Aerosol Dispenser Valve

McBroom; James P. ;   et al.

Patent Application Summary

U.S. patent application number 13/971317 was filed with the patent office on 2014-06-19 for aerosol dispenser valve. The applicant listed for this patent is Clayton Corporation. Invention is credited to Joseph C. Lott, James P. McBroom, Clyde E. Smothers.

Application Number20140166920 13/971317
Document ID /
Family ID36060747
Filed Date2014-06-19

United States Patent Application 20140166920
Kind Code A2
McBroom; James P. ;   et al. June 19, 2014

AEROSOL DISPENSER VALVE

Abstract

An improved valve member, aerosol dispenser valve containing the valve member, aerosol container for dispensing moisture curable foams, and moisture curable foam and dispenser, in which the valve member is made of a glass filled polyolefin. The polyolefin is preferably a polyethylene. The glass content is between about 2% and about 40%, more preferably between about 10% and about 30%; and most preferably between about 15% and about 25%.


Inventors: McBroom; James P.; (House Springs, MO) ; Lott; Joseph C.; (Des Peres, MO) ; Smothers; Clyde E.; (Fenton, MO)
Applicant:
Name City State Country Type

Clayton Corporation

St. Louis

MO

US
Prior Publication:
  Document Identifier Publication Date
US 20130341552 A1 December 26, 2013
Family ID: 36060747
Appl. No.: 13/971317
Filed: August 20, 2013

Related U.S. Patent Documents

Application Number Filing Date Patent Number
13189656 Aug 20, 2013 8511521
13971317
11228000 Jul 26, 2011 7984834
13189656
60627850 Nov 15, 2004
60610282 Sep 16, 2004

Current U.S. Class: 251/368
Current CPC Class: B65D 83/14 20130101; B65D 83/46 20130101; B65D 83/44 20130101; B65D 83/75 20130101
Class at Publication: 251/368
International Class: B65D 83/44 20060101 B65D083/44

Claims



1. A valve for dispensing a moisture-curable foam, the valve comprising: a seal; and a valve member, the valve member being constructed to resist adherence of cured moisture-curable foam to the valve member, the valve member comprising a central passage extending partially therethrough, and a plurality of openings extending through the valve member and in communication with the central passage, the valve member being adapted for movement upon actuation between a first position in which the valve member is deflected off of the seal to allow the moisture-curable foam to flow into the central passage, and a second position in which the valve member seats on the seal to prevent flow of the moisture-curable foam into the central passage, the valve member being comprised of a glass filled polyolefin and being more resistant to adhesion to the cured moisture curable foam than the same valve member having no glass content.

2. The valve according to claim 1 wherein the glass filled polyolefin is a chemically-coupled glass filled polyolefin.

3. The valve according to claim 1 wherein the glass-filled polyolefin is a polyethylene.

4. The valve according to claim 3 wherein the glass filled polyethylene is a chemically-coupled glass filled polyethylene.

5. The valve according to claim 3 wherein the glass content is between about 2% and about 40%.

6. The valve according to claim 3 wherein the glass content is between about 3% and about 40%.

7. The valve according to claim 3 wherein the glass content is between about 8% and about 40%.

8. The valve according to claim 3 wherein the glass content is between about 10% and about 40%.

9. The valve according to claim 3 wherein the glass content is between about 2% and about 30%.

10. The valve according to claim 3 wherein the glass content is between about 3% and about 30%.

11. The valve according to claim 3 wherein the glass content is between about 8% and about 30%.

12. The valve according to claim 3 wherein the glass content is between about 10% and about 30%.

13. The valve according to claim 1 wherein the moisture-curable foam comprises at least two liquid components.

14. The valve according to claim 1 wherein the moisture-curable foam is polyurethane foam.

15. The valve according to claim 1 wherein the seal is made of neoprene.

16. An aerosol can for dispensing a moisture-curable foam comprising: an aerosol can; a moisture-curable foam disposed within the aerosol can; and a valve of claim 1.

17. The aerosol can according to claim 16 wherein the glass filled polyolefin is a chemically-coupled glass filled polyolefin.

18. The aerosol can according to claim 16 wherein the glass-filled polyolefin is a polyethylene.

19. The aerosol can according to claim 18 wherein the glass filled polyethylene is a chemically-coupled glass filled polyethylene.

20. The aerosol can according to claim 16 wherein the glass content is between about 2% and about 40%.

21. The aerosol can according to claim 16 wherein the glass content is between about 3% and about 40%.

22. The aerosol can according to claim 16 wherein the glass content is between about 8% and about 40%.

23. The aerosol can according to claim 16 wherein the glass content is between about 10% and about 40%.

24. The aerosol can according to claim 16 wherein the glass content is between about 2% and about 30%.

25. The aerosol can according to claim 16 wherein the glass content is between about 3% and about 30%.

26. The aerosol can according to claim 16 wherein the glass content is between about 8% and about 30%.

27. The aerosol can according to claim 16 wherein the glass content is between about 10% and about 30%.

28. The aerosol can according to claim 16 wherein the moisture-curable foam comprises at least two liquid components.

29. The aerosol can according to claim 16 wherein the moisture-curable foam is polyurethane foam.

30. The aerosol can according to claim 16 wherein the seal is made of neoprene.
Description



CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is a continuation of U.S. patent application Ser. No. 13/189,656, filed Jul. 25, 2011, now U.S. Pat. No. 8,511,521, which is a continuation of U.S. patent application Ser. No. 11/228,000, filed Sep. 15, 2005, now U.S. Pat. No. 7,984,834, which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/627,850, filed Nov. 15, 2004, and U.S. Provisional Patent Application Ser. No. 60/610,282, filed Sep. 16, 2004, the entire disclosures of which are incorporated herein by reference.

BACKGROUND OF THE INVENTION

[0002] This invention relates to aerosol dispenser valves for products, and in particular to dispenser valves for moisture curable products such as foams.

[0003] Moisture curable products, such as moisture curable polyurethane foams, have found wide application in homes and businesses. These foams are excellent fillers and insulators. The foams are often packaged in aerosol cans with a polypropylene dispenser valve. A problem with these valves is that moisture can migrate through the valve and into the aerosol can. Once inside, the moisture cures the foam, and impairs the function of the valve. The problem is exacerbated if the can is not stored upright, so that the contents of the can surround the valve member. The migration path is shorter, and when the foam cures around the valve member it interferes with the operation of the valve, sealing it closed.

SUMMARY OF THE INVENTION

[0004] A preferred embodiment of the present invention is a dispenser valve for a moisture-curable foam made from a glass-filled polyolefin. In the preferred embodiment the polyolefin is a high density polyethylene. The polyethylene preferably has a glass content of between about 2% and about 40%, and more preferably between about 10% and about 30%, and most preferably between about 15% and about 25%. The valve member of the preferred embodiment is more resistant to failure from moisture infiltration than the polypropylene valve members of the prior art. The valve member of the preferred embodiment is less adhesive than the propylene valve members of the prior art, so that to the extent that the contents of the container does inadvertently cure inside the container, it is less likely to adhere to the valve member and interfere with the operation of the valve. Thus embodiments of valves in accordance with the principles of this invention can extend the shelf life of urethane foams and other moisture curable or moisture affected products dispensed from aerosol cans.

BRIEF DESCRIPTION OF THE DRAWING

[0005] FIG. 1 is a cross sectional view of a dispenser valve for an aerosol can in accordance with the principles of this invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0006] A preferred embodiment of dispenser valve constructed according to the principles of this invention is indicated generally as 20 in FIG. 1. The dispenser valve 20 comprises a valve member 22 in a seal 24. The valve member 22 has first and second ends 26 and 28, and a central passage 30 extending partially therethrough. A plurality of openings 32 extend through the valve member 22 and communicate with the central passage 30. The openings are covered by the seal 24, but when the valve member 22 is deflected, it opens a space between the valve member 22 and the seal 24, so that the pressurized contents can exit the container between the valve member 22 and the seal, through the openings 32, and out the passage 30.

[0007] In accordance with the principles of this invention, the valve member 22 is made from a glass-filled polyolefin. The inventors believe that glass-filled polyethylene is more resistant to adhesion than the polypropylene valve members of the prior art, or other suitable polymer materials.

[0008] The inventors have also discovered that chemically coupled glass-filled polyolefin, and specific glass-filled polyethylene is less adhesive than the valve members of the prior art, to the extent that the foam does inadvertently cure inside the container, it is less likely to adhere to the valve member and interfere with the operation of the valve.

[0009] The polyethylene is preferably a high density polyethylene. The polyethylene preferably has a glass content of between about 2% and about 40%, and more preferably between about 10% and about 30%, and most preferably between about 20% and about 30%.

[0010] Thus the valve member of the preferred embodiment are more resistant to moisture infiltration, and less adhesive to moisture curing foams, such as polyurethanes. Thus the valves constructed in accordance with the valve members of this invention are less likely fail, even when the cans on which they are used are not properly stored, and provide a greater product shelf life.

EXAMPLE 1

[0011] Cans of moisture curable polyurethane foam components were prepared with valve parts made of different plastics. The cans were stored upside down at ambient temperature and 90-100% relative humidity. Each week three cans of each type were examined and rated on whether the can was fully functional, stuck but functional, or stuck. Failure was determined when all three cans of the sample failed. The results of the test are given in Table 1.

TABLE-US-00001 TABLE 1 20% glass- Impact Internally filled modified Lubricated polyethylene propylene Polypropylene Acetal polypropylene No failure Failure Failure after Sticking after Sticking after after 16 after 5 weeks. 7 weeks; 5 weeks; failure weeks. 5 weeks. failure after after 6 weeks 9 weeks

EXAMPLE 2

[0012] Cans of moisture curable polyurethane foam components were prepared with valve parts made from different plastics. Sixteen cans of each type were stored upside down at 120.degree. at 80% relative humidity for 11 weeks. Cans were inspected at the end of 11 weeks to determine whether the valves were stuck or were functional. The results are given were given in Table 2.

TABLE-US-00002 TABLE 2 Number of % of stuck Plastic stuck valves valves 50% polyethylene and 0 0% 50% polyethylene with 20% glass 100% polyethylene with 20% glass 2 12.5% 90% polyethylene- 3 18.8% 10% polypropylene with 30% glass 75% polyethylene- 3 18.8% 25% polypropylene with 30% glass 100% polypropylene 4 25% 50% polyethylene-50% polypropylene 5 31.3% 50% polyethylene- 5 31.3% 50% polypropylene with 30% glass 100% polyethylene- 6 37.5% 90% polyethylene-10% polypropylene 6 37.5% 75% polyethylene-25% polypropylene 10 62.5%

This test shows that valves made of glass filled polyethylene (from 10% to 20%) had the lowest number of stuck valves.

EXAMPLE 3

[0013] Cans of moisture curable polyurethane foam components were prepared with large valve parts made from different plastics. Twenty-two cans of each type were stored upside down at ambient with caps filled with water. Two cans of each type were tested periodically, and it was noted whether the valve worked, whether the valve was stuck but broke free, or whether the valve failed. The results are given in Table 3.

TABLE-US-00003 TABLE 3 20% glass-filled polyethylene Polypropylene Acetal No failure after Stuck but broke Stuck but broke 22 weeks. free, after free, after 13 18 weeks. weeks-failure after 22 weeks

EXAMPLE 4

[0014] Cans of moisture curable polyurethane foam components were prepared with small valve parts made from different plastics. Twenty-two cans of each type were stored upside down at ambient with caps filled with water. Two cans of each type were tested periodically, to determine whether the valve worked, whether the valve was stuck but broke free, or whether the valve failed. The results are given in Table 4.

TABLE-US-00004 TABLE 4 20% glass- Impact Ethylene filled Modified Telefluorethylene polyethylene Polypropylene Acetal polymer (ETFE) No sticking Failed, after 8 Stuck but broke Failures after 19 or failure weeks. free, after weeks after 22 weeks. 12 weeks; failure, after 17 weeks.

EXAMPLE 5

[0015] Cans of moisture curable polyurethane foam components were prepared with valve parts made from different plastics. Cans of each type were stored upside down with caps filled with water at 130.degree. F. (to accelerate sticking of the valves). Two cans of each type were periodically tested to determine whether the valve worked, whether the valve was stuck but broke free, or whether the valve failed. The results are given were given in Table 5.

TABLE-US-00005 TABLE 5 20% glass-filled polyethylene Polypropylene Acetal No sticking Stuck but broke free Stuck but broke free or failure after 14 days, failure after 14 days; failure after 51 days. after 35 days. after 37 days.

EXAMPLE 6

[0016] Cans of moisture curable polyurethane foam components were prepared with valve parts made from different plastics. Cans of each type were stored upside down with caps filled with water at 130.degree. F. (to accelerate sticking of the valves). 20% glass filled polyethylene was compared with impact modified propylene for two different neoprene seal materials. Two cans of each type were periodically tested to determine whether the valve worked, whether the valve was stuck but broke free, or whether the valve failed. Failure was determined when both valves tested stuck or failed. The results are given were given in Table 6.

TABLE-US-00006 TABLE 6 Seal 1 Seal 2 20% glass-filled Impact Modified 20% glass-filled Impact Modified polyethylene polypropylene polyethylene polypropylene No sticking or failure Failure after 11 Failure, after 21 Failure after 11 after 23 days. days. days. days.

This testing indicates that glass-filled polyethylene provides improved performance with different seal materials.

EXAMPLE 7

[0017] Cans of moisture curable polyurethane foam components were prepared with valve parts made from different plastics. Cans of each type were stored upside down with caps filled with water at 130.degree. F. (to accelerate sticking of the valves). 20% glass filled polyethylene was compared with propylene and with a conventional valve using a stick resistant coating on the seal. Two cans of each type were periodically tested to determine whether the valve worked, whether the valve was stuck but broke free, or whether the valve failed. The results are given were given in Table 7.

TABLE-US-00007 TABLE 7 Polypropylene with 20% glass-filled stick resistant polyethylene Polypropylene seal coating Stuck but broke Stuck but broke Stuck but broke free after 30 days; free after free after no failure at 22 days; failure 22 days; failure 36 days after 28 days after 30 days

[0018] This testing indicates that glass-filled polyethylene continued to function after conventional valves and conventional valves with lubricated seals, failed.

EXAMPLE 8

[0019] Cans of moisture curable polyurethane foam components were prepared with gun valve (vertically opened) parts made from different plastics. Sixteen cans of each type were stored upside down at 130.degree. with caps full of water. Two cans of each type were tested periodically, and it was noted whether the valve worked, whether the valve was stuck but broke free, or whether the valve failed. Failure was determined by sticking or failure of both cans. The results are given were given in Table 8.

TABLE-US-00008 TABLE 8 First First Plastic Sticking Failure 100% polyethylene with 20% glass-filled -- -- polyethylene (ribbed for extra strength) Impact Modified Polypropylene co-polymer 10 days -- (ribbed for extra strength) Polypropylene 13 days 55 days Acetal 10 days 33 days Impact Modified Polypropylene 13 days 33 days Polyethylene -- 26 days* 75% polyethylene-25% polypropylene 10 days 50% polyethylene-50% polypropylene 10 days 100% polyethylene with 20% glass-filled -- -- polyethylene Impact Modified Polypropylene 10 days *stem failure due to weakness of material

[0020] This testing shows the superiority of glass filled polyethylene in both ribbed and unribbed configurations.

EXAMPLE 9

[0021] Cans of moisture curable polyurethane foam components were prepared with gun valve (vertically opened) parts made from different plastics. Twelve to Fourteen cans of each type were stored upside down at 130.degree. with caps full of water. Cans of each type were tested periodically, and it was noted whether the valve worked, whether the valve was stuck but broke free, or whether the valve failed. Failure was determined by sticking or failure of both cans. The results are given were given in Table 9 below, which shows that some standard valves first stuck after only six days and the standard valves were stuck after 11 days, as compared to the valves with 20% glass-filled Polyethylene valve components which were not stuck after 20 days of testing. All of the 20% glass-filled Polyethylene valve components performed longer than the standard components. The plastic used is a 703 CC chemically coupled 20% glass filled polyethylene available from RTP company, having an impact strength (notched) of about 2.5 ft. lbs./inch and a water absorption of about 0.04 percent.

TABLE-US-00009 TABLE 9 Plastic First Stuck Valves stuck 100% Polyethylene with none of 14 samples no samples stuck 20% glass-filled stems stuck after 20 days Impact Modified samples first stuck 12 samples stuck Polypropylene co-polymer w/in 6 days w/in 11 days (ribbed for extra strength)

[0022] In the testing conducted, a glass filled polyethylene was always the best performer, and only one other material--acetal--approached the performance of the glass-filled polyethylene in certain circumstances. Glass-filled polyethylene valve stems show surprisingly superior resistance to sticking (i.e. longer times to initial sticking, and longer times to valve failure) over valve stems of other materials in a variety environments, different valve sizes, and different sealing materials. Glass-filled polyethylene even showed superior resistance to sticking than conventional valves with available stick resistance coatings.

[0023] While the description of the preferred embodiment and the examples and tests focused primarily on moisture curable foams, and more specifically moisture curable polyurethane foams, the invention is not so limited and the valves and containers with valves of the present invention can be used with other moisture curable products that are dispensed from aerosol cans, and even with products that are not moisture curable, but adversely affected by moisture infiltration.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed