Engineered Enzymatically Active Bacteriophage And Methods For Dispersing Biofilms

Collins; James J. ;   et al.

Patent Application Summary

U.S. patent application number 13/953114 was filed with the patent office on 2014-06-12 for engineered enzymatically active bacteriophage and methods for dispersing biofilms. This patent application is currently assigned to MASSACHUSETTS INSTITUTE OF TECHNOLOGY. The applicant listed for this patent is MASSACHUSETTS INSTITUTE OF TECHNOLOGY, TRUSTEES OF BOSTON UNIVERSITY. Invention is credited to James J. Collins, Timothy Kuan-Ta Lu.

Application Number20140161772 13/953114
Document ID /
Family ID40753540
Filed Date2014-06-12

United States Patent Application 20140161772
Kind Code A1
Collins; James J. ;   et al. June 12, 2014

ENGINEERED ENZYMATICALLY ACTIVE BACTERIOPHAGE AND METHODS FOR DISPERSING BIOFILMS

Abstract

The present invention is directed to engineered enzymatically active bacteriophages that are both capable of killing the bacteria by lysis and dispersing the bacterial biofilm because they have been also engineered to express biofilm-degrading enzymes, particularly dispersin B (DspB), an enzyme that hydrolyzes .beta.-1,6-N-acetyl-D-glucosamine, a crucial adhesion molecule needed for biofilm formation and integrity in Staphylococcus and E. coli, including E. coli K-12, as well as clinical isolates.


Inventors: Collins; James J.; (Newton, MA) ; Lu; Timothy Kuan-Ta; (Boston, MA)
Applicant:
Name City State Country Type

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
TRUSTEES OF BOSTON UNIVERSITY

Cambridge
Boston

MA
MA

US
US
Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Cambridge
MA

TRUSTEES OF BOSTON UNIVERSITY
Boston
MA

Family ID: 40753540
Appl. No.: 13/953114
Filed: July 29, 2013

Related U.S. Patent Documents

Application Number Filing Date Patent Number
13412838 Mar 6, 2012
13953114
12337677 Dec 18, 2008 8153119
13412838
61014518 Dec 18, 2007

Current U.S. Class: 424/93.2 ; 435/235.1
Current CPC Class: C12N 2795/10211 20130101; C12N 2795/10221 20130101; C12N 2795/10232 20130101; C12N 7/00 20130101; C12Y 207/07006 20130101; C12Y 302/01052 20130101; A01N 63/10 20200101; C12N 9/2402 20130101
Class at Publication: 424/93.2 ; 435/235.1
International Class: A01N 63/02 20060101 A01N063/02

Goverment Interests



GOVERNMENT SUPPORT

[0003] This invention was made with Government Support under Contract No. EF-0425719 awarded by the National Science Foundation. The Government has certain rights in the invention.
Claims



1. An engineered lytic T7 bacteriophage comprising a nucleic acid encoding dispersin B enzyme or an .beta.-1,6-N-acetyl-D-glucosamine degrading enzymatically active fragment thereof operably linked to a strong promoter and further comprising a nucleic acid encoding a gene to enhance or expand infectivity and or replication capacity of the lytic T7 bacteriophage.

2. The engineered lytic T7 bacteriophage of claim 1, wherein the a nucleic acid encoding a gene to enhance or expand infectivity and or replication capacity of the lytic T7 bacteriophage encodes T3 1.2 gene.

3. The engineered lytic T7 bacteriophage of claim 1, wherein the strong promoter is T7 .phi.10.

4. A method of dispersing bacterial biofilm comprising administering to a surface infected with biofilm the method comprising administering to the surface an engineered lytic T7 bacteriophage comprising a nucleic acid encoding dispersin B enzyme or an .beta.-1,6-N-acetyl-D-glucosamine degrading enzymatically active fragment thereof operably linked to a strong promoter and further comprising a nucleic acid encoding a gene to enhance or expand infectivity and or replication capacity of the lytic T7 bacteriophage.

5. The method of claim 4, wherein the a nucleic acid encoding a gene to enhance or expand infectivity and or replication capacity of the lytic T7 bacteriophage encodes T3 1.2 gene.

6. The method of claim 4, wherein the strong promoter is T7 .phi.10.

7. The method of claim 4, wherein the biofilm is a mature biofilm.

8. The method of claim 4, wherein the biofilm comprises .beta.-1,6-N-acetyl-D-glucosamine.

9. The method of claim 8 further comprising a step of prior to administering the bacteriophage, determining if the biofilm comprises .beta.-1,6-N-acetyl-D-glucosamine, and if it does, then administering the engineered lytic bacteriophage.

10. The method of claim 4, wherein the biofilm is formed by bacteria selected from the group consisting of Staphylococcus and E. coli, including E. coli K-12 strain, and clinical isolates of E. coli.

11. The method of claim 4, wherein the administering is performed once.

12. The method of claim 4, wherein the administering is performed before, after or concurrently with an antibiotic or antimicrobial agent.

13. The method of claim 4, wherein the administering is performed before, after or concurrently with a biofilm degrading chemical.
Description



SEQUENCE LISTING

[0001] The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jul. 29, 2013, is named 701586-060173_SequenceListing.txt and is 53,504 bytes in size.

CROSS-REFERENCE TO RELATED APPLICATIONS

[0002] This application is a continuation application under 35 U.S.C. .sctn.120 of co-pending U.S. patent application Ser. No. 13/412,838 filed Mar. 6, 2012, which is a continuation application of U.S. patent application Ser. No. 12/337,677 filed Dec. 18, 2008 and issued as U.S. Pat. No. 8,153,119 on Apr. 10, 2012, which claims benefit under 35 U.S.C. .sctn.119(e) of U.S. Provisional Patent Application No. 61/014,518 filed Dec. 18, 2008, the contents of each of which are incorporated herein by reference in their entireties.

BACKGROUND OF THE INVENTION

[0004] Bacterial biofilms are sources of contamination that are difficult to eliminate in a variety of industrial, environmental and clinical settings.

[0005] Biofilms are polymer structures secreted by bacteria to protect bacteria from various environmental attacks, and thus result also in protection of the bacteria from disinfectants and antibiotics. Biofilms may be found on any environmental surface where sufficient moisture and nutrients are present. Bacterial biofilms are associated with many human and animal health and environmental problems. For instance, bacteria form biofilms on implanted medical devices, e.g., catheters, heart valves, joint replacements, and damaged tissue, such as the lungs of cystic fibrosis patients. Biofilms also contaminate surfaces such as water pipes and the like, and render also other industrial surfaces hard to disinfect.

[0006] For example, catheters, in particular central venous catheters (CVCs), are one of the most frequently used tools for the treatment of patients with chronic or critical illnesses and are inserted in more than 20 million hospital patients in the USA each year. Their use is often severely compromised as a result of bacterial biofilm infection which is associated with significant mortality and increased costs. Catheters are associated with infection by many biofilm forming organisms such as Staphylococcus epidermidis, Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecalis and Candida albicans which frequently results in generalized blood stream infection. Approximately 250,000 cases of CVC-associated bloodstream infections occur in the US each year with an associated mortality of 12%-25% and an estimated cost of treatment per episode of approximately $25,000. Treatment of CVC-associated infections with conventional antimicrobial agents alone is frequently unsuccessful due to the extremely high tolerance of biofilms to these agents. Once CVCs become infected the most effective treatment still involves removal of the catheter, where possible, and the treatment of any surrounding tissue or systemic infection using antimicrobial agents. This is a costly and risky procedure and re-infection can quickly occur upon replacement of the catheter.

[0007] Bacteria in biofilms are highly resistant to antibiotics and host defenses and consequently are persistent sources of infection.

[0008] Antibiotic resistance in biofilms poses a significant hurdle to eliminating biofilms with conventional antimicrobial drugs, new anti-biofilm strategies should be explored.

[0009] Accordingly, there is a need for improved phages to degrade biofilm

SUMMARY OF THE INVENTION

[0010] The present invention is directed to engineered enzymatically active bacteriophages that are both capable of killing the bacteria by lysis and dispersing the bacterial biofilm because they have been also engineered to express biofilm-degrading enzymes, particularly dispersin B (DspB), an enzyme that hydrolyzes .beta.-1,6-N-acetyl-D-glucosamine, a crucial adhesion molecule needed for biofilm formation and integrity in Staphylococcus and E. coli, including E. coli K-12, as well as clinical isolates (Itoh, Y, Wang, X, Hinnebusch, B J, Preston, J F & Romeo, T (2005) J Bacteriol 187: 382-387).

[0011] The invention is further directed to the uses of such engineered enzymatically active bacteriophages for removing bacterial biofilms and killing bacteria within such biofilms. In particular, the invention is directed for destroying biofilms associated with Staphylococcus and E. coli, including E. coli K-12, as well as clinical isolates as described in Itoh, et al., (Id.).

[0012] Bacteriophages (often known simply as "phages") are viruses that grow within bacteria. The name translates as "eaters of bacteria" and reflects the fact that as they grow, the majority of bacteriophages kill the bacterial host in order to release the next generation of bacteriophages. Naturally occurring bacteriophages are incapable of infecting anything other than specific strains of the target bacteria, underlying their potential for use as control agents.

[0013] Bacteriophages and their therapeutic uses have been the subject of much interest since they were first recognized early in the 20th century. Lytic bacteriophages are viruses that infect bacteria exclusively, replicate, disrupt bacterial metabolism and destroy the cell upon release of phage progeny in a process known as lysis. These bacteriophages have very effective antibacterial activity and in theory have several advantages over antibiotics. Most notably they replicate at the site of infection and are therefore available in abundance where they are most required; no serious or irreversible side effects of phage therapy have yet been described and selecting alternative phages against resistant bacteria is a relatively rapid process that can be carried out in days or weeks.

[0014] Bacteriophages have been used in the past for treatment of plant diseases, such as fireblight as described in U.S. Pat. No. 4,678, 750. Also, Bacteriophages have been used to destroy biofilms (e.g., U.S. Pat. No. 6,699,701). In addition, systems using natural bacteriophages that encode biofilm destroying enzymes in general have been described. Art also provides a number of examples of lytic enzymes encoded by bacteriophages that have been used as enzyme dispersion to destroy bacteria (U.S. Pat. No. 6,335,012 and U.S. Patent Application Publication No. 2005/0004030). The Eastern European research and clinical trials, particularly in treating human diseases, such as intestinal infections, has apparently concentrated on use of naturally occurring phages and their combined uses (Lorch, A. (1999), "Bacteriophages: An alternative to antibiotics?" Biotechnology and Development Monitor, No. 39, p. 14-17).

[0015] For example, PCT Publication No. WO 2004/062677 provides a method of treating bacterial biofilm, wherein the method comprises use of a first bacteriophage that is capable of infecting a bacterium within said biofilm, and a first polysaccharide lyase enzyme that is capable of degrading a polysaccharide within said biofilm. However, other studies have showed that addition of alginate lyase to established P. aeruginosa biofilm caused no observable detachment of biofilm and thu use of lyases would not be optimal for biofilm treatment (Christensen et al., 2001).

[0016] WO/2006/137847 describes a bacteriophage that expresses a biofilm degarading enzyme attached to its surface.

[0017] We provide a novel modular design strategy in which phage that kill bacteria in a species-specific manner are engineered to express at least one of the most effective EPS-degrading enzymes specific to the target biofilm, particularly, for example, dispersin B.

[0018] This strategy permits the development of a diverse library of biofilm-dispersing phage rather than trying to isolate such phage from the environment. By multiplying within the biofilm and hijacking the bacterial machinery, engineered enzymatically-active phage achieves high local concentrations of both enzyme and lytic phage to target multiple biofilm components, even with small initial phage inoculations.

[0019] We have discovered that our invention provides rapid phage replication with subsequent bacterial lysis and expression of biofilm-degrading enzymes which renders this two-pronged attack strategy a surprisingly efficient, autocatalytic method for removing bacterial biofilms in environmental, industrial, and clinical settings. FIG. 1 shows a schematic representation of the invention.

[0020] As discussed in detail below, we have discovered that this approach is at least about two, or more, such as three or four orders of magnitude more efficient than use of a lytic phage alone. This is a significant improvement over any of the lytic phage therapies described before the present invention.

[0021] Also, a significant advantage compared to methods where enzymes are administered as dispersions or an added component to compositions containing lytic phages is that the use of the engineered enzymatically active bacteriophages of the present invention allows one to reduce or eliminate multiple applications of the composition during the treatment of a surface having a bacterial biofilm.

[0022] Moreover, unlike the controversial reports regarding use of lyase enzyme we have discovered that the phages expressing one or more biofilm degrading enzymes, for example dispersin B, are consistently effective for destroying mature biofilms.

[0023] Also, unlike the large quantities of phage required in the methods previously described, such as 10.sup.8 PFU of lytic phage by Hanlon et al., the present method is efficient using as little as about 10.sup.2 PFU of initial engineered phage without the need for reapplication of the phage composition due to its ability to multiply (Hanlon, G. W., Denyer, S. P., Olliff, C. J., and Ibrahim L. J., (2001). Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms. App. Env. Micro. 67, 2746-2753.).

[0024] Our design also removes the need to express, purify, and deliver large doses of enzyme to specific sites of infection that may be difficult to access, and should improve the efficacy of phage therapy at removing biofilms. Increasingly cost-effective genome sequencing and synthetic biology technologies, which include the refactoring of phage genomes and large-scale DNA synthesis, further enable the production of engineered enzymatic phage and significantly extend the repertoire of biofilm-degrading phage that have been isolated from the environment (Andrianantoandro, E, Basu, S, Karig, D K & Weiss, R (2006) Mol Syst Biol 2: 2006.0028; Chan, L Y, Kosuri, S & Endy, D (2005) Mol Syst Biol 1: 2005.0018; Itaya, M, Tsuge, K, Koizumi, M & Fujita, K (2005) Proc Natl Acad Sci USA 102: 15971-15976).

[0025] In one embodiment, and all the other embodiments of the invention, the invention provides an engineered enzymatically active T7 bacteriophage that expresses dispersin B enzyme (DspB) or a fragment thereof having the enzymatically active site of the dispersin B enzyme operably linked to a strong promoter, such as T7 .phi.10 promoter, wherein a nucleic acid sequence encoding a gene expanding or enhancing the infectivity and/or replication capacity of the T7 bacteriophage, such as T3 gene 1.2 is operably linked into a unique BclI site in the T7 phage and wherein a .phi.10-dspB construct is operably linked after the T7 phage capsid gene 10B.

[0026] In one embodiment the enzymatically active fragment of DspB has at least about 50% of the activity of the wild-type DspB, in one embodiment the activity is at least about 50-60% including all the integers in between, 60%, 70-100%, 70%, 80%, 90% or more or even more than 100% of the activity compared to the wild-type DspB enzyme.

[0027] In one embodiment and all the other embodiments of the invention, the invention provides an engineered enzymatically active T7 bacteriophage that expresses dispersin B enzyme (DspB) operably linked to a strong promoter, such as T7 .phi.10, wherein a nucleic acid sequence encoding a gene expanding or enhancing the infectivity and/or replication capacity of the T7 bacteriophage, such as T3 gene 1.2, is operably linked to a unique BclI site in the T7 phage and wherein the .phi.10-dspB construct is operably linked after the capsid gene 10B. In one embodiment, the T7 bacteriophage is T7SELECT415-1.

[0028] In one embodiment and all the other embodiments of the invention, the invention provides a method of dispersing bacterial biofilm comprising .beta.-1,6-N-acetyl-D-glucosamine, the method comprising contacting the bacterial biofilm with a composition comprising an enzymatically active T7 bacteriophage that encodes and expresses dispersin B (DspB) operably linked to a strong promoter, such as T7 .phi.10, wherein a nucleic acid sequence encoding a gene expanding or enhancing the infectivity and/or expression range of the T7 bacteriophage, such as T3 gene 1.2 is operably linked into a unique BclI site in the T7 phage and wherein the .phi.10-dspB construct is operably linked after capsid gene 10B. In one embodiment, the biofilm is a mature biofilm. In one embodiment, the method comprises one time administration of about 10.sup.2, 10.sup.3, 10.sup.4, or 10.sup.5 PFU of the engineered enzymatially active bacteriophage.

[0029] In one embodiment, the invention provides an engineered lytic T7 bacteriophage comprising a nucleic acid encoding dispersin B operably linked to a strong promoter, such as T7 .phi.10 promoter and further comprising a nucleic acid encoding T3 1.2 gene, in one embodiment, the phage comprises SEQ ID NO: 9.

[0030] In one embodiment, and all the other embodiments of the invention, the administration is performed in vivo, into an animal, such as a human or livestock, wherein the engineered enzymatially active bacteriophage is administered alone or in a pharmaceutically acceptable carrier.

[0031] In one embodiment and all the other embodiments of the invention, one first diagnoses the bacterial infection in the animal, such as human or livestock, and then, based on the type of the bacterial infection, one selects a particular phage that is effective against the bacteria and the biofilm that the specific infecting bacteria produces. Bacterial cultures for diagnostic purposes are well known to one skilled in the art. Alternatively, one engineers a phage so that it effectively infects the bacterial strain that has infected the subject animal.

[0032] Similarly, a "diagnosis" step is also performed in certain embodiments, wherein other than living surfaces are treated with the methods of the invention. Accordingly, in one embodiment, one diagnoses the bacterium or bacteria infecting a surface, and then engineers a specific phage capable of infecting one or more of the bacteria present on said surface to encode an enzyme capable of digesting the specific biofilm produced by said bacterium or bacteria.

[0033] In one embodiment, animal diseases that are typically treated with antibiotics are treated with the methods of the present invention using an engineered phage. Particularly livestock, such as cows, pigs, chicken, sheep and horses are suitable target animals for the treatments of the present invention. Other animals can also be treated using the methods of the invention.

[0034] In one embodiment and all the other embodiments of the invention, the administration is performed into or onto non-living objects, such as water pipes, catheters, and other surfaces affected by bacteria and bacteria biofilm.

[0035] The administration of the enzymatically active bacteriophage can be performed before, after or concurrently with administration of other antibacterial agents, such as antibiotics and microbicides or agents capable of assisting in biofilm dispersion, such as chelating agents.

[0036] In one embodiment, the invention provides an engineered lytic T7 bacteriophage comprising a nucleic acid encoding dispersin B operably linked to T7 .phi.10 promoter and further comprising a nucleic acid encoding T3 1.2 gene. In one embodiment the nucleic acid encoding the phage comprises SEQ ID NO: 9. In one embodiment, the nucleic acid encoding the phage consists essentially of SEQ ID NO: 9. In one embodiment, the nucleic acid encoding the phage consists of SEQ ID NO: 9.

[0037] In another embodiment, the invention provides a method of dispersing bacterial biofilm comprising administering to a surface infected with biofilm an engineered lytic T7 bacteriophage comprising a nucleic acid encoding dispersin B operably linked to T7 .phi.10 promoter and further comprising a nucleic acid encoding T3 1.2 gene or another gene enhancing or expanding the phage infectivity range.

[0038] In one embodiment, the biofilm is a mature biofilm.

[0039] In one embodiment, the biofilm comprises .beta.-1,6-N-acetyl-D-glucosamine.

[0040] In one embodiment, the method of dispersing bacterial biofilms further comprising a step of prior to administering the bacteriophage, determining if the biofilm comprises .beta.-1,6-N-acetyl-D-glucosamine, and if it does, then administering the engineered lytic bacteriophage.

[0041] In one embodiment, the biofilm is formed by Staphylococcus and E. coli, including E. coli K-12, as well as clinical isolates of E. coli. In one embodiment, one first determines, by culturing bacterial sample from the subject or surface, if the subject carries Staphylococcus and E. coli, including E. coli K-12, as well as clinical isolates of E. coli. If the subject is determined to carry at least one of these bacterial strains, the phage of the invention is administered to the subject or surface.

[0042] In one embodiment, wherein the administering is performed once.

[0043] In one embodiment, the administering is performed before, after or concurrently with an antibiotic or antimicrobial agent.

[0044] In one embodiment, the administering is performed before, after or concurrently with a biofilm degrading chemical.

BRIEF DESCRIPTION OF DRAWINGS

[0045] FIG. 1 shows a two-pronged attack strategy for biofilm removal with enzymatically-active DspB-expressing T7DspB phage. Initial infection of E. coli biofilm results in rapid multiplication of phage and expression of DspB. Both phage and DspB are released upon lysis, leading to subsequent infection as well as degradation of the crucial biofilm EPS component, .beta.-1,6-N-acetyl-D-.sub.glucosamine (22).

[0046] FIGS. 2A-2C show genomes of engineered phage used for biofilm treatment. FIG. 2A shows the genome of T7SELECT415-1 shows a unique BclI site and capsid gene 10B. FIG. 2B shows a DspB-expressing phage T7DspB was created by cloning T3 gene 1.2 into the unique BclI site and cloning the .phi.10-dspB construct after capsid gene 10B. FIG. 2C shows a non-DspB-expressing control phage T7control was created by cloning T3 gene 1.2 into the unique BclI site and cloning the control STag insert (included in the T7SELECT415-1 kit) as a fusion with the capsid gene 10B.

[0047] FIGS. 3A-3C show assays for E. coli TG1 biofilm levels and phage counts after 24 h with no treatment or with treatment with wild-type phage T7wt, wild-type phage T3wt, non-DspB-expressing control phage T7control, or DspB-expressing phage T7DspB. Error bars indicate s.e.m. FIG. 3A shows a mean absorbance (600 nm) for n=16 biofilm pegs stained with 1% CV, solubilized in 33% acetic acid, and diluted 1:3 in 1.times. PBS (50). FIG. 3B shows mean cell densities (log.sub.10(CFU/peg)) for n=12 biofilm pegs. Pegs treated with T7DspB resulted in a 3.65 log.sub.10(CFU/peg) reduction in viable cells recovered from E. coli biofilm compared to untreated biofilm. FIG. 3C shows mean phage counts (log.sub.10(PFU/peg)) recovered from media in n=3 microtiter plate wells (wells) or sonication of n=3 biofilm pegs (biofilm), as indicated, after 24 h of treatment with initial inoculations of 10.sup.3 PFU/well. Both T7control and T7DspB showed evidence of replication with phage counts obtained from the microtiter plate wells or with phage counts recovered from the biofilms after sonication.

[0048] FIGS. 4A-4F show time-course curves, dosage response curves, and SEM images for engineered phage treatment targeting E. coli TG1 biofilm. Scale bars are 10 .mu.m. Each data point in parts (A) and (E) represents the mean log 10-transformed cell density of n=12 biofilm pegs. Each data point in parts (D) and (F) represents the mean log 10-transformed phage counts obtained from n=3 microtiter plate wells. Error bars indicate s.e.m. FIG. 4A shows a time course (up to 48 h) of viable cell counts for no treatment (red squares), treatment with T7control (black circles), or treatment with T7DspB (blue crosses) demonstrates that T7DspB significantly reduced biofilm levels compared with T7control. FIG. 4B shows an SEM image of T7DspB-treated biofilm after 20 h shows significant disruption of the bacterial biofilm. FIG. 4C shows an SEM image of untreated biofilm after 20 h shows a dense biofilm. FIG. 4D shows a time course of phage counts obtained after initial inoculation of E. coli TG1 biofilm with 103 PFU/well of T7control (circles) or T7DspB (crosses). Both T7control and T7DspB began to replicate rapidly after initial inoculation. FIG. 4E shows dose response curves of mean cell densities (measured after 24 h of treatment) for T7control (circles) and T7DspB (crosses). For all initial phage inoculations, T7DspB-treated biofilm had significantly lower mean cell densities compared to T7control-treated biofilm. FIG. 4F shows dose response curves of mean phage counts (measured after 24 h of treatment) for T7control (circles) and T7DspB (crosses). For all initial phage inoculations, both T7control and T7DspB multiplied significantly.

DETAILED DESCRIPTION OF THE INVENTION

[0049] The present invention provides engineered enzymatically active bacteriophages and their use for efficiently destroying bacteria and bacterial biofilms, particularly bacterial biofilms that comprise .beta.-1,6-N-acetyl-D-glucosamine. In one preferred embodiment methods of destroying or eradicating a mature biofilm and bacteria therein are provided. The methods of the present invention provide at least two orders of magnitude greater efficiency in destruction of bacterial biofilms than any previously known phage-based method that we are aware of.

[0050] We engineered bacteriophage with biofilm-degrading enzymatic activity to create a synthetic biology platform for eradicating bacterial biofilms.

[0051] The bacteriophage can be any phage that has the capacity to infect a biofilm producing bacterium, such as E. coli, P. aeriginosa, S. aureus, E. fecalis and the like. Such phages are well known to one skilled in the art, and include, but are not limited to, lambda phages, T7, T3, and T-even and T-even like phages, such as T2, and T4, and RB69; also phages such as Pf1, Pf4, Bacteroides fragilis phage B40-8 and coliphage MS-2 can be used. For example, lambda phage attacks E. coli by attaching itself to the outside of the bacteria and injecting its DNA into the bacteria. Once injected into its new host, the phage uses E. coli's genetic machinery to transcribe its genes. Any of the known phages can be engineered to express a biofilm degrading enzyme on its surface, as described herein. Preferably, the bacteriophage is T7, more preferably T7SELECT415-1.

[0052] The bacteriophages of the present invention are engineered using the traditional methods of genetic engineering that are well known to one skilled in the art. Based on the description in this specification and sequences provided herein and any other sequences known to one skilled in the art, one can readily prepare and produce the phages of the invention. We used T7SELECT415-1 phage to provide an illustration of engineering the phages of the invention. However, the same principles can be used to create any other phage known to one skilled in the art, such as lambda phages, T3, and other T-odd and T-even like phages, such as T2, T4 and RB69; and Pf1, Pf4, Bacteroides fragilis phage B40-8 and coliphage MS-2 using the principles described throughout the specification.

[0053] In one embodiment, one prepares an engineered T7 phage by using the T7SELECT415-1 phage display system (NOVAGEN). The T7select phage is engineered to express DspB intracellularly during infection. The DspB gene can be cloned, for example, from Actinobacillus actinomycetemcomitans genomic DNA (ATCC #700685D) into, for example, pET-9a plasmid (NOVAGEN) under the control of the strong promoter, such as T7 .phi.10 promoter. In one embodiment, the DspB gene is cloned between the NdeI and BamHI sites, for example, using the forward primer 5' atataatc catatg aat tgt tgc gta aaa ggc aat tc 3' (SEQ ID NO: 1) and reverse primer 5' atatac ggatcc tca ctc atc ccc att cgt ct 3' (SEQ Id NO: 2). In one embodiment, a stop codon is placed in all three reading frames downstream of the T7SELECT415-1 10B capsid gene followed by the .phi.10-dspB construct, to allow strong expression of DspB by T7 RNA polymerase during infection (FIG. 2B). The .phi.10-dspB construct can be isolated, for example, by PCR with the primers 5' gTA AcT AA cgaaattaat acgactcact atagg 3' (SEQ ID NO: 3) and 5' atataa cggccg c aagctt tca ctc atc ccc att cgt ct 3' (SEQ ID NO: 4)(stop codons in uppercase letters). The product can be used in a subsequent PCR reaction with the primers 5' tactc gaattc t TAA gTA AcT AA cgaaattaat acgactc 3'(SEQ ID NO: 5) and 5' atataa cggccg c aagctt tca ctc atc ccc att cgt ct 3' (SEQ ID NO: 6) to create a construct beginning with stop codons in each reading frame followed by the .phi.10-dspB construct. Both the product of this PCR reaction and the T7SELECT415-1 DNA can be digested with EcoRI and EagI, purified, ligated together using T4 DNA ligase, and packaged into T7 phage particles with T7select packaging extracts to create phage T7DspB-precursor.

[0054] Since wild-type T7 is unable to replicate normally in F-plasmid-containing E. coli, in one embodiment, one can clone a gene that expands its host infectivity and/or replication capacity, such as gene 1.2 from phage T3 into T7DspB-precursor and T7control-precursor to create T7DspB and T7control, respectively, which are able to escape exclusion by the F plasmid (FIGS. 2B and 2C) (33). Genomic DNA from T7DspB-precursor and T7control-precursor is isolated, and T3 gene 1.2 can be cloned from the T3 genome, for example, using primers 5' cgta tgatca aacg agcagggcga acagtg 3' (SEQ ID NO: 7) and 5' cgta tgatca ccactc gttaaagtga ccttaaggat tc 3'(SEQ ID NO: 8) and inserted into the unique BclI site in both the T7DspB-precursor and T7control-precursor, which are then packaged with T7select packaging extracts. The resulting phage are amplified on E. coli BL21 and then plated on E. coli TG1(lacI::kan) to isolate T7DspB (FIG. 2B) and T7control (FIG. 2C).

[0055] Bacteria frequently live in biofilms, which are surface-associated communities encased in a hydrated EPS matrix, that is composed of polysaccharides, proteins, nucleic acids, and lipids and helps maintain a complex heterogeneous structure (8, 9). Biofilms constitute an essential and protective lifestyle for bacteria in many different natural and man-made environments, including dental plaques, water pipes, medical devices, and industrial systems (10).

[0056] Bacterial biofilms have been implicated as a source of persistent infection and contamination in medical, industrial, and food processing settings due to inherent resistance to antimicrobial agents and host defenses (8, 11-13). Thus, there exists a growing need for novel and effective treatments targeted at biofilms, particularly in light of the continually-worsening problem of antibiotic resistance and the discovery that antibiotic use can even induce biofilm formation (14, 15).

[0057] Accordingly, in one embodiment, the present invention provides a method for eradicating bacteria and bacterial biofilm comprising administering to a surface affected with bacterial biofilm an enzymatically active lytic bacteriophage that has been engineered to express an enzyme capable to degrading at least .beta.-1,6-N-acetyl-D-glucosamine.

[0058] In one embodiment, the bacteriophage further expresses at least one enzyme selected from the group consisting of enzymes listed in Table A (Xavier et al. Microbiology 151 (2005), 3817-3832).

TABLE-US-00001 TABLE A Agent Origin Substrate Notes/action Reference Enzymes Polysaccharide Bacteriophage Enterobacter Phage glycanases are depolymerase agglomerans GFP very specific. Action in monospecies of enzyme was biofilms and in observed when added dual-species to the phage- biofilms with susceptible Klebsiella monospecies biofilm, pneumoniae G1 leading to substantial biofilm degradation (Hughes et al., 1998) A 60 min treatment with a polysaccharase caused a 20% reduction in dual- species biofilm adhesion (Skillman et al., 1999) Alginate lyase, Pseudomonas Pseudomonas Strains of P. aeruginosa Boyd & See, e.g., aeruginosa aeruginosa alginate overproducing alginate Chakrabarty sequences with lyase detached at a (1994), Appl the following higher rate than wild- Environ database entries type Microbiol O50660, 60, 2355-2359. ALGL_AZOCH; O52195, ALGL_AZOVI; Q9ZNB7, ALGL_HALMR; A6V1P7, ALGL_PSEA7; Q02R18, ALGL_PSEAB; Q06749, ALGL_PSEAE; Q1I563, ALGL_PSEE4; Q4KHY5, ALGL_PSEF5; P59786, ALGL_PSEFL; Q3KHR0, ALGL_PSEPF; B0KGQ9, ALGL_PSEPG; Q88ND1, ALGL_PSEPK; Q887Q5, ALGL_PSESM; Q9L7P2, ALGL_PSESY; Q4ZXL0, ALGL_PSEU2; P39049, ALXM_PHOS4; Q59478, ALYA_KLEPN; Q59639, ALYA_PSEAL; Q06365, ALYP_PSESO; However, other studies showed that addition of alginate lyase to established P. aeruginosa biofilm caused no observable detachment (Christensen et al., 2001) Disaggregatase Methanosarcina Methanosarcina Conditions that are Xun et al. enzyme, see, e.g., mazei mazei generally unfavourable (1990), Appl sequences of dag heteropolysaccharide for growth are Environ of three M. mazei capsule mediating associated with Microbiol strains that cell aggregation disaggregatase activity 56, 3693-3698 are available from the DDBJ database. The Accession nos. are AB036793 (S-6T), AB052161 (TMA) and AB052162 (LYC) Esterases with Wide range of Acyl residues from Acetyl residues from Sutherland wide specificity bacteria bacterial polymers intracellular (2001), as well as other carboxylesterase (EC Microbiology esters 3.1.1.1) isolated from 147, 3-9 Arthrobacter viscosus removed acetyl residues from xanthan, alginate, glucose pentaacetate, cellobiose octaacetate, exopolysaccharide produced by A. viscosus, deacetylated p-nitrophenyl propionate, naphthyl acetate, isopropenyl acetate and triacetin (Cui et al., 1999) Esterases could alter the physical properties of a biofilm structure Dispersin B (or Actinobacillus Poly-.beta.-1,6-GlcNAc Causes detachment of DspB), see, e.g., actinomycetemcomitans implicated as an cells from A. actinomycetemcomitans SEQ ID NO: 11 adhesion factor for biofilms and biofilms of several disaggregation of bacterial species clumps of A. actinomycetemcomitans in solution (Kaplan et al., 2003) Treatment of S. epidermidis biofilms with dispersin B causes dissolution of the EPS matrix and detachment of biofilm cells from the surface (Kaplan et al., 2004) Disrupts biofilm formation by E. coli, S. epidermidis, Yersina pestis and Pseudomonas fluorescens (Itoh et al., 2005) DNase I, see, Commercial Extracellular DNA DNase affects the Whitchurch e.g., P00639, (Sigma-Aldrich) in Pseudomonas capability of P. aeruginosa et al. (2002), DNAS1_BOVIN; aeruginosa biofilms to form Science 295, Q767J3, biofilms when present 1487 DNAS1_CANFA; in the initial Q9YGI5, development stages. DNAS1_CHICK; Established biofilms Q4AEE3, were only affected to a DNAS1_HORSE; minor degree by the P24855, presence of DNase DNAS1_HUMAN; P49183, DNAS1_MOUSE; O42446, DNAS1_OREMO; P11936, DNAS1_PIG; O18998, DNAS1_RABIT; P21704, DNAS1_RAT; P11937, DNAS1_SHEEP; P26295, DRN1_STREQ; P57487, END1_BUCAI; Q89AD7, END1_BUCBP; P25736, END1_ECOLI; P07059, END2_BPT4; Mixtures of Commercial S. aureus, S. epidermidis, Pectinex UltraSP Johansen et enzymes P. fluorescens (Novo Nordisk A/S, a al. (1997), and P. aeruginosa multicomponent Appl biofilms enzyme preparation) Environ on steel and reduced the number of Microbiol polypropylene bacterial cells in 63, 3724-3728 substrata biofilms on stainless steel without any significant bactericidal activity (the activity of Pectinex Ultra is mainly a degradation of extracellular polysaccharides) S. mutans, Mutanase and Actinomyces dextranase were viscosus and shown to remove oral Fusobacterium plaque from nucleatum biofilms hydroxyapatite, but on saliva-coated were not bactericidal hydroxyapatite (Novo Nordisk A/S)

[0059] Example of a dispersin B gene can be found, for example, with a database accession number ACCESSION AY228551; VERSION: AY228551.1, GI:30420959, see Sequence ID NO: 11 below:

TABLE-US-00002 1 aattgttgcg taaaaggcaa ttccatatat ccgcaaaaaa caagtaccaa gcagaccgga 61 ttaatgctgg acatcgcccg acatttttat tcacccgagg tgattaaatc ctttattgat 121 accatcagcc tttccggcgg taattttctg cacctgcatt tttccgacca tgaaaactat 181 gcgatagaaa gccatttact taatcaacgt gcggaaaatg ccgtgcaggg caaagacggt 241 atttatatta atccttatac cggaaagcca ttcttgagtt atcggcaact tgacgatatc 301 aaagcctatg ctaaggcaaa aggcattgag ttgattcccg aacttgacag cccgaatcac 361 atgacggcga tctttaaact ggtgcaaaaa gacagagggg tcaagtacct tcaaggatta 421 aaatcacgcc aggtagatga tgaaattgat attactaatg ctgacagtat tacttttatg 481 caatctttaa tgagtgaggt tattgatatt tttggcgaca cgagtcagca ttttcatatt 541 ggtggcgatg aatttggtta ttctgtggaa agtaatcatg agtttattac gtatgccaat 601 aaactatcct actttttaga gaaaaaaggg ttgaaaaccc gaatgtggaa tgacggatta 661 attaaaaata cttttgagca aatcaacccg aatattgaaa ttacttattg gagctatgat 721 ggcgatacgc aggacaaaaa tgaagctgcc gagcgccgtg atatgcgggt cagtttgccg 781 gagttgctgg cgaaaggctt tactgtcctg aactataatt cctattatct ttacattgtt 841 ccgaaagctt caccaacctt ctcgcaagat gccgcctttg ccgccaaaga tgttataaaa 901 aattgggatc ttggtgtttg ggatggacga aacaccaaaa accgcgtaca aaatactcat 961 gaaatagccg gcgcagcatt atcgatctgg ggagaagatg caaaagcgct gaaagacgaa 1021 acaattcaga aaaacacgaa aagtttattg gaagcggtga ttcataagac gaatggggat 1081 gagtga

[0060] Bacteriophage treatment has been proposed as one method for controlling bacterial biofilms (16). Phage have been used since the early 20th century to treat bacterial infections, especially in Eastern Europe, and have been shown to decrease biofilm formation (16, 17). For example, phage T4 can infect and replicate within E. coli biofilms and disrupt biofilm morphology by killing bacterial cells (18-20). Phage have also been modified to extend their natural host range. E. coli which produce the K1 polysaccharide capsule are normally resistant to infection by T7, but are susceptible to T7 that have been designed to express K1-5 endosialidase (21). Enzymatic degradation of EPS components is another useful strategy for disrupting biofilms, though bacterial cells are not killed (8, 22, 23). For instance, enzymatic degradation of a cell-bound EPS polysaccharide adhesin known as polymeric .beta.-1,6-N-acetyl-D-glucosamine (PGA) by exogenously-applied dispersin B (DspB) has been demonstrated to reduce biofilms of several different species of bacteria (22).

[0061] DspB, an enzyme which is produced by Actinobacillus actinomycetemcomitans, hydrolyzes PGA, a crucial adhesin needed for biofilm formation and integrity in Staphylococcus and E. coli, including E. coli K-12 as well as clinical isolates (22). Reports of natural lytic phage with phage-borne polysaccharide depolymerases have shown that phage-induced lysis and EPS degradation are used in combination in natural systems to reduce bacterial biofilms (24, 25). These depolymerases appear to be carried on the surfaces of phage and degrade bacterial capsular polysaccharides to allow access to bacterial cell surfaces (24). However, the chance that one can isolate a natural phage that is both specific for the bacteria to be targeted and expresses a relevant EPS-degrading enzyme is likely to be low (26).

[0062] We engineered T7, an E. coli-specific phage (29, 30), to express DspB intracellularly during infection so DspB would be released into the extracellular environment upon cell lysis (FIG. 1).

[0063] We employed a modified T7 strain (NOVAGEN T7SELECT415-1) with several deletions of nonessential genes (FIG. 2A). We cloned the gene coding for DspB (dspB) under the control of the strong T7 .phi.10 promoter so dspB would be strongly transcribed by T7 RNA polymerase during infection (FIG. 2B). As a control, we cloned an STag insert into the T7 genome so that no DspB would be produced (FIG. 2C).

[0064] Accordingly, in one embodiment, the invention provides an engineered T7 E. coli-specific phage, for example T7SELECT415-1 phage, that comprises a nucleic acid encoding dispersin B (DspB) that is expressed intracellularly during phage infection of E. coli, wherein the nucleic acid encoding DspB is operably linked to a strong promoter, such as a T7 .phi.10 promoter, and wherein the T7 phage is engineered to further encode a gene that enhances and/or expands its infectivity and/or replication capacity, such as T3 gene 1.2. The sequences for the genes are well known to one skilled in the art and readily available from the publicly available databases.

[0065] To test the effectiveness of our engineered phage against pre-grown, mature biofilm, we cultivated E. coli TG1(lacI::kan) biofilms in LB media on plastic pegs using the standardized MBEC biofilm cultivation system. We used E. coli TG1 as the target biofilm strain since TG1 forms a thick, mature biofilm and contains the F plasmid (31). The F plasmid enhances biofilm maturation along with other biofilm-promoting factors in E. coli, including PGA, flagellum, cellulose, curli, antigen 43, and other conjugative pili and cell surface adhesins (31, 32). Because T7 is unable to replicate efficiently in F-plasmid-containing E. coli, gene 1.2 from T3 phage was also cloned into the unique BclI site in our engineered T7 phage and control T7 phage to circumvent F-plasmid-mediated exclusion and extend the phage host range (FIGS. 2B and 2C) (33). The control phage and engineered phage were named T7control and T7DspB, respectively (FIGS. 2B and 2C).

[0066] To determine whether the T7DspB phage was more effective than the T7control phage, we first employed a crystal violet (CV) assay to assess the amount of biofilm on the pegs after phage treatment. Pre-grown TG1(lacI::kan) biofilm was inoculated with only LB media or infected with 103 plaque forming units per peg (PFU/peg) of T7control or T7DspB phage (FIG. 3A). To assess whether our engineered enzymatic phage was more efficacious than wild-type phage at attacking biofilm despite being made with a modified T7 phage, we also treated biofilm with wild-type T7 (T7wt) or wild-type T3 (T3wt) (FIG. 3A).

[0067] After 24 hours of treatment, CV staining of untreated biofilm had a 600 nm absorbance (A600) approximately equal to that for T7wt-treated biofilm (FIG. 3A). Both T3wt-treated biofilm and T7control-treated biofilm were reduced compared with the untreated biofilm: the former had an A600 that was lower than that of untreated biofilm by a factor of 10.3, while the latter had an A600 that was lower than that of untreated biofilm by a factor of 5.6 (FIG. 3A).

[0068] However, the amount of biofilm left on the T7DspB-treated pegs was significantly less than that with the non-enzymatic phage treatment types, with an A600 which was less by a factor of 14.5 than that of untreated biofilm and less by a factor of 2.6 than that of T7control-treated biofilm (P=5.4*10.sup.-8).

[0069] These findings demonstrate that DspB expression in T7DspB is crucial to elevating its biofilm-removing efficacy over that of wild-type phage and non-enzymatic T7control phage (FIG. 3A).

[0070] To confirm that the decrease in CV staining corresponded with killing of biofilm cells, we used sonication to obtain viable cell counts (CFU/peg) for bacteria surviving in the biofilms after phage treatment. Pre-grown TG1(lacI::kan) biofilm (prior to treatment) reached a mean cell density of 6.4 log.sub.10(CFU/peg) after 24 h of growth (FIG. 3B). After 24 h of additional growth in new LB media with no phage treatment, the untreated biofilm had a mean cell density of 6.9 log.sub.10(CFU/peg) (FIG. 3B). T3wt-treated biofilm had a mean cell density that was less than that of T7control-treated biofilm by a factor of 5.9 and greater than that of T7DspB-treated biofilm by a factor of 12 (FIG. 3B). T7control-treated biofilm had a mean cell density of 5.1 log.sub.10(CFU/peg) while the mean cell density for T7DspB-treated biofilm was 3.2 log.sub.10(CFU/peg), the lowest of all the treatment types (FIG. 3B). The difference in viable cells recovered from T7control-treated biofilm and T7DspB-treated biofilm was statistically significant (P=1.2*10.sup.-5). These results are consistent with our CV staining data and demonstrate that DspB-expressing T7DspB phage are substantially more effective at killing E. coli TG1 biofilm compared with wild-type T3wt, wild-type T7wt, and non-DspB-expressing control T7control phage.

[0071] Our two-pronged method of biofilm eradication involves expression of DspB and rapid phage replication (FIG. 1). To confirm that our phage multiplied, we obtained PFU counts from media in the microtiter plate wells. By 24 h of treatment, wild-type T7 had not replicated but wild-type T3 had multiplied significantly within the biofilm (FIG. 3C). To compare the amount of phage in the microtiter plate wells with phage residing in the biofilms, we also obtained PFU counts by sonicating the biofilms. After 24 h of treatment, PFU counts for T7control and T7DspB recovered from the microtiter plate wells were several orders of magnitude greater than PFU counts recovered by sonication of the biofilms (FIG. 3C). Overall, PFU counts obtained from the wells and the biofilms were all orders of magnitude greater than the initial inoculation of 103 PFU, confirming that phage multiplication indeed took place (FIG. 3C).

[0072] Accordingly, we determined that T7DspB had greater biofilm-removing capability than T7control after 24 h of infection. We also determined the time course of biofilm destruction. As shown in FIG. 4A, by 5 h post-infection, T7DspB-treated biofilm had a mean cell density that was 0.82 log.sub.10(CFU/peg) less than T7control-treated biofilm (P=2.0*10.sup.-4). At 10 h post-infection, T7DspB-treated biofilm began to settle at a steady-state mean cell density between 3 to 4 log.sub.10(CFU/peg), while T7control-treated biofilm flattened out at approximately 5 log.sub.10(CFU/peg) by 20 h post-infection (FIG. 4A).

[0073] T7DspB-treated biofilms had mean cell densities that were approximately two orders of magnitude lower than T7control-treated biofilms, up to 48 h of total treatment (FIG. 4A).

[0074] In addition, T7DspB treatment reduced biofilm levels by about 99.997% (4.5 log.sub.10(CFU/peg)) compared with untreated biofilm.

[0075] Further, we found no evidence of phage resistance developing over the long time course of treatment (FIG. 4A).

[0076] We also used scanning electron microscopy (SEM) to image the biofilm pegs over the time course of phage treatment in order to directly visualize biofilm dispersal by our enzymatically-active phage (FIG. 4B, FIG. 4C). After 20 h of treatment, T7DspB-treated biofilm (FIG. 4B) was significantly disrupted compared with the untreated biofilm (FIG. 4C).

[0077] These results confirm that T7DspB indeed causes both biofilm reduction and bacterial cell killing.

[0078] We studied scanning electron microscopy images for untreated, T7control-treated, and T7DspB-treated biofilms. Consistent with time-course data (FIG. 4A), T7DspB-treated biofilm and T7control-treated biofilm were indistinguishable from untreated biofilm at 2 h 25 min post-infection. However, by 4 h post-infection, T7DspB-treated biofilm began to lyse and disperse significantly, while T7control-treated biofilm was still largely undisturbed. By 10 h post-infection, significant amounts of cell debris were seen in both T7control-treated and T7DspB-treated biofilms. At 20 h post-infection, T7control-treated and T7DspB-treated biofilms had been disrupted by phage treatment, but T7DspB-treated biofilm was composed largely of cell debris and had fewer intact cells than T7control-treated biofilm.

[0079] To verify that phage replication was occurring over time, we obtained PFU counts in the microtiter wells. As seen in FIG. 4D, both T7control and T7DspB began to replicate within the bacterial biofilm as early as 50 minutes post-infection. By about 190 minutes, T7control and T7DspB PFU/peg approached steady-state levels of approximately 8 to 9 log.sub.10(PFU/peg), indicating that phage replication had occurred (FIG. 4D). T7DspB PFU/peg were generally higher than T7control PFU/peg but not by orders of magnitude as was the case for CFU counts per peg. This is because the T7 burst size (.about.250 PFU per infective center) (34) multiplied by the number of the extra cells killed by T7DspB, compared with T7control, equals extra PFU/peg that are insignificant compared with the PFU levels already reached by T7control. We did not note any significant differences in burst sizes and growth rates between T7DspB and T7control.

[0080] Considering that the above experiments were carried out with initial inoculations of 10.sup.3 PFU/peg, which translates to a multiplicity of infection (MOI) of about 1:10.sup.3.4 (FIG. 4A), we next determined the effect of changing the initial MOI on biofilm removal. With low phage doses, repeated rounds of phage multiplication and DspB expression should promote biofilm dispersal and allow more bacterial cells to be accessible for subsequent phage infection. With high phage doses, initial DspB production post-infection should also be very disruptive to biofilm integrity.

[0081] As shown in FIG. 4E, T7DspB was much more effective than T7control at removing biofilm at all inoculation levels tested, ranging from 10.sup.1 PFU/peg to 10.sup.5 PFU/peg. A dose-dependent effect of phage inoculation on biofilm destruction was observed, with larger inoculations leading to lower mean cell densities, particularly for T7DspB (FIG. 4E).

[0082] At inoculation levels greater than or equal to 10.sup.2 PFU/peg, mean cell densities (CFU/peg) for T7DspB-treated biofilm were significantly lower than those for T7control-treated biofilm by a factor of 49-232 (FIG. 4E).

[0083] Thus, at low and high initial inoculations, DspB-expressing T7 is more efficacious at disrupting E. coli TG1 biofilm compared with non-DspB-expressing control T7. All phage dosages tested exhibited phage multiplication within the biofilm (FIG. 4F).

[0084] Without wishing to be bound by a theory, these results together show that DspB-expressing phage has significantly improved efficacy in real-world situations where the ability to deliver high levels of phage to biofilms may be limited or where sustained phage replication is less likely, e.g., in the gastrointestinal tract of cholera patients (35, 36).

[0085] Accordingly, we demonstrated that our novel engineered phage which express biofilm-degrading enzymes are more efficacious at removing bacterial biofilms than non-enzymatic phage alone. Therefore, we have described and taught a phage design that can be adapted to work in other phage and with other biofilm-degrading enzymes to target a wide range of biofilms.

[0086] Thus, engineered bacteriophage treatment provides a novel addition to the therapies or treatment methods available for use against bacterial biofilms in medical, industrial, and biotechnological settings (17).

[0087] In one embodiment, the bacteria to be targeted using the phage used in the methods of the invention include E. coli, S. epidermidis, Yersina pestis and Pseudomonas fluorescens.

[0088] The described phage system can also be designed to include directed evolution for optimal enzyme activity, delaying cell lysis or using multiple phage promoters to allow for increased enzyme production, targeting multiple biofilm EPS components with different proteins. One can also target multi-species biofilm with a cocktail of different species-specific engineered enzymatically-active phage, and use a combination therapy using the engineered phage of the invention and antibiotics or combinations thereof that are well known to one skilled in the art to improve the efficacy of both types of treatment.

[0089] The phages of the invention can also be used together with other antibacterial or bacteriofilm degrading agents or chemicals such as EGTA, a calcium-specific chelating agent, effected the immediate and substantial detachment of a P. aeruginosa biofilm without affecting microbial activity, NaCl, CaCl.sub.2 or MgCl.sub.2, surfactans and urea.

[0090] Phage therapy has begun to be accepted in industrial and biotechnological settings. For example, the FDA recently approved the use of phage targeted at Listeria monocytogenes as a food additive (37). Despite the fact that phage therapy has several challenges that must be overcome before it will be accepted in Western medicine for treating humans (17), phage therapies have been used successfully in Eastern Europe for over 60 years. It has been shown, for example, that combination therapy with antibiotics and phage may alleviate the development of phage resistance (26, 36, 38). Long-circulating phage has been isolated that also avoids RES clearance to increase in vivo efficacy (35). Accordingly, the methods of the present invention are applicable to human and other animal treatment although clinical trials may be needed to establish their specific tolerance. However, our experiments have already shown that these methods are effective in dispersing biofilms, including biofilms present in human organs, such as colon or lungs.

[0091] The specificity of the phage for host bacteria is both an advantage and a disadvantage for phage therapy. Specificity allows human cells as well as innocuous bacteria to be spared, potentially avoiding serious issues such as drug toxicity or Clostridium difficile overgrowth that can arise with antibiotic use. C. difficile infection is characterized by diarrhea and colitis, and has increased in severity in recent years (42). Antibiotic therapy is believed to alter the microbial flora in the colon due to lack of target specificity, thus allowing C. difficile to proliferate and cause disease (43). Furthermore, the ability of our engineered phage to utilize the local bacterial synthetic machinery to produce biofilm-degrading enzymes means that exogenously-applied enzymes, which could have unintended effects on off-target biofilms, are not needed.

[0092] However, host specificity means that a well-characterized library of phage must be maintained so that an appropriate therapy can be designed for each individual infection (26). The diversity of bacterial infections implies that it may be difficult for any particular engineered phage to be a therapeutic solution for a wide range of biofilms. Accordingly, in one embodiment, the invention provides use of engineered enzymatically active phage cocktails that comprise at least two, three, four, five, 6, 7, 8, 9, 10 or even more different phages that have different hosts to cover wider a range of target bacteria. In one embodiment, at least one of the phages in the cocktail is an engineered lytic T7 bacteriophage comprising a nucleic acid encoding dispersin B enzyme operably linked to a T7 .phi.10 promoter and further comprising a nucleic acid encoding T3 1.2 gene. In one embodiment, at least one of the phages comprises a nucleic acid with SEQ ID NO: 9.

[0093] One skilled in the art can make a collection of enzymatically-active engineered phage by cost-effective, large-scale DNA sequencing and DNA synthesis technologies described and well known to one skilled in the art (see, e.g., 2, 4, 44). Sequencing technologies allows the characterization of collections of natural phage that have been used in phage typing and phage therapy for many years (45, 46). Accordingly, a skilled artisan can use synthetic technologies as described herein to add biofilm-degrading enzymes to produce new, modified phage.

[0094] Furthermore, rational engineering methods with new synthesis technologies can be employed to broaden phage host range. For example, T7 can be modified to express K1-5 endosialidase, allowing it to effectively replicate in E. coli that produce the K1 polysaccharide capsule (21). We took advantage of gene 1.2 from phage T3 to extend our phage host range to include E. coli that contain the F plasmid, thus demonstrating that multiple modifications of a phage genome can be done without significant impairment of the phage's ability to replicate (33). Bordetella bacteriophage use a reverse-transcriptase-mediated mechanism to produce diversity in host tropism which can also be used according to the methods of the present invention to create a phage that encodes a biofilm degrading enzyme, such as dispersin B, and is lytic to the target bacterium or bacteria (47, 48). In addition, utilizing enzymes, such as DspB, that target important adhesins which are common to a broad range of bacterial species, including clinical strains, allow enzymatically-active phage to be applicable to treatment of a greater number of infections (22). The many biofilm-promoting factors required by E. coli K-12 to produce a mature biofilm are likely to be shared among different biofilm-forming bacterial strains and are thus also targets for engineered enzymatic bacteriophage (32).

[0095] The enzymatically active bacteriophage of the invention can be formulated in combination with one or more pharmaceutically-acceptable anti-microbial agents. In this regard, combinations of different antimicrobial agents may be tailored to target different (or the same) microorganisms that contribute towards morbidity and mortality. The pharmaceutically acceptable anti-microbial agents of the present invention are suitable for internal administration to an animal, for example human. However, if the phage of the invention is to be used in industrial sterilizing, sterilizing chemicals such as detergents, disinfectants, and ammonium-based chemicals (e.g. quaternary ammonium compounds such as QUATAL) can be used in combination with, or prior to or after the treatment with the phage. Such sterilizing chemicals are typically used in the art for sterilizing industrial work surfaces (e.g. in food processing, or hospital environments), and are not suitable for administration to an animal.

[0096] Strong promoters useful according to the present invention are well known to a skilled artisan. Similarly, various genes that can enhance or expand the infectivity and/or replication range of a phage are well known to a skilled artisan.

[0097] The present invention also provides pharmaceutical compositions comprising an engineered lytic T7 bacteriophage comprising a nucleic acid encoding dispersin B operably linked to T7 .phi.10 promoter, e.g., a phage comprising a nucleic acid encoding SEQ ID NO: 9, and further comprising a nucleic acid encoding T3 1.2 gene, and a pharmaceutically acceptable excipient. Suitable carriers for the enzymatically active lytic phages of the invention, for instance, and their formulations, are described in Remington' Pharmaceutical Sciences, 16.sup.th ed., 1980, Mack Publishing Co., edited by Oslo et al. Typically an appropriate amount of a pharmaceutically acceptable salt is used in the formulation to render the formulation isotonic. Examples of the carrier include buffers such as saline, Ringer's solution and dextrose solution. The pH of the solution is preferably from about 5 to about 8, and more preferably from about 7.4 to about 7.8. Further carriers include sustained release preparations such as semipermeable matrices of solid hydrophobic polymers, which matrices are in the form of shaped articles, e.g. liposomes, films or microparticles. It will be apparent to those of skill in the art that certain carriers may be more preferable depending upon for instance the route of administration and concentration of the a enzymatically active bacteriophage being administered.

[0098] Administration to human may be accomplished by means determined by the underlying condition. For example, if the phage is to be delivered into lungs of an individual, inhalers can be used. If the composition is to be delivered into any part of the gut or colon, coated tablets, suppositories or orally administered liquids, tablets, caplets and so forth may be used. A skilled artisan will be able to determine the appropriate way of administering the phages of the invention in view of the general knowledge and skill in the art.

[0099] Practice of the present invention will employ, unless indicated otherwise, conventional techniques of cell biology, cell culture, molecular biology, microbiology, recombinant DNA, protein chemistry, and immunology, which are within the skill of the art. Such techniques are described in the literature. See, for example, Molecular Cloning: A Laboratory Manual, 2nd edition. (Sambrook, Fritsch and Maniatis, eds.), Cold Spring Harbor Laboratory Press, 1989; DNA Cloning, Volumes I and II (D. N. Glover, ed), 1985; Oligonucleotide Synthesis, (M. J. Gait, ed.), 1984; U.S. Pat. No. 4,683,195 (Mullis et al.,); Nucleic Acid Hybridization (B. D. Hames and S. J. Higgins, eds.), 1984; Transcription and Translation (B. D. Hames and S. J. Higgins, eds.), 1984; Culture of Animal Cells (R. I. Freshney, ed). Alan R. Liss, Inc., 1987; Immobilized Cells and Enzymes, IRL Press, 1986; A Practical Guide to Molecular Cloning (B. Perbal), 1984; Methods in Enzymology, Volumes 154 and 155 (Wu et al., eds), Academic Press, New York; Gene Transfer Vectors for Mammalian Cells (J. H. Miller and M. P. Calos, eds.), 1987, Cold Spring Harbor Laboratory; Immunochemical Methods in Cell and Molecular Biology (Mayer and Walker, eds.), Academic Press, London, 1987; Handbook of Experiment Immunology, Volumes I-IV (D. M. Weir and C. C. Blackwell, eds.), 1986; Manipulating the Mouse Embryo, Cold Spring Harbor Laboratory Press, 1986.

[0100] The following Examples are provided to illustrate the present invention, and should not be construed as limiting thereof.

[0101] Some embodiments of the invention are provided in the following paragraphs: [0102] 1. An engineered lytic T7 bacteriophage comprising a nucleic acid encoding dispersin B enzyme or an .beta.-1,6-N-acetyl-D-glucosamine degrading enzymatically active fragment thereof operably linked to a strong promoter and further comprising a nucleic acid encoding a gene to enhance or expand infectivity and or replication capacity of the lytic T7 bacteriophage. [0103] 2. The engineered lytic T7 bacteriophage of paragraph 1, wherein the a nucleic acid encoding a gene to enhance or expand infectivity and or replication capacity of the lytic T7 bacteriophage encodes T3 1.2 gene. [0104] 3. The engineered lytic T7 bacteriophage of paragraphs 1 or 2, wherein the strong promoter is T7 .phi.10. [0105] 4. A method of dispersing bacterial biofilm comprising administering to a surface infected with biofilm the method comprising administering to the surface an engineered lytic T7 bacteriophage comprising a nucleic acid encoding dispersin B enzyme or an .beta.-1,6-N-acetyl-D-glucosamine degrading enzymatically active fragment thereof operably linked to a strong promoter and further comprising a nucleic acid encoding a gene to enhance or expand infectivity and or replication capacity of the lytic T7 bacteriophage. [0106] 5. The method of paragraph 4, wherein the a nucleic acid encoding a gene to enhance or expand infectivity and or replication capacity of the lytic T7 bacteriophage encodes T3 1.2 gene. [0107] 6. The method of paragraphs 4 or 5, wherein the strong promoter is T7 .phi.10. [0108] 7. The method of paragraph 4, wherein the biofilm is a mature biofilm. [0109] 8. The method of paragraph 4, wherein the biofilm comprises .beta.-1,6-N-acetyl-D-glucosamine. [0110] 9. The method of paragraph 8 further comprising a step of prior to administering the bacteriophage, determining if the biofilm comprises .beta.-1,6-N-acetyl-D-glucosamine, and if it does, then administering the engineered lytic bacteriophage. [0111] 10. The method of paragraph 4, wherein the biofilm is formed by bacteria selected from the group consisting of Staphylococcus and E. coli, including E. coli K-12 strain, and clinical isolates of E. coli. [0112] 11. The method of paragraph 4, wherein the administering is performed once. [0113] 12. The method of paragraph 4, wherein the administering is performed before, after or concurrently with an antibiotic or antimicrobial agent. [0114] 13. The method of paragraph 4, wherein the administering is performed before, after or concurrently with a biofilm degrading chemical.

EXAMPLES

[0115] Bacterial strains, bacteriophage, and chemicals. E. coli TG1 (F'traD36 lacIq.DELTA.(lacZ) M15 proA+B+/supE .DELTA.(hsdM-mcrB)5 (rk- mk- McrB-) thi .DELTA.(lac-proAB)) was obtained from Zymo Research (Orange, Calif.). The strain TG1 (lacI::kan) used to grow biofilm was created by one-step inactivation of the lacI gene by a kanamycin-resistance cassette (49). E. coli BL21 was obtained from NOVAGEN Inc. (San Diego, Calif.). Wild-type T7 (ATCC #BAA-1025-B2) and T3 (ATCC #11303-B3) were purchased from ATCC (Manassas, Va.). Standard chemicals were obtained from sources as described in Supporting Methods.

[0116] Construction and purification of engineered phage. Our engineered T7 phage was created using the T7SELECT415-1 phage display system (NOVAGEN) with standard molecular biology techniques. Instead of cloning DspB onto the phage surface, we designed the T7select phage to express DspB intracellularly during infection. The dspB gene was cloned from Actinobacillus actinomycetemcomitans genomic DNA (ATCC #700685D) under the control of the strong T7 .phi.10 promoter downstream of the T7SELECT415-1 10B capsid gene and stop codons in all three reading frames to create T7DspB-precursor (FIG. 2B). Packaging of the modified genome was done with the T7select packaging extracts. The control phage, T7control-precursor, was constructed by cloning the T7select control STag insert into the T7SELECT415-1 genome (FIG. 2C). Since wild-type T7 cannot replicate normally in F-plasmid-containing E. coli, we cloned gene 1.2 from phage T3 into the unique BclI site in T7DspB-precursor and T7control-precursor to create T7DspB and T7control, respectively, which are able to escape exclusion by the F plasmid (FIGS. 2B and 2C) (33). The resulting phage were amplified on E. coli BL21 and plated on E. coli TG1(lacI::kan) to isolate T7DspB (FIG. 2B) and T7control (FIG. 2C), which were confirmed by PCR to have T3 gene 1.2.

[0117] Prior to biofilm treatment, T7DspB and T7control were amplified on E. coli BL21 and purified. 12 mL of BL21 overnight cultures were diluted with 12 mL of LB in 125 mL flasks, inoculated with 30 .mu.L of high-titer phage stock, and allowed to lyse at 37.degree. C. and 300 rpm for 3 h. Lysed cultures were clarified by centrifuging for 10 minutes at 10,000 g and filtering the supernatants through NALGENE #190-2520 0.2 .mu.m filters (Nalge Nunc International, Rochester, N.Y.). The purified solutions were centrifuged in a Beckman SW.41T rotor for 1 h at 29,600 rpm to concentrate the phage. The supernatants were removed and pellets were resuspended in 0.2 M NaCl, 2 mM Tris-HCl pH 8.0, and 0.2 mM EDTA. Phage suspensions were reclarified in tabletop microcentrifuges at maximum speed (.about.13,200 rpm) for 10 minutes. The purified supernatants were finally diluted in 0.2 M NaCl, 2 mM Tris-HCl pH 8.0, and 0.2 mM EDTA for treatment. Appropriate amounts of phage were added to LB+kanamycin (30 .mu.g/mL) for treatment, as described below. Phage purified by this protocol were no more effective at reducing bacterial biofilm levels compared with phage purified by centrifugation with CsCl step gradients.

[0118] All phage PFU counts were determined by combining phage with 300 .mu.L of overnight E. coli BL21 culture and 4-5 mL of 50.degree. C. LB top agar (0.7% w/v agar). This solution was mixed thoroughly, poured onto LB agar plates, inverted after hardening, and incubated for 4-6 h at 37.degree. C. until plaques were clearly visible.

[0119] Biofilm growth and treatment. All experiments were performed in LB media+kanamycin (30 .mu.g/mL). E. coli biofilms were grown with the MBEC Physiology & Genetics Assay (MBEC BioProducts Inc., Edmonton, Canada), which consists of a 96-peg lid that fits into a standard 96-well microtiter plate. Each well was inoculated with 150 .mu.L of media containing 1:200 dilutions of overnight cultures which had been grown at 37.degree. C. and 300 rpm. Control wells with only media but no bacteria were included. MBEC lids were placed in the microtiter plates, inserted into plastic bags to prevent evaporation, and placed in a shaker (HT Infors MINITRON) for 24 h at 35.degree. C. and 150 rpm to form biofilm on the pegs.

[0120] For all treatments except for the dose response experiment, 103 PFU of phage were combined with 200 .mu.L LB+kanamycin (30 .mu.g/mL) in each well in new microtiter plates (COSTAR #3370). For the dose response experiment, 101, 102, 103, 104, or 105 PFU were combined with 200 .mu.L LB+kanamycin (30 .mu.g/mL) in each well. Wells with only media but no phage were included as untreated biofilm controls. MBEC lids with 24 h pre-grown E. coli biofilm were removed from their old 96-well microtiter plates, and placed into the new microtiter plates and back into plastic bags in a shaker at 35.degree. C. and 150 rpm for treatment. After specified amounts of time for the time-course experiment or 24 h for all other experiments, MBEC lids were removed and the amounts of biofilm remaining were assayed by CV staining or viable cell counting, as described below.

[0121] Crystal violet (CV) staining assay. Crystal violet staining of MBEC pegs was carried out, after rinsing three times with 1.times. phosphate-buffered saline (PBS), using a standard, previously reported protocol as described in Supporting Methods (50).

[0122] Viable cell count assay. We obtained viable cell counts by disrupting biofilms on the pegs in a sonicating water bath. MBEC pegs were first rinsed three times with 200 .mu.L of 1.times. PBS and placed into fresh microtiter plates (NUNC #262162) containing 145 .mu.L of 1.times. PBS in each well, which completely covered the biofilms growing on the pegs. To prevent further infection of bacteria by phage, 20 ng of T7 Tail Fiber Monoclonal Antibody (NOVAGEN) was added to each well. MBEC lids and plates were placed in a Branson Ultrasonics #5510 sonic water bath (Danbury, Conn.) and sonicated for 30 minutes at 40 kHz to dislodge bacteria in biofilms into the wells. Serial dilutions were performed and plated on LB agar+kanamycin (30 .mu.g/mL) plates. Colony-forming units were counted after overnight incubation at 37.degree. C.

[0123] Scanning electron microscopy. SEM was performed according to MBEC recommendations (51).

[0124] Phage counts. At indicated time points (FIG. 4D) or after 24 h of treatment (FIG. 3C and FIG. 4F), media from n=3 microtiter wells for each treatment type were serially diluted to obtain PFU counts for phage in the liquid phase. To obtain PFU counts for phage residing in biofilms at 24 h post-infection (FIG. 3C), MBEC pegs were rinsed three times with 200 .mu.L of 1.times. phosphate-buffered saline (PBS) and placed into fresh microtiter plates (NUNC #262162) containing 145 .mu.L of 1.times. PBS in each well, which completely covered the biofilm on the pegs. No T7 Tail Fiber Monoclonal Antibody was added. The MBEC lids and plates were placed in a Branson Ultrasonics #5510 sonic water bath (Danbury, Conn.) and sonicated for 30 minutes at 40 kHz to dislodge bacteria and phage residing in biofilms into wells. Serial dilutions were performed to obtain PFU counts for phage in biofilms.

[0125] Statistical analysis. Student's unpaired two-sided t-test was used to test for statistical significance as described in Supporting Methods. For the CV staining assays, the dataset size for each treatment type was n=16; for the CFU assays, n=12 pegs per treatment type were used.

[0126] Standard chemicals. T4 DNA ligase and all restriction enzymes were obtained from New England Biolabs, Inc. (Ipswich, Mass.). PCR reactions were carried out using PCR SuperMix High Fidelity from INVITROGEN (Carlsbad, Calif.). Restriction digests of T7 genomic DNA were purified with the QIAEX II kit, while purification of all other PCR reactions and restriction digests was carried out with the QIAQUICK Gel Extraction or PCR Purification kits (QIAGEN, Valencia, Calif.). All other chemicals were purchased from Fisher Scientific, Inc. (Hampton, N.H.).

[0127] Construction and purification of engineered phage. Our engineered T7 phage was created using the T7SELECT415-1 phage display system (NOVAGEN). Instead of cloning DspB onto the phage surface, we designed the T7select phage to express DspB intracellularly during infection. The dspB gene was cloned from Actinobacillus actinomycetemcomitans genomic DNA (ATCC #700685D) into the pET-9a plasmid (Novagen) under the control of the strong T7 .phi.10 promoter in between the NdeI and BamHI sites using the forward primer 5' atataatc catatg aat tgt tgc gta aaa ggc aat tc 3' (SEQ ID NO: 1) and reverse primer 5' atatac ggatcc tca ctc atc ccc att cgt ct 3' (SEQ Id NO: 2) (restriction sites underlined). We placed a stop codon in all three reading frames downstream of the T7SELECT415-1 10B capsid gene followed by the .phi.10-dspB construct, so dspB would be strongly transcribed by T7 RNA polymerase during infection (FIG. 2B). The .phi.10-dspB construct was isolated by PCR with the primers 5' gTA AcT AA cgaaattaat acgactcact atagg 3' (SEQ ID NO: 3) and 5' atataa cggccg c aagctt tca ctc atc ccc att cgt ct 3' (SEQ ID NO: 4)(stop codons in uppercase letters); the product was used in a subsequent PCR reaction with the primers 5' tactc gaattc t TAA gTA AcT AA cgaaattaat acgactc 3'(SEQ ID NO: 5) and 5' atataa cggccg c aagctt tca ctc atc ccc att cgt ct 3' (SEQ ID NO: 6) to create a construct beginning with stop codons in each reading frame followed by the .phi.10-dspB construct. Both the product of this PCR reaction and the T7SELECT415-1 DNA were digested with EcoRI and EagI, purified, ligated together using T4 DNA ligase, and packaged into T7 phage particles with T7select packaging extracts to create phage T7DspB-precursor. The control phage, T7control-precursor, was constructed by cloning the T7select control STag insert into the T7SELECT415-1 phage genome and packaging the genome using T7select packaging extracts (FIG. 2C). Phage T7DspB-precursor and T7control-precursor were routinely amplified on E. coli BL21 and verified by DNA sequencing.

[0128] Since wild-type T7 is unable to replicate normally in F-plasmid-containing E. coli, we cloned gene 1.2 from phage T3 into T7DspB-precursor and T7control-precursor to create T7DspB and T7control, respectively, which are able to escape exclusion by the F plasmid (FIGS. 2B and 2C) (33). Genomic DNA from T7DspB-precursor and T7control-precursor was isolated using the QIAGEN Lambda Midi Kit. T3 gene 1.2 was cloned from the T3 genome using primers 5' cgta tgatca aacg agcagggcga acagtg 3' (SEQ ID NO: 7) and 5' cgta tgatca ccactc gttaaagtga ccttaaggat tc 3' (SEq ID NO: 8) and inserted into the unique BclI site in both the T7DspB-precursor and T7control-precursor, which were then packaged with T7select packaging extracts. The resulting phage were amplified on E. coli BL21 and then plated on E. coli TG1(lacI::kan) to isolate T7DspB (FIG. 2B) and T7control (FIG. 2C), which were confirmed by PCR to have gene 1.2 from T3.

[0129] Crystal violet staining assay. MBEC pegs were rinsed three times with 200 .mu.L of 1.times. phosphate-buffered saline (PBS) and placed into fresh microtiter plates with wells containing 200 .mu.L of 1% CV. After 15 minutes of incubation at room temperature, the stained MBEC pegs were washed three times with 200 .mu.L of 1.times. PBS and placed into fresh microtiter plates containing 200 .mu.L of 33% acetic acid to solubilize the dye for 15 minutes (50). To avoid oversaturating the absorbance detector, 66.7 .mu.L of the solubilized dye was added to 133.3 .mu.L of 1.times. PBS; the absorbance at 600 nm of this mixture was assayed in a TECAN SPECTRAFLUOR Plus plate reader (Zurich, Switzerland). The mean A600 nm of wells corresponding to pegs with no biofilm growth was used as a blank measurement to correct all other A600 nm absorbances.

[0130] Scanning electron microscopy. Scanning electron microscopy was carried out with a Carl Zeiss Supra 40 VP SEM using Carl Zeiss SMARTSEM V05.01.08 software. Biofilm pegs were broken off at indicated time points and washed three times in 1.times. PBS. The pegs were then fixed in 2.5% glutaraldehyde in 0.1 M cacodylic acid (pH 7.2) for 2 to 3 h at room temperature. Subsequently, the pegs were air dried for at least 120 h, and mounted and examined by SEM in VPSE mode with EHT=7.5 kV. Each peg was examined at several locations prior to imaging to ensure that characteristic images were acquired. Images were frame- or line-integrated using the SMARTSEM software to achieve better resolution.

[0131] Statistical analysis. Data for time-course CFU counts were collected from three independent experiments; all other CFU data were obtained from single experiments in time. Absorbance from crystal violet staining assays or CFU counts from viable cell count assays were evaluated for statistically significant differences using Student's unpaired two-sided t-test (assuming unknown and unequal variances) with an alpha level of 0.05 implemented in MATLAB version 7.0.01 (MATHWORKS, Natick, Mass.). All CFU data were log 10-transformed prior to analysis. All absorbance data and log 10-transformed CFU data were verified to be approximately normally distributed using the qqplot( ) function in MATLAB version 7.0.1 to meet the assumptions of the t-test. Error bars in figures indicate standard error of the mean (s.e.m).

REFERENCES

[0132] The references cited herein and throughout the specification and examples are herein incorporated by reference in their entirety. [0133] 1. Endy, D (2005) Nature 438: 449-453. [0134] 2. Andrianantoandro, E, Basu, S, Karig, D K & Weiss, R (2006) Mol Syst Biol 2: 2006.0028. [0135] 3. Hasty, J, McMillen, D & Collins, J J (2002) Nature 420: 224-230. [0136] 4. Tian, J, Gong, H, Sheng, N, Zhou, X, Gulari, E, Gao, X & Church, G (2004) Nature 432: 1050-1054. [0137] 5. Ro, D-K, Paradise, E M, Ouellet, M, Fisher, K J, Newman, K L, Ndungu, J M, Ho, K A, Eachus, R A, Ham, T S, Kirby, J, Chang, M C Y, Withers, S T, Shiba, Y, Sarpong, R & Keasling, J D (2006) Nature 440: 940-943. [0138] 6. Anderson, J C, Clarke, E J, Arkin, A P & Voigt, C A (2006) J Mol Biol 355: 619-627. [0139] 7. Loose, C, Jensen, K, Rigoutsos, I & Stephanopoulos, G (2006) Nature 443: 867-869. [0140] 8. Xavier, J B, Picioreanu, C, Rani, S A, van Loosdrecht, M C M & Stewart, P S (2005) Microbiology 151: 3817-3832. [0141] 9. Davey, M E & O'Toole, G A (2000) Microbiol Mol Biol Rev 64: 847-867. [0142] 10. Kolter, R & Greenberg, E P (2006) Nature 441: 300-302. [0143] 11. Parsek, M R & Singh, P K (2003) Annual Review of Microbiology 57: 677-701. [0144] 12. Costerton, J W, Lewandowski, Z, Caldwell, D E, Korber, D R & Lappin-Scott, H M (1995) Annu Rev Microbiol 49: 711-745. [0145] 13. Costerton, J W, Stewart, P S & Greenberg, E P (1999) Science 284: 1318-1322. [0146] 14. Stewart, P S & Costerton, J W (2001) Lancet 358: 135-138. [0147] 15. Hoffman, L R, D'Argenio, D A, MacCoss, M J, Zhang, Z, Jones, R A & Miller, S I (2005) Nature 436: 1171-1175. [0148] 16. Curtin, J J & Donlan, R M (2006) Antimicrob Agents Chemother 50: 1268-1275. [0149] 17. Merril, C R, Scholl, D & Adhya, S L (2003) Nat Rev Drug Discov 2: 489-497. [0150] 18. Doolittle, M M, Cooney, J J & Caldwell, D E (1995) Can J Microbiol 41: 12-18. [0151] 19. Doolittle, M M, Cooney, J J & Caldwell, D E (1996) J Ind Microbiol 16: 331-341. [0152] 20. Corbin, B D, McLean, R J & Aron, G M (2001) Can J Microbiol 47: 680-684. [0153] 21. Scholl, D, Adhya, S & Merril, C (2005) Appl Environ Microbiol 71: 4872-4874. [0154] 22. Itoh, Y, Wang, X, Hinnebusch, B J, Preston, J F & Romeo, T (2005) J Bacteriol 187: 382-387. [0155] 23. Whitchurch, C B, Tolker-Nielsen, T, Ragas, P C & Mattick, J S (2002) Science 295: 1487. [0156] 24. Hughes, K A, Sutherland, I W & Jones, M V (1998) Microbiology 144 (Pt 11): 3039-3047. [0157] 25. Hughes, K A, Sutherland, I W, Clark, J & Jones, M V (1998) Journal of Applied Microbiology 85: 583-590. [0158] 26. Projan, S (2004) Nat Biotechnol 22: 167-168. [0159] 27. Chan, L Y, Kosuri, S & Endy, D (2005) Mol Syst Biol 1: 2005.0018. [0160] 28. Itaya, M, Tsuge, K, Koizumi, M & Fujita, K (2005) Proc Natl Acad Sci USA 102: 15971-15976. [0161] 29. Dunn, J J & Studier, F W (1983) J Mol Biol 166: 477-535. [0162] 30. Studier, F W & Dunn, J J (1983) Cold Spring Harb Symp Quant Biol 47 Pt 2: 999-1007. [0163] 31. Ghigo, J M (2001) Nature 412: 442-445. [0164] 32. Re, S D, Quere, B L, Ghigo, J-M & Beloin, C (2007) Appl Environ Microbiol. [0165] 33. Garcia, L R & Molineux, I J (1995) J Bacteriol 177: 4077-4083. [0166] 34. Studier, F W (1972) Science 176: 367-376. [0167] 35. Merril, C R, Biswas, B, Carlton, R, Jensen, N C, Creed, G J, Zullo, S & Adhya, S (1996) Proc Natl Acad Sci USA 93: 3188-3192. [0168] 36. Summers, W C (2001) Annual Review of Microbiology 55: 437-451. [0169] 37. Shuren, J (2006), ed. U.S. Food and Drug Administration, H (Federal Register, Vol. 71, pp. 47729-47732. [0170] 38. Schoolnik, G K, Summers, W C & Watson, J D (2004) Nat Biotechnol 22: 505-506; author reply 506-507. [0171] 39. Hagens, S & Blasi, U (2003) Lett Appl Microbiol 37: 318-323. [0172] 40. Hagens, S, Habel, AvAU, von Gabain, A & Blasi, U (2004) Antimicrob Agents Chemother 48: 3817-3822. [0173] 41. Boratynski, J, Syper, D, Weber-Dabrowska, B, Lusiak-Szelachowska, M, Pozniak, G & Gorski, A (2004) Cell Mol Biol Lett 9: 253-259. [0174] 42. Bartlett, J G (2006) Ann Intern Med 145: 758-764. [0175] 43. Aslam, S, Hamill, R J & Musher, D M (2005) Lancet Infect Dis 5: 549-557. [0176] 44. Baker, D, Church, G, Collins, J, Endy, D, Jacobson, J, Keasling, J, Modrich, P, Smolke, C & Weiss, R (2006) Sci Am 294: 44-51. [0177] 45. Hickman-Brenner, F W, Stubbs, A D & Farmer, J J (1991) J Clin Microbiol 29: 2817-2823. [0178] 46. Wentworth, B B (1963) Bacteriol Rev 27: 253-272. [0179] 47. Doulatov, S, Hodes, A, Dai, L, Mandhana, N, Liu, M, Deora, R, Simons, R W, Zimmerly, S & Miller, J F (2004) Nature 431: 476-481. [0180] 48. Liu, M, Deora, R, Doulatov, S R, Gingery, M, Eiserling, F A, Preston, A, Maskell, D J, Simons, R W, Cotter, P A, Parkhill, J & Miller, J F (2002) Science 295: 2091-2094. [0181] 49. Datsenko, K A & Wanner, B L (2000) Proc Natl Acad Sci USA 97: 6640-6645. [0182] 50. Jackson, D W, Suzuki, K, Oakford, L, Simecka, J W, Hart, M E & Romeo, T (2002) J Bacteriol 184: 290-301. [0183] 51. Ceri, H, Olson, M E, Stremick, C, Read, R R, Morck, D & Buret, A (1999) J Clin Microbiol 37: 1771-1776.

Sequence CWU 1

1

10137DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 1atataatcca tatgaattgt tgcgtaaaag gcaattc 37232DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 2atatacggat cctcactcat ccccattcgt ct 32333DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 3gtaactaacg aaattaatac gactcactat agg 33439DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 4atataacggc cgcaagcttt cactcatccc cattcgtct 39540DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 5tactcgaatt cttaagtaac taacgaaatt aatacgactc 40639DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 6atataacggc cgcaagcttt cactcatccc cattcgtct 39730DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 7cgtatgatca aacgagcagg gcgaacagtg 30838DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 8cgtatgatca ccactcgtta aagtgacctt aaggattc 38938914DNAArtificial SequenceDescription of Artificial Sequence Synthetic construct 9tctcacagtg tacggaccta aagttccccc atagggggta cctaaagccc agccaatcac 60ctaaagtcaa ccttcggttg accttgaggg ttccctaagg gttggggatg acccttgggt 120ttgtctttgg gtgttacctt gagtgtctct ctgtgtccct atctgttaca gtctcctaaa 180gtatcctcct aaagtcacct cctaacgtcc atcctaaagc caacacctaa agcctacacc 240taaagaccca tcaagtcaac gcctatctta aagtttaaac ataaagacca gacctaaaga 300ccagacctaa agacactaca taaagaccag acctaaagac gccttgttgt tagccataaa 360gtgataacct ttaatcattg tctttattaa tacaactcac tataaggaga gacaacttaa 420agagacttaa aagattaatt taaaatttat caaaaagagt attgacttaa agtctaacct 480ataggatact tacagccatc gagagggaca cggcgaatag ccatcccaat cgacaccggg 540gtcaaccgga taagtagaca gcctgataag tcgcacgaca gaaagaaatt gaccgcgcta 600aggcccgtaa agaacgtcac gaggggcgct tagaggcacg cagattcaaa cgtcgcaacc 660gcaaggcacg taaagcacac aaagctaagc gcgaaagaat gcttgctgcg tggcgatggg 720ctgaacgtca agaacggcgt aaccatgagg tagctgtaga tgtactagga agaaccaata 780acgctatgct ctgggtcaac atgttctctg gggactttaa ggcgcttgag gaacgaatcg 840cgctgcactg gcgtaatgct gaccggatgg ctatcgctaa tggtcttacg ctcaacattg 900ataagcaact tgacgcaatg ttaatgggct gatagtctta tcttacaggt catctgcggg 960tggcctgaat aggtacgatt tactaactgg aagaggcact aaatgaacac gattaacatc 1020gctaagaacg acttctctga catcgaactg gctgctatcc cgttcaacac tctggctgac 1080cattacggtg agcgtttagc tcgcgaacag ttggcccttg agcatgagtc ttacgagatg 1140ggtgaagcac gcttccgcaa gatgtttgag cgtcaactta aagctggtga ggttgcggat 1200aacgctgccg ccaagcctct catcactacc ctactcccta agatgattgc acgcatcaac 1260gactggtttg aggaagtgaa agctaagcgc ggcaagcgcc cgacagcctt ccagttcctg 1320caagaaatca agccggaagc cgtagcgtac atcaccatta agaccactct ggcttgccta 1380accagtgctg acaatacaac cgttcaggct gtagcaagcg caatcggtcg ggccattgag 1440gacgaggctc gcttcggtcg tatccgtgac cttgaagcta agcacttcaa gaaaaacgtt 1500gaggaacaac tcaacaagcg cgtagggcac gtctacaaga aagcatttat gcaagttgtc 1560gaggctgaca tgctctctaa gggtctactc ggtggcgagg cgtggtcttc gtggcataag 1620gaagactcta ttcatgtagg agtacgctgc atcgagatgc tcattgagtc aaccggaatg 1680gttagcttac accgccaaaa tgctggcgta gtaggtcaag actctgagac tatcgaactc 1740gcacctgaat acgctgaggc tatcgcaacc cgtgcaggtg cgctggctgg catctctccg 1800atgttccaac cttgcgtagt tcctcctaag ccgtggactg gcattactgg tggtggctat 1860tgggctaacg gtcgtcgtcc tctggcgctg gtgcgtactc acagtaagaa agcactgatg 1920cgctacgaag acgtttacat gcctgaggtg tacaaagcga ttaacattgc gcaaaacacc 1980gcatggaaaa tcaacaagaa agtcctagcg gtcgccaacg taatcaccaa gtggaagcat 2040tgtccggtcg aggacatccc tgcgattgag cgtgaagaac tcccgatgaa accggaagac 2100atcgacatga atcctgaggc tctcaccgcg tggaaacgtg ctgccgctgc tgtgtaccgc 2160aaggacaagg ctcgcaagtc tcgccgtatc agccttgagt tcatgcttga gcaagccaat 2220aagtttgcta accataaggc catctggttc ccttacaaca tggactggcg cggtcgtgtt 2280tacgctgtgt caatgttcaa cccgcaaggt aacgatatga ccaaaggact gcttacgctg 2340gcgaaaggta aaccaatcgg taaggaaggt tactactggc tgaaaatcca cggtgcaaac 2400tgtgcgggtg tcgataaggt tccgttccct gagcgcatca agttcattga ggaaaaccac 2460gagaacatca tggcttgcgc taagtctcca ctggagaaca cttggtgggc tgagcaagat 2520tctccgttct gcttccttgc gttctgcttt gagtacgctg gggtacagca ccacggcctg 2580agctataact gctcccttcc gctggcgttt gacgggtctt gctctggcat ccagcacttc 2640tccgcgatgc tccgagatga ggtaggtggt cgcgcggtta acttgcttcc tagtgaaacc 2700gttcaggaca tctacgggat tgttgctaag aaagtcaacg agattctaca agcagacgca 2760atcaatggga ccgataacga agtagttacc gtgaccgatg agaacactgg tgaaatctct 2820gagaaagtca agctgggcac taaggcactg gctggtcaat ggctggctta cggtgttact 2880cgcagtgtga ctaagcgttc agtcatgacg ctggcttacg ggtccaaaga gttcggcttc 2940cgtcaacaag tgctggaaga taccattcag ccagctattg attccggcaa gggtctgatg 3000ttcactcagc cgaatcaggc tgctggatac atggctaagc tgatttggga atctgtgagc 3060gtgacggtgg tagctgcggt tgaagcaatg aactggctta agtctgctgc taagctgctg 3120gctgctgagg tcaaagataa gaagactgga gagattcttc gcaagcgttg cgctgtgcat 3180tgggtaactc ctgatggttt ccctgtgtgg caggaataca agaagcctat tcagacgcgc 3240ttgaacctga tgttcctcgg tcagttccgc ttacagccta ccattaacac caacaaagat 3300agcgagattg atgcacacaa acaggagtct ggtatcgctc ctaactttgt acacagccaa 3360gacggtagcc accttcgtaa gactgtagtg tgggcacacg agaagtacgg aatcgaatct 3420tttgcactga ttcacgactc cttcggtacc attccggctg acgctgcgaa cctgttcaaa 3480gcagtgcgcg aaactatggt tgacacatat gagtcttgtg atgtactggc tgatttctac 3540gaccagttcg ctgaccagtt gcacgagtct caattggaca aaatgccagc acttccggct 3600aaaggtaact tgaacctccg tgacatctta gagtcggact tcgcgttcgc gtaacgccaa 3660atcaatacga ctcactatag agggacaaac tcaaggtcat tcgcaagagt ggcctttatg 3720attgaccttc ttccggttaa tacgactcac tataggagaa ccttaaggtt taactttaag 3780acccttaagt gttaattaga gatttaaatt aaagaattac taagagagga ctttaagtat 3840gcgtaacttc gaaaagatga ccaaacgttc taaccgtaat gctcgtgact tcgaggcaac 3900caaaggtcgc aagttgaata agactaagcg tgaccgctct cacaagcgta gctgggaggg 3960tcagtaagat gggacgttta tatagtggta atctggcagc attcaaggca gcaacaaaca 4020agctgttcca gttagactta gcggtcattt atgatgactg gtatgatgcc tatacaagaa 4080aagattgcat acggttacgt attgaggaca ggagtggaaa cctgattgat actagcacct 4140tctaccacca cgacgaggac gttctgttca atatgtgtac tgattggttg aaccatatgt 4200atgaccagtt gaaggactgg aagtaatacg actcagtata gggacaatgc ttaaggtcgc 4260tctctaggag tggccttagt catttaacca ataggagata aacattatga tgaacattaa 4320gactaacccg tttaaagccg tgtctttcgt agagtctgcc attaagaagg ctctggataa 4380cgctgggtat cttatcgctg aaatcaagta cgatggtgta cgcgggaaca tctgcgtaga 4440caatactgct aacagttact ggctctctcg tgtatctaaa acgattccgg cactggagca 4500cttaaacggg tttgatgttc gctggaagcg tctactgaac gatgaccgtt gcttctacaa 4560agatggcttt atgcttgatg gggaactcat ggtcaagggc gtagacttta acacagggtc 4620cggcctactg cgtaccaaat ggactgacac gaagaaccaa gagttccatg aagagttatt 4680cgttgaacca atccgtaaga aagataaagt tccctttaag ctgcacactg gacaccttca 4740cataaaactg tacgctatcc tcccgctgca catcgtggag tctggagaag actgtgatgt 4800catgacgttg ctcatgcagg aacacgttaa gaacatgctg cctctgctac aggaatactt 4860ccctgaaatc gaatggcaag cggctgaatc ttacgaggtc tacgatatgg tagaactaca 4920gcaactgtac gagcagaagc gagcagaagg ccatgagggt ctcattgtga aagacccgat 4980gtgtatctat aagcgcggta agaaatctgg ctggtggaaa atgaaacctg agaacgaagc 5040tgacggtatc attcagggtc tggtatgggg tacaaaaggt ctggctaatg aaggtaaagt 5100gattggtttt gaggtgcttc ttgagagtgg tcgtttagtt aacgccacga atatctctcg 5160cgccttaatg gatgagttca ctgagacagt aaaagaggcc accctaagtc aatggggatt 5220ctttagccca tacggtattg gcgacaacga tgcttgtact attaaccctt acgatggctg 5280ggcgtgtcaa attagctaca tggaggaaac acctgatggc tctttgcggc acccatcgtt 5340cgtaatgttc cgtggcaccg aggacaaccc tcaagagaaa atgtaatcac actggctcac 5400cttcgggtgg gcctttctgc gtttataagg agacacttta tgtttaagaa ggttggtaaa 5460ttccttgcgg ctttggcagc tatcctgacg cttgcgtata ttcttgcggt ataccctcaa 5520gtagcactag tagtagttgg cgcttgttac ttagcggcag tgtgtgcttg cgtgtggagt 5580atagttaact ggtaatacga ctcactaaag gaggtacaca ccatgatgta cttaatgcca 5640ttactcatcg tcattgtagg atgccttgcg ctccactgta gcgatgatga tatgccagat 5700ggtcacgctt aatacgactc actaaaggag acactatatg tttcgacttc attacaacaa 5760aagcgttaag aatttcacgg ttcgccgtgc tgaccgttca atcgtatgtg cgagcgagcg 5820ccgagctaag atacctctta ttggtaacac agttcctttg gcaccgagcg tccacatcat 5880tatcacccgt ggtgactttg agaaagcaat agacaagaaa cgtccggttc ttagtgtggc 5940agtgacccgc ttcccgttcg tccgtctgtt actcaaacga atcaaggagg tgttctgatg 6000ggactgttag atggtgaagc ctgggaaaaa gaaaacccgc cagtacaagc aactgggtgt 6060atagcttgct tagagaaaga tgaccgttat ccacacacct gtaacaaagg agctaacgat 6120atgaccgaac gtgaacaaga gatgatcaaa cgagcagggc gaacagtggc aagagcgccg 6180tgaccgcatg aagaaacgcc acaagcaaca gcgcggtaac tcacagaaac gggagtggaa 6240ctgatgatga tgggacgtat ttatagcggc aacctgaacg attacaaaga tgcggtagcg 6300cgtctacagg aagaccatga tgtgaccgtg aagatggagt cattcagcta cgaaaaccca 6360gcgaagatgt gcaggtcatg cggtgaggtt ctcagtgtgt tcacacgctc cgggcatctg 6420gtggcatcca gaaccttcga gcatagcgac agcgatgtac aaatcaacgc gcagactgca 6480tggctccgta aggttcacag cgaattgaaa cactggaagt aataaccctc actaacagga 6540gaatccttaa ggtcacttta acgagtggtg atcattaagt tgatagacaa taatgaaggt 6600cgcccagatg atttgaatgg ctgcggtatt ctctgctcca atgtcccttg ccacctctgc 6660cccgcaaata acgatcaaaa gataacctta ggtgaaatcc gagcgatgga cccacgtaaa 6720ccacatctga ataaacctga ggtaactcct acagatgacc agccttccgc tgagacaatc 6780gaaggtgtca ctaagccttc ccactacatg ctgtttgacg acattgaggc tatcgaagtg 6840attgctcgtt caatgaccgt tgagcagttc aagggatact gcttcggtaa catcttaaag 6900tacagactac gtgctggtaa gaagtcagag ttagcgtact tagagaaaga cctagcgaaa 6960gcagacttct ataaagaact ctttgagaaa cataaggata aatgttatgc ataacttcaa 7020gtcaacccca cctgccgaca gcctatctga tgacttcaca tcttgctcag agtggtgccg 7080aaagatgtgg gaagagacat tcgacgatgc gtacatcaag ctgtatgaac tttggaaatc 7140gagaggtcaa tgactatgtc aaacgtaaat acaggttcac ttagtgtgga caataagaag 7200ttttgggcta ccgtagagtc ctcggagcat tccttcgagg ttccaatcta cgctgagacc 7260ctagacgaag ctctggagtt agccgaatgg caatacgttc cggctggctt tgaggttact 7320cgtgtgcgtc cttgtgtagc accgaagtaa tacgactcac tattagggaa gactccctct 7380gagaaaccaa acgaaaccta aaggagatta acattatggc taagaagatt ttcacctctg 7440cgctgggtac cgctgaacct tacgcttaca tcgccaagcc ggactacggc aacgaagagc 7500gtggctttgg gaaccctcgt ggtgtctata aagttgacct gactattccc aacaaagacc 7560cgcgctgcca gcgtatggtc gatgaaatcg tgaagtgtca cgaagaggct tatgctgctg 7620ccgttgagga atacgaagct aatccacctg ctgtagctcg tggtaagaaa ccgctgaaac 7680cgtatgaggg tgacatgccg ttcttcgata acggtgacgg tacgactacc tttaagttca 7740aatgctacgc gtctttccaa gacaagaaga ccaaagagac caagcacatc aatctggttg 7800tggttgactc aaaaggtaag aagatggaag acgttccgat tatcggtggt ggctctaagc 7860tgaaagttaa atattctctg gttccataca agtggaacac tgctgtaggt gcgagcgtta 7920agctgcaact ggaatccgtg atgctggtcg aactggctac ctttggtggc ggtgaagacg 7980attgggctga cgaagttgaa gagaacggct atgttgcctc tggttctgcc aaagcgagca 8040aaccacgcga cgaagaaagc tgggacgaag acgacgaaga gtccgaggaa gcagacgaag 8100acggagactt ctaagtggaa ctgcgggaga aaatccttga gcgaatcaag gtgacttcct 8160ctgggtgttg ggagtggcag ggcgctacga acaataaagg gtacgggcag gtgtggtgca 8220gcaataccgg aaaggttgtc tactgtcatc gcgtaatgtc taatgctccg aaaggttcta 8280ccgtcctgca ctcctgtgat aatccattat gttgtaaccc tgaacaccta tccataggaa 8340ctccaaaaga gaactccact gacatggtaa ataagggtcg ctcacacaag gggtataaac 8400tttcagacga agacgtaatg gcaatcatgg agtccagcga gtccaatgta tccttagctc 8460gcacctatgg tgtctcccaa cagactattt gtgatatacg caaagggagg cgacatggca 8520ggttacggcg ctaaaggaat ccgaaaggtt ggagcgtttc gctctggcct agaggacaag 8580gtttcaaagc agttggaatc aaaaggtatt aaattcgagt atgaagagtg gaaagtgcct 8640tatgtaattc cggcgagcaa tcacacttac actccagact tcttacttcc aaacggtata 8700ttcgttgaga caaagggtct gtgggaaagc gatgatagaa agaagcactt attaattagg 8760gagcagcacc ccgagctaga catccgtatt gtcttctcaa gctcacgtac taagttatac 8820aaaggttctc caacgtctta tggagagttc tgcgaaaagc atggtattaa gttcgctgat 8880aaactgatac ctgctgagtg gataaaggaa cccaagaagg aggtcccctt tgatagatta 8940aaaaggaaag gaggaaagaa ataatggctc gtgtacagtt taaacaacgt gaatctactg 9000acgcaatctt tgttcactgc tcggctacca agccaagtca gaatgttggt gtccgtgaga 9060ttcgccagtg gcacaaagag cagggttggc tcgatgtggg ataccacttt atcatcaagc 9120gagacggtac tgtggaggca ggacgagatg agatggctgt aggctctcac gctaagggtt 9180acaaccacaa ctctatcggc gtctgccttg ttggtggtat cgacgataaa ggtaagttcg 9240acgctaactt tacgccagcc caaatgcaat cccttcgctc actgcttgtc acactgctgg 9300ctaagtacga aggcgctggt cttcgcgccc atcatgaggt ggcgccgaag gcttgccctt 9360cgttcgacct taagcgttgg tgggagaaga acgaactggt cacttctgac cgtggataat 9420gatctattgg aagtcgttgc gtggatttat agaactagga gggaattgca tggacaattc 9480gcacgattcc gatagtgtat ttctttacca cattccttgt gacaactgtg ggagtagtga 9540tgggaactcg ctgttctctg acggacacac gttctgctac gtatgcgaga agtggactgc 9600tggtaatgaa gacactaaag agagggcttc aaaacggaaa ccctcaggag gtaaaccaat 9660gacttacaac gtgtggaact tcggggaatc caatggacgc tactccgcgt taactgcgag 9720aggaatctcc aaggaaacct gtcagaaggc tggctactgg attgccaaag tagacggtgt 9780gatgtaccaa gtggctgact atcgggacca gaacggcaac attgtgagtc agaaggttcg 9840agataaagat aagaacttta agaccactgg tagtcacaag agtgacgctc tgttcgggaa 9900gcacttgtgg aatggtggta agaagattgt cgttacagaa ggtgaaatcg acatgcttac 9960cgtgatggaa cttcaagact gtaagtatcc tgtagtgtcg ttgggtcacg gtgcctctgc 10020cgctaagaag acatgcgctg ccaactacga atactttgac cagttcgaac agattatctt 10080aatgttcgat atggacgaag cagggcgcaa agcagtcgaa gaggctgcac aggttctacc 10140tgctggtaag gtacgagtgg cagttcttcc gtgtaaggat gcaaacgagt gtcacctaaa 10200tggtcacgac cgtgaaatca tggagcaagt gtggaatgct ggtccttgga ttcctgatgg 10260tgtggtatcg gctctttcgt tacgtgaacg aatccgtgag cacctatcgt ccgaggaatc 10320agtaggttta cttttcagtg gctgcactgg tatcaacgat aagaccttag gtgcccgtgg 10380tggtgaagtc attatggtca cttccggttc cggtatgggt aagtcaacgt tcgtccgtca 10440acaagctcta caatggggca cagcgatggg caagaaggta ggcttagcga tgcttgagga 10500gtccgttgag gagaccgctg aggaccttat aggtctacac aaccgtgtcc gactgagaca 10560atccgactca ctaaagagag agattattga gaacggtaag ttcgaccaat ggttcgatga 10620actgttcggc aacgatacgt tccatctata tgactcattc gccgaggctg agacggatag 10680actgctcgct aagctggcct acatgcgctc aggcttgggc tgtgacgtaa tcattctaga 10740ccacatctca atcgtcgtat ccgcttctgg tgaatccgat gagcgtaaga tgattgacaa 10800cctgatgacc aagctcaaag ggttcgctaa gtcaactggg gtggtgctgg tcgtaatttg 10860tcaccttaag aacccagaca aaggtaaagc acatgaggaa ggtcgccccg tttctattac 10920tgacctacgt ggttctggcg cactacgcca actatctgat actattattg cccttgagcg 10980taatcagcaa ggcgatatgc ctaaccttgt cctcgttcgt attctcaagt gccgctttac 11040tggtgatact ggtatcgctg gctacatgga atacaacaag gaaaccggat ggcttgaacc 11100atcaagttac tcaggggaag aagagtcaca ctcagagtca acagactggt ccaacgacac 11160tgacttctga caggattctt gatgactttc cagacgacta cgagaagttt cgctggagag 11220tcccattcta atacgactca ctaaaggaga cacaccatgt tcaaactgat taagaagtta 11280ggccaactgc tggttcgtat gtacaacgtg gaagccaagc gactgaacga tgaggctcgt 11340aaagaggcca cacagtcacg cgctctggcg attcgctcca acgaactggc tgacagtgca 11400tccactaaag ttaccgaggc tgcccgtgtg gcaaaccaag ctcaacagct ttccaaattc 11460tttgagtaat caaacaggag aaaccattat gtctaacgta gctgaaacta tccgtctatc 11520cgatacagct gaccagtgga accgtcgagt ccacatcaac gttcgcaacg gtaaggcgac 11580tatggtttac cgctggaagg actctaagtc ctctaagaat cacactcagc gtatgacgtt 11640gacagatgag caagcactgc gtctggtcaa tgcgcttacc aaagctgccg tgacagcaat 11700tcatgaagct ggtcgcgtca atgaagctat ggctatcctc gacaagattg ataactaaga 11760gtggtatcct caaggtcgcc aaagtggtgg ccttcatgaa tactattcga ctcactatag 11820gagatattac catgcgtgac cctaaagtta tccaagcaga aatcgctaaa ctggaagctg 11880aactggagga cgttaagtac catgaagcta agactcgctc cgctgttcac atcttgaaga 11940acttaggctg gacttggaca agacagactg gctggaagaa accagaagtt accaagctga 12000gtcataaggt gttcgataag gacactatga cccacatcaa ggctggtgat tgggttaagg 12060ttgacatggg agttgttggt ggatacggct acgtccgctc agttagtggc aaatatgcac 12120aagtgtcata catcacaggt gttactccac gcggtgcaat cgttgccgat aagaccaaca 12180tgattcacac aggtttcttg acagttgttt catatgaaga gattgttaag tcacgataat 12240caataggaga aatcaatatg atcgtttctg acatcgaagc taacgccctc ttagagagcg 12300tcactaagtt ccactgcggg gttatctacg actactccac cgctgagtac gtaagctacc 12360gtccgagtga cttcggtgcg tatctggatg cgctggaagc cgaggttgca cgaggcggtc 12420ttattgtgtt ccacaacggt cacaagtatg acgttcctgc attgaccaaa ctggcaaagt 12480tgcaattgaa ccgagagttc caccttcctc gtgagaactg tattgacacc cttgtgttgt 12540cacgtttgat tcattccaac ctcaaggaca ccgatatggg tcttctgcgt tccggcaagt 12600tgcccggaaa acgctttggg tctcacgctt tggaggcgtg gggttatcgc ttaggcgaga 12660tgaagggtga atacaaagac gactttaagc gtatgcttga agagcagggt gaagaatacg 12720ttgacggaat ggagtggtgg aacttcaacg aagagatgat ggactataac gttcaggacg 12780ttgtggtaac taaagctctc cttgagaagc tactctctga caaacattac ttccctcctg 12840agattgactt tacggacgta ggatacacta cgttctggtc agaatccctt gaggccgttg 12900acattgaaca tcgtgctgca tggctgctcg ctaaacaaga gcgcaacggg ttcccgtttg 12960acacaaaagc aatcgaagag ttgtacgtag agttagctgc tcgccgctct gagttgctcc 13020gtaaattgac cgaaacgttc ggctcgtggt atcagcctaa aggtggcact gagatgttct 13080gccatccgcg aacaggtaag ccactaccta aataccctcg cattaagaca cctaaagttg 13140gtggtatctt taagaagcct aagaacaagg cacagcgaga aggccgtgag ccttgcgaac 13200ttgatacccg cgagtacgtt gctggtgctc cttacacccc agttgaacat gttgtgttta 13260acccttcgtc tcgtgaccac attcagaaga aactccaaga ggctgggtgg gtcccgacca 13320agtacaccga taagggtgct cctgtggtgg acgatgaggt actcgaagga gtacgtgtag 13380atgaccctga gaagcaagcc gctatcgacc tcattaaaga gtacttgatg attcagaagc 13440gaatcggaca gtctgctgag ggagacaaag catggcttcg ttatgttgct gaggatggta 13500agattcatgg ttctgttaac cctaatggag cagttacggg tcgtgcgacc catgcgttcc 13560caaaccttgc gcaaattccg ggtgtacgtt ctccttatgg agagcagtgt cgcgctgctt 13620ttggcgctga gcaccatttg gatgggataa ctggtaagcc ttgggttcag gctggcatcg 13680acgcatccgg tcttgagcta cgctgcttgg ctcacttcat ggctcgcttt gataacggcg 13740agtacgctca cgagattctt aacggcgaca tccacactaa gaaccagata gctgctgaac 13800tacctacccg agataacgct aagacgttca tctatgggtt cctctatggt gctggtgatg 13860agaagattgg acagattgtt ggtgctggta aagagcgcgg taaggaactc aagaagaaat 13920tccttgagaa cacccccgcg

attgcagcac tccgcgagtc tatccaacag acacttgtcg 13980agtcctctca atgggtagct ggtgagcaac aagtcaagtg gaaacgccgc tggattaaag 14040gtctggatgg tcgtaaggta cacgttcgta gtcctcacgc tgccttgaat accctactgc 14100aatctgctgg tgctctcatc tgcaaactgt ggattatcaa gaccgaagag atgctcgtag 14160agaaaggctt gaagcatggc tgggatgggg actttgcgta catggcatgg gtacatgatg 14220aaatccaagt aggctgccgt accgaagaga ttgctcaggt ggtcattgag accgcacaag 14280aagcgatgcg ctgggttgga gaccactgga acttccggtg tcttctggat accgaaggta 14340agatgggtcc taattgggcg atttgccact gatacaggag gctactcatg aacgaaagac 14400acttaacagg tgctgcttct gaaatgctag tagcctacaa atttaccaaa gctgggtaca 14460ctgtctatta ccctatgctg actcagagta aagaggactt ggttgtatgt aaggatggta 14520aatttagtaa ggttcaggtt aaaacagcca caacggttca aaccaacaca ggagatgcca 14580agcaggttag gctaggtgga tgcggtaggt ccgaatataa ggatggagac tttgacattc 14640ttgcggttgt ggttgacgaa gatgtgctta ttttcacatg ggacgaagta aaaggtaaga 14700catccatgtg tgtcggcaag agaaacaaag gcataaaact ataggagaaa ttattatggc 14760tatgacaaag aaatttaaag tgtccttcga cgttaccgca aagatgtcgt ctgacgttca 14820ggcaatctta gagaaagata tgctgcatct atgtaagcag gtcggctcag gtgcgattgt 14880ccccaatggt aaacagaagg aaatgattgt ccagttcctg acacacggta tggaaggatt 14940gatgacattc gtagtacgta catcatttcg tgaggccatt aaggacatgc acgaagagta 15000tgcagataag gactctttca aacaatctcc tgcaacagta cgggaggtgt tctgatgtct 15060gactacctga aagtgctgca agcaatcaaa agttgcccta agactttcca gtccaactat 15120gtacggaaca atgcgagcct cgtagcggag gccgcttccc gtggtcacat ctcgtgcctg 15180actactagtg gacgtaacgg tggcgcttgg gaaatcactg cttccggtac tcgctttctg 15240aaacgaatgg gaggatgtgt ctaatgtctc gtgaccttgt gactattcca cgcgatgtgt 15300ggaacgatat acagggctac atcgactctc tggaacgtga gaacgatagc cttaagaatc 15360aactaatgga agctgacgaa tacgtagcgg aactagagga gaaacttaat ggcacttctt 15420gaccttaaac aattctatga gttacgtgaa ggctgcgacg acaagggtat ccttgtgatg 15480gacggcgact ggctggtctt ccaagctatg agtgctgctg agtttgatgc ctcttgggag 15540gaagagattt ggcaccgatg ctgtgaccac gctaaggccc gtcagattct tgaggattcc 15600attaagtcct acgagacccg taagaaggct tgggcaggtg ctccaattgt ccttgcgttc 15660accgatagtg ttaactggcg taaagaactg gttgacccga actataaggc taaccgtaag 15720gccgtgaaga aacctgtagg gtactttgag ttccttgatg ctctctttga gcgcgaagag 15780ttctattgca tccgtgagcc tatgcttgag ggtgatgacg ttatgggagt tattgcttcc 15840aatccgtctg ccttcggtgc tcgtaaggct gtaatcatct cttgcgataa ggactttaag 15900accatcccta actgtgactt cctgtggtgt accactggta acatcctgac tcagaccgaa 15960gagtccgctg actggtggca cctcttccag accatcaagg gtgacatcac tgatggttac 16020tcagggattg ctggatgggg tgataccgcc gaggacttct tgaataaccc gttcataacc 16080gagcctaaaa cgtctgtgct taagtccggt aagaacaaag gccaagaggt tactaaatgg 16140gttaaacgcg accctgagcc tcatgagacg ctttgggact gcattaagtc cattggcgcg 16200aaggctggta tgaccgaaga ggatattatc aagcagggcc aaatggctcg aatcctacgg 16260ttcaacgagt acaactttat tgacaaggag atttacctgt ggagaccgta gcgtatattg 16320gtctgggtct ttgtgttctc ggagtgtgcc tcatttcgtg gggcctttgg gacttagcca 16380gaataatcaa gtcgttacac gacactaagt gataaactca aggtccctaa attaatacga 16440ctcactatag ggagataggg gcctttacga ttattacttt aagatttaac tctaagagga 16500atctttatta tgttaacacc tattaaccaa ttacttaaga accctaacga tattccagat 16560gtacctcgtg caaccgctga gtatctacag gttcgattca actatgcgta cctcgaagcg 16620tctggtcata taggacttat gcgtgctaat ggttgtagtg aggcccacat cttgggtttc 16680attcagggcc tacagtatgc ctctaacgtc attgacgaga ttgagttacg caaggaacaa 16740ctaagagatg atggggagga ttgacactat gtgtttctca ccgaaaatta aaactccgaa 16800gatggatacc aatcagattc gagccgttga gccagcgcct ctgacccaag aagtgtcaag 16860cgtggagttc ggtgggtctt ctgatgagac ggataccgag ggcaccgaag tgtctggacg 16920caaaggcctc aaggtcgaac gtgatgattc cgtagcgaag tctaaagcca gcggcaatgg 16980ctccgctcgt atgaaatctt ccatccgtaa gtccgcattt ggaggtaaga agtgatgtct 17040gagttcacat gtgtggaggc taagagtcgc ttccgtgcaa tccggtggac tgtggaacac 17100cttgggttgc ctaaaggatt cgaaggacac tttgtgggct acagcctcta cgtagacgaa 17160gtgatggaca tgtctggttg ccgtgaagag tacattctgg actctaccgg aaaacatgta 17220gcgtacttcg cgtggtgcgt aagctgtgac attcaccaca aaggagacat tctggatgta 17280acgtccgttg tcattaatcc tgaggcagac tctaagggct tacagcgatt cctagcgaaa 17340cgctttaagt accttgcgga actccacgat tgcgattggg tgtctcgttg taagcatgaa 17400ggcgagacaa tgcgtgtata ctttaaggag gtataagtta tgggtaagaa agttaagaag 17460gccgtgaaga aagtcaccaa gtccgttaag aaagtcgtta aggaaggggc tcgtccggtt 17520aaacaggttg ctggcggtct agctggtctg gctggtggta ctggtgaagc acagatggtg 17580gaagtaccac aagctgccgc acagattgtt gacgtacctg agaaagaggt ttccactgag 17640gacgaagcac agacagaaag cggacgcaag aaagctcgtg ctggcggtaa gaaatccttg 17700agtgtagccc gtagctccgg tggcggtatc aacatttaat caggaggtta tcgtggaaga 17760ctgcattgaa tggaccggag gtgtcaactc taagggttat ggtcgtaagt gggttaatgg 17820taaacttgtg actccacata ggcacatcta tgaggagaca tatggtccag ttccaacagg 17880aattgtggtg atgcatatct gcgataaccc taggtgctat aacataaagc accttacgct 17940tggaactcca aaggataatt ccgaggacat ggttaccaaa ggtagacagg ctaaaggaga 18000ggaactaagc aagaaactta cagagtcaga cgttctcgct atacgctctt caaccttaag 18060ccaccgctcc ttaggagaac tgtatggagt cagtcaatca accataacgc gaatactaca 18120gcgtaagaca tggagacaca tttaatggct gagaaacgaa caggacttgc ggaggatggc 18180gcaaagtctg tctatgagcg tttaaagaac gaccgtgctc cctatgagac acgcgctcag 18240aattgcgctc aatataccat cccatcattg ttccctaagg actccgataa cgcctctaca 18300gattatcaaa ctccgtggca agccgtgggc gctcgtggtc tgaacaatct agcctctaag 18360ctcatgctgg ctctattccc tatgcagact tggatgcgac ttactatatc tgaatatgaa 18420gcaaagcagt tactgagcga ccccgatgga ctcgctaagg tcgatgaggg cctctcgatg 18480gtagagcgta tcatcatgaa ctacattgag tctaacagtt accgcgtgac tctctttgag 18540gctctcaaac agttagtcgt agctggtaac gtcctgctgt acctaccgga accggaaggg 18600tcaaactata atcccatgaa gctgtaccga ttgtcttctt atgtggtcca acgagacgca 18660ttcggcaacg ttctgcaaat ggtgactcgt gaccagatag cttttggtgc tctccctgag 18720gacatccgta aggctgtaga aggtcaaggt ggtgagaaga aagctgatga gacaatcgac 18780gtgtacactc acatctatct ggatgaggac tcaggtgaat acctccgata cgaagaggtc 18840gagggtatgg aagtccaagg ctccgatggg acttatccta aagaggcttg cccatacatc 18900ccgattcgga tggtcagact agatggtgaa tcctacggtc gttcgtacat tgaggaatac 18960ttaggtgact tacggtccct tgaaaatctc caagaggcta tcgtcaagat gtccatgatt 19020agctctaagg ttatcggctt agtgaatcct gctggtatca cccagccacg ccgactgacc 19080aaagctcaga ctggtgactt cgttactggt cgtccagaag acatctcgtt cctccaactg 19140gagaagcaag cagactttac tgtagctaaa gccgtaagtg acgctatcga ggctcgcctt 19200tcgtttgcct ttatgttgaa ctctgcggtt cagcgtacag gtgaacgtgt gaccgccgaa 19260gagattcggt atgtagcttc tgaacttgaa gatactttag gtggtgtcta ctctatcctt 19320tctcaagaat tacaattgcc tctggtacga gtgctcttga agcaactaca agccacgcaa 19380cagattcctg agttacctaa ggaagccgta gagccaacca ttagtacagg tctggaagca 19440attggtcgag gacaagacct tgataagctg gagcggtgtg tcactgcgtg ggctgcactg 19500gcacctatgc gggacgaccc tgatattaac cttgcgatga ttaagttacg tattgccaac 19560gctatcggta ttgacacttc tggtattcta ctcaccgaag aacagaagca acagaagatg 19620gcccaacagt ctatgcaaat gggtatggat aatggtgctg ctgcgctggc tcaaggtatg 19680gctgcacaag ctacagcttc acctgaggct atggctgctg ccgctgattc cgtaggttta 19740cagccgggaa tttaatacga ctcactatag ggagacctca tctttgaaat gagcgatgac 19800aagaggttgg agtcctcggt cttcctgtag ttcaacttta aggagacaat aataatggct 19860gaatctaatg cagacgtata tgcatctttt ggcgtgaact ccgctgtgat gtctggtggt 19920tccgttgagg aacatgagca gaacatgctg gctcttgatg ttgctgcccg tgatggcgat 19980gatgcaatcg agttagcgtc agacgaagtg gaaacagaac gtgacctgta tgacaactct 20040gacccgttcg gtcaagagga tgacgaaggc cgcattcagg ttcgtatcgg tgatggctct 20100gagccgaccg atgtggacac tggagaagaa ggcgttgagg gcaccgaagg ttccgaagag 20160tttaccccac tgggcgagac tccagaagaa ctggtagctg cctctgagca acttggtgag 20220cacgaagagg gcttccaaga gatgattaac attgctgctg agcgtggcat gagtgtcgag 20280accattgagg ctatccagcg tgagtacgag gagaacgaag agttgtccgc cgagtcctac 20340gctaagctgg ctgaaattgg ctacacgaag gctttcattg actcgtatat ccgtggtcaa 20400gaagctctgg tggagcagta cgtaaacagt gtcattgagt acgctggtgg tcgtgaacgt 20460tttgatgcac tgtataacca ccttgagacg cacaaccctg aggctgcaca gtcgctggat 20520aatgcgttga ccaatcgtga cttagcgacc gttaaggcta tcatcaactt ggctggtgag 20580tctcgcgcta aggcgttcgg tcgtaagcca actcgtagtg tgactaatcg tgctattccg 20640gctaaacctc aggctaccaa gcgtgaaggc tttgcggacc gtagcgagat gattaaagct 20700atgagtgacc ctcggtatcg cacagatgcc aactatcgtc gtcaagtcga acagaaagta 20760atcgattcga acttctgata gacttcgaaa ttaatacgac tcactatagg gagaccacaa 20820cggtttccct ctagaaataa ttttgtttaa ctttaagaag gagatataca tatggctagc 20880atgactggtg gacagcaaat gggtactaac caaggtaaag gtgtagttgc tgctggagat 20940aaactggcgt tgttcttgaa ggtatttggc ggtgaagtcc tgactgcgtt cgctcgtacc 21000tccgtgacca cttctcgcca catggtacgt tccatctcca gcggtaaatc cgctcagttc 21060cctgttctgg gtcgcactca ggcagcgtat ctggctccgg gcgagaacct cgacgataaa 21120cgtaaggaca tcaaacacac cgagaaggta atcaccattg acggtctcct gacggctgac 21180gttctgattt atgatattga ggacgcgatg aaccactacg acgttcgctc tgagtatacc 21240tctcagttgg gtgaatctct ggcgatggct gcggatggtg cggttctggc tgagattgcc 21300ggtctgtgta acgtggaaag caaatataat gagaacatcg agggcttagg tactgctacc 21360gtaattgaga ccactcagaa caaggccgca cttaccgacc aagttgcgct gggtaaggag 21420attattgcgg ctctgactaa ggctcgtgcg gctctgacca agaactatgt tccggctgct 21480gaccgtgtgt tctactgtga cccagatagc tactctgcga ttctggcagc actgatgccg 21540aacgcagcaa actacgctgc tctgattgac cctgagaagg gttctatccg caacgttatg 21600ggctttgagg ttgtagaagt tccgcacctc accgctggtg gtgctggtac cgctcgtgag 21660ggcactactg gtcagaagca cgtcttccct gccaataaag gtgagggtaa tgtcaaggtt 21720gctaaggaca acgttatcgg cctgttcatg caccgctctg cggtaggtac tgttaagctg 21780cgtgacttgg ctctggagcg cgctcgccgt gctaacttcc aagcggacca gattatcgct 21840aagtacgcaa tgggccacgg tggtcttcgc ccagaagctg caggagctgt cgtattccag 21900tcaggtgtga tgctcgggga tccgaattct taagtaacta acgaaattaa tacgactcac 21960tatagggaga ccacaacggt ttccctctag aaataatttt gtttaacttt aagaaggaga 22020tatacatatg aattgttgcg taaaaggcaa ttccatatat ccgcaaaaaa caagtaccaa 22080gcagaccgga ttaatgctgg acatcgcccg acatttttat tcacccgagg tgattaaatc 22140ctttattgat accatcagcc tttccggcgg taattttctg cacctgcatt tttccgacca 22200tgaaaactat gcgatagaaa gccatttact taatcaacgt gcggaaaatg ccgtgcaggg 22260caaagacggt atttatatta atccttatac cggaaagcca ttcttgagtt atcggcaact 22320tgacgatatc aaagcctatg ctaaggcaaa aggcattgag ttgattcccg aacttgacag 22380cccgaatcac atgacggcga tctttaaact ggtgcaaaaa gacagagggg tcaagtacct 22440tcaaggatta aaatcacgcc aggtagatga tgaaattgat attactaatg ctgacagtat 22500tacttttatg caatctttaa tgagtgaggt tattgatatt tttggcgaca cgagtcagca 22560ttttcatatt ggtggcgatg aatttggtta ttctgtggaa agtaatcatg agtttattac 22620gtatgccaat aaactatcct actttttaga gaaaaaaggg ttgaaaaccc gaatgtggaa 22680tgacggatta attaaaaata cttttgagca aatcaacccg aatattgaaa ttacttattg 22740gagctatgat ggcgatacgc aggacaaaaa tgaagctgcc gagcgccgtg atatgcgggt 22800cagtttgccg gagttgctgg cgaaaggctt tactgtcctg aactataatt cctattatct 22860ttacattgtt ccgaaagctt caccaacctt ctcgcaagat gccgcctttg ccgccaaaga 22920tgttataaaa aattgggatc ttggtgtttg ggatggacga aacaccaaaa accgcgtaca 22980aaatactcat gaaatagccg gcgcagcatt atcgatctgg ggagaagatg caaaagcgct 23040gaaagacgaa acaattcaga aaaacacgaa aagtttattg gaagcggtga ttcataagac 23100gaatggggat gagtgaaagc ttgcggccgc actcgagtaa ctagttaacc ccttggggcc 23160tctaaacggg tcttgagggg ttttttgctg aaaggaggaa ctatatgcgc tcatacgata 23220tgaacgttga gactgccgct gagttatcag ctgtgaacga cattctggcg tctatcggtg 23280aacctccggt atcaacgctg gaaggtgacg ctaacgcaga tgcagcgaac gctcggcgta 23340ttctcaacaa gattaaccga cagattcaat ctcgtggatg gacgttcaac attgaggaag 23400gcataacgct actacctgat gtttactcca acctgattgt atacagtgac gactatttat 23460ccctaatgtc tacttccggt caatccatct acgttaaccg aggtggctat gtgtatgacc 23520gaacgagtca atcagaccgc tttgactctg gtattactgt gaacattatt cgtctccgcg 23580actacgatga gatgcctgag tgcttccgtt actggattgt caccaaggct tcccgtcagt 23640tcaacaaccg attctttggg gcaccggaag tagagggtgt actccaagaa gaggaagatg 23700aggctagacg tctctgcatg gagtatgaga tggactacgg tgggtacaat atgctggatg 23760gagatgcgtt cacttctggt ctactgactc gctaacatta ataaataagg aggctctaat 23820ggcactcatt agccaatcaa tcaagaactt gaagggtggt atcagccaac agcctgacat 23880ccttcgttat ccagaccaag ggtcacgcca agttaacggt tggtcttcgg agaccgaggg 23940cctccaaaag cgtccacctc ttgttttctt aaatacactt ggagacaacg gtgcgttagg 24000tcaagctccg tacatccacc tgattaaccg agatgagcac gaacagtatt acgctgtgtt 24060cactggtagc ggaatccgag tgttcgacct ttctggtaac gagaagcaag ttaggtatcc 24120taacggttcc aactacatca agaccgctaa tccacgtaac gacctgcgaa tggttactgt 24180agcagactat acgttcatcg ttaaccgtaa cgttgttgca cagaagaaca caaagtctgt 24240caacttaccg aattacaacc ctaatcaaga cggattgatt aacgttcgtg gtggtcagta 24300tggtagggaa ctaattgtac acattaacgg taaagacgtt gcgaagtata agataccaga 24360tggtagtcaa cctgaacacg taaacaatac ggatgcccaa tggttagctg aagagttagc 24420caagcagatg cgcactaact tgtctgattg gactgtaaat gtagggcaag ggttcatcca 24480tgtgaccgca cctagtggtc aacagattga ctccttcacg actaaagatg gctacgcaga 24540ccagttgatt aaccctgtga cccactacgc tcagtcgttc tctaagctgc cacctaatgc 24600tcctaacggc tacatggtga aaatcgtagg ggacgcctct aagtctgccg accagtatta 24660cgttcggtat gacgctgagc ggaaagtttg gactgagact ttaggttgga acactgagga 24720ccaagttcta tgggaaacca tgccacacgc tcttgtgcga gccgctgacg gtaatttcga 24780cttcaagtgg cttgagtggt ctcctaagtc ttgtggtgac gttgacacca acccttggcc 24840ttcttttgtt ggttcaagta ttaacgatgt gttcttcttc cgtaaccgct taggattcct 24900tagtggggag aacatcatat tgagtcgtac agccaaatac ttcaacttct accctgcgtc 24960cattgcgaac cttagtgatg acgaccctat agacgtagct gtgagtacca accgaatagc 25020aatccttaag tacgccgttc cgttctcaga agagttactc atctggtccg atgaagcaca 25080attcgtcctg actgcctcgg gtactctcac atctaagtcg gttgagttga acctaacgac 25140ccagtttgac gtacaggacc gagcgagacc ttttgggatt gggcgtaatg tctactttgc 25200tagtccgagg tccagcttca cgtccatcca caggtactac gctgtgcagg atgtcagttc 25260cgttaagaat gctgaggaca ttacatcaca cgttcctaac tacatcccta atggtgtgtt 25320cagtatttgc ggaagtggta cggaaaactt ctgttcggta ctatctcacg gggaccctag 25380taaaatcttc atgtacaaat tcctgtacct gaacgaagag ttaaggcaac agtcgtggtc 25440tcattgggac tttggggaaa acgtacaggt tctagcttgt cagagtatca gctcagatat 25500gtatgtgatt cttcgcaatg agttcaatac gttcctagct agaatctctt tcactaagaa 25560cgccattgac ttacagggag aaccctatcg tgcctttatg gacatgaaga ttcgatacac 25620gattcctagt ggaacataca acgatgacac attcactacc tctattcata ttccaacaat 25680ttatggtgca aacttcggga ggggcaaaat cactgtattg gagcctgatg gtaagataac 25740cgtgtttgag caacctacgg ctgggtggaa tagcgaccct tggctgagac tcagcggtaa 25800cttggaggga cgcatggtgt acattgggtt caacattaac ttcgtatatg agttctctaa 25860gttcctcatc aagcagactg ccgacgacgg gtctacctcc acggaagaca ttgggcgctt 25920acagttacgc cgagcgtggg ttaactacga gaactctggt acgtttgaca tttatgttga 25980gaaccaatcg tctaactgga agtacacaat ggctggtgcc cgattaggct ctaacactct 26040gagggctggg agactgaact tagggaccgg acaatatcga ttccctgtgg ttggtaacgc 26100caagttcaac actgtataca tcttgtcaga tgagactacc cctctgaaca tcattgggtg 26160tggctgggaa ggtaactact tacggagaag ttccggtatt taattaaata ttctccctgt 26220ggtggctcga aattaatacg actcactata gggagaacaa tacgactacg ggagggtttt 26280cttatgatga ctataagacc tactaaaagt acagactttg aggtattcac tccggctcac 26340catgacattc ttgaagctaa ggctgctggt attgagccga gtttccctga tgcttccgag 26400tgtgtcacgt tgagcctcta tgggttccct ctagctatcg gtggtaactg cggggaccag 26460tgctggttcg ttacgagcga ccaagtgtgg cgacttagtg gaaaggctaa gcgaaagttc 26520cgtaagttaa tcatggagta tcgcgataag atgcttgaga agtatgatac tctttggaat 26580tacgtatggg taggcaatac gtcccacatt cgtttcctca agactatcgg tgcggtattc 26640catgaagagt acacacgaga tggtcaattt cagttattta caatcacgaa aggaggataa 26700ccatatgtgt tgggcagccg caatacctat cgctatatct ggcgctcagg ctatcagtgg 26760tcagaacgct caggccaaaa tgattgccgc tcagaccgct gctggtcgtc gtcaagctat 26820ggaaatcatg aggcagacga acatccagaa tgctgaccta tcgttgcaag ctcgaagtaa 26880acttgaggaa gcgtccgccg agttgacctc acagaacatg cagaaggtcc aagctattgg 26940gtctatccga gcggctatcg gagagagtat gcttgaaggt tcctcaatgg accgcattaa 27000gcgagtcaca gaaggacagt tcattcggga agccaatatg gtaactgaga actatcgccg 27060tgactaccaa gcaatcttcg cacagcaact tggtggtact caaagtgctg caagtcagat 27120tgacgaaatc tataagagcg aacagaaaca gaagagtaag ctacagatgg ttctggaccc 27180actggctatc atggggtctt ccgctgcgag tgcttacgca tccggtgcgt tcgactctaa 27240gtccacaact aaggcaccta ttgttgccgc taaaggaacc aagacgggga ggtaatgagc 27300tatgagtaaa attgaatctg cccttcaagc ggcacaaccg ggactctctc ggttacgtgg 27360tggtgctgga ggtatgggct atcgtgcagc aaccactcag gccgaacagc caaggtcaag 27420cctattggac accattggtc ggttcgctaa ggctggtgcc gatatgtata ccgctaagga 27480acaacgagca cgagacctag ctgatgaacg ctctaacgag attatccgta agctgacccc 27540tgagcaacgt cgagaagctc tcaacaacgg gacccttctg tatcaggatg acccatacgc 27600tatggaagca ctccgagtca agactggtcg taacgctgcg tatcttgtgg acgatgacgt 27660tatgcagaag ataaaagagg gtgtcttccg tactcgcgaa gagatggaag agtatcgcca 27720tagtcgcctt caagagggcg ctaaggtata cgctgagcag ttcggcatcg accctgagga 27780cgttgattat cagcgtggtt tcaacgggga cattaccgag cgtaacatct cgctgtatgg 27840tgcgcatgat aacttcttga gccagcaagc tcagaagggc gctatcatga acagccgagt 27900ggaactcaac ggtgtccttc aagaccctga tatgctgcgt cgtccagact ctgctgactt 27960ctttgagaag tatatcgaca acggtctggt tactggcgca atcccatctg atgctcaagc 28020cacacagctt ataagccaag cgttcagtga cgcttctagc cgtgctggtg gtgctgactt 28080cctgatgcga gtcggtgaca agaaggtaac acttaacgga gccactacga cttaccgaga 28140gttgattggt gaggaacagt ggaacgctct catggtcaca gcacaacgtt ctcagtttga 28200gactgacgcg aagctgaacg agcagtatcg cttgaagatt aactctgcgc tgaaccaaga 28260ggacccaagg acagcttggg agatgcttca aggtatcaag gctgaactag ataaggtcca 28320acctgatgag cagatgacac cacaacgtga gtggctaatc tccgcacagg aacaagttca 28380gaatcagatg aacgcatgga cgaaagctca ggccaaggct ctggacgatt ccatgaagtc 28440aatgaacaaa cttgacgtaa tcgacaagca attccagaag cgaatcaacg gtgagtgggt 28500ctcaacggat tttaaggata tgccagtcaa cgagaacact ggtgagttca agcatagcga 28560tatggttaac tacgccaata agaagctcgc tgagattgac agtatggaca ttccagacgg 28620tgccaaggat gctatgaagt tgaagtacct tcaagcggac tctaaggacg gagcattccg 28680tacagccatc ggaaccatgg tcactgacgc tggtcaagag tggtctgccg ctgtgattaa 28740cggtaagtta ccagaacgaa ccccagctat ggatgctctg cgcagaatcc gcaatgctga 28800ccctcagttg attgctgcgc tatacccaga ccaagctgag ctattcctga cgatggacat 28860gatggacaag cagggtattg accctcaggt tattcttgat gccgaccgac tgactgttaa 28920gcggtccaaa gagcaacgct ttgaggatga taaagcattc gagtctgcac tgaatgcatc 28980taaggctcct gagattgccc

gtatgccagc gtcactgcgc gaatctgcac gtaagattta 29040tgactccgtt aagtatcgct cggggaacga aagcatggct atggagcaga tgaccaagtt 29100ccttaaggaa tctacctaca cgttcactgg tgatgatgtt gacggtgata ccgttggtgt 29160gattcctaag aatatgatgc aggttaactc tgacccgaaa tcatgggagc aaggtcggga 29220tattctggag gaagcacgta agggaatcat tgcgagcaac ccttggataa ccaataagca 29280actgaccatg tattctcaag gtgactccat ttaccttatg gacaccacag gtcaagtcag 29340agtccgatac gacaaagagt tactctcgaa ggtctggagt gagaaccaga agaaactcga 29400agagaaagct cgtgagaagg ctctggctga tgtgaacaag cgagcaccta tagttgccgc 29460tacgaaggcc cgtgaagctg ctgctaaacg agtccgagag aaacgtaaac agactcctaa 29520gttcatctac ggacgtaagg agtaactaaa ggctacataa ggaggcccta aatggataag 29580tacgataaga acgtaccaag tgattatgat ggtctgttcc aaaaggctgc tgatgccaac 29640ggggtctctt atgacctttt acgtaaagtc gcttggacag aatcacgatt tgtgcctaca 29700gcaaaatcta agactggacc attaggcatg atgcaattta ccaaggcaac cgctaaggcc 29760ctcggtctgc gagttaccga tggtccagac gacgaccgac tgaaccctga gttagctatt 29820aatgctgccg ctaagcaact tgcaggtctg gtagggaagt ttgatggcga tgaactcaaa 29880gctgcccttg cgtacaacca aggcgaggga cgcttgggta atccacaact tgaggcgtac 29940tctaagggag acttcgcatc aatctctgag gagggacgta actacatgcg taaccttctg 30000gatgttgcta agtcacctat ggctggacag ttggaaactt ttggtggcat aaccccaaag 30060ggtaaaggca ttccggctga ggtaggattg gctggaattg gtcacaagca gaaagtaaca 30120caggaacttc ctgagtccac aagttttgac gttaagggta tcgaacagga ggctacggcg 30180aaaccattcg ccaaggactt ttgggagacc cacggagaaa cacttgacga gtacaacagt 30240cgttcaacct tcttcggatt caaaaatgct gccgaagctg aactctccaa ctcagtcgct 30300gggatggctt tccgtgctgg tcgtctcgat aatggttttg atgtgtttaa agacaccatt 30360acgccgactc gctggaactc tcacatctgg actccagagg agttagagaa gattcgaaca 30420gaggttaaga accctgcgta catcaacgtt gtaactggtg gttcccctga gaacctcgat 30480gacctcatta aattggctaa cgagaacttt gagaatgact cccgcgctgc cgaggctggc 30540ctaggtgcca aactgagtgc tggtattatt ggtgctggtg tggacccgct tagctatgtt 30600cctatggtcg gtgtcactgg taagggcttt aagttaatca ataaggctct tgtagttggt 30660gccgaaagtg ctgctctgaa cgttgcatcc gaaggtctcc gtacctccgt agctggtggt 30720gacgcagact atgcgggtgc tgccttaggt ggctttgtgt ttggcgcagg catgtctgca 30780atcagtgacg ctgtagctgc tggactgaaa cgcagtaaac cagaagctga gttcgacaat 30840gagttcatcg gtcctatgat gcgattggaa gcccgtgaga cagcacgaaa cgccaactct 30900gcggacctct ctcggatgaa cactgagaac atgaagtttg aaggtgaaca taatggtgtc 30960ccttatgagg acttaccaac agagagaggt gccgtggtgt tacatgatgg ctccgttcta 31020agtgcaagca acccaatcaa ccctaagact ctaaaagagt tctccgaggt tgaccctgag 31080aaggctgcgc gaggaatcaa actggctggg ttcaccgaga ttggcttgaa gaccttgggg 31140tctgacgatg ctgacatccg tagagtggct atcgacctcg ttcgctctcc tactggtatg 31200cagtctggtg cctcaggtaa gttcggtgca acagcttctg acatccatga gagacttcat 31260ggtactgacc agcgtactta taatgacttg tacaaagcaa tgtctgacgc tatgaaagac 31320cctgagttct ctactggcgg cgctaagatg tcccgtgaag aaactcgata cactatctac 31380cgtagagcgg cactagctat tgagcgtcca gaactacaga aggcactcac tccgtctgag 31440agaatcgtta tggacatcat taagcgtcac tttgacacca agcgtgaact tatggaaaac 31500ccagcaatat tcggtaacac aaaggctgtg agtatcttcc ctgagagtcg ccacaaaggt 31560acttacgttc ctcacgtata tgaccgtcat gccaaggcgc tgatgattca acgctacggt 31620gccgaaggtt tgcaggaagg gattgcccgc tcatggatga acagctacgt ctccagacct 31680gaggtcaagg ccagagtcga tgagatgctt aaggaattac acggggtgaa ggaagtaaca 31740ccagagatgg tagagaagta cgctatggat aaggcttatg gtatctccca ctcagaccag 31800ttcaccaaca gttccataat agaagagaac attgagggct tagtaggtat cgagaataac 31860tcattccttg aggcacgtaa cttgtttgat tcggacctat ccatcactat gccagacgga 31920cagcaattct cagtgaatga cctaagggac ttcgatatgt tccgcatcat gccagcgtat 31980gaccgccgtg tcaatggtga catcgccatc atggggtcta ctggtaaaac cactaaggaa 32040cttaaggatg agattttggc tctcaaagcg aaagctgagg gagacggtaa gaagactggc 32100gaggtacatg ctttaatgga taccgttaag attcttactg gtcgtgctag acgcaatcag 32160gacactgtgt gggaaacctc actgcgtgcc atcaatgacc tagggttctt cgctaagaac 32220gcctacatgg gtgctcagaa cattacggag attgctggga tgattgtcac tggtaacgtt 32280cgtgctctag ggcatggtat cccaattctg cgtgatacac tctacaagtc taaaccagtt 32340tcagctaagg aactcaagga actccatgcg tctctgttcg ggaaggaggt ggaccagttg 32400attcggccta aacgtgctga cattgtgcag cgcctaaggg aagcaactga taccggacct 32460gccgtggcga acatcgtagg gaccttgaag tattcaacac aggaactggc tgctcgctct 32520ccgtggacta agctactgaa cggaaccact aactaccttc tggatgctgc gcgtcaaggt 32580atgcttgggg atgttattag tgccacccta acaggtaaga ctacccgctg ggagaaagaa 32640ggcttccttc gtggtgcctc cgtaactcct gagcagatgg ctggcatcaa gtctctcatc 32700aaggaacata tggtacgcgg tgaggacggg aagtttaccg ttaaggacaa gcaagcgttc 32760tctatggacc cacgggctat ggacttatgg agactggctg acaaggtagc tgatgaggca 32820atgctgcgtc cacataaggt gtccttacag gattcccatg cgttcggagc actaggtaag 32880atggttatgc agtttaagtc tttcactatc aagtccctta actctaagtt cctgcgaacc 32940ttctatgatg gatacaagaa caaccgagcg attgacgctg cgctgagcat catcacctct 33000atgggtctcg ctggtggttt ctatgctatg gctgcacacg tcaaagcata cgctctgcct 33060aaggagaaac gtaaggagta cttggagcgt gcactggacc caaccatgat tgcccacgct 33120gcgttatctc gtagttctca attgggtgct cctttggcta tggttgacct agttggtggt 33180gttttagggt tcgagtcctc caagatggct cgctctacga ttctacctaa ggacaccgtg 33240aaggaacgtg acccaaacaa accgtacacc tctagagagg taatgggcgc tatgggttca 33300aaccttctgg aacagatgcc ttcggctggc tttgtggcta acgtaggggc taccttaatg 33360aatgctgctg gcgtggtcaa ctcacctaat aaagcaaccg agcaggactt catgactggt 33420cttatgaact ccacaaaaga gttagtaccg aacgacccat tgactcaaca gcttgtgttg 33480aagatttatg aggcgaacgg tgttaacttg agggagcgta ggaaataata cgactcacta 33540tagggagagg cgaaataatc ttctccctgt agtctcttag atttacttta aggaggtcaa 33600atggctaacg taattaaaac cgttttgact taccagttag atggctccaa tcgtgatttt 33660aatatcccgt ttgagtatct agcccgtaag ttcgtagtgg taactcttat tggtgtagac 33720cgaaaggtcc ttacgattaa tacagactat cgctttgcta cacgtactac tatctctctg 33780acaaaggctt ggggtccagc cgatggctac acgaccatcg agttacgtcg agtaacctcc 33840actaccgacc gattggttga ctttacggat ggttcaatcc tccgcgcgta tgaccttaac 33900gtcgctcaga ttcaaacgat gcacgtagcg gaagaggccc gtgacctcac tacggatact 33960atcggtgtca ataacgatgg tcacttggat gctcgtggtc gtcgaattgt gaacctagcg 34020aacgccgtgg atgaccgcga tgctgttccg tttggtcaac taaagaccat gaaccagaac 34080tcatggcaag cacgtaatga agccttacag ttccgtaatg aggctgagac tttcagaaac 34140caagcggagg gctttaagaa cgagtccagt accaacgcta cgaacacaaa gcagtggcgc 34200gatgagacca agggtttccg agacgaagcc aagcggttca agaatacggc tggtcaatac 34260gctacatctg ctgggaactc tgcttccgct gcgcatcaat ctgaggtaaa cgctgagaac 34320tctgccacag catccgctaa ctctgctcat ttggcagaac agcaagcaga ccgtgcggaa 34380cgtgaggcag acaagctgga aaattacaat ggattggctg gtgcaattga taaggtagat 34440ggaaccaatg tgtactggaa aggaaatatt cacgctaacg ggcgccttta catgaccaca 34500aacggttttg actgtggcca gtatcaacag ttctttggtg gtgtcactaa tcgttactct 34560gtcatggagt ggggagatga gaacggatgg ctgatgtatg ttcaacgtag agagtggaca 34620acagcgatag gcggtaacat ccagttagta gtaaacggac agatcatcac ccaaggtgga 34680gccatgaccg gtcagctaaa attgcagaat gggcatgttc ttcaattaga gtccgcatcc 34740gacaaggcgc actatattct atctaaagat ggtaacagga ataactggta cattggtaga 34800gggtcagata acaacaatga ctgtaccttc cactcctatg tacatggtac gaccttaaca 34860ctcaagcagg actatgcagt agttaacaaa cacttccacg taggtcaggc cgttgtggcc 34920actgatggta atattcaagg tactaagtgg ggaggtaaat ggctggatgc ttacctacgt 34980gacagcttcg ttgcgaagtc caaggcgtgg actcaggtgt ggtctggtag tgctggcggt 35040ggggtaagtg tgactgtttc acaggatctc cgcttccgca atatctggat taagtgtgcc 35100aacaactctt ggaacttctt ccgtactggc cccgatggaa tctacttcat agcctctgat 35160ggtggatggt tacgattcca aatacactcc aacggtctcg gattcaagaa tattgcagac 35220agtcgttcag tacctaatgc aatcatggtg gagaacgagt aattggtaaa tcacaaggaa 35280agacgtgtag tccacggatg gactctcaag gaggtacaag gtgctatcat tagactttaa 35340caacgaattg attaaggctg ctccaattgt tgggacgggt gtagcagatg ttagtgctcg 35400actgttcttt gggttaagcc ttaacgaatg gttctacgtt gctgctatcg cctacacagt 35460ggttcagatt ggtgccaagg tagtcgataa gatgattgac tggaagaaag ccaataagga 35520gtgatatgta tggaaaagga taagagcctt attacattct tagagatgtt ggacactgcg 35580atggctcagc gtatgcttgc ggacctttcg gaccatgagc gtcgctctcc gcaactctat 35640aatgctatta acaaactgtt agaccgccac aagttccaga ttggtaagtt gcagccggat 35700gttcacatct taggtggcct tgctggtgct cttgaagagt acaaagagaa agtcggtgat 35760aacggtctta cggatgatga tatttacaca ttacagtgat atactcaagg ccactacaga 35820tagtggtctt tatggatgtc attgtctata cgagatgctc ctacgtgaaa tctgaaagtt 35880aacgggaggc attatgctag aatttttacg taagctaatc ccttgggttc tcgctgggat 35940gctattcggg ttaggatggc atctagggtc agactcaatg gacgctaaat ggaaacagga 36000ggtacacaat gagtacgtta agagagttga ggctgcgaag agcactcaaa gagcaatcga 36060tgcggtatct gctaagtatc aagaagacct tgccgcgctg gaagggagca ctgataggat 36120tatttctgat ttgcgtagcg acaataagcg gttgcgcgtc agagtcaaaa ctaccggaac 36180ctccgatggt cagtgtggat tcgagcctga tggtcgagcc gaacttgacg accgagatgc 36240taaacgtatt ctcgcagtga cccagaaggg tgacgcatgg attcgtgcgt tacaggatac 36300tattcgtgaa ctgcaacgta agtaggaaat caagtaagga ggcaatgtgt ctactcaatc 36360caatcgtaat gcgctcgtag tggcgcaact gaaaggagac ttcgtggcgt tcctattcgt 36420cttatggaag gcgctaaacc taccggtgcc cactaagtgt cagattgaca tggctaaggt 36480gctggcgaat ggagacaaca agaagttcat cttacaggct ttccgtggta tcggtaagtc 36540gttcatcaca tgtgcgttcg ttgtgtggtc cttatggaga gaccctcagt tgaagatact 36600tatcgtatca gcctctaagg agcgtgcaga cgctaactcc atctttatta agaacatcat 36660tgacctgctg ccattcctat ctgagttaaa gccaagaccc ggacagcgtg actcggtaat 36720cagctttgat gtaggcccag ccaatcctga ccactctcct agtgtgaaat cagtaggtat 36780cactggtcag ttaactggta gccgtgctga cattatcatt gcggatgacg ttgagattcc 36840gtctaacagc gcaactatgg gtgcccgtga gaagctatgg actctggttc aggagttcgc 36900tgcgttactt aaaccgctgc cttcctctcg cgttatctac cttggtacac ctcagacaga 36960gatgactctc tataaggaac ttgaggataa ccgtgggtac acaaccatta tctggcctgc 37020tctgtaccca aggacacgtg aagagaacct ctattactca cagcgtcttg ctcctatgtt 37080acgcgctgag tacgatgaga accctgaggc acttgctggg actccaacag acccagtgcg 37140ctttgaccgt gatgacctgc gcgagcgtga gttggaatac ggtaaggctg gctttacgct 37200acagttcatg cttaacccta accttagtga tgccgagaag tacccgctga ggcttcgtga 37260cgctatcgta gcggccttag acttagagaa ggccccaatg cattaccagt ggcttccgaa 37320ccgtcagaac atcattgagg accttcctaa cgttggcctt aagggtgatg acctgcatac 37380gtaccacgat tgttccaaca actcaggtca gtaccaacag aagattctgg tcattgaccc 37440tagtggtcgc ggtaaggacg aaacaggtta cgctgtgctg tacacactga acggttacat 37500ctaccttatg gaagctggag gtttccgtga tggctactcc gataagaccc ttgagttact 37560cgctaagaag gcaaagcaat ggggagtcca gacggttgtc tacgagagta acttcggtga 37620cggtatgttc ggtaaggtat tcagtcctat ccttcttaaa caccacaact gtgcgatgga 37680agagattcgt gcccgtggta tgaaagagat gcgtatttgc gatacccttg agccagtcat 37740gcagactcac cgccttgtaa ttcgtgatga ggtcattagg gccgactacc agtccgctcg 37800tgacgtagac ggtaagcatg acgttaagta ctcgttgttc taccagatga cccgtatcac 37860tcgtgagaaa ggcgctctgg ctcatgatga ccgattggat gcccttgcgt taggcattga 37920gtatctccgt gagtccatgc agttggattc cgttaaggtc gagggtgaag tacttgctga 37980cttccttgag gaacacatga tgcgtcctac ggttgctgct acgcatatca ttgagatgtc 38040tgtgggagga gttgatgtgt actctgagga cgatgagggt tacggtacgt ctttcattga 38100gtggtgattt atgcattagg actgcatagg gatgcactat agaccacgga tggtcagttc 38160tttaagttac tgaaaagaca cgataaatta atacgactca ctatagggag aggagggacg 38220aaaggttact atatagatac tgaatgaata cttatagagt gcataaagta tgcataatgg 38280tgtacctaga gtgacctcta agaatggtga ttatattgta ttagtatcac cttaacttaa 38340ggaccaacat aaagggagga gactcatgtt ccgcttattg ttgaacctac tgcggcatag 38400agtcacctac cgatttcttg tggtactttg tgctgccctt gggtacgcat ctcttactgg 38460agacctcagt tcactggagt ctgtcgtttg ctctatactc acttgtagcg attagggtct 38520tcctgaccga ctgatggctc accgagggat tcagcggtat gattgcatca caccacttca 38580tccctataga gtcaagtcct aaggtatacc cataaagagc ctctaatggt ctatcctaag 38640gtctatacct aaagataggc catcctatca gtgtcaccta aagagggtct tagagagggc 38700ctatggagtt cctatagggt cctttaaaat ataccataaa aatctgagtg actatctcac 38760agtgtacgga cctaaagttc ccccataggg ggtacctaaa gcccagccaa tcacctaaag 38820tcaaccttcg gttgaccttg agggttccct aagggttggg gatgaccctt gggtttgtct 38880ttgggtgtta ccttgagtgt ctctctgtgt ccct 3891410403DNAHomo sapiens 10ttttgcaccg gatgtaattt aatagggtgg ggaagatact caagagcggg catgggacgg 60ggcgcagagt ccgggttaag ggccttacgt agccaaaagg ggggatccag gaccctcggg 120cccccccagc cgcatctgca ggttgatgcg gtacgctgaa gactacagag tgcctggcct 180ttgcgggaca agcgtagacc gcgaatgggg acagccgggg acagagcagc gcgcggcggg 240cctgaggggg atggccgctg agacactgcc gtgggggcgg ggaccagggt gggaaggaaa 300gggtggaacc tgtgctccgc tgcagtagcg caccatgggg gccggagcgc agcccgccct 360ccccgccgct cgccccgtgc gccccccccg gcctccccgc cca 403

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed