Hepatocyte Growth Factor (hgf) Binding Proteins

Han; May ;   et al.

Patent Application Summary

U.S. patent application number 14/039912 was filed with the patent office on 2014-06-26 for hepatocyte growth factor (hgf) binding proteins. This patent application is currently assigned to AVEO PHARMACEUTICALS, INC.. The applicant listed for this patent is AVEO Pharmaceuticals, Inc.. Invention is credited to Lyne Breault, Bijan Etemad-Gilbertson, Jeno Gyuris, May Han, Christine Knuehl, Jie Lin, William M. Winston, JR., S. Kirk Wright.

Application Number20140178934 14/039912
Document ID /
Family ID38802082
Filed Date2014-06-26

United States Patent Application 20140178934
Kind Code A1
Han; May ;   et al. June 26, 2014

HEPATOCYTE GROWTH FACTOR (HGF) BINDING PROTEINS

Abstract

The present invention provides a family of binding proteins that bind and neutralize the activity of hepatocyte growth factor (HGF), in particular human HGF. The binding proteins can be used as diagnostic and/or therapeutic agents. With regard to their therapeutic activity, the binding proteins can be used to treat certain HGF responsive disorders, for example, certain HGF responsive tumors.


Inventors: Han; May; (Brookline, MA) ; Wright; S. Kirk; (Waltham, MA) ; Winston, JR.; William M.; (Marlborough, MA) ; Breault; Lyne; (Roslindale, MA) ; Lin; Jie; (West Roxbury, MA) ; Etemad-Gilbertson; Bijan; (Jamaica Plain, MA) ; Knuehl; Christine; (Natick, MA) ; Gyuris; Jeno; (Lincoln, MA)
Applicant:
Name City State Country Type

AVEO Pharmaceuticals, Inc.

Cambridge

MA

US
Assignee: AVEO PHARMACEUTICALS, INC.
Cambridge
MA

Family ID: 38802082
Appl. No.: 14/039912
Filed: September 27, 2013

Related U.S. Patent Documents

Application Number Filing Date Patent Number
13589652 Aug 20, 2012 8575318
14039912
13051474 Mar 18, 2011 8268315
13589652
12632758 Dec 7, 2009 7935502
13051474
11757094 Jun 1, 2007 7659378
12632758
60810714 Jun 2, 2006
60860461 Nov 21, 2006

Current U.S. Class: 435/69.6 ; 435/320.1; 435/336; 536/23.53
Current CPC Class: A61K 2039/505 20130101; C07K 2317/73 20130101; C07K 2317/24 20130101; C07K 2317/56 20130101; A61P 35/00 20180101; C07K 2317/76 20130101; C07K 2317/92 20130101; C07K 2317/565 20130101; C07K 16/22 20130101
Class at Publication: 435/69.6 ; 536/23.53; 435/320.1; 435/336
International Class: C07K 16/22 20060101 C07K016/22

Claims



1-100. (canceled)

101. An isolated nucleic acid comprising a nucleotide sequence encoding an immunoglobulin heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 169, and encoding an immunoglobulin light chain variable region comprising the amino acid sequence of SEQ ID NO: 179, wherein the immunoglobulin heavy chain variable region and the immunoglobulin light chain variable region together bind human hepatocyte growth factor (HGF).

102. The isolated nucleic acid of claim 101, wherein the nucleotide sequence encodes an immunoglobulin heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 171.

103. The isolated nucleic acid of claim 101, wherein the nucleotide sequence encodes an immunoglobulin heavy chain sequence comprising the amino acid sequence of SEQ ID NO: 210.

104. The isolated nucleic acid of claim 101, wherein the nucleotide sequence encodes an immunoglobulin light chain sequence comprising the amino acid sequence of SEQ ID NO: 181.

105. An expression vector comprising the nucleic acid of claim 101.

106. A host cell comprising the expression vector of claim 105.

107. A host cell comprising: a first expression vector comprising a nucleic acid sequence encoding an immunoglobulin heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 169; and a second expression vector comprising a nucleic acid sequence encoding an immunoglobulin light chain variable region comprising the amino acid sequence of SEQ ID NO: 179; wherein the immunoglobulin light chain variable region and the immunoglobulin heavy chain variable region together bind human hepatocyte growth factor (HGF).

108. A method of producing a monoclonal antibody that binds human hepatocyte growth factor (HGF) or an antigen binding fragment of the antibody, the method comprising: (a) growing the host cell of claim 107 under conditions that permit the expression of a polypeptide comprising the immunoglobulin heavy chain variable region and a polypeptide comprising the immunoglobulin light chain variable region, thereby producing the antibody or antigen binding fragment of the antibody; and (b) purifying the antibody or the antigen binding fragment of the antibody.

109. A method of producing a monoclonal antibody that binds human hepatocyte growth factor (HGF) or an antigen binding fragment of the antibody, the method comprising: (a) growing the host cell of claim 106 under conditions that permit the expression of a polypeptide comprising the immunoglobulin heavy chain variable region and a polypeptide comprising the immunoglobulin light chain variable region, thereby producing the antibody or the antigen-binding fragment of the antibody; and (b) purifying the antibody or the antigen-binding fragment of the antibody.

110. An isolated nucleic acid comprising a nucleotide sequence encoding an immunoglobulin heavy chain comprising the amino acid sequence of SEQ ID NO: 171, and encoding an immunoglobulin light chain comprising the amino acid sequence of SEQ ID NO: 181, wherein the immunoglobulin heavy chain and the immunoglobulin light chain together bind human hepatocyte growth factor (HGF).

111. An expression vector comprising the nucleic acid of claim 110.

112. A host cell comprising the expression vector of claim 111.

113. A host cell comprising: a first expression vector comprising a nucleic acid sequence encoding an immunoglobulin heavy chain comprising the amino acid sequence of SEQ ID NO: 171; and a second expression vector comprising a nucleic acid sequence encoding an immunoglobulin light chain comprising the amino acid sequence of SEQ ID NO: 181; wherein the immunoglobulin light chain and the immunoglobulin heavy chain together bind human hepatocyte growth factor (HGF).

114. A method of producing a monoclonal antibody that binds human hepatocyte growth factor (HGF) or an antigen binding fragment of the antibody, the method comprising: (a) growing the host cell of claim 113 under conditions that permit the expression of a polypeptide comprising the immunoglobulin heavy chain and a polypeptide comprising the immunoglobulin light chain, thereby producing the antibody or antigen binding fragment of the antibody; and (b) purifying the antibody or the antigen binding fragment of the antibody.

115. A method of producing a monoclonal antibody that binds human hepatocyte growth factor (HGF) or an antigen binding fragment of the antibody, the method comprising: (a) growing the host cell of claim 112 under conditions that permit the expression of a polypeptide comprising the immunoglobulin heavy chain and a polypeptide comprising the immunoglobulin light chain, thereby producing the antibody or the antigen-binding fragment of the antibody; and (b) purifying the antibody or the antigen-binding fragment of the antibody.

116. An isolated nucleic acid comprising a nucleotide sequence encoding an immunoglobulin heavy chain comprising the amino acid sequence of SEQ ID NO: 210, and encoding an immunoglobulin light chain comprising the amino acid sequence of SEQ ID NO: 181, wherein the immunoglobulin light chain and the immunoglobulin heavy chain together bind human hepatocyte growth factor (HGF).

117. An expression vector comprising the nucleic acid of claim 116.

118. A host cell comprising the expression vector of claim 117.

119. A host cell comprising: a first expression vector comprising a nucleic acid sequence encoding an immunoglobulin heavy chain comprising the amino acid sequence of SEQ ID NO: 210; and a second expression vector comprising a nucleic acid sequence encoding an immunoglobulin light chain comprising the amino acid sequence of SEQ ID NO: 181; wherein the immunoglobulin light chain and the immunoglobulin heavy chain together bind human hepatocyte growth factor (HGF).

120. A method of producing a monoclonal antibody that binds human hepatocyte growth factor (HGF) or an antigen binding fragment of the antibody, the method comprising: (a) growing the host cell of claim 119 under conditions that permit the expression of a polypeptide comprising the immunoglobulin heavy chain and a polypeptide comprising the immunoglobulin light chain, thereby producing the antibody or antigen binding fragment of the antibody; and (b) purifying the antibody or the antigen binding fragment of the antibody.

121. A method of producing a monoclonal antibody that binds human hepatocyte growth factor (HGF) or an antigen binding fragment of the antibody, the method comprising: (a) growing the host cell of claim 118 under conditions that permit the expression of a polypeptide comprising the immunoglobulin heavy chain and a polypeptide comprising the immunoglobulin light chain, thereby producing the antibody or the antigen-binding fragment of the antibody; and (b) purifying the antibody or the antigen-binding fragment of the antibody.
Description



RELATED APPLICATIONS

[0001] This application claims the benefit and priority to U.S. Provisional Application Nos. 60/810,714, filed Jun. 2, 2006, and 60/860,461, filed Nov. 21, 2006, the disclosures of which are incorporated by reference herein.

FIELD OF THE INVENTION

[0002] The field of the invention is molecular biology, immunology and oncology. More particularly, the field is antibody-based binding proteins that bind human hepatocyte growth factor (HGF).

BACKGROUND

[0003] Hepatocyte Growth Factor (HGF), also known as Scatter Factor (SF), is a multi-functional heterodimeric protein produced predominantly by mesenchymal cells, and is an effector of cells expressing the Met tyrosine kinase receptor (Bottaro et al. (1991) SCIENCE 251: 802-804, Rubin et al. (1993) BIOCHIM. BIOPHYS. ACTA 1155: 357-371). The human Met receptor is also known as "c-Met." Mature HGF contains two polypeptide chains, the .alpha.-chain and the .beta.-chain. Published studies suggest it is the .alpha.-chain that contains HGF's c-Met receptor binding domain.

[0004] When it binds to its cognate receptor, HGF mediates a number of cellular activities. The HGF-Met signaling pathway plays a role in liver regeneration, wound healing, neural regeneration, angiogenesis and malignancies. See, e.g., Cao et al. (2001) PROC. NATL. ACAD. SCI. USA 98: 7443-7448, Burgess et al. (2006) CANCER RES. 66: 1721-1729, and U.S. Pat. Nos. 5,997,868 and 5,707,624. Investigators have been developing a number of HGF modulators, including antibodies, to treat various disorders that involve HGF activity, for example, certain HGF responsive cancers. See, e.g., International Application Publication No. WO 2005/017107.

[0005] The basic structure common to all antibodies is shown schematically in FIG. 1. Antibodies are multimeric proteins that contain four polypeptide chains. Two of the polypeptide chains are called heavy or H chains and two of the polypeptide chains are called light or L chains. The immunoglobulin heavy and light chains are connected by an interchain disulfide bond. The immunoglobulin heavy chains are connected by a number of interchain disulfide bonds. A light chain is composed of one variable region (V.sub.L in FIG. 1) and one constant region (C.sub.L in FIG. 1), while the heavy chain is composed of one variable region (V.sub.H in FIG. 1) and at least three constant regions (CH.sub.1, CH.sub.2 and CH.sub.3 in FIG. 1). The variable regions determine the specificity of the antibody and the constant regions have other functions.

[0006] Amino acid and structural information indicate that each variable region comprises three hypervariable regions (also known as complementarity determining regions or CDRs) flanked by four relatively conserved framework regions or FRs. The three CDRs, referred to as CDR.sub.1, CDR.sub.2, and CDR.sub.3, are responsible for the binding specificity of individual antibodies. When antibodies are to be used as diagnostic and therapeutic agents, typically it is desirable to create antibodies that have the highest binding specificity and affinity to the target molecule. It is believed that differences in the variable regions can have profound effects on the specificity and affinity of the antibody.

[0007] U.S. Pat. No. 5,707,624 describes the use of anti-HGF antibodies in the treatment of Kaposi's sarcoma. Similarly, U.S. Pat. No. 5,997,868 describes treating a tumor by administering an anti-HGF antibody to the patient to be treated so as to block the ability of endogeneous HGF to promote angiogenesis in the tumor. More recently, investigators propose that antibodies that bind the .beta.-chain of HGF may have potential as therapeutic agents in patients with HGF-dependent tumors (Burgess (2006) supra).

[0008] Notwithstanding, there is still a need for additional HGF modulators that can be used as therapeutic and diagnostic agents.

SUMMARY OF THE INVENTION

[0009] The invention is based, in part, upon the discovery of a family of binding proteins that specifically bind HGF, in particular, human HGF. The binding proteins are antibody-based in so far as they contain antigen (i.e., HGF) binding sites based on the CDRs of a family of antibodies that specifically bind HGF. The CDRs confer the binding specificity of the binding proteins to HGF. The binding proteins can be used as diagnostic and therapeutic agents. When used as a therapeutic agent, the binding proteins are engineered (e.g., humanized) so as to reduce or eliminate the risk of inducing an immune response against the binding protein when administered to the recipient (e.g., a human).

[0010] The binding proteins neutralize the activity of HGF and, therefore, can be used as a therapeutic agent. In certain embodiments, the binding proteins prevent HGF from binding to its cognate receptor, c-Met, thereby neutralizing HGF activity. In other embodiments, the binding proteins bind to HGF and neutralize its biological activity but without preventing HGF from binding to the c-Met receptor. Because HGF has been implicated in the growth and proliferation of cancer cells, the binding proteins can be used to inhibit the proliferation of cancer cells. Furthermore, when administered to a mammal, the binding proteins can inhibit or reduce tumor growth in the mammal.

[0011] These and other aspects and advantages of the invention will become apparent upon consideration of the following figures, detailed description, and claims.

DESCRIPTION OF THE DRAWINGS

[0012] The invention can be more completely understood with reference to the following drawings.

[0013] FIG. 1 is a schematic representation of a typical antibody.

[0014] FIG. 2 is a schematic diagram showing the amino acid sequence defining the complete immunoglobulin heavy chain variable region of the antibodies denoted as 1A3, 1D3, 1F3, 2B8, 2F8, 3A12, 3B6 and 3D11. The amino acid sequences for each antibody are aligned against one another and the regions defining the signal peptide, CDR.sub.1, CDR.sub.2, and CDR.sub.3 are identified in boxes. The unboxed sequences represent FR sequences.

[0015] FIG. 3 is a schematic diagram showing the CDR.sub.1, CDR.sub.2, and CDR.sub.3 sequences for each of the immunoglobulin heavy chain variable region sequences presented in FIG. 2.

[0016] FIG. 4 is a schematic diagram showing the amino acid sequence defining the complete immunoglobulin light chain variable region of the antibodies 1A3, 1D3, 1F3, 2B8, 2F8, 3A12, 3B6, and 3D11. The amino acid sequences for each antibody are aligned against one another and the regions defining the signal peptide, CDR.sub.1, CDR.sub.2, and CDR.sub.3 are identified in boxes. The unboxed sequences represent FR sequences.

[0017] FIG. 5 is a schematic diagram showing the CDR.sub.1, CDR.sub.2, and CDR.sub.3 sequences for each of the immunoglobulin light chain variable region sequences presented in FIG. 4.

[0018] FIG. 6 is a graph summarizing results from an experiment to measure tumor inhibitory activity of anti-HGF antibodies 1D3, 1F3, 1A3 and 2B8 in a U87MG xenograft model. Diamonds correspond to PBS; triangles correspond to anti-HGF antibody 1A3; X corresponds to anti-HGF antibody 1D3; squares correspond to anti-HGF antibody 1F3, and circles correspond to anti-HGF antibody 2B8.

[0019] FIG. 7 is a graph summarizing results from an experiment to measure tumor inhibitory activity of anti-HGF antibodies 1D3, 1F3, 1A3 and 2B8 in a U118 xenograft model. Diamonds correspond to IgG; squares correspond to anti-HGF antibody 1F3, triangles to anti-HGF antibody 1D3; X corresponds to anti-HGF antibody 1A3; and circles correspond to anti-HGF antibody 2B8.

[0020] FIG. 8 is a table summarizing surface plasmon resonance data on antigen-binding affinity and kinetics of interaction between human HGF and chimeric, chimeric/humanized, or humanized 2B8 antibodies. The table lists the pairs of Kappa light chain and IgG1 heavy chain tested. Those antibodies with standard deviations (STDEV) listed were analyzed in three independent experiments.

[0021] FIG. 9 is a bar chart summarizing experimental data indicating that Hu2B8 binds an epitope mutually exclusive to murine monoclonal antibody 2B8. Humanized or chimeric 2B8 was captured on an anti-human Fc chip. HGF then was bound to the humanized or chimeric 2B8. The ability of mouse 2B8 or the control antibody (polyclonal goat anti-HGF antibody) to bind the captured HGF was measured. Both humanized 2B8 antibodies and chimeric 2B8 prevent murine 2B8 from binding HGF. White bars correspond to the chimeric 2B8 antibody; gray bars correspond to the humanized Hu2B8 antibody (kappa variable region Kv1-39.1 and heavy chain variable region Hv5-51.1); black bars correspond to the humanized Hu2B8 antibody (kappa variable region Kv3-15.1 and heavy chain variable region Hv5-51.1).

DETAILED DESCRIPTION OF THE INVENTION

[0022] The invention is based, in part, upon the discovery of a family of binding proteins that specifically bind, and neutralize the activity of, HGF, in particular, human HGF. The binding proteins can be used in a variety of diagnostic and therapeutic applications. The binding proteins are based upon the antigen binding sites of certain monoclonal antibodies that have been selected for their ability to bind, and neutralize the activity of, HGF. In particular, the binding proteins contain immunoglobulin variable region CDR sequences that together define a binding site for HGF.

[0023] In view of the neutralizing activity of these antibodies, they are particularly useful in modulating the growth and/or proliferation of HGF responsive cells, for example, cancer cells. When used as a therapeutic agent, the binding proteins can be engineered so as to minimize or eliminate the risk of inducing an immune response against the binding proteins when administered to the recipient. Furthermore, depending upon the particular application, it is contemplated that the binding proteins can be conjugated to other moieties, for example, detectable labels, for example, radiolabels, and effector molecules, for example, other protein and small molecule-based therapeutics. Each of these features and aspects of the invention are discussed in more detail below.

I--Binding Proteins that Bind HGF

[0024] In one aspect, the invention provides an isolated binding protein that binds human HGF. The binding protein comprises (i) an immunoglobulin light chain variable region comprising the structure CDR.sub.L1-CDR.sub.L2-CDR.sub.L3, and (ii) an immunoglobulin heavy chain variable region comprising three complementarity determining regions (CDRs), wherein the immunoglobulin light chain variable region and the immunoglobulin heavy chain variable region together define a single binding site for binding human HGF. CDR.sub.L1 comprises the amino acid sequence X.sub.1 X.sub.2 Ser X.sub.4 X.sub.5 X.sub.6 X.sub.7 X.sub.8 X.sub.9 X.sub.10 X.sub.11 X.sub.12 X.sub.13 X.sub.14 X.sub.15, wherein amino acid X.sub.1 is Arg, Lys, or Ser, X.sub.2 is Ala or Thr, X.sub.4 is Glu, Gln, or Ser, X.sub.5 is Asn, Asp, or Ser, X.sub.6 is Ile or Val, X.sub.7 is Asp, Lys, Ser, Val, or Tyr, X.sub.8 is a peptide bond or Tyr, X.sub.9 is a peptide bond or Asp, X.sub.10 is a peptide bond or Gly, X.sub.11 is a peptide bond or Asn, X.sub.12 is a peptide bond, Ile, or Ser, X.sub.13 is Asn or Tyr, X.sub.14 is Ile, Leu, Met, or Val, X.sub.15 is Ala, Asn, His, or Ser. CDR.sub.L2 comprises the amino acid sequence X.sub.16 X.sub.17 X.sub.18 X.sub.19 X.sub.20 X.sub.21 X.sub.22, wherein amino acid X.sub.16 is Ala, Asp, Arg, Gly, or Val, X.sub.17 is Ala, Thr, or Val, X.sub.18 is Asn, Ser, or Thr, X.sub.19 is Arg, Asn, Lys, or His, X.sub.20 is Leu or Arg, X.sub.21 is Ala, Asn, Glu, Val, or Pro, X.sub.22 is Asp, Ser, or Thr. CDR.sub.L3 comprises the amino acid sequence X.sub.23 X.sub.24 X.sub.25 X.sub.26 X.sub.27 X.sub.28 Pro X.sub.30 Thr, wherein amino acid X.sub.23 is Leu, Gly, or Gln, X.sub.24 is His or Gln, X.sub.25 is Phe, Ser, Trp, or Tyr, X.sub.26 is Asp, Ile, Ser, Trp, or Tyr, X.sub.27 is Gly, Glu, Asn, or Ser, X.sub.28 is Asp, Asn, Phe, Thr, or Tyr, X.sub.30 is Leu, Phe, Pro, or Tyr.

[0025] In another aspect, the invention provides an isolated binding protein that binds human HGF comprising (i) an immunoglobulin heavy chain variable region comprising the structure CDR.sub.H1-CDR.sub.H2-CDR.sub.H3 and (ii) an immunoglobulin light chain variable region comprising three complementarity determining regions (CDRs), wherein the immunoglobulin heavy chain variable region and the immunoglobulin light chain variable region together define a single binding site for binding human HGF. CDR.sub.H1 comprises the amino acid sequence X.sub.1 Tyr X.sub.3 X.sub.4 X.sub.5, wherein amino acid X.sub.1 is Asp, Asn, Ser, or Thr, X.sub.3 is Phe, Ser, Trp, or Tyr, X.sub.4 is Ile, Leu, or Met, X.sub.5 is Asn, His, or Ser. CDR.sub.H2 comprises the amino acid sequence X.sub.6 Ile X.sub.8 X.sub.9 X.sub.10 X.sub.11 Gly X.sub.13 X.sub.14 X.sub.15 Tyr X.sub.17 X.sub.18 X.sub.19 X.sub.20 X.sub.21 X.sub.22, wherein amino acid X.sub.6 is Lys, Gln, Glu, Val, or Tyr, X.sub.8 is Asn, Gly, Ser, Trp, or Tyr, X.sub.9 is Ala, Pro or Ser, X.sub.10 is Gly or Thr, X.sub.11 is a peptide bond, Asp, Asn, Gly, or Ser, X.sub.13 is Asp, Asn, His, or Ser, X.sub.14 is Ser or Thr, X.sub.15 is Asn or Tyr, X.sub.17 is Asn or Pro, X.sub.18 is Ala, Asp, Gly, Gln, Glu, Pro, or Ser, X.sub.19 is Asn, Lys, Met, or Ser, X.sub.20 is Leu, Phe or Val, X.sub.21 is Lys, Met, or Gln, X.sub.22 is Asp, Gly or Ser. CDR.sub.H3 comprises the amino acid sequence X.sub.23 X.sub.24 X.sub.25 X.sub.26 X.sub.27 X.sub.28 X.sub.29 X.sub.30 X.sub.31 X.sub.32 X.sub.33 X.sub.34 Tyr, wherein amino acid X.sub.23 is Arg, Asn, Gln, or Glu, X.sub.24 is Gly, Leu, Arg, or Tyr, X.sub.25 is a peptide bond, Asp, or Gly, X.sub.26 is a peptide bond or Gly, X.sub.27 is a peptide bond or Tyr, X.sub.28 is a peptide bond, Leu, or Tyr, X.sub.29 is a peptide bond, Gly, Leu, Arg, or Val, X.sub.30 is a peptide bond, Asp, Gly, or Glu, X.sub.31 is a peptide bond, Asn, Arg, Ser, or Tyr, X.sub.32 is peptide bond, Ala, Gly, Ile, or Tyr, X.sub.33 is Met or Phe, X.sub.34 is Ala or Asp.

[0026] It is understood that the binding protein can comprise both the immunoglobulin light chain and the immunoglobulin heavy chain sequences or the fragments thereof, noted above. Furthermore, it is understood that the binding protein can be an intact antibody or an antigen binding fragment thereof, or a biosynthetic antibody site.

[0027] In certain embodiments, the CDR sequences of the immunoglobulin light chain and the immunoglobulin heavy chain are interposed with framework regions (FR).

[0028] In certain other embodiments, the CDR sequences of the immunoglobulin light chain and the immunoglobulin heavy chain are interposed between human or humanized framework regions.

[0029] In another aspect, the invention provides an isolated binding protein that specifically binds human HGF. The binding protein comprises: (a) an immunoglobulin light chain variable region comprising the structure CDR.sub.L1-CDR.sub.L2-CDR.sub.L3 and (b) immunoglobulin heavy chain variable region, wherein the immunoglobulin light chain variable region and the immunoglobulin heavy chain variable region together define a single binding site for binding human HGF. The CDR.sub.L1 comprises a sequence selected from the group consisting of SEQ ID NO. 8 (1A3), SEQ ID NO. 18 (2B8), SEQ ID NO. 28 (2F8), SEQ ID NO. 38 (3B6), SEQ ID NO. 48 (3D11), SEQ ID NO. 58 (1D3), SEQ ID NO. 68 (1F3), and SEQ ID NO. 78 (3A12). The CDR.sub.L2 comprises a sequence selected from the group consisting of SEQ ID NO. 9 (1A3), SEQ ID NO. 19 (2B8), SEQ ID NO. 29 (2F8), SEQ ID NO. 39 (3B6), SEQ ID NO. 49 (3D11), SEQ ID NO. 59 (1D3), SEQ ID NO. 69 (1F3), SEQ ID NO. 79 (3A12) and SEQ ID NO. 206 (LRMR2B8LC). The CDR.sub.L3 comprises a sequence selected from the group consisting of SEQ ID NO. 10 (1A3), SEQ ID NO. 20 (2B8), SEQ ID NO. 30 (2F8), SEQ ID NO. 40 (3B6), SEQ ID NO. 50 (3D11), SEQ ID NO. 60 (1D3), SEQ ID NO. 70 (1F3), and SEQ ID NO. 80 (3A12). Throughout the specification and claims, the sequences denoted by a particular SEQ ID NO. are followed in parentheses by the antibody that was the origin of the particular sequence. By way of example, SEQ ID NO. 8 (1A3) indicates that the sequence of SEQ ID NO. 8 is based upon the sequence present in antibody 1A3.

[0030] In one embodiment, the binding protein comprises an immunoglobulin light chain variable region comprising a CDR.sub.L1 comprising the sequence of SEQ ID NO. 8 (1A3), a CDR.sub.L2 comprising the sequence of SEQ ID NO. 9 (1A3), and a CDR.sub.L3 comprising the sequence of SEQ ID NO. 10 (1A3).

[0031] In another embodiment, the binding protein comprises an immunoglobulin light chain variable region comprising a CDR.sub.L1 comprising the sequence of SEQ ID NO. 18 (2B8), a CDR.sub.L2 comprising the sequence of SEQ ID NO. 19 (2B8) or SEQ ID NO. 206 (LRMR2B8LC), and a CDR.sub.L3 comprising the sequence of SEQ ID NO. 20 (2B8).

[0032] In another embodiment, the binding protein comprises an immunoglobulin light chain variable region comprising a CDR.sub.L1 comprising the sequence of SEQ ID NO. 28 (2F8), a CDR.sub.L2 comprising the sequence of SEQ ID NO. 29 (2F8), and a CDR.sub.L3 comprising the sequence of SEQ ID NO. 30 (2F8).

[0033] In another embodiment, the binding protein comprises an immunoglobulin light chain variable region comprising a CDR.sub.L1 comprising the sequence of SEQ ID NO. 38 (3B6), a CDR.sub.L2 comprising the sequence of SEQ ID NO. 39 (3B6), and a CDR.sub.L3 comprising the sequence of SEQ ID NO. 40 (3B6).

[0034] In another embodiment, the binding protein comprises an immunoglobulin light chain variable region comprising a CDR.sub.L1 comprising the sequence of SEQ ID NO. 48 (3D11), a CDR.sub.L2 comprising the sequence of SEQ ID NO. 49 (3D11), and a CDR.sub.L3 comprising the sequence of SEQ ID NO. 50 (3D11).

[0035] In another embodiment, the binding protein comprises an immunoglobulin light chain variable region comprising a CDR.sub.L1 comprising the sequence of SEQ ID NO. 58 (1D3), a CDR.sub.L2 comprising the sequence of SEQ ID NO. 59 (1D3), and a CDR.sub.L3 comprising the sequence of SEQ ID NO. 60 (1D3).

[0036] In another embodiment, the binding protein comprises an immunoglobulin light chain variable region comprising a CDR.sub.L1 comprising the sequence of SEQ ID NO. 68 (1F3), a CDR.sub.L2 comprising the sequence of SEQ ID NO. 69 (1F3), and a CDR.sub.L3 comprising the sequence of SEQ ID NO. 70 (1F3).

[0037] In another embodiment, the binding protein comprises an immunoglobulin light chain variable region comprising a CDR.sub.L1 comprising the sequence of SEQ ID NO. 78 (3A12), a CDR.sub.L2 comprising the sequence of SEQ ID NO. 79 (3A12), and a CDR.sub.L3 comprising the sequence of SEQ ID NO. 80 (3A12).

[0038] In each of the foregoing embodiments, the CDR.sub.L1, CDR.sub.L2, and CDR.sub.L3 sequences preferably are interposed between human or humanized immunoglobulin FRs. It is understood that the binding protein can be an intact antibody, an antigen binding fragment thereof, or a biosynthetic antibody site.

[0039] In another aspect, the invention provides an isolated binding protein that binds human HGF. The binding protein comprises (a) an immunoglobulin heavy chain variable region comprising the structure CDR.sub.H1-CDR.sub.H2-CDR.sub.H3, and (b) an immunoglobulin light chain variable region, wherein the immunoglobulin heavy chain variable region and the immunoglobulin light chain variable region together define a single binding site for binding human HGF. The CDR.sub.H1 comprises a sequence selected from the group consisting of SEQ ID NO. 5 (1A3), SEQ ID NO. (2B8), SEQ ID NO. 25 (2F8), SEQ ID NO. 35 (3B6), SEQ ID NO. 45 (3D11), SEQ ID NO. 55 (1D3), SEQ ID NO. 65 (1F3), and SEQ ID NO. 75 (3A12); the CDR.sub.H2 comprises a sequence selected from the group consisting of SEQ ID NO. 6 (1A3), SEQ ID NO. 16 (2B8), SEQ ID NO. 26 (2F8), SEQ ID NO. 36 (3B6), SEQ ID NO. 46 (3D11), SEQ ID NO. 56 (1D3), SEQ ID NO. 66 (1F3), SEQ ID NO. 76 (3A12), SEQ ID NO. 202 (Hu2B8 Hv1f.1), SEQ ID NO. 203 (Hu2B8 Hv5a.1 or Hu2B8 Hv5-51.1), SEQ ID NO. 204 (LR2B8HC) and SEQ ID NO. 205 (LRMR2B8HC); and the CDR.sub.H3 comprises a sequence selected from the group consisting of SEQ ID NO. 7 (1A3), SEQ ID NO. 17 (2B8), SEQ ID NO. 27 (2F8), SEQ ID NO. 37 (3B6), SEQ ID NO. 47 (3D11), SEQ ID NO. 57 (1D3), SEQ ID NO. 67 (1F3), and SEQ ID NO. 77 (3A12).

[0040] In one embodiment, the binding protein comprises an immunoglobulin heavy chain variable region comprising: a CDR.sub.H1 comprising the sequence of SEQ ID NO. 5 (1A3); a CDR.sub.H2 comprising the sequence of SEQ ID NO. 6 (1A3); and a CDR.sub.H3 comprising the sequence of SEQ ID NO. 7 (1A3).

[0041] In another embodiment, the binding protein comprises an immunoglobulin heavy chain variable region comprising: a CDR.sub.H1 comprising the sequence of SEQ ID NO. 15 (2B8); a CDR.sub.H2 comprising the sequence of SEQ ID NO. 16 (2B8), SEQ ID NO. 202 (Hu2B8 Hv1f.1), SEQ ID NO. 203 (Hu2B8 Hv5a.1 or Hu2B8 Hv5-51.1), SEQ ID NO. 204 (LR2B8HC) or SEQ ID NO. 205 (LRMR2B8HC); and a CDR.sub.H3 comprising the sequence of SEQ ID NO. 17 (2B8).

[0042] In another embodiment, the binding protein comprises an immunoglobulin heavy chain variable region comprising: a CDR.sub.H1 comprising the sequence of SEQ ID NO. 25 (2F8); a CDR.sub.H2 comprising the sequence of SEQ ID NO. 26 (2F8); and a CDR.sub.H3 comprising the sequence of SEQ ID NO. 27 (2F8).

[0043] In another embodiment, the binding protein comprises an immunoglobulin heavy chain variable region comprising a CDR.sub.H1 comprising the sequence of SEQ ID NO. 35 (3B6); a CDR.sub.H2 comprising the sequence of SEQ ID NO. 36 (3B6); and a CDR.sub.H3 comprising the sequence of SEQ ID NO. 37 (3B6).

[0044] In another embodiment, the binding protein comprises an immunoglobulin heavy chain variable region comprising: a CDR.sub.H1 comprising the sequence of SEQ ID NO. 45 (3D11); a CDR.sub.H2 comprising the sequence of SEQ ID NO. 46 (3D11); and a CDR.sub.H3 comprising the sequence of SEQ ID NO. 47 (3D11).

[0045] In another embodiment, the binding protein comprises an immunoglobulin heavy chain variable region comprising: a CDR.sub.H1 comprising the sequence of SEQ ID NO. 55 (1D3); a CDR.sub.H2 comprising the sequence of SEQ ID NO. 56 (1D3); and a CDR.sub.H3 comprising the sequence of SEQ ID NO. 57 (1D3).

[0046] In another embodiment, the binding protein comprises an immunoglobulin heavy chain variable region comprising: a CDR.sub.H1 comprising the sequence of SEQ ID NO. 65 (1F3); a CDR.sub.H2 comprising the sequence of SEQ ID NO. 66 (1F3); and a CDR.sub.H3 comprising the sequence of SEQ ID NO. 67 (1F3).

[0047] In another embodiment, the binding protein comprises an immunoglobulin heavy chain variable region comprising: a CDR.sub.H1 comprising the sequence of SEQ ID NO. 75 (3A12); a CDR.sub.H2 comprising the sequence of SEQ ID NO. 76 (3A12); and a CDR.sub.H3 comprising the sequence of SEQ ID NO. 77 (3A12).

[0048] In each of the foregoing embodiments, the CDR.sub.H1, CDR.sub.H2, and CDR.sub.H3 sequences preferably are interposed between human or humanized immunoglobulin FRs. It is understood that the binding protein can be an intact antibody, an antigen binding fragment thereof, or a biosynthetic antibody site.

[0049] In another aspect, the invention provides a binding protein that binds human HGF. The binding protein comprises an immunoglobulin heavy chain variable region selected from the group consisting of residues 20-141 of SEQ ID NO. 2 (1A3), residues 20-137 of SEQ ID NO. 12 (2B8), residues 20-137 of SEQ ID NO. 22 (2F8), residues 20-139 of SEQ ID NO. 32 (3B6), residues 20-132 of SEQ ID NO. 42 (3D11), residues 20-141 of SEQ ID NO. 52 (1D3), residues 20-141 of SEQ ID NO. 62 (1F3), and residues 20-141 of SEQ ID NO. 72 (3A12) and an immunoglobulin light chain variable region selected from the group consisting of residues 21-127 of SEQ ID NO. 4 (1A3), residues 21-127 of SEQ ID NO. 14 (2B8), residues 20-131 of SEQ ID NO. 24 (2F8), residues 23-129 of SEQ ID NO. 34 (3B6), residues 23-128 of SEQ ID NO. 44 (3D11), residues 21-127 of SEQ ID NO. 54 (1D3), residues 21-127 of SEQ ID NO. 64 (1F3), and residues 21-127 of SEQ ID NO. 74 (3A12).

[0050] In another embodiment, the binding protein comprises an immunoglobulin heavy chain variable region comprising the amino acid sequence of residues 20-141 of SEQ ID NO. 2 (1A3), and an immunoglobulin light chain variable region comprising the amino acid sequence of residues 21-127 of SEQ ID NO. 4 (1A3).

[0051] In one embodiment, the binding protein comprises an immunoglobulin heavy chain variable region comprising the amino acid sequence of residues 20-137 of SEQ ID NO. 12 (2B8), and an immunoglobulin light chain variable region comprising the amino acid sequence of residues 21-127 of SEQ ID NO. 14 (2B8).

[0052] In another embodiment, the binding protein comprises an immunoglobulin heavy chain variable region comprising the amino acid sequence of residues 20-137 of SEQ ID NO. 22 (2F8), and an immunoglobulin light chain variable region comprising the amino acid sequence of residues 20-131 of SEQ ID NO. 24 (2F8).

[0053] In another embodiment, the binding protein comprises an immunoglobulin heavy chain variable region comprising the amino acid sequence of residues 20-139 of SEQ ID NO. 32 (3B6), and an immunoglobulin light chain variable region comprising the amino acid sequence of residues 23-129 of SEQ ID NO. 34 (3B6).

[0054] In another embodiment, the binding protein comprises an immunoglobulin heavy chain variable region comprising the amino acid sequence of residues 20-132 of SEQ ID NO. 42 (3D11), and an immunoglobulin light chain variable region comprising the amino acid sequence of residues 23-128 of SEQ ID NO. 44 (3D11).

[0055] In another embodiment, the binding protein comprises an immunoglobulin heavy chain variable region comprising the amino acid sequence of residues 20-141 of SEQ ID NO. 52 (1D3), and an immunoglobulin light chain variable region comprising the amino acid sequence of residues 21-127 of SEQ ID NO. 54 (1D3).

[0056] In another embodiment, the binding protein comprises an immunoglobulin heavy chain variable region comprising the amino acid sequence of residues 20-141 of SEQ ID NO. 62 (1F3), and an immunoglobulin light chain variable region comprising the amino acid sequence of residues 21-127 of SEQ ID NO. 64 (1F3).

[0057] In another embodiment, the binding protein comprises an immunoglobulin heavy chain variable region comprising the amino acid sequence of residues 20-141 of SEQ ID NO. 72 (3A12), and an immunoglobulin light chain variable region comprising the amino acid sequence of residues 21-127 of SEQ ID NO. 74 (3A12).

[0058] In each of the foregoing embodiments, the binding protein can be an intact antibody, an antigen binding fragment thereof, or a biosynthetic antibody site.

[0059] In another aspect, the invention provides an isolated binding protein that binds human HGF. The binding protein comprises (i) an immunoglobulin light chain variable region selected from the group consisting of SEQ ID NO. 173 (Hu2B8 Kv1-39.1 light chain variable region), SEQ ID NO. 179 (Hu2B8 Kv3-15.1 light chain variable region), SEQ ID NO. 193 (LR2B8LC light chain variable region), and SEQ ID NO. 199 (LRMR2B8LC light chain variable region); and (ii) an immunoglobulin heavy chain variable region selected from the group consisting of SEQ ID NO. 159 (Hu2B8 Hv1f.1 heavy chain variable region), SEQ ID NO. 165 (Hu2B8 Hv5a.1 heavy chain variable region), SEQ ID NO. 169 (Hu2B8 Hv5-51.1 heavy chain variable region), SEQ ID NO. 183 (LR2B8HC heavy chain variable region), and SEQ ID NO. 189 (LRMR2B8LC light chain variable region). The binding protein can be an intact antibody, an antigen binding fragment thereof, or a biosynthetic antibody site.

[0060] In another aspect, the invention provides an isolated binding protein that binds human HGF. The binding protein comprises (i) an immunoglobulin light chain selected from the group consisting of SEQ ID NO. 177 (Hu2B8 Kv1-39.1+kappa constant (Km(3) allotype (allele 2)), SEQ ID NO. 181 (Hu2B8 Kv3-15.1+Kappa constant (Km(3) allotype (allele 2)), SEQ ID NO. 197 (LR2B8LC+Kappa constant (Km(3) allotype (allele 1)), and SEQ ID NO. 201 (LRMR2B8LC+Kappa constant (Km(3) allotype (allele 1)); and (ii) an immunoglobulin heavy chain selected from the group consisting of SEQ ID NO. 163 (Hu2B8 Hv1f.1+IgG1 Constant (G1m(17,1) allotype)), SEQ ID NO. 167 (Hu2B8 Hv5a.1+IgG1 Constant (G1m(17,1) allotype)), SEQ ID NO. 171 (Hu2B8 Hv5-51.1+IgG1 Constant (G1m(17,1) allotype)), SEQ ID NO. 187 (LR2B8HC+IgG1 Constant (G1m(3) allotype) (allele 1)), and SEQ ID NO. 191 (LRMR2B8HC+IgG1 Constant (G1m(3) allotype) (allele 1)). The binding protein can be an intact antibody, an antigen binding fragment thereof, or a biosynthetic antibody site.

[0061] In another aspect, the invention provides an isolated binding protein that binds reduced human HGF. The binding protein comprises (i) an immunoglobulin light chain variable region comprising three CDRs, and (ii) an immunoglobulin heavy chain variable region comprising three CDRs. The CDRs typically are interposed between FRs. The CDRs of the immunoglobulin light chain and the immunoglobulin heavy chain together define a binding site that binds reduced human HGF, for example, the .alpha.-chain of reduced HGF. Reduced HGF refers to HGF treated with an amount of reducing agent, for example, dithiothreitol (DTT), 2-mercaptoethanol, or glutathione sufficient to reduce the disulfide linkage between the .alpha.-chain and the .beta.-chain. Exemplary concentrations include, for example, 100 mM DTT and 5% 2-mercaptoethanol.

[0062] In certain embodiments, the binding protein comprises an immunoglobulin light chain variable region comprising at least one CDR selected from the group consisting of CDR.sub.L1, CDR.sub.L2 and CDR.sub.L3. Optionally, the binding protein comprises two CDRs, for example, CDR.sub.L1 and CDR.sub.L2, or CDR.sub.L1 and CDR.sub.L3, or CDR.sub.L1 and CDR.sub.L3. Optionally, the binding protein comprises all three CDRs, i.e., CDR.sub.L1, CDR.sub.L2 and CDR.sub.L3. CDR.sub.L1 comprises the amino acid sequence X.sub.1 X.sub.2 Ser X.sub.4 X.sub.5 X.sub.6 X.sub.7 X.sub.8 X.sub.9 X.sub.10 X.sub.11 X.sub.12 X.sub.13 X.sub.14 X.sub.15, wherein amino acid X.sub.1 is Arg or Lys, X.sub.2 is Ala or Thr, X.sub.4 is Glu or Gln, X.sub.5 is Asn, Ser, or Asp, X.sub.6 is Ile or Val, X.sub.7 is Tyr, Asp, or Lys, X.sub.8 is a peptide bond or Tyr, X.sub.9 is a peptide bond or Asp, X.sub.10 is a peptide bond or Gly, X.sub.11 is a peptide bond or Asn, X.sub.12 is a peptide bond or Ser, X.sub.13 is Asn or Tyr, X.sub.14 is Ile or Leu, X.sub.15 is Ala, Asn, or Ser. CDR.sub.L2 comprises the amino acid sequence X.sub.16 X.sub.17 X.sub.18 X.sub.19 Leu X.sub.21 X.sub.22, wherein amino acid X.sub.16 is Ala, Asp, Val, or Arg, X.sub.17 is Ala or Val, X.sub.18 is Asn, Ser, or Thr, X.sub.19 is Arg, Asn, or His, X.sub.21 is Ala, Glu, Val, or Pro, X.sub.22 is Asp or Ser. CDR.sub.L3 comprises the amino acid sequence X.sub.23 X.sub.24 X.sub.25 X.sub.26 X.sub.27 X.sub.28 Pro X.sub.30 Thr, wherein amino acid X.sub.23 is Leu or Gln, X.sub.24 is His or Gln, X.sub.25 is Phe, Ser, or Tyr, X.sub.26 is Asp, Ile, or Trp, X.sub.27 is Gly or Glu, X.sub.28 is Asp, Phe, or Thr, X.sub.30 is Phe, Pro, or Tyr.

[0063] In another embodiment, the binding protein comprises an immunoglobulin heavy chain variable region comprising at least one CDR selected from the group consisting of CDR.sub.H1, CDR.sub.H2, and CDR.sub.H3. Optionally, the binding protein comprises two CDRs, for example, CDR.sub.H1 and CDR.sub.H2, or CDR.sub.H1 and CDR.sub.H3, or CDR.sub.H1 and CDR.sub.H3. Optionally, the binding protein comprises all three CDRs, i.e., CDR.sub.H1, CDR.sub.H2 and CDR.sub.H3. CDR.sub.H1 comprises the amino acid sequence X.sub.1 Tyr X.sub.3 X.sub.4 X.sub.5, wherein amino acid X.sub.1 is Asp, Asn, Ser, or Thr, X.sub.3 is Phe, Trp, or Tyr, X.sub.4 is Ile or Met, X.sub.5 is Asn, His, or Ser. CDR.sub.H2 comprises the amino acid sequence X.sub.6 Ile X.sub.8 X.sub.9 Gly X.sub.11 Gly X.sub.13 X.sub.14 X.sub.15 Tyr X.sub.17 X.sub.18 X.sub.19 X.sub.20 Lys X.sub.22, wherein amino acid X.sub.6 is Lys, Gln, or Tyr, X.sub.8 is Gly, Ser, or Tyr, X.sub.9 is Pro or Ser, X.sub.11 is Asp, Gly, or Ser, X.sub.13 is Asp or Ser, X.sub.14 is Ser or Thr, X.sub.15 is Asn or Tyr, X.sub.17 is Asn or Pro, X.sub.18 is Ala, Asp, Gly, or Glu, X.sub.19 is Asn, Met, or Ser, X.sub.20 is Phe or Val, X.sub.22 is Asp or Gly. CDR.sub.H3 comprises the amino acid sequence X.sub.23 X.sub.24 X.sub.25 X.sub.26 X.sub.27 X.sub.28 X.sub.29 X.sub.30 X.sub.31 X.sub.32 X.sub.33 Asp Tyr, wherein amino acid X.sub.23 is Arg or Gln, X.sub.24 is Gly or Leu, X.sub.25 is Asp, Gly, or a peptide bond, X.sub.26 is Gly or a peptide bond, X.sub.27 is a peptide bond or Tyr, X.sub.28 is Leu, a peptide bond or Tyr, X.sub.29 is a Gly, Arg or Leu, X.sub.30 is Asp, Gly or Glu, X.sub.31 is a Tyr, Arg or Asn, X.sub.32 is Ala, Gly or Tyr, X.sub.33 is Met or Phe.

[0064] It is understood that the binding protein can comprise both the immunoglobulin heavy chain and the immunoglobulin light chain sequences or the fragments thereof, noted above. Furthermore, it is understood that the binding protein can be an intact antibody or an antigen binding fragment thereof, or a biosynthetic antibody site.

[0065] In certain embodiments, the binding protein comprises an immunoglobulin light chain variable region comprising (i) a CDR.sub.L1 having a sequence selected from the group consisting of SEQ ID NO. 8 (1A3), SEQ ID NO. 28 (2F8), SEQ ID NO. 38 (3B6), SEQ ID NO. 58 (1D3), and SEQ ID NO. 68 (1F3), (ii) a CDR.sub.L2 having a sequence selected from the group consisting of SEQ ID NO. 9 (1A3), SEQ ID NO. 29 (2F8), SEQ ID NO. 39 (3B6), SEQ ID NO. 59 (1D3), and SEQ ID NO. 69 (1F3), and (iii) a CDR.sub.L3 having a sequence selected from the group consisting of SEQ ID NO. 10 (1A3), SEQ ID NO. 30 (2F8), SEQ ID NO. 40 (3B6), SEQ ID NO. 60 (1D3), and SEQ ID NO. 70 (1F3). The CDR sequences can be interposed between human or humanized FRs. In other embodiments, the binding protein comprises an immunoglobulin light chain variable region comprising an amino acid sequence selected from the group consisting of residues 21-127 of SEQ ID NO. 4 (1A3), residues 20-131 of SEQ ID NO. 24 (2F8), residues 23-129 of SEQ ID NO. 34 (3B6), residues 21-127 of SEQ ID NO. 54 (1D3), and residues 21-127 of SEQ ID NO. 64 (1F3).

[0066] In certain other embodiments, the binding protein comprises an immunoglobulin heavy chain variable region comprising (i) a CDR.sub.H1 having a sequence selected from the group consisting of SEQ ID NO. 5 (1A3), SEQ ID NO. 25 (2F8), SEQ ID NO. 35 (3B6), SEQ ID NO. 55 (1D3), and SEQ ID NO. 65 (1F3), (ii) a CDR.sub.H2 having a sequence selected from the group consisting of SEQ ID NO. 6 (1A3), SEQ ID NO. 26 (2F8), SEQ ID NO. 36 (3B6), SEQ ID NO. 56 (1D3), and SEQ ID NO. 66 (1F3), and (iii) a CDR.sub.H3 having a sequence selected from the group consisting of SEQ ID NO. 7 (1A3), SEQ ID NO. 27 (2F8), SEQ ID NO. 37 (3B6), SEQ ID NO. 57 (1D3), and SEQ ID NO. 67 (1F3). The CDR sequences can be interposed between human or humanized FRs. In another embodiment, the immunoglobulin heavy chain variable region comprises an amino acid sequence selected from the group consisting of residues 20-141 of SEQ ID NO. 2 (1A3), residues 20-137 of SEQ ID NO. 22 (2F8), residues 20-139 of SEQ ID NO. 32 (3B6), residues 20-141 of SEQ ID NO. 52 (1D3), and residues 20-141 of SEQ ID NO. 62 (1F3).

[0067] In another aspect, the invention provides an isolated binding protein that binds human HGF and comprises an immunoglobulin light chain variable region and an immunoglobulin heavy chain variable region. The isolated binding protein competes for binding to HGF with at least one reference antibody selected from the group consisting of (i) an antibody having an immunoglobulin light chain variable region of residues 20-131 of SEQ ID NO. 24 (2F8), and an immunoglobulin heavy chain variable region of residues 20-137 of SEQ ID NO. 22 (2F8), (ii) an antibody having an immunoglobulin light chain variable region of residues 23-129 of SEQ ID NO. 34 (3B6), and an immunoglobulin heavy chain variable region of residues 20-139 of SEQ ID NO. 32 (3B6), and (iii) an antibody having an immunoglobulin light chain variable region of residues 23-128 of SEQ ID NO. 44 (3D11), and an immunoglobulin heavy chain variable region of residues 20-132 of SEQ ID NO. 42 (3D11). Under certain circumstances, the binding protein binds the same epitope of HGF as one of the reference antibodies.

[0068] It is understood that each of the binding proteins discussed above can be an intact antibody, for example, a monoclonal antibody. Alternatively, the binding protein can be an antigen binding fragment of an antibody, or can be a biosynthetic antibody binding site. Antibody fragments include Fab, Fab', (Fab').sub.2 or Fv fragments. Techniques for making such antibody fragments are known to those skilled in the art. A number of biosynthetic antibody binding sites are known in the art and include, for example, single Fv or sFv molecules, described, for example, in U.S. Pat. No. 5,476,786. Other biosynthetic antibody binding sites include bispecific or bifunctional binding proteins, for example, bispecific or bifunctional antibodies, which are antibodies or antibody fragments that bind at least two different antigens. For example, bispecific binding proteins can bind HGF, for example, human HGF, and another antigen of interest. Methods for making bispecific antibodies are known in art and, include, for example, by fusing hybridomas or by linking Fab' fragments. See, e.g., Songsivilai et al. (1990) CLIN. EXP. IMMUNOL. 79: 315-325; Kostelny et al. (1992) J. IMMUNOL. 148: 1547-1553.

[0069] The binding proteins of the invention can bind hHGF containing a cysteine to arginine substitution at position 561 or a glycine to glutamate substitution at position 555.

[0070] In another aspect, the invention provides an isolated binding protein that binds human HGF with a k.sub.d of 4.0.times.10.sup.-5 s.sup.-1 or lower, 3.0.times.10.sup.-5 s.sup.-1 or lower, or 2.0.times.10.sup.-5 s.sup.-1 or lower. The isolated binding proteins can bind human HGF with a k.sub.d from 5.0.times.10.sup.-5 s.sup.-1 to 0.5.times.10.sup.-5s.sup.-1, or from 4.0.times.10.sup.-5 s.sup.-1 to 1.0.times.10.sup.-5s.sup.-1, or from 3.0.times.10.sup.-5 s.sup.-1 to 1.5.times.10.sup.-5 s.sup.-1. In another aspect, the invention provides an isolated binding protein that binds human HGF with a K.sub.D of 100 pM or lower, or 20 pM or lower, or 10 pM or lower, or 5 pM or lower. The isolated binding proteins can bind human HGF with a K.sub.D from 100 pM to 5 pM, or from 20 pM to 5 pM, or from 15 pM to 10 pM, or from 20 pM to 10 pM, or from 15 pM to 5 pM. Unless otherwise specified, K.sub.D values are determined by the methods, and under the conditions, described in Example 6.

[0071] In another aspect, the invention provides an isolated binding protein that binds human HGF, wherein the antibody binds to human HGF with lower K.sub.D at 37.degree. C. than at 25.degree. C. The binding protein binding optionally binds human HGF with a K.sub.D less than 5 pM at 37.degree. C.

[0072] In other aspects and embodiments, the binding proteins can inhibit hHGF from binding to c-Met. For example, the binding proteins can have an IC.sub.50 (concentration at 50% of maximum inhibition) of at least about 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, and 7.0 nM when assayed using the protocol described in Example 7(a). In certain other embodiments, the binding proteins can neutralize HGF BrdU incorporation in 4 MBr-5 cells (ATCC, Catalog No. CCL208) using the method described in Example 7(b).

[0073] The binding proteins have an IC.sub.50 of 50 nM or lower, preferably 45, 40, 35, 30, 25, 20, 15, 10, 5, 1, 0.5 nM or lower, when assayed using the protocol described in Example 7(b). In certain other embodiments, the binding proteins can be used to inhibit HGF stimulated c-Met phosphorylation in PC-3 cells (ATCC, Manassas, Va. Catalog No. CRL-1435) using the assay described in Example 9. The binding proteins inhibit HGF-stimulated (1.25 nM) c-Met phosphorylation in PC-3 cells with an IC.sub.50 of 2 nM or less (Table 8), using the assay described in Example 9.

II--Production of Binding Proteins

[0074] Binding proteins of the invention can be produced in various ways using approaches know in the art. For example, DNA molecules encoding light chain variable regions and heavy chain variable regions can be chemically synthesized, using a commercial synthesizer and sequence information provided herein. Such synthetic DNA molecules can be ligated to other appropriate nucleotide sequences, including, e.g., constant region coding sequences, and expression control sequences, to produce conventional gene expression constructs encoding the desired binding proteins. Production of defined gene constructs is within routine skill in the art. Alternatively, the sequences provided herein can be cloned out of hybridomas by conventional hybridization techniques or PCR techniques, using synthetic nucleic acid probes whose sequences are based on sequence information provided herein or prior art sequence information regarding genes encoding the heavy and light chains of murine antibodies in hybridoma cells. Production and use of such probes is within ordinary skill in the art.

[0075] The nucleic acids encoding the desired binding proteins can be introduced (ligated) into expression vectors, which can be introduced into a host cell via standard transfection or transformation techniques known in the art. Exemplary host cells include, for example, E. coli cells, Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (e.g., Hep G2), and myeloma cells that do not otherwise produce immunoglobulin protein. Transfected host cells can be grown under conditions that permit the host cells to express the genes of interest, for example, the genes that encode the immunoglobulin light or heavy chain variable regions. The resulting expression products can be harvested using techniques known in the art.

[0076] The particular expression and purification conditions will vary depending upon what expression system is employed. For example, if the gene is to be expressed in E. coli, it is first cloned into an expression vector. This is accomplished by positioning the engineered gene downstream from a suitable bacterial promoter, e.g., Trp or Tac, and a signal sequence, e.g., a sequence encoding fragment B of protein A (FB). The resulting expressed fusion protein typically accumulates in refractile or inclusion bodies in the cytoplasm of the cells, and may be harvested after disruption of the cells by French press or sonication. The refractile bodies then are solubilized, and the expressed proteins refolded and cleaved by the methods already established for many other recombinant proteins.

[0077] If the engineered gene is to be expressed in eukayotic host cells, for example, myeloma cells or CHO cells, it is first inserted into an expression vector containing a suitable eukaryotic promoter, a secretion signal, immunoglobulin enhancers, and various introns. This expression vector optionally can contain sequences encoding all or part of a constant region, enabling an entire, or a part of, a heavy or light chain to be expressed. The gene construct can be transfected into myeloma cells or CHO cells using established transfection protocols. Such transfected cells can express V.sub.L or V.sub.H fragments, V.sub.L-V.sub.H heterodimers, V.sub.H-V.sub.L or V.sub.L-V.sub.H single chain polypeptides, complete heavy or light immunoglobulin chains, or portions thereof, each of which may be attached to a protein domain having another function (e.g., cytotoxicity).

III--Modifications to the Binding Proteins

[0078] It is understood that the binding proteins can be modified to optimize performance depending upon the intended use of the binding proteins. For example, when the binding protein is being used as a therapeutic agent, the binding protein can be modified to reduce its immunogenicity in the intended recipient. Alternatively or in addition, the binding protein can be fused or coupled to another protein or peptide, for example, a growth factor, cytokine, or cytotoxin. Such modifications can be achieved by using routine gene manipulation techniques known in the art.

[0079] Various techniques for reducing the antigenicity of antibodies and antibody fragments are known in the art. These techniques can be used to reduce or eliminate the antigenicity of the binding proteins of the invention. For example, when the binding proteins are to be administered to a human, the binding proteins preferably are engineered to reduce their antigenicity in humans. This process often is referred to as humanization. Preferably, the humanized binding proteins have the same or substantially the same affinity for the antigen as the original non-humanized binding protein it was derived from.

[0080] In one well known humanization approach, chimeric proteins are created in which immunoglobulin constant regions of antibodies from one species, e.g., mouse, are replaced with immunoglobulin constant regions from a second, different species, e.g., a human. In this example, the resulting antibody is a mouse-human chimera, where the human constant region sequences, in principle, are less immunogenic than the counterpart murine sequences. This type of antibody engineering is described, for example, Morrison, et al. (1984) PROC. NAT. ACAD. SCI. 81: 6851-6855, Neuberger et al. (1984) NATURE 312: 604-608; U.S. Pat. No. 6,893,625 (Robinson); U.S. Pat. No. 5,500,362 (Robinson); and U.S. Pat. No. 4,816,567 (Cabilly).

[0081] In another approach, known as CDR grafting, the CDRs of the light and heavy chain variable regions of an antibody of interest are grafted into frameworks (FRs) from another species. For example, murine CDRs can be grafted into human FR sequences. In some embodiments, the CDRs of the light and heavy chain variable regions of an anti-HGF antibody are grafted into human FRs or consensus human FRs. In order to create consensus human FRs, FRs from several human heavy chain or light chain amino acid sequences are aligned to identify a consensus amino acid sequence. CDR grafting is described, for example, in U.S. Pat. No. 7,022,500 (Queen); U.S. Pat. No. 6,982,321 (Winter); U.S. Pat. No. 6,180,370 (Queen); U.S. Pat. No. 6,054,297 (Carter); U.S. Pat. No. 5,693,762 (Queen); U.S. Pat. No. 5,859,205 (Adair); U.S. Pat. No. 5,693,761 (Queen); U.S. Pat. No. 5,565,332 (Hoogenboom); U.S. Pat. No. 5,585,089 (Queen); U.S. Pat. No. 5,530,101 (Queen); Jones et al. (1986) NATURE 321: 522-525; Riechmann et al. (1988) NATURE 332: 323-327; Verhoeyen et al. (1988) SCIENCE 239: 1534-1536; and Winter (1998) FEBS LETT 430: 92-94.

[0082] In an approach called "superhumanization," antibodies in which human immunogenicity is reduced or eliminated are created by an alternative form of grafting. In superhumanization, human FR sequences are chosen from a set of human germline genes based on the structural similarity of the human CDRs to those of the mouse antibody to be humanized. This approach is described, for example, in U.S. Pat. No. 6,881,557 (Foote) and in Tan et al. (2002) J. IMMUNOL 169:1119-1125.

[0083] Other approaches to reduce immunogenicity include, techniques are known as "reshaping," "hyperchimerization," or "veneering/resurfacing" to produce humanized antibodies. See, e.g., Vaswami et al. (1998) ANNALS OF ALLERGY, ASTHMA, & IMMUNOL. 81: 105; Roguska et al. (1996) PROT. ENGINEER 9: 895-904; and U.S. Pat. No. 6,072,035 (Hardman). In the veneering/resurfacing approach, the surface accessible amino acid residues in the murine antibody are replaced by amino acid residues more frequently found at the same positions in a human antibody. This type of antibody resurfacing is described, for example, in U.S. Pat. No. 5,639,641 (Pedersen).

[0084] One exemplary approach for converting a mouse antibody into a form suitable for medical use in humans is known as ACTIVMAB.TM. technology (Vaccinex, Inc., Rochester, N.Y.), which involves a vaccinia virus-based vector to express antibodies in mammalian cells. High levels of combinatorial diversity of immunoglobulin heavy and light chains are said to be produced. See, e.g., U.S. Pat. No. 6,706,477 (Zauderer); U.S. Pat. No. 6,800,442 (Zauderer); and U.S. Pat. No. 6,872,518 (Zauderer).

[0085] Another exemplary approach for converting a mouse antibody into a form suitable for use in humans is technology practiced commercially by KaloBios Pharmaceuticals, Inc. (Palo Alto, Calif.). This technology involves the use of a proprietary human "acceptor" library to produce an "epitope focused" library for antibody selection.

[0086] Another exemplary approach for modifying a mouse antibody into a form suitable for medical use in humans is HUMAN ENGINEERING.TM. (HE.TM.) technology, which is practiced commercially by XOMA (US) LLC. See, e.g., International Application Publication No. WO 93/11794 and U.S. Pat. Nos. 5,766,886; 5,770,196; 5,821,123; and 5,869,619.

[0087] Any suitable approach, including any of the above approaches, can be used to reduce or eliminate human immunogenicity of a binding protein of interest.

[0088] In addition, it is possible to create fully human antibodies in mice. In this approach, human antibodies are prepared using a transgenic mouse in which the mouse's antibody-producing genes have been replaced by a substantial portion of the human antibody producing genes. Such mice produce human immunoglobulin instead of murine immunoglobulin molecules. See, e.g., WO 98/24893 (Jacobovitz et al.) and Mendez et al. (1997) NATURE GENETICS 15: 146-156. Fully human anti-HGF monoclonal antibodies can be produced using the following approach. Transgenic mice containing human immunoglobulin genes are immunized with the antigen of interest, e.g., HGF. Lymphatic cells from the mice then are obtained from the mice, which are then fused with a myeloid-type cell line to prepare immortal hybridoma cell lines. The hybridoma cell lines are screened and selected to identify hybridoma cell lines that produce antibodies specific to HGF.

[0089] Binding proteins of the invention can be conjugated with other molecules, depending upon their intended use. For example, if the binding protein is going to be used as a therapeutic, then the binding protein can be conjugated with another agent, for example, an effector molecule that modulates or otherwise promotes the therapy. To the extent that the effector is non-protein based agent, for example, a small molecule drug, a radiolabel or toxin, then, the agent can be chemically coupled to the binding protein using standard in vitro coupling chemistries. If, on the other hand, the effector molecule is a protein or peptide, for example, an enzyme, receptor, toxin, growth factor, cytokine or other immunomodulator, then the binding protein can either be chemically coupled to the effector using in vitro coupling chemistries or can be coupled to the effector as a fusion protein. Fusion proteins can be constructed and expressed using the techniques similar to those discussed in section II.

IV--Use of Binding Proteins

[0090] The binding proteins described herein can be used as a diagnostic agent or a therapeutic agent.

[0091] (1) Therapeutic Applications

[0092] Because the binding proteins of the invention neutralize the activity of HGF, they can be used in various therapeutic applications. For example, certain binding proteins of the invention are useful in the prevention or treatment of hyperproliferative diseases or disorders, e.g., various forms of cancer.

[0093] The binding proteins can be used to inhibit or reduce the proliferation of tumor cells. In such an approach, the tumor cells are exposed to a therapeutically effective amount of the binding protein so as to inhibit or reduce proliferation of the tumor cell. In certain embodiments, the binding proteins inhibit tumor cell proliferation by at least 50%, 60%, 70%, 80%, 90%, 95% or 100%.

[0094] In certain embodiments, the binding protein is used to inhibit or reduce proliferation of a tumor cell wherein the binding protein reduces the ability of hHGF to bind to c-Met. In other embodiments, the binding protein is used to inhibit or reduce the proliferation of a tumor cell even when the binding protein binds hHGF but does not substantially inhibit hHGF binding to c-Met, as shown by antibody 3B6 in Tables 5 and 6.

[0095] In addition, the binding protein can be used to inhibit, or slow down tumor growth or development in a mammal. In such a method, an effective amount of the binding protein is administered to the mammal so as to inhibit or slow down tumor growth in the mammal. Accordingly, the binding proteins can be used to treat tumors, for example, in a mammal. The method comprises administering to the mammal a therapeutically effective amount of the binding protein. The binding protein can be administered alone or in combination with another pharmaceutically active molecule, so as to treat the tumor.

[0096] It is contemplated that the binding proteins of the invention can be used in the treatment of a variety of HGF responsive disorders, including, for example, HGF responsive tumor cells in lung cancer, breast cancer, colon cancer, prostate cancer, ovarian cancer, head and neck cancer, ovarian cancer, multiple myeloma, liver cancer, gastric cancer, esophageal cancer, kidney cancer, nasopharangeal cancer, pancreatic cancer, mesothelioma, melanoma and glioblastoma.

[0097] As used herein, "treat, "treating" and "treatment" refer to the treatment of a disease-state in a mammal, particularly in a human, and include: (a) preventing the disease-state from occurring in a mammal, in particular, when such mammal is predisposed to the disease-state but has not yet been diagnosed as having it; (b) inhibiting the disease-state, i.e., arresting its development; and/or (c) relieving the disease-state, i.e., causing regression of the disease state.

[0098] Generally, a therapeutically effective amount of active component will be in the range of from about 0.1 mg/kg to about 100 mg/kg, optionally from about 1 mg/kg to about 100 mg/kg, optionally from about 1 mg/kg to 10 mg/kg. The amount administered will depend on variables such as the type and extent of disease or indication to be treated, the overall health status of the particular patient, the relative biological efficacy of the binding protein delivered, the formulation of the binding protein, the presence and types of excipients in the formulation, and the route of administration. The initial dosage administered may be increased beyond the upper level in order to rapidly achieve the desired blood-level or tissue level, or the initial dosage may be smaller than the optimum and the daily dosage may be progressively increased during the course of treatment depending on the particular situation. Human dosage can be optimized, e.g., in a conventional Phase I dose escalation study designed to run from 0.5 mg/kg to 20 mg/kg. Dosing frequency can vary, depending on factors such as route of administration, dosage amount and the disease condition being treated. Exemplary dosing frequencies are once per day, once per week and once every two weeks. A preferred route of administration is parenteral, e.g., intravenous infusion. Formulation of monoclonal antibody-based drugs is within ordinary skill in the art. In some embodiments of the invention, the binding protein, e.g., monoclonal antibody, is lyophilized and reconstituted in buffered saline at the time of administration.

[0099] The binding proteins may be administered either alone or in combination with other pharmaceutically active ingredients. The other active ingredients, e.g., immunomodulators, can be administered together with the binding protein, or can be administered before or after the binding protein.

[0100] Formulations containing the binding proteins for therapeutic use, typically include the binding proteins combined with a pharmaceutically acceptable carrier. As used herein, "pharmaceutically acceptable carrier" means buffers, carriers, and excipients, that are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio. The carrier(s) should be "acceptable" in the sense of being compatible with the other ingredients of the formulations and not deleterious to the recipient. Pharmaceutically acceptable carriers, in this regard, are intended to include any and all buffers, solvents, dispersion media, coatings, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is known in the art.

[0101] The formulations can be conveniently presented in a dosage unit form and can be prepared by any suitable method, including any of the methods well known in the pharmacy art. A pharmaceutical composition of the invention should be formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral administration or non-parenteral administration, for example, intravenous, intradermal, inhalation, transdermal (topical), transmucosal, and rectal administration. Useful solutions for oral or parenteral administration can be prepared by any of the methods well known in the pharmaceutical art, described, for example, in Remington's Pharmaceutical Sciences, 18th ed. (Mack Publishing Company, 1990).

[0102] Formulations suitable for oral administration can be in the form of: discrete units such as injectables, capsules, gelatin capsules, sachets, tablets, troches, or lozenges, each containing a predetermined amount of the binding protein; a powder or granular composition; a solution or a suspension in an aqueous liquid or non-aqueous liquid; or an oil-in-water emulsion or a water-in-oil emulsion.

[0103] Formulations suitable for parenteral administration include, for example, the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.

[0104] In general, compositions suitable for injectable use include aqueous solutions (where water soluble) or dispersions and powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor ELTM (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). It should be stable under the conditions of manufacture and storage and should be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyetheylene glycol), and suitable mixtures thereof.

[0105] Pharmaceutical formulations preferably are sterile. Sterilization can be accomplished, for example, by filtration through sterile filtration membranes. Where the composition is lyophilized, sterilization using this method can be conducted prior to or following lyophilization and reconstitution. Once the pharmaceutical composition has been formulated, it can be stored, for example, in vials as a solution, suspension, gel, emulsion, solid, or as a dehydrated or lyophilized powder.

[0106] (2) Diagnostic Applications

[0107] Whenever the binding proteins are used for diagnostic purposes, either in vitro or in vivo, the binding proteins typically are labeled either directly or indirectly with a detectable moiety. The detectable moiety can be any moiety which is capable of producing, either directly or indirectly, a detectable signal. For example, the detectable moiety may be a radioisotope, such as .sup.3Hydrogen (.sup.3H), .sup.14-Carbon (.sup.14C), .sup.32Phosphorus (.sup.32P), .sup.35Sulfur (.sup.35 S), or .sup.125Iodine (.sup.125I); a fluorescent or chemiluminescent compound, such as fluorescein isothiocyanate, rhodamine, or luciferin; an enzyme, such as alkaline phosphatase, beta-galactosidase, or horseradish peroxidase; a spin probe, such as a spin label; or a colored particle, for example, a latex or gold particle. It is understood that the binding protein can be conjugated to the detectable moiety using a number of approaches known in the art, for example, as described in Hunter et al. (1962) NATURE 144: 945; David et al. (1974) BIOCHEMISTRY 13: 1014; Pain et al. (1981) J. IMMUNOL. METH. 40: 219; and Nygren (1982) J. HISTOCHEM. AND CYTOCHEM. 30: 407. The labels may be detected, e.g., visually or with the aid of a spectrophotometer or other detector.

[0108] The binding proteins can be employed in a wide range of immunoassay techniques available in the art. Exemplary immunoassays include, for example, sandwich immunoassays, competitive immunoassays, immunohistochemical procedures.

[0109] In a sandwich immunoassay, two antibodies that bind an analyte or antigen of interest are used, e.g., one immobilized onto a solid support, and one free in solution and labeled with a detectable moiety. When a sample containing the antigen is introduced into this system, the antigen binds to both the immobilized antibody and the labeled antibody, to form a "sandwich" immune complex on the surface of the support. The complexed protein is detected by washing away non-bound sample components and excess labeled antibody, and measuring the amount of labeled antibody complexed to protein on the support's surface. Alternatively, the antibody free in solution can be detected by a third antibody labeled with a detectable moiety which binds the free antibody. A detailed review of immunological assay design, theory and protocols can be found in numerous texts, including Butt, ed., (1984) PRACTICAL IMMUNOLOGY, Marcel Dekker, New York; Harlow et al. eds. (1988) ANTIBODIES, A LABORATORY APPROACH, Cold Spring Harbor Laboratory; and Diamandis et al., eds. (1996) IMMUNOASSAY, Academic Press, Boston.

[0110] It is contemplated that the labeled binding proteins are useful as in vivo imaging agents, whereby the binding proteins can target the imaging agents to particular tissues of interest in the recipient. A preferred remotely detectable moiety for in vivo imaging includes the radioactive atom Technetium.sup.-99m (.sup.99mTc), a gamma emitter with a half-life of about six hours. Non-radioactive moieties also useful in in vivo imaging include nitroxide spin labels as well as lanthanide and transition metal ions all of which induce proton relaxation in situ. In addition to immunoimaging, the complexed radioactive moieties may be used in standard radioimmunotherapy protocols to destroy the targeted cell. Preferred nucleotides for high dose radioimmunotherapy include the radioactive atoms .sup.90Yttrium (.sup.90Yt), .sup.131Iodine (.sup.131I) and .sup.111Indium (.sup.111In). The binding protein can be labeled with .sup.131I, .sup.111In and .sup.99mTC using coupling techniques known in the imaging arts. Similarly, procedures for preparing and administering the imaging agent as well as capturing and processing images are well known in the imaging art and so are not discussed in detail herein. Similarly, methods for performing antibody-based immunotherapies are well known in the art. See, for example, U.S. Pat. No. 5,534,254.

[0111] Throughout the description, where compositions are described as having, including, or comprising specific components, it is contemplated that compositions also consist essentially of, or consist of, the recited components. Similarly, where processes are described as having, including, or comprising specific process steps, the processes also consist essentially of, or consist of, the recited processing steps. Except where indicated otherwise, the order of steps or order for performing certain actions are immaterial so long as the invention remains operable. Moreover, unless otherwise noted, two or more steps or actions may be conducted simultaneously.

EXAMPLES

[0112] The following Examples discuss the production and characterization of a number of anti-hHGF monoclonal antibodies.

Example 1

Production of Anti-hHGF Monoclonal Antibodies

[0113] This Example describes the production of a number of anti-hHGF monoclonal antibodies.

[0114] Immunizations, fusions, and primary screens were conducted at MBS Inc. (Portland, Me.), following the Repetitive Immunization Multiple Sites (RIMMS) protocol. Five AJ mice and Five Balb/c mice were immunized with recombinant human HGF (R&D Systems, Minneapolis, Minn.; Catalog No. 294-HGN-025). Two mice with sera displaying highest anti-HGF activity by Enzyme Linked Immunosorbent Assay (ELISA) were chosen for subsequent fusion. Spleens and lymph nodes from the appropriate mice were harvested. B-cells then were harvested and fused with an myeloma line. Fusion products were serially diluted on one or more plates to near clonality. Supernatants from the resulting fusions were screened for their binding to hHGF by ELISA. Supernatants identified as containing antibodies to HGF were further characterized by in vitro functional testing as discussed in the following examples. A panel of hybridomas was selected and the hybridomas were subcloned and expanded. The monoclonal antibodies then were purified by affinity chromatography on Protein A/G resin under standard conditions.

Example 2

Sequence Analysis of Anti-hHGF Monoclonal Antibodies

[0115] This Example describes isotype and sequence analyses of the anti-hHGF monoclonal antibodies produced in Example 1.

[0116] a. Determination of HGF Murine Monoclonal Antibody Isotypes

[0117] The light-chain type and heavy chain isotype of each monoclonal antibody were determined using the IsoStrip Mouse Monoclonal Antibody Isotyping Kit in accordance the manufacturer's instructions (Roche Applied Science).

[0118] All the antibodies were determined to contain a Kappa immunoglobulin light chain and an IgG1 immunoglobulin heavy chain.

[0119] b. Determination of Nucleotide Sequences Encoding Immunoglobulin Heavy and Light Chain Variable Regions

[0120] Total RNA was extracted from each monoclonal hybridoma cell line using the RNeasy Miniprep kit according to the manufacturer's instructions (Qiagen Venlo, The Netherlands). Full-length first strand cDNA was generated using the BD SMART.TM. RACE cDNA Amplification Kit according to the manufacturer's instructions (Clontech) using the oligonucleotide primers BD SMART II A (5' aagcagtggtatcaacgcagagtacgcggg 3') (SEQ ID NO. 85) and 5'-RACE CDS Primer (5' tttttttttttttttttttttttttvn 3', where v=a, g, or c and n=a, g, c, or t) (SEQ ID NO. 86) for the purpose of 5' RACE (Rapid Amplification of cDNA Ends).

[0121] The variable regions of the Kappa and Heavy (IgG1) immunoglobulin chains were amplified by PCR (Polymerase Chain Reaction) using the Expand High-Fidelity PCR System (Roche Applied Science) according to the manufacturer's instructions. Heavy chain variable regions were amplified with the 5' oligonucleotide primer mix Universal Primer Mix A (mix of 5' ctaatacgactcactatagggcaagcagtggtatcaacgcagagt 3' (SEQ ID NO. 87) and 5' ctaatacgactcactatagggc 3'(SEQ ID NO. 88)) and a 3' IgG1 Constant Region specific primer, either 5' tatgcaaggcttacaaccaca 3' (SEQ ID NO. 89) or 5' gccagtggatagacagatgggggtgtcg 3' (SEQ ID NO. 90). Kappa chain variable regions were amplified with the 5' oligonucleotide primer mix Universal Primer Mix A and a 3' Kappa Constant Region specific primer, either 5' ctcattcctgttgaagctcttgacaat 3' (SEQ ID NO. 91) or 5' cgactgaggcacctccagatgtt 3' (SEQ ID NO. 92).

[0122] Individual PCR products were fractionated by agarose gel electrophoresis and purified using the Qiaquick Gel Purification kit according to the manufacturer's instructions (Qiagen). The PCR products were subsequently cloned into the pCR2.1 TOPO plasmid using the topoisomerase based cloning kit TOPO TA Cloning.RTM. Kit (with pCR.RTM.2.1-TOPO.RTM. vector) according to the manufacturer's instructions (Invitrogen, Carlsbad, Calif.) and transformed into DH5 bacteria using standard transformation techniques. Plasmid DNA isolated from transformed bacterial clones was sequenced using T7 (5' TAATACGACTCACTATAGGG 3') (SEQ ID NO. 93), M13 Forward (5' GTAAAACGACGGCCAGT 3') (SEQ ID NO. 94), and M13 Reverse primers (5' CAGGAAACAGCTATGACC 3') (SEQ ID NO. 95) by Agencourt Bioscience using standard dideoxy DNA sequencing methods to identify the sequence of the variable region sequences. The sequences were analyzed using Vector NTI software (Invitrogen, Carlsbad, Calif.) and the IMGT/V-Quest webserver (http://imgt.cines.fr/textes/vquest) to identify and confirm variable region sequences.

[0123] c. Determination of Nucleotide Sequences Encoding Immunoglobulin Heavy and Light Chain Constant Region Sequences for 1A3, 1D3, 1F3, and 2B8 Kappa and IgG1 Chains

[0124] Full Length cDNAs for the 1A3, 1D3, and 1F3 IgG1 chains were PCR amplified from the cDNA created above using the forward primer 5' ggggacaagtttgtacaaaaaagcaggctgccaccatgaactttgggctcagattgattttcc 3' (start codon underlined) (SEQ ID NO. 96) and the reverse primer 5' ggggaccactttgtacaagaaagctgggttcatttaccaggagagtgggagagg 3' (stop codon underlined) (SEQ ID NO. 97). Full Length cDNA for the 2B8 IgG1 chain was amplified from the cDNA created above using the forward primer 5' ggggacaagtttgtacaaaaaagcaggctgccaccatgggatggagctatatcatcctcttt 3' (start codon underlined) (SEQ ID NO. 98) and reverse primer 5' ggggaccactttgtacaagaaagctgggttcatttaccaggagagtgggagag 3' (stop codon underlined) (SEQ ID NO. 99).

[0125] Full Length cDNA for the 2B8 Kappa Chain was amplified using the forward primer 5' ggggacaagtttgtacaaaaaagcaggctgccaccatggaatcacagactctggtcttcata 3' (start codon underlined) (SEQ ID NO. 100) and the reverse primer 5' ggggaccactttgtacaagaaagctgggtctaacactcattcctgttgaagctc 3' (stop codon underlined) (SEQ ID NO. 101). PCR fragments were subcloned into pDONR221 (Invitrogen, Carlsbad, Calif.) by Gateway BP recombination reaction (Invitrogen, Carlsbad, Calif.) and sequenced by Agencourt Bioscience using standard dideoxy DNA sequencing methods to identify the sequence of the constant region and further confirm variable region sequences.

[0126] d. Sequence Analysis

[0127] Variable Regions (normal text) were identified using IMGT/V-QUEST webserver software (http://imgt.cines.fr/textes/vquest/). Signal Peptide sequences were predicted based on identification of the in frame start codon (ATG) that was upstream of the identified Variable Region. Signal Peptide sequences were identified and are underlined below.

[0128] The last nucleotide of each variable region is the first base of the next codon generated by the variable/constant region junction. This nucleotide is included in the variable region because it is part of that exon. Amino acid sequences of the constant regions listed below include the translation of this junction codon.

[0129] In order to create the complete heavy or kappa chain antibody sequences, the variable region sequences noted below are combined with their respective constant region sequences (the signal sequences are underlined).

TABLE-US-00001 (1) 1A3 Heavy Chain Variable Region (SEQ ID NO. 1) 1 atgaactttg ggctcagatt gattttcctt gtccttgttt taaaaggtgt gaagtgtgaa 61 gtgcagctgg tggagtctgg gggaggctta gtgcagcctg gagggtccct gaaactctcc 121 tgtgcagcct ctgaattcac tttcagtaac tattacatgt cttgggttcg ccagactcca 181 gagaagaggc tgcagtgggt cgcatacatt agtcctggtg gtggtagctc ctactatcca 241 gccagtgtga agggtcgatt caccatctcc agagacaatg ccaagaacac cctgtacctg 301 caaatgagca gtctgaagtc tgaggacaca gccatgtatt actgtgcaag acaaggggat 361 ggttactacg gggactatgc tatggactac tggggtcaag gaacctcagt caccgtctcc 421 tcag (2) 1A3 Kappa Light Chain Variable Region (SEQ ID NO. 3) 1 atgagtgtgc ccactcaggt cctggggttg ctgctgctgt ggcttacaga tgccagatgt 61 gacatccaga tgactcagtc tccagcctcc ctatctgttt ctgtgggaga aactgtcacc 121 atcacatgtc gagcaagtga gaatatttat agtaatttag catggtatca gcagaaacag 181 ggaaaatctc ctcagctcct ggtctatgct gcaacaaact tagcagatgg tgtgccatca 241 aggttcagtg gcagtggatc aggcacacag ttttccctca agatcaacag cctgcagtct 301 gaagattttg ggacttatta ctgtcaacat ttttggggta ctccgtacac gttcggaggg 361 gggaccaagc tggaaataaa ac (3) 2B8 Heavy Chain Variable Region (SEQ ID NO. 11) 1 atgggatgga gctatatcat cctctttttg gtagcaacag ctacagatgt ccactcccag 61 gtccaactgc agcagcctgg ggctgaactg gtgaagcctg ggacttcagt gaagctgtcc 121 tgcaaggctt ctggctacac cttcaccacc tactggatgc actgggtgaa tcagaggcct 181 ggacaaggcc ttgagtggat tggagagatt aatcctacca acggtcatac taactacaat 241 gagaagttca agagcaaggc cacactgact gtagacaaat cctccagcac agcctacatg 301 caactcagca gcctgacatc tgaggactct gcggtctatt actgtgcaag aaactatgtt 361 ggtagcatct ttgactactg gggccaaggc accactctca cagtctcctc ag (4) 2B8 Kappa Light Chain Variable Region (SEQ ID NO. 13) 1 atggaatcac agactctggt cttcatatcc atactgctct ggttatatgg tgctgatggg 61 aacattgtaa tgacccaatc tcccaaatcc atgtccatgt cagtaggaga gagggtcacc 121 ttgagctgca aggccagtga gaatgtggtt tcttatgtat cctggtatca acagaaacca 181 gcgcagtctc ctaaactgct gatatacggg gcatccaacc ggaacactgg ggtccccgat 241 cgcttcacag gcagtggatc tgcaacagat ttcactctga ccatcagcag tgtgcgggct 301 gaagaccttg cagattatca ctgtgggcag agttacaact atccgtacac gttcggaggg 361 gggaccaggc tggaaataaa ac (5) 2F8 Heavy Chain Variable Region (SEQ ID NO. 21) 1 atggaatgga gctgggtctt tctcttcctc ctgtcagtaa ctgcaggtgt ccactgccag 61 gtccagctga agcagtctgg agctgagctg gtgaggcctg ggacttcagt gaagatgtcc 121 tgcaaggctt ctggctacac cttcactacc tactatatac actgggtgaa tcagaggcct 181 ggacagggcc ttgagtggat tggaaagatt ggtcctggaa gtggtagtac ttactacaat 241 gagatgttca aagacaaggc cacattgact gtagacacat cctccagcac agcctacatg 301 cagctcagca gcctgacatc tgacgactct gcggtctatt tctgtgcaag aaggggactg 361 ggacgtggct ttgactactg gggccaaggc accactctca cagtctcctc ag (6) 2F8 Kappa Light Chain Variable Region (SEQ ID NO. 23) 1 atggagacag acacaatcct gctatgggtg ctgctgctct gggttccagg ctccactggt 61 gacattgtgc tgacccaatc tccagcttct ttggctgtgt ctctagggca gagggccacc 121 atctcctgca aggccagcca aagtgttgat tatgatggta atagttatat caactggtac 181 caacagaaac caggacagcc acccaaagtc ctcatctatg ttgcatccaa tctagaatct 241 gggatcccag ccaggtttag tggcagtggg tctgggacag acttcaccct caacatccat 301 cctgtggagg aggaggatgc tgcaacctat tactgtcagc aaagtattga ggatcctccc 361 acgttcggtg ctgggaccaa gctggagctg aaac (7) 3B6 Heavy Chain Variable Region (SEQ ID NO. 31) 1 atggaatggc cttgtatctt tctcttcctc ctgtcagtaa ctgaaggtgt ccactcccag 61 gttcagctgc agcagtctgg ggctgaactg gtgaggcctg ggtcctcagt gaagatttcc 121 tgcaaggctt ctggctatgt attcagtagc tactggatga actgggtgaa gcagaggcct 181 ggacagggtc ttgagtggat tggacagatt tatcctggag atggtgatag taactacaat 241 ggaaacttca agggtaaagc cacactgact gcagacaaat cctccagtac agcctacatg 301 cagctcagca gcctaacatc tgaggactct gcggtctatt tctgtgcatc ccagctcggg 361 ctacgtgaga actactttga ctactggggc caaggcacca ctctcacagt ctcctcag (8) 3B6 Kappa Light Chain Variable Region (2 possible ATG start codons (uppercase)) (SEQ ID NO. 33) 1 ATGgacATGa ggacccctgc tcagtttctt ggaatcttgt tgctctggtt tccaggtatc 61 aaatgtgaca tcaagatgac ccagtctcca tcttccatgt atgcatctct aggagagaga 121 gtcacaatca cttgcaaggc gagtcaggac attaaaagct atttaagctg gttccagcag 181 aaaccaggga aatctcctaa gaccctgatc tatcgtgtaa acagattggt agatggggtc 241 ccatcaaggt tcagtggcag tggatctggg caagattctt ctctcaccat caccagcctg 301 gagaatgaag atatgggaat ttattattgt ctacagtatg atgagtttcc gttcacgttc 361 ggagggggga ccaagctgga aataaagc (9) 3D11 Heavy Chain Variable Region (SEQ ID NO. 41) 1 atggctgtcc cggtgctgtt cctctgcctg gttgcatttc caagctgtgt cctgtcccag 61 gtacagctga aggagtcagg acctggcctg gtggcgccct cacagagcct gtccatcact 121 tgcactgtct ctgggttttc attaaccagc tatagtttac actgggttcg ccagcctcca 181 ggaaagggtc tggaatggct gggagtaata tgggctggtg gaaacacaaa ttataattcg 241 tctctcatgt ccagactgac catcaggaaa gacaactcca agagccaagt tttcttaaaa 301 atgaacagtc tgcaaactga tgacacagcc atgtactact gtgccagaga gaggtttgct 361 tactggggcc aagggactct ggtcactgtc tctgcag (10) 3D11 Kappa Light Chain Variable Region (SEQ ID NO. 43) 1 atggattttc aagtgcagat tttcagcttc ctgctaatca gtgcctcagt caaaatatcc 61 agaggacaaa ttgttctcac ccagtctcca gcaatcatgt ctgcatatcc aggggagaag 121 gtcaccatga cctgcagtgc cagctcaagt gtaagttaca tgcactggta ccagcagaag 181 tcaggcacct cccccaaaag atggatttat gacacatcca aactggcttc tggagtccct 241 gctcgcttca gtggcagtgg gtctgggacc tcttactccc tcacaatcag tagtatggag 301 gctgaagatg ctgccactta ttactgccag cagtggagta gtaacccact cacgttcggt 361 gctgggacca agctggagct gaaac (11) 1D3 Heavy Chain Variable Region (SEQ ID NO. 51) 1 atgaactttg ggctcagatt gattttcctt gtccttgttt taaaaggtgt gaagtgtgaa 61 gtgcagctgg tggagtctgg gggaggctta gtgcagcctg gagggtccct gaaactctcc 121 tgtgcagcct ctggattcac tttcagtgac tattacatgt cttgggttcg ccagactcca 181 gagaagaggc tggagtgggt cgcatacatt agtagtggtg gtggtagcac ctactatcca 241 gacagtgtga agggtcgatt caccatctcc cgagacaatg ccaagaacac cctgtacctg 301 caaatgagca gtctgaagtc tgaggacaca gccatatatt actgtgtgag acaaggggat 361 ggttattacg gggactatgc tatggactac tggggtcaag gaacctcagt catcgtctcc 421 tcag (12) 1D3 Kappa Light Chain Variable Region (SEQ ID NO. 53) 1 atgagtgtgc ccactcaggt cctggggttg ctgctgctgt ggcttacaga tgtcagatgt 61 gacatccaga tgactcagtc tccagcctcc ctatctgtat ctgtgggaga aactgtcacc 121 atcacatgtc gaacaagtga gaatatttac agtaatttag cgtggtatca gcagaaacag 181 ggaaaatctc ctcagctcct aatctatgct gcaacaaact tagcagatgg tgtgccatca 241 aggttcagtg gcagtggatc aggcacacag ttttccctca ggatcaacag cctgcagtct 301 gaagattttg ggaggtatta ctgtcaacat ttttggggga ctccgtacac gttcggaggg 361 gggaccaaac tggaaataaa ac (13) 1F3 Heavy Chain Variable Region (SEQ ID NO. 61) 1 atgaactttg ggctcagatt gattttcctt gtccttgttt taaaaggtgt gaagtgtgag 61 gtgcagctgg tggagtctgg gggaggctta gtgcagtctg gagggtccct gaaactctcc 121 tgtgcggcct ctggattcac tttcagtaac tatttcatgt cttgggttcg ccagactcca 181 gagaagaggc tggagtgggt cgcatatatt agtagtggtg gtggtagcac ctactatcca 241 gacagtgtga agggtcgatt caccatctct agagacaatg ccaagaacac cctgtacctg 301 caaatgagca gtctgaagtc tgaggacaca gccatgtatt actgtgtaag acaaggggat 361 ggttactacg gggactatgc tatggactac tggggtcaag gaacctcagt caccgtctcc 421 tcag (14) 1F3 Kappa Light Chain Variable Region (SEQ ID NO. 63) 1 atgagtgtgc ccactcaggt cctggggttg ctgctgctgt ggcttacaga tgccagatgt 61 gacatccaga tgactcagtc tccagcctcc ctatctgtat ctgtgggaga aactgtcacc 121 atcacatgtc gagcaagtga gaatatttac agtaatttag catggtatca gcagaaacag 181 ggaaaatctc ctcagctcct ggtctatgat gcaacacact taccagatgg tgtgccatca 241 aggttcagtg gcagtggatc aggcacacag ttttccctca agatcaacag cctgcagtct 301 gaagattttg ggagttatta ctgtcaacat ttttggggta ctccgtacac gtttggaggg 361 gggaccagac tggaaattaa ac (15) 3A12 Heavy Chain Variable Region (SEQ ID NO. 71) 1 atgaactttg ggctcagatt gattttcctt gtccttgttt taaaaggtgt gaagtgtgaa 61 gtgcagctgg tggagtctgg gggaggctta gtgcagcctg gagggtccct gaaaatctcc 121 tgtgcagcct ctggatttac tttcagtaac tatttcatgt cttgggttcg ccagactcca 181 gagaagaggc tggagtgggt cgcatacatt agtagtggtg gtggtagcac ctactatcca 241 gacagtgtga agggtcgatt caccatctcc agagacaatg ccaagaacac cctgtacctg 301 caaatgaaca gtctgaagtc tgaggacaca gccatgtatt actgtgtaag acaaggagat 361 ggttactatg gggactatgc tatggactac tggggtcaag gaacctcagt caccgtctcc 421 tcag (16) 3A12 Kappa Light Chain Variable Region

(SEQ ID NO. 73) 1 atgagtgtgc ccactcaggt cctggggttg ctgctgctgt ggcttacaga tgccagatgt 61 gacatccaga tgactcagtc gccagcctcc ctatctgtat ctgtgggaga aactgtcacc 121 atcacatgtc gagcaagtga gaatatttac attaatttag catggtatca gcagaaacag 181 ggaaaatctc ctcagctcct ggtccatgct gcaacaaagt tagcagatgg tgtgccatca 241 aggttcagtg gcagtggatc aggcacacag tattccctca agatcaacag cctgcagtct 301 gaagattttg ggagttatta ctgtcaacat ttttggggta ctccgtacac gttcggaggg 361 gggaccaaac tagaaataaa ac (17) Reference Mouse IgG1 Heavy Chain Constant Region (J00453) (SEQ ID NO. 81) 1 ccaaaacgac acccccatct gtctatccac tggcccctgg atctgctgcc caaactaact 61 ccatggtgac cctgggatgc ctggtcaagg gctatttccc tgagccagtg acagtgacct 121 ggaactctgg atccctgtcc agcggtgtgc acaccttccc agctgtcctg gagtctgacc 181 tctacactct gagcagctca gtgactgtcc cctccagccc tcggcccagc gagaccgtca 241 cctgcaacgt tgcccacccg gccagcagca ccaaggtgga caagaaaatt gtgcccaggg 301 attgtggttg taagccttgc atatgtacag tcccagaagt atcatctgtc ttcatcttcc 361 ccccaaagcc caaggatgtg ctcaccatta ctctgactcc taaggtcacg tgtgttgtgg 421 tagacatcag caaggatgat cccgaggtcc agttcagctg gtttgtagat gatgtggagg 481 tgcacacagc tcagacgcaa ccccgggagg agcagttcaa cagcactttc cgctcagtca 541 gtgaacttcc catcatgcac caggactggc tcaatggcaa ggagttcaaa tgcagggtca 601 acagtgcagc tttccctgcc cccatcgaga aaaccatctc caaaaccaaa ggcagaccga 661 aggctccaca ggtgtacacc attccacctc ccaaggagca gatggccaag gataaagtca 721 gtctgacctg catgataaca gacttcttcc ctgaagacat tactgtggag tggcagtgga 781 atgggcagcc agcggagaac tacaagaaca ctcagcccat catgaacacg aatggctctt 841 acttcgtcta cagcaagctc aatgtgcaga agagcaactg ggaggcagga aatactttca 901 cctgctctgt gttacatgag ggcctgcaca accaccatac tgagaagagc ctctcccact 961 ctcctggtaa atga (18) Mouse IgG1 Heavy Chain Constant Region Determined for 1A3, 1D3, 1F3, and 2B8 (derived from AJ strain mice) (SEQ ID NO. 82) 1 ccaaaacgac acccccatct gtctatccac tggcccctgg atctgctgcc caaactaact 61 ccatggtgac cctgggatgc ctggtcaagg gctatttccc tgagccagtg acagtgacct 121 ggaactctgg atccctgtcc agcggtgtgc acaccttccc agctgtcctg cagtctgacc 181 tctacactct gagcagctca gtgactgtcc cctccagcac ctggcccagc gagaccgtca 241 cctgcaacgt tgcccacccg gccagcagca ccaaggtgga caagaaaatt gtgcccaggg 301 attgtggttg taagccttgc atatgtacag tcccagaagt atcatctgtc ttcatcttcc 361 ccccaaagcc caaggatgtg ctcaccatta ctctgactcc taaggtcacg tgtgttgtgg 421 tagacatcag caaggatgat cccgaggtcc agttcagctg gtttgtagat gatgtggagg 481 tgcacacagc tcagacgcaa ccccgggagg agcagttcaa cagcactttc cgctcagtca 541 gtgaacttcc catcatgcac caggactggc tcaatggcaa ggagttcaaa tgcagggtca 601 acagtgcagc tttccctgcc cccatcgaga aaaccatctc caaaaccaaa ggcagaccga 661 aggctccaca ggtgtacacc attccacctc ccaaggagca gatggccaag gataaagtca 721 gtctgacctg catgataaca gacttcttcc ctgaagacat tactgtggag tggcagtgga 781 atgggcagcc agcggagaac tacaagaaca ctcagcccat catggacaca gatggctctt 841 acttcgtcta cagcaagctc aatgtgcaga agagcaactg ggaggcagga aatactttca 901 cctgctctgt gttacatgag ggcctgcaca accaccatac tgagaagagc ctctcccact 961 ctcctggtaa atga (19) Reference Mouse Kappa Light Chain Constant Region (V00807) and Mouse Kappa Light Chain Constant Region Determined for 1D3, 1F3, and 2B8 (derived from AJ strain mice) (SEQ ID NO. 83) 1 gggctgatgc tgcaccaact gtatccatct tcccaccatc cagtgagcag ttaacatctg 61 gaggtgcctc agtcgtgtgc ttcttgaaca acttctaccc caaagacatc aatgtcaagt 121 ggaagattga tggcagtgaa cgacaaaatg gcgtcctgaa cagttggact gatcaggaca 181 gcaaagacag cacctacagc atgagcagca ccctcacgtt gaccaaggac gagtatgaac 241 gacataacag ctatacctgt gaggccactc acaagacatc aacttcaccc attgtcaaga 301 gcttcaacag gaatgagtgt tag (20) Mouse Kappa Light Chain Constant Region Determined for 1A3 containing one altered nucleotide compared to 1D3, 1F3, and 2B8 (underlined) (SEQ ID NO. 84) 1 gggctgatgc tgcaccaact gtatccatct tcccaccatc cagtgagcag ttaacatctg 61 gaggtgcctc agtcgtgtgc ttcttgaaca acttctaccc caaagacatc aatgtcaagt 121 ggaagattga tggcagtgaa cgacaaaatg gcgtcctgaa cagttggact gatcaggaca 181 gcaaagacag cacctacagc atgagcagca ccctcatgtt gaccaaggac gagtatgaac 241 gacataacag ctatacctgt gaggccactc acaagacatc aacttcaccc attgtcaaga 301 gcttcaacag gaatgagtgt tag

[0130] Each of the amino acid sequences defining the immunoglobulin heavy chain variable regions for the antibodies produced in Example 1 are set forth in FIG. 2. Each of the sequences are aligned with one another and the sequences defining the signal peptide, CDR.sub.1, CDR.sub.2 and CDR.sub.3 are identified by boxes. FIG. 3 shows an alignment of the separate CDR.sub.1, CDR.sub.2 and CDR.sub.3 sequences for each of the antibodies.

[0131] Each of the amino acid sequences defining the immunoglobulin light chain variable regions for each of the antibodies produced in Example 1 are set forth in FIG. 4. Each of the sequences are aligned with one another and the sequences defining the signal peptide, CDR.sub.1, CDR.sub.2 and CDR.sub.3 are identified by boxes. FIG. 5 shows an alignment of the separate CDR.sub.1, CDR.sub.2 and CDR.sub.3 sequences for each of the antibodies.

[0132] For convenience, Table 1 provides a concordance chart showing the correspondence between the antibody sequences discussed in this Example with those presented in the Sequence Listing.

TABLE-US-00002 TABLE 1 SEQ. ID NO. Protein or Nucleic Acid 1 Heavy Chain Variable Region 1A3 - nucleic acid 2 Heavy Chain Variable Region 1A3 - protein 3 Light (kappa) Chain Variable Region 1A3 - nucleic acid 4 Light (kappa) Chain Variable Region 1A3 - protein 5 Heavy Chain CDR.sub.1 1A3 6 Heavy Chain CDR.sub.2 1A3 7 Heavy Chain CDR.sub.3 1A3 8 Light (kappa) Chain CDR.sub.1 1A3 9 Light (kappa) Chain CDR.sub.2 1A3 10 Light (kappa) Chain CDR.sub.3 1A3 11 Heavy Chain Variable Region 2B8 - nucleic acid 12 Heavy Chain Variable Region 2B8 - protein 13 Light (kappa) Chain Variable Region 2B8 - nucleic acid 14 Light (kappa) Chain Variable Region 2B8 - protein 15 Heavy Chain CDR.sub.1 2B8 16 Heavy Chain CDR.sub.2 2B8 17 Heavy Chain CDR.sub.3 2B8 18 Light (kappa) Chain CDR.sub.1 2B8 19 Light (kappa) Chain CDR.sub.2 2B8 20 Light (kappa) Chain CDR.sub.3 2B8 21 Heavy Chain Variable Region 2F8 - nucleic acid 22 Heavy Chain Variable Region 2F8 - protein 23 Light (kappa) Chain Variable Region 2F8 - nucleic acid 24 Light (kappa) Chain Variable Region 2F8 - protein 25 Heavy Chain CDR.sub.1 2F8 26 Heavy Chain CDR.sub.2 2F8 27 Heavy Chain CDR.sub.3 2F8 28 Light (kappa) Chain CDR.sub.1 2F8 29 Light (kappa) Chain CDR.sub.2 2F8 30 Light (kappa) Chain CDR.sub.3 2F8 31 Heavy Chain Variable Region 3B6 - nucleic acid 32 Heavy Chain Variable Region 3B6 - protein 33 Light (kappa) Chain Variable Region 3B6 - nucleic acid 34 Light (kappa) Chain Variable Region 3B6 - protein 35 Heavy Chain CDR.sub.1 3B6 36 Heavy Chain CDR.sub.2 3B6 37 Heavy Chain CDR.sub.3 3B6 38 Light (kappa) Chain CDR.sub.1 3B6 39 Light (kappa) Chain CDR.sub.2 3B6 40 Light (kappa) Chain CDR.sub.3 3B6 41 Heavy Chain Variable Region 3D11 - nucleic acid 42 Heavy Chain Variable Region 3D11 - protein 43 Light (kappa) Chain Variable Region 3D11 - nucleic acid 44 Light (kappa) Chain Variable Region 3D11 - protein 45 Heavy Chain CDR.sub.1 3D11 46 Heavy Chain CDR.sub.2 3D11 47 Heavy Chain CDR.sub.3 3D11 48 Light (kappa) Chain CDR.sub.1 3D11 49 Light (kappa) Chain CDR.sub.2 3D11 50 Light (kappa) Chain CDR.sub.3 3D11 51 Heavy Chain Variable Region 1D3 - nucleic acid 52 Heavy Chain Variable Region 1D3 - protein 53 Light (kappa) Chain Variable Region 1D3 - nucleic acid 54 Light (kappa) Chain Variable Region 1D3 - protein 55 Heavy Chain CDR.sub.1 1D3 56 Heavy Chain CDR.sub.2 1D3 57 Heavy Chain CDR.sub.3 1D3 58 Light (kappa) Chain CDR.sub.1 1D3 59 Light (kappa) Chain CDR.sub.2 1D3 60 Light (kappa) Chain CDR.sub.3 1D3 61 Heavy Chain Variable Region 1F3 - nucleic acid 62 Heavy Chain Variable Region 1F3 - protein 63 Light (kappa) Chain Variable Region 1F3 - nucleic acid 64 Light (kappa) Chain Variable Region 1F3 - protein 65 Heavy Chain CDR.sub.1 1F3 66 Heavy Chain CDR.sub.2 1F3 67 Heavy Chain CDR.sub.3 1F3 68 Light (kappa) Chain CDR.sub.1 1F3 69 Light (kappa) Chain CDR.sub.2 1F3 70 Light (kappa) Chain CDR.sub.3 1F3 71 Heavy Chain Variable Region 3A12 - nucleic acid 72 Heavy Chain Variable Region 3A12 - protein 73 Light (kappa) Chain Variable Region 3A12 - nucleic acid 74 Light (kappa) Chain Variable Region 3A12 - protein 75 Heavy Chain CDR.sub.1 3A12 76 Heavy Chain CDR.sub.2 3A12 77 Heavy Chain CDR.sub.3 3A12 78 Light (kappa) Chain CDR.sub.1 3A12 79 Light (kappa) Chain CDR.sub.2 3A12 80 Light (kappa) Chain CDR.sub.3 3A12

[0133] Also, for convenience, the following sequences represent the actual or contemplated full length heavy and light chain sequences (i.e., containing both the variable and constant region sequences) for each of the antibodies described in this Example. It is noted that the constant regions of the murine antibodies 2F8, 3A12, 3B6, and 3D11 were not sequenced but are presumed to have the same constant region sequences as the 1D3, 1F3, and 2B8 antibodies, which were sequenced, as they were all derived from AJ strain mice. It is appreciated, however, that the variable region sequences described herein can be ligated to each of a number of other constant region sequences known to those skilled in the art to produce active full length immunoglobulin heavy and light chains.

TABLE-US-00003 (1) Nucleic Acid Sequence Encoding the Full Length 1A3 Heavy Chain Sequence (1A3 Heavy Chain Variable Region and IgG1 Constant Region) (signal sequence underlined) (SEQ ID NO. 122) 1 atgaactttg ggctcagatt gattttcctt gtccttgttt taaaaggtgt gaagtgtgaa 61 gtgcagctgg tggagtctgg gggaggctta gtgcagcctg gagggtccct gaaactctcc 121 tgtgcagcct ctgaattcac tttcagtaac tattacatgt cttgggttcg ccagactcca 181 gagaagaggc tgcagtgggt cgcatacatt agtcctggtg gtggtagctc ctactatcca 241 gccagtgtga agggtcgatt caccatctcc agagacaatg ccaagaacac cctgtacctg 301 caaatgagca gtctgaagtc tgaggacaca gccatgtatt actgtgcaag acaaggggat 361 ggttactacg gggactatgc tatggactac tggggtcaag gaacctcagt caccgtctcc 421 tcagccaaaa cgacaccccc atctgtctat ccactggccc ctggatctgc tgcccaaact 481 aactccatgg tgaccctggg atgcctggtc aagggctatt tccctgagcc agtgacagtg 541 acctggaact ctggatccct gtccagcggt gtgcacacct tcccagctgt cctgcagtct 601 gacctctaca ctctgagcag ctcagtgact gtcccctcca gcacctggcc cagcgagacc 661 gtcacctgca acgttgccca cccggccagc agcaccaagg tggacaagaa aattgtgccc 721 agggattgtg gttgtaagcc ttgcatatgt acagtcccag aagtatcatc tgtcttcatc 781 ttccccccaa agcccaagga tgtgctcacc attactctga ctcctaaggt cacgtgtgtt 841 gtggtagaca tcagcaagga tgatcccgag gtccagttca gctggtttgt agatgatgtg 901 gaggtgcaca cagctcagac gcaaccccgg gaggagcagt tcaacagcac tttccgctca 961 gtcagtgaac ttcccatcat gcaccaggac tggctcaatg gcaaggagtt caaatgcagg 1021 gtcaacagtg cagctttccc tgcccccatc gagaaaacca tctccaaaac caaaggcaga 1081 ccgaaggctc cacaggtgta caccattcca cctcccaagg agcagatggc caaggataaa 1141 gtcagtctga cctgcatgat aacagacttc ttccctgaag acattactgt ggagtggcag 1201 tggaatgggc agccagcgga gaactacaag aacactcagc ccatcatgga cacagatggc 1261 tcttacttcg tctacagcaa gctcaatgtg cagaagagca actgggaggc aggaaatact 1321 ttcacctgct ctgtgttaca tgagggcctg cacaaccacc atactgagaa gagcctctcc 1381 cactctcctg gtaaatga (2) Protein Sequence Defining the Full Length 1A3 Heavy Chain Sequence (1A3 Heavy Chain Variable Region and IgG1 Constant Region) (without signal sequence) (SEQ ID NO. 123) 1 evqlvesggg lvqpggslkl scaaseftfs nyymswvrqt pekrlqwvay ispgggssyy 61 pasvkgrfti srdnakntly lqmsslksed tamyycarqg dgyygdyamd ywgqgtsvtv 121 ssakttppsv yplapgsaaq tnsmvtlgcl vkgyfpepvt vtwnsgslss gvhtfpavlq 181 sdlytlsssv tvpsstwpse tvtcnvahpa sstkvdkkiv prdcgckpci ctvpevssvf 241 ifppkpkdvl titltpkvtc vvvdiskddp evqfswfvdd vevhtaqtqp reeqfnstfr 301 syselpimhq dwlngkefkc rvnsaafpap iektisktkg rpkapqvyti pppkeqmakd 361 kvsltcmitd ffpeditvew qwngqpaeny kntqpimdtd gsyfvyskln vqksnweagn 421 tftcsvlheg lhnhhteksl shspgk (3) Nucleic Acid Sequence Encoding the Full Length 1A3 Light Chain Sequence (1A3 Kappa Variable Region and Constant Region) (signal sequence underlined) (SEQ ID NO. 124) 1 atgagtgtgc ccactcaggt cctggggttg ctgctgctgt ggcttacaga tgccagatgt 61 gacatccaga tgactcagtc tccagcctcc ctatctgttt ctgtgggaga aactgtcacc 121 atcacatgtc gagcaagtga gaatatttat agtaatttag catggtatca gcagaaacag 181 ggaaaatctc ctcagctcct ggtctatgct gcaacaaact tagcagatgg tgtgccatca 241 aggttcagtg gcagtggatc aggcacacag ttttccctca agatcaacag cctgcagtct 301 gaagattttg ggacttatta ctgtcaacat ttttggggta ctccgtacac gttcggaggg 361 gggaccaagc tggaaataaa acgggctgat gctgcaccaa ctgtatccat cttcccacca 421 tccagtgagc agttaacatc tggaggtgcc tcagtcgtgt gcttcttgaa caacttctac 481 cccaaagaca tcaatgtcaa gtggaagatt gatggcagtg aacgacaaaa tggcgtcctg 541 aacagttgga ctgatcagga cagcaaagac agcacctaca gcatgagcag caccctcatg 601 ttgaccaagg acgagtatga acgacataac agctatacct gtgaggccac tcacaagaca 661 tcaacttcac ccattgtcaa gagcttcaac aggaatgagt gttag Kappa Variable Region and Constant Region) (without signal sequence) (SEQ ID NO. 125) 1 diqmtqspas lsysvgetvt itcraseniy snlawyqqkq gkspqllvya atnladgvps 61 rfsgsgsgtq fslkinslqs edfgtyycqh fwgtpytfgg gtkleikrad aaptvsifpp 121 sseqltsgga svvcflnnfy pkdinvkwki dgserqngvl nswtdqdskd stysmsstlm 181 ltkdeyerhn sytceathkt stspivksfn rnec (5) Nucleic Acid Sequence Encoding the Full Length 2B8 Heavy Chain Sequence (2B8 Heavy Chain Variable Region and IgG1 Constant Region) (signal sequence underlined) (SEQ ID NO. 126) 1 atgggatgga gctatatcat cctctttttg gtagcaacag ctacagatgt ccactcccag 61 gtccaactgc agcagcctgg ggctgaactg gtgaagcctg ggacttcagt gaagctgtcc 121 tgcaaggctt ctggctacac cttcaccacc tactggatgc actgggtgaa tcagaggcct 181 ggacaaggcc ttgagtggat tggagagatt aatcctacca acggtcatac taactacaat 241 gagaagttca agagcaaggc cacactgact gtagacaaat cctccagcac agcctacatg 301 caactcagca gcctgacatc tgaggactct gcggtctatt actgtgcaag aaactatgtt 361 ggtagcatct ttgactactg gggccaaggc accactctca cagtctcctc agccaaaacg 421 acacccccat ctgtctatcc actggcccct ggatctgctg cccaaactaa ctccatggtg 481 accctgggat gcctggtcaa gggctatttc cctgagccag tgacagtgac ctggaactct 541 ggatccctgt ccagcggtgt gcacaccttc ccagctgtcc tgcagtctga cctctacact 601 ctgagcagct cagtgactgt cccctccagc acctggccca gcgagaccgt cacctgcaac 661 gttgcccacc cggccagcag caccaaggtg gacaagaaaa ttgtgcccag ggattgtggt 721 tgtaagcctt gcatatgtac agtcccagaa gtatcatctg tcttcatctt ccccccaaag 781 cccaaggatg tgctcaccat tactctgact cctaaggtca cgtgtgttgt ggtagacatc 841 agcaaggatg atcccgaggt ccagttcagc tggtttgtag atgatgtgga ggtgcacaca 901 gctcagacgc aaccccggga ggagcagttc aacagcactt tccgctcagt cagtgaactt 961 cccatcatgc accaggactg gctcaatggc aaggagttca aatgcagggt caacagtgca 1021 gctttccctg cccccatcga gaaaaccatc tccaaaacca aaggcagacc gaaggctcca 1081 caggtgtaca ccattccacc tcccaaggag cagatggcca aggataaagt cagtctgacc 1141 tgcatgataa cagacttctt ccctgaagac attactgtgg agtggcagtg gaatgggcag 1201 ccagcggaga actacaagaa cactcagccc atcatggaca cagatggctc ttacttcgtc 1261 tacagcaagc tcaatgtgca gaagagcaac tgggaggcag gaaatacttt cacctgctct 1321 gtgttacatg agggcctgca caaccaccat actgagaaga gcctctccca ctctcctggt 1381 aaatga (6) Protein Sequence Defining the Full Length 2B8 Heavy Chain Sequence (2B8 Heavy Chain Variable Region and IgG1 Constant Region) (without signal sequence) (SEQ ID NO. 127) 1 qvqlqqpgae lvkpgtsvkl sckasgytft tywmhwvnqr pgqglewige inptnghtny 61 nekfkskatl tvdkssstay mqlssltsed savyycarny vgsifdywgq gttltvssak 121 ttppsvypla pgsaaqtnsm vtlgclvkgy fpepvtvtwn sgslssgvht fpavlqsdly 181 tlsssvtvps stwpsetvtc nvahpasstk vdkkivprdc gckpcictvp evssvfifpp 241 kpkdvltitl tpkvtcvvvd iskddpevqf swfvddvevh taqtqpreeq fnstfrsvse 301 lpimhqdwln gkefkcrvns aafpapiekt isktkgrpka pqvytipppk eqmakdkvsl 361 tcmitdffpe ditvewqwng qpaenykntq pimdtdgsyf vysklnvqks nweagntftc 421 svlheglhnh htekslshsp gk (7) Nucleic Acid Sequence Encoding the Full Length 2B8 Light Chain Sequence (2B8 Kappa Variable Region and Constant Region) (signal sequence underlined) (SEQ ID NO. 128) 1 atggaatcac agactctggt cttcatatcc atactgctct ggttatatgg tgctgatggg 61 aacattgtaa tgacccaatc tcccaaatcc atgtccatgt cagtaggaga gagggtcacc 121 ttgagctgca aggccagtga gaatgtggtt tcttatgtat cctggtatca acagaaacca 181 gcgcagtctc ctaaactgct gatatacggg gcatccaacc ggaacactgg ggtccccgat 241 cgcttcacag gcagtggatc tgcaacagat ttcactctga ccatcagcag tgtgcgggct 301 gaagaccttg cagattatca ctgtgggcag agttacaact atccgtacac gttcggaggg 361 gggaccaggc tggaaataaa acgggctgat gctgcaccaa ctgtatccat cttcccacca 421 tccagtgagc agttaacatc tggaggtgcc tcagtcgtgt gcttcttgaa caacttctac 481 cccaaagaca tcaatgtcaa gtggaagatt gatggcagtg aacgacaaaa tggcgtcctg 541 aacagttgga ctgatcagga cagcaaagac agcacctaca gcatgagcag caccctcacg 601 ttgaccaagg acgagtatga acgacataac agctatacct gtgaggccac tcacaagaca 661 tcaacttcac ccattgtcaa gagcttcaac aggaatgagt gttag (8) Protein Sequence Defining the Full Length 2B8 Light Chain Sequence (2B8 Kappa Variable Region and Constant Region) (without signal sequence) (SEQ ID NO. 129) 1 nivmtqspks msmsvgervt lsckasenvv syvswyqqkp aqspklliyg asnrntgvpd 61 rftgsgsatd ftltissvra edladyhcgq synypytfgg gtrleikrad aaptvsifpp 121 sseqltsgga svvcflnnfy pkdinvkwki dgserqngvl nswtdqdskd stysmsstlt 181 ltkdeyerhn sytceathkt stspivksfn rnec (9) Nucleic Acid Sequence Encoding the Full Length 2F8 Heavy Chain Sequence (2F8 Heavy Chain Variable Region and IgG1 Constant Region) (signal sequence underlined) (SEQ ID NO. 130) 1 atggaatgga gctgggtctt tctcttcctc ctgtcagtaa ctgcaggtgt ccactgccag 61 gtccagctga agcagtctgg agctgagctg gtgaggcctg ggacttcagt gaagatgtcc 121 tgcaaggctt ctggctacac cttcactacc tactatatac actgggtgaa tcagaggcct 181 ggacagggcc ttgagtggat tggaaagatt ggtcctggaa gtggtagtac ttactacaat 241 gagatgttca aagacaaggc cacattgact gtagacacat cctccagcac agcctacatg 301 cagctcagca gcctgacatc tgacgactct gcggtctatt tctgtgcaag aaggggactg 361 ggacgtggct ttgactactg gggccaaggc accactctca cagtctcctc agccaaaacg 421 acacccccat ctgtctatcc actggcccct ggatctgctg cccaaactaa ctccatggtg 481 accctgggat gcctggtcaa gggctatttc cctgagccag tgacagtgac ctggaactct

541 ggatccctgt ccagcggtgt gcacaccttc ccagctgtcc tgcagtctga cctctacact 601 ctgagcagct cagtgactgt cccctccagc acctggccca gcgagaccgt cacctgcaac 661 gttgcccacc cggccagcag caccaaggtg gacaagaaaa ttgtgcccag ggattgtggt 721 tgtaagcctt gcatatgtac agtcccagaa gtatcatctg tcttcatctt ccccccaaag 781 cccaaggatg tgctcaccat tactctgact cctaaggtca cgtgtgttgt ggtagacatc 841 agcaaggatg atcccgaggt ccagttcagc tggtttgtag atgatgtgga ggtgcacaca 901 gctcagacgc aaccccggga ggagcagttc aacagcactt tccgctcagt cagtgaactt 961 cccatcatgc accaggactg gctcaatggc aaggagttca aatgcagggt caacagtgca 1021 gctttccctg cccccatcga gaaaaccatc tccaaaacca aaggcagacc gaaggctcca 1081 caggtgtaca ccattccacc tcccaaggag cagatggcca aggataaagt cagtdtgacc 1141 tgcatgataa cagacttctt ccctgaagac attactgtgg agtggcagtg gaatgggcag 1201 ccagcggaga actacaagaa cactcagccc atcatggaca cagatggctc ttacttcgtc 1261 tacagcaagc tcaatgtgca gaagagcaac tgggaggcag gaaatacttt cacctgctct 1321 gtgttacatg agggcctgca caaccaccat actgagaaga gcctctccca ctctcctggt 1381 aaatga (10) Protein Sequence Defining the Full Length 2F8 Heavy Chain Sequence (2F8 Heavy Chain Variable Region and IgG1 Constant Region) (without signal sequence) (SEQ ID NO. 131) 1 qvqlkqsgae lvrpgtsvkm sckasgytft tyyihwvnqr pgqglewigk igpgsgstyy 61 nemfkdkatl tvdtssstay mqlssltsdd savyfcarrg lgrgfdywgq gttltvssak 121 ttppsvypla pgsaaqtnsm vtlgclvkgy fpepvtvtwn sgslssgvht fpavlqsdly 181 tlsssvtvps stwpsetvtc nvahpasstk vdkkivprdc gckpcictvp evssvfifpp 241 kpkdvltitl tpkvtcvvvd iskddpevqf swfvddvevh taqtqpreeq fnstfrsyse 301 lpimhqdwln gkefkcrvns aafpapiekt isktkgrpka pqvytipppk eqmakdkvsl 361 tcmitdffpe ditvewqwng qpaenykntq pimdtdgsyf vysklnvqks nweagntftc 421 svlheglhnh htekslshsp gk (11) Nucleic Acid Sequence Encoding the Full Length 2F8 Light Chain Sequence (2F8 Kappa Variable Region and Constant Region) (signal sequence underlined) (SEQ ID NO. 132) 1 atggagacag acacaatcct gctatgggtg ctgctgctct gggttccagg ctccactggt 61 gacattgtgc tgacccaatc tccagcttct ttggctgtgt ctctagggca gagggccacc 121 atctcctgca aggccagcca aagtgttgat tatgatggta atagttatat caactggtac 181 caacagaaac caggacagcc acccaaagtc ctcatctatg ttgcatccaa tctagaatct 241 gggatcccag ccaggtttag tggcagtggg tctgggacag acttcaccct caacatccat 301 cctgtggagg aggaggatgc tgcaacctat tactgtcagc aaagtattga ggatcctccc 361 acgttcggtg ctgggaccaa gctggagctg aaacgggctg atgctgcacc aactgtatcc 421 atcttcccac catccagtga gcagttaaca tctggaggtg cctcagtcgt gtgcttcttg 481 aacaacttct accccaaaga catcaatgtc aagtggaaga ttgatggcag tgaacgacaa 541 aatggcgtcc tgaacagttg gactgatcag gacagcaaag acagcaccta cagcatgagc 601 agcaccctca cgttgaccaa ggacgagtat gaacgacata acagctatac ctgtgaggcc 661 actcacaaga catcaacttc acccattgtc aagagcttca acaggaatga gtgttag (12) Protein Sequence Defining the Full Length 2F8 Light Chain Sequence (2F8 Kappa Variable Region and Constant Region) (without signal sequence) (SEQ ID NO. 133) 1 divltqspas lavslgqrat isckasqsvd ydgnsyinwy qqkpgqppkv liyvasnles 61 giparfsgsg sgtdftlnih pveeedaaty ycqqsiedpp tfgagtklel kradaaptvs 121 ifppsseqlt sggasvvcfl nnfypkdinv kwkidgserq ngvlnswtdq dskdstysms 181 stltltkdey erhnsytcea thktstspiv ksfnrnec (13) Nucleic Acid Sequence Encoding the Full Length 3B6 Heavy Chain Sequence f3B6 Heavy Chain Variable Region and IgG1 Constant Region) (signal sequence underlined) (SEQ ID NO. 134) 1 atggaatggc cttgtatctt tctcttcctc ctgtcagtaa ctgaaggtgt ccactcccag 61 gttcagctgc agcagtctgg ggctgaactg gtgaggcctg ggtcctcagt gaagatttcc 121 tgcaaggctt ctggctatgt attcagtagc tactggatga actgggtgaa gcagaggcct 181 ggacagggtc ttgagtggat tggacagatt tatcctggag atggtgatag taactacaat 241 ggaaacttca agggtaaagc cacactgact gcagacaaat cctccagtac agcctacatg 301 cagctcagca gcctaacatc tgaggactct gcggtctatt tctgtgcatc ccagctcggg 361 ctacgtgaga actactttga ctactggggc caaggcacca ctctcacagt ctcctcagcc 421 aaaacgacac ccccatctgt ctatccactg gcccctggat ctgctgccca aactaactcc 481 atggtgaccc tgggatgcct ggtcaagggc tatttccctg agccagtgac agtgacctgg 541 aactctggat ccctgtccag cggtgtgcac accttcccag ctgtcctgca gtctgacctc 601 tacactctga gcagctcagt gactgtcccc tccagcacct ggcccagcga gaccgtcacc 661 tgcaacgttg cccacccggc cagcagcacc aaggtggaca agaaaattgt gcccagggat 721 tgtggttgta agccttgcat atgtacagtc ccagaagtat catctgtctt catcttcccc 781 ccaaagccca aggatgtgct caccattact ctgactccta aggtcacgtg tgttgtggta 841 gacatcagca aggatgatcc cgaggtccag ttcagctggt ttgtagatga tgtggaggtg 901 cacacagctc agacgcaacc ccgggaggag cagttcaaca gcactttccg ctcagtcagt 961 gaacttccca tcatgcacca ggactggctc aatggcaagg agttcaaatg cagggtcaac 1021 agtgcagctt tccctgcccc catcgagaaa accatctcca aaaccaaagg cagaccgaag 1081 gctccacagg tgtacaccat tccacctccc aaggagcaga tggccaagga taaagtcagt 1141 ctgacctgca tgataacaga cttcttccct gaagacatta ctgtggagtg gcagtggaat 1201 gggcagccag cggagaacta caagaacact cagcccatca tggacacaga tggctcttac 1261 ttcgtctaca gcaagctcaa tgtgcagaag agcaactggg aggcaggaaa tactttcacc 1321 tgctctgtgt tacatgaggg cctgcacaac caccatactg agaagagcct ctcccactct 1381 cctggtaaat ga (14) Protein Sequence Defining the Full Length 3B6 Heavy Chain Sequence (3B6 Heavy Chain Variable Region and IgG1 Constant Region) (without signal sequence) (SEQ ID NO. 135) 1 qvqlqqsgae lvrpgssvki sckasgyvfs sywmnwvkqr pgqglewigq iypgdgdsny 61 ngnfkgkatl tadkssstay mqlssltsed savyfcasql glrenyfdyw gqgttltvss 121 akttppsvyp lapgsaaqtn smvtlgclvk gyfpepvtvt wnsgslssgv htfpavlqsd 181 lytlsssvtv psstwpsetv tcnvahpass tkvdkkivpr dcgckpcict vpevssvfif 241 ppkpkdvlti tltpkvtcvv vdiskddpev qfswfvddve vhtaqtqpre eqfnstfrsv 301 selpimhqdw lngkefkcrv nsaafpapie ktisktkgrp kapqvytipp pkeqmakdkv 361 sltcmitdff peditvewqw ngqpaenykn tqpimdtdgs yfvysklnvq ksnweagntf 421 tcsvlheglh nhhtekslsh spgk (15) Nucleic Acid Sequence Encoding the Full Length 3B6 Light Chain Sequence (3B6 Kappa Variable Region and Constant Region) (signal sequence underlined) (SEQ ID NO. 136) 1 ATGgacATGa ggacccctgc tcagtttctt ggaatcttgt tgctctggtt tccaggtatc 61 aaatgtgaca tcaagatgac ccagtctcca tcttccatgt atgcatctct aggagagaga 121 gtcacaatca cttgcaaggc gagtcaggac attaaaagct atttaagctg gttccagcag 181 aaaccaggga aatctcctaa gaccctgatc tatcgtgtaa acagattggt agatggggtc 241 ccatcaaggt tcagtggcag tggatctggg caagattctt ctctcaccat caccagcctg 301 gagaatgaag atatgggaat ttattattgt ctacagtatg atgagtttcc gttcacgttc 361 ggagggggga ccaagctgga aataaagcgg gctgatgctg caccaactgt atccatcttc 421 ccaccatcca gtgagcagtt aacatctgga ggtgcctcag tcgtgtgctt cttgaacaac 481 ttctacccca aagacatcaa tgtcaagtgg aagattgatg gcagtgaacg acaaaatggc 541 gtcctgaaca gttggactga tcaggacagc aaagacagca cctacagcat gagcagcacc 601 ctcacgttga ccaaggacga gtatgaacga cataacagct atacctgtga ggccactcac 661 aagacatcaa cttcacccat tgtcaagagc ttcaacagga atgagtgtta g (16) Protein Sequence Defining the Full Length 3B6 Light Chain Sequence (3B6 Kappa Variable Region and Constant Region) (without signal sequence) (SEQ ID NO. 137) 1 dikmtqspss myaslgervt itckasqdik sylswfqqkp gkspktliyr vnrlvdgvps 61 rfsgsgsgqd ssltitslen edmgiyyclq ydefpftfgg gtkleikrad aaptvsifpp 121 sseqltsgga svvcflnnfy pkdinvkwki dgserqngvl nswtdqdskd stysmsstlt 181 ltkdeyerhn sytceathkt stspivksfn rnec (17) Nucleic Acid Sequence Encoding the Full Length 3D11 Heavy Chain Sequence (3D11 Heavy Chain Variable Region and IgG1 Constant Region) (signal sequence underlined) (SEQ ID NO. 138) 1 atggctgtcc cggtgctgtt cctctgcctg gttgcatttc caagctgtgt cctgtcccag 61 gtacagctga aggagtcagg acctggcctg gtggcgccct cacagagcct gtccatcact 121 tgcactgtct ctgggttttc attaaccagc tatagtttac actgggttcg ccagcctcca 181 ggaaagggtc tggaatggct gggagtaata tgggctggtg gaaacacaaa ttataattcg 241 tctctcatgt ccagactgac catcaggaaa gacaactcca agagccaagt tttcttaaaa 301 atgaacagtc tgcaaactga tgacacagcc atgtactact gtgccagaga gaggtttgct 361 tactggggcc aagggactct ggtcactgtc tctgcagcca aaacgacacc cccatctgtc 421 tatccactgg cccctggatc tgctgcccaa actaactcca tggtgaccct gggatgcctg 481 gtcaagggct atttccctga gccagtgaca gtgacctgga actctggatc cctgtccagc 541 ggtgtgcaca ccttcccagc tgtcctgcag tctgacctct acactctgag cagctcagtg 601 actgtcccct ccagcacctg gcccagcgag accgtcacct gcaacgttgc ccacccggcc 661 agcagcacca aggtggacaa gaaaattgtg cccagggatt gtggttgtaa gccttgcata 721 tgtacagtcc cagaagtatc atctgtcttc atcttccccc caaagcccaa ggatgtgctc 781 accattactc tgactcctaa ggtcacgtgt gttgtggtag acatcagcaa ggatgatccc 841 gaggtccagt tcagctggtt tgtagatgat gtggaggtgc acacagctca gacgcaaccc 901 cgggaggagc agttcaacag cactttccgc tcagtcagtg aacttcccat catgcaccag 961 gactggctca atggcaagga gttcaaatgc agggtcaaca gtgcagcttt ccctgccccc 1021 atcgagaaaa ccatctccaa aaccaaaggc agaccgaagg ctccacaggt gtacaccatt 1081 ccacctccca aggagcagat ggccaaggat aaagtcagtc tgacctgcat gataacagac

1141 ttcttccctg aagacattac tgtggagtgg cagtggaatg ggcagccagc ggagaactac 1201 aagaacactc agcccatcat ggacacagat ggctcttact tcgtctacag caagctcaat 1261 gtgcagaaga gcaactggga ggcaggaaat actttcacct gctctgtgtt acatgagggc 1321 ctgcacaacc accatactga gaagagcctc tcccactctc ctggtaaatg a (18) Protein Sequence Defining the Full Length 3D11 Heavy Chain Sequence (3D11 Heavy Chain Variable Region and IgG1 Constant Region) (without signal sequence) (SEQ ID NO. 139) 1 qvqlkesgpg lvapsqslsi tctvsgfslt syslhwvrqp pgkglewlgv iwaggntnyn 61 sslmsrltir kdnsksqvfl kmnslqtddt amyycarerf aywgqgtivt vsaakttpps 121 vyplapgsaa qtnsmvtlgc lvkgyfpepv tvtwnsgsls sgvhtfpavl qsdlytlsss 181 vtvpsstwps etvtcnvahp asstkvdkki vprdcgckpc ictvpevssv fifppkpkdv 241 ltitltpkvt cvvvdiskdd pevqfswfvd dvevhtaqtq preeqinstf rsyselpimh 301 qdwlngkefk crvnsaafpa piektisktk grpkapqvyt ipppkeqmak dkvsltcmit 361 dffpeditve wqwngqpaen ykntqpimdt dgsyfvyskl nvqksnweag ntftcsvlhe 421 glhnhhteks lshspgk (19) Nucleic Acid Sequence Encoding the Full Length 3D11 Light Chain Sequence (3D11 Kappa Variable Region and Constant Region) (signal sequence underlined) (SEQ ID NO. 140) 1 atggattttc aagtgcagat tttcagcttc ctgctaatca gtgcctcagt caaaatatcc 61 agaggacaaa ttgttctcac ccagtctcca gcaatcatgt ctgcatatcc aggggagaag 121 gtcaccatga cctgcagtgc cagctcaagt gtaagttaca tgcactggta ccagcagaag 181 tcaggcacct cccccaaaag atggatttat gacacatcca aactggcttc tggagtccct 241 gctcgcttca gtggcagtgg gtctgggacc tcttactccc tcacaatcag tagtatggag 301 gctgaagatg ctgccactta ttactgccag cagtggagta gtaacccact cacgttcggt 361 gctgggacca agctggagct gaaacgggct gatgctgcac caactgtatc catcttccca 421 ccatccagtg agcagttaac atctggaggt gcctcagtcg tgtgcttctt gaacaacttc 481 taccccaaag acatcaatgt caagtggaag attgatggca gtgaacgaca aaatggcgtc 541 ctgaacagtt ggactgatca ggacagcaaa gacagcacct acagcatgag cagcaccctc 601 acgttgacca aggacgagta tgaacgacat aacagctata cctgtgaggc cactcacaag 661 acatcaactt cacccattgt caagagcttc aacaggaatg agtgttag (20) Protein Sequence Defining the Full Length 3D11 Light Chain Sequence (3D11 Kappa Variable Region and Constant Region) (without signal sequence) (SEQ ID NO. 141) 1 qivltqspai msaypgekvt mtcsasssys ymhwyqqksg tspkrwiydt sklasgvpar 61 fsgsgsgtsy sltissmeae daatyycqqw ssnpltfgag tklelkrada aptvsifpps 121 seqltsggas vvcflnnfyp kdinvkwkid gserqngvin swtdqdskds tysmsstltl 181 tkdeyerhns ytceathkts tspivksfnr nec (21) Nucleic Acid Sequence Encoding the Full Length 1D3 Heavy Chain Sequence (1D3 Heavy Chain Variable Region and IgG1 Constant Region) (signal sequence underlined) (SEQ ID NO. 142) 1 atgaactttg ggctcagatt gattttcctt gtccttgttt taaaaggtgt gaagtgtgaa 61 gtgcagctgg tggagtctgg gggaggctta gtgcagcctg gagggtccct gaaactctcc 121 tgtgcagcct ctggattcac tttcagtgac tattacatgt cttgggttcg ccagactcca 181 gagaagaggc tggagtgggt cgcatacatt agtagtggtg gtggtagcac ctactatcca 241 gacagtgtga agggtcgatt caccatctcc cgagacaatg ccaagaacac cctgtacctg 301 caaatgagca gtctgaagtc tgaggacaca gccatatatt actgtgtgag acaaggggat 361 ggttattacg gggactatgc tatggactac tggggtcaag gaacctcagt catcgtctcc 421 tcagccaaaa cgacaccccc atctgtctat ccactggccc ctggatctgc tgcccaaact 481 aactccatgg tgaccctggg atgcctggtc aagggctatt tccctgagcc agtgacagtg 541 acctggaact ctggatccct gtccagcggt gtgcacacct tcccagctgt cctgcagtct 601 gacctctaca ctctgagcag ctcagtgact gtcccctcca gcacctggcc cagcgagacc 661 gtcacctgca acgttgccca cccggccagc agcaccaagg tggacaagaa aattgtgccc 721 agggattgtg gttgtaagcc ttgcatatgt acagtcccag aagtatcatc tgtcttcatc 781 ttccccccaa agcccaagga tgtgctcacc attactctga ctcctaaggt cacgtgtgtt 841 gtggtagaca tcagcaagga tgatcccgag gtccagttca gctggtttgt agatgatgtg 901 gaggtgcaca cagctcagac gcaaccccgg gaggagcagt tcaacagcac tttccgctca 961 gtcagtgaac ttcccatcat gcaccaggac tggctcaatg gcaaggagtt caaatgcagg 1021 gtcaacagtg cagctttccc tgcccccatc gagaaaacca tctccaaaac caaaggcaga 1081 ccgaaggctc cacaggtgta caccattcca cctcccaagg agcagatggc caaggataaa 1141 gtcagtctga cctgcatgat aacagacttc ttccctgaag acattactgt ggagtggcag 1201 tggaatgggc agccagcgga gaactacaag aacactcagc ccatcatgga cacagatggc 1261 tcttacttcg tctacagcaa gctcaatgtg cagaagagca actgggaggc aggaaatact 1321 ttcacctgct ctgtgttaca tgagggcctg cacaaccacc atactgagaa gagcctctcc 1381 cactctcctg gtaaatga (22) Protein Sequence Defining the Full Length 1D3 Heavy chain sequence (1D3 Heavy Chain Variable Region and IgG1 Constant Region) (without signal sequence) (SEQ ID NO. 143) 1 evqlvesggg lvqpggslkl scaasgftfs dyymswvrqt pekrlewvay issgggstyy 61 pdsvkgrfti srdnakntly lqmsslksed taiyycvrqg dgyygdyamd ywgqgtsviv 121 ssakttppsv yplapgsaaq tnsmvtlgcl vkgyfpepvt vtwnsgslss gvhtfpavlq 181 sdlytlsssv tvpsstwpse tvtcnvahpa sstkvdkkiv prdcgckpci ctvpevssvf 241 ifppkpkdvl titltpkvtc vvvdiskddp evqfswfvdd vevhtaqtqp reeqfnstfr 301 syselpimhq dwlngkefkc rvnsaafpap iektisktkg rpkapqyyti pppkeqmakd 361 kvsltcmitd ffpeditvew qwngqpaeny kntqpimdtd gsyfvyskln vqksnweagn 421 tftcsvlheg lhnhhteksl shspgk (23) Nucleic Acid Sequence Encoding the Full Length 1D3 Light Chain Sequence (1D3 Kappa Variable Region and Constant Region) (signal sequence underlined) (SEQ ID NO. 144) 1 atgagtgtgc ccactcaggt cctggggttg ctgctgctgt ggcttacaga tgtcagatgt 61 gacatccaga tgactcagtc tccagcctcc ctatctgtat ctgtgggaga aactgtcacc 121 atcacatgtc gaacaagtga gaatatttac agtaatttag cgtggtatca gcagaaacag 181 ggaaaatctc ctcagctcct aatctatgct gcaacaaact tagcagatgg tgtgccatca 241 aggttcagtg gcagtggatc aggcacacag ttttccctca ggatcaacag cctgcagtct 301 gaagattttg ggaggtatta ctgtcaacat ttttggggga ctccgtacac gttcggaggg 361 gggaccaaac tggaaataaa acgggctgat gctgcaccaa ctgtatccat cttcccacca 421 tccagtgagc agttaacatc tggaggtgcc tcagtcgtgt gcttcttgaa caacttctac 481 cccaaagaca tcaatgtcaa gtggaagatt gatggcagtg aacgacaaaa tggcgtcctg 541 aacagttgga ctgatcagga cagcaaagac agcacctaca gcatgagcag caccctcacg 601 ttgaccaagg acgagtatga acgacataac agctatacct gtgaggccac tcacaagaca 661 tcaacttcac ccattgtcaa gagcttcaac aggaatgagt gttag Kappa Variable Region and Constant Region) (without signal sequence) (SEQ ID NO. 145) 1 diqmtqspas lsysvgetvt itcrtseniy snlawyqqkq gkspqlliya atnladgvps 61 rfsgsgsgtq fslrinslqs edfgryycqh fwgtpytfgg gtkleikrad aaptvsifpp 121 sseqltsgga svvcflnnfy pkdinvkwki dgserqngvl nswtdqdskd stysmsstlt 181 ltkdeyerhn sytceathkt stspivksfn rnec (25) Nucleic Acid Sequence Encoding the Full Length 1F3 Heavy Chain Sequence (1F3 Heavy Chain Variable Region and IgG1 Constant Region) (signal sequence underlined) (SEQ ID NO. 146) 1 atgaactttg ggctcagatt gattttcctt gtccttgttt taaaaggtgt gaagtgtgag 61 gtgcagctgg tggagtctgg gggaggctta gtgcagtctg gagggtccct gaaactctcc 121 tgtgcggcct ctggattcac tttcagtaac tatttcatgt cttgggttcg ccagactcca 181 gagaagaggc tggagtgggt cgcatatatt agtagtggtg gtggtagcac ctactatcca 241 gacagtgtga agggtcgatt caccatctct agagacaatg ccaagaacac cctgtacctg 301 caaatgagca gtctgaagtc tgaggacaca gccatgtatt actgtgtaag acaaggggat 361 ggttactacg gggactatgc tatggactac tggggtcaag gaacctcagt caccgtctcc 421 tcagccaaaa cgacaccccc atctgtctat ccactggccc ctggatctgc tgcccaaact 481 aactccatgg tgaccctggg atgcctggtc aagggctatt tccctgagcc agtgacagtg 541 acctggaact ctggatccct gtccagcggt gtgcacacct tcccagctgt cctgcagtct 601 gacctctaca ctctgagcag ctcagtgact gtcccctcca gcacctggcc cagcgagacc 661 gtcacctgca acgttgccca cccggccagc agcaccaagg tggacaagaa aattgtgccc 721 agggattgtg gttgtaagcc ttgcatatgt acagtcccag aagtatcatc tgtcttcatc 781 ttccccccaa agcccaagga tgtgctcacc attactctga ctcctaaggt cacgtgtgtt 841 gtggtagaca tcagcaagga tgatcccgag gtccagttca gctggtttgt agatgatgtg 901 gaggtgcaca cagctcagac gcaaccccgg gaggagcagt tcaacagcac tttccgctca 961 gtcagtgaac ttcccatcat gcaccaggac tggctcaatg gcaaggagtt caaatgcagg 1021 gtcaacagtg cagctttccc tgcccccatc gagaaaacca tctccaaaac caaaggcaga 1081 ccgaaggctc cacaggtgta caccattcca cctcccaagg agcagatggc caaggataaa 1141 gtcagtctga cctgcatgat aacagacttc ttccctgaag acattactgt ggagtggcag 1201 tggaatgggc agccagcgga gaactacaag aacactcagc ccatcatgga cacagatggc 1261 tcttacttcg tctacagcaa gctcaatgtg cagaagagca actgggaggc aggaaatact 1321 ttcacctgct ctgtgttaca tgagggcctg cacaaccacc atactgagaa gagcctctcc 1381 cactctcctg gtaaatga (26) Protein Sequence Defining the Full Length 1F3 Heavy Chain Sequence (1F3 Heavy Chain Variable Region and IgG1 Constant Region) (without signal sequence) (SEQ ID NO. 147) 1 evqlvesggg lvqsggslkl scaasgftfs nyfmswvrqt pekrlewvay issgggstyy 61 pdsvkgrfti srdnakntly lqmsslksed tamyycvrqg dgyygdyamd ywgqgtsvtv 121 ssakttppsv yplapgsaaq tnsmvtlgcl vkgyfpepvt vtwnsgslss gvhtfpavlq 181 sdlytlsssv tvpsstwpse tvtcnvahpa sstkvdkkiv prdcgckpci ctvpevssvf 241 ifppkpkdvl titltpkvtc vvvdiskddp evqfswfvdd vevhtaqtqp reeqfnstfr

301 syselpimhq dwlngkefkc rvnsaafpap iektisktkg rpkapqvyti pppkeqmakd 361 kvsltcmitd ffpeditvew qwngqpaeny kntqpimdtd gsyfvyskln vqksnweagn 421 tftcsvlheg lhnhhteksl shspgk (27) Nucleic Acid Sequence Encoding the Full Length 1F3 Light Chain Sequence (1F3 Kappa Variable Region and Constant Region) (signal sequence underlined) (SEQ ID NO. 148) 1 atgagtgtgc ccactcaggt cctggggttg ctgctgctgt ggcttacaga tgccagatgt 61 gacatccaga tgactcagtc tccagcctcc ctatctgtat ctgtgggaga aactgtcacc 121 atcacatgtc gagcaagtga gaatatttac agtaatttag catggtatca gcagaaacag 181 ggaaaatctc ctcagctcct ggtctatgat gcaacacact taccagatgg tgtgccatca 241 aggttcagtg gcagtggatc aggcacacag ttttccctca agatcaacag cctgcagtct 301 gaagattttg ggagttatta ctgtcaacat ttttggggta ctccgtacac gtttggaggg 361 gggaccagac tggaaattaa acgggctgat gctgcaccaa ctgtatccat cttcccacca 421 tccagtgagc agttaacatc tggaggtgcc tcagtcgtgt gcttcttgaa caacttctac 481 cccaaagaca tcaatgtcaa gtggaagatt gatggcagtg aacgacaaaa tggcgtcctg 541 aacagttgga ctgatcagga cagcaaagac agcacctaca gcatgagcag caccctcacg 601 ttgaccaagg acgagtatga acgacataac agctatacct gtgaggccac tcacaagaca 661 tcaacttcac ccattgtcaa gagcttcaac aggaatgagt gttag (28) Protein Sequence Defining the Full Length 1F3 Light Chain Sequence (1F3 Kappa Variable Region and Constant Region) (without signal sequence) (SEQ ID NO. 149) 1 diqmtqspas lsysvgetvt itcraseniy snlawyqqkq gkspqllvyd athlpdgvps 61 rfsgsgsgtq fslkinslqs edfgsyycqh fwgtpytfgg gtrleikrad aaptvsifpp 121 sseqltsgga svvcflnnfy pkdinvkwki dgserqngvl nswtdqdskd stysmsstlt 181 ltkdeyerhn sytceathkt stspivksfn rnec (29) Nucleic Acid Sequence Encoding the Full Length 3Al2 Heavy Chain Sequence (3A12 Heavy Chain Variable Region and IgG1 Constant Region) (signal sequence underlined) (SEQ ID NO. 150) 1 atgaactttg ggctcagatt gattttcctt gtccttgttt taaaaggtgt gaagtgtgaa 61 gtgcagctgg tggagtctgg gggaggctta gtgcagcctg gagggtccct gaaaatctcc 121 tgtgcagcct ctggatttac tttcagtaac tatttcatgt cttgggttcg ccagactcca 181 gagaagaggc tggagtgggt cgcatacatt agtagtggtg gtggtagcac ctactatcca 241 gacagtgtga agggtcgatt caccatctcc agagacaatg ccaagaacac cctgtacctg 301 caaatgaaca gtctgaagtc tgaggacaca gccatgtatt actgtgtaag acaaggagat 361 ggttactatg gggactatgc tatggactac tggggtcaag gaacctcagt caccgtctcc 421 tcagccaaaa cgacaccccc atctgtctat ccactggccc ctggatctgc tgcccaaact 481 aactccatgg tgaccctggg atgcctggtc aagggctatt tccctgagcc agtgacagtg 541 acctggaact ctggatccct gtccagcggt gtgcacacct tcccagctgt cctgcagtct 601 gacctctaca ctctgagcag ctcagtgact gtcccctcca gcacctggcc cagcgagacc 661 gtcacctgca acgttgccca cccggccagc agcaccaagg tggacaagaa aattgtgccc 721 agggattgtg gttgtaagcc ttgcatatgt acagtcccag aagtatcatc tgtcttcatc 781 ttccccccaa agcccaagga tgtgctcacc attactctga ctcctaaggt cacgtgtgtt 841 gtggtagaca tcagcaagga tgatcccgag gtccagttca gctggtttgt agatgatgtg 901 gaggtgcaca cagctcagac gcaaccccgg gaggagcagt tcaacagcac tttccgctca 961 gtcagtgaac ttcccatcat gcaccaggac tggctcaatg gcaaggagtt caaatgcagg 1021 gtcaacagtg cagctttccc tgcccccatc gagaaaacca tctccaaaac caaaggcaga 1081 ccgaaggctc cacaggtgta caccattcca cctcccaagg agcagatggc caaggataaa 1141 gtcagtctga cctgcatgat aacagacttc ttccctgaag acattactgt ggagtggcag 1201 tggaatgggc agccagcgga gaactacaag aacactcagc ccatcatgga cacagatggc 1261 tcttacttcg tctacagcaa gctcaatgtg cagaagagca actgggaggc aggaaatact 1321 ttcacctgct ctgtgttaca tgagggcctg cacaaccacc atactgagaa gagcctctcc 1381 cactctcctg gtaaatga (30) Protein Sequence Defining the Full Length 3Al2 Heavy Chain Sequence (3A12 Heavy Chain Variable Region and IgG1 Constant Region) (without signal sequence) (SEQ ID NO. 151) 1 evqlvesggg lvqpggslki scaasgftfs nyfmswvrqt pekrlewvay issgggstyy 61 pdsvkgrfti srdnakntly lqmnslksed tamyycvrqg dgyygdyamd ywgqgtsvtv 121 ssakttppsv yplapgsaaq tnsmvtlgcl vkgyfpepvt vtwnsgslss gvhtfpavlq 181 sdlytlsssv tvpsstwpse tvtcnvahpa sstkvdkkiv prdcgckpci ctvpevssvf 241 ifppkpkdvl titltpkvtc vvvdiskddp evqfswfvdd vevhtaqtqp reeqfnstfr 301 syselpimhq dwlngkefkc rvnsaafpap iektisktkg rpkapqvyti pppkeqmakd 361 kvsltcmitd ffpeditvew qwngqpaeny kntqpimdtd gsyfvyskln vqksnweagn 421 tftcsvlheg lhnhhteksl shspgk (31) Nucleic Acid Sequence Encoding the Full Length 3A12 Light Chain Sequence (3A12 Kappa Variable Region and Constant Region) (signal sequence underlined) (SEQ ID NO. 152) 1 atgagtgtgc ccactcaggt cctggggttg ctgctgctgt ggcttacaga tgccagatgt 61 gacatccaga tgactcagtc gccagcctcc ctatctgtat ctgtgggaga aactgtcacc 121 atcacatgtc gagcaagtga gaatatttac attaatttag catggtatca gcagaaacag 181 ggaaaatctc ctcagctcct ggtccatgct gcaacaaagt tagcagatgg tgtgccatca 241 aggttcagtg gcagtggatc aggcacacag tattccctca agatcaacag cctgcagtct 301 gaagattttg ggagttatta ctgtcaacat ttttggggta ctccgtacac gttcggaggg 361 gggaccaaac tagaaataaa acgggctgat gctgcaccaa ctgtatccat cttcccacca 421 tccagtgagc agttaacatc tggaggtgcc tcagtcgtgt gcttcttgaa caacttctac 481 cccaaagaca tcaatgtcaa gtggaagatt gatggcagtg aacgacaaaa tggcgtcctg 541 aacagttgga ctgatcagga cagcaaagac agcacctaca gcatgagcag caccctcacg 601 ttgaccaagg acgagtatga acgacataac agctatacct gtgaggccac tcacaagaca 661 tcaacttcac ccattgtcaa gagcttcaac aggaatgagt gttag (32) Protein Sequence Defining the Full Length 3A12 Light Chain Sequence (3A12 Kappa Variable Region and Constant Region) (without signal sequence) (SEQ ID NO. 153) 1 diqmtqspas lsysvgetvt itcraseniy inlawyqqkq gkspqnvha atkladgvps 61 rfsgsgsgtq yslkinslqs edfgsyycqh fwgtpytfgg gtkleikrad aaptvsifpp 121 sseqltsgga svvcflnnfy pkdinvkwki dgserqngvl nswtdqdskd stysmsstlt 181 ltkdeyerhn sytceathkt stspivksfn rnec

[0134] For convenience, Table 2 provides a concordance chart showing the correspondence between the full length sequences of the antibodies discussed in this Example with those presented in the Sequence Listing.

TABLE-US-00004 TABLE 2 SEQ. ID NO. Protein or Nucleic Acid 122 1A3 Heavy Variable + IgG1 constant - nucleic acid 123 1A3 Heavy Variable + IgG1 constant - protein 124 1A3 Light Variable + constant - nucleic acid 125 1A3 Light Variable + constant - protein 126 2B8 Heavy Variable + IgG1 constant - nucleic acid 127 2B8 Heavy Variable + IgG1 constant - protein 128 2B8 Light Variable + constant - nucleic acid 129 2B8 Light Variable + constant - protein 130 2F8 Heavy Variable + IgG1 constant - nucleic acid 131 2F8 Heavy Variable + IgG1 constant - protein 132 2F8 Light Variable + constant - nucleic acid 133 2F8 Light Variable + constant - protein 134 3B6 Heavy Variable + IgG1 constant - nucleic acid 135 3B6 Heavy Variable + IgG1 constant - protein 136 3B6 Light Variable + constant - nucleic acid 137 3B6 Light Variable + constant - protein 138 3D11 Heavy Variable + IgG1 constant - nucleic acid 139 3D11 Heavy Variable + IgG1 constant - protein 140 3D11 Light Variable + constant - nucleic acid 141 3D11 Light Variable + constant - protein 142 1D3 Heavy Variable + IgG1 constant - nucleic acid 143 1D3 Heavy Variable + IgG1 constant - protein 144 1D3 Light Variable + constant - nucleic acid 145 1D3 Light Variable + constant - protein 146 1F3 Heavy Variable + IgG1 constant - nucleic acid 147 1F3 Heavy Variable + IgG1 constant - protein 148 1F3 Light Variable + constant - nucleic acid 149 1F3 Light Variable + constant - protein 150 3A12 Heavy Variable + IgG1 constant - nucleic acid 151 3A12 Heavy Variable + IgG1 constant - protein 152 3A12 Light Variable + constant - nucleic acid 153 3A12 Light Variable + constant - protein

Example 3

Production of Various Recombinant hHGF Proteins

[0135] This Example describes the cloning and expression of a number of recombinant proteins used to characterize the antibodies created in Example 1 and in Example 14. In particular, this Example describes the cloning and expression of recombinant hHGF protein, a recombinant hHGF protein containing a glycine to glutamate substitution at position 555 (G555E), a recombinant hHGF protein containing a cysteine to arginine substitution at position 561 (C561R), a recombinant mouse-human-mouse (mhm) chimeric HGF protein containing the human V495-L585 HGF sequence disposed within mouse HGF sequence, a recombinant mhm chimeric HGF protein containing the human I499-R566 HGF sequence disposed within mouse HGF sequence, and a recombinant mhm chimeric HGF protein containing human W507-L585 HGF sequence disposed within mouse HGF sequence.

[0136] The following expression constructs were generated using standard molecular techniques and the resulting cDNA sequences were confirmed by DNA sequencing:

[0137] a. hHGF-Fc

[0138] In a first round of PCR, two overlapping PCR fragments were generated introducing a Not I site and encoding a 6.times.His tag between hHGF and hIgFc. The overlapping PCR fragments served as template in a second round to amplify hHGF-his-IgFc. The resulting fragment was digested by NheI and BamHI and cloned into pcDNA5/FRT (Invitrogen, #35-3014). Then, hHGF was amplified from Invitrogen clone ID: IOH29794 (human HGF cDNA). The sequence was found to correspond to the sequence deposited at the NCBI under accession number NM.sub.--000601.4.

TABLE-US-00005 (1) 5'hHGF NheI Primer (SEQ ID NO. 102) ACTGGCTAGCATGTGGGTGACCAAACTCCT (2) 3' hHGF NotI His Tag Primer (SEQ ID NO. 103) GTGATGGTGATGGTGATGGCGGCCGCATGACTGTGGTACCTTATATG (3) 5' HisIgFc Primer (SEQ ID NO. 104) ACTGGCGGCCGCCATCACCATCACCATCAC (4) 3' IgFc BamHI Primer (SEQ ID NO. 105) ACTGGGATCCTCACTATTTACCCGGGGACAG

[0139] b. hHGF-Fc G555E and hHGF-Fc C561R

[0140] hHGF-Fc mutants G555E and C561R were generated by site directed mutagenesis using the QuikChange II XL site-directed mutagenesis kit (Stratagene) according to manufacturer's instructions.

TABLE-US-00006 (1) hHGF-Fc (G555E) Sense Primer (SEQ ID NO. 106) CATGATGTCCACGAAAGAGGAGATGAG (2) hHGF-Fc (G555E) Anti-sense Primer (SEQ ID NO. 107) CTCATCTCCTCTTTCGTGGACATCATG (3) hHGF-Fc (C561R) Sense Primer (SEQ ID NO. 108) GGAAGAGGAGATGAGAAACGCAAACAGGTTCTCAATG (4) hHGF-Fc (C561R) Anti-sense Primer (SEQ ID NO. 109) CATTGAGAACCTGTTTGCGTTTCTCATCTCCTCTTCC

[0141] c. Mouse-Human-Mouse Chimera Fc

[0142] The mouse-human-mouse chimera IgFc construct contains mHGF alpha chain-hHGF, .beta.-chain amino acids Val 495-Leu 585 of human HGF, and mHGF C-terminal beta chain followed by 6.times.His tag and IgG-Fc.

[0143] Human HGF cDNA encoding amino acids V495-L585 was amplified from Invitrogen clone ID: IOH29794 (human HGF cDNA). The sequence corresponds to the sequence deposited at the NCBI under accession number NM.sub.--000601.4. Mouse HGF sequences were amplified by RT-PCR from mouse liver total RNA (Clontech, #636603) using the Super Script One Step RT-PCR kit from Invitrogen (#10928-034) according to manufacturer's instructions. The mHGF cDNA sequence corresponds to the sequence deposited at the NCBI under accession number D10213.1.

[0144] Three fragments, referred to as Fragments 1, 2, and 3, were generated using overlapping PCR primers and annealed in consecutive rounds of PCR amplification. The final product was cleaved with NheI and NotI and cloned into pcDNA5/FRT IgGFc.

TABLE-US-00007 (1) Fragment 1 Primers for mHGF alpha chain 5'NheI (SEQ ID NO. 110) 5'ATCGGCTAGCATGATGTGGGGGACCAAAC (SEQ ID NO. 111) 3' GAATCCCATTTACAACCCGCAGTTGTTTTGTTTTGG (2) Fragment 2 Primers for hHGF beta chain aa V495-L585 (SEQ ID NO. 112) 5' CCAAAACAAAACAACTGCGGGTTGTAAATGGGATTC (SEQ ID NO. 113) 3' CAGGATTGCAGGTCGAGCAAGCTTCATTAAAACCAGATCT (3) Fragment 3 Primer for mHGF beta chain C-terminus 3'NotI (SEQ ID NO. 114) 5' AGATCTGGTTTTAATGAAGCTTGCTCGACCTGCAATCCTG (SEQ ID NO. 115) 3' GTAATTTTGACATACAAGTTGTGCGGCCGCCATCACCATCACCA TCAC

[0145] d. Construction of hHGF and mhm Chimera

[0146] The vectors encoding hHGF and mhm chimera (V495-L585), pcDNA5/FRT hHGF and pcDNA5/FRT-mhm chimera (V495-L585), without Fc-tag were generated by site directed mutagenesis. A stop codon was introduced 3' of the 6.times.His tag using the QuikChange II XL site-directed mutagenesis kit (Stratagene) according to manufacturer's instructions. The mutagenesis primer included Primer 1: CATCACCATCACCATCACTAAGCGGGTCTGGTGCCACG (SEQ ID NO. 116), and Primer 2: CGTGGCACCAGACCCGCTTAGTGATGGTGATGGTGATG (SEQ ID NO. 117).

[0147] In addition, two additional mhm chimeras were created from the pcDNA51FRT-mhm (V495-L585) construct by site directed mutagenesis using the QuikChange II XL site-directed mutagenesis kit (Stratagene) according to manufacturer's instructions. One mhm construct contained the region of I499-R556 of hHGF disposed between murine sequences. The other mhm construct contained the region of W507-L585 of hHGF disposed between murine sequences.

[0148] For the mhm chimera (I499-R556), the following point mutations were made in order in the template pcDNA5/FRT-mhm chimera (V495-L585) construct: D558E, C561R, V564I, V567I and M583L, using the appropriate oligonucleotide sequences. For the mhm chimera (W507-L585), the following point mutations were introduced in one step in the template pcDNA5/FRT-mhm chimera (V495-L585) construct: Q502R, N504T and I505V, using the appropriate oligonucleotide sequences.

[0149] The resulting nucleotide sequence of the hHGF-Fc protein is set forth as SEQ ID NO. 118, including signal sequence (nucleotides 1-93) and prodomain (nucleotides 94-162). The amino acid sequence of the hHGF-Fc protein is set forth as SEQ ID NO. 119.

[0150] The resulting nucleotide sequence encoding the mhm (V495-L585)-Fc chimeric protein is set forth in SEQ ID NO. 120, including signal sequence (nucleotides 1-96) and prodomain (nucleotides 97-165). The amino acid sequence of the mhm (V495-L585)-Fc chimeric protein is set forth in SEQ ID NO. 121.

[0151] The resulting nucleotide sequence encoding, and the protein sequence defining, the mhm (V495-L585) construct are set forth in SEQ ID NOS. 211 and 212, respectively. The nucleic acid sequence set forth in SEQ ID NO. 211 includes the signal sequence (nucleotides 1-96) and the prodomain (nucleotides 97-165), and the protein sequence set forth in SEQ ID NO. 212 includes the active protein sequence (without the signal sequence or the prodomain). The resulting nucleotide sequence encoding, and the protein sequence defining, the mhm (I499-R556) construct are set forth in SEQ ID NOS. 213 and 214, respectively. The nucleic acid sequence set forth in SEQ ID NO. 213 includes the signal sequence (nucleotides 1-96) and the prodomain (nucleotides 97-165), and the protein sequence set forth in SEQ ID NO. 214 includes the active protein sequence (without the signal sequence or the prodomain). The resulting nucleotide sequence encoding, and the protein sequence defining, the mhm (W507-L585) are set forth in SEQ ID NOS. 215 and 216, respectively. The nucleic acid sequence set forth in SEQ ID NO. 215 includes the signal sequence (nucleotides 1-96) and the prodomain (nucleotides 97-165), and the protein sequence set forth in SEQ ID NO. 216 includes the active protein sequence (without the signal sequence or the prodomain)

[0152] e. Protein Expression

[0153] (1) Cell Culture

[0154] CHO FlpIn cells (Invitrogen, Catalog No. R758-07)) were grown in F12K media (ATCC, Catalog No. 30-2004), 10% FCS (Invitrogen, Catalog No. 10438026), 1% Penicillin (10000 units/mL)/Streptomycin (10,000 .mu.g/mL) (Invitrogen, Catalog No. 15140-122) at 37.degree. C., 5% CO.sub.2, 100 .mu.g/mL Zeocin (Invitrogen, Catalog No. R250-01).

[0155] (2) Generation of Stable CHO FlpIn Cell Lines

[0156] CHO FlpIn host cells were transfected with a 9:1 ratio of pOG44:pcDNA5/FRT expression plasmid DNA using lipofectamine 2000 according to the manufacturer's instructions (Invitrogen, Catalog No. 11668-027). As controls, cells were transfected with empty pcDNA5/FRT vector/pOG44 and pOG44 plasmid (Invitrogen, Catalog No. 35-3018) alone. Twenty four hours after transfection, the cells were split, and after forty eight hours 0.5 mg/mL Hygromycin B (Sigma, Catalog No. H0654-SPEC) was added to the cells. Polyclonal selection of stable cells was performed in F12K, 10% FCS, 1% Penicillin/Streptomycin, 0.5 mg/mL Hygromycin B.

[0157] (3) Protein Expression in Stable CHO FlpIn Cell Lines

[0158] Approximately 2.times.10.sup.6 cells were seeded in 15 cm plates and grown in F12K (ATCC, Catalog No. 30-2004)/DMEM high glucose (Invitrogen, Catalog No. 11995065) 1:1, 5% ultra low IgG FCS (Invitrogen, #16250-78) at 37.degree. C., 5% CO.sub.2 for 5-6 days. Supernatants were harvested and resulting proteins analyzed by ELISA and by surface plasmon resonance.

Example 4

Binding Characteristics of Anti-hHGF Monoclonal Antibodies

[0159] The monoclonal antibodies produced in Example 1 were characterized by their ability to bind hHGF, and certain of the recombinant HGF proteins produced in Example 3.

[0160] The antibodies were analyzed by surface-plasmon resonance using a BIAcore T100 instrument to assess their ability to bind HGF and certain of the fusion proteins discussed in Example 3. Each antibody was immobilized on a carboxymethylated dextran CM5 sensor chip (BIAcore, Catalog No. BR-1006-68) by amine coupling (BIAcore, Catalog No. BR-1000-50) using a standard coupling protocol according to manufacturer's instructions.

[0161] Analyses were performed at 25.degree. C. using PBS (GIBCO, Catalog No. 14040-133) containing 0.05% surfactant P20 (BIAcore, Catalog No. R-1000-54), 2 mg/mL BSA (EMD, Catalog No. 2930) and 10 mg/mL CM-Dextran Sodium salt (Fluka, Catalog No. 86524) as running buffer. Supernatant containing different HGF fusion proteins or supernatant from cells transfected with empty vector were injected over each antibody at a flow rate of 30 .mu.L/min for 3 minutes. The resulting binding was determined as resonance units (RU) over baseline 30 seconds after the end of injection. Binding was compared to human HGF (R&D Systems, Catalog No. 294-HGN-025) diluted in running buffer. Non-specific binding was monitored by comparing binding to a control surface where mouse IgG (Rockland, Catalog No. 010-0102) was immobilized using the same amine coupling procedure.

[0162] The results are summarized in the Table 3.

TABLE-US-00008 TABLE 3 rhHGF (R&D rmHGF (R&D mhm chimera Antibody Systems) Systems) (V495-L585) human HGF G555E C561R 1A3 Yes No No Yes Yes Yes 1D3 Yes No Yes Yes Yes Yes 1F3 Yes Yes Yes Yes Yes Yes 2B8 Yes No Yes Yes Yes Yes 2F8 Yes Yes No Yes Yes Yes 3A12 Yes No No Yes Yes Yes 3B6 Yes No No Yes Yes Yes 3D11 Yes No No Yes Yes Yes

[0163] The results in Table 3 demonstrate that each of the antibodies bind rHGF and purified human HGF. Furthermore, all of the antibodies bind hHGF containing point mutations G555E and C561R. In general, all of the antibodies except for 1F3 and 2F8 did not bind murine HGF demonstrating that the antibodies 1A3, 1D3, 2B8, 3A12, 3B6, and 3D11 specifically bind human HGF. Antibodies 1D3, 1F3, and 2B8 bind the mouse-human-mouse chimera whereas the remaining antibodies did not. The results suggest that the antibodies 1D3 and 2B8 at least in part bind to residues 495-585 of human HGF. The antibodies 1A3, 3A12, 3B6, and 3D11 appear to bind portions of human hHGF other than residues 495-585. At present, it is uncertain why 2F8 does not bind the mhm chimera as it appears to bind both hHGF and mHGF.

Example 5

Ability of Anti-hHGF Monoclonal Antibodies to Bind Reduced and Non-Reduced HGF

[0164] In this Example, the anti-hHGF monoclonal antibodies produced in Example 1 were analyzed for their ability to bind reduced and non-reduced HGF.

[0165] The reactivity of the anti-HGF sera with the recombinant hHGF was assessed by immunoblotting. Eight .mu.g of recombinant hHGF protein in NuPAGE MOPS SDS running buffer (Invitrogen) with or without NuPAGE sample reducing buffer (Invitrogen) was fractionated on a 4-12% Bis-Tris 1.0 mm.times.2D well gel (Invitrogen, Carlsbad, Calif.). The fractionated proteins then were transferred onto a nitrocellulose membrane using standard procedures. The nitrocellulose membranes were blocked with 5% nonfat milk powder solution in Tris buffered Saline with 0.1% Tween-20.RTM. (TBST), and then mounted onto a Mini Protean II Multi-Screen apparatus (BioRad) for further blocking.

[0166] The resulting membranes were probed with the purified antibodies on a Multi-Screen apparatus. The purified antibodies were diluted to 5 .mu.g/mL in blocking buffer. The nitrocellulose membrane then was removed from the apparatus, and incubated with horseradish peroxidase-labeled anti-mouse IgG antibodies. The results are summarized in Table 4, where the numbers reflect the extent of binding with--representing the least (little or no binding) and 3+ representing the most binding.

TABLE-US-00009 TABLE 4 Reduced Non-Reduced Antibody (exposure: 3-5 min) (exposure: 20 sec) 1A3 2+ 2+ 1D3 2+ 2+ 1F3 2+ 2+ 2B8 -- 1+ 2F8 2+ 2+ 3A12 -- 2+ 3B6 3+ 2+ 3D11 -- 3+

[0167] The data in Table 4 demonstrate that all the antibodies bind non-reduced rhHGF. In contrast, monoclonal antibodies 1A3, 1D3, 1F3, 2F8, 3B6 bound reduced rhHGF but antibodies 2B8, 3A12, and 3D11 did not bind to reduced rhHGF.

Example 6

Binding Affinities

[0168] The binding affinities and kinetics of interaction of each of the antibodies produced in Example 1 against hHGF were measured by surface plasmon resonance.

[0169] Rabbit anti-mouse immunoglobulins (BIAcore, Catalog No. BR-1005-14) were immobilized on carboxymethylated dextran CM5 sensor chips (BIAcore, Catalog No. BR-1006-68) by amine coupling (BIAcore, Catalog No. BR-1000-50) using a standard coupling protocol according to manufacturer's instructions. The analyses were performed at 25.degree. C. using PBS (GIBCO, Catalog No. 14040-133) containing 0.05% surfactant P20 (BIAcore, Catalog No. BR-1000-54), 2 mg/mL BSA (EMD, Catalog No. 2930), and 10 mg/mL CM-Dextran Sodium salt (Fluka, Catalog No. 86524) as running buffer.

[0170] The antibodies were captured in an individual flow cell at a flow rate of 10 .mu.L/min. Injection time was variable for each antibody to yield approximately 20 RU of antibody captured for each cycle. Buffer or HGF (R&D Systems, Catalog No. 294-HGN-025) diluted in running buffer was injected sequentially over a reference surface (no antibody captured) and the active surface (antibody to be tested) for 2 minutes at 60 .mu.L/min. The dissociation phase was monitored for 15 or 90 minutes, depending on concentration. The surface then was regenerated with 10 mM Glycine-HCl, pH 1.7 (BIAcore, Catalog No. BR-1003-54) injected for 3 minutes at a flow rate of 60 .mu.L/min before another cycle was initiated. HGF concentrations tested were 0.46 nM to 7.5 nM.

[0171] Kinetic parameters were determined using the kinetic function of the BIAevalutation software with reference subtraction. Kinetic parameters for each antibody, k.sub.a (association rate constant), k.sub.d (dissociation rate constant) and K.sub.D (equilibrium dissociation constant) are summarized in Table 5.

TABLE-US-00010 TABLE 5 (pM) Antibody ka (1/Ms) SE (ka) kd (1/s) SE (kd) K.sub.D SD 1A3 1.7 .times. 10.sup.6 7.3 .times. 10.sup.4 5.2 .times. 10.sup.-5 8.4 .times. 10.sup.-7 30.1 5.6 1D3 1.7 .times. 10.sup.6 3.1 .times. 10.sup.4 8.2 .times. 10.sup.-5 1.7 .times. 10.sup.-6 54.2 27.4 1F3 1.5 .times. 10.sup.6 5.0 .times. 10.sup.4 2.6 .times. 10.sup.-5 6.6 .times. 10.sup.-7 18.1 8.2 2B8 1.6 .times. 10.sup.6 2.9 .times. 10.sup.4 2.1 .times. 10.sup.-5 1.4 .times. 10.sup.-7 13.5 4.4 3A12 1.6 .times. 10.sup.6 3.7 .times. 10.sup.4 1.6 .times. 10.sup.-4 1.6 .times. 10.sup.-6 103.0 10.4 3B6 2.0 .times. 10.sup.6 6.5 .times. 10.sup.4 3.9 .times. 10.sup.-5 3.2 .times. 10.sup.-7 17.0 3.4

[0172] The data in Table 5 demonstrate that the antibodies bind hHGF with a K.sub.D of about 100 pM or less, about 50 pM or less, or 20 pM or less.

Example 7

Neutralization Activity of Anti-hHGF Antibodies

[0173] In this Example, the antibodies produced in Example 1 were characterized for their ability to (a) inhibit the binding of hHGF to c-Met, and (b) inhibit HGF stimulated BrdU incorporation in 4 MBr-5 cells.

[0174] a. HGF-Met Binding Inhibition Assay (Neutralization Assay)

[0175] The antibodies were tested by ELISA for their ability to inhibit hHGF binding to c-Met.

[0176] Specifically, Wallac 96-well DELFIA assay plates (Wallac Inc., Catalog No. AAAND-0001) were coated with 100 .mu.L of 6.25 .mu.g/mL HGF (R&D Systems, Catalog No. 294-HGN-025) in carbonate coating buffer (15 mM Na.sub.2CO.sub.3 and 34 mM NaHCO.sub.3, pH 9.0) for 16 hours at 4.degree. C. The plates then were blocked with 200 .mu.L of 5% non-fat dry milk in PBS for 1 hour at room temperature. The antibodies were prepared in a separate plate by adding increasing concentrations of the antibodies under investigation (0.033-667 nM, 3-fold-serial dilution) to 2 nM c-Met (R&D Systems, Catalog No. 358-MT/CF) in 5% non-fat dry milk in PBS. 100 .mu.L of sample per well was transferred to the assay plate and incubated overnight at 4.degree. C. The assay plates then were washed 3 times with PBS-0.1% Tween 20, and incubated for 2 hours at room temperature with 100 .mu.L/well of 2 .mu.g/mL biotinylated anti-human c-Met antibody (R&D Systems, Catalog No. BAF358) prepared in 5% non-fat dry milk in PBS.

[0177] The resulting plates then were washed three times with PBS-0.1% Tween 20, and incubated for 1 hour at room temperature with Eu-labeled Streptavidin (Wallac, Catalog No. 1244-360) diluted 1:1000 in DELFIA assay buffer (Wallac, Catalog No. 4002-0010). The resulting plates were washed 3 times with DELFIA wash solution (Wallac, Catalog No. 4010-0010) and incubated with 100 .mu.L/well DELFIA enhancement solution (Wallac #4001-0010) for 15 minutes at room temperature with agitation.

[0178] The plates were read on Victor.sup.3V instrument (Perkin Elmer) using the Europium method. The IC.sub.50 values were calculated and are summarized in Table 6.

TABLE-US-00011 TABLE 6 Antibody IC.sub.50 (nM) SD 1A3 5.65 0.91 1D3 4.43 2.27 1F3 6.57 0.28 2B8 5.57 1.19 2F8 5.36 0.88 3A12 5.26 2.11 3B6 -- -- 3D11 5.66 2.75

[0179] The results demonstrate that all the antibodies (i.e., 1D3, 1A3, 2B8, 3A12, 1F3, 3D11, and 2F8) other than 3B6 efficiently neutralize HGF binding to c-Met.

[0180] b. Neutralization of HGF Stimulated BrdU Incorporation in 4 MBr-5 Cells

[0181] Ten .mu.L of 12.5 nM of hHGF was dispensed into individual wells of a 96-well tissue culture microtiter plate (Costar Catalog No. 3903). Ten .mu.L of serially diluted antibodies at concentrations of 6667, 2222, 740, 247, 82, 27, 9.1, 3.0, 1.0, 0.33 nM were added to each well. The HGF antibody mixture then was incubated at room temperature for 30 minutes. Monkey bronchial epithelial cells 4 MBr-5 (ATCC, CCL208) cultured in F-12K (ATCC, 30-2004), 15% FBS (Gibco 10438-026), 30 ng/mL EGF (Sigma E9644), 1% penicillin/streptomycin (PS, Gibco Catalog No. 15140-122) were dissociated with Trypsin (Gibco Catalog No. 25200-056), resuspended in assay media (F-12K, 2.5% FBS, 1% PS) at 75,000 cells/mL, and 80 .mu.L of the cell suspension was dispensed to the HGF antibody mixture.

[0182] The resulting cells were incubated at 37.degree. C., 5% CO.sub.2. Forty eight hours later, 10 .mu.L of 100 .mu.M BrdU (Roche Catalog No. 1669915) was added. Seventy two hours later, the media was removed, the plates were dried with a hair dryer and were processed with the BrdU ELISA in accordance with manufacturer's instructions (Roche Catalog No. 1669915).

[0183] The luminescent signal was quantified by a Synergy HT plate reader (Bio-Tek). The data were fit to a sigmoidal dose response with variable slope with the equation y=bottom+(top-bottom)/(1+10 (log(EC50-x)*hill slope)) in GraphPad Prism (GraphPad Software). Each experiment was repeated at least 3 times in duplicates, and average EC.sub.50 values are presented in Table 7.

TABLE-US-00012 TABLE 7 Antibody IC.sub.50 (nM) 1A3 4.69 1D3 4.99 1F3 1.94 2B8 1.41 2F8 19.24 3A12 30.30 3B6 36.08 3D11 51.12

[0184] The results in Table 7 demonstrate that all of the antibodies, 1A3, 1D3, 1F3, 2B8, 2F8, 3A12, 3B6, and 3D11 inhibit HGF induced proliferation in 4 MBr-5 cells.

Example 8

Anti-Scatter Activity of Anti-hHGF Antibodies

[0185] This Example describes a characterization of the antibodies produced in Example 1 for their ability to inhibit HGF induced scatter activity. HGF induces "scattering" (motility) of clusters in MDCK cells (ATCC, Manassas, Va., Catalog No. CCL-34).

[0186] MDCK cells were seeded in 96-well Costar tissue culture plates (Corning Incorporated, Corning, N.Y., Catalog No. 3595) at a density of 4.times.10.sup.3 cells per well in 80 .mu.L MEM (ATCC, Manassas, Va., Catalog No. 30-2003) containing 10% Fetal Bovine Serum (Invitrogen Catalog No. 10438026), and 1% penicillin-streptomycin (Invitrogen Catalog No. 15140122). Each of the antibodies to be investigated was diluted to 6,667 nM in MEM containing 10% Fetal Bovine Serum and 1% penicillin-streptomycin. Each of the different antibody dilutions, as well as MEM containing 10% Fetal Bovine Serum and 1% penicillin-streptomycin without antibody, then was separately combined with an equal volume of MEM containing 10% Fetal Bovine Serum and 1% penicillin-streptomycin, and 100 ng/ml HGF (R&D Systems Catalog No. 294-HGN-025). The antibody/HGF dilutions were incubated for 30 minutes at 25.degree. C. Twenty .mu.L of each antibody/HGF dilution was added separately to individual wells, yielding a final antibody concentration of 666.7 nM, and a final HGF concentration of 10 ng/ml. The MDCK cells then were incubated for 24 hours at 37.degree. C. with 5% CO.sub.2.

[0187] After 24 hours incubation, the MDCK cells were carefully washed once with 100 .mu.L per well of ice-cold PBS (Invitrogen Catalog No. 14190144), and fixed with 100 .mu.L per well of ice-cold methanol while rocking for 10 minutes at 25.degree. C. The plates then were washed carefully once with distilled water. A volume of 100 .mu.L crystal violet solution, consisting of 0.5% crystal violet (Sigma, St. Louis, Mo., Catalog No. C3886) and 50% ethanol in distilled water, was added to each well, and the cells were incubated for 20 minutes at 25.degree. C. while rocking.

[0188] Following staining with crystal violet solution, the cells were washed carefully three times with distilled water. Then, PBS was added to each well to prevent drying of samples. The cells were imaged using the Leica DMIRB microscope (Leica Microsystems GmbH, Wetzler, Germany), DC500 camera (Leica Microsystems GmbH, Wetzler, Germany), and MagnaFire 2.1C software (Optronics, Goleta, Calif.), and samples were rated for level of scattering. The results are summarized in Table 8.

TABLE-US-00013 TABLE 8 Inhibition of HGF-induced MDCK Cell Scattering Antibody Trial 1 Trial 2 1A3 ++ + 1D3 ++ ++ 1F3 + + 2B8 +++ +++ 2F8 + + 3A12 - -/+ 3B6 ++ ++ 3D11 - - - No Inhibition +++ Very strong, nearly complete inhibition ++ Strong inhibition + Detectable inhibition

[0189] The results in Table 8 demonstrate that antibody 2B8 inhibited HGF-induced scattering more than the other antibodies. Antibodies 1D3 and 3B6 displayed an intermediate level of inhibition; antibody 1A3 displayed a low to intermediate level of inhibition: antibodies 1F3 and 2F8 displayed a low level of inhibition; and antibodies 3A12 and 3D11 gave little or no detectable inhibition.

Example 9

Inhibition of HGF-Stimulated c-Met Phosphorylation

[0190] This Example describes a characterization of the antibodies produced in Example 1 for their ability to inhibit the HGF-stimulated c-Met phosphorylation in PC-3 cells. HGF induces phosphorylation of Met in PC-3 cells (ATCC No. CRL-1435).

[0191] PC-3 cells were seeded into individual wells of 96-well Costar tissue culture plates (Corning Catalog No. 3595) at a density of 4.5.times.10.sup.4 cells per well in 100 .mu.L F-12K (ATCC, Manassas, Va., Catalog No. 30-2004) containing 10% Fetal Bovine Serum (Invitrogen Catalog No. 10438026) and 1% penicillin-streptomycin (Invitrogen Catalog No. 15140122). After 24 hours at 37.degree. C. with 5% CO.sub.2, the media was removed, and cells were rinsed once with serum-free F-12K containing 1% penicillin-streptomycin. Cells then were incubated for 24 hours in 100 .mu.L serum-free F-12K containing 1% penicillin-streptomycin.

[0192] The following 10 different dilutions of each of the antibodies being investigated were prepared in serum-free F-12K containing 1% penicillin-streptomycin: 6667 nM, 2222 nM, 741 nM, 247 nM, 82.3 nM, 27.4 nM, 9.1 nM, 3.0 nM, 1.0 nM, and 0.3 nM. Each antibody dilution, and, serum-free F-12K containing 1% penicillin-streptomycin without antibody, were separately combined with an equal volume of serum-free F-12K containing 1% penicillin-streptomycin and 500 ng/mL HGF (R&D Systems Catalog No. 294-HGN-025). These antibody/HGF dilutions were incubated for 30 minutes at 25.degree. C. This resulted in a final concentration of 1.25 nM HGF.

[0193] The PC-3 cells then were rinsed once with serum-free F-12K containing 1% penicillin-streptomycin. Next, 70 .mu.L of serum-free F-12K containing 1% penicillin-streptomycin was added to the cells, followed by 10 .mu.L of 10 mM Na.sub.3VO.sub.4 (Sigma Catalog No. S6508) in serum-free F-12K containing 1% penicillin-streptomycin. The cells then were incubated for 60 minutes at 37.degree. C. with 5% CO.sub.2. Following this incubation, 20 .mu.L of each antibody/HGF dilution was added separately to separate wells, yielding a final HGF concentration of 50 ng/mL, and the following final concentrations of each antibody: 666.7 nM, 222.2 nM, 74.1 nM, 24.7 nM, 8.23 nM, 2.74 nM, 0.91 nM, 0.30 nM, 0.10 nM, 0.03 nM. The cells then were incubated for 10 minutes at 37.degree. C. with 5% CO.sub.2, after which point the media/antibody/HGF mixture was removed, the plates were placed on ice. The cells then were rinsed once with 100 .mu.L per well of ice-cold PBS (Invitrogen Catalog No. 14190144) containing 1 mM Na.sub.3VO.sub.4. The cells then were incubated for 30 minutes at 4.degree. C. in 100 .mu.L per well ice-cold lysis buffer consisting of 1% OmniPur Triton X-100 (MERCK KGaA, Darmstadt, Germany, Catalog No. 9410), 50 mM Tris-HCl pH 8.0, 100 mM NaCl, 0.3 mM Na.sub.3VO.sub.4, 1.times. protease inhibitor cocktail (Sigma Catalog No. P8340), and 1.times. phosphatase inhibitor cocktail 2 (Sigma Catalog No. 5726).

[0194] Biotinylated anti-human HGF-R (c-met) antibody (R&D Systems Catalog No. BAF358) was diluted to a concentration of 2 .mu.g/mL in DELFIA Assay Buffer (PerkinElmer, Turku, Finland, Catalog No. 4002-0010) containing 1% bovine serum albumin (Sigma Catalog No. A2153), and 50 .mu.L of this dilution was added per well of yellow streptavidin microtitration plates (PerkinElmer Catalog No. AAAND-0005). The plates then were incubated with antibody for 30 minutes at 25.degree. C. with rocking. Following incubation, the plates were washed with DELFIA wash solution (PerkinElmer Catalog No. 4010-0010), and 80 .mu.L of each of the different PC-3 cell lysates was added separately to individual wells of the washed streptavidin microtitration plates.

[0195] The streptavidin microtitration plates containing PC-3 cell lysates were incubated for 60 minutes at 25.degree. C. with shaking, and then washed with DELFIA wash solution. 100 .mu.L of 600 ng/mL DELFIA Eu-N1 P-Tyr-100 antibody (PerkinElmer Catalog No. AD0159) diluted in DELFIA Assay Buffer containing 1% bovine serum albumin was added to each well of the washed streptavidin microtitration plates previously incubated with PC-3 cell lysates. The plates were incubated for 60 minutes at 25.degree. C., with rocking. The plates were washed a final time with DELFIA wash solution. Then 200 .mu.L of DELFIA Enhancement Solution (PerkinElmer Catalog No. 4001-0010) was added to each well of the washed streptavidin microtitration plates, and the plates were incubated in the dark for 5 minutes at 25.degree. C., with shaking.

[0196] Signal then was measured using the Europium protocol on the Victor3V reader (PerkinElmer). EC.sub.50 values were calculated using Prism 4 for Windows (GraphPad Software, Inc., San Diego, Calif.) and the sigmoidal dose-response equation.

[0197] The results summarized as EC50s in nM are tabulated in Table 9.

TABLE-US-00014 TABLE 9 Average of Standard Antibody Two Trials Deviation 1A3 0.684 0.242 1D3 0.984 0.129 1F3 1.19 1.01 2B8 0.287 0.104 2F8 1.39 2.12 3A12 2.00 0.553 3B6 1.01 1.11 3D11 2.28 N/A

[0198] The data in Table 9 demonstrate that all eight antibodies are potent inhibitors of HGF-induced c-Met phosphorylation in PC-3 cells.

Example 10

Tumor Inhibition in U87MG Xenograft Model

[0199] The ability of murine monoclonal antibodies of the invention to inhibit tumor growth was tested in an U87MG xenograft model. U87MG cells (ATCC) were expanded in culture at 37.degree. C. in an atmosphere containing 5% CO2 and 95% air, using a medium comprising Dulbecco's Modified Eagle medium (DMEM) with 10% fetal bovine serum, 100 units/mL penicillin and 100 .mu.g/mL streptomycin. The cells were subcultured and maintained by detaching the cells from the wall of the culture dish using trypsin-EDTA.

[0200] Near-confluent cells were collected by trypsinization and then 5.times.10.sup.6 cells in 50% Matrigel (BD Biosciences; catalog no. 356237) were injected subcutaneously into the upper dorsal area between the shoulder blades of 7-week old female ICR SCID mice (Taconic Labs). The long (L) and short (W) diameters (mm) of tumors were measured with a caliper. Tumor volume (vol.) was calculated as: volume (mm.sup.3)=L.times.W.sup.2/2. When the tumors grew to approximately 200 mm.sup.3, the tumor-bearing mice were randomized into 5 groups of 10 mice each. One group received PBS. Each of the other 4 groups received one of the antibody 1A3, 1D3, 1F3 or 2B8. All antibodies were dosed at 1 mg/kg body weight, twice per week, by intra-peritoneal injections of 5 doses. Tumor volumes and mouse body weights were recorded twice per week. Tumor growth inhibition was analyzed using Student's t-test. The results are summarized in FIG. 6 and Table 10.

TABLE-US-00015 TABLE 10 Percent Inhibition 2B8 vs PBS 93% p = 0.001 1A3 vs PBS 73% p = 0.0075 1D3 vs PBS 51% p = 0.075 1F3 vs PBS 60% p = 0.027

[0201] Partial regression was achieved in 2B8 treated group (FIG. 6). Statistically significant growth inhibition was observed in the 1A3-treated and 1F3-treated groups (Table 10). There was 51% tumor growth inhibition for 1D3 with a p value of 0.075. No significant body weight loss was observed.

Example 11

Tumor Inhibition in U118 Xenograft Model

[0202] The ability of the antibodies 1A3, 1D3, 1F3 and 2B8 to inhibit tumor growth was tested in an U118 xenograft model. U118 cells (ATCC) were expanded as described in Example 10 (above) with respect to the U87MG cells.

[0203] Subcutaneous tumors were established as described in Example 10 above, except that the mice used were 7 weeks old female NCr nude mice (Taconic), and treatment was started when the tumors grew to approximately 80 mm.sup.3. As in the U87MG model, all the antibodies were dosed at 1 mg/kg body weight twice a week by intra-peritoneal injections for 4 doses. Tumor volumes and body weights of the mice were recorded twice per week. Tumor growth inhibition was analyzed using Student's t-test. The results are summarized in FIG. 7 and Table 11.

TABLE-US-00016 TABLE 11 Percent Inhibition 2B8 vs IgG 75% p = 0.007 1A3 vs IgG 57% p = 0.01 1D3 vs IgG 47% p = 0.12 1F3 vs IgG 30% p = 0.39

[0204] Statistically significant tumor growth inhibition was observed in 2B8 and 1A3 treated groups (FIG. 7). There was modest tumor growth inhibition in 1F3 and 1D3 groups with p values less than 0.05, which was defined as statistical significance in this study (Table 11). No significant body weight loss was observed.

Example 12

Humanization of Murine Monoclonal Antibodies

[0205] This Example describes the humanization of the murine 2B8 antibody, together with a characterization of the resulting humanized antibodies. The murine 2B8 Heavy and Light Variable Regions were "humanized" by two methods.

A. Humanization Procedure 1

[0206] In the first method, three humanized heavy chain variable regions and two humanized kappa light chain variable regions were designed based on the "superhumanization" method described in Hwang et al. (2005) METHODS 36:35-42; Tan et al. (2002) J. IMMUNOL. 169:1119-1125; U.S. Pat. No. 6,881,557.

[0207] The Chothia canonical structural class was determined for each mouse 2B8 CDR based on CDR length and amino acid composition. Human germline variable regions consisting of the same Chothia canonical structural class light and heavy variable regions were identified based on known human germline variable region reference alleles described at the International Immunogentics Information System (IMGT) website (available on the world wide web at imgt.cines.fr and biochem.unizh.ch/antibody/Sequences/index.html). These human germline variable regions of the same structural class were compared to murine 2B8 variable regions by calculating the percent identity or similarity between CDR amino acid residues. Those human germline variable regions with the highest identity and/or similarity with mouse 2B8 CDR residues were chosen for CDR grafting. The framework residues of the human germline variable regions were preserved while the mouse 2B8 CDR residues were used to replace the corresponding human germline variable region residues that were different between mouse 2B8 CDR and human germline CDRs. The human J region that was most similar to the 2B8 mouse J region was then added to the carboxyl terminus of the "superhumanized" variable region. A signal sequence was then added to the amino terminus of the "superhumanized" variable regions and these amino acid sequences were converted into nucleic acid sequences.

[0208] The complete variable region nucleic acid sequence was constructed using gene synthesis PCR methods (Young et al. (2004) NUCL. ACIDSRES. 32:e59) and cloned into a mammalian expression vector (based on pcDNA3.2 DEST (Invitrogen)) containing human constant IgG1 (G1m(17,1) allotype) or Kappa (Km(3) allotype (allele 2)) regions (downstream of the variable regions) using standard molecular biology techniques. All four heavy chain IgG1 antibodies (chimeric 2B8 and 3 humanized heavy chains (Hu2B8 Hv1-f.1, Hu2B8 Hv5-a.1, Hu2B8 Hv5-51.1) were expressed in the possible combinations with all 3 kappa chain antibodies (chimera 2B8 and 2 humanized light chains (Hu2B8 Kv1-39.1 and Hu2B8 Kv3-15.1) creating 12 different antibody proteins. Binding of the chimeric, chimeric/humanized, and humanized antibodies to human HGF was then measured as described below and the results are summarized in FIG. 8. Each of the possible combinations of immunoglobulin heavy chain and immunoglobulin light chain variable regions are set forth below in Table 12A.

TABLE-US-00017 TABLE 12A Heavy Chain Variable Region Light Chain Variable Region Chimeric 2B8 (SEQ ID NO: 12) Chimeric 2B8 (SEQ ID NO: 14) Chimeric 2B8 (SEQ ID NO: 12) Hu2B8 Kv1-39.1 (SEQ ID NO: 173) Chimeric 2B8 (SEQ ID NO: 12) Hu2B8 Kv3-15.1 (SEQ ID NO: 179) Hu2B8 Hv1-f.1 (SEQ ID NO: 159) Chimeric 2B8 (SEQ ID NO: 14) Hu2B8 Hv1-f.1 (SEQ ID NO: 159) Hu2B8 Kv1-39.1 (SEQ ID NO: 173) Hu2B8 Hv1-f.1 (SEQ ID NO: 159) Hu2B8 Kv3-15.1 (SEQ ID NO: 179) Hu2B8 Hv5-a.1 (SEQ ID NO: 165) Chimeric 2B8 (SEQ ID NO: 14) Hu2B8 Hv5-a.1 (SEQ ID NO: 165) Hu2B8 Kv1-39.1 (SEQ ID NO: 173) Hu2B8 Hv5-a.1 (SEQ ID NO: 165) Hu2B8 Kv3-15.1 (SEQ ID NO: 179) Hu2B8 Hv5-51.1 (SEQ ID NO: 169) Chimeric 2B8 (SEQ ID NO: 14) Hu2B8 Hv5-51.1 (SEQ ID NO: 169) Hu2B8 Kv1-39.1 (SEQ ID NO: 173) Hu2B8 Hv5-51.1 (SEQ ID NO: 169) Hu2B8 Kv3-15.1 (SEQ ID NO: 179)

[0209] Each of the possible combinations of immunoglobulin heavy chains and immunoglobulin light chains are set forth below in Table 12B.

TABLE-US-00018 TABLE 12B Immunoglobulin Heavy Chain Immunoglobulin Light Chain Chimeric 2B8 IgG1 (SEQ ID NO: 155) Chimeric 2B8 Kappa (Km(3)) (SEQ ID NO: 157) Chimeric 2B8 IgG1 (SEQ ID NO: 155) Hu2B8 Kv1-39.1 + Kappa Constant (Km(3) allotype) (allele 2) (SEQ ID NO: 177) Chimeric 2B8 IgG1 (SEQ ID NO: 155) Hu2B8 Kv3-15.1 + Kappa Constant (Km(3) allotype) (allele 2) (SEQ ID NO: 181) Hu2B8 Hv1-f.1 + IgG1 Constant Chimeric 2B8 Kappa (Km(3)) (G1M(17,1)) allotype (SEQ ID NO: 163) (SEQ ID NO: 157) Hu2B8 Hv1-f.1 + IgG1 Constant Hu2B8 Kv1-39.1 + Kappa Constant (Km(3) (G1M(17,1)) allotype (SEQ ID NO: 163) allotype) (allele 2) (SEQ ID NO: 177) Hu2B8 Hv1-f.1 + IgG1 Constant Hu2B8 Kv3-15.1 + Kappa Constant (Km(3) (G1M(17,1)) allotype (SEQ ID NO: 163) allotype) (allele 2) (SEQ ID NO: 181) Hu2B8 Hv5-a.1 + IgG1 Constant Chimeric 2B8 Kappa (Km(3)) (G1M(17,1)) allotype (SEQ ID NO: 167) (SEQ ID NO: 157) Hu2B8 Hv5-a.1 + IgG1 Constant Hu2B8 Kv1-39.1 + Kappa Constant (Km(3) (G1M(17,1)) allotype (SEQ ID NO: 167) allotype) (allele 2) (SEQ ID NO: 177) Hu2B8 Hv5-a.1 + IgG1 Constant Hu2B8 Kv3-15.1 + Kappa Constant (Km(3) (G1M(17,1)) allotype (SEQ ID NO: 167) allotype) (allele 2) (SEQ ID NO: 181) Hu2B8 Hv5-51.1 + IgG1 Constant Chimeric 2B8 Kappa (Km(3)) (G1M(17,1)) allotype (SEQ ID NO: 171) (SEQ ID NO: 157) Hu2B8 Hv5-51.1 + IgG1 Constant Hu2B8 Kv1-39.1 + Kappa Constant (Km(3) (G1M(17,1)) allotype (SEQ ID NO: 171) allotype) (allele 2) (SEQ ID NO: 177) Hu2B8 Hv5-51.1 + IgG1 Constant Hu2B8 Kv3-15.1 + Kappa Constant (Km(3) (G1M(17,1)) allotype (SEQ ID NO: 171) allotype) (allele 2) (SEQ ID NO: 181)

[0210] Two of the possible antibody constructs containing the full length immunoglobulin heavy and light chains containing humanized variable regions are designated below: [0211] sh2B8-9 (G1m(17,1))=hu2B8 Hv5-51.1 (+IgG1 constant region (G1m(17,1) allotype) (SEQ ID NO. 171) plus hu2B8 Kv 1-39.1 (+Kappa constant region (Km(3) allotype (allele 2))) (SEQ ID NO. 177) [0212] sh2B8-12 (G1m(17,1))=hu2B8 Hv5-51.1 (+IgG1 constant region (G1m(17,1) allotype)) (SEQ ID NO. 171) plus hu2B8 Kv 3-15.1 (+Kappa constant region (Km(3) allotype (allele 2))) (SEQ ID NO. 181).

[0213] The nucleic acid sequences encoding and the protein sequences defining each of the humanized antibodies are summarized below. In this section, the last nucleotide of each variable region is the first base of the next codon generated by the variable/constant region junction. This nucleotide is included in the Variable Region because it is part of that exon. Amino acid sequences of Constant Regions listed below include the translation of this junction codon.

TABLE-US-00019 (1) Nucleic Acid Sequence Encoding the Full Length Chimeric 2B8 Heavy Chain (Mouse Variable Region and Human IgG1 Constant Region) (allotype G1m(17,1)) (signal sequence underlined) (SEQ ID NO. 154) 1 atgggatgga gctatatcat cctctttttg gtagcaacag ctacagatgt ccactcccag 61 gtccaactgc agcagcctgg ggctgaactg gtgaagcctg ggacttcagt gaagctgtcc 121 tgcaaggctt ctggctacac cttcaccacc tactggatgc actgggtgaa tcagaggcct 181 ggacaaggcc ttgagtggat tggagagatt aatcctacca acggtcatac taactacaat 241 gagaagttca agagcaaggc cacactgact gtagacaaat cctccagcac agcctacatg 301 caactcagca gcctgacatc tgaggactct gcggtctatt actgtgcaag aaactatgtt 361 ggtagcatct ttgactactg gggccaaggc accactctca ccgtctcctc agcctccacc 421 aagggcccat cggtcttccc cctggcaccc tcctccaaga gcacctctgg gggcacagcg 481 gccctgggct gcctggtcaa ggactacttc cccgaaccgg tgacggtgtc gtggaactca 541 ggcgccctga ccagcggcgt gcacaccttc ccggctgtcc tacagtcctc aggactctac 601 tccctcagca gcgtggtgac cgtgccctcc agcagcttgg gcacccagac ctacatctgc 661 aacgtgaatc acaagcccag caacaccaag gtggacaaga aagttgagcc caaatcttgt 721 gacaaaactc acacatgccc accgtgccca gcacctgaac tcctgggggg accgtcagtc 781 ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 841 tgcgtggtgg tggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 901 ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cagcacgtac 961 cgtgtggtca gcgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaag 1021 tgcaaggtct ccaacaaagc cctcccagcc cccatcgaga aaaccatctc caaagccaaa 1081 gggcagcccc gagaaccaca ggtgtacacc ctgcccccat cccgggatga gctgaccaag 1141 aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 1201 tgggagagca atgggcagcc ggagaacaac tacaagacca cgcctcccgt gctggactcc 1261 gacggctcct tcttcctcta cagcaagctc accgtggaca agagcaggtg gcagcagggg 1321 aacgtcttct catgctccgt gatgcatgag gctctgcaca accactacac gcagaagagc 1381 ctctccctgt ctccgggtaa atga (2) Protein Sequence Defining the Full Length Chimeric 2B8 Heavy Chain (Chimeric 2B8 IgG1 (G1m(17,1) allotype) (without signal sequence) (SEQ ID NO. 155) 1 qvqlqqpgae lvkpgtsvkl sckasgytft tywmhwvnqr pgqglewige inptnghtny 61 nekfkskatl tvdkssstay mqlssltsed savyycarny vgsifdywgq gttltvssas 121 tkgpsvfpla psskstsggt aalgclvkdy fpepvtvswn sgaltsgvht fpavlqssgl 181 yslssvvtvp ssslgtqtyi cnvnhkpsnt kvdkkvepks cdkthtcppc papellggps 241 vflfppkpkd tlmisrtpev tcvvvdvshe dpevkfnwyv dgvevhnakt kpreeqynst 301 yrvvsvltvl hqdwlngkey kckvsnkalp apiektiska kgqprepqvy tlppsrdelt 361 knqvsltclv kgfypsdiav ewesngqpen nykttppvld sdgsfflysk ltvdksrwqq 421 gnvfscsvmh ealhnhytqk slslspgk (3) Nucleic Acid Sequence Encoding the Full Length Chimeric 2B8 Light Chain (Mouse Variable Region and Human Constant Region) (Chimeric 2B8 Kappa (Km(3))) (signal sequence underlined) (SEQ ID NO. 156) 1 atggaatcac agactctggt cttcatatcc atactgctct ggttatatgg tgctgatggg 61 aacattgtaa tgacccaatc tcccaaatcc atgtccatgt cagtaggaga gagggtcacc 121 ttgagctgca aggccagtga gaatgtggtt tcttatgtat cctggtatca acagaaacca 181 gcgcagtctc ctaaactgct gatatacggg gcatccaacc ggaacactgg ggtccccgat 241 cgcttcacag gcagtggatc tgcaacagat ttcactctga ccatcagcag tgtgcgggct 301 gaagaccttg cagattatca ctgtgggcag agttacaact atccgtacac gttcggaggg 361 gggaccaggc tggaaataaa acgaactgtg gctgcaccat ctgtcttcat cttcccgcca 421 tctgatgagc agttgaaatc tggaactgcc tctgttgtgt gcctgctgaa taacttctat 481 cccagagagg ccaaagtaca gtggaaggtg gataacgccc tccaatcggg taactcccag 541 gagagtgtca cagagcagga cagcaaggac agcacctaca gcctcagcag caccctgacg 601 ctgagcaaag cagactacga gaaacacaaa gtctacgcct gcgaagtcac ccatcagggc 661 ctgagctcgc ccgtcacaaa gagcttcaac aggggagagt gttga (4) Protein Sequence Defining the Full Length Chimeric 2B8 Light Chain (Chimeric 2B8 Kappa (Km(3))) (without signal sequence) (SEQ ID NO. 157) 1 nivmtqspks msmsvgervt lsckasenvv syvswyqqkp aqspklliyg asnrntgvpd 61 rftgsgsatd ftltissvra edladyhcgq synypytfgg gtrleikrtv aapsvfifpp 121 sdeqlksgta svvcllnnfy preakvqwkv dnalqsgnsq esvteqdskd styslsstlt 181 lskadyekhk vyacevthqg lsspvtksfn rgec (5) Nucleic Acid Sequence Encoding Humanized Hu2B8 Hv1-f.1 Heavy Chain Variable Region (signal sequence underlined) (SEQ ID NO. 158) 1 atggactgca cctggaggat cctcctcttg gtggcagcag ctacaggcac ccacgccgag 61 gtccagctgg tacagtctgg ggctgaggtg aagaagcctg gggctacagt gaaaatctcc 121 tgcaaggttt ctggatacac cttcaccacc tactggatgc actgggtgca acaggcccct 181 ggaaaagggc ttgagtggat gggagagatt aatcctacca acggtcatac taactacaat 241 gagaagttcc agggcagagt caccataacc gcggacacgt ctacagacac agcctacatg 301 gagctgagca gcctgagatc tgaggacacg gccgtgtatt actgtgcaac aaactatgtt 361 ggtagcatct ttgactactg gggccaagga accctggtca ccgtctcctc ag (6) Protein Sequence Defining Humanized Hu2B8 Hv1-f.1 Heavy Chain Variable Region (without signal sequence) (SEQ ID NO. 159) 1 evqlvqsgae vkkpgatvki sckvsgytft tywmhwvqqa pgkglewmge inptnghtny 61 nekfqgrvti tadtstdtay melsslrsed tavyycatny vgsifdywgq gtlvtvss (7) Nucleic Acid Sequence Encoding Human IgG1 Heavy Chain Constant Region (G1m(17,1) allotype) (SEQ ID NO. 160) 1 cctccaccaa gggcccatcg gtcttccccc tggcaccctc ctccaagagc acctctgggg 61 gcacagcggc cctgggctgc ctggtcaagg actacttccc cgaaccggtg acggtgtcgt 121 ggaactcagg cgccctgacc agcggcgtgc acaccttccc ggctgtccta cagtcctcag 181 gactctactc cctcagcagc gtggtgaccg tgccctccag cagcttgggc acccagacct 241 acatctgcaa cgtgaatcac aagcccagca acaccaaggt ggacaagaaa gttgagccca 301 aatcttgtga caaaactcac acatgcccac cgtgcccagc acctgaactc ctggggggac 361 cgtcagtctt cctcttcccc ccaaaaccca aggacaccct catgatctcc cggacccctg 421 aggtcacatg cgtggtggtg gacgtgagcc acgaagaccc tgaggtcaag ttcaactggt 481 acgtggacgg cgtggaggtg cataatgcca agacaaagcc gcgggaggag cagtacaaca 541 gcacgtaccg tgtggtcagc gtcctcaccg tcctgcacca ggactggctg aatggcaagg 601 agtacaagtg caaggtctcc aacaaagccc tcccagcccc catcgagaaa accatctcca 661 aagccaaagg gcagccccga gaaccacagg tgtacaccct gcccccatcc cgggatgagc 721 tgaccaagaa ccaggtcagc ctgacctgcc tggtcaaagg cttctatccc agcgacatcg 781 ccgtggagtg ggagagcaat gggcagccgg agaacaacta caagaccacg cctcccgtgc 841 tggactccga cggctccttc ttcctctaca gcaagctcac cgtggacaag agcaggtggc 901 agcaggggaa cgtcttctca tgctccgtga tgcatgaggc tctgcacaac cactacacgc 961 agaagagcct ctccctgtct ccgggtaaat ga (8) Protein Sequence Defining Human IgG1 Heavy Chain Constant Region (G1m(17,1) allotype) (SEQ ID NO. 161). The first amino acid is derived from translation of the last nucleotide of variable region and beginning two nucleotides of the IgG1 Heavy Chain sequence. 1 astkgpsvfp lapsskstsg gtaalgclvk dyfpepvtvs wnsgaltsgv htfpavlqss 61 glyslssvvt vpssslgtqt yicnvnhkps ntkvdkkvep kscdkthtcp pcpapellgg 121 psvflfppkp kdtlmisrtp evtcvvvdvs hedpevkfnw yvdgvevhna ktkpreeqyn 181 styrvvsvlt vlhqdwlngk eykckvsnka lpapiektis kakgqprepq vytlppsrde 241 ltknqvsltc lvkgfypsdi avewesngqp ennykttppv ldsdgsffly skltvdksrw 301 qqgnvfscsv mhealhnhyt qkslslspgk (9) Nucleic Acid Sequence Encoding the Full Length Heavy Chain Humanized Hu2B8 Hv1f.1 Variable Region and Human IgG1 (G1m(17,1) allotype) Heavy Chain Constant Region (signal sequence underlined) (SEQ ID NO. 162) 1 atggactgca cctggaggat cctcctcttg gtggcagcag ctacaggcac ccacgccgag 61 gtccagctgg tacagtctgg ggctgaggtg aagaagcctg gggctacagt gaaaatctcc 121 tgcaaggttt ctggatacac cttcaccacc tactggatgc actgggtgca acaggcccct 181 ggaaaagggc ttgagtggat gggagagatt aatcctacca acggtcatac taactacaat 241 gagaagttcc agggcagagt caccataacc gcggacacgt ctacagacac agcctacatg 301 gagctgagca gcctgagatc tgaggacacg gccgtgtatt actgtgcaac aaactatgtt 361 ggtagcatct ttgactactg gggccaagga accctggtca ccgtctcctc agcctccacc 421 aagggcccat cggtcttccc cctggcaccc tcctccaaga gcacctctgg gggcacagcg 481 gccctgggct gcctggtcaa ggactacttc cccgaaccgg tgacggtgtc gtggaactca 541 ggcgccctga ccagcggcgt gcacaccttc ccggctgtcc tacagtcctc aggactctac 601 tccctcagca gcgtggtgac cgtgccctcc agcagcttgg gcacccagac ctacatctgc 661 aacgtgaatc acaagcccag caacaccaag gtggacaaga aagttgagcc caaatcttgt 721 gacaaaactc acacatgccc accgtgccca gcacctgaac tcctgggggg accgtcagtc 781 ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 841 tgcgtggtgg tggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 901 ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cagcacgtac 961 cgtgtggtca gcgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaag 1021 tgcaaggtct ccaacaaagc cctcccagcc cccatcgaga aaaccatctc caaagccaaa 1081 gggcagcccc gagaaccaca ggtgtacacc ctgcccccat cccgggatga gctgaccaag 1141 aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 1201 tgggagagca atgggcagcc ggagaacaac tacaagacca cgcctcccgt gctggactcc 1261 gacggctcct tcttcctcta cagcaagctc accgtggaca agagcaggtg gcagcagggg 1321 aacgtcttct catgctccgt gatgcatgag gctctgcaca accactacac gcagaagagc 1381 ctctccctgt ctccgggtaa atga (10) Protein Sequence Defining the Full Length Heavy Chain Humanized Hu2B8 Hv1f.1 Variable Region and Human IgG1 Heavy Chain Constant Region (G1m(17,1) allotype) (without signal sequence) (SEQ ID NO. 163) 1 evqlvqsgae vkkpgatvki sckvsgytft tywmhwvqqa pgkglewmge inptnghtny 61 nekfqgrvti tadtstdtay melsslrsed tavyycatny vgsifdywgq gtlvtvssas 121 tkgpsvfpla psskstsggt aalgclvkdy fpepvtvswn sgaltsgvht fpavlqssgl 181 yslsavvtvp ssslgtqtyi cnvnhkpsnt kvdkkvepks cdkthtcppc papellggps 241 vflfppkpkd tlmisrtpev tcvvvdvshe dpevkfnwyv dgvevhnakt kpreeqynst 301 yrvvsvltvl hqdwlngkey kckvsnkalp apiektiska kgqprepqvy tlppsrdelt 361 knqvsltclv kgfypsdiav ewesngqpen nykttppvld sdgsfflysk ltvdksrwqq 421 gnvfscsvmh ealhnhytqk slslspgk (11) Nucleic Acid Sequence Encoding Humanized Hu2B8 Hy5a.1 Heavy Chain Variable Region (signal sequence underlined) (SEQ ID NO. 164) 1 atggggtcaa ccgccatcct cgccctcctc ctggctgttc tccaaggagt ctgtgccgaa 61 gtgcagctgg tgcagtctgg agcagaggtg aaaaagcccg gggagtctct gaggatctcc 121 tgtaagggtt ctggatacag ctttaccacc tactggatgc actgggtgcg ccagatgccc 181 gggaaaggcc tggagtggat gggggagatt aatcctacca acggtcatac taactacaat 241 ccgtccttcc aaggccacgt caccatctca gctgacaagt ccatcagcac tgcctacctg 301 cagtggagca gcctgaaggc ctcggacacc gccatgtatt actgtgcgag aaactatgtt 361 ggtagcatct ttgactactg gggccaagga accctggtca ccgtctcctc ag (12) Protein Sequence Defining Humanized Hu2B8 Hv5a.1 Heavy Chain Variable Region (without signal sequence) (SEQ ID NO. 165) 1 evqlvqsgae vkkpgeslri sckgsgysft tywmhwvrqm pgkglewmge inptnghtny 61 npsfqghvti sadksistay lqwsslkasd tamyycarny vgsifdywgq gtlvtvss (13) Nucleic Acid Sequence Encoding the Full Length Humanized Hu2B8 Hv5a.1 Heavy Chain Variable Region and Human IgG1 (G1m(17,1) allotype) Heavy Chain Constant Region (signal sequence underlined) (SEQ ID NO. 166) 1 atggggtcaa ccgccatcct cgccctcctc ctggctgttc tccaaggagt ctgtgccgaa 61 gtgcagctgg tgcagtctgg agcagaggtg aaaaagcccg gggagtctct gaggatctcc 121 tgtaagggtt ctggatacag ctttaccacc tactggatgc actgggtgcg ccagatgccc 181 gggaaaggcc tggagtggat gggggagatt aatcctacca acggtcatac taactacaat 241 ccgtccttcc aaggccacgt caccatctca gctgacaagt ccatcagcac tgcctacctg 301 cagtggagca gcctgaaggc ctcggacacc gccatgtatt actgtgcgag aaactatgtt 361 ggtagcatct ttgactactg gggccaagga accctggtca ccgtctcctc agcctccacc 421 aagggcccat cggtcttccc cctggcaccc tcctccaaga gcacctctgg gggcacagcg 481 gccctgggct gcctggtcaa ggactacttc cccgaaccgg tgacggtgtc gtggaactca 541 ggcgccctga ccagcggcgt gcacaccttc ccggctgtcc tacagtcctc aggactctac 601 tccctcagca gcgtggtgac cgtgccctcc agcagcttgg gcacccagac ctacatctgc 661 aacgtgaatc acaagcccag caacaccaag gtggacaaga aagttgagcc caaatcttgt 721 gacaaaactc acacatgccc accgtgccca gcacctgaac tcctgggggg accgtcagtc 781 ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 841 tgcgtggtgg tggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 901 ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cagcacgtac 961 cgtgtggtca gcgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaag 1021 tgcaaggtct ccaacaaagc cctcccagcc cccatcgaga aaaccatctc caaagccaaa 1081 gggcagcccc gagaaccaca ggtgtacacc ctgcccccat cccgggatga gctgaccaag 1141 aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 1201 tgggagagca atgggcagcc ggagaacaac tacaagacca cgcctcccgt gctggactcc 1261 gacggctcct tcttcctcta cagcaagctc accgtggaca agagcaggtg gcagcagggg 1321 aacgtcttct catgctccgt gatgcatgag gctctgcaca accactacac gcagaagagc 1381 ctctccctgt ctccgggtaa atga (14) Protein Sequence Defining the Full Length Humanized Hu2B8 Hv5a.1 Heavy Chain Variable Region and Human IgG1 (G1m(17,1) allotype) Heavy Chain Constant Region (without signal sequence) (SEQ ID NO. 167) 1 evqlvqsgae vkkpgeslri sckgsgysft tywmhwvrqm pgkglewmge inptnghtny 61 npsfqghvti sadksistay lqwsslkasd tamyycarny vgsifdywgq gtivtvssas 121 tkgpsvfpla psskstsggt aalgclvkdy fpepvtvswn sgaltsgvht fpavlqssgl 181 yslssvvtvp ssslgtqtyi cnvnhkpsnt kvdkkvepks cdkthtcppc papellggps 241 vflfppkpkd tlmisrtpev tcvvvdvshe dpevkfnwyv dgvevhnakt kpreeqynst 301 yrvvsvltvl hqdwlngkey kckvsnkalp apiektiska kgqprepqvy tlppsrdelt 361 knqvsltclv kgfypsdiav ewesngqpen nykttppvld sdgsfflysk ltvdksrwqq 421 gnvfscsvmh ealhnhytqk slslspgk (15) Nucleic Acid Sequence Encoding Humanized Hu2B8 Hv5-51.1 Heavy Chain Variable Region (signal sequence underlined) (SEQ ID NO. 168) 1 atggggtcaa ccgccatcct cgccctcctc ctggctgttc tccaaggagt ctgtgccgaa 61 gtgcagctgg tgcagtctgg agcagaggtg aaaaagcccg gggagtctct gaagatctcc 121 tgtaagggtt ctggatacag ctttaccacc tactggatgc actgggtgcg ccagatgccc 181 gggaaaggcc tggagtggat gggggagatt aatcctacca acggtcatac taactacaat 241 ccgtccttcc aaggccaggt caccatctca gctgacaagt ccatcagcac tgcctacctg 301 cagtggagca gcctgaaggc ctcggacacc gccatgtatt actgtgcgag aaactatgtt 361 ggtagcatct ttgactactg gggccaagga accctggtca ccgtctcctc ag (16) Protein Sequence Defining Humanized Hu2B8 Hv5-51.1 Heavy Chain Variable Sequence (without signal sequence) (SEQ ID NO. 169) 1 evqlvqsgae vkkpgeslki sckgsgysft tywmhwvrqm pgkglewmge inptnghtny 61 npsfqgqvti sadksistay lqwsslkasd tamyycarny vgsifdywgq gtlvtvss (17) Nucleic Acid Sequence Encoding the Full Length Humanized Hu2B8 Hv5-51.1 Heavy Chain Variable Region and Human IgG1 (G1m(17,1) allotype) Heavy Chain Constant Region (signal sequence underlined) (SEQ ID NO. 170) 1 atggggtcaa ccgccatcct cgccctcctc ctggctgttc tccaaggagt ctgtgccgaa 61 gtgcagctgg tgcagtctgg agcagaggtg aaaaagcccg gggagtctct gaagatctcc 121 tgtaagggtt ctggatacag ctttaccacc tactggatgc actgggtgcg ccagatgccc 181 gggaaaggcc tggagtggat gggggagatt aatcctacca acggtcatac taactacaat 241 ccgtccttcc aaggccaggt caccatctca gctgacaagt ccatcagcac tgcctacctg 301 cagtggagca gcctgaaggc ctcggacacc gccatgtatt actgtgcgag aaactatgtt 361 ggtagcatct ttgactactg gggccaagga accctggtca ccgtctcctc agcctccacc 421 aagggcccat cggtcttccc cctggcaccc tcctccaaga gcacctctgg gggcacagcg 481 gccctgggct gcctggtcaa ggactacttc cccgaaccgg tgacggtgtc gtggaactca 541 ggcgccctga ccagcggcgt gcacaccttc ccggctgtcc tacagtcctc aggactctac 601 tccctcagca gcgtggtgac cgtgccctcc agcagcttgg gcacccagac ctacatctgc 661 aacgtgaatc acaagcccag caacaccaag gtggacaaga aagttgagcc caaatcttgt 721 gacaaaactc acacatgccc accgtgccca gcacctgaac tcctgggggg accgtcagtc

781 ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 841 tgcgtggtgg tggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 901 ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cagcacgtac 961 cgtgtggtca gcgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaag 1021 tgcaaggtct ccaacaaagc cctcccagcc cccatcgaga aaaccatctc caaagccaaa 1081 gggcagcccc gagaaccaca ggtgtacacc ctgcccccat cccgggatga gctgaccaag 1141 aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 1201 tgggagagca atgggcagcc ggagaacaac tacaagacca cgcctcccgt gctggactcc 1261 gacggctcct tcttcctcta cagcaagctc accgtggaca agagcaggtg gcagcagggg 1321 aacgtcttct catgctccgt gatgcatgag gctctgcaca accactacac gcagaagagc 1381 ctctccctgt ctccgggtaa atga (18) Protein Sequence Defining the Full Length Humanized Hu2B8 Hv5-51.1 Heavy Chain Variable Region and Human IgG1 (G1m(17,1) allotype) Heavy Chain Constant Region (without signal sequence) (SEQ ID NO. 171) 1 evqlvqsgae vkkpgeslki sckgsgysft tywmhwvrqm pgkglewmge inptnghtny 61 npsfqgqvti sadksistay lqwsslkasd tamyycarny vgsifdywgq gtivtvssas 121 tkgpsvfpla psskstsggt aalgclvkdy fpepvtvswn sgaltsgvht fpavlqssgl 181 yslssvvtvp ssslgtqtyi cnvnhkpsnt kvdkkvepks cdkthtcppc papellggps 241 vflfppkpkd tlmisrtpev tcvvvdvshe dpevkfnwyv dgvevhnakt kpreeqynst 301 yrvvsvltvl hqdwlngkey kckvsnkalp apiektiska kgqprepqvy tlppsrdelt 361 knqvsltclv kgfypsdiav ewesngqpen nykttppvld sdgsfflysk ltvdksrwqq 421 gnvfscsvmh ealhnhytqk slslspgk (19) Nucleic Acid Sequence Encoding Humanized Hu2B8 Kv1-39.1 Kappa Chain Variable Region (signal sequence underlined) (SEQ ID NO. 172). Two possible start ATGs are shown in uppercase. 1 ATGgacATGa gggtccccgc tcagctcctg gggctcctgc tactctggct ccgaggtgcc 61 agatgtgaca tccagatgac ccagtctcca tcctccctgt ctgcatctgt aggagacaga 121 gtcaccatca cttgcaaggc cagtgagaat gtggtttctt atgtatcctg gtatcagcag 181 aaaccaggga aagcccctaa gctcctgatc tatggggcat ccaaccggaa cactggggtc 241 ccatcaaggt tcagtggcag tggatctggg acagatttca ctctcaccat cagcagtctg 301 caacctgaag attttgcaac ttactactgt gggcagagtt acaactatcc gtacacgttt 361 ggccagggga ccaagctgga gatcaaac (20) Protein Sequence Defining Humanized Hu2B8 Kv1-39.1 Kappa Chain Variable Region (without signal sequence) (SEQ ID NO. 173) 1 diqmtqspss lsasvgdrvt itckasenvv syvswyqqkp gkapklliyg asnrntgvps 61 rfsgsgsgtd ftltisslqp edfatyycgq synypytfgq gtkleik (21) Nucleic Acid Sequence Encoding Human Kappa Chain Constant Region (Km(3) allotype) (allele 2) (SEQ ID NO. 174) 1 gaactgtggc tgcaccatct gtcttcatct tcccgccatc tgatgagcag ttgaaatctg 61 gaactgcctc tgttgtgtgc ctgctgaata acttctatcc cagagaggcc aaagtacagt 121 ggaaggtgga taacgccctc caatcgggta actcccagga gagtgtcaca gagcaggaca 181 gcaaggacag cacctacagc ctcagcagca ccctgacgct gagcaaagca gactacgaga 241 aacacaaagt ctacgcctgc gaagtcaccc atcagggcct gagctcgccc gtcacaaaga 301 gcttcaacag gggagagtgt tga (22) Protein Sequence Defining Human Kappa Chain Constant Region (Km(3) allotype) (allele 2) (SEQ ID NO. 175). The first amino acid is derived from translation of the last nucleotide of variable region and beginning two nucleotides of the Kappa Light Chain sequence. 1 rtvaapsvfi fppsdeqlks gtasvvclln nfypreakvq wkvdnalqsg nsqesvteqd 61 skdstyslss tltlskadye khkvyacevt hqglsspvtk sfnrgec (23) Nucleic Acid Sequence Encoding the Full Length Humanized Hu2B8 Kv1-39.1 Light Chain Variable Region and Human Kappa Chain Constant Region (Km(3) allotype) (allele 2) (signal sequence underlined) (SEQ ID NO. 176) 1 atggacatga gggtccccgc tcagctcctg gggctcctgc tactctggct ccgaggtgcc 61 agatgtgaca tccagatgac ccagtctcca tcctccctgt ctgcatctgt aggagacaga 121 gtcaccatca cttgcaaggc cagtgagaat gtggtttctt atgtatcctg gtatcagcag 181 aaaccaggga aagcccctaa gctcctgatc tatggggcat ccaaccggaa cactggggtc 241 ccatcaaggt tcagtggcag tggatctggg acagatttca ctctcaccat cagcagtctg 301 caacctgaag attttgcaac ttactactgt gggcagagtt acaactatcc gtacacgttt 361 ggccagggga ccaagctgga gatcaaacga actgtggctg caccatctgt cttcatcttc 421 ccgccatctg atgagcagtt gaaatctgga actgcctctg ttgtgtgcct gctgaataac 481 ttctatccca gagaggccaa agtacagtgg aaggtggata acgccctcca atcgggtaac 541 tcccaggaga gtgtcacaga gcaggacagc aaggacagca cctacagcct cagcagcacc 601 ctgacgctga gcaaagcaga ctacgagaaa cacaaagtct acgcctgcga agtcacccat 661 cagggcctga gctcgcccgt cacaaagagc ttcaacaggg gagagtgttg a (24) Protein Sequence Defining the Full Length Humanized Hu2B8 Kv1-39.1 Light Chain Variable Region and Human Kappa Chain Constant Region (Km(3) allotype) (allele 1) (SEQ ID NO. 177) 1 diqmtqspss lsasvgdrvt itckasenvy syvswyqqkp gkapklliyg asnrntgvps 61 rfsgsgsgtd ftltisslqp edfatyycgq synypytfgq gtkleikrtv aapsvfifpp 121 sdeqlksgta svvcllnnfy preakvqwkv dnalqsgnsq esvteqdskd styslsstlt 181 lskadyekhk vyacevthqg lsspvtksfn rgec (25) Nucleic Acid Sequence Encoding Humanized Hu2B8 Kv3-15.1 Light Chain Variable Region (signal sequence underlined) (SEQ ID NO. 178) 1 atggaagccc cagcgcagct tctcttcctc ctgctactct ggctcccaga taccactgga 61 gaaatagtga tgacgcagtc tccagccacc ctgtctgtgt ctccagggga aagagccacc 121 ctctcctgca aggccagtga gaatgtggtt tcttatgtat cctggtacca gcagaaacct 181 ggccaggctc ccaggctcct catctatggg gcatccaacc ggaacactgg tatcccagcc 241 aggttcagtg gcagtgggtc tgggacagag ttcactctca ccatcagcag cctgcagtct 301 gaagattttg cagtttatta ctgtgggcag agttacaact atccgtacac gtttggccag 361 gggaccaagc tggagatcaa ac (26) Protein Sequence Defining Humanized Hu2B8 Kv3-15.1 Light Chain Variable Region (without signal sequence) (SEQ ID NO. 179) 1 eivmtqspat lsyspgerat lsckasenvv syvswyqqkp gqaprlliyg asnrntgipa 61 rfsgsgsgte ftltisslqs edfavyycgq synypytfgq gtkleik (27) Nucleic Acid Encoding the Full Length Humanized Hu2B8 Ky3-15.1 Light Chain Variable Region and Human Kappa Chain Constant Region (Km(3) allotype) (allele 2) (signal sequence underlined) (SEQ ID NO. 180) 1 atggaagccc cagcgcagct tctcttcctc ctgctactct ggctcccaga taccactgga 61 gaaatagtga tgacgcagtc tccagccacc ctgtctgtgt ctccagggga aagagccacc 121 ctctcctgca aggccagtga gaatgtggtt tcttatgtat cctggtacca gcagaaacct 181 ggccaggctc ccaggctcct catctatggg gcatccaacc ggaacactgg tatcccagcc 241 aggttcagtg gcagtgggtc tgggacagag ttcactctca ccatcagcag cctgcagtct 301 gaagattttg cagtttatta ctgtgggcag agttacaact atccgtacac gtttggccag 361 gggaccaagc tggagatcaa acgaactgtg gctgcaccat ctgtcttcat cttcccgcca 421 tctgatgagc agttgaaatc tggaactgcc tctgttgtgt gcctgctgaa taacttctat 481 cccagagagg ccaaagtaca gtggaaggtg gataacgccc tccaatcggg taactcccag 541 gagagtgtca cagagcagga cagcaaggac agcacctaca gcctcagcag caccctgacg 601 ctgagcaaag cagactacga gaaacacaaa gtctacgcct gcgaagtcac ccatcagggc 661 ctgagctcgc ccgtcacaaa gagcttcaac aggggagagt gttga (28) Protein Sequence Defining Humanized Hu2B8 Kv3-15.1 Light Chain Variable Region and Human Kappa Chain Constant Region (Km(3) allotype) (allele 2) (without signal sequence) (SEQ ID NO. 181) 1 eivmtqspat lsyspgerat lsckasenvv syvswyqqkp gqaprlliyg asnrntgipa 61 rfsgsgsgte ftltisslqs edfavyycgq synypytfgq gtkleikrtv aapsvfifpp 121 sdeqlksgta svvcllnnfy preakvqwkv dnalqsgnsq esvteqdskd styslsstlt 181 lskadyekhk vyacevthgg lsspvtksfn rgec

[0214] For convenience, Table 13 provides a concordance chart showing the correspondence between the full length sequences and of the antibodies discussed in this section with those presented in the Sequence Listing.

TABLE-US-00020 TABLE 13 SEQ. ID NO. Protein or Nucleic Acid 154 Chimeric 2B8 IgG1 (G1m(17,1)) - nucleic acid 155 Chimeric 2B8 IgG1 (G1m(17,1)) - protein 156 Chimeric 2B8 Kappa (Km(3)) - nucleic acid 157 Chimeric 2B8 Kappa (Km(3)) - protein 158 Hu2B8 Hv1f.1 Heavy Chain Variable Region - nucleic acid 159 Hu2B8 Hv1f.1 Heavy Chain Variable Region - protein 160 Human IgG1 Heavy Chain Constant Region (G1m(17,1)) allotype - nucleic acid 161 Human IgG1 Heavy Chain Constant Region (G1m(17,1)) allotype - protein 162 Hu2B8 Hv1f.1 + IgG1 Constant (G1m(17,1) allotype) - nucleic acid 163 Hu2B8 Hv1f.1 + IgG1 Constant (G1m(17,1) allotype) - protein 164 Hu2B8 Hv5a.1 Heavy Chain Variable Region - nucleic acid 165 Hu2B8 Hv5a.1 Heavy Chain Variable Region - protein 166 Hu2B8 Hv5a.1 + IgG1 Constant (G1m(17,1) allotype) - nucleic acid 167 Hu2B8 Hv5a.1 + IgG1 Constant (G1m(17,1) allotype) - protein 168 Hu2B8 Hv5-51.1 Heavy Chain Variable Region - nucleic acid 169 Hu2B8 Hv5-51.1 Heavy Chain Variable Region - protein 170 Hu2B8 Hv5-51.1 + IgG1 Constant (G1m(17,1 allotype) - nucleic acid 171 Hu2B8 Hv5-51.1 + IgG1 Constant (G1m(17,1 allotype) - protein 172 Hu2B8 Kv1-39.1 Kappa Chain Variable Region - nucleic acid 173 Hu2B8 Kv1-39.1 Kappa Chain Variable Region - protein 174 Human Kappa Chain Constant Region (Km(3) allotype) (allele 2) - nucleic acid 175 Human Kappa Chain Constant Region (Km(3) allotype) (allele 2) - protein 176 Hu2B8 Kv1-39.1 + Kappa Constant (Km(3) allotype) (allele 2) - nucleic acid 177 Hu2B8 Kv1-39.1 + Kappa Constant (Km(3) allotype) (allele 2) - protein 178 Hu2B8 Kv3-15.1 Kappa Chain Variable Region - nucleic acid 179 Hu2B8 Kv3-15.1 Kappa Chain Variable Region - protein 180 Hu2B8 Kv3-15.1 + Kappa Constant (Km(3) allotype) (allele 2) - nucleic acid 181 Hu2B8 Kv3-15.1 + Kappa Constant (Km(3) allotype) (allele 2) - protein

B. Humanization Procedure 2

[0215] The second humanization method employed for reducing immunogenicity of the mouse 2B8 antibody is based on the method described in Studnicka et al. (1994) PROTEIN ENG. 7:805-814. The heavy and kappa human germline variable regions most identical (at the amino acid level) to those of mouse 2B8 were identified. Residues that differed between mouse and human were converted into the human sequence depending on the likely risk that such a change would affect binding or immunogenicity. Low risk residues (i.e., residues that when changed would likely not affect antigen binding and would also reduce potential immunogenicity) were changed to the human amino acid in the heavy variable region (creating LR2B8HC) and the kappa variable region (creating LR2B8LC). Additionally, low risk and medium risk (i.e., residues that when changed are somewhat likely to have an effect on antigen binding residues and would also reduce potential immunogenicity) were changed to the human amino acid in the heavy variable region (creating LRMR2B8HC) and the kappa variable region (creating LRMR2B8LC). The human IgG1 heavy chain constant region (G1m(3) allotype (allele 1)) was added to the carboxyl terminus of the two human engineered heavy variable regions and the human Kappa constant region (Km(3) allotype (allele 1)) was added to the carboxyl terminus of two human engineered light variable regions, thus creating four human engineered antibody chains. Variable region nucleic acid sequences were first synthesized by gene synthesis methods and then added to human constant region sequences. These human engineered antibodies were cloned into mammalian protein expression vectors, and protein was expressed in the four possible combinations of heavy chain plus light chain. Binding of the chimeric, chimeric/humanized, or humanized antibodies to human HGF was measured using conventional techniques, as described below.

[0216] The nucleic acid sequences encoding and the protein sequences defining each of the humanized antibodies are summarized below. In this section, the last nucleotide of each variable region is the first base of the next codon generated by the variable/constant region junction. This nucleotide is included in the Variable Region because it is part of that exon. Amino acid sequences of Constant Regions listed below include the translation of this junction codon.

TABLE-US-00021 (1) Nucleic Acid Sequence Encoding the Humanized LR2B8HC Heavy Chain Variable Region (signal sequence underlined) (SEQ ID NO. 182) 1 atgggctggt catatattat tctctttctt gttgctaccg ctaccgatgt gcactctcaa 61 gtccaactcg tacaaccagg cgctgaagtc gtaaaacccg gaacatctgt taaactctca 121 tgcaaagcct caggatacac tttcacaact tactggatgc attgggtcaa tcaagccccc 181 ggacaaggcc tcgaatggat tggcgaaatt aacccaacta acggacatac taattataat 241 gaaaaattta agggcaaagc tacactcacc gtcgataaat caacctctac agcttatatg 301 gaactttcat ccctgagatc agaagataca gccgtctact attgcgccag aaactacgta 361 ggatcaatat tcgattactg gggtcaaggc actctcctca cagtcagctc ag c2) Protein Sequence Defining Humanized LR2B8HC Heavy Chain Variable Region (without signal sequence) (SEQ ID NO. 183) 1 qvqlvqpgae vvkpgtsvkl sckasgytft tywmhwvnqa pgqglewige inptnghtny 61 nekfkgkatl tvdkststay melsslrsed tavyycarny vgsifdywgq gtlltvss (3) Nucleic Acid Sequence Encoding the Human IgG1 Heavy Chain Constant Region (G1m(3) allotype) (allele 1) (SEQ ID NO. 184) 1 ccagcacaaa gggcccatcg gtcttccccc tggcaccctc ctccaagagc acctctgggg 61 gcacagcggc cctgggctgc ctggtcaagg actacttccc cgaaccggtg acggtgtcgt 121 ggaactcagg cgccctgacc agcggcgtgc acaccttccc ggctgtccta cagtcctcag 181 gactctactc cctcagcagc gtggtgaccg tgccctccag cagcttgggc acccagacct 241 acatctgcaa cgtgaatcac aagcccagca acaccaaggt ggacaagaga gttgagccca 301 aatcttgtga caaaactcac acatgtccac cgtgcccagc acctgaactc ctggggggac 361 cgtcagtctt cctcttcccc ccaaaaccca aggacaccct catgatctcc cggacccctg 421 aggtcacatg cgtggtggtg gacgtgagcc acgaagaccc tgaggtcaag ttcaactggt 481 acgtggacgg cgtggaggtg cataatgcca agacaaagcc gcgggaggag cagtacaaca 541 gcacgtaccg tgtggtcagc gtcctcaccg tcctgcacca ggactggctg aatggcaagg 601 agtacaagtg caaggtctcc aacaaagccc tcccagcccc catcgagaaa accatctcca 661 aagccaaagg gcagccccga gaaccacagg tgtacaccct gcccccatcc cgggaggaga 721 tgaccaagaa ccaggtcagc ctgacctgcc tggtcaaagg cttctatccc agcgacatcg 781 ccgtggagtg ggagagcaat gggcagccgg agaacaacta caagaccacg cctcccgtgc 841 tggactccga cggctccttc ttcctctata gcaagctcac cgtggacaag ageaggtggc 901 agcaggggaa cgtcttctca tgctccgtga tgcatgaggc tctgcacaac cactacacgc 961 agaagagcct ctccctgtcc ccgggtaaat ga (4) Protein Sequence Defining Human IgG1 Heavy Chain Constant Region (G1m(3) allotype) (allele 1 or 2) (SEQ ID NO. 185). The first amino acid is derived from translation of the last nucleotide of variable region and the beginning two nucleotides of the IgG1 Heavy Chain sequence. 1 astkgpsvfp lapsskstsg gtaalgclvk dyfpepvtvs wnsgaltsgv htfpavlqss 61 glyslssvvt vpssslgtqt yicnvnhkps ntkvdkrvep kscdkthtcp pcpapellgg 121 psvflfppkp kdtlmisrtp evtcvvvdvs hedpevkfnw yvdgvevhna ktkpreeqyn 181 styrvvsvlt vlhqdwlngk eykckvsnka lpapiektis kakgqprepq vytlppsree 241 mtknqvsltc lvkgfypsdi avewesngqp ennykttppv ldsdgsffly skltvdksrw 301 qqgnvfscsv mhealhnhyt qks1s1spgk (5) Nucleic Acid Sequence Encoding the Full Length Heavy Chain Humanized LR2B8HC Heavy Chain Variable Region and Human IgG1 Heavy Chain Constant Region (G1m(3) allotype) (allele 1) (signal sequence underlined) (SEQ ID NO. 186) 1 atgggctggt catatattat tctctttctt gttgctaccg ctaccgatgt gcactctcaa 61 gtccaactcg tacaaccagg cgctgaagtc gtaaaacccg gaacatctgt taaactctca 121 tgcaaagcct caggatacac tttcacaact tactggatgc attgggtcaa tcaagccccc 181 ggacaaggcc tcgaatggat tggcgaaatt aacccaacta acggacatac taattataat 241 gaaaaattta agggcaaagc tacactcacc gtcgataaat caacctctac agcttatatg 301 gaactttcat ccctgagatc agaagataca gccgtctact attgcgccag aaactacgta 361 ggatcaatat tcgattactg gggtcaaggc actctcctca cagtcagctc agccagcaca 421 aagggcccat cggtcttccc cctggcaccc tcctccaaga gcacctctgg gggcacagcg 481 gccctgggct gcctggtcaa ggactacttc cccgaaccgg tgacggtgtc gtggaactca 541 ggcgccctga ccagcggcgt gcacaccttc ccggctgtcc tacagtcctc aggactctac 601 tccctcagca gcgtggtgac cgtgccctcc agcagcttgg gcacccagac ctacatctgc 661 aacgtgaatc acaagcccag caacaccaag gtggacaaga gagttgagcc caaatcttgt 721 gacaaaactc acacatgtcc accgtgccca gcacctgaac tcctgggggg accgtcagtc 781 ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 841 tgcgtggtgg tggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 901 ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cagcacgtac 961 cgtgtggtca gcgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaag 1021 tgcaaggtct ccaacaaagc cctcccagcc cccatcgaga aaaccatctc caaagccaaa 1081 gggcagcccc gagaaccaca ggtgtacacc ctgcccccat cccgggagga gatgaccaag 1141 aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 1201 tgggagagca atgggcagcc ggagaacaac tacaagacca cgcctcccgt gctggactcc 1261 gacggctcct tcttcctcta tagcaagctc accgtggaca agagcaggtg gcagcagggg 1321 aacgtcttct catgctccgt gatgcatgag gctctgcaca accactacac gcagaagagc 1381 ctctccctgt ccccgggtaa atga (6) Protein Sequence Defining the Full Length Heavy Chain Humanized LR2B8HC Heavy Chain Variable Region and Human IgG1 Heavy Chain Constant Region (G1m(3) allotype) (allele 1) (without signal sequence) (SEQ ID NO. 187) 1 qvqlvqpgae vvkpgtsvkl sckasgytft tywmhwvnqa pgqglewige inptnghtny 61 nekfkgkatl tvdkststay melsslrsed tavyycarny vgsifdywgq gtlltvssas 121 tkgpsvfpla psskstsggt aalgclvkdy fpepvtvswn sgaltsgvht fpavlqssgl 181 yslssvvtvp ssslgtqtyi cnvnhkpsnt kvdkrvepks cdkthtcppc papellggps 241 vflfppkpkd tlmisrtpev tcvvvdvshe dpevkfnwyv dgvevhnakt kpreeqynst 301 yrvvsvltvl hqdwlngkey kckvsnkalp apiektiska kgqprepqvy tlppsreemt 361 knqvsltclv kgfypsdiav ewesngqpen nykttppvld sdgsfflysk ltvdksrwqq 421 gnvfscsvmh ealhnhytqk slslspgk (7) Nucleic Acid Sequence Encoding the Humanized LRMR2B8HC Heavy Chain Variable Region (signal sequence underlined) (SEQ ID NO. 188) 1 atgggttggt catatattat actctttctc gtagccaccg ccaccgacgt acactctcag 61 gttcaactcg tacaacccgg cgccgaagtc aagaaaccag gaacatcagt caaactctca 121 tgtaaagcaa gcggatacac ctttactact tattggatgc attgggtaag acaagccccc 181 ggacaaggac tcgaatggat aggcgaaata aatcccacta atggacatac aaattataat 241 caaaaatttc aaggacgcgc tacactcacc gtcgataaat caacctcaac cgcatacatg 301 gaactcagct ccctccgatc cgaagacact gccgtttatt attgtgccag aaactatgta 361 ggatctattt tcgattactg gggacaagga acacttctca ccgtaagctc ag (8) Protein Sequence Defining Humanized LRMR2B8HC Heavy Chain Variable Region (without signal sequence) (SEQ ID NO. 189) 1 qvqlvqpgae vkkpgtsvkl sckasgytft tywmhwvrqa pgqglewige inptnghtny 61 nqkfqgratl tvdkststay melsslrsed tavyycarny vgsifdywgq gtlltvss (9) Nucleic Acid Sequence Encoding the Full Length Heavy Chain Humanized LRMR2B8HC Heavy Chain Variable Region and Human IgG1 Heavy Chain Constant Region (G1m(3) allotype) (allele 1) (signal sequence underlined) (SEQ ID NO. 190) 1 atgggttggt catatattat actctttctc gtagccaccg ccaccgacgt acactctcag 61 gttcaactcg tacaacccgg cgccgaagtc aagaaaccag gaacatcagt caaactctca 121 tgtaaagcaa gcggatacac ctttactact tattggatgc attgggtaag acaagccccc 181 ggacaaggac tcgaatggat aggcgaaata aatcccacta atggacatac aaattataat 241 caaaaatttc aaggacgcgc tacactcacc gtcgataaat caacctcaac cgcatacatg 301 gaactcagct ccctccgatc cgaagacact gccgtttatt attgtgccag aaactatgta 361 ggatctattt tcgattactg gggacaagga acacttctca ccgtaagctc agccagcaca 421 aagggcccat cggtcttccc cctggcaccc tcctccaaga gcacctctgg gggcacagcg 481 gccctgggct gcctggtcaa ggactacttc cccgaaccgg tgacggtgtc gtggaactca 541 ggcgccctga ccagcggcgt gcacaccttc ccggctgtcc tacagtcctc aggactctac 601 tccctcagca gcgtggtgac cgtgccctcc agcagcttgg gcacccagac ctacatctgc 661 aacgtgaatc acaagcccag caacaccaag gtggacaaga gagttgagcc caaatcttgt 721 gacaaaactc acacatgtcc accgtgccca gcacctgaac tcctgggggg accgtcagtc 781 ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 841 tgcgtggtgg tggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 901 ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cagcacgtac 961 cgtgtggtca gcgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaag 1021 tgcaaggtct ccaacaaagc cctcccagcc cccatcgaga aaaccatctc caaagccaaa 1081 gggcagcccc gagaaccaca ggtgtacacc ctgcccccat cccgggagga gatgaccaag 1141 aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 1201 tgggagagca atgggcagcc ggagaacaac tacaagacca cgcctcccgt gctggactcc 1261 gacggctcct tcttcctcta tagcaagctc accgtggaca agagcaggtg gcagcagggg 1321 aacgtcttct catgctccgt gatgcatgag gctctgcaca accactacac gcagaagagc 1381 ctctccctgt ccccgggtaa atga (10) Protein Sequence Defining the Full Length Heavy Chain Humanized LRMR2B8HC Heavy Chain Variable Region and Human IgG1 Heavy Chain Constant Region (G1m(3) allotype) (allele 1) (without signal sequence) (SEQ ID NO. 191) 1 qvqlvqpgae vkkpgtsvkl sckasgytft tywmhwvrqa pgqglewige inptnghtny 61 nqkfqgratl tvdkststay melsslrsed tavyycarny vgsifdywgq gtlltvssas 121 tkgpsvfpla psskstsggt aalgclvkdy fpepvtvswn sgaltsgvht fpavlqssgl 181 yslssvvtvp ssslgtqtyi cnvnhkpsnt kvdkrvepks cdkthtcppc papellggps 241 vflfppkpkd tlmisrtpev tcvvvdvshe dpevkfnwyv dgvevhnakt kpreeqynst 301 yrvvsvltvl hqdwlngkey kckvsnkalp apiektiska kgqprepqvy tlppsreemt 361 knqvsltclv kgfypsdiav ewesngqpen nykttppvld sdgsfflysk ltvdksrwqq 421 gnvfscsvmh ealhnhytqk slslspgk (11) Nucleic Acid Sequence Encoding the Humanized LR2B8LC Light Chain Variable Region (signal sequence underlined) (SEQ ID NO. 192) 1 atggaaagtc agacccttgt attcatctct attcttcttt ggttgtatgg agcagacggc 61 gacattgtga tgacccaatc ccccgatagt atggccatga gtgtaggaga aagagtcacc 121 cttaattgca aagcctccga aaatgtcgtt tcatatgtgt cttggtatca acaaaaaccc 181 ggccaatcac ccaaacttct catatacggc gcttcaaaca gaaacacagg cgttcccgac 241 agatttagtg gatccggatc agctacagat ttcaccctta ccatcagttc agttcaagca 301 gaagacgttg cagactatca ttgcggacaa tcttataact acccttacac attcggacaa (12) Protein Sequence Defining Humanized LR2B8LC Light Chain Variable Region (without signal sequence) (SEQ ID NO. 193) 1 divmtqspds mamsvgervt lnckasenvv syvswyqqkp gqspklliyg asnrntgvpd 61 rfsgsgsatd ftltissvqa edvadyhcgq synypytfgq gtkleik (13) Nucleic Acid Sequence Encoding the Human Kappa Chain Constant Region (Km(3) allotype) (allele 1) (SEQ ID NO. 194) 1 gtacggtggc tgcaccatct gtcttcatct tcccgccatc tgatgagcag ttgaaatctg 61 gaactgcctc tgttgtgtgc ctgctgaata acttctatcc cagagaggcc aaagtacagt 121 ggaaggtgga taacgccctc caatcgggta actcccagga gagtgtcaca gagcaggaca 181 gcaaggacag cacctacagc ctcagcagca ccctgacgct gagcaaagca gactacgaga 241 aacacaaagt ctacgcctgc gaagtcaccc atcagggcct gagctcgccc gtcacaaaga 301 gcttcaacag gggagagtgt tag (14) Protein Sequence Defining the Human Kappa Chain Constant Region (Km(3) allotype) (allele 1) (SEQ ID NO. 195). The first amino acid derived from translation of the last nucleotide of variable region and beginning two nucleotides of the Kappa Light Chain sequence. 1 rtvaapsvfi fppsdeqlks gtasvvclln nfypreakvq wkvdnalqsg nsqesvteqd 61 skdstyslss tltlskadye khkvyacevt hqglsspvtk sfnrgec (15) Nucleic Acid Sequence Encoding the Full Length Humanized LR2B8LC Light Chain Variable Region and the Human Kappa Chain Constant Region (Km(3) allotype) (allele 1) (SEQ ID NO. 196) 1 atggaaagtc agacccttgt attcatctct attcttcttt ggttgtatgg agcagacggc 61 gacattgtga tgacccaatc ccccgatagt atggccatga gtgtaggaga aagagtcacc 121 cttaattgca aagcctccga aaatgtcgtt tcatatgtgt cttggtatca acaaaaaccc 181 ggccaatcac ccaaacttct catatacggc gcttcaaaca gaaacacagg cgttcccgac 241 agatttagtg gatccggatc agctacagat ttcaccctta ccatcagttc agttcaagca 301 gaagacgttg cagactatca ttgcggacaa tcttataact acccttacac attcggacaa 361 ggaaccaaac tcgaaattaa acgtacggtg gctgcaccat ctgtcttcat cttcccgcca 421 tctgatgagc agttgaaatc tggaactgcc tctgttgtgt gcctgctgaa taacttctat 481 cccagagagg ccaaagtaca gtggaaggtg gataacgccc tccaatcggg taactcccag 541 gagagtgtca cagagcagga cagcaaggac agcacctaca gcctcagcag caccctgacg 601 ctgagcaaag cagactacga gaaacacaaa gtctacgcct gcgaagtcac ccatcagggc 661 ctgagctcgc ccgtcacaaa gagcttcaac aggggagagt gttag (16) Protein Sequence Encoding the Full Length Humanized LR2B8LC Light Chain Variable Region and the Human Kappa Chain Constant Region (Km(3) allotype) (allele 1) (SEQ ID NO. 197) 1 divmtqspds mamsvgervt lnckasenvv syvswyqqkp gqspklliyg asnrntgvpd 61 rfsgsgsatd ftltissvqa edvadyhcgq synypytfgq gtkleikrtv aapsvfifpp 121 sdeqlksgta svvcllnnfy preakvqwkv dnalqsgnsq esvteqdskd styslsstlt 181 lskadyekhk vyacevthqg lsspvtksfn rgec (17) Nucleic Acid Sequence Encoding the Humanized LRMR2B8LC Light Chain Variable Region (signal sequence underlined) (SEQ ID NO. 198) 1 atggaatccc aaacccttgt tttcatctct atccttctct ggctttatgg cgccgacgga 61 gacatcgtaa tgacacaatc ccctgactct cttgctatga gcttgggcga acgagtaaca 121 cttaactgca aagcatccga aaatgtcgta tcttacgtat cctggtatca gcaaaaacct 181 ggtcaaagtc ctaaacttct tatatatggt gcaagtaatc gtgaaagtgg cgtcccagac 241 agatttagcg gttcaggttc agcaactgac tttacactta caatttctag cgttcaggcc 301 gaagacgttg cagactatca ttgtggacaa tcttataact atccttatac tttcggacaa 361 ggcactaaac ttgaaattaa ac (18) Protein Sequence Defining the Humanized LRMR2B8LC Light Chain Variable Region (without signal sequence) (SEQ ID NO. 199) 1 divmtqspds lamslgervt lnckasenyv syvswyqqkp gqspklliyg asnresgvpd 61 rfsgsgsatd ftltissvqa edvadyhcgq synypytfgq gtkleik (19) Nucleic Acid Sequence Encoding the Full Length Humanized LRMR2B8LC Light Chain Variable Region and the Human Kappa Chain Constant Region (Km(3) allotype) (allele 1) (signal sequence underlined) (SEQ ID NO. 200) 1 atggaatccc aaacccttgt tttcatctct atccttctct ggctttatgg cgccgacgga 61 gacatcgtaa tgacacaatc ccctgactct cttgctatga gcttgggcga acgagtaaca 121 cttaactgca aagcatccga aaatgtcgta tcttacgtat cctggtatca gcaaaaacct 181 ggtcaaagtc ctaaacttct tatatatggt gcaagtaatc gtgaaagtgg cgtcccagac 241 agatttagcg gttcaggttc agcaactgac tttacactta caatttctag cgttcaggcc 301 gaagacgttg cagactatca ttgtggacaa tcttataact atccttatac tttcggacaa 361 ggcactaaac ttgaaattaa acgtacggtg gctgcaccat ctgtcttcat cttcccgcca 421 tctgatgagc agttgaaatc tggaactgcc tctgttgtgt gcctgctgaa taacttctat 481 cccagagagg ccaaagtaca gtggaaggtg gataacgccc tccaatcggg taactcccag 541 gagagtgtca cagagcagga cagcaaggac agcacctaca gcctcagcag caccctgacg 601 ctgagcaaag cagactacga gaaacacaaa gtctacgcct gcgaagtcac ccatcagggc 661 ctgagctcgc ccgtcacaaa gagcttcaac aggggagagt gttag (20) Protein Sequence Defining the Full Length Humanized LRMR2B8LC Light Chain Variable Region and the Human Kappa Chain Constant Region (Km(3) allotype) (allele 1) (SEQ ID NO. 201) 1 divmtqspds lamslgervt lnckasenvv syvswyqqkp gqspklliyg asnresgvpd 61 rfsgsgsatd ftltissvqa edvadyhcgq synypytfgq gtkleikrtv aapsvfifpp

121 sdeqlksgta svvcllnnfy preakvqwkv dnalqsgnsq esvteqdskd styslsstlt 181 lskadyekhk vyacevthqg lsspvtksfn rgec

[0217] For convenience, Table 14 provides a concordance chart showing the correspondence between the full length sequences and of the antibodies discussed in this section with those presented in the Sequence Listing.

TABLE-US-00022 TABLE 14 SEQ. ID NO. Protein or Nucleic Acid 182 LR2B8HC Heavy Chain Variable Region - nucleic acid 183 LR2B8HC Heavy Chain Variable Region - protein 184 Human IgG1 Heavy Chain Constant Region (G1m(3) allotype) (allele 1) - nucleic acid 185 Human IgG1 Heavy Chain Constant Region (G1m(3) allotype) (allele 1) - protein 186 LR2B8HC + IgG1 Constant (G1m(3) allotype) (allele 1) - nucleic acid 187 LR2B8HC + IgG1 Constant (G1m(3) allotype) (allele 1) - protein 188 LRMR2B8HC Heavy Chain Variable Region - nucleic acid 189 LRMR2B8HC Heavy Chain Variable Region - protein 190 LRMR2B8HC + IgG1 Constant (G1m(3) allotype) (allele 1) - nucleic acid 191 LRMR2B8HC + IgG1 Constant (G1m(3) allotype) (allele 1) - protein 192 LR2B8LC Light Chain Variable Region - nucleic acid 193 LR2B8LC Light Chain Variable Region - protein 194 Human Kappa Chain Constant Region (Km(3) allotype) (allele 1) - nucleic acid 195 Human Kappa Chain Constant Region (Km(3) allotype) (allele 1) - protein 196 LR2B8LC + Kappa Constant (Km(3) allotype) (allele 1) - nucleic acid 197 LR2B8LC + Kappa Constant (Km(3) allotype) (allele 1) - protein 198 LRMR2B8LC Light Chain Variable Region - nucleic acid 199 LRMR2B8LC Light Chain Variable Region - protein 200 LRMR2B8LC + Kappa Constant (Km(3) allotype) (allele 1) - nucleic acid 201 LRMR2B8LC + Kappa Constant (Km(3) allotype) (allele 1) - protein

[0218] Table 15 summarizes the heavy chain CDR sequences (Kabat Definition) of the humanized 2B8 antibodies prepared by humanization procedure 1 and by humanization procedure 2 described herein above in this Example.

TABLE-US-00023 TABLE 15 Full Length Heavy Chain Antibody CDR1 CDR2 CDR3 Variable Region Murine 2B8 TYWMH EINPTNGHTNYNEKFKS NYVGSIFDY SEQ ID NO: 12 Heavy (SEQ ID NO: 15) (SEQ ID NO: 16) (SEQ ID NO: 17) Hu2B8 Hv1f.1 TYWMH EINPTNGHTNYNEKFQG NYVGSIFDY SEQ ID NO: 159 (SEQ ID NO: 15) (SEQ ID NO: 202) (SEQ ID NO: 17) Hu2B8 Hv5a.1 TYWMH EINPTNGHTNYNPSFQG NYVGSIFDY SEQ ID NO: 165 (SEQ ID NO: 15) (SEQ ID NO: 203) (SEQ ID NO: 17) Hu2B8 Hv5- TYWMH EINPTNGHTNYNPSFQG NYVGSIFDY SEQ ID NO: 169 51.1 (SEQ ID NO: 15) (SEQ ID NO: 203) (SEQ ID NO: 17) LR2B8HC TYWMH EINPTNGHTNYNEKFKG NYVGSIFDY SEQ ID NO: 183 (SEQ ID NO: 15) (SEQ ID NO: 204) (SEQ ID NO: 17) LRMR2B8HC TYWMH EINPTNGHTNYNQKFQG NYVGSIFDY SEQ ID NO: 189 (SEQ ID NO: 15) (SEQ ID NO: 205) (SEQ ID NO: 17)

[0219] Table 16 summarizes the light chain CDR sequences (Kabat Definition) of the humanized 2B8 antibodies prepared by humanization procedure 1 and by humanization procedure 2 described herein above in this Example.

TABLE-US-00024 TABLE 16 Full Length Light Chain Antibody CDR1 CDR2 CDR3 Variable Region Murine 2B8 Light KASENVVSYVS GASNRNT GQSYNYPYT SEQ ID NO: 14 (SEQ ID NO: 18) (SEQ ID NO: 19) (SEQ ID NO: 20) Hu2B8 Kv1-39.1 KASENVVSYVS GASNRNT GQSYNYPYT SEQ ID NO: 173 (SEQ ID NO: 18) (SEQ ID NO: 19) (SEQ ID NO: 20) Hu2B8 Kv3-15.1 KASENVVSYVS GASNRNT GQSYNYPYT SEQ ID NO: 179 (SEQ ID NO: 18) (SEQ ID NO: 19) (SEQ ID NO: 20) LR2B8LC KASENVVSYVS GASNRNT GQSYNYPYT SEQ ID NO: 193 (SEQ ID NO: 18) (SEQ ID NO: 19) (SEQ ID NO: 20) LRMR2B8LC KASENVVSYVS GASNRES GQSYNYPYT SEQ ID NO: 199 (SEQ ID NO: 18) (SEQ ID NO: 206) (SEQ ID NO: 20)

C. Binding Affinity of Humanized 2B8 Antibodies

[0220] Antigen-binding affinity and kinetics of interaction were assessed by surface plasmon resonance technology using a BIAcore T100 instrument. Mouse anti-human immunoglobulins (Jackson ImmunoResearch Labs, 209-005-098) were immobilized on carboxymethylated dextran CM4 sensor chips (BIAcore, Catalog No. BR-1005-34) by amine coupling (BIAcore, Catalog No. BR-1000-50) using a standard coupling protocol according to manufacturer's recommendations. The analyses were performed at 25.degree. C. using PBS (GIBCO, Catalog No. 14040-133) containing 0.05% surfactant P20 (BIAcore, Catalog No. BR-1000-54), 2 mg/mL BSA (EMD, Catalog No. 2930) and 10 mg/mL CM-Dextran Sodium salt (Fluka, Catalog No. 86524) as running buffer.

[0221] The antibodies were captured on individual flow cell at a flow rate of 10 .mu.L/min. Injection time was variable for each antibody to yield approximately 20 RU of antibody captured for each cycle. Buffer or HGF (R&D Systems, Catalog No. 294-HGN-025) diluted in running buffer was injected sequentially over a reference surface (no antibody captured) and the active surface (antibody to be tested) for 2 minutes at 60 .mu.L/min. The dissociation phase was monitored for 15 or 90 minutes, depending on concentration. The surface then was regenerated with 10 mM Glycine-HCl, pH 2.0 (BIAcore, Catalog No. BR-1003-55) injected for 3 minutes at a flow rate of 60 .mu.L/min before another cycle was initiated. HGF concentrations tested were 1.88, 3.75 and 7.5 nM. Determination of kinetic parameters was achieved using the kinetic function of the BIAevalutation software with reference subtraction. Kinetic parameters for each antibody, k.sub.a (association rate constant), k.sub.d (dissociation rate constant) and K.sub.D (equilibrium dissociation constant) are summarized in FIG. 8.

[0222] The results summarized in FIG. 8 show that certain combinations of superhumanized heavy chains (Hu2B8 Hv5a.1, Hu2B8 Hv5-51.1 or Hu2B8 Hv1-f.1) and light chains (Hu2B8 Kv1-39.1 or Hu2B8 Kv3-15.1) retain similar binding affinity (K.sub.D) to HGF as chimeric 2B8 (mouse variable regions with human constant regions) and 2B8 (Table 5).

D. Mutually Exclusive Binding Assay

[0223] Mutually exclusive binding to HGF was assessed by surface plasmon resonance technology using a BIAcore T100 instrument. Mouse anti-human immunoglobulins (Jackson ImmunoResearch Labs, 209-005-098) were immobilized on carboxymethylated dextran CM5 sensor chips (BIAcore, Catalog No. BR-1006-68) by amine coupling (BIAcore, Catalog No. BR-1000-50) using a standard coupling protocol according to manufacturer's recommendations. The analyses were performed at 25.degree. C. using PBS (GIBCO, Catalog No. 14040-133) containing 0.05% surfactant P20 (BIAcore, #BR-1000-54), 2 mg/mL BSA (EMD, Catalog No. 2930) and 10 mg/ml CM-Dextran Sodium salt (Fluka, Catalog No. 86524) as running buffer.

[0224] The humanized antibodies were captured on an individual flow cell at a flow rate of 30 .mu.L/min. Injection time was variable for each antibody to yield approximately 150 RU of antibody captured for each cycle. HGF (R&D Systems, Catalog No. 294-HGN-025) diluted in running buffer at a final concentration of 7.5 .mu.g/mL was injected for 90 sec at 30 .mu.L/min over the captured humanized antibodies. Binding of HGF was monitored before subsequent injection of mouse 2B8 antibody or polyclonal goat anti-HGF antibody (R & D Systems, AF294) for 3 min at 30 .mu.L/min. The surface then was regenerated with 10 mM Glycine-HCl, pH 2.0 (BIAcore, Catalog No. BR-1003-55) injected for 3 min at a flow rate of 60 .mu.L/min before another antibody was tested. The results are summarized in FIG. 9.

[0225] Results summarized in FIG. 9 show that both humanized 2B8 antibodies and chimeric 2B8 antibodies prevent murine 2B8 from binding HGF. These results demonstrate that the humanized antibodies still bind the same HGF epitope as the original 2B8 antibody.

Example 13

Production of Humanized 2B8 Variants

a. HUMAN ENGINEERED.TM. Antibodies

[0226] Codon- and expression-optimized low risk and low-plus-moderate risk Human Engineered light chain (LR2B8LC and LRMR2B8LC, respectively) and heavy chains (LR2B8HC and LRMR2B8HC, respectively) were cloned in-phase into XOMA's transient antibody expression vectors, which contain human Kappa and Gamma-1 constant regions modules. The four Human Engineered 2B8 variants were produced by transient transfection in HEK293E cells. The following four antibodies were produced: [0227] HE2B8-1=LR2B8HC (+IgG1 constant region (G1m(3) allotype (allele 1)) (SEQ ID NO. 187) plus LR2B8LC (+Kappa constant region (Km(3) allotype (allele 1))) (SEQ ID NO. 197) [0228] HE2B8-2=LR2B8HC (+IgG1 constant region (G1m(3) allotype (allele 1)) (SEQ ID NO. 187) plus LRMR2B8LC (+Kappa constant region (Km(3) allotype (allele 1))) (SEQ ID NO. 201) [0229] HE2B8-3=LRMR2B8HC (+IgG1 constant region (G1m(3) allotype (allele 1)) (SEQ ID NO. 191) plus LR2B8LC (+Kappa constant region (Km(3) allotype (allele 1))) (SEQ ID NO. 197) [0230] HE2B8-4=LRMR2B8HC (+IgG1 constant region (G1m(3) allotype (allele 1)) (SEQ ID NO. 191) plus LRMR2B8LC (+Kappa constant region (Km(3) allotype (allele 1))) (SEQ ID NO. 201)

[0231] The light and heavy chains were co-transfected into XOMA's suspension adapted HEK293E cells grown in IS293 media (Irvine Scientific, Irvine, Calif.) using 2 liter shake flasks. After 24 hours in the shake flasks, 200 mL of transfected cells were centrifuged, resuspended in 40 mL of fresh medium and transferred to Integra flasks (Wilson Wolf Manufacturing Inc., MN) for production. After incubation for seven days, the cell suspensions were removed from the Integra flasks, centrifuged and the culture supernatants retained. Antibodies in the culture supernatants were purified on protein A spin columns (Pro-Chem), dialyzed against PBS, concentrated and sterile filtered.

b. SUPERHUMANIZED.TM. Antibodies

[0232] Full length Hu2B8_Hv5-51.1+human IgG1 constant domain (G1m(3) allotype) cDNA was cloned into pEE6.4 (Lonza Biologics, Berkshire, UK) using HindIII and EcoRI restriction sites. Full length Hu2B8-Kv1-39.1 variable region+human Kappa constant domain cDNA and full length Hu2B8_Kv3-15.1 variable region+human Kappa constant domain cDNA were each cloned into pEE14.4 (Lonza Biologics) using HindIII and EcoRI restriction sites. The hCMV-MIE promoter+full length Hu2B8_Hv5-51.1+human IgG1 constant domain (G1m(3) allotype) cDNA+SV40 poly A fragment (in pEE6.4) was removed by NotI/SalI digestion and inserted into either Kappa chain pEE14.4 vector through NotI/SalI sites, thus creating 2 different expression vectors that each simultaneously express heavy and light chain to make the following antibodies: [0233] sh2B8-9 (G1m(3))=hu2B8 Hv5-51.1 (+IgG1 constant region (G1m(3) allotype) (allele 2)) (SEQ ID NO. 210) plus hu2B8 Kv 1-39.1 (+Kappa constant region (Km(3) allotype (allele 2))) (SEQ ID NO: 177) [0234] sh2B8-12 (G1m(3))=hu2B8 Hv5-51.1 (+IgG1 constant region (G1m(3) allotype) (allele 2)) (SEQ ID NO. 210) plus hu2B8 Kv 3-15.1 (+Kappa constant region (Km(3) allotype (allele 2))) (SEQ ID No. 181)

[0235] The nucleic acid sequences encoding and the protein sequences defining the human IgG1 Heavy Constant Region G1m(3) allotype (allele 2) and each of the full length heavy chain sequences are set forth below. The light chain sequences were the same as described in Example 12.

TABLE-US-00025 (1) Nucleic Acid Sequence Encoding Human IgG1 Heavy Chain Constant Region (G1m(3) allotype) (allele 2) (SEQ ID NO. 207) 1 cctccaccaa gggcccatcg gtcttccccc tggcaccctc ctccaagagc acctctgggg 61 gcacagcggc cctgggctgc ctggtcaagg actacttccc cgaaccggtg acggtgtcgt 121 ggaactcagg cgccctgacc agcggcgtgc acaccttccc ggctgtccta cagtcctcag 181 gactctactc cctcagcagc gtggtgaccg tgccctccag cagcttgggc acccagacct 241 acatctgcaa cgtgaatcac aagcccagca acaccaaggt ggacaagaga gttgagccca 301 aatcttgtga caaaactcac acatgcccac cgtgcccagc acctgaactc ctggggggac 361 cgtcagtctt cctcttcccc ccaaaaccca aggacaccct catgatctcc cggacccctg 421 aggtcacatg cgtggtggtg gacgtgagcc acgaagaccc tgaggtcaag ttcaactggt 481 acgtggacgg cgtggaggtg cataatgcca agacaaagcc gcgggaggag cagtacaaca 541 gcacgtaccg tgtggtcagc gtcctcaccg tcctgcacca ggactggctg aatggcaagg 601 agtacaagtg caaggtctcc aacaaagccc tcccagcccc catcgagaag accatctcca 661 aagccaaagg gcagccccga gaaccacagg tgtacaccct gcccccatcc cgggaggaga 721 tgaccaagaa ccaggtcagc ctgacctgcc tggtcaaagg cttctatccc agcgacatcg 781 ccgtggagtg ggagagcaat gggcagccgg agaacaacta caagaccacg cctcccgtgc 841 tggactccga cggctccttc ttcctctaca gcaagctcac cgtggacaag agcaggtggc 901 agcaggggaa cgtcttctca tgctccgtga tgcatgaggc tctgcacaac cactacacgc 961 agaagagcct ctccctgtct ccgggtaaat ga (2) Protein Sequence Defining Human IgG1 Heavy Chain Constant Region (G1m(3) allotype) (allele 1 or 2) (SEQ ID NO. 208). The first amino acid is derived from translation of the last nucleotide of variable region and the beginning two nucleotides of the IgG1 Heavy Chain sequence. 1 astkgpsvfp lapsskstsg gtaalgclvk dyfpepvtvs wnsgaltsgv htfpavlqss 61 glyslssvvt vpssslgtqt yicnvnhkps ntkvdkrvep kscdkthtcp pcpapellgg 121 psvflfppkp kdtlmisrtp evtcvvvdvs hedpevkfnw yvdgvevhna ktkpreeqyn 181 styrvvsvlt vlhqdwlngh eykckvsnka lpapieltis kakgqprepq vytlppsree 241 mtknqvsltc lvkgfypsdi avewesngqp ennykttppv ldsdgsffly skltvdksrw 301 qqgnvfscsv mhealhnhyt qkslslspgk (3) Nucleic Acid Sequence Encoding the Full Length Chain Containing Humanized Hu2B8 Hv5-51.1 Heavy Chain Variable Region and the Human IgG1 Heavy Chain Constant Region G1m(3) allotype (allele 2) (signal sequence underlined) (SEQ ID NO. 209) 1 atggggtcaa ccgccatcct cgccctcctc ctggctgttc tccaaggagt ctgtgccgaa 61 gtgcagctgg tgcagtctgg agcagaggtg aaaaagcccg gggagtctct gaagatctcc 121 tgtaagggtt ctggatacag ctttaccacc tactggatgc actgggtgcg ccagatgccc 181 gggaaaggcc tggagtggat gggggagatt aatcctacca acggtcatac taactacaat 241 ccgtccttcc aaggccaggt caccatctca gctgacaagt ccatcagcac tgcctacctg 301 cagtggagca gcctgaaggc ctcggacacc gccatgtatt actgtgcgag aaactatgtt 361 ggtagcatct ttgactactg gggccaagga accctggtca ccgtctcctc agcctccacc 421 aagggcccat cggtcttccc cctggcaccc tcctccaaga gcacctctgg gggcacagcg 481 gccctgggct gcctggtcaa ggactacttc cccgaaccgg tgacggtgtc gtggaactca 541 ggcgccctga ccagcggcgt gcacaccttc ccggctgtcc tacagtcctc aggactctac 601 tccctcagca gcgtggtgac cgtgccctcc agcagcttgg gcacccagac ctacatctgc 661 aacgtgaatc acaagcccag caacaccaag gtggacaaga gagttgagcc caaatcttgt 721 gacaaaactc acacatgccc accgtgccca gcacctgaac tcctgggggg accgtcagtc 781 ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 841 tgcgtggtgg tggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 901 ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cagcacgtac 961 cgtgtggtca gcgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaag 1021 tgcaaggtct ccaacaaagc cctcccagcc cccatcgaga agaccatctc caaagccaaa 1081 gggcagcccc gagaaccaca ggtgtacacc ctgcccccat cccgggagga gatgaccaag 1141 aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 1201 tgggagagca atgggcagcc ggagaacaac tacaagacca cgcctcccgt gctggactcc 1261 gacggctcct tcttcctcta cagcaagctc accgtggaca agagcaggtg gcagcagggg 1321 aacgtcttct catgctccgt gatgcatgag gctctgcaca accactacac gcagaagagc 1381 ctctccctgt ctccgggtaa atga (4) Protein Sequence Defining the Full Length Heavy Chain Containing Humanized Hu2B8 Hv5-51.1 and the Human IgG1 Heavy Chain Constant Region G1m(3) allotype (allele 2) (without signal sequence) (SEQ ID NO. 210) 1 evqlvqsgae vkkpgeslki sckgsgysft tywmhwvrqm pgkglewmge inptnghtny 61 npsfqgqvti sadksistay lqwsslkasd tamyycarny vgsifdywgq gtlvtvssas 121 tkgpsvfpla psskstsggt aalgclvkdy fpepvtvswn sgaltsgvht fpavlqssgl 181 yslssvvtvp ssslgtqtyi cnvnhkpsnt kvdkrvepks cdkthtcppc papellggps 241 vflfppkpkd tlmisrtpev tcvvvdvshe dpevkfnwyv dgvevhnakt kpreeqynst 301 yrvvsvltvl hqdwlngkey kckvsnkalp apiektiska kgqprepqvy tlppsreemt 361 knqvsltclv kgfypsdiav ewesngqpen nykttppvld sdgsfflysk ltvdksrwqq 421 gnvfscsvmh ealhnhytqk slslspgk

[0236] Each dual expression vector was transfected into 293T cells for transient expression using DMEM 10% fetal bovine serum. Forty-eight hours after transfection, cells were washed with and then replaced with serum free medium, IS GRO.TM. (Irvine Scientific, Santa Ana, Calif.) containing 4 mM L-Glutamine. Supernatant was harvested daily and replaced with fresh media for 10 days. The culture supernatants were centrifuged, filtered (0.45 .mu.m) and concentrated 10-100 fold. Antibodies were purified on ProSep vA resin (Millipore), dialyzed against PBS, concentrated and sterile filtered.

Example 14

Binding Characteristics of Humanized 2B8 Variants

[0237] The humanized antibodies produced in Example 13 were characterized by their ability to bind hHGF and the recombinant HGF proteins produced in Example 3.

[0238] The antibodies were analyzed by surface-plasmon resonance using a BIAcore T100 instrument to assess their ability to bind hHGF and the fusion proteins discussed in Example 3. Each antibody was immobilized on a carboxymethylated dextran CM5 sensor chip (BIAcore, Catalog No. BR-1006-68) by amine coupling (BIAcore, Catalog No. BR-1000-50) using a standard coupling protocol according to manufacturer's instructions.

[0239] Analyses were performed at 25.degree. C. using PBS (GIBCO, Catalog No. 14040-133) containing 0.05% surfactant P20 (BIAcore, Catalog No. R-1000-54), 2 mg/mL BSA (EMD, Catalog No. 2930) and 10 mg/mL CM-Dextran Sodium salt (Fluka, Catalog No. 86524) as running buffer. Supernatant containing different HGF fusion proteins or supernatant from cells transfected with empty vector were injected over each antibody at a flow rate of 30 .mu.L/min for 3 minutes. The resulting binding was determined as resonance units (RU) over baseline 30 seconds after the end of injection. Binding was compared to human HGF (R&D Systems, Catalog No. 294-HGN-025) diluted in running buffer. Non-specific binding was monitored by comparing binding to a control surface. The results are summarized in the Table 17.

TABLE-US-00026 TABLE 17 rhHGF (R&D rmHGF (R&D MHM chimera MHM chimera MHM chimera Antibody Systems) Systems) (495-585) (507-585) (499-556) 2B8 Yes No Yes Yes Yes HE2B8-1 Yes No Yes Yes Yes HE2B8-2 Yes No Yes Yes Yes HE2B8-3 Yes No Yes Yes Yes HE2B8-4 Yes No Yes Yes Yes sh2B8-9 Yes No Yes Yes Yes (G1m(3)) sh2B8-12 Yes No Yes Yes Yes (G1m(3))

[0240] The results in Table 17 demonstrate that each of the humanized 2B8-based antibodies bind rhHGF and all three mouse-human-mouse chimeras.

Example 15

Binding Affinities of Humanized 2B8 Variants

[0241] The binding affinities and kinetics of interaction of the antibodies listed in Table 15 were measured by surface plasmon resonance.

[0242] Mouse anti-human immunoglobulins (Jackson Labs, Catalog No. 209-005) were immobilized on carboxymethylated dextran CM4 sensor chips (BIAcore, Catalog No. BR-1006-68) by amine coupling (BIAcore, Catalog No. BR-1000-50) using a standard coupling protocol according to manufacturer's instructions. The analyses were performed at 25.degree. C. using PBS (GIBCO, Catalog No. 14040-133) containing 0.05% surfactant P20 (BIAcore, Catalog No. BR-1000-54), and 2 mg/mL BSA (EMD, Catalog No. 2930).

[0243] The antibodies were captured in an individual flow cell at a flow rate of 10 .mu.L/min. Injection time was variable for each antibody to yield approximately 20 RU of antibody captured for each cycle. Buffer or HGF (R&D Systems, Catalog No. 294-HGN-025) diluted in running buffer was injected sequentially over a reference surface (no antibody captured) and the active surface (antibody to be tested) for 2 minutes at 60 .mu.L/min. The dissociation phase was monitored for 15 or 90 minutes, depending on concentration. The surface then was regenerated with 10 mM Glycine-HCl, pH 2.2 (BIAcore, Catalog No. BR-1003-54) injected for 3 minutes at a flow rate of 60 .mu.L/min before another cycle was initiated. HGF concentrations tested were 0.46 nM to 7.5 nM.

[0244] Kinetic parameters were determined using the kinetic function of the BIAevalutation.TM. software with reference subtraction. Kinetic parameters for each antibody, k.sub.a (association rate constant), k.sub.d (dissociation rate constant) and K.sub.D (equilibrium dissociation constant) are summarized in Table 18.

TABLE-US-00027 TABLE 18 Antibody k.sub.a (1/Ms) k.sub.d (1/s) K.sub.D (pM) SD 2B8 1.4 .times. 10.sup.6 1.0 .times. 10.sup.-5 7.3 -- HE2B8-1 2.2 .times. 10.sup.6 1.4 .times. 10.sup.-5 7.1 5.2 HE2B8-2 1.8 .times. 10.sup.6 9.6 .times. 10.sup.-6 5.2 2.7 HE2B8-3 2.0 .times. 10.sup.6 4.1 .times. 10.sup.-6 2.0 1.1 HE2B8-4 1.7 .times. 10.sup.6 1.1 .times. 10.sup.-5 6.5 1.3 sh2B8-9 (G1m(17,1) 2.0 .times. 10.sup.6 1.7 .times. 10.sup.-5 8.1 5.3 sh2B8-12 (G1m(17,1) 1.9 .times. 10.sup.6 2.3 .times. 10.sup.-5 12 0.4

[0245] These data show that the humanized antibodies have fast association rates (k.sub.a), very slow dissociation rates (k.sub.d), and very high affinities (K.sub.D). In particular, the antibodies have affinities ranging from 2.0-12 pM.

Example 16

Comparison of Binding Affinities at 25.degree. C. and 37.degree. C.

[0246] The binding affinities and kinetics of interaction of antibody HE2B8-4, sh2B8-9, sh2B8-12, and murine 2B8 were measured by surface plasmon resonance under different conditions.

[0247] Mouse anti-human immunoglobulins (Jackson Labs, Catalog No. 209-005) or rabbit anti-mouse immunoglobulins (BIAcore, Catalog No. BR-1005-14) were immobilized on carboxymethylated dextran CM4 sensor chips (BIAcore, Catalog No. BR-1006-68) by amine coupling (BIAcore, Catalog No. BR-1000-50) using a standard coupling protocol according to manufacturer's instructions. In the case of 25.degree. C. measurements for sh2b8-9 and sh2B8-12, a CM5 sensor chip (BIAcore, Catalog No. BR-1006-68) was used. The analyses were performed at 25.degree. C. and 37.degree. C. using PBS (GIBCO, Catalog No. 14040-133) containing 0.05% surfactant P20 (BIAcore, Catalog No. BR-1000-54), and 2 mg/mL BSA (EMD, Catalog No. 2930) as running buffer.

[0248] The antibodies were captured in an individual flow cell at a flow rate of 10 .mu.L/min. Injection time was variable for each antibody to yield approximately 20 RU of antibody captured for each cycle. Buffer or HGF (R&D Systems, Catalog No. 294-HGN-025) diluted in running buffer was injected sequentially over a reference surface (no antibody captured) and the active surface (antibody to be tested) for 2 minutes at 60 .mu.L/min. The dissociation phase was monitored for 15 or 90 minutes, depending on concentration. The surface of mouse anti-human immunoglobulins sensor chips was then regenerated with 10 mM Glycine-HCl, pH 2.2 (BIAcore, Catalog No. BR-1003-54) injected for 3 minutes at a flow rate of 60 .mu.L/min before another cycle was initiated. The surface of rabbit anti-mouse immunoglobulins sensor chips was regenerated with 10 mM Glycine-HCl, pH 1.7 (BIAcore, Catalog No. BR-1003-54) injected for 3 minutes at a flow rate of 60 .mu.L/min before another cycle was initiated. HGF concentrations tested were 0.46 nM to 7.5 nM.

[0249] Kinetic parameters were determined using the kinetic function of the BIAevaluation software with reference subtraction. Kinetic parameters for each antibody, k.sub.a (association rate constant), k.sub.d (dissociation rate constant) and K.sub.D (equilibrium dissociation constant) are summarized below in Table 19.

TABLE-US-00028 TABLE 19 Antibody Temp. (.degree. C.) k.sub.a (1/Ms) k.sub.d (1/s) K.sub.D (pM) 2B8 25 1.6 .times. 10.sup.6 2.1 .times. 10.sup.-5 13.5 2B8 37 2.8 .times. 10.sup.6 1.3 .times. 10.sup.-5 4.5 HE2B8-4 25 2.0 .times. 10.sup.6 1.2 .times. 10.sup.-5 5.6 HE2B8-4 37 3.1 .times. 10.sup.6 1.0 .times. 10.sup.-5 3.3 sh2B8-9 25 2.0 .times. 10.sup.6 1.7 .times. 10.sup.-5 8.1 (G1m(17,1)) sh2B8-9 37 2.5 .times. 10.sup.6 1.4 .times. 10.sup.-5 5.8 (G1m(3)) sh2B8-12 25 1.9 .times. 10.sup.6 2.3 .times. 10.sup.-5 12.0 (G1m(17,1)) sh2B8-12 37 2.4 .times. 10.sup.6 1.1 .times. 10.sup.-5 4.8 (G1m(3))

[0250] As expected, the association rate constants increased with an increase in the temperature. Surprisingly, the dissociation constants did not change significantly with a corresponding increase in temperature. Consequently, the overall equilibrium dissociation constants (K.sub.D) were approximately 1.4 to 3 times smaller (higher affinity) at physiological temperature (37.degree. C.).

Example 17

Neutralization Activity of Humanized 2B8 Variants

[0251] The antibodies described in Example 14 were characterized for their ability to (a) inhibit the binding of hHGF to c-Met, and (b) inhibit HGF stimulated BrdU incorporation in 4MBr-5 cells.

[0252] HGF-Met Binding Inhibition Assay (Neutralization Assay) was performed as described in as follows. The antibodies were tested by ELISA for their ability to inhibit hHGF binding to c-Met. Specifically, Wallac 96-well DELFIA assay plates (Wallac Inc., Catalog No. AAAND-0001) were coated with 100 .mu.L of 6.25 .mu.g/mL HGF (R&D Systems, Catalog No. 294-HGN-025) in carbonate coating buffer (15 mM Na.sub.2CO.sub.3 and 34 mM NaHCO.sub.3, pH 9.0) for 16 hours at 4.degree. C. The plates then were blocked with 200 .mu.L of 5% non-fat dry milk in PBS for 1 hour at room temperature. The antibodies were prepared in a separate plate by adding increasing concentrations of the antibodies under investigation (0.033-250 nM, 2-fold-serial dilution) to 2 nM biotinylated c-Met in 5% non-fat dry milk in PBS. c-Met (R&D Systems, Catalog No. 358-MT/CF) is biotinylated according to manufacturer's instruction at 10:1 biotin to c-Met ratio (Pierce, Catalog No. 21335). 100 .mu.L of sample per well was transferred to the assay plate and incubated for 2 hours at room temperature. The resulting plates were washed three times with PBS-0.1% Tween 20, and incubated for 1 hour at room temperature with Eu-labeled Streptavidin (Wallac, Catalog No. 1244-360) diluted 1:1000 in DELFIA assay buffer (Wallac, Catalog No. 4002-0010). The resulting plates were washed 3 times with DELFIA wash solution (Wallac, Catalog No. 4010-0010) and incubated with 100 .mu.L/well DELFIA enhancement solution (Wallac #4001-0010) for 15 minutes at room temperature with agitation. The plates were read on Victor.sup.3V instrument (Perkin Elmer) using the Europium method. The IC.sub.50 values were calculated using Prism.

[0253] The IC.sub.50 values obtained are shown in Table 20.

TABLE-US-00029 TABLE 20 Antibody IC.sub.50 (nM) SD 2B8 9.2 1.2 HE2B8-1 6.0 1.2 HE2B8-2 5.7 1.1 HE2B8-3 5.9 1.1 HE2B8-4 6.5 1.2 sh2B8-9 (G1m(3)) 4.2 -- sh2B8-12 (G1m(3) 6.8 --

[0254] These results from Table 20 demonstrate that the humanized antibodies tested efficiently neutralize HGF binding to c-Met.

[0255] The antibodies in Table 17 were also tested in the cell proliferation assay described in Example 7(b). The results are summarized below in Table 21.

TABLE-US-00030 TABLE 21 Antibody IC.sub.50 (nM) SD 2B8 0.86 0.35 HE2B8-1 0.47 0.15 HE2B8-2 0.66 0.13 HE2B8-3 0.55 0.28 HE2B8-4 0.58 0.26 sh2B8-9 (G1m(3)) 0.52 0.11 sh2B8-12 (G1m(3)) 0.81 0.22

[0256] The results from Table 21 demonstrate that all the humanized antibodies tested inhibit HGF-induced proliferation of 4 MBr-5 cells.

Example 18

Anti-Scatter Activity of Humanized 2B8 Variants

[0257] The antibodies in Table 17 were tested in the anti-scatter assay described in Example 8. The results are summarized below in Table 22.

TABLE-US-00031 TABLE 22 Inhibition of HGF-induced MDCK Cell Scattering Antibody Trial 1 Trial 2 2B8 ++ ++ HE2B8-1 ++ ++ HE2B8-2 ++ ++ HE2B8-3 ++ ++ HE2B8-4 ++ ++ sh2B8-9 (G1m(3)) ++ ++ sh2B8-12 (G1m(3)) ++ ++ - No Inhibition +++ Very strong, nearly complete inhibition ++ Strong inhibition + Detectable inhibition

[0258] The results in Table 22 demonstrate that all the humanized antibodies tested inhibited HGF-induced scattering to the same extent as the murine monoclonal antibody 2B8.

Example 19

Inhibition of HGF-Stimulated c-Met Phosphorylation

[0259] The antibodies in Table 17 were tested in the c-Met phosphorylation assay described in Example 9. The results are summarized below in Table 23.

TABLE-US-00032 TABLE 23 Average of Standard Antibody Two Trials Deviation 2B8 0.91 0.02 he2B8-1 0.80 0.04 he2B8-2 0.88 0.15 he2B8-3 0.79 0.05 he2B8-4 0.75 0.14 sh2B8-9 (G1m(3)) 0.93 0.03 sh2B8-12 (G1m(3)) 0.81 0.07

[0260] The results in Table 23 demonstrate that all the humanized antibodies tested are potent inhibitors of HGF-induced c-Met phosphorylation in PC-3 cells.

Example 20

Tumor Inhibition in U87MG Xenograft Model

[0261] The ability of the humanized monoclonal antibodies of the invention to inhibit tumor growth was tested in an U87MG xenograft model. U87MG cells (ATCC) were expanded in culture at 37.degree. C. in an atmosphere containing 5% CO.sub.2 and 95% air, using a medium comprising Dulbecco's Modified Eagle medium (DMEM) with 10% fetal bovine serum, 100 units/mL penicillin and 100 .mu.g/mL streptomycin. The cells were subcultured and maintained by detaching the cells from the wall of the culture dish using trypsin-EDTA.

[0262] Near-confluent cells were collected by trypsinization and then 5.times.10.sup.6 cells in 50% Matrigel (BD Biosciences; catalog no. 356237) were injected subcutaneously into the upper dorsal area between the shoulder blades of 7-week old female ICR SCID mice (Taconic Labs). The long (L) and short (W) diameters (mm) of tumors were measured with a caliper. Tumor volume (vol.) was calculated as: volume (mm.sup.3)=L.times.W.sup.2/2. When the tumors grew to approximately 200 mm.sup.3, the tumor-bearing mice were randomized into 5 groups of 10 mice each. One group received PBS and one group received human IgG control. Each of the other 4 groups received one of the humanized antibodies (HE2B8-1, HE2B8-2, HE2B8-3, and HE2B8-4). All the antibodies were dosed at 0.25 mg/kg body weight, twice per week, by intra-peritoneal injections of 5 doses. Tumor volumes and mouse body weights were recorded twice per week. Tumor growth inhibition was analyzed using Student's t-test.

[0263] The humanized antibodies tested were active in vivo. There was 57% tumor growth inhibition for HE2B8-1 with a p value of 0.02, 61% tumor growth inhibition for HE2B8-2 with a p value of 0.02, 85% tumor growth inhibition for HE2B8-3, with a p value of 0.0004, and 74% tumor growth inhibition for HE2B8-4 with a p value of 0.001. No significant body weight loss was observed.

[0264] A subsequent study was performed as described above in female NCR nude mice (Taconic Labs) bearing subcutaneous U87MG tumors inoculated in the flank. Each group (10 mice each) received one of the following treatments at 0.5 mg/kg: PBS vehicle control, huIgG control, HE2B8-4, or sh2B8-9. Treatment was given intra-peritoneal twice weekly for a minimum of 5 weeks. Each treatment group demonstrated similar tumor regression with tumor growth inhibition of 113% for sh2B8-9 and 115% for HE2B8-4, and a minimum tumor growth delay of 30 days. Both treatments were well-tolerated with no significant body weight loss.

INCORPORATION BY REFERENCE

[0265] The entire disclosure of each of the patent documents and scientific articles referred to herein is incorporated by reference for all purposes.

EQUIVALENTS

[0266] The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting on the invention described herein. Scope of the invention is thus indicated by the appended claims rather than by the foregoing description, and all changes that come within the meaning and range of equivalency of the claims are intended to be embraced therein.

Sequence CWU 1

1

2161424DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 1atgaactttg ggctcagatt gattttcctt gtccttgttt taaaaggtgt gaagtgtgaa 60gtgcagctgg tggagtctgg gggaggctta gtgcagcctg gagggtccct gaaactctcc 120tgtgcagcct ctgaattcac tttcagtaac tattacatgt cttgggttcg ccagactcca 180gagaagaggc tgcagtgggt cgcatacatt agtcctggtg gtggtagctc ctactatcca 240gccagtgtga agggtcgatt caccatctcc agagacaatg ccaagaacac cctgtacctg 300caaatgagca gtctgaagtc tgaggacaca gccatgtatt actgtgcaag acaaggggat 360ggttactacg gggactatgc tatggactac tggggtcaag gaacctcagt caccgtctcc 420tcag 4242141PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 2Met Asn Phe Gly Leu Arg Leu Ile Phe Leu Val Leu Val Leu Lys Gly 1 5 10 15 Val Lys Cys Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln 20 25 30 Pro Gly Gly Ser Leu Lys Leu Ser Cys Ala Ala Ser Glu Phe Thr Phe 35 40 45 Ser Asn Tyr Tyr Met Ser Trp Val Arg Gln Thr Pro Glu Lys Arg Leu 50 55 60 Gln Trp Val Ala Tyr Ile Ser Pro Gly Gly Gly Ser Ser Tyr Tyr Pro 65 70 75 80 Ala Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn 85 90 95 Thr Leu Tyr Leu Gln Met Ser Ser Leu Lys Ser Glu Asp Thr Ala Met 100 105 110 Tyr Tyr Cys Ala Arg Gln Gly Asp Gly Tyr Tyr Gly Asp Tyr Ala Met 115 120 125 Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser 130 135 140 3382DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 3atgagtgtgc ccactcaggt cctggggttg ctgctgctgt ggcttacaga tgccagatgt 60gacatccaga tgactcagtc tccagcctcc ctatctgttt ctgtgggaga aactgtcacc 120atcacatgtc gagcaagtga gaatatttat agtaatttag catggtatca gcagaaacag 180ggaaaatctc ctcagctcct ggtctatgct gcaacaaact tagcagatgg tgtgccatca 240aggttcagtg gcagtggatc aggcacacag ttttccctca agatcaacag cctgcagtct 300gaagattttg ggacttatta ctgtcaacat ttttggggta ctccgtacac gttcggaggg 360gggaccaagc tggaaataaa ac 3824127PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 4Met Ser Val Pro Thr Gln Val Leu Gly Leu Leu Leu Leu Trp Leu Thr 1 5 10 15 Asp Ala Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ala Ser Leu Ser 20 25 30 Val Ser Val Gly Glu Thr Val Thr Ile Thr Cys Arg Ala Ser Glu Asn 35 40 45 Ile Tyr Ser Asn Leu Ala Trp Tyr Gln Gln Lys Gln Gly Lys Ser Pro 50 55 60 Gln Leu Leu Val Tyr Ala Ala Thr Asn Leu Ala Asp Gly Val Pro Ser 65 70 75 80 Arg Phe Ser Gly Ser Gly Ser Gly Thr Gln Phe Ser Leu Lys Ile Asn 85 90 95 Ser Leu Gln Ser Glu Asp Phe Gly Thr Tyr Tyr Cys Gln His Phe Trp 100 105 110 Gly Thr Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 115 120 125 55PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 5Asn Tyr Tyr Met Ser 1 5 617PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 6Tyr Ile Ser Pro Gly Gly Gly Ser Ser Tyr Tyr Pro Ala Ser Val Lys 1 5 10 15 Gly 713PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 7Gln Gly Asp Gly Tyr Tyr Gly Asp Tyr Ala Met Asp Tyr 1 5 10 811PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 8Arg Ala Ser Glu Asn Ile Tyr Ser Asn Leu Ala 1 5 10 97PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 9Ala Ala Thr Asn Leu Ala Asp 1 5 109PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 10Gln His Phe Trp Gly Thr Pro Tyr Thr 1 5 11412DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 11atgggatgga gctatatcat cctctttttg gtagcaacag ctacagatgt ccactcccag 60gtccaactgc agcagcctgg ggctgaactg gtgaagcctg ggacttcagt gaagctgtcc 120tgcaaggctt ctggctacac cttcaccacc tactggatgc actgggtgaa tcagaggcct 180ggacaaggcc ttgagtggat tggagagatt aatcctacca acggtcatac taactacaat 240gagaagttca agagcaaggc cacactgact gtagacaaat cctccagcac agcctacatg 300caactcagca gcctgacatc tgaggactct gcggtctatt actgtgcaag aaactatgtt 360ggtagcatct ttgactactg gggccaaggc accactctca cagtctcctc ag 41212137PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 12Met Gly Trp Ser Tyr Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Asp 1 5 10 15 Val His Ser Gln Val Gln Leu Gln Gln Pro Gly Ala Glu Leu Val Lys 20 25 30 Pro Gly Thr Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe 35 40 45 Thr Thr Tyr Trp Met His Trp Val Asn Gln Arg Pro Gly Gln Gly Leu 50 55 60 Glu Trp Ile Gly Glu Ile Asn Pro Thr Asn Gly His Thr Asn Tyr Asn 65 70 75 80 Glu Lys Phe Lys Ser Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Ser 85 90 95 Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val 100 105 110 Tyr Tyr Cys Ala Arg Asn Tyr Val Gly Ser Ile Phe Asp Tyr Trp Gly 115 120 125 Gln Gly Thr Thr Leu Thr Val Ser Ser 130 135 13382DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 13atggaatcac agactctggt cttcatatcc atactgctct ggttatatgg tgctgatggg 60aacattgtaa tgacccaatc tcccaaatcc atgtccatgt cagtaggaga gagggtcacc 120ttgagctgca aggccagtga gaatgtggtt tcttatgtat cctggtatca acagaaacca 180gcgcagtctc ctaaactgct gatatacggg gcatccaacc ggaacactgg ggtccccgat 240cgcttcacag gcagtggatc tgcaacagat ttcactctga ccatcagcag tgtgcgggct 300gaagaccttg cagattatca ctgtgggcag agttacaact atccgtacac gttcggaggg 360gggaccaggc tggaaataaa ac 38214127PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 14Met Glu Ser Gln Thr Leu Val Phe Ile Ser Ile Leu Leu Trp Leu Tyr 1 5 10 15 Gly Ala Asp Gly Asn Ile Val Met Thr Gln Ser Pro Lys Ser Met Ser 20 25 30 Met Ser Val Gly Glu Arg Val Thr Leu Ser Cys Lys Ala Ser Glu Asn 35 40 45 Val Val Ser Tyr Val Ser Trp Tyr Gln Gln Lys Pro Ala Gln Ser Pro 50 55 60 Lys Leu Leu Ile Tyr Gly Ala Ser Asn Arg Asn Thr Gly Val Pro Asp 65 70 75 80 Arg Phe Thr Gly Ser Gly Ser Ala Thr Asp Phe Thr Leu Thr Ile Ser 85 90 95 Ser Val Arg Ala Glu Asp Leu Ala Asp Tyr His Cys Gly Gln Ser Tyr 100 105 110 Asn Tyr Pro Tyr Thr Phe Gly Gly Gly Thr Arg Leu Glu Ile Lys 115 120 125 155PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 15Thr Tyr Trp Met His 1 5 1617PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 16Glu Ile Asn Pro Thr Asn Gly His Thr Asn Tyr Asn Glu Lys Phe Lys 1 5 10 15 Ser 179PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 17Asn Tyr Val Gly Ser Ile Phe Asp Tyr 1 5 1811PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 18Lys Ala Ser Glu Asn Val Val Ser Tyr Val Ser 1 5 10 197PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 19Gly Ala Ser Asn Arg Asn Thr 1 5 209PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 20Gly Gln Ser Tyr Asn Tyr Pro Tyr Thr 1 5 21412DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 21atggaatgga gctgggtctt tctcttcctc ctgtcagtaa ctgcaggtgt ccactgccag 60gtccagctga agcagtctgg agctgagctg gtgaggcctg ggacttcagt gaagatgtcc 120tgcaaggctt ctggctacac cttcactacc tactatatac actgggtgaa tcagaggcct 180ggacagggcc ttgagtggat tggaaagatt ggtcctggaa gtggtagtac ttactacaat 240gagatgttca aagacaaggc cacattgact gtagacacat cctccagcac agcctacatg 300cagctcagca gcctgacatc tgacgactct gcggtctatt tctgtgcaag aaggggactg 360ggacgtggct ttgactactg gggccaaggc accactctca cagtctcctc ag 41222137PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 22Met Glu Trp Ser Trp Val Phe Leu Phe Leu Leu Ser Val Thr Ala Gly 1 5 10 15 Val His Cys Gln Val Gln Leu Lys Gln Ser Gly Ala Glu Leu Val Arg 20 25 30 Pro Gly Thr Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe 35 40 45 Thr Thr Tyr Tyr Ile His Trp Val Asn Gln Arg Pro Gly Gln Gly Leu 50 55 60 Glu Trp Ile Gly Lys Ile Gly Pro Gly Ser Gly Ser Thr Tyr Tyr Asn 65 70 75 80 Glu Met Phe Lys Asp Lys Ala Thr Leu Thr Val Asp Thr Ser Ser Ser 85 90 95 Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Asp Asp Ser Ala Val 100 105 110 Tyr Phe Cys Ala Arg Arg Gly Leu Gly Arg Gly Phe Asp Tyr Trp Gly 115 120 125 Gln Gly Thr Thr Leu Thr Val Ser Ser 130 135 23394DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 23atggagacag acacaatcct gctatgggtg ctgctgctct gggttccagg ctccactggt 60gacattgtgc tgacccaatc tccagcttct ttggctgtgt ctctagggca gagggccacc 120atctcctgca aggccagcca aagtgttgat tatgatggta atagttatat caactggtac 180caacagaaac caggacagcc acccaaagtc ctcatctatg ttgcatccaa tctagaatct 240gggatcccag ccaggtttag tggcagtggg tctgggacag acttcaccct caacatccat 300cctgtggagg aggaggatgc tgcaacctat tactgtcagc aaagtattga ggatcctccc 360acgttcggtg ctgggaccaa gctggagctg aaac 39424131PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 24Met Glu Thr Asp Thr Ile Leu Leu Trp Val Leu Leu Leu Trp Val Pro 1 5 10 15 Gly Ser Thr Gly Asp Ile Val Leu Thr Gln Ser Pro Ala Ser Leu Ala 20 25 30 Val Ser Leu Gly Gln Arg Ala Thr Ile Ser Cys Lys Ala Ser Gln Ser 35 40 45 Val Asp Tyr Asp Gly Asn Ser Tyr Ile Asn Trp Tyr Gln Gln Lys Pro 50 55 60 Gly Gln Pro Pro Lys Val Leu Ile Tyr Val Ala Ser Asn Leu Glu Ser 65 70 75 80 Gly Ile Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr 85 90 95 Leu Asn Ile His Pro Val Glu Glu Glu Asp Ala Ala Thr Tyr Tyr Cys 100 105 110 Gln Gln Ser Ile Glu Asp Pro Pro Thr Phe Gly Ala Gly Thr Lys Leu 115 120 125 Glu Leu Lys 130 255PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 25Thr Tyr Tyr Ile His 1 5 2617PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 26Lys Ile Gly Pro Gly Ser Gly Ser Thr Tyr Tyr Asn Glu Met Phe Lys 1 5 10 15 Asp 279PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 27Arg Gly Leu Gly Arg Gly Phe Asp Tyr 1 5 2815PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 28Lys Ala Ser Gln Ser Val Asp Tyr Asp Gly Asn Ser Tyr Ile Asn 1 5 10 15 297PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 29Val Ala Ser Asn Leu Glu Ser 1 5 309PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 30Gln Gln Ser Ile Glu Asp Pro Pro Thr 1 5 31418DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 31atggaatggc cttgtatctt tctcttcctc ctgtcagtaa ctgaaggtgt ccactcccag 60gttcagctgc agcagtctgg ggctgaactg gtgaggcctg ggtcctcagt gaagatttcc 120tgcaaggctt ctggctatgt attcagtagc tactggatga actgggtgaa gcagaggcct 180ggacagggtc ttgagtggat tggacagatt tatcctggag atggtgatag taactacaat 240ggaaacttca agggtaaagc cacactgact gcagacaaat cctccagtac agcctacatg 300cagctcagca gcctaacatc tgaggactct gcggtctatt tctgtgcatc ccagctcggg 360ctacgtgaga actactttga ctactggggc caaggcacca ctctcacagt ctcctcag 41832139PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 32Met Glu Trp Pro Cys Ile Phe Leu Phe Leu Leu Ser Val Thr Glu Gly 1 5 10 15 Val His Ser Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg 20 25 30 Pro Gly Ser Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Val Phe 35 40 45 Ser Ser Tyr Trp Met Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Leu 50 55 60 Glu Trp Ile Gly Gln Ile Tyr Pro Gly Asp Gly Asp Ser Asn Tyr Asn 65 70 75 80 Gly Asn Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser 85 90 95 Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val 100 105 110 Tyr Phe Cys Ala Ser Gln Leu Gly Leu Arg Glu Asn Tyr Phe Asp Tyr 115 120 125 Trp Gly Gln Gly Thr Thr Leu Thr Val Ser Ser 130 135 33388DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 33atggacatga ggacccctgc tcagtttctt ggaatcttgt tgctctggtt tccaggtatc 60aaatgtgaca tcaagatgac ccagtctcca tcttccatgt atgcatctct aggagagaga 120gtcacaatca cttgcaaggc gagtcaggac attaaaagct atttaagctg gttccagcag 180aaaccaggga aatctcctaa gaccctgatc tatcgtgtaa acagattggt agatggggtc 240ccatcaaggt tcagtggcag tggatctggg caagattctt ctctcaccat caccagcctg 300gagaatgaag atatgggaat ttattattgt ctacagtatg atgagtttcc gttcacgttc 360ggagggggga ccaagctgga aataaagc 38834129PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 34Met Asp Met Arg Thr Pro Ala Gln Phe Leu Gly Ile Leu Leu Leu Trp 1 5 10 15 Phe Pro Gly Ile Lys Cys Asp Ile Lys Met Thr Gln Ser Pro Ser Ser 20 25 30 Met Tyr Ala Ser Leu Gly Glu Arg Val Thr Ile Thr Cys Lys Ala Ser 35 40 45 Gln Asp Ile Lys Ser Tyr Leu Ser Trp Phe Gln Gln Lys Pro Gly Lys 50 55 60 Ser Pro Lys Thr Leu Ile Tyr Arg Val Asn Arg Leu Val Asp Gly Val 65 70 75 80 Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Gln Asp Ser Ser Leu Thr 85 90 95 Ile Thr Ser Leu Glu Asn Glu Asp Met Gly Ile Tyr Tyr Cys Leu Gln 100 105 110 Tyr Asp Glu Phe Pro Phe Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile 115 120 125 Lys 355PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 35Ser Tyr Trp Met Asn 1 5 3617PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 36Gln Ile Tyr Pro Gly Asp Gly Asp Ser Asn Tyr Asn Gly Asn Phe Lys 1 5 10 15 Gly 3711PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 37Gln Leu Gly Leu Arg Glu Asn Tyr Phe Asp Tyr 1 5 10 3811PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 38Lys Ala Ser Gln Asp Ile Lys Ser Tyr Leu Ser 1 5 10 397PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 39Arg Val Asn Arg Leu Val Asp 1 5 409PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 40Leu Gln Tyr Asp Glu Phe Pro Phe Thr 1 5

41397DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 41atggctgtcc cggtgctgtt cctctgcctg gttgcatttc caagctgtgt cctgtcccag 60gtacagctga aggagtcagg acctggcctg gtggcgccct cacagagcct gtccatcact 120tgcactgtct ctgggttttc attaaccagc tatagtttac actgggttcg ccagcctcca 180ggaaagggtc tggaatggct gggagtaata tgggctggtg gaaacacaaa ttataattcg 240tctctcatgt ccagactgac catcaggaaa gacaactcca agagccaagt tttcttaaaa 300atgaacagtc tgcaaactga tgacacagcc atgtactact gtgccagaga gaggtttgct 360tactggggcc aagggactct ggtcactgtc tctgcag 39742132PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 42Met Ala Val Pro Val Leu Phe Leu Cys Leu Val Ala Phe Pro Ser Cys 1 5 10 15 Val Leu Ser Gln Val Gln Leu Lys Glu Ser Gly Pro Gly Leu Val Ala 20 25 30 Pro Ser Gln Ser Leu Ser Ile Thr Cys Thr Val Ser Gly Phe Ser Leu 35 40 45 Thr Ser Tyr Ser Leu His Trp Val Arg Gln Pro Pro Gly Lys Gly Leu 50 55 60 Glu Trp Leu Gly Val Ile Trp Ala Gly Gly Asn Thr Asn Tyr Asn Ser 65 70 75 80 Ser Leu Met Ser Arg Leu Thr Ile Arg Lys Asp Asn Ser Lys Ser Gln 85 90 95 Val Phe Leu Lys Met Asn Ser Leu Gln Thr Asp Asp Thr Ala Met Tyr 100 105 110 Tyr Cys Ala Arg Glu Arg Phe Ala Tyr Trp Gly Gln Gly Thr Leu Val 115 120 125 Thr Val Ser Ala 130 43385DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 43atggattttc aagtgcagat tttcagcttc ctgctaatca gtgcctcagt caaaatatcc 60agaggacaaa ttgttctcac ccagtctcca gcaatcatgt ctgcatatcc aggggagaag 120gtcaccatga cctgcagtgc cagctcaagt gtaagttaca tgcactggta ccagcagaag 180tcaggcacct cccccaaaag atggatttat gacacatcca aactggcttc tggagtccct 240gctcgcttca gtggcagtgg gtctgggacc tcttactccc tcacaatcag tagtatggag 300gctgaagatg ctgccactta ttactgccag cagtggagta gtaacccact cacgttcggt 360gctgggacca agctggagct gaaac 38544128PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 44Met Asp Phe Gln Val Gln Ile Phe Ser Phe Leu Leu Ile Ser Ala Ser 1 5 10 15 Val Lys Ile Ser Arg Gly Gln Ile Val Leu Thr Gln Ser Pro Ala Ile 20 25 30 Met Ser Ala Tyr Pro Gly Glu Lys Val Thr Met Thr Cys Ser Ala Ser 35 40 45 Ser Ser Val Ser Tyr Met His Trp Tyr Gln Gln Lys Ser Gly Thr Ser 50 55 60 Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Leu Ala Ser Gly Val Pro 65 70 75 80 Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile 85 90 95 Ser Ser Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp 100 105 110 Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys 115 120 125 455PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 45Ser Tyr Ser Leu His 1 5 4616PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 46Val Ile Trp Ala Gly Gly Asn Thr Asn Tyr Asn Ser Ser Leu Met Ser 1 5 10 15 475PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 47Glu Arg Phe Ala Tyr 1 5 4810PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 48Ser Ala Ser Ser Ser Val Ser Tyr Met His 1 5 10 497PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 49Asp Thr Ser Lys Leu Ala Ser 1 5 509PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 50Gln Gln Trp Ser Ser Asn Pro Leu Thr 1 5 51424DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 51atgaactttg ggctcagatt gattttcctt gtccttgttt taaaaggtgt gaagtgtgaa 60gtgcagctgg tggagtctgg gggaggctta gtgcagcctg gagggtccct gaaactctcc 120tgtgcagcct ctggattcac tttcagtgac tattacatgt cttgggttcg ccagactcca 180gagaagaggc tggagtgggt cgcatacatt agtagtggtg gtggtagcac ctactatcca 240gacagtgtga agggtcgatt caccatctcc cgagacaatg ccaagaacac cctgtacctg 300caaatgagca gtctgaagtc tgaggacaca gccatatatt actgtgtgag acaaggggat 360ggttattacg gggactatgc tatggactac tggggtcaag gaacctcagt catcgtctcc 420tcag 42452141PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 52Met Asn Phe Gly Leu Arg Leu Ile Phe Leu Val Leu Val Leu Lys Gly 1 5 10 15 Val Lys Cys Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln 20 25 30 Pro Gly Gly Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe 35 40 45 Ser Asp Tyr Tyr Met Ser Trp Val Arg Gln Thr Pro Glu Lys Arg Leu 50 55 60 Glu Trp Val Ala Tyr Ile Ser Ser Gly Gly Gly Ser Thr Tyr Tyr Pro 65 70 75 80 Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn 85 90 95 Thr Leu Tyr Leu Gln Met Ser Ser Leu Lys Ser Glu Asp Thr Ala Ile 100 105 110 Tyr Tyr Cys Val Arg Gln Gly Asp Gly Tyr Tyr Gly Asp Tyr Ala Met 115 120 125 Asp Tyr Trp Gly Gln Gly Thr Ser Val Ile Val Ser Ser 130 135 140 53382DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 53atgagtgtgc ccactcaggt cctggggttg ctgctgctgt ggcttacaga tgtcagatgt 60gacatccaga tgactcagtc tccagcctcc ctatctgtat ctgtgggaga aactgtcacc 120atcacatgtc gaacaagtga gaatatttac agtaatttag cgtggtatca gcagaaacag 180ggaaaatctc ctcagctcct aatctatgct gcaacaaact tagcagatgg tgtgccatca 240aggttcagtg gcagtggatc aggcacacag ttttccctca ggatcaacag cctgcagtct 300gaagattttg ggaggtatta ctgtcaacat ttttggggga ctccgtacac gttcggaggg 360gggaccaaac tggaaataaa ac 38254127PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 54Met Ser Val Pro Thr Gln Val Leu Gly Leu Leu Leu Leu Trp Leu Thr 1 5 10 15 Asp Val Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ala Ser Leu Ser 20 25 30 Val Ser Val Gly Glu Thr Val Thr Ile Thr Cys Arg Thr Ser Glu Asn 35 40 45 Ile Tyr Ser Asn Leu Ala Trp Tyr Gln Gln Lys Gln Gly Lys Ser Pro 50 55 60 Gln Leu Leu Ile Tyr Ala Ala Thr Asn Leu Ala Asp Gly Val Pro Ser 65 70 75 80 Arg Phe Ser Gly Ser Gly Ser Gly Thr Gln Phe Ser Leu Arg Ile Asn 85 90 95 Ser Leu Gln Ser Glu Asp Phe Gly Arg Tyr Tyr Cys Gln His Phe Trp 100 105 110 Gly Thr Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 115 120 125 555PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 55Asp Tyr Tyr Met Ser 1 5 5617PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 56Tyr Ile Ser Ser Gly Gly Gly Ser Thr Tyr Tyr Pro Asp Ser Val Lys 1 5 10 15 Gly 5713PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 57Gln Gly Asp Gly Tyr Tyr Gly Asp Tyr Ala Met Asp Tyr 1 5 10 5811PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 58Arg Thr Ser Glu Asn Ile Tyr Ser Asn Leu Ala 1 5 10 597PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 59Ala Ala Thr Asn Leu Ala Asp 1 5 609PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 60Gln His Phe Trp Gly Thr Pro Tyr Thr 1 5 61424DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 61atgaactttg ggctcagatt gattttcctt gtccttgttt taaaaggtgt gaagtgtgag 60gtgcagctgg tggagtctgg gggaggctta gtgcagtctg gagggtccct gaaactctcc 120tgtgcggcct ctggattcac tttcagtaac tatttcatgt cttgggttcg ccagactcca 180gagaagaggc tggagtgggt cgcatatatt agtagtggtg gtggtagcac ctactatcca 240gacagtgtga agggtcgatt caccatctct agagacaatg ccaagaacac cctgtacctg 300caaatgagca gtctgaagtc tgaggacaca gccatgtatt actgtgtaag acaaggggat 360ggttactacg gggactatgc tatggactac tggggtcaag gaacctcagt caccgtctcc 420tcag 42462141PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 62Met Asn Phe Gly Leu Arg Leu Ile Phe Leu Val Leu Val Leu Lys Gly 1 5 10 15 Val Lys Cys Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln 20 25 30 Ser Gly Gly Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe 35 40 45 Ser Asn Tyr Phe Met Ser Trp Val Arg Gln Thr Pro Glu Lys Arg Leu 50 55 60 Glu Trp Val Ala Tyr Ile Ser Ser Gly Gly Gly Ser Thr Tyr Tyr Pro 65 70 75 80 Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn 85 90 95 Thr Leu Tyr Leu Gln Met Ser Ser Leu Lys Ser Glu Asp Thr Ala Met 100 105 110 Tyr Tyr Cys Val Arg Gln Gly Asp Gly Tyr Tyr Gly Asp Tyr Ala Met 115 120 125 Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser 130 135 140 63382DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 63atgagtgtgc ccactcaggt cctggggttg ctgctgctgt ggcttacaga tgccagatgt 60gacatccaga tgactcagtc tccagcctcc ctatctgtat ctgtgggaga aactgtcacc 120atcacatgtc gagcaagtga gaatatttac agtaatttag catggtatca gcagaaacag 180ggaaaatctc ctcagctcct ggtctatgat gcaacacact taccagatgg tgtgccatca 240aggttcagtg gcagtggatc aggcacacag ttttccctca agatcaacag cctgcagtct 300gaagattttg ggagttatta ctgtcaacat ttttggggta ctccgtacac gtttggaggg 360gggaccagac tggaaattaa ac 38264127PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 64Met Ser Val Pro Thr Gln Val Leu Gly Leu Leu Leu Leu Trp Leu Thr 1 5 10 15 Asp Ala Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ala Ser Leu Ser 20 25 30 Val Ser Val Gly Glu Thr Val Thr Ile Thr Cys Arg Ala Ser Glu Asn 35 40 45 Ile Tyr Ser Asn Leu Ala Trp Tyr Gln Gln Lys Gln Gly Lys Ser Pro 50 55 60 Gln Leu Leu Val Tyr Asp Ala Thr His Leu Pro Asp Gly Val Pro Ser 65 70 75 80 Arg Phe Ser Gly Ser Gly Ser Gly Thr Gln Phe Ser Leu Lys Ile Asn 85 90 95 Ser Leu Gln Ser Glu Asp Phe Gly Ser Tyr Tyr Cys Gln His Phe Trp 100 105 110 Gly Thr Pro Tyr Thr Phe Gly Gly Gly Thr Arg Leu Glu Ile Lys 115 120 125 655PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 65Asn Tyr Phe Met Ser 1 5 6617PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 66Tyr Ile Ser Ser Gly Gly Gly Ser Thr Tyr Tyr Pro Asp Ser Val Lys 1 5 10 15 Gly 6713PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 67Gln Gly Asp Gly Tyr Tyr Gly Asp Tyr Ala Met Asp Tyr 1 5 10 6811PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 68Arg Ala Ser Glu Asn Ile Tyr Ser Asn Leu Ala 1 5 10 697PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 69Asp Ala Thr His Leu Pro Asp 1 5 709PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 70Gln His Phe Trp Gly Thr Pro Tyr Thr 1 5 71424DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 71atgaactttg ggctcagatt gattttcctt gtccttgttt taaaaggtgt gaagtgtgaa 60gtgcagctgg tggagtctgg gggaggctta gtgcagcctg gagggtccct gaaaatctcc 120tgtgcagcct ctggatttac tttcagtaac tatttcatgt cttgggttcg ccagactcca 180gagaagaggc tggagtgggt cgcatacatt agtagtggtg gtggtagcac ctactatcca 240gacagtgtga agggtcgatt caccatctcc agagacaatg ccaagaacac cctgtacctg 300caaatgaaca gtctgaagtc tgaggacaca gccatgtatt actgtgtaag acaaggagat 360ggttactatg gggactatgc tatggactac tggggtcaag gaacctcagt caccgtctcc 420tcag 42472141PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 72Met Asn Phe Gly Leu Arg Leu Ile Phe Leu Val Leu Val Leu Lys Gly 1 5 10 15 Val Lys Cys Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln 20 25 30 Pro Gly Gly Ser Leu Lys Ile Ser Cys Ala Ala Ser Gly Phe Thr Phe 35 40 45 Ser Asn Tyr Phe Met Ser Trp Val Arg Gln Thr Pro Glu Lys Arg Leu 50 55 60 Glu Trp Val Ala Tyr Ile Ser Ser Gly Gly Gly Ser Thr Tyr Tyr Pro 65 70 75 80 Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn 85 90 95 Thr Leu Tyr Leu Gln Met Asn Ser Leu Lys Ser Glu Asp Thr Ala Met 100 105 110 Tyr Tyr Cys Val Arg Gln Gly Asp Gly Tyr Tyr Gly Asp Tyr Ala Met 115 120 125 Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser 130 135 140 73382DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 73atgagtgtgc ccactcaggt cctggggttg ctgctgctgt ggcttacaga tgccagatgt 60gacatccaga tgactcagtc gccagcctcc ctatctgtat ctgtgggaga aactgtcacc 120atcacatgtc gagcaagtga gaatatttac attaatttag catggtatca gcagaaacag 180ggaaaatctc ctcagctcct ggtccatgct gcaacaaagt tagcagatgg tgtgccatca 240aggttcagtg gcagtggatc aggcacacag tattccctca agatcaacag cctgcagtct 300gaagattttg ggagttatta ctgtcaacat ttttggggta ctccgtacac gttcggaggg 360gggaccaaac tagaaataaa ac 38274127PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 74Met Ser Val Pro Thr Gln Val Leu Gly Leu Leu Leu Leu Trp Leu Thr 1 5 10 15 Asp Ala Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ala Ser Leu Ser 20 25 30 Val Ser Val Gly Glu Thr Val Thr Ile Thr Cys Arg Ala Ser Glu Asn 35 40 45 Ile Tyr Ile Asn Leu Ala Trp Tyr Gln Gln Lys Gln Gly Lys Ser Pro 50 55 60 Gln Leu Leu Val His Ala Ala Thr Lys Leu Ala Asp Gly Val Pro Ser 65 70 75 80 Arg Phe Ser Gly Ser Gly Ser Gly Thr Gln Tyr Ser Leu Lys Ile Asn 85 90 95 Ser Leu Gln Ser Glu Asp Phe Gly Ser Tyr Tyr Cys Gln His Phe Trp 100 105 110 Gly Thr Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 115 120 125 755PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 75Asn Tyr Phe Met Ser 1 5 7617PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 76Tyr Ile Ser Ser Gly Gly Gly Ser Thr Tyr Tyr Pro Asp Ser Val Lys 1 5 10 15 Gly 7713PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 77Gln Gly Asp Gly Tyr Tyr Gly Asp Tyr Ala Met Asp Tyr 1 5 10 7811PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 78Arg Ala Ser Glu Asn Ile Tyr Ile Asn Leu Ala 1 5 10 797PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 79Ala Ala Thr Lys Leu Ala Asp 1 5 809PRTArtificial

SequenceDescription of Artificial Sequence Synthetic peptide 80Gln His Phe Trp Gly Thr Pro Tyr Thr 1 5 81974DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 81ccaaaacgac acccccatct gtctatccac tggcccctgg atctgctgcc caaactaact 60ccatggtgac cctgggatgc ctggtcaagg gctatttccc tgagccagtg acagtgacct 120ggaactctgg atccctgtcc agcggtgtgc acaccttccc agctgtcctg gagtctgacc 180tctacactct gagcagctca gtgactgtcc cctccagccc tcggcccagc gagaccgtca 240cctgcaacgt tgcccacccg gccagcagca ccaaggtgga caagaaaatt gtgcccaggg 300attgtggttg taagccttgc atatgtacag tcccagaagt atcatctgtc ttcatcttcc 360ccccaaagcc caaggatgtg ctcaccatta ctctgactcc taaggtcacg tgtgttgtgg 420tagacatcag caaggatgat cccgaggtcc agttcagctg gtttgtagat gatgtggagg 480tgcacacagc tcagacgcaa ccccgggagg agcagttcaa cagcactttc cgctcagtca 540gtgaacttcc catcatgcac caggactggc tcaatggcaa ggagttcaaa tgcagggtca 600acagtgcagc tttccctgcc cccatcgaga aaaccatctc caaaaccaaa ggcagaccga 660aggctccaca ggtgtacacc attccacctc ccaaggagca gatggccaag gataaagtca 720gtctgacctg catgataaca gacttcttcc ctgaagacat tactgtggag tggcagtgga 780atgggcagcc agcggagaac tacaagaaca ctcagcccat catgaacacg aatggctctt 840acttcgtcta cagcaagctc aatgtgcaga agagcaactg ggaggcagga aatactttca 900cctgctctgt gttacatgag ggcctgcaca accaccatac tgagaagagc ctctcccact 960ctcctggtaa atga 97482974DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 82ccaaaacgac acccccatct gtctatccac tggcccctgg atctgctgcc caaactaact 60ccatggtgac cctgggatgc ctggtcaagg gctatttccc tgagccagtg acagtgacct 120ggaactctgg atccctgtcc agcggtgtgc acaccttccc agctgtcctg cagtctgacc 180tctacactct gagcagctca gtgactgtcc cctccagcac ctggcccagc gagaccgtca 240cctgcaacgt tgcccacccg gccagcagca ccaaggtgga caagaaaatt gtgcccaggg 300attgtggttg taagccttgc atatgtacag tcccagaagt atcatctgtc ttcatcttcc 360ccccaaagcc caaggatgtg ctcaccatta ctctgactcc taaggtcacg tgtgttgtgg 420tagacatcag caaggatgat cccgaggtcc agttcagctg gtttgtagat gatgtggagg 480tgcacacagc tcagacgcaa ccccgggagg agcagttcaa cagcactttc cgctcagtca 540gtgaacttcc catcatgcac caggactggc tcaatggcaa ggagttcaaa tgcagggtca 600acagtgcagc tttccctgcc cccatcgaga aaaccatctc caaaaccaaa ggcagaccga 660aggctccaca ggtgtacacc attccacctc ccaaggagca gatggccaag gataaagtca 720gtctgacctg catgataaca gacttcttcc ctgaagacat tactgtggag tggcagtgga 780atgggcagcc agcggagaac tacaagaaca ctcagcccat catggacaca gatggctctt 840acttcgtcta cagcaagctc aatgtgcaga agagcaactg ggaggcagga aatactttca 900cctgctctgt gttacatgag ggcctgcaca accaccatac tgagaagagc ctctcccact 960ctcctggtaa atga 97483323DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 83gggctgatgc tgcaccaact gtatccatct tcccaccatc cagtgagcag ttaacatctg 60gaggtgcctc agtcgtgtgc ttcttgaaca acttctaccc caaagacatc aatgtcaagt 120ggaagattga tggcagtgaa cgacaaaatg gcgtcctgaa cagttggact gatcaggaca 180gcaaagacag cacctacagc atgagcagca ccctcacgtt gaccaaggac gagtatgaac 240gacataacag ctatacctgt gaggccactc acaagacatc aacttcaccc attgtcaaga 300gcttcaacag gaatgagtgt tag 32384323DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 84gggctgatgc tgcaccaact gtatccatct tcccaccatc cagtgagcag ttaacatctg 60gaggtgcctc agtcgtgtgc ttcttgaaca acttctaccc caaagacatc aatgtcaagt 120ggaagattga tggcagtgaa cgacaaaatg gcgtcctgaa cagttggact gatcaggaca 180gcaaagacag cacctacagc atgagcagca ccctcatgtt gaccaaggac gagtatgaac 240gacataacag ctatacctgt gaggccactc acaagacatc aacttcaccc attgtcaaga 300gcttcaacag gaatgagtgt tag 3238530DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 85aagcagtggt atcaacgcag agtacgcggg 308627DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 86tttttttttt tttttttttt tttttvn 278745DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 87ctaatacgac tcactatagg gcaagcagtg gtatcaacgc agagt 458822DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 88ctaatacgac tcactatagg gc 228921DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 89tatgcaaggc ttacaaccac a 219028DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 90gccagtggat agacagatgg gggtgtcg 289127DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 91ctcattcctg ttgaagctct tgacaat 279223DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 92cgactgaggc acctccagat gtt 239320DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 93taatacgact cactataggg 209417DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 94gtaaaacgac ggccagt 179518DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 95caggaaacag ctatgacc 189663DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 96ggggacaagt ttgtacaaaa aagcaggctg ccaccatgaa ctttgggctc agattgattt 60tcc 639754DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 97ggggaccact ttgtacaaga aagctgggtt catttaccag gagagtggga gagg 549862DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 98ggggacaagt ttgtacaaaa aagcaggctg ccaccatggg atggagctat atcatcctct 60tt 629953DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 99ggggaccact ttgtacaaga aagctgggtt catttaccag gagagtggga gag 5310062DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 100ggggacaagt ttgtacaaaa aagcaggctg ccaccatgga atcacagact ctggtcttca 60ta 6210154DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 101ggggaccact ttgtacaaga aagctgggtc taacactcat tcctgttgaa gctc 5410230DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 102actggctagc atgtgggtga ccaaactcct 3010346DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 103gtgatggtga tggtgatggc ggccgcatga ctgtggtacc ttatat 4610430DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 104actggcggcc gccatcacca tcaccatcac 3010531DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 105actgggatcc tcactattta cccggggaca g 3110627DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 106catgatgtcc acgaaagagg agatgag 2710727DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 107ctcatctcct ctttcgtgga catcatg 2710837DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 108ggaagaggag atgagaaacg caaacaggtt ctcaatg 3710937DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 109cattgagaac ctgtttgcgt ttctcatctc ctcttcc 3711029DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 110atcggctagc atgatgtggg ggaccaaac 2911136DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 111ggttttgttt tgttgacgcc caacatttac cctaag 3611236DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 112ccaaaacaaa acaactgcgg gttgtaaatg ggattc 3611340DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 113tctagaccaa aattacttcg aacgagctgg acgttaggac 4011440DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 114agatctggtt ttaatgaagc ttgctcgacc tgcaatcctg 4011548DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 115cactaccact accactaccg ccggcgtgtt gaacatacag ttttaatg 4811638DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 116catcaccatc accatcacta agcgggtctg gtgccacg 3811738DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 117cgtggcacca gacccgctta gtgatggtga tggtgatg 381182922DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 118atgtgggtga ccaaactcct gccagccctg ctgctgcagc atgtcctcct gcatctcctc 60ctgctcccca tcgccatccc ctatgcagag ggacaaagga aaagaagaaa tacaattcat 120gaattcaaaa aatcagcaaa gactacccta atcaaaatag atccagcact gaagataaaa 180accaaaaaag tgaatactgc agaccaatgt gctaatagat gtactaggaa taaaggactt 240ccattcactt gcaaggcttt tgtttttgat aaagcaagaa aacaatgcct ctggttcccc 300ttcaatagca tgtcaagtgg agtgaaaaaa gaatttggcc atgaatttga cctctatgaa 360aacaaagact acattagaaa ctgcatcatt ggtaaaggac gcagctacaa gggaacagta 420tctatcacta agagtggcat caaatgtcag ccctggagtt ccatgatacc acacgaacac 480agctttttgc cttcgagcta tcggggtaaa gacctacagg aaaactactg tcgaaatcct 540cgaggggaag aagggggacc ctggtgtttc acaagcaatc cagaggtacg ctacgaagtc 600tgtgacattc ctcagtgttc agaagttgaa tgcatgacct gcaatgggga gagttatcga 660ggtctcatgg atcatacaga atcaggcaag atttgtcagc gctgggatca tcagacacca 720caccggcaca aattcttgcc tgaaagatat cccgacaagg gctttgatga taattattgc 780cgcaatcccg atggccagcc gaggccatgg tgctatactc ttgaccctca cacccgctgg 840gagtactgtg caattaaaac atgcgctgac aatactatga atgacactga tgttcctttg 900gaaacaactg aatgcatcca aggtcaagga gaaggctaca ggggcactgt caataccatt 960tggaatggaa ttccatgtca gcgttgggat tctcagtatc ctcacgagca tgacatgact 1020cctgaaaatt tcaagtgcaa ggacctacga gaaaattact gccgaaatcc agatgggtct 1080gaatcaccct ggtgttttac cactgatcca aacatccgag ttggctactg ctcccaaatt 1140ccaaactgtg atatgtcaca tggacaagat tgttatcgtg ggaatggcaa aaattatatg 1200ggcaacttat cccaaacaag atctggacta acatgttcaa tgtgggacaa gaacatggaa 1260gacttacatc gtcatatctt ctgggaacca gatgcaagta agctgaatga gaattactgc 1320cgaaatccag atgatgatgc tcatggaccc tggtgctaca cgggaaatcc actcattcct 1380tgggattatt gccctatttc tcgttgtgaa ggtgatacca cacctacaat agtcaattta 1440gaccatcccg taatatcttg tgccaaaacg aaacaattgc gagttgtaaa tgggattcca 1500acacgaacaa acataggatg gatggttagt ttgagataca gaaataaaca tatctgcgga 1560ggatcattga taaaggagag ttgggttctt actgcacgac agtgtttccc ttctcgagac 1620ttgaaagatt atgaagcttg gcttggaatt catgatgtcc acggaagagg agatgagaaa 1680tgcaaacagg ttctcaatgt ttcccagctg gtatatggcc ctgaaggatc agatctggtt 1740ttaatgaagc ttgccaggcc tgctgtcctg gatgattttg ttagtacgat tgatttacct 1800aattatggat gcacaattcc tgaaaagacc agttgcagtg tttatggctg gggctacact 1860ggattgatca actatgatgg cctattacga gtggcacatc tctatataat gggaaatgag 1920aaatgcagcc agcatcatcg agggaaggtg actctgaatg agtctgaaat atgtgctggg 1980gctgaaaaga ttggatcagg accatgtgag ggggattatg gtggcccact tgtttgtgag 2040caacataaaa tgagaatggt tcttggtgtc attgttcctg gtcgtggatg tgccattcca 2100aatcgtcctg gtatttttgt ccgagtagca tattatgcaa aatggataca caaaattatt 2160ttaacatata aggtaccaca gtcatgcggc cgccatcacc atcaccatca ctccgcgggt 2220ctggtgccac gcggtagtga caaaactcac acatgcccac cgtgcccagc acctgaactc 2280ctggggggac cgtcagtctt cctcttcccc ccaaaaccca aggacaccct catgatctcc 2340cggacccctg aggtcacatg cgtggtggtg gacgtgagcc acgaagaccc tgaggtcaag 2400ttcaactggt acgtggacgg cgtggaggtg cataatgcca agacaaagcc gcgggaggag 2460cagtacaaca gcacgtaccg tgtggtcagc gtcctcaccg tcctgcacca ggactggctg 2520aatggcaagg agtacaagtg caaggtctcc aacaaagccc tcccagcccc catcgagaaa 2580accatctcca aagccaaagg gcagccccga gaaccacagg tgtacaccct gcccccatcc 2640cgggaggaga tgaccaagaa ccaggtcagc ctgacctgcc tggtcaaagg cttctatccc 2700agcgacatcg ccgtggagtg ggagagcaat gggcagccgg agaacaacta caagaccacg 2760cctcccgtgc tggactccga cggctccttc ttcctctata gcaagctcac cgtggacaag 2820agcaggtggc agcaggggaa cgtcttctca tgctccgtga tgcatgaggc tctgcacaac 2880cactacacgc agaagagcct ctccctgtcc ccgggtaaat ag 2922119919PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 119Pro Ala Leu Lys Ile Lys Thr Lys Lys Val Asn Thr Ala Asp Gln Cys 1 5 10 15 Ala Asn Arg Cys Thr Arg Asn Lys Gly Leu Pro Phe Thr Cys Lys Ala 20 25 30 Phe Val Phe Asp Lys Ala Arg Lys Gln Cys Leu Trp Phe Pro Phe Asn 35 40 45 Ser Met Ser Ser Gly Val Lys Lys Glu Phe Gly His Glu Phe Asp Leu 50 55 60 Tyr Glu Asn Lys Asp Tyr Ile Arg Asn Cys Ile Ile Gly Lys Gly Arg 65 70 75 80 Ser Tyr Lys Gly Thr Val Ser Ile Thr Lys Ser Gly Ile Lys Cys Gln 85 90 95 Pro Trp Ser Ser Met Ile Pro His Glu His Ser Phe Leu Pro Ser Ser 100 105 110 Tyr Arg Gly Lys Asp Leu Gln Glu Asn Tyr Cys Arg Asn Pro Arg Gly 115 120 125 Glu Glu Gly Gly Pro Trp Cys Phe Thr Ser Asn Pro Glu Val Arg Tyr 130 135 140 Glu Val Cys Asp Ile Pro Gln Cys Ser Glu Val Glu Cys Met Thr Cys 145 150 155 160 Asn Gly Glu Ser Tyr Arg Gly Leu Met Asp His Thr Glu Ser Gly Lys 165 170 175 Ile Cys Gln Arg Trp Asp His Gln Thr Pro His Arg His Lys Phe Leu 180 185 190 Pro Glu Arg Tyr Pro Asp Lys Gly Phe Asp Asp Asn Tyr Cys Arg Asn 195 200 205 Pro Asp Gly Gln Pro Arg Pro Trp Cys Tyr Thr Leu Asp Pro His Thr 210 215 220 Arg Trp Glu Tyr Cys Ala Ile Lys Thr Cys Ala Asp Asn Thr Met Asn 225 230 235 240 Asp Thr Asp Val Pro Leu Glu Thr Thr Glu Cys Ile Gln Gly Gln Gly 245 250 255 Glu Gly Tyr Arg Gly Thr Val Asn Thr Ile Trp Asn Gly Ile Pro Cys 260 265 270 Gln Arg Trp Asp Ser Gln Tyr Pro His Glu His Asp Met Thr Pro Glu 275 280 285 Asn Phe Lys Cys Lys Asp Leu Arg Glu Asn Tyr Cys Arg Asn Pro Asp 290 295 300 Gly Ser Glu Ser Pro Trp Cys Phe Thr Thr Asp Pro Asn Ile Arg Val 305 310 315 320 Gly Tyr Cys Ser Gln Ile Pro Asn Cys Asp Met Ser His Gly Gln Asp 325 330 335 Cys Tyr Arg Gly Asn Gly Lys Asn Tyr Met Gly Asn Leu Ser Gln Thr 340 345 350 Arg Ser Gly Leu Thr Cys Ser Met Trp Asp Lys Asn Met Glu Asp Leu 355 360 365 His Arg His Ile Phe Trp Glu Pro Asp Ala Ser Lys Leu Asn Glu Asn 370 375 380 Tyr Cys Arg Asn Pro Asp Asp Asp Ala His Gly Pro Trp Cys Tyr Thr 385 390 395 400 Gly Asn Pro Leu Ile Pro Trp Asp Tyr Cys Pro Ile Ser Arg Cys Glu 405 410 415 Gly Asp Thr Thr Pro Thr Ile Val Asn Leu Asp His Pro Val Ile Ser 420 425 430 Cys Ala Lys Thr Lys Gln Leu Arg Val Val Asn Gly Ile Pro Thr Arg 435 440 445 Thr Asn Ile Gly Trp Met Val Ser Leu Arg Tyr Arg Asn Lys His Ile 450 455 460 Cys Gly Gly Ser Leu Ile Lys Glu Ser Trp Val Leu Thr Ala Arg Gln 465 470 475 480 Cys Phe Pro Ser Arg Asp Leu Lys Asp Tyr Glu Ala Trp Leu Gly Ile 485 490 495 His Asp Val His Gly Arg Gly Asp Glu Lys Cys Lys Gln Val Leu Asn 500 505 510 Val Ser Gln Leu Val Tyr Gly Pro Glu Gly Ser Asp Leu Val Leu Met 515 520 525 Lys Leu Ala Arg Pro Ala Val Leu Asp Asp Phe Val Ser Thr Ile Asp 530 535 540 Leu Pro Asn Tyr Gly Cys Thr Ile Pro Glu Lys Thr Ser Cys Ser Val 545 550 555 560 Tyr Gly Trp Gly Tyr Thr Gly Leu Ile Asn Tyr Asp Gly Leu Leu Arg 565 570 575 Val Ala His Leu Tyr Ile Met Gly Asn Glu Lys Cys Ser Gln His His 580 585 590 Arg Gly Lys Val Thr Leu Asn Glu Ser Glu Ile Cys Ala Gly Ala Glu 595 600 605 Lys Ile Gly Ser Gly Pro Cys Glu Gly Asp Tyr Gly Gly Pro Leu Val 610 615 620 Cys Glu Gln His

Lys Met Arg Met Val Leu Gly Val Ile Val Pro Gly 625 630 635 640 Arg Gly Cys Ala Ile Pro Asn Arg Pro Gly Ile Phe Val Arg Val Ala 645 650 655 Tyr Tyr Ala Lys Trp Ile His Lys Ile Ile Leu Thr Tyr Lys Val Pro 660 665 670 Gln Ser Cys Gly Arg His His His His His His Ser Ala Gly Leu Val 675 680 685 Pro Arg Gly Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro 690 695 700 Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys 705 710 715 720 Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val 725 730 735 Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp 740 745 750 Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr 755 760 765 Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp 770 775 780 Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu 785 790 795 800 Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg 805 810 815 Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys 820 825 830 Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp 835 840 845 Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys 850 855 860 Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser 865 870 875 880 Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser 885 890 895 Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser 900 905 910 Leu Ser Leu Ser Pro Gly Lys 915 1202901DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 120atgatgtggg ggaccaaact tctgccggtc ctgttgctgc agcatgtcct cctgcacctc 60ctcctgcttc atgtcgccat cccctatgca gaaggacaga agaaaagaag aaatacactt 120catgaattta aaaagtcagc aaaaactact cttaccaagg aagacccatt actgaagatt 180aaaaccaaaa aagtgaactc tgcagatgag tgtgccaaca ggtgtatcag gaacaggggc 240tttacgttca cttgcaaggc cttcgttttt gataagtcaa gaaaacgatg ctactggtat 300cctttcaata gtatgtcaag tggagtgaaa aaagggtttg gccatgaatt tgacctctat 360gaaaacaaag actatattag aaactgcatc attggtaaag gaggcagcta taaagggacg 420gtatccatca ctaagagtgg catcaaatgc cagccttgga attccatgat cccccatgaa 480cacagctatc gcggtaaaga cctacaggaa aactactgtc gaaatcctcg aggggaagaa 540gggggaccct ggtgtttcac aagcaatcca gaggtacgct acgaagtctg tgacattcct 600cagtgttcag aagttgaatg catgacctgc aatggtgaaa gctacagagg tcccatggat 660cacacagaat caggcaagac ttgtcagcgc tgggaccagc agacaccaca ccggcacaag 720ttcttgccag aaagatatcc cgacaagggc tttgatgata attattgccg caatcctgat 780ggcaagccga ggccatggtg ctacactctt gaccctgaca ccccttggga gtattgtgca 840attaaaacgt gcgctcacag tgctgtgaat gagactgatg tccctatgga aacaactgaa 900tgcattcaag gccaaggaga aggttacagg ggaaccagca ataccatttg gaatggaatt 960ccctgtcagc gttgggattc gcagtaccct cacaagcatg atatcactcc cgagaacttc 1020aaatgcaagg accttagaga aaattattgc cgcaatccag atggggctga atcaccatgg 1080tgttttacca ctgacccaaa catccgagtt ggctactgct ctcaaattcc caagtgtgac 1140gtgtcaagtg gacaagattg ttatcgtggc aatgggaaaa attacatggg caacttatcc 1200aaaacaaggt ctggacttac atgttccatg tgggacaaga atatggagga tttacaccgt 1260catatcttct gggagccaga tgctagcaaa ttgaataaga attactgccg gaatcctgat 1320gatgatgccc atggaccttg gtgctacacg gggaatcctc ttattccttg ggattattgc 1380cctatttccc gttgtgaagg agatactaca cctacaattg tcaatttgga ccatcctgta 1440atatcctgtg ccaaaacaaa acaactgcgg gttgtaaatg ggattccaac acgaacaaac 1500ataggatgga tggttagttt gagatacaga aataaacata tctgcggagg atcattgata 1560aaggagagtt gggttcttac tgcacgacag tgtttccctt ctcgagactt gaaagattat 1620gaagcttggc ttggaattca tgatgtccac ggaagaggag atgagaaatg caaacaggtt 1680ctcaatgttt cccagctggt atatggccct gaaggatcag atctggtttt aatgaagctt 1740gctcgacctg caatcctgga taactttgtc agtacaattg atttacctag ttatggttgt 1800acaatccctg aaaagaccac ttgcagtatt tacggctggg gctacactgg attgatcaac 1860gcggatggtt tattacgagt agctcatctg tatattatgg ggaatgagaa atgcagtcag 1920caccatcaag gcaaggtgac tttgaatgag tctgagttat gtgctggggc tgaaaagatt 1980ggatcaggac catgtgaggg agattatggt ggcccactca tttgtgaaca acacaaaatg 2040agaatggttc ttggtgtcat tgttcctggt cgtggatgtg ccatcccaaa tcgtcctggt 2100atttttgttc gagtagcata ttatgcaaaa tggatacaca aagtaatttt gacatacaag 2160ttgtgcggcc gccatcacca tcaccatcac tccgcgggtc tggtgccacg cggtagtgac 2220aaaactcaca catgcccacc gtgcccagca cctgaactcc tggggggacc gtcagtcttc 2280ctcttccccc caaaacccaa ggacaccctc atgatctccc ggacccctga ggtcacatgc 2340gtggtggtgg acgtgagcca cgaagaccct gaggtcaagt tcaactggta cgtggacggc 2400gtggaggtgc ataatgccaa gacaaagccg cgggaggagc agtacaacag cacgtaccgt 2460gtggtcagcg tcctcaccgt cctgcaccag gactggctga atggcaagga gtacaagtgc 2520aaggtctcca acaaagccct cccagccccc atcgagaaaa ccatctccaa agccaaaggg 2580cagccccgag aaccacaggt gtacaccctg cccccatccc gggaggagat gaccaagaac 2640caggtcagcc tgacctgcct ggtcaaaggc ttctatccca gcgacatcgc cgtggagtgg 2700gagagcaatg ggcagccgga gaacaactac aagaccacgc ctcccgtgct ggactccgac 2760ggctccttct tcctctatag caagctcacc gtggacaaga gcaggtggca gcaggggaac 2820gtcttctcat gctccgtgat gcatgaggct ctgcacaacc actacacgca gaagagcctc 2880tccctgtccc cgggtaaata g 2901121911PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 121Pro Leu Leu Lys Ile Lys Thr Lys Lys Val Asn Ser Ala Asp Glu Cys 1 5 10 15 Ala Asn Arg Cys Ile Arg Asn Arg Gly Phe Thr Phe Thr Cys Lys Ala 20 25 30 Phe Val Phe Asp Lys Ser Arg Lys Arg Cys Tyr Trp Tyr Pro Phe Asn 35 40 45 Ser Met Ser Ser Gly Val Lys Lys Gly Phe Gly His Glu Phe Asp Leu 50 55 60 Tyr Glu Asn Lys Asp Tyr Ile Arg Asn Cys Ile Ile Gly Lys Gly Gly 65 70 75 80 Ser Tyr Lys Gly Thr Val Ser Ile Thr Lys Ser Gly Ile Lys Cys Gln 85 90 95 Pro Trp Asn Ser Met Ile Pro His Glu His Ser Tyr Arg Gly Lys Asp 100 105 110 Leu Gln Glu Asn Tyr Cys Arg Asn Pro Arg Gly Glu Glu Gly Gly Pro 115 120 125 Trp Cys Phe Thr Ser Asn Pro Glu Val Arg Tyr Glu Val Cys Asp Ile 130 135 140 Pro Gln Cys Ser Glu Val Glu Cys Met Thr Cys Asn Gly Glu Ser Tyr 145 150 155 160 Arg Gly Pro Met Asp His Thr Glu Ser Gly Lys Thr Cys Gln Arg Trp 165 170 175 Asp Gln Gln Thr Pro His Arg His Lys Phe Leu Pro Glu Arg Tyr Pro 180 185 190 Asp Lys Gly Phe Asp Asp Asn Tyr Cys Arg Asn Pro Asp Gly Lys Pro 195 200 205 Arg Pro Trp Cys Tyr Thr Leu Asp Pro Asp Thr Pro Trp Glu Tyr Cys 210 215 220 Ala Ile Lys Thr Cys Ala His Ser Ala Val Asn Glu Thr Asp Val Pro 225 230 235 240 Met Glu Thr Thr Glu Cys Ile Gln Gly Gln Gly Glu Gly Tyr Arg Gly 245 250 255 Thr Ser Asn Thr Ile Trp Asn Gly Ile Pro Cys Gln Arg Trp Asp Ser 260 265 270 Gln Tyr Pro His Lys His Asp Ile Thr Pro Glu Asn Phe Lys Cys Lys 275 280 285 Asp Leu Arg Glu Asn Tyr Cys Arg Asn Pro Asp Gly Ala Glu Ser Pro 290 295 300 Trp Cys Phe Thr Thr Asp Pro Asn Ile Arg Val Gly Tyr Cys Ser Gln 305 310 315 320 Ile Pro Lys Cys Asp Val Ser Ser Gly Gln Asp Cys Tyr Arg Gly Asn 325 330 335 Gly Lys Asn Tyr Met Gly Asn Leu Ser Lys Thr Arg Ser Gly Leu Thr 340 345 350 Cys Ser Met Trp Asp Lys Asn Met Glu Asp Leu His Arg His Ile Phe 355 360 365 Trp Glu Pro Asp Ala Ser Lys Leu Asn Lys Asn Tyr Cys Arg Asn Pro 370 375 380 Asp Asp Asp Ala His Gly Pro Trp Cys Tyr Thr Gly Asn Pro Leu Ile 385 390 395 400 Pro Trp Asp Tyr Cys Pro Ile Ser Arg Cys Glu Gly Asp Thr Thr Pro 405 410 415 Thr Ile Val Asn Leu Asp His Pro Val Ile Ser Cys Ala Lys Thr Lys 420 425 430 Gln Leu Arg Val Val Asn Gly Ile Pro Thr Arg Thr Asn Ile Gly Trp 435 440 445 Met Val Ser Leu Arg Tyr Arg Asn Lys His Ile Cys Gly Gly Ser Leu 450 455 460 Ile Lys Glu Ser Trp Val Leu Thr Ala Arg Gln Cys Phe Pro Ser Arg 465 470 475 480 Asp Leu Lys Asp Tyr Glu Ala Trp Leu Gly Ile His Asp Val His Gly 485 490 495 Arg Gly Asp Glu Lys Cys Lys Gln Val Leu Asn Val Ser Gln Leu Val 500 505 510 Tyr Gly Pro Glu Gly Ser Asp Leu Val Leu Met Lys Leu Ala Arg Pro 515 520 525 Ala Ile Leu Asp Asn Phe Val Ser Thr Ile Asp Leu Pro Ser Tyr Gly 530 535 540 Cys Thr Ile Pro Glu Lys Thr Thr Cys Ser Ile Tyr Gly Trp Gly Tyr 545 550 555 560 Thr Gly Leu Ile Asn Ala Asp Gly Leu Leu Arg Val Ala His Leu Tyr 565 570 575 Ile Met Gly Asn Glu Lys Cys Ser Gln His His Gln Gly Lys Val Thr 580 585 590 Leu Asn Glu Ser Glu Leu Cys Ala Gly Ala Glu Lys Ile Gly Ser Gly 595 600 605 Pro Cys Glu Gly Asp Tyr Gly Gly Pro Leu Ile Cys Glu Gln His Lys 610 615 620 Met Arg Met Val Leu Gly Val Ile Val Pro Gly Arg Gly Cys Ala Ile 625 630 635 640 Pro Asn Arg Pro Gly Ile Phe Val Arg Val Ala Tyr Tyr Ala Lys Trp 645 650 655 Ile His Lys Val Ile Leu Thr Tyr Lys Leu Cys Gly Arg His His His 660 665 670 His His His Ser Ala Gly Leu Val Pro Arg Gly Ser Asp Lys Thr His 675 680 685 Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val 690 695 700 Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 705 710 715 720 Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu 725 730 735 Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 740 745 750 Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser 755 760 765 Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys 770 775 780 Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile 785 790 795 800 Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 805 810 815 Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 820 825 830 Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn 835 840 845 Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser 850 855 860 Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg 865 870 875 880 Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 885 890 895 His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 900 905 910 1221398DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 122atgaactttg ggctcagatt gattttcctt gtccttgttt taaaaggtgt gaagtgtgaa 60gtgcagctgg tggagtctgg gggaggctta gtgcagcctg gagggtccct gaaactctcc 120tgtgcagcct ctgaattcac tttcagtaac tattacatgt cttgggttcg ccagactcca 180gagaagaggc tgcagtgggt cgcatacatt agtcctggtg gtggtagctc ctactatcca 240gccagtgtga agggtcgatt caccatctcc agagacaatg ccaagaacac cctgtacctg 300caaatgagca gtctgaagtc tgaggacaca gccatgtatt actgtgcaag acaaggggat 360ggttactacg gggactatgc tatggactac tggggtcaag gaacctcagt caccgtctcc 420tcagccaaaa cgacaccccc atctgtctat ccactggccc ctggatctgc tgcccaaact 480aactccatgg tgaccctggg atgcctggtc aagggctatt tccctgagcc agtgacagtg 540acctggaact ctggatccct gtccagcggt gtgcacacct tcccagctgt cctgcagtct 600gacctctaca ctctgagcag ctcagtgact gtcccctcca gcacctggcc cagcgagacc 660gtcacctgca acgttgccca cccggccagc agcaccaagg tggacaagaa aattgtgccc 720agggattgtg gttgtaagcc ttgcatatgt acagtcccag aagtatcatc tgtcttcatc 780ttccccccaa agcccaagga tgtgctcacc attactctga ctcctaaggt cacgtgtgtt 840gtggtagaca tcagcaagga tgatcccgag gtccagttca gctggtttgt agatgatgtg 900gaggtgcaca cagctcagac gcaaccccgg gaggagcagt tcaacagcac tttccgctca 960gtcagtgaac ttcccatcat gcaccaggac tggctcaatg gcaaggagtt caaatgcagg 1020gtcaacagtg cagctttccc tgcccccatc gagaaaacca tctccaaaac caaaggcaga 1080ccgaaggctc cacaggtgta caccattcca cctcccaagg agcagatggc caaggataaa 1140gtcagtctga cctgcatgat aacagacttc ttccctgaag acattactgt ggagtggcag 1200tggaatgggc agccagcgga gaactacaag aacactcagc ccatcatgga cacagatggc 1260tcttacttcg tctacagcaa gctcaatgtg cagaagagca actgggaggc aggaaatact 1320ttcacctgct ctgtgttaca tgagggcctg cacaaccacc atactgagaa gagcctctcc 1380cactctcctg gtaaatga 1398123446PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 123Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15 Ser Leu Lys Leu Ser Cys Ala Ala Ser Glu Phe Thr Phe Ser Asn Tyr 20 25 30 Tyr Met Ser Trp Val Arg Gln Thr Pro Glu Lys Arg Leu Gln Trp Val 35 40 45 Ala Tyr Ile Ser Pro Gly Gly Gly Ser Ser Tyr Tyr Pro Ala Ser Val 50 55 60 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr 65 70 75 80 Leu Gln Met Ser Ser Leu Lys Ser Glu Asp Thr Ala Met Tyr Tyr Cys 85 90 95 Ala Arg Gln Gly Asp Gly Tyr Tyr Gly Asp Tyr Ala Met Asp Tyr Trp 100 105 110 Gly Gln Gly Thr Ser Val Thr Val Ser Ser Ala Lys Thr Thr Pro Pro 115 120 125 Ser Val Tyr Pro Leu Ala Pro Gly Ser Ala Ala Gln Thr Asn Ser Met 130 135 140 Val Thr Leu Gly Cys Leu Val Lys Gly Tyr Phe Pro Glu Pro Val Thr 145 150 155 160 Val Thr Trp Asn Ser Gly Ser Leu Ser Ser Gly Val His Thr Phe Pro 165 170 175 Ala Val Leu Gln Ser Asp Leu Tyr Thr Leu Ser Ser Ser Val Thr Val 180 185 190 Pro Ser Ser Thr Trp Pro Ser Glu Thr Val Thr Cys Asn Val Ala His 195 200 205 Pro Ala Ser Ser Thr Lys Val Asp Lys Lys Ile Val Pro Arg Asp Cys 210 215 220 Gly Cys Lys Pro Cys Ile Cys Thr Val Pro Glu Val Ser Ser Val Phe 225 230 235 240 Ile Phe Pro Pro Lys Pro Lys Asp Val Leu Thr Ile Thr Leu Thr Pro 245 250 255 Lys Val Thr Cys Val Val Val Asp Ile Ser Lys Asp Asp Pro Glu Val 260 265 270 Gln Phe Ser Trp Phe Val Asp Asp Val Glu Val His Thr Ala Gln Thr 275 280 285 Gln Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Ser Val Ser Glu 290 295 300 Leu Pro Ile Met His Gln Asp Trp Leu Asn Gly Lys Glu Phe Lys Cys 305 310 315 320 Arg Val Asn Ser Ala Ala Phe Pro Ala Pro Ile Glu Lys Thr Ile Ser 325 330 335 Lys Thr Lys Gly Arg Pro Lys Ala Pro Gln Val Tyr Thr Ile Pro Pro 340 345 350 Pro Lys Glu Gln Met Ala Lys Asp Lys Val Ser Leu Thr Cys Met Ile 355 360 365 Thr Asp Phe Phe Pro Glu Asp Ile Thr Val Glu Trp Gln Trp Asn Gly 370 375

380 Gln Pro Ala Glu Asn Tyr Lys Asn Thr Gln Pro Ile Met Asp Thr Asp 385 390 395 400 Gly Ser Tyr Phe Val Tyr Ser Lys Leu Asn Val Gln Lys Ser Asn Trp 405 410 415 Glu Ala Gly Asn Thr Phe Thr Cys Ser Val Leu His Glu Gly Leu His 420 425 430 Asn His His Thr Glu Lys Ser Leu Ser His Ser Pro Gly Lys 435 440 445 124705DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 124atgagtgtgc ccactcaggt cctggggttg ctgctgctgt ggcttacaga tgccagatgt 60gacatccaga tgactcagtc tccagcctcc ctatctgttt ctgtgggaga aactgtcacc 120atcacatgtc gagcaagtga gaatatttat agtaatttag catggtatca gcagaaacag 180ggaaaatctc ctcagctcct ggtctatgct gcaacaaact tagcagatgg tgtgccatca 240aggttcagtg gcagtggatc aggcacacag ttttccctca agatcaacag cctgcagtct 300gaagattttg ggacttatta ctgtcaacat ttttggggta ctccgtacac gttcggaggg 360gggaccaagc tggaaataaa acgggctgat gctgcaccaa ctgtatccat cttcccacca 420tccagtgagc agttaacatc tggaggtgcc tcagtcgtgt gcttcttgaa caacttctac 480cccaaagaca tcaatgtcaa gtggaagatt gatggcagtg aacgacaaaa tggcgtcctg 540aacagttgga ctgatcagga cagcaaagac agcacctaca gcatgagcag caccctcatg 600ttgaccaagg acgagtatga acgacataac agctatacct gtgaggccac tcacaagaca 660tcaacttcac ccattgtcaa gagcttcaac aggaatgagt gttag 705125214PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 125Asp Ile Gln Met Thr Gln Ser Pro Ala Ser Leu Ser Val Ser Val Gly 1 5 10 15 Glu Thr Val Thr Ile Thr Cys Arg Ala Ser Glu Asn Ile Tyr Ser Asn 20 25 30 Leu Ala Trp Tyr Gln Gln Lys Gln Gly Lys Ser Pro Gln Leu Leu Val 35 40 45 Tyr Ala Ala Thr Asn Leu Ala Asp Gly Val Pro Ser Arg Phe Ser Gly 50 55 60 Ser Gly Ser Gly Thr Gln Phe Ser Leu Lys Ile Asn Ser Leu Gln Ser 65 70 75 80 Glu Asp Phe Gly Thr Tyr Tyr Cys Gln His Phe Trp Gly Thr Pro Tyr 85 90 95 Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Ala Asp Ala Ala 100 105 110 Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu Gln Leu Thr Ser Gly 115 120 125 Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe Tyr Pro Lys Asp Ile 130 135 140 Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg Gln Asn Gly Val Leu 145 150 155 160 Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser Thr Tyr Ser Met Ser 165 170 175 Ser Thr Leu Met Leu Thr Lys Asp Glu Tyr Glu Arg His Asn Ser Tyr 180 185 190 Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser Pro Ile Val Lys Ser 195 200 205 Phe Asn Arg Asn Glu Cys 210 1261386DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 126atgggatgga gctatatcat cctctttttg gtagcaacag ctacagatgt ccactcccag 60gtccaactgc agcagcctgg ggctgaactg gtgaagcctg ggacttcagt gaagctgtcc 120tgcaaggctt ctggctacac cttcaccacc tactggatgc actgggtgaa tcagaggcct 180ggacaaggcc ttgagtggat tggagagatt aatcctacca acggtcatac taactacaat 240gagaagttca agagcaaggc cacactgact gtagacaaat cctccagcac agcctacatg 300caactcagca gcctgacatc tgaggactct gcggtctatt actgtgcaag aaactatgtt 360ggtagcatct ttgactactg gggccaaggc accactctca cagtctcctc agccaaaacg 420acacccccat ctgtctatcc actggcccct ggatctgctg cccaaactaa ctccatggtg 480accctgggat gcctggtcaa gggctatttc cctgagccag tgacagtgac ctggaactct 540ggatccctgt ccagcggtgt gcacaccttc ccagctgtcc tgcagtctga cctctacact 600ctgagcagct cagtgactgt cccctccagc acctggccca gcgagaccgt cacctgcaac 660gttgcccacc cggccagcag caccaaggtg gacaagaaaa ttgtgcccag ggattgtggt 720tgtaagcctt gcatatgtac agtcccagaa gtatcatctg tcttcatctt ccccccaaag 780cccaaggatg tgctcaccat tactctgact cctaaggtca cgtgtgttgt ggtagacatc 840agcaaggatg atcccgaggt ccagttcagc tggtttgtag atgatgtgga ggtgcacaca 900gctcagacgc aaccccggga ggagcagttc aacagcactt tccgctcagt cagtgaactt 960cccatcatgc accaggactg gctcaatggc aaggagttca aatgcagggt caacagtgca 1020gctttccctg cccccatcga gaaaaccatc tccaaaacca aaggcagacc gaaggctcca 1080caggtgtaca ccattccacc tcccaaggag cagatggcca aggataaagt cagtctgacc 1140tgcatgataa cagacttctt ccctgaagac attactgtgg agtggcagtg gaatgggcag 1200ccagcggaga actacaagaa cactcagccc atcatggaca cagatggctc ttacttcgtc 1260tacagcaagc tcaatgtgca gaagagcaac tgggaggcag gaaatacttt cacctgctct 1320gtgttacatg agggcctgca caaccaccat actgagaaga gcctctccca ctctcctggt 1380aaatga 1386127442PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 127Gln Val Gln Leu Gln Gln Pro Gly Ala Glu Leu Val Lys Pro Gly Thr 1 5 10 15 Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Thr Tyr 20 25 30 Trp Met His Trp Val Asn Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45 Gly Glu Ile Asn Pro Thr Asn Gly His Thr Asn Tyr Asn Glu Lys Phe 50 55 60 Lys Ser Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Ser Thr Ala Tyr 65 70 75 80 Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Asn Tyr Val Gly Ser Ile Phe Asp Tyr Trp Gly Gln Gly Thr 100 105 110 Thr Leu Thr Val Ser Ser Ala Lys Thr Thr Pro Pro Ser Val Tyr Pro 115 120 125 Leu Ala Pro Gly Ser Ala Ala Gln Thr Asn Ser Met Val Thr Leu Gly 130 135 140 Cys Leu Val Lys Gly Tyr Phe Pro Glu Pro Val Thr Val Thr Trp Asn 145 150 155 160 Ser Gly Ser Leu Ser Ser Gly Val His Thr Phe Pro Ala Val Leu Gln 165 170 175 Ser Asp Leu Tyr Thr Leu Ser Ser Ser Val Thr Val Pro Ser Ser Thr 180 185 190 Trp Pro Ser Glu Thr Val Thr Cys Asn Val Ala His Pro Ala Ser Ser 195 200 205 Thr Lys Val Asp Lys Lys Ile Val Pro Arg Asp Cys Gly Cys Lys Pro 210 215 220 Cys Ile Cys Thr Val Pro Glu Val Ser Ser Val Phe Ile Phe Pro Pro 225 230 235 240 Lys Pro Lys Asp Val Leu Thr Ile Thr Leu Thr Pro Lys Val Thr Cys 245 250 255 Val Val Val Asp Ile Ser Lys Asp Asp Pro Glu Val Gln Phe Ser Trp 260 265 270 Phe Val Asp Asp Val Glu Val His Thr Ala Gln Thr Gln Pro Arg Glu 275 280 285 Glu Gln Phe Asn Ser Thr Phe Arg Ser Val Ser Glu Leu Pro Ile Met 290 295 300 His Gln Asp Trp Leu Asn Gly Lys Glu Phe Lys Cys Arg Val Asn Ser 305 310 315 320 Ala Ala Phe Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly 325 330 335 Arg Pro Lys Ala Pro Gln Val Tyr Thr Ile Pro Pro Pro Lys Glu Gln 340 345 350 Met Ala Lys Asp Lys Val Ser Leu Thr Cys Met Ile Thr Asp Phe Phe 355 360 365 Pro Glu Asp Ile Thr Val Glu Trp Gln Trp Asn Gly Gln Pro Ala Glu 370 375 380 Asn Tyr Lys Asn Thr Gln Pro Ile Met Asp Thr Asp Gly Ser Tyr Phe 385 390 395 400 Val Tyr Ser Lys Leu Asn Val Gln Lys Ser Asn Trp Glu Ala Gly Asn 405 410 415 Thr Phe Thr Cys Ser Val Leu His Glu Gly Leu His Asn His His Thr 420 425 430 Glu Lys Ser Leu Ser His Ser Pro Gly Lys 435 440 128705DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 128atggaatcac agactctggt cttcatatcc atactgctct ggttatatgg tgctgatggg 60aacattgtaa tgacccaatc tcccaaatcc atgtccatgt cagtaggaga gagggtcacc 120ttgagctgca aggccagtga gaatgtggtt tcttatgtat cctggtatca acagaaacca 180gcgcagtctc ctaaactgct gatatacggg gcatccaacc ggaacactgg ggtccccgat 240cgcttcacag gcagtggatc tgcaacagat ttcactctga ccatcagcag tgtgcgggct 300gaagaccttg cagattatca ctgtgggcag agttacaact atccgtacac gttcggaggg 360gggaccaggc tggaaataaa acgggctgat gctgcaccaa ctgtatccat cttcccacca 420tccagtgagc agttaacatc tggaggtgcc tcagtcgtgt gcttcttgaa caacttctac 480cccaaagaca tcaatgtcaa gtggaagatt gatggcagtg aacgacaaaa tggcgtcctg 540aacagttgga ctgatcagga cagcaaagac agcacctaca gcatgagcag caccctcacg 600ttgaccaagg acgagtatga acgacataac agctatacct gtgaggccac tcacaagaca 660tcaacttcac ccattgtcaa gagcttcaac aggaatgagt gttag 705129214PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 129Asn Ile Val Met Thr Gln Ser Pro Lys Ser Met Ser Met Ser Val Gly 1 5 10 15 Glu Arg Val Thr Leu Ser Cys Lys Ala Ser Glu Asn Val Val Ser Tyr 20 25 30 Val Ser Trp Tyr Gln Gln Lys Pro Ala Gln Ser Pro Lys Leu Leu Ile 35 40 45 Tyr Gly Ala Ser Asn Arg Asn Thr Gly Val Pro Asp Arg Phe Thr Gly 50 55 60 Ser Gly Ser Ala Thr Asp Phe Thr Leu Thr Ile Ser Ser Val Arg Ala 65 70 75 80 Glu Asp Leu Ala Asp Tyr His Cys Gly Gln Ser Tyr Asn Tyr Pro Tyr 85 90 95 Thr Phe Gly Gly Gly Thr Arg Leu Glu Ile Lys Arg Ala Asp Ala Ala 100 105 110 Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu Gln Leu Thr Ser Gly 115 120 125 Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe Tyr Pro Lys Asp Ile 130 135 140 Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg Gln Asn Gly Val Leu 145 150 155 160 Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser Thr Tyr Ser Met Ser 165 170 175 Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu Arg His Asn Ser Tyr 180 185 190 Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser Pro Ile Val Lys Ser 195 200 205 Phe Asn Arg Asn Glu Cys 210 1301386DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 130atggaatgga gctgggtctt tctcttcctc ctgtcagtaa ctgcaggtgt ccactgccag 60gtccagctga agcagtctgg agctgagctg gtgaggcctg ggacttcagt gaagatgtcc 120tgcaaggctt ctggctacac cttcactacc tactatatac actgggtgaa tcagaggcct 180ggacagggcc ttgagtggat tggaaagatt ggtcctggaa gtggtagtac ttactacaat 240gagatgttca aagacaaggc cacattgact gtagacacat cctccagcac agcctacatg 300cagctcagca gcctgacatc tgacgactct gcggtctatt tctgtgcaag aaggggactg 360ggacgtggct ttgactactg gggccaaggc accactctca cagtctcctc agccaaaacg 420acacccccat ctgtctatcc actggcccct ggatctgctg cccaaactaa ctccatggtg 480accctgggat gcctggtcaa gggctatttc cctgagccag tgacagtgac ctggaactct 540ggatccctgt ccagcggtgt gcacaccttc ccagctgtcc tgcagtctga cctctacact 600ctgagcagct cagtgactgt cccctccagc acctggccca gcgagaccgt cacctgcaac 660gttgcccacc cggccagcag caccaaggtg gacaagaaaa ttgtgcccag ggattgtggt 720tgtaagcctt gcatatgtac agtcccagaa gtatcatctg tcttcatctt ccccccaaag 780cccaaggatg tgctcaccat tactctgact cctaaggtca cgtgtgttgt ggtagacatc 840agcaaggatg atcccgaggt ccagttcagc tggtttgtag atgatgtgga ggtgcacaca 900gctcagacgc aaccccggga ggagcagttc aacagcactt tccgctcagt cagtgaactt 960cccatcatgc accaggactg gctcaatggc aaggagttca aatgcagggt caacagtgca 1020gctttccctg cccccatcga gaaaaccatc tccaaaacca aaggcagacc gaaggctcca 1080caggtgtaca ccattccacc tcccaaggag cagatggcca aggataaagt cagtctgacc 1140tgcatgataa cagacttctt ccctgaagac attactgtgg agtggcagtg gaatgggcag 1200ccagcggaga actacaagaa cactcagccc atcatggaca cagatggctc ttacttcgtc 1260tacagcaagc tcaatgtgca gaagagcaac tgggaggcag gaaatacttt cacctgctct 1320gtgttacatg agggcctgca caaccaccat actgagaaga gcctctccca ctctcctggt 1380aaatga 1386131442PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 131Gln Val Gln Leu Lys Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Thr 1 5 10 15 Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Thr Tyr 20 25 30 Tyr Ile His Trp Val Asn Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45 Gly Lys Ile Gly Pro Gly Ser Gly Ser Thr Tyr Tyr Asn Glu Met Phe 50 55 60 Lys Asp Lys Ala Thr Leu Thr Val Asp Thr Ser Ser Ser Thr Ala Tyr 65 70 75 80 Met Gln Leu Ser Ser Leu Thr Ser Asp Asp Ser Ala Val Tyr Phe Cys 85 90 95 Ala Arg Arg Gly Leu Gly Arg Gly Phe Asp Tyr Trp Gly Gln Gly Thr 100 105 110 Thr Leu Thr Val Ser Ser Ala Lys Thr Thr Pro Pro Ser Val Tyr Pro 115 120 125 Leu Ala Pro Gly Ser Ala Ala Gln Thr Asn Ser Met Val Thr Leu Gly 130 135 140 Cys Leu Val Lys Gly Tyr Phe Pro Glu Pro Val Thr Val Thr Trp Asn 145 150 155 160 Ser Gly Ser Leu Ser Ser Gly Val His Thr Phe Pro Ala Val Leu Gln 165 170 175 Ser Asp Leu Tyr Thr Leu Ser Ser Ser Val Thr Val Pro Ser Ser Thr 180 185 190 Trp Pro Ser Glu Thr Val Thr Cys Asn Val Ala His Pro Ala Ser Ser 195 200 205 Thr Lys Val Asp Lys Lys Ile Val Pro Arg Asp Cys Gly Cys Lys Pro 210 215 220 Cys Ile Cys Thr Val Pro Glu Val Ser Ser Val Phe Ile Phe Pro Pro 225 230 235 240 Lys Pro Lys Asp Val Leu Thr Ile Thr Leu Thr Pro Lys Val Thr Cys 245 250 255 Val Val Val Asp Ile Ser Lys Asp Asp Pro Glu Val Gln Phe Ser Trp 260 265 270 Phe Val Asp Asp Val Glu Val His Thr Ala Gln Thr Gln Pro Arg Glu 275 280 285 Glu Gln Phe Asn Ser Thr Phe Arg Ser Val Ser Glu Leu Pro Ile Met 290 295 300 His Gln Asp Trp Leu Asn Gly Lys Glu Phe Lys Cys Arg Val Asn Ser 305 310 315 320 Ala Ala Phe Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly 325 330 335 Arg Pro Lys Ala Pro Gln Val Tyr Thr Ile Pro Pro Pro Lys Glu Gln 340 345 350 Met Ala Lys Asp Lys Val Ser Leu Thr Cys Met Ile Thr Asp Phe Phe 355 360 365 Pro Glu Asp Ile Thr Val Glu Trp Gln Trp Asn Gly Gln Pro Ala Glu 370 375 380 Asn Tyr Lys Asn Thr Gln Pro Ile Met Asp Thr Asp Gly Ser Tyr Phe 385 390 395 400 Val Tyr Ser Lys Leu Asn Val Gln Lys Ser Asn Trp Glu Ala Gly Asn 405 410 415 Thr Phe Thr Cys Ser Val Leu His Glu Gly Leu His Asn His His Thr 420 425 430 Glu Lys Ser Leu Ser His Ser Pro Gly Lys 435 440 132717DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 132atggagacag acacaatcct gctatgggtg ctgctgctct gggttccagg ctccactggt 60gacattgtgc tgacccaatc tccagcttct ttggctgtgt ctctagggca gagggccacc 120atctcctgca aggccagcca aagtgttgat tatgatggta atagttatat caactggtac 180caacagaaac caggacagcc acccaaagtc ctcatctatg ttgcatccaa tctagaatct 240gggatcccag ccaggtttag tggcagtggg tctgggacag acttcaccct caacatccat 300cctgtggagg aggaggatgc tgcaacctat tactgtcagc aaagtattga ggatcctccc 360acgttcggtg ctgggaccaa gctggagctg aaacgggctg atgctgcacc aactgtatcc 420atcttcccac catccagtga gcagttaaca tctggaggtg cctcagtcgt gtgcttcttg 480aacaacttct accccaaaga catcaatgtc aagtggaaga ttgatggcag tgaacgacaa 540aatggcgtcc tgaacagttg gactgatcag gacagcaaag acagcaccta cagcatgagc 600agcaccctca cgttgaccaa ggacgagtat gaacgacata acagctatac ctgtgaggcc 660actcacaaga catcaacttc acccattgtc aagagcttca acaggaatga gtgttag 717133218PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 133Asp Ile Val Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly 1 5 10 15 Gln Arg Ala Thr Ile Ser Cys Lys Ala Ser Gln Ser Val Asp Tyr Asp

20 25 30 Gly Asn Ser Tyr Ile Asn Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro 35 40 45 Lys Val Leu Ile Tyr Val Ala Ser Asn Leu Glu Ser Gly Ile Pro Ala 50 55 60 Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His 65 70 75 80 Pro Val Glu Glu Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Ser Ile 85 90 95 Glu Asp Pro Pro Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys Arg 100 105 110 Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu Gln 115 120 125 Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe Tyr 130 135 140 Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg Gln 145 150 155 160 Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser Thr 165 170 175 Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu Arg 180 185 190 His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser Pro 195 200 205 Ile Val Lys Ser Phe Asn Arg Asn Glu Cys 210 215 1341392DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 134atggaatggc cttgtatctt tctcttcctc ctgtcagtaa ctgaaggtgt ccactcccag 60gttcagctgc agcagtctgg ggctgaactg gtgaggcctg ggtcctcagt gaagatttcc 120tgcaaggctt ctggctatgt attcagtagc tactggatga actgggtgaa gcagaggcct 180ggacagggtc ttgagtggat tggacagatt tatcctggag atggtgatag taactacaat 240ggaaacttca agggtaaagc cacactgact gcagacaaat cctccagtac agcctacatg 300cagctcagca gcctaacatc tgaggactct gcggtctatt tctgtgcatc ccagctcggg 360ctacgtgaga actactttga ctactggggc caaggcacca ctctcacagt ctcctcagcc 420aaaacgacac ccccatctgt ctatccactg gcccctggat ctgctgccca aactaactcc 480atggtgaccc tgggatgcct ggtcaagggc tatttccctg agccagtgac agtgacctgg 540aactctggat ccctgtccag cggtgtgcac accttcccag ctgtcctgca gtctgacctc 600tacactctga gcagctcagt gactgtcccc tccagcacct ggcccagcga gaccgtcacc 660tgcaacgttg cccacccggc cagcagcacc aaggtggaca agaaaattgt gcccagggat 720tgtggttgta agccttgcat atgtacagtc ccagaagtat catctgtctt catcttcccc 780ccaaagccca aggatgtgct caccattact ctgactccta aggtcacgtg tgttgtggta 840gacatcagca aggatgatcc cgaggtccag ttcagctggt ttgtagatga tgtggaggtg 900cacacagctc agacgcaacc ccgggaggag cagttcaaca gcactttccg ctcagtcagt 960gaacttccca tcatgcacca ggactggctc aatggcaagg agttcaaatg cagggtcaac 1020agtgcagctt tccctgcccc catcgagaaa accatctcca aaaccaaagg cagaccgaag 1080gctccacagg tgtacaccat tccacctccc aaggagcaga tggccaagga taaagtcagt 1140ctgacctgca tgataacaga cttcttccct gaagacatta ctgtggagtg gcagtggaat 1200gggcagccag cggagaacta caagaacact cagcccatca tggacacaga tggctcttac 1260ttcgtctaca gcaagctcaa tgtgcagaag agcaactggg aggcaggaaa tactttcacc 1320tgctctgtgt tacatgaggg cctgcacaac caccatactg agaagagcct ctcccactct 1380cctggtaaat ga 1392135444PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 135Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Ser 1 5 10 15 Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Val Phe Ser Ser Tyr 20 25 30 Trp Met Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45 Gly Gln Ile Tyr Pro Gly Asp Gly Asp Ser Asn Tyr Asn Gly Asn Phe 50 55 60 Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr 65 70 75 80 Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys 85 90 95 Ala Ser Gln Leu Gly Leu Arg Glu Asn Tyr Phe Asp Tyr Trp Gly Gln 100 105 110 Gly Thr Thr Leu Thr Val Ser Ser Ala Lys Thr Thr Pro Pro Ser Val 115 120 125 Tyr Pro Leu Ala Pro Gly Ser Ala Ala Gln Thr Asn Ser Met Val Thr 130 135 140 Leu Gly Cys Leu Val Lys Gly Tyr Phe Pro Glu Pro Val Thr Val Thr 145 150 155 160 Trp Asn Ser Gly Ser Leu Ser Ser Gly Val His Thr Phe Pro Ala Val 165 170 175 Leu Gln Ser Asp Leu Tyr Thr Leu Ser Ser Ser Val Thr Val Pro Ser 180 185 190 Ser Thr Trp Pro Ser Glu Thr Val Thr Cys Asn Val Ala His Pro Ala 195 200 205 Ser Ser Thr Lys Val Asp Lys Lys Ile Val Pro Arg Asp Cys Gly Cys 210 215 220 Lys Pro Cys Ile Cys Thr Val Pro Glu Val Ser Ser Val Phe Ile Phe 225 230 235 240 Pro Pro Lys Pro Lys Asp Val Leu Thr Ile Thr Leu Thr Pro Lys Val 245 250 255 Thr Cys Val Val Val Asp Ile Ser Lys Asp Asp Pro Glu Val Gln Phe 260 265 270 Ser Trp Phe Val Asp Asp Val Glu Val His Thr Ala Gln Thr Gln Pro 275 280 285 Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Ser Val Ser Glu Leu Pro 290 295 300 Ile Met His Gln Asp Trp Leu Asn Gly Lys Glu Phe Lys Cys Arg Val 305 310 315 320 Asn Ser Ala Ala Phe Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr 325 330 335 Lys Gly Arg Pro Lys Ala Pro Gln Val Tyr Thr Ile Pro Pro Pro Lys 340 345 350 Glu Gln Met Ala Lys Asp Lys Val Ser Leu Thr Cys Met Ile Thr Asp 355 360 365 Phe Phe Pro Glu Asp Ile Thr Val Glu Trp Gln Trp Asn Gly Gln Pro 370 375 380 Ala Glu Asn Tyr Lys Asn Thr Gln Pro Ile Met Asp Thr Asp Gly Ser 385 390 395 400 Tyr Phe Val Tyr Ser Lys Leu Asn Val Gln Lys Ser Asn Trp Glu Ala 405 410 415 Gly Asn Thr Phe Thr Cys Ser Val Leu His Glu Gly Leu His Asn His 420 425 430 His Thr Glu Lys Ser Leu Ser His Ser Pro Gly Lys 435 440 136711DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 136atggacatga ggacccctgc tcagtttctt ggaatcttgt tgctctggtt tccaggtatc 60aaatgtgaca tcaagatgac ccagtctcca tcttccatgt atgcatctct aggagagaga 120gtcacaatca cttgcaaggc gagtcaggac attaaaagct atttaagctg gttccagcag 180aaaccaggga aatctcctaa gaccctgatc tatcgtgtaa acagattggt agatggggtc 240ccatcaaggt tcagtggcag tggatctggg caagattctt ctctcaccat caccagcctg 300gagaatgaag atatgggaat ttattattgt ctacagtatg atgagtttcc gttcacgttc 360ggagggggga ccaagctgga aataaagcgg gctgatgctg caccaactgt atccatcttc 420ccaccatcca gtgagcagtt aacatctgga ggtgcctcag tcgtgtgctt cttgaacaac 480ttctacccca aagacatcaa tgtcaagtgg aagattgatg gcagtgaacg acaaaatggc 540gtcctgaaca gttggactga tcaggacagc aaagacagca cctacagcat gagcagcacc 600ctcacgttga ccaaggacga gtatgaacga cataacagct atacctgtga ggccactcac 660aagacatcaa cttcacccat tgtcaagagc ttcaacagga atgagtgtta g 711137214PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 137Asp Ile Lys Met Thr Gln Ser Pro Ser Ser Met Tyr Ala Ser Leu Gly 1 5 10 15 Glu Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asp Ile Lys Ser Tyr 20 25 30 Leu Ser Trp Phe Gln Gln Lys Pro Gly Lys Ser Pro Lys Thr Leu Ile 35 40 45 Tyr Arg Val Asn Arg Leu Val Asp Gly Val Pro Ser Arg Phe Ser Gly 50 55 60 Ser Gly Ser Gly Gln Asp Ser Ser Leu Thr Ile Thr Ser Leu Glu Asn 65 70 75 80 Glu Asp Met Gly Ile Tyr Tyr Cys Leu Gln Tyr Asp Glu Phe Pro Phe 85 90 95 Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Ala Asp Ala Ala 100 105 110 Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu Gln Leu Thr Ser Gly 115 120 125 Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe Tyr Pro Lys Asp Ile 130 135 140 Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg Gln Asn Gly Val Leu 145 150 155 160 Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser Thr Tyr Ser Met Ser 165 170 175 Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu Arg His Asn Ser Tyr 180 185 190 Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser Pro Ile Val Lys Ser 195 200 205 Phe Asn Arg Asn Glu Cys 210 1381361DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 138atggctgtcc cggtgctgtt cctctgcctg gttgcatttc caagctgtgt cctgtcccag 60gtacagctga aggagtcagg acctggcctg gtggcgccct cacagagcct gtccatcact 120tgcactgtct ctgggttttc attaaccagc tatagtttac actgggttcg ccagcctcca 180ggaaagggtc tggaatggct gggagtaata tgggctggtg gaaacacaaa ttataattcg 240tctctcatgt ccagactgac catcaggaaa gacaactcca agagccaagt tttcttaaaa 300atgaacagtc tgcaaactga tgacacagcc atgtactact gtgccagaga gaggtttgct 360tactggggcc aagggactct ggtcactgtc tctgcagcca aaacgacacc cccatctgtc 420tatccactgg cccctggatc tgctgcccaa actaactcca tggtgaccct gggatgcctg 480gtcaagggct atttccctga gccagtgaca gtgacctgga actctggatc cctgtccagc 540ggtgtgcaca ccttcccagc tgtcctgcag tctgacctct acactctgag cagctcagtg 600actgtcccct ccagcacctg gcccagcgag accgtcacct gcaacgttgc ccacccggcc 660agcagcacca aggtggacaa gaaaattgtg cccagggatt gtggttgtaa gccttgcata 720tgtacagtcc cagaagtatc atctgtcttc atcttccccc caaagcccaa ggatgtgctc 780accattactc tgactcctaa ggtcacgtgt gttgtggtag acatcagcaa ggatgatccc 840gaggtccagt tcagctggtt tgtagatgat gtggaggtgc acacagctca gacgcaaccc 900cgggaggagc agttcaacag cactttccgc tcagtcagtg aacttcccat catgcaccag 960gactggctca atggcaagga gttcaaatgc agggtcaaca gtgcagcttt ccctgccccc 1020atcgagaaaa ccatctccaa aaccaaaggc agaccgaagg ctccacaggt gtacaccatt 1080ccacctccca aggagcagat ggccaaggat aaagtcagtc tgacctgcat gataacagac 1140ttcttccctg aagacattac tgtggagtgg cagtggaatg ggcagccagc ggagaactac 1200aagaacactc agcccatcat ggacacagat ggctcttact tcgtctacag caagctcaat 1260gtgcagaaga gcaactggga ggcaggaaat actttcacct gctctgtgtt acatgagggc 1320ctgcacaacc accatactga tcccactctc ctggtaaatg a 1361139437PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 139Gln Val Gln Leu Lys Glu Ser Gly Pro Gly Leu Val Ala Pro Ser Gln 1 5 10 15 Ser Leu Ser Ile Thr Cys Thr Val Ser Gly Phe Ser Leu Thr Ser Tyr 20 25 30 Ser Leu His Trp Val Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Leu 35 40 45 Gly Val Ile Trp Ala Gly Gly Asn Thr Asn Tyr Asn Ser Ser Leu Met 50 55 60 Ser Arg Leu Thr Ile Arg Lys Asp Asn Ser Lys Ser Gln Val Phe Leu 65 70 75 80 Lys Met Asn Ser Leu Gln Thr Asp Asp Thr Ala Met Tyr Tyr Cys Ala 85 90 95 Arg Glu Arg Phe Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser 100 105 110 Ala Ala Lys Thr Thr Pro Pro Ser Val Tyr Pro Leu Ala Pro Gly Ser 115 120 125 Ala Ala Gln Thr Asn Ser Met Val Thr Leu Gly Cys Leu Val Lys Gly 130 135 140 Tyr Phe Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ser Leu Ser 145 150 155 160 Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Asp Leu Tyr Thr 165 170 175 Leu Ser Ser Ser Val Thr Val Pro Ser Ser Thr Trp Pro Ser Glu Thr 180 185 190 Val Thr Cys Asn Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys 195 200 205 Lys Ile Val Pro Arg Asp Cys Gly Cys Lys Pro Cys Ile Cys Thr Val 210 215 220 Pro Glu Val Ser Ser Val Phe Ile Phe Pro Pro Lys Pro Lys Asp Val 225 230 235 240 Leu Thr Ile Thr Leu Thr Pro Lys Val Thr Cys Val Val Val Asp Ile 245 250 255 Ser Lys Asp Asp Pro Glu Val Gln Phe Ser Trp Phe Val Asp Asp Val 260 265 270 Glu Val His Thr Ala Gln Thr Gln Pro Arg Glu Glu Gln Phe Asn Ser 275 280 285 Thr Phe Arg Ser Val Ser Glu Leu Pro Ile Met His Gln Asp Trp Leu 290 295 300 Asn Gly Lys Glu Phe Lys Cys Arg Val Asn Ser Ala Ala Phe Pro Ala 305 310 315 320 Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Arg Pro Lys Ala Pro 325 330 335 Gln Val Tyr Thr Ile Pro Pro Pro Lys Glu Gln Met Ala Lys Asp Lys 340 345 350 Val Ser Leu Thr Cys Met Ile Thr Asp Phe Phe Pro Glu Asp Ile Thr 355 360 365 Val Glu Trp Gln Trp Asn Gly Gln Pro Ala Glu Asn Tyr Lys Asn Thr 370 375 380 Gln Pro Ile Met Asp Thr Asp Gly Ser Tyr Phe Val Tyr Ser Lys Leu 385 390 395 400 Asn Val Gln Lys Ser Asn Trp Glu Ala Gly Asn Thr Phe Thr Cys Ser 405 410 415 Val Leu His Glu Gly Leu His Asn His His Thr Glu Lys Ser Leu Ser 420 425 430 His Ser Pro Gly Lys 435 140708DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 140atggattttc aagtgcagat tttcagcttc ctgctaatca gtgcctcagt caaaatatcc 60agaggacaaa ttgttctcac ccagtctcca gcaatcatgt ctgcatatcc aggggagaag 120gtcaccatga cctgcagtgc cagctcaagt gtaagttaca tgcactggta ccagcagaag 180tcaggcacct cccccaaaag atggatttat gacacatcca aactggcttc tggagtccct 240gctcgcttca gtggcagtgg gtctgggacc tcttactccc tcacaatcag tagtatggag 300gctgaagatg ctgccactta ttactgccag cagtggagta gtaacccact cacgttcggt 360gctgggacca agctggagct gaaacgggct gatgctgcac caactgtatc catcttccca 420ccatccagtg agcagttaac atctggaggt gcctcagtcg tgtgcttctt gaacaacttc 480taccccaaag acatcaatgt caagtggaag attgatggca gtgaacgaca aaatggcgtc 540ctgaacagtt ggactgatca ggacagcaaa gacagcacct acagcatgag cagcaccctc 600acgttgacca aggacgagta tgaacgacat aacagctata cctgtgaggc cactcacaag 660acatcaactt cacccattgt caagagcttc aacaggaatg agtgttag 708141213PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 141Gln Ile Val Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Tyr Pro Gly 1 5 10 15 Glu Lys Val Thr Met Thr Cys Ser Ala Ser Ser Ser Val Ser Tyr Met 20 25 30 His Trp Tyr Gln Gln Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr 35 40 45 Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ala Arg Phe Ser Gly Ser 50 55 60 Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu Ala Glu 65 70 75 80 Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Ser Asn Pro Leu Thr 85 90 95 Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys Arg Ala Asp Ala Ala Pro 100 105 110 Thr Val Ser Ile Phe Pro Pro Ser Ser Glu Gln Leu Thr Ser Gly Gly 115 120 125 Ala Ser Val Val Cys Phe Leu Asn Asn Phe Tyr Pro Lys Asp Ile Asn 130 135 140 Val Lys Trp Lys Ile Asp Gly Ser Glu Arg Gln Asn Gly Val Leu Asn 145 150 155 160 Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser Thr Tyr Ser Met Ser Ser 165 170 175 Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu Arg His Asn Ser Tyr Thr 180 185 190 Cys Glu Ala Thr His Lys Thr Ser Thr Ser Pro Ile Val Lys Ser Phe 195 200 205 Asn Arg Asn Glu Cys 210 1421398DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 142atgaactttg ggctcagatt gattttcctt gtccttgttt taaaaggtgt gaagtgtgaa 60gtgcagctgg tggagtctgg gggaggctta gtgcagcctg gagggtccct gaaactctcc 120tgtgcagcct ctggattcac tttcagtgac tattacatgt cttgggttcg ccagactcca 180gagaagaggc tggagtgggt cgcatacatt agtagtggtg

gtggtagcac ctactatcca 240gacagtgtga agggtcgatt caccatctcc cgagacaatg ccaagaacac cctgtacctg 300caaatgagca gtctgaagtc tgaggacaca gccatatatt actgtgtgag acaaggggat 360ggttattacg gggactatgc tatggactac tggggtcaag gaacctcagt catcgtctcc 420tcagccaaaa cgacaccccc atctgtctat ccactggccc ctggatctgc tgcccaaact 480aactccatgg tgaccctggg atgcctggtc aagggctatt tccctgagcc agtgacagtg 540acctggaact ctggatccct gtccagcggt gtgcacacct tcccagctgt cctgcagtct 600gacctctaca ctctgagcag ctcagtgact gtcccctcca gcacctggcc cagcgagacc 660gtcacctgca acgttgccca cccggccagc agcaccaagg tggacaagaa aattgtgccc 720agggattgtg gttgtaagcc ttgcatatgt acagtcccag aagtatcatc tgtcttcatc 780ttccccccaa agcccaagga tgtgctcacc attactctga ctcctaaggt cacgtgtgtt 840gtggtagaca tcagcaagga tgatcccgag gtccagttca gctggtttgt agatgatgtg 900gaggtgcaca cagctcagac gcaaccccgg gaggagcagt tcaacagcac tttccgctca 960gtcagtgaac ttcccatcat gcaccaggac tggctcaatg gcaaggagtt caaatgcagg 1020gtcaacagtg cagctttccc tgcccccatc gagaaaacca tctccaaaac caaaggcaga 1080ccgaaggctc cacaggtgta caccattcca cctcccaagg agcagatggc caaggataaa 1140gtcagtctga cctgcatgat aacagacttc ttccctgaag acattactgt ggagtggcag 1200tggaatgggc agccagcgga gaactacaag aacactcagc ccatcatgga cacagatggc 1260tcttacttcg tctacagcaa gctcaatgtg cagaagagca actgggaggc aggaaatact 1320ttcacctgct ctgtgttaca tgagggcctg cacaaccacc atactgagaa gagcctctcc 1380cactctcctg gtaaatga 1398143446PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 143Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15 Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr 20 25 30 Tyr Met Ser Trp Val Arg Gln Thr Pro Glu Lys Arg Leu Glu Trp Val 35 40 45 Ala Tyr Ile Ser Ser Gly Gly Gly Ser Thr Tyr Tyr Pro Asp Ser Val 50 55 60 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr 65 70 75 80 Leu Gln Met Ser Ser Leu Lys Ser Glu Asp Thr Ala Ile Tyr Tyr Cys 85 90 95 Val Arg Gln Gly Asp Gly Tyr Tyr Gly Asp Tyr Ala Met Asp Tyr Trp 100 105 110 Gly Gln Gly Thr Ser Val Ile Val Ser Ser Ala Lys Thr Thr Pro Pro 115 120 125 Ser Val Tyr Pro Leu Ala Pro Gly Ser Ala Ala Gln Thr Asn Ser Met 130 135 140 Val Thr Leu Gly Cys Leu Val Lys Gly Tyr Phe Pro Glu Pro Val Thr 145 150 155 160 Val Thr Trp Asn Ser Gly Ser Leu Ser Ser Gly Val His Thr Phe Pro 165 170 175 Ala Val Leu Gln Ser Asp Leu Tyr Thr Leu Ser Ser Ser Val Thr Val 180 185 190 Pro Ser Ser Thr Trp Pro Ser Glu Thr Val Thr Cys Asn Val Ala His 195 200 205 Pro Ala Ser Ser Thr Lys Val Asp Lys Lys Ile Val Pro Arg Asp Cys 210 215 220 Gly Cys Lys Pro Cys Ile Cys Thr Val Pro Glu Val Ser Ser Val Phe 225 230 235 240 Ile Phe Pro Pro Lys Pro Lys Asp Val Leu Thr Ile Thr Leu Thr Pro 245 250 255 Lys Val Thr Cys Val Val Val Asp Ile Ser Lys Asp Asp Pro Glu Val 260 265 270 Gln Phe Ser Trp Phe Val Asp Asp Val Glu Val His Thr Ala Gln Thr 275 280 285 Gln Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Ser Val Ser Glu 290 295 300 Leu Pro Ile Met His Gln Asp Trp Leu Asn Gly Lys Glu Phe Lys Cys 305 310 315 320 Arg Val Asn Ser Ala Ala Phe Pro Ala Pro Ile Glu Lys Thr Ile Ser 325 330 335 Lys Thr Lys Gly Arg Pro Lys Ala Pro Gln Val Tyr Thr Ile Pro Pro 340 345 350 Pro Lys Glu Gln Met Ala Lys Asp Lys Val Ser Leu Thr Cys Met Ile 355 360 365 Thr Asp Phe Phe Pro Glu Asp Ile Thr Val Glu Trp Gln Trp Asn Gly 370 375 380 Gln Pro Ala Glu Asn Tyr Lys Asn Thr Gln Pro Ile Met Asp Thr Asp 385 390 395 400 Gly Ser Tyr Phe Val Tyr Ser Lys Leu Asn Val Gln Lys Ser Asn Trp 405 410 415 Glu Ala Gly Asn Thr Phe Thr Cys Ser Val Leu His Glu Gly Leu His 420 425 430 Asn His His Thr Glu Lys Ser Leu Ser His Ser Pro Gly Lys 435 440 445 144705DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 144atgagtgtgc ccactcaggt cctggggttg ctgctgctgt ggcttacaga tgtcagatgt 60gacatccaga tgactcagtc tccagcctcc ctatctgtat ctgtgggaga aactgtcacc 120atcacatgtc gaacaagtga gaatatttac agtaatttag cgtggtatca gcagaaacag 180ggaaaatctc ctcagctcct aatctatgct gcaacaaact tagcagatgg tgtgccatca 240aggttcagtg gcagtggatc aggcacacag ttttccctca ggatcaacag cctgcagtct 300gaagattttg ggaggtatta ctgtcaacat ttttggggga ctccgtacac gttcggaggg 360gggaccaaac tggaaataaa acgggctgat gctgcaccaa ctgtatccat cttcccacca 420tccagtgagc agttaacatc tggaggtgcc tcagtcgtgt gcttcttgaa caacttctac 480cccaaagaca tcaatgtcaa gtggaagatt gatggcagtg aacgacaaaa tggcgtcctg 540aacagttgga ctgatcagga cagcaaagac agcacctaca gcatgagcag caccctcacg 600ttgaccaagg acgagtatga acgacataac agctatacct gtgaggccac tcacaagaca 660tcaacttcac ccattgtcaa gagcttcaac aggaatgagt gttag 705145214PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 145Asp Ile Gln Met Thr Gln Ser Pro Ala Ser Leu Ser Val Ser Val Gly 1 5 10 15 Glu Thr Val Thr Ile Thr Cys Arg Thr Ser Glu Asn Ile Tyr Ser Asn 20 25 30 Leu Ala Trp Tyr Gln Gln Lys Gln Gly Lys Ser Pro Gln Leu Leu Ile 35 40 45 Tyr Ala Ala Thr Asn Leu Ala Asp Gly Val Pro Ser Arg Phe Ser Gly 50 55 60 Ser Gly Ser Gly Thr Gln Phe Ser Leu Arg Ile Asn Ser Leu Gln Ser 65 70 75 80 Glu Asp Phe Gly Arg Tyr Tyr Cys Gln His Phe Trp Gly Thr Pro Tyr 85 90 95 Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Ala Asp Ala Ala 100 105 110 Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu Gln Leu Thr Ser Gly 115 120 125 Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe Tyr Pro Lys Asp Ile 130 135 140 Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg Gln Asn Gly Val Leu 145 150 155 160 Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser Thr Tyr Ser Met Ser 165 170 175 Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu Arg His Asn Ser Tyr 180 185 190 Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser Pro Ile Val Lys Ser 195 200 205 Phe Asn Arg Asn Glu Cys 210 1461398DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 146atgaactttg ggctcagatt gattttcctt gtccttgttt taaaaggtgt gaagtgtgag 60gtgcagctgg tggagtctgg gggaggctta gtgcagtctg gagggtccct gaaactctcc 120tgtgcggcct ctggattcac tttcagtaac tatttcatgt cttgggttcg ccagactcca 180gagaagaggc tggagtgggt cgcatatatt agtagtggtg gtggtagcac ctactatcca 240gacagtgtga agggtcgatt caccatctct agagacaatg ccaagaacac cctgtacctg 300caaatgagca gtctgaagtc tgaggacaca gccatgtatt actgtgtaag acaaggggat 360ggttactacg gggactatgc tatggactac tggggtcaag gaacctcagt caccgtctcc 420tcagccaaaa cgacaccccc atctgtctat ccactggccc ctggatctgc tgcccaaact 480aactccatgg tgaccctggg atgcctggtc aagggctatt tccctgagcc agtgacagtg 540acctggaact ctggatccct gtccagcggt gtgcacacct tcccagctgt cctgcagtct 600gacctctaca ctctgagcag ctcagtgact gtcccctcca gcacctggcc cagcgagacc 660gtcacctgca acgttgccca cccggccagc agcaccaagg tggacaagaa aattgtgccc 720agggattgtg gttgtaagcc ttgcatatgt acagtcccag aagtatcatc tgtcttcatc 780ttccccccaa agcccaagga tgtgctcacc attactctga ctcctaaggt cacgtgtgtt 840gtggtagaca tcagcaagga tgatcccgag gtccagttca gctggtttgt agatgatgtg 900gaggtgcaca cagctcagac gcaaccccgg gaggagcagt tcaacagcac tttccgctca 960gtcagtgaac ttcccatcat gcaccaggac tggctcaatg gcaaggagtt caaatgcagg 1020gtcaacagtg cagctttccc tgcccccatc gagaaaacca tctccaaaac caaaggcaga 1080ccgaaggctc cacaggtgta caccattcca cctcccaagg agcagatggc caaggataaa 1140gtcagtctga cctgcatgat aacagacttc ttccctgaag acattactgt ggagtggcag 1200tggaatgggc agccagcgga gaactacaag aacactcagc ccatcatgga cacagatggc 1260tcttacttcg tctacagcaa gctcaatgtg cagaagagca actgggaggc aggaaatact 1320ttcacctgct ctgtgttaca tgagggcctg cacaaccacc atactgagaa gagcctctcc 1380cactctcctg gtaaatga 1398147446PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 147Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ser Gly Gly 1 5 10 15 Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Tyr 20 25 30 Phe Met Ser Trp Val Arg Gln Thr Pro Glu Lys Arg Leu Glu Trp Val 35 40 45 Ala Tyr Ile Ser Ser Gly Gly Gly Ser Thr Tyr Tyr Pro Asp Ser Val 50 55 60 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr 65 70 75 80 Leu Gln Met Ser Ser Leu Lys Ser Glu Asp Thr Ala Met Tyr Tyr Cys 85 90 95 Val Arg Gln Gly Asp Gly Tyr Tyr Gly Asp Tyr Ala Met Asp Tyr Trp 100 105 110 Gly Gln Gly Thr Ser Val Thr Val Ser Ser Ala Lys Thr Thr Pro Pro 115 120 125 Ser Val Tyr Pro Leu Ala Pro Gly Ser Ala Ala Gln Thr Asn Ser Met 130 135 140 Val Thr Leu Gly Cys Leu Val Lys Gly Tyr Phe Pro Glu Pro Val Thr 145 150 155 160 Val Thr Trp Asn Ser Gly Ser Leu Ser Ser Gly Val His Thr Phe Pro 165 170 175 Ala Val Leu Gln Ser Asp Leu Tyr Thr Leu Ser Ser Ser Val Thr Val 180 185 190 Pro Ser Ser Thr Trp Pro Ser Glu Thr Val Thr Cys Asn Val Ala His 195 200 205 Pro Ala Ser Ser Thr Lys Val Asp Lys Lys Ile Val Pro Arg Asp Cys 210 215 220 Gly Cys Lys Pro Cys Ile Cys Thr Val Pro Glu Val Ser Ser Val Phe 225 230 235 240 Ile Phe Pro Pro Lys Pro Lys Asp Val Leu Thr Ile Thr Leu Thr Pro 245 250 255 Lys Val Thr Cys Val Val Val Asp Ile Ser Lys Asp Asp Pro Glu Val 260 265 270 Gln Phe Ser Trp Phe Val Asp Asp Val Glu Val His Thr Ala Gln Thr 275 280 285 Gln Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Ser Val Ser Glu 290 295 300 Leu Pro Ile Met His Gln Asp Trp Leu Asn Gly Lys Glu Phe Lys Cys 305 310 315 320 Arg Val Asn Ser Ala Ala Phe Pro Ala Pro Ile Glu Lys Thr Ile Ser 325 330 335 Lys Thr Lys Gly Arg Pro Lys Ala Pro Gln Val Tyr Thr Ile Pro Pro 340 345 350 Pro Lys Glu Gln Met Ala Lys Asp Lys Val Ser Leu Thr Cys Met Ile 355 360 365 Thr Asp Phe Phe Pro Glu Asp Ile Thr Val Glu Trp Gln Trp Asn Gly 370 375 380 Gln Pro Ala Glu Asn Tyr Lys Asn Thr Gln Pro Ile Met Asp Thr Asp 385 390 395 400 Gly Ser Tyr Phe Val Tyr Ser Lys Leu Asn Val Gln Lys Ser Asn Trp 405 410 415 Glu Ala Gly Asn Thr Phe Thr Cys Ser Val Leu His Glu Gly Leu His 420 425 430 Asn His His Thr Glu Lys Ser Leu Ser His Ser Pro Gly Lys 435 440 445 148705DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 148atgagtgtgc ccactcaggt cctggggttg ctgctgctgt ggcttacaga tgccagatgt 60gacatccaga tgactcagtc tccagcctcc ctatctgtat ctgtgggaga aactgtcacc 120atcacatgtc gagcaagtga gaatatttac agtaatttag catggtatca gcagaaacag 180ggaaaatctc ctcagctcct ggtctatgat gcaacacact taccagatgg tgtgccatca 240aggttcagtg gcagtggatc aggcacacag ttttccctca agatcaacag cctgcagtct 300gaagattttg ggagttatta ctgtcaacat ttttggggta ctccgtacac gtttggaggg 360gggaccagac tggaaattaa acgggctgat gctgcaccaa ctgtatccat cttcccacca 420tccagtgagc agttaacatc tggaggtgcc tcagtcgtgt gcttcttgaa caacttctac 480cccaaagaca tcaatgtcaa gtggaagatt gatggcagtg aacgacaaaa tggcgtcctg 540aacagttgga ctgatcagga cagcaaagac agcacctaca gcatgagcag caccctcacg 600ttgaccaagg acgagtatga acgacataac agctatacct gtgaggccac tcacaagaca 660tcaacttcac ccattgtcaa gagcttcaac aggaatgagt gttag 705149214PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 149Asp Ile Gln Met Thr Gln Ser Pro Ala Ser Leu Ser Val Ser Val Gly 1 5 10 15 Glu Thr Val Thr Ile Thr Cys Arg Ala Ser Glu Asn Ile Tyr Ser Asn 20 25 30 Leu Ala Trp Tyr Gln Gln Lys Gln Gly Lys Ser Pro Gln Leu Leu Val 35 40 45 Tyr Asp Ala Thr His Leu Pro Asp Gly Val Pro Ser Arg Phe Ser Gly 50 55 60 Ser Gly Ser Gly Thr Gln Phe Ser Leu Lys Ile Asn Ser Leu Gln Ser 65 70 75 80 Glu Asp Phe Gly Ser Tyr Tyr Cys Gln His Phe Trp Gly Thr Pro Tyr 85 90 95 Thr Phe Gly Gly Gly Thr Arg Leu Glu Ile Lys Arg Ala Asp Ala Ala 100 105 110 Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu Gln Leu Thr Ser Gly 115 120 125 Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe Tyr Pro Lys Asp Ile 130 135 140 Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg Gln Asn Gly Val Leu 145 150 155 160 Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser Thr Tyr Ser Met Ser 165 170 175 Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu Arg His Asn Ser Tyr 180 185 190 Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser Pro Ile Val Lys Ser 195 200 205 Phe Asn Arg Asn Glu Cys 210 1501398DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 150atgaactttg ggctcagatt gattttcctt gtccttgttt taaaaggtgt gaagtgtgaa 60gtgcagctgg tggagtctgg gggaggctta gtgcagcctg gagggtccct gaaaatctcc 120tgtgcagcct ctggatttac tttcagtaac tatttcatgt cttgggttcg ccagactcca 180gagaagaggc tggagtgggt cgcatacatt agtagtggtg gtggtagcac ctactatcca 240gacagtgtga agggtcgatt caccatctcc agagacaatg ccaagaacac cctgtacctg 300caaatgaaca gtctgaagtc tgaggacaca gccatgtatt actgtgtaag acaaggagat 360ggttactatg gggactatgc tatggactac tggggtcaag gaacctcagt caccgtctcc 420tcagccaaaa cgacaccccc atctgtctat ccactggccc ctggatctgc tgcccaaact 480aactccatgg tgaccctggg atgcctggtc aagggctatt tccctgagcc agtgacagtg 540acctggaact ctggatccct gtccagcggt gtgcacacct tcccagctgt cctgcagtct 600gacctctaca ctctgagcag ctcagtgact gtcccctcca gcacctggcc cagcgagacc 660gtcacctgca acgttgccca cccggccagc agcaccaagg tggacaagaa aattgtgccc 720agggattgtg gttgtaagcc ttgcatatgt acagtcccag aagtatcatc tgtcttcatc 780ttccccccaa agcccaagga tgtgctcacc attactctga ctcctaaggt cacgtgtgtt 840gtggtagaca tcagcaagga tgatcccgag gtccagttca gctggtttgt agatgatgtg 900gaggtgcaca cagctcagac gcaaccccgg gaggagcagt tcaacagcac tttccgctca 960gtcagtgaac ttcccatcat gcaccaggac tggctcaatg gcaaggagtt caaatgcagg 1020gtcaacagtg cagctttccc tgcccccatc gagaaaacca tctccaaaac caaaggcaga 1080ccgaaggctc cacaggtgta caccattcca cctcccaagg agcagatggc caaggataaa 1140gtcagtctga cctgcatgat aacagacttc ttccctgaag acattactgt ggagtggcag 1200tggaatgggc agccagcgga gaactacaag aacactcagc ccatcatgga cacagatggc 1260tcttacttcg tctacagcaa gctcaatgtg cagaagagca actgggaggc aggaaatact 1320ttcacctgct ctgtgttaca tgagggcctg cacaaccacc atactgagaa gagcctctcc 1380cactctcctg gtaaatga 1398151446PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 151Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15 Ser Leu Lys Ile Ser Cys Ala Ala Ser Gly Phe

Thr Phe Ser Asn Tyr 20 25 30 Phe Met Ser Trp Val Arg Gln Thr Pro Glu Lys Arg Leu Glu Trp Val 35 40 45 Ala Tyr Ile Ser Ser Gly Gly Gly Ser Thr Tyr Tyr Pro Asp Ser Val 50 55 60 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr 65 70 75 80 Leu Gln Met Asn Ser Leu Lys Ser Glu Asp Thr Ala Met Tyr Tyr Cys 85 90 95 Val Arg Gln Gly Asp Gly Tyr Tyr Gly Asp Tyr Ala Met Asp Tyr Trp 100 105 110 Gly Gln Gly Thr Ser Val Thr Val Ser Ser Ala Lys Thr Thr Pro Pro 115 120 125 Ser Val Tyr Pro Leu Ala Pro Gly Ser Ala Ala Gln Thr Asn Ser Met 130 135 140 Val Thr Leu Gly Cys Leu Val Lys Gly Tyr Phe Pro Glu Pro Val Thr 145 150 155 160 Val Thr Trp Asn Ser Gly Ser Leu Ser Ser Gly Val His Thr Phe Pro 165 170 175 Ala Val Leu Gln Ser Asp Leu Tyr Thr Leu Ser Ser Ser Val Thr Val 180 185 190 Pro Ser Ser Thr Trp Pro Ser Glu Thr Val Thr Cys Asn Val Ala His 195 200 205 Pro Ala Ser Ser Thr Lys Val Asp Lys Lys Ile Val Pro Arg Asp Cys 210 215 220 Gly Cys Lys Pro Cys Ile Cys Thr Val Pro Glu Val Ser Ser Val Phe 225 230 235 240 Ile Phe Pro Pro Lys Pro Lys Asp Val Leu Thr Ile Thr Leu Thr Pro 245 250 255 Lys Val Thr Cys Val Val Val Asp Ile Ser Lys Asp Asp Pro Glu Val 260 265 270 Gln Phe Ser Trp Phe Val Asp Asp Val Glu Val His Thr Ala Gln Thr 275 280 285 Gln Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Ser Val Ser Glu 290 295 300 Leu Pro Ile Met His Gln Asp Trp Leu Asn Gly Lys Glu Phe Lys Cys 305 310 315 320 Arg Val Asn Ser Ala Ala Phe Pro Ala Pro Ile Glu Lys Thr Ile Ser 325 330 335 Lys Thr Lys Gly Arg Pro Lys Ala Pro Gln Val Tyr Thr Ile Pro Pro 340 345 350 Pro Lys Glu Gln Met Ala Lys Asp Lys Val Ser Leu Thr Cys Met Ile 355 360 365 Thr Asp Phe Phe Pro Glu Asp Ile Thr Val Glu Trp Gln Trp Asn Gly 370 375 380 Gln Pro Ala Glu Asn Tyr Lys Asn Thr Gln Pro Ile Met Asp Thr Asp 385 390 395 400 Gly Ser Tyr Phe Val Tyr Ser Lys Leu Asn Val Gln Lys Ser Asn Trp 405 410 415 Glu Ala Gly Asn Thr Phe Thr Cys Ser Val Leu His Glu Gly Leu His 420 425 430 Asn His His Thr Glu Lys Ser Leu Ser His Ser Pro Gly Lys 435 440 445 152705DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 152atgagtgtgc ccactcaggt cctggggttg ctgctgctgt ggcttacaga tgccagatgt 60gacatccaga tgactcagtc gccagcctcc ctatctgtat ctgtgggaga aactgtcacc 120atcacatgtc gagcaagtga gaatatttac attaatttag catggtatca gcagaaacag 180ggaaaatctc ctcagctcct ggtccatgct gcaacaaagt tagcagatgg tgtgccatca 240aggttcagtg gcagtggatc aggcacacag tattccctca agatcaacag cctgcagtct 300gaagattttg ggagttatta ctgtcaacat ttttggggta ctccgtacac gttcggaggg 360gggaccaaac tagaaataaa acgggctgat gctgcaccaa ctgtatccat cttcccacca 420tccagtgagc agttaacatc tggaggtgcc tcagtcgtgt gcttcttgaa caacttctac 480cccaaagaca tcaatgtcaa gtggaagatt gatggcagtg aacgacaaaa tggcgtcctg 540aacagttgga ctgatcagga cagcaaagac agcacctaca gcatgagcag caccctcacg 600ttgaccaagg acgagtatga acgacataac agctatacct gtgaggccac tcacaagaca 660tcaacttcac ccattgtcaa gagcttcaac aggaatgagt gttag 705153214PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 153Asp Ile Gln Met Thr Gln Ser Pro Ala Ser Leu Ser Val Ser Val Gly 1 5 10 15 Glu Thr Val Thr Ile Thr Cys Arg Ala Ser Glu Asn Ile Tyr Ile Asn 20 25 30 Leu Ala Trp Tyr Gln Gln Lys Gln Gly Lys Ser Pro Gln Leu Leu Val 35 40 45 His Ala Ala Thr Lys Leu Ala Asp Gly Val Pro Ser Arg Phe Ser Gly 50 55 60 Ser Gly Ser Gly Thr Gln Tyr Ser Leu Lys Ile Asn Ser Leu Gln Ser 65 70 75 80 Glu Asp Phe Gly Ser Tyr Tyr Cys Gln His Phe Trp Gly Thr Pro Tyr 85 90 95 Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Ala Asp Ala Ala 100 105 110 Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu Gln Leu Thr Ser Gly 115 120 125 Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe Tyr Pro Lys Asp Ile 130 135 140 Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg Gln Asn Gly Val Leu 145 150 155 160 Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser Thr Tyr Ser Met Ser 165 170 175 Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu Arg His Asn Ser Tyr 180 185 190 Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser Pro Ile Val Lys Ser 195 200 205 Phe Asn Arg Asn Glu Cys 210 1541404DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 154atgggatgga gctatatcat cctctttttg gtagcaacag ctacagatgt ccactcccag 60gtccaactgc agcagcctgg ggctgaactg gtgaagcctg ggacttcagt gaagctgtcc 120tgcaaggctt ctggctacac cttcaccacc tactggatgc actgggtgaa tcagaggcct 180ggacaaggcc ttgagtggat tggagagatt aatcctacca acggtcatac taactacaat 240gagaagttca agagcaaggc cacactgact gtagacaaat cctccagcac agcctacatg 300caactcagca gcctgacatc tgaggactct gcggtctatt actgtgcaag aaactatgtt 360ggtagcatct ttgactactg gggccaaggc accactctca ccgtctcctc agcctccacc 420aagggcccat cggtcttccc cctggcaccc tcctccaaga gcacctctgg gggcacagcg 480gccctgggct gcctggtcaa ggactacttc cccgaaccgg tgacggtgtc gtggaactca 540ggcgccctga ccagcggcgt gcacaccttc ccggctgtcc tacagtcctc aggactctac 600tccctcagca gcgtggtgac cgtgccctcc agcagcttgg gcacccagac ctacatctgc 660aacgtgaatc acaagcccag caacaccaag gtggacaaga aagttgagcc caaatcttgt 720gacaaaactc acacatgccc accgtgccca gcacctgaac tcctgggggg accgtcagtc 780ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 840tgcgtggtgg tggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 900ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cagcacgtac 960cgtgtggtca gcgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaag 1020tgcaaggtct ccaacaaagc cctcccagcc cccatcgaga aaaccatctc caaagccaaa 1080gggcagcccc gagaaccaca ggtgtacacc ctgcccccat cccgggatga gctgaccaag 1140aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 1200tgggagagca atgggcagcc ggagaacaac tacaagacca cgcctcccgt gctggactcc 1260gacggctcct tcttcctcta cagcaagctc accgtggaca agagcaggtg gcagcagggg 1320aacgtcttct catgctccgt gatgcatgag gctctgcaca accactacac gcagaagagc 1380ctctccctgt ctccgggtaa atga 1404155448PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 155Gln Val Gln Leu Gln Gln Pro Gly Ala Glu Leu Val Lys Pro Gly Thr 1 5 10 15 Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Thr Tyr 20 25 30 Trp Met His Trp Val Asn Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45 Gly Glu Ile Asn Pro Thr Asn Gly His Thr Asn Tyr Asn Glu Lys Phe 50 55 60 Lys Ser Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Ser Thr Ala Tyr 65 70 75 80 Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Asn Tyr Val Gly Ser Ile Phe Asp Tyr Trp Gly Gln Gly Thr 100 105 110 Thr Leu Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro 115 120 125 Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly 130 135 140 Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn 145 150 155 160 Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln 165 170 175 Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser 180 185 190 Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser 195 200 205 Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr 210 215 220 His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser 225 230 235 240 Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg 245 250 255 Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro 260 265 270 Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala 275 280 285 Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val 290 295 300 Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr 305 310 315 320 Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr 325 330 335 Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu 340 345 350 Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys 355 360 365 Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser 370 375 380 Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp 385 390 395 400 Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser 405 410 415 Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala 420 425 430 Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 435 440 445 156705DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 156atggaatcac agactctggt cttcatatcc atactgctct ggttatatgg tgctgatggg 60aacattgtaa tgacccaatc tcccaaatcc atgtccatgt cagtaggaga gagggtcacc 120ttgagctgca aggccagtga gaatgtggtt tcttatgtat cctggtatca acagaaacca 180gcgcagtctc ctaaactgct gatatacggg gcatccaacc ggaacactgg ggtccccgat 240cgcttcacag gcagtggatc tgcaacagat ttcactctga ccatcagcag tgtgcgggct 300gaagaccttg cagattatca ctgtgggcag agttacaact atccgtacac gttcggaggg 360gggaccaggc tggaaataaa acgaactgtg gctgcaccat ctgtcttcat cttcccgcca 420tctgatgagc agttgaaatc tggaactgcc tctgttgtgt gcctgctgaa taacttctat 480cccagagagg ccaaagtaca gtggaaggtg gataacgccc tccaatcggg taactcccag 540gagagtgtca cagagcagga cagcaaggac agcacctaca gcctcagcag caccctgacg 600ctgagcaaag cagactacga gaaacacaaa gtctacgcct gcgaagtcac ccatcagggc 660ctgagctcgc ccgtcacaaa gagcttcaac aggggagagt gttga 705157214PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 157Asn Ile Val Met Thr Gln Ser Pro Lys Ser Met Ser Met Ser Val Gly 1 5 10 15 Glu Arg Val Thr Leu Ser Cys Lys Ala Ser Glu Asn Val Val Ser Tyr 20 25 30 Val Ser Trp Tyr Gln Gln Lys Pro Ala Gln Ser Pro Lys Leu Leu Ile 35 40 45 Tyr Gly Ala Ser Asn Arg Asn Thr Gly Val Pro Asp Arg Phe Thr Gly 50 55 60 Ser Gly Ser Ala Thr Asp Phe Thr Leu Thr Ile Ser Ser Val Arg Ala 65 70 75 80 Glu Asp Leu Ala Asp Tyr His Cys Gly Gln Ser Tyr Asn Tyr Pro Tyr 85 90 95 Thr Phe Gly Gly Gly Thr Arg Leu Glu Ile Lys Arg Thr Val Ala Ala 100 105 110 Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125 Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140 Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155 160 Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175 Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190 Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205 Phe Asn Arg Gly Glu Cys 210 158412DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 158atggactgca cctggaggat cctcctcttg gtggcagcag ctacaggcac ccacgccgag 60gtccagctgg tacagtctgg ggctgaggtg aagaagcctg gggctacagt gaaaatctcc 120tgcaaggttt ctggatacac cttcaccacc tactggatgc actgggtgca acaggcccct 180ggaaaagggc ttgagtggat gggagagatt aatcctacca acggtcatac taactacaat 240gagaagttcc agggcagagt caccataacc gcggacacgt ctacagacac agcctacatg 300gagctgagca gcctgagatc tgaggacacg gccgtgtatt actgtgcaac aaactatgtt 360ggtagcatct ttgactactg gggccaagga accctggtca ccgtctcctc ag 412159118PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 159Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15 Thr Val Lys Ile Ser Cys Lys Val Ser Gly Tyr Thr Phe Thr Thr Tyr 20 25 30 Trp Met His Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 35 40 45 Gly Glu Ile Asn Pro Thr Asn Gly His Thr Asn Tyr Asn Glu Lys Phe 50 55 60 Gln Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Asp Thr Ala Tyr 65 70 75 80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Thr Asn Tyr Val Gly Ser Ile Phe Asp Tyr Trp Gly Gln Gly Thr 100 105 110 Leu Val Thr Val Ser Ser 115 160992DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 160cctccaccaa gggcccatcg gtcttccccc tggcaccctc ctccaagagc acctctgggg 60gcacagcggc cctgggctgc ctggtcaagg actacttccc cgaaccggtg acggtgtcgt 120ggaactcagg cgccctgacc agcggcgtgc acaccttccc ggctgtccta cagtcctcag 180gactctactc cctcagcagc gtggtgaccg tgccctccag cagcttgggc acccagacct 240acatctgcaa cgtgaatcac aagcccagca acaccaaggt ggacaagaaa gttgagccca 300aatcttgtga caaaactcac acatgcccac cgtgcccagc acctgaactc ctggggggac 360cgtcagtctt cctcttcccc ccaaaaccca aggacaccct catgatctcc cggacccctg 420aggtcacatg cgtggtggtg gacgtgagcc acgaagaccc tgaggtcaag ttcaactggt 480acgtggacgg cgtggaggtg cataatgcca agacaaagcc gcgggaggag cagtacaaca 540gcacgtaccg tgtggtcagc gtcctcaccg tcctgcacca ggactggctg aatggcaagg 600agtacaagtg caaggtctcc aacaaagccc tcccagcccc catcgagaaa accatctcca 660aagccaaagg gcagccccga gaaccacagg tgtacaccct gcccccatcc cgggatgagc 720tgaccaagaa ccaggtcagc ctgacctgcc tggtcaaagg cttctatccc agcgacatcg 780ccgtggagtg ggagagcaat gggcagccgg agaacaacta caagaccacg cctcccgtgc 840tggactccga cggctccttc ttcctctaca gcaagctcac cgtggacaag agcaggtggc 900agcaggggaa cgtcttctca tgctccgtga tgcatgaggc tctgcacaac cactacacgc 960agaagagcct ctccctgtct ccgggtaaat ga 992161330PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 161Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys 1 5 10 15 Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30 Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45 Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60 Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr 65 70 75 80 Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys 85 90

95 Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys 100 105 110 Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro 115 120 125 Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys 130 135 140 Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp 145 150 155 160 Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu 165 170 175 Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu 180 185 190 His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn 195 200 205 Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly 210 215 220 Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu 225 230 235 240 Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr 245 250 255 Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn 260 265 270 Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 275 280 285 Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn 290 295 300 Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr 305 310 315 320 Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 325 330 1621404DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 162atggactgca cctggaggat cctcctcttg gtggcagcag ctacaggcac ccacgccgag 60gtccagctgg tacagtctgg ggctgaggtg aagaagcctg gggctacagt gaaaatctcc 120tgcaaggttt ctggatacac cttcaccacc tactggatgc actgggtgca acaggcccct 180ggaaaagggc ttgagtggat gggagagatt aatcctacca acggtcatac taactacaat 240gagaagttcc agggcagagt caccataacc gcggacacgt ctacagacac agcctacatg 300gagctgagca gcctgagatc tgaggacacg gccgtgtatt actgtgcaac aaactatgtt 360ggtagcatct ttgactactg gggccaagga accctggtca ccgtctcctc agcctccacc 420aagggcccat cggtcttccc cctggcaccc tcctccaaga gcacctctgg gggcacagcg 480gccctgggct gcctggtcaa ggactacttc cccgaaccgg tgacggtgtc gtggaactca 540ggcgccctga ccagcggcgt gcacaccttc ccggctgtcc tacagtcctc aggactctac 600tccctcagca gcgtggtgac cgtgccctcc agcagcttgg gcacccagac ctacatctgc 660aacgtgaatc acaagcccag caacaccaag gtggacaaga aagttgagcc caaatcttgt 720gacaaaactc acacatgccc accgtgccca gcacctgaac tcctgggggg accgtcagtc 780ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 840tgcgtggtgg tggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 900ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cagcacgtac 960cgtgtggtca gcgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaag 1020tgcaaggtct ccaacaaagc cctcccagcc cccatcgaga aaaccatctc caaagccaaa 1080gggcagcccc gagaaccaca ggtgtacacc ctgcccccat cccgggatga gctgaccaag 1140aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 1200tgggagagca atgggcagcc ggagaacaac tacaagacca cgcctcccgt gctggactcc 1260gacggctcct tcttcctcta cagcaagctc accgtggaca agagcaggtg gcagcagggg 1320aacgtcttct catgctccgt gatgcatgag gctctgcaca accactacac gcagaagagc 1380ctctccctgt ctccgggtaa atga 1404163448PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 163Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15 Thr Val Lys Ile Ser Cys Lys Val Ser Gly Tyr Thr Phe Thr Thr Tyr 20 25 30 Trp Met His Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 35 40 45 Gly Glu Ile Asn Pro Thr Asn Gly His Thr Asn Tyr Asn Glu Lys Phe 50 55 60 Gln Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Asp Thr Ala Tyr 65 70 75 80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Thr Asn Tyr Val Gly Ser Ile Phe Asp Tyr Trp Gly Gln Gly Thr 100 105 110 Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro 115 120 125 Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly 130 135 140 Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn 145 150 155 160 Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln 165 170 175 Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser 180 185 190 Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser 195 200 205 Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr 210 215 220 His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser 225 230 235 240 Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg 245 250 255 Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro 260 265 270 Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala 275 280 285 Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val 290 295 300 Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr 305 310 315 320 Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr 325 330 335 Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu 340 345 350 Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys 355 360 365 Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser 370 375 380 Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp 385 390 395 400 Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser 405 410 415 Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala 420 425 430 Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 435 440 445 164412DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 164atggggtcaa ccgccatcct cgccctcctc ctggctgttc tccaaggagt ctgtgccgaa 60gtgcagctgg tgcagtctgg agcagaggtg aaaaagcccg gggagtctct gaggatctcc 120tgtaagggtt ctggatacag ctttaccacc tactggatgc actgggtgcg ccagatgccc 180gggaaaggcc tggagtggat gggggagatt aatcctacca acggtcatac taactacaat 240ccgtccttcc aaggccacgt caccatctca gctgacaagt ccatcagcac tgcctacctg 300cagtggagca gcctgaaggc ctcggacacc gccatgtatt actgtgcgag aaactatgtt 360ggtagcatct ttgactactg gggccaagga accctggtca ccgtctcctc ag 412165118PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 165Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu 1 5 10 15 Ser Leu Arg Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Thr Tyr 20 25 30 Trp Met His Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met 35 40 45 Gly Glu Ile Asn Pro Thr Asn Gly His Thr Asn Tyr Asn Pro Ser Phe 50 55 60 Gln Gly His Val Thr Ile Ser Ala Asp Lys Ser Ile Ser Thr Ala Tyr 65 70 75 80 Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys 85 90 95 Ala Arg Asn Tyr Val Gly Ser Ile Phe Asp Tyr Trp Gly Gln Gly Thr 100 105 110 Leu Val Thr Val Ser Ser 115 1661404DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 166atggggtcaa ccgccatcct cgccctcctc ctggctgttc tccaaggagt ctgtgccgaa 60gtgcagctgg tgcagtctgg agcagaggtg aaaaagcccg gggagtctct gaggatctcc 120tgtaagggtt ctggatacag ctttaccacc tactggatgc actgggtgcg ccagatgccc 180gggaaaggcc tggagtggat gggggagatt aatcctacca acggtcatac taactacaat 240ccgtccttcc aaggccacgt caccatctca gctgacaagt ccatcagcac tgcctacctg 300cagtggagca gcctgaaggc ctcggacacc gccatgtatt actgtgcgag aaactatgtt 360ggtagcatct ttgactactg gggccaagga accctggtca ccgtctcctc agcctccacc 420aagggcccat cggtcttccc cctggcaccc tcctccaaga gcacctctgg gggcacagcg 480gccctgggct gcctggtcaa ggactacttc cccgaaccgg tgacggtgtc gtggaactca 540ggcgccctga ccagcggcgt gcacaccttc ccggctgtcc tacagtcctc aggactctac 600tccctcagca gcgtggtgac cgtgccctcc agcagcttgg gcacccagac ctacatctgc 660aacgtgaatc acaagcccag caacaccaag gtggacaaga aagttgagcc caaatcttgt 720gacaaaactc acacatgccc accgtgccca gcacctgaac tcctgggggg accgtcagtc 780ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 840tgcgtggtgg tggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 900ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cagcacgtac 960cgtgtggtca gcgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaag 1020tgcaaggtct ccaacaaagc cctcccagcc cccatcgaga aaaccatctc caaagccaaa 1080gggcagcccc gagaaccaca ggtgtacacc ctgcccccat cccgggatga gctgaccaag 1140aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 1200tgggagagca atgggcagcc ggagaacaac tacaagacca cgcctcccgt gctggactcc 1260gacggctcct tcttcctcta cagcaagctc accgtggaca agagcaggtg gcagcagggg 1320aacgtcttct catgctccgt gatgcatgag gctctgcaca accactacac gcagaagagc 1380ctctccctgt ctccgggtaa atga 1404167448PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 167Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu 1 5 10 15 Ser Leu Arg Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Thr Tyr 20 25 30 Trp Met His Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met 35 40 45 Gly Glu Ile Asn Pro Thr Asn Gly His Thr Asn Tyr Asn Pro Ser Phe 50 55 60 Gln Gly His Val Thr Ile Ser Ala Asp Lys Ser Ile Ser Thr Ala Tyr 65 70 75 80 Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys 85 90 95 Ala Arg Asn Tyr Val Gly Ser Ile Phe Asp Tyr Trp Gly Gln Gly Thr 100 105 110 Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro 115 120 125 Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly 130 135 140 Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn 145 150 155 160 Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln 165 170 175 Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser 180 185 190 Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser 195 200 205 Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr 210 215 220 His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser 225 230 235 240 Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg 245 250 255 Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro 260 265 270 Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala 275 280 285 Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val 290 295 300 Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr 305 310 315 320 Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr 325 330 335 Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu 340 345 350 Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys 355 360 365 Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser 370 375 380 Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp 385 390 395 400 Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser 405 410 415 Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala 420 425 430 Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 435 440 445 168412DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 168atggggtcaa ccgccatcct cgccctcctc ctggctgttc tccaaggagt ctgtgccgaa 60gtgcagctgg tgcagtctgg agcagaggtg aaaaagcccg gggagtctct gaagatctcc 120tgtaagggtt ctggatacag ctttaccacc tactggatgc actgggtgcg ccagatgccc 180gggaaaggcc tggagtggat gggggagatt aatcctacca acggtcatac taactacaat 240ccgtccttcc aaggccaggt caccatctca gctgacaagt ccatcagcac tgcctacctg 300cagtggagca gcctgaaggc ctcggacacc gccatgtatt actgtgcgag aaactatgtt 360ggtagcatct ttgactactg gggccaagga accctggtca ccgtctcctc ag 412169118PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 169Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu 1 5 10 15 Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Thr Tyr 20 25 30 Trp Met His Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met 35 40 45 Gly Glu Ile Asn Pro Thr Asn Gly His Thr Asn Tyr Asn Pro Ser Phe 50 55 60 Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser Thr Ala Tyr 65 70 75 80 Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys 85 90 95 Ala Arg Asn Tyr Val Gly Ser Ile Phe Asp Tyr Trp Gly Gln Gly Thr 100 105 110 Leu Val Thr Val Ser Ser 115 1701404DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 170atggggtcaa ccgccatcct cgccctcctc ctggctgttc tccaaggagt ctgtgccgaa 60gtgcagctgg tgcagtctgg agcagaggtg aaaaagcccg gggagtctct gaagatctcc 120tgtaagggtt ctggatacag ctttaccacc tactggatgc actgggtgcg ccagatgccc 180gggaaaggcc tggagtggat gggggagatt aatcctacca acggtcatac taactacaat 240ccgtccttcc aaggccaggt caccatctca gctgacaagt ccatcagcac tgcctacctg 300cagtggagca gcctgaaggc ctcggacacc gccatgtatt actgtgcgag aaactatgtt 360ggtagcatct ttgactactg gggccaagga accctggtca ccgtctcctc agcctccacc 420aagggcccat cggtcttccc cctggcaccc tcctccaaga gcacctctgg gggcacagcg 480gccctgggct gcctggtcaa ggactacttc cccgaaccgg tgacggtgtc gtggaactca 540ggcgccctga ccagcggcgt gcacaccttc ccggctgtcc tacagtcctc aggactctac 600tccctcagca gcgtggtgac cgtgccctcc agcagcttgg gcacccagac ctacatctgc 660aacgtgaatc acaagcccag caacaccaag gtggacaaga aagttgagcc caaatcttgt 720gacaaaactc acacatgccc accgtgccca gcacctgaac tcctgggggg accgtcagtc 780ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 840tgcgtggtgg tggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 900ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cagcacgtac 960cgtgtggtca gcgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaag 1020tgcaaggtct ccaacaaagc cctcccagcc cccatcgaga aaaccatctc caaagccaaa 1080gggcagcccc gagaaccaca ggtgtacacc ctgcccccat cccgggatga gctgaccaag 1140aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 1200tgggagagca atgggcagcc ggagaacaac tacaagacca cgcctcccgt gctggactcc 1260gacggctcct tcttcctcta cagcaagctc accgtggaca agagcaggtg gcagcagggg 1320aacgtcttct catgctccgt gatgcatgag gctctgcaca accactacac gcagaagagc 1380ctctccctgt ctccgggtaa atga 1404171448PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 171Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu 1 5 10 15 Ser Leu Lys Ile

Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Thr Tyr 20 25 30 Trp Met His Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met 35 40 45 Gly Glu Ile Asn Pro Thr Asn Gly His Thr Asn Tyr Asn Pro Ser Phe 50 55 60 Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser Thr Ala Tyr 65 70 75 80 Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys 85 90 95 Ala Arg Asn Tyr Val Gly Ser Ile Phe Asp Tyr Trp Gly Gln Gly Thr 100 105 110 Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro 115 120 125 Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly 130 135 140 Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn 145 150 155 160 Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln 165 170 175 Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser 180 185 190 Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser 195 200 205 Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr 210 215 220 His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser 225 230 235 240 Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg 245 250 255 Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro 260 265 270 Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala 275 280 285 Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val 290 295 300 Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr 305 310 315 320 Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr 325 330 335 Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu 340 345 350 Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys 355 360 365 Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser 370 375 380 Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp 385 390 395 400 Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser 405 410 415 Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala 420 425 430 Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 435 440 445 172388DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 172atggacatga gggtccccgc tcagctcctg gggctcctgc tactctggct ccgaggtgcc 60agatgtgaca tccagatgac ccagtctcca tcctccctgt ctgcatctgt aggagacaga 120gtcaccatca cttgcaaggc cagtgagaat gtggtttctt atgtatcctg gtatcagcag 180aaaccaggga aagcccctaa gctcctgatc tatggggcat ccaaccggaa cactggggtc 240ccatcaaggt tcagtggcag tggatctggg acagatttca ctctcaccat cagcagtctg 300caacctgaag attttgcaac ttactactgt gggcagagtt acaactatcc gtacacgttt 360ggccagggga ccaagctgga gatcaaac 388173107PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 173Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15 Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Glu Asn Val Val Ser Tyr 20 25 30 Val Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45 Tyr Gly Ala Ser Asn Arg Asn Thr Gly Val Pro Ser Arg Phe Ser Gly 50 55 60 Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80 Glu Asp Phe Ala Thr Tyr Tyr Cys Gly Gln Ser Tyr Asn Tyr Pro Tyr 85 90 95 Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys 100 105 174323DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 174gaactgtggc tgcaccatct gtcttcatct tcccgccatc tgatgagcag ttgaaatctg 60gaactgcctc tgttgtgtgc ctgctgaata acttctatcc cagagaggcc aaagtacagt 120ggaaggtgga taacgccctc caatcgggta actcccagga gagtgtcaca gagcaggaca 180gcaaggacag cacctacagc ctcagcagca ccctgacgct gagcaaagca gactacgaga 240aacacaaagt ctacgcctgc gaagtcaccc atcagggcct gagctcgccc gtcacaaaga 300gcttcaacag gggagagtgt tga 323175107PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 175Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu 1 5 10 15 Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe 20 25 30 Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln 35 40 45 Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser 50 55 60 Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu 65 70 75 80 Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser 85 90 95 Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 100 105 176711DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 176atggacatga gggtccccgc tcagctcctg gggctcctgc tactctggct ccgaggtgcc 60agatgtgaca tccagatgac ccagtctcca tcctccctgt ctgcatctgt aggagacaga 120gtcaccatca cttgcaaggc cagtgagaat gtggtttctt atgtatcctg gtatcagcag 180aaaccaggga aagcccctaa gctcctgatc tatggggcat ccaaccggaa cactggggtc 240ccatcaaggt tcagtggcag tggatctggg acagatttca ctctcaccat cagcagtctg 300caacctgaag attttgcaac ttactactgt gggcagagtt acaactatcc gtacacgttt 360ggccagggga ccaagctgga gatcaaacga actgtggctg caccatctgt cttcatcttc 420ccgccatctg atgagcagtt gaaatctgga actgcctctg ttgtgtgcct gctgaataac 480ttctatccca gagaggccaa agtacagtgg aaggtggata acgccctcca atcgggtaac 540tcccaggaga gtgtcacaga gcaggacagc aaggacagca cctacagcct cagcagcacc 600ctgacgctga gcaaagcaga ctacgagaaa cacaaagtct acgcctgcga agtcacccat 660cagggcctga gctcgcccgt cacaaagagc ttcaacaggg gagagtgttg a 711177214PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 177Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15 Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Glu Asn Val Val Ser Tyr 20 25 30 Val Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45 Tyr Gly Ala Ser Asn Arg Asn Thr Gly Val Pro Ser Arg Phe Ser Gly 50 55 60 Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80 Glu Asp Phe Ala Thr Tyr Tyr Cys Gly Gln Ser Tyr Asn Tyr Pro Tyr 85 90 95 Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg Thr Val Ala Ala 100 105 110 Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125 Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140 Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155 160 Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175 Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190 Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205 Phe Asn Arg Gly Glu Cys 210 178382DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 178atggaagccc cagcgcagct tctcttcctc ctgctactct ggctcccaga taccactgga 60gaaatagtga tgacgcagtc tccagccacc ctgtctgtgt ctccagggga aagagccacc 120ctctcctgca aggccagtga gaatgtggtt tcttatgtat cctggtacca gcagaaacct 180ggccaggctc ccaggctcct catctatggg gcatccaacc ggaacactgg tatcccagcc 240aggttcagtg gcagtgggtc tgggacagag ttcactctca ccatcagcag cctgcagtct 300gaagattttg cagtttatta ctgtgggcag agttacaact atccgtacac gtttggccag 360gggaccaagc tggagatcaa ac 382179107PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 179Glu Ile Val Met Thr Gln Ser Pro Ala Thr Leu Ser Val Ser Pro Gly 1 5 10 15 Glu Arg Ala Thr Leu Ser Cys Lys Ala Ser Glu Asn Val Val Ser Tyr 20 25 30 Val Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile 35 40 45 Tyr Gly Ala Ser Asn Arg Asn Thr Gly Ile Pro Ala Arg Phe Ser Gly 50 55 60 Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Ser 65 70 75 80 Glu Asp Phe Ala Val Tyr Tyr Cys Gly Gln Ser Tyr Asn Tyr Pro Tyr 85 90 95 Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys 100 105 180705DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 180atggaagccc cagcgcagct tctcttcctc ctgctactct ggctcccaga taccactgga 60gaaatagtga tgacgcagtc tccagccacc ctgtctgtgt ctccagggga aagagccacc 120ctctcctgca aggccagtga gaatgtggtt tcttatgtat cctggtacca gcagaaacct 180ggccaggctc ccaggctcct catctatggg gcatccaacc ggaacactgg tatcccagcc 240aggttcagtg gcagtgggtc tgggacagag ttcactctca ccatcagcag cctgcagtct 300gaagattttg cagtttatta ctgtgggcag agttacaact atccgtacac gtttggccag 360gggaccaagc tggagatcaa acgaactgtg gctgcaccat ctgtcttcat cttcccgcca 420tctgatgagc agttgaaatc tggaactgcc tctgttgtgt gcctgctgaa taacttctat 480cccagagagg ccaaagtaca gtggaaggtg gataacgccc tccaatcggg taactcccag 540gagagtgtca cagagcagga cagcaaggac agcacctaca gcctcagcag caccctgacg 600ctgagcaaag cagactacga gaaacacaaa gtctacgcct gcgaagtcac ccatcagggc 660ctgagctcgc ccgtcacaaa gagcttcaac aggggagagt gttga 705181214PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 181Glu Ile Val Met Thr Gln Ser Pro Ala Thr Leu Ser Val Ser Pro Gly 1 5 10 15 Glu Arg Ala Thr Leu Ser Cys Lys Ala Ser Glu Asn Val Val Ser Tyr 20 25 30 Val Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile 35 40 45 Tyr Gly Ala Ser Asn Arg Asn Thr Gly Ile Pro Ala Arg Phe Ser Gly 50 55 60 Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Ser 65 70 75 80 Glu Asp Phe Ala Val Tyr Tyr Cys Gly Gln Ser Tyr Asn Tyr Pro Tyr 85 90 95 Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg Thr Val Ala Ala 100 105 110 Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125 Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140 Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155 160 Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175 Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190 Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205 Phe Asn Arg Gly Glu Cys 210 182412DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 182atgggctggt catatattat tctctttctt gttgctaccg ctaccgatgt gcactctcaa 60gtccaactcg tacaaccagg cgctgaagtc gtaaaacccg gaacatctgt taaactctca 120tgcaaagcct caggatacac tttcacaact tactggatgc attgggtcaa tcaagccccc 180ggacaaggcc tcgaatggat tggcgaaatt aacccaacta acggacatac taattataat 240gaaaaattta agggcaaagc tacactcacc gtcgataaat caacctctac agcttatatg 300gaactttcat ccctgagatc agaagataca gccgtctact attgcgccag aaactacgta 360ggatcaatat tcgattactg gggtcaaggc actctcctca cagtcagctc ag 412183118PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 183Gln Val Gln Leu Val Gln Pro Gly Ala Glu Val Val Lys Pro Gly Thr 1 5 10 15 Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Thr Tyr 20 25 30 Trp Met His Trp Val Asn Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45 Gly Glu Ile Asn Pro Thr Asn Gly His Thr Asn Tyr Asn Glu Lys Phe 50 55 60 Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Thr Ser Thr Ala Tyr 65 70 75 80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Asn Tyr Val Gly Ser Ile Phe Asp Tyr Trp Gly Gln Gly Thr 100 105 110 Leu Leu Thr Val Ser Ser 115 184992DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 184ccagcacaaa gggcccatcg gtcttccccc tggcaccctc ctccaagagc acctctgggg 60gcacagcggc cctgggctgc ctggtcaagg actacttccc cgaaccggtg acggtgtcgt 120ggaactcagg cgccctgacc agcggcgtgc acaccttccc ggctgtccta cagtcctcag 180gactctactc cctcagcagc gtggtgaccg tgccctccag cagcttgggc acccagacct 240acatctgcaa cgtgaatcac aagcccagca acaccaaggt ggacaagaga gttgagccca 300aatcttgtga caaaactcac acatgtccac cgtgcccagc acctgaactc ctggggggac 360cgtcagtctt cctcttcccc ccaaaaccca aggacaccct catgatctcc cggacccctg 420aggtcacatg cgtggtggtg gacgtgagcc acgaagaccc tgaggtcaag ttcaactggt 480acgtggacgg cgtggaggtg cataatgcca agacaaagcc gcgggaggag cagtacaaca 540gcacgtaccg tgtggtcagc gtcctcaccg tcctgcacca ggactggctg aatggcaagg 600agtacaagtg caaggtctcc aacaaagccc tcccagcccc catcgagaaa accatctcca 660aagccaaagg gcagccccga gaaccacagg tgtacaccct gcccccatcc cgggaggaga 720tgaccaagaa ccaggtcagc ctgacctgcc tggtcaaagg cttctatccc agcgacatcg 780ccgtggagtg ggagagcaat gggcagccgg agaacaacta caagaccacg cctcccgtgc 840tggactccga cggctccttc ttcctctata gcaagctcac cgtggacaag agcaggtggc 900agcaggggaa cgtcttctca tgctccgtga tgcatgaggc tctgcacaac cactacacgc 960agaagagcct ctccctgtcc ccgggtaaat ga 992185330PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 185Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys 1 5 10 15 Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30 Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45 Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60 Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr 65 70 75 80 Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys 85 90 95 Arg Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys 100 105 110 Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro 115 120 125 Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys 130 135 140 Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp 145 150 155 160 Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu 165 170 175 Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu 180 185 190 His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn 195 200

205 Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly 210 215 220 Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu 225 230 235 240 Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr 245 250 255 Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn 260 265 270 Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 275 280 285 Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn 290 295 300 Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr 305 310 315 320 Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 325 330 1861404DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 186atgggctggt catatattat tctctttctt gttgctaccg ctaccgatgt gcactctcaa 60gtccaactcg tacaaccagg cgctgaagtc gtaaaacccg gaacatctgt taaactctca 120tgcaaagcct caggatacac tttcacaact tactggatgc attgggtcaa tcaagccccc 180ggacaaggcc tcgaatggat tggcgaaatt aacccaacta acggacatac taattataat 240gaaaaattta agggcaaagc tacactcacc gtcgataaat caacctctac agcttatatg 300gaactttcat ccctgagatc agaagataca gccgtctact attgcgccag aaactacgta 360ggatcaatat tcgattactg gggtcaaggc actctcctca cagtcagctc agccagcaca 420aagggcccat cggtcttccc cctggcaccc tcctccaaga gcacctctgg gggcacagcg 480gccctgggct gcctggtcaa ggactacttc cccgaaccgg tgacggtgtc gtggaactca 540ggcgccctga ccagcggcgt gcacaccttc ccggctgtcc tacagtcctc aggactctac 600tccctcagca gcgtggtgac cgtgccctcc agcagcttgg gcacccagac ctacatctgc 660aacgtgaatc acaagcccag caacaccaag gtggacaaga gagttgagcc caaatcttgt 720gacaaaactc acacatgtcc accgtgccca gcacctgaac tcctgggggg accgtcagtc 780ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 840tgcgtggtgg tggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 900ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cagcacgtac 960cgtgtggtca gcgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaag 1020tgcaaggtct ccaacaaagc cctcccagcc cccatcgaga aaaccatctc caaagccaaa 1080gggcagcccc gagaaccaca ggtgtacacc ctgcccccat cccgggagga gatgaccaag 1140aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 1200tgggagagca atgggcagcc ggagaacaac tacaagacca cgcctcccgt gctggactcc 1260gacggctcct tcttcctcta tagcaagctc accgtggaca agagcaggtg gcagcagggg 1320aacgtcttct catgctccgt gatgcatgag gctctgcaca accactacac gcagaagagc 1380ctctccctgt ccccgggtaa atga 1404187448PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 187Gln Val Gln Leu Val Gln Pro Gly Ala Glu Val Val Lys Pro Gly Thr 1 5 10 15 Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Thr Tyr 20 25 30 Trp Met His Trp Val Asn Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45 Gly Glu Ile Asn Pro Thr Asn Gly His Thr Asn Tyr Asn Glu Lys Phe 50 55 60 Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Thr Ser Thr Ala Tyr 65 70 75 80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Asn Tyr Val Gly Ser Ile Phe Asp Tyr Trp Gly Gln Gly Thr 100 105 110 Leu Leu Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro 115 120 125 Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly 130 135 140 Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn 145 150 155 160 Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln 165 170 175 Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser 180 185 190 Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser 195 200 205 Asn Thr Lys Val Asp Lys Arg Val Glu Pro Lys Ser Cys Asp Lys Thr 210 215 220 His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser 225 230 235 240 Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg 245 250 255 Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro 260 265 270 Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala 275 280 285 Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val 290 295 300 Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr 305 310 315 320 Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr 325 330 335 Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu 340 345 350 Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys 355 360 365 Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser 370 375 380 Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp 385 390 395 400 Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser 405 410 415 Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala 420 425 430 Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 435 440 445 188412DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 188atgggttggt catatattat actctttctc gtagccaccg ccaccgacgt acactctcag 60gttcaactcg tacaacccgg cgccgaagtc aagaaaccag gaacatcagt caaactctca 120tgtaaagcaa gcggatacac ctttactact tattggatgc attgggtaag acaagccccc 180ggacaaggac tcgaatggat aggcgaaata aatcccacta atggacatac aaattataat 240caaaaatttc aaggacgcgc tacactcacc gtcgataaat caacctcaac cgcatacatg 300gaactcagct ccctccgatc cgaagacact gccgtttatt attgtgccag aaactatgta 360ggatctattt tcgattactg gggacaagga acacttctca ccgtaagctc ag 412189118PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 189Gln Val Gln Leu Val Gln Pro Gly Ala Glu Val Lys Lys Pro Gly Thr 1 5 10 15 Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Thr Tyr 20 25 30 Trp Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45 Gly Glu Ile Asn Pro Thr Asn Gly His Thr Asn Tyr Asn Gln Lys Phe 50 55 60 Gln Gly Arg Ala Thr Leu Thr Val Asp Lys Ser Thr Ser Thr Ala Tyr 65 70 75 80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Asn Tyr Val Gly Ser Ile Phe Asp Tyr Trp Gly Gln Gly Thr 100 105 110 Leu Leu Thr Val Ser Ser 115 1901404DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 190atgggttggt catatattat actctttctc gtagccaccg ccaccgacgt acactctcag 60gttcaactcg tacaacccgg cgccgaagtc aagaaaccag gaacatcagt caaactctca 120tgtaaagcaa gcggatacac ctttactact tattggatgc attgggtaag acaagccccc 180ggacaaggac tcgaatggat aggcgaaata aatcccacta atggacatac aaattataat 240caaaaatttc aaggacgcgc tacactcacc gtcgataaat caacctcaac cgcatacatg 300gaactcagct ccctccgatc cgaagacact gccgtttatt attgtgccag aaactatgta 360ggatctattt tcgattactg gggacaagga acacttctca ccgtaagctc agccagcaca 420aagggcccat cggtcttccc cctggcaccc tcctccaaga gcacctctgg gggcacagcg 480gccctgggct gcctggtcaa ggactacttc cccgaaccgg tgacggtgtc gtggaactca 540ggcgccctga ccagcggcgt gcacaccttc ccggctgtcc tacagtcctc aggactctac 600tccctcagca gcgtggtgac cgtgccctcc agcagcttgg gcacccagac ctacatctgc 660aacgtgaatc acaagcccag caacaccaag gtggacaaga gagttgagcc caaatcttgt 720gacaaaactc acacatgtcc accgtgccca gcacctgaac tcctgggggg accgtcagtc 780ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 840tgcgtggtgg tggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 900ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cagcacgtac 960cgtgtggtca gcgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaag 1020tgcaaggtct ccaacaaagc cctcccagcc cccatcgaga aaaccatctc caaagccaaa 1080gggcagcccc gagaaccaca ggtgtacacc ctgcccccat cccgggagga gatgaccaag 1140aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 1200tgggagagca atgggcagcc ggagaacaac tacaagacca cgcctcccgt gctggactcc 1260gacggctcct tcttcctcta tagcaagctc accgtggaca agagcaggtg gcagcagggg 1320aacgtcttct catgctccgt gatgcatgag gctctgcaca accactacac gcagaagagc 1380ctctccctgt ccccgggtaa atga 1404191448PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 191Gln Val Gln Leu Val Gln Pro Gly Ala Glu Val Lys Lys Pro Gly Thr 1 5 10 15 Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Thr Tyr 20 25 30 Trp Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45 Gly Glu Ile Asn Pro Thr Asn Gly His Thr Asn Tyr Asn Gln Lys Phe 50 55 60 Gln Gly Arg Ala Thr Leu Thr Val Asp Lys Ser Thr Ser Thr Ala Tyr 65 70 75 80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Asn Tyr Val Gly Ser Ile Phe Asp Tyr Trp Gly Gln Gly Thr 100 105 110 Leu Leu Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro 115 120 125 Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly 130 135 140 Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn 145 150 155 160 Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln 165 170 175 Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser 180 185 190 Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser 195 200 205 Asn Thr Lys Val Asp Lys Arg Val Glu Pro Lys Ser Cys Asp Lys Thr 210 215 220 His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser 225 230 235 240 Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg 245 250 255 Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro 260 265 270 Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala 275 280 285 Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val 290 295 300 Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr 305 310 315 320 Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr 325 330 335 Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu 340 345 350 Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys 355 360 365 Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser 370 375 380 Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp 385 390 395 400 Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser 405 410 415 Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala 420 425 430 Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 435 440 445 192360DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 192atggaaagtc agacccttgt attcatctct attcttcttt ggttgtatgg agcagacggc 60gacattgtga tgacccaatc ccccgatagt atggccatga gtgtaggaga aagagtcacc 120cttaattgca aagcctccga aaatgtcgtt tcatatgtgt cttggtatca acaaaaaccc 180ggccaatcac ccaaacttct catatacggc gcttcaaaca gaaacacagg cgttcccgac 240agatttagtg gatccggatc agctacagat ttcaccctta ccatcagttc agttcaagca 300gaagacgttg cagactatca ttgcggacaa tcttataact acccttacac attcggacaa 360193107PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 193Asp Ile Val Met Thr Gln Ser Pro Asp Ser Met Ala Met Ser Val Gly 1 5 10 15 Glu Arg Val Thr Leu Asn Cys Lys Ala Ser Glu Asn Val Val Ser Tyr 20 25 30 Val Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile 35 40 45 Tyr Gly Ala Ser Asn Arg Asn Thr Gly Val Pro Asp Arg Phe Ser Gly 50 55 60 Ser Gly Ser Ala Thr Asp Phe Thr Leu Thr Ile Ser Ser Val Gln Ala 65 70 75 80 Glu Asp Val Ala Asp Tyr His Cys Gly Gln Ser Tyr Asn Tyr Pro Tyr 85 90 95 Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys 100 105 194323DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 194gtacggtggc tgcaccatct gtcttcatct tcccgccatc tgatgagcag ttgaaatctg 60gaactgcctc tgttgtgtgc ctgctgaata acttctatcc cagagaggcc aaagtacagt 120ggaaggtgga taacgccctc caatcgggta actcccagga gagtgtcaca gagcaggaca 180gcaaggacag cacctacagc ctcagcagca ccctgacgct gagcaaagca gactacgaga 240aacacaaagt ctacgcctgc gaagtcaccc atcagggcct gagctcgccc gtcacaaaga 300gcttcaacag gggagagtgt tag 323195107PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 195Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu 1 5 10 15 Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe 20 25 30 Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln 35 40 45 Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser 50 55 60 Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu 65 70 75 80 Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser 85 90 95 Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 100 105 196705DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 196atggaaagtc agacccttgt attcatctct attcttcttt ggttgtatgg agcagacggc 60gacattgtga tgacccaatc ccccgatagt atggccatga gtgtaggaga aagagtcacc 120cttaattgca aagcctccga aaatgtcgtt tcatatgtgt cttggtatca acaaaaaccc 180ggccaatcac ccaaacttct catatacggc gcttcaaaca gaaacacagg cgttcccgac 240agatttagtg gatccggatc agctacagat ttcaccctta ccatcagttc agttcaagca 300gaagacgttg cagactatca ttgcggacaa tcttataact acccttacac attcggacaa 360ggaaccaaac tcgaaattaa acgtacggtg gctgcaccat ctgtcttcat cttcccgcca 420tctgatgagc agttgaaatc tggaactgcc tctgttgtgt gcctgctgaa taacttctat 480cccagagagg ccaaagtaca gtggaaggtg gataacgccc tccaatcggg taactcccag 540gagagtgtca cagagcagga cagcaaggac agcacctaca gcctcagcag caccctgacg 600ctgagcaaag cagactacga gaaacacaaa gtctacgcct gcgaagtcac ccatcagggc 660ctgagctcgc ccgtcacaaa gagcttcaac aggggagagt gttag 705197214PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 197Asp Ile Val Met Thr Gln Ser Pro Asp Ser Met Ala Met Ser Val Gly 1 5 10 15 Glu Arg Val Thr Leu Asn Cys Lys Ala Ser Glu Asn Val Val Ser Tyr 20 25 30 Val Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile 35 40 45 Tyr Gly Ala Ser Asn Arg Asn Thr Gly Val Pro Asp Arg Phe Ser Gly 50 55 60 Ser Gly Ser Ala Thr Asp Phe Thr Leu Thr Ile Ser

Ser Val Gln Ala 65 70 75 80 Glu Asp Val Ala Asp Tyr His Cys Gly Gln Ser Tyr Asn Tyr Pro Tyr 85 90 95 Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg Thr Val Ala Ala 100 105 110 Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125 Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140 Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155 160 Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175 Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190 Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205 Phe Asn Arg Gly Glu Cys 210 198382DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 198atggaatccc aaacccttgt tttcatctct atccttctct ggctttatgg cgccgacgga 60gacatcgtaa tgacacaatc ccctgactct cttgctatga gcttgggcga acgagtaaca 120cttaactgca aagcatccga aaatgtcgta tcttacgtat cctggtatca gcaaaaacct 180ggtcaaagtc ctaaacttct tatatatggt gcaagtaatc gtgaaagtgg cgtcccagac 240agatttagcg gttcaggttc agcaactgac tttacactta caatttctag cgttcaggcc 300gaagacgttg cagactatca ttgtggacaa tcttataact atccttatac tttcggacaa 360ggcactaaac ttgaaattaa ac 382199107PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 199Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Met Ser Leu Gly 1 5 10 15 Glu Arg Val Thr Leu Asn Cys Lys Ala Ser Glu Asn Val Val Ser Tyr 20 25 30 Val Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile 35 40 45 Tyr Gly Ala Ser Asn Arg Glu Ser Gly Val Pro Asp Arg Phe Ser Gly 50 55 60 Ser Gly Ser Ala Thr Asp Phe Thr Leu Thr Ile Ser Ser Val Gln Ala 65 70 75 80 Glu Asp Val Ala Asp Tyr His Cys Gly Gln Ser Tyr Asn Tyr Pro Tyr 85 90 95 Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys 100 105 200705DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 200atggaatccc aaacccttgt tttcatctct atccttctct ggctttatgg cgccgacgga 60gacatcgtaa tgacacaatc ccctgactct cttgctatga gcttgggcga acgagtaaca 120cttaactgca aagcatccga aaatgtcgta tcttacgtat cctggtatca gcaaaaacct 180ggtcaaagtc ctaaacttct tatatatggt gcaagtaatc gtgaaagtgg cgtcccagac 240agatttagcg gttcaggttc agcaactgac tttacactta caatttctag cgttcaggcc 300gaagacgttg cagactatca ttgtggacaa tcttataact atccttatac tttcggacaa 360ggcactaaac ttgaaattaa acgtacggtg gctgcaccat ctgtcttcat cttcccgcca 420tctgatgagc agttgaaatc tggaactgcc tctgttgtgt gcctgctgaa taacttctat 480cccagagagg ccaaagtaca gtggaaggtg gataacgccc tccaatcggg taactcccag 540gagagtgtca cagagcagga cagcaaggac agcacctaca gcctcagcag caccctgacg 600ctgagcaaag cagactacga gaaacacaaa gtctacgcct gcgaagtcac ccatcagggc 660ctgagctcgc ccgtcacaaa gagcttcaac aggggagagt gttag 705201214PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 201Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Met Ser Leu Gly 1 5 10 15 Glu Arg Val Thr Leu Asn Cys Lys Ala Ser Glu Asn Val Val Ser Tyr 20 25 30 Val Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile 35 40 45 Tyr Gly Ala Ser Asn Arg Glu Ser Gly Val Pro Asp Arg Phe Ser Gly 50 55 60 Ser Gly Ser Ala Thr Asp Phe Thr Leu Thr Ile Ser Ser Val Gln Ala 65 70 75 80 Glu Asp Val Ala Asp Tyr His Cys Gly Gln Ser Tyr Asn Tyr Pro Tyr 85 90 95 Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg Thr Val Ala Ala 100 105 110 Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125 Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140 Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155 160 Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175 Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190 Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205 Phe Asn Arg Gly Glu Cys 210 20217PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 202Glu Ile Asn Pro Thr Asn Gly His Thr Asn Tyr Asn Glu Lys Phe Gln 1 5 10 15 Gly 20317PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 203Glu Ile Asn Pro Thr Asn Gly His Thr Asn Tyr Asn Pro Ser Phe Gln 1 5 10 15 Gly 20417PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 204Glu Ile Asn Pro Thr Asn Gly His Thr Asn Tyr Asn Glu Lys Phe Lys 1 5 10 15 Gly 20517PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 205Glu Ile Asn Pro Thr Asn Gly His Thr Asn Tyr Asn Gln Lys Phe Gln 1 5 10 15 Gly 2067PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 206Gly Ala Ser Asn Arg Glu Ser 1 5 207992DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 207cctccaccaa gggcccatcg gtcttccccc tggcaccctc ctccaagagc acctctgggg 60gcacagcggc cctgggctgc ctggtcaagg actacttccc cgaaccggtg acggtgtcgt 120ggaactcagg cgccctgacc agcggcgtgc acaccttccc ggctgtccta cagtcctcag 180gactctactc cctcagcagc gtggtgaccg tgccctccag cagcttgggc acccagacct 240acatctgcaa cgtgaatcac aagcccagca acaccaaggt ggacaagaga gttgagccca 300aatcttgtga caaaactcac acatgcccac cgtgcccagc acctgaactc ctggggggac 360cgtcagtctt cctcttcccc ccaaaaccca aggacaccct catgatctcc cggacccctg 420aggtcacatg cgtggtggtg gacgtgagcc acgaagaccc tgaggtcaag ttcaactggt 480acgtggacgg cgtggaggtg cataatgcca agacaaagcc gcgggaggag cagtacaaca 540gcacgtaccg tgtggtcagc gtcctcaccg tcctgcacca ggactggctg aatggcaagg 600agtacaagtg caaggtctcc aacaaagccc tcccagcccc catcgagaag accatctcca 660aagccaaagg gcagccccga gaaccacagg tgtacaccct gcccccatcc cgggaggaga 720tgaccaagaa ccaggtcagc ctgacctgcc tggtcaaagg cttctatccc agcgacatcg 780ccgtggagtg ggagagcaat gggcagccgg agaacaacta caagaccacg cctcccgtgc 840tggactccga cggctccttc ttcctctaca gcaagctcac cgtggacaag agcaggtggc 900agcaggggaa cgtcttctca tgctccgtga tgcatgaggc tctgcacaac cactacacgc 960agaagagcct ctccctgtct ccgggtaaat ga 992208330PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 208Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys 1 5 10 15 Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30 Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45 Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60 Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr 65 70 75 80 Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys 85 90 95 Arg Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys 100 105 110 Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro 115 120 125 Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys 130 135 140 Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp 145 150 155 160 Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu 165 170 175 Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu 180 185 190 His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn 195 200 205 Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly 210 215 220 Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu 225 230 235 240 Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr 245 250 255 Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn 260 265 270 Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 275 280 285 Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn 290 295 300 Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr 305 310 315 320 Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 325 330 2091404DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 209atggggtcaa ccgccatcct cgccctcctc ctggctgttc tccaaggagt ctgtgccgaa 60gtgcagctgg tgcagtctgg agcagaggtg aaaaagcccg gggagtctct gaagatctcc 120tgtaagggtt ctggatacag ctttaccacc tactggatgc actgggtgcg ccagatgccc 180gggaaaggcc tggagtggat gggggagatt aatcctacca acggtcatac taactacaat 240ccgtccttcc aaggccaggt caccatctca gctgacaagt ccatcagcac tgcctacctg 300cagtggagca gcctgaaggc ctcggacacc gccatgtatt actgtgcgag aaactatgtt 360ggtagcatct ttgactactg gggccaagga accctggtca ccgtctcctc agcctccacc 420aagggcccat cggtcttccc cctggcaccc tcctccaaga gcacctctgg gggcacagcg 480gccctgggct gcctggtcaa ggactacttc cccgaaccgg tgacggtgtc gtggaactca 540ggcgccctga ccagcggcgt gcacaccttc ccggctgtcc tacagtcctc aggactctac 600tccctcagca gcgtggtgac cgtgccctcc agcagcttgg gcacccagac ctacatctgc 660aacgtgaatc acaagcccag caacaccaag gtggacaaga gagttgagcc caaatcttgt 720gacaaaactc acacatgccc accgtgccca gcacctgaac tcctgggggg accgtcagtc 780ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 840tgcgtggtgg tggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 900ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cagcacgtac 960cgtgtggtca gcgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaag 1020tgcaaggtct ccaacaaagc cctcccagcc cccatcgaga agaccatctc caaagccaaa 1080gggcagcccc gagaaccaca ggtgtacacc ctgcccccat cccgggagga gatgaccaag 1140aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 1200tgggagagca atgggcagcc ggagaacaac tacaagacca cgcctcccgt gctggactcc 1260gacggctcct tcttcctcta cagcaagctc accgtggaca agagcaggtg gcagcagggg 1320aacgtcttct catgctccgt gatgcatgag gctctgcaca accactacac gcagaagagc 1380ctctccctgt ctccgggtaa atga 1404210448PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 210Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu 1 5 10 15 Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Thr Tyr 20 25 30 Trp Met His Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met 35 40 45 Gly Glu Ile Asn Pro Thr Asn Gly His Thr Asn Tyr Asn Pro Ser Phe 50 55 60 Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser Thr Ala Tyr 65 70 75 80 Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys 85 90 95 Ala Arg Asn Tyr Val Gly Ser Ile Phe Asp Tyr Trp Gly Gln Gly Thr 100 105 110 Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro 115 120 125 Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly 130 135 140 Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn 145 150 155 160 Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln 165 170 175 Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser 180 185 190 Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser 195 200 205 Asn Thr Lys Val Asp Lys Arg Val Glu Pro Lys Ser Cys Asp Lys Thr 210 215 220 His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser 225 230 235 240 Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg 245 250 255 Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro 260 265 270 Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala 275 280 285 Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val 290 295 300 Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr 305 310 315 320 Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr 325 330 335 Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu 340 345 350 Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys 355 360 365 Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser 370 375 380 Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp 385 390 395 400 Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser 405 410 415 Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala 420 425 430 Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 435 440 445 2112209DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 211atgatgtggg ggaccaaact tctgccggtc ctgttgctgc agcatgtcct cctgcacctc 60ctcctgcttc atgtcgccat cccctatgca gaaggacaga agaaaagaag aaatacactt 120catgaattta aaaagtcagc aaaaactact cttaccaagg aagacccatt actgaagatt 180aaaaccaaaa aagtgaactc tgcagatgag tgtgccaaca ggtgtatcag gaacaggggc 240tttacgttca cttgcaaggc cttcgttttt gataagtcaa gaaaacgatg ctactggtat 300cctttcaata gtatgtcaag tggagtgaaa aaagggtttg gccatgaatt tgacctctat 360gaaaacaaag actatattag aaactgcatc attggtaaag gaggcagcta taaagggacg 420gtatccatca ctaagagtgg catcaaatgc cagccttgga attccatgat cccccatgaa 480cacagctttt tgccttcgag ctatcgcggt aaagacctac aggaaaacta ctgtcgaaat 540cctcgagggg aagaaggggg accctggtgt ttcacaagca atccagaggt acgctacgaa 600gtctgtgaca ttcctcagtg ttcagaagtt gaatgcatga cctgcaatgg tgaaagctac 660agaggtccca tggatcacac agaatcaggc aagacttgtc agcgctggga ccagcagaca 720ccacaccggc acaagttctt gccagaaaga tatcccgaca agggctttga tgataattat 780tgccgcaatc ctgatggcaa gccgaggcca tggtgctaca ctcttgaccc tgacaccact 840tgggagtatt gtgcaattaa aacgtgcgct cacagtgctg tgaatgagac tgatgtccct 900atggaaacaa ctgaatgcat tcaaggccaa ggagaaggtt acaggggaac cagcaatacc 960atttggaatg gaattccctg tcagcgttgg gattcgcagt accctcacaa gcatgatatc 1020actcccgaga acttcaaatg caaggacctt agagaaaatt attgccgcaa tccagatggg 1080gctgaatcac catggtgttt taccactgac ccaaacatcc gagttggcta ctgctctcag 1140attcccaagt gtgacgtgtc aagtggacaa gattgttatc gtggcaatgg gaaaaattac 1200atgggcaact tatccaaaac aaggtctgga cttacatgtt ccatgtggga caagaatatg 1260gaggatttac accgtcatat cttctgggag ccagatgcta gcaaattgaa taagaattac 1320tgccggaatc ctgatgatga tgcccatgga ccttggtgct acacggggaa tcctcttatt 1380ccttgggatt attgccctat ttcccgttgt gaaggagata ctacacctac aattgtcaat 1440ttggaccatc ctgtaatatc ctgtgccaaa acaaaacaac tgcgggttgt aaatgggatt 1500ccaacacgaa caaacatagg atggatggtt agtttgagat acagaaataa acatatctgc 1560ggaggatcat tgataaagga gagttgggtt cttactgcac gacagtgttt cccttctcga 1620gacttgaaag attatgaagc ttggcttgga attcatgatg tccacggaag aggagatgag 1680aaatgcaaac aggttctcaa tgtttcccag ctggtatatg gccctgaagg atcagatctg

1740gttttaatga agcttgctcg acctgcaatc ctggataact ttgtcagtac aattgattta 1800cctagttatg gttgtacaat ccctgaaaag accacttgca gtatttacgg ctggggctac 1860actggattga tcaacgcgga tggtttatta cgagtagctc atctgtatat tatggggaat 1920gagaaatgca gtcagcacca tcaaggcaag gtgactttga atgagtctga gttatgtgct 1980ggggctgaaa agattggatc aggaccatgt gagggagatt atggtggccc actcatttgt 2040gaacaacaca aaatgagaat ggttcttggt gtcattgttc ctggtcgtgg atgtgccatc 2100ccaaatcgtc ctgttatttt tgttcgagta gcatattatg caaaatggat acacaaagta 2160attttgacat acaagttgtg cggccgccat caccatcacc atcactaag 2209212680PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 212Pro Leu Leu Lys Ile Lys Thr Lys Lys Val Asn Ser Ala Asp Glu Cys 1 5 10 15 Ala Asn Arg Cys Ile Arg Asn Arg Gly Phe Thr Phe Thr Cys Lys Ala 20 25 30 Phe Val Phe Asp Lys Ser Arg Lys Arg Cys Tyr Trp Tyr Pro Phe Asn 35 40 45 Ser Met Ser Ser Gly Val Lys Lys Gly Phe Gly His Glu Phe Asp Leu 50 55 60 Tyr Glu Asn Lys Asp Tyr Ile Arg Asn Cys Ile Ile Gly Lys Gly Gly 65 70 75 80 Ser Tyr Lys Gly Thr Val Ser Ile Thr Lys Ser Gly Ile Lys Cys Gln 85 90 95 Pro Trp Asn Ser Met Ile Pro His Glu His Ser Phe Leu Pro Ser Ser 100 105 110 Tyr Arg Gly Lys Asp Leu Gln Glu Asn Tyr Cys Arg Asn Pro Arg Gly 115 120 125 Glu Glu Gly Gly Pro Trp Cys Phe Thr Ser Asn Pro Glu Val Arg Tyr 130 135 140 Glu Val Cys Asp Ile Pro Gln Cys Ser Glu Val Glu Cys Met Thr Cys 145 150 155 160 Asn Gly Glu Ser Tyr Arg Gly Pro Met Asp His Thr Glu Ser Gly Lys 165 170 175 Thr Cys Gln Arg Trp Asp Gln Gln Thr Pro His Arg His Lys Phe Leu 180 185 190 Pro Glu Arg Tyr Pro Asp Lys Gly Phe Asp Asp Asn Tyr Cys Arg Asn 195 200 205 Pro Asp Gly Lys Pro Arg Pro Trp Cys Tyr Thr Leu Asp Pro Asp Thr 210 215 220 Thr Trp Glu Tyr Cys Ala Ile Lys Thr Cys Ala His Ser Ala Val Asn 225 230 235 240 Glu Thr Asp Val Pro Met Glu Thr Thr Glu Cys Ile Gln Gly Gln Gly 245 250 255 Glu Gly Tyr Arg Gly Thr Ser Asn Thr Ile Trp Asn Gly Ile Pro Cys 260 265 270 Gln Arg Trp Asp Ser Gln Tyr Pro His Lys His Asp Ile Thr Pro Glu 275 280 285 Asn Phe Lys Cys Lys Asp Leu Arg Glu Asn Tyr Cys Arg Asn Pro Asp 290 295 300 Gly Ala Glu Ser Pro Trp Cys Phe Thr Thr Asp Pro Asn Ile Arg Val 305 310 315 320 Gly Tyr Cys Ser Gln Ile Pro Lys Cys Asp Val Ser Ser Gly Gln Asp 325 330 335 Cys Tyr Arg Gly Asn Gly Lys Asn Tyr Met Gly Asn Leu Ser Lys Thr 340 345 350 Arg Ser Gly Leu Thr Cys Ser Met Trp Asp Lys Asn Met Glu Asp Leu 355 360 365 His Arg His Ile Phe Trp Glu Pro Asp Ala Ser Lys Leu Asn Lys Asn 370 375 380 Tyr Cys Arg Asn Pro Asp Asp Asp Ala His Gly Pro Trp Cys Tyr Thr 385 390 395 400 Gly Asn Pro Leu Ile Pro Trp Asp Tyr Cys Pro Ile Ser Arg Cys Glu 405 410 415 Gly Asp Thr Thr Pro Thr Ile Val Asn Leu Asp His Pro Val Ile Ser 420 425 430 Cys Ala Lys Thr Lys Gln Leu Arg Val Val Asn Gly Ile Pro Thr Arg 435 440 445 Thr Asn Ile Gly Trp Met Val Ser Leu Arg Tyr Arg Asn Lys His Ile 450 455 460 Cys Gly Gly Ser Leu Ile Lys Glu Ser Trp Val Leu Thr Ala Arg Gln 465 470 475 480 Cys Phe Pro Ser Arg Asp Leu Lys Asp Tyr Glu Ala Trp Leu Gly Ile 485 490 495 His Asp Val His Gly Arg Gly Asp Glu Lys Cys Lys Gln Val Leu Asn 500 505 510 Val Ser Gln Leu Val Tyr Gly Pro Glu Gly Ser Asp Leu Val Leu Met 515 520 525 Lys Leu Ala Arg Pro Ala Ile Leu Asp Asn Phe Val Ser Thr Ile Asp 530 535 540 Leu Pro Ser Tyr Gly Cys Thr Ile Pro Glu Lys Thr Thr Cys Ser Ile 545 550 555 560 Tyr Gly Trp Gly Tyr Thr Gly Leu Ile Asn Ala Asp Gly Leu Leu Arg 565 570 575 Val Ala His Leu Tyr Ile Met Gly Asn Glu Lys Cys Ser Gln His His 580 585 590 Gln Gly Lys Val Thr Leu Asn Glu Ser Glu Leu Cys Ala Gly Ala Glu 595 600 605 Lys Ile Gly Ser Gly Pro Cys Glu Gly Asp Tyr Gly Gly Pro Leu Ile 610 615 620 Cys Glu Gln His Lys Met Arg Met Val Leu Gly Val Ile Val Pro Gly 625 630 635 640 Arg Gly Cys Ala Ile Pro Asn Arg Pro Val Ile Phe Val Arg Val Ala 645 650 655 Tyr Tyr Ala Lys Trp Ile His Lys Val Ile Leu Thr Tyr Lys Leu Cys 660 665 670 Gly Arg His His His His His His 675 680 2132194DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 213atgatgtggg ggaccaaact tctgccggtc ctgttgctgc agcatgtcct cctgcacctc 60ctcctgcttc atgtcgccat cccctatgca gaaggacaga agaaaagaag aaatacactt 120catgaattta aaaagtcagc aaaaactact cttaccaagg aagacccatt actgaagatt 180aaaaccaaaa aagtgaactc tgcagatgag tgtgccaaca ggtgtatcag gaacaggggc 240tttacgttca cttgcaaggc cttcgttttt gataagtcaa gaaaacgatg ctactggtat 300cctttcaata gtatgtcaag tggagtgaaa aaagggtttg gccatgaatt tgacctctat 360gaaaacaaag actatattag aaactgcatc attggtaaag gaggcagcta taaagggacg 420gtatccatca ctaagagtgg catcaaatgc cagccttgga attccatgat cccccatgaa 480cacagctatc gcggtaaaga cctacaggaa aactactgtc gaaatcctcg aggggaagaa 540gggggaccct ggtgtttcac aagcaatcca gaggtacgct acgaagtctg tgacattcct 600cagtgttcag aagttgaatg catgacctgc aatggtgaaa gctacagagg tcccatggat 660cacacagaat caggcaagac ttgtcagcgc tgggaccagc agacaccaca ccggcacaag 720ttcttgccag aaagatatcc cgacaagggc tttgatgata attattgccg caatcctgat 780ggcaagccga ggccatggtg ctacactctt gaccctgaca ccccttggga gtattgtgca 840attaaaacgt gcgctcacag tgctgtgaat gagactgatg tccctatgga aacaactgaa 900tgcattcaag gccaaggaga aggttacagg ggaaccagca ataccatttg gaatggaatt 960ccctgtcagc gttgggattc gcagtaccct cacaagcatg atatcactcc cgagaacttc 1020aaatgcaagg accttagaga aaattattgc cgcaatccag atggggctga atcaccatgg 1080tgttttacca ctgacccaaa catccgagtt ggctactgct ctcagattcc caagtgtgac 1140gtgtcaagtg gacaagattg ttatcgtggc aatgggaaaa attacatggg caacttatcc 1200aaaacaaggt ctggacttac atgttccatg tgggacaaga atatggagga tttacaccgt 1260catatcttct gggagccaga tgctagcaaa ttgaataaga attactgccg gaatcctgat 1320gatgatgccc atggaccttg gtgctacacg gggaatcctc ttattccttg ggattattgc 1380cctatttccc gttgtgaagg agatactaca cctacaattg tcaatttgga ccatcctgta 1440atatcctgtg ccaaaacaaa acaactgcgg gttgtaaatg ggattccaac acgaacaaac 1500ataggatgga tggttagttt gagatacaga aataaacata tctgcggagg atcattgata 1560aaggagagtt gggttcttac tgcacgacag tgtttccctt ctcgagactt gaaagattat 1620gaagcttggc ttggaattca tgatgtccac ggaagaggag aggagaaaag aaaacagatt 1680ctcaatattt cccagctggt atatggccct gaaggatcag atctggtttt actgaagctt 1740gctcgacctg caatcctgga taactttgtc agtacaattg atttacctag ttatggttgt 1800acaatccctg aaaagaccac ttgcagtatt tacggctggg gctacactgg attgatcaac 1860gcggatggtt tattacgagt agctcatctg tatattatgg ggaatgagaa atgcagtcag 1920caccatcaag gcaaggtgac tttgaatgag tctgagttat gtgctggggc tgaaaagatt 1980ggatcaggac catgtgaggg agattatggt ggcccactca tttgtgaaca acacaaaatg 2040agaatggttc ttggtgtcat tgttcctggt cgtggatgtg ccatcccaaa tcgtcctggt 2100atttttgttc gagtagcata ttatgcaaaa tggatacaca aagtaatttt gacatacaag 2160ttgtgcggcc gccatcacca tcaccatcac taag 2194214675PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 214Pro Leu Leu Lys Ile Lys Thr Lys Lys Val Asn Ser Ala Asp Glu Cys 1 5 10 15 Ala Asn Arg Cys Ile Arg Asn Arg Gly Phe Thr Phe Thr Cys Lys Ala 20 25 30 Phe Val Phe Asp Lys Ser Arg Lys Arg Cys Tyr Trp Tyr Pro Phe Asn 35 40 45 Ser Met Ser Ser Gly Val Lys Lys Gly Phe Gly His Glu Phe Asp Leu 50 55 60 Tyr Glu Asn Lys Asp Tyr Ile Arg Asn Cys Ile Ile Gly Lys Gly Gly 65 70 75 80 Ser Tyr Lys Gly Thr Val Ser Ile Thr Lys Ser Gly Ile Lys Cys Gln 85 90 95 Pro Trp Asn Ser Met Ile Pro His Glu His Ser Tyr Arg Gly Lys Asp 100 105 110 Leu Gln Glu Asn Tyr Cys Arg Asn Pro Arg Gly Glu Glu Gly Gly Pro 115 120 125 Trp Cys Phe Thr Ser Asn Pro Glu Val Arg Tyr Glu Val Cys Asp Ile 130 135 140 Pro Gln Cys Ser Glu Val Glu Cys Met Thr Cys Asn Gly Glu Ser Tyr 145 150 155 160 Arg Gly Pro Met Asp His Thr Glu Ser Gly Lys Thr Cys Gln Arg Trp 165 170 175 Asp Gln Gln Thr Pro His Arg His Lys Phe Leu Pro Glu Arg Tyr Pro 180 185 190 Asp Lys Gly Phe Asp Asp Asn Tyr Cys Arg Asn Pro Asp Gly Lys Pro 195 200 205 Arg Pro Trp Cys Tyr Thr Leu Asp Pro Asp Thr Pro Trp Glu Tyr Cys 210 215 220 Ala Ile Lys Thr Cys Ala His Ser Ala Val Asn Glu Thr Asp Val Pro 225 230 235 240 Met Glu Thr Thr Glu Cys Ile Gln Gly Gln Gly Glu Gly Tyr Arg Gly 245 250 255 Thr Ser Asn Thr Ile Trp Asn Gly Ile Pro Cys Gln Arg Trp Asp Ser 260 265 270 Gln Tyr Pro His Lys His Asp Ile Thr Pro Glu Asn Phe Lys Cys Lys 275 280 285 Asp Leu Arg Glu Asn Tyr Cys Arg Asn Pro Asp Gly Ala Glu Ser Pro 290 295 300 Trp Cys Phe Thr Thr Asp Pro Asn Ile Arg Val Gly Tyr Cys Ser Gln 305 310 315 320 Ile Pro Lys Cys Asp Val Ser Ser Gly Gln Asp Cys Tyr Arg Gly Asn 325 330 335 Gly Lys Asn Tyr Met Gly Asn Leu Ser Lys Thr Arg Ser Gly Leu Thr 340 345 350 Cys Ser Met Trp Asp Lys Asn Met Glu Asp Leu His Arg His Ile Phe 355 360 365 Trp Glu Pro Asp Ala Ser Lys Leu Asn Lys Asn Tyr Cys Arg Asn Pro 370 375 380 Asp Asp Asp Ala His Gly Pro Trp Cys Tyr Thr Gly Asn Pro Leu Ile 385 390 395 400 Pro Trp Asp Tyr Cys Pro Ile Ser Arg Cys Glu Gly Asp Thr Thr Pro 405 410 415 Thr Ile Val Asn Leu Asp His Pro Val Ile Ser Cys Ala Lys Thr Lys 420 425 430 Gln Leu Arg Val Val Asn Gly Ile Pro Thr Arg Thr Asn Ile Gly Trp 435 440 445 Met Val Ser Leu Arg Tyr Arg Asn Lys His Ile Cys Gly Gly Ser Leu 450 455 460 Ile Lys Glu Ser Trp Val Leu Thr Ala Arg Gln Cys Phe Pro Ser Arg 465 470 475 480 Asp Leu Lys Asp Tyr Glu Ala Trp Leu Gly Ile His Asp Val His Gly 485 490 495 Arg Gly Glu Glu Lys Arg Lys Gln Ile Leu Asn Ile Ser Gln Leu Val 500 505 510 Tyr Gly Pro Glu Gly Ser Asp Leu Val Leu Leu Lys Leu Ala Arg Pro 515 520 525 Ala Ile Leu Asp Asn Phe Val Ser Thr Ile Asp Leu Pro Ser Tyr Gly 530 535 540 Cys Thr Ile Pro Glu Lys Thr Thr Cys Ser Ile Tyr Gly Trp Gly Tyr 545 550 555 560 Thr Gly Leu Ile Asn Ala Asp Gly Leu Leu Arg Val Ala His Leu Tyr 565 570 575 Ile Met Gly Asn Glu Lys Cys Ser Gln His His Gln Gly Lys Val Thr 580 585 590 Leu Asn Glu Ser Glu Leu Cys Ala Gly Ala Glu Lys Ile Gly Ser Gly 595 600 605 Pro Cys Glu Gly Asp Tyr Gly Gly Pro Leu Ile Cys Glu Gln His Lys 610 615 620 Met Arg Met Val Leu Gly Val Ile Val Pro Gly Arg Gly Cys Ala Ile 625 630 635 640 Pro Asn Arg Pro Gly Ile Phe Val Arg Val Ala Tyr Tyr Ala Lys Trp 645 650 655 Ile His Lys Val Ile Leu Thr Tyr Lys Leu Cys Gly Arg His His His 660 665 670 His His His 675 2152194DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 215atgatgtggg ggaccaaact tctgccggtc ctgttgctgc agcatgtcct cctgcacctc 60ctcctgcttc atgtcgccat cccctatgca gaaggacaga agaaaagaag aaatacactt 120catgaattta aaaagtcagc aaaaactact cttaccaagg aagacccatt actgaagatt 180aaaaccaaaa aagtgaactc tgcagatgag tgtgccaaca ggtgtatcag gaacaggggc 240tttacgttca cttgcaaggc cttcgttttt gataagtcaa gaaaacgatg ctactggtat 300cctttcaata gtatgtcaag tggagtgaaa aaagggtttg gccatgaatt tgacctctat 360gaaaacaaag actatattag aaactgcatc attggtaaag gaggcagcta taaagggacg 420gtatccatca ctaagagtgg catcaaatgc cagccttgga attccatgat cccccatgaa 480cacagctatc gcggtaaaga cctacaggaa aactactgtc gaaatcctcg aggggaagaa 540gggggaccct ggtgtttcac aagcaatcca gaggtacgct acgaagtctg tgacattcct 600cagtgttcag aagttgaatg catgacctgc aatggtgaaa gctacagagg tcccatggat 660cacacagaat caggcaagac ttgtcagcgc tgggaccagc agacaccaca ccggcacaag 720ttcttgccag aaagatatcc cgacaagggc tttgatgata attattgccg caatcctgat 780ggcaagccga ggccatggtg ctacactctt gaccctgaca ccccttggga gtattgtgca 840attaaaacgt gcgctcacag tgctgtgaat gagactgatg tccctatgga aacaactgaa 900tgcattcaag gccaaggaga aggttacagg ggaaccagca ataccatttg gaatggaatt 960ccctgtcagc gttgggattc gcagtaccct cacaagcatg atatcactcc cgagaacttc 1020aaatgcaagg accttagaga aaattattgc cgcaatccag atggggctga atcaccatgg 1080tgttttacca ctgacccaaa catccgagtt ggctactgct ctcagattcc caagtgtgac 1140gtgtcaagtg gacaagattg ttatcgtggc aatgggaaaa attacatggg caacttatcc 1200aaaacaaggt ctggacttac atgttccatg tgggacaaga atatggagga tttacaccgt 1260catatcttct gggagccaga tgctagcaaa ttgaataaga attactgccg gaatcctgat 1320gatgatgccc atggaccttg gtgctacacg gggaatcctc ttattccttg ggattattgc 1380cctatttccc gttgtgaagg agatactaca cctacaattg tcaatttgga ccatcctgta 1440atatcctgtg ccaaaacaaa acaactgcgg gttgtaaatg ggattccaac acaaacaaca 1500gtaggatgga tggttagttt gagatacaga aataaacata tctgcggagg atcattgata 1560aaggagagtt gggttcttac tgcacgacag tgtttccctt ctcgagactt gaaagattat 1620gaagcttggc ttggaattca tgatgtccac ggaagaggag atgagaaatg caaacaggtt 1680ctcaatgttt cccagctggt atatggccct gaaggatcag atctggtttt aatgaagctt 1740gctcgacctg caatcctgga taactttgtc agtacaattg atttacctag ttatggttgt 1800acaatccctg aaaagaccac ttgcagtatt tacggctggg gctacactgg attgatcaac 1860gcggatggtt tattacgagt agctcatctg tatattatgg ggaatgagaa atgcagtcag 1920caccatcaag gcaaggtgac tttgaatgag tctgagttat gtgctggggc tgaaaagatt 1980ggatcaggac catgtgaggg agattatggt ggcccactca tttgtgaaca acacaaaatg 2040agaatggttc ttggtgtcat tgttcctggt cgtggatgtg ccatcccaaa tcgtcctggt 2100atttttgttc gagtagcata ttatgcaaaa tggatacaca aagtaatttt gacatacaag 2160ttgtgcggcc gccatcacca tcaccatcac taag 2194216675PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 216Pro Leu Leu Lys Ile Lys Thr Lys Lys Val Asn Ser Ala Asp Glu Cys 1 5 10 15 Ala Asn Arg Cys Ile Arg Asn Arg Gly Phe Thr Phe Thr Cys Lys Ala 20 25 30 Phe Val Phe Asp Lys Ser Arg Lys Arg Cys Tyr Trp Tyr Pro Phe Asn 35 40 45 Ser Met Ser Ser Gly Val Lys Lys Gly Phe Gly His Glu Phe Asp Leu 50 55 60 Tyr Glu Asn Lys Asp Tyr Ile Arg Asn Cys Ile Ile Gly Lys Gly Gly 65 70 75 80 Ser Tyr Lys Gly Thr Val Ser Ile Thr Lys Ser Gly Ile Lys Cys Gln 85 90 95 Pro Trp Asn Ser Met Ile Pro His Glu His Ser Tyr Arg Gly Lys Asp 100 105 110 Leu Gln Glu Asn Tyr Cys Arg Asn Pro Arg Gly Glu Glu Gly Gly Pro 115 120 125 Trp Cys Phe Thr Ser Asn Pro

Glu Val Arg Tyr Glu Val Cys Asp Ile 130 135 140 Pro Gln Cys Ser Glu Val Glu Cys Met Thr Cys Asn Gly Glu Ser Tyr 145 150 155 160 Arg Gly Pro Met Asp His Thr Glu Ser Gly Lys Thr Cys Gln Arg Trp 165 170 175 Asp Gln Gln Thr Pro His Arg His Lys Phe Leu Pro Glu Arg Tyr Pro 180 185 190 Asp Lys Gly Phe Asp Asp Asn Tyr Cys Arg Asn Pro Asp Gly Lys Pro 195 200 205 Arg Pro Trp Cys Tyr Thr Leu Asp Pro Asp Thr Pro Trp Glu Tyr Cys 210 215 220 Ala Ile Lys Thr Cys Ala His Ser Ala Val Asn Glu Thr Asp Val Pro 225 230 235 240 Met Glu Thr Thr Glu Cys Ile Gln Gly Gln Gly Glu Gly Tyr Arg Gly 245 250 255 Thr Ser Asn Thr Ile Trp Asn Gly Ile Pro Cys Gln Arg Trp Asp Ser 260 265 270 Gln Tyr Pro His Lys His Asp Ile Thr Pro Glu Asn Phe Lys Cys Lys 275 280 285 Asp Leu Arg Glu Asn Tyr Cys Arg Asn Pro Asp Gly Ala Glu Ser Pro 290 295 300 Trp Cys Phe Thr Thr Asp Pro Asn Ile Arg Val Gly Tyr Cys Ser Gln 305 310 315 320 Ile Pro Lys Cys Asp Val Ser Ser Gly Gln Asp Cys Tyr Arg Gly Asn 325 330 335 Gly Lys Asn Tyr Met Gly Asn Leu Ser Lys Thr Arg Ser Gly Leu Thr 340 345 350 Cys Ser Met Trp Asp Lys Asn Met Glu Asp Leu His Arg His Ile Phe 355 360 365 Trp Glu Pro Asp Ala Ser Lys Leu Asn Lys Asn Tyr Cys Arg Asn Pro 370 375 380 Asp Asp Asp Ala His Gly Pro Trp Cys Tyr Thr Gly Asn Pro Leu Ile 385 390 395 400 Pro Trp Asp Tyr Cys Pro Ile Ser Arg Cys Glu Gly Asp Thr Thr Pro 405 410 415 Thr Ile Val Asn Leu Asp His Pro Val Ile Ser Cys Ala Lys Thr Lys 420 425 430 Gln Leu Arg Val Val Asn Gly Ile Pro Thr Gln Thr Thr Val Gly Trp 435 440 445 Met Val Ser Leu Arg Tyr Arg Asn Lys His Ile Cys Gly Gly Ser Leu 450 455 460 Ile Lys Glu Ser Trp Val Leu Thr Ala Arg Gln Cys Phe Pro Ser Arg 465 470 475 480 Asp Leu Lys Asp Tyr Glu Ala Trp Leu Gly Ile His Asp Val His Gly 485 490 495 Arg Gly Asp Glu Lys Cys Lys Gln Val Leu Asn Val Ser Gln Leu Val 500 505 510 Tyr Gly Pro Glu Gly Ser Asp Leu Val Leu Met Lys Leu Ala Arg Pro 515 520 525 Ala Ile Leu Asp Asn Phe Val Ser Thr Ile Asp Leu Pro Ser Tyr Gly 530 535 540 Cys Thr Ile Pro Glu Lys Thr Thr Cys Ser Ile Tyr Gly Trp Gly Tyr 545 550 555 560 Thr Gly Leu Ile Asn Ala Asp Gly Leu Leu Arg Val Ala His Leu Tyr 565 570 575 Ile Met Gly Asn Glu Lys Cys Ser Gln His His Gln Gly Lys Val Thr 580 585 590 Leu Asn Glu Ser Glu Leu Cys Ala Gly Ala Glu Lys Ile Gly Ser Gly 595 600 605 Pro Cys Glu Gly Asp Tyr Gly Gly Pro Leu Ile Cys Glu Gln His Lys 610 615 620 Met Arg Met Val Leu Gly Val Ile Val Pro Gly Arg Gly Cys Ala Ile 625 630 635 640 Pro Asn Arg Pro Gly Ile Phe Val Arg Val Ala Tyr Tyr Ala Lys Trp 645 650 655 Ile His Lys Val Ile Leu Thr Tyr Lys Leu Cys Gly Arg His His His 660 665 670 His His His 675

* * * * *

References


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed