Printed Circuit Board And Method Of Fabricating The Same

Cho; Yong Seok ;   et al.

Patent Application Summary

U.S. patent application number 14/368198 was filed with the patent office on 2015-01-08 for printed circuit board and method of fabricating the same. This patent application is currently assigned to LG Innotek Co., Ltd.. The applicant listed for this patent is Yong Seok Cho, Chang Sung Kim. Invention is credited to Yong Seok Cho, Chang Sung Kim.

Application Number20150008015 14/368198
Document ID /
Family ID48668698
Filed Date2015-01-08

United States Patent Application 20150008015
Kind Code A1
Cho; Yong Seok ;   et al. January 8, 2015

PRINTED CIRCUIT BOARD AND METHOD OF FABRICATING THE SAME

Abstract

Disclosed is a printed circuit board. The printed circuit board includes an insulating layer, a copper foil formed on the insulating layer and formed therein with a groove to expose a portion of a top surface of the insulating layer, and a thermal conductive layer filled in the groove.


Inventors: Cho; Yong Seok; (Seoul, KR) ; Kim; Chang Sung; (Seoul, KR)
Applicant:
Name City State Country Type

Cho; Yong Seok
Kim; Chang Sung

Seoul
Seoul

KR
KR
Assignee: LG Innotek Co., Ltd.
Seoul
KR

Family ID: 48668698
Appl. No.: 14/368198
Filed: August 22, 2012
PCT Filed: August 22, 2012
PCT NO: PCT/KR2012/006671
371 Date: August 21, 2014

Current U.S. Class: 174/252 ; 427/97.3
Current CPC Class: H05K 1/0203 20130101; H05K 3/4644 20130101; H05K 1/0227 20130101; H05K 1/0209 20130101; H05K 1/09 20130101; H05K 3/28 20130101; H05K 2201/09881 20130101; H05K 2201/09227 20130101; H05K 2201/0376 20130101
Class at Publication: 174/252 ; 427/97.3
International Class: H05K 1/02 20060101 H05K001/02; H05K 3/46 20060101 H05K003/46; H05K 1/09 20060101 H05K001/09

Foreign Application Data

Date Code Application Number
Dec 23, 2011 KR 10-2011-0141772

Claims



1. A printed circuit board comprising: an insulating layer; a copper foil formed on the insulating layer and formed therein with a groove to expose a portion of a top surface of the insulating layer; and a thermal conductive layer filled in the groove.

2. The printed circuit board of claim 1, wherein a lateral side of the thermal conductive layer makes contact with a lateral side of the copper foil.

3. The printed circuit board of claim 1, wherein the thermal conductive layer has a height equal to a height of the copper foil.

4. The printed circuit board of claim 1, further comprising a solder resist on top surfaces of the copper foil and the thermal conductive layer.

5. The printed circuit board of claim 1, wherein the groove has a width of 1 mm to 2 mm.

6. A method of fabricating a printed circuit board, the method comprising: forming an insulating layer; forming a circuit pattern including a groove by using a composition used to print the circuit pattern on the insulating layer; and forming a thermal conductive layer to be filled in the groove.

7. The method of claim 6, wherein the circuit pattern includes a copper foil.

8. The method of claim 6, further comprising forming a solder resist on the circuit pattern.

9. The method of claim 8, wherein the thermal conductive layer is formed through a printing scheme.

10. A method of fabricating a printed circuit board, the method comprising: forming an insulating layer; forming a circuit pattern including a groove by using a composition used to print the circuit pattern on the insulating layer; forming a solder resist on the circuit pattern; and forming a thermal conductive layer to be filled in the groove.

11. The method of claim 10, wherein the groove has a width in a range of 1 mm to 2 mm.

12. The method of claim 10, wherein the thermal conductive layer has a height equal to a height of the solder resist.
Description



TECHNICAL FIELD

[0001] The disclosure relates to a printed circuit board and a method of fabricating the same. In more particular, the disclosure relates to a printed circuit board capable of significantly improving heat radiation efficiency and cooling efficiency, and a method of fabricating the same.

BACKGROUND ART

[0002] In general, a printed circuit board (PCB) is a thin plate on which electrical parts such as integrated circuits, resistors, or switches are soldered. In addition, most circuits used in a computer and various display devices are mounted on the PCB.

[0003] When electronic circuits are configured by mounting the electronic parts on the PCB, the greatest issue is a countermeasure against the heat of parts to emit heat. In other words, if a predetermined voltage is applied to the electronic parts, a current flows, so that heat is emitted due to the resistance loss.

[0004] In this case, some heating electronic parts emit the slight amount of heat, so that the operation of the electronic parts may be not damaged by the natural cooling. In contrast, other heating electronic parts emit a great amount of heat, so that the temperature of the electronic parts is continuously increased in spite of the natural cooling. In this case, the electronic parts may be erroneously operated and damaged due to the increase of the temperature thereof. The heat emission causes the problems related to the reliability of the electronic parts.

[0005] However, thermal conductivity associated with the conduction of heat energy generated from the parts makes a trade-off relation with the electrical conductivity. Accordingly, the PCB satisfying the two factors may not be easily fabricated.

DISCLOSURE OF INVENTION

Technical Problem

[0006] The embodiment of the disclosure is to provide a printed circuit board capable of improving heat radiation efficiency and reliability and a method of fabricating the same.

Solution to Problem

[0007] According to the embodiment of the disclosure, there is provided a printed circuit board. The printed circuit board includes an insulating layer, a copper foil formed on the insulating layer and formed therein with a groove to expose a portion of a top surface of the insulating layer, and a thermal conductive layer filled in the groove.

Advantageous Effects of Invention

[0008] According to the embodiment of the disclosure, the printed circuit board having superior heat radiation and cooling functions can be fabricated. When various electronic parts are fabricated by using the printed circuit board, a cooling structure such as a fan or a cooling pipe is not required. Accordingly, the fabricating cost and time can be reduced.

[0009] In addition, since heat emitted from products can be rapidly and effectively dissipated, the reliability of the products can be prevented from being degraded due to the heat.

BRIEF DESCRIPTION OF DRAWINGS

[0010] FIG. 1 is a sectional view showing the temperature variation of a printed circuit board according to the related art;

[0011] FIG. 2 is a top view showing the printed circuit board according to the embodiment of the disclosure;

[0012] FIG. 3 is a sectional view showing a method of fabricating the printed circuit board according to the embodiment of the disclosure;

[0013] FIG. 4 is a sectional view showing a method of fabricating a printed circuit board according to another embodiment of the disclosure; and

[0014] FIG. 5 is a table showing the temperature variation of the printed circuit board according to the embodiment of the disclosure.

MODE FOR THE INVENTION

[0015] Hereinafter, exemplary embodiments of the disclosure will be described in detail with reference to accompanying drawings. The details of other embodiments are contained in the detailed description and accompanying drawings. The advantages, the features, and schemes of achieving the advantages and features of the disclosure will be apparently comprehended by those skilled in the art based on the embodiments, which are detailed later in detail, together with accompanying drawings. The same reference numerals will be assigned to the same elements throughout the whole description.

[0016] FIG. 1 is a sectional view showing the temperature variation of the printed circuit board according to the related art.

[0017] As shown in FIG. 1, in the printed circuit board according to the related art, a high temperature is represented at a section b having a copper foil, and a low temperature is represented at sections a and c without the copper foil. In other words, since the thermal conductivity is relatively low, the discrete section of the thermal conductivity exists. Accordingly, the temperature is not effectively distributed throughout the whole sections, but concentrated on one section. Therefore, the reliability for the device may be degraded.

[0018] FIG. 2 is a top view showing the printed circuit board according to the embodiment of the disclosure.

[0019] As shown in FIG. 2, the printed circuit board according to the embodiment includes a copper foil 200 having a predetermined pattern on an insulating layer 100 and a heat conduction layer 250 formed at a region in which the copper foil 200 is cut. The heat conduction layer 250 is formed at the region in which the copper foil 200 is cut, so that the thermal conductivity between copper foils can be improved.

[0020] FIG. 3 is a sectional view showing the method of fabricating the printed circuit board according to the embodiment of the disclosure.

[0021] First, the copper foil 200 is formed with a predetermined pattern on the insulating layer 100. In general, the printed circuit board is printed with circuits by laminating and etching a foil including copper (Cu), or a circuit pattern is printed on the printed circuit board through a screen printing scheme by using a composition used to print the circuit pattern. In detail, the composition used to print the circuit pattern includes a flux composition including nano silver powders, nano copper powders, nano magnesium powders, nano tellurium powders, nano bismuth powders, nano zirconium powders, nano titanium powders, or conductive powders, which include a mixture of at least one of the above materials, and resin.

[0022] The conductive powders are ground in a size of about 50 nm for the use thereof, and the resin may include pine resin. The conductive powders and the resin are put into a mixer and mixed with each other. Thereafter, the mixture is subject to a milling process, so that a paste-state composition for the printing of the printed circuit board can be obtained. The composition is used to print the circuit pattern through the screen printing scheme.

[0023] The circuit pattern may be formed by using the copper foil 200. The copper foil 200 may include a material representing superior electrical conductivity. A gap 201 is formed by the pattern so that copper foils 200 may be spaced apart from each other. The gap 201 may be formed through a mechanical scheme using a laser. Therefore, the top surface of the insulating layer 100 may be exposed.

[0024] The width of the gap 201 may be in the range of 1 mm to 2 mm, but the embodiment is not limited thereto.

[0025] Next, a thermal conductive layer 250 is filled in the gap 201. The thermal conductive layer 250 may have the same height as that of the copper foil 200. In other words, the lateral side of the thermal conductive layer 250 may make contact with the copper foil 200. The thermal conductive layer 250 may be formed through a photoresist scheme, and may include non-metallic materials representing superior thermal conductivity.

[0026] Subsequently, a solder resist 300 is formed on top surfaces of the copper foil 200 and the thermal conductive layer 250 through a soldering mask work. Therefore, a portion of the top surfaces of the copper foil 200 and the thermal conductive layer 250 may be exposed.

[0027] FIG. 4 is a sectional view showing a method of fabricating a printed circuit board according to still another embodiment of the disclosure.

[0028] The copper foil 200 having a predetermined pattern is formed on the insulating layer 100. The copper foil 200 includes a material representing superior electrical conductivity. The gap 201 is formed in such a manner that copper foils 200 are spaced apart from each other by the pattern. Therefore, a portion of the top surface of the insulating layer 100 may be exposed.

[0029] The width of the gap 201 may be in the range of 1 mm to 2 mm, but the embodiment is not limited thereto.

[0030] Subsequently, the solder resist 300 is formed on the top surface of the copper foil 200. The solder resist 300 is not filled in the gap 201.

[0031] Then, the thermal conductive layer 250 is formed on the top surface of the insulating layer 100 so that the thermal conductive layer 250 is filled in the gap 201. The thermal conductive layer 250 may have the same height as those of the copper foil 200 and the solder resist 300.

[0032] FIG. 5 is a table showing the temperature variation on the printed circuit board according to the embodiment of the disclosure.

[0033] When the gap 201 has a width of 1 mm and has a width of 2 mm, the temperature variation is reduced according to the formation of the thermal conductive layer.

[0034] According to the embodiment of the disclosure, since the thermal conductive layer is filled in the gap of the copper foil having a predetermined pattern, the temperature distribution of the PCB can be uniform.

[0035] Although an exemplary embodiment of the disclosure has been described for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed