Hair Growth Methods Using Fgfr3 Extracellular Domains

Brennan; Thomas ;   et al.

Patent Application Summary

U.S. patent application number 14/185086 was filed with the patent office on 2014-09-18 for hair growth methods using fgfr3 extracellular domains. This patent application is currently assigned to FIVE PRIME THERAPEUTICS, INC.. The applicant listed for this patent is FIVE PRIME THERAPEUTICS, INC.. Invention is credited to Thomas Brennan, Robert Dean, W. Michael Kavanaugh, Janine Powers.

Application Number20140274898 14/185086
Document ID /
Family ID44306074
Filed Date2014-09-18

United States Patent Application 20140274898
Kind Code A1
Brennan; Thomas ;   et al. September 18, 2014

HAIR GROWTH METHODS USING FGFR3 EXTRACELLULAR DOMAINS

Abstract

The present invention relates to a method of promoting hair growth comprising administering a fibroblast growth factor receptor 3 (FGFR3) extracellular domain (ECD), including native FGFR3 ECDs, variants, fragments, and fusion molecules, to a subject in an amount sufficient to promote hair growth.


Inventors: Brennan; Thomas; (Saratoga, CA) ; Dean; Robert; (Alameda, CA) ; Kavanaugh; W. Michael; (Orinda, CA) ; Powers; Janine; (Alameda, CA)
Applicant:
Name City State Country Type

FIVE PRIME THERAPEUTICS, INC.

South San Francisco

CA

US
Assignee: FIVE PRIME THERAPEUTICS, INC.
South San Francisco
CA

Family ID: 44306074
Appl. No.: 14/185086
Filed: February 20, 2014

Related U.S. Patent Documents

Application Number Filing Date Patent Number
13515429 Nov 21, 2012 8685931
PCT/US2010/061157 Dec 17, 2010
14185086
61287690 Dec 17, 2009

Current U.S. Class: 514/9.1 ; 435/320.1; 530/399
Current CPC Class: A61K 31/473 20130101; A61P 17/14 20180101; A61K 38/179 20130101; C07K 14/71 20130101; A61Q 7/00 20130101; A61P 35/00 20180101; A61K 31/506 20130101; A61K 8/64 20130101
Class at Publication: 514/9.1 ; 530/399; 435/320.1
International Class: C07K 14/71 20060101 C07K014/71; A61K 31/506 20060101 A61K031/506; A61K 31/473 20060101 A61K031/473; A61K 38/17 20060101 A61K038/17

Claims



1.-40. (canceled)

41. A method of promoting hair growth comprising administering an FGFR3 ECD and at least one additional agent selected from minoxidil, finasteride, and dutasteride to a subject in an amount sufficient to promote hair growth.

42. A kit comprising one or more containers, wherein each container contains one or more doses of an FGFR3 ECD for promoting hair growth.

43. A vector comprising a polynucleotide that encodes an FGFR3 ECD, wherein the vector is for in vivo expression of FGFR3 ECD in an animal.
Description



TECHNICAL FIELD

[0001] This application is a continuation of U.S. application Ser. No. 13/515,429, which is a national stage application of International Application No. PCT/US10/61157, filed Dec. 17, 2010, which claims priority to U.S. Provisional Application No. 61/287,690, filed Dec. 17, 2009. Each of those applications is incorporated by reference herein in its entirety for any purpose.

[0002] The present invention relates to a method of promoting hair growth comprising administering an FGFR3 extracellular domain (ECD), including native FGFR3 ECDs, variants, fragments, and fusion molecules, to a subject in an amount sufficient to promote hair growth.

BACKGROUND AND SUMMARY

[0003] Hair growth problems are wide-spread. In addition to pattern baldness, which may occur in both males and females, hair loss can be induced by drugs, such as chemotherapy drugs, or by chemical or physical damage, such as by certain hair products or styling techniques. Hair loss may also be triggered by systemic diseases, autoimmune conditions, nutritional deficiencies and physical stress, such as during pregnancy, due to surgery, or due to weight loss. It may also be induced by psychological stress.

[0004] Available treatments to promote hair growth are limited. For example, minoxidil, while relatively safe, is only moderately effective. The 5-alpha reductase inhibitor finasteride is not indicated for women or children and has negative side effects. The use of certain polypeptides to promote hair growth has been suggested. (See e.g., U.S. Pat. No. 7,335,641, U.S. Pat. No. 7,524,505, U.S. Pat. No. 7485618, and U.S. Patent Application No. 2008/0139469.) To date, the only permanent solution to hair loss is hair transplant surgery, which is both expensive and invasive. Thus, there remains a need in the art for additional agents for promoting hair growth. The present disclosure relates to a method of promoting hair growth comprising administering a fibroblast growth factor receptor 3 (FGFR3) extracellular domain (ECD) to a subject in an amount sufficient to promote hair growth.

[0005] Fibroblast growth factors (FGFs) and their receptors (FGFRs) are a highly conserved group of proteins with diverse functions. The FGFR family comprises four major types of receptors, FGFR1, FGFR2, FGFR3, and FGFR4. To date, there are 22 known FGFs, each with the capacity to bind one or more FGFRs. See, e.g., Zhang et al., J. Biol. Chem. 281:15, 694-15,700 (2006). Each FGFR binds to several FGFs, and the different FGFRs may differ from each other both in the selection of FGFs to which they bind as well as in the affinity of those interactions.

[0006] The FGFRs are transmembrane proteins having an extracellular domain (ECD), a transmembrane domain, and an intracytoplasmic tyrosine kinase domain. Extracellular FGFR activation by FGF ligand binding to an FGFR initiates a cascade of signaling events inside the cell, beginning with oligomerization of the receptor and activation of receptor tyrosine kinase activity. Each of the ECDs contains either two or three immunoglobulin-like (Ig) domains. When there are three Ig domains, they are referred to as D1, D2, and D3 domains. Receptors having two Ig domains typically lack D1. An acidic motif, called the acid box, is located in the linker region between D1 and D2 in the FGFR extracellular domain. The acid box is believed to interact with the heparin binding site in the D2 domain. Structural studies of FGFR-FGF complexes have shown that FGF ligands interact extensively with the D2 domain, the D3 domain, and the linker region connecting the D2 and D3 domains of an FGFR ECD. In FGFR1-3, an alternative splicing event leads to three versions of the D3 domain, also called Ig domain III. The splice variants of this domain are referred to as domain .DELTA.8-10, IIIb and IIIc. Domain III or D3 is encoded by three exons, two of which are alternatively spliced. Distinct splice variants of FGFR3 have been identified in a range of tissues and cancers, such as FGFR3 IIIb, FGFR3 IIIc, and FGFR .DELTA.8-10 (lacking exons encoding the C-terminal half of Ig domain III and the transmembrane domain). See, e.g., Tomlinson et al., Cancer Res. 65: 10,441-10,449 (2005).

[0007] In experiments to determine whether an FGFR4 ECD exhibited antitumor activity in a cancer xenograft model, the inventors discovered that an FGFR4 ECD promoted hair growth at the shaved site where the tumor cells were injected. In contrast, an FGFR1 ECD did not promote visible hair growth. In subsequent experiments, both a native FGFR4 ECD fragment fusion molecule and an FGFR4 ECD variant fusion molecule ("ABMut1") that retained FGFR4 ECD ligand binding activity promoted hair growth when administered systemically in mice. Experiments in which ABMut1 or agarose beads bound to ABMut1 were subcutaneously injected into the flank of shaved mice showed that local delivery of ABMut1 also promoted hair growth. Further experiments demonstrated that systemic delivery of ABMut1 could also induce anagen in hair follicles, specifically elongation of the dermal papilla into the fatty layer of the dermis. The inventors conducted similar studies with a native FGFR3 ECD fragment fusion molecule and discovered that the FGFR3 ECD fragment promoted hair growth when administered systemically in mice. In contrast, an FGFR2 ECD did not promote visible hair growth. Further experiments demonstrated that the FGFR3 ECD fragment fusion molecule could also induce anagen in hair follicles, specifically elongation of the dermal papilla into the fatty layer of the dermis, while the FGFR2 ECD did not have that effect. See Example 6, FIG. 3A and FIG. 3B. Yet further experiments demonstrate that the FGFR3 ECD fragment fusion molecule stimulates hair growth in a dose dependent manner. See Example 7, FIG. 4.

[0008] In certain embodiments, the invention provides a method of promoting hair growth comprising administering an FGFR3 ECD to a subject in an amount sufficient to promote hair growth. In certain embodiments, the FGFR3 ECD is a human FGFR3 ECD. In certain embodiments, the FGFR3 ECD is a non-human FGFR3 ECD. In certain embodiments, the FGFR3 ECD is a native FGFR3 ECD. In certain embodiments, the FGFR3 ECD is an FGFR3 ECD variant. In certain embodiments, the FGFR3 ECD is an FGFR3 ECD splice variant. In certain embodiments, the FGFR3 ECD comprises an Ig domain III chosen from .DELTA.8-10, IIIb and IIIc (the FGFR3 ECD is also referred to as FGFR3-.DELTA.8-10 ECD, FGFR3-IIIb ECD, or FGFR3-IIIc ECD). In certain embodiments, the FGFR3 ECD is an FGFR3 ECD fragment. In certain embodiments, the FGFR3 ECD is a native FGFR3 ECD fragment. In certain embodiments, the FGFR3 ECD is a variant of an FGFR3 ECD fragment. In certain embodiments, the FGFR3 ECD is a fragment of an FGFR3 ECD splice variant. In certain embodiments, the FGFR3 ECD is an FGFR3 ECD acidic region mutein. In certain embodiments, the FGFR3 ECD may be engineered to have a decrease in the total number of acidic residues within the D1-D2 linker. In certain embodiments, the FGFR3 ECD is an FGFR3 ECD D1-D2 linker chimera. In certain embodiments, the FGFR3 ECD D1-D2 linker chimera comprises a D1-D2 linker selected from an FGFR1 D1-D2 linker, an FGFR2 D1-D2 linker, and an FGFR4 D1-D2 linker, in place of the FGFR3 D1-D2 linker. In certain embodiments, the FGFR3 ECD is an FGFR3 ECD glycosylation mutant. In certain embodiments, the amino acid sequence of the FGFR3 ECD is at least 80% identical to SEQ ID NO: 4, 5, 6, or 30. In certain embodiments, the amino acid sequence of the FGFR3 ECD is at least 85% identical to SEQ ID NO: 4, 5, 6, or 30. In certain embodiments, the amino acid sequence of the FGFR3 ECD is at least 90% identical to SEQ ID NO: 4, 5, 6, or 30. In certain embodiments, the amino acid sequence of the FGFR3 ECD is at least 95% identical to SEQ ID NO: 4, 5, 6, or 30. In certain embodiments, the amino acid sequence of the FGFR3 ECD is at least 99% identical to SEQ ID NO: 4, 5, 6, or 30. In certain embodiments, the FGFR3 ECD comprises an amino acid sequence chosen from SEQ ID NOs: 4, 5, 6, or 30. In certain embodiments, the FGFR3 ECD comprises an amino acid sequence chosen from SEQ ID NOs: 34 and 36. In certain embodiments, the FGFR3 ECD lacks a signal sequence. In certain embodiments, the FGFR3 ECD comprises a signal sequence. In certain embodiments, the signal sequence is the native signal sequence of FGFR1, FGFR2, FGFR3, or FGFR4 (SEQ ID NOs: 19-22). In certain embodiments, the signal sequence is not an FGFR signal sequence, but from a heterologous protein.

[0009] In certain embodiments, the subject is a rodent, simian, human, feline, canine, equine, bovine, porcine, ovine, caprine, mammalian laboratory animal, mammalian farm animal, mammalian sport animal, or mammalian pet. In certain embodiments, the subject is a human. In certain embodiments, the administering is intravenous, subcutaneous, intraperitoneal, topical, or transdermal.

[0010] In certain embodiments, the invention provides a method of growing hair comprising administering an FGFR3 ECD fusion molecule to a subject in an amount sufficient to promote hair growth. In certain embodiments, the FGFR3 ECD fusion molecule comprises an FGFR3 ECD polypeptide and a fusion partner. In certain embodiments, the FGFR3 ECD polypeptide is a native FGFR3 ECD. In certain embodiments, the FGFR3 ECD polypeptide is an FGFR3 ECD variant. In certain embodiments, the FGFR3 ECD polypeptide is an FGFR3 ECD splice variant. In certain embodiments, the FGFR3 ECD polypeptide is FGFR3-.DELTA.8-10 ECD, FGFR3-IIIb ECD, or FGFR3-IIIc ECD. In certain embodiments, the FGFR3 ECD polypeptide is an FGFR3 ECD fragment. In certain embodiments, the FGFR3 ECD polypeptide is a native FGFR3 ECD fragment. In certain embodiments, the FGFR3 ECD polypeptide is a variant of an FGFR3 ECD fragment. In certain embodiments, the FGFR3 ECD polypeptide is a fragment of an FGFR3 ECD splice variant. In certain embodiments, the FGFR3 ECD polypeptide is an FGFR3 ECD acidic region mutein. In certain embodiments, the FGFR3 ECD polypeptide may be engineered to have a decrease in the total number of acidic residues within the D1-D2 linker. In certain embodiments, the FGFR3 ECD polypeptide is an FGFR3 ECD D1-D2 linker chimera. In certain embodiments, the FGFR3 ECD D1-D2 linker chimera comprises a D1-D2 linker selected from an FGFR1 D1-D2 linker, an FGFR2 D1-D2 linker, and an FGFR4 D1-D2 linker, in place of the FGFR3 D1-D2 linker. In certain embodiments, the FGFR3 ECD polypeptide is an FGFR3 ECD glycosylation mutant. In certain embodiments, the amino acid sequence of the FGFR3 ECD polypeptide is at least 80% identical to SEQ ID NO: 4, 5, 6, or 30. In certain embodiments, the amino acid sequence of the FGFR3 ECD polypeptide is at least 85% identical to SEQ ID NO: 4, 5, 6, or 30. In certain embodiments, the amino acid sequence of the FGFR3 ECD polypeptide is at least 90% identical to SEQ ID NO: 4, 5, 6, or 30. In certain embodiments, the amino acid sequence of the FGFR3 ECD polypeptide is at least 95% identical to SEQ ID NO: 4, 5, 6, or 30. In certain embodiments, the amino acid sequence of the FGFR3 ECD polypeptide is at least 99% identical to SEQ ID NO: 4, 5, 6, or 30. In certain embodiments, the FGFR3 ECD polypeptide comprises an amino acid sequence chosen from SEQ ID NOs: 4, 5, 6, and 30. In certain embodiments, the FGFR3 ECD polypeptide comprises an amino acid sequence chosen from SEQ ID NOs: 34 and 36. In certain embodiments, the FGFR3 ECD polypeptide lacks a signal sequence. In certain embodiments, the FGFR3 ECD comprises a signal sequence. In certain embodiments, the signal sequence is the native signal sequence of FGFR1, FGFR2, FGFR3, or FGFR4 (SEQ ID NOs: 19-22). In certain embodiments, the signal sequence is not an FGFR signal sequence, but from a heterologous protein.

[0011] In certain embodiments, a method of growing hair comprising administering an FGFR3 ECD fusion molecule to a subject in an amount sufficient to promote hair growth is provided, wherein the fusion partner in the FGFR3 ECD fusion molecule is selected from an Fc, albumin, and polyethylene glycol. In certain embodiments, the fusion partner is an Fc. In certain embodiments, the FGFR3 ECD fusion molecule has an amino acid sequence chosen from SEQ ID NOs: 7-10. In certain embodiments, the FGFR3 ECD fusion molecule has an amino acid sequence chosen from SEQ ID NOs: 11-15, 28, 31-33, 35 and 37. In certain embodiments, the FGFR3 ECD fusion molecule has an amino acid sequence chosen from SEQ ID NO.: 9, 10 and 33. In certain embodiments, the FGFR3 ECD fusion molecule lacks a signal sequence. In certain embodiments, the FGFR3 ECD fusion molecule comprises a signal sequence. In certain embodiments, the signal sequence is the native signal sequence of FGFR1, FGFR2, FGFR3, or FGFR4. In certain embodiments, the signal sequence is not an FGFR signal sequence.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] FIG. 1 shows an extracellular domain (ECD) amino acid sequence of an FGFR3 (SEQ ID NO: 29). The amino acid sequence in FIG. 1 includes the signal peptide, which is cleaved in the mature fusion protein. The numbers refer to the amino acid position, and certain domains within the ECD are illustrated in gray above the amino acid numbers. The amino acid positions within the signal peptide are given negative values because they are cleaved in the mature fusion protein. The first amino acid residue of the mature fusion protein is designated as amino acid position 1. The signal peptide and domains D1, D2, and D3 are noted in gray shading. The linker between the first and second Ig domains (referred to herein interchangeably as the "D1-D2 linker," "FGFR3 ECD D1-D2 linker" and "FGFR3 ECD D1-D2 linker region") and the linker between the second and third Ig domains (referred to herein interchangeably as the "D2-D3 linker," "FGFR3 ECD D2-D3 linker," and "FGFR3 ECD D2-D3 linker region") are illustrated in a darker gray.

[0013] FIG. 2 shows an amino acid sequence alignment of a portion of the native extracellular domains (ECDs) of the FGFR isoforms FGFR3-.DELTA.8-10, FGFR3-IIIb, FGFR3-IIIc, FGFR1-IIIb, FGFR1-IIIc, FGFR2-IIIb, FGFR2-IIIc, and FGFR4, denoting the immunoglobulin (Ig) domain III.

[0014] FIG. 3A shows that systemic delivery of an FGFR3 ECD-Fc (SEQ ID NO: 33) and ABMut1 (SEQ ID NO: 31, an FGFR4 ECD variant-Fc), promotes a substantial amount of clearly visible hair growth by 14 days post-dose, compared to vehicle-treated mice and mice treated with an FGFR2 ECD-Fc (SEQ ID NO: 32) by 14 days post-dose.

[0015] FIG. 3B shows that systemic delivery of an FGFR3 ECD-Fc (SEQ ID NO: 33) and ABMut1 (SEQ ID NO: 31, an FGFR4 ECD variant-Fc) induces anagen in hair follicles of eight-week-old mice. Shown are paraffin-embedded skin biopsies stained with Haematoxylin/Eosin from mice treated with vehicle, the FGFR3 ECD-Fc, an FGFR2 ECD-Fc or ABMut1 at days 14 post-dose. By day 14, mice treated with the FGFR3 ECD-Fc or ABMut1 showed an elongation of the dermal papilla (*) into the fatty layer of the dermis (), showing that a single dose of the FGFR3 ECD-Fc or ABMut1 can induce anagen (the growth phase of the hair cycle).

[0016] FIG. 4 shows that an FGFR3 ECD-Fc stimulates hair growth in mice in a dose dependent manner.

DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS

[0017] The section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described.

Definitions

[0018] Unless otherwise defined, scientific and technical terms used in connection with the present invention shall have the meanings that are commonly understood by those of ordinary skill in the art. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular.

[0019] Certain techniques used in connection with recombinant DNA, oligonucleotide synthesis, tissue culture and transformation (e.g., electroporation, lipofection), enzymatic reactions, and purification techniques are known in the art. Many such techniques and procedures are described, e.g., in Sambrook et al. Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)), among other places. In addition, certain techniques for chemical syntheses, chemical analyses, pharmaceutical preparation, formulation, delivery, and treatment of patients are also known in the art.

[0020] In this application, the use of "or" means "and/or" unless stated otherwise. In the context of a multiple dependent claim, the use of "or" refers back to more than one preceding independent or dependent claim in the alternative only. Also, terms such as "element" or "component" encompass both elements and components comprising one unit and elements and components that comprise more than one subunit unless specifically stated otherwise.

[0021] As utilized in accordance with the present disclosure, the following terms, unless otherwise indicated, shall be understood to have the following meanings:

[0022] The terms "nucleic acid molecule" and "polynucleotide" may be used interchangeably, and refer to a polymer of nucleotides. Such polymers of nucleotides may contain natural and/or non-natural nucleotides, and include, but are not limited to, DNA, RNA, and PNA.

[0023] The terms "polypeptide" and "protein" are used interchangeably, and refer to a polymer of amino acid residues. Such polymers of amino acid residues may contain natural and/or non-natural amino acid residues, and include, but are not limited to, peptides, oligopeptides, dimers, trimers, and multimers of amino acid residues. The terms "polypeptide" and "protein" include natural and non-natural amino acid sequences, and both full-length proteins and fragments thereof. Those terms also include post-translationally modified polypeptides and proteins, including, for example, glycosylated, sialylated, acetylated, and/or phosphorylated polypeptides and proteins.

[0024] The terms "acidic amino acid," "acidic amino acid residue," and "acidic residue" are used interchangeably herein and refer to an amino acid residue that is negatively charged at physiological pH. Acidic amino acids include, but are not limited to, aspartic acid (Asp, D) and glutamic acid (Glu, E).

[0025] The terms "non-acidic amino acid," "non-acidic amino acid residue," and "non-acidic residue" are used interchangeably and refer to an amino acid residue that is not negatively charged at physiological pH.

[0026] The terms "conservative amino acid substitutions" and "conservative substitutions" are used interchangeably herein to refer to intended amino acid swaps within a group of amino acids wherein an amino acid is exchanged with a different amino acid of similar size, structure, charge, and/or polarity. Examples include exchange of one of the aliphatic or hydrophobic amino acids Ala, Val, Leu, and Ile for one of the other amino acids in that group of four; exchange between the hydroxyl-containing residues Ser and Thr; exchange between the acidic residues Asp and Glu; exchange between the amide residues Asn and Gln, exchange between the basic residues Lys, Arg, and His; exchange between the aromatic residues Phe, Tyr, and Trp; and exchange between the small-sized amino acids Ala, Ser, Thr, Met, and Gly.

[0027] The terms "FGFR extracellular domain" and "FGFR ECD" in the context of this invention refer to the portion of an FGFR that is normally found in the extracellular space. An FGFR ECD may include the amino-terminal residues that precede the D1 domain, the D1 domain, the D1-D2 linker region, the D2 domain, the D2-D3 linker region, the D3 domain (Ig domain III), and the carboxy-terminal residues that follow the D3 domain.

[0028] The terms "FGFR3 extracellular domain" and "FGFR3 ECD" as used herein refer to a genus consisting of the following sub-genuses: native FGFR3 ECDs, FGFR3 ECD variants, FGFR3 ECD fragments, native FGFR3 ECD fragments, variants of FGFR3 ECD fragments, FGFR3 ECD acidic region muteins, FGFR3 ECDs engineered to have a decrease in the total number of acidic residues within the D1-D2 linker, FGFR3 ECD D1-D2 linker chimeras, FGFR3 ECD glycosylation mutants, and FGFR3 ECD fusion molecules, as well as non-human FGFR3 ECDs. FGFR3 ECDs can include those annotated as NP 001156685, P22607, NP.sub.--000133, or NP.sub.--075254, as described by the National Center of Bioinformatics Information (NCBI). The FGFR3 ECDs as defined herein bind FGF1 and/or FGF18 as tested herein. See Example 5.

[0029] As used herein, the terms "native FGFR3 ECD" and "wild-type FGFR3 ECD" are used interchangeably to refer to an FGFR3 ECD consisting of an amino acid sequence selected from SEQ ID NOs: 4,5, and 6. Native FGFR3 ECDs and wild-type FGFR3 ECDs include FGFR3 ECD splice variants or isoforms. As used herein, the terms FGFR3 ECD "splice variants" or "splice isoforms" are used interchangeably to refer to naturally occurring alternative splice forms of FGFR3 ECD, such as FGFR3-.DELTA.8-10 ECD (SEQ ID NO: 6), FGFR3-IIIb (ECD SEQ ID NO: 4) and FGFR3-IIIc ECD (SEQ ID NO: 5), which comprise an Ig domain III chosen from .DELTA.8-10, IIIb, and IIIc, respectively.

[0030] As used herein, the term "FGFR3-.DELTA.8-10 ECD" refers to the FGFR3 ECD with an Ig domain III chosen from native FGFR3-.DELTA.8-10 (see SEQ ID NO: 6) and .DELTA.8-10 variants. The term "FGFR3-IIIb ECD" refers to the FGFR3 ECD with an Ig domain III chosen from native IIIb (see SEQ ID NO: 4) and IIIb variants. The term "FGFR3-IIIc ECD" refers to the FGFR3 ECD with an Ig domain III chosen from native IIIc (see SEQ ID NO: 5) and IIIc variants.

[0031] As used herein, the term "FGFR3 ECD variants" refers to FGFR3 ECDs containing amino acid additions, deletions, and/or substitutions in comparison to the native FGFR3 ECDs, such as those of SEQ ID NOs: 4, 5, and 6. Amino acid additions and deletions may be made at the amino-terminus, at the carboxy-terminus, and/or within SEQ ID NOs: 4, 5, and 6. An exemplary FGFR3 ECD variant that contains amino acid deletions has the amino acid sequence of SEQ ID No: 30. FGFR3 ECD variants may include amino acid substitutions within the FGFR3 ECD that inhibit N-glycosylation, referred to interchangeably herein as "FGFR3 ECD glycosylation mutants" and "FGFR3 ECD N-glycan mutants." The FGFR3 ECD variants as defined herein retain the ability to bind FGF1 and/or FGF18 as tested herein.

[0032] As used herein, the term "native FGFR3 ECD fragment" refers to an FGFR3 ECD having an amino acid sequence selected from SEQ ID NOs: 4, 5, and 6, but modified in that amino acid residues have been deleted from the amino-terminus and/or from the carboxy-terminus of the polypeptide. A non-limiting exemplary FGFR3 ECD fragment has the amino acid sequence of SEQ ID NO: 30, which corresponds to the amino acid sequence of SEQ ID NO: 5, but with the last three carboxy-terminal amino acid residues, YAG, deleted.

[0033] As used herein, the terms "FGFR3 ECD fragment variant" and "variant of FGFR3 ECD fragment" are used interchangeably to refer to FGFR3 ECDs containing, not only amino acid deletions from the amino- and/or carboxy-terminus of SEQ ID NOs: 4, 5, and 6, but also amino acid additions, deletions, and/or substitutions within the retained portion of SEQ ID NOs: 4, 5, and 6.

[0034] Collectively, "native FGFR3 ECD fragments" and "FGFR3 ECD fragment variants" form the genus of "FGFR3 ECD fragments." FGFR3 ECD fragmemts as defined herein retain the ability to bind FGF1 and/or FGF18 as tested herein.

[0035] The term "FGFR3 ECD D1 domain" refers to the first Ig domain of a native FGFR3 ECD. The native FGFR3 ECD D1 domain consists of the sequence of amino acids 31-88, inclusive, of SEQ ID NO: 4, SEQ ID NO: 5, or SEQ ID NO: 6. (See also FIG. 1.)

[0036] The term "FGFR3 ECD D2 domain" refers to the second Ig domain of a native FGFR3 ECD. The native FGFR3 ECD D2 domain consists of the sequence of amino acids 129-221, inclusive, of SEQ ID NO: 4, SEQ ID NO: 5, or SEQ ID NO: 6. (See also FIG. 1.)

[0037] The term "FGFR3 ECD D3 domain" refers to the third Ig domain (Ig domain III) of a native FGFR3 ECD. The native FGFR3 ECD D3 domain consists of the sequence of amino acids 246-317, inclusive, of SEQ ID NO: 5; or consists of the sequence of amino acids 231-327, inclusive, of SEQ ID NO: 4. (See also FIG. 1.)

[0038] The terms "FGFR3 ECD D1-D2 linker" and "FGFR3 ECD D1-D2 linker region" are used interchangeably to refer to the linker between the first and second Ig domains (the D1 and D2 domains, respectively) of the FGFR3 ECD. The FGFR3 ECD D1-D2 linker has the sequence DAPSSGDDEDGEDEAEDTGVDTG (SEQ ID NO: 23), which is amino acids 105 to 127, inclusive, of SEQ ID NO: 4, SEQ ID NO: 5, or SEQ ID NO: 6. (See also FIG. 1.)

[0039] The terms "FGFR3 ECD D2-D3 linker" and "FGFR3 ECD D2-D3 linker region" are used interchangeably to refer to the linker between the second and third Ig domains (the D2 and D3 domains, respectively) of the FGFR3 ECD. (See also FIG. 1.)

[0040] As used herein, an "FGFR3 ECD acidic region mutein" is an FGFR3 ECD variant having a greater or smaller number of acidic residues in the D1-D2 linker region than the native FGFR3 ECD D1-D2 linker region. An exemplary FGFR3 ECD acidic region has the amino acid sequence chosen from SEQ ID NOs: 24-27 and 41-43.

[0041] An "FGFR3 ECD D1-D2 linker chimera" refers to an FGFR3 ECD acidic region mutein wherein the D1-D2 linker region has been replaced with the D1-D2 linker region from FGFR1, FGFR2, or FGFR4. In certain exemplary D1-D2 linker chimeras, the D1-D2 linker of the FGFR3 ECD is exchanged for a D1-D2 linker of FGFR1: DALPSSEDDDDDDDSSSEEKETDNTKPNPV (SEQ ID NO: 39). In certain exemplary D1-D2 linker chimeras, the D1-D2 linker of the FGFR3 ECD is exchanged for a D1-D2 linker of FGFR2: DAISSGDDED DTDGAEDFVS ENSNNKR (SEQ ID NO: 40). In certain exemplary D1-D2 linker chimeras, the D1-D2 linker of the FGFR3 ECD is exchanged for a D1-D2 linker of FGFR4: DSLTSSNDDED PKSHRDPSNR HSYPQQ (SEQ ID NO: 38). The FGFR3 ECD linker chimeras as defined herein retain the ability to bind FGF1 and/or FGF18 as tested herein.

[0042] FGFR3 ECD variants may include amino acid substitutions within the FGFR3 ECD sequence that inhibit N-glycosylation, referred to interchangeably herein as "FGFR3 ECD glycosylation mutants" and "FGFR3 ECD N-glycan mutants." In certain embodiments, one or more amino acids are mutated to prevent glycosylation at that site in the polypeptide. Non-limiting exemplary FGFR3 ECD amino acids that may be glycosylated include N76, N203, N240, N272, N293, and N306 in SEQ ID NO: 5. Accordingly, one or more of those amino acids may be substituted. Non-limiting exemplary amino acid mutations in FGFR3 ECD glycosylation mutants include N76A, N203A, N240A, N272A, N293A, and N306A in SEQ ID NO: 5. The FGFR3 ECD glycosylation mutants as defined herein retain the ability to bind FGF1 and/or FGF18 as tested herein.

[0043] The terms "FGFR3 ECD fusion molecule" and "FGFR3 ECD fusion" are used interchangeably herein to refer to an FGFR3 ECD comprising an FGFR3 ECD polypeptide and a fusion partner. FGFR3 ECD fusions may be constructed based upon any of the FGFR3 ECD genera defined above or any of the FGFR3 ECD species described elsewhere herein. The fusion partner may be linked to either the amino-terminus or the carboxy-terminus of the polypeptide. In certain embodiments, the polypeptide and the fusion partner are covalently linked. If the fusion partner is also a polypeptide ("the fusion partner polypeptide"), the polypeptide and the fusion partner polypeptide may be part of a continuous amino acid sequence. In such cases, the polypeptide and the fusion partner polypeptide may be translated as a single polypeptide from a coding sequence that encodes both the polypeptide and the fusion partner polypeptide. In certain embodiments, the polypeptide and the fusion partner are covalently linked through other means, such as, for example, a chemical linkage other than a peptide bond. Many methods of covalently linking polypeptides to other molecules (for example, fusion partners) are known in the art. The FGFR3 ECD fusion molecules as defined herein retain the ability to bind FGF1 and/or FGF18 as tested herein.

[0044] In certain embodiments, the polypeptide and the fusion partner are noncovalently linked. In certain such embodiments, they may be linked, for example, using binding pairs. Exemplary binding pairs include, but are not limited to, biotin and avidin or streptavidin, an antibody and its antigen, etc.

[0045] Certain exemplary fusion partners include, but are not limited to, an immunoglobulin Fc domain, albumin, and polyethylene glycol. The amino acid sequences of certain exemplary Fc domains are shown in SEQ ID NOs: 16-18. Exemplary FGFR3 ECD Fc fusions include those shown in Table 4 below.

[0046] In certain embodiments, the FGFR3 amino acid sequence is derived from that of a non-human mammal. Such FGFR3 are termed "non-human FGFR3." In such embodiments, the FGFR3 sequence may be derived from mammals including, but not limited to, rodents, simians, felines, canines, equines, bovines, porcines, ovines, caprines, mammalian laboratory animals, mammalian farm animals, mammalian sport animals, and mammalian pets. Known non-human FGFR3 sequences include those with GenBank Accession Nos. NP.sub.--001156687, NP.sub.--001156688, NP.sub.--001156689, NP.sub.--445881, NP.sub.--990840, and NP.sub.--776743. Such FGFR3 sequences can be modified in the same way as the human FGFR3 sequences described above. In other words, non-human FGFR3 includes the corresponding native FGFR3, FGFR3 variants, FGFR3 fragments, native FGFR3 fragments, variants of FGFR3 fragments, and FGFR3 fusion molecules.

[0047] In certain embodiments, the FGFR3 ECD amino acid sequence is derived from that of a non-human mammal. Such FGFR3 ECDs are termed "non-human FGFR3 ECDs." In such embodiments, the FGFR3 ECD sequence may be derived from mammals including, but not limited to, rodents, simians, felines, canines, equines, bovines, porcines, ovines, caprines, mammalian laboratory animals, mammalian farm animals, mammalian sport animals, and mammalian pets. Known non-human FGFR3 ECD sequences include those annaoted as such in sequences identified by GenBank Accession Nos. NP.sub.--001156687, NP.sub.--001156688, NP.sub.--001156689, NP.sub.--445881, NP.sub.--990840, and NP.sub.--776743. Such FGFR3 ECD sequences can be modified in the same way as the human FGFR3 ECD sequences described above. In other words, non-human FGFR3 ECDs include the corresponding native FGFR3 ECDs, FGFR3 ECD variants, FGFR3 ECD fragments, native FGFR3 ECD fragments, variants of FGFR3 ECD fragments, FGFR3-.DELTA.8-10 ECDs, FGFR3-IIIb ECDs, and FGFR3-IIIc ECDs, FGFR3 ECD acidic region muteins, FGFR3 ECD D1-D2 linker chimeras, FGFR3 ECD glycosylation mutants, and FGFR3 ECD fusion molecules. The non-human FGFR3 ECD as defined herein are able to bind the corresponding non-human FGF1 and/or FGF18 as tested herein.

[0048] The terms "signal peptide" and "signal sequence" are used interchangeably herein to refer to a sequence of amino acid residues that facilitates secretion of a polypeptide from a mammalian cell. A signal peptide is typically cleaved upon export of the polypeptide from the mammalian cell. Certain exemplary signal peptides include, but are not limited to, the native signal peptides of FGFR1, FGFR2, FGFR3, and FGFR4, such as, for example, the amino acid sequences of SEQ ID NOs: 19-22. Certain exemplary signal peptides also include signal peptides from heterologous proteins. Other exemplary signal peptides also include signal peptides from non-human proteins such as non-human FGFR1, FGFR2, FGFR3, and FGFR4. A "signal sequence" refers to a polynucleotide sequence that encodes a signal peptide.

[0049] A "vector" refers to a polynucleotide that is used to express a polypeptide of interest in a host cell. A vector may include one or more of the following elements: an origin of replication, one or more regulatory sequences (such as, for example, promoters and/or enhancers) that regulate the expression of the polypeptide of interest, and/or one or more selectable marker genes (such as, for example, antibiotic resistance genes and genes that can be used in colorimetric assays, e.g., .beta.-galactosidase).

[0050] A "host cell" refers to a cell that can be or has been a recipient of a vector or isolated polynucleotide. Host cells may be prokaryotic cells or eukaryotic cells. Exemplary eukaryotic cells include mammalian cells, such as primate or non-primate animal cells; fungal cells; plant cells; and insect cells. Certain exemplary mammalian cells include, but are not limited to, 293 and CHO cells.

[0051] The term "isolated" as used herein refers to a molecule that has been separated from at least some of the components with which it is typically found in nature. For example, a polypeptide is referred to as "isolated" when it is separated from at least some of the components of the cell in which it was produced. Where a polypeptide is secreted by a cell after expression, physically separating the supernatant containing the polypeptide from the cell that produced it is considered to be "isolating" the polypeptide. Similarly, a polynucleotide is referred to as "isolated" when it is not part of the larger polynucleotide (such as, for example, genomic DNA or mitochondrial DNA, in the case of a DNA polynucleotide) in which it is typically found in nature, or is separated from at least some of the components of the cell in which it was produced, e.g., in the case of an RNA polynucleotide. Thus, a DNA polynucleotide that is contained in a vector inside a host cell may be referred to as "isolated" so long as that polynucleotide is not found in that vector in nature.

[0052] The term "subject" is used herein to refer to mammals, including, but not limited to, rodents, simians, humans, felines, canines, equines, bovines, porcines, ovines, caprines, mammalian laboratory animals, mammalian farm animals, mammalian sport animals, and mammalian pets.

[0053] "Treatment," as used herein, covers any administration or application of a therapeutic for disease in a mammal, including a human, and includes inhibiting the disease or progression of the disease, partially inhibiting or slowing the disease or its progression, arresting its development, partially or fully relieving the disease, or curing the disease, for example, by causing regression, or restoring or repairing a lost, missing, or defective function; or stimulating an inefficient process.

[0054] "Administration," as used herein, includes both self-administration by the subject as well as administration by another individual, such as a physician, nurse, or veterinarian.

[0055] A "pharmaceutically acceptable carrier" refers to a non-toxic solid, semisolid, or liquid filler, diluent, encapsulating material, formulation auxiliary, or carrier conventional in the art for use with a therapeutic agent for administration to a subject. A pharmaceutically acceptable carrier is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation. The pharmaceutically acceptable carrier is appropriate for the formulation employed. For example, if the composition is to be administered orally, the carrier may be a gel capsule. If the composition is to be administered subcutaneously, the carrier ideally is not irritable to the skin and does not cause injection site reaction.

FGFR3 ECDs

[0056] As defined above, an FGFR3 ECD is a genus consisting of the following sub-genuses: native FGFR3 ECDs, FGFR3 ECD variants, FGFR3 ECD fragments, native FGFR3 ECD fragments, variants of FGFR3 ECD fragments, FGFR3 ECD acidic region muteins, FGFR3 ECDs engineered to have a decrease in the total number of acidic residues within the D1-D2 linker, FGFR3 ECD D1-D2 linker chimeras, FGFR3 ECD glycosylation mutants, and FGFR3 ECD fusion molecules, as well as non-human FGFR3 ECDs. FGFR3 ECDs can include those annotated as NP.sub.--001156685, P22607, NP.sub.--000133, or NP.sub.--075254, as described by the National Center of Bioinformatics Information (NCBI). The FGFR3 ECDs as defined herein bind FGF1 and/or FGF18 as tested herein. (See Example 5).

[0057] Description of the method used herein to test FGF1 and FGF18 binding by FGFR3 ECD is provided in Example 5. A Biacore.RTM. T100 surface plasmon resonance (SPR) technology-based assay was used to measure binding of FGF ligands to FGFR3 ECD. In certain embodiments, an FGFR3 ECD binds to FGF1 with an equilibrium dissociation constant (K.sub.D) value no more than 100 nM, or with a K.sub.D value no more than 10 nM, or with a K.sub.D value no more than 1 nM, or with a K.sub.D value no more than 0.1 nM, in a Biacore.RTM. T100 ligand binding assay. (See Example 5.) In certain embodiments, an FGFR3 ECD binds to FGF18 with a K.sub.D value no more than 100 nM, or with a K.sub.D value no more than 10 nM, or with a K.sub.D value no more than 1 nM, with a K.sub.D value no more than 0.1 nM, or with a K.sub.D value no more than 0.01 nM, in a Biacore.RTM. T100 ligand binding assay. (Id.)

Signal Peptides

[0058] Typically, the signal peptide is cleaved from the mature FGFR3 ECD polypeptide. Thus, in many embodiments, the FGFR3 ECD lacks a signal peptide. Nonetheless, in certain embodiments, an FGFR3 ECD includes at least one signal peptide, which may be selected from a native FGFR3 signal peptide and/or a heterologous signal peptide. In some embodiments, the FGFR3 ECD comprises a signal sequence at its amino terminus. Any one of the above genuses of polypeptides defined above or the polypeptide species described herein may further include a signal peptide. Exemplary signal peptides include, but are not limited to, the signal peptides of FGFR1, FGFR2, FGFR3, and FGFR4, such as, for example, the amino acid sequences of SEQ ID NOs: 19 to 22. In other embodiments, the signal peptide may be a signal peptide from a heterologous protein.

FGFR3 ECD Fusion Molecules and Their Construction

[0059] In some embodiments, the FGFR3 ECD is a fusion molecule. Accordingly, any one of the genuses of polypeptides defined above or the polypeptide species described herein may further include a fusion partner. FGFR3 ECD fusion molecules comprising an FGFR3 ECD polypeptide and a fusion partner may be used in the methods herein.

[0060] Certain exemplary FGFR3 ECD fusion molecules are provided in Table 4. For example, an exemplary FGFR3-IIIb ECD Fc fusion (SEQ ID NO: 7) is a native FGFR3-IIIb ECD fused to an Fc. An exemplary FGFR3-IIIb ECD Fc fusion with a GS linker has the amino acid sequence of SEQ ID NO: 8. An exemplary FGFR3-IIIc ECD Fc fusion (SEQ ID NO: 9) is a native FGFR3-IIIc ECD fused to an Fc. An exemplary FGFR3-IIIc ECD Fc fusion with a GS linker has the amino acid sequence of SEQ ID NO: 10. FGFR3-IIIc ECD .DELTA.3Fc fusion with a GS linker (SEQ ID NO: 33) is a native FGFR3-IIIc ECD fragment with a 3 amino acid C-terminal deletion fused to an Fc through the linker glycine-serine ("GS"). Certain exemplary FGFR3 ECD fusion molecules also are shown in SEQ ID NO: 11 (a native FGFR3-IIIc ECD fragment with a 4 amino acid C-terminal deletion fused to an Fc), SEQ ID NO: 12 (a native FGFR3-IIIc ECD fragment with a 8 amino acid C-terminal deletion fused to an Fc), SEQ ID NO: 13 (a native FGFR3-IIIc ECD fragment with a 9 amino acid C-terminal deletion fused to an Fc), SEQ ID NO: 14 (a native FGFR3-IIIc ECD fragment with a 13 amino acid C-terminal deletion fused to an Fc), SEQ ID NO: 15 (a native FGFR3-IIIc ECD fragment with a 20 amino acid C-terminal deletion fused to an Fc), SEQ ID NO: 28, SEQ ID NO: 35, and SEQ ID NO: 37.

[0061] Fusion Partners and Conjugates

[0062] In certain embodiments, a fusion partner is selected that imparts favorable pharmacokinetics and/or pharmacodynamics on the FGFR3 ECD fusion molecule.

[0063] Non-limiting exemplary fusion partners include polymers, polypeptides, lipophilic moieties, and succinyl groups. Exemplary polypeptide fusion partners include serum albumin and an antibody Fc domain. Exemplary polymer fusion partners include, but are not limited to, polyethylene glycol (PEG), including polyethylene glycols having branched and/or linear chains. Some embodiments may include more than one fusion partner, such as an Fc and a polymer fusion partner such as PEG.

[0064] Oligomerization Domain Fusion Partners

[0065] In various embodiments, oligomerization offers certain functional advantages to a fusion protein, including, but not limited to, multivalency, increased binding strength, and the combined function of different domains. Accordingly, in certain embodiments, a fusion partner comprises an oligomerization domain, for example, a dimerization domain. Exemplary oligomerization domains include, but are not limited to, coiled-coil domains, including alpha-helical coiled-coil domains; collagen domains; collagen-like domains, and certain immunoglobulin domains. Certain exemplary coiled-coil polypeptide fusion partners include the tetranectin coiled-coil domain; the coiled-coil domain of cartilage oligomeric matrix protein; angiopoietin coiled-coil domains; and leucine zipper domains. Certain exemplary collagen or collagen-like oligomerization domains include, but are not limited to, those found in collagens, mannose binding lectin, lung surfactant proteins A and D, adiponectin, ficolin, conglutinin, macrophage scavenger receptor, and emilin.

[0066] Antibody Fc Immunoglobulin Domain Fusion Partners

[0067] Many Fc domains that could be used as fusion partners are known in the art. In certain embodiments, a fusion partner is an Fc immunoglobulin domain. An Fc fusion partner may be a wild-type Fc found in a naturally occurring antibody, a variant thereof, or a fragment thereof. Non-limiting exemplary Fc fusion partners include Fcs comprising a hinge and the CH2 and CH3 constant domains of a human IgG, for example, human IgG1, IgG2, IgG3, or IgG4. Certain additional Fc fusion partners include, but are not limited to, those from human IgA and IgM. In certain embodiments, an Fc fusion partner is that from a human IgG1 In certain embodiments, an Fc fusion partner is from a human IgG1 and comprises a C237S mutation. In certain embodiments, an Fc fusion partner comprises a hinge, CH2, and CH3 domains of human IgG2 with a P331S mutation, as described in U.S. Pat. No. 6,900,292. Certain exemplary Fc domain fusion partners are shown in SEQ ID NOs: 16-18.

[0068] Certain exemplary FGFR3 ECD fusion molecules comprise, but are not limited to, polypeptides having the amino acid sequences of SEQ ID NOs: 7-15, 28, 35 and 37.

[0069] Albumin Fusion Partners and Albumin-binding Molecule Fusion Partners

[0070] In certain embodiments, a fusion partner is an albumin. Certain exemplary albumins include, but are not limited to, human serum album (HSA) and fragments of HSA that are capable of increasing the serum half-life and/or bioavailability of the polypeptide to which they are fused. In certain embodiments, a fusion partner is an albumin-binding molecule, such as, for example, a peptide that binds albumin or a molecule that conjugates with a lipid or other molecule that binds albumin. In certain embodiments, a fusion molecule comprising HSA is prepared as described, e.g., in U.S. Pat. No. 6,686,179.

[0071] Polymer Fusion Partners

[0072] In certain embodiments, a fusion partner is a polymer, for example, polyethylene glycol (PEG). PEG may comprise branched and/or linear chains. In certain embodiments, a fusion partner comprises a chemically-derivatized polypeptide having at least one PEG moiety attached. Pegylation of a polypeptide may be carried out by any method known in the art. Certain exemplary PEG attachment methods include, for example, EP 0 401 384; Malik et al., Exp. Hematol., 20:1028-1035 (1992); Francis, Focus on Growth Factors, 3:4-10 (1992); EP 0 154 316; EP 0 401 384; WO 92/16221; and WO 95/34326. As non-limiting examples, pegylation may be performed via an acylation reaction or an alkylation reaction, resulting in attachment of one or more PEG moieties via acyl or alkyl groups. In certain embodiments, PEG moieties are attached to a polypeptide through the .alpha.- or .epsilon.-amino group of one or more amino acids, although any other points of attachment known in the art are also contemplated.

[0073] Pegylation by acylation typically involves reacting an activated ester derivative of a PEG moiety with a polypeptide. A non-limiting exemplary activated PEG ester is PEG esterified to N-hydroxysuccinimide (NHS). As used herein, acylation is contemplated to include, without limitation, the following types of linkages between a polypeptide and PEG: amide, carbamate, and urethane. See, e.g., Chamow, Bioconjugate Chem., 5:133-140 (1994). Pegylation by alkylation typically involves reacting a terminal aldehyde derivative of a PEG moiety with a polypeptide in the presence of a reducing agent. Non-limiting exemplary reactive PEG aldehydes include PEG propionaldehyde, which is water stable, and mono C1-C10 alkoxy or aryloxy derivatives thereof. See, e.g., U.S. Pat. No. 5,252,714.

[0074] In certain embodiments, a pegylation reaction results in poly-pegylated polypeptides. In certain embodiments, a pegylation reaction results in mono-, di-, and/or tri-pegylated polypeptides. Further, desired pegylated species may be separated from a mixture containing other pegylated species and/or unreacted starting materials using various purification techniques known in the art, including among others, dialysis, salting-out, ultrafiltration, ion-exchange chromatography, gel filtration chromatography, and electrophoresis.

[0075] Exemplary Attachment of Fusion Partners

[0076] The fusion partner may be attached, either covalently or non-covalently, to the amino-terminus or the carboxy-terminus of an FGFR3 ECD. The attachment may also occur at a location within the FGFR3 ECD other than the amino-terminus or the carboxy-terminus, for example, through an amino acid side chain (such as, for example, the side chain of cysteine, lysine, histidine, serine, or threonine).

[0077] In either covalent or non-covalent attachment embodiments, a linker may be included between the fusion partner and the FGFR3 ECD. Such linkers may be comprised of amino acids and/or chemical moieties.

[0078] Exemplary methods of covalently attaching a fusion partner to an FGFR3 ECD include, but are not limited to, translation of the fusion partner and the FGFR3 ECD as a single amino acid sequence and chemical attachment of the fusion partner to the FGFR3 ECD. When the fusion partner and the FGFR3 ECD are translated as single amino acid sequence, additional amino acids may be included between the fusion partner and the FGFR3 ECD as a linker. In certain embodiments, the linker is glycine-serine ("GS"). In certain embodiments, the linker is selected based on the polynucleotide sequence that encodes it, to facilitate cloning the fusion partner and/or FGFR3 ECD into a single expression construct (for example, a polynucleotide containing a particular restriction site may be placed between the polynucleotide encoding the fusion partner and the polynucleotide encoding the FGFR3 ECD, wherein the polynucleotide containing the restriction site encodes a short amino acid linker sequence).

[0079] When the fusion partner and the FGFR3 ECD are covalently coupled by chemical means, linkers of various sizes can typically be included during the coupling reaction.

[0080] Exemplary methods of non-covalently attaching a fusion partner to an FGFR3 ECD include, but are not limited to, attachment through a binding pair. Exemplary binding pairs include, but are not limited to, biotin and avidin or streptavidin, an antibody and its antigen, etc. The selected non-covalent attachment method should be suitable for the conditions under which the FGFR3 ECD fusion molecule will be used, taking into account, for example, the pH, salt concentrations, and temperature.

[0081] Non-Human FGFR3 ECDs

[0082] As described above, in certain embodiments, the FGFR3 ECD amino acid sequence is that of a non-human mammal. In such embodiments, the FGFR3 ECD sequence may be derived from mammals including, but not limited to, rodents, simians, felines, canines, equines, bovines, porcines, ovines, caprines, mammalian laboratory animals, mammalian farm animals, mammalian sport animals, and mammalian pets. Known non-human FGFR3 ECD sequences include those with GenBank Accession Nos. NP.sub.--001156687, NP.sub.--001156688, NP.sub.--001156689, NP.sub.--445881, NP.sub.--990840, and NP.sub.--776743. As set forth above, such FGFR3 ECD sequences can be modified in the same way as the human FGFR3 ECD sequences described above. In other words, non-human FGFR3 ECDs include the corresponding native FGFR3 ECDs, FGFR3 ECD variants, FGFR3 ECD fragments, native FGFR3 ECD fragments, variants of FGFR3 ECD fragments, FGFR3 ECD acidic region muteins, FGFR3 ECD D1-D2 linker chimeras, FGFR3 ECD glycosylation mutants, and FGFR3 ECD fusion molecules.

Nucleic Acid Molecules, Vectors, and Protein Expression Methods

[0083] Nucleic acid molecules that encode FGFR3 ECDs can be constructed by one skilled in the art using recombinant DNA techniques conventional in the art.

[0084] In certain embodiments, a polynucleotide encoding a polypeptide of the invention comprises a nucleotide sequence that encodes a signal peptide, which, when translated, is fused to the amino-terminus of the FGFR3 polypeptide. As discussed above, the signal peptide may be the native signal peptide, the signal peptide of FGFR1, FGFR2, FGFR3, or FGFR4, or may be another heterologous signal peptide. The amino acid sequences for certain exemplary FGFR signal peptides are shown, e.g., in SEQ ID NOs: 16 to 18. Certain exemplary signal peptides are known in the art, and are described, e.g., in the online Signal Peptide Database maintained by the Department of Biochemistry, National University of Singapore, http://proline.bic.nus.edu.sg/spdb/index.html (see also Choo et al., BMC Bioinformatics, 6: 249 (2005)); and in PCT Publication No. WO 2006/081430.

[0085] To prepare the polypeptides, the nucleic acid molecule comprising the polynucleotide encoding the FGFR3 ECD may be placed into a vector suitable for expression in a selected host cell. Such vectors include, but are not limited to, DNA vectors, phage vectors, viral vectors, retroviral vectors, etc.

[0086] In certain embodiments, a vector is selected that is optimized for expression of polypeptides in CHO-S or CHO-S-derived cells. Exemplary such vectors are described, e.g., in Running Deer et al., Biotechnol. Prog. 20:880-889 (2004).

[0087] In certain embodiments, a vector is chosen for in vivo expression of the polypeptides of the invention in animals, including humans. In certain such embodiments, expression of the polypeptide is under the control of a promoter that functions in a tissue-specific manner. For example, liver-specific promoters are described, e.g., in PCT Publication No. WO 2006/076288.

[0088] The polypeptides of the invention can be expressed, in various embodiments, in prokaryotic cells, such as bacterial cells; or eukaryotic cells, such as fungal cells, plant cells, insect cells, and mammalian cells. Such expression may be carried out, for example, according to procedures known in the art. Certain exemplary eukaryotic cells that can be used to express polypeptides include, but are not limited to, Cos cells, including Cos 7 cells; 293 cells, including 293-6E and 293-T cells; CHO cells, including CHO-S and DG44 cells; and NS0 cells. In certain embodiments, a particular eukaryotic host cell is selected based on its ability to make certain desired post-translational modifications of the polypeptide of the invention. For example, in certain embodiments, CHO cells produce FGFR3 ECDs that have a higher level of glycosylation and/or sialylation than the same polypeptide produced in 293 cells.

[0089] Introduction of a nucleic acid into a desired host cell can be accomplished by any method known in the art, including, but not limited to, calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, etc. Certain exemplary methods are described, e.g., in Sambrook et al., Molecular Cloning, A Laboratory Manual, 3.sup.rd ed. Cold Spring Harbor Laboratory Press (2001). Nucleic acids may be transiently or stably transfected in the desired host cells, according to methods known in the art.

[0090] In certain embodiments, a polypeptide can be produced in vivo in an animal that has been engineered or transfected with a nucleic acid molecule encoding the polypeptide, according to methods known in the art.

Purification of FGFR3 ECD Polypeptides

[0091] The polypeptides of the invention can be purified by various methods known in the art. Such methods include, but are not limited to, the use of affinity matrices, ion exchange chromatography, and/or hydrophobic interaction chromatography. Suitable affinity ligands include any ligands of the FGFR3 ECD, antibodies to FGFR3 ECD, or, in the case of an FGFR3 ECD fusion, a ligand of the fusion partner. For example, a Protein A, Protein G, Protein A/G, or an antibody affinity column may be used to bind to an Fc fusion partner to purify a polypeptide of the invention. Hydrophobic interactive chromatography, for example, a butyl or phenyl column, may also suitable for purifying certain polypeptides.

Methods of Administration

[0092] Routes of Administration and Carriers

[0093] The polypeptides of the invention can be administered in vivo by various routes known in the art, including, but not limited to, intravenous, subcutaneous, parenteral, intranasal, intramuscular, buccal, intraperitoneal, intradermal, topical, transdermal, and intrathecal, or otherwise by implantation or inhalation. The subject compositions can be formulated into preparations in solid, semi-solid, liquid, or gaseous forms; including, but not limited to, tablets, capsules, powders, granules, ointments, solutions, injections, inhalants, and aerosols. Nucleic acid molecules encoding the polypeptides of the invention can be coated onto gold microparticles and delivered intradermally by a particle bombardment device, or "gene gun," as described in the literature (see, e.g., Tang et al., Nature 356:152-154 (1992)).

[0094] In some embodiments, compositions comprising the polypeptides of the invention are provided in formulation with pharmaceutically acceptable carriers, a wide variety of which are known in the art (see, e.g., Gennaro, Remington: The Science and Practice of Pharmacy with Facts and Comparisons: Drugfacts Plus, 20th ed. (2003); Ansel et al., Pharmaceutical Dosage Forms and Drug Delivery Systems, 7.sup.th ed., Lippencott Williams and Wilkins (2004); Kibbe et al., Handbook of Pharmaceutical Excipients, 3.sup.rd ed., Pharmaceutical Press (2000)). Various pharmaceutically acceptable carriers, which include vehicles, adjuvants, carriers, and diluents, are available to the public. Moreover, various pharmaceutically acceptable auxiliary substances, such as pH adjusting and buffering agents, tonicity adjusting agents, stabilizers, wetting agents and the like, are also available to the public. Certain non-limiting exemplary carriers include saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof.

[0095] In various embodiments, compositions comprising polypeptides of the invention can be formulated for injection by dissolving, suspending, or emulsifying them in an aqueous or nonaqueous solvent, such as vegetable or other oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids, or propylene glycol; and if desired, with conventional additives such as solubilizers, isotonic agents, suspending agents, emulsifying agents, stabilizers and preservatives. The compositions may also be formulated, in various embodiments, into sustained release microcapsules, such as with biodegradable or non-biodegradable polymers. A non-limiting exemplary biodegradable formulation includes poly lactic acid-glycolic acid polymer. A non-limiting exemplary non-biodegradable formulation includes a polyglycerin fatty acid ester. Certain methods of making such formulations are described, for example, in EP 1 125 584 A1.

[0096] Pharmaceutical packs and kits comprising one or more containers, each containing one or more doses of the polypeptides of the invention are also provided. In certain embodiments, a unit dosage is provided wherein the unit dosage contains a predetermined amount of a composition comprising a polypeptide of the invention, with or without one or more additional agents. In certain embodiments, such a unit dosage is supplied in single-use prefilled syringe for injection. In various embodiments, the composition contained in the unit dosage may comprise saline, sucrose, or the like; a buffer, such as phosphate, or the like; and/or be formulated within a stable and effective pH range. Alternatively, in certain embodiments, the composition may be provided as a lyophilized powder that can be reconstituted upon addition of an appropriate liquid, for example, sterile water. In certain embodiments, the composition comprises one or more substances that inhibit protein aggregation, including, but not limited to, sucrose and arginine. In certain embodiments, a composition of the invention comprises heparin and/or a proteoglycan.

[0097] The FGFR3 ECD compositions are administered in an amount effective to promote hair growth. The effective amount is typically dependent on the weight of the subject being treated, his or her physical or health condition, the extensiveness of the condition to be treated, and/or the age of the subject being treated. In general, the polypeptides of the invention can be administered subcutaneously in an amount in the range of about 10 ng to about 500 .mu.g. Optionally, the polypeptides of the invention can be administered subcutaneously in an amount in the range of about 10 ng to about 100 .mu.g. Further optionally, the polypeptides of the invention can be administered subcutaneously in an amount in the range of about 100 ng to about 10 .mu.g. In general, the polypeptides of the invention can be administered intravenously in an amount in the range of about 10 .mu.g/kg body weight to about 30 mg/kg body weight per dose. Optionally, the polypeptides of the invention can be administered intravenously in an amount in the range of about 100 .mu.g/kg body weight to about 20 mg/kg body weight per dose. Further optionally, the polypeptides of the invention can be administered intravenously in an amount in the range of about 0.5 mg/kg body weight to about 20 mg/kg body weight per dose.

[0098] The compositions comprising the polypeptides of the invention can be administered as needed to subjects. Determination of the frequency of administration can be made by persons skilled in the art, such as an attending physician or pharmacist or hair growth specialist based on considerations of the condition being treated, age of the subject being treated, severity of the condition being treated, general state of health of the subject being treated and the like. In certain embodiments, an effective dose of the polypeptide of the invention is administered to a subject one or more times. In various embodiments, an effective dose of the polypeptide of the invention is administered to the subject no more than once a year, nor more than twice a year, no more than twice a month, no more than once a week, no more than twice a week, or no more than three times a week. In various embodiments, an effective dose of the polypeptide of the invention is administered to the subject for no more than a week, for no more than a month, for no more than three months, for no more than six months, or for no more than a year.

[0099] Combination Therapy

[0100] Polypeptides of the invention may be administered alone or with other modes of treatment. They may be provided before, substantially contemporaneous with, or after other modes of treatment. Certain exemplary combination therapies could include a combination of an FGFR3 ECD with minoxidil, finasteride, dutasteride, other 5-alpha reductase inhibitors, and/or hair transplant surgery.

EXAMPLES

[0101] The examples discussed below are intended to be purely exemplary of the invention and should not be considered to limit the invention in any way. The examples are not intended to represent that the experiments below are all or the only experiments performed. Efforts have been made to ensure accuracy with respect to numbers used (for example, amounts, temperature, etc.) but some experimental errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, molecular weight is weight average molecular weight, temperature is in degrees Centigrade, and pressure is at or near atmospheric.

Example 1

Construction of an FGFR3 ECD-Fc Fusion Molecule

[0102] An FGFR3 ECD-Fc having a 3 amino acid carboxy-terminal deletion from the FGFR3-IIIc ECD ("FGFR3 ECD .DELTA.3-Fc" or "FGFR3 ECD-Fc") fused to Fc with a GS linker (SEQ ID NO: 33) was subcloned into the pTT5 and pDEF38 vectors using PCR and conventional subcloning techniques.

[0103] The primary sequence and domain structure of the FGFR3 ECD moiety in the FGFR3 ECD .DELTA.3-Fc construct is shown in FIG. 1. FIG. 2 shows an amino acid sequence alignment of a portion of the C-terminal region of FGFR ECDs, denoting Ig domain III.

[0104] For transient expression in 293-6E cells, the vector pTT5 (Biotechnology Research Institute, Montreal, Canada) was used. For expression of the fusion proteins in CHO-S host cells, we used the pTT5 and pDEF38 (ICOS Corporation, Bothell, Wash.) vectors. DG44 (Invitrogen, Carlsbad, Calif.) is a derivative cell line of the CHO-S cell line that we have found can give higher yields of recombinant proteins. For expression of the fusion proteins in DG44 host cells, we used the vector pDEF38.

Example 2

Purification of Expressed Protein

[0105] An FGFR3 ECD-Fc fusion protein expressed from recombinant host cells was purified from the cell culture supernatant using a first purification step of Protein-A affinity chromatography, followed by a second purification step of butyl hydrophobic interaction chromatography. For the Protein-A affinity chromatography step, the components of the media were separated on a Mabselect Protein-A Sepharose column (GE Healthcare Bio-Sciences, Piscataway, N.J.), which will bind to the Fc region of the fusion molecule. The column was equilibrated with ten column volumes of a sterile buffer of 10 mM Tris, 100 mM NaCl, pH 8.0; then the cell culture supernatant was applied to the column. The column was washed with eight column volumes of sterile 10 mM Tris, 100 mM NaCl buffer, pH 8.0. The bound material, including the fusion protein, was then eluted at a rate of 10 ml/min with a one step elution using seven column volumes of elution buffer (100 mM glycine, 100 mM NaCl, pH 2.7). Ten ml fractions were collected in tubes containing one ml 1 M Tris pH 8.0 (Ambion, Austin, Tex.) to neutralize the eluate. Fractions comprising the fusion protein were identified by gel electrophoresis and pooled.

[0106] For the second purification step of butyl hydrophobic interaction chromatography, pooled Protein-A column eluates were further purification on a butyl Sepharose column using a GE Healthcare Akta Purifier 100 (GE Healthcare Bio-Sciences, Piscataway, N.J.). The column was first equilibrated with five column volumes of sterile 10 mM Tris, 1 M ammonium sulfate, pH 8.0. A half volume of 3 M ammonium sulfate was then added to the eluate, which was then applied to the equilibrated butyl Sepharose column. The column was washed with four column volumes of the equilibration buffer and the bound material was eluted at a rate of five ml/min with a linear gradient starting at 50% equilibration buffer/50% elution buffer (10 mM Tris pH 8.0) and ending at 90% elution buffer/10% equilibration buffer over a total volume of 20 column volumes. Finally, an additional two column volumes of 100% elution buffer was used. Fourteen ml fractions were collected. The fusion protein was eluted with approximately 40-60% elution buffer. The fractions containing the bulk of the fusion protein were identified by gel electrophoresis and pooled.

[0107] After purification, endotoxin levels were checked by the limulus amoebocyte lysate (LAL) assay (Cambrex, Walkersville, Md.). Endotoxin levels were confirmed to be less than or equal to 1 endotoxin unit (EU) per mg of the fusion protein.

Example 3

Transient Expression of Fusion Protein in CHO-S Host Cells

[0108] An FGFR3 ECD-Fc fusion protein was transiently expressed in CHO-S cells. Briefly, a 500 ml culture of CHO-S cells (Invitrogen) was established by inoculating 0.5.times.10.sup.6 cells/ml in fresh 37.degree. C. Freestyle CHO medium containing 8 mM L-Glutamine (Invitrogen). The cells were grown in a 2 l plastic flask and were derived from a seed strain that was continuously maintained up to passage 20. The following day, the cells were counted and diluted, if necessary, to 1.times.10.sup.6 cells/ml in 37.degree. C. Freestyle CHO medium (Invitrogen) with a cell viability greater than 95%. The cells were transfected by transferring 10 ml of 37.degree. C. OptiPRO SFM medium containing 8 mM L-Glutamine (dilution media) into two 50 ml tubes. To the first tube (A), 625 ul of FreestyleMax transfection reagent (Invitrogen) were added. To the second tube (B), 625 ug of DNA were added. Both tubes were gently mixed by inverting, and the contents of tube A were immediately added to tube B, followed by gentle mixing by inversion. The mixture was incubated at room temperature for between 10 to 20 min, and was then delivered drop-wise into the 500 ml cell culture in the 21 culture flask while slowly swirling the flask. The culture was then transferred to an incubator at 37.degree. C., 5% CO.sub.2, 125 rpm. After six days, the cell viability was greater than 80%, and the culture supernatant was collected into a centrifuge bottle. The supernatant was centrifuged at 1,000.times.g for 10 min, transferred to a new centrifuge bottle, and centrifuged at 4,000.times.g for 10 min. The supernatant was collected into a new bottle and filtered through a 0.2 um filter. The supernatant was stored at 37.degree. C. prior to the purification step. The fusion protein was purified from the culture supernatant as described in Example 2, except that Q Sepharose anion exchange chromatography was used as the second purification step. Protein-A eluates were applied to a Q Sepharose HP column (GE Healthcare 17-1014-01) equilibrated with five column volumes of sterile buffer (10 mM Tris, 50 mM NaCl, pH 8.0). The column was washed with five column volumes of the same buffer and the bound material was eluted at a rate of five ml/min with a linear gradient of 15 column volumes of elution buffer (10 mM Tris, 2 M NaCl, pH 8.0), followed by five column volumes with 100% elution buffer. Fourteen ml fractions were collected and the fractions comprising the FGFR3 ECD-Fc were identified by gel electrophoresis and pooled. The FGFR3 ECD-Fc fusion proteins eluted with approximately 10-25% elution buffer. Protein levels were determined based on absorbance measurements at 280 nm.

Example 4

Stable Production in DG44 Cells

[0109] The expression vector FGFR3-Fc/pDEF38, described in Example 1, was used to transfect DG44 host cells for stable production of FGFR ECD fusion proteins. The untransfected DHFR-negative CHO cell line, DG44, was cultured in CHO-CD serum free medium (Irvine Scientific, Irvine, Calif.) supplemented with 8 mM L-Glutamine, 1.times. Hypoxanthine/Thymidine (HT; Invitrogen), and 18 ml/L of Pluronic-68 (Invitrogen). About 50 ug of plasmid DNA of each of FGFR3 ECD-Fc/pDEF38, FGFR2 ECD-Fc/pDEF38, and ABmut1/pDEF38 was linearized by digestion with restriction enzyme PvuI, then precipitated by addition of ethanol, briefly air-dried, and then resuspended in 400 ul of sterile, distilled water. The DG44 cells were seeded into a shaker flask at a density of about 4.times.10.sup.5/ml the day before transfection, and reached a density of about 0.8.times.10.sup.6/ml on the day of transfection. The cells were harvested by centrifugation and about 1.times.10.sup.7 cells were used per transfection.

[0110] For transfection, each cell pellet was resuspended in 0.1 ml of Nucleofector V solution and transferred to an Amaxa Nucleofector cuvette (Amaxa, Cologne, Germany). About 5 ug of the resuspended linearized plasmid DNA was added and mixed with the suspended DG44 cells in the cuvette. Cells were then electroporated with an Amaxa Nucleofector Device II using program U-024. Electroporated cells were cultured in CHO-CD medium for two days and then transferred into selective medium (CHO-CD serum free medium supplemented with 8 mM L-Glutamine and 18 ml/L Pluronic-68). The selective medium was changed once every week. After about 12 days, 1 ug/ml R3 Long IGF I growth factor (Sigma, St. Louis, Mo.) was added to the medium and the culture was continued for another week until confluent. The supernatants from pools of stably transfected cell lines were assayed by a sandwich ELISA to determine the product titer. This transfection method generated an expression level of about 30 ug/ml of the expressed fusion protein from the pools of stably transfected cells.

Example 5

Specificity and Affinity of Ligand Binding to FGFR3-IIIc ECD-Fc Measured by Biacore Analysis

[0111] The specificity of FGF ligand binding to an FGFR3-IIIc ECD-Fc (SEQ ID NO: 10) was assessed using Biacore.RTM. T100 surface plasmon resonance (SPR) technology (Biacore; Piscataway, N.J.). Expression constructs for expressing the FGFR3-IIIc ECD-Fc (SEQ ID NO: 10) fusion protein in 293-6E host cells using the pTT5 vector were made in a manner similar to that described above using cDNAs prepared internally and conventional techniques. The FGFR3-IIIc ECD-Fc fusion protein was produced from 293-6E host cells as described in WO/2007/014123 (PCT/US06/028597) (Examples 2 and 3).

[0112] Protein-A was covalently linked to a CM5 chip, according to manufacturer's instructions and then an FGFR ECD fusion protein was bound to the chip by the interaction of the Fc domain with the Protein-A. The FGF ligands were placed in contact with the FGFR ECD fusion protein, also according to manufacturer's instructions, in the presence of HBS-P buffer (Biacore; Piscataway, N.J.) supplemented with 50 ug/ml heparin (Sigma; St. Louis, Mo.).

[0113] All the recombinant FGF ligands were from R&D Systems (Minneapolis, Minn.) except for FGF-18 which was from Wako Chemicals (Richmond, Va.). FGF ligands were each tested at six to eight concentrations ranging from 4.5 ng/ml to 10 ug/ml. The FGF ligands were recombinant and of human origin, except for FGF-18, which was of recombinant mouse origin.

[0114] The binding of the FGFR3-IIIc ECD-Fc, to various FGF ligands was measured in real time. Table 1 below shows the resulting association constants (k.sub.a), dissociation constants (k.sub.d) and equilibrium dissociation constants (K.sub.D) that were determined from these studies.

[0115] As summarized in Table 1, the relative rank of FGF binding affinity to the FGFR3-IIIc-Fc was FGF-18>FGF-1>FGF-9>FGF-2, FGF-4>FGF-20>FGF-5>FGF-7>FGF-19.

TABLE-US-00001 TABLE 1 Real-Time Ligand Binding to FGFs FGFR3-IIIc-ECD-Fc Ligand k.sub.a (1/(M s)) k.sub.d (1/s) K.sub.D (M) FGF-1 2.83 .times. 10.sup.6* 3.31 .times. 10.sup.-4* 1.26 .times. 10.sup.-10* FGF-2 3.36 .times. 10.sup.5 1.37 .times. 10.sup.-3 1.06 .times. 10.sup.-9 FGF-4 8.08 .times. 10.sup.5 1.55 .times. 10.sup.-3 1.91 .times. 10.sup.-9 FGF-5 2.31 .times. 10.sup.5 1.69 .times. 10.sup.-3 9.70 .times. 10.sup.-9 FGF-7 3.19 .times. 10.sup.5 4.71 .times. 10.sup.-2 1.48 .times. 10.sup.-7 FGF-9 7.76 .times. 10.sup.5 4.17 .times. 10.sup.-4 5.37 .times. 10.sup.-10 FGF-18 5.16 .times. 10.sup.6* 1.80 .times. 10.sup.-4* 3.50 .times. 10.sup.-11* FGF-19 5.63 .times. 10.sup.4 4.43 .times. 10.sup.-1 7.87 .times. 10.sup.-6 FGF-20 1.85 .times. 10.sup.5 4.04 .times. 10.sup.-4 2.17 .times. 10.sup.-9 *= average of two independent measurements

Example 6

Systemic Delivery of an FGFR3 ECD Fusion Molecule Promotes Hair Growth in Mice

[0116] Eight-week-old female C57B1.6 mice (Charles River Labs, Wilmington, Mass.) were weighed and sorted into 4 treatment groups of 5 or 10 mice each based on body weight, as shown in Table 2. All mice were shaved on the right flank. Group I was dosed IV with 0.2 cc/mouse saline and groups 2-4 were dosed IV with 20 mg/kg of the appropriate test article in a 0.2 cc/mouse volume as indicated in Table 2.

TABLE-US-00002 TABLE 2 Study Design of Hair Growth in Wildtype Mice Study Group Dose Group Sequence 1 Saline -- 2 FGFR2-ECD-Fc SEQ ID NO: 32 3 FGFR3-ECD-Fc SEQ ID NO: 33 4 FGFR4-ECD-Fc SEQ ID NO: 31 (ABMut1)

[0117] On day 14 post initial dose, animals were observed for hair growth. As shown in FIG. 3A, marked hair growth was observed in 4 of 5 animals in group 3 (FGFR3-ECD-Fc) and 2 of 5 animals in group 4 (FGFR4-ECD-Rc; ABMut1) compared to the control group 1 (Saline) as indicated by pigmented skin and partial hair regrowth. There was no observable hair growth in group 2 (FGFR2-ECD-Fc).

[0118] The animals were euthanized on the same day and a 2 cm.sup.2 skin biopsy was harvested and fixed in neutral buffered saline for 12 hours. Samples were paraffin embedded and structural differences were visualized with Haematoxylin/Eosin staining (Gladstone Institute Histology Core, San Francisco, Calif.). Structural differences were observed in animals from groups 3 and 4 as demonstrated by elongation of the dermal papilla (*) into the fatty layer of the dermis () (FIG. 3B), suggesting re-entry into the anagen or growth phase of the hair cycle.

Example 7

An FGFR3 ECD Fusion Molecule Promotes Hair Growth in Mice in a Dose Dependent Manner

[0119] At exactly 61 days of age, female C57B1.6 mice (Charles River Labs, Wilmington, Mass.) were weighed and sorted into 7 groups of 10 mice each as demonstrated in the chart below. The entire back and belly of all mice was shaved and the animals were dosed subcutaneously with 0.1 mg/kg, 1 mg/kg or 10 mg/kg of FGFR3-ECD-Fc in a 0.05 cc volume directly in the center of the belly along the midline according to the chart below.

TABLE-US-00003 TABLE 3 Study Design of Hair Growth at Increasing Doses Dose Group Dose Group (mg/kg) N 1 Vehicle 0 10 2 FGFR3-ECD-Fc 0.1 10 3 FGFR3-ECD-Fc 1 10 4 FGFR3-ECD-Fc 10 10

[0120] On Day 13 post initial dose, mice were euthanized, and the area of skin that was shaved on day 0 was removed (pelt), tacked down flat and photographed. Photographs of mouse pelts were analyzed for hair growth using Image J (National Institutes of Health, Bethesda, Md.). Hair growth was calculated by measuring the percentage area of hair re-growth within a given pelt per total area of the pelt. As shown in FIG. 4, marked hair growth was observed in groups 3 and 4 compared to group 1. Additionally, significantly more hair growth was observed in groups 3 and 4 compared to group 2 and in group 4 compared to group 3, demonstrating that FGFR3-ECD-Fc stimulated hair growth in a dose dependent manner. FIG. 4 represents the average percentage of hair growth per dose group.

INDUSTRIAL APPLICABILITY

[0121] The FGFR ECDs described herein can be used to promote hair growth, which may be useful to subjects suffering from hair loss.

TABLE OF SEQUENCES

[0122] Table 4 provides certain sequences discussed herein. Solely for the sake of simplicity and not for any limiting reason, all FGFR sequences are shown without the signal peptide unless otherwise indicated.

TABLE-US-00004 TABLE 4 Sequences and Descriptions SEQ. ID. NO. Description Sequence 1 FGFR3 IIIc ESLGTEQRVV GRAAEVPGPE PGQQEQLVFG SGDAVELSCP PPGGGPMGPT VWVKDGTGLV PSERVLVGPQ RLQVLNASHE DSGAYSCRQR LTQRVLCHFS VRVTDAPSSG DDEDGEDEAE DTGVDTGAPY WTRPERMDKK LLAVPAANTV RFRCPAAGNP TPSISWLKNG REFRGEHRIG GIKLRHQQWS LVMESVVPSD RGNYTCVVEN KFGSIRQTYT LDVLERSPHR PILQAGLPAN QTAVLGSDVE FHCKVYSDAQ PHIQWLKHVE VNGSKVGPDG TPYVTVLKTA GANTTDKELE VLSLHNVTFE DAGEYTCLAG NSIGFSHHSA WLVVLPAEEE LVEADEAGSV YAGILSYGVG FFLFILVVAA VTLCRLRSPP KKGLGSPTVH KISRFPLKRQ VSLESNASMS SNTPLVRIAR LSSGEGPTLA NVSELELPAD PKWELSRARL TLGKPLGEGC FGQVVMAEAI GIDKDRAAKP VTVAVKMLKD DATDKDLSDL VSEMEMMKMI GKHKNIINLL GACTQGGPLY VLVEYAAKGN LREFLRARRP PGLDYSFDTC KPPEEQLTFK DLVSCAYQVA RGMEYLASQK CIHRDLAARN VLVTEDNVMK IADFGLARDV HNLDYYKKTT NGRLPVKWMA PEALFDRVYT HQSDVWSFGV LLWEIFTLGG SPYPGIPVEE LFKLLKEGHR MDKPANCTHD LYMIMRECWH AAPSQRPTFK QLVEDLDRVL TVTSTDEYLD LSAPFEQYSP GGQDTPSSSS SGDDSVFAHD LLPPAPPSSG GSRT 2 FGFR3 .DELTA.8-10 ESLGTEQRVV GRAAEVPGPE PGQQEQLVFG SGDAVELSCP PPGGGPMGPT VWVKDGTGLV PSERVLVGPQ RLQVLNASHE DSGAYSCRQR LTQRVLCHFS VRVTDAPSSG DDEDGEDEAE DTGVDTGAPY WTRPERMDKK LLAVPAANTV RFRCPAAGNP TPSISWLKNG REFRGEHRIG GIKLRHQQWS LVMESVVPSD RGNYTCVVEN KFGSIRQTYT LDVLERSPHR PILQAGLPAN QTAVLGSDVE FHCKVYSDAQ PHIQWLKHVE VNGSKVGPDG TPYVTVLKVS LESNASMSSN TPLVRIARLS SGEGPTLANV SELELPADPK WELSRARLTL GKPLGEGCFG QVVMAEAIGI DKDRAAKPVT VAVKMLKDDA TDKDLSDLVS EMEMMKMIGK HKNIINLLGA CTQGGPLYVL VEYAAKGNLR EFLRARRPPG LDYSFDTCKP PEEQLTFKDL VSCAYQVARG MEYLASQKCI HRDLAARNVL VTEDNVMKIA DFGLARDVHN LDYYKKTTNG RLPVKWMAPE ALFDRVYTHQ SDVWSFGVLL WEIFTLGGSP YPGIPVEELF KLLKEGHRMD KPANCTHDLY MIMRECWHAA PSQRPTFKQL VEDLDRVLTV TSTDEYLDLS APFEQYSPGG QDTPSSSSSG DDSVFAHDLL PPAPPSSGGS RT 3 FGFR3 IIIb ESLGTEQRVV GRAAEVPGPE PGQQEQLVFG SGDAVELSCP PPGGGPMGPT VWVKDGTGLV PSERVLVGPQ RLQVLNASHE DSGAYSCRQR LTQRVLCHFS VRVTDAPSSG DDEDGEDEAE DTGVDTGAPY WTRPERMDKK LLAVPAANTV RFRCPAAGNP TPSISWLKNG REFRGEHRIG GIKLRHQQWS LVMESVVPSD RGNYTCVVEN KFGSIRQTYT LDVLERSPHR PILQAGLPAN QTAVLGSDVE FHCKVYSDAQ PHIQWLKHVE VNGSKVGPDG TPYVTVLKSW ISESVEADVR LRLANVSERD GGEYLCRATN FIGVAEKAFW LSVHGPRAAE EELVEADEAG SVYAGILSYG VGFFLFILVV AAVTLCRLRS PPKKGLGSPT VHKISRFPLK RQVSLESNAS MSSNTPLVRI ARLSSGEGPT LANVSELELP ADPKWELSRA RLTLGKPLGE GCFGQVVMAE AIGIDKDRAA KPVTVAVKML KDDATDKDLS DLVSEMEMMK MIGKHKNIIN LLGACTQGGP LYVLVEYAAK GNLREFLRAR RPPGLDYSFD TCKPPEEQLT FKDLVSCAYQ VARGMEYLAS QKCIHRDLAA RNVLVTEDNV MKIADFGLAR DVHNLDYYKK TTNGRLPVKW MAPEALFDRV YTHQSDVWSF GVLLWEIFTL GGSPYPGIPV EELFKLLKEG HRMDKPANCT HDLYMIMREC WHAAPSQRPT FKQLVEDLDR VLTVTSTDEY LDLSAPFEQY SPGGQDTPSS SSSGDDSVFA HDLLPPAPPS SGGSRT 4 FGFR3-IIIb ECD ESLGTEQRVV GRAAEVPGPE PGQQEQLVFG SGDAVELSCP PPGGGPMGPT VWVKDGTGLV PSERVLVGPQ RLQVLNASHE DSGAYSCRQR LTQRVLCHFS VRVTDAPSSG DDEDGEDEAE DTGVDTGAPY WTRPERMDKK LLAVPAANTV RFRCPAAGNP TPSISWLKNG REFRGEHRIG GIKLRHQQWS LVMESVVPSD RGNYTCVVEN KFGSIRQTYT LDVLERSPHR PILQAGLPAN QTAVLGSDVE FHCKVYSDAQ PHIQWLKHVE VNGSKVGPDG TPYVTVLKSW ISESVEADVR LRLANVSERD GGEYLCRATN FIGVAEKAFW LSVHGPRAAE EELVEADEAG SVYAG 5 FGFR3-IIIc ECD ESLGTEQRVV GRAAEVPGPE PGQQEQLVFG SGDAVELSCP PPGGGPMGPT VWVKDGTGLV PSERVLVGPQ RLQVLNASHE DSGAYSCRQR LTQRVLCHFS VRVTDAPSSG DDEDGEDEAE DTGVDTGAPY WTRPERMDKK LLAVPAANTV RFRCPAAGNP TPSISWLKNG REFRGEHRIG GIKLRHQQWS LVMESVVPSD RGNYTCVVEN KFGSIRQTYT LDVLERSPHR PILQAGLPAN QTAVLGSDVE FHCKVYSDAQ PHIQWLKHVE VNGSKVGPDG TPYVTVLKTA GANTTDKELE VLSLHNVTFE DAGEYTCLAG NSIGFSHHSA WLVVLPAEEE LVEADEAGSV YAG 6 FGFR3-.DELTA.8-10 ECD ESLGTEQRVV GRAAEVPGPE PGQQEQLVFG SGDAVELSCP PPGGGPMGPT VWVKDGTGLV PSERVLVGPQ RLQVLNASHE DSGAYSCRQR LTQRVLCHFS VRVTDAPSSG DDEDGEDEAE DTGVDTGAPY WTRPERMDKK LLAVPAANTV RFRCPAAGNP TPSISWLKNG REFRGEHRIG GIKLRHQQWS LVMESVVPSD RGNYTCVVEN KFGSIRQTYT LDVLERSPHR PILQAGLPAN QTAVLGSDVE FHCKVYSDAQ PHIQWLKHVE VNGSKVGPDG TPYVTVLK 7 FGFR3-IIIb ECD + ESLGTEQRVV GRAAEVPGPE PGQQEQLVFG SGDAVELSCP Fc PPGGGPMGPT VWVKDGTGLV PSERVLVGPQ RLQVLNASHE DSGAYSCRQR LTQRVLCHFS VRVTDAPSSG DDEDGEDEAE DTGVDTGAPY WTRPERMDKK LLAVPAANTV RFRCPAAGNP TPSISWLKNG REFRGEHRIG GIKLRHQQWS LVMESVVPSD RGNYTCVVEN KFGSIRQTYT LDVLERSPHR PILQAGLPAN QTAVLGSDVE FHCKVYSDAQ PHIQWLKHVE VNGSKVGPDG TPYVTVLKSW ISESVEADVR LRLANVSERD GGEYLCRATN FIGVAEKAFW LSVHGPRAAE EELVEADEAG SVYAGEPKSS DKTHTCPPCP APELLGGPSV FLFPPKPKDT LMISRTPEVT CVVVDVSHED PEVKFNWYVD GVEVHNAKTK PREEQYNSTY RVVSVLTVLH QDWLNGKEYK CKVSNKALPA PIEKTISKAK GQPREPQVYT LPPSRDELTK NQVSLTCLVK GFYPSDIAVE WESNGQPENN YKTTPPVLDS DGSFFLYSKL TVDKSRWQQG NVFSCSVMHE ALHNHYTQKS LSLSPGK 8 FGFR3-IIIb ECD + ESLGTEQRVV GRAAEVPGPE PGQQEQLVFG SGDAVELSCP GS linker + Fc PPGGGPMGPT VWVKDGTGLV PSERVLVGPQ RLQVLNASHE DSGAYSCRQR LTQRVLCHFS VRVTDAPSSG DDEDGEDEAE DTGVDTGAPY WTRPERMDKK LLAVPAANTV RFRCPAAGNP TPSISWLKNG REFRGEHRIG GIKLRHQQWS LVMESVVPSD RGNYTCVVEN KFGSIRQTYT LDVLERSPHR PILQAGLPAN QTAVLGSDVE FHCKVYSDAQ PHIQWLKHVE VNGSKVGPDG TPYVTVLKSW ISESVEADVR LRLANVSERD GGEYLCRATN FIGVAEKAFW LSVHGPRAAE EELVEADEAG SVYAGGSEPK SSDKTHTCPP CPAPELLGGP SVFLFPPKPK DTLMISRTPE VTCVVVDVSH EDPEVKFNWY VDGVEVHNAK TKPREEQYNS TYRVVSVLTV LHQDWLNGKE YKCKVSNKAL PAPIEKTISK AKGQPREPQV YTLPPSRDEL TKNQVSLTCL VKGFYPSDIA VEWESNGQPE NNYKTTPPVL DSDGSFFLYS KLTVDKSRWQ QGNVFSCSVM HEALHNHYTQ KSLSLSPGK 9 FGFR3-IIIc ECD + ESLGTEQRVV GRAAEVPGPE PGQQEQLVFG SGDAVELSCP Fc PPGGGPMGPT VWVKDGTGLV PSERVLVGPQ RLQVLNASHE DSGAYSCRQR LTQRVLCHFS VRVTDAPSSG DDEDGEDEAE DTGVDTGAPY WTRPERMDKK LLAVPAANTV RFRCPAAGNP TPSISWLKNG REFRGEHRIG GIKLRHQQWS LVMESVVPSD RGNYTCVVEN KFGSIRQTYT LDVLERSPHR PILQAGLPAN QTAVLGSDVE FHCKVYSDAQ PHIQWLKHVE VNGSKVGPDG TPYVTVLKTA GANTTDKELE VLSLHNVTFE DAGEYTCLAG NSIGFSHHSA WLVVLPAEEE LVEADEAGSV YAGEPKSSDK THTCPPCPAP ELLGGPSVFL FPPKPKDTLM ISRTPEVTCV VVDVSHEDPE VKFNWYVDGV EVHNAKTKPR EEQYNSTYRV VSVLTVLHQD WLNGKEYKCK VSNKALPAPI EKTISKAKGQ PREPQVYTLP PSRDELTKNQ VSLTCLVKGF YPSDIAVEWE SNGQPENNYK TTPPVLDSDG SFFLYSKLTV DKSRWQQGNV FSCSVMHEAL HNHYTQKSLS LSPGK 10 FGFR3-IIIc ESLGTEQRVV GRAAEVPGPE PGQQEQLVFG SGDAVELSCP ECD + GS linker + PPGGGPMGPT VWVKDGTGLV PSERVLVGPQ RLQVLNASHE Fc DSGAYSCRQR LTQRVLCHFS VRVTDAPSSG DDEDGEDEAE DTGVDTGAPY WTRPERMDKK LLAVPAANTV RFRCPAAGNP TPSISWLKNG REFRGEHRIG GIKLRHQQWS LVMESVVPSD RGNYTCVVEN KFGSIRQTYT LDVLERSPHR PILQAGLPAN QTAVLGSDVE FHCKVYSDAQ PHIQWLKHVE VNGSKVGPDG TPYVTVLKTA GANTTDKELE VLSLHNVTFE DAGEYTCLAG NSIGFSHHSA WLVVLPAEEE LVEADEAGSV YAGGSEPKSS DKTHTCPPCP APELLGGPSV FLFPPKPKDT LMISRTPEVT CVVVDVSHED PEVKFNWYVD GVEVHNAKTK PREEQYNSTY RVVSVLTVLH QDWLNGKEYK CKVSNKALPA PIEKTISKAK GQPREPQVYT LPPSRDELTK NQVSLTCLVK GFYPSDIAVE WESNGQPENN YKTTPPVLDS DGSFFLYSKL TVDKSRWQQG NVFSCSVMHE ALHNHYTQKS LSLSPGK 11 FGFR3-IIIc ECD + ESLGTEQRVV GRAAEVPGPE PGQQEQLVFG SGDAVELSCP Fc(R3Mut1) PPGGGPMGPT VWVKDGTGLV PSERVLVGPQ RLQVLNASHE (FGFR3-IIIc ECD DSGAYSCRQR LTQRVLCHFS VRVTDAPSSG DDEDGEDEAE with C-terminal DTGVDTGAPY WTRPERMDKK LLAVPAANTV RFRCPAAGNP deletion of VYAG, TPSISWLKNG REFRGEHRIG GIKLRHQQWS LVMESVVPSD fused to Fc) RGNYTCVVEN KFGSIRQTYT LDVLERSPHR PILQAGLPAN QTAVLGSDVE FHCKVYSDAQ PHIQWLKHVE VNGSKVGPDG TPYVTVLKTA GANTTDKELE VLSLHNVTFE DAGEYTCLAG NSIGFSHHSA WLVVLPAEEE LVEADEAGSE PKSSDKTHTC PPCPAPELLG GPSVFLFPPK PKDTLMISRT PEVTCVVVDV SHEDPEVKFN WYVDGVEVHN AKTKPREEQY NSTYRVVSVL TVLHQDWLNG KEYKCKVSNK ALPAPIEKTI SKAKGQPREP QVYTLPPSRD ELTKNQVSLT CLVKGFYPSD IAVEWESNGQ PENNYKTTPP VLDSDGSFFL YSKLTVDKSR WQQGNVFSCS VMHEALHNHY TQKSLSLSPG K 12 FGFR3-IIIc ECD + ESLGTEQRVV GRAAEVPGPE PGQQEQLVFG SGDAVELSCP Fc (R3Mut2) PPGGGPMGPT VWVKDGTGLV PSERVLVGPQ RLQVLNASHE (FGFR3-IIIc ECD DSGAYSCRQR LTQRVLCHFS VRVTDAPSSG DDEDGEDEAE with C-terminal DTGVDTGAPY WTRPERMDKK LLAVPAANTV RFRCPAAGNP deletion of TPSISWLKNG REFRGEHRIG GIKLRHQQWS LVMESVVPSD EAGSVYAG, fused RGNYTCVVEN KFGSIRQTYT LDVLERSPHR PILQAGLPAN to Fc) QTAVLGSDVE FHCKVYSDAQ PHIQWLKHVE VNGSKVGPDG TPYVTVLKTA GANTTDKELE VLSLHNVTFE DAGEYTCLAG NSIGFSHHSA WLVVLPAEEE LVEADEPKSS DKTHTCPPCP APELLGGPSV FLFPPKPKDT LMISRTPEVT CVVVDVSHED PEVKFNWYVD GVEVHNAKTK PREEQYNSTY RVVSVLTVLH QDWLNGKEYK CKVSNKALPA PIEKTISKAK GQPREPQVYT LPPSRDELTK NQVSLTCLVK GFYPSDIAVE WESNGQPENN YKTTPPVLDS DGSFFLYSKL TVDKSRWQQG NVFSCSVMHE ALHNHYTQKS LSLSPGK 13 FGFR3-IIIc ECD + ESLGTEQRVV GRAAEVPGPE PGQQEQLVFG SGDAVELSCP Fc(R3Mut3) PPGGGPMGPT VWVKDGTGLV PSERVLVGPQ RLQVLNASHE (FGFR3-IIIc ECD DSGAYSCRQR LTQRVLCHFS VRVTDAPSSG DDEDGEDEAE with C-terminal DTGVDTGAPY WTRPERMDKK LLAVPAANTV RFRCPAAGNP deletion of TPSISWLKNG REFRGEHRIG GIKLRHQQWS LVMESVVPSD DEAGSVYAG, RGNYTCVVEN KFGSIRQTYT LDVLERSPHR PILQAGLPAN fused to Fc) QTAVLGSDVE FHCKVYSDAQ PHIQWLKHVE VNGSKVGPDG TPYVTVLKTA GANTTDKELE VLSLHNVTFE DAGEYTCLAG NSIGFSHHSA WLVVLPAEEE LVEAEPKSSD KTHTCPPCPA PELLGGPSVF LFPPKPKDTL MISRTPEVTC VVVDVSHEDP EVKFNWYVDG VEVHNAKTKP REEQYNSTYR VVSVLTVLHQ DWLNGKEYKC KVSNKALPAP IEKTISKAKG QPREPQVYTL PPSRDELTKN QVSLTCLVKG FYPSDIAVEW ESNGQPENNY KTTPPVLDSD GSFFLYSKLT VDKSRWQQGN VFSCSVMHEA LHNHYTQKSL SLSPGK 14 FGFR3-IIIc ECD + ESLGTEQRVV GRAAEVPGPE PGQQEQLVFG SGDAVELSCP Fc(R3Mut4) PPGGGPMGPT VWVKDGTGLV PSERVLVGPQ RLQVLNASHE (FGFR3-IIIc ECD DSGAYSCRQR LTQRVLCHFS VRVTDAPSSG DDEDGEDEAE with C-terminal DTGVDTGAPY WTRPERMDKK LLAVPAANTV RFRCPAAGNP deletion of TPSISWLKNG REFRGEHRIG GIKLRHQQWS LVMESVVPSD LVEADEAGSVYA RGNYTCVVEN KFGSIRQTYT LDVLERSPHR PILQAGLPAN G, fused to Fc) QTAVLGSDVE FHCKVYSDAQ PHIQWLKHVE VNGSKVGPDG TPYVTVLKTA GANTTDKELE VLSLHNVTFE DAGEYTCLAG NSIGFSHHSA WLVVLPAEEE EPKSSDKTHT CPPCPAPELL GGPSVFLFPP KPKDTLMISR TPEVTCVVVD VSHEDPEVKF NWYVDGVEVH NAKTKPREEQ YNSTYRVVSV LTVLHQDWLN GKEYKCKVSN KALPAPIEKT ISKAKGQPRE PQVYTLPPSR DELTKNQVSL TCLVKGFYPS DIAVEWESNG QPENNYKTTP PVLDSDGSFF LYSKLTVDKS RWQQGNVFSC SVMHEALHNH YTQKSLSLSP GK 15 FGFR3-IIIc ECD + ESLGTEQRVV GRAAEVPGPE PGQQEQLVFG SGDAVELSCP Fc(R3Mut5) PPGGGPMGPT VWVKDGTGLV PSERVLVGPQ RLQVLNASHE (FGFR3-IIIc ECD DSGAYSCRQR LTQRVLCHFS VRVTDAPSSG DDEDGEDEAE with C-terminal DTGVDTGAPY WTRPERMDKK LLAVPAANTV RFRCPAAGNP deletion of TPSISWLKNG REFRGEHRIG GIKLRHQQWS LVMESVVPSD VLPAEEELVEADE RGNYTCVVEN KFGSIRQTYT LDVLERSPHR PILQAGLPAN AGSVYAG, fused to QTAVLGSDVE FHCKVYSDAQ PHIQWLKHVE VNGSKVGPDG Fc) TPYVTVLKTA GANTTDKELE VLSLHNVTFE DAGEYTCLAG NSIGFSHHSA WLVEPKSSDK THTCPPCPAP ELLGGPSVFL FPPKPKDTLM ISRTPEVTCV VVDVSHEDPE VKFNWYVDGV EVHNAKTKPR EEQYNSTYRV VSVLTVLHQD WLNGKEYKCK VSNKALPAPI EKTISKAKGQ PREPQVYTLP PSRDELTKNQ VSLTCLVKGF YPSDIAVEWE SNGQPENNYK TTPPVLDSDG SFFLYSKLTV DKSRWQQGNV FSCSVMHEAL HNHYTQKSLS LSPGK 16 Fc C237S EPKSSDKTHT CPPCPAPELL GGPSVFLFPP KPKDTLMISR (GI17939658_233- TPEVTCVVVD VSHEDPEVKF NWYVDGVEVH NAKTKPREEQ 464_C237S) YNSTYRVVSV LTVLHQDWLN GKEYKCKVSN KALPAPIEKT ISKAKGQPRE PQVYTLPPSR DELTKNQVSL TCLVKGFYPS DIAVEWESNG QPENNYKTTP PVLDSDGSFF LYSKLTVDKS RWQQGNVFSC SVMHEALHNH YTQKSLSLSP GK 17 Fc ERKCCVECPP CPAPPVAGPS VFLFPPKPKD TLMISRTPEV (GI34528298_241- TCVVVDVSHE DPEVQFNWYV DGVEVHNAKT KPREEQFNST 468) FRVVSVLTVV HQDWLNGKEY KCKVSNKGLP APIEKTISKT

KGQPREPQVY TLPPSREEMT KNQVSLTCLV KGFYPSDIAV EWESNGQPEN NYKTTPPMLD SDGSFFLYSK LTVDKSRWQQ GNVFSCSVMH EALHNHYTQK SLSLSPGK 18 Fc ESKYGPPCPS CPAPEFLGGP SVFLFPPKPK DTLMISRTPE (GI19684073_245- VTCVVVDVSQ EDPEVQFNWY VDGVEVHNAK TKPREEQFNS 473) TYRVVSVLTV LHQDWLNGKE YKCKVSNKGL PSSIEKTISK AKGQPREPQV YTLPPSQEEM TKNQVSLTCL VKGFYPSDIA VEWESNGQPE NNYKTTPPVL DSDGSFFLYS RLTVDKSRWQ EGNVFSCSVM HEALHNHYTQ KSLSLSLGK 19 FGFR1 signal MWSWKCLLFWAVLVTATLCTA peptide 20 FGFR2 signal MVSWGRFICLVVVTMATLSLA peptide 21 FGFR3 signal MGAPACALALCVAVAIVAGASS peptide 22 FGFR4 signal MRLLLALLGILLSVPGPPVLS peptide 23 FGFR3 D1-D2 linker DAPSSGDDED GEDEAEDTGV DTG 24 FGFR3 acid box DDEDGED region 1 25 FGFR3 acid box DDEDGEDE region 2 26 FGFR3 acid box DDEDGEDEAE region 3 27 FGFR3 acid box DDEDGEDEAED region4 28 FGFR3-IIIc ECD ESLGTEQRVV GRAAEVPGPE PGQQEQLVFG SGDAVELSCP R3(110-117): PPGGGPMGPT VWVKDGTGLV PSERVLVGPQ RLQVLNASHE R1(105-112) + Fc DSGAYSCRQR LTQRVLCHFS VRVTDAPSSE DDDDDDDEAE (FGFR3-IIIc ECD DTGVDTGAPY WTRPERMDKK LLAVPAANTV RFRCPAAGNP D1-D2 linker TPSISWLKNG REFRGEHRIG GIKLRHQQWS LVMESVVPSD chimera fused to Fc) RGNYTCVVEN KFGSIRQTYT LDVLERSPHR PILQAGLPAN QTAVLGSDVE FHCKVYSDAQ PHIQWLKHVE VNGSKVGPDG TPYVTVLKTA GANTTDKELE VLSLHNVTFE DAGEYTCLAG NSIGFSHHSA WLVVLPAEEE LVEADEAGSV YAGEPKSSDK THTCPPCPAP ELLGGPSVFL FPPKPKDTLM ISRTPEVTCV VVDVSHEDPE VKFNWYVDGV EVHNAKTKPR EEQYNSTYRV VSVLTVLHQD WLNGKEYKCK VSNKALPAPI EKTISKAKGQ PREPQVYTLP PSRDELTKNQ VSLTCLVKGF YPSDIAVEWE SNGQPENNYK TTPPVLDSDG SFFLYSKLTV DKSRWQQGNV FSCSVMHEAL HNHYTQKSLS LSPGK 29 FGFR3-IIIc ECD MGAPACALAL CVAVAIVAGA SSESLGTEQR VVGRAAEVPG with signal peptide PEPGQQEQLV FGSGDAVELS CPPPGGGPMG PTVWVKDGTG LVPSERVLVG PQRLQVLNAS HEDSGAYSCR QRLTQRVLCH FSVRVTDAPS SGDDEDGEDE AEDTGVDTGA PYWTRPERMD KKLLAVPAAN TVRFRCPAAG NPTPSISWLK NGREFRGEHR IGGIKLRHQQ WSLVMESVVP SDRGNYTCVV ENKFGSIRQT YTLDVLERSP HRPILQAGLP ANQTAVLGSD VEFHCKVYSD AQPHIQWLKH VEVNGSKVGP DGTPYVTVLK TAGANTTDKE LEVLSLHNVT FEDAGEYTCL AGNSIGFSHH SAWLVVLPAE EELVEADEAG SVYAG 30 FGFR3-IIIc ECD .DELTA.3 ESLGTEQRVV GRAAEVPGPE PGQQEQLVFG SGDAVELSCP (FGFR3-IIIc ECD PPGGGPMGPT VWVKDGTGLV PSERVLVGPQ RLQVLNASHE with a deleion of the DSGAYSCRQR LTQRVLCHFS VRVTDAPSSG DDEDGEDEAE C-terminal 3 amino DTGVDTGAPY WTRPERMDKK LLAVPAANTV RFRCPAAGNP acids YAG) TPSISWLKNG REFRGEHRIG GIKLRHQQWS LVMESVVPSD RGNYTCVVEN KFGSIRQTYT LDVLERSPHR PILQAGLPAN QTAVLGSDVE FHCKVYSDAQ PHIQWLKHVE VNGSKVGPDG TPYVTVLKTA GANTTDKELE VLSLHNVTFE DAGEYTCLAG NSIGFSHHSA WLVVLPAEEE LVEADEAGSV 31 FGFR4 ECD .DELTA.17 R1 LEASEEVELE PCLAPSLEQQ EQELTVALGQ PVRLCCGRAE D1-D2 linker RGGHWYKEGS RLAPAGRVRG WRGRLEIASF LPEDAGRYLC chimera + Fc LARGSMIVLQ NLTLITGDAL PSSEDDDDDD DSSSEEKETD (also called FGFR4 NTKPNPVAPY WTHPQRMEKK LHAVPAGNTV KFRCPAAGNP ECD (ABMut1: delta TPTIRWLKDG QAFHGENRIG GIRLRHQHWS LVMESVVPSD 17)-Fc and ABMut1) RGTYTCLVEN AVGSIRYNYL LDVLERSPHR PILQAGLPAN TTAVVGSDVE LLCKVYSDAQ PHIQWLKHIV INGSSFGADG FPYVQVLKTA DINSSEVEVL YLRNVSAEDA GEYTCLAGNS IGLSYQSAWL TVLPEPKSSD KTHTCPPCPA PELLGGPSVF LFPPKPKDTL MISRTPEVTC VVVDVSHEDP EVKFNWYVDG VEVHNAKTKP REEQYNSTYR VVSVLTVLHQ DWLNGKEYKC KVSNKALPAP IEKTISKAKG QPREPQVYTL PPSRDELTKN QVSLTCLVKG FYPSDIAVEW ESNGQPENNY KTTPPVLDSD GSFFLYSKLT VDKSRWQQGN VFSCSVMHEA LHNHYTQKSL SLSPGK 32 FGFR2 ECD .DELTA.3 + RPSFSLVEDT TLEPEEPPTK YQISQPEVYV AAPGESLEVR GS linker + Fc CLLKDAAVIS WTKDGVHLGP NNRTVLIGEY LQIKGATPRD SGLYACTASR TVDSETWYFM VNVTDAISSG DDEDDTDGAE DFVSENSNNK RAPYWTNTEK MEKRLHAVPA ANTVKFRCPA GGNPMPTMRW LKNGKEFKQE HRIGGYKVRN QHWSLIMESV VPSDKGNYTC VVENEYGSIN HTYHLDVVER SPHRPILQAG LPANASTVVG GDVEFVCKVY SDAQPHIQWI KHVEKNGSKY GPDGLPYLKV LKAAGVNTTD KEIEVLYIRN VTFEDAGEYT CLAGNSIGIS FHSAWLTVLP APGREKEITA SPDGSEPKSS DKTHTCPPCP APELLGGPSV FLFPPKPKDT LMISRTPEVT CVVVDVSHED PEVKFNWYVD GVEVHNAKTK PREEQYNSTY RVVSVLTVLH QDWLNGKEYK CKVSNKALPA PIEKTISKAK GQPREPQVYT LPPSRDELTK NQVSLTCLVK GFYPSDIAVE WESNGQPENN YKTTPPVLDS DGSFFLYSKL TVDKSRWQQG NVFSCSVMHE ALHNHYTQKS LSLSPGK 33 FGFR3-IIIc ECD .DELTA.3 + ESLGTEQRVV GRAAEVPGPE PGQQEQLVFG SGDAVELSCP GS linker + Fc PPGGGPMGPT VWVKDGTGLV PSERVLVGPQ RLQVLNASHE (FGFR3-IIIc ECD DSGAYSCRQR LTQRVLCHFS VRVTDAPSSG DDEDGEDEAE with a deletion of the DTGVDTGAPY WTRPERMDKK LLAVPAANTV RFRCPAAGNP C-terminal 3 amino TPSISWLKNG REFRGEHRIG GIKLRHQQWS LVMESVVPSD acids YAG, fused to RGNYTCVVEN KFGSIRQTYT LDVLERSPHR PILQAGLPAN Fc with a GS linker) QTAVLGSDVE FHCKVYSDAQ PHIQWLKHVE VNGSKVGPDG TPYVTVLKTA GANTTDKELE VLSLHNVTFE DAGEYTCLAG NSIGFSHHSA WLVVLPAEEE LVEADEAGSV GSEPKSSDKT HTCPPCPAPE LLGGPSVFLF PPKPKDTLMI SRTPEVTCVV VDVSHEDPEV KFNWYVDGVE VHNAKTKPRE EQYNSTYRVV SVLTVLHQDW LNGKEYKCKV SNKALPAPIE KTISKAKGQP REPQVYTLPP SRDELTKNQV SLTCLVKGFY PSDIAVEWES NGQPENNYKT TPPVLDSDGS FFLYSKLTVD KSRWQQGNVF SCSVMHEALH NHYTQKSLSL SPGK 34 FGFR3-IIIc ECD ESLGTEQRVV GRAAEVPGPE PGQQEQLVFG SGDAVELSCP R3(110-117): PPGGGPMGPT VWVKDGTGLV PSERVLVGPQ RLQVLNASHE R1(105-112) DSGAYSCRQR LTQRVLCHFS VRVTDAPSSE DDDDDDDEAE (FGFR3-IIIc ECD DTGVDTGAPY WTRPERMDKK LLAVPAANTV RFRCPAAGNP D1-D2 linker TPSISWLKNG REFRGEHRIG GIKLRHQQWS LVMESVVPSD chimera) RGNYTCVVEN KFGSIRQTYT LDVLERSPHR PILQAGLPAN QTAVLGSDVE FHCKVYSDAQ PHIQWLKHVE VNGSKVGPDG TPYVTVLKTA GANTTDKELE VLSLHNVTFE DAGEYTCLAG NSIGFSHHSA WLVVLPAEEE LVEADEAGSV YAG 35 FGFR3-IIIc ECD .DELTA.3 ESLGTEQRVV GRAAEVPGPE PGQQEQLVFG SGDAVELSCP R3(110-117): PPGGGPMGPT VWVKDGTGLV PSERVLVGPQ RLQVLNASHE R1(105-112) + Fc DSGAYSCRQR LTQRVLCHFS VRVTDAPSSE DDDDDDDEAE (FGFR3-IIIc ECD DTGVDTGAPY WTRPERMDKK LLAVPAANTV RFRCPAAGNP D1-D2 linker TPSISWLKNG REFRGEHRIG GIKLRHQQWS LVMESVVPSD chimera with a RGNYTCVVEN KFGSIRQTYT LDVLERSPHR PILQAGLPAN deletion of the C- QTAVLGSDVE FHCKVYSDAQ PHIQWLKHVE VNGSKVGPDG terminal three amino TPYVTVLKTA GANTTDKELE VLSLHNVTFE DAGEYTCLAG acids YAG, fused to NSIGFSHHSA WLVVLPAEEE LVEADEAGSV EPKSSDKTHT Fc) CPPCPAPELL GGPSVFLFPP KPKDTLMISR TPEVTCVVVD VSHEDPEVKF NWYVDGVEVH NAKTKPREEQ YNSTYRVVSV LTVLHQDWLN GKEYKCKVSN KALPAPIEKT ISKAKGQPRE PQVYTLPPSR DELTKNQVSL TCLVKGFYPS DIAVEWESNG QPENNYKTTP PVLDSDGSFF LYSKLTVDKS RWQQGNVFSC SVMHEALHNH YTQKSLSLSP GK 36 FGFR3-IIIc ECD .DELTA.3 ESLGTEQRVV GRAAEVPGPE PGQQEQLVFG SGDAVELSCP R3(110-117): PPGGGPMGPT VWVKDGTGLV PSERVLVGPQ RLQVLNASHE R1(105-112) DSGAYSCRQR LTQRVLCHFS VRVTDAPSSE DDDDDDDEAE (FGFR3-IIIc ECD DTGVDTGAPY WTRPERMDKK LLAVPAANTV RFRCPAAGNP D1-D2 linker TPSISWLKNG REFRGEHRIG GIKLRHQQWS LVMESVVPSD chimera with a RGNYTCVVEN KFGSIRQTYT LDVLERSPHR PILQAGLPAN deletion of the C- QTAVLGSDVE FHCKVYSDAQ PHIQWLKHVE VNGSKVGPDG terminal three amino TPYVTVLKTA GANTTDKELE VLSLHNVTFE DAGEYTCLAG acids YAG) NSIGFSHHSA WLVVLPAEEE LVEADEAGSV 37 FGFR3-IIIc ECD .DELTA.3 ESLGTEQRVV GRAAEVPGPE PGQQEQLVFG SGDAVELSCP R3(110-117): PPGGGPMGPT VWVKDGTGLV PSERVLVGPQ RLQVLNASHE R1(105-112) + GS DSGAYSCRQR LTQRVLCHFS VRVTDAPSSE DDDDDDDEAE linker + Fc DTGVDTGAPY WTRPERMDKK LLAVPAANTV RFRCPAAGNP (FGFR3-IIIc ECD TPSISWLKNG REFRGEHRIG GIKLRHQQWS LVMESVVPSD D1-D2 linker RGNYTCVVEN KFGSIRQTYT LDVLERSPHR PILQAGLPAN chimera with a QTAVLGSDVE FHCKVYSDAQ PHIQWLKHVE VNGSKVGPDG deletion of the C- TPYVTVLKTA GANTTDKELE VLSLHNVTFE DAGEYTCLAG terminal three amino NSIGFSHHSA WLVVLPAEEE LVEADEAGSV GSEPKSSDKT acids YAG, fused to HTCPPCPAPE LLGGPSVFLF PPKPKDTLMI SRTPEVTCVV Fc with a GS linker) VDVSHEDPEV KFNWYVDGVE VHNAKTKPRE EQYNSTYRVV (also called SVLTVLHQDW LNGKEYKCKV SNKALPAPIE KTISKAKGQP FGFR3ECD(FGFR3 REPQVYTLPP SRDELTKNQV SLTCLVKGFY PSDIAVEWES (110-117): NGQPENNYKT TPPVLDSDGS FFLYSKLTVD KSRWQQGNVF FGFR1(105-112): SCSVMHEALH NHYTQKSLSL SPGK delta3)-GS linker-Fc and R3(110- 117): R1(105-112)) 38 FGFR4 D1-D2 linker DSLTSSNDDED PKSHRDPSNR HSYPQQ 39 FGFR1 D1-D2 linker DALPSSEDDDD DDDSSSEEKE TDNTKPNPV 40 FGFR2 D1-D2 linker DAISSGDDED DTDGAEDFVS ENSNNKR 41 FGFR3 acid box DDEDGE 42 FGFR3 long acid box GDDEDGEDEA ED 43 FGFR3 short acid DDED box

Sequence CWU 1

1

571784PRTHomo sapiens 1Glu Ser Leu Gly Thr Glu Gln Arg Val Val Gly Arg Ala Ala Glu Val 1 5 10 15 Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln Leu Val Phe Gly Ser Gly 20 25 30 Asp Ala Val Glu Leu Ser Cys Pro Pro Pro Gly Gly Gly Pro Met Gly 35 40 45 Pro Thr Val Trp Val Lys Asp Gly Thr Gly Leu Val Pro Ser Glu Arg 50 55 60 Val Leu Val Gly Pro Gln Arg Leu Gln Val Leu Asn Ala Ser His Glu 65 70 75 80 Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg Leu Thr Gln Arg Val Leu 85 90 95 Cys His Phe Ser Val Arg Val Thr Asp Ala Pro Ser Ser Gly Asp Asp 100 105 110 Glu Asp Gly Glu Asp Glu Ala Glu Asp Thr Gly Val Asp Thr Gly Ala 115 120 125 Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp Lys Lys Leu Leu Ala Val 130 135 140 Pro Ala Ala Asn Thr Val Arg Phe Arg Cys Pro Ala Ala Gly Asn Pro 145 150 155 160 Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly Arg Glu Phe Arg Gly Glu 165 170 175 His Arg Ile Gly Gly Ile Lys Leu Arg His Gln Gln Trp Ser Leu Val 180 185 190 Met Glu Ser Val Val Pro Ser Asp Arg Gly Asn Tyr Thr Cys Val Val 195 200 205 Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr Tyr Thr Leu Asp Val Leu 210 215 220 Glu Arg Ser Pro His Arg Pro Ile Leu Gln Ala Gly Leu Pro Ala Asn 225 230 235 240 Gln Thr Ala Val Leu Gly Ser Asp Val Glu Phe His Cys Lys Val Tyr 245 250 255 Ser Asp Ala Gln Pro His Ile Gln Trp Leu Lys His Val Glu Val Asn 260 265 270 Gly Ser Lys Val Gly Pro Asp Gly Thr Pro Tyr Val Thr Val Leu Lys 275 280 285 Thr Ala Gly Ala Asn Thr Thr Asp Lys Glu Leu Glu Val Leu Ser Leu 290 295 300 His Asn Val Thr Phe Glu Asp Ala Gly Glu Tyr Thr Cys Leu Ala Gly 305 310 315 320 Asn Ser Ile Gly Phe Ser His His Ser Ala Trp Leu Val Val Leu Pro 325 330 335 Ala Glu Glu Glu Leu Val Glu Ala Asp Glu Ala Gly Ser Val Tyr Ala 340 345 350 Gly Ile Leu Ser Tyr Gly Val Gly Phe Phe Leu Phe Ile Leu Val Val 355 360 365 Ala Ala Val Thr Leu Cys Arg Leu Arg Ser Pro Pro Lys Lys Gly Leu 370 375 380 Gly Ser Pro Thr Val His Lys Ile Ser Arg Phe Pro Leu Lys Arg Gln 385 390 395 400 Val Ser Leu Glu Ser Asn Ala Ser Met Ser Ser Asn Thr Pro Leu Val 405 410 415 Arg Ile Ala Arg Leu Ser Ser Gly Glu Gly Pro Thr Leu Ala Asn Val 420 425 430 Ser Glu Leu Glu Leu Pro Ala Asp Pro Lys Trp Glu Leu Ser Arg Ala 435 440 445 Arg Leu Thr Leu Gly Lys Pro Leu Gly Glu Gly Cys Phe Gly Gln Val 450 455 460 Val Met Ala Glu Ala Ile Gly Ile Asp Lys Asp Arg Ala Ala Lys Pro 465 470 475 480 Val Thr Val Ala Val Lys Met Leu Lys Asp Asp Ala Thr Asp Lys Asp 485 490 495 Leu Ser Asp Leu Val Ser Glu Met Glu Met Met Lys Met Ile Gly Lys 500 505 510 His Lys Asn Ile Ile Asn Leu Leu Gly Ala Cys Thr Gln Gly Gly Pro 515 520 525 Leu Tyr Val Leu Val Glu Tyr Ala Ala Lys Gly Asn Leu Arg Glu Phe 530 535 540 Leu Arg Ala Arg Arg Pro Pro Gly Leu Asp Tyr Ser Phe Asp Thr Cys 545 550 555 560 Lys Pro Pro Glu Glu Gln Leu Thr Phe Lys Asp Leu Val Ser Cys Ala 565 570 575 Tyr Gln Val Ala Arg Gly Met Glu Tyr Leu Ala Ser Gln Lys Cys Ile 580 585 590 His Arg Asp Leu Ala Ala Arg Asn Val Leu Val Thr Glu Asp Asn Val 595 600 605 Met Lys Ile Ala Asp Phe Gly Leu Ala Arg Asp Val His Asn Leu Asp 610 615 620 Tyr Tyr Lys Lys Thr Thr Asn Gly Arg Leu Pro Val Lys Trp Met Ala 625 630 635 640 Pro Glu Ala Leu Phe Asp Arg Val Tyr Thr His Gln Ser Asp Val Trp 645 650 655 Ser Phe Gly Val Leu Leu Trp Glu Ile Phe Thr Leu Gly Gly Ser Pro 660 665 670 Tyr Pro Gly Ile Pro Val Glu Glu Leu Phe Lys Leu Leu Lys Glu Gly 675 680 685 His Arg Met Asp Lys Pro Ala Asn Cys Thr His Asp Leu Tyr Met Ile 690 695 700 Met Arg Glu Cys Trp His Ala Ala Pro Ser Gln Arg Pro Thr Phe Lys 705 710 715 720 Gln Leu Val Glu Asp Leu Asp Arg Val Leu Thr Val Thr Ser Thr Asp 725 730 735 Glu Tyr Leu Asp Leu Ser Ala Pro Phe Glu Gln Tyr Ser Pro Gly Gly 740 745 750 Gln Asp Thr Pro Ser Ser Ser Ser Ser Gly Asp Asp Ser Val Phe Ala 755 760 765 His Asp Leu Leu Pro Pro Ala Pro Pro Ser Ser Gly Gly Ser Arg Thr 770 775 780 2672PRTHomo sapiens 2Glu Ser Leu Gly Thr Glu Gln Arg Val Val Gly Arg Ala Ala Glu Val 1 5 10 15 Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln Leu Val Phe Gly Ser Gly 20 25 30 Asp Ala Val Glu Leu Ser Cys Pro Pro Pro Gly Gly Gly Pro Met Gly 35 40 45 Pro Thr Val Trp Val Lys Asp Gly Thr Gly Leu Val Pro Ser Glu Arg 50 55 60 Val Leu Val Gly Pro Gln Arg Leu Gln Val Leu Asn Ala Ser His Glu 65 70 75 80 Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg Leu Thr Gln Arg Val Leu 85 90 95 Cys His Phe Ser Val Arg Val Thr Asp Ala Pro Ser Ser Gly Asp Asp 100 105 110 Glu Asp Gly Glu Asp Glu Ala Glu Asp Thr Gly Val Asp Thr Gly Ala 115 120 125 Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp Lys Lys Leu Leu Ala Val 130 135 140 Pro Ala Ala Asn Thr Val Arg Phe Arg Cys Pro Ala Ala Gly Asn Pro 145 150 155 160 Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly Arg Glu Phe Arg Gly Glu 165 170 175 His Arg Ile Gly Gly Ile Lys Leu Arg His Gln Gln Trp Ser Leu Val 180 185 190 Met Glu Ser Val Val Pro Ser Asp Arg Gly Asn Tyr Thr Cys Val Val 195 200 205 Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr Tyr Thr Leu Asp Val Leu 210 215 220 Glu Arg Ser Pro His Arg Pro Ile Leu Gln Ala Gly Leu Pro Ala Asn 225 230 235 240 Gln Thr Ala Val Leu Gly Ser Asp Val Glu Phe His Cys Lys Val Tyr 245 250 255 Ser Asp Ala Gln Pro His Ile Gln Trp Leu Lys His Val Glu Val Asn 260 265 270 Gly Ser Lys Val Gly Pro Asp Gly Thr Pro Tyr Val Thr Val Leu Lys 275 280 285 Val Ser Leu Glu Ser Asn Ala Ser Met Ser Ser Asn Thr Pro Leu Val 290 295 300 Arg Ile Ala Arg Leu Ser Ser Gly Glu Gly Pro Thr Leu Ala Asn Val 305 310 315 320 Ser Glu Leu Glu Leu Pro Ala Asp Pro Lys Trp Glu Leu Ser Arg Ala 325 330 335 Arg Leu Thr Leu Gly Lys Pro Leu Gly Glu Gly Cys Phe Gly Gln Val 340 345 350 Val Met Ala Glu Ala Ile Gly Ile Asp Lys Asp Arg Ala Ala Lys Pro 355 360 365 Val Thr Val Ala Val Lys Met Leu Lys Asp Asp Ala Thr Asp Lys Asp 370 375 380 Leu Ser Asp Leu Val Ser Glu Met Glu Met Met Lys Met Ile Gly Lys 385 390 395 400 His Lys Asn Ile Ile Asn Leu Leu Gly Ala Cys Thr Gln Gly Gly Pro 405 410 415 Leu Tyr Val Leu Val Glu Tyr Ala Ala Lys Gly Asn Leu Arg Glu Phe 420 425 430 Leu Arg Ala Arg Arg Pro Pro Gly Leu Asp Tyr Ser Phe Asp Thr Cys 435 440 445 Lys Pro Pro Glu Glu Gln Leu Thr Phe Lys Asp Leu Val Ser Cys Ala 450 455 460 Tyr Gln Val Ala Arg Gly Met Glu Tyr Leu Ala Ser Gln Lys Cys Ile 465 470 475 480 His Arg Asp Leu Ala Ala Arg Asn Val Leu Val Thr Glu Asp Asn Val 485 490 495 Met Lys Ile Ala Asp Phe Gly Leu Ala Arg Asp Val His Asn Leu Asp 500 505 510 Tyr Tyr Lys Lys Thr Thr Asn Gly Arg Leu Pro Val Lys Trp Met Ala 515 520 525 Pro Glu Ala Leu Phe Asp Arg Val Tyr Thr His Gln Ser Asp Val Trp 530 535 540 Ser Phe Gly Val Leu Leu Trp Glu Ile Phe Thr Leu Gly Gly Ser Pro 545 550 555 560 Tyr Pro Gly Ile Pro Val Glu Glu Leu Phe Lys Leu Leu Lys Glu Gly 565 570 575 His Arg Met Asp Lys Pro Ala Asn Cys Thr His Asp Leu Tyr Met Ile 580 585 590 Met Arg Glu Cys Trp His Ala Ala Pro Ser Gln Arg Pro Thr Phe Lys 595 600 605 Gln Leu Val Glu Asp Leu Asp Arg Val Leu Thr Val Thr Ser Thr Asp 610 615 620 Glu Tyr Leu Asp Leu Ser Ala Pro Phe Glu Gln Tyr Ser Pro Gly Gly 625 630 635 640 Gln Asp Thr Pro Ser Ser Ser Ser Ser Gly Asp Asp Ser Val Phe Ala 645 650 655 His Asp Leu Leu Pro Pro Ala Pro Pro Ser Ser Gly Gly Ser Arg Thr 660 665 670 3786PRTHomo sapiens 3Glu Ser Leu Gly Thr Glu Gln Arg Val Val Gly Arg Ala Ala Glu Val 1 5 10 15 Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln Leu Val Phe Gly Ser Gly 20 25 30 Asp Ala Val Glu Leu Ser Cys Pro Pro Pro Gly Gly Gly Pro Met Gly 35 40 45 Pro Thr Val Trp Val Lys Asp Gly Thr Gly Leu Val Pro Ser Glu Arg 50 55 60 Val Leu Val Gly Pro Gln Arg Leu Gln Val Leu Asn Ala Ser His Glu 65 70 75 80 Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg Leu Thr Gln Arg Val Leu 85 90 95 Cys His Phe Ser Val Arg Val Thr Asp Ala Pro Ser Ser Gly Asp Asp 100 105 110 Glu Asp Gly Glu Asp Glu Ala Glu Asp Thr Gly Val Asp Thr Gly Ala 115 120 125 Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp Lys Lys Leu Leu Ala Val 130 135 140 Pro Ala Ala Asn Thr Val Arg Phe Arg Cys Pro Ala Ala Gly Asn Pro 145 150 155 160 Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly Arg Glu Phe Arg Gly Glu 165 170 175 His Arg Ile Gly Gly Ile Lys Leu Arg His Gln Gln Trp Ser Leu Val 180 185 190 Met Glu Ser Val Val Pro Ser Asp Arg Gly Asn Tyr Thr Cys Val Val 195 200 205 Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr Tyr Thr Leu Asp Val Leu 210 215 220 Glu Arg Ser Pro His Arg Pro Ile Leu Gln Ala Gly Leu Pro Ala Asn 225 230 235 240 Gln Thr Ala Val Leu Gly Ser Asp Val Glu Phe His Cys Lys Val Tyr 245 250 255 Ser Asp Ala Gln Pro His Ile Gln Trp Leu Lys His Val Glu Val Asn 260 265 270 Gly Ser Lys Val Gly Pro Asp Gly Thr Pro Tyr Val Thr Val Leu Lys 275 280 285 Ser Trp Ile Ser Glu Ser Val Glu Ala Asp Val Arg Leu Arg Leu Ala 290 295 300 Asn Val Ser Glu Arg Asp Gly Gly Glu Tyr Leu Cys Arg Ala Thr Asn 305 310 315 320 Phe Ile Gly Val Ala Glu Lys Ala Phe Trp Leu Ser Val His Gly Pro 325 330 335 Arg Ala Ala Glu Glu Glu Leu Val Glu Ala Asp Glu Ala Gly Ser Val 340 345 350 Tyr Ala Gly Ile Leu Ser Tyr Gly Val Gly Phe Phe Leu Phe Ile Leu 355 360 365 Val Val Ala Ala Val Thr Leu Cys Arg Leu Arg Ser Pro Pro Lys Lys 370 375 380 Gly Leu Gly Ser Pro Thr Val His Lys Ile Ser Arg Phe Pro Leu Lys 385 390 395 400 Arg Gln Val Ser Leu Glu Ser Asn Ala Ser Met Ser Ser Asn Thr Pro 405 410 415 Leu Val Arg Ile Ala Arg Leu Ser Ser Gly Glu Gly Pro Thr Leu Ala 420 425 430 Asn Val Ser Glu Leu Glu Leu Pro Ala Asp Pro Lys Trp Glu Leu Ser 435 440 445 Arg Ala Arg Leu Thr Leu Gly Lys Pro Leu Gly Glu Gly Cys Phe Gly 450 455 460 Gln Val Val Met Ala Glu Ala Ile Gly Ile Asp Lys Asp Arg Ala Ala 465 470 475 480 Lys Pro Val Thr Val Ala Val Lys Met Leu Lys Asp Asp Ala Thr Asp 485 490 495 Lys Asp Leu Ser Asp Leu Val Ser Glu Met Glu Met Met Lys Met Ile 500 505 510 Gly Lys His Lys Asn Ile Ile Asn Leu Leu Gly Ala Cys Thr Gln Gly 515 520 525 Gly Pro Leu Tyr Val Leu Val Glu Tyr Ala Ala Lys Gly Asn Leu Arg 530 535 540 Glu Phe Leu Arg Ala Arg Arg Pro Pro Gly Leu Asp Tyr Ser Phe Asp 545 550 555 560 Thr Cys Lys Pro Pro Glu Glu Gln Leu Thr Phe Lys Asp Leu Val Ser 565 570 575 Cys Ala Tyr Gln Val Ala Arg Gly Met Glu Tyr Leu Ala Ser Gln Lys 580 585 590 Cys Ile His Arg Asp Leu Ala Ala Arg Asn Val Leu Val Thr Glu Asp 595 600 605 Asn Val Met Lys Ile Ala Asp Phe Gly Leu Ala Arg Asp Val His Asn 610 615 620 Leu Asp Tyr Tyr Lys Lys Thr Thr Asn Gly Arg Leu Pro Val Lys Trp 625 630 635 640 Met Ala Pro Glu Ala Leu Phe Asp Arg Val Tyr Thr His Gln Ser Asp 645 650 655 Val Trp Ser Phe Gly Val Leu Leu Trp Glu Ile Phe Thr Leu Gly Gly 660 665 670 Ser Pro Tyr Pro Gly Ile Pro Val Glu Glu Leu Phe Lys Leu Leu Lys 675 680 685 Glu Gly His Arg Met Asp Lys Pro Ala Asn Cys Thr His Asp Leu Tyr 690 695 700 Met Ile Met Arg Glu Cys Trp His Ala Ala Pro Ser Gln Arg Pro Thr 705 710 715 720 Phe Lys Gln Leu Val Glu Asp Leu Asp Arg Val Leu Thr Val Thr Ser 725 730 735 Thr Asp Glu Tyr Leu Asp Leu Ser Ala Pro Phe Glu Gln Tyr Ser Pro 740 745 750 Gly Gly Gln Asp Thr Pro Ser Ser Ser Ser Ser Gly Asp Asp Ser Val 755 760 765 Phe Ala His Asp Leu Leu Pro Pro Ala Pro Pro Ser Ser Gly Gly Ser 770 775 780 Arg Thr 785 4355PRTHomo sapiens 4Glu Ser Leu Gly Thr Glu Gln Arg Val Val Gly Arg Ala Ala Glu Val 1 5 10 15 Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln Leu Val Phe Gly Ser Gly 20 25 30 Asp Ala Val Glu Leu Ser Cys Pro Pro Pro Gly Gly Gly Pro Met Gly 35 40 45 Pro Thr Val Trp Val Lys Asp Gly Thr Gly Leu Val

Pro Ser Glu Arg 50 55 60 Val Leu Val Gly Pro Gln Arg Leu Gln Val Leu Asn Ala Ser His Glu 65 70 75 80 Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg Leu Thr Gln Arg Val Leu 85 90 95 Cys His Phe Ser Val Arg Val Thr Asp Ala Pro Ser Ser Gly Asp Asp 100 105 110 Glu Asp Gly Glu Asp Glu Ala Glu Asp Thr Gly Val Asp Thr Gly Ala 115 120 125 Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp Lys Lys Leu Leu Ala Val 130 135 140 Pro Ala Ala Asn Thr Val Arg Phe Arg Cys Pro Ala Ala Gly Asn Pro 145 150 155 160 Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly Arg Glu Phe Arg Gly Glu 165 170 175 His Arg Ile Gly Gly Ile Lys Leu Arg His Gln Gln Trp Ser Leu Val 180 185 190 Met Glu Ser Val Val Pro Ser Asp Arg Gly Asn Tyr Thr Cys Val Val 195 200 205 Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr Tyr Thr Leu Asp Val Leu 210 215 220 Glu Arg Ser Pro His Arg Pro Ile Leu Gln Ala Gly Leu Pro Ala Asn 225 230 235 240 Gln Thr Ala Val Leu Gly Ser Asp Val Glu Phe His Cys Lys Val Tyr 245 250 255 Ser Asp Ala Gln Pro His Ile Gln Trp Leu Lys His Val Glu Val Asn 260 265 270 Gly Ser Lys Val Gly Pro Asp Gly Thr Pro Tyr Val Thr Val Leu Lys 275 280 285 Ser Trp Ile Ser Glu Ser Val Glu Ala Asp Val Arg Leu Arg Leu Ala 290 295 300 Asn Val Ser Glu Arg Asp Gly Gly Glu Tyr Leu Cys Arg Ala Thr Asn 305 310 315 320 Phe Ile Gly Val Ala Glu Lys Ala Phe Trp Leu Ser Val His Gly Pro 325 330 335 Arg Ala Ala Glu Glu Glu Leu Val Glu Ala Asp Glu Ala Gly Ser Val 340 345 350 Tyr Ala Gly 355 5353PRTHomo sapiens 5Glu Ser Leu Gly Thr Glu Gln Arg Val Val Gly Arg Ala Ala Glu Val 1 5 10 15 Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln Leu Val Phe Gly Ser Gly 20 25 30 Asp Ala Val Glu Leu Ser Cys Pro Pro Pro Gly Gly Gly Pro Met Gly 35 40 45 Pro Thr Val Trp Val Lys Asp Gly Thr Gly Leu Val Pro Ser Glu Arg 50 55 60 Val Leu Val Gly Pro Gln Arg Leu Gln Val Leu Asn Ala Ser His Glu 65 70 75 80 Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg Leu Thr Gln Arg Val Leu 85 90 95 Cys His Phe Ser Val Arg Val Thr Asp Ala Pro Ser Ser Gly Asp Asp 100 105 110 Glu Asp Gly Glu Asp Glu Ala Glu Asp Thr Gly Val Asp Thr Gly Ala 115 120 125 Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp Lys Lys Leu Leu Ala Val 130 135 140 Pro Ala Ala Asn Thr Val Arg Phe Arg Cys Pro Ala Ala Gly Asn Pro 145 150 155 160 Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly Arg Glu Phe Arg Gly Glu 165 170 175 His Arg Ile Gly Gly Ile Lys Leu Arg His Gln Gln Trp Ser Leu Val 180 185 190 Met Glu Ser Val Val Pro Ser Asp Arg Gly Asn Tyr Thr Cys Val Val 195 200 205 Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr Tyr Thr Leu Asp Val Leu 210 215 220 Glu Arg Ser Pro His Arg Pro Ile Leu Gln Ala Gly Leu Pro Ala Asn 225 230 235 240 Gln Thr Ala Val Leu Gly Ser Asp Val Glu Phe His Cys Lys Val Tyr 245 250 255 Ser Asp Ala Gln Pro His Ile Gln Trp Leu Lys His Val Glu Val Asn 260 265 270 Gly Ser Lys Val Gly Pro Asp Gly Thr Pro Tyr Val Thr Val Leu Lys 275 280 285 Thr Ala Gly Ala Asn Thr Thr Asp Lys Glu Leu Glu Val Leu Ser Leu 290 295 300 His Asn Val Thr Phe Glu Asp Ala Gly Glu Tyr Thr Cys Leu Ala Gly 305 310 315 320 Asn Ser Ile Gly Phe Ser His His Ser Ala Trp Leu Val Val Leu Pro 325 330 335 Ala Glu Glu Glu Leu Val Glu Ala Asp Glu Ala Gly Ser Val Tyr Ala 340 345 350 Gly 6288PRTHomo sapiens 6Glu Ser Leu Gly Thr Glu Gln Arg Val Val Gly Arg Ala Ala Glu Val 1 5 10 15 Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln Leu Val Phe Gly Ser Gly 20 25 30 Asp Ala Val Glu Leu Ser Cys Pro Pro Pro Gly Gly Gly Pro Met Gly 35 40 45 Pro Thr Val Trp Val Lys Asp Gly Thr Gly Leu Val Pro Ser Glu Arg 50 55 60 Val Leu Val Gly Pro Gln Arg Leu Gln Val Leu Asn Ala Ser His Glu 65 70 75 80 Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg Leu Thr Gln Arg Val Leu 85 90 95 Cys His Phe Ser Val Arg Val Thr Asp Ala Pro Ser Ser Gly Asp Asp 100 105 110 Glu Asp Gly Glu Asp Glu Ala Glu Asp Thr Gly Val Asp Thr Gly Ala 115 120 125 Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp Lys Lys Leu Leu Ala Val 130 135 140 Pro Ala Ala Asn Thr Val Arg Phe Arg Cys Pro Ala Ala Gly Asn Pro 145 150 155 160 Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly Arg Glu Phe Arg Gly Glu 165 170 175 His Arg Ile Gly Gly Ile Lys Leu Arg His Gln Gln Trp Ser Leu Val 180 185 190 Met Glu Ser Val Val Pro Ser Asp Arg Gly Asn Tyr Thr Cys Val Val 195 200 205 Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr Tyr Thr Leu Asp Val Leu 210 215 220 Glu Arg Ser Pro His Arg Pro Ile Leu Gln Ala Gly Leu Pro Ala Asn 225 230 235 240 Gln Thr Ala Val Leu Gly Ser Asp Val Glu Phe His Cys Lys Val Tyr 245 250 255 Ser Asp Ala Gln Pro His Ile Gln Trp Leu Lys His Val Glu Val Asn 260 265 270 Gly Ser Lys Val Gly Pro Asp Gly Thr Pro Tyr Val Thr Val Leu Lys 275 280 285 7587PRTArtificial SequenceSynthetic polypeptide 7Glu Ser Leu Gly Thr Glu Gln Arg Val Val Gly Arg Ala Ala Glu Val 1 5 10 15 Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln Leu Val Phe Gly Ser Gly 20 25 30 Asp Ala Val Glu Leu Ser Cys Pro Pro Pro Gly Gly Gly Pro Met Gly 35 40 45 Pro Thr Val Trp Val Lys Asp Gly Thr Gly Leu Val Pro Ser Glu Arg 50 55 60 Val Leu Val Gly Pro Gln Arg Leu Gln Val Leu Asn Ala Ser His Glu 65 70 75 80 Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg Leu Thr Gln Arg Val Leu 85 90 95 Cys His Phe Ser Val Arg Val Thr Asp Ala Pro Ser Ser Gly Asp Asp 100 105 110 Glu Asp Gly Glu Asp Glu Ala Glu Asp Thr Gly Val Asp Thr Gly Ala 115 120 125 Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp Lys Lys Leu Leu Ala Val 130 135 140 Pro Ala Ala Asn Thr Val Arg Phe Arg Cys Pro Ala Ala Gly Asn Pro 145 150 155 160 Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly Arg Glu Phe Arg Gly Glu 165 170 175 His Arg Ile Gly Gly Ile Lys Leu Arg His Gln Gln Trp Ser Leu Val 180 185 190 Met Glu Ser Val Val Pro Ser Asp Arg Gly Asn Tyr Thr Cys Val Val 195 200 205 Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr Tyr Thr Leu Asp Val Leu 210 215 220 Glu Arg Ser Pro His Arg Pro Ile Leu Gln Ala Gly Leu Pro Ala Asn 225 230 235 240 Gln Thr Ala Val Leu Gly Ser Asp Val Glu Phe His Cys Lys Val Tyr 245 250 255 Ser Asp Ala Gln Pro His Ile Gln Trp Leu Lys His Val Glu Val Asn 260 265 270 Gly Ser Lys Val Gly Pro Asp Gly Thr Pro Tyr Val Thr Val Leu Lys 275 280 285 Ser Trp Ile Ser Glu Ser Val Glu Ala Asp Val Arg Leu Arg Leu Ala 290 295 300 Asn Val Ser Glu Arg Asp Gly Gly Glu Tyr Leu Cys Arg Ala Thr Asn 305 310 315 320 Phe Ile Gly Val Ala Glu Lys Ala Phe Trp Leu Ser Val His Gly Pro 325 330 335 Arg Ala Ala Glu Glu Glu Leu Val Glu Ala Asp Glu Ala Gly Ser Val 340 345 350 Tyr Ala Gly Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro 355 360 365 Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro 370 375 380 Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr 385 390 395 400 Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn 405 410 415 Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg 420 425 430 Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val 435 440 445 Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser 450 455 460 Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys 465 470 475 480 Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp 485 490 495 Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe 500 505 510 Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu 515 520 525 Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe 530 535 540 Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly 545 550 555 560 Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr 565 570 575 Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 580 585 8589PRTArtificial SequenceSynthetic polypeptide 8Glu Ser Leu Gly Thr Glu Gln Arg Val Val Gly Arg Ala Ala Glu Val 1 5 10 15 Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln Leu Val Phe Gly Ser Gly 20 25 30 Asp Ala Val Glu Leu Ser Cys Pro Pro Pro Gly Gly Gly Pro Met Gly 35 40 45 Pro Thr Val Trp Val Lys Asp Gly Thr Gly Leu Val Pro Ser Glu Arg 50 55 60 Val Leu Val Gly Pro Gln Arg Leu Gln Val Leu Asn Ala Ser His Glu 65 70 75 80 Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg Leu Thr Gln Arg Val Leu 85 90 95 Cys His Phe Ser Val Arg Val Thr Asp Ala Pro Ser Ser Gly Asp Asp 100 105 110 Glu Asp Gly Glu Asp Glu Ala Glu Asp Thr Gly Val Asp Thr Gly Ala 115 120 125 Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp Lys Lys Leu Leu Ala Val 130 135 140 Pro Ala Ala Asn Thr Val Arg Phe Arg Cys Pro Ala Ala Gly Asn Pro 145 150 155 160 Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly Arg Glu Phe Arg Gly Glu 165 170 175 His Arg Ile Gly Gly Ile Lys Leu Arg His Gln Gln Trp Ser Leu Val 180 185 190 Met Glu Ser Val Val Pro Ser Asp Arg Gly Asn Tyr Thr Cys Val Val 195 200 205 Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr Tyr Thr Leu Asp Val Leu 210 215 220 Glu Arg Ser Pro His Arg Pro Ile Leu Gln Ala Gly Leu Pro Ala Asn 225 230 235 240 Gln Thr Ala Val Leu Gly Ser Asp Val Glu Phe His Cys Lys Val Tyr 245 250 255 Ser Asp Ala Gln Pro His Ile Gln Trp Leu Lys His Val Glu Val Asn 260 265 270 Gly Ser Lys Val Gly Pro Asp Gly Thr Pro Tyr Val Thr Val Leu Lys 275 280 285 Ser Trp Ile Ser Glu Ser Val Glu Ala Asp Val Arg Leu Arg Leu Ala 290 295 300 Asn Val Ser Glu Arg Asp Gly Gly Glu Tyr Leu Cys Arg Ala Thr Asn 305 310 315 320 Phe Ile Gly Val Ala Glu Lys Ala Phe Trp Leu Ser Val His Gly Pro 325 330 335 Arg Ala Ala Glu Glu Glu Leu Val Glu Ala Asp Glu Ala Gly Ser Val 340 345 350 Tyr Ala Gly Gly Ser Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys 355 360 365 Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu 370 375 380 Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu 385 390 395 400 Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys 405 410 415 Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys 420 425 430 Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu 435 440 445 Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys 450 455 460 Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys 465 470 475 480 Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser 485 490 495 Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys 500 505 510 Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln 515 520 525 Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly 530 535 540 Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln 545 550 555 560 Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn 565 570 575 His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 580 585 9585PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 9Glu Ser Leu Gly Thr Glu Gln Arg Val Val Gly Arg Ala Ala Glu Val 1 5 10 15 Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln Leu Val Phe Gly Ser Gly 20 25 30 Asp Ala Val Glu Leu Ser Cys Pro Pro Pro Gly Gly Gly Pro Met Gly 35 40 45 Pro Thr Val Trp Val Lys Asp Gly Thr Gly Leu Val Pro Ser Glu Arg 50 55 60 Val Leu Val Gly Pro Gln Arg Leu Gln Val Leu Asn Ala Ser His Glu 65 70 75 80 Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg Leu Thr Gln Arg Val Leu 85 90 95 Cys His Phe Ser Val Arg Val Thr Asp Ala Pro Ser Ser Gly Asp Asp 100 105 110 Glu Asp Gly Glu Asp Glu Ala Glu Asp Thr Gly Val Asp Thr Gly Ala 115 120 125 Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp Lys Lys Leu Leu Ala Val 130 135 140 Pro Ala Ala Asn Thr Val Arg Phe Arg Cys Pro Ala Ala Gly Asn Pro 145 150

155 160 Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly Arg Glu Phe Arg Gly Glu 165 170 175 His Arg Ile Gly Gly Ile Lys Leu Arg His Gln Gln Trp Ser Leu Val 180 185 190 Met Glu Ser Val Val Pro Ser Asp Arg Gly Asn Tyr Thr Cys Val Val 195 200 205 Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr Tyr Thr Leu Asp Val Leu 210 215 220 Glu Arg Ser Pro His Arg Pro Ile Leu Gln Ala Gly Leu Pro Ala Asn 225 230 235 240 Gln Thr Ala Val Leu Gly Ser Asp Val Glu Phe His Cys Lys Val Tyr 245 250 255 Ser Asp Ala Gln Pro His Ile Gln Trp Leu Lys His Val Glu Val Asn 260 265 270 Gly Ser Lys Val Gly Pro Asp Gly Thr Pro Tyr Val Thr Val Leu Lys 275 280 285 Thr Ala Gly Ala Asn Thr Thr Asp Lys Glu Leu Glu Val Leu Ser Leu 290 295 300 His Asn Val Thr Phe Glu Asp Ala Gly Glu Tyr Thr Cys Leu Ala Gly 305 310 315 320 Asn Ser Ile Gly Phe Ser His His Ser Ala Trp Leu Val Val Leu Pro 325 330 335 Ala Glu Glu Glu Leu Val Glu Ala Asp Glu Ala Gly Ser Val Tyr Ala 340 345 350 Gly Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro 355 360 365 Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys 370 375 380 Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val 385 390 395 400 Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr 405 410 415 Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu 420 425 430 Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His 435 440 445 Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys 450 455 460 Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln 465 470 475 480 Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu 485 490 495 Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro 500 505 510 Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn 515 520 525 Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu 530 535 540 Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val 545 550 555 560 Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln 565 570 575 Lys Ser Leu Ser Leu Ser Pro Gly Lys 580 585 10587PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 10Glu Ser Leu Gly Thr Glu Gln Arg Val Val Gly Arg Ala Ala Glu Val 1 5 10 15 Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln Leu Val Phe Gly Ser Gly 20 25 30 Asp Ala Val Glu Leu Ser Cys Pro Pro Pro Gly Gly Gly Pro Met Gly 35 40 45 Pro Thr Val Trp Val Lys Asp Gly Thr Gly Leu Val Pro Ser Glu Arg 50 55 60 Val Leu Val Gly Pro Gln Arg Leu Gln Val Leu Asn Ala Ser His Glu 65 70 75 80 Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg Leu Thr Gln Arg Val Leu 85 90 95 Cys His Phe Ser Val Arg Val Thr Asp Ala Pro Ser Ser Gly Asp Asp 100 105 110 Glu Asp Gly Glu Asp Glu Ala Glu Asp Thr Gly Val Asp Thr Gly Ala 115 120 125 Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp Lys Lys Leu Leu Ala Val 130 135 140 Pro Ala Ala Asn Thr Val Arg Phe Arg Cys Pro Ala Ala Gly Asn Pro 145 150 155 160 Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly Arg Glu Phe Arg Gly Glu 165 170 175 His Arg Ile Gly Gly Ile Lys Leu Arg His Gln Gln Trp Ser Leu Val 180 185 190 Met Glu Ser Val Val Pro Ser Asp Arg Gly Asn Tyr Thr Cys Val Val 195 200 205 Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr Tyr Thr Leu Asp Val Leu 210 215 220 Glu Arg Ser Pro His Arg Pro Ile Leu Gln Ala Gly Leu Pro Ala Asn 225 230 235 240 Gln Thr Ala Val Leu Gly Ser Asp Val Glu Phe His Cys Lys Val Tyr 245 250 255 Ser Asp Ala Gln Pro His Ile Gln Trp Leu Lys His Val Glu Val Asn 260 265 270 Gly Ser Lys Val Gly Pro Asp Gly Thr Pro Tyr Val Thr Val Leu Lys 275 280 285 Thr Ala Gly Ala Asn Thr Thr Asp Lys Glu Leu Glu Val Leu Ser Leu 290 295 300 His Asn Val Thr Phe Glu Asp Ala Gly Glu Tyr Thr Cys Leu Ala Gly 305 310 315 320 Asn Ser Ile Gly Phe Ser His His Ser Ala Trp Leu Val Val Leu Pro 325 330 335 Ala Glu Glu Glu Leu Val Glu Ala Asp Glu Ala Gly Ser Val Tyr Ala 340 345 350 Gly Gly Ser Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro 355 360 365 Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro 370 375 380 Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr 385 390 395 400 Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn 405 410 415 Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg 420 425 430 Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val 435 440 445 Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser 450 455 460 Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys 465 470 475 480 Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp 485 490 495 Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe 500 505 510 Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu 515 520 525 Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe 530 535 540 Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly 545 550 555 560 Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr 565 570 575 Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 580 585 11581PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 11Glu Ser Leu Gly Thr Glu Gln Arg Val Val Gly Arg Ala Ala Glu Val 1 5 10 15 Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln Leu Val Phe Gly Ser Gly 20 25 30 Asp Ala Val Glu Leu Ser Cys Pro Pro Pro Gly Gly Gly Pro Met Gly 35 40 45 Pro Thr Val Trp Val Lys Asp Gly Thr Gly Leu Val Pro Ser Glu Arg 50 55 60 Val Leu Val Gly Pro Gln Arg Leu Gln Val Leu Asn Ala Ser His Glu 65 70 75 80 Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg Leu Thr Gln Arg Val Leu 85 90 95 Cys His Phe Ser Val Arg Val Thr Asp Ala Pro Ser Ser Gly Asp Asp 100 105 110 Glu Asp Gly Glu Asp Glu Ala Glu Asp Thr Gly Val Asp Thr Gly Ala 115 120 125 Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp Lys Lys Leu Leu Ala Val 130 135 140 Pro Ala Ala Asn Thr Val Arg Phe Arg Cys Pro Ala Ala Gly Asn Pro 145 150 155 160 Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly Arg Glu Phe Arg Gly Glu 165 170 175 His Arg Ile Gly Gly Ile Lys Leu Arg His Gln Gln Trp Ser Leu Val 180 185 190 Met Glu Ser Val Val Pro Ser Asp Arg Gly Asn Tyr Thr Cys Val Val 195 200 205 Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr Tyr Thr Leu Asp Val Leu 210 215 220 Glu Arg Ser Pro His Arg Pro Ile Leu Gln Ala Gly Leu Pro Ala Asn 225 230 235 240 Gln Thr Ala Val Leu Gly Ser Asp Val Glu Phe His Cys Lys Val Tyr 245 250 255 Ser Asp Ala Gln Pro His Ile Gln Trp Leu Lys His Val Glu Val Asn 260 265 270 Gly Ser Lys Val Gly Pro Asp Gly Thr Pro Tyr Val Thr Val Leu Lys 275 280 285 Thr Ala Gly Ala Asn Thr Thr Asp Lys Glu Leu Glu Val Leu Ser Leu 290 295 300 His Asn Val Thr Phe Glu Asp Ala Gly Glu Tyr Thr Cys Leu Ala Gly 305 310 315 320 Asn Ser Ile Gly Phe Ser His His Ser Ala Trp Leu Val Val Leu Pro 325 330 335 Ala Glu Glu Glu Leu Val Glu Ala Asp Glu Ala Gly Ser Glu Pro Lys 340 345 350 Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu 355 360 365 Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr 370 375 380 Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val 385 390 395 400 Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val 405 410 415 Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser 420 425 430 Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu 435 440 445 Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala 450 455 460 Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro 465 470 475 480 Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln 485 490 495 Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala 500 505 510 Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr 515 520 525 Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu 530 535 540 Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser 545 550 555 560 Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 565 570 575 Leu Ser Pro Gly Lys 580 12577PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 12Glu Ser Leu Gly Thr Glu Gln Arg Val Val Gly Arg Ala Ala Glu Val 1 5 10 15 Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln Leu Val Phe Gly Ser Gly 20 25 30 Asp Ala Val Glu Leu Ser Cys Pro Pro Pro Gly Gly Gly Pro Met Gly 35 40 45 Pro Thr Val Trp Val Lys Asp Gly Thr Gly Leu Val Pro Ser Glu Arg 50 55 60 Val Leu Val Gly Pro Gln Arg Leu Gln Val Leu Asn Ala Ser His Glu 65 70 75 80 Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg Leu Thr Gln Arg Val Leu 85 90 95 Cys His Phe Ser Val Arg Val Thr Asp Ala Pro Ser Ser Gly Asp Asp 100 105 110 Glu Asp Gly Glu Asp Glu Ala Glu Asp Thr Gly Val Asp Thr Gly Ala 115 120 125 Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp Lys Lys Leu Leu Ala Val 130 135 140 Pro Ala Ala Asn Thr Val Arg Phe Arg Cys Pro Ala Ala Gly Asn Pro 145 150 155 160 Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly Arg Glu Phe Arg Gly Glu 165 170 175 His Arg Ile Gly Gly Ile Lys Leu Arg His Gln Gln Trp Ser Leu Val 180 185 190 Met Glu Ser Val Val Pro Ser Asp Arg Gly Asn Tyr Thr Cys Val Val 195 200 205 Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr Tyr Thr Leu Asp Val Leu 210 215 220 Glu Arg Ser Pro His Arg Pro Ile Leu Gln Ala Gly Leu Pro Ala Asn 225 230 235 240 Gln Thr Ala Val Leu Gly Ser Asp Val Glu Phe His Cys Lys Val Tyr 245 250 255 Ser Asp Ala Gln Pro His Ile Gln Trp Leu Lys His Val Glu Val Asn 260 265 270 Gly Ser Lys Val Gly Pro Asp Gly Thr Pro Tyr Val Thr Val Leu Lys 275 280 285 Thr Ala Gly Ala Asn Thr Thr Asp Lys Glu Leu Glu Val Leu Ser Leu 290 295 300 His Asn Val Thr Phe Glu Asp Ala Gly Glu Tyr Thr Cys Leu Ala Gly 305 310 315 320 Asn Ser Ile Gly Phe Ser His His Ser Ala Trp Leu Val Val Leu Pro 325 330 335 Ala Glu Glu Glu Leu Val Glu Ala Asp Glu Pro Lys Ser Ser Asp Lys 340 345 350 Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro 355 360 365 Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser 370 375 380 Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp 385 390 395 400 Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn 405 410 415 Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val 420 425 430 Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu 435 440 445 Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys 450 455 460 Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr 465 470 475 480 Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr 485 490 495 Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu 500 505 510 Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu 515 520 525 Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys 530 535 540 Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu 545 550 555 560 Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly 565 570 575 Lys 13576PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 13Glu Ser Leu Gly Thr Glu Gln Arg Val Val Gly Arg Ala Ala Glu Val 1 5 10 15 Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln Leu Val Phe Gly Ser Gly 20 25 30 Asp Ala Val Glu Leu Ser Cys Pro Pro Pro Gly Gly Gly Pro Met Gly 35 40 45 Pro Thr Val Trp Val Lys Asp Gly Thr Gly Leu Val Pro Ser Glu Arg 50 55 60 Val Leu Val Gly Pro Gln Arg Leu Gln Val Leu Asn Ala Ser His Glu 65 70 75 80 Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg Leu

Thr Gln Arg Val Leu 85 90 95 Cys His Phe Ser Val Arg Val Thr Asp Ala Pro Ser Ser Gly Asp Asp 100 105 110 Glu Asp Gly Glu Asp Glu Ala Glu Asp Thr Gly Val Asp Thr Gly Ala 115 120 125 Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp Lys Lys Leu Leu Ala Val 130 135 140 Pro Ala Ala Asn Thr Val Arg Phe Arg Cys Pro Ala Ala Gly Asn Pro 145 150 155 160 Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly Arg Glu Phe Arg Gly Glu 165 170 175 His Arg Ile Gly Gly Ile Lys Leu Arg His Gln Gln Trp Ser Leu Val 180 185 190 Met Glu Ser Val Val Pro Ser Asp Arg Gly Asn Tyr Thr Cys Val Val 195 200 205 Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr Tyr Thr Leu Asp Val Leu 210 215 220 Glu Arg Ser Pro His Arg Pro Ile Leu Gln Ala Gly Leu Pro Ala Asn 225 230 235 240 Gln Thr Ala Val Leu Gly Ser Asp Val Glu Phe His Cys Lys Val Tyr 245 250 255 Ser Asp Ala Gln Pro His Ile Gln Trp Leu Lys His Val Glu Val Asn 260 265 270 Gly Ser Lys Val Gly Pro Asp Gly Thr Pro Tyr Val Thr Val Leu Lys 275 280 285 Thr Ala Gly Ala Asn Thr Thr Asp Lys Glu Leu Glu Val Leu Ser Leu 290 295 300 His Asn Val Thr Phe Glu Asp Ala Gly Glu Tyr Thr Cys Leu Ala Gly 305 310 315 320 Asn Ser Ile Gly Phe Ser His His Ser Ala Trp Leu Val Val Leu Pro 325 330 335 Ala Glu Glu Glu Leu Val Glu Ala Glu Pro Lys Ser Ser Asp Lys Thr 340 345 350 His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser 355 360 365 Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg 370 375 380 Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro 385 390 395 400 Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala 405 410 415 Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val 420 425 430 Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr 435 440 445 Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr 450 455 460 Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu 465 470 475 480 Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys 485 490 495 Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser 500 505 510 Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp 515 520 525 Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser 530 535 540 Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala 545 550 555 560 Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 565 570 575 14572PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 14Glu Ser Leu Gly Thr Glu Gln Arg Val Val Gly Arg Ala Ala Glu Val 1 5 10 15 Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln Leu Val Phe Gly Ser Gly 20 25 30 Asp Ala Val Glu Leu Ser Cys Pro Pro Pro Gly Gly Gly Pro Met Gly 35 40 45 Pro Thr Val Trp Val Lys Asp Gly Thr Gly Leu Val Pro Ser Glu Arg 50 55 60 Val Leu Val Gly Pro Gln Arg Leu Gln Val Leu Asn Ala Ser His Glu 65 70 75 80 Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg Leu Thr Gln Arg Val Leu 85 90 95 Cys His Phe Ser Val Arg Val Thr Asp Ala Pro Ser Ser Gly Asp Asp 100 105 110 Glu Asp Gly Glu Asp Glu Ala Glu Asp Thr Gly Val Asp Thr Gly Ala 115 120 125 Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp Lys Lys Leu Leu Ala Val 130 135 140 Pro Ala Ala Asn Thr Val Arg Phe Arg Cys Pro Ala Ala Gly Asn Pro 145 150 155 160 Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly Arg Glu Phe Arg Gly Glu 165 170 175 His Arg Ile Gly Gly Ile Lys Leu Arg His Gln Gln Trp Ser Leu Val 180 185 190 Met Glu Ser Val Val Pro Ser Asp Arg Gly Asn Tyr Thr Cys Val Val 195 200 205 Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr Tyr Thr Leu Asp Val Leu 210 215 220 Glu Arg Ser Pro His Arg Pro Ile Leu Gln Ala Gly Leu Pro Ala Asn 225 230 235 240 Gln Thr Ala Val Leu Gly Ser Asp Val Glu Phe His Cys Lys Val Tyr 245 250 255 Ser Asp Ala Gln Pro His Ile Gln Trp Leu Lys His Val Glu Val Asn 260 265 270 Gly Ser Lys Val Gly Pro Asp Gly Thr Pro Tyr Val Thr Val Leu Lys 275 280 285 Thr Ala Gly Ala Asn Thr Thr Asp Lys Glu Leu Glu Val Leu Ser Leu 290 295 300 His Asn Val Thr Phe Glu Asp Ala Gly Glu Tyr Thr Cys Leu Ala Gly 305 310 315 320 Asn Ser Ile Gly Phe Ser His His Ser Ala Trp Leu Val Val Leu Pro 325 330 335 Ala Glu Glu Glu Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro 340 345 350 Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe 355 360 365 Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val 370 375 380 Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe 385 390 395 400 Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro 405 410 415 Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr 420 425 430 Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val 435 440 445 Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala 450 455 460 Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg 465 470 475 480 Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly 485 490 495 Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro 500 505 510 Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser 515 520 525 Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln 530 535 540 Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His 545 550 555 560 Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 565 570 15565PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 15Glu Ser Leu Gly Thr Glu Gln Arg Val Val Gly Arg Ala Ala Glu Val 1 5 10 15 Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln Leu Val Phe Gly Ser Gly 20 25 30 Asp Ala Val Glu Leu Ser Cys Pro Pro Pro Gly Gly Gly Pro Met Gly 35 40 45 Pro Thr Val Trp Val Lys Asp Gly Thr Gly Leu Val Pro Ser Glu Arg 50 55 60 Val Leu Val Gly Pro Gln Arg Leu Gln Val Leu Asn Ala Ser His Glu 65 70 75 80 Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg Leu Thr Gln Arg Val Leu 85 90 95 Cys His Phe Ser Val Arg Val Thr Asp Ala Pro Ser Ser Gly Asp Asp 100 105 110 Glu Asp Gly Glu Asp Glu Ala Glu Asp Thr Gly Val Asp Thr Gly Ala 115 120 125 Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp Lys Lys Leu Leu Ala Val 130 135 140 Pro Ala Ala Asn Thr Val Arg Phe Arg Cys Pro Ala Ala Gly Asn Pro 145 150 155 160 Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly Arg Glu Phe Arg Gly Glu 165 170 175 His Arg Ile Gly Gly Ile Lys Leu Arg His Gln Gln Trp Ser Leu Val 180 185 190 Met Glu Ser Val Val Pro Ser Asp Arg Gly Asn Tyr Thr Cys Val Val 195 200 205 Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr Tyr Thr Leu Asp Val Leu 210 215 220 Glu Arg Ser Pro His Arg Pro Ile Leu Gln Ala Gly Leu Pro Ala Asn 225 230 235 240 Gln Thr Ala Val Leu Gly Ser Asp Val Glu Phe His Cys Lys Val Tyr 245 250 255 Ser Asp Ala Gln Pro His Ile Gln Trp Leu Lys His Val Glu Val Asn 260 265 270 Gly Ser Lys Val Gly Pro Asp Gly Thr Pro Tyr Val Thr Val Leu Lys 275 280 285 Thr Ala Gly Ala Asn Thr Thr Asp Lys Glu Leu Glu Val Leu Ser Leu 290 295 300 His Asn Val Thr Phe Glu Asp Ala Gly Glu Tyr Thr Cys Leu Ala Gly 305 310 315 320 Asn Ser Ile Gly Phe Ser His His Ser Ala Trp Leu Val Glu Pro Lys 325 330 335 Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu 340 345 350 Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr 355 360 365 Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val 370 375 380 Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val 385 390 395 400 Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser 405 410 415 Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu 420 425 430 Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala 435 440 445 Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro 450 455 460 Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln 465 470 475 480 Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala 485 490 495 Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr 500 505 510 Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu 515 520 525 Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser 530 535 540 Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 545 550 555 560 Leu Ser Pro Gly Lys 565 16232PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 16Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala 1 5 10 15 Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro 20 25 30 Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val 35 40 45 Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val 50 55 60 Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln 65 70 75 80 Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln 85 90 95 Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala 100 105 110 Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro 115 120 125 Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr 130 135 140 Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser 145 150 155 160 Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr 165 170 175 Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr 180 185 190 Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe 195 200 205 Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys 210 215 220 Ser Leu Ser Leu Ser Pro Gly Lys 225 230 17228PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 17Glu Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val 1 5 10 15 Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu 20 25 30 Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser 35 40 45 His Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu 50 55 60 Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr 65 70 75 80 Phe Arg Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn 85 90 95 Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro 100 105 110 Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln 115 120 125 Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val 130 135 140 Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val 145 150 155 160 Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro 165 170 175 Pro Met Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr 180 185 190 Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val 195 200 205 Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 210 215 220 Ser Pro Gly Lys 225 18229PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 18Glu Ser Lys Tyr Gly Pro Pro Cys Pro Ser Cys Pro Ala Pro Glu Phe 1 5 10 15 Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr 20 25 30 Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val 35 40 45 Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val 50 55 60 Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser 65 70 75 80 Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu 85 90 95 Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser 100 105 110 Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro 115 120 125 Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln 130 135 140 Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala 145 150 155

160 Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr 165 170 175 Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu 180 185 190 Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser 195 200 205 Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 210 215 220 Leu Ser Leu Gly Lys 225 1921PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 19Met Trp Ser Trp Lys Cys Leu Leu Phe Trp Ala Val Leu Val Thr Ala 1 5 10 15 Thr Leu Cys Thr Ala 20 2021PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 20Met Val Ser Trp Gly Arg Phe Ile Cys Leu Val Val Val Thr Met Ala 1 5 10 15 Thr Leu Ser Leu Ala 20 2122PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 21Met Gly Ala Pro Ala Cys Ala Leu Ala Leu Cys Val Ala Val Ala Ile 1 5 10 15 Val Ala Gly Ala Ser Ser 20 2221PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 22Met Arg Leu Leu Leu Ala Leu Leu Gly Ile Leu Leu Ser Val Pro Gly 1 5 10 15 Pro Pro Val Leu Ser 20 2323PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 23Asp Ala Pro Ser Ser Gly Asp Asp Glu Asp Gly Glu Asp Glu Ala Glu 1 5 10 15 Asp Thr Gly Val Asp Thr Gly 20 247PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 24Asp Asp Glu Asp Gly Glu Asp 1 5 258PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 25Asp Asp Glu Asp Gly Glu Asp Glu 1 5 2610PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 26Asp Asp Glu Asp Gly Glu Asp Glu Ala Glu 1 5 10 2711PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 27Asp Asp Glu Asp Gly Glu Asp Glu Ala Glu Asp 1 5 10 28585PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 28Glu Ser Leu Gly Thr Glu Gln Arg Val Val Gly Arg Ala Ala Glu Val 1 5 10 15 Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln Leu Val Phe Gly Ser Gly 20 25 30 Asp Ala Val Glu Leu Ser Cys Pro Pro Pro Gly Gly Gly Pro Met Gly 35 40 45 Pro Thr Val Trp Val Lys Asp Gly Thr Gly Leu Val Pro Ser Glu Arg 50 55 60 Val Leu Val Gly Pro Gln Arg Leu Gln Val Leu Asn Ala Ser His Glu 65 70 75 80 Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg Leu Thr Gln Arg Val Leu 85 90 95 Cys His Phe Ser Val Arg Val Thr Asp Ala Pro Ser Ser Glu Asp Asp 100 105 110 Asp Asp Asp Asp Asp Glu Ala Glu Asp Thr Gly Val Asp Thr Gly Ala 115 120 125 Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp Lys Lys Leu Leu Ala Val 130 135 140 Pro Ala Ala Asn Thr Val Arg Phe Arg Cys Pro Ala Ala Gly Asn Pro 145 150 155 160 Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly Arg Glu Phe Arg Gly Glu 165 170 175 His Arg Ile Gly Gly Ile Lys Leu Arg His Gln Gln Trp Ser Leu Val 180 185 190 Met Glu Ser Val Val Pro Ser Asp Arg Gly Asn Tyr Thr Cys Val Val 195 200 205 Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr Tyr Thr Leu Asp Val Leu 210 215 220 Glu Arg Ser Pro His Arg Pro Ile Leu Gln Ala Gly Leu Pro Ala Asn 225 230 235 240 Gln Thr Ala Val Leu Gly Ser Asp Val Glu Phe His Cys Lys Val Tyr 245 250 255 Ser Asp Ala Gln Pro His Ile Gln Trp Leu Lys His Val Glu Val Asn 260 265 270 Gly Ser Lys Val Gly Pro Asp Gly Thr Pro Tyr Val Thr Val Leu Lys 275 280 285 Thr Ala Gly Ala Asn Thr Thr Asp Lys Glu Leu Glu Val Leu Ser Leu 290 295 300 His Asn Val Thr Phe Glu Asp Ala Gly Glu Tyr Thr Cys Leu Ala Gly 305 310 315 320 Asn Ser Ile Gly Phe Ser His His Ser Ala Trp Leu Val Val Leu Pro 325 330 335 Ala Glu Glu Glu Leu Val Glu Ala Asp Glu Ala Gly Ser Val Tyr Ala 340 345 350 Gly Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro 355 360 365 Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys 370 375 380 Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val 385 390 395 400 Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr 405 410 415 Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu 420 425 430 Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His 435 440 445 Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys 450 455 460 Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln 465 470 475 480 Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu 485 490 495 Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro 500 505 510 Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn 515 520 525 Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu 530 535 540 Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val 545 550 555 560 Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln 565 570 575 Lys Ser Leu Ser Leu Ser Pro Gly Lys 580 585 29375PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 29Met Gly Ala Pro Ala Cys Ala Leu Ala Leu Cys Val Ala Val Ala Ile 1 5 10 15 Val Ala Gly Ala Ser Ser Glu Ser Leu Gly Thr Glu Gln Arg Val Val 20 25 30 Gly Arg Ala Ala Glu Val Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln 35 40 45 Leu Val Phe Gly Ser Gly Asp Ala Val Glu Leu Ser Cys Pro Pro Pro 50 55 60 Gly Gly Gly Pro Met Gly Pro Thr Val Trp Val Lys Asp Gly Thr Gly 65 70 75 80 Leu Val Pro Ser Glu Arg Val Leu Val Gly Pro Gln Arg Leu Gln Val 85 90 95 Leu Asn Ala Ser His Glu Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg 100 105 110 Leu Thr Gln Arg Val Leu Cys His Phe Ser Val Arg Val Thr Asp Ala 115 120 125 Pro Ser Ser Gly Asp Asp Glu Asp Gly Glu Asp Glu Ala Glu Asp Thr 130 135 140 Gly Val Asp Thr Gly Ala Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp 145 150 155 160 Lys Lys Leu Leu Ala Val Pro Ala Ala Asn Thr Val Arg Phe Arg Cys 165 170 175 Pro Ala Ala Gly Asn Pro Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly 180 185 190 Arg Glu Phe Arg Gly Glu His Arg Ile Gly Gly Ile Lys Leu Arg His 195 200 205 Gln Gln Trp Ser Leu Val Met Glu Ser Val Val Pro Ser Asp Arg Gly 210 215 220 Asn Tyr Thr Cys Val Val Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr 225 230 235 240 Tyr Thr Leu Asp Val Leu Glu Arg Ser Pro His Arg Pro Ile Leu Gln 245 250 255 Ala Gly Leu Pro Ala Asn Gln Thr Ala Val Leu Gly Ser Asp Val Glu 260 265 270 Phe His Cys Lys Val Tyr Ser Asp Ala Gln Pro His Ile Gln Trp Leu 275 280 285 Lys His Val Glu Val Asn Gly Ser Lys Val Gly Pro Asp Gly Thr Pro 290 295 300 Tyr Val Thr Val Leu Lys Thr Ala Gly Ala Asn Thr Thr Asp Lys Glu 305 310 315 320 Leu Glu Val Leu Ser Leu His Asn Val Thr Phe Glu Asp Ala Gly Glu 325 330 335 Tyr Thr Cys Leu Ala Gly Asn Ser Ile Gly Phe Ser His His Ser Ala 340 345 350 Trp Leu Val Val Leu Pro Ala Glu Glu Glu Leu Val Glu Ala Asp Glu 355 360 365 Ala Gly Ser Val Tyr Ala Gly 370 375 30350PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 30Glu Ser Leu Gly Thr Glu Gln Arg Val Val Gly Arg Ala Ala Glu Val 1 5 10 15 Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln Leu Val Phe Gly Ser Gly 20 25 30 Asp Ala Val Glu Leu Ser Cys Pro Pro Pro Gly Gly Gly Pro Met Gly 35 40 45 Pro Thr Val Trp Val Lys Asp Gly Thr Gly Leu Val Pro Ser Glu Arg 50 55 60 Val Leu Val Gly Pro Gln Arg Leu Gln Val Leu Asn Ala Ser His Glu 65 70 75 80 Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg Leu Thr Gln Arg Val Leu 85 90 95 Cys His Phe Ser Val Arg Val Thr Asp Ala Pro Ser Ser Gly Asp Asp 100 105 110 Glu Asp Gly Glu Asp Glu Ala Glu Asp Thr Gly Val Asp Thr Gly Ala 115 120 125 Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp Lys Lys Leu Leu Ala Val 130 135 140 Pro Ala Ala Asn Thr Val Arg Phe Arg Cys Pro Ala Ala Gly Asn Pro 145 150 155 160 Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly Arg Glu Phe Arg Gly Glu 165 170 175 His Arg Ile Gly Gly Ile Lys Leu Arg His Gln Gln Trp Ser Leu Val 180 185 190 Met Glu Ser Val Val Pro Ser Asp Arg Gly Asn Tyr Thr Cys Val Val 195 200 205 Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr Tyr Thr Leu Asp Val Leu 210 215 220 Glu Arg Ser Pro His Arg Pro Ile Leu Gln Ala Gly Leu Pro Ala Asn 225 230 235 240 Gln Thr Ala Val Leu Gly Ser Asp Val Glu Phe His Cys Lys Val Tyr 245 250 255 Ser Asp Ala Gln Pro His Ile Gln Trp Leu Lys His Val Glu Val Asn 260 265 270 Gly Ser Lys Val Gly Pro Asp Gly Thr Pro Tyr Val Thr Val Leu Lys 275 280 285 Thr Ala Gly Ala Asn Thr Thr Asp Lys Glu Leu Glu Val Leu Ser Leu 290 295 300 His Asn Val Thr Phe Glu Asp Ala Gly Glu Tyr Thr Cys Leu Ala Gly 305 310 315 320 Asn Ser Ile Gly Phe Ser His His Ser Ala Trp Leu Val Val Leu Pro 325 330 335 Ala Glu Glu Glu Leu Val Glu Ala Asp Glu Ala Gly Ser Val 340 345 350 31566PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 31Leu Glu Ala Ser Glu Glu Val Glu Leu Glu Pro Cys Leu Ala Pro Ser 1 5 10 15 Leu Glu Gln Gln Glu Gln Glu Leu Thr Val Ala Leu Gly Gln Pro Val 20 25 30 Arg Leu Cys Cys Gly Arg Ala Glu Arg Gly Gly His Trp Tyr Lys Glu 35 40 45 Gly Ser Arg Leu Ala Pro Ala Gly Arg Val Arg Gly Trp Arg Gly Arg 50 55 60 Leu Glu Ile Ala Ser Phe Leu Pro Glu Asp Ala Gly Arg Tyr Leu Cys 65 70 75 80 Leu Ala Arg Gly Ser Met Ile Val Leu Gln Asn Leu Thr Leu Ile Thr 85 90 95 Gly Asp Ala Leu Pro Ser Ser Glu Asp Asp Asp Asp Asp Asp Asp Ser 100 105 110 Ser Ser Glu Glu Lys Glu Thr Asp Asn Thr Lys Pro Asn Pro Val Ala 115 120 125 Pro Tyr Trp Thr His Pro Gln Arg Met Glu Lys Lys Leu His Ala Val 130 135 140 Pro Ala Gly Asn Thr Val Lys Phe Arg Cys Pro Ala Ala Gly Asn Pro 145 150 155 160 Thr Pro Thr Ile Arg Trp Leu Lys Asp Gly Gln Ala Phe His Gly Glu 165 170 175 Asn Arg Ile Gly Gly Ile Arg Leu Arg His Gln His Trp Ser Leu Val 180 185 190 Met Glu Ser Val Val Pro Ser Asp Arg Gly Thr Tyr Thr Cys Leu Val 195 200 205 Glu Asn Ala Val Gly Ser Ile Arg Tyr Asn Tyr Leu Leu Asp Val Leu 210 215 220 Glu Arg Ser Pro His Arg Pro Ile Leu Gln Ala Gly Leu Pro Ala Asn 225 230 235 240 Thr Thr Ala Val Val Gly Ser Asp Val Glu Leu Leu Cys Lys Val Tyr 245 250 255 Ser Asp Ala Gln Pro His Ile Gln Trp Leu Lys His Ile Val Ile Asn 260 265 270 Gly Ser Ser Phe Gly Ala Asp Gly Phe Pro Tyr Val Gln Val Leu Lys 275 280 285 Thr Ala Asp Ile Asn Ser Ser Glu Val Glu Val Leu Tyr Leu Arg Asn 290 295 300 Val Ser Ala Glu Asp Ala Gly Glu Tyr Thr Cys Leu Ala Gly Asn Ser 305 310 315 320 Ile Gly Leu Ser Tyr Gln Ser Ala Trp Leu Thr Val Leu Pro Glu Pro 325 330 335 Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu 340 345 350 Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp 355 360 365 Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp 370 375 380 Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly 385 390 395 400 Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn 405 410 415 Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp 420 425 430 Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro 435 440 445 Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu 450 455 460 Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn 465 470 475 480 Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile 485 490 495 Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr 500 505 510 Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys 515 520 525 Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys 530 535 540 Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu 545 550 555 560 Ser Leu Ser Pro Gly Lys 565 32587PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 32Arg Pro Ser Phe Ser Leu Val Glu Asp Thr Thr Leu Glu Pro Glu Glu 1 5 10 15 Pro Pro Thr Lys Tyr Gln Ile Ser Gln Pro Glu Val Tyr Val Ala Ala 20 25 30 Pro Gly Glu Ser Leu Glu Val Arg Cys Leu Leu Lys Asp Ala Ala Val 35 40 45 Ile Ser Trp Thr Lys Asp Gly

Val His Leu Gly Pro Asn Asn Arg Thr 50 55 60 Val Leu Ile Gly Glu Tyr Leu Gln Ile Lys Gly Ala Thr Pro Arg Asp 65 70 75 80 Ser Gly Leu Tyr Ala Cys Thr Ala Ser Arg Thr Val Asp Ser Glu Thr 85 90 95 Trp Tyr Phe Met Val Asn Val Thr Asp Ala Ile Ser Ser Gly Asp Asp 100 105 110 Glu Asp Asp Thr Asp Gly Ala Glu Asp Phe Val Ser Glu Asn Ser Asn 115 120 125 Asn Lys Arg Ala Pro Tyr Trp Thr Asn Thr Glu Lys Met Glu Lys Arg 130 135 140 Leu His Ala Val Pro Ala Ala Asn Thr Val Lys Phe Arg Cys Pro Ala 145 150 155 160 Gly Gly Asn Pro Met Pro Thr Met Arg Trp Leu Lys Asn Gly Lys Glu 165 170 175 Phe Lys Gln Glu His Arg Ile Gly Gly Tyr Lys Val Arg Asn Gln His 180 185 190 Trp Ser Leu Ile Met Glu Ser Val Val Pro Ser Asp Lys Gly Asn Tyr 195 200 205 Thr Cys Val Val Glu Asn Glu Tyr Gly Ser Ile Asn His Thr Tyr His 210 215 220 Leu Asp Val Val Glu Arg Ser Pro His Arg Pro Ile Leu Gln Ala Gly 225 230 235 240 Leu Pro Ala Asn Ala Ser Thr Val Val Gly Gly Asp Val Glu Phe Val 245 250 255 Cys Lys Val Tyr Ser Asp Ala Gln Pro His Ile Gln Trp Ile Lys His 260 265 270 Val Glu Lys Asn Gly Ser Lys Tyr Gly Pro Asp Gly Leu Pro Tyr Leu 275 280 285 Lys Val Leu Lys Ala Ala Gly Val Asn Thr Thr Asp Lys Glu Ile Glu 290 295 300 Val Leu Tyr Ile Arg Asn Val Thr Phe Glu Asp Ala Gly Glu Tyr Thr 305 310 315 320 Cys Leu Ala Gly Asn Ser Ile Gly Ile Ser Phe His Ser Ala Trp Leu 325 330 335 Thr Val Leu Pro Ala Pro Gly Arg Glu Lys Glu Ile Thr Ala Ser Pro 340 345 350 Asp Gly Ser Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro 355 360 365 Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro 370 375 380 Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr 385 390 395 400 Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn 405 410 415 Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg 420 425 430 Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val 435 440 445 Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser 450 455 460 Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys 465 470 475 480 Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp 485 490 495 Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe 500 505 510 Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu 515 520 525 Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe 530 535 540 Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly 545 550 555 560 Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr 565 570 575 Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 580 585 33584PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 33Glu Ser Leu Gly Thr Glu Gln Arg Val Val Gly Arg Ala Ala Glu Val 1 5 10 15 Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln Leu Val Phe Gly Ser Gly 20 25 30 Asp Ala Val Glu Leu Ser Cys Pro Pro Pro Gly Gly Gly Pro Met Gly 35 40 45 Pro Thr Val Trp Val Lys Asp Gly Thr Gly Leu Val Pro Ser Glu Arg 50 55 60 Val Leu Val Gly Pro Gln Arg Leu Gln Val Leu Asn Ala Ser His Glu 65 70 75 80 Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg Leu Thr Gln Arg Val Leu 85 90 95 Cys His Phe Ser Val Arg Val Thr Asp Ala Pro Ser Ser Gly Asp Asp 100 105 110 Glu Asp Gly Glu Asp Glu Ala Glu Asp Thr Gly Val Asp Thr Gly Ala 115 120 125 Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp Lys Lys Leu Leu Ala Val 130 135 140 Pro Ala Ala Asn Thr Val Arg Phe Arg Cys Pro Ala Ala Gly Asn Pro 145 150 155 160 Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly Arg Glu Phe Arg Gly Glu 165 170 175 His Arg Ile Gly Gly Ile Lys Leu Arg His Gln Gln Trp Ser Leu Val 180 185 190 Met Glu Ser Val Val Pro Ser Asp Arg Gly Asn Tyr Thr Cys Val Val 195 200 205 Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr Tyr Thr Leu Asp Val Leu 210 215 220 Glu Arg Ser Pro His Arg Pro Ile Leu Gln Ala Gly Leu Pro Ala Asn 225 230 235 240 Gln Thr Ala Val Leu Gly Ser Asp Val Glu Phe His Cys Lys Val Tyr 245 250 255 Ser Asp Ala Gln Pro His Ile Gln Trp Leu Lys His Val Glu Val Asn 260 265 270 Gly Ser Lys Val Gly Pro Asp Gly Thr Pro Tyr Val Thr Val Leu Lys 275 280 285 Thr Ala Gly Ala Asn Thr Thr Asp Lys Glu Leu Glu Val Leu Ser Leu 290 295 300 His Asn Val Thr Phe Glu Asp Ala Gly Glu Tyr Thr Cys Leu Ala Gly 305 310 315 320 Asn Ser Ile Gly Phe Ser His His Ser Ala Trp Leu Val Val Leu Pro 325 330 335 Ala Glu Glu Glu Leu Val Glu Ala Asp Glu Ala Gly Ser Val Gly Ser 340 345 350 Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala 355 360 365 Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro 370 375 380 Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val 385 390 395 400 Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val 405 410 415 Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln 420 425 430 Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln 435 440 445 Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala 450 455 460 Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro 465 470 475 480 Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr 485 490 495 Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser 500 505 510 Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr 515 520 525 Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr 530 535 540 Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe 545 550 555 560 Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys 565 570 575 Ser Leu Ser Leu Ser Pro Gly Lys 580 34353PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 34Glu Ser Leu Gly Thr Glu Gln Arg Val Val Gly Arg Ala Ala Glu Val 1 5 10 15 Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln Leu Val Phe Gly Ser Gly 20 25 30 Asp Ala Val Glu Leu Ser Cys Pro Pro Pro Gly Gly Gly Pro Met Gly 35 40 45 Pro Thr Val Trp Val Lys Asp Gly Thr Gly Leu Val Pro Ser Glu Arg 50 55 60 Val Leu Val Gly Pro Gln Arg Leu Gln Val Leu Asn Ala Ser His Glu 65 70 75 80 Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg Leu Thr Gln Arg Val Leu 85 90 95 Cys His Phe Ser Val Arg Val Thr Asp Ala Pro Ser Ser Glu Asp Asp 100 105 110 Asp Asp Asp Asp Asp Glu Ala Glu Asp Thr Gly Val Asp Thr Gly Ala 115 120 125 Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp Lys Lys Leu Leu Ala Val 130 135 140 Pro Ala Ala Asn Thr Val Arg Phe Arg Cys Pro Ala Ala Gly Asn Pro 145 150 155 160 Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly Arg Glu Phe Arg Gly Glu 165 170 175 His Arg Ile Gly Gly Ile Lys Leu Arg His Gln Gln Trp Ser Leu Val 180 185 190 Met Glu Ser Val Val Pro Ser Asp Arg Gly Asn Tyr Thr Cys Val Val 195 200 205 Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr Tyr Thr Leu Asp Val Leu 210 215 220 Glu Arg Ser Pro His Arg Pro Ile Leu Gln Ala Gly Leu Pro Ala Asn 225 230 235 240 Gln Thr Ala Val Leu Gly Ser Asp Val Glu Phe His Cys Lys Val Tyr 245 250 255 Ser Asp Ala Gln Pro His Ile Gln Trp Leu Lys His Val Glu Val Asn 260 265 270 Gly Ser Lys Val Gly Pro Asp Gly Thr Pro Tyr Val Thr Val Leu Lys 275 280 285 Thr Ala Gly Ala Asn Thr Thr Asp Lys Glu Leu Glu Val Leu Ser Leu 290 295 300 His Asn Val Thr Phe Glu Asp Ala Gly Glu Tyr Thr Cys Leu Ala Gly 305 310 315 320 Asn Ser Ile Gly Phe Ser His His Ser Ala Trp Leu Val Val Leu Pro 325 330 335 Ala Glu Glu Glu Leu Val Glu Ala Asp Glu Ala Gly Ser Val Tyr Ala 340 345 350 Gly 35582PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 35Glu Ser Leu Gly Thr Glu Gln Arg Val Val Gly Arg Ala Ala Glu Val 1 5 10 15 Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln Leu Val Phe Gly Ser Gly 20 25 30 Asp Ala Val Glu Leu Ser Cys Pro Pro Pro Gly Gly Gly Pro Met Gly 35 40 45 Pro Thr Val Trp Val Lys Asp Gly Thr Gly Leu Val Pro Ser Glu Arg 50 55 60 Val Leu Val Gly Pro Gln Arg Leu Gln Val Leu Asn Ala Ser His Glu 65 70 75 80 Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg Leu Thr Gln Arg Val Leu 85 90 95 Cys His Phe Ser Val Arg Val Thr Asp Ala Pro Ser Ser Glu Asp Asp 100 105 110 Asp Asp Asp Asp Asp Glu Ala Glu Asp Thr Gly Val Asp Thr Gly Ala 115 120 125 Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp Lys Lys Leu Leu Ala Val 130 135 140 Pro Ala Ala Asn Thr Val Arg Phe Arg Cys Pro Ala Ala Gly Asn Pro 145 150 155 160 Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly Arg Glu Phe Arg Gly Glu 165 170 175 His Arg Ile Gly Gly Ile Lys Leu Arg His Gln Gln Trp Ser Leu Val 180 185 190 Met Glu Ser Val Val Pro Ser Asp Arg Gly Asn Tyr Thr Cys Val Val 195 200 205 Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr Tyr Thr Leu Asp Val Leu 210 215 220 Glu Arg Ser Pro His Arg Pro Ile Leu Gln Ala Gly Leu Pro Ala Asn 225 230 235 240 Gln Thr Ala Val Leu Gly Ser Asp Val Glu Phe His Cys Lys Val Tyr 245 250 255 Ser Asp Ala Gln Pro His Ile Gln Trp Leu Lys His Val Glu Val Asn 260 265 270 Gly Ser Lys Val Gly Pro Asp Gly Thr Pro Tyr Val Thr Val Leu Lys 275 280 285 Thr Ala Gly Ala Asn Thr Thr Asp Lys Glu Leu Glu Val Leu Ser Leu 290 295 300 His Asn Val Thr Phe Glu Asp Ala Gly Glu Tyr Thr Cys Leu Ala Gly 305 310 315 320 Asn Ser Ile Gly Phe Ser His His Ser Ala Trp Leu Val Val Leu Pro 325 330 335 Ala Glu Glu Glu Leu Val Glu Ala Asp Glu Ala Gly Ser Val Glu Pro 340 345 350 Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu 355 360 365 Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp 370 375 380 Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp 385 390 395 400 Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly 405 410 415 Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn 420 425 430 Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp 435 440 445 Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro 450 455 460 Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu 465 470 475 480 Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn 485 490 495 Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile 500 505 510 Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr 515 520 525 Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys 530 535 540 Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys 545 550 555 560 Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu 565 570 575 Ser Leu Ser Pro Gly Lys 580 36350PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 36Glu Ser Leu Gly Thr Glu Gln Arg Val Val Gly Arg Ala Ala Glu Val 1 5 10 15 Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln Leu Val Phe Gly Ser Gly 20 25 30 Asp Ala Val Glu Leu Ser Cys Pro Pro Pro Gly Gly Gly Pro Met Gly 35 40 45 Pro Thr Val Trp Val Lys Asp Gly Thr Gly Leu Val Pro Ser Glu Arg 50 55 60 Val Leu Val Gly Pro Gln Arg Leu Gln Val Leu Asn Ala Ser His Glu 65 70 75 80 Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg Leu Thr Gln Arg Val Leu 85 90 95 Cys His Phe Ser Val Arg Val Thr Asp Ala Pro Ser Ser Glu Asp Asp 100 105 110 Asp Asp Asp Asp Asp Glu Ala Glu Asp Thr Gly Val Asp Thr Gly Ala 115 120 125 Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp Lys Lys Leu Leu Ala Val 130 135 140 Pro Ala Ala Asn Thr Val Arg Phe Arg Cys Pro Ala Ala Gly Asn Pro 145 150 155 160 Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly Arg Glu Phe Arg Gly Glu 165 170 175 His Arg Ile Gly Gly Ile Lys Leu Arg His Gln Gln Trp Ser Leu Val 180 185 190 Met Glu Ser Val Val Pro Ser Asp Arg Gly Asn Tyr Thr Cys Val Val 195 200

205 Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr Tyr Thr Leu Asp Val Leu 210 215 220 Glu Arg Ser Pro His Arg Pro Ile Leu Gln Ala Gly Leu Pro Ala Asn 225 230 235 240 Gln Thr Ala Val Leu Gly Ser Asp Val Glu Phe His Cys Lys Val Tyr 245 250 255 Ser Asp Ala Gln Pro His Ile Gln Trp Leu Lys His Val Glu Val Asn 260 265 270 Gly Ser Lys Val Gly Pro Asp Gly Thr Pro Tyr Val Thr Val Leu Lys 275 280 285 Thr Ala Gly Ala Asn Thr Thr Asp Lys Glu Leu Glu Val Leu Ser Leu 290 295 300 His Asn Val Thr Phe Glu Asp Ala Gly Glu Tyr Thr Cys Leu Ala Gly 305 310 315 320 Asn Ser Ile Gly Phe Ser His His Ser Ala Trp Leu Val Val Leu Pro 325 330 335 Ala Glu Glu Glu Leu Val Glu Ala Asp Glu Ala Gly Ser Val 340 345 350 37584PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 37Glu Ser Leu Gly Thr Glu Gln Arg Val Val Gly Arg Ala Ala Glu Val 1 5 10 15 Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln Leu Val Phe Gly Ser Gly 20 25 30 Asp Ala Val Glu Leu Ser Cys Pro Pro Pro Gly Gly Gly Pro Met Gly 35 40 45 Pro Thr Val Trp Val Lys Asp Gly Thr Gly Leu Val Pro Ser Glu Arg 50 55 60 Val Leu Val Gly Pro Gln Arg Leu Gln Val Leu Asn Ala Ser His Glu 65 70 75 80 Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg Leu Thr Gln Arg Val Leu 85 90 95 Cys His Phe Ser Val Arg Val Thr Asp Ala Pro Ser Ser Glu Asp Asp 100 105 110 Asp Asp Asp Asp Asp Glu Ala Glu Asp Thr Gly Val Asp Thr Gly Ala 115 120 125 Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp Lys Lys Leu Leu Ala Val 130 135 140 Pro Ala Ala Asn Thr Val Arg Phe Arg Cys Pro Ala Ala Gly Asn Pro 145 150 155 160 Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly Arg Glu Phe Arg Gly Glu 165 170 175 His Arg Ile Gly Gly Ile Lys Leu Arg His Gln Gln Trp Ser Leu Val 180 185 190 Met Glu Ser Val Val Pro Ser Asp Arg Gly Asn Tyr Thr Cys Val Val 195 200 205 Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr Tyr Thr Leu Asp Val Leu 210 215 220 Glu Arg Ser Pro His Arg Pro Ile Leu Gln Ala Gly Leu Pro Ala Asn 225 230 235 240 Gln Thr Ala Val Leu Gly Ser Asp Val Glu Phe His Cys Lys Val Tyr 245 250 255 Ser Asp Ala Gln Pro His Ile Gln Trp Leu Lys His Val Glu Val Asn 260 265 270 Gly Ser Lys Val Gly Pro Asp Gly Thr Pro Tyr Val Thr Val Leu Lys 275 280 285 Thr Ala Gly Ala Asn Thr Thr Asp Lys Glu Leu Glu Val Leu Ser Leu 290 295 300 His Asn Val Thr Phe Glu Asp Ala Gly Glu Tyr Thr Cys Leu Ala Gly 305 310 315 320 Asn Ser Ile Gly Phe Ser His His Ser Ala Trp Leu Val Val Leu Pro 325 330 335 Ala Glu Glu Glu Leu Val Glu Ala Asp Glu Ala Gly Ser Val Gly Ser 340 345 350 Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala 355 360 365 Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro 370 375 380 Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val 385 390 395 400 Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val 405 410 415 Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln 420 425 430 Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln 435 440 445 Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala 450 455 460 Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro 465 470 475 480 Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr 485 490 495 Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser 500 505 510 Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr 515 520 525 Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr 530 535 540 Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe 545 550 555 560 Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys 565 570 575 Ser Leu Ser Leu Ser Pro Gly Lys 580 3827PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 38Asp Ser Leu Thr Ser Ser Asn Asp Asp Glu Asp Pro Lys Ser His Arg 1 5 10 15 Asp Pro Ser Asn Arg His Ser Tyr Pro Gln Gln 20 25 3930PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 39Asp Ala Leu Pro Ser Ser Glu Asp Asp Asp Asp Asp Asp Asp Ser Ser 1 5 10 15 Ser Glu Glu Lys Glu Thr Asp Asn Thr Lys Pro Asn Pro Val 20 25 30 4027PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 40Asp Ala Ile Ser Ser Gly Asp Asp Glu Asp Asp Thr Asp Gly Ala Glu 1 5 10 15 Asp Phe Val Ser Glu Asn Ser Asn Asn Lys Arg 20 25 416PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 41Asp Asp Glu Asp Gly Glu 1 5 4212PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 42Gly Asp Asp Glu Asp Gly Glu Asp Glu Ala Glu Asp 1 5 10 434PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 43Asp Asp Glu Asp 1 444PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 44Val Tyr Ala Gly 1 458PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 45Glu Ala Gly Ser Val Tyr Ala Gly 1 5 469PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 46Asp Glu Ala Gly Ser Val Tyr Ala Gly 1 5 4713PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 47Leu Val Glu Ala Asp Glu Ala Gly Ser Val Tyr Ala Gly 1 5 10 4820PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 48Val Leu Pro Ala Glu Glu Glu Leu Val Glu Ala Asp Glu Ala Gly Ser 1 5 10 15 Val Tyr Ala Gly 20 4923PRTHomo sapiens 49Leu Lys His Val Glu Val Asn Gly Ser Lys Val Gly Pro Asp Gly Thr 1 5 10 15 Pro Tyr Val Thr Val Leu Lys 20 5090PRTHomo sapiens 50Leu Lys His Val Glu Val Asn Gly Ser Lys Val Gly Pro Asp Gly Thr 1 5 10 15 Pro Tyr Val Thr Val Leu Lys Ser Trp Ile Ser Glu Ser Val Glu Ala 20 25 30 Asp Val Arg Leu Arg Leu Ala Asn Val Ser Glu Arg Asp Gly Gly Glu 35 40 45 Tyr Leu Cys Arg Ala Thr Asn Phe Ile Gly Val Ala Glu Lys Ala Phe 50 55 60 Trp Leu Ser Val His Gly Pro Arg Ala Ala Glu Glu Glu Leu Val Glu 65 70 75 80 Ala Asp Glu Ala Gly Ser Val Tyr Ala Gly 85 90 5188PRTHomo sapiens 51Leu Lys His Val Glu Val Asn Gly Ser Lys Val Gly Pro Asp Gly Thr 1 5 10 15 Pro Tyr Val Thr Val Leu Lys Thr Ala Gly Ala Asn Thr Thr Asp Lys 20 25 30 Glu Leu Glu Val Leu Ser Leu His Asn Val Thr Phe Glu Asp Ala Gly 35 40 45 Glu Tyr Thr Cys Leu Ala Gly Asn Ser Ile Gly Phe Ser His His Ser 50 55 60 Ala Trp Leu Val Val Leu Pro Ala Glu Glu Glu Leu Val Glu Ala Asp 65 70 75 80 Glu Ala Gly Ser Val Tyr Ala Gly 85 5289PRTHomo sapiens 52Leu Lys His Ile Glu Val Asn Gly Ser Lys Ile Gly Pro Asp Asn Leu 1 5 10 15 Pro Tyr Val Gln Ile Leu Lys His Ser Gly Ile Asn Ser Ser Asp Ala 20 25 30 Glu Val Leu Thr Leu Phe Asn Val Thr Glu Ala Gln Ser Gly Glu Tyr 35 40 45 Val Cys Lys Val Ser Asn Tyr Ile Gly Glu Ala Asn Gln Ser Ala Trp 50 55 60 Leu Thr Val Thr Arg Pro Val Ala Lys Ala Leu Glu Glu Arg Pro Ala 65 70 75 80 Val Met Thr Ser Pro Leu Tyr Leu Glu 85 5387PRTHomo sapiens 53Leu Lys His Ile Glu Val Asn Gly Ser Lys Ile Gly Pro Asp Asn Leu 1 5 10 15 Pro Tyr Val Gln Ile Leu Lys Thr Ala Gly Val Asn Thr Thr Asp Lys 20 25 30 Glu Met Glu Val Leu His Leu Arg Asn Val Ser Phe Glu Asp Ala Gly 35 40 45 Glu Tyr Thr Cys Leu Ala Gly Asn Ser Ile Gly Leu Ser His His Ser 50 55 60 Ala Trp Leu Thr Val Leu Glu Ala Leu Glu Glu Arg Pro Ala Val Met 65 70 75 80 Thr Ser Pro Leu Tyr Leu Glu 85 5488PRTHomo sapiens 54Ile Lys His Val Glu Lys Asn Gly Ser Lys Tyr Gly Pro Asp Gly Leu 1 5 10 15 Pro Tyr Leu Lys Val Leu Lys His Ser Gly Ile Asn Ser Ser Asn Ala 20 25 30 Glu Val Leu Ala Leu Phe Asn Val Thr Glu Ala Asp Ala Gly Glu Tyr 35 40 45 Ile Cys Lys Val Ser Asn Tyr Ile Gly Gln Ala Asn Gln Ser Ala Trp 50 55 60 Leu Thr Val Leu Pro Lys Gln Gln Ala Pro Gly Arg Glu Lys Glu Ile 65 70 75 80 Thr Ala Ser Pro Asp Tyr Leu Glu 85 5587PRTHomo sapiens 55Ile Lys His Val Glu Lys Asn Gly Ser Lys Tyr Gly Pro Asp Gly Leu 1 5 10 15 Pro Tyr Leu Lys Val Leu Lys Ala Ala Gly Val Asn Thr Thr Asp Lys 20 25 30 Glu Ile Glu Val Leu Tyr Ile Arg Asn Val Thr Phe Glu Asp Ala Gly 35 40 45 Glu Tyr Thr Cys Leu Ala Gly Asn Ser Ile Gly Ile Ser Phe His Ser 50 55 60 Ala Trp Leu Thr Val Leu Pro Ala Pro Gly Arg Glu Lys Glu Ile Thr 65 70 75 80 Ala Ser Pro Asp Tyr Leu Glu 85 5686PRTHomo sapiens 56Leu Lys His Ile Val Ile Asn Gly Ser Ser Phe Gly Ala Asp Gly Phe 1 5 10 15 Pro Tyr Val Gln Val Leu Lys Thr Ala Asp Ile Asn Ser Ser Glu Val 20 25 30 Glu Val Leu Tyr Leu Arg Asn Val Ser Ala Glu Asp Ala Gly Glu Tyr 35 40 45 Thr Cys Leu Ala Gly Asn Ser Ile Gly Leu Ser Tyr Gln Ser Ala Trp 50 55 60 Leu Thr Val Leu Pro Glu Glu Asp Pro Thr Trp Thr Ala Ala Ala Pro 65 70 75 80 Glu Ala Arg Tyr Thr Asp 85 57372PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 57Met Gly Ala Pro Ala Cys Ala Leu Ala Leu Cys Val Ala Val Ala Ile -20 -15 -10 Val Ala Gly Ala Ser Ser Glu Ser Leu Gly Thr Glu Gln Arg Val Val -5 -1 1 5 10 Gly Arg Ala Ala Glu Val Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln 15 20 25 Leu Val Phe Gly Ser Gly Asp Ala Val Glu Leu Ser Cys Pro Pro Pro 30 35 40 Gly Gly Gly Pro Met Gly Pro Thr Val Trp Val Lys Asp Gly Thr Gly 45 50 55 Leu Val Pro Ser Glu Arg Val Leu Val Gly Pro Gln Arg Leu Gln Val 60 65 70 Leu Asn Ala Ser His Glu Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg 75 80 85 90 Leu Thr Gln Arg Val Leu Cys His Phe Ser Val Arg Val Thr Asp Ala 95 100 105 Pro Ser Ser Gly Asp Asp Glu Asp Gly Glu Asp Glu Ala Glu Asp Thr 110 115 120 Gly Val Asp Thr Gly Ala Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp 125 130 135 Lys Lys Leu Leu Ala Val Pro Ala Ala Asn Thr Val Arg Phe Arg Cys 140 145 150 Pro Ala Ala Gly Asn Pro Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly 155 160 165 170 Arg Glu Phe Arg Gly Glu His Arg Ile Gly Gly Ile Lys Leu Arg His 175 180 185 Gln Gln Trp Ser Leu Val Met Glu Ser Val Val Pro Ser Asp Arg Gly 190 195 200 Asn Tyr Thr Cys Val Val Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr 205 210 215 Tyr Thr Leu Asp Val Leu Glu Arg Ser Pro His Arg Pro Ile Leu Gln 220 225 230 Ala Gly Leu Pro Ala Asn Gln Thr Ala Val Leu Gly Ser Asp Val Glu 235 240 245 250 Phe His Cys Lys Val Tyr Ser Asp Ala Gln Pro His Ile Gln Trp Leu 255 260 265 Lys His Val Glu Val Asn Gly Ser Lys Val Gly Pro Asp Gly Thr Pro 270 275 280 Tyr Val Thr Val Leu Lys Thr Ala Gly Ala Asn Thr Thr Asp Lys Glu 285 290 295 Leu Glu Val Leu Ser Leu His Asn Val Thr Phe Glu Asp Ala Gly Glu 300 305 310 Tyr Thr Cys Leu Ala Gly Asn Ser Ile Gly Phe Ser His His Ser Ala 315 320 325 330 Trp Leu Val Val Leu Pro Ala Glu Glu Glu Leu Val Glu Ala Asp Glu 335 340 345 Ala Gly Ser Val 350

* * * * *

References


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed