Use Of Biological Or Chemical Control Agents For Controlling Insects And Nematodes In Resistant Crops

Andersch; Wolfram ;   et al.

Patent Application Summary

U.S. patent application number 13/821001 was filed with the patent office on 2014-02-27 for use of biological or chemical control agents for controlling insects and nematodes in resistant crops. This patent application is currently assigned to BAYER INTELLECTUAL PROPERTY GMBH. The applicant listed for this patent is Wolfram Andersch, Kevin Bugg, Nalini Desai, Candace Poutre, Jennifer Riggs, Steven Riniker, Carrie Russell, Bill Striegel, Julia Thissen Daum. Invention is credited to Wolfram Andersch, Kevin Bugg, Nalini Desai, Candace Poutre, Jennifer Riggs, Steven Riniker, Carrie Russell, Bill Striegel, Julia Thissen Daum.

Application Number20140056866 13/821001
Document ID /
Family ID45873472
Filed Date2014-02-27

United States Patent Application 20140056866
Kind Code A1
Andersch; Wolfram ;   et al. February 27, 2014

USE OF BIOLOGICAL OR CHEMICAL CONTROL AGENTS FOR CONTROLLING INSECTS AND NEMATODES IN RESISTANT CROPS

Abstract

The present invention relates generally to the use of biological or chemical control agents with for controlling insects and nematodes and to methods particularly useful for combating insects or nematodes and/or increasing crop yield in plants that are at least partially resistant to one or more parasitic nematodes or insects.


Inventors: Andersch; Wolfram; (Bergisch Gladbach, DE) ; Riggs; Jennifer; (Raleigh, NC) ; Poutre; Candace; (Moncure, NC) ; Desai; Nalini; (Chapel Hill, NC) ; Striegel; Bill; (Cary, NC) ; Bugg; Kevin; (Raliegh, NC) ; Riniker; Steven; (Seffner, FL) ; Russell; Carrie; (Latham, NY) ; Thissen Daum; Julia; (Apex, NC)
Applicant:
Name City State Country Type

Andersch; Wolfram
Riggs; Jennifer
Poutre; Candace
Desai; Nalini
Striegel; Bill
Bugg; Kevin
Riniker; Steven
Russell; Carrie
Thissen Daum; Julia

Bergisch Gladbach
Raleigh
Moncure
Chapel Hill
Cary
Raliegh
Seffner
Latham
Apex

NC
NC
NC
NC
NC
FL
NY
NC

DE
US
US
US
US
US
US
US
US
Assignee: BAYER INTELLECTUAL PROPERTY GMBH
Monheim
DE

Family ID: 45873472
Appl. No.: 13/821001
Filed: September 21, 2011
PCT Filed: September 21, 2011
PCT NO: PCT/EP2011/066453
371 Date: May 24, 2013

Related U.S. Patent Documents

Application Number Filing Date Patent Number
61385247 Sep 22, 2010
61418520 Dec 1, 2010
61419433 Dec 3, 2010

Current U.S. Class: 424/93.461
Current CPC Class: A01N 43/40 20130101; A01N 63/00 20130101; A01N 43/40 20130101; A01N 63/00 20130101; A01N 63/30 20200101; A01N 2300/00 20130101; A01N 43/40 20130101; A01N 2300/00 20130101; A01N 63/30 20200101; A01N 63/30 20200101; A01N 63/00 20130101
Class at Publication: 424/93.461
International Class: A01N 63/04 20060101 A01N063/04; A01N 63/00 20060101 A01N063/00

Foreign Application Data

Date Code Application Number
Dec 1, 2010 EP 10193328.1
Dec 1, 2010 EP 10193341.4

Claims



1. Use of a biological control agent of Group B, consisting of Bacillus agri, Bacillus aizawai, Bacillus albolactis, Bacillus amyloliquefaciens, Bacillus firmus, Bacillus cereus, Bacillus coagulans, Bacillus endoparasiticus, Bacillus endorhythmos, Bacillus firmus, Bacillus kurstaki, Bacillus lacticola, Bacillus lactimorbus, Bacillus lactis, Bacillus laterosporus, Bacillus lentimorbus, Bacillus licheniformis, Bacillus megaterium, Bacillus medusa, Bacillus metiens, Bacillus natto, Bacillus nigrificans, Bacillus popillae, Bacillus pumilus, Bacillus siamensis, Bacillus sphaericus, Bacillus spp., Bacillus subtilis, Bacillus thuringiensis, Bacillus uniflagellatus, and Metarhizium anisopliae, with nematicidal activity for controlling nematodes or increasing crop yield of a plant which is resistant to nematodes.

2. Use according to claim 1, wherein the biological control agent is Bacillus firmus CNCM I-1582 spore or a nematicidally active mutant thereof.

3. Use according to claim 1 or 2, wherein the nematodes are phytoparasitic nematodes consisting of the genera Aphelenchoides spp., Bursaphelenchus spp., Ditylenchus spp., Globodera spp., Heterodera spp., Longidorus spp., Meloidogyne spp., Pratylenchus spp., Radopholus spp., Trichodorus spp., Tylenchulus spp, Xiphinema spp., Helicotylenchus spp., Tylenchorhynchus spp., Scutellonema spp., Paratrichodorus spp., Meloinema spp., Paraphelenchus spp., Aglenchus spp., Belonolaimus spp., Nacobbus spp, Rotylenchulus spp., Rotylenchus spp., Neotylenchus spp., Paraphelenchus spp., Dolichodorus spp., Hoplolaimus spp., Punctodera spp., Criconemella spp., Quinisulcius spp., Hemicycliophora spp., Anguina spp., Subanguina spp., Hemicriconemoides spp., Psilenchus spp., Pseudohalenchus spp., Criconemoides spp., Cacopaurus spp.

4. Use according to any of the claims 1 to 3, wherein at least one agrochemical active compound is added to the biological control agent.

5. Use according to any of the claims 1 to 4, wherein fluopyram or its N-oxides are added to the biological control agent.

6. Use according to any of the claims 1 to 5, wherein the plant is selected from the group vegetables, potato, corn, soy, cotton and banana.

7. Use according to any of the claims 1 to 6, wherein the biological control agent with a concentration of 10.sup.11 spores/g is used in a range of 0.1 g to 20 g per ha.

8. Use according to any of the claims 1 to 7, wherein the plant is genetically engineered to be nematode resistant.

9. Use according to claim 8, wherein the plant contains one or more genes selected from the group: Axmi031 and Axn2.

10. Use according to any of the claims 1 to 9, wherein the biological control agent and optional agricultural active ingredients are applied on plant propagation material.

11. Use according to any of the claims 1 to 9, wherein the biological control agent and optional agricultural active ingredients are applied to the soil, either in a co-formulation or in separate applications.

12. A method for treating plant seed comprising providing plant seed comprising one or more of the transgenes of Group NG, consisting of axmi205, optaxmi205v01.03, optaxmi205v01.02, optaxmi205v01.04, optaxmiR1(evo 21), optaxmiR1(evo 22), optaxmiR1(evo 23), optaxmiR1(evo 26), optaxmi115v01, optaxmi115v02, axmi115v02, axmi100, axmi076, axmi005, optcry1Ac, axmi031, and axn2. and applying to said seed a composition comprising a pesticidally-effective amount of one or more of the chemical or biological control agents selected from Group B, Group IP, and Group FP.

13. The method of claim 12, wherein the plant seed comprises a nucleic acid sequence encoding an Axmi031 polypeptide, or a biologically-active variant or fragment thereof, having nematicidal activity.

14. The method of claim 12, wherein the plant seed comprises a nucleic acid sequence encoding an Axn2 polypeptide, or a biologically-active variant or fragment thereof, having nematicidal activity.

15. The method of claim 13 or 14, wherein the chemical or biological control agent is selected from Bacillus firmus CNCM I 1582 spore, and the plant seed are further treated with fluopyram.

16. The method of claim 12, 13, or 14, wherein the plant seed is a soybean plant seed.

17. The method of claim 12, wherein the plant seed comprises a nucleic acid sequence encoding an Axmi205 polypeptide, or a biologically-active variant or fragment thereof, having pesticidal activity.

18. The method of claim 17, wherein the chemical or biological control agent is clothianidin or thiamethoxam.

19. The method of claim 12, wherein the plant seed is a corn plant seed.
Description



FIELD OF THE INVENTION

[0001] The present invention relates to the use of biological and/or chemical control agents for controlling nematodes or insects in nematode or insect resistant crops and to methods particularly useful for combating nematodes or insects and/or increasing crop yield in those crops.

DESCRIPTION OF THE CURRENT TECHNOLOGY

[0002] Nematodes are tiny, worm-like, multicellular animals adapted to living in water. The number of nematode species is estimated at half a million. An important part of the soil fauna, nematodes live in a maze of interconnected channels, called pores, that are formed by soil processes. They move in the films of water that cling to soil particles. Plant-parasitic nematodes, a majority of which are root feeders, are found in association with most plants. Some are endoparasitic, living and feeding within the tissue of the roots, tubers, buds, seeds, etc. Others are ectoparasitic, feeding externally through plant walls. A single endoparasitic nematode can kill a plant or reduce its productivity. Endoparasitic root feeders include such economically important pests as the root-knot nematodes (Meloidogyne species), the reniform nematodes (Rotylenchulus species), the cyst nematodes (Heterodera species), and the root-lesion nematodes (Pratylenchus species). Direct feeding by nematodes can drastically decrease a plant's uptake of nutrients and water. Nematodes have the greatest impact on crop productivity when they attack the roots of seedlings immediately after seed germination. Nematode feeding also creates open wounds that provide entry to a wide variety of plant-pathogenic fungi and bacteria. These microbial infections are often more economically damaging than the direct effects of nematode feeding.

[0003] Generally nematode resistance is characterized by host plant cell death at or nearby the feeding site of the parasitic nematode. Particular resistance genes and nematode interaction influence the timing and localization of the resistance response. Williamson et al. (Trends in Genetics, Vol. 22, No. 7, July 2006) describes the nature and mechanisms of plant-nematode interactions with respect to resistance in plants.

[0004] Nematode-resistant plants can be related to three main approaches being nematode targets, nematode-crop interface and plant response. Antifeedant or nematicidal proteins, disruption of essential nematode gene expression by RNA interference, disruption of sensory function by RNA interference, peptides or plantibodies or nematicidal metabolites are examples for nematode targets; disruption of nematode pathogenicity factors regarding migration and invasion or regarding feeding site induction and maintenance by RNA interference, peptides or plantibodies, stealth or repellant plants; or the conversion of host plants to non-host plants are examples for nematode-crop interface while plant resistance gene or hypersensitive response activation by nematode invasion; Induced cell death or other site incompatibility by feeding site specific promoters or conversion of crops to tolerance are examples for plant response.

[0005] Although nematode-resistant plants are described to be resistant towards specific nematodes, there is still some interactions between the nematode and the crop which, due to the different defense reactions of the plant, might lead to a partially impaired plant. One example of these defense reactions is the hypersensitive response. One consequence might result in impaired roots and loss of vigor of the affected plants.

[0006] Current nematode control focuses essentially on the prevention of nematode attack on the plant. Once a plant is parasitized it is virtually impossible to kill the nematode without also destroying the plant. Therefore, it would be advantageous to provide enhanced nematode control compounds and methods of treating nematode resistant plants to prevent or reduce nematode damage.

[0007] A large part of the damage to crop plants which is caused by pests occurs as early as when the seed is attacked during storage and after the seed is introduced into the soil, during and immediately after germination of the plants. This phase is particularly critical since the roots and shoots of the growing plant are particularly sensitive and even minor damage can lead to the death of the whole plant. Thus, it is desirable to develop methods for protecting the seed and the germinating plant which dispense with the additional application of crop protection agents after sowing or after the emergence of the plants. It is furthermore desirable to optimize the amount of active compound employed in such a way as to provide maximum protection for the seed and the germinating plant from attack by pests, but without damaging the plant itself by the active compound employed. In particular, methods for the treatment of seed should also take into consideration the intrinsic insecticidal properties of transgenic plants in order to achieve optimum protection of the seed and also the germinating plant with a minimum of crop protection agents being employed.

SUMMARY OF THE INVENTION

[0008] The present invention is drawn to compositions and methods for regulating pest resistance or tolerance in plants or plant cells. By "resistance" is intended that the pest (e.g., insect or nematode) is killed upon ingestion or other contact with the plant or parts thereof. By "tolerance" is intended an impairment or reduction in the movement, feeding, reproduction, or other functions of the pest. Methods for measuring pesticidal activity are well known in the art. See, for example, Czapla and Lang (1990) J. Econ. Entomol. 83:2480-2485; Andrews et al. (1988) Biochem. J. 252:199-206; Marrone et al. (1985) J. of Economic Entomology 78:290-293; and U.S. Pat. No. 5,743,477, all of which are herein incorporated by reference in their entirety.

[0009] In conjunction with the present invention "controlling" denotes a preventive or curative reduction of the insect or nematode infestation in comparison to the untreated crop, more preferably the infestation is essentially repelled, most preferably the infestation is totally suppressed.

[0010] The present invention also relates to a method for the protection of seed and germinating plants from attack by pests, by selectively applying pesticidal agents to the seed of a transgenic plant. Pesticidal agents include chemical or biological control agents compositions applied to the seed of the transgenic plant, wherein the agent is intended to provide protection of the plant or seed thereof against damage caused by one or more plant pests. Furthermore, the invention relates to seed which has been treated with a pesticidal agent as described herein. Application of a pesticidal agent to the seed of a transgenic plant results in an improved resistance or tolerance to one or more plant pests and/or improved yield or vigor compared to a transgenic plant cultivated from a seed not treated with a pesticidal agent as described herein, or a plant of the same species as the referenced transgenic plant that has been cultivated from a seed treated with a pesticidal agent as described herein but that lacks the transgene (either of which may be herein referred to as a "control" plant).

[0011] In some embodiments, treatment of the seed with these agents not only protects the seed itself, but also the resulting plants after emergence, from pests. In this manner, the immediate treatment of the crop at the time of sowing or shortly thereafter can be dispensed with.

BRIEF DESCRIPTION OF THE FIGURES

[0012] FIG. 1 shows the reduction in cyst counts for nontransgenic (Jack) plants compared to Axmi031 and Axn2 transgenic plants infested with soybean cyst nematodes. The seed of each plant was coated with a base seed coating only (no other chemical or biological treatment).

[0013] FIG. 2 demonstrates that Axmi031 expression correlates with reduction in SCN cysts counts in transgenic soybean plants, and that there is a statistically significant (p=0.0012) further reduction in cyst counts when the seed is treated with Bacillus firmus CNCM I-1582 spore.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0014] The methods according to the present invention have been found to provide a greater degree of plant vigor and yield in nematode and fungal infested environments than would be expected from application of a biological or chemical control agent or the presence of an insect or nematode control gene alone. At least some of the insect control agents within the scope of the present invention have been shown to provide increased root mass even in the absence of insect pressure which increased root mass leads to improved establishment of the beneficial bacteria within the rhizosphere which, in turn, reduces overall losses in crop vigor and yields caused by either plant parasitic nematodes or fungi. Along with the physical combination of these components while treating plants and plant material, in one preferred embodiment of this invention, the compositions of the present invention have been formulated to provide a stable environment for living biological control agents such as spore-forming, root-colonizing bacteria. Various additives may be added to each inventive composition depending on the desired properties for a final formulation which has the necessary physical and chemical stability to produce a commercially viable product.

[0015] In some embodiments, the compositions of the present invention preferably include at least one biological control agent. A biological control agent as contemplated by the present invention refers to at least one spore-forming bacterium with demonstrated agricultural benefit. Preferably, the at least one spore-forming bacterium is a root-colonizing bacterium (e.g., rhizobacterium). Agricultural benefit refers to the bacterium's ability to provide a plant protection from the harmful effects of plant pathenogenic fungi and/or soil born animals such as those belonging to the phylum Nematoda or Aschelminthes. Protection against plant parasitic nematodes and fungi can occur through chitinolytic, proteolytic, collagenolytic, or other activities detrimental to these soilborne animals and/or detrimental to microbial populations. Additional protection can be direct such as the production of chemicals acutely toxic to plant pests or indirect such as the induction of a systemic plant response enabling a plant to defend itself from damage caused by plant pathogens. Suitable bacteria exhibiting these nematicidal and fungicidal properties may include members of the Group B.

[0016] Group B: Bacillus agri, Bacillus aizawai, Bacillus albolactis, Bacillus amyloliquefaciens, Bacillus firmus, Bacillus cereus, Bacillus coagulans, Bacillus endoparasiticus, Bacillus endorhythmos, Bacillus firmus, Bacillus kurstaki, Bacillus lacticola, Bacillus lactimorbus, Bacillus lactis, Bacillus laterosporus, Bacillus lentimorbus, Bacillus licheniformis, Bacillus megaterium, Bacillus medusa, Bacillus metiens, Bacillus natto, Bacillus nigrificans, Bacillus popillae, Bacillus pumilus, Bacillus siamensis, Bacillus sphaericus, Bacillus spp., Bacillus subtilis, Bacillus thuringiensis, Bacillus uniflagellatus, and Metarhizium anisopliae.

[0017] In a particularly preferred embodiment, and as part of Group B, the nematicidal biological control agent is at least one B. firmus CNCM I-1582 spore and/or B. cereus strain CNCM I-1562 spore as disclosed in U.S. Pat. No. 6,406,690, which is incorporated herein by reference in its entirety. In other preferred embodiments, the agriculturally beneficial bacteria is at least one B. amyloliquefaciens IN937a, at least one Bacillus subtilis strain designation GB03, or at least one B. pumilus strain designation GB34. Combinations of the four species of above-listed bacteria, as well as other spore-forming, root-colonizing bacteria known to exhibit agriculturally beneficial properties are within the scope and spirit of the present invention.

[0018] Particularly preferred embodiments according to the invention are also those compositions that comprise mutants of B. firmus CNCM I-1582 spore and/or B. cereus strain CNCM I-1562 spore. Very particularly preferred are those mutants that have a nematicidal, insecticidal or plant growth promoting activity. Most particularly preferred are those mutants that have a nematicidal activity.

[0019] Further preferred within Group B are the following strains as of Group BS:

Group BS:

TABLE-US-00001 [0020] Mentioned in Bacillus subtilis strain Strain disclosed under WO 2005028659 PA766 (WO2001021772) WO 2002072857 PA668-24, PA668-2A ATCC6051 WO 2001021772 PA221, PA222, PA223, PA235, PA232, PA233, SwissProt Acc No, P54556 PA236, PA313, PA410, PA402, PA403, PA411, PA412, PA413, PA303, PA327, PA328, PA401, PA340, PA342, PA404, PA405, PA374, PA354, PA365, PA377, PA651 or PA824; WO 2010005776 NRRL Acc. No. B-50147 WO 1999009819 AQ734 NRRL Acc. No. B-21665 WO 1998021968 AQ153 ATCC 55614 WO 1995004539 DB-9011 (FERM BP-3418) U.S. Pat. No. 6,291,426 AQ713 WO 2000029426 AQ713 U.S. Pat. No. 6,060,051 AQ713 NRRL Acc. No. B-21661 WO 1998050422 AQ713 NRRL Acc. No. B-21661 WO 2000058442 AQ713 NRRL Acc. No. B-21661 WO 2009037242 AQ713 NRRL Acc. No. B-21661 WO 2000001237 NCTC 10073 WO 2002090300 N-terminus sequence of B.s. TR (thioredoxin reductase) (P2), C-terminus sequence of B.s. TR (P23) U.S. Pat. No. 6,307,129 hemY gene WO 2001007590 hemY gene WO 2007011845 metl gene DE 102005029704 yaaD gene BD170

[0021] Further preferred within Group B are the following strains of Metarhizium anisopliae, of Group MA:

Group MA

TABLE-US-00002 [0022] Mentioned in Metarhizium anisopliae strain Strain disclosed under DE 003639504/1986 P 0001, P 0003 DSM 3884, DSM 3885 CN 101438713/2008 M. ani. A, E, V CN 101438715/2008 M. ani. A, E, V WO 2009035925 A2 F52, MA 1200 ATCC 90448, ATCC 62176 CN 101338279/2008 ZJUIM 24-562, ZJUIM 17-340 CGMCC No. 2375, CGMCC No 2374 JP 2008260764 more preferably Paecilomyces tenuipes T1 (FERM BP-7861) KR 2008006679 NIAST IPL012 KFCC-11362P WO 2008062413 MITM1 WO 2008052391 M.a. var. dcjhyium Lj01 CCTCC No. M 206077 WO 2007112257 C4-B, ESC 1 NRRL 30905 CN 1542123 CQMA102 CGMCC No. 0877 US 20040101516 NRRL 30594 WO 2003038065 HY-2 CN 1840652/2005 M.a. var. argyrogramma agnata, CCTCC No: M204078 GXW26-8 D-591-1, D-1219-1, D-1220-1, D-1221-1

[0023] The amount of the at least one biological control agent employed in the compositions can vary depending on the final formulation as well as size or type of the plant or seed utilized. Preferably, the at least one biological control agent in the compositions is present in about 2% w/w to about 80% w/w of the entire formulation. More preferably, the at least one biological control agent employed in the compositions is about 5% w/w to about 65% w/w and most preferably about 10% w/w to about 60% w/w by weight of the entire formulation.

[0024] The present invention further relates to the use of a nematicidally active chemical, in particular N-{[3-chloro-5-(trifluoromethyl)-2-pyridinyl]ethyl}-2,6-dichlorobenzamide (fluopyram) for controlling nematodes in nematode resistant crops and to methods particularly useful for combating nematodes and/or increasing crop yield in those crops. A combination of the biological control agent and fluopyram according to this invention is also encompassed.

[0025] Fluopyram is defined to be the compound of the formula (I)

##STR00001##

as well as the N-oxides of the compound thereof.

[0026] Fluopyram is a broad spectrum fungicide with penetrant and translaminar properties for foliar, drip, drench and seed treatment applications on a wide range of different crops against many economically important plant diseases. It is very effective in preventative applications against powdery mildew species, grey mould and white mould species. It has an efficacy against many other plant diseases. Fluopyram has shown activity in spore germination, germ tube elongation and mycelium growth tests. At the biochemical level, fluopyram inhibits mitochondrial respiration by blocking the electron transport in the respiratory chain of Succinate Dehydrogenase (complex II-SDH inhibitor).

[0027] A general description of the nematicidal activity of pyridylethylbenzamide derivatives is found in WO-A 2008/126922.

[0028] Accordingly, the present invention also relates to the use of compositions comprising [0029] A) a biological control agent with nematicidal activity, in particular Bacillus firmus CNCM I-1582 spore, and optionally [0030] B) at least one agrochemically active compound, in addition to extenders and/or surfactants for controlling nematodes infesting nematode resistant crops.

[0031] An exemplary method of the invention comprises applying a Bacillus firmus CNCM I-1582 spore of the invention to propagation material (e.g seeds) of plants to combat nematode damage and/or increase crop yield.

[0032] A further exemplary method of the invention comprises applying a Bacillus firmus CNCM I-1582 spore of the invention to either soil or a plant (e.g. foliarly) to combat nematode damage and/or increase crop yield.

[0033] In various embodiments, the nematicidal biological control agent is B. firmus, particular strain CNCM I-1582 spore, and/or B. cereus, particularly strain CNCM I-1562 spore, and the nematode resistant crop comprises a transgenic plant comprising Axmi031 or Axn2 (Table 1).

[0034] Bacillus firmus CNCM I-1582 spores are also useful in combating plant-parasitic nematodes in plants carrying one or more of the genes as described in the following documents: WO2009/027539A2, WO2009/027313A2, WO2008/152008A2, WO2008/110522A1, WO2008/095972A1, WO2008/095970A1, WO2008/095969A1, WO2008/095919A1, WO2008/095916A1, WO2008/095911A2, WO2008/095910A1, WO2008/095889A1, WO2008/095886A1, WO2008/077892A1, WO2008/071726A2, WO2006/020821A2, WO2005/082932A2, WO2009/048847A1, WO2007/095469A2, WO2005/012340A1, WO2007/104570A2, Ser. Nos. 11/765,491, 11/765,494, 10/926,819, 10/782,020, 12/032,479, 10/783,417, 10/782,096, 11/657,964, 12/192,904, 11/396,808, 12/166,253, 12/166,239, 12/166,124, 12/166,209, 11/762,886, 12/364,335, 11/763,947, 12/252,453, 12/209,354, 12/491,396 or 12/497,221.

TABLE-US-00003 TABLE 1 (Group NG). NUCLEOTIDE SEQ AMINO ACID SEQ ID NO ID NO *SEQ ID NO's in ( ) *SEQ ID NO's in ( ) U.S. Correspond to SEQ ID Correspond to SEQ ID APPLICATION FILING NO's in Referenced NO's in Referenced GENE NAME SERIAL NO. DATE Applications Applications axmi205 12/828,594 Jul. 1, 2010 1 (1) 2 (2), 3 (3), 4 (4), 5 (5), 6 (6), 7 (7), 8 (8) optaxmi205v01.03 12/828,594 Jul. 1, 2010 10 (10) 2 (2) optaxmi205v01.02 12/828,594 Jul. 1, 2010 9 (9) 2 (2) optaxmi205v01.04 12/828,594 Jul. 1, 2010 11 (11) 2 (2) optaxmiR1(evo 21) 12/701,058 Feb. 5, 2010 12 (12) 13 (13) optaxmiR1(evo 22) 12/701,058 Feb. 5, 2010 14 (14) 15 (15) optaxmiR1(evo 23) 12/701,058 Feb. 5, 2010 16 (16) 17 (17) optaxmiR1(evo 26) 12/701,058 Feb. 5, 2010 18 (18) 19 (19) optaxmi115v01 12/497,221 Jul. 2, 2009 20 (15) 21 (6) optaxmi115v02 12/497,221 Jul. 2, 2009 22 (16) 21 (6) axmi115v02 61/471,848 Apr. 15, 2008 any of 23-36 (1-14) any of 37-53 (15-31) axmi100 12/491,396 Jun. 25, 2009 54 (36), 55 (282) 56 (96) axmi076 12/252,453 Oct. 16, 2008 57 (4), 59 (6), 60 (11) 58 (5) axmi005 12/497,221 Jul. 2, 2009 61 (1), 62 (7) 63 (4), 64 (9) optcry1Ac 12/249,016 Oct. 10, 2008 65 (1), 66 (2), 67 (3), 70 (6) 68 (4), 69 (5) axmi031 11/762,886 Jun. 14, 2007 71 (20) 72 (21) axn2 12/638,591 Dec. 15, 2009 73 (7), 75 (10) 74 (8)

[0035] In various embodiments, the compositions and methods of the present invention comprise treatment of a transgenic plant comprising one or more of the genes listed in Table 1 (which comprise the Group NG) with one or more of the biological or chemical control agents of Group B, Group IP, and/or Group FP. In particular embodiments, the biological or chemical control agent is applied to the seed of the transgenic plant comprising one or more of the genes listed in Table 1, including biologically-active variants and fragments thereof.

[0036] In a preferred embodiment of the invention the transgenic plant is homozyguous with respect to the exogeneous gene of Table 1.

[0037] In another preferred embodiment of the invention the transgenic plant is hemizyguous with respect to the exogeneous gene of Table 1.

[0038] The nucleotide and amino acid SEQ ID NOs listed in Table 1 are exemplary sequences and not intended to limit the scope of the invention. The invention encompasses plants and plant parts, including plant cells and seed, comprising one or more of the genes listed in column 1 of Table 1. In some embodiments, the invention encompasses plants and plant parts, including plant cells and seed, comprising one or more nucleotide sequences listed in column 4 of Table 1. In some embodiments, the invention encompasses plants and plant parts, including plant cells and seed, comprising one or more nucleotide sequences encoding one or more of the polypeptides listed in column 5 of Table 1.

[0039] In yet another embodiment, the invention encompasses plants and plant parts, including plant cells and seed, comprising one or more nucleotide sequences encoding a biologically-active variant or fragment of the amino acid sequence(s) listed in column 5 of Table 1.

[0040] A fragment of a nucleotide sequence that encodes a biologically active portion of a pesticidal protein of the invention will encode at least about 15, 25, 30, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450 contiguous amino acids, or up to the total number of amino acids present in a full-length pesticidal protein listed in Table 1 herein. Such biologically active portions can be prepared by recombinant techniques and evaluated for pesticidal activity. Methods for measuring pesticidal activity are well known in the art. See, for example, Czapla and Lang (1990) J. Econ. Entomol. 83:2480-2485; Andrews et al. (1988) Biochem. J. 252:199-206; Marrone et al. (1985) J. of Economic Entomology 78:290-293; and U.S. Pat. No. 5,743,477, all of which are herein incorporated by reference in their entirety.

[0041] In some embodiments, the fragment is a proteolytic cleavage fragment. For example, the proteolytic cleavage fragment may have an N-terminal or a C-terminal truncation of at least about 100 amino acids, about 120, about 130, about 140, about 150, or about 160 amino acids relative to the amino acid sequence listed in Table 1. In some embodiments, the fragments encompassed herein result from the removal of the C-terminal crystallization domain, e.g., by proteolysis or by insertion of a stop codon in the coding sequence.

[0042] Preferred pesticidal proteins of the present invention are encoded by a nucleotide sequence sufficiently identical to the nucleotide sequence(s) listed in Table 1, or are pesticidal proteins that are sufficiently identical to the amino acid sequence(s) listed in Table 1. By "sufficiently identical" is intended an amino acid or nucleotide sequence that has at least about 60% or 65% sequence identity, about 70% or 75% sequence identity, about 80% or 85% sequence identity, about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity compared to a reference sequence using one of the alignment programs described herein using standard parameters. One of skill in the art will recognize that these values can be appropriately adjusted to determine corresponding identity of proteins encoded by two nucleotide sequences by taking into account codon degeneracy, amino acid similarity, reading frame positioning, and the like.

[0043] To determine the percent identity of two amino acid sequences or of two nucleic acids, the sequences are aligned for optimal comparison purposes. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences (i.e., percent identity=number of identical positions/total number of positions (e.g., overlapping positions).times.100). In one embodiment, the two sequences are the same length. In another embodiment, the percent identity is calculated across the entirety of the reference sequence (e.g., a sequence listed in Table 1). The percent identity between two sequences can be determined using techniques similar to those described below, with or without allowing gaps. In calculating percent identity, typically exact matches are counted. A gap, i.e. a position in an alignment where a residue is present in one sequence but not in the other, is regarded as a position with non-identical residues.

[0044] The determination of percent identity between two sequences can be accomplished using a mathematical algorithm. A nonlimiting example of a mathematical algorithm utilized for the comparison of two sequences is the algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 87:2264, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5877. Such an algorithm is incorporated into the BLASTN and BLASTX programs of Altschul et al. (1990) J. Mol. Biol. 215:403. BLAST nucleotide searches can be performed with the BLASTN program, score=100, wordlength=12, to obtain nucleotide sequences homologous to pesticidal-like nucleic acid molecules of the invention. BLAST protein searches can be performed with the BLASTX program, score=50, wordlength=3, to obtain amino acid sequences homologous to pesticidal protein molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST (in BLAST 2.0) can be utilized as described in Altschul et al. (1997) Nucleic Acids Res. 25:3389. Alternatively, PSI-Blast can be used to perform an iterated search that detects distant relationships between molecules. See Altschul et al. (1997) supra. When utilizing BLAST, Gapped BLAST, and PSI-Blast programs, the default parameters of the respective programs (e.g., BLASTX and BLASTN) can be used. Alignment may also be performed manually by inspection.

[0045] Another non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the ClustalW algorithm (Higgins et al. (1994) Nucleic Acids Res. 22:4673-4680). ClustalW compares sequences and aligns the entirety of the amino acid or DNA sequence, and thus can provide data about the sequence conservation of the entire amino acid sequence. The ClustalW algorithm is used in several commercially available DNA/amino acid analysis software packages, such as the ALIGNX module of the Vector NTI Program Suite (Invitrogen Corporation, Carlsbad, Calif.). After alignment of amino acid sequences with ClustalW, the percent amino acid identity can be assessed. A non-limiting example of a software program useful for analysis of ClustalW alignments is GENEDOC.TM.. GENEDOC.TM. (Karl Nicholas) allows assessment of amino acid (or DNA) similarity and identity between multiple proteins. Another non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers and Miller (1988) CABIOS 4:11-17. Such an algorithm is incorporated into the ALIGN program (version 2.0), which is part of the GCG Wisconsin Genetics Software Package, Version 10 (available from Accelrys, Inc., 9685 Scranton Rd., San Diego, Calif., USA). When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used.

[0046] Unless otherwise stated, GAP Version 10, which uses the algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48(3):443-453, will be used to determine sequence identity or similarity using the following parameters: % identity and % similarity for a nucleotide sequence using GAP Weight of 50 and Length Weight of 3, and the nwsgapdna.cmp scoring matrix; % identity or % similarity for an amino acid sequence using GAP weight of 8 and length weight of 2, and the BLOSUM62 scoring program. Equivalent programs may also be used. By "equivalent program" is intended any sequence comparison program that, for any two sequences in question, generates an alignment having identical nucleotide residue matches and an identical percent sequence identity when compared to the corresponding alignment generated by GAP Version 10.

[0047] "Variants" of the amino acid sequences listed in Table 1 include those sequences that encode the pesticidal proteins disclosed herein but that differ conservatively because of the degeneracy of the genetic code as well as those that are sufficiently identical as discussed above. Naturally occurring allelic variants can be identified with the use of well-known molecular biology techniques, such as polymerase chain reaction (PCR) and hybridization techniques as outlined below. Variant nucleotide sequences also include synthetically derived nucleotide sequences that have been generated, for example, by using site-directed mutagenesis but which still encode the pesticidal proteins disclosed in the present invention as discussed below.

[0048] The skilled artisan will further appreciate that changes can be introduced by mutation of the nucleotide sequences of the invention thereby leading to changes in the amino acid sequence of the encoded pesticidal proteins, without altering the biological activity of the proteins. Thus, variant isolated nucleic acid molecules can be created by introducing one or more nucleotide substitutions, additions, or deletions into the corresponding nucleotide sequence disclosed herein, such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Such variant nucleotide sequences are also encompassed by the present invention.

[0049] For example, conservative amino acid substitutions may be made at one or more, predicted, nonessential amino acid residues. A "nonessential" amino acid residue is a residue that can be altered from the wild-type sequence of a pesticidal protein without altering the biological activity, whereas an "essential" amino acid residue is required for biological activity. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine).

[0050] Amino acid substitutions may be made in nonconserved regions that retain function. In general, such substitutions would not be made for conserved amino acid residues, or for amino acid residues residing within a conserved motif, where such residues are essential for protein activity. Examples of residues that are conserved and that may be essential for protein activity include, for example, residues that are identical between all proteins contained in an alignment of similar or related toxins to the sequences of the invention (e.g., residues that are identical in an alignment of homologous proteins). Examples of residues that are conserved but that may allow conservative amino acid substitutions and still retain activity include, for example, residues that have only conservative substitutions between all proteins contained in an alignment of similar or related toxins to the sequences of the invention (e.g., residues that have only conservative substitutions between all proteins contained in the alignment homologous proteins). However, one of skill in the art would understand that functional variants may have minor conserved or nonconserved alterations in the conserved residues.

[0051] Alternatively, variant nucleotide sequences can be made by introducing mutations randomly along all or part of the coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for ability to confer pesticidal activity to identify mutants that retain activity. Following mutagenesis, the encoded protein can be expressed recombinantly, and the activity of the protein can be determined using standard assay techniques.

[0052] Using methods such as PCR, hybridization, and the like corresponding pesticidal sequences can be identified, such sequences having substantial identity to the sequences of the invention. See, for example, Sambrook and Russell (2001) Molecular Cloning: A Laboratory Manual. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.) and Innis, et al. (1990) PCR Protocols: A Guide to Methods and Applications (Academic Press, NY).

[0053] Variant nucleotide and amino acid sequences of the present invention also encompass sequences derived from mutagenic and recombinogenic procedures such as DNA shuffling. With such a procedure, one or more different pesticidal protein coding regions can be used to create a new pesticidal protein possessing the desired properties. In this manner, libraries of recombinant polynucleotides are generated from a population of related sequence polynucleotides comprising sequence regions that have substantial sequence identity and can be homologously recombined in vitro or in vivo. For example, using this approach, sequence motifs encoding a domain of interest may be shuffled between a pesticidal gene of the invention and other known pesticidal genes to obtain a new gene coding for a protein with an improved property of interest, such as an increased insecticidal activity. Strategies for such DNA shuffling are known in the art. See, for example, Stemmer (1994) Proc. Natl. Acad. Sci. USA 91:10747-10751; Stemmer (1994) Nature 370:389-391; Crameri et al. (1997) Nature Biotech. 15:436-438; Moore et al. (1997) J. Mol. Biol. 272:336-347; Zhang et al. (1997) Proc. Natl. Acad. Sci. USA 94:4504-4509; Crameri et al. (1998) Nature 391:288-291; and U.S. Pat. Nos. 5,605,793 and 5,837,458.

[0054] Domain swapping or shuffling is another mechanism for generating altered pesticidal proteins. Domains may be swapped between pesticidal proteins, resulting in hybrid or chimeric toxins with improved pesticidal activity or target spectrum. Methods for generating recombinant proteins and testing them for pesticidal activity are well known in the art (see, for example, Naimov et al. (2001) Appl. Environ. Microbiol. 67:5328-5330; de Maagd et al. (1996) Appl. Environ. Microbiol. 62:1537-1543; Ge et al. (1991) J. Biol. Chem. 266:17954-17958; Schnepf et al. (1990) J. Biol. Chem. 265:20923-20930; Rang et al. 91999) Appl. Environ. Microbiol. 65:2918-2925).

[0055] Variants and fragments of the proteins encompassed by the present invention are biologically active, that is they continue to possess the desired biological activity of the native protein, that is, pesticidal activity. By "retains activity" is intended that the variant will have at least about 30%, at least about 50%, at least about 70%, or at least about 80% of the pesticidal activity of the native protein. Methods for measuring pesticidal activity are well known in the art. See, for example, Czapla and Lang (1990) J. Econ. Entomol. 83: 2480-2485; Andrews et al. (1988) Biochem. J. 252:199-206; Marrone et al. (1985) J. of Economic Entomology 78:290-293; and U.S. Pat. No. 5,743,477, all of which are herein incorporated by reference in their entirety.

[0056] In one embodiment, the compositions and methods encompassed herein comprise treatment of a seed comprising Axmi205, including biologically-active variants and fragments thereof, with a pesticidally-effective amount of one or more of the biological or chemical control agents of Group B, Group IP, and/or Group FP. In preferred embodiments, the control agent is clothianidin. The control agent is applied to the seed of the Axmi205 plant at or below commercial rates.

[0057] In another embodiment, the compositions and methods encompassed herein comprise treatment of a seed comprising Axmi031, including biologically-active variants and fragments thereof, with a pesticidally-effective amount one or more of the biological or chemical control agents of Group B, Group IP, and/or Group FP. In preferred embodiments, the control agent is selected from Bacillus firmus, fluopyram and metalaxyl. The control agent is applied to the seed of the Axmi031 plant at or below commercial rates.

[0058] By "pesticidally-effective amount" is intended an amount of the pesticide that is able to bring about death to at least one pest, or to noticeably reduce pest growth, feeding, or normal physiological development. This amount will vary depending on such factors as, for example, the specific target pests to be controlled, the specific environment, location, plant, crop, or agricultural site to be treated, the environmental conditions, and the method, rate, concentration, stability, and quantity of application of the pesticidally-effective polypeptide composition.

[0059] The preferred biological or chemical control agent encompassed by the present invention can be used alone or in combination with one or more of the chemical or biological control agents of Group B, Group IP, or Group FP, and, optionally, one or more additional agrochemically active compounds.

[0060] In the present context, agrochemically active compounds are to be understood as meaning all substances which are or may be customarily used for treating plants. Fungicides, bactericides, insecticides, acaricides, nematicides, molluscicides, safeners, plant growth regulators and plant nutrients as well as biological control agents may be mentioned as being preferred.

[0061] Examples of fungicides which may be mentioned are:

[0062] (1) Inhibitors of the nucleic acid synthesis, for example benalaxyl, benalaxyl-M, bupirimate, clozylacon, dimethirimol, ethirimol, furalaxyl, hymexazol, metalaxyl, metalaxyl-M, ofurace, oxadixyl and oxolinic acid.

[0063] (2) Inhibitors of the mitosis and cell division, for example benomyl, carbendazim, chlorfenazole, diethofencarb, ethaboxam, fuberidazole, pencycuron, thiabendazole, thiophanate, thiophanate-methyl and zoxamide.

[0064] (3) Inhibitors of the respiration, for example diflumetorim as CI-respiration inhibitor; bixafen, boscalid, carboxin, fenfuram, flutolanil, fluopyram, furametpyr, furmecyclox, isopyrazam (9R-component), isopyrazam (9S-component), mepronil, oxycarboxin, penthiopyrad, thifluzamide as CII-respiration inhibitor; amisulbrom, azoxystrobin, cyazofamid, dimoxystrobin, enestroburin, famoxadone, fenamidone, fluoxastrobin, kresoxim-methyl, metominostrobin, orysastrobin, picoxystrobin, pyraclostrobin, pyribencarb, trifloxystrobin as CIII-respiration inhibitor.

[0065] (4) Compounds capable to act as an uncoupler, like for example binapacryl, dinocap, fluazinam and meptyldinocap.

[0066] (5) Inhibitors of the ATP production, for example fentin acetate, fentin chloride, fentin hydroxide, and silthiofam.

[0067] (6) Inhibitors of the amino acid and/or protein biosynthesis, for example andoprim, blasticidin-S, cyprodinil, kasugamycin, kasugamycin hydrochloride hydrate, mepanipyrim and pyrimethanil.

[0068] (7) Inhibitors of the signal transduction, for example fenpiclonil, fludioxonil and quinoxyfen.

[0069] (8) Inhibitors of the lipid and membrane synthesis, for example biphenyl, chlozolinate, edifenphos, etridiazole, iodocarb, iprobenfos, iprodione, isoprothiolane, procymidone, propamocarb, propamocarb hydrochloride, pyrazophos, tolclofos-methyl and vinclozolin.

[0070] (9) Inhibitors of the ergosterol biosynthesis, for example aldimorph, azaconazole, bitertanol, bromuconazole, cyproconazole, diclobutrazole, difenoconazole, diniconazole, diniconazole-M, dodemorph, dodemorph acetate, epoxiconazole, etaconazole, fenarimol, fenbuconazole, fenhexamid, fenpropidin, fenpropimorph, fluquinconazole, flurprimidol, flusilazole, flutriafol, furconazole, furconazole-cis, hexaconazole, imazalil, imazalil sulfate, imibenconazole, ipconazole, metconazole, myclobutanil, naftifine, nuarimol, oxpoconazole, paclobutrazol, pefurazoate, penconazole, piperalin, prochloraz, propiconazole, prothioconazole, pyributicarb, pyrifenox, quinconazole, simeconazole, spiroxamine, tebuconazole, terbinafine, tetraconazole, triadimefon, triadimenol, tridemorph, triflumizole, triforine, triticonazole, uniconazole, viniconazole and voriconazole.

[0071] (10) Inhibitors of the cell wall synthesis, for example benthiavalicarb, dimethomorph, flumorph, iprovalicarb, mandipropamid, polyoxins, polyoxorim, prothiocarb, validamycin A, and valiphenal.

[0072] (11) Inhibitors of the melanine biosynthesis, for example carpropamid, diclocymet, fenoxanil, phthalide, pyroquilon and tricyclazole.

[0073] (12) Compounds capable to induce a host defence, like for example acibenzolar-5-methyl, probenazole, and tiadinil.

[0074] (13) Compounds capable to have a multisite action, like for example bordeaux mixture, captafol, captan, chlorothalonil, copper naphthenate, copper oxide, copper oxychloride, copper preparations such as copper hydroxide, copper sulphate, dichlofluanid, dithianon, dodine, dodine free base, ferbam, fluorofolpet, folpet, guazatine, guazatine acetate, iminoctadine, iminoctadine albesilate, iminoctadine triacetate, mancopper, mancozeb, maneb, metiram, metiram zinc, oxine-copper, propamidine, sulphur and sulphur preparations including calcium polysulphide, thiram, tolylfluanid, zineb and ziram.

[0075] (14) Further compounds like for example 2,3-dibutyl-6-chlorothieno[2,3-d]pyrimidin-4(3H)-one, ethyl (2Z)-3-amino-2-cyano-3-phenylprop-2-enoate, N-[2-(1,3-dimethylbutyl)phenyl]-5-fluoro-1,3-dimethyl-1H-pyrazole-4-carbo- xamide, N-{2-[1,1'-bi(cyclopropyl)-2-yl]phenyl}-3-(difluoromethyl)-1-methy- l-1H-pyrazole-4-carboxamide, 3-(difluoromethyl)-1-methyl-N-(3',4',5'-trifluorobiphenyl-2-yl)-1H-pyrazo- le-4-carboxamide, 3-(difluoromethyl)-N-[4-fluoro-2-(1,1,2,3,3,3-hexafluoropropoxy)phenyl]-1- -methyl-1H-pyrazole-4-carboxamide, (2E)-2-(2-{[6-(3-chloro-2-methylphenoxy)-5-fluoropyrimidin-4-yl]oxy}pheny- l)-2-(methoxyimino)-N-methylethanamide, (2E)-2-{2-[({[(2E,3E)-4-(2,6-dichlorophenyl)but-3-en-2-ylidene]amino}oxy)- methyl]phenyl}-2-(methoxyimino)-N-methylethanamide, 2-chloro-N-(1,1,3-trimethyl-2,3-dihydro-1H-inden-4-yl)pyridine-3-carboxam- ide, N-(3-ethyl-3,5,5-trimethylcyclohexyl)-3-(formylamino)-2-hydroxybenzam- ide, 5-methoxy-2-methyl-4-(2-{[({(1E)-1-[3-(trifluoromethyl)phenyl]ethylid- ene}amino)oxy]methyl}phenyl)-2,4-dihydro-3H-1,2,4-triazol-3-one, (2E)-2-(methoxyimino)-N-methyl-2-(2-{[({(1E)-1-[3-(trifluoromethyl)phenyl- ]ethylidene}amino)oxy]methyl}phenyl)ethanamide, (2E)-2-(methoxyimino)-N-methyl-2-{2-[(E)-({1-[3-(trifluoromethyl)phenyl]e- thoxy}-imino)methyl]phenyl}ethanamide, (2E)-2-{2-[({[(1E)-1-(3-{[(E)-1-fluoro-2-phenylethenyl]oxy}phenyl)ethylid- ene]amino}oxy)methyl]phenyl}-2-(methoxyimino)-N-methylethanamide, 1-(4-chlorophenyl)-2-(1H-1,2,4-triazol-1-yl)cycloheptanol, methyl 1-(2,2-dimethyl-2,3-dihydro-1H-inden-1-yl)-1H-imidazole-5-carboxylate, N-ethyl-N-methyl-N-{2-methyl-5-(trifluoromethyl)-4-[3-(trimethylsilyl)pro- poxy]phenyl}imidoformamide, N-{5-(difluoromethyl)-2-methyl-4-[3-(trimethylsilyl)propoxy]phenyl}-N-eth- yl-N-methylimidoformamide, Sedaxane, O-{1-[(4-methoxyphenoxy)methyl]-2,2-dimethylpropyl}1H-imidazole-1-carboth- ioate, N-[2-(4-{[3-(4-chlorophenyl)prop-2-yn-1-yl]oxy}-3-methoxyphenyl)eth- yl]-N.sup.2-(methylsulfonyl)valinamide, 5-chloro-7-(4-methylpiperidin-1-yl)-6-(2,4,6-trifluorophenyl)[1,2,4]triaz- olo[1,5-a]pyrimidine, 5-amino-1,3,4-thiadiazole-2-thiol, propamocarb-fosetyl, 1-[(4-methoxyphenoxy)methyl]-2,2-dimethylpropyl 1H-imidazole-1-carboxylate, 1-methyl-N-[2-(1,1,2,2-tetrafluoroethoxy)phenyl]-3-(trifluoromethyl)-1H-p- yrazole-4-carboxamide, 2,3,5,6-tetrachloro-4-(methylsulfonyl)pyridine, 2-butoxy-6-iodo-3-propyl-4H-chromen-4-one, 2-phenylphenol and salts, 3-(difluoromethyl)-1-methyl-N-[2-(1,1,2,2-tetrafluoroethoxy)phenyl]-1H-py- razole-4-carboxamide, 3,4,5-trichloropyridine-2,6-dicarbonitrile, 3-[5-(4-chlorophenyl)-2,3-dimethylisoxazolidin-3-yl]pyridine, 3-chloro-5-(4-chlorophenyl)-4-(2,6-difluorophenyl)-6-methylpyridazine, 4-(4-chlorophenyl)-5-(2,6-difluorophenyl)-3,6-dimethylpyridazine, quinolin-8-ol, quinolin-8-ol sulfate (2:1) (salt), 5-methyl-6-octyl-3,7-dihydro[1,2,4]-triazolo[1,5-a]pyrimidin-7-amine, 5-ethyl-6-octyl-3,7-dihydro[1,2,4]triazolo[1,5-a]pyrimidin-7-amine, benthiazole, bethoxazin, capsimycin, carvone, chinomethionat, chloroneb, cufraneb, cyflufenamid, cymoxanil, cyprosulfamide, dazomet, debacarb, dichlorophen, diclomezine, dicloran, difenzoquat, difenzoquat methylsulphate, diphenylamine, ecomate, ferimzone, flumetover, fluopicolide, fluoroimide, flusulfamide, flutianil, fosetyl-aluminium, fosetyl-calcium, fosetyl-sodium, hexachlorobenzene, irumamycin, isotianil, methasulfocarb, methyl (2E)-2-{2-[({cyclopropyl[(4-methoxyphenyl)imino]methyl}thio)methyl]phenyl- }-3-methoxyacrylate, methyl isothiocyanate, metrafenone, (5-bromo-2-methoxy-4-methylpyridin-3-yl)(2,3,4-trimethoxy-6-methylphenyl)- methanone, mildiomycin, tolnifanide, N-(4-chlorobenzyl)-3-[3-methoxy-4-(prop-2-yn-1-yl-oxy)phenyl]propanamide, N-[(4-chlorophenyl)(cyano)methyl]-3-[3-methoxy-4-(prop-2-yn-1-yloxy)pheny- l]-propanamide, N-[(5-bromo-3-chloropyridin-2-yl)methyl]-2,4-dichloropyridine-3-carboxami- de, N-[1-(5-bromo-3-chloropyridin-2-yl)ethyl]-2,4-dichloropyridine-3-carbo- xamide, N-[1-(5-bromo-3-chloropyridin-2-yl)ethyl]-2-fluoro-4-iodopyridine-- 3-carboxamide, N-{(Z)-[(cyclopropylmethoxy)imino][6-(difluoromethoxy)-2,3-difluorophenyl- ]methyl}-2-phenylacetamide, N-{(E)-[(cyclopropylmethoxy)imino][6-(difluoromethoxy)-2,3-difluorophenyl- ]methyl}-2-phenylacetamide, natamycin, nickel dimethyldithiocarbamate, nitrothal-isopropyl, octhilinone, oxamocarb, oxyfenthiin, pentachlorophenol and salts, phenazine-1-carboxylic acid, phenothrin, phosphorous acid and its salts, propamocarb fosetylate, propanosine-sodium, proquinazid, pyrrolnitrine, quintozene, S-prop-2-en-1-yl 5-amino-2-(1-methylethyl)-4-(2-methylphenyl)-3-oxo-2,3-dihydro-1H-pyrazol- e-1-carbothioate, tecloftalam, tecnazene, triazoxide, trichlamide, 5-chloro-N-phenyl-N'-prop-2-yn-1-ylthiophene-2-sulfonohydrazide and zarilamid.

[0076] Examples of bactericides which may be mentioned are:

bronopol, dichlorophen, nitrapyrin, nickel dimethyldithiocarbamate, kasugamycin, octhilinone, furancarboxylic acid, oxytetracycline, probenazole, streptomycin, tecloftalam, copper sulphate and other copper preparations.

[0077] (1) Acetylcholinesterase (AChE) inhibitors, for example carbamates, e.g. alanycarb, aldicarb, bendiocarb, benfuracarb, butocarboxim, butoxycarboxim, carbaryl, carbofuran, carbosulfan, ethiofencarb, fenobucarb, formetanate, furathiocarb, isoprocarb, methiocarb, methomyl, metolcarb, oxamyl, pirimicarb, propoxur, thiodicarb, thiofanox, triazamate, trimethacarb, XMC, and xylylcarb; or

organophosphates, e.g. acephate, azamethiphos, azinphos (-methyl, -ethyl), cadusafos, chlorethoxyfos, chlorfenvinphos, chlorfenvinphos, chlormephos, chlorpyrifos (-methyl), coumaphos, cyanophos, demeton-S-methyl, diazinon, dichlorvos/DDVP, dicrotophos, dimethoate, dimethylvinphos, disulfoton, EPN, ethion, ethoprophos, famphur, fenamiphos, fenitrothion, fenthion, fosthiazate, heptenophos, isofenphos, isopropyl O-(methoxyaminothio-phosphoryl) salicylate, isoxathion, malathion, mecarbam, methamidophos, methidathion, mevinphos, monocrotophos, naled, omethoate, oxydemeton-methyl, parathion (-methyl), phenthoate, phorate, phosalone, phosmet, phosphamidon, phoxim, pirimiphos (-methyl), profenofos, propetamphos, prothiofos, pyraclofos, pyridaphenthion, quinalphos, sulfotep, tebupirimfos, temephos, terbufos, tetrachlorvinphos, thiometon, triazophos, triclorfon, and vamidothion.

[0078] (2) GABA-gated chloride channel antagonists, for example organochlorines, e.g. chlordane, endosulfan (alpha-); or

fiproles (phenylpyrazoles), e.g. ethiprole, fipronil, pyrafluprole, and pyriprole.

[0079] (3) Sodium channel modulators/voltage-dependent sodium channel blockers, for example pyrethroids, e.g. acrinathrin, allethrin (d-cis-trans, d-trans), bifenthrin, bioallethrin, bioallethrin S-cyclopentenyl, bioresmethrin, cycloprothrin, cyfluthrin (beta-), cyhalothrin (gamma-, lambda-), cypermethrin (alpha-, beta-, theta-, zeta-), cyphenothrin [(1R)-trans-isomers], deltamethrin, dimefluthrin, empenthrin [(EZ)-(1R)-isomers), esfenvalerate, etofenprox, fenpropathrin, fenvalerate, flucythrinate, flumethrin, fluvalinate (tau-), halfenprox, imiprothrin, metofluthrin, permethrin, phenothrin [(1R)-trans-isomer), prallethrin, profluthrin, pyrethrin (pyrethrum), resmethrin, RU 15525, silafluofen, tefluthrin, tetramethrin [(1R)-isomers)], tralomethrin, transfluthrin and ZXI 8901; or

DDT; or methoxychlor.

[0080] (4) Nicotinergic acetylcholine receptor agonists, for example chloronicotinyls, e.g. acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid;

or nicotine.

[0081] (5) Allosteric acetylcholine receptor modulators (agonists), for example spinosyns, e.g. spinetoram and spinosad.

[0082] (6) Chloride channel activators, for example avermectins/milbemycins, e.g. abamectin, emamectin benzoate, lepimectin, and milbemectin.

[0083] (7) Juvenile hormone mimics, e.g. hydroprene, kinoprene, methoprene; or fenoxycarb; pyriproxyfen.

[0084] (8) Miscellaneous non-specific (multi-site) inhibitors, for example gassing agents, e.g. methyl bromide and other alkyl halides; or chloropicrin; sulfuryl fluoride; borax; tartar emetic.

[0085] (9) Selective homopteran feeding blockers, e.g. pymetrozine or flonicamid.

[0086] (10) Mite growth inhibitors, e.g. clofentezine, diflovidazin, hexythiazox, etoxazole.

[0087] (11) Microbial disruptors of insect midgut membranes, e.g. Bacillus thuringiensis subspecies israelensis, Bacillus sphaericus, Bacillus thuringiensis subspecies aizawai, Bacillus thuringiensis subspecies kurstaki, Bacillus thuringiensis subspecies tenebrionis, and BT crop proteins: Cry1Ab, Cry1Ac, Cry1Fa, Cry2Ab, mCry3A, Cry3Ab, Cry3Bb, Cry34/35Ab1.

[0088] (12) Inhibitors of mitochondrial ATP synthase, for example diafenthiuron; or organotin miticides, e.g. azocyclotin, cyhexatin, and fenbutatin oxide; or propargite; tetradifon.

[0089] (13) Uncouplers of oxidative phoshorylation via disruption of the proton gradient, for example chlorfenapyr, and DNOC.

[0090] (14) Nicotinic acetylcholine receptor channel blockers, for example bensultap, cartap hydrochloride, thiocyclam, and thiosultap-sodium.

[0091] (15) Inhibitors of chitin biosynthesis, type 0, for example benzoylureas, e.g. bistrifluoron, chlorfluazuron, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, noviflumuron, penfluoron, teflubenzuron, and triflumuron.

[0092] (16) Inhibitors of chitin biosynthesis, type 1, for example buprofezin.

[0093] (17) Moulting disruptors, for example cyromazine.

[0094] (18) Ecdysone receptor agonists/disruptors, for example diacylhydrazines, e.g. chromafenozide, halofenozide, methoxyfenozide, and tebufenozide.

[0095] (19) Octopamine receptor agonists, for example amitraz.

[0096] (20) Mitochondrial complex III electron transport inhibitors, for example hydramethylnon; acequinocyl or fluacrypyrim.

[0097] (21) Mitochondrial complex I electron transport inhibitors, for example METI acaricides, e.g. fenazaquin, fenpyroximate, pyrimidifen, pyridaben, tebufenpyrad, tolfenpyrad or rotenone. (Derris).

[0098] (22) Voltage-dependent sodium channel blockers, e.g. indoxacarb; metaflumizone.

[0099] (23) Inhibitors of acetyl CoA carboxylase, for example tetronic acid derivatives, e.g. spirodiclofen and spiromesifen; or tetramic acid derivatives, e.g. spirotetramat.

[0100] (24) Mitochondrial complex IV electron inhibitors, for example phosphines, e.g. aluminium phosphide, calcium phosphide, phosphine, and zinc phosphide or cyanide.

[0101] (25) Mitochondrial complex II electron transport inhibitors, for example cyenopyrafen.

[0102] (28) Ryanodine receptor modulators, for example diamides, e.g. chlorantraniliprole (Rynaxypyr), Cyantraniliprole (Cyazypyr), and flubendiamide.

[0103] Further active ingredients with unknown or uncertain mode of action, for example azadirachtin, amidoflumet, benzoximate, bifenazate, chinomethionat, cryolite, cyflumetofen, dicofol, flufenerim, pyridalyl, and pyrifluquinazon; or one of the following known active compounds 4-{[(6-brompyrid-3-yl)methyl](2-fluorethyl)amino}furan-2(5H)-on (known from WO 2007/115644), 4-{[(6-fluorpyrid-3-yl)methyl](2,2-difluorethyl)amino}furan-2(5H)-on (known from WO 2007/115644), 4-{[(2-chlor-1,3-thiazol-5-yl)methyl](2-fluorethyl)amino}furan-2(5H)-on (known from WO 2007/115644), 4-{[(6-chlorpyrid-3-yl)methyl](2-fluorethyl)amino}furan-2(5H)-on (known from WO 2007/115644), 4-{[(6-chlorpyrid-3-yl)methyl](2,2-difluorethyl)amino}furan-2(5H)-on known from WO 2007/115644), 4-{[(6-chlor-5-fluorpyrid-3-yl)methyl](methyl)amino}furan-2(5H)-on (known from WO 2007/115643), 4-{[(5,6-dichlorpyrid-3-yl)methyl](2-fluorethyl)amino}furan-2(5H)-on (known from WO 2007/115646), 4-{[(6-chlor-5-fluorpyrid-3-yl)methyl](cyclopropyl)amino}furan-2(5H)-on (known from WO 2007/115643), 4-{[(6-chlorpyrid-3-yl)methyl](cyclopropyl)amino}furan-2(5H)-on (known from EP-A-0 539 588), 4-{[(6-chlorpyrid-3-yl)methyl](methyl)amino}furan-2(5H)-on (known from EP-A-0 539 588), [(6-chlorpyridin-3-yl)methyl](methyl)oxido-.lamda..sup.4-sulfanylidencyan- amid (known from WO 2007/149134), [1-(6-chlorpyridin-3-yl)ethyl](methyl)oxido-2.sup.4-sulfanylidencyanamid (known from WO 2007/149134) and its diastereomeres (A) and (B)

##STR00002##

(also known from WO 2007/149134), [(6-trifluormethylpyridin-3-yl)methyl] (methyl)oxido-.lamda..sup.4-sulfanylidencyanamid (known from WO 2007/095229), or sulfoxaflor (also known from WO 2007/149134), 11-(4-chloro-2,6-dimethylphenyl)-12-hydroxy-1,4-dioxa-9-azadispiro[4.2.4.- 2]tetradec-11-en-10-one (known from WO 2006/089633), 3-(4'-fluoro-2,4-dimethylbiphenyl-3-yl)-4-hydroxy-8-oxa-1-azaspiro[4.5]de- c-3-en-2-one (known from WO 2008/067911), and 1-{2,4-dimethyl-5-[(2,2,2-trifluoroethyl)sulfinyl]phenyl}-3-(trifluoromet- hyl)-1H-1,2,4-triazole (known from WO 1999/55668). [0104] Natural extracts: e.g. HEADSUP.RTM., which is an extract derived from the seed hull of Chenopodium quinoa, as disclosed in U.S. Pat. No. 6,355,249. Its uses for corp protection purposes are described in U.S. Pat. No. 6,743,752 and U.S. Pat. No. 6,582,770

[0105] Isoflavonoids like Lipo-chito-oligosaccharides, Examples of safeners which may be mentioned are:

[0106] (1) Heterocyclic carboxylic acid derivates, for example dichlorophenylpyrazolin-3-carboxylic acid derivatives, e.g. 1-(2,4-dichlorophenyl)-5-(ethoxycarbonyl)-5-methyl-4,5-dihydro-1H-pyrazol- e-3-carboxylic acid, diethyl 1-(2,4-dichlorophenyl)-4,5-dihydro-5-methyl-1H-pyrazole-3,5-dicarboxylate ("mefenpyr-diethyl"), and similar compounds known from WO 91/07874; for example dichlorophenylpyrazolecarboxylic acid derivatives, e.g. ethyl 1-(2,4-dichlorophenyl)-5-methyl-1H-pyrazole-3-carboxylate, ethyl 1-(2,4-dichlorophenyl)-5-isopropyl-1H-pyrazole-3-carboxylate, ethyl 5-tert-butyl-1-(2,4-dichlorophenyl)-1H-pyrazole-3-carboxylate and similar compounds known from EP-A 0 333 131 and EP-A 0 269 806; for example 1,5-diphenylpyrazole-3-carboxylic acid derivatives, e.g. ethyl 1-(2,4-dichlorophenyl)-5-phenyl-1H-pyrazole-3-carboxylate, methyl 1-(2-chlorophenyl)-5-phenyl-1H-pyrazole-3-carboxylate, and similar compounds known from EP-A 0 268 554; for example triazolecarboxylic acid derivatives, e.g. fenchlorazole, fenchlorazole-ethyl, and similar compounds known from EP-A 0 174 562 and EP-A 0 346 620; for example 2-isoxazoline-3-carboxylic acid derivatives, e.g. ethyl 5-(2,4-dichlorobenzyl)-4,5-dihydro-1,2-oxazole-3-carboxylate, ethyl 5-phenyl-4,5-dihydro-1,2-oxazole-3-carboxylate and similar compounds known from WO 91/08202, or 5,5-diphenyl-4,5-dihydro-1,2-oxazole-3-carboxylic acid, ethyl 5,5-diphenyl-4,5-dihydro-1,2-oxazole-3-carboxylate ("isoxadifen-ethyl"), propyl 5,5-diphenyl-4,5-dihydro-1,2-oxazole-3-carboxylate, ethyl 5-(4-fluorophenyl)-5-phenyl-4,5-dihydro-1,2-oxazole-3-carboxylate known from WO 95/07897.

[0107] (2) Derivatives of 8-quinolinol, for example derivatives of (quinolin-8-yloxy)acetic acid, e.g. heptan-2-yl [(5-chloroquinolin-8-yl)oxy]acetate ("cloquintocet-mexyl"), 4-methylpentan-2-yl [(5-chloroquinolin-8-yl)oxy]-acetate,4-(allyloxy)butyl [(5-chloroquinolin-8-yl)oxy]acetate, 1-(allyloxy)propan-2-yl [(5-chloroquinolin-8-yl)-oxy]acetate, ethyl [(5-chloroquinolin-8-yl)oxy]acetate, methyl [(5-chloroquinolin-8-yl)oxy]acetate, allyl [(5-chloroquinolin-8-yl)oxy]acetate, 2-{[propylideneamino]oxy}ethyl [(5-chloroquinolin-8-yl)oxy]acetate, 2-oxo-propyl [(5-chloroquinolin-8-yl)oxy]acetate, and similar compounds known from EP-A 0 086 750, EP-A 0 094 349, EP-A 0 191 736 or EP-A 0 492 366, as well as [(5-chloroquinolin-8-yl)oxy]acetic acid, its hydrates and salts, e.g. the lithium, sodium, potassium, calcium, magnesium, aluminum, iron, ammonium, quartanary ammonium, sulfonium or phosphonium salts as known from WO 02/34048; for example derivatives of [(5-chloroquinolin-8-yl)oxy]malonic acid, e.g diethyl [(5-chloroquinolin-8-yl)oxy]malonate, diallyl [(5-chloroquinolin-8-yl)oxy]malonate, ethyl methyl [(5-chloroquinolin-8-yl)oxy]malonate, and similar compounds known from EP-A 0 582 198.

[0108] (3) Dichloroacetamides, which are often used as pre-emergence safeners (soil active safeners), e.g. "dichlormid" (N,N-diallyl-2,2-dichloroacetamide), "R-29148" (3dichloroacetyl-2,2,5-trimethyl-1,3-oxazolidine) and "R-28725" (3-dichloroacetyl-2,2,-dimethyl-1,3-oxazolidine) both of the company Stauffer, "benoxacor" (4-dichloroacetyl-3,4-dihydro-3-methyl-2H-1,4-benzoxazine), "PPG-1292" (N-allyl-N-[(1,3-dioxolan-2-yl)-methyl]-dichloroacetamide) of PPG Industries, "DKA-24" (N-allyl-N-[(allylaminocarbonyl)methyl]-dichloroacetamide) of Sagro-Chem, "AD-67" or "MON 4660" (3-dichloroacetyl-1-oxa-3-aza-spiro[4,5]decane) of Nitrokemia and Monsanto, "TI-35" (1-dichloroacetyl-azepane) of TRI-Chemical RT, "diclonon" (dicyclonon) or "BAS145138" or "LAB 145138" (3-dichloroacetyl-2,5,5-trimethyl-1,3-diazabicyclo[4.3.0]nonane) of BASF, "Furilazol" or "MON 13900" [(RS)-3-dichloroacetyl-5-(2-furyl)-2,2-dimethyloxazolidine], as well as there (R)-isomer.

[0109] (4) Acylsulfonamides, for example N-acylsulfonamide of the formula (II)

##STR00003##

or its salts (known from WO 97/45016), wherein [0110] R.sup.1 represents (C.sub.1-C.sub.6)alkyl, which is unsubstituted or mono- to trisubstituted by substituents selected from the group consisting of halogen, (C.sub.1-C.sub.4)alkoxy, (C.sub.1-C.sub.6)haloalkoxy and (C.sub.1-C.sub.4)alkylthio; [0111] R.sup.2 represents halogen, (C.sub.1-C.sub.4)alkyl, (C.sub.1-C.sub.4)alkoxy, CF.sub.3; [0112] m is 1 or 2; or for example 4-(benzoylsulfamoyl)benzamides of the formula (III)

##STR00004##

[0112] or its salts (known from WO 99/16744), wherein [0113] R.sup.3, R.sup.4 independently of one another represent hydrogen, (C.sub.1-C.sub.6)alkyl, (C.sub.3-C.sub.6)alkenyl, (C.sub.3-C.sub.6)alkynyl, (C.sub.3-C.sub.6)cycloalkyl, [0114] R.sup.5 represents halogen, (C.sub.1-C.sub.4)alkyl, (C.sub.1-C.sub.4)haloalkyl or (C.sub.1-C.sub.4)alkoxy [0115] n is 1 or 2, in particular compounds of formula (III), wherein [0116] R.sup.3=cyclopropyl, R.sup.4=hydrogen and R.sup.5.sub.n=2-OMe, ("cyprosulfamide"), [0117] R.sup.3=cyclopropyl, R.sup.4=hydrogen and R.sup.5.sub.n=5-Cl-2-OMe, [0118] R.sup.3=ethyl, R.sup.4=hydrogen and R.sup.5.sub.n=2-OMe, [0119] R.sup.3=isopropyl, R.sup.4=hydrogen and R.sup.5.sub.n=5-Cl-2-OMe, [0120] R.sup.3=isopropyl, R.sup.4=hydrogen and R.sup.5.sub.n=2-OMe. or for example benzoylsulfamoylphenylureas of the formula (IV)

##STR00005##

[0120] (known from EP-A 0 365 484), wherein [0121] R.sup.6, R.sup.7 independently of one another represent hydrogen, (C.sub.1-C.sub.8)alkyl, (C.sub.3-C.sub.6)alkenyl, (C.sub.3-C.sub.6)alkynyl, [0122] R.sup.8 represents halogen, (C.sub.1-C.sub.4)alkyl, (C.sub.1-C.sub.4)alkoxy, CF.sub.3 [0123] r is 1 or 2; in particular [0124] 1-[4-(N-2-methoxybenzoylsulfamoyl)phenyl]-3-methyl urea, [0125] 1-[4-(N-2-methoxybenzoylsulfamoyl)phenyl]-3,3-dimethyl urea, [0126] 1-[4-(N-4,5-dimethylbenzoylsulfamoyl)phenyl]-3-methyl urea.

[0127] (5) Hydroxyaromatic compounds and aromatic-aliphatic carboxylic acid derivatives, e.g. ethyl 3,4,5-triacetoxybenzoate, 4-hydroxy-3,5-dimethoxybenzoic acid, 3,5-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid, 4-fluoro-2-hydroxybenzoic acid, 2-hydroxycinnamic acid, 2,4-dichlorocinnamic acid (cf. WO 2004/084631, WO 2005/015994, WO 2005/016001).

[0128] (6) 1,2-Dihydrochinoxalin-2-ones, e.g. 1-methyl-3-(2-thienyl)-1,2-dihydrochinoxalin-2-one, 1-methyl-3-(2-thienyl)-1,2-dihydrochinoxalin-2-thione, 1-(2-aminoethyl)-3-(2-thienyl)-1,2-dihydrochinoxalin-2-one hydrochlorid, 1-(2-methylsulfonylaminoethyl)-3-(2-thienyl)-1,2-dihydrochinoxalin-2-one (cf. WO 2005/112630).

[0129] (7) Diphenylmethoxyacetic acid derivatives, e.g. methyl (diphenylmethoxy)acetate (CAS-Reg. No. 41858-19-9), ethyl (diphenylmethoxy)acetate or (diphenylmethoxy)acetic acid (cf. WO 98/38856).

[0130] (8) Compounds of formula (V)

##STR00006##

or its salts (known from WO 98/27049), wherein [0131] R.sup.9 represents halogen, (C.sub.1-C.sub.4)alkyl, (C.sub.1-C.sub.4)haloalkyl, (C.sub.1-C.sub.4)alkoxy, (C.sub.1-C.sub.4)haloalkoxy, [0132] R.sup.10 represents hydrogen or (C.sub.1-C.sub.4)alkyl, [0133] R.sup.10 represents hydrogen, in each case unsubstituted or mono- to trisubstituted (C.sub.1-C.sub.8)alkyl, (C.sub.2-C.sub.4)alkenyl, (C.sub.2-C.sub.4)alkynyl, or aryl, where the substituents are selected from the group consisting of halogen and (C.sub.1-C.sub.8)alkoxy, [0134] s is 0, 1 or 2.

[0135] (9) 3-(5-Tetrazolylcarbonyl)-2-chinolones, e.g. 1,2-dihydro-4-hydroxy-1-ethyl-3-(5-tetrazolylcarbonyl)-2-chinolone (CAS-Reg. No. 219479-18-2), 1,2-dihydro-4-hydroxy-1-methyl-3-(5-tetrazolyl-carbonyl)-2-chinolone (CAS-Reg. No. 95855-00-8) (cf. WO 99/00020).

[0136] (10) Compounds of the formulae (VI-a) and (VI-b)

##STR00007##

(known from WO 2007/023719 and WO 2007/023764), wherein [0137] R.sup.12 represents halogen, (C.sub.1-C.sub.4)alkyl, methoxy, nitro, cyano, CF.sub.3, OCF.sub.3, [0138] Y, Z independently represent O or S, [0139] t is 0, 1, 2, 3 or 4, [0140] R.sup.13 represents (C.sub.1-C.sub.16)alkyl, (C.sub.2-C.sub.6)alkenyl, aryl, benzyl, halogenobenzyl, [0141] R.sup.14 represents hydrogen or (C.sub.1-C.sub.6)alkyl.

[0142] (11) Oxyimino compounds, known as seed treatment agents, e.g. "oxabetrinil" [(Z)-1,3-dioxolan-2-ylmethoxyimino(phenyl)acetonitril], "fluxofenim" [1-(4-chlorophenyl)-2,2,2-trifluoro-1-ethanone-O-(1,3-dioxolan-2-ylmethyl- )-oxime], and "cyometrinil" or "CGA-43089" [(Z)-cyanomethoxyimino(phenyl)acetonitril], all known as seed treatment safener for sorghum against damage by metolachlor.

[0143] (12) Isothiochromanones, e.g. methyl [(3-oxo-1H-2-benzothiopyran-4(3H)-ylidene)methoxy]acetate (CAS-Reg. No. 205121-04-6) and similar compounds known from WO 98/13361.

[0144] (13) Compounds from the group consisting of "naphthalic anhydrid" (1,8-naphthalinedicarboxylic acid anhydride), which is known as seed treatment safener for corn (maize) against damage by thiocarbamate herbicides, "fenclorim" (4,6-dichloro-2-phenylpyrimidine), which is known as seed treatment safener in sown rice against damage by pretilachlor, "flurazole" (benzyl-2-chloro-4-trifluoromethyl-1,3-thiazol-5-carboxylate), which is known as seed treatment safener for sorghum against damage by alachlor and metolachlor, "CL 304415" (CAS-Reg. No. 31541-57-8), (4-carboxy-3,4-dihydro-2H-1-benzopyran-4-acetic acid) of American Cyanamid, which is known as safener for corn (maize) against damage by imidazolinones, "MG 191" (CAS-Reg. No. 96420-72-3) (2-dichloromethyl-2-methyl-1,3-dioxolane) of Nitrokemia, known as safener for corn (maize), "MG-838" (CAS-Reg. No. 133993-74-5), (2-propenyl 1-oxa-4-azaspiro[4.5]decane-4-carbodithioate) of Nitrokemia, "Disulfoton" (0,0-diethyl-S-2-ethylthioethyl phosphorodithioate), "dietholate" (O,O-diethyl-O-phenylphosphorothioate), "mephenate" (4-chlorophenyl-methylcarbamate).

[0145] (14) Compounds, which besides herbicidal activity also exhibit Safener activity in crops like rice, e.g. "Dimepiperate" or "MY-93" (S-1-methyl-1-phenylethyl-piperidin-1-carbothioate), which is known as safener for rice against damage by molinate, "daimuron" or "SK 23" [1-(1-methyl-1-phenylethyl)-3-p-tolylurea], which is known as safener for rice against damage by imazosulfuron, "cumyluron"="JC-940" [3-(2-chlorophenylmethyl)-1-(1-methyl-1-phenyl-ethyl)urea] (cf. JP-A 60-087254), which is known as safener for rice against damage by some herbicides, "methoxyphenon" or "NK 049" (3,3'-dimethyl-4-methoxy-benzophenone), which is known as safener for rice against damage by some herbicides, "CSB" [1-bromo-4-(chloromethylsulfonyl)benzene] of Kumiai (CAS-Reg. No. 54091-06-4), which is known as safener for rice against damage by some herbicides.

[0146] (15) Compounds, which are mainly used as herbicides, but which exhibit also safener activity on some crops, e.g. (2,4-dichlorophenoxy)acetic acid (2,4-D), (4-chlorophenoxy)acetic acid, (R,S)-2-(4-chlor-o-tolyloxy)propionic acid (mecoprop), 4-(2,4-dichlorophenoxy)butyric acid (2,4-DB), (4-chloro-o-tolyloxy)acetic acid (MCPA), 4-(4-chloro-o-tolyloxy)butyric acid, 4-(4-chlorophenoxy)butyric acid, 3,6-dichloro-2-methoxybenzoic acid (dicamba), 1-(ethoxycarbonyl)ethyl-3,6-dichloro-2-methoxybenzoate (lactidichlor-ethyl).

[0147] Examples of plant growth regulators which may be mentioned are chlorocholine chloride and ethephon.

[0148] Examples of plant nutrients which may be mentioned are customary inorganic or organic fertilizers for supplying plants with macro- and/or micronutrients.

[0149] Examples of biological control agents which may be mentioned are yeasts and bacteria, e.g. Metschnikowia fructicola. In a some preferred embodiments the present invention relates to the use of a composition comprising Bacillus firmus CNCM I-1582 spore and/or one or more of the following insecticides of Group IP:

Group IP:

[0150] Nicotinergic acetylcholine receptor agonists/antagonists, preferably Imidacloprid, Clothianidin, Thiacloprid, and Acetamiprid;

[0151] Pyrethroids, preferably Lambda-Cyhalothrin, B-Cyfluthrin, Tefluthrin, Transfluthrin, Deltamethrin;

[0152] Carbamates, preferably Methiocarb, Thiodicarb and Aldicarb;

[0153] Organophosphates, preferably Fenamiphos, Fosthiazate, Ethoprofos, Imicyafos

[0154] Ryanodine receptor effectors, preferably Rynaxypyr, Cyzazypyr;

[0155] Macrolids, preferably Abamectin, Emamectin, Emamectin-benzoate, Spinosad, Spinetoram;

[0156] Fiproles, preferably Fipronil and Ethiprole;

[0157] Additional nematicides, preferably Fluensulfone, Oxamyl;

[0158] Ketoenols, preferably Spirotetramate, Spirodiclofen and Spiromesifen

[0159] 4-{[(6-bromopyrid-3-yl)methyl](2-fluoroethyl)amino}furan-2(5H)-one, 4-{[(6-fluoropyrid-3-yl)methyl](2,2-difluoroethyl)amino}furan-2(5H)-one, 4-{[(2-chloro-1,3-thiazol-5-yl)methyl](2-fluoroethyl)amino}furan-2(5H)-on- e, 4-{[(6-chloropyrid-3-yl)methyl](2-fluoroethyl)amino}furan-2(5H)-one, 4-{[(6-chloropyrid-3-yl)methyl](2,2-difluoroethyl)amino}furan-2(5H)-one;

[0160] Sulfoxaflor, Flonicamid;

[0161] Fumigants, Thymol and biological control agents, preferably Pasteuria, Verticillium;

[0162] Azadirachtin

[0163] In a some preferred embodiments the present invention relates to the use of a composition comprising Bacillus firmus CNCM I-1582 spore and/or one or more of the following fungicides of Group FP:

Group FP:

[0164] Ipconazole, prothioconazole, metalaxyl, mefenoxam, fludioxonil, penflufen, bixafen, trifloxystrobin, thiram, thiophanate-methyl, pyraclostrobin, Fluoxastrobin, azoxystrobin, fenamidone, tebuconazole, triticonazole, hymexazol, thiabendazole, boscalid, fluopicolide, difenconazole, triadimenol, fluquinconazole, sedaxane, fluxapyroxad, fluopyram, metaminostrobin, carbendazim, isotianil, carboxin

[0165] In a further preferred embodiment the present invention relates to the use of a composition comprising Bacillus firmus CNCM I-1582 and fluopyram and one or more of Group IP. Preferably, fluopyram is applied in a rate of 100 g to 5 kg per ha.

[0166] The following table provides additional preferred ratios for some of the above mentioned combinations comprising Bacillus firmus CNCM I-1582 and additional mixing partners according to the invention.

TABLE-US-00004 Mixing Partner Ratio Bacillus firmus Bacillus amyloliquefaciens FZB42 1:1 CNCM I-1582 213:1 Bacillus subtilis GB 03 1.03:1 Metarhizium anisopliae F52 40:1 Cydia pomonella granulosis virus 1:1 1:2 Pyrethroids 10:1 Imicyafos 5.5:1 Thymol 1:4

[0167] Preferred embodiments according to this invention are also seeds of a plant comprising [0168] (a) a gene of Group NG, preferably Axmi031, and Axn2 [0169] (b) a biological control agent of Group B, preferably Bacillus firmus CNCM 1582 [0170] (c) one or more insecticides, selected from Group IP [0171] (d) one or more fungicides of Group FP, preferably including fluopyram

[0172] Preferred embodiments according to this invention are also combinations comprising [0173] (a) a biological control agent of Group B, preferably Bacillus firmus CNCM 1582 [0174] (b) one or more insecticides, selected from Group IP [0175] (c) one or more fungicides of Group FP, preferably including fluopyram for use on a seed or plants comprising a gene of Group NG, preferably Axmi031, and Axn2.

[0176] In a further preferred embodiment the present invention relates to the use of a composition comprising Bacillus firmus CNCM I-1582 and fluopyram and one or more of Group IP and/or Group FP. Preferably, fluopyram is applied in a rate of 100 g to 5 kg per ha.

[0177] According to the invention all plants and plant parts can be treated. By plants is meant all plants and plant populations such as desirable and undesirable wild plants, cultivars and plant varieties (whether or not protectable by plant variety or plant breeder's rights). Cultivars and plant varieties can be plants obtained by conventional propagation and breeding methods which can be assisted or supplemented by one or more biotechnological methods such as by use of double haploids, protoplast fusion, random and directed mutagenesis, molecular or genetic markers or by bioengineering and genetic engineering methods. By plant parts is meant all above ground and below ground parts and organs of plants such as shoot, leaf, blossom and root, whereby for example leaves, needles, stems, branches, blossoms, fruiting bodies, fruits and seed as well as roots, tubers, corms and rhizomes are listed. Crops and vegetative and generative propagating material, for example cuttings, corms, rhizomes, tubers, runners and seeds also belong to plant parts.

[0178] As already mentioned above, it is possible to treat all plants and their parts according to the invention. In one embodiment, wild plant species and plant cultivars, or those obtained by conventional biological breeding, such as crossing or protoplast fusion, and parts thereof, are treated. In a further embodiment, transgenic plants and plant cultivars obtained by genetic engineering, if appropriate in combination with conventional methods (Genetically Modified Organisms), and parts thereof are treated. The term "parts" or "parts of plants" or "plant parts" has been explained above.

[0179] Plants of the plant cultivars which are in each case commercially available or in use can be treated according to the invention. Plant cultivars are to be understood as meaning plants having novel properties ("traits") which can be obtained by conventional breeding, by mutagenesis or by recombinant DNA techniques. This can be varieties, bio- and genotypes.

[0180] The transgenic plants or plant cultivars (i.e. those obtained by genetic engineering) which can be treated according to the invention include all plants which, in the genetic modification, received genetic material which imparted particularly advantageous useful traits to these plants. Examples of such properties are better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to water or soil salt content, increased flowering performance, easier harvesting, accelerated maturation, higher harvest yields, better quality and/or a higher nutritional value of the harvested products, better storage stability and/or processability of the harvested products. Further and particularly emphasized examples of such properties are a better defense of the plants against animal and microbial pests, such as against nematodes, insects, mites, phytopathogenic fungi, bacteria and/or viruses, and also increased tolerance of the plants to certain herbicidal active compounds. Particular emphasis is given to vegetables, potato, corn, soy, cotton and banana.

[0181] The method of treatment according to the invention can be used in the treatment of genetically modified organisms (GMOs), e.g. plants or seeds. Genetically modified plants (or transgenic plants) are plants of which a heterologous gene has been stably integrated into genome. The expression "heterologous gene" essentially means a gene which is provided or assembled outside the plant and when introduced in the nuclear, chloroplastic or mitochondrial genome gives the transformed plant new or improved agronomic or other properties by expressing a protein or polypeptide of interest or by downregulating or silencing other gene(s) which are present in the plant (using for example, antisense technology, cosuppression technology or RNA interference-RNAi-technology). A heterologous gene that is located in the genome is also called a transgene. A transgene that is defined by its particular location in the plant genome is called a transformation or transgenic event.

[0182] Depending on the plant species or plant cultivars, their location and growth conditions (soils, climate, vegetation period, diet), the treatment according to the invention may also result in superadditive ("synergistic") effects. Thus, for example, reduced application rates and/or a widening of the activity spectrum and/or an increase in the activity of the active compounds and compositions which can be used according to the invention, better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to water or soil salt content, increased flowering performance, easier harvesting, accelerated maturation, higher harvest yields, bigger fruits, larger plant height, greener leaf color, earlier flowering, higher quality and/or a higher nutritional value of the harvested products, higher sugar concentration within the fruits, better storage stability and/or processability of the harvested products are possible, which exceed the effects which were actually to be expected.

[0183] At certain application rates, the active compound combinations according to the invention may also have a strengthening effect in plants. Accordingly, they are also suitable for mobilizing the defense system of the plant against attack by unwanted microorganisms. This may, if appropriate, be one of the reasons of the enhanced activity of the combinations according to the invention, for example against fungi. Plant-strengthening (resistance-inducing) substances are to be understood as meaning, in the present context, those substances or combinations of substances which are capable of stimulating the defense system of plants in such a way that, when subsequently inoculated with unwanted microorganisms, the treated plants display a substantial degree of resistance to these microorganisms. In the present case, unwanted microorganisms are to be understood as meaning phytopathogenic fungi, bacteria and viruses. Thus, the substances according to the invention can be employed for protecting plants against attack by the abovementioned pathogens within a certain period of time after the treatment. The period of time within which protection is effected generally extends from 1 to 10 days, preferably 1 to 7 days, after the treatment of the plants with the active compounds.

[0184] Plants and plant cultivars which are preferably to be treated according to the invention include all plants which have genetic material which impart particularly advantageous, useful traits to these plants (whether obtained by breeding and/or biotechnological means).

[0185] Plants and plant cultivars which are also preferably to be treated according to the invention are resistant against one or more biotic stresses, i.e. said plants show a better defense against animal and microbial pests, such as against nematodes, insects, mites, phytopathogenic fungi, bacteria, viruses and/or viroids.

[0186] Plants and plant cultivars which may also be treated according to the invention are those plants which are resistant to one or more abiotic stresses. Abiotic stress conditions may include, for example, drought, cold temperature exposure, heat exposure, osmotic stress, flooding, increased soil salinity, increased mineral exposure, ozone exposure, high light exposure, limited availability of nitrogen nutrients, limited availability of phosphorus nutrients, shade avoidance.

[0187] Plants and plant cultivars which may also be treated according to the invention, are those plants characterized by enhanced yield characteristics. Increased yield in said plants can be the result of, for example, improved plant physiology, growth and development, such as water use efficiency, water retention efficiency, improved nitrogen use, enhanced carbon assimilation, improved photosynthesis, increased germination efficiency and accelerated maturation. Yield can furthermore be affected by improved plant architecture (under stress and non-stress conditions), including but not limited to, early flowering, flowering control for hybrid seed production, seedling vigor, plant size, internode number and distance, root growth, seed size, fruit size, pod size, pod or ear number, seed number per pod or ear, seed mass, enhanced seed filling, reduced seed dispersal, reduced pod dehiscence and lodging resistance. Further yield traits include seed composition, such as carbohydrate content, protein content, oil content and composition, nutritional value, reduction in anti-nutritional compounds, improved processability and better storage stability.

[0188] Plants that may be treated according to the invention are hybrid plants that already express the characteristic of heterosis or hybrid vigor which results in generally higher yield, vigor, health and resistance towards biotic and abiotic stresses). Such plants are typically made by crossing an inbred male-sterile parent line (the female parent) with another inbred male-fertile parent line (the male parent). Hybrid seed is typically harvested from the male sterile plants and sold to growers. Male sterile plants can sometimes (e.g. in corn) be produced by detasseling, i.e. the mechanical removal of the male reproductive organs (or males flowers) but, more typically, male sterility is the result of genetic determinants in the plant genome. In that case, and especially when seed is the desired product to be harvested from the hybrid plants it is typically useful to ensure that male fertility in the hybrid plants is fully restored. This can be accomplished by ensuring that the male parents have appropriate fertility restorer genes which are capable of restoring the male fertility in hybrid plants that contain the genetic determinants responsible for male-sterility. Genetic determinants for male sterility may be located in the cytoplasm. Examples of cytoplasmic male sterility (CMS) were for instance described in Brassica species (WO 92/05251, WO 95/09910, WO 98/27806, WO 05/002324, WO 06/021972 and U.S. Pat. No. 6,229,072). However, genetic determinants for male sterility can also be located in the nuclear genome. Male sterile plants can also be obtained by plant biotechnology methods such as genetic engineering. A particularly useful means of obtaining male-sterile plants is described in WO 89/10396 in which, for example, a ribonuclease such as barnase is selectively expressed in the tapetum cells in the stamens. Fertility can then be restored by expression in the tapetum cells of a ribonuclease inhibitor such as barstar (e.g. WO 91/02069).

[0189] Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may be treated according to the invention are herbicide-tolerant plants, i.e. plants made tolerant to one or more given herbicides. Such plants can be obtained either by genetic transformation, or by selection of plants containing a mutation imparting such herbicide tolerance.

[0190] Herbicide-resistant plants are for example glyphosate-tolerant plants, i.e. plants made tolerant to the herbicide glyphosate or salts thereof. Plants can be made tolerant to glyphosate through different means. For example, glyphosate-tolerant plants can be obtained by transforming the plant with a gene encoding the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Examples of such EPSPS genes are the AroA gene (mutant CT7) of the bacterium Salmonella typhimurium (Comai et al., 1983, Science 221, 370-371), the CP4 gene of the bacterium Agrobacterium sp. (Barry et al., 1992, Curr. Topics Plant Physiol. 7, 139-145), the genes encoding a Petunia EPSPS (Shah et al., 1986, Science 233, 478-481), a Tomato EPSPS (Gasser et al., 1988, J. Biol. Chem. 263, 4280-4289), or an Eleusine EPSPS (WO 01/66704). It can also be a mutated EPSPS as described in for example EP 0837944, WO 00/66746, WO 00/66747, WO 08/100,353 or WO02/26995. Glyphosate-tolerant plants can also be obtained by expressing a gene that encodes a glyphosate oxido-reductase enzyme as described in U.S. Pat. Nos. 5,776,760 and 5,463,175. Glyphosate-tolerant plants can also be obtained by expressing a gene that encodes a glyphosate acetyl transferase enzyme as described in for example WO 02/36782, WO 03/092360, WO 05/012515 and WO 07/024,782. Glyphosate-tolerant plants can also be obtained by selecting plants containing naturally-occurring mutations of the above-mentioned genes, as described in for example WO 01/024615 or WO 03/013226. Plants expressing EPSPS genes that confer glyphosate tolerance are described in e.g. U.S. patent application Ser. Nos. 11/517,991, 10/739,610, 12/139,408, 12/352,532, 11/312,866, 11/315,678, 12/421,292, 11/400,598, 11/651,752, 11/681,285, 11/605,824, 12/468,205, 11/760,570, 11/762,526, 11/769,327, 11/769,255, 11/943,801 or 12/362,774. Plants comprising other genes that confer glyphosate tolerance, such as decarboxylase genes, are described in e.g. U.S. patent application Ser. Nos. 11/588,811, 11/185,342, 12/364,724, 11/185,560 or 12/423,926.

[0191] Other herbicide resistant plants are for example plants that are made tolerant to herbicides inhibiting the enzyme glutamine synthase, such as bialaphos, phosphinothricin or glufosinate. Such plants can be obtained by expressing an enzyme detoxifying the herbicide or a mutant glutamine synthase enzyme that is resistant to inhibition, e.g. described in U.S. patent application Ser. No. 11/760,602. One such efficient detoxifying enzyme is an enzyme encoding a phosphinothricin acetyltransferase (such as the bar or pat protein from Streptomyces species). Plants expressing an exogenous phosphinothricin acetyltransferase are for example described in U.S. Pat. Nos. 5,561,236; 5,648,477; 5,646,024; 5,273,894; 5,637,489; 5,276,268; 5,739,082; 5,908,810 and 7,112,665.

[0192] Further herbicide-tolerant plants are also plants that are made tolerant to the herbicides inhibiting the enzyme hydroxyphenylpyruvatedioxygenase (HPPD). Hydroxyphenylpyruvatedioxygenases HPPD is an are enzymes that catalyze the reaction in which para-hydroxyphenylpyruvate (HPP) is transformed into homogentisate. Plants tolerant to HPPD-inhibitors can be transformed with a gene encoding a naturally-occurring resistant HPPD enzyme, or a gene encoding a mutated or chimeric HPPD enzyme as described in WO 96/38567, WO 99/24585, and WO 99/24586, WO 2009/144079, WO 2002/046387, or U.S. Pat. No. 6,768,044. Tolerance to HPPD-inhibitors can also be obtained by transforming plants with genes encoding certain enzymes enabling the formation of homogentisate despite the inhibition of the native HPPD enzyme by the HPPD-inhibitor. Such plants and genes are described in WO 99/34008 and WO 02/36787. Tolerance of plants to HPPD inhibitors can also be improved by transforming plants with a gene encoding an enzyme having prephenate deshydrogenase (PDH) activity in addition to a gene encoding an HPPD-tolerant enzyme, as described in WO 2004/024928. Further, plants can be made more tolerant to HPPD-inhibitor herbicides by adding into their genome a gene encoding an enzyme capable of metabolizing or degrading HPPD inhibitors, such as the CYP450 enzymes shown in WO 2007/103567 and WO 2008/150473.

[0193] Still further herbicide resistant plants are plants that are made tolerant to acetolactate synthase (ALS) inhibitors. Known ALS-inhibitors include, for example, sulfonylurea, imidazolinone, triazolopyrimidines, pryimidinyoxy(thio)benzoates, and/or sulfonylaminocarbonyltriazolinone herbicides. Different mutations in the ALS enzyme (also known as acetohydroxyacid synthase, AHAS) are known to confer tolerance to different herbicides and groups of herbicides, as described for example in Tranel and Wright (2002, Weed Science 50:700-712), but also, in U.S. Pat. Nos. 5,605,011, 5,378,824, 5,141,870, and 5,013,659. The production of sulfonylurea-tolerant plants and imidazolinone-tolerant plants is described in U.S. Pat. Nos. 5,605,011; 5,013,659; 5,141,870; 5,767,361; 5,731,180; 5,304,732; 4,761,373; 5,331,107; 5,928,937; and 5,378,824; and international publication WO 96/33270. Other imidazolinone-tolerant plants are also described in for example WO 2004/040012, WO 2004/106529, WO 2005/020673, WO 2005/093093, WO 2006/007373, WO 2006/015376, WO 2006/024351, and WO 2006/060634. Further sulfonylurea- and imidazolinone-tolerant plants are also described in for example WO 07/024,782 and U.S. Patent Application No. 61/288,958.

[0194] Other plants tolerant to imidazolinone and/or sulfonylurea can be obtained by induced mutagenesis, selection in cell cultures in the presence of the herbicide or mutation breeding as described for example for soybeans in U.S. Pat. No. 5,084,082, for rice in WO 97/41218, for sugar beet in U.S. Pat. No. 5,773,702 and WO 99/057965, for lettuce in U.S. Pat. No. 5,198,599, or for sunflower in WO 01/065922.

[0195] Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are insect-resistant transgenic plants, i.e. plants made resistant to attack by certain target insects. Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such insect resistance.

[0196] An "insect-resistant transgenic plant", as used herein, includes any plant containing at least one transgene comprising a coding sequence encoding:

1) an insecticidal crystal protein from Bacillus thuringiensis or an insecticidal portion thereof, such as the insecticidal crystal proteins listed by Crickmore et al. (1998, Microbiology and Molecular Biology Reviews, 62: 807-813), updated by Crickmore et al. (2005) at the Bacillus thuringiensis toxin nomenclature, online at: www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/), or insecticidal portions thereof, e.g., proteins of the Cry protein classes Cry1Ab, Cry1Ac, Cry1B, Cry1C, Cry1D, Cry1F, Cry2Ab, Cry3Aa, or Cry3Bb or insecticidal portions thereof (e.g. EP 1999141 and WO 2007/107302), or such proteins encoded by synthetic genes as e.g. described in and U.S. patent application Ser. No. 12/249,016; or 2) a crystal protein from Bacillus thuringiensis or a portion thereof which is insecticidal in the presence of a second other crystal protein from Bacillus thuringiensis or a portion thereof, such as the binary toxin made up of the Cry34 and Cry35 crystal proteins (Moellenbeck et al. 2001, Nat. Biotechnol. 19: 668-72; Schnepf et al. 2006, Applied Environm. Microbiol. 71, 1765-1774) or the binary toxin made up of the Cry1A or Cry1F proteins and the Cry2Aa or Cry2Ab or Cry2Ae proteins (U.S. patent application Ser. No. 12/214,022 and EP 08010791.5); or 3) a hybrid insecticidal protein comprising parts of different insecticidal crystal proteins from Bacillus thuringiensis, such as a hybrid of the proteins of 1) above or a hybrid of the proteins of 2) above, e.g., the Cry1A.105 protein produced by corn event MON89034 (WO 2007/027777); or 4) a protein of any one of 1) to 3) above wherein some, particularly 1 to 10, amino acids have been replaced by another amino acid to obtain a higher insecticidal activity to a target insect species, and/or to expand the range of target insect species affected, and/or because of changes introduced into the encoding DNA during cloning or transformation, such as the Cry3Bb1 protein in corn events MON863 or MON88017, or the Cry3A protein in corn event MIR604; or 5) an insecticidal secreted protein from Bacillus thuringiensis or Bacillus cereus, or an insecticidal portion thereof, such as the vegetative insecticidal (VIP) proteins listed at: www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/vip.html, e.g., proteins from the VIP3Aa protein class; or 6) a secreted protein from Bacillus thuringiensis or Bacillus cereus which is insecticidal in the presence of a second secreted protein from Bacillus thuringiensis or B. cereus, such as the binary toxin made up of the VIP1A and VIP2A proteins (WO 94/21795); or 7) a hybrid insecticidal protein comprising parts from different secreted proteins from Bacillus thuringiensis or Bacillus cereus, such as a hybrid of the proteins in 1) above or a hybrid of the proteins in 2) above; or 8) a protein of any one of 5) to 7) above wherein some, particularly 1 to 10, amino acids have been replaced by another amino acid to obtain a higher insecticidal activity to a target insect species, and/or to expand the range of target insect species affected, and/or because of changes introduced into the encoding DNA during cloning or transformation (while still encoding an insecticidal protein), such as the VIP3Aa protein in cotton event COT102; or 9) a secreted protein from Bacillus thuringiensis or Bacillus cereus which is insecticidal in the presence of a crystal protein from Bacillus thuringiensis, such as the binary toxin made up of VIP3 and Cry 1A or Cry1F (U.S. Patent Appl. No. 61/126,083 and 61/195,019), or the binary toxin made up of the VIP3 protein and the Cry2Aa or Cry2Ab or Cry2Ae proteins (U.S. patent application Ser. No. 12/214,022 and EP 08010791.5). 10) a pesticidal protein described in U.S. patent application Ser. Nos. 11/763,947, 12/721,595, 10/926,819, 10/782,020, 10/783,417, 10/782,570, 10/781,979, 10/782,096, 11/657,964, 10/782,141, 12/192,904, 11/396,808, 11/416,261, 12/364,335, 12/252,453, 61/471,848, 12/497,221, 12/646,004, 12/846,900, 12/828,594, 13/030,399, 13/030,415, 12/638,591, 12/718,059, 12/644,632, 12/713,239, 12/209,354, 12/249,016, 12/491,396, and/or 12/701,058. 11) a protein of 10) above wherein some, particularly 1 to 10, amino acids have been replaced by another amino acid to obtain a higher insecticidal activity to a target insect species, and/or to expand the range of target insect species affected, and/or because of changes introduced into the encoding DNA during cloning or transformation (while still encoding an insecticidal protein).

[0197] Of course, an insect-resistant transgenic plant, as used herein, also includes any plant comprising a combination of genes encoding the proteins of any one of the above classes 1 to 10. In one embodiment, an insect-resistant plant contains more than one transgene encoding a protein of any one of the above classes 1 to 10, to expand the range of target insect species affected when using different proteins directed at different target insect species, or to delay insect resistance development to the plants by using different proteins insecticidal to the same target insect species but having a different mode of action, such as binding to different receptor binding sites in the insect.

[0198] An "insect-resistant transgenic plant", as used herein, further includes any plant containing at least one transgene comprising a sequence producing upon expression a double-stranded RNA which upon ingestion by a plant insect pest inhibits the growth of this insect pest, as described e.g. in WO 2007/080126, WO 2006/129204, WO 2007/074405, WO 2007/080127 and WO 2007/035650.

[0199] Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are tolerant to abiotic stresses. Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such stress resistance. Particularly useful stress tolerance plants include:

1) plants which contain a transgene capable of reducing the expression and/or the activity of poly(ADP-ribose) polymerase (PARP) gene in the plant cells or plants as described in WO 00/04173, WO/2006/045633, EP 04077984.5, or EP 06009836.5. 2) plants which contain a stress tolerance enhancing transgene capable of reducing the expression and/or the activity of the PARG encoding genes of the plants or plants cells, as described e.g. in WO 2004/090140. 3) plants which contain a stress tolerance enhancing transgene coding for a plant-functional enzyme of the nicotineamide adenine dinucleotide salvage synthesis pathway including nicotinamidase, nicotinate phosphoribosyltransferase, nicotinic acid mononucleotide adenyl transferase, nicotinamide adenine dinucleotide synthetase or nicotine amide phosphorybosyltransferase as described e.g. in EP 04077624.7, WO 2006/133827, PCT/EP07/002,433, EP 1999263, or WO 2007/107326.

[0200] Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention show altered quantity, quality and/or storage-stability of the harvested product and/or altered properties of specific ingredients of the harvested product such as:

1) transgenic plants which synthesize a modified starch, which in its physical-chemical characteristics, in particular the amylose content or the amylose/amylopectin ratio, the degree of branching, the average chain length, the side chain distribution, the viscosity behaviour, the gelling strength, the starch grain size and/or the starch grain morphology, is changed in comparison with the synthesised starch in wild type plant cells or plants, so that this is better suited for special applications. Said transgenic plants synthesizing a modified starch are disclosed, for example, in EP 0571427, WO 95/04826, EP 0719338, WO 96/15248, WO 96/19581, WO 96/27674, WO 97/11188, WO 97/26362, WO 97/32985, WO 97/42328, WO 97/44472, WO 97/45545, WO 98/27212, WO 98/40503, WO99/58688, WO 99/58690, WO 99/58654, WO 00/08184, WO 00/08185, WO 00/08175, WO 00/28052, WO 00/77229, WO 01/12782, WO 01/12826, WO 02/101059, WO 03/071860, WO 2004/056999, WO 2005/030942, WO 2005/030941, WO 2005/095632, WO 2005/095617, WO 2005/095619, WO 2005/095618, WO 2005/123927, WO 2006/018319, WO 2006/103107, WO 2006/108702, WO 2007/009823, WO 00/22140, WO 2006/063862, WO 2006/072603, WO 02/034923, EP 06090134.5, EP 06090228.5, EP 06090227.7, EP 07090007.1, EP 07090009.7, WO 01/14569, WO 02/79410, WO 03/33540, WO 2004/078983, WO 01/19975, WO 95/26407, WO 96/34968, WO 98/20145, WO 99/12950, WO 99/66050, WO 99/53072, U.S. Pat. No. 6,734,341, WO 00/11192, WO 98/22604, WO 98/32326, WO 01/98509, WO 01/98509, WO 2005/002359, U.S. Pat. No. 5,824,790, U.S. Pat. No. 6,013,861, WO 94/04693, WO 94/09144, WO 94/11520, WO 95/35026, WO 97/20936 2) transgenic plants which synthesize non starch carbohydrate polymers or which synthesize non starch carbohydrate polymers with altered properties in comparison to wild type plants without genetic modification. Examples are plants producing polyfructose, especially of the inulin and levan-type, as disclosed in EP 0663956, WO 96/01904, WO 96/21023, WO 98/39460, and WO 99/24593, plants producing alpha-1,4-glucans as disclosed in WO 95/31553, US 2002031826, U.S. Pat. No. 6,284,479, U.S. Pat. No. 5,712,107, WO 97/47806, WO 97/47807, WO 97/47808 and WO 00/14249, plants producing alpha-1,6 branched alpha-1,4-glucans, as disclosed in WO 00/73422, plants producing alternan, as disclosed in e.g. WO 00/47727, WO 00/73422, EP 06077301.7, U.S. Pat. No. 5,908,975 and EP 0728213, 3) transgenic plants which produce hyaluronan, as for example disclosed in WO 2006/032538, WO 2007/039314, WO 2007/039315, WO 2007/039316, JP 2006304779, and WO 2005/012529. 4) transgenic plants or hybrid plants, such as onions with characteristics such as `high soluble solids content`, `low pungency` (LP) and/or `long storage` (LS), as described in U.S. patent application Ser. No. 12/020,360 and 61/054,026.

[0201] Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as cotton plants, with altered fiber characteristics. Such plants can be obtained by genetic transformation, or by selection of plants contain a mutation imparting such altered fiber characteristics and include: [0202] a) Plants, such as cotton plants, containing an altered form of cellulose synthase genes as described in WO 98/00549 [0203] b) Plants, such as cotton plants, containing an altered form of rsw2 or rsw3 homologous nucleic acids as described in WO 2004/053219 [0204] c) Plants, such as cotton plants, with increased expression of sucrose phosphate synthase as described in WO 01/17333 [0205] d) Plants, such as cotton plants, with increased expression of sucrose synthase as described in WO 02/45485 [0206] e) Plants, such as cotton plants, wherein the timing of the plasmodesmatal gating at the basis of the fiber cell is altered, e.g. through downregulation of fiber-selective .beta.-1,3-glucanase as described in WO 2005/017157, or as described in EP 08075514.3 or U.S. Patent Appl. No. 61/128,938 [0207] f) Plants, such as cotton plants, having fibers with altered reactivity, e.g. through the expression of N-acetylglucosaminetransferase gene including nodC and chitin synthase genes as described in WO 2006/136351

[0208] Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as oilseed rape or related Brassica plants, with altered oil profile characteristics. Such plants can be obtained by genetic transformation, or by selection of plants contain a mutation imparting such altered oil profile characteristics and include: [0209] a) Plants, such as oilseed rape plants, producing oil having a high oleic acid content as described e.g. in U.S. Pat. No. 5,969,169, U.S. Pat. No. 5,840,946 or U.S. Pat. No. 6,323,392 or U.S. Pat. No. 6,063,947 [0210] b) Plants such as oilseed rape plants, producing oil having a low linolenic acid content as described in U.S. Pat. No. 6,270,828, U.S. Pat. No. 6,169,190, or U.S. Pat. No. 5,965,755 [0211] c) Plant such as oilseed rape plants, producing oil having a low level of saturated fatty acids as described e.g. in U.S. Pat. No. 5,434,283 or U.S. patent application Ser. No. 12/668,303

[0212] Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as potatoes which are virus-resistant, e.g. against potato virus Y (event SY230 and SY233 from Tecnoplant, Argentina), which are disease resistant, e.g. against potato late blight (e.g. RB gene), which show a reduction in cold-induced sweetening (carrying the Nt-Inhh, IIR-INV gene) or which possess a dwarf phenotype (Gene A-20 oxidase).

[0213] Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as oilseed rape or related Brassica plants, with altered seed shattering characteristics. Such plants can be obtained by genetic transformation, or by selection of plants contain a mutation imparting such altered seed shattering characteristics and include plants such as oilseed rape plants with delayed or reduced seed shattering as described in U.S. Patent Appl. No. 61/135,230, and EP 08075648.9, WO09/068,313 and WO10/006,732.

[0214] Particularly useful transgenic plants which may be treated according to the invention are plants containing transformation events, or combination of transformation events, that are the subject of petitions for non-regulated status, in the United States of America, to the Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA) whether such petitions are granted or are still pending. At any time this information is readily available from APHIS (4700 River Road Riverdale, Md. 20737, USA), for instance on its internet site (URL //www.aphis.usda.gov/brs/notreg.html). On the filing date of this application the petitions for nonregulated status that were pending with APHIS or granted by APHIS were those listed in table B which contains the following information: [0215] Petition: the identification number of the petition. Technical descriptions of the transformation events can be found in the individual petition documents which are obtainable from APHIS, for example on the APHIS website, by reference to this petition number. These descriptions are herein incorporated by reference. [0216] Extension of Petition: reference to a previous petition for which an extension is requested. [0217] Institution: the name of the entity submitting the petition. [0218] Regulated article: the plant species concerned. [0219] Transgenic phenotype: the trait conferred to the plants by the transformation event. [0220] Transformation event or line: the name of the event or events (sometimes also designated as lines or lines) for which nonregulated status is requested. [0221] APHIS documents: various documents published by APHIS in relation to the Petition and which can be requested with APHIS.

[0222] Suitable extenders and/or surfactants which may be contained in the compositions according to the invention are all formulation auxiliaries which can customarily be used in plant treatment compositions.

[0223] In the compositions according to the invention the ratio of the biological control agent, in particular Bacillus firmus CNCM I-1582 spore to an agrochemically active compound of group (B) can be varied within a relatively wide range. In general, between 0.02 and 2.0 parts by weight, preferably between 0.05 and 1.0 part by weight, of the biological control agent, in particular Bacillus firmus CNCM I-1582 spore is employed per part by weight of agrochemically active compound.

[0224] When employing the active compounds of the formula (I) which can be used according to the invention, the application rates can be varied within a certain range, depending on the type of application. In the treatment of seed, the application rates of active compound of the formula (I) are generally between 10 and 10000 mg per kilogram of seed, preferably between 10 and 300 mg per kilogram of seed. When used in solid formulations, the application rates of active compound of the formula (I) are generally between 20 and 800 mg per kilogram of formulation, preferably between 30 and 700 mg per kilogram of formulation.

[0225] According to the invention, carrier is to be understood as meaning a natural or synthetic, organic or inorganic substance which is mixed or combined with the active compounds for better applicability, in particular for application to plants or plant parts or seeds. The carrier, which may be solid or liquid, is generally inert and should be suitable for use in agriculture.

[0226] Suitable solid carriers are: for example ammonium salts and natural ground minerals, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and ground synthetic minerals, such as finely divided silica, alumina and natural or synthetic silicates, resins, waxes, solid fertilizers, water, alcohols, especially butanol, organic solvents, mineral oils and vegetable oils, and also derivatives thereof. It is also possible to use mixtures of such carriers. Solid carriers suitable for granules are: for example crushed and fractionated natural minerals, such as calcite, marble, pumice, sepiolite, dolomite, and also synthetic granules of inorganic and organic meals and also granules of organic material, such as sawdust, coconut shells, maize cobs and tobacco stalks. Suitable emulsifiers and/or foam-formers are: for example nonionic and anionic emulsifiers, such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkylsulphonates, alkyl sulphates, arylsulphonates, and also protein hydrolysates. Suitable dispersants are: for example lignosulphite waste liquors and methylcellulose.

[0227] Suitable liquefied gaseous extenders or carriers are liquids which are gaseous at ambient temperature and under atmospheric pressure, for example aerosol propellants, such as butane, propane, nitrogen and carbon dioxide.

[0228] Tackifiers, such as carboxymethylcellulose and natural and synthetic polymers in the form of powders, granules and latices, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, or else natural phospholipids, such as cephalins and lecithins and synthetic phospholipids can be used in the formulations. Other possible additives are mineral and vegetable oils.

[0229] If the extender used is water, it is also possible for example, to use organic solvents as auxiliary solvents. Suitable liquid solvents are essentially: aromatic compounds, such as xylene, toluene or alkylnaphthalenes, chlorinated aromatic compounds or chlorinated aliphatic hydrocarbons, such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons, such as cyclohexane or paraffins, for example mineral oil fractions, mineral and vegetable oils, alcohols, such as butanol or glycol, and also ethers and esters thereof, ketones, such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents, such as dimethylformamide and dimethyl sulphoxide, and also water.

[0230] The compositions according to the invention may comprise additional further components, such as, for example, surfactants. Suitable surfactants are emulsifiers, dispersants or wetting agents having ionic or nonionic properties, or mixtures of these surfactants. Examples of these are salts of polyacrylic acid, salts of lignosulphonic acid, salts of phenolsulphonic acid or naphthalenesulphonic acid, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, substituted phenols (preferably alkylphenols or arylphenols), salts of sulphosuccinic esters, taurine derivatives (preferably alkyl taurates), phosphoric esters of polyethoxylated alcohols or phenols, fatty esters of polyols, and derivatives of the compounds containing sulphates, sulphonates and phosphates. The presence of a surfactant is required if one of the active compounds and/or one of the inert carriers is insoluble in water and when the application takes place in water. The proportion of surfactants is between 5 and 40 percent by weight of the composition according to the invention.

[0231] It is possible to use colorants such as inorganic pigments, for example iron oxide, titanium oxide, Prussian blue, and organic dyes, such as alizarin dyes, azo dyes and metal phthalocyanine dyes, and trace nutrients, such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.

[0232] If appropriate, other additional components may also be present, for example protective colloids, binders, adhesives, thickeners, thixotropic substances, penetrants, stabilizers, sequestering agents, complex formers. In general, the active compounds can be combined with any solid or liquid additive customarily used for formulation purposes.

[0233] In general, the compositions according to the invention comprise between 0.05 and 99 percent by weight of the active compound combination according to the invention, preferably between 10 and 70 percent by weight, particularly preferably between 20 and 50 percent by weight, most preferably 25 percent by weight.

[0234] The active compound combinations or compositions according to the invention can be used as such or, depending on their respective physical and/or chemical properties, in the form of their formulations or the use forms prepared therefrom, such as aerosols, capsule suspensions, cold-fogging concentrates, warm-fogging concentrates, encapsulated granules, fine granules, flowable concentrates for the treatment of seed, ready-to-use solutions, dustable powders, emulsifiable concentrates, oil-in-water emulsions, water-in-oil emulsions, macrogranules, microgranules, oil-dispersible powders, oil-miscible flowable concentrates, oil-miscible liquids, foams, pastes, pesticide-coated seed, suspension concentrates, suspoemulsion concentrates, soluble concentrates, suspensions, wettable powders, soluble powders, dusts and granules, water-soluble granules or tablets, water-soluble powders for the treatment of seed, wettable powders, natural products and synthetic substances impregnated with active compound, and also microencapsulations in polymeric substances and in coating materials for seed, and also ULV cold-fogging and warm-fogging formulations.

[0235] The formulations mentioned can be prepared in a manner known per se, for example by mixing the active compounds or the active compound combinations with at least one additive. Suitable additives are all customary formulation auxiliaries, such as, for example, organic solvents, extenders, solvents or diluents, solid carriers and fillers, surfactants (such as adjuvants, emulsifiers, dispersants, protective colloids, wetting agents and tackifiers), dispersants and/or binders or fixatives, preservatives, dyes and pigments, defoamers, inorganic and organic thickeners, water repellents, if appropriate siccatives and UV stabilizers, gibberellins and also water and further processing auxiliaries. Depending on the formulation type to be prepared in each case, further processing steps such as, for example, wet grinding, dry grinding or granulation may be required.

[0236] Organic diluents that may be present are all polar and non-polar organic solvents that are customarily used for such purposes. Preferred are ketones, such as methyl isobutyl ketone and cyclohexanone, furthermore amides, such as dimethylformamide and alkanecarboxamides, such as N,N-dimethyldecanamide and N,N-dimethyloctanamide, furthermore cyclic compounds, such as N-methylpyrrolidone, N-octylpyrrolidone, N-dodecylpyrrolidone, N-octylcaprolactam, N-dodecylcaprolactam and butyrolactone, additionally strongly polar solvents, such as dimethyl sulphoxide, furthermore aromatic hydrocarbons, such as xylene, Solvesso.TM., mineral oils, such as white spirit, petroleum, alkylbenzenes and spindle oil, moreover esters, such as propylene glycol monomethyl ether acetate, dibutyl adipate, hexyl acetate, heptyl acetate, tri-n-butyl citrate and di-n-butyl phthalate, and furthermore alcohols, such as, for example, benzyl alcohol and 1-methoxy-2-propanol.

[0237] Solid carriers suitable for granules are: for example crushed and fractionated natural minerals, such as calcite, marble, pumice, sepiolite, dolomite, and also synthetic granules of inorganic and organic meals and also granules of organic material, such as sawdust, coconut shells, maize cobs and tobacco stalks.

[0238] Suitable surfactants (adjuvants, emulsifiers, dispersants, protective colloids, wetting agents and tackifiers) are customary ionic and nonionic substances. Examples which may be mentioned are ethoxylated nonylphenols, polyalkylene glycol ethers of straight-chain or branched alcohols, products of reactions of alkylphenols with ethylene oxide and/or propylene oxide, products of reactions of fatty amines with ethylene oxide and/or propylene oxide, furthermore fatty esters, alkylsulphonates, alkyl sulphates, alkyl ether sulphates, alkyl ether phosphates, aryl sulphates, ethoxylated arylalkylphenols, such as, for example, tristyrylphenol ethoxylates, furthermore ethoxylated and propoxylated arylalkylphenols and also sulphated or phosphated arylalkylphenol ethoxylates or ethoxy- and propoxylates. Mention may furthermore be made of natural and synthetic water-soluble polymers, such as lignosulphonates, gelatine, gum arabic, phospholipids, starch, hydrophobically modified starch and cellulose derivatives, in particular cellulose esters and cellulose ethers, furthermore polyvinyl alcohol, polyvinyl acetate, polyvinylpyrrolidone, polyacrylic acid, polymethacrylic acid and copolymers of (meth)acrylic acid and (meth)acrylic acid esters, and moreover also alkali metal hydroxide-neutralized copolymers of methacrylic acid and methacrylic ester and condensates of optionally substituted naphthalenesulphonic acid salts with formaldehyde.

[0239] Suitable solid fillers and carriers are all substances customarily used for this purpose in crop protection compositions. Inorganic particles, such as carbonates, silicates, sulphates and oxides having a mean particle size of from 0.005 to 20 .mu.m, particularly preferably from 0.02 to 10 .mu.m, may be mentioned as being preferred. Examples which may be mentioned are ammonium sulphate, ammonium phosphate, urea, calcium carbonate, calcium sulphate, magnesium sulphate, magnesium oxide, aluminium oxide, silicon dioxide, finely divided silicic acid, silica gels, natural and synthetic silicates and alumosilicates and vegetable products such as cereal meal, wood powder and cellulose powder.

[0240] Suitable colorants that may be present in the seed dressing formulations to be used according to the invention include all colorants customary for such purposes. Use may be made both of pigments, of sparing solubility in water, and of dyes, which are soluble in water. Examples that may be mentioned include the colorants known under the designations Rhodamin B, C.I. Pigment Red 112 and C.I. Solvent Red 1. The colorants used can be inorganic pigments, for example iron oxide, titanium oxide, Prussian Blue, and organic dyes, such as alizarin, azo and metal phthalocyanine dyes, and trace nutrients, such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.

[0241] Suitable wetting agents that may be present in the seed dressing formulations to be used according to the invention include all substances which promote wetting and are customary in the formulation of agrochemically active compounds. Preference is given to using alkylnaphthalenesulphonates, such as diisopropyl- or diisobutylnaphthalenesulphonates.

[0242] Suitable dispersants and/or emulsifiers that may be present in the seed dressing formulations to be used according to the invention include all nonionic, anionic and cationic dispersants which are customary in the formulation of agrochemically active compounds. Preference is given to using nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants. Particularly suitable nonionic dispersants are ethylene oxide/propylene oxide block polymers, alkylphenol polyglycol ethers, and also tristryrylphenol polyglycol ethers and their phosphated or sulphated derivatives. Particularly suitable anionic dispersants are lignosulphonates, polyacrylic acid salts and arylsulphonate/formaldehyde condensates.

[0243] Defoamers that may be present in the seed dressing formulations to be used according to the invention include all foam-inhibiting compounds which are customary in the formulation of agrochemically active compounds. Preference is given to using silicone defoamers, magnesium stearate, silicone emulsions, long-chain alcohols, fatty acids and their salts and also organofluorine compounds and mixtures thereof.

[0244] Preservatives that may be present in the seed dressing formulations to be used according to the invention include all compounds which can be used for such purposes in agrochemical compositions. By way of example, mention may be made of dichlorophen and benzyl alcohol hemiformal.

[0245] Secondary thickeners that may be present in the seed dressing formulations to be used according to the invention include all compounds which can be used for such purposes in agrochemical compositions. Preference is given to cellulose derivatives, acrylic acid derivatives, polysaccharides, such as xanthan gum or Veegum, modified clays, phyllosilicates, such as attapulgite and bentonite, and also finely divided silicic acids.

[0246] Suitable adhesives that may be present in the seed dressing formulations to be used according to the invention include all customary binders which can be used in seed dressings. Polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and tylose may be mentioned as being preferred.

[0247] Suitable gibberellins that may be present in the seed dressing formulations to be used according to the invention are preferably the gibberellins A1, A3 (=gibberellic acid), A4 and A7; particular preference is given to using gibberellic acid. The gibberellins are known (cf. R. Wegler "Chemie der Pflanzenschutz- and Schadlingsbekampfungsmittel" [Chemistry of Crop Protection Agents and Pesticides], Vol. 2, Springer Verlag, 1970, pp. 401-412).

[0248] The formulations generally comprise between 0.1 and 95% by weight of active compound, preferably between 0.5 and 90%.

[0249] The active compound combinations according to the invention can be present in commercial formulations and in the use forms prepared from these formulations as a mixture with other active compounds, such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators or herbicides. A mixture with fertilizers is also possible.

[0250] The treatment according to the invention of the plants and plant parts with the active compound combinations or compositions is carried out directly or by action on their surroundings, habitat or storage space using customary treatment methods, for example by dipping, spraying, atomizing, irrigating, evaporating, dusting, fogging, broadcasting, foaming, painting, spreading-on, watering (drenching), drip irrigating and, in the case of propagation material, in particular in the case of seeds, furthermore as a powder for dry seed treatment, a solution for seed treatment, a water-soluble powder for slurry treatment, by incrusting, by coating with one or more coats, etc. Preference is given to application by dipping, spraying, atomizing, irrigating, evaporating, dusting, fogging, broadcasting, foaming, painting, spreading-on, watering (drenching) and drip irrigating.

[0251] The application of the formulations is carried out in accordance with customary agricultural practice in a manner adapted to the application forms. Customary applications are, for example, dilution with water and spraying of the resulting spray liquor, application after dilution with oil, direct application without dilution, seed dressing or soil application of carrier granules.

[0252] The active compound content of the application forms prepared from the commercial formulations can vary within wide limits. The active compound concentration of the application forms can be from 0.0000001 up to 95% by weight of active compound, preferably between 0.0001 and 2% by weight.

[0253] The compositions according to the invention do not only comprise ready-to-use compositions which can be applied with suitable apparatus to the plant or the seed, but also commercial concentrates which have to be diluted with water prior to use.

[0254] The treatment according to the invention of the plants and plant parts with the biological or chemical control agent is carried out directly or by action on their surroundings, habitat or storage space using customary treatment methods, for example by dipping, spraying, atomizing, irrigating, stem injection, in-furrow application, evaporating, dusting, fogging, broadcasting, foaming, painting, spreading-on, watering (drenching), drip irrigating and, in the case of propagation material, in particular in the case of seeds, furthermore as a powder for dry seed treatment, a solution for seed treatment, a water-soluble powder for slurry treatment, by incrusting, by coating with one or more layers, etc. It is furthermore possible to apply the active compounds by the ultra-low volume method, or to inject the active compound preparation or the active compound itself into the soil.

[0255] The invention furthermore comprises a method for treating seed. The invention furthermore relates to seed treated according to one of the methods described in the preceding paragraph.

[0256] The biological control agent, in particular Bacillus firmus CNCM I-1582 spore or compositions comprising the biological control agent, in particular Bacillus firmus CNCM I-1582 spore according to the invention are especially suitable for treating seed. A large part of the damage to crop plants caused by harmful organisms is triggered by an infection of the seed during storage or after sowing as well as during and after germination of the plant. This phase is particularly critical since the roots and shoots of the growing plant are particularly sensitive, and even small damage may result in the death of the plant. Accordingly, there is great interest in protecting the seed and the germinating plant by using appropriate compositions.

[0257] The control of nematodes by treating the seed of plants has been known for a long time and is the subject of continuous improvements. However, the treatment of seed entails a series of problems which cannot always be solved in a satisfactory manner. Thus, it is desirable to develop methods for protecting the seed and the germinating plant which dispense with the additional application of crop protection agents after sowing or after the emergence of the plants or which at least considerably reduce additional application. It is furthermore desirable to optimize the amount of active compound employed in such a way as to provide maximum protection for the seed and the germinating plant from attack by nematodes, but without damaging the plant itself by the active compound employed. In particular, methods for the treatment of seed should also take into consideration the intrinsic nematicidal properties of transgenic plants in order to achieve optimum protection of the seed and the germinating plant with a minimum of crop protection agents being employed.

[0258] Accordingly, the present invention also relates in particular to a method for protecting seed and germinating plants against attack by nematodes by treating the seed with a biological or chemical control agent according to the invention. The invention also relates to the use of the compositions according to the invention for treating seed for protecting the seed and the germinating plant against nematodes. Furthermore, the invention relates to seed treated with a composition according to the invention for protection against nematodes.

[0259] The control of nematodes which damage plants post-emergence is carried out primarily by treating the soil and the above-ground parts of plants with crop protection compositions. Owing to the concerns regarding a possible impact of the crop protection composition on the environment and the health of humans and animals, there are efforts to reduce the amount of active compounds applied.

[0260] One of the advantages of the present invention is that, because of the particular systemic properties of the biological control agent, in particular Bacillus firmus CNCM I-1582 spore or a composition comprising the biological control agent, in particular Bacillus firmus CNCM I-1582 spore according to the invention, treatment of the seed with the biological control agent, in particular Bacillus firmus CNCM I-1582 spore or these compositions not only protects the seed itself, but also the resulting plants after emergence, from nematodes. In this manner, the immediate treatment of the crop at the time of sowing or shortly thereafter can be dispensed with.

[0261] The biological or chemical control agent according to the invention are suitable for protecting seed of vegetables, in particular tomato and cucurbits, potato, corn, soy, cotton, tobacco, coffee, fruits, in particular, citrus fruits, pine apples and bananas, and grapes.

[0262] As also described further below, the treatment of transgenic seed with the biological or chemical control agent according to the invention is of particular importance. This refers to the seed of plants containing at least one heterologous gene which allows the expression of a polypeptide or protein having insecticidal or nematicidal properties, particularly the genes listed in Table 1. The heterologous gene in transgenic seed can originate, for example, from microorganisms of the species Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus or Gliocladium. Preferably, this heterologous gene is from Bacillus sp., the gene product having activity against lepidopteran, coleopteran, or nematode pests.

[0263] In the context of the present invention, the biological control agent, in particular Bacillus firmus CNCM I-1582 spore or a composition comprising the biological control agent, in particular Bacillus firmus CNCM I-1582 spore according to the invention are applied on their own or in a suitable formulation to the seed. Preferably, the seed is treated in a state in which it is sufficiently stable so that the treatment does not cause any damage. In general, treatment of the seed may take place at any point in time between harvesting and sowing. Usually, the seed used is separated from the plant and freed from cobs, shells, stalks, coats, hairs or the flesh of the fruits. Thus, it is possible to use, for example, seed which has been harvested, cleaned and dried to a moisture content of less than 15% by weight. Alternatively, it is also possible to use seed which, after drying, has been treated, for example, with water and then dried again.

[0264] When treating the seed, care must generally be taken that the amount of the biological or chemical control agent according to the invention applied to the seed and/or the amount of further additives is chosen in such a way that the germination of the seed is not adversely affected, or that the resulting plant is not damaged. This must be borne in mind in particular in the case of active compounds which may have phytotoxic effects at certain application rates.

[0265] The biological or chemical control agent according to the invention can be applied directly, that is to say without comprising further components and without having been diluted. In general, it is preferable to apply the compositions to the seed in the form of a suitable formulation. Suitable formulations and methods for the treatment of seed are known to the person skilled in the art and are described, for example, in the following documents: U.S. Pat. No. 4,272,417 A, U.S. Pat. No. 4,245,432 A, U.S. Pat. No. 4,808,430 A, U.S. Pat. No. 5,876,739 A, US 2003/0176428 A1, WO 2002/080675 A1, WO 2002/028186 A2.

[0266] The biological or chemical control agent which can be used according to the invention can be converted into customary seed dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other coating materials for seed, and also ULV formulations.

[0267] These formulations are prepared in a known manner by mixing the active compounds or active compound combinations with customary additives, such as, for example, customary extenders and also solvents or diluents, colorants, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and water as well.

[0268] Suitable colorants that may be present in the seed dressing formulations which can be used according to the invention include all colorants customary for such purposes. Use may be made both of pigments, of sparing solubility in water, and of dyes, which are soluble in water. Examples that may be mentioned include the colorants known under the designations Rhodamine B, C.I. Pigment Red 112, and C.I. Solvent Red 1.

[0269] Suitable wetting agents that may be present in the seed dressing formulations which can be used according to the invention include all substances which promote wetting and are customary in the formulation of active agrochemical substances. With preference it is possible to use alkylnaphthalene-sulphonates, such as diisopropyl- or diisobutylnaphthalene-sulphonates.

[0270] Suitable dispersants and/or emulsifiers that may be present in the seed dressing formulations which can be used according to the invention include all nonionic, anionic, and cationic dispersants which are customary in the formulation of active agrochemical substances. With preference, it is possible to use nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants. Particularly suitable nonionic dispersants are ethylene oxide-propylene oxide block polymers, alkylphenol polyglycol ethers, and tristyrylphenol polyglycol ethers, and their phosphated or sulphated derivatives. Particularly suitable anionic dispersants are lignosulphonates, polyacrylic salts, and arylsulphonate-formaldehyde condensates.

[0271] Defoamers that may be present in the seed dressing formulations to be used according to the invention include all foam-inhibiting compounds which are customary in the formulation of agrochemically active compounds. Preference is given to using silicone defoamers, magnesium stearate, silicone emulsions, long-chain alcohols, fatty acids and their salts and also organofluorine compounds and mixtures thereof.

[0272] Preservatives that may be present in the seed dressing formulations to be used according to the invention include all compounds which can be used for such purposes in agrochemical compositions. By way of example, mention may be made of dichlorophen and benzyl alcohol hemiformal.

[0273] Secondary thickeners that may be present in the seed dressing formulations to be used according to the invention include all compounds which can be used for such purposes in agrochemical compositions. Preference is given to cellulose derivatives, acrylic acid derivatives, polysaccharides, such as xanthan gum or Veegum, modified clays, phyllosilicates, such as attapulgite and bentonite, and also finely divided silicic acids.

[0274] Suitable adhesives that may be present in the seed dressing formulations to be used according to the invention include all customary binders which can be used in seed dressings. Polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and tylose may be mentioned as being preferred.

[0275] Suitable gibberellins that may be present in the seed dressing formulations to be used according to the invention are preferably the gibberellins A1, A3 (=gibberellic acid), A4 and A7; particular preference is given to using gibberellic acid. The gibberellins are known (cf. R. Wegler "Chemie der Pflanzenschutz- and Schadlingsbekampfungsmittel" [Chemistry of Crop Protection Agents and Pesticides], Vol. 2, Springer Verlag, 1970, pp. 401-412).

[0276] The seed dressing formulations which can be used according to the invention may be used directly or after dilution with water beforehand to treat seed of any of a very wide variety of types. The seed dressing formulations which can be used according to the invention or their dilute preparations may also be used to dress seed of transgenic plants. In this context, synergistic effects may also arise in interaction with the substances formed by expression.

[0277] Suitable mixing equipment for treating seed with the seed dressing formulations which can be used according to the invention or the preparations prepared from them by adding water includes all mixing equipment which can commonly be used for dressing. The specific procedure adopted when dressing comprises introducing the seed into a mixer, adding the particular desired amount of seed dressing formulation, either as it is or following dilution with water beforehand, and carrying out mixing until the formulation is uniformly distributed on the seed. Optionally, a drying operation follows.

[0278] The nematicidal compositions according to the invention can be used for the curative or protective control of nematodes. Accordingly, the invention also relates to curative and protective methods for controlling nematodes using the biological or chemical control agent which are applied to the seed, the plant or plant parts, the fruit or the soil in which the plants grow. Preference is given to application onto the plant or the plant parts, the fruits or the soil.

[0279] The compositions according to the invention for combating nematodes in crop protection comprise an active, but non-phytotoxic amount of the compounds according to the invention. "Active, but non-phytotoxic amount" shall mean an amount of the composition according to the invention which is sufficient to control or to completely kill the plant disease caused by nematodes, which amount at the same time does not exhibit noteworthy symptoms of phytotoxicity. These application rates generally may be varied in a broader range, which rate depends on several factors, e.g. the nematodes, the plant or crop, the climatic conditions and the ingredients of the composition according to the invention.

[0280] The fact that the active compounds, at the concentrations required for the controlling of plant diseases, are well tolerated by plants permits the treatment of aerial plant parts, of vegetative propagation material and seed, and of the soil.

[0281] In an exemplary seed treatment method, an aqueous composition comprising the biological control agent, in particular Bacillus firmus CNCM I-1582 spore can be applied at a rate to provide in the range of 0.1 g to 20 g, preferably 1 g to 10 g, particularly preferably 2.5 g to 7.5 g., and most preferably approximately 5 g Bacillus firmus CNCM I-1582 spore per hectare or 100.000 kernels of seed. The above ranges refer to a spore formulation or suspension containing 10.sup.11 spores/g.

[0282] In various embodiments, the biological control agent is added to the seed at a rate of about 1.times.10.sup.5 to 1.times.10.sup.8 colony forming units (cfu) per seed, including about 1.times.10.sup.5 cfu/seed, or about 1.times.10.sup.6 cfu/seed, or about 1.times.10.sup.7 cfu/seed, or about 1.times.10.sup.8 cfu/seed, including about 1.times.10.sup.5 to 1.times.10.sup.7 cfu/per seed, about 1.times.10.sup.5 to 1.times.10.sup.6 cfu/per seed, about 1.times.10.sup.6 to 1.times.10.sup.8 cfu/per seed, about 1.times.10.sup.6 to 1.times.10.sup.7 cfu/per seed and about 1.times.10.sup.7 to 1.times.10.sup.8 cfu/per seed.

[0283] The general concepts of the invention are described in the following examples, which are not to be considered as limiting.

[0284] The general concepts of the invention are described in the following examples, which are not to be considered as limiting.

EXPERIMENTAL EXAMPLES

Example 1

[0285] Two tests were planted with Jack (an SCN resistant soybean variety with PI 88788 resistance) and two genetically modified Jack varieties (AXN2 and AXMI031) known to produce a nematicidal protein. The seed were treated with a color/coating base or the same base plus one of two different rates of fluopyram (experiment 1 used 0.075 mg fluopyram/seed and experiment 2 used 0.15 mg fluopyram/seed). The SCN used to inoculate both tests were collected from an inbred colony (OP50) with the ability to overcome PI 88788 resistance.

[0286] Tests were conducted as non-randomized blocks with a minimum of 10 replicates. Seed were planted in individual 4'' clay pots with coarse sand and inoculated with approximately 20,000 OP50 juveniles in ten equal inoculations beginning at planting and again approximately every third day. Plants were maintained in a germination chamber. Blocks were rotated approximately every third day to minimize potential influence of environmental variance. Two months after planting, plants were harvested and cysts were collected and counted to evaluate the efficacy of the nematicide and traits, both individually and in combination with each other.

[0287] With the base treatment (color/coating), about half way through the project a reduction in height was recorded with both of the genetically modified varieties compared to the non-transformed plants.

[0288] Fluopyram has not been shown to provide a positive growth response, which was also observed in the nontransgenic Jack plants in this experiment. However, fluopyram increased average plant height on both genetically modified varieties in both experiments while not having an effect on the nontransgenic control plants. Thus, while not being bound by any particular theory or mechanism, it appears as though the application of fluopyram to the transgenic Axn2 and Axmi031 plants overcame the growth inhibitory effects resulting from the presence of the transgene. There were no growth-promoting effects in the nontransgenic control, nor in the untreated transgenic plants.

[0289] In both experiments (0.075 mg fluopyram/seed and 0.15 mg fluopyram/seed) the average number of cysts collected from Jack plants with the base (color/coating) treatment was relatively consistent (1310 and 1190 cysts). When comparing these averages to those from the AXMI031 plants (also with the base treatment), the percent reductions were also very consistent (92% and 88%). As for the AXN2 plants (again with the base treatment), the individual results in the second experiment were highly variable and in the end the overall percent reduction (as compared to the Jack) was significantly higher (43%) as compared to the first experiment (20%). See FIG. 1.

[0290] In the first experiment the fluopyram (0.075 mg/seed) reduced SCN populations by 26% on the nontransgenic Jack plants. When the rate of the chemical was doubled in the second experiment (0.15 mg fluopyram/seed), the reduction almost doubled as well (43%). Considering this is an experimental nematicide the limiting factor was likely not SCN immune to the effects of the chemical but more likely its distribution within the rhizosphere and the number of SCN which were exposed to a lethal concentration.

[0291] Based on that assumption, the percent control attributable to fluopyram would be expected to be less with the transgenic seed due to a potential overlap (e.g., fewer nematodes available for targeting by the fluopyram). However, the control achieved through the traits (20/43%--AXN2; 92/88%--AXMI31) did not diminish the effects of fluopyram. Fluopyram provided an approximate reduction of 20% at the low rate and an approximate reduction of 40% at the high rate for both Axmi031 and Axn2 Thus, fluopyram resulted in a consistent level of nematode control despite the significantly lower nematode pressure resulting from the presence of the transgene.

Example 2

[0292] Glycine max (soybean) seed from an event traited with Axmi031 was selected. Axmi031 historically shows efficacy against species of nematode. Plants that screened negative for the presence of the transgene were used for control comparisons.

[0293] Seed was treated with seed applied pesticides using a hege bowl treater. Metalaxyl (MTL), available as Allegiance through Bayer CropScience, was applied at rates of 2 and 4 g ai/100 kg seed. Trilex 2000 was also included as a commercial standard package.

[0294] During testing, samples of each plant were submitted for PCR to determine if an individual plant carried the Axmi031 gene (Positive or Negative). Plants for which no PCR results could be obtained were not included in results. There were a disproportionate number of positive plants. As a result, the number of negative plants available in some comparisons was very small.

[0295] Testing was conducted as a randomized complete block with 30 replications. Seed were planted into sand at a rate of one seed per pot. Plants were stored at 10.degree. C. for eight days and then moved to 25.degree. C. for the remainder of the test. Plants were periodically assessed for emergence. After several weeks of growth plants were evaluated for height. At approximately 40 days after planting, 5 random plants for each treatment comparison were selected for extraction. If fewer than 5 plants were available, evaluations were still conducted as long as a minimum of 3 plants could be assessed. Exacted plants were measured by hand to determine root length and mass and evaluated using WinRHIZO image analysis system (available through Regent instruments at www.regent.qc.ca/products/rhizo/WinRHIZO.html.

[0296] Treatments in the shaded boxes were removed from consideration due to lack of plants. This was due to the seed provided predominately being positive for Axmi031. Plant shoot height increased with increasing rates of metalaxyl. Metalaxyl is fungicide targeted at damping off and seed rot and is not known to directly increase plant height. The addition of Axmi031 resulted in shoots on average 14% longer than the untreated negative control (UTC) at 28 days after planting (DAP). The addition of metalaxyl resulted in an additional 5% and 8% shoot height at 2 and 4 g/a.i. rate increments, respectively (Table 3). Height measurements were corroborated in the results from plant mass (Table 4). Plants with Axmi031 and metalaxyl had greater total mass and above ground mass than controls. Plant total mass increased by 13% in the presence of Axmi031 and an additional 5% at 2 g/a.i. of metalaxyl. The 4 g ai rate of metalaxyl resulted in a 11% increase in above ground plant mass compared to Axmi031 alone (Table 4).

TABLE-US-00005 TABLE 3 ##STR00008##

TABLE-US-00006 TABLE 4 ##STR00009##

[0297] WinRHIZO analysis (Table 4) showed substantial root growth in plants with Axmi031 and metalaxyl compared to controls. Axmi031 as an individual component had values comparable to, or slightly below, the negative control. With the addition of metalaxyl to Axmi031, root lengths increased by 60% and 68%, root surface area by 42% and 37% and root volume by 27% and 11% for the 2 g ai and 4 g ai rates, respectively. Tips, forks, and crossings also increased as metalaxyl rate increased.

[0298] Metalaxyl is not known to directly increase plant growth, but to protect seedlings from disease. It is unexpected for rates of metalaxyl to result in increased growth. Thus, the results of these experiments suggest that there is an interaction between Axmi031 and metalaxyl that results in plant growth promotion.

Example 3

[0299] Zea Mays (Corn) seed from events traited with Axmi205 were selected. Axmi205 historically shows efficacy against Diabrotica virgifera (western corn rootworm). The population of the seed used is not entirely transgenic; plants without the trait in their DNA were used for control comparisons.

[0300] Seed was treated with seed applied pesticides using a hege bowl treater. Applications were made of: Clothianidin; available as Poncho though through Bayer CropScience. Rates were applied as mg ai/seed. The evaluation had non-target variables controlled.

[0301] During testing, samples of each plant were submitted for PCR to determine if an individual plant carried the Axmi205 gene (positive or negative). Plants for which no PCR results could be obtained were not included in the results.

[0302] Seed were planted into germination mix at a rate of one seed per root-trainer. Testing was conducted as a randomized complete block with 30 replications. Plants were maintained in a greenhouse and periodically assessed for emergence. After several weeks of growth, leaf samples were taken from plants and used to conduct insect bioassays on species of Lepidoptera. A leaf sample was placed into a Petri-dish and infested with 10 larvae of fall armyworm; Spodoptera frugiperda. After 48 hours dishes were evaluated for insect mortality and leaf feeding damage. When assessing leaf feeding, damage was recorded as a rating between 0-3, where zero was undamaged and three was severely damaged. After approximately three weeks from planting, plants were infested with Diabrotica virgifera (western corn rootworm). Western corn rootworm eggs were infested into the root system of plants. At approximately 15 days post infestation plants were extracted and insect feeding damage was evaluated following Iowa State University's Node-Injury Scale at www.ent.iastate.edu/pest/rootworm/nodeinjury/nodeinjury.html.

[0303] The trait Axmi205 is known to have efficacy on western corn rootworm (D. virgifera). There has been no evidence to suggest that Axmi205 is effective against any lepidopteran pests. Clothianidin when applied at commercial rates between 0.5 and 1.25 mg ai/seed can provide control of various corn insect pests. The rates examined in these trials were below recommended rates for labeled species.

[0304] Mortality for S. frugiperda increased by 14%, 71%, and 57% above the negative control based on increasing rate of clothianidin. Mortality was increased further in the presence of Axmi205. Mortality increased by an additional 88% and 54% at rates of clothianidin at 0.125 and 0.5 mg ai/seed, respectively. Leaf feeding damage was also reduced by the combination of Axmi205 and clothianidin and appeared to correlate with increases in mortality (Table 5).

[0305] While not being bound to any particular theory or mechanism, these data suggest an interaction between clothianidin and Axmi205, which at some rates results in a mortality increase and feeding reduction beyond what would be expected to occur due to random chance, or each treatments individual contribution.

TABLE-US-00007 TABLE 5 PCR Plant Emergence Leaf Feeding Insect Efficacy Trait Axmi205 Axmi205 Axmi205 Axmi205 Axmi205 Axmi205 Target Z. Mays Z. Mays Z. Mays Z. Mays S. frugiperda S. frugiperda Criteria Negative or Positive Emerged Emerged Emerged Insect Mortality Leaf Feeding Rating Trt/Date Jul. 19, 2011 Jun. 28, 2011 Jul. 1, 2011 Jul. 7, 2011 Jul. 14, 2011 Jul. 14, 2011 UTC Negative 15 plants 50% 50% 50% 7% 2.93 UTC + Axmi205 Positive 14 plants 47% 47% 47% 11% 2.86 CTD @ 0.125 mg ai/seed Negative 13 plants 43% 43% 43% 8% 3.00 CTD @ 0.125 mg ai/seed + Positive 13 plants 43% 43% 43% 15% 2.92 Axmi205 CTD @ 0.25 mg ai/seed Negative 13 plants 40% 43% 43% 12% 2.77 CTD @ 0.25 mg ai/seed + Positive 14 plants 43% 47% 47% 9% 2.79 Axmi205 CTD @ 0.5 mg ai/seed Negative 10 plants 33% 33% 33% 11% 3.00 CTD @ 0.5 mg ai/seed + Positive 14 plants 43% 43% 47% 17% 2.79 Axmi205 *Leaf Feeding Rating 0 = undamaged; 1 = light fringe feeding, 2 = fringe feeding with some internal feeding; 3 = severe feeding on internal portions of leaf

[0306] Clothianidin is known to be efficacious on western corn rootworm when applied at recommended rates. The rates evaluated in this study are below label recommendations. Axmi205 reduced root damage by 37% over the negative control. The lowest rate of clothianidin tested reduced root damage by 67% over the negative control and the highest rate by 96%. At theses rates the high efficacy of clothianidin overshadowed any individual contribution of Amxi205. However, at a clothianidin rate of 0.25 mg ai/seed further root damage reduction of 69% was witnessed in the presence of the Axmi205 gene.

[0307] We believe there is an interaction occurring between clothianidin and Axmi205, that at some rates results in reduced western corn rootworm feeding and/or increased western corn rootworm mortality, that leads to a reduction in root damage. The 69% additional reduction in the presence of Axmi205 at a clothianidin rate of 0.25 mg ai/seed is beyond the level of expected mortality of Axmi205 (37% comparing negative control to positive control). See Table 6. Thus, at least at the middle rate of clothianidin where the treatment may directly harm the insect as well as increase the insect's susceptibility to Axmi205, there is an improvement in the level of western corn rootworm control in the combination of clothianidin and Axmi205.

TABLE-US-00008 TABLE 6 PCR Insect Efficacy Trait Axmi205 Axmi205 Target Z. Mays D. virgifera Criteria Root Damage Rating UTC Negative 13 plants 1.71 UTC + Axmi205 Positive 12 plants 1.08 CTD @.125 mg ai/seed Negative 12 plants 0.56 CTD @ 0.125 mg ai/seed + Positive 12 plants 0.58 Axmi205 CTD @ 0.25 mg ai/seed Negative 12 plants 0.32 CTD @ 0.25 mg ai/seed + Positive 12 plants 0.10 Axmi205 CTD @ 0.5 mg ai/seed Negative 7 plants 0.04 CTD @ 0.5 mg ai/seed + Axmi205 Positive 13 plants 0.06 Based on 26 Replicates Root Damage Rating 0 = undamaged; 3 = severely damaged

Example 4

[0308] Soybeans (6-10 seeds each) in this study included: Control SB171 (transfected control with non gene of interest); SB 171 treated with Bacillus firmus CNCM I-1582 spore control plant; Axmi031 transgenic plant (which also contains non gene of interest); Axmi031 transgenic plant (which also contains non gene of interest) treated with Bacillus firmus CNCM I-1582 spore.

[0309] Soybeans (6-10 seeds/plant and treatment) were planted into 4'' clay pots in sand infested with approximately 37,000 SCN eggs (HG2.5.7) at time of planting. Soybean plants were reinfested with 20,000 SCN eggs (HG2.5.7) at approximately 4 weeks post planting. Plants were grown 57 days post reinfestation date. Cysts were harvested from each pot and counted. PCR and Western analysis were done on each AXMI031 plant. Negative segregants were removed from analysis. Data shown in FIG. 2 represents six plants for SB171 each treatment and all PCR/Western positive Axmi031 plants.

Sequence CWU 1

1

7511608DNAChromobacterium sp. 1atggcatccg cagcaaatgc aggtcagctt ggcaacctcc ccggcgttac ttccatgggc 60atgggctatg acgtgaatgg tttgtacgcc agcccggaaa gcctgcttgg ccaacccttg 120ttcgatttcg gcggcgagct ggacagcatc gaaatcgagg gccgcagcta cacctttccc 180cgcagcatgc atgtacacac ctatttccat tccgacttca aacaggatgt cagcaaggaa 240atcgaagagt atcgggagaa aatgagccag cacgtgggcg tgtccggccg ctacaagttg 300ttcagcgctt cgctgagcgt ggatttcacc accacggacc agcaactgac cgagattacc 360tacagctcca cccgcgaagc ccatgtgctg tggtacatca gcctgcctgg cgcggccacg 420ctgcgttcga tgctgcgccg cgatttccgc gacgacctga acaaccccaa tatgccggcc 480atggagctgt tcaagcgcta tggtccctac tacatatcgg aagcggcggt gggcggccgg 540ctggactaca gcgcggccag caagaccttg aagatggaca gcagccagtc gctgtccacc 600accgccgaaa tgtcctacaa ggcgctggtg ggcgagatca agatcgagca tggctcggag 660atggaaaagc aggtcaacag cttccgcagc aactccacca tccgtctcac cgccaccggc 720ggcaagccgg gcatgaccga tcgcatactg cacggtccgg attcgcagca ggcgttctcg 780caatgggcgg aatcgctgct cgactatgcg acgctgatgg acttttccac cgaaagcctg 840caaccgatct gggcgctggc cgacaagccc gagcgccgcg tcgagcttga ggacgccttc 900cccgaattca tgaagcagtc gcagcagtcc atccccaagg tggacaaggt gctgctgatg 960gacgcgcggc cgcctatggt gaaggctggg gaggatagcg gctccggcgc gtcggaggat 1020ctggctgtgt tcaatcccag cacctccaat ggctacaaga tggttggcca gttcggtcag 1080cgcaaccatg ccagcgtggc ggatggccat gcgccgattt tcaaggatct gttcgatctg 1140ggcgtgctga aggcgccggt gggttggcag cgggtgtggg acgacgccgg ctccggcaag 1200tccaaggact acgcgtgctg gcgcgcgatt ccgccgcagg gctaccgcgc gctgggcgat 1260gtgatgatgc tggccaccag cggctataac ccgccgaatc tgccggacta tgtttgcgtg 1320catcaaagcc tgtgcgcgga tgtgcagacg ctgcaaaacc gggtgtggtg ggacaagggc 1380accggcgcgc gcaaggatgt cagcctgtgg caaccgggcg cggccggcgc ggtggcgtcc 1440tcttgcttcg ccggcgtgcc taattacaac aacccgccca attccggcga catcgagcgc 1500ttgcgcggca gcatcgcatg cgtgaagacc agcgcgatcg cgtccatgca ggaaatgaag 1560tccatgctca gccagcacca aggcatggaa gcgatgatgt ccaagctg 16082536PRTChromobacterium sp. 2Met Ala Ser Ala Ala Asn Ala Gly Gln Leu Gly Asn Leu Pro Gly Val 1 5 10 15 Thr Ser Met Gly Met Gly Tyr Asp Val Asn Gly Leu Tyr Ala Ser Pro 20 25 30 Glu Ser Leu Leu Gly Gln Pro Leu Phe Asp Phe Gly Gly Glu Leu Asp 35 40 45 Ser Ile Glu Ile Glu Gly Arg Ser Tyr Thr Phe Pro Arg Ser Met His 50 55 60 Val His Thr Tyr Phe His Ser Asp Phe Lys Gln Asp Val Ser Lys Glu 65 70 75 80 Ile Glu Glu Tyr Arg Glu Lys Met Ser Gln His Val Gly Val Ser Gly 85 90 95 Arg Tyr Lys Leu Phe Ser Ala Ser Leu Ser Val Asp Phe Thr Thr Thr 100 105 110 Asp Gln Gln Leu Thr Glu Ile Thr Tyr Ser Ser Thr Arg Glu Ala His 115 120 125 Val Leu Trp Tyr Ile Ser Leu Pro Gly Ala Ala Thr Leu Arg Ser Met 130 135 140 Leu Arg Arg Asp Phe Arg Asp Asp Leu Asn Asn Pro Asn Met Pro Ala 145 150 155 160 Met Glu Leu Phe Lys Arg Tyr Gly Pro Tyr Tyr Ile Ser Glu Ala Ala 165 170 175 Val Gly Gly Arg Leu Asp Tyr Ser Ala Ala Ser Lys Thr Leu Lys Met 180 185 190 Asp Ser Ser Gln Ser Leu Ser Thr Thr Ala Glu Met Ser Tyr Lys Ala 195 200 205 Leu Val Gly Glu Ile Lys Ile Glu His Gly Ser Glu Met Glu Lys Gln 210 215 220 Val Asn Ser Phe Arg Ser Asn Ser Thr Ile Arg Leu Thr Ala Thr Gly 225 230 235 240 Gly Lys Pro Gly Met Thr Asp Arg Ile Leu His Gly Pro Asp Ser Gln 245 250 255 Gln Ala Phe Ser Gln Trp Ala Glu Ser Leu Leu Asp Tyr Ala Thr Leu 260 265 270 Met Asp Phe Ser Thr Glu Ser Leu Gln Pro Ile Trp Ala Leu Ala Asp 275 280 285 Lys Pro Glu Arg Arg Val Glu Leu Glu Asp Ala Phe Pro Glu Phe Met 290 295 300 Lys Gln Ser Gln Gln Ser Ile Pro Lys Val Asp Lys Val Leu Leu Met 305 310 315 320 Asp Ala Arg Pro Pro Met Val Lys Ala Gly Glu Asp Ser Gly Ser Gly 325 330 335 Ala Ser Glu Asp Leu Ala Val Phe Asn Pro Ser Thr Ser Asn Gly Tyr 340 345 350 Lys Met Val Gly Gln Phe Gly Gln Arg Asn His Ala Ser Val Ala Asp 355 360 365 Gly His Ala Pro Ile Phe Lys Asp Leu Phe Asp Leu Gly Val Leu Lys 370 375 380 Ala Pro Val Gly Trp Gln Arg Val Trp Asp Asp Ala Gly Ser Gly Lys 385 390 395 400 Ser Lys Asp Tyr Ala Cys Trp Arg Ala Ile Pro Pro Gln Gly Tyr Arg 405 410 415 Ala Leu Gly Asp Val Met Met Leu Ala Thr Ser Gly Tyr Asn Pro Pro 420 425 430 Asn Leu Pro Asp Tyr Val Cys Val His Gln Ser Leu Cys Ala Asp Val 435 440 445 Gln Thr Leu Gln Asn Arg Val Trp Trp Asp Lys Gly Thr Gly Ala Arg 450 455 460 Lys Asp Val Ser Leu Trp Gln Pro Gly Ala Ala Gly Ala Val Ala Ser 465 470 475 480 Ser Cys Phe Ala Gly Val Pro Asn Tyr Asn Asn Pro Pro Asn Ser Gly 485 490 495 Asp Ile Glu Arg Leu Arg Gly Ser Ile Ala Cys Val Lys Thr Ser Ala 500 505 510 Ile Ala Ser Met Gln Glu Met Lys Ser Met Leu Ser Gln His Gln Gly 515 520 525 Met Glu Ala Met Met Ser Lys Leu 530 535 3518PRTChromobacterium sp. 3Met Gly Met Gly Tyr Asp Val Asn Gly Leu Tyr Ala Ser Pro Glu Ser 1 5 10 15 Leu Leu Gly Gln Pro Leu Phe Asp Phe Gly Gly Glu Leu Asp Ser Ile 20 25 30 Glu Ile Glu Gly Arg Ser Tyr Thr Phe Pro Arg Ser Met His Val His 35 40 45 Thr Tyr Phe His Ser Asp Phe Lys Gln Asp Val Ser Lys Glu Ile Glu 50 55 60 Glu Tyr Arg Glu Lys Met Ser Gln His Val Gly Val Ser Gly Arg Tyr 65 70 75 80 Lys Leu Phe Ser Ala Ser Leu Ser Val Asp Phe Thr Thr Thr Asp Gln 85 90 95 Gln Leu Thr Glu Ile Thr Tyr Ser Ser Thr Arg Glu Ala His Val Leu 100 105 110 Trp Tyr Ile Ser Leu Pro Gly Ala Ala Thr Leu Arg Ser Met Leu Arg 115 120 125 Arg Asp Phe Arg Asp Asp Leu Asn Asn Pro Asn Met Pro Ala Met Glu 130 135 140 Leu Phe Lys Arg Tyr Gly Pro Tyr Tyr Ile Ser Glu Ala Ala Val Gly 145 150 155 160 Gly Arg Leu Asp Tyr Ser Ala Ala Ser Lys Thr Leu Lys Met Asp Ser 165 170 175 Ser Gln Ser Leu Ser Thr Thr Ala Glu Met Ser Tyr Lys Ala Leu Val 180 185 190 Gly Glu Ile Lys Ile Glu His Gly Ser Glu Met Glu Lys Gln Val Asn 195 200 205 Ser Phe Arg Ser Asn Ser Thr Ile Arg Leu Thr Ala Thr Gly Gly Lys 210 215 220 Pro Gly Met Thr Asp Arg Ile Leu His Gly Pro Asp Ser Gln Gln Ala 225 230 235 240 Phe Ser Gln Trp Ala Glu Ser Leu Leu Asp Tyr Ala Thr Leu Met Asp 245 250 255 Phe Ser Thr Glu Ser Leu Gln Pro Ile Trp Ala Leu Ala Asp Lys Pro 260 265 270 Glu Arg Arg Val Glu Leu Glu Asp Ala Phe Pro Glu Phe Met Lys Gln 275 280 285 Ser Gln Gln Ser Ile Pro Lys Val Asp Lys Val Leu Leu Met Asp Ala 290 295 300 Arg Pro Pro Met Val Lys Ala Gly Glu Asp Ser Gly Ser Gly Ala Ser 305 310 315 320 Glu Asp Leu Ala Val Phe Asn Pro Ser Thr Ser Asn Gly Tyr Lys Met 325 330 335 Val Gly Gln Phe Gly Gln Arg Asn His Ala Ser Val Ala Asp Gly His 340 345 350 Ala Pro Ile Phe Lys Asp Leu Phe Asp Leu Gly Val Leu Lys Ala Pro 355 360 365 Val Gly Trp Gln Arg Val Trp Asp Asp Ala Gly Ser Gly Lys Ser Lys 370 375 380 Asp Tyr Ala Cys Trp Arg Ala Ile Pro Pro Gln Gly Tyr Arg Ala Leu 385 390 395 400 Gly Asp Val Met Met Leu Ala Thr Ser Gly Tyr Asn Pro Pro Asn Leu 405 410 415 Pro Asp Tyr Val Cys Val His Gln Ser Leu Cys Ala Asp Val Gln Thr 420 425 430 Leu Gln Asn Arg Val Trp Trp Asp Lys Gly Thr Gly Ala Arg Lys Asp 435 440 445 Val Ser Leu Trp Gln Pro Gly Ala Ala Gly Ala Val Ala Ser Ser Cys 450 455 460 Phe Ala Gly Val Pro Asn Tyr Asn Asn Pro Pro Asn Ser Gly Asp Ile 465 470 475 480 Glu Arg Leu Arg Gly Ser Ile Ala Cys Val Lys Thr Ser Ala Ile Ala 485 490 495 Ser Met Gln Glu Met Lys Ser Met Leu Ser Gln His Gln Gly Met Glu 500 505 510 Ala Met Met Ser Lys Leu 515 4516PRTChromobacterium sp. 4Met Gly Tyr Asp Val Asn Gly Leu Tyr Ala Ser Pro Glu Ser Leu Leu 1 5 10 15 Gly Gln Pro Leu Phe Asp Phe Gly Gly Glu Leu Asp Ser Ile Glu Ile 20 25 30 Glu Gly Arg Ser Tyr Thr Phe Pro Arg Ser Met His Val His Thr Tyr 35 40 45 Phe His Ser Asp Phe Lys Gln Asp Val Ser Lys Glu Ile Glu Glu Tyr 50 55 60 Arg Glu Lys Met Ser Gln His Val Gly Val Ser Gly Arg Tyr Lys Leu 65 70 75 80 Phe Ser Ala Ser Leu Ser Val Asp Phe Thr Thr Thr Asp Gln Gln Leu 85 90 95 Thr Glu Ile Thr Tyr Ser Ser Thr Arg Glu Ala His Val Leu Trp Tyr 100 105 110 Ile Ser Leu Pro Gly Ala Ala Thr Leu Arg Ser Met Leu Arg Arg Asp 115 120 125 Phe Arg Asp Asp Leu Asn Asn Pro Asn Met Pro Ala Met Glu Leu Phe 130 135 140 Lys Arg Tyr Gly Pro Tyr Tyr Ile Ser Glu Ala Ala Val Gly Gly Arg 145 150 155 160 Leu Asp Tyr Ser Ala Ala Ser Lys Thr Leu Lys Met Asp Ser Ser Gln 165 170 175 Ser Leu Ser Thr Thr Ala Glu Met Ser Tyr Lys Ala Leu Val Gly Glu 180 185 190 Ile Lys Ile Glu His Gly Ser Glu Met Glu Lys Gln Val Asn Ser Phe 195 200 205 Arg Ser Asn Ser Thr Ile Arg Leu Thr Ala Thr Gly Gly Lys Pro Gly 210 215 220 Met Thr Asp Arg Ile Leu His Gly Pro Asp Ser Gln Gln Ala Phe Ser 225 230 235 240 Gln Trp Ala Glu Ser Leu Leu Asp Tyr Ala Thr Leu Met Asp Phe Ser 245 250 255 Thr Glu Ser Leu Gln Pro Ile Trp Ala Leu Ala Asp Lys Pro Glu Arg 260 265 270 Arg Val Glu Leu Glu Asp Ala Phe Pro Glu Phe Met Lys Gln Ser Gln 275 280 285 Gln Ser Ile Pro Lys Val Asp Lys Val Leu Leu Met Asp Ala Arg Pro 290 295 300 Pro Met Val Lys Ala Gly Glu Asp Ser Gly Ser Gly Ala Ser Glu Asp 305 310 315 320 Leu Ala Val Phe Asn Pro Ser Thr Ser Asn Gly Tyr Lys Met Val Gly 325 330 335 Gln Phe Gly Gln Arg Asn His Ala Ser Val Ala Asp Gly His Ala Pro 340 345 350 Ile Phe Lys Asp Leu Phe Asp Leu Gly Val Leu Lys Ala Pro Val Gly 355 360 365 Trp Gln Arg Val Trp Asp Asp Ala Gly Ser Gly Lys Ser Lys Asp Tyr 370 375 380 Ala Cys Trp Arg Ala Ile Pro Pro Gln Gly Tyr Arg Ala Leu Gly Asp 385 390 395 400 Val Met Met Leu Ala Thr Ser Gly Tyr Asn Pro Pro Asn Leu Pro Asp 405 410 415 Tyr Val Cys Val His Gln Ser Leu Cys Ala Asp Val Gln Thr Leu Gln 420 425 430 Asn Arg Val Trp Trp Asp Lys Gly Thr Gly Ala Arg Lys Asp Val Ser 435 440 445 Leu Trp Gln Pro Gly Ala Ala Gly Ala Val Ala Ser Ser Cys Phe Ala 450 455 460 Gly Val Pro Asn Tyr Asn Asn Pro Pro Asn Ser Gly Asp Ile Glu Arg 465 470 475 480 Leu Arg Gly Ser Ile Ala Cys Val Lys Thr Ser Ala Ile Ala Ser Met 485 490 495 Gln Glu Met Lys Ser Met Leu Ser Gln His Gln Gly Met Glu Ala Met 500 505 510 Met Ser Lys Leu 515 5536PRTArtificial sequenceAXMI-205(evo24) 5Met Ala Ser Ala Ala Asn Ala Gly Gln Leu Gly Asn Leu Pro Gly Val 1 5 10 15 Thr Ser Met Gly Met Gly Tyr Asp Val Asn Gly Leu Tyr Ala Ser Pro 20 25 30 Glu Ser Leu Leu Gly Gln Pro Leu Phe Asp Phe Gly Gly Glu Leu Asp 35 40 45 Ser Ile Glu Ile Glu Gly Arg Ser Tyr Thr Phe Pro Arg Ser Met His 50 55 60 Val His Thr Tyr Phe His Ser Asp Phe Lys Gln Asp Val Ser Lys Glu 65 70 75 80 Ile Glu Glu Tyr Arg Glu Lys Met Ser Gln His Val Gly Val Ser Gly 85 90 95 Arg Tyr Lys Leu Phe Ser Ala Ser Leu Ser Val Asp Phe Thr Thr Thr 100 105 110 Asp Gln Gln Leu Thr Glu Ile Thr Tyr Ser Ser Thr Arg Glu Ala His 115 120 125 Val Leu Trp Tyr Ile Ser Leu Pro Gly Ala Ala Thr Leu Arg Ser Met 130 135 140 Leu Arg Arg Asp Phe Arg Asp Asp Leu Asn Asn Pro Asn Met Pro Ala 145 150 155 160 Met Glu Leu Phe Lys Arg Tyr Gly Pro Tyr Tyr Ile Ser Glu Ala Ala 165 170 175 Val Gly Gly Arg Leu Asp Tyr Ser Ala Ala Ser Lys Thr Leu Lys Met 180 185 190 Asp Ser Ser Gln Ser Leu Ser Thr Thr Ala Glu Met Ser Tyr Lys Ala 195 200 205 Leu Val Gly Glu Ile Lys Ile Glu His Gly Ser Glu Met Glu Lys Gln 210 215 220 Val Asn Ser Phe Arg Ser Asn Ser Thr Ile Arg Leu Thr Ala Thr Gly 225 230 235 240 Gly Lys Pro Gly Met Thr Asp Arg Ile Leu His Gly Pro Asp Ser Gln 245 250 255 Gln Ala Phe Ser Gln Trp Ala Glu Ser Leu Leu Asp Tyr Ala Thr Leu 260 265 270 Met Asp Phe Ser Thr Glu Ser Leu Gln Pro Ile Trp Ala Leu Ala Asp 275 280 285 Lys Pro Glu Arg Arg Val Glu Leu Glu Asp Ala Phe Pro Glu Phe Met 290 295 300 Lys Gln Ser Gln Gln Ser Ile Pro Lys Val Asp Lys Val Leu Leu Met 305 310 315 320 Asp Ala Arg Pro Pro Met Val Lys Ala Gly Glu Asp Ser Gly Ser Gly 325 330 335 Ala Ser Glu Asp Leu Ala Val Phe Asn Pro Ser Thr Ser Asn Gly Tyr 340 345 350 Lys Met Val Gly Gln Phe Gly Gln Arg Asn His Ala Ser Val Ala Asp 355 360 365 Gly His Ala Pro Ile Phe Lys Asp Leu Phe Asp Leu Gly Val Leu Lys 370 375 380 Ala Pro Val Gly Trp Gln Arg Val Trp Asp Asp Ala Gly Ser Gly Lys 385 390 395 400 Ser Lys Asp Tyr Ala Cys Trp Arg Ala Ile Pro Pro Gln Gly Tyr Arg 405 410 415 Ala Leu Gly Asp Val Met Met Leu Ala Thr Ser Gly Tyr Asn Pro Pro 420 425 430 Asn Leu Pro Asp Tyr Val Cys Val His Gln Ser Leu Cys Ala Asp Val 435 440 445 Gln Thr Leu Gln Asn Arg Val Trp Trp Asp Lys Gly Thr Gly Ala Arg 450 455 460 Lys Asp Val Ser Leu Trp Gln Pro Gly Ala Ala

Gly Ala Val Ala Ser 465 470 475 480 Ser Cys Phe Ala Gly Val Pro Asn Tyr Asn Asn Pro Pro Asn Ser Gly 485 490 495 Asp Ile Ala Arg Leu Arg Gly Ser Ile Ala Cys Val Lys Thr Ser Ala 500 505 510 Ile Ala Ser Met Gln Glu Met Lys Ser Met Leu Ser Gln His Gln Gly 515 520 525 Met Glu Ala Met Met Ser Lys Leu 530 535 6536PRTArtificial sequenceAXMI-205(evo25) 6Met Ala Ser Ala Ala Asn Ala Gly Gln Leu Gly Asn Leu Pro Gly Val 1 5 10 15 Thr Ser Met Gly Met Gly Tyr Asp Val Asn Gly Leu Tyr Ala Ser Pro 20 25 30 Glu Ser Leu Leu Gly Gln Pro Leu Phe Asp Phe Gly Gly Glu Leu Asp 35 40 45 Ser Ile Glu Ile Glu Gly Arg Ser Tyr Thr Phe Pro Arg Ser Met His 50 55 60 Val His Thr Tyr Phe His Ser Asp Phe Lys Gln Asp Val Ser Lys Glu 65 70 75 80 Ile Glu Glu Tyr Arg Glu Lys Met Ser Gln His Val Gly Val Ser Gly 85 90 95 Arg Tyr Lys Leu Phe Ser Ala Ser Leu Ser Val Asp Phe Thr Thr Thr 100 105 110 Asp Gln Gln Leu Thr Glu Ile Thr Tyr Ser Ser Thr Arg Glu Ala His 115 120 125 Val Leu Trp Tyr Ile Ser Leu Pro Gly Ala Ala Thr Leu Arg Ser Met 130 135 140 Leu Arg Arg Asp Phe Arg Asp Asp Leu Asn Asn Pro Asn Met Pro Ala 145 150 155 160 Met Glu Leu Phe Lys Arg Tyr Gly Pro Tyr Tyr Ile Ser Glu Ala Ala 165 170 175 Val Gly Gly Arg Leu Asp Tyr Ser Ala Ala Ser Lys Thr Leu Lys Met 180 185 190 Asp Ser Ser Gln Ser Leu Ser Thr Thr Ala Glu Met Ser Tyr Lys Ala 195 200 205 Leu Val Gly Glu Ile Lys Ile Glu His Gly Ser Glu Met Glu Lys Gln 210 215 220 Val Asn Ser Phe Arg Ser Asn Ser Thr Ile Arg Leu Thr Ala Thr Gly 225 230 235 240 Gly Lys Pro Gly Met Thr Asp Arg Ile Leu His Gly Pro Asp Ser Gln 245 250 255 Gln Ala Phe Ser Gln Trp Ala Glu Ser Leu Leu Asp Tyr Ala Thr Leu 260 265 270 Met Asp Phe Ser Thr Glu Ser Leu Gln Pro Ile Trp Ala Leu Ala Asp 275 280 285 Lys Pro Glu Arg Arg Val Glu Leu Glu Asp Ala Phe Pro Glu Phe Met 290 295 300 Lys Gln Ser Gln Gln Ser Ile Pro Lys Val Asp Lys Val Leu Leu Met 305 310 315 320 Asp Ala Arg Pro Pro Met Val Lys Ala Gly Glu Asp Ser Gly Ser Gly 325 330 335 Ala Ser Glu Asp Leu Ala Val Phe Asn Pro Ser Thr Ser Asn Gly Tyr 340 345 350 Lys Met Val Gly Gln Phe Gly Gln Arg Asn His Ala Ser Val Ala Asp 355 360 365 Gly His Ala Pro Ile Phe Lys Asp Leu Phe Asp Leu Gly Val Leu Lys 370 375 380 Ala Pro Val Gly Trp Gln Arg Val Trp Asp Asp Ala Gly Ser Gly Lys 385 390 395 400 Ser Lys Asp Tyr Ala Cys Trp Arg Ala Ile Pro Pro Gln Gly Tyr Arg 405 410 415 Ala Leu Gly Asp Val Met Met Leu Ala Thr Ser Gly Tyr Asn Pro Pro 420 425 430 Asn Leu Pro Asp Tyr Val Cys Val His Gln Ser Leu Cys Ala Asp Val 435 440 445 Gln Thr Leu Gln Asn Arg Val Trp Trp Asp Lys Gly Thr Gly Ala Arg 450 455 460 Lys Asp Ala Ser Leu Trp Gln Pro Gly Ala Ala Gly Ala Val Ala Ser 465 470 475 480 Ser Cys Phe Ala Gly Val Pro Asn Tyr Asn Asn Pro Pro Asn Ser Gly 485 490 495 Asp Ile Glu Arg Leu Arg Gly Ser Ile Ala Cys Val Lys Thr Ser Ala 500 505 510 Ile Ala Ser Met Gln Glu Met Lys Ser Met Leu Ser Gln His Gln Gly 515 520 525 Met Glu Ala Met Met Ser Lys Leu 530 535 7526PRTArtificial sequenceAXMI-205(trun10) 7Met Ala Ser Ala Ala Asn Ala Gly Gln Leu Gly Asn Leu Pro Gly Val 1 5 10 15 Thr Ser Met Gly Met Gly Tyr Asp Val Asn Gly Leu Tyr Ala Ser Pro 20 25 30 Glu Ser Leu Leu Gly Gln Pro Leu Phe Asp Phe Gly Gly Glu Leu Asp 35 40 45 Ser Ile Glu Ile Glu Gly Arg Ser Tyr Thr Phe Pro Arg Ser Met His 50 55 60 Val His Thr Tyr Phe His Ser Asp Phe Lys Gln Asp Val Ser Lys Glu 65 70 75 80 Ile Glu Glu Tyr Arg Glu Lys Met Ser Gln His Val Gly Val Ser Gly 85 90 95 Arg Tyr Lys Leu Phe Ser Ala Ser Leu Ser Val Asp Phe Thr Thr Thr 100 105 110 Asp Gln Gln Leu Thr Glu Ile Thr Tyr Ser Ser Thr Arg Glu Ala His 115 120 125 Val Leu Trp Tyr Ile Ser Leu Pro Gly Ala Ala Thr Leu Arg Ser Met 130 135 140 Leu Arg Arg Asp Phe Arg Asp Asp Leu Asn Asn Pro Asn Met Pro Ala 145 150 155 160 Met Glu Leu Phe Lys Arg Tyr Gly Pro Tyr Tyr Ile Ser Glu Ala Ala 165 170 175 Val Gly Gly Arg Leu Asp Tyr Ser Ala Ala Ser Lys Thr Leu Lys Met 180 185 190 Asp Ser Ser Gln Ser Leu Ser Thr Thr Ala Glu Met Ser Tyr Lys Ala 195 200 205 Leu Val Gly Glu Ile Lys Ile Glu His Gly Ser Glu Met Glu Lys Gln 210 215 220 Val Asn Ser Phe Arg Ser Asn Ser Thr Ile Arg Leu Thr Ala Thr Gly 225 230 235 240 Gly Lys Pro Gly Met Thr Asp Arg Ile Leu His Gly Pro Asp Ser Gln 245 250 255 Gln Ala Phe Ser Gln Trp Ala Glu Ser Leu Leu Asp Tyr Ala Thr Leu 260 265 270 Met Asp Phe Ser Thr Glu Ser Leu Gln Pro Ile Trp Ala Leu Ala Asp 275 280 285 Lys Pro Glu Arg Arg Val Glu Leu Glu Asp Ala Phe Pro Glu Phe Met 290 295 300 Lys Gln Ser Gln Gln Ser Ile Pro Lys Val Asp Lys Val Leu Leu Met 305 310 315 320 Asp Ala Arg Pro Pro Met Val Lys Ala Gly Glu Asp Ser Gly Ser Gly 325 330 335 Ala Ser Glu Asp Leu Ala Val Phe Asn Pro Ser Thr Ser Asn Gly Tyr 340 345 350 Lys Met Val Gly Gln Phe Gly Gln Arg Asn His Ala Ser Val Ala Asp 355 360 365 Gly His Ala Pro Ile Phe Lys Asp Leu Phe Asp Leu Gly Val Leu Lys 370 375 380 Ala Pro Val Gly Trp Gln Arg Val Trp Asp Asp Ala Gly Ser Gly Lys 385 390 395 400 Ser Lys Asp Tyr Ala Cys Trp Arg Ala Ile Pro Pro Gln Gly Tyr Arg 405 410 415 Ala Leu Gly Asp Val Met Met Leu Ala Thr Ser Gly Tyr Asn Pro Pro 420 425 430 Asn Leu Pro Asp Tyr Val Cys Val His Gln Ser Leu Cys Ala Asp Val 435 440 445 Gln Thr Leu Gln Asn Arg Val Trp Trp Asp Lys Gly Thr Gly Ala Arg 450 455 460 Lys Asp Val Ser Leu Trp Gln Pro Gly Ala Ala Gly Ala Val Ala Ser 465 470 475 480 Ser Cys Phe Ala Gly Val Pro Asn Tyr Asn Asn Pro Pro Asn Ser Gly 485 490 495 Asp Ile Glu Arg Leu Arg Gly Ser Ile Ala Cys Val Lys Thr Ser Ala 500 505 510 Ile Ala Ser Met Gln Glu Met Lys Ser Met Leu Ser Gln His 515 520 525 8516PRTArtificial sequenceAXMI-205(trun20) 8Met Ala Ser Ala Ala Asn Ala Gly Gln Leu Gly Asn Leu Pro Gly Val 1 5 10 15 Thr Ser Met Gly Met Gly Tyr Asp Val Asn Gly Leu Tyr Ala Ser Pro 20 25 30 Glu Ser Leu Leu Gly Gln Pro Leu Phe Asp Phe Gly Gly Glu Leu Asp 35 40 45 Ser Ile Glu Ile Glu Gly Arg Ser Tyr Thr Phe Pro Arg Ser Met His 50 55 60 Val His Thr Tyr Phe His Ser Asp Phe Lys Gln Asp Val Ser Lys Glu 65 70 75 80 Ile Glu Glu Tyr Arg Glu Lys Met Ser Gln His Val Gly Val Ser Gly 85 90 95 Arg Tyr Lys Leu Phe Ser Ala Ser Leu Ser Val Asp Phe Thr Thr Thr 100 105 110 Asp Gln Gln Leu Thr Glu Ile Thr Tyr Ser Ser Thr Arg Glu Ala His 115 120 125 Val Leu Trp Tyr Ile Ser Leu Pro Gly Ala Ala Thr Leu Arg Ser Met 130 135 140 Leu Arg Arg Asp Phe Arg Asp Asp Leu Asn Asn Pro Asn Met Pro Ala 145 150 155 160 Met Glu Leu Phe Lys Arg Tyr Gly Pro Tyr Tyr Ile Ser Glu Ala Ala 165 170 175 Val Gly Gly Arg Leu Asp Tyr Ser Ala Ala Ser Lys Thr Leu Lys Met 180 185 190 Asp Ser Ser Gln Ser Leu Ser Thr Thr Ala Glu Met Ser Tyr Lys Ala 195 200 205 Leu Val Gly Glu Ile Lys Ile Glu His Gly Ser Glu Met Glu Lys Gln 210 215 220 Val Asn Ser Phe Arg Ser Asn Ser Thr Ile Arg Leu Thr Ala Thr Gly 225 230 235 240 Gly Lys Pro Gly Met Thr Asp Arg Ile Leu His Gly Pro Asp Ser Gln 245 250 255 Gln Ala Phe Ser Gln Trp Ala Glu Ser Leu Leu Asp Tyr Ala Thr Leu 260 265 270 Met Asp Phe Ser Thr Glu Ser Leu Gln Pro Ile Trp Ala Leu Ala Asp 275 280 285 Lys Pro Glu Arg Arg Val Glu Leu Glu Asp Ala Phe Pro Glu Phe Met 290 295 300 Lys Gln Ser Gln Gln Ser Ile Pro Lys Val Asp Lys Val Leu Leu Met 305 310 315 320 Asp Ala Arg Pro Pro Met Val Lys Ala Gly Glu Asp Ser Gly Ser Gly 325 330 335 Ala Ser Glu Asp Leu Ala Val Phe Asn Pro Ser Thr Ser Asn Gly Tyr 340 345 350 Lys Met Val Gly Gln Phe Gly Gln Arg Asn His Ala Ser Val Ala Asp 355 360 365 Gly His Ala Pro Ile Phe Lys Asp Leu Phe Asp Leu Gly Val Leu Lys 370 375 380 Ala Pro Val Gly Trp Gln Arg Val Trp Asp Asp Ala Gly Ser Gly Lys 385 390 395 400 Ser Lys Asp Tyr Ala Cys Trp Arg Ala Ile Pro Pro Gln Gly Tyr Arg 405 410 415 Ala Leu Gly Asp Val Met Met Leu Ala Thr Ser Gly Tyr Asn Pro Pro 420 425 430 Asn Leu Pro Asp Tyr Val Cys Val His Gln Ser Leu Cys Ala Asp Val 435 440 445 Gln Thr Leu Gln Asn Arg Val Trp Trp Asp Lys Gly Thr Gly Ala Arg 450 455 460 Lys Asp Val Ser Leu Trp Gln Pro Gly Ala Ala Gly Ala Val Ala Ser 465 470 475 480 Ser Cys Phe Ala Gly Val Pro Asn Tyr Asn Asn Pro Pro Asn Ser Gly 485 490 495 Asp Ile Glu Arg Leu Arg Gly Ser Ile Ala Cys Val Lys Thr Ser Ala 500 505 510 Ile Ala Ser Met 515 91608DNAArtificial sequencesynthetic sequence encoding AXMI-205 9atggcctccg ccgccaatgc tggccagctg ggcaacctcc ccggcgtcac ctccatgggc 60atgggatatg atgtcaatgg cctctatgct tctccagaga gcttgctggg gcagccgctc 120tttgattttg gaggagagct ggacagcatc gagatagaag gaagaagcta caccttccca 180agaagcatgc atgttcacac ctacttccat tcagatttca agcaagatgt cagcaaggag 240atcgaggagt acagggagaa gatgagccag catgttggag tttctggaag atacaagctc 300ttctccgcct ccctctccgt ggacttcacc accactgatc agcagctgac agagatcacc 360tacagctcaa caagagaagc tcatgttctc tggtacatct ccctccccgg cgcggccacc 420ttgaggagca tgctgcgccg cgacttcaga gatgatctca acaaccccaa catgccggcc 480atggagctct tcaagagata tggcccctac tacatctcag aagctgctgt tggaggaagg 540ctggactaca gcgccgccag caagaccttg aagatggaca gcagccaaag cctctccacc 600accgccgaga tgagctacaa ggcgctggtg ggagagatca agattgagca tggatcagag 660atggagaagc aggtgaacag cttcagaagc aacagcacca tcaggctcac cgccactgga 720ggaaagccag ggatgacaga caggattctt catggacctg acagccagca ggccttctcc 780caatgggcgg agagcttgct ggattatgcc accttgatgg acttctcaac agaaagcctc 840cagcccatct gggcgctcgc cgacaagcca gaaagaaggg tggagctgga ggatgccttc 900cctgagttca tgaagcaaag tcagcagagc atccccaagg tggacaaggt gctgctgatg 960gatgcaaggc cgccgatggt gaaggctgga gaagattctg gatctggagc ttcagaagat 1020cttgctgtgt tcaacccctc caccagcaat ggctacaaga tggtgggcca gtttggccaa 1080aggaaccatg cttctgttgc tgatggccat gctcccatct tcaaggacct cttcgacctc 1140ggcgtgctga aggctcctgt tggatggcag cgcgtctggg atgatgctgg atcagggaag 1200agcaaggatt atgcttgctg gagggccatc cctcctcaag gctacagagc tcttggagat 1260gtcatgatgc tggccacctc aggctacaac cctccaaatc ttccagatta tgtttgtgtt 1320catcaaagcc tctgtgctga tgttcaaacc ctccagaaca gggtttggtg ggacaaagga 1380actggagcaa ggaaggatgt cagcttgtgg cagcctggag ctgctggagc tgtagcaagc 1440agctgctttg ctggagttcc aaactacaac aaccctccaa actcaggaga cattgagagg 1500ctgagaggaa gcattgcctg cgtcaagacc tccgccattg cttccatgca agagatgaag 1560agcatgctct cccagcatca agggatggag gccatgatga gcaagctg 1608101608DNAArtificial sequencesynthetic sequence encoding AXMI-205 10atggcctctg ctgccaacgc tggacaactc ggcaacctac caggtgtgac ttccatgggc 60atgggatacg acgtaaatgg cctttatgct tctcctgaga gcttgctggg gcagccgctc 120tttgattttg gaggagagct ggacagcatc gagatagaag gaagaagcta caccttccca 180agaagcatgc atgttcacac ctacttccat tcagatttca agcaagatgt cagcaaggag 240atcgaggagt acagggagaa gatgagccag catgttggag tttctggaag atacaagctc 300ttctccgcct ccctctccgt ggacttcacc accactgatc agcagctgac agagatcacc 360tacagctcaa caagagaagc tcatgttctc tggtacatct ccctccccgg cgcggccacc 420ttgaggagca tgctgcgccg cgacttcaga gatgatctca acaaccccaa catgccggcc 480atggagctct tcaagagata tggcccctac tacatctcag aagctgctgt tggaggaagg 540ctggactaca gcgccgccag caagaccttg aagatggaca gcagccaaag cctctccacc 600accgccgaga tgagctacaa ggcgctggtg ggagagatca agattgagca tggatcagag 660atggagaagc aggtgaacag cttcagaagc aacagcacca tcaggctcac cgccactgga 720ggaaagccag ggatgacaga caggattctt catggacctg acagccagca ggccttctcc 780caatgggcgg agagcttgct ggattatgcc accttgatgg acttctcaac agaaagcctc 840cagcccatct gggcgctcgc cgacaagcca gaaagaaggg tggagctgga ggatgccttc 900cctgagttca tgaagcaaag tcagcagagc atccccaagg tggacaaggt gctgctgatg 960gatgcaaggc cgccgatggt gaaggctgga gaagattctg gatctggagc ttcagaagat 1020cttgctgtgt tcaacccctc caccagcaat ggctacaaga tggtgggcca gtttggccaa 1080aggaaccatg cttctgttgc tgatggccat gctcccatct tcaaggacct cttcgacctc 1140ggcgtgctga aggctcctgt tggatggcag cgcgtctggg atgatgctgg atcagggaag 1200agcaaggatt atgcttgctg gagggccatc cctcctcaag gctacagagc tcttggagat 1260gtcatgatgc tggccacctc aggctacaac cctccaaatc ttccagatta tgtttgtgtt 1320catcaaagcc tctgtgctga tgttcaaacc ctccagaaca gggtttggtg ggacaaagga 1380actggagcaa ggaaggatgt cagcttgtgg cagcctggag ctgctggagc tgtagcaagc 1440agctgctttg ctggagttcc aaactacaac aaccctccaa actcaggaga cattgagagg 1500ctgagaggaa gcattgcctg cgtcaagacc tccgccattg cttccatgca agagatgaag 1560agcatgctct cccagcatca agggatggag gccatgatga gcaagctg 1608111608DNAArtificial sequencesynthetic sequence encoding AXMI-205 11atggcgagtg ctgccaacgc cgggcagctg ggaaacctgc ccggcgtgac cagcatgggg 60atgggatatg atgtgaacgg gctctatgcg agcccggaga gcttgctggg gcagccgctc 120tttgattttg gaggagagct ggacagcatc gagatagaag gaagaagcta caccttccca 180agaagcatgc atgttcacac ctacttccat tcagatttca agcaagatgt cagcaaggag 240atcgaggagt acagggagaa gatgagccag catgttggag tttctggaag atacaagctc 300ttctccgcct ccctctccgt ggacttcacc accactgatc agcagctgac agagatcacc 360tacagctcaa caagagaagc tcatgttctc tggtacatct ccctccccgg cgcggccacc 420ttgaggagca tgctgcgccg cgacttcaga gatgatctca acaaccccaa catgccggcc 480atggagctct tcaagagata tggcccctac tacatctcag aagctgctgt tggaggaagg 540ctggactaca gcgccgccag caagaccttg aagatggaca gcagccaaag cctctccacc 600accgccgaga tgagctacaa ggcgctggtg ggagagatca agattgagca tggatcagag 660atggagaagc aggtgaacag cttcagaagc aacagcacca tcaggctcac cgccactgga 720ggaaagccag ggatgacaga caggattctt catggacctg acagccagca ggccttctcc 780caatgggcgg agagcttgct

ggattatgcc accttgatgg acttctcaac agaaagcctc 840cagcccatct gggcgctcgc cgacaagcca gaaagaaggg tggagctgga ggatgccttc 900cctgagttca tgaagcaaag tcagcagagc atccccaagg tggacaaggt gctgctgatg 960gatgcaaggc cgccgatggt gaaggctgga gaagattctg gatctggagc ttcagaagat 1020cttgctgtgt tcaacccctc caccagcaat ggctacaaga tggtgggcca gtttggccaa 1080aggaaccatg cttctgttgc tgatggccat gctcccatct tcaaggacct cttcgacctc 1140ggcgtgctga aggctcctgt tggatggcag cgcgtctggg atgatgctgg atcagggaag 1200agcaaggatt atgcttgctg gagggccatc cctcctcaag gctacagagc tcttggagat 1260gtcatgatgc tggccacctc aggctacaac cctccaaatc ttccagatta tgtttgtgtt 1320catcaaagcc tctgtgctga tgttcaaacc ctccagaaca gggtttggtg ggacaaagga 1380actggagcaa ggaaggatgt cagcttgtgg cagcctggag ctgctggagc tgtagcaagc 1440agctgctttg ctggagttcc aaactacaac aaccctccaa actcaggaga cattgagagg 1500ctgagaggaa gcattgcctg cgtcaagacc tccgccattg cttccatgca agagatgaag 1560agcatgctct cccagcatca agggatggag gccatgatga gcaagctg 1608121932DNAArtificial Sequencenucleotide sequence encoding variant of Axmi-R1 (Axmi-R1(3c7)) 12atgaatccga acaatcgaag tgaacatgat acaataaaaa ctactgaaaa taatgaggtg 60ccaactaacc atgttcaata tcctttagcg gaaactccaa atccaacact agaagattta 120aattataaag agtttttaag aatgactgca gataataata cggaagcact agatagctct 180acaacaaaag atgtcattca aaaaggcatt tccgtagtag gtgatctcct aggcgtagta 240ggtttcccgt ttggtggagc gcttgtttcg ttttatacaa actttttaaa tactatttgg 300ccaagtgaag acccgtggaa ggcttttatg gaacaagtag aagcattgat ggatcagaaa 360atagctgatt atgcaaaaaa taaagctctt gcagagttac agggccttca aaataatgtc 420gaagattatg tgagtgcatt gagttcatgg caaaaaaatg caaagagttc acgaaatgta 480catagccagg ggcggataag agagctgttt tctcaagcag aaagtcattt tcgtaattca 540atgccttcgt ttgcaatttc tggatacgag gttctatttc taacaacata tgcacaagct 600gccaacacac atttattttt actaaaagac gctcaaattt atggagaaga atggggatac 660gaaaaagaag atattgctga attttataaa agacaactaa aacttacgca agaatatact 720gaccattgtg tcaaatggta taatgttgga ttagataaat taagaggttc atcttatgaa 780tcttgggtaa actttaaccg ttatcgcaga gagatgacat taacagtatt agatttaatt 840gcactatttc cattgtatga tgttcggcta tacccaaaag aagttaaaac cgaattaaca 900agagacgttt taacagatcc aattgtcgga gtcaacaacc ttaggggcta tggaacaacc 960ttctctaata tagaaaatta tattcgaaaa ccacatctat ttgactatct gcatagaatt 1020caatttcaca cgcggttcca accaggatat tatggaaatg actctttcaa ttattggtcc 1080ggtaattatg tttcaactag accaagcata ggatcaaatg atataatcac atctccattc 1140tatggaaata aatccagtga acctgtacaa aatttagaat ttaatggaga aaaagtctat 1200agagccgtag caaatacaaa tcttgcggtc tggccgtccg ctgtatattc aggtgttaca 1260aaagtggaat ttagccaata taatgatcaa acagatgaag caagtacaca aacgtacgac 1320tcaaaaagaa atgttggcgc ggtcagctgg gattctatcg atcaattgcc tccagaaaca 1380acagatgaac ctctagaaaa gggatatagc catcaactca attatgtaat gtgcttttta 1440atgcagggta gtagaggaac aatcccagtg ttaacttgga cacataaaag tgtagacttt 1500tttaacatga ttgattcgaa aaaaattaca caacttccgt tagtaaaggc atataagtta 1560caatctggtg cttccgttgt cgcaggtcct aggtttacag gaggagatat cattcaatgc 1620acagaaaatg gaagtgcggc aactatttac gttacaccgg atgtgtcgta ctctcaaaaa 1680tatcgagcta gaattcatta tgcttctaca tctcagataa catttacact cagtttagac 1740ggggcaccat ttaatcaata ctatttcgat aaaacgataa ataaaggaga cacattaacg 1800tataattcat ttaatttagc aagtttcagc acaccattcg aattatcagg gaataactta 1860caaataggcg tcacaggatt aagtgctgga gataaagttt atatagacaa aattgaattt 1920attccagtga at 193213644PRTArtificial Sequencevariant of Axmi-R1 (Axmi-R1(3c7)) 13Met Asn Pro Asn Asn Arg Ser Glu His Asp Thr Ile Lys Thr Thr Glu 1 5 10 15 Asn Asn Glu Val Pro Thr Asn His Val Gln Tyr Pro Leu Ala Glu Thr 20 25 30 Pro Asn Pro Thr Leu Glu Asp Leu Asn Tyr Lys Glu Phe Leu Arg Met 35 40 45 Thr Ala Asp Asn Asn Thr Glu Ala Leu Asp Ser Ser Thr Thr Lys Asp 50 55 60 Val Ile Gln Lys Gly Ile Ser Val Val Gly Asp Leu Leu Gly Val Val 65 70 75 80 Gly Phe Pro Phe Gly Gly Ala Leu Val Ser Phe Tyr Thr Asn Phe Leu 85 90 95 Asn Thr Ile Trp Pro Ser Glu Asp Pro Trp Lys Ala Phe Met Glu Gln 100 105 110 Val Glu Ala Leu Met Asp Gln Lys Ile Ala Asp Tyr Ala Lys Asn Lys 115 120 125 Ala Leu Ala Glu Leu Gln Gly Leu Gln Asn Asn Val Glu Asp Tyr Val 130 135 140 Ser Ala Leu Ser Ser Trp Gln Lys Asn Ala Lys Ser Ser Arg Asn Val 145 150 155 160 His Ser Gln Gly Arg Ile Arg Glu Leu Phe Ser Gln Ala Glu Ser His 165 170 175 Phe Arg Asn Ser Met Pro Ser Phe Ala Ile Ser Gly Tyr Glu Val Leu 180 185 190 Phe Leu Thr Thr Tyr Ala Gln Ala Ala Asn Thr His Leu Phe Leu Leu 195 200 205 Lys Asp Ala Gln Ile Tyr Gly Glu Glu Trp Gly Tyr Glu Lys Glu Asp 210 215 220 Ile Ala Glu Phe Tyr Lys Arg Gln Leu Lys Leu Thr Gln Glu Tyr Thr 225 230 235 240 Asp His Cys Val Lys Trp Tyr Asn Val Gly Leu Asp Lys Leu Arg Gly 245 250 255 Ser Ser Tyr Glu Ser Trp Val Asn Phe Asn Arg Tyr Arg Arg Glu Met 260 265 270 Thr Leu Thr Val Leu Asp Leu Ile Ala Leu Phe Pro Leu Tyr Asp Val 275 280 285 Arg Leu Tyr Pro Lys Glu Val Lys Thr Glu Leu Thr Arg Asp Val Leu 290 295 300 Thr Asp Pro Ile Val Gly Val Asn Asn Leu Arg Gly Tyr Gly Thr Thr 305 310 315 320 Phe Ser Asn Ile Glu Asn Tyr Ile Arg Lys Pro His Leu Phe Asp Tyr 325 330 335 Leu His Arg Ile Gln Phe His Thr Arg Phe Gln Pro Gly Tyr Tyr Gly 340 345 350 Asn Asp Ser Phe Asn Tyr Trp Ser Gly Asn Tyr Val Ser Thr Arg Pro 355 360 365 Ser Ile Gly Ser Asn Asp Ile Ile Thr Ser Pro Phe Tyr Gly Asn Lys 370 375 380 Ser Ser Glu Pro Val Gln Asn Leu Glu Phe Asn Gly Glu Lys Val Tyr 385 390 395 400 Arg Ala Val Ala Asn Thr Asn Leu Ala Val Trp Pro Ser Ala Val Tyr 405 410 415 Ser Gly Val Thr Lys Val Glu Phe Ser Gln Tyr Asn Asp Gln Thr Asp 420 425 430 Glu Ala Ser Thr Gln Thr Tyr Asp Ser Lys Arg Asn Val Gly Ala Val 435 440 445 Ser Trp Asp Ser Ile Asp Gln Leu Pro Pro Glu Thr Thr Asp Glu Pro 450 455 460 Leu Glu Lys Gly Tyr Ser His Gln Leu Asn Tyr Val Met Cys Phe Leu 465 470 475 480 Met Gln Gly Ser Arg Gly Thr Ile Pro Val Leu Thr Trp Thr His Lys 485 490 495 Ser Val Asp Phe Phe Asn Met Ile Asp Ser Lys Lys Ile Thr Gln Leu 500 505 510 Pro Leu Val Lys Ala Tyr Lys Leu Gln Ser Gly Ala Ser Val Val Ala 515 520 525 Gly Pro Arg Phe Thr Gly Gly Asp Ile Ile Gln Cys Thr Glu Asn Gly 530 535 540 Ser Ala Ala Thr Ile Tyr Val Thr Pro Asp Val Ser Tyr Ser Gln Lys 545 550 555 560 Tyr Arg Ala Arg Ile His Tyr Ala Ser Thr Ser Gln Ile Thr Phe Thr 565 570 575 Leu Ser Leu Asp Gly Ala Pro Phe Asn Gln Tyr Tyr Phe Asp Lys Thr 580 585 590 Ile Asn Lys Gly Asp Thr Leu Thr Tyr Asn Ser Phe Asn Leu Ala Ser 595 600 605 Phe Ser Thr Pro Phe Glu Leu Ser Gly Asn Asn Leu Gln Ile Gly Val 610 615 620 Thr Gly Leu Ser Ala Gly Asp Lys Val Tyr Ile Asp Lys Ile Glu Phe 625 630 635 640 Ile Pro Val Asn 141932DNAArtificial Sequencenucleotide sequence encoding variant of Axmi-R1 (Axmi-R1(1g8)) 14atgaatccga acaatcgaag tgaacatgat acaataaaaa ctactgaaaa taatgaggtg 60ccaactaacc atgttcaata tcctttagcg gaaactccaa atccaacact agaagattta 120aattataaag agtttttaag aatgactgca gataataata cggaagcact agatagctct 180acaacaaaag atgtcattca aaaaggcatt tccgtagtag gtgatctcct aggcgtagta 240ggtttcccgt ttggtggagc gcttgtttcg ttttatacaa actttttaaa tactatttgg 300ccaagtgaag acccgtggaa ggcttttatg gaacaagtag aagcattgat ggatcagaaa 360atagctgatt atgcaaaaaa taaagctctt gcagagttac agggccttca aaataatgtc 420gaagattatg tgagtgcatt gagttcatgg caaaaaaatc ctgtgagttc acgaaatcca 480catagccagg ggcggataag agagctgttt tctcaagcag aaagtcattt tcgtaattca 540atgccttcgt ttgcaatttc tggatacgag gttctatttc taacaacata tgcacaagct 600gccaacacac atttattttt actaaaagac gctcaaattt atggagaaga atggggatac 660gaaaaagaag atattgctga attttataaa agacaactaa aacttacgca agaatatact 720gaccattgtg tcaaatggta taatgttgga ttagataaat taagaggttc atcttatgaa 780tcttgggtaa actttaaccg ttatcgcaga gagatgacat taacagtatt agatttaatt 840gcactatttc cattgtatga tgttcggcta tacccaaaag aagttaaaac cgaattaaca 900agagacgttt taacagatcc aattgtcgga gtcaacaacc ttagggaata tggaacaacc 960ttctctaata tagaaaatta tattcgaaaa ccacatctat ttgactatct gcatagaatt 1020caatttcaca cgcggttcca accaggatat tatggaaatg actctttcaa ttattggtcc 1080ggtaattatg tttcaactag accaagcata ggatcaaatg atataatcac atctccattc 1140tatggaaata aatccagtga acctgtacaa aatttagaat ttaatggaga aaaagtctat 1200agagccgtag caaatacaaa tcttgcggtc tggccgtccg ctgtatattc aggtgttaca 1260aaagtggaat ttagccaata taatgatcaa acagatgaag caagtacaca aacgtacgac 1320tcaaaaagaa atgttggcgc ggtcagctgg gattctatcg atcaattgcc tccagaaaca 1380acagatgaac ctctagaaaa gggatatagc catcaactca attatgtaat gtgcttttta 1440atgctgaaaa gtagaggaac aatcccagtg ttaacttgga cacataaaag tgtagacttt 1500tttaacatga ttgattcgaa aaaaattaca caacttccgt tagtaaaggc atataagtta 1560caatctggtg cttccgttgt cgcaggtcct aggtttacag gaggagatat cattcaatgc 1620acagaaaatg gaagtgcggc aactatttac gttacaccgg atgtgtcgta ctctcaaaaa 1680tatcgagcta gaattcatta tgcttctaca tctcagataa catttacact cagtttagac 1740ggggcaccat ttaatcaata ctatttcgat aaaacgataa ataaaggaga cacattaacg 1800tataattcat ttaatttagc aagtttcagc acaccattcg aattatcagg gaataactta 1860caaataggcg tcacaggatt aagtgctgga gataaagttt atatagacaa aattgaattt 1920attccagtga at 193215644PRTArtificial Sequencevariant of Axmi-R1 (Axmi-R1(1g8)) 15Met Asn Pro Asn Asn Arg Ser Glu His Asp Thr Ile Lys Thr Thr Glu 1 5 10 15 Asn Asn Glu Val Pro Thr Asn His Val Gln Tyr Pro Leu Ala Glu Thr 20 25 30 Pro Asn Pro Thr Leu Glu Asp Leu Asn Tyr Lys Glu Phe Leu Arg Met 35 40 45 Thr Ala Asp Asn Asn Thr Glu Ala Leu Asp Ser Ser Thr Thr Lys Asp 50 55 60 Val Ile Gln Lys Gly Ile Ser Val Val Gly Asp Leu Leu Gly Val Val 65 70 75 80 Gly Phe Pro Phe Gly Gly Ala Leu Val Ser Phe Tyr Thr Asn Phe Leu 85 90 95 Asn Thr Ile Trp Pro Ser Glu Asp Pro Trp Lys Ala Phe Met Glu Gln 100 105 110 Val Glu Ala Leu Met Asp Gln Lys Ile Ala Asp Tyr Ala Lys Asn Lys 115 120 125 Ala Leu Ala Glu Leu Gln Gly Leu Gln Asn Asn Val Glu Asp Tyr Val 130 135 140 Ser Ala Leu Ser Ser Trp Gln Lys Asn Pro Val Ser Ser Arg Asn Pro 145 150 155 160 His Ser Gln Gly Arg Ile Arg Glu Leu Phe Ser Gln Ala Glu Ser His 165 170 175 Phe Arg Asn Ser Met Pro Ser Phe Ala Ile Ser Gly Tyr Glu Val Leu 180 185 190 Phe Leu Thr Thr Tyr Ala Gln Ala Ala Asn Thr His Leu Phe Leu Leu 195 200 205 Lys Asp Ala Gln Ile Tyr Gly Glu Glu Trp Gly Tyr Glu Lys Glu Asp 210 215 220 Ile Ala Glu Phe Tyr Lys Arg Gln Leu Lys Leu Thr Gln Glu Tyr Thr 225 230 235 240 Asp His Cys Val Lys Trp Tyr Asn Val Gly Leu Asp Lys Leu Arg Gly 245 250 255 Ser Ser Tyr Glu Ser Trp Val Asn Phe Asn Arg Tyr Arg Arg Glu Met 260 265 270 Thr Leu Thr Val Leu Asp Leu Ile Ala Leu Phe Pro Leu Tyr Asp Val 275 280 285 Arg Leu Tyr Pro Lys Glu Val Lys Thr Glu Leu Thr Arg Asp Val Leu 290 295 300 Thr Asp Pro Ile Val Gly Val Asn Asn Leu Arg Glu Tyr Gly Thr Thr 305 310 315 320 Phe Ser Asn Ile Glu Asn Tyr Ile Arg Lys Pro His Leu Phe Asp Tyr 325 330 335 Leu His Arg Ile Gln Phe His Thr Arg Phe Gln Pro Gly Tyr Tyr Gly 340 345 350 Asn Asp Ser Phe Asn Tyr Trp Ser Gly Asn Tyr Val Ser Thr Arg Pro 355 360 365 Ser Ile Gly Ser Asn Asp Ile Ile Thr Ser Pro Phe Tyr Gly Asn Lys 370 375 380 Ser Ser Glu Pro Val Gln Asn Leu Glu Phe Asn Gly Glu Lys Val Tyr 385 390 395 400 Arg Ala Val Ala Asn Thr Asn Leu Ala Val Trp Pro Ser Ala Val Tyr 405 410 415 Ser Gly Val Thr Lys Val Glu Phe Ser Gln Tyr Asn Asp Gln Thr Asp 420 425 430 Glu Ala Ser Thr Gln Thr Tyr Asp Ser Lys Arg Asn Val Gly Ala Val 435 440 445 Ser Trp Asp Ser Ile Asp Gln Leu Pro Pro Glu Thr Thr Asp Glu Pro 450 455 460 Leu Glu Lys Gly Tyr Ser His Gln Leu Asn Tyr Val Met Cys Phe Leu 465 470 475 480 Met Leu Lys Ser Arg Gly Thr Ile Pro Val Leu Thr Trp Thr His Lys 485 490 495 Ser Val Asp Phe Phe Asn Met Ile Asp Ser Lys Lys Ile Thr Gln Leu 500 505 510 Pro Leu Val Lys Ala Tyr Lys Leu Gln Ser Gly Ala Ser Val Val Ala 515 520 525 Gly Pro Arg Phe Thr Gly Gly Asp Ile Ile Gln Cys Thr Glu Asn Gly 530 535 540 Ser Ala Ala Thr Ile Tyr Val Thr Pro Asp Val Ser Tyr Ser Gln Lys 545 550 555 560 Tyr Arg Ala Arg Ile His Tyr Ala Ser Thr Ser Gln Ile Thr Phe Thr 565 570 575 Leu Ser Leu Asp Gly Ala Pro Phe Asn Gln Tyr Tyr Phe Asp Lys Thr 580 585 590 Ile Asn Lys Gly Asp Thr Leu Thr Tyr Asn Ser Phe Asn Leu Ala Ser 595 600 605 Phe Ser Thr Pro Phe Glu Leu Ser Gly Asn Asn Leu Gln Ile Gly Val 610 615 620 Thr Gly Leu Ser Ala Gly Asp Lys Val Tyr Ile Asp Lys Ile Glu Phe 625 630 635 640 Ile Pro Val Asn 161932DNAArtificial Sequencenucleotide sequence encoding variant of Axmi-R1 (Axmi-R1(Evo23)) 16atgaatccga acaatcgaag tgaacatgat acaataaaaa ctactgaaaa taatgaggtg 60ccaactaacc atgttcaata tcctttagcg gaaactccaa atccaacact agaagattta 120aattataaag agtttttaag aatgactgca gataataata cggaagcact agatagctct 180acaacaaaag atgtcattca aaaaggcatt tccgtagtag gtgatctcct aggcgtagta 240ggtttcccgt ttggtggagc gcttgtttcg ttttatacaa actttttaaa tactatttgg 300ccaagtgaag acccgtggaa ggcttttatg gaacaagtag aagcattgat ggatcagaaa 360atagctgatt atgcaaaaaa taaagctctt gcagagttac agggccttca aaataatgtc 420gaagattatg tgagtgcatt gagttcatgg caaaaaaatc atgtgagttc acgaaatctt 480catagccagg ggcggataag agagctgttt tctcaagcag aaagtcattt tcgtaattca 540atgccttcgt ttgcaatttc tggatacgag gttctatttc taacaacata tgcacaagct 600gccaacacac atttattttt actaaaagac gctcaaattt atggagaaga atggggatac 660gaaaaagaag atattgctga attttataaa agacaactaa aacttacgca agaatatact 720gaccattgtg tcaaatggta taatgttgga ttagataaat taagaggttc atcttatgaa 780tcttgggtaa actttaaccg ttatcgcaga gagatgacat taacagtatt agatttaatt 840gcactatttc cattgtatga tgttcggcta tacccaaaag aagttaaaac cgaattaaca 900agagacgttt taacagatcc aattgtcgga gtcaacaacc ttagggaata tggaacaacc 960ttctctaata tagaaaatta tattcgaaaa ccacatctat ttgactatct gcatagaatt 1020caatttcaca cgcggttcca accaggatat tatggaaatg actctttcaa ttattggtcc 1080ggtaattatg tttcaactag accaagcata ggatcaaatg atataatcac atctccattc 1140tatggaaata aatccagtga acctgtacaa aatttagaat ttaatggaga aaaagtctat 1200agagccgtag caaatacaaa tcttgcggtc tggccgtccg ctgtatattc aggtgttaca 1260aaagtggaat ttagccaata taatgatcaa acagatgaag caagtacaca aacgtacgac 1320tcaaaaagaa atgttggcgc ggtcagctgg gattctatcg atcaattgcc tccagaaaca 1380acagatgaac ctctagaaaa gggatatagc catcaactca attatgtaat gtgcttttta 1440atgctgaaaa gtagaggaac aatcccagtg ttaacttgga cacataaaag tgtagacttt 1500tttaacatga ttgattcgaa aaaaattaca

caacttccgt tagtaaaggc atataagtta 1560caatctggtg cttccgttgt cgcaggtcct aggtttacag gaggagatat cattcaatgc 1620acagaaaatg gaagtgcggc aactatttac gttacaccgg atgtgtcgta ctctcaaaaa 1680tatcgagcta gaattcatta tgcttctaca tctcagataa catttacact cagtttagac 1740ggggcaccat ttaatcaata ctatttcgat aaaacgataa ataaaggaga cacattaacg 1800tataattcat ttaatttagc aagtttcagc acaccattcg aattatcagg gaataactta 1860caaataggcg tcacaggatt aagtgctgga gataaagttt atatagacaa aattgaattt 1920attccagtga at 193217644PRTArtificial Sequencevariant of Axmi-R1 (Axmi-R1(Evo23)) 17Met Asn Pro Asn Asn Arg Ser Glu His Asp Thr Ile Lys Thr Thr Glu 1 5 10 15 Asn Asn Glu Val Pro Thr Asn His Val Gln Tyr Pro Leu Ala Glu Thr 20 25 30 Pro Asn Pro Thr Leu Glu Asp Leu Asn Tyr Lys Glu Phe Leu Arg Met 35 40 45 Thr Ala Asp Asn Asn Thr Glu Ala Leu Asp Ser Ser Thr Thr Lys Asp 50 55 60 Val Ile Gln Lys Gly Ile Ser Val Val Gly Asp Leu Leu Gly Val Val 65 70 75 80 Gly Phe Pro Phe Gly Gly Ala Leu Val Ser Phe Tyr Thr Asn Phe Leu 85 90 95 Asn Thr Ile Trp Pro Ser Glu Asp Pro Trp Lys Ala Phe Met Glu Gln 100 105 110 Val Glu Ala Leu Met Asp Gln Lys Ile Ala Asp Tyr Ala Lys Asn Lys 115 120 125 Ala Leu Ala Glu Leu Gln Gly Leu Gln Asn Asn Val Glu Asp Tyr Val 130 135 140 Ser Ala Leu Ser Ser Trp Gln Lys Asn His Val Ser Ser Arg Asn Leu 145 150 155 160 His Ser Gln Gly Arg Ile Arg Glu Leu Phe Ser Gln Ala Glu Ser His 165 170 175 Phe Arg Asn Ser Met Pro Ser Phe Ala Ile Ser Gly Tyr Glu Val Leu 180 185 190 Phe Leu Thr Thr Tyr Ala Gln Ala Ala Asn Thr His Leu Phe Leu Leu 195 200 205 Lys Asp Ala Gln Ile Tyr Gly Glu Glu Trp Gly Tyr Glu Lys Glu Asp 210 215 220 Ile Ala Glu Phe Tyr Lys Arg Gln Leu Lys Leu Thr Gln Glu Tyr Thr 225 230 235 240 Asp His Cys Val Lys Trp Tyr Asn Val Gly Leu Asp Lys Leu Arg Gly 245 250 255 Ser Ser Tyr Glu Ser Trp Val Asn Phe Asn Arg Tyr Arg Arg Glu Met 260 265 270 Thr Leu Thr Val Leu Asp Leu Ile Ala Leu Phe Pro Leu Tyr Asp Val 275 280 285 Arg Leu Tyr Pro Lys Glu Val Lys Thr Glu Leu Thr Arg Asp Val Leu 290 295 300 Thr Asp Pro Ile Val Gly Val Asn Asn Leu Arg Glu Tyr Gly Thr Thr 305 310 315 320 Phe Ser Asn Ile Glu Asn Tyr Ile Arg Lys Pro His Leu Phe Asp Tyr 325 330 335 Leu His Arg Ile Gln Phe His Thr Arg Phe Gln Pro Gly Tyr Tyr Gly 340 345 350 Asn Asp Ser Phe Asn Tyr Trp Ser Gly Asn Tyr Val Ser Thr Arg Pro 355 360 365 Ser Ile Gly Ser Asn Asp Ile Ile Thr Ser Pro Phe Tyr Gly Asn Lys 370 375 380 Ser Ser Glu Pro Val Gln Asn Leu Glu Phe Asn Gly Glu Lys Val Tyr 385 390 395 400 Arg Ala Val Ala Asn Thr Asn Leu Ala Val Trp Pro Ser Ala Val Tyr 405 410 415 Ser Gly Val Thr Lys Val Glu Phe Ser Gln Tyr Asn Asp Gln Thr Asp 420 425 430 Glu Ala Ser Thr Gln Thr Tyr Asp Ser Lys Arg Asn Val Gly Ala Val 435 440 445 Ser Trp Asp Ser Ile Asp Gln Leu Pro Pro Glu Thr Thr Asp Glu Pro 450 455 460 Leu Glu Lys Gly Tyr Ser His Gln Leu Asn Tyr Val Met Cys Phe Leu 465 470 475 480 Met Leu Lys Ser Arg Gly Thr Ile Pro Val Leu Thr Trp Thr His Lys 485 490 495 Ser Val Asp Phe Phe Asn Met Ile Asp Ser Lys Lys Ile Thr Gln Leu 500 505 510 Pro Leu Val Lys Ala Tyr Lys Leu Gln Ser Gly Ala Ser Val Val Ala 515 520 525 Gly Pro Arg Phe Thr Gly Gly Asp Ile Ile Gln Cys Thr Glu Asn Gly 530 535 540 Ser Ala Ala Thr Ile Tyr Val Thr Pro Asp Val Ser Tyr Ser Gln Lys 545 550 555 560 Tyr Arg Ala Arg Ile His Tyr Ala Ser Thr Ser Gln Ile Thr Phe Thr 565 570 575 Leu Ser Leu Asp Gly Ala Pro Phe Asn Gln Tyr Tyr Phe Asp Lys Thr 580 585 590 Ile Asn Lys Gly Asp Thr Leu Thr Tyr Asn Ser Phe Asn Leu Ala Ser 595 600 605 Phe Ser Thr Pro Phe Glu Leu Ser Gly Asn Asn Leu Gln Ile Gly Val 610 615 620 Thr Gly Leu Ser Ala Gly Asp Lys Val Tyr Ile Asp Lys Ile Glu Phe 625 630 635 640 Ile Pro Val Asn 181932DNAArtificial Sequencenucleotide sequence encoding variant of Axmi-R1 (Axmi-R1(L61E11)) (Axmi-R1(L61E11)) (Axmi-R1(Evo23)) 18atgaatccga acaatcgaag tgaacatgat acaataaaaa ctactgaaaa taatgaggtg 60ccaactaacc atgttcaata tcctttagcg gaaactccaa atccaacact agaagattta 120aattataaag agtttttaag aatgactgca gataataata cggaagcact agatagctct 180acaacaaaag atgtcattca aaaaggcatt tccgtagtag gtgatctcct aggcgtagta 240ggtttcccgt ttggtggagc gcttgtttcg ttttatacaa actttttaaa tactatttgg 300ccaagtgaag acccgtggaa ggcttttatg gaacaagtag aagcattgat ggatcagaaa 360atagctgatt atgcaaaaaa taaagctctt gcagagttac agggccttca aaataatgtc 420gaagattatg tgagtgcatt gagttcatgg caaaaaaatc ctgtgagttc acgaaatcca 480catagccagg ggcggataag agagctgttt tctcaagcag aaagtcattt tcgtaattca 540atgccttcgt ttgcaatttc tggatacgag gttctatttc taacaacata tgcacaagct 600gccaacacac atttattttt actaaaagac gctcaaattt atggagaaga atggggatac 660gaaaaagaag atattgctga attttataaa agacaactaa aacttacgca agaatatact 720gaccattgtg tcaaatggta taatgttgga ttagataaat taagaggttc atcttatgaa 780tcttgggtaa actttaaccg ttatcgcaga gagatgacat taacagtatt agatttaatt 840gcactatttc cattgtatga tgttcggcta tacccaaaag aagttaaaac cgaattaaca 900agagacgttt taacagatcc aattgtcgga gtcaacaacc ttaggggcta tggaacaacc 960ttctctaata tagaaaatta tattcgaaaa ccacatctat ttgactatct gcatagaatt 1020caatttcaca cgcggttcca accaggatat tatggaaatg actctttcaa ttattggtcc 1080ggtaattatg tttcaactag accaagcata ggatcaaatg atataatcac atctccattc 1140tatggaaata aatccagtga acctgtacaa aatttagaat ttaatggaga aaaagtctat 1200agagccgtag caaatacaaa tcttgcggtc tggccgtccg ctgtatattc aggtgttaca 1260aaagtggaat ttagccaata taatgatcaa acagatgaag caagtacaca aacgtacgac 1320tcaaaaagaa atgttggcgc ggtcagctgg gattctatcg atcaattgcc tccagaaaca 1380acagatgaac ctctagaaaa gggatatagc catcaactca attatgtaat gtgcttttta 1440atgcagggta gtagaggaac aatcccagtg ttaacttgga cacataaaag tgtagacttt 1500tttaacatga ttgattcgaa aaaaattaca caacttccgt tagtaaaggc atataattta 1560caatctggtg cttccgttgt cgcaggtcct aggtttacag gaggagatat cattcaatgc 1620acagaaaatg gaagtgcggc aactatttac gttacaccgg atgtgtcgta ctctcaaaaa 1680tatcgagcta gaattcatta tgcttctaca tctcagataa catttacact cagtttagac 1740ggggcaccat ttaatcaata ctatttcgat aaaacgataa ataaaggaga cacattaacg 1800tataattcat ttaatttagc aagtttcagc acaccattcg aattatcagg gaataactta 1860caaataggcg tcacaggatt aagtgctgga gataaagttt atatagacaa aattgaattt 1920attccagtga at 193219644PRTArtificial Sequencevariant of Axmi-R1 (Axmi-R1(L61E11)) 19Met Asn Pro Asn Asn Arg Ser Glu His Asp Thr Ile Lys Thr Thr Glu 1 5 10 15 Asn Asn Glu Val Pro Thr Asn His Val Gln Tyr Pro Leu Ala Glu Thr 20 25 30 Pro Asn Pro Thr Leu Glu Asp Leu Asn Tyr Lys Glu Phe Leu Arg Met 35 40 45 Thr Ala Asp Asn Asn Thr Glu Ala Leu Asp Ser Ser Thr Thr Lys Asp 50 55 60 Val Ile Gln Lys Gly Ile Ser Val Val Gly Asp Leu Leu Gly Val Val 65 70 75 80 Gly Phe Pro Phe Gly Gly Ala Leu Val Ser Phe Tyr Thr Asn Phe Leu 85 90 95 Asn Thr Ile Trp Pro Ser Glu Asp Pro Trp Lys Ala Phe Met Glu Gln 100 105 110 Val Glu Ala Leu Met Asp Gln Lys Ile Ala Asp Tyr Ala Lys Asn Lys 115 120 125 Ala Leu Ala Glu Leu Gln Gly Leu Gln Asn Asn Val Glu Asp Tyr Val 130 135 140 Ser Ala Leu Ser Ser Trp Gln Lys Asn Pro Val Ser Ser Arg Asn Pro 145 150 155 160 His Ser Gln Gly Arg Ile Arg Glu Leu Phe Ser Gln Ala Glu Ser His 165 170 175 Phe Arg Asn Ser Met Pro Ser Phe Ala Ile Ser Gly Tyr Glu Val Leu 180 185 190 Phe Leu Thr Thr Tyr Ala Gln Ala Ala Asn Thr His Leu Phe Leu Leu 195 200 205 Lys Asp Ala Gln Ile Tyr Gly Glu Glu Trp Gly Tyr Glu Lys Glu Asp 210 215 220 Ile Ala Glu Phe Tyr Lys Arg Gln Leu Lys Leu Thr Gln Glu Tyr Thr 225 230 235 240 Asp His Cys Val Lys Trp Tyr Asn Val Gly Leu Asp Lys Leu Arg Gly 245 250 255 Ser Ser Tyr Glu Ser Trp Val Asn Phe Asn Arg Tyr Arg Arg Glu Met 260 265 270 Thr Leu Thr Val Leu Asp Leu Ile Ala Leu Phe Pro Leu Tyr Asp Val 275 280 285 Arg Leu Tyr Pro Lys Glu Val Lys Thr Glu Leu Thr Arg Asp Val Leu 290 295 300 Thr Asp Pro Ile Val Gly Val Asn Asn Leu Arg Gly Tyr Gly Thr Thr 305 310 315 320 Phe Ser Asn Ile Glu Asn Tyr Ile Arg Lys Pro His Leu Phe Asp Tyr 325 330 335 Leu His Arg Ile Gln Phe His Thr Arg Phe Gln Pro Gly Tyr Tyr Gly 340 345 350 Asn Asp Ser Phe Asn Tyr Trp Ser Gly Asn Tyr Val Ser Thr Arg Pro 355 360 365 Ser Ile Gly Ser Asn Asp Ile Ile Thr Ser Pro Phe Tyr Gly Asn Lys 370 375 380 Ser Ser Glu Pro Val Gln Asn Leu Glu Phe Asn Gly Glu Lys Val Tyr 385 390 395 400 Arg Ala Val Ala Asn Thr Asn Leu Ala Val Trp Pro Ser Ala Val Tyr 405 410 415 Ser Gly Val Thr Lys Val Glu Phe Ser Gln Tyr Asn Asp Gln Thr Asp 420 425 430 Glu Ala Ser Thr Gln Thr Tyr Asp Ser Lys Arg Asn Val Gly Ala Val 435 440 445 Ser Trp Asp Ser Ile Asp Gln Leu Pro Pro Glu Thr Thr Asp Glu Pro 450 455 460 Leu Glu Lys Gly Tyr Ser His Gln Leu Asn Tyr Val Met Cys Phe Leu 465 470 475 480 Met Gln Gly Ser Arg Gly Thr Ile Pro Val Leu Thr Trp Thr His Lys 485 490 495 Ser Val Asp Phe Phe Asn Met Ile Asp Ser Lys Lys Ile Thr Gln Leu 500 505 510 Pro Leu Val Lys Ala Tyr Asn Leu Gln Ser Gly Ala Ser Val Val Ala 515 520 525 Gly Pro Arg Phe Thr Gly Gly Asp Ile Ile Gln Cys Thr Glu Asn Gly 530 535 540 Ser Ala Ala Thr Ile Tyr Val Thr Pro Asp Val Ser Tyr Ser Gln Lys 545 550 555 560 Tyr Arg Ala Arg Ile His Tyr Ala Ser Thr Ser Gln Ile Thr Phe Thr 565 570 575 Leu Ser Leu Asp Gly Ala Pro Phe Asn Gln Tyr Tyr Phe Asp Lys Thr 580 585 590 Ile Asn Lys Gly Asp Thr Leu Thr Tyr Asn Ser Phe Asn Leu Ala Ser 595 600 605 Phe Ser Thr Pro Phe Glu Leu Ser Gly Asn Asn Leu Gln Ile Gly Val 610 615 620 Thr Gly Leu Ser Ala Gly Asp Lys Val Tyr Ile Asp Lys Ile Glu Phe 625 630 635 640 Ile Pro Val Asn 202409DNAArtificial Sequencesynthetic sequence encoding AXMI-115 20atgaacatga acaacaccaa gctcaatgca agagctcttc cttccttcat cgactacttc 60aatggcatct atggcttcgc caccggcatc aaggacatca tgaacatgat cttcaagaca 120gacactggag gagatctcac cttggatgag atcctcaaga accagcagct gctgaatgag 180atctcaggga agctggatgg cgtcaatgga agcctcaatg atctcattgc tcaaggaaac 240ctcaacacag agctctccaa ggagatcctc aagatcgcca atgagcagaa ccaggtgctg 300aatgatgtca acaacaagct ggatgccatc aacaccatgc tgaacatcta cctccccaag 360atcacctcaa tgctctctga tgtgatgaag cagaactatg ctctctccct ccagatcgag 420tacctctcaa ggcagctgca agagatctcc gacaagctgg atgtcatcaa cctcaatgtg 480ctgatcaaca gcaccttgac agagatcacc ccaagctacc agaggatcaa atatgtcaat 540gagaagttcg acaagctcac cttcgccaca gaatcaaccc tccgcgccaa gcaaggcatc 600ttcaatgagg acagcttcga caacaacacc ttggagaact tgacagatct tgctgagctg 660gccaagagca tcaccaagaa tgatgtggac agcttcgagt tctacctcca caccttccat 720gatgtgctga ttggcaacaa cctctttgga agaagcgcgc tcaagacagc ttcagagctc 780atcaccaagg atgagatcaa gacatctgga tcagagattg gcaaggtgta cagcttcctc 840atcgtcctca ccagcctcca ggccaaggcc ttcctcaccc tcaccacctg ccggaagctg 900ctgggcctct ccgacatcga ctacacctcc atcatgaatg agcacctcaa caatgagaag 960aatgagttca gagacaacat cctgccggcg ctctccaaca agttcagcaa cccttcatat 1020gcaaaaacca tcggcagcga caactacgcc aaggtgatcc tggagagcga gcctggatat 1080gctctggtgg gcttcgagat catcaatgat cccatccccg tgctgaaggc ctacaaggcc 1140aagctgaagc agaactacca ggtggacaac cagagcctct cagagatcgt ctacctggac 1200atcgacaagc tcttctgccc agagaacagc gagcagaagt actacaccaa gaacctcacc 1260ttccctgatg gatatgtcat caccaagatc accttcgaga agaagctcaa caacctcatc 1320tatgaagcca ccgccaactt ctatgatcca tcaactggag acatcgacct gaacaagaag 1380caggtggaga gcaccttccc tcaaacagac tacatcacca tggacattgg agatgatgat 1440ggcatctaca tgccgctcgg cgtcatctca gaaaccttcc tcacccccat caacagcttc 1500ggcctggagg tggatgccaa gagcaagacc ctcaccttga aatgcaagag ctacctcagg 1560gagtacctgc tggagagtga tctgaagaac aaggaaacag ggctgatcgc gccgccaaat 1620gttttcatca gcaatgtggt gaagaactgg gacattgaag aagattcatt ggagccatgg 1680gtggccaaca acaagaatgc ttatgtggac aacaccggcg gcattgaaag aagcaaggcg 1740ctcttcaccc aaggagatgg agagttctca cagttcatcg gcgacaagct gaagccaaac 1800accgactaca tcatccagta caccgtcaag ggcaagccgg ccatctacct caagaacaag 1860agcaccggct acatcacata tgaggacacc aatggcaaca gcgaggagtt ccaaaccatt 1920gctgtgaagt tcacctcaga aacagatctc tcccaaaccc acctggtgtt caagagccaa 1980aatggatatg aagcatgggg agacaacttc atcatcctgg aggccaagct ctttgaaaca 2040ccagaatctc cagagctcat caagttcaat gattgggaga gatttggcac cacctacatc 2100actggaaatg agctgaggat tgatcattca agaggaggct acttccgcca gagcttgaac 2160atcgacagct acagcacata tgatctctcc ttctccttct ccggcctctg ggccaaggtc 2220atcgtcaaga acagcagagg agtggtgctc ttcgagaagg tgaagaacaa tggaagcagc 2280tatgaggaca tctcagagag cttcaccacc gccagcaaca aggatggctt cttcatcgag 2340ctcaccgccg agaggacaag cagcaccttc cacagcttca gagacatctc catcaaggag 2400aagatcgag 240921803PRTBacillus thuringiensis 21Met Asn Met Asn Asn Thr Lys Leu Asn Ala Arg Ala Leu Pro Ser Phe 1 5 10 15 Ile Asp Tyr Phe Asn Gly Ile Tyr Gly Phe Ala Thr Gly Ile Lys Asp 20 25 30 Ile Met Asn Met Ile Phe Lys Thr Asp Thr Gly Gly Asp Leu Thr Leu 35 40 45 Asp Glu Ile Leu Lys Asn Gln Gln Leu Leu Asn Glu Ile Ser Gly Lys 50 55 60 Leu Asp Gly Val Asn Gly Ser Leu Asn Asp Leu Ile Ala Gln Gly Asn 65 70 75 80 Leu Asn Thr Glu Leu Ser Lys Glu Ile Leu Lys Ile Ala Asn Glu Gln 85 90 95 Asn Gln Val Leu Asn Asp Val Asn Asn Lys Leu Asp Ala Ile Asn Thr 100 105 110 Met Leu Asn Ile Tyr Leu Pro Lys Ile Thr Ser Met Leu Ser Asp Val 115 120 125 Met Lys Gln Asn Tyr Ala Leu Ser Leu Gln Ile Glu Tyr Leu Ser Arg 130 135 140 Gln Leu Gln Glu Ile Ser Asp Lys Leu Asp Val Ile Asn Leu Asn Val 145 150 155 160 Leu Ile Asn Ser Thr Leu Thr Glu Ile Thr Pro Ser Tyr Gln Arg Ile 165 170 175 Lys Tyr Val Asn Glu Lys Phe Asp Lys Leu Thr Phe Ala Thr Glu Ser 180 185 190 Thr Leu Arg Ala Lys Gln Gly Ile Phe Asn Glu Asp Ser Phe Asp Asn 195 200 205 Asn Thr Leu Glu Asn Leu Thr Asp Leu Ala Glu Leu Ala Lys Ser Ile 210 215 220

Thr Lys Asn Asp Val Asp Ser Phe Glu Phe Tyr Leu His Thr Phe His 225 230 235 240 Asp Val Leu Ile Gly Asn Asn Leu Phe Gly Arg Ser Ala Leu Lys Thr 245 250 255 Ala Ser Glu Leu Ile Thr Lys Asp Glu Ile Lys Thr Ser Gly Ser Glu 260 265 270 Ile Gly Lys Val Tyr Ser Phe Leu Ile Val Leu Thr Ser Leu Gln Ala 275 280 285 Lys Ala Phe Leu Thr Leu Thr Thr Cys Arg Lys Leu Leu Gly Leu Ser 290 295 300 Asp Ile Asp Tyr Thr Ser Ile Met Asn Glu His Leu Asn Asn Glu Lys 305 310 315 320 Asn Glu Phe Arg Asp Asn Ile Leu Pro Ala Leu Ser Asn Lys Phe Ser 325 330 335 Asn Pro Ser Tyr Ala Lys Thr Ile Gly Ser Asp Asn Tyr Ala Lys Val 340 345 350 Ile Leu Glu Ser Glu Pro Gly Tyr Ala Leu Val Gly Phe Glu Ile Ile 355 360 365 Asn Asp Pro Ile Pro Val Leu Lys Ala Tyr Lys Ala Lys Leu Lys Gln 370 375 380 Asn Tyr Gln Val Asp Asn Gln Ser Leu Ser Glu Ile Val Tyr Leu Asp 385 390 395 400 Ile Asp Lys Leu Phe Cys Pro Glu Asn Ser Glu Gln Lys Tyr Tyr Thr 405 410 415 Lys Asn Leu Thr Phe Pro Asp Gly Tyr Val Ile Thr Lys Ile Thr Phe 420 425 430 Glu Lys Lys Leu Asn Asn Leu Ile Tyr Glu Ala Thr Ala Asn Phe Tyr 435 440 445 Asp Pro Ser Thr Gly Asp Ile Asp Leu Asn Lys Lys Gln Val Glu Ser 450 455 460 Thr Phe Pro Gln Thr Asp Tyr Ile Thr Met Asp Ile Gly Asp Asp Asp 465 470 475 480 Gly Ile Tyr Met Pro Leu Gly Val Ile Ser Glu Thr Phe Leu Thr Pro 485 490 495 Ile Asn Ser Phe Gly Leu Glu Val Asp Ala Lys Ser Lys Thr Leu Thr 500 505 510 Leu Lys Cys Lys Ser Tyr Leu Arg Glu Tyr Leu Leu Glu Ser Asp Leu 515 520 525 Lys Asn Lys Glu Thr Gly Leu Ile Ala Pro Pro Asn Val Phe Ile Ser 530 535 540 Asn Val Val Lys Asn Trp Asp Ile Glu Glu Asp Ser Leu Glu Pro Trp 545 550 555 560 Val Ala Asn Asn Lys Asn Ala Tyr Val Asp Asn Thr Gly Gly Ile Glu 565 570 575 Arg Ser Lys Ala Leu Phe Thr Gln Gly Asp Gly Glu Phe Ser Gln Phe 580 585 590 Ile Gly Asp Lys Leu Lys Pro Asn Thr Asp Tyr Ile Ile Gln Tyr Thr 595 600 605 Val Lys Gly Lys Pro Ala Ile Tyr Leu Lys Asn Lys Ser Thr Gly Tyr 610 615 620 Ile Thr Tyr Glu Asp Thr Asn Gly Asn Ser Glu Glu Phe Gln Thr Ile 625 630 635 640 Ala Val Lys Phe Thr Ser Glu Thr Asp Leu Ser Gln Thr His Leu Val 645 650 655 Phe Lys Ser Gln Asn Gly Tyr Glu Ala Trp Gly Asp Asn Phe Ile Ile 660 665 670 Leu Glu Ala Lys Leu Phe Glu Thr Pro Glu Ser Pro Glu Leu Ile Lys 675 680 685 Phe Asn Asp Trp Glu Arg Phe Gly Thr Thr Tyr Ile Thr Gly Asn Glu 690 695 700 Leu Arg Ile Asp His Ser Arg Gly Gly Tyr Phe Arg Gln Ser Leu Asn 705 710 715 720 Ile Asp Ser Tyr Ser Thr Tyr Asp Leu Ser Phe Ser Phe Ser Gly Leu 725 730 735 Trp Ala Lys Val Ile Val Lys Asn Ser Arg Gly Val Val Leu Phe Glu 740 745 750 Lys Val Lys Asn Asn Gly Ser Ser Tyr Glu Asp Ile Ser Glu Ser Phe 755 760 765 Thr Thr Ala Ser Asn Lys Asp Gly Phe Phe Ile Glu Leu Thr Ala Glu 770 775 780 Arg Thr Ser Ser Thr Phe His Ser Phe Arg Asp Ile Ser Ile Lys Glu 785 790 795 800 Lys Ile Glu 222409DNAArtificial Sequencesynthetic sequence encoding AXMI-115 22atgaacatga acaacaccaa gctcaatgca agagctcttc cttccttcat cgactacttc 60aatggcatct atggcttcgc caccggcatc aaggacatca tgaacatgat cttcaagaca 120gacactggag gagatctcac cttggatgag atcctcaaga accagcagct gctgaatgag 180atctcaggga agctggatgg cgtcaatgga agcctcaatg atctcattgc tcaaggaaac 240ctcaacacag agctctccaa ggagatcctc aagattgcaa atgagcagaa ccaggtgctg 300aatgatgtca acaacaagct ggatgccatc aacaccatgc tgaacatcta cctccccaag 360atcacctcaa tgctctctga tgtgatgaag cagaactatg ctctctccct ccagatcgag 420tacctctcaa ggcagctgca agagatctcc gacaagctgg atgtcatcaa cctcaatgtg 480ctgatcaaca gcaccttgac agagatcacc ccaagctacc aaaggatcaa atatgtcaat 540gagaagttcg acaagctcac cttcgccaca gaatcaaccc tccgcgccaa gcaaggcatc 600ttcaatgagg acagcttcga caacaacacc ttggagaact tgacagatct tgctgagctg 660gccaagagca tcaccaagaa tgatgtggac agcttcgagt tctacctcca caccttccat 720gatgtgctga ttggcaacaa cctctttgga agaagcgcgc tcaagacagc ttcagagctc 780atcaccaagg atgagatcaa gacatctgga tcagaaattg gcaaggtgta cagcttcctc 840atcgtcctca ccagcctcca ggccaaggcc ttcctcaccc tcaccacctg ccggaagctg 900ctgggcctct ccgacatcga ctacacctcc atcatgaatg agcacctcaa caatgagaag 960aatgagttca gagacaacat cctgccggcg ctctccaaca agttcagcaa cccttcatat 1020gcaaaaacca tcggcagcga caactatgcc aaggtgatcc tggagagcga gcctggatat 1080gctctggtgg gcttcgagat catcaatgat cccatccctg tgctgaaggc ctacaaggcc 1140aagctgaagc agaactacca ggtggacaac caaagcctct cagagatcgt ctacctggac 1200atcgacaagc tcttctgccc agagaacagc gagcagaagt actacaccaa gaacctcacc 1260ttccctgatg gatatgtcat caccaagatc accttcgaga agaagctcaa caacctcatc 1320tatgaagcca ccgccaactt ctatgatcca tcaactggag acattgatct gaacaagaag 1380caggtggaga gcaccttccc tcaaacagat tacatcacca tggacattgg agatgatgat 1440ggcatctaca tgccgctcgg cgtcatctca gaaaccttcc tcacccccat caacagcttc 1500ggcctggagg tggatgccaa gagcaagacc ctcaccttga aatgcaagag ctacttgagg 1560gagtacctgc tggaatcaga tctgaagaac aaggaaacag ggctgatcgc gccgccaaat 1620gttttcatca gcaatgtggt gaagaactgg gacattgaag aagattcatt ggagccatgg 1680gtggccaaca acaagaatgc ttatgtggac aacaccggcg gcattgaaag aagcaaggcg 1740ctcttcaccc aaggagatgg agagttctca cagttcatcg gcgacaagct gaagccaaac 1800accgactaca tcatccagta caccgtcaag ggcaagccgg ccatctacct caagaacaag 1860agcactggct acatcacata tgaggacacc aatggcaaca gcgaggagtt ccaaacaatt 1920gctgtgaagt tcacctcaga aacagatctc tcccaaaccc acctggtgtt caagagccaa 1980aatggatatg aagcatgggg agacaacttc atcatcctgg aggccaagct ctttgaaaca 2040ccagaatctc cagagctcat caagttcaat gattgggaaa gatttggcac cacctacatc 2100actggaaatg agctgaggat tgatcattca agaggaggct acttccgcca gagcttgaac 2160atcgacagct acagcacata tgatctctcc ttctccttct ccggcctctg ggccaaggtc 2220atcgtcaaga acagcagagg agtggtgctc ttcgagaagg tgaagaacaa tggaagcagc 2280tatgaggaca tctcagagag cttcaccacc gccagcaaca aggatggctt cttcatcgag 2340ctcaccgccg agaggacaag cagcaccttc cacagcttca gagacatctc catcaaggag 2400aagattgaa 2409232415DNAArtificialAxmi115 variant sequence (Axmi115v02, pAX6307) 23atgaacatga acaacaccaa gctcaatgca agggcgctgc cgagcttcat cgactacttc 60aatggcatct atggcttcgc caccggcatc aaggacatca tgaacatgat cttcaagacc 120gacaccggcg gcaacctcac cttggatgag atcctcaaga accagcagct gctgaatgag 180atctcaggca agctggacgg cgtcaatgga agcctcaacg acctcattgc tcaaggcaac 240ctcaacaccg agctgagcaa ggagatcctc aagattgcaa atgagcagaa ccaggtgctg 300aatgatgtca acaacaagct ggacgccatc aacaccatgc tgcacatcta cctgccaaag 360atcacctcaa tgctctctga tgtgatgaag cagaactacg cgctgagcct ccagattgag 420tacctctcaa agcagctgca agagatctcc gacaagctgg acatcatcaa tgtcaatgtg 480ctcatcaaca gcaccttgac agagatcacg ccggcctacc agaggatcaa gtatgtcaat 540gagaagttcg acaagctcac cttcgccacc gagagcaccc tccgcgccaa gcaaggcatc 600ttcaatgaag attcatttga caacaacacc ttggagaact tgacagacct cgccgagctg 660gccaagagca tcaccaagaa tgatgtggac agcttcgagt tctacctcca caccttccat 720gatgtgctca tcggcaacaa cctctttgga agaagcgcgc tcaagacggc atcagagctc 780atcaccaagg atgagatcaa gacaagcggc agcgagatcg gcaaggtcta cagcttcctc 840atcgtgctga catcattgca agccaaggcc ttcctcacct tgacaacctg ccgcaagttg 900ctgggcctct ccgacatcga ctacacctcc atcatgaatg agcacctcaa caatgagaag 960aatgagttca gagacaacat cctgccggcg ctgagcaaca agttcagcaa cccaagctac 1020gccaagacca tcggctcaga caactacgcc aaggtgatcc tggagagcga gcctggctac 1080gcgctggtgg gcttcgagat catcaatgat ccaattcctg ttctcaaggc ctacaaggcc 1140aagctgaagc agaactacca ggtggacaac cagagcttga gcgagatcgt ctacctggac 1200atcgacaagc tcttctgccc ggagaactca gagcagaagt actacaccaa gaacctcacc 1260ttccctgatg gatatgtcat caccaagatc accttcgaga agaagctgaa caacctcatc 1320tacgaggcca ccgccaactt ctatgatcca tcaacaggag acatcgacct caacaagaag 1380caagtggaga gcaccttccc tcaaacagac tacatcacca tggacattgg agatgatgat 1440ggcatctaca tgccgctcgg cgtcatctca gaaaccttct tgacgcccat caacagcttc 1500ggcctggagg tggacgccaa gagcaagacc ttgacgctca agtgcaagag ctacctcagg 1560gagtacctgc tggagagtga tttgaagaac aaggagacag ggctgatcgc gccgccaaat 1620gtgttcatca gcaatgtggt gaagaactgg gacatcgagg aggattcatt ggagccatgg 1680gtggccaaca acaagaatgc ttatgtggac aacaccggcg gcattgaaag aagcaaggcg 1740ctcttcaccc aaggagatgg agagttcagc cagttcatcg gcgacaagct aaagcccaac 1800accgactaca tcatccagta caccgtcaag ggcaagccgg ccatctacct caagaacaag 1860agcaccggct acatcaccta cgaggacacc aatggaaatt ctgaggagtt ccaaacaatt 1920gctgtgaagt tcacctcaga aacagatttg agccagaccc acctggtgtt caagagccaa 1980aatggatatg aagcatgggg agacaacttc atcatcctgg aggccaagct cttcgagaca 2040ccagaaagcc cggagctcat caagttcaat gattgggaga ggttcggcac cacctacatc 2100accggcaatg agctgaggat tgatcattca agaggaggct acttccgcca aagcctcaac 2160atcgacagct acagcaccta cgacctcagc ttcagcttca gcggcctctg ggccaaggtg 2220attgtgaaga acagccgcgg cgtggtgctc ttcgagaagg tgaagaacaa tggaagcagc 2280tatgaggaca tctcagagag cttcaccacc gccagcaaca aggatggctt cttcatcgag 2340ctcaccgccg agaggacaag cagcaccttc cacagcttca gagacatcag catcaaggag 2400aagattgaat agtaa 2415242397DNAArtificialAxmi115 variant sequence (pAX6308) 24atgaacatga acaacaccaa gctcaatgca agggcgctgc cgagcttcat cgactacttc 60aatggcatct atggcttcgc caccggcatc aaggacatca tgaacatgat cttcaagacc 120gacaccggcg gcaacctcac cttggatgag atcctcaaga accagcagct gctgaatgag 180atctcaggca agctggacgg cgtcaatgga agcctcaacg acctcattgc tcaaggcaac 240ctcaacaccg agctgagcaa ggagatcctc aagattgcaa atgagcagaa ccaggtgctg 300aatgatgtca acaacaagct ggacgccatc aacaccatgc tgcacatcta cctgccaaag 360atcacctcaa tgctctctga tgtgatgaag cagaactacg cgctgagcct ccagattgag 420tacctctcaa agcagctgca agagatctcc gacaagctgg acatcatcaa tgtcaatgtg 480ctcatcaaca gcaccttgac agagatcacg ccggcctacc agaggatcaa gtatgtcaat 540gagaagtttg aggagctcac cttcgccacc gagacaacat tgaaggtgaa gaaggacagc 600tcgccggcgg acatcctgga tgagctcacc gagctaacag agctggccaa gagcgtcacc 660aagaatgatg ttgatggctt cgagttctac ctcaacacct tccatgatgt gatggtgggc 720aacaacctct tcggccgctc ggcgctcaag acggcgtcgg agctgatcgc caaggagaat 780gtcaagacaa gtggatcaga ggtgggcaat gtctacaact tcctcatcgt gctgacggcg 840ctgcaagcca aggccttcct caccttgaca acctgccgca agttgctggg cctctccgac 900atcgactaca cctccatcat gaatgagcac ctcaacaatg agaagaatga gttcagagac 960aacatcctgc cggcgctgag caacaagttc agcaacccaa gctacgccaa gaccatcggc 1020tcagacaact acgccaaggt gatcctggag agcgagcctg gctacgcgct ggtgggcttc 1080gagatcatca atgatccaat tcctgttctc aaggcctaca aggccaagct gaagcagaac 1140taccaggtgg acaaccagag cttgagcgag atcgtctacc tggacatcga caagctcttc 1200tgcccggaga actcagagca gaagtactac accaagaacc tcaccttccc tgatggatat 1260gtcatcacca agatcacctt cgagaagaag ctgaacaacc tcatctacga ggccaccgcc 1320aacttctatg atccatcaac aggagacatc gacctcaaca agaagcaagt ggagagcacc 1380ttccctcaaa cagactacat caccatggac attggagatg atgatggcat ctacatgccg 1440ctcggcgtca tctcagaaac cttcttgacg cccatcaaca gcttcggcct ggaggtggac 1500gccaagagca agaccttgac gctcaagtgc aagagctacc tcagggagta cctgctggag 1560agtgatttga agaacaagga gacagggctg atcgcgccgc caaatgtgtt catcagcaat 1620gtggtgaaga actgggacat cgaggaggat tcattggagc catgggtggc caacaacaag 1680aatgcttatg tggacaacac cggcggcatt gaaagaagca aggcgctctt cacccaagga 1740gatggagagt tcagccagtt catcggcgac aagctaaagc ccaacaccga ctacatcatc 1800cagtacaccg tcaagggcaa gccggccatc tacctcaaga acaagagcac cggctacatc 1860acctacgagg acaccaatgg aaattctgag gagttccaaa caattgctgt gaagttcacc 1920tcagaaacag atttgagcca gacccacctg gtgttcaaga gccaaaatgg atatgaagca 1980tggggagaca acttcatcat cctggaggcc aagctcttcg agacaccaga aagcccggag 2040ctcatcaagt tcaatgattg ggagaggttc ggcaccacct acatcaccgg caatgagctg 2100aggattgatc attcaagagg aggctacttc cgccaaagcc tcaacatcga cagctacagc 2160acctacgacc tcagcttcag cttcagcggc ctctgggcca aggtgattgt gaagaacagc 2220cgcggcgtgg tgctcttcga gaaggtgaag aacaatggaa gcagctatga ggacatctca 2280gagagcttca ccaccgccag caacaaggat ggcttcttca tcgagctcac cgccgagagg 2340acaagcagca ccttccacag cttcagagac atcagcatca aggagaagat tgaataa 2397252421DNAArtificialAxmi115 variant sequence (pAX6309) 25atggcacatc accaccacca tcacggatcc accatgaaca tgaacaacac caagctcaat 60gcaagggcgc tgccgagctt catcgactac ttcaatggca tctatggctt cgccaccggc 120atcaaggaca tcatgaacat gatcttcaag accgacaccg gcggcaacct caccttggat 180gagatcctca agaaccagca gctgctgaat gagatctcag gcaagctgga cggcgtcaat 240ggaagcctca acgacctcat tgctcaaggc aacctcaaca ccgagctgag caaggagatc 300ctcaagattg caaatgagca gaaccaggtg ctgaatgatg tcaacaacaa gctggacgcc 360atcaacacca tgctgcacat ctacctgcca aagatcacct caatgctctc tgatgtgatg 420aagcagaact acgcgctgag cctccagatt gagtacctct caaagcagct gcaagagatc 480tccgacaagc tggacatcat caatgtcaat gtgctcatca acagcacctt gacagagatc 540acgccggcct accagaggat caagtatgtc aatgagaagt ttgaggagct caccttcgcc 600accgagacaa cattgaaggt gaagaaggac agctcgccgg cggacatcct ggatgagctc 660accgagctaa cagagctggc caagagcgtc accaagaatg atgttgatgg cttcgagttc 720tacctcaaca ccttccatga tgtgatggtg ggcaacaacc tcttcggccg ctcggcgctc 780aagacggcgt cggagctgat cgccaaggag aatgtcaaga caagtggatc agaggtgggc 840aatgtctaca acttcctcat cgtgctgacg gcgctgcaag ccaaggcctt cctcaccttg 900acaacctgcc gcaagttgct gggcctcgcc gacatcgact acacctccat catgaatgag 960cacctcaaca aggagaagga ggagttccgc gtcaacatcc tgccaacatt gagcaacacc 1020ttcagcaacc ccaactacgc caaggtgaag ggctcagatg aagatgccaa gatgattgtg 1080gaggccaagc ctggccatgc tctggtgggc ttcgagatga gcaacgacag catcaccgtg 1140ctgaaggtct acgaggccaa gctgaagcag aactaccagg tggacaagga cagcttgtct 1200gaggtgatct acggcgacat ggacaagctg ctatgtccag atcaaagcga gcagatctac 1260tacaccaaca acatcgtctt tccaaatgaa tatgtcatca ccaagatcga cttcaccaag 1320aagatgaaaa cattgagata tgaggtgacg gccaacagct acgacagcag caccggcgag 1380atcgacctca acaagaagaa ggtggagagc tcagaagctg agtacaggac gctctccgcc 1440aaggatgatg gcgtctacat gccgctcggc gtcatctcag aaaccttctt gacgcccatc 1500aatggcttcg gcctccaagc tgatgagaac agcaggctca tcaccttgac ctgcaagagc 1560tacctcaggg agctgctgct ggccaccgac ctcagcaaca aggagacaaa gctcatcgtg 1620ccgccatcag gcttcatcag caacatcgtg gagaatggca acctggaagg agagaacctg 1680gagccatgga tagccaacaa caagaatgct tatgttgatc acaccggcgg cgtcaatgga 1740acaagggcgc tctatgttca caaggatgga ggcttcagcc agttcatcgg cgacaagctg 1800aagcccaaga cagaatatgt catccagtac accgtcaagg gcaagccggc catctacctc 1860aagaacaaga gcaccggcta catcacctac gaggacacca atggaaattc tgaggagttc 1920caaacaattg ctgtgaagtt cacctcagaa acagatttga gccagaccca cctggtgttc 1980aagagccaaa atggatatga agcatgggga gacaacttca tcatcctgga ggccaagctc 2040ttcgagacac cagaaagccc ggagctcatc aagttcaatg attgggagag gttcggcacc 2100acctacatca ccggcaatga gctgaggatt gatcattcaa gaggaggcta cttccgccaa 2160agcctcaaca tcgacagcta cagcacctac gacctcagct tcagcttcag cggcctctgg 2220gccaaggtga ttgtgaagaa cagccgcggc gtggtgctct tcgagaaggt gaagaacaat 2280ggaagcagct atgaggacat ctcagagagc ttcaccaccg ccagcaacaa ggatggcttc 2340ttcatcgagc tcaccgccga gaggacaagc agcaccttcc acagcttcag agacatcagc 2400atcaaggaga agattgaata a 2421262412DNAArtificialAxmi115 variant sequence (Axmi115v02(evo27)) 26atgaacatga acaacaccaa gctcaatgca agggcgctgc cgagcttcat cgactacttc 60aatggcatct atggcttcgc caccggcatc aaggacatca tgaacatgat cttcaagacc 120gacaccggcg gcaacctcac cttggatgag atcctcaaga accagcagct gctgaatgag 180atctcaggca agctggacgg cgtcaatgga agcctcaacg acctcattgc tcaaggcaac 240ctcaacaccg agctgagcaa ggagatcctc aagattgcaa atgagcagaa ccaggtgctg 300aatgatgtca acaacaagct ggacgccatc aacaccatgc tgcacatcta cctgccaaag 360atcacctcaa tgctctctga tgtgatgaag cagaactacg cgctgagcct ccagattgag 420tacctctcaa agcagctgca agagatctcc gacaagctgg acatcatcaa tgtcaatgtg 480ctcatcaaca gcaccttgac agagatcacg ccggcctacc agaggatcaa gtatgtcaat 540gagaagttcg acaagctcac cttcgccacc gagagcaccc tccgcgccaa gcaaggcatc 600ttcaatgaag attcatttga caacaacacc ttggagaact tgacagacct cgccgagctg 660gccaagagca tcaccaagaa tgatgtggac agcttcgagt tctacctcca caccttccat 720gatgtgctca tcggcaacaa cctctttgga agaagcgcgc tcaagacggc atcagagctc 780atcaccaagg atgagatcaa gacaagcggc agcgagatcg gcaaggtcta cagcttcctc 840atcgtgctga catcattgca agccaaggcc ttcctcacct tgacaacctg ccgcaagttg 900ctgggcctct ccgacatcga ctacacctcc atcatgaatg agcacctcaa caatgagaag 960aatgagttca gagacaacat cctgccggcg ctgagcaaca agttcagcaa cccaagctac 1020gccaagacca tcggctcaga caactacgcc aaggtgatcc tggagagcga gcctggctac 1080gcgctggtgg gcttcgagat catcaatgat ccaattcctg ttctcaaggc ctacaaggcc 1140aagctgaagc agaactacca ggtggacaac cagagcttga gcgagatcgt ctacctggac

1200atcgacaagc tcttctgccc ggagaactca gagcagaagt actacaccaa gaacctcacc 1260ttccctgatg gatatgtcat caccaagatc accttcgaga agaagctgaa caacctcatc 1320tacgaggcca ccgccaactt ctatgatcca tcaacaggag acatcgacct caacaagaag 1380caagtggaga gcaccttccc tcaaacagac tacatcacca tggacattgg agatgatgat 1440ggcatctaca tgccgctcgg cgtcatctca gaaaccttct tgacgcccat caacagcttc 1500ggcctggagg tggacgccaa gagcaagacc ttgacgctca agtgcaagag ctacctcagg 1560gagtacctgc tggagagtga tttgaagaac aaggagacag ggctgatcgc gccgccaaat 1620gtgttcatca gcaatgtggt gaagaactgg gacatcgagg aggattcatt ggagccatgg 1680gtggccaaca acaagaatgc ttatgtggac aacaccggcg gcattgaaag aagcaaggcg 1740ctcttcaccc aaggagatgg aaagttcagc cagttcatcg gcgacaagct aaagcccaac 1800accgactaca tcatccagta caccgtcaag ggcaagccgg ccatctacct caagaacaag 1860agcaccggct acatcaccta cgaggacacc aatggaaatt ctgaggagtt ccaaacaatt 1920gctgtgaagt tcacctcaga aacagatttg agccagaccc acctggtgtt caagagccaa 1980aatggatatg aagcatgggg agacaacttc atcatcctgg aggccaagct cttcgagaca 2040ccagaaagcc cggagctcat caagttcaat gattgggaga ggttcggcac cacctacatc 2100accggcaatg agctgaggat tgatcattca agaggaggct acttccgcca aagcctcaac 2160atcgacagct acagcaccta cgacctcagc ttcagcttca gcggcctctg ggccaaggtg 2220attgtgaaga acagccgcgg cgtggtgctc ttcgagaagg tgaagaacaa tggaagcagc 2280tatgaggaca tctcagagag cttcaccacc gccagcaaca aggatggctt cttcatcgag 2340ctcaccgccg agaggacaag cagcaccttc cacagcttca gagacatcag catcaaggag 2400aagattgaat aa 2412272412DNAArtificialAxmi115 variant sequence (Axmi115v02(evo28)) 27atgaacatga acaacaccaa gctcaatgca agggcgctgc cgagcttcat cgactacttc 60aatggcatct atggcttcgc caccggcatc aaggacatca tgaacatgat cttcaagacc 120gacaccggcg gcaacctcac cttggatgag atcctcaaga accagcagct gctgaatgag 180atctcaggca agctggacgg cgtcaatgga agcctcaacg acctcattgc tcaaggcaac 240ctcaacaccg agctgagcaa ggagatcctc aagattgcaa atgagcagaa ccaggtgctg 300aatgatgtca acaacaagct ggacgccatc aacaccatgc tgcacatcta cctgccaaag 360atcacctcaa tgctctctga tgtgatgaag cagaactacg cgctgagcct ccagattgag 420tacctctcaa agcagctgca agagatctcc gacaagctgg acatcatcaa tgtcaatgtg 480ctcatcaaca gcaccttgac agagatcacg ccggcctacc agaggatcaa gtatgtcaat 540gagaagttcg acaagctcac cttcgccacc gagagcaccc tccgcgccaa gcaaggcatc 600ttcaatgaag attcatttga caacaacacc ttggagaact tgacagacct cgccgagctg 660gccaagagca tcaccaagaa tgatgtggac agcttcgagt tctacctcca caccttccat 720gatgtgctca tcggcaacaa cctctttgga agaagcgcgc tcaagacggc atcagagctc 780atcaccaagg atgagatcaa gacaagcggc agcgagatcg gcaaggtcta cagcttcctc 840atcgtgctga catcattgca agccaaggcc ttcctcacct tgacaacctg ccgcaagttg 900ctgggcctct ccgacatcga ctacacctcc atcatgaatg agcacctcaa caatgagaag 960aatgagttca gagacaacat cctgccggcg ctgagcaaca agttcagcaa cccaagctac 1020gccaagacca tcggctcaga caactacgcc aaggtgatcc tggagagcga gcctggctac 1080gcgctggtgg gcttcgagat catcaatgat ccaattcctg ttctcaaggc ctacaaggcc 1140aagctgaagc agaactacca ggtggacaac cagagcttga gcgagatcgt ctacctggac 1200atcgacaagc tcttctgccc ggagaactca gagcagaagt actacaccaa gaacctcacc 1260ttccctgatg gatatgtcat caccaagatc accttcgaga agaagctgaa caacctcatc 1320tacgaggcca ccgccaactt ctatgatcca tcaacaggag acatcgacct caacaagaag 1380caagtggaga gcaccttccc tcaaacagac tacatcacca tggacattgg agatgatgat 1440ggcatctaca tgccgctcgg cgtcatctca gaaaccttct tgacgcccat caacagcttc 1500ggcctggagg tggacgccaa gagcaagacc ttgacgctca agtgcaagag ctacctcagg 1560gagtacctgc tggagagtga tttgaagaac aaggagacag ggctgatcgc gccgccaaat 1620gtgttcatca gcaatgtggt gaagaactgg gacatcgagg aggattcatt ggagccatgg 1680gtggccaaca acaagaatgc ttatgtggac aacaccggcg gcattgaaag aagcaaggcg 1740ctcttcaccc aaggagatgg agagttcagc cagttcatcg gcgacaagct aaagcccaac 1800accgactaca tcatccagta caccgtcaag ggcaagccgg ccatctacct caagaacaag 1860agcaccggct acatcaccta cgaggacacc aatggaaatt ctgaggagtt ccaaacaatt 1920gctgtgaagt tcacctcaga aacagatttg agccagaccc acctggtgtt caagagccaa 1980aatggatatg aagcatgggg agacaacttc atcatcctgg aggccaagct cttcgagaca 2040ccagaaagcc cggagctcat caagttcaat gattgggaga ggttcggcac cacctacatc 2100accggcaatg agctgaggat tgatcattca agaggaggct acttccgcca aagcctcaac 2160atcgacagct acagcaccta cgacctcagc ttcagcttca gcggcctctg ggccaaggtg 2220attgtgaaga acagccgcgg cgtggtgctc ttcgagaagg tgaagaacaa tggaagcagc 2280tatgaggaca tctcagagag cttcaccacc atgagcaaca aggatggctt cttcatcgag 2340ctcaccgccg agaggacaag cagcaccttc cacagcttca gagacatcag catcaaggag 2400aagattgaat aa 2412282412DNAArtificialAxmi115 variant sequence (Axmi115v02(evo29)) 28atgaacatga acaacaccaa gctcaatgca agggcgctgc cgagcttcat cgactacttc 60aatggcatct atggcttcgc caccggcatc aaggacatca tgaacatgat cttcaagacc 120gacaccggcg gcaacctcac cttggatgag atcctcaaga accagcagct gctgaatgag 180atctcaggca agctggacgg cgtcaatgga agcctcaacg acctcattgc tcaaggcaac 240ctcaacaccg agctgagcaa ggagatcctc aagattgcaa atgagcagaa ccaggtgctg 300aatgatgtca acaacaagct ggacgccatc aacaccatgc tgcacatcta cctgccaaag 360atcacctcaa tgctctctga tgtgatgaag cagaactacg cgctgagcct ccagattgag 420tacctctcaa agcagctgca agagatctcc gacaagctgg acatcatcaa tgtcaatgtg 480ctcatcaaca gcaccttgac agagatcacg ccggcctacc agaggatcaa gtatgtcaat 540gagaagttcg acaagctcac cttcgccacc gagagcaccc tccgcgccaa gcaaggcatc 600ttcaatgaag attcatttga caacaacacc ttggagaact tgacagacct cgccgagctg 660gccaagagca tcaccaagaa tgatgtggac agcttcgagt tctacctcca caccttccat 720gatgtgctca tcggcaacaa cctctttgga agaagcgcgc tcaagacggc atcagagctc 780atcaccaagg atgagatcaa gacaagcggc agcgagatcg gcaaggtcta cagcttcctc 840atcgtgctga catcattgca agccaaggcc ttcctcacct tgacaacctg ccgcaagttg 900ctgggcctct ccgacatcga ctacacctcc atcatgaatg agcacctcaa caatgagaag 960aatgagttca gagacaacat cctgccggcg ctgagcaaca agttcagcaa cccaagctac 1020gccaagacca tcggctcaga caactacgcc aaggtgatcc tggagagcga gcctggctac 1080gcgctggtgg gcttcgagat catcaatgat ccaattcctg ttctcaaggc ctacaaggcc 1140aagctgaagc agaactacca ggtggacaac cagagcttga gcgagatcgt ctacctggac 1200atcgacaagc tcttctgccc ggagaactca gagcagaagt actacaccaa gaacctcacc 1260ttccctgatg gatatgtcat caccaagatc accttcgaga agaagctgaa caacctcatc 1320tacgaggcca ccgccaactt ctatgatcca tcaacaggag acatcgacct caacaagaag 1380caagtggaga gcaccttccc tcaaacagac tacatcacca tggacattgg agatgatgat 1440ggcatctaca tgccgctcgg cgtcatctca gaaaccttct tgacgcccat caacagcttc 1500ggcctggagg tggacgccaa gagcaagacc ttgacgctca agtgcaagag ctacctcagg 1560gagtacctgc tggagagtga tttgaagaac aaggagacag ggctgatcgc gccgccaaat 1620gtgttcatca gcaatgtggt gaagaactgg gacatcgagg aggattcatt ggagccatgg 1680gtggccaaca acaagaatgc ttatgtggac aacaccggcg gcattgaaag aagcaaggcg 1740ctcttcaccg taggagatgg agagttcagc cagttcatcg gcgacaagct aaagcccaac 1800accgactaca tcatccagta caccgtcaag ggcaagccgg ccatctacct caagaacaag 1860agcaccggct acatcaccta cgaggacacc aatggaaatt ctgaggagtt ccaaacaatt 1920gctgtgaagt tcacctcaga aacagatttg agccagaccc acctggtgtt caagagccaa 1980aatggatatg aagcatgggg agacaacttc atcatcctgg aggccaagct cttcgagaca 2040ccagaaagcc cggagctcat caagttcaat gattgggaga ggttcggcac cacctacatc 2100accggcaatg agctgaggat tgatcattca agaggaggct acttccgcca aagcctcaac 2160atcgacagct acagcaccta cgacctcagc ttcagcttca gcggcctctg ggccaaggtg 2220attgtgaaga acagccgcgg cgtggtgctc ttcgagaagg tgaagaacaa tggaagcagc 2280tatgaggaca tctcagagag cttcaccacc gccagcaaca aggatggctt cttcatcgag 2340ctcaccgccg agaggacaag cagcaccttc cacagcttca gagacatcag catcaaggag 2400aagattgaat aa 2412292409DNAArtificialAxmi115 variant sequence (Axmi115v02(evo31)) 29atgaacatga acaacaccaa gctcaatgca agggcgctgc cgagcttcat cgactacttc 60aatggcatct atggcttcgc caccggcatc aaggacatca tgaacatgat cttcaagacc 120gacaccggcg gcaacctcac cttggatgag atcctcaaga accagcagct gctgaatgag 180atctcaggca agctggacgg cgtcaatgga agcctcaacg acctcattgc tcaaggcaac 240ctcaacaccg agctgagcaa ggagatcctc aagattgcaa atgagcagaa ccaggtgctg 300aatgatgtca acaacaagct ggacgccatc aacaccatgc tgcacatcta cctgccaaag 360atcacctcaa tgctctctga tgtgatgaag cagaactacg cgctgagcct ccagattgag 420tacctctcaa agcagctgca agagatctcc gacaagctgg acatcatcaa tgtcaatgtg 480ctcatcaaca gcaccttgac agagatcacg ccggcctacc agaggatcaa gtatgtcaat 540gagaagttcg acaagctcac cttcgccacc gagagcaccc tccgcgccaa gcaaggcatc 600ttcaatgaag attcatttga caacaacacc ttggagaact tgacagacct cgccgagctg 660gccaagagca tcaccaagaa tgatgtggac agcttcgagt tctacctcca caccttccat 720gatgtgctca tcggcaacaa cctctttgga agaagcgcgc tcaagacggc atcagagctc 780atcaccaagg atgagatcaa gacaagcggc agcgagatcg gcaaggtcta cagcttcctc 840atcgtgctga catcattgca agccaaggcc ttcctcacct tgacaacctg ccgcaagttg 900ctgggcctct ccgacatcga ctacacctcc atcatgaatg agcacctcaa caatgagaag 960aatgagttca gagacaacat cctgccggcg ctgagcaaca agttcagcaa cccaagctac 1020gccaagacca tcggctcaga caactacgcc aaggtgatcc tggagagcga gcctggctac 1080gcgctggtgg gcttcgagat catcaatgat ccaattcctg ttctcaaggc ctacaaggcc 1140aagctgaagc agaactacca ggtggacaac cagagcttga gcgagatcgt ctacctggac 1200atcgacaagc tcttctgccc ggagaactca gagcagaagt actacaccaa gaacctcacc 1260ttccctgatg gatatgtcat caccaagatc accttcgaga agaagctgaa caacctcatc 1320tacgaggcca ccgccaactt ctatgatcca tcaacaggag acatcgacct caacaagaag 1380caagtggaga gcaccttccc tcaaacagac tacatcacca tggacattgg agatgatgat 1440ggcatctaca tgccgctcgg cgtcatctca gaaaccttct tgacgcccat caacagcttc 1500ggcctggagg tggacgccaa gagcaagacc ttgacgctca agtgcaagag ctacctcagg 1560gagtacctgc tggagagtga tttgaagaac aaggagacag ggctgatcgc gccgccaaat 1620gtgttcatca gcaatgtggt gaagaactgg gacatcgagg aggattcatt ggagccatgg 1680gtggccaaca acaagaatgc ttatgtggac aacaccggcg gcattgaaag aagcaaggcg 1740ctcttcaccc aaggagatgg agagttcagc cagttcatcg gcgacaagct aaagcccaac 1800accgactaca tcatccagta caccgtcaag ggcaagccgg ccatctacct caagaacaag 1860agcaccggct acatcaccta cgaggacacc aatggaaatt ctgaggagtt ccaaacaatt 1920gctgtgaagt tcacctcaga aacagatttg agccagaccc acctggtgtt caagagccaa 1980aatggatatg aagcatgggg agacaacttc atcatcctgg aggccaagct cttcgagaca 2040ccagaaagcc cggagctcat caagttcaat gattgggaga ggttcggcac cacctacatc 2100accggcaatg agctgaggat tgatcattca agaggaggct acttccgcca aagcctcaac 2160atcgacagct acagcaccta cgacctcagc ttcagcttca gcggcctctg ggccaaggtg 2220attgtgaaga acagccgcgg cgtggtgctc ttcgagaagg tgaagaacaa tggaagcagc 2280tatgaggaca tctcagagga cttcaccacc aatggcttta aggatggctt ctatatcgag 2340ctcaccgccg agaggacaag cagcaccttc cacagcttca gagacatcag catcaaggag 2400aagattgaa 2409302409DNAArtificialAxmi115 variant sequence (Axmi115v02(evo32)) 30atgaacatga acaacaccaa gctcaatgca agggcgctgc cgagcttcat cgactacttc 60aatggcatct atggcttcgc caccggcatc aaggacatca tgaacatgat cttcaagacc 120gacaccggcg gcaacctcac cttggatgag atcctcaaga accagcagct gctgaatgag 180atctcaggca agctggacgg cgtcaatgga agcctcaacg acctcattgc tcaaggcaac 240ctcaacaccg agctgagcaa ggagatcctc aagattgcaa atgagcagaa ccaggtgctg 300aatgatgtca acaacaagct ggacgccatc aacaccatgc tgcacatcta cctgccaaag 360atcacctcaa tgctctctga tgtgatgaag cagaactacg cgctgagcct ccagattgag 420tacctctcaa agcagctgca agagatctcc gacaagctgg acatcatcaa tgtcaatgtg 480ctcatcaaca gcaccttgac agagatcacg ccggcctacc agaggatcaa gtatgtcaat 540gagaagttcg acaagctcac cttcgccacc gagagcaccc tccgcgccaa gcaaggcatc 600ttcaatgaag attcatttga caacaacacc ttggagaact tgacagacct cgccgagctg 660gccaagagca tcaccaagaa tgatgtggac agcttcgagt tctacctcca caccttccat 720gatgtgctca tcggcaacaa cctctttgga agaagcgcgc tcaagacggc atcagagctc 780atcaccaagg atgagatcaa gacaagcggc agcgagatcg gcaaggtcta cagcttcctc 840atcgtgctga catcattgca agccaaggcc ttcctcacct tgacaacctg ccgcaagttg 900ctgggcctct ccgacatcga ctacacctcc atcatgaatg agcacctcaa caatgagaag 960aatgagttca gagacaacat cctgccggcg ctgagcaaca agttcagcaa cccaagctac 1020gccaagacca tcggctcaga caactacgcc aaggtgatcc tggagagcga gcctggctac 1080gcgctggtgg gcttcgagat catcaatgat ccaattcctg ttctcaaggc ctacaaggcc 1140aagctgaagc agaactacca ggtggacaac cagagcttga gcgagatcgt ctacctggac 1200atcgacaagc tcttctgccc ggagaactca gagcagaagt actacaccaa gaacctcacc 1260ttccctgatg gatatgtcat caccaagatc accttcgaga agaagctgaa caacctcatc 1320tacgaggcca ccgccaactt ctatgatcca tcaacaggag acatcgacct caacaagaag 1380caagtggaga gcaccttccc tcaaacagac tacatcacca tggacattgg agatgatgat 1440ggcatctaca tgccgctcgg cgtcatctca gaaaccttct tgacgcccat caacagcttc 1500ggcctggagg tggacgccaa gagcaagacc ttgacgctca agtgcaagag ctacctcagg 1560gagtacctgc tggagagtga tttgaagaac aaggagacag ggctgatcgc gccgccaaat 1620gtgttcatca gcaatgtggt gaagaactgg gacatcgagg aggattcatt ggagccatgg 1680gtggccaaca acaagaatgc ttatgtggac aacaccggcg gcattgaaag aagcaaggcg 1740ctcttcaccc aaggagatgg agagttcagc cagttcatcg gcgacaagct aaagcccaac 1800accgactaca tcatccagta caccgtcaag ggcaagccgg ccatctacct caagaacaag 1860agcaccggct acatcaccta cgaggacacc aatggaaatt ctgaggagtt ccaaacaatt 1920gctgtgaagt tcacctcaga aacagatttg agccagaccc acctggtgtt caagagccaa 1980aatggatatg aagcatgggg agacaacttc atcatcctgg aggccaagct cttcgagaca 2040ccagaaagcc cggagctcat caagttcaat gattgggaga ggttcggcac cacctacatc 2100accggcaatg agctgaggat tgatcattca agaggaggct acttccgcca aagcctcaac 2160atcgacagct acagcaccta cgacctcagc ttcagcttca gcggcctctg ggccaaggtg 2220attgtgaaga acagccgcgg cgtggtgctc ttcgagaagg tgaagaacaa tggaagcagc 2280tatgaggaca tctcagagca cttcaccacc tggggctata aggatggctt ctttatcgag 2340ctcaccgccg agaggacaag cagcaccttc cacagcttca gagacatcag catcaaggag 2400aagattgaa 2409312412DNAArtificialAxmi115 variant sequence (Axmi115_Block2_L11C7) 31atgaacatga acaacaccaa gctcaatgca agggcgctgc cgagcttcat cgactacttc 60aatggcatct atggcttcgc caccggcatc aaggacatca tgaacatgat cttcaagacc 120gacaccggcg gcgacctcac cttggatgag atcctcaaga accagcagct gctgaatgag 180atctcaggca agctggacgg cgtcaatgga agcctcaacg acctcattgc tcaaggcaac 240ctcaacaccg agctgagcaa ggagatcctc aagattgcaa atgagcagaa ccaggtgctg 300aatgatgtca acaacaagct ggacgccatc aacaccatgc tcaacatcta cctgccaaag 360atcacctcaa tgctctctga tgtgatgaag cagaactacg cgctgagcct ccagattgag 420tacctctcaa ggcagctgca agagatctcc gacaagctgg atgtcatcaa cctcaatgtg 480ctcatcaaca gcaccttgac agagatcacg ccaagctacc agaggatcaa gtatgtcaat 540gagaagttcg acaagctcac cttcgccacc gagagcaccc tccgcgccaa gcaaggcatc 600ttcaatgaag attcatttga caacaacacc ttggagaact tgacagacct cgccgagctg 660gccaagagca tcaccaagaa tgatgtggac agcttcgagt tctacctcca caccttccat 720gatgtgctca tcggcaacaa cctctttgga agaagcgcgc tcaagacggc atcagagctc 780atcaccaagg atgagatcaa gacaagcggc agcgagatcg gcaaggtcta cagcttcctc 840atcgtgctga catcattgca agccaaggcc ttcctcacct tgacaacctg ccgcaagttg 900ctgggcctct ccgacatcga ctacacctcc atcatgaatg agcacctcaa caatgagaag 960aatgagttca gagacaacat cctgccggcg ctgagcaaca agttcagcaa cccaagctac 1020gccaagacca tcggctcaga caactacgcc aaggtgatcc tggagagcga gcctggctac 1080gcgctggtgg gcttcgagat catcaatgat ccaattcctg ttctcaaggc ctacaaggcc 1140aagctgaagc agaactacca ggtggacaac cagagcttga gcgagatcgt ctacctggac 1200atcgacaagc tcttctgccc ggagaactca gagcagaagt actacaccaa gaacctcacc 1260ttccctgatg gatatgtcat caccaagatc accttcgaga agaagctgaa caacctcatc 1320tacgaggcca ccgccaactt ctatgatcca tcaacaggag acatcgacct caacaagaag 1380caagtggaga gcaccttccc tcaaacagac tacatcacca tggacattgg agatgatgat 1440ggcatctaca tgccgctcgg cgtcatctca gaaaccttct tgacgcccat caacagcttc 1500ggcctggagg tggacgccaa gagcaagacc ttgacgctca agtgcaagag ctacctcagg 1560gagtacctgc tggagagtga tttgaagaac aaggagacag ggctgatcgc gccgccaaat 1620gtgttcatca gcaatgtggt gaagaactgg gacatcgagg aggattcatt ggagccatgg 1680gtggccaaca acaagaatgc ttatgtggac aacaccggcg gcattgaaag aagcaaggcg 1740ctcttcgtcc aaggagatgg agagttcagc cagttcatcg gcgacaagct aaagcccaac 1800accgactaca tcatccagta caccgtcaag ggcaagccgg ccatctacct caagaacaag 1860agcaccggct acatcaccta cgaggacacc aatggaaatt ctgaggagtt ccaaacaatt 1920gctgtgaagt tcacctcaga aacagatttg agccagaccc acctggtgtt caagagccaa 1980aatggatatg aagcatgggg agacaacttc atcatcctgg aggccaagct cttcgagaca 2040ccagaaagcc cggagctcat caagttcaat gattgggaga ggttcggcac cacctacatc 2100accggcaatg agctgaggat tgatcattca agaggaggct acttccgcca aagcctcaac 2160atcgacagct acagcaccta cgacctcagc ttcagcttca gcggcctctg ggccaaggtg 2220attgtgaaga acagccgcgg cgtggtgctc ttcgagaagg tgaagaacaa tggaagcagc 2280tatgaggaca tctcagagag cttcaccacc gccagcaaca aggatggctt cttcatcgag 2340ctcaccgccg agaggacaag cagcaccttc cacagcttca gagacatcag catcaaggag 2400aagattgaat aa 2412322412DNAArtificialAxmi115 variant sequence (Axmi115_Block2_L11H7) 32atgaacatga acaacaccaa gctcaatgca agggcgctgc cgagcttcat cgactacttc 60aatggcatct atggcttcgc caccggcatc aaggacatca tgaacatgat cttcaagacc 120gacaccggcg gcgacctcac cttggatgag atcctcaaga accagcagct gctgaatgag 180atctcaggca agctggacgg cgtcaatgga agcctcaacg acctcattgc tcaaggcaac 240ctcaacaccg agctgagcaa ggagatcctc aagattgcaa atgagcagaa ccaggtgctg 300aatgatgtca acaacaagct ggacgccatc aacaccatgc tcaacatcta cctgccaaag 360atcacctcaa tgctctctga tgtgatgaag cagaactacg cgctgagcct ccagattgag 420tacctctcaa ggcagctgca agagatctcc gacaagctgg atgtcatcaa cctcaatgtg 480ctcatcaaca gcaccttgac agagatcacg ccaagctacc agaggatcaa gtatgtcaat 540gagaagttcg acaagctcac cttcgccacc gagagcaccc tccgcgccaa gcaaggcatc 600ttcaatgaag attcatttga caacaacacc ttggagaact tgacagacct cgccgagctg 660gccaagagca tcaccaagaa tgatgtggac agcttcgagt tctacctcca caccttccat 720gatgtgctca tcggcaacaa cctctttgga agaagcgcgc tcaagacggc atcagagctc 780atcaccaagg atgagatcaa gacaagcggc agcgagatcg gcaaggtcta cagcttcctc 840atcgtgctga catcattgca agccaaggcc ttcctcacct tgacaacctg ccgcaagttg 900ctgggcctct ccgacatcga ctacacctcc atcatgaatg agcacctcaa caatgagaag 960aatgagttca gagacaacat cctgccggcg ctgagcaaca agttcagcaa cccaagctac 1020gccaagacca tcggctcaga caactacgcc aaggtgatcc tggagagcga gcctggctac 1080gcgctggtgg gcttcgagat catcaatgat ccaattcctg ttctcaaggc ctacaaggcc

1140aagctgaagc agaactacca ggtggacaac cagagcttga gcgagatcgt ctacctggac 1200atcgacaagc tcttctgccc ggagaactca gagcagaagt actacaccaa gaacctcacc 1260ttccctgatg gatatgtcat caccaagatc accttcgaga agaagctgaa caacctcatc 1320tacgaggcca ccgccaactt ctatgatcca tcaacaggag acatcgacct caacaagaag 1380caagtggaga gcaccttccc tcaaacagac tacatcacca tggacattgg agatgatgat 1440ggcatctaca tgccgctcgg cgtcatctca gaaaccttct tgacgcccat caacagcttc 1500ggcctggagg tggacgccaa gagcaagacc ttgacgctca agtgcaagag ctacctcagg 1560gagtacctgc tggagagtga tttgaagaac aaggagacag ggctgatcgc gccgccaaat 1620gtgttcatca gcaatgtggt gaagaactgg gacatcgagg aggattcatt ggagccatgg 1680gtggccaaca acaagaatgc ttatgtggac aacaccggcg gcattgaaag aagcaaggcg 1740ctcttcaccc ttggagatgg agagttcagc cagttcatcg gcgacaagct aaagcccaac 1800accgactaca tcatccagta caccgtcaag ggcaagccgg ccatctacct caagaacaag 1860agcaccggct acatcaccta cgaggacacc aatggaaatt ctgaggagtt ccaaacaatt 1920gctgtgaagt tcacctcaga aacagatttg agccagaccc acctggtgtt caagagccaa 1980aatggatatg aagcatgggg agacaacttc atcatcctgg aggccaagct cttcgagaca 2040ccagaaagcc cggagctcat caagttcaat gattgggaga ggttcggcac cacctacatc 2100accggcaatg agctgaggat tgatcattca agaggaggct acttccgcca aagcctcaac 2160atcgacagct acagcaccta cgacctcagc ttcagcttca gcggcctctg ggccaaggtg 2220attgtgaaga acagccgcgg cgtggtgctc ttcgagaagg tgaagaacaa tggaagcagc 2280tatgaggaca tctcagagag cttcaccacc gccagcaaca aggatggctt cttcatcgag 2340ctcaccgccg agaggacaag cagcaccttc cacagcttca gagacatcag catcaaggag 2400aagattgaat aa 2412332412DNAArtificialAxmi115 variant sequence (Axmi115_Block2_L11A9) 33atgaacatga acaacaccaa gctcaatgca agggcgctgc cgagcttcat cgactacttc 60aatggcatct atggcttcgc caccggcatc aaggacatca tgaacatgat cttcaagacc 120gacaccggcg gcgacctcac cttggatgag atcctcaaga accagcagct gctgaatgag 180atctcaggca agctggacgg cgtcaatgga agcctcaacg acctcattgc tcaaggcaac 240ctcaacaccg agctgagcaa ggagatcctc aagattgcaa atgagcagaa ccaggtgctg 300aatgatgtca acaacaagct ggacgccatc aacaccatgc tcaacatcta cctgccaaag 360atcacctcaa tgctctctga tgtgatgaag cagaactacg cgctgagcct ccagattgag 420tacctctcaa ggcagctgca agagatctcc gacaagctgg atgtcatcaa cctcaatgtg 480ctcatcaaca gcaccttgac agagatcacg ccaagctacc agaggatcaa gtatgtcaat 540gagaagttcg acaagctcac cttcgccacc gagagcaccc tccgcgccaa gcaaggcatc 600ttcaatgaag attcatttga caacaacacc ttggagaact tgacagacct cgccgagctg 660gccaagagca tcaccaagaa tgatgtggac agcttcgagt tctacctcca caccttccat 720gatgtgctca tcggcaacaa cctctttgga agaagcgcgc tcaagacggc atcagagctc 780atcaccaagg atgagatcaa gacaagcggc agcgagatcg gcaaggtcta cagcttcctc 840atcgtgctga catcattgca agccaaggcc ttcctcacct tgacaacctg ccgcaagttg 900ctgggcctct ccgacatcga ctacacctcc atcatgaatg agcacctcaa caatgagaag 960aatgagttca gagacaacat cctgccggcg ctgagcaaca agttcagcaa cccaagctac 1020gccaagacca tcggctcaga caactacgcc aaggtgatcc tggagagcga gcctggctac 1080gcgctggtgg gcttcgagat catcaatgat ccaattcctg ttctcaaggc ctacaaggcc 1140aagctgaagc agaactacca ggtggacaac cagagcttga gcgagatcgt ctacctggac 1200atcgacaagc tcttctgccc ggagaactca gagcagaagt actacaccaa gaacctcacc 1260ttccctgatg gatatgtcat caccaagatc accttcgaga agaagctgaa caacctcatc 1320tacgaggcca ccgccaactt ctatgatcca tcaacaggag acatcgacct caacaagaag 1380caagtggaga gcaccttccc tcaaacagac tacatcacca tggacattgg agatgatgat 1440ggcatctaca tgccgctcgg cgtcatctca gaaaccttct tgacgcccat caacagcttc 1500ggcctggagg tggacgccaa gagcaagacc ttgacgctca agtgcaagag ctacctcagg 1560gagtacctgc tggagagtga tttgaagaac aaggagacag ggctgatcgc gccgccaaat 1620gtgttcatca gcaatgtggt gaagaactgg gacatcgagg aggattcatt ggagccatgg 1680gtggccaaca acaagaatgc ttatgtggac aacaccggcg gcattgaaag aagcaaggcg 1740ctcttcacca aaggagatgg agagttcagc cagttcatcg gcgacaagct aaagcccaac 1800accgactaca tcatccagta caccgtcaag ggcaagccgg ccatctacct caagaacaag 1860agcaccggct acatcaccta cgaggacacc aatggaaatt ctgaggagtt ccaaacaatt 1920gctgtgaagt tcacctcaga aacagatttg agccagaccc acctggtgtt caagagccaa 1980aatggatatg aagcatgggg agacaacttc atcatcctgg aggccaagct cttcgagaca 2040ccagaaagcc cggagctcat caagttcaat gattgggaga ggttcggcac cacctacatc 2100accggcaatg agctgaggat tgatcattca agaggaggct acttccgcca aagcctcaac 2160atcgacagct acagcaccta cgacctcagc ttcagcttca gcggcctctg ggccaaggtg 2220attgtgaaga acagccgcgg cgtggtgctc ttcgagaagg tgaagaacaa tggaagcagc 2280tatgaggaca tctcagagag cttcaccacc gccagcaaca aggatggctt cttcatcgag 2340ctcaccgccg agaggacaag cagcaccttc cacagcttca gagacatcag catcaaggag 2400aagattgaat aa 2412342412DNAArtificialAxmi115 variant sequence (Axmi115_Block2_L11G10) 34atgaacatga acaacaccaa gctcaatgca agggcgctgc cgagcttcat cgactacttc 60aatggcatct atggcttcgc caccggcatc aaggacatca tgaacatgat cttcaagacc 120gacaccggcg gcgacctcac cttggatgag atcctcaaga accagcagct gctgaatgag 180atctcaggca agctggacgg cgtcaatgga agcctcaacg acctcattgc tcaaggcaac 240ctcaacaccg agctgagcaa ggagatcctc aagattgcaa atgagcagaa ccaggtgctg 300aatgatgtca acaacaagct ggacgccatc aacaccatgc tcaacatcta cctgccaaag 360atcacctcaa tgctctctga tgtgatgaag cagaactacg cgctgagcct ccagattgag 420tacctctcaa ggcagctgca agagatctcc gacaagctgg atgtcatcaa cctcaatgtg 480ctcatcaaca gcaccttgac agagatcacg ccaagctacc agaggatcaa gtatgtcaat 540gagaagttcg acaagctcac cttcgccacc gagagcaccc tccgcgccaa gcaaggcatc 600ttcaatgaag attcatttga caacaacacc ttggagaact tgacagacct cgccgagctg 660gccaagagca tcaccaagaa tgatgtggac agcttcgagt tctacctcca caccttccat 720gatgtgctca tcggcaacaa cctctttgga agaagcgcgc tcaagacggc atcagagctc 780atcaccaagg atgagatcaa gacaagcggc agcgagatcg gcaaggtcta cagcttcctc 840atcgtgctga catcattgca agccaaggcc ttcctcacct tgacaacctg ccgcaagttg 900ctgggcctct ccgacatcga ctacacctcc atcatgaatg agcacctcaa caatgagaag 960aatgagttca gagacaacat cctgccggcg ctgagcaaca agttcagcaa cccaagctac 1020gccaagacca tcggctcaga caactacgcc aaggtgatcc tggagagcga gcctggctac 1080gcgctggtgg gcttcgagat catcaatgat ccaattcctg ttctcaaggc ctacaaggcc 1140aagctgaagc agaactacca ggtggacaac cagagcttga gcgagatcgt ctacctggac 1200atcgacaagc tcttctgccc ggagaactca gagcagaagt actacaccaa gaacctcacc 1260ttccctgatg gatatgtcat caccaagatc accttcgaga agaagctgaa caacctcatc 1320tacgaggcca ccgccaactt ctatgatcca tcaacaggag acatcgacct caacaagaag 1380caagtggaga gcaccttccc tcaaacagac tacatcacca tggacattgg agatgatgat 1440ggcatctaca tgccgctcgg cgtcatctca gaaaccttct tgacgcccat caacagcttc 1500ggcctggagg tggacgccaa gagcaagacc ttgacgctca agtgcaagag ctacctcagg 1560gagtacctgc tggagagtga tttgaagaac aaggagacag ggctgatcgc gccgccaaat 1620gtgttcatca gcaatgtggt gaagaactgg gacatcgagg aggattcatt ggagccatgg 1680gtggccaaca acaagaatgc ttatgtggac aacaccggcg gcattgaaag aagcaaggcg 1740ctcttcaccc aaagtgatgg agagttcagc cagttcatcg gcgacaagct aaagcccaac 1800accgactaca tcatccagta caccgtcaag ggcaagccgg ccatctacct caagaacaag 1860agcaccggct acatcaccta cgaggacacc aatggaaatt ctgaggagtt ccaaacaatt 1920gctgtgaagt tcacctcaga aacagatttg agccagaccc acctggtgtt caagagccaa 1980aatggatatg aagcatgggg agacaacttc atcatcctgg aggccaagct cttcgagaca 2040ccagaaagcc cggagctcat caagttcaat gattgggaga ggttcggcac cacctacatc 2100accggcaatg agctgaggat tgatcattca agaggaggct acttccgcca aagcctcaac 2160atcgacagct acagcaccta cgacctcagc ttcagcttca gcggcctctg ggccaaggtg 2220attgtgaaga acagccgcgg cgtggtgctc ttcgagaagg tgaagaacaa tggaagcagc 2280tatgaggaca tctcagagag cttcaccacc gccagcaaca aggatggctt cttcatcgag 2340ctcaccgccg agaggacaag cagcaccttc cacagcttca gagacatcag catcaaggag 2400aagattgaat aa 2412352412DNAArtificial sequenceAxmi115 variant sequence (Axmi115_Block2_L12C3) 35atgaacatga acaacaccaa gctcaatgca agggcgctgc cgagcttcat cgactacttc 60aatggcatct atggcttcgc caccggcatc aaggacatca tgaacatgat cttcaagacc 120gacaccggcg gcgacctcac cttggatgag atcctcaaga accagcagct gctgaatgag 180atctcaggca agctggacgg cgtcaatgga agcctcaacg acctcattgc tcaaggcaac 240ctcaacaccg agctgagcaa ggagatcctc aagattgcaa atgagcagaa ccaggtgctg 300aatgatgtca acaacaagct ggacgccatc aacaccatgc tcaacatcta cctgccaaag 360atcacctcaa tgctctctga tgtgatgaag cagaactacg cgctgagcct ccagattgag 420tacctctcaa ggcagctgca agagatctcc gacaagctgg atgtcatcaa cctcaatgtg 480ctcatcaaca gcaccttgac agagatcacg ccaagctacc agaggatcaa gtatgtcaat 540gagaagttcg acaagctcac cttcgccacc gagagcaccc tccgcgccaa gcaaggcatc 600ttcaatgaag attcatttga caacaacacc ttggagaact tgacagacct cgccgagctg 660gccaagagca tcaccaagaa tgatgtggac agcttcgagt tctacctcca caccttccat 720gatgtgctca tcggcaacaa cctctttgga agaagcgcgc tcaagacggc atcagagctc 780atcaccaagg atgagatcaa gacaagcggc agcgagatcg gcaaggtcta cagcttcctc 840atcgtgctga catcattgca agccaaggcc ttcctcacct tgacaacctg ccgcaagttg 900ctgggcctct ccgacatcga ctacacctcc atcatgaatg agcacctcaa caatgagaag 960aatgagttca gagacaacat cctgccggcg ctgagcaaca agttcagcaa cccaagctac 1020gccaagacca tcggctcaga caactacgcc aaggtgatcc tggagagcga gcctggctac 1080gcgctggtgg gcttcgagat catcaatgat ccaattcctg ttctcaaggc ctacaaggcc 1140aagctgaagc agaactacca ggtggacaac cagagcttga gcgagatcgt ctacctggac 1200atcgacaagc tcttctgccc ggagaactca gagcagaagt actacaccaa gaacctcacc 1260ttccctgatg gatatgtcat caccaagatc accttcgaga agaagctgaa caacctcatc 1320tacgaggcca ccgccaactt ctatgatcca tcaacaggag acatcgacct caacaagaag 1380caagtggaga gcaccttccc tcaaacagac tacatcacca tggacattgg agatgatgat 1440ggcatctaca tgccgctcgg cgtcatctca gaaaccttct tgacgcccat caacagcttc 1500ggcctggagg tggacgccaa gagcaagacc ttgacgctca agtgcaagag ctacctcagg 1560gagtacctgc tggagagtga tttgaagaac aaggagacag ggctgatcgc gccgccaaat 1620gtgttcatca gcaatgtggt gaagaactgg gacatcgagg aggattcatt ggagccatgg 1680gtggccaaca acaagaatgc ttatgtggac aacaccggcg gcattgaaag aagcaaggcg 1740ctcttcaccc aaggagatgg agttttcagc cagttcatcg gcgacaagct aaagcccaac 1800accgactaca tcatccagta caccgtcaag ggcaagccgg ccatctacct caagaacaag 1860agcaccggct acatcaccta cgaggacacc aatggaaatt ctgaggagtt ccaaacaatt 1920gctgtgaagt tcacctcaga aacagatttg agccagaccc acctggtgtt caagagccaa 1980aatggatatg aagcatgggg agacaacttc atcatcctgg aggccaagct cttcgagaca 2040ccagaaagcc cggagctcat caagttcaat gattgggaga ggttcggcac cacctacatc 2100accggcaatg agctgaggat tgatcattca agaggaggct acttccgcca aagcctcaac 2160atcgacagct acagcaccta cgacctcagc ttcagcttca gcggcctctg ggccaaggtg 2220attgtgaaga acagccgcgg cgtggtgctc ttcgagaagg tgaagaacaa tggaagcagc 2280tatgaggaca tctcagagag cttcaccacc gccagcaaca aggatggctt cttcatcgag 2340ctcaccgccg agaggacaag cagcaccttc cacagcttca gagacatcag catcaaggag 2400aagattgaat aa 2412362412DNAArtificial sequenceAxmi115 variant sequence (Axmi115_Block18_ L12A10) 36atgaacatga acaacaccaa gctcaatgca agggcgctgc cgagcttcat cgactacttc 60aatggcatct atggcttcgc caccggcatc aaggacatca tgaacatgat cttcaagacc 120gacaccggcg gcgacctcac cttggatgag atcctcaaga accagcagct gctgaatgag 180atctcaggca agctggacgg cgtcaatgga agcctcaacg acctcattgc tcaaggcaac 240ctcaacaccg agctgagcaa ggagatcctc aagattgcaa atgagcagaa ccaggtgctg 300aatgatgtca acaacaagct ggacgccatc aacaccatgc tcaacatcta cctgccaaag 360atcacctcaa tgctctctga tgtgatgaag cagaactacg cgctgagcct ccagattgag 420tacctctcaa ggcagctgca agagatctcc gacaagctgg atgtcatcaa cctcaatgtg 480ctcatcaaca gcaccttgac agagatcacg ccaagctacc agaggatcaa gtatgtcaat 540gagaagttcg acaagctcac cttcgccacc gagagcaccc tccgcgccaa gcaaggcatc 600ttcaatgaag attcatttga caacaacacc ttggagaact tgacagacct cgccgagctg 660gccaagagca tcaccaagaa tgatgtggac agcttcgagt tctacctcca caccttccat 720gatgtgctca tcggcaacaa cctctttgga agaagcgcgc tcaagacggc atcagagctc 780atcaccaagg atgagatcaa gacaagcggc agcgagatcg gcaaggtcta cagcttcctc 840atcgtgctga catcattgca agccaaggcc ttcctcacct tgacaacctg ccgcaagttg 900ctgggcctct ccgacatcga ctacacctcc atcatgaatg agcacctcaa caatgagaag 960aatgagttca gagacaacat cctgccggcg ctgagcaaca agttcagcaa cccaagctac 1020gccaagacca tcggctcaga caactacgcc aaggtgatcc tggagagcga gcctggctac 1080gcgctggtgg gcttcgagat catcaatgat ccaattcctg ttctcaaggc ctacaaggcc 1140aagctgaagc agaactacca ggtggacaac cagagcttga gcgagatcgt ctacctggac 1200atcgacaagc tcttctgccc ggagaactca gagcagaagt actacaccaa gaacctcacc 1260ttccctgatg gatatgtcat caccaagatc accttcgaga agaagctgaa caacctcatc 1320tacgaggcca ccgccaactt ctatgatcca tcaacaggag acatcgacct caacaagaag 1380caagtggaga gcaccttccc tcaaacagac tacatcacca tggacattgg agatgatgat 1440ggcatctaca tgccgctcgg cgtcatctca gaaaccttct tgacgcccat caacagcttc 1500ggcctggagg tggacgccaa gagcaagacc ttgacgctca agtgcaagag ctacctcagg 1560gagtacctgc tggagagtga tttgaagaac aaggagacag ggctgatcgc gccgccaaat 1620gtgttcatca gcaatgtggt gaagaactgg gacatcgagg aggattcatt ggagccatgg 1680gtggccaaca acaagaatgc ttatgtggac aacaccggcg gcattgaaag aagcaaggcg 1740ctcttcaccc aaggagatgg agagttcagc cagttcatcg gcgacaagct aaagcccaac 1800accgactaca tcatccagta caccgtcaag ggcaagccgg ccatctacct caagaacaag 1860agcaccggct acatcaccta cgaggacacc aatggaaatt ctgaggagtt ccaaacaatt 1920gctgtgaagt tcacctcaga aacagatttg agccagaccc acctggtgtt caagagccaa 1980aatggatatg aagcatgggg agacaacttc atcatcctgg aggccaagct cttcgagaca 2040ccagaaagcc cggagctcat caagttcaat gattgggaga ggttcggcac cacctacatc 2100accggcaatg agctgaggat tgatcattca agaggaggct acttccgcca aagcctcaac 2160atcgacagct acagcaccta cgacctcagc ttcagcttca gcggcctctg ggccaaggtg 2220attgtgaaga acagccgcgg cgtggtgctc ttcgagaagg tgaagaacaa tggaagcagc 2280tatgaggaca tctcagagag cttcaccacc tgcagcaaca aggatggctt cttcatcgag 2340ctcaccgccg agaggacaag cagcaccttc cacagcttca gagacatcag catcaaggag 2400aagattgaat aa 241237803PRTArtificial sequenceAXMI115 variant sequence (AXMI115v02) 37Met Asn Met Asn Asn Thr Lys Leu Asn Ala Arg Ala Leu Pro Ser Phe 1 5 10 15 Ile Asp Tyr Phe Asn Gly Ile Tyr Gly Phe Ala Thr Gly Ile Lys Asp 20 25 30 Ile Met Asn Met Ile Phe Lys Thr Asp Thr Gly Gly Asn Leu Thr Leu 35 40 45 Asp Glu Ile Leu Lys Asn Gln Gln Leu Leu Asn Glu Ile Ser Gly Lys 50 55 60 Leu Asp Gly Val Asn Gly Ser Leu Asn Asp Leu Ile Ala Gln Gly Asn 65 70 75 80 Leu Asn Thr Glu Leu Ser Lys Glu Ile Leu Lys Ile Ala Asn Glu Gln 85 90 95 Asn Gln Val Leu Asn Asp Val Asn Asn Lys Leu Asp Ala Ile Asn Thr 100 105 110 Met Leu His Ile Tyr Leu Pro Lys Ile Thr Ser Met Leu Ser Asp Val 115 120 125 Met Lys Gln Asn Tyr Ala Leu Ser Leu Gln Ile Glu Tyr Leu Ser Lys 130 135 140 Gln Leu Gln Glu Ile Ser Asp Lys Leu Asp Ile Ile Asn Val Asn Val 145 150 155 160 Leu Ile Asn Ser Thr Leu Thr Glu Ile Thr Pro Ala Tyr Gln Arg Ile 165 170 175 Lys Tyr Val Asn Glu Lys Phe Asp Lys Leu Thr Phe Ala Thr Glu Ser 180 185 190 Thr Leu Arg Ala Lys Gln Gly Ile Phe Asn Glu Asp Ser Phe Asp Asn 195 200 205 Asn Thr Leu Glu Asn Leu Thr Asp Leu Ala Glu Leu Ala Lys Ser Ile 210 215 220 Thr Lys Asn Asp Val Asp Ser Phe Glu Phe Tyr Leu His Thr Phe His 225 230 235 240 Asp Val Leu Ile Gly Asn Asn Leu Phe Gly Arg Ser Ala Leu Lys Thr 245 250 255 Ala Ser Glu Leu Ile Thr Lys Asp Glu Ile Lys Thr Ser Gly Ser Glu 260 265 270 Ile Gly Lys Val Tyr Ser Phe Leu Ile Val Leu Thr Ser Leu Gln Ala 275 280 285 Lys Ala Phe Leu Thr Leu Thr Thr Cys Arg Lys Leu Leu Gly Leu Ser 290 295 300 Asp Ile Asp Tyr Thr Ser Ile Met Asn Glu His Leu Asn Asn Glu Lys 305 310 315 320 Asn Glu Phe Arg Asp Asn Ile Leu Pro Ala Leu Ser Asn Lys Phe Ser 325 330 335 Asn Pro Ser Tyr Ala Lys Thr Ile Gly Ser Asp Asn Tyr Ala Lys Val 340 345 350 Ile Leu Glu Ser Glu Pro Gly Tyr Ala Leu Val Gly Phe Glu Ile Ile 355 360 365 Asn Asp Pro Ile Pro Val Leu Lys Ala Tyr Lys Ala Lys Leu Lys Gln 370 375 380 Asn Tyr Gln Val Asp Asn Gln Ser Leu Ser Glu Ile Val Tyr Leu Asp 385 390 395 400 Ile Asp Lys Leu Phe Cys Pro Glu Asn Ser Glu Gln Lys Tyr Tyr Thr 405 410 415 Lys Asn Leu Thr Phe Pro Asp Gly Tyr Val Ile Thr Lys Ile Thr Phe 420 425 430 Glu Lys Lys Leu Asn Asn Leu Ile Tyr Glu Ala Thr Ala Asn Phe Tyr 435 440 445 Asp Pro Ser Thr Gly Asp Ile Asp Leu Asn Lys Lys Gln Val Glu Ser 450 455 460 Thr Phe Pro Gln Thr Asp Tyr Ile Thr Met Asp Ile Gly Asp Asp Asp 465 470 475 480 Gly Ile Tyr Met Pro Leu Gly Val Ile Ser Glu Thr Phe Leu Thr Pro 485 490 495 Ile Asn Ser Phe Gly Leu Glu Val Asp Ala Lys Ser Lys Thr Leu Thr 500 505 510 Leu Lys Cys Lys Ser Tyr Leu Arg Glu Tyr Leu Leu Glu Ser Asp Leu 515 520 525 Lys Asn Lys Glu Thr Gly Leu Ile Ala Pro Pro Asn Val Phe Ile Ser 530 535 540 Asn Val Val Lys

Asn Trp Asp Ile Glu Glu Asp Ser Leu Glu Pro Trp 545 550 555 560 Val Ala Asn Asn Lys Asn Ala Tyr Val Asp Asn Thr Gly Gly Ile Glu 565 570 575 Arg Ser Lys Ala Leu Phe Thr Gln Gly Asp Gly Glu Phe Ser Gln Phe 580 585 590 Ile Gly Asp Lys Leu Lys Pro Asn Thr Asp Tyr Ile Ile Gln Tyr Thr 595 600 605 Val Lys Gly Lys Pro Ala Ile Tyr Leu Lys Asn Lys Ser Thr Gly Tyr 610 615 620 Ile Thr Tyr Glu Asp Thr Asn Gly Asn Ser Glu Glu Phe Gln Thr Ile 625 630 635 640 Ala Val Lys Phe Thr Ser Glu Thr Asp Leu Ser Gln Thr His Leu Val 645 650 655 Phe Lys Ser Gln Asn Gly Tyr Glu Ala Trp Gly Asp Asn Phe Ile Ile 660 665 670 Leu Glu Ala Lys Leu Phe Glu Thr Pro Glu Ser Pro Glu Leu Ile Lys 675 680 685 Phe Asn Asp Trp Glu Arg Phe Gly Thr Thr Tyr Ile Thr Gly Asn Glu 690 695 700 Leu Arg Ile Asp His Ser Arg Gly Gly Tyr Phe Arg Gln Ser Leu Asn 705 710 715 720 Ile Asp Ser Tyr Ser Thr Tyr Asp Leu Ser Phe Ser Phe Ser Gly Leu 725 730 735 Trp Ala Lys Val Ile Val Lys Asn Ser Arg Gly Val Val Leu Phe Glu 740 745 750 Lys Val Lys Asn Asn Gly Ser Ser Tyr Glu Asp Ile Ser Glu Ser Phe 755 760 765 Thr Thr Ala Ser Asn Lys Asp Gly Phe Phe Ile Glu Leu Thr Ala Glu 770 775 780 Arg Thr Ser Ser Thr Phe His Ser Phe Arg Asp Ile Ser Ile Lys Glu 785 790 795 800 Lys Ile Glu 38798PRTArtificial sequenceAXMI115 variant sequence (AXMI115, expressed from pAX6308) 38Met Asn Met Asn Asn Thr Lys Leu Asn Ala Arg Ala Leu Pro Ser Phe 1 5 10 15 Ile Asp Tyr Phe Asn Gly Ile Tyr Gly Phe Ala Thr Gly Ile Lys Asp 20 25 30 Ile Met Asn Met Ile Phe Lys Thr Asp Thr Gly Gly Asn Leu Thr Leu 35 40 45 Asp Glu Ile Leu Lys Asn Gln Gln Leu Leu Asn Glu Ile Ser Gly Lys 50 55 60 Leu Asp Gly Val Asn Gly Ser Leu Asn Asp Leu Ile Ala Gln Gly Asn 65 70 75 80 Leu Asn Thr Glu Leu Ser Lys Glu Ile Leu Lys Ile Ala Asn Glu Gln 85 90 95 Asn Gln Val Leu Asn Asp Val Asn Asn Lys Leu Asp Ala Ile Asn Thr 100 105 110 Met Leu His Ile Tyr Leu Pro Lys Ile Thr Ser Met Leu Ser Asp Val 115 120 125 Met Lys Gln Asn Tyr Ala Leu Ser Leu Gln Ile Glu Tyr Leu Ser Lys 130 135 140 Gln Leu Gln Glu Ile Ser Asp Lys Leu Asp Ile Ile Asn Val Asn Val 145 150 155 160 Leu Ile Asn Ser Thr Leu Thr Glu Ile Thr Pro Ala Tyr Gln Arg Ile 165 170 175 Lys Tyr Val Asn Glu Lys Phe Glu Glu Leu Thr Phe Ala Thr Glu Thr 180 185 190 Thr Leu Lys Val Lys Lys Asp Ser Ser Pro Ala Asp Ile Leu Asp Glu 195 200 205 Leu Thr Glu Leu Thr Glu Leu Ala Lys Ser Val Thr Lys Asn Asp Val 210 215 220 Asp Gly Phe Glu Phe Tyr Leu Asn Thr Phe His Asp Val Met Val Gly 225 230 235 240 Asn Asn Leu Phe Gly Arg Ser Ala Leu Lys Thr Ala Ser Glu Leu Ile 245 250 255 Ala Lys Glu Asn Val Lys Thr Ser Gly Ser Glu Val Gly Asn Val Tyr 260 265 270 Asn Phe Leu Ile Val Leu Thr Ala Leu Gln Ala Lys Ala Phe Leu Thr 275 280 285 Leu Thr Thr Cys Arg Lys Leu Leu Gly Leu Ser Asp Ile Asp Tyr Thr 290 295 300 Ser Ile Met Asn Glu His Leu Asn Asn Glu Lys Asn Glu Phe Arg Asp 305 310 315 320 Asn Ile Leu Pro Ala Leu Ser Asn Lys Phe Ser Asn Pro Ser Tyr Ala 325 330 335 Lys Thr Ile Gly Ser Asp Asn Tyr Ala Lys Val Ile Leu Glu Ser Glu 340 345 350 Pro Gly Tyr Ala Leu Val Gly Phe Glu Ile Ile Asn Asp Pro Ile Pro 355 360 365 Val Leu Lys Ala Tyr Lys Ala Lys Leu Lys Gln Asn Tyr Gln Val Asp 370 375 380 Asn Gln Ser Leu Ser Glu Ile Val Tyr Leu Asp Ile Asp Lys Leu Phe 385 390 395 400 Cys Pro Glu Asn Ser Glu Gln Lys Tyr Tyr Thr Lys Asn Leu Thr Phe 405 410 415 Pro Asp Gly Tyr Val Ile Thr Lys Ile Thr Phe Glu Lys Lys Leu Asn 420 425 430 Asn Leu Ile Tyr Glu Ala Thr Ala Asn Phe Tyr Asp Pro Ser Thr Gly 435 440 445 Asp Ile Asp Leu Asn Lys Lys Gln Val Glu Ser Thr Phe Pro Gln Thr 450 455 460 Asp Tyr Ile Thr Met Asp Ile Gly Asp Asp Asp Gly Ile Tyr Met Pro 465 470 475 480 Leu Gly Val Ile Ser Glu Thr Phe Leu Thr Pro Ile Asn Ser Phe Gly 485 490 495 Leu Glu Val Asp Ala Lys Ser Lys Thr Leu Thr Leu Lys Cys Lys Ser 500 505 510 Tyr Leu Arg Glu Tyr Leu Leu Glu Ser Asp Leu Lys Asn Lys Glu Thr 515 520 525 Gly Leu Ile Ala Pro Pro Asn Val Phe Ile Ser Asn Val Val Lys Asn 530 535 540 Trp Asp Ile Glu Glu Asp Ser Leu Glu Pro Trp Val Ala Asn Asn Lys 545 550 555 560 Asn Ala Tyr Val Asp Asn Thr Gly Gly Ile Glu Arg Ser Lys Ala Leu 565 570 575 Phe Thr Gln Gly Asp Gly Glu Phe Ser Gln Phe Ile Gly Asp Lys Leu 580 585 590 Lys Pro Asn Thr Asp Tyr Ile Ile Gln Tyr Thr Val Lys Gly Lys Pro 595 600 605 Ala Ile Tyr Leu Lys Asn Lys Ser Thr Gly Tyr Ile Thr Tyr Glu Asp 610 615 620 Thr Asn Gly Asn Ser Glu Glu Phe Gln Thr Ile Ala Val Lys Phe Thr 625 630 635 640 Ser Glu Thr Asp Leu Ser Gln Thr His Leu Val Phe Lys Ser Gln Asn 645 650 655 Gly Tyr Glu Ala Trp Gly Asp Asn Phe Ile Ile Leu Glu Ala Lys Leu 660 665 670 Phe Glu Thr Pro Glu Ser Pro Glu Leu Ile Lys Phe Asn Asp Trp Glu 675 680 685 Arg Phe Gly Thr Thr Tyr Ile Thr Gly Asn Glu Leu Arg Ile Asp His 690 695 700 Ser Arg Gly Gly Tyr Phe Arg Gln Ser Leu Asn Ile Asp Ser Tyr Ser 705 710 715 720 Thr Tyr Asp Leu Ser Phe Ser Phe Ser Gly Leu Trp Ala Lys Val Ile 725 730 735 Val Lys Asn Ser Arg Gly Val Val Leu Phe Glu Lys Val Lys Asn Asn 740 745 750 Gly Ser Ser Tyr Glu Asp Ile Ser Glu Ser Phe Thr Thr Ala Ser Asn 755 760 765 Lys Asp Gly Phe Phe Ile Glu Leu Thr Ala Glu Arg Thr Ser Ser Thr 770 775 780 Phe His Ser Phe Arg Asp Ile Ser Ile Lys Glu Lys Ile Glu 785 790 795 39795PRTArtificial sequenceAXMI115 variant sequence (AXMI115, expressed from pAX6309) 39Met Asn Met Asn Asn Thr Lys Leu Asn Ala Arg Ala Leu Pro Ser Phe 1 5 10 15 Ile Asp Tyr Phe Asn Gly Ile Tyr Gly Phe Ala Thr Gly Ile Lys Asp 20 25 30 Ile Met Asn Met Ile Phe Lys Thr Asp Thr Gly Gly Asn Leu Thr Leu 35 40 45 Asp Glu Ile Leu Lys Asn Gln Gln Leu Leu Asn Glu Ile Ser Gly Lys 50 55 60 Leu Asp Gly Val Asn Gly Ser Leu Asn Asp Leu Ile Ala Gln Gly Asn 65 70 75 80 Leu Asn Thr Glu Leu Ser Lys Glu Ile Leu Lys Ile Ala Asn Glu Gln 85 90 95 Asn Gln Val Leu Asn Asp Val Asn Asn Lys Leu Asp Ala Ile Asn Thr 100 105 110 Met Leu His Ile Tyr Leu Pro Lys Ile Thr Ser Met Leu Ser Asp Val 115 120 125 Met Lys Gln Asn Tyr Ala Leu Ser Leu Gln Ile Glu Tyr Leu Ser Lys 130 135 140 Gln Leu Gln Glu Ile Ser Asp Lys Leu Asp Ile Ile Asn Val Asn Val 145 150 155 160 Leu Ile Asn Ser Thr Leu Thr Glu Ile Thr Pro Ala Tyr Gln Arg Ile 165 170 175 Lys Tyr Val Asn Glu Lys Phe Glu Glu Leu Thr Phe Ala Thr Glu Thr 180 185 190 Thr Leu Lys Val Lys Lys Asp Ser Ser Pro Ala Asp Ile Leu Asp Glu 195 200 205 Leu Thr Glu Leu Thr Glu Leu Ala Lys Ser Val Thr Lys Asn Asp Val 210 215 220 Asp Gly Phe Glu Phe Tyr Leu Asn Thr Phe His Asp Val Met Val Gly 225 230 235 240 Asn Asn Leu Phe Gly Arg Ser Ala Leu Lys Thr Ala Ser Glu Leu Ile 245 250 255 Ala Lys Glu Asn Val Lys Thr Ser Gly Ser Glu Val Gly Asn Val Tyr 260 265 270 Asn Phe Leu Ile Val Leu Thr Ala Leu Gln Ala Lys Ala Phe Leu Thr 275 280 285 Leu Thr Thr Cys Arg Lys Leu Leu Gly Leu Ala Asp Ile Asp Tyr Thr 290 295 300 Ser Ile Met Asn Glu His Leu Asn Lys Glu Lys Glu Glu Phe Arg Val 305 310 315 320 Asn Ile Leu Pro Thr Leu Ser Asn Thr Phe Ser Asn Pro Asn Tyr Ala 325 330 335 Lys Val Lys Gly Ser Asp Glu Asp Ala Lys Met Ile Val Glu Ala Lys 340 345 350 Pro Gly His Ala Leu Val Gly Phe Glu Met Ser Asn Asp Ser Ile Thr 355 360 365 Val Leu Lys Val Tyr Glu Ala Lys Leu Lys Gln Asn Tyr Gln Val Asp 370 375 380 Lys Asp Ser Leu Ser Glu Val Ile Tyr Gly Asp Met Asp Lys Leu Leu 385 390 395 400 Cys Pro Asp Gln Ser Glu Gln Ile Tyr Tyr Thr Asn Asn Ile Val Phe 405 410 415 Pro Asn Glu Tyr Val Ile Thr Lys Ile Asp Phe Thr Lys Lys Met Lys 420 425 430 Thr Leu Arg Tyr Glu Val Thr Ala Asn Ser Tyr Asp Ser Ser Thr Gly 435 440 445 Glu Ile Asp Leu Asn Lys Lys Lys Val Glu Ser Ser Glu Ala Glu Tyr 450 455 460 Arg Thr Leu Ser Ala Lys Asp Asp Gly Val Tyr Met Pro Leu Gly Val 465 470 475 480 Ile Ser Glu Thr Phe Leu Thr Pro Ile Asn Gly Phe Gly Leu Gln Ala 485 490 495 Asp Glu Asn Ser Arg Leu Ile Thr Leu Thr Cys Lys Ser Tyr Leu Arg 500 505 510 Glu Leu Leu Leu Ala Thr Asp Leu Ser Asn Lys Glu Thr Lys Leu Ile 515 520 525 Val Pro Pro Ser Gly Phe Ile Ser Asn Ile Val Glu Asn Gly Asn Leu 530 535 540 Glu Gly Glu Asn Leu Glu Pro Trp Ile Ala Asn Asn Lys Asn Ala Tyr 545 550 555 560 Val Asp His Thr Gly Gly Val Asn Gly Thr Arg Ala Leu Tyr Val His 565 570 575 Lys Asp Gly Gly Phe Ser Gln Phe Ile Gly Asp Lys Leu Lys Pro Lys 580 585 590 Thr Glu Tyr Val Ile Gln Tyr Thr Val Lys Gly Lys Pro Ala Ile Tyr 595 600 605 Leu Lys Asn Lys Ser Thr Gly Tyr Ile Thr Tyr Glu Asp Thr Asn Gly 610 615 620 Asn Ser Glu Glu Phe Gln Thr Ile Ala Val Lys Phe Thr Ser Glu Thr 625 630 635 640 Asp Leu Ser Gln Thr His Leu Val Phe Lys Ser Gln Asn Gly Tyr Glu 645 650 655 Ala Trp Gly Asp Asn Phe Ile Ile Leu Glu Ala Lys Leu Phe Glu Thr 660 665 670 Pro Glu Ser Pro Glu Leu Ile Lys Phe Asn Asp Trp Glu Arg Phe Gly 675 680 685 Thr Thr Tyr Ile Thr Gly Asn Glu Leu Arg Ile Asp His Ser Arg Gly 690 695 700 Gly Tyr Phe Arg Gln Ser Leu Asn Ile Asp Ser Tyr Ser Thr Tyr Asp 705 710 715 720 Leu Ser Phe Ser Phe Ser Gly Leu Trp Ala Lys Val Ile Val Lys Asn 725 730 735 Ser Arg Gly Val Val Leu Phe Glu Lys Val Lys Asn Asn Gly Ser Ser 740 745 750 Tyr Glu Asp Ile Ser Glu Ser Phe Thr Thr Ala Ser Asn Lys Asp Gly 755 760 765 Phe Phe Ile Glu Leu Thr Ala Glu Arg Thr Ser Ser Thr Phe His Ser 770 775 780 Phe Arg Asp Ile Ser Ile Lys Glu Lys Ile Glu 785 790 795 40803PRTArtificial sequenceAXMI115 variant sequence (AXMI115v02(EVO27)) 40Met Asn Met Asn Asn Thr Lys Leu Asn Ala Arg Ala Leu Pro Ser Phe 1 5 10 15 Ile Asp Tyr Phe Asn Gly Ile Tyr Gly Phe Ala Thr Gly Ile Lys Asp 20 25 30 Ile Met Asn Met Ile Phe Lys Thr Asp Thr Gly Gly Asn Leu Thr Leu 35 40 45 Asp Glu Ile Leu Lys Asn Gln Gln Leu Leu Asn Glu Ile Ser Gly Lys 50 55 60 Leu Asp Gly Val Asn Gly Ser Leu Asn Asp Leu Ile Ala Gln Gly Asn 65 70 75 80 Leu Asn Thr Glu Leu Ser Lys Glu Ile Leu Lys Ile Ala Asn Glu Gln 85 90 95 Asn Gln Val Leu Asn Asp Val Asn Asn Lys Leu Asp Ala Ile Asn Thr 100 105 110 Met Leu His Ile Tyr Leu Pro Lys Ile Thr Ser Met Leu Ser Asp Val 115 120 125 Met Lys Gln Asn Tyr Ala Leu Ser Leu Gln Ile Glu Tyr Leu Ser Lys 130 135 140 Gln Leu Gln Glu Ile Ser Asp Lys Leu Asp Ile Ile Asn Val Asn Val 145 150 155 160 Leu Ile Asn Ser Thr Leu Thr Glu Ile Thr Pro Ala Tyr Gln Arg Ile 165 170 175 Lys Tyr Val Asn Glu Lys Phe Asp Lys Leu Thr Phe Ala Thr Glu Ser 180 185 190 Thr Leu Arg Ala Lys Gln Gly Ile Phe Asn Glu Asp Ser Phe Asp Asn 195 200 205 Asn Thr Leu Glu Asn Leu Thr Asp Leu Ala Glu Leu Ala Lys Ser Ile 210 215 220 Thr Lys Asn Asp Val Asp Ser Phe Glu Phe Tyr Leu His Thr Phe His 225 230 235 240 Asp Val Leu Ile Gly Asn Asn Leu Phe Gly Arg Ser Ala Leu Lys Thr 245 250 255 Ala Ser Glu Leu Ile Thr Lys Asp Glu Ile Lys Thr Ser Gly Ser Glu 260 265 270 Ile Gly Lys Val Tyr Ser Phe Leu Ile Val Leu Thr Ser Leu Gln Ala 275 280 285 Lys Ala Phe Leu Thr Leu Thr Thr Cys Arg Lys Leu Leu Gly Leu Ser 290 295 300 Asp Ile Asp Tyr Thr Ser Ile Met Asn Glu His Leu Asn Asn Glu Lys 305 310 315 320 Asn Glu Phe Arg Asp Asn Ile Leu Pro Ala Leu Ser Asn Lys Phe Ser 325 330 335 Asn Pro Ser Tyr Ala Lys Thr Ile Gly Ser Asp Asn Tyr Ala Lys Val 340 345 350 Ile Leu Glu Ser Glu Pro Gly Tyr Ala Leu Val Gly Phe Glu Ile Ile 355 360 365 Asn Asp Pro Ile Pro Val Leu Lys Ala Tyr Lys Ala Lys Leu Lys Gln 370 375 380 Asn Tyr Gln Val Asp Asn Gln Ser Leu Ser Glu Ile Val Tyr Leu Asp 385 390 395 400 Ile Asp Lys Leu Phe Cys Pro Glu Asn Ser Glu Gln Lys Tyr Tyr Thr 405 410 415 Lys Asn Leu Thr Phe Pro Asp Gly Tyr Val Ile Thr Lys Ile Thr

Phe 420 425 430 Glu Lys Lys Leu Asn Asn Leu Ile Tyr Glu Ala Thr Ala Asn Phe Tyr 435 440 445 Asp Pro Ser Thr Gly Asp Ile Asp Leu Asn Lys Lys Gln Val Glu Ser 450 455 460 Thr Phe Pro Gln Thr Asp Tyr Ile Thr Met Asp Ile Gly Asp Asp Asp 465 470 475 480 Gly Ile Tyr Met Pro Leu Gly Val Ile Ser Glu Thr Phe Leu Thr Pro 485 490 495 Ile Asn Ser Phe Gly Leu Glu Val Asp Ala Lys Ser Lys Thr Leu Thr 500 505 510 Leu Lys Cys Lys Ser Tyr Leu Arg Glu Tyr Leu Leu Glu Ser Asp Leu 515 520 525 Lys Asn Lys Glu Thr Gly Leu Ile Ala Pro Pro Asn Val Phe Ile Ser 530 535 540 Asn Val Val Lys Asn Trp Asp Ile Glu Glu Asp Ser Leu Glu Pro Trp 545 550 555 560 Val Ala Asn Asn Lys Asn Ala Tyr Val Asp Asn Thr Gly Gly Ile Glu 565 570 575 Arg Ser Lys Ala Leu Phe Thr Gln Gly Asp Gly Lys Phe Ser Gln Phe 580 585 590 Ile Gly Asp Lys Leu Lys Pro Asn Thr Asp Tyr Ile Ile Gln Tyr Thr 595 600 605 Val Lys Gly Lys Pro Ala Ile Tyr Leu Lys Asn Lys Ser Thr Gly Tyr 610 615 620 Ile Thr Tyr Glu Asp Thr Asn Gly Asn Ser Glu Glu Phe Gln Thr Ile 625 630 635 640 Ala Val Lys Phe Thr Ser Glu Thr Asp Leu Ser Gln Thr His Leu Val 645 650 655 Phe Lys Ser Gln Asn Gly Tyr Glu Ala Trp Gly Asp Asn Phe Ile Ile 660 665 670 Leu Glu Ala Lys Leu Phe Glu Thr Pro Glu Ser Pro Glu Leu Ile Lys 675 680 685 Phe Asn Asp Trp Glu Arg Phe Gly Thr Thr Tyr Ile Thr Gly Asn Glu 690 695 700 Leu Arg Ile Asp His Ser Arg Gly Gly Tyr Phe Arg Gln Ser Leu Asn 705 710 715 720 Ile Asp Ser Tyr Ser Thr Tyr Asp Leu Ser Phe Ser Phe Ser Gly Leu 725 730 735 Trp Ala Lys Val Ile Val Lys Asn Ser Arg Gly Val Val Leu Phe Glu 740 745 750 Lys Val Lys Asn Asn Gly Ser Ser Tyr Glu Asp Ile Ser Glu Ser Phe 755 760 765 Thr Thr Ala Ser Asn Lys Asp Gly Phe Phe Ile Glu Leu Thr Ala Glu 770 775 780 Arg Thr Ser Ser Thr Phe His Ser Phe Arg Asp Ile Ser Ile Lys Glu 785 790 795 800 Lys Ile Glu 41803PRTArtificialAXMI115 variant sequence (AXMI115v02(EVO28)) 41Met Asn Met Asn Asn Thr Lys Leu Asn Ala Arg Ala Leu Pro Ser Phe 1 5 10 15 Ile Asp Tyr Phe Asn Gly Ile Tyr Gly Phe Ala Thr Gly Ile Lys Asp 20 25 30 Ile Met Asn Met Ile Phe Lys Thr Asp Thr Gly Gly Asn Leu Thr Leu 35 40 45 Asp Glu Ile Leu Lys Asn Gln Gln Leu Leu Asn Glu Ile Ser Gly Lys 50 55 60 Leu Asp Gly Val Asn Gly Ser Leu Asn Asp Leu Ile Ala Gln Gly Asn 65 70 75 80 Leu Asn Thr Glu Leu Ser Lys Glu Ile Leu Lys Ile Ala Asn Glu Gln 85 90 95 Asn Gln Val Leu Asn Asp Val Asn Asn Lys Leu Asp Ala Ile Asn Thr 100 105 110 Met Leu His Ile Tyr Leu Pro Lys Ile Thr Ser Met Leu Ser Asp Val 115 120 125 Met Lys Gln Asn Tyr Ala Leu Ser Leu Gln Ile Glu Tyr Leu Ser Lys 130 135 140 Gln Leu Gln Glu Ile Ser Asp Lys Leu Asp Ile Ile Asn Val Asn Val 145 150 155 160 Leu Ile Asn Ser Thr Leu Thr Glu Ile Thr Pro Ala Tyr Gln Arg Ile 165 170 175 Lys Tyr Val Asn Glu Lys Phe Asp Lys Leu Thr Phe Ala Thr Glu Ser 180 185 190 Thr Leu Arg Ala Lys Gln Gly Ile Phe Asn Glu Asp Ser Phe Asp Asn 195 200 205 Asn Thr Leu Glu Asn Leu Thr Asp Leu Ala Glu Leu Ala Lys Ser Ile 210 215 220 Thr Lys Asn Asp Val Asp Ser Phe Glu Phe Tyr Leu His Thr Phe His 225 230 235 240 Asp Val Leu Ile Gly Asn Asn Leu Phe Gly Arg Ser Ala Leu Lys Thr 245 250 255 Ala Ser Glu Leu Ile Thr Lys Asp Glu Ile Lys Thr Ser Gly Ser Glu 260 265 270 Ile Gly Lys Val Tyr Ser Phe Leu Ile Val Leu Thr Ser Leu Gln Ala 275 280 285 Lys Ala Phe Leu Thr Leu Thr Thr Cys Arg Lys Leu Leu Gly Leu Ser 290 295 300 Asp Ile Asp Tyr Thr Ser Ile Met Asn Glu His Leu Asn Asn Glu Lys 305 310 315 320 Asn Glu Phe Arg Asp Asn Ile Leu Pro Ala Leu Ser Asn Lys Phe Ser 325 330 335 Asn Pro Ser Tyr Ala Lys Thr Ile Gly Ser Asp Asn Tyr Ala Lys Val 340 345 350 Ile Leu Glu Ser Glu Pro Gly Tyr Ala Leu Val Gly Phe Glu Ile Ile 355 360 365 Asn Asp Pro Ile Pro Val Leu Lys Ala Tyr Lys Ala Lys Leu Lys Gln 370 375 380 Asn Tyr Gln Val Asp Asn Gln Ser Leu Ser Glu Ile Val Tyr Leu Asp 385 390 395 400 Ile Asp Lys Leu Phe Cys Pro Glu Asn Ser Glu Gln Lys Tyr Tyr Thr 405 410 415 Lys Asn Leu Thr Phe Pro Asp Gly Tyr Val Ile Thr Lys Ile Thr Phe 420 425 430 Glu Lys Lys Leu Asn Asn Leu Ile Tyr Glu Ala Thr Ala Asn Phe Tyr 435 440 445 Asp Pro Ser Thr Gly Asp Ile Asp Leu Asn Lys Lys Gln Val Glu Ser 450 455 460 Thr Phe Pro Gln Thr Asp Tyr Ile Thr Met Asp Ile Gly Asp Asp Asp 465 470 475 480 Gly Ile Tyr Met Pro Leu Gly Val Ile Ser Glu Thr Phe Leu Thr Pro 485 490 495 Ile Asn Ser Phe Gly Leu Glu Val Asp Ala Lys Ser Lys Thr Leu Thr 500 505 510 Leu Lys Cys Lys Ser Tyr Leu Arg Glu Tyr Leu Leu Glu Ser Asp Leu 515 520 525 Lys Asn Lys Glu Thr Gly Leu Ile Ala Pro Pro Asn Val Phe Ile Ser 530 535 540 Asn Val Val Lys Asn Trp Asp Ile Glu Glu Asp Ser Leu Glu Pro Trp 545 550 555 560 Val Ala Asn Asn Lys Asn Ala Tyr Val Asp Asn Thr Gly Gly Ile Glu 565 570 575 Arg Ser Lys Ala Leu Phe Thr Gln Gly Asp Gly Glu Phe Ser Gln Phe 580 585 590 Ile Gly Asp Lys Leu Lys Pro Asn Thr Asp Tyr Ile Ile Gln Tyr Thr 595 600 605 Val Lys Gly Lys Pro Ala Ile Tyr Leu Lys Asn Lys Ser Thr Gly Tyr 610 615 620 Ile Thr Tyr Glu Asp Thr Asn Gly Asn Ser Glu Glu Phe Gln Thr Ile 625 630 635 640 Ala Val Lys Phe Thr Ser Glu Thr Asp Leu Ser Gln Thr His Leu Val 645 650 655 Phe Lys Ser Gln Asn Gly Tyr Glu Ala Trp Gly Asp Asn Phe Ile Ile 660 665 670 Leu Glu Ala Lys Leu Phe Glu Thr Pro Glu Ser Pro Glu Leu Ile Lys 675 680 685 Phe Asn Asp Trp Glu Arg Phe Gly Thr Thr Tyr Ile Thr Gly Asn Glu 690 695 700 Leu Arg Ile Asp His Ser Arg Gly Gly Tyr Phe Arg Gln Ser Leu Asn 705 710 715 720 Ile Asp Ser Tyr Ser Thr Tyr Asp Leu Ser Phe Ser Phe Ser Gly Leu 725 730 735 Trp Ala Lys Val Ile Val Lys Asn Ser Arg Gly Val Val Leu Phe Glu 740 745 750 Lys Val Lys Asn Asn Gly Ser Ser Tyr Glu Asp Ile Ser Glu Ser Phe 755 760 765 Thr Thr Met Ser Asn Lys Asp Gly Phe Phe Ile Glu Leu Thr Ala Glu 770 775 780 Arg Thr Ser Ser Thr Phe His Ser Phe Arg Asp Ile Ser Ile Lys Glu 785 790 795 800 Lys Ile Glu 42803PRTArtificialAXMI115 variant sequence (AXMI115v02(EVO29)) 42Met Asn Met Asn Asn Thr Lys Leu Asn Ala Arg Ala Leu Pro Ser Phe 1 5 10 15 Ile Asp Tyr Phe Asn Gly Ile Tyr Gly Phe Ala Thr Gly Ile Lys Asp 20 25 30 Ile Met Asn Met Ile Phe Lys Thr Asp Thr Gly Gly Asn Leu Thr Leu 35 40 45 Asp Glu Ile Leu Lys Asn Gln Gln Leu Leu Asn Glu Ile Ser Gly Lys 50 55 60 Leu Asp Gly Val Asn Gly Ser Leu Asn Asp Leu Ile Ala Gln Gly Asn 65 70 75 80 Leu Asn Thr Glu Leu Ser Lys Glu Ile Leu Lys Ile Ala Asn Glu Gln 85 90 95 Asn Gln Val Leu Asn Asp Val Asn Asn Lys Leu Asp Ala Ile Asn Thr 100 105 110 Met Leu His Ile Tyr Leu Pro Lys Ile Thr Ser Met Leu Ser Asp Val 115 120 125 Met Lys Gln Asn Tyr Ala Leu Ser Leu Gln Ile Glu Tyr Leu Ser Lys 130 135 140 Gln Leu Gln Glu Ile Ser Asp Lys Leu Asp Ile Ile Asn Val Asn Val 145 150 155 160 Leu Ile Asn Ser Thr Leu Thr Glu Ile Thr Pro Ala Tyr Gln Arg Ile 165 170 175 Lys Tyr Val Asn Glu Lys Phe Asp Lys Leu Thr Phe Ala Thr Glu Ser 180 185 190 Thr Leu Arg Ala Lys Gln Gly Ile Phe Asn Glu Asp Ser Phe Asp Asn 195 200 205 Asn Thr Leu Glu Asn Leu Thr Asp Leu Ala Glu Leu Ala Lys Ser Ile 210 215 220 Thr Lys Asn Asp Val Asp Ser Phe Glu Phe Tyr Leu His Thr Phe His 225 230 235 240 Asp Val Leu Ile Gly Asn Asn Leu Phe Gly Arg Ser Ala Leu Lys Thr 245 250 255 Ala Ser Glu Leu Ile Thr Lys Asp Glu Ile Lys Thr Ser Gly Ser Glu 260 265 270 Ile Gly Lys Val Tyr Ser Phe Leu Ile Val Leu Thr Ser Leu Gln Ala 275 280 285 Lys Ala Phe Leu Thr Leu Thr Thr Cys Arg Lys Leu Leu Gly Leu Ser 290 295 300 Asp Ile Asp Tyr Thr Ser Ile Met Asn Glu His Leu Asn Asn Glu Lys 305 310 315 320 Asn Glu Phe Arg Asp Asn Ile Leu Pro Ala Leu Ser Asn Lys Phe Ser 325 330 335 Asn Pro Ser Tyr Ala Lys Thr Ile Gly Ser Asp Asn Tyr Ala Lys Val 340 345 350 Ile Leu Glu Ser Glu Pro Gly Tyr Ala Leu Val Gly Phe Glu Ile Ile 355 360 365 Asn Asp Pro Ile Pro Val Leu Lys Ala Tyr Lys Ala Lys Leu Lys Gln 370 375 380 Asn Tyr Gln Val Asp Asn Gln Ser Leu Ser Glu Ile Val Tyr Leu Asp 385 390 395 400 Ile Asp Lys Leu Phe Cys Pro Glu Asn Ser Glu Gln Lys Tyr Tyr Thr 405 410 415 Lys Asn Leu Thr Phe Pro Asp Gly Tyr Val Ile Thr Lys Ile Thr Phe 420 425 430 Glu Lys Lys Leu Asn Asn Leu Ile Tyr Glu Ala Thr Ala Asn Phe Tyr 435 440 445 Asp Pro Ser Thr Gly Asp Ile Asp Leu Asn Lys Lys Gln Val Glu Ser 450 455 460 Thr Phe Pro Gln Thr Asp Tyr Ile Thr Met Asp Ile Gly Asp Asp Asp 465 470 475 480 Gly Ile Tyr Met Pro Leu Gly Val Ile Ser Glu Thr Phe Leu Thr Pro 485 490 495 Ile Asn Ser Phe Gly Leu Glu Val Asp Ala Lys Ser Lys Thr Leu Thr 500 505 510 Leu Lys Cys Lys Ser Tyr Leu Arg Glu Tyr Leu Leu Glu Ser Asp Leu 515 520 525 Lys Asn Lys Glu Thr Gly Leu Ile Ala Pro Pro Asn Val Phe Ile Ser 530 535 540 Asn Val Val Lys Asn Trp Asp Ile Glu Glu Asp Ser Leu Glu Pro Trp 545 550 555 560 Val Ala Asn Asn Lys Asn Ala Tyr Val Asp Asn Thr Gly Gly Ile Glu 565 570 575 Arg Ser Lys Ala Leu Phe Thr Val Gly Asp Gly Glu Phe Ser Gln Phe 580 585 590 Ile Gly Asp Lys Leu Lys Pro Asn Thr Asp Tyr Ile Ile Gln Tyr Thr 595 600 605 Val Lys Gly Lys Pro Ala Ile Tyr Leu Lys Asn Lys Ser Thr Gly Tyr 610 615 620 Ile Thr Tyr Glu Asp Thr Asn Gly Asn Ser Glu Glu Phe Gln Thr Ile 625 630 635 640 Ala Val Lys Phe Thr Ser Glu Thr Asp Leu Ser Gln Thr His Leu Val 645 650 655 Phe Lys Ser Gln Asn Gly Tyr Glu Ala Trp Gly Asp Asn Phe Ile Ile 660 665 670 Leu Glu Ala Lys Leu Phe Glu Thr Pro Glu Ser Pro Glu Leu Ile Lys 675 680 685 Phe Asn Asp Trp Glu Arg Phe Gly Thr Thr Tyr Ile Thr Gly Asn Glu 690 695 700 Leu Arg Ile Asp His Ser Arg Gly Gly Tyr Phe Arg Gln Ser Leu Asn 705 710 715 720 Ile Asp Ser Tyr Ser Thr Tyr Asp Leu Ser Phe Ser Phe Ser Gly Leu 725 730 735 Trp Ala Lys Val Ile Val Lys Asn Ser Arg Gly Val Val Leu Phe Glu 740 745 750 Lys Val Lys Asn Asn Gly Ser Ser Tyr Glu Asp Ile Ser Glu Ser Phe 755 760 765 Thr Thr Ala Ser Asn Lys Asp Gly Phe Phe Ile Glu Leu Thr Ala Glu 770 775 780 Arg Thr Ser Ser Thr Phe His Ser Phe Arg Asp Ile Ser Ile Lys Glu 785 790 795 800 Lys Ile Glu 43803PRTArtificialAXMI115 variant sequence (AXMI115v02(EVO31)) 43Met Asn Met Asn Asn Thr Lys Leu Asn Ala Arg Ala Leu Pro Ser Phe 1 5 10 15 Ile Asp Tyr Phe Asn Gly Ile Tyr Gly Phe Ala Thr Gly Ile Lys Asp 20 25 30 Ile Met Asn Met Ile Phe Lys Thr Asp Thr Gly Gly Asn Leu Thr Leu 35 40 45 Asp Glu Ile Leu Lys Asn Gln Gln Leu Leu Asn Glu Ile Ser Gly Lys 50 55 60 Leu Asp Gly Val Asn Gly Ser Leu Asn Asp Leu Ile Ala Gln Gly Asn 65 70 75 80 Leu Asn Thr Glu Leu Ser Lys Glu Ile Leu Lys Ile Ala Asn Glu Gln 85 90 95 Asn Gln Val Leu Asn Asp Val Asn Asn Lys Leu Asp Ala Ile Asn Thr 100 105 110 Met Leu His Ile Tyr Leu Pro Lys Ile Thr Ser Met Leu Ser Asp Val 115 120 125 Met Lys Gln Asn Tyr Ala Leu Ser Leu Gln Ile Glu Tyr Leu Ser Lys 130 135 140 Gln Leu Gln Glu Ile Ser Asp Lys Leu Asp Ile Ile Asn Val Asn Val 145 150 155 160 Leu Ile Asn Ser Thr Leu Thr Glu Ile Thr Pro Ala Tyr Gln Arg Ile 165 170 175 Lys Tyr Val Asn Glu Lys Phe Asp Lys Leu Thr Phe Ala Thr Glu Ser 180 185 190 Thr Leu Arg Ala Lys Gln Gly Ile Phe Asn Glu Asp Ser Phe Asp Asn 195 200 205 Asn Thr Leu Glu Asn Leu Thr Asp Leu Ala Glu Leu Ala Lys Ser Ile 210 215 220 Thr Lys Asn Asp Val Asp Ser Phe Glu Phe Tyr Leu His Thr Phe His 225 230 235 240 Asp Val Leu Ile Gly Asn Asn Leu Phe Gly Arg Ser Ala Leu Lys Thr 245 250 255 Ala Ser Glu Leu Ile Thr Lys Asp Glu Ile Lys Thr Ser Gly Ser Glu 260 265 270 Ile Gly Lys Val Tyr Ser Phe Leu Ile Val Leu Thr Ser Leu Gln Ala 275 280 285 Lys Ala Phe Leu Thr Leu Thr Thr Cys Arg Lys Leu Leu Gly Leu Ser 290

295 300 Asp Ile Asp Tyr Thr Ser Ile Met Asn Glu His Leu Asn Asn Glu Lys 305 310 315 320 Asn Glu Phe Arg Asp Asn Ile Leu Pro Ala Leu Ser Asn Lys Phe Ser 325 330 335 Asn Pro Ser Tyr Ala Lys Thr Ile Gly Ser Asp Asn Tyr Ala Lys Val 340 345 350 Ile Leu Glu Ser Glu Pro Gly Tyr Ala Leu Val Gly Phe Glu Ile Ile 355 360 365 Asn Asp Pro Ile Pro Val Leu Lys Ala Tyr Lys Ala Lys Leu Lys Gln 370 375 380 Asn Tyr Gln Val Asp Asn Gln Ser Leu Ser Glu Ile Val Tyr Leu Asp 385 390 395 400 Ile Asp Lys Leu Phe Cys Pro Glu Asn Ser Glu Gln Lys Tyr Tyr Thr 405 410 415 Lys Asn Leu Thr Phe Pro Asp Gly Tyr Val Ile Thr Lys Ile Thr Phe 420 425 430 Glu Lys Lys Leu Asn Asn Leu Ile Tyr Glu Ala Thr Ala Asn Phe Tyr 435 440 445 Asp Pro Ser Thr Gly Asp Ile Asp Leu Asn Lys Lys Gln Val Glu Ser 450 455 460 Thr Phe Pro Gln Thr Asp Tyr Ile Thr Met Asp Ile Gly Asp Asp Asp 465 470 475 480 Gly Ile Tyr Met Pro Leu Gly Val Ile Ser Glu Thr Phe Leu Thr Pro 485 490 495 Ile Asn Ser Phe Gly Leu Glu Val Asp Ala Lys Ser Lys Thr Leu Thr 500 505 510 Leu Lys Cys Lys Ser Tyr Leu Arg Glu Tyr Leu Leu Glu Ser Asp Leu 515 520 525 Lys Asn Lys Glu Thr Gly Leu Ile Ala Pro Pro Asn Val Phe Ile Ser 530 535 540 Asn Val Val Lys Asn Trp Asp Ile Glu Glu Asp Ser Leu Glu Pro Trp 545 550 555 560 Val Ala Asn Asn Lys Asn Ala Tyr Val Asp Asn Thr Gly Gly Ile Glu 565 570 575 Arg Ser Lys Ala Leu Phe Thr Gln Gly Asp Gly Glu Phe Ser Gln Phe 580 585 590 Ile Gly Asp Lys Leu Lys Pro Asn Thr Asp Tyr Ile Ile Gln Tyr Thr 595 600 605 Val Lys Gly Lys Pro Ala Ile Tyr Leu Lys Asn Lys Ser Thr Gly Tyr 610 615 620 Ile Thr Tyr Glu Asp Thr Asn Gly Asn Ser Glu Glu Phe Gln Thr Ile 625 630 635 640 Ala Val Lys Phe Thr Ser Glu Thr Asp Leu Ser Gln Thr His Leu Val 645 650 655 Phe Lys Ser Gln Asn Gly Tyr Glu Ala Trp Gly Asp Asn Phe Ile Ile 660 665 670 Leu Glu Ala Lys Leu Phe Glu Thr Pro Glu Ser Pro Glu Leu Ile Lys 675 680 685 Phe Asn Asp Trp Glu Arg Phe Gly Thr Thr Tyr Ile Thr Gly Asn Glu 690 695 700 Leu Arg Ile Asp His Ser Arg Gly Gly Tyr Phe Arg Gln Ser Leu Asn 705 710 715 720 Ile Asp Ser Tyr Ser Thr Tyr Asp Leu Ser Phe Ser Phe Ser Gly Leu 725 730 735 Trp Ala Lys Val Ile Val Lys Asn Ser Arg Gly Val Val Leu Phe Glu 740 745 750 Lys Val Lys Asn Asn Gly Ser Ser Tyr Glu Asp Ile Ser Glu Asp Phe 755 760 765 Thr Thr Asn Gly Phe Lys Asp Gly Phe Tyr Ile Glu Leu Thr Ala Glu 770 775 780 Arg Thr Ser Ser Thr Phe His Ser Phe Arg Asp Ile Ser Ile Lys Glu 785 790 795 800 Lys Ile Glu 44803PRTArtificialAXMI115 variant sequence (AXMI115v02(EVO32)) 44Met Asn Met Asn Asn Thr Lys Leu Asn Ala Arg Ala Leu Pro Ser Phe 1 5 10 15 Ile Asp Tyr Phe Asn Gly Ile Tyr Gly Phe Ala Thr Gly Ile Lys Asp 20 25 30 Ile Met Asn Met Ile Phe Lys Thr Asp Thr Gly Gly Asn Leu Thr Leu 35 40 45 Asp Glu Ile Leu Lys Asn Gln Gln Leu Leu Asn Glu Ile Ser Gly Lys 50 55 60 Leu Asp Gly Val Asn Gly Ser Leu Asn Asp Leu Ile Ala Gln Gly Asn 65 70 75 80 Leu Asn Thr Glu Leu Ser Lys Glu Ile Leu Lys Ile Ala Asn Glu Gln 85 90 95 Asn Gln Val Leu Asn Asp Val Asn Asn Lys Leu Asp Ala Ile Asn Thr 100 105 110 Met Leu His Ile Tyr Leu Pro Lys Ile Thr Ser Met Leu Ser Asp Val 115 120 125 Met Lys Gln Asn Tyr Ala Leu Ser Leu Gln Ile Glu Tyr Leu Ser Lys 130 135 140 Gln Leu Gln Glu Ile Ser Asp Lys Leu Asp Ile Ile Asn Val Asn Val 145 150 155 160 Leu Ile Asn Ser Thr Leu Thr Glu Ile Thr Pro Ala Tyr Gln Arg Ile 165 170 175 Lys Tyr Val Asn Glu Lys Phe Asp Lys Leu Thr Phe Ala Thr Glu Ser 180 185 190 Thr Leu Arg Ala Lys Gln Gly Ile Phe Asn Glu Asp Ser Phe Asp Asn 195 200 205 Asn Thr Leu Glu Asn Leu Thr Asp Leu Ala Glu Leu Ala Lys Ser Ile 210 215 220 Thr Lys Asn Asp Val Asp Ser Phe Glu Phe Tyr Leu His Thr Phe His 225 230 235 240 Asp Val Leu Ile Gly Asn Asn Leu Phe Gly Arg Ser Ala Leu Lys Thr 245 250 255 Ala Ser Glu Leu Ile Thr Lys Asp Glu Ile Lys Thr Ser Gly Ser Glu 260 265 270 Ile Gly Lys Val Tyr Ser Phe Leu Ile Val Leu Thr Ser Leu Gln Ala 275 280 285 Lys Ala Phe Leu Thr Leu Thr Thr Cys Arg Lys Leu Leu Gly Leu Ser 290 295 300 Asp Ile Asp Tyr Thr Ser Ile Met Asn Glu His Leu Asn Asn Glu Lys 305 310 315 320 Asn Glu Phe Arg Asp Asn Ile Leu Pro Ala Leu Ser Asn Lys Phe Ser 325 330 335 Asn Pro Ser Tyr Ala Lys Thr Ile Gly Ser Asp Asn Tyr Ala Lys Val 340 345 350 Ile Leu Glu Ser Glu Pro Gly Tyr Ala Leu Val Gly Phe Glu Ile Ile 355 360 365 Asn Asp Pro Ile Pro Val Leu Lys Ala Tyr Lys Ala Lys Leu Lys Gln 370 375 380 Asn Tyr Gln Val Asp Asn Gln Ser Leu Ser Glu Ile Val Tyr Leu Asp 385 390 395 400 Ile Asp Lys Leu Phe Cys Pro Glu Asn Ser Glu Gln Lys Tyr Tyr Thr 405 410 415 Lys Asn Leu Thr Phe Pro Asp Gly Tyr Val Ile Thr Lys Ile Thr Phe 420 425 430 Glu Lys Lys Leu Asn Asn Leu Ile Tyr Glu Ala Thr Ala Asn Phe Tyr 435 440 445 Asp Pro Ser Thr Gly Asp Ile Asp Leu Asn Lys Lys Gln Val Glu Ser 450 455 460 Thr Phe Pro Gln Thr Asp Tyr Ile Thr Met Asp Ile Gly Asp Asp Asp 465 470 475 480 Gly Ile Tyr Met Pro Leu Gly Val Ile Ser Glu Thr Phe Leu Thr Pro 485 490 495 Ile Asn Ser Phe Gly Leu Glu Val Asp Ala Lys Ser Lys Thr Leu Thr 500 505 510 Leu Lys Cys Lys Ser Tyr Leu Arg Glu Tyr Leu Leu Glu Ser Asp Leu 515 520 525 Lys Asn Lys Glu Thr Gly Leu Ile Ala Pro Pro Asn Val Phe Ile Ser 530 535 540 Asn Val Val Lys Asn Trp Asp Ile Glu Glu Asp Ser Leu Glu Pro Trp 545 550 555 560 Val Ala Asn Asn Lys Asn Ala Tyr Val Asp Asn Thr Gly Gly Ile Glu 565 570 575 Arg Ser Lys Ala Leu Phe Thr Gln Gly Asp Gly Glu Phe Ser Gln Phe 580 585 590 Ile Gly Asp Lys Leu Lys Pro Asn Thr Asp Tyr Ile Ile Gln Tyr Thr 595 600 605 Val Lys Gly Lys Pro Ala Ile Tyr Leu Lys Asn Lys Ser Thr Gly Tyr 610 615 620 Ile Thr Tyr Glu Asp Thr Asn Gly Asn Ser Glu Glu Phe Gln Thr Ile 625 630 635 640 Ala Val Lys Phe Thr Ser Glu Thr Asp Leu Ser Gln Thr His Leu Val 645 650 655 Phe Lys Ser Gln Asn Gly Tyr Glu Ala Trp Gly Asp Asn Phe Ile Ile 660 665 670 Leu Glu Ala Lys Leu Phe Glu Thr Pro Glu Ser Pro Glu Leu Ile Lys 675 680 685 Phe Asn Asp Trp Glu Arg Phe Gly Thr Thr Tyr Ile Thr Gly Asn Glu 690 695 700 Leu Arg Ile Asp His Ser Arg Gly Gly Tyr Phe Arg Gln Ser Leu Asn 705 710 715 720 Ile Asp Ser Tyr Ser Thr Tyr Asp Leu Ser Phe Ser Phe Ser Gly Leu 725 730 735 Trp Ala Lys Val Ile Val Lys Asn Ser Arg Gly Val Val Leu Phe Glu 740 745 750 Lys Val Lys Asn Asn Gly Ser Ser Tyr Glu Asp Ile Ser Glu His Phe 755 760 765 Thr Thr Trp Gly Tyr Lys Asp Gly Phe Phe Ile Glu Leu Thr Ala Glu 770 775 780 Arg Thr Ser Ser Thr Phe His Ser Phe Arg Asp Ile Ser Ile Lys Glu 785 790 795 800 Lys Ile Glu 45803PRTArtificialAXMI115 variant sequence (AXMI115_Block2_L11C7) 45Met Asn Met Asn Asn Thr Lys Leu Asn Ala Arg Ala Leu Pro Ser Phe 1 5 10 15 Ile Asp Tyr Phe Asn Gly Ile Tyr Gly Phe Ala Thr Gly Ile Lys Asp 20 25 30 Ile Met Asn Met Ile Phe Lys Thr Asp Thr Gly Gly Asp Leu Thr Leu 35 40 45 Asp Glu Ile Leu Lys Asn Gln Gln Leu Leu Asn Glu Ile Ser Gly Lys 50 55 60 Leu Asp Gly Val Asn Gly Ser Leu Asn Asp Leu Ile Ala Gln Gly Asn 65 70 75 80 Leu Asn Thr Glu Leu Ser Lys Glu Ile Leu Lys Ile Ala Asn Glu Gln 85 90 95 Asn Gln Val Leu Asn Asp Val Asn Asn Lys Leu Asp Ala Ile Asn Thr 100 105 110 Met Leu Asn Ile Tyr Leu Pro Lys Ile Thr Ser Met Leu Ser Asp Val 115 120 125 Met Lys Gln Asn Tyr Ala Leu Ser Leu Gln Ile Glu Tyr Leu Ser Arg 130 135 140 Gln Leu Gln Glu Ile Ser Asp Lys Leu Asp Val Ile Asn Leu Asn Val 145 150 155 160 Leu Ile Asn Ser Thr Leu Thr Glu Ile Thr Pro Ser Tyr Gln Arg Ile 165 170 175 Lys Tyr Val Asn Glu Lys Phe Asp Lys Leu Thr Phe Ala Thr Glu Ser 180 185 190 Thr Leu Arg Ala Lys Gln Gly Ile Phe Asn Glu Asp Ser Phe Asp Asn 195 200 205 Asn Thr Leu Glu Asn Leu Thr Asp Leu Ala Glu Leu Ala Lys Ser Ile 210 215 220 Thr Lys Asn Asp Val Asp Ser Phe Glu Phe Tyr Leu His Thr Phe His 225 230 235 240 Asp Val Leu Ile Gly Asn Asn Leu Phe Gly Arg Ser Ala Leu Lys Thr 245 250 255 Ala Ser Glu Leu Ile Thr Lys Asp Glu Ile Lys Thr Ser Gly Ser Glu 260 265 270 Ile Gly Lys Val Tyr Ser Phe Leu Ile Val Leu Thr Ser Leu Gln Ala 275 280 285 Lys Ala Phe Leu Thr Leu Thr Thr Cys Arg Lys Leu Leu Gly Leu Ser 290 295 300 Asp Ile Asp Tyr Thr Ser Ile Met Asn Glu His Leu Asn Asn Glu Lys 305 310 315 320 Asn Glu Phe Arg Asp Asn Ile Leu Pro Ala Leu Ser Asn Lys Phe Ser 325 330 335 Asn Pro Ser Tyr Ala Lys Thr Ile Gly Ser Asp Asn Tyr Ala Lys Val 340 345 350 Ile Leu Glu Ser Glu Pro Gly Tyr Ala Leu Val Gly Phe Glu Ile Ile 355 360 365 Asn Asp Pro Ile Pro Val Leu Lys Ala Tyr Lys Ala Lys Leu Lys Gln 370 375 380 Asn Tyr Gln Val Asp Asn Gln Ser Leu Ser Glu Ile Val Tyr Leu Asp 385 390 395 400 Ile Asp Lys Leu Phe Cys Pro Glu Asn Ser Glu Gln Lys Tyr Tyr Thr 405 410 415 Lys Asn Leu Thr Phe Pro Asp Gly Tyr Val Ile Thr Lys Ile Thr Phe 420 425 430 Glu Lys Lys Leu Asn Asn Leu Ile Tyr Glu Ala Thr Ala Asn Phe Tyr 435 440 445 Asp Pro Ser Thr Gly Asp Ile Asp Leu Asn Lys Lys Gln Val Glu Ser 450 455 460 Thr Phe Pro Gln Thr Asp Tyr Ile Thr Met Asp Ile Gly Asp Asp Asp 465 470 475 480 Gly Ile Tyr Met Pro Leu Gly Val Ile Ser Glu Thr Phe Leu Thr Pro 485 490 495 Ile Asn Ser Phe Gly Leu Glu Val Asp Ala Lys Ser Lys Thr Leu Thr 500 505 510 Leu Lys Cys Lys Ser Tyr Leu Arg Glu Tyr Leu Leu Glu Ser Asp Leu 515 520 525 Lys Asn Lys Glu Thr Gly Leu Ile Ala Pro Pro Asn Val Phe Ile Ser 530 535 540 Asn Val Val Lys Asn Trp Asp Ile Glu Glu Asp Ser Leu Glu Pro Trp 545 550 555 560 Val Ala Asn Asn Lys Asn Ala Tyr Val Asp Asn Thr Gly Gly Ile Glu 565 570 575 Arg Ser Lys Ala Leu Phe Val Gln Gly Asp Gly Glu Phe Ser Gln Phe 580 585 590 Ile Gly Asp Lys Leu Lys Pro Asn Thr Asp Tyr Ile Ile Gln Tyr Thr 595 600 605 Val Lys Gly Lys Pro Ala Ile Tyr Leu Lys Asn Lys Ser Thr Gly Tyr 610 615 620 Ile Thr Tyr Glu Asp Thr Asn Gly Asn Ser Glu Glu Phe Gln Thr Ile 625 630 635 640 Ala Val Lys Phe Thr Ser Glu Thr Asp Leu Ser Gln Thr His Leu Val 645 650 655 Phe Lys Ser Gln Asn Gly Tyr Glu Ala Trp Gly Asp Asn Phe Ile Ile 660 665 670 Leu Glu Ala Lys Leu Phe Glu Thr Pro Glu Ser Pro Glu Leu Ile Lys 675 680 685 Phe Asn Asp Trp Glu Arg Phe Gly Thr Thr Tyr Ile Thr Gly Asn Glu 690 695 700 Leu Arg Ile Asp His Ser Arg Gly Gly Tyr Phe Arg Gln Ser Leu Asn 705 710 715 720 Ile Asp Ser Tyr Ser Thr Tyr Asp Leu Ser Phe Ser Phe Ser Gly Leu 725 730 735 Trp Ala Lys Val Ile Val Lys Asn Ser Arg Gly Val Val Leu Phe Glu 740 745 750 Lys Val Lys Asn Asn Gly Ser Ser Tyr Glu Asp Ile Ser Glu Ser Phe 755 760 765 Thr Thr Ala Ser Asn Lys Asp Gly Phe Phe Ile Glu Leu Thr Ala Glu 770 775 780 Arg Thr Ser Ser Thr Phe His Ser Phe Arg Asp Ile Ser Ile Lys Glu 785 790 795 800 Lys Ile Glu 46803PRTArtificialAXMI115 variant sequence (AXMI115_Block2_L11H6) 46Met Asn Met Asn Asn Thr Lys Leu Asn Ala Arg Ala Leu Pro Ser Phe 1 5 10 15 Ile Asp Tyr Phe Asn Gly Ile Tyr Gly Phe Ala Thr Gly Ile Lys Asp 20 25 30 Ile Met Asn Met Ile Phe Lys Thr Asp Thr Gly Gly Asp Leu Thr Leu 35 40 45 Asp Glu Ile Leu Lys Asn Gln Gln Leu Leu Asn Glu Ile Ser Gly Lys 50 55 60 Leu Asp Gly Val Asn Gly Ser Leu Asn Asp Leu Ile Ala Gln Gly Asn 65 70 75 80 Leu Asn Thr Glu Leu Ser Lys Glu Ile Leu Lys Ile Ala Asn Glu Gln 85 90 95 Asn Gln Val Leu Asn Asp Val Asn Asn Lys Leu Asp Ala Ile Asn Thr 100 105 110 Met Leu Asn Ile Tyr Leu Pro Lys Ile Thr Ser Met Leu Ser Asp Val 115 120 125 Met Lys Gln Asn Tyr Ala Leu Ser Leu Gln Ile Glu Tyr Leu Ser Arg 130 135 140 Gln Leu Gln Glu Ile Ser Asp Lys Leu Asp Val Ile Asn Leu Asn Val 145 150 155 160 Leu Ile Asn Ser Thr Leu Thr Glu Ile Thr Pro Ser Tyr Gln Arg Ile 165

170 175 Lys Tyr Val Asn Glu Lys Phe Asp Lys Leu Thr Phe Ala Thr Glu Ser 180 185 190 Thr Leu Arg Ala Lys Gln Gly Ile Phe Asn Glu Asp Ser Phe Asp Asn 195 200 205 Asn Thr Leu Glu Asn Leu Thr Asp Leu Ala Glu Leu Ala Lys Ser Ile 210 215 220 Thr Lys Asn Asp Val Asp Ser Phe Glu Phe Tyr Leu His Thr Phe His 225 230 235 240 Asp Val Leu Ile Gly Asn Asn Leu Phe Gly Arg Ser Ala Leu Lys Thr 245 250 255 Ala Ser Glu Leu Ile Thr Lys Asp Glu Ile Lys Thr Ser Gly Ser Glu 260 265 270 Ile Gly Lys Val Tyr Ser Phe Leu Ile Val Leu Thr Ser Leu Gln Ala 275 280 285 Lys Ala Phe Leu Thr Leu Thr Thr Cys Arg Lys Leu Leu Gly Leu Ser 290 295 300 Asp Ile Asp Tyr Thr Ser Ile Met Asn Glu His Leu Asn Asn Glu Lys 305 310 315 320 Asn Glu Phe Arg Asp Asn Ile Leu Pro Ala Leu Ser Asn Lys Phe Ser 325 330 335 Asn Pro Ser Tyr Ala Lys Thr Ile Gly Ser Asp Asn Tyr Ala Lys Val 340 345 350 Ile Leu Glu Ser Glu Pro Gly Tyr Ala Leu Val Gly Phe Glu Ile Ile 355 360 365 Asn Asp Pro Ile Pro Val Leu Lys Ala Tyr Lys Ala Lys Leu Lys Gln 370 375 380 Asn Tyr Gln Val Asp Asn Gln Ser Leu Ser Glu Ile Val Tyr Leu Asp 385 390 395 400 Ile Asp Lys Leu Phe Cys Pro Glu Asn Ser Glu Gln Lys Tyr Tyr Thr 405 410 415 Lys Asn Leu Thr Phe Pro Asp Gly Tyr Val Ile Thr Lys Ile Thr Phe 420 425 430 Glu Lys Lys Leu Asn Asn Leu Ile Tyr Glu Ala Thr Ala Asn Phe Tyr 435 440 445 Asp Pro Ser Thr Gly Asp Ile Asp Leu Asn Lys Lys Gln Val Glu Ser 450 455 460 Thr Phe Pro Gln Thr Asp Tyr Ile Thr Met Asp Ile Gly Asp Asp Asp 465 470 475 480 Gly Ile Tyr Met Pro Leu Gly Val Ile Ser Glu Thr Phe Leu Thr Pro 485 490 495 Ile Asn Ser Phe Gly Leu Glu Val Asp Ala Lys Ser Lys Thr Leu Thr 500 505 510 Leu Lys Cys Lys Ser Tyr Leu Arg Glu Tyr Leu Leu Glu Ser Asp Leu 515 520 525 Lys Asn Lys Glu Thr Gly Leu Ile Ala Pro Pro Asn Val Phe Ile Ser 530 535 540 Asn Val Val Lys Asn Trp Asp Ile Glu Glu Asp Ser Leu Glu Pro Trp 545 550 555 560 Val Ala Asn Asn Lys Asn Ala Tyr Val Asp Asn Thr Gly Gly Ile Glu 565 570 575 Arg Ser Lys Ala Leu Phe Thr Gln Gly Asp Gly Lys Phe Ser Gln Phe 580 585 590 Ile Gly Asp Lys Leu Lys Pro Asn Thr Asp Tyr Ile Ile Gln Tyr Thr 595 600 605 Val Lys Gly Lys Pro Ala Ile Tyr Leu Lys Asn Lys Ser Thr Gly Tyr 610 615 620 Ile Thr Tyr Glu Asp Thr Asn Gly Asn Ser Glu Glu Phe Gln Thr Ile 625 630 635 640 Ala Val Lys Phe Thr Ser Glu Thr Asp Leu Ser Gln Thr His Leu Val 645 650 655 Phe Lys Ser Gln Asn Gly Tyr Glu Ala Trp Gly Asp Asn Phe Ile Ile 660 665 670 Leu Glu Ala Lys Leu Phe Glu Thr Pro Glu Ser Pro Glu Leu Ile Lys 675 680 685 Phe Asn Asp Trp Glu Arg Phe Gly Thr Thr Tyr Ile Thr Gly Asn Glu 690 695 700 Leu Arg Ile Asp His Ser Arg Gly Gly Tyr Phe Arg Gln Ser Leu Asn 705 710 715 720 Ile Asp Ser Tyr Ser Thr Tyr Asp Leu Ser Phe Ser Phe Ser Gly Leu 725 730 735 Trp Ala Lys Val Ile Val Lys Asn Ser Arg Gly Val Val Leu Phe Glu 740 745 750 Lys Val Lys Asn Asn Gly Ser Ser Tyr Glu Asp Ile Ser Glu Ser Phe 755 760 765 Thr Thr Ala Ser Asn Lys Asp Gly Phe Phe Ile Glu Leu Thr Ala Glu 770 775 780 Arg Thr Ser Ser Thr Phe His Ser Phe Arg Asp Ile Ser Ile Lys Glu 785 790 795 800 Lys Ile Glu 47803PRTArtificialAXMI115 variant sequence (AXMI115_Block2_ L11H7) 47Met Asn Met Asn Asn Thr Lys Leu Asn Ala Arg Ala Leu Pro Ser Phe 1 5 10 15 Ile Asp Tyr Phe Asn Gly Ile Tyr Gly Phe Ala Thr Gly Ile Lys Asp 20 25 30 Ile Met Asn Met Ile Phe Lys Thr Asp Thr Gly Gly Asp Leu Thr Leu 35 40 45 Asp Glu Ile Leu Lys Asn Gln Gln Leu Leu Asn Glu Ile Ser Gly Lys 50 55 60 Leu Asp Gly Val Asn Gly Ser Leu Asn Asp Leu Ile Ala Gln Gly Asn 65 70 75 80 Leu Asn Thr Glu Leu Ser Lys Glu Ile Leu Lys Ile Ala Asn Glu Gln 85 90 95 Asn Gln Val Leu Asn Asp Val Asn Asn Lys Leu Asp Ala Ile Asn Thr 100 105 110 Met Leu Asn Ile Tyr Leu Pro Lys Ile Thr Ser Met Leu Ser Asp Val 115 120 125 Met Lys Gln Asn Tyr Ala Leu Ser Leu Gln Ile Glu Tyr Leu Ser Arg 130 135 140 Gln Leu Gln Glu Ile Ser Asp Lys Leu Asp Val Ile Asn Leu Asn Val 145 150 155 160 Leu Ile Asn Ser Thr Leu Thr Glu Ile Thr Pro Ser Tyr Gln Arg Ile 165 170 175 Lys Tyr Val Asn Glu Lys Phe Asp Lys Leu Thr Phe Ala Thr Glu Ser 180 185 190 Thr Leu Arg Ala Lys Gln Gly Ile Phe Asn Glu Asp Ser Phe Asp Asn 195 200 205 Asn Thr Leu Glu Asn Leu Thr Asp Leu Ala Glu Leu Ala Lys Ser Ile 210 215 220 Thr Lys Asn Asp Val Asp Ser Phe Glu Phe Tyr Leu His Thr Phe His 225 230 235 240 Asp Val Leu Ile Gly Asn Asn Leu Phe Gly Arg Ser Ala Leu Lys Thr 245 250 255 Ala Ser Glu Leu Ile Thr Lys Asp Glu Ile Lys Thr Ser Gly Ser Glu 260 265 270 Ile Gly Lys Val Tyr Ser Phe Leu Ile Val Leu Thr Ser Leu Gln Ala 275 280 285 Lys Ala Phe Leu Thr Leu Thr Thr Cys Arg Lys Leu Leu Gly Leu Ser 290 295 300 Asp Ile Asp Tyr Thr Ser Ile Met Asn Glu His Leu Asn Asn Glu Lys 305 310 315 320 Asn Glu Phe Arg Asp Asn Ile Leu Pro Ala Leu Ser Asn Lys Phe Ser 325 330 335 Asn Pro Ser Tyr Ala Lys Thr Ile Gly Ser Asp Asn Tyr Ala Lys Val 340 345 350 Ile Leu Glu Ser Glu Pro Gly Tyr Ala Leu Val Gly Phe Glu Ile Ile 355 360 365 Asn Asp Pro Ile Pro Val Leu Lys Ala Tyr Lys Ala Lys Leu Lys Gln 370 375 380 Asn Tyr Gln Val Asp Asn Gln Ser Leu Ser Glu Ile Val Tyr Leu Asp 385 390 395 400 Ile Asp Lys Leu Phe Cys Pro Glu Asn Ser Glu Gln Lys Tyr Tyr Thr 405 410 415 Lys Asn Leu Thr Phe Pro Asp Gly Tyr Val Ile Thr Lys Ile Thr Phe 420 425 430 Glu Lys Lys Leu Asn Asn Leu Ile Tyr Glu Ala Thr Ala Asn Phe Tyr 435 440 445 Asp Pro Ser Thr Gly Asp Ile Asp Leu Asn Lys Lys Gln Val Glu Ser 450 455 460 Thr Phe Pro Gln Thr Asp Tyr Ile Thr Met Asp Ile Gly Asp Asp Asp 465 470 475 480 Gly Ile Tyr Met Pro Leu Gly Val Ile Ser Glu Thr Phe Leu Thr Pro 485 490 495 Ile Asn Ser Phe Gly Leu Glu Val Asp Ala Lys Ser Lys Thr Leu Thr 500 505 510 Leu Lys Cys Lys Ser Tyr Leu Arg Glu Tyr Leu Leu Glu Ser Asp Leu 515 520 525 Lys Asn Lys Glu Thr Gly Leu Ile Ala Pro Pro Asn Val Phe Ile Ser 530 535 540 Asn Val Val Lys Asn Trp Asp Ile Glu Glu Asp Ser Leu Glu Pro Trp 545 550 555 560 Val Ala Asn Asn Lys Asn Ala Tyr Val Asp Asn Thr Gly Gly Ile Glu 565 570 575 Arg Ser Lys Ala Leu Phe Thr Leu Gly Asp Gly Glu Phe Ser Gln Phe 580 585 590 Ile Gly Asp Lys Leu Lys Pro Asn Thr Asp Tyr Ile Ile Gln Tyr Thr 595 600 605 Val Lys Gly Lys Pro Ala Ile Tyr Leu Lys Asn Lys Ser Thr Gly Tyr 610 615 620 Ile Thr Tyr Glu Asp Thr Asn Gly Asn Ser Glu Glu Phe Gln Thr Ile 625 630 635 640 Ala Val Lys Phe Thr Ser Glu Thr Asp Leu Ser Gln Thr His Leu Val 645 650 655 Phe Lys Ser Gln Asn Gly Tyr Glu Ala Trp Gly Asp Asn Phe Ile Ile 660 665 670 Leu Glu Ala Lys Leu Phe Glu Thr Pro Glu Ser Pro Glu Leu Ile Lys 675 680 685 Phe Asn Asp Trp Glu Arg Phe Gly Thr Thr Tyr Ile Thr Gly Asn Glu 690 695 700 Leu Arg Ile Asp His Ser Arg Gly Gly Tyr Phe Arg Gln Ser Leu Asn 705 710 715 720 Ile Asp Ser Tyr Ser Thr Tyr Asp Leu Ser Phe Ser Phe Ser Gly Leu 725 730 735 Trp Ala Lys Val Ile Val Lys Asn Ser Arg Gly Val Val Leu Phe Glu 740 745 750 Lys Val Lys Asn Asn Gly Ser Ser Tyr Glu Asp Ile Ser Glu Ser Phe 755 760 765 Thr Thr Ala Ser Asn Lys Asp Gly Phe Phe Ile Glu Leu Thr Ala Glu 770 775 780 Arg Thr Ser Ser Thr Phe His Ser Phe Arg Asp Ile Ser Ile Lys Glu 785 790 795 800 Lys Ile Glu 48803PRTArtificialAxmi115 variant sequence (AXMI115_Block2_ L11A9) 48Met Asn Met Asn Asn Thr Lys Leu Asn Ala Arg Ala Leu Pro Ser Phe 1 5 10 15 Ile Asp Tyr Phe Asn Gly Ile Tyr Gly Phe Ala Thr Gly Ile Lys Asp 20 25 30 Ile Met Asn Met Ile Phe Lys Thr Asp Thr Gly Gly Asp Leu Thr Leu 35 40 45 Asp Glu Ile Leu Lys Asn Gln Gln Leu Leu Asn Glu Ile Ser Gly Lys 50 55 60 Leu Asp Gly Val Asn Gly Ser Leu Asn Asp Leu Ile Ala Gln Gly Asn 65 70 75 80 Leu Asn Thr Glu Leu Ser Lys Glu Ile Leu Lys Ile Ala Asn Glu Gln 85 90 95 Asn Gln Val Leu Asn Asp Val Asn Asn Lys Leu Asp Ala Ile Asn Thr 100 105 110 Met Leu Asn Ile Tyr Leu Pro Lys Ile Thr Ser Met Leu Ser Asp Val 115 120 125 Met Lys Gln Asn Tyr Ala Leu Ser Leu Gln Ile Glu Tyr Leu Ser Arg 130 135 140 Gln Leu Gln Glu Ile Ser Asp Lys Leu Asp Val Ile Asn Leu Asn Val 145 150 155 160 Leu Ile Asn Ser Thr Leu Thr Glu Ile Thr Pro Ser Tyr Gln Arg Ile 165 170 175 Lys Tyr Val Asn Glu Lys Phe Asp Lys Leu Thr Phe Ala Thr Glu Ser 180 185 190 Thr Leu Arg Ala Lys Gln Gly Ile Phe Asn Glu Asp Ser Phe Asp Asn 195 200 205 Asn Thr Leu Glu Asn Leu Thr Asp Leu Ala Glu Leu Ala Lys Ser Ile 210 215 220 Thr Lys Asn Asp Val Asp Ser Phe Glu Phe Tyr Leu His Thr Phe His 225 230 235 240 Asp Val Leu Ile Gly Asn Asn Leu Phe Gly Arg Ser Ala Leu Lys Thr 245 250 255 Ala Ser Glu Leu Ile Thr Lys Asp Glu Ile Lys Thr Ser Gly Ser Glu 260 265 270 Ile Gly Lys Val Tyr Ser Phe Leu Ile Val Leu Thr Ser Leu Gln Ala 275 280 285 Lys Ala Phe Leu Thr Leu Thr Thr Cys Arg Lys Leu Leu Gly Leu Ser 290 295 300 Asp Ile Asp Tyr Thr Ser Ile Met Asn Glu His Leu Asn Asn Glu Lys 305 310 315 320 Asn Glu Phe Arg Asp Asn Ile Leu Pro Ala Leu Ser Asn Lys Phe Ser 325 330 335 Asn Pro Ser Tyr Ala Lys Thr Ile Gly Ser Asp Asn Tyr Ala Lys Val 340 345 350 Ile Leu Glu Ser Glu Pro Gly Tyr Ala Leu Val Gly Phe Glu Ile Ile 355 360 365 Asn Asp Pro Ile Pro Val Leu Lys Ala Tyr Lys Ala Lys Leu Lys Gln 370 375 380 Asn Tyr Gln Val Asp Asn Gln Ser Leu Ser Glu Ile Val Tyr Leu Asp 385 390 395 400 Ile Asp Lys Leu Phe Cys Pro Glu Asn Ser Glu Gln Lys Tyr Tyr Thr 405 410 415 Lys Asn Leu Thr Phe Pro Asp Gly Tyr Val Ile Thr Lys Ile Thr Phe 420 425 430 Glu Lys Lys Leu Asn Asn Leu Ile Tyr Glu Ala Thr Ala Asn Phe Tyr 435 440 445 Asp Pro Ser Thr Gly Asp Ile Asp Leu Asn Lys Lys Gln Val Glu Ser 450 455 460 Thr Phe Pro Gln Thr Asp Tyr Ile Thr Met Asp Ile Gly Asp Asp Asp 465 470 475 480 Gly Ile Tyr Met Pro Leu Gly Val Ile Ser Glu Thr Phe Leu Thr Pro 485 490 495 Ile Asn Ser Phe Gly Leu Glu Val Asp Ala Lys Ser Lys Thr Leu Thr 500 505 510 Leu Lys Cys Lys Ser Tyr Leu Arg Glu Tyr Leu Leu Glu Ser Asp Leu 515 520 525 Lys Asn Lys Glu Thr Gly Leu Ile Ala Pro Pro Asn Val Phe Ile Ser 530 535 540 Asn Val Val Lys Asn Trp Asp Ile Glu Glu Asp Ser Leu Glu Pro Trp 545 550 555 560 Val Ala Asn Asn Lys Asn Ala Tyr Val Asp Asn Thr Gly Gly Ile Glu 565 570 575 Arg Ser Lys Ala Leu Phe Thr Lys Gly Asp Gly Glu Phe Ser Gln Phe 580 585 590 Ile Gly Asp Lys Leu Lys Pro Asn Thr Asp Tyr Ile Ile Gln Tyr Thr 595 600 605 Val Lys Gly Lys Pro Ala Ile Tyr Leu Lys Asn Lys Ser Thr Gly Tyr 610 615 620 Ile Thr Tyr Glu Asp Thr Asn Gly Asn Ser Glu Glu Phe Gln Thr Ile 625 630 635 640 Ala Val Lys Phe Thr Ser Glu Thr Asp Leu Ser Gln Thr His Leu Val 645 650 655 Phe Lys Ser Gln Asn Gly Tyr Glu Ala Trp Gly Asp Asn Phe Ile Ile 660 665 670 Leu Glu Ala Lys Leu Phe Glu Thr Pro Glu Ser Pro Glu Leu Ile Lys 675 680 685 Phe Asn Asp Trp Glu Arg Phe Gly Thr Thr Tyr Ile Thr Gly Asn Glu 690 695 700 Leu Arg Ile Asp His Ser Arg Gly Gly Tyr Phe Arg Gln Ser Leu Asn 705 710 715 720 Ile Asp Ser Tyr Ser Thr Tyr Asp Leu Ser Phe Ser Phe Ser Gly Leu 725 730 735 Trp Ala Lys Val Ile Val Lys Asn Ser Arg Gly Val Val Leu Phe Glu 740 745 750 Lys Val Lys Asn Asn Gly Ser Ser Tyr Glu Asp Ile Ser Glu Ser Phe 755 760 765 Thr Thr Ala Ser Asn Lys Asp Gly Phe Phe Ile Glu Leu Thr Ala Glu 770 775 780 Arg Thr Ser Ser Thr Phe His Ser Phe Arg Asp Ile Ser Ile Lys Glu 785 790 795 800 Lys Ile Glu 49803PRTArtificialAXMI115 variant sequence (AXMI115_Block2_L11F9) 49Met Asn Met Asn Asn Thr Lys Leu Asn Ala Arg Ala Leu Pro Ser Phe 1 5 10 15 Ile Asp Tyr Phe Asn Gly Ile Tyr Gly Phe Ala Thr Gly Ile Lys Asp 20 25 30 Ile Met Asn Met Ile Phe Lys Thr Asp Thr Gly Gly Asp Leu Thr Leu 35

40 45 Asp Glu Ile Leu Lys Asn Gln Gln Leu Leu Asn Glu Ile Ser Gly Lys 50 55 60 Leu Asp Gly Val Asn Gly Ser Leu Asn Asp Leu Ile Ala Gln Gly Asn 65 70 75 80 Leu Asn Thr Glu Leu Ser Lys Glu Ile Leu Lys Ile Ala Asn Glu Gln 85 90 95 Asn Gln Val Leu Asn Asp Val Asn Asn Lys Leu Asp Ala Ile Asn Thr 100 105 110 Met Leu Asn Ile Tyr Leu Pro Lys Ile Thr Ser Met Leu Ser Asp Val 115 120 125 Met Lys Gln Asn Tyr Ala Leu Ser Leu Gln Ile Glu Tyr Leu Ser Arg 130 135 140 Gln Leu Gln Glu Ile Ser Asp Lys Leu Asp Val Ile Asn Leu Asn Val 145 150 155 160 Leu Ile Asn Ser Thr Leu Thr Glu Ile Thr Pro Ser Tyr Gln Arg Ile 165 170 175 Lys Tyr Val Asn Glu Lys Phe Asp Lys Leu Thr Phe Ala Thr Glu Ser 180 185 190 Thr Leu Arg Ala Lys Gln Gly Ile Phe Asn Glu Asp Ser Phe Asp Asn 195 200 205 Asn Thr Leu Glu Asn Leu Thr Asp Leu Ala Glu Leu Ala Lys Ser Ile 210 215 220 Thr Lys Asn Asp Val Asp Ser Phe Glu Phe Tyr Leu His Thr Phe His 225 230 235 240 Asp Val Leu Ile Gly Asn Asn Leu Phe Gly Arg Ser Ala Leu Lys Thr 245 250 255 Ala Ser Glu Leu Ile Thr Lys Asp Glu Ile Lys Thr Ser Gly Ser Glu 260 265 270 Ile Gly Lys Val Tyr Ser Phe Leu Ile Val Leu Thr Ser Leu Gln Ala 275 280 285 Lys Ala Phe Leu Thr Leu Thr Thr Cys Arg Lys Leu Leu Gly Leu Ser 290 295 300 Asp Ile Asp Tyr Thr Ser Ile Met Asn Glu His Leu Asn Asn Glu Lys 305 310 315 320 Asn Glu Phe Arg Asp Asn Ile Leu Pro Ala Leu Ser Asn Lys Phe Ser 325 330 335 Asn Pro Ser Tyr Ala Lys Thr Ile Gly Ser Asp Asn Tyr Ala Lys Val 340 345 350 Ile Leu Glu Ser Glu Pro Gly Tyr Ala Leu Val Gly Phe Glu Ile Ile 355 360 365 Asn Asp Pro Ile Pro Val Leu Lys Ala Tyr Lys Ala Lys Leu Lys Gln 370 375 380 Asn Tyr Gln Val Asp Asn Gln Ser Leu Ser Glu Ile Val Tyr Leu Asp 385 390 395 400 Ile Asp Lys Leu Phe Cys Pro Glu Asn Ser Glu Gln Lys Tyr Tyr Thr 405 410 415 Lys Asn Leu Thr Phe Pro Asp Gly Tyr Val Ile Thr Lys Ile Thr Phe 420 425 430 Glu Lys Lys Leu Asn Asn Leu Ile Tyr Glu Ala Thr Ala Asn Phe Tyr 435 440 445 Asp Pro Ser Thr Gly Asp Ile Asp Leu Asn Lys Lys Gln Val Glu Ser 450 455 460 Thr Phe Pro Gln Thr Asp Tyr Ile Thr Met Asp Ile Gly Asp Asp Asp 465 470 475 480 Gly Ile Tyr Met Pro Leu Gly Val Ile Ser Glu Thr Phe Leu Thr Pro 485 490 495 Ile Asn Ser Phe Gly Leu Glu Val Asp Ala Lys Ser Lys Thr Leu Thr 500 505 510 Leu Lys Cys Lys Ser Tyr Leu Arg Glu Tyr Leu Leu Glu Ser Asp Leu 515 520 525 Lys Asn Lys Glu Thr Gly Leu Ile Ala Pro Pro Asn Val Phe Ile Ser 530 535 540 Asn Val Val Lys Asn Trp Asp Ile Glu Glu Asp Ser Leu Glu Pro Trp 545 550 555 560 Val Ala Asn Asn Lys Asn Ala Tyr Val Asp Asn Thr Gly Gly Ile Glu 565 570 575 Arg Ser Lys Ala Leu Phe Thr Val Gly Asp Gly Lys Phe Ser Gln Phe 580 585 590 Ile Gly Asp Lys Leu Lys Pro Asn Thr Asp Tyr Ile Ile Gln Tyr Thr 595 600 605 Val Lys Gly Lys Pro Ala Ile Tyr Leu Lys Asn Lys Ser Thr Gly Tyr 610 615 620 Ile Thr Tyr Glu Asp Thr Asn Gly Asn Ser Glu Glu Phe Gln Thr Ile 625 630 635 640 Ala Val Lys Phe Thr Ser Glu Thr Asp Leu Ser Gln Thr His Leu Val 645 650 655 Phe Lys Ser Gln Asn Gly Tyr Glu Ala Trp Gly Asp Asn Phe Ile Ile 660 665 670 Leu Glu Ala Lys Leu Phe Glu Thr Pro Glu Ser Pro Glu Leu Ile Lys 675 680 685 Phe Asn Asp Trp Glu Arg Phe Gly Thr Thr Tyr Ile Thr Gly Asn Glu 690 695 700 Leu Arg Ile Asp His Ser Arg Gly Gly Tyr Phe Arg Gln Ser Leu Asn 705 710 715 720 Ile Asp Ser Tyr Ser Thr Tyr Asp Leu Ser Phe Ser Phe Ser Gly Leu 725 730 735 Trp Ala Lys Val Ile Val Lys Asn Ser Arg Gly Val Val Leu Phe Glu 740 745 750 Lys Val Lys Asn Asn Gly Ser Ser Tyr Glu Asp Ile Ser Glu Ser Phe 755 760 765 Thr Thr Ala Ser Asn Lys Asp Gly Phe Phe Ile Glu Leu Thr Ala Glu 770 775 780 Arg Thr Ser Ser Thr Phe His Ser Phe Arg Asp Ile Ser Ile Lys Glu 785 790 795 800 Lys Ile Glu 50803PRTArtificialAXMI115 variant sequence (AXMI115_Block2_L11G10) 50Met Asn Met Asn Asn Thr Lys Leu Asn Ala Arg Ala Leu Pro Ser Phe 1 5 10 15 Ile Asp Tyr Phe Asn Gly Ile Tyr Gly Phe Ala Thr Gly Ile Lys Asp 20 25 30 Ile Met Asn Met Ile Phe Lys Thr Asp Thr Gly Gly Asp Leu Thr Leu 35 40 45 Asp Glu Ile Leu Lys Asn Gln Gln Leu Leu Asn Glu Ile Ser Gly Lys 50 55 60 Leu Asp Gly Val Asn Gly Ser Leu Asn Asp Leu Ile Ala Gln Gly Asn 65 70 75 80 Leu Asn Thr Glu Leu Ser Lys Glu Ile Leu Lys Ile Ala Asn Glu Gln 85 90 95 Asn Gln Val Leu Asn Asp Val Asn Asn Lys Leu Asp Ala Ile Asn Thr 100 105 110 Met Leu Asn Ile Tyr Leu Pro Lys Ile Thr Ser Met Leu Ser Asp Val 115 120 125 Met Lys Gln Asn Tyr Ala Leu Ser Leu Gln Ile Glu Tyr Leu Ser Arg 130 135 140 Gln Leu Gln Glu Ile Ser Asp Lys Leu Asp Val Ile Asn Leu Asn Val 145 150 155 160 Leu Ile Asn Ser Thr Leu Thr Glu Ile Thr Pro Ser Tyr Gln Arg Ile 165 170 175 Lys Tyr Val Asn Glu Lys Phe Asp Lys Leu Thr Phe Ala Thr Glu Ser 180 185 190 Thr Leu Arg Ala Lys Gln Gly Ile Phe Asn Glu Asp Ser Phe Asp Asn 195 200 205 Asn Thr Leu Glu Asn Leu Thr Asp Leu Ala Glu Leu Ala Lys Ser Ile 210 215 220 Thr Lys Asn Asp Val Asp Ser Phe Glu Phe Tyr Leu His Thr Phe His 225 230 235 240 Asp Val Leu Ile Gly Asn Asn Leu Phe Gly Arg Ser Ala Leu Lys Thr 245 250 255 Ala Ser Glu Leu Ile Thr Lys Asp Glu Ile Lys Thr Ser Gly Ser Glu 260 265 270 Ile Gly Lys Val Tyr Ser Phe Leu Ile Val Leu Thr Ser Leu Gln Ala 275 280 285 Lys Ala Phe Leu Thr Leu Thr Thr Cys Arg Lys Leu Leu Gly Leu Ser 290 295 300 Asp Ile Asp Tyr Thr Ser Ile Met Asn Glu His Leu Asn Asn Glu Lys 305 310 315 320 Asn Glu Phe Arg Asp Asn Ile Leu Pro Ala Leu Ser Asn Lys Phe Ser 325 330 335 Asn Pro Ser Tyr Ala Lys Thr Ile Gly Ser Asp Asn Tyr Ala Lys Val 340 345 350 Ile Leu Glu Ser Glu Pro Gly Tyr Ala Leu Val Gly Phe Glu Ile Ile 355 360 365 Asn Asp Pro Ile Pro Val Leu Lys Ala Tyr Lys Ala Lys Leu Lys Gln 370 375 380 Asn Tyr Gln Val Asp Asn Gln Ser Leu Ser Glu Ile Val Tyr Leu Asp 385 390 395 400 Ile Asp Lys Leu Phe Cys Pro Glu Asn Ser Glu Gln Lys Tyr Tyr Thr 405 410 415 Lys Asn Leu Thr Phe Pro Asp Gly Tyr Val Ile Thr Lys Ile Thr Phe 420 425 430 Glu Lys Lys Leu Asn Asn Leu Ile Tyr Glu Ala Thr Ala Asn Phe Tyr 435 440 445 Asp Pro Ser Thr Gly Asp Ile Asp Leu Asn Lys Lys Gln Val Glu Ser 450 455 460 Thr Phe Pro Gln Thr Asp Tyr Ile Thr Met Asp Ile Gly Asp Asp Asp 465 470 475 480 Gly Ile Tyr Met Pro Leu Gly Val Ile Ser Glu Thr Phe Leu Thr Pro 485 490 495 Ile Asn Ser Phe Gly Leu Glu Val Asp Ala Lys Ser Lys Thr Leu Thr 500 505 510 Leu Lys Cys Lys Ser Tyr Leu Arg Glu Tyr Leu Leu Glu Ser Asp Leu 515 520 525 Lys Asn Lys Glu Thr Gly Leu Ile Ala Pro Pro Asn Val Phe Ile Ser 530 535 540 Asn Val Val Lys Asn Trp Asp Ile Glu Glu Asp Ser Leu Glu Pro Trp 545 550 555 560 Val Ala Asn Asn Lys Asn Ala Tyr Val Asp Asn Thr Gly Gly Ile Glu 565 570 575 Arg Ser Lys Ala Leu Phe Thr Gln Ser Asp Gly Glu Phe Ser Gln Phe 580 585 590 Ile Gly Asp Lys Leu Lys Pro Asn Thr Asp Tyr Ile Ile Gln Tyr Thr 595 600 605 Val Lys Gly Lys Pro Ala Ile Tyr Leu Lys Asn Lys Ser Thr Gly Tyr 610 615 620 Ile Thr Tyr Glu Asp Thr Asn Gly Asn Ser Glu Glu Phe Gln Thr Ile 625 630 635 640 Ala Val Lys Phe Thr Ser Glu Thr Asp Leu Ser Gln Thr His Leu Val 645 650 655 Phe Lys Ser Gln Asn Gly Tyr Glu Ala Trp Gly Asp Asn Phe Ile Ile 660 665 670 Leu Glu Ala Lys Leu Phe Glu Thr Pro Glu Ser Pro Glu Leu Ile Lys 675 680 685 Phe Asn Asp Trp Glu Arg Phe Gly Thr Thr Tyr Ile Thr Gly Asn Glu 690 695 700 Leu Arg Ile Asp His Ser Arg Gly Gly Tyr Phe Arg Gln Ser Leu Asn 705 710 715 720 Ile Asp Ser Tyr Ser Thr Tyr Asp Leu Ser Phe Ser Phe Ser Gly Leu 725 730 735 Trp Ala Lys Val Ile Val Lys Asn Ser Arg Gly Val Val Leu Phe Glu 740 745 750 Lys Val Lys Asn Asn Gly Ser Ser Tyr Glu Asp Ile Ser Glu Ser Phe 755 760 765 Thr Thr Ala Ser Asn Lys Asp Gly Phe Phe Ile Glu Leu Thr Ala Glu 770 775 780 Arg Thr Ser Ser Thr Phe His Ser Phe Arg Asp Ile Ser Ile Lys Glu 785 790 795 800 Lys Ile Glu 51803PRTArtificialAXMI115 variant sequence (AXMI115_Block2_ L12C3) 51Met Asn Met Asn Asn Thr Lys Leu Asn Ala Arg Ala Leu Pro Ser Phe 1 5 10 15 Ile Asp Tyr Phe Asn Gly Ile Tyr Gly Phe Ala Thr Gly Ile Lys Asp 20 25 30 Ile Met Asn Met Ile Phe Lys Thr Asp Thr Gly Gly Asp Leu Thr Leu 35 40 45 Asp Glu Ile Leu Lys Asn Gln Gln Leu Leu Asn Glu Ile Ser Gly Lys 50 55 60 Leu Asp Gly Val Asn Gly Ser Leu Asn Asp Leu Ile Ala Gln Gly Asn 65 70 75 80 Leu Asn Thr Glu Leu Ser Lys Glu Ile Leu Lys Ile Ala Asn Glu Gln 85 90 95 Asn Gln Val Leu Asn Asp Val Asn Asn Lys Leu Asp Ala Ile Asn Thr 100 105 110 Met Leu Asn Ile Tyr Leu Pro Lys Ile Thr Ser Met Leu Ser Asp Val 115 120 125 Met Lys Gln Asn Tyr Ala Leu Ser Leu Gln Ile Glu Tyr Leu Ser Arg 130 135 140 Gln Leu Gln Glu Ile Ser Asp Lys Leu Asp Val Ile Asn Leu Asn Val 145 150 155 160 Leu Ile Asn Ser Thr Leu Thr Glu Ile Thr Pro Ser Tyr Gln Arg Ile 165 170 175 Lys Tyr Val Asn Glu Lys Phe Asp Lys Leu Thr Phe Ala Thr Glu Ser 180 185 190 Thr Leu Arg Ala Lys Gln Gly Ile Phe Asn Glu Asp Ser Phe Asp Asn 195 200 205 Asn Thr Leu Glu Asn Leu Thr Asp Leu Ala Glu Leu Ala Lys Ser Ile 210 215 220 Thr Lys Asn Asp Val Asp Ser Phe Glu Phe Tyr Leu His Thr Phe His 225 230 235 240 Asp Val Leu Ile Gly Asn Asn Leu Phe Gly Arg Ser Ala Leu Lys Thr 245 250 255 Ala Ser Glu Leu Ile Thr Lys Asp Glu Ile Lys Thr Ser Gly Ser Glu 260 265 270 Ile Gly Lys Val Tyr Ser Phe Leu Ile Val Leu Thr Ser Leu Gln Ala 275 280 285 Lys Ala Phe Leu Thr Leu Thr Thr Cys Arg Lys Leu Leu Gly Leu Ser 290 295 300 Asp Ile Asp Tyr Thr Ser Ile Met Asn Glu His Leu Asn Asn Glu Lys 305 310 315 320 Asn Glu Phe Arg Asp Asn Ile Leu Pro Ala Leu Ser Asn Lys Phe Ser 325 330 335 Asn Pro Ser Tyr Ala Lys Thr Ile Gly Ser Asp Asn Tyr Ala Lys Val 340 345 350 Ile Leu Glu Ser Glu Pro Gly Tyr Ala Leu Val Gly Phe Glu Ile Ile 355 360 365 Asn Asp Pro Ile Pro Val Leu Lys Ala Tyr Lys Ala Lys Leu Lys Gln 370 375 380 Asn Tyr Gln Val Asp Asn Gln Ser Leu Ser Glu Ile Val Tyr Leu Asp 385 390 395 400 Ile Asp Lys Leu Phe Cys Pro Glu Asn Ser Glu Gln Lys Tyr Tyr Thr 405 410 415 Lys Asn Leu Thr Phe Pro Asp Gly Tyr Val Ile Thr Lys Ile Thr Phe 420 425 430 Glu Lys Lys Leu Asn Asn Leu Ile Tyr Glu Ala Thr Ala Asn Phe Tyr 435 440 445 Asp Pro Ser Thr Gly Asp Ile Asp Leu Asn Lys Lys Gln Val Glu Ser 450 455 460 Thr Phe Pro Gln Thr Asp Tyr Ile Thr Met Asp Ile Gly Asp Asp Asp 465 470 475 480 Gly Ile Tyr Met Pro Leu Gly Val Ile Ser Glu Thr Phe Leu Thr Pro 485 490 495 Ile Asn Ser Phe Gly Leu Glu Val Asp Ala Lys Ser Lys Thr Leu Thr 500 505 510 Leu Lys Cys Lys Ser Tyr Leu Arg Glu Tyr Leu Leu Glu Ser Asp Leu 515 520 525 Lys Asn Lys Glu Thr Gly Leu Ile Ala Pro Pro Asn Val Phe Ile Ser 530 535 540 Asn Val Val Lys Asn Trp Asp Ile Glu Glu Asp Ser Leu Glu Pro Trp 545 550 555 560 Val Ala Asn Asn Lys Asn Ala Tyr Val Asp Asn Thr Gly Gly Ile Glu 565 570 575 Arg Ser Lys Ala Leu Phe Thr Gln Gly Asp Gly Val Phe Ser Gln Phe 580 585 590 Ile Gly Asp Lys Leu Lys Pro Asn Thr Asp Tyr Ile Ile Gln Tyr Thr 595 600 605 Val Lys Gly Lys Pro Ala Ile Tyr Leu Lys Asn Lys Ser Thr Gly Tyr 610 615 620 Ile Thr Tyr Glu Asp Thr Asn Gly Asn Ser Glu Glu Phe Gln Thr Ile 625 630 635 640 Ala Val Lys Phe Thr Ser Glu Thr Asp Leu Ser Gln Thr His Leu Val 645 650 655 Phe Lys Ser Gln Asn Gly Tyr Glu Ala Trp Gly Asp Asn Phe Ile Ile 660 665 670 Leu Glu Ala Lys Leu Phe Glu Thr Pro Glu Ser Pro Glu Leu Ile Lys 675 680 685 Phe Asn Asp Trp Glu Arg Phe Gly Thr Thr Tyr Ile Thr Gly Asn Glu 690 695 700 Leu Arg Ile Asp His Ser Arg Gly Gly Tyr Phe Arg Gln Ser Leu Asn 705 710 715 720 Ile Asp Ser Tyr Ser Thr Tyr Asp Leu Ser Phe Ser

Phe Ser Gly Leu 725 730 735 Trp Ala Lys Val Ile Val Lys Asn Ser Arg Gly Val Val Leu Phe Glu 740 745 750 Lys Val Lys Asn Asn Gly Ser Ser Tyr Glu Asp Ile Ser Glu Ser Phe 755 760 765 Thr Thr Ala Ser Asn Lys Asp Gly Phe Phe Ile Glu Leu Thr Ala Glu 770 775 780 Arg Thr Ser Ser Thr Phe His Ser Phe Arg Asp Ile Ser Ile Lys Glu 785 790 795 800 Lys Ile Glu 52803PRTArtificialAXMI115 variant sequence (AXMI115_Block18_ L12A10) 52Met Asn Met Asn Asn Thr Lys Leu Asn Ala Arg Ala Leu Pro Ser Phe 1 5 10 15 Ile Asp Tyr Phe Asn Gly Ile Tyr Gly Phe Ala Thr Gly Ile Lys Asp 20 25 30 Ile Met Asn Met Ile Phe Lys Thr Asp Thr Gly Gly Asp Leu Thr Leu 35 40 45 Asp Glu Ile Leu Lys Asn Gln Gln Leu Leu Asn Glu Ile Ser Gly Lys 50 55 60 Leu Asp Gly Val Asn Gly Ser Leu Asn Asp Leu Ile Ala Gln Gly Asn 65 70 75 80 Leu Asn Thr Glu Leu Ser Lys Glu Ile Leu Lys Ile Ala Asn Glu Gln 85 90 95 Asn Gln Val Leu Asn Asp Val Asn Asn Lys Leu Asp Ala Ile Asn Thr 100 105 110 Met Leu Asn Ile Tyr Leu Pro Lys Ile Thr Ser Met Leu Ser Asp Val 115 120 125 Met Lys Gln Asn Tyr Ala Leu Ser Leu Gln Ile Glu Tyr Leu Ser Arg 130 135 140 Gln Leu Gln Glu Ile Ser Asp Lys Leu Asp Val Ile Asn Leu Asn Val 145 150 155 160 Leu Ile Asn Ser Thr Leu Thr Glu Ile Thr Pro Ser Tyr Gln Arg Ile 165 170 175 Lys Tyr Val Asn Glu Lys Phe Asp Lys Leu Thr Phe Ala Thr Glu Ser 180 185 190 Thr Leu Arg Ala Lys Gln Gly Ile Phe Asn Glu Asp Ser Phe Asp Asn 195 200 205 Asn Thr Leu Glu Asn Leu Thr Asp Leu Ala Glu Leu Ala Lys Ser Ile 210 215 220 Thr Lys Asn Asp Val Asp Ser Phe Glu Phe Tyr Leu His Thr Phe His 225 230 235 240 Asp Val Leu Ile Gly Asn Asn Leu Phe Gly Arg Ser Ala Leu Lys Thr 245 250 255 Ala Ser Glu Leu Ile Thr Lys Asp Glu Ile Lys Thr Ser Gly Ser Glu 260 265 270 Ile Gly Lys Val Tyr Ser Phe Leu Ile Val Leu Thr Ser Leu Gln Ala 275 280 285 Lys Ala Phe Leu Thr Leu Thr Thr Cys Arg Lys Leu Leu Gly Leu Ser 290 295 300 Asp Ile Asp Tyr Thr Ser Ile Met Asn Glu His Leu Asn Asn Glu Lys 305 310 315 320 Asn Glu Phe Arg Asp Asn Ile Leu Pro Ala Leu Ser Asn Lys Phe Ser 325 330 335 Asn Pro Ser Tyr Ala Lys Thr Ile Gly Ser Asp Asn Tyr Ala Lys Val 340 345 350 Ile Leu Glu Ser Glu Pro Gly Tyr Ala Leu Val Gly Phe Glu Ile Ile 355 360 365 Asn Asp Pro Ile Pro Val Leu Lys Ala Tyr Lys Ala Lys Leu Lys Gln 370 375 380 Asn Tyr Gln Val Asp Asn Gln Ser Leu Ser Glu Ile Val Tyr Leu Asp 385 390 395 400 Ile Asp Lys Leu Phe Cys Pro Glu Asn Ser Glu Gln Lys Tyr Tyr Thr 405 410 415 Lys Asn Leu Thr Phe Pro Asp Gly Tyr Val Ile Thr Lys Ile Thr Phe 420 425 430 Glu Lys Lys Leu Asn Asn Leu Ile Tyr Glu Ala Thr Ala Asn Phe Tyr 435 440 445 Asp Pro Ser Thr Gly Asp Ile Asp Leu Asn Lys Lys Gln Val Glu Ser 450 455 460 Thr Phe Pro Gln Thr Asp Tyr Ile Thr Met Asp Ile Gly Asp Asp Asp 465 470 475 480 Gly Ile Tyr Met Pro Leu Gly Val Ile Ser Glu Thr Phe Leu Thr Pro 485 490 495 Ile Asn Ser Phe Gly Leu Glu Val Asp Ala Lys Ser Lys Thr Leu Thr 500 505 510 Leu Lys Cys Lys Ser Tyr Leu Arg Glu Tyr Leu Leu Glu Ser Asp Leu 515 520 525 Lys Asn Lys Glu Thr Gly Leu Ile Ala Pro Pro Asn Val Phe Ile Ser 530 535 540 Asn Val Val Lys Asn Trp Asp Ile Glu Glu Asp Ser Leu Glu Pro Trp 545 550 555 560 Val Ala Asn Asn Lys Asn Ala Tyr Val Asp Asn Thr Gly Gly Ile Glu 565 570 575 Arg Ser Lys Ala Leu Phe Thr Gln Gly Asp Gly Glu Phe Ser Gln Phe 580 585 590 Ile Gly Asp Lys Leu Lys Pro Asn Thr Asp Tyr Ile Ile Gln Tyr Thr 595 600 605 Val Lys Gly Lys Pro Ala Ile Tyr Leu Lys Asn Lys Ser Thr Gly Tyr 610 615 620 Ile Thr Tyr Glu Asp Thr Asn Gly Asn Ser Glu Glu Phe Gln Thr Ile 625 630 635 640 Ala Val Lys Phe Thr Ser Glu Thr Asp Leu Ser Gln Thr His Leu Val 645 650 655 Phe Lys Ser Gln Asn Gly Tyr Glu Ala Trp Gly Asp Asn Phe Ile Ile 660 665 670 Leu Glu Ala Lys Leu Phe Glu Thr Pro Glu Ser Pro Glu Leu Ile Lys 675 680 685 Phe Asn Asp Trp Glu Arg Phe Gly Thr Thr Tyr Ile Thr Gly Asn Glu 690 695 700 Leu Arg Ile Asp His Ser Arg Gly Gly Tyr Phe Arg Gln Ser Leu Asn 705 710 715 720 Ile Asp Ser Tyr Ser Thr Tyr Asp Leu Ser Phe Ser Phe Ser Gly Leu 725 730 735 Trp Ala Lys Val Ile Val Lys Asn Ser Arg Gly Val Val Leu Phe Glu 740 745 750 Lys Val Lys Asn Asn Gly Ser Ser Tyr Glu Asp Ile Ser Glu Ser Phe 755 760 765 Thr Thr Cys Ser Asn Lys Asp Gly Phe Phe Ile Glu Leu Thr Ala Glu 770 775 780 Arg Thr Ser Ser Thr Phe His Ser Phe Arg Asp Ile Ser Ile Lys Glu 785 790 795 800 Lys Ile Glu 53803PRTArtificialAXMI115 variant sequence (AXMI115_Block18_ L12B10) 53Met Asn Met Asn Asn Thr Lys Leu Asn Ala Arg Ala Leu Pro Ser Phe 1 5 10 15 Ile Asp Tyr Phe Asn Gly Ile Tyr Gly Phe Ala Thr Gly Ile Lys Asp 20 25 30 Ile Met Asn Met Ile Phe Lys Thr Asp Thr Gly Gly Asp Leu Thr Leu 35 40 45 Asp Glu Ile Leu Lys Asn Gln Gln Leu Leu Asn Glu Ile Ser Gly Lys 50 55 60 Leu Asp Gly Val Asn Gly Ser Leu Asn Asp Leu Ile Ala Gln Gly Asn 65 70 75 80 Leu Asn Thr Glu Leu Ser Lys Glu Ile Leu Lys Ile Ala Asn Glu Gln 85 90 95 Asn Gln Val Leu Asn Asp Val Asn Asn Lys Leu Asp Ala Ile Asn Thr 100 105 110 Met Leu Asn Ile Tyr Leu Pro Lys Ile Thr Ser Met Leu Ser Asp Val 115 120 125 Met Lys Gln Asn Tyr Ala Leu Ser Leu Gln Ile Glu Tyr Leu Ser Arg 130 135 140 Gln Leu Gln Glu Ile Ser Asp Lys Leu Asp Val Ile Asn Leu Asn Val 145 150 155 160 Leu Ile Asn Ser Thr Leu Thr Glu Ile Thr Pro Ser Tyr Gln Arg Ile 165 170 175 Lys Tyr Val Asn Glu Lys Phe Asp Lys Leu Thr Phe Ala Thr Glu Ser 180 185 190 Thr Leu Arg Ala Lys Gln Gly Ile Phe Asn Glu Asp Ser Phe Asp Asn 195 200 205 Asn Thr Leu Glu Asn Leu Thr Asp Leu Ala Glu Leu Ala Lys Ser Ile 210 215 220 Thr Lys Asn Asp Val Asp Ser Phe Glu Phe Tyr Leu His Thr Phe His 225 230 235 240 Asp Val Leu Ile Gly Asn Asn Leu Phe Gly Arg Ser Ala Leu Lys Thr 245 250 255 Ala Ser Glu Leu Ile Thr Lys Asp Glu Ile Lys Thr Ser Gly Ser Glu 260 265 270 Ile Gly Lys Val Tyr Ser Phe Leu Ile Val Leu Thr Ser Leu Gln Ala 275 280 285 Lys Ala Phe Leu Thr Leu Thr Thr Cys Arg Lys Leu Leu Gly Leu Ser 290 295 300 Asp Ile Asp Tyr Thr Ser Ile Met Asn Glu His Leu Asn Asn Glu Lys 305 310 315 320 Asn Glu Phe Arg Asp Asn Ile Leu Pro Ala Leu Ser Asn Lys Phe Ser 325 330 335 Asn Pro Ser Tyr Ala Lys Thr Ile Gly Ser Asp Asn Tyr Ala Lys Val 340 345 350 Ile Leu Glu Ser Glu Pro Gly Tyr Ala Leu Val Gly Phe Glu Ile Ile 355 360 365 Asn Asp Pro Ile Pro Val Leu Lys Ala Tyr Lys Ala Lys Leu Lys Gln 370 375 380 Asn Tyr Gln Val Asp Asn Gln Ser Leu Ser Glu Ile Val Tyr Leu Asp 385 390 395 400 Ile Asp Lys Leu Phe Cys Pro Glu Asn Ser Glu Gln Lys Tyr Tyr Thr 405 410 415 Lys Asn Leu Thr Phe Pro Asp Gly Tyr Val Ile Thr Lys Ile Thr Phe 420 425 430 Glu Lys Lys Leu Asn Asn Leu Ile Tyr Glu Ala Thr Ala Asn Phe Tyr 435 440 445 Asp Pro Ser Thr Gly Asp Ile Asp Leu Asn Lys Lys Gln Val Glu Ser 450 455 460 Thr Phe Pro Gln Thr Asp Tyr Ile Thr Met Asp Ile Gly Asp Asp Asp 465 470 475 480 Gly Ile Tyr Met Pro Leu Gly Val Ile Ser Glu Thr Phe Leu Thr Pro 485 490 495 Ile Asn Ser Phe Gly Leu Glu Val Asp Ala Lys Ser Lys Thr Leu Thr 500 505 510 Leu Lys Cys Lys Ser Tyr Leu Arg Glu Tyr Leu Leu Glu Ser Asp Leu 515 520 525 Lys Asn Lys Glu Thr Gly Leu Ile Ala Pro Pro Asn Val Phe Ile Ser 530 535 540 Asn Val Val Lys Asn Trp Asp Ile Glu Glu Asp Ser Leu Glu Pro Trp 545 550 555 560 Val Ala Asn Asn Lys Asn Ala Tyr Val Asp Asn Thr Gly Gly Ile Glu 565 570 575 Arg Ser Lys Ala Leu Phe Thr Gln Gly Asp Gly Glu Phe Ser Gln Phe 580 585 590 Ile Gly Asp Lys Leu Lys Pro Asn Thr Asp Tyr Ile Ile Gln Tyr Thr 595 600 605 Val Lys Gly Lys Pro Ala Ile Tyr Leu Lys Asn Lys Ser Thr Gly Tyr 610 615 620 Ile Thr Tyr Glu Asp Thr Asn Gly Asn Ser Glu Glu Phe Gln Thr Ile 625 630 635 640 Ala Val Lys Phe Thr Ser Glu Thr Asp Leu Ser Gln Thr His Leu Val 645 650 655 Phe Lys Ser Gln Asn Gly Tyr Glu Ala Trp Gly Asp Asn Phe Ile Ile 660 665 670 Leu Glu Ala Lys Leu Phe Glu Thr Pro Glu Ser Pro Glu Leu Ile Lys 675 680 685 Phe Asn Asp Trp Glu Arg Phe Gly Thr Thr Tyr Ile Thr Gly Asn Glu 690 695 700 Leu Arg Ile Asp His Ser Arg Gly Gly Tyr Phe Arg Gln Ser Leu Asn 705 710 715 720 Ile Asp Ser Tyr Ser Thr Tyr Asp Leu Ser Phe Ser Phe Ser Gly Leu 725 730 735 Trp Ala Lys Val Ile Val Lys Asn Ser Arg Gly Val Val Leu Phe Glu 740 745 750 Lys Val Lys Asn Asn Gly Ser Ser Tyr Glu Asp Ile Ser Glu Ser Phe 755 760 765 Thr Thr Met Ser Asn Lys Asp Gly Phe Phe Ile Glu Leu Thr Ala Glu 770 775 780 Arg Thr Ser Ser Thr Phe His Ser Phe Arg Asp Ile Ser Ile Lys Glu 785 790 795 800 Lys Ile Glu 543468DNABacillus thuringiensis 54atgaatcgaa ataatcaaaa tgaatgtgaa attattgatg cccctcattg tggatgtccg 60tcagatgatg ttgtgaaata tcctttggca agtgacccaa atgcagcgtt acaaaatatg 120aactataaag attatttaca aacgtatgat ggagactata cagattctct tattaatcct 180aacttatcta ttaatactag ggatgtacta caaacaggta ttactattgt gggaagaata 240ctagggtttt taggtgttcc atttgcgggg caactagtta ctttctatac ctttctctta 300aatcagttat ggccaactaa tgataatgca gtatgggaag cttttatgga acaaatagaa 360gggattatcg ctcaaagaat atcggagcaa gtagtaagga atgcgcttga tgccttaact 420ggaatacacg attattatga ggaatattta gcggcattag aggagtggct ggaaagaccg 480agcggcgcaa gggctaactt agcttttcag aggtttgaaa atctacatca attatttgta 540agtcagatgc caagttttgg tagtggtcct ggtagtgaaa gagatgcggt agcattgctg 600acagtatatg cacaagcagc gaatctccat ttgttgttat taaaagatgc agaaatttat 660ggggcgagat ggggacttca acaaggccaa attaatttat attttaatgc tcaacaagat 720cgcactcgaa tttataccaa tcattgtgtg gcaacatata atagaggatt aggagactta 780agaggcacaa atactgaaag ttggttaaat taccatcaat tccgtagaga gatgacatta 840atggcaatgg atttagtggc attattccca tactataatt tacgacaata tccaaacggg 900gcaaaccctc agcttacacg tgatgtatat acagatccga ttgtatttaa tccatcagct 960aatgtaggat tatgtagacg ttggggcaat aacccatata atacattttc ggaacttgaa 1020aatgccttca ttcgcccgcc acattttttt gataggttga atagtttaac aattagtaga 1080aatagatttg acgttggatc aaactttata gagccttggt ctggacatac gttacgccgt 1140agttttctga acacttcggc agtacaagaa gatagttatg gccaaattac taatcaaaga 1200acaacaatta atctaccagc taatggaact gggcgagtgg agtcaacagc agtagatttt 1260cgtagcgcgc ttgtggggat atacggcgtt aatagagctt cttttattcc cggtggtgtg 1320tttaatggca cgactcaacc ttctactgga ggatgtagag atttgtatga ttcaagtgat 1380gaattaccac cagaagaaag tagtggaacg tttgaacata ggttatctca tgttaccttt 1440ttaagtttta caactaatca ggctggatcc atagccaatg cagggcgcgt ccctacttat 1500gtctggaccc atcgagatgt ggaccttaat aacacgatta ctgcagatag aattacacac 1560ttaccattga taaaatcaaa tgtgcaacgc agtggtcgcg cagtaaaagg accaggattt 1620acaggaggag atgtactccg aatgtcatca agtgatgctg atatatcaat aataggaata 1680acggcaggtg caccgctaac acaacaatat cgtataagat tgcgttatgc ttcaaatgta 1740gatgttacta tccgtttagt gagacaggac acccaaagta atataggaag cataaactta 1800ttacgtacaa tgaacagtgg agaggagtca aggtatgaat catatcgtac tgtagagatg 1860cctggtaatt ttagaatgac tagtagttca gcacagattc gactatttac tcaaggactt 1920cgagtgaatg gagaattgtt tcttgatagt cttgaattta tcccagttaa tccgacacgt 1980gaggcggaag aggatttaga agcagcgaag aaagcggtga cgagcttgtt tacacgtaca 2040agtgatggat tacagataaa tgtgacagat taccaagtcg atcaggcggc aaatttagtg 2100tcgtgcttat cagatgaaca atatgggcat gataaaaaga tgttattgga agccgtacgc 2160gcagcaaaac gcctcagccg cgaacgcaac ttacttcaag atccagattt taatacaatc 2220aatagtacag aagaaaatgg ctggaaggca agtaacggtg ttactattag cgagggcggt 2280ccattcttta aaggtcgtgc acttcagtta gcaagcgcaa gagaaaatta tccaacatac 2340atttatcaaa aagtagatgc atcggtgtta aagccttata cacgctatag actagatgga 2400tttgtgaaga gtagtcaaga tttagaaatt gatctcatcc accatcataa agtccatctt 2460gtaaaaaatg taccagataa tttagtatct gatacttact cagatggttc ttgcagcgga 2520atcaaccgtt gtgatgaaca gcagcaggta gatatgcagc tagatgcgga gcatcatcca 2580atggattgct gtgaagtggc tcaaacacat gagttttctt cctatattaa tacaggggat 2640ctaaatgcaa gtgtagatca gggcatttgg gttgtattaa aagttcgaac aacagatggg 2700tatgcgacgt taggaaatct tgaattggta gaggttgggc cattatcggg tgaatctcta 2760gaacgcgaac aaagagataa tgcgaaatgg aatgcagagc taggaagaaa gcgtgcagaa 2820acagatcgcg tgtatctagc tgcgaaacaa gcaattaatc atctatttgt agactatcaa 2880gatcaacaat taaatccaga aattgggcta gcggaaataa atgaagcttc aaatcttgtg 2940aagtcaattt cgggtgtata tagtgataca ctattacaga ttcctggaat taactacgaa 3000atttacacag agttatccga tcgattacaa caagcatcgt atctgtatac gtctcgaaat 3060gccgtgcaaa atggagactt taacagtggt ctagatagtt ggaatgcaac aacagatgca 3120tcggttcagc aagatggcag tacacatttc ttagttcttt cgcattggga tgcacaagtt 3180tcccaacaaa tgagagtaaa tttgaattgt aagtatgttt tacgtgtaac agcaaaaaaa 3240gtaggaggcg gagatggata cgtcacaatc cgagatggcg ctcatcacca agaaactctt 3300acatttaatg catgtgacta cgatgtaaat ggtacgtatg tcaatgacaa ttcgtacata 3360acaaaagaag tggtattcta cccagagaca aaacatatgt gggtagaggt gagtgaatcc 3420gaaggttcat tctatataga cagtattgag tttattgaaa cacaagag 3468552037DNAArtificial Sequencesynthetic gene encoding toxin protein 55atgaacagga acaaccaaaa tgaatgtgag atcatcgacg cgccgcactg cggctgccct 60tctgatgatg tggtgaagta cccgctggct tcagatccaa atgctgctct ccagaacatg 120aactacaagg actacctcca gacatatgat ggagactaca ccgacagcct catcaacccc 180aacctcagca tcaacacaag agatgtgctg caaactggca tcaccatcgt cggcaggatc 240ttgggcttcc tcggcgtgcc cttcgccggc cagctggtga ccttctacac cttcctcctc 300aaccagctat ggccaacaaa tgacaatgct gtttgggagg ccttcatgga gcagattgaa 360ggcatcattg ctcaaaggat

ctccgagcaa gtggtgagga atgctcttga tgctctcacc 420ggcatccatg actactacga ggagtacctg gcggcgctgg aggagtggct ggagaggcca 480tcaggcgcgc gcgccaacct cgccttccaa agatttgaga acctccacca gctcttcgtg 540agccagatgc cgagcttcgg cagcggccct ggatcagaaa gagatgctgt ggcgctgctc 600accgtctatg ctcaagctgc caacctccat ctgctgctgc tgaaggatgc tgagatctat 660ggagcaagat ggggcctcca gcaagggcag atcaacctct acttcaatgc tcaacaagac 720aggacaagga tctacaccaa ccactgcgtg gcaacataca accgcggcct cggcgacctc 780cgcggcacca acactgaatc atggctcaac taccaccagt tcagaaggga gatgacattg 840atggccatgg acctggtggc gctcttcccc tactacaacc tccgccaata tcctaatgga 900gcaaatcctc agctgacaag agatgtctac accgacccca tcgtcttcaa cccttcagca 960aatgttggcc tctgccgccg ctggggcaac aatccttaca acaccttctc cgagctggag 1020aatgccttca tcaggccgcc gcacttcttc gaccgcctca acagcctcac catctcaagg 1080aacagatttg atgttggaag caacttcatc gagccatgga gcggccacac cttgaggagg 1140agcttcctca acacctccgc cgtccaagaa gacagctatg gccagatcac caaccagagg 1200accaccatca acctaccagc aaatggaact ggaagagttg agagcaccgc cgtggacttc 1260cgctcggcgc tggtgggcat ctacggcgtg aacagggcca gcttcatccc cggcggcgtc 1320ttcaatggaa caactcaacc atcaacagga ggctgccgag atctttatga ttcttctgat 1380gagctgccgc cggaggagag cagcggcacc ttcgagcacc gcctcagcca tgtcaccttc 1440ttgagcttca ccaccaacca agctggatca attgcaaatg ctggaagggt gccaacatat 1500gtttggaccc accgtgatgt ggacctcaac aacaccatca ccgccgacag gatcacccat 1560ctgccgctca tcaagagcaa tgttcaaaga tcaggccgcg ccgtcaaagg acctggcttc 1620accggcggcg acgtgctgag gatgagcagc tctgatgctg acatcagcat catcggcatc 1680accgccggcg ctccgctgac tcagcagtac aggatcaggc tgagatatgc ttcaaatgtt 1740gatgtcacca tcaggctggt gcggcaagac acccagagca acatcggcag catcaacctg 1800ctgaggacaa tgaacagtgg agaagaaagc agatatgaaa gctacaggac ggtggagatg 1860cctggcaact tcagaatgac atcaagctcg gcgcagatca ggctcttcac ccaaggcctc 1920cgcgtcaatg gagagctctt cctggacagc ttggagttca tccccgtcaa cccaacaaga 1980gaagcagaag aagatctgga ggccgccaag aaggcggtga caagcctctt cacaaga 2037561156PRTBacillus thuringiensis 56Met Asn Arg Asn Asn Gln Asn Glu Cys Glu Ile Ile Asp Ala Pro His 1 5 10 15 Cys Gly Cys Pro Ser Asp Asp Val Val Lys Tyr Pro Leu Ala Ser Asp 20 25 30 Pro Asn Ala Ala Leu Gln Asn Met Asn Tyr Lys Asp Tyr Leu Gln Thr 35 40 45 Tyr Asp Gly Asp Tyr Thr Asp Ser Leu Ile Asn Pro Asn Leu Ser Ile 50 55 60 Asn Thr Arg Asp Val Leu Gln Thr Gly Ile Thr Ile Val Gly Arg Ile 65 70 75 80 Leu Gly Phe Leu Gly Val Pro Phe Ala Gly Gln Leu Val Thr Phe Tyr 85 90 95 Thr Phe Leu Leu Asn Gln Leu Trp Pro Thr Asn Asp Asn Ala Val Trp 100 105 110 Glu Ala Phe Met Glu Gln Ile Glu Gly Ile Ile Ala Gln Arg Ile Ser 115 120 125 Glu Gln Val Val Arg Asn Ala Leu Asp Ala Leu Thr Gly Ile His Asp 130 135 140 Tyr Tyr Glu Glu Tyr Leu Ala Ala Leu Glu Glu Trp Leu Glu Arg Pro 145 150 155 160 Ser Gly Ala Arg Ala Asn Leu Ala Phe Gln Arg Phe Glu Asn Leu His 165 170 175 Gln Leu Phe Val Ser Gln Met Pro Ser Phe Gly Ser Gly Pro Gly Ser 180 185 190 Glu Arg Asp Ala Val Ala Leu Leu Thr Val Tyr Ala Gln Ala Ala Asn 195 200 205 Leu His Leu Leu Leu Leu Lys Asp Ala Glu Ile Tyr Gly Ala Arg Trp 210 215 220 Gly Leu Gln Gln Gly Gln Ile Asn Leu Tyr Phe Asn Ala Gln Gln Asp 225 230 235 240 Arg Thr Arg Ile Tyr Thr Asn His Cys Val Ala Thr Tyr Asn Arg Gly 245 250 255 Leu Gly Asp Leu Arg Gly Thr Asn Thr Glu Ser Trp Leu Asn Tyr His 260 265 270 Gln Phe Arg Arg Glu Met Thr Leu Met Ala Met Asp Leu Val Ala Leu 275 280 285 Phe Pro Tyr Tyr Asn Leu Arg Gln Tyr Pro Asn Gly Ala Asn Pro Gln 290 295 300 Leu Thr Arg Asp Val Tyr Thr Asp Pro Ile Val Phe Asn Pro Ser Ala 305 310 315 320 Asn Val Gly Leu Cys Arg Arg Trp Gly Asn Asn Pro Tyr Asn Thr Phe 325 330 335 Ser Glu Leu Glu Asn Ala Phe Ile Arg Pro Pro His Phe Phe Asp Arg 340 345 350 Leu Asn Ser Leu Thr Ile Ser Arg Asn Arg Phe Asp Val Gly Ser Asn 355 360 365 Phe Ile Glu Pro Trp Ser Gly His Thr Leu Arg Arg Ser Phe Leu Asn 370 375 380 Thr Ser Ala Val Gln Glu Asp Ser Tyr Gly Gln Ile Thr Asn Gln Arg 385 390 395 400 Thr Thr Ile Asn Leu Pro Ala Asn Gly Thr Gly Arg Val Glu Ser Thr 405 410 415 Ala Val Asp Phe Arg Ser Ala Leu Val Gly Ile Tyr Gly Val Asn Arg 420 425 430 Ala Ser Phe Ile Pro Gly Gly Val Phe Asn Gly Thr Thr Gln Pro Ser 435 440 445 Thr Gly Gly Cys Arg Asp Leu Tyr Asp Ser Ser Asp Glu Leu Pro Pro 450 455 460 Glu Glu Ser Ser Gly Thr Phe Glu His Arg Leu Ser His Val Thr Phe 465 470 475 480 Leu Ser Phe Thr Thr Asn Gln Ala Gly Ser Ile Ala Asn Ala Gly Arg 485 490 495 Val Pro Thr Tyr Val Trp Thr His Arg Asp Val Asp Leu Asn Asn Thr 500 505 510 Ile Thr Ala Asp Arg Ile Thr His Leu Pro Leu Ile Lys Ser Asn Val 515 520 525 Gln Arg Ser Gly Arg Ala Val Lys Gly Pro Gly Phe Thr Gly Gly Asp 530 535 540 Val Leu Arg Met Ser Ser Ser Asp Ala Asp Ile Ser Ile Ile Gly Ile 545 550 555 560 Thr Ala Gly Ala Pro Leu Thr Gln Gln Tyr Arg Ile Arg Leu Arg Tyr 565 570 575 Ala Ser Asn Val Asp Val Thr Ile Arg Leu Val Arg Gln Asp Thr Gln 580 585 590 Ser Asn Ile Gly Ser Ile Asn Leu Leu Arg Thr Met Asn Ser Gly Glu 595 600 605 Glu Ser Arg Tyr Glu Ser Tyr Arg Thr Val Glu Met Pro Gly Asn Phe 610 615 620 Arg Met Thr Ser Ser Ser Ala Gln Ile Arg Leu Phe Thr Gln Gly Leu 625 630 635 640 Arg Val Asn Gly Glu Leu Phe Leu Asp Ser Leu Glu Phe Ile Pro Val 645 650 655 Asn Pro Thr Arg Glu Ala Glu Glu Asp Leu Glu Ala Ala Lys Lys Ala 660 665 670 Val Thr Ser Leu Phe Thr Arg Thr Ser Asp Gly Leu Gln Ile Asn Val 675 680 685 Thr Asp Tyr Gln Val Asp Gln Ala Ala Asn Leu Val Ser Cys Leu Ser 690 695 700 Asp Glu Gln Tyr Gly His Asp Lys Lys Met Leu Leu Glu Ala Val Arg 705 710 715 720 Ala Ala Lys Arg Leu Ser Arg Glu Arg Asn Leu Leu Gln Asp Pro Asp 725 730 735 Phe Asn Thr Ile Asn Ser Thr Glu Glu Asn Gly Trp Lys Ala Ser Asn 740 745 750 Gly Val Thr Ile Ser Glu Gly Gly Pro Phe Phe Lys Gly Arg Ala Leu 755 760 765 Gln Leu Ala Ser Ala Arg Glu Asn Tyr Pro Thr Tyr Ile Tyr Gln Lys 770 775 780 Val Asp Ala Ser Val Leu Lys Pro Tyr Thr Arg Tyr Arg Leu Asp Gly 785 790 795 800 Phe Val Lys Ser Ser Gln Asp Leu Glu Ile Asp Leu Ile His His His 805 810 815 Lys Val His Leu Val Lys Asn Val Pro Asp Asn Leu Val Ser Asp Thr 820 825 830 Tyr Ser Asp Gly Ser Cys Ser Gly Ile Asn Arg Cys Asp Glu Gln Gln 835 840 845 Gln Val Asp Met Gln Leu Asp Ala Glu His His Pro Met Asp Cys Cys 850 855 860 Glu Val Ala Gln Thr His Glu Phe Ser Ser Tyr Ile Asn Thr Gly Asp 865 870 875 880 Leu Asn Ala Ser Val Asp Gln Gly Ile Trp Val Val Leu Lys Val Arg 885 890 895 Thr Thr Asp Gly Tyr Ala Thr Leu Gly Asn Leu Glu Leu Val Glu Val 900 905 910 Gly Pro Leu Ser Gly Glu Ser Leu Glu Arg Glu Gln Arg Asp Asn Ala 915 920 925 Lys Trp Asn Ala Glu Leu Gly Arg Lys Arg Ala Glu Thr Asp Arg Val 930 935 940 Tyr Leu Ala Ala Lys Gln Ala Ile Asn His Leu Phe Val Asp Tyr Gln 945 950 955 960 Asp Gln Gln Leu Asn Pro Glu Ile Gly Leu Ala Glu Ile Asn Glu Ala 965 970 975 Ser Asn Leu Val Lys Ser Ile Ser Gly Val Tyr Ser Asp Thr Leu Leu 980 985 990 Gln Ile Pro Gly Ile Asn Tyr Glu Ile Tyr Thr Glu Leu Ser Asp Arg 995 1000 1005 Leu Gln Gln Ala Ser Tyr Leu Tyr Thr Ser Arg Asn Ala Val Gln 1010 1015 1020 Asn Gly Asp Phe Asn Ser Gly Leu Asp Ser Trp Asn Ala Thr Thr 1025 1030 1035 Asp Ala Ser Val Gln Gln Asp Gly Ser Thr His Phe Leu Val Leu 1040 1045 1050 Ser His Trp Asp Ala Gln Val Ser Gln Gln Met Arg Val Asn Leu 1055 1060 1065 Asn Cys Lys Tyr Val Leu Arg Val Thr Ala Lys Lys Val Gly Gly 1070 1075 1080 Gly Asp Gly Tyr Val Thr Ile Arg Asp Gly Ala His His Gln Glu 1085 1090 1095 Thr Leu Thr Phe Asn Ala Cys Asp Tyr Asp Val Asn Gly Thr Tyr 1100 1105 1110 Val Asn Asp Asn Ser Tyr Ile Thr Lys Glu Val Val Phe Tyr Pro 1115 1120 1125 Glu Thr Lys His Met Trp Val Glu Val Ser Glu Ser Glu Gly Ser 1130 1135 1140 Phe Tyr Ile Asp Ser Ile Glu Phe Ile Glu Thr Gln Glu 1145 1150 1155 571902DNABacillus thuringiensisCDS(1)..(1902) 57atg aat aat gta tta aat aac gga aga act act aat tgt gat gcg tat 48Met Asn Asn Val Leu Asn Asn Gly Arg Thr Thr Asn Cys Asp Ala Tyr 1 5 10 15 aat gta gtg gcc cat gat cca ttt agt ttt gag cat aaa tca tta gat 96Asn Val Val Ala His Asp Pro Phe Ser Phe Glu His Lys Ser Leu Asp 20 25 30 acc atc cga aaa gaa tgg atg gag tgg aaa aga aca gat cat agt tta 144Thr Ile Arg Lys Glu Trp Met Glu Trp Lys Arg Thr Asp His Ser Leu 35 40 45 tat gta gct cct gta gtc gga act gtt tct agc ttt ctg cta aag aag 192Tyr Val Ala Pro Val Val Gly Thr Val Ser Ser Phe Leu Leu Lys Lys 50 55 60 gtg ggg agt ctt att gga aaa agg ata ttg agt gaa tta tgg ggg tta 240Val Gly Ser Leu Ile Gly Lys Arg Ile Leu Ser Glu Leu Trp Gly Leu 65 70 75 80 ata ttt cct agt ggt agc aca aat cta atg caa gat att tta agg gag 288Ile Phe Pro Ser Gly Ser Thr Asn Leu Met Gln Asp Ile Leu Arg Glu 85 90 95 aca gaa caa ttc cta aat caa aga ctt aat aca gac act ctt gct cgt 336Thr Glu Gln Phe Leu Asn Gln Arg Leu Asn Thr Asp Thr Leu Ala Arg 100 105 110 gta aat gcg gaa ttg aca ggg ctg caa gcg aat ata agg gag ttt aat 384Val Asn Ala Glu Leu Thr Gly Leu Gln Ala Asn Ile Arg Glu Phe Asn 115 120 125 caa caa gta gat aat ttt tta aat cct act caa aac cct gtt cct tta 432Gln Gln Val Asp Asn Phe Leu Asn Pro Thr Gln Asn Pro Val Pro Leu 130 135 140 tca ata act tct tca gtt aat aca atg cag caa tta ttt cta aat aga 480Ser Ile Thr Ser Ser Val Asn Thr Met Gln Gln Leu Phe Leu Asn Arg 145 150 155 160 tta ccc cag ttc cag ata caa gga tac caa ctg tta tta tta cct tta 528Leu Pro Gln Phe Gln Ile Gln Gly Tyr Gln Leu Leu Leu Leu Pro Leu 165 170 175 ttt gca cag gca gcc aat atg cat ctt tct ttt att aga gat gtt att 576Phe Ala Gln Ala Ala Asn Met His Leu Ser Phe Ile Arg Asp Val Ile 180 185 190 ctt aat gca gat gaa tgg gga att tca gca gca aca cta cgt acg tat 624Leu Asn Ala Asp Glu Trp Gly Ile Ser Ala Ala Thr Leu Arg Thr Tyr 195 200 205 cga gac tac ctg aga aat tat aca aga gat tat tct aat tat tgt ata 672Arg Asp Tyr Leu Arg Asn Tyr Thr Arg Asp Tyr Ser Asn Tyr Cys Ile 210 215 220 aat acg tat caa act gcg ttt aga ggg tta aac acc cgt tta cac gat 720Asn Thr Tyr Gln Thr Ala Phe Arg Gly Leu Asn Thr Arg Leu His Asp 225 230 235 240 atg tta gaa ttt aga aca tat atg ttt tta aat gta ttt gaa tat gta 768Met Leu Glu Phe Arg Thr Tyr Met Phe Leu Asn Val Phe Glu Tyr Val 245 250 255 tcc att tgg tca ttg ttt aaa tat cag agt ctt atg gta tct tct ggc 816Ser Ile Trp Ser Leu Phe Lys Tyr Gln Ser Leu Met Val Ser Ser Gly 260 265 270 gct aat tta tat gct agt ggt agt gga cca cag cag acc caa tca ttt 864Ala Asn Leu Tyr Ala Ser Gly Ser Gly Pro Gln Gln Thr Gln Ser Phe 275 280 285 att tca caa gac tgg cca ttt tta tat tct ctt ttc caa gtt aat tca 912Ile Ser Gln Asp Trp Pro Phe Leu Tyr Ser Leu Phe Gln Val Asn Ser 290 295 300 aat tat gtg tta aat ggc ttt agt ggc gct agg aat act att aga ttc 960Asn Tyr Val Leu Asn Gly Phe Ser Gly Ala Arg Asn Thr Ile Arg Phe 305 310 315 320 cca gct ggt ggt ggt tta tta cca cct ggt gtt act aca act cac gca 1008Pro Ala Gly Gly Gly Leu Leu Pro Pro Gly Val Thr Thr Thr His Ala 325 330 335 ttg ctt gct gca agg gtc aat tac agt gga gga gtt tcg tct ggt tat 1056Leu Leu Ala Ala Arg Val Asn Tyr Ser Gly Gly Val Ser Ser Gly Tyr 340 345 350 ata ggc gct gtg ttt aat caa aat ttt aat tgt agc aca ctt ctc cca 1104Ile Gly Ala Val Phe Asn Gln Asn Phe Asn Cys Ser Thr Leu Leu Pro 355 360 365 cct ttg tta aca cca ttt gtt agg agt tgg cta gat tca ggt aca gat 1152Pro Leu Leu Thr Pro Phe Val Arg Ser Trp Leu Asp Ser Gly Thr Asp 370 375 380 cgg gag ggc gtt acc acc gtt aca aat tgg caa aca gaa tcc ttt aag 1200Arg Glu Gly Val Thr Thr Val Thr Asn Trp Gln Thr Glu Ser Phe Lys 385 390 395 400 aca act tta ggt tta agg tgt ggt gct ttt aca ccc cgt ggt aat tca 1248Thr Thr Leu Gly Leu Arg Cys Gly Ala Phe Thr Pro Arg Gly Asn Ser 405 410 415 aac tat ttc cca gat tat ttt atc cgt aat att tct ggc gtt cct tta 1296Asn Tyr Phe Pro Asp Tyr Phe Ile Arg Asn Ile Ser Gly Val Pro Leu 420 425 430 gtt gtt aga aac gaa gat tta aga aga ccg tta cac tat aat gaa ata 1344Val Val Arg Asn Glu Asp Leu Arg Arg Pro Leu His Tyr Asn Glu Ile 435 440 445 aga aat ata gaa agt ccc tca gga aca cct ggt gga tta cga gct tat 1392Arg Asn Ile Glu Ser Pro Ser Gly Thr Pro Gly Gly Leu Arg Ala Tyr 450 455 460 atg gta tct gtg cat aac aga aaa aat aat atc tat gcc gct cat gaa 1440Met Val Ser Val His Asn Arg Lys Asn Asn Ile Tyr Ala Ala His Glu 465 470 475 480 aat ggt act atg att cat ttg gca ccg gaa gat tat aca gga ttt act 1488Asn Gly Thr Met Ile His Leu Ala Pro Glu Asp Tyr Thr Gly Phe Thr 485 490 495 atg ttg ccg ata cat gca act caa gtg aat aat caa acg cga aca ttt 1536Met Leu Pro Ile His Ala Thr Gln Val Asn Asn Gln Thr Arg Thr Phe 500

505 510 att tct gaa aaa ttt gga aat caa ggt gat tcc tta aga ttt gaa caa 1584Ile Ser Glu Lys Phe Gly Asn Gln Gly Asp Ser Leu Arg Phe Glu Gln 515 520 525 agc gac acg aca gct cgt tat aca ctt aga ggg aat gga aat agt tac 1632Ser Asp Thr Thr Ala Arg Tyr Thr Leu Arg Gly Asn Gly Asn Ser Tyr 530 535 540 aat ctt tat tta aga gta tct tct cta gga aat tcc act att cga gtt 1680Asn Leu Tyr Leu Arg Val Ser Ser Leu Gly Asn Ser Thr Ile Arg Val 545 550 555 560 act ata aac gga aga gtt tat act gtt cca aat gtt aat aca aat ata 1728Thr Ile Asn Gly Arg Val Tyr Thr Val Pro Asn Val Asn Thr Asn Ile 565 570 575 aat aac gat gga gtc att gat aat gga gct cgt ttt tca gat att aat 1776Asn Asn Asp Gly Val Ile Asp Asn Gly Ala Arg Phe Ser Asp Ile Asn 580 585 590 atc ggt aat gta gta gca agt gat aat act aat gta ccg tta gat ata 1824Ile Gly Asn Val Val Ala Ser Asp Asn Thr Asn Val Pro Leu Asp Ile 595 600 605 aac gtg aca tta agt tct gga act caa ttt gag ctt atg aat att atg 1872Asn Val Thr Leu Ser Ser Gly Thr Gln Phe Glu Leu Met Asn Ile Met 610 615 620 ttt gtt cca act aat ctt cca cca ata tat 1902Phe Val Pro Thr Asn Leu Pro Pro Ile Tyr 625 630 58634PRTBacillus thuringiensis 58Met Asn Asn Val Leu Asn Asn Gly Arg Thr Thr Asn Cys Asp Ala Tyr 1 5 10 15 Asn Val Val Ala His Asp Pro Phe Ser Phe Glu His Lys Ser Leu Asp 20 25 30 Thr Ile Arg Lys Glu Trp Met Glu Trp Lys Arg Thr Asp His Ser Leu 35 40 45 Tyr Val Ala Pro Val Val Gly Thr Val Ser Ser Phe Leu Leu Lys Lys 50 55 60 Val Gly Ser Leu Ile Gly Lys Arg Ile Leu Ser Glu Leu Trp Gly Leu 65 70 75 80 Ile Phe Pro Ser Gly Ser Thr Asn Leu Met Gln Asp Ile Leu Arg Glu 85 90 95 Thr Glu Gln Phe Leu Asn Gln Arg Leu Asn Thr Asp Thr Leu Ala Arg 100 105 110 Val Asn Ala Glu Leu Thr Gly Leu Gln Ala Asn Ile Arg Glu Phe Asn 115 120 125 Gln Gln Val Asp Asn Phe Leu Asn Pro Thr Gln Asn Pro Val Pro Leu 130 135 140 Ser Ile Thr Ser Ser Val Asn Thr Met Gln Gln Leu Phe Leu Asn Arg 145 150 155 160 Leu Pro Gln Phe Gln Ile Gln Gly Tyr Gln Leu Leu Leu Leu Pro Leu 165 170 175 Phe Ala Gln Ala Ala Asn Met His Leu Ser Phe Ile Arg Asp Val Ile 180 185 190 Leu Asn Ala Asp Glu Trp Gly Ile Ser Ala Ala Thr Leu Arg Thr Tyr 195 200 205 Arg Asp Tyr Leu Arg Asn Tyr Thr Arg Asp Tyr Ser Asn Tyr Cys Ile 210 215 220 Asn Thr Tyr Gln Thr Ala Phe Arg Gly Leu Asn Thr Arg Leu His Asp 225 230 235 240 Met Leu Glu Phe Arg Thr Tyr Met Phe Leu Asn Val Phe Glu Tyr Val 245 250 255 Ser Ile Trp Ser Leu Phe Lys Tyr Gln Ser Leu Met Val Ser Ser Gly 260 265 270 Ala Asn Leu Tyr Ala Ser Gly Ser Gly Pro Gln Gln Thr Gln Ser Phe 275 280 285 Ile Ser Gln Asp Trp Pro Phe Leu Tyr Ser Leu Phe Gln Val Asn Ser 290 295 300 Asn Tyr Val Leu Asn Gly Phe Ser Gly Ala Arg Asn Thr Ile Arg Phe 305 310 315 320 Pro Ala Gly Gly Gly Leu Leu Pro Pro Gly Val Thr Thr Thr His Ala 325 330 335 Leu Leu Ala Ala Arg Val Asn Tyr Ser Gly Gly Val Ser Ser Gly Tyr 340 345 350 Ile Gly Ala Val Phe Asn Gln Asn Phe Asn Cys Ser Thr Leu Leu Pro 355 360 365 Pro Leu Leu Thr Pro Phe Val Arg Ser Trp Leu Asp Ser Gly Thr Asp 370 375 380 Arg Glu Gly Val Thr Thr Val Thr Asn Trp Gln Thr Glu Ser Phe Lys 385 390 395 400 Thr Thr Leu Gly Leu Arg Cys Gly Ala Phe Thr Pro Arg Gly Asn Ser 405 410 415 Asn Tyr Phe Pro Asp Tyr Phe Ile Arg Asn Ile Ser Gly Val Pro Leu 420 425 430 Val Val Arg Asn Glu Asp Leu Arg Arg Pro Leu His Tyr Asn Glu Ile 435 440 445 Arg Asn Ile Glu Ser Pro Ser Gly Thr Pro Gly Gly Leu Arg Ala Tyr 450 455 460 Met Val Ser Val His Asn Arg Lys Asn Asn Ile Tyr Ala Ala His Glu 465 470 475 480 Asn Gly Thr Met Ile His Leu Ala Pro Glu Asp Tyr Thr Gly Phe Thr 485 490 495 Met Leu Pro Ile His Ala Thr Gln Val Asn Asn Gln Thr Arg Thr Phe 500 505 510 Ile Ser Glu Lys Phe Gly Asn Gln Gly Asp Ser Leu Arg Phe Glu Gln 515 520 525 Ser Asp Thr Thr Ala Arg Tyr Thr Leu Arg Gly Asn Gly Asn Ser Tyr 530 535 540 Asn Leu Tyr Leu Arg Val Ser Ser Leu Gly Asn Ser Thr Ile Arg Val 545 550 555 560 Thr Ile Asn Gly Arg Val Tyr Thr Val Pro Asn Val Asn Thr Asn Ile 565 570 575 Asn Asn Asp Gly Val Ile Asp Asn Gly Ala Arg Phe Ser Asp Ile Asn 580 585 590 Ile Gly Asn Val Val Ala Ser Asp Asn Thr Asn Val Pro Leu Asp Ile 595 600 605 Asn Val Thr Leu Ser Ser Gly Thr Gln Phe Glu Leu Met Asn Ile Met 610 615 620 Phe Val Pro Thr Asn Leu Pro Pro Ile Tyr 625 630 591902DNAArtificial SequenceSynthetic sequence encoding AXMI-076 (optaxmi- 076) 59atgaacaatg tgctcaacaa tggaagaaca acaaattgtg atgcctacaa tgtggtggct 60catgatccct tcagcttcga gcacaagagc ttggacacca tcaggaagga gtggatggaa 120tggaagagga cagatcattc tctttatgtg gcgccggtgg tgggcaccgt ctcatccttc 180ctgctgaaga aggtgggcag cctcatcggc aagaggattc tttctgagct ctggggcctc 240atcttcccaa gtggatcaac aaatttgatg caagacatcc tccgagaaac agagcagttc 300ctcaatcaaa ggctcaacac cgacaccttg gcaagggtga atgctgagct gacagggcta 360caagccaaca tcagggagtt caaccagcag gtggacaact tcctcaaccc aactcaaaat 420ccagtgccgc tgagcatcac ctcctctgtt aacaccatgc agcagctctt cctcaacagg 480ctgccgcagt tccagatcca aggctaccag ctgctgctgc tgccgctatt tgctcaagct 540gccaacatgc acctcagctt catcagagat gtcatcctca atgctgatga atggggcatc 600tcggcggcga cgctgaggac ctacagagat tatttgagga actacacaag ggactactca 660aactactgca tcaacaccta ccagacggcc ttccgcggcc tcaacacaag gctgcatgac 720atgctggagt tcagaaccta catgttcctc aatgtttttg aatatgtttc aatttggagc 780ctcttcaagt accagagctt gatggtgagc agcggcgcca acctctatgc ttctggaagt 840gggccgcagc aaactcagag cttcatcagc caagattggc ccttcctcta cagcctcttc 900caagttaaca gcaactacgt gctgaatggc ttctcaggag caaggaacac catcagattt 960cctgctggag gagggctgct gccgccgggc gtgacaacaa ctcatgctct gctggcggca 1020agagttaact actctggagg agtttcaagc ggctacatcg gcgccgtctt caaccagaac 1080ttcaactgct cgacgctgct gccgccgctg ctgacgccat ttgtgaggag ctggctggac 1140agcggcaccg acagagaagg agtcaccacc gtcaccaact ggcaaactga gagcttcaag 1200acgacgctgg gcctccgctg cggcgccttc acgccgcgcg gcaactcaaa ctacttcccg 1260gactacttca tcaggaacat cagcggcgtg ccgctggtgg tgaggaatga agatttgagg 1320aggccgctgc actacaatga gatcaggaac atcgagagcc catcaggaac tcctggaggc 1380ctccgcgcct acatggtttc tgttcacaac aggaagaaca acatctatgc tgctcatgaa 1440aatggcacca tgatccacct ggcgccggag gactacaccg gcttcaccat gctacccatc 1500catgcaactc aagtcaacaa ccaaacaagg accttcatct ccgagaagtt tggaaatcaa 1560ggagattctt tgagatttga gcagagcgac accacggcgc gctacacctt gagaggaaat 1620ggcaacagct acaacctcta cctccgcgtc agcagcctcg gcaactcaac catcagggtg 1680accatcaatg gccgcgtcta caccgtgcca aatgtcaaca ccaacatcaa caatgatggc 1740gtcatcgaca atggagcaag attctccgac atcaacatcg gcaatgtggt ggcctccgac 1800aacaccaacg tgccgctgga catcaatgtc accttgagct caggaactca atttgagctg 1860atgaacatca tgttcgtgcc aacaaatctt cctcccatct ac 1902601902DNAArtificial SequenceSynthetic sequence encoding AXMI-076 (optaxmi- 076v04) 60atgaacaatg ttctcaacaa tggaagaaca acaaactgtg atgcctacaa tgttgttgct 60catgatcctt tctcatttga acacaagagc ttggacacca tcagaaaaga atggatggaa 120tggaaaagaa cagatcattc tctctatgtt gctcctgttg ttggaactgt tagcagcttc 180ttgctgaaga aggttggcag cttgattgga aaaaggattc tttcagagct ctggggcttg 240atctttcctt ctggaagcac caacttgatg caagacatct tgagagaaac agagcagttc 300ttgaaccaaa ggctcaacac agacaccttg gcaagggtga atgctgagct cactggcctt 360caagcaaaca tcagagagtt caaccaacaa gttgacaact tcttgaatcc aacacaaaat 420cctgttcctc tctccatcac ttcttcagtg aacaccatgc agcagctctt cttgaacagg 480cttcctcagt tccagattca aggatatcag ctgctgctgc ttcctctctt tgctcaagct 540gcaaacatgc atctctcctt catcagagat gtcatcttga atgctgatga atggggcatc 600tctgctgcca ccttgagaac atacagagat tatttgagaa actacacaag agattattca 660aactactgca tcaacacata tcaaacagct ttcagaggcc tcaacacaag gcttcatgac 720atgctggagt tcagaacata catgttcttg aatgtttttg aatatgtttc catctggagc 780ttgttcaagt accagagctt gatggtttct tctggagcaa atttatatgc atctggatct 840ggacctcaac aaacacagag cttcatctct caagattggc catttctcta cagcttgttc 900caagtgaaca gcaactatgt tcttaatggc ttctctggag caagaaacac catcagattt 960cctgctggag gaggcttgct gcctcctggt gtcaccacca cccatgctct tctggcggcg 1020cgcgtcaact actcaggagg agtttcttct ggatacattg gagctgtgtt caaccaaaac 1080ttcaactgct ccaccttgct gccgccgctg ctgacaccat ttgtcagaag ctggctggac 1140tcaggaactg acagagaagg agtcaccacc gtcaccaact ggcaaacaga gagcttcaaa 1200acaaccttgg gcctccgctg cggcgccttc acgccgcgcg gcaacagcaa ctactttcca 1260gattacttca tcagaaacat ttctggagtt cctttggtgg tgagaaatga agatctgagg 1320aggcctcttc actacaatga aatcagaaac attgaatctc catcaggaac tcctggaggc 1380ctccgcgcct acatggtttc tgttcacaac aggaagaaca acatctatgc tgctcatgaa 1440aatggaacaa tgattcatct tgctccagaa gattacactg gcttcaccat gctgcccatc 1500catgcaacac aagtcaacaa ccaaacaagg accttcattt cagaaaaatt tggaaatcaa 1560ggagattctt tgagatttga acaaagcgac accacagcaa gatacacctt gagaggaaat 1620ggaaacagct acaacttgta cctccgcgtc agcagcttgg gaaacagcac catcagggtg 1680accatcaatg gaagagtcta cactgttcca aatgtcaaca ccaacatcaa caatgatggt 1740gtcattgaca atggagcaag attttcagac atcaacattg gaaatgtggt ggcttctgac 1800aacacaaatg ttcctctgga catcaatgtc accctttctt ctggaacaca atttgagctg 1860atgaacatca tgtttgttcc aacaaatctt cctccaatct ac 1902612370DNABacillus thuringiensis 61atgaatatga ataatactaa attaaacgca agggccctac cgagttttat tgattatttt 60aatggcattt atggatttgc cactggtatc aaagacatta tgaatatgat ttttaaaacg 120gatacaggtg gtaatctaac cttagacgaa atcctaaaga atcagcagtt actaaatgag 180atttctggta aattggatgg ggtaaatggg agcttaaatg atcttatcgc acagggaaac 240ttaaatacag aattatctaa ggaaatctta aaaattgcaa atgaacagaa tcaagtctta 300aatgatgtta ataacaaact cgatgcgata aatacgatgc ttcatatata tctacctaaa 360attacatcta tgttaagtga tgtaatgaag caaaattatg cgctaagtct gcaaatagaa 420tacttaagta agcaattgca agaaatttct gataaattag atattattaa cgtaaatgtt 480cttattaact ctacacttac tgaaattaca cctgcatatc aacggattaa atatgtgaat 540gaaaaatttg aagaattaac ttttgctaca gaaaccactt taaaagtaaa aaaggatagc 600tcgcctgctg atattcttga tgagttaact gaattaactg aactagcgaa aagtgttaca 660aaaaatgacg ttgatggttt tgaattttac cttaatacat tccacgatgt aatggtagga 720aataatttat tcgggcgttc agctttaaaa actgcttcag aattaattgc taaagaaaat 780gtgaaaacaa gtggcagtga agtaggaaat gtttataatt tcttaattgt attaacagct 840ctacaagcaa aagcttttct tactttaaca acatgccgaa aattattagg cttagcagat 900attgattata cttctattat gaatgaacat ttaaataagg aaaaagagga atttagagta 960aacatccttc ctacactttc taatactttt tctaatccta attatgcaaa agttaaagga 1020agtgatgaag atgcaaagat gattgtggaa gctaaaccag gacatgcatt ggttgggttt 1080gaaatgagca atgattcaat cacagtatta aaagtatatg aggctaagct aaaacaaaat 1140tatcaagttg ataaggattc cttatcggag gttatttatg gtgatatgga taaattattg 1200tgtccagatc aatctgaaca aatttattat acaaataata tagtatttcc aaatgaatat 1260gtaattacta aaattgattt tactaagaaa atgaagactt taagatatga ggtaacagct 1320aattcttatg attcttctac aggagaaatt gacttaaata agaagaaagt agaatcaagt 1380gaagcggagt ataggacgtt aagtgctaaa gatgatggag tgtatatgcc gttaggtgtc 1440atcagtgaaa catttttgac tccgattaat gggtttggcc tccaagctga tgaaaattca 1500agattaatta ctttaacatg taaatcatat ttaagagaac tactgttagc aacagactta 1560agcaataaag aaactaaatt gatcgtcccg ccaagtggtt ttattagtaa tattgtagaa 1620aatgggaact tagagggaga aaacttagag ccgtggatag caaataataa gaatgcgtat 1680gtagatcata caggcggagt gaatggtact agagctttat atgttcataa ggacggagga 1740ttttcacaat ttattggaga taagttaaaa ccgaaaactg agtatgtaat ccaatatact 1800gttaaaggaa aaccttctat tcatttaaaa aatgaaaata ctggatatat tcattatgaa 1860gatacaaata acaatttaga agattatcaa actattacta aacgttttac tacaggaact 1920gatttaaagg gagtgtattt aattttaaaa agtcaaaatg gagatgaagc ctggggagat 1980aactttacaa ttttggaaat tagtccttct gaaaagttat taagtccaga attaatcaat 2040gtaaataatt ggattcgcac gggatcaact catattagcg gtaatacact cactctctat 2100cagggaggag gaggaaatct aaaacaaaac cttcaattag acagtttttc aacttataga 2160gtgaattttt ctgtgaccgg agatgctaat gtaaggatta gaaattctag ggaagtgtta 2220tttgaaaaac gatatatgag cggtgctaaa gatgtttctg aaattttcac tacaaaattg 2280gggaaagata acttttatat agagctttct caagggaata atttatatgg tggtcctctt 2340gtaaagttta acgatgtctc aattaagtaa 2370622388DNAArtificial Sequencesynthetic nucleotide sequence encoding AXMI- 005 w/c-terminal extension 62atgaacatga acaacaccaa gctcaatgca agggcgctgc cgagcttcat cgactacttc 60aatggcatct atggcttcgc caccggcatc aaggacatca tgaacatgat cttcaagacc 120gacaccggcg gcaacctcac cttggatgag atcctcaaga accagcagct gctgaatgag 180atctcaggca agctggacgg cgtcaatgga agcctcaacg acctcattgc tcaaggcaac 240ctcaacaccg agctgagcaa ggagatcctc aagattgcaa atgagcagaa ccaggtgctg 300aatgatgtca acaacaagct ggacgccatc aacaccatgc tgcacatcta cctgccaaag 360atcacctcaa tgctctctga tgtgatgaag cagaactacg cgctgagcct ccagattgag 420tacctctcaa agcagctgca agagatctcc gacaagctgg acatcatcaa tgtcaatgtg 480ctcatcaaca gcaccttgac agagatcacg ccggcctacc agaggatcaa gtatgtcaat 540gagaagtttg aggagctcac cttcgccacc gagacaacat tgaaggtgaa gaaggacagc 600tcgccggcgg acatcctgga tgagctcacc gagctaacag agctggccaa gagcgtcacc 660aagaatgatg ttgatggctt cgagttctac ctcaacacct tccatgatgt gatggtgggc 720aacaacctct tcggccgctc ggcgctcaag acggcgtcgg agctgatcgc caaggagaat 780gtcaagacaa gtggatcaga ggtgggcaat gtctacaact tcctcatcgt gctgacggcg 840ctgcaagcca aggccttcct caccttgaca acctgccgca agttgctggg cctcgccgac 900atcgactaca cctccatcat gaatgagcac ctcaacaagg agaaggagga gttccgcgtc 960aacatcctgc caacattgag caacaccttc agcaacccca actacgccaa ggtgaagggc 1020tcagatgaag atgccaagat gattgtggag gccaagcctg gccatgctct ggtgggcttc 1080gagatgagca acgacagcat caccgtgctg aaggtctacg aggccaagct gaagcagaac 1140taccaggtgg acaaggacag cttgtctgag gtgatctacg gcgacatgga caagctgcta 1200tgtccagatc aaagcgagca gatctactac accaacaaca tcgtctttcc aaatgaatat 1260gtcatcacca agatcgactt caccaagaag atgaaaacat tgagatatga ggtgacggcc 1320aacagctacg acagcagcac cggcgagatc gacctcaaca agaagaaggt ggagagctca 1380gaagctgagt acaggacgct ctccgccaag gatgatggcg tctacatgcc gctcggcgtc 1440atctcagaaa ccttcttgac gcccatcaat ggcttcggcc tccaagctga tgagaacagc 1500aggctcatca ccttgacctg caagagctac ctcagggagc tgctgctggc caccgacctc 1560agcaacaagg agacaaagct catcgtgccg ccatcaggct tcatcagcaa catcgtggag 1620aatggcaacc tggaaggaga gaacctggag ccatggatag ccaacaacaa gaatgcttat 1680gttgatcaca ccggcggcgt caatggaaca agggcgctct atgttcacaa ggatggaggc 1740ttcagccagt tcatcggcga caagctgaag cccaagacag aatatgtcat ccagtacacc 1800gtcaagggca agccatcaat ccacctcaag aatgagaaca ccggctacat ccactacgag 1860gacaccaaca acaacctgga ggactaccag accatcacca agaggttcac caccggcacc 1920gacctcaagg gcgtctacct catcttgaag agccaaaatg gagatgaagc atggggagac 1980aacttcacca tcctggagat ctcgccatca gagaagctgc tctcgccgga gctcatcaat 2040gtcaacaact ggatcagaac tggaagcacc cacatcagcg gcaacacctt gacgctctac 2100caaggaggag gaggcaacct caagcagaac ctccagcttg acagcttctc cacctacagg 2160gtgaacttct ccgtcaccgg cgacgccaat gtgaggatca gaaattcaag ggaggtgctc 2220ttcgagaaga gatacatgag cggcgccaag gatgtttctg agatcttcac caccaagctg 2280ggcaaggaca acttctacat cgagctgagc caaggcaaca acctctatgg agggccgctg 2340gtgaagttca atgatgtgag catcaagcat caccaccatc atcactaa 238863789PRTBacillus thuringiensis 63Met Asn Met Asn Asn Thr Lys Leu Asn Ala Arg Ala Leu Pro Ser Phe 1 5 10 15 Ile Asp Tyr Phe Asn Gly Ile Tyr Gly Phe Ala Thr Gly Ile Lys Asp 20 25 30 Ile Met Asn Met Ile Phe Lys Thr Asp Thr Gly Gly Asn Leu Thr Leu 35 40 45 Asp Glu Ile Leu Lys Asn Gln Gln Leu Leu Asn Glu Ile Ser Gly Lys 50 55 60 Leu Asp Gly Val

Asn Gly Ser Leu Asn Asp Leu Ile Ala Gln Gly Asn 65 70 75 80 Leu Asn Thr Glu Leu Ser Lys Glu Ile Leu Lys Ile Ala Asn Glu Gln 85 90 95 Asn Gln Val Leu Asn Asp Val Asn Asn Lys Leu Asp Ala Ile Asn Thr 100 105 110 Met Leu His Ile Tyr Leu Pro Lys Ile Thr Ser Met Leu Ser Asp Val 115 120 125 Met Lys Gln Asn Tyr Ala Leu Ser Leu Gln Ile Glu Tyr Leu Ser Lys 130 135 140 Gln Leu Gln Glu Ile Ser Asp Lys Leu Asp Ile Ile Asn Val Asn Val 145 150 155 160 Leu Ile Asn Ser Thr Leu Thr Glu Ile Thr Pro Ala Tyr Gln Arg Ile 165 170 175 Lys Tyr Val Asn Glu Lys Phe Glu Glu Leu Thr Phe Ala Thr Glu Thr 180 185 190 Thr Leu Lys Val Lys Lys Asp Ser Ser Pro Ala Asp Ile Leu Asp Glu 195 200 205 Leu Thr Glu Leu Thr Glu Leu Ala Lys Ser Val Thr Lys Asn Asp Val 210 215 220 Asp Gly Phe Glu Phe Tyr Leu Asn Thr Phe His Asp Val Met Val Gly 225 230 235 240 Asn Asn Leu Phe Gly Arg Ser Ala Leu Lys Thr Ala Ser Glu Leu Ile 245 250 255 Ala Lys Glu Asn Val Lys Thr Ser Gly Ser Glu Val Gly Asn Val Tyr 260 265 270 Asn Phe Leu Ile Val Leu Thr Ala Leu Gln Ala Lys Ala Phe Leu Thr 275 280 285 Leu Thr Thr Cys Arg Lys Leu Leu Gly Leu Ala Asp Ile Asp Tyr Thr 290 295 300 Ser Ile Met Asn Glu His Leu Asn Lys Glu Lys Glu Glu Phe Arg Val 305 310 315 320 Asn Ile Leu Pro Thr Leu Ser Asn Thr Phe Ser Asn Pro Asn Tyr Ala 325 330 335 Lys Val Lys Gly Ser Asp Glu Asp Ala Lys Met Ile Val Glu Ala Lys 340 345 350 Pro Gly His Ala Leu Val Gly Phe Glu Met Ser Asn Asp Ser Ile Thr 355 360 365 Val Leu Lys Val Tyr Glu Ala Lys Leu Lys Gln Asn Tyr Gln Val Asp 370 375 380 Lys Asp Ser Leu Ser Glu Val Ile Tyr Gly Asp Met Asp Lys Leu Leu 385 390 395 400 Cys Pro Asp Gln Ser Glu Gln Ile Tyr Tyr Thr Asn Asn Ile Val Phe 405 410 415 Pro Asn Glu Tyr Val Ile Thr Lys Ile Asp Phe Thr Lys Lys Met Lys 420 425 430 Thr Leu Arg Tyr Glu Val Thr Ala Asn Ser Tyr Asp Ser Ser Thr Gly 435 440 445 Glu Ile Asp Leu Asn Lys Lys Lys Val Glu Ser Ser Glu Ala Glu Tyr 450 455 460 Arg Thr Leu Ser Ala Lys Asp Asp Gly Val Tyr Met Pro Leu Gly Val 465 470 475 480 Ile Ser Glu Thr Phe Leu Thr Pro Ile Asn Gly Phe Gly Leu Gln Ala 485 490 495 Asp Glu Asn Ser Arg Leu Ile Thr Leu Thr Cys Lys Ser Tyr Leu Arg 500 505 510 Glu Leu Leu Leu Ala Thr Asp Leu Ser Asn Lys Glu Thr Lys Leu Ile 515 520 525 Val Pro Pro Ser Gly Phe Ile Ser Asn Ile Val Glu Asn Gly Asn Leu 530 535 540 Glu Gly Glu Asn Leu Glu Pro Trp Ile Ala Asn Asn Lys Asn Ala Tyr 545 550 555 560 Val Asp His Thr Gly Gly Val Asn Gly Thr Arg Ala Leu Tyr Val His 565 570 575 Lys Asp Gly Gly Phe Ser Gln Phe Ile Gly Asp Lys Leu Lys Pro Lys 580 585 590 Thr Glu Tyr Val Ile Gln Tyr Thr Val Lys Gly Lys Pro Ser Ile His 595 600 605 Leu Lys Asn Glu Asn Thr Gly Tyr Ile His Tyr Glu Asp Thr Asn Asn 610 615 620 Asn Leu Glu Asp Tyr Gln Thr Ile Thr Lys Arg Phe Thr Thr Gly Thr 625 630 635 640 Asp Leu Lys Gly Val Tyr Leu Ile Leu Lys Ser Gln Asn Gly Asp Glu 645 650 655 Ala Trp Gly Asp Asn Phe Thr Ile Leu Glu Ile Ser Pro Ser Glu Lys 660 665 670 Leu Leu Ser Pro Glu Leu Ile Asn Val Asn Asn Trp Ile Arg Thr Gly 675 680 685 Ser Thr His Ile Ser Gly Asn Thr Leu Thr Leu Tyr Gln Gly Gly Gly 690 695 700 Gly Asn Leu Lys Gln Asn Leu Gln Leu Asp Ser Phe Ser Thr Tyr Arg 705 710 715 720 Val Asn Phe Ser Val Thr Gly Asp Ala Asn Val Arg Ile Arg Asn Ser 725 730 735 Arg Glu Val Leu Phe Glu Lys Arg Tyr Met Ser Gly Ala Lys Asp Val 740 745 750 Ser Glu Ile Phe Thr Thr Lys Leu Gly Lys Asp Asn Phe Tyr Ile Glu 755 760 765 Leu Ser Gln Gly Asn Asn Leu Tyr Gly Gly Pro Leu Val Lys Phe Asn 770 775 780 Asp Val Ser Ile Lys 785 64795PRTArtificial SequenceAXMI-005 w/ c-terminal extension 64Met Asn Met Asn Asn Thr Lys Leu Asn Ala Arg Ala Leu Pro Ser Phe 1 5 10 15 Ile Asp Tyr Phe Asn Gly Ile Tyr Gly Phe Ala Thr Gly Ile Lys Asp 20 25 30 Ile Met Asn Met Ile Phe Lys Thr Asp Thr Gly Gly Asn Leu Thr Leu 35 40 45 Asp Glu Ile Leu Lys Asn Gln Gln Leu Leu Asn Glu Ile Ser Gly Lys 50 55 60 Leu Asp Gly Val Asn Gly Ser Leu Asn Asp Leu Ile Ala Gln Gly Asn 65 70 75 80 Leu Asn Thr Glu Leu Ser Lys Glu Ile Leu Lys Ile Ala Asn Glu Gln 85 90 95 Asn Gln Val Leu Asn Asp Val Asn Asn Lys Leu Asp Ala Ile Asn Thr 100 105 110 Met Leu His Ile Tyr Leu Pro Lys Ile Thr Ser Met Leu Ser Asp Val 115 120 125 Met Lys Gln Asn Tyr Ala Leu Ser Leu Gln Ile Glu Tyr Leu Ser Lys 130 135 140 Gln Leu Gln Glu Ile Ser Asp Lys Leu Asp Ile Ile Asn Val Asn Val 145 150 155 160 Leu Ile Asn Ser Thr Leu Thr Glu Ile Thr Pro Ala Tyr Gln Arg Ile 165 170 175 Lys Tyr Val Asn Glu Lys Phe Glu Glu Leu Thr Phe Ala Thr Glu Thr 180 185 190 Thr Leu Lys Val Lys Lys Asp Ser Ser Pro Ala Asp Ile Leu Asp Glu 195 200 205 Leu Thr Glu Leu Thr Glu Leu Ala Lys Ser Val Thr Lys Asn Asp Val 210 215 220 Asp Gly Phe Glu Phe Tyr Leu Asn Thr Phe His Asp Val Met Val Gly 225 230 235 240 Asn Asn Leu Phe Gly Arg Ser Ala Leu Lys Thr Ala Ser Glu Leu Ile 245 250 255 Ala Lys Glu Asn Val Lys Thr Ser Gly Ser Glu Val Gly Asn Val Tyr 260 265 270 Asn Phe Leu Ile Val Leu Thr Ala Leu Gln Ala Lys Ala Phe Leu Thr 275 280 285 Leu Thr Thr Cys Arg Lys Leu Leu Gly Leu Ala Asp Ile Asp Tyr Thr 290 295 300 Ser Ile Met Asn Glu His Leu Asn Lys Glu Lys Glu Glu Phe Arg Val 305 310 315 320 Asn Ile Leu Pro Thr Leu Ser Asn Thr Phe Ser Asn Pro Asn Tyr Ala 325 330 335 Lys Val Lys Gly Ser Asp Glu Asp Ala Lys Met Ile Val Glu Ala Lys 340 345 350 Pro Gly His Ala Leu Val Gly Phe Glu Met Ser Asn Asp Ser Ile Thr 355 360 365 Val Leu Lys Val Tyr Glu Ala Lys Leu Lys Gln Asn Tyr Gln Val Asp 370 375 380 Lys Asp Ser Leu Ser Glu Val Ile Tyr Gly Asp Met Asp Lys Leu Leu 385 390 395 400 Cys Pro Asp Gln Ser Glu Gln Ile Tyr Tyr Thr Asn Asn Ile Val Phe 405 410 415 Pro Asn Glu Tyr Val Ile Thr Lys Ile Asp Phe Thr Lys Lys Met Lys 420 425 430 Thr Leu Arg Tyr Glu Val Thr Ala Asn Ser Tyr Asp Ser Ser Thr Gly 435 440 445 Glu Ile Asp Leu Asn Lys Lys Lys Val Glu Ser Ser Glu Ala Glu Tyr 450 455 460 Arg Thr Leu Ser Ala Lys Asp Asp Gly Val Tyr Met Pro Leu Gly Val 465 470 475 480 Ile Ser Glu Thr Phe Leu Thr Pro Ile Asn Gly Phe Gly Leu Gln Ala 485 490 495 Asp Glu Asn Ser Arg Leu Ile Thr Leu Thr Cys Lys Ser Tyr Leu Arg 500 505 510 Glu Leu Leu Leu Ala Thr Asp Leu Ser Asn Lys Glu Thr Lys Leu Ile 515 520 525 Val Pro Pro Ser Gly Phe Ile Ser Asn Ile Val Glu Asn Gly Asn Leu 530 535 540 Glu Gly Glu Asn Leu Glu Pro Trp Ile Ala Asn Asn Lys Asn Ala Tyr 545 550 555 560 Val Asp His Thr Gly Gly Val Asn Gly Thr Arg Ala Leu Tyr Val His 565 570 575 Lys Asp Gly Gly Phe Ser Gln Phe Ile Gly Asp Lys Leu Lys Pro Lys 580 585 590 Thr Glu Tyr Val Ile Gln Tyr Thr Val Lys Gly Lys Pro Ser Ile His 595 600 605 Leu Lys Asn Glu Asn Thr Gly Tyr Ile His Tyr Glu Asp Thr Asn Asn 610 615 620 Asn Leu Glu Asp Tyr Gln Thr Ile Thr Lys Arg Phe Thr Thr Gly Thr 625 630 635 640 Asp Leu Lys Gly Val Tyr Leu Ile Leu Lys Ser Gln Asn Gly Asp Glu 645 650 655 Ala Trp Gly Asp Asn Phe Thr Ile Leu Glu Ile Ser Pro Ser Glu Lys 660 665 670 Leu Leu Ser Pro Glu Leu Ile Asn Val Asn Asn Trp Ile Arg Thr Gly 675 680 685 Ser Thr His Ile Ser Gly Asn Thr Leu Thr Leu Tyr Gln Gly Gly Gly 690 695 700 Gly Asn Leu Lys Gln Asn Leu Gln Leu Asp Ser Phe Ser Thr Tyr Arg 705 710 715 720 Val Asn Phe Ser Val Thr Gly Asp Ala Asn Val Arg Ile Arg Asn Ser 725 730 735 Arg Glu Val Leu Phe Glu Lys Arg Tyr Met Ser Gly Ala Lys Asp Val 740 745 750 Ser Glu Ile Phe Thr Thr Lys Leu Gly Lys Asp Asn Phe Tyr Ile Glu 755 760 765 Leu Ser Gln Gly Asn Asn Leu Tyr Gly Gly Pro Leu Val Lys Phe Asn 770 775 780 Asp Val Ser Ile Lys His His His His His His 785 790 795 653537DNAArtificial Sequencesynthetic nucleotide sequence encoding Cry1Ac (synFLCry1Ac) 65atggataaca accccaacat caacgagtgc atcccctaca actgcctctc aaaccccgag 60gtcgaggtcc tcggcggtga gcgtatcgag accggttaca cccctatcga tatcagcctg 120agcctgaccc agttcctcct ctcggagttc gtccccggtg ctggtttcgt tctgggtttg 180gtcgatatca tctggggcat cttcggcccc tcgcagtggg atgctttcct ggtccagatc 240gagcagttga tcaaccagcg catcgaggag ttcgccagga accaggctat ctcacgtctg 300gagggtttgt cgaacctcta ccaaatctac gccgagagct tccgcgagtg ggaggctgat 360cctactaacc ccgctttgcg tgaggagatg cgcatccagt tcaacgatat gaactcggcc 420ctgaccaccg ccatccccct cttcgctgtc cagaactacc aggtcccctt gctctcagtc 480tacgtccagg ctgctaacct ccatctgagc gtcctgaggg atgtctctgt cttcggccag 540aggtggggtt tcgatgctgc tactatcaac agccgctaca acgatctcac ccgcctgatc 600ggcaactaca ccgattacgc cgtccgttgg tacaacaccg gcctggagcg tgtttggggt 660cctgattcac gtgattgggt ccgttacaac cagttccgca gggagctcac cttgaccgtc 720ttggatatcg tcgccctctt ccccaactac gatagccgcc gttaccccat ccgtaccgtt 780agccagctca ctagggaaat ctacaccaac cccgtcctgg agaacttcga tggctcgttc 840cgtggttcag ctcagggtat cgagaggagc atccgttcgc ctcatctgat ggatatcctg 900aactcgatca ccatctacac cgatgcccat cgcggctact actactggtc gggccatcag 960atcatggcct cgcccgtcgg cttctcaggt cctgagttca ccttcccctt gtacggcacc 1020atgggtaacg ccgctcctca gcagaggatc gttgctcagt tgggtcaggg tgtttacagg 1080accctgagct ctaccctcta caggaggcct ttcaacatcg gcatcaacaa ccagcagctg 1140tcagtcctcg atggcactga gttcgcctac ggcaccagct ctaacctgcc ctctgctgtc 1200taccgcaaga gcggcaccgt tgattcgctc gatgagatcc cccctcagaa caacaacgtc 1260ccccctcgtc agggtttctc acatcgtctg agccatgtct cgatgttccg cagcggtttc 1320agcaactctt cggtctcgat catccgcgcc cctatgttct cttggattca tcgctcggcc 1380gagttcaaca acatcatcgc ctctgatagc atcactcaga tccccgccgt caagggcaac 1440ttcctgttca acggctcagt gatcagcggt cctggcttca ctggtggcga tttggtccgc 1500ctgaactcgt cgggcaacaa catccagaac cgtggttaca tcgaggtccc catccatttc 1560cctagcacct cgacccgtta ccgcgtgagg gtcaggtacg cttcggttac ccctatccat 1620ttgaacgtta actggggcaa ctcatcgatc ttctctaaca ccgtccccgc caccgccacc 1680tcgctggata acctccagag ctctgatttc ggctacttcg agagcgccaa cgccttcacc 1740tccagcctgg gcaacatcgt tggcgtgagg aacttctcag gcaccgctgg tgtcatcatc 1800gaccgcttcg agttcatccc cgtcaccgct accctggagg ctgagtacaa cctggagagg 1860gctcagaagg ctgtgaacgc tctcttcacc agcactaacc agctcggtct taagaccaac 1920gttaccgatt accatatcga ccaggtttca aacctcgtca cctacctcag cgatgagttc 1980tgcctggatg agaagcgcga gctgagcgag aaggtcaagc atgccaagcg cctgtcggat 2040gagcgcaacc tgctccagga tagcaacttc aaggatatca accgtcagcc cgagaggggc 2100tggggcggtt caaccggtat caccatccag ggtggcgatg atgtcttcaa ggagaactac 2160gtcaccctga gcggcacctt cgatgagtgc taccctacct acttgtacca gaagatcgac 2220gagtctaagc tcaaggcctt cactcgctac cagttgcgcg gttacatcga ggattcacag 2280gatctggaaa tctacctgat ccgctacaac gctaagcatg agactgttaa cgtccctggc 2340accggttcgc tctggcctct cagcgctcag tctcccatcg gcaagtgcgg cgagcctaac 2400cgttgcgccc ctcatttgga gtggaaccct gatctggatt gctcatgccg cgatggcgag 2460aagtgcgccc atcatagcca tcatttctca ttggatatcg atgtcggttg caccgatctg 2520aacgaggatc tcggtgtctg ggtcatcttc aagatcaaga cccaggatgg tcatgcccgc 2580ctcggcaact tggagttcct ggaggagaag cctctggtcg gcgaggcctt ggctagggtg 2640aagcgcgccg agaagaagtg gcgcgataag cgcgagaagc tggagtggga gaccaacatc 2700gtctacaagg aggccaagga gtcagtcgat gccctgttcg tgaacagcca gtacgatcag 2760ctccaggccg ataccaacat cgccatgatc catgccgccg ataagcgcgt tcatagcatc 2820cgcgaggcct acctccctga gctctcagtg atccctggtg ttaacgccgc tatcttcgag 2880gagctggagg gccgcatctt cactgccttc agcctgtacg atgctcgtaa cgtgatcaag 2940aacggtgatt tcaacaacgg tttgtcatgc tggaacgtga agggccatgt cgatgtcgag 3000gagcagaaca accagcgcag cgttctggtt gtccctgagt gggaggctga ggtttcacag 3060gaggtccgcg tctgccctgg ccgtggttac atcctgaggg tcaccgctta caaggagggt 3120tacggcgagg gttgcgttac tatccatgag atcgagaaca acaccgatga gctcaagttc 3180tcaaactgcg tcgaggagga aatctacccc aacaacactg tgacctgcaa cgattacact 3240gttaaccagg aggagtacgg cggcgcctac accagccgta accgtggcta caacgaggct 3300ccctctgtcc ccgccgatta cgcctcagtc tacgaggaga agtcgtacac cgatggccgc 3360cgcgagaacc cctgcgagtt caacaggggt taccgcgatt acaccccctt gcccgtcggc 3420tacgtgacta aggagctgga gtacttcccc gagactgata aggtctggat cgagatcggc 3480gagactgagg gcaccttcat cgttgattca gtcgagctgc tgctcatgga ggagtga 3537663537DNAArtificial Sequencesynthetic nucleotide sequence encoding Cry1Ac (NalCry1Ac) 66atggataaca accccaacat caacgagtgc atcccctaca actgcctctc aaaccccgag 60gtcgaggtcc tcggcggtga gcgtatcgag accggttaca cccctatcga tatcagcctg 120agcctgaccc agttcctcct ctcggagttc gtccccggtg ctggtttcgt tctgggtttg 180gtcgatatca tctggggcat cttcggcccc tcgcagtggg atgctttcct ggtccagatc 240gagcagttga tcaaccagcg catcgaggag ttcgccagga accaggctat ctcacgtctg 300gagggtttgt cgaacctcta ccaaatctac gccgagagct tccgcgagtg ggaggctgat 360cctactaacc ccgctttgcg tgaggagatg cgcatccagt tcaacgatat gaactcggcc 420ctgaccaccg ccatccccct cttcgctgtc cagaactacc aggtcccctt gctctcagtc 480tacgtccagg ctgctaacct ccatctgagc gtcctgaggg atgtctctgt cttcggccag 540aggtggggtt tcgatgctgc tactatcaac agccgctaca acgatctcac ccgcctgatc 600ggcaactaca ccgattacgc cgtccgttgg tacaacaccg gcctggagcg tgtttggggt 660cctgattcac gtgattgggt ccgttacaac cagttccgca gggagctcac cttgaccgtc 720ttggatatcg tcgccctctt ccccaactac gatagccgcc gttaccccat ccgtaccgtt 780agccagctca ctagggaaat ctacaccaac cccgtcctgg agaacttcga tggctcgttc 840cgtggttcag ctcagggtat cgagaggagc atccgttcgc ctcatctgat ggatatcctg 900aactcgatca ccatctacac cgatgcccat cgcggctact actactggtc gggccatcag 960atcatggcct cgcccgtcgg cttctcaggt cctgagttca ccttcccctt gtacggcacc 1020atgggtaacg ccgctcctca gcagaggatc gttgctcagt tgggtcaggg tgtttacagg 1080accctgagct ctaccctcta caggaggcct ttcaacatcg gcatcaacaa ccagcagctg 1140tcagtcctcg atggcactga gttcgcctac ggcaccagct ctaacctgcc ctctgctgtc 1200taccgcaaga gcggcaccgt tgattcgctc gatgagatcc cccctcagaa caacaacgtc 1260ccccctcgtc agggtttctc acatcgtctg agccatgtct cgatgttccg cagcggtttc 1320agcaactctt cggtctcgat catccgcgcc cctatgttct cttggattca tcgctcggcc

1380gagttcaaca acatcatcgc ctctgatagc atcactcaga tccccgccgt caagggcaac 1440ttcctgttca acggctcagt gatcagcggt cctggcttca ctggtggcga tttggtccgc 1500ctgaactcgt cgggcaacaa catccagaac cgtggttaca tcgaggtccc catccatttc 1560cctagcacct cgacccgtta ccgcgtgagg gtcaggtacg cttcggttac ccctatccat 1620ttgaacgtta actggggcaa ctcatcgatc ttctctaaca ccgtccccgc caccgccacc 1680tcgctggata acctccagag ctctgatttc ggctacttcg agagcgccaa cgccttcacc 1740tccagcctgg gcaacatcgt tggcgtgagg aacttctcag gcaccgctgg tgtcatcatc 1800gaccgcttcg agttcatccc cgtcaccgct accctggagg ctgagtacaa cctggagagg 1860gctcagaagg ctgtgaacgc tctcttcacc agcactaacc agctcggtct caagaccaac 1920gttaccgatt accatatcga ccaggtttca aacctcgtca cctacctcag cgatgagttc 1980tgcctggatg agaagcgcga gctgagcgag aaggtcaagc atgccaagcg cctgtcggat 2040gagcgcaacc tgctccagga tagcaacttc aaggatatca accgtcagcc cgagaggggc 2100tggggcggtt caaccggtat caccatccag ggtggcgatg atgtcttcaa ggagaactac 2160gtcaccctga gcggcacctt cgatgagtgc taccctacct acttgtacca gaagatcgac 2220gagtctaagc tcaaggcctt cactcgctac cagttgcgcg gttacatcga ggattcacag 2280gatctggaaa tctacctgat ccgctacaac gctaagcatg agactgttaa cgtccctggc 2340accggttcgc tctggcctct cagcgctcag tctcccatcg gcaagtgcgg cgagcctaac 2400cgttgcgccc ctcatttgga gtggaaccct gatctggatt gctcatgccg cgatggcgag 2460aagtgcgccc atcatagcca tcatttctca ttggatatcg atgtcggttg caccgatctg 2520aacgaggatc tcggtgtctg ggtcatcttc aagatcaaga cccaggatgg tcatgcccgc 2580ctcggcaact tggagttcct ggaggagaag cctctggtcg gcgaggcctt ggctagggtg 2640aagcgcgccg agaagaagtg gcgcgataag cgcgagaagc tggagtggga gaccaacatc 2700gtctacaagg aggccaagga gtcagtcgat gccctgttcg tgaacagcca gtacgatcag 2760ctccaggccg ataccaacat cgccatgatc catgccgccg ataagcgcgt tcatagcatc 2820cgcgaggcct acctccctga gctctcagtg atccctggtg ttaacgccgc tatcttcgag 2880gagctggagg gccgcatctt cactgccttc agcctgtacg atgctcgtaa cgtgatcaag 2940aacggtgatt tcaacaacgg tttgtcatgc tggaacgtga agggccatgt cgatgtcgag 3000gagcagaaca accagcgcag cgttctggtt gtccctgagt gggaggctga ggtttcacag 3060gaggtccgcg tctgccctgg ccgtggttac atcctgaggg tcaccgctta caaggagggt 3120tacggcgagg gttgcgttac tatccatgag atcgagaaca acaccgatga gctcaagttc 3180tcaaactgcg tcgaggagga aatctacccc aacaacactg tgacctgcaa cgattacact 3240gttaaccagg aggagtacgg cggcgcctac accagccgta accgtggcta caacgaggct 3300ccctctgtcc ccgccgatta cgcctcagtc tacgaggaga agtcgtacac cgatggccgc 3360cgcgagaacc cctgcgagtt caacaggggt taccgcgatt acaccccctt gcccgtcggc 3420tacgtgacta aggagctgga gtacttcccc gagactgata aggtctggat cgagatcggc 3480gagactgagg gcaccttcat cgttgattca gtcgagctgc tgctcatgga ggagtga 3537673537DNAArtificial Sequencesynthetic nucleotide sequence encoding Cry1Ac (synCry1AcB) 67atggacaaca accccaacat caatgaatgc atcccctaca actgcttgag caacccggag 60gtggaggtgc tgggaggaga aagaattgaa actggctaca cgcccatcga catcagcttg 120agcttgacac aatttcttct ttcagaattt gttcctggcg ccggcttcgt gctggggctg 180gtggacatca tctggggcat cttcggccca agccaatggg atgccttcct ggtgcaaatt 240gagcagctca tcaaccagag gattgaagaa tttgcaagaa atcaagccat ctcaaggctg 300gaagggctga gcaacctcta ccagatctac gccgagagct tcagagaatg ggaagctgat 360ccaacaaatc ctgctcttcg agaagagatg aggattcagt tcaacgacat gaactcggcg 420ctcaccaccg ccatcccgct cttcgccgtc cagaactacc aagttcctct tctttcagtt 480tatgttcaag ctgccaacct ccacctctcc gtgctgagag atgtttctgt ttttggacaa 540agatggggct tcgacgccgc caccatcaac agcagataca atgatttgac aaggctcatc 600ggcaactaca ccgactacgc cgtccgctgg tacaacaccg gcctggagag ggtgtgggga 660ccagattcaa gagattgggt gagatacaac cagttcagaa gagagctcac cttgacggtg 720ctggacatcg tggcgctctt ccccaactat gattcaagaa gatatcccat caggacggtg 780agccagctga caagggagat ctacaccaac ccggtgctgg agaactttga tggcagcttc 840cgcggcagcg ctcaaggaat tgaaagaagc atcagaagcc ctcatctgat ggacatcctc 900aacagcatca ccatctacac tgatgctcac cgcggctact actactggag cggccaccag 960atcatggcat cacctgttgg cttctctgga cctgagttca ccttcccgct ctatggaaca 1020atgggcaatg ctgctcctca acaaagaatt gtggcgcagc tgggccaagg agtctacagg 1080acgctgagca gcaccttgta ccggcggccc ttcaacatcg gcatcaacaa ccagcagctc 1140tccgtgctgg atggaactga atttgcttat ggaacatcaa gcaacctgcc aagcgccgtc 1200tacaggaaga gcggcaccgt ggacagcttg gatgagatcc cgccgcagaa caacaatgtg 1260ccgccgcgcc aaggcttcag ccaccgcctc agccatgtga gcatgttcag aagcggcttc 1320agcaacagct ccgtcagcat catcagggcg ccgatgttca gctggattca tcgctcagca 1380gagttcaaca acatcattgc ttctgacagc atcacccaga tcccggcggt gaagggcaac 1440ttcctcttca atggaagcgt catctctgga cctggcttca ctggaggaga tctggtgagg 1500ctcaacagca gcggcaacaa catccagaac agaggctaca ttgaggtgcc catccacttc 1560ccatcaacat caacaagata cagggtgagg gtgagatatg cttctgtgac gcccatccac 1620ctcaatgtca actggggcaa cagcagcatc ttcagcaaca ccgtgccggc gacggcgacg 1680agcttggaca accttcaaag ctcagatttt ggatattttg agagcgccaa cgccttcacc 1740tcctcgctgg gcaacattgt tggtgtgagg aacttcagcg gcaccgccgg cgtcatcatc 1800gacagatttg agttcatccc ggtgacagca acattggagg cggagtacaa cctagaaaga 1860gctcagaagg ccgtcaacgc gctcttcacc tccaccaacc agctgggcct caagacaaat 1920gtcaccgact accacattga tcaagtgagc aacctggtga cctacctctc tgatgagttc 1980tgcttggatg agaagaggga gctctccgag aaggtgaagc atgccaagag gctctctgat 2040gaaaggaacc tgctgcaaga ttcaaacttc aaggacatca acaggcagcc agaaagagga 2100tggggaggaa gcaccggcat caccatccaa ggaggagatg atgtcttcaa ggagaactac 2160gtcaccttga gcggcacctt tgatgaatgc taccccacct acctctacca gaagattgat 2220gaaagcaagc taaaggcctt cacaagatac cagctccgcg gctacattga agattctcaa 2280gatctggaga tctacctcat cagatacaac gccaagcatg agacggtgaa tgttcctgga 2340actggaagcc tctggccgct ctcagctcaa agccccatcg gcaaatgtgg agagcccaac 2400cgctgcgcgc cgcacctgga gtggaatcca gatctggatt gcagctgccg agatggagaa 2460aaatgtgctc atcacagcca ccacttctca ttggacattg atgttggctg caccgacctc 2520aatgaagatc ttggagtttg ggtgatcttc aagatcaaga ctcaagatgg ccatgcaagg 2580ctgggcaacc tggagttcct ggaggagaag ccgctggtgg gagaagctct agcaagggtg 2640aagagagctg agaagaagtg gagggacaag agggagaagc tggagtggga gaccaacatc 2700gtctacaagg aggccaagga gagcgtggat gctctcttcg tcaacagcca atatgatcaa 2760cttcaagctg acaccaacat cgccatgatc cacgccgccg acaagagggt gcacagcatc 2820agagaagcat atcttccaga gctctcagtg atccccggcg tcaacgccgc catcttcgag 2880gagctggaag gaaggatctt caccgccttc agcctctatg atgcaagaaa tgtcatcaag 2940aatggagact tcaacaatgg gctgagctgc tggaatgtga agggccatgt tgatgtggag 3000gagcagaaca accaaagatc agtgctggtg gtgccagaat gggaagcaga agtttctcaa 3060gaagttcgag tttgccccgg ccgcggctac atcctccgcg tcaccgccta caaggaagga 3120tatggagaag gctgcgtcac catccatgag attgagaaca acaccgacga gctgaagttc 3180tcaaattgtg tggaggagga gatctacccc aacaacaccg tcacctgcaa tgactacacc 3240gtgaaccaag aagaatatgg cggcgcctac acctcaagga acagaggcta caatgaagct 3300ccttctgttc ctgctgatta tgcttctgtc tacgaggaga agagctacac tgatggaaga 3360agagaaaatc catgtgagtt caacagaggc tacagggact acacgccgct acctgttgga 3420tatgtgacca aggagctgga gtacttccca gaaactgaca aggtgtggat tgagattgga 3480gaaacagaag gaaccttcat cgtggacagc gtggagctgc tgctgatgga ggagtag 3537683537DNAArtificial Sequencesynthetic nucleotide sequence encoding Cry1Ac (synCry1AcC) 68atggacaaca accccaacat caatgaatgc atcccctaca actgcttgag caacccggag 60gtggaggtgc tgggaggaga aagaattgaa actggctaca cgcccatcga catcagcttg 120agcttgacac aatttcttct ttcagaattt gttcctggag ctggcttcgt gctgggcttg 180gtggacatca tctggggcat ctttggacca agccaatggg atgccttctt ggtgcaaatt 240gagcagctca tcaaccaaag aattgaagaa tttgcaagaa atcaagccat ctcaaggctg 300gaaggattga gcaacctcta ccagatctat gctgagagct tcagagaatg ggaagctgat 360ccaacaaatc ctgctcttcg agaagaaatg aggattcaat tcaatgacat gaactcggcg 420ctcaccaccg ccatcccgct cttcgccgtc cagaactacc aagttcctct tctttcagtt 480tatgttcaag ctgccaacct ccacctctcc gtgctgagag atgtttctgt ttttggacaa 540agatggggct tcgacgccgc caccatcaac tcaagataca atgatttgac aaggctcatc 600ggcaactaca ccgactacgc cgtcagatgg tacaacaccg gcctggagag agtttgggga 660ccagattcaa gagattgggt gagatacaac cagttcagaa gagagctgac attgacagtg 720ctggacattg tggcgctctt cccaaattat gattcaagaa gatatcccat caggacggtg 780agccagctga caagagagat ctacaccaac ccggtgctgg agaattttga tggcagcttc 840cgcggctctg ctcaaggaat tgaaagaagc atcagatctc ctcatttgat ggacatcctc 900aacagcatca ccatctacac tgatgctcat cgaggctact actactggag cggccaccag 960atcatggcat cacctgttgg cttctctgga cctgagttca ccttcccgct ctatggaaca 1020atgggaaatg ctgctcctca acaaagaatt gtggcgcagc tgggccaagg agtctacagg 1080acattgagca gcaccttgta ccggcggcca ttcaacatcg gcatcaacaa ccagcagctc 1140tccgtgctgg atggaactga atttgcttat ggaacatcaa gcaaccttcc aagcgccgtc 1200tacaggaaga gcggcaccgt ggacagcttg gatgagatcc cgccgcagaa caacaatgtg 1260ccgccgcgcc aaggcttcag ccaccgcctc agccatgtga gcatgttcag aagtggcttc 1320agcaacagct ccgtcagcat catcagggcg ccaatgttca gctggattca tcgctcagca 1380gagttcaaca acatcattgc ttctgacagc atcacccaga tcccggcggt gaagggcaac 1440ttcctcttca atggaagcgt catctctgga cctggcttca ctggaggaga tttggtgagg 1500ctcaacagca gcggcaacaa catccagaac agaggctaca ttgaagttcc catccacttc 1560ccatcaacat caacaagata cagggtgagg gtgagatatg cttctgtgac gcccatccac 1620ctcaatgtca actggggcaa cagcagcatc ttcagcaaca ccgtgccggc gacggcgacg 1680agcttggaca accttcaaag ctcagatttt ggatattttg aaagcgccaa cgccttcacc 1740agcagcttgg gcaacattgt tggtgtgagg aacttcagcg gcaccgccgg cgtcatcatc 1800gacagatttg agttcatccc ggtgacagca acattggaag ctgagtacaa cctagaaaga 1860gctcagaagg ccgtcaatgc tctcttcacc tccaccaacc agctgggctt gaagacaaat 1920gtcaccgact accacattga tcaagtttca aatttggtga cctacctctc tgatgagttc 1980tgcttggatg agaagaggga gctctcagag aaggtgaagc atgccaagag gctttctgat 2040gaaagaaatt tgctgcaaga ttcaaacttc aaggacatca acaggcaacc agaaagagga 2100tggggaggaa gcaccggcat caccatccaa ggaggagatg atgtcttcaa ggagaactat 2160gtcaccttga gcggcacctt tgatgaatgc tatccaacct acctctacca gaagattgat 2220gaaagcaagc taaaggcctt cacaagatat cagctgagag gctacattga agattctcaa 2280gatttggaga tctacctcat cagatacaat gccaagcatg aaacagtgaa tgttcctgga 2340actggaagcc tctggccgct ctcagctcaa agccccattg gaaaatgtgg agaaccaaac 2400agatgcgcgc cgcacctgga atggaatcca gatcttgatt gcagctgccg agatggagaa 2460aaatgtgctc atcacagcca tcacttctca ttggacattg atgttggatg caccgacctc 2520aatgaagatc ttggagtttg ggtgatcttc aagatcaaga ctcaagatgg acatgcaagg 2580ctgggcaacc tggagttctt ggaggagaag ccgctggtgg gagaagctct agcaagggtg 2640aagagagctg agaagaaatg gagagacaag agggagaagc tggaatggga gaccaacatc 2700gtctacaagg aggccaagga gagcgtggat gctctcttcg tcaacagcca atatgatcaa 2760cttcaagctg acaccaacat cgccatgatc cacgccgccg acaagagggt gcacagcatc 2820agagaagcat atcttccaga gctctcagtg attcctggcg tcaacgccgc catcttcgag 2880gagctggaag gaaggatctt caccgccttc agcctctatg atgcaagaaa tgtcatcaag 2940aatggagatt tcaacaatgg cttgagctgc tggaatgtga agggccatgt tgatgtggag 3000gagcagaaca accaaagatc agtgctggtg gtgccagaat gggaagcaga agtttctcaa 3060gaagttcgag tttgtcctgg aagaggctac atcctccgcg tcaccgccta caaagaagga 3120tatggagaag gatgtgtcac catccatgaa attgagaaca acactgatga gctgaagttc 3180tcaaattgtg tggaggagga gatctacccc aacaacaccg tcacctgcaa tgactacacc 3240gtgaatcaag aagaatatgg cggcgcctac acctcaagaa acagaggcta caatgaagct 3300ccttctgttc ctgctgatta tgcttctgtt tatgaggaga agagctacac tgatggaaga 3360agagaaaatc catgtgagtt caacagaggc tacagagact acacgccgct acctgttgga 3420tatgtgacaa aggagctgga gtacttccca gaaactgaca aggtgtggat tgaaattgga 3480gaaacagaag gaaccttcat cgtggattct gtggagctgc tgctgatgga agaataa 3537693537DNAArtificial Sequencesynthetic nucleotide sequence encoding Cry1Ac (optCry1Acv02) 69atggacaaca accccaacat caatgaatgc atcccctaca actgcttgag caacccagag 60gtggaggtgc tgggaggaga aaggattgaa actggctaca cccccatcga catctccctc 120tccctcaccc agttcctcct ctcagaattt gttcctggag ctggcttcgt gctggggctg 180gtggacatca tctggggcat cttcggccct tctcaatggg atgccttcct cgtccagatc 240gagcagctga tcaaccagag gattgaagaa tttgcaagga accaggccat ctcaaggctg 300gaaggcctct ccaacctcta ccagatttat gctgagagct tcagagaatg ggaagcagat 360ccaacaaatc ctgctctgag ggaggagatg aggattcagt tcaatgacat gaactcagct 420ctcaccaccg ccatccctct cttcgccgtc cagaactacc aggtgccgct gctctccgtc 480tatgttcaag ctgccaacct ccacctctcc gtgctgagag atgtttcagt ttttggccaa 540agatggggct ttgatgctgc caccatcaac agcagataca atgatctgac aaggctcatc 600ggcaactaca cagattatgc tgtcagatgg tacaacaccg gcctggagcg cgtctggggg 660ccagattcaa gagattgggt gagatacaac cagttcagaa gggagctcac cttgacggtg 720ctggacatcg tcgccctctt ccccaactat gattcaagaa gatatcccat caggaccgtc 780agccagctga caagggagat ctacaccaac cccgtgctgg agaactttga tggcagcttc 840agaggatcag ctcaaggaat tgaaagaagc atcagatctc ctcatctgat ggacatcctc 900aacagcatca ccatctacac agatgctcac cgcggctact actactggag cggccaccag 960atcatggctt ctcctgttgg cttctcagga cctgagttca ccttccctct ctatggcacc 1020atgggcaacg ccgcgccgca gcagaggatc gtcgcccagc tgggccaagg agtctacagg 1080accttgagca gcaccctcta caggaggccc ttcaacatcg gcatcaacaa ccagcagctc 1140tccgtgctgg atggaactga atttgcatat ggaacaagca gcaaccttcc ttcagctgtc 1200tacaggaaga gcggcaccgt ggacagcttg gatgaaattc ctcctcaaaa caacaatgtg 1260ccgccgcgcc aaggcttcag ccaccgcctc agccatgtga gcatgttcag aagcggcttc 1320agcaacagca gcgtcagcat catcagggcg ccgatgttca gctggattca ccgctcagca 1380gagttcaaca acatcattgc ttctgacagc atcacccaga tccccgccgt caagggcaac 1440ttcctcttca atggcagcgt catctccggc cctggcttca ctggaggaga tctggtgagg 1500ctcaacagca gcggcaacaa catccagaac agaggctaca ttgaggtgcc catccacttc 1560ccctccacct caacaagata cagggtgagg gtgagatatg cttctgtcac ccccatccac 1620ctcaatgtca actggggcaa cagcagcatc ttcagcaaca ctgttccagc aacagcaaca 1680agcctggaca accttcaaag ctcagatttt ggatattttg aatcagcaaa tgccttcacc 1740agcagcttgg gcaacattgt tggagtgagg aacttctccg gcaccgccgg cgtcatcatc 1800gacagatttg agttcatccc cgtcaccgcc accttggaag cagagtacaa cctggagaga 1860gctcagaagg ccgtcaatgc tctcttcacc tcaacaaacc agctgggcct caagacaaat 1920gtcaccgact accacattga tcaagtcagc aacctggtga catatctctc tgatgagttc 1980tgcttggatg agaagaggga gctctcagag aaggtgaagc atgccaagag gctctctgat 2040gaaaggaacc tcctccagga cagcaacttc aaggacatca acaggcagcc agaaagagga 2100tggggaggaa gcaccggcat caccatccaa ggaggagatg atgttttcaa ggagaactat 2160gtcaccctct ccggcacctt tgatgaatgc taccccacct acctctacca gaagattgat 2220gaatcaaagc tgaaggcctt cacaagatat cagctccgcg gctacatcga ggacagccaa 2280gatctggaga tctacctcat cagatacaat gccaagcatg aaactgtcaa tgttcctgga 2340actggaagcc tctggccgct gagcgctcaa agccccattg gaaaatgtgg agaaccaaac 2400agatgtgctc ctcatctgga atggaatcca gatctggact gctcatgccg agatggagaa 2460aaatgtgctc accacagcca ccacttctcc ttggacattg atgttggctg caccgacctc 2520aatgaagatc ttggagtttg ggtgatcttc aagatcaaga ctcaagatgg ccatgcaagg 2580ctgggcaacc tggagttcct ggaggagaag ccgctggtgg gagaagctct agcaagggtg 2640aagagagctg agaagaaatg gagggacaag agggagaagc tggaatggga aacaaacatc 2700gtctacaagg aggccaagga gagcgtggat gctctcttcg tcaacagcca atatgatcag 2760ctgcaagctg acaccaacat tgccatgatc catgctgctg acaagagggt gcattcaatc 2820agagaagcat atcttccaga gctctccgtc atccccggcg tcaatgctgc catcttcgag 2880gagctggaag gaaggatctt caccgccttc tccctctatg atgcaagaaa tgtcatcaag 2940aatggagatt tcaacaatgg cctgagctgc tggaatgtca agggccatgt tgatgtggag 3000gagcagaaca accaaagatc agtgctggtg gtgccagaat gggaagcaga agtttctcaa 3060gaagtccgcg tctgccctgg aagaggctac atcctccgcg tcaccgccta caaggaagga 3120tatggagaag gctgcgtcac catccatgag attgagaaca acacagatga gctgaagttc 3180tcaaactgcg tggaggagga gatctacccc aacaacaccg tcacatgcaa tgactacacc 3240gtgaaccaag aagaatatgg cggcgcctac acctcaagga acagaggcta caatgaagct 3300ccttctgttc ctgctgatta tgcttctgtt tatgaggaga agagctacac agatggaaga 3360agggagaacc cctgcgagtt caacagaggc tacagggact acacgccgct acctgttgga 3420tatgtgacca aggagctgga gtacttccca gaaacagaca aggtctggat tgagattgga 3480gaaacagaag gaaccttcat cgtggacagc gtggagctgc tgctgatgga ggagtaa 3537701178PRTBacillus thuringiensis 70Met Asp Asn Asn Pro Asn Ile Asn Glu Cys Ile Pro Tyr Asn Cys Leu 1 5 10 15 Ser Asn Pro Glu Val Glu Val Leu Gly Gly Glu Arg Ile Glu Thr Gly 20 25 30 Tyr Thr Pro Ile Asp Ile Ser Leu Ser Leu Thr Gln Phe Leu Leu Ser 35 40 45 Glu Phe Val Pro Gly Ala Gly Phe Val Leu Gly Leu Val Asp Ile Ile 50 55 60 Trp Gly Ile Phe Gly Pro Ser Gln Trp Asp Ala Phe Leu Val Gln Ile 65 70 75 80 Glu Gln Leu Ile Asn Gln Arg Ile Glu Glu Phe Ala Arg Asn Gln Ala 85 90 95 Ile Ser Arg Leu Glu Gly Leu Ser Asn Leu Tyr Gln Ile Tyr Ala Glu 100 105 110 Ser Phe Arg Glu Trp Glu Ala Asp Pro Thr Asn Pro Ala Leu Arg Glu 115 120 125 Glu Met Arg Ile Gln Phe Asn Asp Met Asn Ser Ala Leu Thr Thr Ala 130 135 140 Ile Pro Leu Phe Ala Val Gln Asn Tyr Gln Val Pro Leu Leu Ser Val 145 150 155 160 Tyr Val Gln Ala Ala Asn Leu His Leu Ser Val Leu Arg Asp Val Ser 165 170 175 Val Phe Gly Gln Arg Trp Gly Phe Asp Ala Ala Thr Ile Asn Ser Arg 180 185 190 Tyr Asn Asp Leu Thr Arg Leu Ile Gly Asn Tyr Thr Asp Tyr Ala Val 195 200 205 Arg Trp Tyr Asn Thr Gly Leu Glu Arg Val Trp Gly Pro Asp Ser Arg 210 215 220 Asp Trp Val Arg Tyr Asn Gln Phe Arg Arg Glu Leu Thr Leu Thr Val 225 230 235 240 Leu Asp Ile Val Ala Leu Phe Pro Asn Tyr Asp Ser Arg Arg Tyr Pro 245 250 255 Ile Arg Thr Val Ser Gln Leu Thr Arg Glu Ile Tyr Thr Asn Pro Val 260 265 270 Leu Glu Asn Phe Asp Gly Ser Phe Arg Gly Ser Ala Gln Gly Ile Glu 275 280 285 Arg Ser Ile Arg Ser Pro His Leu Met Asp Ile Leu Asn Ser Ile Thr 290 295 300

Ile Tyr Thr Asp Ala His Arg Gly Tyr Tyr Tyr Trp Ser Gly His Gln 305 310 315 320 Ile Met Ala Ser Pro Val Gly Phe Ser Gly Pro Glu Phe Thr Phe Pro 325 330 335 Leu Tyr Gly Thr Met Gly Asn Ala Ala Pro Gln Gln Arg Ile Val Ala 340 345 350 Gln Leu Gly Gln Gly Val Tyr Arg Thr Leu Ser Ser Thr Leu Tyr Arg 355 360 365 Arg Pro Phe Asn Ile Gly Ile Asn Asn Gln Gln Leu Ser Val Leu Asp 370 375 380 Gly Thr Glu Phe Ala Tyr Gly Thr Ser Ser Asn Leu Pro Ser Ala Val 385 390 395 400 Tyr Arg Lys Ser Gly Thr Val Asp Ser Leu Asp Glu Ile Pro Pro Gln 405 410 415 Asn Asn Asn Val Pro Pro Arg Gln Gly Phe Ser His Arg Leu Ser His 420 425 430 Val Ser Met Phe Arg Ser Gly Phe Ser Asn Ser Ser Val Ser Ile Ile 435 440 445 Arg Ala Pro Met Phe Ser Trp Ile His Arg Ser Ala Glu Phe Asn Asn 450 455 460 Ile Ile Ala Ser Asp Ser Ile Thr Gln Ile Pro Ala Val Lys Gly Asn 465 470 475 480 Phe Leu Phe Asn Gly Ser Val Ile Ser Gly Pro Gly Phe Thr Gly Gly 485 490 495 Asp Leu Val Arg Leu Asn Ser Ser Gly Asn Asn Ile Gln Asn Arg Gly 500 505 510 Tyr Ile Glu Val Pro Ile His Phe Pro Ser Thr Ser Thr Arg Tyr Arg 515 520 525 Val Arg Val Arg Tyr Ala Ser Val Thr Pro Ile His Leu Asn Val Asn 530 535 540 Trp Gly Asn Ser Ser Ile Phe Ser Asn Thr Val Pro Ala Thr Ala Thr 545 550 555 560 Ser Leu Asp Asn Leu Gln Ser Ser Asp Phe Gly Tyr Phe Glu Ser Ala 565 570 575 Asn Ala Phe Thr Ser Ser Leu Gly Asn Ile Val Gly Val Arg Asn Phe 580 585 590 Ser Gly Thr Ala Gly Val Ile Ile Asp Arg Phe Glu Phe Ile Pro Val 595 600 605 Thr Ala Thr Leu Glu Ala Glu Tyr Asn Leu Glu Arg Ala Gln Lys Ala 610 615 620 Val Asn Ala Leu Phe Thr Ser Thr Asn Gln Leu Gly Leu Lys Thr Asn 625 630 635 640 Val Thr Asp Tyr His Ile Asp Gln Val Ser Asn Leu Val Thr Tyr Leu 645 650 655 Ser Asp Glu Phe Cys Leu Asp Glu Lys Arg Glu Leu Ser Glu Lys Val 660 665 670 Lys His Ala Lys Arg Leu Ser Asp Glu Arg Asn Leu Leu Gln Asp Ser 675 680 685 Asn Phe Lys Asp Ile Asn Arg Gln Pro Glu Arg Gly Trp Gly Gly Ser 690 695 700 Thr Gly Ile Thr Ile Gln Gly Gly Asp Asp Val Phe Lys Glu Asn Tyr 705 710 715 720 Val Thr Leu Ser Gly Thr Phe Asp Glu Cys Tyr Pro Thr Tyr Leu Tyr 725 730 735 Gln Lys Ile Asp Glu Ser Lys Leu Lys Ala Phe Thr Arg Tyr Gln Leu 740 745 750 Arg Gly Tyr Ile Glu Asp Ser Gln Asp Leu Glu Ile Tyr Leu Ile Arg 755 760 765 Tyr Asn Ala Lys His Glu Thr Val Asn Val Pro Gly Thr Gly Ser Leu 770 775 780 Trp Pro Leu Ser Ala Gln Ser Pro Ile Gly Lys Cys Gly Glu Pro Asn 785 790 795 800 Arg Cys Ala Pro His Leu Glu Trp Asn Pro Asp Leu Asp Cys Ser Cys 805 810 815 Arg Asp Gly Glu Lys Cys Ala His His Ser His His Phe Ser Leu Asp 820 825 830 Ile Asp Val Gly Cys Thr Asp Leu Asn Glu Asp Leu Gly Val Trp Val 835 840 845 Ile Phe Lys Ile Lys Thr Gln Asp Gly His Ala Arg Leu Gly Asn Leu 850 855 860 Glu Phe Leu Glu Glu Lys Pro Leu Val Gly Glu Ala Leu Ala Arg Val 865 870 875 880 Lys Arg Ala Glu Lys Lys Trp Arg Asp Lys Arg Glu Lys Leu Glu Trp 885 890 895 Glu Thr Asn Ile Val Tyr Lys Glu Ala Lys Glu Ser Val Asp Ala Leu 900 905 910 Phe Val Asn Ser Gln Tyr Asp Gln Leu Gln Ala Asp Thr Asn Ile Ala 915 920 925 Met Ile His Ala Ala Asp Lys Arg Val His Ser Ile Arg Glu Ala Tyr 930 935 940 Leu Pro Glu Leu Ser Val Ile Pro Gly Val Asn Ala Ala Ile Phe Glu 945 950 955 960 Glu Leu Glu Gly Arg Ile Phe Thr Ala Phe Ser Leu Tyr Asp Ala Arg 965 970 975 Asn Val Ile Lys Asn Gly Asp Phe Asn Asn Gly Leu Ser Cys Trp Asn 980 985 990 Val Lys Gly His Val Asp Val Glu Glu Gln Asn Asn Gln Arg Ser Val 995 1000 1005 Leu Val Val Pro Glu Trp Glu Ala Glu Val Ser Gln Glu Val Arg 1010 1015 1020 Val Cys Pro Gly Arg Gly Tyr Ile Leu Arg Val Thr Ala Tyr Lys 1025 1030 1035 Glu Gly Tyr Gly Glu Gly Cys Val Thr Ile His Glu Ile Glu Asn 1040 1045 1050 Asn Thr Asp Glu Leu Lys Phe Ser Asn Cys Val Glu Glu Glu Ile 1055 1060 1065 Tyr Pro Asn Asn Thr Val Thr Cys Asn Asp Tyr Thr Val Asn Gln 1070 1075 1080 Glu Glu Tyr Gly Gly Ala Tyr Thr Ser Arg Asn Arg Gly Tyr Asn 1085 1090 1095 Glu Ala Pro Ser Val Pro Ala Asp Tyr Ala Ser Val Tyr Glu Glu 1100 1105 1110 Lys Ser Tyr Thr Asp Gly Arg Arg Glu Asn Pro Cys Glu Phe Asn 1115 1120 1125 Arg Gly Tyr Arg Asp Tyr Thr Pro Leu Pro Val Gly Tyr Val Thr 1130 1135 1140 Lys Glu Leu Glu Tyr Phe Pro Glu Thr Asp Lys Val Trp Ile Glu 1145 1150 1155 Ile Gly Glu Thr Glu Gly Thr Phe Ile Val Asp Ser Val Glu Leu 1160 1165 1170 Leu Leu Met Glu Glu 1175 712219DNAArtificial Sequenceaxmi-031(A-D) 71atggattgta atttacaatc acaacaaaat attccatata atgtattagc aataccagta 60tctaatgtta attcgttgac tgatacagtt ggagatttaa aaaaagcatg ggaagaattt 120caaaaaactg gttctttttc attaacagct ttacaacaag gattttctgc ttcacaagga 180ggaacattca attatttaac attactacaa tcaggaatat cattagctgg ttcttttgtt 240cctggaggta cttttgtagc acctattatt aatatggtta ttggttggtt atggccacat 300aaaaacaaaa atgcggatac agaaaattta ataaatttaa ttgattcaga aattcaaaaa 360caattaaaca aagctttatt agatgcagat agaaatgagt ggagctctta tttagaatct 420atatttgatt cttcaaataa cctaaatggt gcaattgtag atgcacagtg gtcaggcact 480gtaaatacta caaatagaac actaagaaat ccaacagaat cagattatac aaatgttgtt 540acaaatttta ttgcagcgga tggtgacatt gcaaataatg aaaatcacat aatgaatggc 600aactttgacg tagctgcagc accttatttt gttataggag caacagcacg ttttgcagca 660atgcaatctt atattaaatt ttgtaatgct tggattgata aagttggatt gagtgacgca 720cagcttacta cacaaaaggc taatttagat cgcacgaaac aaaatatgcg taatgcaatt 780cttaactata cacaacaagt tatgaaagtt tttaaagatt ccaaaaatat gcctacaata 840ggtactaata aatttagtgt tgatacctat aatgtatata ttaaaggaat gacattaaat 900gttttagata ttgtagcaat atggccttca ttatatccag atgattatac ttcacaaaca 960gccttagaac aaacacgtgt cactttttca aatatggttg gccaagaaga aggtacagat 1020ggaagcctaa gaatttacaa tacttttgat tcttttagtt atcaacatag tccaatacct 1080aataataatg ttaatttaat ttcttattat aatgatgaat tacaaaatct agaattagga 1140gtatataccc ctcctaaaaa aggaagtgga tactcttatc cttatggatt tgttttaaat 1200tatgcaaaca gtaaatataa atatggtgat agcaatgatc cagaatctct aggaggatta 1260tctacactat ctgcacctat acaacaagtt aatgcagcaa ctcaaaacag taaatatcta 1320gatggagaaa tcctaaatgg aataggagca tccttacctg gttattgtac tacaggatgt 1380tcaccaacag aaccaccttt tagttgtact tctaccgcta atggctataa agcaagctgt 1440aatccttcag atacaaatca aaaaattaac gctttatatc cttttacaca agctaatgta 1500aagggaaaca caggaaaatt aggagtactg gcaagtcttg tttcatatga tttaaatcct 1560aaaaatgtat ttggtgaatt agattcagat acaaataatg ttatcttaaa aggaattcct 1620gcagaaaaag gatattttcc taataatgcg cgtcctactg ttgtaaaaga atggattaat 1680ggtgcaagtg ctgtaccact tgattcagga aataccttat ttatgacggc tacgaattta 1740acagctactc aatatagaat tagaatacgt tatgcaaatc caaattcaaa tactcaaatc 1800ggtgtacgaa ttacacaaaa tggttctcta atttccagta gtaatctaac actttatagt 1860actactgata tgaataatac tttaccacta aatgtatatg taataggaga aaatggaaat 1920tatacacttc aagatttata taatactact aatgttttat caacaggaga tattacatta 1980caaattacag gaggagatca aaaaatattt attgatcgaa tagaatttgt tcctactatg 2040cctgtacctg gtaatactaa caacaataac ggtaataata acggtaataa taatccccca 2100caccacgttt gtgcaatagc tggtacacaa caatcttgtt ctggaccgcc caaatttgaa 2160caagtaagtg atttagaaaa aattacaaca caagtatata tgttattcaa atcttatag 221972738PRTArtificial SequenceAXMI-031(A-D) 72Met Asp Cys Asn Leu Gln Ser Gln Gln Asn Ile Pro Tyr Asn Val Leu 1 5 10 15 Ala Ile Pro Val Ser Asn Val Asn Ser Leu Thr Asp Thr Val Gly Asp 20 25 30 Leu Lys Lys Ala Trp Glu Glu Phe Gln Lys Thr Gly Ser Phe Ser Leu 35 40 45 Thr Ala Leu Gln Gln Gly Phe Ser Ala Ser Gln Gly Gly Thr Phe Asn 50 55 60 Tyr Leu Thr Leu Leu Gln Ser Gly Ile Ser Leu Ala Gly Ser Phe Val 65 70 75 80 Pro Gly Gly Thr Phe Val Ala Pro Ile Ile Asn Met Val Ile Gly Trp 85 90 95 Leu Trp Pro His Lys Asn Lys Asn Ala Asp Thr Glu Asn Leu Ile Asn 100 105 110 Leu Ile Asp Ser Glu Ile Gln Lys Gln Leu Asn Lys Ala Leu Leu Asp 115 120 125 Ala Asp Arg Asn Glu Trp Ser Ser Tyr Leu Glu Ser Ile Phe Asp Ser 130 135 140 Ser Asn Asn Leu Asn Gly Ala Ile Val Asp Ala Gln Trp Ser Gly Thr 145 150 155 160 Val Asn Thr Thr Asn Arg Thr Leu Arg Asn Pro Thr Glu Ser Asp Tyr 165 170 175 Thr Asn Val Val Thr Asn Phe Ile Ala Ala Asp Gly Asp Ile Ala Asn 180 185 190 Asn Glu Asn His Ile Met Asn Gly Asn Phe Asp Val Ala Ala Ala Pro 195 200 205 Tyr Phe Val Ile Gly Ala Thr Ala Arg Phe Ala Ala Met Gln Ser Tyr 210 215 220 Ile Lys Phe Cys Asn Ala Trp Ile Asp Lys Val Gly Leu Ser Asp Ala 225 230 235 240 Gln Leu Thr Thr Gln Lys Ala Asn Leu Asp Arg Thr Lys Gln Asn Met 245 250 255 Arg Asn Ala Ile Leu Asn Tyr Thr Gln Gln Val Met Lys Val Phe Lys 260 265 270 Asp Ser Lys Asn Met Pro Thr Ile Gly Thr Asn Lys Phe Ser Val Asp 275 280 285 Thr Tyr Asn Val Tyr Ile Lys Gly Met Thr Leu Asn Val Leu Asp Ile 290 295 300 Val Ala Ile Trp Pro Ser Leu Tyr Pro Asp Asp Tyr Thr Ser Gln Thr 305 310 315 320 Ala Leu Glu Gln Thr Arg Val Thr Phe Ser Asn Met Val Gly Gln Glu 325 330 335 Glu Gly Thr Asp Gly Ser Leu Arg Ile Tyr Asn Thr Phe Asp Ser Phe 340 345 350 Ser Tyr Gln His Ser Pro Ile Pro Asn Asn Asn Val Asn Leu Ile Ser 355 360 365 Tyr Tyr Asn Asp Glu Leu Gln Asn Leu Glu Leu Gly Val Tyr Thr Pro 370 375 380 Pro Lys Lys Gly Ser Gly Tyr Ser Tyr Pro Tyr Gly Phe Val Leu Asn 385 390 395 400 Tyr Ala Asn Ser Lys Tyr Lys Tyr Gly Asp Ser Asn Asp Pro Glu Ser 405 410 415 Leu Gly Gly Leu Ser Thr Leu Ser Ala Pro Ile Gln Gln Val Asn Ala 420 425 430 Ala Thr Gln Asn Ser Lys Tyr Leu Asp Gly Glu Ile Leu Asn Gly Ile 435 440 445 Gly Ala Ser Leu Pro Gly Tyr Cys Thr Thr Gly Cys Ser Pro Thr Glu 450 455 460 Pro Pro Phe Ser Cys Thr Ser Thr Ala Asn Gly Tyr Lys Ala Ser Cys 465 470 475 480 Asn Pro Ser Asp Thr Asn Gln Lys Ile Asn Ala Leu Tyr Pro Phe Thr 485 490 495 Gln Ala Asn Val Lys Gly Asn Thr Gly Lys Leu Gly Val Leu Ala Ser 500 505 510 Leu Val Ser Tyr Asp Leu Asn Pro Lys Asn Val Phe Gly Glu Leu Asp 515 520 525 Ser Asp Thr Asn Asn Val Ile Leu Lys Gly Ile Pro Ala Glu Lys Gly 530 535 540 Tyr Phe Pro Asn Asn Ala Arg Pro Thr Val Val Lys Glu Trp Ile Asn 545 550 555 560 Gly Ala Ser Ala Val Pro Leu Asp Ser Gly Asn Thr Leu Phe Met Thr 565 570 575 Ala Thr Asn Leu Thr Ala Thr Gln Tyr Arg Ile Arg Ile Arg Tyr Ala 580 585 590 Asn Pro Asn Ser Asn Thr Gln Ile Gly Val Arg Ile Thr Gln Asn Gly 595 600 605 Ser Leu Ile Ser Ser Ser Asn Leu Thr Leu Tyr Ser Thr Thr Asp Met 610 615 620 Asn Asn Thr Leu Pro Leu Asn Val Tyr Val Ile Gly Glu Asn Gly Asn 625 630 635 640 Tyr Thr Leu Gln Asp Leu Tyr Asn Thr Thr Asn Val Leu Ser Thr Gly 645 650 655 Asp Ile Thr Leu Gln Ile Thr Gly Gly Asp Gln Lys Ile Phe Ile Asp 660 665 670 Arg Ile Glu Phe Val Pro Thr Met Pro Val Pro Gly Asn Thr Asn Asn 675 680 685 Asn Asn Gly Asn Asn Asn Gly Asn Asn Asn Pro Pro His His Val Cys 690 695 700 Ala Ile Ala Gly Thr Gln Gln Ser Cys Ser Gly Pro Pro Lys Phe Glu 705 710 715 720 Gln Val Ser Asp Leu Glu Lys Ile Thr Thr Gln Val Tyr Met Leu Phe 725 730 735 Lys Ser 731083DNABacillus thuringiensisCDS(1)..(1083) 73atg aga att aga agg aac caa tcc act ctg agc cat aat gaa cgc cta 48Met Arg Ile Arg Arg Asn Gln Ser Thr Leu Ser His Asn Glu Arg Leu 1 5 10 15 gcg ttt act aat gcg gta tta gaa tta aaa cgt aga cca agt cgt tta 96Ala Phe Thr Asn Ala Val Leu Glu Leu Lys Arg Arg Pro Ser Arg Leu 20 25 30 ccg atg tca ttg ggt agt aca agt cgt tat gat gat tat gtt tat tgg 144Pro Met Ser Leu Gly Ser Thr Ser Arg Tyr Asp Asp Tyr Val Tyr Trp 35 40 45 cat tta cag tca atg gaa aat caa aca tcg act aca cca gga tgg gct 192His Leu Gln Ser Met Glu Asn Gln Thr Ser Thr Thr Pro Gly Trp Ala 50 55 60 cat aga ggc cca gca ttt tta cct tgg cat cgt tat tat cta aat caa 240His Arg Gly Pro Ala Phe Leu Pro Trp His Arg Tyr Tyr Leu Asn Gln 65 70 75 80 ttt gaa gaa gat tta caa cga att gat cat aca gtt aca ctt cct tat 288Phe Glu Glu Asp Leu Gln Arg Ile Asp His Thr Val Thr Leu Pro Tyr 85 90 95 tgg gat tgg aca gtt gat aac tca act gat tca tca gtt cca gga agt 336Trp Asp Trp Thr Val Asp Asn Ser Thr Asp Ser Ser Val Pro Gly Ser 100 105 110 cct tgg act gat gat ttt atg ggc ggt gat ggt gat cct acc caa gaa 384Pro Trp Thr Asp Asp Phe Met Gly Gly Asp Gly Asp Pro Thr Gln Glu 115 120 125 tat act gtc aca aca ggt ccc ttt aca ggt gac aat tgg aag tta act 432Tyr Thr Val Thr Thr Gly Pro Phe Thr Gly Asp Asn Trp Lys Leu Thr 130 135 140 ctt ttt gat cat cat gaa aac gag cct cat aat gct cga tta cgc cgt 480Leu Phe Asp His His Glu Asn Glu Pro His Asn Ala Arg Leu Arg Arg 145 150 155 160 cag tta gga act act tta aat gcc tct gga aat act ata tca atc aat 528Gln Leu Gly Thr Thr Leu Asn Ala Ser Gly Asn Thr Ile Ser Ile Asn 165 170 175 ctt cca aca gat tca gag gta cag aat tgt tta tta gaa act cca tat 576Leu Pro Thr Asp Ser Glu Val Gln Asn Cys Leu Leu Glu Thr Pro Tyr 180

185 190 tat gta tct cct tgg cgt gca ggg caa gat gta aat caa cct gca tta 624Tyr Val Ser Pro Trp Arg Ala Gly Gln Asp Val Asn Gln Pro Ala Leu 195 200 205 aat cca aca aaa cca agt ttt tgt aat cgt ctt gaa ggt tgg tat gga 672Asn Pro Thr Lys Pro Ser Phe Cys Asn Arg Leu Glu Gly Trp Tyr Gly 210 215 220 gca gga agt att cat aat aaa gtt cat gta tgg gta gct ggt gct aca 720Ala Gly Ser Ile His Asn Lys Val His Val Trp Val Ala Gly Ala Thr 225 230 235 240 gag ggc tct atg att tgg atg agc tca cca aat gat cct gtc ttt ttc 768Glu Gly Ser Met Ile Trp Met Ser Ser Pro Asn Asp Pro Val Phe Phe 245 250 255 tta cat cat gca aat att gat cgc cta tgg gtc caa tgg cag gcc aat 816Leu His His Ala Asn Ile Asp Arg Leu Trp Val Gln Trp Gln Ala Asn 260 265 270 aat cca aat gaa ggg tat cat cct act gga aat ggt aat gaa gtt gga 864Asn Pro Asn Glu Gly Tyr His Pro Thr Gly Asn Gly Asn Glu Val Gly 275 280 285 cca aca ggt cat aat tta aat gat tca atg aat cct tgg ggg agg aag 912Pro Thr Gly His Asn Leu Asn Asp Ser Met Asn Pro Trp Gly Arg Lys 290 295 300 gtt act cca aat aat gtc ctt aat cat tat agt ctt ggt tat act tac 960Val Thr Pro Asn Asn Val Leu Asn His Tyr Ser Leu Gly Tyr Thr Tyr 305 310 315 320 gat aca gat tca acc cct ctt tct gaa atc ttt atg cat aca ttt aat 1008Asp Thr Asp Ser Thr Pro Leu Ser Glu Ile Phe Met His Thr Phe Asn 325 330 335 ctg aaa att cgt aaa gaa aaa caa atc aaa gat ggt cat ttt ggt tta 1056Leu Lys Ile Arg Lys Glu Lys Gln Ile Lys Asp Gly His Phe Gly Leu 340 345 350 agt caa gaa gat tta gac aaa ttg taa 1083Ser Gln Glu Asp Leu Asp Lys Leu 355 360 74360PRTBacillus thuringiensis 74Met Arg Ile Arg Arg Asn Gln Ser Thr Leu Ser His Asn Glu Arg Leu 1 5 10 15 Ala Phe Thr Asn Ala Val Leu Glu Leu Lys Arg Arg Pro Ser Arg Leu 20 25 30 Pro Met Ser Leu Gly Ser Thr Ser Arg Tyr Asp Asp Tyr Val Tyr Trp 35 40 45 His Leu Gln Ser Met Glu Asn Gln Thr Ser Thr Thr Pro Gly Trp Ala 50 55 60 His Arg Gly Pro Ala Phe Leu Pro Trp His Arg Tyr Tyr Leu Asn Gln 65 70 75 80 Phe Glu Glu Asp Leu Gln Arg Ile Asp His Thr Val Thr Leu Pro Tyr 85 90 95 Trp Asp Trp Thr Val Asp Asn Ser Thr Asp Ser Ser Val Pro Gly Ser 100 105 110 Pro Trp Thr Asp Asp Phe Met Gly Gly Asp Gly Asp Pro Thr Gln Glu 115 120 125 Tyr Thr Val Thr Thr Gly Pro Phe Thr Gly Asp Asn Trp Lys Leu Thr 130 135 140 Leu Phe Asp His His Glu Asn Glu Pro His Asn Ala Arg Leu Arg Arg 145 150 155 160 Gln Leu Gly Thr Thr Leu Asn Ala Ser Gly Asn Thr Ile Ser Ile Asn 165 170 175 Leu Pro Thr Asp Ser Glu Val Gln Asn Cys Leu Leu Glu Thr Pro Tyr 180 185 190 Tyr Val Ser Pro Trp Arg Ala Gly Gln Asp Val Asn Gln Pro Ala Leu 195 200 205 Asn Pro Thr Lys Pro Ser Phe Cys Asn Arg Leu Glu Gly Trp Tyr Gly 210 215 220 Ala Gly Ser Ile His Asn Lys Val His Val Trp Val Ala Gly Ala Thr 225 230 235 240 Glu Gly Ser Met Ile Trp Met Ser Ser Pro Asn Asp Pro Val Phe Phe 245 250 255 Leu His His Ala Asn Ile Asp Arg Leu Trp Val Gln Trp Gln Ala Asn 260 265 270 Asn Pro Asn Glu Gly Tyr His Pro Thr Gly Asn Gly Asn Glu Val Gly 275 280 285 Pro Thr Gly His Asn Leu Asn Asp Ser Met Asn Pro Trp Gly Arg Lys 290 295 300 Val Thr Pro Asn Asn Val Leu Asn His Tyr Ser Leu Gly Tyr Thr Tyr 305 310 315 320 Asp Thr Asp Ser Thr Pro Leu Ser Glu Ile Phe Met His Thr Phe Asn 325 330 335 Leu Lys Ile Arg Lys Glu Lys Gln Ile Lys Asp Gly His Phe Gly Leu 340 345 350 Ser Gln Glu Asp Leu Asp Lys Leu 355 360 751083DNAArtificial SequenceSynthetic sequence encoding AXN-2 75atgaggatca gaagaaacca gtctaccttg tctcataacg agaggcttgc tttcactaac 60gctgtgcttg agcttaagag aaggccatct aggcttccaa tgtctcttgg atctacctcc 120agatacgatg attacgtgta ctggcacctt caatctatgg aaaaccagac ttctactact 180ccaggatggg ctcatagagg accagctttt ttgccatggc acaggtatta tctcaaccag 240ttcgaagagg atcttcagag gattgatcat accgttaccc ttccatattg ggattggacc 300gtggataact ctaccgattc ttctgttcca ggatctccat ggactgatga tttcatggga 360ggtgatggtg atccaactca agagtacact gttactactg gaccattcac tggtgataac 420tggaagctca cccttttcga tcatcatgag aacgaaccac ataacgctag acttagaagg 480caacttggaa ctacccttaa cgcttccgga aacaccattt ccattaacct tccaaccgat 540tctgaggttc agaactgcct tcttgagact ccttactacg tttcaccttg gagagctgga 600caagatgtta accagccagc tcttaaccca actaagccat ctttctgcaa cagacttgag 660ggatggtatg gtgctggatc tattcataac aaagtgcatg tttgggtggc aggtgctact 720gaaggatcta tgatctggat gtcctctcca aacgatccag ttttcttcct tcaccacgct 780aacattgata ggctttgggt tcaatggcaa gctaacaacc caaacgaggg atatcatcca 840actggaaacg gaaacgaagt tggaccaacc ggacataacc ttaacgattc catgaaccca 900tggggaagaa aggttacccc aaacaacgtt cttaaccact actctctcgg atacacttac 960gatactgatt ctaccccact ctccgagatt ttcatgcaca ccttcaacct caagatcagg 1020aaagagaagc agattaagga cggacatttc ggactttctc aagaggatct cgacaagctc 1080tga 1083

* * * * *

References


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed