Jet Exhaust Piston Engine

Barry; Leonard D.

Patent Application Summary

U.S. patent application number 14/030665 was filed with the patent office on 2014-04-24 for jet exhaust piston engine. The applicant listed for this patent is Leonard D. Barry. Invention is credited to Leonard D. Barry.

Application Number20140109550 14/030665
Document ID /
Family ID50484085
Filed Date2014-04-24

United States Patent Application 20140109550
Kind Code A1
Barry; Leonard D. April 24, 2014

JET EXHAUST PISTON ENGINE

Abstract

This invention is a piston in cylinder engine using water injection into a relative vacuum heated to steam by expanding in the cylinder and by an electric arc or other heat source. The resulting steam explosion applies a work force on the piston. The piston has jet nozzles uncovered at the end of its work stroke to jet the piston to help propel it during the return stroke and to form a vacuum in place of the usual compression stroke. The piston has a cover plate with tapered pins depending into jet nozzles through the piston to block the jet nozzles during the main work stroke.


Inventors: Barry; Leonard D.; (Detroit, MI)
Applicant:
Name City State Country Type

Barry; Leonard D.

Detroit

MI

US
Family ID: 50484085
Appl. No.: 14/030665
Filed: September 18, 2013

Related U.S. Patent Documents

Application Number Filing Date Patent Number
12853358 Aug 10, 2010
14030665
61232664 Aug 10, 2009

Current U.S. Class: 60/204 ; 60/227; 60/514
Current CPC Class: F04B 9/047 20130101; F04B 53/006 20130101; F01B 29/12 20130101; F01K 21/02 20130101; F03C 1/0406 20130101
Class at Publication: 60/204 ; 60/514; 60/227
International Class: F01B 29/12 20060101 F01B029/12

Claims



1. A reciprocating piston engine having a power and an exhaust stroke, a least one cylinder and a piston therein having at least one opening through it head end to back end to exhaust the fluid in the head end during the exhaust stroke, and a lid for sealing said opening closed during the power stroke, and means for opening said lid during the exhaust stroke and for closing the lid during the power stroke; a water supply and metering means connected to said water supply and said engine to mete out a charge of water for each power stroke of said engine, said metering means including an injector set to be controlled by a vacuum in the head end of said cylinder to suck in said charge of water to explode the water into steam, and means for supplying heat to said cylinder to maintain said steam long enough to run the power stroke of said engine.

2. An engine as in claim 1, said opening being a jet propulsion shaped nozzle hole to help propel the piston on the exhaust stroke.

3. An engine as in claim 1, said lid having a depending stopper for entering each said opening to seal for the power stroke whereby pressure on the lid presses in said stopper.

4. An engine as in claim 3 said lid being open with arms each supporting a said stopper.

5. An engine as in claim 1, having a crankshaft, a lid rod secured to said lid, at least one connecting rod connecting said crank shaft to said lid rod, said connecting rod having an extended cam arm with cam means connecting said piston to said connecting rod for moving said piston relative to said lid to close said opening for power strokes and opening said opening during exhaust strokes.

6. An engine as in claim 1 said piston being a jet piston, each said opening being one hole through the piston from head to back, said lid mounted to relatively move up and down on the head end of the piston to open and close each said hole.

7. A reciprocating piston for an engine, said piston having at least one jet nozzle hole through it from head end to back, and a lid for alternately covering and opening each said jet nozzle hole together for exhausting through the piston to jet propel the piston during the exhaust stroke, and at least one separate hole through said piston having a shaft therethrough slip-fit for supporting and guiding said lid.

8. An engine as in claim 1, further comprising an electric arc and water stream plug through the head end of said cylinder to combine water and heat to make steam in the cylinder for running the engine, said plug having a vacuum cylinder with a smaller water injection cylinder concentric thereon, a vacuum piston in said vacuum cylinder, an attached water piston in said water injection cylinder, a water inlet to charge the water cylinder cut off by said water piston to limit water flow, a hole connected from said vacuum cylinder to said cylinder ahead of said piston to operate said vacuum piston when the pressure is low enough to explode the water to steam.

9. A reciprocating piston as in claim 7, further comprising a nozzle plug mounted on said lid one for each said jet nozzle hole with spring to extend said plug into a said nozzle hole, said plugs spacing said lid to clear above said piston for better exhaust flow through said jet nozzle holes.

10. An engine as in claim 1, said cylinder having a head end which has electrical contacts and a water nozzle connected to said check valve and aimed to short said electrical contacts to conduct an electrical arc through the water to explode that water into steam in said cylinder to drive said engine with no steam boiler needed.

11. The method of operating a reciprocating piston steam engine by forming a vacuum by movement of the piston away from the head end of the cylinder at the start of the work stroke, sucking with the vacuum a metered amount of water into the vacuum in the cylinder at the start of the work stroke when the vacuum is strong enough to cause the water to explode into steam, supplying sufficient heat to keep the steam from condensing for the work stroke, and exhausting the cylinder by opening at least one jet hole through the piston during the return stroke to form an exhaust jet to help power the return stroke.

12. An engine as in claim 15 with at least one exhaust jet hole through the piston having a head end and an exhaust end having a work stroke and an exhaust stroke a lid for closing the jet hole during the work stroke, at least one rod-like member running through the piston extending from the head end to beyond the exhaust end, said lid being secured to said rod to open and close said jet hole, stop means at the head end of said cylinder to engage said rod to close said cover at the top end of the exhaust stroke, and stop means connected to said engine to be hit by said rod to push the rod back to open the cover for the exhaust stroke, and means to hold said cover in position relative to said piston between ends of travel of said piston.

13. The method of operating the engine as in claim 11 including closing an electrical circuit through the water as it is injected into the head end of the cylinder to quickly explode the water to steam to move the piston with that expanding steam to operate the engine.

14. The method of operating the engine as in claim 11 including concentrating light into the head end of the cylinder to supply heat to the cylinder to help make and keep steam for the work strokes.

15. A reciprocating piston engine having only a power and exhaust stroke having at least one cylinder with piston therein and connecting rod and crank shaft to produce rotary motion, the improvement being: said cylinder having at the head end a water metering vacuum injector connected for injecting a metered amount of water into the head end of the cylinder when holding a vacuum down to a preset value at the start of the work stroke connected and set to open to let a charge of water be sucked in with the vacuum when low enough to explode said water to steam above a minimum temperature to drive the engine.

16. An engine as in claim 15 further comprising a substantially steady source of heat to the head end of the cylinder to substantially equal the heat taken up by the water turning to steam to keep steam for the work cycle.

17. An engine as in claim 16 wherein said source of heat being concentrated sun light, and light directing means to direct that light to the head end of said cylinder.

18. An engine as in claim 17, the head end of said cylinder being made of material such as high temperature glass to let the light in.

19. An engine as in claim 15 and a pressure relief valve in the head end of said cylinder set to limit pressure to a safe value.

20. An engine as in claim 15 further comprising at least one propulsion jet nozzle opening through the entire piston to exhaust the head end of the cylinder through the jet nozzle opening to provide jet propulsion of the piston during said exhaust stroke to help drive the engine, a cover for said nozzle, means connected for opening said cover for the exhaust stroke and for closing said nozzle opening during the work stroke.

21. An engine as in claim 15, said opening having a jet nozzle inserted pressure tight therein to form the exhaust into a jet for thrust.
Description



CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is a continuation-in-part of U.S. patent application Ser. No. 12/853,358 filed Aug. 10, 2010, which claims priority of U.S. Provisional Application 61/232,664 filed on Aug. 10, 2009, which is incorporated herein by reference.

FIELD AND BACKGROUND OF THE INVENTION

[0002] This invention is a reciprocating piston two-stroke engine.

[0003] Unlike present engines it uses exhaust gas to propel during the return stroke of the piston. It is especially designed to make steam at a low pressure or vacuum in the head end of a cylinder from hot water or steam injection. Preferably an electric arc adds heat in the cylinder to keep steam under increased pressure for the work stroke. It has jet nozzles in the piston opened at the end of the work stroke to help propel the exhaust stroke and exhaust the cylinder during the return stroke to a low pressure before the next cycle where it would first draw a vacuum and take on a small charge of water that turns to steam.

[0004] Internal combustion engines now compress an air-fuel mix which is ignited in the cylinder to push the piston. Water injection is known to increase efficiency but damages the cylinder mainly because of sulfur in the fuel making sulfuric acid in the cylinder. My engine can eliminate fuel in the cylinder so water can be used to make steam in the cylinder with minimum damage to the engine by using an electric arc or heat in place of fuel.

[0005] It takes a low pressure to make steam at a low temperature but if heat is added faster than the pressure rise that would turn it back to water it can make a cool engine because the heat is taken up in making steam. This saves the need for a cooling jacket or fins, thus reducing weight and loss of heat which the present internal combustion engines have for needed cooling.

SUMMARY OF THE INVENTION

[0006] It is an object to reduce or eliminate return stroke pressure, to eliminate the compression stroke, and to drive the piston return stroke with exhaust jets.

[0007] An object is to draw a vacuum in the head end of the cylinder to turn water into steam at low pressure at the same time an electric arc is introduced to heat the water and vapor to make and keep steam as the pressure goes up when the piston works under this pressure.

[0008] It is an object to provide a pressure relief valve in the cylinder to prevent too high a pressure.

[0009] It is an object to utilize the explosive force when the water turns to steam. It is an object to provide a low temperature engine to reduce heat loss by providing heat to change water to steam at the point and time of use.

[0010] It is an object to eliminate burning gases in the cylinder, the need to exhaust them, and the compression stroke.

[0011] It is an object to eliminate the steam boiler and the heat loss from steam made in the boiler before it is used.

[0012] It is an object to use water injection to strike an electric arc in the cylinder to explode the water into steam.

[0013] It is an object to explode water into steam in the cylinder to best utilize heat before lost.

[0014] It is an object to provide an engine operable with different sources of heat.

[0015] It is an object to operate a closed cycle using the same water over and over, and not need a fuel tank--only a battery.

[0016] It is an object to reduce the weight and heat loss of the steam engine by putting a boiler in the cylinder.

[0017] It is an object to combine a reciprocating piston and jet in one engine. It is an object to obtain work from the exhaust stroke.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] These other and further objects should be evident to those skilled in the art by study of this specification with reference to the accompanying drawings wherein:

[0019] FIG. 1 is a side view of an engine with cylinder and piston shown in section, rotation clockwise at 9 o'clock, and exhausting.

[0020] FIG. 2 is a plan section taken on line 2-2 of FIG. 1.

[0021] FIG. 3 is a side view of the lower half of FIG. 1.

[0022] FIG. 4 is a perspective view of a piston rod,

[0023] FIG. 5 is a face view of an injection cam.

[0024] FIG. 6 is a bottom view of the cam shaft in FIG. 3.

[0025] FIGS. 7, 8, and 9 are respectively top, side, and bottom views of a piston cover.

[0026] FIGS. 10, 11, and 12 are respectively top, side and bottom views of a jet piston.

[0027] FIG. 13 is a sectional view of a portion of the jet piston engaging its piston cover showing a jet plug engaged by a jet nozzle to larger scale.

[0028] FIGS. 14, 15, and 16 are reduced front views of the engine cylinder and crank taken at 12 o'clock, 3 o'clock, and 6 o'clock respectively.

[0029] FIG. 17 is a side sectional view of the cylinder cap with input connections to larger scale.

[0030] FIG. 18 is a schematic of the engine controls.

[0031] FIGS. 19 and 20 are front and side views of a variation of the piston cover lift mechanism.

[0032] FIG. 21 is a side enlargement of a piston lift cam of FIGS. 19 and 20 on a portion of the crankshaft.

[0033] FIGS. 22 and 23 are front and side sections of a preferred variation of a piston for the engine.

[0034] FIG. 24 is a bottom view of the preferred lid for the piston.

[0035] FIG. 25 is a vertical section of the top portion of the cylinder with a glass cap receiving concentrated sun light for turning water into steam in the cylinder.

[0036] FIG. 26 is a schematic of the heat engine.

[0037] FIG. 27 is a vertical section of the cylinder with a jet exhaust deflector deflecting the exhaust against the bottom of the piston during the return stroke.

[0038] FIGS. 28, 29 and 30 are front sections of a variation of the engine shown in respectively the top dead center 0.degree., 90.degree., and exhaust dead center 180.degree. positions of the piston.

[0039] FIG. 31 is a section on line 31 at a ball and dent of FIG. 30.

[0040] FIG. 32 is a section taken on line 32-32 of FIG. 28.

[0041] FIG. 33 is a side section through a combined water and electric inlet plug of this engine to larger scale.

[0042] FIG. 34 is a section on line 34-34 of FIG. 28.

DETAILED DESCRIPTION OF THE INVENTION

[0043] Referring to the drawings and in particular to FIGS. 1-18, engine 12 has a block or frame 14 with one or more cylinders 16. Each cylinder 16 has cap 17, a jet piston 20, and a piston lid 21 fitting over the jet piston. The jet piston is secured on a central tube 22 extending down to a crosshead 24. Piston lid 21 has a central rod 25 extending slip fit through tube 22 to a crosshead 27. Crossheads 24 and 27 have end slots to slide along guides 28 to hold the jet piston and lid in alignment. Crosshead 27 can be omitted since rod 25 can be extended to hold pin 32.

[0044] A twin connecting rod 30 is connected on pin 32 to crosshead 27 and connected on pin 33 to crankshaft 34 between crank arms 36 and 37. Connecting rod 30 has twin cam arms 38 each extending up past crosshead 27 and along front and back faces of crosshead 24 each holding a cam roller 39 in a recessed cam track 40 on opposite faces of crosshead 24. Arms 38 swing cam rollers 39 from side to side along cam track 40 as they pass dead centers. Cam tracks 40 take a steep down slope to the left at center, FIG. 1, to lift the jet piston to close onto the lid for the power down stroke and lower the piston to open the lid for the exhaust powered up stroke.

[0045] Jet piston 20 has jet nozzles 42 through it and reciprocates under piston lid 21 to raise and lower to cover the nozzles during the down power stroke and uncover the nozzles during the exhaust up stroke. Piston lid 21 is a disk or open pattern with depending conical plugs 44 that align and fit into nozzles 42 when the jet piston is raised against the piston lid during the pressure work stroke until the connecting rod rollers 39 lower the jet piston relative to the piston lid to exhaust the cylinder on the up stroke. Tube 22 is tight fit or threaded in crosshead 24 and secured by pin 46 for assembly.

[0046] Referring to FIG. 13, each nozzle plug 44 is mounted in a hole in lid 21 and extended out by spring 48 to recess when engaged in a jet nozzle in jet piston 20 to help insure that each plug 44 seats securely when the jet piston is pushed against the lid.

[0047] Referring to FIGS. 1, 17 and 18, cylinder cap 17 has three tapped holes for various fittings; a water or steam or fuel injector nozzle 50, a spark or electric arc plug 52, and a safety valve 54. Nozzle 50 is directed at plug 52 to strike an arc or combustion. A cam 56 on crankshaft 34 or on cam shaft 58, FIG. 18, if the engine has more than one cylinder, controls the charge and ignition in the cylinders. A cam 56 on crankshaft 34 controls the water, steam, and or fuel injection and the arc or ignition for each cylinder.

[0048] Referring to FIGS. 17 and 18 for a water and steam injection steam engine, water pump 60 is driven from crankshaft 34 and piped to return condensate from condenser 62 to tank or boiler 64 which is piped through an injector pump 66 and back flow check valve 68 to each plug nozzle 50. Each injector 66 is a cylinder with piston operated by a cam 56 to meter and force a small amount of water (or steam) into the cylinder 17 controlled by that cam 56.

[0049] A cam 56, FIG. 5, for each cylinder 16 is secured on shaft 34 or on cam shaft 58 driven off crank shaft 34. Cam 56 closes contacts in a circuit from the negative of battery 74 to the pointed conductor on insulated plug 52 which sends an arc to plug 50 when started by a stream of conducting water aimed from plug 50 to the pointed end on plug 52. Plug 50 is grounded to the positive of battery 74. Electric condenser 76 across battery 74 reinforces the arc.

Operation

[0050] This engine has a large range of possible operation from high pressure steam injection to water injection into a vacuum dropping in pressure as the piston pulls a vacuum at the start of the down stroke until the water is exploded into steam. The ignition 52 is omitted for operation as a straight steam engine but can be an electric heating coil which is shorted out to form an arc just after water injection. The water injected would furnish a path to strike an arc to heat the water to steam during the down work stroke. The exhaust jets 42 from piston 20 furnish power (work) on the up exhaust stroke and eliminate work of compression.

Variations

[0051] Similar parts are given the same reference numbers with suffix added where modified.

[0052] Referring to FIGS. 19-21 for a variation of the lower portion of the engine, a jet piston lift cam 80 is secured to each crank arm 36 and 37 on pin 33. A cam follower rod 38B is supported to slide parallel on each connecting rod 30B and has a cam roller 39 at each end, one to follow on cam 80 and the other to travel in a straight cam track 40B on crosshead 24B. Cam 80 is turned with the crankshaft to lift and lower piston 20 relative to lid 21 as in FIG. 1. Springs 84 hold rods 36B on cams 80. Cam 80 is shaped and positioned to block and open jets 42 as described.

[0053] Referring to FIGS. 22 and 23 for a preferred variation of the engine, piston 20C has pin 32 supporting piston rod 30C in the usual arrangement for internal combustion engines. Rod 30C has a cam 90 on the upper end face inside the piston. Cam 90 is engaged by cam roller 92 on a cam rod 94 secured to lid 21 and mounted to slide up and down in a hole through piston 20C to open the lid for the exhaust stroke from about 5-12 o'clock and to close the lid for the power stroke from about 1-5 o'clock rotation of crank 36C. Roller 92 is held against cam 90 by coil spring 96 pocketed in piston 20C around rod 94. Piston 20C has jet nozzles 42 closed by lid 21 with stoppers 44 secured to the lid.

[0054] The preferred lid 21, FIG. 24, has arms 98 that hold stoppers 44 and present less restriction to flow than a solid lid.

[0055] Referring to FIG. 25, the head on cylinder 16 can be high temperature glass 17G to let concentrated sunlight directed in by optical fibers or tubes 102 to heat the head end of cylinder 16 for the full cycle to accumulate heat to make steam at the start of each cycle.

[0056] The schematic heat engine, FIG. 26, has cylinder 16 with piston 20C closed to pull a vacuum at the start of the down stroke to draw in a small metered amount of hot water under pressure through pressure check valve 68. The water is exploded to steam by internal and external heat to drive the piston down to where lid 21 opens jets 44 to exhaust the cylinder on the up stroke and next closes to pull a vacuum at the start of the next down stroke to take a charge of water for the next cycle. This engine can be made to operate on air, steam, or internal combustion fuel and the cylinder heated internally and/or externally with or without water injection.

[0057] Referring to FIG. 27, cylinder 16 can have a jet exhaust deflecting ring 104 in the bottom below the lowest extent of the rim of the piston to direct the exhaust jets up against the bottom of the piston. The jet nozzles 44 through the piston are directed toward the wall of the cylinder at a slight angle which further helps the return stroke.

[0058] Referring to FIGS. 28-32, engine 12D is a simplified version of engine 12 with one or more cylinders 16D as part of a base frame 14D. Each cylinder 16D, of high pressure steel pipe, has a corresponding pipe cap threaded thereon. A jet piston 20D in cylinder 16D has one or more replaceable jet nozzles 42 inserted press fit through the piston and a lid 21 with jet stoppers 44 one for each nozzle 42, as described, to close these nozzles during the work stroke.

[0059] Lid 21 is secured on one or more lift rods 25D each slip fit watertight through a hole through the piston and each secured to the lid by a tapered pin 106 for assembly.

[0060] FIGS. 28-32 show lid 21 supported on one lift rod 25D through the center of the piston and bent at 112 below the piston to one side of cylinder 16D to clear connecting rod 30 and engage a stop pin 114 extending into cylinder 16D to be engaged by the bottom of rod 25D when at the bottom of the work stroke. The bottom end of rod 25D has an inserted coil spring to cushion on stop 114.

[0061] A spring ball and dent fitting 115, FIG. 31, is screwed into a hole in the side of piston 20D to engage its ball in a channel 116 on stem 25D to guide the lid from rotating and has end depressions to hold the lid at the ends of the channel at closed and open limits of travel of the lid.

[0062] Lid 21 is closed and opened at respectively the head and exhaust ends of the piston strokes by engaging stops 117 on cap 12D and stop 114 on cylinder 16D, clearing under the piston. It is an object to utilize a larger portion of the work and exhaust strokes and more easily define where the lid opens and closes.

[0063] Referring to FIGS. 33 and 34, injector plug 50D threaded in cap 17D has a round body with a central cylinder chamber 120 open at the top end to the atmosphere. A piston 122 is mounted to move up and down in chamber 120. A depending plunger 124 on the bottom of piston 122 slides watertight up and down in a smaller metering cylinder water injecting chamber 126. A small capillary hole 128 connects chamber 126 out the bottom of plug 50D to shoot a fine stream of water only when forced out by plunger 124. A small hole 130 vents from the bottom of chamber 126 out the bottom of plug 50D to draw in a vacuum. Water is connected from tank W through valve V to the water chamber 128 under plunger 124.

[0064] When a piston 20 or 20D draws a vacuum to start the work stroke, this draws a vacuum through hole 130 into chamber 120 below piston 122 causing atmospheric pressure on top of piston 122 to force it down pushing plunger 124 down, squirting a stream of water out into the vacuum to explode to steam.

[0065] Electrical contacts 52D are added below plug 50D for the water stream to short a circuit to help explode the water stream to steam.

[0066] Plug 50D can carry these contacts to be shorted by the stream of water. Therefore plug 50D has high temperature insulated wires 14O and 141 sealed through it terminating in high temperature spaced apart contacts one above the other in the line for the water stream to short them.

[0067] Wires 14D and 14I are connected in an open circuit includes condenser C across bottom B and switch S, in series with rheostat R to vary the electric arc.

[0068] Having thus described my invention with a few variations, these are not intended as a limit on the scope of my invention which is intended to be covered by the following claims in all variations which become apparent to those skilled in the arts and which come within the true spirit and scope of this my invention.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed