Catalytic Reduction of NOx

ANDREASSON; Anders ;   et al.

Patent Application Summary

U.S. patent application number 13/843870 was filed with the patent office on 2014-09-18 for catalytic reduction of nox. The applicant listed for this patent is Diamler AG, HJS Emission Technology GmbH & Co. KG, Johnson Matthey Public Ltd. Co.. Invention is credited to Anders ANDREASSON, Guy Richard Chandler, Claus Friedrich Goersmann, Georg Huethwohl, James Patrick Warren.

Application Number20140260200 13/843870
Document ID /
Family ID51493221
Filed Date2014-09-18

United States Patent Application 20140260200
Kind Code A1
ANDREASSON; Anders ;   et al. September 18, 2014

Catalytic Reduction of NOx

Abstract

A system for NO.sub.x reduction in combustion gases, especially from diesel engines, incorporates an oxidation catalyst to convert at least a portion of NO to NO.sub.2, particulate filter, a source of reductant such as NH.sub.3 and an SCR catalyst. Considerable improvements in NO.sub.x conversion are observed.


Inventors: ANDREASSON; Anders; (Vastra Frolunda, SE) ; Chandler; Guy Richard; (Cambridge, GB) ; Goersmann; Claus Friedrich; (Royston, GB) ; Warren; James Patrick; (Cambridge, GB) ; Huethwohl; Georg; (Soest, DE)
Applicant:
Name City State Country Type

Johnson Matthey Public Ltd. Co.
Diamler AG
HJS Emission Technology GmbH & Co. KG

Reading
Stuttgart
Menden/Sauerland

GB
DE
DE
Family ID: 51493221
Appl. No.: 13/843870
Filed: March 15, 2013

Current U.S. Class: 60/274
Current CPC Class: F01N 13/009 20140601; F02B 37/168 20130101; B01D 53/9431 20130101; F01N 3/32 20130101; B01D 2255/20776 20130101; Y02T 10/26 20130101; Y02T 10/24 20130101; B01D 2251/2062 20130101; B01D 53/9459 20130101; F01N 3/106 20130101; F01N 3/2046 20130101; Y02A 50/2345 20180101; Y02T 10/144 20130101; B01D 2255/20723 20130101; Y02T 10/12 20130101; B01D 53/9409 20130101; B01D 2255/20707 20130101; Y02A 50/20 20180101; F01N 3/035 20130101; F01N 3/18 20130101; F01N 3/2066 20130101; B01D 2258/012 20130101; Y02A 50/2325 20180101
Class at Publication: 60/274
International Class: F01N 3/18 20060101 F01N003/18

Claims



1-12. (canceled)

13. A method comprising: (a) passing an exhaust gas from a diesel engine over an oxidation catalyst to provide an adjusted gas stream, the exhaust gas comprising a first content level by volume of NO, a first content level by volume of NO.sub.2, and particulate matter, and the adjusted gas stream comprising a second content level by volume of NO that is lower than the first content level of NO, a second content level by volume of NO.sub.2, and the particulate matter; (b) passing the adjusted gas stream through a particulate trap that results in trapping at least a portion of the particulate matter on the particulate trap; (c) combusting a significant portion of the trapped particulate matter such that there is no significant accumulation of particulate matter in the particulate trap in the presence of the adjusted gas stream at a combustion temperature that is lower than the temperature necessary to combust the trapped particulate matter in the presence of the exhaust gas such that there is no significant accumulation of particulate matter in the particulate trap, to create a further adjusted gas stream comprising a third content level by volume of NO and a third content level by volume of NO.sub.2 that is lower than the second content level of NO.sub.2; (d) injecting a reductant fluid comprising urea into the further adjusted gas stream; (e) mixing the further adjusted gas stream with the injected reductant fluid to form a further adjusted gas stream mixed with reductant fluid; and (f) passing the further adjusted gas stream mixed with reductant fluid over an SCR catalyst to provide a final adjusted gas stream comprising a fourth content level by volume of NO and a fourth content level by volume of NO.sub.2; wherein the second content level of NO.sub.2 is sufficiently higher than the first content level of NO.sub.2 such that when a portion of the second content level of NO.sub.2 in the adjusted gas stream is consumed during the combustion of the at least a portion of the trapped particulate matter, the resulting third content level of NO.sub.2 is still sufficiently high for use with the SCR catalyst to provide the final adjusted gas stream where the total combined volume of the fourth content level of NO with the fourth content level of NO.sub.2 is lower than the total combined volume of the first content level of NO with the first content level of NO.sub.2, and the total combined volume of the fourth content level of NO with the fourth content level of NO.sub.2 is lower relative to the respective total combined volume of NO with NO.sub.2 in a final exhaust stream that would result from carrying out steps b-f starting with the exhaust gas instead of the adjusted gas stream.

14. The method of claim 13, wherein the diesel engine is a vehicle engine.

15. The method of claim 13, wherein the diesel engine is a heavy duty diesel truck engine.

16. The method of claim 13, wherein the diesel engine is a turbocharged heavy duty diesel truck engine.

17. The method of claim 16, further comprising cooling the further adjusted gas stream.

18. The method of claim 17, wherein the further adjusted gas stream is cooled by air supplied by the turbocharger.

19. The method of claim 13, wherein the oxidation catalyst converts less than all of the NO in the exhaust gas to NO.sub.2.

20. The method of claim 16, wherein the further adjusted gas stream mixed with reductant fluid is at least 225.degree. C. when passed over the SCR catalyst, and the final adjusted gas stream has more than 90% less NO.sub.x content by volume than the exhaust gas.

21. The method of claim 20, wherein the final gas stream has at least 67% less particulate matter content by volume than the exhaust gas.

22. A method comprising: (a) passing an exhaust gas from a diesel engine over an oxidation catalyst to provide an adjusted gas stream, the exhaust gas comprising a first content level by volume of NO, a first content level by volume of NO.sub.2, and particulate matter, and the adjusted gas stream comprising a second content level by volume of NO that is lower than the first content level of NO, a second content level by volume of NO.sub.2, and the particulate matter; (b) passing the adjusted gas stream through a particulate trap that results in trapping at least a portion of the particulate matter on the particulate trap; (c) combusting a significant portion of the trapped particulate matter in the presence of the adjusted gas stream to reduce a combustion temperature necessary to stop significant accumulation of particulate matter in the particulate trap relative to the combustion temperature of a significant portion of the particulate matter in the presence of the exhaust gas necessary to stop significant accumulation of particulate matter in the particulate trap, and to create a further adjusted gas stream comprising a third content level by volume of NO and a third content level by volume of NO.sub.2 that is lower than the second content level of NO.sub.2; (d) injecting a reductant fluid comprising urea into the further adjusted gas stream; (e) mixing the further adjusted gas stream with the injected reductant fluid to form a further adjusted gas stream mixed with reductant fluid; and (f) passing the further adjusted gas stream mixed with reductant fluid over an SCR catalyst to provide a final adjusted gas stream comprising a fourth content level by volume of NO and a fourth content level by volume of NO.sub.2; wherein the second content level of NO.sub.2 is sufficiently higher than the first content level of NO.sub.2 such that when a portion of the second content-level of NO.sub.2 in the adjusted gas stream is consumed during the combustion of the at least a portion of the trapped particulate matter, the resulting third content level of NO.sub.2 is still sufficiently high for use with the SCR catalyst to provide the final adjusted gas stream where the total combined volume of the fourth content level of NO with the fourth content level of NO.sub.2 is lower than the total combined volume of the first content level of NO with the first content level of NO.sub.2, and the total combined volume of the fourth content level of NO with the fourth content level of NO.sub.2 is lower relative to the respective total combined volume of NO with NO.sub.2 in a final exhaust stream that would result from carrying out steps b-f starting with the exhaust gas instead of the adjusted gas stream.

23. The method of claim 22, wherein the diesel engine is a vehicle engine.

24. The method of claim 22, wherein the diesel engine is a heavy duty diesel truck engine.

25. The method of claim 22, wherein the diesel engine is a turbocharged heavy duty diesel truck engine.

26. The method of claim 25, further comprising cooling the further adjusted gas stream.

27. The method of claim 26, wherein the further adjusted gas stream is cooled by air supplied by the turbocharger.

28. The method of claim 22, wherein the oxidation catalyst converts less than all of the NO in the exhaust gas to NO.sub.2.

29. The method of claim 25, wherein the further adjusted gas stream mixed with reductant fluid is at least 225.degree. C. when passed over the SCR catalyst, and the final adjusted gas stream has more than 90% less NO.sub.x content by volume than the exhaust gas.

30. The method of claim 29, wherein the final gas stream has at least 67% less particulate matter content by volume than the exhaust gas.

31. A method comprising: (a) passing an exhaust gas from a diesel engine over an oxidation catalyst to provide an adjusted gas stream, the exhaust gas comprising a first content level by volume of NO, a first content level by volume of NO.sub.2, and particulate matter, and the adjusted gas stream comprising a second content level by volume of NO that is lower than the first content level of NO, a second content level by volume of NO.sub.2, and the particulate matter; (b) passing the adjusted gas stream through a particulate trap that results in trapping at least a portion of the particulate matter on the particulate trap; (c) combusting a significant portion of the trapped particulate matter such that there is no significant accumulation of particulate matter in the particulate trap in the presence of the adjusted gas stream at a combustion temperature that is lower than the temperature necessary to combust the trapped particulate matter in the presence of the exhaust gas such that there is no significant accumulation of particulate matter in the particulate trap, to create a further adjusted gas stream comprising a third content level by volume of NO and a third content level by volume of NO.sub.2 that is lower than the second content level of NO.sub.2; (d) injecting a reductant fluid comprising urea into the further adjusted gas stream; (e) mixing the further adjusted gas stream with the injected reductant fluid to form a further adjusted gas stream mixed with reductant fluid; and (f) passing the further adjusted gas stream mixed with reductant fluid over an SCR catalyst to provide a final adjusted gas stream comprising a fourth content level by volume of NO and a fourth content level by volume of NO.sub.2; wherein the second content level of NO.sub.2 is sufficiently higher than the first content level of NO.sub.2 such that when a portion of the second content-level of NO.sub.2 in the adjusted gas stream is consumed during the combustion of the at least a portion of the trapped particulate matter, the resulting third content level of NO.sub.2 is still sufficiently high for use with the SCR catalyst to provide the final adjusted gas stream where the total combined volume of the fourth content level of NO with the fourth content level of NO.sub.2 is lower than the total combined volume of the first content level of NO with the first content level of NO.sub.2, and the total combined volume of the fourth content level of NO with the fourth content level of NO.sub.2 is lower relative to the respective total combined volume of NO with NO.sub.2 in a final exhaust stream that would result from carrying out steps b-f starting with the exhaust gas instead of the adjusted gas stream; and wherein the further adjusted gas stream mixed with reductant fluid is at least 225.degree. C. when passed over the SCR catalyst, and the final adjusted gas stream has more than 90% less NO.sub.x content by volume and at least 67% less particulate matter content by volume than the exhaust gas.

32. The method of claim 31, wherein the diesel engine is a vehicle engine.

33. The method of claim 31, wherein the diesel engine is a heavy duty diesel truck engine.

34. The method of claim 31, wherein the diesel engine is a turbocharged heavy duty diesel truck engine.

35. The method of claim 34, further comprising cooling the further adjusted gas stream.

36. The method of claim 35, wherein the further adjusted gas stream is cooled by air supplied by the turbocharger.

37. The method of claim 31, wherein the oxidation catalyst converts less than all of the NO in the exhaust gas to NO.sub.2.
Description



CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application is a continuation of U.S. application Ser. No. 13/204,634, filed Aug. 5, 2011, which was a continuation of U.S. application Ser. No. 12/380,414, filed Feb. 27, 2009, which is a continuation of U.S. application Ser. No. 10/886,778, filed Jul. 8, 2004, which is a divisional application of U.S. application Ser. No. 09/601,964, filed Jan. 9, 2001, now U.S. Pat. No. 6,805,849, which is the U.S. National Phase of International Application No. PCT/GB 1999/000292, filed Jan. 28, 1999, and which claims the benefit of priority from British Application No. 9802504.2, filed Feb. 6, 1998. These applications, in their entirety, are incorporated herein by reference.

SUMMARY OF THE INVENTION

[0002] The present invention concerns improvements in selective catalytic reduction of NO.sub.x in waste gas streams such as diesel engine exhausts or other lean exhaust gases such as from gasoline direct injection (GDI).

BACKGROUND OF THE INVENTION

[0003] The technique named SCR (Selective Catalytic Reduction) is well established for industrial plant combustion gases, and may be broadly described as passing a hot exhaust gas over a catalyst in the presence of a nitrogenous reductant, especially ammonia or urea. This is effective to reduce the NO.sub.x content of the exhaust gases by about 20-25% at about 250.degree. C., or possibly rather higher using a platinum catalyst, although platinum catalysts tend to oxidise NH.sub.3 to NO.sub.x during higher temperature operation. We believe that SCR systems have been proposed for NO.sub.x reduction for vehicle engine exhausts, especially large or heavy duty diesel engines, but this does require on-board storage of such reductants, and is not believed to have met with commercial acceptability at this time.

[0004] We believe that if there could be a significant improvement in performance of SCR systems, they would find wider usage and may be introduced into vehicular applications. It is an aim of the present invention to improve significantly the conversion of NO.sub.x in a SCR system, and to improve the control of other pollutants using a SCR system.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG. 1 is a graph plotting percentage NO.sub.x conversion against temperature resulting from Test 1.

[0006] FIG. 2 is a graph plotting percentage NO.sub.x conversion against temperature resulting from Test 2.

[0007] FIG. 3 is a graph plotting percentage NO.sub.x conversion against temperature resulting from Test 3.

[0008] FIG. 4 is a bar graph showing percentage conversion of pollutants [NO.sub.x, particulates, hydrocarbons (HC) and carbon monoxide (CO)] resulting from Test 4.

DETAILED DESCRIPTION OF THE INVENTION

[0009] Accordingly, the present invention provides an improved SCR catalyst system, comprising in combination and in order, an oxidation catalyst effective to convert NO to NO.sub.2, a particulate filter, a source of reductant fluid and downstream of said source, an SCR catalyst.

[0010] The invention further provides an improved method of reducing NO.sub.x in gas streams containing NO and particulates comprising passing such gas stream over an oxidation catalyst under conditions effective to convert at least a portion of NO in the gas stream to NO.sub.2, removing at least a portion of said particulates, adding reductant fluid to the gas stream containing enhanced NO.sub.2 to form a gas mixture, and passing the gas mixture over an SCR catalyst.

[0011] Although the present invention provides, at least in its preferred embodiments, the opportunity to reduce very significantly the NO.sub.x emissions from the lean (high in oxygen) exhaust gases from diesel and similar engines, it is to be noted that the invention also permits very good reductions in the levels of other regulated pollutants, especially hydrocarbons and particulates.

[0012] The invention is believed to have particular application to the exhausts from heavy duty diesel engines, especially vehicle engines, e.g., truck or bus engines, but is not to be regarded as being limited thereto. Other applications might be LDD (light duty diesel), GDI, CNG (compressed natural gas) engines, ships or stationary sources. For simplicity, however, the majority of this description concerns such vehicle engines.

[0013] We have surprisingly found that a "pre-oxidising" step, which is not generally considered necessary because of the low content of CO and unburnt fuel in diesel exhausts, is particularly effective in increasing the conversion of NO.sub.x to N.sub.2 by the SCR system. We also believe that minimising the levels of hydrocarbons in the gases may assist in the conversion of NO to NO.sub.2. This may be achieved catalytically and/or by engine design or management. Desirably, the NO.sub.2/NO ratio is adjusted according to the present invention to the most beneficial such ratio for the particular SCR catalyst and CO and hydrocarbons are oxidized prior to the SCR catalyst. Thus, our preliminary results indicate that for a transition metal/zeolite SCR catalyst it is desirable to convert all NO to NO.sub.2, whereas for a rare earth-based SCR catalyst, a high ratio is desirable providing there is some NO, and for other transition metal-based catalysts gas mixtures are notably better than either substantially only NO or NO.sub.2. Even more surprisingly, the incorporation of a particulate filter permits still higher conversions of NO.sub.R.

[0014] The oxidation catalyst may be any suitable catalyst, and is generally available to those skilled in art. For example, a Pt catalyst deposited upon a ceramic or metal through-flow honeycomb support is particularly suitable. Suitable catalysts are, e.g., Pt/Al.sub.2O.sub.3 catalysts, containing 1-150 g Pt/ft.sup.3 (0.035-5.3 g Pt/litre) catalyst volume depending on the NO.sub.2/NO ratio required. Such catalysts may contain other components providing there is a beneficial effect or at least no significant adverse effect.

[0015] The source of reductant fluid conveniently uses existing technology to inject fluid into the gas stream. For example, in the tests for the present invention, a mass controller was used to control supply of compressed NH.sub.3, which was injected through an annular injector ring mounted in the exhaust pipe. The injector ring had a plurality of injection ports arranged around its periphery. A conventional diesel fuel injection system including pump and injector nozzle has been used to inject urea by the present applicants. A stream of compressed air was also injected around the nozzle; this provided good mixing and cooling.

[0016] The reductant fluid is suitably NH3, but other reductant fluids including urea, ammonium carbamate and hydrocarbons including diesel fuel may also be considered. Diesel fuel is, of course, carried on board a diesel-powered vehicle, but diesel fuel itself is a less selective reductant than NH.sub.3 and is presently not preferred.

[0017] Suitable SCR catalysts are available in the art and include Cu-based and vanadia-based catalysts. A preferred catalyst at present is a V.sub.2O.sub.5/WO.sub.3/TiO.sub.2 catalyst, supported on a honeycomb through-flow support. Although such a catalyst has shown good performance in the tests described hereafter and is commercially available, we have found that sustained high temperature operation can cause catalyst deactivation. Heavy duty diesel engines, which are almost exclusively turbocharged, can produce exhaust gases at greater than 500.degree. C. under conditions of high load and/or high speed, and such temperatures are sufficient to cause catalyst deactivation.

[0018] In one embodiment of the invention, therefore, cooling means is provided upstream of the SCR catalyst. Cooling means may suitably be activated by sensing high catalyst temperatures or by other, less direct, means, such as determining conditions likely to lead to high catalyst temperatures. Suitable cooling means include water injection upstream of the SCR catalyst, or air injection, for example utilizing the engine turbocharger to provide a stream of fresh intake air by-passing the engine. We have observed a loss of activity of the catalyst, however, using water injection, and air injection by modifying the turbocharger leads to higher space velocity over the catalyst which tends to reduce NO conversion. Preferably, the preferred SCR catalyst is maintained at a temperature from 160.degree. C. to 450.degree. C.

[0019] We believe that in its presently preferred embodiments, the present invention may depend upon an incomplete conversion of NO to NO.sub.2. Desirably, therefore, the oxidation catalyst, or the oxidation catalyst together with the particulate trap if used, yields a gas stream entering the SCR catalyst having a ratio of NO to NO.sub.2 of from about 4:1 to about 1:3 by volume, for the commercial vanadia-type catalyst. As mentioned above, other SCR catalysts perform better with different NO/NO.sub.2 ratios. We do not believe that it has previously been suggested to adjust the NO/NO.sub.2 ratio in order to improve NO reduction.

[0020] The present invention incorporates a particulate trap downstream of the oxidation catalyst. We discovered that soot-type particulates may be removed from a particulate trap by "combustion" at relatively low temperatures in the presence of NO.sub.2. In effect, the incorporation of such a particulate trap serves to clean the exhaust gas of particulates without causing accumulation, with resultant blockage or back-pressure problems, whilst simultaneously reducing a proportion of the NOR. Suitable particulate traps are generally available, and are desirably of the type known as wall-flow filters, generally manufactured from a ceramic, but other designs of particulate trap, including woven knitted or non-woven heat-resistant fabrics, may be used.

[0021] It may be desirable to incorporate a clean-up catalyst downstream of the SCR catalyst, to remove any NH.sub.3 or derivatives thereof which could pass through unreacted or as by-products. Suitable clean-up catalysts are available to the skilled person.

[0022] A particularly interesting possibility arising from the present invention has especial application to light duty diesel engines (car and utility vehicles) and permits a significant reduction in volume and weight of the exhaust gas after-treatment system, in a suitable engineered system.

EXAMPLES

[0023] Several tests have been carried out in making the present invention. These are described below, and are supported by results shown in graphical form in the attached drawings.

[0024] A commercial 10 litre turbocharged heavy duty diesel engine on a test-bed was used for all the tests described herein.

Test 1

Comparative

[0025] A conventional SCR system using a commercial V.sub.2O.sub.5/WO.sub.3/TiO.sub.2 catalyst, was adapted and fitted to the exhaust system of the engine. NH.sub.3 was injected upstream of the SCR catalyst at varying ratios. The NH.sub.3 was supplied from a cylinder of compressed gas and a conventional mass flow controller used to control the flow of NH.sub.3 gas to an experimental injection ring. The injection ring was a 10 cm diameter annular ring provided with 20 small injection ports arranged to inject gas in the direction of the exhaust gas flow. NO.sub.x conversions were determined by fitting a NO.sub.x analyser before and after the SCR catalyst and are plotted against exhaust gas temperature in FIG. 1. Temperatures were altered by maintaining the engine speed constant and altering the torque applied.

[0026] A number of tests were run at different quantities of NH.sub.3 injection, from 60% to 100% of theoretical, calculated at 1:1 NH.sub.3/NO and 4:3 NH.sub.3/NO.sub.2. It can readily be seen that at low temperatures, corresponding to light load, conversions are about 25%, and the highest conversions require stoichiometric (100%) addition of NH.sub.3 at catalyst temperatures of from 325 to 400.degree. C., and reach about 90%. However, we have determined that at greater than about 70% of stoichiometric NH.sub.3 injection, NH.sub.3 slips through the SCR catalyst unreacted, and can cause further pollution problems.

Test 2

Comparative

[0027] The test rig was modified by inserting into the exhaust pipe upstream of the NH.sub.3 injection, a commercial platinum oxidation catalyst of 10.5 inch diameter and 6 inch length (26.67 cm diameter and 15.24 cm length) containing log Pt/ft.sup.3 (=0.35 g/litre) of catalyst volume. Identical tests were run, and it was observed from the results plotted in FIG. 2, that even at 225.degree. C., the conversion of NO.sub.x has increased from 25% to >60%. The greatest conversions were in excess of 95%. No slippage of NH.sub.3 was observed in this test nor in the following test.

Test 3

[0028] The test rig was modified further, by inserting a particulate trap before the NH.sub.3 injection point, and the tests run again under the same conditions at 100% NH.sub.3 injection and a space velocity in the range 40,000 to 70,000 hr.sup.-1 over the SCR catalyst. The results are plotted and shown in FIG. 3. Surprisingly, there is a dramatic improvement in NO.sub.x conversion, to above 90% at 225.degree. C., and reaching 100% at 350.degree. C. Additionally, of course, the particulates, which are the most visible pollutant from diesel engines, are also controlled.

Test 4

[0029] An R49 test with 80% NH.sub.3 injection was carried out over a V.sub.2O.sub.5/WO.sub.3/TiO.sub.2 SCR catalyst. This gave 67% particulate, 89% HC and 87% NO.sub.x conversion; the results are plotted in FIG. 4.

[0030] Additionally tests have been carried out with a different diesel engine, and the excellent results illustrated in Tests 3 and 4 above have been confirmed.

[0031] The results have been confirmed also for a non-vanadium SCR catalyst.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed