG GGGCACGTACGAGATCTGGCGGCACCAGCAGGTCAACCAGCCGTCGATCGAGGGCACCTCG ACCTTCTGGCAGTACATCTCGAACCGCGTGTCCGGCCAGCGGCCCAACGGCGGCACCGTCAC CCTCGCCAACCACTTCGCCGCCTGGCAGAAGCTCGGCCTGAACCTGGGCCAGCACGACTACC AGGTCCTGGCCACCGAGGGCTGGGGCAACGCCGGCGGCAGCTCCCAGTACACCGTCAGCGG CTGA (SEQ ID NO: 161) MVTLTRLAVAAAAMISSTGLAAPTPEAGPDLPDFELGVNNLARRALDYNQNYRTSGNVNYSPT DNGYSVSFSNAGDFVVGKGWRTGATRNITFSGSTQHTSGTVLVSVYGWTRNPLIEYYVQEYTSN GAGSAQGEKLGTVESDGGTYEIWRHQQVNQPSIEGTSTFWQYISNRVSGQRPNGGTVTLANHFA AWQKLGLNLGQHDYQVLATEGWGNAGGSSQYTVSG (SEQ ID NO: 162) APTPEAGPDLPDFELGVNNLARRALDYNQNYRTSGNVNYSPTDNGYSVSFSNAGDFVVGKGWR TGATRNITFSGSTQHTSGTVLVSVYGWTRNPLIEYYVQEYTSNGAGSAQGEKLGTVESDGGTYEI WRHQQVNQPSIEGTSTFWQYISNRVSGQRPNGGTVTLANHFAAWQKLGLNLGQHDYQVLATE GWGNAGGSSQYTVSG

[0362] The polynucleotide (SEQ ID NO:163) and amino acid (SEQ ID NO:164) sequences of a wild-type M. thermophila beta-xylosidase are provided below. The signal sequence is shown underlined in SEQ ID NO:164. SEQ ID NO:165 provides the sequence of this xylanase without the signal sequence.

TABLE-US-00066 (SEQ ID NO: 163) ATGTTCTTCGCTTCTCTGCTGCTCGGTCTCCTGGCGGGCGTGTCCGCTTCACCGGGACACGGG CGGAATTCCACCTTCTACAACCCCATCTTCCCCGGCTTCTACCCCGATCCGAGCTGCATCTAC GTGCCCGAGCGTGACCACACCTTCTTCTGTGCCTCGTCGAGCTTCAACGCCTTCCCGGGCATC CCGATTCATGCCAGCAAGGACCTGCAGAACTGGAAGTTGATCGGCCATGTGCTGAATCGCA AGGAACAGCTTCCCCGGCTCGCTGAGACCAACCGGTCGACCAGCGGCATCTGGGCACCCAC CCTCCGGTTCCATGACGACACCTTCTGGTTGGTCACCACACTAGTGGACGACGACCGGCCGC AGGAGGACGCTTCCAGATGGGACAATATTATCTTCAAGGCAAAGAATCCGTATGATCCGAG GTCCTGGTCCAAGGCCGTCCACTTCAACTTCACTGGCTACGACACGGAGCCTTTCTGGGACG AAGATGGAAAGGTGTACATCACCGGCGCCCATGCTTGGCATGTTGGCCCATACATCCAGCAG GCCGAAGTCGATCTCGACACGGGGGCCGTCGGCGAGTGGCGCATCATCTGGAACGGAACGG GCGGCATGGCTCCTGAAGGGCCGCACATCTACCGCAAAGATGGGTGGTACTACTTGCTGGCT GCTGAAGGGGGGACCGGCATCGACCATATGGTGACCATGGCCCGGTCGAGAAAAATCTCCA GTCCTTACGAGTCCAACCCAAACAACCCCGTGTTGACCAACGCCAACACGACCAGTTACTTT CAAACCGTCGGGCATTCAGACCTGTTCCATGACAGACATGGGAACTGGTGGGCAGTCGCCCT CTCCACCCGCTCCGGTCCAGAATATCTTCACTACCCCATGGGCCGCGAGACCGTCATGACAG CCGTGAGCTGGCCGAAGGACGAGTGGCCAACCTTCACCCCCATATCTGGCAAGATGAGCGG CTGGCCGATGCCTCCTTCGCAGAAGGACATTCGCGGAGTCGGCCCCTACGTCAACTCCCCCG ACCCGGAACACCTGACCTTCCCCCGCTCGGCGCCCCTGCCGGCCCACCTCACCTACTGGCGA TACCCGAACCCGTCCTCCTACACGCCGTCCCCGCCCGGGCACCCCAACACCCTCCGCCTGAC CCCGTCCCGCCTGAACCTGACCGCCCTCAACGGCAACTACGCGGGGGCCGACCAGACCTTCG TCTCGCGCCGGCAGCAGCACACCCTCTTCACCTACAGCGTCACGCTCGACTACGCGCCGCGG ACCGCCGGGGAGGAGGCCGGCGTGACCGCCTTCCTGACGCAGAACCACCACCTCGACCTGG GCGTCGTCCTGCTCCCTCGCGGCTCCGCCACCGCGCCCTCGCTGCCGGGCCTGAGTAGTAGT ACAACTACTACTAGTAGTAGTAGTAGTCGTCCGGACGAGGAGGAGGAGCGCGAGGCGGGCG AAGAGGAAGAAGAGGGCGGACAAGACTTGATGATCCCGCATGTGCGGTTCAGGGGCGAGTC GTACGTGCCCGTCCCGGCGCCCGTCGTGTACCCGATACCCCGGGCCTGGAGAGGCGGGAAG CTTGTGTTAGAGATCCGGGCTTGTAATTCGACTCACTTCTCGTTCCGTGTCGGGCCGGACGGG AGACGGTCTGAGCGGACGGTGGTCATGGAGGCTTCGAACGAGGCCGTTAGCTGGGGCTTTA CTGGAACGCTGCTGGGCATCTATGCGACCAGTAATGGTGGCAACGGAACCACGCCGGCGTA TTTTTCGGATTGGAGGTACACACCATTGGAGCAGTTTAGGGAT (SEQ ID NO: 164) MFFASLLLGLLAGVSASPGHGRNSTFYNPIFPGFYPDPSCIYVPERDHTFFCASSSFNAFPGIPIHAS KDLQNWKLIGHVLNRKEQLPRLAETNRSTSGIWAPTLRFHDDTFWLVTTLVDDDRPQEDASRW DNIIFKAKNPYDPRSWSKAVHFNFTGYDTEPFWDEDGKVYITGAHAWHVGPYIQQAEVDLDTG AVGEWRIIWNGTGGMAPEGPHIYRKDGWYYLLAAEGGTGIDHMVTMARSRKISSPYESNPNNP VLTNANTTSYFQTVGHSDLFHDRHGNWWAVALSTRSGPEYLHYPMGRETVMTAVSWPKDEWP TFTPISGKMSGWPMPPSQKDIRGVGPYVNSPDPEHLTFPRSAPLPAHLTYWRYPNPSSYTPSPPGH PNTLRLTPSRLNLTALNGNYAGADQTFVSRRQQHTLFTYSVTLDYAPRTAGEEAGVTAFLTQNH HLDLGVVLLPRGSATAPSLPGLSSSTTTTSSSSSRPDEEEEREAGEEEEEGGQDLMIPHVRFRGESY VPVPAPVVYPIPRAWRGGKLVLEIRACNSTHFSFRVGPDGRRSERTVVMEASNEAVSWGFTGTL LGIYATSNGGNGTTPAYFSDWRYTPLEQFRD (SEQ ID NO: 165) SPGHGRNSTFYNPIFPGFYPDPSCIYVPERDHTFFCASSSFNAFPGIPIHASKDLQNWKLIGHVLNR KEQLPRLAETNRSTSGIWAPTLRFHDDTFWLVTTLVDDDRPQEDASRWDNIIFKAKNPYDPRSW SKAVHFNFTGYDTEPFWDEDGKVYITGAHAWHVGPYIQQAEVDLDTGAVGEWRIIWNGTGGM APEGPHIYRKDGWYYLLAAEGGTGIDHMVTMARSRKISSPYESNPNNPVLTNANTTSYFQTVGH SDLFHDRHGNWWAVALSTRSGPEYLHYPMGRETVMTAVSWPKDEWPTFTPISGKMSGWPMPP SQKDIRGVGPYVNSPDPEHLTFPRSAPLPAHLTYWRYPNPSSYTPSPPGHPNTLRLTPSRLNLTAL NGNYAGADQTFVSRRQQHTLFTYSVTLDYAPRTAGEEAGVTAFLTQNHHLDLGVVLLPRGSAT APSLPGLSSSTTTTSSSSSRPDEEEEREAGEEEEEGGQDLMIPHVRFRGESYVPVPAPVVYPIPRAW RGGKLVLEIRACNSTHFSFRVGPDGRRSERTVVMEASNEAVSWGFTGTLLGIYATSNGGNGTTP AYFSDWRYTPLEQFRD

[0363] The polynucleotide (SEQ ID NO:166) and amino acid (SEQ ID NO:167) sequences of a wild-type M. thermophila acetylxylan esterase ("Axe3") are provided below. The signal sequence is shown underlined in SEQ ID NO:167. SEQ ID NO:168 provides the sequence of this acetylxylan esterase without the signal sequence.

TABLE-US-00067 (SEQ ID NO: 166) ATGAAGCTCCTGGGCAAACTCTCGGCGGCACTCGCCCTCGCGGGCAGCAGGCTGGCTGCCGC GCACCCGGTCTTCGACGAGCTGATGCGGCCGACGGCGCCGCTGGTGCGCCCGCGGGCGGCC CTGCAGCAGGTGACCAACTTTGGCAGCAACCCGTCCAACACGAAGATGTTCATCTACGTGCC CGACAAGCTGGCCCCCAACCCGCCCATCATAGTGGCCATCCACTACTGCACCGGCACCGCCC AGGCCTACTACTCGGGCTCCCCTTACGCCCGCCTCGCCGACCAGAAGGGCTTCATCGTCATC TACCCGGAGTCCCCCTACAGCGGCACCTGTTGGGACGTCTCGTCGCGCGCCGCCCTGACCCA CAACGGCGGCGGCGACAGCAACTCGATCGCCAACATGGTCACCTACACCCTCGAAAAGTAC AATGGCGACGCCAGCAAGGTCTTTGTCACCGGCTCCTCGTCCGGCGCCATGATGACGAACGT GATGGCCGCCGCGTACCCGGAACTGTTCGCGGCAGGAATCGCCTACTCGGGCGTGCCCGCCG GCTGCTTCTACAGCCAGTCCGGAGGCACCAACGCGTGGAACAGCTCGTGCGCCAACGGGCA GATCAACTCGACGCCCCAGGTGTGGGCCAAGATGGTCTTCGACATGTACCCGGAATACGAC GGCCCGCGCCCCAAGATGCAGATCTACCACGGCTCGGCCGACGGCACGCTCAGACCCAGCA ACTACAACGAGACCATCAAGCAGTGGTGCGGCGTCTTCGGCTTCGACTACACCCGCCCCGAC ACCACCCAGGCCAACTCCCCGCAGGCCGGCTACACCACCTACACCTGGGGCGAGCAGCAGC TCGTCGGCATCTACGCCCAGGGCGTCGGACACACGGTCCCCATCCGCGGCAGCGACGACAT GGCCTTCTTTGGCCTGTGA (SEQ ID NO: 167) MKLLGKLSAALALAGSRLAAAHPVFDELMRPTAPLVRPRAALQQVTNFGSNPSNTKMFIYVPDK LAPNPPIIVAIHYCTGTAQAYYSGSPYARLADQKGFIVIYPESPYSGTCWDVSSRAALTHNGGGDS NSIANMVTYTLEKYNGDASKVFVTGSSSGAMMTNVMAAAYPELFAAGIAYSGVPAGCFYSQSG GTNAWNSSCANGQINSTPQVWAKMVFDMYPEYDGPRPKMQIYHGSADGTLRPSNYNETIKQW CGVFGFDYTRPDTTQANSPQAGYTTYTWGEQQLVGIYAQGVGHTVPIRGSDDMAFFGL (SEQ ID NO: 168) HPVFDELMRPTAPLVRPRAALQQVTNFGSNPSNTKMFIYVPDKLAPNPPIIVAIHYCTGTAQAYY SGSPYARLADQKGFIVIYPESPYSGTCWDVSSRAALTHNGGGDSNSIANMVTYTLEKYNGDASK VFVTGSSSGAMMTNVMAAAYPELFAAGIAYSGVPAGCFYSQSGGTNAWNSSCANGQINSTPQV WAKMVFDMYPEYDGPRPKMQIYHGSADGTLRPSNYNETIKQWCGVFGFDYTRPDTTQANSPQ AGYTTYTWGEQQLVGIYAQGVGHTVPIRGSDDMAFFGL

[0364] The polynucleotide (SEQ ID NO:169) and amino acid (SEQ ID NO:170) sequences of a wild-type M. thermophila ferulic acid esterase ("FAE") are provided below. The signal sequence is shown underlined in SEQ ID NO:170. SEQ ID NO:171 provides the sequence of this xylanase without the signal sequence

TABLE-US-00068 (SEQ ID NO: 169) ATGATCTCGGTTCCTGCTCTCGCTCTGGCCCTTCTGGCCGCCGTCCAGGTCGTCGAGTCTGCC TCGGCTGGCTGTGGCAAGGCGCCCCCTTCCTCGGGCACCAAGTCGATGACGGTCAACGGCAA GCAGCGCCAGTACATTCTCCAGCTGCCCAACAACTACGACGCCAACAAGGCCCACAGGGTG GTGATCGGGTACCACTGGCGCGACGGATCCATGAACGACGTGGCCAACGGCGGCTTCTACG ATCTGCGGTCCCGGGCGGGCGACAGCACCATCTTCGTTGCCCCCAACGGCCTCAATGCCGGA TGGGCCAACGTGGGCGGCGAGGACATCACCTTTACGGACCAGATCGTAGACATGCTCAAGA ACGACCTCTGCGTGGACGAGACCCAGTTCTTTGCTACGGGCTGGAGCTATGGCGGTGCCATG AGCCATAGCGTGGCTTGTTCTCGGCCAGACGTCTTCAAGGCCGTCGCGGTCATCGCCGGGGC CCAGCTGTCCGGCTGCGCCGGCGGCACGACGCCCGTGGCGTACCTAGGCATCCACGGAGCC GCCGACAACGTCCTGCCCATCGACCTCGGCCGCCAGCTGCGCGACAAGTGGCTGCAGACCA ACGGCTGCAACTACCAGGGCGCCCAGGACCCCGCGCCGGGCCAGCAGGCCCACATCAAGAC CACCTACAGCTGCTCCCGCGCGCCCGTCACCTGGATCGGCCACGGGGGCGGCCACGTCCCCG ACCCCACGGGCAACAACGGCGTCAAGTTTGCGCCCCAGGAGACCTGGGACTTCTTTGATGCC GCCGTCGGAGCGGCCGGCGCGCAGAGCCCGATGACATAA (SEQ ID NO: 170) MISVPALALALLAAVQVVESASAGCGKAPPSSGTKSMTVNGKQRQYILQLPNNYDANKAHRVV IGYHWRDGSMNDVANGGFYDLRSRAGDSTIFVAPNGLNAGWANVGGEDITFTDQIVDMLKNDL CVDETQFFATGWSYGGAMSHSVACSRPDVFKAVAVIAGAQLSGCAGGTTPVAYLGIHGAADNV LPIDLGRQLRDKWLQTNGCNYQGAQDPAPGQQAHIKTTYSCSRAPVTWIGHGGGHVPDPTGNN GVKFAPQETWDFFDAAVGAAGAQSPMT (SEQ ID NO: 171) ASAGCGKAPPSSGTKSMTVNGKQRQYILQLPNNYDANKAHRVVIGYHWRDGSMNDVANGGFY DLRSRAGDSTIFVAPNGLNAGWANVGGEDITFTDQIVDMLKNDLCVDETQFFATGWSYGGAMS HSVACSRPDVFKAVAVIAGAQLSGCAGGTTPVAYLGIHGAADNVLPIDLGRQLRDKWLQTNGC NYQGAQDPAPGQQAHIKTTYSCSRAPVTWIGHGGGHVPDPTGNNGVKFAPQETWDFFDAAVG AAGAQSPMT

Example 1

Gene Acquisition and Construction of Expression Vectors

[0365] A protein from a strain of M. thermophila having the amino acid sequence provided in SEQ ID NO:2 was previously identified as having GH61 activity. It was designated "GH61a". FIG. 1 shows the improvement in glucose yield resulting from having GH61a present in a reaction where crystalline cellulose undergoes saccharification by cellulase enzymes that are contained in culture broth from M. thermophila cells.

[0366] In this Example, the wild type GH61a gene from M. thermophila was isolated from the genome and the DNA sequence verified. The gene was cloned into a Saccharomyces cerevisiae/M. thermophila shuttle vector pYTDX60 using Pml1 cloning sites, using standard methods known in the art. The signal peptide and gene were under the control of a yeast transcription elongation factor 1 promoter (pTEF1). The vector contained the REP2, rep1 and protein D (partial) origin of replication for S. cerevisiae and a URA3 resistance marker.

[0367] The resulting plasmid (pYTDX60-GH61a) was transformed into S. cerevisiae INVSC1 strain and the transformed host cells were grown in Costar 96 deep well plates for GH61a protein production. The GH61a sequence from the transformants were verified as the wild type GH61a DNA sequence (SEQ ID NO:1) and the encoded polypeptide (SEQ ID NO:2).

Example 2

Shake Flask Procedure

[0368] A single colony of S. cerevisiae containing a plasmid with the GH61a gene was inoculated into 3 mL synthetic defined-uracil (SD-ura) broth (2 g/L synthetic drop-out minus uracil without yeast nitrogen base (US Biological), 5 g/L ammonium sulfate, 0.1 g/L calcium chloride, 2 mg/L inositol, 0.5 g/L magnesium sulfate, 1 g/L potassium phosphate monobasic (KH.2PO4), 0.1 g/L sodium chloride) containing 6% glucose. Cells were grown overnight (at least 21 hrs) in an incubator at 30.degree. C. with shaking at 250 rpm. Then, 500 .mu.L of the overnight culture was diluted into either 50 mL SD-ura medium or modified galactose expression medium (30 g/L galactose, 6.7 g/L yeast nitrogen base without amino acids, 5 g/L ammonium sulfate, 24 g/L amino acid mix minus uracil, 10 g/L potassium phosphate monobasic (KH.sub.2PO.sub.4) and 0.38% vitamin mix) containing 2% glucose in a 250 mL baffled sterile shake flask and incubated at 37.degree. C. (for SD-ura medium) or 30.degree. C. (for modified galactose expression medium) for 48 hours. Cells were pelleted by centrifugation (4000 rpm, 15 min, 4.degree. C.). The clear media supernatant containing the secreted GH61a enzyme was collected and stored at 4.degree. C. until used.

Example 3

GH61 Activity Assays

[0369] In some experiments, GH61 activity was determined using a biomass assay. The substrate was wheat straw that had been pretreated under acidic conditions (hereinafter referred to as "pretreated wheat straw"). The reaction was carried out in a total volume of 77 .mu.L in the presence of 10 mg of pre-treated wheat straw, with 62 .mu.L of 1x-20x concentrated clear media supernatant ("broth") containing S. cerevisiae-produced M. thermophila GH61a enzyme and 15 .mu.L of sodium acetate buffer (pH 5.0), M. thermophila-produced cellobiohydrolase 1a (CBH1a), cellobiohydrolase 2b (CBH2b) and beta-glucosidase. The final concentration of sodium acetate was 150 mM and the enzyme loads of CBHs and beta-glucosidase were approximately 0.0025%.about.0.0125% (CBH1a and CBH2b in 1:1 ratio) and 0.01 to 0.02% with respect to substrate glucan mass in the biomass substrate, respectively.

[0370] Some experiments were also performed in the presence of inhibitors that may arise through the routine preparation or pre-treatment of a cellulose substrate. In this way, GH61 protein variants can be identified that are more resistant to the presence of such inhibitors, and therefore find use with a wider range of feedstocks and have wider applicability in the processing of biomass from different sources.

[0371] In some experiments, the pretreatment filtrate was obtained by washing pretreated substrate solids with water. The GH61 activity assay was carried out with 50 .mu.L of GH61a containing supernatant, 12 .mu.L of pretreatment filtrate, and 15 .mu.L of sodium acetate buffer mixed with CBH1a, CBH2b and beta-glucosidase isolated from M. thermophila. Background negative controls were obtained by using media supernatant from cultures of cells without the GH61a gene in the plasmid. Thus, the negative controls represent activities of CBH1a, CBH2b and beta-glucosidase in the absence of GH61a. The reaction was incubated at 50 to 60.degree. C. for 24 to 72 hours with shaking, and then quenched by adding 130 .mu.L H.sub.2O at room temperature.

[0372] Some experiments were carried out in a total volume of 360 .mu.L in the presence of 10 mg of pre-treated wheat straw and 40 .mu.L filtrate (11% total volume), with 262 .mu.L of clear media supernatant containing S. cerevisiae-produced M. thermophila GH61a enzyme and 48 .mu.L of sodium acetate buffer (pH 5; supplemented with CuSO.sub.4) mixed with M. thermophila-produced CBH1a, CBH2b and .beta.-glucosidase. The final concentrations of sodium acetate and CuSO.sub.4 were 128 mM and 15 .mu.M, respectively, and the enzyme loads of CBH's and beta-glucosidase were 0.01% (CBH1a and CBH2b in 1:1 ratio) and 0.02% with respect to substrate glucan mass in the biomass substrate, respectively. Background negative controls were obtained by using media supernatant from cultures of S. cerevisiae cells without the GH61a gene in the plasmid. Thus, the negative controls represent glucose production by CBH1a, CBH2b and beta-glucosidase in the absence of GH61a. The reaction was incubated at 55.degree. C. for 72 hours with shaking.

[0373] The GH61 activity in the reaction mixture was measured by monitoring glucose production, as determined using an enzymatic glucose assay kit (K-GLUC, Megazyme). In a total volume of 200 .mu.L, 20 .mu.L of GH61a reaction mixture was added to 180 .mu.L of 2x concentrated glucose determination reagent (GOPOD Reagent.TM., supplied as part of the K-GLUC assay kit). The reaction was incubated at room temperature for 30 minutes and the absorbance of the solution was measured at 510 nm. The glucose oxidase enzyme in the GOPOD reagent reacts with glucose and produces hydrogen peroxide, which then reacts with the 4-aminoantipyrine in the reagent to produce a quinoneimine dye. The amount of quinoneimine dye was measured spectrophotometrically at 510 nm to calculate the total amount of D-glucose in the reaction mixture. The total amount of glucose in the reaction mixture was also measured using an AGILENT.RTM. HPLC 1200 equipped with an AMINEX.TM. HPX-87H ion exclusion column (300 mm.times.7.8 mm+Bio-Rad) with 5 mM sulfuric acid in water as eluent at a flow rate of 0.6 mL/min at 65.degree. C. The retention time of glucose was 9.5 minutes.

[0374] Detectable amounts of glucose, as a measure of GH61 activity, were observed under high throughput screening conditions (pH 5, 55.degree. C.). GH61a specific activity in the reaction mixture (which also comprised CBH1a, CBH2b and beta-glucosidase) was determined by subtracting the amount of glucose in the negative control reaction (comprising CBH1a, CBH2b and BGL, but not GH61a) from the total glucose measurement.

Example 4

High Throughput Assays to Identify Improved GH61a Variants

[0375] Plasmid libraries containing variant GH61a genes were transformed into S. cerevisiae INVSC1 strain and plated on SD-ura agar plate containing 2% glucose. After incubation for at least 48 hours at 30.degree. C., colonies were picked using a Q-bot.RTM. robotic colony picker (Genetix) into shallow, 96-well well microtiter plates containing 200 .mu.L SD-ura media and 6% glucose. Cells were grown for at least 21 hours at 30.degree. C. with shaking at 250 rpm and 85% humidity. Then, 20 .mu.L of the overnight culture was transferred into 96-deep well microtiter plates containing 380 .mu.L SD-ura medium with 2% glucose as described in Example 2. In some cases, 15 .mu.L of the overnight culture was transferred into 96-deep well microtiter plates containing 285 .mu.L modified galactose expression medium with 2% glucose as described in Example 2. The plates were incubated at 37.degree. C. (for SD-ura medium) or 30.degree. C. (for modified galactose expression medium) with shaking at 250 rpm and 85% humidity for 48 hours. The deep well plates were centrifuged at 4000 rpm for 15 minutes and the clear media supernatant containing the secreted GH61a enzyme was used for the high throughput biomass assay.

[0376] The GH61a libraries were screened for thermoactivity using a biomass-based high throughput method using the assays described in Example 3.

Example 5

Improved GH61 Activity of Engineered GH61a Variants

[0377] Improved GH61a variants were identified from the high throughput screening of various GH61a variant libraries as described in the previous Example. The screening was done by measuring thermoactivity of these variants compared with that of the parental GH61a enzyme (expressed from GH61a DNA; SEQ ID NO:1). The high throughput (HTP) saccharification reactions were conducted at pH 5, 55.degree. C. for 24-72 hrs, using 50 g/L pretreated wheat straw, 0.0025-0.01% of mixture of CBH1a and CBH2b (1:1 ratio), and 0.01 to 0.02% of beta-glucosidase.

Example 6

Shake Flask Validation of Improved GH61a Variants

[0378] Improved GH61a variants identified in the high throughput screening (as described in the previous Example) were prepared using the shake flask procedure described above. GH61 activities were determined using a biomass assay as described above, in which normalized concentrations of GH61a variants were used for direct comparison of the specific activities of the GH61a variants. Reactions were quenched at different time points between 24 to 72 hours and glucose levels measured for time-course analysis. FIG. 2 shows time course results for three GH61a variants. FIG. 2 also shows specific activities observed under the following assay conditions: pH 5.0, and 55.degree. C., utilizing 50 g/L pretreated wheat straw, 0.0025%.about.0.0125% of mixture of CBH1a and CBH2b (1:1 ratio) and 0.01 to 0.02% of beta-galactosidase. The protein concentration was normalized in reactions. In this Figure, N=3; error bars represent .+-.1 standard deviation. GH61 activity is shown as the increase in glucose production by the enzyme combination [CBH1a+CBH2b+BGL1] supplemented by the GH61 protein, minus the glucose production by the same enzyme combination in the absence of the GH61 protein.

[0379] The results show that Variants 5 and 9 (SEQ ID NOS:6 and 8) have a 2.0 to 2.9 fold improvement over the native GH61a (SEQ ID NO:2); and Variant 1 has a 3.0 to 3.9 fold improvement over GH61a (SEQ ID NO:2).

[0380] Substitutions improving GH61 activity are compiled in Table 6-1 below. This table shows GH61a variants derived from the native GH61a enzyme (SEQ ID NO:2) that were shown to have improved thermoactivity. Improvement in GH61 activity in relation to the parental GH61a protein (SEQ ID NO:2) is indicated with the following scale:

[0381] +=1.1 to 1.9 fold improvement compared with wild-type (SEQ ID NO:2)

[0382] ++=2.0 to 2.9 fold improvement compared with wild-type

[0383] +++=3.0 to 3.9 fold improvement compared with wild-type

TABLE-US-00069 TABLE 6-1 GH61 Variants with Improved Activity Improvement Var. Silent Nucleotide in GH61 No. Amino Acid Changes Changes Activity 1 N35G/E104H/A168P t60c/c573g +++ (SEQ ID NO: 4) 2 W42P/E104H/K167A t60c/c573g/g1026a ++ 3 N35G/W42P/V97Q/A191N ++ 4 W42P/E104H c573g ++ 5 E104H/K167A t60c/c291a/c573g ++ 6 W42P/A191N t60c/c291a ++ 7 N35G/W42P/A191N t60c/c291a ++ 8 H20D ++ 9 V97Q/A191N ++ 10 N35G/E104H/A191N t60c/c876t ++ 11 E104H ++ 12 E104Q + 13 H20D/E104D/Q190H/Y192H + 14 H20D/Q190E/Y192Q a312g + 15 H20D/E104C + 16 H20D/P103H/E104C + 17 H20D/P103H a312g + 18 N35G/E104H t60c/c573g + 19 H20D/P103H/E104Q/Q190E + 20 H20D/P103H/E104C/Y192Q + 21 E104D t60c + 22 N35G/W42P t60c/c573g + 23 A137P + 24 H20D/P103H/E104Q + 25 P103E/E104D t60c + 26 N35G/F68Y/A191N t379a/c380g/g381c + 27 W42P/A168P + 28 H20D/E104C/Q190E/Y192Q + 29 A142W + 30 N35G + 31 H20C/Q190E + 32 W42P/A212P/T236P + 33 N35G/W42P/V97Q/K167A/ t60c/c573g + A168P 34 V97Q/A168P c573g + 35 S232A + 36 W42P/E104H/K167A/A168P/ c573g + Q190E 37 W42P/A168P/A212P/T236P + 38 N35G/V97Q/K167A + 39 N35G/V97Q + 40 N35G/A191N + 41 S127T/K167A/A191N + 42 W42P + 43 W42P/E104C/K167A/A168P t60c/c291a/c573g + 44 K167Q + 45 W131V + 46 E176C + 47 K167I/P273S c300t + 48 W42P/T87P + 49 W42P/A212P + 50 K133H + 51 D165N + 52 D165A + 53 A168D + 54 K218T + 55 P45T + 56 Q44V + 57 S164W + 58 I177F + 59 A191N + 60 I134P + 61 K133F + 62 I134D + 63 N35G/K167A t60c/c291a/c573g + 64 I162R + 65 N35G/K167A t204c/t379a/c380g/ + g381c/c385t 66 D165W/A246T + 67 I162L + 68 S164M + 69 F132D/A244D + 70 H181Q + 71 I177G g1026a + 72 L166W + 73 I162F + 74 I134V + 75 E176Q + 76 H181S + 77 I178A + 78 K167A + 79 V172K + 80 I177H + 81 I134N + 82 K133Y + 83 N35G/Y139L + 84 A168G + 85 T12A/I162G c246t + 86 D165E + 87 D165M + 88 I134M + 89 A168P + 90 I177D + 91 S164P + 92 H175T + 93 N187K/S330R c597g + 94 H175R + 95 L166H + 96 I178L + 97 L173H + 98 I177T + 99 N170Y + 100 H175S + 101 K167T + 102 L166R + 103 V172Y + '104 P163S/E176D + 105 S164I + 106 H175M + 107 A168N + 108 A179W + 109 W131K/H175Q g1026a + 110 Y171A + 111 N170H + 112 P163R + 113 A168C + 114 G169T + 115 R174F + 116 W131Y + 117 I134L + 118 I177V + 119 K167E + 120 H175C + 121 W131I + 122 W42P/A143P + 123 I178G c72t + 124 N170P + 125 A179D/N317K c732g/c843t/c882t/ + c909t/c912g 126 I162V + 127 I178M + 128 V172A + 129 K167A/A191N t60c/c291a + 130 F132A + 131 P163E + 132 F132M + 133 A179G + 134 I177S + 135 K167A g921a + 136 K167F + 137 A168I + 138 A179N + 139 I134A c792t + 140 K167E g972t + 141 R174K + 142 S164F + 143 V172L + 144 A168H + 145 I134T + 146 K167H + 147 L166A + 148 S164R + 149 R174C + 150 A179P + 151 G169R g1026a + 152 L173M + 153 D165K + 154 E176S + 155 F132L + 156 F132I/A179I + 157 F132P + 158 S164Q + 159 V172Q + 160 W131D + 161 W131Q + 162 A179H + 163 I134H/G270S + 164 N170G + 165 A168T + 166 A179C + 167 K133N + 168 K167L + 169 L180M + 170 W131F + 171 I134W g1026a + 172 I178H + 173 N170A + 174 V172H + 175 A168H/S205N + 176 I134H g921a + 177 S164C + 178 S164K + 179 I177C + 180 I178Q + 181 L180W + 182 I177M + 183 R174D + 184 V172M + 185 A179M + 186 H175Y + 187 I178P + 188 L173A + 189 N170E + 190 N170F + 191 N35G/A191N/T258I/T323P/ t379a/c380g/g381c/ + G328A/C341R c454a/c456a/c732t/ c843t/c849t 192 A168R + 193 D165I + 194 I162M + 195 K167V + 196 A179S + 197 E176N + 198 I134L/P322L + 199 P163L + 200 H181D + 201 N170S + 202 R174G + 203 I177R + 204 K167C + 205 L166Q + 206 P163I + 207 S164L/L166I + 208 Y171R + 209 F132P/Q190E/A191T + 210 F132Q + 211 I134C + 212 I177A + 213 E176R + 214 G169A + 215 G169K + 216 H181A + 217 I177L + 218 A168G + 219 A179R + 220 D165T + 221 K167R + 222 L166V + 223 N170C + 224 I178R + 225 R174H + 226 S164H + 227 W131R/L166I + 228 I162A/A191T + 229 L173F + 230 N170Q + 231 I177P + 232 R174N + 233 V172K/S215W + 234 D165R + 235 G239D c520a/c522g + 236 H175V +

237 H181R + 238 I134Y + 239 V172F + 240 V172G +

[0384] Table 6-2 shows GH61a variants derived from the GH61a protein designated "Variant 1" in Table 6-1 with improved thermoactivity. The second-round variants usually retained the alterations of Variant 1 compared with wild-type GH61a (N35G/E104H/A168P), along with additional alterations. Improvement in GH61 activity in relation to Variant 1 (SEQ ID NO:4) is indicated in Table 6-2 according to the following scale:

[0385] *=0.5 to 1.0 fold improvement compared with Variant 1 (SEQ ID NO:4)

[0386] +=1.1 to 1.9 fold improvement compared with Variant 1;

[0387] ++=2.0 to 2.9 fold improvement compared with Variant 1

TABLE-US-00070 TABLE 6-2 GH61 Variants with Improved Activity Compared to Variant 1 Silent Variant Nucleotide GH61 Activity Number Amino Acid Changes Changes Improvement 241 N35G/T40A/E104H/A168P/P327M t60c/c573g ++ 242 N35G/P45D/E104H/A168P/N317R t60c/c573g ++ 243 N35G/E104H/A168P/N317R t60c/c573g + 244 N35G/E104H/A168P/N317L t60c/c573g + 245 N35G/T54H/E104H/A168P t60c/c573g + 246 N35G/E104H/A168P/N317D/S329Y t60c/c573g + 247 N35G/E104H/A137S/A168P/S232E t60c/c573g + 248 N35G/E104H/A168P/N317R/T320A t60c/c573g + 249 N35G/E104H/A168P/D234E t60c/c573g + 250 N35G/T40S/E104H/A142G/A168P t60c/c573g + 251 N35G/T40S/S78C/V88I/E104H/S128K/ t60c/c573g + A168P/D234M 252 N35G/E104H/A168P/S330V t60c/c573g + 253 N35G/E104H/A168P/G203E/P266S t60c/c573g + 254 N35G/E104H/A168P/D234N t60c/c573g + 255 N35G/E104H/A168P/S286N/S329H t60c/c573g + 256 N35G/E104H/A168P/S330H t60c/c573g + 257 N35G/E104H/A168P/W337R t60c/c573g + 258 N35G/N66D/E104H/S164E/A168P/G267T t60c/c573g + 259 N35G/E104H/A168P/P233V t60c/c573g + 260 R34E/N35G/E104H/R145T/A168P t60c/c573g + 261 S24Q/N35G/E104H/A168P/V237I t60c/c573g + 262 Y32S/N35G/E64S/E104H/A168P t60c/c573g + 263 N35G/E104H/A168P/V333R t60c/c573g + 264 N35G/E104H/G144S/A168P/V333Q t60c/c573g + 265 V28H/N35G/P45K/E104H/A168P t60c/c573g + 266 N35G/E104H/A168P/P327K t60c/c573g + 267 N35G/N66Q/E104H/A168P t60c/c573g + 268 N35G/E104H/A168P/G203E t60c/c573g + 269 N35G/E104H/A168P/S339W t60c/c573g + 270 N35G/P45K/N46E/E104H/A150Y/A168P t60c/c573g + 271 N35G/E104H/R130S/A168P t60c/c573g + 272 N35G/E104H/R145T/A168P t60c/c573g/g891a + 273 N35G/E104H/A168P/S231K t60c/c573g + 274 N35G/T40A/E104H/A168P/D234E/P327M t60c/c573g + 275 N35G/E104H/A168P/S231H t60c/c573g + 276 N35G/E104H/A168P/N317M t60c/c573g + 277 N35G/E104H/A168P/S330Y t60c/c573g + 278 N35G/E104H/A168P/S329I t60c/c573g + 279 N35G/E104H/A168P/S329R t60c/c573g + 280 N35G/N66D/E104H/A168P/P322R/S329L t60c/c573g + 281 N35G/E104H/A168P/P327F t60c/c288t/c573g + 282 N35G/P45D/E104H/A168P t60c/c573g + 283 N35G/E104H/A168P/S332R t60c/c573g + 284 N35G/E104H/A116S/A168P t60c/c573g + 285 N35G/T40A/E104H/A168P/V230I/P327M t60c/c573g + 286 N35G/T49A/E104H/A168P t60c/c573g + 287 N35G/E104H/A168P/N317T t60c/c573g + 288 N35G/N46Y/E104H/A168P t60c/c573g + 289 N35G/E104H/A168P/G203V t60c/c573g + 290 N35G/E104H/A168P/S329L t60c/c573g + 291 N35G/E104H/R145N/A168P/S329H t60c/c573g + 292 N35G/A56S/E104H/A168P t60c/c573g + 293 N35G/T40S/T49R/E104H/A168P/D234E/ t60c/c573g + P327M 294 N35G/E104H/Q161R/A168P t60c/c573g + 295 N35G/E104H/A168P/S332F t60c/c573g + 296 N35G/P45R/T49A/E104H/A168P/N317R/ t60c/c573g + T320A 297 N35G/E104H/A168P/V237I t60c/c573g + 298 N35G/Q44K/T80V/E104H/A168P t60c/c573g + 299 N35G/E104H/A168P/E336S t60c/c573g + 300 N35G/E104H/A168P/P233T t60c/c573g + 301 N35G/E104H/A168P/S329Y t60c/c573g + 302 N35G/E104H/A168P/P327L t60c/c573g + 303 N35G/E104H/A168P/N317I t60c/c573g + 304 N35G/E104H/R130H/A168P t60c/c573g + 305 N35G/Q44K/E104H/A168P t60c/c573g + 306 N35G/N66D/E104H/A168P t60c/c573g + 307 N35G/E104H/A168P/S329V t60c/c573g + 308 N35G/E104H/A168P/W337F t60c/c573g + 309 N35G/E104H/A168P/N317H t60c/c573g + 310 N35G/T40L/E104H/S128K/A168P t60c/c573g + 311 N35G/E104H/A168P/A326V t60c/c573g + 312 N35G/T80V/E104H/A168P/P303T t60c/c573g + 313 N35G/E104H/A168P/S231A/S295L t60c/c573g + 314 N35G/E104H/A116Q/A168P t60c/c573g + 315 N35G/E104H/A168P/S330C t60c/c573g + 316 N35G/T40S/E101T/E104H/A168P/P327M t60c/c573g + 317 N35G/E104H/A168P/A326Q t60c/c573g + 318 N35G/N46R/E104H/A168P t60c/c573g + 319 N35G/P45K/E104H/A168P/A219R/S232E t60c/c573g + 320 S24Q/N35G/E104H/A168P/V237I/P303T t60c/c573g + 321 N35G/E104H/A168P/G203E/T281A t60c/c573g + 322 N35G/A56N/E104H/A168P t60c/c573g + 323 N35G/E104H/A168P/E336G t60c/c573g + 324 N35G/E104H/A168P/E336R t60c/c573g + 325 N35G/T40S/E104H/S128K/A142G/A168P t60c/c573g + 326 N35G/Q44K/S67T/E104H/A168P t60c/c198t/c573g + 327 N35G/E104H/A168P/N317A t60c/c573g + 328 N35G/E104H/G155N/A168P t60c/c573g + 329 N35G/E104H/Q161E/A168P t60c/c573g + 330 N35G/E104H/N118S/A168P t60c/c573g + 331 N35G/P45T/V97Q/E104H/A168P/G267S t60c/c573g + 332 V28H/N35G/E104H/A168P t60c/c573g + 333 N35G/E104H/A168P/Q184L t60c/c573g + 334 N35G/E104H/A168P/N317V t60c/c573g + 335 N35G/Q44L/E104H/A168P t60c/c573g + 336 N35G/E104H/A168P/S330G t60c/c573g + 337 N35G/E104H/A168P/T320A/V333W t60c/c573g + 338 N35G/E104H/A168P/E336A t60c/c573g + 339 N35G/E104H/A168P/N335S t60c/c573g + 340 N35G/N66M/E104H/A168P t60c/c573g + 341 N35G/T54G/E104H/A168P t60c/c573g + 342 N35G/E104H/A168P/N317S t60c/c573g + 343 N35G/E64L/E104H/A168P t60c/c573g + 344 N35G/E104H/S164E/A168P/A271T t60c/c573g + 345 N35G/N66A/E104H/A168P t60c/c573g + 346 N35G/G83R/E104H/A168P t60c/c573g + 347 N35G/E104H/A168P/N317Q/T320A t60c/c573g + 348 N35G/E104H/K141A/A168P t60c/c573g + 349 N35G/P71T/E104H/A168P t60c/c573g + 350 N35G/P71S/E104H/A168P t60c/c573g + 351 N35G/E104H/R130G/A168P t60c/c573g + 352 N35G/E104H/R145Q/A168P t60c/c573g + 353 N35G/T70A/E104H/A168P t60c/c573g + 354 N35G/E104H/A168P/K218R t60c/c573g + 355 N35G/E104H/A168P/Q184E t60c/c573g + 356 N35G/E104H/R130K/A168P t60c/c573g + 357 N35G/Q58H/E104H/A168P t60c/c573g + 358 Y32S/N35G/E104H/A168P t60c/c573g + 359 N35G/E104H/A168P/S329T t60c/c573g + 360 N35G/E104H/A168P/S330I t60c/c573g + 361 Y32S/N35G/P71A/E104H/A168P t60c/c573g + 362 N35G/E104H/A168P/S330T t60c/c573g + 363 N35G/G82A/E104H/A168P t60c/c573g + 364 N35G/T80V/E104H/A168P t60c/c573g + 365 N35G/E104H/A168P/S295T t60c/c573g + 366 N35G/N66G/E104H/A168P t60c/c573g + 367 N35G/E104H/R145L/A168P t60c/c573g + 368 N35G/S67H/E104H/A168P/V230M t60c/c573g + 369 N35G/E104H/G136E/A168P t60c/c573g + 370 N35G/T54S/E104H/A168P t60c/c573g + 371 N35G/P45S/E104H/A168P t60c/c573g + 372 N35G/E104H/A168P/A326M t60c/c573g/c882t + 373 N35G/N66D/N95E/E104H/S164E/A168P/ t60c/c573g + G267D 374 N35G/E104H/A168P/S332C t60c/c573g + 375 N35G/E104H/S128L/A168P t60c/c573g + 376 N35G/T54W/E104H/A168P t60c/c573g + 377 N35G/E104H/A168P/G268A/G269A/G270A t60c/c573g + 378 N35G/Q44K/E104H/A168P/S231T t60c/c573g + 379 R34E/N35G/E104H/A168P/A280D t60c/c573g + 380 N35G/E104H/A168P/A297T t60c/g399a/c573g + 381 N35G/E104H/K141P/R145Q/A168P t60c/c573g + 382 N35G/P45E/E104H/K141R/A168P t60c/c573g + 383 N35G/N66T/E104H/A168P t60c/c573g + 384 N35G/E104H/S164E/A168P/S295D t60c/c573g + 385 N35G/E104H/A168P/N317F t60c/c573g + 386 N35G/E104H/A168P/N317Q t60c/c573g + 387 N35G/T40G/T49R/S78C/E104H/A142G/ t60c/c573g + A168P 388 N35G/G82S/E104H/A168P t60c/c573g + 389 N35G/Q58P/E104H/A168P t60c/c573g + 390 N35G/N46R/E104H/A168P/G203E/A263V t60c/c573g + 391 N35G/P45R/E104H/A168P t60c/c573g + 392 N35G/S67G/E104H/A168P t60c/c573g + 393 N35G/E104H/A168P/R199E t60c/c573g + 394 N35G/G69T/E104H/A168P t60c/c573g + 395 N35G/E104H/A168P/G203E/G268A/G269A/ t60c/c573g + G270A 396 N35G/E104H/A168P/P266S t60c/c573g + 397 N35G/E104H/A168P/V324M t60c/c573g + 398 N35G/E104H/A168P/G245A t60c/c573g + 399 N35G/N66R/E104H/A168P t60c/c573g + 400 N35G/E104H/A168P/T236E t60c/c573g + 401 S24Q/N35G/Q44K/T80H/E104H/A168P t60c/c573g + 402 N35G/E104H/S128D/A168P t60c/c573g + 403 N35G/N66D/S78D/E104H/A168P/S253D t60c/c573g + 404 N35G/E104H/R130Y/A168P t60c/c573g + 405 N35G/E104H/A168P/K310I t60c/c573g + 406 N35G/E104H/R145E/A168P t60c/c573g + 407 N35G/N66D/E104H/S164E/A168P/S282D t60c/c573g + 408 N35G/E104H/K141P/A168P t60c/c573g + 409 N35G/E104H/A168P/Q184R t60c/c573g + 410 N35G/E104H/A168P/S231T t60c/c573g + 411 N35G/N66V/E104H/A168P t60c/c573g + 412 N35G/E104H/A142L/A168P t60c/c573g + 413 N35G/E104H/R145H/A168P t60c/c573g + 414 N35G/E104H/A168P/K218L t60c/c573g + 415 N35G/E104H/K141T/A168P t60c/c573g + 416 N35G/E104H/A168P/P233F t60c/c573g + 417 N35G/T40S/E104H/A168P/P327M t60c/c573g + 418 N35G/T54M/E104H/A168P t60c/c573g + 419 S24T/N35G/E104H/S164E/A168P t60c/c573g + 420 N35G/P45T/E104H/A168P t60c/c573g + 421 N35G/N66D/E104H/S164E/A168P/S231T/ t60c/c573g + S253T 422 N35G/G69H/E104H/A168P t60c/c573g + 423 N35G/E104H/S128Y/A168P t60c/c573g + 424 N35G/T49Q/E104H/A168P t60c/c573g + 425 N35G/T49A/E104H/A168P/Q184H t60c/c573g + 426 N35G/E104H/A168P/G203Y t60c/c573g + 427 N35G/Q44K/N66V/E104H/A168P t60c/c573g + 428 N35G/E104H/A137M/A168P t60c/c573g + 429 N35G/E104H/A168P/P327C t60c/c573g + 430 N35G/E104H/A168P/T236R t60c/c573g + 431 N35G/I51A/E104H/A168P t60c/c573g + 432 N35G/S67H/E104H/A168P t60c/c573g + 433 N35G/E104H/A168P/A326C t60c/c573g + 434 N35G/T49A/E104H/S128N/A168P t60c/c573g + 435 N35G/T49R/E104H/A168P/K218L/N317Q t60c/c573g + 436 N35G/E104H/A168P/P266S/G267V t60c/c573g + 437 N35G/E104H/A168P/V237I/P303T t60c/c573g + 438 N35G/T49E/E104H/A168P t60c/c573g + 439 N35G/P45R/E104H/A168P/T320A t60c/c573g + 440 N35G/N66L/E104H/A168P t60c/c573g + 441 N35G/P45R/E104H/A168P/K218L/N317Q t60c/c573g + 442 N35G/E104H/R145V/A168P t60c/c573g + 443 N35G/N66D/E104H/A168P/R290K t60c/c573g + 444 N35G/T80L/E104H/A168P t60c/c573g + 445 N35G/A55G/E104H/A168P t60c/c573g + 446 N35G/E104H/A168P/S330A t60c/c573g + 447 N35G/E104H/K141N/A168P/P266S t60c/c573g + 448 N35G/E104H/A142S/A168P t60c/c573g + 449 N35G/E104H/A168P/Q184G t60c/c573g + 450 N35G/E104H/N118E/A168P t60c/c573g + 451 N35G/E104H/A168P/A212M t60c/c573g + 452 N35G/E104H/A168P/G267D t60c/c573g + 453 N35G/K93N/E104H/R130Y/A168P t60c/c573g + 454 N35G/P45R/T49Y/E104H/A168P/N317D t60c/c573g + 455 N35G/E104H/A168P/S329Q t60c/c573g + 456 N35G/E104H/A168P/V230Q t60c/c573g + 457 N35G/P45K/E104H/A168P/A219R t60c/c573g + 458 N35G/E104H/A142G/A168P t60c/c573g + 459 N35G/E104H/A168P/S205T t60c/c573g + 460 N35G/S78D/E104H/S164E/A168P t60c/c573g + 461 N35G/E104H/R130E/A168P t60c/c573g + 462 N35G/E104H/A168P/Q184H t60c/c573g + 463 N35G/E104H/A116P/A168P t60c/c573g + 464 N35G/E104H/A142D/A168P t60c/c573g + 465 V28H/N35G/N46E/Q58H/E104H/A168P t60c/c573g + 466 N35G/E104H/A168P/A280T t60c/c573g + 467 R34E/N35G/E104H/A168P/A280T t60c/c573g + 468 N35G/E104H/A168P/E336L t60c/c573g + 469 N35G/T49D/E104H/A168P t60c/c573g + 470 N35G/E104H/A168P/A219T t60c/c573g + 471 N35G/E104H/A142W/A168P t60c/c573g + 472 N35G/E104H/A168P/P303T/G305D t60c/c573g + 473 N35G/Q44V/E104H/A168P t60c/c573g + 474 N35G/E104H/A168P/N187D t60c/c573g + 475 N35G/E104H/G136H/A168P t60c/c573g + 476 S24Q/N35G/Q44K/E104H/A168P/P303T/ t60c/c573g +

S332D 477 N35G/E104H/A168P/Q184N t60c/c573g + 478 N35G/E104H/A168P/S332L t60c/c573g + 479 S24T/N35G/N66D/S78D/E104H/A168P/ t60c/c573g + S205T/S253T 480 N35G/E104H/A168P/P327A t60c/c573g + 481 N35G/T40A/T49Q/S78C/E104H/A168P t60c/c573g + 482 N35G/T40L/E104H/A142G/A168P t60c/c573g + 483 N35G/T49Y/E104H/A168P/N317R t60c/c573g + 484 R34E/N35G/K93T/E104H/R130E/R145T/ t60c/c573g + A168P/R199E/K218T/A280D

Example 7

Selection of Further GH61 Candidates for Strain Improvement

[0388] This example illustrates the selection of potential candidates to further improve whole cellulase broth activity of M. thermophila cultures on different types of pretreated substrates like pretreated corn stover and pretreated wheat straw.

[0389] In this Example, M. thermophila-produced and purified GH61a, GH61p, GH61f, GH61n, CBH1a, CBH2b, AXE3, FAE, and Xyl3, were used to supplement the activity present in culture broths (i.e., "whole broth cellulase base") of the M. thermophila strain CF-416 prepared using standard methods known in the art. The broth cellulase base was fixed to 0.5% protein and the single purified enzyme was added at 0.4% (wt added protein/wt glucan) to the saccharification reactions. The whole cellulase broth base and individual enzymes were characterized by standard BCA assays for total protein quantification.

[0390] The saccharification reactions were carried out at 74 g/L glucan load of pretreated wheat straw (PWS) or pretreated corn stover (PCS) at pH 5.0, 55.degree. C. at 950 rpm in the presence of 50 .mu.M copper in high throughput (HTP) 96 deep well plates. Glucose analysis was carried out by the glucose oxidase assay as described above. In each case, the fold improvement was calculated using the formula Fold Improvement=[Total Glucose Production with addition of 0.4% single enzyme to the whole cellulase broth base]/[glucose production from the 0.5% whole cellulase broth base]. The results are provided in Table 10-1. In this Table, the fold improvements were ranked from 0 to 3; fold improvements less than 1.2x are indicated by "0," fold improvements of >1.2 to <1.5 are indicated by "1," fold improvements of .gtoreq.1.5.times. to <1.7.times. improvements are indicated by "2," and fold improvements .gtoreq.1.7 are indicated by "3."

[0391] As indicated by the results in the Table, the greatest benefit was observed using GH61p on pre-treated corn stover (PCS), and GH61a on pre-treated wheatstraw (PWS), indicating that GH61 activity is increases the cellulolytic activity of the reaction mix. In addition to the enzymes listed in Table 10-1, EG1b, Xyl1, Xyl6, beta-xylosidase, and another xylanase were also tested, but did not show any improvement under the test conditions.

TABLE-US-00071 TABLE 7-1 Fold Improvement Fold Improvement Over Fold Improvement Whole Cellulase Broth Over Whole Cellulase Tested on PCS Broth Tested on PWS Whole broth cellulases 1 1 from CF-416 CBH1a 1 3 CBH2b 1 1 GH61a 2 3 GH61p 3 2 GH61f 1 1 GH61n 1 1 AXE3 0 1 FAE 1 1 Xyl3 0 1

Example 8

Improvement of GH61 Activity by Copper(II) Ions

[0392] This example illustrates the enhancement in GH61 activity with the addition of copper(II) ion to the saccharification reaction.

[0393] Purified M. thermophila-produced GH61a or S. cerevisiae supernatant containing M. thermophila-GH61a was pre-incubated with different amounts of copper(II) (CuSO.sub.4) at concentrations of 0 to 100 .mu.M at ambient temperature for 30 min. The biomass assay was then performed in a total volume of 300 .mu.L, in the presence of 10 mg of pre-treated wheat straw, using 261 .mu.L of copper-treated GH61 samples, 39 .mu.L of sodium acetate buffer (pH 5), M. thermophila-produced CBH1a, CBH2b and .beta.-glucosidase. The final concentration of sodium acetate was 120 mM and the enzyme loads of CBHs and .beta.-glucosidase (CBH1a and CBH2b in 1:1 ratio) were 0.01% and 0.02% with respect to substrate glucan mass in the biomass substrate, respectively. Background (negative) controls were obtained by using either water or media supernatant from cultures of S. cerevisiae cells without the GH61a gene in the plasmid. Thus, the negative controls represent activities of CBH1a, CBH2b and beta-glucosidase in the absence of GH61a. The reaction was incubated at 55.degree. C. for 72 hours with shaking. The GH61a activity in the reaction mixture was measured by monitoring glucose production using a glucose oxidase/peroxidase-based glucose assay.

[0394] Some experiments were also performed without pre-incubating GH61 with copper(II), but instead, by directly adding different amounts of copper(II) (CuSO.sub.4) to the biomass assay reactions as described herein.

[0395] FIG. 3 shows activity of M. thermophila-GH61a pre-incubated with different amounts of copper(II) ion. Biomass assays were performed with (A) S. cerevisiae-produced M. thermophila GH61a Variant 5, and (B) M. thermophila-produced wild-type GH61a. Glucose production after 72 h incubation at pH 5, 55.degree. C. was determined by the glucose assay. The data in this Figure indicate GH61a-only activity, in which the amount of glucose produced in control reaction containing CBH and .beta.-glucosidase was subtracted from the total amount of glucose produced in the reactions with GH61a. In this Figure, N=4; and the error bars represent .+-.1 standard deviation. Copper concentrations shown are with respect to the total reaction volume.

[0396] The results indicate that the activities of M. thermophila-produced GH61a and S. cerevisiae supernatant containing M. thermophila-GH61a are improved by pre-incubation with copper(II) ions under the conditions tested. Similar results were obtained when copper(II) was directly added to the biomass assay reactions.

Example 9

Further Evaluation of Copper Requirements in Saccharification Reactions

[0397] This Example describes experiments designed to determine the effects of added copper in saccharification reactions. The saccharification reactions were run in 30 g shake flasks (250 mL flasks) using 82 g/kg glucan of acid-pretreated corn stover and whole broth enzymes produced by M. thermophila strain CF-416 (produced using standard methods known in the art) at a 0.81% total enzyme load with respect to glucan. The reactions were conducted at pH 5.0 or pH 6.0, 55.degree. C. and 250 rpm mixing, with supplementation of either 0 or 50 .mu.M CuSO.sub.4, copper(II) with respect to the total reaction volume. A pH trim was also performed using 2M NaOH at time intervals of 1, 4, 7, 22, 24 29, 46, 52, 70, 75 and 96 hrs, to maintain the pH at the desired value of pH 5.0 or pH 6.0. Samples were removed at 72 hours and the total amount of glucose in the reaction mixture was determined using standard HPLC methods and equipment as known in the art. The results indicated that under the conditions described herein, the effect of copper is dependent on saccharification pH. As shown in FIG. 4, Panel A, at a saccharification pH of pH 5.0, the addition of copper caused an increase in glucose yields by .about.3.5% while this effect was not observed when the saccharification was carried out at pH 6.0. Also, the addition of copper may cause a decrease in the total amounts of C5 sugars that are produced as shown in FIG. 4, Panel B.

Example 10

Effect of Reducing Agents on the Cellulolytic Activity of GH61a

[0398] This Example provides experiments conducted to determine the effect of adding reducing agents (e.g., gallic acid and ascorbic acid) to saccharification reactions. In these experiments, enhancement of GH61 activity was tested using Variant 1 (SEQ ID NO:5) in the presence of reducing agents (specifically, ascorbic acid or gallic acid) and pretreatment filtrate, which contains various reducing agents from lignin degradation. Reactions were performed on cellulosic substrates, AVICEL.RTM. PH microcrystalline cellulose and phosphoric acid swollen cellulose (PASC), with purified M. thermophila-produced GH61 Variant 1 and beta-glucosidase at 0.3% and 0.08% respectively, with respect to substrate glucan mass, and 128 mM sodium acetate buffer (pH 5) supplemented with 30 .mu.M CuSO.sub.4. Thus, reactions were performed with 0.3% GH61a and 0.08% BGL, where % enzyme loads are with respect to substrate glucan mass (36 g/L AVICEL.RTM. cellulose and 5 g/L PASC). Background (negative) controls were beta-glucosidase-only reactions tested in the absence of GH61a. Glucose production after 48 h incubation at pH 5, 55.degree. C. was determined by glucose oxidase/peroxidase-based or HPLC-based glucose assay glucose assay, using methods known in the art.

[0399] FIG. 5 shows the activity of M. thermophila-produced GH61a Variant 1 on cellulosic substrates in the presence of ascorbic acid, gallic acid and pretreatment filtrate. Panel A shows the results for AVICEL.RTM. PH microcrystalline cellulose and Panel B shows the results for PASC. GH61-only activity is also shown, these results were obtained by subtracting the amount of glucose produced in the beta-glucosidase-only control reaction from the total amount of glucose produced in the reaction that included GH61a. Filtrate dilutions are indicated in this Figure, where undiluted filtrate equals 72% of the total reaction volume. In this Figure, N=4; and the error bars represent .+-.1 standard deviation.

[0400] The results indicate that supplementing the GH61a reaction with gallic acid improved the GH61 activity in generating soluble sugars from AVICEL.RTM. cellulose and PASC, which were then hydrolyzed by beta-glucosidase to generate glucose monomers. The improvement was also observed with diluted pretreatment filtrate, which suggests that the filtrate may contain gallic acid or gallic acid-like reductants that can beneficially impact GH61 activity.

Example 11

Evaluation of Oxygen Limitation in Saccharification Reactions

[0401] This example describes experiments conducted to determine if oxygen is a limiting factor in saccharification reactions. To investigate the level of oxygen required in the overall saccharification efficiency, two shake flask reactions were performed, in which one was left closed throughout the 72 hour reaction, while the other was opened at 4 hrs and 24 hrs for 10 seconds to provide fresh air. The reactions were run in 30 g shake flasks (250 mL flasks) using 87 g/kg glucan and M. thermophila CF-416 whole broth cellulases. The total protein content in each reaction was 0.81% total enzyme load with respect to glucan. The reactions were conducted at pH 5.0, 55.degree. C. and 250 rpm mixing, with supplementation of 50 .mu.M CuSO.sub.4. Samples were removed at 72 hours and glucose yields were measured by monitoring glucose production using a glucose oxidase/peroxidase-based glucose assay. The results indicated that under the reaction conditions tested, oxygen was not a limiting factor as the two reactions (control vs. the reaction with air supplemented) yielded similar levels of glucose.

Example 12

Enhancement of Saccharification Efficiency by Addition of Surfactants

[0402] This example illustrates the enhancement of overall saccharification yield with the addition of surfactants such as TWEEN.RTM.-20 and PEG-4000. Experiments were designed to monitor the enhancement in cellulase activity with different concentrations of TWEEN.RTM.-20 or PEG-4000 in the biomass assay. The biomass assay was performed in a total volume of 90 .mu.L, including 10 mg of pre-treated wheat straw, 64.8 .mu.L (72% by volume) of filtrate (or H.sub.2O for no filtrate conditions), and 11.6 .mu.L of a mixture of sodium acetate buffer (pH 5.0, supplemented with CuSO.sub.4), M. thermophila-produced cellobiohydrolase 1a (CBH1a), cellobiohydrolase 2b (CBH2b), beta-glucosidase (BGL), and glycoside hydrolase type 61 (GH61a). The final concentration of sodium acetate was 128 mM (with 30 .mu.M CuSO.sub.4) and the enzyme loads of CBH1a, CBH2b, BGL and GH61a were 0.15%, 0.15%, 0.08% and 0.3% with respect to the substrate glucan mass in the biomass substrate, respectively. Water was used in place of the enzymes as a negative control. Herein, "1.times. filtrate" indicates 72% of filtrate (i.e., the filtered liquid portion of pre-treated substrate) in the total reaction volume. The amount of glucose in the filtrate background was subtracted from the test data (N=2; Error bars in the Figures represent .+-.1 standard deviation). The reaction was incubated at 55.degree. C. for 72 hours at pH 5, with shaking at 950 rpm, then was quenched by adding 180 .mu.L of water. The total cellulase activity in the reaction mixture was measured by monitoring glucose production using a glucose oxidase/peroxidase-based glucose assay as known in the art. The results indicate that the total glucose production in the saccharification reaction was enhanced with the addition of TWEEN.RTM.-20 or PEG-4000.

[0403] FIG. 6, Panel A, shows enzymatic hydrolysis activity of the cellulase mixture in the presence of TWEEN.RTM.-20. Data shown are total glucose produced by a mixture of GH61a, CBH1a, CBH2b, and BGL at 0.3%, 0.15%, 0.15%, and 0.08% with respect to the substrate glucan mass in the biomass substrate, respectively. In this Figure, TWEEN.RTM.-20 concentrations are expressed as % total reaction volume.

[0404] FIG. 6, Panel B, shows enzymatic hydrolysis activity of the cellulase mixture in the presence of PEG-4000. In this Figure, PEG-4000 concentrations are expressed as % total reaction volume.

[0405] While the invention has been described with reference to the specific embodiments, various changes can be made and equivalents can be substituted to adapt to a particular situation, material, composition of matter, process, process step or steps, thereby achieving benefits of the invention without departing from the scope of what is claimed.

[0406] For all purposes in the United States of America, each and every publication and patent document cited in this disclosure is incorporated herein by reference as if each such publication or document was specifically and individually indicated to be incorporated herein by reference. Citation of publications and patent documents is not intended as an indication that any such document is pertinent prior art, nor does it constitute an admission as to its contents or date.

Sequence CWU 1

1

17111029DNAMyceliophthora thermophila 1atgtccaagg cctctgctct cctcgctggc ctgacgggcg cggccctcgt cgctgcacat 60ggccacgtca gccacatcgt cgtcaacggc gtctactaca ggaactacga ccccacgaca 120gactggtacc agcccaaccc gccaacagtc atcggctgga cggcagccga tcaggataat 180ggcttcgttg aacccaacag ctttggcacg ccagatatca tctgccacaa gagcgccacc 240cccggcggcg gccacgctac cgttgctgcc ggagacaaga tcaacatcgt ctggaccccc 300gagtggcccg aatcccacat cggccccgtc attgactacc tagccgcctg caacggtgac 360tgcgagaccg tcgacaagtc gtcgctgcgc tggttcaaga ttgacggcgc cggctacgac 420aaggccgccg gccgctgggc cgccgacgct ctgcgcgcca acggcaacag ctggctcgtc 480cagatcccgt cggatctcaa ggccggcaac tacgtcctcc gccacgagat catcgccctc 540cacggtgctc agagccccaa cggcgcccag gcctacccgc agtgcatcaa cctccgcgtc 600accggcggcg gcagcaacct gcccagcggc gtcgccggca cctcgctgta caaggcgacc 660gacccgggca tcctcttcaa cccctacgtc tcctccccgg attacaccgt ccccggcccg 720gccctcattg ccggcgccgc cagctcgatc gcccagagca cgtcggtcgc cactgccacc 780ggcacggcca ccgttcccgg cggcggcggc gccaacccta ccgccaccac caccgccgcc 840acctccgccg ccccgagcac caccctgagg acgaccacta cctcggccgc gcagactacc 900gccccgccct ccggcgatgt gcagaccaag tacggccagt gtggtggcaa cggatggacg 960ggcccgacgg tgtgcgcccc cggctcgagc tgctccgtcc tcaacgagtg gtactcccag 1020tgtttgtaa 10292342PRTMyceliophthora thermophila 2Met Ser Lys Ala Ser Ala Leu Leu Ala Gly Leu Thr Gly Ala Ala Leu 1 5 10 15 Val Ala Ala His Gly His Val Ser His Ile Val Val Asn Gly Val Tyr 20 25 30 Tyr Arg Asn Tyr Asp Pro Thr Thr Asp Trp Tyr Gln Pro Asn Pro Pro 35 40 45 Thr Val Ile Gly Trp Thr Ala Ala Asp Gln Asp Asn Gly Phe Val Glu 50 55 60 Pro Asn Ser Phe Gly Thr Pro Asp Ile Ile Cys His Lys Ser Ala Thr 65 70 75 80 Pro Gly Gly Gly His Ala Thr Val Ala Ala Gly Asp Lys Ile Asn Ile 85 90 95 Val Trp Thr Pro Glu Trp Pro Glu Ser His Ile Gly Pro Val Ile Asp 100 105 110 Tyr Leu Ala Ala Cys Asn Gly Asp Cys Glu Thr Val Asp Lys Ser Ser 115 120 125 Leu Arg Trp Phe Lys Ile Asp Gly Ala Gly Tyr Asp Lys Ala Ala Gly 130 135 140 Arg Trp Ala Ala Asp Ala Leu Arg Ala Asn Gly Asn Ser Trp Leu Val 145 150 155 160 Gln Ile Pro Ser Asp Leu Lys Ala Gly Asn Tyr Val Leu Arg His Glu 165 170 175 Ile Ile Ala Leu His Gly Ala Gln Ser Pro Asn Gly Ala Gln Ala Tyr 180 185 190 Pro Gln Cys Ile Asn Leu Arg Val Thr Gly Gly Gly Ser Asn Leu Pro 195 200 205 Ser Gly Val Ala Gly Thr Ser Leu Tyr Lys Ala Thr Asp Pro Gly Ile 210 215 220 Leu Phe Asn Pro Tyr Val Ser Ser Pro Asp Tyr Thr Val Pro Gly Pro 225 230 235 240 Ala Leu Ile Ala Gly Ala Ala Ser Ser Ile Ala Gln Ser Thr Ser Val 245 250 255 Ala Thr Ala Thr Gly Thr Ala Thr Val Pro Gly Gly Gly Gly Ala Asn 260 265 270 Pro Thr Ala Thr Thr Thr Ala Ala Thr Ser Ala Ala Pro Ser Thr Thr 275 280 285 Leu Arg Thr Thr Thr Thr Ser Ala Ala Gln Thr Thr Ala Pro Pro Ser 290 295 300 Gly Asp Val Gln Thr Lys Tyr Gly Gln Cys Gly Gly Asn Gly Trp Thr 305 310 315 320 Gly Pro Thr Val Cys Ala Pro Gly Ser Ser Cys Ser Val Leu Asn Glu 325 330 335 Trp Tyr Ser Gln Cys Leu 340 3323PRTMyceliophthora thermophila 3His Gly His Val Ser His Ile Val Val Asn Gly Val Tyr Tyr Arg Asn 1 5 10 15 Tyr Asp Pro Thr Thr Asp Trp Tyr Gln Pro Asn Pro Pro Thr Val Ile 20 25 30 Gly Trp Thr Ala Ala Asp Gln Asp Asn Gly Phe Val Glu Pro Asn Ser 35 40 45 Phe Gly Thr Pro Asp Ile Ile Cys His Lys Ser Ala Thr Pro Gly Gly 50 55 60 Gly His Ala Thr Val Ala Ala Gly Asp Lys Ile Asn Ile Val Trp Thr 65 70 75 80 Pro Glu Trp Pro Glu Ser His Ile Gly Pro Val Ile Asp Tyr Leu Ala 85 90 95 Ala Cys Asn Gly Asp Cys Glu Thr Val Asp Lys Ser Ser Leu Arg Trp 100 105 110 Phe Lys Ile Asp Gly Ala Gly Tyr Asp Lys Ala Ala Gly Arg Trp Ala 115 120 125 Ala Asp Ala Leu Arg Ala Asn Gly Asn Ser Trp Leu Val Gln Ile Pro 130 135 140 Ser Asp Leu Lys Ala Gly Asn Tyr Val Leu Arg His Glu Ile Ile Ala 145 150 155 160 Leu His Gly Ala Gln Ser Pro Asn Gly Ala Gln Ala Tyr Pro Gln Cys 165 170 175 Ile Asn Leu Arg Val Thr Gly Gly Gly Ser Asn Leu Pro Ser Gly Val 180 185 190 Ala Gly Thr Ser Leu Tyr Lys Ala Thr Asp Pro Gly Ile Leu Phe Asn 195 200 205 Pro Tyr Val Ser Ser Pro Asp Tyr Thr Val Pro Gly Pro Ala Leu Ile 210 215 220 Ala Gly Ala Ala Ser Ser Ile Ala Gln Ser Thr Ser Val Ala Thr Ala 225 230 235 240 Thr Gly Thr Ala Thr Val Pro Gly Gly Gly Gly Ala Asn Pro Thr Ala 245 250 255 Thr Thr Thr Ala Ala Thr Ser Ala Ala Pro Ser Thr Thr Leu Arg Thr 260 265 270 Thr Thr Thr Ser Ala Ala Gln Thr Thr Ala Pro Pro Ser Gly Asp Val 275 280 285 Gln Thr Lys Tyr Gly Gln Cys Gly Gly Asn Gly Trp Thr Gly Pro Thr 290 295 300 Val Cys Ala Pro Gly Ser Ser Cys Ser Val Leu Asn Glu Trp Tyr Ser 305 310 315 320 Gln Cys Leu 41029DNAArtificial sequenceSynthetic polynucleotide. 4atgtccaagg cctctgctct cctcgctggc ctgacgggcg cggccctcgt cgctgcacac 60ggccacgtca gccacatcgt cgtcaacggc gtctactaca ggggctacga ccccacgaca 120gactggtacc agcccaaccc gccaacagtc atcggctgga cggcagccga tcaggataat 180ggcttcgttg aacccaacag ctttggcacg ccagatatca tctgccacaa gagcgccacc 240cccggcggcg gccacgctac cgttgctgcc ggagacaaga tcaacatcgt ctggaccccc 300gagtggcccc actcccacat cggccccgtc attgactacc tagccgcctg caacggtgac 360tgcgagaccg tcgacaagtc gtcgctgcgc tggttcaaga ttgacggcgc cggctacgac 420aaggccgccg gccgctgggc cgccgacgct ctgcgcgcca acggcaacag ctggctcgtc 480cagatcccgt cggatctcaa gcccggcaac tacgtcctcc gccacgagat catcgccctc 540cacggtgctc agagccccaa cggcgcccag gcgtacccgc agtgcatcaa cctccgcgtc 600accggcggcg gcagcaacct gcccagcggc gtcgccggca cctcgctgta caaggcgacc 660gacccgggca tcctcttcaa cccctacgtc tcctccccgg attacaccgt ccccggcccg 720gccctcattg ccggcgccgc cagctcgatc gcccagagca cgtcggtcgc cactgccacc 780ggcacggcca ccgttcccgg cggcggcggc gccaacccta ccgccaccac caccgccgcc 840acctccgccg ccccgagcac caccctgagg acgaccacta cctcggccgc gcagactacc 900gccccgccct ccggcgatgt gcagaccaag tacggccagt gtggtggcaa cggatggacg 960ggcccgacgg tgtgcgcccc cggctcgagc tgctccgtcc tcaacgagtg gtactcccag 1020tgtttgtaa 10295342PRTArtificial sequenceSynthetic polypeptides. 5Met Ser Lys Ala Ser Ala Leu Leu Ala Gly Leu Thr Gly Ala Ala Leu 1 5 10 15 Val Ala Ala His Gly His Val Ser His Ile Val Val Asn Gly Val Tyr 20 25 30 Tyr Arg Gly Tyr Asp Pro Thr Thr Asp Trp Tyr Gln Pro Asn Pro Pro 35 40 45 Thr Val Ile Gly Trp Thr Ala Ala Asp Gln Asp Asn Gly Phe Val Glu 50 55 60 Pro Asn Ser Phe Gly Thr Pro Asp Ile Ile Cys His Lys Ser Ala Thr 65 70 75 80 Pro Gly Gly Gly His Ala Thr Val Ala Ala Gly Asp Lys Ile Asn Ile 85 90 95 Val Trp Thr Pro Glu Trp Pro His Ser His Ile Gly Pro Val Ile Asp 100 105 110 Tyr Leu Ala Ala Cys Asn Gly Asp Cys Glu Thr Val Asp Lys Ser Ser 115 120 125 Leu Arg Trp Phe Lys Ile Asp Gly Ala Gly Tyr Asp Lys Ala Ala Gly 130 135 140 Arg Trp Ala Ala Asp Ala Leu Arg Ala Asn Gly Asn Ser Trp Leu Val 145 150 155 160 Gln Ile Pro Ser Asp Leu Lys Pro Gly Asn Tyr Val Leu Arg His Glu 165 170 175 Ile Ile Ala Leu His Gly Ala Gln Ser Pro Asn Gly Ala Gln Ala Tyr 180 185 190 Pro Gln Cys Ile Asn Leu Arg Val Thr Gly Gly Gly Ser Asn Leu Pro 195 200 205 Ser Gly Val Ala Gly Thr Ser Leu Tyr Lys Ala Thr Asp Pro Gly Ile 210 215 220 Leu Phe Asn Pro Tyr Val Ser Ser Pro Asp Tyr Thr Val Pro Gly Pro 225 230 235 240 Ala Leu Ile Ala Gly Ala Ala Ser Ser Ile Ala Gln Ser Thr Ser Val 245 250 255 Ala Thr Ala Thr Gly Thr Ala Thr Val Pro Gly Gly Gly Gly Ala Asn 260 265 270 Pro Thr Ala Thr Thr Thr Ala Ala Thr Ser Ala Ala Pro Ser Thr Thr 275 280 285 Leu Arg Thr Thr Thr Thr Ser Ala Ala Gln Thr Thr Ala Pro Pro Ser 290 295 300 Gly Asp Val Gln Thr Lys Tyr Gly Gln Cys Gly Gly Asn Gly Trp Thr 305 310 315 320 Gly Pro Thr Val Cys Ala Pro Gly Ser Ser Cys Ser Val Leu Asn Glu 325 330 335 Trp Tyr Ser Gln Cys Leu 340 6323PRTArtificial sequenceSynthetic polypeptides. 6His Gly His Val Ser His Ile Val Val Asn Gly Val Tyr Tyr Arg Gly 1 5 10 15 Tyr Asp Pro Thr Thr Asp Trp Tyr Gln Pro Asn Pro Pro Thr Val Ile 20 25 30 Gly Trp Thr Ala Ala Asp Gln Asp Asn Gly Phe Val Glu Pro Asn Ser 35 40 45 Phe Gly Thr Pro Asp Ile Ile Cys His Lys Ser Ala Thr Pro Gly Gly 50 55 60 Gly His Ala Thr Val Ala Ala Gly Asp Lys Ile Asn Ile Val Trp Thr 65 70 75 80 Pro Glu Trp Pro His Ser His Ile Gly Pro Val Ile Asp Tyr Leu Ala 85 90 95 Ala Cys Asn Gly Asp Cys Glu Thr Val Asp Lys Ser Ser Leu Arg Trp 100 105 110 Phe Lys Ile Asp Gly Ala Gly Tyr Asp Lys Ala Ala Gly Arg Trp Ala 115 120 125 Ala Asp Ala Leu Arg Ala Asn Gly Asn Ser Trp Leu Val Gln Ile Pro 130 135 140 Ser Asp Leu Lys Pro Gly Asn Tyr Val Leu Arg His Glu Ile Ile Ala 145 150 155 160 Leu His Gly Ala Gln Ser Pro Asn Gly Ala Gln Ala Tyr Pro Gln Cys 165 170 175 Ile Asn Leu Arg Val Thr Gly Gly Gly Ser Asn Leu Pro Ser Gly Val 180 185 190 Ala Gly Thr Ser Leu Tyr Lys Ala Thr Asp Pro Gly Ile Leu Phe Asn 195 200 205 Pro Tyr Val Ser Ser Pro Asp Tyr Thr Val Pro Gly Pro Ala Leu Ile 210 215 220 Ala Gly Ala Ala Ser Ser Ile Ala Gln Ser Thr Ser Val Ala Thr Ala 225 230 235 240 Thr Gly Thr Ala Thr Val Pro Gly Gly Gly Gly Ala Asn Pro Thr Ala 245 250 255 Thr Thr Thr Ala Ala Thr Ser Ala Ala Pro Ser Thr Thr Leu Arg Thr 260 265 270 Thr Thr Thr Ser Ala Ala Gln Thr Thr Ala Pro Pro Ser Gly Asp Val 275 280 285 Gln Thr Lys Tyr Gly Gln Cys Gly Gly Asn Gly Trp Thr Gly Pro Thr 290 295 300 Val Cys Ala Pro Gly Ser Ser Cys Ser Val Leu Asn Glu Trp Tyr Ser 305 310 315 320 Gln Cys Leu 71035DNAArtificial sequenceSynthetic polynucleotide. 7acacaaatgt ccaaggcctc tgctctcctc gctggcctga cgggcgcggc cctcgtcgct 60gcacacggcc acgtcagcca catcgtcgtc aacggcgtct actacaggaa ctacgacccc 120acgacagact ggtaccagcc caacccgcca acagtcatcg gctggacggc agccgatcag 180gataatggct tcgttgaacc caacagcttt ggcacgccag atatcatctg ccacaagagc 240gccacccccg gcggcggcca cgctaccgtt gctgccggag acaagatcaa catcgtatgg 300acccccgagt ggccccactc ccacatcggc cccgtcattg actacctagc cgcctgcaac 360ggtgactgcg agaccgtcga caagtcgtcg ctgcgctggt tcaagattga cggcgccggc 420tacgacaagg ccgccggccg ctgggccgcc gacgctctgc gcgccaacgg caacagctgg 480ctcgtccaga tcccgtcgga tctcgcggcc ggcaactacg tcctccgcca cgagatcatc 540gccctccacg gtgctcagag ccccaacggc gcccaggcgt acccgcagtg catcaacctc 600cgcgtcaccg gcggcggcag caacctgccc agcggcgtcg ccggcacctc gctgtacaag 660gcgaccgacc cgggcatcct cttcaacccc tacgtctcct ccccggatta caccgtcccc 720ggcccggccc tcattgccgg cgccgccagc tcgatcgccc agagcacgtc ggtcgccact 780gccaccggca cggccaccgt tcccggcggc ggcggcgcca accctaccgc caccaccacc 840gccgccacct ccgccgcccc gagcaccacc ctgaggacga ccactacctc ggccgcgcag 900actaccgccc cgccctccgg cgatgtgcag accaagtacg gccagtgtgg tggcaacgga 960tggacgggcc cgacggtgtg cgcccccggc tcgagctgct ccgtcctcaa cgagtggtac 1020tcccagtgtt tgtaa 10358342PRTArtificial sequenceSynthetic polypeptides. 8Met Ser Lys Ala Ser Ala Leu Leu Ala Gly Leu Thr Gly Ala Ala Leu 1 5 10 15 Val Ala Ala His Gly His Val Ser His Ile Val Val Asn Gly Val Tyr 20 25 30 Tyr Arg Asn Tyr Asp Pro Thr Thr Asp Trp Tyr Gln Pro Asn Pro Pro 35 40 45 Thr Val Ile Gly Trp Thr Ala Ala Asp Gln Asp Asn Gly Phe Val Glu 50 55 60 Pro Asn Ser Phe Gly Thr Pro Asp Ile Ile Cys His Lys Ser Ala Thr 65 70 75 80 Pro Gly Gly Gly His Ala Thr Val Ala Ala Gly Asp Lys Ile Asn Ile 85 90 95 Val Trp Thr Pro Glu Trp Pro His Ser His Ile Gly Pro Val Ile Asp 100 105 110 Tyr Leu Ala Ala Cys Asn Gly Asp Cys Glu Thr Val Asp Lys Ser Ser 115 120 125 Leu Arg Trp Phe Lys Ile Asp Gly Ala Gly Tyr Asp Lys Ala Ala Gly 130 135 140 Arg Trp Ala Ala Asp Ala Leu Arg Ala Asn Gly Asn Ser Trp Leu Val 145 150 155 160 Gln Ile Pro Ser Asp Leu Ala Ala Gly Asn Tyr Val Leu Arg His Glu 165 170 175 Ile Ile Ala Leu His Gly Ala Gln Ser Pro Asn Gly Ala Gln Ala Tyr 180 185 190 Pro Gln Cys Ile Asn Leu Arg Val Thr Gly Gly Gly Ser Asn Leu Pro 195 200 205 Ser Gly Val Ala Gly Thr Ser Leu Tyr Lys Ala Thr Asp Pro Gly Ile 210 215 220 Leu Phe Asn Pro Tyr Val Ser Ser Pro Asp Tyr Thr Val Pro Gly Pro 225 230 235 240 Ala Leu Ile Ala Gly Ala Ala Ser Ser Ile Ala Gln Ser Thr Ser Val 245 250 255 Ala Thr Ala Thr Gly Thr Ala Thr Val Pro Gly Gly Gly Gly Ala Asn 260 265 270 Pro Thr Ala Thr Thr Thr Ala Ala Thr Ser Ala Ala Pro Ser Thr Thr 275 280 285 Leu Arg Thr Thr Thr Thr Ser Ala Ala Gln Thr Thr Ala Pro Pro Ser 290 295 300 Gly Asp Val Gln Thr Lys Tyr Gly Gln Cys Gly Gly Asn Gly Trp Thr 305 310 315 320 Gly Pro Thr Val Cys Ala Pro Gly Ser Ser Cys Ser Val Leu Asn Glu 325 330 335 Trp Tyr Ser Gln Cys Leu 340 9323PRTArtificial sequenceSynthetic polypeptides. 9His Gly His Val Ser His Ile Val Val Asn Gly Val Tyr Tyr Arg Asn 1 5 10 15 Tyr Asp Pro Thr Thr Asp Trp Tyr Gln Pro Asn Pro Pro Thr Val Ile 20 25 30 Gly Trp Thr Ala Ala Asp Gln Asp Asn Gly Phe Val Glu Pro Asn Ser 35 40 45 Phe Gly Thr Pro Asp Ile Ile Cys His Lys Ser Ala Thr Pro Gly Gly 50 55 60 Gly His Ala Thr Val Ala Ala Gly Asp Lys Ile Asn Ile Val Trp Thr 65 70 75 80 Pro Glu Trp Pro His Ser His Ile Gly Pro Val

Ile Asp Tyr Leu Ala 85 90 95 Ala Cys Asn Gly Asp Cys Glu Thr Val Asp Lys Ser Ser Leu Arg Trp 100 105 110 Phe Lys Ile Asp Gly Ala Gly Tyr Asp Lys Ala Ala Gly Arg Trp Ala 115 120 125 Ala Asp Ala Leu Arg Ala Asn Gly Asn Ser Trp Leu Val Gln Ile Pro 130 135 140 Ser Asp Leu Ala Ala Gly Asn Tyr Val Leu Arg His Glu Ile Ile Ala 145 150 155 160 Leu His Gly Ala Gln Ser Pro Asn Gly Ala Gln Ala Tyr Pro Gln Cys 165 170 175 Ile Asn Leu Arg Val Thr Gly Gly Gly Ser Asn Leu Pro Ser Gly Val 180 185 190 Ala Gly Thr Ser Leu Tyr Lys Ala Thr Asp Pro Gly Ile Leu Phe Asn 195 200 205 Pro Tyr Val Ser Ser Pro Asp Tyr Thr Val Pro Gly Pro Ala Leu Ile 210 215 220 Ala Gly Ala Ala Ser Ser Ile Ala Gln Ser Thr Ser Val Ala Thr Ala 225 230 235 240 Thr Gly Thr Ala Thr Val Pro Gly Gly Gly Gly Ala Asn Pro Thr Ala 245 250 255 Thr Thr Thr Ala Ala Thr Ser Ala Ala Pro Ser Thr Thr Leu Arg Thr 260 265 270 Thr Thr Thr Ser Ala Ala Gln Thr Thr Ala Pro Pro Ser Gly Asp Val 275 280 285 Gln Thr Lys Tyr Gly Gln Cys Gly Gly Asn Gly Trp Thr Gly Pro Thr 290 295 300 Val Cys Ala Pro Gly Ser Ser Cys Ser Val Leu Asn Glu Trp Tyr Ser 305 310 315 320 Gln Cys Leu 101035DNAArtificial sequenceSynthetic polynucleotide. 10acaaacatgt ccaaggcctc tgctctcctc gctggcctga cgggcgcggc cctcgtcgct 60gcacatggcc acgtcagcca catcgtcgtc aacggcgtct actacaggaa ctacgacccc 120acgacagact ggtaccagcc caacccgcca acagtcatcg gctggacggc agccgatcag 180gataatggct tcgttgaacc caacagcttt ggcacgccag atatcatctg ccacaagagc 240gccacccccg gcggcggcca cgctaccgtt gctgccggag acaagatcaa catccagtgg 300acccccgagt ggcccgaatc ccacatcggc cccgtcattg actacctagc cgcctgcaac 360ggtgactgcg agaccgtcga caagtcgtcg ctgcgctggt tcaagattga cggcgccggc 420tacgacaagg ccgccggccg ctgggccgcc gacgctctgc gcgccaacgg caacagctgg 480ctcgtccaga tcccgtcgga tctcaaggcc ggcaactacg tcctccgcca cgagatcatc 540gccctccacg gtgctcagag ccccaacggc gcccagaact acccgcagtg catcaacctc 600cgcgtcaccg gcggcggcag caacctgccc agcggcgtcg ccggcacctc gctgtacaag 660gcgaccgacc cgggcatcct cttcaacccc tacgtctcct ccccggatta caccgtcccc 720ggcccggccc tcattgccgg cgccgccagc tcgatcgccc agagcacgtc ggtcgccact 780gccaccggca cggccaccgt tcccggcggc ggcggcgcca accctaccgc caccaccacc 840gccgccacct ccgccgcccc gagcaccacc ctgaggacga ccactacctc ggccgcgcag 900actaccgccc cgccctccgg cgatgtgcag accaagtacg gccagtgtgg tggcaacgga 960tggacgggcc cgacggtgtg cgcccccggc tcgagctgct ccgtcctcaa cgagtggtac 1020tcccagtgtt tgtaa 103511342PRTArtificial sequenceSynthetic polypeptides. 11Met Ser Lys Ala Ser Ala Leu Leu Ala Gly Leu Thr Gly Ala Ala Leu 1 5 10 15 Val Ala Ala His Gly His Val Ser His Ile Val Val Asn Gly Val Tyr 20 25 30 Tyr Arg Asn Tyr Asp Pro Thr Thr Asp Trp Tyr Gln Pro Asn Pro Pro 35 40 45 Thr Val Ile Gly Trp Thr Ala Ala Asp Gln Asp Asn Gly Phe Val Glu 50 55 60 Pro Asn Ser Phe Gly Thr Pro Asp Ile Ile Cys His Lys Ser Ala Thr 65 70 75 80 Pro Gly Gly Gly His Ala Thr Val Ala Ala Gly Asp Lys Ile Asn Ile 85 90 95 Gln Trp Thr Pro Glu Trp Pro Glu Ser His Ile Gly Pro Val Ile Asp 100 105 110 Tyr Leu Ala Ala Cys Asn Gly Asp Cys Glu Thr Val Asp Lys Ser Ser 115 120 125 Leu Arg Trp Phe Lys Ile Asp Gly Ala Gly Tyr Asp Lys Ala Ala Gly 130 135 140 Arg Trp Ala Ala Asp Ala Leu Arg Ala Asn Gly Asn Ser Trp Leu Val 145 150 155 160 Gln Ile Pro Ser Asp Leu Lys Ala Gly Asn Tyr Val Leu Arg His Glu 165 170 175 Ile Ile Ala Leu His Gly Ala Gln Ser Pro Asn Gly Ala Gln Asn Tyr 180 185 190 Pro Gln Cys Ile Asn Leu Arg Val Thr Gly Gly Gly Ser Asn Leu Pro 195 200 205 Ser Gly Val Ala Gly Thr Ser Leu Tyr Lys Ala Thr Asp Pro Gly Ile 210 215 220 Leu Phe Asn Pro Tyr Val Ser Ser Pro Asp Tyr Thr Val Pro Gly Pro 225 230 235 240 Ala Leu Ile Ala Gly Ala Ala Ser Ser Ile Ala Gln Ser Thr Ser Val 245 250 255 Ala Thr Ala Thr Gly Thr Ala Thr Val Pro Gly Gly Gly Gly Ala Asn 260 265 270 Pro Thr Ala Thr Thr Thr Ala Ala Thr Ser Ala Ala Pro Ser Thr Thr 275 280 285 Leu Arg Thr Thr Thr Thr Ser Ala Ala Gln Thr Thr Ala Pro Pro Ser 290 295 300 Gly Asp Val Gln Thr Lys Tyr Gly Gln Cys Gly Gly Asn Gly Trp Thr 305 310 315 320 Gly Pro Thr Val Cys Ala Pro Gly Ser Ser Cys Ser Val Leu Asn Glu 325 330 335 Trp Tyr Ser Gln Cys Leu 340 12342PRTArtificial sequenceSynthetic polypeptides. 12Met Ser Lys Ala Ser Ala Leu Leu Ala Gly Leu Thr Gly Ala Ala Leu 1 5 10 15 Val Ala Ala His Gly His Val Ser His Ile Val Val Asn Gly Val Tyr 20 25 30 Tyr Arg Asn Tyr Asp Pro Thr Thr Asp Trp Tyr Gln Pro Asn Pro Pro 35 40 45 Thr Val Ile Gly Trp Thr Ala Ala Asp Gln Asp Asn Gly Phe Val Glu 50 55 60 Pro Asn Ser Phe Gly Thr Pro Asp Ile Ile Cys His Lys Ser Ala Thr 65 70 75 80 Pro Gly Gly Gly His Ala Thr Val Ala Ala Gly Asp Lys Ile Asn Ile 85 90 95 Gln Trp Thr Pro Glu Trp Pro Glu Ser His Ile Gly Pro Val Ile Asp 100 105 110 Tyr Leu Ala Ala Cys Asn Gly Asp Cys Glu Thr Val Asp Lys Ser Ser 115 120 125 Leu Arg Trp Phe Lys Ile Asp Gly Ala Gly Tyr Asp Lys Ala Ala Gly 130 135 140 Arg Trp Ala Ala Asp Ala Leu Arg Ala Asn Gly Asn Ser Trp Leu Val 145 150 155 160 Gln Ile Pro Ser Asp Leu Lys Ala Gly Asn Tyr Val Leu Arg His Glu 165 170 175 Ile Ile Ala Leu His Gly Ala Gln Ser Pro Asn Gly Ala Gln Asn Tyr 180 185 190 Pro Gln Cys Ile Asn Leu Arg Val Thr Gly Gly Gly Ser Asn Leu Pro 195 200 205 Ser Gly Val Ala Gly Thr Ser Leu Tyr Lys Ala Thr Asp Pro Gly Ile 210 215 220 Leu Phe Asn Pro Tyr Val Ser Ser Pro Asp Tyr Thr Val Pro Gly Pro 225 230 235 240 Ala Leu Ile Ala Gly Ala Ala Ser Ser Ile Ala Gln Ser Thr Ser Val 245 250 255 Ala Thr Ala Thr Gly Thr Ala Thr Val Pro Gly Gly Gly Gly Ala Asn 260 265 270 Pro Thr Ala Thr Thr Thr Ala Ala Thr Ser Ala Ala Pro Ser Thr Thr 275 280 285 Leu Arg Thr Thr Thr Thr Ser Ala Ala Gln Thr Thr Ala Pro Pro Ser 290 295 300 Gly Asp Val Gln Thr Lys Tyr Gly Gln Cys Gly Gly Asn Gly Trp Thr 305 310 315 320 Gly Pro Thr Val Cys Ala Pro Gly Ser Ser Cys Ser Val Leu Asn Glu 325 330 335 Trp Tyr Ser Gln Cys Leu 340 13738DNAMyceliophthora thermophila 13atgaagctct ccctcttttc cgtcctggcc actgccctca ccgtcgaggg gcatgccatc 60ttccagaagg tctccgtcaa cggagcggac cagggctccc tcaccggcct ccgcgctccc 120aacaacaaca accccgtgca gaatgtcaac agccaggaca tgatctgcgg ccagtcggga 180tcgacgtcga acactatcat cgaggtcaag gccggcgata ggatcggtgc ctggtatcag 240catgtcatcg gcggtgccca gttccccaac gacccagaca acccgattgc caagtcgcac 300aagggccccg tcatggccta cctcgccaag gttgacaatg ccgcaaccgc cagcaagacg 360ggcctgaagt ggttcaagat ttgggaggat acctttaatc ccagcaccaa gacctggggt 420gtcgacaacc tcatcaacaa caacggctgg gtgtacttca acctcccgca gtgcatcgcc 480gacggcaact acctcctccg cgtcgaggtc ctcgctctgc actcggccta ctcccagggc 540caggctcagt tctaccagtc ctgcgcccag atcaacgtat ccggcggcgg ctccttcacg 600ccggcgtcga ctgtcagctt cccgggtgcc tacagcgcca gcgaccccgg tatcctgatc 660aacatctacg gcgccaccgg ccagcccgac aacaacggcc agccgtacac tgcccctggg 720cccgcgccca tctcctgc 73814246PRTMyceliophthora thermophila 14Met Lys Leu Ser Leu Phe Ser Val Leu Ala Thr Ala Leu Thr Val Glu 1 5 10 15 Gly His Ala Ile Phe Gln Lys Val Ser Val Asn Gly Ala Asp Gln Gly 20 25 30 Ser Leu Thr Gly Leu Arg Ala Pro Asn Asn Asn Asn Pro Val Gln Asn 35 40 45 Val Asn Ser Gln Asp Met Ile Cys Gly Gln Ser Gly Ser Thr Ser Asn 50 55 60 Thr Ile Ile Glu Val Lys Ala Gly Asp Arg Ile Gly Ala Trp Tyr Gln 65 70 75 80 His Val Ile Gly Gly Ala Gln Phe Pro Asn Asp Pro Asp Asn Pro Ile 85 90 95 Ala Lys Ser His Lys Gly Pro Val Met Ala Tyr Leu Ala Lys Val Asp 100 105 110 Asn Ala Ala Thr Ala Ser Lys Thr Gly Leu Lys Trp Phe Lys Ile Trp 115 120 125 Glu Asp Thr Phe Asn Pro Ser Thr Lys Thr Trp Gly Val Asp Asn Leu 130 135 140 Ile Asn Asn Asn Gly Trp Val Tyr Phe Asn Leu Pro Gln Cys Ile Ala 145 150 155 160 Asp Gly Asn Tyr Leu Leu Arg Val Glu Val Leu Ala Leu His Ser Ala 165 170 175 Tyr Ser Gln Gly Gln Ala Gln Phe Tyr Gln Ser Cys Ala Gln Ile Asn 180 185 190 Val Ser Gly Gly Gly Ser Phe Thr Pro Ala Ser Thr Val Ser Phe Pro 195 200 205 Gly Ala Tyr Ser Ala Ser Asp Pro Gly Ile Leu Ile Asn Ile Tyr Gly 210 215 220 Ala Thr Gly Gln Pro Asp Asn Asn Gly Gln Pro Tyr Thr Ala Pro Gly 225 230 235 240 Pro Ala Pro Ile Ser Cys 245 15227PRTMyceliophthora thermophila 15Ile Phe Gln Lys Val Ser Val Asn Gly Ala Asp Gln Gly Ser Leu Thr 1 5 10 15 Gly Leu Arg Ala Pro Asn Asn Asn Asn Pro Val Gln Asn Val Asn Ser 20 25 30 Gln Asp Met Ile Cys Gly Gln Ser Gly Ser Thr Ser Asn Thr Ile Ile 35 40 45 Glu Val Lys Ala Gly Asp Arg Ile Gly Ala Trp Tyr Gln His Val Ile 50 55 60 Gly Gly Ala Gln Phe Pro Asn Asp Pro Asp Asn Pro Ile Ala Lys Ser 65 70 75 80 His Lys Gly Pro Val Met Ala Tyr Leu Ala Lys Val Asp Asn Ala Ala 85 90 95 Thr Ala Ser Lys Thr Gly Leu Lys Trp Phe Lys Ile Trp Glu Asp Thr 100 105 110 Phe Asn Pro Ser Thr Lys Thr Trp Gly Val Asp Asn Leu Ile Asn Asn 115 120 125 Asn Gly Trp Val Tyr Phe Asn Leu Pro Gln Cys Ile Ala Asp Gly Asn 130 135 140 Tyr Leu Leu Arg Val Glu Val Leu Ala Leu His Ser Ala Tyr Ser Gln 145 150 155 160 Gly Gln Ala Gln Phe Tyr Gln Ser Cys Ala Gln Ile Asn Val Ser Gly 165 170 175 Gly Gly Ser Phe Thr Pro Ala Ser Thr Val Ser Phe Pro Gly Ala Tyr 180 185 190 Ser Ala Ser Asp Pro Gly Ile Leu Ile Asn Ile Tyr Gly Ala Thr Gly 195 200 205 Gln Pro Asp Asn Asn Gly Gln Pro Tyr Thr Ala Pro Gly Pro Ala Pro 210 215 220 Ile Ser Cys 225 16762DNAMyceliophthora thermophila 16atggccctcc agctcttggc gagcttggcc ctcctctcag tgccggccct tgcccacggt 60ggcttggcca actacaccgt cggtgatact tggtacagag gctacgaccc aaacctgccg 120ccggagacgc agctcaacca gacctggatg atccagcggc aatgggccac catcgacccc 180gtcttcaccg tgtcggagcc gtacctggcc tgcaacaacc cgggcgcgcc gccgccctcg 240tacatcccca tccgcgccgg tgacaagatc acggccgtgt actggtactg gctgcacgcc 300atcgggccca tgagcgtctg gctcgcgcgg tgcggcgaca cgcccgcggc cgactgccgc 360gacgtcgacg tcaaccgggt cggctggttc aagatctggg agggcggcct gctggagggt 420cccaacctgg ccgaggggct ctggtaccaa aaggacttcc agcgctggga cggctccccg 480tccctctggc ccgtcacgat ccccaagggg ctcaagagcg ggacctacat catccggcac 540gagatcctgt cgcttcacgt cgccctcaag ccccagtttt acccggagtg tgcgcatctg 600aatattactg ggggcggaga cttgctgcca cccgaagaga ctctggtgcg gtttccgggg 660gtttacaaag aggacgatcc ctctatcttc atcgatgtct actcggagga gaacgcgaac 720cggacagatt atacggttcc gggagggcca atctgggaag gg 76217254PRTMyceliophthora thermophila 17Met Ala Leu Gln Leu Leu Ala Ser Leu Ala Leu Leu Ser Val Pro Ala 1 5 10 15 Leu Ala His Gly Gly Leu Ala Asn Tyr Thr Val Gly Asp Thr Trp Tyr 20 25 30 Arg Gly Tyr Asp Pro Asn Leu Pro Pro Glu Thr Gln Leu Asn Gln Thr 35 40 45 Trp Met Ile Gln Arg Gln Trp Ala Thr Ile Asp Pro Val Phe Thr Val 50 55 60 Ser Glu Pro Tyr Leu Ala Cys Asn Asn Pro Gly Ala Pro Pro Pro Ser 65 70 75 80 Tyr Ile Pro Ile Arg Ala Gly Asp Lys Ile Thr Ala Val Tyr Trp Tyr 85 90 95 Trp Leu His Ala Ile Gly Pro Met Ser Val Trp Leu Ala Arg Cys Gly 100 105 110 Asp Thr Pro Ala Ala Asp Cys Arg Asp Val Asp Val Asn Arg Val Gly 115 120 125 Trp Phe Lys Ile Trp Glu Gly Gly Leu Leu Glu Gly Pro Asn Leu Ala 130 135 140 Glu Gly Leu Trp Tyr Gln Lys Asp Phe Gln Arg Trp Asp Gly Ser Pro 145 150 155 160 Ser Leu Trp Pro Val Thr Ile Pro Lys Gly Leu Lys Ser Gly Thr Tyr 165 170 175 Ile Ile Arg His Glu Ile Leu Ser Leu His Val Ala Leu Lys Pro Gln 180 185 190 Phe Tyr Pro Glu Cys Ala His Leu Asn Ile Thr Gly Gly Gly Asp Leu 195 200 205 Leu Pro Pro Glu Glu Thr Leu Val Arg Phe Pro Gly Val Tyr Lys Glu 210 215 220 Asp Asp Pro Ser Ile Phe Ile Asp Val Tyr Ser Glu Glu Asn Ala Asn 225 230 235 240 Arg Thr Asp Tyr Thr Val Pro Gly Gly Pro Ile Trp Glu Gly 245 250 18231PRTMyceliophthora thermophila 18Asn Tyr Thr Val Gly Asp Thr Trp Tyr Arg Gly Tyr Asp Pro Asn Leu 1 5 10 15 Pro Pro Glu Thr Gln Leu Asn Gln Thr Trp Met Ile Gln Arg Gln Trp 20 25 30 Ala Thr Ile Asp Pro Val Phe Thr Val Ser Glu Pro Tyr Leu Ala Cys 35 40 45 Asn Asn Pro Gly Ala Pro Pro Pro Ser Tyr Ile Pro Ile Arg Ala Gly 50 55 60 Asp Lys Ile Thr Ala Val Tyr Trp Tyr Trp Leu His Ala Ile Gly Pro 65 70 75 80 Met Ser Val Trp Leu Ala Arg Cys Gly Asp Thr Pro Ala Ala Asp Cys 85 90 95 Arg Asp Val Asp Val Asn Arg Val Gly Trp Phe Lys Ile Trp Glu Gly 100 105 110 Gly Leu Leu Glu Gly Pro Asn Leu Ala Glu Gly Leu Trp Tyr Gln Lys 115 120 125 Asp Phe Gln Arg Trp Asp Gly Ser Pro Ser Leu Trp Pro Val Thr Ile 130 135 140 Pro Lys Gly Leu Lys Ser Gly Thr Tyr Ile Ile Arg His Glu Ile Leu 145 150 155 160 Ser Leu His Val Ala Leu Lys Pro Gln Phe Tyr Pro Glu Cys Ala His 165 170 175 Leu Asn Ile Thr Gly Gly Gly Asp Leu Leu Pro Pro Glu Glu Thr Leu 180 185 190 Val Arg Phe Pro Gly Val Tyr Lys Glu Asp Asp Pro Ser Ile Phe Ile 195

200 205 Asp Val Tyr Ser Glu Glu Asn Ala Asn Arg Thr Asp Tyr Thr Val Pro 210 215 220 Gly Gly Pro Ile Trp Glu Gly 225 230 19705DNAMyceliophthora thermophila 19atgaaggccc tctctctcct tgcggctgcc ggggcagtct ctgcgcatac catcttcgtc 60cagctcgaag cagacggcac gaggtacccg gtttcgtacg ggatccggga cccaacctac 120gacggcccca tcaccgacgt cacatccaac gacgttgctt gcaacggcgg tccgaacccg 180acgaccccct ccagcgacgt catcaccgtc accgcgggca ccaccgtcaa ggccatctgg 240aggcacaccc tccaatccgg cccggacgat gtcatggacg ccagccacaa gggcccgacc 300ctggcctaca tcaagaaggt cggcgatgcc accaaggact cgggcgtcgg cggtggctgg 360ttcaagatcc aggaggacgg ttacaacaac ggccagtggg gcaccagcac cgttatctcc 420aacggcggcg agcactacat tgacatcccg gcctgcatcc ccgagggtca gtacctcctc 480cgcgccgaga tgatcgccct ccacgcggcc gggtcccccg gcggcgctca gctctacatg 540gaatgtgccc agatcaacat cgtcggcggc tccggctcgg tgcccagctc gacggtcagc 600ttccccggcg cgtatagccc caacgacccg ggtctcctca tcaacatcta ttccatgtcg 660ccctcgagct cgtacaccat cccgggcccg cccgttttca agtgc 70520235PRTMyceliophthora thermophila 20Met Lys Ala Leu Ser Leu Leu Ala Ala Ala Gly Ala Val Ser Ala His 1 5 10 15 Thr Ile Phe Val Gln Leu Glu Ala Asp Gly Thr Arg Tyr Pro Val Ser 20 25 30 Tyr Gly Ile Arg Asp Pro Thr Tyr Asp Gly Pro Ile Thr Asp Val Thr 35 40 45 Ser Asn Asp Val Ala Cys Asn Gly Gly Pro Asn Pro Thr Thr Pro Ser 50 55 60 Ser Asp Val Ile Thr Val Thr Ala Gly Thr Thr Val Lys Ala Ile Trp 65 70 75 80 Arg His Thr Leu Gln Ser Gly Pro Asp Asp Val Met Asp Ala Ser His 85 90 95 Lys Gly Pro Thr Leu Ala Tyr Ile Lys Lys Val Gly Asp Ala Thr Lys 100 105 110 Asp Ser Gly Val Gly Gly Gly Trp Phe Lys Ile Gln Glu Asp Gly Tyr 115 120 125 Asn Asn Gly Gln Trp Gly Thr Ser Thr Val Ile Ser Asn Gly Gly Glu 130 135 140 His Tyr Ile Asp Ile Pro Ala Cys Ile Pro Glu Gly Gln Tyr Leu Leu 145 150 155 160 Arg Ala Glu Met Ile Ala Leu His Ala Ala Gly Ser Pro Gly Gly Ala 165 170 175 Gln Leu Tyr Met Glu Cys Ala Gln Ile Asn Ile Val Gly Gly Ser Gly 180 185 190 Ser Val Pro Ser Ser Thr Val Ser Phe Pro Gly Ala Tyr Ser Pro Asn 195 200 205 Asp Pro Gly Leu Leu Ile Asn Ile Tyr Ser Met Ser Pro Ser Ser Ser 210 215 220 Tyr Thr Ile Pro Gly Pro Pro Val Phe Lys Cys 225 230 235 21220PRTMyceliophthora thermophila 21His Thr Ile Phe Val Gln Leu Glu Ala Asp Gly Thr Arg Tyr Pro Val 1 5 10 15 Ser Tyr Gly Ile Arg Asp Pro Thr Tyr Asp Gly Pro Ile Thr Asp Val 20 25 30 Thr Ser Asn Asp Val Ala Cys Asn Gly Gly Pro Asn Pro Thr Thr Pro 35 40 45 Ser Ser Asp Val Ile Thr Val Thr Ala Gly Thr Thr Val Lys Ala Ile 50 55 60 Trp Arg His Thr Leu Gln Ser Gly Pro Asp Asp Val Met Asp Ala Ser 65 70 75 80 His Lys Gly Pro Thr Leu Ala Tyr Ile Lys Lys Val Gly Asp Ala Thr 85 90 95 Lys Asp Ser Gly Val Gly Gly Gly Trp Phe Lys Ile Gln Glu Asp Gly 100 105 110 Tyr Asn Asn Gly Gln Trp Gly Thr Ser Thr Val Ile Ser Asn Gly Gly 115 120 125 Glu His Tyr Ile Asp Ile Pro Ala Cys Ile Pro Glu Gly Gln Tyr Leu 130 135 140 Leu Arg Ala Glu Met Ile Ala Leu His Ala Ala Gly Ser Pro Gly Gly 145 150 155 160 Ala Gln Leu Tyr Met Glu Cys Ala Gln Ile Asn Ile Val Gly Gly Ser 165 170 175 Gly Ser Val Pro Ser Ser Thr Val Ser Phe Pro Gly Ala Tyr Ser Pro 180 185 190 Asn Asp Pro Gly Leu Leu Ile Asn Ile Tyr Ser Met Ser Pro Ser Ser 195 200 205 Ser Tyr Thr Ile Pro Gly Pro Pro Val Phe Lys Cys 210 215 220 22915DNAMyceliophthora thermophila 22atgaagtcgt ctaccccggc cttgttcgcc gctgggctcc ttgctcagca tgctgcggcc 60cactccatct tccagcaggc gagcagcggc tcgaccgact ttgatacgct gtgcacccgg 120atgccgccca acaatagccc cgtcactagt gtgaccagcg gcgacatgac ctgcaaagtc 180ggcggcacca agggggtgtc cggcttctgc gaggtgaacg ccggcgacga gttcacggtt 240gagatgcacg cgcagcccgg cgaccgctcg tgcgccaacg aggccatcgg cgggaaccac 300ttcggcccgg tcctcatcta catgagcaag gtcgacgacg cctccaccgc cgacgggtcc 360ggcgactggt tcaaggtgga cgagttcggc tacgacgcaa gcaccaagac ctggggcacc 420gacaagctca acgagaactg cggcaagcgc accttcaaca tccccagcca catccccgcg 480ggcgactatc tcgtccgggc cgaggctatc gcgctacaca ctgccaacca gccaggcggc 540gcgcagttct acatgagctg ctatcaagtc aggatttccg gcggcgaagg gggccagctg 600cctgccggag tcaagatccc gggcgcgtac agtgccaacg accccggcat ccttgtcgac 660atctggggta acgatttcaa cgaccctcca ggacactcgg cccgtcacgc catcatcatc 720atcagcagca gcagcaacaa cagcggcgcc aagatgacca agaagatcca ggagcccacc 780atcacatcgg tcacggacct ccccaccgac gaggccaagt ggatcgcgct ccaaaagatc 840tcgtacgtgg accagacggg cacggcgcgg acatacgagc cggcgtcgcg caagacgcgg 900tcgccaagag tctag 91523304PRTMyceliophthora thermophila 23Met Lys Ser Ser Thr Pro Ala Leu Phe Ala Ala Gly Leu Leu Ala Gln 1 5 10 15 His Ala Ala Ala His Ser Ile Phe Gln Gln Ala Ser Ser Gly Ser Thr 20 25 30 Asp Phe Asp Thr Leu Cys Thr Arg Met Pro Pro Asn Asn Ser Pro Val 35 40 45 Thr Ser Val Thr Ser Gly Asp Met Thr Cys Lys Val Gly Gly Thr Lys 50 55 60 Gly Val Ser Gly Phe Cys Glu Val Asn Ala Gly Asp Glu Phe Thr Val 65 70 75 80 Glu Met His Ala Gln Pro Gly Asp Arg Ser Cys Ala Asn Glu Ala Ile 85 90 95 Gly Gly Asn His Phe Gly Pro Val Leu Ile Tyr Met Ser Lys Val Asp 100 105 110 Asp Ala Ser Thr Ala Asp Gly Ser Gly Asp Trp Phe Lys Val Asp Glu 115 120 125 Phe Gly Tyr Asp Ala Ser Thr Lys Thr Trp Gly Thr Asp Lys Leu Asn 130 135 140 Glu Asn Cys Gly Lys Arg Thr Phe Asn Ile Pro Ser His Ile Pro Ala 145 150 155 160 Gly Asp Tyr Leu Val Arg Ala Glu Ala Ile Ala Leu His Thr Ala Asn 165 170 175 Gln Pro Gly Gly Ala Gln Phe Tyr Met Ser Cys Tyr Gln Val Arg Ile 180 185 190 Ser Gly Gly Glu Gly Gly Gln Leu Pro Ala Gly Val Lys Ile Pro Gly 195 200 205 Ala Tyr Ser Ala Asn Asp Pro Gly Ile Leu Val Asp Ile Trp Gly Asn 210 215 220 Asp Phe Asn Asp Pro Pro Gly His Ser Ala Arg His Ala Ile Ile Ile 225 230 235 240 Ile Ser Ser Ser Ser Asn Asn Ser Gly Ala Lys Met Thr Lys Lys Ile 245 250 255 Gln Glu Pro Thr Ile Thr Ser Val Thr Asp Leu Pro Thr Asp Glu Ala 260 265 270 Lys Trp Ile Ala Leu Gln Lys Ile Ser Tyr Val Asp Gln Thr Gly Thr 275 280 285 Ala Arg Thr Tyr Glu Pro Ala Ser Arg Lys Thr Arg Ser Pro Arg Val 290 295 300 24284PRTMyceliophthora thermophila 24His Ser Ile Phe Gln Gln Ala Ser Ser Gly Ser Thr Asp Phe Asp Thr 1 5 10 15 Leu Cys Thr Arg Met Pro Pro Asn Asn Ser Pro Val Thr Ser Val Thr 20 25 30 Ser Gly Asp Met Thr Cys Lys Val Gly Gly Thr Lys Gly Val Ser Gly 35 40 45 Phe Cys Glu Val Asn Ala Gly Asp Glu Phe Thr Val Glu Met His Ala 50 55 60 Gln Pro Gly Asp Arg Ser Cys Ala Asn Glu Ala Ile Gly Gly Asn His 65 70 75 80 Phe Gly Pro Val Leu Ile Tyr Met Ser Lys Val Asp Asp Ala Ser Thr 85 90 95 Ala Asp Gly Ser Gly Asp Trp Phe Lys Val Asp Glu Phe Gly Tyr Asp 100 105 110 Ala Ser Thr Lys Thr Trp Gly Thr Asp Lys Leu Asn Glu Asn Cys Gly 115 120 125 Lys Arg Thr Phe Asn Ile Pro Ser His Ile Pro Ala Gly Asp Tyr Leu 130 135 140 Val Arg Ala Glu Ala Ile Ala Leu His Thr Ala Asn Gln Pro Gly Gly 145 150 155 160 Ala Gln Phe Tyr Met Ser Cys Tyr Gln Val Arg Ile Ser Gly Gly Glu 165 170 175 Gly Gly Gln Leu Pro Ala Gly Val Lys Ile Pro Gly Ala Tyr Ser Ala 180 185 190 Asn Asp Pro Gly Ile Leu Val Asp Ile Trp Gly Asn Asp Phe Asn Asp 195 200 205 Pro Pro Gly His Ser Ala Arg His Ala Ile Ile Ile Ile Ser Ser Ser 210 215 220 Ser Asn Asn Ser Gly Ala Lys Met Thr Lys Lys Ile Gln Glu Pro Thr 225 230 235 240 Ile Thr Ser Val Thr Asp Leu Pro Thr Asp Glu Ala Lys Trp Ile Ala 245 250 255 Leu Gln Lys Ile Ser Tyr Val Asp Gln Thr Gly Thr Ala Arg Thr Tyr 260 265 270 Glu Pro Ala Ser Arg Lys Thr Arg Ser Pro Arg Val 275 280 25726DNAMyceliophthora thermophila 25atgaagtcgt ctaccccggc cttgttcgcc gctgggctcc ttgctcagca tgctgcggcc 60cactccatct tccagcaggc gagcagcggc tcgaccgact ttgatacgct gtgcacccgg 120atgccgccca acaatagccc cgtcactagt gtgaccagcg gcgacatgac ctgcaacgtc 180ggcggcacca agggggtgtc gggcttctgc gaggtgaacg ccggcgacga gttcacggtt 240gagatgcacg cgcagcccgg cgaccgctcg tgcgccaacg aggccatcgg cgggaaccac 300ttcggcccgg tcctcatcta catgagcaag gtcgacgacg cctccactgc cgacgggtcc 360ggcgactggt tcaaggtgga cgagttcggc tacgacgcaa gcaccaagac ctggggcacc 420gacaagctca acgagaactg cggcaagcgc accttcaaca tccccagcca catccccgcg 480ggcgactatc tcgtccgggc cgaggctatc gcgctacaca ctgccaacca gccaggcggc 540gcgcagttct acatgagctg ctatcaagtc aggatttccg gcggcgaagg gggccagctg 600cctgccggag tcaagatccc gggcgcgtac agtgccaacg accccggcat ccttgtcgac 660atctggggta acgatttcaa cgagtacgtt attccgggcc ccccggtcat cgacagcagc 720tacttc 72626242PRTMyceliophthora thermophila 26Met Lys Ser Ser Thr Pro Ala Leu Phe Ala Ala Gly Leu Leu Ala Gln 1 5 10 15 His Ala Ala Ala His Ser Ile Phe Gln Gln Ala Ser Ser Gly Ser Thr 20 25 30 Asp Phe Asp Thr Leu Cys Thr Arg Met Pro Pro Asn Asn Ser Pro Val 35 40 45 Thr Ser Val Thr Ser Gly Asp Met Thr Cys Asn Val Gly Gly Thr Lys 50 55 60 Gly Val Ser Gly Phe Cys Glu Val Asn Ala Gly Asp Glu Phe Thr Val 65 70 75 80 Glu Met His Ala Gln Pro Gly Asp Arg Ser Cys Ala Asn Glu Ala Ile 85 90 95 Gly Gly Asn His Phe Gly Pro Val Leu Ile Tyr Met Ser Lys Val Asp 100 105 110 Asp Ala Ser Thr Ala Asp Gly Ser Gly Asp Trp Phe Lys Val Asp Glu 115 120 125 Phe Gly Tyr Asp Ala Ser Thr Lys Thr Trp Gly Thr Asp Lys Leu Asn 130 135 140 Glu Asn Cys Gly Lys Arg Thr Phe Asn Ile Pro Ser His Ile Pro Ala 145 150 155 160 Gly Asp Tyr Leu Val Arg Ala Glu Ala Ile Ala Leu His Thr Ala Asn 165 170 175 Gln Pro Gly Gly Ala Gln Phe Tyr Met Ser Cys Tyr Gln Val Arg Ile 180 185 190 Ser Gly Gly Glu Gly Gly Gln Leu Pro Ala Gly Val Lys Ile Pro Gly 195 200 205 Ala Tyr Ser Ala Asn Asp Pro Gly Ile Leu Val Asp Ile Trp Gly Asn 210 215 220 Asp Phe Asn Glu Tyr Val Ile Pro Gly Pro Pro Val Ile Asp Ser Ser 225 230 235 240 Tyr Phe 27222PRTMyceliophthora thermophila 27His Ser Ile Phe Gln Gln Ala Ser Ser Gly Ser Thr Asp Phe Asp Thr 1 5 10 15 Leu Cys Thr Arg Met Pro Pro Asn Asn Ser Pro Val Thr Ser Val Thr 20 25 30 Ser Gly Asp Met Thr Cys Asn Val Gly Gly Thr Lys Gly Val Ser Gly 35 40 45 Phe Cys Glu Val Asn Ala Gly Asp Glu Phe Thr Val Glu Met His Ala 50 55 60 Gln Pro Gly Asp Arg Ser Cys Ala Asn Glu Ala Ile Gly Gly Asn His 65 70 75 80 Phe Gly Pro Val Leu Ile Tyr Met Ser Lys Val Asp Asp Ala Ser Thr 85 90 95 Ala Asp Gly Ser Gly Asp Trp Phe Lys Val Asp Glu Phe Gly Tyr Asp 100 105 110 Ala Ser Thr Lys Thr Trp Gly Thr Asp Lys Leu Asn Glu Asn Cys Gly 115 120 125 Lys Arg Thr Phe Asn Ile Pro Ser His Ile Pro Ala Gly Asp Tyr Leu 130 135 140 Val Arg Ala Glu Ala Ile Ala Leu His Thr Ala Asn Gln Pro Gly Gly 145 150 155 160 Ala Gln Phe Tyr Met Ser Cys Tyr Gln Val Arg Ile Ser Gly Gly Glu 165 170 175 Gly Gly Gln Leu Pro Ala Gly Val Lys Ile Pro Gly Ala Tyr Ser Ala 180 185 190 Asn Asp Pro Gly Ile Leu Val Asp Ile Trp Gly Asn Asp Phe Asn Glu 195 200 205 Tyr Val Ile Pro Gly Pro Pro Val Ile Asp Ser Ser Tyr Phe 210 215 220 28969DNAMyceliophthora thermophila 28atgaagtcct tcaccctcac cactctggcc gccctggctg gcaacgccgc cgctcacgcg 60accttccagg ccctctgggt cgacggcgtc gactacggcg cgcagtgtgc ccgtctgccc 120gcgtccaact cgccggtcac cgacgtgacc tccaacgcga tccgctgcaa cgccaacccc 180tcgcccgctc ggggcaagtg cccggtcaag gccggctcga ccgttacggt cgagatgcat 240cagcaacccg gtgaccgctc gtgcagcagc gaggcgatcg gcggggcgca ctacggcccc 300gtgatggtgt acatgtccaa ggtgtcggac gcggcgtcgg cggacgggtc gtcgggctgg 360ttcaaggtgt tcgaggacgg ctgggccaag aacccgtccg gcgggtcggg cgacgacgac 420tactggggca ccaaggacct gaactcgtgc tgcgggaaga tgaacgtcaa gatccccgcc 480gacctgccct cgggcgacta cctgctccgg gccgaggccc tcgcgctgca cacggccggc 540agcgcgggcg gcgcccagtt ctacatgacc tgctaccagc tcaccgtgac cggctccggc 600agcgccagcc cgcccaccgt ctccttcccg ggcgcctaca aggccaccga cccgggcatc 660ctcgtcaaca tccacgcccc gctgtccggc tacaccgtgc ccggcccggc cgtctactcg 720ggcggctcca ccaagaaggc cggcagcgcc tgcaccggct gcgagtccac ttgcgccgtc 780ggctccggcc ccaccgccac cgtctcccag tcgcccggtt ccaccgccac ctcggccccc 840ggcggcggcg gcggctgcac cgtccagaag taccagcagt gcggcggcca gggctacacc 900ggctgcacca actgcgcgtc cggctccacc tgcagcgcgg tctcgccgcc ctactactcg 960cagtgcgtc 96929323PRTMyceliophthora thermophila 29Met Lys Ser Phe Thr Leu Thr Thr Leu Ala Ala Leu Ala Gly Asn Ala 1 5 10 15 Ala Ala His Ala Thr Phe Gln Ala Leu Trp Val Asp Gly Val Asp Tyr 20 25 30 Gly Ala Gln Cys Ala Arg Leu Pro Ala Ser Asn Ser Pro Val Thr Asp 35 40 45 Val Thr Ser Asn Ala Ile Arg Cys Asn Ala Asn Pro Ser Pro Ala Arg 50 55 60 Gly Lys Cys Pro Val Lys Ala Gly Ser Thr Val Thr Val Glu Met His 65 70 75 80 Gln Gln Pro Gly Asp Arg Ser Cys Ser Ser Glu Ala Ile Gly Gly Ala 85 90 95 His Tyr Gly Pro Val Met Val Tyr Met Ser Lys Val Ser Asp Ala Ala 100 105 110 Ser Ala Asp Gly Ser Ser Gly Trp Phe Lys Val Phe Glu Asp Gly Trp 115 120 125 Ala Lys Asn Pro Ser Gly Gly Ser Gly Asp Asp Asp Tyr Trp Gly Thr 130 135 140 Lys Asp Leu Asn Ser Cys Cys Gly Lys Met Asn Val Lys Ile Pro Ala 145 150 155 160 Asp Leu Pro Ser Gly Asp Tyr Leu Leu Arg Ala Glu Ala Leu Ala Leu 165 170 175 His Thr Ala Gly Ser Ala Gly Gly Ala Gln

Phe Tyr Met Thr Cys Tyr 180 185 190 Gln Leu Thr Val Thr Gly Ser Gly Ser Ala Ser Pro Pro Thr Val Ser 195 200 205 Phe Pro Gly Ala Tyr Lys Ala Thr Asp Pro Gly Ile Leu Val Asn Ile 210 215 220 His Ala Pro Leu Ser Gly Tyr Thr Val Pro Gly Pro Ala Val Tyr Ser 225 230 235 240 Gly Gly Ser Thr Lys Lys Ala Gly Ser Ala Cys Thr Gly Cys Glu Ser 245 250 255 Thr Cys Ala Val Gly Ser Gly Pro Thr Ala Thr Val Ser Gln Ser Pro 260 265 270 Gly Ser Thr Ala Thr Ser Ala Pro Gly Gly Gly Gly Gly Cys Thr Val 275 280 285 Gln Lys Tyr Gln Gln Cys Gly Gly Gln Gly Tyr Thr Gly Cys Thr Asn 290 295 300 Cys Ala Ser Gly Ser Thr Cys Ser Ala Val Ser Pro Pro Tyr Tyr Ser 305 310 315 320 Gln Cys Val 30305PRTMyceliophthora thermophila 30His Ala Thr Phe Gln Ala Leu Trp Val Asp Gly Val Asp Tyr Gly Ala 1 5 10 15 Gln Cys Ala Arg Leu Pro Ala Ser Asn Ser Pro Val Thr Asp Val Thr 20 25 30 Ser Asn Ala Ile Arg Cys Asn Ala Asn Pro Ser Pro Ala Arg Gly Lys 35 40 45 Cys Pro Val Lys Ala Gly Ser Thr Val Thr Val Glu Met His Gln Gln 50 55 60 Pro Gly Asp Arg Ser Cys Ser Ser Glu Ala Ile Gly Gly Ala His Tyr 65 70 75 80 Gly Pro Val Met Val Tyr Met Ser Lys Val Ser Asp Ala Ala Ser Ala 85 90 95 Asp Gly Ser Ser Gly Trp Phe Lys Val Phe Glu Asp Gly Trp Ala Lys 100 105 110 Asn Pro Ser Gly Gly Ser Gly Asp Asp Asp Tyr Trp Gly Thr Lys Asp 115 120 125 Leu Asn Ser Cys Cys Gly Lys Met Asn Val Lys Ile Pro Ala Asp Leu 130 135 140 Pro Ser Gly Asp Tyr Leu Leu Arg Ala Glu Ala Leu Ala Leu His Thr 145 150 155 160 Ala Gly Ser Ala Gly Gly Ala Gln Phe Tyr Met Thr Cys Tyr Gln Leu 165 170 175 Thr Val Thr Gly Ser Gly Ser Ala Ser Pro Pro Thr Val Ser Phe Pro 180 185 190 Gly Ala Tyr Lys Ala Thr Asp Pro Gly Ile Leu Val Asn Ile His Ala 195 200 205 Pro Leu Ser Gly Tyr Thr Val Pro Gly Pro Ala Val Tyr Ser Gly Gly 210 215 220 Ser Thr Lys Lys Ala Gly Ser Ala Cys Thr Gly Cys Glu Ser Thr Cys 225 230 235 240 Ala Val Gly Ser Gly Pro Thr Ala Thr Val Ser Gln Ser Pro Gly Ser 245 250 255 Thr Ala Thr Ser Ala Pro Gly Gly Gly Gly Gly Cys Thr Val Gln Lys 260 265 270 Tyr Gln Gln Cys Gly Gly Gln Gly Tyr Thr Gly Cys Thr Asn Cys Ala 275 280 285 Ser Gly Ser Thr Cys Ser Ala Val Ser Pro Pro Tyr Tyr Ser Gln Cys 290 295 300 Val 305 31870DNAMyceliophthora thermophila 31atgaagggac tcctcggcgc cgccgccctc tcgctggccg tcagcgatgt ctcggcccac 60tacatctttc agcagctgac gacgggcggc gtcaagcacg ctgtgtacca gtacatccgc 120aagaacacca actataactc gcccgtgacc gatctgacgt ccaacgacct ccgctgcaat 180gtgggtgcta ccggtgcggg caccgatacc gtcacggtgc gcgccggcga ttcgttcacc 240ttcacgaccg atacgcccgt ttaccaccag ggcccgacct cgatctacat gtccaaggcc 300cccggcagcg cgtccgacta cgacggcagc ggcggctggt tcaagatcaa ggactgggct 360gactacaccg ccacgattcc ggaatgtatt ccccccggcg actacctgct tcgcatccag 420caactcggca tccacaaccc ttggcccgcg ggcatccccc agttctacat ctcttgtgcc 480cagatcaccg tgactggtgg cggcagtgcc aaccccggcc cgaccgtctc catcccaggc 540gccttcaagg agaccgaccc gggctacact gtcaacatct acaacaactt ccacaactac 600accgtccctg gcccagccgt cttcacctgc aacggtagcg gcggcaacaa cggcggcggc 660tccaacccag tcaccaccac caccaccacc accaccaggc cgtccaccag caccgcccag 720tcccagccgt cgtcgagccc gaccagcccc tccagctgca ccgtcgcgaa gtggggccag 780tgcggaggac agggttacag cggctgcacc gtgtgcgcgg ccgggtcgac ctgccagaag 840accaacgact actacagcca gtgcttgtag 87032289PRTMyceliophthora thermophila 32Met Lys Gly Leu Leu Gly Ala Ala Ala Leu Ser Leu Ala Val Ser Asp 1 5 10 15 Val Ser Ala His Tyr Ile Phe Gln Gln Leu Thr Thr Gly Gly Val Lys 20 25 30 His Ala Val Tyr Gln Tyr Ile Arg Lys Asn Thr Asn Tyr Asn Ser Pro 35 40 45 Val Thr Asp Leu Thr Ser Asn Asp Leu Arg Cys Asn Val Gly Ala Thr 50 55 60 Gly Ala Gly Thr Asp Thr Val Thr Val Arg Ala Gly Asp Ser Phe Thr 65 70 75 80 Phe Thr Thr Asp Thr Pro Val Tyr His Gln Gly Pro Thr Ser Ile Tyr 85 90 95 Met Ser Lys Ala Pro Gly Ser Ala Ser Asp Tyr Asp Gly Ser Gly Gly 100 105 110 Trp Phe Lys Ile Lys Asp Trp Ala Asp Tyr Thr Ala Thr Ile Pro Glu 115 120 125 Cys Ile Pro Pro Gly Asp Tyr Leu Leu Arg Ile Gln Gln Leu Gly Ile 130 135 140 His Asn Pro Trp Pro Ala Gly Ile Pro Gln Phe Tyr Ile Ser Cys Ala 145 150 155 160 Gln Ile Thr Val Thr Gly Gly Gly Ser Ala Asn Pro Gly Pro Thr Val 165 170 175 Ser Ile Pro Gly Ala Phe Lys Glu Thr Asp Pro Gly Tyr Thr Val Asn 180 185 190 Ile Tyr Asn Asn Phe His Asn Tyr Thr Val Pro Gly Pro Ala Val Phe 195 200 205 Thr Cys Asn Gly Ser Gly Gly Asn Asn Gly Gly Gly Ser Asn Pro Val 210 215 220 Thr Thr Thr Thr Thr Thr Thr Thr Arg Pro Ser Thr Ser Thr Ala Gln 225 230 235 240 Ser Gln Pro Ser Ser Ser Pro Thr Ser Pro Ser Ser Cys Thr Val Ala 245 250 255 Lys Trp Gly Gln Cys Gly Gly Gln Gly Tyr Ser Gly Cys Thr Val Cys 260 265 270 Ala Ala Gly Ser Thr Cys Gln Lys Thr Asn Asp Tyr Tyr Ser Gln Cys 275 280 285 Leu 33270PRTMyceliophthora thermophila 33His Tyr Ile Phe Gln Gln Leu Thr Thr Gly Gly Val Lys His Ala Val 1 5 10 15 Tyr Gln Tyr Ile Arg Lys Asn Thr Asn Tyr Asn Ser Pro Val Thr Asp 20 25 30 Leu Thr Ser Asn Asp Leu Arg Cys Asn Val Gly Ala Thr Gly Ala Gly 35 40 45 Thr Asp Thr Val Thr Val Arg Ala Gly Asp Ser Phe Thr Phe Thr Thr 50 55 60 Asp Thr Pro Val Tyr His Gln Gly Pro Thr Ser Ile Tyr Met Ser Lys 65 70 75 80 Ala Pro Gly Ser Ala Ser Asp Tyr Asp Gly Ser Gly Gly Trp Phe Lys 85 90 95 Ile Lys Asp Trp Ala Asp Tyr Thr Ala Thr Ile Pro Glu Cys Ile Pro 100 105 110 Pro Gly Asp Tyr Leu Leu Arg Ile Gln Gln Leu Gly Ile His Asn Pro 115 120 125 Trp Pro Ala Gly Ile Pro Gln Phe Tyr Ile Ser Cys Ala Gln Ile Thr 130 135 140 Val Thr Gly Gly Gly Ser Ala Asn Pro Gly Pro Thr Val Ser Ile Pro 145 150 155 160 Gly Ala Phe Lys Glu Thr Asp Pro Gly Tyr Thr Val Asn Ile Tyr Asn 165 170 175 Asn Phe His Asn Tyr Thr Val Pro Gly Pro Ala Val Phe Thr Cys Asn 180 185 190 Gly Ser Gly Gly Asn Asn Gly Gly Gly Ser Asn Pro Val Thr Thr Thr 195 200 205 Thr Thr Thr Thr Thr Arg Pro Ser Thr Ser Thr Ala Gln Ser Gln Pro 210 215 220 Ser Ser Ser Pro Thr Ser Pro Ser Ser Cys Thr Val Ala Lys Trp Gly 225 230 235 240 Gln Cys Gly Gly Gln Gly Tyr Ser Gly Cys Thr Val Cys Ala Ala Gly 245 250 255 Ser Thr Cys Gln Lys Thr Asn Asp Tyr Tyr Ser Gln Cys Leu 260 265 270 34834DNAMyceliophthora thermophila 34ctgacgacgg gcggcgtcaa gcacgctgtg taccagtaca tccgcaagaa caccaactat 60aactcgcccg tgaccgatct gacgtccaac gacctccgct gcaatgtggg tgctaccggt 120gcgggcaccg ataccgtcac ggtgcgcgcc ggcgattcgt tcaccttcac gaccgatacg 180cccgtttacc accagggccc gacctcgatc tacatgtcca aggcccccgg cagcgcgtcc 240gactacgacg gcagcggcgg ctggttcaag atcaaggact ggggtgccga ctttagcagc 300ggccaggcca cctggacctt ggcgtctgac tacaccgcca cgattccgga atgtattccc 360cccggcgact acctgcttcg catccagcaa ctcggcatcc acaacccttg gcccgcgggc 420atcccccagt tctacatctc ttgtgcccag atcaccgtga ctggtggcgg cagtgccaac 480cccggcccga ccgtctccat cccaggcgcc ttcaaggaga ccgacccggg ctacactgtc 540aacatctaca acaacttcca caactacacc gtccctggcc cagccgtctt cacctgcaac 600ggtagcggcg gcaacaacgg cggcggctcc aacccagtca ccaccaccac caccaccacc 660accaggccgt ccaccagcac cgcccagtcc cagccgtcgt cgagcccgac cagcccctcc 720agctgcaccg tcgcgaagtg gggccagtgc ggaggacagg gttacagcgg ctgcaccgtg 780tgcgcggccg ggtcgacctg ccagaagacc aacgactact acagccagtg cttg 83435303PRTMyceliophthora thermophila 35Met Lys Gly Leu Leu Gly Ala Ala Ala Leu Ser Leu Ala Val Ser Asp 1 5 10 15 Val Ser Ala His Tyr Ile Phe Gln Gln Leu Thr Thr Gly Gly Val Lys 20 25 30 His Ala Val Tyr Gln Tyr Ile Arg Lys Asn Thr Asn Tyr Asn Ser Pro 35 40 45 Val Thr Asp Leu Thr Ser Asn Asp Leu Arg Cys Asn Val Gly Ala Thr 50 55 60 Gly Ala Gly Thr Asp Thr Val Thr Val Arg Ala Gly Asp Ser Phe Thr 65 70 75 80 Phe Thr Thr Asp Thr Pro Val Tyr His Gln Gly Pro Thr Ser Ile Tyr 85 90 95 Met Ser Lys Ala Pro Gly Ser Ala Ser Asp Tyr Asp Gly Ser Gly Gly 100 105 110 Trp Phe Lys Ile Lys Asp Trp Gly Ala Asp Phe Ser Ser Gly Gln Ala 115 120 125 Thr Trp Thr Leu Ala Ser Asp Tyr Thr Ala Thr Ile Pro Glu Cys Ile 130 135 140 Pro Pro Gly Asp Tyr Leu Leu Arg Ile Gln Gln Leu Gly Ile His Asn 145 150 155 160 Pro Trp Pro Ala Gly Ile Pro Gln Phe Tyr Ile Ser Cys Ala Gln Ile 165 170 175 Thr Val Thr Gly Gly Gly Ser Ala Asn Pro Gly Pro Thr Val Ser Ile 180 185 190 Pro Gly Ala Phe Lys Glu Thr Asp Pro Gly Tyr Thr Val Asn Ile Tyr 195 200 205 Asn Asn Phe His Asn Tyr Thr Val Pro Gly Pro Ala Val Phe Thr Cys 210 215 220 Asn Gly Ser Gly Gly Asn Asn Gly Gly Gly Ser Asn Pro Val Thr Thr 225 230 235 240 Thr Thr Thr Thr Thr Thr Arg Pro Ser Thr Ser Thr Ala Gln Ser Gln 245 250 255 Pro Ser Ser Ser Pro Thr Ser Pro Ser Ser Cys Thr Val Ala Lys Trp 260 265 270 Gly Gln Cys Gly Gly Gln Gly Tyr Ser Gly Cys Thr Val Cys Ala Ala 275 280 285 Gly Ser Thr Cys Gln Lys Thr Asn Asp Tyr Tyr Ser Gln Cys Leu 290 295 300 36284PRTMyceliophthora thermophila 36His Tyr Ile Phe Gln Gln Leu Thr Thr Gly Gly Val Lys His Ala Val 1 5 10 15 Tyr Gln Tyr Ile Arg Lys Asn Thr Asn Tyr Asn Ser Pro Val Thr Asp 20 25 30 Leu Thr Ser Asn Asp Leu Arg Cys Asn Val Gly Ala Thr Gly Ala Gly 35 40 45 Thr Asp Thr Val Thr Val Arg Ala Gly Asp Ser Phe Thr Phe Thr Thr 50 55 60 Asp Thr Pro Val Tyr His Gln Gly Pro Thr Ser Ile Tyr Met Ser Lys 65 70 75 80 Ala Pro Gly Ser Ala Ser Asp Tyr Asp Gly Ser Gly Gly Trp Phe Lys 85 90 95 Ile Lys Asp Trp Gly Ala Asp Phe Ser Ser Gly Gln Ala Thr Trp Thr 100 105 110 Leu Ala Ser Asp Tyr Thr Ala Thr Ile Pro Glu Cys Ile Pro Pro Gly 115 120 125 Asp Tyr Leu Leu Arg Ile Gln Gln Leu Gly Ile His Asn Pro Trp Pro 130 135 140 Ala Gly Ile Pro Gln Phe Tyr Ile Ser Cys Ala Gln Ile Thr Val Thr 145 150 155 160 Gly Gly Gly Ser Ala Asn Pro Gly Pro Thr Val Ser Ile Pro Gly Ala 165 170 175 Phe Lys Glu Thr Asp Pro Gly Tyr Thr Val Asn Ile Tyr Asn Asn Phe 180 185 190 His Asn Tyr Thr Val Pro Gly Pro Ala Val Phe Thr Cys Asn Gly Ser 195 200 205 Gly Gly Asn Asn Gly Gly Gly Ser Asn Pro Val Thr Thr Thr Thr Thr 210 215 220 Thr Thr Thr Arg Pro Ser Thr Ser Thr Ala Gln Ser Gln Pro Ser Ser 225 230 235 240 Ser Pro Thr Ser Pro Ser Ser Cys Thr Val Ala Lys Trp Gly Gln Cys 245 250 255 Gly Gly Gln Gly Tyr Ser Gly Cys Thr Val Cys Ala Ala Gly Ser Thr 260 265 270 Cys Gln Lys Thr Asn Asp Tyr Tyr Ser Gln Cys Leu 275 280 371038DNAMyceliophthora thermophila 37atgtcttcct tcacctccaa gggtctcctt tccgccctca tgggcgcggc aacggttgcc 60gcccacggtc acgtcaccaa catcgtcatc aacggcgtct cataccagaa cttcgaccca 120ttcacgcacc cttatatgca gaaccctccg acggttgtcg gctggaccgc gagcaacacg 180gacaacggct tcgtcggccc cgagtccttc tctagcccgg acatcatctg ccacaagtcc 240gccaccaacg ctggcggcca tgccgtcgtc gcggccggcg ataaggtctt catccagtgg 300gacacctggc ccgagtcgca ccacggtccg gtcatcgact atctcgccga ctgcggcgac 360gcgggctgcg agaaggtcga caagaccacg ctcaagttct tcaagatcag cgagtccggc 420ctgctcgacg gcactaacgc ccccggcaag tgggcgtccg acacgctgat cgccaacaac 480aactcgtggc tggtccagat cccgcccaac atcgccccgg gcaactacgt cctgcgccac 540gagatcatcg ccctgcacag cgccggccag cagaacggcg cccagaacta ccctcagtgc 600ttcaacctgc aggtcaccgg ctccggcact cagaagccct ccggcgtcct cggcaccgag 660ctctacaagg ccaccgacgc cggcatcctg gccaacatct acacctcgcc cgtcacctac 720cagatccccg gcccggccat catctcgggc gcctccgccg tccagcagac cacctcggcc 780atcaccgcct ctgctagcgc catcaccggc tccgctaccg ccgcgcccac ggctgccacc 840accaccgccg ccgccgccgc caccactacc accaccgctg gctccggtgc taccgccacg 900ccctcgaccg gcggctctcc ttcttccgcc cagcctgctc ctaccaccgc tgccgctacc 960tccagccctg ctcgcccgac ccgctgcgct ggtctgaaga agcgccgtcg ccacgcccgt 1020gacgtcaagg ttgccctc 103838346PRTMyceliophthora thermophila 38Met Ser Ser Phe Thr Ser Lys Gly Leu Leu Ser Ala Leu Met Gly Ala 1 5 10 15 Ala Thr Val Ala Ala His Gly His Val Thr Asn Ile Val Ile Asn Gly 20 25 30 Val Ser Tyr Gln Asn Phe Asp Pro Phe Thr His Pro Tyr Met Gln Asn 35 40 45 Pro Pro Thr Val Val Gly Trp Thr Ala Ser Asn Thr Asp Asn Gly Phe 50 55 60 Val Gly Pro Glu Ser Phe Ser Ser Pro Asp Ile Ile Cys His Lys Ser 65 70 75 80 Ala Thr Asn Ala Gly Gly His Ala Val Val Ala Ala Gly Asp Lys Val 85 90 95 Phe Ile Gln Trp Asp Thr Trp Pro Glu Ser His His Gly Pro Val Ile 100 105 110 Asp Tyr Leu Ala Asp Cys Gly Asp Ala Gly Cys Glu Lys Val Asp Lys 115 120 125 Thr Thr Leu Lys Phe Phe Lys Ile Ser Glu Ser Gly Leu Leu Asp Gly 130 135 140 Thr Asn Ala Pro Gly Lys Trp Ala Ser Asp Thr Leu Ile Ala Asn Asn 145 150 155 160 Asn Ser Trp Leu Val Gln Ile Pro Pro Asn Ile Ala Pro Gly Asn Tyr 165 170 175 Val Leu Arg His Glu Ile Ile Ala Leu His Ser Ala Gly Gln Gln Asn 180 185 190 Gly Ala Gln Asn Tyr Pro Gln Cys Phe Asn Leu Gln Val Thr Gly Ser 195 200 205 Gly Thr Gln Lys Pro Ser Gly Val Leu Gly Thr Glu Leu Tyr Lys Ala 210 215 220 Thr Asp Ala Gly Ile Leu Ala Asn Ile Tyr Thr Ser Pro Val Thr Tyr 225 230

235 240 Gln Ile Pro Gly Pro Ala Ile Ile Ser Gly Ala Ser Ala Val Gln Gln 245 250 255 Thr Thr Ser Ala Ile Thr Ala Ser Ala Ser Ala Ile Thr Gly Ser Ala 260 265 270 Thr Ala Ala Pro Thr Ala Ala Thr Thr Thr Ala Ala Ala Ala Ala Thr 275 280 285 Thr Thr Thr Thr Ala Gly Ser Gly Ala Thr Ala Thr Pro Ser Thr Gly 290 295 300 Gly Ser Pro Ser Ser Ala Gln Pro Ala Pro Thr Thr Ala Ala Ala Thr 305 310 315 320 Ser Ser Pro Ala Arg Pro Thr Arg Cys Ala Gly Leu Lys Lys Arg Arg 325 330 335 Arg His Ala Arg Asp Val Lys Val Ala Leu 340 345 39326PRTMyceliophthora thermophila 39Ala His Gly His Val Thr Asn Ile Val Ile Asn Gly Val Ser Tyr Gln 1 5 10 15 Asn Phe Asp Pro Phe Thr His Pro Tyr Met Gln Asn Pro Pro Thr Val 20 25 30 Val Gly Trp Thr Ala Ser Asn Thr Asp Asn Gly Phe Val Gly Pro Glu 35 40 45 Ser Phe Ser Ser Pro Asp Ile Ile Cys His Lys Ser Ala Thr Asn Ala 50 55 60 Gly Gly His Ala Val Val Ala Ala Gly Asp Lys Val Phe Ile Gln Trp 65 70 75 80 Asp Thr Trp Pro Glu Ser His His Gly Pro Val Ile Asp Tyr Leu Ala 85 90 95 Asp Cys Gly Asp Ala Gly Cys Glu Lys Val Asp Lys Thr Thr Leu Lys 100 105 110 Phe Phe Lys Ile Ser Glu Ser Gly Leu Leu Asp Gly Thr Asn Ala Pro 115 120 125 Gly Lys Trp Ala Ser Asp Thr Leu Ile Ala Asn Asn Asn Ser Trp Leu 130 135 140 Val Gln Ile Pro Pro Asn Ile Ala Pro Gly Asn Tyr Val Leu Arg His 145 150 155 160 Glu Ile Ile Ala Leu His Ser Ala Gly Gln Gln Asn Gly Ala Gln Asn 165 170 175 Tyr Pro Gln Cys Phe Asn Leu Gln Val Thr Gly Ser Gly Thr Gln Lys 180 185 190 Pro Ser Gly Val Leu Gly Thr Glu Leu Tyr Lys Ala Thr Asp Ala Gly 195 200 205 Ile Leu Ala Asn Ile Tyr Thr Ser Pro Val Thr Tyr Gln Ile Pro Gly 210 215 220 Pro Ala Ile Ile Ser Gly Ala Ser Ala Val Gln Gln Thr Thr Ser Ala 225 230 235 240 Ile Thr Ala Ser Ala Ser Ala Ile Thr Gly Ser Ala Thr Ala Ala Pro 245 250 255 Thr Ala Ala Thr Thr Thr Ala Ala Ala Ala Ala Thr Thr Thr Thr Thr 260 265 270 Ala Gly Ser Gly Ala Thr Ala Thr Pro Ser Thr Gly Gly Ser Pro Ser 275 280 285 Ser Ala Gln Pro Ala Pro Thr Thr Ala Ala Ala Thr Ser Ser Pro Ala 290 295 300 Arg Pro Thr Arg Cys Ala Gly Leu Lys Lys Arg Arg Arg His Ala Arg 305 310 315 320 Asp Val Lys Val Ala Leu 325 40714DNAMyceliophthora thermophila 40atgaagacgc tcgccgccct cgtggtctcg gccgccctcg tggccgcgca cggctatgtt 60gaccacgcca cgatcggtgg caaggattat cagttctacc agccgtacca ggacccttac 120atgggcgaca acaagcccga tagggtttcc cgctccatcc cgggcaacgg ccccgtggag 180gacgtcaact ccatcgacct ccagtgccac gccggtgccg aaccggccaa gctccacgcc 240cccgccgccg ccggctcgac cgtgacgctc tactggaccc tctggcccga ctcccacgtc 300ggccccgtca tcacctacat ggctcgctgc cccgacaccg gctgccagga ctggtccccg 360ggaactaagc ccgtttggtt caagatcaag gaaggcggcc gtgagggcac ctccaatacc 420ccgctcatga cggccccctc cgcctacacc tacacgatcc cgtcctgcct caagagcggc 480tactacctcg tccgccacga gatcatcgcc ctgcactcgg cctggcagta ccccggcgcc 540cagttctacc cgggctgcca ccagctccag gtcaccggcg gcggctccac cgtgccctct 600accaacctgg tctccttccc cggcgcctac aaggggagcg accccggcat cacctacgac 660gcttacaagg cgcaacctta caccatccct ggcccggccg tgtttacctg ctga 71441237PRTMyceliophthora thermophila 41Met Lys Thr Leu Ala Ala Leu Val Val Ser Ala Ala Leu Val Ala Ala 1 5 10 15 His Gly Tyr Val Asp His Ala Thr Ile Gly Gly Lys Asp Tyr Gln Phe 20 25 30 Tyr Gln Pro Tyr Gln Asp Pro Tyr Met Gly Asp Asn Lys Pro Asp Arg 35 40 45 Val Ser Arg Ser Ile Pro Gly Asn Gly Pro Val Glu Asp Val Asn Ser 50 55 60 Ile Asp Leu Gln Cys His Ala Gly Ala Glu Pro Ala Lys Leu His Ala 65 70 75 80 Pro Ala Ala Ala Gly Ser Thr Val Thr Leu Tyr Trp Thr Leu Trp Pro 85 90 95 Asp Ser His Val Gly Pro Val Ile Thr Tyr Met Ala Arg Cys Pro Asp 100 105 110 Thr Gly Cys Gln Asp Trp Ser Pro Gly Thr Lys Pro Val Trp Phe Lys 115 120 125 Ile Lys Glu Gly Gly Arg Glu Gly Thr Ser Asn Thr Pro Leu Met Thr 130 135 140 Ala Pro Ser Ala Tyr Thr Tyr Thr Ile Pro Ser Cys Leu Lys Ser Gly 145 150 155 160 Tyr Tyr Leu Val Arg His Glu Ile Ile Ala Leu His Ser Ala Trp Gln 165 170 175 Tyr Pro Gly Ala Gln Phe Tyr Pro Gly Cys His Gln Leu Gln Val Thr 180 185 190 Gly Gly Gly Ser Thr Val Pro Ser Thr Asn Leu Val Ser Phe Pro Gly 195 200 205 Ala Tyr Lys Gly Ser Asp Pro Gly Ile Thr Tyr Asp Ala Tyr Lys Ala 210 215 220 Gln Pro Tyr Thr Ile Pro Gly Pro Ala Val Phe Thr Cys 225 230 235 42219PRTMyceliophthora thermophila 42Tyr Val Asp His Ala Thr Ile Gly Gly Lys Asp Tyr Gln Phe Tyr Gln 1 5 10 15 Pro Tyr Gln Asp Pro Tyr Met Gly Asp Asn Lys Pro Asp Arg Val Ser 20 25 30 Arg Ser Ile Pro Gly Asn Gly Pro Val Glu Asp Val Asn Ser Ile Asp 35 40 45 Leu Gln Cys His Ala Gly Ala Glu Pro Ala Lys Leu His Ala Pro Ala 50 55 60 Ala Ala Gly Ser Thr Val Thr Leu Tyr Trp Thr Leu Trp Pro Asp Ser 65 70 75 80 His Val Gly Pro Val Ile Thr Tyr Met Ala Arg Cys Pro Asp Thr Gly 85 90 95 Cys Gln Asp Trp Ser Pro Gly Thr Lys Pro Val Trp Phe Lys Ile Lys 100 105 110 Glu Gly Gly Arg Glu Gly Thr Ser Asn Thr Pro Leu Met Thr Ala Pro 115 120 125 Ser Ala Tyr Thr Tyr Thr Ile Pro Ser Cys Leu Lys Ser Gly Tyr Tyr 130 135 140 Leu Val Arg His Glu Ile Ile Ala Leu His Ser Ala Trp Gln Tyr Pro 145 150 155 160 Gly Ala Gln Phe Tyr Pro Gly Cys His Gln Leu Gln Val Thr Gly Gly 165 170 175 Gly Ser Thr Val Pro Ser Thr Asn Leu Val Ser Phe Pro Gly Ala Tyr 180 185 190 Lys Gly Ser Asp Pro Gly Ile Thr Tyr Asp Ala Tyr Lys Ala Gln Pro 195 200 205 Tyr Thr Ile Pro Gly Pro Ala Val Phe Thr Cys 210 215 43723DNAMyceliophthora thermophila 43atgaagacgc tcgccgccct cgtggtctcg gccgccctcg tggccgcgca cggctatgtt 60gaccacgcca cgatcggtgg caaggattat cagttctacc agccgtacca ggacccttac 120atgggcgaca acaagcccga tagggtttcc cgctccatcc cgggcaacgg ccccgtggag 180gacgtcaact ccatcgacct ccagtgccac gccggtgccg aaccggccaa gctccacgcc 240cccgccgccg ccggctcgac cgtgacgctc tactggaccc tctggcccga ctcccacgtc 300ggccccgtca tcacctacat ggctcgctgc cccgacaccg gctgccagga ctggtccccg 360ggaactaagc ccgtttggtt caagatcaag gaaggcggcc gtgagggcac ctccaatgtc 420tgggctgcta ccccgctcat gacggccccc tccgcctaca cctacacgat cccgtcctgc 480ctcaagagcg gctactacct cgtccgccac gagatcatcg ccctgcactc ggcctggcag 540taccccggcg cccagttcta cccgggctgc caccagctcc aggtcaccgg cggcggctcc 600accgtgccct ctaccaacct ggtctccttc cccggcgcct acaaggggag cgaccccggc 660atcacctacg acgcttacaa ggcgcaacct tacaccatcc ctggcccggc cgtgtttacc 720tgc 72344241PRTMyceliophthora thermophila 44Met Lys Thr Leu Ala Ala Leu Val Val Ser Ala Ala Leu Val Ala Ala 1 5 10 15 His Gly Tyr Val Asp His Ala Thr Ile Gly Gly Lys Asp Tyr Gln Phe 20 25 30 Tyr Gln Pro Tyr Gln Asp Pro Tyr Met Gly Asp Asn Lys Pro Asp Arg 35 40 45 Val Ser Arg Ser Ile Pro Gly Asn Gly Pro Val Glu Asp Val Asn Ser 50 55 60 Ile Asp Leu Gln Cys His Ala Gly Ala Glu Pro Ala Lys Leu His Ala 65 70 75 80 Pro Ala Ala Ala Gly Ser Thr Val Thr Leu Tyr Trp Thr Leu Trp Pro 85 90 95 Asp Ser His Val Gly Pro Val Ile Thr Tyr Met Ala Arg Cys Pro Asp 100 105 110 Thr Gly Cys Gln Asp Trp Ser Pro Gly Thr Lys Pro Val Trp Phe Lys 115 120 125 Ile Lys Glu Gly Gly Arg Glu Gly Thr Ser Asn Val Trp Ala Ala Thr 130 135 140 Pro Leu Met Thr Ala Pro Ser Ala Tyr Thr Tyr Thr Ile Pro Ser Cys 145 150 155 160 Leu Lys Ser Gly Tyr Tyr Leu Val Arg His Glu Ile Ile Ala Leu His 165 170 175 Ser Ala Trp Gln Tyr Pro Gly Ala Gln Phe Tyr Pro Gly Cys His Gln 180 185 190 Leu Gln Val Thr Gly Gly Gly Ser Thr Val Pro Ser Thr Asn Leu Val 195 200 205 Ser Phe Pro Gly Ala Tyr Lys Gly Ser Asp Pro Gly Ile Thr Tyr Asp 210 215 220 Ala Tyr Lys Ala Gln Pro Tyr Thr Ile Pro Gly Pro Ala Val Phe Thr 225 230 235 240 Cys 45223PRTMyceliophthora thermophila 45Tyr Val Asp His Ala Thr Ile Gly Gly Lys Asp Tyr Gln Phe Tyr Gln 1 5 10 15 Pro Tyr Gln Asp Pro Tyr Met Gly Asp Asn Lys Pro Asp Arg Val Ser 20 25 30 Arg Ser Ile Pro Gly Asn Gly Pro Val Glu Asp Val Asn Ser Ile Asp 35 40 45 Leu Gln Cys His Ala Gly Ala Glu Pro Ala Lys Leu His Ala Pro Ala 50 55 60 Ala Ala Gly Ser Thr Val Thr Leu Tyr Trp Thr Leu Trp Pro Asp Ser 65 70 75 80 His Val Gly Pro Val Ile Thr Tyr Met Ala Arg Cys Pro Asp Thr Gly 85 90 95 Cys Gln Asp Trp Ser Pro Gly Thr Lys Pro Val Trp Phe Lys Ile Lys 100 105 110 Glu Gly Gly Arg Glu Gly Thr Ser Asn Val Trp Ala Ala Thr Pro Leu 115 120 125 Met Thr Ala Pro Ser Ala Tyr Thr Tyr Thr Ile Pro Ser Cys Leu Lys 130 135 140 Ser Gly Tyr Tyr Leu Val Arg His Glu Ile Ile Ala Leu His Ser Ala 145 150 155 160 Trp Gln Tyr Pro Gly Ala Gln Phe Tyr Pro Gly Cys His Gln Leu Gln 165 170 175 Val Thr Gly Gly Gly Ser Thr Val Pro Ser Thr Asn Leu Val Ser Phe 180 185 190 Pro Gly Ala Tyr Lys Gly Ser Asp Pro Gly Ile Thr Tyr Asp Ala Tyr 195 200 205 Lys Ala Gln Pro Tyr Thr Ile Pro Gly Pro Ala Val Phe Thr Cys 210 215 220 46675DNAMyceliophthora thermophila 46atgagatact tcctccagct cgctgcggcc gcggcctttg ccgtgaacag cgcggcgggt 60cactacatct tccagcagtt cgcgacgggc gggtccaagt acccgccctg gaagtacatc 120cggcgcaaca ccaacccgga ctggctgcag aacgggccgg tgacggacct gtcgtcgacc 180gacctgcgct gcaacgtggg cgggcaggtc agcaacggga ccgagaccat caccttgaac 240gccggcgacg agttcagctt catcctcgac acgcccgtct accatgccgg ccccacctcg 300ctctacatgt ccaaggcgcc cggagctgtg gccgactacg acggcggcgg ggcctggttc 360aagatctacg actggggtcc gtcggggacg agctggacgt tgagtggcac gtacactcag 420agaattccca agtgcatccc tgacggcgag tacctcctcc gcatccagca gatcgggctc 480cacaaccccg gcgccgcgcc acagttctac atcagctgcg ctcaagtcaa ggtcgtcgat 540ggcggcagca ccaatccgac cccgaccgcc cagattccgg gagccttcca cagcaacgac 600cctggcttga ctgtcaatat ctacaacgac cctctcacca actacgtcgt cccgggacct 660agagtttcgc actgg 67547225PRTMyceliophthora thermophila 47Met Arg Tyr Phe Leu Gln Leu Ala Ala Ala Ala Ala Phe Ala Val Asn 1 5 10 15 Ser Ala Ala Gly His Tyr Ile Phe Gln Gln Phe Ala Thr Gly Gly Ser 20 25 30 Lys Tyr Pro Pro Trp Lys Tyr Ile Arg Arg Asn Thr Asn Pro Asp Trp 35 40 45 Leu Gln Asn Gly Pro Val Thr Asp Leu Ser Ser Thr Asp Leu Arg Cys 50 55 60 Asn Val Gly Gly Gln Val Ser Asn Gly Thr Glu Thr Ile Thr Leu Asn 65 70 75 80 Ala Gly Asp Glu Phe Ser Phe Ile Leu Asp Thr Pro Val Tyr His Ala 85 90 95 Gly Pro Thr Ser Leu Tyr Met Ser Lys Ala Pro Gly Ala Val Ala Asp 100 105 110 Tyr Asp Gly Gly Gly Ala Trp Phe Lys Ile Tyr Asp Trp Gly Pro Ser 115 120 125 Gly Thr Ser Trp Thr Leu Ser Gly Thr Tyr Thr Gln Arg Ile Pro Lys 130 135 140 Cys Ile Pro Asp Gly Glu Tyr Leu Leu Arg Ile Gln Gln Ile Gly Leu 145 150 155 160 His Asn Pro Gly Ala Ala Pro Gln Phe Tyr Ile Ser Cys Ala Gln Val 165 170 175 Lys Val Val Asp Gly Gly Ser Thr Asn Pro Thr Pro Thr Ala Gln Ile 180 185 190 Pro Gly Ala Phe His Ser Asn Asp Pro Gly Leu Thr Val Asn Ile Tyr 195 200 205 Asn Asp Pro Leu Thr Asn Tyr Val Val Pro Gly Pro Arg Val Ser His 210 215 220 Trp 225 48205PRTMyceliophthora thermophila 48His Tyr Ile Phe Gln Gln Phe Ala Thr Gly Gly Ser Lys Tyr Pro Pro 1 5 10 15 Trp Lys Tyr Ile Arg Arg Asn Thr Asn Pro Asp Trp Leu Gln Asn Gly 20 25 30 Pro Val Thr Asp Leu Ser Ser Thr Asp Leu Arg Cys Asn Val Gly Gly 35 40 45 Gln Val Ser Asn Gly Thr Glu Thr Ile Thr Leu Asn Ala Gly Asp Glu 50 55 60 Phe Ser Phe Ile Leu Asp Thr Pro Val Tyr His Ala Gly Pro Thr Ser 65 70 75 80 Leu Tyr Met Ser Lys Ala Pro Gly Ala Val Ala Asp Tyr Asp Gly Gly 85 90 95 Gly Ala Trp Phe Lys Ile Tyr Asp Trp Gly Pro Ser Gly Thr Ser Trp 100 105 110 Thr Leu Ser Gly Thr Tyr Thr Gln Arg Ile Pro Lys Cys Ile Pro Asp 115 120 125 Gly Glu Tyr Leu Leu Arg Ile Gln Gln Ile Gly Leu His Asn Pro Gly 130 135 140 Ala Ala Pro Gln Phe Tyr Ile Ser Cys Ala Gln Val Lys Val Val Asp 145 150 155 160 Gly Gly Ser Thr Asn Pro Thr Pro Thr Ala Gln Ile Pro Gly Ala Phe 165 170 175 His Ser Asn Asp Pro Gly Leu Thr Val Asn Ile Tyr Asn Asp Pro Leu 180 185 190 Thr Asn Tyr Val Val Pro Gly Pro Arg Val Ser His Trp 195 200 205 491332DNAMyceliophthora thermophila 49atgcacccct cccttctttt cacgcttggg ctggcgagcg tgcttgtccc cctctcgtct 60gcacacacta ccttcacgac cctcttcgtc aacgatgtca accaaggtga tggtacctgc 120attcgcatgg cgaagaaggg caatgtcgcc acccatcctc tcgcaggcgg tctcgactcc 180gaagacatgg cctgtggtcg ggatggtcaa gaacccgtgg catttacgtg tccggcccca 240gctggtgcca agttgactct cgagtttcgc atgtgggccg atgcttcgca gtccggatcg 300atcgatccat cccaccttgg cgtcatggcc atctacctca agaaggtttc cgacatgaaa 360tctgacgcgg ccgctggccc gggctggttc aagatttggg accaaggcta cgacttggcg 420gccaagaagt gggccaccga gaagctcatc gacaacaacg gcctcctgag cgtcaacctt 480ccaaccggct taccaaccgg ctactacctc gcccgccagg agatcatcac gctccaaaac 540gttaccaatg acaggccaga gccccagttc tacgtcggct gcgcacagct ctacgtcgag 600ggcacctcgg actcacccat cccctcggac aagacggtct ccattcccgg ccacatcagc 660gacccggccg acccgggcct gaccttcaac gtctacacgg gcgacgcatc cacctacaag 720ccgcccggcc ccgaggttta cttccccacc accaccacca ccacctcctc ctcctcctcc 780ggaagcagcg

acaacaaggg agccaggcgc cagcaaaccc ccgacgacaa gcaggccgac 840ggcctcgttc cagccgactg cctcgtcaag aacgcgaact ggtgcgccgc tgccctgccg 900ccgtacaccg acgaggccgg ctgctgggcc gccgccgagg actgcaacaa gcagctggac 960gcgtgctaca ccagcgcacc cccctcgggc agcaaggggt gcaaggtctg ggaggagcag 1020gtgtgcaccg tcgtctcgca gaagtgcgag gccggggatt tcaaggggcc cccgcagctc 1080gggaaggagc tcggcgaggg gatcgatgag cctattccgg ggggaaagct gcccccggcg 1140gtcaacgcgg gagagaacgg gaatcatggc ggaggtggtg gtgatgatgg tgatgatgat 1200aatgatgagg ccggggctgg ggcagcgtcg actccgactt ttgctgctcc tggtgcggcc 1260aagactcccc aaccaaactc cgagagggcc cggcgccgtg aggcgcattg gcggcgactg 1320gaatctgctg ag 133250444PRTMyceliophthora thermophila 50Met His Pro Ser Leu Leu Phe Thr Leu Gly Leu Ala Ser Val Leu Val 1 5 10 15 Pro Leu Ser Ser Ala His Thr Thr Phe Thr Thr Leu Phe Val Asn Asp 20 25 30 Val Asn Gln Gly Asp Gly Thr Cys Ile Arg Met Ala Lys Lys Gly Asn 35 40 45 Val Ala Thr His Pro Leu Ala Gly Gly Leu Asp Ser Glu Asp Met Ala 50 55 60 Cys Gly Arg Asp Gly Gln Glu Pro Val Ala Phe Thr Cys Pro Ala Pro 65 70 75 80 Ala Gly Ala Lys Leu Thr Leu Glu Phe Arg Met Trp Ala Asp Ala Ser 85 90 95 Gln Ser Gly Ser Ile Asp Pro Ser His Leu Gly Val Met Ala Ile Tyr 100 105 110 Leu Lys Lys Val Ser Asp Met Lys Ser Asp Ala Ala Ala Gly Pro Gly 115 120 125 Trp Phe Lys Ile Trp Asp Gln Gly Tyr Asp Leu Ala Ala Lys Lys Trp 130 135 140 Ala Thr Glu Lys Leu Ile Asp Asn Asn Gly Leu Leu Ser Val Asn Leu 145 150 155 160 Pro Thr Gly Leu Pro Thr Gly Tyr Tyr Leu Ala Arg Gln Glu Ile Ile 165 170 175 Thr Leu Gln Asn Val Thr Asn Asp Arg Pro Glu Pro Gln Phe Tyr Val 180 185 190 Gly Cys Ala Gln Leu Tyr Val Glu Gly Thr Ser Asp Ser Pro Ile Pro 195 200 205 Ser Asp Lys Thr Val Ser Ile Pro Gly His Ile Ser Asp Pro Ala Asp 210 215 220 Pro Gly Leu Thr Phe Asn Val Tyr Thr Gly Asp Ala Ser Thr Tyr Lys 225 230 235 240 Pro Pro Gly Pro Glu Val Tyr Phe Pro Thr Thr Thr Thr Thr Thr Ser 245 250 255 Ser Ser Ser Ser Gly Ser Ser Asp Asn Lys Gly Ala Arg Arg Gln Gln 260 265 270 Thr Pro Asp Asp Lys Gln Ala Asp Gly Leu Val Pro Ala Asp Cys Leu 275 280 285 Val Lys Asn Ala Asn Trp Cys Ala Ala Ala Leu Pro Pro Tyr Thr Asp 290 295 300 Glu Ala Gly Cys Trp Ala Ala Ala Glu Asp Cys Asn Lys Gln Leu Asp 305 310 315 320 Ala Cys Tyr Thr Ser Ala Pro Pro Ser Gly Ser Lys Gly Cys Lys Val 325 330 335 Trp Glu Glu Gln Val Cys Thr Val Val Ser Gln Lys Cys Glu Ala Gly 340 345 350 Asp Phe Lys Gly Pro Pro Gln Leu Gly Lys Glu Leu Gly Glu Gly Ile 355 360 365 Asp Glu Pro Ile Pro Gly Gly Lys Leu Pro Pro Ala Val Asn Ala Gly 370 375 380 Glu Asn Gly Asn His Gly Gly Gly Gly Gly Asp Asp Gly Asp Asp Asp 385 390 395 400 Asn Asp Glu Ala Gly Ala Gly Ala Ala Ser Thr Pro Thr Phe Ala Ala 405 410 415 Pro Gly Ala Ala Lys Thr Pro Gln Pro Asn Ser Glu Arg Ala Arg Arg 420 425 430 Arg Glu Ala His Trp Arg Arg Leu Glu Ser Ala Glu 435 440 51423PRTMyceliophthora thermophila 51His Thr Thr Phe Thr Thr Leu Phe Val Asn Asp Val Asn Gln Gly Asp 1 5 10 15 Gly Thr Cys Ile Arg Met Ala Lys Lys Gly Asn Val Ala Thr His Pro 20 25 30 Leu Ala Gly Gly Leu Asp Ser Glu Asp Met Ala Cys Gly Arg Asp Gly 35 40 45 Gln Glu Pro Val Ala Phe Thr Cys Pro Ala Pro Ala Gly Ala Lys Leu 50 55 60 Thr Leu Glu Phe Arg Met Trp Ala Asp Ala Ser Gln Ser Gly Ser Ile 65 70 75 80 Asp Pro Ser His Leu Gly Val Met Ala Ile Tyr Leu Lys Lys Val Ser 85 90 95 Asp Met Lys Ser Asp Ala Ala Ala Gly Pro Gly Trp Phe Lys Ile Trp 100 105 110 Asp Gln Gly Tyr Asp Leu Ala Ala Lys Lys Trp Ala Thr Glu Lys Leu 115 120 125 Ile Asp Asn Asn Gly Leu Leu Ser Val Asn Leu Pro Thr Gly Leu Pro 130 135 140 Thr Gly Tyr Tyr Leu Ala Arg Gln Glu Ile Ile Thr Leu Gln Asn Val 145 150 155 160 Thr Asn Asp Arg Pro Glu Pro Gln Phe Tyr Val Gly Cys Ala Gln Leu 165 170 175 Tyr Val Glu Gly Thr Ser Asp Ser Pro Ile Pro Ser Asp Lys Thr Val 180 185 190 Ser Ile Pro Gly His Ile Ser Asp Pro Ala Asp Pro Gly Leu Thr Phe 195 200 205 Asn Val Tyr Thr Gly Asp Ala Ser Thr Tyr Lys Pro Pro Gly Pro Glu 210 215 220 Val Tyr Phe Pro Thr Thr Thr Thr Thr Thr Ser Ser Ser Ser Ser Gly 225 230 235 240 Ser Ser Asp Asn Lys Gly Ala Arg Arg Gln Gln Thr Pro Asp Asp Lys 245 250 255 Gln Ala Asp Gly Leu Val Pro Ala Asp Cys Leu Val Lys Asn Ala Asn 260 265 270 Trp Cys Ala Ala Ala Leu Pro Pro Tyr Thr Asp Glu Ala Gly Cys Trp 275 280 285 Ala Ala Ala Glu Asp Cys Asn Lys Gln Leu Asp Ala Cys Tyr Thr Ser 290 295 300 Ala Pro Pro Ser Gly Ser Lys Gly Cys Lys Val Trp Glu Glu Gln Val 305 310 315 320 Cys Thr Val Val Ser Gln Lys Cys Glu Ala Gly Asp Phe Lys Gly Pro 325 330 335 Pro Gln Leu Gly Lys Glu Leu Gly Glu Gly Ile Asp Glu Pro Ile Pro 340 345 350 Gly Gly Lys Leu Pro Pro Ala Val Asn Ala Gly Glu Asn Gly Asn His 355 360 365 Gly Gly Gly Gly Gly Asp Asp Gly Asp Asp Asp Asn Asp Glu Ala Gly 370 375 380 Ala Gly Ala Ala Ser Thr Pro Thr Phe Ala Ala Pro Gly Ala Ala Lys 385 390 395 400 Thr Pro Gln Pro Asn Ser Glu Arg Ala Arg Arg Arg Glu Ala His Trp 405 410 415 Arg Arg Leu Glu Ser Ala Glu 420 52834DNAMyceliophthora thermophila 52atgttttctc tcaagttctt tatcttggcc ggtgggcttg ctgtcctcac cgaggctcac 60ataagactag tgtcgcccgc cccttttacc aaccctgacc agggccccag cccactccta 120gaggctggca gcgactatcc ctgccacaac ggcaatgggg gcggttatca gggaacgcca 180acccagatgg caaagggttc taagcagcag ctagccttcc aggggtctgc cgttcatggg 240ggtggctcct gccaagtgtc catcacctac gacgaaaacc cgaccgctca gagctccttc 300aaggtcattc actcgattca aggtggctgc cccgccaggg ccgagacgat cccggattgc 360agcgcacaaa atatcaacgc ctgcaatata aagcccgata atgcccagat ggacaccccg 420gataagtatg agttcacgat cccggaggat ctccccagtg gcaaggccac cctcgcctgg 480acatggatca acactatcgg caaccgcgag ttttatatgg catgcgcccc ggttgagatc 540accggcgacg gcggtagcga gtcggctctg gctgcgctgc ccgacatggt cattgccaac 600atcccgtcca tcggaggaac ctgcgcgacc gaggagggga agtactacga atatcccaac 660cccggtaagt cggtcgaaac catcccgggc tggaccgatt tggttcccct gcaaggcgaa 720tgcggtgctg cctccggtgt ctcgggctcc ggcggaaacg ccagcagtgc tacccctgcc 780gcaggggccg ccccgactcc tgctgtccgc ggccgccgtc ccacctggaa cgcc 83453278PRTMyceliophthora thermophila 53Met Phe Ser Leu Lys Phe Phe Ile Leu Ala Gly Gly Leu Ala Val Leu 1 5 10 15 Thr Glu Ala His Ile Arg Leu Val Ser Pro Ala Pro Phe Thr Asn Pro 20 25 30 Asp Gln Gly Pro Ser Pro Leu Leu Glu Ala Gly Ser Asp Tyr Pro Cys 35 40 45 His Asn Gly Asn Gly Gly Gly Tyr Gln Gly Thr Pro Thr Gln Met Ala 50 55 60 Lys Gly Ser Lys Gln Gln Leu Ala Phe Gln Gly Ser Ala Val His Gly 65 70 75 80 Gly Gly Ser Cys Gln Val Ser Ile Thr Tyr Asp Glu Asn Pro Thr Ala 85 90 95 Gln Ser Ser Phe Lys Val Ile His Ser Ile Gln Gly Gly Cys Pro Ala 100 105 110 Arg Ala Glu Thr Ile Pro Asp Cys Ser Ala Gln Asn Ile Asn Ala Cys 115 120 125 Asn Ile Lys Pro Asp Asn Ala Gln Met Asp Thr Pro Asp Lys Tyr Glu 130 135 140 Phe Thr Ile Pro Glu Asp Leu Pro Ser Gly Lys Ala Thr Leu Ala Trp 145 150 155 160 Thr Trp Ile Asn Thr Ile Gly Asn Arg Glu Phe Tyr Met Ala Cys Ala 165 170 175 Pro Val Glu Ile Thr Gly Asp Gly Gly Ser Glu Ser Ala Leu Ala Ala 180 185 190 Leu Pro Asp Met Val Ile Ala Asn Ile Pro Ser Ile Gly Gly Thr Cys 195 200 205 Ala Thr Glu Glu Gly Lys Tyr Tyr Glu Tyr Pro Asn Pro Gly Lys Ser 210 215 220 Val Glu Thr Ile Pro Gly Trp Thr Asp Leu Val Pro Leu Gln Gly Glu 225 230 235 240 Cys Gly Ala Ala Ser Gly Val Ser Gly Ser Gly Gly Asn Ala Ser Ser 245 250 255 Ala Thr Pro Ala Ala Gly Ala Ala Pro Thr Pro Ala Val Arg Gly Arg 260 265 270 Arg Pro Thr Trp Asn Ala 275 54259PRTMyceliophthora thermophila 54His Ile Arg Leu Val Ser Pro Ala Pro Phe Thr Asn Pro Asp Gln Gly 1 5 10 15 Pro Ser Pro Leu Leu Glu Ala Gly Ser Asp Tyr Pro Cys His Asn Gly 20 25 30 Asn Gly Gly Gly Tyr Gln Gly Thr Pro Thr Gln Met Ala Lys Gly Ser 35 40 45 Lys Gln Gln Leu Ala Phe Gln Gly Ser Ala Val His Gly Gly Gly Ser 50 55 60 Cys Gln Val Ser Ile Thr Tyr Asp Glu Asn Pro Thr Ala Gln Ser Ser 65 70 75 80 Phe Lys Val Ile His Ser Ile Gln Gly Gly Cys Pro Ala Arg Ala Glu 85 90 95 Thr Ile Pro Asp Cys Ser Ala Gln Asn Ile Asn Ala Cys Asn Ile Lys 100 105 110 Pro Asp Asn Ala Gln Met Asp Thr Pro Asp Lys Tyr Glu Phe Thr Ile 115 120 125 Pro Glu Asp Leu Pro Ser Gly Lys Ala Thr Leu Ala Trp Thr Trp Ile 130 135 140 Asn Thr Ile Gly Asn Arg Glu Phe Tyr Met Ala Cys Ala Pro Val Glu 145 150 155 160 Ile Thr Gly Asp Gly Gly Ser Glu Ser Ala Leu Ala Ala Leu Pro Asp 165 170 175 Met Val Ile Ala Asn Ile Pro Ser Ile Gly Gly Thr Cys Ala Thr Glu 180 185 190 Glu Gly Lys Tyr Tyr Glu Tyr Pro Asn Pro Gly Lys Ser Val Glu Thr 195 200 205 Ile Pro Gly Trp Thr Asp Leu Val Pro Leu Gln Gly Glu Cys Gly Ala 210 215 220 Ala Ser Gly Val Ser Gly Ser Gly Gly Asn Ala Ser Ser Ala Thr Pro 225 230 235 240 Ala Ala Gly Ala Ala Pro Thr Pro Ala Val Arg Gly Arg Arg Pro Thr 245 250 255 Trp Asn Ala 55672DNAMyceliophthora thermophila 55atgaagctcg ccacgctcct cgccgccctc accctcgggg tggccgacca gctcagcgtc 60gggtccagaa agtttggcgt gtacgagcac attcgcaaga acacgaacta caactcgccc 120gttaccgacc tgtcggacac caacctgcgc tgcaacgtcg gcgggggctc gggcaccagc 180accaccgtgc tcgacgtcaa ggccggagac tcgttcacct tcttcagcga cgttgccgtc 240taccaccagg ggcccatctc gctgtgcgtg gaccggacca gtgcagagag catggatgga 300cgggaaccgg acatgcgctg ccgaactggc tcacaagctg gctacctggc ggtgactgac 360tacgacgggt ccggtgactg tttcaagatc tatgactggg gaccgacgtt caacgggggc 420caggcgtcgt ggccgacgag gaattcgtac gagtacagca tcctcaagtg catcagggac 480ggcgaatacc tactgcggat tcagtccctg gccatccata acccaggtgc ccttccgcag 540ttctacatca gctgcgccca ggtgaatgtg acgggcggag gcaccgtcac cccgagatca 600aggcgaccga tcctgatcta tttcaacttc cactcgtata tcgtccctgg gccggcagtg 660ttcaagtgct ag 67256223PRTMyceliophthora thermophila 56Met Lys Leu Ala Thr Leu Leu Ala Ala Leu Thr Leu Gly Val Ala Asp 1 5 10 15 Gln Leu Ser Val Gly Ser Arg Lys Phe Gly Val Tyr Glu His Ile Arg 20 25 30 Lys Asn Thr Asn Tyr Asn Ser Pro Val Thr Asp Leu Ser Asp Thr Asn 35 40 45 Leu Arg Cys Asn Val Gly Gly Gly Ser Gly Thr Ser Thr Thr Val Leu 50 55 60 Asp Val Lys Ala Gly Asp Ser Phe Thr Phe Phe Ser Asp Val Ala Val 65 70 75 80 Tyr His Gln Gly Pro Ile Ser Leu Cys Val Asp Arg Thr Ser Ala Glu 85 90 95 Ser Met Asp Gly Arg Glu Pro Asp Met Arg Cys Arg Thr Gly Ser Gln 100 105 110 Ala Gly Tyr Leu Ala Val Thr Asp Tyr Asp Gly Ser Gly Asp Cys Phe 115 120 125 Lys Ile Tyr Asp Trp Gly Pro Thr Phe Asn Gly Gly Gln Ala Ser Trp 130 135 140 Pro Thr Arg Asn Ser Tyr Glu Tyr Ser Ile Leu Lys Cys Ile Arg Asp 145 150 155 160 Gly Glu Tyr Leu Leu Arg Ile Gln Ser Leu Ala Ile His Asn Pro Gly 165 170 175 Ala Leu Pro Gln Phe Tyr Ile Ser Cys Ala Gln Val Asn Val Thr Gly 180 185 190 Gly Gly Thr Val Thr Pro Arg Ser Arg Arg Pro Ile Leu Ile Tyr Phe 195 200 205 Asn Phe His Ser Tyr Ile Val Pro Gly Pro Ala Val Phe Lys Cys 210 215 220 57208PRTMyceliophthora thermophila 57Asp Gln Leu Ser Val Gly Ser Arg Lys Phe Gly Val Tyr Glu His Ile 1 5 10 15 Arg Lys Asn Thr Asn Tyr Asn Ser Pro Val Thr Asp Leu Ser Asp Thr 20 25 30 Asn Leu Arg Cys Asn Val Gly Gly Gly Ser Gly Thr Ser Thr Thr Val 35 40 45 Leu Asp Val Lys Ala Gly Asp Ser Phe Thr Phe Phe Ser Asp Val Ala 50 55 60 Val Tyr His Gln Gly Pro Ile Ser Leu Cys Val Asp Arg Thr Ser Ala 65 70 75 80 Glu Ser Met Asp Gly Arg Glu Pro Asp Met Arg Cys Arg Thr Gly Ser 85 90 95 Gln Ala Gly Tyr Leu Ala Val Thr Asp Tyr Asp Gly Ser Gly Asp Cys 100 105 110 Phe Lys Ile Tyr Asp Trp Gly Pro Thr Phe Asn Gly Gly Gln Ala Ser 115 120 125 Trp Pro Thr Arg Asn Ser Tyr Glu Tyr Ser Ile Leu Lys Cys Ile Arg 130 135 140 Asp Gly Glu Tyr Leu Leu Arg Ile Gln Ser Leu Ala Ile His Asn Pro 145 150 155 160 Gly Ala Leu Pro Gln Phe Tyr Ile Ser Cys Ala Gln Val Asn Val Thr 165 170 175 Gly Gly Gly Thr Val Thr Pro Arg Ser Arg Arg Pro Ile Leu Ile Tyr 180 185 190 Phe Asn Phe His Ser Tyr Ile Val Pro Gly Pro Ala Val Phe Lys Cys 195 200 205 58642DNAMyceliophthora thermophila 58atgaagctcg ccacgctcct cgccgccctc accctcgggc tcagcgtcgg gtccagaaag 60tttggcgtgt acgagcacat tcgcaagaac acgaactaca actcgcccgt taccgacctg 120tcggacacca acctgcgctg caacgtcggc gggggctcgg gcaccagcac caccgtgctc 180gacgtcaagg ccggagactc gttcaccttc ttcagcgacg ttgccgtcta ccaccagggg 240cccatctcgc tgtgcgtgga ccggaccagt gcagagagca tggatggacg ggaaccggac 300atgcgctgcc gaactggctc acaagctggc tacctggcgg tgactgtgat gactgtgact 360gactacgacg ggtccggtga ctgtttcaag atctatgact ggggaccgac gttcaacggg 420ggccaggcgt cgtggccgac gaggaattcg tacgagtaca gcatcctcaa gtgcatcagg 480gacggcgaat acctactgcg gattcagtcc ctggccatcc ataacccagg tgcccttccg 540cagttctaca tcagctgcgc ccaggtgaat gtgacgggcg gaggcaccat ctatttcaac 600ttccactcgt

atatcgtccc tgggccggca gtgttcaagt gc 64259214PRTMyceliophthora thermophila 59Met Lys Leu Ala Thr Leu Leu Ala Ala Leu Thr Leu Gly Leu Ser Val 1 5 10 15 Gly Ser Arg Lys Phe Gly Val Tyr Glu His Ile Arg Lys Asn Thr Asn 20 25 30 Tyr Asn Ser Pro Val Thr Asp Leu Ser Asp Thr Asn Leu Arg Cys Asn 35 40 45 Val Gly Gly Gly Ser Gly Thr Ser Thr Thr Val Leu Asp Val Lys Ala 50 55 60 Gly Asp Ser Phe Thr Phe Phe Ser Asp Val Ala Val Tyr His Gln Gly 65 70 75 80 Pro Ile Ser Leu Cys Val Asp Arg Thr Ser Ala Glu Ser Met Asp Gly 85 90 95 Arg Glu Pro Asp Met Arg Cys Arg Thr Gly Ser Gln Ala Gly Tyr Leu 100 105 110 Ala Val Thr Val Met Thr Val Thr Asp Tyr Asp Gly Ser Gly Asp Cys 115 120 125 Phe Lys Ile Tyr Asp Trp Gly Pro Thr Phe Asn Gly Gly Gln Ala Ser 130 135 140 Trp Pro Thr Arg Asn Ser Tyr Glu Tyr Ser Ile Leu Lys Cys Ile Arg 145 150 155 160 Asp Gly Glu Tyr Leu Leu Arg Ile Gln Ser Leu Ala Ile His Asn Pro 165 170 175 Gly Ala Leu Pro Gln Phe Tyr Ile Ser Cys Ala Gln Val Asn Val Thr 180 185 190 Gly Gly Gly Thr Ile Tyr Phe Asn Phe His Ser Tyr Ile Val Pro Gly 195 200 205 Pro Ala Val Phe Lys Cys 210 60196PRTMyceliophthora thermophila 60Arg Lys Phe Gly Val Tyr Glu His Ile Arg Lys Asn Thr Asn Tyr Asn 1 5 10 15 Ser Pro Val Thr Asp Leu Ser Asp Thr Asn Leu Arg Cys Asn Val Gly 20 25 30 Gly Gly Ser Gly Thr Ser Thr Thr Val Leu Asp Val Lys Ala Gly Asp 35 40 45 Ser Phe Thr Phe Phe Ser Asp Val Ala Val Tyr His Gln Gly Pro Ile 50 55 60 Ser Leu Cys Val Asp Arg Thr Ser Ala Glu Ser Met Asp Gly Arg Glu 65 70 75 80 Pro Asp Met Arg Cys Arg Thr Gly Ser Gln Ala Gly Tyr Leu Ala Val 85 90 95 Thr Val Met Thr Val Thr Asp Tyr Asp Gly Ser Gly Asp Cys Phe Lys 100 105 110 Ile Tyr Asp Trp Gly Pro Thr Phe Asn Gly Gly Gln Ala Ser Trp Pro 115 120 125 Thr Arg Asn Ser Tyr Glu Tyr Ser Ile Leu Lys Cys Ile Arg Asp Gly 130 135 140 Glu Tyr Leu Leu Arg Ile Gln Ser Leu Ala Ile His Asn Pro Gly Ala 145 150 155 160 Leu Pro Gln Phe Tyr Ile Ser Cys Ala Gln Val Asn Val Thr Gly Gly 165 170 175 Gly Thr Ile Tyr Phe Asn Phe His Ser Tyr Ile Val Pro Gly Pro Ala 180 185 190 Val Phe Lys Cys 195 61579DNAMyceliophthora thermophila 61atgaccaaga atgcgcagag caagcagggc gttgagaacc caacaagcgg cgacatccgc 60tgctacacct cgcagacggc ggccaacgtc gtgaccgtgc cggccggctc gaccattcac 120tacatctcga cccagcagat caaccacccc ggcccgactc agtactacct ggccaaggta 180ccccccggct cgtcggccaa gacctttgac gggtccggcg ccgtctggtt caagatctcg 240accacgatgc ctaccgtgga cagcaacaag cagatgttct ggccagggca gaacacttat 300gagacctcaa acaccaccat tcccgccaac accccggacg gcgagtacct ccttcgcgtc 360aagcagatcg ccctccacat ggcgtctcag cccaacaagg tccagttcta cctcgcctgc 420acccagatca agatcaccgg tggtcgcaac ggcaccccca gcccgctggt cgcgctgccc 480ggagcctaca agagcaccga ccccggcatc ctggtcgaca tctactccat gaagcccgaa 540tcgtaccagc ctcccgggcc gcccgtctgg cgcggctaa 57962192PRTMyceliophthora thermophila 62Met Thr Lys Asn Ala Gln Ser Lys Gln Gly Val Glu Asn Pro Thr Ser 1 5 10 15 Gly Asp Ile Arg Cys Tyr Thr Ser Gln Thr Ala Ala Asn Val Val Thr 20 25 30 Val Pro Ala Gly Ser Thr Ile His Tyr Ile Ser Thr Gln Gln Ile Asn 35 40 45 His Pro Gly Pro Thr Gln Tyr Tyr Leu Ala Lys Val Pro Pro Gly Ser 50 55 60 Ser Ala Lys Thr Phe Asp Gly Ser Gly Ala Val Trp Phe Lys Ile Ser 65 70 75 80 Thr Thr Met Pro Thr Val Asp Ser Asn Lys Gln Met Phe Trp Pro Gly 85 90 95 Gln Asn Thr Tyr Glu Thr Ser Asn Thr Thr Ile Pro Ala Asn Thr Pro 100 105 110 Asp Gly Glu Tyr Leu Leu Arg Val Lys Gln Ile Ala Leu His Met Ala 115 120 125 Ser Gln Pro Asn Lys Val Gln Phe Tyr Leu Ala Cys Thr Gln Ile Lys 130 135 140 Ile Thr Gly Gly Arg Asn Gly Thr Pro Ser Pro Leu Val Ala Leu Pro 145 150 155 160 Gly Ala Tyr Lys Ser Thr Asp Pro Gly Ile Leu Val Asp Ile Tyr Ser 165 170 175 Met Lys Pro Glu Ser Tyr Gln Pro Pro Gly Pro Pro Val Trp Arg Gly 180 185 190 63672DNAMyceliophthora thermophila 63atgaggcttc tcgcaagctt gttgctcgca gctacggctg ttcaagctca ctttgttaac 60ggacagcccg aagagagtga ctggtcagcc acgcgcatga ccaagaatgc gcagagcaag 120cagggcgttg agaacccaac aagcggcgac atccgctgct acacctcgca gacggcggcc 180aacgtcgtga ccgtgccggc cggctcgacc attcactaca tctcgaccca gcagatcaac 240caccccggcc cgactcagta ctacctggcc aaggtacccc ccggctcgtc ggccaagacc 300tttgacgggt ccggcgccgt ctggttcaag atctcgacca cgatgcctac cgtggacagc 360aacaagcaga tgttctggcc agggcagaac acttatgaga cctcaaacac caccattccc 420gccaacaccc cggacggcga gtacctcctt cgcgtcaagc agatcgccct ccacatggcg 480tctcagccca acaaggtcca gttctacctc gcctgcaccc agatcaagat caccggtggt 540cgcaacggca cccccagccc gctggtcgcg ctgcccggag cctacaagag caccgacccc 600ggcatcctgg tcgacatcta ctccatgaag cccgaatcgt accagcctcc cgggccgccc 660gtctggcgcg gc 67264224PRTMyceliophthora thermophila 64Met Arg Leu Leu Ala Ser Leu Leu Leu Ala Ala Thr Ala Val Gln Ala 1 5 10 15 His Phe Val Asn Gly Gln Pro Glu Glu Ser Asp Trp Ser Ala Thr Arg 20 25 30 Met Thr Lys Asn Ala Gln Ser Lys Gln Gly Val Glu Asn Pro Thr Ser 35 40 45 Gly Asp Ile Arg Cys Tyr Thr Ser Gln Thr Ala Ala Asn Val Val Thr 50 55 60 Val Pro Ala Gly Ser Thr Ile His Tyr Ile Ser Thr Gln Gln Ile Asn 65 70 75 80 His Pro Gly Pro Thr Gln Tyr Tyr Leu Ala Lys Val Pro Pro Gly Ser 85 90 95 Ser Ala Lys Thr Phe Asp Gly Ser Gly Ala Val Trp Phe Lys Ile Ser 100 105 110 Thr Thr Met Pro Thr Val Asp Ser Asn Lys Gln Met Phe Trp Pro Gly 115 120 125 Gln Asn Thr Tyr Glu Thr Ser Asn Thr Thr Ile Pro Ala Asn Thr Pro 130 135 140 Asp Gly Glu Tyr Leu Leu Arg Val Lys Gln Ile Ala Leu His Met Ala 145 150 155 160 Ser Gln Pro Asn Lys Val Gln Phe Tyr Leu Ala Cys Thr Gln Ile Lys 165 170 175 Ile Thr Gly Gly Arg Asn Gly Thr Pro Ser Pro Leu Val Ala Leu Pro 180 185 190 Gly Ala Tyr Lys Ser Thr Asp Pro Gly Ile Leu Val Asp Ile Tyr Ser 195 200 205 Met Lys Pro Glu Ser Tyr Gln Pro Pro Gly Pro Pro Val Trp Arg Gly 210 215 220 65208PRTMyceliophthora thermophila 65His Phe Val Asn Gly Gln Pro Glu Glu Ser Asp Trp Ser Ala Thr Arg 1 5 10 15 Met Thr Lys Asn Ala Gln Ser Lys Gln Gly Val Glu Asn Pro Thr Ser 20 25 30 Gly Asp Ile Arg Cys Tyr Thr Ser Gln Thr Ala Ala Asn Val Val Thr 35 40 45 Val Pro Ala Gly Ser Thr Ile His Tyr Ile Ser Thr Gln Gln Ile Asn 50 55 60 His Pro Gly Pro Thr Gln Tyr Tyr Leu Ala Lys Val Pro Pro Gly Ser 65 70 75 80 Ser Ala Lys Thr Phe Asp Gly Ser Gly Ala Val Trp Phe Lys Ile Ser 85 90 95 Thr Thr Met Pro Thr Val Asp Ser Asn Lys Gln Met Phe Trp Pro Gly 100 105 110 Gln Asn Thr Tyr Glu Thr Ser Asn Thr Thr Ile Pro Ala Asn Thr Pro 115 120 125 Asp Gly Glu Tyr Leu Leu Arg Val Lys Gln Ile Ala Leu His Met Ala 130 135 140 Ser Gln Pro Asn Lys Val Gln Phe Tyr Leu Ala Cys Thr Gln Ile Lys 145 150 155 160 Ile Thr Gly Gly Arg Asn Gly Thr Pro Ser Pro Leu Val Ala Leu Pro 165 170 175 Gly Ala Tyr Lys Ser Thr Asp Pro Gly Ile Leu Val Asp Ile Tyr Ser 180 185 190 Met Lys Pro Glu Ser Tyr Gln Pro Pro Gly Pro Pro Val Trp Arg Gly 195 200 205 66849DNAMyceliophthora thermophila 66atgaagccct ttagcctcgt cgccctggcg actgccgtga gcggccatgc catcttccag 60cgggtgtcgg tcaacgggca ggaccagggc cagctcaagg gggtgcgggc gccgtcgagc 120aactccccga tccagaacgt caacgatgcc aacatggcct gcaacgccaa cattgtgtac 180cacgacaaca ccatcatcaa ggtgcccgcg ggagcccgcg tcggcgcgtg gtggcagcac 240gtcatcggcg ggccgcaggg cgccaacgac ccggacaacc cgatcgccgc ctcccacaag 300ggccccatcc aggtctacct ggccaaggtg gacaacgcgg cgacggcgtc gccgtcgggc 360ctcaagtggt tcaaggtggc cgagcgcggc ctgaacaacg gcgtgtgggc ctacctgatg 420cgcgtcgagc tgctcgccct gcacagcgcc tcgagccccg gcggcgccca gttctacatg 480ggctgtgcac agatcgaagt cactggctcc ggcaccaact cgggctccga ctttgtctcg 540ttccccggcg cctactcggc caacgacccg ggcatcttgc tgagcatcta cgacagctcg 600ggcaagccca acaatggcgg gcgctcgtac ccgatccccg gcccgcgccc catctcctgc 660tccggcagcg gcggcggcgg caacaacggc ggcgacggcg gcgacgacaa caacggtggt 720ggcaacaaca acggcggcgg cagcgtcccc ctgtacgggc agtgcggcgg catcggctac 780acgggcccga ccacctgtgc ccagggaact tgcaaggtgt cgaacgaata ctacagccag 840tgcctcccc 84967283PRTMyceliophthora thermophila 67Met Lys Pro Phe Ser Leu Val Ala Leu Ala Thr Ala Val Ser Gly His 1 5 10 15 Ala Ile Phe Gln Arg Val Ser Val Asn Gly Gln Asp Gln Gly Gln Leu 20 25 30 Lys Gly Val Arg Ala Pro Ser Ser Asn Ser Pro Ile Gln Asn Val Asn 35 40 45 Asp Ala Asn Met Ala Cys Asn Ala Asn Ile Val Tyr His Asp Asn Thr 50 55 60 Ile Ile Lys Val Pro Ala Gly Ala Arg Val Gly Ala Trp Trp Gln His 65 70 75 80 Val Ile Gly Gly Pro Gln Gly Ala Asn Asp Pro Asp Asn Pro Ile Ala 85 90 95 Ala Ser His Lys Gly Pro Ile Gln Val Tyr Leu Ala Lys Val Asp Asn 100 105 110 Ala Ala Thr Ala Ser Pro Ser Gly Leu Lys Trp Phe Lys Val Ala Glu 115 120 125 Arg Gly Leu Asn Asn Gly Val Trp Ala Tyr Leu Met Arg Val Glu Leu 130 135 140 Leu Ala Leu His Ser Ala Ser Ser Pro Gly Gly Ala Gln Phe Tyr Met 145 150 155 160 Gly Cys Ala Gln Ile Glu Val Thr Gly Ser Gly Thr Asn Ser Gly Ser 165 170 175 Asp Phe Val Ser Phe Pro Gly Ala Tyr Ser Ala Asn Asp Pro Gly Ile 180 185 190 Leu Leu Ser Ile Tyr Asp Ser Ser Gly Lys Pro Asn Asn Gly Gly Arg 195 200 205 Ser Tyr Pro Ile Pro Gly Pro Arg Pro Ile Ser Cys Ser Gly Ser Gly 210 215 220 Gly Gly Gly Asn Asn Gly Gly Asp Gly Gly Asp Asp Asn Asn Gly Gly 225 230 235 240 Gly Asn Asn Asn Gly Gly Gly Ser Val Pro Leu Tyr Gly Gln Cys Gly 245 250 255 Gly Ile Gly Tyr Thr Gly Pro Thr Thr Cys Ala Gln Gly Thr Cys Lys 260 265 270 Val Ser Asn Glu Tyr Tyr Ser Gln Cys Leu Pro 275 280 68268PRTMyceliophthora thermophila 68His Ala Ile Phe Gln Arg Val Ser Val Asn Gly Gln Asp Gln Gly Gln 1 5 10 15 Leu Lys Gly Val Arg Ala Pro Ser Ser Asn Ser Pro Ile Gln Asn Val 20 25 30 Asn Asp Ala Asn Met Ala Cys Asn Ala Asn Ile Val Tyr His Asp Asn 35 40 45 Thr Ile Ile Lys Val Pro Ala Gly Ala Arg Val Gly Ala Trp Trp Gln 50 55 60 His Val Ile Gly Gly Pro Gln Gly Ala Asn Asp Pro Asp Asn Pro Ile 65 70 75 80 Ala Ala Ser His Lys Gly Pro Ile Gln Val Tyr Leu Ala Lys Val Asp 85 90 95 Asn Ala Ala Thr Ala Ser Pro Ser Gly Leu Lys Trp Phe Lys Val Ala 100 105 110 Glu Arg Gly Leu Asn Asn Gly Val Trp Ala Tyr Leu Met Arg Val Glu 115 120 125 Leu Leu Ala Leu His Ser Ala Ser Ser Pro Gly Gly Ala Gln Phe Tyr 130 135 140 Met Gly Cys Ala Gln Ile Glu Val Thr Gly Ser Gly Thr Asn Ser Gly 145 150 155 160 Ser Asp Phe Val Ser Phe Pro Gly Ala Tyr Ser Ala Asn Asp Pro Gly 165 170 175 Ile Leu Leu Ser Ile Tyr Asp Ser Ser Gly Lys Pro Asn Asn Gly Gly 180 185 190 Arg Ser Tyr Pro Ile Pro Gly Pro Arg Pro Ile Ser Cys Ser Gly Ser 195 200 205 Gly Gly Gly Gly Asn Asn Gly Gly Asp Gly Gly Asp Asp Asn Asn Gly 210 215 220 Gly Gly Asn Asn Asn Gly Gly Gly Ser Val Pro Leu Tyr Gly Gln Cys 225 230 235 240 Gly Gly Ile Gly Tyr Thr Gly Pro Thr Thr Cys Ala Gln Gly Thr Cys 245 250 255 Lys Val Ser Asn Glu Tyr Tyr Ser Gln Cys Leu Pro 260 265 69639DNAMyceliophthora thermophila 69atgaagctca cctcgtccct cgctgtcctg gccgctgccg gcgcccaggc tcactatacc 60ttccctaggg ccggcactgg tggttcgctc tctggcgagt gggaggtggt ccgcatgacc 120gagaaccatt actcgcacgg cccggtcacc gatgtcacca gccccgagat gacctgctat 180cagtccggcg tgcagggtgc gccccagacc gtccaggtca aggcgggctc ccaattcacc 240ttcagcgtgg atccctccat cggccacccc ggccctctcc agttctacat ggctaaggtg 300ccgtcgggcc agacggccgc cacctttgac ggcacgggag ccgtgtggtt caagatctac 360caagacggcc cgaacggcct cggcaccgac agcattacct ggcccagcgc cggcaaaacc 420gaggtctcgg tcaccatccc cagctgcatc gaggatggcg agtacctgct ccgggtcgag 480cacacccccc tccctacagc gccagcagcg caaaaccgag ctcgctcgtc accatcccca 540gctgcataca aggccaccga cccgggcatc ctcttccagc tctactggcc catcccgacc 600gagtacatca accccggccc ggcccccgtc tcttgctaa 63970212PRTMyceliophthora thermophila 70Met Lys Leu Thr Ser Ser Leu Ala Val Leu Ala Ala Ala Gly Ala Gln 1 5 10 15 Ala His Tyr Thr Phe Pro Arg Ala Gly Thr Gly Gly Ser Leu Ser Gly 20 25 30 Glu Trp Glu Val Val Arg Met Thr Glu Asn His Tyr Ser His Gly Pro 35 40 45 Val Thr Asp Val Thr Ser Pro Glu Met Thr Cys Tyr Gln Ser Gly Val 50 55 60 Gln Gly Ala Pro Gln Thr Val Gln Val Lys Ala Gly Ser Gln Phe Thr 65 70 75 80 Phe Ser Val Asp Pro Ser Ile Gly His Pro Gly Pro Leu Gln Phe Tyr 85 90 95 Met Ala Lys Val Pro Ser Gly Gln Thr Ala Ala Thr Phe Asp Gly Thr 100 105 110 Gly Ala Val Trp Phe Lys Ile Tyr Gln Asp Gly Pro Asn Gly Leu Gly 115 120 125 Thr Asp Ser Ile Thr Trp Pro Ser Ala Gly Lys Thr Glu Val Ser Val 130 135 140 Thr Ile Pro Ser Cys Ile Glu Asp Gly Glu Tyr Leu Leu Arg Val Glu 145 150 155 160 His Thr Pro Leu Pro Thr Ala Pro Ala Ala Gln Asn Arg Ala Arg Ser 165 170 175 Ser Pro Ser Pro Ala Ala Tyr Lys Ala Thr Asp Pro Gly Ile Leu Phe 180 185 190 Gln Leu Tyr Trp Pro Ile Pro Thr Glu Tyr Ile Asn Pro Gly Pro Ala 195 200 205 Pro

Val Ser Cys 210 71195PRTMyceliophthora thermophila 71His Tyr Thr Phe Pro Arg Ala Gly Thr Gly Gly Ser Leu Ser Gly Glu 1 5 10 15 Trp Glu Val Val Arg Met Thr Glu Asn His Tyr Ser His Gly Pro Val 20 25 30 Thr Asp Val Thr Ser Pro Glu Met Thr Cys Tyr Gln Ser Gly Val Gln 35 40 45 Gly Ala Pro Gln Thr Val Gln Val Lys Ala Gly Ser Gln Phe Thr Phe 50 55 60 Ser Val Asp Pro Ser Ile Gly His Pro Gly Pro Leu Gln Phe Tyr Met 65 70 75 80 Ala Lys Val Pro Ser Gly Gln Thr Ala Ala Thr Phe Asp Gly Thr Gly 85 90 95 Ala Val Trp Phe Lys Ile Tyr Gln Asp Gly Pro Asn Gly Leu Gly Thr 100 105 110 Asp Ser Ile Thr Trp Pro Ser Ala Gly Lys Thr Glu Val Ser Val Thr 115 120 125 Ile Pro Ser Cys Ile Glu Asp Gly Glu Tyr Leu Leu Arg Val Glu His 130 135 140 Thr Pro Leu Pro Thr Ala Pro Ala Ala Gln Asn Arg Ala Arg Ser Ser 145 150 155 160 Pro Ser Pro Ala Ala Tyr Lys Ala Thr Asp Pro Gly Ile Leu Phe Gln 165 170 175 Leu Tyr Trp Pro Ile Pro Thr Glu Tyr Ile Asn Pro Gly Pro Ala Pro 180 185 190 Val Ser Cys 195 72695DNAMyceliophthora thermophila 72atgaagctca cctcgtccct cgctgtcctg gccgctgccg gcgcccaggc tcactatacc 60ttccctaggg ccggcactgg tggttcgctc tctggcgagt gggaggtggt ccgcatgacc 120gagaccatta ctcgcacggc ccggtcaccg atgtcaccag ccccgagatg acctgctatc 180agtccggcgt gcagggtgcg ccccagaccg tccaggtcaa ggcgggctcc caattcacct 240tcagcgtgga tccctccatc ggccaccccg gccctctcca gttctacatg gctaaggtgc 300cgtcgggcca gacggccgcc acctttgacg gcacgggagc cgtgtggttc aagatctacc 360aagacggccc gaacggcctc ggcaccgaca gcattacctg gcccagcgcc ggcaaaaccg 420aggtctcggt caccatcccc agctgcatcg aggatggcga gtacctgctc cgggtcgagc 480acatcgcgct ccacagcgcc agcagcgtgg gcggcgccca gttctacatc gcctgcgccc 540agctctccgt caccggcggc tccggcaccc tcaacacggg ctcgctcgtc tccctgcccg 600gcgcctacaa ggccaccgac ccgggcatcc tcttccagct ctactggccc atcccgaccg 660agtacatcaa ccccggcccg gcccccgtct cttgc 69573232PRTMyceliophthora thermophila 73Met Lys Leu Thr Ser Ser Leu Ala Val Leu Ala Ala Ala Gly Ala Gln 1 5 10 15 Ala His Tyr Thr Phe Pro Arg Ala Gly Thr Gly Gly Ser Leu Ser Gly 20 25 30 Glu Trp Glu Val Val Arg Met Thr Glu Asn His Tyr Ser His Gly Pro 35 40 45 Val Thr Asp Val Thr Ser Pro Glu Met Thr Cys Tyr Gln Ser Gly Val 50 55 60 Gln Gly Ala Pro Gln Thr Val Gln Val Lys Ala Gly Ser Gln Phe Thr 65 70 75 80 Phe Ser Val Asp Pro Ser Ile Gly His Pro Gly Pro Leu Gln Phe Tyr 85 90 95 Met Ala Lys Val Pro Ser Gly Gln Thr Ala Ala Thr Phe Asp Gly Thr 100 105 110 Gly Ala Val Trp Phe Lys Ile Tyr Gln Asp Gly Pro Asn Gly Leu Gly 115 120 125 Thr Asp Ser Ile Thr Trp Pro Ser Ala Gly Lys Thr Glu Val Ser Val 130 135 140 Thr Ile Pro Ser Cys Ile Glu Asp Gly Glu Tyr Leu Leu Arg Val Glu 145 150 155 160 His Ile Ala Leu His Ser Ala Ser Ser Val Gly Gly Ala Gln Phe Tyr 165 170 175 Ile Ala Cys Ala Gln Leu Ser Val Thr Gly Gly Ser Gly Thr Leu Asn 180 185 190 Thr Gly Ser Leu Val Ser Leu Pro Gly Ala Tyr Lys Ala Thr Asp Pro 195 200 205 Gly Ile Leu Phe Gln Leu Tyr Trp Pro Ile Pro Thr Glu Tyr Ile Asn 210 215 220 Pro Gly Pro Ala Pro Val Ser Cys 225 230 74215PRTMyceliophthora thermophila 74His Tyr Thr Phe Pro Arg Ala Gly Thr Gly Gly Ser Leu Ser Gly Glu 1 5 10 15 Trp Glu Val Val Arg Met Thr Glu Asn His Tyr Ser His Gly Pro Val 20 25 30 Thr Asp Val Thr Ser Pro Glu Met Thr Cys Tyr Gln Ser Gly Val Gln 35 40 45 Gly Ala Pro Gln Thr Val Gln Val Lys Ala Gly Ser Gln Phe Thr Phe 50 55 60 Ser Val Asp Pro Ser Ile Gly His Pro Gly Pro Leu Gln Phe Tyr Met 65 70 75 80 Ala Lys Val Pro Ser Gly Gln Thr Ala Ala Thr Phe Asp Gly Thr Gly 85 90 95 Ala Val Trp Phe Lys Ile Tyr Gln Asp Gly Pro Asn Gly Leu Gly Thr 100 105 110 Asp Ser Ile Thr Trp Pro Ser Ala Gly Lys Thr Glu Val Ser Val Thr 115 120 125 Ile Pro Ser Cys Ile Glu Asp Gly Glu Tyr Leu Leu Arg Val Glu His 130 135 140 Ile Ala Leu His Ser Ala Ser Ser Val Gly Gly Ala Gln Phe Tyr Ile 145 150 155 160 Ala Cys Ala Gln Leu Ser Val Thr Gly Gly Ser Gly Thr Leu Asn Thr 165 170 175 Gly Ser Leu Val Ser Leu Pro Gly Ala Tyr Lys Ala Thr Asp Pro Gly 180 185 190 Ile Leu Phe Gln Leu Tyr Trp Pro Ile Pro Thr Glu Tyr Ile Asn Pro 195 200 205 Gly Pro Ala Pro Val Ser Cys 210 215 75447DNAMyceliophthora thermophila 75atgccgccac cacgactgag caccctcctt cccctcctag ccttaatagc ccccaccgcc 60ctggggcact cccacctcgg gtacatcatc atcaacggcg aggtatacca aggattcgac 120ccgcggccgg agcaggcgaa ctcgccgttg cgcgtgggct ggtcgacggg ggcaatcgac 180gacgggttcg tggcgccggc caactactcg tcgcccgaca tcatctgcca catcgagggg 240gccagcccgc cggcgcacgc gcccgtccgg gcgggcgacc gggtgcacgt gcaatggaac 300ggctggccgc tcggacacgt ggggccggtg ctgtcgtacc tggcgccctg cggcgggctg 360gaggggtccg agagcgggtg cgccggggtg gacaagcggc agctgcggtg gaccaaggtg 420gacgactcgc tgccggcgat ggagctg 44776149PRTMyceliophthora thermophila 76Met Pro Pro Pro Arg Leu Ser Thr Leu Leu Pro Leu Leu Ala Leu Ile 1 5 10 15 Ala Pro Thr Ala Leu Gly His Ser His Leu Gly Tyr Ile Ile Ile Asn 20 25 30 Gly Glu Val Tyr Gln Gly Phe Asp Pro Arg Pro Glu Gln Ala Asn Ser 35 40 45 Pro Leu Arg Val Gly Trp Ser Thr Gly Ala Ile Asp Asp Gly Phe Val 50 55 60 Ala Pro Ala Asn Tyr Ser Ser Pro Asp Ile Ile Cys His Ile Glu Gly 65 70 75 80 Ala Ser Pro Pro Ala His Ala Pro Val Arg Ala Gly Asp Arg Val His 85 90 95 Val Gln Trp Asn Gly Trp Pro Leu Gly His Val Gly Pro Val Leu Ser 100 105 110 Tyr Leu Ala Pro Cys Gly Gly Leu Glu Gly Ser Glu Ser Gly Cys Ala 115 120 125 Gly Val Asp Lys Arg Gln Leu Arg Trp Thr Lys Val Asp Asp Ser Leu 130 135 140 Pro Ala Met Glu Leu 145 77127PRTMyceliophthora thermophila 77His Ser His Leu Gly Tyr Ile Ile Ile Asn Gly Glu Val Tyr Gln Gly 1 5 10 15 Phe Asp Pro Arg Pro Glu Gln Ala Asn Ser Pro Leu Arg Val Gly Trp 20 25 30 Ser Thr Gly Ala Ile Asp Asp Gly Phe Val Ala Pro Ala Asn Tyr Ser 35 40 45 Ser Pro Asp Ile Ile Cys His Ile Glu Gly Ala Ser Pro Pro Ala His 50 55 60 Ala Pro Val Arg Ala Gly Asp Arg Val His Val Gln Trp Asn Gly Trp 65 70 75 80 Pro Leu Gly His Val Gly Pro Val Leu Ser Tyr Leu Ala Pro Cys Gly 85 90 95 Gly Leu Glu Gly Ser Glu Ser Gly Cys Ala Gly Val Asp Lys Arg Gln 100 105 110 Leu Arg Trp Thr Lys Val Asp Asp Ser Leu Pro Ala Met Glu Leu 115 120 125 781176DNAMyceliophthora thermophila 78atgccgccac cacgactgag caccctcctt cccctcctag ccttaatagc ccccaccgcc 60ctggggcact cccacctcgg gtacatcatc atcaacggcg aggtatacca aggattcgac 120ccgcggccgg agcaggcgaa ctcgccgttg cgcgtgggct ggtcgacggg ggcaatcgac 180gacgggttcg tggcgccggc caactactcg tcgcccgaca tcatctgcca catcgagggg 240gccagcccgc cggcgcacgc gcccgtccgg gcgggcgacc gggtgcacgt gcaatggaaa 300cggctggccg ctcggacacg tggggccggt gctgtcgtac ctggcgccct gcggcgggct 360ggaggggtcc gagagcgggt ggacgactcg ctgccggcga tggagctggt cggggccgcg 420gggggcgcgg ggggcgagga cgacggcagc ggcagcgacg gcagcggcag cggcggcagc 480ggacgcgtcg gcgtgcccgg gcagcgctgg gccaccgacg tgttgatcgc ggccaacaac 540agctggcagg tcgagatccc gcgcgggctg cgggacgggc cgtacgtgct gcgccacgag 600atcgtcgcgc tgcactacgc ggccgagccc ggcggcgcgc agaactaccc gctctgcgtc 660aacctgtggg tcgagggcgg cgacggcagc atggagctgg accacttcga cgccacccag 720ttctaccggc ccgacgaccc gggcatcctg ctcaacgtga cggccggcct gcgctcatac 780gccgtgccgg gcccgacgct ggccgcgggg gcgacgccgg tgccgtacgc gcagcagaac 840atcagctcgg cgagggcgga tggaaccccc gtgattgtca ccaggagcac ggagacggtg 900cccttcaccg cggcacccac gccagccgag acggcagaag ccaaaggggg gaggtatgat 960gaccaaaccc gaactaaaga cctaaatgaa cgcttctttt atagtagccg gccagaacag 1020aagaggctga cagcgacctc aagaagggaa ctagttgatc atcgtacccg gtacctctcc 1080gtagctgtct gcgcagattt cggcgctcat aaggcagcag aaaccaacca cgaagctttg 1140agaggcggca ataagcacca tggcggtgtt tcagag 117679392PRTMyceliophthora thermophila 79Met Pro Pro Pro Arg Leu Ser Thr Leu Leu Pro Leu Leu Ala Leu Ile 1 5 10 15 Ala Pro Thr Ala Leu Gly His Ser His Leu Gly Tyr Ile Ile Ile Asn 20 25 30 Gly Glu Val Tyr Gln Gly Phe Asp Pro Arg Pro Glu Gln Ala Asn Ser 35 40 45 Pro Leu Arg Val Gly Trp Ser Thr Gly Ala Ile Asp Asp Gly Phe Val 50 55 60 Ala Pro Ala Asn Tyr Ser Ser Pro Asp Ile Ile Cys His Ile Glu Gly 65 70 75 80 Ala Ser Pro Pro Ala His Ala Pro Val Arg Ala Gly Asp Arg Val His 85 90 95 Val Gln Trp Lys Arg Leu Ala Ala Arg Thr Arg Gly Ala Gly Ala Val 100 105 110 Val Pro Gly Ala Leu Arg Arg Ala Gly Gly Val Arg Glu Arg Val Asp 115 120 125 Asp Ser Leu Pro Ala Met Glu Leu Val Gly Ala Ala Gly Gly Ala Gly 130 135 140 Gly Glu Asp Asp Gly Ser Gly Ser Asp Gly Ser Gly Ser Gly Gly Ser 145 150 155 160 Gly Arg Val Gly Val Pro Gly Gln Arg Trp Ala Thr Asp Val Leu Ile 165 170 175 Ala Ala Asn Asn Ser Trp Gln Val Glu Ile Pro Arg Gly Leu Arg Asp 180 185 190 Gly Pro Tyr Val Leu Arg His Glu Ile Val Ala Leu His Tyr Ala Ala 195 200 205 Glu Pro Gly Gly Ala Gln Asn Tyr Pro Leu Cys Val Asn Leu Trp Val 210 215 220 Glu Gly Gly Asp Gly Ser Met Glu Leu Asp His Phe Asp Ala Thr Gln 225 230 235 240 Phe Tyr Arg Pro Asp Asp Pro Gly Ile Leu Leu Asn Val Thr Ala Gly 245 250 255 Leu Arg Ser Tyr Ala Val Pro Gly Pro Thr Leu Ala Ala Gly Ala Thr 260 265 270 Pro Val Pro Tyr Ala Gln Gln Asn Ile Ser Ser Ala Arg Ala Asp Gly 275 280 285 Thr Pro Val Ile Val Thr Arg Ser Thr Glu Thr Val Pro Phe Thr Ala 290 295 300 Ala Pro Thr Pro Ala Glu Thr Ala Glu Ala Lys Gly Gly Arg Tyr Asp 305 310 315 320 Asp Gln Thr Arg Thr Lys Asp Leu Asn Glu Arg Phe Phe Tyr Ser Ser 325 330 335 Arg Pro Glu Gln Lys Arg Leu Thr Ala Thr Ser Arg Arg Glu Leu Val 340 345 350 Asp His Arg Thr Arg Tyr Leu Ser Val Ala Val Cys Ala Asp Phe Gly 355 360 365 Ala His Lys Ala Ala Glu Thr Asn His Glu Ala Leu Arg Gly Gly Asn 370 375 380 Lys His His Gly Gly Val Ser Glu 385 390 80370PRTMyceliophthora thermophila 80His Ser His Leu Gly Tyr Ile Ile Ile Asn Gly Glu Val Tyr Gln Gly 1 5 10 15 Phe Asp Pro Arg Pro Glu Gln Ala Asn Ser Pro Leu Arg Val Gly Trp 20 25 30 Ser Thr Gly Ala Ile Asp Asp Gly Phe Val Ala Pro Ala Asn Tyr Ser 35 40 45 Ser Pro Asp Ile Ile Cys His Ile Glu Gly Ala Ser Pro Pro Ala His 50 55 60 Ala Pro Val Arg Ala Gly Asp Arg Val His Val Gln Trp Lys Arg Leu 65 70 75 80 Ala Ala Arg Thr Arg Gly Ala Gly Ala Val Val Pro Gly Ala Leu Arg 85 90 95 Arg Ala Gly Gly Val Arg Glu Arg Val Asp Asp Ser Leu Pro Ala Met 100 105 110 Glu Leu Val Gly Ala Ala Gly Gly Ala Gly Gly Glu Asp Asp Gly Ser 115 120 125 Gly Ser Asp Gly Ser Gly Ser Gly Gly Ser Gly Arg Val Gly Val Pro 130 135 140 Gly Gln Arg Trp Ala Thr Asp Val Leu Ile Ala Ala Asn Asn Ser Trp 145 150 155 160 Gln Val Glu Ile Pro Arg Gly Leu Arg Asp Gly Pro Tyr Val Leu Arg 165 170 175 His Glu Ile Val Ala Leu His Tyr Ala Ala Glu Pro Gly Gly Ala Gln 180 185 190 Asn Tyr Pro Leu Cys Val Asn Leu Trp Val Glu Gly Gly Asp Gly Ser 195 200 205 Met Glu Leu Asp His Phe Asp Ala Thr Gln Phe Tyr Arg Pro Asp Asp 210 215 220 Pro Gly Ile Leu Leu Asn Val Thr Ala Gly Leu Arg Ser Tyr Ala Val 225 230 235 240 Pro Gly Pro Thr Leu Ala Ala Gly Ala Thr Pro Val Pro Tyr Ala Gln 245 250 255 Gln Asn Ile Ser Ser Ala Arg Ala Asp Gly Thr Pro Val Ile Val Thr 260 265 270 Arg Ser Thr Glu Thr Val Pro Phe Thr Ala Ala Pro Thr Pro Ala Glu 275 280 285 Thr Ala Glu Ala Lys Gly Gly Arg Tyr Asp Asp Gln Thr Arg Thr Lys 290 295 300 Asp Leu Asn Glu Arg Phe Phe Tyr Ser Ser Arg Pro Glu Gln Lys Arg 305 310 315 320 Leu Thr Ala Thr Ser Arg Arg Glu Leu Val Asp His Arg Thr Arg Tyr 325 330 335 Leu Ser Val Ala Val Cys Ala Asp Phe Gly Ala His Lys Ala Ala Glu 340 345 350 Thr Asn His Glu Ala Leu Arg Gly Gly Asn Lys His His Gly Gly Val 355 360 365 Ser Glu 370 81453DNAMyceliophthora thermophila 81atgaggtcga cattggccgg tgccctggca gccatcgctg ctcagaaagt agccggccac 60gccacgtttc agcagctctg gcacggctcc tcctgtgtcc gccttccggc tagcaactca 120cccgtcacca atgtgggaag cagagacttc gtctgcaacg ctggcacccg ccccgtcagt 180ggcaagtgcc ccgtgaaggc tggcggcacc gtcaccatcg agatgcacca gcaacccggc 240gaccgcagct gcaacaacga agccatcgga ggggcgcatt ggggccccgt ccaggtgtac 300ctgaccaagg ttcaggacgc cgcgacggcc gacggctcga cgggctggtt caagatcttc 360tccgactcgt ggtccaagaa gcccgggggc aacttgggcg acgacgacaa ctggggcacg 420cgcgacctga acgcctgctg cgggaagatg gac 45382151PRTMyceliophthora thermophila 82Met Arg Ser Thr Leu Ala Gly Ala Leu Ala Ala Ile Ala Ala Gln Lys 1 5 10 15 Val Ala Gly His Ala Thr Phe Gln Gln Leu Trp His Gly Ser Ser Cys 20 25 30 Val Arg Leu Pro Ala Ser Asn Ser Pro Val Thr Asn Val Gly Ser Arg 35 40 45 Asp Phe Val Cys Asn Ala Gly Thr Arg Pro Val Ser Gly Lys Cys Pro 50 55 60 Val Lys Ala Gly Gly Thr Val Thr Ile Glu Met His Gln Gln Pro Gly 65 70 75 80 Asp Arg Ser Cys Asn Asn Glu Ala Ile Gly Gly Ala His Trp Gly Pro 85 90 95 Val Gln Val Tyr Leu Thr Lys Val Gln Asp Ala Ala Thr Ala Asp Gly 100 105 110 Ser Thr Gly Trp Phe Lys Ile Phe Ser Asp Ser Trp Ser Lys Lys

Pro 115 120 125 Gly Gly Asn Leu Gly Asp Asp Asp Asn Trp Gly Thr Arg Asp Leu Asn 130 135 140 Ala Cys Cys Gly Lys Met Asp 145 150 83132PRTMyceliophthora thermophila 83His Ala Thr Phe Gln Gln Leu Trp His Gly Ser Ser Cys Val Arg Leu 1 5 10 15 Pro Ala Ser Asn Ser Pro Val Thr Asn Val Gly Ser Arg Asp Phe Val 20 25 30 Cys Asn Ala Gly Thr Arg Pro Val Ser Gly Lys Cys Pro Val Lys Ala 35 40 45 Gly Gly Thr Val Thr Ile Glu Met His Gln Gln Pro Gly Asp Arg Ser 50 55 60 Cys Asn Asn Glu Ala Ile Gly Gly Ala His Trp Gly Pro Val Gln Val 65 70 75 80 Tyr Leu Thr Lys Val Gln Asp Ala Ala Thr Ala Asp Gly Ser Thr Gly 85 90 95 Trp Phe Lys Ile Phe Ser Asp Ser Trp Ser Lys Lys Pro Gly Gly Asn 100 105 110 Leu Gly Asp Asp Asp Asn Trp Gly Thr Arg Asp Leu Asn Ala Cys Cys 115 120 125 Gly Lys Met Asp 130 84837DNAMyceliophthora thermophila 84atgaggtcga cattggccgg tgccctggca gccatcgctg ctcagaaagt agccggccac 60gccacgtttc agcagctctg gcacggctcc tcctgtgtcc gccttccggc tagcaactca 120cccgtcacca atgtgggaag cagagacttc gtctgcaacg ctggcacccg ccccgtcagt 180ggcaagtgcc ccgtgaaggc tggcggcacc gtcaccatcg agatgcacca gcaacccggc 240gaccgcagct gcaacaacga agccatcgga ggggcgcatt ggggccccgt ccaggtgtac 300ctgaccaagg ttcaggacgc cgcgacggcc gacggctcga cgggctggtt caagatcttc 360tccgactcgt ggtccaagaa gcccgggggc aactcgggcg acgacgacaa ctggggcacg 420cgcgacctga acgcctgctg cgggaagatg gacgtggcca tcccggccga catcgcgtcg 480ggcgactacc tgctgcgggc cgaggcgctg gccctgcaca cggccggaca ggccggcggc 540gcccagttct acatgagctg ctaccagatg acggtcgagg gcggctccgg gaccgccaac 600ccgcccaccg tcaagttccc gggcgcctac agcgccaacg acccgggcat cctcgtcaac 660atccacgccc ccctttccag ctacaccgcg cccggcccgg ccgtctacgc gggcggcacc 720atccgcgagg ccggctccgc ctgcaccggc tgcgcgcaga cctgcaaggt cgggtcgtcc 780ccgagcgccg ttgcccccgg cagcggcgcg ggcaacggcg gcgggttcca accccga 83785279PRTMyceliophthora thermophila 85Met Arg Ser Thr Leu Ala Gly Ala Leu Ala Ala Ile Ala Ala Gln Lys 1 5 10 15 Val Ala Gly His Ala Thr Phe Gln Gln Leu Trp His Gly Ser Ser Cys 20 25 30 Val Arg Leu Pro Ala Ser Asn Ser Pro Val Thr Asn Val Gly Ser Arg 35 40 45 Asp Phe Val Cys Asn Ala Gly Thr Arg Pro Val Ser Gly Lys Cys Pro 50 55 60 Val Lys Ala Gly Gly Thr Val Thr Ile Glu Met His Gln Gln Pro Gly 65 70 75 80 Asp Arg Ser Cys Asn Asn Glu Ala Ile Gly Gly Ala His Trp Gly Pro 85 90 95 Val Gln Val Tyr Leu Thr Lys Val Gln Asp Ala Ala Thr Ala Asp Gly 100 105 110 Ser Thr Gly Trp Phe Lys Ile Phe Ser Asp Ser Trp Ser Lys Lys Pro 115 120 125 Gly Gly Asn Ser Gly Asp Asp Asp Asn Trp Gly Thr Arg Asp Leu Asn 130 135 140 Ala Cys Cys Gly Lys Met Asp Val Ala Ile Pro Ala Asp Ile Ala Ser 145 150 155 160 Gly Asp Tyr Leu Leu Arg Ala Glu Ala Leu Ala Leu His Thr Ala Gly 165 170 175 Gln Ala Gly Gly Ala Gln Phe Tyr Met Ser Cys Tyr Gln Met Thr Val 180 185 190 Glu Gly Gly Ser Gly Thr Ala Asn Pro Pro Thr Val Lys Phe Pro Gly 195 200 205 Ala Tyr Ser Ala Asn Asp Pro Gly Ile Leu Val Asn Ile His Ala Pro 210 215 220 Leu Ser Ser Tyr Thr Ala Pro Gly Pro Ala Val Tyr Ala Gly Gly Thr 225 230 235 240 Ile Arg Glu Ala Gly Ser Ala Cys Thr Gly Cys Ala Gln Thr Cys Lys 245 250 255 Val Gly Ser Ser Pro Ser Ala Val Ala Pro Gly Ser Gly Ala Gly Asn 260 265 270 Gly Gly Gly Phe Gln Pro Arg 275 86260PRTMyceliophthora thermophila 86His Ala Thr Phe Gln Gln Leu Trp His Gly Ser Ser Cys Val Arg Leu 1 5 10 15 Pro Ala Ser Asn Ser Pro Val Thr Asn Val Gly Ser Arg Asp Phe Val 20 25 30 Cys Asn Ala Gly Thr Arg Pro Val Ser Gly Lys Cys Pro Val Lys Ala 35 40 45 Gly Gly Thr Val Thr Ile Glu Met His Gln Gln Pro Gly Asp Arg Ser 50 55 60 Cys Asn Asn Glu Ala Ile Gly Gly Ala His Trp Gly Pro Val Gln Val 65 70 75 80 Tyr Leu Thr Lys Val Gln Asp Ala Ala Thr Ala Asp Gly Ser Thr Gly 85 90 95 Trp Phe Lys Ile Phe Ser Asp Ser Trp Ser Lys Lys Pro Gly Gly Asn 100 105 110 Ser Gly Asp Asp Asp Asn Trp Gly Thr Arg Asp Leu Asn Ala Cys Cys 115 120 125 Gly Lys Met Asp Val Ala Ile Pro Ala Asp Ile Ala Ser Gly Asp Tyr 130 135 140 Leu Leu Arg Ala Glu Ala Leu Ala Leu His Thr Ala Gly Gln Ala Gly 145 150 155 160 Gly Ala Gln Phe Tyr Met Ser Cys Tyr Gln Met Thr Val Glu Gly Gly 165 170 175 Ser Gly Thr Ala Asn Pro Pro Thr Val Lys Phe Pro Gly Ala Tyr Ser 180 185 190 Ala Asn Asp Pro Gly Ile Leu Val Asn Ile His Ala Pro Leu Ser Ser 195 200 205 Tyr Thr Ala Pro Gly Pro Ala Val Tyr Ala Gly Gly Thr Ile Arg Glu 210 215 220 Ala Gly Ser Ala Cys Thr Gly Cys Ala Gln Thr Cys Lys Val Gly Ser 225 230 235 240 Ser Pro Ser Ala Val Ala Pro Gly Ser Gly Ala Gly Asn Gly Gly Gly 245 250 255 Phe Gln Pro Arg 260 87735DNAMyceliophthora thermophila 87atgctcctcc tcaccctagc cacactcgtc accctcctgg cgcgccacgt ctcggctcac 60gcccggctgt tccgcgtctc tgtcgacggg aaagaccagg gcgacgggct gaacaagtac 120atccgctcgc cggcgaccaa cgaccccgtg cgcgacctct cgagcgccgc catcgtgtgc 180aacacccagg ggtccaaggc cgccccggac ttcgtcaggg ccgcggccgg cgacaagctg 240accttcctct gggcgcacga caacccggac gacccggtcg actacgtcct cgacccgtcc 300cacaagggcg ccatcctgac ctacgtcgcc gcctacccct ccggggaccc gaccggcccc 360atctggagca agcttgccga ggaaggattc accggcgggc agtgggcgac catcaagatg 420atcgacaacg gcggcaaggt cgacgtgacg ctgcccgagg cccttgcgcc gggaaagtac 480ctgatccgcc aggagctgct ggccctgcac cgggccgact ttgcctgcga cgacccggcc 540caccccaacc gcggcgccga gtcgtacccc aactgcgtcc aggtggaggt gtcgggcagc 600ggcgacaaga agccggacca gaactttgac ttcaacaagg gctatacctg cgataacaaa 660ggactccact ttaagatcta catcggtcag gacagccagt atgtggcccc ggggccgcgg 720ccttggaatg ggagc 73588245PRTMyceliophthora thermophila 88Met Leu Leu Leu Thr Leu Ala Thr Leu Val Thr Leu Leu Ala Arg His 1 5 10 15 Val Ser Ala His Ala Arg Leu Phe Arg Val Ser Val Asp Gly Lys Asp 20 25 30 Gln Gly Asp Gly Leu Asn Lys Tyr Ile Arg Ser Pro Ala Thr Asn Asp 35 40 45 Pro Val Arg Asp Leu Ser Ser Ala Ala Ile Val Cys Asn Thr Gln Gly 50 55 60 Ser Lys Ala Ala Pro Asp Phe Val Arg Ala Ala Ala Gly Asp Lys Leu 65 70 75 80 Thr Phe Leu Trp Ala His Asp Asn Pro Asp Asp Pro Val Asp Tyr Val 85 90 95 Leu Asp Pro Ser His Lys Gly Ala Ile Leu Thr Tyr Val Ala Ala Tyr 100 105 110 Pro Ser Gly Asp Pro Thr Gly Pro Ile Trp Ser Lys Leu Ala Glu Glu 115 120 125 Gly Phe Thr Gly Gly Gln Trp Ala Thr Ile Lys Met Ile Asp Asn Gly 130 135 140 Gly Lys Val Asp Val Thr Leu Pro Glu Ala Leu Ala Pro Gly Lys Tyr 145 150 155 160 Leu Ile Arg Gln Glu Leu Leu Ala Leu His Arg Ala Asp Phe Ala Cys 165 170 175 Asp Asp Pro Ala His Pro Asn Arg Gly Ala Glu Ser Tyr Pro Asn Cys 180 185 190 Val Gln Val Glu Val Ser Gly Ser Gly Asp Lys Lys Pro Asp Gln Asn 195 200 205 Phe Asp Phe Asn Lys Gly Tyr Thr Cys Asp Asn Lys Gly Leu His Phe 210 215 220 Lys Ile Tyr Ile Gly Gln Asp Ser Gln Tyr Val Ala Pro Gly Pro Arg 225 230 235 240 Pro Trp Asn Gly Ser 245 89226PRTMyceliophthora thermophila 89His Ala Arg Leu Phe Arg Val Ser Val Asp Gly Lys Asp Gln Gly Asp 1 5 10 15 Gly Leu Asn Lys Tyr Ile Arg Ser Pro Ala Thr Asn Asp Pro Val Arg 20 25 30 Asp Leu Ser Ser Ala Ala Ile Val Cys Asn Thr Gln Gly Ser Lys Ala 35 40 45 Ala Pro Asp Phe Val Arg Ala Ala Ala Gly Asp Lys Leu Thr Phe Leu 50 55 60 Trp Ala His Asp Asn Pro Asp Asp Pro Val Asp Tyr Val Leu Asp Pro 65 70 75 80 Ser His Lys Gly Ala Ile Leu Thr Tyr Val Ala Ala Tyr Pro Ser Gly 85 90 95 Asp Pro Thr Gly Pro Ile Trp Ser Lys Leu Ala Glu Glu Gly Phe Thr 100 105 110 Gly Gly Gln Trp Ala Thr Ile Lys Met Ile Asp Asn Gly Gly Lys Val 115 120 125 Asp Val Thr Leu Pro Glu Ala Leu Ala Pro Gly Lys Tyr Leu Ile Arg 130 135 140 Gln Glu Leu Leu Ala Leu His Arg Ala Asp Phe Ala Cys Asp Asp Pro 145 150 155 160 Ala His Pro Asn Arg Gly Ala Glu Ser Tyr Pro Asn Cys Val Gln Val 165 170 175 Glu Val Ser Gly Ser Gly Asp Lys Lys Pro Asp Gln Asn Phe Asp Phe 180 185 190 Asn Lys Gly Tyr Thr Cys Asp Asn Lys Gly Leu His Phe Lys Ile Tyr 195 200 205 Ile Gly Gln Asp Ser Gln Tyr Val Ala Pro Gly Pro Arg Pro Trp Asn 210 215 220 Gly Ser 225 90600DNAMyceliophthora thermophila 90atgttcactt cgctttgcat cacagatcat tggaggactc ttagcagcca ctctgggcca 60gtcatgaact atctcgccca ttgcaccaat gacgactgca agtctttcaa gggcgacagc 120ggcaacgtct gggtcaagat cgagcagctc gcgtacaacc cgtcagccaa ccccccctgg 180gcgtctgacc tcctccgtga gcacggtgcc aagtggaagg tgacgatccc gcccagtctt 240gtccccggcg aatatctgct gcggcacgag atcctggggt tgcacgtcgc aggaaccgtg 300atgggcgccc agttctaccc cggctgcacc cagatcaggg tcaccgaagg cgggagcacg 360cagctgccct cgggtattgc gctcccaggc gcttacggcc cacaagacga gggtatcttg 420gtcgacttgt ggagggttaa ccagggccag gtcaactaca cggcgcctgg aggacccgtt 480tggagcgaag cgtgggacac cgagtttggc gggtccaaca cgaccgagtg cgccaccatg 540ctcgacgacc tgctcgacta catggcggcc aacgacgagt ggatcggctg gacggcctag 60091199PRTMyceliophthora thermophila 91Met Phe Thr Ser Leu Cys Ile Thr Asp His Trp Arg Thr Leu Ser Ser 1 5 10 15 His Ser Gly Pro Val Met Asn Tyr Leu Ala His Cys Thr Asn Asp Asp 20 25 30 Cys Lys Ser Phe Lys Gly Asp Ser Gly Asn Val Trp Val Lys Ile Glu 35 40 45 Gln Leu Ala Tyr Asn Pro Ser Ala Asn Pro Pro Trp Ala Ser Asp Leu 50 55 60 Leu Arg Glu His Gly Ala Lys Trp Lys Val Thr Ile Pro Pro Ser Leu 65 70 75 80 Val Pro Gly Glu Tyr Leu Leu Arg His Glu Ile Leu Gly Leu His Val 85 90 95 Ala Gly Thr Val Met Gly Ala Gln Phe Tyr Pro Gly Cys Thr Gln Ile 100 105 110 Arg Val Thr Glu Gly Gly Ser Thr Gln Leu Pro Ser Gly Ile Ala Leu 115 120 125 Pro Gly Ala Tyr Gly Pro Gln Asp Glu Gly Ile Leu Val Asp Leu Trp 130 135 140 Arg Val Asn Gln Gly Gln Val Asn Tyr Thr Ala Pro Gly Gly Pro Val 145 150 155 160 Trp Ser Glu Ala Trp Asp Thr Glu Phe Gly Gly Ser Asn Thr Thr Glu 165 170 175 Cys Ala Thr Met Leu Asp Asp Leu Leu Asp Tyr Met Ala Ala Asn Asp 180 185 190 Glu Trp Ile Gly Trp Thr Ala 195 92693DNAMyceliophthora thermophila 92atgaactatc tcgcccattg caccaatgac gactgcaagt ctttcaaggg cgacagcggc 60aacgtctggg tcaagatcga gcagctcgcg tacaacccgt cagccaaccc cccctgggcg 120tctgacctcc tccgtgagca cggtgccaag tggaaggtga cgatcccgcc cagtcttgtc 180cccggcgaat atctgctgcg gcacgagatc ctggggttgc acgtcgcagg aaccgtgatg 240ggcgcccagt tctaccccgg ctgcacccag atcagggtca ccgaaggcgg gagcacgcag 300ctgccctcgg gtattgcgct cccaggcgct tacggcccac aagacgaggg tatcttggtc 360gacttgtgga gggttaacca gggccaggtc aactacacgg cgcctggagg acccgtttgg 420agcgaagcgt gggacaccga gtttggcggg tccaacacga ccgagtgcgc caccatgctc 480gacgacctgc tcgactacat ggcggccaac gacgacccat gctgcaccga ccagaaccag 540ttcgggagtc tcgagccggg gagcaaggcg gccggcggct cgccgagcct gtacgatacc 600gtcttggtcc ccgttctcca gaagaaagtg ccgacaaagc tgcagtggag cggaccggcg 660agcgtcaacg gggatgagtt gacagagagg ccc 69393231PRTMyceliophthora thermophila 93Met Asn Tyr Leu Ala His Cys Thr Asn Asp Asp Cys Lys Ser Phe Lys 1 5 10 15 Gly Asp Ser Gly Asn Val Trp Val Lys Ile Glu Gln Leu Ala Tyr Asn 20 25 30 Pro Ser Ala Asn Pro Pro Trp Ala Ser Asp Leu Leu Arg Glu His Gly 35 40 45 Ala Lys Trp Lys Val Thr Ile Pro Pro Ser Leu Val Pro Gly Glu Tyr 50 55 60 Leu Leu Arg His Glu Ile Leu Gly Leu His Val Ala Gly Thr Val Met 65 70 75 80 Gly Ala Gln Phe Tyr Pro Gly Cys Thr Gln Ile Arg Val Thr Glu Gly 85 90 95 Gly Ser Thr Gln Leu Pro Ser Gly Ile Ala Leu Pro Gly Ala Tyr Gly 100 105 110 Pro Gln Asp Glu Gly Ile Leu Val Asp Leu Trp Arg Val Asn Gln Gly 115 120 125 Gln Val Asn Tyr Thr Ala Pro Gly Gly Pro Val Trp Ser Glu Ala Trp 130 135 140 Asp Thr Glu Phe Gly Gly Ser Asn Thr Thr Glu Cys Ala Thr Met Leu 145 150 155 160 Asp Asp Leu Leu Asp Tyr Met Ala Ala Asn Asp Asp Pro Cys Cys Thr 165 170 175 Asp Gln Asn Gln Phe Gly Ser Leu Glu Pro Gly Ser Lys Ala Ala Gly 180 185 190 Gly Ser Pro Ser Leu Tyr Asp Thr Val Leu Val Pro Val Leu Gln Lys 195 200 205 Lys Val Pro Thr Lys Leu Gln Trp Ser Gly Pro Ala Ser Val Asn Gly 210 215 220 Asp Glu Leu Thr Glu Arg Pro 225 230 94681DNAMyceliophthora thermophila 94atgaagctga gcgctgccat cgccgtgctc gcggccgccc ttgccgaggg gcactatacc 60ttccccagca tcgccaacac ggccgactgg caatatgtgc gcatcacgac caacttccag 120agcaacggcc ccgtgacgga cgtcaactcg gaccagatcc ggtgctacga gcgcaacccg 180ggcaccggcg cccccggcat ctacaacgtc acggccggca caaccatcaa ctacaacgcc 240aagtcgtcca tctcccaccc gggacccatg gccttctaca ttgccaaggt tcccgccggc 300cagtcggccg ccacctggga cggtaagggc gccgtctggt ccaagatcca ccaggagatg 360ccgcactttg gcaccagcct cacctgggac tccaacggcc gcacctccat gcccgtcacc 420atcccccgct gtctgcagga cggcgagtat ctgctgcgtg cagagcacat tgccctccac 480agcgccggca gccccggcgg cgcccagttc tacatttctt gtgcccagct ctcagtcacc 540ggcggcagcg ggacctggaa ccccaggaac aaggtgtcgt tccccggcgc ctacaaggcc 600actgacccgg gcatcctgat caacatctac taccccgtcc cgactagcta cactcccgct 660ggtccccccg tcgacacctg c 68195227PRTMyceliophthora thermophila 95Met Lys Leu Ser Ala Ala Ile Ala Val Leu Ala Ala Ala Leu Ala Glu 1 5 10 15 Gly His Tyr Thr Phe Pro Ser Ile Ala Asn Thr Ala Asp Trp Gln Tyr 20 25 30 Val Arg Ile Thr Thr Asn Phe Gln Ser Asn Gly Pro Val Thr Asp Val 35 40 45 Asn Ser Asp Gln Ile Arg Cys Tyr Glu Arg Asn Pro Gly Thr Gly Ala 50 55 60 Pro Gly Ile Tyr Asn Val Thr Ala Gly Thr Thr Ile Asn Tyr Asn Ala 65

70 75 80 Lys Ser Ser Ile Ser His Pro Gly Pro Met Ala Phe Tyr Ile Ala Lys 85 90 95 Val Pro Ala Gly Gln Ser Ala Ala Thr Trp Asp Gly Lys Gly Ala Val 100 105 110 Trp Ser Lys Ile His Gln Glu Met Pro His Phe Gly Thr Ser Leu Thr 115 120 125 Trp Asp Ser Asn Gly Arg Thr Ser Met Pro Val Thr Ile Pro Arg Cys 130 135 140 Leu Gln Asp Gly Glu Tyr Leu Leu Arg Ala Glu His Ile Ala Leu His 145 150 155 160 Ser Ala Gly Ser Pro Gly Gly Ala Gln Phe Tyr Ile Ser Cys Ala Gln 165 170 175 Leu Ser Val Thr Gly Gly Ser Gly Thr Trp Asn Pro Arg Asn Lys Val 180 185 190 Ser Phe Pro Gly Ala Tyr Lys Ala Thr Asp Pro Gly Ile Leu Ile Asn 195 200 205 Ile Tyr Tyr Pro Val Pro Thr Ser Tyr Thr Pro Ala Gly Pro Pro Val 210 215 220 Asp Thr Cys 225 96210PRTMyceliophthora thermophila 96His Tyr Thr Phe Pro Ser Ile Ala Asn Thr Ala Asp Trp Gln Tyr Val 1 5 10 15 Arg Ile Thr Thr Asn Phe Gln Ser Asn Gly Pro Val Thr Asp Val Asn 20 25 30 Ser Asp Gln Ile Arg Cys Tyr Glu Arg Asn Pro Gly Thr Gly Ala Pro 35 40 45 Gly Ile Tyr Asn Val Thr Ala Gly Thr Thr Ile Asn Tyr Asn Ala Lys 50 55 60 Ser Ser Ile Ser His Pro Gly Pro Met Ala Phe Tyr Ile Ala Lys Val 65 70 75 80 Pro Ala Gly Gln Ser Ala Ala Thr Trp Asp Gly Lys Gly Ala Val Trp 85 90 95 Ser Lys Ile His Gln Glu Met Pro His Phe Gly Thr Ser Leu Thr Trp 100 105 110 Asp Ser Asn Gly Arg Thr Ser Met Pro Val Thr Ile Pro Arg Cys Leu 115 120 125 Gln Asp Gly Glu Tyr Leu Leu Arg Ala Glu His Ile Ala Leu His Ser 130 135 140 Ala Gly Ser Pro Gly Gly Ala Gln Phe Tyr Ile Ser Cys Ala Gln Leu 145 150 155 160 Ser Val Thr Gly Gly Ser Gly Thr Trp Asn Pro Arg Asn Lys Val Ser 165 170 175 Phe Pro Gly Ala Tyr Lys Ala Thr Asp Pro Gly Ile Leu Ile Asn Ile 180 185 190 Tyr Tyr Pro Val Pro Thr Ser Tyr Thr Pro Ala Gly Pro Pro Val Asp 195 200 205 Thr Cys 210 97765DNAMyceliophthora thermophila 97atgtaccgca cgctcggttc cattgccctg ctcgcggggg gcgctgccgc ccacggcgcc 60gtgaccagct acaacattgc gggcaaggac taccctggat actcgggctt cgcccctacc 120ggccaggatg tcatccagtg gcaatggccc gactataacc ccgtgctgtc cgccagcgac 180cccaagctcc gctgcaacgg cggcaccggg gcggcgctgt atgccgaggc ggcccccggc 240gacaccatca cggccacctg ggcccagtgg acgcactccc agggcccgat cctggtgtgg 300atgtacaagt gccccggcga cttcagctcc tgcgacggct ccggcgcggg ttggttcaag 360atcgacgagg ccggcttcca cggcgacggc acgaccgtct tcctcgacac cgagaccccc 420tcgggctggg acattgccaa gctggtcggc ggcaacaagt cgtggagcag caagatccct 480gacggcctcg ccccgggcaa ttacctggtc cgccacgagc tcatcgccct gcaccaggcc 540aacaacccgc aattctaccc cgagtgcgcc cagatcaagg tcaccggctc tggcaccgcc 600gagcccgccg cctcctacaa ggccgccatc cccggctact gccagcagag cgaccccaac 660atttcgttca acatcaacga ccactccctc ccgcaggagt acaagatccc cggtcccccg 720gtcttcaagg gcaccgcctc cgccaaggct cgcgctttcc aggcc 76598255PRTMyceliophthora thermophila 98Met Tyr Arg Thr Leu Gly Ser Ile Ala Leu Leu Ala Gly Gly Ala Ala 1 5 10 15 Ala His Gly Ala Val Thr Ser Tyr Asn Ile Ala Gly Lys Asp Tyr Pro 20 25 30 Gly Tyr Ser Gly Phe Ala Pro Thr Gly Gln Asp Val Ile Gln Trp Gln 35 40 45 Trp Pro Asp Tyr Asn Pro Val Leu Ser Ala Ser Asp Pro Lys Leu Arg 50 55 60 Cys Asn Gly Gly Thr Gly Ala Ala Leu Tyr Ala Glu Ala Ala Pro Gly 65 70 75 80 Asp Thr Ile Thr Ala Thr Trp Ala Gln Trp Thr His Ser Gln Gly Pro 85 90 95 Ile Leu Val Trp Met Tyr Lys Cys Pro Gly Asp Phe Ser Ser Cys Asp 100 105 110 Gly Ser Gly Ala Gly Trp Phe Lys Ile Asp Glu Ala Gly Phe His Gly 115 120 125 Asp Gly Thr Thr Val Phe Leu Asp Thr Glu Thr Pro Ser Gly Trp Asp 130 135 140 Ile Ala Lys Leu Val Gly Gly Asn Lys Ser Trp Ser Ser Lys Ile Pro 145 150 155 160 Asp Gly Leu Ala Pro Gly Asn Tyr Leu Val Arg His Glu Leu Ile Ala 165 170 175 Leu His Gln Ala Asn Asn Pro Gln Phe Tyr Pro Glu Cys Ala Gln Ile 180 185 190 Lys Val Thr Gly Ser Gly Thr Ala Glu Pro Ala Ala Ser Tyr Lys Ala 195 200 205 Ala Ile Pro Gly Tyr Cys Gln Gln Ser Asp Pro Asn Ile Ser Phe Asn 210 215 220 Ile Asn Asp His Ser Leu Pro Gln Glu Tyr Lys Ile Pro Gly Pro Pro 225 230 235 240 Val Phe Lys Gly Thr Ala Ser Ala Lys Ala Arg Ala Phe Gln Ala 245 250 255 99236PRTMyceliophthora thermophila 99Ala Val Thr Ser Tyr Asn Ile Ala Gly Lys Asp Tyr Pro Gly Tyr Ser 1 5 10 15 Gly Phe Ala Pro Thr Gly Gln Asp Val Ile Gln Trp Gln Trp Pro Asp 20 25 30 Tyr Asn Pro Val Leu Ser Ala Ser Asp Pro Lys Leu Arg Cys Asn Gly 35 40 45 Gly Thr Gly Ala Ala Leu Tyr Ala Glu Ala Ala Pro Gly Asp Thr Ile 50 55 60 Thr Ala Thr Trp Ala Gln Trp Thr His Ser Gln Gly Pro Ile Leu Val 65 70 75 80 Trp Met Tyr Lys Cys Pro Gly Asp Phe Ser Ser Cys Asp Gly Ser Gly 85 90 95 Ala Gly Trp Phe Lys Ile Asp Glu Ala Gly Phe His Gly Asp Gly Thr 100 105 110 Thr Val Phe Leu Asp Thr Glu Thr Pro Ser Gly Trp Asp Ile Ala Lys 115 120 125 Leu Val Gly Gly Asn Lys Ser Trp Ser Ser Lys Ile Pro Asp Gly Leu 130 135 140 Ala Pro Gly Asn Tyr Leu Val Arg His Glu Leu Ile Ala Leu His Gln 145 150 155 160 Ala Asn Asn Pro Gln Phe Tyr Pro Glu Cys Ala Gln Ile Lys Val Thr 165 170 175 Gly Ser Gly Thr Ala Glu Pro Ala Ala Ser Tyr Lys Ala Ala Ile Pro 180 185 190 Gly Tyr Cys Gln Gln Ser Asp Pro Asn Ile Ser Phe Asn Ile Asn Asp 195 200 205 His Ser Leu Pro Gln Glu Tyr Lys Ile Pro Gly Pro Pro Val Phe Lys 210 215 220 Gly Thr Ala Ser Ala Lys Ala Arg Ala Phe Gln Ala 225 230 235 100675DNAMyceliophthora thermophila 100atgctgacaa caaccttcgc cctcctgacg gccgctctcg gcgtcagcgc ccattatacc 60ctccccaggg tcgggaccgg ttccgactgg cagcacgtgc ggcgggctga caactggcaa 120aacaacggct tcgtcggcga cgtcaactcg gagcagatca ggtgcttcca ggcgacccct 180gccggcgccc aagacgtcta cactgttcag gcgggatcga ccgtgaccta ccacgccaac 240cccagtatct accaccccgg ccccatgcag ttctacctgg cccgcgttcc ggacggacag 300gacgtcaagt cgtggaccgg cgagggtgcc gtgtggttca aggtgtacga ggagcagcct 360caatttggcg cccagctgac ctggcctagc aacggcaaga gctcgttcga ggttcctatc 420cccagctgca ttcgggcggg caactacctc ctccgcgctg agcacatcgc cctgcacgtt 480gcccaaagcc agggcggcgc ccagttctac atctcgtgcg cccagctcca ggtcactggt 540ggcggcagca ccgagccttc tcagaaggtt tccttcccgg gtgcctacaa gtccaccgac 600cccggcattc ttatcaacat caactacccc gtccctacct cgtaccagaa tccgggtccg 660gctgtcttcc gttgc 675101225PRTMyceliophthora thermophila 101Met Leu Thr Thr Thr Phe Ala Leu Leu Thr Ala Ala Leu Gly Val Ser 1 5 10 15 Ala His Tyr Thr Leu Pro Arg Val Gly Thr Gly Ser Asp Trp Gln His 20 25 30 Val Arg Arg Ala Asp Asn Trp Gln Asn Asn Gly Phe Val Gly Asp Val 35 40 45 Asn Ser Glu Gln Ile Arg Cys Phe Gln Ala Thr Pro Ala Gly Ala Gln 50 55 60 Asp Val Tyr Thr Val Gln Ala Gly Ser Thr Val Thr Tyr His Ala Asn 65 70 75 80 Pro Ser Ile Tyr His Pro Gly Pro Met Gln Phe Tyr Leu Ala Arg Val 85 90 95 Pro Asp Gly Gln Asp Val Lys Ser Trp Thr Gly Glu Gly Ala Val Trp 100 105 110 Phe Lys Val Tyr Glu Glu Gln Pro Gln Phe Gly Ala Gln Leu Thr Trp 115 120 125 Pro Ser Asn Gly Lys Ser Ser Phe Glu Val Pro Ile Pro Ser Cys Ile 130 135 140 Arg Ala Gly Asn Tyr Leu Leu Arg Ala Glu His Ile Ala Leu His Val 145 150 155 160 Ala Gln Ser Gln Gly Gly Ala Gln Phe Tyr Ile Ser Cys Ala Gln Leu 165 170 175 Gln Val Thr Gly Gly Gly Ser Thr Glu Pro Ser Gln Lys Val Ser Phe 180 185 190 Pro Gly Ala Tyr Lys Ser Thr Asp Pro Gly Ile Leu Ile Asn Ile Asn 195 200 205 Tyr Pro Val Pro Thr Ser Tyr Gln Asn Pro Gly Pro Ala Val Phe Arg 210 215 220 Cys 225 102208PRTMyceliophthora thermophila 102His Tyr Thr Leu Pro Arg Val Gly Thr Gly Ser Asp Trp Gln His Val 1 5 10 15 Arg Arg Ala Asp Asn Trp Gln Asn Asn Gly Phe Val Gly Asp Val Asn 20 25 30 Ser Glu Gln Ile Arg Cys Phe Gln Ala Thr Pro Ala Gly Ala Gln Asp 35 40 45 Val Tyr Thr Val Gln Ala Gly Ser Thr Val Thr Tyr His Ala Asn Pro 50 55 60 Ser Ile Tyr His Pro Gly Pro Met Gln Phe Tyr Leu Ala Arg Val Pro 65 70 75 80 Asp Gly Gln Asp Val Lys Ser Trp Thr Gly Glu Gly Ala Val Trp Phe 85 90 95 Lys Val Tyr Glu Glu Gln Pro Gln Phe Gly Ala Gln Leu Thr Trp Pro 100 105 110 Ser Asn Gly Lys Ser Ser Phe Glu Val Pro Ile Pro Ser Cys Ile Arg 115 120 125 Ala Gly Asn Tyr Leu Leu Arg Ala Glu His Ile Ala Leu His Val Ala 130 135 140 Gln Ser Gln Gly Gly Ala Gln Phe Tyr Ile Ser Cys Ala Gln Leu Gln 145 150 155 160 Val Thr Gly Gly Gly Ser Thr Glu Pro Ser Gln Lys Val Ser Phe Pro 165 170 175 Gly Ala Tyr Lys Ser Thr Asp Pro Gly Ile Leu Ile Asn Ile Asn Tyr 180 185 190 Pro Val Pro Thr Ser Tyr Gln Asn Pro Gly Pro Ala Val Phe Arg Cys 195 200 205 103711DNAMyceliophthora thermophila 103atgaaggttc tcgcgcccct gattctggcc ggtgccgcca gcgcccacac catcttctca 60tccctcgagg tgggcggcgt caaccagggc atcgggcagg gtgtccgcgt gccgtcgtac 120aacggtccga tcgaggacgt gacgtccaac tcgatcgcct gcaacgggcc ccccaacccg 180acgacgccga ccaacaaggt catcacggtc cgggccggcg agacggtgac ggccgtctgg 240cggtacatgc tgagcaccac cggctcggcc cccaacgaca tcatggacag cagccacaag 300ggcccgacca tggcctacct caagaaggtc gacaacgcca ccaccgactc gggcgtcggc 360ggcggctggt tcaagatcca ggaggacggc cttaccaacg gcgtctgggg caccgagcgc 420gtcatcaacg gccagggccg ccacaacatc aagatccccg agtgcatcgc ccccggccag 480tacctcctcc gcgccgagat gcttgccctg cacggagctt ccaactaccc cggcgctcag 540ttctacatgg agtgcgccca gctcaatatc gtcggcggca ccggcagcaa gacgccgtcc 600accgtcagct tcccgggcgc ttacaagggt accgaccccg gagtcaagat caacatctac 660tggccccccg tcaccagcta ccagattccc ggccccggcg tgttcacctg c 711104237PRTMyceliophthora thermophila 104Met Lys Val Leu Ala Pro Leu Ile Leu Ala Gly Ala Ala Ser Ala His 1 5 10 15 Thr Ile Phe Ser Ser Leu Glu Val Gly Gly Val Asn Gln Gly Ile Gly 20 25 30 Gln Gly Val Arg Val Pro Ser Tyr Asn Gly Pro Ile Glu Asp Val Thr 35 40 45 Ser Asn Ser Ile Ala Cys Asn Gly Pro Pro Asn Pro Thr Thr Pro Thr 50 55 60 Asn Lys Val Ile Thr Val Arg Ala Gly Glu Thr Val Thr Ala Val Trp 65 70 75 80 Arg Tyr Met Leu Ser Thr Thr Gly Ser Ala Pro Asn Asp Ile Met Asp 85 90 95 Ser Ser His Lys Gly Pro Thr Met Ala Tyr Leu Lys Lys Val Asp Asn 100 105 110 Ala Thr Thr Asp Ser Gly Val Gly Gly Gly Trp Phe Lys Ile Gln Glu 115 120 125 Asp Gly Leu Thr Asn Gly Val Trp Gly Thr Glu Arg Val Ile Asn Gly 130 135 140 Gln Gly Arg His Asn Ile Lys Ile Pro Glu Cys Ile Ala Pro Gly Gln 145 150 155 160 Tyr Leu Leu Arg Ala Glu Met Leu Ala Leu His Gly Ala Ser Asn Tyr 165 170 175 Pro Gly Ala Gln Phe Tyr Met Glu Cys Ala Gln Leu Asn Ile Val Gly 180 185 190 Gly Thr Gly Ser Lys Thr Pro Ser Thr Val Ser Phe Pro Gly Ala Tyr 195 200 205 Lys Gly Thr Asp Pro Gly Val Lys Ile Asn Ile Tyr Trp Pro Pro Val 210 215 220 Thr Ser Tyr Gln Ile Pro Gly Pro Gly Val Phe Thr Cys 225 230 235 105222PRTMyceliophthora thermophila 105His Thr Ile Phe Ser Ser Leu Glu Val Gly Gly Val Asn Gln Gly Ile 1 5 10 15 Gly Gln Gly Val Arg Val Pro Ser Tyr Asn Gly Pro Ile Glu Asp Val 20 25 30 Thr Ser Asn Ser Ile Ala Cys Asn Gly Pro Pro Asn Pro Thr Thr Pro 35 40 45 Thr Asn Lys Val Ile Thr Val Arg Ala Gly Glu Thr Val Thr Ala Val 50 55 60 Trp Arg Tyr Met Leu Ser Thr Thr Gly Ser Ala Pro Asn Asp Ile Met 65 70 75 80 Asp Ser Ser His Lys Gly Pro Thr Met Ala Tyr Leu Lys Lys Val Asp 85 90 95 Asn Ala Thr Thr Asp Ser Gly Val Gly Gly Gly Trp Phe Lys Ile Gln 100 105 110 Glu Asp Gly Leu Thr Asn Gly Val Trp Gly Thr Glu Arg Val Ile Asn 115 120 125 Gly Gln Gly Arg His Asn Ile Lys Ile Pro Glu Cys Ile Ala Pro Gly 130 135 140 Gln Tyr Leu Leu Arg Ala Glu Met Leu Ala Leu His Gly Ala Ser Asn 145 150 155 160 Tyr Pro Gly Ala Gln Phe Tyr Met Glu Cys Ala Gln Leu Asn Ile Val 165 170 175 Gly Gly Thr Gly Ser Lys Thr Pro Ser Thr Val Ser Phe Pro Gly Ala 180 185 190 Tyr Lys Gly Thr Asp Pro Gly Val Lys Ile Asn Ile Tyr Trp Pro Pro 195 200 205 Val Thr Ser Tyr Gln Ile Pro Gly Pro Gly Val Phe Thr Cys 210 215 220 106225DNAMyceliophthora thermophila 106atgatcgaca acctccctga tgactcccta caacccgcct gcctccgccc gggccactac 60ctcgtccgcc acgagatcat cgcgctgcac tcggcctggg ccgagggcga ggcccagttc 120taccccttcc ccctttttcc tttttttccc tcccttcttt tgtccggtaa ctacacgatt 180cccggtcccg cgatctggaa gtgcccagag gcacagcaga acgag 22510775PRTMyceliophthora thermophila 107Met Ile Asp Asn Leu Pro Asp Asp Ser Leu Gln Pro Ala Cys Leu Arg 1 5 10 15 Pro Gly His Tyr Leu Val Arg His Glu Ile Ile Ala Leu His Ser Ala 20 25 30 Trp Ala Glu Gly Glu Ala Gln Phe Tyr Pro Phe Pro Leu Phe Pro Phe 35 40 45 Phe Pro Ser Leu Leu Leu Ser Gly Asn Tyr Thr Ile Pro Gly Pro Ala 50 55 60 Ile Trp Lys Cys Pro Glu Ala Gln Gln Asn Glu 65 70 75 10857PRTMyceliophthora thermophila 108His Tyr Leu Val Arg His Glu Ile Ile Ala Leu His Ser Ala Trp Ala 1 5 10 15 Glu Gly Glu Ala Gln Phe Tyr Pro Phe Pro Leu Phe Pro Phe Phe Pro 20 25 30 Ser Leu Leu Leu Ser Gly Asn Tyr Thr

Ile Pro Gly Pro Ala Ile Trp 35 40 45 Lys Cys Pro Glu Ala Gln Gln Asn Glu 50 55 1091395DNAMyceliophthora thermophila 109atggggcaga agactctcca ggggctggtg gcggcggcgg cactggcagc ctcggtggcg 60aacgcgcagc aaccgggcac cttcacgccc gaggtgcatc cgacgctgcc gacgtggaag 120tgcacgacga gcggcgggtg cgtccagcag gacacgtcgg tggtgctcga ctggaactac 180cgctggttcc acaccgagga cggtagcaag tcgtgcatca cctctagcgg cgtcgaccgg 240accctgtgcc cggacgaggc gacgtgcgcc aagaactgct tcgtcgaggg cgtcaactac 300acgagcagcg gggtcgagac gtccggcagc tccctcaccc tccgccagtt cttcaagggc 360tccgacggcg ccatcaacag cgtctccccg cgcgtctacc tgctcggggg agacggcaac 420tatgtcgtgc tcaagctcct cggccaggag ctgagcttcg acgtggacgt atcgtcgctc 480ccgtgcggcg agaacgcggc cctgtacctg tccgagatgg acgcgacggg aggacggaac 540gagtacaaca cgggcggggc cgagtacggg tcgggctact gtgacgccca gtgccccgtg 600cagaactgga acaacgggac gctcaacacg ggccgggtgg gctcgtgctg caacgagatg 660gacatcctcg aggccaactc caaggccgag gccttcacgc cgcacccctg catcggcaac 720tcgtgcgaca agagcgggtg cggcttcaac gcgtacgcgc gcggttacca caactactgg 780gcccccggcg gcacgctcga cacgtcccgg cctttcacca tgatcacccg cttcgtcacc 840gacgacggca ccacctcggg caagctcgcc cgcatcgagc gcgtctacgt ccaggacggc 900aagaaggtgc ccagcgcggc gcccgggggg gacgtcatca cggccgacgg gtgcacctcc 960gcgcagccct acggcggcct ttccggcatg ggcgacgccc tcggccgcgg catggtcctg 1020gccctgagca tctggaacga cgcgtccggg tacatgaact ggctcgacgc cggcagcaac 1080ggcccctgca gcgacaccga gggtaacccg tccaacatcc tggccaacca cccggacgcc 1140cacgtcgtgc tctccaacat ccgctggggc gacatcggct ccaccgtcga caccggcgat 1200ggcgacaaca acggcggcgg ccccaacccg tcatccacca ccaccgctac cgctaccacc 1260acctcctccg gcccggccga gcctacccag acccactacg gccagtgtgg agggaaagga 1320tggacgggcc ctacccgctg cgagacgccc tacacctgca agtaccagaa cgactggtac 1380tcgcagtgcc tgtag 1395110464PRTMyceliophthora thermophila 110Met Gly Gln Lys Thr Leu Gln Gly Leu Val Ala Ala Ala Ala Leu Ala 1 5 10 15 Ala Ser Val Ala Asn Ala Gln Gln Pro Gly Thr Phe Thr Pro Glu Val 20 25 30 His Pro Thr Leu Pro Thr Trp Lys Cys Thr Thr Ser Gly Gly Cys Val 35 40 45 Gln Gln Asp Thr Ser Val Val Leu Asp Trp Asn Tyr Arg Trp Phe His 50 55 60 Thr Glu Asp Gly Ser Lys Ser Cys Ile Thr Ser Ser Gly Val Asp Arg 65 70 75 80 Thr Leu Cys Pro Asp Glu Ala Thr Cys Ala Lys Asn Cys Phe Val Glu 85 90 95 Gly Val Asn Tyr Thr Ser Ser Gly Val Glu Thr Ser Gly Ser Ser Leu 100 105 110 Thr Leu Arg Gln Phe Phe Lys Gly Ser Asp Gly Ala Ile Asn Ser Val 115 120 125 Ser Pro Arg Val Tyr Leu Leu Gly Gly Asp Gly Asn Tyr Val Val Leu 130 135 140 Lys Leu Leu Gly Gln Glu Leu Ser Phe Asp Val Asp Val Ser Ser Leu 145 150 155 160 Pro Cys Gly Glu Asn Ala Ala Leu Tyr Leu Ser Glu Met Asp Ala Thr 165 170 175 Gly Gly Arg Asn Glu Tyr Asn Thr Gly Gly Ala Glu Tyr Gly Ser Gly 180 185 190 Tyr Cys Asp Ala Gln Cys Pro Val Gln Asn Trp Asn Asn Gly Thr Leu 195 200 205 Asn Thr Gly Arg Val Gly Ser Cys Cys Asn Glu Met Asp Ile Leu Glu 210 215 220 Ala Asn Ser Lys Ala Glu Ala Phe Thr Pro His Pro Cys Ile Gly Asn 225 230 235 240 Ser Cys Asp Lys Ser Gly Cys Gly Phe Asn Ala Tyr Ala Arg Gly Tyr 245 250 255 His Asn Tyr Trp Ala Pro Gly Gly Thr Leu Asp Thr Ser Arg Pro Phe 260 265 270 Thr Met Ile Thr Arg Phe Val Thr Asp Asp Gly Thr Thr Ser Gly Lys 275 280 285 Leu Ala Arg Ile Glu Arg Val Tyr Val Gln Asp Gly Lys Lys Val Pro 290 295 300 Ser Ala Ala Pro Gly Gly Asp Val Ile Thr Ala Asp Gly Cys Thr Ser 305 310 315 320 Ala Gln Pro Tyr Gly Gly Leu Ser Gly Met Gly Asp Ala Leu Gly Arg 325 330 335 Gly Met Val Leu Ala Leu Ser Ile Trp Asn Asp Ala Ser Gly Tyr Met 340 345 350 Asn Trp Leu Asp Ala Gly Ser Asn Gly Pro Cys Ser Asp Thr Glu Gly 355 360 365 Asn Pro Ser Asn Ile Leu Ala Asn His Pro Asp Ala His Val Val Leu 370 375 380 Ser Asn Ile Arg Trp Gly Asp Ile Gly Ser Thr Val Asp Thr Gly Asp 385 390 395 400 Gly Asp Asn Asn Gly Gly Gly Pro Asn Pro Ser Ser Thr Thr Thr Ala 405 410 415 Thr Ala Thr Thr Thr Ser Ser Gly Pro Ala Glu Pro Thr Gln Thr His 420 425 430 Tyr Gly Gln Cys Gly Gly Lys Gly Trp Thr Gly Pro Thr Arg Cys Glu 435 440 445 Thr Pro Tyr Thr Cys Lys Tyr Gln Asn Asp Trp Tyr Ser Gln Cys Leu 450 455 460 111442PRTMyceliophthora thermophila 111Gln Gln Pro Gly Thr Phe Thr Pro Glu Val His Pro Thr Leu Pro Thr 1 5 10 15 Trp Lys Cys Thr Thr Ser Gly Gly Cys Val Gln Gln Asp Thr Ser Val 20 25 30 Val Leu Asp Trp Asn Tyr Arg Trp Phe His Thr Glu Asp Gly Ser Lys 35 40 45 Ser Cys Ile Thr Ser Ser Gly Val Asp Arg Thr Leu Cys Pro Asp Glu 50 55 60 Ala Thr Cys Ala Lys Asn Cys Phe Val Glu Gly Val Asn Tyr Thr Ser 65 70 75 80 Ser Gly Val Glu Thr Ser Gly Ser Ser Leu Thr Leu Arg Gln Phe Phe 85 90 95 Lys Gly Ser Asp Gly Ala Ile Asn Ser Val Ser Pro Arg Val Tyr Leu 100 105 110 Leu Gly Gly Asp Gly Asn Tyr Val Val Leu Lys Leu Leu Gly Gln Glu 115 120 125 Leu Ser Phe Asp Val Asp Val Ser Ser Leu Pro Cys Gly Glu Asn Ala 130 135 140 Ala Leu Tyr Leu Ser Glu Met Asp Ala Thr Gly Gly Arg Asn Glu Tyr 145 150 155 160 Asn Thr Gly Gly Ala Glu Tyr Gly Ser Gly Tyr Cys Asp Ala Gln Cys 165 170 175 Pro Val Gln Asn Trp Asn Asn Gly Thr Leu Asn Thr Gly Arg Val Gly 180 185 190 Ser Cys Cys Asn Glu Met Asp Ile Leu Glu Ala Asn Ser Lys Ala Glu 195 200 205 Ala Phe Thr Pro His Pro Cys Ile Gly Asn Ser Cys Asp Lys Ser Gly 210 215 220 Cys Gly Phe Asn Ala Tyr Ala Arg Gly Tyr His Asn Tyr Trp Ala Pro 225 230 235 240 Gly Gly Thr Leu Asp Thr Ser Arg Pro Phe Thr Met Ile Thr Arg Phe 245 250 255 Val Thr Asp Asp Gly Thr Thr Ser Gly Lys Leu Ala Arg Ile Glu Arg 260 265 270 Val Tyr Val Gln Asp Gly Lys Lys Val Pro Ser Ala Ala Pro Gly Gly 275 280 285 Asp Val Ile Thr Ala Asp Gly Cys Thr Ser Ala Gln Pro Tyr Gly Gly 290 295 300 Leu Ser Gly Met Gly Asp Ala Leu Gly Arg Gly Met Val Leu Ala Leu 305 310 315 320 Ser Ile Trp Asn Asp Ala Ser Gly Tyr Met Asn Trp Leu Asp Ala Gly 325 330 335 Ser Asn Gly Pro Cys Ser Asp Thr Glu Gly Asn Pro Ser Asn Ile Leu 340 345 350 Ala Asn His Pro Asp Ala His Val Val Leu Ser Asn Ile Arg Trp Gly 355 360 365 Asp Ile Gly Ser Thr Val Asp Thr Gly Asp Gly Asp Asn Asn Gly Gly 370 375 380 Gly Pro Asn Pro Ser Ser Thr Thr Thr Ala Thr Ala Thr Thr Thr Ser 385 390 395 400 Ser Gly Pro Ala Glu Pro Thr Gln Thr His Tyr Gly Gln Cys Gly Gly 405 410 415 Lys Gly Trp Thr Gly Pro Thr Arg Cys Glu Thr Pro Tyr Thr Cys Lys 420 425 430 Tyr Gln Asn Asp Trp Tyr Ser Gln Cys Leu 435 440 1121170DNAMyceliophthora thermophila 112atgaagtcct ccatcctcgc cagcgtcttc gccacgggcg ccgtggctca aagtggtccg 60tggcagcaat gtggtggcat cggatggcaa ggatcgaccg actgtgtgtc gggttaccac 120tgcgtctacc agaacgattg gtacagccag tgcgtgcctg gcgcggcgtc gacaacgctc 180cagacatcta ccacgtccag gcccaccgcc accagcaccg cccctccgtc gtccaccacc 240tcgcctagca agggcaagct caagtggctc ggcagcaacg agtcgggcgc cgagttcggg 300gagggcaact accccggcct ctggggcaag cacttcatct tcccgtcgac ttcggcgatt 360cagacgctca tcaatgatgg atacaacatc ttccggatcg acttctcgat ggagcgtctg 420gtgcccaacc agttgacgtc gtccttcgac gagggctacc tccgcaacct gaccgaggtg 480gtcaacttcg tgacgaacgc gggcaagtac gccgtcctgg acccgcacaa ctacggccgg 540tactacggca acgtcatcac ggacacgaac gcgttccgga ccttctggac caacctggcc 600aagcagttcg cctccaactc gctcgtcatc ttcgacacca acaacgagta caacacgatg 660gaccagaccc tggtgctcaa cctcaaccag gccgccatcg acggcatccg ggccgccggc 720gcgacctcgc agtacatctt cgtcgagggc aacgcgtgga gcggggcctg gagctggaac 780acgaccaaca ccaacatggc cgccctgacg gacccgcaga acaagatcgt gtacgagatg 840caccagtacc tcgactcgga cagctcgggc acccacgccg agtgcgtcag cagcaacatc 900ggcgcccagc gcgtcgtcgg agccacccag tggctccgcg ccaacggcaa gctcggcgtc 960ctcggcgagt tcgccggcgg cgccaacgcc gtctgccagc aggccgtcac cggcctcctc 1020gaccacctcc aggacaacag cgacgtctgg ctgggtgccc tctggtgggc cgccggtccc 1080tggtggggcg actacatgta ctcgttcgag cctccttcgg gcaccggcta tgtcaactac 1140aactcgatcc taaagaagta cttgccgtaa 1170113389PRTMyceliophthora thermophila 113Met Lys Ser Ser Ile Leu Ala Ser Val Phe Ala Thr Gly Ala Val Ala 1 5 10 15 Gln Ser Gly Pro Trp Gln Gln Cys Gly Gly Ile Gly Trp Gln Gly Ser 20 25 30 Thr Asp Cys Val Ser Gly Tyr His Cys Val Tyr Gln Asn Asp Trp Tyr 35 40 45 Ser Gln Cys Val Pro Gly Ala Ala Ser Thr Thr Leu Gln Thr Ser Thr 50 55 60 Thr Ser Arg Pro Thr Ala Thr Ser Thr Ala Pro Pro Ser Ser Thr Thr 65 70 75 80 Ser Pro Ser Lys Gly Lys Leu Lys Trp Leu Gly Ser Asn Glu Ser Gly 85 90 95 Ala Glu Phe Gly Glu Gly Asn Tyr Pro Gly Leu Trp Gly Lys His Phe 100 105 110 Ile Phe Pro Ser Thr Ser Ala Ile Gln Thr Leu Ile Asn Asp Gly Tyr 115 120 125 Asn Ile Phe Arg Ile Asp Phe Ser Met Glu Arg Leu Val Pro Asn Gln 130 135 140 Leu Thr Ser Ser Phe Asp Glu Gly Tyr Leu Arg Asn Leu Thr Glu Val 145 150 155 160 Val Asn Phe Val Thr Asn Ala Gly Lys Tyr Ala Val Leu Asp Pro His 165 170 175 Asn Tyr Gly Arg Tyr Tyr Gly Asn Val Ile Thr Asp Thr Asn Ala Phe 180 185 190 Arg Thr Phe Trp Thr Asn Leu Ala Lys Gln Phe Ala Ser Asn Ser Leu 195 200 205 Val Ile Phe Asp Thr Asn Asn Glu Tyr Asn Thr Met Asp Gln Thr Leu 210 215 220 Val Leu Asn Leu Asn Gln Ala Ala Ile Asp Gly Ile Arg Ala Ala Gly 225 230 235 240 Ala Thr Ser Gln Tyr Ile Phe Val Glu Gly Asn Ala Trp Ser Gly Ala 245 250 255 Trp Ser Trp Asn Thr Thr Asn Thr Asn Met Ala Ala Leu Thr Asp Pro 260 265 270 Gln Asn Lys Ile Val Tyr Glu Met His Gln Tyr Leu Asp Ser Asp Ser 275 280 285 Ser Gly Thr His Ala Glu Cys Val Ser Ser Asn Ile Gly Ala Gln Arg 290 295 300 Val Val Gly Ala Thr Gln Trp Leu Arg Ala Asn Gly Lys Leu Gly Val 305 310 315 320 Leu Gly Glu Phe Ala Gly Gly Ala Asn Ala Val Cys Gln Gln Ala Val 325 330 335 Thr Gly Leu Leu Asp His Leu Gln Asp Asn Ser Glu Val Trp Leu Gly 340 345 350 Ala Leu Trp Trp Ala Ala Gly Pro Trp Trp Gly Asp Tyr Met Tyr Ser 355 360 365 Phe Glu Pro Pro Ser Gly Thr Gly Tyr Val Asn Tyr Asn Ser Ile Leu 370 375 380 Lys Lys Tyr Leu Pro 385 114373PRTMyceliophthora thermophila 114Gln Ser Gly Pro Trp Gln Gln Cys Gly Gly Ile Gly Trp Gln Gly Ser 1 5 10 15 Thr Asp Cys Val Ser Gly Tyr His Cys Val Tyr Gln Asn Asp Trp Tyr 20 25 30 Ser Gln Cys Val Pro Gly Ala Ala Ser Thr Thr Leu Gln Thr Ser Thr 35 40 45 Thr Ser Arg Pro Thr Ala Thr Ser Thr Ala Pro Pro Ser Ser Thr Thr 50 55 60 Ser Pro Ser Lys Gly Lys Leu Lys Trp Leu Gly Ser Asn Glu Ser Gly 65 70 75 80 Ala Glu Phe Gly Glu Gly Asn Tyr Pro Gly Leu Trp Gly Lys His Phe 85 90 95 Ile Phe Pro Ser Thr Ser Ala Ile Gln Thr Leu Ile Asn Asp Gly Tyr 100 105 110 Asn Ile Phe Arg Ile Asp Phe Ser Met Glu Arg Leu Val Pro Asn Gln 115 120 125 Leu Thr Ser Ser Phe Asp Glu Gly Tyr Leu Arg Asn Leu Thr Glu Val 130 135 140 Val Asn Phe Val Thr Asn Ala Gly Lys Tyr Ala Val Leu Asp Pro His 145 150 155 160 Asn Tyr Gly Arg Tyr Tyr Gly Asn Val Ile Thr Asp Thr Asn Ala Phe 165 170 175 Arg Thr Phe Trp Thr Asn Leu Ala Lys Gln Phe Ala Ser Asn Ser Leu 180 185 190 Val Ile Phe Asp Thr Asn Asn Glu Tyr Asn Thr Met Asp Gln Thr Leu 195 200 205 Val Leu Asn Leu Asn Gln Ala Ala Ile Asp Gly Ile Arg Ala Ala Gly 210 215 220 Ala Thr Ser Gln Tyr Ile Phe Val Glu Gly Asn Ala Trp Ser Gly Ala 225 230 235 240 Trp Ser Trp Asn Thr Thr Asn Thr Asn Met Ala Ala Leu Thr Asp Pro 245 250 255 Gln Asn Lys Ile Val Tyr Glu Met His Gln Tyr Leu Asp Ser Asp Ser 260 265 270 Ser Gly Thr His Ala Glu Cys Val Ser Ser Asn Ile Gly Ala Gln Arg 275 280 285 Val Val Gly Ala Thr Gln Trp Leu Arg Ala Asn Gly Lys Leu Gly Val 290 295 300 Leu Gly Glu Phe Ala Gly Gly Ala Asn Ala Val Cys Gln Gln Ala Val 305 310 315 320 Thr Gly Leu Leu Asp His Leu Gln Asp Asn Ser Glu Val Trp Leu Gly 325 330 335 Ala Leu Trp Trp Ala Ala Gly Pro Trp Trp Gly Asp Tyr Met Tyr Ser 340 345 350 Phe Glu Pro Pro Ser Gly Thr Gly Tyr Val Asn Tyr Asn Ser Ile Leu 355 360 365 Lys Lys Tyr Leu Pro 370 1152613DNAMyceliophthora thermophila 115atgaaggctg ctgcgctttc ctgcctcttc ggcagtaccc ttgccgttgc aggcgccatt 60gaatcgagaa aggttcacca gaagcccctc gcgagatctg aaccttttta cccgtcgcca 120tggatgaatc ccaacgccga cggctgggcg gaggcctatg cccaggccaa gtcctttgtc 180tcccaaatga ctctgctaga gaaggtcaac ttgaccacgg gagtcggctg gggggctgag 240cagtgcgtcg gccaagtggg cgcgatccct cgccttggac ttcgcagtct gtgcatgcat 300gactcccctc tcggcatccg aggagccgac tacaactcag cgttcccctc tggccagacc 360gttgctgcta cctgggatcg cggtctgatg taccgtcgcg gctacgcaat gggccaggag 420gccaaaggca agggcatcaa tgtccttctc ggaccagtcg ccggccccct tggccgcatg 480cccgagggcg gtcgtaactg ggaaggcttc gctccggatc ccgtccttac cggcatcggc 540atgtccgaga cgatcaaggg cattcaggat gctggcgtca tcgcttgtgc gaagcacttt 600attggaaacg agcaggagca cttcagacag gtgccagaag cccagggata cggttacaac 660atcagcgaaa ccctctcctc caacattgac gacaagacca tgcacgagct ctacctttgg 720ccgtttgccg atgccgtccg ggccggcgtc ggctctgtca tgtgctcgta ccagcaggtc 780aacaactcgt acgcctgcca gaactcgaag ctgctgaacg acctcctcaa gaacgagctt 840gggtttcagg gcttcgtcat gagcgactgg caggcacagc acactggcgc agcaagcgcc 900gtggctggtc tcgatatgtc catgccgggc gacacccagt tcaacactgg cgtcagtttc 960tggggcgcca atctcaccct cgccgtcctc aacggcacag tccctgccta ccgtctcgac 1020gacatggcca tgcgcatcat ggccgccctc ttcaaggtca ccaagaccac cgacctggaa 1080ccgatcaact tctccttctg gaccgacgac acttatggcc cgatccactg ggccgccaag

1140cagggctacc aggagattaa ttcccacgtt gacgtccgcg ccgaccacgg caacctcatc 1200cgggagattg ccgccaaggg tacggtgctg ctgaagaata ccggctctct acccctgaac 1260aagccaaagt tcgtggccgt catcggcgag gatgctgggt cgagccccaa cgggcccaac 1320ggctgcagcg accgcggctg taacgaaggc acgctcgcca tgggctgggg atccggcaca 1380gccaactatc cgtacctcgt ttcccccgac gccgcgctcc aggcccgggc catccaggac 1440ggcacgaggt acgagagcgt cctgtccaac tacgccgagg aaaagacaaa ggctctggtc 1500tcgcaggcca atgcaaccgc catcgtcttc gtcaatgccg actcaggcga gggctacatc 1560aacgtggacg gtaacgaggg cgaccgtaag aacctgactc tctggaacaa cggtgatact 1620ctggtcaaga acgtctcgag ctggtgcagc aacaccatcg tcgtcatcca ctcggtcggc 1680ccggtcctcc tgaccgattg gtacgacaac cccaacatca cggccattct ctgggctggt 1740cttccgggcc aggagtcggg caactccatc accgacgtgc tttacggcaa ggtcaacccc 1800gccgcccgct cgcccttcac ttggggcaag acccgcgaaa gctatggcgc ggacgtcctg 1860tacaagccga ataatggcaa tggtgcgccc caacaggact tcaccgaggg cgtcttcatc 1920gactaccgct acttcgacaa ggttgacgat gactcggtca tctacgagtt cggccacggc 1980ctgagctaca ccaccttcga gtacagcaac atccgcgtcg tcaagtccaa cgtcagcgag 2040taccggccca cgacgggcac cacggcccag gccccgacgt ttggcaactt ctccaccgac 2100ctcgaggact atctcttccc caaggacgag ttcccctaca tctaccagta catctacccg 2160tacctcaaca cgaccgaccc ccggagggcc tcggccgatc cccactacgg ccagaccgcc 2220gaggagttcc tcccgcccca cgccaccgat gacgaccccc agccgctcct ccggtcctcg 2280ggcggaaact cccccggcgg caaccgccag ctgtacgaca ttgtctacac aatcacggcc 2340gacatcacga atacgggctc cgttgtaggc gaggaggtac cgcagctcta cgtctcgctg 2400ggcggtcccg aggatcccaa ggtgcagctg cgcgactttg acaggatgcg gatcgaaccc 2460ggcgagacga ggcagttcac cggccgcctg acgcgcagag atctgagcaa ctgggacgtc 2520acggtgcagg actgggtcat cagcaggtat cccaagacgg catatgttgg gaggagcagc 2580cggaagttgg atctcaagat tgagcttcct tga 2613116870PRTMyceliophthora thermophila 116Met Lys Ala Ala Ala Leu Ser Cys Leu Phe Gly Ser Thr Leu Ala Val 1 5 10 15 Ala Gly Ala Ile Glu Ser Arg Lys Val His Gln Lys Pro Leu Ala Arg 20 25 30 Ser Glu Pro Phe Tyr Pro Ser Pro Trp Met Asn Pro Asn Ala Asp Gly 35 40 45 Trp Ala Glu Ala Tyr Ala Gln Ala Lys Ser Phe Val Ser Gln Met Thr 50 55 60 Leu Leu Glu Lys Val Asn Leu Thr Thr Gly Val Gly Trp Gly Ala Glu 65 70 75 80 Gln Cys Val Gly Gln Val Gly Ala Ile Pro Arg Leu Gly Leu Arg Ser 85 90 95 Leu Cys Met His Asp Ser Pro Leu Gly Ile Arg Gly Ala Asp Tyr Asn 100 105 110 Ser Ala Phe Pro Ser Gly Gln Thr Val Ala Ala Thr Trp Asp Arg Gly 115 120 125 Leu Met Tyr Arg Arg Gly Tyr Ala Met Gly Gln Glu Ala Lys Gly Lys 130 135 140 Gly Ile Asn Val Leu Leu Gly Pro Val Ala Gly Pro Leu Gly Arg Met 145 150 155 160 Pro Glu Gly Gly Arg Asn Trp Glu Gly Phe Ala Pro Asp Pro Val Leu 165 170 175 Thr Gly Ile Gly Met Ser Glu Thr Ile Lys Gly Ile Gln Asp Ala Gly 180 185 190 Val Ile Ala Cys Ala Lys His Phe Ile Gly Asn Glu Gln Glu His Phe 195 200 205 Arg Gln Val Pro Glu Ala Gln Gly Tyr Gly Tyr Asn Ile Ser Glu Thr 210 215 220 Leu Ser Ser Asn Ile Asp Asp Lys Thr Met His Glu Leu Tyr Leu Trp 225 230 235 240 Pro Phe Ala Asp Ala Val Arg Ala Gly Val Gly Ser Val Met Cys Ser 245 250 255 Tyr Gln Gln Val Asn Asn Ser Tyr Ala Cys Gln Asn Ser Lys Leu Leu 260 265 270 Asn Asp Leu Leu Lys Asn Glu Leu Gly Phe Gln Gly Phe Val Met Ser 275 280 285 Asp Trp Gln Ala Gln His Thr Gly Ala Ala Ser Ala Val Ala Gly Leu 290 295 300 Asp Met Ser Met Pro Gly Asp Thr Gln Phe Asn Thr Gly Val Ser Phe 305 310 315 320 Trp Gly Ala Asn Leu Thr Leu Ala Val Leu Asn Gly Thr Val Pro Ala 325 330 335 Tyr Arg Leu Asp Asp Met Ala Met Arg Ile Met Ala Ala Leu Phe Lys 340 345 350 Val Thr Lys Thr Thr Asp Leu Glu Pro Ile Asn Phe Ser Phe Trp Thr 355 360 365 Asp Asp Thr Tyr Gly Pro Ile His Trp Ala Ala Lys Gln Gly Tyr Gln 370 375 380 Glu Ile Asn Ser His Val Asp Val Arg Ala Asp His Gly Asn Leu Ile 385 390 395 400 Arg Glu Ile Ala Ala Lys Gly Thr Val Leu Leu Lys Asn Thr Gly Ser 405 410 415 Leu Pro Leu Asn Lys Pro Lys Phe Val Ala Val Ile Gly Glu Asp Ala 420 425 430 Gly Ser Ser Pro Asn Gly Pro Asn Gly Cys Ser Asp Arg Gly Cys Asn 435 440 445 Glu Gly Thr Leu Ala Met Gly Trp Gly Ser Gly Thr Ala Asn Tyr Pro 450 455 460 Tyr Leu Val Ser Pro Asp Ala Ala Leu Gln Ala Arg Ala Ile Gln Asp 465 470 475 480 Gly Thr Arg Tyr Glu Ser Val Leu Ser Asn Tyr Ala Glu Glu Lys Thr 485 490 495 Lys Ala Leu Val Ser Gln Ala Asn Ala Thr Ala Ile Val Phe Val Asn 500 505 510 Ala Asp Ser Gly Glu Gly Tyr Ile Asn Val Asp Gly Asn Glu Gly Asp 515 520 525 Arg Lys Asn Leu Thr Leu Trp Asn Asn Gly Asp Thr Leu Val Lys Asn 530 535 540 Val Ser Ser Trp Cys Ser Asn Thr Ile Val Val Ile His Ser Val Gly 545 550 555 560 Pro Val Leu Leu Thr Asp Trp Tyr Asp Asn Pro Asn Ile Thr Ala Ile 565 570 575 Leu Trp Ala Gly Leu Pro Gly Gln Glu Ser Gly Asn Ser Ile Thr Asp 580 585 590 Val Leu Tyr Gly Lys Val Asn Pro Ala Ala Arg Ser Pro Phe Thr Trp 595 600 605 Gly Lys Thr Arg Glu Ser Tyr Gly Ala Asp Val Leu Tyr Lys Pro Asn 610 615 620 Asn Gly Asn Gly Ala Pro Gln Gln Asp Phe Thr Glu Gly Val Phe Ile 625 630 635 640 Asp Tyr Arg Tyr Phe Asp Lys Val Asp Asp Asp Ser Val Ile Tyr Glu 645 650 655 Phe Gly His Gly Leu Ser Tyr Thr Thr Phe Glu Tyr Ser Asn Ile Arg 660 665 670 Val Val Lys Ser Asn Val Ser Glu Tyr Arg Pro Thr Thr Gly Thr Thr 675 680 685 Ala Gln Ala Pro Thr Phe Gly Asn Phe Ser Thr Asp Leu Glu Asp Tyr 690 695 700 Leu Phe Pro Lys Asp Glu Phe Pro Tyr Ile Tyr Gln Tyr Ile Tyr Pro 705 710 715 720 Tyr Leu Asn Thr Thr Asp Pro Arg Arg Ala Ser Ala Asp Pro His Tyr 725 730 735 Gly Gln Thr Ala Glu Glu Phe Leu Pro Pro His Ala Thr Asp Asp Asp 740 745 750 Pro Gln Pro Leu Leu Arg Ser Ser Gly Gly Asn Ser Pro Gly Gly Asn 755 760 765 Arg Gln Leu Tyr Asp Ile Val Tyr Thr Ile Thr Ala Asp Ile Thr Asn 770 775 780 Thr Gly Ser Val Val Gly Glu Glu Val Pro Gln Leu Tyr Val Ser Leu 785 790 795 800 Gly Gly Pro Glu Asp Pro Lys Val Gln Leu Arg Asp Phe Asp Arg Met 805 810 815 Arg Ile Glu Pro Gly Glu Thr Arg Gln Phe Thr Gly Arg Leu Thr Arg 820 825 830 Arg Asp Leu Ser Asn Trp Asp Val Thr Val Gln Asp Trp Val Ile Ser 835 840 845 Arg Tyr Pro Lys Thr Ala Tyr Val Gly Arg Ser Ser Arg Lys Leu Asp 850 855 860 Leu Lys Ile Glu Leu Pro 865 870 117851PRTMyceliophthora thermophila 117Ile Glu Ser Arg Lys Val His Gln Lys Pro Leu Ala Arg Ser Glu Pro 1 5 10 15 Phe Tyr Pro Ser Pro Trp Met Asn Pro Asn Ala Asp Gly Trp Ala Glu 20 25 30 Ala Tyr Ala Gln Ala Lys Ser Phe Val Ser Gln Met Thr Leu Leu Glu 35 40 45 Lys Val Asn Leu Thr Thr Gly Val Gly Trp Gly Ala Glu Gln Cys Val 50 55 60 Gly Gln Val Gly Ala Ile Pro Arg Leu Gly Leu Arg Ser Leu Cys Met 65 70 75 80 His Asp Ser Pro Leu Gly Ile Arg Gly Ala Asp Tyr Asn Ser Ala Phe 85 90 95 Pro Ser Gly Gln Thr Val Ala Ala Thr Trp Asp Arg Gly Leu Met Tyr 100 105 110 Arg Arg Gly Tyr Ala Met Gly Gln Glu Ala Lys Gly Lys Gly Ile Asn 115 120 125 Val Leu Leu Gly Pro Val Ala Gly Pro Leu Gly Arg Met Pro Glu Gly 130 135 140 Gly Arg Asn Trp Glu Gly Phe Ala Pro Asp Pro Val Leu Thr Gly Ile 145 150 155 160 Gly Met Ser Glu Thr Ile Lys Gly Ile Gln Asp Ala Gly Val Ile Ala 165 170 175 Cys Ala Lys His Phe Ile Gly Asn Glu Gln Glu His Phe Arg Gln Val 180 185 190 Pro Glu Ala Gln Gly Tyr Gly Tyr Asn Ile Ser Glu Thr Leu Ser Ser 195 200 205 Asn Ile Asp Asp Lys Thr Met His Glu Leu Tyr Leu Trp Pro Phe Ala 210 215 220 Asp Ala Val Arg Ala Gly Val Gly Ser Val Met Cys Ser Tyr Gln Gln 225 230 235 240 Val Asn Asn Ser Tyr Ala Cys Gln Asn Ser Lys Leu Leu Asn Asp Leu 245 250 255 Leu Lys Asn Glu Leu Gly Phe Gln Gly Phe Val Met Ser Asp Trp Gln 260 265 270 Ala Gln His Thr Gly Ala Ala Ser Ala Val Ala Gly Leu Asp Met Ser 275 280 285 Met Pro Gly Asp Thr Gln Phe Asn Thr Gly Val Ser Phe Trp Gly Ala 290 295 300 Asn Leu Thr Leu Ala Val Leu Asn Gly Thr Val Pro Ala Tyr Arg Leu 305 310 315 320 Asp Asp Met Ala Met Arg Ile Met Ala Ala Leu Phe Lys Val Thr Lys 325 330 335 Thr Thr Asp Leu Glu Pro Ile Asn Phe Ser Phe Trp Thr Asp Asp Thr 340 345 350 Tyr Gly Pro Ile His Trp Ala Ala Lys Gln Gly Tyr Gln Glu Ile Asn 355 360 365 Ser His Val Asp Val Arg Ala Asp His Gly Asn Leu Ile Arg Glu Ile 370 375 380 Ala Ala Lys Gly Thr Val Leu Leu Lys Asn Thr Gly Ser Leu Pro Leu 385 390 395 400 Asn Lys Pro Lys Phe Val Ala Val Ile Gly Glu Asp Ala Gly Ser Ser 405 410 415 Pro Asn Gly Pro Asn Gly Cys Ser Asp Arg Gly Cys Asn Glu Gly Thr 420 425 430 Leu Ala Met Gly Trp Gly Ser Gly Thr Ala Asn Tyr Pro Tyr Leu Val 435 440 445 Ser Pro Asp Ala Ala Leu Gln Ala Arg Ala Ile Gln Asp Gly Thr Arg 450 455 460 Tyr Glu Ser Val Leu Ser Asn Tyr Ala Glu Glu Lys Thr Lys Ala Leu 465 470 475 480 Val Ser Gln Ala Asn Ala Thr Ala Ile Val Phe Val Asn Ala Asp Ser 485 490 495 Gly Glu Gly Tyr Ile Asn Val Asp Gly Asn Glu Gly Asp Arg Lys Asn 500 505 510 Leu Thr Leu Trp Asn Asn Gly Asp Thr Leu Val Lys Asn Val Ser Ser 515 520 525 Trp Cys Ser Asn Thr Ile Val Val Ile His Ser Val Gly Pro Val Leu 530 535 540 Leu Thr Asp Trp Tyr Asp Asn Pro Asn Ile Thr Ala Ile Leu Trp Ala 545 550 555 560 Gly Leu Pro Gly Gln Glu Ser Gly Asn Ser Ile Thr Asp Val Leu Tyr 565 570 575 Gly Lys Val Asn Pro Ala Ala Arg Ser Pro Phe Thr Trp Gly Lys Thr 580 585 590 Arg Glu Ser Tyr Gly Ala Asp Val Leu Tyr Lys Pro Asn Asn Gly Asn 595 600 605 Gly Ala Pro Gln Gln Asp Phe Thr Glu Gly Val Phe Ile Asp Tyr Arg 610 615 620 Tyr Phe Asp Lys Val Asp Asp Asp Ser Val Ile Tyr Glu Phe Gly His 625 630 635 640 Gly Leu Ser Tyr Thr Thr Phe Glu Tyr Ser Asn Ile Arg Val Val Lys 645 650 655 Ser Asn Val Ser Glu Tyr Arg Pro Thr Thr Gly Thr Thr Ala Gln Ala 660 665 670 Pro Thr Phe Gly Asn Phe Ser Thr Asp Leu Glu Asp Tyr Leu Phe Pro 675 680 685 Lys Asp Glu Phe Pro Tyr Ile Tyr Gln Tyr Ile Tyr Pro Tyr Leu Asn 690 695 700 Thr Thr Asp Pro Arg Arg Ala Ser Ala Asp Pro His Tyr Gly Gln Thr 705 710 715 720 Ala Glu Glu Phe Leu Pro Pro His Ala Thr Asp Asp Asp Pro Gln Pro 725 730 735 Leu Leu Arg Ser Ser Gly Gly Asn Ser Pro Gly Gly Asn Arg Gln Leu 740 745 750 Tyr Asp Ile Val Tyr Thr Ile Thr Ala Asp Ile Thr Asn Thr Gly Ser 755 760 765 Val Val Gly Glu Glu Val Pro Gln Leu Tyr Val Ser Leu Gly Gly Pro 770 775 780 Glu Asp Pro Lys Val Gln Leu Arg Asp Phe Asp Arg Met Arg Ile Glu 785 790 795 800 Pro Gly Glu Thr Arg Gln Phe Thr Gly Arg Leu Thr Arg Arg Asp Leu 805 810 815 Ser Asn Trp Asp Val Thr Val Gln Asp Trp Val Ile Ser Arg Tyr Pro 820 825 830 Lys Thr Ala Tyr Val Gly Arg Ser Ser Arg Lys Leu Asp Leu Lys Ile 835 840 845 Glu Leu Pro 850 1182613DNAArtificial SequenceSynthetic polynucleotide. 118atgaaggctg ctgcgctttc ctgcctcttc ggcagtaccc ttgccgttgc aggcgccatt 60gaatcgagaa aggttcacca gaagcccctc gcgagatctg aaccttttta cccgtcgcca 120tggatgaatc ccaacgccga cggctgggcg gaggcctatg cccaggccaa gtcctttgtc 180tcccaaatga ctctgctaga gaaggtcaac ttgaccacgg gagtcggctg gggggctgag 240cagtgcgtcg gccaagtggg cgcgatccct cgccttggac ttcgcagtct gtgcatgcat 300gactcccctc tcggcatccg aggagccgac tacaactcag cgttcccctc tggccagacc 360gttgctgcta cctgggatcg cggtctgatg taccgtcgcg gctacgcaat gggccaggag 420gccaaaggca agggcatcaa tgtccttctc ggaccagtcg ccggccccct tggccgcatg 480cccgagggcg gtcgtaactg ggaaggcttc gctccggatc ccgtccttac cggcatcggc 540atgtccgaga cgatcaaggg cattcaggat gctggcgtca tcgcttgtgc gaagcacttt 600attggaaacg agcaggagca cttcagacag gtgccagaag cccagggata cggttacaac 660atcagcgaaa ccctctcctc caacattgac gacaagacca tgcacgagct ctacctttgg 720ccgtttgccg atgccgtccg ggccggcgtc ggctctgtca tgtgctcgta caaccaggtc 780aacaactcgt acgcctgcca gaactcgaag ctgctgaacg acctcctcaa gaacgagctt 840gggtttcagg gcttcgtcat gagcgactgg tgggcacagc acactggcgc agcaagcgcc 900gtggctggtc tcgatatgtc catgccgggc gacaccatgt tcaacactgg cgtcagtttc 960tggggcgcca atctcaccct cgccgtcctc aacggcacag tccctgccta ccgtctcgac 1020gacatggcca tgcgcatcat ggccgccctc ttcaaggtca ccaagaccac cgacctggaa 1080ccgatcaact tctccttctg gacccgcgac acttatggcc cgatccactg ggccgccaag 1140cagggctacc aggagattaa ttcccacgtt gacgtccgcg ccgaccacgg caacctcatc 1200cggaacattg ccgccaaggg tacggtgctg ctgaagaata ccggctctct acccctgaac 1260aagccaaagt tcgtggccgt catcggcgag gatgctgggc cgagccccaa cgggcccaac 1320ggctgcagcg accgcggctg taacgaaggc acgctcgcca tgggctgggg atccggcaca 1380gccaactatc cgtacctcgt ttcccccgac gccgcgctcc agttgcgggc catccaggac 1440ggcacgaggt acgagagcgt cctgtccaac tacgccgagg aaaatacaaa ggctctggtc 1500tcgcaggcca atgcaaccgc catcgtcttc gtcaatgccg actcaggcga gggctacatc 1560aacgtggacg gtaacgaggg cgaccgtaag aacctgactc tctggaacaa cggtgatact 1620ctggtcaaga acgtctcgag ctggtgcagc aacaccatcg tcgtcatcca ctcggtcggc 1680ccggtcctcc tgaccgattg gtacgacaac cccaacatca cggccattct ctgggctggt 1740cttccgggcc aggagtcggg caactccatc accgacgtgc tttacggcaa ggtcaacccc 1800gccgcccgct cgcccttcac ttggggcaag acccgcgaaa gctatggcgc ggacgtcctg 1860tacaagccga ataatggcaa ttgggcgccc caacaggact tcaccgaggg cgtcttcatc 1920gactaccgct acttcgacaa ggttgacgat gactcggtca tctacgagtt cggccacggc 1980ctgagctaca ccaccttcga gtacagcaac atccgcgtcg tcaagtccaa cgtcagcgag 2040taccggccca cgacgggcac cacgattcag gccccgacgt ttggcaactt ctccaccgac 2100ctcgaggact atctcttccc caaggacgag ttcccctaca tcccgcagta catctacccg 2160tacctcaaca cgaccgaccc ccggagggcc

tcggccgatc cccactacgg ccagaccgcc 2220gaggagttcc tcccgcccca cgccaccgat gacgaccccc agccgctcct ccggtcctcg 2280ggcggaaact cccccggcgg caaccgccag ctgtacgaca ttgtctacac aatcacggcc 2340gacatcacga atacgggctc cgttgtaggc gaggaggtac cgcagctcta cgtctcgctg 2400ggcggtcccg aggatcccaa ggtgcagctg cgcgactttg acaggatgcg gatcgaaccc 2460ggcgagacga ggcagttcac cggccgcctg acgcgcagag atctgagcaa ctgggacgtc 2520acggtgcagg actgggtcat cagcaggtat cccaagacgg catatgttgg gaggagcagc 2580cggaagttgg atctcaagat tgagcttcct tga 2613119870PRTArtificial SequenceSynthetic polypeptides. 119Met Lys Ala Ala Ala Leu Ser Cys Leu Phe Gly Ser Thr Leu Ala Val 1 5 10 15 Ala Gly Ala Ile Glu Ser Arg Lys Val His Gln Lys Pro Leu Ala Arg 20 25 30 Ser Glu Pro Phe Tyr Pro Ser Pro Trp Met Asn Pro Asn Ala Asp Gly 35 40 45 Trp Ala Glu Ala Tyr Ala Gln Ala Lys Ser Phe Val Ser Gln Met Thr 50 55 60 Leu Leu Glu Lys Val Asn Leu Thr Thr Gly Val Gly Trp Gly Ala Glu 65 70 75 80 Gln Cys Val Gly Gln Val Gly Ala Ile Pro Arg Leu Gly Leu Arg Ser 85 90 95 Leu Cys Met His Asp Ser Pro Leu Gly Ile Arg Gly Ala Asp Tyr Asn 100 105 110 Ser Ala Phe Pro Ser Gly Gln Thr Val Ala Ala Thr Trp Asp Arg Gly 115 120 125 Leu Met Tyr Arg Arg Gly Tyr Ala Met Gly Gln Glu Ala Lys Gly Lys 130 135 140 Gly Ile Asn Val Leu Leu Gly Pro Val Ala Gly Pro Leu Gly Arg Met 145 150 155 160 Pro Glu Gly Gly Arg Asn Trp Glu Gly Phe Ala Pro Asp Pro Val Leu 165 170 175 Thr Gly Ile Gly Met Ser Glu Thr Ile Lys Gly Ile Gln Asp Ala Gly 180 185 190 Val Ile Ala Cys Ala Lys His Phe Ile Gly Asn Glu Gln Glu His Phe 195 200 205 Arg Gln Val Pro Glu Ala Gln Gly Tyr Gly Tyr Asn Ile Ser Glu Thr 210 215 220 Leu Ser Ser Asn Ile Asp Asp Lys Thr Met His Glu Leu Tyr Leu Trp 225 230 235 240 Pro Phe Ala Asp Ala Val Arg Ala Gly Val Gly Ser Val Met Cys Ser 245 250 255 Tyr Asn Gln Val Asn Asn Ser Tyr Ala Cys Gln Asn Ser Lys Leu Leu 260 265 270 Asn Asp Leu Leu Lys Asn Glu Leu Gly Phe Gln Gly Phe Val Met Ser 275 280 285 Asp Trp Trp Ala Gln His Thr Gly Ala Ala Ser Ala Val Ala Gly Leu 290 295 300 Asp Met Ser Met Pro Gly Asp Thr Met Phe Asn Thr Gly Val Ser Phe 305 310 315 320 Trp Gly Ala Asn Leu Thr Leu Ala Val Leu Asn Gly Thr Val Pro Ala 325 330 335 Tyr Arg Leu Asp Asp Met Ala Met Arg Ile Met Ala Ala Leu Phe Lys 340 345 350 Val Thr Lys Thr Thr Asp Leu Glu Pro Ile Asn Phe Ser Phe Trp Thr 355 360 365 Arg Asp Thr Tyr Gly Pro Ile His Trp Ala Ala Lys Gln Gly Tyr Gln 370 375 380 Glu Ile Asn Ser His Val Asp Val Arg Ala Asp His Gly Asn Leu Ile 385 390 395 400 Arg Asn Ile Ala Ala Lys Gly Thr Val Leu Leu Lys Asn Thr Gly Ser 405 410 415 Leu Pro Leu Asn Lys Pro Lys Phe Val Ala Val Ile Gly Glu Asp Ala 420 425 430 Gly Pro Ser Pro Asn Gly Pro Asn Gly Cys Ser Asp Arg Gly Cys Asn 435 440 445 Glu Gly Thr Leu Ala Met Gly Trp Gly Ser Gly Thr Ala Asn Tyr Pro 450 455 460 Tyr Leu Val Ser Pro Asp Ala Ala Leu Gln Leu Arg Ala Ile Gln Asp 465 470 475 480 Gly Thr Arg Tyr Glu Ser Val Leu Ser Asn Tyr Ala Glu Glu Asn Thr 485 490 495 Lys Ala Leu Val Ser Gln Ala Asn Ala Thr Ala Ile Val Phe Val Asn 500 505 510 Ala Asp Ser Gly Glu Gly Tyr Ile Asn Val Asp Gly Asn Glu Gly Asp 515 520 525 Arg Lys Asn Leu Thr Leu Trp Asn Asn Gly Asp Thr Leu Val Lys Asn 530 535 540 Val Ser Ser Trp Cys Ser Asn Thr Ile Val Val Ile His Ser Val Gly 545 550 555 560 Pro Val Leu Leu Thr Asp Trp Tyr Asp Asn Pro Asn Ile Thr Ala Ile 565 570 575 Leu Trp Ala Gly Leu Pro Gly Gln Glu Ser Gly Asn Ser Ile Thr Asp 580 585 590 Val Leu Tyr Gly Lys Val Asn Pro Ala Ala Arg Ser Pro Phe Thr Trp 595 600 605 Gly Lys Thr Arg Glu Ser Tyr Gly Ala Asp Val Leu Tyr Lys Pro Asn 610 615 620 Asn Gly Asn Trp Ala Pro Gln Gln Asp Phe Thr Glu Gly Val Phe Ile 625 630 635 640 Asp Tyr Arg Tyr Phe Asp Lys Val Asp Asp Asp Ser Val Ile Tyr Glu 645 650 655 Phe Gly His Gly Leu Ser Tyr Thr Thr Phe Glu Tyr Ser Asn Ile Arg 660 665 670 Val Val Lys Ser Asn Val Ser Glu Tyr Arg Pro Thr Thr Gly Thr Thr 675 680 685 Ile Gln Ala Pro Thr Phe Gly Asn Phe Ser Thr Asp Leu Glu Asp Tyr 690 695 700 Leu Phe Pro Lys Asp Glu Phe Pro Tyr Ile Pro Gln Tyr Ile Tyr Pro 705 710 715 720 Tyr Leu Asn Thr Thr Asp Pro Arg Arg Ala Ser Ala Asp Pro His Tyr 725 730 735 Gly Gln Thr Ala Glu Glu Phe Leu Pro Pro His Ala Thr Asp Asp Asp 740 745 750 Pro Gln Pro Leu Leu Arg Ser Ser Gly Gly Asn Ser Pro Gly Gly Asn 755 760 765 Arg Gln Leu Tyr Asp Ile Val Tyr Thr Ile Thr Ala Asp Ile Thr Asn 770 775 780 Thr Gly Ser Val Val Gly Glu Glu Val Pro Gln Leu Tyr Val Ser Leu 785 790 795 800 Gly Gly Pro Glu Asp Pro Lys Val Gln Leu Arg Asp Phe Asp Arg Met 805 810 815 Arg Ile Glu Pro Gly Glu Thr Arg Gln Phe Thr Gly Arg Leu Thr Arg 820 825 830 Arg Asp Leu Ser Asn Trp Asp Val Thr Val Gln Asp Trp Val Ile Ser 835 840 845 Arg Tyr Pro Lys Thr Ala Tyr Val Gly Arg Ser Ser Arg Lys Leu Asp 850 855 860 Leu Lys Ile Glu Leu Pro 865 870 120851PRTArtificial SequenceSynthetic polypeptides. 120Ile Glu Ser Arg Lys Val His Gln Lys Pro Leu Ala Arg Ser Glu Pro 1 5 10 15 Phe Tyr Pro Ser Pro Trp Met Asn Pro Asn Ala Asp Gly Trp Ala Glu 20 25 30 Ala Tyr Ala Gln Ala Lys Ser Phe Val Ser Gln Met Thr Leu Leu Glu 35 40 45 Lys Val Asn Leu Thr Thr Gly Val Gly Trp Gly Ala Glu Gln Cys Val 50 55 60 Gly Gln Val Gly Ala Ile Pro Arg Leu Gly Leu Arg Ser Leu Cys Met 65 70 75 80 His Asp Ser Pro Leu Gly Ile Arg Gly Ala Asp Tyr Asn Ser Ala Phe 85 90 95 Pro Ser Gly Gln Thr Val Ala Ala Thr Trp Asp Arg Gly Leu Met Tyr 100 105 110 Arg Arg Gly Tyr Ala Met Gly Gln Glu Ala Lys Gly Lys Gly Ile Asn 115 120 125 Val Leu Leu Gly Pro Val Ala Gly Pro Leu Gly Arg Met Pro Glu Gly 130 135 140 Gly Arg Asn Trp Glu Gly Phe Ala Pro Asp Pro Val Leu Thr Gly Ile 145 150 155 160 Gly Met Ser Glu Thr Ile Lys Gly Ile Gln Asp Ala Gly Val Ile Ala 165 170 175 Cys Ala Lys His Phe Ile Gly Asn Glu Gln Glu His Phe Arg Gln Val 180 185 190 Pro Glu Ala Gln Gly Tyr Gly Tyr Asn Ile Ser Glu Thr Leu Ser Ser 195 200 205 Asn Ile Asp Asp Lys Thr Met His Glu Leu Tyr Leu Trp Pro Phe Ala 210 215 220 Asp Ala Val Arg Ala Gly Val Gly Ser Val Met Cys Ser Tyr Asn Gln 225 230 235 240 Val Asn Asn Ser Tyr Ala Cys Gln Asn Ser Lys Leu Leu Asn Asp Leu 245 250 255 Leu Lys Asn Glu Leu Gly Phe Gln Gly Phe Val Met Ser Asp Trp Trp 260 265 270 Ala Gln His Thr Gly Ala Ala Ser Ala Val Ala Gly Leu Asp Met Ser 275 280 285 Met Pro Gly Asp Thr Met Phe Asn Thr Gly Val Ser Phe Trp Gly Ala 290 295 300 Asn Leu Thr Leu Ala Val Leu Asn Gly Thr Val Pro Ala Tyr Arg Leu 305 310 315 320 Asp Asp Met Ala Met Arg Ile Met Ala Ala Leu Phe Lys Val Thr Lys 325 330 335 Thr Thr Asp Leu Glu Pro Ile Asn Phe Ser Phe Trp Thr Arg Asp Thr 340 345 350 Tyr Gly Pro Ile His Trp Ala Ala Lys Gln Gly Tyr Gln Glu Ile Asn 355 360 365 Ser His Val Asp Val Arg Ala Asp His Gly Asn Leu Ile Arg Asn Ile 370 375 380 Ala Ala Lys Gly Thr Val Leu Leu Lys Asn Thr Gly Ser Leu Pro Leu 385 390 395 400 Asn Lys Pro Lys Phe Val Ala Val Ile Gly Glu Asp Ala Gly Pro Ser 405 410 415 Pro Asn Gly Pro Asn Gly Cys Ser Asp Arg Gly Cys Asn Glu Gly Thr 420 425 430 Leu Ala Met Gly Trp Gly Ser Gly Thr Ala Asn Tyr Pro Tyr Leu Val 435 440 445 Ser Pro Asp Ala Ala Leu Gln Leu Arg Ala Ile Gln Asp Gly Thr Arg 450 455 460 Tyr Glu Ser Val Leu Ser Asn Tyr Ala Glu Glu Asn Thr Lys Ala Leu 465 470 475 480 Val Ser Gln Ala Asn Ala Thr Ala Ile Val Phe Val Asn Ala Asp Ser 485 490 495 Gly Glu Gly Tyr Ile Asn Val Asp Gly Asn Glu Gly Asp Arg Lys Asn 500 505 510 Leu Thr Leu Trp Asn Asn Gly Asp Thr Leu Val Lys Asn Val Ser Ser 515 520 525 Trp Cys Ser Asn Thr Ile Val Val Ile His Ser Val Gly Pro Val Leu 530 535 540 Leu Thr Asp Trp Tyr Asp Asn Pro Asn Ile Thr Ala Ile Leu Trp Ala 545 550 555 560 Gly Leu Pro Gly Gln Glu Ser Gly Asn Ser Ile Thr Asp Val Leu Tyr 565 570 575 Gly Lys Val Asn Pro Ala Ala Arg Ser Pro Phe Thr Trp Gly Lys Thr 580 585 590 Arg Glu Ser Tyr Gly Ala Asp Val Leu Tyr Lys Pro Asn Asn Gly Asn 595 600 605 Trp Ala Pro Gln Gln Asp Phe Thr Glu Gly Val Phe Ile Asp Tyr Arg 610 615 620 Tyr Phe Asp Lys Val Asp Asp Asp Ser Val Ile Tyr Glu Phe Gly His 625 630 635 640 Gly Leu Ser Tyr Thr Thr Phe Glu Tyr Ser Asn Ile Arg Val Val Lys 645 650 655 Ser Asn Val Ser Glu Tyr Arg Pro Thr Thr Gly Thr Thr Ile Gln Ala 660 665 670 Pro Thr Phe Gly Asn Phe Ser Thr Asp Leu Glu Asp Tyr Leu Phe Pro 675 680 685 Lys Asp Glu Phe Pro Tyr Ile Pro Gln Tyr Ile Tyr Pro Tyr Leu Asn 690 695 700 Thr Thr Asp Pro Arg Arg Ala Ser Ala Asp Pro His Tyr Gly Gln Thr 705 710 715 720 Ala Glu Glu Phe Leu Pro Pro His Ala Thr Asp Asp Asp Pro Gln Pro 725 730 735 Leu Leu Arg Ser Ser Gly Gly Asn Ser Pro Gly Gly Asn Arg Gln Leu 740 745 750 Tyr Asp Ile Val Tyr Thr Ile Thr Ala Asp Ile Thr Asn Thr Gly Ser 755 760 765 Val Val Gly Glu Glu Val Pro Gln Leu Tyr Val Ser Leu Gly Gly Pro 770 775 780 Glu Asp Pro Lys Val Gln Leu Arg Asp Phe Asp Arg Met Arg Ile Glu 785 790 795 800 Pro Gly Glu Thr Arg Gln Phe Thr Gly Arg Leu Thr Arg Arg Asp Leu 805 810 815 Ser Asn Trp Asp Val Thr Val Gln Asp Trp Val Ile Ser Arg Tyr Pro 820 825 830 Lys Thr Ala Tyr Val Gly Arg Ser Ser Arg Lys Leu Asp Leu Lys Ile 835 840 845 Glu Leu Pro 850 1212613DNAArtificial SequenceSynthetic polynucleotide. 121atgaaggctg ctgcgctttc ctgcctcttc ggcagtaccc ttgccgttgc aggcgccatt 60gaatcgagaa aggttcacca gaagcccctc gcgagatctg aaccttttta cccgtcgcca 120tggatgaatc ccaacgccat cggctgggcg gaggcctatg cccaggccaa gtcctttgtc 180tcccaaatga ctctgctaga gaaggtcaac ttgaccacgg gagtcggctg gggggaggag 240cagtgcgtcg gcaacgtggg cgcgatccct cgccttggac ttcgcagtct gtgcatgcat 300gactcccctc tcggcgtgcg aggaaccgac tacaactcag cgttcccctc tggccagacc 360gttgctgcta cctgggatcg cggtctgatg taccgtcgcg gctacgcaat gggccaggag 420gccaaaggca agggcatcaa tgtccttctc ggaccagtcg ccggccccct tggccgcatg 480cccgagggcg gtcgtaactg ggaaggcttc gctccggatc ccgtccttac cggcatcggc 540atgtccgaga cgatcaaggg cattcaggat gctggcgtca tcgcttgtgc gaagcacttt 600attggaaacg agcaggagca cttcagacag gtgccagaag cccagggata cggttacaac 660atcagcgaaa ccctctcctc caacattgac gacaagacca tgcacgagct ctacctttgg 720ccgtttgccg atgccgtccg ggccggcgtc ggctctgtca tgtgctcgta caaccagggc 780aacaactcgt acgcctgcca gaactcgaag ctgctgaacg acctcctcaa gaacgagctt 840gggtttcagg gcttcgtcat gagcgactgg tgggcacagc acactggcgc agcaagcgcc 900gtggctggtc tcgatatgtc catgccgggc gacaccatgg tcaacactgg cgtcagtttc 960tggggcgcca atctcaccct cgccgtcctc aacggcacag tccctgccta ccgtctcgac 1020gacatgtgca tgcgcatcat ggccgccctc ttcaaggtca ccaagaccac cgacctggaa 1080ccgatcaact tctccttctg gacccgcgac acttatggcc cgatccactg ggccgccaag 1140cagggctacc aggagattaa ttcccacgtt gacgtccgcg ccgaccacgg caacctcatc 1200cggaacattg ccgccaaggg tacggtgctg ctgaagaata ccggctctct acccctgaac 1260aagccaaagt tcgtggccgt catcggcgag gatgctgggc cgagccccaa cgggcccaac 1320ggctgcagcg accgcggctg taacgaaggc acgctcgcca tgggctgggg atccggcaca 1380gccaactatc cgtacctcgt ttcccccgac gccgcgctcc aggcgcgggc catccaggac 1440ggcacgaggt acgagagcgt cctgtccaac tacgccgagg aaaatacaaa ggctctggtc 1500tcgcaggcca atgcaaccgc catcgtcttc gtcaatgccg actcaggcga gggctacatc 1560aacgtggacg gtaacgaggg cgaccgtaag aacctgactc tctggaacaa cggtgatact 1620ctggtcaaga acgtctcgag ctggtgcagc aacaccatcg tcgtcatcca ctcggtcggc 1680ccggtcctcc tgaccgattg gtacgacaac cccaacatca cggccattct ctgggctggt 1740cttccgggcc aggagtcggg caactccatc accgacgtgc tttacggcaa ggtcaacccc 1800gccgcccgct cgcccttcac ttggggcaag acccgcgaaa gctatggcgc ggacgtcctg 1860tacaagccga ataatggcaa ttgggcgccc caacaggact tcaccgaggg cgtcttcatc 1920gactaccgct acttcgacaa ggttgacgat gactcggtca tctacgagtt cggccacggc 1980ctgagctaca ccaccttcga gtacagcaac atccgcgtcg tcaagtccaa cgtcagcgag 2040taccggccca cgacgggcac cacgattcag gccccgacgt ttggcaactt ctccaccgac 2100ctcgaggact atctcttccc caaggacgag ttcccctaca tcccgcagta catctacccg 2160tacctcaaca cgaccgaccc ccggagggcc tcgggcgatc cccactacgg ccagaccgcc 2220gaggagttcc tcccgcccca cgccaccgat gacgaccccc agccgctcct ccggtcctcg 2280ggcggaaact cccccggcgg caaccgccag ctgtacgaca ttgtctacac aatcacggcc 2340gacatcacga atacgggctc cgttgtaggc gaggaggtac cgcagctcta cgtctcgctg 2400ggcggtcccg aggatcccaa ggtgcagctg cgcgactttg acaggatgcg gatcgaaccc 2460ggcgagacga ggcagttcac cggccgcctg acgcgcagag atctgagcaa ctgggacgtc 2520acggtgcagg actgggtcat cagcaggtat cccaagacgg catatgttgg gaggagcagc 2580cggaagttgg atctcaagat tgagcttcct tga 2613122870PRTArtificial SequenceSynthetic polypeptides. 122Met Lys Ala Ala Ala Leu Ser Cys Leu Phe Gly Ser Thr Leu Ala Val 1 5 10 15 Ala Gly Ala Ile Glu Ser Arg Lys Val His Gln Lys Pro Leu Ala Arg 20 25 30 Ser Glu Pro Phe Tyr Pro Ser Pro Trp Met Asn Pro Asn Ala Ile Gly 35 40 45 Trp Ala Glu Ala Tyr Ala Gln Ala Lys Ser Phe Val Ser Gln Met Thr 50 55 60 Leu Leu Glu Lys Val Asn Leu Thr Thr Gly Val Gly Trp Gly Glu Glu 65 70

75 80 Gln Cys Val Gly Asn Val Gly Ala Ile Pro Arg Leu Gly Leu Arg Ser 85 90 95 Leu Cys Met His Asp Ser Pro Leu Gly Val Arg Gly Thr Asp Tyr Asn 100 105 110 Ser Ala Phe Pro Ser Gly Gln Thr Val Ala Ala Thr Trp Asp Arg Gly 115 120 125 Leu Met Tyr Arg Arg Gly Tyr Ala Met Gly Gln Glu Ala Lys Gly Lys 130 135 140 Gly Ile Asn Val Leu Leu Gly Pro Val Ala Gly Pro Leu Gly Arg Met 145 150 155 160 Pro Glu Gly Gly Arg Asn Trp Glu Gly Phe Ala Pro Asp Pro Val Leu 165 170 175 Thr Gly Ile Gly Met Ser Glu Thr Ile Lys Gly Ile Gln Asp Ala Gly 180 185 190 Val Ile Ala Cys Ala Lys His Phe Ile Gly Asn Glu Gln Glu His Phe 195 200 205 Arg Gln Val Pro Glu Ala Gln Gly Tyr Gly Tyr Asn Ile Ser Glu Thr 210 215 220 Leu Ser Ser Asn Ile Asp Asp Lys Thr Met His Glu Leu Tyr Leu Trp 225 230 235 240 Pro Phe Ala Asp Ala Val Arg Ala Gly Val Gly Ser Val Met Cys Ser 245 250 255 Tyr Asn Gln Gly Asn Asn Ser Tyr Ala Cys Gln Asn Ser Lys Leu Leu 260 265 270 Asn Asp Leu Leu Lys Asn Glu Leu Gly Phe Gln Gly Phe Val Met Ser 275 280 285 Asp Trp Trp Ala Gln His Thr Gly Ala Ala Ser Ala Val Ala Gly Leu 290 295 300 Asp Met Ser Met Pro Gly Asp Thr Met Val Asn Thr Gly Val Ser Phe 305 310 315 320 Trp Gly Ala Asn Leu Thr Leu Ala Val Leu Asn Gly Thr Val Pro Ala 325 330 335 Tyr Arg Leu Asp Asp Met Cys Met Arg Ile Met Ala Ala Leu Phe Lys 340 345 350 Val Thr Lys Thr Thr Asp Leu Glu Pro Ile Asn Phe Ser Phe Trp Thr 355 360 365 Arg Asp Thr Tyr Gly Pro Ile His Trp Ala Ala Lys Gln Gly Tyr Gln 370 375 380 Glu Ile Asn Ser His Val Asp Val Arg Ala Asp His Gly Asn Leu Ile 385 390 395 400 Arg Asn Ile Ala Ala Lys Gly Thr Val Leu Leu Lys Asn Thr Gly Ser 405 410 415 Leu Pro Leu Asn Lys Pro Lys Phe Val Ala Val Ile Gly Glu Asp Ala 420 425 430 Gly Pro Ser Pro Asn Gly Pro Asn Gly Cys Ser Asp Arg Gly Cys Asn 435 440 445 Glu Gly Thr Leu Ala Met Gly Trp Gly Ser Gly Thr Ala Asn Tyr Pro 450 455 460 Tyr Leu Val Ser Pro Asp Ala Ala Leu Gln Ala Arg Ala Ile Gln Asp 465 470 475 480 Gly Thr Arg Tyr Glu Ser Val Leu Ser Asn Tyr Ala Glu Glu Asn Thr 485 490 495 Lys Ala Leu Val Ser Gln Ala Asn Ala Thr Ala Ile Val Phe Val Asn 500 505 510 Ala Asp Ser Gly Glu Gly Tyr Ile Asn Val Asp Gly Asn Glu Gly Asp 515 520 525 Arg Lys Asn Leu Thr Leu Trp Asn Asn Gly Asp Thr Leu Val Lys Asn 530 535 540 Val Ser Ser Trp Cys Ser Asn Thr Ile Val Val Ile His Ser Val Gly 545 550 555 560 Pro Val Leu Leu Thr Asp Trp Tyr Asp Asn Pro Asn Ile Thr Ala Ile 565 570 575 Leu Trp Ala Gly Leu Pro Gly Gln Glu Ser Gly Asn Ser Ile Thr Asp 580 585 590 Val Leu Tyr Gly Lys Val Asn Pro Ala Ala Arg Ser Pro Phe Thr Trp 595 600 605 Gly Lys Thr Arg Glu Ser Tyr Gly Ala Asp Val Leu Tyr Lys Pro Asn 610 615 620 Asn Gly Asn Trp Ala Pro Gln Gln Asp Phe Thr Glu Gly Val Phe Ile 625 630 635 640 Asp Tyr Arg Tyr Phe Asp Lys Val Asp Asp Asp Ser Val Ile Tyr Glu 645 650 655 Phe Gly His Gly Leu Ser Tyr Thr Thr Phe Glu Tyr Ser Asn Ile Arg 660 665 670 Val Val Lys Ser Asn Val Ser Glu Tyr Arg Pro Thr Thr Gly Thr Thr 675 680 685 Ile Gln Ala Pro Thr Phe Gly Asn Phe Ser Thr Asp Leu Glu Asp Tyr 690 695 700 Leu Phe Pro Lys Asp Glu Phe Pro Tyr Ile Pro Gln Tyr Ile Tyr Pro 705 710 715 720 Tyr Leu Asn Thr Thr Asp Pro Arg Arg Ala Ser Gly Asp Pro His Tyr 725 730 735 Gly Gln Thr Ala Glu Glu Phe Leu Pro Pro His Ala Thr Asp Asp Asp 740 745 750 Pro Gln Pro Leu Leu Arg Ser Ser Gly Gly Asn Ser Pro Gly Gly Asn 755 760 765 Arg Gln Leu Tyr Asp Ile Val Tyr Thr Ile Thr Ala Asp Ile Thr Asn 770 775 780 Thr Gly Ser Val Val Gly Glu Glu Val Pro Gln Leu Tyr Val Ser Leu 785 790 795 800 Gly Gly Pro Glu Asp Pro Lys Val Gln Leu Arg Asp Phe Asp Arg Met 805 810 815 Arg Ile Glu Pro Gly Glu Thr Arg Gln Phe Thr Gly Arg Leu Thr Arg 820 825 830 Arg Asp Leu Ser Asn Trp Asp Val Thr Val Gln Asp Trp Val Ile Ser 835 840 845 Arg Tyr Pro Lys Thr Ala Tyr Val Gly Arg Ser Ser Arg Lys Leu Asp 850 855 860 Leu Lys Ile Glu Leu Pro 865 870 123851PRTArtificial SequenceSynthetic polypeptides. 123Ile Glu Ser Arg Lys Val His Gln Lys Pro Leu Ala Arg Ser Glu Pro 1 5 10 15 Phe Tyr Pro Ser Pro Trp Met Asn Pro Asn Ala Ile Gly Trp Ala Glu 20 25 30 Ala Tyr Ala Gln Ala Lys Ser Phe Val Ser Gln Met Thr Leu Leu Glu 35 40 45 Lys Val Asn Leu Thr Thr Gly Val Gly Trp Gly Glu Glu Gln Cys Val 50 55 60 Gly Asn Val Gly Ala Ile Pro Arg Leu Gly Leu Arg Ser Leu Cys Met 65 70 75 80 His Asp Ser Pro Leu Gly Val Arg Gly Thr Asp Tyr Asn Ser Ala Phe 85 90 95 Pro Ser Gly Gln Thr Val Ala Ala Thr Trp Asp Arg Gly Leu Met Tyr 100 105 110 Arg Arg Gly Tyr Ala Met Gly Gln Glu Ala Lys Gly Lys Gly Ile Asn 115 120 125 Val Leu Leu Gly Pro Val Ala Gly Pro Leu Gly Arg Met Pro Glu Gly 130 135 140 Gly Arg Asn Trp Glu Gly Phe Ala Pro Asp Pro Val Leu Thr Gly Ile 145 150 155 160 Gly Met Ser Glu Thr Ile Lys Gly Ile Gln Asp Ala Gly Val Ile Ala 165 170 175 Cys Ala Lys His Phe Ile Gly Asn Glu Gln Glu His Phe Arg Gln Val 180 185 190 Pro Glu Ala Gln Gly Tyr Gly Tyr Asn Ile Ser Glu Thr Leu Ser Ser 195 200 205 Asn Ile Asp Asp Lys Thr Met His Glu Leu Tyr Leu Trp Pro Phe Ala 210 215 220 Asp Ala Val Arg Ala Gly Val Gly Ser Val Met Cys Ser Tyr Asn Gln 225 230 235 240 Gly Asn Asn Ser Tyr Ala Cys Gln Asn Ser Lys Leu Leu Asn Asp Leu 245 250 255 Leu Lys Asn Glu Leu Gly Phe Gln Gly Phe Val Met Ser Asp Trp Trp 260 265 270 Ala Gln His Thr Gly Ala Ala Ser Ala Val Ala Gly Leu Asp Met Ser 275 280 285 Met Pro Gly Asp Thr Met Val Asn Thr Gly Val Ser Phe Trp Gly Ala 290 295 300 Asn Leu Thr Leu Ala Val Leu Asn Gly Thr Val Pro Ala Tyr Arg Leu 305 310 315 320 Asp Asp Met Cys Met Arg Ile Met Ala Ala Leu Phe Lys Val Thr Lys 325 330 335 Thr Thr Asp Leu Glu Pro Ile Asn Phe Ser Phe Trp Thr Arg Asp Thr 340 345 350 Tyr Gly Pro Ile His Trp Ala Ala Lys Gln Gly Tyr Gln Glu Ile Asn 355 360 365 Ser His Val Asp Val Arg Ala Asp His Gly Asn Leu Ile Arg Asn Ile 370 375 380 Ala Ala Lys Gly Thr Val Leu Leu Lys Asn Thr Gly Ser Leu Pro Leu 385 390 395 400 Asn Lys Pro Lys Phe Val Ala Val Ile Gly Glu Asp Ala Gly Pro Ser 405 410 415 Pro Asn Gly Pro Asn Gly Cys Ser Asp Arg Gly Cys Asn Glu Gly Thr 420 425 430 Leu Ala Met Gly Trp Gly Ser Gly Thr Ala Asn Tyr Pro Tyr Leu Val 435 440 445 Ser Pro Asp Ala Ala Leu Gln Ala Arg Ala Ile Gln Asp Gly Thr Arg 450 455 460 Tyr Glu Ser Val Leu Ser Asn Tyr Ala Glu Glu Asn Thr Lys Ala Leu 465 470 475 480 Val Ser Gln Ala Asn Ala Thr Ala Ile Val Phe Val Asn Ala Asp Ser 485 490 495 Gly Glu Gly Tyr Ile Asn Val Asp Gly Asn Glu Gly Asp Arg Lys Asn 500 505 510 Leu Thr Leu Trp Asn Asn Gly Asp Thr Leu Val Lys Asn Val Ser Ser 515 520 525 Trp Cys Ser Asn Thr Ile Val Val Ile His Ser Val Gly Pro Val Leu 530 535 540 Leu Thr Asp Trp Tyr Asp Asn Pro Asn Ile Thr Ala Ile Leu Trp Ala 545 550 555 560 Gly Leu Pro Gly Gln Glu Ser Gly Asn Ser Ile Thr Asp Val Leu Tyr 565 570 575 Gly Lys Val Asn Pro Ala Ala Arg Ser Pro Phe Thr Trp Gly Lys Thr 580 585 590 Arg Glu Ser Tyr Gly Ala Asp Val Leu Tyr Lys Pro Asn Asn Gly Asn 595 600 605 Trp Ala Pro Gln Gln Asp Phe Thr Glu Gly Val Phe Ile Asp Tyr Arg 610 615 620 Tyr Phe Asp Lys Val Asp Asp Asp Ser Val Ile Tyr Glu Phe Gly His 625 630 635 640 Gly Leu Ser Tyr Thr Thr Phe Glu Tyr Ser Asn Ile Arg Val Val Lys 645 650 655 Ser Asn Val Ser Glu Tyr Arg Pro Thr Thr Gly Thr Thr Ile Gln Ala 660 665 670 Pro Thr Phe Gly Asn Phe Ser Thr Asp Leu Glu Asp Tyr Leu Phe Pro 675 680 685 Lys Asp Glu Phe Pro Tyr Ile Pro Gln Tyr Ile Tyr Pro Tyr Leu Asn 690 695 700 Thr Thr Asp Pro Arg Arg Ala Ser Gly Asp Pro His Tyr Gly Gln Thr 705 710 715 720 Ala Glu Glu Phe Leu Pro Pro His Ala Thr Asp Asp Asp Pro Gln Pro 725 730 735 Leu Leu Arg Ser Ser Gly Gly Asn Ser Pro Gly Gly Asn Arg Gln Leu 740 745 750 Tyr Asp Ile Val Tyr Thr Ile Thr Ala Asp Ile Thr Asn Thr Gly Ser 755 760 765 Val Val Gly Glu Glu Val Pro Gln Leu Tyr Val Ser Leu Gly Gly Pro 770 775 780 Glu Asp Pro Lys Val Gln Leu Arg Asp Phe Asp Arg Met Arg Ile Glu 785 790 795 800 Pro Gly Glu Thr Arg Gln Phe Thr Gly Arg Leu Thr Arg Arg Asp Leu 805 810 815 Ser Asn Trp Asp Val Thr Val Gln Asp Trp Val Ile Ser Arg Tyr Pro 820 825 830 Lys Thr Ala Tyr Val Gly Arg Ser Ser Arg Lys Leu Asp Leu Lys Ile 835 840 845 Glu Leu Pro 850 1241368DNATalaromyces emersonii 124atgcttcgac gggctcttct tctatcctct tccgccatcc ttgctgtcaa ggcacagcag 60gccggcacgg cgacggcaga gaaccacccg cccctgacat ggcaggaatg caccgcccct 120gggagctgca ccacccagaa cggggcggtc gttcttgatg cgaactggcg ttgggtgcac 180gatgtgaacg gatacaccaa ctgctacacg ggcaatacct gggaccccac gtactgccct 240gacgacgaaa cctgcgccca gaactgtgcg ctggacggcg cggattacga gggcacctac 300ggcgtgactt cgtcgggcag ctccttgaaa ctcaatttcg tcaccgggtc gaacgtcgga 360tcccgtctct acctgctgca ggacgactcg acctatcaga tcttcaagct tctgaaccgc 420gagttcagct ttgacgtcga tgtctccaat cttccgtgcg gattgaacgg cgctctgtac 480tttgtcgcca tggacgccga cggcggcgtg tccaagtacc cgaacaacaa ggctggtgcc 540aagtacggaa ccgggtattg cgactcccaa tgcccacggg acctcaagtt catcgacggc 600gaggccaacg tcgagggctg gcagccgtct tcgaacaacg ccaacaccgg aattggcgac 660cacggctcct gctgtgcgga gatggatgtc tgggaagcaa acagcatctc caatgcggtc 720actccgcacc cgtgcgacac gccaggccag acgatgtgct ctggagatga ctgcggtggc 780acatactcta acgatcgcta cgcgggaacc tgcgatcctg acggctgtga cttcaaccct 840taccgcatgg gcaacacttc tttctacggg cctggcaaga tcatcgatac caccaagccc 900ttcactgtcg tgacgcagtt cctcactgat gatggtacgg atactggaac tctcagcgag 960atcaagcgct tctacatcca gaacagcaac gtcattccgc agcccaactc ggacatcagt 1020ggcgtgaccg gcaactcgat cacgacggag ttctgcactg ctcagaagca ggcctttggc 1080gacacggacg acttctctca gcacggtggc ctggccaaga tgggagcggc catgcagcag 1140ggtatggtcc tggtgatgag tttgtgggac gactacgccg cgcagatgct gtggttggat 1200tccgactacc cgacggatgc ggaccccacg acccctggta ttgcccgtgg aacgtgtccg 1260acggactcgg gcgtcccatc ggatgtcgag tcgcagagcc ccaactccta cgtgacctac 1320tcgaacatta agtttggtcc gatcaactcg accttcaccg cttcgtga 1368125455PRTTalaromyces emersonii 125Met Leu Arg Arg Ala Leu Leu Leu Ser Ser Ser Ala Ile Leu Ala Val 1 5 10 15 Lys Ala Gln Gln Ala Gly Thr Ala Thr Ala Glu Asn His Pro Pro Leu 20 25 30 Thr Trp Gln Glu Cys Thr Ala Pro Gly Ser Cys Thr Thr Gln Asn Gly 35 40 45 Ala Val Val Leu Asp Ala Asn Trp Arg Trp Val His Asp Val Asn Gly 50 55 60 Tyr Thr Asn Cys Tyr Thr Gly Asn Thr Trp Asp Pro Thr Tyr Cys Pro 65 70 75 80 Asp Asp Glu Thr Cys Ala Gln Asn Cys Ala Leu Asp Gly Ala Asp Tyr 85 90 95 Glu Gly Thr Tyr Gly Val Thr Ser Ser Gly Ser Ser Leu Lys Leu Asn 100 105 110 Phe Val Thr Gly Ser Asn Val Gly Ser Arg Leu Tyr Leu Leu Gln Asp 115 120 125 Asp Ser Thr Tyr Gln Ile Phe Lys Leu Leu Asn Arg Glu Phe Ser Phe 130 135 140 Asp Val Asp Val Ser Asn Leu Pro Cys Gly Leu Asn Gly Ala Leu Tyr 145 150 155 160 Phe Val Ala Met Asp Ala Asp Gly Gly Val Ser Lys Tyr Pro Asn Asn 165 170 175 Lys Ala Gly Ala Lys Tyr Gly Thr Gly Tyr Cys Asp Ser Gln Cys Pro 180 185 190 Arg Asp Leu Lys Phe Ile Asp Gly Glu Ala Asn Val Glu Gly Trp Gln 195 200 205 Pro Ser Ser Asn Asn Ala Asn Thr Gly Ile Gly Asp His Gly Ser Cys 210 215 220 Cys Ala Glu Met Asp Val Trp Glu Ala Asn Ser Ile Ser Asn Ala Val 225 230 235 240 Thr Pro His Pro Cys Asp Thr Pro Gly Gln Thr Met Cys Ser Gly Asp 245 250 255 Asp Cys Gly Gly Thr Tyr Ser Asn Asp Arg Tyr Ala Gly Thr Cys Asp 260 265 270 Pro Asp Gly Cys Asp Phe Asn Pro Tyr Arg Met Gly Asn Thr Ser Phe 275 280 285 Tyr Gly Pro Gly Lys Ile Ile Asp Thr Thr Lys Pro Phe Thr Val Val 290 295 300 Thr Gln Phe Leu Thr Asp Asp Gly Thr Asp Thr Gly Thr Leu Ser Glu 305 310 315 320 Ile Lys Arg Phe Tyr Ile Gln Asn Ser Asn Val Ile Pro Gln Pro Asn 325 330 335 Ser Asp Ile Ser Gly Val Thr Gly Asn Ser Ile Thr Thr Glu Phe Cys 340 345 350 Thr Ala Gln Lys Gln Ala Phe Gly Asp Thr Asp Asp Phe Ser Gln His 355 360 365 Gly Gly Leu Ala Lys Met Gly Ala Ala Met Gln Gln Gly Met Val Leu 370 375 380 Val Met Ser Leu Trp Asp Asp Tyr Ala Ala Gln Met Leu Trp Leu Asp 385 390 395 400 Ser Asp Tyr Pro Thr Asp Ala Asp Pro Thr Thr Pro Gly Ile Ala Arg 405 410 415 Gly Thr Cys Pro Thr Asp Ser Gly Val Pro Ser Asp Val Glu Ser Gln 420 425 430 Ser Pro Asn Ser Tyr Val Thr Tyr

Ser Asn Ile Lys Phe Gly Pro Ile 435 440 445 Asn Ser Thr Phe Thr Ala Ser 450 455 126437PRTTalaromyces emersonii 126Gln Gln Ala Gly Thr Ala Thr Ala Glu Asn His Pro Pro Leu Thr Trp 1 5 10 15 Gln Glu Cys Thr Ala Pro Gly Ser Cys Thr Thr Gln Asn Gly Ala Val 20 25 30 Val Leu Asp Ala Asn Trp Arg Trp Val His Asp Val Asn Gly Tyr Thr 35 40 45 Asn Cys Tyr Thr Gly Asn Thr Trp Asp Pro Thr Tyr Cys Pro Asp Asp 50 55 60 Glu Thr Cys Ala Gln Asn Cys Ala Leu Asp Gly Ala Asp Tyr Glu Gly 65 70 75 80 Thr Tyr Gly Val Thr Ser Ser Gly Ser Ser Leu Lys Leu Asn Phe Val 85 90 95 Thr Gly Ser Asn Val Gly Ser Arg Leu Tyr Leu Leu Gln Asp Asp Ser 100 105 110 Thr Tyr Gln Ile Phe Lys Leu Leu Asn Arg Glu Phe Ser Phe Asp Val 115 120 125 Asp Val Ser Asn Leu Pro Cys Gly Leu Asn Gly Ala Leu Tyr Phe Val 130 135 140 Ala Met Asp Ala Asp Gly Gly Val Ser Lys Tyr Pro Asn Asn Lys Ala 145 150 155 160 Gly Ala Lys Tyr Gly Thr Gly Tyr Cys Asp Ser Gln Cys Pro Arg Asp 165 170 175 Leu Lys Phe Ile Asp Gly Glu Ala Asn Val Glu Gly Trp Gln Pro Ser 180 185 190 Ser Asn Asn Ala Asn Thr Gly Ile Gly Asp His Gly Ser Cys Cys Ala 195 200 205 Glu Met Asp Val Trp Glu Ala Asn Ser Ile Ser Asn Ala Val Thr Pro 210 215 220 His Pro Cys Asp Thr Pro Gly Gln Thr Met Cys Ser Gly Asp Asp Cys 225 230 235 240 Gly Gly Thr Tyr Ser Asn Asp Arg Tyr Ala Gly Thr Cys Asp Pro Asp 245 250 255 Gly Cys Asp Phe Asn Pro Tyr Arg Met Gly Asn Thr Ser Phe Tyr Gly 260 265 270 Pro Gly Lys Ile Ile Asp Thr Thr Lys Pro Phe Thr Val Val Thr Gln 275 280 285 Phe Leu Thr Asp Asp Gly Thr Asp Thr Gly Thr Leu Ser Glu Ile Lys 290 295 300 Arg Phe Tyr Ile Gln Asn Ser Asn Val Ile Pro Gln Pro Asn Ser Asp 305 310 315 320 Ile Ser Gly Val Thr Gly Asn Ser Ile Thr Thr Glu Phe Cys Thr Ala 325 330 335 Gln Lys Gln Ala Phe Gly Asp Thr Asp Asp Phe Ser Gln His Gly Gly 340 345 350 Leu Ala Lys Met Gly Ala Ala Met Gln Gln Gly Met Val Leu Val Met 355 360 365 Ser Leu Trp Asp Asp Tyr Ala Ala Gln Met Leu Trp Leu Asp Ser Asp 370 375 380 Tyr Pro Thr Asp Ala Asp Pro Thr Thr Pro Gly Ile Ala Arg Gly Thr 385 390 395 400 Cys Pro Thr Asp Ser Gly Val Pro Ser Asp Val Glu Ser Gln Ser Pro 405 410 415 Asn Ser Tyr Val Thr Tyr Ser Asn Ile Lys Phe Gly Pro Ile Asn Ser 420 425 430 Thr Phe Thr Ala Ser 435 1271581DNAMyceliophthora thermophila 127atgtacgcca agttcgcgac cctcgccgcc cttgtggctg gcgccgctgc tcagaacgcc 60tgcactctga ccgctgagaa ccacccctcg ctgacgtggt ccaagtgcac gtctggcggc 120agctgcacca gcgtccaggg ttccatcacc atcgacgcca actggcggtg gactcaccgg 180accgatagcg ccaccaactg ctacgagggc aacaagtggg atacttcgta ctgcagcgat 240ggtccttctt gcgcctccaa gtgctgcatc gacggcgctg actactcgag cacctatggc 300atcaccacga gcggtaactc cctgaacctc aagttcgtca ccaagggcca gtactcgacc 360aacatcggct cgcgtaccta cctgatggag agcgacacca agtaccagat gttccagctc 420ctcggcaacg agttcacctt cgatgtcgac gtctccaacc tcggctgcgg cctcaatggc 480gccctctact tcgtgtccat ggatgccgat ggtggcatgt ccaagtactc gggcaacaag 540gcaggtgcca agtacggtac cggctactgt gattctcagt gcccccgcga cctcaagttc 600atcaacggcg aggccaacgt agagaactgg cagagctcga ccaacgatgc caacgccggc 660acgggcaagt acggcagctg ctgctccgag atggacgtct gggaggccaa caacatggcc 720gccgccttca ctccccaccc ttgcaccgtg atcggccagt cgcgctgcga gggcgactcg 780tgcggcggta cctacagcac cgaccgctat gccggcatct gcgaccccga cggatgcgac 840ttcaactcgt accgccaggg caacaagacc ttctacggca agggcatgac ggtcgacacg 900accaagaaga tcacggtcgt cacccagttc ctcaagaact cggccggcga gctctccgag 960atcaagcggt tctacgtcca gaacggcaag gtcatcccca actccgagtc caccatcccg 1020ggcgtcgagg gcaactccat cacccaggac tggtgcgacc gccagaaggc cgccttcggc 1080gacgtgaccg acttccagga caagggcggc atggtccaga tgggcaaggc cctcgcgggg 1140cccatggtcc tcgtcatgtc catctgggac gaccacgccg tcaacatgct ctggctcgac 1200tccacctggc ccatcgacgg cgccggcaag ccgggcgccg agcgcggtgc ctgccccacc 1260acctcgggcg tccccgctga ggtcgaggcc gaggccccca actccaacgt catcttctcc 1320aacatccgct tcggccccat cggctccacc gtctccggcc tgcccgacgg cggcagcggc 1380aaccccaacc cgcccgtcag ctcgtccacc ccggtcccct cctcgtccac cacatcctcc 1440ggttcctccg gcccgactgg cggcacgggt gtcgctaagc actatgagca atgcggagga 1500atcgggttca ctggccctac ccagtgcgag agcccctaca cttgcaccaa gctgaatgac 1560tggtactcgc agtgcctgta a 1581128526PRTMyceliophthora thermophila 128Met Tyr Ala Lys Phe Ala Thr Leu Ala Ala Leu Val Ala Gly Ala Ala 1 5 10 15 Ala Gln Asn Ala Cys Thr Leu Thr Ala Glu Asn His Pro Ser Leu Thr 20 25 30 Tyr Ser Lys Cys Thr Ser Gly Gly Ser Cys Thr Ser Val Gln Gly Ser 35 40 45 Ile Thr Ile Asp Ala Asn Trp Arg Trp Thr His Arg Thr Asp Ser Ala 50 55 60 Thr Asn Cys Tyr Glu Gly Asn Lys Trp Asp Thr Ser Trp Cys Ser Asp 65 70 75 80 Gly Pro Ser Cys Ala Ser Lys Cys Cys Ile Asp Gly Ala Asp Tyr Ser 85 90 95 Ser Thr Tyr Gly Ile Thr Thr Ser Gly Asn Ser Leu Asn Leu Lys Phe 100 105 110 Val Thr Lys Gly Gln Tyr Ser Thr Asn Ile Gly Ser Arg Thr Tyr Leu 115 120 125 Met Glu Ser Asp Thr Lys Tyr Gln Met Phe Gln Leu Leu Gly Asn Glu 130 135 140 Phe Thr Phe Asp Val Asp Val Ser Asn Leu Gly Cys Gly Leu Asn Gly 145 150 155 160 Ala Leu Tyr Phe Val Ser Met Asp Ala Asp Gly Gly Met Ser Lys Tyr 165 170 175 Ser Gly Asn Lys Ala Gly Ala Lys Tyr Gly Thr Gly Tyr Cys Asp Ser 180 185 190 Gln Cys Pro Arg Asp Leu Lys Phe Ile Asn Gly Glu Ala Asn Val Glu 195 200 205 Asn Trp Gln Ser Ser Thr Asn Asp Ala Asn Ala Gly Thr Gly Lys Tyr 210 215 220 Gly Ser Cys Cys Ser Glu Met Asp Val Trp Glu Ala Asn Asn Met Ala 225 230 235 240 Ala Ala Phe Thr Pro His Pro Cys Thr Val Ile Gly Gln Ser Arg Cys 245 250 255 Glu Gly Asp Ser Cys Gly Gly Thr Tyr Ser Thr Asp Arg Tyr Ala Gly 260 265 270 Ile Cys Asp Pro Asp Gly Cys Asp Phe Asn Ser Tyr Arg Gln Gly Asn 275 280 285 Lys Thr Phe Tyr Gly Lys Gly Met Thr Val Asp Thr Thr Lys Lys Ile 290 295 300 Thr Val Val Thr Gln Phe Leu Lys Asn Ser Ala Gly Glu Leu Ser Glu 305 310 315 320 Ile Lys Arg Phe Tyr Val Gln Asn Gly Lys Val Ile Pro Asn Ser Glu 325 330 335 Ser Thr Ile Pro Gly Val Glu Gly Asn Ser Ile Thr Gln Asp Trp Cys 340 345 350 Asp Arg Gln Lys Ala Ala Phe Gly Asp Val Thr Asp Phe Gln Asp Lys 355 360 365 Gly Gly Met Val Gln Met Gly Lys Ala Leu Ala Gly Pro Met Val Leu 370 375 380 Val Met Ser Ile Trp Asp Asp His Ala Val Asn Met Leu Trp Leu Asp 385 390 395 400 Ser Thr Trp Pro Ile Asp Gly Ala Gly Lys Pro Gly Ala Glu Arg Gly 405 410 415 Ala Cys Pro Thr Thr Ser Gly Val Pro Ala Glu Val Glu Ala Glu Ala 420 425 430 Pro Asn Ser Asn Val Ile Phe Ser Asn Ile Arg Phe Gly Pro Ile Gly 435 440 445 Ser Thr Val Ser Gly Leu Pro Asp Gly Gly Ser Gly Asn Pro Asn Pro 450 455 460 Pro Val Ser Ser Ser Thr Pro Val Pro Ser Ser Ser Thr Thr Ser Ser 465 470 475 480 Gly Ser Ser Gly Pro Thr Gly Gly Thr Gly Val Ala Lys His Tyr Glu 485 490 495 Gln Cys Gly Gly Ile Gly Phe Thr Gly Pro Thr Gln Cys Glu Ser Pro 500 505 510 Tyr Thr Cys Thr Lys Leu Asn Asp Trp Tyr Ser Gln Cys Leu 515 520 525 129509PRTMyceliophthora thermophila 129Gln Asn Ala Cys Thr Leu Thr Ala Glu Asn His Pro Ser Leu Thr Tyr 1 5 10 15 Ser Lys Cys Thr Ser Gly Gly Ser Cys Thr Ser Val Gln Gly Ser Ile 20 25 30 Thr Ile Asp Ala Asn Trp Arg Trp Thr His Arg Thr Asp Ser Ala Thr 35 40 45 Asn Cys Tyr Glu Gly Asn Lys Trp Asp Thr Ser Trp Cys Ser Asp Gly 50 55 60 Pro Ser Cys Ala Ser Lys Cys Cys Ile Asp Gly Ala Asp Tyr Ser Ser 65 70 75 80 Thr Tyr Gly Ile Thr Thr Ser Gly Asn Ser Leu Asn Leu Lys Phe Val 85 90 95 Thr Lys Gly Gln Tyr Ser Thr Asn Ile Gly Ser Arg Thr Tyr Leu Met 100 105 110 Glu Ser Asp Thr Lys Tyr Gln Met Phe Gln Leu Leu Gly Asn Glu Phe 115 120 125 Thr Phe Asp Val Asp Val Ser Asn Leu Gly Cys Gly Leu Asn Gly Ala 130 135 140 Leu Tyr Phe Val Ser Met Asp Ala Asp Gly Gly Met Ser Lys Tyr Ser 145 150 155 160 Gly Asn Lys Ala Gly Ala Lys Tyr Gly Thr Gly Tyr Cys Asp Ser Gln 165 170 175 Cys Pro Arg Asp Leu Lys Phe Ile Asn Gly Glu Ala Asn Val Glu Asn 180 185 190 Trp Gln Ser Ser Thr Asn Asp Ala Asn Ala Gly Thr Gly Lys Tyr Gly 195 200 205 Ser Cys Cys Ser Glu Met Asp Val Trp Glu Ala Asn Asn Met Ala Ala 210 215 220 Ala Phe Thr Pro His Pro Cys Thr Val Ile Gly Gln Ser Arg Cys Glu 225 230 235 240 Gly Asp Ser Cys Gly Gly Thr Tyr Ser Thr Asp Arg Tyr Ala Gly Ile 245 250 255 Cys Asp Pro Asp Gly Cys Asp Phe Asn Ser Tyr Arg Gln Gly Asn Lys 260 265 270 Thr Phe Tyr Gly Lys Gly Met Thr Val Asp Thr Thr Lys Lys Ile Thr 275 280 285 Val Val Thr Gln Phe Leu Lys Asn Ser Ala Gly Glu Leu Ser Glu Ile 290 295 300 Lys Arg Phe Tyr Val Gln Asn Gly Lys Val Ile Pro Asn Ser Glu Ser 305 310 315 320 Thr Ile Pro Gly Val Glu Gly Asn Ser Ile Thr Gln Asp Trp Cys Asp 325 330 335 Arg Gln Lys Ala Ala Phe Gly Asp Val Thr Asp Phe Gln Asp Lys Gly 340 345 350 Gly Met Val Gln Met Gly Lys Ala Leu Ala Gly Pro Met Val Leu Val 355 360 365 Met Ser Ile Trp Asp Asp His Ala Val Asn Met Leu Trp Leu Asp Ser 370 375 380 Thr Trp Pro Ile Asp Gly Ala Gly Lys Pro Gly Ala Glu Arg Gly Ala 385 390 395 400 Cys Pro Thr Thr Ser Gly Val Pro Ala Glu Val Glu Ala Glu Ala Pro 405 410 415 Asn Ser Asn Val Ile Phe Ser Asn Ile Arg Phe Gly Pro Ile Gly Ser 420 425 430 Thr Val Ser Gly Leu Pro Asp Gly Gly Ser Gly Asn Pro Asn Pro Pro 435 440 445 Val Ser Ser Ser Thr Pro Val Pro Ser Ser Ser Thr Thr Ser Ser Gly 450 455 460 Ser Ser Gly Pro Thr Gly Gly Thr Gly Val Ala Lys His Tyr Glu Gln 465 470 475 480 Cys Gly Gly Ile Gly Phe Thr Gly Pro Thr Gln Cys Glu Ser Pro Tyr 485 490 495 Thr Cys Thr Lys Leu Asn Asp Trp Tyr Ser Gln Cys Leu 500 505 1301581DNAArtificial SequenceSynthetic polynucleotide. 130atgtacgcca agttcgcgac cctcgccgcc cttgtggctg gcgccgctgc tcagaacgcc 60tgcactctga ccgctgagaa ccacccctcg ctgacgtggt ccaagtgcac gtctggcggc 120agctgcacca gcgtccaggg ttccatcacc atcgacgcca actggcggtg gactcaccgg 180accgatagcg ccaccaactg ctacgagggc aacaagtggg atacttcgtg gtgcagcgat 240ggtccttctt gcgcctccaa gtgctgcatc gacggcgctg actactcgag cacctatggc 300atcaccacga gcggtaactc cctgaacctc aagttcgtca ccaagggcca gtactcgacc 360aacatcggct cgcgtaccta cctgatggag agcgacacca agtaccagat gttccagctc 420ctcggcaacg agttcacctt cgatgtcgac gtctccaacc tcggctgcgg cctcaatggc 480gccctctact tcgtgtccat ggatgccgat ggtggcatgt ccaagtactc gggcaacaag 540gcaggtgcca agtacggtac cggctactgt gattctcagt gcccccgcga cctcaagttc 600atcaacggcg aggccaacgt agagaactgg cagagctcga ccaacgatgc caacgccggc 660acgggcaagt acggcagctg ctgctccgag atggacgtct gggaggccaa caacatggcc 720gccgccttca ctccccaccc ttgcaccgtg atcggccagt cgcgctgcga gggcgactcg 780tgcggcggta cctacagcac cgaccgctat gccggcatct gcgaccccga cggatgcgac 840ttcaactcgt accgccaggg caacaagacc ttctacggca agggcatgac ggtcgacacg 900accaagaaga tcacggtcgt cacccagttc ctcaagaact cggccggcga gctctccgag 960atcaagcggt tctacgtcca gaacggcaag gtcatcccca actccgagtc caccatcccg 1020ggcgtcgagg gcaactccat cacccaggac tggtgcgacc gccagaaggc cgccttcggc 1080gacgtgaccg acttccagga caagggcggc atggtccaga tgggcaaggc cctcgcgggg 1140cccatggtcc tcgtcatgtc catctgggac gaccacgccg tcaacatgct ctggctcgac 1200tccacctggc ccatcgacgg cgccggcaag ccgggcgccg agcgcggtgc ctgccccacc 1260acctcgggcg tccccgctga ggtcgaggcc gaggccccca actccaacgt catcttctcc 1320aacatccgct tcggccccat cggctccacc gtctccggcc tgcccgacgg cggcagcggc 1380aaccccaacc cgcccgtcag ctcgtccacc ccggtcccct cctcgtccac cacatcctcc 1440ggttcctccg gcccgactgg cggcacgggt gtcgctaagc actatgagca atgcggagga 1500atcgggttca ctggccctac ccagtgcgag agcccctaca cttgcaccaa gctgaatgac 1560tggtactcgc agtgcctgta a 1581131526PRTArtificial SequenceSynthetic polypeptides. 131Met Tyr Ala Lys Phe Ala Thr Leu Ala Ala Leu Val Ala Gly Ala Ala 1 5 10 15 Ala Gln Asn Ala Cys Thr Leu Thr Ala Glu Asn His Pro Ser Leu Thr 20 25 30 Trp Ser Lys Cys Thr Ser Gly Gly Ser Cys Thr Ser Val Gln Gly Ser 35 40 45 Ile Thr Ile Asp Ala Asn Trp Arg Trp Thr His Arg Thr Asp Ser Ala 50 55 60 Thr Asn Cys Tyr Glu Gly Asn Lys Trp Asp Thr Ser Trp Cys Ser Asp 65 70 75 80 Gly Pro Ser Cys Ala Ser Lys Cys Cys Ile Asp Gly Ala Asp Tyr Ser 85 90 95 Ser Thr Tyr Gly Ile Thr Thr Ser Gly Asn Ser Leu Asn Leu Lys Phe 100 105 110 Val Thr Lys Gly Gln Tyr Ser Thr Asn Ile Gly Ser Arg Thr Tyr Leu 115 120 125 Met Glu Ser Asp Thr Lys Tyr Gln Met Phe Gln Leu Leu Gly Asn Glu 130 135 140 Phe Thr Phe Asp Val Asp Val Ser Asn Leu Gly Cys Gly Leu Asn Gly 145 150 155 160 Ala Leu Tyr Phe Val Ser Met Asp Ala Asp Gly Gly Met Ser Lys Tyr 165 170 175 Ser Gly Asn Lys Ala Gly Ala Lys Tyr Gly Thr Gly Tyr Cys Asp Ser 180 185 190 Gln Cys Pro Arg Asp Leu Lys Phe Ile Asn Gly Glu Ala Asn Val Glu 195 200 205 Asn Trp Gln Ser Ser Thr Asn Asp Ala Asn Ala Gly Thr Gly Lys Tyr 210 215 220 Gly Ser Cys Cys Ser Glu Met Asp Val Trp Glu Ala Asn Asn Met Ala 225 230 235 240 Ala Ala Phe Thr Pro His Pro Cys Thr Val Ile Gly Gln Ser Arg Cys 245 250 255 Glu Gly Asp Ser Cys Gly Gly Thr Tyr Ser Thr Asp Arg Tyr Ala Gly 260 265 270 Ile Cys Asp Pro Asp Gly Cys Asp Phe Asn Ser Tyr Arg Gln Gly Asn 275 280

285 Lys Thr Phe Tyr Gly Lys Gly Met Thr Val Asp Thr Thr Lys Lys Ile 290 295 300 Thr Val Val Thr Gln Phe Leu Lys Asn Ser Ala Gly Glu Leu Ser Glu 305 310 315 320 Ile Lys Arg Phe Tyr Val Gln Asn Gly Lys Val Ile Pro Asn Ser Glu 325 330 335 Ser Thr Ile Pro Gly Val Glu Gly Asn Ser Ile Thr Gln Asp Trp Cys 340 345 350 Asp Arg Gln Lys Ala Ala Phe Gly Asp Val Thr Asp Phe Gln Asp Lys 355 360 365 Gly Gly Met Val Gln Met Gly Lys Ala Leu Ala Gly Pro Met Val Leu 370 375 380 Val Met Ser Ile Trp Asp Asp His Ala Val Asn Met Leu Trp Leu Asp 385 390 395 400 Ser Thr Trp Pro Ile Asp Gly Ala Gly Lys Pro Gly Ala Glu Arg Gly 405 410 415 Ala Cys Pro Thr Thr Ser Gly Val Pro Ala Glu Val Glu Ala Glu Ala 420 425 430 Pro Asn Ser Asn Val Ile Phe Ser Asn Ile Arg Phe Gly Pro Ile Gly 435 440 445 Ser Thr Val Ser Gly Leu Pro Asp Gly Gly Ser Gly Asn Pro Asn Pro 450 455 460 Pro Val Ser Ser Ser Thr Pro Val Pro Ser Ser Ser Thr Thr Ser Ser 465 470 475 480 Gly Ser Ser Gly Pro Thr Gly Gly Thr Gly Val Ala Lys His Tyr Glu 485 490 495 Gln Cys Gly Gly Ile Gly Phe Thr Gly Pro Thr Gln Cys Glu Ser Pro 500 505 510 Tyr Thr Cys Thr Lys Leu Asn Asp Trp Tyr Ser Gln Cys Leu 515 520 525 132509PRTArtificial SequenceSynthetic polypeptides. 132Gln Asn Ala Cys Thr Leu Thr Ala Glu Asn His Pro Ser Leu Thr Trp 1 5 10 15 Ser Lys Cys Thr Ser Gly Gly Ser Cys Thr Ser Val Gln Gly Ser Ile 20 25 30 Thr Ile Asp Ala Asn Trp Arg Trp Thr His Arg Thr Asp Ser Ala Thr 35 40 45 Asn Cys Tyr Glu Gly Asn Lys Trp Asp Thr Ser Trp Cys Ser Asp Gly 50 55 60 Pro Ser Cys Ala Ser Lys Cys Cys Ile Asp Gly Ala Asp Tyr Ser Ser 65 70 75 80 Thr Tyr Gly Ile Thr Thr Ser Gly Asn Ser Leu Asn Leu Lys Phe Val 85 90 95 Thr Lys Gly Gln Tyr Ser Thr Asn Ile Gly Ser Arg Thr Tyr Leu Met 100 105 110 Glu Ser Asp Thr Lys Tyr Gln Met Phe Gln Leu Leu Gly Asn Glu Phe 115 120 125 Thr Phe Asp Val Asp Val Ser Asn Leu Gly Cys Gly Leu Asn Gly Ala 130 135 140 Leu Tyr Phe Val Ser Met Asp Ala Asp Gly Gly Met Ser Lys Tyr Ser 145 150 155 160 Gly Asn Lys Ala Gly Ala Lys Tyr Gly Thr Gly Tyr Cys Asp Ser Gln 165 170 175 Cys Pro Arg Asp Leu Lys Phe Ile Asn Gly Glu Ala Asn Val Glu Asn 180 185 190 Trp Gln Ser Ser Thr Asn Asp Ala Asn Ala Gly Thr Gly Lys Tyr Gly 195 200 205 Ser Cys Cys Ser Glu Met Asp Val Trp Glu Ala Asn Asn Met Ala Ala 210 215 220 Ala Phe Thr Pro His Pro Cys Thr Val Ile Gly Gln Ser Arg Cys Glu 225 230 235 240 Gly Asp Ser Cys Gly Gly Thr Tyr Ser Thr Asp Arg Tyr Ala Gly Ile 245 250 255 Cys Asp Pro Asp Gly Cys Asp Phe Asn Ser Tyr Arg Gln Gly Asn Lys 260 265 270 Thr Phe Tyr Gly Lys Gly Met Thr Val Asp Thr Thr Lys Lys Ile Thr 275 280 285 Val Val Thr Gln Phe Leu Lys Asn Ser Ala Gly Glu Leu Ser Glu Ile 290 295 300 Lys Arg Phe Tyr Val Gln Asn Gly Lys Val Ile Pro Asn Ser Glu Ser 305 310 315 320 Thr Ile Pro Gly Val Glu Gly Asn Ser Ile Thr Gln Asp Trp Cys Asp 325 330 335 Arg Gln Lys Ala Ala Phe Gly Asp Val Thr Asp Phe Gln Asp Lys Gly 340 345 350 Gly Met Val Gln Met Gly Lys Ala Leu Ala Gly Pro Met Val Leu Val 355 360 365 Met Ser Ile Trp Asp Asp His Ala Val Asn Met Leu Trp Leu Asp Ser 370 375 380 Thr Trp Pro Ile Asp Gly Ala Gly Lys Pro Gly Ala Glu Arg Gly Ala 385 390 395 400 Cys Pro Thr Thr Ser Gly Val Pro Ala Glu Val Glu Ala Glu Ala Pro 405 410 415 Asn Ser Asn Val Ile Phe Ser Asn Ile Arg Phe Gly Pro Ile Gly Ser 420 425 430 Thr Val Ser Gly Leu Pro Asp Gly Gly Ser Gly Asn Pro Asn Pro Pro 435 440 445 Val Ser Ser Ser Thr Pro Val Pro Ser Ser Ser Thr Thr Ser Ser Gly 450 455 460 Ser Ser Gly Pro Thr Gly Gly Thr Gly Val Ala Lys His Tyr Glu Gln 465 470 475 480 Cys Gly Gly Ile Gly Phe Thr Gly Pro Thr Gln Cys Glu Ser Pro Tyr 485 490 495 Thr Cys Thr Lys Leu Asn Asp Trp Tyr Ser Gln Cys Leu 500 505 1331581DNAArtificial SequenceSynthetic polynucleotide. 133atgtacgcca agttcgcgac cctcgccgcc cttgtggctg gcgccgctgc tcagaacgcc 60tgcactctga acgctgagaa ccacccctcg ctgacgtggt ccaagtgcac gtctggcggc 120agctgcacca gcgtccaggg ttccatcacc atcgacgcca actggcggtg gactcaccgg 180accgatagcg ccaccaactg ctacgagggc aacaagtggg atacttcgta ctgcagcgat 240ggtccttctt gcgcctccaa gtgctgcatc gacggcgctg actactcgag cacctatggc 300atcaccacga gcggtaactc cctgaacctc aagttcgtca ccaagggcca gtactcgacc 360aacatcggct cgcgtaccta cctgatggag agcgacacca agtaccagat gttccagctc 420ctcggcaacg agttcacctt cgatgtcgac gtctccaacc tcggctgcgg cctcaatggc 480gccctctact tcgtgtccat ggatgccgat ggtggcatgt ccaagtactc gggcaacaag 540gcaggtgcca agtacggtac cggctactgt gattctcagt gcccccgcga cctcaagttc 600atcaacggcg aggccaacgt agagaactgg cagagctcga ccaacgatgc caacgccggc 660acgggcaagt acggcagctg ctgctccgag atggacgtct gggaggccaa caacatggcc 720gccgccttca ctccccaccc ttgcaccgtg atcggccagt cgcgctgcga gggcgactcg 780tgcggcggta cctacagcac cgaccgctat gccggcatct gcgaccccga cggatgcgac 840ttcaactcgt accgccaggg caacaagacc ttctacggca agggcatgac ggtcgacacg 900accaagaaga tcacggtcgt cacccagttc ctcaagaact cggccggcga gctctccgag 960atcaagcggt tctacgtcca gaacggcaag gtcatcccca actccgagtc caccatcccg 1020ggcgtcgagg gcaactccat cacccaggag tactgcgacc gccagaaggc cgccttcggc 1080gacgtgaccg acttccagga caagggcggc atggtccaga tgggcaaggc cctcgcgggg 1140cccatggtcc tcgtcatgtc catctgggac gaccacgccg acaacatgct ctggctcgac 1200tccacctggc ccatcgacgg cgccggcaag ccgggcgccg agcgcggtgc ctgccccacc 1260acctcgggcg tccccgctga ggtcgaggcc gaggccccca actccaacgt catcttctcc 1320aacatccgct tcggccccat cggctccacc gtctccggcc tgcccgacgg cggcagcggc 1380aaccccaacc cgcccgtcag ctcgtccacc ccggtcccct cctcgtccac cacatcctcc 1440ggttcctccg gcccgactgg cggcacgggt gtcgctaagc actatgagca atgcggagga 1500atcgggttca ctggccctac ccagtgcgag agcccctaca cttgcaccaa gctgaatgac 1560tggtactcgc agtgcctgta a 1581134526PRTArtificial SequenceSynthetic polypeptides. 134Met Tyr Ala Lys Phe Ala Thr Leu Ala Ala Leu Val Ala Gly Ala Ala 1 5 10 15 Ala Gln Asn Ala Cys Thr Leu Asn Ala Glu Asn His Pro Ser Leu Thr 20 25 30 Trp Ser Lys Cys Thr Ser Gly Gly Ser Cys Thr Ser Val Gln Gly Ser 35 40 45 Ile Thr Ile Asp Ala Asn Trp Arg Trp Thr His Arg Thr Asp Ser Ala 50 55 60 Thr Asn Cys Tyr Glu Gly Asn Lys Trp Asp Thr Ser Tyr Cys Ser Asp 65 70 75 80 Gly Pro Ser Cys Ala Ser Lys Cys Cys Ile Asp Gly Ala Asp Tyr Ser 85 90 95 Ser Thr Tyr Gly Ile Thr Thr Ser Gly Asn Ser Leu Asn Leu Lys Phe 100 105 110 Val Thr Lys Gly Gln Tyr Ser Thr Asn Ile Gly Ser Arg Thr Tyr Leu 115 120 125 Met Glu Ser Asp Thr Lys Tyr Gln Met Phe Gln Leu Leu Gly Asn Glu 130 135 140 Phe Thr Phe Asp Val Asp Val Ser Asn Leu Gly Cys Gly Leu Asn Gly 145 150 155 160 Ala Leu Tyr Phe Val Ser Met Asp Ala Asp Gly Gly Met Ser Lys Tyr 165 170 175 Ser Gly Asn Lys Ala Gly Ala Lys Tyr Gly Thr Gly Tyr Cys Asp Ser 180 185 190 Gln Cys Pro Arg Asp Leu Lys Phe Ile Asn Gly Glu Ala Asn Val Glu 195 200 205 Asn Trp Gln Ser Ser Thr Asn Asp Ala Asn Ala Gly Thr Gly Lys Tyr 210 215 220 Gly Ser Cys Cys Ser Glu Met Asp Val Trp Glu Ala Asn Asn Met Ala 225 230 235 240 Ala Ala Phe Thr Pro His Pro Cys Thr Val Ile Gly Gln Ser Arg Cys 245 250 255 Glu Gly Asp Ser Cys Gly Gly Thr Tyr Ser Thr Asp Arg Tyr Ala Gly 260 265 270 Ile Cys Asp Pro Asp Gly Cys Asp Phe Asn Ser Tyr Arg Gln Gly Asn 275 280 285 Lys Thr Phe Tyr Gly Lys Gly Met Thr Val Asp Thr Thr Lys Lys Ile 290 295 300 Thr Val Val Thr Gln Phe Leu Lys Asn Ser Ala Gly Glu Leu Ser Glu 305 310 315 320 Ile Lys Arg Phe Tyr Val Gln Asn Gly Lys Val Ile Pro Asn Ser Glu 325 330 335 Ser Thr Ile Pro Gly Val Glu Gly Asn Ser Ile Thr Gln Glu Tyr Cys 340 345 350 Asp Arg Gln Lys Ala Ala Phe Gly Asp Val Thr Asp Phe Gln Asp Lys 355 360 365 Gly Gly Met Val Gln Met Gly Lys Ala Leu Ala Gly Pro Met Val Leu 370 375 380 Val Met Ser Ile Trp Asp Asp His Ala Asp Asn Met Leu Trp Leu Asp 385 390 395 400 Ser Thr Trp Pro Ile Asp Gly Ala Gly Lys Pro Gly Ala Glu Arg Gly 405 410 415 Ala Cys Pro Thr Thr Ser Gly Val Pro Ala Glu Val Glu Ala Glu Ala 420 425 430 Pro Asn Ser Asn Val Ile Phe Ser Asn Ile Arg Phe Gly Pro Ile Gly 435 440 445 Ser Thr Val Ser Gly Leu Pro Asp Gly Gly Ser Gly Asn Pro Asn Pro 450 455 460 Pro Val Ser Ser Ser Thr Pro Val Pro Ser Ser Ser Thr Thr Ser Ser 465 470 475 480 Gly Ser Ser Gly Pro Thr Gly Gly Thr Gly Val Ala Lys His Tyr Glu 485 490 495 Gln Cys Gly Gly Ile Gly Phe Thr Gly Pro Thr Gln Cys Glu Ser Pro 500 505 510 Tyr Thr Cys Thr Lys Leu Asn Asp Trp Tyr Ser Gln Cys Leu 515 520 525 135509PRTArtificial SequenceSynthetic polypeptides. 135Gln Asn Ala Cys Thr Leu Asn Ala Glu Asn His Pro Ser Leu Thr Trp 1 5 10 15 Ser Lys Cys Thr Ser Gly Gly Ser Cys Thr Ser Val Gln Gly Ser Ile 20 25 30 Thr Ile Asp Ala Asn Trp Arg Trp Thr His Arg Thr Asp Ser Ala Thr 35 40 45 Asn Cys Tyr Glu Gly Asn Lys Trp Asp Thr Ser Tyr Cys Ser Asp Gly 50 55 60 Pro Ser Cys Ala Ser Lys Cys Cys Ile Asp Gly Ala Asp Tyr Ser Ser 65 70 75 80 Thr Tyr Gly Ile Thr Thr Ser Gly Asn Ser Leu Asn Leu Lys Phe Val 85 90 95 Thr Lys Gly Gln Tyr Ser Thr Asn Ile Gly Ser Arg Thr Tyr Leu Met 100 105 110 Glu Ser Asp Thr Lys Tyr Gln Met Phe Gln Leu Leu Gly Asn Glu Phe 115 120 125 Thr Phe Asp Val Asp Val Ser Asn Leu Gly Cys Gly Leu Asn Gly Ala 130 135 140 Leu Tyr Phe Val Ser Met Asp Ala Asp Gly Gly Met Ser Lys Tyr Ser 145 150 155 160 Gly Asn Lys Ala Gly Ala Lys Tyr Gly Thr Gly Tyr Cys Asp Ser Gln 165 170 175 Cys Pro Arg Asp Leu Lys Phe Ile Asn Gly Glu Ala Asn Val Glu Asn 180 185 190 Trp Gln Ser Ser Thr Asn Asp Ala Asn Ala Gly Thr Gly Lys Tyr Gly 195 200 205 Ser Cys Cys Ser Glu Met Asp Val Trp Glu Ala Asn Asn Met Ala Ala 210 215 220 Ala Phe Thr Pro His Pro Cys Thr Val Ile Gly Gln Ser Arg Cys Glu 225 230 235 240 Gly Asp Ser Cys Gly Gly Thr Tyr Ser Thr Asp Arg Tyr Ala Gly Ile 245 250 255 Cys Asp Pro Asp Gly Cys Asp Phe Asn Ser Tyr Arg Gln Gly Asn Lys 260 265 270 Thr Phe Tyr Gly Lys Gly Met Thr Val Asp Thr Thr Lys Lys Ile Thr 275 280 285 Val Val Thr Gln Phe Leu Lys Asn Ser Ala Gly Glu Leu Ser Glu Ile 290 295 300 Lys Arg Phe Tyr Val Gln Asn Gly Lys Val Ile Pro Asn Ser Glu Ser 305 310 315 320 Thr Ile Pro Gly Val Glu Gly Asn Ser Ile Thr Gln Glu Tyr Cys Asp 325 330 335 Arg Gln Lys Ala Ala Phe Gly Asp Val Thr Asp Phe Gln Asp Lys Gly 340 345 350 Gly Met Val Gln Met Gly Lys Ala Leu Ala Gly Pro Met Val Leu Val 355 360 365 Met Ser Ile Trp Asp Asp His Ala Asp Asn Met Leu Trp Leu Asp Ser 370 375 380 Thr Trp Pro Ile Asp Gly Ala Gly Lys Pro Gly Ala Glu Arg Gly Ala 385 390 395 400 Cys Pro Thr Thr Ser Gly Val Pro Ala Glu Val Glu Ala Glu Ala Pro 405 410 415 Asn Ser Asn Val Ile Phe Ser Asn Ile Arg Phe Gly Pro Ile Gly Ser 420 425 430 Thr Val Ser Gly Leu Pro Asp Gly Gly Ser Gly Asn Pro Asn Pro Pro 435 440 445 Val Ser Ser Ser Thr Pro Val Pro Ser Ser Ser Thr Thr Ser Ser Gly 450 455 460 Ser Ser Gly Pro Thr Gly Gly Thr Gly Val Ala Lys His Tyr Glu Gln 465 470 475 480 Cys Gly Gly Ile Gly Phe Thr Gly Pro Thr Gln Cys Glu Ser Pro Tyr 485 490 495 Thr Cys Thr Lys Leu Asn Asp Trp Tyr Ser Gln Cys Leu 500 505 1361449DNAMyceliophthora thermophila 136atggccaaga agcttttcat caccgccgcg cttgcggctg ccgtgttggc ggcccccgtc 60attgaggagc gccagaactg cggcgctgtg tggactcaat gcggcggtaa cgggtggcaa 120ggtcccacat gctgcgcctc gggctcgacc tgcgttgcgc agaacgagtg gtactctcag 180tgcctgccca acagccaggt gacgagttcc accactccgt cgtcgacttc cacctcgcag 240cgcagcacca gcacctccag cagcaccacc aggagcggca gctcctcctc ctcctccacc 300acgcccccgc ccgtctccag ccccgtgacc agcattcccg gcggtgcgac ctccacggcg 360agctactctg gcaacccctt ctcgggcgtc cggctcttcg ccaacgacta ctacaggtcc 420gaggtccaca atctcgccat tcctagcatg actggtactc tggcggccaa ggcttccgcc 480gtcgccgaag tccctagctt ccagtggctc gaccggaacg tcaccatcga caccctgatg 540gtccagactc tgtcccaggt ccgggctctc aataaggccg gtgccaatcc tccctatgct 600gcccaactcg tcgtctacga cctccccgac cgtgactgtg ccgccgctgc gtccaacggc 660gagttttcga ttgcaaacgg cggcgccgcc aactacagga gctacatcga cgctatccgc 720aagcacatca ttgagtactc ggacatccgg atcatcctgg ttatcgagcc cgactcgatg 780gccaacatgg tgaccaacat gaacgtggcc aagtgcagca acgccgcgtc gacgtaccac 840gagttgaccg tgtacgcgct caagcagctg aacctgccca acgtcgccat gtatctcgac 900gccggccacg ccggctggct cggctggccc gccaacatcc agcccgccgc cgagctgttt 960gccggcatct acaatgatgc cggcaagccg gctgccgtcc gcggcctggc cactaacgtc 1020gccaactaca acgcctggag catcgcttcg gccccgtcgt acacgtcgcc taaccctaac 1080tacgacgaga agcactacat cgaggccttc agcccgctct tgaactcggc cggcttcccc 1140gcacgcttca ttgtcgacac tggccgcaac ggcaaacaac ctaccggcca acaacagtgg 1200ggtgactggt gcaatgtcaa gggcaccggc tttggcgtgc gcccgacggc caacacgggc 1260cacgagctgg tcgatgcctt tgtctgggtc aagcccggcg gcgagtccga cggcacaagc 1320gacaccagcg ccgcccgcta cgactaccac tgcggcctgt ccgatgccct gcagcctgcc 1380cccgaggctg gacagtggtt ccaggcctac ttcgagcagc tgctcaccaa cgccaacccg 1440cccttctaa 1449137482PRTMyceliophthora thermophila 137Met Ala Lys Lys Leu Phe Ile

Thr Ala Ala Leu Ala Ala Ala Val Leu 1 5 10 15 Ala Ala Pro Val Ile Glu Glu Arg Gln Asn Cys Gly Ala Val Trp Thr 20 25 30 Gln Cys Gly Gly Asn Gly Trp Gln Gly Pro Thr Cys Cys Ala Ser Gly 35 40 45 Ser Thr Cys Val Ala Gln Asn Glu Trp Tyr Ser Gln Cys Leu Pro Asn 50 55 60 Ser Gln Val Thr Ser Ser Thr Thr Pro Ser Ser Thr Ser Thr Ser Gln 65 70 75 80 Arg Ser Thr Ser Thr Ser Ser Ser Thr Thr Arg Ser Gly Ser Ser Ser 85 90 95 Ser Ser Ser Thr Thr Pro Pro Pro Val Ser Ser Pro Val Thr Ser Ile 100 105 110 Pro Gly Gly Ala Thr Ser Thr Ala Ser Tyr Ser Gly Asn Pro Phe Ser 115 120 125 Gly Val Arg Leu Phe Ala Asn Asp Tyr Tyr Arg Ser Glu Val His Asn 130 135 140 Leu Ala Ile Pro Ser Met Thr Gly Thr Leu Ala Ala Lys Ala Ser Ala 145 150 155 160 Val Ala Glu Val Pro Ser Phe Gln Trp Leu Asp Arg Asn Val Thr Ile 165 170 175 Asp Thr Leu Met Val Gln Thr Leu Ser Gln Val Arg Ala Leu Asn Lys 180 185 190 Ala Gly Ala Asn Pro Pro Tyr Ala Ala Gln Leu Val Val Tyr Asp Leu 195 200 205 Pro Asp Arg Asp Cys Ala Ala Ala Ala Ser Asn Gly Glu Phe Ser Ile 210 215 220 Ala Asn Gly Gly Ala Ala Asn Tyr Arg Ser Tyr Ile Asp Ala Ile Arg 225 230 235 240 Lys His Ile Ile Glu Tyr Ser Asp Ile Arg Ile Ile Leu Val Ile Glu 245 250 255 Pro Asp Ser Met Ala Asn Met Val Thr Asn Met Asn Val Ala Lys Cys 260 265 270 Ser Asn Ala Ala Ser Thr Tyr His Glu Leu Thr Val Tyr Ala Leu Lys 275 280 285 Gln Leu Asn Leu Pro Asn Val Ala Met Tyr Leu Asp Ala Gly His Ala 290 295 300 Gly Trp Leu Gly Trp Pro Ala Asn Ile Gln Pro Ala Ala Glu Leu Phe 305 310 315 320 Ala Gly Ile Tyr Asn Asp Ala Gly Lys Pro Ala Ala Val Arg Gly Leu 325 330 335 Ala Thr Asn Val Ala Asn Tyr Asn Ala Trp Ser Ile Ala Ser Ala Pro 340 345 350 Ser Tyr Thr Ser Pro Asn Pro Asn Tyr Asp Glu Lys His Tyr Ile Glu 355 360 365 Ala Phe Ser Pro Leu Leu Asn Ser Ala Gly Phe Pro Ala Arg Phe Ile 370 375 380 Val Asp Thr Gly Arg Asn Gly Lys Gln Pro Thr Gly Gln Gln Gln Trp 385 390 395 400 Gly Asp Trp Cys Asn Val Lys Gly Thr Gly Phe Gly Val Arg Pro Thr 405 410 415 Ala Asn Thr Gly His Glu Leu Val Asp Ala Phe Val Trp Val Lys Pro 420 425 430 Gly Gly Glu Ser Asp Gly Thr Ser Asp Thr Ser Ala Ala Arg Tyr Asp 435 440 445 Tyr His Cys Gly Leu Ser Asp Ala Leu Gln Pro Ala Pro Glu Ala Gly 450 455 460 Gln Trp Phe Gln Ala Tyr Phe Glu Gln Leu Leu Thr Asn Ala Asn Pro 465 470 475 480 Pro Phe 138465PRTMyceliophthora thermophila 138Ala Pro Val Ile Glu Glu Arg Gln Asn Cys Gly Ala Val Trp Thr Gln 1 5 10 15 Cys Gly Gly Asn Gly Trp Gln Gly Pro Thr Cys Cys Ala Ser Gly Ser 20 25 30 Thr Cys Val Ala Gln Asn Glu Trp Tyr Ser Gln Cys Leu Pro Asn Ser 35 40 45 Gln Val Thr Ser Ser Thr Thr Pro Ser Ser Thr Ser Thr Ser Gln Arg 50 55 60 Ser Thr Ser Thr Ser Ser Ser Thr Thr Arg Ser Gly Ser Ser Ser Ser 65 70 75 80 Ser Ser Thr Thr Pro Pro Pro Val Ser Ser Pro Val Thr Ser Ile Pro 85 90 95 Gly Gly Ala Thr Ser Thr Ala Ser Tyr Ser Gly Asn Pro Phe Ser Gly 100 105 110 Val Arg Leu Phe Ala Asn Asp Tyr Tyr Arg Ser Glu Val His Asn Leu 115 120 125 Ala Ile Pro Ser Met Thr Gly Thr Leu Ala Ala Lys Ala Ser Ala Val 130 135 140 Ala Glu Val Pro Ser Phe Gln Trp Leu Asp Arg Asn Val Thr Ile Asp 145 150 155 160 Thr Leu Met Val Gln Thr Leu Ser Gln Val Arg Ala Leu Asn Lys Ala 165 170 175 Gly Ala Asn Pro Pro Tyr Ala Ala Gln Leu Val Val Tyr Asp Leu Pro 180 185 190 Asp Arg Asp Cys Ala Ala Ala Ala Ser Asn Gly Glu Phe Ser Ile Ala 195 200 205 Asn Gly Gly Ala Ala Asn Tyr Arg Ser Tyr Ile Asp Ala Ile Arg Lys 210 215 220 His Ile Ile Glu Tyr Ser Asp Ile Arg Ile Ile Leu Val Ile Glu Pro 225 230 235 240 Asp Ser Met Ala Asn Met Val Thr Asn Met Asn Val Ala Lys Cys Ser 245 250 255 Asn Ala Ala Ser Thr Tyr His Glu Leu Thr Val Tyr Ala Leu Lys Gln 260 265 270 Leu Asn Leu Pro Asn Val Ala Met Tyr Leu Asp Ala Gly His Ala Gly 275 280 285 Trp Leu Gly Trp Pro Ala Asn Ile Gln Pro Ala Ala Glu Leu Phe Ala 290 295 300 Gly Ile Tyr Asn Asp Ala Gly Lys Pro Ala Ala Val Arg Gly Leu Ala 305 310 315 320 Thr Asn Val Ala Asn Tyr Asn Ala Trp Ser Ile Ala Ser Ala Pro Ser 325 330 335 Tyr Thr Ser Pro Asn Pro Asn Tyr Asp Glu Lys His Tyr Ile Glu Ala 340 345 350 Phe Ser Pro Leu Leu Asn Ser Ala Gly Phe Pro Ala Arg Phe Ile Val 355 360 365 Asp Thr Gly Arg Asn Gly Lys Gln Pro Thr Gly Gln Gln Gln Trp Gly 370 375 380 Asp Trp Cys Asn Val Lys Gly Thr Gly Phe Gly Val Arg Pro Thr Ala 385 390 395 400 Asn Thr Gly His Glu Leu Val Asp Ala Phe Val Trp Val Lys Pro Gly 405 410 415 Gly Glu Ser Asp Gly Thr Ser Asp Thr Ser Ala Ala Arg Tyr Asp Tyr 420 425 430 His Cys Gly Leu Ser Asp Ala Leu Gln Pro Ala Pro Glu Ala Gly Gln 435 440 445 Trp Phe Gln Ala Tyr Phe Glu Gln Leu Leu Thr Asn Ala Asn Pro Pro 450 455 460 Phe 465 1391449DNAArtificial SequenceSynthetic polynucleotide. 139atggccaaga agcttttcat caccgccgcg cttgcggctg ccgtgttggc ggcccccgtc 60attgaggagc gccagaactg cggcgctgtg tggactcaat gcggcggtaa cgggtggcaa 120ggtcccacat gctgcgcctc gggctcgacc tgcgttgcgc agaacgagtg gtactctcag 180tgcctgccca acagccaggt gacgagttcc accactccgt cgtcgacttc cacctcgcag 240cgcagcacca gcacctccag cagcaccacc aggagcggca gctcctcctc ctcctccacc 300acgcccaccc ccgtctccag ccccgtgacc agcattcccg gcggtgcgac ctccacggcg 360agctactctg gcaacccctt ctcgggcgtc cggctcttcg ccaacgacta ctacaggtcc 420gaggtccaca atctcgccat tcctagcatg actggtactc tggcggccaa ggcttccgcc 480gtcgccgaag tccctagctt ccagtggctc gaccggaacg tcaccatcga caccctgatg 540gtcccgactc tgtcccgcgt ccgggctctc aataaggccg gtgccaatcc tccctatgct 600gcccaactcg tcgtctacga cctccccgac cgtgactgtg ccgccgctgc gtccaacggc 660gagttttcga ttgcaaacgg cggcgccgcc aactacagga gctacatcga cgctatccgc 720aagcacatca ttgagtactc ggacatccgg atcatcctgg ttatcgagcc cgactcgatg 780gccaacatgg tgaccaacat gaacgtggcc aagtgcagca acgccgcgtc gacgtaccac 840gagttgaccg tgtacgcgct caagcagctg aacctgccca acgtcgccat gtatctcgac 900gccggccacg ccggctggct cggctggccc gccaacatcc agcccgccgc cgagctgttt 960gccggcatct acaatgatgc cggcaagccg gctgccgtcc gcggcctggc cactaacgtc 1020gccaactaca acgcctggag catcgcttcg gccccgtcgt acacgtcgcc taaccctaac 1080tacgacgaga agcactacat cgaggccttc agcccgctct tgaactcggc cggcttcccc 1140gcacgcttca ttgtcgacac tggccgcaac ggcaaacaac ctaccggcca acaacagtgg 1200ggtgactggt gcaatgtcaa gggcaccggc tttggcgtgc gcccgacggc caacacgggc 1260cacgagctgg tcgatgcctt tgtctgggtc aagcccggcg gcgagtccga cggcacaagc 1320gacaccagcg ccgcccgcta cgactaccac tgcggcctgt ccgatgccct gcagcctgcc 1380cccgaggctg gacagtggtt ccaggcctac ttcgagcagc tgctcaccaa cgccaacccg 1440cccttctaa 1449140482PRTArtificial SequenceSynthetic polypeptides. 140Met Ala Lys Lys Leu Phe Ile Thr Ala Ala Leu Ala Ala Ala Val Leu 1 5 10 15 Ala Ala Pro Val Ile Glu Glu Arg Gln Asn Cys Gly Ala Val Trp Thr 20 25 30 Gln Cys Gly Gly Asn Gly Trp Gln Gly Pro Thr Cys Cys Ala Ser Gly 35 40 45 Ser Thr Cys Val Ala Gln Asn Glu Trp Tyr Ser Gln Cys Leu Pro Asn 50 55 60 Ser Gln Val Thr Ser Ser Thr Thr Pro Ser Ser Thr Ser Thr Ser Gln 65 70 75 80 Arg Ser Thr Ser Thr Ser Ser Ser Thr Thr Arg Ser Gly Ser Ser Ser 85 90 95 Ser Ser Ser Thr Thr Pro Thr Pro Val Ser Ser Pro Val Thr Ser Ile 100 105 110 Pro Gly Gly Ala Thr Ser Thr Ala Ser Tyr Ser Gly Asn Pro Phe Ser 115 120 125 Gly Val Arg Leu Phe Ala Asn Asp Tyr Tyr Arg Ser Glu Val His Asn 130 135 140 Leu Ala Ile Pro Ser Met Thr Gly Thr Leu Ala Ala Lys Ala Ser Ala 145 150 155 160 Val Ala Glu Val Pro Ser Phe Gln Trp Leu Asp Arg Asn Val Thr Ile 165 170 175 Asp Thr Leu Met Val Pro Thr Leu Ser Arg Val Arg Ala Leu Asn Lys 180 185 190 Ala Gly Ala Asn Pro Pro Tyr Ala Ala Gln Leu Val Val Tyr Asp Leu 195 200 205 Pro Asp Arg Asp Cys Ala Ala Ala Ala Ser Asn Gly Glu Phe Ser Ile 210 215 220 Ala Asn Gly Gly Ala Ala Asn Tyr Arg Ser Tyr Ile Asp Ala Ile Arg 225 230 235 240 Lys His Ile Ile Glu Tyr Ser Asp Ile Arg Ile Ile Leu Val Ile Glu 245 250 255 Pro Asp Ser Met Ala Asn Met Val Thr Asn Met Asn Val Ala Lys Cys 260 265 270 Ser Asn Ala Ala Ser Thr Tyr His Glu Leu Thr Val Tyr Ala Leu Lys 275 280 285 Gln Leu Asn Leu Pro Asn Val Ala Met Tyr Leu Asp Ala Gly His Ala 290 295 300 Gly Trp Leu Gly Trp Pro Ala Asn Ile Gln Pro Ala Ala Glu Leu Phe 305 310 315 320 Ala Gly Ile Tyr Asn Asp Ala Gly Lys Pro Ala Ala Val Arg Gly Leu 325 330 335 Ala Thr Asn Val Ala Asn Tyr Asn Ala Trp Ser Ile Ala Ser Ala Pro 340 345 350 Ser Tyr Thr Ser Pro Asn Pro Asn Tyr Asp Glu Lys His Tyr Ile Glu 355 360 365 Ala Phe Ser Pro Leu Leu Asn Ser Ala Gly Phe Pro Ala Arg Phe Ile 370 375 380 Val Asp Thr Gly Arg Asn Gly Lys Gln Pro Thr Gly Gln Gln Gln Trp 385 390 395 400 Gly Asp Trp Cys Asn Val Lys Gly Thr Gly Phe Gly Val Arg Pro Thr 405 410 415 Ala Asn Thr Gly His Glu Leu Val Asp Ala Phe Val Trp Val Lys Pro 420 425 430 Gly Gly Glu Ser Asp Gly Thr Ser Asp Thr Ser Ala Ala Arg Tyr Asp 435 440 445 Tyr His Cys Gly Leu Ser Asp Ala Leu Gln Pro Ala Pro Glu Ala Gly 450 455 460 Gln Trp Phe Gln Ala Tyr Phe Glu Gln Leu Leu Thr Asn Ala Asn Pro 465 470 475 480 Pro Phe 141465PRTArtificial SequenceSynthetic polypeptides. 141Ala Pro Val Ile Glu Glu Arg Gln Asn Cys Gly Ala Val Trp Thr Gln 1 5 10 15 Cys Gly Gly Asn Gly Trp Gln Gly Pro Thr Cys Cys Ala Ser Gly Ser 20 25 30 Thr Cys Val Ala Gln Asn Glu Trp Tyr Ser Gln Cys Leu Pro Asn Ser 35 40 45 Gln Val Thr Ser Ser Thr Thr Pro Ser Ser Thr Ser Thr Ser Gln Arg 50 55 60 Ser Thr Ser Thr Ser Ser Ser Thr Thr Arg Ser Gly Ser Ser Ser Ser 65 70 75 80 Ser Ser Thr Thr Pro Thr Pro Val Ser Ser Pro Val Thr Ser Ile Pro 85 90 95 Gly Gly Ala Thr Ser Thr Ala Ser Tyr Ser Gly Asn Pro Phe Ser Gly 100 105 110 Val Arg Leu Phe Ala Asn Asp Tyr Tyr Arg Ser Glu Val His Asn Leu 115 120 125 Ala Ile Pro Ser Met Thr Gly Thr Leu Ala Ala Lys Ala Ser Ala Val 130 135 140 Ala Glu Val Pro Ser Phe Gln Trp Leu Asp Arg Asn Val Thr Ile Asp 145 150 155 160 Thr Leu Met Val Pro Thr Leu Ser Arg Val Arg Ala Leu Asn Lys Ala 165 170 175 Gly Ala Asn Pro Pro Tyr Ala Ala Gln Leu Val Val Tyr Asp Leu Pro 180 185 190 Asp Arg Asp Cys Ala Ala Ala Ala Ser Asn Gly Glu Phe Ser Ile Ala 195 200 205 Asn Gly Gly Ala Ala Asn Tyr Arg Ser Tyr Ile Asp Ala Ile Arg Lys 210 215 220 His Ile Ile Glu Tyr Ser Asp Ile Arg Ile Ile Leu Val Ile Glu Pro 225 230 235 240 Asp Ser Met Ala Asn Met Val Thr Asn Met Asn Val Ala Lys Cys Ser 245 250 255 Asn Ala Ala Ser Thr Tyr His Glu Leu Thr Val Tyr Ala Leu Lys Gln 260 265 270 Leu Asn Leu Pro Asn Val Ala Met Tyr Leu Asp Ala Gly His Ala Gly 275 280 285 Trp Leu Gly Trp Pro Ala Asn Ile Gln Pro Ala Ala Glu Leu Phe Ala 290 295 300 Gly Ile Tyr Asn Asp Ala Gly Lys Pro Ala Ala Val Arg Gly Leu Ala 305 310 315 320 Thr Asn Val Ala Asn Tyr Asn Ala Trp Ser Ile Ala Ser Ala Pro Ser 325 330 335 Tyr Thr Ser Pro Asn Pro Asn Tyr Asp Glu Lys His Tyr Ile Glu Ala 340 345 350 Phe Ser Pro Leu Leu Asn Ser Ala Gly Phe Pro Ala Arg Phe Ile Val 355 360 365 Asp Thr Gly Arg Asn Gly Lys Gln Pro Thr Gly Gln Gln Gln Trp Gly 370 375 380 Asp Trp Cys Asn Val Lys Gly Thr Gly Phe Gly Val Arg Pro Thr Ala 385 390 395 400 Asn Thr Gly His Glu Leu Val Asp Ala Phe Val Trp Val Lys Pro Gly 405 410 415 Gly Glu Ser Asp Gly Thr Ser Asp Thr Ser Ala Ala Arg Tyr Asp Tyr 420 425 430 His Cys Gly Leu Ser Asp Ala Leu Gln Pro Ala Pro Glu Ala Gly Gln 435 440 445 Trp Phe Gln Ala Tyr Phe Glu Gln Leu Leu Thr Asn Ala Asn Pro Pro 450 455 460 Phe 465 1421449DNAArtificial SequenceSynthetic polynucleotide. 142atggccaaga agcttttcat caccgccgcg cttgcggctg ccgtgttggc ggcccccgtc 60attgaggagc gccagaactg cggcgctgtg tggactcaat gcggcggtaa cgggtggcaa 120ggtcccacat gctgcgcctc gggctcgacc tgcgttgcgc agaacgagtg gtactctcag 180tgcctgccca acagccaggt gacgagttcc accactccgt cgtcgacttc cacctcgcag 240cgcagcacca gcacctccag cagcaccacc aggagcggca gctcctcctc ctcctccacc 300acgcccccgc ccgtctccag ccccgtgacc agcattcccg gcggtgcgac ctccacggcg 360agctactctg gcaacccctt ctcgggcgtc cggctcttcg ccaacgacta ctacaggtcc 420gaggtccaca atctcgccat tcctagcatg actggtactc tggcggccaa ggcttccgcc 480gtcgccgaag tccctagctt ccagtggctc gaccggaacg tcaccatcga caccctgatg 540gtcccgactc tgtcccgcgt ccgggctctc aataaggccg gtgccaatcc tccctatgct 600gcccaactcg tcgtctacga cctccccgac cgtgactgtg ccgccgctgc gtccaacggc 660gagttttcga ttgcaaacgg cggcgccgcc aactacagga gctacatcga cgctatccgc 720aagcacatca aggagtactc ggacatccgg atcatcctgg ttatcgagcc cgactcgatg 780gccaacatgg tgaccaacat gaacgtggcc aagtgcagca acgccgcgtc gacgtaccac 840gagttgaccg tgtacgcgct caagcagctg aacctgccca acgtcgccat gtatctcgac 900gccggccacg ccggctggct cggctggccc gccaacatcc agcccgccgc cgagctgttt 960gccggcatct acaatgatgc cggcaagccg

gctgccgtcc gcggcctggc cactaacgtc 1020gccaactaca acgcctggag catcgcttcg gccccgtcgt acacgtcgcc taaccctaac 1080tacgacgaga agcactacat cgaggccttc agcccgctct tgaacgacgc cggcttcccc 1140gcacgcttca ttgtcgacac tggccgcaac ggcaaacaac ctaccggcca acaacagtgg 1200ggtgactggt gcaatgtcaa gggcaccggc tttggcgtgc gcccgacggc caacacgggc 1260cacgagctgg tcgatgcctt tgtctgggtc aagcccggcg gcgagtccga cggcacaagc 1320gacaccagcg ccgcccgcta cgactaccac tgcggcctgt ccgatgccct gcagcctgcc 1380cccgaggctg gacagtggtt ccaggcctac ttcgagcagc tgctcaccaa cgccaacccg 1440cccttctaa 1449143482PRTArtificial SequenceSynthetic polypeptides. 143Met Ala Lys Lys Leu Phe Ile Thr Ala Ala Leu Ala Ala Ala Val Leu 1 5 10 15 Ala Ala Pro Val Ile Glu Glu Arg Gln Asn Cys Gly Ala Val Trp Thr 20 25 30 Gln Cys Gly Gly Asn Gly Trp Gln Gly Pro Thr Cys Cys Ala Ser Gly 35 40 45 Ser Thr Cys Val Ala Gln Asn Glu Trp Tyr Ser Gln Cys Leu Pro Asn 50 55 60 Ser Gln Val Thr Ser Ser Thr Thr Pro Ser Ser Thr Ser Thr Ser Gln 65 70 75 80 Arg Ser Thr Ser Thr Ser Ser Ser Thr Thr Arg Ser Gly Ser Ser Ser 85 90 95 Ser Ser Ser Thr Thr Pro Pro Pro Val Ser Ser Pro Val Thr Ser Ile 100 105 110 Pro Gly Gly Ala Thr Ser Thr Ala Ser Tyr Ser Gly Asn Pro Phe Ser 115 120 125 Gly Val Arg Leu Phe Ala Asn Asp Tyr Tyr Arg Ser Glu Val His Asn 130 135 140 Leu Ala Ile Pro Ser Met Thr Gly Thr Leu Ala Ala Lys Ala Ser Ala 145 150 155 160 Val Ala Glu Val Pro Ser Phe Gln Trp Leu Asp Arg Asn Val Thr Ile 165 170 175 Asp Thr Leu Met Val Pro Thr Leu Ser Arg Val Arg Ala Leu Asn Lys 180 185 190 Ala Gly Ala Asn Pro Pro Tyr Ala Ala Gln Leu Val Val Tyr Asp Leu 195 200 205 Pro Asp Arg Asp Cys Ala Ala Ala Ala Ser Asn Gly Glu Phe Ser Ile 210 215 220 Ala Asn Gly Gly Ala Ala Asn Tyr Arg Ser Tyr Ile Asp Ala Ile Arg 225 230 235 240 Lys His Ile Lys Glu Tyr Ser Asp Ile Arg Ile Ile Leu Val Ile Glu 245 250 255 Pro Asp Ser Met Ala Asn Met Val Thr Asn Met Asn Val Ala Lys Cys 260 265 270 Ser Asn Ala Ala Ser Thr Tyr His Glu Leu Thr Val Tyr Ala Leu Lys 275 280 285 Gln Leu Asn Leu Pro Asn Val Ala Met Tyr Leu Asp Ala Gly His Ala 290 295 300 Gly Trp Leu Gly Trp Pro Ala Asn Ile Gln Pro Ala Ala Glu Leu Phe 305 310 315 320 Ala Gly Ile Tyr Asn Asp Ala Gly Lys Pro Ala Ala Val Arg Gly Leu 325 330 335 Ala Thr Asn Val Ala Asn Tyr Asn Ala Trp Ser Ile Ala Ser Ala Pro 340 345 350 Ser Tyr Thr Ser Pro Asn Pro Asn Tyr Asp Glu Lys His Tyr Ile Glu 355 360 365 Ala Phe Ser Pro Leu Leu Asn Asp Ala Gly Phe Pro Ala Arg Phe Ile 370 375 380 Val Asp Thr Gly Arg Asn Gly Lys Gln Pro Thr Gly Gln Gln Gln Trp 385 390 395 400 Gly Asp Trp Cys Asn Val Lys Gly Thr Gly Phe Gly Val Arg Pro Thr 405 410 415 Ala Asn Thr Gly His Glu Leu Val Asp Ala Phe Val Trp Val Lys Pro 420 425 430 Gly Gly Glu Ser Asp Gly Thr Ser Asp Thr Ser Ala Ala Arg Tyr Asp 435 440 445 Tyr His Cys Gly Leu Ser Asp Ala Leu Gln Pro Ala Pro Glu Ala Gly 450 455 460 Gln Trp Phe Gln Ala Tyr Phe Glu Gln Leu Leu Thr Asn Ala Asn Pro 465 470 475 480 Pro Phe 144465PRTArtificial SequenceSynthetic polypeptides. 144Ala Pro Val Ile Glu Glu Arg Gln Asn Cys Gly Ala Val Trp Thr Gln 1 5 10 15 Cys Gly Gly Asn Gly Trp Gln Gly Pro Thr Cys Cys Ala Ser Gly Ser 20 25 30 Thr Cys Val Ala Gln Asn Glu Trp Tyr Ser Gln Cys Leu Pro Asn Ser 35 40 45 Gln Val Thr Ser Ser Thr Thr Pro Ser Ser Thr Ser Thr Ser Gln Arg 50 55 60 Ser Thr Ser Thr Ser Ser Ser Thr Thr Arg Ser Gly Ser Ser Ser Ser 65 70 75 80 Ser Ser Thr Thr Pro Pro Pro Val Ser Ser Pro Val Thr Ser Ile Pro 85 90 95 Gly Gly Ala Thr Ser Thr Ala Ser Tyr Ser Gly Asn Pro Phe Ser Gly 100 105 110 Val Arg Leu Phe Ala Asn Asp Tyr Tyr Arg Ser Glu Val His Asn Leu 115 120 125 Ala Ile Pro Ser Met Thr Gly Thr Leu Ala Ala Lys Ala Ser Ala Val 130 135 140 Ala Glu Val Pro Ser Phe Gln Trp Leu Asp Arg Asn Val Thr Ile Asp 145 150 155 160 Thr Leu Met Val Pro Thr Leu Ser Arg Val Arg Ala Leu Asn Lys Ala 165 170 175 Gly Ala Asn Pro Pro Tyr Ala Ala Gln Leu Val Val Tyr Asp Leu Pro 180 185 190 Asp Arg Asp Cys Ala Ala Ala Ala Ser Asn Gly Glu Phe Ser Ile Ala 195 200 205 Asn Gly Gly Ala Ala Asn Tyr Arg Ser Tyr Ile Asp Ala Ile Arg Lys 210 215 220 His Ile Lys Glu Tyr Ser Asp Ile Arg Ile Ile Leu Val Ile Glu Pro 225 230 235 240 Asp Ser Met Ala Asn Met Val Thr Asn Met Asn Val Ala Lys Cys Ser 245 250 255 Asn Ala Ala Ser Thr Tyr His Glu Leu Thr Val Tyr Ala Leu Lys Gln 260 265 270 Leu Asn Leu Pro Asn Val Ala Met Tyr Leu Asp Ala Gly His Ala Gly 275 280 285 Trp Leu Gly Trp Pro Ala Asn Ile Gln Pro Ala Ala Glu Leu Phe Ala 290 295 300 Gly Ile Tyr Asn Asp Ala Gly Lys Pro Ala Ala Val Arg Gly Leu Ala 305 310 315 320 Thr Asn Val Ala Asn Tyr Asn Ala Trp Ser Ile Ala Ser Ala Pro Ser 325 330 335 Tyr Thr Ser Pro Asn Pro Asn Tyr Asp Glu Lys His Tyr Ile Glu Ala 340 345 350 Phe Ser Pro Leu Leu Asn Asp Ala Gly Phe Pro Ala Arg Phe Ile Val 355 360 365 Asp Thr Gly Arg Asn Gly Lys Gln Pro Thr Gly Gln Gln Gln Trp Gly 370 375 380 Asp Trp Cys Asn Val Lys Gly Thr Gly Phe Gly Val Arg Pro Thr Ala 385 390 395 400 Asn Thr Gly His Glu Leu Val Asp Ala Phe Val Trp Val Lys Pro Gly 405 410 415 Gly Glu Ser Asp Gly Thr Ser Asp Thr Ser Ala Ala Arg Tyr Asp Tyr 420 425 430 His Cys Gly Leu Ser Asp Ala Leu Gln Pro Ala Pro Glu Ala Gly Gln 435 440 445 Trp Phe Gln Ala Tyr Phe Glu Gln Leu Leu Thr Asn Ala Asn Pro Pro 450 455 460 Phe 465 1451449DNAArtificial SequenceSynthetic polynucleotide. 145atggccaaga agcttttcat caccgccgcg cttgcggctg ccgtgttggc ggcccccgtc 60attgaggagc gccagaactg cggcgctgtg tggactcaat gcggcggtaa cgggtggcaa 120ggtcccacat gctgcgcctc gggctcgacc tgcgttgcgc agaacgagtg gtactctcag 180tgcctgccca acagccaggt gacgagttcc accactccgt cgtcgacttc cacctcgcag 240cgcagcacca gcacctccag cagcaccacc aggagcggca gctcctcctc ctcctccacc 300acgcccaccc ccgtctccag ccccgtgacc agcattcccg gcggtgcgac ctccacggcg 360agctactctg gcaacccctt ctcgggcgtc cggctcttcg ccaacgacta ctacaggtcc 420gaggtcatga atctcgccat tcctagcatg actggtactc tggcggccaa ggcttccgcc 480gtcgccgaag tccctagctt ccagtggctc gaccggaacg tcaccatcga caccctgatg 540gtcaccactc tgtcccaggt ccgggctctc aataaggccg gtgccaatcc tccctatgct 600gcccaactcg tcgtctacga cctccccgac cgtgactgtg ccgccgctgc gtccaacggc 660gagttttcga ttgcaaacgg cggcagcgcc aactacagga gctacatcga cgctatccgc 720aagcacatca ttgagtactc ggacatccgg atcatcctgg ttatcgagcc cgactcgatg 780gccaacatgg tgaccaacat gaacgtggcc aagtgcagca acgccgcgtc gacgtaccac 840gagttgaccg tgtacgcgct caagcagctg aacctgccca acgtcgccat gtatctcgac 900gccggccacg ccggctggct cggctggccc gccaacatcc agcccgccgc cgagctgttt 960gccggcatct acaatgatgc cggcaagccg gctgccgtcc gcggcctggc cactaacgtc 1020gccaactaca acgcctggag catcgcttcg gccccgtcgt acacgcagcc taaccctaac 1080tacgacgaga agcactacat cgaggccttc agcccgctct tgaactcggc cggcttcccc 1140gcacgcttca ttgtcgacac tggccgcaac ggcaaacaac ctaccggcca acaacagtgg 1200ggtgactggt gcaatgtcaa gggcaccggc tttggcgtgc gcccgacggc caacacgggc 1260cacgagctgg tcgatgcctt tgtctgggtc aagcccggcg gcgagtccga cggcacaagc 1320gacaccagcg ccgcccgcta cgactaccac tgcggcctgt ccgatgccct gcagcctgcc 1380cccgaggctg gacagtggtt ccaggcctac ttcgagcagc tgctcaccaa cgccaacccg 1440cccttctaa 1449146482PRTArtificial SequenceSynthetic polypeptides. 146Met Ala Lys Lys Leu Phe Ile Thr Ala Ala Leu Ala Ala Ala Val Leu 1 5 10 15 Ala Ala Pro Val Ile Glu Glu Arg Gln Asn Cys Gly Ala Val Trp Thr 20 25 30 Gln Cys Gly Gly Asn Gly Trp Gln Gly Pro Thr Cys Cys Ala Ser Gly 35 40 45 Ser Thr Cys Val Ala Gln Asn Glu Trp Tyr Ser Gln Cys Leu Pro Asn 50 55 60 Ser Gln Val Thr Ser Ser Thr Thr Pro Ser Ser Thr Ser Thr Ser Gln 65 70 75 80 Arg Ser Thr Ser Thr Ser Ser Ser Thr Thr Arg Ser Gly Ser Ser Ser 85 90 95 Ser Ser Ser Thr Thr Pro Thr Pro Val Ser Ser Pro Val Thr Ser Ile 100 105 110 Pro Gly Gly Ala Thr Ser Thr Ala Ser Tyr Ser Gly Asn Pro Phe Ser 115 120 125 Gly Val Arg Leu Phe Ala Asn Asp Tyr Tyr Arg Ser Glu Val Met Asn 130 135 140 Leu Ala Ile Pro Ser Met Thr Gly Thr Leu Ala Ala Lys Ala Ser Ala 145 150 155 160 Val Ala Glu Val Pro Ser Phe Gln Trp Leu Asp Arg Asn Val Thr Ile 165 170 175 Asp Thr Leu Met Val Thr Thr Leu Ser Gln Val Arg Ala Leu Asn Lys 180 185 190 Ala Gly Ala Asn Pro Pro Tyr Ala Ala Gln Leu Val Val Tyr Asp Leu 195 200 205 Pro Asp Arg Asp Cys Ala Ala Ala Ala Ser Asn Gly Glu Phe Ser Ile 210 215 220 Ala Asn Gly Gly Ser Ala Asn Tyr Arg Ser Tyr Ile Asp Ala Ile Arg 225 230 235 240 Lys His Ile Ile Glu Tyr Ser Asp Ile Arg Ile Ile Leu Val Ile Glu 245 250 255 Pro Asp Ser Met Ala Asn Met Val Thr Asn Met Asn Val Ala Lys Cys 260 265 270 Ser Asn Ala Ala Ser Thr Tyr His Glu Leu Thr Val Tyr Ala Leu Lys 275 280 285 Gln Leu Asn Leu Pro Asn Val Ala Met Tyr Leu Asp Ala Gly His Ala 290 295 300 Gly Trp Leu Gly Trp Pro Ala Asn Ile Gln Pro Ala Ala Glu Leu Phe 305 310 315 320 Ala Gly Ile Tyr Asn Asp Ala Gly Lys Pro Ala Ala Val Arg Gly Leu 325 330 335 Ala Thr Asn Val Ala Asn Tyr Asn Ala Trp Ser Ile Ala Ser Ala Pro 340 345 350 Ser Tyr Thr Gln Pro Asn Pro Asn Tyr Asp Glu Lys His Tyr Ile Glu 355 360 365 Ala Phe Ser Pro Leu Leu Asn Ser Ala Gly Phe Pro Ala Arg Phe Ile 370 375 380 Val Asp Thr Gly Arg Asn Gly Lys Gln Pro Thr Gly Gln Gln Gln Trp 385 390 395 400 Gly Asp Trp Cys Asn Val Lys Gly Thr Gly Phe Gly Val Arg Pro Thr 405 410 415 Ala Asn Thr Gly His Glu Leu Val Asp Ala Phe Val Trp Val Lys Pro 420 425 430 Gly Gly Glu Ser Asp Gly Thr Ser Asp Thr Ser Ala Ala Arg Tyr Asp 435 440 445 Tyr His Cys Gly Leu Ser Asp Ala Leu Gln Pro Ala Pro Glu Ala Gly 450 455 460 Gln Trp Phe Gln Ala Tyr Phe Glu Gln Leu Leu Thr Asn Ala Asn Pro 465 470 475 480 Pro Phe 147465PRTArtificial SequenceSynthetic polypeptides. 147Ala Pro Val Ile Glu Glu Arg Gln Asn Cys Gly Ala Val Trp Thr Gln 1 5 10 15 Cys Gly Gly Asn Gly Trp Gln Gly Pro Thr Cys Cys Ala Ser Gly Ser 20 25 30 Thr Cys Val Ala Gln Asn Glu Trp Tyr Ser Gln Cys Leu Pro Asn Ser 35 40 45 Gln Val Thr Ser Ser Thr Thr Pro Ser Ser Thr Ser Thr Ser Gln Arg 50 55 60 Ser Thr Ser Thr Ser Ser Ser Thr Thr Arg Ser Gly Ser Ser Ser Ser 65 70 75 80 Ser Ser Thr Thr Pro Thr Pro Val Ser Ser Pro Val Thr Ser Ile Pro 85 90 95 Gly Gly Ala Thr Ser Thr Ala Ser Tyr Ser Gly Asn Pro Phe Ser Gly 100 105 110 Val Arg Leu Phe Ala Asn Asp Tyr Tyr Arg Ser Glu Val Met Asn Leu 115 120 125 Ala Ile Pro Ser Met Thr Gly Thr Leu Ala Ala Lys Ala Ser Ala Val 130 135 140 Ala Glu Val Pro Ser Phe Gln Trp Leu Asp Arg Asn Val Thr Ile Asp 145 150 155 160 Thr Leu Met Val Thr Thr Leu Ser Gln Val Arg Ala Leu Asn Lys Ala 165 170 175 Gly Ala Asn Pro Pro Tyr Ala Ala Gln Leu Val Val Tyr Asp Leu Pro 180 185 190 Asp Arg Asp Cys Ala Ala Ala Ala Ser Asn Gly Glu Phe Ser Ile Ala 195 200 205 Asn Gly Gly Ser Ala Asn Tyr Arg Ser Tyr Ile Asp Ala Ile Arg Lys 210 215 220 His Ile Ile Glu Tyr Ser Asp Ile Arg Ile Ile Leu Val Ile Glu Pro 225 230 235 240 Asp Ser Met Ala Asn Met Val Thr Asn Met Asn Val Ala Lys Cys Ser 245 250 255 Asn Ala Ala Ser Thr Tyr His Glu Leu Thr Val Tyr Ala Leu Lys Gln 260 265 270 Leu Asn Leu Pro Asn Val Ala Met Tyr Leu Asp Ala Gly His Ala Gly 275 280 285 Trp Leu Gly Trp Pro Ala Asn Ile Gln Pro Ala Ala Glu Leu Phe Ala 290 295 300 Gly Ile Tyr Asn Asp Ala Gly Lys Pro Ala Ala Val Arg Gly Leu Ala 305 310 315 320 Thr Asn Val Ala Asn Tyr Asn Ala Trp Ser Ile Ala Ser Ala Pro Ser 325 330 335 Tyr Thr Gln Pro Asn Pro Asn Tyr Asp Glu Lys His Tyr Ile Glu Ala 340 345 350 Phe Ser Pro Leu Leu Asn Ser Ala Gly Phe Pro Ala Arg Phe Ile Val 355 360 365 Asp Thr Gly Arg Asn Gly Lys Gln Pro Thr Gly Gln Gln Gln Trp Gly 370 375 380 Asp Trp Cys Asn Val Lys Gly Thr Gly Phe Gly Val Arg Pro Thr Ala 385 390 395 400 Asn Thr Gly His Glu Leu Val Asp Ala Phe Val Trp Val Lys Pro Gly 405 410 415 Gly Glu Ser Asp Gly Thr Ser Asp Thr Ser Ala Ala Arg Tyr Asp Tyr 420 425 430 His Cys Gly Leu Ser Asp Ala Leu Gln Pro Ala Pro Glu Ala Gly Gln 435 440 445 Trp Phe Gln Ala Tyr Phe Glu Gln Leu Leu Thr Asn Ala Asn Pro Pro 450 455 460 Phe 465 1481239DNAMyceliophthora thermophila 148atgcactcca aagctttctt ggcagcgctt cttgcgcctg ccgtctcagg gcaactgaac 60gacctcgccg tcagggctgg actcaagtac tttggtactg ctcttagcga gagcgtcatc 120aacagtgata ctcggtatgc tgccatcctc agcgacaaga gcatgttcgg ccagctcgtc 180cccgagaatg gcatgaagtg ggatgctact gagccgtccc gtggccagtt caactacgcc 240tcgggcgaca tcacggccaa cacggccaag aagaatggcc agggcatgcg ttgccacacc 300atggtctggt acagccagct cccgagctgg gtctcctcgg gctcgtggac cagggactcg 360ctcacctcgg tcatcgagac gcacatgaac aacgtcatgg gccactacaa

gggccaatgc 420tacgcctggg atgtcatcaa cgaggccatc aatgacgacg gcaactcctg gcgcgacaac 480gtctttctcc ggacctttgg gaccgactac ttcgccctgt ccttcaacct agccaagaag 540gccgatcccg ataccaagct gtactacaac gactacaacc tcgagtacaa ccaggccaag 600acggaccgcg ctgttgagct cgtcaagatg gtccaggccg ccggcgcgcc catcgacggt 660gtcggcttcc agggccacct cattgtcggc tcgaccccga cgcgctcgca gctggccacc 720gccctccagc gcttcaccgc gctcggcctc gaggtcgcct acaccgagct cgacatccgc 780cactcgagcc tgccggcctc ttcgtcggcg ctcgcgaccc agggcaacga cttcgccaac 840gtggtcggct cttgcctcga caccgccggc tgcgtcggcg tcaccgtctg gggcttcacc 900gatgcgcact cgtggatccc gaacacgttc cccggccagg gcgacgccct gatctacgac 960agcaactaca acaagaagcc cgcgtggacc tcgatctcgt ccgtcctggc cgccaaggcc 1020accggcgccc cgcccgcctc gtcctccacc accctcgtca ccatcaccac ccctccgccg 1080gcatccacca ccgcctcctc ctcctccagt gccacgccca cgagcgtccc gacgcagacg 1140aggtggggac agtgcggcgg catcggatgg acggggccga cccagtgcga gagcccatgg 1200acctgccaga agctgaacga ctggtactgg cagtgcctg 1239149413PRTMyceliophthora thermophila 149Met His Ser Lys Ala Phe Leu Ala Ala Leu Leu Ala Pro Ala Val Ser 1 5 10 15 Gly Gln Leu Asn Asp Leu Ala Val Arg Ala Gly Leu Lys Tyr Phe Gly 20 25 30 Thr Ala Leu Ser Glu Ser Val Ile Asn Ser Asp Thr Arg Tyr Ala Ala 35 40 45 Ile Leu Ser Asp Lys Ser Met Phe Gly Gln Leu Val Pro Glu Asn Gly 50 55 60 Met Lys Trp Asp Ala Thr Glu Pro Ser Arg Gly Gln Phe Asn Tyr Ala 65 70 75 80 Ser Gly Asp Ile Thr Ala Asn Thr Ala Lys Lys Asn Gly Gln Gly Met 85 90 95 Arg Cys His Thr Met Val Trp Tyr Ser Gln Leu Pro Ser Trp Val Ser 100 105 110 Ser Gly Ser Trp Thr Arg Asp Ser Leu Thr Ser Val Ile Glu Thr His 115 120 125 Met Asn Asn Val Met Gly His Tyr Lys Gly Gln Cys Tyr Ala Trp Asp 130 135 140 Val Ile Asn Glu Ala Ile Asn Asp Asp Gly Asn Ser Trp Arg Asp Asn 145 150 155 160 Val Phe Leu Arg Thr Phe Gly Thr Asp Tyr Phe Ala Leu Ser Phe Asn 165 170 175 Leu Ala Lys Lys Ala Asp Pro Asp Thr Lys Leu Tyr Tyr Asn Asp Tyr 180 185 190 Asn Leu Glu Tyr Asn Gln Ala Lys Thr Asp Arg Ala Val Glu Leu Val 195 200 205 Lys Met Val Gln Ala Ala Gly Ala Pro Ile Asp Gly Val Gly Phe Gln 210 215 220 Gly His Leu Ile Val Gly Ser Thr Pro Thr Arg Ser Gln Leu Ala Thr 225 230 235 240 Ala Leu Gln Arg Phe Thr Ala Leu Gly Leu Glu Val Ala Tyr Thr Glu 245 250 255 Leu Asp Ile Arg His Ser Ser Leu Pro Ala Ser Ser Ser Ala Leu Ala 260 265 270 Thr Gln Gly Asn Asp Phe Ala Asn Val Val Gly Ser Cys Leu Asp Thr 275 280 285 Ala Gly Cys Val Gly Val Thr Val Trp Gly Phe Thr Asp Ala His Ser 290 295 300 Trp Ile Pro Asn Thr Phe Pro Gly Gln Gly Asp Ala Leu Ile Tyr Asp 305 310 315 320 Ser Asn Tyr Asn Lys Lys Pro Ala Trp Thr Ser Ile Ser Ser Val Leu 325 330 335 Ala Ala Lys Ala Thr Gly Ala Pro Pro Ala Ser Ser Ser Thr Thr Leu 340 345 350 Val Thr Ile Thr Thr Pro Pro Pro Ala Ser Thr Thr Ala Ser Ser Ser 355 360 365 Ser Ser Ala Thr Pro Thr Ser Val Pro Thr Gln Thr Arg Trp Gly Gln 370 375 380 Cys Gly Gly Ile Gly Trp Thr Gly Pro Thr Gln Cys Glu Ser Pro Trp 385 390 395 400 Thr Cys Gln Lys Leu Asn Asp Trp Tyr Trp Gln Cys Leu 405 410 150396PRTMyceliophthora thermophila 150Gln Leu Asn Asp Leu Ala Val Arg Ala Gly Leu Lys Tyr Phe Gly Thr 1 5 10 15 Ala Leu Ser Glu Ser Val Ile Asn Ser Asp Thr Arg Tyr Ala Ala Ile 20 25 30 Leu Ser Asp Lys Ser Met Phe Gly Gln Leu Val Pro Glu Asn Gly Met 35 40 45 Lys Trp Asp Ala Thr Glu Pro Ser Arg Gly Gln Phe Asn Tyr Ala Ser 50 55 60 Gly Asp Ile Thr Ala Asn Thr Ala Lys Lys Asn Gly Gln Gly Met Arg 65 70 75 80 Cys His Thr Met Val Trp Tyr Ser Gln Leu Pro Ser Trp Val Ser Ser 85 90 95 Gly Ser Trp Thr Arg Asp Ser Leu Thr Ser Val Ile Glu Thr His Met 100 105 110 Asn Asn Val Met Gly His Tyr Lys Gly Gln Cys Tyr Ala Trp Asp Val 115 120 125 Ile Asn Glu Ala Ile Asn Asp Asp Gly Asn Ser Trp Arg Asp Asn Val 130 135 140 Phe Leu Arg Thr Phe Gly Thr Asp Tyr Phe Ala Leu Ser Phe Asn Leu 145 150 155 160 Ala Lys Lys Ala Asp Pro Asp Thr Lys Leu Tyr Tyr Asn Asp Tyr Asn 165 170 175 Leu Glu Tyr Asn Gln Ala Lys Thr Asp Arg Ala Val Glu Leu Val Lys 180 185 190 Met Val Gln Ala Ala Gly Ala Pro Ile Asp Gly Val Gly Phe Gln Gly 195 200 205 His Leu Ile Val Gly Ser Thr Pro Thr Arg Ser Gln Leu Ala Thr Ala 210 215 220 Leu Gln Arg Phe Thr Ala Leu Gly Leu Glu Val Ala Tyr Thr Glu Leu 225 230 235 240 Asp Ile Arg His Ser Ser Leu Pro Ala Ser Ser Ser Ala Leu Ala Thr 245 250 255 Gln Gly Asn Asp Phe Ala Asn Val Val Gly Ser Cys Leu Asp Thr Ala 260 265 270 Gly Cys Val Gly Val Thr Val Trp Gly Phe Thr Asp Ala His Ser Trp 275 280 285 Ile Pro Asn Thr Phe Pro Gly Gln Gly Asp Ala Leu Ile Tyr Asp Ser 290 295 300 Asn Tyr Asn Lys Lys Pro Ala Trp Thr Ser Ile Ser Ser Val Leu Ala 305 310 315 320 Ala Lys Ala Thr Gly Ala Pro Pro Ala Ser Ser Ser Thr Thr Leu Val 325 330 335 Thr Ile Thr Thr Pro Pro Pro Ala Ser Thr Thr Ala Ser Ser Ser Ser 340 345 350 Ser Ala Thr Pro Thr Ser Val Pro Thr Gln Thr Arg Trp Gly Gln Cys 355 360 365 Gly Gly Ile Gly Trp Thr Gly Pro Thr Gln Cys Glu Ser Pro Trp Thr 370 375 380 Cys Gln Lys Leu Asn Asp Trp Tyr Trp Gln Cys Leu 385 390 395 151654DNAMyceliophthora thermophila 151atggtctcgt tcactctcct cctcacggtc atcgccgctg cggtgacgac ggccagccct 60ctcgaggtgg tcaagcgcgg catccagccg ggcacgggca cccacgaggg gtacttctac 120tcgttctgga ccgacggccg tggctcggtc gacttcaacc ccgggccccg cggctcgtac 180agcgtcacct ggaacaacgt caacaactgg gttggcggca agggctggaa cccgggcccg 240ccgcgcaaga ttgcgtacaa cggcacctgg aacaactaca acgtgaacag ctacctcgcc 300ctgtacggct ggactcgcaa cccgctggtc gagtattaca tcgtggaggc atacggcacg 360tacaacccct cgtcgggcac ggcgcggctg ggcaccatcg aggacgacgg cggcgtgtac 420gacatctaca agacgacgcg gtacaaccag ccgtccatcg aggggacctc caccttcgac 480cagtactggt ccgtccgccg ccagaagcgc gtcggcggca ctatcgacac gggcaagcac 540tttgacgagt ggaagcgcca gggcaacctc cagctcggca cctggaacta catgatcatg 600gccaccgagg gctaccagag ctctggttcg gccactatcg aggtccggga ggcc 654152218PRTMyceliophthora thermophila 152Met Val Ser Phe Thr Leu Leu Leu Thr Val Ile Ala Ala Ala Val Thr 1 5 10 15 Thr Ala Ser Pro Leu Glu Val Val Lys Arg Gly Ile Gln Pro Gly Thr 20 25 30 Gly Thr His Glu Gly Tyr Phe Tyr Ser Phe Trp Thr Asp Gly Arg Gly 35 40 45 Ser Val Asp Phe Asn Pro Gly Pro Arg Gly Ser Tyr Ser Val Thr Trp 50 55 60 Asn Asn Val Asn Asn Trp Val Gly Gly Lys Gly Trp Asn Pro Gly Pro 65 70 75 80 Pro Arg Lys Ile Ala Tyr Asn Gly Thr Trp Asn Asn Tyr Asn Val Asn 85 90 95 Ser Tyr Leu Ala Leu Tyr Gly Trp Thr Arg Asn Pro Leu Val Glu Tyr 100 105 110 Tyr Ile Val Glu Ala Tyr Gly Thr Tyr Asn Pro Ser Ser Gly Thr Ala 115 120 125 Arg Leu Gly Thr Ile Glu Asp Asp Gly Gly Val Tyr Asp Ile Tyr Lys 130 135 140 Thr Thr Arg Tyr Asn Gln Pro Ser Ile Glu Gly Thr Ser Thr Phe Asp 145 150 155 160 Gln Tyr Trp Ser Val Arg Arg Gln Lys Arg Val Gly Gly Thr Ile Asp 165 170 175 Thr Gly Lys His Phe Asp Glu Trp Lys Arg Gln Gly Asn Leu Gln Leu 180 185 190 Gly Thr Trp Asn Tyr Met Ile Met Ala Thr Glu Gly Tyr Gln Ser Ser 195 200 205 Gly Ser Ala Thr Ile Glu Val Arg Glu Ala 210 215 153218PRTMyceliophthora thermophila 153Met Val Ser Phe Thr Leu Leu Leu Thr Val Ile Ala Ala Ala Val Thr 1 5 10 15 Thr Ala Ser Pro Leu Glu Val Val Lys Arg Gly Ile Gln Pro Gly Thr 20 25 30 Gly Thr His Glu Gly Tyr Phe Tyr Ser Phe Trp Thr Asp Gly Arg Gly 35 40 45 Ser Val Asp Phe Asn Pro Gly Pro Arg Gly Ser Tyr Ser Val Thr Trp 50 55 60 Asn Asn Val Asn Asn Trp Val Gly Gly Lys Gly Trp Asn Pro Gly Pro 65 70 75 80 Pro Arg Lys Ile Ala Tyr Asn Gly Thr Trp Asn Asn Tyr Asn Val Asn 85 90 95 Ser Tyr Leu Ala Leu Tyr Gly Trp Thr Arg Asn Pro Leu Val Glu Tyr 100 105 110 Tyr Ile Val Glu Ala Tyr Gly Thr Tyr Asn Pro Ser Ser Gly Thr Ala 115 120 125 Arg Leu Gly Thr Ile Glu Asp Asp Gly Gly Val Tyr Asp Ile Tyr Lys 130 135 140 Thr Thr Arg Tyr Asn Gln Pro Ser Ile Glu Gly Thr Ser Thr Phe Asp 145 150 155 160 Gln Tyr Trp Ser Val Arg Arg Gln Lys Arg Val Gly Gly Thr Ile Asp 165 170 175 Thr Gly Lys His Phe Asp Glu Trp Lys Arg Gln Gly Asn Leu Gln Leu 180 185 190 Gly Thr Trp Asn Tyr Met Ile Met Ala Thr Glu Gly Tyr Gln Ser Ser 195 200 205 Gly Ser Ala Thr Ile Glu Val Arg Glu Ala 210 215 1541155DNAMyceliophthora thermophila 154atgcgtactc ttacgttcgt gctggcagcc gccccggtgg ctgtgcttgc ccaatctcct 60ctgtggggcc agtgcggcgg tcaaggctgg acaggtccca cgacctgcgt ttctggcgca 120gtatgccaat tcgtcaatga ctggtactcc caatgcgtgc ccggatcgag caaccctcct 180acgggcacca ccagcagcac cactggaagc accccggctc ctactggcgg cggcggcagc 240ggaaccggcc tccacgacaa attcaaggcc aagggcaagc tctacttcgg aaccgagatc 300gatcactacc atctcaacaa caatgccttg accaacattg tcaagaaaga ctttggtcaa 360gtcactcacg agaacagctt gaagtgggat gctactgagc cgagccgcaa tcaattcaac 420tttgccaacg ccgacgcggt tgtcaacttt gcccaggcca acggcaagct catccgcggc 480cacaccctcc tctggcactc tcagctgccg cagtgggtgc agaacatcaa cgaccgcaac 540accttgaccc aggtcatcga gaaccacgtc accacccttg tcactcgcta caagggcaag 600atcctccact gggacgtcgt taacgagatc tttgccgagg acggctcgct ccgcgacagc 660gtcttcagcc gcgtcctcgg cgaggacttt gtcggcatcg ccttccgcgc cgcccgcgcc 720gccgatccca acgccaagct ctacatcaac gactacaacc tcgacattgc caactacgcc 780aaggtgaccc ggggcatggt cgagaaggtc aacaagtgga tcgcccaggg catcccgatc 840gacggcatcg gcacccagtg ccacctggcc gggcccggcg ggtggaacac ggccgccggc 900gtccccgacg ccctcaaggc cctcgccgcg gccaacgtca aggagatcgc catcaccgag 960ctcgacatcg ccggcgcctc cgccaacgac tacctcaccg tcatgaacgc ctgcctccag 1020gtctccaagt gcgtcggcat caccgtctgg ggcgtctctg acaaggacag ctggaggtcg 1080agcagcaacc cgctcctctt cgacagcaac taccagccaa aggcggcata caatgctctg 1140attaatgcct tgtaa 1155155384PRTMyceliophthora thermophila 155Met Arg Thr Leu Thr Phe Val Leu Ala Ala Ala Pro Val Ala Val Leu 1 5 10 15 Ala Gln Ser Pro Leu Trp Gly Gln Cys Gly Gly Gln Gly Trp Thr Gly 20 25 30 Pro Thr Thr Cys Val Ser Gly Ala Val Cys Gln Phe Val Asn Asp Trp 35 40 45 Tyr Ser Gln Cys Val Pro Gly Ser Ser Asn Pro Pro Thr Gly Thr Thr 50 55 60 Ser Ser Thr Thr Gly Ser Thr Pro Ala Pro Thr Gly Gly Gly Gly Ser 65 70 75 80 Gly Thr Gly Leu His Asp Lys Phe Lys Ala Lys Gly Lys Leu Tyr Phe 85 90 95 Gly Thr Glu Ile Asp His Tyr His Leu Asn Asn Asn Ala Leu Thr Asn 100 105 110 Ile Val Lys Lys Asp Phe Gly Gln Val Thr His Glu Asn Ser Leu Lys 115 120 125 Trp Asp Ala Thr Glu Pro Ser Arg Asn Gln Phe Asn Phe Ala Asn Ala 130 135 140 Asp Ala Val Val Asn Phe Ala Gln Ala Asn Gly Lys Leu Ile Arg Gly 145 150 155 160 His Thr Leu Leu Trp His Ser Gln Leu Pro Gln Trp Val Gln Asn Ile 165 170 175 Asn Asp Arg Asn Thr Leu Thr Gln Val Ile Glu Asn His Val Thr Thr 180 185 190 Leu Val Thr Arg Tyr Lys Gly Lys Ile Leu His Trp Asp Val Val Asn 195 200 205 Glu Ile Phe Ala Glu Asp Gly Ser Leu Arg Asp Ser Val Phe Ser Arg 210 215 220 Val Leu Gly Glu Asp Phe Val Gly Ile Ala Phe Arg Ala Ala Arg Ala 225 230 235 240 Ala Asp Pro Asn Ala Lys Leu Tyr Ile Asn Asp Tyr Asn Leu Asp Ile 245 250 255 Ala Asn Tyr Ala Lys Val Thr Arg Gly Met Val Glu Lys Val Asn Lys 260 265 270 Trp Ile Ala Gln Gly Ile Pro Ile Asp Gly Ile Gly Thr Gln Cys His 275 280 285 Leu Ala Gly Pro Gly Gly Trp Asn Thr Ala Ala Gly Val Pro Asp Ala 290 295 300 Leu Lys Ala Leu Ala Ala Ala Asn Val Lys Glu Ile Ala Ile Thr Glu 305 310 315 320 Leu Asp Ile Ala Gly Ala Ser Ala Asn Asp Tyr Leu Thr Val Met Asn 325 330 335 Ala Cys Leu Gln Val Ser Lys Cys Val Gly Ile Thr Val Trp Gly Val 340 345 350 Ser Asp Lys Asp Ser Trp Arg Ser Ser Ser Asn Pro Leu Leu Phe Asp 355 360 365 Ser Asn Tyr Gln Pro Lys Ala Ala Tyr Asn Ala Leu Ile Asn Ala Leu 370 375 380 156367PRTMyceliophthora thermophila 156Gln Ser Pro Leu Trp Gly Gln Cys Gly Gly Gln Gly Trp Thr Gly Pro 1 5 10 15 Thr Thr Cys Val Ser Gly Ala Val Cys Gln Phe Val Asn Asp Trp Tyr 20 25 30 Ser Gln Cys Val Pro Gly Ser Ser Asn Pro Pro Thr Gly Thr Thr Ser 35 40 45 Ser Thr Thr Gly Ser Thr Pro Ala Pro Thr Gly Gly Gly Gly Ser Gly 50 55 60 Thr Gly Leu His Asp Lys Phe Lys Ala Lys Gly Lys Leu Tyr Phe Gly 65 70 75 80 Thr Glu Ile Asp His Tyr His Leu Asn Asn Asn Ala Leu Thr Asn Ile 85 90 95 Val Lys Lys Asp Phe Gly Gln Val Thr His Glu Asn Ser Leu Lys Trp 100 105 110 Asp Ala Thr Glu Pro Ser Arg Asn Gln Phe Asn Phe Ala Asn Ala Asp 115 120 125 Ala Val Val Asn Phe Ala Gln Ala Asn Gly Lys Leu Ile Arg Gly His 130 135 140 Thr Leu Leu Trp His Ser Gln Leu Pro Gln Trp Val Gln Asn Ile Asn 145 150 155 160 Asp Arg Asn Thr Leu Thr Gln Val Ile Glu Asn His Val Thr Thr Leu 165 170 175 Val Thr Arg Tyr Lys Gly Lys Ile Leu His Trp Asp Val Val Asn Glu 180 185 190 Ile Phe Ala Glu Asp Gly Ser Leu Arg Asp Ser Val Phe Ser Arg Val 195 200 205 Leu Gly Glu Asp Phe Val Gly Ile Ala Phe Arg Ala Ala Arg

Ala Ala 210 215 220 Asp Pro Asn Ala Lys Leu Tyr Ile Asn Asp Tyr Asn Leu Asp Ile Ala 225 230 235 240 Asn Tyr Ala Lys Val Thr Arg Gly Met Val Glu Lys Val Asn Lys Trp 245 250 255 Ile Ala Gln Gly Ile Pro Ile Asp Gly Ile Gly Thr Gln Cys His Leu 260 265 270 Ala Gly Pro Gly Gly Trp Asn Thr Ala Ala Gly Val Pro Asp Ala Leu 275 280 285 Lys Ala Leu Ala Ala Ala Asn Val Lys Glu Ile Ala Ile Thr Glu Leu 290 295 300 Asp Ile Ala Gly Ala Ser Ala Asn Asp Tyr Leu Thr Val Met Asn Ala 305 310 315 320 Cys Leu Gln Val Ser Lys Cys Val Gly Ile Thr Val Trp Gly Val Ser 325 330 335 Asp Lys Asp Ser Trp Arg Ser Ser Ser Asn Pro Leu Leu Phe Asp Ser 340 345 350 Asn Tyr Gln Pro Lys Ala Ala Tyr Asn Ala Leu Ile Asn Ala Leu 355 360 365 157687DNAMyceliophthora thermophila 157atggtctcgc tcaagtccct cctcctcgcc gcggcggcga cgttgacggc ggtgacggcg 60cgcccgttcg actttgacga cggcaactcg accgaggcgc tggccaagcg ccaggtcacg 120cccaacgcgc agggctacca ctcgggctac ttctactcgt ggtggtccga cggcggcggc 180caggccacct tcaccctgct cgagggcagc cactaccagg tcaactggag gaacacgggc 240aactttgtcg gtggcaaggg ctggaacccg ggtaccggcc ggaccatcaa ctacggcggc 300tcgttcaacc cgagcggcaa cggctacctg gccgtctacg gctggacgca caacccgctg 360atcgagtact acgtggtcga gtcgtacggg acctacaacc cgggcagcca ggcccagtac 420aagggcagct tccagagcga cggcggcacc tacaacatct acgtctcgac ccgctacaac 480gcgccctcga tcgagggcac ccgcaccttc cagcagtact ggtccatccg cacctccaag 540cgcgtcggcg gctccgtcac catgcagaac cacttcaacg cctgggccca gcacggcatg 600cccctcggct cccacgacta ccagatcgtc gccaccgagg gctaccagag cagcggctcc 660tccgacatct acgtccagac tcactag 687158228PRTMyceliophthora thermophila 158Met Val Ser Leu Lys Ser Leu Leu Leu Ala Ala Ala Ala Thr Leu Thr 1 5 10 15 Ala Val Thr Ala Arg Pro Phe Asp Phe Asp Asp Gly Asn Ser Thr Glu 20 25 30 Ala Leu Ala Lys Arg Gln Val Thr Pro Asn Ala Gln Gly Tyr His Ser 35 40 45 Gly Tyr Phe Tyr Ser Trp Trp Ser Asp Gly Gly Gly Gln Ala Thr Phe 50 55 60 Thr Leu Leu Glu Gly Ser His Tyr Gln Val Asn Trp Arg Asn Thr Gly 65 70 75 80 Asn Phe Val Gly Gly Lys Gly Trp Asn Pro Gly Thr Gly Arg Thr Ile 85 90 95 Asn Tyr Gly Gly Ser Phe Asn Pro Ser Gly Asn Gly Tyr Leu Ala Val 100 105 110 Tyr Gly Trp Thr His Asn Pro Leu Ile Glu Tyr Tyr Val Val Glu Ser 115 120 125 Tyr Gly Thr Tyr Asn Pro Gly Ser Gln Ala Gln Tyr Lys Gly Ser Phe 130 135 140 Gln Ser Asp Gly Gly Thr Tyr Asn Ile Tyr Val Ser Thr Arg Tyr Asn 145 150 155 160 Ala Pro Ser Ile Glu Gly Thr Arg Thr Phe Gln Gln Tyr Trp Ser Ile 165 170 175 Arg Thr Ser Lys Arg Val Gly Gly Ser Val Thr Met Gln Asn His Phe 180 185 190 Asn Ala Trp Ala Gln His Gly Met Pro Leu Gly Ser His Asp Tyr Gln 195 200 205 Ile Val Ala Thr Glu Gly Tyr Gln Ser Ser Gly Ser Ser Asp Ile Tyr 210 215 220 Val Gln Thr His 225 159208PRTMyceliophthora thermophila 159Arg Pro Phe Asp Phe Asp Asp Gly Asn Ser Thr Glu Ala Leu Ala Lys 1 5 10 15 Arg Gln Val Thr Pro Asn Ala Gln Gly Tyr His Ser Gly Tyr Phe Tyr 20 25 30 Ser Trp Trp Ser Asp Gly Gly Gly Gln Ala Thr Phe Thr Leu Leu Glu 35 40 45 Gly Ser His Tyr Gln Val Asn Trp Arg Asn Thr Gly Asn Phe Val Gly 50 55 60 Gly Lys Gly Trp Asn Pro Gly Thr Gly Arg Thr Ile Asn Tyr Gly Gly 65 70 75 80 Ser Phe Asn Pro Ser Gly Asn Gly Tyr Leu Ala Val Tyr Gly Trp Thr 85 90 95 His Asn Pro Leu Ile Glu Tyr Tyr Val Val Glu Ser Tyr Gly Thr Tyr 100 105 110 Asn Pro Gly Ser Gln Ala Gln Tyr Lys Gly Ser Phe Gln Ser Asp Gly 115 120 125 Gly Thr Tyr Asn Ile Tyr Val Ser Thr Arg Tyr Asn Ala Pro Ser Ile 130 135 140 Glu Gly Thr Arg Thr Phe Gln Gln Tyr Trp Ser Ile Arg Thr Ser Lys 145 150 155 160 Arg Val Gly Gly Ser Val Thr Met Gln Asn His Phe Asn Ala Trp Ala 165 170 175 Gln His Gly Met Pro Leu Gly Ser His Asp Tyr Gln Ile Val Ala Thr 180 185 190 Glu Gly Tyr Gln Ser Ser Gly Ser Ser Asp Ile Tyr Val Gln Thr His 195 200 205 160681DNAMyceliophthora thermophila 160atggttaccc tcactcgcct ggcggtcgcc gcggcggcca tgatctccag cactggcctg 60gctgccccga cgcccgaagc tggccccgac cttcccgact ttgagctcgg ggtcaacaac 120ctcgcccgcc gcgcgctgga ctacaaccag aactacagga ccagcggcaa cgtcaactac 180tcgcccaccg acaacggcta ctcggtcagc ttctccaacg cgggagattt tgtcgtcggg 240aagggctgga ggacgggagc caccagaaac atcaccttct cgggatcgac acagcatacc 300tcgggcaccg tgctcgtctc cgtctacggc tggacccgga acccgctgat cgagtactac 360gtgcaggagt acacgtccaa cggggccggc tccgctcagg gcgagaagct gggcacggtc 420gagagcgacg ggggcacgta cgagatctgg cggcaccagc aggtcaacca gccgtcgatc 480gagggcacct cgaccttctg gcagtacatc tcgaaccgcg tgtccggcca gcggcccaac 540ggcggcaccg tcaccctcgc caaccacttc gccgcctggc agaagctcgg cctgaacctg 600ggccagcacg actaccaggt cctggccacc gagggctggg gcaacgccgg cggcagctcc 660cagtacaccg tcagcggctg a 681161226PRTMyceliophthora thermophila 161Met Val Thr Leu Thr Arg Leu Ala Val Ala Ala Ala Ala Met Ile Ser 1 5 10 15 Ser Thr Gly Leu Ala Ala Pro Thr Pro Glu Ala Gly Pro Asp Leu Pro 20 25 30 Asp Phe Glu Leu Gly Val Asn Asn Leu Ala Arg Arg Ala Leu Asp Tyr 35 40 45 Asn Gln Asn Tyr Arg Thr Ser Gly Asn Val Asn Tyr Ser Pro Thr Asp 50 55 60 Asn Gly Tyr Ser Val Ser Phe Ser Asn Ala Gly Asp Phe Val Val Gly 65 70 75 80 Lys Gly Trp Arg Thr Gly Ala Thr Arg Asn Ile Thr Phe Ser Gly Ser 85 90 95 Thr Gln His Thr Ser Gly Thr Val Leu Val Ser Val Tyr Gly Trp Thr 100 105 110 Arg Asn Pro Leu Ile Glu Tyr Tyr Val Gln Glu Tyr Thr Ser Asn Gly 115 120 125 Ala Gly Ser Ala Gln Gly Glu Lys Leu Gly Thr Val Glu Ser Asp Gly 130 135 140 Gly Thr Tyr Glu Ile Trp Arg His Gln Gln Val Asn Gln Pro Ser Ile 145 150 155 160 Glu Gly Thr Ser Thr Phe Trp Gln Tyr Ile Ser Asn Arg Val Ser Gly 165 170 175 Gln Arg Pro Asn Gly Gly Thr Val Thr Leu Ala Asn His Phe Ala Ala 180 185 190 Trp Gln Lys Leu Gly Leu Asn Leu Gly Gln His Asp Tyr Gln Val Leu 195 200 205 Ala Thr Glu Gly Trp Gly Asn Ala Gly Gly Ser Ser Gln Tyr Thr Val 210 215 220 Ser Gly 225 162205PRTMyceliophthora thermophila 162Ala Pro Thr Pro Glu Ala Gly Pro Asp Leu Pro Asp Phe Glu Leu Gly 1 5 10 15 Val Asn Asn Leu Ala Arg Arg Ala Leu Asp Tyr Asn Gln Asn Tyr Arg 20 25 30 Thr Ser Gly Asn Val Asn Tyr Ser Pro Thr Asp Asn Gly Tyr Ser Val 35 40 45 Ser Phe Ser Asn Ala Gly Asp Phe Val Val Gly Lys Gly Trp Arg Thr 50 55 60 Gly Ala Thr Arg Asn Ile Thr Phe Ser Gly Ser Thr Gln His Thr Ser 65 70 75 80 Gly Thr Val Leu Val Ser Val Tyr Gly Trp Thr Arg Asn Pro Leu Ile 85 90 95 Glu Tyr Tyr Val Gln Glu Tyr Thr Ser Asn Gly Ala Gly Ser Ala Gln 100 105 110 Gly Glu Lys Leu Gly Thr Val Glu Ser Asp Gly Gly Thr Tyr Glu Ile 115 120 125 Trp Arg His Gln Gln Val Asn Gln Pro Ser Ile Glu Gly Thr Ser Thr 130 135 140 Phe Trp Gln Tyr Ile Ser Asn Arg Val Ser Gly Gln Arg Pro Asn Gly 145 150 155 160 Gly Thr Val Thr Leu Ala Asn His Phe Ala Ala Trp Gln Lys Leu Gly 165 170 175 Leu Asn Leu Gly Gln His Asp Tyr Gln Val Leu Ala Thr Glu Gly Trp 180 185 190 Gly Asn Ala Gly Gly Ser Ser Gln Tyr Thr Val Ser Gly 195 200 205 1631833DNAMyceliophthora thermophila 163atgttcttcg cttctctgct gctcggtctc ctggcgggcg tgtccgcttc accgggacac 60gggcggaatt ccaccttcta caaccccatc ttccccggct tctaccccga tccgagctgc 120atctacgtgc ccgagcgtga ccacaccttc ttctgtgcct cgtcgagctt caacgccttc 180ccgggcatcc cgattcatgc cagcaaggac ctgcagaact ggaagttgat cggccatgtg 240ctgaatcgca aggaacagct tccccggctc gctgagacca accggtcgac cagcggcatc 300tgggcaccca ccctccggtt ccatgacgac accttctggt tggtcaccac actagtggac 360gacgaccggc cgcaggagga cgcttccaga tgggacaata ttatcttcaa ggcaaagaat 420ccgtatgatc cgaggtcctg gtccaaggcc gtccacttca acttcactgg ctacgacacg 480gagcctttct gggacgaaga tggaaaggtg tacatcaccg gcgcccatgc ttggcatgtt 540ggcccataca tccagcaggc cgaagtcgat ctcgacacgg gggccgtcgg cgagtggcgc 600atcatctgga acggaacggg cggcatggct cctgaagggc cgcacatcta ccgcaaagat 660gggtggtact acttgctggc tgctgaaggg gggaccggca tcgaccatat ggtgaccatg 720gcccggtcga gaaaaatctc cagtccttac gagtccaacc caaacaaccc cgtgttgacc 780aacgccaaca cgaccagtta ctttcaaacc gtcgggcatt cagacctgtt ccatgacaga 840catgggaact ggtgggcagt cgccctctcc acccgctccg gtccagaata tcttcactac 900cccatgggcc gcgagaccgt catgacagcc gtgagctggc cgaaggacga gtggccaacc 960ttcaccccca tatctggcaa gatgagcggc tggccgatgc ctccttcgca gaaggacatt 1020cgcggagtcg gcccctacgt caactccccc gacccggaac acctgacctt cccccgctcg 1080gcgcccctgc cggcccacct cacctactgg cgatacccga acccgtcctc ctacacgccg 1140tccccgcccg ggcaccccaa caccctccgc ctgaccccgt cccgcctgaa cctgaccgcc 1200ctcaacggca actacgcggg ggccgaccag accttcgtct cgcgccggca gcagcacacc 1260ctcttcacct acagcgtcac gctcgactac gcgccgcgga ccgccgggga ggaggccggc 1320gtgaccgcct tcctgacgca gaaccaccac ctcgacctgg gcgtcgtcct gctccctcgc 1380ggctccgcca ccgcgccctc gctgccgggc ctgagtagta gtacaactac tactagtagt 1440agtagtagtc gtccggacga ggaggaggag cgcgaggcgg gcgaagagga agaagagggc 1500ggacaagact tgatgatccc gcatgtgcgg ttcaggggcg agtcgtacgt gcccgtcccg 1560gcgcccgtcg tgtacccgat accccgggcc tggagaggcg ggaagcttgt gttagagatc 1620cgggcttgta attcgactca cttctcgttc cgtgtcgggc cggacgggag acggtctgag 1680cggacggtgg tcatggaggc ttcgaacgag gccgttagct ggggctttac tggaacgctg 1740ctgggcatct atgcgaccag taatggtggc aacggaacca cgccggcgta tttttcggat 1800tggaggtaca caccattgga gcagtttagg gat 1833164611PRTMyceliophthora thermophila 164Met Phe Phe Ala Ser Leu Leu Leu Gly Leu Leu Ala Gly Val Ser Ala 1 5 10 15 Ser Pro Gly His Gly Arg Asn Ser Thr Phe Tyr Asn Pro Ile Phe Pro 20 25 30 Gly Phe Tyr Pro Asp Pro Ser Cys Ile Tyr Val Pro Glu Arg Asp His 35 40 45 Thr Phe Phe Cys Ala Ser Ser Ser Phe Asn Ala Phe Pro Gly Ile Pro 50 55 60 Ile His Ala Ser Lys Asp Leu Gln Asn Trp Lys Leu Ile Gly His Val 65 70 75 80 Leu Asn Arg Lys Glu Gln Leu Pro Arg Leu Ala Glu Thr Asn Arg Ser 85 90 95 Thr Ser Gly Ile Trp Ala Pro Thr Leu Arg Phe His Asp Asp Thr Phe 100 105 110 Trp Leu Val Thr Thr Leu Val Asp Asp Asp Arg Pro Gln Glu Asp Ala 115 120 125 Ser Arg Trp Asp Asn Ile Ile Phe Lys Ala Lys Asn Pro Tyr Asp Pro 130 135 140 Arg Ser Trp Ser Lys Ala Val His Phe Asn Phe Thr Gly Tyr Asp Thr 145 150 155 160 Glu Pro Phe Trp Asp Glu Asp Gly Lys Val Tyr Ile Thr Gly Ala His 165 170 175 Ala Trp His Val Gly Pro Tyr Ile Gln Gln Ala Glu Val Asp Leu Asp 180 185 190 Thr Gly Ala Val Gly Glu Trp Arg Ile Ile Trp Asn Gly Thr Gly Gly 195 200 205 Met Ala Pro Glu Gly Pro His Ile Tyr Arg Lys Asp Gly Trp Tyr Tyr 210 215 220 Leu Leu Ala Ala Glu Gly Gly Thr Gly Ile Asp His Met Val Thr Met 225 230 235 240 Ala Arg Ser Arg Lys Ile Ser Ser Pro Tyr Glu Ser Asn Pro Asn Asn 245 250 255 Pro Val Leu Thr Asn Ala Asn Thr Thr Ser Tyr Phe Gln Thr Val Gly 260 265 270 His Ser Asp Leu Phe His Asp Arg His Gly Asn Trp Trp Ala Val Ala 275 280 285 Leu Ser Thr Arg Ser Gly Pro Glu Tyr Leu His Tyr Pro Met Gly Arg 290 295 300 Glu Thr Val Met Thr Ala Val Ser Trp Pro Lys Asp Glu Trp Pro Thr 305 310 315 320 Phe Thr Pro Ile Ser Gly Lys Met Ser Gly Trp Pro Met Pro Pro Ser 325 330 335 Gln Lys Asp Ile Arg Gly Val Gly Pro Tyr Val Asn Ser Pro Asp Pro 340 345 350 Glu His Leu Thr Phe Pro Arg Ser Ala Pro Leu Pro Ala His Leu Thr 355 360 365 Tyr Trp Arg Tyr Pro Asn Pro Ser Ser Tyr Thr Pro Ser Pro Pro Gly 370 375 380 His Pro Asn Thr Leu Arg Leu Thr Pro Ser Arg Leu Asn Leu Thr Ala 385 390 395 400 Leu Asn Gly Asn Tyr Ala Gly Ala Asp Gln Thr Phe Val Ser Arg Arg 405 410 415 Gln Gln His Thr Leu Phe Thr Tyr Ser Val Thr Leu Asp Tyr Ala Pro 420 425 430 Arg Thr Ala Gly Glu Glu Ala Gly Val Thr Ala Phe Leu Thr Gln Asn 435 440 445 His His Leu Asp Leu Gly Val Val Leu Leu Pro Arg Gly Ser Ala Thr 450 455 460 Ala Pro Ser Leu Pro Gly Leu Ser Ser Ser Thr Thr Thr Thr Ser Ser 465 470 475 480 Ser Ser Ser Arg Pro Asp Glu Glu Glu Glu Arg Glu Ala Gly Glu Glu 485 490 495 Glu Glu Glu Gly Gly Gln Asp Leu Met Ile Pro His Val Arg Phe Arg 500 505 510 Gly Glu Ser Tyr Val Pro Val Pro Ala Pro Val Val Tyr Pro Ile Pro 515 520 525 Arg Ala Trp Arg Gly Gly Lys Leu Val Leu Glu Ile Arg Ala Cys Asn 530 535 540 Ser Thr His Phe Ser Phe Arg Val Gly Pro Asp Gly Arg Arg Ser Glu 545 550 555 560 Arg Thr Val Val Met Glu Ala Ser Asn Glu Ala Val Ser Trp Gly Phe 565 570 575 Thr Gly Thr Leu Leu Gly Ile Tyr Ala Thr Ser Asn Gly Gly Asn Gly 580 585 590 Thr Thr Pro Ala Tyr Phe Ser Asp Trp Arg Tyr Thr Pro Leu Glu Gln 595 600 605 Phe Arg Asp 610 165595PRTMyceliophthora thermophila 165Ser Pro Gly His Gly Arg Asn Ser Thr Phe Tyr Asn Pro Ile Phe Pro 1 5 10 15 Gly Phe Tyr Pro Asp Pro Ser Cys Ile Tyr Val Pro Glu Arg Asp His 20 25 30 Thr Phe Phe Cys Ala Ser Ser Ser Phe Asn Ala Phe Pro Gly Ile Pro 35 40 45 Ile His Ala Ser Lys Asp Leu Gln Asn Trp Lys Leu Ile Gly His Val 50 55 60 Leu Asn Arg Lys Glu Gln Leu Pro Arg Leu Ala Glu Thr Asn Arg Ser 65 70 75 80 Thr Ser Gly Ile Trp Ala Pro Thr Leu Arg Phe His Asp Asp Thr Phe 85 90 95 Trp Leu Val Thr Thr Leu Val Asp Asp Asp Arg Pro Gln Glu Asp Ala 100 105 110 Ser Arg Trp Asp Asn Ile Ile Phe Lys Ala Lys Asn Pro Tyr Asp Pro 115 120

125 Arg Ser Trp Ser Lys Ala Val His Phe Asn Phe Thr Gly Tyr Asp Thr 130 135 140 Glu Pro Phe Trp Asp Glu Asp Gly Lys Val Tyr Ile Thr Gly Ala His 145 150 155 160 Ala Trp His Val Gly Pro Tyr Ile Gln Gln Ala Glu Val Asp Leu Asp 165 170 175 Thr Gly Ala Val Gly Glu Trp Arg Ile Ile Trp Asn Gly Thr Gly Gly 180 185 190 Met Ala Pro Glu Gly Pro His Ile Tyr Arg Lys Asp Gly Trp Tyr Tyr 195 200 205 Leu Leu Ala Ala Glu Gly Gly Thr Gly Ile Asp His Met Val Thr Met 210 215 220 Ala Arg Ser Arg Lys Ile Ser Ser Pro Tyr Glu Ser Asn Pro Asn Asn 225 230 235 240 Pro Val Leu Thr Asn Ala Asn Thr Thr Ser Tyr Phe Gln Thr Val Gly 245 250 255 His Ser Asp Leu Phe His Asp Arg His Gly Asn Trp Trp Ala Val Ala 260 265 270 Leu Ser Thr Arg Ser Gly Pro Glu Tyr Leu His Tyr Pro Met Gly Arg 275 280 285 Glu Thr Val Met Thr Ala Val Ser Trp Pro Lys Asp Glu Trp Pro Thr 290 295 300 Phe Thr Pro Ile Ser Gly Lys Met Ser Gly Trp Pro Met Pro Pro Ser 305 310 315 320 Gln Lys Asp Ile Arg Gly Val Gly Pro Tyr Val Asn Ser Pro Asp Pro 325 330 335 Glu His Leu Thr Phe Pro Arg Ser Ala Pro Leu Pro Ala His Leu Thr 340 345 350 Tyr Trp Arg Tyr Pro Asn Pro Ser Ser Tyr Thr Pro Ser Pro Pro Gly 355 360 365 His Pro Asn Thr Leu Arg Leu Thr Pro Ser Arg Leu Asn Leu Thr Ala 370 375 380 Leu Asn Gly Asn Tyr Ala Gly Ala Asp Gln Thr Phe Val Ser Arg Arg 385 390 395 400 Gln Gln His Thr Leu Phe Thr Tyr Ser Val Thr Leu Asp Tyr Ala Pro 405 410 415 Arg Thr Ala Gly Glu Glu Ala Gly Val Thr Ala Phe Leu Thr Gln Asn 420 425 430 His His Leu Asp Leu Gly Val Val Leu Leu Pro Arg Gly Ser Ala Thr 435 440 445 Ala Pro Ser Leu Pro Gly Leu Ser Ser Ser Thr Thr Thr Thr Ser Ser 450 455 460 Ser Ser Ser Arg Pro Asp Glu Glu Glu Glu Arg Glu Ala Gly Glu Glu 465 470 475 480 Glu Glu Glu Gly Gly Gln Asp Leu Met Ile Pro His Val Arg Phe Arg 485 490 495 Gly Glu Ser Tyr Val Pro Val Pro Ala Pro Val Val Tyr Pro Ile Pro 500 505 510 Arg Ala Trp Arg Gly Gly Lys Leu Val Leu Glu Ile Arg Ala Cys Asn 515 520 525 Ser Thr His Phe Ser Phe Arg Val Gly Pro Asp Gly Arg Arg Ser Glu 530 535 540 Arg Thr Val Val Met Glu Ala Ser Asn Glu Ala Val Ser Trp Gly Phe 545 550 555 560 Thr Gly Thr Leu Leu Gly Ile Tyr Ala Thr Ser Asn Gly Gly Asn Gly 565 570 575 Thr Thr Pro Ala Tyr Phe Ser Asp Trp Arg Tyr Thr Pro Leu Glu Gln 580 585 590 Phe Arg Asp 595 166942DNAMyceliophthora thermophila 166atgaagctcc tgggcaaact ctcggcggca ctcgccctcg cgggcagcag gctggctgcc 60gcgcacccgg tcttcgacga gctgatgcgg ccgacggcgc cgctggtgcg cccgcgggcg 120gccctgcagc aggtgaccaa ctttggcagc aacccgtcca acacgaagat gttcatctac 180gtgcccgaca agctggcccc caacccgccc atcatagtgg ccatccacta ctgcaccggc 240accgcccagg cctactactc gggctcccct tacgcccgcc tcgccgacca gaagggcttc 300atcgtcatct acccggagtc cccctacagc ggcacctgtt gggacgtctc gtcgcgcgcc 360gccctgaccc acaacggcgg cggcgacagc aactcgatcg ccaacatggt cacctacacc 420ctcgaaaagt acaatggcga cgccagcaag gtctttgtca ccggctcctc gtccggcgcc 480atgatgacga acgtgatggc cgccgcgtac ccggaactgt tcgcggcagg aatcgcctac 540tcgggcgtgc ccgccggctg cttctacagc cagtccggag gcaccaacgc gtggaacagc 600tcgtgcgcca acgggcagat caactcgacg ccccaggtgt gggccaagat ggtcttcgac 660atgtacccgg aatacgacgg cccgcgcccc aagatgcaga tctaccacgg ctcggccgac 720ggcacgctca gacccagcaa ctacaacgag accatcaagc agtggtgcgg cgtcttcggc 780ttcgactaca cccgccccga caccacccag gccaactccc cgcaggccgg ctacaccacc 840tacacctggg gcgagcagca gctcgtcggc atctacgccc agggcgtcgg acacacggtc 900cccatccgcg gcagcgacga catggccttc tttggcctgt ga 942167313PRTMyceliophthora thermophila 167Met Lys Leu Leu Gly Lys Leu Ser Ala Ala Leu Ala Leu Ala Gly Ser 1 5 10 15 Arg Leu Ala Ala Ala His Pro Val Phe Asp Glu Leu Met Arg Pro Thr 20 25 30 Ala Pro Leu Val Arg Pro Arg Ala Ala Leu Gln Gln Val Thr Asn Phe 35 40 45 Gly Ser Asn Pro Ser Asn Thr Lys Met Phe Ile Tyr Val Pro Asp Lys 50 55 60 Leu Ala Pro Asn Pro Pro Ile Ile Val Ala Ile His Tyr Cys Thr Gly 65 70 75 80 Thr Ala Gln Ala Tyr Tyr Ser Gly Ser Pro Tyr Ala Arg Leu Ala Asp 85 90 95 Gln Lys Gly Phe Ile Val Ile Tyr Pro Glu Ser Pro Tyr Ser Gly Thr 100 105 110 Cys Trp Asp Val Ser Ser Arg Ala Ala Leu Thr His Asn Gly Gly Gly 115 120 125 Asp Ser Asn Ser Ile Ala Asn Met Val Thr Tyr Thr Leu Glu Lys Tyr 130 135 140 Asn Gly Asp Ala Ser Lys Val Phe Val Thr Gly Ser Ser Ser Gly Ala 145 150 155 160 Met Met Thr Asn Val Met Ala Ala Ala Tyr Pro Glu Leu Phe Ala Ala 165 170 175 Gly Ile Ala Tyr Ser Gly Val Pro Ala Gly Cys Phe Tyr Ser Gln Ser 180 185 190 Gly Gly Thr Asn Ala Trp Asn Ser Ser Cys Ala Asn Gly Gln Ile Asn 195 200 205 Ser Thr Pro Gln Val Trp Ala Lys Met Val Phe Asp Met Tyr Pro Glu 210 215 220 Tyr Asp Gly Pro Arg Pro Lys Met Gln Ile Tyr His Gly Ser Ala Asp 225 230 235 240 Gly Thr Leu Arg Pro Ser Asn Tyr Asn Glu Thr Ile Lys Gln Trp Cys 245 250 255 Gly Val Phe Gly Phe Asp Tyr Thr Arg Pro Asp Thr Thr Gln Ala Asn 260 265 270 Ser Pro Gln Ala Gly Tyr Thr Thr Tyr Thr Trp Gly Glu Gln Gln Leu 275 280 285 Val Gly Ile Tyr Ala Gln Gly Val Gly His Thr Val Pro Ile Arg Gly 290 295 300 Ser Asp Asp Met Ala Phe Phe Gly Leu 305 310 168292PRTMyceliophthora thermophila 168His Pro Val Phe Asp Glu Leu Met Arg Pro Thr Ala Pro Leu Val Arg 1 5 10 15 Pro Arg Ala Ala Leu Gln Gln Val Thr Asn Phe Gly Ser Asn Pro Ser 20 25 30 Asn Thr Lys Met Phe Ile Tyr Val Pro Asp Lys Leu Ala Pro Asn Pro 35 40 45 Pro Ile Ile Val Ala Ile His Tyr Cys Thr Gly Thr Ala Gln Ala Tyr 50 55 60 Tyr Ser Gly Ser Pro Tyr Ala Arg Leu Ala Asp Gln Lys Gly Phe Ile 65 70 75 80 Val Ile Tyr Pro Glu Ser Pro Tyr Ser Gly Thr Cys Trp Asp Val Ser 85 90 95 Ser Arg Ala Ala Leu Thr His Asn Gly Gly Gly Asp Ser Asn Ser Ile 100 105 110 Ala Asn Met Val Thr Tyr Thr Leu Glu Lys Tyr Asn Gly Asp Ala Ser 115 120 125 Lys Val Phe Val Thr Gly Ser Ser Ser Gly Ala Met Met Thr Asn Val 130 135 140 Met Ala Ala Ala Tyr Pro Glu Leu Phe Ala Ala Gly Ile Ala Tyr Ser 145 150 155 160 Gly Val Pro Ala Gly Cys Phe Tyr Ser Gln Ser Gly Gly Thr Asn Ala 165 170 175 Trp Asn Ser Ser Cys Ala Asn Gly Gln Ile Asn Ser Thr Pro Gln Val 180 185 190 Trp Ala Lys Met Val Phe Asp Met Tyr Pro Glu Tyr Asp Gly Pro Arg 195 200 205 Pro Lys Met Gln Ile Tyr His Gly Ser Ala Asp Gly Thr Leu Arg Pro 210 215 220 Ser Asn Tyr Asn Glu Thr Ile Lys Gln Trp Cys Gly Val Phe Gly Phe 225 230 235 240 Asp Tyr Thr Arg Pro Asp Thr Thr Gln Ala Asn Ser Pro Gln Ala Gly 245 250 255 Tyr Thr Thr Tyr Thr Trp Gly Glu Gln Gln Leu Val Gly Ile Tyr Ala 260 265 270 Gln Gly Val Gly His Thr Val Pro Ile Arg Gly Ser Asp Asp Met Ala 275 280 285 Phe Phe Gly Leu 290 169840DNAMyceliophthora thermophila 169atgatctcgg ttcctgctct cgctctggcc cttctggccg ccgtccaggt cgtcgagtct 60gcctcggctg gctgtggcaa ggcgccccct tcctcgggca ccaagtcgat gacggtcaac 120ggcaagcagc gccagtacat tctccagctg cccaacaact acgacgccaa caaggcccac 180agggtggtga tcgggtacca ctggcgcgac ggatccatga acgacgtggc caacggcggc 240ttctacgatc tgcggtcccg ggcgggcgac agcaccatct tcgttgcccc caacggcctc 300aatgccggat gggccaacgt gggcggcgag gacatcacct ttacggacca gatcgtagac 360atgctcaaga acgacctctg cgtggacgag acccagttct ttgctacggg ctggagctat 420ggcggtgcca tgagccatag cgtggcttgt tctcggccag acgtcttcaa ggccgtcgcg 480gtcatcgccg gggcccagct gtccggctgc gccggcggca cgacgcccgt ggcgtaccta 540ggcatccacg gagccgccga caacgtcctg cccatcgacc tcggccgcca gctgcgcgac 600aagtggctgc agaccaacgg ctgcaactac cagggcgccc aggaccccgc gccgggccag 660caggcccaca tcaagaccac ctacagctgc tcccgcgcgc ccgtcacctg gatcggccac 720gggggcggcc acgtccccga ccccacgggc aacaacggcg tcaagtttgc gccccaggag 780acctgggact tctttgatgc cgccgtcgga gcggccggcg cgcagagccc gatgacataa 840170279PRTMyceliophthora thermophila 170Met Ile Ser Val Pro Ala Leu Ala Leu Ala Leu Leu Ala Ala Val Gln 1 5 10 15 Val Val Glu Ser Ala Ser Ala Gly Cys Gly Lys Ala Pro Pro Ser Ser 20 25 30 Gly Thr Lys Ser Met Thr Val Asn Gly Lys Gln Arg Gln Tyr Ile Leu 35 40 45 Gln Leu Pro Asn Asn Tyr Asp Ala Asn Lys Ala His Arg Val Val Ile 50 55 60 Gly Tyr His Trp Arg Asp Gly Ser Met Asn Asp Val Ala Asn Gly Gly 65 70 75 80 Phe Tyr Asp Leu Arg Ser Arg Ala Gly Asp Ser Thr Ile Phe Val Ala 85 90 95 Pro Asn Gly Leu Asn Ala Gly Trp Ala Asn Val Gly Gly Glu Asp Ile 100 105 110 Thr Phe Thr Asp Gln Ile Val Asp Met Leu Lys Asn Asp Leu Cys Val 115 120 125 Asp Glu Thr Gln Phe Phe Ala Thr Gly Trp Ser Tyr Gly Gly Ala Met 130 135 140 Ser His Ser Val Ala Cys Ser Arg Pro Asp Val Phe Lys Ala Val Ala 145 150 155 160 Val Ile Ala Gly Ala Gln Leu Ser Gly Cys Ala Gly Gly Thr Thr Pro 165 170 175 Val Ala Tyr Leu Gly Ile His Gly Ala Ala Asp Asn Val Leu Pro Ile 180 185 190 Asp Leu Gly Arg Gln Leu Arg Asp Lys Trp Leu Gln Thr Asn Gly Cys 195 200 205 Asn Tyr Gln Gly Ala Gln Asp Pro Ala Pro Gly Gln Gln Ala His Ile 210 215 220 Lys Thr Thr Tyr Ser Cys Ser Arg Ala Pro Val Thr Trp Ile Gly His 225 230 235 240 Gly Gly Gly His Val Pro Asp Pro Thr Gly Asn Asn Gly Val Lys Phe 245 250 255 Ala Pro Gln Glu Thr Trp Asp Phe Phe Asp Ala Ala Val Gly Ala Ala 260 265 270 Gly Ala Gln Ser Pro Met Thr 275 171259PRTMyceliophthora thermophila 171Ala Ser Ala Gly Cys Gly Lys Ala Pro Pro Ser Ser Gly Thr Lys Ser 1 5 10 15 Met Thr Val Asn Gly Lys Gln Arg Gln Tyr Ile Leu Gln Leu Pro Asn 20 25 30 Asn Tyr Asp Ala Asn Lys Ala His Arg Val Val Ile Gly Tyr His Trp 35 40 45 Arg Asp Gly Ser Met Asn Asp Val Ala Asn Gly Gly Phe Tyr Asp Leu 50 55 60 Arg Ser Arg Ala Gly Asp Ser Thr Ile Phe Val Ala Pro Asn Gly Leu 65 70 75 80 Asn Ala Gly Trp Ala Asn Val Gly Gly Glu Asp Ile Thr Phe Thr Asp 85 90 95 Gln Ile Val Asp Met Leu Lys Asn Asp Leu Cys Val Asp Glu Thr Gln 100 105 110 Phe Phe Ala Thr Gly Trp Ser Tyr Gly Gly Ala Met Ser His Ser Val 115 120 125 Ala Cys Ser Arg Pro Asp Val Phe Lys Ala Val Ala Val Ile Ala Gly 130 135 140 Ala Gln Leu Ser Gly Cys Ala Gly Gly Thr Thr Pro Val Ala Tyr Leu 145 150 155 160 Gly Ile His Gly Ala Ala Asp Asn Val Leu Pro Ile Asp Leu Gly Arg 165 170 175 Gln Leu Arg Asp Lys Trp Leu Gln Thr Asn Gly Cys Asn Tyr Gln Gly 180 185 190 Ala Gln Asp Pro Ala Pro Gly Gln Gln Ala His Ile Lys Thr Thr Tyr 195 200 205 Ser Cys Ser Arg Ala Pro Val Thr Trp Ile Gly His Gly Gly Gly His 210 215 220 Val Pro Asp Pro Thr Gly Asn Asn Gly Val Lys Phe Ala Pro Gln Glu 225 230 235 240 Thr Trp Asp Phe Phe Asp Ala Ala Val Gly Ala Ala Gly Ala Gln Ser 245 250 255 Pro Met Thr

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed