Method For Reducing Viscosity In Saccharification Process

Mitchinson; Colin ;   et al.

Patent Application Summary

U.S. patent application number 14/004877 was filed with the patent office on 2014-05-15 for method for reducing viscosity in saccharification process. This patent application is currently assigned to DANISCO US INC.. The applicant listed for this patent is William D. Hitz, Bradley R. Kelemen, Suzanne E. Lantz, Mian Li, Colin Mitchinson, Keith D. Wing. Invention is credited to William D. Hitz, Bradley R. Kelemen, Suzanne E. Lantz, Mian Li, Colin Mitchinson, Keith D. Wing.

Application Number20140134677 14/004877
Document ID /
Family ID45922826
Filed Date2014-05-15

United States Patent Application 20140134677
Kind Code A1
Mitchinson; Colin ;   et al. May 15, 2014

METHOD FOR REDUCING VISCOSITY IN SACCHARIFICATION PROCESS

Abstract

The present invention relates to compositions that can be used in hydrolyzing biomass such as compositions comprising a polypeptide having glycosyl hydrolase family 61/endoglucanase activity, methods for hydrolyzing biomass material, and methods for reducing viscosity of biomass mixture using a composition comprising a polypeptide having glycosyl hydrolase family 61/endoglucanase activity.


Inventors: Mitchinson; Colin; (Half Moon Bay, CA) ; Li; Mian; (Santa Clara, CA) ; Kelemen; Bradley R.; (Menlo Park, CA) ; Lantz; Suzanne E.; (San Carlos, CA) ; Wing; Keith D.; (Wilmington, DE) ; Hitz; William D.; (Wilmington, DE)
Applicant:
Name City State Country Type

Mitchinson; Colin
Li; Mian
Kelemen; Bradley R.
Lantz; Suzanne E.
Wing; Keith D.
Hitz; William D.

Half Moon Bay
Santa Clara
Menlo Park
San Carlos
Wilmington
Wilmington

CA
CA
CA
CA
DE
DE

US
US
US
US
US
US
Assignee: DANISCO US INC.
Palo Alto
CA

Family ID: 45922826
Appl. No.: 14/004877
Filed: March 16, 2012
PCT Filed: March 16, 2012
PCT NO: PCT/US12/29445
371 Date: January 29, 2014

Related U.S. Patent Documents

Application Number Filing Date Patent Number
61453923 Mar 17, 2011

Current U.S. Class: 435/99 ; 435/200; 435/209
Current CPC Class: C12N 9/2437 20130101; C12P 19/14 20130101; C12Y 302/01004 20130101; C12P 19/02 20130101
Class at Publication: 435/99 ; 435/200; 435/209
International Class: C12P 19/02 20060101 C12P019/02; C12P 19/14 20060101 C12P019/14

Claims



1. A biomass saccharification mixture comprising: a. a biomass material b. an enzyme composition comprising a glycosyl hydrolase family 61 enzyme having endoglucanase activity, which is: i. at least 65% in sequence identity to any one of SEQ ID NO:1-29 and 148; ii. at least 65% in sequence identity to residues 22-344 of SEQ ID NO:27 iii. comprises at least one amino acid sequence motifs selected from the group consisting of: SEQ ID NOs: 84-91; iv. comprises one or more sequence motifs selected from the group consisting of: (1) SEQ ID NO:84 and 88; (2) SEQ ID NOs: 85 and 88; (3) SEQ ID NO:86; (4) SEQ ID NO:87; (5) SE ID NO:84, 88 and 89; (6) SEQ ID NOs: 84, 88 and 91; (10) SEQ ID NOs: 85, 88 and 91; (11) SEQ ID NOs: 84, 88, 89 and 91; (12) SEQ ID NOs: 84, 88, 90 and 91; (13) SEQ ID NOs: 85, 88, 89 and 91; and (14) SEQ ID NOs: 85, 88, 90 and 91; v. encoded by a polynucleotide sequence or a complement thereof that is at least 65% sequence identity to SEQ ID NO:30; or vi. encoded by a polynucleotide sequence that hybridizes under high stringency conditions to SEQ ID NO:30 or to a complement thereof; wherein said biomass saccharification mixture has a lower viscosity than a biomass saccharification mixture without the glycosyl hydrolyase family 61 enzyme and/or is capable of increasing the level of saccharification in the mixture as compared to the level of saccharification in a mixture having no or a lower level of glycosyl hydrolase family 61 enzyme, wherein the level of saccharification is measured by the yield of fermentable sugar after the mixture is incubated for a period of time sufficient to cause saccharification of the biomass.

2. (canceled)

3. The biomass saccharification mixture of claim 1, wherein the glycosyl hydrolase family 61 enzyme is derived from a filamentous fungus; optionally wherein the filamentous fungus is one selected from the group: Trichoderma, Humicola, Fusarium, Aspergillus, Neurospora, Penicillium, Cephalosporium, Achlva, Podospora, Endothia, Mucor, Cochliobolus, Pyricularia, Chrvsosporium, Aspergillus awamori, Aspergillus fumigatus, Aspergillus foetidus, Aspergillus japonicus, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae, Chrysosporium lucknowense, Fusarium bactridioides, Fusarium cerealis, Fusarium crookwellense, Fusarium culmorum, Fusarium graminearum, Fusarium graminum, Fusarium heterosporum, Fusarium negundi, Fusarium oxysporum, Fusarium reticulatum, Fusarium roseum, Fusarium sambucinum, Fusarium sarcochroum, Fusarium sporotrichioides, Fusarium sulphureum, Fusarium torulosum, Fusarium trichothecioides, Fusarium venenatum, Bjerkandera adusta, Ceriporiopsis aneirina, Ceriporiopsis aneirina, Ceriporiopsis caregiea, Ceriporiopsis gilvescens, Ceriporiopsis pannocinta, Ceriporiopsis rivulosa, Ceriporiopsis subrufa, Ceriporiopsis subvermispora, Coprinus cinereus, Coriolus hirsutus, Humicola insolens, Humicola lanuginosa, Mucor miehei, Myceliophthora thermophila, Neurospora crassa, Neurospora intermedia, Penicillium purpurogenum, Penicillium canescens, Penicillium solitum, Penicillium funiculosum Phanerochaete chrysosporium, Phlebia radiate, Pleurotus ervngii, Talaromvces flavus, Thielavia terrestris, Trametes villosa, Trametes versicolor, Trichoderma harzianum, Trichoderma koningii, Trichoderma longibrachiatum, Trichoderma reesei, Trichoderma viride, Geosmithia emersonii, or G. stearothermophilus.

4-7. (canceled)

8. The biomass saccharification mixture of claim 1, wherein the enzyme composition further comprises one or more or all of: (1) a polypeptide having xylanase activity, (2) a polypeptide having beta-xylosidase activity; (3) a polypeptide having L-alpha-arabinofuranosidase activity; and (4) at least one polypeptide having cellobiohydrolase activity and at least one polypeptide having beta-glucosidase activity; optionally wherein: a. the polypeptide having xylanase activity is: i. a polypeptide encoding a T. reesei Xyn3 (SEQ ID NO:76), T. reesei Xyn2 (SEQ ID NO:77), an AfuXyn2 (SEQ ID NO:58), and AfuXyn5 (SEQ ID NO:60), or a variant thereof having at least 90% sequence identity thereto; or ii. a polypeptide encoded by a polynucleotide (1) having at least 90% sequence identity to SEQ ID NO:75, 57, or 59; or (2) hybridizes under high stringency conditions to SEQ ID NO: 75, 57, or 59, or to a complement thereof; b. the at least one polypeptide having beta-xylosidase activity is: i. a polypeptide encoding an Fv3A (SEQ ID NO:36), an Fv43A (SEQ ID NO:44), a Pf43A (SEQ ID NO:38), an Fv43D (SEQ ID NO:62), an Fv39A (SEQ ID NO:42), an Fv43E (SEQ ID NO:40), an Fo43A (SEQ ID NO:52), an Fv43B (SEQ ID NO:46), a Pa51A (SEQ ID NO:48), a Gz43A (SEQ ID NO:50), a T. reesei Bxl1 (SEQ ID NO:78), or a variant thereof having at least 90% sequence identity thereto; or ii. a polypeptide encoded by a polynucleotide (1) having at least 90% sequence identity to SEQ ID NO:35, 43, 37, 61, 41, 39, 51, 45, 47, 49, or 159; (2) hybridizes under high stringency conditions to SEQ ID NO: 35, 43, 37, 61, 41, 39, 51, 45, 47, 49, 159, or to a complement thereof; and/or c. the at least one polypeptide having L-alpha-arabinofuranosidase activity is: i. a polypeptide encoding an Af43A (SEQ ID NO:54), an Fv43B (SEQ ID NO:46), a Pf51A (SEQ ID NO:56), a Pa51A (SEQ ID NO:48), an Fv51A (SEQ ID NO:66), or a variant thereof having at least 90% sequence identity thereto; or ii. a polypeptide encoded by a polynucleotide (1) having at least 90% sequence identity to SEQ ID NO:53, 45, 55, 47, or 65; (2) hybridizes under high stringency conditions to SEQ ID NO: 53, 45, 55, 47, or 65, or to a complement thereof; d. the at least one polypeptide having cellobiohydrolase activity is a polypeptide encoding a T. reesei CBH1, Af 7A (SEQ ID NO:150), Af7B (SEQ ID NO:151), Cg7A (SEQ ID NO:152), Cg7B (SEQ ID NO:153), Tt7A (SEQ ID NO:154), Tt7B (SEQ ID NO:155), T. reesei CBH2, Tt6A (SEQ ID NO:156), St6A (SEQ ID NO:157), St6B (SEQ ID NO:158), or a variant thereof having at least 90% sequence identity thereto; and/or e. the at least one polypeptide having beta-glucosidase activity is: i. a polypeptide encoding an Fv3C (SEQ ID NO:100), a Pa3D (SEQ ID NO:94), an Fv3G (SEQ ID NO:96), an Fv3D (SEQ ID NO:98), a Tr3A (SEQ ID NO:102), a Tr3B (SEQ ID NO:104), a Te3A (SEQ ID NO:106), an An3A (SEQ ID NO:108), an Fo3A (SEQ ID NO:110), a Gz3A (SEQ ID NO:112), an Nh3A (SEQ ID NO:114), a Vd3A (SEQ ID NO:116), a Pa3G (SEQ ID NO:118), a Tn3B (SEQ ID NO:119), or a variant thereof having at least 90% sequence identity thereto; or ii. a polypeptide encoded by a polynucleotide (1) having at least 90% sequence identity to SEQ ID NO:99, 93, 95, 97, 101, 103, 105, 107, 109, 111, 113, 115, or 117; (2) hybridizes under high stringency conditions to SEQ ID NO: 99, 93, 95, 97, 101, 103, 105, 107, 109, 111, 113, 115, or 117, or to a complement thereof.

9-11. (canceled)

12. The biomass saccharification mixture of claim 1, wherein the enzyme composition comprises (1) about 0.1 wt. % to about 50 wt. %, about 1 wt. % to about 20 wt. %, about 5 wt. % to about 15 wt. % of the polypeptide having GH61/endoglucanase activity, referencing the total weight of proteins in the enzyme composition; or (2) about 0.2 mg to about 30 mg, about 0.2 mg to about 20 mg, about 0.5 mg to about 10 mg, or about 1 mg to about 5 mg of the polypeptide having GH61/endoglucanase activity per gram of cellulose, hemicelluloses or a mixture of cellulose and hemicelluloses contained in the biomass material.

13. The biomass saccharification mixture of claim 8, wherein the enzyme composition comprises cellobiohydrolase in an amount that is (1) about 0.1 wt. % to about 80 wt. %, about 5 wt. % to about 70 wt. %, about 10 wt. % to about 60 wt. %, about 20 wt. % to about 50 wt. %, or about 25 wt. % to about 50 wt. % of the total weight of proteins in the enzyme composition; or (2) about 0.2 mg to about 30 mg, about 0.2 mg to about 20 mg, about 0.5 mg to about 10 mg, or about 0.5 mg to about 5 mg per gram of cellulose, hemicelluloses, or a mixture of cellulose and hemicelluloses in the biomass saccharification mixture; and comprises beta-glucosidase in an amount that is (1) about 0.1 wt. % to about 50 wt. %, about 1 wt. % to about 30 wt. %, about 2 wt. % to about 20 wt. %, about 5 wt. % to about 20 wt. %, or about 8 wt. % to about 15 wt. % of the total weight of proteins in the enzyme composition; or (2) about 0.2 mg to about 30 mg, about 0.2 mg to about 20 mg, about 0.5 mg to about 10 mg, or about 0.5 mg to about 5 mg per gram of cellulose, hemicelluloses, or a mixture of cellulose and hemicelluloses in the biomass saccharification mixture.

14. The biomass saccharification mixture of claim 8, wherein: a. the enzyme composition comprises (1) about 0.1 wt. % to about 50 wt. %, about 1 wt. % to about 40 wt. %, about 4 wt. % to about 30 wt. %, about 5 wt. % to about 20 wt. %, or about 8 wt. % to about 15 wt. % of the polypeptide having xylanase activity, referencing the total weight of proteins in the enzyme composition; or (2) about 0.2 mg to about 30 mg, about 0.2 mg to about 20 mg, about 0.5 mg to about 10 mg, or about 0.5 mg to about 5 mg of the polypeptide having xylanase activity per gram of cellulose, hemicelluloses, or a mixture of cellulose and hemicelluloses in the biomass saccharification mixture; b. the enzyme composition comprises (1) about 0.1 wt. % to about 50 wt. %, about 1 wt. % to about 40 wt. %, about 2 wt. % to about 30 wt. %, about 4 wt. % to about 20 wt. %, or about 5 wt. % to about 15 wt. % of the polypeptide having beta-xylosidase activity, referencing the total weight of proteins in the enzyme composition; or (2) about 0.2 mg to about 30 mg, about 0.2 mg to about 20 mg, about 0.5 mg to about 10 mg, or about 0.5 mg to about 5 mg of the polypeptide having beta-xylosidase activity per gram of cellulose, hemicelluloses, or a mixture of cellulose and hemicelluloses in the biomass saccharification mixture; and/or c. the enzyme composition comprises (1) about 0.1 wt. % to about 50 wt. %, about 0.1 wt. % to about 50 wt. %, about 1 wt. % to about 40 wt. %, about 2 wt. % to about 30 wt. %, about 4 wt. % to about 20 wt. %, or about 5 wt. % to about 15 wt. % of the polypeptide having L-alpha-arabinofuranosidase activity, referencing the total weight of proteins in the enzyme composition; or (2) about 0.2 mg to about 30 mg, about 0.2 mg to about 20 mg, about 0.5 mg to about 10 mg, or about 0.5 mg to about 5 mg of the polypeptide having L-alpha-arabinofuranosidase activity per gram of cellulose, hemicelluloses, or a mixture of cellulose and hemicelluloses in the biomass saccharification mixture.

15-16. (canceled)

17. The biomass saccharification mixture of claim 1, wherein the enzyme composition is a whole cellulase composition, wherein the whole cellulase composition is derived from a host cell expressing a polynucleotide encoding a polypeptide having GH61/endoglucanase activity, optionally wherein the polynucleotide encoding the polypeptide having GH61 family enzyme activity is heterologous to the host cell.

18-21. (canceled)

22. The biomass saccharification mixture of claim 17, wherein the whole cellulase composition is derived from a host cell expressing one or more or all of (1) a polynucleotide encoding a peptide having beta-xylosidase activity; (2) a polynucleotide encoding a polypeptide having xylanase activity; and (3) a polynucleotide peptide having L-alpha-arabinofuranosidase activity; (4) a polynucleotide encoding a polypeptide having cellobiohydrolase activity; and (5) a polynucleotide encoding a polypeptide having beta-glucosidase activity, optionally wherein the polynucleotide of one or more or all of (1) to (5) is heterologous to the host cell.

23-24. (canceled)

25. The biomass saccharification mixture of claim 22, wherein one or more or all of: (1) the gene encoding the polypeptide having GH61/endoglucanase activity; (2) the gene encoding the polypeptide having cellobiohydrolase activity; (3) the gene encoding the polypeptide having beta-glucosidase activity; (4) the gene encoding the polypeptide having beta-xylosidase activity; (5) the gene encoding the polypeptide having xylanase activity; and (6) the gene encoding the polypeptide having L-alpha-arabinofuranosidase activity are integrated into the genetic material of the host cell.

26. The biomass saccharification mixture of claim 17, wherein the host cell is a bacterial host cell, yeast host cell, or a fungal host cell, optionally wherein the host cell is a filamentous fungal host cell, and optionally wherein the filamentous fungal host cell is one selected from a cell of Aspergillus niger, Aspergillus oryzae, Chrysosporium lucknowense, Trichoderma reesei, Aspergillus awamori, Aspergillus fumigatus, Aspergillus foetidus, Aspergillus japonicus, Aspergillus nidulans, Fusarium bactridioides, Fusarium cerealis, Fusarium crookwellense, Fusarium culmorum, Fusarium graminearum, Fusarium graminum, Fusarium heterosporum, Fusarium negundi, Fusarium oxysporum, Fusarium reticulatum, Fusarium roseum, Fusarium sambucinum, Fusarium sarcochroum, Fusarium sporotrichioides, Fusarium sulphureum, Fusarium torulosum, Fusarium trichothecioides, Fusarium venenatum, Bierkandera adusta, Ceriporiopsis aneirina, Ceriporiopsis aneirina, Ceriporiopsis caregiea, Ceriporiopsis gilvescens, Ceriporiopsis pannocinta, Ceriporiopsis rivulosa, Ceriporiopsis subrufa, Ceriporiopsis subvermispora, Coprinus cinereus, Coriolus hirsutus, Humicola insolens, Humicola lanuginosa, Mucor miehei, Mvceliophthora thermophile, Neurospora crassa, Neurospora intermedia, Penicillium purpurogenum, Penicillium canescens, Penicillium solitum, Penicillium funiculosum Phanerochaete chrysosporium, Phlebia radiate, Pleurotus eryngii, Talaromyces flavus, Thielavia terrestris, Trametes villosa, Trametes versicolor, Trichoderma harzianum, Trichoderma koningii, Trichoderma longibrachiatum, or Trichoderma viride.

27-28. (canceled)

29. The biomass saccharification mixture of claim 1, wherein the saccharification mixture is prepared by first blending the enzyme composition comprising the polypeptide having GH61/endoglucanase activity, followed by mixing the enzyme composition with the biomass.

30-31. (canceled)

32. The biomass saccharification mixture of claim 1, wherein the biomass material is selected from seeds, grains, tubers, plant waste, byproducts of food processing or industrial processing, corn cobs, corn stover, grasses, Sorghastrum nutans, switchgrass, perennial canes, wood, wood chips, wood processing waste, sawdust, paper, paper waste, pulp, and recycled paper, potatoes, soybean, barley, rye, oats, wheat, beets, sugar cane bagasse and straw.

33. The biomass saccharification mixture of claim 1, wherein the biomass material is subjected to pretreatment with an acid or a base, optionally wherein the pretreated biomass is adjusted to pH of about 4.0 to 6.5 before mixing with the enzyme composition.

34.

35. The biomass saccharification mixture of claim 1, wherein the biomass material is present in the mixture in an amount of about 5 wt. % to about 60 wt. %, about 10 wt. % to about 50 wt. %, about 15 wt. % to about 40 wt. %, about 15 wt. % to about 30 wt. %, or about 20 wt. % to about 30 wt. %, referring to the amount of biomass material in its solid state relative to the total weight of the mixture.

36. A method of hydrolyzing a biomass material comprising incubating the biomass saccharification mixture of claim 1, under conditions suitable for hydrolyzing the biomass materials in the biomass saccharification mixture and for a sufficient period of time.

37. The method of claim 36, wherein the conditions suitable for hydrolyzing the biomass materials in the biomass saccharification mixture comprises: (1) a pH of about 3.5 to about 7.0; (2) for a duration of about 2 hours or longer; and/or (3) a temperature of about 20.degree. C. to about 75.degree. C.

38. (canceled)

39. The method of claim 36, wherein at any given time above 2 hours, the amount of fermentable sugars is produced by the biomass saccharification mixture is increased by at least about 5% or at least about 10% as compared to the amount of fermentable sugars produced by a control biomass saccharification mixture comprising the same amount and type of biomass material, and the same composition of enzyme components but in the absence of the GH61/endoglucanase.

40. (canceled)

41. The method of claim 36, wherein the biomass material is present in an amount of about 10 wt. % to about 50 wt. % in its solid state.

42. The method of claim 41, wherein the viscosity of the biomass saccharification mixture is reduced by at least about 5%, about 10%, about 15%, about 20%, about 25%, or more, as compared to the viscosity of the control biomass saccharification mixture comprising the same amount and type of biomass material, and the same composition of enzyme components but in the absence of the GH61/endoglucanase.

43. A method of using the composition of claim 1 to convert a biomass material into fermentable sugars in a merchant enzyme supply model or an on-site bio-refinery model.
Description



CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Application No. 61/453,923, filed Mar. 17, 2011, which is hereby incorporated by reference in its entirety.

FIELD OF THE INVENTION

[0002] The present invention relates to compositions useful for hydrolyzing biomass, methods of using such compositions to hydrolyze biomass materials, and methods for reducing viscosity of biomass saccharification mixtures.

BACKGROUND OF THE INVENTION

[0003] Bioconversion of renewable lignocellulosic biomass to a fermentable sugar that is subsequently fermented to produce alcohol (e.g., ethanol) as an alternative to liquid fuels has attracted the intensive attention of researchers since the 1970s, when the oil crisis occurred (Bungay, H. R., "Energy: the biomass options". NY: Wiley; 1981; Olsson L, Hahn-Hagerdal B. Enzyme Microb Technol 1996, 18:312-31; Zaldivar, J et al., Appl Microbiol Biotechnol 2001, 56: 17-34; Galbe, M et al., Appl Microbiol Biotechnol 2002, 59:618-28). The production of sugars from lignocellulosic biomass materials has been known for some time, as has the subsequent fermentation and distillation of the sugars into ethanol. Much of the prior development occurred around the time of World War II when fuels were at a premium in such countries as Germany, Japan and the Soviet Union. These early processes were primarily directed to acid hydrolysis, which were complex in engineering and design, and were typically sensitive to small variations in the processes, such as to temperature, pressure and/or acid concentrations. A comprehensive discussion of these early processes is found in "Production of Sugars from Wood Using High-pressure Hydrogen Chloride", Biotechnology and Bioengineering, Volume XXV, at 2757-2773 (1983).

[0004] The abundant supply of petroleum in the period from World War II through the early 1970s slowed ethanol conversion research. However, due to the oil crisis of 1973, researchers increased their efforts to develop processes for the utilization of wood and agricultural byproducts for the production of ethanol. This research was especially important for development of ethanol as a gasoline additive to reduce the dependency of the United States upon foreign oil production, to increase the octane rating of fuels, and to reduce exhaust pollutants as an environmental measure.

[0005] Concurrently with the "oil crisis," the U.S. Environmental Protection Agency promulgated regulations requiring reduced lead additives. Insofar as ethanol is virtually a replacement of lead, some refineries have selected ethanol as the substitute for its capability of easy introduction into a refinery's operation without costly capital equipment investment.

[0006] The high pressure and high temperature gas saccharification processes developed decades ago continue to be improved. New and current research focuses greatly on enzymatic conversion processes, which employ enzymes from a variety of organisms, such as mesophilic and thermophilic fungi, yeast and bacteria, degrading cellulose into fermentable sugars. Uncertainty remains with these processes, mainly on their ability to be scaled up for commercialization and on the efficiency of ethanol production.

[0007] Cellulose and hemicellulose are the most abundant plant materials produced by photosynthesis. They can be degraded for use as an energy source by numerous microorganisms, including bacteria, yeast and fungi, which produce enzymes capable of hydrolysis of the polymeric substrates to monomeric sugars (Aro et al., 2001). Organisms are often restrictive with regard to which sugars they use, and this dictates which sugars are best to produce during conversion. As we approach the limits of non-renewable resources, we recognize the enormous potential of cellulose to become a major renewable energy resource (Krishna et al., 2001). The effective utilization of cellulose through biological processes can potentially overcome the shortage of foods, feeds, and fuels (Ohmiya et al., 1997).

[0008] Cellulases are enzymes that hydrolyze cellulose (beta-1,4-glucan or beta D-glucosidic linkages) resulting in the formation of glucose, cellobiose, cellooligosaccharides, and the like. Cellulases have been traditionally divided into 3 major classes: endoglucanases (EC 3.2.1.4) ("EG"), exoglucanases or cellobiohydrolases (EC 3.2.1.91) ("CBH") and beta-glucosidases ([beta]-D-glucoside glucohydrolase; EC 3.2.1.21) ("BG") (Knowles et al., 1987 and Shulein, 1988). Endoglucanases act mainly on the amorphous parts of the cellulose fiber, whereas cellobiohydrolases are also able to degrade crystalline cellulose.

[0009] Cellulases have also been shown to be useful in degradation of cellulose biomass to ethanol (wherein the cellulases degrade cellulose to glucose, and yeast or other microbes further ferment the glucose into ethanol), in the treatment of mechanical pulp (Pere et al., 1996), for use as a feed additive (WO 91/04673) and in grain wet milling. Separate saccharification and fermentation is a process whereby cellulose present in biomass, e.g., corn stover, is converted to glucose and subsequently yeast strains convert glucose into ethanol. Simultaneous saccharification and fermentation is a process whereby cellulose present in biomass, e.g., corn stover, is converted to glucose and, at the same time and in the same reactor, yeast strains convert glucose into ethanol. Ethanol production from readily available sources of cellulose provides a stable, renewable fuel source.

[0010] Cellulases are produced by a number of bacteria, yeast and fungi. Certain fungi produce a complete cellulase system (i.e., a whole cellulase) capable of degrading crystalline forms of cellulose. A whole cellulase, especially one that is naturally occurring, is, however, not necessarily capable of achieving efficient degradation because it may not include all the components/activities required for this efficiency, for example, activities from each of the CBH, EG and BG classifications. (Filho et al., 1996). It is known that individual CBH, EG, and BG components alone do not bring about efficient hydrolysis, but the combination of EG-type cellulases and CBH-type cellulases interact to more efficiently degrade cellulose than either enzyme used alone (Wood, 1985; Baker et al., 1994; and Nieves et al., 1995).

[0011] Cellulases are known in the art to be useful in the treatment of textiles, for enhancing the cleaning ability of detergent compositions, for use as a softening agent, for improving the feel and appearance of cotton fabrics, and the like (Kumar et al., 1997). Cellulase-containing detergent compositions with improved cleaning performance (U.S. Pat. No. 4,435,307; GB App. Nos. 2,095,275 and 2,094,826) and for use in the treatment of fabric to improve the feel and appearance of the textile (U.S. Pat. Nos. 5,648,263, 5,691,178, and 5,776,757, and GB App. No. 1,358,599), have been described.

[0012] Hence, cellulases produced in fungi and bacteria have received significant attention. In particular, fermentation of Trichoderma spp. (e.g., T. longibrachiatum or T. reesei) has been shown to produce a complete cellulase system capable of degrading crystalline forms of cellulose. Over the years, Trichoderma cellulase production has been improved by classical mutagenesis, screening, selection and development of highly refined, large scale inexpensive fermentation conditions. While the multi-component cellulase system of Trichoderma spp. is able to hydrolyze cellulose to glucose, there are cellulases from other microorganisms, particularly bacterial strains, with different properties for efficient cellulose hydrolysis, and it would be advantageous to express these proteins in a filamentous fungus for industrial scale cellulase production. However, the results of many studies demonstrate that the yield of expressing bacterial enzymes from filamentous fungi is low (Jeeves et al., 1991).

[0013] Soluble sugars such as glucose and cellobiose have many uses for the production of chemicals and biological products. The optimization of cellulose hydrolysis allows for the use of less enzymes and improved cost effectiveness for the production of soluble sugars.

[0014] An efficient conversion of lignocellulosic biomass into fermentable sugars is key to producing bioethanol in a cost-effective and environmentally-friendly way. To reduce energy and processing cost, particularly for distillation, the minimum ethanol concentration produced by a viable process should be at least 4% (w/v). Such an increased ethanol concentration can be achieved by processing substrates having high dry matter of solids. However a common problem associated with saccharifying a high dry matter biomass is the high viscosity of the slurry, resulting in a slurry that is not pumpable or requires large energy input during handling. When dealing with handling of high solids, problems such as 1) insufficient mixing with limited mass transfer, 2) increasing concentration of inhibitors, such as acetic acid, furfural, 5-hydroxymethyl furfural, phenolic lignin degradation, 3) production inhibition, such as glucose, cellobiose, ethanol, and 4) fermentation microorganism viability, will occur. High viscosity limits the dry substance level in the process, increasing energy and water consumption, reducing the separation efficiency, evaporation and heat exchange, and ultimately, the ethanol yield. Reduction of viscosity is therefore beneficial, and enzymes play a key role in breaking down the soluble/insoluble compounds causing high viscosity.

[0015] Studies to increase solid loading and/or reduce viscosity of saccharification processes have taken place. For example, a number of studies utilized fed-batch operations in order to increase the solids level in the biomass substrate loading. A gravimetric mixing reactor design was used, which allowed batch enzymatic liquefaction and hydrolysis of pretreated wheat straw at up to 40% solids concentration. This fed-batch strategy sequentially loads the biomass substrate or substrate plus enzymes during enzymatic hydrolysis in order to achieve hydrolysis of a large amount of substrate, a relatively low viscosity during hydrolysis, and a relatively high glucose concentration during the process. Alternatively, enzymatic pre-hydrolysis of a lignocellulosic biomass for a period of time at the enzymes' optimum temperature, e.g., 50.degree. C., can be carried out to reduce the viscosity of the slurry, enabling pumping and stirring. The decrease in viscosity during pre-hydrolysis makes the subsequent fermentation or SSF possible.

[0016] Despite the development of numerous approaches, there remains a need in the art for additional ways to reduce viscosity and improve yield of desirable fermentable sugars.

[0017] All references cited herein, including patents, patent applications, and publications, are incorporated by reference in their entirety.

SUMMARY OF INVENTION

[0018] The present disclosure is based, in part, on the surprising discovery that inclusion of a certain endoglucanase enzyme (e.g., a polypeptide having glycosyl hydrolase family 61 ("GH61")/endoglucanase activity, such as the T. reesei endoglucanase ("Eg4")) in a biomass saccharification mixture substantially reduces the viscosity of the mixture. The disclosure also pertains to the inclusion of such enzyme(s) to substantially improve the saccharification and the yields of desirable fermentable sugars from a given biomass substrate.

[0019] Provided herein are polypeptides having glycosyl hydrolase family 61 ("GH61")/endoglucanase activity. By "GH61/endoglucanase activity" it is meant that the polypeptide has a GH61 activity and/or an endoglucanase activity. In some aspects, the polypeptide is isolated. In some aspects, the polypeptide having GH61/endoglucanase activity (e.g., an isolated polypeptide) is a GH61 endoglucanase or an endoglucanase IV ("EG IV") from various species, or a polypeptide corresponding to (e.g., sharing homology with, sharing functional domains, sharing GH61 motif(s), and/or sharing conservative residues with) a GH61 endoglucanase (e.g., a T. reesei Eg4 polypeptide). Such species include Trichoderma, Humicola, Fusarium, Aspergillus, Neurospora, Penicillium, Cephalosporium, Achlya, Podospora, Endothia, Mucor, Cochliobolus, Pyricularia, Chrysosporium, Aspergillus awamori, Aspergillus fumigatus, Aspergillus foetidus, Aspergillus japonicus, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae, Chrysosporium lucknowense, Fusarium bactridioides, Fusarium cerealis, Fusarium crookwellense, Fusarium culmorum, Fusarium graminearum, Fusarium graminum, Fusarium heterosporum, Fusarium negundi, Fusarium oxysporum, Fusarium reticulatum, Fusarium roseum, Fusarium sambucinum, Fusarium sarcochroum, Fusarium sporotrichioides, Fusarium sulphureum, Fusarium torulosum, Fusarium trichothecioides, Fusarium venenatum, Bjerkandera adusta, Ceriporiopsis aneirina, Ceriporiopsis aneirina, Ceriporiopsis caregiea, Ceriporiopsis gilvescens, Ceriporiopsis pannocinta, Ceriporiopsis rivulosa, Ceriporiopsis subrufa, Ceriporiopsis subvermispora, Coprinus cinereus, Coriolus hirsutus, Humicola insolens, Humicola lanuginosa, Mucor miehei, Myceliophthora thermophila, Neurospora crassa, Neurospora intermedia, Penicillium purpurogenum, Penicillium canescens, Penicillium solitum, Penicillium funiculosum Phanerochaete chrysosporium, Phlebia radiate, Pleurotus eryngii, Talaromyces flavus, Thielavia terrestris, Trametes villosa, Trametes versicolor, Trichoderma harzianum, Trichoderma koningii, Trichoderma longibrachiatum, Trichoderma reesei, Trichoderma viride, Geosmithia emersonii, or G. stearothermophilus.

[0020] In some aspects, the polypeptide having GH61/endoglucanase activity (e.g., an isolated polypeptide) is a GH61 endoglucanase selected from the group consisting of the polypeptides with amino acid sequences shown in FIG. 1 of the present disclosure. For example, suitable GH61 endoglucanases include those that are are represented by their GenBank Accession Numbers CAB97283.2, CAD70347.1, CAD21296.1, CAE81966.1, CAF05857.1, EAA26873.1, EAA29132.1, EAA30263.1, EAA33178.1, EAA33408.1, EAA34466.1, EAA36362.1, EAA29018.1, and EAA29347.1, or those that are named St61 from S. thermophilum 24630, St61A from S. thermophilum 23839c, St61B from S. thermophilum 46583, St61D from S. thermophilum 80312, Afu61a from A. fumigatus Afu3g03870 (NCBI Ref: XP.sub.--748707), an endoglucanase of NCBI Ref: XP.sub.--750843.1 from A. fumigatus Afu6g09540, an endoglucanase of A. fumigatus EDP47167, an endoglucanase of T. terrestris 16380, an endoglucanase of T. terrestris 155418, an endoglucanase of T. terrestris 68900, Cg61A (EAQ86340.1) from C. globosum, T. reesei Eg7, T. reesei Eg4, and an endoglucanase with GenBank Accession: XP.sub.--752040 from A. fumigatus Af293. In some aspects, the polypeptide having GH61/endoglucanase activity (e.g., isolated polypeptide) comprises an amino acid sequence that is at least about 60% (e.g., at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%) sequence identity to any one of SEQ ID NOs: 1-29 and 148. In certain aspects, the polypeptide having GH61/endoglucanase activity (e.g., isolated polypeptide) comprises an amino acid sequence that comprises one or more sequence motif(s) selected from the group consisting of: (1) SEQ ID NOs:84 and 88; (2) SEQ ID NOs:85 and 88; (3) SEQ ID NO:86; (4) SEQ ID NO:87; (5) SEQ ID NOs:84, 88 and 89; (6) SEQ ID NOs:85, 88, and 89; (7) SEQ ID NOs: 84, 88, and 90; (8) SEQ ID NOs: 85, 88 and 90; (9) SEQ ID NOs:84, 88 and 91; (10) SEQ ID NOs: 85, 88 and 91; (11) SEQ ID NOs: 84, 88, 89 and 91; (12) SEQ ID NOs: 84, 88, 90 and 91; (13) SEQ ID NOs: 85, 88, 89 and 91: and (14) SEQ ID NOs: 85, 88, 90 and 91. In some embodiments, the polypeptide is at least about 100 (e.g., at least about 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240, or more) amino acid residues in length.

[0021] In some aspects, the polypeptide having GH61/endoglucanase activity is a variant of a GH61 endoglucanase such as, for example, one selected from those listed in FIG. 1. Suitable polypeptide include, e.g, GenBank Accession Number CAB97283.2, CAD70347.1, CAD21296.1, CAE81966.1, CAF05857.1, EAA26873.1, EAA29132.1, EAA30263.1, EAA33178.1, EAA33408.1, EAA34466.1, EAA36362.1, EAA29018.1, or EAA29347.1, or St61 of S. thermophilum 24630, St61A of S. thermophilum 23839c, St61B of S. thermophilum 46583, St61D of S. thermophilum 80312, Afu61a of A. fumigatus Afu3g03870 (NCBI Ref: XP.sub.--748707), an enzyme of A. fumigatus Afu6g09540 (NCBI Ref: XP.sub.--750843.1), an enzyme of A. fumigatus EDP47167, an enzyme of T. terrestris 16380, an enzyme of T. terrestris 155418, an enzyme of T. terrestris 68900, and C. globosum Cg61A (EAQ86340.1), T. reesei Eg7, T. reesei Eg4, and an enzyme of A. fumigatus Af293 (with GenBank Accession: XP.sub.--752040). In some aspects, the polypeptide having GH61/. endoglucanase activity is a variant of an enzyme comprising any one of SEQ ID NOs: 1-29 and 148. The polypeptide having GH61/endoglucanase activity may be a variant of an enzyme having at least about 100 (e.g., at least about 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240 or more) amino acid residues in length, comprising one or more of the sequence motifs selected from: (1) SEQ ID NOs:84 and 88; (2) SEQ ID NOs:85 and 88; (3) SEQ ID NO:86; (4) SEQ ID NO:87; (5) SEQ ID NOs:84, 88 and 89; (6) SEQ ID NOs:85, 88, and 89; (7) SEQ ID NOs: 84, 88, and 90; (8) SEQ ID NOs: 85, 88 and 90; (9) SEQ ID NOs:84, 88 and 91; (10) SEQ ID NOs: 85, 88 and 91; (11) SEQ ID NOs: 84, 88, 89 and 91; (12) SEQ ID NOs: 84, 88, 90 and 91; (13) SEQ ID NOs: 85, 88, 89 and 91: and (14) SEQ ID NOs: 85, 88, 90 and 91. The polypeptide having GH61/endoglucanase activity may be a variant of a GH61 endoglucanase, wherein the variant has an amino acid sequence having at least about 60% (e.g., at least about any of 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%) identity to any one of SEQ ID NOs:1-18.

[0022] In some aspects, the polypeptide having GH61/endoglucanase activity (e.g., an isolated polypeptide, including a variant of GH61 endoglucanase) has endoglucanase activity. The variant may comprise at least one motif (at least 1, 2, 3, 4, 5, 6, 7, or 8 motifs) selected from SEQ ID NOs:84-91. For the purpose of the present disclosure enzymes can be referred to by their functionalities. For example, an eodnglucanse polypeptide can also be referred as polypeptide having endoglucanase activity, or vise versa.

[0023] In some aspects, the polypeptide having GH61/endoglucanase activity (including a variant of GH61 endoglucanase) comprises one or more sequence motif(s) selected from: (1) SEQ ID NOs:84 and 88; (2) SEQ ID NOs:85 and 88; (3) SEQ ID NO:86; (4) SEQ ID NO:87; (5) SEQ ID NOs:84, 88 and 89; (6) SEQ ID NOs:85, 88, and 89; (7) SEQ ID NOs: 84, 88, and 90; (8) SEQ ID NOs: 85, 88 and 90; (9) SEQ ID NOs:84, 88 and 91; (10) SEQ ID NOs: 85, 88 and 91; (11) SEQ ID NOs: 84, 88, 89 and 91; (12) SEQ ID NOs: 84, 88, 90 and 91; (13) SEQ ID NOs: 85, 88, 89 and 91: and (14) SEQ ID NOs: 85, 88, 90 and 91.

[0024] In some aspects, the polypeptide having GH61/endoglucanase activity (including a variant) comprises a CBM domain (e.g., functional CBM domain). In some aspects, the polypeptide having GH61/endoglucanase activity (including a variant of GH61 endoglucanase) comprises a catalytic domain (e.g., functional catalytic domain).

[0025] Also provided herein are variants of EG IV polypeptides. For example, such variants can have at least about 60% (e.g., at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%) sequence identity to any one of SEQ ID NOs: 1-29 and 148, or to a mature polypeptide thereof. For example, provided herein are variants of T. reesei Eg4 polypeptide. Such variants may have at least about 60% (e.g., at least about 60%, 65%, 70%, 75%, 80%, 85%, 88%, 90%, 92.5%, 95%, 96%, 97%, 98%, or 99%) sequence identity to residues 22 to 344 of SEQ ID NO:27. In some aspects, the polypeptide or a variant thereof is isolated. In some aspects, the polypeptide or a variant thereof has endoglucanase activity. In some aspects, the polypeptide or a variant thereof comprises residues corresponding to at least about 5 residues (e.g., at least about any of 6, 7, 8, 9, 10, 11, or 12) of H22, D61, G63, C77, H107, R177, E179, H184, Q193, C198, Y195, and Y232 of SEQ ID NO:27, or any corresponding conserved residues in any of the other polypeptides. In some aspects, the polypeptide or a variant thereof comprises residues corresponding to H22, D61, G63, C77, H107, R177, E179, H184, Q193, C198, Y195, and Y232 of SEQ ID NO:27. The polypeptide or a variant thereof may comprise residues corresponding to at least 5 residues (e.g., at least about any of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, or 19) of G313, Q314, C315, G316, G317, S321, G322, P323, T324, C326, A327, T331, C332, N336, Y338, Y339, Q341, C342, and L343 of SEQ ID NO:27. In some aspects, the polypeptide or a variant thereof comprises residues corresponding to G313, Q314, C315, G316, G317, 5321, G322, P323, T324, C326, A327, T331, C332, N336, Y338, Y339, Q341, C342, and L343 of SEQ ID NO:27. The polypeptide or a variant thereof may comprise a CBM domain (e.g., a functional CBM domain). In some aspects, the polypeptide or a variant thereof comprises a catalytic domain (e.g., a functional catalytic domain).

[0026] Also provided herein are nucleic acids or polynucleotides encoding any one of the polypeptides herein. For example, the disclosure provides polynucleotide encoding a polypeptide having at least about 60% (e.g., at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%) sequence identity to any one of SEQ ID NOs: 1-29 and 148. For example, the disclosure provides herein isolated nucleic acids having at least about 60% (e.g., at least about 60%, 65%, 70%, 75%, 80%, 85%, 88%, 90%, 92.5%, 95%, 96%, 97%, 98%, or 99%) identity to SEQ ID NO:30. Also provided are expression cassettes, vectors, and cells comprising the nucleic acids described above.

[0027] Also provided herein are enzyme compositions (e.g., non-naturally occurring compositions) comprising a polypeptide having GH61/endoglucanase activity. In some aspects, the composition comprises a whole cellulase comprising the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof). The polypeptide having GH61/endoglucanase activity is, e.g., T. reesei endoglucanase IV ("T. reesei Eg4") or a variant thereof. A variant of T. reesei Eg4 can be any of the variants provided herein.

[0028] In some aspects, the enzyme composition is a cellulase composition. The enzyme composition may further comprise one or more hemicellulases, and thus can also be a hemicellulase composition. In some aspects, the enzyme composition comprises at least one (e.g., at least 2, 3, 4, 5, 6, 7, or 8) cellulase polypeptide(s). In some aspects, the at least one cellulase polypeptide is a polypeptide having endoglucanase activity, a polypeptide having cellobiohydrolase activity, or a polypeptide having .beta.-glucosidase activity. In some aspects, the composition further comprises at least one (e.g., at least 2, 3, 4, 5, 6, 7, or 8) hemicellulase polypeptide(s). In some aspects, the at least one hemicellulase polypeptide is a polypeptide having xylanase activity, a polypeptide having .beta.-xylosidase activity, or a polypeptide having L-.alpha.-arabinofuranosidase activity, or a polypeptide having combined xylanase/.beta.-xylosidase activity, combined .beta.-xylosidase/L-.alpha.-arabinofuranosidase activity, or combined xylanase/L-.alpha.-arabinofuranosidase activity activity. In some aspects, the composition comprises at least one (e.g., at least 2, 3, 4, 5, 6, 7, or 8) cellulase polypeptide(s) and at least one (e.g., at least 2, 3, 4, 5, 6, 7, or 8) hemicellulase polypeptide(s).

[0029] In some aspects, the enzyme composition comprises a polypeptide having GH61/endoglucanase activity and further comprises at least 1 (e.g., at least 2, 3, 4, or 5) polypeptide having endoglucanase activity, at least 1 (e.g., at least 2, 3, 4, or 5) polypeptide having cellobiohydrolase activity, at least 1 (e.g., at least 2, 3, 4, or 5) polypeptide having .beta.-glucosidase activity, at least 1 (e.g., at least 2, 3, 4, or 5) polypeptide having xylanase activity, at least 1 (e.g., at least 2, 3, 4, or 5) polypeptide having .beta.-xylosidase activity, and/or at least 1 (e.g., at least 2, 3, 4, or 5) polypeptide having L-.alpha.-arabinofuranosidase activity.

[0030] In some aspects, the composition comprises a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least one polypeptide having xylanase activity (e.g., T. reesei Xyn3, T. reesei Xyn2, AfuXyn2, AfuXyn5, or a variant thereof). In some aspects, the composition further comprises at least one polypeptide having .beta.-glucosidase activity (e.g., Fv3C, Pa3D, Fv3G, Fv3D, Tr3A, Tr3B, Te3A, An3A, Fo3A, Gz3A, Nh3A, Vd3A, Pa3G, Tn3B, or a variant thereof). In some aspects, the composition further comprises at least one polypeptide having cellobiohydrolase activity (e.g., T. reesei CBH1, A. fumigatus 7A, 7B, C. globosum 7A, 7B, T. terrestris 7A, 7B, T. reesei CBH2, T. terrestris 6A, S. thermophile 6A, 6B, or a variant thereof). In some aspects, the composition further comprises at least one polypeptide having endoglucanase activity other than the GH61 enzyme (e.g., T. reesei EG1, T. reesei EG2, or a variant thereof).

[0031] The composition may comprise a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least 1 polypeptide having .beta.-glucosidase activity (e.g., Fv3C, Pa3D, Fv3G, Fv3D, Tr3A, Tr3B, Te3A, An3A, Fo3A, Gz3A, Nh3A, Vd3A, Pa3G, Tn3B or a variant thereof). The composition may comprise a polypeptide having GH61/endoglucanase activity and at least 1 polypeptide having cellobiohydrolase activity (e.g., T. reesei CBH1, A. fumigatus 7A, 7B, C. globosum 7A, 7B, T. terrestris 7A, 7B, T. reesei CBH2, T. terrestris 6A, S. thermophile 6A, 6B or a variant thereof). The composition may comprise a polypeptide having GH61/endoglucanase activity, and at least 1 polypeptide having endoglucanase activity (e.g., T. reesei EG1, T. reesei EG2 or a variant thereof). The composition may comprise a polypeptide having GH61/endoglucanase activity and at least 1 polypeptide having .beta.-xylosidase activity (e.g., Fv3A, Fv43A, Pf43A, Fv43D, Fv39A, Fv43E, Fo43A, Fv43B, Pa51A, Gz43A, T. reesei Bxl1 or a variant thereof). The composition may comprise a polypeptide having GH61/endoglucanase activity and at least 1 polypeptide having L-.alpha.-arabinofuranosidase activity (e.g., Af43A, Fv43B, Pf51A, Pa51A, Fv51A or a variant thereof).

[0032] Any one of the compositions described herein may comprise a whole cellulase. For example, a composition is provided comprising a whole cellulase comprising a polypeptide having GH61/endoglucanase activity. Alternatively, a composition is provided comprising a whole cellulase plus a polypeptide having GH61/endoglucanase activity. In some aspects, a composition comprising a polypeptide having GH61/endoglucanase activity, and a polypeptide having endoglucanase activity other than the polypeptide having GH61/endoglucanase activity, a polypeptide having cellobiohydrolase activity, and a polypeptide having .beta.-glucosidase activity is provided. The composition further comprises one or more hemicellulase polypeptides. For example, the composition may comprise one or more polypeptides having xylanase activity, one or more polypeptides having .beta.-xylosidase activity, and/or one or more polypeptides having L-.alpha.-arabinofuranosidase activity. A composition may comprise a polypeptide having GH61/endoglucanase activity, at least one polypeptide having xylanase activity (e.g., T. reesei Xyn3, T. reesei Xyn2, AfuXyn2, AfuXyn5, or a variant thereof), and a whole cellulase. In some aspects, a composition comprising a polypeptide having GH61/endoglucanase activity, at least one polypeptide having xylanase activity (e.g., T. reesei Xyn3, T. reesei Xyn2, AfuXyn2, AfuXyn5, or a variant thereof), and at least one other polypeptide having hemicellulase activity is provided.

[0033] In some aspects, the whole cellulase comprises at least one polypeptide having endoglucanase activity (e.g., T. reesei EG1, T. reesei EG2, or a variant thereof) that is not the polypeptide having GH61/endoglucanase activity. The whole cellulase can comprise at least one polypeptide having cellobiohydrolase activity (e.g., T. reesei CBH1, A. fumigatus 7A, 7B, C. globosum 7A, 7B, T. terrestris 7A, 7B, T. reesei CBH2, T. terrestris 6A, S. thermophile 6A, 6B, or a variant thereof). The whole cellulase can comprise at least one polypeptide having .beta.-glucosidase activity (e.g., Fv3C, Pa3D, Fv3G, Fv3D, Tr3A, Tr3B, Te3A, An3A, Fo3A, Gz3A, Nh3A, Vd3A, Pa3G, Tn3B, or a variant thereof).

[0034] In some aspects, in any one of the compositions described herein, the at least one polypeptide having endoglucanase activity but is not the one having GH61/endoglucanase activity is, e.g., T. reesei EG1 (or a variant thereof) and/or T. reesei EG2 (or a variant thereof). In some aspects, the at least one polypeptide having cellobiohydrolase activity is, e.g., T. reesei CBH1, A. fumigatus 7A, 7B, C. globosum 7A, 7B, T. terrestris 7A, 7B, T. reesei CBH2, T. terrestris 6A, S. thermophile 6A, 6B, or a variant thereof. In some aspects, the at least one polypeptide having .beta.-glucosidase activity is, e.g., Fv3C, Pa3D, Fv3G, Fv3D, Tr3A, Tr3B, Te3A, An3A, Fo3A, Gz3A, Nh3A, Vd3A, Pa3G, and/or Tn3B, or variants thereof. In some aspects, the at least one polypeptide having xylanase activity is, e.g., T. reesei Xyn3, T. reesei Xyn2, AfuXyn2, and/or AfuXyn5, or variants thereof. In some aspects, the at least one polypeptide having .beta.-xylosidase activity is, e.g., a Group 1 .beta.-xylosidase or a Group 2 .beta.-xylosidase, wherein the Group 1 .beta.-xylosidase may be Fv3A, Fv43A polypeptide, or a variant thereof, and the Group 2 .beta.-xylosidase may be Pf43A, Fv43D, Fv39A, Fv43E, Fo43A, Fv43B, Pa51A, Gz43A, T. reesei Bxl1 polypeptide, or a variant thereof. In some aspects, the at least one polypeptide having .beta.-xylosidase activity is, e.g., Fv3A (or a variant thereof) and/or Fv43D (or a variant thereof). In some aspects, the at least one polypeptide having L-.alpha.-arabinofuranosidase activity may be Af43A, Fv43B, Pf51A, Pa51A, and/or Fv51A, or variants thereof.

[0035] In some aspects, a composition comprising an isolated polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) is provided. In some aspects, the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) is expressed by a host cell, wherein the nucleic acid encoding the polypeptide having GH61/endoglucanase activity has been engineered into the host cell. For example, the polypeptide having GH61/endoglucanase activity is expressed by a host cell, and the nucleic acid encoding that polypeptide is heterologous to the host cell.

[0036] In some aspects, a composition is provided comprising a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof), and further comprising one or more cellulase polypeptides and/or one or more hemicellulase polypeptides, wherein the cellulase polypeptide and/or the hemicellulase polypeptide is expressed by a host cell, and the cellulase polypeptide and/or hemicellulase polypeptide is heterologous to the host cell. In some aspects, a composition comprising a polypeptide having GH61/endoglucanase activity and further comprising at least one cellulase polypeptide and/or at least one hemicellulase polypeptide is provided, and the cellulase polypeptide and/or the hemicellulase polypeptide is expressed by a host cell, and the cellulase polypeptide and/or hemicellulase polypeptide is endogenous to the host cell. In some aspects, the cellulase polypeptide comprises a polypeptide having endoglucanase activity (e.g., T. reesei EG1, T. reesei EG2, or a variant thereof) that is different from the polypeptide having GH61/endoglucanase activity, a polypeptide having cellobiohydrolase activity (e.g., T. reesei CBH1, A. fumigatus 7A, 7B, C. globosum 7A, 7B, T. terrestris 7A, 7B, T. reesei CBH2, T. terrestris 6A, S. thermophile 6A, 6B, or a variant thereof), or a polypeptide having .beta.-glucosidase activity (e.g., Fv3C, Pa3D, Fv3G, Fv3D, Tr3A, Tr3B, Te3A, An3A, Fo3A, Gz3A, Nh3A, Vd3A, Pa3G, Tn3B, or a variant thereof). In some aspects, the hemicellulase polypeptide comprises a polypeptide having xylanase activity (e.g., T. reesei Xyn3, T. reesei Xyn2, AfuXyn2, AfuXyn5, or a variant thereof), a polypeptide having .beta.-xylosidase activity (e.g., Fv3A, Fv43A, Pf43A, Fv43D, Fv39A, Fv43E, Fo43A, Fv43B, Pa51A, Gz43A, T. reesei Bxl1, or a variant thereof), or a polypeptide having L-.alpha.-arabinofuranosidase activity (e.g., Af43A, Fv43B, Pf51A, Pa51A, Fv51A, or a variant thereof).

[0037] In some aspects, the composition is prepared from a fermentation broth. In some aspects, the composition is prepared from the fermentation broth of an integrated strain (e.g., H3A/Eg4, #27, as described herein in the Examples), wherein the GH61 endoglucanase gene is integrated into the genetic materials of the host strain. In some aspects, the composition is prepared from the fermentation broth of a strain, wherein a nucleic acid encoding a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) is heterologous to the host cell, wherein the GH61 endoglucanase has been, e.g., integrated into the strain, or expressed by a vector introduced into the host strain.

[0038] Any one of the compositions or methods provided herein comprising a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) may be a whole cellulase. The composition may be a fermentation broth subject to minimum post-production processing (e.g., purification, filtration, a cell kill step, and/or ultrafiltration, etc), and is used as a whole broth formulation.

[0039] In some aspects, a composition (e.g., a non-naturally occurring composition) is provided comprising T. reesei Eg4, T. reesei Bg11, T. reesei xyn3, Fv3A, Fv43D, and Fv51A, or respective variants thereof. The composition may be a whole cellulase. The composition may be a fermentation broth subject to minimum post-production processing (e.g., filtration, purification, ultrafiltration, a cell-kill step, etc), and is thus used as a whole broth formulation. In some aspects, the composition comprises an isolated T. reesei Eg4 or a variant thereof. In some aspects, the composition comprises at least one of an isolated T. reesei Bg11, an isolated T. reesei xyn3, an isolated Fv3A, an isolated Fv43D, and an isolated Fv51A. For example, any of the above-mentioned polypeptides can be introduced into the composition by simple addition or mixing of purified or isolated polypeptides. Alternatively, the polypeptides herein can be expressed by the host strain using suitable recombinant techniques, and certain of the above-mentioned polypeptides may be overexpressed or underexpressed, as compared to their naturally-occurring levels in the host cell. In some aspects, genes encoding any one of the above-mentioned polypeptides can be integrated into the host strain. In some aspects, the composition of the present disclosure is prepared from a fermentation broth of the host strain. In some aspects, the composition is from the fermentation broth of an integrated strain (e.g., H3A/Eg4, #27, as described herein in the Examples). In some embodiments, the fermentation broth is subject to minimum post-production processing, and is used as a whole broth formulation. In some aspects, the nucleic acid encoding the GH61 endoglucanase is heterologous to the host cell. In some aspects, at least one of the nucleic acids encoding T. reesei Bg11, T. reesei xyn3, Fv3A, Fv43D, or Fv51A is heterologous to the host cell expressing the GH61 endoglucanase of the invention. In some aspects, at least one nucleic acid encoding T. reesei Bg11, T. reesei xyn3, Fv3A, Fv43D, or Fv51A is endogenous to the host cell expressing the GH61 endoglucanase.

[0040] The polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) may be present in an enzyme composition or in a biomass saccharification mixture in an amount sufficient to increase the yield of fermentable sugar(s) from hydrolysis of a biomass material (e.g., by at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%, 70%, 80%, or 90%) as compared to the yield achieved by a control enzyme composition or a control biomass saccharification mixture that is comparable in terms of the types and concentrations of enzymatic or other components therein, but without the polypeptide(s) having GH61/endoglucanase activity. The polypeptide having GH61/endoglucanase activity may be present in the enzyme composition or in a biomass saccharification mixture in an amount sufficient to reduce the viscosity of the biomass saccharification mixture during hydrolysis of the biomass material therein (e.g., by at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%, 70%, 80%, or 90%) as compared to the viscosity of a control mixture that is comparable in terms of the types and concentrations of enzymatic or other components therein, but without the polypeptide having GH61/endoglucanase activity. In some aspects, the enzyme composition or the biomass saccharification mixture comprises at least 1 polypeptide having endoglucanase activity, at least 1 polypeptide having cellobiohydrolase activity, at least 1 polypeptide having .beta.-glucosidase activity, in total amounts that are sufficient to cause hydrolysis of the biomass material to which the polypeptides come into contact. The enzyme composition or the biomass saccharification mixture may further comprise at least 1 polypeptide having xylanase activity, at least 1 polypeptide having .beta.-xylosidase activity, at least 1 polypeptide having L-.alpha.-arabinofuranosidase activity, and/or a whole cellulase, or a mixture thereof, in total amounts that are sufficient to cause hydrolysis of the biomass material to which the polypeptides come into contact.

[0041] In some aspects, the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) is present in an amount that is about 0.1 wt. % to about 50 wt. % (e.g., about 0.5 wt. % to about 30 wt. %, about 1 wt. % to about 20 wt. %, about 5 wt. % to about 20 wt. %, about 7 wt. % to about 20 wt. %, or about 8 to about 15 wt. %) of the total weight of proteins in the enzyme composition or in the biomass saccharification mixture. For example the polypeptide having GH61/endoglucanase activity is present in an amount that is about 8 wt. %, about 10 wt. %, or about 12 wt. % of the total weight of proteins in the enzyme composition or in the biomass saccharification mixture. The enzyme composition or the biomass saccharification mixture may comprise more than one polypeptides having GH61/endoglucanase activity. For example, the enzyme composition or biomass saccharification mixture can comprise a T. reesei Eg4 or a variant thereof, as well as a T. reesei Eg7 (or a variant thereof), wherein the total amount of polypeptides having GH61/endoglucanase (Eg4+Eg7) activity is about 0.1 wt. % to about 50 wt. % (e.g., about 0.5 wt. % to about 30 wt. %, about 2 wt. % to about 20 wt. %, about 5 wt. % to about 20 wt. %, about 7 wt. % to about 20 wt. %, or about 8 wt. % to about 15 wt. %) of the total weight of proteins in the enzyme composition or in the biomass saccharification mixture. The polypeptide(s) having GH61/endoglucanase activity may be expressed from polynucleotides that are heterologous or endogenous to the host cell. Alternatively the polypeptide having GH61/endoglucanase activity can be introduced into the enzyme composition or the biomass saccharification mixture in an isolated or purified form.

[0042] In some aspects, a polypeptide having cellobiohydrolase activity (e.g., T. reesei CBH1, A. fumigatus 7A, 7B, C. globosum 7A, 7B, T. terrestris 7A, 7B, T. reesei CBH2, T. terrestris 6A, S. thermophile 6A, 6B, or a variant thereof) is present in an amount that is about 0.1 wt. % to about 80 wt. % (e.g., about 5 wt. % to about 70 wt. %, about 10 wt. % to about 60 wt. %, about 20 wt. % to about 50 wt. %, or about 25 wt. % to about 50 wt. %) of the total weight of proteins in the enzyme composition or the biomass saccharification mixture. The enzyme composition or biomass saccharification mixture may comprise more than one polypeptide having cellobiohydrolase activity (e.g., T. reesei CBH1, A. fumigatus 7A, 7B, C. globosum 7A, 7B, T. terrestris 7A, 7B, T. reesei CBH2, T. terrestris 6A, S. thermophile 6A, 6B, or a variant thereof), wherein the total amount of polypeptides having cellobiohydrolase activity is about 0.1 wt. % to about 80 wt. % (e.g., about 5 wt. % to about 70 wt. %, about 10 wt. % to about 60 wt. %, about 20 wt. % to about 50 wt. %, or about 25 wt. % to about 50 wt. %) of the total weight of proteins in the enzyme composition or the biomass saccharification mixture. The polypeptide having cellobiohydrolase activity is, in some aspects, expressed from a nucleic acid heterologous or endogenous to the host cell. In some aspects, the polypeptide having cellobiohydrolase activity can be introduced into the enzyme composition or biomass saccharification mixture in an isolated or purified form.

[0043] The enzyme composition or the biomass saccharification mixture may comprise one or more polypeptides having .beta.-glucosidase activity (e.g., Fv3C, Pa3D, Fv3G, Fv3D, Tr3A, Tr3B, Te3A, An3A, Fo3A, Gz3A, Nh3A, Vd3A, Pa3G, Tn3B or a variant thereof), wherein the total amount of polypeptides having .beta.-glucosidase activity is about 0.1 wt. % to about 50 wt. % (e.g., about 1 wt. % to about 30 wt. %, about 2 wt. % to about 20 wt. %, about 5 wt. % to about 20 wt. %, or about 8 wt. % to about 15 wt. %) of the total weight of proteins in the enzyme composition or biomass saccharification mixture. The polypeptide having .beta.-glucosidase activity may be expressed from a nucleic acid heterologous or endogenous to the host cell. The polypeptide having .beta.-glucosidase activity may alternatively be introduced into the enzyme composition or biomass saccharification mixture in an isolated or purified form.

[0044] In some aspects, the enzyme composition or biomass saccharification mixture can comprise one or more the polypeptides having xylanase activity (e.g., T. reesei Xyn3, T. reesei Xyn2, AfuXyn2, AfuXyn5, or a variant thereof), wherein the total amount of polypeptides having xylanase activity is about 0.1 wt. % to about 50 wt. % (e.g., about 1 wt. % to about 40 wt. %, about 4 wt. % to about 30 wt. %, about 5 wt. % to about 20 wt. %, or about 8 wt. % to about 15 wt. %) of the total weight of proteins in the enzyme composition or the biomass saccharification mixture. The polypeptide having xylanase activity can be expressed from a nucleic acid heterologous or endogenous to the host cell. In some aspects, the polypeptide having xylanase activity can be introduced or mixed into the enzyme composition or the biomass saccharification mixture in an isolated or purified form.

[0045] The enzyme composition or biomass saccharification mixture may comprise one or more polypeptides having L-.alpha.-arabinofuranosidase activity (e.g., Af43A, Fv43B, Pf51A, Pa51A, Fv51A, or a variant thereof), wherein the total amount of polypeptides having L-.alpha.-arabinofuranosidase activity is about 0.1 wt. % to about 50 wt. % (e.g., about 1 wt. % to about 40 wt. %, about 2 wt. % to about 30 wt. %, about 4 wt. % to about 20 wt. %, or about 5 wt. % to about 15 wt. %) of the total weight of proteins in the enzyme composition or the biomass saccharification mixture. The polypeptide having L-.alpha.-arabinofuranosidase activity may be expressed from a nucleic acid heterologous or endogenous to the host cell. In some aspects, the polypeptide having L-.alpha.-arabinofuranosidase activity can be introduced or mixed into the enzyme composition or the biomass saccharification mixture in an isolated or purified form.

[0046] The enzyme composition or the biomass saccharification mixture may comprise one or more polypeptides having .beta.-xylosidase activity (e.g., Fv3A, Fv43A, Pf43A, Fv43D, Fv39A, Fv43E, Fo43A, Fv43B, Pa51A, Gz43A, T. reesei Bxl1 or a variant thereof), wherein the total amount of the polypeptides having .beta.-xylosidase activity is about 0.1 wt. % to about 50 wt. % (e.g., about 1 wt. % to about 40 wt. %, about 4 wt. % to about 35 wt. %, about 5 wt. % to about 25 wt. %, or about 5 wt. % to about 20 wt. %) of the total weight of proteins in the enzyme composition or the biomass saccharification mixture. The polypeptide having .beta.-xylosidase activity may be expressed from a nucleic acid heterologous or endogenous to the host cell. The polypeptide having .beta.-xylosidase activity may alternatively be introduced into the enzyme composition or the biomass saccharification mixture in an isolated or purified form.

[0047] In some aspects, the enzyme composition provided herein may be a whole cellulase. The whole cellulase may comprise one or more polypeptides having endoglucanase activity (such as, e.g, T. reesei Eg4, Eg1, Eg2, Eg7, or a variant thereof) expressed from a nucleic acid heterologous or endogenous to the host cell. The whole cellulase may also comprise one or more polypeptides having cellobiohydrolase activity (e.g., T. reesei CBH1, A. fumigatus 7A, 7B, C. globosum 7A, 7B, T. terrestris 7A, 7B, T. reesei CBH2, T. terrestris 6A, S. thermophile 6A, 6B, or a variant thereof) expressed from a nucleic acid heterologous or endogenous to the host cell. The whole cellulase may further comprise one or more polypeptide having .beta.-glucosidase activity (e.g., Fv3C, Pa3D, Fv3G, Fv3D, Tr3A, Tr3B, Te3A, An3A, Fo3A, Gz3A, Nh3A, Vd3A, Pa3G, Tn3B, or a variant thereof) expressed from a nucleic acid heterologous or endogenous to the host cell. The whole cellulase may be used in the form of a fermentation broth of the host cell. The broth can be subject to minimum post-production processing, including, e.g., filtration, purification, ultrafiltration, a cell-kill step, etc, and thus the broth may be used for biomass hydrolysis in a whole broth formulation.

[0048] In some aspects, the enzyme composition provided herein is capable of converting a biomass material into fermentable sugar(s) (e.g., glucose, xylose, arabinose, and/or cellobiose). In some aspects, the enzyme composition is capable of achieving at least about 0.1 (e.g., 0.1 to 0.4) fraction product as determined by the calcofluor assay described herein.

[0049] In some aspects, the enzyme composition can be a cellulase composition or a hemicellulase composition. The enzyme composition may comprise the polypeptide having GH61/endoglucanase activity and further may comprise one or more cellulase polypeptides and/or one or more hemicellulase polypeptides, wherein the one or more polypeptides having GH61/endoglucanase activity and the one or more cellulase polypeptides, and/or the one or more hemicellulase polypeptides are blended into a mixture before the mixture is used to contact and hydrolyze a biomass substrate in a biomass saccharification mixture.

[0050] In some aspects, the one or more polypeptides having GH61/endoglucanase activity, one or more cellulase polypeptides, and one or more hemicellulase polypeptide, are added to a biomass material, at different times. For example, a polypeptide having GH61/endoglucanase activity is added to a biomass material before, or after, a cellulase polypeptide and/or a hemicellulase polypeptide is added to the same biomass material.

[0051] In some aspects, a composition of the invention comprises at least one polypeptide having GH61/endoglucanase activity and a biomass material in, e.g., a mixture. For example, the composition may be a hydrolysis mixture, a fermentation broth/mixture, or a biomass saccharification mixture. The mixture may comprise one or more fermentable sugar(s).

[0052] Also provided herein are methods of hydrolyzing a biomass material comprising contacting the biomass material with an enzyme composition (e.g., a non-naturally occurring composition) comprising a polypeptide having GH61/endoglucanase activity, in an amount sufficient to hydrolyze the biomass material in the resulting biomass saccharification mixture.

[0053] Also provided herein are methods of reducing the viscosity of a biomass mixture, and/or a biomass saccharification mixture comprising contacting the mixture with an enzyme composition (e.g., a non-naturally occurring composition) comprising a polypeptide having GH61/endoglucanase activity, which is present in the composition in an amount sufficient to reduce the viscosity of the mixture. In some aspects, the biomass mixture or the biomass saccharification mixture comprises a biomass material, optionally also fermentable sugar(s), a whole cellulase and/or a composition comprising a polypeptide having cellulase activity and/or a polypeptide having hemicellulase activity. The viscosity of the mixture may be reduced by at least about 5%, (e.g., at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%, 70%, 80%, or 90%) as compared to the viscosity of a control mixture comprising the same components at the same concentrations except that the polypeptide having GH61/endoglucanase activity is absent from the mixture. The biomass material may comprise hemicellulose, cellulose, or a mixture thereof. The biomass material may comprises glucan, xylan and/or lignin, or a mixture thereof.

[0054] In some aspects, the biomass material can suitably be treated or pre-treated with an acid or a base. In some aspects, the base is ammonia. The method of the invention may further comprise adjusting the pH of the biomass mixture to a pH of about 4.0 to about 6.5 (e.g., pH of about 4.5 to about 5.5). In some aspects, the method is performed at a pH of about 4.0 to about 6.5 (e.g., pH of about 4.5 to about 5.5). In some aspects, the method is performed for about 2 h to about 7 d (e.g., about 4 h to about 6 d, about 8 h to about 5 d, or about 8 h to about 3 d). This pH adjustment can suitably be made before putting the biomass mixture in contact with the polypeptides or the enzyme compositions.

[0055] In some aspects, the biomass material is present in a saccharification mixture in a high solids level, e.g., the biomass material in its solid state constitutes at least about 5 wt. % to about 60 wt. % (e.g., about 10 wt. % to about 50 wt. %, about 15 wt. % to about 40 wt. %, about 15 wt. % to about 30 wt. %, or about 20 wt. % to about 30 wt. %) of the total weight of enzymes plus biomass materials in the saccharification mixture. By the weight of the biomass material in its solid state, it is meant the weight of the biomass material in its dry state, its dry solid state, its natural state, or its unprocessed state, or before the biomass is contacted with the polypeptides in the enzyme composition. Preferably the biomass material in its solid state constitutes at least about 15 wt. %, and even more preferably at least about 20 wt. % or 25 wt. % of the total weight of enzymes plus biomass materials in the saccharification mixture.

[0056] In some aspects, the method comprises producing fermentable sugar(s). The amount of fermentable sugar(s) may be produced at an increased level using the method of the invention. For example, the amount of the fermentable sugar(s) produced using the methods or the compositions herein is increased by at least about 5% (e.g., at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%, 70%, 80%, or 90%) as compared to the amount of the fermentable sugar(s) produced when the same biomass material is hydrolyzed by an enzyme composition comprising the same polypeptide components at the same concentrations, except that polypeptide having GH61/endoglucanase activity is absent.

[0057] In some aspects, the amount of the enzyme composition comprising a polypeptide having GH61/endoglucanase activity is sufficient to increase the yield of fermentable sugar(s) by at least about 5%, (e.g., at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%, 70%, 80%, or 90%), as compared to the yield of fermentable sugar(s) from the same biomass material by an enzyme composition having the same components at the same concentrations, except that the polypeptide having GH61/endoglucanase activity is absent. In some aspects, the amount of the polypeptide having GH61/endoglucanase activity in the biomass saccharification mixture is sufficient to reduce the viscosity of the mixture by at least about 5% (e.g., at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%, 70%, 80%, or 90%) as compared to the viscosity of a control biomass saccharification mixture comprising the same biomass and the same panel of polypeptides at the same concentrations, except that the polypeptide having GH61/endoglucanase activity is absent.

[0058] In some aspects, the amount of the composition comprising a polypeptide having GH61/endoglucanase activity used in a saccharification or hydrolysis process is about 0.1 mg to about 50 mg protein (e.g., about 0.2 mg to about 40 mg protein, about 0.5 mg to about 30 mg protein, about 1 mg to about 20 mg protein, or about 5 mg to about 15 mg protein) per gram of cellulose, hemicellulose, or a mixture of cellulose and hemicelluloses in the biomass material. The protein amount described herein refers to the weight of total protein in the enzyme composition or the biomass saccharification mixture. The proteins include a polypeptide having GH61/endoglucanase activity and may include other enzymes such as cellulase polypeptide(s) and/or hemicellulase polypeptide(s). In some aspects, the amount of the polypeptide having GH61/endoglucanase activity used in the hydrolysis or saccharification process is about 0.2 mg to about 30 mg (e.g., about 0.2 mg to about 20 mg, about 0.5 mg to about 10 mg, or about 1 mg to about 5 mg) protein per gram of cellulose, hemicellulose, or cellulose and hemicelluloses contained in the biomass material.

[0059] The enzyme composition or biomass saccharification mixture comprising a polypeptide having GH61/endoglucanase activity and at least 1 polypeptide having endoglucanase activity (e.g., T. reesei Eg1, T. reesei Eg2, and/or a variant thereof) in the hybrolysis or saccharification process may contain about 0.2 mg to about 30 mg (e.g., about 0.2 mg to about 20 mg, about 0.5 mg to about 10 mg, or about 1 mg to about 5 mg) protein per gram of cellulose, hemicellulose, or cellulose and hemicellulose in the biomass material.

[0060] The enzyme composition or biomass saccharification mixture comprising a polypeptide having GH61/endoglucanase activity and at least 1 polypeptide having cellobiohydrolase activity (e.g., T. reesei CBH1, A. fumigatus 7A, 7B, C. globosum 7A, 7B, T. terrestris 7A, 7B, T. reesei CBH2, T. terrestris 6A, S. thermophile 6A, 6B, or a variant thereof) in the hydrolysis or saccharification process may contain about 0.2 mg to about 30 mg (e.g., about 0.2 mg to about 20 mg, about 0.5 mg to about 10 mg, or about 1 mg to about 5 mg) protein per gram of cellulose, hemicellulose, or cellulose and hemicellulose in the biomass material.

[0061] In some aspects, the enzyme composition or biomass saccharification mixture comprising a polypeptide having GH61/endoglucanase activity and at least 1 polypeptide having .beta.-glucosidase activity (e.g., Fv3C, Pa3D, Fv3G, Fv3D, Tr3A, Tr3B, Te3A, An3A, Fo3A, Gz3A, Nh3A, Vd3A, Pa3G, Tn3B, or a variant thereof) in the hydrolysis or saccharification process may contain about 0.2 mg to about 30 mg (e.g., about 0.2 mg to about 20 mg, about 0.5 mg to about 10 mg, or about 0.5 mg to about 5 mg) protein per gram of cellulose, hemicellulose, or cellulose and hemicellulose in the biomass material.

[0062] The enzyme composition or biomass saccharification mixture comprising a polypeptide having GH61/endoglucanase activity and at least 1 polypeptide having xylanase activity (e.g., T. reesei Xyn3, T. reesei Xyn2, AfuXyn2, AfuXyn5 or a variant thereof) in the hydrolysis or saccharification process may contain about 0.2 mg to about 30 mg (e.g., about 0.2 mg to about 20 mg, about 0.5 mg to about 10 mg, about 0.5 mg to about 5 mg) protein per gram of cellulose, hemicellulose, or cellulose and hemicellulose in the biomass material.

[0063] The enzyme composition or the biomass saccharification mixture comprising a polypeptide having GH61/endoglucanase activity and at least 1 polypeptide having .beta.-xylosidase activity (e.g., Fv3A, Fv43A, Pf43A, Fv43D, Fv39A, Fv43E, Fo43A, Fv43B, Pa51A, Gz43A, T. reesei Bxl1, and/or a variant thereof) used in the hydrolysis or saccharification process may contain about 0.2 mg to about 30 mg (e.g., about 0.2 mg to about 20 mg, about 0.5 mg to about 10 mg, or about 0.5 mg to about 5 mg) protein per gram of cellulose, hemicellulose, or cellulose and hemicellulose in the biomass material.

[0064] The enzyme composition or the biomass saccharification mixture comprising a polypeptide having GH61/endoglucanase activity and at least 1 polypeptide having L-.alpha.-arabinofuranosidase activity (e.g., Af43A, Fv43B, Pf51A, Pa51A, Fv51A, and/or a variant thereof) used in the hydrolysis or saccharification process may contain about 0.2 mg to about 30 mg (e.g., about 0.2 mg to about 20 mg, about 0.5 mg to about 10 mg, or about 0.5 mg to about 5 mg) protein per gram of cellulose, hemicellulose, or cellulose and hemicellulose in the biomass material.

[0065] In some aspects, the method of the invention is performed at a temperature of about 30.degree. C. to about 65.degree. C. (e.g., about 35.degree. C. to about 60.degree. C., about 40.degree. C. to about 60.degree. C., or about 45.degree. C. to about 55.degree. C.).

[0066] The method of the invention may further comprise the step of contacting the biomass material with an enzyme composition comprising a whole cellulase. In some aspects, the step of further contacting the biomass material with a composition comprising a whole cellulase is performed before, after, or concurrently with contacting the biomass material with an enzyme composition comprising a polypeptide having GH61/endoglucanase activity.

[0067] In some aspects, the method of the invention further comprises the step contacting the biomass material with an enzyme composition comprising a polypeptide having cellulase activity and/or a polypeptide having hemicellulase activity. The step of contacting the biomass material with a composition comprising a polypeptide having cellulase activity and/or a polypeptide having hemicellulase activity may be performed before, after, or concurrently with contacting the biomass material with an enzyme composition comprising a polypeptide having GH61/endoglucanase activity.

[0068] In some aspect, the composition comprises the polypeptide having GH61/endoglucanase activity and further comprises at least 1 cellulase polypeptide and/or at least one hemicellulase polypeptide, wherein the polypeptide having GH61/endoglucanase activity and at least one cellulase polypeptide and/or at least 1 hemicellulase polypeptide are blended into a mixture before the mixture is used to contact the biomass material.

[0069] In some aspects, the composition comprises the polypeptide having GH61/endoglucanase activity and further comprises 1 or more cellulase polypeptides and/or 1 or more hemicellulase polypeptides, wherein the polypeptide having GH61/endoglucanase activity and 1 or more cellulase polypeptides and/or 1 or more hemicellulase polypeptides are added to the biomass material at different times. For example, the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) is added before or after the 1 or more cellulase polypeptides and/or the 1 or more hemicellulase polypeptides are added.

[0070] In some aspects, methods of applying the invention in both an industrial setting and/or a commercial setting are contemplated. Accordingly a method or a method of manufacturing, marketing, or otherwise commercializing the instant compositions comprising suitable GH61 endoglucanases is within the purview of the disclosure. The method includes, for example, the application of the compositions or the GH61 endoglucanase polypeptides or variants thereof in a merchant enzyme supply model, wherein the enzymes and variants, as well as the compositions of the invention are supplied or sold to cellulosic sugar producers, certain ethanol (bioethanol) refineries or other bio-chemical or bio-material manufacturers. The method can also be, in some aspects, the application of the compositions or the GH61 endoglucanase polypeptides or variants thereof in an on-site bio-refinery model, wherein the polypeptides or variants, or the non-naturally occurring cellulase and hemicellulase compositions of the invention are produced in an enzyme production system that is built by the enzyme manufacturer at a site that is located at or in the vicinity of the cellulosic sugar plant, bioethanol refineries or the bio-chemical/biomaterial manufacturers. In some aspects, suitable biomass substrates, preferably subject to appropriate pretreatments as described herein, can be hydrolyzed using the saccharification methods and the enzymes and/or enzyme compositions herein at or near the bioethanol refineries or the bio-chemical/biomaterial manufacturing facilities. The resulting fermentable sugars can then be subject to fermentation at the same facilities or at facilities in the vicinity.

[0071] It is to be understood that one, some, or all of the properties of the embodiments described herein may be combined to form other embodiments of the present invention. These and other aspects of the invention will become apparent to one of skill in the art.

BRIEF DESCRIPTION OF THE FIGURES

[0072] The skilled artisan will understand that the drawings are for illustration purposes only and are not intended to limit the scope of the present teachings in anyway.

[0073] FIG. 1: depicts certain amino acid sequences of various polypeptides having GH61/endoglucanase activity.

[0074] FIG. 2: depicts percent identity and divergence using ClustalV (PAM250) comparing a number of amino acid sequences of various polypeptides having GH61/endoglucanase activity, such as those presented in FIG. 1 (SEQ ID NOs: 1-28).

[0075] FIG. 3: depicts the alignment of various polypeptides having GH61/endoglucanase activity such as those presented in FIG. 1 (SEQ ID NOs: 1-28).

[0076] FIGS. 4A-4B: FIG. 4A depicts nucleotide sequence of T. reesei Eg4 (SEQ ID NO:30). FIG. 4B depicts amino acid sequence of T. reesei Eg4 (SEQ ID NO:27). The predicted signal sequence is underlined, the predicted conserved domains are in bold, and the predicted linker is in italic.

[0077] FIG. 5: depicts an amino acid sequence alignment of T. reesei Eg4 (TrEG4) (SEQ ID NO:27) with T. reesei Eg7 (TrEG7, or TrEGb) (SEQ ID NO:26) and TtEG (SEQ ID NO:29).

[0078] FIGS. 6A-6B: FIG. 6A provides conserved residues of T. reesei Eg4 (TrEg4), inferred from sequence alignment and the known structures of TrEG7 (crystal structure at Protein Data Bank Accession: pdb:2vtc) and TtEG (crystal structure at Protein Data Bank Accession: pdb:3EII). FIG. 6B provides conserved CBM domain residues inferred from sequence alignment with known sequences of Tr6A, and Tr7A.

[0079] FIG. 7 lists a number of amino acid sequence motifs of GH61 endoglucanases. Each of the "a"s in the sequence motifs represents an amino acid that may be any one of alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, or valine.

[0080] FIGS. 8A-8I: FIG. 8A depicts pENTR-TOPO-Bgl1-943/942 plasmid. FIG. 8B depicts pTrex3g 943/942 expression vector. FIG. 8C depicts pENTR/T. reesei Xyn3 plasmid. FIG. 8D depicts pTrex3g/T. reesei Xyn3 expression vector. FIG. 8E depicts pENTR-Fv3A plasmid. FIG. 8F depicts the pTrex6g plasmid. FIG. 8G depicts pTrex6g/Fv3A expression vector. FIG. 8H depicts TOPO Blunt/Pegl1-Fv43D plasmid. FIG. 8I depicts TOPO Blunt/Pegl1-Fv51A plasmid.

[0081] FIG. 9: provides the enzyme composition of T. reesei integrated strain H3A.

[0082] FIG. 10: lists the enzymes (purified or unpurified) that were individually added to each of the samples in Example 2, and the stock protein concentrations of these enzymes.

[0083] FIG. 11A-11D: FIG. 11A depicts glucose release following saccharification of dilute ammonia pretreated corncob by adding enzyme compositions comprising various purified or non-purified enzymes of FIG. 10, which were added to T. reesei integrated strain H3A, in accordance with Example 2. FIG. 11B depicts cellobiose release following saccharification of dilute ammonia pretreated corncob by adding enzyme compositions comprising various purified or non-purified enzymes of FIG. 10, which were added to T. reesei integrated strain H3A, in accordance with Example 2; FIG. 11C depicts xylobiose release following saccharification of dilute ammonia pretreated corncob by adding enzyme compositions comprising various purified or non-purified enzymes of FIG. 10, which were added to T. reesei integrated strain H3A, in accordance with Example 2; FIG. 11D depicts xylose release following saccharification of dilute ammonia pretreated corncob by adding enzyme compositions comprising various purified or non-purified enzymes of FIG. 10, which were added to T. reesei integrated strain H3A, in accordance with Example 2.

[0084] FIGS. 12A-12B: FIG. 12A depicts the expression cassette Pegl1-eg4-sucA, as described in Example 3; FIG. 12B depicts the plasmid map of pCR Blunt II TOPO containing expression cassette pEG1-EG4-sucA, as described in Example 3.

[0085] FIG. 13: depicts the amount or percentage of glucan and xylan conversion to cellobiose, glucose, xylobiose and xylose by an enzyme composition comprising enzymes produced by the T. reesei integrated strain H3A transformants expressing T. reesei Eg4, in accordance with Example 3.

[0086] FIG. 14: depicts the increased percent glucan conversion observed using an increasing amount of an enzyme composition produced by H3A transformants expressing T. reesei Eg4. The experimental details are described in Example 3.

[0087] FIG. 15: provides a T. reesei Eg4 dosing chart for Example 4 (experiment 1). The sample "#27" is an H3A/Eg4 integrated strain as described in Example 4. The amounts of purified T. reesei Eg4 that were added were listed under "Sample Description" either by wt. % or by mass (in mg protein/g G+X).

[0088] FIGS. 16A-16B: FIG. 16A depicts the effect of T. reesei Eg4 on glucose release in saccharification of dilute ammonia pretreated corncob according to Example 4. FIG. 16B depicts the effect of T. reesei Eg4 on xylose release in saccharification of dilute ammonia pretreated corncob. The Y-axes of these figures refer to the concentrations of glucose or xylose released in the reaction mixtures. The X axes list the names/brief descriptions of the enzyme composition samples. This is according to Example 4 (experiment 1).

[0089] FIGS. 17A-17B: FIG. 17A provides another T. reesei Eg4 dosing chart for Example 4 (experiment 2). The samples are described similarly to those in FIG. 15. The amounts of purified T. reesei Eg4 that were added varied by smaller increments than those of Example 4, experiment 1 (above). FIG. 17B provides another T. reesei Eg4 dosing chart for Example 4 (experiment 3). The samples are described similarly to those in FIGS. 16 and 17A. The amounts of purified T. reesei Eg4 that were added varied by even finer increments than those of Example 4, experiments 1 and 2 (above)

[0090] FIGS. 18A-18B: FIG. 18A depicts the effect of T. reesei Eg4 in various amounts (0.05 mg/g to 1.0 mg/g) on glucose release from saccharification of dilute ammonia pretreated corncob, as described in Example 4. FIG. 18B depicts the effect of T. reesei Eg4 in various amounts (0.1 mg/g to 0.5 mg/g) on glucose release from saccharification of dilute ammonia pretreated corncob, as described in Example 4.

[0091] FIG. 19: depicts the effect of T. reesei Eg4 in an enzyme composition on glucose/xylose release from saccharification of different solid loadings of dilute ammonia pretreated corn stover, as described in Example 5. The solid loading is listed on the x-axis as #%.

[0092] FIG. 20: provides percentage yield of xylose monomers released from dilute ammonia pretreated corncob using an enzyme composition comprising T. reesei Eg4, in accordance with Example 6.

[0093] FIG. 21: provides percentage yield of glucose monomer released from dilute ammonia pretreated corncob using an enzyme composition comprising T. reesei Eg4, in accordance with Example 6.

[0094] FIG. 22: provides yield (mg/ml) of total fermentable monomers released from dilute ammonia pretreated corncob using an enzyme composition comprising T. reesei Eg4, in accordance with Example 6.

[0095] FIG. 23: compares the amounts of glucose released as a result of hydrolysis by an enzyme composition without T. reesei Eg4 vs. one comprising T. reesei Eg4 at 0.53 mg/g. The experiment is described in Example 7.

[0096] FIG. 24: depicts the glucose monomer release as a result of treating ammonia pretreated corncob using purified T. reesei Eg4 alone, according to Example 7.

[0097] FIG. 25: depicts and compares the saccharification performance of the enzyme compositions produced by the T. reesei integrated strain H3A and the integrated strain H3A/Eg4 (strain #27), at an enzyme dosage of 14 mg/g. This is according to the description of Example 8.

[0098] FIG. 26: depicts the saccharification performance of the enzyme compositions produced by the T. reesei integrated strain H3A and the integrated strain H3A/Eg4 (strain #27), at various enzyme dosages, on acid pretreated corn stover. This is according to the description of Example 9.

[0099] FIG. 27: depicts the saccharification performance of the enzyme compositions produced by the T. reesei integrated strain H3A and the integrated strain H3A/Eg4 (strain #27) on dilute ammonia pretreated corn leaves, stalks, or cobs, according to Example 10.

[0100] FIG. 28: compares saccharification performance, in terms the amounts of glucose or xylose released, of enzyme compositions produced by the T. reesei integrated strain H3A and the integrated strain H3A/Eg4 (strain #27). This is according to Example 11.

[0101] FIG. 29: depicts the change in percent glucan and xylan conversion at increasing amounts of an enzyme composition produced by the T. reesei integrated strain H3A/Eg4 (strain #27). This is in accordance with the description of Example 12.

[0102] FIG. 30: is a table listing the effect of T. reesei Eg4 addition on dilute ammonia pretreated corncob saccharification. Experimental conditions are described in Example 13.

[0103] FIG. 31: depicts CMC hydrolysis by T. reesei Eg4. Experimental conditions are described in Example 13.

[0104] FIG. 32: depicts cellobiose hydrolysis by T. reesei Eg4. Experimental conditions are described in Example 13.

[0105] FIG. 33: depicts amounts for various enzyme compositions for saccharification. Experimental conditions are described in Example 14.

[0106] FIG. 34: depicts the amount of glucose, glucose+cellobiose, or xylose produced with each enzyme composition corresponding to FIG. 33. Experimental conditions are described in Example 14.

[0107] FIG. 35: depicts various ratios of CBH1, CBH2 and T. reesei Eg2 mixtures, as described in Example 15.

[0108] FIG. 36: depicts glucan conversion (%) using various enzyme compositions. Experimental conditions are described in Example 15.

[0109] FIG. 37depicts the effect of ascorbic acid when a composition comprising T. reesei Eg4 is used to treat Avicel in the presence or absence of CBH I, according to Example 22.

[0110] FIG. 38: depicts the effect of ascorbic acid on a composition comprising T. reesei Eg4 is used to treat Avicel in the presence/absence of CBH II, according to Example 22

[0111] FIGS. 39A-39B: FIG. 39A depicts the amount of substrate and various enzymes used in the experiment of Example 22, with the result depicted in FIG. 37. FIG. 39B depicts the amount of substrate and various enzymes used in the experiment of Example 22, with the result depicted in FIG. 38.

[0112] FIG. 40: depicts glucose production from corncob hydrolysis using various enzyme compositions, in accordance with the experiments described in Example 16.

[0113] FIG. 41: depicts xylose production from corncob hydrolysis using various enzyme compositions in accordance with the description of Example 16.

[0114] FIG. 42: depicts viscosity of saccharification mixture using H3A and H3A added with purified Eg4 over time in accordance with the description of Example 17.

[0115] FIG. 43: depicts viscosity of saccharification mixture using H3A and H3A/Eg4#27 over time in accordance with the description of Example 18.

[0116] FIG. 44: depicts viscosity of saccharification of dilute ammonia pretreated corncob at 25% and 30% solids, using fermentation broths of H3A or of H3A/Eg4#27 broth at 14 mg/g cellulose, in accordance with the description of Example 19.

[0117] FIG. 45: depicts glucose concentration in 6-h saccharification, 25% dry matter, 50.degree. C., pH5.0 using various enzyme compositions according to Example 20.

[0118] FIG. 46: depicts glucose concentration in 24-hour saccharification, 25% dry matter, 50.degree. C., pH5.0 using various enzyme compositions according to Example 20.

[0119] FIG. 47: depicts glucose concentration in saccharification over time, 25% dry matter, 50.degree. C., pH5.0 using various enzyme compositions according to Example 20.

[0120] FIG. 48: depicts glucan conversion in saccharification over time, 25% dry matter, 50.degree. C., pH5.0 using various enzyme compositions according to Example 20.

[0121] FIG. 49 provides a summary of the sequence identifies in the present disclosure.

[0122] FIGS. 50A-50B: FIG. 50A depicts nucleotide sequence encoding Fv3A (SEQ ID NO:35). FIG. 50B depicts Fv3A amino acid sequence (SEQ ID NO:36). The predicted signal sequence is underlined, and the predicted conserved domain is in bold.

[0123] FIGS. 51A-51B: FIG. 51A depicts nucleotide sequence encoding Pf43A (SEQ ID NO:37). FIG. 51B depicts Pf43A amino acid sequence (SEQ ID NO:38). The predicted signal sequence is underlined, the predicted conserved domain is in bold, the predicted carbohydrate binding module ("CBM") is in uppercase, and the predicted linker separating the CD and CBM is in italics.

[0124] FIG. 52A-52B: FIG. 52A depicts nucleotide sequence encoding Fv43E (SEQ ID NO:39). FIG. 52B depicts Fv43E amino acid sequence (SEQ ID NO:40). The predicted signal sequence is underlined, and the predicted conserved domain is in bold.

[0125] FIGS. 53A-53B: FIG. 53A depicts nucleotide sequence encoding Fv39A (SEQ ID NO:41). FIG. 53B depicts Fv39A amino acid sequence (SEQ ID NO:42). The predicted signal sequence is underlined, and the predicted conserved domain is in bold.

[0126] FIGS. 54A-54B: FIG. 54A depicts nucleotide sequence encoding Fv43A (SEQ ID NO:43). FIG. 54B depicts Fv43A amino acid sequence (SEQ ID NO:44). The predicted signal sequence is underlined, the predicted conserved domain in bold, the predicted CBM in uppercase, and the predicted linker connecting the conserved domain and CBM in italics.

[0127] FIGS. 55A-55B: FIG. 55A depicts nucleotide sequence encoding Fv43B (SEQ ID NO:45). FIG. 55B depicts Fv43B amino acid sequence (SEQ ID NO:46). The predicted signal sequence is underlined. The predicted conserved domain is in boldface type.

[0128] FIGS. 56A-56B: FIG. 56A depicts nucleotide sequence encoding Pa51A (SEQ ID NO:47). FIG. 56B depicts Pa51A amino acid sequence (SEQ ID NO:48). The predicted signal sequence is underlined. The predicted L-.alpha.-arabinofuranosidase conserved domain is in bold. For expression in T. reesei, the genomic DNA was codon optimized (see FIG. 73C).

[0129] FIGS. 57A-57B: FIG. 57A depicts nucleotide sequence encoding Gz43A (SEQ ID NO:49). FIG. 57B depicts Gz43A amino acid sequence (SEQ ID NO:50). The predicted signal sequence is underlined, and the predicted conserved domain is in bold. For expression in T. reesei, the predicted signal sequence was replaced by T. reesei CBH1 signal sequence (myrklavisaflatara (SEQ ID NO: 120)).

[0130] FIGS. 58A-58B: FIG. 58A depicts nucleotide sequence encoding Fo43A (SEQ ID NO:51). FIG. 58B depicts Fo43A amino acid sequence (SEQ ID NO:52). The predicted signal sequence is underlined, and the predicted conserved domain is in bold. For expression in T. reesei, the predicted signal sequence was replaced by T. reesei CBH1 signal sequence (myrklavisaflatara (SEQ ID NO:120))

[0131] FIGS. 59A-59B: FIG. 59A depicts nucleotide sequence encoding Af43A (SEQ ID NO:53). FIG. 59B depicts Af43A amino acid sequence (SEQ ID NO:54). The predicted conserved domain is in bold.

[0132] FIGS. 60A-60B: FIG. 60A depicts nucleotide sequence encoding Pf51A (SEQ ID NO:55). FIG. 60B depicts Pf51A amino acid sequence (SEQ ID NO:56). The predicted signal sequence is underlined, and the predicted L-.alpha.-arabinofuranosidase conserved domain in bold. For expression in T. reesei, the predicted signal sequence was replaced by a codon optimized the T. reesei CBH1 signal sequence (myrklavisaflatara (SEQ ID NO:120)) (underlined) and the Pf51A nucleotide sequence was codon optimized for expression.

[0133] FIGS. 61A-61B: FIG. 61A depicts nucleotide sequence encoding AfuXyn2 (SEQ ID NO:57). FIG. 61B depicts AfuXyn2 amino acid sequence (SEQ ID NO:58). The predicted signal sequence is underlined, and the predicted GH11 conserved domain in bold.

[0134] FIGS. 62A-62B: FIG. 62A depicts nucleotide sequence encoding AfuXyn5 (SEQ ID NO:59). FIG. 62B depicts AfuXyn5 amino acid sequence (SEQ ID NO:60). The predicted signal sequence is underlined, and the predicted GH11 conserved domain in bold.

[0135] FIGS. 63A-63B: FIG. 63A depicts nucleotide sequence encoding Fv43D (SEQ ID NO:61). FIG. 63B depicts Fv43D amino acid sequence (SEQ ID NO:62). The predicted signal sequence is underlined. The predicted conserved domain is in bold.

[0136] FIGS. 64A-64B: FIG. 64A depicts nucleotide sequence encoding Pf43B (SEQ ID NO:63). FIG. 64B depicts Pf43B amino acid sequence (SEQ ID NO:64). The predicted signal sequence is underlined, and the predicted conserved domain is in bold.

[0137] FIGS. 65A-65B: FIG. 65A depicts nucleotide sequence encoding Fv51A (SEQ ID NO:65). FIG. 65B depicts Fv51A amino acid sequence (SEQ ID NO:66). The predicted signal sequence is underlined, and the predicted L-.alpha.-arabinofuranosidase conserved domain is in bold.

[0138] FIGS. 66A-66B: FIG. 66A depicts nucleotide sequence encoding Cg51B (SEQ ID NO:67). FIG. 66B depicts Cg51B amino acid sequence (SEQ ID NO:68). The predicted signal sequence corresponding is underlined, and the predicted conserved domain is in bold.

[0139] FIGS. 67A-67B: FIG. 67A depicts nucleotide sequence encoding Fv43C (SEQ ID NO:69). FIG. 67B depicts Fv43C amino acid sequence (SEQ ID NO:70). The predicted signal sequence is underlined, and the predicted conserved domain is in bold.

[0140] FIGS. 68A-68B: FIG. 68A depicts nucleotide sequence encoding Fv30A (SEQ ID NO:71). FIG. 68B depicts Fv30A amino acid sequence (SEQ ID NO:72). The predicted signal sequence is underlined.

[0141] FIGS. 69A-69B: FIG. 69A depicts nucleotide sequence encoding Fv43F (SEQ ID NO:73). FIG. 69B depicts Fv43F amino acid sequence (SEQ ID NO:74). The predicted signal sequence is underlined.

[0142] FIGS. 70A-70B: FIG. 70A depicts nucleotide sequence encoding T. reesei Xyn3 (SEQ ID NO:75). FIG. 70B depicts Xyn3 amino acid sequence (SEQ ID NO:76). The predicted signal sequence is underlined, and the predicted conserved domain is in bold.

[0143] FIGS. 71A-71B: FIG. 71A depicts amino acid sequence of T. reesei Xyn2 (SEQ ID NO:77). The signal sequence is underlined. The predicted conserved domain is in bold. The coding sequence can be found in Torronen et al. Biotechnology, 1992, 10:1461-65. FIG. 71B depicts the nucleotide sequence encoding Xyn2 (SEQ ID NO:160).

[0144] FIGS. 72A-72B: FIG. 72A depicts amino acid sequence of T. reesei Bxl1 (SEQ ID NO:78). The signal sequence is underlined. The predicted conserved domain is in bold. The coding sequence can be found in Margolles-Clark et al. Appl. Environ. Microbiol. 1996, 62(10):3840-46. FIG. 72B depicts nucleotide sequence encoding Bxl1 (SEQ ID NO: 159)

[0145] FIGS. 73A-73F: FIG. 73A depicts amino acid sequence of T. reesei Bgl1 (SEQ ID NO:79). The signal sequence is underlined. The predicted conserved domain is in bold. The coding sequence can be found in Barnett et al. Bio-Technology, 1991, 9(6):562-567. FIG. 73B depicts deduced cDNA for Pa51A (SEQ ID NO:80). FIG. 73C depicts codon optimized cDNA for Pa51A (SEQ ID NO:81). FIG. 73D: depicts coding sequence for a construct comprising a CBH1 signal sequence (underlined) upstream of genomic DNA encoding mature Gz43A (SEQ ID NO:82). FIG. 73E: depicts coding sequence for a construct comprising a CBH1 signal sequence (underlined) upstream of genomic DNA encoding mature Fo43A (SEQ ID NO:83). FIG. 73F: depicts codon optimized coding sequence for a construct comprising a CBH1 signal sequence (underlined) upstream of codon optimized DNA encoding mature Pf51A (SEQ ID NO:92).

[0146] FIGS. 74A-74B: FIG. 74A depicts nucleotide sequence encoding Pa3D (SEQ ID NO:93). FIG. 74B depicts amino acid sequence of Pa3D (SEQ ID NO:94). The predicted signal sequence is underlined, and the predicted conserved domains are in bold.

[0147] FIGS. 75A-75B: FIG. 75A depicts nucleotide sequence encoding Fv3G (SEQ ID NO:95). FIG. 75B depicts amino acid sequence of Fv3G (SEQ ID NO:96). The predicted signal sequence is underlined, and the predicted conserved domains are in bold.

[0148] FIGS. 76A-76B: FIG. 76A depicts nucleotide sequence encoding Fv3D (SEQ ID NO:97). FIG. 76B depicts amino acid sequence of Fv3D (SEQ ID NO:98). The predicted signal sequence is underlined, and the predicted conserved domains are in bold.

[0149] FIGS. 77A-77B: FIG. 77A depicts nucleotide sequence encoding Fv3C (SEQ ID NO:99). FIG. 77B depicts amino acid sequence of Fv3C (SEQ ID NO:100). The predicted signal sequence is underlined, and the predicted conserved domains are in bold.

[0150] FIGS. 78A-78B: FIG. 78A depicts nucleotide sequence encoding Tr3A (SEQ ID NO:101). FIG. 78B depicts amino acid sequence of Tr3A (SEQ ID NO:102). The predicted signal sequence is underlined, and the predicted conserved domains are in bold.

[0151] FIGS. 79A-79B: FIG. 79A depicts nucleotide sequence encoding Tr3B (SEQ ID NO:103). FIG. 79B depicts amino acid sequence of Tr3B (SEQ ID NO:104). The predicted signal sequence is underlined, and the predicted conserved domains are in bold.

[0152] FIGS. 80A-80B: FIG. 80A depicts nucleotide sequence encoding Te3A (SEQ ID NO:105). FIG. 80B depicts amino acid sequence of Te3A (SEQ ID NO:106). The predicted signal sequence is underlined, and the predicted conserved domains are in bold.

[0153] FIGS. 81A-81B: FIG. 81A depicts nucleotide sequence encoding An3A (SEQ ID NO:107). FIG. 81B depicts amino acid sequence of An3A (SEQ ID NO:108). The predicted signal sequence is underlined, and the predicted conserved domains are in bold.

[0154] FIGS. 82A-82B: FIG. 82A depicts nucleotide sequence encoding Fo3A (SEQ ID NO:109). FIG. 82B depicts amino acid sequence of Fo3A (SEQ ID NO:110). The predicted signal sequence is underlined, and the predicted conserved domains are in bold.

[0155] FIGS. 83A-83B: FIG. 83A depicts nucleotide sequence encoding Gz3A (SEQ ID NO:111). FIG. 83B depicts amino acid sequence of Gz3A (SEQ ID NO:112). The predicted signal sequence is underlined, and the predicted conserved domains are in bold.

[0156] FIGS. 84A-84B: FIG. 84A depicts nucleotide sequence encoding Nh3A (SEQ ID NO:113). FIG. 84B depicts amino acid sequence of Nh3A (SEQ ID NO:114). The predicted signal sequence is underlined, and the predicted conserved domains are in bold.

[0157] FIGS. 85A-85B: FIG. 85A depicts nucleotide sequence encoding Vd3A (SEQ ID NO:115). FIG. 85B depicts amino acid sequence of Vd3A (SEQ ID NO:116). The predicted signal sequence is underlined, and the predicted conserved domains are in bold.

[0158] FIGS. 86A-86B: FIG. 86A depicts nucleotide sequence encoding Pa3G (SEQ ID NO:117). FIG. 86B depicts amino acid sequence of Pa3G (SEQ ID NO:118). The predicted signal sequence is underlined, and the predicted conserved domains are in bold.

[0159] FIG. 87: depicts amino acid sequence encoding Tn3B (SEQ ID NO:119). The standard signal prediction program, Signal P (www.cbs.dtu.dk/services/SignalP/) provided no predicted signal.

[0160] FIG. 88: depicts a partial amino acid sequence alignment of the CBM domains of T. reesei Eg4 (SEQ ID NO:27) with Tr6A (SEQ ID NO:31) and with Tr7A (SEQ ID NO:32).

[0161] FIGS. 89A-89C: FIG. 89A depicts amino acid sequence of Eg6 (SEQ ID NO:33) from T. reesei. The bolded amino acid sequence is the predicted signal peptide sequence. FIG. 89B depicts amino acid sequence of S. coccosporum endoglucanase SEQ ID NO:34; FIG. 89C depicts the nucleotide sequence encoding a GH61A from Thermoascus aurantiacus, SEQ ID NO:149.

[0162] FIGS. 90A-90I: FIG. 90A depicts amino acid sequence of Afu7A (SEQ ID NO:150), a homolog of CBH1 of T. reesei. FIG. 90B depicts amino acid sequence of Afu7B (SEQ ID NO:151), a homolog of CBH1 of T. reesei. FIG. 90C depicts amino acid sequence of Cg7A (SEQ ID NO:152), a homolog of CBH1 of T. reesei. FIG. 90D depicts amino acid sequence of Cg7B (SEQ ID NO:153), a homolog of CBH1 of T. reesei. FIG. 90E depicts amino acid sequence of Tt7A (SEQ ID NO:154), a homolog of CBH1 of T. reesei. FIG. 90F depicts amino acid sequence of Tt7B (SEQ ID NO:155), a homolog of CBH1 of T. reesei. FIG. 90G depicts amino acid sequence of St6A (SEQ ID NO:156), a homolog of CBH2 of T. reesei. FIG. 90H depicts amino acid sequence of St6B (SEQ ID NO:157), a homolog of CBH2 of T. reesei. FIG. 90I amino acid sequence of Tt6A (SEQ ID NO:158), a homolog of CBH2 of T. reesei.

DETAILED DESCRIPTION OF THE INVENTION

[0163] Unless defined otherwise, all technical and scientific terms used herein have the meaning as commonly understood by a skilled person in the art to which this invention belongs. Singleton, et al., DICTIONARY OF MICROBIOLOGY AND MOLECULAR BIOLOGY, 2D ED., John Wiley and Sons, New York (1994), and Hale & Marham, THE HARPER COLLINS DICTIONARY OF BIOLOGY, Harper Perennial, N.Y. (1991) provide one of skill with a general dictionary of many of the terms used in this invention. Although any methods and materials similar or equivalent to those described herein can be used in the practice of the present invention, the preferred methods and materials are described. Numeric ranges are inclusive of the numbers defining the range. The invention is not limited to the particular methodology, protocols, and reagents described, as these may vary.

[0164] The headings provided herein do not limit the various aspects or embodiments of the invention that can be had by reference to the specification as a whole. Accordingly the terms defined below are more fully defined by reference to the specification as a whole.

[0165] The present disclosure provides compositions comprising a polypeptide having glycosyl hydrolase family 61 ("GH61")/endoglucanase activity, polypeptides having GH61/endoglucanase activity, nucleotides encoding a polypeptide provided herein, vectors containing nucleotide provided herein, and cells containing nucleotide and/or vector provided herein. The present disclosure further provides methods of hydrolyzing a biomass material and methods of reducing the viscosity of a biomass-containing mixture using a composition provided herein.

[0166] The term "isolated" as used herein with respect to nucleic acids, such as DNA or RNA, refers to molecules separated from other DNAs or RNAs, respectively, which are present in the natural source of the nucleic acid. Moreover, by an "isolated nucleic acid" is meant to include nucleic acid fragments, which are not naturally occurring as fragments and would not be found in the natural state. The term "isolated" is also used herein to refer to polypeptides, which are isolated from other cellular proteins and is meant to encompass both purified and recombinant polypeptides. The term "isolated" as used herein also refers to a nucleic acid or polypeptide that may be substantially free of cellular material, viral material, or culture medium when produced by recombinant DNA techniques. The term "isolated" as used herein additionally refers to a nucleic acid or polypeptide that may be substantially free of chemical precursors or other chemicals when chemically synthesized.

[0167] As used herein, a "variant" of polypeptide X refers to a polypeptide having the amino acid sequence of polypeptide X with one or more altered amino acid residues. The variant may have conservative or nonconservative changes. Guidance in determining which amino acid residues may be substituted, inserted, or deleted without affecting biological activity may be found using computer programs known in the art, e.g., LASERGENE software (DNASTAR). A variant of the invention includes polypeptides comprising altered amino acid sequences in comparison with a precursor enzyme amino acid sequence, wherein the variant enzyme retains the characteristic cellulolytic nature of the precursor enzyme but may have altered properties in some specific aspects, e.g., an increased or decreased pH optimum, an increased or decreased oxidative stability; an increased or decreased thermostability, and increased or decreased level of specific activity towards one or more substrates, as compared to the precursor enzyme.

[0168] As used herein, a polypeptide or nucleic acid that is "heterologous" to a host cell refers to a polypeptide or nucleic acid that does not naturally occur in a host cell.

[0169] Reference to "about" a value or parameter herein includes (and describes) variations that are directed to that value or parameter per se. For example, description referring to "about X" includes description of "X".

[0170] As used herein and in the appended claims, the singular forms "a," "or," and "the" include plural referents unless the context clearly dictates otherwise.

[0171] It is understood that aspects and variations of the methods and compositions described herein include "consisting" and/or "consisting essentially of" aspects and variations.

Polypeptides

[0172] The disclosure provides polypeptides (e.g., isolated, synthetic, or recombinant polypeptides) having GH61/endoglucanase activity. For example, the present disclosure provides GH61 endoglucanases from various species or variants thereof, endoglucanase IV (or endoglucanase 4) polypeptides (also described herein as "Eg4" or "EG4", which are used interchangeably herein) from various species or variants thereof, and Trichoderma reesei Eg4 polypeptide or variants thereof. In some aspects, the polypeptide is isolated.

Glycoside Hydrolase Family 61 ("GH61") Enzymes

[0173] Glycoside hydrolase family 61 ("GH61") enzymes have been identified in Eukaryota. A weak endoglucanase activity has been observed for Ce161A from Hypocrea jecorina (Karlsson et al, Eur J Biochem, 2001, 268(24):6498-6507), which is thus said to have GH61/endoglucanase activity. GH61 polypeptides potentiate enzymatic hydrolysis of lignocellulosic substrates by cellulases (Harris et al, 2010, Biochemistry, 49(15) 3305-16). Studies on homologous polypeptides involved in chitin degradation predict that GH61 polypeptides may employ an oxidative hydrolysis mechanism that requires an electron donor substrate and in which divalent metal ions are involved (Vaaje-Kolstad, 2010, Science, 330(6001), 219-22). This agrees with the observation that the synergistic effect of GH61 polypeptides on lignocellulosic substrate degradation is dependent on divalent ions (Harris et al, 2010, Biochemistry, 49(15) 3305-16). A number of available structures of GH61 polypeptides have divalent atoms bound by a number of conserved amino acid residues (Karkehabadi, 2008, J. Mol. Biol., 383(1) 144-54; Harris et al, 2010, Biochemistry, 49(15) 3305-16). It has been reported that the GH61 polypeptides have a flat surface at the metal binding site that is formed by conserved residues and might be involved in substrate binding (Karkehabadi, 2008, J. Mol. Biol., 383(1), 144-54).

[0174] The present disclosure provides polypeptides having GH61/endoglucanase activity (e.g., isolated polypeptide) which can be a GH61 endoglucanase or endoglucanase IV ("EG IV") from various species, or can also be a polypeptide from various species corresponding to (sharing homology with, sharing functional domains, sharing GH61 motif(s), and/or sharing conservative residues with) a GH61 endoglucanase (e.g., a Trichoderma reesei Eg4 polypeptide). Such species include Trichoderma, Humicola, Fusarium, Aspergillus, Neurospora, Penicillium, Cephalosporium, Achlya, Podospora, Endothia, Mucor, Cochliobolus, Pyricularia, Chrysosporium, Aspergillus awamori, Aspergillus fumigatus, Aspergillus foetidus, Aspergillus japonicus, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae, Chrysosporium lucknowense, Fusarium bactridioides, Fusarium cerealis, Fusarium crookwellense, Fusarium culmorum, Fusarium graminearum, Fusarium graminum, Fusarium heterosporum, Fusarium negundi, Fusarium oxysporum, Fusarium reticulatum, Fusarium roseum, Fusarium sambucinum, Fusarium sarcochroum, Fusarium sporotrichioides, Fusarium sulphureum, Fusarium torulosum, Fusarium trichothecioides, Fusarium venenatum, Bjerkandera adusta, Ceriporiopsis aneirina, Ceriporiopsis aneirina, Ceriporiopsis caregiea, Ceriporiopsis gilvescens, Ceriporiopsis pannocinta, Ceriporiopsis rivulosa, Ceriporiopsis subrufa, Ceriporiopsis subvermispora, Coprinus cinereus, Coriolus hirsutus, Humicola insolens, Humicola lanuginosa, Mucor miehei, Myceliophthora thermophila, Neurospora crassa, Neurospora intermedia, Penicillium purpurogenum, Penicillium canescens, Penicillium solitum, Penicillium funiculosum Phanerochaete chrysosporium, Phlebia radiate, Pleurotus eryngii, Talaromyces flavus, Thielavia terrestris, Trametes villosa, Trametes versicolor, Trichoderma harzianum, Trichoderma koningii, Trichoderma longibrachiatum, Trichoderma reesei, Trichoderma viride, Geosmithia emersonii, or G. stearothermophilus.

[0175] Polypeptides having GH61/endoglucanase activity include a number of GH61 endoglucanases listed in FIG. 1. For example, suitable GH61 endoglucanases include those comprising amino acid sequences that are at least about 60% identical to the various sequences listed in FIG. 1, including, for example, those represented by their GenBank Accession Numbers CAB97283.2, CAD70347.1, CAD21296.1, CAE81966.1, CAF05857.1, EAA26873.1, EAA29132.1, EAA30263.1, EAA33178.1, EAA33408.1, EAA34466.1, EAA36362.1, EAA29018.1, and EAA29347.1, or St61 from S. thermophilum 24630, St61A from S. thermophilum 23839c, St61B from S. thermophilum 46583, St61D from S. thermophilum 80312, Afu61a from A. fumigatus Afu3g03870 (NCBI Ref: XP.sub.--748707), an endoglucanase having NCBI Ref: XP.sub.--750843.1 from A. fumigatus Afu6g09540, an endoglucanase from A. fumigatus EDP47167, an endoglucanase from T. terrestris 16380, an endoglucanase from T. terrestris 155418, an endoglucanase from T. terrestris 68900, Cg61A (Accession Number EAQ86340.1) from C. globosum, T. reesei Eg7, T. reesei Eg4, and an endoglucanase with GenBank Accession Number XP.sub.--752040 from A. fumigatus Af293. In some aspects, a suitable GH61 endoglucanase polypeptide of the invention comprises an amino acid sequence of at least about 60% (e.g., at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%) sequence identity to any one of SEQ ID NOs: 1-29 and 148. In some aspects, a suitable GH61 endoglucanase polypeptide of the invention comprises one or more of the amino acid sequence motifs selected from: (1) SEQ ID NOs:84 and 88; (2) SEQ ID NOs:85 and 88; (3) SEQ ID NO:86; (4) SEQ ID NO:87; (5) SEQ ID NOs:84, 88 and 89; (6) SEQ ID NOs:85, 88, and 89; (7) SEQ ID NOs: 84, 88, and 90; (8) SEQ ID NOs: 85, 88 and 90; (9) SEQ ID NOs:84, 88 and 91; (10) SEQ ID NOs: 85, 88 and 91; (11) SEQ ID NOs: 84, 88, 89 and 91; (12) SEQ ID NOs: 84, 88, 90 and 91; (13) SEQ ID NOs: 85, 88, 89 and 91: and (14) SEQ ID NOs: 85, 88, 90 and 91. The polypeptide may be at least 100 (e.g., 110, 120, 130, 140, 150, 160, 170, 180, 200, 220, 250 or more) residues in length.

[0176] Polypeptides having GH61/endoglucanase activity (e.g., isolated polypeptide) provided herein may also be a variant of a GH61 endoglucanase, e.g., any of the polypeptides with amino acid sequences shown FIG. 1 of the present disclosure. For example, suitable GH61 endoglucanases include those represented by their GenBank Accession Numbers CAB97283.2, CAD70347.1, CAD21296.1, CAE81966.1, CAF05857.1, EAA26873.1, EAA29132.1, EAA30263.1, EAA33178.1, EAA33408.1, EAA34466.1, EAA36362.1, EAA29018.1, and EAA29347.1, or St61 from S. thermophilum 24630, St61A from S. thermophilum 23839c, St61B from S. thermophilum 46583, St61D from S. thermophilum 80312, Afu61a from A. fumigatus Afu3g03870 (NCBI Ref: XP.sub.--748707), an endoglucanase with NCBI Ref: XP.sub.--750843.1 from A. fumigatus Afu6g09540, an endoglucanase from A. fumigatus EDP47167, an endoglucanase from T. terrestris 16380, an endoglucanase from T. terrestris 155418, an endoglucanase from T. terrestris 68900, Cg61A (EAQ86340.1) from C. globosum, T. reesei Eg7, T. reesei Eg4, and an endoglucanase with GenBank Accession: XP.sub.--752040 from A. fumigatus Af293. In some aspects, the polypeptide having GH61/endoglucanase activity (e.g., isolated polypeptide) is a variant of EG IV. In some aspects, the polypeptide having GH61/endoglucanase activity (e.g., isolated polypeptide) is a variant of a GH61 endoglucanase, wherein the variant has an amino acid sequence having at least about 60% (e.g., at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%) identity as any one of the amino acid sequences SEQ ID NOs: 1-29 and 148.

[0177] An alignment using amino acid sequences SEQ ID NOs:1-29 and 148 was performed and the alignment result is shown in FIG. 3. FIG. 2 shows the percent identity and divergence results from comparison of the amino acid sequences of the polypeptides. The alignment indicated that the GH61 endoglucanase polypeptides share certain sequence motifs, and such motifs are shown in FIG. 7 of the present disclosure.

[0178] Accordingly, the present disclosure provides polypeptides (e.g., isolated, synthetic, or recombinant polypeptides) having GH61/endoglucanase activity, which may be a GH61 endoglucanase or a variant thereof, and the variant may comprise at least one motif (at least any of 2, 3, 4, 5, 6, 7, or 8) selected from SEQ ID NOs:84-91. Each of the "a"s in sequence motifs with SEQ ID NOs:84-91 (described in FIG. 7) represents an amino acid that may be any one of alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, or valine. For example, in some aspects, the disclosure provides polypeptides (e.g., isolated, synthetic, or recombinant polypeptides) comprising at least one sequence motif, such as at least one (e.g., 2, 3, 4, 5, 6, 7, or 8) of SEQ ID NOs: 84, 85, 86, 87, 88, 89, 90, and 91. In some aspects, the disclosure provides polypeptides (e.g., isolated, synthetic, or recombinant polypeptides) comprising one or more of the sequence motifs selected from the group consisting of: (1) SEQ ID NOs:84 and 88; (2) SEQ ID NOs:85 and 88; (3) SEQ ID NO:86; (4) SEQ ID NO:87; (5) SEQ ID NOs:84, 88 and 89; (6) SEQ ID NOs:85, 88, and 89; (7) SEQ ID NOs: 84, 88, and 90; (8) SEQ ID NOs: 85, 88 and 90; (9) SEQ ID NOs:84, 88 and 91; (10) SEQ ID NOs: 85, 88 and 91; (11) SEQ ID NOs: 84, 88, 89 and 91; (12) SEQ ID NOs: 84, 88, 90 and 91; (13) SEQ ID NOs: 85, 88, 89 and 91: and (14) SEQ ID NOs: 85, 88, 90 and 91, over a region of at least about 10, e.g., at least about any of 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, or 350 residues, or over the full length of the immature polypeptide, the full length mature polypeptide, the full length of the conserved domain, and/or the full length CBM. The conserved domain can be a predicted catalytic domain ("CD"). Exemplary polypeptides also include fragments of at least about 10, e.g., at least about any of 15, 20, 25, 30, 35, 40, 45, 50, 75, 80, 85, 90, 95, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, or 600 residues in length. The fragments can comprise a conserved domain and/or a CBM. Where a fragment comprises a conserved domain and a CBM of an enzyme, the fragment optionally includes a linker separating the two. The linker can be a native linker or a heterologous linker In some aspects, the polypeptide has GH61/endoglucanase activity.

[0179] In some aspects, the polypeptide having GH61/endoglucanase activity is a GH61 endoglucanase or a variant thereof, an enzyme comprising any one of SEQ ID NOs: 1-29 and 148, or a variant thereof, an EG IV or a variant thereof, or a T. reesei Eg4 or a variant thereof. A variant described here has endoglucanase activity. The polypeptide having GH61/endoglucanase activity (including a variant) may comprise a CBM domain (e.g., functional CBM domain). The polypeptide having GH61/endoglucanase activity (including a variant) may comprise a catalytic domain (e.g., function catalytic domain).

[0180] T. reesei Eg4 is a GH61 endoglucanase polypeptide. The amino acid sequence of T. reesei Eg4 (SEQ ID NO:27) is shown in FIGS. 1, 4B and 5. SEQ ID NO:27 is the sequence of the immature T. reesei Eg4. T. reesei Eg4 has a predicted signal sequence corresponding to residues 1 to 21 of SEQ ID NO:27 (underlined); cleavage of the signal sequence is predicted to yield a mature polypeptide having a sequence corresponding to residues 22 to 344 of SEQ ID NO:27. The predicted conserved domains correspond to residues 22-256 and 307-343 of SEQ ID NO:27, with the latter being the predicted carbohydrate-binding domain (CBM). T. reesei Eg4 was shown to have endoglucanse activity in, for example, an enzymatic assay using carboxy methyl cellulose as substrates. Methods of measuring endoglucanse activity are also known to one skilled in the art.

[0181] The disclosure further provides a variant of Trichoderma reesei Eg4 polypeptide, which may comprise a sequence having at least about 60% (e.g., at least about 65%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity to at least about 50 (e.g., at least about 55, 60, 65, 70, 75, 100, 125, 150, 175, 200, 250, or 300) contiguous amino acid residues among residues 22 to 344 of SEQ ID NO:27. For example, the disclosure provides variants of T. reesei Eg4 polypeptide. Such variants may have at least about 70% (e.g., at least about 70%, 75%, 80%, 85%, 88%, 90%, 92.5%, 95%, 96%, 97%, 98%, or 99%) identity to residues 22 to 344 of SEQ ID NO:27. The polypeptide or a variant thereof may be isolated. The polypeptide or a variant thereof may have endoglucanase activity.

[0182] T. reesei Eg4 residues H22, H107, H184, Q193, and Y195 were predicted to function as metal coordinator residues; residues D61 and G63 were predicted to be conserved surface residues; and residue Y232 were predicted to be involved in activity, based on an amino acid sequence alignment of a number of known endoglucanases, e.g., an endoglucanase from T. terrestris (Accession No. ACE10234, also termed "TtEG" herein) (SEQ ID NO:29), and another endoglucanse Eg7 (Accession No. ADA26043.1) from T. reesei (also termed "TrEGb" or "TrEG7" herein), with T. reesei Eg4 (see, FIG. 5). The predicted conserved residues in T. reesei Eg4 A are shown in FIGS. 6A and 6B. A variant of T. reesei Eg4 polypeptide may be unaltered, as compared to a native T. reesei Eg4, at residues H22, H107, H184, Q193, Y195, D61, G63, and Y232. A variant of T. reesei Eg4 polypeptide may be unaltered in at least 60%, 70%, 80%, 90%, 95%, 98%, or 99% of the amino acid residues that are conserved among TrEGb, TtEG, and T. reesei Eg4, as shown in the alignment of FIG. 5. A variant of T. reesei Eg4 polypeptide may comprise the entire predicted conserved domains of native T. reesei Eg4. See FIGS. 5 and 6. An exemplary variant of T. reesei Eg4 polypeptide comprises a sequence having at least about any of 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to the mature T. reesei Eg4 sequence shown in FIG. 4B (e.g., residues 22 to 344 of SEQ ID NO:27). In some aspects, the variant of T. reesei Eg4 polypeptide has endoglucanse (e.g., endoglucanse IV (EGIV)) activity.

[0183] In some aspects, a variant of T. reesei Eg4 polypeptide has endoglucanase activity and comprises an amino acid sequence with at least about any of 60%, 65%, 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to the amino acid sequence of SEQ ID NO:27, or to residues (i) 22-255, (ii) 22-343, (iii) 307-343, (iv) 307-344, or (v) 22-344 of SEQ ID NO:27.

[0184] In some aspects, the polypeptide or a variant thereof comprises residues corresponding to at least about 3 residues (e.g., at least about any of 4, 5, 6, 7, 8, 9, 10, 11, or 12) of H22, D61, G63, C77, H107, R177, E179, H184, Q193, C198, Y195, and Y232 of SEQ ID NO:27. In some aspects, the polypeptide or a variant thereof comprises residues corresponding to H22, D61, G63, C77, H107, R177, E179, H184, Q193, C198, Y195, and Y232 of SEQ ID NO:27. In some aspects, the polypeptide or a variant thereof comprises residues corresponding to at least 3 residues (e.g., at least about any of 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, or 19) of G313, Q314, C315, G316, G317, S321, G322, P323, T324, C326, A327, T331, C332, N336, Y338, Y339, Q341, C342, and L343 of SEQ ID

[0185] NO:27. In some aspects, the polypeptide or a variant thereof comprises residues corresponding to G313, Q314, C315, G316, G317, S321, G322, P323, T324, C326, A327, T331, C332, N336, Y338, Y339, Q341, C342, and L343 of SEQ ID NO:27. In some aspects, the polypeptide or a variant thereof comprises a CBM domain (e.g., functional CBM domain). In some aspects, the polypeptide or a variant thereof comprises a catalytic domain (e.g., functional catalytic domain). The polypeptide suitably has endoglucanase activity.

[0186] A variant of GH61 endoglucanase, an endoglucanase comprising any one of SEQ ID NOs:1-29 and 148, an EG IV, or Trichoderma reesei Eg4 polypeptide may be made using amino acid substitution. Conservative substitutions are shown in the table below under the heading of "conservative substitutions". Substitutions may also be exemplary substitution shown in the table below.

TABLE-US-00001 TABLE 1 Amino Acid Substitutions. Conservative Original Residue Substitutions Exemplary Substitutions Ala (A) Val Val; Leu; Ile Arg (R) Lys Lys; Gln; Asn Asn (N) Gln Gln; His; Asp, Lys; Arg Asp (D) Glu Glu; Asn Cys (C) Ser Ser; Ala Gln (Q) Asn Asn; Glu Glu (E) Asp Asp; Gln Gly (G) Ala Ala His (H) Arg Asn; Gln; Lys; Arg Ile (I) Leu Leu; Val; Met; Ala; Phe; Norleucine Leu (L) Ile Norleucine; Ile; Val; Met; Ala; Phe Lys (K) Arg Arg; Gln; Asn Met (M) Leu Leu; Phe; Ile Phe (F) Tyr Leu; Val; Ile; Ala; Tyr Pro (P) Ala Ala Ser (S) Thr Thr Thr (T) Ser Ser Trp (W) Tyr Tyr; Phe Tyr (Y) Phe Trp; Phe; Thr; Ser Val (V) Leu Ile; Leu; Met; Phe; Ala; Norleucine

[0187] Substantial modifications in the enzymatic properties of the polypeptide are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Naturally occurring residues are divided into groups based on common side-chain properties:

[0188] (1) Non-polar: Norleucine, Met, Ala, Val, Leu, Ile;

[0189] (2) Polar without charge: Cys, Ser, Thr, Asn, Gln;

[0190] (3) Acidic (negatively charged): Asp, Glu;

[0191] (4) Basic (positively charged): Lys, Arg;

[0192] (5) Residues that influence chain orientation: Gly, Pro; and

[0193] (6) Aromatic: Trp, Tyr, Phe, His.

[0194] Non-conservative substitutions are made by exchanging a member of one of these classes for another class. Any cysteine residue not involved in maintaining the proper conformation of the polypeptide also may be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant cross-linking. Conversely, cysteine bond(s) may be added to the polypeptide to improve its stability.

[0195] In some aspects, a polypeptide (e.g., isolated, synthetic, or recombinant polypeptide) having GH61/endoglucanase activity is a fusion or chimeric polypeptide that includes a domain of a polypeptide of the present disclosure attached to one or more fusion segments, which are typically heterologous to the polypeptide (e.g., derived from a different source than the polypeptide of the disclosure). Suitable fusion or chimeric segments include, without limitation, segments that can enhance a polypeptide's stability, provide other desirable biological activity or enhanced levels of desirable biological activity, and/or facilitate purification of the polypeptide (e.g., by affinity chromatography). A suitable fusion segment can be a domain of any size that has the desired function (e.g., imparts increased stability, solubility, action or biological activity; and/or simplifies purification of a polypeptide). A fusion or hybrid polypeptide of the invention can be constructed from two or more fusion or chimeric segments, each of which or at least two of which are derived from a different source or microorganism. Fusion or hybrid segments can be joined to amino and/or carboxyl termini of the domain(s) of a polypeptide of the present disclosure. The fusion segments can be susceptible to cleavage. There may be some advantage in having this susceptibility, for example, it may enable straight-forward recovery of the polypeptide of interest. Fusion polypeptides may be produced by culturing a recombinant cell transfected with a fusion nucleic acid that encodes a polypeptide, which includes a fusion segment attached to either the carboxyl or amino terminal end, or fusion segments attached to both the carboxyl and amino terminal ends, of a polypeptide, or a domain thereof.

[0196] Accordingly, polypeptides of the present disclosure also include expression products of gene fusions (e.g., an overexpressed, soluble, and active form of expression product), of mutagenized genes (e.g., genes having codon modifications to enhance gene transcription and translation), and of truncated genes (e.g., genes having signal sequences removed or substituted with a heterologous signal sequence).

[0197] Glycosyl hydrolases that utilize insoluble substrates are often modular enzymes. They may comprise catalytic modules appended to one or more non-catalytic carbohydrate-binding domains (CBMs). In nature, CBMs are thought to promote the glycosyl hydrolase's interaction with its target substrate polysaccharide. Thus, the disclosure provides chimeric enzymes having altered substrate specificity; including, for example, chimeric enzymes having multiple substrates as a result of "spliced-in" heterologous CBMs. The heterologous CBMs of the chimeric enzymes of the disclosure can also be designed to be modular, such that they are appended to a catalytic module or catalytic domain (a "CD", e.g., at an active site), which can likewise be heterologous or homologous to the glycosyl hydrolase.

[0198] Thus, the disclosure provides peptides and polypeptides consisting of, or comprising, CBM/CD modules, which can be homologously paired or joined to form chimeric (heterologous) CBM/CD pairs. Thus, these chimeric polypeptides/peptides can be used to improve or alter the performance of an enzyme of interest.

[0199] In some aspects, there is provided a polypeptide having GH61/endoglucanase activity, which comprises at least one CD and/or CBM of any one of the polypeptides with sequences shown in FIG. 1 of the present disclosure. For example, suitable GH61 endoglucanase polypeptides of FIG. 1 includes those that are represented by their GenBank Accession Numbers CAB97283.2, CAD70347.1, CAD21296.1, CAE81966.1, CAF05857.1, EAA26873.1, EAA29132.1, EAA30263.1, EAA33178.1, EAA33408.1, EAA34466.1, EAA36362.1, EAA29018.1, and EAA29347.1, or St61 from S. thermophilum 24630, St61A from S. thermophilum 23839c, St61B from S. thermophilum 46583, St61D from S. thermophilum 80312, Afu61a from A. fumigatus Afu3g03870 (NCBI Ref: XP.sub.--748707), an endoglucanase of NCBI Ref: XP.sub.--750843.1 from A. fumigatus Afu6g09540, an endoglucanase of A. fumigatus EDP47167, an endoglucanase of T. terrestris 16380, an endoglucanase of T. terrestris 155418, an endoglucanase of T. terrestris 68900, Cg61A (EAQ86340.1) from C. globosum, T. reesei Eg7, T. reesei Eg4, and an endoglucanase with GenBank Accession: XP.sub.--752040 from A. fumigatus Af293. The polypeptide may suitably be a fusion polypeptide comprising functional domains from two or more different polypeptides (e.g., a CBM from one polypeptide linked to a CD from another polypeptide).

[0200] The polypeptides of the disclosure can suitably be obtained and/or used in "substantially pure" form. For example, a polypeptide of the disclosure constitutes at least about 80 wt. % (e.g., at least about any of 85 wt. %, 90 wt. %, 91 wt. %, 92 wt. %, 93 wt. %, 94 wt. %, 95 wt. %, 96 wt. %, 97 wt. %, 98 wt. %, or 99 wt. %) of the total protein in a given composition, which also includes other ingredients such as a buffer or solution.

[0201] Also the polypeptides of the disclosure may suitably be obtained and/or used in culture broths (e.g., a filamentous fungal culture broth). The culture broth may be an engineered enzyme composition, e.g., the culture broth may be produced by a recombinant host cell engineered to express a heterologous polypeptide of the disclosure, or by a recombinant host cell engineered to express an endogenous polypeptide of the disclosure in greater or lesser amounts than the endogenous expression levels (e.g., in an amount that is 1-, 2-, 3-, 4-, 5-, or more-fold greater or less than the endogenous expression levels). Furthermore, the culture broths may be produced by certain "integrated" host cell strains that are engineered to express a plurality of the polypeptides of the disclosure in desired ratios.

Nucleic Acids, Expression Cassettes, Vectors, and Host Cells

[0202] The disclosure provides nucleic acids (e.g., isolated, synthetic or recombinant nucleic acids) encoding polypeptides provided above, e.g., polypeptides having GH61/endoglucanase activity, GH61 endoglucanase or a variant thereof, EG IV or a variant thereof, T. reesei Eg4 or a variant thereof. In certain aspects, the disclosure provides nucleic acids (e.g., isolated, synthetic or recombinant nucleic acids) encoding a polypeptide comprising any one of SEQ ID NOs:1-29 and 148, or a polypeptide having at least about 60%, 65%, 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identity to any one of SEQ ID NOs: 1-29 and 148.

[0203] In certain aspects, the disclosure provides nucleic acids (e.g., isolated, synthetic or recombinant nucleic acids) encoding any one of the polypeptides having GH61/endoglucanase activity (including a variant of a GH61 endoglucanase) comprising one or more sequence motif selected from: (1) SEQ ID NOs:84 and 88; (2) SEQ ID NOs:85 and 88; (3) SEQ ID NO:86; (4) SEQ ID NO:87; (5) SEQ ID NOs:84, 88 and 89; (6) SEQ ID NOs:85, 88, and 89; (7) SEQ ID NOs: 84, 88, and 90; (8) SEQ ID NOs: 85, 88 and 90; (9) SEQ ID NOs:84, 88 and 91; (10) SEQ ID NOs: 85, 88 and 91; (11) SEQ ID NOs: 84, 88, 89 and 91; (12) SEQ ID NOs: 84, 88, 90 and 91; (13) SEQ ID NOs: 85, 88, 89 and 91: and (14) SEQ ID NOs: 85, 88, 90 and 91. The disclosure further provides nucleic acids (e.g., isolated, synthetic or recombinant nucleic acids) encoding a polypeptide having GH61/endoglucanase activity (including a variant of a GH61 endoglucanase) that comprises a CBM domain (e.g., functional CBM domain) and/or catalytic domain (e.g., functional catalytic domain).

[0204] The disclosure further provides nucleic acids (e.g., isolated, synthetic or recombinant nucleic acids) encoding variants of T. reesei Eg4 polypeptide. Such variants may have at least about 60% (e.g., at least about any of 60%, 65%, 70%, 75%, 80%, 85%, 88%, 90%, 92.5%, 95%, 96%, 97%, 98%, or 99%) sequence identity to residues 22 to 344 of SEQ ID NO:27. In some aspects, the polypeptide or a variant thereof has endoglucanase activity. The polypeptide or a variant thereof may comprise residues corresponding to at least about 5 residues (e.g., at least about any of 6, 7, 8, 9, 10, 11, or 12) of H22, D61, G63, C77, H107, R177, E179, H184, Q193, C198, Y195, and Y232 of SEQ ID NO:27. The polypeptide or a variant thereof may comprise residues corresponding to H22, D61, G63, C77, H107, R177, E179, H184, Q193, C198, Y195, and Y232 of SEQ ID NO:27. The polypeptide or a variant thereof may comprise residues corresponding to at least 5 residues (e.g., at least about any of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, or 19) of G313, Q314, C315, G316, G317, S321, G322, P323, T324, C326, A327, T331, C332, N336, Y338, Y339, Q341, C342, and L343 of SEQ ID NO:27. In some aspects, the polypeptide or a variant thereof comprises residues corresponding to G313, Q314, C315, G316, G317, S321, G322, P323, T324, C326, A327, T331, C332, N336, Y338, Y339, Q341, C342, and L343 of SEQ ID NO:27.

[0205] The disclosure provides nucleic acids (e.g., isolated, synthetic or recombinant nucleic acids) comprising a nucleic acid sequence having at least about 70%, e.g., at least about any of 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%; 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, or complete (100%) identity to nucleic acid sequence SEQ ID NO:30, over a region of at least about 10, e.g., at least about any of 15, 20, 25, 30, 35, 40, 45, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, or 1050 nucleotides. In some aspects, the disclosure provides nucleic acids encoding any one of the polypeptides provided herein. Also provided herein are isolated nucleic acids having at least about 80% (e.g., at least about any of 85%, 88%, 90%, 92.5%, 95%, 96%, 97%, 98%, or 99%) identity to SEQ ID NO:30.

[0206] In some aspects, there is provided a nucleic acid (e.g., isolated, synthetic or recombinant nucleic acid) encoding a polypeptide comprising an amino acid sequence with at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to the amino acid sequence of SEQ ID NO:27, or to residues (i) 22-255, (ii) 22-343, (iii) 307-343, (iv) 307-344, or (v) 22-344 of SEQ ID NO:27. In some aspects, there is provided a nucleic acid (e.g., isolated, synthetic or recombinant nucleic acid) having at least 70% (e.g., at least 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) sequence identity to SEQ ID NO:30, or a nucleic acid that is capable of hybridizing under high stringency conditions to a complement of SEQ ID NO:30, or to a fragment thereof. As used herein, the term "hybridizes under low stringency, medium stringency, high stringency, or very high stringency conditions" describes conditions for hybridization and washing. Guidance for performing hybridization reactions can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. Aqueous and nonaqueous methods are described in that reference and either method can be used. Specific hybridization conditions referred to herein are as follows: 1) low stringency hybridization conditions in 6.times. sodium chloride/sodium citrate (SSC) at about 45.degree. C., followed by two washes in 0.2.times.SSC, 0.1% SDS at least at 50.degree. C. (the temperature of the washes can be increased to 55.degree. C. for low stringency conditions); 2) medium stringency hybridization conditions in 6.times.SSC at about 45.degree. C., followed by one or more washes in 0.2.times.SSC, 0.1% SDS at 60.degree. C.; 3) high stringency hybridization conditions in 6.times.SSC at about 45.degree. C., followed by one or more washes in 0.2..times.SSC, 0.1% SDS at 65.degree. C.; and preferably 4) very high stringency hybridization conditions are 0.5M sodium phosphate, 7% SDS at 65.degree. C., followed by one or more washes at 0.2.times.SSC, 1% SDS at 65.degree. C. Very high stringency conditions (4) are the preferred conditions unless otherwise specified.

[0207] The disclosure also provides expression cassettes and/or vectors comprising any of the above-described nucleic acids. The nucleic acid encoding a polypeptide such as an enzyme of the disclosure may be operably linked to a promoter. Specifically where recombinant expression in a filamentous fungal host is desired, the promoter can be a filamentous fungal promoter. The nucleic acids can be, e.g., under the control of heterologous promoters. The nucleic acids can also be expressed under the control of constitutive or inducible promoters. Examples of promoters that can be used include, but are not limited to, a cellulase promoter, a xylanase promoter, the 1818 promoter (previously identified as a highly expressed protein by EST mapping Trichoderma). For example, the promoter can suitably be a cellobiohydrolase, endoglucanase, or .beta.-glucosidase promoter. A particularly suitable promoter can be, for example, a T. reesei cellobiohydrolase, endoglucanase, or .beta.-glucosidase promoter. For example, the promoter is a cellobiohydrolase I (cbh1) promoter. Non-limiting examples of promoters include a cbh1, cbh2, egl1, egl2, egl3, egl4, egl5, pki1, gpd1, xyn1, or xyn2 promoter. Additional non-limiting examples of promoters include a T. reesei cbh1, cbh2, egl1, egl2, egl3, egl4, egl5, pki1, gpd1, xyn1, or xyn2 promoter.

[0208] As used herein, the term "operably linked" means that selected nucleotide sequence (e.g., encoding a polypeptide described herein) is in proximity with a promoter to allow the promoter to regulate expression of the selected DNA. In addition, the promoter is located upstream of the selected nucleotide sequence in terms of the direction of transcription and translation. By "operably linked" is meant that a nucleotide sequence and a regulatory sequence(s) are connected in such a way as to permit gene expression when the appropriate molecules (e.g., transcriptional activator proteins) are bound to the regulatory sequence(s).

[0209] The present disclosure further provides host cells containing any of the polynucleotides vectors, or expression cassettes described herein. The present disclosure also provides host cells that can be used to express one or more polypeptides of the disclosure.

[0210] Suitable host cells include cells of any microorganism (e.g., cells of a bacterium, a protist, an alga, a fungus (e.g., a yeast or filamentous fungus), or other microbe), and are preferably cells of a bacterium, a yeast, or a filamentous fungus.

[0211] Suitable host cells of the bacterial genera include, but are not limited to, cells of Escherichia, Bacillus, Lactobacillus, Pseudomonas, and Streptomyces. Suitable cells of bacterial species include, e.g., cells of Escherichia coli, Bacillus subtilis, Bacillus licheniformis, Lactobacillus brevis, Pseudomonas aeruginosa, or Streptomyces lividans.

[0212] Suitable host cells of the genera of yeast include, but are not limited to, cells of Saccharomyces, Schizosaccharomyces, Candida, Hansenula, Pichia, Kluyveromyces, and Phaffia. Suitable cells of yeast species include, but are not limited to, cells of Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans, Hansenula polymorpha, Pichia pastoris, P. canadensis, Kluyveromyces marxianus, and Phaffia rhodozyma.

[0213] Suitable host cells of filamentous fungi include all filamentous forms of the subdivision Eumycotina. Suitable cells of filamentous fungal genera include, but are not limited to, cells of Acremonium, Aspergillus, Aureobasidium, Bjerkandera, Ceriporiopsis, Chrysoporium, Coprinus, Coriolus, Corynascus, Chaertomium, Cryptococcus, Filobasidium, Fusarium, Gibberella, Humicola, Magnaporthe, Mucor, Myceliophthora, Mucor, Neocallimastix, Neurospora, Paecilomyces, Penicillium, Phanerochaete, Phlebia, Piromyces, Pleurotus, Scytaldium, Schizophyllum, Sporotrichum, Talaromyces, Thermoascus, Thielavia, Tolypocladium, Trametes, and Trichoderma. Suitable cells of filamentous fungal species include, but are not limited to, cells of Aspergillus awamori, Aspergillus fumigatus, Aspergillus foetidus, Aspergillus japonicus, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae, Chrysosporium lucknowense, Fusarium bactridioides, Fusarium cerealis, Fusarium crookwellense, Fusarium culmorum, Fusarium graminearum, Fusarium graminum, Fusarium heterosporum, Fusarium negundi, Fusarium oxysporum, Fusarium reticulatum, Fusarium roseum, Fusarium sambucinum, Fusarium sarcochroum, Fusarium sporotrichioides, Fusarium sulphureum, Fusarium torulosum, Fusarium trichothecioides, Fusarium venenatum, Bjerkandera adusta, Ceriporiopsis aneirina, Ceriporiopsis aneirina, Ceriporiopsis caregiea, Ceriporiopsis gilvescens, Ceriporiopsis pannocinta, Ceriporiopsis rivulosa, Ceriporiopsis subrufa, Ceriporiopsis subvermispora, Coprinus cinereus, Coriolus hirsutus, Humicola insolens, Humicola lanuginosa, Mucor miehei, Myceliophthora thermophila, Neurospora crassa, Neurospora intermedia, Penicillium purpurogenum, Penicillium canescens, Penicillium solitum, Penicillium funiculosum Phanerochaete chrysosporium, Phlebia radiate, Pleurotus eryngii, Talaromyces flavus, Thielavia terrestris, Trametes villosa, Trametes versicolor, Trichoderma harzianum, Trichoderma koningii, Trichoderma longibrachiatum, Trichoderma reesei, and Trichoderma viride.

[0214] The disclosure provides a host cell, e.g., a recombinant fungal host cell or a recombinant filamentous fungus, engineered to recombinantly express a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof).

[0215] The present disclosure also provides a recombinant host cell e.g., a recombinant fungal host cell or a recombinant microorganism, e.g., a filamentous fungus, such as a recombinant T. reesei, that is engineered to recombinantly express T. reesei Xyn3, T. reesei Bgl1 (also termed "Tr3A"), Fv3A, Fv43D, and Fv51A polypeptides. For example, the recombinant host cell is suitably a T. reesei host cell. The recombinant fungus is suitably a recombinant T. reesei. The disclosure provides, for example, a T. reesei host cell engineered to recombinantly express T. reesei Eg4, T. reesei Xyn3, T. reesei Bgl1, Fv3A, Fv43D, and Fv51A polypeptides. Alternatively the present disclosure also provides a recombinant host cell or a recombinant microorganism that is, e.g., an Aspergillus (such as an A. oryzae, A. niger) host cell or a recombinant Aspergillus engineered to recombinantly express the polypeptides described herein.

[0216] Additionally the disclosure provides a recombinant host cell or recombinant organism that is engineered to express an enzyme blend comprising suitable enzymes in ratios suitable for saccharification. The recombinant host cell is, for example, a fungal host cell or a bacterial host cell. The recombinant fungus is, e.g., a recombinant T. reesei, A. oryzae, A. niger, or yeast. The recombinant fungal host cell may be, e.g., a T. reesei, A. oryzae, A. niger, or yeast cell. The recombinant bacterial host cell may be, e.g., a Bascillus subtilis, or an E. coli cell. The recombinant bacterial organism may be, e.g., a Bascillus subtilis or an E. coli. Examples of enzyme ratios/amounts present in suitable enzyme blends are described herein such as below.

Compositions

[0217] The disclosure also provides compositions (e.g., non-naturally occurring compositions) such as enzyme compositions containing cellulase(s) and/or hemicellulase(s), which can be used to hydrolyze biomass material and/or reduce the viscosity of biomass mixture (e.g., biomass saccharification mixture containing enzyme and substrate).

[0218] Cellulases include enzymes capable of hydrolyzing cellulose (beta-1,4-glucan or beta D-glucosidic linkages) polymers to glucose, cellobiose, cellooligosaccharides, and the like. Cellulases have been traditionally divided into three major classes: endoglucanases (EC 3.2.1.4) ("EG"), exoglucanases or cellobiohydrolases (EC 3.2.1.91) ("CBH") and .beta.-glucosidases (.beta.-D-glucoside glucohydrolase; EC 3.2.1.21) ("BG") (Knowles et al., 1987, Trends in Biotechnology 5(9):255-261; Shulein, 1988, Methods in Enzymology, 160:234-242). Endoglucanases act mainly on the amorphous parts of the cellulose fiber, whereas cellobiohydrolases are also able to degrade crystalline cellulose. Hemicellulases include, for example, xylanases, .beta.-xylosidases, and L-.alpha.-arabinofuranosidases.

[0219] The composition of the invention may be a multi-enzyme blend, comprising more than one enzyme. The enzyme composition of the invention can suitably include one or more additional enzymes derived from other microorganisms, plants, or organisms. Synergistic enzyme combinations and related methods are contemplated. The disclosure includes methods for identifying the optimum ratios of the enzymes included in the enzyme compositions for degrading various types of biomass materials. These methods include, e.g., tests to identify the optimum proportion or relative weights of enzymes to be included in the enzyme composition of the invention in order to effectuate efficient conversion of various substrates (e.g., lignocellulosic substrates) to their constituent fermentable sugars.

[0220] The cell walls of higher plants are comprised of a variety of carbohydrate polymer (CP) components. These CP interact through covalent and non-covalent means, providing the structural integrity required to form rigid cell walls and resist turgor pressure in plants. The major CP found in plants is cellulose, which forms the structural backbone of the cell wall. During cellulose biosynthesis, chains of poly-.beta.-1,4-D-glucose self associate through hydrogen bonding and hydrophobic interactions to form cellulose microfibrils, which further self-associate to form larger fibrils. Cellulose microfibrils are often irregular structurally and contain regions of varying crystallinity. The degree of crystallinity of cellulose fibrils depends on how tightly ordered the hydrogen bonding is between and among its component cellulose chains. Areas with less-ordered bonding, and therefore more accessible glucose chains, are referred to as amorphous regions. The general model for cellulose depolymerization to glucose involves a minimum of three distinct enzymatic activities. Endoglucanases cleave cellulose chains internally to shorter chains in a process that increases the number of accessible ends, which are more susceptible to exoglucanase activity than the intact cellulose chains. These exoglucanases (e.g., cellobiohydrolases) are specific for either reducing ends or non-reducing ends, liberating, in most cases, cellobiose, the dimer of glucose. The accumulating cellobiose is then subject to cleavage by cellobiases (e.g., .beta.-1,4-glucosidases) to glucose. Cellulose contains only anhydro-glucose. In contrast, hemicellulose contains a number of different sugar monomers. For instance, aside from glucose, sugar monomers in hemicellulose can also include xylose, mannose, galactose, rhamnose, and arabinose. Hemicelluloses mostly contain D-pentose sugars and occasionally small amounts of L-sugars. Xylose is typically present in the largest amount, but mannuronic acid and galacturonic acid also tend to be present. Hemicelluloses include xylan, glucuronoxylan, arabinoxylan, glucomannan, and xyloglucan.

[0221] The compositions (e.g., enzymes and multi-enzyme compositions) of the disclosure can be used for saccharification of cellulose materials (e.g., glucan) and/or hemicellulose materials (e.g., xylan, arabinoxylan, and xylan- or arabinoxylan-containing substrates). The enzyme blend/composition is suitably a non-naturally occurring composition.

[0222] The enzyme compositions provided herein may comprise a mixture of xylan-hydrolyzing, hemicellulose- and/or cellulose-hydrolyzing enzymes, which include at least one, several, or all of a cellulase, including a glucanase; a cellobiohydrolase; an L-.alpha.-arabinofuranosidase; a xylanase; a .beta.-glucosidase; and a .beta.-xylosidase. The present disclosure also provides enzyme compositions that may be non-naturally occurring compositions. As used herein, the term "enzyme compositions" refers to: (1) a composition made by combining component enzymes, whether in the form of a fermentation broth or partially or completely isolated or purified; (2) a composition produced by an organism modified to express one or more component enzymes; in certain embodiments, the organism used to express one or more component enzymes can be modified to delete one or more genes; in certain other embodiments, the organism used to express one or more component enzymes can further comprise proteins affecting xylan hydrolysis, hemicellulose hydrolysis, and/or cellulose hydrolysis; (3) a composition made by combining component enzymes simultaneously, separately, or sequentially during a saccharification or fermentation reaction; (4) an enzyme mixture produced in situ, e.g., during a saccharification or fermentation reaction; (5) a composition produced in accordance with any or all of the above (1)-(4).

[0223] The term "fermentation broth" as used herein refers to an enzyme preparation produced by fermentation that undergoes no or minimal recovery and/or purification subsequent to fermentation. For example, microbial cultures are grown to saturation, incubated under carbon-limiting conditions to allow protein synthesis (e.g., expression of enzymes). Then, once the enzyme(s) are secreted into the cell culture media, the fermentation broths can be used. The fermentation broths of the disclosure can contain unfractionated or fractionated contents of the fermentation materials derived at the end of the fermentation. For example, the fermentation broths of the invention are unfractionated and comprise the spent culture medium and cell debris present after the microbial cells (e.g., filamentous fungal cells) undergo a fermentation process. The fermentation broth can suitably contain the spent cell culture media, extracellular enzymes, and live or killed microbial cells. Alternatively, the fermentation broths can be fractionated to remove the microbial cells. In those cases, the fermentation broths can, for example, comprise the spent cell culture media and the extracellular enzymes.

[0224] The enzyme compositions such as cellulase compositions provided herein may be capable of achieving at least 0.1 (e.g. 0.1 to 0.4) fraction product as determined by the calcofluor assay. All chemicals used were of analytical grade. Avicel PH-101 was purchased from FMC BioPolymer (Philadelphia, Pa.). Cellobiose and calcofluor white were purchased from Sigma (St. Louise, Mo.). Phosphoric acid swollen cellulose (PASC) was prepared from Avicel PH-101 using an adapted protocol of Walseth, TAPPI 1971, 35:228 and Wood, Biochem. J. 1971, 121:353-362. In short, Avicel was solubilized in concentrated phosphoric acid then precipitated using cold deionized water. After the cellulose is collected and washed with more water to neutralize the pH, it was diluted to 1% solids in 50 mM sodium acetate pH5. All enzyme dilutions were made into 50 mM sodium acetate buffer, pH5.0. GC220 Cellulase (Danisco US Inc., Genencor) was diluted to 2.5, 5, 10, and 15 mg protein/G PASC, to produce a linear calibration curve. Samples to be tested were diluted to fall within the range of the calibration curve, i.e. to obtain a response of 0.1 to 0.4 fraction product. 150 .mu.L of cold 1% PASC was added to 20 .mu.L of enzyme solution in 96-well microtiter plates. The plate was covered and incubated for 2 h at 50.degree. C., 200 rpm in an Innova incubator/shaker. The reaction was quenched with 100 .mu.L of 50 .mu.g/mL Calcofluor in 100 mM Glycine, pH10. Fluorescence was read on a fluorescence microplate reader (SpectraMax M5 by Molecular Devices) at excitation wavelength Ex=365 nm and emission wavelength Em=435 nm. The result is expressed as the fraction product according to the equation:

FP=1-(Fl sample-Fl buffer w/cellobiose)/(Fl zero enzyme-Fl buffer w/cellobiose),

[0225] wherein FP is fraction product, and Fl=fluorescence units.

[0226] Any of the enzymes described specifically herein can be combined with any one or more of the enzymes described herein or with any other available and suitable enzymes, to produce a suitable multi-enzyme blend/composition. The disclosure is not restricted or limited to the specific exemplary combinations listed below.

Exemplary Compositions

[0227] There are provided non-naturally occurring compositions comprising a polypeptide having GH61/endoglucanase activity. The invention also provides a non-naturally occurring composition comprising whole cellulase comprising a polypeptide having GH61/endoglucanase activity (e.g., whole cellulase enriched with a polypeptide having GH61/endoglucanase activity such as endoglucanase IV (e.g., T. reesei Eg4 polypeptide-enriched whole cellulase)). The polypeptide having GH61/endoglucanase activity may be any polypeptide having GH61/endoglucanase activity provided herein. In some aspects, the polypeptide having GH61/endoglucanase activity is T. reesei Eg4 or a variant thereof. A variant of T. reesei Eg4 can be any of the variants provided above.

[0228] Endoglucanase is referred to herein as "Eg" or "Egl," interchangeably, in the present disclosure including figures.

[0229] As used herein, the term "naturally occurring composition" refers to a composition produced by a naturally occurring source, comprising one or more enzymatic components or activities, wherein each of the components or activities is found at the ratio and level produced by the naturally-occurring source as it is found in nature, untouched, unmodified by the human hand. Accordingly, a naturally occurring composition is, e.g., one that is produced by an organism unmodified with respect to the cellulolytic or hemicelluloytic enzymes such that the ratio or levels of the component enzymes are unaltered from that produced by the native organism in its native environment. A "non-naturally occurring composition," on the other hand, refers to a composition produced by: (1) combining component cellulolytic or hemicelluloytic enzymes either in a naturally occurring ratio or a non-naturally occurring, i.e., altered, ratio; or (2) modifying an organism to express, overexpress or underexpress one or more endogeneous or exogenous enzymes; or (3) modifying an organism such that at least one endogenous enzyme is deleted. A "non-naturally occurring composition" also refers to a composition produced by a naturally-occurring, unmodified organism, but cultured in a man-made medium or environment that is different from the organism's native environment such that the amounts of enzymes in the composition differ from those existing in a composition made by a native organism grown in its native habitat.

[0230] Any one of GH61 endoglucanase polypeptides or a variant thereof may be used in any of the compositions described herein. A suitable GH61 endoglucanase may include one of the polypeptides shown in FIG. 1 of the present disclosure. Suitable GH61 endoglucanases include those that are represented by their GenBank Accession Numbers CAB97283.2, CAD70347.1, CAD21296.1, CAE81966.1, CAF05857.1, EAA26873.1, EAA29132.1, EAA30263.1, EAA33178.1, EAA33408.1, EAA34466.1, EAA36362.1, EAA29018.1, and EAA29347.1, or St61 from S. thermophilum 24630, St61A from S. thermophilum 23839c, St61B from S. thermophilum 46583, St61D from S. thermophilum 80312, Afu61a from A. fumigatus Afu3g03870 (NCBI Ref: XP.sub.--748707), an endoglucanase of NCBI Ref: XP.sub.--750843.1 from A. fumigatus Afu6g09540, an endoglucanase of A. fumigatus EDP47167, an endoglucanase of T. terrestris 16380, an endoglucanase of T. terrestris 155418, an endoglucanase of T. terrestris 68900, Cg61A (EAQ86340.1) from C. globosum, T. reesei Eg7, T. reesei Eg4, and an endoglucanase with GenBank Accession: XP.sub.--752040 from A. fumigatus Af293. In some aspects, the polypeptide having GH61/endoglucanase activity (e.g., isolated polypeptide) is a variant of GH61 endoglucanase or EG IV.

[0231] In some aspects, the polypeptide having GH61/endoglucanase activity (including a variant of GH61 endoglucanase) is one comprising any one of SEQ ID NOs: 1-29 and 148, or one that comprises a polypeptide having at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 92.5%, 95%, 96%, 97%, 98%, or 99% sequence identity to any one of SEQ ID NOs: 1-29 and 148. In some aspects, the polypeptide having GH61/endoglucanase activity (including a variant of GH61 endoglucanase) may comprise at least one motif (at least any of 2, 3, 4, 5, 6, 7, or 8) selected from SEQ ID NOs:84-91. It may comprise one or more sequence motif(s) selected from the group consisting of: (1) SEQ ID NOs:84 and 88; (2) SEQ ID NOs:85 and 88; (3) SEQ ID NO:86; (4) SEQ ID NO:87; (5) SEQ ID NOs:84, 88 and 89; (6) SEQ ID NOs:85, 88, and 89; (7) SEQ ID NOs: 84, 88, and 90; (8) SEQ ID NOs: 85, 88 and 90; (9) SEQ ID NOs:84, 88 and 91; (10) SEQ ID NOs: 85, 88 and 91; (11) SEQ ID NOs: 84, 88, 89 and 91; (12) SEQ ID NOs: 84, 88, 90 and 91; (13) SEQ ID NOs: 85, 88, 89 and 91: and (14) SEQ ID NOs: 85, 88, 90 and 91.

[0232] In some aspects of any one of the compositions or methods described herein, the polypeptide having GH61/endoglucanase activity (including a variant of GH61 endoglucanase) may have at least about 60% (e.g., at least about any of 60%, 65%, 70%, 75%, 80%, 85%, 88%, 90%, 92.5%, 95%, 96%, 97%, 98%, or 99%) sequence identity to residues 22 to 344 of SEQ ID NO:27. In some aspects, the polypeptide or a variant thereof comprises residues corresponding to at least about 5 residues (e.g., at least about any of 6, 7, 8, 9, 10, 11, or 12) of H22, D61, G63, C77, H107, R177, E179, H184, Q193, C198, Y195, and Y232 of SEQ ID NO:27. In some aspects, the polypeptide or a variant thereof comprises residues corresponding to H22, D61, G63, C77, H107, R177, E179, H184, Q193, C198, Y195, and Y232 of SEQ ID NO:27. In some aspects, the polypeptide or a variant thereof comprises residues corresponding to at least 5 residues (e.g., at least about any of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, or 19) of G313, Q314, C315, G316, G317, S321, G322, P323, T324, C326, A327, T331, C332, N336, Y338, Y339, Q341, C342, and L343 of SEQ ID NO:27. In some aspects, the polypeptide or a variant thereof comprises residues corresponding to G313, Q314, C315, G316, G317, S321, G322, P323, T324, C326, A327, T331, C332, N336, Y338, Y339, Q341, C342, and L343 of SEQ ID NO:27. In some aspects, the polypeptide or a variant thereof comprises a CBM domain (e.g., functional CBM domain). In some aspects, the polypeptide or a variant thereof comprises a catalytic domain (e.g., functional catalytic domain). In some aspects, the polypeptide or a variant thereof is isolated. In some aspects, the polypeptide or a variant thereof has endoglucanase activity.

[0233] In some aspects, the polypeptide having GH61/endoglucanase activity is endoglucanase IV, for example, a T. reesei Eg4 polypeptide or a variant thereof. For example, the disclosure provides non-naturally occurring compositions comprising a T. reesei Eg4 polypeptide or a variant thereof. A variant of T. reesei Eg4 polypeptide can be any one of the variants of T. reesei Eg4 polypeptide described herein. In some aspects, the polypeptide having GH61/endoglucanase activity includes amino acid sequence SEQ ID NO:27 or residues 22 to 344 of SEQ ID NO:27.

[0234] In some aspects, there is provided a composition comprising an isolated (or substantially purified) polypeptide having glycosyl hydrolase family 61 ("GH61")/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof). Methods of producing polypeptide, recovering the polypeptide, and isolating or purifying the polypeptide are known to one of skill in the art.

[0235] In some aspects of any of the compositions or methods described herein, the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) is expressed from a host cell, wherein the nucleic acid encoding the polypeptide having GH61/endoglucanase activity has been engineered into the host cell. In some aspects, the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) is heterologous to the host cell expressing the polypeptide having GH61/endoglucanase activity.

[0236] The present disclosure provides compositions comprising a polypeptide having GH61/endoglucanase activity and comprising at least one cellulase polypeptide and/or at least one hemicellulase polypeptide, or a mixture thereof. In some aspects, the composition comprises at least one (e.g., at least 2, 3, 4, 5, 6, 7, or 8) cellulase polypeptide(s). In some aspects, the cellulase polypeptide is a polypeptide having endoglucanase activity, a polypeptide having cellobiohydrolase activity, or a polypeptide having .beta.-glucosidase activity. In some aspects, the composition comprises at least one (e.g., at least 2, 3, 4, 5, 6, 7, or 8) hemicellulase polypeptide(s). In some aspects, the hemicellulase polypeptide is a polypeptide having xylanase activity, a polypeptide having .beta.-xylosidase activity, or a polypeptide having L-.alpha.-arabinofuranosidase activity. In some aspects, the composition further comprises at least one (e.g., at least 2, 3, 4, 5, 6, 7, or 8) cellulase polypeptide(s) and at least one (e.g., at least 2, 3, 4, 5, 6, 7, or 8) hemicellulase polypeptide(s). Varying amounts for polypeptide(s) included in the compositions provided herein are provided below in "Amount of component(s) in compositions" section.

[0237] Cellulases and hemicellulases for use in accordance with the methods and compositions of the disclosure can be obtained from, or produced recombinantly from, inter alia, one or more of the following organisms: Crinipellis scapella, Macrophomina phaseolina, Myceliophthora thermophila, Sordaria fimicola, Volutella colletotrichoides, Thielavia terrestris, Acremonium sp., Exidia glandulosa, Fomes fomentarius, Spongipellis sp., Rhizophlyctis rosea, Rhizomucor pusillus, Phycomyces niteus, Chaetostylum fresenii, Diplodia gossypina, Ulospora bilgramii, Saccobolus dilutellus, Penicillium verruculosum, Penicillium chrysogenum, Thermomyces verrucosus, Diaporthe syngenesia, Colletotrichum lagenarium, Nigrospora sp., Xylaria hypoxylon, Nectria pinea, Sordaria macrospora, Thielavia thermophila, Chaetomium mororum, Chaetomium virscens, Chaetomium brasiliensis, Chaetomium cunicolorum, Syspastospora boninensis, Cladorrhinum foecundissimum, Scytalidium thermophila, Gliocladium catenulatum, Fusarium oxysporum ssp. lycopersici, Fusarium oxysporum ssp. passiflora, Fusarium solani, Fusarium anguioides, Fusarium poae, Humicola nigrescens, Humicola grisea, Panaeolus retirugis, Trametes sanguinea, Schizophyllum commune, Trichothecium roseum, Microsphaeropsis sp., Acsobolus stictoideus spej., Poronia punctata, Nodulisporum sp., Trichoderma sp. (e.g., Trichoderma reesei) and Cylindrocarpon sp.

[0238] In the present disclosure, the cellulase or hemicellulase may be prepared from any known microorganism cultivation method(s), resulting in the expression of enzymes capable of hydrolyzing a cellulosic material. Fermentation may include shake flask cultivation, small- or large-scale fermentation, such as continuous, batch, fed-batch, or solid state fermentations in laboratory or industrial fermenters performed in a suitable medium and under conditions allowing the cellulase to be expressed or isolated. Generally, the microorganism is cultivated in a cell culture medium suitable for production of enzymes capable of hydrolyzing a cellulosic material. The cultivation takes place in a suitable nutrient medium comprising carbon and nitrogen sources and inorganic salts, using procedures known in the art. Suitable culture media, temperature ranges and other conditions suitable for growth and cellulase production are known in the art. As a non-limiting example, the normal temperature range for the production of cellulases by T. reesei is 24.degree. C. to 28.degree. C.

[0239] The present disclosure provides non-naturally occurring compositions comprising a polypeptide having GH61/endoglucanase activity (e.g., endoglucanase IV polypeptide such as T. reesei Eg4 polypeptide or a variant thereof), wherein the composition further comprises at least 1 polypeptide having endoglucanase activity (e.g., at least 2, 3, 4, or 5 polypeptides having endoglucanase activity), at least 1 polypeptide having cellobiohydrolase activity (e.g., at least 2, 3, 4, or 5 polypeptides having cellobiohydrolase activity), at least 1 polypeptide having glucosidase activity (e.g., .beta.-glucosidase) (e.g., at least 2, 3, 4, or 5 polypeptides having .beta.-glucosidase activity), at least 1 polypeptide having xylanase activity (e.g., at least 2, 3, 4, or 5 polypeptides having xylanase activity), at least 1 polypeptide having xylosidase activity (e.g., .beta.-xylosidase) (e.g., at least 2, 3, 4, or 5 polypeptides having .beta.-xylosidase activity), and/or at least 1 polypeptide having arabinofuranosidase activity (e.g., L-.alpha.-arabinofuranosidase) (e.g., at least 2, 3, 4, or 5 polypeptides having L-.alpha.-arabinofuranosidase activity). Varying amounts for polypeptide(s) included in the compositions provided herein are provided below in "Amount of component(s) in compositions" section.

[0240] The present disclosure provides non-naturally occurring compositions comprising whole cellulase comprising a polypeptide having GH61/endoglucanase activity (e.g., whole cellulase enriched with endoglucanase IV polypeptide, such as, e.g., T. reesei Eg4 polypeptide or a variant thereof), wherein the composition further comprises at least 1 polypeptide having endoglucanase activity (e.g., at least 2, 3, 4, or 5 polypeptides having endoglucanase activity), at least 1 polypeptide having cellobiohydrolase activity (e.g., at least 2, 3, 4, or 5 polypeptides having cellobiohydrolase activity), at least 1 polypeptide having glucosidase activity (e.g., .beta.-glucosidase) (e.g., at least 2, 3, 4, or 5 polypeptides having .beta.-glucosidase activity), at least 1 polypeptide having xylanase activity (e.g., at least 2, 3, 4, or 5 polypeptides having xylanase activity), at least one polypeptide having xylosidase activity (e.g., .beta.-xylosidase) (e.g., at least 2, 3, 4, or 5 polypeptides having .beta.-xylosidase activity), and/or at least one polypeptide having arabinofuranosidase activity (e.g., L-.alpha.-arabinofuranosidase) (e.g., at least 2, 3, 4, or 5 polypeptides having L-.alpha.-arabinofuranosidase activity). Varying amounts for polypeptide(s) included in the compositions provided herein are provided below in "Amount of component(s) in compositions" section.

[0241] In some aspects, the composition comprises a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least 1 polypeptide having xylanase activity (e.g., T. reesei Xyn3, T. reesei Xyn2, AfuXyn2, AfuXyn5, or a variant thereof). In some aspects, the polypeptide having xylanase activity is T. reesei Xyn3. The composition may further comprise at least 1 polypeptide having .beta.-glucosidase activity (e.g., Fv3C, Pa3D, Fv3G, Fv3D, Tr3A, Tr3B, Te3A, An3A, Fo3A, Gz3A, Nh3A, Vd3A, Pa3G, and/or Tn3B). The composition may further comprise at least 1 polypeptide having .beta.-glucosidase activity (e.g., Fv3C, Pa3D, Fv3G, Fv3D, Tr3A, Tr3B, Te3A, An3A, Fo3A, Gz3A, Nh3A, Vd3A, Pa3G, Tn3B, and/or a variant thereof). The composition may further comprise at least 1 polypeptide having cellobiohydrolase activity (e.g., T. reesei CBH1, A. fumigatus 7A, 7B, C. globosum 7A, 7B, T. terrestris 7A, 7B, T. reesei CBH2, T. terrestris 6A, S. thermophile 6A, 6B, or a variant thereof). The composition may further comprise at least 1 polypeptide having endoglucanase activity (e.g., T. reesei EG1 (or a variant thereof) and/or T. reesei EG2 (or a variant thereof)).

[0242] In some aspects, the composition comprises a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least 1 polypeptide having .beta.-glucosidase activity (e.g., Fv3C, Pa3D, Fv3G, Fv3D, Tr3A, Tr3B, Te3A, An3A, Fo3A, Gz3A, Nh3A, Vd3A, Pa3G, Tn3B, or a variant thereof). The composition may comprise a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least 1 polypeptide (or at least 2 polypeptides) having cellobiohydrolase activity (e.g., T. reesei CBH1, A. fumigatus 7A, 7B, C. globosum 7A, 7B, T. terrestris 7A, 7B, T. reesei CBH2, T. terrestris 6A, S. thermophile 6A, 6B, or a variant thereof). The composition may comprise a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and further comprises at least 1 polypeptide (or at least 2 polypeptides) having endoglucanase activity (e.g., T. reesei EG1 (or a variant thereof) and/or T. reesei EG2 (or a variant thereof)). The composition may comprise a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least 1 polypeptide (or at least two polypeptides) having .beta.-xylosidase activity (e.g., Fv3A, Fv43A, Pf43A, Fv43D, Fv39A, Fv43E, Fo43A, Fv43B, Pa51A, Gz43A, and/or T. reesei Bxl1). The composition may comprise a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least 1 polypeptide (or at least 2 polypeptides) having .beta.-xylosidase activity (e.g., Fv3A, Fv43A, Pf43A, Fv43D, Fv39A, Fv43E, Fo43A, Fv43B, Pa51A, Gz43A, T. reesei Bxl1, and/or a variant thereof). The composition may comprise a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least one polypeptide (at least 2 polypeptides) having L-.alpha.-arabinofuranosidase activity (e.g., Af43A, Fv43B, Pf51A, Pa51A, Fv51A, or a variant thereof).

[0243] In some aspects, any of the polypeptides described herein (e.g., polypeptide having endoglucanase activity, polypeptide having cellobiohydrolase activity, polypeptide having glucosidase activity (e.g., .beta.-glucosidase), polypeptide having xylanase activity, polypeptide having xylosidase activity (e.g., .beta.-xylosidase), or polypeptide having arabinofuranosidase activity (e.g., L-.alpha.-arabinofuranosidase)) may be a component of a whole cellulase such as a whole cellulase described herein. Any of the polypeptides described herein may be produced by expressing an endogenous or exogenous gene encoding the corresponding polypeptide(s). The polypeptide(s) can be, in some circumstances, overexpressed or underexpressed.

[0244] Regarding any of the compositions described above, varying amounts for polypeptide(s) included in the compositions are provided below in "Amount of component(s) in compositions" section.

Polypeptide Having Endoglucanase Activity

[0245] A polypeptide having endoglucanase activity includes a polypeptide that catalyzes the cleavage of internal .beta.-1,4 linkages. Endoglucanase ("EG") refers to a group of cellulase enzymes classified as EC 3.2.1.4. An EG enzyme hydrolyzes internal beta-1,4 glucosidic bonds of the cellulose. EG catalyzes endohydrolysis of 1,4-beta-D-glycosidic linkages in cellulose, cellulose derivatives (for example, carboxy methyl cellulose), lichenin, beta-1,4 bonds in mixed beta-1,3 glucans such as cereal beta-D-glucans or xyloglucans, and other plant material containing cellulosic components. EG activity can be determined using carboxymethyl cellulose (CMC) hydrolysis according to the procedure of Ghose, 1987, Pure and Appl. Chem. 59: 257-268. In some aspects, at least one polypeptide having endoglucanase activity includes T. reesei EG1 (GenBank Accession No. HM641862.1) and/or T. reesei EG2 polypeptide (GenBank Accession No. ABA64553.1).

[0246] A thermostable T. terrestris endoglucanase (Kvesitadaze et al., Applied Biochem. Biotech. 1995, 50:137-143) is, in another example, used in the methods and compositions of the present disclosure. Moreover, a T. reesei EG3 (GenBank Accession No. AAA34213.1) (Okada et al. Appl. Environ. Microbiol. 1988, 64:555-563), EG5 (GenBank Accession No. AAP57754) (Saloheimo et al. Molecular Microbiology 1994, 13:219-228), EG6 (FIG. 89A) (U.S. Patent Publication No. 20070213249), or EG7 (GenBank Accession No. AAP57753) (U.S. Patent Publication No. 20090170181), an A. cellulolyticus EI endoglucanase (Swiss-Prot entry P54583.1) (U.S. Pat. No. 5,536,655), a H. insolens endoglucanase V (EGV) (Protein Data Bank entry 4ENG), a S. coccosporum endoglucanase (FIG. 89B) (U.S. Patent Publication No. 20070111278), an A. aculeatus endoglucanase F1-CMC (Swiss-Prot entry P22669.1) (Ooi et al. Nucleic Acid Res. 1990, 18:5884), an A. kawachii IFO 4308 endoglucanase CMCase-1 (Swiss-Prot entry Q96WQ8.1) (Sakamoto et al. Curr. Genet. 1995, 27:435-439), an E. carotovara endoglucanase CelS (GenBank Accession No. AAA24817.1) (Saarilahti et al. Gene 1990, 90:9-14); or an A. thermophilum ALK04245 endoglucanase (U.S. Patent Publication No. 20070148732) can also be used. Additional suitable endoglucanases are described in, e.g., WO 91/17243, WO 91/17244, WO 91/10732, U.S. Pat. No. 6,001,639. A polypeptide having endoglucanase activity may be a variant of any one of the endoglucases provided herein.

Polypeptide Having Cellobiohydrolase Activity

[0247] A polypeptide having cellobiohydrolase activity includes a polypeptide having 1,4-D-glucan cellobiohydrolase (E.C. 3.2.1.91) activity which catalyzes the hydrolysis of 1,4-beta-D-glucosidic linkages in cellulose, cellotetriose, or any beta-1,4-linked glucose containing polymer, releasing cellobiose from the ends of the chain. For purposes of the present invention, cellobiohydrolase activity can be determined by release of water-soluble reducing sugar from cellulose as measured by the PHBAH method of Lever et al., 1972, Anal. Biochem. 47: 273-279. A distinction between the exoglucanase mode of attack of a cellobiohydrolase and the endoglucanase mode of attack can be made by a similar measurement of reducing sugar release from substituted cellulose such as carboxymethyl cellulose or hydroxyethyl cellulose (Ghose, 1987, Pure & Appl. Chem. 59: 257-268). A true cellobiohydrolase will have a very high ratio of activity on unsubstituted versus substituted cellulose (Bailey et al, 1993, Biotechnol. Appl. Biochem. 17: 65-76).

[0248] Suitable CBHs can be selected from A. bisporus CBH1 (Swiss Prot Accession No. Q92400), A. aculeatus CBH1 (Swiss Prot Accession No. 059843), A. nidulans CBHA (GenBank Accession No. AF420019) or CBHB (GenBank Accession No. AF420020), A. niger CBHA (GenBank Accession No. AF156268) or CBHB (GenBank Accession No. AF156269), C. purpurea CBH1 (Swiss Prot Accession No. 000082), C. carbonarum CBH1 (Swiss Prot Accession No. Q00328), C. parasitica CBH1 (Swiss Prot Accession No. Q00548), F. oxysporum CBH1 (Cel7A) (Swiss Prot Accession No. P46238), H. grisea CBH1.2 (GenBank Accession No. U50594), H. grisea var. thermoidea CBH1 (GenBank Accession No. D63515), CBHI.2 (GenBank Accession No. AF123441), or exol (GenBank Accession No. AB003105), M. albomyces Cel7B (GenBank Accession No. AJ515705), N. crassa CBHI (GenBank Accession No. X77778), P. funiculosum CBHI (Ce17A) (GenBank Accession No. AJ312295) (U.S. Patent Publication No. 20070148730), P. janthinellum CBHI (GenBank Accession No. S56178), P. chrysosporium CBH (GenBank Accession No. M22220), or CBHI-2 (Ce17D) (GenBank Accession No. L22656), T. emersonii CBH1A (GenBank Accession No. AF439935), T. viride CBH1 (GenBank Accession No. X53931), or V. volvacea V14 CBH1 (GenBank Accession No. AF156693). A polypeptide having cellobiohydrolase activity may be a variant of any one of CBHs provided herein.

[0249] In some aspects, at least one polypeptide having cellobiohydrolase activity includes T. reesei CBH 1 (Swiss-Prot entry P62694.1) (or a variant thereof) and/or T. reesei CBH2 (Swiss-Prot entry P07987.1) (or a variant thereof) polypeptide. See Shoemaker et al. Bio/Technology 1983, 1:691-696; see also Teeri et al. Bio/Technology 1983, 1:696-699, A. fumigatus 7A, 7B, C. globosum 7A, 7B, T. terrestris 7A, 7B, which are T. reesei CBH1 homologs; T. terrestris 6A, S. thermophile 6A, 6B, which are T. reesei CBH2 homologs, or a variant thereof.

Polypeptide Having Glucosidase Activity

[0250] A polypeptide having glucosidase activity includes a polypeptide having beta-D-glucoside glucohydrolase (E.C. 3.2.1.21) activity which catalyzes the hydrolysis of cellobiose with the release of beta-D-glucose. For purposes of the present invention, .beta.-glucosidase activity may be measured by methods known in the art, e.g., HPLC. A polypeptide having glucosidase activity includes members of certain GH families, including, without limitation, members of GH families 1, 3, 9 or 48, which catalyze the hydrolysis of cellobiose to release .beta.-D-glucose. A polypeptide having glucosidase activity includes .beta.-glucosidase such as .beta.-glucosidase obtained from a number of microorganisms, by recombinant means, or be purchased from commercial sources. Examples of .beta.-glucosidases from microorganisms include, without limitation, ones from bacteria and fungi. For example, a .beta.-glucosidase is suitably obtained from a filamentous fungus. In some aspects, at least one polypeptide having glucosidase activity (e.g., .beta.-glucosidase activity) is a T. reesei Bgl1 polypeptide.

[0251] The .beta.-glucosidases can be obtained, or produced recombinantly, from, inter alia, A. aculeatus (Kawaguchi et al. Gene 1996, 173: 287-288), A. kawachi (Iwashita et al. Appl. Environ. Microbiol. 1999, 65: 5546-5553), A. oryzae (WO 2002/095014), C. biazotea (Wong et al. Gene, 1998, 207:79-86), P. funiculosum (WO 2004/078919), S. fibuligera (Machida et al. Appl. Environ. Microbiol. 1988, 54: 3147-3155), S. pombe (Wood et al. Nature 2002, 415: 871-880), or T. reesei (e.g., .beta.-glucosidase 1 (U.S. Pat. No. 6,022,725), .beta.-glucosidase 3 (U.S. Pat. No. 6,982,159), .beta.-glucosidase 4 (U.S. Pat. No. 7,045,332), .beta.-glucosidase 5 (U.S. Pat. No. 7,005,289), .beta.-glucosidase 6 (U.S. Publication No. 20060258554), .beta.-glucosidase 7 (U.S. Publication No. 20060258554)). A polypeptide having .beta.-glucosidases activity may be a variant of any one of .beta.-glucosidases provided herein.

[0252] The .beta.-glucosidase can be produced by expressing an endogenous or exogenous gene encoding a .beta.-glucosidase. For example, .beta.-glucosidase can be secreted into the extracellular space e.g., by Gram-positive organisms (e.g., Bacillus or Actinomycetes), or a eukaryotic hosts (e.g., Trichoderma, Aspergillus, Saccharomyces, or Pichia). The .beta.-glucosidase can be, in some circumstances, overexpressed or underexpressed.

[0253] The .beta.-glucosidase can also be obtained from commercial sources. Examples of commercial .beta.-glucosidase preparation suitable for use include, e.g., T. reesei .beta.-glucosidase in Accellerase.RTM. BG (Danisco US Inc., Genencor); NOVOZYM.TM. 188 (a .beta.-glucosidase from A. niger); Agrobacterium sp. .beta.-glucosidase, and T. maritima .beta.-glucosidase from Megazyme (Megazyme International Ireland Ltd., Ireland.).

[0254] .beta.-glucosidase activity can be determined by a number of suitable means known in the art, such as the assay described by Chen et al., in Biochimica et Biophysica Acta 1992, 121:54-60, wherein 1 pNPG denotes 1 .mu.moL of Nitrophenol liberated from 4-nitrophenyl-.beta.-D-glucopyranoside in 10 min at 50.degree. C. (122.degree. F.) and pH 4.8.

Polypeptide Having Xylanase Activity

[0255] Xylanase activity may be measured by using colorimetric azo-birchwood xylan assay (S-AXBL, Megazyme International Ireland Ltd., Ireland).

[0256] A polypeptide having xylanase activity may include Group A xylanases, selected from, e.g., Xyn, Xyn2, AfuXyn2, and/or AfuXyn5 polypeptide, or a variant thereof.

[0257] Any of the compositions described herein may optionally comprise one or more xylanases in addition to or in place of the one or more Group A xylanases. Any xylanase (EC 3.2.1.8) can be used as the additional one or more xylanases. Suitable xylanases include, e.g., C. saccharolyticum xylanase (Luthi et al. 1990, Appl. Environ. Microbiol. 56(9):2677-2683), T. maritima xylanase (Winterhalter & Liebel, 1995, Appl. Environ. Microbiol. 61(5):1810-1815), Thermatoga Sp. Strain FJSS-B.1 xylanase (Simpson et al. 1991, Biochem. J. 277, 413-417), B. circulans xylanase (BcX) (U.S. Pat. No. 5,405,769), A. niger xylanase (Kinoshita et al. 1995, Journal of Fermentation and Bioengineering 79(5):422-428), S. lividans xylanase (Shareck et al. 1991, Gene 107:75-82; Morosoli et al. 1986 Biochem. J. 239:587-592; Kluepfel et al. 1990, Biochem. J. 287:45-50), B. subtilis xylanase (Bernier et al. 1983, Gene 26(1):59-65), C. fimi xylanase (Clarke et al., 1996, FEMS Microbiology Letters 139:27-35), P. fluorescens xylanase (Gilbert et al. 1988, Journal of General Microbiology 134:3239-3247), C. thermocellum xylanase (Dominguez et al., 1995, Nature Structural Biology 2:569-576), B. pumilus xylanase (Nuyens et al. Applied Microbiology and Biotechnology 2001, 56:431-434; Yang et al. 1998, Nucleic Acids Res. 16(14B):7187), C. acetobutylicum P262 xylanase (Zappe et al. 1990, Nucleic Acids Res. 18(8):2179), or T. harzianum xylanase (Rose et al. 1987, J. Mol. Biol. 194(4):755-756). A polypeptide having xylanase activity may be a variant of any one of the xylanases provided herein.

Polypeptide Having Xylosidase (e.g., .beta.-Xylosidase) Activity

[0258] Xylosidase (e.g., .beta.-xylosidase) activity may be measured by using chromogenic substrate 4-nitrophenyl beta-D-xylopyranoside (pNPX, Sigma-Aldrich N2132).

[0259] A polypeptide having xylosidase (e.g., .beta.-xylosidase) activity may be a Group 1 .beta.-xylosidase enzyme (e.g., Fv3A or Fv43A) or a Group 2 .beta.-xylosidase enzyme (e.g., Pf43A, Fv43D, Fv39A, Fv43E, Fo43A, Fv43B, Pa51A, Gz43A, T. reesei Bxl1, or a variant thereof). In some aspects, any of the composition provided herein may suitably comprise one or more Group 1 .beta.-xylosidases and one or more Group 2 .beta.-xylosidases.

[0260] Any of the composition provided herein such as the enzyme blends/compositions of the disclosure can optionally comprise one or more .beta.-xylosidases, in addition to or in place of the Group 1 and/or Group 2 .beta.-xylosidases above. Any .beta.-xylosidase (EC 3.2.1.37) can be used as the additional .beta.-xylosidases. Suitable .beta.-xylosidases include, for example, T. emersonii Bxl1 (Reen et al. 2003, Biochem Biophys Res Commun. 305(3):579-85), G. stearothermophilus .beta.-xylosidases (Shallom et al. 2005, Biochemistry 44:387-397), S. thermophilum .beta.-xylosidases (Zanoelo et al. 2004, J. Ind. Microbiol. Biotechnol. 31:170-176), T. lignorum .beta.-xylosidases (Schmidt, 1998, Methods Enzymol. 160:662-671), A. awamori .beta.-xylosidases (Kurakake et al. 2005, Biochim. Biophys. Acta 1726:272-279), A. versicolor .beta.-xylosidases (Andrade et al. 2004, Process Biochem. 39:1931-1938), Streptomyces sp. .beta.-xylosidases (Pinphanichakarn et al. 2004, World J. Microbiol. Biotechnol. 20:727-733), T. maritima .beta.-xylosidases (Xue and Shao, 2004, Biotechnol. Lett. 26:1511-1515), Trichoderma sp. SY .beta.-xylosidases (Kim et al. 2004, J. Microbiol. Biotechnol. 14:643-645), A. niger .beta.-xylosidases (Oguntimein and Reilly, 1980, Biotechnol. Bioeng. 22:1143-1154), or P. wortmanni .beta.-xylosidases (Matsuo et al. 1987, Agric. Biol. Chem. 51:2367-2379). A polypeptide having xylosidase (e.g., .beta.-xylosidase) activity may be a variant of any one of the xylosidases provided herein.

[0261] Arabinofuranosidase activity may be measured by chromogenic substrate 4-nitrophenyl alpha-L-arabinofuranoside (pNPA, Sigma-Aldrich N3641).

[0262] Any one of the compositions provided herein such as the enzyme blends/compositions of the disclosure can, for example, suitably comprise at least one polypeptide having arabinofuranosidase activity (e.g., L-.alpha.-arabinofuranosidase activity) such as L-.alpha.-arabinofuranosidases. The L-.alpha.-arabinofuranosidase may be, for example, Af43A, Fv43B, Pf51A, Pa51A, Fv51A, or a variant thereof.

[0263] The enzyme blends/compositions of the disclosure may optionally comprise one or more L-.alpha.-arabinofuranosidases in addition to or in place of the foregoing L-.alpha.-arabinofuranosidases. L-.alpha.-arabinofuranosidases (EC 3.2.1.55) from any suitable organism can be used as the additional L-.alpha.-arabinofuranosidases. Suitable L-.alpha.-arabinofuranosidases include, e.g., L-.alpha.-arabinofuranosidases of A. oryzae (Numan & Bhosle, J. Ind. Microbiol. Biotechnol. 2006, 33:247-260), A. sojae (Oshima et al. J. Appl. Glycosci. 2005, 52:261-265), B. brevis (Numan & Bhosle, J. Ind. Microbiol. Biotechnol. 2006, 33:247-260), B. stearothermophilus (Kim et al., J. Microbiol. Biotechnol. 2004, 14:474-482), B. breve (Shin et al., Appl. Environ. Microbiol. 2003, 69:7116-7123), B. longum (Margolles et al., Appl. Environ. Microbiol. 2003, 69:5096-5103), C. thermocellum (Taylor et al., Biochem. J. 2006, 395:31-37), F. oxysporum (Panagiotou et al., Can. J. Microbiol. 2003, 49:639-644), F. oxysporum f. sp. dianthi (Numan & Bhosle, J. Ind. Microbiol. Biotechnol. 2006, 33:247-260), G. stearothermophilus T-6 (Shallom et al., J. Biol. Chem. 2002, 277:43667-43673), H. vulgare (Lee et al., J. Biol. Chem. 2003, 278:5377-5387), P. chrysogenum (Sakamoto et al., Biophys. Acta 2003, 1621:204-210), Penicillium sp. (Rahman et al., Can. J. Microbiol. 2003, 49:58-64), P. cellulosa (Numan & Bhosle, J. Ind. Microbiol. Biotechnol. 2006, 33:247-260), R. pusillus (Rahman et al., Carbohydr. Res. 2003, 338:1469-1476), S. chartreusis, S. thermoviolacus, T. ethanolicus, T. xylanilyticus (Numan & Bhosle, J. Ind. Microbiol. Biotechnol. 2006, 33:247-260), T. fusca (Tuncer and Ball, Folia Microbiol. 2003, (Praha) 48:168-172), T. maritima (Miyazaki, Extremophiles 2005, 9:399-406), Trichoderma sp. SY (Jung et al. Agric. Chem. Biotechnol. 2005, 48:7-10), A. kawachii (Koseki et al., Biochim. Biophys. Acta 2006, 1760:1458-1464), F. oxysporum f. sp. dianthi (Chacon-Martinez et al., Physiol. Mol. Plant. Pathol. 2004, 64:201-208), T. xylanilyticus (Debeche et al., Protein Eng. 2002, 15:21-28), H. insolens, M. giganteus (Sorensen et al., Biotechnol. Prog. 2007, 23:100-107), or R. sativus (Kotake et al. J. Exp. Bot. 2006, 57:2353-2362). A polypeptide having arabinofuranosidase activity may be a variant of any one of the arabinofuranosidases described herein.

[0264] In some aspects of any one of the compositions described herein, the at least one polypeptide having endoglucanase activity comprises T. reesei EG1 (or a variant thereof) and/or T. reesei EG2 (or a variant thereof). In some aspects of any one of the compositions described herein, the at least one polypeptide having cellobiohydrolase ("CBH") activity comprises T. reesei CBH1, A. fumigatus 7A, 7B, C. globosum 7A, 7B, T. terrestris 7A, 7B, T. reesei CBH2, T. terrestris 6A, S. thermophile 6A, 6B, or a variant thereof. In some aspects of any one of the compositions described herein, the at least one polypeptide having .beta.-glucosidase activity comprises Fv3C, Pa3D, Fv3G, Fv3D, Tr3A, Tr3B, Te3A, An3A, Fo3A, Gz3A, Nh3A, Vd3A, Pa3G, and/or Tn3B. In some aspects of any one of the compositions described herein, the at least one polypeptide having .beta.-glucosidase activity comprises Fv3C, Pa3D, Fv3G, Fv3D, Tr3A, Tr3B, Te3A, An3A, Fo3A, Gz3A, Nh3A, Vd3A, Pa3G, Tn3B, and/or a variant thereof. In some aspects of any one of the compositions described herein, the at least one polypeptide having xylanase activity comprises T. reesei Xyn3, T. reesei Xyn2, AfuXyn2, and/or AfuXyn5. In some aspects of any one of the compositions described herein, the at least one polypeptide having xylanase activity comprises T. reesei Xyn3, T. reesei Xyn2, AfuXyn2, AfuXyn5, and/or a variant thereof. In some aspects of any one of the compositions described herein, the at least one polypeptide having .beta.-xylosidase activity is a Group 1 .beta.-xylosidase or a Group 2 .beta.-xylosidase, wherein the Group 1 .beta.-xylosidase comprises Fv3A, Fv43A, or a variant thereof, and the Group 2 .beta.-xylosidase comprises Pf43A, Fv43D, Fv39A, Fv43E, Fo43A, Fv43B, Pa51A, Gz43A, T. reesei Bxl1, or a variant thereof. In some aspects, the at least one polypeptide having .beta.-xylosidase activity comprises F. verticillioides Fv3A, F. verticillioides Fv43D, or a variant thereof. In some aspects of any one of the compositions described herein, the at least one polypeptide having L-.alpha.-arabinofuranosidase activity comprises Af43A, Fv43B, Pf51A, Pa51A, and/or Fv51A. In some aspects of any one of the compositions described herein, the at least one polypeptide having L-.alpha.-arabinofuranosidase activity comprises Af43A, Fv43B, Pf51A, Pa51A, Fv51A, and/or a variant thereof.

Whole Cellulase

[0265] Any of the compositions provided here such as enzyme blends/compositions of the disclosure may comprise whole cellulase.

[0266] As used herein, a "whole cellulase" refers to either a naturally occurring or a non-naturally occurring cellulase-containing composition comprising at least 3 different enzyme types: (1) an endoglucanase, (2) a cellobiohydrolase, and (3) a .beta.-glucosidase, or comprising at least 3 different enzymatic activities: (1) an endoglucanase activity, which catalyzes the cleavage of internal .beta.-1,4 linkages, resulting in shorter glucooligosaccharides, (2) a cellobiohydrolase activity, which catalyzes an "exo"-type release of cellobiose units (.beta.-1,4 glucose-glucose disaccharide), and (3) a .beta.-glucosidase activity, which catalyzes the release of glucose monomer from short cellooligosaccharides (e.g., cellobiose). The whole cellulase may comprise at least one polypeptide having endoglucanase activity (e.g., EG2 (or a variant thereof) and/or EG4 (or a variant thereof)), at least one polypeptide having cellobiohydrolase activity (e.g., CBH1 (or a variant thereof) and/or CBH2 (or a variant thereof)), and at least one polypeptide having .beta.-glucosidase activity (e.g., Bgl1 or a variant thereof).

[0267] A "naturally occurring cellulase-containing" composition is one produced by a naturally occurring source, which comprises one or more cellobiohydrolase-type, one or more endoglucanase-type, and one or more .beta.-glucosidase-type components or activities, wherein each of these components or activities is found at the ratio and level produced in nature, untouched by the human hand. Accordingly, a naturally occurring cellulase-containing composition is, for example, one that is produced by an organism unmodified with respect to the cellulolytic enzymes such that the ratio or levels of the component enzymes are unaltered from that produced by the native organism in nature. A "non-naturally occurring cellulase-containing composition" refers to a composition produced by: (1) combining component cellulolytic enzymes either in a naturally occurring ratio or a non-naturally occurring, i.e., altered, ratio; or (2) modifying an organism to overexpress or underexpress one or more cellulolytic enzymes; or (3) modifying an organism such that at least one cellulolytic enzyme is deleted. A "non-naturally occurring cellulase containing" composition can also refer to a composition resulting from adjusting the culture conditions for a naturally-occurring organism, such that the naturally-occurring organism grows under a non-native condition, and produces an altered level or ratio of enzymes. Accordingly, in some embodiments, the whole cellulase preparation of the present disclosure can have one or more EGs and/or CBHs and/or .beta.-glucosidases deleted and/or overexpressed.

[0268] In some aspects, there is provided a non-naturally occurring composition comprising a polypeptide having GH61/endoglucanase activity (e.g., endoglucanase IV polypeptide such as T. reesei Eg4 polypeptide or a variant thereof) or a non-naturally occurring composition comprising a polypeptide having GH61/endoglucanase activity (e.g., whole cellulase enriched with endoglucanase IV polypeptide such as T. reesei Eg4 polypeptide or a variant thereof), wherein the composition further comprises a whole cellulase, at least 1 polypeptide having endoglucanase activity (e.g., at least 2, 3, 4, or 5 polypeptides having endoglucanase activity), at least 1 polypeptide having cellobiohydrolase activity (e.g., at least 2, 3, 4, or 5 polypeptides having cellobiohydrolase activity), at least 1 polypeptide having glucosidase activity (e.g., .beta.-glucosidase) (e.g., at least 2, 3, 4, or 5 polypeptides having .beta.-glucosidase activity), at least 1 polypeptide having xylanase activity (e.g., at least 2, 3, 4, or 5 polypeptides having xylanase activity), at least 1 polypeptide having xylosidase activity (e.g., .beta.-xylosidase) (e.g., at least 2, 3, 4, or 5 polypeptides having .beta.-xylosidase activity), and/or at least 1 polypeptide having arabinofuranosidase activity (e.g., L-.alpha.-arabinofuranosidase) (e.g., at least 2, 3, 4, or 5 polypeptides having L-.alpha.-arabinofuranosidase activity). The polypeptides having various enzyme activities are described above.

[0269] In some aspects, the whole cellulase comprises at least 1 polypeptide having endoglucanase activity such as T. reesei EG1, T. reesei EG2, or a variant thereof. In some aspects, the whole cellulase comprises at least one polypeptide having cellobiohydrolase activity such as T. reesei CBH1, T. reesei CBH2, or a variant thereof. In some aspects, the whole cellulase comprises at least 1 polypeptide having .beta.-glucosidase activity such as Fv3C, Pa3D, Fv3G, Fv3D, Tr3A, Tr3B, Te3A, An3A, Fo3A, Gz3A, Nh3A, Vd3A, Pa3G, Tn3B, or a variant thereof.

[0270] In the present disclosure, a whole cellulase preparation can be from any microorganism that is capable of hydrolyzing a cellulosic material. In some embodiments, the whole cellulase preparation is a fungal or bacterial whole cellulase. For example, the whole cellulase preparation can be from an Acremonium, Aspergillus, Chrysosporium, Emericella, Fusarium, Humicola, Mucor, Myceliophthora, Neurospora, Penicillium, Scytalidium, Thielavia, Tolypocladium, Trichoderma, or yeast species.

[0271] The whole cellulase preparation may be, e.g., an Aspergillus aculeatus, Aspergillus awamori, Aspergillus foetidus, Aspergillus japonicus, Aspergillus nidula vs, Aspergillus niger, or Aspergillus oryzae whole cellulase. Moreover, the whole cellulase preparation may be a Fusarium bactridioides, Fusarium cerealis, Fusarium crookwellen.sigma.e, Fusarium culmorum, Fusarium graminearum, Fusarium graminum, Fusarium heterosporum, Fusarium negundi, Fusarium oxysporum, Fusarium reticulatum, Fusarium roseum, Fusarium sambucinum, Fusarium sarcochroum, Fusarium sporotrichioides, Fusarium sulphureum, Fusarium torulosum, Fusarium trichothecioides, or Fusarium venenatum whole cellulase preparation. The whole cellulase preparation may also be a Chrysosporium lucknowence, Humicola insolens, Humicola lanuginosa, Mucor miehei, Myceliophthora thermophila, Neurospora crassa, Penicillium purpurogenum, Penicillium funiculosum, Scytalidium thermophilum, or Thielavia terrestris whole cellulase preparation. The whole cellulase preparation may also be a Trichoderma harzianum, Trichoderma koningii, Trichoderma longibrachiatum, Trichoderma reesei (e.g., RL-P37 (Sheir-Neiss G et al. Appl. Microbiol. Biotechnology, 1984, 20, pp. 46-53), QM9414 (ATCC No. 26921), NRRL 15709, ATCC 13631, 56764, 56466, 56767), or a Trichoderma viride (e.g., ATCC 32098 and 32086) whole cellulase preparation.

[0272] The whole cellulase preparation can be integrated strain T. reesei H3A or H3A/Eg4 #27 (as described in the Examples herein) preparation.

[0273] The whole cellulase preparation can suitably be a T. reesei RutC30 whole cellulase preparation, which is available from the American Type Culture Collection as T. reesei ATCC 56765. For example, the whole cellulase preparation can also suitably be a whole cellulase of P. funiculosum, which is available from the American Type Culture Collection as P. funiculosum ATCC Number: 10446.

[0274] The whole cellulase preparation can also be obtained from commercial sources. Examples of commercial cellulase preparations suitable for use in the methods and compositions of the present disclosure include, for example, CELLUCLAST.TM. and Cellic.TM. (Novozymes A/S) and LAMINEX.TM. BG, IndiAge.TM. 44L, Primafast.TM. 100, Primafast.TM. 200, Spezyme.TM. CP, Accellerase.RTM. 1000 and Accellerase.RTM. 1500 (Danisco US. Inc., Genencor).

[0275] Suitable whole cellulase preparations can be made using any known microorganism cultivation methods, especially fermentation, resulting in the expression of enzymes capable of hydrolyzing a cellulosic material. As used herein, "fermentation" refers to shake flask cultivation, small- or large-scale fermentation, such as continuous, batch, fed-batch, or solid state fermentations in laboratory or industrial fermenters performed in a suitable medium and under conditions that allow the cellulase and/or enzymes of interest to be expressed and/or isolated. Generally the microorganism is cultivated in a cell culture medium suitable for production of enzymes capable of hydrolyzing a cellulosic material. The cultivation takes place in a nutrient medium comprising carbon and nitrogen sources and inorganic salts, using known procedures and variations. Culture media, temperature ranges and other conditions for growth and cellulase production are known. As a non-limiting example, a typical temperature range for the production of cellulases by T. reesei is 24.degree. C. to 28.degree. C.

[0276] The whole cellulase preparation can be used as it is produced by fermentation with no or minimal recovery and/or purification. In that sense, the whole cellulase preparation can be used in a whole broth formulation. For example, once cellulases are secreted into the cell culture medium, the cell culture medium containing the cellulases can be used directly. The whole cellulase preparation can comprise the unfractionated contents of fermentation material, including the spent cell culture medium, extracellular enzymes and cells. On the other hand, the whole cellulase preparation can also be subject to further processing in a number of routine steps, e.g., precipitation, centrifugation, affinity chromatography, filtration, or the like. For example, the whole cellulase preparation can be concentrated, and then used without further purification. The whole cellulase preparation can, e.g., be formulated to comprise certain chemical agents that decrease cell viability or kill the cells after fermentation. The cells can for example be lysed or permeabilized using known methods.

[0277] The endoglucanase activity of the whole cellulase preparation can be determined using carboxymethyl cellulose (CMC) as a substrate. A suitable assay measures the production of reducing ends created by the enzyme mixture acting on CMC wherein 1 unit is the amount of enzyme that liberates 1 .mu.moL of product/min (Ghose, T. K., Pure & Appl. Chem. 1987, 59, pp. 257-268).

[0278] The whole cellulase may be enriched with a polypeptide having GH61/endoglucanase activity, e.g., an EG IV-enriched (such as, e.g., enriched with T. reesei Eg4 polypeptide or a variant thereof) cellulase. The EG IV-enriched whole cellulase generally comprises an EG IV polypeptide (such as, e.g., T. reesei Eg4 polypeptide or a variant thereof) and a whole cellulase preparation. The EG IV-enriched whole cellulase compositions can be produced by recombinant means. For example, such a whole cellulase preparation can be achieved by expressing an EG IV in a microorganism capable of producing a whole cellulase. The EG IV-enriched whole cellulase composition can also, e.g., comprise a whole cellulase preparation and an EG IV (such as, e.g., T. reesei Eg4 polypeptide or a variant thereof). For instance, the EG IV-enriched (e.g., enriched with T. reesei Eg4 polypeptide or a variant thereof) whole cellulase composition can suitably comprise at least 0.1 wt. %, 1 wt. %, 2 wt. %, 5 wt. %, 7 wt. %, 10 wt. %, 15 wt. % or 20 wt. %, and up to 25 wt. %, 30 wt. %, 35 wt. %, 40 wt. %, or 50 wt. % EG IV based on the total weight of proteins in that blend/composition.

[0279] The whole cellulase can be a .beta.-glucosidase-enriched cellulase. The .beta.-glucosidase-enriched whole cellulase generally comprises a .beta.-glucosidase and a whole cellulase preparation. The .beta.-glucosidase-enriched whole cellulase compositions can be produced by recombinant means. For example, such a whole cellulase preparation can be achieved by expressing a .beta.-glucosidase in a microorganism capable of producing a whole cellulase The .beta.-glucosidase-enriched whole cellulase composition can also, e.g., comprise a whole cellulase preparation and a .beta.-glucosidase. For instance, the .beta.-glucosidase-enriched whole cellulase composition can suitably comprise at least 0.1 wt. %, 1 wt. %, 2 wt. %, 5 wt. %, 7 wt. %, 10 wt. %, 15 wt. % or 20 wt. %, and up to 25 wt. %, 30 wt. %, 35 wt. %, 40 wt. %, or 50 wt. % .beta.-glucosidase based on the total weight of proteins in that blend/composition.

[0280] Certain fungi produce complete cellulase systems, including exo-cellobiohydrolases or CBH-type cellulases, endoglucanases or EG-type cellulases and .beta.-glucosidase or BG-type cellulases (Schulein, 1988). However, sometimes these systems lack CBH-type cellulases, e.g., bacterial cellulases also typically include little or no CBH-type cellulases. In addition, it has been shown that the EG components and CBH components synergistically interact to more efficiently degrade cellulose. See, e.g., Wood, 1985. The different components, i.e., the various endoglucanases and exocellobiohydrolases in a multi-component or complete cellulase system, generally have different properties, such as isoelectric point, molecular weight, degree of glycosylation, substrate specificity and enzymatic action patterns.

[0281] In some aspects, the cellulase is used as is produced by fermentation with no or minimal recovery and/or purification. For example, once cellulases are secreted by a cell into the cell culture medium, the cell culture medium containing the cellulases can be used. In some aspects, the whole cellulase preparation comprises the unfractionated contents of fermentation material, including cell culture medium, extracellular enzymes and cells. Alternatively, the whole cellulase preparation can be processed by any convenient method, e.g., by precipitation, centrifugation, affinity, filtration or any other method known in the art. In some aspects, the whole cellulase preparation can be concentrated, for example, and then used without further purification. In some aspects, the whole cellulase preparation comprises chemical agents that decrease cell viability or kills the cells. In some aspects, the cells are lysed or permeabilized using methods known in the art.

[0282] A composition is provided comprising a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and further comprising at least one cellulase polypeptide and/or at least one hemicellulase polypeptide, wherein the cellulase polypeptide and/or the hemicellulase polypeptide is heterologous to the host cell expressing the cellulase polypeptide and/or the hemicellulase polypeptide. In some aspects, there is provided a composition comprising a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and further comprising at least 1 cellulase polypeptide and/or at least 1 hemicellulase polypeptide, wherein the cellulase polypeptide and/or the hemicellulase polypeptide is expressed from a host cell, and wherein cellulase polypeptide and/or a hemicellulase polypeptide is endogenous to the host cell. The cellulase polypeptide may comprise a polypeptide having endoglucanase activity (e.g., T. reesei EG1 or a variant thereof, T. reesei EG2 or a variant thereof), a polypeptide having cellobiohydrolase activity (e.g., T. reesei CBH1, A. fumigatus 7A, 7B, C. globosum 7A, 7B, T. terrestris 7A, 7B, T. reesei CBH2, T. terrestris 6A, S. thermophile 6A, 6B, or a variant thereof), or a polypeptide having .beta.-glucosidase activity (e.g., Fv3C, Pa3D, Fv3G, Fv3D, Tr3A, Tr3B, Te3A, An3A, Fo3A, Gz3A, Nh3A, Vd3A, Pa3G, Tn3B, or a variant thereof). The hemicellulase polypeptide may comprise a polypeptide having xylanase activity (e.g., T. reesei Xyn3, T. reesei Xyn2, AfuXyn2, AfuXyn5, or a variant thereof), a having .beta.-xylosidase activity (e.g., Fv3A, Fv43A, Pf43A, Fv43D, Fv39A, Fv43E, Fo43A, Fv43B, Pa51A, Gz43A, T. reesei Bxl1, or a variant thereof), or a polypeptide having L-.alpha.-arabinofuranosidase activity (e.g., Af43A, Fv43B, Pf51A, Pa51A, Fv51A, or a variant thereof).

[0283] In some aspects, the composition is from fermentation broth. The composition may be from the fermentation broth of a strain, wherein a nucleic acid encoding a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) is heterologous to the host cell expressing the polypeptide having GH61/endoglucanase activity (e.g., integrated into the strain or expressed from a vector in the host strain). The composition may be from the fermentation broth of an integrated strain (e.g., H3A/Eg4, #27 as in Examples).

[0284] The composition comprising a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) may comprise whole cellulase. Thus, a composition is provided (e.g., a non-naturally occurring composition) comprising T. reesei Eg4 (or a variant thereof), T. reesei Bgl1 (or a variant thereof), T. reesei xyn3 (or a variant thereof), Fv3A (or a variant thereof), Fv43D (or a variant thereof), and Fv51A (or a variant thereof).

[0285] In some aspects, the composition comprises isolated T. reesei Eg4. In some aspects, the composition comprises at least one (at least 2, 3, 4, or 5) of isolated T. reesei Bgl1, isolated T. reesei xyn3, isolated Fv3A, isolated Fv43D, and isolated Fv51A.

[0286] In some aspects, the composition is from fermentation broth. In some aspects, the composition is from the fermentation broth of an integrated strain (e.g., H3A/Eg4, #27 as described herein in the Examples). The T. reesei Eg4 or the nucleic acid encoding T. reesei Eg4 may be heterologous to the host cell expressing T. reesei Eg4. At least one nucleic acid encoding T. reesei Bgl1, T. reesei xyn3, Fv3A, Fv43D, Fv51A, or a variant thereof may be heterologous to the host cell such as the host cell expressing T. reesei Eg4. In some aspects, at least one nucleic acid encoding T. reesei Bgl1, T. reesei xyn3, Fv3A, Fv43D, Fv51A, or a variant thereof is endogenous to the host cell such as the host cell expressing T. reesei Eg4.

[0287] Regarding any of the compositions described above, varying amounts of the polypeptide(s) included in the compositions are described below in "Amount of component(s) in compositions" section.

Amount of Component(s) in Compositions

[0288] A non-naturally occurring composition comprising a polypeptide having GH61/endoglucanase activity (or a non-naturally occurring composition comprising whole cellulase comprising a polypeptide having GH61/endoglucanase activity) provided herein may comprise various components as described herein, wherein each component is present in the composition in various amount.

[0289] In some aspects of any one of the compositions or methods provided herein, the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) is present in the composition in an amount sufficient to increase the yield of fermentable sugar(s) from hydrolysis of biomass material (e.g., by at least about any of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%, 70%, 80%, or 90%) compared to the yield in the absence of the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof). Any one of the compositions or methods provided herein, the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) may be present in the composition in an amount sufficient to reduce the viscosity of a biomass mixture during hydrolysis of a biomass material (e.g., by at least about any of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%, 70%, 80%, or 90%) compared to the viscosity of the biomass mixture during hydrolysis in the absence of the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof). The composition may further comprise at least 1 polypeptide having endoglucanase activity, at least 1 polypeptide having cellobiohydrolase activity, at least 1 polypeptide having .beta.-glucosidase activity, at least 1 polypeptide having xylanase activity, at least 1 polypeptide having .beta.-xylosidase activity, at least 1 polypeptide having L-.alpha.-arabinofuranosidase activity, and/or whole cellulase, or a mixture thereof. The amount of polypeptide(s) having endoglucanase activity, the amount of polypeptide(s) having cellobiohydrolase activity, the amount of polypeptide(s) having .beta.-glucosidase activity, the amount of polypeptide(s) having xylanase activity, the amount of polypeptide(s) having .beta.-xylosidase activity, the amount of polypeptide(s) having L-.alpha.-arabinofuranosidase activity, or the amount of whole cellulase is sufficient to increase the yield of fermentable sugar(s) from hydrolysis of biomass material (e.g., by at least about any of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%, 70%, 80%, or 90%) compared to the yield in the absence of the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof), the polypeptide(s) having endoglucanase activity, the polypeptide(s) having cellobiohydrolase activity, the polypeptide(s) having .beta.-glucosidase activity, the polypeptide(s) having xylanase activity, the polypeptide(s) having .beta.-xylosidase activity, the polypeptide(s) having L-.alpha.-arabinofuranosidase activity, or the whole cellulase. In some aspects, the amount of polypeptide(s) having endoglucanase activity, the amount of polypeptide(s) having cellobiohydrolase activity, the amount of polypeptide(s) having .beta.-glucosidase activity, the amount of polypeptide(s) having xylanase activity, the amount of polypeptide(s) having .beta.-xylosidase activity, the amount of polypeptide(s) having L-.alpha.-arabinofuranosidase activity, or the amount of whole cellulase is sufficient to reduce the viscosity of a biomass mixture during hydrolysis of a biomass material (e.g., by at least about any of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%, 70%, 80%, or 90%) compared to the viscosity of a biomass mixture in the absence of the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof), the polypeptide(s) having endoglucanase activity, the polypeptide(s) having cellobiohydrolase activity, the polypeptide(s) having .beta.-glucosidase activity, the polypeptide(s) having xylanase activity, the polypeptide(s) having .beta.-xylosidase activity, the polypeptide(s) having L-.alpha.-arabinofuranosidase activity, or the whole cellulase.

[0290] A polypeptide having GH61/endoglucanase activity (such as EG IV including T. reesei Eg4 polypeptide or a variant thereof) may be present in any of the compositions described herein (such as in any of the enzyme blends/compositions provided herein) in an amount that is at least about any of 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 11 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, or 50 wt. % of the total weight of proteins in the composition. In some aspects, a polypeptide having GH61/endoglucanase activity (such as EG IV including, e.g., T. reesei Eg4 polypeptide or a variant thereof) may be present in any of the compositions described herein (such as in any of the enzyme blends/compositions provided herein) in an amount that is no more than about any of 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 11 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, 50 wt. %, 55 wt. %, 60 wt. %, 65 wt. %, 70 wt. %, 75 wt. %, or 80 wt. % of the total weight of proteins in the composition. A polypeptide having GH61/endoglucanase activity (such as EG IV including, e.g., T. reesei Eg4 polypeptide or a variant thereof) may be present in any of the compositions described herein (such as in any of the enzyme blends/compositions provided herein) in an amount that has a range having upper limit and lower limit. For example, lower limit for a polypeptide having GH61/endoglucanase activity is about any of 0.01 wt. %, 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, or 50 wt. % of the total weight of proteins in the composition. Upper limit for a polypeptide having GH61/endoglucanase activity may be about any of 10 wt, %, 15 wt, %, 20 wt. %, 25 wt. %, 30 wt. %, 35 wt. %, 40 wt. %, 50 wt. %, 55 wt. %, 60 wt. %, 65 wt. % or 70 wt. % of the total weight of proteins in the composition. In some aspects, a polypeptide having GH61/endoglucanase activity (such as EG IV including, e.g., T. reesei Eg4 polypeptide or a variant thereof) may be present in any of the compositions described herein (such as in any of the enzyme blends/compositions provided herein) in an amount that is about any of 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 11 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, 50 wt. %, 55 wt. %, 60 wt. %, 65 wt. %, 70 wt. %, 75 wt. %, or 80 wt. % of the total weight of proteins in the composition. The polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) may be present in about 10 wt. % or 12 wt. % of the total weight of proteins in the composition. The composition may have at least two polypeptides having endoglucanase activity (e.g., T. reesei Eg4, T. reesei Eg1, and/or T. reesei Eg2, or a variant thereof), where the total amount of polypeptides having endoglucanase activity is about 0.1 to about 50 wt. % (e.g., about 0.5 to about 45 wt. %, about 1 to about 30 wt. %, about 2 to about 20 wt. %, about 5 to about 20 wt. %, or about 8 to about 15 wt. %) of the total weight of proteins in the composition. The polypeptide having GH61/endoglucanase activity may be heterologous or endogenous to the host cell expressing the polypeptide having GH61/endoglucanase activity. The polypeptide having GH61/endoglucanase activity included in the composition may be isolated.

[0291] In some aspects, the enzyme composition (e.g., the enzyme composition) described herein is whole cellulase composition comprising a polypeptide having GH61/endoglucanase activity. In some aspects, a polypeptide having GH61/endoglucanase activity (such as EG IV including, e.g., T. reesei Eg4 polypeptide or a variant thereof) may be present in an amount that is at least about any of 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 11 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, or 50 wt. % of the total weight of the whole cellulase. In some aspects, a polypeptide having GH61/endoglucanase activity (such as EG IV including, e.g., T. reesei Eg4 polypeptide or a variant thereof) may be present in an amount that is no more than about any of 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 11 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, 50 wt. %, 55 wt. %, 60 wt. %, 65 wt. %, 70 wt. %, 75 wt. %, or 80 wt. % of the total weight of the whole cellulase. In some aspects, a polypeptide having GH61/endoglucanase activity (such as EG IV including, e.g., T. reesei Eg4 polypeptide or a variant thereof) may be present in an amount that has a lower limit of about any of 0.01 wt. %, 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, or 50 wt. % of the total weight of the whole cellulase and a upper limit of about any of 10 wt, %, 15 wt, %, 20 wt. %, 25 wt. %, 30 wt. %, 35 wt. %, 40 wt. %, 50 wt. %, 55 wt. %, 60 wt. %, 65 wt. % or 70 wt. % of the total weight of the whole cellulase. In some aspects, a polypeptide having GH61/endoglucanase activity (such as EG IV including, e.g., T. reesei Eg4 polypeptide or a variant thereof) may be present in an amount that is about any of 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 11 wt. %, 12 wt. %, 13 wt. %, 14 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, 50 wt. %, 55 wt. %, 60 wt. %, 65 wt. %, 70 wt. %, 75 wt. %, or 80 wt. % of the total weight of the whole cellulase. In some aspects, a polypeptide having GH61/endoglucanase activity (such as EG IV including, e.g., T. reesei Eg4 polypeptide or a variant thereof) is present in an amount that is about 10 wt. % or 12 wt. % of the total weight of the whole cellulase.

[0292] In some aspects, any of the compostions provided herein may comprise at least one polypeptide having endoglucanase activity (e.g., in addition to a polypeptide having GH61/endoglucanase activity) including T. reesei Eg1 or a variant thereof and/or T. reesei Eg2 or a variant thereof. In some aspects, the total amount of the polypeptide(s) having endoglucanase activity may be present in any of the compositions described herein (such as in any of the enzyme blends/compositions provided herein) in an amount that is at least about 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 11 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, or 50 wt. % of the total weight of proteins in the composition. In some aspects, the total amount of the polypeptide(s) having endoglucanase activity may be present in any of the compositions described herein (such as in any of the enzyme blends/compositions provided herein) in an amount that is no more than about any of 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 11 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, 50 wt. %, 55 wt. %, 60 wt. %, 65 wt. %, 70 wt. %, 75 wt. %, or 80 wt. % of the total weight of proteins in the composition. In some aspects, the total amount of the polypeptide(s) having endoglucanase activity may be present in any of the compositions described herein (such as in any of the enzyme blends/compositions provided herein) in an amount that has a range having upper limit and lower limit. For example, lower limit for the total amount of the polypeptide(s) having endoglucanase activity is about any of 0.01 wt. %, 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, or 50 wt. % of the total weight of proteins in the composition. Upper limit for the total amount of the polypeptide(s) having endoglucanase activity may be about any of 10 wt, %, 15 wt, %, 20 wt. %, 25 wt. %, 30 wt. %, 35 wt. %, 40 wt. %, 50 wt. %, 55 wt. %, 60 wt. %, 65 wt. % or 70 wt. % of the total weight of proteins in the composition. In some aspects, the total amount of the polypeptide(s) having endoglucanase activity may be present in any of the compositions described herein (such as in any of the enzyme blends/compositions provided herein) in an amount that is about any of 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 11 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, 50 wt. %, 55 wt. %, 60 wt. %, 65 wt. %, 70 wt. %, 75 wt. %, or 80 wt. % of the total weight of proteins in the composition.

[0293] In some aspects, any of the compostions provided herein may comprise one or more polypeptide with various enzyme activity, such as polypeptide(s) having cellobiohydrolase activity, polypeptide(s) having glucosidase activity (e.g., .beta.-glucosidase), polypeptide(s) having xylanase activity, polypeptide(s) having xylosidase activity, and/or polypeptide(s) having arabinofuranosidase activity. In some aspects, there may be multiple polypeptides having the same enzyme activity. Each of the polypeptides mentioned above (or the total amount of the polypeptides having a specific enzyme activity, e.g., total amount of the polypeptides having cellobiohydrolase activity, glucosidase activity (e.g., .beta.-glucosidase), xylanase activity, xylosidase activity, or arabinofuranosidase activity) may be present in any of the compositions described herein (such as in any of the enzyme blends/compositions provided herein) in an amount that is at least about any of 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 11 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, or 50 wt. % of the total weight of proteins in the composition. In some aspects, each of the polypeptides mentioned above (or the total amount of the polypeptides having a specific enzyme activity, e.g., total amount of the polypeptides having cellobiohydrolase activity, glucosidase activity (e.g., .beta.-glucosidase), xylanase activity, xylosidase activity, or arabinofuranosidase activity) may be no more than about any of 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 11 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, 50 wt. %, 55 wt. %, 60 wt. %, 65 wt. %, 70 wt. %, 75 wt. %, or 80 wt. % of the total weight of proteins in the composition. Each of the polypeptides mentioned above (or the total amount of the polypeptides having a specific enzyme activity, e.g., total amount of the polypeptides having cellobiohydrolase activity, glucosidase activity (e.g., .beta.-glucosidase), xylanase activity, xylosidase activity, or arabinofuranosidase activity) may be present in any of the compositions described herein (such as in any of the enzyme blends/compositions provided herein) in an amount that has a range having upper and lower limits. For example, lower limit for the total amount of the polypeptide(s) having endoglucanase activity is about any of 0.01 wt. %, 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, or 50 wt. % of the total weight of proteins in the composition. Upper limit may be about any of 10 wt, %, 15 wt, %, 20 wt. %, 25 wt. %, 30 wt. %, 35 wt. %, 40 wt. %, 50 wt. %, 55 wt. %, 60 wt. %, 65 wt. % or 70 wt. % of the total weight of proteins in the composition. In some aspects, each of the polypeptides mentioned above (or the total amount of the polypeptides having a specific enzyme activity, e.g., total amount of the polypeptides having cellobiohydrolase activity, glucosidase activity (e.g., .beta.-glucosidase), xylanase activity, xylosidase activity, or arabinofuranosidase activity) may be present in any of the compositions described herein (such as in any of the enzyme blends/compositions provided herein) in an amount that is about any of 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 11 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, 50 wt. %, 55 wt. %, 60 wt. %, 65 wt. %, 70 wt. %, 75 wt. %, or 80 wt. % of the total weight of proteins in the composition.

[0294] In some aspects, any of the compostions provided herein may further comprise whole cellulase. The whole cellulase may be present in any of the compositions described herein (such as in any of the enzyme blends/compositions provided herein) in an amount that is at least about any of 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 11 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, 50 wt. %, 55 wt. %, 60 wt. %, 65 wt. %, 70 wt. %, 75 wt. %, 80 wt. %, 85 wt. %, 90 wt. %, or 95 wt. % of the total weight of proteins in the composition. The whole cellulase may be present in any of the compositions described herein (such as in any of the enzyme blends/compositions provided herein) in an amount that is no more than about any of 10 wt. %, 11 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, 50 wt. %, 55 wt. %, 60 wt. %, 65 wt. %, 70 wt. %, 75 wt. %, 80 wt. %, 85 wt. %, 90 wt. %, or 95 wt. % of the total weight of proteins in the composition. The whole cellulase may be present in any of the compositions described herein (such as in any of the enzyme blends/compositions provided herein) in an amount that is about any of 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. %, 5 wt. %, 6 wt. % 7 wt. %, 8 wt. %, 9 wt. %, 10 wt. %, 11 wt. %, 12 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 40 wt. %, 45 wt. %, 50 wt. %, 55 wt. %, 60 wt. %, 65 wt. %, 70 wt. %, 75 wt. %, 80 wt. %, 85 wt. %, 90 wt. %, or 95 wt. % of the total weight of proteins in the composition.

[0295] In some aspects of any one of the compositions or methods provided herein, the polypeptide having cellobiohydrolase activity (e.g., T. reesei CBH1, T. reesei CBH2, or a variant thereof) is present in an amount that is about 0.1 to about 70 wt. % (e.g., about 0.5 to about 60 wt. %, about 5 to about 70 wt. %, about 10 to about 60 wt. %, about 20 to about 50 wt. %, or about 30 to about 50 wt. %) of the total weight of proteins in the composition. In some aspects, the composition has at least two polypeptides having cellobiohydrolase activity (e.g., T. reesei CBH1 (or a variant thereof) and T. reesei CBH2 (or a variant thereof)), wherein the total amount of polypeptides having cellobiohydrolase activity is about 0.1 to about 70 wt. % (e.g., about 0.5 to about 60 wt. %, about 5 to about 70 wt. %, about 10 to about 60 wt. %, about 20 to about 50 wt. %, or about 30 to about 50 wt. %) of the total weight of proteins in the composition. The polypeptide having cellobiohydrolase activity may be expressed from a nucleic acid heterologous or endogenous to the host cell. In some aspects, the polypeptide having cellobiohydrolase activity included in the composition is isolated.

[0296] In some aspects of any one of the compositions or methods provided herein, the polypeptide having .beta.-glucosidase activity (e.g., an Fv3C, a Pa3D, an Fv3G, an Fv3D, a Tr3A, a Tr3B, a Te3A, an An3A, an Fo3A, a Gz3A, an Nh3A, a Vd3A, a Pa3G, a Tn3B, or a variant thereof) is present in an amount that is about 0.1 to about 50 wt. % (e.g., about 0.5 to about 40 wt. %, about 1 to about 30 wt. %, about 2 to about 20 wt. %, about 5 to about 20 wt. %, or about 8 to about 15 wt. %) of the total weight of proteins in the composition. In some aspects, the composition has at least two polypeptides having .beta.-glucosidase activity, wherein the total amount of polypeptides having .beta.-glucosidase activity is about 0.1 to about 50 wt. % (e.g., about 0.5 to about 40 wt. % about 1 to about 30 wt. %, about 2 to about 20 wt. %, about 5 to about 20 wt. %, or about 8 to about 15 wt. %) of the total weight of proteins in the composition. The polypeptide having .beta.-glucosidase activity may be expressed from a nucleic acid heterologous or endogenous to the host cell. In some aspects, the polypeptide having .beta.-glucosidase activity included in the composition is isolated.

[0297] Any one of the compositions or methods provided herein, the polypeptide having xylanase activity (e.g., T. reesei Xyn3, T. reesei Xyn2, an AfuXyn2, an AfuXyn5, or a variant thereof) may be present in an amount that is about 0.1 to about 50 wt. % (e.g., about 0.5 to about 40 wt. %, about 1 to about 40 wt. %, about 4 to about 30 wt. %, about 5 to about 20 wt. %, or about 8 to about 15 wt. %) of the total weight of proteins in the composition. The composition may have at least 2 polypeptides having xylanase activity, wherein the total amount of polypeptides having xylanase activity is about 0.1 to about 50 wt. % (e.g., about 0.5 to about 40 wt. %, about 1 to about 40 wt. %, about 4 to about 30 wt. %, about 5 to about 20 wt. %, or about 8 to about 15 wt. %) of the total weight of proteins in the composition. The polypeptide having xylanase activity may be expressed from a nucleic acid heterologous or endogenous to the host cell. The polypeptide having xylanase activity included in the composition may be isolated.

[0298] Any one of the compositions or methods provided herein, the polypeptide having L-.alpha.-arabinofuranosidase activity (e.g., an Af43A, an Fv43B, a Pf51A, a Pa51A, an Fv51A, or a variant thereof) may be present in an amount that is about 0.1 to about 50 wt. % (e.g., about 0.5 to about 45 wt. %, about 1 to about 40 wt. %, about 2 to about 30 wt. %, about 4 to about 20 wt. %, or about 5 to about 15 wt. %) of the total weight of enzymes in the composition. The composition may have at least 2 polypeptides having L-.alpha.-arabinofuranosidase activity, wherein the total amount of polypeptides having L-.alpha.-arabinofuranosidase activity is about 0.1 to about 50 wt. % (e.g., about 0.5 to about 45 wt. %, about 1 to about 40 wt. %, about 2 to about 30 wt. %, about 4 to about 20 wt. %, or about 5 to about 15 wt. %) of the total weight of proteins in the composition. The polypeptide having L-.alpha.-arabinofuranosidase activity may be expressed from a nucleic acid heterologous or heterologous to the host cell. The polypeptide having L-.alpha.-arabinofuranosidase activity included in the composition may be isolated.

[0299] Any one of the compositions or methods provided herein, the polypeptide having .beta.-xylosidase activity (e.g., Fv3A, Fv43A, a Pf43A, an Fv43D, an Fv39A, an Fv43E, an Fo43A, an Fv43B, a Pa51A, a Gz43A, a T. reesei Bxl1, or a variant thereof) may be present in an amount that is about 0.1 to about 50 wt. % (e.g., about 0.5 to about 45 wt. %, about 1 to about 40 wt. %, about 4 to about 35 wt. %, about 5 to about 25 wt. %, or about 5 to about 20 wt. %) of the total weight of enzymes in the composition. The composition may have at least 2 polypeptides having .beta.-xylosidase activity, wherein the total amount of polypeptides having .beta.-xylosidase activity is about 0.1 to about 50 wt. % (e.g., about 0.5 to about 45 wt. %, about 1 to about 40 wt. %, about 4 to about 35 wt. %, about 5 to about 25 wt. %, or about 5 to about 20 wt. %) of the total weight of proteins in the composition. The polypeptide having .beta.-xylosidase activity may be expressed from a nucleic acid heterologous or endogenous to the host cell. The polypeptide having .beta.-xylosidase activity included in the composition may be isolated.

[0300] Any one of the compositions or methods provided herein, the whole cellulase in the composition may be about 0.1 to about 100 wt. % (e.g., about 1 to about 95 wt. %, about 5 to about 90 wt. %, about 10 to about 85 wt. %, about 20 to about 80 wt. %, or about 30 to about 75 wt. %) of the total weight of proteins in the composition. The whole cellulase may comprise at least 1 polypeptide having endoglucanase activity (such as T. reesei Eg4 or a variant thereof, T. reesei Eg1 or a variant thereof, T. reesei Eg2 or a variant thereof) expressed from a nucleic acid heterologous or endogenous to the host cell. The whole cellulase may comprise at least 1 polypeptide having cellobiohydrolase activity (e.g., T. reesei CBH1 or a variant thereof, T. reesei CBH2 or a variant thereof) expressed from a nucleic acid heterologous or endogenous to the host cell. The whole cellulase may comprise at least one polypeptide having .beta.-glucosidase activity (e.g., an Fv3C, a Pa3D, an Fv3G, an Fv3D, a Tr3A, a Tr3B, a Te3A, an An3A, an Fo3A, a Gz3A, an Nh3A, a Vd3A, a Pa3G, a Tn3B, or a variant thereof) expressed from a nucleic acid heterologous or endogenous to the host cell.

[0301] In some aspects, the composition of the invention is capable of converting a biomass material into fermentable sugar(s) (e.g., glucose, xylose, arabinose, and/or cellobiose). In some aspects, the composition is capable of achieving at least 0.1 (e.g., 0.1 to 0.4) fraction product as determined by the calcofluor assay.

[0302] In some aspects, the composition comprises the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and further comprises at least one cellulase polypeptide and/or at least one hemicellulase polypeptide, wherein the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least one cellulase polypeptide and/or at least one hemicellulase polypeptide are mixed together before contacting a biomass material.

[0303] In some aspects, the composition comprises a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and further comprises at least one cellulase polypeptide and/or at least one hemicellulase polypeptide, wherein the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least one cellulase polypeptide and/or at least one hemicellulase polypeptide are added to a biomass material at different times (e.g., a polypeptide having GH61/endoglucanase activity is added to a biomass material before or after the at least one cellulase polypeptide and/or at least one hemicellulase polypeptide is added to the biomass material).

[0304] In some aspects, the composition comprising a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) is a mixture comprising a biomass material, e.g., the composition is a hydrolysis mixture, a fermentation mixture, or a saccharification mixture. Such mixture may further include fermentable sugar(s).

Other Components

[0305] The enzyme compositions of the disclosure may suitably further comprise 1 or more accessory proteins. Examples of accessory proteins include, without limitation, mannanases (e.g., endomannanases, exomannanases, and .beta.-mannosidases), galactanases (e.g., endo- and exo-galactanases), arabinases (e.g., endo-arabinases and exo-arabinases), ligninases, amylases, glucuronidases, proteases, esterases (e.g., ferulic acid esterases, acetyl xylan esterases, coumaric acid esterases or pectin methyl esterases), lipases, other glycoside hydrolases, xyloglucanases, CIP1, CIP2, swollenins, expansins, and cellulose disrupting proteins. For example, the cellulose disrupting proteins are cellulose binding modules.

Methods and Processes

[0306] The disclosure provides methods and processes for biomass saccharification, using enzymes, enzyme blends/compositions of the disclosure. In particular, the disclosure provides methods and processes for using any one of the polypeptides or compositions provided herein for hydrolyzing a biomass material. Further, the disclosure provides methods of using any one of the polypeptides or compositions provided herein for reducing the viscosity of a biomass mixture (e.g., a biomass mixture containing biomass substrate and enzyme during saccharification process). In some aspects, there are provided methods of hydrolyzing a biomass material comprising contacting the biomass material with a non-naturally occurring composition comprising a polypeptide having GH61/endoglucanase activity. In some aspects, the polypeptide is in an amount sufficient to hydrolyze the biomass material.

[0307] The term "biomass," as used herein, refers to any composition comprising cellulose and/or hemicellulose (including lignin in lignocellulosic biomass materials). As used herein, biomass includes, without limitation, seeds, grains, tubers, plant waste or byproducts of food processing or industrial processing (e.g., stalks), corn (including, e.g., cobs, stover, and the like), grasses (including, e.g., Indian grass, such as Sorghastrum nutans; or, switchgrass, e.g., Panicum species, such as Panicum virgatum), perennial canes (e.g., giant reeds), wood (including, e.g., wood chips, processing waste), paper (including paper waste), pulp, and recycled paper (including, e.g., newspaper, printer paper, and the like). Other biomass materials include, without limitation, potatoes, soybean (e.g., rapeseed), barley, rye, oats, wheat, beets, and sugar cane bagasse. Suitable lignocellulosic biomass materials include, without limitation, seeds, grains, tubers, plant waste or byproducts of food processing or industrial processing (e.g., stalks), corn (including, e.g., cobs, stover, and the like), grasses (e.g., Indian grass, such as Sorghastrum nutans; or, switchgrass, e.g., Panicum species, such as Panicum virgatum), perennial canes, e.g., giant reeds, wood (including, e.g., wood chips, processing waste), paper, pulp, recycled paper (e.g., newspaper), wood pulp, or sawdust. Examples of grasses include, without limitation, Indian grass or switchgrass. Examples of reeds include, without limitation, certain perennial canes such as giant reeds. Examples of paper waste include, without limitation, discarded or used photocopy paper, computer printer paper, notebook paper, notepad paper, typewriter paper, newspapers, magazines, cardboard and paper-based packaging materials.

[0308] The saccharified biomass can be made into a number of bio-based products, via processes such as, e.g., microbial fermentation and/or chemical synthesis. As used herein, "microbial fermentation" refers to a process of growing and harvesting fermenting microorganisms under suitable conditions. The fermenting microorganism can be any microorganism suitable for use in a desired fermentation process for the production of bio-based products. Suitable fermenting microorganisms include, without limitation, filamentous fungi, yeast, and bacteria. The saccharified biomass can, e.g., be made it into a fuel (e.g., a biofuel such as a bioethanol, biobutanol, biomethanol, a biopropanol, a biodiesel, a jet fuel, or the like) via fermentation and/or chemical synthesis. The saccharified biomass can, e.g., also be made into a commodity chemical (e.g., ascorbic acid, isoprene, 1,3-propanediol), lipids, amino acids, proteins, and enzymes, via fermentation and/or chemical synthesis.

[0309] Biomass material may include cellulose, hemicellulose, or a mixture thereof. For example, a biomass material may include glucan and/or xylan.

[0310] In some aspects, there are provided methods of reducing the viscosity of a biomass mixture comprising contacting the biomass mixture with non-naturally occurring composition comprising a polypeptide having GH61/endoglucanase activity. The polypeptide is in an amount sufficient to reduce the viscosity. The biomass mixture may comprise biomass material (e.g., pretreated biomass material). The biomass mixture may comprise an enzyme composition such as any of the enzyme compositions provided herein or a mixture thereof.

[0311] In some aspects, any of the polypeptides, compositions provided herein may be used to hydrolyze substrate such as a biomass material or reduce the viscosity of a substrate-enzyme mixture during saccharification process. The substrate may be a biomass material. The substrate may be isolated cellulose or isolated hemicellulose. The substrate may be glucan and/or xylan. In some aspects, the biomass material is pretreated biomass material.

Pretreatment of Biomass Material

[0312] Prior to saccharification, a biomass material is preferably subject to one or more pretreatment step(s) in order to render xylan, hemicellulose, cellulose and/or lignin material more accessible or susceptable to enzymes and thus more amenable to hydrolysis by the enzyme(s) and/or enzyme blends/compositions of the disclosure.

[0313] Pretreatment may include chemical, physical, and biological pretreatment. For example, physical pretreatment techniques can include without limitation various types of milling, crushing, steaming/steam explosion, irradiation and hydrothermolysis. Chemical pretreatment techniques can include without limitation dilute acid, alkaline, organic solvent, ammonia, sulfur dioxide, carbon dioxide, and pH-controlled hydrothermolysis. Biological pretreatment techniques can include without limitation applying lignin-solubilizing microorganisms. The pretreatment can occur from several minutes to several hours, such as from about 1 hour to about 120.

[0314] In some aspects, any of the methods or processes provided herein may further comprise pretreating the biomass material, such as pretreating the biomass with acid or base. The acid or base may be ammonia, sodium hydroxide, or phosphoric acid. The method may further comprise pretreating the biomass material with ammonia. The pretreatment may be steam explosion, pulping, grinding, acid hydrolysis, or combinations thereof.

[0315] In one embodiment, the pretreatment may be by elevated temperature and the addition of either of dilute acid, concentrated acid or dilute alkali solution. The pretreatment solution can added for a time sufficient to at least partially hydrolyze the hemicellulose components and then neutralized

[0316] In an exemplary embodiment, the pretreatment entails subjecting biomass material to a catalyst comprising a dilute solution of a strong acid and a metal salt in a reactor. The biomass material can, e.g., be a raw material or a dried material. This pretreatment can lower the activation energy, or the temperature, of cellulose hydrolysis, ultimately allowing higher yields of fermentable sugars. See, e.g., U.S. Pat. Nos. 6,660,506; 6,423,145.

[0317] Another exemplary pretreatment method entails hydrolyzing biomass by subjecting the biomass material to a first hydrolysis step in an aqueous medium at a temperature and a pressure chosen to effectuate primarily depolymerization of hemicellulose without achieving significant depolymerization of cellulose into glucose. This step yields a slurry in which the liquid aqueous phase contains dissolved monosaccharides resulting from depolymerization of hemicellulose, and a solid phase containing cellulose and lignin. The slurry is then subject to a second hydrolysis step under conditions that allow a major portion of the cellulose to be depolymerized, yielding a liquid aqueous phase containing dissolved/soluble depolymerization products of cellulose. See, e.g., U.S. Pat. No. 5,536,325.

[0318] A further example of method involves processing a biomass material by one or more stages of dilute acid hydrolysis using about 0.4% to about 2% of a strong acid; followed by treating the unreacted solid lignocellulosic component of the acid hydrolyzed material with alkaline delignification. See, e.g., U.S. Pat. No. 6,409,841.

[0319] Another example of pretreatment method comprises prehydrolyzing biomass (e.g., lignocellulosic materials) in a prehydrolysis reactor; adding an acidic liquid to the solid lignocellulosic material to make a mixture; heating the mixture to reaction temperature; maintaining reaction temperature for a period of time sufficient to fractionate the lingo-cellulosic material into a solubilized portion containing at least about 20% of the lignin from the lignocellulosic material, and a solid fraction containing cellulose; separating the solubilized portion from the solid fraction, and removing the solubilized portion while at or near reaction temperature; and recovering the solubilized portion. The cellulose in the solid fraction is rendered more amenable to enzymatic digestion. See, e.g., U.S. Pat. No. 5,705,369.

[0320] Further pretreatment methods can involve the use of hydrogen peroxide H.sub.2O.sub.2. See Gould, 1984, Biotech, and Bioengr. 26:46-52.

[0321] Pretreatment can also comprise contacting a biomass material with stoichiometric amounts of sodium hydroxide and ammonium hydroxide at a very low concentration. See Teixeira et al., 1999, Appl. Biochem. and Biotech. 77-79:19-34. Pretreatment can also comprise contacting a lignocellulose with a chemical (e.g., a base, such as sodium carbonate or potassium hydroxide) at a pH of about 9 to about 14 at moderate temperature, pressure, and pH. See PCT Publication WO2004/081185.

[0322] Ammonia may be used in a pretreatment method. Such a pretreatment method comprises subjecting a biomass material to low ammonia concentration under conditions of high solids. See, e.g., U.S. Patent Publication 20070031918, PCT publication WO 06110901.

Saccharification Process and Viscosity Reduction

[0323] The present disclosure provides methods of reducing the viscosity of a biomass mixture comprising contacting the biomass mixture with a composition (e.g., a non-naturally occurring composition) comprising a polypeptide having glycosyl hydrolase family 61 ("GH61") endoglucanase activity in an amount sufficient to reduce the viscosity of the biomass mixture. In some aspects, the biomass mixture comprises a biomass material, fermentable sugar(s), whole cellulase, a composition comprising a polypeptide having cellulase activity, and/or a polypeptide having hemicellulase activity. In some aspects, the viscosity is reduced by at least about 5%, (e.g., at least about any of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%, 70%, 80%, or 90%) compared to the viscosity of a biomass mixture in the absence of a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof). In some aspects of any of the methods described herein, the biomass material comprises hemicellulose, cellulose, or a mixture thereof. In some aspects, the biomass material comprises glucan, xylan and/or lignin.

[0324] The methods and processes provided herein may be performed under various conditions. For example, any of the methods provided herein may be performed at a pH in the range of pH of about 3.5 to about 7.0, for example, pH of about 4.0 to about 6.5, pH of about 4.4 to about 6.0, pH of about 4.8 to about 5.6, or about 4.5 to about 5.5. The saccharification mixture containing biomass material may be adjusted to the desired pH using base or acid (such as sulfuric acid) according to any of the methods known to one of ordinary skill in the art. For example, the pretreated biomass material may be added with base or acid (such as sulfuric acid) to achieve the desired pH for saccharification. Any of the methods for hydrolyzing a biomass material or reducing the viscosity of the biomass mixture may be conducted at a pH of about 4.8 to about 5.6 (e.g., pH of about any of 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, or 5.6). In some aspects, the method further comprises adjusting the pH of the biomass mixture to a pH of about 4.0 to about 6.5 (e.g., pH of about 4.5 to about 5.5).

[0325] The methods and processes provided herein may be performed for any length of time, e.g., 1 hour, 2 hours, 4 hours, 8 hours, 12 hours, 18 hours, 24 hours, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 10 days, 14 days, 3 weeks, or 4 weeks. After any of the saccharification time described herein, the amount of fermentable sugar(s) is increased and/or the viscosity of the saccharification mixture is reduced. In some aspects, the method is performed for about 2 hours to about 7 days (e.g., about 4 hours to about 6 days, about 8 hours to about 5 days, or about 8 hours to about 3 days).

[0326] A composition (e.g., a non-naturally occurring composition) comprising polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof) may be added after the biomass material is pretreated. A composition (e.g., a non-naturally occurring composition) comprising polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof) may be added to the biomass material before or after another enzyme composition (such as an enzyme composition comprising hemicellulose, cellulase, or whole cellulase) is added to the biomass material. A composition (e.g., a non-naturally occurring composition) comprising polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof) may be added to the biomass mixture containing (a) biomass material and/or fermentable sugars and (b) enzyme (such as hemicellulase or cellulase including whole cellulase). In some aspects, a composition (e.g., a non-naturally occurring composition) comprising polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof) is added to the biomass mixture, wherein the biomass material has been hydrolyzed for a period of time (such as about any of 5 minutes, 10 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, 8 hours, 12 hours, 18 hours, 24 hours, 2 days, 3 days, 4 days, or 5 days).

[0327] A composition (e.g., a non-naturally occurring composition) comprising isolated polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof) may be added to biomass material during saccharification. A composition (e.g., a non-naturally occurring composition) comprising whole cellulase may be added to biomass material during saccharification, where the whole cellulase comprises a polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof).

[0328] A biomass material used in any one of the methods may be in liquid form, solid form, or a mixture thereof. A biomass material used in any one of the methods may be wet form, dry form, a material having various degree of moisture, or a mixture thereof. A biomass material used in any one of the methods may be in a dry solid form (such as a dry solid form as a starting material). The biomass material may be processed into any of the following forms: wet form, dry form, solid form, liquid form, or a mixture thereof according to any method known to one skilled in the art.

[0329] A biomass material used in any of the methods may be present in the saccharification mixture in an amount of at least about any of 0.5 wt. %, 1 wt. %, 5 wt. %, 10 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 35 wt. %, 40 wt. %, 45 wt. %, 50 wt. %, 55 wt. %, or 60 wt. % of total weight of hydrolysis mixture or saccharification mixture, wherein the amount of the biomass material refers to the weight amount of the biomass material in its solid state (or the biomass material in its dry state, its dry solid state, its natural state, or its unprocessed state). The biomass material may also be in an amount of about 0.5 wt. % to about 55 wt. %, 1 wt. % to about 40 wt. %, 5 wt. % to about 60 wt. %, about 10 wt. % to about 55 wt. %, about 10 wt. % to about 50 wt. %, about 15 wt. % to about 50 wt. %, about 15 wt. % to about 40 wt. %, about 15 wt. % to about 35 wt. %, about 15 wt. % to about 30 wt. %, about 20 wt. % to about 35 wt. %, or about 20 wt. % to about 30 wt. % of a hydrolyzing mixture containing biomass material, wherein the amount of the biomass material refers to the weight amount of the biomass material in its solid state (or the biomass material in its dry state, its dry solid state, its natural state, or its unprocessed state). A biomass material used in any of the methods may be present in the saccharification mixture in an amount of about any of 0.5 wt. %, 1 wt. %. 5 wt. %, 10 wt. %, 15 wt. %, 20 wt. %, 25 wt. %, 30 wt. %, 35 wt. %, 40 wt. %, 45 wt. %, 50 wt. %, 55 wt. %, or 60 wt. % of total weight of hydrolysis mixture or saccharification mixture, wherein the amount of the biomass material refers to the weight amount of the biomass material in its solid state (or the biomass material in its dry state, its dry solid state, its natural state, or its unprocessed state).

[0330] The hydrolysis mixture or saccharification mixture includes biomass material, enzyme(s) (e.g., any one of polypeptides provided herein), enzyme composition (e.g., any one of the compositions provided herein), and/or other components such as components necessary for saccharification.

[0331] Any of the compositions provided herein may be used in the methods described herein such as any one of the compositions provided above in the "Exemplary compositions" section. The amount of any of the compositions described herein used in any one of the methods provided herein may be in the range of about 0.05 mg to about 50 mg, about 0.1 mg to about 40 mg, about 0.2 mg to about 30 mg, about 0.5 mg to about 25 mg, about 1 mg to about 25 mg, about 2 mg to about 25 mg, about 5 mg to about 25 mg, or about 10 mg to about 25 mg protein per gram of cellulose, hemicellulose, or a mixture of cellulose and hemicellulose contained in the biomass material. A non-naturally occurring composition comprising a polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof) used in any one of the methods for hydrolyzing a biomass material and/or methods for reducing the viscosity of the biomass mixture may be in an amount of about 0.05 mg to about 50 mg, about 0.1 mg to about 40 mg, about 0.2 mg to about 30 mg, about 0.5 mg to about 25 mg, about 1 mg to about 25 mg, about 2 mg to about 25 mg, about 5 mg to about 25 mg, or about 10 mg to about 25 mg protein per gram of cellulose, hemicellulose, or a mixture of cellulose and hemicellulose contained in the substrate such as biomass material.

[0332] In some aspects, a non-naturally occurring composition comprising a polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof) used in any of the methods for hydrolyzing a biomass material and/or methods for reducing the viscosity of the biomass mixture is in an amount of at least about any of 0.05 mg, 0.1 mg, 0.2 mg, 0.5 mg, 1 mg, 2 mg, 5 mg, 7.5 mg, 10 mg, 12 mg, 14 mg, 15 mg, 16 mg, 17.5 mg, 18 mg, 20 mg, 22.5 mg, 25 mg, 27.g mg, 30 mg, 35 mg, 40 mg, 45 mg, or 50 mg protein per gram of cellulose, hemicellulose, or a mixture of cellulose and hemicellulose contained in the substrate such as biomass material. In some aspects, a non-naturally occurring composition comprising a polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof) used in any of the methods for hydrolyzing a biomass material and/or methods for reducing the viscosity of the biomass mixture is in an amount of no more than about any of 0.1 mg, 0.2 mg, 0.5 mg, 1 mg, 2 mg, 5 mg, 7.5 mg, 10 mg, 12 mg, 14 mg, 15 mg, 16 mg, 17.5 mg, 18 mg, 20 mg, 22.5 mg, 25 mg, 27.5 g mg, 30 mg, 35 mg, 40 mg, 45 mg, 50 mg, 55 mg, 60 mg, 65 mg, 75 mg, or 100 mg protein per gram of cellulose, hemicellulose, or a mixture of cellulose and hemicellulose contained in the substrate such as biomass material. In some aspects, a non-naturally occurring composition comprising a polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof) used in any of the methods for hydrolyzing a biomass material and/or methods for reducing the viscosity of the biomass mixture is in an amount of about any of 0.05 mg, 0.1 mg, 0.2 mg, 0.5 mg, 1 mg, 2 mg, 5 mg, 7.5 mg, 10 mg, 12 mg, 14 mg, 15 mg, 16 mg, 17.5 mg, 18 mg, 20 mg, 22.5 mg, 25 mg, 27.5 g mg, 30 mg, 35 mg, 40 mg, 45 mg, or 50 mg protein per gram of cellulose, hemicellulose, or a mixture of cellulose and hemicellulose contained in the substrate such as biomass material. The amount of cellulose, hemicellulose, or a mixture of cellulose and hemicellulose contained in the substrate such as biomass material may be calculated using any methods known to one skilled in the art. The biomass material may comprise glucan, xylan, and/or lignin.

[0333] In some aspects of any of the methods described herein, the amount of the composition comprising a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) is about 0.1 mg to about 50 mg protein (e.g., about 0.2 mg to about 40 mg protein, about 0.5 mg to about 30 mg protein, about 1 mg to about 20 mg protein, or about 5 mg to about 15 mg protein) per gram of cellulose, hemicellulose, or a mixture of cellulose and hemicellulose contained in the biomass material. The protein amount described herein refers to the weight of total protein in the composition. The proteins include a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and may also include other enzymes such as cellulase polypeptide(s) and/or hemicellulase polypeptide(s) in the composition.

[0334] In some aspects of any of the methods described herein, the amount of the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) is about 0.2 mg to about 30 mg (e.g., about 0.2 mg to about 20 mg protein, about 0.5 mg to about 10 mg protein, or about 1 mg to about 5 mg protein) per gram of cellulose, hemicellulose, or a mixture of cellulose and hemicellulose contained in the biomass material.

[0335] In some aspects of any of the methods described herein, the composition comprises a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least one polypeptide having endoglucanase activity (e.g., T. reesei Eg1, T. reesei Eg2, and/or a variant thereof), wherein the total amount of the polypeptides having endoglucanase activity is about 0.2 mg to about 30 mg (e.g., about 0.2 mg to about 20 mg protein, about 0.5 mg to about 10 mg protein, or about 1 mg to about 5 mg protein) per gram of cellulose, hemicellulose, or a mixture of cellulose and hemicellulose contained in the biomass material.

[0336] In some aspects, the composition comprises a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least one polypeptide having cellobiohydrolase activity (e.g., T. reesei CBH1, T. reesei CBH2, and/or a variant thereof), wherein the amount of the polypeptide(s) having cellobiohydrolase activity is about 0.2 mg to about 30 mg (e.g., about 0.2 mg to about 20 mg protein, about 0.5 mg to about 10 mg protein, or about 1 mg to about 5 mg protein) per gram of cellulose, hemicellulose, or a mixture of cellulose and hemicellulose contained in the biomass material.

[0337] In some aspects of any of the methods described herein, the composition comprises a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least one polypeptide having .beta.-glucosidase activity (e.g., an Fv3C, a Pa3D, an Fv3G, an Fv3D, a Tr3A, a Tr3B, a Te3A, an An3A, an Fo3A, a Gz3A, an Nh3A, a Vd3A, a Pa3G, a Tn3B, or a variant thereof), wherein the amount of the polypeptide(s) having .beta.-glucosidase activity is about 0.2 mg to about 30 mg (e.g., about 0.2 mg to about 20 mg protein, about 0.5 mg to about 10 mg protein, or about 0.5 mg to about 5 mg protein) per gram of cellulose, hemicellulose, or a mixture of cellulose and hemicellulose contained in the biomass material.

[0338] In some aspects, the composition comprises a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least one polypeptide having xylanase activity (e.g., T. reesei Xyn3, T. reesei Xyn2, an AfuXyn2, an AfuXyn5, or a variant thereof), wherein the amount of the polypeptide(s) having xylanase activity is about 0.2 mg to about 30 mg (e.g., about 0.2 mg to about 20 mg protein, about 0.5 mg to about 10 mg protein, or about 0.5 mg to about 5 mg protein) per gram of cellulose, hemicellulose, or a mixture of cellulose and hemicellulose contained in the biomass material.

[0339] In some aspects, the composition comprises a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least one polypeptide having .beta.-xylosidase activity (e.g., Fv3A, Fv43A, a Pf43A, an Fv43D, an Fv39A, an Fv43E, an Fo43A, an Fv43B, a Pa51A, a Gz43A, a T. reesei Bxl1, or a variant thereof), wherein the amount of the polypeptide(s) having .beta.-xylosidase activity is about 0.2 mg to about 30 mg (e.g., about 0.2 mg to about 20 mg protein, about 0.5 mg to about 10 mg protein, or about 0.5 mg to about 5 mg protein) per gram of cellulose, hemicellulose, or a mixture of cellulose and hemicellulose contained in the biomass material.

[0340] In some aspects, the composition comprises a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least one polypeptide having L-.alpha.-arabinofuranosidase activity (e.g., an Af43A, an Fv43B, a Pf51A, a Pa51A, an Fv51A, or a variant thereof), wherein the amount of the polypeptide(s) having L-.alpha.-arabinofuranosidase activity is about 0.2 mg to about 30 mg (e.g., about 0.2 mg to about 20 mg protein, about 0.5 mg to about 10 mg protein, or about 0.5 mg to about 5 mg protein) per gram of cellulose, hemicellulose, or a mixture of cellulose and hemicellulose contained in the biomass material.

[0341] In any one of the methods provided herein, the viscosity of the biomass mixture may be reduced by at least about any of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95% compared to the viscosity of the biomass mixture in the absence of an enzyme composition provided herein. For example, there are provided methods of reducing the viscosity of a biomass mixture comprising contacting the biomass mixture with a non-naturally occurring composition comprising a polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof), wherein the viscosity is reduced by at least about any of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95% compared to the viscosity of the biomass mixture in the absence of a polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof). In some aspects, the viscosity is reduced by about any of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95% compared to the viscosity of the biomass mixture in the absence of a polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof). The reduction of viscosity described herein is seen after a certain period of saccharification. For example, the reduction of viscosity is seen after 30 minutes, 1 hour, 2 hours, 4 hours, 8 hours, 12 hours, 18 hours, 24 hours, 2 days, 3 days, 4 days, or 5 days saccharification. Methods of measuring viscosity are known in the art. For example, viscosity may be measured by human eyes, or be measured by a viscometer such as Brookfield viscometer (Brookfield Engineering, Inc). For example, viscosity of saccharification reaction mixture can be measured using a viscosity meter with ammonia-pretreated corncob as substrates. A viscosity meter can measure the resistance (torque) it takes to turn a spindle at a constant rate in the slurry.

[0342] The methods provided herein may be conducted at a temperature that is suitable for saccharification. For example, any one of the methods described herein may be performed at about 20.degree. C. to about 75.degree. C., about 25.degree. C. to about 70.degree. C., about 30.degree. C. to about 65.degree. C., about 35.degree. C. to about 60.degree. C., about 37.degree. C. to about 60.degree. C., about 40.degree. C. to about 60.degree. C., about 40.degree. C. to about 55.degree. C., about 40.degree. C. to about 50.degree. C., or about 45.degree. C. to about 50.degree. C. In some aspects, any one of the methods described herein may be performed at about 20.degree. C., about 25.degree. C., about 30.degree. C., about 35.degree. C., about 37.degree. C., about 40.degree. C., about 45.degree. C., about 48.degree. C., about 50.degree. C., about 55.degree. C., about 60.degree. C., about 65.degree. C., about 70.degree. C., or about 75.degree. C.

[0343] In some aspects of any of the methods described herein, the method comprises producing fermentable sugar(s), wherein the amount of the fermentable sugar(s) is increased by at least about 5% (e.g., at least about any of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%, 70%, 80%, or 90%) compared to the amount of the fermentable sugar(s) produced in the absence of a polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof).

[0344] Also provided herein are methods of increasing the amount of fermentable sugar(s) (and/or increasing the conversion from a biomass material to fermentable sugar(s) such as glucan conversion) by using a composition (e.g., a non-naturally occurring composition) comprising a polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof) during hydrolysis of biomass material. There are various fermentable sugars produced from hydrolysis of biomass material, including but are not limited to, glucose, xylose, and/or cellobiose. In some aspects, the amount of fermentable sugar(s) produced from hydrolysis of biomass material may be increased by at least about any of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95% compared to the amount of fermentable sugar(s) in the absence of an enzyme composition provided herein. For example, there are provided methods of increasing the amount of fermentable sugar(s) comprising contacting the biomass material with a non-naturally occurring composition comprising a polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof) (to start or further a saccharification process), wherein the amount of fermentable sugar(s) from saccharification is increased by at least about any of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95% compared to the amount of fermentable sugar(s) from saccharification in the absence of a polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof). In some aspects, the amount of fermentable sugar(s) from saccharification is increased by about any of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95% compared to the amount of fermentable sugar(s) from saccharification in the absence of a polypeptide having GH61/endoglucanase activity (e.g., EG IV such as T. reesei Eg4 or a variant thereof). The increase in amount of fermentable sugar(s) produced from hydrolysis of biomass material described herein is seen after a certain period of saccharification. For example, the increase in amount of fermentable sugar(s) is seen after 30 minutes, 1 hour, 2 hours, 4 hours, 8 hours, 12 hours, 18 hours, 24 hours, 2 days, 3 days, 4 days, or 5 days saccharification. Methods of measuring amount of fermentable sugar(s) and/or glucan conversion are known to a person skilled in the art.

[0345] The reduction in viscosity of saccharification mixture may correlate with improved yield of desirable fermentable sugars.

[0346] In some aspects, the method further comprises the step of contacting the biomass material with a composition comprising whole cellulase. In some aspects, the step of further contacting the biomass material with a composition comprising whole cellulase is performed before, after, or concurrently with contacting the biomass material with composition comprising a polypeptide having glycosyl hydrolase family 61 ("GH61") endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof).

[0347] In some aspects of any of the methods described herein, the method comprises the step of further contacting the biomass material with a composition comprising a polypeptide having cellulase activity and/or a polypeptide having hemicellulase activity. In some aspects, the step of further contacting the biomass material with a composition comprising a polypeptide having cellulase activity and/or a polypeptide having hemicellulase activity is performed before, after, or concurrently with contacting the biomass material with composition comprising a polypeptide having glycosyl hydrolase family 61 ("GH61") endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof).

[0348] In some aspects, the composition comprises the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and further comprises at least one cellulase polypeptide and/or at least one hemicellulase polypeptide, wherein the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least one cellulase polypeptide and/or at least one hemicellulase polypeptide are mixed together before contacting the biomass material with a composition comprising the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof).

[0349] In some aspects, the composition comprises the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and further comprises at least one cellulase polypeptide and/or at least one hemicellulase polypeptide, wherein the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) and at least one cellulase polypeptide and/or at least one hemicellulase polypeptide are added to the biomass material at different times (e.g., the polypeptide having GH61/endoglucanase activity (e.g., T. reesei Eg4 or a variant thereof) is added before or after at least one cellulase polypeptide and/or at least one hemicellulase polypeptide is added to the biomass material).

[0350] Enhanced cellulose conversion may be achieved at higher temperatures using the CBH polypeptides described in, for example, any one of the following US Patent Publications US20050054039, US20050037459, US20060205042, US20050048619A1 and US20060218671. Methods of overexpressing .beta.-glucosidase are known in the art. See, e.g., U.S. Pat. No. 6,022,725. See also, e.g., US Patent Publication 20050214920.

[0351] The methods of the present disclosure can be used in the production of monosaccharides, disaccharides, and polysaccharides as chemical, fermentation feedstocks for microorganism, and inducers for the production of proteins, organic products, chemicals and fuels, plastics, and other products or intermediates. In particular, the value of processing residues (dried distillers grain, spent grains from brewing, sugarcane bagasse, etc.) can be increased by partial or complete solubilization of cellulose or hemicellulose. In addition to ethanol, chemicals that can be produced from cellulose and hemicellulose include, acetone, acetate, glycine, lysine, organic acids (e.g., lactic acid), 1,3-propanediol, butanediol, glycerol, ethylene glycol, furfural, polyhydroxyalkanoates, cis, cis-muconic acid, animal feed and xylose.

Business Methods

[0352] The cellulase and/or hemicellulase compositions of the disclosure can be further used in industrial and/or commercial settings. Accordingly a method or a method of manufacturing, marketing, or otherwise commercializing the instant non-naturally occurring cellulase and/or hemicellulase compositions is also contemplated.

[0353] In a specific embodiment, the non-naturally occurring cellulase and/or hemicellulase compositions of the invention, for example, comprising one or more of the GH61 endoglucanases or variants thereof as described herein, can be supplied or sold to certain ethanol (bioethanol) refineries or other bio-chemical or bio-material manufacturers. In a first example, the non-naturally occurring cellulase and/or hemicellulase compositions can be manufactured in an enzyme manufacturing facility that is specialized in manufacturing enzymes at an industrial scale. The non-naturally occurring cellulase and/or hemicellulase compositions can then be packaged or sold to customers of the enzyme manufacturer. This operational strategy is termed the "merchant enzyme supply model" herein.

[0354] In another operational strategy, the non-naturally occurring cellulase and hemicellulase compositions of the invention can be produced in a state of the art enzyme production system that is built by the enzyme manufacturer at a site that is located at or in the vicinity of the bioethanol refineries or the bio-chemical/biomaterial manufacturers ("on-site"). In some embodiments, an enzyme supply agreement is executed by the enzyme manufacturer and the bioethanol refinery or the bio-chemical/biomaterial manufacturer. The enzyme manufacturer designs, controls and operates the enzyme production system on site, utilizing the host cell, expression, and production methods as described herein to produce the non-naturally-occurring cellulase and/or hemicellulase compositions. In certain embodiments, suitable biomass, preferably subject to appropriate pretreatments as described herein, can be hydrolyzed using the saccharification methods and the enzymes and/or enzyme compositions herein at or near the bioethanol refineries or the bio-chemical/biomaterial manufacturing facilities. The resulting fermentable sugars can then be subject to fermentation at the same facilities or at facilities in the vicinity. This operational strategy is termed the "on-site biorefinery model" herein.

[0355] The on-site biorefinery model provides certain advantages over the merchant enzyme supply model, including, e.g., the provision of a self-sufficient operation, allowing minimal reliance on enzyme supply from merchant enzyme suppliers. This in turn allows the bioethanol refineries or the bio-chemical/biomaterial manufacturers to better control enzyme supply based on real-time or nearly real-time demand. In certain embodiments, it is contemplated that an on-site enzyme production facility can be shared between two or among two or more bioethanol refineries and/or the bio-chemical/biomaterial manufacturers who are located near to each other, reducing the cost of transporting and storing enzymes. Moreover, this allows more immediate "drop-in" technology improvements at the enzyme production facility on-site, reducing the time lag between the improvements of enzyme compositions to a higher yield of fermentable sugars and ultimately, bioethanol or biochemicals.

[0356] The on-site biorefinery model has more general applicability in the industrial production and commercialization of bioethanols and biochemicals, in that it can be used to manufacture, supply, and produce not only the cellulase and non-naturally occurring hemicellulase compositions of the present disclosure but also those enzymes and enzyme compositions that process starch (e.g., corn) to allow for more efficient and effective direct conversion of starch to bioethanol or bio-chemicals. The starch-processing enzymes can, in certain embodiments, be produced in the on-site biorefinery, then quickly and easily integrated into the bioethanol refinery or the biochemical/biomaterial manufacturing facility in order to produce bioethanol.

[0357] Thus in certain aspects, the invention also pertains to certain business method of applying the enzymes (e.g., certain GH61 endoglucanases and variants thereof), cells, compositions (e.g., comprising a suitable GH61 endoglucanase or a variant thereof), and processes herein in the manufacturing and marketing of certain bioethanol, biofuel, biochemicals or other biomaterials. In some embodiments, the invention pertains to the application of such enzymes, cells, compositions and processes in an on-site biorefinery model. In other embodiments, the invention pertains to the application of such enzymes, cells, compositions and processes in a merchant enzyme supply model.

[0358] Relatedly, the disclosure provides the use of the enzymes and/or the enzyme compositions of the invention in a commercial setting. For example, the enzymes and/or enzyme compositions of the disclosure can be sold in a suitable market place together with instructions for typical or preferred methods of using the enzymes and/or compositions. Accordingly the enzymes and/or enzyme compositions of the disclosure can be used or commercialized within a merchant enzyme supplier model, where the enzymes and/or enzyme compositions of the disclosure are sold to a manufacturer of bioethanol, a fuel refinery, or a biochemical or biomaterials manufacturer in the business of producing fuels or bio-products. In some aspects, the enzyme and/or enzyme composition of the disclosure can be marketed or commercialized using an on-site bio-refinery model, wherein the enzyme and/or enzyme composition is produced or prepared in a facility at or near to a fuel refinery or biochemical/biomaterial manufacturer's facility, and the enzyme and/or enzyme composition of the invention is tailored to the specific needs of the fuel refinery or biochemical/biomaterial manufacturer on a real-time basis. Moreover, the disclosure relates to providing these manufacturers with technical support and/or instructions for using the enzymes and. or enzyme compositions such that the desired bio-product (e.g., biofuel, bio-chemicals, bio-materials, etc) can be manufactured and marketed.

[0359] The following are examples of the methods and compositions of the invention. It is understood that various other embodiments may be practiced, given the general description provided above.

EXAMPLES

Example 1

Assays/Methods

[0360] The following assays/methods were generally used in the Examples described below. Any deviations from the protocols provided below are indicated in specific Examples.

[0361] A. Pretreatment of Biomass Substrates

[0362] Corncob, corn stover and switch grass were pretreated prior to enzymatic hydrolysis according to the methods and processing ranges described in International Patent Publication WO06110901A (unless otherwise noted). These references for pretreatment are also included in the disclosures of US Patent Application Publications 20070031918-A1, 20070031919-A1, 20070031953-A1, and/or 20070037259-A1.

[0363] Ammonia fiber explosion treated (AFEX) corn stover was obtained from Michigan Biotechnology Institute International (MBI). The composition of the corn stover was determined by MBI (Teymouri, F et al. Applied Biochemistry and Biotechnology, 2004, 113:951-963) using the National Renewable Energy Laboratory (NREL) procedure, NREL LAP-002. NREL procedures are available at: http://www.nrel.gov/biomass/analytical_procedures.html.

[0364] The FPP pulp and paper substrates were obtained from SMURFIT KAPPA CELLULOSE DU PIN, France.

[0365] Steam Expanded Sugar-cane Bagasse (SEB) was obtained from SunOpta (Glasser, W G et al. Biomass and Bioenergy 1998, 14(3): 219-235; Jollez, P et al. Advances in thermochemical biomass conversion, 1994, 2:1659-1669).

[0366] B. Compositional Analysis of Biomass

[0367] The 2-step acid hydrolysis method described in Determination of structural carbohydrates and lignin in the biomass (National Renewable Energy Laboratory, Golden, Colo. 2008 http://www.nrel.gov/biomass/pdfs/42618.pdf) was used to measure the composition of biomass substrates. Using this method, enzymatic hydrolysis results were reported herein in terms of percent conversion with respect to the theoretical yield from the starting glucan and xylan content of the substrate.

[0368] C. Total Protein Assay

[0369] The BCA protein assay is a colorimetric assay that measures protein concentration with a spectrophotometer. The BCA Protein Assay Kit (Pierce Chemical, Product #23227) was used according to the manufacturer's suggestion. Enzyme dilutions were prepared in test tubes using 50 mM sodium acetate pH 5 buffer. Diluted enzyme solution (0.1 mL) was added to 2 mL Eppendorf centrifuge tubes containing 1 mL 15% tricholoroacetic acid (TCA). The tubes were vortexed and placed in an ice bath for 10 min. The samples were then centrifuged at 14,000 rpm for 6 min. The supernatant was poured out, the pellet was resuspended in 1 mL 0.1 N NaOH, and the tubes vortexed until the pellet dissolved. BSA standard solutions were prepared from a stock solution of 2 mg/mL. BCA working solution was prepared by mixing 0.5 mL Reagent B with 25 mL Reagent A. 0.1 mL of the enzyme resuspended sample was added to 3 Eppendorf centrifuge tubes. Two (2) mL Pierce BCA working solution was added to each sample and BSA standard Eppendorf tubes. All tubes were incubated in a 37.degree. C. waterbath for 30 min. The samples were then cooled to room temperature (15 min) and the absorbance measured at 562 nm in a spectrophotometer.

[0370] Average values for the protein absorbance for each standard were calculated. The average protein standard was plotted, absorbance on x-axis and concentration (mg/mL) on the y-axis. The points were fit to a linear equation:

y=mx+b

[0371] The raw concentration of the enzyme samples was calculated by substituting the absorbance for the x-value. The total protein concentration was calculated by multiplying with the dilution factor.

[0372] The total protein of purified samples was determined by A280 (Pace, C N, et al. Protein Science, 1995, 4:2411-2423).

[0373] The total protein content of fermentation products was sometimes measured as total nitrogen by combustion, capture and measurement of released nitrogen, either by Kjeldahl (rtech laboratories, www.rtechlabs.com) or in-house by the DUMAS method (TruSpec CN, www.leco.com) (Sader, A. P. O. et al., Archives of Veterinary Science, 2004, 9(2):73-79). For complex protein-containing samples, e.g. fermentation broths, an average 16% N content, and the conversion factor of 6.25 for nitrogen to protein was used. In some cases, total precipitable protein was measured to remove interfering non-protein nitrogen. A 12.5% final TCA concentration was used and the protein-containing TCA pellet was resuspended in 0.1 M NaOH.

[0374] In some cases, Coomassie Plus--the Better Bradford Assay (Thermo Scientific, Rockford, Ill. product #23238) was used according to manufacturer recommendation. In other cases, total protein was measured using the Biuret method as modified by Weichselbaum and Gornall using Bovine Serum Albumin as a calibrator (Weichselbaum, T. Amer. J. Clin. Path. 1960, 16:40; Gornall, A. et al. J. Biol. Chem. 1949, 177:752).

[0375] D. Glucose Determination Using ABTS

[0376] The ABTS (2,2'-azino-bis(3-ethylenethiazoline-6)-sulfonic acid) assay for glucose determination is based on the principle that in the presence of O.sub.2, glucose oxidase catalyzes the oxidation of glucose while producing stoichiometric amounts of hydrogen peroxide (H.sub.2O.sub.2). This reaction is followed by the horse radish peroxidase (HRP) catalyzed oxidation of ABTS which linearly correlates to the concentration of H.sub.2O.sub.2. The emergence of oxidized ABTS is indicated by the evolution of a green color, which is quantified at an OD of 405 nm. A mixture of ABTS powder (Sigma, #A1888-5g 2.74 mg/mL), 0.1 U/mL HRP (100 U/mL, Sigma, #P8375) and 1 U/mL Glucose Oxidase, (OxyGO.RTM. HP L5000, 5000 U/mL, Genencor Division, Danisco USA) was prepared in 50 mM Na Acetate Buffer, pH 5.0 and kept in the dark (substrate). Glucose standards (0, 2, 4, 6, 8, 10 nmol) were prepared in 50 mM Na Acetate Buffer, pH 5.0 and 10 .mu.L of each standard was added to a 96-well flat bottom MTP in triplicate. Ten (10) .mu.L of serially diluted samples were also added to the MTP. One hundred (100) .mu.L of ABTS substrate solution was added to each well and the plate was placed on a spectrophotometric plate reader to kinetically read oxidation of ABTS for 5 min at 405 nm.

[0377] Alternately absorbance at 405 nm was measured after 15-30 min of incubation followed by quenching of the reaction with 50 mM Na Acetate Buffer, pH 5.0 containing 2% SDS.

[0378] E. Sugar Analysis by HPLC

[0379] Samples from biomass saccharification were prepared by centrifugation to clear insoluble material, filtration through a 0.22 .mu.m nylon filter (Spin-X centrifuge tube filter, Corning Incorporated, Corning, N.Y.) and dilution to an appropriate concentration of soluble sugars with distilled water. Monomer sugars were determined on a Shodex Sugar SH-G SH1011, 8.times.300 mm with a 6.times.50 mm SH-1011P guard column (www.shodex.net). Solvent was 0.01 NH.sub.2SO.sub.4 run at 0.6 mL/min. Column temperature was 50.degree. C. and detection was by refractive index. Alternately, sugars were analyzed using a Biorad Aminex HPX-87H column with a Waters 2410 refractive index detector. The analysis time was 20 mM, the injection volume was 20 .mu.L of diluted sample, the mobile phase was 0.01 N sulfuric acid, 0.2 .mu.m filtered and degassed, the flow rate was 0.6 mL/min and the column temperature was 60.degree. C. External standards of glucose, xylose and arabinose were run with each sample set.

[0380] Oligomeric sugars were separated by size exclusion chromatography in HPLC using a Tosoh Biosep G2000PW column 7.5 mm.times.60 cm (www.tosohbioscience.de). The solvent was distilled water at 0.6 mL/min and the column was run at room temperature. Six carbon sugar standards used for size calibration were: stachyose, raffinose, cellobiose and glucose; and 5 carbon sugars were: xylohexose, xylopentose, xylotetrose, xylotriose, xylobiose and xylose. Xylo-oligomers were obtained from Megazyme (www.megazyme.com). Detection was by refractive index and when reported quantitatively results are either as peak area units or relative peak areas by percent.

[0381] Total soluble sugars were determined by hydrolysis of the centrifuged and filter clarified samples described above. The clarified sample was diluted 1 to 1 with 0.8 NH.sub.2SO.sub.4 and the resulting solution was autoclaved in a capped vial for a total cycle time of 1 h at 121.degree. C. Results are reported without correction for loss of monomer sugar during the hydrolysis.

[0382] F. Oligomer Preparation from Cob and Enzyme Assays

[0383] Oligomers from T. reesei Xyn3 hydrolysis of corncobs were prepared by incubating 8 mg T. reesei Xyn3 per g Glucan+Xylan with 250 g dry weight of dilute ammonia pretreated corncob in 50 mM pH 5.0 Na Acetate buffer (pH adjusted with 1 N sulfuric acid). The reaction proceeded for 72 h at 48.degree. C., 180 rpm rotary shaking. The supernatant was centrifuged 9,000.times.G, then filtered through 0.22 .mu.m Nalgene filters to recover the soluble sugars. For subsequent enzyme assays, 100 .mu.L aliquots of the T. reesei Xyn3 oligomer-containing supernatant were incubated with 1 .mu.g/.mu.L of either T. reesei integrated strain H3A, 1 .mu.g/mL of T. reesei integrated strain H3A/EG4#27 or water control in Eppendorf tubes at 48.degree. C. for 2.5 h. The supernatants were then diluted 4.times. with ice cold MilliQ water, filtered, and analyzed by HPLC for sugar release from the oligomers.

[0384] G. Corncob Saccharification Assay

[0385] For a typical example herein, unless otherwise specifically described with the particular examples, corncob saccharification was performed in a microtiter plate format in accordance with the following procedures. The biomass substrate, e.g., a dilute ammonia pretreated corncob, was diluted in water and pH-adjusted with sulfuric acid to create a pH 5, 7% cellulose slurry that was then used directly without further processing in the assays. Enzyme samples were loaded based on mg total protein per g of cellulose (as determined using conventional compositional analysis methods, such as, for example, using the method described in Example 1A above) in the substrate (e.g., the corncob). The enzymes were then diluted in 50 mM sodium acetate, pH 5.0, to obtain the desired loading concentration. Forty (40) .mu.L of enzyme solution were added to 70 mg of dilute-ammonia pretreated corncob at 7% cellulose per well (equivalent to 4.5% cellulose final per well). The assay plates were covered with aluminum plate sealers, mixed at room temperature and incubated at 50.degree. C., 200 rpm, for 3 days ("3d"). At the end of the incubation period, the saccharification reaction was quenched by adding to each well 100 .mu.L of a 100 mM glycine buffer, pH10.0. The plate was centrifuged for 5 min at 3,000 rpm. Ten (10) .mu.L of the supernatant was then added to 200 .mu.L of MilliQ water in a 96-well HPLC plate and the soluble sugars were measured using HPLC.

Example 2

Construction of an Integrated Expression Strain of Trichoderma reesei

[0386] An integrated expression strain of Trichoderma reesei was constructed that co-expressed five genes: T. reesei .beta.-glucosidase gene bgl1, T. reesei endoxylanase gene xyn3, F. verticillioides .beta.-xylosidase gene fv3A, F. verticillioides .beta.-xylosidase gene fv43D, and F. verticillioides .alpha.-arabinofuranosidase gene fv51A.

[0387] The construction of the expression cassettes for these different genes and the transformation of T. reesei are described below.

[0388] A. Construction of the .beta.-Glucosidase Expression Vector

[0389] The N-terminal portion of the native T. reesei .beta.-glucosidase gene bgl1 was codon optimized by DNA 2.0 (Menlo Park, USA). This synthesized portion comprised of the first 447 bases of the coding region. This fragment was PCR amplified using primers SK943 and SK941. The remaining region of the native bgl1 gene was PCR amplified from a genomic DNA sample extracted from T. reesei strain RL-P37 (Sheir-Neiss, G et al. Appl. Microbiol. Biotechnol. 1984, 20:46-53), using primer SK940 and SK942. These two PCR fragments of the bgl1 gene were fused together in a fusion PCR reaction, using primers SK943 and SK942:

TABLE-US-00002 Forward Primer SK943: (SEQ ID NO: 121) (5'-CACCATGAGATATAGAACAGCTGCCGCT-3') Reverse Primer SK941: (SEQ ID NO: 122) (5'-CGACCGCCCTGCGGAGTCTTGCCCAGTGGTCCCGCGACAG-3') Forward Primer (SK940): (SEQ ID NO: 123) (5'-CTGTCGCGGGACCACTGGGCAAGACTCCGCAGGGCGGTCG-3') Reverse Primer (SK942): (SEQ ID NO: 124) (5'-CCTACGCTACCGACAGAGTG-3')

[0390] The resulting fusion PCR fragments were cloned into the Gateway.RTM. Entry vector pENTR.TM./D-TOPO.RTM., and transformed into E. coli One Shot.RTM. TOP10 Chemically Competent cells (Invitrogen) resulting in the intermediate vector, pENTR-TOPO-Bgl1-(943/942) (FIG. 8A). The nucleotide sequence of the inserted DNA was determined. The pENTR-943/942 vector with the correct bgl1 sequence was recombined with pTrex3g using a LR Clonase.RTM. reaction protocol outlined by Invitrogen. The LR clonase reaction mixture was transformed into E. coli One Shot.RTM. TOP10 Chemically Competent cells (Invitrogen), resulting in the final expression vector, pTrex3g 943/942 (FIG. 8B). The vector also contains the Aspergillus nidulans amdS gene, encoding acetamidase, as a selectable marker for transformation of T. reesei. The expression cassette was amplified by PCR with primers SK745 and SK771 to generate product for transformation of T. reesei.

TABLE-US-00003 Forward Primer SK771: (SEQ ID NO: 125) (5'-GTCTAGACTGGAAACGCAAC-3') Reverse Primer SK745: (SEQ ID NO: 126) (5'-GAGTTGTGAAGTCGGTAATCC-3')

[0391] B. Construction of the Endoxylanase Expression Cassette

[0392] The native T. reesei endoxylanase gene xyn3 was PCR amplified from a genomic DNA sample extracted from T. reesei, using primers xyn3F-2 and xyn3R-2.

TABLE-US-00004 Forward Primer xyn3F-2: (SEQ ID NO: 127) (5'-CACCATGAAAGCAAACGTCATCTTGTGCCTCCTGG-3') Reverse Primer (xyn3R-2): (SEQ ID NO: 128) (5'-CTATTGTAAGATGCCAACAATGCTGTTATATGCCGGCTTG GGG-3')

[0393] The resulting PCR fragments were cloned into the Gateway.RTM. Entry vector pENTR.TM./D-TOPO.RTM., and transformed into E. coli One Shot.RTM. TOP10 Chemically FIG. 8C). The nucleotide sequence of the inserted DNA was determined. The pENTR/Xyn3 vector with the correct xyn3 sequence was recombined with pTrex3g using a LR Clonase.RTM. reaction protocol outlined by Invitrogen. The LR clonase reaction mixture was transformed into E. coli One Shot.RTM. TOP10 Chemically Competent cells (Invitrogen), resulting in the final expression vector, pTrex3g/Xyn3 (FIG. 8D). The vector also contains the Aspergillus nidulans amdS gene, encoding acetamidase, as a selectable marker for transformation of T. reesei. The expression cassette was amplified by PCR with primers SK745 and SK822 to generate product for transformation of T. reesei.

TABLE-US-00005 Forward Primer SK745: (SEQ ID NO: 129) (5'-GAGTTGTGAAGTCGGTAATCC-3') Reverse Primer SK822: (SEQ ID NO: 130) (5'-CACGAAGAGCGGCGATTC-3')

[0394] C. Construction of the .beta.-Xylosidase Fv3A Expression Vector

[0395] The F. verticillioides .beta.-xylosidase fv3A gene was amplified from a F. verticillioides genomic DNA sample using the primers MH124 and MH125.

TABLE-US-00006 Forward Primer MH124: (SEQ ID NO: 131) (5'-CAC CCA TGC TGC TCA ATC TTC AG-3') Reverse Primer MH125: (SEQ ID NO: 132) (5'-TTA CGC AGA CTT GGG GTC TTG AG-3')

[0396] The PCR fragments were cloned into the Gateway.RTM. Entry vector pENTR.TM./D-TOPO.RTM., and transformed into E. coli One Shot.RTM. TOP10 Chemically Competent cells (Invitrogen) resulting in the intermediate vector, pENTR-Fv3A (FIG. 8E). The nucleotide sequence of the inserted DNA was determined. The pENTR-Fv3A vector with the correct fv3A sequence was recombined with pTrex6g (FIG. 8F) using a LR Clonase.RTM. reaction protocol outlined by Invitrogen. The LR clonase reaction mixture was transformed into E. coli One Shot.RTM. TOP10 Chemically Competent cells (Invitrogen), resulting in the final expression vector, pTrex6g/Fv3A (FIG. 8G). The vector also contains a chlorimuron ethyl resistant mutant of the native T. reesei acetolactate synthase (als) gene, designated alsR, which is used together with its native promoter and terminator as a selectable marker for transformation of T. reesei (WO2008/039370 A1). The expression cassette was PCR amplified with primers SK1334, SK1335 and SK1299 to generate product for transformation of T. reesei.

TABLE-US-00007 Forward Primer SK1334: (SEQ ID NO: 133) (5'-GCTTGAGTGTATCGTGTAAG-3') Forward Primer SK1335: (SEQ ID NO: 134) (5'-GCAACGGCAAAGCCCCACTTC-3') Reverse Primer SK1299: (SEQ ID NO: 135) (5'-GTAGCGGCCGCCTCATCTCATCTCATCCATCC-3')

[0397] D. Construction of the .beta.-Xylosidase Fv43D Expression Cassette

[0398] For the construction of the F. verticillioides .beta.-xylosidase Fv43D expression cassette, the fv43D gene product was amplified from a F. verticillioides genomic DNA sample using the primers SK1322 and SK1297. A region of the promoter of the endoglucanase gene egl1 was amplified by PCR from a T. reesei genomic DNA sample extracted from strain RL-P37, using the primers SK1236 and SK1321. These two PCR amplified DNA fragments were subsequently fused together in a fusion PCR reaction using the primers SK1236 and SK1297. The resulting fusion PCR fragment was cloned into pCR-Blunt II-TOPO vector (Invitrogen) to give the plasmid TOPO Blunt/Pegl1-Fv43D (FIG. 8H) and E. coli One Shot.RTM. TOP10 Chemically Competent cells (Invitrogen) were transformed using this plasmid. Plasmid DNA was extracted from several E. coli clones and confirmed by restriction digest.

TABLE-US-00008 Forward Primer SK1322: (SEQ ID NO: 136) (5'-CACCATGCAGCTCAAGTTTCTGTC-3') Reverse Primer SK1297: (SEQ ID NO: 137) (5'-GGTTACTAGTCAACTGCCCGTTCTGTAGCGAG-3') Forward Primer SK1236: (SEQ ID NO: 138) (5'-CATGCGATCGCGACGTTTTGGTCAGGTCG-3') Reverse Primer SK1321: (SEQ ID NO: 139) (5'-GACAGAAACTTGAGCTGCATGGTGTGGGACAACAAGAAGG-3')

[0399] The expression cassette was PCR amplified from TOPO Blunt/Pegl1-Fv43D with primers SK1236 and SK1297 to generate product for transformation of T. reesei.

[0400] E. Construction of the .alpha.-Arabinofuranosidase Expression Cassette

[0401] For the construction of the F. verticillioides .alpha.-arabinofuranosidase gene fv51A expression cassette, the fv51A gene product was amplified from F. verticillioides genomic DNA using the primers SK1159 and SK1289. A region of the promoter of the endoglucanase gene egl1 was amplified by PCR from a T. reesei genomic DNA sample extracted from strain RL-P37, using the primers SK1236 and SK1262. These two PCR amplified DNA fragments were subsequently fused together in a fusion PCR reaction using the primers SK1236 and SK1289. The resulting fusion PCR fragment was cloned into pCR-Blunt II-TOPO vector (Invitrogen) to give the plasmid TOPO Blunt/Pegl1-Fv51A (FIG. 8I) and E. coli One Shot.RTM. TOP10 Chemically Competent cells (Invitrogen) were transformed using this plasmid.

TABLE-US-00009 Forward Primer SK1159: (SEQ ID NO: 140) (5'-CACCATGGTTCGCTTCAGTTCAATCCTAG-3') Reverse Primer SK1289: (SEQ ID NO: 141) (5'-GTGGCTAGAAGATATCCAACAC-3') Forward Primer SK1236: (SEQ ID NO: 142) (5'-CATGCGATCGCGACGTTTTGGTCAGGTCG-3') Reverse Primer SK1262: (SEQ ID NO: 143) (5'-GAACTGAAGCGAACCATGGTGTGGGACAACAAGAAGGAC-3')

[0402] The expression cassette was PCR amplified with primers SK1298 and SK1289 to generate product for transformation of T. reesei.

TABLE-US-00010 Forward Primer SK1298: (SEQ ID NO: 144) (5'-GTAGTTATGCGCATGCTAGAC-3') Reverse Primer SK1289: (SEQ ID NO: 145) (5'-GTGGCTAGAAGATATCCAACAC-3')

[0403] F. Co-Transformation of T. Reesei Expression Cassettes for .beta.-Glucosidase and Endoxylanase

[0404] A Trichoderma reesei mutant strain, derived from RL-P37 (Sheir-Neiss, G et al. Appl. Microbiol. Biotechnol. 1984, 20:46-53), and selected for high cellulase production was co-transformed with the .beta.-glucosidase expression cassette (cbh1 promoter, T. reesei .beta.-glucosidase1 gene, cbh1 terminator, and amdS marker), and the endoxylanase expression cassette (cbh1 promoter, T. reesei xyn3, and cbh1 terminator) using PEG-mediated transformation (Penttila, M et al. Gene 1987, 61(2):155-64). Numerous transformants were isolated and examined for .beta.-glucosidase and endoxylanase production. One transformant called T. reesei strain #229 was used for transformation with the other expression cassettes.

[0405] G. Co-Transformation of T. Reesei Strain #229 with Expression Cassettes for Two .beta.-Xylosidases and an .alpha.-Arabinofuranosidase

[0406] T. reesei strain #229 was co-transformed with the .beta.-xylosidase fv3A expression cassette (cbh1 promoter, fv3A gene, cbh1 terminator, and alsR marker), the .beta.-xylosidase fv43D expression cassette (egl1 promoter, fv43D gene, native fv43D terminator), and the fv51A .alpha.-arabinofuranosidase expression cassette (egl1 promoter, fv51A gene, fv51A native terminator) using electroporation (see e.g. WO 08153712). Transformants were selected on Vogels agar plates containing chlorimuron ethyl (80 ppm). Vogels agar was prepared as follows, per liter.

TABLE-US-00011 50 x Vogels Stock Solution (recipe below) 20 mL BBL Agar 20 g With deionized H.sub.2O bring to 980 mL post-sterile addition: 50% Glucose 20 mL 50 x Vogels Stock Solution, per liter: In 750 mL deionized H2O, dissolve successively: Na.sub.3Citrate*2H.sub.2O 125 g KH.sub.2PO.sub.4 (Anhydrous) 250 g NH.sub.4NO.sub.3 (Anhydrous) 100 g MgSO.sub.4*7H.sub.2O 10 g CaCl.sub.2*2H.sub.2O 5 g Vogels Trace Element Solution (recipe below) 5 mL d-Biotin 0.1 g With deionized H.sub.2O, bring to 1 L Vogels Trace Element Solution: Citric Acid 50 g ZnSO.sub.4.cndot.*7H.sub.2O 50 g Fe(NH.sub.4)2SO.sub.4.cndot.*6H.sub.2O 10 g CuSO.sub.4.cndot.5H.sub.2O 2.5 g MnSO.sub.4.cndot.4H.sub.2O 0.5 g H.sub.3BO.sub.3 0.5 g Na.sub.2MoO.sub.4.cndot.2H.sub.2O 0.5 g

[0407] Numerous transformants were isolated and examined for .beta.-xylosidase and L-.alpha.-arabinofuranosidase production. Transformants were also screened for biomass conversion performance according to the cob saccharification assay described in Example 1 (supra). Examples of T. reesei integrated expression strains described herein are H3A, 39A, A10A, 11A, and G9A, which express all of the genes for T. reesei beta-glucosidase 1, T. reesei Xyn3, Fv3A, Fv51A, and Fv43D, at different ratios. Other integrated T. reesei strains include those wherein most of the genes for T. reesei beta-glucosidase 1, T. reesei Xyn3, Fv3A, Fv51A, and Fv43D, were expressed at different ratios. For example, one lacked overexpressed T. reesei Xyn3; another lacked Fv51A, as determined by Western Blot; two others lacked Fv3A, one lacked overexpressed Bgl1 (e.g. strain H3A-5).

[0408] H. Composition of T. reesei Integrated Strain H3A

[0409] Fermentation of the T. reesei integrated strain H3A yields the following proteins T. reesei Xyn3, T. reesei Bgl 1, Fv3A, Fv51A, and Fv43D, at ratios determined as described herein and shown in FIG. 9.

[0410] I. Protein Analysis by HPLC

[0411] Liquid chromatography (LC) and mass spectroscopy (MS) were performed to separate, identify, and quantify the enzymes contained in fermentation broths. Enzyme samples were first treated with a recombinantly expressed endoH glycosidase from S. plicatus (e.g., NEB P0702L). EndoH was used at a ratio of 0.01-0.03 .mu.g endoH protein per Kg sample total protein and incubated for 3 h at 37.degree. C., pH 4.5-6.0 to enzymatically remove N-linked gycosylation prior to HPLC analysis. Approximately 50 .mu.g of protein was then injected for hydrophobic interaction chromatography using an Agilent 1100 HPLC system with an HIC-phenyl column and a high-to-low salt gradient over 35 min. The gradient was achieved using high salt buffer A: 4 M ammonium sulphate containing 20 mM potassium phosphate pH 6.75 and low salt buffer B: 20 mM potassium phosphate pH 6.75. Peaks were detected with UV light at 222 nm and fractions were collected and identified by mass spectroscopy. Protein concentrations are reported as the percent of each peak area relative to the total integrated area of the sample.

[0412] J. Effect of Addition of Purified Proteins to the Fermentation Broth of T. Reesei Integrated Strain H3A on Saccharification of Dilute Ammonia Pretreated Corncob

[0413] Purified proteins (and one unpurified protein) were serially diluted from stock solution and added to a fermentation broth of T. reesei integrated strain H3A to determine their benefit to saccharification of pretreated biomass. Dilute ammonia pretreated corncob was loaded into microtiter plate (MTP) wells at 20% solids (w/w) (.about.5 mg of cellulose per well), pH 5. H3A protein (in the form of fermentation broth) was added to each well at 20 mg protein/g cellulose. Volumes of 10, 5, 2, and 1 .mu.L of each of the diluted proteins (FIG. 10) were added into individual wells, and water was added such that the liquid addition to each well was a total of 10 .mu.L. Reference wells included additions of either 10 .mu.L water or dilutions of additional H3A fermentation broth. The MTP were sealed with foil and incubated at 50.degree. C. with 200 RPM shaking in an Innova incubator shaker for three days. The samples were quenched with 100 .mu.L of 100 mM glycine pH 10. The quenched samples were covered with a plastic seal and centrifuged 3000 RPM for 5 min at 4.degree. C. An aliquot (5 .mu.L) of the quenched reactions was diluted with 100 .mu.L of water and the concentration of glucose produced in the reactions was determined using HPLC. The glucose data was plotted as a function of the protein concentration added to the 20 mg/g of H3A (the concentrations of the protein additions were variable due to different starting concentrations and additions by volume). Results are shown in FIGS. 11A-11D.

Example 3

Construction of T. reesei Strains

[0414] A. Construction of and Screening for T. Reesei Strain H3A/EG4#27

[0415] An expression cassette containing the T. reesei egl1 (also termed "Cel 7B") promoter, T. reesei eg4 (also termed "TrEG4", or "Cel 61A") open reading frame, and cbh1 (Cel 7A) terminator sequence (FIG. 12A) from Trichoderma reesei, and sucA selectable marker (see, Boddy et al., Curr. Genet. 1993, 24:60-66) from Aspergillus niger was cloned into pCR Blunt II TOPO (Invitrogen) (FIG. 12B).

[0416] The expression cassette Pegl1-eg4-sucA was amplified by PCR with the primers:

TABLE-US-00012 (SEQ ID NO: 146) SK1298: 5'-GTAGTTATGCGCATGCTAGAC-3' (SEQ ID NO: 147) 214: 5'-CCGGCTCAGTATCAACCACTAAGCACAT-3'

[0417] Pfu Ultra II (Stratagene) was used as the polymerase for the PCR reaction. The products of the PCR reaction were purified with the QIAquick PCR purification kit (Qiagen) as per the manufacturer's protocol. The products of the PCR reaction were then concentrated using a speed vac to 1-3 .mu.g/.mu.L. The T. reesei host strain to be transformed (H3A) was grown to full sporulation on potato dextrose agar plates for 5 d at 28.degree. C. Spores from 2 plates were harvested with MilliQ water and filtered through a 40 .mu.M cell strainer (BD Falcon). Spores were transferred to a 50 mL conical tube and washed 3 times by repeated centrifugation with 50 mL water. A final wash with 1.1 M sorbitol solution was carried out. The spores were resuspended in a small volume (less than 2 times the pellet volume) using 1.1 M sorbitol solution. The spore suspension was then kept on ice. Spore suspension (60 .mu.L) was mixed with 10-20 .mu.g of DNA, and transferred into the electroporation cuvette (E-shot, 0.1 cm standard electroporation cuvette from Invitrogen). The spores were electroporated using the Biorad Gene Pulser Xcell with settings of 16 kV/cm, 25 .mu.F, 400.OMEGA.. After electroporation, 1 mL of 1.1.M sorbitol solution was added to the spore suspension. The spore suspension was plated on Vogel's agar (see example 2G), containing 2% sucrose as the carbon source.

[0418] The transformation plates were incubated at 30.degree. C. for 5-7 d. The initial transformants were restreaked onto secondary Vogel's agar plates with sucrose and grown at 30.degree. C. for an additional 5-7 d. Single colonies growing on secondary selection plates were then grown in wells of microtiter plates using the method described in WO/2009/114380. The supernatants were analyzed on SDS-PAGE to check for expression levels prior to saccharification performance screening.

[0419] A total of 94 transformants overexpressed EG4 in strain H3A. Two H3A control strains were grown in microtiter plates along with the H3A/EG4 strains. Performance screening of T. reesei strains expressing EG4 protein was performed using ammonia pretreated corncob. The dilute ammonia pretreated corncob was suspended in water and adjusted to pH 5.0 with sulfuric acid to achieve 7% cellulose. The slurry was dispensed into a flat bottom 96 well microtiter plate (Nunc, 269787) and centrifuged at 3,000 rpm for 5 min.

[0420] Corncob saccharification reactions were initiated by adding 20 .mu.L of H3A or H3A/EG4 strain culture broth per well of substrate. The corncob saccharification reactions were sealed with aluminum (E&K scientific) and mixed for 5 min at 650 rpm, 24.degree. C. The plate was then placed in an Innova incubator at 50.degree. C. and 200 rpm for 72 h. At the end of 72-h saccharification, the reactions were quenched by adding 100 .mu.L of 100 mM glycine, pH 10.0. The plate was then mixed thoroughly and centrifuged at 3,000 rpm for 5 min. Supernatant (10 .mu.L) was added to 200 .mu.L of water in an HPLC 96-well microtiter plate (Agilent, 5042-1385). Glucose, xylose, cellobiose and xylobiose concentrations were measured by HPLC using an Aminex HPX-87P column (300 mm.times.7.8 mm, 125-0098) pre-fitted with guard column.

[0421] The screening on corncob identified the following H3A/EG4 strains as having improved glucan and xylan conversion compared to the H3A control strains: 1, 2, 3, 4, 5, 6, 14, 22, 27, 43, and 49 (FIG. 13).

[0422] Select H3A/EG4 strains were re-grown in shake flasks. A total of 30 mL of protein culture filtrate was collected per shake flask per strain. The culture filtrates were concentrated 10-fold using 10 kDa membrane centrifugal concentrators (Sartorious, VS2001) and the total protein concentration was determined by BCA as described in Example 1C. A corncob saccharification reaction was performed using 2.5, 5, 10, or 20 mg protein from H3A/EG4 strain samples per g of cellulose per well of corncob substrate. An H3A strain produced at 14 L fermentation scale and a previously identified low performance sample (H3A/EG4 strain #20) produced at shake flask scale were included as controls. The saccharification reactions were carried out as described in Example 4 (below). Increased glucan conversion with increased protein dose was observed with culture supernatant from all of the EG4 expressing strains (FIG. 14). T. reesei integrated strain H3A/EG4#27 was used in additional saccharification reactions, and the strain was purified by streaking a single colony onto a potato dextrose plate from which a single colony was isolated.

Example 4

Range of T. Reesei EG4 Concentrations for Improved Saccharification of Dilute Ammonia Pretreated Corncob

[0423] To determine preferred dosing, hydrolysis of dilute ammonia pretreated corncob (25% solids, 8.7% cellulose, 7.3% xylan) was conducted at pH 5.3 using fermentation broth from either T. reesei integrated strain H3A/EG4 #27 or H3A with purified EG4 added to the reaction mix. The total loading of T. reesei integrated strain H3A/EG4 #27 or H3A was 14 mg protein per gram of glucan (G) and xylan (X).

[0424] The reaction mix (total mass 5 g) was loaded into 20 mL scintillation vials in a total reaction volume of 5 mL according to the dosing chart in FIGS. 15, 17A and 17B.

[0425] The set up for experiment 1 is shown in FIG. 15. MilliQ Water and 6 N Sulfuric acid were mixed in a conical tube and added to the respective vials and the vials were swirled to mix the contents. Enzymes samples were added to the vials and the vials incubated for 6 d at 50.degree. C. At various time points, 100 .mu.L of sample was removed from the vialss diluted with 900 .mu.L 5 mM sulfuric acid, vortexed, centrifuged and the supernatant was used to measure the concentrations of soluble sugars using HPLC. The results of glucan and xylan conversion are shown in FIGS. 16A and 16B, respectively.

[0426] The set up for experiment 2 is shown in FIG. 17A. To further determine the preferred EG4 concentration, saccharification of dilute ammonia corncob (25% solids, 8.7% cellulose, 7.3% xylan) was conducted at pH 5.3 using fermentation broth from either T. reesei integrated strain H3A/EG4 #27 or H3A with purified EG4 added (ranging from 0.05 to 1.0 mg protein/g G+X) to the reaction mix. The total loading of T. reesei integrated strain H3A/EG4 #27 or H3A was 14 mg protein/g glucan+xylan. The experimental results are shown in FIG. 18A.

[0427] The set up for experiment 3 is shown in FIG. 17B. To pinpoint the preferred concentration range of T. reesei Eg4 yet further, dilute ammonia corncob (25% solids, 8.7% cellulose, and 7.3% xylan) was hydrolyzed at pH 5.3 using T. reesei integrated strain H3A/EG4 #27 or H3A with purified EG4 added at concentrations ranging from 0.1-0.5 mg protein/g G+X. The total loading of T. reesei integrated strain H3A/EG4 #27 or H3A was 14 mg protein per g of glucan and xylan.

[0428] Results are shown in FIG. 18B.

Example 5

Effect of T. Reesei Eg4 on Saccharification of Dilute Ammonia Pretreated Corn Stover at Different Solid Loadings

[0429] Dilute ammonia pre-treated corn stover was incubated with fermentation broth from T. reesei integrated strain H3A or H3A/EG4#27 (14 mg protein/g glucan and xylan) at 7, 10, 15, 20 and 25% solids (% S) for three days at 50.degree. C., pH 5.3 (5 g total wet biomass in 20 mL vials). The reactions were carried out as described in Example 4 above. Glucose and xylose were analyzed by HPLC. Results are shown in FIG. 19. All samples up to 20% solids were visibly liquefied on day 1.

Example 6

Effect of Overexpression of T. Reesei EG4 on Hydrolysis of Dilute Ammonia Pretreated Corncob

[0430] The effect of overexpression of T. reesei Eg4 in strain H3A on saccharification of dilute ammonia pretreated corncob was tested using fermentation broths from strains H3A/EG4 #27 and H3A. Corncob saccharification at 3 g scale was performed in 20 mL glass vials as follows. Enzyme preparation, 1 N sulfuric acid and 50 mM pH 5.0 sodium acetate buffer (with 0.01% sodium azide and 5 mM MnCl.sub.2) were added to give a final slurry of 3 g total reaction, 22% dry solids, pH 5.0 with enzyme loadings varying between 1.7 and 21.0 mg total protein per gram Glucan+Xylan. All saccharification vials were incubated at 48.degree. C. with 180 rpm rotation. After 72 h, 12 mL of filtered MilliQ water was added to each vial to dilute the entire saccharification reaction 5-fold. The samples were centrifuged at 14,000.times.g for 5 min, then filtered through a 0.22 .mu.m nylon filter (Spin-X centrifuge tube filter, Corning Incorporated, Corning, N.Y.) and further diluted 4-fold with filtered MilliQ water to create a final 20.times. dilution. 20 .mu.L injections were analyzed by HPLC to measure the sugars released.

[0431] Overexpression or addition of T. reesei Eg4 led to enhanced xylose and glucose monomer release as compared to H3A alone (FIGS. 20 and 21). Addition of H3A/EG4#27 at different doses led to an increased yield of xylose as compared to strain H3A, or compared to Eg4+a constant 1.12 mg Xyn3 per g Glucan+Xylan (FIG. 20).

[0432] Addition of H3A/EG4#27 at different doses led to an increased yield of glucose compared to strain H3A or compared to Eg4+a constant 1.12 mg Xyn3 per g Glucan+Xylan (FIG. 21).

[0433] The effect of T. reesei Eg4 on total fermentable monomer (xylose, glucose and arabinose) release by integrated strains H3A/EG4#27 or H3A is illustrated in the FIG. 22. The H3A/EG4#27 integrated strain led to enhanced total fermentable monomer release compared to the integrated strain H3A, or compared to Eg4+1.12 mg Xyn3/g Glucan+Xylan.

Example 7

Purified T. Reesei EG4 Leads to Glucose Release in Dilute Ammonia Pretreated Corncob

[0434] The effect of purified T. reesei Eg4 on the concentration of sugars released was tested using 1.05 g dilute ammonia pretreated corncob in the presence or absence of 0.53 mg Xyn3 per g Glucan+Xylan. The experiments were performed as described in Example 6. Results are shown in FIG. 23. The data indicate that purified T. reesei Eg4 leads to release of glucose monomer without the action of other cellulases such as endoglucanases, cellobiohydrolases and .beta.-glucosidases.

[0435] Saccharification experiments were also conducted using dilute ammonia pretreated corncob with purified Eg4 added alone (no Xyn3 added). 3.3 .mu.L of purified Eg4 (15.3 mg/mL) was added to 872 .mu.L 50 mM, pH 5.0 sodium acetate buffer (included 0.01% sodium azide and 5 mM MnCl.sub.2), 165 mg of dilute ammonia pretreated corncob (67.3% dry solids, 111 mg dry solids added) and 16.5 .mu.L of 1 N sulfuric acid in 5 mL vials. The vials were incubated at 48.degree. C. and rotated at 180 rpm. Periodically, 20 .mu.L aliquots were removed, diluted 10-fold with filter sterilized double distilled water and filtered through a nylon filter before analysis for glucose released on a Dionex Ion Chromatography system. Authentic glucose solutions were used as external standards. Results are shown in FIG. 24, indicating that addition of purified Eg4 leads to release of glucose monomer from dilute ammonia pretreated corncobs over 72 h incubation at 48.degree. C. in the absence of other cellulases or endoxylanase.

Example 8

Saccharification Performance of T. Reesei Integrated Strains H3A and H3A/EG4 #27 on Various Substrates

[0436] In this experiment, fermentation broth from T. reesei integrated strain H3A or H3A/EG4#27, dosed at 14 mg protein per g of glucan+xylan, was tested for saccharification performance on different substrates including: dilute ammonia pretreated corncob, washed dilute ammonia pretreated corncob, ammonia fiber expanded corn stover (AFEX CS), Steam Expanded Sugarcane Bagasse (SEB), and Kraft-pretreated paper pulps FPP27 (Softwood Industrial Unbleached Pulp delignified-Kappa 13.5, Glucan 81.9%, Xylan 8.0%, Klason Lignin 1.9%), FPP-31 (Hardwood Unbleached Pulp delignified-Kappa 10.1, Glucan 75.1%, Xylan 19.1%, Klason Lignin 2.2%), and FPP-37 (Softwood Unbleached Pulp air dried-Kappa 82, Glucan 71.4%, Xylan 8.7%, Klason Lignin 11.3%).

[0437] The saccharification reactions were set up in 25 mL glass vials with final mass of 10 g in 0.1 M Sodium Citrate Buffer, pH 5.0 and incubated at 50.degree. C., 200 rpm for 6 d. At the end of 6 d, 100 .mu.L aliquots were diluted 1:10 in 5 mM sulfuric acid and the samples analyzed by HPLC to determine glucose and xylose formation. Results are shown in FIG. 25.

Example 9

Effect of T. Reesei EG4 on Saccharification of Acid Pretreated Corn Stover

[0438] The effect of Eg4 on saccharification of acid pretreated corn stover was tested. Corn stover pretreated with dilute sulfuric acid (Schell, D J, et al., Appl. Biochem. Biotechnol. 2003, 105(1-3):69-85) was obtained from NREL, adjusted to 20% solids and conditioned to a pH 5.0 with the addition of soda ash solution. Saccharification of the pretreated substrate was performed in a microtiter plate using 20% total solids. Total protein in the fermentation broths was measured by the Biuret assay (see Example 1 above). Increasing amounts of fermentation broth from T. reesei integrated strains H3A/EG4 #27 and H3A were added to the substrate and saccharification performance was measured following incubation at 50.degree. C., 5 d, 200 RPM shaking. Glucose formation (mg/g) was measured using HPLC. Results are shown in FIG. 26.

Example 10

Saccharification Performance of T. Reesei Integrated Strains H3A and H3A/EG4#27 on Dilute Ammonia Pretreated Corn Leaves, Stalks, and Cobs

[0439] Saccharification performance of T. reesei integrated strains H3A and H3A/EG4#27 was compared on dilute ammonia pretreated corn stover leaves, stalks, or cobs. Pretreatment was performed as described in WO06110901A. Five (5) g total mass (7% solids) was hydrolyzed in 20 mL vials at pH 5.3 (pH adjusted with 6 NH.sub.2SO.sub.4) using 14 mg protein per g of glucan+xylan. Saccharification reactions were carried out at 50.degree. C. and samples analyzed by HPLC for glucose and xylose released on day 4. Results are shown in FIG. 27.

Example 11

Saccharification Performance on Dilute Ammonia Pretreated Corncob in Response to Overexpressed EG4 from T. Reesei

[0440] Saccharification reactions at 3 g scale were performed using dilute ammonia pretreated corncob. Sufficient pretreated cob preparation was measured into 20 mL glass vials to give 0.75 g dry solid. Enzyme preparation, 1 N sulfuric acid and 50 mM pH 5.0 sodium acetate buffer (with 0.01% sodium azide) were added to give final slurry of 3 g total reaction, 25% dry solids, pH 5.0. Extra cellular protein (fermentation broth) from the T. reesei integrated strain H3A was added at 14 mg protein/g (glucan+xylan) either with or without an additional 5% of the 14 mg protein load as the unpurified culture supernatant from a T. reesei strain (.DELTA.cbh1 .DELTA.cbh2 .DELTA.eg1 .DELTA.eg2) (See International publication WO 05/001036) over expressing Eg4. The saccharification reactions were incubated for 72 h at 50.degree. C. Following incubation, the reaction contents were diluted 3-fold, filtered and analyzed by HPLC for glucose and xylose concentration. The results are shown in FIG. 28. Addition of Eg4 protein in the form of extracelluar protein from a T. reesei strain over expressing Eg4 to H3A substantially increased the release of monomer glucose and slightly increased the release of monomer xylose.

Example 12

Saccharification Performance of Strain H3A/EG4#27 on Ammonia Pretreated Switchgrass

[0441] The saccharification performance of strain H3A/EG4#27 on ammonia pretreated switchgrass (International Patent Publication WO06110901A) at increasing protein doses was compared to that of strain H3A (18.5% solids). Pretreated switchgrass preparations were measured into 20 mL glass vials to give 0.925 g of dry solid. 1 N sulfuric acid and 50 mM pH 5.3 sodium acetate buffer (with 0.01% sodium azide) were added to give final slurry of 5 grams total reaction. The enzyme dosages of H3A tested were 14, 20, and 30 mg/g (glucan+xylan); and the dosages of H3A-EG4 #27 were 5, 8, 11, 14, 20, and 30 mg/g (glucan+xylan). The reactions were incubated at 50.degree. C. for 3 d. Following incubation, the reaction contents were diluted 3-fold, filtered and analyzed by HPLC for glucose and xylose concentration. The conversion of glucan and xylan were calculated based on the composition of the switchgrass substrate. The results (FIG. 29) indicate that the performance of H3A-EG4 #27 is more effective for glucan conversion than H3A at the same enzyme dosages.

Example 13

Effect of T. Reesei EG4 Additions on Corncob Saccharification and on CMC and Cellobiose Hydrolysis

[0442] A. Corncob Saccharification:

[0443] Dilute ammonia pretreated corncob was adjusted to 20% solids, 7% cellulose and 65 mg was dispensed per well in a microtiter plate. Saccharification reactions were initiated by adding 35 .mu.L of 50 mM sodium acetate (pH 5.0) buffer containing T. reesei CBH1 at 5 mg protein/g glucan (final) and the relevant enzymes (CBH1 or Eg4), at final concentrations of 0, 1, 2, 3, 4 and 5 mg/g glucan. An Eg4 control received only EG4 at the same doses and as such, the total added protein in these wells was less. The microtiter plates were sealed with an aluminum plate seal (E&K scientific) and mixed for 2 min at 600 rpm, 24.degree. C. The plate was then placed in an Innova incubator at 50.degree. C. and 200 rpm for 72 h.

[0444] At the end of 72-h saccharification, the plate was quenched by adding 100 .mu.L of 100 mM glycine, pH 10.0. The plate was then centrifuged at 3000 rpm for 5 min Supernatant (20 .mu.L) was added to 100 .mu.L of water in HPLC 96 well microtiter plate (Agilent 5042-1385). Glucose and cellobiose concentrations were measured by HPLC using Aminex HPX-87P column (300 mm.times.7.8 mm, 125-0098) pre-fitted with guard column. % glucan conversion was calculated by 100.times.(mg cellobiose+mg glucose)/total glucan in substrate (FIG. 30).

[0445] B. CMC Hydrolysis:

[0446] Carboxymethylcellulose (CMC, Sigma C4888) was diluted to 1% with 50 mM Sodium Acetate, pH 5.0. Hydrolysis reactions were initiated by separately adding each of three T. reesei purified enzymes--EG4, EG1 and CBH1 at final concentrations of 20, 10, 5, 2.5, 1.25 and 0 mg/g to 100 .mu.L of 1% CMC in a 96-well microtiter plate (NUNC #269787). Sodium acetate, pH 5.0 50 mM was added to each well to a final volume of 150 .mu.L. The CMC hydrolysis reactions were sealed with an aluminum plate seal (E&K scientific) and mixed for 2 min at 600 rpm, 24.degree. C. The plate was then placed in an Innova incubator at 50.degree. C. and 200 rpm for 30 min.

[0447] At the end of 30 min. incubation, the plate was put in ice water for 10 min. to stop the reaction, and samples were transferred to eppendorf tubes. To each tube was added 375 .mu.L of dinitrosalicylic acid (DNS) solution (see below). Samples were then boiled for 10 min and O.D was measured at 540 nm by SpectraMAX 250 (Molecular Devices). Results are shown in FIG. 31.

DNS Solution:

[0448] 40 g 3.5-Dinitrosalicylic acid (Sigma, D0550)

8 g Phenol

[0449] 2 g Sodium sulfite (Na.sub.2SO.sub.3) 800 g Na--K tartarate (Rochelle salt) Add all the above to 2 L of 2% NaOH Stir overnight, covered with aluminum foil Add distilled deionized water to a final volume of 4 L Mix well Store in a dark bottle, refrigerated

[0450] C. Cellobiose Hydrolysis

[0451] Cellobiose was diluted to 5 g/L with 50 mM Sodium Acetate, pH 5.0. Hydrolysis reactions were initiated by separately adding each of two enzymes--EG4 and BGL1 at final concentrations of 20, 10, 5, 2.5, and 0 mg/g to 100 .mu.L cellobiose solution at 5 g/L. Sodium acetate, pH 5.0 was added to each well to a final volume of 120 .mu.L. The reaction plates were sealed with an aluminum plate seal (E&K scientific) and mixed for 2 min at 600 rpm, 24.degree. C. The plate was then placed in an Innova incubator at 50.degree. C. and 200 rpm for 2 h.

[0452] At the end of the 2 h hydrolysis step, the plate was quenched by adding 100 .mu.L of 100 mM glycine, pH 10.0. The plate was then centrifuged at 3000 rpm for 5 min Glucose concentration was measured by ABTS (2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid) assay (Example 1). Ten (10) .mu.L of supernatant was added to 90 .mu.L ABTS solution in a 96-well microtiter plate (Corning costar 9017 EIA/RIA plate, 96 well flat bottom, medium binding). OD 420 nm was measured by SpectraMAX 250, Molecular Devices. Results are shown in FIG. 32.

Example 14

Purified EG4 Improves Glucose Production from Dilute Ammonia Pretreated Corncob when Mixed with Various Cellulase Mixtures

[0453] The effect of purified Eg4 combined with purified cellulases (T. reesei EG1, EG2, CBH1, CBH2, and Bgl1) on the concentration of sugars released was tested using 1.05 g dilute ammonia pretreated corncob in the presence of 0.53 mg T. reesei Xyn3 per g of Glucan+Xylan. 1.06-g reactions were set up in 5 mL vials containing 0.111 g dry cob solids (10.5% solids). Enzyme preparation (FIG. 33), 1N sulfuric acid and 50 mM pH 5.0 sodium acetate buffer (with 0.01% sodium azide and 5 mM MnCl.sub.2) were added to give the final reaction weight. The reaction vials were incubated at 48.degree. C. with 180 rpm rotation. After 72 h, filtered MilliQ water was added to dilute each saccharification reaction by 5-fold. The samples were centrifuged at 14,000.times.g for 5 min, then filtered through a 0.22 .mu.m nylon filter (Spin-X centrifuge tube filter, Corning Incorporated, Corning, N.Y.) and further diluted 4-fold with filtered Milli-Q water to create a final 20.times. dilution. Twenty (20) .mu.L injections were analyzed by HPLC to measure the sugars released (glucose, cellobiose, and xylose).

[0454] FIG. 34 shows glucose (A), glucose+cellobiose (B), or xylose (C) produced with each combination. Purified Eg4 improved the performance of individual cellulases and mixtures. When all of the purified cellulases were present, addition of 0.53 mg Eg4 per g Glucan+Xylan improved the conversion by almost 40%. Improvement was also seen when Eg4 was added to a combination of CBH1, Egl1 and Bgl1. When individual cellulases were present with the cob, the absolute amounts of total glucose release were substantially lower than resulted from the experiment wherein combinations of cellulases were present with the cob, but in each case, the percent improvement in the presence of Eg4 was significant. Addition of T. reesei Eg4 to purified cellulases resulted in the following percent improvements in total Glucose release-Bgl1 (121%), Eg12 (112%), CBH2 (239%) and CBH1 (71%). This shows that Eg4 had a significant and broad effect to improve cellulase performance on biomass.

Example 15

Effects Observed When EG4 was Mixed with CBH1, CBH2, and EG2--Substrate: Dilute Ammonia Pretreated Corncob

[0455] Dilute ammonia pretreated corncob saccharification reactions were prepared by adding enzyme mixtures as follows to corncob (65 mg per well of 20% solids, 7% cellulose) in 96-well MTPs (VWR). Eighty (80) .mu.L of 50 mM sodium acetate (pH 5.0), 1 mg Bgl1/g glucan, and 0.5 mg Xyn3/g glucan background were also added to all wells.

[0456] To test the effect of mixing Eg4 individually with CBH1, CBH2 and EG2, each of CBH1, CBH2, and EG2 was added at 0, 1.25, 2.5, 5, 10 and 20 mg/g glucan, and EG4 was added at concentrations of 20, 18.75, 17.5, 15, 10 and 0 mg/g glucan to the respective wells, making the total proteins in individual wells 20 mg/g glucan. The control wells received only CBH1 or CBH2 or EG2 or EG4 at the same doses, as such the total added proteins in these wells were less than 20 mg/g.

[0457] To test the effect of Eg4 on combinations of cellulases, mixtures of CBH1, CBH2 and EG2 at different ratios (see, FIG. 35) were added at 0, 1.25, 2.5, 5, 10 and 20 mg protein/g glucan, and EG4 was added to the mixtures at concentrations of 20, 18.75, 17.5, 15, 10 and 0 mg protein/g glucan, such that the total proteins in individual wells was 20 mg protein/g glucan. As above, control wells received only one added protein so the total protein addition was less than 20 mg protein/g.

[0458] The corncob saccharification reactions were sealed with an aluminum plate seal (E&K scientific) and mixed for 2 min at 600 rpm, 24.degree. C. The plate was then placed in an Innova 44 incubator shaker (New Brunswick Scientific) at 50.degree. C. and 200 rpm for 72 h. At the end of the 72-h saccharification step, the plate was quenched by adding 100 .mu.L of 100 mM glycine, pH 10.0. The plate was then centrifuged at 3000 rpm for 5 min (Rotanta 460R Centrifuge, Hettich Zentrifugen). Twenty (20) .mu.L of supernatant was added to 100 .mu.L of water in an HPLC 96-well microtiter plate (Agilent, 5042-1385). Glucose and cellobiose concentrations were measured by HPLC using an Aminex HPX-87P column (300 mm.times.7.8 mm, 125-0098) and guard column (BioRad).

[0459] The results were indicated in the table of FIG. 36, wherein the glucan conversion (%) is defined as 100.times.(glucose+cellulobiose)/total glucan.

[0460] This experiment indicates that Eg4, when added to a CBH1, CBH2 and/or EG2, was beneficial in improving saccharification of dilute ammonia pretreated corncob. Moreover, the highest improvement was observed when Eg4 and the other enzyme (CBH1, CBH2, or EG2) were added to the saccharification mixture in an equal amount. It was also observed that the effect of Eg4 is substantial on the CBH1 and CBH2 mixture. The optimum improvement by Eg4 was observed when the amount of Eg4 to CBH1 and CBH2 was 1:1.

Example 16

EG4 Improves Saccharification Performance of Various Cellulase Compositions

[0461] The total protein concentration of commercial cellulase enzyme preparations Spezyme.RTM. CP, Accellerase.RTM.1500, and Accellerase.RTM.DUET (Genencor Division, Danisco US) were determined by the modified Biuret assay (described herein).

[0462] Purified T. reesei EG4 was added to each enzyme preparation, and the samples were then assayed for saccharification performance using a 25% solids loading of ammonia pretreated corncob, at a dose of 14 mg of total protein per g of substrate glucan and xylan (5 mg EG4 per g of glucan and xylan, plus 9 mg whole cellulase per g of glucan and xylan). The saccharification reaction was carried out using 5 g of total reaction mixture in a 20 mL vial at pH 5, with incubation at 50.degree. C. in a rotary shaker set to 200 rpm for 7 d. The saccharification samples were diluted 10.times. with 5 mM sulfuric acid, filtered through a 0.2 .mu.m filter before injection into the HPLC. HPLC analysis was performed using a BioRad Aminex HPX-87H ion exclusion column (300 mm.times.7.8 mm).

[0463] Substitution of purified EG4 into whole cellulases improved glucan conversion in all tested cellulase products as illustrated in FIG. 40. As illustrated in FIG. 41, xylan conversion did not appear to be affected by the Eg4 substitution.

Example 17

Reduction of Viscosity in Biomass Saccharification

[0464] Biomass used in this experiment was Inbicon acidified steam-expansion pretreated wheat straw, with the following composition (Table 2):

TABLE-US-00013 Inbicon wheat straw Component ID Mean Glucan 55.0% Xylan 5.0% Galactan Arabinan Mannan Klason Lignin 31.0% Acid soluble lignin Ash 4.0% Starch Mass Balance Closure 95.0%

[0465] The pre-treated wheat straw was diluted into water and pH-adjusted with sulfuric acid to pH5.0, and a solid level of 10.5% of that was mixed with, in a first sample, a fermentation broth of a T. reesei H3A strain (FIG. 9) at a total protein concentration of 20.5 mg protein/g cellulose in the biomass substrate at 50.degree. C., or in a second sample, the fermentation broth of T. reesei H3A (FIG. 9) at a total protein concentration of 18.5 mg protein/g cellulose in the biomass substrate, and 2 mg/g cellulose of purified T. reesei Eg4. Viscosity reduction was measured using a Brookfield viscometer (Brookfield Engineering, Inc), monitoring viscosity change up to about 6 h. Results are indicated in FIG. 42.

Example 18

Reduction of Viscosity in Biomass Saccharification

[0466] Biomass used in this experiment was dilute acid pretreated corn stover from NREL (unwashed PCS).

[0467] The unwashed pretreated corn stover was mixed, at a temperature of 50.degree. C., pH of 5.0, and a solid level of 20% dry solids with, in a first sample, a fermentation broth of a T. reesei H3A strain (FIG. 9) at a total protein concentration of 20 mg/g cellulose in the biomass substrate, and in a second sample, a fermentation broth of T. reesei H3A/Eg4 #27 integrated strain, also at 20 mg/g cellulose. Viscosity reduction was measured using a Brookfield viscometer (Brookfield Engineering, Inc.), monitoring viscosity change for up to over 160 h. The results are indicated in FIG. 43.

Example 19

Reduction of Viscosity in Biomass Saccharification

[0468] Biomass used in this experiment was dilute ammonia pretreated corncob.

[0469] The dilute ammonia pretreated corncob was mixed with enzyme compositions at two solid loading conditions: 25% dry solids and 30% dry solids. Specifically, the pretreated biomass was mixed at 50.degree. C. and pH 5.0 with 14 mg protein/g cellulose from a fermentation broth of either a T. reesei H3A (FIG. 9) or H3A/Eg4 #27 strain. Viscosity reduction was measured using a Brookfield Viscometer (Brookfield Engineering, Inc.). The results are indicated in FIG. 44.

Example 20

Determining the Effects of Various Cellulases on Viscosity Reduction and Glucose Production in Saccharification Process

[0470] This study used various viscosity reducing enzymes, such as OPTIMASH.TM. BG, OPTIMASH.TM. TBG, OPTIMASH.TM. VR; or beta-glucosidase such as Accellerase.RTM. BG, in the presence of Accellerase.RTM. DUET in the saccharification process and determined the effects of these viscosity reducing enzymes in glucose production and viscosity reduction. Enzyme composition produced from H3A/EG4 integrated strain #27 was also included. Accellerase.RTM. 1500, Accellerase.RTM. DUET, Accellerase.RTM. BG, OPTIMASH.TM. BG, OPTIMASH.TM. TBG, and OPTIMASH.TM. VR were products available from Danisco US Inc., Genencor.

[0471] Pretreated wheat straw as described above was used. The composition analysis was performed and is listed in Table 2 (see Example 17).

[0472] The saccharification process was performed by incubating the pretreated wheat straw (25% dry matter) with various enzymes in reaction chambers. See, Larsen et al., The IBUS Process-Lignocellulosic Bioethanol Close to A commercial Reality, (2008) Chem. Eng. Tech. 31(5):765-772. The experimental conditions are shown in Tables 3 and 4. In each chamber, the total mass was 10 kg. The initial pH of the wheat straw was about 3.50 and was adjusted by adding Na.sub.2CO.sub.3 to pH 5.0. Glucose concentration was measured over time and cellulose conversion was calculated.

TABLE-US-00014 TABLE 3 Viscosity Enzyme Experimental Cellulase Loading g/kg dry condition Enzymes mL/g cellulose matter 1 Accellerase .RTM. 1500 batch 1 0.22 0 2 Accellerase .RTM. DUET 0.15 0 3 Accellerase .RTM. DUET 0.25 0 4 Accellerase .RTM. DUET + 0.15 6 Optimash .TM. BG 5 Accellerase .RTM. DUET + 0.15 6 Optimash .TM. TBG 6 Accellerase .RTM. DUET + 0.15 6 Optimash .TM. VR

TABLE-US-00015 TABLE 4 Cellulase Viscosity Experimental Loading Enzyme condition Enzymes mL/g cellulose g/kg dry matter 7 Accellerase .RTM. 1500 0.22 0 (batch 1) 8 Accellerase .RTM. 1500 0.22 0 (batch 2) 9 Accellerase .RTM. DUET 0.15 0 10 Accellerase .RTM. DUET + 0.15 0.1 Accellerase .RTM. BG 11 Accellerase .RTM. DUET + 0.15 6 Accellerase .RTM. BG 12 H3A/Eg4#27 0.15 0

[0473] Experimental conditions 1-6 were conducted on the first day ("Day 1"), and experimental conditions 7-12 were conducted on the second day ("Day 2").

[0474] The glucose concentration was measured after 6 hour saccharification for each experimental condition. Accellerase.RTM. DUET at 0.25 mL/g cellulose resulted in 40.8 g glucose/kg after 6-h saccharification. See FIG. 45. The glucose concentration for Accellerase.RTM. DUET+OPTIMASH BG (or TBG) (0.15+6) (i.e., 0.15 mL Accellerase.RTM. DUET/g cellulose+6 g OPTIMASH BG (or TBG)/kg dry matter) was similar to the glucose concentration for Accellerase.RTM. 1500 at 0.22 mL/g cellulose. See FIG. 45. The glucose concentration for Accellerase.RTM. DUET+Accellerase BG at 0.15+6 (i.e., 0.15 mL Accellerase.RTM. DUET/g cellulose+6 g Accellerase BG/kg dry matter) was similar to the glucose concentration for Accellerase.RTM. 1500 at 0.22 mL/g cellulose and higher than the glucose concentration for Accellerase.RTM. DUET at 0.15 mL/g cellulose. See FIG. 45. High concentration of Accellerase.RTM. BG was able to reduce the viscosity of the saccharification reaction mixture. Using the enzyme composition produced from fermenting H3A/EG4 #27, at an amount of 0.15 mL/g cellulose yielded 37.5 g/kg glucose after 6-h saccharification, which was substantially higher than the glucose production for Accellerase.RTM. 1500 at 0.22 mL/g cellulose and Accellerase.RTM. DUET at 0.15 mL/g cellulose. See FIG. 45.

[0475] Glucose concentrations for various experimental conditions of Day 1's experiment were measured again after 24-h saccharification. See FIG. 46. The glucose concentration and cellulose conversion were measured over time for experimental conditions 7-12 on Day 2's experiment and results are shown in FIGS. 47 and 48.

[0476] Viscosity was observed by eye on Day 1's experiment after 6-h saccharification and is summarized in Table 6. More "+" indicates less viscous saccharification reaction mixture. In general, less viscous saccharification reaction mixture (e.g., thinner slurry) correlated with more glucose production.

TABLE-US-00016 TABLE 6 Viscosity observation for Day 1's experiment at 6-h Experimental Viscosity Glucose condition Enzymes Observation (g/kg) 1 Accellerase .RTM. 1500, 0.22 ++ 32.1 2 Accellerase .RTM. DUET, 0.15 + 27 3 Accellerase .RTM. DUET, 0.25 ++++ 40.8 4 Accellerase .RTM. DUET + Optimash ++ 31.4 BG 5 Accellerase .RTM. DUET + Optimash + 30.6 TBG 6 Accellerase .RTM. DUET + Optimash +++ 26.7 VR

[0477] Viscosity of the saccharification reaction mixtures in various chambers on Day 2's experiment was observed by eye with reference to the visibility of the metal parts in each chamber. After 6-day of saccharification at 50.degree. C., the saccharification mixture in chamber 3 (Experimental condition 9, Accellerase.RTM. DUET at 0.15 mL/g cellulose) was more viscous than the saccharification mixture in chamber 1 (Experimental condition 7) or 2 (Experimental condition 8, Accellerase.RTM. 1500 at 0.22 mL/g cellulose). Metal parts in chamber 3 could not be seen. The viscosity of the saccharification mixture in chamber 4 (Experimental condition 10, Accellerase DUET.RTM. at 0.15 mL/g cellulose+Accellerase.RTM. BG at 0.1 g/kg dry matter) was reduced compared to the viscosity of the saccharification mixture in chamber 3 (Accellerase.RTM. DUET at 0.15 mL/g cellulose). The viscosity of the saccharification mixture in chamber 5 (Experimental condition 11, Accellerase DUET.RTM. at 0.15 mL/g cellulose+Accellerase BG at 6 g/kg dry matter) was more reduced compared to the viscosity of the saccharification mixture in chamber 4 (Accellerase.RTM. DUET at 0.15 mL/g cellulose+Accellerase BG at 0.1 g/kg dry matter). Even with a high amount of Accellerase BG, the saccharification mixture (chamber 5, Accellerase DUET.RTM. at 0.15 mL/g cellulose+Accellerase BG at 6 g/kg dry matter) was still more viscous than Accellerase.RTM. 1500 at 0.22 mL/g cellulose (chambers 1 and 2). However, with the addition of the enzyme composition produced from fermenting H3A/EG4 #27, it was surprisingly found that the viscosity of the saccharification mixture (chamber 6) was substantially reduced compared to the viscosity of the saccharification mixture in chamber 4 or 5. Metal parts in chamber 6 could be seen.

Example 21

Determining the Effects of Various Cellulases on Viscosity Reduction and glucose production in saccharification process

[0478] A saccharification process was performed by incubating Inbicon pretreated wheat straw (25% dry matter) with various enzymes in reaction chambers. The experimental conditions are shown in Table 7. In each chamber, the total mass is 10 kg. The initial pH of the wheat straw was about 3.50 and was adjusted by adding Na.sub.2CO.sub.3 to pH 5.0. Accellerase.RTM. 1500, Accellerase.RTM. DUET, Accellerase.RTM. BG, Optimash.TM. BG, and Primafast.RTM. LUNA are products available from Genecor.

TABLE-US-00017 TABLE 7 Experimental Cellulase Loading Viscosity Enzyme condition Enzymes mL/g cellulose g/kg dry matter 1 Accellerase .RTM. DUET 0.15 0 2 Accellerase .RTM. 1500 0.22 0 3 Accellerase .RTM. DUET + Optimash BG 0.15 1 4 Accellerase .RTM. DUET + Optimash BG 0.15 2 5 Accellerase .RTM. DUET + Primafast LUNA 0.15 1 6 Accellerase .RTM. DUET + Primafast LUNA 0.15 2 7 Accellerase .RTM. DUET + Accellerase .RTM. BG 0.15 1 8 Accellerase .RTM. DUET + Accellerase .RTM. BG 0.15 2 9 Accellerase .RTM. DUET + Optimash BG + 0.15 1 for Optimash Accellerase .RTM. BG BG; 1 for Accellerase .RTM. BG 10 Accellerase .RTM. DUET + Accellerase .RTM. 1500 0.15 for Accellerase .RTM. 0 DUET; 0.22 for Accellerase .RTM. 1500 11 H3A/Eg4#27 + Optimash BG 0.15 1 12 H3A/Eg4#27 + Optimash BG 0.15 2 13 H3A/Eg4#27 + Primafast Luna 0.15 1 14 H3A/Eg4#27 + Primafast Luna 0.15 2 15 H3A/Eg4#27 + Accellerase .RTM. BG 0.15 1 16 H3A/Eg4#27 + Accellerase .RTM. BG 0.15 2

[0479] Glucose concentration was measured after 6 h, 24 h, 50 h, and 6 d of saccharification. Viscosity of saccharification reaction mixture was observed by eye and measured by a viscosity meter using methods known to one skilled in the art after 6 h, 24 h, 50 h, and 6 d of saccharification.

[0480] It was found that the glucose production of each of the experimental conditions 3-16 was increased compared to the glucose production of experimental condition 1. It was further found that the viscosity of each of the experimental conditions 3-16 was reduced compared to the viscosity of experimental condition 1.

[0481] This study also examined the glucose production and viscosity reduction in a saccharification process with the same experimental conditions as above but after a prolonged pre-hydrolysis time (such as 6 h, 9 h, 12 h, 24 h).

Example 22

Ascorbic Acid Effect on Avicel Hydrolysis by CBH1 and EG4

[0482] Crystalline cellulose (50 .mu.L of 10% Avicel in 50 mM Sodium Acetate, pH 5.0) reactions were initiated by mixing together combinations of purified T. reesei CBH1 (5 mg/g final concentration), purified T. reesei Eg4 (10 mg/g final concentration), ascorbic acid (50 mM stock, 8.8 g/L final concentration) and manganese solution (10 mM final concentration) as described listed in FIG. 39A. Fifty (50) mM sodium acetate buffer, pH 5.0, was added to each sample to a final volume of 300 .mu.L.

[0483] Reaction eppendorf tubes were vortexed and then placed in an Innova 44 incubator (New Brunswick Scientific) at 50.degree. C., 200 rpm. Fifty (50) .mu.L samples were taken from each tube at three time points (2.5, 4.5, 24 h) and quenched with 50 .mu.L of 100 mM glycine buffer, pH 10.0. Samples were centrifuged at 3000 rpm for 5 minutes (Rotanta 460R Centrifuge, Hettich Zentrifugen) and supernatant (20 .mu.L) was added to 100 .mu.L of water in an HPLC 96-well microtiter plate (Agilent, 5042-1385). Glucose and cellobiose concentrations were measured by HPLC using Aminex HPX-87P column (300 mm.times.7.8 mm, 125-0098) pre-fitted with guard column. The results are shown in FIG. 37.

[0484] Next ascorbic acid effect on Avicel hydrolysis by CBH2 and EG4 was measured. Crystalline cellulose (80 .mu.L of 10% Avicel in 50 mM Sodium Acetate, pH 5.0) reactions were initiated by mixing together combinations of purified T. reesei CBH2 (5 mg/g final concentration), purified T. reesei Eg4 (10 mg/g final concentration), ascorbic acid (50 mM stock, 8.8 g/l final concentration) and manganese solution (10 mM final concentration) as listed in FIG. 39B. Fifty (50) mM sodium acetate buffer, pH 5.0, was added to each sample to a final volume of 500 .mu.L.

[0485] Reaction eppendorf tubes were vortexed and then placed in an Innova 44 incubator (New Brunswick Scientific) at 50.degree. C., 200 rpm. Fifty (50) .mu.L samples were taken from each tube at three time points (5, 24, 48 h) and quenched with 50 .mu.L of 100 mM glycine buffer, pH 10.0. Samples were centrifuged at 3000 rpm for 5 minutes (Rotanta 460R Centrifuge, Hettich Zentrifugen) and supernatant (20 .mu.L) was added to 100 .mu.L of water in an HPLC 96-well microtiter plate (Agilent, 5042-1385). Glucose and cellobiose concentrations were measured by HPLC using Aminex HPX-87P column (300 mm.times.7.8 mm, 125-0098) pre-fitted with guard column. Results are shown in FIG. 38.

Sequence CWU 1

1

1621246PRTNeurospora crassa 1Met Arg Phe Asp Leu Leu Ala Leu Ser Ala Phe Ala Pro Leu Val Ala 1 5 10 15 Ala His Gly Ala Val Thr Ser Tyr Ile Ile Asp Gly Thr Thr Tyr Pro 20 25 30 Gly Tyr Glu Gly Phe Ser Pro Ala Ser Ser Pro Lys Thr Ile Gln Phe 35 40 45 Gln Trp Pro Asn Tyr Asp Pro Thr Met Thr Val Ser Asp Ala Lys Met 50 55 60 Arg Cys Asn Gly Gly Thr Ser Ala Gln Leu Ser Ala Thr Val Gln Ala 65 70 75 80 Gly Ser Asn Val Thr Ala Val Trp Lys Gln Trp Thr His Glu Gln Gly 85 90 95 Pro Val Gln Val Trp Leu Phe Lys Cys Pro Gly Ala Phe Gly Ser Ser 100 105 110 Cys Lys Gly Asp Gly Lys Gly Trp Phe Lys Ile Asp Glu Met Gly Met 115 120 125 Trp Gly Gly Lys Leu Asn Ser Ala Asn Trp Gly Thr Ala Leu Ile Val 130 135 140 Lys Asn His Gln Trp Ser Ser Glu Ile Pro Lys Asn Met Ala Pro Gly 145 150 155 160 Asn Tyr Leu Ile Arg His Glu Leu Leu Ala Leu His Gln Ala Asn Thr 165 170 175 Pro Gln Phe Tyr Ala Glu Cys Ala Gln Ile Val Val Gln Gly Ser Gly 180 185 190 Asn Ala Val Pro Pro Ser Asp Tyr Leu Tyr Ser Ile Pro Thr Tyr Ala 195 200 205 Pro Gln Asn Asp Pro Gly Val Thr Leu Thr Arg Asp Phe Lys Ile Asp 210 215 220 Ile Tyr Ser Ser Lys Ala Thr Thr Tyr Thr Pro Pro Gly Gly Arg Val 225 230 235 240 Trp Ser Gly Phe Gln Phe 245 2238PRTNeurospora crassa 2Met Lys Val Leu Ala Pro Leu Val Leu Ala Ser Ala Ala Ser Ala His 1 5 10 15 Thr Ile Phe Ser Ser Leu Glu Val Asn Gly Val Asn Gln Gly Leu Gly 20 25 30 Glu Gly Val Arg Val Pro Thr Tyr Asn Gly Pro Ile Glu Asp Val Thr 35 40 45 Ser Ala Ser Ile Ala Cys Asn Gly Ser Pro Asn Thr Val Ala Ser Thr 50 55 60 Ser Lys Val Ile Thr Val Gln Ala Gly Thr Asn Val Thr Ala Ile Trp 65 70 75 80 Arg Tyr Met Leu Ser Thr Thr Gly Asp Ser Pro Ala Asp Val Met Asp 85 90 95 Ser Ser His Lys Gly Pro Thr Ile Ala Tyr Leu Lys Lys Val Asp Asn 100 105 110 Ala Ala Thr Ala Ser Gly Val Gly Asn Gly Trp Phe Lys Ile Gln Gln 115 120 125 Asp Gly Met Asp Ser Ser Gly Val Trp Gly Thr Glu Arg Val Ile Asn 130 135 140 Gly Lys Gly Arg His Ser Ile Lys Ile Pro Glu Cys Ile Ala Pro Gly 145 150 155 160 Gln Tyr Leu Leu Arg Ala Glu Met Ile Ala Leu His Ala Ala Ser Asn 165 170 175 Tyr Pro Gly Ala Gln Phe Tyr Met Glu Cys Ala Gln Leu Asn Val Val 180 185 190 Gly Gly Thr Gly Ala Lys Thr Pro Ser Thr Val Ser Phe Pro Gly Ala 195 200 205 Tyr Ser Gly Ser Asp Pro Gly Val Lys Ile Ser Ile Tyr Trp Pro Pro 210 215 220 Val Thr Ser Tyr Thr Val Pro Gly Pro Ser Val Phe Thr Cys 225 230 235 3231PRTNeurospora crassa 3Met Leu Pro Ser Ile Ser Leu Leu Leu Ala Ala Ala Leu Gly Thr Ser 1 5 10 15 Ala His Tyr Thr Phe Pro Lys Val Trp Ala Asn Ser Gly Thr Thr Ala 20 25 30 Asp Trp Gln Tyr Val Arg Arg Ala Asp Asn Trp Gln Asn Asn Gly Phe 35 40 45 Val Asp Asn Val Asn Ser Gln Gln Ile Arg Cys Phe Gln Ser Thr His 50 55 60 Ser Pro Ala Gln Ser Thr Leu Ser Val Ala Ala Gly Thr Thr Ile Thr 65 70 75 80 Tyr Gly Ala Ala Pro Ser Val Tyr His Pro Gly Pro Met Gln Phe Tyr 85 90 95 Leu Ala Arg Val Pro Asp Gly Gln Asp Ile Asn Ser Trp Thr Gly Glu 100 105 110 Gly Ala Val Trp Phe Lys Ile Tyr His Glu Gln Pro Thr Phe Gly Ser 115 120 125 Gln Leu Thr Trp Ser Ser Asn Gly Lys Ser Ser Phe Pro Val Lys Ile 130 135 140 Pro Ser Cys Ile Lys Ser Gly Ser Tyr Leu Leu Arg Ala Glu His Ile 145 150 155 160 Gly Leu His Val Ala Gln Ser Ser Gly Ala Ala Gln Phe Tyr Ile Ser 165 170 175 Cys Ala Gln Leu Ser Ile Thr Gly Gly Gly Ser Thr Glu Pro Gly Ala 180 185 190 Asn Tyr Lys Val Ser Phe Pro Gly Ala Tyr Lys Ala Ser Asp Pro Gly 195 200 205 Ile Leu Ile Asn Ile Asn Tyr Pro Val Pro Thr Ser Tyr Lys Asn Pro 210 215 220 Gly Pro Ser Val Phe Thr Cys 225 230 4344PRTNeurospora crassa 4Met Lys Ser Ser Leu Leu Val Val Leu Thr Ala Gly Leu Ala Val Arg 1 5 10 15 Asp Ala Ile Ala His Ala Ile Phe Gln Gln Leu Trp Val Asp Gly Val 20 25 30 Asp Tyr Gly Ser Thr Cys Asn Arg Leu Pro Thr Ser Asn Ser Pro Val 35 40 45 Thr Asn Val Gly Ser Arg Asp Val Val Cys Asn Ala Gly Thr Arg Gly 50 55 60 Val Ser Gly Lys Cys Pro Val Lys Ala Gly Gly Thr Val Thr Val Glu 65 70 75 80 Met His Gln Gln Pro Gly Asp Arg Ser Cys Lys Ser Glu Ala Ile Gly 85 90 95 Gly Ala His Trp Gly Pro Val Gln Ile Tyr Leu Ser Lys Val Ser Asp 100 105 110 Ala Ser Thr Ala Asp Gly Ser Ser Gly Gly Trp Phe Lys Ile Phe Ser 115 120 125 Asp Ala Trp Ser Lys Lys Ser Gly Gly Arg Val Gly Asp Asp Asp Asn 130 135 140 Trp Gly Thr Arg Asp Leu Asn Ala Cys Cys Gly Arg Met Asp Val Leu 145 150 155 160 Ile Pro Lys Asp Leu Pro Ser Gly Asp Tyr Leu Leu Arg Ala Glu Ala 165 170 175 Leu Ala Leu His Thr Ala Gly Gln Ser Gly Gly Ala Gln Phe Tyr Ile 180 185 190 Ser Cys Tyr Gln Ile Thr Val Ser Gly Gly Gly Ser Ala Asn Tyr Ala 195 200 205 Thr Val Lys Phe Pro Gly Ala Tyr Arg Ala Ser Asp Pro Gly Ile Gln 210 215 220 Ile Asn Ile His Ala Val Val Ser Asn Tyr Val Ala Pro Gly Pro Ala 225 230 235 240 Val Val Ala Gly Gly Val Thr Lys Gln Ala Gly Ser Gly Cys Ile Gly 245 250 255 Cys Glu Ser Thr Cys Lys Val Gly Ser Ser Pro Ser Ala Val Ala Pro 260 265 270 Gly Gly Lys Pro Ala Ser Gly Gly Ser Asp Gly Asn Ala Pro Glu Val 275 280 285 Ala Glu Pro Ser Gly Gly Glu Gly Ser Pro Ser Ala Pro Gly Ala Cys 290 295 300 Glu Val Ala Ala Tyr Gly Gln Cys Gly Gly Asp Gln Tyr Ser Gly Cys 305 310 315 320 Thr Gln Cys Ala Ser Gly Tyr Thr Cys Lys Ala Val Ser Pro Pro Tyr 325 330 335 Tyr Ser Gln Cys Ala Pro Thr Ser 340 5293PRTNeurospora crassa 5Met Lys Phe Ser Ser Ala Leu Ala Phe Leu Ala Ala Ala Gly Ala Gln 1 5 10 15 Ala His Tyr Thr Phe Pro Lys Gly Tyr Ser Thr Gly Ala Val Ser Gly 20 25 30 Glu Tyr Glu His Ile Arg Met Thr Glu Asn His Tyr Asn Arg Gly Pro 35 40 45 Val Ala Asp Val Thr Ser Glu Ser Met Thr Cys Tyr Glu Leu Asn Pro 50 55 60 Gly Lys Gly Ala Pro Lys Thr Leu Ser Val Ala Ala Gly Ser Asn Tyr 65 70 75 80 Thr Phe Val Val Gly Asp Asn Ile Gly His Pro Gly Pro Leu His Phe 85 90 95 Tyr Met Ala Lys Val Pro Glu Gly Lys Thr Ala Ala Thr Phe Asp Gly 100 105 110 Lys Gly Ala Val Trp Phe Lys Ile Tyr Gln Asp Gly Pro Met Gly Leu 115 120 125 Gly Thr Gly Gln Leu Thr Trp Pro Ser Ala Gly Ala Thr Glu Val Ser 130 135 140 Val Lys Leu Pro Ser Cys Leu Glu Ser Gly Glu Tyr Leu Leu Arg Val 145 150 155 160 Glu His Ile Gly Leu His Ser Ala Gly Ser Val Gly Gly Ala Gln Leu 165 170 175 Tyr Ile Ala Cys Ala Gln Leu Asn Val Thr Gly Gly Thr Gly Thr Ile 180 185 190 Asn Thr Ser Gly Lys Leu Val Ser Phe Pro Gly Ala Tyr Lys Ala Thr 195 200 205 Asp Pro Gly Leu Leu Phe Asn Leu Tyr Tyr Pro Ala Pro Thr Ser Tyr 210 215 220 Thr Asn Pro Gly Pro Ala Val Ala Thr Cys Asp Gly Ala Ser Ala Pro 225 230 235 240 Ala Ala Pro Ala Pro Ala Pro Ser Ser Ala Ala Pro Ser Ala Pro Ala 245 250 255 Ala Ser Ala Pro Ser Ala Thr Val Pro Ala Val Ser Ala Thr Ser Ala 260 265 270 Ala Ala Val Gly Lys Ala Ser Ser Thr Pro Lys Lys Gly Cys Lys Arg 275 280 285 Ala Ala Arg Lys His 290 6342PRTNeurospora crassa 6Met Arg Ser Thr Leu Val Thr Gly Leu Ile Ala Gly Leu Leu Ser Gln 1 5 10 15 Gln Ala Ala Ala His Ala Thr Phe Gln Ala Leu Trp Val Asp Gly Ala 20 25 30 Asp Tyr Gly Ser Gln Cys Ala Arg Val Pro Pro Ser Asn Ser Pro Val 35 40 45 Thr Asp Val Thr Ser Asn Ala Met Arg Cys Asn Thr Gly Thr Ser Pro 50 55 60 Val Ala Lys Lys Cys Pro Val Lys Ala Gly Ser Thr Val Thr Val Glu 65 70 75 80 Met His Gln Ser His Pro Pro Val Pro Thr Leu Thr Tyr Lys Gln Gln 85 90 95 Ala Asn Asp Arg Ser Cys Ser Ser Glu Ala Ile Gly Gly Ala His Tyr 100 105 110 Gly Pro Val Leu Val Tyr Met Ser Lys Val Ser Asp Ala Ala Ser Ala 115 120 125 Asp Gly Ser Ser Gly Trp Phe Lys Ile Phe Glu Asp Thr Trp Ala Lys 130 135 140 Lys Pro Ser Ser Ser Ser Gly Asp Asp Asp Phe Trp Gly Val Lys Asp 145 150 155 160 Leu Asn Ser Cys Cys Gly Lys Met Gln Val Lys Ile Pro Ser Asp Ile 165 170 175 Pro Ala Gly Asp Tyr Leu Leu Arg Ala Glu Val Ile Ala Leu His Thr 180 185 190 Ala Ala Ser Ala Gly Gly Ala Gln Leu Tyr Met Thr Cys Tyr Gln Ile 195 200 205 Ser Val Thr Gly Gly Gly Ser Ala Thr Pro Ala Thr Val Ser Phe Pro 210 215 220 Gly Ala Tyr Lys Ser Ser Asp Pro Gly Ile Leu Val Asp Ile His Ser 225 230 235 240 Ala Met Ser Thr Tyr Val Ala Pro Gly Pro Ala Val Tyr Ser Gly Gly 245 250 255 Ser Ser Lys Lys Ala Gly Ser Gly Cys Val Gly Cys Glu Ser Thr Cys 260 265 270 Lys Val Gly Ser Gly Pro Thr Gly Thr Ala Ser Ala Val Pro Val Ala 275 280 285 Ser Thr Ser Ala Ala Ala Gly Gly Gly Gly Gly Gly Gly Ser Gly Gly 290 295 300 Cys Ser Val Ala Lys Tyr Gln Gln Cys Gly Gly Thr Gly Tyr Thr Gly 305 310 315 320 Cys Thr Ser Cys Ala Ser Gly Ser Thr Cys Ser Ala Val Ser Pro Pro 325 330 335 Tyr Tyr Ser Gln Cys Val 340 7308PRTNeurospora crassa 7Met Val Arg Ala Leu Arg Leu Leu Ala Ser Cys Ala Met Phe Ser Gln 1 5 10 15 Ala Leu Ala His Ser His Ile Leu Tyr Leu Ile Ile Asn Gly Gln Gln 20 25 30 Tyr Arg Gly Phe Asn Pro His Ala Pro Asp Ala Ile Thr Asn Ser Ile 35 40 45 Gly Trp Ser Thr Ser Ala Val Asp Asp Gly Phe Val Thr Pro Ser Asn 50 55 60 Tyr Ser Asn Pro Asp Ile Ile Cys His Arg Asp Gly Lys Pro Ala Lys 65 70 75 80 Ala His Ala Pro Val Lys Ala Gly Asp Lys Ile Gln Ile Gln Trp Asn 85 90 95 Gly Trp Pro Gln Ser His Lys Gly Pro Val Leu Ser Tyr Leu Ala Pro 100 105 110 Cys Ala Asn Thr Thr Asp Gly Cys Ala Ser Val Asp Lys Arg Lys Leu 115 120 125 Ser Trp Thr Lys Ile Asp Asp Ser Ser Pro Val Leu Leu Asp Glu Lys 130 135 140 Gly Gly Pro Pro Gly Arg Trp Ala Thr Asp Val Leu Ile Ala Gln Asn 145 150 155 160 Asn Thr Trp Leu Leu Gly Leu Pro Asn Asp Leu Glu Pro Gly Pro Tyr 165 170 175 Val Leu Arg His Glu Leu Ile Ala Leu His Tyr Ala Asn Leu Lys Asn 180 185 190 Gly Ala Gln Asn Tyr Pro Gln Cys Val Asn Leu Trp Val Glu Gly Pro 195 200 205 Gly Pro Lys Ala Ile Thr Val Gly Lys Glu Glu Val Val Val Ala Gly 210 215 220 Gln Lys Glu Gly Val Pro Ala Thr Ala Leu Tyr Lys Ala Thr Asp Pro 225 230 235 240 Gly Val Ala Ile Asp Ile Tyr Thr Ala Val Leu Ser Thr Tyr Val Ile 245 250 255 Pro Gly Pro Thr Leu Ala Pro Glu Ala Lys Pro Val Pro Val Thr Glu 260 265 270 Gln Gly Leu Lys Ser Thr Ile Thr Ala Val Gly Thr Pro Val Ile Val 275 280 285 Thr Arg Ala Thr Ser Thr Val Pro Met Pro Asn Gly Glu Thr Ala Ala 290 295 300 Ala Phe Lys Gly 305 8322PRTNeurospora crassa 8Met Lys Val Leu Ser Leu Leu Ala Ala Ala Ser Ala Ala Ser Ala His 1 5 10 15 Thr Ile Phe Val Gln Leu Glu Ala Asp Gly Thr Thr Tyr Pro Val Ser 20 25 30 Tyr Gly Ile Arg Thr Pro Ser Tyr Asp Gly Pro Ile Thr Asp Val Thr 35 40 45 Ser Asn Asp Leu Ala Cys Asn Gly Gly Pro Asn Pro Thr Thr Pro Ser 50 55 60 Asp Lys Ile Ile Thr Val Asn Ala Gly Ser Thr Val Lys Ala Ile Trp 65 70 75 80 Arg His Thr Leu Thr Ser Gly Ala Asp Asp Val Met Asp Ala Ser His 85 90 95 Lys Gly Pro Thr Leu Ala Tyr Leu Lys Lys Val Asp Asp Ala Leu Thr 100 105 110 Asp Thr Gly Ile Gly Gly Gly Trp Phe Lys Ile Gln Glu Asp Gly Tyr 115 120 125 Asn Asn Gly Gln Trp Gly Thr Ser Thr Val Ile Thr Asn Gly Gly Phe 130 135 140 Gln Tyr Ile Asp Ile Pro Ala Cys Ile Pro Ser Gly Gln Tyr Leu Leu 145 150 155 160 Arg Ala Glu Met Ile Ala Leu His Ala Ala Ser Ser Thr Ala Gly Ala 165 170 175 Gln Leu Tyr Met Glu Cys Ala Gln Ile Asn Ile Val Gly Gly Thr Gly 180 185 190 Gly Thr Ala Leu Pro Ser Thr Thr Tyr Ser Ile Pro Gly Ile Tyr Lys 195 200 205 Ala Thr Asp Pro Gly Leu Leu Val Asn Ile Tyr Ser Met Ser Pro Ser 210 215 220 Ser Thr Tyr Thr Ile Pro Gly Pro Ala Lys Phe Thr Cys Pro Ala Gly 225 230 235 240 Asn Gly Gly Gly Ala Gly Gly Gly Gly Ser Thr Thr Thr Ala Lys Pro 245 250 255 Ala Ser Ser Thr Thr Ser Lys Ala Ala Ile Thr Ser Ala Val Thr Thr 260 265 270 Leu Lys Thr Ser Val Val Ala Pro Gln Pro Thr Gly Gly

Cys Thr Ala 275 280 285 Ala Gln Trp Ala Gln Cys Gly Gly Met Gly Phe Ser Gly Cys Thr Thr 290 295 300 Cys Ala Ser Pro Tyr Thr Cys Lys Lys Met Asn Asp Tyr Tyr Ser Gln 305 310 315 320 Cys Ser 9241PRTNeurospora crassa 9Met Lys Thr Phe Ala Thr Leu Leu Ala Ser Ile Gly Leu Val Ala Ala 1 5 10 15 His Gly Phe Val Asp Asn Ala Thr Ile Gly Gly Gln Phe Tyr Gln Phe 20 25 30 Tyr Gln Pro Tyr Gln Asp Pro Tyr Met Gly Ser Pro Pro Asp Arg Ile 35 40 45 Ser Arg Lys Ile Pro Gly Asn Gly Pro Val Glu Asp Val Thr Ser Leu 50 55 60 Ala Ile Gln Cys Asn Ala Asp Ser Ala Pro Ala Lys Leu His Ala Ser 65 70 75 80 Ala Ala Ala Gly Ser Thr Val Thr Leu Arg Trp Thr Ile Trp Pro Asp 85 90 95 Ser His Val Gly Pro Val Ile Thr Tyr Met Ala Arg Cys Pro Asp Thr 100 105 110 Gly Cys Gln Asp Trp Thr Pro Ser Ala Ser Asp Lys Val Trp Phe Lys 115 120 125 Ile Lys Glu Gly Gly Arg Glu Gly Thr Ser Asn Val Trp Ala Ala Thr 130 135 140 Pro Leu Met Thr Ala Pro Ala Asn Tyr Glu Tyr Ala Ile Pro Ser Cys 145 150 155 160 Leu Lys Pro Gly Tyr Tyr Leu Val Arg His Glu Ile Ile Ala Leu His 165 170 175 Ser Ala Tyr Ser Tyr Pro Gly Ala Gln Phe Tyr Pro Gly Cys His Gln 180 185 190 Leu Gln Val Thr Gly Ser Gly Thr Lys Thr Pro Ser Ser Gly Leu Val 195 200 205 Ser Phe Pro Gly Ala Tyr Lys Ser Thr Asp Pro Gly Val Thr Tyr Asp 210 215 220 Ala Tyr Gln Ala Ala Thr Tyr Thr Ile Pro Gly Pro Ala Val Phe Thr 225 230 235 240 Cys 10472PRTNeurospora crassa 10Met Arg Ser Thr Thr Val Leu Ala Gly Leu Ala Thr Val Leu Ala Pro 1 5 10 15 Leu Ala Ser Ala His Thr Val Leu Thr Thr Val Phe Val Asn Asp Lys 20 25 30 Asn Gln Gly Asp Gly Thr Gly Val Arg Met Pro Met Asp Gly Asn Ile 35 40 45 Ala Asn Ala Pro Val Ile Asn Met Asn Ser Asp Asp Met Ile Cys Gly 50 55 60 Arg Asp Gly Leu Lys Lys Val Asn Tyr Ala Ile Pro Ala Thr Ala Gly 65 70 75 80 Ser Lys Met Thr Phe Glu Phe Arg Thr Tyr Val Asp Gly Ser Arg Pro 85 90 95 Gln Phe Ile Asp Lys Ser His Gln Gly Pro Ile Ser Val Tyr Ala Lys 100 105 110 Ala Val Ser Asp Phe Asp Gln Ser Pro Gly Gly Ser Gly Trp Phe Lys 115 120 125 Ile Trp His Asp Gly Tyr Asp Glu Ser Thr Gly Lys Trp Ala Val Gln 130 135 140 Lys Val Ile Asp Thr Asn Gly Leu Leu Ser Ile Ser Leu Pro Thr Gly 145 150 155 160 Met Pro Thr Gly Ala Tyr Leu Leu Arg Thr Glu Val Ile Ala Met Gln 165 170 175 Asn Val Thr Thr Lys Ala Asp Gly Asn Trp Tyr Cys Glu Pro Gln Phe 180 185 190 Tyr Val Asn Cys Ala Gln Val Tyr Val Gln Gly Ser Ser Ser Gly Pro 195 200 205 Leu Ser Ile Pro Lys Asp Lys Glu Thr Ser Ile Pro Gly His Val His 210 215 220 Pro Ser Asp Lys Gly Leu Asn Phe Asn Met Tyr Asp Met Lys Gly Leu 225 230 235 240 Leu Pro Tyr Gln Ile Pro Gly Pro Val Pro Phe Arg Pro Ala Ser Ser 245 250 255 Ser Ser Gly Ser Asn Ala Lys Ala Ala Leu Thr Thr Pro Thr Asn Phe 260 265 270 Pro Gly Ala Val Pro Asp Asn Cys Leu Leu Lys Asn Ala Asn Trp Cys 275 280 285 Gly Phe Glu Val Pro Asp Tyr Thr Asn Glu Asp Gly Cys Trp Ala Ser 290 295 300 Ala Asp Asn Cys Trp Ala Gln Ser Lys Lys Cys Phe Asp Ser Ala Pro 305 310 315 320 Pro Ser Gly Ile Lys Gly Cys Lys Ile Trp Glu Gln Glu Lys Cys Gln 325 330 335 Ala Leu Ala Asn Ser Cys Asp Ala Lys Gln Phe Thr Gly Pro Pro Asn 340 345 350 Lys Gly Lys Arg Trp Gly Asp Val Thr Glu Gln Ser Ser Val Gln Val 355 360 365 Pro Gly Val Met Lys Gly Ala Asp Leu Val Asp Thr Pro Val Val Asp 370 375 380 Thr Thr Ser Asn Gln Lys Ala Ala Ala Asn Asn Asn Val Val Ser Ile 385 390 395 400 Pro Ala Ala Thr Ala Thr Thr Phe Ile Thr Thr Ser Ser Ala Ala Pro 405 410 415 Ser Lys Pro Val Thr Thr Val Pro Ser Val Ala Ile Thr Thr Thr Thr 420 425 430 Ser Ala Ala Val Ala Ile Pro Thr Glu Thr Ala Ala Gln Asn Thr Leu 435 440 445 Ile Arg Cys Gly Arg Gly Asp Lys Asn Gln Arg Arg Ala Met His Ile 450 455 460 Asn Arg His Lys Arg Ala Asp Phe 465 470 11326PRTNeurospora crassa 11Met Lys Leu Ser Val Ala Ala Ala Leu Ser Leu Ala Ala Ser Glu Ala 1 5 10 15 Ser Ala His Tyr Ile Phe Gln Gln Val Gly Ala Gly Thr Ser Val Asn 20 25 30 Pro Val Trp Lys Tyr Ile Arg Lys His Thr Asn Tyr Asn Ser Pro Val 35 40 45 Thr Asp Leu Thr Ser Lys Asp Leu Val Cys Asn Val Gly Ala Ser Ala 50 55 60 Glu Gly Val Glu Thr Leu Ser Val Ala Ala Gly Ser Gln Val Thr Phe 65 70 75 80 Lys Thr Asp Thr Ala Val Tyr His Gln Gly Pro Thr Ser Val Tyr Leu 85 90 95 Ser Lys Ala Asp Gly Ser Leu Ser Asp Tyr Asp Gly Ser Gly Gly Trp 100 105 110 Phe Lys Ile Lys Asp Trp Gly Ala Thr Phe Pro Gly Gly Glu Trp Thr 115 120 125 Leu Ser Asp Thr Tyr Thr Phe Thr Ile Pro Ser Cys Ile Pro Ser Gly 130 135 140 Asp Tyr Leu Leu Arg Ile Gln Gln Ile Gly Ile His Asn Pro Trp Pro 145 150 155 160 Ala Gly Val Pro Gln Phe Tyr Leu Ser Cys Ala His Ile Ser Val Thr 165 170 175 Gly Gly Gly Ser Ala Ser Pro Ala Thr Val Ser Ile Pro Gly Ala Phe 180 185 190 Lys Glu Thr Asp Pro Gly Tyr Thr Val Asn Ile Tyr Ser Asn Phe Asn 195 200 205 Asn Tyr Thr Val Pro Gly Pro Glu Val Phe Thr Cys Ser Gly Ser Gly 210 215 220 Ser Gly Ser Gly Ser Gly Ser Gly Ser Gly Ser Thr Pro Pro Ser Gln 225 230 235 240 Pro Thr Thr Ser Thr Thr Leu Pro Thr Ser Ser Thr Val Val Ala Thr 245 250 255 Thr Leu Lys Thr Ser Thr Val Val Ala Thr Thr Lys Ser Ser Ser Ser 260 265 270 Thr Thr Ser Ser Ala Ser Ser Ser Gly Ser Gln Pro Thr Ser Pro Ser 275 280 285 Gly Cys Thr Val Ala Lys Tyr Gly Gln Cys Gly Gly Ile Gly Tyr Ser 290 295 300 Gly Cys Thr Ser Cys Ala Ser Gly Ser Thr Cys Lys Val Gly Asn Asp 305 310 315 320 Tyr Tyr Ser Gln Cys Leu 325 12359PRTNeurospora crassa 12Met Lys Thr Gly Ser Ile Leu Ala Ala Leu Val Ala Ser Ala Ser Ala 1 5 10 15 His Thr Ile Phe Gln Lys Val Ser Val Asn Gly Ala Asp Gln Gly Gln 20 25 30 Leu Lys Gly Ile Arg Ala Pro Ala Asn Asn Asn Pro Val Thr Asp Val 35 40 45 Met Ser Ser Asp Ile Ile Cys Asn Ala Val Thr Met Lys Asp Ser Asn 50 55 60 Val Leu Thr Val Pro Ala Gly Ala Lys Val Gly His Phe Trp Gly His 65 70 75 80 Glu Ile Gly Gly Ala Ala Gly Pro Asn Asp Ala Asp Asn Pro Ile Ala 85 90 95 Ala Ser His Lys Gly Pro Ile Met Val Tyr Leu Ala Lys Val Asp Asn 100 105 110 Ala Ala Thr Thr Gly Thr Ser Gly Leu Lys Trp Phe Lys Val Ala Glu 115 120 125 Ala Gly Leu Ser Asn Gly Lys Trp Ala Val Asp Asp Leu Ile Ala Asn 130 135 140 Asn Gly Trp Ser Tyr Phe Asp Met Pro Thr Cys Ile Ala Pro Gly Gln 145 150 155 160 Tyr Leu Met Arg Ala Glu Leu Ile Ala Leu His Asn Ala Gly Ser Gln 165 170 175 Ala Gly Ala Gln Phe Tyr Ile Gly Cys Ala Gln Ile Asn Val Thr Gly 180 185 190 Gly Gly Ser Ala Ser Pro Ser Asn Thr Val Ser Phe Pro Gly Ala Tyr 195 200 205 Ser Ala Ser Asp Pro Gly Ile Leu Ile Asn Ile Tyr Gly Gly Ser Gly 210 215 220 Lys Thr Asp Asn Gly Gly Lys Pro Tyr Gln Ile Pro Gly Pro Ala Leu 225 230 235 240 Phe Thr Cys Pro Ala Gly Gly Ser Gly Gly Ser Ser Pro Ala Pro Ala 245 250 255 Thr Thr Ala Ser Thr Pro Lys Pro Thr Ser Ala Ser Ala Pro Lys Pro 260 265 270 Val Ser Thr Thr Ala Ser Thr Pro Lys Pro Thr Asn Gly Ser Gly Ser 275 280 285 Gly Thr Gly Ala Ala His Ser Thr Lys Cys Gly Gly Ser Lys Pro Ala 290 295 300 Ala Thr Thr Lys Ala Ser Asn Pro Gln Pro Thr Asn Gly Gly Asn Ser 305 310 315 320 Ala Val Arg Ala Ala Ala Leu Tyr Gly Gln Cys Gly Gly Lys Gly Trp 325 330 335 Thr Gly Pro Thr Ser Cys Ala Ser Gly Thr Cys Lys Phe Ser Asn Asp 340 345 350 Trp Tyr Ser Gln Cys Leu Pro 355 13369PRTNeurospora crassa 13Met Ala Arg Met Ser Ile Leu Thr Ala Leu Ala Gly Ala Ser Leu Val 1 5 10 15 Ala Ala His Gly His Val Ser Lys Val Ile Val Asn Gly Val Glu Tyr 20 25 30 Gln Asn Tyr Asp Pro Thr Ser Phe Pro Tyr Asn Ser Asn Pro Pro Thr 35 40 45 Val Ile Gly Trp Thr Ile Asp Gln Lys Asp Asn Gly Phe Val Ser Pro 50 55 60 Asp Ala Phe Asp Ser Gly Asp Ile Ile Cys His Lys Ser Ala Lys Pro 65 70 75 80 Ala Gly Gly His Ala Thr Val Lys Ala Gly Asp Lys Ile Ser Leu Gln 85 90 95 Trp Asp Gln Trp Pro Glu Ser His Lys Gly Pro Val Ile Asp Tyr Leu 100 105 110 Ala Ala Cys Asp Gly Asp Cys Glu Ser Val Asp Lys Thr Ala Leu Lys 115 120 125 Phe Phe Lys Ile Asp Gly Ala Gly Tyr Asp Ala Thr Asn Gly Trp Ala 130 135 140 Ser Asp Thr Leu Ile Lys Asp Gly Asn Ser Trp Val Val Glu Ile Pro 145 150 155 160 Glu Ser Ile Lys Pro Gly Asn Tyr Val Leu Arg His Glu Ile Ile Ala 165 170 175 Leu His Ser Ala Gly Gln Ala Asn Gly Ala Gln Asn Tyr Pro Gln Cys 180 185 190 Phe Asn Leu Lys Val Glu Gly Ser Gly Ser Thr Val Pro Ala Gly Val 195 200 205 Ala Gly Thr Glu Leu Tyr Lys Ala Thr Asp Ala Gly Ile Leu Phe Asp 210 215 220 Ile Tyr Lys Asn Asp Ile Ser Tyr Pro Val Pro Gly Pro Ser Leu Ile 225 230 235 240 Ala Gly Ala Ser Ser Ser Ile Ala Gln Ser Lys Met Ala Ala Thr Ala 245 250 255 Thr Ala Ser Ala Thr Leu Pro Gly Ala Thr Gly Gly Ser Asn Ser Pro 260 265 270 Ala Thr Ser Ala Ala Ala Ala Ala Pro Ala Thr Ser Ala Ala Ala Ala 275 280 285 Thr Ser Gln Val Gln Ala Ala Pro Ala Thr Thr Leu Val Thr Ser Thr 290 295 300 Lys Ala Ala Ala Pro Ala Thr Ser Ala Ala Ala Pro Ala Ala Pro Ala 305 310 315 320 Thr Ser Ala Ala Ala Gly Gly Ala Gly Gln Val Gln Ala Lys Gln Thr 325 330 335 Lys Trp Gly Gln Cys Gly Gly Asn Gly Phe Thr Gly Pro Thr Glu Cys 340 345 350 Glu Ser Gly Ser Thr Cys Thr Lys Tyr Asn Asp Trp Tyr Ser Gln Cys 355 360 365 Val 14271PRTSporotrichum thermophilum 14Ala Leu Gly His Ser His Leu Gly Tyr Ile Ile Ile Asn Gly Glu Val 1 5 10 15 Tyr Gln Gly Phe Asp Pro Arg Pro Glu Gln Ala Asn Ser Pro Leu Arg 20 25 30 Val Gly Trp Ser Thr Gly Ala Ile Asp Asp Gly Phe Val Ala Pro Ala 35 40 45 Asn Tyr Ser Ser Pro Asp Ile Ile Cys His Ile Glu Gly Ala Ser Pro 50 55 60 Pro Ala His Ala Pro Val Arg Ala Gly Asp Arg Val His Val Gln Trp 65 70 75 80 Asn Gly Trp Pro Leu Gly His Val Gly Pro Val Leu Ser Tyr Leu Ala 85 90 95 Pro Cys Gly Gly Leu Glu Gly Ser Glu Ser Gly Cys Ala Gly Val Asp 100 105 110 Lys Arg Gln Leu Arg Trp Thr Lys Val Asp Asp Ser Leu Pro Ala Met 115 120 125 Glu Leu Arg Trp Ala Thr Asp Val Leu Ile Ala Ala Asn Asn Ser Trp 130 135 140 Gln Val Glu Ile Pro Arg Gly Leu Arg Asp Gly Pro Tyr Val Leu Arg 145 150 155 160 His Glu Ile Val Ala Leu His Tyr Ala Ala Glu Pro Gly Gly Ala Gln 165 170 175 Asn Tyr Pro Leu Cys Val Asn Leu Trp Val Glu Gly Gly Asp Gly Ser 180 185 190 Met Glu Leu Asp His Phe Asp Ala Thr Gln Phe Tyr Arg Pro Asp Asp 195 200 205 Pro Gly Ile Leu Leu Asn Val Thr Ala Gly Leu Arg Ser Tyr Ala Val 210 215 220 Pro Gly Pro Thr Leu Ala Ala Gly Ala Thr Pro Val Pro Tyr Ala Gln 225 230 235 240 Gln Asn Ile Ser Ser Ala Arg Ala Asp Gly Thr Pro Val Ile Val Thr 245 250 255 Arg Ser Thr Glu Thr Val Pro Phe Thr Ala Ala Pro Thr Pro Ala 260 265 270 15330PRTSporotrichum thermophilum 15Met Ser Ser Phe Thr Ser Lys Gly Leu Leu Ser Ala Leu Met Gly Ala 1 5 10 15 Ala Thr Val Ala Ala His Gly His Val Thr Asn Ile Val Ile Asn Gly 20 25 30 Val Ser Tyr Gln Asn Phe Asp Pro Phe Thr His Pro Tyr Met Gln Asn 35 40 45 Pro Pro Thr Val Val Gly Trp Thr Ala Ser Asn Thr Asp Asn Gly Phe 50 55 60 Val Gly Pro Glu Ser Phe Ser Ser Pro Asp Ile Ile Cys His Lys Ser 65 70 75 80 Ala Thr Asn Ala Gly Gly His Ala Val Val Ala Ala Gly Asp Lys Val 85 90 95 Phe Ile Gln Trp Asp Thr Trp Pro Glu Ser His His Gly Pro Val Ile 100 105 110 Asp Tyr Leu Ala Asp Cys Gly Asp Ala Gly Cys Glu Lys Val Asp Lys 115 120 125 Thr Thr Leu Lys Phe Phe Lys Ile Ser Glu Ser Gly Leu Leu Asp Gly 130 135 140 Thr Asn Ala Pro Gly Lys Trp Ala Ser Asp Thr Leu Ile Ala Asn Asn 145 150 155 160 Asn Ser Trp Leu Val Gln Ile Pro Pro Asn Ile Ala Pro Gly Asn Tyr 165 170 175 Val Leu Arg His Glu Ile Ile Ala Leu His Ser Ala Gly Gln Gln Asn 180 185 190 Gly Ala Gln Asn Tyr Pro Gln Cys

Phe Asn Leu Gln Val Thr Gly Ser 195 200 205 Gly Thr Gln Lys Pro Ser Gly Val Leu Gly Thr Glu Leu Tyr Lys Ala 210 215 220 Thr Asp Ala Gly Ile Leu Ala Asn Ile Tyr Thr Ser Pro Val Thr Tyr 225 230 235 240 Gln Ile Pro Gly Pro Ala Ile Ile Ser Gly Ala Ser Ala Val Gln Gln 245 250 255 Thr Thr Ser Ala Ile Thr Ala Ser Ala Ser Ala Ile Thr Gly Ser Ala 260 265 270 Thr Ala Ala Pro Thr Ala Ala Thr Thr Thr Ala Ala Ala Ala Ala Thr 275 280 285 Thr Thr Thr Thr Ala Gly Ser Gly Ala Thr Ala Thr Pro Ser Thr Gly 290 295 300 Gly Ser Pro Ser Ser Ala Gln Pro Ala Pro Thr Thr Ala Ala Ala Thr 305 310 315 320 Ser Ser Pro Ala Arg Pro Thr Arg Cys Ala 325 330 16342PRTSporotrichum thermophilum 16Met Ser Lys Ala Ser Ala Leu Leu Ala Gly Leu Thr Gly Ala Ala Leu 1 5 10 15 Val Ala Ala His Gly His Val Ser His Ile Val Val Asn Gly Val Tyr 20 25 30 Tyr Arg Asn Tyr Asp Pro Thr Thr Asp Trp Tyr Gln Pro Asn Pro Pro 35 40 45 Thr Val Ile Gly Trp Thr Ala Ala Asp Gln Asp Asn Gly Phe Val Glu 50 55 60 Pro Asn Ser Phe Gly Thr Pro Asp Ile Ile Cys His Lys Ser Ala Thr 65 70 75 80 Pro Gly Gly Gly His Ala Thr Val Ala Ala Gly Asp Lys Ile Asn Ile 85 90 95 Val Trp Thr Pro Glu Trp Pro Glu Ser His Ile Gly Pro Val Ile Asp 100 105 110 Tyr Leu Ala Ala Cys Asn Gly Asp Cys Glu Thr Val Asp Lys Ser Ser 115 120 125 Leu Arg Trp Phe Lys Ile Asp Gly Ala Gly Tyr Asp Lys Ala Ala Gly 130 135 140 Arg Trp Ala Ala Asp Ala Leu Arg Ala Asn Gly Asn Ser Trp Leu Val 145 150 155 160 Gln Ile Pro Ser Asp Leu Lys Ala Gly Asn Tyr Val Leu Arg His Glu 165 170 175 Ile Ile Ala Leu His Gly Ala Gln Ser Pro Asn Gly Ala Gln Ala Tyr 180 185 190 Pro Gln Cys Ile Asn Leu Arg Val Thr Gly Gly Gly Ser Asn Leu Pro 195 200 205 Ser Gly Val Ala Gly Thr Ser Leu Tyr Lys Ala Thr Asp Pro Gly Ile 210 215 220 Leu Phe Asn Pro Tyr Val Ser Ser Pro Asp Tyr Thr Val Pro Gly Pro 225 230 235 240 Ala Leu Ile Ala Gly Ala Ala Ser Ser Ile Ala Gln Ser Thr Ser Val 245 250 255 Ala Thr Ala Thr Gly Thr Ala Thr Val Pro Gly Gly Gly Gly Ala Asn 260 265 270 Pro Thr Ala Thr Thr Thr Ala Ala Thr Ser Ala Ala Pro Ser Thr Thr 275 280 285 Leu Arg Thr Thr Thr Thr Ser Ala Ala Gln Thr Thr Ala Pro Pro Ser 290 295 300 Gly Asp Val Gln Thr Lys Tyr Gly Gln Cys Gly Gly Asn Gly Trp Thr 305 310 315 320 Gly Pro Thr Val Cys Ala Pro Gly Ser Ser Cys Ser Val Leu Asn Glu 325 330 335 Trp Tyr Ser Gln Cys Leu 340 17323PRTSporotrichum thermophilum 17Met Lys Ser Phe Thr Leu Thr Thr Leu Ala Ala Leu Ala Gly Asn Ala 1 5 10 15 Ala Ala His Ala Thr Phe Gln Ala Leu Trp Val Asp Gly Val Asp Tyr 20 25 30 Gly Ala Gln Cys Ala Arg Leu Pro Ala Ser Asn Ser Pro Val Thr Asp 35 40 45 Val Thr Ser Asn Ala Ile Arg Cys Asn Ala Asn Pro Ser Pro Ala Arg 50 55 60 Gly Lys Cys Pro Val Lys Ala Gly Ser Thr Val Thr Val Glu Met His 65 70 75 80 Gln Gln Pro Gly Asp Arg Ser Cys Ser Ser Glu Ala Ile Gly Gly Ala 85 90 95 His Tyr Gly Pro Val Met Val Tyr Met Ser Lys Val Ser Asp Ala Ala 100 105 110 Ser Ala Asp Gly Ser Ser Gly Trp Phe Lys Val Phe Glu Asp Gly Trp 115 120 125 Ala Lys Asn Pro Ser Gly Gly Ser Gly Asp Asp Asp Tyr Trp Gly Thr 130 135 140 Lys Asp Leu Asn Ser Cys Cys Gly Lys Met Asn Val Lys Ile Pro Ala 145 150 155 160 Asp Leu Pro Ser Gly Asp Tyr Leu Leu Arg Ala Glu Ala Leu Ala Leu 165 170 175 His Thr Ala Gly Ser Ala Gly Gly Ala Gln Phe Tyr Met Thr Cys Tyr 180 185 190 Gln Leu Thr Val Thr Gly Ser Gly Ser Ala Ser Pro Pro Thr Val Ser 195 200 205 Phe Pro Gly Ala Tyr Lys Ala Thr Asp Pro Gly Ile Leu Val Asn Ile 210 215 220 His Ala Pro Leu Ser Gly Tyr Thr Val Pro Gly Pro Ala Val Tyr Ser 225 230 235 240 Gly Gly Ser Thr Lys Lys Ala Gly Ser Ala Cys Thr Gly Cys Glu Ser 245 250 255 Thr Cys Ala Val Gly Ser Gly Pro Thr Ala Thr Val Ser Gln Ser Pro 260 265 270 Gly Ser Thr Ala Thr Ser Ala Pro Gly Gly Gly Gly Gly Cys Thr Val 275 280 285 Gln Lys Tyr Gln Gln Cys Gly Gly Gln Gly Tyr Thr Gly Cys Thr Asn 290 295 300 Cys Ala Ser Gly Ser Thr Cys Ser Ala Val Ser Pro Pro Tyr Tyr Ser 305 310 315 320 Gln Cys Val 18341PRTNeurospora crassa 18Met Pro Ser Phe Thr Ser Lys Ser Leu Leu Ala Val Leu Ala Gly Ala 1 5 10 15 Ala Ser Val Ala Ala His Gly His Val Ser Asn Ile Val Ile Asn Gly 20 25 30 Glu Tyr Tyr Arg Gly Phe Asp Ser Ser Leu Asn Tyr Met Ala Asn Pro 35 40 45 Pro Ala Val Val Gly Trp Lys Ala Asn Asn Gln Asp Asn Gly Phe Val 50 55 60 Gly Pro Asp Ala Phe Ser Ser Pro Asp Ile Ile Cys His Lys Asp Ala 65 70 75 80 Thr Asn Ala Lys Gly His Ala Val Val Lys Ala Gly Asp Lys Ile Ser 85 90 95 Ile Gln Trp Glu Thr Trp Pro Glu Ser His Lys Gly Pro Val Ile Asp 100 105 110 Tyr Leu Ala Asn Cys Gly Ala Ser Gly Cys Glu Thr Val Asp Lys Thr 115 120 125 Ser Leu Glu Phe Phe Lys Ile Asp Glu Val Gly Leu Val Asp Gly Gln 130 135 140 Lys Trp Gly Ser Asp Gln Leu Ile Ala Asn Asn Asn Ser Trp Leu Val 145 150 155 160 Glu Ile Pro Pro Thr Ile Ala Pro Gly Phe Tyr Val Leu Arg His Glu 165 170 175 Ile Ile Ala Leu His Ser Ala Gly Gln Pro Asn Gly Ala Gln Asn Tyr 180 185 190 Pro Gln Cys Phe Asn Ile Gln Val Thr Gly Ser Gly Thr Glu Lys Pro 195 200 205 Ala Gly Val Lys Gly Thr Ala Leu Tyr Lys Pro Asp Asp Ala Gly Ile 210 215 220 Ser Val Asn Ile Tyr Gln Ser Leu Ser Ser Tyr Ser Ile Pro Gly Pro 225 230 235 240 Ala Leu Ile Lys Gly Ala Val Ser Val Ala Gln Ser His Ser Ala Val 245 250 255 Thr Ala Thr Ala Thr Ala Ile Thr Gly Leu Gly Asp Ala Pro Ala Ala 260 265 270 Thr Ala Ala Pro Ala Ala Thr Thr Ala Pro Ala Ala Ala Pro Ala Val 275 280 285 Thr Thr Ala Pro Ala Ala Ala Ala Pro Thr Lys Pro Ala Thr Thr Ala 290 295 300 Ala Ala Pro Gln Pro Thr Lys Pro Ala Lys Ser Gly Cys Gln Lys Arg 305 310 315 320 Arg Ala Ala Arg Arg Ala Ala Ala Leu Ala Arg Arg His Ala Arg Asp 325 330 335 Val Ala Phe Leu Asp 340 19342PRTAspergillus fumigatus 19Met Arg His Val Gln Ser Thr Gln Leu Leu Ala Ala Leu Leu Leu Thr 1 5 10 15 Thr Arg Val Thr Ala His Gly His Val Thr Asn Ile Val Ile Asn Gly 20 25 30 Val Ser Tyr Arg Gly Trp Asn Ile Asp Ser Asp Pro Tyr Asn Pro Asp 35 40 45 Pro Pro Val Val Val Ala Trp Gln Thr Pro Asn Thr Ala Asn Gly Phe 50 55 60 Ile Ser Pro Asp Ala Tyr Gly Thr Asn Asp Ile Ile Cys His Leu Asn 65 70 75 80 Ala Thr Asn Ala Arg Gly His Ala Val Val Ala Ala Gly Asp Lys Ile 85 90 95 Ser Ile Gln Trp Thr Ala Trp Pro Asp Ser His His Gly Pro Val Ile 100 105 110 Asp Tyr Leu Ala Arg Cys Gly Ser Ser Cys Glu Thr Val Asp Lys Thr 115 120 125 Thr Leu Glu Phe Phe Lys Ile Asp Gly Val Gly Leu Val Asp Gly Ser 130 135 140 Asn Pro Pro Gly Val Trp Gly Asp Asp Gln Leu Ile Ala Asp Asn Asn 145 150 155 160 Ser Trp Leu Val Glu Ile Pro Pro Thr Ile Ala Pro Gly Tyr Tyr Val 165 170 175 Leu Arg His Glu Leu Ile Ala Leu His Gly Ala Gly Ser Gln Asn Gly 180 185 190 Ala Gln Asn Tyr Pro Gln Cys Phe Asn Leu Gln Ile Thr Gly Ser Gly 195 200 205 Thr Ala Gln Pro Ser Gly Val Lys Gly Thr Glu Leu Tyr Ser Pro Thr 210 215 220 Asp Pro Gly Ile Leu Val Asn Ile Tyr Asn Ala Leu Ser Thr Tyr Ile 225 230 235 240 Val Pro Gly Pro Thr Leu Ile Pro Gly Ala Val Ser Val Val Gln Ser 245 250 255 Ser Ser Thr Ile Thr Ala Ser Gly Thr Pro Val Thr Gly Ser Gly Ser 260 265 270 Ala Pro Thr Thr Ser Ala Thr Thr Thr Leu Ser Thr Thr Thr Arg Ala 275 280 285 Thr Thr Thr Thr Thr Thr Thr Thr Ala Gly Ser Ser Thr Ser Val Gln 290 295 300 Ser Val Tyr Gly Gln Cys Gly Gly Ser Gly Trp Ser Gly Pro Thr Ala 305 310 315 320 Cys Val Thr Gly Ala Thr Cys Thr Ser Tyr Asn Ser Tyr Tyr Ser Gln 325 330 335 Cys Ile Pro Thr Ala Ser 340 20330PRTAspergillus fumigatus 20Met Lys Leu Thr Ala Ser Ile Leu Phe Ser Leu Ala Ser Val Thr Pro 1 5 10 15 Leu Val Ser Gly His Tyr Val Phe Ser Lys Leu Ile Val Asp Gly Lys 20 25 30 Pro Thr Gln Asp Phe Glu Tyr Ile Arg Arg Asn Thr Asn Asn Tyr Met 35 40 45 Pro Thr Leu Pro Ser Glu Ile Leu Ser Asn Asp Phe Arg Cys Asn Lys 50 55 60 Gly Ser Met Gln Ser Ala Ala Asn Thr Lys Val Tyr Lys Val Ala Pro 65 70 75 80 Gly Thr Glu Leu Gly Phe Gln Leu Ala Tyr Gly Ala Glu Met Lys His 85 90 95 Pro Gly Pro Leu Gln Ile Tyr Met Ser Lys Ala Pro Gly Asp Val Arg 100 105 110 Ser Tyr Asp Gly Ser Gly Asp Trp Phe Lys Val His Gln Glu Gly Leu 115 120 125 Cys Ala Asp Thr Ser Lys Gly Ile Lys Asp Glu Asp Trp Cys Thr Trp 130 135 140 Gly Lys Asp Thr Ala Ser Phe Lys Ile Pro Gln Asp Thr Pro Ala Gly 145 150 155 160 Gln Tyr Leu Val Arg Val Glu His Ile Gly Leu His Arg Gly Phe Leu 165 170 175 Gly Glu Ala Glu Phe Tyr Phe Thr Cys Ala Gln Ile Glu Val Thr Gly 180 185 190 Ser Gly Ser Gly Ser Pro Ser Pro Thr Val Lys Ile Pro Gly Val Tyr 195 200 205 Lys Pro Asp Asp Pro Asn Val His Phe Asn Ile Trp Tyr Pro Thr Pro 210 215 220 Thr Ala Tyr Ser Leu Pro Gly Pro Ser Val Trp Thr Gly Gly Ser Ala 225 230 235 240 Gly Gly Ala Ser Pro Thr Ala Pro Ala Val Asn Asn Asn Ala Val Gln 245 250 255 Ala Ala Pro Thr Thr Met Thr Thr Val Ser Ser Pro Ala Asn Pro Thr 260 265 270 Ala Gly Ala Glu Ala Glu Ala Asp Cys Gly Ser Ser Glu Ser Ser Ser 275 280 285 Ala Val Ala Pro Glu Gly Thr Leu Lys Lys Trp Glu Gln Cys Gly Gly 290 295 300 Leu Asn Trp Thr Gly Ser Gly Ser Cys Glu Ala Arg Thr Thr Cys His 305 310 315 320 Gln Tyr Asn Pro Tyr Tyr Tyr Gln Cys Ile 325 330 21364PRTAspergillus fumigatus 21Met Ser Gln Thr Lys Thr Leu Ser Leu Leu Ala Ala Leu Leu Ser Ala 1 5 10 15 Thr Arg Val Ala Ala His Gly His Val Thr Asn Val Val Val Asn Gly 20 25 30 Val Ser Tyr Ala Gly Phe Asp Ile Asn Ser Tyr Pro Tyr Met Ser Asp 35 40 45 Pro Pro Lys Val Ala Ala Trp Thr Thr Pro Asn Thr Gly Asn Gly Phe 50 55 60 Ile Ala Pro Ser Ala Tyr Asn Ser Pro Asp Ile Ile Cys His Gln Asn 65 70 75 80 Ala Thr Asn Ala Gln Ala Tyr Ile Glu Ile Ala Ala Gly Asp Arg Ile 85 90 95 Gln Leu Gln Trp Thr Ala Trp Pro Glu Ser His His Gly Pro Val Ile 100 105 110 Asp Met Leu Ala Ser Cys Gly Glu Ser Cys Thr Thr Val Asp Lys Thr 115 120 125 Ser Leu Lys Phe Phe Lys Ile Asp Gly Val Gly Leu Val Asp Asn Ser 130 135 140 Ala Val Pro Gly Thr Trp Gly Asp Asp Gln Leu Ile Ala Asn Ser Asn 145 150 155 160 Ser Trp Met Val Glu Ile Pro Lys Ser Ile Ala Pro Gly Asn Tyr Val 165 170 175 Leu Arg His Glu Leu Ile Ala Leu His Ser Ala Phe Glu Thr Gly Gly 180 185 190 Ala Gln Asn Tyr Pro Gln Cys Phe Asn Leu Lys Val Thr Gly Ser Gly 195 200 205 Thr Asp Ser Pro Ala Gly Thr Leu Gly Thr Glu Leu Tyr Thr Glu Ser 210 215 220 Asp Pro Gly Leu Leu Val Asp Ile Tyr Lys Ser Ile Ala Ser Tyr Ala 225 230 235 240 Val Pro Gly Pro Ala Met Tyr Thr Gly Ala Val Ser Ile Thr Gln Ser 245 250 255 Thr Ser Ala Ile Thr Ala Thr Gly Thr Ala Thr Val Gly Ser Gly Ala 260 265 270 Asp Ser Thr Pro Val Pro Ser Ser Ala Ala Ser Ser Glu Tyr Ser Thr 275 280 285 Val Ala Val Gln Val Pro Thr Thr Lys Ala Gln Tyr Thr Pro Val Pro 290 295 300 Ser Ser Ser Pro Ser Thr Phe Val Thr Ser Pro Ala Pro Thr Thr Ser 305 310 315 320 Val Pro Ser Gly Ser Ser Val Pro Val Thr Ser Asn Thr Ala Ala Pro 325 330 335 Leu Pro Thr Ala Ala Pro Gly Gly Thr Gln Thr Val Tyr Gly Gln Cys 340 345 350 Gly Gly Gln Asn Trp Thr Gly Pro Thr Tyr Ile Val 355 360 22270PRTThielavia terrestris 22Leu Leu Ser Thr Leu Ala Gly Ala Ala Ser Val Ala Ala His Gly His 1 5 10 15 Val Ser Asn Ile Val Ile Asn Gly Val Ser Tyr Gln Gly Tyr Asp Pro 20 25 30 Thr Ser Phe Pro Tyr Met Gln Asn Pro Pro Ile Val Val Gly Trp Thr 35 40 45 Ala Ala Asp Thr Asp Asn Gly Phe Val Ala Pro Asp Ala Phe Ala Ser 50 55 60 Gly Asp Ile Ile Cys His Lys Asn Ala Thr Asn Ala Lys Gly His Ala 65 70 75 80 Val Val Ala Ala Gly Asp Lys Ile Phe Ile Gln Trp Asn Thr Trp Pro 85 90 95 Glu Ser His His Gly Pro Val Ile Asp Tyr

Leu Ala Ser Cys Gly Ser 100 105 110 Ala Ser Cys Glu Thr Val Asp Lys Thr Lys Leu Glu Phe Phe Lys Ile 115 120 125 Asp Glu Val Gly Leu Val Asp Gly Ser Ser Ala Pro Gly Val Trp Gly 130 135 140 Ser Asp Gln Leu Ile Ala Asn Asn Asn Ser Trp Leu Val Glu Ile Pro 145 150 155 160 Pro Thr Ile Ala Pro Gly Asn Tyr Val Leu Arg His Glu Ile Ile Ala 165 170 175 Leu His Ser Ala Glu Asn Ala Asp Gly Ala Gln Asn Tyr Pro Gln Cys 180 185 190 Phe Asn Leu Gln Ile Thr Gly Thr Gly Thr Ala Thr Pro Ser Gly Val 195 200 205 Pro Gly Thr Ser Leu Tyr Thr Pro Thr Asp Pro Gly Ile Leu Val Asn 210 215 220 Ile Tyr Ser Ala Pro Ile Thr Tyr Thr Val Pro Gly Pro Ala Leu Ile 225 230 235 240 Ser Gly Ala Val Ser Ile Ala Gln Ser Ser Ser Ala Ile Thr Ala Ser 245 250 255 Gly Thr Ala Leu Thr Gly Ser Ala Thr Ala Pro Ala Ala Ala 260 265 270 23330PRTThielavia terrestris 23Met Pro Pro Ala Leu Pro Gln Leu Leu Thr Thr Val Leu Thr Ala Leu 1 5 10 15 Thr Leu Gly Ser Thr Ala Leu Ala His Ser His Leu Ala Tyr Ile Ile 20 25 30 Val Asn Gly Lys Leu Tyr Gln Gly Phe Asp Pro Arg Pro His Gln Ala 35 40 45 Asn Tyr Pro Ser Arg Val Gly Trp Ser Thr Gly Ala Val Asp Asp Gly 50 55 60 Phe Val Thr Pro Ala Asn Tyr Ser Thr Pro Asp Ile Ile Cys His Ile 65 70 75 80 Ala Gly Thr Ser Pro Ala Gly His Ala Pro Val Arg Pro Gly Asp Arg 85 90 95 Ile His Val Gln Trp Asn Gly Trp Pro Val Gly His Ile Gly Pro Val 100 105 110 Leu Ser Tyr Leu Ala Arg Cys Glu Ser Asp Thr Gly Cys Thr Gly Gln 115 120 125 Asn Lys Thr Ala Leu Arg Trp Thr Lys Ile Asp Asp Ser Ser Pro Thr 130 135 140 Met Gln Asn Val Ala Gly Ala Gly Thr Gln Gly Glu Gly Thr Pro Gly 145 150 155 160 Lys Arg Trp Ala Thr Asp Val Leu Ile Ala Ala Asn Asn Ser Trp Gln 165 170 175 Val Ala Val Pro Ala Gly Leu Pro Thr Gly Ala Tyr Val Leu Arg Asn 180 185 190 Glu Ile Ile Ala Leu His Tyr Ala Ala Arg Lys Asn Gly Ala Gln Asn 195 200 205 Tyr Pro Leu Cys Met Asn Leu Trp Val Asp Ala Ser Gly Asp Asn Ser 210 215 220 Ser Val Ala Ala Thr Thr Ala Ala Val Thr Ala Gly Gly Leu Gln Met 225 230 235 240 Asp Ala Tyr Asp Ala Arg Gly Phe Tyr Lys Glu Asn Asp Pro Gly Val 245 250 255 Leu Val Asn Val Thr Ala Ala Leu Ser Ser Tyr Val Val Pro Gly Pro 260 265 270 Thr Val Ala Ala Gly Ala Thr Pro Val Pro Tyr Ala Gln Gln Ser Pro 275 280 285 Ser Val Ser Thr Ala Ala Gly Thr Pro Val Val Val Thr Arg Thr Ser 290 295 300 Glu Thr Ala Pro Tyr Thr Gly Ala Met Thr Pro Thr Val Ala Ala Arg 305 310 315 320 Met Lys Gly Arg Gly Tyr Asp Arg Arg Gly 325 330 24315PRTThielavia terrestris 24Met Arg Thr Thr Phe Ala Ala Ala Leu Ala Ala Phe Ala Ala Gln Glu 1 5 10 15 Val Ala Gly His Ala Ile Phe Gln Gln Leu Trp Val Asp Gly Thr Asp 20 25 30 Tyr Ile Arg Ala Pro Leu Phe Leu Phe Gly Lys Cys Pro Val Lys Ala 35 40 45 Gly Gly Thr Val Thr Val Glu Met His Gln Gln Pro Gly Asp Arg Ser 50 55 60 Cys Asn Asn Glu Ala Ile Gly Gly Ala His Trp Gly Pro Val Gln Val 65 70 75 80 Tyr Leu Ser Lys Val Glu Asp Ala Ser Thr Ala Asp Gly Ser Thr Gly 85 90 95 Trp Phe Lys Ile Phe Ala Asp Thr Trp Ser Lys Lys Ala Gly Ser Ser 100 105 110 Val Gly Asp Asp Asp Asn Trp Gly Thr Arg Asp Leu Asn Ala Cys Cys 115 120 125 Gly Lys Met Gln Val Lys Ile Pro Ala Asp Ile Pro Ser Gly Asp Tyr 130 135 140 Leu Leu Arg Ala Glu Ala Leu Ala Leu His Thr Ala Gly Gln Val Gly 145 150 155 160 Gly Ala Gln Phe Tyr Met Ser Cys Tyr Gln Ile Thr Val Ser Gly Gly 165 170 175 Gly Ser Ala Ser Pro Ala Thr Val Lys Phe Pro Gly Ala Tyr Ser Ala 180 185 190 Asn Asp Pro Gly Ile His Ile Asn Ile His Ala Ala Val Ser Asn Tyr 195 200 205 Val Ala Pro Gly Pro Ala Val Tyr Ser Gly Gly Thr Thr Lys Val Ala 210 215 220 Gly Ser Gly Cys Gln Gly Cys Glu Asn Thr Cys Lys Val Gly Ser Ser 225 230 235 240 Pro Thr Ala Thr Ala Pro Ser Gly Lys Ser Gly Ala Gly Ser Asp Gly 245 250 255 Gly Ala Gly Thr Asp Gly Gly Ser Ser Ser Ser Ser Pro Asp Thr Gly 260 265 270 Ser Ala Cys Ser Val Gln Ala Tyr Gly Gln Cys Gly Gly Asn Gly Tyr 275 280 285 Ser Gly Cys Thr Gln Cys Ala Pro Gly Tyr Thr Cys Lys Ala Val Ser 290 295 300 Pro Pro Tyr Tyr Ser Gln Cys Ala Pro Ser Ser 305 310 315 25349PRTChaetomium globosum 25Met Ser Lys Ala Ser Ala Leu Leu Ala Thr Leu Thr Gly Ala Ala Leu 1 5 10 15 Val Ala Ala His Gly His Val Ser His Ile Ile Val Asn Gly Val Tyr 20 25 30 Tyr Glu Asn Tyr Asp Pro Thr Thr His Trp Tyr Gln Pro Asn Pro Pro 35 40 45 Thr Val Ile Gly Trp Lys Ala Ala Gln Gln Asp Asn Gly Phe Val Glu 50 55 60 Pro Asn Asn Phe Gly Thr Ser Asp Ile Ile Cys His Lys Ser Gly Ser 65 70 75 80 Pro Gly Gly Gly His Ala Thr Val Ala Ala Gly Asp Lys Ile Ser Ile 85 90 95 Val Trp Asp Pro Glu Trp Pro Glu Ser His Ile Gly Pro Val Ile Asp 100 105 110 Tyr Leu Ala Ala Cys Asn Gly Asp Cys Glu Thr Val Asp Lys Ala Ser 115 120 125 Leu Arg Phe Phe Lys Ile Asp Gly Ala Gly Tyr Asp Lys Thr Ala Gly 130 135 140 Arg Trp Ala Ala Asp Thr Leu Arg Ala Asn Gly Asn Ser Trp Leu Val 145 150 155 160 Gln Ile Pro Ala Asp Leu Lys Ala Gly Asn Tyr Val Leu Arg His Glu 165 170 175 Ile Ile Ala Leu His Gly Ala Ser Ser Pro Asn Gly Ala Gln Ala Tyr 180 185 190 Pro Gln Cys Ile Asn Leu Arg Val Thr Gly Ser Gly Thr Asn Ala Pro 195 200 205 Ser Gly Val Ala Gly Thr Ser Leu Tyr Arg Ala Ser Asp Ala Gly Ile 210 215 220 Leu Phe Asn Pro Tyr Val Ala Ser Pro Asn Tyr Pro Val Pro Gly Pro 225 230 235 240 Ala Leu Ile Ala Gly Ala Ala Ser Ser Val Ala Gln Ser Lys Ser Val 245 250 255 Ala Thr Ala Thr Ala Ser Ala Thr Leu Pro Gly Asn Asn Asn Gly Gly 260 265 270 Gly Pro Asn Pro Gln Pro Thr Thr Ala Thr Thr Thr Ala Asn Pro Gly 275 280 285 Val Ser Thr Thr Leu Arg Thr Ser Thr Ser Thr Ser Thr Ser Ala Gln 290 295 300 Val Thr Pro Pro Pro Thr Gly Gly Asn Ala Gln Thr Lys Tyr Gly Gln 305 310 315 320 Cys Gly Gly Ser Gly Trp Thr Gly Pro Thr Ala Cys Ala Ala Gly Ser 325 330 335 Ser Cys Ser Val Leu Asn Asp Trp Tyr Ala Gln Cys Val 340 345 26249PRTTrichoderma reesei 26Met Lys Ser Cys Ala Ile Leu Ala Ala Leu Gly Cys Leu Ala Gly Ser 1 5 10 15 Val Leu Gly His Gly Gln Val Gln Asn Phe Thr Ile Asn Gly Gln Tyr 20 25 30 Asn Gln Gly Phe Ile Leu Asp Tyr Tyr Tyr Gln Lys Gln Asn Thr Gly 35 40 45 His Phe Pro Asn Val Ala Gly Trp Tyr Ala Glu Asp Leu Asp Leu Gly 50 55 60 Phe Ile Ser Pro Asp Gln Tyr Thr Thr Pro Asp Ile Val Cys His Lys 65 70 75 80 Asn Ala Ala Pro Gly Ala Ile Ser Ala Thr Ala Ala Ala Gly Ser Asn 85 90 95 Ile Val Phe Gln Trp Gly Pro Gly Val Trp Pro His Pro Tyr Gly Pro 100 105 110 Ile Val Thr Tyr Val Val Glu Cys Ser Gly Ser Cys Thr Thr Val Asn 115 120 125 Lys Asn Asn Leu Arg Trp Val Lys Ile Gln Glu Ala Gly Ile Asn Tyr 130 135 140 Asn Thr Gln Val Trp Ala Gln Gln Asp Leu Ile Asn Gln Gly Asn Lys 145 150 155 160 Trp Thr Val Lys Ile Pro Ser Ser Leu Arg Pro Gly Asn Tyr Val Phe 165 170 175 Arg His Glu Leu Leu Ala Ala His Gly Ala Ser Ser Ala Asn Gly Met 180 185 190 Gln Asn Tyr Pro Gln Cys Val Asn Ile Ala Val Thr Gly Ser Gly Thr 195 200 205 Lys Ala Leu Pro Ala Gly Thr Pro Ala Thr Gln Leu Tyr Lys Pro Thr 210 215 220 Asp Pro Gly Ile Leu Phe Asn Pro Tyr Thr Thr Ile Thr Ser Tyr Thr 225 230 235 240 Ile Pro Gly Pro Ala Leu Trp Gln Gly 245 27344PRTTrichoderma reesei 27Met Ile Gln Lys Leu Ser Asn Leu Leu Val Thr Ala Leu Ala Val Ala 1 5 10 15 Thr Gly Val Val Gly His Gly His Ile Asn Asp Ile Val Ile Asn Gly 20 25 30 Val Trp Tyr Gln Ala Tyr Asp Pro Thr Thr Phe Pro Tyr Glu Ser Asn 35 40 45 Pro Pro Ile Val Val Gly Trp Thr Ala Ala Asp Leu Asp Asn Gly Phe 50 55 60 Val Ser Pro Asp Ala Tyr Gln Asn Pro Asp Ile Ile Cys His Lys Asn 65 70 75 80 Ala Thr Asn Ala Lys Gly His Ala Ser Val Lys Ala Gly Asp Thr Ile 85 90 95 Leu Phe Gln Trp Val Pro Val Pro Trp Pro His Pro Gly Pro Ile Val 100 105 110 Asp Tyr Leu Ala Asn Cys Asn Gly Asp Cys Glu Thr Val Asp Lys Thr 115 120 125 Thr Leu Glu Phe Phe Lys Ile Asp Gly Val Gly Leu Leu Ser Gly Gly 130 135 140 Asp Pro Gly Thr Trp Ala Ser Asp Val Leu Ile Ser Asn Asn Asn Thr 145 150 155 160 Trp Val Val Lys Ile Pro Asp Asn Leu Ala Pro Gly Asn Tyr Val Leu 165 170 175 Arg His Glu Ile Ile Ala Leu His Ser Ala Gly Gln Ala Asn Gly Ala 180 185 190 Gln Asn Tyr Pro Gln Cys Phe Asn Ile Ala Val Ser Gly Ser Gly Ser 195 200 205 Leu Gln Pro Ser Gly Val Leu Gly Thr Asp Leu Tyr His Ala Thr Asp 210 215 220 Pro Gly Val Leu Ile Asn Ile Tyr Thr Ser Pro Leu Asn Tyr Ile Ile 225 230 235 240 Pro Gly Pro Thr Val Val Ser Gly Leu Pro Thr Ser Val Ala Gln Gly 245 250 255 Ser Ser Ala Ala Thr Ala Thr Ala Ser Ala Thr Val Pro Gly Gly Gly 260 265 270 Ser Gly Pro Thr Ser Arg Thr Thr Thr Thr Ala Arg Thr Thr Gln Ala 275 280 285 Ser Ser Arg Pro Ser Ser Thr Pro Pro Ala Thr Thr Ser Ala Pro Ala 290 295 300 Gly Gly Pro Thr Gln Thr Leu Tyr Gly Gln Cys Gly Gly Ser Gly Tyr 305 310 315 320 Ser Gly Pro Thr Arg Cys Ala Pro Pro Ala Thr Cys Ser Thr Leu Asn 325 330 335 Pro Tyr Tyr Ala Gln Cys Leu Asn 340 28250PRTAspergillus fumigatus 28Met Thr Leu Ser Lys Ile Thr Ser Ile Ala Gly Leu Leu Ala Ser Ala 1 5 10 15 Ser Leu Val Ala Gly His Gly Phe Val Ser Gly Ile Val Ala Asp Gly 20 25 30 Lys Tyr Tyr Gly Gly Tyr Leu Val Asn Gln Tyr Pro Tyr Met Ser Asn 35 40 45 Pro Pro Asp Thr Ile Ala Trp Ser Thr Thr Ala Thr Asp Leu Gly Phe 50 55 60 Val Asp Gly Thr Gly Tyr Gln Ser Pro Asp Ile Ile Cys His Arg Asp 65 70 75 80 Ala Lys Asn Gly Lys Leu Thr Ala Thr Val Ala Ala Gly Ser Gln Ile 85 90 95 Glu Phe Gln Trp Thr Thr Trp Pro Glu Ser His His Gly Pro Leu Ile 100 105 110 Thr Tyr Leu Ala Pro Cys Asn Gly Asp Cys Ala Thr Val Asp Lys Thr 115 120 125 Thr Leu Lys Phe Val Lys Ile Ala Ala Gln Gly Leu Ile Asp Gly Ser 130 135 140 Asn Pro Pro Gly Val Trp Ala Asp Asp Glu Met Ile Ala Asn Asn Asn 145 150 155 160 Thr Ala Thr Val Thr Ile Pro Ala Ser Tyr Ala Pro Gly Asn Tyr Val 165 170 175 Leu Arg His Glu Ile Ile Ala Leu His Ser Ala Gly Asn Leu Asn Gly 180 185 190 Ala Gln Asn Tyr Pro Gln Cys Phe Asn Ile Gln Ile Thr Gly Gly Gly 195 200 205 Ser Ala Gln Gly Ser Gly Thr Ala Gly Thr Ser Leu Tyr Lys Asn Thr 210 215 220 Asp Pro Gly Ile Lys Phe Asp Ile Tyr Ser Asp Leu Ser Gly Gly Tyr 225 230 235 240 Pro Ile Pro Gly Pro Ala Leu Phe Asn Ala 245 250 29226PRTThielavia terrestris 29Met Leu Ala Asn Gly Ala Ile Val Phe Leu Ala Ala Ala Leu Gly Val 1 5 10 15 Ser Gly His Tyr Thr Trp Pro Arg Val Asn Asp Gly Ala Asp Trp Gln 20 25 30 Gln Val Arg Lys Ala Asp Asn Trp Gln Asp Asn Gly Tyr Val Gly Asp 35 40 45 Val Thr Ser Pro Gln Ile Arg Cys Phe Gln Ala Thr Pro Ser Pro Ala 50 55 60 Pro Ser Val Leu Asn Thr Thr Ala Gly Ser Thr Val Thr Tyr Trp Ala 65 70 75 80 Asn Pro Asp Val Tyr His Pro Gly Pro Val Gln Phe Tyr Met Ala Arg 85 90 95 Val Pro Asp Gly Glu Asp Ile Asn Ser Trp Asn Gly Asp Gly Ala Val 100 105 110 Trp Phe Lys Val Tyr Glu Asp His Pro Thr Phe Gly Ala Gln Leu Thr 115 120 125 Trp Pro Ser Thr Gly Lys Ser Ser Phe Ala Val Pro Ile Pro Pro Cys 130 135 140 Ile Lys Ser Gly Tyr Tyr Leu Leu Arg Ala Glu Gln Ile Gly Leu His 145 150 155 160 Val Ala Gln Ser Val Gly Gly Ala Gln Phe Tyr Ile Ser Cys Ala Gln 165 170 175 Leu Ser Val Thr Gly Gly Gly Ser Thr Glu Pro Pro Asn Lys Val Ala 180 185 190 Phe Pro Gly Ala Tyr Ser Ala Thr Asp Pro Gly Ile Leu Ile Asn Ile 195 200 205 Tyr Tyr Pro Val Pro Thr Ser Tyr Gln Asn Pro Gly Pro Ala Val Phe 210 215 220 Ser Cys 225 301044DNATrichoderma reesei 30atgatccaga agctttccaa ccttcttctc accgcactag cggtggcaac cggtgttgtt 60ggacacggac acatcaacaa cattgtcgtc aacggagtgt actaccaggg atatgatcct 120acatcgttcc catatgaatc tgacccgccc atagtggtgg gctggacggc tgccgatctt 180gacaacggct tcgtctcacc cgacgcatat cagagcccgg acatcatctg ccacaagaat 240gccaccaacg ccaaaggaca cgcgtccgtc aaggccggag acactattcc cctccagtgg

300gtgccagttc cttggccgca cccaggcccc atcgtcgact acctggccaa ctgcaacggc 360gactgcgaga ccgtggacaa gacgtccctt gagttcttca agattgacgg cgtcggtctc 420atcagcggcg gagatccggg caactgggcc tcggacgtgt tgattgccaa caacaacacc 480tgggttgtca agatccccga ggatctcgcc ccgggcaact acgtgcttcg ccacgagatc 540atcgccttgc acagcgccgg gcaggcggac ggcgctcaga actaccctca gtgcttcaac 600ctcgccgtcc caggctccgg atctctgcag ccgagcggcg tcaagggaac cgcgctctac 660cactccgatg accccggtgt cctcatcaac atctacacca gccctcttgc gtacaccatt 720cctggacctt ccgtggtatc aggcctcccc acgagtgtcg cccagggcag ctccgccgcg 780acggccactg ccagcgccac tgttcctggc ggtagcggac cgggaaaccc gaccagtaag 840actacgacga cggcgaggac gacacaggcc tcctctagca gggccagctc tactcctcct 900gctactacgt cggcacctgg tggaggccca acccagactt tgtacggcca gtgtggtggc 960agcggctaca gtggtcctac tcgatgcgcg ccgccggcca cttgctctac cttgaaccca 1020tactacgccc agtgccttaa ctag 104431471PRTTrichoderma reesei 31Met Ile Val Gly Ile Leu Thr Thr Leu Ala Thr Leu Ala Thr Leu Ala 1 5 10 15 Ala Ser Val Pro Leu Glu Glu Arg Gln Ala Cys Ser Ser Val Trp Gly 20 25 30 Gln Cys Gly Gly Gln Asn Trp Ser Gly Pro Thr Cys Cys Ala Ser Gly 35 40 45 Ser Thr Cys Val Tyr Ser Asn Asp Tyr Tyr Ser Gln Cys Leu Pro Gly 50 55 60 Ala Ala Ser Ser Ser Ser Ser Thr Arg Ala Ala Ser Thr Thr Ser Arg 65 70 75 80 Val Ser Pro Thr Thr Ser Arg Ser Ser Ser Ala Thr Pro Pro Pro Gly 85 90 95 Ser Thr Thr Thr Arg Val Pro Pro Val Gly Ser Gly Thr Ala Thr Tyr 100 105 110 Ser Gly Asn Pro Phe Val Gly Val Thr Pro Trp Ala Asn Ala Tyr Tyr 115 120 125 Ala Ser Glu Val Ser Ser Leu Ala Ile Pro Ser Leu Thr Gly Ala Met 130 135 140 Ala Thr Ala Ala Ala Ala Val Ala Lys Val Pro Ser Phe Met Trp Leu 145 150 155 160 Asp Thr Leu Asp Lys Thr Pro Leu Met Glu Gln Thr Leu Ala Asp Ile 165 170 175 Arg Thr Ala Asn Lys Asn Gly Gly Asn Tyr Ala Gly Gln Phe Val Val 180 185 190 Tyr Asp Leu Pro Asp Arg Asp Cys Ala Ala Leu Ala Ser Asn Gly Glu 195 200 205 Tyr Ser Ile Ala Asp Gly Gly Val Ala Lys Tyr Lys Asn Tyr Ile Asp 210 215 220 Thr Ile Arg Gln Ile Val Val Glu Tyr Ser Asp Ile Arg Thr Leu Leu 225 230 235 240 Val Ile Glu Pro Asp Ser Leu Ala Asn Leu Val Thr Asn Leu Gly Thr 245 250 255 Pro Lys Cys Ala Asn Ala Gln Ser Ala Tyr Leu Glu Cys Ile Asn Tyr 260 265 270 Ala Val Thr Gln Leu Asn Leu Pro Asn Val Ala Met Tyr Leu Asp Ala 275 280 285 Gly His Ala Gly Trp Leu Gly Trp Pro Ala Asn Gln Asp Pro Ala Ala 290 295 300 Gln Leu Phe Ala Asn Val Tyr Lys Asn Ala Ser Ser Pro Arg Ala Leu 305 310 315 320 Arg Gly Leu Ala Thr Asn Val Ala Asn Tyr Asn Gly Trp Asn Ile Thr 325 330 335 Ser Pro Pro Ser Tyr Thr Gln Gly Asn Ala Val Tyr Asn Glu Lys Leu 340 345 350 Tyr Ile His Ala Ile Gly Pro Leu Leu Ala Asn His Gly Trp Ser Asn 355 360 365 Ala Phe Phe Ile Thr Asp Gln Gly Arg Ser Gly Lys Gln Pro Thr Gly 370 375 380 Gln Gln Gln Trp Gly Asp Trp Cys Asn Val Ile Gly Thr Gly Phe Gly 385 390 395 400 Ile Arg Pro Ser Ala Asn Thr Gly Asp Ser Leu Leu Asp Ser Phe Val 405 410 415 Trp Val Lys Pro Gly Gly Glu Cys Asp Gly Thr Ser Asp Ser Ser Ala 420 425 430 Pro Arg Phe Asp Ser His Cys Ala Leu Pro Asp Ala Leu Gln Pro Ala 435 440 445 Pro Gln Ala Gly Ala Trp Phe Gln Ala Tyr Phe Val Gln Leu Leu Thr 450 455 460 Asn Ala Asn Pro Ser Phe Leu 465 470 32513PRTTrichoderma reesei 32Met Tyr Arg Lys Leu Ala Val Ile Ser Ala Phe Leu Ala Thr Ala Arg 1 5 10 15 Ala Gln Ser Ala Cys Thr Leu Gln Ser Glu Thr His Pro Pro Leu Thr 20 25 30 Trp Gln Lys Cys Ser Ser Gly Gly Thr Cys Thr Gln Gln Thr Gly Ser 35 40 45 Val Val Ile Asp Ala Asn Trp Arg Trp Thr His Ala Thr Asn Ser Ser 50 55 60 Thr Asn Cys Tyr Asp Gly Asn Thr Trp Ser Ser Thr Leu Cys Pro Asp 65 70 75 80 Asn Glu Thr Cys Ala Lys Asn Cys Cys Leu Asp Gly Ala Ala Tyr Ala 85 90 95 Ser Thr Tyr Gly Val Thr Thr Ser Gly Asn Ser Leu Ser Ile Gly Phe 100 105 110 Val Thr Gln Ser Ala Gln Lys Asn Val Gly Ala Arg Leu Tyr Leu Met 115 120 125 Ala Ser Asp Thr Thr Tyr Gln Glu Phe Thr Leu Leu Gly Asn Glu Phe 130 135 140 Ser Phe Asp Val Asp Val Ser Gln Leu Pro Cys Gly Leu Asn Gly Ala 145 150 155 160 Leu Tyr Phe Val Ser Met Asp Ala Asp Gly Gly Val Ser Lys Tyr Pro 165 170 175 Thr Asn Thr Ala Gly Ala Lys Tyr Gly Thr Gly Tyr Cys Asp Ser Gln 180 185 190 Cys Pro Arg Asp Leu Lys Phe Ile Asn Gly Gln Ala Asn Val Glu Gly 195 200 205 Trp Glu Pro Ser Ser Asn Asn Ala Asn Thr Gly Ile Gly Gly His Gly 210 215 220 Ser Cys Cys Ser Glu Met Asp Ile Trp Glu Ala Asn Ser Ile Ser Glu 225 230 235 240 Ala Leu Thr Pro His Pro Cys Thr Thr Val Gly Gln Glu Ile Cys Glu 245 250 255 Gly Asp Gly Cys Gly Gly Thr Tyr Ser Asp Asn Arg Tyr Gly Gly Thr 260 265 270 Cys Asp Pro Asp Gly Cys Asp Trp Asn Pro Tyr Arg Leu Gly Asn Thr 275 280 285 Ser Phe Tyr Gly Pro Gly Ser Ser Phe Thr Leu Asp Thr Thr Lys Lys 290 295 300 Leu Thr Val Val Thr Gln Phe Glu Thr Ser Gly Ala Ile Asn Arg Tyr 305 310 315 320 Tyr Val Gln Asn Gly Val Thr Phe Gln Gln Pro Asn Ala Glu Leu Gly 325 330 335 Ser Tyr Ser Gly Asn Glu Leu Asn Asp Asp Tyr Cys Thr Ala Glu Glu 340 345 350 Ala Glu Phe Gly Gly Ser Ser Phe Ser Asp Lys Gly Gly Leu Thr Gln 355 360 365 Phe Lys Lys Ala Thr Ser Gly Gly Met Val Leu Val Met Ser Leu Trp 370 375 380 Asp Asp Tyr Tyr Ala Asn Met Leu Trp Leu Asp Ser Thr Tyr Pro Thr 385 390 395 400 Asn Glu Thr Ser Ser Thr Pro Gly Ala Val Arg Gly Ser Cys Ser Thr 405 410 415 Ser Ser Gly Val Pro Ala Gln Val Glu Ser Gln Ser Pro Asn Ala Lys 420 425 430 Val Thr Phe Ser Asn Ile Lys Phe Gly Pro Ile Gly Ser Thr Gly Asn 435 440 445 Pro Ser Gly Gly Asn Pro Pro Gly Gly Asn Arg Gly Thr Thr Thr Thr 450 455 460 Arg Arg Pro Ala Thr Thr Thr Gly Ser Ser Pro Gly Pro Thr Gln Ser 465 470 475 480 His Tyr Gly Gln Cys Gly Gly Ile Gly Tyr Ser Gly Pro Thr Val Cys 485 490 495 Ala Ser Gly Thr Thr Cys Gln Val Leu Asn Pro Tyr Tyr Ser Gln Cys 500 505 510 Leu 33837PRTTrichoderma reesei 33Met Lys Val Ser Arg Val Leu Ala Leu Val Leu Gly Ala Val Ile Pro 1 5 10 15 Ala His Ala Ala Phe Ser Trp Lys Asn Val Lys Leu Gly Gly Gly Gly 20 25 30 Gly Phe Val Pro Gly Ile Ile Phe His Pro Lys Thr Lys Gly Val Ala 35 40 45 Tyr Ala Arg Thr Asp Ile Gly Gly Leu Tyr Arg Leu Asn Ala Asp Asp 50 55 60 Ser Trp Thr Ala Val Thr Asp Gly Ile Ala Asp Asn Ala Gly Trp His 65 70 75 80 Asn Trp Gly Ile Asp Ala Val Ala Leu Asp Pro Gln Asp Asp Gln Lys 85 90 95 Val Tyr Ala Ala Val Gly Met Tyr Thr Asn Ser Trp Asp Pro Ser Asn 100 105 110 Gly Ala Ile Ile Arg Ser Ser Asp Arg Gly Ala Thr Trp Ser Phe Thr 115 120 125 Asn Leu Pro Phe Lys Val Gly Gly Asn Met Pro Gly Arg Gly Ala Gly 130 135 140 Glu Arg Leu Ala Val Asp Pro Ala Asn Ser Asn Ile Ile Tyr Phe Gly 145 150 155 160 Ala Arg Ser Gly Asn Gly Leu Trp Lys Ser Thr Asp Gly Gly Val Thr 165 170 175 Phe Ser Lys Val Ser Ser Phe Thr Ala Thr Gly Thr Tyr Ile Pro Asp 180 185 190 Pro Ser Asp Ser Asn Gly Tyr Asn Ser Asp Lys Gln Gly Leu Met Trp 195 200 205 Val Thr Phe Asp Ser Thr Ser Ser Thr Thr Gly Gly Ala Thr Ser Arg 210 215 220 Ile Phe Val Gly Thr Ala Asp Asn Ile Thr Ala Ser Val Tyr Val Ser 225 230 235 240 Thr Asn Ala Gly Ser Thr Trp Ser Ala Val Pro Gly Gln Pro Gly Lys 245 250 255 Tyr Phe Pro His Lys Ala Lys Leu Gln Pro Ala Glu Lys Ala Leu Tyr 260 265 270 Leu Thr Tyr Ser Asp Gly Thr Gly Pro Tyr Asp Gly Thr Leu Gly Ser 275 280 285 Val Trp Arg Tyr Asp Ile Ala Gly Gly Thr Trp Lys Asp Ile Thr Pro 290 295 300 Val Ser Gly Ser Asp Leu Tyr Phe Gly Phe Gly Gly Leu Gly Leu Asp 305 310 315 320 Leu Gln Lys Pro Gly Thr Leu Val Val Ala Ser Leu Asn Ser Trp Trp 325 330 335 Pro Asp Ala Gln Leu Phe Arg Ser Thr Asp Ser Gly Thr Thr Trp Ser 340 345 350 Pro Ile Trp Ala Trp Ala Ser Tyr Pro Thr Glu Thr Tyr Tyr Tyr Ser 355 360 365 Ile Ser Thr Pro Lys Ala Pro Trp Ile Lys Asn Asn Phe Ile Asp Val 370 375 380 Thr Ser Glu Ser Pro Ser Asp Gly Leu Ile Lys Arg Leu Gly Trp Met 385 390 395 400 Ile Glu Ser Leu Glu Ile Asp Pro Thr Asp Ser Asn His Trp Leu Tyr 405 410 415 Gly Thr Gly Met Thr Ile Phe Gly Gly His Asp Leu Thr Asn Trp Asp 420 425 430 Thr Arg His Asn Val Ser Ile Gln Ser Leu Ala Asp Gly Ile Glu Glu 435 440 445 Phe Ser Val Gln Asp Leu Ala Ser Ala Pro Gly Gly Ser Glu Leu Leu 450 455 460 Ala Ala Val Gly Asp Asp Asn Gly Phe Thr Phe Ala Ser Arg Asn Asp 465 470 475 480 Leu Gly Thr Ser Pro Gln Thr Val Trp Ala Thr Pro Thr Trp Ala Thr 485 490 495 Ser Thr Ser Val Asp Tyr Ala Gly Asn Ser Val Lys Ser Val Val Arg 500 505 510 Val Gly Asn Thr Ala Gly Thr Gln Val Ala Ile Ser Ser Asp Gly Gly 515 520 525 Ala Thr Trp Ser Ile Asp Tyr Ala Ala Asp Thr Ser Met Asn Gly Gly 530 535 540 Thr Val Ala Tyr Ser Ala Asp Gly Asp Thr Ile Leu Trp Ser Thr Ala 545 550 555 560 Ser Ser Gly Val Gln Arg Ser Gln Phe Gln Gly Ser Phe Ala Ser Val 565 570 575 Ser Ser Leu Pro Ala Gly Ala Val Ile Ala Ser Asp Lys Lys Thr Asn 580 585 590 Ser Val Phe Tyr Ala Gly Ser Gly Ser Thr Phe Tyr Val Ser Lys Asp 595 600 605 Thr Gly Ser Ser Phe Thr Arg Gly Pro Lys Leu Gly Ser Ala Gly Thr 610 615 620 Ile Arg Asp Ile Ala Ala His Pro Thr Thr Ala Gly Thr Leu Tyr Val 625 630 635 640 Ser Thr Asp Val Gly Ile Phe Arg Ser Thr Asp Ser Gly Thr Thr Phe 645 650 655 Gly Gln Val Ser Thr Ala Leu Thr Asn Thr Tyr Gln Ile Ala Leu Gly 660 665 670 Val Gly Ser Gly Ser Asn Trp Asn Leu Tyr Ala Phe Gly Thr Gly Pro 675 680 685 Ser Gly Ala Arg Leu Tyr Ala Ser Gly Asp Ser Gly Ala Ser Trp Thr 690 695 700 Asp Ile Gln Gly Ser Gln Gly Phe Gly Ser Ile Asp Ser Thr Lys Val 705 710 715 720 Ala Gly Ser Gly Ser Thr Ala Gly Gln Val Tyr Val Gly Thr Asn Gly 725 730 735 Arg Gly Val Phe Tyr Ala Gln Gly Thr Val Gly Gly Gly Thr Gly Gly 740 745 750 Thr Ser Ser Ser Thr Lys Gln Ser Ser Ser Ser Thr Ser Ser Ala Ser 755 760 765 Ser Ser Thr Thr Leu Arg Ser Ser Val Val Ser Thr Thr Arg Ala Ser 770 775 780 Thr Val Thr Ser Ser Arg Thr Ser Ser Ala Ala Gly Pro Thr Gly Ser 785 790 795 800 Gly Val Ala Gly His Tyr Ala Gln Cys Gly Gly Ile Gly Trp Thr Gly 805 810 815 Pro Thr Gln Cys Val Ala Pro Tyr Val Cys Gln Lys Gln Asn Asp Tyr 820 825 830 Tyr Tyr Gln Cys Val 835 34297PRTStaphylotrichum coccosporum 34Met Arg Ser Ser Pro Phe Leu Arg Ala Ala Leu Ala Ala Ala Leu Pro 1 5 10 15 Leu Ser Ala His Ala Leu Asp Gly Lys Ser Thr Arg Tyr Trp Asp Cys 20 25 30 Cys Lys Pro Ser Cys Gly Trp Pro Gly Lys Ala Ser Val Asn Gln Pro 35 40 45 Val Phe Ser Cys Ser Ala Asp Trp Gln Arg Ile Ser Asp Phe Asn Ala 50 55 60 Lys Ser Gly Cys Asp Gly Gly Ser Ala Tyr Ser Cys Ala Asp Gln Thr 65 70 75 80 Pro Trp Ala Val Asn Asp Asn Phe Ser Tyr Gly Phe Ala Ala Thr Ala 85 90 95 Ile Ala Gly Gly Ser Glu Ser Ser Trp Cys Cys Ala Cys Tyr Ala Leu 100 105 110 Thr Phe Asn Ser Gly Pro Val Ala Gly Lys Thr Met Val Val Gln Ser 115 120 125 Thr Ser Thr Gly Gly Asp Leu Gly Ser Asn Gln Phe Asp Leu Ala Ile 130 135 140 Pro Gly Gly Gly Val Gly Ile Phe Asn Gly Cys Ala Ser Gln Phe Gly 145 150 155 160 Gly Leu Pro Gly Ala Gln Tyr Gly Gly Ile Ser Asp Arg Ser Gln Cys 165 170 175 Ser Ser Phe Pro Ala Pro Leu Gln Pro Gly Cys Gln Trp Arg Phe Asp 180 185 190 Trp Phe Gln Asn Ala Asp Asn Pro Thr Phe Thr Phe Gln Arg Val Gln 195 200 205 Cys Pro Ser Glu Leu Thr Ser Arg Thr Gly Cys Lys Arg Asp Asp Asp 210 215 220 Ala Ser Tyr Pro Val Phe Asn Pro Pro Ser Gly Gly Ser Pro Ser Thr 225 230 235 240 Thr Ser Thr Thr Thr Ser Ser Pro Ser Gly Pro Thr Gly Asn Pro Pro 245 250 255 Gly Gly Gly Gly Cys Thr Ala Gln Lys Trp Ala Gln Cys Gly Gly Thr 260 265 270 Gly Phe Thr Gly Cys Thr Thr Cys Val Ser Gly Thr Thr Cys Gln Val 275 280 285 Gln Asn Gln Trp Tyr Ser Gln Cys Leu 290 295 352358DNAFusarium verticillioides 35atgctgctca atcttcaggt cgctgccagc gctttgtcgc tttctctttt aggtggattg 60gctgaggctg ctacgccata tacccttccg gactgtacca aaggaccttt gagcaagaat 120ggaatctgcg atacttcgtt atctccagct aaaagagcgg ctgctctagt tgctgctctg 180acgcccgaag agaaggtggg caatctggtc aggtaaaata tacccccccc cataatcact 240attcggagat tggagctgac ttaacgcagc aatgcaactg gtgcaccaag aatcggactt 300ccaaggtaca

actggtggaa cgaagccctt catggcctcg ctggatctcc aggtggtcgc 360tttgccgaca ctcctcccta cgacgcggcc acatcatttc ccatgcctct tctcatggcc 420gctgctttcg acgatgatct gatccacgat atcggcaacg tcgtcggcac cgaagcgcgt 480gcgttcacta acggcggttg gcgcggagtc gacttctgga cacccaacgt caaccctttt 540aaagatcctc gctggggtcg tggctccgaa actccaggtg aagatgccct tcatgtcagc 600cggtatgctc gctatatcgt caggggtctc gaaggcgata aggagcaacg acgtattgtt 660gctacctgca agcactatgc tggaaacgac tttgaggact ggggaggctt cacgcgtcac 720gactttgatg ccaagattac tcctcaggac ttggctgagt actacgtcag gcctttccag 780gagtgcaccc gtgatgcaaa ggttggttcc atcatgtgcg cctacaatgc cgtgaacggc 840attcccgcat gcgcaaactc gtatctgcag gagacgatcc tcagagggca ctggaactgg 900acgcgcgata acaactggat cactagtgat tgtggcgcca tgcaggatat ctggcagaat 960cacaagtatg tcaagaccaa cgctgaaggt gcccaggtag cttttgagaa cggcatggat 1020tctagctgcg agtatactac taccagcgat gtctccgatt cgtacaagca aggcctcttg 1080actgagaagc tcatggatcg ttcgttgaag cgccttttcg aagggcttgt tcatactggt 1140ttctttgacg gtgccaaagc gcaatggaac tcgctcagtt ttgcggatgt caacaccaag 1200gaagctcagg atcttgcact cagatctgct gtggagggtg ctgttcttct taagaatgac 1260ggcactttgc ctctgaagct caagaagaag gatagtgttg caatgatcgg attctgggcc 1320aacgatactt ccaagctgca gggtggttac agtggacgtg ctccgttcct ccacagcccg 1380ctttatgcag ctgagaagct tggtcttgac accaacgtgg cttggggtcc gacactgcag 1440aacagctcat ctcatgataa ctggaccacc aatgctgttg ctgcggcgaa gaagtctgat 1500tacattctct actttggtgg tcttgacgcc tctgctgctg gcgaggacag agatcgtgag 1560aaccttgact ggcctgagag ccagctgacc cttcttcaga agctctctag tctcggcaag 1620ccactggttg ttatccagct tggtgatcaa gtcgatgaca ccgctctttt gaagaacaag 1680aagattaaca gtattctttg ggtcaattac cctggtcagg atggcggcac tgcagtcatg 1740gacctgctca ctggacgaaa gagtcctgct ggccgactac ccgtcacgca atatcccagt 1800aaatacactg agcagattgg catgactgac atggacctca gacctaccaa gtcgttgcca 1860gggagaactt atcgctggta ctcaactcca gttcttccct acggctttgg cctccactac 1920accaagttcc aagccaagtt caagtccaac aagttgacgt ttgacatcca gaagcttctc 1980aagggctgca gtgctcaata ctccgatact tgcgcgctgc cccccatcca agttagtgtc 2040aagaacaccg gccgcattac ctccgacttt gtctctctgg tctttatcaa gagtgaagtt 2100ggacctaagc cttaccctct caagaccctt gcggcttatg gtcgcttgca tgatgtcgcg 2160ccttcatcga cgaaggatat ctcactggag tggacgttgg ataacattgc gcgacgggga 2220gagaatggtg atttggttgt ttatcctggg acttacactc tgttgctgga tgagcctacg 2280caagccaaga tccaggttac gctgactgga aagaaggcta ttttggataa gtggcctcaa 2340gaccccaagt ctgcgtaa 235836766PRTFusarium verticillioides 36Met Leu Leu Asn Leu Gln Val Ala Ala Ser Ala Leu Ser Leu Ser Leu 1 5 10 15 Leu Gly Gly Leu Ala Glu Ala Ala Thr Pro Tyr Thr Leu Pro Asp Cys 20 25 30 Thr Lys Gly Pro Leu Ser Lys Asn Gly Ile Cys Asp Thr Ser Leu Ser 35 40 45 Pro Ala Lys Arg Ala Ala Ala Leu Val Ala Ala Leu Thr Pro Glu Glu 50 55 60 Lys Val Gly Asn Leu Val Ser Asn Ala Thr Gly Ala Pro Arg Ile Gly 65 70 75 80 Leu Pro Arg Tyr Asn Trp Trp Asn Glu Ala Leu His Gly Leu Ala Gly 85 90 95 Ser Pro Gly Gly Arg Phe Ala Asp Thr Pro Pro Tyr Asp Ala Ala Thr 100 105 110 Ser Phe Pro Met Pro Leu Leu Met Ala Ala Ala Phe Asp Asp Asp Leu 115 120 125 Ile His Asp Ile Gly Asn Val Val Gly Thr Glu Ala Arg Ala Phe Thr 130 135 140 Asn Gly Gly Trp Arg Gly Val Asp Phe Trp Thr Pro Asn Val Asn Pro 145 150 155 160 Phe Lys Asp Pro Arg Trp Gly Arg Gly Ser Glu Thr Pro Gly Glu Asp 165 170 175 Ala Leu His Val Ser Arg Tyr Ala Arg Tyr Ile Val Arg Gly Leu Glu 180 185 190 Gly Asp Lys Glu Gln Arg Arg Ile Val Ala Thr Cys Lys His Tyr Ala 195 200 205 Gly Asn Asp Phe Glu Asp Trp Gly Gly Phe Thr Arg His Asp Phe Asp 210 215 220 Ala Lys Ile Thr Pro Gln Asp Leu Ala Glu Tyr Tyr Val Arg Pro Phe 225 230 235 240 Gln Glu Cys Thr Arg Asp Ala Lys Val Gly Ser Ile Met Cys Ala Tyr 245 250 255 Asn Ala Val Asn Gly Ile Pro Ala Cys Ala Asn Ser Tyr Leu Gln Glu 260 265 270 Thr Ile Leu Arg Gly His Trp Asn Trp Thr Arg Asp Asn Asn Trp Ile 275 280 285 Thr Ser Asp Cys Gly Ala Met Gln Asp Ile Trp Gln Asn His Lys Tyr 290 295 300 Val Lys Thr Asn Ala Glu Gly Ala Gln Val Ala Phe Glu Asn Gly Met 305 310 315 320 Asp Ser Ser Cys Glu Tyr Thr Thr Thr Ser Asp Val Ser Asp Ser Tyr 325 330 335 Lys Gln Gly Leu Leu Thr Glu Lys Leu Met Asp Arg Ser Leu Lys Arg 340 345 350 Leu Phe Glu Gly Leu Val His Thr Gly Phe Phe Asp Gly Ala Lys Ala 355 360 365 Gln Trp Asn Ser Leu Ser Phe Ala Asp Val Asn Thr Lys Glu Ala Gln 370 375 380 Asp Leu Ala Leu Arg Ser Ala Val Glu Gly Ala Val Leu Leu Lys Asn 385 390 395 400 Asp Gly Thr Leu Pro Leu Lys Leu Lys Lys Lys Asp Ser Val Ala Met 405 410 415 Ile Gly Phe Trp Ala Asn Asp Thr Ser Lys Leu Gln Gly Gly Tyr Ser 420 425 430 Gly Arg Ala Pro Phe Leu His Ser Pro Leu Tyr Ala Ala Glu Lys Leu 435 440 445 Gly Leu Asp Thr Asn Val Ala Trp Gly Pro Thr Leu Gln Asn Ser Ser 450 455 460 Ser His Asp Asn Trp Thr Thr Asn Ala Val Ala Ala Ala Lys Lys Ser 465 470 475 480 Asp Tyr Ile Leu Tyr Phe Gly Gly Leu Asp Ala Ser Ala Ala Gly Glu 485 490 495 Asp Arg Asp Arg Glu Asn Leu Asp Trp Pro Glu Ser Gln Leu Thr Leu 500 505 510 Leu Gln Lys Leu Ser Ser Leu Gly Lys Pro Leu Val Val Ile Gln Leu 515 520 525 Gly Asp Gln Val Asp Asp Thr Ala Leu Leu Lys Asn Lys Lys Ile Asn 530 535 540 Ser Ile Leu Trp Val Asn Tyr Pro Gly Gln Asp Gly Gly Thr Ala Val 545 550 555 560 Met Asp Leu Leu Thr Gly Arg Lys Ser Pro Ala Gly Arg Leu Pro Val 565 570 575 Thr Gln Tyr Pro Ser Lys Tyr Thr Glu Gln Ile Gly Met Thr Asp Met 580 585 590 Asp Leu Arg Pro Thr Lys Ser Leu Pro Gly Arg Thr Tyr Arg Trp Tyr 595 600 605 Ser Thr Pro Val Leu Pro Tyr Gly Phe Gly Leu His Tyr Thr Lys Phe 610 615 620 Gln Ala Lys Phe Lys Ser Asn Lys Leu Thr Phe Asp Ile Gln Lys Leu 625 630 635 640 Leu Lys Gly Cys Ser Ala Gln Tyr Ser Asp Thr Cys Ala Leu Pro Pro 645 650 655 Ile Gln Val Ser Val Lys Asn Thr Gly Arg Ile Thr Ser Asp Phe Val 660 665 670 Ser Leu Val Phe Ile Lys Ser Glu Val Gly Pro Lys Pro Tyr Pro Leu 675 680 685 Lys Thr Leu Ala Ala Tyr Gly Arg Leu His Asp Val Ala Pro Ser Ser 690 695 700 Thr Lys Asp Ile Ser Leu Glu Trp Thr Leu Asp Asn Ile Ala Arg Arg 705 710 715 720 Gly Glu Asn Gly Asp Leu Val Val Tyr Pro Gly Thr Tyr Thr Leu Leu 725 730 735 Leu Asp Glu Pro Thr Gln Ala Lys Ile Gln Val Thr Leu Thr Gly Lys 740 745 750 Lys Ala Ile Leu Asp Lys Trp Pro Gln Asp Pro Lys Ser Ala 755 760 765 371338DNAPenicillium funiculosum 37atgcttcagc gatttgctta tattttacca ctggctctat tgagtgttgg agtgaaagcc 60gacaacccct ttgtgcagag catctacacc gctgatccgg caccgatggt atacaatgac 120cgcgtttatg tcttcatgga ccatgacaac accggagcta cctactacaa catgacagac 180tggcatctgt tctcgtcagc agatatggcg aattggcaag atcatggcat tccaatgagc 240ctggccaatt tcacctgggc caacgcgaat gcgtgggccc cgcaagtcat ccctcgcaac 300ggccaattct acttttatgc tcctgtccga cacaacgatg gttctatggc tatcggtgtg 360ggagtgagca gcaccatcac aggtccatac catgatgcta tcggcaaacc gctagtagag 420aacaacgaga ttgatcccac cgtgttcatc gacgatgacg gtcaggcata cctgtactgg 480ggaaatccag acctgtggta cgtcaaattg aaccaagata tgatatcgta cagcgggagc 540cctactcaga ttccactcac cacggctgga tttggtactc gaacgggcaa tgctcaacgg 600ccgaccactt ttgaagaagc tccatgggta tacaaacgca acggcatcta ctatatcgcc 660tatgcagccg attgttgttc tgaggatatt cgctactcca cgggaaccag tgccactggt 720ccgtggactt atcgaggcgt catcatgccg acccaaggta gcagcttcac caatcacgag 780ggtattatcg acttccagaa caactcctac tttttctatc acaacggcgc tcttcccggc 840ggaggcggct accaacgatc tgtatgtgtg gagcaattca aatacaatgc agatggaacc 900attccgacga tcgaaatgac caccgccggt ccagctcaaa ttgggactct caacccttac 960gtgcgacagg aagccgaaac ggcggcatgg tcttcaggca tcactacgga ggtttgtagc 1020gaaggcggaa ttgacgtcgg gtttatcaac aatggcgatt acatcaaagt taaaggcgta 1080gctttcggtt caggagccca ttctttctca gcgcgggttg cttctgcaaa tagcggcggc 1140actattgcaa tacacctcgg aagcacaact ggtacgctcg tgggcacttg tactgtcccc 1200agcactggcg gttggcagac ttggactacc gttacctgtt ctgtcagtgg cgcatctggg 1260acccaggatg tgtattttgt tttcggtggt agcggaacag gatacctgtt caactttgat 1320tattggcagt tcgcataa 133838445PRTPenicillium funiculosum 38Met Leu Gln Arg Phe Ala Tyr Ile Leu Pro Leu Ala Leu Leu Ser Val 1 5 10 15 Gly Val Lys Ala Asp Asn Pro Phe Val Gln Ser Ile Tyr Thr Ala Asp 20 25 30 Pro Ala Pro Met Val Tyr Asn Asp Arg Val Tyr Val Phe Met Asp His 35 40 45 Asp Asn Thr Gly Ala Thr Tyr Tyr Asn Met Thr Asp Trp His Leu Phe 50 55 60 Ser Ser Ala Asp Met Ala Asn Trp Gln Asp His Gly Ile Pro Met Ser 65 70 75 80 Leu Ala Asn Phe Thr Trp Ala Asn Ala Asn Ala Trp Ala Pro Gln Val 85 90 95 Ile Pro Arg Asn Gly Gln Phe Tyr Phe Tyr Ala Pro Val Arg His Asn 100 105 110 Asp Gly Ser Met Ala Ile Gly Val Gly Val Ser Ser Thr Ile Thr Gly 115 120 125 Pro Tyr His Asp Ala Ile Gly Lys Pro Leu Val Glu Asn Asn Glu Ile 130 135 140 Asp Pro Thr Val Phe Ile Asp Asp Asp Gly Gln Ala Tyr Leu Tyr Trp 145 150 155 160 Gly Asn Pro Asp Leu Trp Tyr Val Lys Leu Asn Gln Asp Met Ile Ser 165 170 175 Tyr Ser Gly Ser Pro Thr Gln Ile Pro Leu Thr Thr Ala Gly Phe Gly 180 185 190 Thr Arg Thr Gly Asn Ala Gln Arg Pro Thr Thr Phe Glu Glu Ala Pro 195 200 205 Trp Val Tyr Lys Arg Asn Gly Ile Tyr Tyr Ile Ala Tyr Ala Ala Asp 210 215 220 Cys Cys Ser Glu Asp Ile Arg Tyr Ser Thr Gly Thr Ser Ala Thr Gly 225 230 235 240 Pro Trp Thr Tyr Arg Gly Val Ile Met Pro Thr Gln Gly Ser Ser Phe 245 250 255 Thr Asn His Glu Gly Ile Ile Asp Phe Gln Asn Asn Ser Tyr Phe Phe 260 265 270 Tyr His Asn Gly Ala Leu Pro Gly Gly Gly Gly Tyr Gln Arg Ser Val 275 280 285 Cys Val Glu Gln Phe Lys Tyr Asn Ala Asp Gly Thr Ile Pro Thr Ile 290 295 300 Glu Met Thr Thr Ala Gly Pro Ala Gln Ile Gly Thr Leu Asn Pro Tyr 305 310 315 320 Val Arg Gln Glu Ala Glu Thr Ala Ala Trp Ser Ser Gly Ile Thr Thr 325 330 335 Glu Val Cys Ser Glu Gly Gly Ile Asp Val Gly Phe Ile Asn Asn Gly 340 345 350 Asp Tyr Ile Lys Val Lys Gly Val Ala Phe Gly Ser Gly Ala His Ser 355 360 365 Phe Ser Ala Arg Val Ala Ser Ala Asn Ser Gly Gly Thr Ile Ala Ile 370 375 380 His Leu Gly Ser Thr Thr Gly Thr Leu Val Gly Thr Cys Thr Val Pro 385 390 395 400 Ser Thr Gly Gly Trp Gln Thr Trp Thr Thr Val Thr Cys Ser Val Ser 405 410 415 Gly Ala Ser Gly Thr Gln Asp Val Tyr Phe Val Phe Gly Gly Ser Gly 420 425 430 Thr Gly Tyr Leu Phe Asn Phe Asp Tyr Trp Gln Phe Ala 435 440 445 391593DNAFusarium verticillioides 39atgaaggtat actggctcgt ggcgtgggcc acttctttga cgccggcact ggctggcttg 60attggacacc gtcgcgccac caccttcaac aatcctatca tctactcaga ctttccagat 120aacgatgtat tcctcggtcc agataactac tactacttct ctgcttccaa cttccacttc 180agcccaggag cacccgtttt gaagtctaaa gatctgctaa actgggatct catcggccat 240tcaattcccc gcctgaactt tggcgacggc tatgatcttc ctcctggctc acgttattac 300cgtggaggta cttgggcatc atccctcaga tacagaaaga gcaatggaca gtggtactgg 360atcggctgca tcaacttctg gcagacctgg gtatacactg cctcatcgcc ggaaggtcca 420tggtacaaca agggaaactt cggtgataac aattgctact acgacaatgg catactgatc 480gatgacgatg ataccatgta tgtcgtatac ggttccggtg aggtcaaagt atctcaacta 540tctcaggacg gattcagcca ggtcaaatct caggtagttt tcaagaacac tgatattggg 600gtccaagact tggagggtaa ccgcatgtac aagatcaacg ggctctacta tatcctaaac 660gatagcccaa gtggcagtca gacctggatt tggaagtcga aatcaccctg gggcccttat 720gagtctaagg tcctcgccga caaagtcacc ccgcctatct ctggtggtaa ctcgccgcat 780cagggtagtc tcataaagac tcccaatggt ggctggtact tcatgtcatt cacttgggcc 840tatcctgccg gccgtcttcc ggttcttgca ccgattacgt ggggtagcga tggtttcccc 900attcttgtca agggtgctaa tggcggatgg ggatcatctt acccaacact tcctggcacg 960gatggtgtga caaagaattg gacaaggact gataccttcc gcggaacctc acttgctccg 1020tcctgggagt ggaaccataa tccggacgtc aactccttca ctgtcaacaa cggcctgact 1080ctccgcactg ctagcattac gaaggatatt taccaggcga ggaacacgct atctcaccga 1140actcatggtg atcatccaac aggaatagtg aagattgatt tctctccgat gaaggacggc 1200gaccgggccg ggctttcagc gtttcgagac caaagtgcat acatcggtat tcatcgagat 1260aacggaaagt tcacaatcgc tacgaagcat gggatgaata tggatgagtg gaacggaaca 1320acaacagacc tgggacaaat aaaagccaca gctaatgtgc cttctggaag gaccaagatc 1380tggctgagac ttcaacttga taccaaccca gcaggaactg gcaacactat cttttcttac 1440agttgggatg gagtcaagta tgaaacactg ggtcccaact tcaaactgta caatggttgg 1500gcattcttta ttgcttaccg attcggcatc ttcaacttcg ccgagacggc tttaggaggc 1560tcgatcaagg ttgagtcttt cacagctgca tag 159340530PRTFusarium verticillioides 40Met Lys Val Tyr Trp Leu Val Ala Trp Ala Thr Ser Leu Thr Pro Ala 1 5 10 15 Leu Ala Gly Leu Ile Gly His Arg Arg Ala Thr Thr Phe Asn Asn Pro 20 25 30 Ile Ile Tyr Ser Asp Phe Pro Asp Asn Asp Val Phe Leu Gly Pro Asp 35 40 45 Asn Tyr Tyr Tyr Phe Ser Ala Ser Asn Phe His Phe Ser Pro Gly Ala 50 55 60 Pro Val Leu Lys Ser Lys Asp Leu Leu Asn Trp Asp Leu Ile Gly His 65 70 75 80 Ser Ile Pro Arg Leu Asn Phe Gly Asp Gly Tyr Asp Leu Pro Pro Gly 85 90 95 Ser Arg Tyr Tyr Arg Gly Gly Thr Trp Ala Ser Ser Leu Arg Tyr Arg 100 105 110 Lys Ser Asn Gly Gln Trp Tyr Trp Ile Gly Cys Ile Asn Phe Trp Gln 115 120 125 Thr Trp Val Tyr Thr Ala Ser Ser Pro Glu Gly Pro Trp Tyr Asn Lys 130 135 140 Gly Asn Phe Gly Asp Asn Asn Cys Tyr Tyr Asp Asn Gly Ile Leu Ile 145 150 155 160 Asp Asp Asp Asp Thr Met Tyr Val Val Tyr Gly Ser Gly Glu Val Lys 165 170 175 Val Ser Gln Leu Ser Gln Asp Gly Phe Ser Gln Val Lys Ser Gln Val 180 185 190 Val Phe Lys Asn Thr Asp Ile Gly Val Gln Asp Leu Glu Gly Asn Arg 195 200 205 Met Tyr Lys Ile Asn Gly Leu Tyr Tyr Ile Leu Asn Asp Ser Pro Ser 210 215 220 Gly Ser Gln Thr Trp Ile Trp Lys Ser Lys Ser Pro Trp Gly Pro Tyr 225 230 235 240 Glu Ser Lys Val Leu Ala Asp Lys Val Thr Pro Pro Ile Ser Gly Gly 245 250 255 Asn Ser Pro His Gln Gly Ser Leu Ile Lys Thr Pro Asn Gly Gly Trp 260 265 270 Tyr Phe Met Ser Phe Thr Trp Ala Tyr Pro Ala Gly Arg Leu Pro Val 275 280 285 Leu

Ala Pro Ile Thr Trp Gly Ser Asp Gly Phe Pro Ile Leu Val Lys 290 295 300 Gly Ala Asn Gly Gly Trp Gly Ser Ser Tyr Pro Thr Leu Pro Gly Thr 305 310 315 320 Asp Gly Val Thr Lys Asn Trp Thr Arg Thr Asp Thr Phe Arg Gly Thr 325 330 335 Ser Leu Ala Pro Ser Trp Glu Trp Asn His Asn Pro Asp Val Asn Ser 340 345 350 Phe Thr Val Asn Asn Gly Leu Thr Leu Arg Thr Ala Ser Ile Thr Lys 355 360 365 Asp Ile Tyr Gln Ala Arg Asn Thr Leu Ser His Arg Thr His Gly Asp 370 375 380 His Pro Thr Gly Ile Val Lys Ile Asp Phe Ser Pro Met Lys Asp Gly 385 390 395 400 Asp Arg Ala Gly Leu Ser Ala Phe Arg Asp Gln Ser Ala Tyr Ile Gly 405 410 415 Ile His Arg Asp Asn Gly Lys Phe Thr Ile Ala Thr Lys His Gly Met 420 425 430 Asn Met Asp Glu Trp Asn Gly Thr Thr Thr Asp Leu Gly Gln Ile Lys 435 440 445 Ala Thr Ala Asn Val Pro Ser Gly Arg Thr Lys Ile Trp Leu Arg Leu 450 455 460 Gln Leu Asp Thr Asn Pro Ala Gly Thr Gly Asn Thr Ile Phe Ser Tyr 465 470 475 480 Ser Trp Asp Gly Val Lys Tyr Glu Thr Leu Gly Pro Asn Phe Lys Leu 485 490 495 Tyr Asn Gly Trp Ala Phe Phe Ile Ala Tyr Arg Phe Gly Ile Phe Asn 500 505 510 Phe Ala Glu Thr Ala Leu Gly Gly Ser Ile Lys Val Glu Ser Phe Thr 515 520 525 Ala Ala 530 411374DNAFusarium verticillioides 41atgcactacg ctaccctcac cactttggtg ctggctctga ccaccaacgt cgctgcacag 60caaggcacag caactgtcga cctctccaaa aatcatggac cggcgaaggc ccttggttca 120ggcttcatat acggctggcc tgacaacgga acaagcgtcg acacctccat accagatttc 180ttggtaactg acatcaaatt caactcaaac cgcggcggtg gcgcccaaat cccatcactg 240ggttgggcca gaggtggcta tgaaggatac ctcggccgct tcaactcaac cttatccaac 300tatcgcacca cgcgcaagta taacgctgac tttatcttgt tgcctcatga cctctggggt 360gcggatggcg ggcagggttc aaactccccg tttcctggcg acaatggcaa ttggactgag 420atggagttat tctggaatca gcttgtgtct gacttgaagg ctcataatat gctggaaggt 480cttgtgattg atgtttggaa tgagcctgat attgatatct tttgggatcg cccgtggtcg 540cagtttcttg agtattacaa tcgcgcgacc aaactacttc ggtgagtcta ctactgatcc 600atacgtattt acagtgagct gactggtcga attagaaaaa cacttcccaa aactcttctc 660agtggcccag ccatggcaca ttctcccatt ctgtccgatg ataaatggca tacctggctt 720caatcagtag cgggtaacaa gacagtccct gatatttact cctggcatca gattggcgct 780tgggaacgtg agccggacag cactatcccc gactttacca ccttgcgggc gcaatatggc 840gttcccgaga agccaattga cgtcaatgag tacgctgcac gcgatgagca aaatccagcc 900aactccgtct actacctctc tcaactagag cgtcataacc ttagaggtct tcgcgcaaac 960tggggtagcg gatctgacct ccacaactgg atgggcaact tgatttacag cactaccggt 1020acctcggagg ggacttacta ccctaatggt gaatggcagg cttacaagta ctatgcggcc 1080atggcagggc agagacttgt gaccaaagca tcgtcggact tgaagtttga tgtctttgcc 1140actaagcaag gccgtaagat taagattata gccggcacga ggaccgttca agcaaagtat 1200aacatcaaaa tcagcggttt ggaagtagca ggacttccta agatgggtac ggtaaaggtc 1260cggacttatc ggttcgactg ggctgggccg aatggaaagg ttgacgggcc tgttgatttg 1320ggggagaaga agtatactta ttcggccaat acggtgagca gcccctctac ttga 137442439PRTFusarium verticillioides 42Met His Tyr Ala Thr Leu Thr Thr Leu Val Leu Ala Leu Thr Thr Asn 1 5 10 15 Val Ala Ala Gln Gln Gly Thr Ala Thr Val Asp Leu Ser Lys Asn His 20 25 30 Gly Pro Ala Lys Ala Leu Gly Ser Gly Phe Ile Tyr Gly Trp Pro Asp 35 40 45 Asn Gly Thr Ser Val Asp Thr Ser Ile Pro Asp Phe Leu Val Thr Asp 50 55 60 Ile Lys Phe Asn Ser Asn Arg Gly Gly Gly Ala Gln Ile Pro Ser Leu 65 70 75 80 Gly Trp Ala Arg Gly Gly Tyr Glu Gly Tyr Leu Gly Arg Phe Asn Ser 85 90 95 Thr Leu Ser Asn Tyr Arg Thr Thr Arg Lys Tyr Asn Ala Asp Phe Ile 100 105 110 Leu Leu Pro His Asp Leu Trp Gly Ala Asp Gly Gly Gln Gly Ser Asn 115 120 125 Ser Pro Phe Pro Gly Asp Asn Gly Asn Trp Thr Glu Met Glu Leu Phe 130 135 140 Trp Asn Gln Leu Val Ser Asp Leu Lys Ala His Asn Met Leu Glu Gly 145 150 155 160 Leu Val Ile Asp Val Trp Asn Glu Pro Asp Ile Asp Ile Phe Trp Asp 165 170 175 Arg Pro Trp Ser Gln Phe Leu Glu Tyr Tyr Asn Arg Ala Thr Lys Leu 180 185 190 Leu Arg Lys Thr Leu Pro Lys Thr Leu Leu Ser Gly Pro Ala Met Ala 195 200 205 His Ser Pro Ile Leu Ser Asp Asp Lys Trp His Thr Trp Leu Gln Ser 210 215 220 Val Ala Gly Asn Lys Thr Val Pro Asp Ile Tyr Ser Trp His Gln Ile 225 230 235 240 Gly Ala Trp Glu Arg Glu Pro Asp Ser Thr Ile Pro Asp Phe Thr Thr 245 250 255 Leu Arg Ala Gln Tyr Gly Val Pro Glu Lys Pro Ile Asp Val Asn Glu 260 265 270 Tyr Ala Ala Arg Asp Glu Gln Asn Pro Ala Asn Ser Val Tyr Tyr Leu 275 280 285 Ser Gln Leu Glu Arg His Asn Leu Arg Gly Leu Arg Ala Asn Trp Gly 290 295 300 Ser Gly Ser Asp Leu His Asn Trp Met Gly Asn Leu Ile Tyr Ser Thr 305 310 315 320 Thr Gly Thr Ser Glu Gly Thr Tyr Tyr Pro Asn Gly Glu Trp Gln Ala 325 330 335 Tyr Lys Tyr Tyr Ala Ala Met Ala Gly Gln Arg Leu Val Thr Lys Ala 340 345 350 Ser Ser Asp Leu Lys Phe Asp Val Phe Ala Thr Lys Gln Gly Arg Lys 355 360 365 Ile Lys Ile Ile Ala Gly Thr Arg Thr Val Gln Ala Lys Tyr Asn Ile 370 375 380 Lys Ile Ser Gly Leu Glu Val Ala Gly Leu Pro Lys Met Gly Thr Val 385 390 395 400 Lys Val Arg Thr Tyr Arg Phe Asp Trp Ala Gly Pro Asn Gly Lys Val 405 410 415 Asp Gly Pro Val Asp Leu Gly Glu Lys Lys Tyr Thr Tyr Ser Ala Asn 420 425 430 Thr Val Ser Ser Pro Ser Thr 435 431350DNAFusarium verticillioides 43atgtggctga cctccccatt gctgttcgcc agcaccctcc tgggcctcac tggcgttgct 60ctagcagaca accccatcgt ccaagacatc tacaccgcag acccagcacc aatggtctac 120aatggccgcg tctacctctt cacaggccat gacaacgacg gctctaccga cttcaacatg 180acagactggc gtctcttctc gtcagcagac atggtcaact ggcagcacca tggtgtcccc 240atgagcttaa agaccttcag ctgggccaac agcagagcct gggctggtca agtcgttgcc 300cgaaacggaa agttttactt ctatgttcct gtccgtaatg ccaagacggg tggaatggct 360attggtgtcg gtgttagtac caacatcctt gggccctaca ctgatgccct tggaaagcca 420ttggtcgaga acaatgagat cgacccaact gtctacatcg acactgatgg ccaggcctat 480ctctactggg gcaaccctgg attgtactac gtcaagctca accaagacat gctctcctac 540agtggtagca tcaacaaagt atcgctcaca acagctggat tcggcagccg cccgaacaac 600gcgcagcgtc ctactacttt cgaggaagga ccgtggctgt acaagcgtgg aaatctctac 660tacatgatct acgcagccaa ctgctgttcc gaggacattc gctactcaac tggacccagc 720gccactggac cttggactta ccgcggtgtc gtgatgaaca aggcgggtcg aagcttcacc 780aaccatcctg gcatcatcga ctttgagaac aactcgtact tcttttacca caatggcgct 840cttgatggag gtagcggtta tactcggtct gtggctgtcg agagcttcaa gtatggttcg 900gacggtctga tccccgagat caagatgact acgcaaggcc cagcgcagct caagtctctg 960aacccatatg tcaagcagga ggccgagact atcgcctggt ctgagggtat cgagactgag 1020gtctgcagcg aaggtggtct caacgttgct ttcatcgaca atggtgacta catcaaggtc 1080aagggagtcg actttggcag caccggtgca aagacgttca gcgcccgtgt tgcttccaac 1140agcagcggag gcaagattga gcttcgactt ggtagcaaga ccggtaagtt ggttggtacc 1200tgcacggtaa cgactacggg aaactggcag acttataaga ctgtggattg ccccgtcagt 1260ggtgctactg gtacgagcga tctattcttt gtcttcacgg gctctgggtc tggctctctg 1320ttcaacttca actggtggca gtttagctaa 135044449PRTFusarium verticillioides 44Met Trp Leu Thr Ser Pro Leu Leu Phe Ala Ser Thr Leu Leu Gly Leu 1 5 10 15 Thr Gly Val Ala Leu Ala Asp Asn Pro Ile Val Gln Asp Ile Tyr Thr 20 25 30 Ala Asp Pro Ala Pro Met Val Tyr Asn Gly Arg Val Tyr Leu Phe Thr 35 40 45 Gly His Asp Asn Asp Gly Ser Thr Asp Phe Asn Met Thr Asp Trp Arg 50 55 60 Leu Phe Ser Ser Ala Asp Met Val Asn Trp Gln His His Gly Val Pro 65 70 75 80 Met Ser Leu Lys Thr Phe Ser Trp Ala Asn Ser Arg Ala Trp Ala Gly 85 90 95 Gln Val Val Ala Arg Asn Gly Lys Phe Tyr Phe Tyr Val Pro Val Arg 100 105 110 Asn Ala Lys Thr Gly Gly Met Ala Ile Gly Val Gly Val Ser Thr Asn 115 120 125 Ile Leu Gly Pro Tyr Thr Asp Ala Leu Gly Lys Pro Leu Val Glu Asn 130 135 140 Asn Glu Ile Asp Pro Thr Val Tyr Ile Asp Thr Asp Gly Gln Ala Tyr 145 150 155 160 Leu Tyr Trp Gly Asn Pro Gly Leu Tyr Tyr Val Lys Leu Asn Gln Asp 165 170 175 Met Leu Ser Tyr Ser Gly Ser Ile Asn Lys Val Ser Leu Thr Thr Ala 180 185 190 Gly Phe Gly Ser Arg Pro Asn Asn Ala Gln Arg Pro Thr Thr Phe Glu 195 200 205 Glu Gly Pro Trp Leu Tyr Lys Arg Gly Asn Leu Tyr Tyr Met Ile Tyr 210 215 220 Ala Ala Asn Cys Cys Ser Glu Asp Ile Arg Tyr Ser Thr Gly Pro Ser 225 230 235 240 Ala Thr Gly Pro Trp Thr Tyr Arg Gly Val Val Met Asn Lys Ala Gly 245 250 255 Arg Ser Phe Thr Asn His Pro Gly Ile Ile Asp Phe Glu Asn Asn Ser 260 265 270 Tyr Phe Phe Tyr His Asn Gly Ala Leu Asp Gly Gly Ser Gly Tyr Thr 275 280 285 Arg Ser Val Ala Val Glu Ser Phe Lys Tyr Gly Ser Asp Gly Leu Ile 290 295 300 Pro Glu Ile Lys Met Thr Thr Gln Gly Pro Ala Gln Leu Lys Ser Leu 305 310 315 320 Asn Pro Tyr Val Lys Gln Glu Ala Glu Thr Ile Ala Trp Ser Glu Gly 325 330 335 Ile Glu Thr Glu Val Cys Ser Glu Gly Gly Leu Asn Val Ala Phe Ile 340 345 350 Asp Asn Gly Asp Tyr Ile Lys Val Lys Gly Val Asp Phe Gly Ser Thr 355 360 365 Gly Ala Lys Thr Phe Ser Ala Arg Val Ala Ser Asn Ser Ser Gly Gly 370 375 380 Lys Ile Glu Leu Arg Leu Gly Ser Lys Thr Gly Lys Leu Val Gly Thr 385 390 395 400 Cys Thr Val Thr Thr Thr Gly Asn Trp Gln Thr Tyr Lys Thr Val Asp 405 410 415 Cys Pro Val Ser Gly Ala Thr Gly Thr Ser Asp Leu Phe Phe Val Phe 420 425 430 Thr Gly Ser Gly Ser Gly Ser Leu Phe Asn Phe Asn Trp Trp Gln Phe 435 440 445 Ser 451725DNAFusarium verticillioides 45atgcgcttct cttggctatt gtgccccctt ctagcgatgg gaagtgctct tcctgaaacg 60aagacggatg tttcgacata caccaaccct gtccttccag gatggcactc ggatccatcg 120tgtatccaga aagatggcct ctttctctgc gtcacttcaa cattcatctc cttcccaggt 180cttcccgtct atgcctcaag ggatctagtc aactggcgtc tcatcagcca tgtctggaac 240cgcgagaaac agttgcctgg cattagctgg aagacggcag gacagcaaca gggaatgtat 300gcaccaacca ttcgatacca caagggaaca tactacgtca tctgcgaata cctgggcgtt 360ggagatatta ttggtgtcat cttcaagacc accaatccgt gggacgagag tagctggagt 420gaccctgtta ccttcaagcc aaatcacatc gaccccgatc tgttctggga tgatgacgga 480aaggtttatt gtgctaccca tggcatcact ctgcaggaga ttgatttgga aactggagag 540cttagcccgg agcttaatat ctggaacggc acaggaggtg tatggcctga gggtccccat 600atctacaagc gcgacggtta ctactatctc atgattgccg agggtggaac tgccgaagac 660cacgctatca caatcgctcg ggcccgcaag atcaccggcc cctatgaagc ctacaataac 720aacccaatct tgaccaaccg cgggacatct gagtacttcc agactgtcgg tcacggtgat 780ctgttccaag ataccaaggg caactggtgg ggtctttgtc ttgctactcg catcacagca 840cagggagttt cacccatggg ccgtgaagct gttttgttca atggcacatg gaacaagggc 900gaatggccca agttgcaacc agtacgaggt cgcatgcctg gaaacctcct cccaaagccg 960acgcgaaacg ttcccggaga tgggcccttc aacgctgacc cagacaacta caacttgaag 1020aagactaaga agatccctcc tcactttgtg caccatagag tcccaagaga cggtgccttc 1080tctttgtctt ccaagggtct gcacatcgtg cctagtcgaa acaacgttac cggtagtgtg 1140ttgccaggag atgagattga gctatcagga cagcgaggtc tagctttcat cggacgccgc 1200caaactcaca ctctgttcaa atatagtgtt gatatcgact tcaagcccaa gtccgatgat 1260caggaagctg gaatcaccgt tttccgcacg cagttcgacc atatcgatct tggcattgtt 1320cgtcttccta caaaccaagg cagcaacaag aaatctaagc ttgccttccg attccgggcc 1380acaggagctc agaatgttcc tgcaccgaag gtagtaccgg tccccgatgg ctgggagaag 1440ggcgtaatca gtctacatat cgaggcagcc aacgcgacgc actacaacct tggagcttcg 1500agccacagag gcaagactct cgacatcgcg acagcatcag caagtcttgt gagtggaggc 1560acgggttcat ttgttggtag tttgcttgga ccttatgcta cctgcaacgg caaaggatct 1620ggagtggaat gtcccaaggg aggtgatgtc tatgtgaccc aatggactta taagcccgtg 1680gcacaagaga ttgatcatgg tgtttttgtg aaatcagaat tgtag 172546574PRTFusarium verticillioides 46Met Arg Phe Ser Trp Leu Leu Cys Pro Leu Leu Ala Met Gly Ser Ala 1 5 10 15 Leu Pro Glu Thr Lys Thr Asp Val Ser Thr Tyr Thr Asn Pro Val Leu 20 25 30 Pro Gly Trp His Ser Asp Pro Ser Cys Ile Gln Lys Asp Gly Leu Phe 35 40 45 Leu Cys Val Thr Ser Thr Phe Ile Ser Phe Pro Gly Leu Pro Val Tyr 50 55 60 Ala Ser Arg Asp Leu Val Asn Trp Arg Leu Ile Ser His Val Trp Asn 65 70 75 80 Arg Glu Lys Gln Leu Pro Gly Ile Ser Trp Lys Thr Ala Gly Gln Gln 85 90 95 Gln Gly Met Tyr Ala Pro Thr Ile Arg Tyr His Lys Gly Thr Tyr Tyr 100 105 110 Val Ile Cys Glu Tyr Leu Gly Val Gly Asp Ile Ile Gly Val Ile Phe 115 120 125 Lys Thr Thr Asn Pro Trp Asp Glu Ser Ser Trp Ser Asp Pro Val Thr 130 135 140 Phe Lys Pro Asn His Ile Asp Pro Asp Leu Phe Trp Asp Asp Asp Gly 145 150 155 160 Lys Val Tyr Cys Ala Thr His Gly Ile Thr Leu Gln Glu Ile Asp Leu 165 170 175 Glu Thr Gly Glu Leu Ser Pro Glu Leu Asn Ile Trp Asn Gly Thr Gly 180 185 190 Gly Val Trp Pro Glu Gly Pro His Ile Tyr Lys Arg Asp Gly Tyr Tyr 195 200 205 Tyr Leu Met Ile Ala Glu Gly Gly Thr Ala Glu Asp His Ala Ile Thr 210 215 220 Ile Ala Arg Ala Arg Lys Ile Thr Gly Pro Tyr Glu Ala Tyr Asn Asn 225 230 235 240 Asn Pro Ile Leu Thr Asn Arg Gly Thr Ser Glu Tyr Phe Gln Thr Val 245 250 255 Gly His Gly Asp Leu Phe Gln Asp Thr Lys Gly Asn Trp Trp Gly Leu 260 265 270 Cys Leu Ala Thr Arg Ile Thr Ala Gln Gly Val Ser Pro Met Gly Arg 275 280 285 Glu Ala Val Leu Phe Asn Gly Thr Trp Asn Lys Gly Glu Trp Pro Lys 290 295 300 Leu Gln Pro Val Arg Gly Arg Met Pro Gly Asn Leu Leu Pro Lys Pro 305 310 315 320 Thr Arg Asn Val Pro Gly Asp Gly Pro Phe Asn Ala Asp Pro Asp Asn 325 330 335 Tyr Asn Leu Lys Lys Thr Lys Lys Ile Pro Pro His Phe Val His His 340 345 350 Arg Val Pro Arg Asp Gly Ala Phe Ser Leu Ser Ser Lys Gly Leu His 355 360 365 Ile Val Pro Ser Arg Asn Asn Val Thr Gly Ser Val Leu Pro Gly Asp 370 375 380 Glu Ile Glu Leu Ser Gly Gln Arg Gly Leu Ala Phe Ile Gly Arg Arg 385 390 395 400 Gln Thr His Thr Leu Phe Lys Tyr Ser Val Asp Ile Asp Phe Lys Pro 405 410 415 Lys Ser Asp Asp Gln Glu Ala Gly Ile Thr Val Phe Arg Thr Gln Phe 420 425 430 Asp His Ile Asp Leu Gly Ile Val Arg Leu Pro Thr Asn Gln Gly Ser 435 440 445 Asn Lys Lys Ser Lys Leu Ala Phe Arg Phe Arg Ala Thr Gly Ala Gln 450 455 460

Asn Val Pro Ala Pro Lys Val Val Pro Val Pro Asp Gly Trp Glu Lys 465 470 475 480 Gly Val Ile Ser Leu His Ile Glu Ala Ala Asn Ala Thr His Tyr Asn 485 490 495 Leu Gly Ala Ser Ser His Arg Gly Lys Thr Leu Asp Ile Ala Thr Ala 500 505 510 Ser Ala Ser Leu Val Ser Gly Gly Thr Gly Ser Phe Val Gly Ser Leu 515 520 525 Leu Gly Pro Tyr Ala Thr Cys Asn Gly Lys Gly Ser Gly Val Glu Cys 530 535 540 Pro Lys Gly Gly Asp Val Tyr Val Thr Gln Trp Thr Tyr Lys Pro Val 545 550 555 560 Ala Gln Glu Ile Asp His Gly Val Phe Val Lys Ser Glu Leu 565 570 472251DNAPodospora anserina 47atgatccacc tcaagccagc cctcgcggcg ttgttggcgc tgtcgacgca atgtgtggct 60attgatttgt ttgtcaagtc ttcggggggg aataagacga ctgatatcat gtatggtctt 120atgcacgagg tatgtgtttt gcgagatctc ccttttgttt ttgcgcactg ctgacatgga 180gactgcaaac aggatatcaa caactccggc gacggcggca tctacgccga gctaatctcc 240aaccgcgcgt tccaagggag tgagaagttc ccctccaacc tcgacaactg gagccccgtc 300ggtggcgcta cccttaccct tcagaagctt gccaagcccc tttcctctgc gttgccttac 360tccgtcaatg ttgccaaccc caaggagggc aagggcaagg gcaaggacac caaggggaag 420aaggttggct tggccaatgc tgggttttgg ggtatggatg tcaagaggca gaagtacact 480ggtagcttcc acgttactgg tgagtacaag ggtgactttg aggttagctt gcgcagcgcg 540attaccgggg agacctttgg caagaaggtg gtgaagggtg ggagtaagaa ggggaagtgg 600accgagaagg agtttgagtt ggtgcctttc aaggatgcgc ccaacagcaa caacaccttt 660gttgtgcagt gggatgccga ggtatgtgct tctttgatat tggctgagat agaagttggg 720ttgacatgat gtggtgcagg gcgcaaagga cggatctttg gatctcaact tgatcagctt 780gttccctccg acattcaagg gaaggaagaa tgggctgaga attgatcttg cgcagacgat 840ggttgagctc aagccggtaa gtcctctcta gtcagaaaag tagagccttt gttaacgctt 900gacagacctt cttgcgcttc cccggtggca acatgctcga gggtaacacc ttggacactt 960ggtggaagtg gtacgagacc attggccctc tgaaggatcg cccgggcatg gctggtgtct 1020gggagtacca gcaaaccctt ggcttgggtc tggtcgagta catggagtgg gccgatgaca 1080tgaacttgga gcccagtatg tgatcccatt ttctggagtg acttctcttg ctaacgtatc 1140cacagttgtc ggtgtcttcg ctggtcttgc cctcgatggc tcgttcgttc ccgaatccga 1200gatgggatgg gtcatccaac aggctctcga cgaaatcgag ttcctcactg gcgatgctaa 1260gaccaccaaa tggggtgccg tccgcgcgaa gcttggtcac cccaagcctt ggaaggtcaa 1320gtgggttgag atcggtaacg aggattggct tgccggacgc cctgctggct tcgagtcgta 1380catcaactac cgcttcccca tgatgatgaa ggccttcaac gaaaagtacc ccgacatcaa 1440gatcatcgcc tcgccctcca tcttcgacaa catgacaatc cccgcgggtg ctgccggtga 1500tcaccacccg tacctgactc ccgatgagtt cgttgagcga ttcgccaagt tcgataactt 1560gagcaaggat aacgtgacgc tcatcggcga ggctgcgtcg acgcatccta acggtggtat 1620cgcttgggag ggagatctca tgcccttgcc ttggtggggc ggcagtgttg ctgaggctat 1680cttcttgatc agcactgaga gaaacggtga caagatcatc ggtgctactt acgcgcctgg 1740tcttcgcagc ttggaccgct ggcaatggag catgacctgg gtgcagcatg ccgccgaccc 1800ggccctcacc actcgctcga ccagttggta tgtctggaga atcctcgccc accacatcat 1860ccgtgagacg ctcccggtcg atgccccggc cggcaagccc aactttgacc ctctgttcta 1920cgttgccgga aagagcgaga gtggcaccgg tatcttcaag gctgccgtct acaactcgac 1980tgaatcgatc ccggtgtcgt tgaagtttga tggtctcaac gagggagcgg ttgccaactt 2040gacggtgctt actgggccgg aggatccgta tggatacaac gaccccttca ctggtatcaa 2100tgttgtcaag gagaagacca ccttcatcaa ggccggaaag ggcggcaagt tcaccttcac 2160cctgccgggc ttgagtgttg ctgtgttgga gacggccgac gcggtcaagg gtggcaaggg 2220aaagggcaag ggcaagggaa agggtaactg a 225148676PRTPodospora anserina 48Met Ile His Leu Lys Pro Ala Leu Ala Ala Leu Leu Ala Leu Ser Thr 1 5 10 15 Gln Cys Val Ala Ile Asp Leu Phe Val Lys Ser Ser Gly Gly Asn Lys 20 25 30 Thr Thr Asp Ile Met Tyr Gly Leu Met His Glu Asp Ile Asn Asn Ser 35 40 45 Gly Asp Gly Gly Ile Tyr Ala Glu Leu Ile Ser Asn Arg Ala Phe Gln 50 55 60 Gly Ser Glu Lys Phe Pro Ser Asn Leu Asp Asn Trp Ser Pro Val Gly 65 70 75 80 Gly Ala Thr Leu Thr Leu Gln Lys Leu Ala Lys Pro Leu Ser Ser Ala 85 90 95 Leu Pro Tyr Ser Val Asn Val Ala Asn Pro Lys Glu Gly Lys Gly Lys 100 105 110 Gly Lys Asp Thr Lys Gly Lys Lys Val Gly Leu Ala Asn Ala Gly Phe 115 120 125 Trp Gly Met Asp Val Lys Arg Gln Lys Tyr Thr Gly Ser Phe His Val 130 135 140 Thr Gly Glu Tyr Lys Gly Asp Phe Glu Val Ser Leu Arg Ser Ala Ile 145 150 155 160 Thr Gly Glu Thr Phe Gly Lys Lys Val Val Lys Gly Gly Ser Lys Lys 165 170 175 Gly Lys Trp Thr Glu Lys Glu Phe Glu Leu Val Pro Phe Lys Asp Ala 180 185 190 Pro Asn Ser Asn Asn Thr Phe Val Val Gln Trp Asp Ala Glu Gly Ala 195 200 205 Lys Asp Gly Ser Leu Asp Leu Asn Leu Ile Ser Leu Phe Pro Pro Thr 210 215 220 Phe Lys Gly Arg Lys Asn Gly Leu Arg Ile Asp Leu Ala Gln Thr Met 225 230 235 240 Val Glu Leu Lys Pro Thr Phe Leu Arg Phe Pro Gly Gly Asn Met Leu 245 250 255 Glu Gly Asn Thr Leu Asp Thr Trp Trp Lys Trp Tyr Glu Thr Ile Gly 260 265 270 Pro Leu Lys Asp Arg Pro Gly Met Ala Gly Val Trp Glu Tyr Gln Gln 275 280 285 Thr Leu Gly Leu Gly Leu Val Glu Tyr Met Glu Trp Ala Asp Asp Met 290 295 300 Asn Leu Glu Pro Ile Val Gly Val Phe Ala Gly Leu Ala Leu Asp Gly 305 310 315 320 Ser Phe Val Pro Glu Ser Glu Met Gly Trp Val Ile Gln Gln Ala Leu 325 330 335 Asp Glu Ile Glu Phe Leu Thr Gly Asp Ala Lys Thr Thr Lys Trp Gly 340 345 350 Ala Val Arg Ala Lys Leu Gly His Pro Lys Pro Trp Lys Val Lys Trp 355 360 365 Val Glu Ile Gly Asn Glu Asp Trp Leu Ala Gly Arg Pro Ala Gly Phe 370 375 380 Glu Ser Tyr Ile Asn Tyr Arg Phe Pro Met Met Met Lys Ala Phe Asn 385 390 395 400 Glu Lys Tyr Pro Asp Ile Lys Ile Ile Ala Ser Pro Ser Ile Phe Asp 405 410 415 Asn Met Thr Ile Pro Ala Gly Ala Ala Gly Asp His His Pro Tyr Leu 420 425 430 Thr Pro Asp Glu Phe Val Glu Arg Phe Ala Lys Phe Asp Asn Leu Ser 435 440 445 Lys Asp Asn Val Thr Leu Ile Gly Glu Ala Ala Ser Thr His Pro Asn 450 455 460 Gly Gly Ile Ala Trp Glu Gly Asp Leu Met Pro Leu Pro Trp Trp Gly 465 470 475 480 Gly Ser Val Ala Glu Ala Ile Phe Leu Ile Ser Thr Glu Arg Asn Gly 485 490 495 Asp Lys Ile Ile Gly Ala Thr Tyr Ala Pro Gly Leu Arg Ser Leu Asp 500 505 510 Arg Trp Gln Trp Ser Met Thr Trp Val Gln His Ala Ala Asp Pro Ala 515 520 525 Leu Thr Thr Arg Ser Thr Ser Trp Tyr Val Trp Arg Ile Leu Ala His 530 535 540 His Ile Ile Arg Glu Thr Leu Pro Val Asp Ala Pro Ala Gly Lys Pro 545 550 555 560 Asn Phe Asp Pro Leu Phe Tyr Val Ala Gly Lys Ser Glu Ser Gly Thr 565 570 575 Gly Ile Phe Lys Ala Ala Val Tyr Asn Ser Thr Glu Ser Ile Pro Val 580 585 590 Ser Leu Lys Phe Asp Gly Leu Asn Glu Gly Ala Val Ala Asn Leu Thr 595 600 605 Val Leu Thr Gly Pro Glu Asp Pro Tyr Gly Tyr Asn Asp Pro Phe Thr 610 615 620 Gly Ile Asn Val Val Lys Glu Lys Thr Thr Phe Ile Lys Ala Gly Lys 625 630 635 640 Gly Gly Lys Phe Thr Phe Thr Leu Pro Gly Leu Ser Val Ala Val Leu 645 650 655 Glu Thr Ala Asp Ala Val Lys Gly Gly Lys Gly Lys Gly Lys Gly Lys 660 665 670 Gly Lys Gly Asn 675 491023DNAGibberella zeae 49atgaagtcca agttgttatt cccactcctc tctttcgttg gtcaaagtct tgccaccaac 60gacgactgtc ctctcatcac tagtagatgg actgcggatc cttcggctca tgtctttaac 120gacaccttgt ggctctaccc gtctcatgac atcgatgctg gatttgagaa tgatcctgat 180ggaggccagt acgccatgag agattaccat gtctactcta tcgacaagat ctacggttcc 240ctgccggtcg atcacggtac ggccctgtca gtggaggatg tcccctgggc ctctcgacag 300atgtgggctc ctgacgctgc ccacaagaac ggcaaatact acctatactt ccctgccaaa 360gacaaggatg atatcttcag aatcggcgtt gctgtctcac caacccccgg cggaccattc 420gtccccgaca agagttggat ccctcacact ttcagcatcg accccgccag tttcgtcgat 480gatgatgaca gagcctactt ggcatggggt ggtatcatgg gtggccagct tcaacgatgg 540caggataaga acaagtacaa cgaatctggc actgagccag gaaacggcac cgctgccttg 600agccctcaga ttgccaagct gagcaaggac atgcacactc tggcagagaa gcctcgcgac 660atgctcattc ttgaccccaa gactggcaag ccgctccttt ctgaggatga agaccgacgc 720ttcttcgaag gaccctggat tcacaagcgc aacaagattt actacctcac ctactctact 780ggcacaaccc actatcttgt ctatgcgact tcaaagaccc cctatggtcc ttacacctac 840cagggcagaa ttctggagcc agttgatggc tggactactc actctagtat cgtcaagtac 900cagggtcagt ggtggctatt ttatcacgat gccaagacat ctggcaagga ctatcttcgc 960caggtaaagg ctaagaagat ttggtacgat agcaaaggaa agatcttgac aaagaagcct 1020tga 102350340PRTGibberella zeae 50Met Lys Ser Lys Leu Leu Phe Pro Leu Leu Ser Phe Val Gly Gln Ser 1 5 10 15 Leu Ala Thr Asn Asp Asp Cys Pro Leu Ile Thr Ser Arg Trp Thr Ala 20 25 30 Asp Pro Ser Ala His Val Phe Asn Asp Thr Leu Trp Leu Tyr Pro Ser 35 40 45 His Asp Ile Asp Ala Gly Phe Glu Asn Asp Pro Asp Gly Gly Gln Tyr 50 55 60 Ala Met Arg Asp Tyr His Val Tyr Ser Ile Asp Lys Ile Tyr Gly Ser 65 70 75 80 Leu Pro Val Asp His Gly Thr Ala Leu Ser Val Glu Asp Val Pro Trp 85 90 95 Ala Ser Arg Gln Met Trp Ala Pro Asp Ala Ala His Lys Asn Gly Lys 100 105 110 Tyr Tyr Leu Tyr Phe Pro Ala Lys Asp Lys Asp Asp Ile Phe Arg Ile 115 120 125 Gly Val Ala Val Ser Pro Thr Pro Gly Gly Pro Phe Val Pro Asp Lys 130 135 140 Ser Trp Ile Pro His Thr Phe Ser Ile Asp Pro Ala Ser Phe Val Asp 145 150 155 160 Asp Asp Asp Arg Ala Tyr Leu Ala Trp Gly Gly Ile Met Gly Gly Gln 165 170 175 Leu Gln Arg Trp Gln Asp Lys Asn Lys Tyr Asn Glu Ser Gly Thr Glu 180 185 190 Pro Gly Asn Gly Thr Ala Ala Leu Ser Pro Gln Ile Ala Lys Leu Ser 195 200 205 Lys Asp Met His Thr Leu Ala Glu Lys Pro Arg Asp Met Leu Ile Leu 210 215 220 Asp Pro Lys Thr Gly Lys Pro Leu Leu Ser Glu Asp Glu Asp Arg Arg 225 230 235 240 Phe Phe Glu Gly Pro Trp Ile His Lys Arg Asn Lys Ile Tyr Tyr Leu 245 250 255 Thr Tyr Ser Thr Gly Thr Thr His Tyr Leu Val Tyr Ala Thr Ser Lys 260 265 270 Thr Pro Tyr Gly Pro Tyr Thr Tyr Gln Gly Arg Ile Leu Glu Pro Val 275 280 285 Asp Gly Trp Thr Thr His Ser Ser Ile Val Lys Tyr Gln Gly Gln Trp 290 295 300 Trp Leu Phe Tyr His Asp Ala Lys Thr Ser Gly Lys Asp Tyr Leu Arg 305 310 315 320 Gln Val Lys Ala Lys Lys Ile Trp Tyr Asp Ser Lys Gly Lys Ile Leu 325 330 335 Thr Lys Lys Pro 340 511047DNAFusarium oxysporum 51atgcagctca agtttctgtc ttcagcattg ctgttctctc tgaccagcaa atgcgctgcg 60caagacacta atgacattcc tcccctgatc accgacctct ggtccgcaga tccctcggct 120catgttttcg aaggcaagct ctgggtttac ccatctcacg acatcgaagc caatgttgtc 180aacggcacag gaggcgctca atacgccatg agggattacc atacctactc catgaagagc 240atctatggta aagatcccgt tgtcgaccac ggcgtcgctc tctcagtcga tgacgttccc 300tgggcgaagc agcaaatgtg ggctcctgac gcagctcata agaacggcaa atattatctg 360tacttccccg ccaaggacaa ggatgagatc ttcagaattg gagttgctgt ctccaacaag 420cccagcggtc ctttcaaggc cgacaagagc tggatccctg gcacgtacag tatcgatcct 480gctagctacg tcgacactga taacgaggcc tacctcatct ggggcggtat ctggggcggc 540cagctccaag cctggcagga taaaaagaac tttaacgagt cgtggattgg agacaaggct 600gctcctaacg gcaccaatgc cctatctcct cagatcgcca agctaagcaa ggacatgcac 660aagatcaccg aaacaccccg cgatctcgtc attctcgccc ccgagacagg caagcctctt 720caggctgagg acaacaagcg acgattcttc gagggccctt ggatccacaa gcgcggcaag 780ctttactacc tcatgtactc caccggtgat acccacttcc ttgtctacgc tacttccaag 840aacatctacg gtccttatac ctaccggggc aagattcttg atcctgttga tgggtggact 900actcatggaa gtattgttga gtataaggga cagtggtggc ttttctttgc tgatgcgcat 960acgtctggta aggattacct tcgacaggtg aaggcgagga agatctggta tgacaagaac 1020ggcaagatct tgcttcaccg tccttag 104752348PRTFusarium oxysporum 52Met Gln Leu Lys Phe Leu Ser Ser Ala Leu Leu Phe Ser Leu Thr Ser 1 5 10 15 Lys Cys Ala Ala Gln Asp Thr Asn Asp Ile Pro Pro Leu Ile Thr Asp 20 25 30 Leu Trp Ser Ala Asp Pro Ser Ala His Val Phe Glu Gly Lys Leu Trp 35 40 45 Val Tyr Pro Ser His Asp Ile Glu Ala Asn Val Val Asn Gly Thr Gly 50 55 60 Gly Ala Gln Tyr Ala Met Arg Asp Tyr His Thr Tyr Ser Met Lys Ser 65 70 75 80 Ile Tyr Gly Lys Asp Pro Val Val Asp His Gly Val Ala Leu Ser Val 85 90 95 Asp Asp Val Pro Trp Ala Lys Gln Gln Met Trp Ala Pro Asp Ala Ala 100 105 110 His Lys Asn Gly Lys Tyr Tyr Leu Tyr Phe Pro Ala Lys Asp Lys Asp 115 120 125 Glu Ile Phe Arg Ile Gly Val Ala Val Ser Asn Lys Pro Ser Gly Pro 130 135 140 Phe Lys Ala Asp Lys Ser Trp Ile Pro Gly Thr Tyr Ser Ile Asp Pro 145 150 155 160 Ala Ser Tyr Val Asp Thr Asp Asn Glu Ala Tyr Leu Ile Trp Gly Gly 165 170 175 Ile Trp Gly Gly Gln Leu Gln Ala Trp Gln Asp Lys Lys Asn Phe Asn 180 185 190 Glu Ser Trp Ile Gly Asp Lys Ala Ala Pro Asn Gly Thr Asn Ala Leu 195 200 205 Ser Pro Gln Ile Ala Lys Leu Ser Lys Asp Met His Lys Ile Thr Glu 210 215 220 Thr Pro Arg Asp Leu Val Ile Leu Ala Pro Glu Thr Gly Lys Pro Leu 225 230 235 240 Gln Ala Glu Asp Asn Lys Arg Arg Phe Phe Glu Gly Pro Trp Ile His 245 250 255 Lys Arg Gly Lys Leu Tyr Tyr Leu Met Tyr Ser Thr Gly Asp Thr His 260 265 270 Phe Leu Val Tyr Ala Thr Ser Lys Asn Ile Tyr Gly Pro Tyr Thr Tyr 275 280 285 Arg Gly Lys Ile Leu Asp Pro Val Asp Gly Trp Thr Thr His Gly Ser 290 295 300 Ile Val Glu Tyr Lys Gly Gln Trp Trp Leu Phe Phe Ala Asp Ala His 305 310 315 320 Thr Ser Gly Lys Asp Tyr Leu Arg Gln Val Lys Ala Arg Lys Ile Trp 325 330 335 Tyr Asp Lys Asn Gly Lys Ile Leu Leu His Arg Pro 340 345 531677DNAAspergillus fumigatus 53atggcagctc caagtttatc ctaccccaca ggtatccaat cgtataccaa tcctctcttc 60cctggttggc actccgatcc cagctgtgcc tacgtagcgg agcaagacac ctttttctgc 120gtgacgtcca ctttcattgc cttccccggt cttcctcttt atgcaagccg agatctgcag 180aactggaaac tggcaagcaa tattttcaat cggcccagcc agatccctga tcttcgcgtc 240acggatggac agcagtcggg tatctatgcg cccactctgc gctatcatga gggccagttc 300tacttgatcg tttcgtacct gggcccgcag actaagggct tgctgttcac ctcgtctgat 360ccgtacgacg atgccgcgtg gagcgatccg ctcgaattcg cggtacatgg catcgacccg 420gatatcttct gggatcacga cgggacggtc tatgtcacgt ccgccgagga ccagatgatt 480aagcagtaca cactcgatct gaagacgggg gcgattggcc cggttgacta cctctggaac 540ggcaccggag gagtctggcc cgagggcccg cacatttaca agagagacgg atactactac 600ctcatgatcg cagagggagg taccgagctc ggccactcgg agaccatggc gcgatctaga 660acccggacag gtccctggga gccatacccg cacaatccgc tcttgtcgaa caagggcacc 720tcggagtact tccagactgt gggccatgcg gacttgttcc aggatgggaa cggcaactgg 780tgggccgtgg

cgttgagcac ccgatcaggg cctgcatgga agaactatcc catgggtcgg 840gagacggtgc tcgcccccgc cgcttgggag aagggtgagt ggcctgtcat tcagcctgtg 900agaggccaaa tgcaggggcc gtttccacca ccaaataagc gagttcctcg cggcgagggc 960ggatggatca agcaacccga caaagtggat ttcaggcccg gatcgaagat accggcgcac 1020ttccagtact ggcgatatcc caagacagag gattttaccg tctcccctcg gggccacccg 1080aatactcttc ggctcacacc ctccttttac aacctcaccg gaactgcgga cttcaagccg 1140gatgatggcc tgtcgcttgt tatgcgcaaa cagaccgaca ccttgttcac gtacactgtg 1200gacgtgtctt ttgaccccaa ggttgccgat gaagaggcgg gtgtgactgt tttccttacc 1260cagcagcagc acatcgatct tggtattgtc cttctccaga caaccgaggg gctgtcgttg 1320tccttccggt tccgcgtgga aggccgcggt aactacgaag gtcctcttcc agaagccacc 1380gtgcctgttc ccaaggaatg gtgtggacag accatccggc ttgagattca ggccgtgagt 1440gacaccgagt atgtctttgc ggctgccccg gctcggcacc ctgcacagag gcaaatcatc 1500agccgcgcca actcgttgat tgtcagtggt gatacgggac ggtttactgg ctcgcttgtt 1560ggcgtgtatg ccacgtcgaa cgggggtgcc ggatccacgc ccgcatatat cagcagatgg 1620agatacgaag gacggggcca gatgattgat tttggtcgag tggtcccgag ctactga 167754558PRTAspergillus fumigatus 54Met Ala Ala Pro Ser Leu Ser Tyr Pro Thr Gly Ile Gln Ser Tyr Thr 1 5 10 15 Asn Pro Leu Phe Pro Gly Trp His Ser Asp Pro Ser Cys Ala Tyr Val 20 25 30 Ala Glu Gln Asp Thr Phe Phe Cys Val Thr Ser Thr Phe Ile Ala Phe 35 40 45 Pro Gly Leu Pro Leu Tyr Ala Ser Arg Asp Leu Gln Asn Trp Lys Leu 50 55 60 Ala Ser Asn Ile Phe Asn Arg Pro Ser Gln Ile Pro Asp Leu Arg Val 65 70 75 80 Thr Asp Gly Gln Gln Ser Gly Ile Tyr Ala Pro Thr Leu Arg Tyr His 85 90 95 Glu Gly Gln Phe Tyr Leu Ile Val Ser Tyr Leu Gly Pro Gln Thr Lys 100 105 110 Gly Leu Leu Phe Thr Ser Ser Asp Pro Tyr Asp Asp Ala Ala Trp Ser 115 120 125 Asp Pro Leu Glu Phe Ala Val His Gly Ile Asp Pro Asp Ile Phe Trp 130 135 140 Asp His Asp Gly Thr Val Tyr Val Thr Ser Ala Glu Asp Gln Met Ile 145 150 155 160 Lys Gln Tyr Thr Leu Asp Leu Lys Thr Gly Ala Ile Gly Pro Val Asp 165 170 175 Tyr Leu Trp Asn Gly Thr Gly Gly Val Trp Pro Glu Gly Pro His Ile 180 185 190 Tyr Lys Arg Asp Gly Tyr Tyr Tyr Leu Met Ile Ala Glu Gly Gly Thr 195 200 205 Glu Leu Gly His Ser Glu Thr Met Ala Arg Ser Arg Thr Arg Thr Gly 210 215 220 Pro Trp Glu Pro Tyr Pro His Asn Pro Leu Leu Ser Asn Lys Gly Thr 225 230 235 240 Ser Glu Tyr Phe Gln Thr Val Gly His Ala Asp Leu Phe Gln Asp Gly 245 250 255 Asn Gly Asn Trp Trp Ala Val Ala Leu Ser Thr Arg Ser Gly Pro Ala 260 265 270 Trp Lys Asn Tyr Pro Met Gly Arg Glu Thr Val Leu Ala Pro Ala Ala 275 280 285 Trp Glu Lys Gly Glu Trp Pro Val Ile Gln Pro Val Arg Gly Gln Met 290 295 300 Gln Gly Pro Phe Pro Pro Pro Asn Lys Arg Val Pro Arg Gly Glu Gly 305 310 315 320 Gly Trp Ile Lys Gln Pro Asp Lys Val Asp Phe Arg Pro Gly Ser Lys 325 330 335 Ile Pro Ala His Phe Gln Tyr Trp Arg Tyr Pro Lys Thr Glu Asp Phe 340 345 350 Thr Val Ser Pro Arg Gly His Pro Asn Thr Leu Arg Leu Thr Pro Ser 355 360 365 Phe Tyr Asn Leu Thr Gly Thr Ala Asp Phe Lys Pro Asp Asp Gly Leu 370 375 380 Ser Leu Val Met Arg Lys Gln Thr Asp Thr Leu Phe Thr Tyr Thr Val 385 390 395 400 Asp Val Ser Phe Asp Pro Lys Val Ala Asp Glu Glu Ala Gly Val Thr 405 410 415 Val Phe Leu Thr Gln Gln Gln His Ile Asp Leu Gly Ile Val Leu Leu 420 425 430 Gln Thr Thr Glu Gly Leu Ser Leu Ser Phe Arg Phe Arg Val Glu Gly 435 440 445 Arg Gly Asn Tyr Glu Gly Pro Leu Pro Glu Ala Thr Val Pro Val Pro 450 455 460 Lys Glu Trp Cys Gly Gln Thr Ile Arg Leu Glu Ile Gln Ala Val Ser 465 470 475 480 Asp Thr Glu Tyr Val Phe Ala Ala Ala Pro Ala Arg His Pro Ala Gln 485 490 495 Arg Gln Ile Ile Ser Arg Ala Asn Ser Leu Ile Val Ser Gly Asp Thr 500 505 510 Gly Arg Phe Thr Gly Ser Leu Val Gly Val Tyr Ala Thr Ser Asn Gly 515 520 525 Gly Ala Gly Ser Thr Pro Ala Tyr Ile Ser Arg Trp Arg Tyr Glu Gly 530 535 540 Arg Gly Gln Met Ile Asp Phe Gly Arg Val Val Pro Ser Tyr 545 550 555 552320DNAPenicillium funiculosum 55atgggaaaga tgtggcattc gatcttggtt gtgttgggct tattgtctgt cgggcatgcc 60atcactatca acgtgtccca aagtggcggc aataagacca gtcctttgca atatggtctg 120atgttcgagg taatccttct cttataccac atataaaagt tgcgtcattt ctaagacaag 180tcaaggacat aaatcacggc ggtgatggcg gtctgtatgc agagcttgtt cgaaaccgag 240cattccaagg tagcaccgtc tatccagcaa acctcgatgg atacgactcg gtcaatggag 300caatcctagc gcttcagaat ttgacaaacc ctctatcacc ctccatgcct agctctctca 360acgtcgccaa ggggtccaac aatggaagca tcggtttcgc aaatgaaggc tggtggggga 420tagaagtcaa gccgcaaaga tacgcgggct cattctacgt ccagggggac tatcaaggag 480atttcgacat ctctcttcag tcgaaattga cacaagaagt cttcgcaacg gcaaaagtca 540ggtcctcggg caaacacgag gactgggttc aatacaagta cgagttggtg cccaaaaagg 600cagcatcaaa caccaataac actctgacca ttacttttga ctcaaaggta tgttaaattt 660tgggtttagt tcgatgtctg gcaattgtct tacgagaaac gtagggattg aaagacggat 720ccttgaactt caacttgatc agcctatttc ccccaactta caacaatcgg cccaatggcc 780taagaatcga cctggttgaa gctatggctg aactagaggg ggtaagctct tacaaatcaa 840ctttatcttt acgaagacta atgtgaaaac ttagaaattt ctgcggtttc caggcggtag 900cgatgtggaa ggtgtacaag ctccttactg gtataagtgg aatgaaacgg taggagatct 960caaggaccgt tatagtaggc ccagtgcatg gacgtacgaa gaaagcaatg gaattggctt 1020gattgagtac atgaattggt gtgatgacat ggggcttgag ccgagtgagt gtattccatt 1080cagcgtcaaa tccagtgttc taatcataca catcagttct tgccgtatgg gatggacatt 1140acctttcgaa cgaagtgata tcggaaaacg atttgcagcc atatatcgac gacaccctca 1200accaactgga attcctgatg ggtgccccag atacgccata tggtagttgg cgtgcgtctc 1260tgggctatcc gaagccgtgg acgattaact acgtcgagat tggaaacgaa gacaatctat 1320acgggggact agaaacatac atcgcctacc ggtttcaggc atattacgac gctataacag 1380ctaaatatcc ccatatgacg gtcatggaat ctttgacgga gatgcctggt ccggcggccg 1440ctgcaagcga ttaccatcaa tattctactc ctgatgggtt tgtttcccag ttcaactact 1500ttgatcagat gccagtcact aatagaacac tgaacggtat gaaaaccccc ccttttttaa 1560atatgctttt aatggtatta accatctttc ataggagaga ttgcaaccgt ttatccaaat 1620aatcctagta attcggtggc ctggggaagc ccattcccct tgtatccttg gtggattggg 1680tccgttgcag aagctgtttt cctaattggt gaagagagga attcgccaaa gataatcggt 1740gctagctacg tacggaattc tacttttcga gattttaaca ttggataaga aggactaacc 1800tcaatacagg ctccaatgtt cagaaatatc aacaattggc agtggtctcc aacactcatc 1860gcttttgacg ctgactcgtc gcgtacaagt cgttcaacaa gctggcatgt gatcaaggta 1920tgctaatttt cctcctcatt caaacccgca gatgtgagct aactttccga agcttctctc 1980gacaaacaaa atcacgcaaa atttacccac gacttggagt ggcggtgaca taggtccatt 2040atactgggta gctggacgaa acgacaatac aggatcgaac atattcaagg ccgctgttta 2100caacagcacc tcagacgtcc ctgtcaccgt tcaatttgca ggatgcaacg caaagagcgc 2160aaatttgacc atcttgtcat ccgacgatcc gaacgcatcg aactaccctg gggggcccga 2220agttgtgaag actgagatcc agtctgtcac tgcaaatgct catggagcat ttgagttcag 2280tctcccgaac ctaagtgtgg ctgttctcaa aacggagtaa 232056642PRTPenicillium funiculosum 56Met Gly Lys Met Trp His Ser Ile Leu Val Val Leu Gly Leu Leu Ser 1 5 10 15 Val Gly His Ala Ile Thr Ile Asn Val Ser Gln Ser Gly Gly Asn Lys 20 25 30 Thr Ser Pro Leu Gln Tyr Gly Leu Met Phe Glu Asp Ile Asn His Gly 35 40 45 Gly Asp Gly Gly Leu Tyr Ala Glu Leu Val Arg Asn Arg Ala Phe Gln 50 55 60 Gly Ser Thr Val Tyr Pro Ala Asn Leu Asp Gly Tyr Asp Ser Val Asn 65 70 75 80 Gly Ala Ile Leu Ala Leu Gln Asn Leu Thr Asn Pro Leu Ser Pro Ser 85 90 95 Met Pro Ser Ser Leu Asn Val Ala Lys Gly Ser Asn Asn Gly Ser Ile 100 105 110 Gly Phe Ala Asn Glu Gly Trp Trp Gly Ile Glu Val Lys Pro Gln Arg 115 120 125 Tyr Ala Gly Ser Phe Tyr Val Gln Gly Asp Tyr Gln Gly Asp Phe Asp 130 135 140 Ile Ser Leu Gln Ser Lys Leu Thr Gln Glu Val Phe Ala Thr Ala Lys 145 150 155 160 Val Arg Ser Ser Gly Lys His Glu Asp Trp Val Gln Tyr Lys Tyr Glu 165 170 175 Leu Val Pro Lys Lys Ala Ala Ser Asn Thr Asn Asn Thr Leu Thr Ile 180 185 190 Thr Phe Asp Ser Lys Gly Leu Lys Asp Gly Ser Leu Asn Phe Asn Leu 195 200 205 Ile Ser Leu Phe Pro Pro Thr Tyr Asn Asn Arg Pro Asn Gly Leu Arg 210 215 220 Ile Asp Leu Val Glu Ala Met Ala Glu Leu Glu Gly Lys Phe Leu Arg 225 230 235 240 Phe Pro Gly Gly Ser Asp Val Glu Gly Val Gln Ala Pro Tyr Trp Tyr 245 250 255 Lys Trp Asn Glu Thr Val Gly Asp Leu Lys Asp Arg Tyr Ser Arg Pro 260 265 270 Ser Ala Trp Thr Tyr Glu Glu Ser Asn Gly Ile Gly Leu Ile Glu Tyr 275 280 285 Met Asn Trp Cys Asp Asp Met Gly Leu Glu Pro Ile Leu Ala Val Trp 290 295 300 Asp Gly His Tyr Leu Ser Asn Glu Val Ile Ser Glu Asn Asp Leu Gln 305 310 315 320 Pro Tyr Ile Asp Asp Thr Leu Asn Gln Leu Glu Phe Leu Met Gly Ala 325 330 335 Pro Asp Thr Pro Tyr Gly Ser Trp Arg Ala Ser Leu Gly Tyr Pro Lys 340 345 350 Pro Trp Thr Ile Asn Tyr Val Glu Ile Gly Asn Glu Asp Asn Leu Tyr 355 360 365 Gly Gly Leu Glu Thr Tyr Ile Ala Tyr Arg Phe Gln Ala Tyr Tyr Asp 370 375 380 Ala Ile Thr Ala Lys Tyr Pro His Met Thr Val Met Glu Ser Leu Thr 385 390 395 400 Glu Met Pro Gly Pro Ala Ala Ala Ala Ser Asp Tyr His Gln Tyr Ser 405 410 415 Thr Pro Asp Gly Phe Val Ser Gln Phe Asn Tyr Phe Asp Gln Met Pro 420 425 430 Val Thr Asn Arg Thr Leu Asn Gly Glu Ile Ala Thr Val Tyr Pro Asn 435 440 445 Asn Pro Ser Asn Ser Val Ala Trp Gly Ser Pro Phe Pro Leu Tyr Pro 450 455 460 Trp Trp Ile Gly Ser Val Ala Glu Ala Val Phe Leu Ile Gly Glu Glu 465 470 475 480 Arg Asn Ser Pro Lys Ile Ile Gly Ala Ser Tyr Ala Pro Met Phe Arg 485 490 495 Asn Ile Asn Asn Trp Gln Trp Ser Pro Thr Leu Ile Ala Phe Asp Ala 500 505 510 Asp Ser Ser Arg Thr Ser Arg Ser Thr Ser Trp His Val Ile Lys Leu 515 520 525 Leu Ser Thr Asn Lys Ile Thr Gln Asn Leu Pro Thr Thr Trp Ser Gly 530 535 540 Gly Asp Ile Gly Pro Leu Tyr Trp Val Ala Gly Arg Asn Asp Asn Thr 545 550 555 560 Gly Ser Asn Ile Phe Lys Ala Ala Val Tyr Asn Ser Thr Ser Asp Val 565 570 575 Pro Val Thr Val Gln Phe Ala Gly Cys Asn Ala Lys Ser Ala Asn Leu 580 585 590 Thr Ile Leu Ser Ser Asp Asp Pro Asn Ala Ser Asn Tyr Pro Gly Gly 595 600 605 Pro Glu Val Val Lys Thr Glu Ile Gln Ser Val Thr Ala Asn Ala His 610 615 620 Gly Ala Phe Glu Phe Ser Leu Pro Asn Leu Ser Val Ala Val Leu Lys 625 630 635 640 Thr Glu 57739DNAAspergillus fumigatus 57atggtttctt tctcctacct gctgctggcg tgctccgcca ttggagctct ggctgccccc 60gtcgaacccg agaccacctc gttcaatgag actgctcttc atgagttcgc tgagcgcgcc 120ggcaccccaa gctccaccgg ctggaacaac ggctactact actccttctg gactgatggc 180ggcggcgacg tgacctacac caatggcgcc ggtggctcgt actccgtcaa ctggaggaac 240gtgggcaact ttgtcggtgg aaagggctgg aaccctggaa gcgctaggta ccgagctttg 300tcaacgtcgg atgtgcagac ctgtggctga cagaagtaga accatcaact acggaggcag 360cttcaacccc agcggcaatg gctacctggc tgtctacggc tggaccacca accccttgat 420tgagtactac gttgttgagt cgtatggtac atacaacccc ggcagcggcg gtaccttcag 480gggcactgtc aacaccgacg gtggcactta caacatctac acggccgttc gctacaatgc 540tccctccatc gaaggcacca agaccttcac ccagtactgg tctgtgcgca cctccaagcg 600taccggcggc actgtcacca tggccaacca cttcaacgcc tggagcagac tgggcatgaa 660cctgggaact cacaactacc agattgtcgc cactgagggt taccagagca gcggatctgc 720ttccatcact gtctactag 73958228PRTAspergillus fumigatus 58Met Val Ser Phe Ser Tyr Leu Leu Leu Ala Cys Ser Ala Ile Gly Ala 1 5 10 15 Leu Ala Ala Pro Val Glu Pro Glu Thr Thr Ser Phe Asn Glu Thr Ala 20 25 30 Leu His Glu Phe Ala Glu Arg Ala Gly Thr Pro Ser Ser Thr Gly Trp 35 40 45 Asn Asn Gly Tyr Tyr Tyr Ser Phe Trp Thr Asp Gly Gly Gly Asp Val 50 55 60 Thr Tyr Thr Asn Gly Ala Gly Gly Ser Tyr Ser Val Asn Trp Arg Asn 65 70 75 80 Val Gly Asn Phe Val Gly Gly Lys Gly Trp Asn Pro Gly Ser Ala Arg 85 90 95 Thr Ile Asn Tyr Gly Gly Ser Phe Asn Pro Ser Gly Asn Gly Tyr Leu 100 105 110 Ala Val Tyr Gly Trp Thr Thr Asn Pro Leu Ile Glu Tyr Tyr Val Val 115 120 125 Glu Ser Tyr Gly Thr Tyr Asn Pro Gly Ser Gly Gly Thr Phe Arg Gly 130 135 140 Thr Val Asn Thr Asp Gly Gly Thr Tyr Asn Ile Tyr Thr Ala Val Arg 145 150 155 160 Tyr Asn Ala Pro Ser Ile Glu Gly Thr Lys Thr Phe Thr Gln Tyr Trp 165 170 175 Ser Val Arg Thr Ser Lys Arg Thr Gly Gly Thr Val Thr Met Ala Asn 180 185 190 His Phe Asn Ala Trp Ser Arg Leu Gly Met Asn Leu Gly Thr His Asn 195 200 205 Tyr Gln Ile Val Ala Thr Glu Gly Tyr Gln Ser Ser Gly Ser Ala Ser 210 215 220 Ile Thr Val Tyr 225 591002DNAAspergillus fumigatus 59atgatctcca tttcctcgct cagctttgga ctcgccgcta tcgccggcgc atatgctctt 60ccgagtgaca aatccgtcag cttagcggaa cgtcagacga tcacgaccag ccagacaggc 120acaaacaatg gctactacta ttccttctgg accaacggtg ccggatcagt gcaatataca 180aatggtgctg gtggcgaata tagtgtgacg tgggcgaacc agaacggtgg tgactttacc 240tgtgggaagg gctggaatcc agggagtgac cagtaggcaa cgcccgagaa ctatagaaga 300ggacgcaaag aaagcactaa actctctact agtgacatta ccttctctgg cagcttcaat 360ccttccggaa atgcttacct gtccgtgtat ggatggacta ccaaccccct agtcgaatac 420tacatcctcg agaactatgg cagttacaat cctggctcgg gcatgacgca caagggcacc 480gtcaccagcg atggatccac ctacgacatc tatgagcacc aacaggtcaa ccagccttcg 540atcgtcggca cggccacctt caaccaatac tggtccatcc gccaaaacaa gcgatccagc 600ggcacagtca ccaccgcgaa tcacttcaag gcctgggcta gtctggggat gaacctgggt 660acccataact atcagattgt ttccactgag ggatatgaga gcagcggtac ctcgaccatc 720actgtctcgt ctggtggttc ttcttctggt ggaagtggtg gcagctcgtc tactacttcc 780tcaggcagct cccctactgg tggctccggc agtgtaagtc ttcttccata tggttgtggc 840tttatgtgta ttctgactgt gatagtgctc tgctttgtgg ggccagtgcg gtggaattgg 900ctggtctggt cctacttgct gctcttcggg cacttgccag gtttcgaact cgtactactc 960ccagtgcttg tagtaccttc ttgcagggtt atatccaagt ga 100260286PRTAspergillus fumigatus 60Met Ile Ser Ile Ser Ser Leu Ser Phe Gly Leu Ala Ala Ile Ala Gly 1 5 10 15 Ala Tyr Ala Leu Pro Ser Asp Lys Ser Val Ser Leu Ala Glu Arg Gln 20 25 30 Thr Ile Thr Thr Ser Gln Thr Gly Thr Asn Asn Gly Tyr Tyr Tyr Ser 35 40 45 Phe Trp Thr Asn Gly Ala Gly Ser Val Gln Tyr Thr Asn Gly Ala Gly 50 55 60 Gly Glu Tyr Ser Val Thr Trp Ala Asn Gln Asn Gly Gly Asp Phe Thr 65

70 75 80 Cys Gly Lys Gly Trp Asn Pro Gly Ser Asp His Asp Ile Thr Phe Ser 85 90 95 Gly Ser Phe Asn Pro Ser Gly Asn Ala Tyr Leu Ser Val Tyr Gly Trp 100 105 110 Thr Thr Asn Pro Leu Val Glu Tyr Tyr Ile Leu Glu Asn Tyr Gly Ser 115 120 125 Tyr Asn Pro Gly Ser Gly Met Thr His Lys Gly Thr Val Thr Ser Asp 130 135 140 Gly Ser Thr Tyr Asp Ile Tyr Glu His Gln Gln Val Asn Gln Pro Ser 145 150 155 160 Ile Val Gly Thr Ala Thr Phe Asn Gln Tyr Trp Ser Ile Arg Gln Asn 165 170 175 Lys Arg Ser Ser Gly Thr Val Thr Thr Ala Asn His Phe Lys Ala Trp 180 185 190 Ala Ser Leu Gly Met Asn Leu Gly Thr His Asn Tyr Gln Ile Val Ser 195 200 205 Thr Glu Gly Tyr Glu Ser Ser Gly Thr Ser Thr Ile Thr Val Ser Ser 210 215 220 Gly Gly Ser Ser Ser Gly Gly Ser Gly Gly Ser Ser Ser Thr Thr Ser 225 230 235 240 Ser Gly Ser Ser Pro Thr Gly Gly Ser Gly Ser Cys Ser Ala Leu Trp 245 250 255 Gly Gln Cys Gly Gly Ile Gly Trp Ser Gly Pro Thr Cys Cys Ser Ser 260 265 270 Gly Thr Cys Gln Val Ser Asn Ser Tyr Tyr Ser Gln Cys Leu 275 280 285 611053DNAFusarium verticillioides 61atgcagctca agtttctgtc ttcagcattg ttgctgtctt tgaccggcaa ttgcgctgcg 60caagacacta atgatatccc tcctctgatc accgacctct ggtctgcgga tccctcggct 120catgttttcg agggcaaact ctgggtttac ccatctcacg acatcgaagc caatgtcgtc 180aacggcaccg gaggcgctca gtacgccatg agagattatc acacctattc catgaagacc 240atctatggaa aagatcccgt tatcgaccat ggcgtcgctc tgtcagtcga tgatgtccca 300tgggccaagc agcaaatgtg ggctcctgac gcagcttaca agaacggcaa atattatctc 360tacttccccg ccaaggataa agatgagatc ttcagaattg gagttgctgt ctccaacaag 420cccagcggtc ctttcaaggc cgacaagagc tggatccccg gtacttacag tatcgatcct 480gctagctatg tcgacactaa tggcgaggca tacctcatct ggggcggtat ctggggcggc 540cagcttcagg cctggcagga tcacaagacc tttaatgagt cgtggctcgg cgacaaagct 600gctcccaacg gcaccaacgc cctatctcct cagatcgcca agctaagcaa ggacatgcac 660aagatcaccg agacaccccg cgatctcgtc atcctggccc ccgagacagg caagcccctt 720caagcagagg acaataagcg acgatttttc gaggggccct gggttcacaa gcgcggcaag 780ctgtactacc tcatgtactc taccggcgac acgcacttcc tcgtctacgc gacttccaag 840aacatctacg gtccttatac ctatcagggc aagattctcg accctgttga tgggtggact 900acgcatggaa gtattgttga gtacaaggga cagtggtggt tgttctttgc ggatgcgcat 960acttctggaa aggattatct gagacaggtt aaggcgagga agatctggta tgacaaggat 1020ggcaagattt tgcttactcg tcctaagatt tag 105362350PRTFusarium verticillioides 62Met Gln Leu Lys Phe Leu Ser Ser Ala Leu Leu Leu Ser Leu Thr Gly 1 5 10 15 Asn Cys Ala Ala Gln Asp Thr Asn Asp Ile Pro Pro Leu Ile Thr Asp 20 25 30 Leu Trp Ser Ala Asp Pro Ser Ala His Val Phe Glu Gly Lys Leu Trp 35 40 45 Val Tyr Pro Ser His Asp Ile Glu Ala Asn Val Val Asn Gly Thr Gly 50 55 60 Gly Ala Gln Tyr Ala Met Arg Asp Tyr His Thr Tyr Ser Met Lys Thr 65 70 75 80 Ile Tyr Gly Lys Asp Pro Val Ile Asp His Gly Val Ala Leu Ser Val 85 90 95 Asp Asp Val Pro Trp Ala Lys Gln Gln Met Trp Ala Pro Asp Ala Ala 100 105 110 Tyr Lys Asn Gly Lys Tyr Tyr Leu Tyr Phe Pro Ala Lys Asp Lys Asp 115 120 125 Glu Ile Phe Arg Ile Gly Val Ala Val Ser Asn Lys Pro Ser Gly Pro 130 135 140 Phe Lys Ala Asp Lys Ser Trp Ile Pro Gly Thr Tyr Ser Ile Asp Pro 145 150 155 160 Ala Ser Tyr Val Asp Thr Asn Gly Glu Ala Tyr Leu Ile Trp Gly Gly 165 170 175 Ile Trp Gly Gly Gln Leu Gln Ala Trp Gln Asp His Lys Thr Phe Asn 180 185 190 Glu Ser Trp Leu Gly Asp Lys Ala Ala Pro Asn Gly Thr Asn Ala Leu 195 200 205 Ser Pro Gln Ile Ala Lys Leu Ser Lys Asp Met His Lys Ile Thr Glu 210 215 220 Thr Pro Arg Asp Leu Val Ile Leu Ala Pro Glu Thr Gly Lys Pro Leu 225 230 235 240 Gln Ala Glu Asp Asn Lys Arg Arg Phe Phe Glu Gly Pro Trp Val His 245 250 255 Lys Arg Gly Lys Leu Tyr Tyr Leu Met Tyr Ser Thr Gly Asp Thr His 260 265 270 Phe Leu Val Tyr Ala Thr Ser Lys Asn Ile Tyr Gly Pro Tyr Thr Tyr 275 280 285 Gln Gly Lys Ile Leu Asp Pro Val Asp Gly Trp Thr Thr His Gly Ser 290 295 300 Ile Val Glu Tyr Lys Gly Gln Trp Trp Leu Phe Phe Ala Asp Ala His 305 310 315 320 Thr Ser Gly Lys Asp Tyr Leu Arg Gln Val Lys Ala Arg Lys Ile Trp 325 330 335 Tyr Asp Lys Asp Gly Lys Ile Leu Leu Thr Arg Pro Lys Ile 340 345 350 631031DNAPenicillium funiculosum 63atgagtcgca gcatccttcc gtacgcctct gttttcgccc tcctgggcgg ggctatcgcc 60gaaccgtttt tggttctcaa tagcgatttt cccgatccca gtctcataga gacatccagc 120ggatactatg cattcggtac caccggaaac ggagtcaatg cgcaggttgc ttcttcacca 180gactttaata cctggacttt gctttccggc acagatgccc tcccgggacc atttccgtca 240tgggtagctt cgtctccaca aatctgggcg ccagatgttt tggttaaggt atgttcttat 300ggaataacag ttttaggagt aggtcagcca ggatattgac aaaattataa taggccgatg 360gtacctatgt catgtacttt tcggcatctg ctgcgagtga ctcgggcaaa cactgcgttg 420gtgccgcaac tgcgacctca ccggaaggac cttacacccc ggtcgatagc gctgttgcct 480gtccattaga ccagggagga gctattgatg ccaatggatt tattgacacc gacggcacta 540tatacgttgt atacaaaatt gatggaaaca gtctagacgg tgatggaacc acacatccta 600cccccatcat gcttcaacaa atggaggcag acggaacaac cccaaccggc agcccaatcc 660aactcattga ccgatccgac ctcgacggac ctttgatcga ggctcctagt ttgctcctct 720ccaatggaat ctactacctc agtttctctt ccaactacta caacactaat tactacgaca 780cttcatacgc ctatgcctcg tcgattactg gtccttggac caaacaatct gcgccttatg 840cacccttgtt ggttactgga accgagacta gcaatgacgg cgcattgagc gcccctggtg 900gtgccgattt ctccgtcgat ggcaccaaga tgttgttcca cgcaaacctc aatggacaag 960atatctcggg cggacgcgcc ttatttgctg cgtcaattac tgaggccagc gatgtggtta 1020cattgcagta g 103164321PRTPenicillium funiculosum 64Met Ser Arg Ser Ile Leu Pro Tyr Ala Ser Val Phe Ala Leu Leu Gly 1 5 10 15 Gly Ala Ile Ala Glu Pro Phe Leu Val Leu Asn Ser Asp Phe Pro Asp 20 25 30 Pro Ser Leu Ile Glu Thr Ser Ser Gly Tyr Tyr Ala Phe Gly Thr Thr 35 40 45 Gly Asn Gly Val Asn Ala Gln Val Ala Ser Ser Pro Asp Phe Asn Thr 50 55 60 Trp Thr Leu Leu Ser Gly Thr Asp Ala Leu Pro Gly Pro Phe Pro Ser 65 70 75 80 Trp Val Ala Ser Ser Pro Gln Ile Trp Ala Pro Asp Val Leu Val Lys 85 90 95 Ala Asp Gly Thr Tyr Val Met Tyr Phe Ser Ala Ser Ala Ala Ser Asp 100 105 110 Ser Gly Lys His Cys Val Gly Ala Ala Thr Ala Thr Ser Pro Glu Gly 115 120 125 Pro Tyr Thr Pro Val Asp Ser Ala Val Ala Cys Pro Leu Asp Gln Gly 130 135 140 Gly Ala Ile Asp Ala Asn Gly Phe Ile Asp Thr Asp Gly Thr Ile Tyr 145 150 155 160 Val Val Tyr Lys Ile Asp Gly Asn Ser Leu Asp Gly Asp Gly Thr Thr 165 170 175 His Pro Thr Pro Ile Met Leu Gln Gln Met Glu Ala Asp Gly Thr Thr 180 185 190 Pro Thr Gly Ser Pro Ile Gln Leu Ile Asp Arg Ser Asp Leu Asp Gly 195 200 205 Pro Leu Ile Glu Ala Pro Ser Leu Leu Leu Ser Asn Gly Ile Tyr Tyr 210 215 220 Leu Ser Phe Ser Ser Asn Tyr Tyr Asn Thr Asn Tyr Tyr Asp Thr Ser 225 230 235 240 Tyr Ala Tyr Ala Ser Ser Ile Thr Gly Pro Trp Thr Lys Gln Ser Ala 245 250 255 Pro Tyr Ala Pro Leu Leu Val Thr Gly Thr Glu Thr Ser Asn Asp Gly 260 265 270 Ala Leu Ser Ala Pro Gly Gly Ala Asp Phe Ser Val Asp Gly Thr Lys 275 280 285 Met Leu Phe His Ala Asn Leu Asn Gly Gln Asp Ile Ser Gly Gly Arg 290 295 300 Ala Leu Phe Ala Ala Ser Ile Thr Glu Ala Ser Asp Val Val Thr Leu 305 310 315 320 Gln 652186DNAFusarium verticillioides 65atggttcgct tcagttcaat cctagcggct gcggcttgct tcgtggctgt tgagtcagtc 60aacatcaagg tcgacagcaa gggcggaaac gctactagcg gtcaccaata tggcttcctt 120cacgaggttg gtattgacac accactggcg atgattggga tgctaacttg gagctaggat 180atcaacaatt ccggtgatgg tggcatctac gctgagctca tccgcaatcg tgctttccag 240tacagcaaga aataccctgt ttctctatct ggctggagac ccatcaacga tgctaagctc 300tccctcaacc gtctcgacac tcctctctcc gacgctctcc ccgtttccat gaacgtgaag 360cctggaaagg gcaaggccaa ggagattggt ttcctcaacg agggttactg gggaatggat 420gtcaagaagc aaaagtacac tggctctttc tgggttaagg gcgcttacaa gggccacttt 480acagcttctt tgcgatctaa ccttaccgac gatgtctttg gcagcgtcaa ggtcaagtcc 540aaggccaaca agaagcagtg ggttgagcat gagtttgtgc ttactcctaa caagaatgcc 600cctaacagca acaacacttt tgctatcacc tacgatccca aggtgagtaa caatcaaaac 660tgggacgtga tgtatactga caatttgtag ggcgctgatg gagctcttga cttcaacctc 720attagcttgt tccctcccac ctacaagggc cgcaagaacg gtcttcgagt tgatcttgcc 780gaggctctcg aaggtctcca ccccgtaagg tttaccgtct cacgtgtatc gtgaacagtc 840gctgacttgt agaaaagagc ctgctgcgct tccccggtgg taacatgctc gagggcaaca 900ccaacaagac ctggtgggac tggaaggata ccctcggacc tctccgcaac cgtcctggtt 960tcgagggtgt ctggaactac cagcagaccc atggtcttgg aatcttggag tacctccagt 1020gggctgagga catgaacctt gaaatcagta ggttctataa aattcagtga cggttatgtg 1080catgctaaca gatttcagtt gtcggtgtct acgctggcct ctccctcgac ggctccgtca 1140cccccaagga ccaactccag cccctcatcg acgacgcgct cgacgagatc gaattcatcc 1200gaggtcccgt cacttcaaag tggggaaaga agcgcgctga gctcggccac cccaagcctt 1260tcagactctc ctacgttgaa gtcggaaacg aggactggct cgctggttat cccactggct 1320ggaactctta caaggagtac cgcttcccca tgttcctcga ggctatcaag aaagctcacc 1380ccgatctcac cgtcatctcc tctggtgctt ctattgaccc cgttggtaag aaggatgctg 1440gtttcgatat tcctgctcct ggaatcggtg actaccaccc ttaccgcgag cctgatgttc 1500ttgttgagga gttcaacctg tttgataaca ataagtatgg tcacatcatt ggtgaggttg 1560cttctaccca ccccaacggt ggaactggct ggagtggtaa ccttatgcct tacccctggt 1620ggatctctgg tgttggcgag gccgtcgctc tctgcggtta tgagcgcaac gccgatcgta 1680ttcccggaac attctacgct cctatcctca agaacgagaa ccgttggcag tgggctatca 1740ccatgatcca attcgccgcc gactccgcca tgaccacccg ctccaccagc tggtatgtct 1800ggtcactctt cgcaggccac cccatgaccc atactctccc caccaccgcc gacttcgacc 1860ccctctacta cgtcgctggt aagaacgagg acaagggaac tcttatctgg aagggtgctg 1920cgtataacac caccaagggt gctgacgttc ccgtgtctct gtccttcaag ggtgtcaagc 1980ccggtgctca agctgagctt actcttctga ccaacaagga gaaggatcct tttgcgttca 2040atgatcctca caagggcaac aatgttgttg atactaagaa gactgttctc aaggccgatg 2100gaaagggtgc tttcaacttc aagcttccta acctgagcgt cgctgttctt gagaccctca 2160agaagggaaa gccttactct agctag 218666660PRTFusarium verticillioides 66Met Val Arg Phe Ser Ser Ile Leu Ala Ala Ala Ala Cys Phe Val Ala 1 5 10 15 Val Glu Ser Val Asn Ile Lys Val Asp Ser Lys Gly Gly Asn Ala Thr 20 25 30 Ser Gly His Gln Tyr Gly Phe Leu His Glu Asp Ile Asn Asn Ser Gly 35 40 45 Asp Gly Gly Ile Tyr Ala Glu Leu Ile Arg Asn Arg Ala Phe Gln Tyr 50 55 60 Ser Lys Lys Tyr Pro Val Ser Leu Ser Gly Trp Arg Pro Ile Asn Asp 65 70 75 80 Ala Lys Leu Ser Leu Asn Arg Leu Asp Thr Pro Leu Ser Asp Ala Leu 85 90 95 Pro Val Ser Met Asn Val Lys Pro Gly Lys Gly Lys Ala Lys Glu Ile 100 105 110 Gly Phe Leu Asn Glu Gly Tyr Trp Gly Met Asp Val Lys Lys Gln Lys 115 120 125 Tyr Thr Gly Ser Phe Trp Val Lys Gly Ala Tyr Lys Gly His Phe Thr 130 135 140 Ala Ser Leu Arg Ser Asn Leu Thr Asp Asp Val Phe Gly Ser Val Lys 145 150 155 160 Val Lys Ser Lys Ala Asn Lys Lys Gln Trp Val Glu His Glu Phe Val 165 170 175 Leu Thr Pro Asn Lys Asn Ala Pro Asn Ser Asn Asn Thr Phe Ala Ile 180 185 190 Thr Tyr Asp Pro Lys Gly Ala Asp Gly Ala Leu Asp Phe Asn Leu Ile 195 200 205 Ser Leu Phe Pro Pro Thr Tyr Lys Gly Arg Lys Asn Gly Leu Arg Val 210 215 220 Asp Leu Ala Glu Ala Leu Glu Gly Leu His Pro Ser Leu Leu Arg Phe 225 230 235 240 Pro Gly Gly Asn Met Leu Glu Gly Asn Thr Asn Lys Thr Trp Trp Asp 245 250 255 Trp Lys Asp Thr Leu Gly Pro Leu Arg Asn Arg Pro Gly Phe Glu Gly 260 265 270 Val Trp Asn Tyr Gln Gln Thr His Gly Leu Gly Ile Leu Glu Tyr Leu 275 280 285 Gln Trp Ala Glu Asp Met Asn Leu Glu Ile Ile Val Gly Val Tyr Ala 290 295 300 Gly Leu Ser Leu Asp Gly Ser Val Thr Pro Lys Asp Gln Leu Gln Pro 305 310 315 320 Leu Ile Asp Asp Ala Leu Asp Glu Ile Glu Phe Ile Arg Gly Pro Val 325 330 335 Thr Ser Lys Trp Gly Lys Lys Arg Ala Glu Leu Gly His Pro Lys Pro 340 345 350 Phe Arg Leu Ser Tyr Val Glu Val Gly Asn Glu Asp Trp Leu Ala Gly 355 360 365 Tyr Pro Thr Gly Trp Asn Ser Tyr Lys Glu Tyr Arg Phe Pro Met Phe 370 375 380 Leu Glu Ala Ile Lys Lys Ala His Pro Asp Leu Thr Val Ile Ser Ser 385 390 395 400 Gly Ala Ser Ile Asp Pro Val Gly Lys Lys Asp Ala Gly Phe Asp Ile 405 410 415 Pro Ala Pro Gly Ile Gly Asp Tyr His Pro Tyr Arg Glu Pro Asp Val 420 425 430 Leu Val Glu Glu Phe Asn Leu Phe Asp Asn Asn Lys Tyr Gly His Ile 435 440 445 Ile Gly Glu Val Ala Ser Thr His Pro Asn Gly Gly Thr Gly Trp Ser 450 455 460 Gly Asn Leu Met Pro Tyr Pro Trp Trp Ile Ser Gly Val Gly Glu Ala 465 470 475 480 Val Ala Leu Cys Gly Tyr Glu Arg Asn Ala Asp Arg Ile Pro Gly Thr 485 490 495 Phe Tyr Ala Pro Ile Leu Lys Asn Glu Asn Arg Trp Gln Trp Ala Ile 500 505 510 Thr Met Ile Gln Phe Ala Ala Asp Ser Ala Met Thr Thr Arg Ser Thr 515 520 525 Ser Trp Tyr Val Trp Ser Leu Phe Ala Gly His Pro Met Thr His Thr 530 535 540 Leu Pro Thr Thr Ala Asp Phe Asp Pro Leu Tyr Tyr Val Ala Gly Lys 545 550 555 560 Asn Glu Asp Lys Gly Thr Leu Ile Trp Lys Gly Ala Ala Tyr Asn Thr 565 570 575 Thr Lys Gly Ala Asp Val Pro Val Ser Leu Ser Phe Lys Gly Val Lys 580 585 590 Pro Gly Ala Gln Ala Glu Leu Thr Leu Leu Thr Asn Lys Glu Lys Asp 595 600 605 Pro Phe Ala Phe Asn Asp Pro His Lys Gly Asn Asn Val Val Asp Thr 610 615 620 Lys Lys Thr Val Leu Lys Ala Asp Gly Lys Gly Ala Phe Asn Phe Lys 625 630 635 640 Leu Pro Asn Leu Ser Val Ala Val Leu Glu Thr Leu Lys Lys Gly Lys 645 650 655 Pro Tyr Ser Ser 660 672312DNAChaetomium globosum 67atggcgcccc tttcgcttcg ggccctctcg ctgctcgcgc tcacaggagc cgcagccgcg 60gtgaccctat cggtcgcgaa ctctggcggt aatgatacgt ctccgtacat gtatggcatc 120atgttcgagg acatcaatca gagcggtgac ggcgggctgt aagttctgtc gcggcttccc 180ctgacaagct tgcatgatgc ttaactaaag tccttaggta cgccgagctg attcgcaacc 240gagccttcca taatagctcc ctccaggcct ggaccgccgt gggggacagc actctcgagg 300tcgtaacctc tgcaccgtta tcggatgccc tgcctcgctc ggtcaaggtc acgagtggaa 360agggcaaggc

gggcttgaag aatgccggct actggggaat ggacgtccag aagaccgaca 420agtatagcgg cagcttctac tcgtacggcg cctacgacgg aaagtttacc ctctctctgg 480tgtcggacat cacaaatgag accctggcca ccaccaagat caagtccagg tcggtggagc 540atgcctggac cgagcacaag ttcgagcttc tcccgaccaa gagcgcggcg aacagcaaca 600acagcttcgt gctggagttc cgcccctgcc accagacgga gctccagttc aacctcatca 660gcttgttccc gccgacgtat aagaacaggc ccaacggcat gcgccgagag ctcatggaga 720agctcgcaga cctcaagccc agtttccttc ggattccagg aggcaacaac ctgtaagtgc 780ttccggcgaa actagcagta gttgcctgag agacactaat ctcagcgaac aacagcgagg 840gcaactatgc tggcaactac tggaactggt caagcacact tggcccgctg accgaccggc 900ccggtcgtga cggcgtgtgg acgtacgcca acacggacgg catcgggctg gtcgagtaca 960tgcactgggc cgaggacctc gacgtggagg ttgtgctggc ggtcgccgca ggcctgtacc 1020tgaacggcga tgtggtcccg gaggaggagc tgcacgtctt cgtggaggat gcgctgaacg 1080agctcgagtt cctcatgggc gacgtctcga ccccttgggg cgcgcgccgc gctaagctcg 1140gctaccccaa gccgtggaac atcaagttcg tcgaggtcgg caacgaggac aacctgtggg 1200gcggcctcga ctcgtacaag agctaccggc tgaagacttt ctacgacgcc atcaaggcga 1260agtaccccga catctccatc ttttcgtcga ccgacgagtt tgtgtacaag gagtcgggcc 1320aggactacca caagtacacc cggccggact actccgtgtc ccagttcgac ctgtttgaca 1380actgggccga cggccacccc atcatcatcg gagagtgagt gaacggcgac ccccacctcc 1440ccctaacgcg ggatcgcgag ctgatagatc accccaggta tgcgaccatc cagaacaaca 1500cgggcaagct cgaggacacg gactgggacg cgcccaagaa caagtggtcc aactggatcg 1560gctccgtcgc cgaggccgtc ttcatcctcg gagccgagcg caacggcgac cgggtctggg 1620gcaccacctt tgcgccgatc ctccagaacc tcaacagcta ccaatgggct gtaagtacat 1680acatacatac cgcaccccca accccaaccc ccccaaagcg cacctccacc cacccaccca 1740aacacaccac aactacctag ctaacccgcc acacaaacaa acagcccgac ctaatctcct 1800tcaccgccaa cccggccgac accacgccca gcgtctcgta cccgatcatc cagctgctcg 1860cctcgcaccg catcacgcac accctccccg tcagcagcgc cgacgccttc ggcccggcct 1920actgggtggc cggtcgcggc gccgacgacg gctcgtacat cctcaaggcg gccgtgtaca 1980acagcacggg gggtgcggat gtaccggtga gggtgcagtt tgaggcgggg ggtggtggtg 2040gtggtggtgg tggtggtggt ggtggtggtg gtgatgggaa ggggaagggt aaagggaagg 2100gaggggaggg tggtgagggt gtgaagaagg gtgaccgcgc gcagttgacc gtgttgacgg 2160cgccggaggg gccctgggcg cataatacgc cggagaataa gggggcggtc aagacgacag 2220tgacgacgtt gaaggccggg aggggtgggg tgtttgagtt tagtctgccg gatttgtcgg 2280tggcggtgtt ggtggtggag ggggagaagt ga 231268670PRTChaetomium globosum 68Met Ala Pro Leu Ser Leu Arg Ala Leu Ser Leu Leu Ala Leu Thr Gly 1 5 10 15 Ala Ala Ala Ala Val Thr Leu Ser Val Ala Asn Ser Gly Gly Asn Asp 20 25 30 Thr Ser Pro Tyr Met Tyr Gly Ile Met Phe Glu Asp Ile Asn Gln Ser 35 40 45 Gly Asp Gly Gly Leu Tyr Ala Glu Leu Ile Arg Asn Arg Ala Phe His 50 55 60 Asn Ser Ser Leu Gln Ala Trp Thr Ala Val Gly Asp Ser Thr Leu Glu 65 70 75 80 Val Val Thr Ser Ala Pro Leu Ser Asp Ala Leu Pro Arg Ser Val Lys 85 90 95 Val Thr Ser Gly Lys Gly Lys Ala Gly Leu Lys Asn Ala Gly Tyr Trp 100 105 110 Gly Met Asp Val Gln Lys Thr Asp Lys Tyr Ser Gly Ser Phe Tyr Ser 115 120 125 Tyr Gly Ala Tyr Asp Gly Lys Phe Thr Leu Ser Leu Val Ser Asp Ile 130 135 140 Thr Asn Glu Thr Leu Ala Thr Thr Lys Ile Lys Ser Arg Ser Val Glu 145 150 155 160 His Ala Trp Thr Glu His Lys Phe Glu Leu Leu Pro Thr Lys Ser Ala 165 170 175 Ala Asn Ser Asn Asn Ser Phe Val Leu Glu Phe Arg Pro Cys His Gln 180 185 190 Thr Glu Leu Gln Phe Asn Leu Ile Ser Leu Phe Pro Pro Thr Tyr Lys 195 200 205 Asn Arg Pro Asn Gly Met Arg Arg Glu Leu Met Glu Lys Leu Ala Asp 210 215 220 Leu Lys Pro Ser Phe Leu Arg Ile Pro Gly Gly Asn Asn Leu Glu Gly 225 230 235 240 Asn Tyr Ala Gly Asn Tyr Trp Asn Trp Ser Ser Thr Leu Gly Pro Leu 245 250 255 Thr Asp Arg Pro Gly Arg Asp Gly Val Trp Thr Tyr Ala Asn Thr Asp 260 265 270 Gly Ile Gly Leu Val Glu Tyr Met His Trp Ala Glu Asp Leu Asp Val 275 280 285 Glu Val Val Leu Ala Val Ala Ala Gly Leu Tyr Leu Asn Gly Asp Val 290 295 300 Val Pro Glu Glu Glu Leu His Val Phe Val Glu Asp Ala Leu Asn Glu 305 310 315 320 Leu Glu Phe Leu Met Gly Asp Val Ser Thr Pro Trp Gly Ala Arg Arg 325 330 335 Ala Lys Leu Gly Tyr Pro Lys Pro Trp Asn Ile Lys Phe Val Glu Val 340 345 350 Gly Asn Glu Asp Asn Leu Trp Gly Gly Leu Asp Ser Tyr Lys Ser Tyr 355 360 365 Arg Leu Lys Thr Phe Tyr Asp Ala Ile Lys Ala Lys Tyr Pro Asp Ile 370 375 380 Ser Ile Phe Ser Ser Thr Asp Glu Phe Val Tyr Lys Glu Ser Gly Gln 385 390 395 400 Asp Tyr His Lys Tyr Thr Arg Pro Asp Tyr Ser Val Ser Gln Phe Asp 405 410 415 Leu Phe Asp Asn Trp Ala Asp Gly His Pro Ile Ile Ile Gly Glu Tyr 420 425 430 Ala Thr Ile Gln Asn Asn Thr Gly Lys Leu Glu Asp Thr Asp Trp Asp 435 440 445 Ala Pro Lys Asn Lys Trp Ser Asn Trp Ile Gly Ser Val Ala Glu Ala 450 455 460 Val Phe Ile Leu Gly Ala Glu Arg Asn Gly Asp Arg Val Trp Gly Thr 465 470 475 480 Thr Phe Ala Pro Ile Leu Gln Asn Leu Asn Ser Tyr Gln Trp Ala Pro 485 490 495 Asp Leu Ile Ser Phe Thr Ala Asn Pro Ala Asp Thr Thr Pro Ser Val 500 505 510 Ser Tyr Pro Ile Ile Gln Leu Leu Ala Ser His Arg Ile Thr His Thr 515 520 525 Leu Pro Val Ser Ser Ala Asp Ala Phe Gly Pro Ala Tyr Trp Val Ala 530 535 540 Gly Arg Gly Ala Asp Asp Gly Ser Tyr Ile Leu Lys Ala Ala Val Tyr 545 550 555 560 Asn Ser Thr Gly Gly Ala Asp Val Pro Val Arg Val Gln Phe Glu Ala 565 570 575 Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Asp 580 585 590 Gly Lys Gly Lys Gly Lys Gly Lys Gly Gly Glu Gly Gly Glu Gly Val 595 600 605 Lys Lys Gly Asp Arg Ala Gln Leu Thr Val Leu Thr Ala Pro Glu Gly 610 615 620 Pro Trp Ala His Asn Thr Pro Glu Asn Lys Gly Ala Val Lys Thr Thr 625 630 635 640 Val Thr Thr Leu Lys Ala Gly Arg Gly Gly Val Phe Glu Phe Ser Leu 645 650 655 Pro Asp Leu Ser Val Ala Val Leu Val Val Glu Gly Glu Lys 660 665 670 691002DNAFusarium verticillioides 69atgcgtcttc tatcgtttcc cagccatctc ctcgtggcct tcctaaccct caaagaggct 60tcatccctcg ccctcagcaa acgggatagc cctgtcctcc ccggcctctg ggcggacccc 120aacatcgcca tcgtcgacaa gacatactac atcttcccta ccaccgacgg tttcgaaggc 180tggggcggca acgtcttcta ctggtggaaa tcaaaagatc tcgtatcatg gacaaagagc 240gacaagccat tccttactct caatggtacg aatggcaacg ttccctgggc tacaggtaat 300gcctgggctc ctgctttcgc tgctcgcgga ggcaagtatt acttctacca tagtgggaat 360aatccctctg tgagtgatgg gcataagagt attggtgcgg cggtggctga tcatcctgag 420gggccgtgga aggcacagga taagccgatg atcaagggaa cttctgatga ggagattgtc 480agcaaccagg ctatcgatcc cgctgccttt gaagaccctg agactggaaa gtggtatatc 540tactggggaa acggtgtccc cattgtcgca gagctcaacg acgacatggt ctctctcaaa 600gcaggctggc acaaaatcac aggtcttcag aatttccgcg agggtctttt cgtcaactat 660cgcgatggaa catatcatct gacatactct atcgacgata cgggctcaga gaactatcgc 720gttgggtacg ctacggcgga taaccccatt ggaccttgga catatcgtgg tgttcttctg 780gagaaggacg aatcgaaggg cattcttgct acgggacata actccatcat caacattcct 840ggaacggatg agtggtatat cgcgtatcat cgcttccata ttcccgatgg aaatgggtat 900aatagggaga ctacgattga tagggtaccc atcgacaagg atacgggttt gtttggaaag 960gttacgccga ctttgcagag tgttgatcct aggcctttgt ag 100270333PRTFusarium verticillioides 70Met Arg Leu Leu Ser Phe Pro Ser His Leu Leu Val Ala Phe Leu Thr 1 5 10 15 Leu Lys Glu Ala Ser Ser Leu Ala Leu Ser Lys Arg Asp Ser Pro Val 20 25 30 Leu Pro Gly Leu Trp Ala Asp Pro Asn Ile Ala Ile Val Asp Lys Thr 35 40 45 Tyr Tyr Ile Phe Pro Thr Thr Asp Gly Phe Glu Gly Trp Gly Gly Asn 50 55 60 Val Phe Tyr Trp Trp Lys Ser Lys Asp Leu Val Ser Trp Thr Lys Ser 65 70 75 80 Asp Lys Pro Phe Leu Thr Leu Asn Gly Thr Asn Gly Asn Val Pro Trp 85 90 95 Ala Thr Gly Asn Ala Trp Ala Pro Ala Phe Ala Ala Arg Gly Gly Lys 100 105 110 Tyr Tyr Phe Tyr His Ser Gly Asn Asn Pro Ser Val Ser Asp Gly His 115 120 125 Lys Ser Ile Gly Ala Ala Val Ala Asp His Pro Glu Gly Pro Trp Lys 130 135 140 Ala Gln Asp Lys Pro Met Ile Lys Gly Thr Ser Asp Glu Glu Ile Val 145 150 155 160 Ser Asn Gln Ala Ile Asp Pro Ala Ala Phe Glu Asp Pro Glu Thr Gly 165 170 175 Lys Trp Tyr Ile Tyr Trp Gly Asn Gly Val Pro Ile Val Ala Glu Leu 180 185 190 Asn Asp Asp Met Val Ser Leu Lys Ala Gly Trp His Lys Ile Thr Gly 195 200 205 Leu Gln Asn Phe Arg Glu Gly Leu Phe Val Asn Tyr Arg Asp Gly Thr 210 215 220 Tyr His Leu Thr Tyr Ser Ile Asp Asp Thr Gly Ser Glu Asn Tyr Arg 225 230 235 240 Val Gly Tyr Ala Thr Ala Asp Asn Pro Ile Gly Pro Trp Thr Tyr Arg 245 250 255 Gly Val Leu Leu Glu Lys Asp Glu Ser Lys Gly Ile Leu Ala Thr Gly 260 265 270 His Asn Ser Ile Ile Asn Ile Pro Gly Thr Asp Glu Trp Tyr Ile Ala 275 280 285 Tyr His Arg Phe His Ile Pro Asp Gly Asn Gly Tyr Asn Arg Glu Thr 290 295 300 Thr Ile Asp Arg Val Pro Ile Asp Lys Asp Thr Gly Leu Phe Gly Lys 305 310 315 320 Val Thr Pro Thr Leu Gln Ser Val Asp Pro Arg Pro Leu 325 330 711695DNAFusarium verticillioides 71atgctcttct cgctcgttct tcctaccctt gcctttcaag ccagcctggc gctcggcgat 60acatccgtta ctgtcgacac cagccagaaa ctccaggtca tcgatggctt tggtgtctca 120gaagcctacg gccacgccaa acaattccaa aacctcggtc ctggaccaca gaaagagggc 180ctcgatcttc tcttcaacac tacaaccggc gcaggcttat ccatcatccg aaacaagatc 240ggctgcgacg cctccaactc catcaccagc accaacaccg acaacccaga taagcaggct 300gtttaccatt ttgacggcga tgatgatggt caggtatggt ttagcaaaca ggccatgagc 360tatggtgtag atactatcta cgctaatgct tggtctgcgc ctgtatacat gaagtcagcc 420cagagtatgg gccgtctctg cggtacacct ggtgtgtcgt gctcctctgg agattggaga 480catcgttacg ttgagatgat agctgagtac ctctcctact acaagcaggc tggcatccca 540gtgtcgcacg ttggattcct caatgagggt gacggctcgg actttatgct ctcaactgcc 600gaacaggctg cagatgtcat tcctcttcta cacagcgctt tgcagtccaa gggccttggc 660gatatcaaga tgacgtgctg tgataacatc ggttggaagt cacagatgga ctataccgcc 720aagctggctg agcttgaggt ggagaagtat ctatctgtca tcacatccca cgagtactcc 780agcagcccca accagcctat gaacactaca ttgccaacct ggatgtccga gggagctgcc 840aatgaccagg catttgccac agcgtggtac gtcaacggcg gttccaacga aggtttcaca 900tgggcagtca agatcgcaca aggcatcgtc aatgccgacc tctcagcgta tatctactgg 960gagggcgttg agaccaacaa caaggggtct ctatctcacg tcatcgacac ggacggtacc 1020aagtttacca tatcctcgat tctctgggcc attgctcact ggtcgcgcca tattcgccct 1080ggtgcgcata gactttcgac ttcaggtgtt gtgcaagata cgattgttgg tgcgtttgag 1140aacgttgatg gcagtgtcgt catggtgctc accaactctg gcactgctgc tcagactgtg 1200gacctgggtg tttcgggaag tagcttctca acagctcagg ctttcacttc ggatgctgag 1260gcgcagatgg tcgataccaa ggtgactctg tccgacggtc gtgtcaaggt tacggtcccg 1320gtgcacggtg tcgtcactgt gaagctcaca acagcaaaaa gctccaaacc ggtctcaact 1380gctgtttctg cgcaatctgc ccccactcca actagtgtta agcacacctt gactcaccag 1440aagacttctt caacaacact ctcgaccgcc aaggccccaa cctccactca gactacctct 1500gtagttgagt cagccaaggc ggtgaaatac cctgtccccc ctgtagcatc caagggatcc 1560tcgaagagtg ctcccaagaa gggtaccaag aagaccacta cgaagaaggg ctcccaccaa 1620tcgcacaagg cgcatagtgc tactcatcgt cgatgccgcc atggaagtta ccgtcgtggc 1680cactgcacca actaa 169572537PRTFusarium verticillioides 72Met Leu Phe Ser Leu Val Leu Pro Thr Leu Ala Phe Gln Ala Ser Leu 1 5 10 15 Ala Leu Gly Asp Thr Ser Val Thr Val Asp Thr Ser Gln Lys Leu Gln 20 25 30 Val Ile Asp Gly Phe Gly Val Ser Glu Ala Tyr Gly His Ala Lys Gln 35 40 45 Phe Gln Asn Leu Gly Pro Gly Pro Gln Lys Glu Gly Leu Asp Leu Leu 50 55 60 Phe Asn Thr Thr Thr Gly Ala Gly Leu Ser Ile Ile Arg Asn Lys Ile 65 70 75 80 Gly Cys Asp Ala Ser Asn Ser Ile Thr Ser Thr Asn Thr Asp Asn Pro 85 90 95 Asp Lys Gln Ala Val Tyr His Phe Asp Gly Asp Asp Asp Gly Gln Ser 100 105 110 Ala Gln Ser Met Gly Arg Leu Cys Gly Thr Pro Gly Val Ser Cys Ser 115 120 125 Ser Gly Asp Trp Arg His Arg Tyr Val Glu Met Ile Ala Glu Tyr Leu 130 135 140 Ser Tyr Tyr Lys Gln Ala Gly Ile Pro Val Ser His Val Gly Phe Leu 145 150 155 160 Asn Glu Gly Asp Gly Ser Asp Phe Met Leu Ser Thr Ala Glu Gln Ala 165 170 175 Ala Asp Val Ile Pro Leu Leu His Ser Ala Leu Gln Ser Lys Gly Leu 180 185 190 Gly Asp Ile Lys Met Thr Cys Cys Asp Asn Ile Gly Trp Lys Ser Gln 195 200 205 Met Asp Tyr Thr Ala Lys Leu Ala Glu Leu Glu Val Glu Lys Tyr Leu 210 215 220 Ser Val Ile Thr Ser His Glu Tyr Ser Ser Ser Pro Asn Gln Pro Met 225 230 235 240 Asn Thr Thr Leu Pro Thr Trp Met Ser Glu Gly Ala Ala Asn Asp Gln 245 250 255 Ala Phe Ala Thr Ala Trp Tyr Val Asn Gly Gly Ser Asn Glu Gly Phe 260 265 270 Thr Trp Ala Val Lys Ile Ala Gln Gly Ile Val Asn Ala Asp Leu Ser 275 280 285 Ala Tyr Ile Tyr Trp Glu Gly Val Glu Thr Asn Asn Lys Gly Ser Leu 290 295 300 Ser His Val Ile Asp Thr Asp Gly Thr Lys Phe Thr Ile Ser Ser Ile 305 310 315 320 Leu Trp Ala Ile Ala His Trp Ser Arg His Ile Arg Pro Gly Ala His 325 330 335 Arg Leu Ser Thr Ser Gly Val Val Gln Asp Thr Ile Val Gly Ala Phe 340 345 350 Glu Asn Val Asp Gly Ser Val Val Met Val Leu Thr Asn Ser Gly Thr 355 360 365 Ala Ala Gln Thr Val Asp Leu Gly Val Ser Gly Ser Ser Phe Ser Thr 370 375 380 Ala Gln Ala Phe Thr Ser Asp Ala Glu Ala Gln Met Val Asp Thr Lys 385 390 395 400 Val Thr Leu Ser Asp Gly Arg Val Lys Val Thr Val Pro Val His Gly 405 410 415 Val Val Thr Val Lys Leu Thr Thr Ala Lys Ser Ser Lys Pro Val Ser 420 425 430 Thr Ala Val Ser Ala Gln Ser Ala Pro Thr Pro Thr Ser Val Lys His 435 440 445 Thr Leu Thr His Gln Lys Thr Ser Ser Thr Thr Leu Ser Thr Ala Lys 450 455 460 Ala Pro Thr Ser Thr Gln Thr Thr Ser Val Val Glu Ser Ala Lys Ala 465 470 475 480 Val Lys Tyr Pro Val Pro Pro Val Ala Ser Lys Gly Ser Ser Lys Ser 485 490 495 Ala Pro Lys Lys Gly Thr Lys Lys Thr Thr Thr Lys Lys Gly Ser His 500 505 510 Gln Ser His Lys Ala His Ser Ala Thr His Arg Arg Cys Arg His Gly 515 520 525 Ser Tyr Arg Arg Gly His Cys Thr Asn 530 535 73948DNAFusarium verticillioides 73atgtggaaac tcctcgtcag cggtcttgtc gccgtcgcgt ccctcagcgg cgtgaacgct 60gcttatccta

accctggtcc cgtcaccggc gatactcgtg ttcacgaccc tacggttgtc 120aagactccca gcggtggata cttgctggct catactggcg ataacgtttc gctcaagact 180tcttctgatc gaactgcttg gaaggatgca ggtgctgttt tccccaacgg tgcgccttgg 240actacgcagt acaccaaggg cgacaagaac ctctgggccc ctgatatctc ctaccacaac 300ggccagtact atctgtacta ctccgcctct tccttcggtc agcgtacctc tgccattttt 360ctcgctacca gcaagaccgg tgcatccggc tcgtggacca accaaggcgt cgtcgtcgag 420tccaacaaca acaacgacta caatgccatt gacggaaatc tctttgtcga ctctgatgga 480aaatggtggc tctccttcgg ctctttctgg tccggcatca agctcatcca actcgacccc 540aagaccggca agcgcaccgg ctcaagcatg tactccctcg ccaaacgcga cgcctccgtc 600gaaggcgccg tcgaggctcc gttcatcacc aaacgcggaa gcacctacta cctctgggtg 660tcgttcgaca agtgttgcca gggcgctgct agcacgtacc gtgtcatggt tggacggtcg 720agcagcatta ctggtcctta tgttgacaag gctggtaagc agatgatgtc tggtggagga 780acggagatta tggctagtca cggatctatt catggaccgg gacataatgc tgttttcact 840gataacgatg cggacgttct tgtctatcat tactacgata acgctggcac agcgctgttg 900ggcatcaact tgctcagata tgacaatggc tggcctgttg cttattag 94874315PRTFusarium verticillioides 74Met Trp Lys Leu Leu Val Ser Gly Leu Val Ala Val Ala Ser Leu Ser 1 5 10 15 Gly Val Asn Ala Ala Tyr Pro Asn Pro Gly Pro Val Thr Gly Asp Thr 20 25 30 Arg Val His Asp Pro Thr Val Val Lys Thr Pro Ser Gly Gly Tyr Leu 35 40 45 Leu Ala His Thr Gly Asp Asn Val Ser Leu Lys Thr Ser Ser Asp Arg 50 55 60 Thr Ala Trp Lys Asp Ala Gly Ala Val Phe Pro Asn Gly Ala Pro Trp 65 70 75 80 Thr Thr Gln Tyr Thr Lys Gly Asp Lys Asn Leu Trp Ala Pro Asp Ile 85 90 95 Ser Tyr His Asn Gly Gln Tyr Tyr Leu Tyr Tyr Ser Ala Ser Ser Phe 100 105 110 Gly Gln Arg Thr Ser Ala Ile Phe Leu Ala Thr Ser Lys Thr Gly Ala 115 120 125 Ser Gly Ser Trp Thr Asn Gln Gly Val Val Val Glu Ser Asn Asn Asn 130 135 140 Asn Asp Tyr Asn Ala Ile Asp Gly Asn Leu Phe Val Asp Ser Asp Gly 145 150 155 160 Lys Trp Trp Leu Ser Phe Gly Ser Phe Trp Ser Gly Ile Lys Leu Ile 165 170 175 Gln Leu Asp Pro Lys Thr Gly Lys Arg Thr Gly Ser Ser Met Tyr Ser 180 185 190 Leu Ala Lys Arg Asp Ala Ser Val Glu Gly Ala Val Glu Ala Pro Phe 195 200 205 Ile Thr Lys Arg Gly Ser Thr Tyr Tyr Leu Trp Val Ser Phe Asp Lys 210 215 220 Cys Cys Gln Gly Ala Ala Ser Thr Tyr Arg Val Met Val Gly Arg Ser 225 230 235 240 Ser Ser Ile Thr Gly Pro Tyr Val Asp Lys Ala Gly Lys Gln Met Met 245 250 255 Ser Gly Gly Gly Thr Glu Ile Met Ala Ser His Gly Ser Ile His Gly 260 265 270 Pro Gly His Asn Ala Val Phe Thr Asp Asn Asp Ala Asp Val Leu Val 275 280 285 Tyr His Tyr Tyr Asp Asn Ala Gly Thr Ala Leu Leu Gly Ile Asn Leu 290 295 300 Leu Arg Tyr Asp Asn Gly Trp Pro Val Ala Tyr 305 310 315 751352DNATrichoderma reesei 75atgaaagcaa acgtcatctt gtgcctcctg gcccccctgg tcgccgctct ccccaccgaa 60accatccacc tcgaccccga gctcgccgct ctccgcgcca acctcaccga gcgaacagcc 120gacctctggg accgccaagc ctctcaaagc atcgaccagc tcatcaagag aaaaggcaag 180ctctactttg gcaccgccac cgaccgcggc ctcctccaac gggaaaagaa cgcggccatc 240atccaggcag acctcggcca ggtgacgccg gagaacagca tgaagtggca gtcgctcgag 300aacaaccaag gccagctgaa ctggggagac gccgactatc tcgtcaactt tgcccagcaa 360aacggcaagt cgatacgcgg ccacactctg atctggcact cgcagctgcc tgcgtgggtg 420aacaatatca acaacgcgga tactctgcgg caagtcatcc gcacccatgt ctctactgtg 480gttgggcggt acaagggcaa gattcgtgct tgggtgagtt ttgaacacca catgcccctt 540ttcttagtcc gctcctcctc ctcttggaac ttctcacagt tatagccgta tacaacattc 600gacaggaaat ttaggatgac aactactgac tgacttgtgt gtgtgatggc gataggacgt 660ggtcaatgaa atcttcaacg aggatggaac gctgcgctct tcagtctttt ccaggctcct 720cggcgaggag tttgtctcga ttgcctttcg tgctgctcga gatgctgacc cttctgcccg 780tctttacatc aacgactaca atctcgaccg cgccaactat ggcaaggtca acgggttgaa 840gacttacgtc tccaagtgga tctctcaagg agttcccatt gacggtattg gtgagccacg 900acccctaaat gtcccccatt agagtctctt tctagagcca aggcttgaag ccattcaggg 960actgacacga gagccttctc tacaggaagc cagtcccatc tcagcggcgg cggaggctct 1020ggtacgctgg gtgcgctcca gcagctggca acggtacccg tcaccgagct ggccattacc 1080gagctggaca ttcagggggc accgacgacg gattacaccc aagttgttca agcatgcctg 1140agcgtctcca agtgcgtcgg catcaccgtg tggggcatca gtgacaaggt aagttgcttc 1200ccctgtctgt gcttatcaac tgtaagcagc aacaactgat gctgtctgtc tttacctagg 1260actcgtggcg tgccagcacc aaccctcttc tgtttgacgc aaacttcaac cccaagccgg 1320catataacag cattgttggc atcttacaat ag 135276347PRTTrichoderma reesei 76Met Lys Ala Asn Val Ile Leu Cys Leu Leu Ala Pro Leu Val Ala Ala 1 5 10 15 Leu Pro Thr Glu Thr Ile His Leu Asp Pro Glu Leu Ala Ala Leu Arg 20 25 30 Ala Asn Leu Thr Glu Arg Thr Ala Asp Leu Trp Asp Arg Gln Ala Ser 35 40 45 Gln Ser Ile Asp Gln Leu Ile Lys Arg Lys Gly Lys Leu Tyr Phe Gly 50 55 60 Thr Ala Thr Asp Arg Gly Leu Leu Gln Arg Glu Lys Asn Ala Ala Ile 65 70 75 80 Ile Gln Ala Asp Leu Gly Gln Val Thr Pro Glu Asn Ser Met Lys Trp 85 90 95 Gln Ser Leu Glu Asn Asn Gln Gly Gln Leu Asn Trp Gly Asp Ala Asp 100 105 110 Tyr Leu Val Asn Phe Ala Gln Gln Asn Gly Lys Ser Ile Arg Gly His 115 120 125 Thr Leu Ile Trp His Ser Gln Leu Pro Ala Trp Val Asn Asn Ile Asn 130 135 140 Asn Ala Asp Thr Leu Arg Gln Val Ile Arg Thr His Val Ser Thr Val 145 150 155 160 Val Gly Arg Tyr Lys Gly Lys Ile Arg Ala Trp Asp Val Val Asn Glu 165 170 175 Ile Phe Asn Glu Asp Gly Thr Leu Arg Ser Ser Val Phe Ser Arg Leu 180 185 190 Leu Gly Glu Glu Phe Val Ser Ile Ala Phe Arg Ala Ala Arg Asp Ala 195 200 205 Asp Pro Ser Ala Arg Leu Tyr Ile Asn Asp Tyr Asn Leu Asp Arg Ala 210 215 220 Asn Tyr Gly Lys Val Asn Gly Leu Lys Thr Tyr Val Ser Lys Trp Ile 225 230 235 240 Ser Gln Gly Val Pro Ile Asp Gly Ile Gly Ser Gln Ser His Leu Ser 245 250 255 Gly Gly Gly Gly Ser Gly Thr Leu Gly Ala Leu Gln Gln Leu Ala Thr 260 265 270 Val Pro Val Thr Glu Leu Ala Ile Thr Glu Leu Asp Ile Gln Gly Ala 275 280 285 Pro Thr Thr Asp Tyr Thr Gln Val Val Gln Ala Cys Leu Ser Val Ser 290 295 300 Lys Cys Val Gly Ile Thr Val Trp Gly Ile Ser Asp Lys Asp Ser Trp 305 310 315 320 Arg Ala Ser Thr Asn Pro Leu Leu Phe Asp Ala Asn Phe Asn Pro Lys 325 330 335 Pro Ala Tyr Asn Ser Ile Val Gly Ile Leu Gln 340 345 77222PRTTrichoderma reesei 77Met Val Ser Phe Thr Ser Leu Leu Ala Ala Ser Pro Pro Ser Arg Ala 1 5 10 15 Ser Cys Arg Pro Ala Ala Glu Val Glu Ser Val Ala Val Glu Lys Arg 20 25 30 Gln Thr Ile Gln Pro Gly Thr Gly Tyr Asn Asn Gly Tyr Phe Tyr Ser 35 40 45 Tyr Trp Asn Asp Gly His Gly Gly Val Thr Tyr Thr Asn Gly Pro Gly 50 55 60 Gly Gln Phe Ser Val Asn Trp Ser Asn Ser Gly Asn Phe Val Gly Gly 65 70 75 80 Lys Gly Trp Gln Pro Gly Thr Lys Asn Lys Val Ile Asn Phe Ser Gly 85 90 95 Ser Tyr Asn Pro Asn Gly Asn Ser Tyr Leu Ser Val Tyr Gly Trp Ser 100 105 110 Arg Asn Pro Leu Ile Glu Tyr Tyr Ile Val Glu Asn Phe Gly Thr Tyr 115 120 125 Asn Pro Ser Thr Gly Ala Thr Lys Leu Gly Glu Val Thr Ser Asp Gly 130 135 140 Ser Val Tyr Asp Ile Tyr Arg Thr Gln Arg Val Asn Gln Pro Ser Ile 145 150 155 160 Ile Gly Thr Ala Thr Phe Tyr Gln Tyr Trp Ser Val Arg Arg Asn His 165 170 175 Arg Ser Ser Gly Ser Val Asn Thr Ala Asn His Phe Asn Ala Trp Ala 180 185 190 Gln Gln Gly Leu Thr Leu Gly Thr Met Asp Tyr Gln Ile Val Ala Val 195 200 205 Glu Gly Tyr Phe Ser Ser Gly Ser Ala Ser Ile Thr Val Ser 210 215 220 78797PRTTrichoderma reesei 78Met Val Asn Asn Ala Ala Leu Leu Ala Ala Leu Ser Ala Leu Leu Pro 1 5 10 15 Thr Ala Leu Ala Gln Asn Asn Gln Thr Tyr Ala Asn Tyr Ser Ala Gln 20 25 30 Gly Gln Pro Asp Leu Tyr Pro Glu Thr Leu Ala Thr Leu Thr Leu Ser 35 40 45 Phe Pro Asp Cys Glu His Gly Pro Leu Lys Asn Asn Leu Val Cys Asp 50 55 60 Ser Ser Ala Gly Tyr Val Glu Arg Ala Gln Ala Leu Ile Ser Leu Phe 65 70 75 80 Thr Leu Glu Glu Leu Ile Leu Asn Thr Gln Asn Ser Gly Pro Gly Val 85 90 95 Pro Arg Leu Gly Leu Pro Asn Tyr Gln Val Trp Asn Glu Ala Leu His 100 105 110 Gly Leu Asp Arg Ala Asn Phe Ala Thr Lys Gly Gly Gln Phe Glu Trp 115 120 125 Ala Thr Ser Phe Pro Met Pro Ile Leu Thr Thr Ala Ala Leu Asn Arg 130 135 140 Thr Leu Ile His Gln Ile Ala Asp Ile Ile Ser Thr Gln Ala Arg Ala 145 150 155 160 Phe Ser Asn Ser Gly Arg Tyr Gly Leu Asp Val Tyr Ala Pro Asn Val 165 170 175 Asn Gly Phe Arg Ser Pro Leu Trp Gly Arg Gly Gln Glu Thr Pro Gly 180 185 190 Glu Asp Ala Phe Phe Leu Ser Ser Ala Tyr Thr Tyr Glu Tyr Ile Thr 195 200 205 Gly Ile Gln Gly Gly Val Asp Pro Glu His Leu Lys Val Ala Ala Thr 210 215 220 Val Lys His Phe Ala Gly Tyr Asp Leu Glu Asn Trp Asn Asn Gln Ser 225 230 235 240 Arg Leu Gly Phe Asp Ala Ile Ile Thr Gln Gln Asp Leu Ser Glu Tyr 245 250 255 Tyr Thr Pro Gln Phe Leu Ala Ala Ala Arg Tyr Ala Lys Ser Arg Ser 260 265 270 Leu Met Cys Ala Tyr Asn Ser Val Asn Gly Val Pro Ser Cys Ala Asn 275 280 285 Ser Phe Phe Leu Gln Thr Leu Leu Arg Glu Ser Trp Gly Phe Pro Glu 290 295 300 Trp Gly Tyr Val Ser Ser Asp Cys Asp Ala Val Tyr Asn Val Phe Asn 305 310 315 320 Pro His Asp Tyr Ala Ser Asn Gln Ser Ser Ala Ala Ala Ser Ser Leu 325 330 335 Arg Ala Gly Thr Asp Ile Asp Cys Gly Gln Thr Tyr Pro Trp His Leu 340 345 350 Asn Glu Ser Phe Val Ala Gly Glu Val Ser Arg Gly Glu Ile Glu Arg 355 360 365 Ser Val Thr Arg Leu Tyr Ala Asn Leu Val Arg Leu Gly Tyr Phe Asp 370 375 380 Lys Lys Asn Gln Tyr Arg Ser Leu Gly Trp Lys Asp Val Val Lys Thr 385 390 395 400 Asp Ala Trp Asn Ile Ser Tyr Glu Ala Ala Val Glu Gly Ile Val Leu 405 410 415 Leu Lys Asn Asp Gly Thr Leu Pro Leu Ser Lys Lys Val Arg Ser Ile 420 425 430 Ala Leu Ile Gly Pro Trp Ala Asn Ala Thr Thr Gln Met Gln Gly Asn 435 440 445 Tyr Tyr Gly Pro Ala Pro Tyr Leu Ile Ser Pro Leu Glu Ala Ala Lys 450 455 460 Lys Ala Gly Tyr His Val Asn Phe Glu Leu Gly Thr Glu Ile Ala Gly 465 470 475 480 Asn Ser Thr Thr Gly Phe Ala Lys Ala Ile Ala Ala Ala Lys Lys Ser 485 490 495 Asp Ala Ile Ile Tyr Leu Gly Gly Ile Asp Asn Thr Ile Glu Gln Glu 500 505 510 Gly Ala Asp Arg Thr Asp Ile Ala Trp Pro Gly Asn Gln Leu Asp Leu 515 520 525 Ile Lys Gln Leu Ser Glu Val Gly Lys Pro Leu Val Val Leu Gln Met 530 535 540 Gly Gly Gly Gln Val Asp Ser Ser Ser Leu Lys Ser Asn Lys Lys Val 545 550 555 560 Asn Ser Leu Val Trp Gly Gly Tyr Pro Gly Gln Ser Gly Gly Val Ala 565 570 575 Leu Phe Asp Ile Leu Ser Gly Lys Arg Ala Pro Ala Gly Arg Leu Val 580 585 590 Thr Thr Gln Tyr Pro Ala Glu Tyr Val His Gln Phe Pro Gln Asn Asp 595 600 605 Met Asn Leu Arg Pro Asp Gly Lys Ser Asn Pro Gly Gln Thr Tyr Ile 610 615 620 Trp Tyr Thr Gly Lys Pro Val Tyr Glu Phe Gly Ser Gly Leu Phe Tyr 625 630 635 640 Thr Thr Phe Lys Glu Thr Leu Ala Ser His Pro Lys Ser Leu Lys Phe 645 650 655 Asn Thr Ser Ser Ile Leu Ser Ala Pro His Pro Gly Tyr Thr Tyr Ser 660 665 670 Glu Gln Ile Pro Val Phe Thr Phe Glu Ala Asn Ile Lys Asn Ser Gly 675 680 685 Lys Thr Glu Ser Pro Tyr Thr Ala Met Leu Phe Val Arg Thr Ser Asn 690 695 700 Ala Gly Pro Ala Pro Tyr Pro Asn Lys Trp Leu Val Gly Phe Asp Arg 705 710 715 720 Leu Ala Asp Ile Lys Pro Gly His Ser Ser Lys Leu Ser Ile Pro Ile 725 730 735 Pro Val Ser Ala Leu Ala Arg Val Asp Ser His Gly Asn Arg Ile Val 740 745 750 Tyr Pro Gly Lys Tyr Glu Leu Ala Leu Asn Thr Asp Glu Ser Val Lys 755 760 765 Leu Glu Phe Glu Leu Val Gly Glu Glu Val Thr Ile Glu Asn Trp Pro 770 775 780 Leu Glu Glu Gln Gln Ile Lys Asp Ala Thr Pro Asp Ala 785 790 795 79744PRTTrichoderma reesei 79Met Arg Tyr Arg Thr Ala Ala Ala Leu Ala Leu Ala Thr Gly Pro Phe 1 5 10 15 Ala Arg Ala Asp Ser His Ser Thr Ser Gly Ala Ser Ala Glu Ala Val 20 25 30 Val Pro Pro Ala Gly Thr Pro Trp Gly Thr Ala Tyr Asp Lys Ala Lys 35 40 45 Ala Ala Leu Ala Lys Leu Asn Leu Gln Asp Lys Val Gly Ile Val Ser 50 55 60 Gly Val Gly Trp Asn Gly Gly Pro Cys Val Gly Asn Thr Ser Pro Ala 65 70 75 80 Ser Lys Ile Ser Tyr Pro Ser Leu Cys Leu Gln Asp Gly Pro Leu Gly 85 90 95 Val Arg Tyr Ser Thr Gly Ser Thr Ala Phe Thr Pro Gly Val Gln Ala 100 105 110 Ala Ser Thr Trp Asp Val Asn Leu Ile Arg Glu Arg Gly Gln Phe Ile 115 120 125 Gly Glu Glu Val Lys Ala Ser Gly Ile His Val Ile Leu Gly Pro Val 130 135 140 Ala Gly Pro Leu Gly Lys Thr Pro Gln Gly Gly Arg Asn Trp Glu Gly 145 150 155 160 Phe Gly Val Asp Pro Tyr Leu Thr Gly Ile Ala Met Gly Gln Thr Ile 165 170 175 Asn Gly Ile Gln Ser Val Gly Val Gln Ala Thr Ala Lys His Tyr Ile 180 185 190 Leu Asn Glu Gln Glu Leu Asn Arg Glu Thr Ile Ser Ser Asn Pro Asp 195 200 205 Asp Arg Thr Leu His Glu Leu Tyr Thr Trp Pro Phe Ala Asp Ala Val 210 215 220 Gln Ala Asn Val Ala Ser Val Met Cys Ser Tyr Asn Lys Val Asn Thr 225 230 235 240 Thr Trp Ala Cys Glu Asp Gln Tyr Thr Leu Gln Thr Val Leu Lys Asp 245

250 255 Gln Leu Gly Phe Pro Gly Tyr Val Met Thr Asp Trp Asn Ala Gln His 260 265 270 Thr Thr Val Gln Ser Ala Asn Ser Gly Leu Asp Met Ser Met Pro Gly 275 280 285 Thr Asp Phe Asn Gly Asn Asn Arg Leu Trp Gly Pro Ala Leu Thr Asn 290 295 300 Ala Val Asn Ser Asn Gln Val Pro Thr Ser Arg Val Asp Asp Met Val 305 310 315 320 Thr Arg Ile Leu Ala Ala Trp Tyr Leu Thr Gly Gln Asp Gln Ala Gly 325 330 335 Tyr Pro Ser Phe Asn Ile Ser Arg Asn Val Gln Gly Asn His Lys Thr 340 345 350 Asn Val Arg Ala Ile Ala Arg Asp Gly Ile Val Leu Leu Lys Asn Asp 355 360 365 Ala Asn Ile Leu Pro Leu Lys Lys Pro Ala Ser Ile Ala Val Val Gly 370 375 380 Ser Ala Ala Ile Ile Gly Asn His Ala Arg Asn Ser Pro Ser Cys Asn 385 390 395 400 Asp Lys Gly Cys Asp Asp Gly Ala Leu Gly Met Gly Trp Gly Ser Gly 405 410 415 Ala Val Asn Tyr Pro Tyr Phe Val Ala Pro Tyr Asp Ala Ile Asn Thr 420 425 430 Arg Ala Ser Ser Gln Gly Thr Gln Val Thr Leu Ser Asn Thr Asp Asn 435 440 445 Thr Ser Ser Gly Ala Ser Ala Ala Arg Gly Lys Asp Val Ala Ile Val 450 455 460 Phe Ile Thr Ala Asp Ser Gly Glu Gly Tyr Ile Thr Val Glu Gly Asn 465 470 475 480 Ala Gly Asp Arg Asn Asn Leu Asp Pro Trp His Asn Gly Asn Ala Leu 485 490 495 Val Gln Ala Val Ala Gly Ala Asn Ser Asn Val Ile Val Val Val His 500 505 510 Ser Val Gly Ala Ile Ile Leu Glu Gln Ile Leu Ala Leu Pro Gln Val 515 520 525 Lys Ala Val Val Trp Ala Gly Leu Pro Ser Gln Glu Ser Gly Asn Ala 530 535 540 Leu Val Asp Val Leu Trp Gly Asp Val Ser Pro Ser Gly Lys Leu Val 545 550 555 560 Tyr Thr Ile Ala Lys Ser Pro Asn Asp Tyr Asn Thr Arg Ile Val Ser 565 570 575 Gly Gly Ser Asp Ser Phe Ser Glu Gly Leu Phe Ile Asp Tyr Lys His 580 585 590 Phe Asp Asp Ala Asn Ile Thr Pro Arg Tyr Glu Phe Gly Tyr Gly Leu 595 600 605 Ser Tyr Thr Lys Phe Asn Tyr Ser Arg Leu Ser Val Leu Ser Thr Ala 610 615 620 Lys Ser Gly Pro Ala Thr Gly Ala Val Val Pro Gly Gly Pro Ser Asp 625 630 635 640 Leu Phe Gln Asn Val Ala Thr Val Thr Val Asp Ile Ala Asn Ser Gly 645 650 655 Gln Val Thr Gly Ala Glu Val Ala Gln Leu Tyr Ile Thr Tyr Pro Ser 660 665 670 Ser Ala Pro Arg Thr Pro Pro Lys Gln Leu Arg Gly Phe Ala Lys Leu 675 680 685 Asn Leu Thr Pro Gly Gln Ser Gly Thr Ala Thr Phe Asn Ile Arg Arg 690 695 700 Arg Asp Leu Ser Tyr Trp Asp Thr Ala Ser Gln Lys Trp Val Val Pro 705 710 715 720 Ser Gly Ser Phe Gly Ile Ser Val Gly Ala Ser Ser Arg Asp Ile Arg 725 730 735 Leu Thr Ser Thr Leu Ser Val Ala 740 802031DNAPodospora anserina 80atgatccacc tcaagccagc cctcgcggcg ttgttggcgc tgtcgacgca atgtgtggct 60attgatttgt ttgtcaagtc ttcggggggg aataagacga ctgatatcat gtatggtctt 120atgcacgagg atatcaacaa ctccggcgac ggcggcatct acgccgagct aatctccaac 180cgcgcgttcc aagggagtga gaagttcccc tccaacctcg acaactggag ccccgtcggt 240ggcgctaccc ttacccttca gaagcttgcc aagccccttt cctctgcgtt gccttactcc 300gtcaatgttg ccaaccccaa ggagggcaag ggcaagggca aggacaccaa ggggaagaag 360gttggcttgg ccaatgctgg gttttggggt atggatgtca agaggcagaa gtacactggt 420agcttccacg ttactggtga gtacaagggt gactttgagg ttagcttgcg cagcgcgatt 480accggggaga cctttggcaa gaaggtggtg aagggtggga gtaagaaggg gaagtggacc 540gagaaggagt ttgagttggt gcctttcaag gatgcgccca acagcaacaa cacctttgtt 600gtgcagtggg atgccgaggg cgcaaaggac ggatctttgg atctcaactt gatcagcttg 660ttccctccga cattcaaggg aaggaagaat gggctgagaa ttgatcttgc gcagacgatg 720gttgagctca agccgacctt cttgcgcttc cccggtggca acatgctcga gggtaacacc 780ttggacactt ggtggaagtg gtacgagacc attggccctc tgaaggatcg cccgggcatg 840gctggtgtct gggagtacca gcaaaccctt ggcttgggtc tggtcgagta catggagtgg 900gccgatgaca tgaacttgga gcccattgtc ggtgtcttcg ctggtcttgc cctcgatggc 960tcgttcgttc ccgaatccga gatgggatgg gtcatccaac aggctctcga cgaaatcgag 1020ttcctcactg gcgatgctaa gaccaccaaa tggggtgccg tccgcgcgaa gcttggtcac 1080cccaagcctt ggaaggtcaa gtgggttgag atcggtaacg aggattggct tgccggacgc 1140cctgctggct tcgagtcgta catcaactac cgcttcccca tgatgatgaa ggccttcaac 1200gaaaagtacc ccgacatcaa gatcatcgcc tcgccctcca tcttcgacaa catgacaatc 1260cccgcgggtg ctgccggtga tcaccacccg tacctgactc ccgatgagtt cgttgagcga 1320ttcgccaagt tcgataactt gagcaaggat aacgtgacgc tcatcggcga ggctgcgtcg 1380acgcatccta acggtggtat cgcttgggag ggagatctca tgcccttgcc ttggtggggc 1440ggcagtgttg ctgaggctat cttcttgatc agcactgaga gaaacggtga caagatcatc 1500ggtgctactt acgcgcctgg tcttcgcagc ttggaccgct ggcaatggag catgacctgg 1560gtgcagcatg ccgccgaccc ggccctcacc actcgctcga ccagttggta tgtctggaga 1620atcctcgccc accacatcat ccgtgagacg ctcccggtcg atgccccggc cggcaagccc 1680aactttgacc ctctgttcta cgttgccgga aagagcgaga gtggcaccgg tatcttcaag 1740gctgccgtct acaactcgac tgaatcgatc ccggtgtcgt tgaagtttga tggtctcaac 1800gagggagcgg ttgccaactt gacggtgctt actgggccgg aggatccgta tggatacaac 1860gaccccttca ctggtatcaa tgttgtcaag gagaagacca ccttcatcaa ggccggaaag 1920ggcggcaagt tcaccttcac cctgccgggc ttgagtgttg ctgtgttgga gacggccgac 1980gcggtcaagg gtggcaaggg aaagggcaag ggcaagggaa agggtaactg a 2031812031DNAArtificial Sequencesynthetic codon optimized cDNA 81atgatccacc tcaagcccgc cctcgccgcc ctcctcgccc tcagcaccca atgcgtcgcc 60atcgacctct tcgtcaagag cagcggcggc aacaagacca ccgacatcat gtacggcctc 120atgcacgagg acatcaacaa cagcggcgac ggcggcatct acgccgagct gatcagcaac 180cgcgccttcc agggcagcga gaagttcccc agcaacctcg acaactggtc ccccgtcggc 240ggcgccaccc tcaccctcca gaagctcgcc aagcccctgt cctctgccct cccctactcc 300gtcaacgtcg ccaaccccaa ggagggtaag ggtaagggca aggacaccaa gggcaagaag 360gtcggcctcg ccaacgccgg cttttggggc atggacgtca agcgccagaa atacaccggc 420agcttccacg tcaccggcga gtacaagggc gacttcgagg tcagcctccg cagcgccatt 480accggcgaga ccttcggcaa gaaggtcgtc aagggcggca gcaagaaggg caagtggacc 540gagaaggagt tcgagctggt ccccttcaag gacgccccca acagcaacaa caccttcgtc 600gtccagtggg acgccgaggg cgccaaggac ggcagcctcg acctcaacct catcagcctc 660ttcccgccca ccttcaaggg ccgcaagaac ggcctccgca tcgacctcgc ccagaccatg 720gtcgagctga agcccacctt cctccgcttt cccggcggca acatgctcga gggcaacacc 780ctcgacacct ggtggaagtg gtacgagacc atcggccccc tgaaggaccg ccctggcatg 840gccggcgtct gggagtacca gcagacgctg ggcctcggcc tggtcgagta catggagtgg 900gccgacgaca tgaacctcga gcccatcgtc ggcgtctttg ctggcctggc cctggatggc 960agctttgtcc ccgagagcga gatgggctgg gtcatccagc aggctctcga tgagatcgag 1020ttcctcaccg gcgacgccaa gaccaccaag tggggcgccg tccgcgccaa gctcggccac 1080cctaagccct ggaaggtcaa atgggtcgag atcggcaacg aggactggct cgccggccga 1140cctgccggct tcgagagcta catcaactac cgcttcccca tgatgatgaa ggccttcaac 1200gagaaatacc ccgacatcaa gatcattgcc agcccctcca tcttcgacaa catgaccatt 1260ccagccggtg ctgccggtga ccaccacccc tacctcaccc ccgacgaatt tgtcgagcgc 1320ttcgccaagt tcgacaacct cagcaaggac aacgtcaccc tcattggcga ggccgccagc 1380acccacccca acggcggcat tgcctgggag ggcgacctca tgcccctgcc ctggtggggc 1440ggcagcgtcg ccgaggccat cttcctcatc agcaccgagc gcaacggcga caagatcatc 1500ggcgccacct acgcccctgg cctccgatct ctcgaccgct ggcagtggag catgacctgg 1560gtccagcacg ccgccgaccc tgccctcacc acccgcagca ccagctggta cgtctggcgc 1620atcctcgccc accacatcat tcgcgagacc ctccccgtcg acgcccccgc cggcaagccc 1680aacttcgacc ccctcttcta cgtcgctggc aagtcggaga gcggcaccgg catcttcaag 1740gccgccgtct acaacagcac cgagagcatc cccgtcagcc tcaagttcga cggcctcaac 1800gagggcgccg tcgccaacct caccgtcctc accggccccg aggaccccta cggctacaac 1860gaccccttca ccggcatcaa cgtcgtcaag gaaaagacca ccttcatcaa ggccggcaag 1920ggcggcaagt tcacctttac cctccccggc ctctctgtcg ccgtcctcga gaccgccgac 1980gccgtgaagg gtggcaaggg aaagggaaag ggcaagggta agggtaacta a 2031821020DNAGibberella zeae 82atgtatcgga agttggccgt catctcggcc ttcttggcca cagctcgtgc taccaacgac 60gactgtcctc tcatcactag tagatggact gcggatcctt cggctcatgt ctttaacgac 120accttgtggc tctacccgtc tcatgacatc gatgctggat ttgagaatga tcctgatgga 180ggccagtacg ccatgagaga ttaccatgtc tactctatcg acaagatcta cggttccctg 240ccggtcgatc acggtacggc cctgtcagtg gaggatgtcc cctgggcctc tcgacagatg 300tgggctcctg acgctgccca caagaacggc aaatactacc tatacttccc tgccaaagac 360aaggatgata tcttcagaat cggcgttgct gtctcaccaa cccccggcgg accattcgtc 420cccgacaaga gttggatccc tcacactttc agcatcgacc ccgccagttt cgtcgatgat 480gatgacagag cctacttggc atggggtggt atcatgggtg gccagcttca acgatggcag 540gataagaaca agtacaacga atctggcact gagccaggaa acggcaccgc tgccttgagc 600cctcagattg ccaagctgag caaggacatg cacactctgg cagagaagcc tcgcgacatg 660ctcattcttg accccaagac tggcaagccg ctcctttctg aggatgaaga ccgacgcttc 720ttcgaaggac cctggattca caagcgcaac aagatttact acctcaccta ctctactggc 780acaacccact atcttgtcta tgcgacttca aagaccccct atggtcctta cacctaccag 840ggcagaattc tggagccagt tgatggctgg actactcact ctagtatcgt caagtaccag 900ggtcagtggt ggctatttta tcacgatgcc aagacatctg gcaaggacta tcttcgccag 960gtaaaggcta agaagatttg gtacgatagc aaaggaaaga tcttgacaaa gaagccttga 1020831038DNAFusarium oxysporum 83atgtatcgga agttggccgt catctcggcc ttcttggcca cagctcgtgc tcaagacact 60aatgacattc ctcccctgat caccgacctc tggtccgcag atccctcggc tcatgttttc 120gaaggcaagc tctgggttta cccatctcac gacatcgaag ccaatgttgt caacggcaca 180ggaggcgctc aatacgccat gagggattac catacctact ccatgaagag catctatggt 240aaagatcccg ttgtcgacca cggcgtcgct ctctcagtcg atgacgttcc ctgggcgaag 300cagcaaatgt gggctcctga cgcagctcat aagaacggca aatattatct gtacttcccc 360gccaaggaca aggatgagat cttcagaatt ggagttgctg tctccaacaa gcccagcggt 420cctttcaagg ccgacaagag ctggatccct ggcacgtaca gtatcgatcc tgctagctac 480gtcgacactg ataacgaggc ctacctcatc tggggcggta tctggggcgg ccagctccaa 540gcctggcagg ataaaaagaa ctttaacgag tcgtggattg gagacaaggc tgctcctaac 600ggcaccaatg ccctatctcc tcagatcgcc aagctaagca aggacatgca caagatcacc 660gaaacacccc gcgatctcgt cattctcgcc cccgagacag gcaagcctct tcaggctgag 720gacaacaagc gacgattctt cgagggccct tggatccaca agcgcggcaa gctttactac 780ctcatgtact ccaccggtga tacccacttc cttgtctacg ctacttccaa gaacatctac 840ggtccttata cctaccgggg caagattctt gatcctgttg atgggtggac tactcatgga 900agtattgttg agtataaggg acagtggtgg cttttctttg ctgatgcgca tacgtctggt 960aaggattacc ttcgacaggt gaaggcgagg aagatctggt atgacaagaa cggcaagatc 1020ttgcttcacc gtccttag 10388419PRTArtificial Sequencesynthetic motif for GH61 endoglucanase family 84Xaa Pro Xaa Xaa Xaa Xaa Gly Xaa Tyr Xaa Xaa Arg Xaa Xaa Xaa Xaa 1 5 10 15 Xaa Xaa Xaa 8520PRTArtificial Sequencesynthetic motif for GH61 endoglucanase family 85Xaa Pro Xaa Xaa Xaa Xaa Xaa Gly Xaa Tyr Xaa Xaa Arg Xaa Xaa Xaa 1 5 10 15 Xaa Xaa Xaa Xaa 20 8619PRTArtificial Sequencesynthetic motif for GH61 endoglucanase family 86Xaa Pro Xaa Xaa Xaa Xaa Gly Xaa Tyr Xaa Xaa Arg Xaa Xaa Xaa Xaa 1 5 10 15 Xaa Ala Xaa 8720PRTArtificial Sequencesynthetic motif for GH61 endoglucanase family 87Xaa Pro Xaa Xaa Xaa Xaa Xaa Gly Xaa Tyr Xaa Xaa Arg Xaa Xaa Xaa 1 5 10 15 Xaa Xaa Ala Xaa 20 884PRTArtificial Sequencesynthetic motif for GH61 endoglucanase family 88Xaa Xaa Lys Xaa 1 8910PRTArtificial Sequencesynthetic motif for GH61 endoglucanase family 89His Xaa Xaa Gly Pro Xaa Xaa Xaa Xaa Xaa 1 5 10 909PRTArtificial Sequencesynthetic motif for GH61 endoglucanase family 90His Xaa Gly Pro Xaa Xaa Xaa Xaa Xaa 1 5 9111PRTArtificial Sequencesynthetic motif for GH61 endoglucanase family 91Xaa Xaa Tyr Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa 1 5 10 921920DNAPenicillium funiculosum 92atgtaccgga agctcgccgt gatcagcgcc ttcctggcga ctgctcgcgc catcaccatc 60aacgtcagcc agagcggcgg caacaagacc agcccgctcc agtacggcct catgttcgag 120gacatcaacc acggcggcga cggcggcctc tacgccgagc tggtccggaa ccgggccttc 180cagggcagca ccgtctaccc ggccaacctc gacggctacg actcggtgaa cggcgcgatt 240ctcgcgctcc agaacctcac caacccgctc agcccgagca tgccctcgtc gctgaacgtc 300gccaagggct cgaacaacgg cagcatcggc ttcgccaacg aggggtggtg gggcatcgag 360gtcaagccgc agcggtacgc cggcagcttc tacgtccagg gcgactacca gggcgacttc 420gacatcagcc tccagagcaa gctcacccag gaggtcttcg cgacggcgaa ggtccggtcg 480agcggcaagc acgaggactg ggtccagtac aagtacgagc tggtcccgaa gaaggccgcc 540agcaacacca acaacaccct caccatcacc ttcgacagca agggcctcaa ggacggcagc 600ctcaacttca acctcatcag cctcttcccg ccgacctaca acaaccggcc gaacggcctc 660cggatcgacc tcgtcgaggc catggcggag ctggagggca agttcctccg cttccccggc 720ggctcggacg tggagggcgt ccaggccccg tactggtaca agtggaacga gaccgtcggc 780gacctcaagg accgctactc gcgcccgagc gcctggacct acgaggagag caacggcatc 840ggcctcatcg agtacatgaa ctggtgcgac gacatgggcc tcgagccgat cctcgccgtc 900tgggacggcc actacctcag caacgaggtc atcagcgaga acgacctcca gccgtacatc 960gacgacaccc tcaaccagct cgagttcctc atgggcgccc cggacactcc ctacgggtct 1020tggagggcta gcctcggcta cccgaagccg tggaccatca actacgtcga gatcggcaac 1080gaggacaacc tctacggcgg cctcgagacc tacatcgcct accggttcca ggcctactac 1140gacgccatca ccgccaagta cccgcacatg accgtcatgg agagcctcac cgagatgccc 1200ggccccgctg ccgcggcgtc ggactaccac cagtactcga cgcccgacgg cttcgtcagc 1260cagttcaact acttcgacca gatgccggtc accaaccgca cgctgaacgg cgagatcgcc 1320accgtctacc ccaacaaccc gagcaactcg gtggcgtggg gcagcccgtt cccgctctac 1380ccgtggtgga tcgggtccgt ggctgaggcc gtcttcctca tcggcgagga gcggaacagc 1440ccgaagatca tcggcgccag ctacgccccc atgttccgca acattaacaa ctggcagtgg 1500agcccgaccc tgatcgcctt cgacgccgac agcagccgga cgtcgcgctc tacttcctgg 1560cacgtcatca agctcctcag caccaacaag atcacccaga acctgcccac gacgtggtct 1620gggggggaca tcggcccgct ctactgggtc gccggccgga acgacaacac cggcagcaac 1680atcttcaagg ccgccgtcta caacagcacc agcgacgtcc cggtcaccgt ccagttcgcc 1740ggctgcaacg ccaagagcgc caacctcacc atcctctcgt cggacgaccc caacgccagc 1800aactacccgg gcggccccga ggtcgtcaag accgagatcc agagcgtcac cgccaacgcc 1860cacggcgcct tcgagttcag cctcccgaac ctgtcggtgg ctgtgctgaa gacggagtag 1920932260DNAPodospora anserina 93atggctcttc aaaccttctt cctgctggcg gcagccatgc tggccaacgc agagacaaca 60ggcgaaaagg tctctcggca agcaccgtct ggcgctcaag catgggccgc cgcccactcc 120caggctgccg ccactctggc cagaatgtca cagcaagaca agatcaacat ggtcacgggc 180attggctggg acagagggcc ttgcgtggga aacacagctg ccatcagctc catcaactat 240cctcaaatct gtcttcagga tggaccattg ggcattcgct tcggcactgg taccaccgcc 300ttcacacctg gcgtccaagc tgcttcgaca tgggacgttg atctgatccg gcagcgcggt 360gcttacctgg gcgccgaagc caagggctgc ggcattcaca tccttttggg gcccgttgcc 420ggtgccctgg gcaagattcc ccacggcggt cgcaactggg agggatttgg cgccgacccc 480taccttgccg gtattgccat gaaggagacc atcgagggta ttcagtcagc aggcgtccag 540gccaacgcca agcactacat tgcaaacgaa caagagctca accgcgagac catgagcagc 600aatgtggatg accgcactca gcacgagctc tacctctggc cctttgccga cgccgtgcac 660gccaacgtcg ccagcgtcat gtgcagttac aacaagctca atggcacgtg ggcttgcgag 720aatgacaagg ctctgaatca gatcttgaag aaggagctcg gattccaggg ctacgttctc 780agcgactgga atgctcagca cagcactgct ctgtctgcta acagtggtct ggacatgact 840atgcccggta ccgatttcaa cggccgcaat gtctactggg gccctcaact gaacaacgct 900gtcaacgccg gccaggttca gagatccaga ctagacgaca tgtgcaagag aatcttggct 960ggctggtact tgctcggtca gaaccagggc tatcccgcca tcaacatcag ggccaacgtt 1020cagggcaacc ataaggagaa cgtacgtgct gttgccagag acggcatcgt cttgctgaag 1080aacgatggaa ttctgccgct ttccaagccg agaaagattg ctgtcgtggg ctcccactcc 1140gtcaacaatc cccagggaat caacgcctgt gttgacaagg gctgcaatgt tggcaccctt 1200ggcatgggct ggggttcagg cagcgtcaac tacccctatc tcgtgtcccc gtacgatgct 1260ctccggactc gtgctcaggc cgatggcaca caaatcagcc tccacaacac tgacagcacc 1320aacggtgtgt caaacgttgt gtctgacgct gatgctgttg ttgttgtcat cactgccgat 1380tctggtgaag ggtacatcac tgtcgagggc cacgctggcg accgcagcca ccttgacccg 1440tggcacaatg gcaaccaact tgttcaggct gccgcggctg ccaacaagaa cgtcatcgtt 1500gttgtgcaca gtgttggcca gatcaccctg gagactatcc tcaacaccaa tggagtccgc 1560gcgattgtgt gggctggtct tccgggccaa gagaatggca acgctcttgt tgatgttctc 1620tacggcttgg tttcgccatc tggaaagctt ccctacacca ttggcaagag ggagtcggac 1680tatggcacag ccgttgttcg tggggatgat aacttcaggg agggcctttt tgttgactac 1740cgtcactttg acaatgccag gatcgagccg cgctatgagt ttggctttgg tctttgtaag 1800ttccagcggc ggagttgggt ttgatttcaa gctttcctaa cctgataaaa cagcttacac 1860caatttcacc ttctccgaca tcaagattac ttccaatgtc aagccggggc ccgctactgg 1920ccagaccatt cccggcggac ctgccgacct gtgggaggac gttgcgacag tcactgcaac 1980catcaccaac tcgggtgctg tcgagggcgc tgaggttgcc cagctttaca tcggcctgcc 2040gtcctcggct cctgcctctc ccccgaagca gctgcgtgga ttttccaagc tgaagctggc 2100cccgggtgcc agcggcactg ccacattcaa cctcagacgc agagatctca gctattggga 2160tacccgcctc cagaactggg tcgtgcccag cggcaacttt gtcgtcagcg tcggcgccag 2220ctcgagagat atccgcttga cgggcaccat cacggcgtag 226094733PRTPodospora

anserina 94Met Ala Leu Gln Thr Phe Phe Leu Leu Ala Ala Ala Met Leu Ala Asn 1 5 10 15 Ala Glu Thr Thr Gly Glu Lys Val Ser Arg Gln Ala Pro Ser Gly Ala 20 25 30 Gln Ala Trp Ala Ala Ala His Ser Gln Ala Ala Ala Thr Leu Ala Arg 35 40 45 Met Ser Gln Gln Asp Lys Ile Asn Met Val Thr Gly Ile Gly Trp Asp 50 55 60 Arg Gly Pro Cys Val Gly Asn Thr Ala Ala Ile Ser Ser Ile Asn Tyr 65 70 75 80 Pro Gln Ile Cys Leu Gln Asp Gly Pro Leu Gly Ile Arg Phe Gly Thr 85 90 95 Gly Thr Thr Ala Phe Thr Pro Gly Val Gln Ala Ala Ser Thr Trp Asp 100 105 110 Val Asp Leu Ile Arg Gln Arg Gly Ala Tyr Leu Gly Ala Glu Ala Lys 115 120 125 Gly Cys Gly Ile His Ile Leu Leu Gly Pro Val Ala Gly Ala Leu Gly 130 135 140 Lys Ile Pro His Gly Gly Arg Asn Trp Glu Gly Phe Gly Ala Asp Pro 145 150 155 160 Tyr Leu Ala Gly Ile Ala Met Lys Glu Thr Ile Glu Gly Ile Gln Ser 165 170 175 Ala Gly Val Gln Ala Asn Ala Lys His Tyr Ile Ala Asn Glu Gln Glu 180 185 190 Leu Asn Arg Glu Thr Met Ser Ser Asn Val Asp Asp Arg Thr Gln His 195 200 205 Glu Leu Tyr Leu Trp Pro Phe Ala Asp Ala Val His Ala Asn Val Ala 210 215 220 Ser Val Met Cys Ser Tyr Asn Lys Leu Asn Gly Thr Trp Ala Cys Glu 225 230 235 240 Asn Asp Lys Ala Leu Asn Gln Ile Leu Lys Lys Glu Leu Gly Phe Gln 245 250 255 Gly Tyr Val Leu Ser Asp Trp Asn Ala Gln His Ser Thr Ala Leu Ser 260 265 270 Ala Asn Ser Gly Leu Asp Met Thr Met Pro Gly Thr Asp Phe Asn Gly 275 280 285 Arg Asn Val Tyr Trp Gly Pro Gln Leu Asn Asn Ala Val Asn Ala Gly 290 295 300 Gln Val Gln Arg Ser Arg Leu Asp Asp Met Cys Lys Arg Ile Leu Ala 305 310 315 320 Gly Trp Tyr Leu Leu Gly Gln Asn Gln Gly Tyr Pro Ala Ile Asn Ile 325 330 335 Arg Ala Asn Val Gln Gly Asn His Lys Glu Asn Val Arg Ala Val Ala 340 345 350 Arg Asp Gly Ile Val Leu Leu Lys Asn Asp Gly Ile Leu Pro Leu Ser 355 360 365 Lys Pro Arg Lys Ile Ala Val Val Gly Ser His Ser Val Asn Asn Pro 370 375 380 Gln Gly Ile Asn Ala Cys Val Asp Lys Gly Cys Asn Val Gly Thr Leu 385 390 395 400 Gly Met Gly Trp Gly Ser Gly Ser Val Asn Tyr Pro Tyr Leu Val Ser 405 410 415 Pro Tyr Asp Ala Leu Arg Thr Arg Ala Gln Ala Asp Gly Thr Gln Ile 420 425 430 Ser Leu His Asn Thr Asp Ser Thr Asn Gly Val Ser Asn Val Val Ser 435 440 445 Asp Ala Asp Ala Val Val Val Val Ile Thr Ala Asp Ser Gly Glu Gly 450 455 460 Tyr Ile Thr Val Glu Gly His Ala Gly Asp Arg Ser His Leu Asp Pro 465 470 475 480 Trp His Asn Gly Asn Gln Leu Val Gln Ala Ala Ala Ala Ala Asn Lys 485 490 495 Asn Val Ile Val Val Val His Ser Val Gly Gln Ile Thr Leu Glu Thr 500 505 510 Ile Leu Asn Thr Asn Gly Val Arg Ala Ile Val Trp Ala Gly Leu Pro 515 520 525 Gly Gln Glu Asn Gly Asn Ala Leu Val Asp Val Leu Tyr Gly Leu Val 530 535 540 Ser Pro Ser Gly Lys Leu Pro Tyr Thr Ile Gly Lys Arg Glu Ser Asp 545 550 555 560 Tyr Gly Thr Ala Val Val Arg Gly Asp Asp Asn Phe Arg Glu Gly Leu 565 570 575 Phe Val Asp Tyr Arg His Phe Asp Asn Ala Arg Ile Glu Pro Arg Tyr 580 585 590 Glu Phe Gly Phe Gly Leu Ser Tyr Thr Asn Phe Thr Phe Ser Asp Ile 595 600 605 Lys Ile Thr Ser Asn Val Lys Pro Gly Pro Ala Thr Gly Gln Thr Ile 610 615 620 Pro Gly Gly Pro Ala Asp Leu Trp Glu Asp Val Ala Thr Val Thr Ala 625 630 635 640 Thr Ile Thr Asn Ser Gly Ala Val Glu Gly Ala Glu Val Ala Gln Leu 645 650 655 Tyr Ile Gly Leu Pro Ser Ser Ala Pro Ala Ser Pro Pro Lys Gln Leu 660 665 670 Arg Gly Phe Ser Lys Leu Lys Leu Ala Pro Gly Ala Ser Gly Thr Ala 675 680 685 Thr Phe Asn Leu Arg Arg Arg Asp Leu Ser Tyr Trp Asp Thr Arg Leu 690 695 700 Gln Asn Trp Val Val Pro Ser Gly Asn Phe Val Val Ser Val Gly Ala 705 710 715 720 Ser Ser Arg Asp Ile Arg Leu Thr Gly Thr Ile Thr Ala 725 730 952551DNAFusarium verticillioides 95atgtttcctt cttccatatc ttgtttggcg gccctgagtc tgatgagcca gggtctacta 60gctcagagcc aaccggaaaa tgtcatcacc gatgatacct acttctacgg tcaatcgcca 120ccagtgtatc ctacacgtaa gcactctctc tgatttccca acgaaagcaa tactgatctc 180ttgaccagcg gaacaggtag acaccggctc atgggctgcc gctgtagcca aagccaagaa 240cttggtgtcc cagttgactc ttgaagagaa agtcaacttg actacaggag gccagacgac 300caccggctgc tctggcttca tccctggcat tccccgtgta ggctttccag gactgtgttt 360agcagacgct ggcaacggtg tccgcaacac agattatgtg agctcgtttc cctccgggat 420tcatgtcggt gcaagctgga atccggagtt gacctacagc cggagctact acatgggtgc 480tgaggccaaa gccaagggcg ttaacatcct tctcggtcca gtatttggac ctttgggccg 540agtagttgaa ggtggacgca actgggaggg gttttccaat gatccctacc tggcgggtaa 600attagggcat gaagctgtcg ccggtatcca agacgccgga gttgttgcat gcggaaaaca 660tttccttgct caagagcagg agacccatag acttgcggcg tctgtcactg gggctgatgc 720aatctcatca aatctcgatg acaagacact ccatgaatta tatctctggt aagcacatca 780tatcttggct gagtagatga accttactaa cacccgaact gggcttttcg ctgatgcagt 840ccacgccgga cttgccagtg tgatgtgcag ctacaacaga gcaaacaatt cacacgcctg 900ccaaaactcg aagcttctca atggccttct caagggcgag ttaggattcc agggttttgt 960cgtctcggac tggggcgcac agcaatctgg tatggcttca gcattggctg gcctggatgt 1020tgtcatgccc agctcgatct tgtggggtgc caaccttacc cttggtgtga acaacggaac 1080tattcccgag tcacaggttg acaatatggt tacacggtac gcgaagtctc agccttactt 1140ctcaattctt ttgaactgac aatcgtgtag gctccttgca acttggtatc agttgaacca 1200ggaccaagac accgaagccc caggtcacgg actcgctgcc aagctttggg agcctcaccc 1260agtagtcgac gctcgcaacg caagctccaa gcctactatc tgggacggtg cagtcgaggg 1320ccatgttctt gttaagaaca ccaacaacgc actgccattc aagcccaaca tgaaactcgt 1380ttctttgttc ggatactctc acaaagctcc tgataagaac atcccagacc ccgcccaagg 1440catgttctcc gcttggtcta tcggtgccca atccgccaac atcactgagc tgaacctcgg 1500ctttctcgga aatttgagtc tcacatactc cgccatcgcg cccaacggaa ccatcatctc 1560gggtggaggc tcgggtgcca gcgcttggac tctgttcagc tcacccttcg atgcattcgt 1620ttctcgggcg aagaaagagg gtactgcgct tttctgggat tttgagagct gggatcctta 1680tgtgaaccct acatctgaag cttgcatcgt tgctggtaat gcatgggcta gcgaaggctg 1740ggatagacct gcaacctatg atgcctatac tgatgagctc atcaataacg tcgctgacaa 1800gtgcgctaac actattgttg ttcttcacaa tgctggaaca cgacttgtgg atggcttctt 1860tggtcacccc aacgtcaccg ctattatcta cgctcatctc ccaggtcagg atagtggaga 1920tgctctggta tctttgctct atggcgatga gaacccatct ggtcgcctcc cttacaccgt 1980tgcccgcaac gagacggatt atggtcacct gctgaagcca gacttgactc tcgcccccaa 2040ccagtaccaa cactttcccc agtccgactt ctccgagggt attttcattg actaccgaca 2100tttcgatgct aagaacatca cgcctcgctt cgagtttggt ttcggcttga gctacacaac 2160ctttgagtac gctagtctcc agatctcaaa gtcccaggcc cagacaccgg aatacccagc 2220tggtgctctt accgagggag gccgttcaga tttgtgggac gtcgttgcta ctgtcacagc 2280aagcgtcagg aacactgggt ctgtcgacgg caaggaggtt gcacagctat acgttggtgt 2340tccaggtggt cctatgagac agctacgtgg ctttacgaaa ccagctatta aggctggaga 2400gacggctaca gtgacctttg agcttactcg ccgcgacttg agtgtctggg atgttaatgc 2460gcaggagtgg caacttcagc aaggcaacta tgctatctac gttggccgaa gtagtcgaga 2520tttgcctctg caaagtacct tgagcatcta g 255196780PRTFusarium verticillioides 96Met Phe Pro Ser Ser Ile Ser Cys Leu Ala Ala Leu Ser Leu Met Ser 1 5 10 15 Gln Gly Leu Leu Ala Gln Ser Gln Pro Glu Asn Val Ile Thr Asp Asp 20 25 30 Thr Tyr Phe Tyr Gly Gln Ser Pro Pro Val Tyr Pro Thr His Thr Gly 35 40 45 Ser Trp Ala Ala Ala Val Ala Lys Ala Lys Asn Leu Val Ser Gln Leu 50 55 60 Thr Leu Glu Glu Lys Val Asn Leu Thr Thr Gly Gly Gln Thr Thr Thr 65 70 75 80 Gly Cys Ser Gly Phe Ile Pro Gly Ile Pro Arg Val Gly Phe Pro Gly 85 90 95 Leu Cys Leu Ala Asp Ala Gly Asn Gly Val Arg Asn Thr Asp Tyr Val 100 105 110 Ser Ser Phe Pro Ser Gly Ile His Val Gly Ala Ser Trp Asn Pro Glu 115 120 125 Leu Thr Tyr Ser Arg Ser Tyr Tyr Met Gly Ala Glu Ala Lys Ala Lys 130 135 140 Gly Val Asn Ile Leu Leu Gly Pro Val Phe Gly Pro Leu Gly Arg Val 145 150 155 160 Val Glu Gly Gly Arg Asn Trp Glu Gly Phe Ser Asn Asp Pro Tyr Leu 165 170 175 Ala Gly Lys Leu Gly His Glu Ala Val Ala Gly Ile Gln Asp Ala Gly 180 185 190 Val Val Ala Cys Gly Lys His Phe Leu Ala Gln Glu Gln Glu Thr His 195 200 205 Arg Leu Ala Ala Ser Val Thr Gly Ala Asp Ala Ile Ser Ser Asn Leu 210 215 220 Asp Asp Lys Thr Leu His Glu Leu Tyr Leu Cys Val Met Cys Ser Tyr 225 230 235 240 Asn Arg Ala Asn Asn Ser His Ala Cys Gln Asn Ser Lys Leu Leu Asn 245 250 255 Gly Leu Leu Lys Gly Glu Leu Gly Phe Gln Gly Phe Val Val Ser Asp 260 265 270 Trp Gly Ala Gln Gln Ser Gly Met Ala Ser Ala Leu Ala Gly Leu Asp 275 280 285 Val Val Met Pro Ser Ser Ile Leu Trp Gly Ala Asn Leu Thr Leu Gly 290 295 300 Val Asn Asn Gly Thr Ile Pro Glu Ser Gln Val Asp Asn Met Val Thr 305 310 315 320 Arg Leu Leu Ala Thr Trp Tyr Gln Leu Asn Gln Asp Gln Asp Thr Glu 325 330 335 Ala Pro Gly His Gly Leu Ala Ala Lys Leu Trp Glu Pro His Pro Val 340 345 350 Val Asp Ala Arg Asn Ala Ser Ser Lys Pro Thr Ile Trp Asp Gly Ala 355 360 365 Val Glu Gly His Val Leu Val Lys Asn Thr Asn Asn Ala Leu Pro Phe 370 375 380 Lys Pro Asn Met Lys Leu Val Ser Leu Phe Gly Tyr Ser His Lys Ala 385 390 395 400 Pro Asp Lys Asn Ile Pro Asp Pro Ala Gln Gly Met Phe Ser Ala Trp 405 410 415 Ser Ile Gly Ala Gln Ser Ala Asn Ile Thr Glu Leu Asn Leu Gly Phe 420 425 430 Leu Gly Asn Leu Ser Leu Thr Tyr Ser Ala Ile Ala Pro Asn Gly Thr 435 440 445 Ile Ile Ser Gly Gly Gly Ser Gly Ala Ser Ala Trp Thr Leu Phe Ser 450 455 460 Ser Pro Phe Asp Ala Phe Val Ser Arg Ala Lys Lys Glu Gly Thr Ala 465 470 475 480 Leu Phe Trp Asp Phe Glu Ser Trp Asp Pro Tyr Val Asn Pro Thr Ser 485 490 495 Glu Ala Cys Ile Val Ala Gly Asn Ala Trp Ala Ser Glu Gly Trp Asp 500 505 510 Arg Pro Ala Thr Tyr Asp Ala Tyr Thr Asp Glu Leu Ile Asn Asn Val 515 520 525 Ala Asp Lys Cys Ala Asn Thr Ile Val Val Leu His Asn Ala Gly Thr 530 535 540 Arg Leu Val Asp Gly Phe Phe Gly His Pro Asn Val Thr Ala Ile Ile 545 550 555 560 Tyr Ala His Leu Pro Gly Gln Asp Ser Gly Asp Ala Leu Val Ser Leu 565 570 575 Leu Tyr Gly Asp Glu Asn Pro Ser Gly Arg Leu Pro Tyr Thr Val Ala 580 585 590 Arg Asn Glu Thr Asp Tyr Gly His Leu Leu Lys Pro Asp Leu Thr Leu 595 600 605 Ala Pro Asn Gln Tyr Gln His Phe Pro Gln Ser Asp Phe Ser Glu Gly 610 615 620 Ile Phe Ile Asp Tyr Arg His Phe Asp Ala Lys Asn Ile Thr Pro Arg 625 630 635 640 Phe Glu Phe Gly Phe Gly Leu Ser Tyr Thr Thr Phe Glu Tyr Ala Ser 645 650 655 Leu Gln Ile Ser Lys Ser Gln Ala Gln Thr Pro Glu Tyr Pro Ala Gly 660 665 670 Ala Leu Thr Glu Gly Gly Arg Ser Asp Leu Trp Asp Val Val Ala Thr 675 680 685 Val Thr Ala Ser Val Arg Asn Thr Gly Ser Val Asp Gly Lys Glu Val 690 695 700 Ala Gln Leu Tyr Val Gly Val Pro Gly Gly Pro Met Arg Gln Leu Arg 705 710 715 720 Gly Phe Thr Lys Pro Ala Ile Lys Ala Gly Glu Thr Ala Thr Val Thr 725 730 735 Phe Glu Leu Thr Arg Arg Asp Leu Ser Val Trp Asp Val Asn Ala Gln 740 745 750 Glu Trp Gln Leu Gln Gln Gly Asn Tyr Ala Ile Tyr Val Gly Arg Ser 755 760 765 Ser Arg Asp Leu Pro Leu Gln Ser Thr Leu Ser Ile 770 775 780 972487DNAFusarium verticillioides 97atggctagca ttcgatctgt gttggtctcg ggtcttttgg ccgcgggtgt caatgcccaa 60gcctacgatg cgagtgatcg cgctgaagat gctttcagct gggtccagcc caagaacacc 120actattcttg gacagtacgg ccattcgcct cattaccctg ccagtatgtt caccaactac 180accaagtgac actgaggctg tactgacatt ctagacaatg ctactggcaa gggctgggaa 240gatgccttcg ccaaggctca aaactttgtc tcccaactaa ccctcgagga aaaggccgac 300atggtcacag gaactccagg tccttgcgtc ggcaacatcg tcgccattcc ccgtctcaac 360ttcaacggtc tctgtcttca cgacggcccc ctcgccatcc gagtagcaga ctacgccagt 420gttttccccg ctggtgtatc agccgcttca tcgtgggaca aggacctcct ctaccagcgc 480ggtctcgcca tgggtcaaga gttcaaggcc aagggtgctc acatcctcct cggccccgtc 540gccggtcctc ttggccgctc ggcatactct ggtcgtaact gggagggttt ctcgccggac 600ccttacctca ctggtattgc gatggaggag actatcatgg gacatcaaga tgctggtgtt 660caggctactg cgaagcactt tatcggtaat gagcaggagg tcatgcgaaa ccctactttt 720gtcaaggatg ggtatattgg tgaggttgac aaggaggctc tttcgtctaa catggatgat 780cgaaccatgc acgagcttta cctctggccc tttgccaatg ctgttcatgc caaggcttcc 840agcatgatgt gctcgtacca gcgtctcaac ggctcctacg cctgccagaa ctcaaaggtc 900ctcaacggaa ttctgcgtga tgagcttggt ttccagggct acgtcatgtc agattggggt 960gccacccacg ccggtgttgc tgccatcaac agcggtctcg acatggacat gcccggtggt 1020atcggtgcct acggaacata ctttaccaag tccttcttcg gcggcaacct cacccgcgcc 1080gtcaccaacg gcaccctcga cgagacccgc gtcaacgaca tgatcacccg catcatgact 1140ccctacttct ggctcggcca ggacaaggac tatccctccg tcgacccctc cagcggtgat 1200ctcaacacct tcagccccaa gagctcctgg ttccgcgagt tcaacctcac cggcgagcgc 1260agccgtgacg tccgcggtaa ccacggcgac ttgatccgca agcacggcgc cgagtctacc 1320gtccttctca agaacgagaa gaacgccctt cccctcaaga agcccaagtc catcgctgtc 1380tttggcaacg atgctggtga tatcactgag ggtttctaca accagaatga ctacgaattt 1440ggcactcttg ttgctggtgg tggctctgga actggtcgtt tgacatacct tgtttcgcct 1500ctagccgcca tcaatgctcg tgctaagcag gacggtactc ttgttcagca gtggatgaac 1560aacactctta ttgctaccac caacgtcact gatctctgga tccctgctac tcccgatgtc 1620tgcctcgttt tcttgaagac ttgggctgag gaggctgctg atcgtgagca cctctccgtt 1680gactgggacg gtaatgatgt tgttgagtct gttgccaagt actgcaataa cactgtcgtc 1740gtcactcact cttctggtat caacactctt ccttgggctg accaccccaa cgtcaccgct 1800attctcgctg cccacttccc cggtcaggag tctggcaact ccctcgttga cctcctctac 1860ggcgatgtca acccctctgg tcgtcttccc tacaccatcg ccttcaacgg caccgactac 1920aacgctcccc ccaccactgc cgtcaacacc accggcaagg aggactggca gtcttggttc 1980gacgagaagc tcgagattga ctaccgctac ttcgacgcgc acaacatctc cgtccgctac 2040gaattcggct tcggtctctc ctactccacc ttcgaaatct ccgacatctc cgctgagcca 2100ctcgcatccg acattacctc ccagcccgag gatctccccg tgcagcccgg cggcaacccc 2160gccctctggg agaccgtcta caacgtgacc gtctccgtct ccaacacggg caaggtcgac 2220ggcgccactg tcccccagct atacgtgaca ttccccgaca gcgcgcctgc cggtacacca 2280cccaagcagc tccgtgggtt cgacaaggtc ttccttgagg ctggcgagag caagagtgtc 2340agctttgagc tgatgcgccg tgatctgagc tactgggata tcatttctca gaagtggctc 2400atccctgagg gagagtttac tattcgtgtt ggattcagca gtcgggactt gaaggaggag 2460acaaaggtta ctgttgttga ggcgtaa

248798811PRTFusarium verticillioides 98Met Ala Ser Ile Arg Ser Val Leu Val Ser Gly Leu Leu Ala Ala Gly 1 5 10 15 Val Asn Ala Gln Ala Tyr Asp Ala Ser Asp Arg Ala Glu Asp Ala Phe 20 25 30 Ser Trp Val Gln Pro Lys Asn Thr Thr Ile Leu Gly Gln Tyr Gly His 35 40 45 Ser Pro His Tyr Pro Ala Asn Asn Ala Thr Gly Lys Gly Trp Glu Asp 50 55 60 Ala Phe Ala Lys Ala Gln Asn Phe Val Ser Gln Leu Thr Leu Glu Glu 65 70 75 80 Lys Ala Asp Met Val Thr Gly Thr Pro Gly Pro Cys Val Gly Asn Ile 85 90 95 Val Ala Ile Pro Arg Leu Asn Phe Asn Gly Leu Cys Leu His Asp Gly 100 105 110 Pro Leu Ala Ile Arg Val Ala Asp Tyr Ala Ser Val Phe Pro Ala Gly 115 120 125 Val Ser Ala Ala Ser Ser Trp Asp Lys Asp Leu Leu Tyr Gln Arg Gly 130 135 140 Leu Ala Met Gly Gln Glu Phe Lys Ala Lys Gly Ala His Ile Leu Leu 145 150 155 160 Gly Pro Val Ala Gly Pro Leu Gly Arg Ser Ala Tyr Ser Gly Arg Asn 165 170 175 Trp Glu Gly Phe Ser Pro Asp Pro Tyr Leu Thr Gly Ile Ala Met Glu 180 185 190 Glu Thr Ile Met Gly His Gln Asp Ala Gly Val Gln Ala Thr Ala Lys 195 200 205 His Phe Ile Gly Asn Glu Gln Glu Val Met Arg Asn Pro Thr Phe Val 210 215 220 Lys Asp Gly Tyr Ile Gly Glu Val Asp Lys Glu Ala Leu Ser Ser Asn 225 230 235 240 Met Asp Asp Arg Thr Met His Glu Leu Tyr Leu Trp Pro Phe Ala Asn 245 250 255 Ala Val His Ala Lys Ala Ser Ser Met Met Cys Ser Tyr Gln Arg Leu 260 265 270 Asn Gly Ser Tyr Ala Cys Gln Asn Ser Lys Val Leu Asn Gly Ile Leu 275 280 285 Arg Asp Glu Leu Gly Phe Gln Gly Tyr Val Met Ser Asp Trp Gly Ala 290 295 300 Thr His Ala Gly Val Ala Ala Ile Asn Ser Gly Leu Asp Met Asp Met 305 310 315 320 Pro Gly Gly Ile Gly Ala Tyr Gly Thr Tyr Phe Thr Lys Ser Phe Phe 325 330 335 Gly Gly Asn Leu Thr Arg Ala Val Thr Asn Gly Thr Leu Asp Glu Thr 340 345 350 Arg Val Asn Asp Met Ile Thr Arg Ile Met Thr Pro Tyr Phe Trp Leu 355 360 365 Gly Gln Asp Lys Asp Tyr Pro Ser Val Asp Pro Ser Ser Gly Asp Leu 370 375 380 Asn Thr Phe Ser Pro Lys Ser Ser Trp Phe Arg Glu Phe Asn Leu Thr 385 390 395 400 Gly Glu Arg Ser Arg Asp Val Arg Gly Asn His Gly Asp Leu Ile Arg 405 410 415 Lys His Gly Ala Glu Ser Thr Val Leu Leu Lys Asn Glu Lys Asn Ala 420 425 430 Leu Pro Leu Lys Lys Pro Lys Ser Ile Ala Val Phe Gly Asn Asp Ala 435 440 445 Gly Asp Ile Thr Glu Gly Phe Tyr Asn Gln Asn Asp Tyr Glu Phe Gly 450 455 460 Thr Leu Val Ala Gly Gly Gly Ser Gly Thr Gly Arg Leu Thr Tyr Leu 465 470 475 480 Val Ser Pro Leu Ala Ala Ile Asn Ala Arg Ala Lys Gln Asp Gly Thr 485 490 495 Leu Val Gln Gln Trp Met Asn Asn Thr Leu Ile Ala Thr Thr Asn Val 500 505 510 Thr Asp Leu Trp Ile Pro Ala Thr Pro Asp Val Cys Leu Val Phe Leu 515 520 525 Lys Thr Trp Ala Glu Glu Ala Ala Asp Arg Glu His Leu Ser Val Asp 530 535 540 Trp Asp Gly Asn Asp Val Val Glu Ser Val Ala Lys Tyr Cys Asn Asn 545 550 555 560 Thr Val Val Val Thr His Ser Ser Gly Ile Asn Thr Leu Pro Trp Ala 565 570 575 Asp His Pro Asn Val Thr Ala Ile Leu Ala Ala His Phe Pro Gly Gln 580 585 590 Glu Ser Gly Asn Ser Leu Val Asp Leu Leu Tyr Gly Asp Val Asn Pro 595 600 605 Ser Gly Arg Leu Pro Tyr Thr Ile Ala Phe Asn Gly Thr Asp Tyr Asn 610 615 620 Ala Pro Pro Thr Thr Ala Val Asn Thr Thr Gly Lys Glu Asp Trp Gln 625 630 635 640 Ser Trp Phe Asp Glu Lys Leu Glu Ile Asp Tyr Arg Tyr Phe Asp Ala 645 650 655 His Asn Ile Ser Val Arg Tyr Glu Phe Gly Phe Gly Leu Ser Tyr Ser 660 665 670 Thr Phe Glu Ile Ser Asp Ile Ser Ala Glu Pro Leu Ala Ser Asp Ile 675 680 685 Thr Ser Gln Pro Glu Asp Leu Pro Val Gln Pro Gly Gly Asn Pro Ala 690 695 700 Leu Trp Glu Thr Val Tyr Asn Val Thr Val Ser Val Ser Asn Thr Gly 705 710 715 720 Lys Val Asp Gly Ala Thr Val Pro Gln Leu Tyr Val Thr Phe Pro Asp 725 730 735 Ser Ala Pro Ala Gly Thr Pro Pro Lys Gln Leu Arg Gly Phe Asp Lys 740 745 750 Val Phe Leu Glu Ala Gly Glu Ser Lys Ser Val Ser Phe Glu Leu Met 755 760 765 Arg Arg Asp Leu Ser Tyr Trp Asp Ile Ile Ser Gln Lys Trp Leu Ile 770 775 780 Pro Glu Gly Glu Phe Thr Ile Arg Val Gly Phe Ser Ser Arg Asp Leu 785 790 795 800 Lys Glu Glu Thr Lys Val Thr Val Val Glu Ala 805 810 993269DNAFusarium verticillioides 99atgaagctga attgggtcgc cgcagccctg tctataggtg ctgctggcac tgacagcgca 60gttgctcttg cttctgcagt tccagacact ttggctggtg taaaggtcag ttttttttca 120ccatttcctc gtctaatctc agccttgttg ccatatcgcc cttgttcgct cggacgccac 180gcaccagatc gcgatcattt cctcccttgc agccttggtt cctcttacga tcttccctcc 240gcaattatca gcgcccttag tctacacaaa aacccccgag acagtctttc attgagtttg 300tcgacatcaa gttgcttctc aactgtgcat ttgcgtggct gtctacttct gcctctagac 360aaccaaatct gggcgcaatt gaccgctcaa accttgttca aataaccttt tttattcgag 420acgcacattt ataaatatgc gcctttcaat aataccgact ttatgcgcgg cggctgctgt 480ggcggttgat cagaaagctg acgctcaaaa ggttgtcacg agagatacac tcgcatactc 540gccgcctcat tatccttcac catggatgga ccctaatgct gttggctggg aggaagctta 600cgccaaagcc aagagctttg tgtcccaact cactctcatg gaaaaggtca acttgaccac 660tggtgttggg taagcagctc cttgcaaaca gggtatctca atcccctcag ctaacaactt 720ctcagatggc aaggcgaacg ctgtgtagga aacgtgggat caattcctcg tctcggtatg 780cgaggtctct gtctccagga tggtcctctt ggaattcgtc tgtccgacta caacagcgct 840tttcccgctg gcaccacagc tggtgcttct tggagcaagt ctctctggta tgagagaggt 900ctcctgatgg gcactgagtt caaggagaag ggtatcgata tcgctcttgg tcctgctact 960ggacctcttg gtcgcactgc tgctggtgga cgaaactggg aaggcttcac cgttgatcct 1020tatatggctg gccacgccat ggccgaggcc gtcaagggta ttcaagacgc aggtgtcatt 1080gcttgtgcta agcattacat cgcaaacgag cagggtaagc cacttggacg atttgaggaa 1140ttgacagaga actgaccctc ttgtagagca cttccgacag agtggcgagg tccagtcccg 1200caagtacaac atctccgagt ctctctcctc caacctggat gacaagacta tgcacgagct 1260ctacgcctgg cccttcgctg acgccgtccg cgccggcgtc ggttccgtca tgtgctcgta 1320caaccagatc aacaactcgt acggttgcca gaactccaag ctcctcaacg gtatcctcaa 1380ggacgagatg ggcttccagg gtttcgtcat gagcgattgg gcggcccagc ataccggtgc 1440cgcttctgcc gtcgctggtc tcgatatgag catgcctggt gacactgcct tcgacagcgg 1500atacagcttc tggggcggaa acttgactct ggctgtcatc aacggaactg ttcccgcctg 1560gcgagttgat gacatggctc tgcgaatcat gtctgccttc ttcaaggttg gaaagacgat 1620agaggatctt cccgacatca acttctcctc ctggacccgc gacaccttcg gcttcgtgca 1680tacatttgct caagagaacc gcgagcaggt caactttgga gtcaacgtcc agcacgacca 1740caagagccac atccgtgagg ccgctgccaa gggaagcgtc gtgctcaaga acaccgggtc 1800ccttcccctc aagaacccaa agttcctcgc tgtcattggt gaggacgccg gtcccaaccc 1860tgctggaccc aatggttgtg gtgaccgtgg ttgcgataat ggtaccctgg ctatggcttg 1920gggctcggga acttcccaat tcccttactt gatcaccccc gatcaagggc tctctaatcg 1980agctactcaa gacggaactc gatatgagag catcttgacc aacaacgaat gggcttcagt 2040acaagctctt gtcagccagc ctaacgtgac cgctatcgtt ttcgccaatg ccgactctgg 2100tgagggatac attgaagtcg acggaaactt tggtgatcgc aagaacctca ccctctggca 2160gcagggagac gagctcatca agaacgtgtc gtccatatgc cccaacacca ttgtagttct 2220gcacaccgtc ggccctgtcc tactcgccga ctacgagaag aaccccaaca tcactgccat 2280cgtctgggct ggtcttcccg gccaagagtc aggcaatgcc atcgctgatc tcctctacgg 2340caaggtcagc cctggccgat ctcccttcac ttggggccgc acccgcgaga gctacggtac 2400tgaggttctt tatgaggcga acaacggccg tggcgctcct caggatgact tctctgaggg 2460tgtcttcatc gactaccgtc acttcgaccg acgatctcca agcaccgatg gaaagagctc 2520tcccaacaac accgctgctc ctctctacga gttcggtcac ggtctatctt ggtccacctt 2580tgagtactct gacctcaaca tccagaagaa cgtcgagaac ccctactctc ctcccgctgg 2640ccagaccatc cccgccccaa cctttggcaa cttcagcaag aacctcaacg actacgtgtt 2700ccccaagggc gtccgataca tctacaagtt catctacccc ttcctcaaca cctcctcatc 2760cgccagcgag gcatccaacg atggtggcca gtttggtaag actgccgaag agttcctccc 2820tcccaacgcc ctcaacggct cagcccagcc tcgtcttccc gcctctggtg ccccaggtgg 2880taaccctcaa ttgtgggaca tcttgtacac cgtcacagcc acaatcacca acacaggcaa 2940cgccacctcc gacgagattc cccagctgta tgtcagcctc ggtggcgaga acgagcccat 3000ccgtgttctc cgcggtttcg accgtatcga gaacattgct cccggccaga gcgccatctt 3060caacgctcaa ttgacccgtc gcgatctgag taactgggat acaaatgccc agaactgggt 3120catcactgac catcccaaga ctgtctgggt tggaagcagc tctcgcaagc tgcctctcag 3180cgccaagttg gagtaagaaa gccaaacaag ggttgttttt tggactgcaa ttttttggga 3240ggacatagta gccgcgcgcc agttacgtc 3269100899PRTFusarium verticillioides 100Met Lys Leu Asn Trp Val Ala Ala Ala Leu Ser Ile Gly Ala Ala Gly 1 5 10 15 Thr Asp Ser Ala Val Ala Leu Ala Ser Ala Val Pro Asp Thr Leu Ala 20 25 30 Gly Val Lys Lys Ala Asp Ala Gln Lys Val Val Thr Arg Asp Thr Leu 35 40 45 Ala Tyr Ser Pro Pro His Tyr Pro Ser Pro Trp Met Asp Pro Asn Ala 50 55 60 Val Gly Trp Glu Glu Ala Tyr Ala Lys Ala Lys Ser Phe Val Ser Gln 65 70 75 80 Leu Thr Leu Met Glu Lys Val Asn Leu Thr Thr Gly Val Gly Trp Gln 85 90 95 Gly Glu Arg Cys Val Gly Asn Val Gly Ser Ile Pro Arg Leu Gly Met 100 105 110 Arg Gly Leu Cys Leu Gln Asp Gly Pro Leu Gly Ile Arg Leu Ser Asp 115 120 125 Tyr Asn Ser Ala Phe Pro Ala Gly Thr Thr Ala Gly Ala Ser Trp Ser 130 135 140 Lys Ser Leu Trp Tyr Glu Arg Gly Leu Leu Met Gly Thr Glu Phe Lys 145 150 155 160 Glu Lys Gly Ile Asp Ile Ala Leu Gly Pro Ala Thr Gly Pro Leu Gly 165 170 175 Arg Thr Ala Ala Gly Gly Arg Asn Trp Glu Gly Phe Thr Val Asp Pro 180 185 190 Tyr Met Ala Gly His Ala Met Ala Glu Ala Val Lys Gly Ile Gln Asp 195 200 205 Ala Gly Val Ile Ala Cys Ala Lys His Tyr Ile Ala Asn Glu Gln Glu 210 215 220 His Phe Arg Gln Ser Gly Glu Val Gln Ser Arg Lys Tyr Asn Ile Ser 225 230 235 240 Glu Ser Leu Ser Ser Asn Leu Asp Asp Lys Thr Met His Glu Leu Tyr 245 250 255 Ala Trp Pro Phe Ala Asp Ala Val Arg Ala Gly Val Gly Ser Val Met 260 265 270 Cys Ser Tyr Asn Gln Ile Asn Asn Ser Tyr Gly Cys Gln Asn Ser Lys 275 280 285 Leu Leu Asn Gly Ile Leu Lys Asp Glu Met Gly Phe Gln Gly Phe Val 290 295 300 Met Ser Asp Trp Ala Ala Gln His Thr Gly Ala Ala Ser Ala Val Ala 305 310 315 320 Gly Leu Asp Met Ser Met Pro Gly Asp Thr Ala Phe Asp Ser Gly Tyr 325 330 335 Ser Phe Trp Gly Gly Asn Leu Thr Leu Ala Val Ile Asn Gly Thr Val 340 345 350 Pro Ala Trp Arg Val Asp Asp Met Ala Leu Arg Ile Met Ser Ala Phe 355 360 365 Phe Lys Val Gly Lys Thr Ile Glu Asp Leu Pro Asp Ile Asn Phe Ser 370 375 380 Ser Trp Thr Arg Asp Thr Phe Gly Phe Val His Thr Phe Ala Gln Glu 385 390 395 400 Asn Arg Glu Gln Val Asn Phe Gly Val Asn Val Gln His Asp His Lys 405 410 415 Ser His Ile Arg Glu Ala Ala Ala Lys Gly Ser Val Val Leu Lys Asn 420 425 430 Thr Gly Ser Leu Pro Leu Lys Asn Pro Lys Phe Leu Ala Val Ile Gly 435 440 445 Glu Asp Ala Gly Pro Asn Pro Ala Gly Pro Asn Gly Cys Gly Asp Arg 450 455 460 Gly Cys Asp Asn Gly Thr Leu Ala Met Ala Trp Gly Ser Gly Thr Ser 465 470 475 480 Gln Phe Pro Tyr Leu Ile Thr Pro Asp Gln Gly Leu Ser Asn Arg Ala 485 490 495 Thr Gln Asp Gly Thr Arg Tyr Glu Ser Ile Leu Thr Asn Asn Glu Trp 500 505 510 Ala Ser Val Gln Ala Leu Val Ser Gln Pro Asn Val Thr Ala Ile Val 515 520 525 Phe Ala Asn Ala Asp Ser Gly Glu Gly Tyr Ile Glu Val Asp Gly Asn 530 535 540 Phe Gly Asp Arg Lys Asn Leu Thr Leu Trp Gln Gln Gly Asp Glu Leu 545 550 555 560 Ile Lys Asn Val Ser Ser Ile Cys Pro Asn Thr Ile Val Val Leu His 565 570 575 Thr Val Gly Pro Val Leu Leu Ala Asp Tyr Glu Lys Asn Pro Asn Ile 580 585 590 Thr Ala Ile Val Trp Ala Gly Leu Pro Gly Gln Glu Ser Gly Asn Ala 595 600 605 Ile Ala Asp Leu Leu Tyr Gly Lys Val Ser Pro Gly Arg Ser Pro Phe 610 615 620 Thr Trp Gly Arg Thr Arg Glu Ser Tyr Gly Thr Glu Val Leu Tyr Glu 625 630 635 640 Ala Asn Asn Gly Arg Gly Ala Pro Gln Asp Asp Phe Ser Glu Gly Val 645 650 655 Phe Ile Asp Tyr Arg His Phe Asp Arg Arg Ser Pro Ser Thr Asp Gly 660 665 670 Lys Ser Ser Pro Asn Asn Thr Ala Ala Pro Leu Tyr Glu Phe Gly His 675 680 685 Gly Leu Ser Trp Ser Thr Phe Glu Tyr Ser Asp Leu Asn Ile Gln Lys 690 695 700 Asn Val Glu Asn Pro Tyr Ser Pro Pro Ala Gly Gln Thr Ile Pro Ala 705 710 715 720 Pro Thr Phe Gly Asn Phe Ser Lys Asn Leu Asn Asp Tyr Val Phe Pro 725 730 735 Lys Gly Val Arg Tyr Ile Tyr Lys Phe Ile Tyr Pro Phe Leu Asn Thr 740 745 750 Ser Ser Ser Ala Ser Glu Ala Ser Asn Asp Gly Gly Gln Phe Gly Lys 755 760 765 Thr Ala Glu Glu Phe Leu Pro Pro Asn Ala Leu Asn Gly Ser Ala Gln 770 775 780 Pro Arg Leu Pro Ala Ser Gly Ala Pro Gly Gly Asn Pro Gln Leu Trp 785 790 795 800 Asp Ile Leu Tyr Thr Val Thr Ala Thr Ile Thr Asn Thr Gly Asn Ala 805 810 815 Thr Ser Asp Glu Ile Pro Gln Leu Tyr Val Ser Leu Gly Gly Glu Asn 820 825 830 Glu Pro Ile Arg Val Leu Arg Gly Phe Asp Arg Ile Glu Asn Ile Ala 835 840 845 Pro Gly Gln Ser Ala Ile Phe Asn Ala Gln Leu Thr Arg Arg Asp Leu 850 855 860 Ser Asn Trp Asp Thr Asn Ala Gln Asn Trp Val Ile Thr Asp His Pro 865 870 875 880 Lys Thr Val Trp Val Gly Ser Ser Ser Arg Lys Leu Pro Leu Ser Ala 885 890 895 Lys Leu Glu 1012370DNATrichoderma reesei 101atgcgttacc gaacagcagc tgcgctggca cttgccactg ggccctttgc tagggcagac 60agtcagtata gctggtccca tactgggatg tgatatgtat cctggagaca ccatgctgac 120tcttgaatca aggtagctca acatcggggg cctcggctga ggcagttgta cctcctgcag 180ggactccatg gggaaccgcg tacgacaagg cgaaggccgc attggcaaag ctcaatctcc 240aagataaggt cggcatcgtg agcggtgtcg gctggaacgg cggtccttgc gttggaaaca 300catctccggc ctccaagatc agctatccat cgctatgcct tcaagacgga cccctcggtg 360ttcgatactc gacaggcagc acagccttta cgccgggcgt tcaagcggcc tcgacgtggg 420atgtcaattt gatccgcgaa

cgtggacagt tcatcggtga ggaggtgaag gcctcgggga 480ttcatgtcat acttggtcct gtggctgggc cgctgggaaa gactccgcag ggcggtcgca 540actgggaggg cttcggtgtc gatccatatc tcacgggcat tgccatgggt caaaccatca 600acggcatcca gtcggtaggc gtgcaggcga cagcgaagca ctatatcctc aacgagcagg 660agctcaatcg agaaaccatt tcgagcaacc cagatgaccg aactctccat gagctgtata 720cttggccatt tgccgacgcg gttcaggcca atgtcgcttc tgtcatgtgc tcgtacaaca 780aggtcaatac cacctgggcc tgcgaggatc agtacacgct gcagactgtg ctgaaagacc 840agctggggtt cccaggctat gtcatgacgg actggaacgc acagcacacg actgtccaaa 900gcgcgaattc tgggcttgac atgtcaatgc ctggcacaga cttcaacggt aacaatcggc 960tctggggtcc agctctcacc aatgcggtaa atagcaatca ggtccccacg agcagagtcg 1020acgatatggt gactcgtatc ctcgccgcat ggtacttgac aggccaggac caggcaggct 1080atccgtcgtt caacatcagc agaaatgttc aaggaaacca caagaccaat gtcagggcaa 1140ttgccaggga cggcatcgtt ctgctcaaga atgacgccaa catcctgccg ctcaagaagc 1200ccgctagcat tgccgtcgtt ggatctgccg caatcattgg taaccacgcc agaaactcgc 1260cctcgtgcaa cgacaaaggc tgcgacgacg gggccttggg catgggttgg ggttccggcg 1320ccgtcaacta tccgtacttc gtcgcgccct acgatgccat caataccaga gcgtcttcgc 1380agggcaccca ggttaccttg agcaacaccg acaacacgtc ctcaggcgca tctgcagcaa 1440gaggaaagga cgtcgccatc gtcttcatca ccgccgactc gggtgaaggc tacatcaccg 1500tggagggcaa cgcgggcgat cgcaacaacc tggatccgtg gcacaacggc aatgccctgg 1560tccaggcggt ggccggtgcc aacagcaacg tcattgttgt tgtccactcc gttggcgcca 1620tcattctgga gcagattctt gctcttccgc aggtcaaggc cgttgtctgg gcgggtcttc 1680cttctcagga gagcggcaat gcgctcgtcg acgtgctgtg gggagatgtc agcccttctg 1740gcaagctggt gtacaccatt gcgaagagcc ccaatgacta taacactcgc atcgtttccg 1800gcggcagtga cagcttcagc gagggactgt tcatcgacta taagcacttc gacgacgcca 1860atatcacgcc gcggtacgag ttcggctatg gactgtgtaa gtttgctaac ctgaacaatc 1920tattagacag gttgactgac ggatgactgt ggaatgatag cttacaccaa gttcaactac 1980tcacgcctct ccgtcttgtc gaccgccaag tctggtcctg cgactggggc cgttgtgccg 2040ggaggcccga gtgatctgtt ccagaatgtc gcgacagtca ccgttgacat cgcaaactct 2100ggccaagtga ctggtgccga ggtagcccag ctgtacatca cctacccatc ttcagcaccc 2160aggacccctc cgaagcagct gcgaggcttt gccaagctga acctcacgcc tggtcagagc 2220ggaacagcaa cgttcaacat ccgacgacga gatctcagct actgggacac ggcttcgcag 2280aaatgggtgg tgccgtcggg gtcgtttggc atcagcgtgg gagcgagcag ccgggatatc 2340aggctgacga gcactctgtc ggtagcgtag 2370102744PRTTrichoderma reesei 102Met Arg Tyr Arg Thr Ala Ala Ala Leu Ala Leu Ala Thr Gly Pro Phe 1 5 10 15 Ala Arg Ala Asp Ser His Ser Thr Ser Gly Ala Ser Ala Glu Ala Val 20 25 30 Val Pro Pro Ala Gly Thr Pro Trp Gly Thr Ala Tyr Asp Lys Ala Lys 35 40 45 Ala Ala Leu Ala Lys Leu Asn Leu Gln Asp Lys Val Gly Ile Val Ser 50 55 60 Gly Val Gly Trp Asn Gly Gly Pro Cys Val Gly Asn Thr Ser Pro Ala 65 70 75 80 Ser Lys Ile Ser Tyr Pro Ser Leu Cys Leu Gln Asp Gly Pro Leu Gly 85 90 95 Val Arg Tyr Ser Thr Gly Ser Thr Ala Phe Thr Pro Gly Val Gln Ala 100 105 110 Ala Ser Thr Trp Asp Val Asn Leu Ile Arg Glu Arg Gly Gln Phe Ile 115 120 125 Gly Glu Glu Val Lys Ala Ser Gly Ile His Val Ile Leu Gly Pro Val 130 135 140 Ala Gly Pro Leu Gly Lys Thr Pro Gln Gly Gly Arg Asn Trp Glu Gly 145 150 155 160 Phe Gly Val Asp Pro Tyr Leu Thr Gly Ile Ala Met Gly Gln Thr Ile 165 170 175 Asn Gly Ile Gln Ser Val Gly Val Gln Ala Thr Ala Lys His Tyr Ile 180 185 190 Leu Asn Glu Gln Glu Leu Asn Arg Glu Thr Ile Ser Ser Asn Pro Asp 195 200 205 Asp Arg Thr Leu His Glu Leu Tyr Thr Trp Pro Phe Ala Asp Ala Val 210 215 220 Gln Ala Asn Val Ala Ser Val Met Cys Ser Tyr Asn Lys Val Asn Thr 225 230 235 240 Thr Trp Ala Cys Glu Asp Gln Tyr Thr Leu Gln Thr Val Leu Lys Asp 245 250 255 Gln Leu Gly Phe Pro Gly Tyr Val Met Thr Asp Trp Asn Ala Gln His 260 265 270 Thr Thr Val Gln Ser Ala Asn Ser Gly Leu Asp Met Ser Met Pro Gly 275 280 285 Thr Asp Phe Asn Gly Asn Asn Arg Leu Trp Gly Pro Ala Leu Thr Asn 290 295 300 Ala Val Asn Ser Asn Gln Val Pro Thr Ser Arg Val Asp Asp Met Val 305 310 315 320 Thr Arg Ile Leu Ala Ala Trp Tyr Leu Thr Gly Gln Asp Gln Ala Gly 325 330 335 Tyr Pro Ser Phe Asn Ile Ser Arg Asn Val Gln Gly Asn His Lys Thr 340 345 350 Asn Val Arg Ala Ile Ala Arg Asp Gly Ile Val Leu Leu Lys Asn Asp 355 360 365 Ala Asn Ile Leu Pro Leu Lys Lys Pro Ala Ser Ile Ala Val Val Gly 370 375 380 Ser Ala Ala Ile Ile Gly Asn His Ala Arg Asn Ser Pro Ser Cys Asn 385 390 395 400 Asp Lys Gly Cys Asp Asp Gly Ala Leu Gly Met Gly Trp Gly Ser Gly 405 410 415 Ala Val Asn Tyr Pro Tyr Phe Val Ala Pro Tyr Asp Ala Ile Asn Thr 420 425 430 Arg Ala Ser Ser Gln Gly Thr Gln Val Thr Leu Ser Asn Thr Asp Asn 435 440 445 Thr Ser Ser Gly Ala Ser Ala Ala Arg Gly Lys Asp Val Ala Ile Val 450 455 460 Phe Ile Thr Ala Asp Ser Gly Glu Gly Tyr Ile Thr Val Glu Gly Asn 465 470 475 480 Ala Gly Asp Arg Asn Asn Leu Asp Pro Trp His Asn Gly Asn Ala Leu 485 490 495 Val Gln Ala Val Ala Gly Ala Asn Ser Asn Val Ile Val Val Val His 500 505 510 Ser Val Gly Ala Ile Ile Leu Glu Gln Ile Leu Ala Leu Pro Gln Val 515 520 525 Lys Ala Val Val Trp Ala Gly Leu Pro Ser Gln Glu Ser Gly Asn Ala 530 535 540 Leu Val Asp Val Leu Trp Gly Asp Val Ser Pro Ser Gly Lys Leu Val 545 550 555 560 Tyr Thr Ile Ala Lys Ser Pro Asn Asp Tyr Asn Thr Arg Ile Val Ser 565 570 575 Gly Gly Ser Asp Ser Phe Ser Glu Gly Leu Phe Ile Asp Tyr Lys His 580 585 590 Phe Asp Asp Ala Asn Ile Thr Pro Arg Tyr Glu Phe Gly Tyr Gly Leu 595 600 605 Ser Tyr Thr Lys Phe Asn Tyr Ser Arg Leu Ser Val Leu Ser Thr Ala 610 615 620 Lys Ser Gly Pro Ala Thr Gly Ala Val Val Pro Gly Gly Pro Ser Asp 625 630 635 640 Leu Phe Gln Asn Val Ala Thr Val Thr Val Asp Ile Ala Asn Ser Gly 645 650 655 Gln Val Thr Gly Ala Glu Val Ala Gln Leu Tyr Ile Thr Tyr Pro Ser 660 665 670 Ser Ala Pro Arg Thr Pro Pro Lys Gln Leu Arg Gly Phe Ala Lys Leu 675 680 685 Asn Leu Thr Pro Gly Gln Ser Gly Thr Ala Thr Phe Asn Ile Arg Arg 690 695 700 Arg Asp Leu Ser Tyr Trp Asp Thr Ala Ser Gln Lys Trp Val Val Pro 705 710 715 720 Ser Gly Ser Phe Gly Ile Ser Val Gly Ala Ser Ser Arg Asp Ile Arg 725 730 735 Leu Thr Ser Thr Leu Ser Val Ala 740 1032625DNATrichoderma reesei 103atgaagacgt tgtcagtgtt tgctgccgcc cttttggcgg ccgtagctga ggccaatccc 60tacccgcctc ctcactccaa ccaggcgtac tcgcctcctt tctacccttc gccatggatg 120gaccccagtg ctccaggctg ggagcaagcc tatgcccaag ctaaggagtt cgtctcgggc 180ttgactctct tggagaaggt caacctcacc accggtgttg gctggatggg tgagaagtgc 240gttggaaacg ttggtaccgt gcctcgcttg ggcatgcgaa gtctttgcat gcaggacggc 300cccctgggtc tccgattcaa cacgtacaac agcgctttca gcgttggctt gacggccgcc 360gccagctgga gccgacacct ttgggttgac cgcggtaccg ctctgggctc cgaggcaaag 420ggcaagggtg tcgatgttct tctcggaccc gtggctggcc ctctcggtcg caaccccaac 480ggaggccgta acgtcgaggg tttcggctcg gatccctatc tggcgggttt ggctctggcc 540gataccgtga ccggaatcca gaacgcgggc accatcgcct gtgccaagca cttcctcctc 600aacgagcagg agcatttccg ccaggtcggc gaagctaacg gttacggata ccccatcacc 660gaggctctgt cttccaacgt tgatgacaag acgattcacg aggtgtacgg ctggcccttc 720caggatgctg tcaaggctgg tgtcgggtcc ttcatgtgct cgtacaacca ggtcaacaac 780tcgtacgctt gccaaaactc caagctcatc aacggcttgc tcaaggagga gtacggtttc 840caaggctttg tcatgagcga ctggcaggcc cagcacacgg gtgtcgcgtc tgctgttgcc 900ggtctcgata tgaccatgcc tggtgacacc gccttcaaca ccggcgcatc ctactttgga 960agcaacctga cgcttgctgt tctcaacggc accgtccccg agtggcgcat tgacgacatg 1020gtgatgcgta tcatggctcc cttcttcaag gtgggcaaga cggttgacag cctcattgac 1080accaactttg attcttggac caatggcgag tacggctacg ttcaggccgc cgtcaatgag 1140aactgggaga aggtcaacta cggcgtcgat gtccgcgcca accatgcgaa ccacatccgc 1200gaggttggcg ccaagggaac tgtcatcttc aagaacaacg gcatcctgcc ccttaagaag 1260cccaagttcc tgaccgtcat tggtgaggat gctggcggca accctgccgg ccccaacggc 1320tgcggtgacc gcggctgtga cgacggcact cttgccatgg agtggggatc tggtactacc 1380aacttcccct acctcgtcac ccccgacgcg gccctgcaga gccaggctct ccaggacggc 1440acccgctacg agagcatcct gtccaactac gccatctcgc agacccaggc gctcgtcagc 1500cagcccgatg ccattgccat tgtctttgcc aactcggata gcggcgaggg ctacatcaac 1560gtcgatggca acgagggcga ccgcaagaac ctgacgctgt ggaagaacgg cgacgatctg 1620atcaagactg ttgctgctgt caaccccaag acgattgtcg tcatccactc gaccggcccc 1680gtgattctca aggactacgc caaccacccc aacatctctg ccattctgtg ggccggtgct 1740cctggccagg agtctggcaa ctcgctggtc gacattctgt acggcaagca gagcccgggc 1800cgcactccct tcacctgggg cccgtcgctg gagagctacg gagttagtgt tatgaccacg 1860cccaacaacg gcaacggcgc tccccaggat aacttcaacg agggcgcctt catcgactac 1920cgctactttg acaaggtggc tcccggcaag cctcgcagct cggacaaggc tcccacgtac 1980gagtttggct tcggactgtc gtggtcgacg ttcaagttct ccaacctcca catccagaag 2040aacaatgtcg gccccatgag cccgcccaac ggcaagacga ttgcggctcc ctctctgggc 2100agcttcagca agaaccttaa ggactatggc ttccccaaga acgttcgccg catcaaggag 2160tttatctacc cctacctgag caccactacc tctggcaagg aggcgtcggg tgacgctcac 2220tacggccaga ctgcgaagga gttcctcccc gccggtgccc tggacggcag ccctcagcct 2280cgctctgcgg cctctggcga acccggcggc aaccgccagc tgtacgacat tctctacacc 2340gtgacggcca ccattaccaa cacgggctcg gtcatggacg acgccgttcc ccagctgtac 2400ctgagccacg gcggtcccaa cgagccgccc aaggtgctgc gtggcttcga ccgcatcgag 2460cgcattgctc ccggccagag cgtcacgttc aaggcagacc tgacgcgccg tgacctgtcc 2520aactgggaca cgaagaagca gcagtgggtc attaccgact accccaagac tgtgtacgtg 2580ggcagctcct cgcgcgacct gccgctgagc gcccgcctgc catga 2625104874PRTTrichoderma reesei 104Met Lys Thr Leu Ser Val Phe Ala Ala Ala Leu Leu Ala Ala Val Ala 1 5 10 15 Glu Ala Asn Pro Tyr Pro Pro Pro His Ser Asn Gln Ala Tyr Ser Pro 20 25 30 Pro Phe Tyr Pro Ser Pro Trp Met Asp Pro Ser Ala Pro Gly Trp Glu 35 40 45 Gln Ala Tyr Ala Gln Ala Lys Glu Phe Val Ser Gly Leu Thr Leu Leu 50 55 60 Glu Lys Val Asn Leu Thr Thr Gly Val Gly Trp Met Gly Glu Lys Cys 65 70 75 80 Val Gly Asn Val Gly Thr Val Pro Arg Leu Gly Met Arg Ser Leu Cys 85 90 95 Met Gln Asp Gly Pro Leu Gly Leu Arg Phe Asn Thr Tyr Asn Ser Ala 100 105 110 Phe Ser Val Gly Leu Thr Ala Ala Ala Ser Trp Ser Arg His Leu Trp 115 120 125 Val Asp Arg Gly Thr Ala Leu Gly Ser Glu Ala Lys Gly Lys Gly Val 130 135 140 Asp Val Leu Leu Gly Pro Val Ala Gly Pro Leu Gly Arg Asn Pro Asn 145 150 155 160 Gly Gly Arg Asn Val Glu Gly Phe Gly Ser Asp Pro Tyr Leu Ala Gly 165 170 175 Leu Ala Leu Ala Asp Thr Val Thr Gly Ile Gln Asn Ala Gly Thr Ile 180 185 190 Ala Cys Ala Lys His Phe Leu Leu Asn Glu Gln Glu His Phe Arg Gln 195 200 205 Val Gly Glu Ala Asn Gly Tyr Gly Tyr Pro Ile Thr Glu Ala Leu Ser 210 215 220 Ser Asn Val Asp Asp Lys Thr Ile His Glu Val Tyr Gly Trp Pro Phe 225 230 235 240 Gln Asp Ala Val Lys Ala Gly Val Gly Ser Phe Met Cys Ser Tyr Asn 245 250 255 Gln Val Asn Asn Ser Tyr Ala Cys Gln Asn Ser Lys Leu Ile Asn Gly 260 265 270 Leu Leu Lys Glu Glu Tyr Gly Phe Gln Gly Phe Val Met Ser Asp Trp 275 280 285 Gln Ala Gln His Thr Gly Val Ala Ser Ala Val Ala Gly Leu Asp Met 290 295 300 Thr Met Pro Gly Asp Thr Ala Phe Asn Thr Gly Ala Ser Tyr Phe Gly 305 310 315 320 Ser Asn Leu Thr Leu Ala Val Leu Asn Gly Thr Val Pro Glu Trp Arg 325 330 335 Ile Asp Asp Met Val Met Arg Ile Met Ala Pro Phe Phe Lys Val Gly 340 345 350 Lys Thr Val Asp Ser Leu Ile Asp Thr Asn Phe Asp Ser Trp Thr Asn 355 360 365 Gly Glu Tyr Gly Tyr Val Gln Ala Ala Val Asn Glu Asn Trp Glu Lys 370 375 380 Val Asn Tyr Gly Val Asp Val Arg Ala Asn His Ala Asn His Ile Arg 385 390 395 400 Glu Val Gly Ala Lys Gly Thr Val Ile Phe Lys Asn Asn Gly Ile Leu 405 410 415 Pro Leu Lys Lys Pro Lys Phe Leu Thr Val Ile Gly Glu Asp Ala Gly 420 425 430 Gly Asn Pro Ala Gly Pro Asn Gly Cys Gly Asp Arg Gly Cys Asp Asp 435 440 445 Gly Thr Leu Ala Met Glu Trp Gly Ser Gly Thr Thr Asn Phe Pro Tyr 450 455 460 Leu Val Thr Pro Asp Ala Ala Leu Gln Ser Gln Ala Leu Gln Asp Gly 465 470 475 480 Thr Arg Tyr Glu Ser Ile Leu Ser Asn Tyr Ala Ile Ser Gln Thr Gln 485 490 495 Ala Leu Val Ser Gln Pro Asp Ala Ile Ala Ile Val Phe Ala Asn Ser 500 505 510 Asp Ser Gly Glu Gly Tyr Ile Asn Val Asp Gly Asn Glu Gly Asp Arg 515 520 525 Lys Asn Leu Thr Leu Trp Lys Asn Gly Asp Asp Leu Ile Lys Thr Val 530 535 540 Ala Ala Val Asn Pro Lys Thr Ile Val Val Ile His Ser Thr Gly Pro 545 550 555 560 Val Ile Leu Lys Asp Tyr Ala Asn His Pro Asn Ile Ser Ala Ile Leu 565 570 575 Trp Ala Gly Ala Pro Gly Gln Glu Ser Gly Asn Ser Leu Val Asp Ile 580 585 590 Leu Tyr Gly Lys Gln Ser Pro Gly Arg Thr Pro Phe Thr Trp Gly Pro 595 600 605 Ser Leu Glu Ser Tyr Gly Val Ser Val Met Thr Thr Pro Asn Asn Gly 610 615 620 Asn Gly Ala Pro Gln Asp Asn Phe Asn Glu Gly Ala Phe Ile Asp Tyr 625 630 635 640 Arg Tyr Phe Asp Lys Val Ala Pro Gly Lys Pro Arg Ser Ser Asp Lys 645 650 655 Ala Pro Thr Tyr Glu Phe Gly Phe Gly Leu Ser Trp Ser Thr Phe Lys 660 665 670 Phe Ser Asn Leu His Ile Gln Lys Asn Asn Val Gly Pro Met Ser Pro 675 680 685 Pro Asn Gly Lys Thr Ile Ala Ala Pro Ser Leu Gly Ser Phe Ser Lys 690 695 700 Asn Leu Lys Asp Tyr Gly Phe Pro Lys Asn Val Arg Arg Ile Lys Glu 705 710 715 720 Phe Ile Tyr Pro Tyr Leu Ser Thr Thr Thr Ser Gly Lys Glu Ala Ser 725 730 735 Gly Asp Ala His Tyr Gly Gln Thr Ala Lys Glu Phe Leu Pro Ala Gly 740 745 750 Ala Leu Asp Gly Ser Pro Gln Pro Arg Ser Ala Ala Ser Gly Glu Pro 755 760 765 Gly Gly Asn Arg Gln Leu Tyr Asp Ile Leu Tyr Thr Val Thr Ala Thr 770 775 780 Ile Thr Asn Thr Gly Ser Val Met Asp Asp Ala Val Pro Gln Leu Tyr 785 790 795 800 Leu Ser His Gly Gly Pro Asn Glu Pro Pro Lys Val Leu Arg Gly Phe 805 810 815 Asp Arg Ile Glu Arg Ile Ala Pro Gly Gln Ser Val Thr Phe Lys Ala 820 825 830 Asp Leu Thr Arg Arg Asp Leu Ser Asn Trp Asp Thr Lys Lys Gln Gln 835 840

845 Trp Val Ile Thr Asp Tyr Pro Lys Thr Val Tyr Val Gly Ser Ser Ser 850 855 860 Arg Asp Leu Pro Leu Ser Ala Arg Leu Pro 865 870 1052577DNAArtificial Sequencesynthetic codon optimized nucleotide sequence 105atgcgcaacg gcctcctcaa ggtcgccgcc ttagccgctg ccagcgccgt caacggcgag 60aacctcgcct acagcccccc cttctacccc agcccctggg ccaacggcca gggcgactgg 120gccgaggcct accagaaggc cgtccagttc gtcagccagc tcaccctcgc cgagaaggtc 180aacctcacca ccggcaccgg ctgggagcag gaccgctgcg tcggccaggt cggcagcatc 240ccccgcttag gcttccccgg cctctgcatg caggacagcc ccctcggcgt ccgcgacacc 300gactacaaca gcgccttccc tgccggcgtt aacgtcgccg ccacctggga ccgcaactta 360gcctaccgca gaggcgtcgc catgggcgag gaacaccgcg gcaagggcgt cgacgtccag 420ttaggccccg tcgccggccc cttaggccgc tctcctgatg ccggccgcaa ctgggagggc 480ttcgcccccg accccgtcct caccggcaac atgatggcca gcaccatcca gggcatccag 540gatgctggcg tcattgcctg cgccaagcac ttcatcctct acgagcagga acacttccgc 600cagggcgccc aggacggcta cgacatcagc gacagcatca gcgccaacgc cgacgacaag 660accatgcacg agttatacct ctggcccttc gccgatgccg tccgcgccgg tgtcggcagc 720gtcatgtgca gctacaacca ggtcaacaac agctacgcct gcagcaacag ctacaccatg 780aacaagctcc tcaagagcga gttaggcttc cagggcttcg tcatgaccga ctggggcggc 840caccacagcg gcgtcggctc tgccctcgcc ggcctcgaca tgagcatgcc cggcgacatt 900gccttcgaca gcggcacgtc tttctggggc accaacctca ccgttgccgt cctcaacggc 960tccatccccg agtggcgcgt cgacgacatg gccgtccgca tcatgagcgc ctactacaag 1020gtcggccgcg accgctacag cgtccccatc aacttcgaca gctggaccct cgacacctac 1080ggccccgagc actacgccgt cggccagggc cagaccaaga tcaacgagca cgtcgacgtc 1140cgcggcaacc acgccgagat catccacgag atcggcgccg cctccgccgt cctcctcaag 1200aacaagggcg gcctccccct cactggcacc gagcgcttcg tcggtgtctt tggcaaggat 1260gctggcagca acccctgggg cgtcaacggc tgcagcgacc gcggctgcga caacggcacc 1320ctcgccatgg gctggggcag cggcaccgcc aactttccct acctcgtcac ccccgagcag 1380gccatccagc gcgaggtcct cagccgcaac ggcaccttca ccggcatcac cgacaacggc 1440gccttagccg agatggccgc tgccgcctct caggccgaca cctgcctcgt ctttgccaac 1500gccgactccg gcgagggcta catcaccgtc gatggcaacg agggcgaccg caagaacctc 1560accctctggc agggcgccga ccaggtcatc cacaacgtca gcgccaactg caacaacacc 1620gtcgtcgtct tacacaccgt cggccccgtc ctcatcgacg actggtacga ccaccccaac 1680gtcaccgcca tcctctgggc cggtttaccc ggtcaggaaa gcggcaacag cctcgtcgac 1740gtcctctacg gccgcgtcaa ccccggcaag acccccttca cctggggcag agcccgcgac 1800gactatggcg cccctctcat cgtcaagcct aacaacggca agggcgcccc ccagcaggac 1860ttcaccgagg gcatcttcat cgactaccgc cgcttcgaca agtacaacat cacccccatc 1920tacgagttcg gcttcggcct cagctacacc accttcgagt tcagccagtt aaacgtccag 1980cccatcaacg cccctcccta cacccccgcc agcggcttta cgaaggccgc ccagagcttc 2040ggccagccct ccaatgccag cgacaacctc taccctagcg acatcgagcg cgtccccctc 2100tacatctacc cctggctcaa cagcaccgac ctcaaggcca gcgccaacga ccccgactac 2160ggcctcccca ccgagaagta cgtccccccc aacgccacca acggcgaccc ccagcccatt 2220gaccctgccg gcggtgcccc tggcggcaac cccagcctct acgagcccgt cgcccgcgtc 2280accaccatca tcaccaacac cggcaaggtc accggcgacg aggtccccca gctctatgtc 2340agcttaggcg gccctgacga cgcccccaag gtcctccgcg gcttcgaccg catcaccctc 2400gcccctggcc agcagtacct ctggaccacc accctcactc gccgcgacat cagcaactgg 2460gaccccgtca cccagaactg ggtcgtcacc aactacacca agaccatcta cgtcggcaac 2520agcagccgca acctccccct ccaggccccc ctcaagccct accccggcat ctgatga 2577106857PRTTalaromyces emersonii 106Met Arg Asn Gly Leu Leu Lys Val Ala Ala Leu Ala Ala Ala Ser Ala 1 5 10 15 Val Asn Gly Glu Asn Leu Ala Tyr Ser Pro Pro Phe Tyr Pro Ser Pro 20 25 30 Trp Ala Asn Gly Gln Gly Asp Trp Ala Glu Ala Tyr Gln Lys Ala Val 35 40 45 Gln Phe Val Ser Gln Leu Thr Leu Ala Glu Lys Val Asn Leu Thr Thr 50 55 60 Gly Thr Gly Trp Glu Gln Asp Arg Cys Val Gly Gln Val Gly Ser Ile 65 70 75 80 Pro Arg Leu Gly Phe Pro Gly Leu Cys Met Gln Asp Ser Pro Leu Gly 85 90 95 Val Arg Asp Thr Asp Tyr Asn Ser Ala Phe Pro Ala Gly Val Asn Val 100 105 110 Ala Ala Thr Trp Asp Arg Asn Leu Ala Tyr Arg Arg Gly Val Ala Met 115 120 125 Gly Glu Glu His Arg Gly Lys Gly Val Asp Val Gln Leu Gly Pro Val 130 135 140 Ala Gly Pro Leu Gly Arg Ser Pro Asp Ala Gly Arg Asn Trp Glu Gly 145 150 155 160 Phe Ala Pro Asp Pro Val Leu Thr Gly Asn Met Met Ala Ser Thr Ile 165 170 175 Gln Gly Ile Gln Asp Ala Gly Val Ile Ala Cys Ala Lys His Phe Ile 180 185 190 Leu Tyr Glu Gln Glu His Phe Arg Gln Gly Ala Gln Asp Gly Tyr Asp 195 200 205 Ile Ser Asp Ser Ile Ser Ala Asn Ala Asp Asp Lys Thr Met His Glu 210 215 220 Leu Tyr Leu Trp Pro Phe Ala Asp Ala Val Arg Ala Gly Val Gly Ser 225 230 235 240 Val Met Cys Ser Tyr Asn Gln Val Asn Asn Ser Tyr Ala Cys Ser Asn 245 250 255 Ser Tyr Thr Met Asn Lys Leu Leu Lys Ser Glu Leu Gly Phe Gln Gly 260 265 270 Phe Val Met Thr Asp Trp Gly Gly His His Ser Gly Val Gly Ser Ala 275 280 285 Leu Ala Gly Leu Asp Met Ser Met Pro Gly Asp Ile Ala Phe Asp Ser 290 295 300 Gly Thr Ser Phe Trp Gly Thr Asn Leu Thr Val Ala Val Leu Asn Gly 305 310 315 320 Ser Ile Pro Glu Trp Arg Val Asp Asp Met Ala Val Arg Ile Met Ser 325 330 335 Ala Tyr Tyr Lys Val Gly Arg Asp Arg Tyr Ser Val Pro Ile Asn Phe 340 345 350 Asp Ser Trp Thr Leu Asp Thr Tyr Gly Pro Glu His Tyr Ala Val Gly 355 360 365 Gln Gly Gln Thr Lys Ile Asn Glu His Val Asp Val Arg Gly Asn His 370 375 380 Ala Glu Ile Ile His Glu Ile Gly Ala Ala Ser Ala Val Leu Leu Lys 385 390 395 400 Asn Lys Gly Gly Leu Pro Leu Thr Gly Thr Glu Arg Phe Val Gly Val 405 410 415 Phe Gly Lys Asp Ala Gly Ser Asn Pro Trp Gly Val Asn Gly Cys Ser 420 425 430 Asp Arg Gly Cys Asp Asn Gly Thr Leu Ala Met Gly Trp Gly Ser Gly 435 440 445 Thr Ala Asn Phe Pro Tyr Leu Val Thr Pro Glu Gln Ala Ile Gln Arg 450 455 460 Glu Val Leu Ser Arg Asn Gly Thr Phe Thr Gly Ile Thr Asp Asn Gly 465 470 475 480 Ala Leu Ala Glu Met Ala Ala Ala Ala Ser Gln Ala Asp Thr Cys Leu 485 490 495 Val Phe Ala Asn Ala Asp Ser Gly Glu Gly Tyr Ile Thr Val Asp Gly 500 505 510 Asn Glu Gly Asp Arg Lys Asn Leu Thr Leu Trp Gln Gly Ala Asp Gln 515 520 525 Val Ile His Asn Val Ser Ala Asn Cys Asn Asn Thr Val Val Val Leu 530 535 540 His Thr Val Gly Pro Val Leu Ile Asp Asp Trp Tyr Asp His Pro Asn 545 550 555 560 Val Thr Ala Ile Leu Trp Ala Gly Leu Pro Gly Gln Glu Ser Gly Asn 565 570 575 Ser Leu Val Asp Val Leu Tyr Gly Arg Val Asn Pro Gly Lys Thr Pro 580 585 590 Phe Thr Trp Gly Arg Ala Arg Asp Asp Tyr Gly Ala Pro Leu Ile Val 595 600 605 Lys Pro Asn Asn Gly Lys Gly Ala Pro Gln Gln Asp Phe Thr Glu Gly 610 615 620 Ile Phe Ile Asp Tyr Arg Arg Phe Asp Lys Tyr Asn Ile Thr Pro Ile 625 630 635 640 Tyr Glu Phe Gly Phe Gly Leu Ser Tyr Thr Thr Phe Glu Phe Ser Gln 645 650 655 Leu Asn Val Gln Pro Ile Asn Ala Pro Pro Tyr Thr Pro Ala Ser Gly 660 665 670 Phe Thr Lys Ala Ala Gln Ser Phe Gly Gln Pro Ser Asn Ala Ser Asp 675 680 685 Asn Leu Tyr Pro Ser Asp Ile Glu Arg Val Pro Leu Tyr Ile Tyr Pro 690 695 700 Trp Leu Asn Ser Thr Asp Leu Lys Ala Ser Ala Asn Asp Pro Asp Tyr 705 710 715 720 Gly Leu Pro Thr Glu Lys Tyr Val Pro Pro Asn Ala Thr Asn Gly Asp 725 730 735 Pro Gln Pro Ile Asp Pro Ala Gly Gly Ala Pro Gly Gly Asn Pro Ser 740 745 750 Leu Tyr Glu Pro Val Ala Arg Val Thr Thr Ile Ile Thr Asn Thr Gly 755 760 765 Lys Val Thr Gly Asp Glu Val Pro Gln Leu Tyr Val Ser Leu Gly Gly 770 775 780 Pro Asp Asp Ala Pro Lys Val Leu Arg Gly Phe Asp Arg Ile Thr Leu 785 790 795 800 Ala Pro Gly Gln Gln Tyr Leu Trp Thr Thr Thr Leu Thr Arg Arg Asp 805 810 815 Ile Ser Asn Trp Asp Pro Val Thr Gln Asn Trp Val Val Thr Asn Tyr 820 825 830 Thr Lys Thr Ile Tyr Val Gly Asn Ser Ser Arg Asn Leu Pro Leu Gln 835 840 845 Ala Pro Leu Lys Pro Tyr Pro Gly Ile 850 855 1072586DNAAspergillus niger 107atgcgcttca ccagcatcga ggccgtcgcc ctcaccgccg tcagcctcgc cagcgccgac 60gagttagcct acagcccccc ctactacccc agcccctggg ccaacggcca gggcgactgg 120gccgaggcct accagcgcgc cgtcgacatc gtcagccaga tgaccctcgc cgagaaggtc 180aacctcacca ccggcaccgg ctgggagtta gagttatgcg tcggccagac tggtggcgtc 240ccccgcctcg gcatccccgg catgtgcgcc caggacagcc ccctcggcgt ccgcgacagc 300gactacaaca gcgccttccc tgccggcgtc aacgtcgccg ccacctggga caagaacctc 360gcctacctcc gcggccaggc catgggccag gaattcagcg acaagggcgc cgacatccag 420ttaggccccg ctgccggccc tttaggccgc tctcccgacg gcggcagaaa ctgggagggc 480ttcagccccg accccgctct cagcggcgtc ctcttcgccg agactatcaa gggcatccag 540gatgctggcg tcgtcgccac cgccaagcac tacattgcct acgagcagga acacttccgc 600caggcccccg aggcccaggg ctacggcttc aacatcaccg agagcggcag cgccaacctc 660gacgacaaga ccatgcacga gttatacctc tggcccttcg ccgacgccat tagagctggc 720gctggtgctg tcatgtgcag ctacaaccag atcaacaaca gctacggctg ccagaacagc 780tacaccctca acaagctcct caaggccgag ttaggcttcc agggcttcgt catgtccgac 840tgggccgccc accacgccgg cgtcagcggc gccttagccg gcctcgacat gagcatgccc 900ggcgacgtcg actacgacag cggcaccagc tactggggca ccaacctcac catcagcgtc 960ctcaacggca ccgtccccca gtggcgcgtc gacgacatgg ccgtccgcat catggccgcc 1020tactacaagg tcggccgcga ccgcctctgg acccccccca acttcagcag ctggacccgc 1080gacgagtacg gcttcaagta ctactacgtc agcgagggcc cctatgagaa ggtcaaccag 1140ttcgtcaacg tccagcgcaa ccacagcgag ttaatccgcc gcatcggcgc cgacagcacc 1200gtcctcctca agaacgacgg cgccctcccc ctcaccggca aggaacgcct cgtcgccctc 1260atcggcgagg acgccggcag caacccctac ggcgccaacg gctgcagcga ccgcggctgc 1320gacaacggca ccctcgccat gggctggggc agcggcaccg ccaacttccc ttacctcgtc 1380acccccgagc aggccatcag caacgaggtc ctcaagaaca agaacggcgt ctttaccgcc 1440accgacaact gggccatcga ccagatcgag gccttagcca agaccgcctc tgtcagcctc 1500gtctttgtca acgccgacag cggcgagggc tacatcaacg tcgacggcaa cctcggcgac 1560cgccgcaacc tcaccctctg gcgcaacggc gacaacgtca tcaaggccgc cgccagcaac 1620tgcaacaaca ccatcgtcat catccacagc gtcggccccg tcctcgtcaa cgagtggtac 1680gacaacccca acgtcaccgc catcctctgg ggcggcttac ccggccagga aagcggcaac 1740agcctcgccg acgtcctcta cggccgcgtc aaccctggcg ccaagagccc cttcacctgg 1800ggcaagaccc gcgaggccta tcaggactac ctctacaccg agcccaacaa cggcaacggc 1860gccccccagg aagatttcgt cgagggcgtc tttatcgact accgcggctt tgacaagcgc 1920aacgagactc ccatctacga gttcggctac ggcctcagct acaccacctt caactacagc 1980aacctccagg tcgaggtcct cagcgcccct gcctacgagc ccgccagcgg cgagactgag 2040gccgccccca ccttcggcga ggtcggcaac gccagcgact acttataccc cgacggcctc 2100cagcgcatca ccaagttcat ctacccctgg ctcaacagca ccgacctcga ggccagcagc 2160ggcgacgcct cttacggcca ggacgcctcc gactacctcc ccgagggtgc caccgacggc 2220agcgctcagc ccatcttacc tgccggtggc ggtgctggcg gcaaccccag actctacgac 2280gagctgatcc gcgtcagcgt caccatcaag aacaccggca aggtcgctgg tgacgaggtc 2340ccccagctct acgtcagctt aggcggccct aacgagccca agatcgtcct ccgccagttc 2400gagcgcatca ccctccagcc cagcaaggaa actcagtgga gcaccaccct cactcgccgc 2460gacctcgcca actggaacgt cgagactcag gactgggaga tcaccagcta ccccaagatg 2520gtctttgccg gcagcagcag ccgcaagctc cccctccgcg ccagcctccc caccgtccac 2580tgatga 2586108860PRTAspergillus niger 108Met Arg Phe Thr Ser Ile Glu Ala Val Ala Leu Thr Ala Val Ser Leu 1 5 10 15 Ala Ser Ala Asp Glu Leu Ala Tyr Ser Pro Pro Tyr Tyr Pro Ser Pro 20 25 30 Trp Ala Asn Gly Gln Gly Asp Trp Ala Glu Ala Tyr Gln Arg Ala Val 35 40 45 Asp Ile Val Ser Gln Met Thr Leu Ala Glu Lys Val Asn Leu Thr Thr 50 55 60 Gly Thr Gly Trp Glu Leu Glu Leu Cys Val Gly Gln Thr Gly Gly Val 65 70 75 80 Pro Arg Leu Gly Ile Pro Gly Met Cys Ala Gln Asp Ser Pro Leu Gly 85 90 95 Val Arg Asp Ser Asp Tyr Asn Ser Ala Phe Pro Ala Gly Val Asn Val 100 105 110 Ala Ala Thr Trp Asp Lys Asn Leu Ala Tyr Leu Arg Gly Gln Ala Met 115 120 125 Gly Gln Glu Phe Ser Asp Lys Gly Ala Asp Ile Gln Leu Gly Pro Ala 130 135 140 Ala Gly Pro Leu Gly Arg Ser Pro Asp Gly Gly Arg Asn Trp Glu Gly 145 150 155 160 Phe Ser Pro Asp Pro Ala Leu Ser Gly Val Leu Phe Ala Glu Thr Ile 165 170 175 Lys Gly Ile Gln Asp Ala Gly Val Val Ala Thr Ala Lys His Tyr Ile 180 185 190 Ala Tyr Glu Gln Glu His Phe Arg Gln Ala Pro Glu Ala Gln Gly Tyr 195 200 205 Gly Phe Asn Ile Thr Glu Ser Gly Ser Ala Asn Leu Asp Asp Lys Thr 210 215 220 Met His Glu Leu Tyr Leu Trp Pro Phe Ala Asp Ala Ile Arg Ala Gly 225 230 235 240 Ala Gly Ala Val Met Cys Ser Tyr Asn Gln Ile Asn Asn Ser Tyr Gly 245 250 255 Cys Gln Asn Ser Tyr Thr Leu Asn Lys Leu Leu Lys Ala Glu Leu Gly 260 265 270 Phe Gln Gly Phe Val Met Ser Asp Trp Ala Ala His His Ala Gly Val 275 280 285 Ser Gly Ala Leu Ala Gly Leu Asp Met Ser Met Pro Gly Asp Val Asp 290 295 300 Tyr Asp Ser Gly Thr Ser Tyr Trp Gly Thr Asn Leu Thr Ile Ser Val 305 310 315 320 Leu Asn Gly Thr Val Pro Gln Trp Arg Val Asp Asp Met Ala Val Arg 325 330 335 Ile Met Ala Ala Tyr Tyr Lys Val Gly Arg Asp Arg Leu Trp Thr Pro 340 345 350 Pro Asn Phe Ser Ser Trp Thr Arg Asp Glu Tyr Gly Phe Lys Tyr Tyr 355 360 365 Tyr Val Ser Glu Gly Pro Tyr Glu Lys Val Asn Gln Phe Val Asn Val 370 375 380 Gln Arg Asn His Ser Glu Leu Ile Arg Arg Ile Gly Ala Asp Ser Thr 385 390 395 400 Val Leu Leu Lys Asn Asp Gly Ala Leu Pro Leu Thr Gly Lys Glu Arg 405 410 415 Leu Val Ala Leu Ile Gly Glu Asp Ala Gly Ser Asn Pro Tyr Gly Ala 420 425 430 Asn Gly Cys Ser Asp Arg Gly Cys Asp Asn Gly Thr Leu Ala Met Gly 435 440 445 Trp Gly Ser Gly Thr Ala Asn Phe Pro Tyr Leu Val Thr Pro Glu Gln 450 455 460 Ala Ile Ser Asn Glu Val Leu Lys Asn Lys Asn Gly Val Phe Thr Ala 465 470 475 480 Thr Asp Asn Trp Ala Ile Asp Gln Ile Glu Ala Leu Ala Lys Thr Ala 485 490 495 Ser Val Ser Leu Val Phe Val Asn Ala Asp Ser Gly Glu Gly Tyr Ile 500 505 510 Asn Val Asp Gly Asn Leu Gly Asp Arg Arg Asn Leu Thr Leu Trp Arg 515 520 525 Asn Gly Asp Asn Val Ile Lys Ala Ala Ala Ser Asn Cys Asn Asn Thr 530 535 540 Ile Val Ile Ile His Ser Val Gly Pro Val Leu Val Asn Glu Trp Tyr 545 550 555 560 Asp Asn Pro Asn Val Thr Ala Ile Leu Trp Gly Gly Leu Pro Gly Gln 565 570 575 Glu Ser Gly Asn Ser Leu Ala Asp Val Leu Tyr Gly Arg Val Asn Pro 580 585 590 Gly Ala Lys Ser Pro Phe Thr Trp Gly Lys Thr Arg Glu

Ala Tyr Gln 595 600 605 Asp Tyr Leu Tyr Thr Glu Pro Asn Asn Gly Asn Gly Ala Pro Gln Glu 610 615 620 Asp Phe Val Glu Gly Val Phe Ile Asp Tyr Arg Gly Phe Asp Lys Arg 625 630 635 640 Asn Glu Thr Pro Ile Tyr Glu Phe Gly Tyr Gly Leu Ser Tyr Thr Thr 645 650 655 Phe Asn Tyr Ser Asn Leu Gln Val Glu Val Leu Ser Ala Pro Ala Tyr 660 665 670 Glu Pro Ala Ser Gly Glu Thr Glu Ala Ala Pro Thr Phe Gly Glu Val 675 680 685 Gly Asn Ala Ser Asp Tyr Leu Tyr Pro Asp Gly Leu Gln Arg Ile Thr 690 695 700 Lys Phe Ile Tyr Pro Trp Leu Asn Ser Thr Asp Leu Glu Ala Ser Ser 705 710 715 720 Gly Asp Ala Ser Tyr Gly Gln Asp Ala Ser Asp Tyr Leu Pro Glu Gly 725 730 735 Ala Thr Asp Gly Ser Ala Gln Pro Ile Leu Pro Ala Gly Gly Gly Ala 740 745 750 Gly Gly Asn Pro Arg Leu Tyr Asp Glu Leu Ile Arg Val Ser Val Thr 755 760 765 Ile Lys Asn Thr Gly Lys Val Ala Gly Asp Glu Val Pro Gln Leu Tyr 770 775 780 Val Ser Leu Gly Gly Pro Asn Glu Pro Lys Ile Val Leu Arg Gln Phe 785 790 795 800 Glu Arg Ile Thr Leu Gln Pro Ser Lys Glu Thr Gln Trp Ser Thr Thr 805 810 815 Leu Thr Arg Arg Asp Leu Ala Asn Trp Asn Val Glu Thr Gln Asp Trp 820 825 830 Glu Ile Thr Ser Tyr Pro Lys Met Val Phe Ala Gly Ser Ser Ser Arg 835 840 845 Lys Leu Pro Leu Arg Ala Ser Leu Pro Thr Val His 850 855 860 1093203DNAFusarium oxysporum 109atgaagctga actgggtcgc cgcagccctc tctataggtg ctgctggcac tgatggtgca 60gttgctcttg cttctgaagt tccaggcact ttggctggtg taaaggtcgg tttttttacc 120atttcctcac ctaatctcag ccttgttgcc atatcgccct tattcgctcg gacgctacgc 180accaaatcgc gatcatttcc tcccttgcag ccttgttttc ttttttcgat cttccctccg 240caatcgccag cacccttagc ctacacaaaa acccccgaga cagtctcatt gagtttgtcg 300acatcaagtt gcttctcaag tgtgcatttg cgtggctgtc tacttctgcc tctagaccac 360caaatctggg cgcaattgat cgctcaaacc ttgttcgaat aagcctttta ttcgagacgt 420ccaattttta cagagaatgt acctttcaat aataccgacg ttatgcgcgg cggtggctgc 480tgtgatggtt gttgatcaga atactgacgc tcaaaaggtt gtcacgagag atacactcgc 540acactcacct cctcactatc cttcaccatg gatggatcct aatgccattg gctgggagga 600agcttacgcc aaagcaaaga actttgtgtc ccagctcact ctcctcgaaa aggtcaactt 660gaccactggt gttgggtaag tagctccttg cgaacagtgc atctcggtct ccttgactaa 720cgactctctc aggtggcaag gcgaacgctg tgtaggaaac gtgggatcaa ttcctcgtct 780tggtatgcga ggtctttgtc ttcaggatgg tcctcttgga attcgtctgt ccgattacaa 840cagtgctttt cccgctggca ccacagctgg tgcttcttgg agcaagtctc tctggtatga 900gaggggtctt ctgatgggaa ctgagttcaa ggggaagggt atcgatatcg ctcttggccc 960tgctactggt cctcttggcc gcactgctgc tggtggacga aactgggagg gctttaccgt 1020tgatccttat atggctggcc atgccatggc cgaggccgtc aagggcatcc aagacgcagg 1080tgtcattgct tgtgctaagc attacatcgc aaacgagcaa ggtaagccaa ttggacggtt 1140tgggaaatcg acagagaact gacccccttg tagagcactt ccgacagagt ggcgaggtcc 1200agtcccgcaa gtacaacatc tccgagtctc tctcctccaa cctggacgac aagactttgc 1260acgagctcta cgcctggccc tttgctgatg ccgtccgcgc tggcgtcggt tcagtcatgt 1320gctcttacaa tcagatcaac aactcgtacg gttgccagaa ctccaagctc ctcaacggta 1380tcctcaagga cgagatgggt ttccagggct tcgtcatgag cgattgggcg gcccagcaca 1440ccggtgctgc ttctgccgtc gctggtcttg atatgagcat gcctggtgac accgcgttcg 1500acagtggata tagcttctgg ggtggaaacc tgactcttgc tgtcatcaac ggaactgttc 1560ccgcctggcg agttgatgac atggctctgc gaatcatgtc ggccttcttc aaggttggaa 1620agacggtaga ggacctcccc gacatcaact tctcctcctg gacccgcgac accttcggct 1680tcgtccaaac atttgctcaa gagaaccgcg aacaagtcaa ctttggagtt aacgtccagc 1740acgaccacaa gaaccacatc cgtgagtctg ccgccaaggg aagcgtcatc ctcaagaaca 1800ccggctccct tcccctcaac aatcccaagt tcctcgctgt cattggtgag gacgccggtc 1860ccaaccctgc tggacccaat ggttgcggcg accgtggttg cgacaatggt accctggcta 1920tggcttgggg ctcgggaact tctcaattcc cttacttgat cacacccgac caaggtctcc 1980agaaccgagc tgcccaagac ggaactcgat atgagagcat cttgaccaac aacgaatggg 2040cccagacaca ggctcttgtc agccaaccca acgtgaccgc tatcgttttt gccaacgccg 2100actctggtga gggttacatt gaagtcgacg gaaacttcgg tgatcgcaag aacctcaccc 2160tctggcaaca gggagacgag ctcatcaaga acgtctcgtc catctgcccc aacaccattg 2220tcgttctgca taccgtcggc cctgtcctgc tcgccgacta cgagaagaac cccaacatca 2280ccgccatcgt ctgggctggt cttcccggcc aagagtctgg caatgccatc gctgatctcc 2340tctacggcaa ggtaagccct ggccgatctc ccttcacttg gggccgcacc cgtgagagct 2400acggtaccga ggttctttat gaggcgaaca acggccgtgg cgctcctcag gatgacttct 2460cggagggtgt cttcattgac taccgtcact ttgatcgacg atctcccagc accgatggca 2520agagcgctcc caacaacacc gctgctcctc tctacgagtt cggtcatggt ctgtcttgga 2580ctacctttga gtattcagac ctcaacatcc agaagaacgt taactccacc tactctcctc 2640ctgctggtca gaccattcct gccccaacct ttggcaactt cagcaagaac ctcaacgact 2700acgtgttccc taagggtgtc cgatacatct acaagttcat ctaccccttc ctgaacactt 2760cctcatccgc cagcgaggca tctaacgacg gcggccagtt tggtaagact gccgaagagt 2820tcctacctcc aaacgccctc aacggctcag cccagcctcg tcttccctct tctggtgccc 2880caggcggtaa ccctcaattg tgggatatcc tgtacaccgt cacagccaca atcaccaaca 2940caggcaacgc cacctccgac gagattcccc agctgtatgt cagcctcggt ggcgagaacg 3000aacccgttcg tgtcctccgc ggtttcgacc gtatcgagaa cattgctccc ggccagagcg 3060ccatcttcaa cgctcaattg acccgtcgcg atctgagcaa ctgggatgtg gatgcccaga 3120actgggttat caccgaccat ccaaagacgg tgtgggttgg aagtagttct cgcaagctgc 3180ctctcagcgc caagttggaa taa 3203110899PRTFusarium oxysporum 110Met Lys Leu Asn Trp Val Ala Ala Ala Leu Ser Ile Gly Ala Ala Gly 1 5 10 15 Thr Asp Gly Ala Val Ala Leu Ala Ser Glu Val Pro Gly Thr Leu Ala 20 25 30 Gly Val Lys Asn Thr Asp Ala Gln Lys Val Val Thr Arg Asp Thr Leu 35 40 45 Ala His Ser Pro Pro His Tyr Pro Ser Pro Trp Met Asp Pro Asn Ala 50 55 60 Ile Gly Trp Glu Glu Ala Tyr Ala Lys Ala Lys Asn Phe Val Ser Gln 65 70 75 80 Leu Thr Leu Leu Glu Lys Val Asn Leu Thr Thr Gly Val Gly Trp Gln 85 90 95 Gly Glu Arg Cys Val Gly Asn Val Gly Ser Ile Pro Arg Leu Gly Met 100 105 110 Arg Gly Leu Cys Leu Gln Asp Gly Pro Leu Gly Ile Arg Leu Ser Asp 115 120 125 Tyr Asn Ser Ala Phe Pro Ala Gly Thr Thr Ala Gly Ala Ser Trp Ser 130 135 140 Lys Ser Leu Trp Tyr Glu Arg Gly Leu Leu Met Gly Thr Glu Phe Lys 145 150 155 160 Gly Lys Gly Ile Asp Ile Ala Leu Gly Pro Ala Thr Gly Pro Leu Gly 165 170 175 Arg Thr Ala Ala Gly Gly Arg Asn Trp Glu Gly Phe Thr Val Asp Pro 180 185 190 Tyr Met Ala Gly His Ala Met Ala Glu Ala Val Lys Gly Ile Gln Asp 195 200 205 Ala Gly Val Ile Ala Cys Ala Lys His Tyr Ile Ala Asn Glu Gln Glu 210 215 220 His Phe Arg Gln Ser Gly Glu Val Gln Ser Arg Lys Tyr Asn Ile Ser 225 230 235 240 Glu Ser Leu Ser Ser Asn Leu Asp Asp Lys Thr Leu His Glu Leu Tyr 245 250 255 Ala Trp Pro Phe Ala Asp Ala Val Arg Ala Gly Val Gly Ser Val Met 260 265 270 Cys Ser Tyr Asn Gln Ile Asn Asn Ser Tyr Gly Cys Gln Asn Ser Lys 275 280 285 Leu Leu Asn Gly Ile Leu Lys Asp Glu Met Gly Phe Gln Gly Phe Val 290 295 300 Met Ser Asp Trp Ala Ala Gln His Thr Gly Ala Ala Ser Ala Val Ala 305 310 315 320 Gly Leu Asp Met Ser Met Pro Gly Asp Thr Ala Phe Asp Ser Gly Tyr 325 330 335 Ser Phe Trp Gly Gly Asn Leu Thr Leu Ala Val Ile Asn Gly Thr Val 340 345 350 Pro Ala Trp Arg Val Asp Asp Met Ala Leu Arg Ile Met Ser Ala Phe 355 360 365 Phe Lys Val Gly Lys Thr Val Glu Asp Leu Pro Asp Ile Asn Phe Ser 370 375 380 Ser Trp Thr Arg Asp Thr Phe Gly Phe Val Gln Thr Phe Ala Gln Glu 385 390 395 400 Asn Arg Glu Gln Val Asn Phe Gly Val Asn Val Gln His Asp His Lys 405 410 415 Asn His Ile Arg Glu Ser Ala Ala Lys Gly Ser Val Ile Leu Lys Asn 420 425 430 Thr Gly Ser Leu Pro Leu Asn Asn Pro Lys Phe Leu Ala Val Ile Gly 435 440 445 Glu Asp Ala Gly Pro Asn Pro Ala Gly Pro Asn Gly Cys Gly Asp Arg 450 455 460 Gly Cys Asp Asn Gly Thr Leu Ala Met Ala Trp Gly Ser Gly Thr Ser 465 470 475 480 Gln Phe Pro Tyr Leu Ile Thr Pro Asp Gln Gly Leu Gln Asn Arg Ala 485 490 495 Ala Gln Asp Gly Thr Arg Tyr Glu Ser Ile Leu Thr Asn Asn Glu Trp 500 505 510 Ala Gln Thr Gln Ala Leu Val Ser Gln Pro Asn Val Thr Ala Ile Val 515 520 525 Phe Ala Asn Ala Asp Ser Gly Glu Gly Tyr Ile Glu Val Asp Gly Asn 530 535 540 Phe Gly Asp Arg Lys Asn Leu Thr Leu Trp Gln Gln Gly Asp Glu Leu 545 550 555 560 Ile Lys Asn Val Ser Ser Ile Cys Pro Asn Thr Ile Val Val Leu His 565 570 575 Thr Val Gly Pro Val Leu Leu Ala Asp Tyr Glu Lys Asn Pro Asn Ile 580 585 590 Thr Ala Ile Val Trp Ala Gly Leu Pro Gly Gln Glu Ser Gly Asn Ala 595 600 605 Ile Ala Asp Leu Leu Tyr Gly Lys Val Ser Pro Gly Arg Ser Pro Phe 610 615 620 Thr Trp Gly Arg Thr Arg Glu Ser Tyr Gly Thr Glu Val Leu Tyr Glu 625 630 635 640 Ala Asn Asn Gly Arg Gly Ala Pro Gln Asp Asp Phe Ser Glu Gly Val 645 650 655 Phe Ile Asp Tyr Arg His Phe Asp Arg Arg Ser Pro Ser Thr Asp Gly 660 665 670 Lys Ser Ala Pro Asn Asn Thr Ala Ala Pro Leu Tyr Glu Phe Gly His 675 680 685 Gly Leu Ser Trp Thr Thr Phe Glu Tyr Ser Asp Leu Asn Ile Gln Lys 690 695 700 Asn Val Asn Ser Thr Tyr Ser Pro Pro Ala Gly Gln Thr Ile Pro Ala 705 710 715 720 Pro Thr Phe Gly Asn Phe Ser Lys Asn Leu Asn Asp Tyr Val Phe Pro 725 730 735 Lys Gly Val Arg Tyr Ile Tyr Lys Phe Ile Tyr Pro Phe Leu Asn Thr 740 745 750 Ser Ser Ser Ala Ser Glu Ala Ser Asn Asp Gly Gly Gln Phe Gly Lys 755 760 765 Thr Ala Glu Glu Phe Leu Pro Pro Asn Ala Leu Asn Gly Ser Ala Gln 770 775 780 Pro Arg Leu Pro Ser Ser Gly Ala Pro Gly Gly Asn Pro Gln Leu Trp 785 790 795 800 Asp Ile Leu Tyr Thr Val Thr Ala Thr Ile Thr Asn Thr Gly Asn Ala 805 810 815 Thr Ser Asp Glu Ile Pro Gln Leu Tyr Val Ser Leu Gly Gly Glu Asn 820 825 830 Glu Pro Val Arg Val Leu Arg Gly Phe Asp Arg Ile Glu Asn Ile Ala 835 840 845 Pro Gly Gln Ser Ala Ile Phe Asn Ala Gln Leu Thr Arg Arg Asp Leu 850 855 860 Ser Asn Trp Asp Val Asp Ala Gln Asn Trp Val Ile Thr Asp His Pro 865 870 875 880 Lys Thr Val Trp Val Gly Ser Ser Ser Arg Lys Leu Pro Leu Ser Ala 885 890 895 Lys Leu Glu 1113134DNAGibberella zeae 111atgaaggcca attggcttgc cgcggccgtt tatttggctg ctggcaccga tgctgcagtc 60cctgacactt tggcaggagt caatgtaagc tactcttcaa tttcatctca tctcaacttt 120gccaggccac aacaactttt cttcactcac gatcttttca ccataaacgc aacagtttca 180caaaaaataa agcccaaatc atgtctctga tcgttgaact cgccatcttc gtttacatcg 240cggttgtctt tttcttcttg tacttctcat tcgttgttgt tctctacatt ttcgactggc 300tgtttagcct tgagattctt ctcactcccc gtgatgccta gatcactctc tgaggcgttt 360aatctacttg tagagatgcg cctctcattt gttgtgtcgc tagtcgcgat agttgctgga 420attgcagtcc ttgatcttcc tactgacact caaaagctcg ttgcgcggga cacactcgct 480cactctcctc ctcactatcc ctcgccatgg atggacccta acgctgtcgg ctgggaggac 540gcctacgcca aggccaagga ctttgtctcc cagatgactc tcctagaaaa ggtcaacttg 600accactggtg ttgggtaagt aacgagcgac aagacgtcta caatccacta acacgatctc 660tagatggcag ggcgaacgtt gtgttggaaa cgtgggatct atccctcgtc tcggtatgcg 720aggcctctgt ctccaggatg gtcctctcgg aattcgcttc tccgactaca acagcgcttt 780ccctactggt gtcaccgctg gtgcttcttg gagtaaggcc ctttggtacg agcgaggacg 840attgatgggt accgagttta aggagaaggg tatcgatatt gctctcggcc ctgcaactgg 900tcctctcggt cgccacgctg ctggtggacg aaactgggaa ggcttcactg tcgaccccta 960cgccgctggc catgctatgg ctgagactgt caagggtatc caagattctg gagtcattgc 1020ttgtgctaag cattacatcg caaacgagca aggtatgtac aggcccattc aatggcttca 1080ggaacgaaaa ctaactctta atagaacact tccgtcaacg aggcgatgtc atgtctcaaa 1140agttcaacat ttccgagtct ctgtcttcca accttgacga taagactatg cacgagctct 1200acaactggcc tttcgccgac gccgtccgcg ccggtgttgg ctccattatg tgctcttaca 1260accaggtcaa caactcatat gcttgccaga actccaagct cctcaacggc atcctcaagg 1320acgagatggg tttccagggt ttcgtcatga gcgattggca ggctcagcac accggtgccg 1380cctccgctgt tgccggtctt gacatgacca tgcctggtga caccgagttc aacactggct 1440tcagcttctg gggtggaaac ctgaccctcg ctgttatcaa cggtactgtt cccgcctgga 1500gaatcgacga catggctacc cgaattatgg ctgctttctt caaggttggc cgatctgttg 1560aggaggaacc cgacatcaac ttctcagctt ggactcgtga tgagtatggc ttcgtccaga 1620cctacgccca agagaaccga gaaaaggtca actttgctgt taatgtccag cacgaccaca 1680agcgccacat tcgcgaggct ggcgcaaagg gatccgtcgt cctcaagaac actggctcac 1740ttcctcttaa gaagccccag ttcctcgctg tcattggaga ggacgctggt tccaaccctg 1800ccggacccaa cggttgcgct gaccgtggat gcgacaacgg tactcttgcc atggcatggg 1860gttccggaac ctctcaattc ccctaccttg tcacccccga ccaaggcatc tcgctccagg 1920ctattcagga cggtactcgt tatgagagca tcctcaacaa caaccagtgg ccccagacac 1980aagctcttgt cagccagccc aacgtcaccg ccattgtctt tgccaatgcc gattctggtg 2040agggctacat cgaggttgac ggcaactacg gcgaccgcaa gaacctcact ctgtggaagc 2100aaggcgatga gctcatcaag aacgtctctg ctatctgccc caacaccatt gtggtccttc 2160acaccgttgg ccccgtcctt ctaaccgagt ggcacaacaa ccccaacatc accgccattg 2220tttgggctgg tgtgcctgga caggagtccg gtaacgccat cgccgacatc ctctacggca 2280agaccagccc tggacgttct cccttcacct ggggtcgcac ttatgacagc tatggcacca 2340aggttctcta caaggccaac aatggagagg gtgcccctca agaggacttt gtcgagggca 2400acttcatcga ctaccgccac tttgaccgac aatcccccag caccaacgga aagagtgcca 2460ccaacgactc ttctgctcct ctctacgagt tcggtttcgg tctgtcctgg actacctttg 2520agtactctga tctcaaagtc gagtctgtca gcaacgcctc ttacagcccc tctgtcggaa 2580acaccattcc tgcccctacc tacggcaact tcagcaagaa cctggacgat tacacattcc 2640cctcaggtgt ccgatacctc tacaagttca tctaccccta cctcaacacc tcttcctccg 2700ctgagaaggc ttccggcgat gtcaagggca gatttggtga gaccggcgac gagttcctcc 2760ctcccaacgc tctcaacggt tcatcgcagc ctcgtcttcc ttccagtggt gctcccggcg 2820gtaaccctca gctctgggac attatgtaca ccgtcactgc caccatcacc aacactggtg 2880acgctacctc ggatgaggtt ccccagctgt acgtcagcct cggtggtgag ggcgagcctg 2940tccgtgtcct ccgtggcttc gagcgtcttg aaaacattgc tcctggtgag agtgccacat 3000tcaccgctca gcttactcgc cgtgacctga gcaactggga cgtcaacgtc cagaactggg 3060tcatcaccga tcacgccaag aagatctggg tcggcagcag ctctcgcaat ctgcccctca 3120gcgccgacct gtag 3134112886PRTGibberella zeae 112Met Lys Ala Asn Trp Leu Ala Ala Ala Val Tyr Leu Ala Ala Gly Thr 1 5 10 15 Asp Ala Ala Val Pro Asp Thr Leu Ala Gly Val Asn Leu Val Ala Arg 20 25 30 Asp Thr Leu Ala His Ser Pro Pro His Tyr Pro Ser Pro Trp Met Asp 35 40 45 Pro Asn Ala Val Gly Trp Glu Asp Ala Tyr Ala Lys Ala Lys Asp Phe 50 55 60 Val Ser Gln Met Thr Leu Leu Glu Lys Val Asn Leu Thr Thr Gly Val 65 70 75 80 Gly Trp Gln Gly Glu Arg Cys Val Gly Asn Val Gly Ser Ile Pro Arg 85 90 95 Leu Gly Met Arg Gly Leu Cys Leu Gln Asp Gly Pro Leu Gly Ile Arg 100 105 110 Phe Ser Asp Tyr Asn Ser Ala Phe Pro Thr Gly Val Thr Ala Gly Ala 115 120 125 Ser Trp Ser Lys Ala Leu Trp Tyr Glu Arg Gly Arg Leu Met Gly Thr 130 135 140 Glu Phe Lys Glu Lys Gly

Ile Asp Ile Ala Leu Gly Pro Ala Thr Gly 145 150 155 160 Pro Leu Gly Arg His Ala Ala Gly Gly Arg Asn Trp Glu Gly Phe Thr 165 170 175 Val Asp Pro Tyr Ala Ala Gly His Ala Met Ala Glu Thr Val Lys Gly 180 185 190 Ile Gln Asp Ser Gly Val Ile Ala Cys Ala Lys His Tyr Ile Ala Asn 195 200 205 Glu Gln Glu His Phe Arg Gln Arg Gly Asp Val Met Ser Gln Lys Phe 210 215 220 Asn Ile Ser Glu Ser Leu Ser Ser Asn Leu Asp Asp Lys Thr Met His 225 230 235 240 Glu Leu Tyr Asn Trp Pro Phe Ala Asp Ala Val Arg Ala Gly Val Gly 245 250 255 Ser Ile Met Cys Ser Tyr Asn Gln Val Asn Asn Ser Tyr Ala Cys Gln 260 265 270 Asn Ser Lys Leu Leu Asn Gly Ile Leu Lys Asp Glu Met Gly Phe Gln 275 280 285 Gly Phe Val Met Ser Asp Trp Gln Ala Gln His Thr Gly Ala Ala Ser 290 295 300 Ala Val Ala Gly Leu Asp Met Thr Met Pro Gly Asp Thr Glu Phe Asn 305 310 315 320 Thr Gly Phe Ser Phe Trp Gly Gly Asn Leu Thr Leu Ala Val Ile Asn 325 330 335 Gly Thr Val Pro Ala Trp Arg Ile Asp Asp Met Ala Thr Arg Ile Met 340 345 350 Ala Ala Phe Phe Lys Val Gly Arg Ser Val Glu Glu Glu Pro Asp Ile 355 360 365 Asn Phe Ser Ala Trp Thr Arg Asp Glu Tyr Gly Phe Val Gln Thr Tyr 370 375 380 Ala Gln Glu Asn Arg Glu Lys Val Asn Phe Ala Val Asn Val Gln His 385 390 395 400 Asp His Lys Arg His Ile Arg Glu Ala Gly Ala Lys Gly Ser Val Val 405 410 415 Leu Lys Asn Thr Gly Ser Leu Pro Leu Lys Lys Pro Gln Phe Leu Ala 420 425 430 Val Ile Gly Glu Asp Ala Gly Ser Asn Pro Ala Gly Pro Asn Gly Cys 435 440 445 Ala Asp Arg Gly Cys Asp Asn Gly Thr Leu Ala Met Ala Trp Gly Ser 450 455 460 Gly Thr Ser Gln Phe Pro Tyr Leu Val Thr Pro Asp Gln Gly Ile Ser 465 470 475 480 Leu Gln Ala Ile Gln Asp Gly Thr Arg Tyr Glu Ser Ile Leu Asn Asn 485 490 495 Asn Gln Trp Pro Gln Thr Gln Ala Leu Val Ser Gln Pro Asn Val Thr 500 505 510 Ala Ile Val Phe Ala Asn Ala Asp Ser Gly Glu Gly Tyr Ile Glu Val 515 520 525 Asp Gly Asn Tyr Gly Asp Arg Lys Asn Leu Thr Leu Trp Lys Gln Gly 530 535 540 Asp Glu Leu Ile Lys Asn Val Ser Ala Ile Cys Pro Asn Thr Ile Val 545 550 555 560 Val Leu His Thr Val Gly Pro Val Leu Leu Thr Glu Trp His Asn Asn 565 570 575 Pro Asn Ile Thr Ala Ile Val Trp Ala Gly Val Pro Gly Gln Glu Ser 580 585 590 Gly Asn Ala Ile Ala Asp Ile Leu Tyr Gly Lys Thr Ser Pro Gly Arg 595 600 605 Ser Pro Phe Thr Trp Gly Arg Thr Tyr Asp Ser Tyr Gly Thr Lys Val 610 615 620 Leu Tyr Lys Ala Asn Asn Gly Glu Gly Ala Pro Gln Glu Asp Phe Val 625 630 635 640 Glu Gly Asn Phe Ile Asp Tyr Arg His Phe Asp Arg Gln Ser Pro Ser 645 650 655 Thr Asn Gly Lys Ser Ala Thr Asn Asp Ser Ser Ala Pro Leu Tyr Glu 660 665 670 Phe Gly Phe Gly Leu Ser Trp Thr Thr Phe Glu Tyr Ser Asp Leu Lys 675 680 685 Val Glu Ser Val Ser Asn Ala Ser Tyr Ser Pro Ser Val Gly Asn Thr 690 695 700 Ile Pro Ala Pro Thr Tyr Gly Asn Phe Ser Lys Asn Leu Asp Asp Tyr 705 710 715 720 Thr Phe Pro Ser Gly Val Arg Tyr Leu Tyr Lys Phe Ile Tyr Pro Tyr 725 730 735 Leu Asn Thr Ser Ser Ser Ala Glu Lys Ala Ser Gly Asp Val Lys Gly 740 745 750 Arg Phe Gly Glu Thr Gly Asp Glu Phe Leu Pro Pro Asn Ala Leu Asn 755 760 765 Gly Ser Ser Gln Pro Arg Leu Pro Ser Ser Gly Ala Pro Gly Gly Asn 770 775 780 Pro Gln Leu Trp Asp Ile Met Tyr Thr Val Thr Ala Thr Ile Thr Asn 785 790 795 800 Thr Gly Asp Ala Thr Ser Asp Glu Val Pro Gln Leu Tyr Val Ser Leu 805 810 815 Gly Gly Glu Gly Glu Pro Val Arg Val Leu Arg Gly Phe Glu Arg Leu 820 825 830 Glu Asn Ile Ala Pro Gly Glu Ser Ala Thr Phe Thr Ala Gln Leu Thr 835 840 845 Arg Arg Asp Leu Ser Asn Trp Asp Val Asn Val Gln Asn Trp Val Ile 850 855 860 Thr Asp His Ala Lys Lys Ile Trp Val Gly Ser Ser Ser Arg Asn Leu 865 870 875 880 Pro Leu Ser Ala Asp Leu 885 1132796DNANectria haematococca 113atgcggttca ccgtccttct cgcggcattt tcggggcttg tccccatggt tggttcgcaa 60gctgaccaga aaccactaca gctcggtgtg aacaataaca ctctggcgca ttcacctcct 120cactatcctt cgccatggat ggatcctgct gctcctggct gggaggaagc ctatctcaag 180gcgaaagatt ttgtttcaca gcttaccctt cttgaaaagg tcaacttgac cactggtgtt 240gggtgagtca cttgttttcc tctctcctga cgtgacactt tgctttggcc tgcttcctat 300atcgtctact agcattgcta acactcgagg cagatggatg ggcgaacgtt gcgtcggcaa 360cgtgggttca ctccctcgtt ttggaatgcg tggtctctgc atgcaggatg gccccctcgg 420catccgcttg tctgactata actctgcctt tcctactggt attacagctg gtgcctcttg 480gagccgtgcc ctttggtacc aacgtggcct cctgatgggc accgagcatc gtgaaaaagg 540catcgacgtt gcacttgggc ctgctactgg tcctcttggt cgtactccta ctggcggccg 600caactgggag ggtttctcgg ttgatcccta cgttgctggc gttgccatgg ccgagactgt 660tagcggcatt caagatggtg gtactatcgc ctgtgctaag cactacatcg gcaacgaaca 720aggtatgcct cttcacttct cctcgctgat aaatctgctc acaacaacct agagcaccat 780cgccaagccc ccgaatccat tggccgcggc tacaacatca ccgagtccct gtcgtcgaac 840gttgatgaca agaccctcca cgagctctat ctctggccgt tcgcagatgc cgtcaaggct 900ggtgttggtg ctatcatgtg ttcctaccag cagctgaaca actcttacgg ttgccaaaac 960tctaagcttc tcaacggaat tctcaaggac gagctaggat tccagggctt cgtcatgagt 1020gactggcaag cccaacatgc tggagctgct accgctgttg caggccttga catgaccatg 1080cccggtgaca ctttgttcaa caccggatac agcttctggg gtggtaacct gaccctcgct 1140gtagtcaatg gcactgttcc cgactggcgt attgacgaca tggctatgag aatcatggca 1200gctttcttca aggttggcaa gactgttgag gaccttcctg acatcaactt ttcttcttgg 1260tctcgagaca cttttggcta cgttcaagcc gctgcccaag agaactggga acagatcaac 1320ttcggagttg atgttcgtca cgaccacagc gaacacattc gactctcggc cgccaagggc 1380accgtcctcc ttaagaactc tggctcattg cctctgaaga agcccaagtt ccttgccgtc 1440gttggcgagg acgccggccc gaaccctgct ggccccaacg gctgtaacga ccgcggatgt 1500aacaacggca ctctggccat gtcctggggc tcaggaacag cccagttccc ttacctcgtt 1560actcccgact cagcgctaca gaaccaggct gtcctcgacg gcactcgcta cgagagtgtc 1620ttgcggaaca accagtggga acagacacgc agtctcatta gccaacctaa cgtgacggct 1680attgtgtttg ccaatgccaa ttccggagag ggatatatcg atgttgacgg caacgaaggc 1740gatcggaaga atttgacctt gtggaacgag ggtgatgacc taattaagaa cgtctcctca 1800atctgcccca acaccattgt tgttctgcac actgttggcc ctgtcatcct gacggaatgg 1860tatgacaacc cgaacattac cgccatagtg tgggctggtg tacctggaca ggagtccggc 1920aatgctcttg tggacatcct ttatggcaaa acaagccctg gtcgctctcc cttcacatgg 1980ggtcgcaccc gaaagagtta cggcactgat gtcctatacg agcccaacaa tggtcagggt 2040gctcctcaag atgatttcac ggagggagtc tttatcgact atcgtcattt tgaccaggtt 2100tctcctagca ccgacggcag caagtctaat gatgagtcca gtcccatcta cgagtttggc 2160catggtctgt cctggaccac gtttgagtac tctgaactca acattcaagc tcacaacaag 2220attcccttcg atcctcctat tggcgagacg attgccgctc cggtccttgg caactacagt 2280accgaccttg ccgattacac gttccccgat ggaattcgct acatctacca gttcatctat 2340ccctggttga atacttcttc ttccggaaga gaggcttctg gcgatcccga ctacggaaag 2400acggccgaag agttcctgcc ccccggagct ctcgacgggt cagctcagcc gcgacctcca 2460tcctctggtg ctccaggtgg aaaccctcat ctttgggatg tgttgtacac tgttagtgct 2520atcatcacca acactggcaa cgccacctcg gacgagatcc cgcagctcta cgttagtctc 2580ggtggcgaga acgagcccgt ccgcgtcctt cgcgggttcg accgaattga gaacattgcg 2640cctggccaga gtgtcagatt cacaactgac atcactcgcc gcgacctgag caactgggac 2700gtcgtctctc agaactgggt cattacagac tacgagaaga ccgtatatgt cgggagcagc 2760tcccgcaacc tgcctctcaa ggcaaccctg aagtaa 2796114880PRTNectria haematococca 114Met Arg Phe Thr Val Leu Leu Ala Ala Phe Ser Gly Leu Val Pro Met 1 5 10 15 Val Gly Ser Gln Ala Asp Gln Lys Pro Leu Gln Leu Gly Val Asn Asn 20 25 30 Asn Thr Leu Ala His Ser Pro Pro His Tyr Pro Ser Pro Trp Met Asp 35 40 45 Pro Ala Ala Pro Gly Trp Glu Glu Ala Tyr Leu Lys Ala Lys Asp Phe 50 55 60 Val Ser Gln Leu Thr Leu Leu Glu Lys Val Asn Leu Thr Thr Gly Val 65 70 75 80 Gly Trp Met Gly Glu Arg Cys Val Gly Asn Val Gly Ser Leu Pro Arg 85 90 95 Phe Gly Met Arg Gly Leu Cys Met Gln Asp Gly Pro Leu Gly Ile Arg 100 105 110 Leu Ser Asp Tyr Asn Ser Ala Phe Pro Thr Gly Ile Thr Ala Gly Ala 115 120 125 Ser Trp Ser Arg Ala Leu Trp Tyr Gln Arg Gly Leu Leu Met Gly Thr 130 135 140 Glu His Arg Glu Lys Gly Ile Asp Val Ala Leu Gly Pro Ala Thr Gly 145 150 155 160 Pro Leu Gly Arg Thr Pro Thr Gly Gly Arg Asn Trp Glu Gly Phe Ser 165 170 175 Val Asp Pro Tyr Val Ala Gly Val Ala Met Ala Glu Thr Val Ser Gly 180 185 190 Ile Gln Asp Gly Gly Thr Ile Ala Cys Ala Lys His Tyr Ile Gly Asn 195 200 205 Glu Gln Glu His His Arg Gln Ala Pro Glu Ser Ile Gly Arg Gly Tyr 210 215 220 Asn Ile Thr Glu Ser Leu Ser Ser Asn Val Asp Asp Lys Thr Leu His 225 230 235 240 Glu Leu Tyr Leu Trp Pro Phe Ala Asp Ala Val Lys Ala Gly Val Gly 245 250 255 Ala Ile Met Cys Ser Tyr Gln Gln Leu Asn Asn Ser Tyr Gly Cys Gln 260 265 270 Asn Ser Lys Leu Leu Asn Gly Ile Leu Lys Asp Glu Leu Gly Phe Gln 275 280 285 Gly Phe Val Met Ser Asp Trp Gln Ala Gln His Ala Gly Ala Ala Thr 290 295 300 Ala Val Ala Gly Leu Asp Met Thr Met Pro Gly Asp Thr Leu Phe Asn 305 310 315 320 Thr Gly Tyr Ser Phe Trp Gly Gly Asn Leu Thr Leu Ala Val Val Asn 325 330 335 Gly Thr Val Pro Asp Trp Arg Ile Asp Asp Met Ala Met Arg Ile Met 340 345 350 Ala Ala Phe Phe Lys Val Gly Lys Thr Val Glu Asp Leu Pro Asp Ile 355 360 365 Asn Phe Ser Ser Trp Ser Arg Asp Thr Phe Gly Tyr Val Gln Ala Ala 370 375 380 Ala Gln Glu Asn Trp Glu Gln Ile Asn Phe Gly Val Asp Val Arg His 385 390 395 400 Asp His Ser Glu His Ile Arg Leu Ser Ala Ala Lys Gly Thr Val Leu 405 410 415 Leu Lys Asn Ser Gly Ser Leu Pro Leu Lys Lys Pro Lys Phe Leu Ala 420 425 430 Val Val Gly Glu Asp Ala Gly Pro Asn Pro Ala Gly Pro Asn Gly Cys 435 440 445 Asn Asp Arg Gly Cys Asn Asn Gly Thr Leu Ala Met Ser Trp Gly Ser 450 455 460 Gly Thr Ala Gln Phe Pro Tyr Leu Val Thr Pro Asp Ser Ala Leu Gln 465 470 475 480 Asn Gln Ala Val Leu Asp Gly Thr Arg Tyr Glu Ser Val Leu Arg Asn 485 490 495 Asn Gln Trp Glu Gln Thr Arg Ser Leu Ile Ser Gln Pro Asn Val Thr 500 505 510 Ala Ile Val Phe Ala Asn Ala Asn Ser Gly Glu Gly Tyr Ile Asp Val 515 520 525 Asp Gly Asn Glu Gly Asp Arg Lys Asn Leu Thr Leu Trp Asn Glu Gly 530 535 540 Asp Asp Leu Ile Lys Asn Val Ser Ser Ile Cys Pro Asn Thr Ile Val 545 550 555 560 Val Leu His Thr Val Gly Pro Val Ile Leu Thr Glu Trp Tyr Asp Asn 565 570 575 Pro Asn Ile Thr Ala Ile Val Trp Ala Gly Val Pro Gly Gln Glu Ser 580 585 590 Gly Asn Ala Leu Val Asp Ile Leu Tyr Gly Lys Thr Ser Pro Gly Arg 595 600 605 Ser Pro Phe Thr Trp Gly Arg Thr Arg Lys Ser Tyr Gly Thr Asp Val 610 615 620 Leu Tyr Glu Pro Asn Asn Gly Gln Gly Ala Pro Gln Asp Asp Phe Thr 625 630 635 640 Glu Gly Val Phe Ile Asp Tyr Arg His Phe Asp Gln Val Ser Pro Ser 645 650 655 Thr Asp Gly Ser Lys Ser Asn Asp Glu Ser Ser Pro Ile Tyr Glu Phe 660 665 670 Gly His Gly Leu Ser Trp Thr Thr Phe Glu Tyr Ser Glu Leu Asn Ile 675 680 685 Gln Ala His Asn Lys Ile Pro Phe Asp Pro Pro Ile Gly Glu Thr Ile 690 695 700 Ala Ala Pro Val Leu Gly Asn Tyr Ser Thr Asp Leu Ala Asp Tyr Thr 705 710 715 720 Phe Pro Asp Gly Ile Arg Tyr Ile Tyr Gln Phe Ile Tyr Pro Trp Leu 725 730 735 Asn Thr Ser Ser Ser Gly Arg Glu Ala Ser Gly Asp Pro Asp Tyr Gly 740 745 750 Lys Thr Ala Glu Glu Phe Leu Pro Pro Gly Ala Leu Asp Gly Ser Ala 755 760 765 Gln Pro Arg Pro Pro Ser Ser Gly Ala Pro Gly Gly Asn Pro His Leu 770 775 780 Trp Asp Val Leu Tyr Thr Val Ser Ala Ile Ile Thr Asn Thr Gly Asn 785 790 795 800 Ala Thr Ser Asp Glu Ile Pro Gln Leu Tyr Val Ser Leu Gly Gly Glu 805 810 815 Asn Glu Pro Val Arg Val Leu Arg Gly Phe Asp Arg Ile Glu Asn Ile 820 825 830 Ala Pro Gly Gln Ser Val Arg Phe Thr Thr Asp Ile Thr Arg Arg Asp 835 840 845 Leu Ser Asn Trp Asp Val Val Ser Gln Asn Trp Val Ile Thr Asp Tyr 850 855 860 Glu Lys Thr Val Tyr Val Gly Ser Ser Ser Arg Asn Leu Pro Leu Lys 865 870 875 880 1153169DNAVerticillium dahliae 115atgaagctga ccctcgctac tgccttactg gcagccagcg ggtgtgtctc tgcgggacaa 60cccaagctca aggtacgtac ttgcctcttt ttcacaagga aaccaaaccc gcaccataat 120ggtgattgag cagtcgtgct ttcctcaacc cgaatcaaac ccatgccgtg ttcgcgcatg 180ccctttcgat cgtctgttgt gtgtgaaccc acgctcttca agcatcgcac atagcaccac 240tccatcttca ttttcgagca atttcgggcc gcagagagcg gtctttcact tcaccacaat 300cgttcatgcc tcgtgcccca ctgccatgtt tcttcccagt attctacttc tgagagcctt 360gaccaccgtt gtcgacatct cgtcgccaag gctcgttgac acggactctg tttcccttgg 420aattaatatt cgaaacaatg ctgaccagca tcctcagcgc cagactaaca gctctagcga 480gctcgccttt tcccctccgc actacccttc tccatggatg aacccccaag cgactgggtg 540ggaggacgcc tacgcccgtg ccagagaggt ggtagagcag atgactctgc tcgaaaaggt 600caacctgacg acaggtgtcg ggtaagcttc acagaccccg tcttgccatc caaagtcatc 660tgacagaatc ctagctggag cggtgatctc tgcgtcggaa acgtcggctc gatcccccga 720atcggctgga gggggctttg tttgcaggat ggcccacagg gtatccgttt cgcggactac 780gtctcgtact tcacttcgag ccagacagcc ggcgctacct gggaccgagg gcttctgtac 840cagcgcgctc acgccattgg cgccgaagga gtagccaagg gcgtcgacgt cgtcctcggg 900cccgccattg gccctctagg tcgccttccc gccggaggtc gtaactggga gggtttcgcc 960gtggaccctt acctcagtgg cgttgctgtc gccgaatccg tcaggggcat ccaggatgct 1020ggtgctattg ccaacgtcaa gcactacatc gtcaatgagc aggaacattt ccgccaggct 1080ggcgaggctc aaggttacgg ctacgatgtc gacgaggcat tatcgtcgaa cgttgacgac 1140aagaccatgc atgagcttta cctttggcca tttgcagacg ctgtccgtgc tggagccggc 1200agtgtcatgt gttcttatca acaggtgggg gcaataccat tctctcctct ttccttgcag 1260acagtgcact gaccgacctt ttttgcccaa gatcaacaac agttacggct gtcaaaactc 1320acatcttctg aatgggctcc tcaaggacga actcggcttt caggggttcg tcctcagcga 1380ttggcaagcg cagcatgctg gtgctgccac tgccgttgct ggacttgaca tggccatgcc 1440cggtgacact cgcttcaaca ccggagtcgc cttctggggc gctaacctta ccaatgccat 1500tttgaacggc accgttcccg aatatcggct cgatgacatg gccatgcgta ttatggcggc 1560ctttttcaaa

gttggaaaga ccctggacga tgttcctgac atcaacttct cgtcttggac 1620aaaagacacc atcggcccgc tgcactgggc ggcccaggac aatgtgcagg tcatcaacca 1680acacgttgat gtccgtcaag accacggcgc cctcattcgc accatcgctg cccgcggtac 1740tgtcttacta aaaaatgagg gatcactgcc tctgaacaag ccgaaatttg ttgctgtcat 1800tggtgaagat gctggccctc gtcctgttgg tcccaatggc tgccctgatc agggttgcaa 1860taacggcact ctggctgctg gatggggatc tggcaccgcc agtttccctt atctcatcac 1920tcctgatagt gctcttcagt ttcaagccgt ttcggatggc tcgcgatacg aaagcatcct 1980cagcaactgg gattatgagc gcacagaggc cttggtttcc caggcggatg ctactgctct 2040ggttttcgtc aatgcaaact ctggcgaagg atatatcagc gttgatggaa acgaaggtga 2100tcgcaagaac ctcactctct ggaatggagg agacgagctt attcaacgag tcgctgcggc 2160caacaacaac accatcgtca tcatccattc ggttggtccc gttctagtca ctgactggta 2220cgagaatccc aatatcacgg ctatcatctg ggccggctta cccggacagg agtctggcaa 2280ctctatcgcc gatattcttt acggccgcgt gaaccctggt ggcaagacac ctttcacctg 2340gggtccaact gttgagagct acggcgttga cgtcctgaga gagcccaaca atggcaatgg 2400tgctccccag agcgatttcg acgagggagt cttcatcgat taccgttggt ttgaccggca 2460gtcgggtgtt gataacaatg catcagcgcc gaggaacagc agcagcagcc acgccccaat 2520cttcgagttt ggctatggcc tttcgtacac aacctttgaa ttctccaatc ttcagattga 2580gaggcatgac gttcacgatt acgtccctac cactgggcag acgagccctg cgccgagatt 2640tggtgctaac tacagtacga actacgacga ctacgtcttt cccgagggcg aaatccgtta 2700catctatcaa cacatctacc catacctcaa ttcctcagac ccaaaggagg cattggctga 2760tcctaaatac ggccaaactg cagaagagtt cctcccagag ggcgctcttg atgcctcacc 2820gcagcctagg ctcccagctt ctggagggcc cggaggcaac ccaatgcttt gggacgtcat 2880attcacggtc accgcgaccg tgaccaacac gggtaaggtt gctggggacg aagtggcaca 2940gctttacgtt tctcttggtg gacctgacga tccgattcga gtcctccgtg ggttcgaccg 3000cattcacatc gcgcctggag cctcgcaaac cttccgtgcg gaactcacgc gccgggacct 3060cagcaactgg gatgttgtca cgcaaaattg gttcatcagc cagtacgaaa agacggtctt 3120tgtcgggagc tcatcccgaa acctccctct cagcactcgc ctcgaatag 3169116890PRTVerticillium dahliae 116Met Lys Leu Thr Leu Ala Thr Ala Leu Leu Ala Ala Ser Gly Cys Val 1 5 10 15 Ser Ala Gly Gln Pro Lys Leu Lys His Pro Gln Arg Gln Thr Asn Ser 20 25 30 Ser Ser Glu Leu Ala Phe Ser Pro Pro His Tyr Pro Ser Pro Trp Met 35 40 45 Asn Pro Gln Ala Thr Gly Trp Glu Asp Ala Tyr Ala Arg Ala Arg Glu 50 55 60 Val Val Glu Gln Met Thr Leu Leu Glu Lys Val Asn Leu Thr Thr Gly 65 70 75 80 Val Gly Trp Ser Gly Asp Leu Cys Val Gly Asn Val Gly Ser Ile Pro 85 90 95 Arg Ile Gly Trp Arg Gly Leu Cys Leu Gln Asp Gly Pro Gln Gly Ile 100 105 110 Arg Phe Ala Asp Tyr Val Ser Tyr Phe Thr Ser Ser Gln Thr Ala Gly 115 120 125 Ala Thr Trp Asp Arg Gly Leu Leu Tyr Gln Arg Ala His Ala Ile Gly 130 135 140 Ala Glu Gly Val Ala Lys Gly Val Asp Val Val Leu Gly Pro Ala Ile 145 150 155 160 Gly Pro Leu Gly Arg Leu Pro Ala Gly Gly Arg Asn Trp Glu Gly Phe 165 170 175 Ala Val Asp Pro Tyr Leu Ser Gly Val Ala Val Ala Glu Ser Val Arg 180 185 190 Gly Ile Gln Asp Ala Gly Ala Ile Ala Asn Val Lys His Tyr Ile Val 195 200 205 Asn Glu Gln Glu His Phe Arg Gln Ala Gly Glu Ala Gln Gly Tyr Gly 210 215 220 Tyr Asp Val Asp Glu Ala Leu Ser Ser Asn Val Asp Asp Lys Thr Met 225 230 235 240 His Glu Leu Tyr Leu Trp Pro Phe Ala Asp Ala Val Arg Ala Gly Ala 245 250 255 Gly Ser Val Met Cys Ser Tyr Gln Gln Ile Asn Asn Ser Tyr Gly Cys 260 265 270 Gln Asn Ser His Leu Leu Asn Gly Leu Leu Lys Asp Glu Leu Gly Phe 275 280 285 Gln Gly Phe Val Leu Ser Asp Trp Gln Ala Gln His Ala Gly Ala Ala 290 295 300 Thr Ala Val Ala Gly Leu Asp Met Ala Met Pro Gly Asp Thr Arg Phe 305 310 315 320 Asn Thr Gly Val Ala Phe Trp Gly Ala Asn Leu Thr Asn Ala Ile Leu 325 330 335 Asn Gly Thr Val Pro Glu Tyr Arg Leu Asp Asp Met Ala Met Arg Ile 340 345 350 Met Ala Ala Phe Phe Lys Val Gly Lys Thr Leu Asp Asp Val Pro Asp 355 360 365 Ile Asn Phe Ser Ser Trp Thr Lys Asp Thr Ile Gly Pro Leu His Trp 370 375 380 Ala Ala Gln Asp Asn Val Gln Val Ile Asn Gln His Val Asp Val Arg 385 390 395 400 Gln Asp His Gly Ala Leu Ile Arg Thr Ile Ala Ala Arg Gly Thr Val 405 410 415 Leu Leu Lys Asn Glu Gly Ser Leu Pro Leu Asn Lys Pro Lys Phe Val 420 425 430 Ala Val Ile Gly Glu Asp Ala Gly Pro Arg Pro Val Gly Pro Asn Gly 435 440 445 Cys Pro Asp Gln Gly Cys Asn Asn Gly Thr Leu Ala Ala Gly Trp Gly 450 455 460 Ser Gly Thr Ala Ser Phe Pro Tyr Leu Ile Thr Pro Asp Ser Ala Leu 465 470 475 480 Gln Phe Gln Ala Val Ser Asp Gly Ser Arg Tyr Glu Ser Ile Leu Ser 485 490 495 Asn Trp Asp Tyr Glu Arg Thr Glu Ala Leu Val Ser Gln Ala Asp Ala 500 505 510 Thr Ala Leu Val Phe Val Asn Ala Asn Ser Gly Glu Gly Tyr Ile Ser 515 520 525 Val Asp Gly Asn Glu Gly Asp Arg Lys Asn Leu Thr Leu Trp Asn Gly 530 535 540 Gly Asp Glu Leu Ile Gln Arg Val Ala Ala Ala Asn Asn Asn Thr Ile 545 550 555 560 Val Ile Ile His Ser Val Gly Pro Val Leu Val Thr Asp Trp Tyr Glu 565 570 575 Asn Pro Asn Ile Thr Ala Ile Ile Trp Ala Gly Leu Pro Gly Gln Glu 580 585 590 Ser Gly Asn Ser Ile Ala Asp Ile Leu Tyr Gly Arg Val Asn Pro Gly 595 600 605 Gly Lys Thr Pro Phe Thr Trp Gly Pro Thr Val Glu Ser Tyr Gly Val 610 615 620 Asp Val Leu Arg Glu Pro Asn Asn Gly Asn Gly Ala Pro Gln Ser Asp 625 630 635 640 Phe Asp Glu Gly Val Phe Ile Asp Tyr Arg Trp Phe Asp Arg Gln Ser 645 650 655 Gly Val Asp Asn Asn Ala Ser Ala Pro Arg Asn Ser Ser Ser Ser His 660 665 670 Ala Pro Ile Phe Glu Phe Gly Tyr Gly Leu Ser Tyr Thr Thr Phe Glu 675 680 685 Phe Ser Asn Leu Gln Ile Glu Arg His Asp Val His Asp Tyr Val Pro 690 695 700 Thr Thr Gly Gln Thr Ser Pro Ala Pro Arg Phe Gly Ala Asn Tyr Ser 705 710 715 720 Thr Asn Tyr Asp Asp Tyr Val Phe Pro Glu Gly Glu Ile Arg Tyr Ile 725 730 735 Tyr Gln His Ile Tyr Pro Tyr Leu Asn Ser Ser Asp Pro Lys Glu Ala 740 745 750 Leu Ala Asp Pro Lys Tyr Gly Gln Thr Ala Glu Glu Phe Leu Pro Glu 755 760 765 Gly Ala Leu Asp Ala Ser Pro Gln Pro Arg Leu Pro Ala Ser Gly Gly 770 775 780 Pro Gly Gly Asn Pro Met Leu Trp Asp Val Ile Phe Thr Val Thr Ala 785 790 795 800 Thr Val Thr Asn Thr Gly Lys Val Ala Gly Asp Glu Val Ala Gln Leu 805 810 815 Tyr Val Ser Leu Gly Gly Pro Asp Asp Pro Ile Arg Val Leu Arg Gly 820 825 830 Phe Asp Arg Ile His Ile Ala Pro Gly Ala Ser Gln Thr Phe Arg Ala 835 840 845 Glu Leu Thr Arg Arg Asp Leu Ser Asn Trp Asp Val Val Thr Gln Asn 850 855 860 Trp Phe Ile Ser Gln Tyr Glu Lys Thr Val Phe Val Gly Ser Ser Ser 865 870 875 880 Arg Asn Leu Pro Leu Ser Thr Arg Leu Glu 885 890 1172418DNAPodospora anserina 117atgaaactca ataagccatt cctggccatt tatttggctt tcaacttggc cgaggcttcg 60aaaactccgg attgcatcag tggtccgctg gcaaagacct tggcatgtga tacaacggcg 120tcacctcctg cgcgagcagc tgctcttgtg caggctttaa atatcacgga aaagcttgtg 180aatctagtgg agtatgtcaa gtcaagagaa gctcctttag ggatttcaat tcagctaatc 240actcctcata gcatgagcct cggtgcagaa aggatcggcc ttccagctta tgcttggtgg 300aacgaagctc ttcatggtgt tgccgcgtcg cctggggtct ccttcaatca ggccggacaa 360gaattctcac acgctacttc atttgcgaat actattacgc tagcagccgc ctttgacaat 420gacctggttt acgaggtggc ggataccatc agcactgaag cgcgagcgtt cagcaatgcc 480gagctcgctg gactggatta ctggacgcct aacatcaacc cgtacaaaga tccgagatgg 540gggaggggcc atgaggtttg ttaccttagc cttcttttcc gtgccgtgca gttgctgaga 600actcaaaaga cacccggaga agatccggta cacatcaaag gctacgtcca agcacttctc 660gagggtctag aagggagaga caagatcaga aaggtgattg ccacttgtaa acactttgca 720gcctatgatt tggagagatg gcaaggggct cttagataca ggttcaatgc tgttgtgacc 780tcgcaggatc tttcggagta ctacctccaa ccgtttcaac aatgcgctcg agacagcaag 840gtcgggtctt tcatgtgctc atataatgcg ctcaacggaa caccggcatg tgcaagcacg 900tatttgatgg acgacatcct tcgaaaacac tggaattgga ccgagcacaa caactatata 960acgagcgact gtaatgctat tcaggacttc ctccccaact ttcacaactt cagccaaact 1020ccagctcaag ccgccgctga tgcttataac gccggtacag acaccgtctg tgaggtgcct 1080ggataccccc cactcacaga tgtaatcgga gcatacaatc agtctctgct gtcagaggaa 1140attatcgacc gagcacttcg cagattatac gaaggcctca tccgagctgg ctatctcgac 1200tcagcctccc cacatccata caccaaaatc tcatggtccc aagtaaacac ccccaaagcc 1260caagccctgg ctctccagtc cgccaccgac gggatagtcc ttctcaaaaa caacggcctc 1320cttcccctag acctcaccaa caaaaccata gccctcatag gccactgggc caatgcaacc 1380cgccaaatgc taggcggcta cagcggtatc cccccttact acgccaaccc aatctatgca 1440gccacccagc tcaacgtcac ttttcatcac gccccaggac cggtgaacca gtcatctccc 1500tccacaaatg acacctggac ctcccccgcc ctctccgcgg cttccaaatc ggatatcatc 1560ctctacctcg gcggcaccga cctctccatc gcagccgaag accgagacag agactccatc 1620gcctggccat ccgctcaact ttccttgtta acctccctcg cccagatggg aaaacccaca 1680atcgtagcaa gactaggcga ccaagtagac gacacccccc tgctctccaa cccaaacatc 1740tcctccatcc tatgggtagg ctacccaggc caatcaggcg gaacagccct cttgaacatc 1800atcaccggag tcagctcccc cgccgctcga ctgcccgtca cagtctaccc agaaacttac 1860acctccctca tccccctgac agccatgtcc ctccgcccaa cctccgcccg cccaggccgg 1920acttacaggt ggtacccctc ccccgtgctc cccttcggcc acggcctcca ctacacaacc 1980tttaccgcca aattcggcgt ctttgagtcc ctcaccatca acattgccga actcgtttcc 2040aactgtaacg aacgatacct cgacctctgc cggttcccgc aggtgtccgt ctgggtgtcg 2100aatacgggag aactcaaatc tgactatgtc gcccttgttt ttgtcagggg tgagtacgga 2160ccggagccgt acccgatcaa gacgctggtg gggtacaagc ggataaggga tatcgagccg 2220gggactacgg gggcggcgcc ggtgggggtg gtggtggggg atttggctag ggtggatttg 2280ggggggaata gggttttgtt tccggggaag tatgagtttc tgctggatgt ggaggggggg 2340agggataggg ttgtgatcga gttggttggg gaggaggtgg tgttggagaa gttccctcag 2400ccgcctgcgg cgggttga 2418118805PRTPodospora anserina 118Met Lys Leu Asn Lys Pro Phe Leu Ala Ile Tyr Leu Ala Phe Asn Leu 1 5 10 15 Ala Glu Ala Ser Lys Thr Pro Asp Cys Ile Ser Gly Pro Leu Ala Lys 20 25 30 Thr Leu Ala Cys Asp Thr Thr Ala Ser Pro Pro Ala Arg Ala Ala Ala 35 40 45 Leu Val Gln Ala Leu Asn Ile Thr Glu Lys Leu Val Asn Leu Val Glu 50 55 60 Tyr Val Lys Ser Arg Glu Ala Pro Leu Gly Ile Ser Ile Gln Leu Ile 65 70 75 80 Thr Pro His Ser Met Ser Leu Gly Ala Glu Arg Ile Gly Leu Pro Ala 85 90 95 Tyr Ala Trp Trp Asn Glu Ala Leu His Gly Val Ala Ala Ser Pro Gly 100 105 110 Val Ser Phe Asn Gln Ala Gly Gln Glu Phe Ser His Ala Thr Ser Phe 115 120 125 Ala Asn Thr Ile Thr Leu Ala Ala Ala Phe Asp Asn Asp Leu Val Tyr 130 135 140 Glu Val Ala Asp Thr Ile Ser Thr Glu Ala Arg Ala Phe Ser Asn Ala 145 150 155 160 Glu Leu Ala Gly Leu Asp Tyr Trp Thr Pro Asn Ile Asn Pro Tyr Lys 165 170 175 Asp Pro Arg Trp Gly Arg Gly His Glu Val Cys Tyr Leu Ser Leu Leu 180 185 190 Phe Arg Ala Val Gln Leu Leu Arg Thr Gln Lys Thr Pro Gly Glu Asp 195 200 205 Pro Val His Ile Lys Gly Tyr Val Gln Ala Leu Leu Glu Gly Leu Glu 210 215 220 Gly Arg Asp Lys Ile Arg Lys Val Ile Ala Thr Cys Lys His Phe Ala 225 230 235 240 Ala Tyr Asp Leu Glu Arg Trp Gln Gly Ala Leu Arg Tyr Arg Phe Asn 245 250 255 Ala Val Val Thr Ser Gln Asp Leu Ser Glu Tyr Tyr Leu Gln Pro Phe 260 265 270 Gln Gln Cys Ala Arg Asp Ser Lys Val Gly Ser Phe Met Cys Ser Tyr 275 280 285 Asn Ala Leu Asn Gly Thr Pro Ala Cys Ala Ser Thr Tyr Leu Met Asp 290 295 300 Asp Ile Leu Arg Lys His Trp Asn Trp Thr Glu His Asn Asn Tyr Ile 305 310 315 320 Thr Ser Asp Cys Asn Ala Ile Gln Asp Phe Leu Pro Asn Phe His Asn 325 330 335 Phe Ser Gln Thr Pro Ala Gln Ala Ala Ala Asp Ala Tyr Asn Ala Gly 340 345 350 Thr Asp Thr Val Cys Glu Val Pro Gly Tyr Pro Pro Leu Thr Asp Val 355 360 365 Ile Gly Ala Tyr Asn Gln Ser Leu Leu Ser Glu Glu Ile Ile Asp Arg 370 375 380 Ala Leu Arg Arg Leu Tyr Glu Gly Leu Ile Arg Ala Gly Tyr Leu Asp 385 390 395 400 Ser Ala Ser Pro His Pro Tyr Thr Lys Ile Ser Trp Ser Gln Val Asn 405 410 415 Thr Pro Lys Ala Gln Ala Leu Ala Leu Gln Ser Ala Thr Asp Gly Ile 420 425 430 Val Leu Leu Lys Asn Asn Gly Leu Leu Pro Leu Asp Leu Thr Asn Lys 435 440 445 Thr Ile Ala Leu Ile Gly His Trp Ala Asn Ala Thr Arg Gln Met Leu 450 455 460 Gly Gly Tyr Ser Gly Ile Pro Pro Tyr Tyr Ala Asn Pro Ile Tyr Ala 465 470 475 480 Ala Thr Gln Leu Asn Val Thr Phe His His Ala Pro Gly Pro Val Asn 485 490 495 Gln Ser Ser Pro Ser Thr Asn Asp Thr Trp Thr Ser Pro Ala Leu Ser 500 505 510 Ala Ala Ser Lys Ser Asp Ile Ile Leu Tyr Leu Gly Gly Thr Asp Leu 515 520 525 Ser Ile Ala Ala Glu Asp Arg Asp Arg Asp Ser Ile Ala Trp Pro Ser 530 535 540 Ala Gln Leu Ser Leu Leu Thr Ser Leu Ala Gln Met Gly Lys Pro Thr 545 550 555 560 Ile Val Ala Arg Leu Gly Asp Gln Val Asp Asp Thr Pro Leu Leu Ser 565 570 575 Asn Pro Asn Ile Ser Ser Ile Leu Trp Val Gly Tyr Pro Gly Gln Ser 580 585 590 Gly Gly Thr Ala Leu Leu Asn Ile Ile Thr Gly Val Ser Ser Pro Ala 595 600 605 Ala Arg Leu Pro Val Thr Val Tyr Pro Glu Thr Tyr Thr Ser Leu Ile 610 615 620 Pro Leu Thr Ala Met Ser Leu Arg Pro Thr Ser Ala Arg Pro Gly Arg 625 630 635 640 Thr Tyr Arg Trp Tyr Pro Ser Pro Val Leu Pro Phe Gly His Gly Leu 645 650 655 His Tyr Thr Thr Phe Thr Ala Lys Phe Gly Val Phe Glu Ser Leu Thr 660 665 670 Ile Asn Ile Ala Glu Leu Val Ser Asn Cys Asn Glu Arg Tyr Leu Asp 675 680 685 Leu Cys Arg Phe Pro Gln Val Ser Val Trp Val Ser Asn Thr Gly Glu 690 695 700 Leu Lys Ser Asp Tyr Val Ala Leu Val Phe Val Arg Gly Glu Tyr Gly 705 710 715 720 Pro Glu Pro Tyr Pro Ile Lys Thr Leu Val Gly Tyr Lys Arg Ile Arg 725 730 735 Asp Ile Glu Pro Gly Thr Thr Gly Ala Ala Pro Val Gly Val Val Val 740 745 750 Gly Asp Leu Ala Arg Val Asp Leu Gly Gly Asn Arg Val Leu Phe Pro 755 760 765 Gly Lys Tyr Glu Phe Leu Leu Asp Val Glu Gly Gly Arg Asp Arg Val 770

775 780 Val Ile Glu Leu Val Gly Glu Glu Val Val Leu Glu Lys Phe Pro Gln 785 790 795 800 Pro Pro Ala Ala Gly 805 119721PRTThermotoga neapolitana 119Met Glu Lys Val Asn Glu Ile Leu Ser Gln Leu Thr Leu Glu Glu Lys 1 5 10 15 Val Lys Leu Val Val Gly Val Gly Leu Pro Gly Leu Phe Gly Asn Pro 20 25 30 His Ser Arg Val Ala Gly Ala Ala Gly Glu Thr His Pro Val Pro Arg 35 40 45 Val Gly Leu Pro Ala Phe Val Leu Ala Asp Gly Pro Ala Gly Leu Arg 50 55 60 Ile Asn Pro Thr Arg Glu Asn Asp Glu Asn Thr Tyr Tyr Thr Thr Ala 65 70 75 80 Phe Pro Val Glu Ile Met Leu Ala Ser Thr Trp Asn Arg Glu Leu Leu 85 90 95 Glu Glu Val Gly Lys Ala Met Gly Glu Glu Val Arg Glu Tyr Gly Val 100 105 110 Asp Val Leu Leu Ala Pro Ala Met Asn Ile His Arg Asn Pro Leu Cys 115 120 125 Gly Arg Asn Phe Glu Tyr Tyr Ser Glu Asp Pro Val Leu Ser Gly Glu 130 135 140 Met Ala Ser Ser Phe Val Lys Gly Val Gln Ser Gln Gly Val Gly Ala 145 150 155 160 Cys Ile Lys His Phe Val Ala Asn Asn Gln Glu Thr Asn Arg Met Val 165 170 175 Val Asp Thr Ile Val Ser Glu Arg Ala Leu Arg Glu Ile Tyr Leu Arg 180 185 190 Gly Phe Glu Ile Ala Val Lys Lys Ser Lys Pro Trp Ser Val Met Ser 195 200 205 Ala Tyr Asn Lys Leu Asn Gly Lys Tyr Cys Ser Gln Asn Glu Trp Leu 210 215 220 Leu Lys Lys Val Leu Arg Glu Glu Trp Gly Phe Glu Gly Phe Val Met 225 230 235 240 Ser Asp Trp Tyr Ala Gly Asp Asn Pro Val Glu Gln Leu Lys Ala Gly 245 250 255 Asn Asp Leu Ile Met Pro Gly Lys Ala Tyr Gln Val Asn Thr Glu Arg 260 265 270 Arg Asp Glu Ile Glu Glu Ile Met Glu Ala Leu Lys Glu Gly Lys Leu 275 280 285 Ser Glu Glu Val Leu Asp Glu Cys Val Arg Asn Ile Leu Lys Val Leu 290 295 300 Val Asn Ala Pro Ser Phe Lys Asn Tyr Arg Tyr Ser Asn Lys Pro Asp 305 310 315 320 Leu Glu Lys His Ala Lys Val Ala Tyr Glu Ala Gly Ala Glu Gly Val 325 330 335 Val Leu Leu Arg Asn Glu Glu Ala Leu Pro Leu Ser Glu Asn Ser Lys 340 345 350 Ile Ala Leu Phe Gly Thr Gly Gln Ile Glu Thr Ile Lys Gly Gly Thr 355 360 365 Gly Ser Gly Asp Thr His Pro Arg Tyr Ala Ile Ser Ile Leu Glu Gly 370 375 380 Ile Lys Glu Arg Gly Leu Asn Phe Asp Glu Glu Leu Ala Lys Thr Tyr 385 390 395 400 Glu Asp Tyr Ile Lys Lys Met Arg Glu Thr Glu Glu Tyr Lys Pro Arg 405 410 415 Arg Asp Ser Trp Gly Thr Ile Ile Lys Pro Lys Leu Pro Glu Asn Phe 420 425 430 Leu Ser Glu Lys Glu Ile His Lys Leu Ala Lys Lys Asn Asp Val Ala 435 440 445 Val Ile Val Ile Ser Arg Ile Ser Gly Glu Gly Tyr Asp Arg Lys Pro 450 455 460 Val Lys Gly Asp Phe Tyr Leu Ser Asp Asp Glu Thr Asp Leu Ile Lys 465 470 475 480 Thr Val Ser Arg Glu Phe His Glu Gln Gly Lys Lys Val Ile Val Leu 485 490 495 Leu Asn Ile Gly Ser Pro Val Glu Val Val Ser Trp Arg Asp Leu Val 500 505 510 Asp Gly Ile Leu Leu Val Trp Gln Ala Gly Gln Glu Thr Gly Arg Ile 515 520 525 Val Ala Asp Val Leu Thr Gly Arg Ile Asn Pro Ser Gly Lys Leu Pro 530 535 540 Thr Thr Phe Pro Arg Asp Tyr Ser Asp Val Pro Ser Trp Thr Phe Pro 545 550 555 560 Gly Glu Pro Lys Asp Asn Pro Gln Lys Val Val Tyr Glu Glu Asp Ile 565 570 575 Tyr Val Gly Tyr Arg Tyr Tyr Asp Thr Phe Gly Val Glu Pro Ala Tyr 580 585 590 Glu Phe Gly Tyr Gly Leu Ser Tyr Thr Thr Phe Glu Tyr Ser Asp Leu 595 600 605 Asn Val Ser Phe Asp Gly Glu Thr Leu Arg Val Gln Tyr Arg Ile Glu 610 615 620 Asn Thr Gly Gly Arg Ala Gly Lys Glu Val Ser Gln Val Tyr Ile Lys 625 630 635 640 Ala Pro Lys Gly Lys Ile Asp Lys Pro Phe Gln Glu Leu Lys Ala Phe 645 650 655 His Lys Thr Arg Leu Leu Asn Pro Gly Glu Ser Glu Glu Val Val Leu 660 665 670 Glu Ile Pro Val Arg Asp Leu Ala Ser Phe Asn Gly Glu Glu Trp Val 675 680 685 Val Glu Ala Gly Glu Tyr Glu Val Arg Val Gly Ala Ser Ser Arg Asn 690 695 700 Ile Lys Leu Lys Gly Thr Phe Ser Val Gly Glu Glu Arg Arg Phe Lys 705 710 715 720 Pro 12017PRTTrichoderma reesei 120Met Tyr Arg Lys Leu Ala Val Ile Ser Ala Phe Leu Ala Thr Ala Arg 1 5 10 15 Ala 12128DNAArtificial Sequencesynthetic primer 121caccatgaga tatagaacag ctgccgct 2812240DNAArtificial Sequencesynthetic primer 122cgaccgccct gcggagtctt gcccagtggt cccgcgacag 4012340DNAArtificial Sequencesynthetic primer 123ctgtcgcggg accactgggc aagactccgc agggcggtcg 4012420DNAArtificial Sequencesynthetic primer 124cctacgctac cgacagagtg 2012520DNAArtificial Sequencesynthetic primer 125gtctagactg gaaacgcaac 2012621DNAArtificial Sequencesynthetic primer 126gagttgtgaa gtcggtaatc c 2112735DNAArtificial Sequencesynthetic primer 127caccatgaaa gcaaacgtca tcttgtgcct cctgg 3512843DNAArtificial Sequencesynthetic primer 128ctattgtaag atgccaacaa tgctgttata tgccggcttg ggg 4312921DNAArtificial Sequencesynthetic primer 129gagttgtgaa gtcggtaatc c 2113018DNAArtificial Sequencesynthetic primer 130cacgaagagc ggcgattc 1813123DNAArtificial Sequencesynthetic primer 131cacccatgct gctcaatctt cag 2313223DNAArtificial Sequencesynthetic primer 132ttacgcagac ttggggtctt gag 2313320DNAArtificial Sequencesynthetic primer 133gcttgagtgt atcgtgtaag 2013421DNAArtificial Sequencesynthetic primer 134gcaacggcaa agccccactt c 2113532DNAArtificial Sequencesynthetic primer 135gtagcggccg cctcatctca tctcatccat cc 3213624DNAArtificial Sequencesynthetic primer 136caccatgcag ctcaagtttc tgtc 2413732DNAArtificial Sequencesynthetic primer 137ggttactagt caactgcccg ttctgtagcg ag 3213829DNAArtificial Sequencesynthetic primer 138catgcgatcg cgacgttttg gtcaggtcg 2913940DNAArtificial Sequencesynthetic primer 139gacagaaact tgagctgcat ggtgtgggac aacaagaagg 4014029DNAArtificial Sequencesynthetic primer 140caccatggtt cgcttcagtt caatcctag 2914122DNAArtificial Sequencesynthetic primer 141gtggctagaa gatatccaac ac 2214229DNAArtificial Sequencesynthetic primer 142catgcgatcg cgacgttttg gtcaggtcg 2914339DNAArtificial Sequencesynthetic primer 143gaactgaagc gaaccatggt gtgggacaac aagaaggac 3914421DNAArtificial Sequencesynthetic primer 144gtagttatgc gcatgctaga c 2114522DNAArtificial Sequencesynthetic primer 145gtggctagaa gatatccaac ac 2214621DNAArtificial Sequencesynthetic primer 146gtagttatgc gcatgctaga c 2114728DNAArtificial Sequencesynthetic primer 147ccggctcagt atcaaccact aagcacat 28148250PRTThermoascus aurantiacus 148Met Ser Phe Ser Lys Ile Ile Ala Thr Ala Gly Val Leu Ala Ser Ala 1 5 10 15 Ser Leu Val Ala Gly His Gly Phe Val Gln Asn Ile Val Ile Asp Gly 20 25 30 Lys Lys Tyr Tyr Gly Gly Tyr Leu Val Asn Gln Tyr Pro Tyr Met Ser 35 40 45 Asn Pro Pro Glu Val Ile Ala Trp Ser Thr Thr Ala Thr Asp Leu Gly 50 55 60 Phe Val Asp Gly Thr Gly Tyr Gln Thr Pro Asp Ile Ile Cys His Arg 65 70 75 80 Gly Ala Lys Pro Gly Ala Leu Thr Ala Pro Val Ser Pro Gly Gly Thr 85 90 95 Val Glu Leu Gln Trp Thr Pro Trp Pro Asp Ser His His Gly Pro Val 100 105 110 Ile Asn Tyr Leu Ala Pro Cys Asn Gly Asp Cys Ser Thr Val Asp Lys 115 120 125 Thr Gln Leu Glu Phe Phe Lys Ile Ala Glu Ser Gly Leu Ile Asn Asp 130 135 140 Asp Asn Pro Pro Gly Ile Trp Ala Ser Asp Asn Leu Ile Ala Ala Asn 145 150 155 160 Asn Ser Trp Thr Val Thr Ile Pro Thr Thr Ile Ala Pro Gly Asn Tyr 165 170 175 Val Leu Arg His Glu Ile Ile Ala Leu His Ser Ala Gln Asn Gln Asp 180 185 190 Gly Ala Gln Asn Tyr Pro Gln Cys Ile Asn Leu Gln Val Thr Gly Gly 195 200 205 Gly Ser Asp Asn Pro Ala Gly Thr Leu Gly Thr Ala Leu Tyr His Asp 210 215 220 Thr Asp Pro Gly Ile Leu Ile Asn Ile Tyr Gln Lys Leu Ser Ser Tyr 225 230 235 240 Ile Ile Pro Gly Pro Pro Leu Tyr Thr Gly 245 250 149799DNAThermoascus aurantiacus 149atgtcctttt ccaagataat tgctactgcc ggcgttcttg cctctgcttc tctagtggct 60ggccatggct tcgttcagaa catcgtgatt gatggtaaaa agtatgtcat tgcaagacgc 120acataagcgg caacagctga caatcgacag ttatggcggg tatctagtga accagtatcc 180atacatgtcc aatcctccag aggtcatcgc ctggtctact acggcaactg atcttggatt 240tgtggacggt actggatacc aaaccccaga tatcatctgc cataggggcg ccaagcctgg 300agccctgact gctccagtct ctccaggagg aactgttgag cttcaatgga ctccatggcc 360tgattctcac catggcccag ttatcaacta ccttgctccg tgcaatggtg attgttccac 420tgtggataag acccaattag aattcttcaa aattgccgag agcggtctca tcaatgatga 480caatcctcct gggatctggg cttcagacaa tctgatagca gccaacaaca gctggactgt 540caccattcca accacaattg cacctggaaa ctatgttctg aggcatgaga ttattgctct 600tcactcagct cagaaccagg atggtgccca gaactatccc cagtgcatca atctgcaggt 660cactggaggt ggttctgata accctgctgg aactcttgga acggcactct accacgatac 720cgatcctgga attctgatca acatctatca gaaactttcc agctatatca tccctggtcc 780tcctctgtat actggttaa 799150532PRTAspergillus fumigatus 150Met Leu Ala Ser Thr Phe Ser Tyr Arg Met Tyr Lys Thr Ala Leu Ile 1 5 10 15 Leu Ala Ala Leu Leu Gly Ser Gly Gln Ala Gln Gln Val Gly Thr Ser 20 25 30 Gln Ala Glu Val His Pro Ser Met Thr Trp Gln Ser Cys Thr Ala Gly 35 40 45 Gly Ser Cys Thr Thr Asn Asn Gly Lys Val Val Ile Asp Ala Asn Trp 50 55 60 Arg Trp Val His Lys Val Gly Asp Tyr Thr Asn Cys Tyr Thr Gly Asn 65 70 75 80 Thr Trp Asp Thr Thr Ile Cys Pro Asp Asp Ala Thr Cys Ala Ser Asn 85 90 95 Cys Ala Leu Glu Gly Ala Asn Tyr Glu Ser Thr Tyr Gly Val Thr Ala 100 105 110 Ser Gly Asn Ser Leu Arg Leu Asn Phe Val Thr Thr Ser Gln Gln Lys 115 120 125 Asn Ile Gly Ser Arg Leu Tyr Met Met Lys Asp Asp Ser Thr Tyr Glu 130 135 140 Met Phe Lys Leu Leu Asn Gln Glu Phe Thr Phe Asp Val Asp Val Ser 145 150 155 160 Asn Leu Pro Cys Gly Leu Asn Gly Ala Leu Tyr Phe Val Ala Met Asp 165 170 175 Ala Asp Gly Gly Met Ser Lys Tyr Pro Thr Asn Lys Ala Gly Ala Lys 180 185 190 Tyr Gly Thr Gly Tyr Cys Asp Ser Gln Cys Pro Arg Asp Leu Lys Phe 195 200 205 Ile Asn Gly Gln Ala Asn Val Glu Gly Trp Gln Pro Ser Ser Asn Asp 210 215 220 Ala Asn Ala Gly Thr Gly Asn His Gly Ser Cys Cys Ala Glu Met Asp 225 230 235 240 Ile Trp Glu Ala Asn Ser Ile Ser Thr Ala Phe Thr Pro His Pro Cys 245 250 255 Asp Thr Pro Gly Gln Val Met Cys Thr Gly Asp Ala Cys Gly Gly Thr 260 265 270 Tyr Ser Ser Asp Arg Tyr Gly Gly Thr Cys Asp Pro Asp Gly Cys Asp 275 280 285 Phe Asn Ser Phe Arg Gln Gly Asn Lys Thr Phe Tyr Gly Pro Gly Met 290 295 300 Thr Val Asp Thr Lys Ser Lys Phe Thr Val Val Thr Gln Phe Ile Thr 305 310 315 320 Asp Asp Gly Thr Ser Ser Gly Thr Leu Lys Glu Ile Lys Arg Phe Tyr 325 330 335 Val Gln Asn Gly Lys Val Ile Pro Asn Ser Glu Ser Thr Trp Thr Gly 340 345 350 Val Ser Gly Asn Ser Ile Thr Thr Glu Tyr Cys Thr Ala Gln Lys Ser 355 360 365 Leu Phe Gln Asp Gln Asn Val Phe Glu Lys His Gly Gly Leu Glu Gly 370 375 380 Met Gly Ala Ala Leu Ala Gln Gly Met Val Leu Val Met Ser Leu Trp 385 390 395 400 Asp Asp His Ser Ala Asn Met Leu Trp Leu Asp Ser Asn Tyr Pro Thr 405 410 415 Thr Ala Ser Ser Thr Thr Pro Gly Val Ala Arg Gly Thr Cys Asp Ile 420 425 430 Ser Ser Gly Val Pro Ala Asp Val Glu Ala Asn His Pro Asp Ala Tyr 435 440 445 Val Val Tyr Ser Asn Ile Lys Val Gly Pro Ile Gly Ser Thr Phe Asn 450 455 460 Ser Gly Gly Ser Asn Pro Gly Gly Gly Thr Thr Thr Thr Thr Thr Thr 465 470 475 480 Gln Pro Thr Thr Thr Thr Thr Thr Ala Gly Asn Pro Gly Gly Thr Gly 485 490 495 Val Ala Gln His Tyr Gly Gln Cys Gly Gly Ile Gly Trp Thr Gly Pro 500 505 510 Thr Thr Cys Ala Ser Pro Tyr Thr Cys Gln Lys Leu Asn Asp Tyr Tyr 515 520 525 Ser Gln Cys Leu 530 151452PRTAspergillus fumigatus 151Met His Gln Arg Ala Leu Leu Phe Ser Ala Leu Ala Val Ala Ala Asn 1 5 10 15 Ala Gln Gln Val Gly Thr Gln Thr Pro Glu Thr His Pro Pro Leu Thr 20 25 30 Trp Gln Lys Cys Thr Ala Ala Gly Ser Cys Ser Gln Gln Ser Gly Ser 35 40 45 Val Val Ile Asp Ala Asn Trp Arg Trp Leu His Ser Thr Lys Asp Thr 50 55 60 Thr Asn Cys Tyr Thr Gly Asn Thr Trp Asn Thr Glu Leu Cys Pro Asp 65 70 75 80 Asn Glu Ser Cys Ala Gln Asn Cys Ala Leu Asp Gly Ala Asp Tyr Ala 85 90 95 Gly Thr Tyr Gly Val Thr Thr Ser Gly Ser Glu Leu Lys Leu Ser Phe 100 105 110 Val Thr Gly Ala Asn Val Gly Ser Arg Leu Tyr Leu Met Gln Asp Asp 115 120 125 Glu Thr Tyr Gln His Phe Asn Leu Leu Asn His Glu Phe Thr Phe Asp 130 135 140 Val Asp Val Ser Asn Leu Pro Cys Gly Leu Asn Gly Ala Leu Tyr Phe 145 150 155 160 Val Ala Met Asp Ala Asp Gly Gly Met Ser Lys Tyr Pro Ser Asn Lys 165 170 175 Ala Gly Ala Lys Tyr Gly Thr Gly Tyr Cys Asp Ser Gln Cys Pro Arg 180 185

190 Asp Leu Lys Phe Ile Asn Gly Met Ala Asn Val Glu Gly Trp Glu Pro 195 200 205 Ser Ser Ser Asp Lys Asn Ala Gly Val Gly Gly His Gly Ser Cys Cys 210 215 220 Pro Glu Met Asp Ile Trp Glu Ala Asn Ser Ile Ser Thr Ala Val Thr 225 230 235 240 Pro His Pro Cys Asp Asp Val Ser Gln Thr Met Cys Ser Gly Asp Ala 245 250 255 Cys Gly Gly Thr Tyr Ser Glu Ser Arg Tyr Ala Gly Thr Cys Asp Pro 260 265 270 Asp Gly Cys Asp Phe Asn Pro Phe Arg Met Gly Asn Glu Ser Phe Tyr 275 280 285 Gly Pro Gly Lys Ile Val Asp Thr Lys Ser Lys Met Thr Val Val Thr 290 295 300 Gln Phe Ile Thr Ala Asp Gly Thr Asp Ser Gly Ala Leu Ser Glu Ile 305 310 315 320 Lys Arg Leu Tyr Val Gln Asn Gly Lys Val Ile Ala Asn Ser Val Ser 325 330 335 Asn Val Ala Gly Val Ser Gly Asn Ser Ile Thr Ser Asp Phe Cys Thr 340 345 350 Ala Gln Lys Lys Ala Phe Gly Asp Glu Asp Ile Phe Ala Lys His Gly 355 360 365 Gly Leu Ser Gly Met Gly Lys Ala Leu Ser Glu Met Val Leu Ile Met 370 375 380 Ser Ile Trp Asp Asp His His Ser Ser Met Met Trp Leu Asp Ser Thr 385 390 395 400 Tyr Pro Thr Asp Ala Asp Pro Ser Lys Pro Gly Val Ala Arg Gly Thr 405 410 415 Cys Glu His Gly Ala Gly Asp Pro Glu Asn Val Glu Ser Gln His Pro 420 425 430 Asp Ala Ser Val Thr Phe Ser Asn Ile Lys Phe Gly Pro Ile Gly Ser 435 440 445 Thr Tyr Glu Gly 450 152450PRTChaetosphaeridium globosum 152Met Lys Gln Tyr Leu Gln Tyr Leu Ala Ala Ala Leu Pro Leu Met Ser 1 5 10 15 Leu Val Ser Ala Gln Gly Val Gly Thr Ser Thr Ser Glu Thr His Pro 20 25 30 Lys Ile Thr Trp Lys Lys Cys Ser Ser Gly Gly Ser Cys Ser Thr Val 35 40 45 Asn Ala Glu Val Val Ile Asp Ala Asn Trp Arg Trp Leu His Asn Ala 50 55 60 Asp Ser Lys Asn Cys Tyr Asp Gly Asn Glu Trp Thr Asp Ala Cys Thr 65 70 75 80 Ser Ser Asp Asp Cys Thr Ser Lys Cys Val Leu Glu Gly Ala Glu Tyr 85 90 95 Gly Lys Thr Tyr Gly Ala Ser Thr Ser Gly Asp Ser Leu Ser Leu Lys 100 105 110 Phe Leu Thr Lys His Glu Tyr Gly Thr Asn Ile Gly Ser Arg Phe Tyr 115 120 125 Leu Met Asn Gly Ala Ser Lys Tyr Gln Met Phe Thr Leu Met Asn Asn 130 135 140 Glu Phe Ala Phe Asp Val Asp Leu Ser Thr Val Glu Cys Gly Leu Asn 145 150 155 160 Ser Ala Leu Tyr Phe Val Ala Met Glu Glu Asp Gly Gly Met Ala Ser 165 170 175 Tyr Ser Thr Asn Lys Ala Gly Ala Lys Tyr Gly Thr Gly Tyr Cys Asp 180 185 190 Ala Gln Cys Ala Arg Asp Leu Lys Phe Val Gly Gly Lys Ala Asn Tyr 195 200 205 Asp Gly Trp Thr Pro Ser Ser Asn Asp Ala Asn Ala Gly Val Gly Ala 210 215 220 Leu Gly Gly Cys Cys Ala Glu Ile Asp Val Trp Glu Ser Asn Ala His 225 230 235 240 Ala Phe Ala Phe Thr Pro His Ala Cys Glu Asn Asn Asn Tyr His Val 245 250 255 Cys Glu Asp Thr Thr Cys Gly Gly Thr Tyr Ser Glu Asp Arg Phe Ala 260 265 270 Gly Asp Cys Asp Ala Asn Gly Cys Asp Tyr Asn Pro Tyr Arg Val Gly 275 280 285 Asn Thr Asp Phe Tyr Gly Lys Gly Met Thr Val Asp Thr Ser Lys Lys 290 295 300 Phe Thr Val Val Ser Gln Phe Gln Glu Asn Lys Leu Thr Gln Phe Phe 305 310 315 320 Val Gln Asn Gly Lys Lys Ile Glu Ile Pro Gly Pro Lys His Glu Gly 325 330 335 Leu Pro Thr Glu Ser Ser Asp Ile Thr Pro Glu Leu Cys Ser Ala Met 340 345 350 Pro Glu Val Phe Gly Asp Arg Asp Arg Phe Ala Glu Val Gly Gly Phe 355 360 365 Asp Ala Leu Asn Lys Ala Leu Ala Val Pro Met Val Leu Val Met Ser 370 375 380 Ile Trp Asp Asp His Tyr Ala Asn Met Leu Trp Leu Asp Ser Ser Tyr 385 390 395 400 Pro Pro Glu Lys Ala Gly Thr Pro Gly Gly Asp Arg Gly Pro Cys Ala 405 410 415 Gln Asp Ser Gly Val Pro Ser Glu Val Glu Ser Gln Tyr Pro Asp Ala 420 425 430 Thr Val Val Trp Ser Asn Ile Arg Phe Gly Pro Ile Gly Ser Thr Val 435 440 445 Gln Val 450 153452PRTChaetosphaeridium globosum 153Met Tyr Arg Gln Val Ala Thr Ala Leu Ser Phe Ala Ser Leu Val Leu 1 5 10 15 Gly Gln Gln Val Gly Thr Leu Thr Ala Glu Thr His Pro Ser Leu Pro 20 25 30 Ile Glu Val Cys Thr Ala Pro Gly Ser Cys Thr Lys Glu Asp Thr Thr 35 40 45 Val Val Leu Asp Ala Asn Trp Arg Trp Thr His Val Thr Asp Gly Tyr 50 55 60 Thr Asn Cys Tyr Thr Gly Asn Ala Trp Asn Glu Thr Ala Cys Pro Asp 65 70 75 80 Gly Lys Thr Cys Ala Ala Asn Cys Ala Ile Asp Gly Ala Glu Tyr Glu 85 90 95 Lys Thr Tyr Gly Ile Thr Thr Pro Glu Glu Gly Ala Leu Arg Leu Asn 100 105 110 Phe Val Thr Glu Ser Asn Val Gly Ser Arg Val Tyr Leu Met Ala Gly 115 120 125 Glu Asp Lys Tyr Arg Leu Phe Asn Leu Leu Asn Lys Glu Phe Thr Met 130 135 140 Asp Val Asp Val Ser Asn Leu Pro Cys Gly Leu Asn Gly Ala Val Tyr 145 150 155 160 Phe Ser Glu Met Asp Glu Asp Gly Gly Met Ser Arg Phe Glu Gly Asn 165 170 175 Lys Ala Gly Ala Lys Tyr Gly Thr Gly Tyr Cys Asp Ser Gln Cys Pro 180 185 190 Arg Asp Ile Lys Phe Ile Asn Gly Glu Ala Asn Ser Glu Gly Trp Gly 195 200 205 Gly Glu Asp Gly Asn Ser Gly Thr Gly Lys Tyr Gly Thr Cys Cys Ala 210 215 220 Glu Met Asp Ile Trp Glu Ala Asn Leu Asp Ala Thr Ala Tyr Thr Pro 225 230 235 240 His Pro Cys Lys Val Thr Glu Gln Thr Arg Cys Glu Asp Asp Thr Glu 245 250 255 Cys Gly Ala Gly Asp Ala Arg Tyr Glu Gly Leu Cys Asp Arg Asp Gly 260 265 270 Cys Asp Phe Asn Ser Phe Arg Leu Gly Asn Lys Glu Phe Tyr Gly Pro 275 280 285 Glu Lys Thr Val Asp Thr Ser Lys Pro Phe Thr Leu Val Thr Gln Phe 290 295 300 Val Thr Ala Asp Gly Thr Asp Thr Gly Ala Leu Gln Ser Ile Arg Arg 305 310 315 320 Phe Tyr Val Gln Asp Gly Thr Val Ile Pro Asn Ser Glu Thr Val Val 325 330 335 Glu Gly Val Asp Pro Thr Asn Glu Ile Thr Asp Asp Phe Cys Ala Gln 340 345 350 Gln Lys Thr Ala Phe Gly Asp Asn Asn His Phe Lys Thr Ile Gly Gly 355 360 365 Leu Pro Ala Met Gly Lys Ser Leu Glu Lys Met Val Leu Val Leu Ser 370 375 380 Ile Trp Asp Asp His Ala Val Tyr Met Asn Trp Leu Asp Ser Asn Tyr 385 390 395 400 Pro Thr Asp Ala Asp Pro Thr Lys Pro Gly Val Ala Arg Gly Arg Cys 405 410 415 Asp Pro Glu Ala Gly Val Pro Glu Thr Val Glu Ala Ala His Pro Asp 420 425 430 Ala Tyr Val Ile Tyr Ser Asn Ile Lys Ile Gly Ala Leu Asn Ser Thr 435 440 445 Phe Ala Ala Ala 450 154526PRTThielavia terrestris 154Met His Ala Lys Phe Ala Thr Leu Ala Ala Leu Val Ala Ser Ala Ala 1 5 10 15 Ala Gln Gln Ala Cys Thr Leu Thr Ala Glu Asn His Pro Thr Leu Ser 20 25 30 Trp Ser Lys Cys Thr Ser Gly Gly Ser Cys Thr Ser Val Ser Gly Ser 35 40 45 Val Thr Ile Asp Ala Asn Trp Arg Trp Thr His Gln Val Ser Ser Ser 50 55 60 Thr Asn Cys Tyr Thr Gly Asn Glu Trp Asp Thr Ser Ile Cys Thr Asp 65 70 75 80 Gly Ala Ser Cys Ala Ala Ala Cys Cys Leu Asp Gly Ala Asp Tyr Ser 85 90 95 Gly Thr Tyr Gly Ile Thr Thr Ser Gly Asn Ala Leu Ser Leu Gln Phe 100 105 110 Val Thr Gln Gly Pro Tyr Ser Thr Asn Ile Gly Ser Arg Thr Tyr Leu 115 120 125 Met Ala Ser Asp Thr Lys Tyr Gln Met Phe Thr Leu Leu Gly Asn Glu 130 135 140 Phe Thr Phe Asp Val Asp Val Ser Gly Leu Gly Cys Gly Leu Asn Gly 145 150 155 160 Ala Leu Tyr Phe Val Ser Met Asp Glu Asp Gly Gly Leu Ser Lys Tyr 165 170 175 Ser Gly Asn Lys Ala Gly Ala Lys Tyr Gly Thr Gly Tyr Cys Asp Ser 180 185 190 Gln Cys Pro Arg Asp Leu Lys Phe Ile Asn Gly Glu Ala Asn Asn Val 195 200 205 Gly Trp Thr Pro Ser Ser Asn Asp Lys Asn Ala Gly Leu Gly Asn Tyr 210 215 220 Gly Ser Cys Cys Ser Glu Met Asp Val Trp Glu Ala Asn Ser Ile Ser 225 230 235 240 Ala Ala Tyr Thr Pro His Pro Cys Thr Thr Ile Gly Gln Thr Arg Cys 245 250 255 Glu Gly Asp Asp Cys Gly Gly Thr Tyr Ser Thr Asp Arg Tyr Ala Gly 260 265 270 Glu Cys Asp Pro Asp Gly Cys Asp Phe Asn Ser Tyr Arg Met Gly Asn 275 280 285 Thr Thr Phe Tyr Gly Lys Gly Met Thr Val Asp Thr Ser Lys Lys Phe 290 295 300 Thr Val Val Thr Gln Phe Leu Thr Asp Ser Ser Gly Asn Leu Ser Glu 305 310 315 320 Ile Lys Arg Phe Tyr Val Gln Asn Gly Val Val Ile Pro Asn Ser Asn 325 330 335 Ser Asn Ile Ala Gly Val Ser Gly Asn Ser Ile Thr Gln Ala Phe Cys 340 345 350 Asp Ala Gln Lys Thr Ala Phe Gly Asp Thr Asn Val Phe Asp Gln Lys 355 360 365 Gly Gly Leu Ala Gln Met Gly Lys Ala Leu Ala Gln Pro Met Val Leu 370 375 380 Val Met Ser Leu Trp Asp Asp His Ala Val Asn Met Leu Trp Leu Asp 385 390 395 400 Ser Thr Tyr Pro Thr Asp Ala Ala Gly Lys Pro Gly Ala Ala Arg Gly 405 410 415 Thr Cys Pro Thr Thr Ser Gly Val Pro Ala Asp Val Glu Ser Gln Ala 420 425 430 Pro Asn Ser Lys Val Ile Tyr Ser Asn Ile Arg Phe Gly Pro Ile Gly 435 440 445 Ser Thr Val Ser Gly Leu Pro Gly Gly Gly Ser Asn Pro Gly Gly Gly 450 455 460 Ser Ser Ser Thr Thr Thr Thr Thr Arg Pro Ala Thr Ser Thr Thr Ser 465 470 475 480 Ser Ala Ser Ser Gly Pro Thr Gly Gly Gly Thr Ala Ala His Trp Gly 485 490 495 Gln Cys Gly Gly Ile Gly Trp Thr Gly Pro Thr Val Cys Ala Ser Pro 500 505 510 Tyr Thr Cys Gln Lys Leu Asn Asp Trp Tyr Tyr Gln Cys Leu 515 520 525 155455PRTThielavia terrestris 155Met Leu Ser Lys Ile Leu Ala Leu Gly Ala Leu Ala Gly Ala Ala Val 1 5 10 15 Ala Gln Gln Ala Gly Thr Gln Thr Ala Glu Asn His Pro Lys Met Ser 20 25 30 Trp Gln Lys Cys Ser Ser Gly Gly Ser Cys Thr Thr Val Gln Gly Glu 35 40 45 Val Val Ile Asp Ser Asn Trp Arg Trp Val His Asp Lys Asn Gly Tyr 50 55 60 Thr Asn Cys Tyr Thr Gly Asn Glu Trp Asn Thr Thr Ile Cys Ser Asp 65 70 75 80 Ala Lys Ser Cys Ala Ala Asn Cys Ala Leu Asp Gly Ala Asp Tyr Ser 85 90 95 Gly Thr Tyr Gly Val Thr Thr Ser Gly Asn Ala Leu Thr Leu Lys Phe 100 105 110 Val Thr Lys Gly Ser Tyr Ser Thr Asn Ile Gly Ser Arg Leu Tyr Met 115 120 125 Met Ala Ser Ser Thr Lys Tyr Gln Met Phe Thr Leu Leu Gly Asn Glu 130 135 140 Phe Thr Phe Asp Val Asp Val Ser Lys Leu Gly Cys Gly Leu Asn Gly 145 150 155 160 Ala Leu Tyr Phe Val Ala Met Asp Glu Asp Gly Gly Met Ser Lys Tyr 165 170 175 Ser Ala Asn Lys Ala Gly Ala Lys Tyr Gly Thr Gly Tyr Cys Asp Ala 180 185 190 Gln Cys Pro Arg Asp Leu Lys Phe Ile Asn Gly Gln Ala Asn Ser Ala 195 200 205 Gln Trp Thr Pro Ser Ser Asn Asp Gln Asn Ala Gly Val Gly Gln Tyr 210 215 220 Gly Ser Cys Cys Ala Glu Met Asp Ile Trp Tyr Ala Asn Ser Ile Ser 225 230 235 240 Ala Ala Val Thr Pro His Pro Cys Glu Thr Val Glu Gln His Gln Cys 245 250 255 Glu Gly Asp Ser Cys Gly Gly Thr Tyr Ser Gly Asp Arg Tyr Gly Gly 260 265 270 Asp Cys Asp Pro Asp Gly Cys Asp Phe Asn Ala Tyr Arg Gln Gly Val 275 280 285 Lys Asp Phe Tyr Gly Pro Ser Met Thr Val Asp Thr Thr Lys Lys Phe 290 295 300 Thr Val Val Thr Gln Phe Ile Lys Gly Ser Asp Gly Glu Leu Ser Glu 305 310 315 320 Ile Lys Arg Phe Tyr Val Gln Asp Gly Lys Val Ile Glu Asn Ala Asn 325 330 335 Ser Thr Ile Pro Asn Asn Pro Gly Asn Ser Ile Thr Pro Asp Phe Cys 340 345 350 Lys Ala Gln Lys Val Ala Phe Gly Asp Arg Asp Val Phe Asn Glu Lys 355 360 365 Gly Gly Phe Pro Gln Phe Ser Lys Ala Val Gln Thr Pro Met Val Leu 370 375 380 Val Met Ser Leu Trp Asp Asp His Tyr Ala Asn Met Leu Trp Leu Asp 385 390 395 400 Ser Thr Tyr Pro Val Asp Ala Asp Pro Ser Glu Pro Gly Lys Ala Arg 405 410 415 Gly Thr Cys Asp Thr Ser Ser Gly Val Pro Lys Asp Val Glu Ala Asn 420 425 430 Gln Ala Ser Asn Gln Val Ile Tyr Ser Asn Ile Lys Phe Gly Pro Ile 435 440 445 Gly Ser Thr Phe Lys Gln Ser 450 455 156482PRTSporotrichum thermophile 156Met Ala Lys Lys Leu Phe Ile Thr Ala Ala Leu Ala Ala Ala Val Leu 1 5 10 15 Ala Ala Pro Val Ile Glu Glu Arg Gln Asn Cys Gly Ala Val Trp Thr 20 25 30 Gln Cys Gly Gly Asn Gly Trp Gln Gly Pro Thr Cys Cys Ala Ser Gly 35 40 45 Ser Thr Cys Val Ala Gln Asn Glu Trp Tyr Ser Gln Cys Leu Pro Asn 50 55 60 Ser Gln Val Thr Ser Ser Thr Thr Pro Ser Ser Thr Ser Thr Ser Gln 65 70 75 80 Arg Ser Thr Ser Thr Ser Ser Ser Thr Thr Arg Ser Gly Ser Ser Ser 85 90 95 Ser Ser Ser Thr Thr Pro Pro Pro Val Ser Ser Pro Val Thr Ser Ile 100 105 110 Pro Gly Gly Ala Thr Ser Thr Ala Ser Tyr Ser Gly Asn Pro Phe Ser 115 120 125 Gly Val Arg Leu Phe Ala Asn Asp

Tyr Tyr Arg Ser Glu Val His Asn 130 135 140 Leu Ala Ile Pro Ser Met Thr Gly Thr Leu Ala Ala Lys Ala Ser Ala 145 150 155 160 Val Ala Glu Val Pro Ser Phe Gln Trp Leu Asp Arg Asn Val Thr Ile 165 170 175 Asp Thr Leu Met Val Gln Thr Leu Ser Gln Val Arg Ala Leu Asn Lys 180 185 190 Ala Gly Ala Asn Pro Pro Tyr Ala Ala Gln Leu Val Val Tyr Asp Leu 195 200 205 Pro Asp Arg Asp Cys Ala Ala Ala Ala Ser Asn Gly Glu Phe Ser Ile 210 215 220 Ala Asn Gly Gly Ala Ala Asn Tyr Arg Ser Tyr Ile Asp Ala Ile Arg 225 230 235 240 Lys His Ile Ile Glu Tyr Ser Asp Ile Arg Ile Ile Leu Val Ile Glu 245 250 255 Pro Asp Ser Met Ala Asn Met Val Thr Asn Met Asn Val Ala Lys Cys 260 265 270 Ser Asn Ala Ala Ser Thr Tyr His Glu Leu Thr Val Tyr Ala Leu Lys 275 280 285 Gln Leu Asn Leu Pro Asn Val Ala Met Tyr Leu Asp Ala Gly His Ala 290 295 300 Gly Trp Leu Gly Trp Pro Ala Asn Ile Gln Pro Ala Ala Glu Leu Phe 305 310 315 320 Ala Gly Ile Tyr Asn Asp Ala Gly Lys Pro Ala Ala Val Arg Gly Leu 325 330 335 Ala Thr Asn Val Ala Asn Tyr Asn Ala Trp Ser Ile Ala Ser Ala Pro 340 345 350 Ser Tyr Thr Ser Pro Asn Pro Asn Tyr Asp Glu Lys His Tyr Ile Glu 355 360 365 Ala Phe Ser Pro Leu Leu Asn Ser Ala Gly Phe Pro Ala Arg Phe Ile 370 375 380 Val Asp Thr Gly Arg Asn Gly Lys Gln Pro Thr Gly Gln Gln Gln Trp 385 390 395 400 Gly Asp Trp Cys Asn Val Lys Gly Thr Gly Phe Gly Val Arg Pro Thr 405 410 415 Ala Asn Thr Gly His Glu Leu Val Asp Ala Phe Val Trp Val Lys Pro 420 425 430 Gly Gly Glu Ser Asp Gly Thr Ser Asp Thr Ser Ala Ala Arg Tyr Asp 435 440 445 Tyr His Cys Gly Leu Ser Asp Ala Leu Gln Pro Ala Pro Glu Ala Gly 450 455 460 Gln Trp Phe Gln Ala Tyr Phe Glu Gln Leu Leu Thr Asn Ala Asn Pro 465 470 475 480 Pro Phe 157395PRTSporotrichum thermophile 157Met Lys Phe Val Gln Ser Ala Thr Leu Ala Phe Ala Ala Thr Ala Leu 1 5 10 15 Ala Ala Pro Ser Arg Thr Thr Pro Gln Lys Pro Arg Gln Ala Ser Ala 20 25 30 Gly Cys Ala Ser Ala Val Thr Leu Asp Ala Ser Thr Asn Val Phe Gln 35 40 45 Gln Tyr Thr Leu His Pro Asn Asn Phe Tyr Arg Ala Glu Val Glu Ala 50 55 60 Ala Ala Glu Ala Ile Ser Asp Ser Ala Leu Ala Glu Lys Ala Arg Lys 65 70 75 80 Val Ala Asp Val Gly Thr Phe Leu Trp Leu Asp Thr Ile Glu Asn Ile 85 90 95 Gly Arg Leu Glu Pro Ala Leu Glu Asp Val Pro Cys Glu Asn Ile Val 100 105 110 Gly Leu Val Ile Tyr Asp Leu Pro Gly Arg Asp Cys Ala Ala Lys Ala 115 120 125 Ser Asn Gly Glu Leu Lys Val Gly Glu Leu Asp Arg Tyr Lys Thr Glu 130 135 140 Tyr Ile Asp Lys Ile Ala Glu Ile Leu Lys Ala His Ser Asn Thr Ala 145 150 155 160 Phe Ala Leu Val Ile Glu Pro Asp Ser Leu Pro Asn Leu Val Thr Asn 165 170 175 Ser Asp Leu Gln Thr Cys Gln Gln Ser Ala Ser Gly Tyr Arg Glu Gly 180 185 190 Val Ala Tyr Ala Leu Lys Gln Leu Asn Leu Pro Asn Val Val Met Tyr 195 200 205 Ile Asp Ala Gly His Gly Gly Trp Leu Gly Trp Asp Ala Asn Leu Lys 210 215 220 Pro Gly Ala Gln Glu Leu Ala Ser Val Tyr Lys Ser Ala Gly Ser Pro 225 230 235 240 Ser Gln Val Arg Gly Ile Ser Thr Asn Val Ala Gly Trp Asn Ala Trp 245 250 255 Asp Gln Glu Pro Gly Glu Phe Ser Asp Ala Ser Asp Ala Gln Tyr Asn 260 265 270 Lys Cys Gln Asn Glu Lys Ile Tyr Ile Asn Thr Phe Gly Ala Glu Leu 275 280 285 Lys Ser Ala Gly Met Pro Asn His Ala Ile Ile Asp Thr Gly Arg Asn 290 295 300 Gly Val Thr Gly Leu Arg Asp Glu Trp Gly Asp Trp Cys Asn Val Asn 305 310 315 320 Gly Ala Gly Phe Gly Val Arg Pro Thr Ala Asn Thr Gly Asp Glu Leu 325 330 335 Ala Asp Ala Phe Val Trp Val Lys Pro Gly Gly Glu Ser Asp Gly Thr 340 345 350 Ser Asp Ser Ser Ala Ala Arg Tyr Asp Ser Phe Cys Gly Lys Pro Asp 355 360 365 Ala Phe Lys Pro Ser Pro Glu Ala Gly Thr Trp Asn Gln Ala Tyr Phe 370 375 380 Glu Met Leu Leu Lys Asn Ala Asn Pro Ser Phe 385 390 395 158481PRTThielavia terrestris 158Met Ala Gln Lys Leu Leu Leu Ala Ala Ala Leu Ala Ala Ser Ala Leu 1 5 10 15 Ala Ala Pro Val Val Glu Glu Arg Gln Asn Cys Gly Ser Val Trp Ser 20 25 30 Gln Cys Gly Gly Ile Gly Trp Ser Gly Ala Thr Cys Cys Ala Ser Gly 35 40 45 Asn Thr Cys Val Glu Leu Asn Pro Tyr Tyr Ser Gln Cys Leu Pro Asn 50 55 60 Ser Gln Val Thr Thr Ser Thr Ser Lys Thr Thr Ser Thr Thr Thr Arg 65 70 75 80 Ser Ser Thr Thr Ser His Ser Ser Gly Pro Thr Ser Thr Ser Thr Thr 85 90 95 Thr Thr Ser Ser Pro Val Val Thr Thr Pro Pro Ser Thr Ser Ile Pro 100 105 110 Gly Gly Ala Ser Ser Thr Ala Ser Trp Ser Gly Asn Pro Phe Ser Gly 115 120 125 Val Gln Met Trp Ala Asn Asp Tyr Tyr Ala Ser Glu Val Ser Ser Leu 130 135 140 Ala Ile Pro Ser Met Thr Gly Ala Met Ala Thr Lys Ala Ala Glu Val 145 150 155 160 Ala Lys Val Pro Ser Phe Gln Trp Leu Asp Arg Asn Val Thr Ile Asp 165 170 175 Thr Leu Phe Ala His Thr Leu Ser Gln Ile Arg Ala Ala Asn Gln Lys 180 185 190 Gly Ala Asn Pro Pro Tyr Ala Gly Ile Phe Val Val Tyr Asp Leu Pro 195 200 205 Asp Arg Asp Cys Ala Ala Ala Ala Ser Asn Gly Glu Phe Ser Ile Ala 210 215 220 Asn Asn Gly Ala Ala Asn Tyr Lys Thr Tyr Ile Asp Ala Ile Arg Ser 225 230 235 240 Leu Val Ile Gln Tyr Ser Asp Ile Arg Ile Ile Phe Val Ile Glu Pro 245 250 255 Asp Ser Leu Ala Asn Met Val Thr Asn Leu Asn Val Ala Lys Cys Ala 260 265 270 Asn Ala Glu Ser Thr Tyr Lys Glu Leu Thr Val Tyr Ala Leu Gln Gln 275 280 285 Leu Asn Leu Pro Asn Val Ala Met Tyr Leu Asp Ala Gly His Ala Gly 290 295 300 Trp Leu Gly Trp Pro Ala Asn Ile Gln Pro Ala Ala Asn Leu Phe Ala 305 310 315 320 Glu Ile Tyr Thr Ser Ala Gly Lys Pro Ala Ala Val Arg Gly Leu Ala 325 330 335 Thr Asn Val Ala Asn Tyr Asn Gly Trp Ser Leu Ala Thr Pro Pro Ser 340 345 350 Tyr Thr Gln Gly Asp Pro Asn Tyr Asp Glu Ser His Tyr Val Gln Ala 355 360 365 Leu Ala Pro Leu Leu Thr Ala Asn Gly Phe Pro Ala His Phe Ile Thr 370 375 380 Asp Thr Gly Arg Asn Gly Lys Gln Pro Thr Gly Gln Arg Gln Trp Gly 385 390 395 400 Asp Trp Cys Asn Val Ile Gly Thr Gly Phe Gly Val Arg Pro Thr Thr 405 410 415 Asn Thr Gly Leu Asp Ile Glu Asp Ala Phe Val Trp Val Lys Pro Gly 420 425 430 Gly Glu Cys Asp Gly Thr Ser Asn Thr Thr Ser Pro Arg Tyr Asp Tyr 435 440 445 His Cys Gly Leu Ser Asp Ala Leu Gln Pro Ala Pro Glu Ala Gly Thr 450 455 460 Trp Phe Gln Ala Tyr Phe Glu Gln Leu Leu Thr Asn Ala Asn Pro Pro 465 470 475 480 Phe 1592394DNATrichoderma reesei 159atggtgaata acgcagctct tctcgccgcc ctgtcggctc tcctgcccac ggccctggcg 60cagaacaatc aaacatacgc caactactct gctcagggcc agcctgatct ctaccccgag 120acacttgcca cgctcacact ctcgttcccc gactgcgaac atggccccct caagaacaat 180ctcgtctgtg actcatcggc cggctatgta gagcgagccc aggccctcat ctcgctcttc 240accctcgagg agctcattct caacacgcaa aactcgggcc ccggcgtgcc tcgcctgggt 300cttccgaact accaagtctg gaatgaggct ctgcacggct tggaccgcgc caacttcgcc 360accaagggcg gccagttcga atgggcgacc tcgttcccca tgcccatcct cactacggcg 420gccctcaacc gcacattgat ccaccagatt gccgacatca tctcgaccca agctcgagca 480ttcagcaaca gcggccgtta cggtctcgac gtctatgcgc caaacgtcaa tggcttccga 540agccccctct ggggccgtgg ccaggagacg cccggcgaag acgccttttt cctcagctcc 600gcctatactt acgagtacat cacgggcatc cagggtggcg tcgaccctga gcacctcaag 660gttgccgcca cggtgaagca ctttgccgga tacgacctcg agaactggaa caaccagtcc 720cgtctcggtt tcgacgccat cataactcag caggacctct ccgaatacta cactccccag 780ttcctcgctg cggcccgtta tgcaaagtca cgcagcttga tgtgcgcata caactccgtc 840aacggcgtgc ccagctgtgc caacagcttc ttcctgcaga cgcttttgcg cgagagctgg 900ggcttccccg aatggggata cgtctcgtcc gattgcgatg ccgtctacaa cgttttcaac 960cctcatgact acgccagcaa ccagtcgtca gccgccgcca gctcactgcg agccggcacc 1020gatatcgact gcggtcagac ttacccgtgg cacctcaacg agtcctttgt ggccggcgaa 1080gtctcccgcg gcgagatcga gcggtccgtc acccgtctgt acgccaacct cgtccgtctc 1140ggatacttcg acaagaagaa ccagtaccgc tcgctcggtt ggaaggatgt cgtcaagact 1200gatgcctgga acatctcgta cgaggctgct gttgagggca tcgtcctgct caagaacgat 1260ggcactctcc ctctgtccaa gaaggtgcgc agcattgctc tgatcggacc atgggccaat 1320gccacaaccc aaatgcaagg caactactat ggccctgccc catacctcat cagccctctg 1380gaagctgcta agaaggccgg ctatcacgtc aactttgaac tcggcacaga gatcgccggc 1440aacagcacca ctggctttgc caaggccatt gctgccgcca agaagtcgga tgccatcatc 1500tacctcggtg gaattgacaa caccattgaa caggagggcg ctgaccgcac ggacattgct 1560tggcccggta atcagctgga tctcatcaag cagctcagcg aggtcggcaa accccttgtc 1620gtcctgcaaa tgggcggtgg tcaggtagac tcatcctcgc tcaagagcaa caagaaggtc 1680aactccctcg tctggggcgg atatcccggc cagtcgggag gcgttgccct cttcgacatt 1740ctctctggca agcgtgctcc tgccggccga ctggtcacca ctcagtaccc ggctgagtat 1800gttcaccaat tcccccagaa tgacatgaac ctccgacccg atggaaagtc aaaccctgga 1860cagacttaca tctggtacac cggcaaaccc gtctacgagt ttggcagtgg tctcttctac 1920accaccttca aggagactct cgccagccac cccaagagcc tcaagttcaa cacctcatcg 1980atcctctctg ctcctcaccc cggatacact tacagcgagc agattcccgt cttcaccttc 2040gaggccaaca tcaagaactc gggcaagacg gagtccccat atacggccat gctgtttgtt 2100cgcacaagca acgctggccc agccccgtac ccgaacaagt ggctcgtcgg attcgaccga 2160cttgccgaca tcaagcctgg tcactcttcc aagctcagca tccccatccc tgtcagtgct 2220ctcgcccgtg ttgattctca cggaaaccgg attgtatacc ccggcaagta tgagctagcc 2280ttgaacaccg acgagtctgt gaagcttgag tttgagttgg tgggagaaga ggtaacgatt 2340gagaactggc cgttggagga gcaacagatc aaggatgcta cacctgacgc ataa 2394160780DNATrichoderma reesei 160atggtctcct tcacctccct cctcgccggc gtcgccgcca tctcgggcgt cttggccgct 60cccgccgccg aggtcgaatc cgtggctgtg gagaagcgcc agacgattca gcccggcacg 120ggctacaaca acggctactt ctactcgtac tggaacgatg gccacggcgg cgtgacgtac 180accaatggtc ccggcgggca gttctccgtc aactggtcca actcgggcaa ctttgtcggc 240ggcaagggat ggcagcccgg gaccaagaac aagtaagact acctactctt accccctttg 300accaacacag cacaacacaa tacaacacat gtgactacca atcatggaat cggatctaac 360agctgtgttt taaaaaaaag ggtcatcaac ttctcgggaa gctacaaccc caacggcaac 420agctacctct ccgtgtacgg ctggtcccgc aaccccctga tcgagtacta catcgtcgag 480aactttggca cctacaaccc gtccacgggc gccaccaagc tgggcgaggt cacctccgac 540ggcagcgtct acgacattta ccgcacgcag cgcgtcaacc agccgtccat catcggcacc 600gccacctttt accagtactg gtccgtccgc cgcaaccacc gctcgagcgg ctccgtcaac 660acggcgaacc acttcaacgc gtgggctcag caaggcctga cgctcgggac gatggattac 720cagattgttg ccgtggaggg ttactttagc tctggctctg cttccatcac cgtcagctaa 780161368PRTThielavia terrestris 161Met Pro Ser Phe Ala Ser Lys Thr Leu Leu Ser Thr Leu Ala Gly Ala 1 5 10 15 Ala Ser Val Ala Ala His Gly His Val Ser Asn Ile Val Ile Asn Gly 20 25 30 Val Ser Tyr Gln Gly Tyr Asp Pro Thr Ser Phe Pro Tyr Met Gln Asn 35 40 45 Pro Pro Ile Val Val Gly Trp Thr Ala Ala Asp Thr Asp Asn Gly Phe 50 55 60 Val Ala Pro Asp Ala Phe Ala Ser Gly Asp Ile Ile Cys His Lys Asn 65 70 75 80 Ala Thr Asn Ala Lys Gly His Ala Val Val Ala Ala Gly Asp Lys Ile 85 90 95 Phe Ile Gln Trp Asn Thr Trp Pro Glu Ser His His Gly Pro Val Ile 100 105 110 Asp Tyr Leu Ala Ser Cys Gly Ser Ala Ser Cys Glu Thr Val Asp Lys 115 120 125 Thr Lys Leu Glu Phe Phe Lys Ile Asp Glu Val Gly Leu Val Asp Gly 130 135 140 Ser Ser Ala Pro Gly Val Trp Gly Ser Asp Gln Leu Ile Ala Asn Asn 145 150 155 160 Asn Ser Trp Leu Val Glu Ile Pro Pro Thr Ile Ala Pro Gly Asn Tyr 165 170 175 Val Leu Arg His Glu Ile Ile Ala Leu His Ser Ala Glu Asn Ala Asp 180 185 190 Gly Ala Gln Asn Tyr Pro Gln Cys Phe Asn Leu Gln Ile Thr Gly Thr 195 200 205 Gly Thr Ala Thr Pro Ser Gly Val Pro Gly Thr Ser Leu Tyr Thr Pro 210 215 220 Thr Asp Pro Gly Ile Leu Val Asn Ile Tyr Ser Ala Pro Ile Thr Tyr 225 230 235 240 Thr Val Pro Gly Pro Ala Leu Ile Ser Gly Ala Val Ser Ile Ala Gln 245 250 255 Ser Ser Ser Ala Ile Thr Ala Ser Gly Thr Ala Leu Thr Gly Ser Ala 260 265 270 Thr Ala Pro Ala Ala Ala Ala Ala Thr Thr Thr Ser Thr Thr Asn Ala 275 280 285 Ala Ala Ala Ala Thr Ser Ala Ala Ala Ala Ala Gly Thr Ser Thr Thr 290 295 300 Thr Thr Ser Ala Ala Ala Val Val Gln Thr Ser Ser Ser Ser Ser Ser 305 310 315 320 Ala Pro Ser Ser Ala Ala Ala Ala Ala Thr Thr Thr Ala Ala Ala Ser 325 330 335 Ala Arg Pro Thr Gly Cys Ser Ser Gly Arg Ser Arg Lys Gln Pro Arg 340 345 350 Arg His Ala Arg Asp Met Val Val Ala Arg Gly Ala Glu Glu Ala Asn 355 360 365 162520PRTArtificial Sequencesynthetic consensus sequence 162Met Lys Ser Ser Ala Ser Leu Leu Leu Leu Ala Ala Leu Ala Gly Ala 1 5 10 15 Ala Ala Xaa Xaa Xaa Val Ala Ala His Gly His Val Val Asn Gly Val 20 25 30 Ile Asn Gly Val Xaa Tyr Gln Gly Tyr Asp Pro Thr Thr Xaa Pro Tyr 35 40 45 Xaa Asn Asn Pro Xaa Xaa Xaa Xaa Pro Ser Val Val Gly Trp Cys Asn 50 55 60 Ala Gly Thr Asp Asn Gly Phe Val Xaa Pro Asp Ala Tyr Ala Ser Pro 65 70 75 80 Asp Ile Ile Cys His Lys Gly Ala Thr Asn Ala Lys Gly His Ala Thr 85 90 95 Val Ala Ala Gly Asp Lys Ile Ser Ile Gln Trp Thr Xaa Xaa Xaa Trp 100 105 110 Pro Glu Ser His Lys Gly Pro Val Ile Asp Tyr Leu Ala Lys Cys Xaa 115 120 125 Xaa Xaa Xaa Xaa Xaa Xaa Gly Gly Cys Thr Xaa Xaa Thr Val Asp Lys 130 135 140 Thr Ser Leu Gly Trp Phe Lys Ile Asp Xaa Xaa Xaa Xaa Xaa Xaa Xaa 145 150 155 160 Xaa Xaa Xaa Gly Val Gly Xaa Xaa Xaa Xaa Xaa Xaa Asp Pro Gly Val 165 170 175 Trp Ala Thr Asp Asp Leu Ile Ala Asn Asn Asn Ser Trp Leu Val Lys 180 185 190 Ile Pro Ser Asp Ile Ala Pro Gly Asn

Tyr Val Leu Arg His Glu Ile 195 200 205 Ile Ala Leu His Ser Ala Gly Ser Ala Asn Gly Xaa Xaa Xaa Xaa Xaa 210 215 220 Xaa Ala Gln Asn Tyr Pro Gln Cys Ala Asn Leu Gln Val Thr Gly Ser 225 230 235 240 Gly Ser Ala Xaa Xaa Ser Xaa Pro Ser Gly Val Lys Xaa Xaa Xaa Pro 245 250 255 Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 260 265 270 Gly Thr Xaa Leu Tyr Lys Ala Thr Asp Pro Gly Ile Leu Val Asn Ile 275 280 285 Tyr Xaa Xaa Xaa Xaa Xaa Xaa Xaa Ala Xaa Xaa Ser Xaa Tyr Thr Val 290 295 300 Pro Gly Pro Ala Val Ile Thr Gly Xaa Ala Ser Ser Val Ala Gln Ser 305 310 315 320 Xaa Ser Ala Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Thr Ala 325 330 335 Thr Xaa Xaa Ala Val Xaa Pro Gly Gly Thr Ala Pro Ala Pro Xaa Ala 340 345 350 Xaa Thr Xaa Ala Ser Thr Xaa Xaa Xaa Xaa Xaa Xaa Thr Xaa Xaa Xaa 355 360 365 Thr Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Ala 370 375 380 Xaa Xaa Gly Xaa Ser Ala Pro Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Ala 385 390 395 400 Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 405 410 415 Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 420 425 430 Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Tyr Gly 435 440 445 Gln Cys Gly Gly Xaa Gly Xaa Xaa Xaa Thr Gly Xaa Thr Xaa Xaa Cys 450 455 460 Ala Xaa Gly Xaa Thr Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 465 470 475 480 Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 485 490 495 Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Tyr Tyr 500 505 510 Ser Gln Xaa Xaa Xaa Xaa Xaa Xaa 515 520

* * * * *

References


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed