Semiconductor Device With Rutile Titanium Oxide Dielectric Film

Hsieh; Chun-I ;   et al.

Patent Application Summary

U.S. patent application number 13/674929 was filed with the patent office on 2014-05-15 for semiconductor device with rutile titanium oxide dielectric film. This patent application is currently assigned to NANYA TECHNOLOGY CORP.. The applicant listed for this patent is NANYA TECHNOLOGY CORP.. Invention is credited to Vishwanath Bhat, Chun-I Hsieh.

Application Number20140131835 13/674929
Document ID /
Family ID50680922
Filed Date2014-05-15

United States Patent Application 20140131835
Kind Code A1
Hsieh; Chun-I ;   et al. May 15, 2014

SEMICONDUCTOR DEVICE WITH RUTILE TITANIUM OXIDE DIELECTRIC FILM

Abstract

A capacitor structure includes a first electrode on a substrate; a template layer on the first electrode; a titanium oxide (TiO2) dielectric layer on the template layer, wherein the TiO2 dielectric layer has substantially only rutile phase; and a second electrode on the TiO2 dielectric layer. The titanium oxide dielectric layer is an undoped titanium oxide dielectric layer.


Inventors: Hsieh; Chun-I; (Taoyuan County, TW) ; Bhat; Vishwanath; (Boise, ID)
Applicant:
Name City State Country Type

NANYA TECHNOLOGY CORP.

Tao-Yuan Hsien

TW
Assignee: NANYA TECHNOLOGY CORP.
Tao-Yuan Hsien
TW

Family ID: 50680922
Appl. No.: 13/674929
Filed: November 12, 2012

Current U.S. Class: 257/532
Current CPC Class: H01L 21/0228 20130101; C23C 16/405 20130101; H01L 21/02186 20130101; H01L 28/40 20130101; H01L 28/60 20130101; C23C 16/45527 20130101
Class at Publication: 257/532
International Class: H01L 29/92 20060101 H01L029/92

Claims



1. A capacitor structure comprising: a first electrode on a substrate; a template layer on the first electrode; an undoped titanium oxide (TiO2) dielectric layer on the template layer, wherein the undoped TiO2 dielectric layer has substantially only rutile phase; and a second electrode on the undoped TiO2 dielectric layer.

2. The capacitor structure according to claim 1 wherein the first electrode comprises Ru.

3. The capacitor structure according to claim 1 wherein the template layer comprises Ru, RuO2, Ir, or IrO2.

4. The capacitor structure according to claim 1 wherein the second electrode comprises Ru, Pt or Ir, RuO2, IrO2, TiN, TaN, or WN.
Description



BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] The present invention relates to semiconductor devices and more particularly, to an improved high-k dielectric layer, a capacitor structure using the same, and an exemplary fabrication method thereof.

[0003] 2. Description of the Prior Art

[0004] As known in the art, downscaling of the metal-insulator-metal capacitor for dynamic random access memory (DRAM) devices has required the introduction of high permittivity dielectrics, for example, titanium oxide (TiO2). It is well known that titanium oxide has multiple phases which have different dielectric constants. Two known phases of titanium oxide are anatase and rutile. It is often desirable to increase rutile TiO2 in the capacitor dielectric film because it has a much higher dielectric constant (k>90) than anatase TiO2.

[0005] Typically, TiO2 dielectric layer is deposited by using an atomic layer deposition (ALD) method. However, TiO2 is inherently formed in the anatase phase during the ALD process. To form a TiO2 dielectric layer with the rutile phase and low leakage as well, methods such as impurity doping, post annealing (600.degree. C. or higher) and/or ozone-based ALD in combination with template layers are employed. However, the impurity doping method has problems such as high cost, low throughput and is hard to control. The drawback of the post annealing method is the additional thermal budget and mechanical stress, which may seriously degrade the MOS devices. The problems of the ozone-based ALD/template layer method include low deposition rate (.about.0.4 .ANG. per ALD cycle) and the risk of etching or oxidizing the underlying layer.

[0006] Water-based ALD method, which uses water vapor as oxidant in the ALD cycles, is also employed to deposit the TiO2 dielectric layer. The water-based ALD method has a much higher deposition rate than the ozone-based ALD method, meaning higher throughput. However, TiO2 deposited using the water-based ALD method is inherently in the anatase phase. To form rutile TiO2 in the water-based ALD process, a 10 nm thick TiO2 film or a relatively higher process temperature is typically required.

[0007] There is a need in this industry to provide an improved method for depositing a high-k dielectric material such as rutile TiO2 with a higher deposition/growth rate and a low leakage and without introducing the aforesaid prior art shortcomings.

SUMMARY OF THE INVENTION

[0008] According to one aspect, the invention provides a capacitor structure including a first electrode on a substrate; a template layer on the first electrode; a titanium oxide (TiO2) dielectric layer on the template layer, wherein the TiO2 dielectric layer has substantially only rutile phase; and a second electrode on the TiO2 dielectric layer. The TiO2 dielectric layer is formed by using a modified water-based ALD process.

[0009] These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The accompanying drawings are included to provide a further understanding of the embodiments, and are incorporated in and constitute a part of this specification. The drawings illustrate some of the embodiments and, together with the description, serve to explain their principles. In the drawings:

[0011] FIG. 1 is a cross-sectional diagram showing a portion of a capacitor structure according to one embodiment of this invention;

[0012] FIG. 2 is a flow chart illustrating an exemplary process of forming the capacitor structure as set forth in FIG. 1 according to this invention;

[0013] FIG. 3 is a flow chart illustrating an exemplary modified water-based ALD process;

[0014] FIG. 4 shows the X-ray diffraction spectrum of the modified water-based ALD TiO2 layer (relative intensity as a function of 2 theta) in the spectral region between 2 theta=20 and 2 theta=60; and

[0015] FIG. 5 shows the X-ray diffraction spectrum of the modified water-based ALD TiO2 layer formed by using O3 pulse/purge ratio of 20:1 and different duration of O3 pulse.

[0016] It should be noted that all the figures are diagrammatic. Relative dimensions and proportions of parts of the drawings have been shown exaggerated or reduced in size, for the sake of clarity and convenience in the drawings. The same reference signs are generally used to refer to corresponding or similar features in modified and different embodiments.

DETAILED DESCRIPTION

[0017] In the following detailed description, reference is made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration specific examples in which the embodiments may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice them, and it is to be understood that other embodiments may be utilized and that structural, logical and electrical changes may be made without departing from the described embodiments. The following detailed description is, therefore, not to be taken in a limiting sense, and the included embodiments are defined by the appended claims.

[0018] FIG. 1 is a cross-sectional diagram showing a portion of a capacitor structure according to one embodiment of this invention. As shown in FIG. 1, the capacitor structure 20 is disposed on a substrate 10 such as a silicon-based substrate. However, it is understood that the substrate 10 may be any appropriate semiconductor substrate. The capacitor structure 20 comprises a a first electrode 22 on the substrate, a template layer 23 on the first electrode 22, a high-k dielectric layer 24 on the template layer 23, and a second electrode 26 on the high-k dielectric layer 24. The first electrode 22 may be a noble material such as ruthenium (Ru). The template layer 23 may comprise Ru, RuO2, Ir, or IrO2. The first electrode 22 may be deposited using any appropriate techniques such as chemical vapor deposition (CVD), ALD, physical vapor deposition (PVD), or sputtering. The second electrode 26 may be a novel metal or any suitable conductive material such as metal oxide or metal nitride. For example, the second electrode 26 may be Ru, Pt or Ir, RuO2, IrO2, TiN, TaN, WN or the like.

[0019] According to this embodiment, the high-k dielectric layer 24 that is directly deposited onto the template layer 23 is rutile TiO2. According to this embodiment, substantially, the high-k dielectric layer 24 has only one single phase: rutile. That is, the high-k dielectric layer 24 has substantially no x-ray diffraction peak associated with anatase TiO2. According to this embodiment, the thickness of the high-k dielectric layer 24 is about 8 nm or thinner. According to this embodiment, no impurity such as aluminum (Al) is doped into the high-k dielectric layer 24.

[0020] Referring now to FIG. 2 and FIG. 3, and briefly to FIG. 1, wherein FIG. 2 is a flow chart illustrating an exemplary process of forming the capacitor structure 20 as set forth in FIG. 1 according to this invention, and FIG. 3 is a flow chart illustrating an exemplary modified water-based ALD process. As shown in FIG. 2, the process flow 100 includes four sequential major steps 102.about.108. In Step 102, the first electrode 22 such as Ru is deposited onto the substrate 10. In Step 104, the template layer 23 is formed on the first electrode 22. Subsequently, in Step 106, a modified water-based ALD process is performed to deposit a rutile TiO2 layer 24 on the template layer 23. According to this embodiment, the thickness of the rutile TiO2 layer 24 may be about 8 nm or thinner. Finally, in Step 108, the second electrode 26 is formed on the rutile TiO2 layer 24. No post anneal or post thermal treatment is required between Step 10

[0021] According to this embodiment, the aforesaid modified water-based ALD process comprises a plurality of Ti ALD cycles, and each ALD cycle comprises, in the order of: (1) supplying a Ti precursor into a reaction chamber (Ti pulse); (2) purging the reaction chamber with inert gas; (3) supplying water vapor into the reaction chamber (H2O pulse); and (4) purging the reaction chamber with inert gas. According to this embodiment, the process temperature may range between 150.degree. C. and 450.degree. C., for example, 285.degree. C. . When the Ti precursor such as TiCl4 is supplied into the reaction chamber, a portion of the Ti precursor is adsorbed to an exposed surface of the substrate 10. The purge gas such as argon or nitrogen then removes the rest of the Ti precursor that is not adsorbed. The water vapor that acts as an oxidant supplied to the substrate 10 then reacts with the adsorbed Ti precursor to form a single atomic TiO2 layer on the substrate 10.

[0022] As shown in FIG. 3, the aforesaid modified water-based ALD process may comprise multiple stages according to one embodiment. In the first stage, for example, the aforesaid ALD cycle may be repeated n times to initially deposit a first TiO2 layer on the template layer 23. For example, n is an integer ranging between 5 and 80 inclusive. The initially deposited first TiO2 layer on the template layer 23 may be anatase TiO2. The first stage is ended by performing an ozone pulse and purge step that substantially transfer the entire thickness of the initially deposited first TiO2 layer on the template layer 23 into rutile TiO2. The duration of the ozone pulse may be greater than 5 seconds. In the second stage, for example, the aforesaid ALD cycle may be repeated m times to initially deposit a second TiO2 layer on the rutile TiO2. For example, m is an integer ranging between 5 and 80 inclusive, and wherein n may be not equal to m. The second stage is also ended by performing an ozone pulse and purge step that substantially transfer the entire thickness of the second TiO2 layer into rutile TiO2. According to one embodiment, the Ti ALD cycle to O3 pulse/purge ratio may range between 80:1 and 5:1.

[0023] FIG. 4 shows the X-ray diffraction spectrum of the modified water-based ALD TiO2 layer (relative intensity as a function of 2 theta) in the spectral region between 2 theta=20 and 2 theta=60. As shown in FIG. 4, the TiO2 layers formed by using various O3 pulse/purge ratio ranging between 50:1 and 10:1 have obvious peak at 2 theta=27 and this indicate that the intervening O3 pulse helps rutile TiO2 crystallization. FIG. 4 also shows the result of without adding O3 pulse wherein the 8 nm water-based ALD TiO2 layer is amorphous. FIG. 5 shows the X-ray diffraction spectrum of the modified water-based ALD TiO2 layer formed by using O3 pulse/purge ratio of 20:1 and different duration of O3 pulse (10 seconds, 20 seconds and 40 seconds).

[0024] Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed