Influenza Virus Reassortment

SUPHAPHIPHAT; Pirada ;   et al.

Patent Application Summary

U.S. patent application number 13/909013 was filed with the patent office on 2014-01-30 for influenza virus reassortment. This patent application is currently assigned to Novartis AG. Invention is credited to Philip DORMITZER, Bjoern KEINER, Peter MASON, Pirada SUPHAPHIPHAT, Heidi TRUSHEIM.

Application Number20140030291 13/909013
Document ID /
Family ID47997362
Filed Date2014-01-30

United States Patent Application 20140030291
Kind Code A1
SUPHAPHIPHAT; Pirada ;   et al. January 30, 2014

INFLUENZA VIRUS REASSORTMENT

Abstract

New influenza donor strains for the production of reassortant influenza A viruses are provided.


Inventors: SUPHAPHIPHAT; Pirada; (Brookline, MA) ; MASON; Peter; (Sommerville, MA) ; KEINER; Bjoern; (Basel, CH) ; DORMITZER; Philip; (Weston, MA) ; TRUSHEIM; Heidi; (Apex, NC)
Assignee: Novartis AG
Basel
CH

Family ID: 47997362
Appl. No.: 13/909013
Filed: June 3, 2013

Related U.S. Patent Documents

Application Number Filing Date Patent Number
PCT/EP13/54227 Mar 2, 2013
13909013
61605922 Mar 2, 2012
61685766 Mar 23, 2012

Current U.S. Class: 424/206.1 ; 435/235.1; 435/239
Current CPC Class: A61K 2039/525 20130101; A61P 31/16 20180101; C12N 2760/16151 20130101; C07K 14/005 20130101; C12N 2760/16134 20130101; C12N 2760/16121 20130101; C12N 2760/16122 20130101; C12N 7/00 20130101; A61K 39/145 20130101; A61K 2039/5252 20130101; C12N 2760/16161 20130101
Class at Publication: 424/206.1 ; 435/235.1; 435/239
International Class: C12N 7/00 20060101 C12N007/00

Claims



1. A reassortant influenza A virus comprising two, three, four, five, or six backbone viral segments from a donor strain, wherein the donor strain is selected from the group consisting of 105p30 and PR8-X and at least one viral segment derived from a second influenza strain.

2. The reassortant influenza A virus of claim 1 wherein at least one backbone viral segment includes a sequence having at least 95% identity to a sequence selected from the group consisting of SEQ ID NOs 9-14 or SEQ ID NOs 17-22.

3. The reassortant influenza A virus of claim 1 wherein at least one backbone viral segment includes the sequence of SEQ ID NO: 17 or SEQ ID NO: 20.

4. The reassortant influenza A virus of claim 2, wherein the virus comprises backbone segments from two or more donor strains.

5. The reassortant influenza A virus of claim 4, wherein the PB1 and the PB2 viral segments are from the same donor strain.

6. The reassortant influenza A virus of claim 5, wherein the PB1 viral segment has at least 95% identity to SEQ ID NO: 18 and the PB2 viral segment has at least 95% identity to SEQ ID NO: 19.

7. The reassortant influenza A virus of claim 6, wherein the virus further comprises a viral segment having at least 95% identity to a sequence selected from the group consisting of SEQ ID NOs 17-22.

8. The reassortant influenza A virus of claim 3, wherein the virus comprises the PB2 segment of SEQ ID NO: 19, the PB1 segment of SEQ ID NO: 18 and the NP segment of SEQ ID NO: 20.

9. The reassortant influenza A virus of claim 1, wherein the virus has the HA segment from a pandemic influenza strain.

10. A method of preparing a reassortant influenza virus comprising steps of (i) introducing into a culture host one or more expression construct(s) which encode(s) the viral segments required to produce an influenza virus wherein one or more backbone viral segment(s) is/are from a 105p30 and/or a PR8-X influenza strain and wherein at least one viral segment is derived from a second influenza strain; and (ii) culturing the culture host in order to produce reassortant virus.

11. The method of claim 10 wherein the at least one expression construct comprises a sequence having at least 90% identity to a sequence selected from the group consisting of SEQ ID NOs 10-14 and 17-22.

12. The method of claim 10, further comprising the step (iii) of purifying the reassortant virus obtained in step (ii).

13. The method of claim 10 wherein the at least one viral segment from the second influenza strain is the HA segment.

14. A method for producing influenza viruses comprising: (a) infecting a culture host with the reassortant influenza virus of claim 1; (b) culturing the host from step (a) to produce the virus; and (c) purifying the virus obtained in step (b).

15. A method of preparing a vaccine, comprising steps of (x) preparing a virus by the method of claim 14 and (y) preparing vaccine from the virus.

16. The method of claim 15, wherein (i) the culture host is an embryonated hen egg, or (ii) the culture host is a mammalian cell.

17. The method of claim 16, wherein the culture host is (ii) and the mammalian cell is an MDCK, Vero or PerC6 cell.

18. The method of claim 17, wherein the mammalian cell grows (i) adherently or (ii) in suspension.

19. The method of claim 18, wherein the mammalian cell is cell line MDCK 33016 (DSM ACC2219).

20. The method of claim 15, wherein step (y) includes inactivating the virus.

21. The method of claim 15, wherein the vaccine is a whole virion vaccine, a split virion vaccine, a surface antigen vaccine or a virosomal vaccine.

22. The method of claim 15, wherein the vaccine contains less than 10 ng of residual host cell DNA per dose.

23. An influenza vaccine comprising at least one donor polypeptide encoded by an influenza A backbone viral segment from a donor strain, wherein the donor strain is 105p30 and a hemagglutinin polypeptide that is not from influenza strain 105p30.

24. An influenza vaccine comprising two, three, four, five, or six donor polypeptides encoded by influenza A backbone viral segments from at least one donor strain, wherein the at least one donor strain is selected from the group consisting of 105p30 and PR8X and a hemagglutinin polypeptide that is not from influenza strains 105p30 or PR8X.

25. The influenza vaccine of claim 23, wherein the influenza A backbone viral segment includes a sequence having at least 95% identity with a sequence selected from the group consisting of SEQ ID NOs 9-14 or SEQ ID NOs 17-22.

26. The influenza vaccine of claim 23, wherein the influenza A backbone viral segment includes the sequence of SEQ ID NO: 17 or SEQ ID NO: 20.

27. The influenza vaccine of claim 25 wherein the donor polypeptides are encoded by backbone segments from two or more donor strains.

28. The influenza vaccine of claim 27, wherein the donor polypeptides include a PB1 polypeptide and a PB2 polypeptide that are encoded by influenza A backbone viral segments from the same donor strain.

29. The influenza vaccine of claim 28, wherein the PB1 polypeptide is encoded by a backbone viral segment that has at least 95% identity to SEQ ID NO: 19, and the PB2 polypeptide is encoded by a backbone viral segment that has at least 95% identity to SEQ ID NO: 19.

30. The influenza vaccine of claim 29, further comprising a donor polypeptide encoded by a viral segment having at least 95% identity to a sequence selected from the group consisting of SEQ ID NOs 17-22.

31. The influenza vaccine of claim 23, wherein the vaccine comprises a PB2 polypeptide encoded by SEQ ID NO: 19, a PB1 polypeptide encoded by SEQ ID NO: 18 and an NP polypeptide encoded by SEQ ID NO: 20.

32. The influenza vaccine of claim 23, wherein the hemagglutinin is from a pandemic influenza strain.
Description



[0001] This patent application is a continuation of International Application No. PCT/EP2013/054227, filed Mar. 2, 2013, which claims priority from U.S. provisional patent applications 61/605,922, filed Mar. 2, 2012 and 61/685,766 filed Mar. 23, 2012, the complete contents of which are incorporated herein by reference.

SUBMISSION OF SEQUENCE LISTING ON ASCII TEXT FILE

[0002] The content of the following submission on ASCII text file is incorporated herein by reference in its entirety: a computer readable form (CRF) of the Sequence Listing (file name: PAT055008_ST25.txt, date recorded: May 22, 2013, size: 161 KB).

TECHNICAL FIELD

[0003] This invention is in the field of influenza A virus reassortment. Furthermore, it relates to manufacturing vaccines for protecting against influenza A viruses.

BACKGROUND ART

[0004] The most efficient protection against influenza infection is vaccination against circulating strains and it is important to produce influenza viruses for vaccine production as quickly as possible.

[0005] Wild-type influenza viruses often grow to low titres in eggs and cell culture. In order to obtain a better-growing virus strain for vaccine production it is currently common practice to reassort the circulating vaccine strain with a faster-growing high-yield donor strain. This can be achieved by co-infecting a culture host with the circulating influenza strain (the vaccine strain) and the high-yield donor strain and selecting for reassortant viruses which contain the hemagglutinin (HA) and neuraminidase (NA) segments from the vaccine strain and the other viral segments (i.e. those encoding PB1, PB2, PA, NP, M.sub.1, M.sub.2, NS.sub.1 and NS.sub.2) from the donor strain. Another approach is to reassort the influenza viruses by reverse genetics (see, for example references 1 and 2).

[0006] Reference 3 reports that a reassortant influenza virus containing a PB1 gene segment from A/Texas/1/77, the HA and NA segments from A/New Caledonia/20/99, a modified PA segment derived from A/Puerto Rico/8/34 and the remaining viral segments from A/Puerto Rico/8/34 shows increased growth in cells.

[0007] There are currently only a limited number of donor strains for reassorting influenza viruses for vaccine manufacture, and the strain most commonly used is the A/Puerto Rico/8/34 (A/PR/8/34) strain. However, reassortant influenza viruses comprising A/PR/8/34 backbone segments do not always grow sufficiently well to ensure efficient vaccine manufacture. Thus, there is a need in the art to provide further and improved donor strains for influenza virus reassortment.

SUMMARY OF PREFERRED EMBODIMENTS

[0008] The inventors have now surprisingly discovered that influenza viruses which comprise backbone segments from two or more influenza donor strains can grow faster in a culture host compared with reassortant influenza A viruses which contain all backbone segments from the same donor strain. In particular, the inventors have found that influenza viruses which comprise backbone segments derived from two high-yield donor strains can produce higher yield reassortants with target vaccine-relevant HA/NA genes than reassortants made with either of the two original donor strains.

[0009] In principle, all segments of closely related influenza A viruses can be specifically reassorted to produce viable viruses, but only a small fraction of these viruses will be high-growth reassortants, due to inefficient activities of the resulting viral components. The inventors have provided backbone combinations that produce the high yield strains. Reassortant influenza A viruses comprising backbone segments from two or more influenza donor strains may contain the PB 1 and the PB2 viral segments from the same donor strain, in particular the A/New Caledonia/20/1999-like strain, referred to herein as the 105p30 strain. The PB1 and PB2 viral segments may have at least 95% identity or 100% identity with the sequence of SEQ ID NO: 2 and/or SEQ ID NO: 3.

[0010] Where the reassortant influenza A virus comprises backbone segments from two or three donor strains, each donor strain may provide more than one of the backbone segments of the reassortant influenza A virus, but one or two of the donor strains can also provide only a single backbone segment.

[0011] Where the reassortant influenza A virus comprises backbone segments from two, three, four or five donor strains, one or two of the donor strains may provide more than one of the backbone segments of the reassortant influenza A virus. In general the reassortant influenza A virus cannot comprise more than six backbone segments. Accordingly, for example, if one of the donor strains provides five of the viral segments, the reassortant influenza A virus can only comprise backbone segments from a total of two different donor strains.

[0012] Where a reassortant influenza A virus comprises the PB1 segment from A/Texas/1/77, it preferably does not comprise the PA, NP or M segment from A/Puerto Rico/8/34. Where a reassortant influenza A virus comprises the PA, NP or M segment from A/Puerto Rico/8/34, it preferably does not comprise the PB1 segment from A/Texas/1/77. In some embodiments, the invention does not encompass reassortant influenza A viruses which have the PB1 segment from A/Texas/1/77 and the PA, NP and M segments from A/Puerto Rico/8/34. The PB1 segment from A/Texas/1/77 may have the sequence of SEQ ID NO: 46 and the PA, NP or M segments from A/Puerto Rico/8/34 may have the sequence of SEQ ID NOs 47, 48 or 49, respectively.

[0013] The inventors have also discovered that variants of known donor strains can grow to higher viral titres compared to the original donor strain and can therefore be better donor strains for reassorting influenza viruses. Examples of such strains are PR8-X and 105p30.

[0014] Influenza A virus strains of the invention can grow to higher viral titres in MDCK cells in the same time and under the same growth conditions compared with A/Puerto Rico/8/34 and/or have a higher rescue efficiency compared with reassortant influenza strains that comprise all backbone segments from the same influenza donor strain. Further provided is a reassortant influenza A virus comprising at least one backbone viral segment from such an influenza strain.

[0015] The invention also provides a reassortant influenza A virus comprising at least one backbone viral segment from a donor strain, wherein the donor strain is selected from the group consisting of 105p30 and PR8-X. When the at least one backbone viral segment is the PA segment it may have a sequence having at least 95% or at least 99% identity with a sequence selected from the group consisting of SEQ ID NOs: 9 and 17. When the at least one backbone viral segment is the PB1 segment, it may have a sequence having at least 95% or at least 99% identity with a sequence selected from the group consisting of SEQ ID NOs 10 and 18. When the at least one backbone viral segment is the PB2 segment, it may have a sequence having at least 95% or at least 99% identity with a sequence selected from the group consisting of or SEQ ID NOs: 11 and 19. When the at least one backbone viral segment is the M segment it may have a sequence having at least 95% or at least 99% identity with a sequence selected from the group consisting of SEQ ID NOs: 13 and 21. When the at least one backbone viral segment is the NP segment it may have a sequence having at least 95% or at least 99% identity with a sequence selected from the group consisting of SEQ ID NOs: 12 and 20. When the at least one backbone viral segment is the NS segment it may have a sequence having at least 95% or at least 99% identity with a sequence selected from the group consisting of SEQ ID NOs: 14 and 22.

[0016] In embodiments where the reassortant influenza A virus comprises backbone segments from at least two influenza donor strains, at least one backbone segment may be derived from a donor strain selected from the group consisting of 105p30 and PR8-X, as discussed in the previous paragraph. Preferred reassortant influenza A viruses comprise 1, 2, 3 or 4 viral segments from the 105p30 donor strain wherein the PA segment may have at least 95% identity or 100% identity with SEQ ID NO: 17, the NP segment may have at least 95% identity or 100% identity with SEQ ID NO: 20, the M segment may have at least 95% identity or 100% identity with SEQ ID NO: 21, and/or the NS segment may have at least 95% identity or 100% identity with SEQ ID NO: 22. In some embodiments such influenza A viruses may also comprise at least one backbone viral segment from the PR8-X donor strain. Where the at least one viral segment is the PA segment it may have at least 95% identity or 100% identity with SEQ ID NO: 9. Where the at least one viral segment is the NP segment it may have at least 95% identity or 100% identity with SEQ ID NO: 12. Where the at least one viral segment is the M segment it may have at least 95% identity or 100% identity with SEQ ID NO: 13. Where the at least one viral segment is the NS segment it may have at least 95% identity or 100% identity with SEQ ID NO: 9. The inventors have shown that reassortant influenza A viruses comprising such backbone segments grow well in cell culture. In general a reassortant influenza virus will contain only one of each backbone segment. For example, when the influenza virus comprises the PA segment from 105p30 it will not at the same time comprise the PA segment of PR8-X.

[0017] In preferred embodiments, the virus comprises viral segments having at least 95% identity or 100% identity with the sequence of (a) the PB2 segment of SEQ ID NO: 19, the PB 1 segment of SEQ ID: NO 18 and the NS segment of SEQ ID NO: 22; or (b) the PB2 segment of SEQ ID NO: 19, the PB1 segment of SEQ ID NO: 18 and the M segment of SEQ ID NO: 21; or (c) the PB2 segment of SEQ ID NO: 19, the PB1 segment of SEQ ID NO: 18 and the NP segment of SEQ ID NO: 20; or (d) the PB2 segment of SEQ ID NO 19, the PB1 segment of SEQ ID NO 18 and the PA segment of SEQ ID NO 17. These embodiments are preferred because the inventors have found that such reassortant influenza A viruses grow particularly well in cell culture.

[0018] The invention provides a method of preparing the reassortant influenza A viruses of the invention. These methods comprise steps of (i) introducing into a culture host one or more expression construct(s) which encode(s) the viral segments required to produce an influenza A virus wherein the backbone viral segments are from two or more influenza strains; and (ii) culturing the culture host in order to produce reassortant virus and optionally (iii) purifying the virus obtained in step (ii).

[0019] The method may comprise the steps of (i) introducing into a culture host one or more expression construct(s) which encode(s) the viral segments required to produce an influenza A virus wherein the backbone viral segments are from two or more influenza strains and the PB1 and PB2 segments are from the same donor strain; and (ii) culturing the culture host in order to produce reassortant virus and optionally (iii) purifying the virus obtained in step (ii).

[0020] Also provided is a method of preparing a reassortant influenza A virus of the invention comprising the steps of (i) introducing into a culture host one or more expression construct(s) which encode(s) the viral segments required to produce an influenza A virus wherein the backbone viral segments are from two or more influenza strains and the HA and the PB 1 segment are from different influenza strains which have the same influenza HA subtype; and (ii) culturing the culture host in order to produce reassortant virus and optionally (iii) purifying the virus obtained in step (ii).

[0021] The invention also provides a method of preparing a reassortant influenza A virus of the invention comprising steps of (i) introducing into a culture host one or more expression construct(s) which encode(s) the viral segments required to produce an influenza A virus wherein one or more backbone viral segment(s) is/are from a 105p30 and/or a PR8-X influenza strain and wherein at least one viral segment is derived from a second influenza strain; and (ii) culturing the culture host in order to produce reassortant virus and optionally (iii) purifying the virus obtained in step (ii).

[0022] The methods may further comprise steps of: (iv) infecting a culture host with the virus obtained in step (ii) or step (iii); (v) culturing the culture host from step (iv) to produce further virus; and optionally (vi) purifying the virus obtained in step (v).

[0023] The invention also provides a method for producing influenza viruses comprising steps of (a) infecting a culture host with a reassortant virus of the invention; (b) culturing the host from step (a) to produce the virus; and optionally (c) purifying the virus obtained in step (b).

[0024] The invention also provides a method of preparing a vaccine, comprising steps of (d) preparing a virus by the methods of any one of the embodiments described above and (e) preparing vaccine from the virus.

[0025] In a further embodiment, the invention provides influenza strains PR8-X and 105p30.

[0026] The invention also encompasses variant H1N1 influenza virus strains in which the M genome segment has lysine in the position corresponding to amino acid 95 of SEQ ID NO: 33 when aligned to SEQ ID NO: 33 using a pairwise alignment algorithm. The variant H1N1 influenza virus strains according to the invention may further have a HA segment which has glycine in the position corresponding to amino acid 225 of SEQ ID NO: 35 when aligned to SEQ ID NO: 35 and/or has asparagine in the position corresponding to amino acid 231 of SEQ ID NO: 35 when aligned to SEQ ID NO: 35 using a pairwise alignment algorithm. The variant H1N1 influenza virus strain may also have a NA segment which has histidine in the position corresponding to amino acid 70 of SEQ ID NO: 31 when aligned to SEQ ID NO: 31 using a pairwise alignment algorithm.

[0027] The preferred pairwise alignment algorithm is the Needleman-Wunsch global alignment algorithm [4], using default parameters (e.g. with Gap opening penalty=10.0, and with Gap extension penalty=0.5, using the EBLOSUM62 scoring matrix). This algorithm is conveniently implemented in the needle tool in the EMBOSS package [5].

[0028] The invention provides an expression system comprising one or more expression construct(s) comprising the vRNA encoding segments of an influenza A virus wherein the expression construct(s) encode(s) the backbone viral segments from two or more influenza donor strains. The expression construct(s) may encode the PB1 and PB2 segments from the same donor strain.

[0029] The invention also provides an expression system comprising one or more expression construct(s) comprising the vRNA encoding segments of a 105p30 or PR8-X strain wherein the expression construct(s) comprise(s) at least one backbone viral segment from the 105p30 or PR8-X, or strain. The expression construct(s) may further comprise the vRNAs which encode the PB2, NP, NS, M and PA segments from PR8-X.

[0030] The invention also provides a host cell comprising the expression systems of the invention. These host cells can express an influenza A virus from the expression construct(s) in the expression system.

[0031] Expression constructs which can be used in the expression systems of the invention are also provided. For example, the invention provides an expression construct which encodes the backbone segments of the reassortant influenza strains according to the invention on the same construct.

Donor Strains

[0032] Influenza donor strains are strains which typically provide the backbone segments in a reassortant influenza virus, even though they may sometimes also provide the HA or NA segment, but not both, of the virus. Usually, however, both the HA and the NA segment in a reassortant influenza virus will be from the vaccine strain.

[0033] The inventors have surprisingly discovered that reassortant influenza A viruses comprising backbone segments from two or more influenza donor strains can grow to higher titres in cell culture compared with reassortant influenza viruses which contain all backbone segments from the same donor strain. The inventors have shown that this effect is due to the presence of backbone segments from two donor strains and does not require the presence of viral segments with specific mutations. Particularly good results are achieved, however, with influenza A strains in which the M genome segment has lysine in the position corresponding to amino acid 95 of SEQ ID NO: 33 when aligned to SEQ ID NO: 33.

[0034] Reassortant influenza A viruses comprising the PB1 and PB2 segments from the same influenza strain (for example 105p30) are also advantageous because they showed a better rescue efficiency compared with influenza viruses in which the PB1 and PB2 segments are from different viruses. The PB1 and PB2 segments of 105p30 have the sequence of SEQ ID NOs 18 and 19, respectively.

[0035] The inventors have also shown that some influenza virus strains can grow to higher viral titres in MDCK cells in the same time and under the same growth conditions compared with A/Puerto Rico/8/34.

[0036] Variants of influenza donor strains which are derived from the donor strains of the invention or other known donor strains such A/PR/8/34 (wt PR8) can also be useful as donor strains. These donor strains can grow to higher viral titres (in the same time and under the same growth conditions) compared to the donor strain from which they are derived. For example, the inventors have surprisingly discovered that passaging the A/PR/8/34 influenza strain several times in cell culture results in a virus strain (PR8-X) which grows to much higher viral titres compared to the original A/PR8/34 strain. Likewise, the inventors have found that passaging the A/New Caledonia/20/1999 strain several times in cells results in a strain (105p30) which grows to even higher viral titres compared to the unpassaged A/New Caledonia/20/1999 strain in the same time and under the same growth conditions. Donor strain variants of the present invention will typically achieve viral titres which are at least 10%, at least 20%, at least 50%, at least 100%, at least 200%, at least 500% or at least 1000% higher under the same growth conditions and for the same time (for example 12 hours, 24 hours, 48 hours or 72 hours) compared to the viral titres obtained with the donor strain from which the variant was derived.

[0037] The segments of PR8-X have the sequences of SEQ ID NO: 11 (PB2), SEQ ID NO: 10 (PB1), SEQ ID NO: 9 (PA), SEQ ID NO: 12 (NP), SEQ ID NO: 13 (M), SEQ ID NO: 14 (NS), SEQ ID NO: 15 (HA) or SEQ ID NO: 16 (NA).

[0038] The segments of 105p30 have the sequences of SEQ ID NO: 19 (PB2), SEQ ID NO: 18 (PB1), SEQ ID NO: 17 (PA), SEQ ID NO: 20 (NP), SEQ ID NO: 21 (M), SEQ ID NO: 22 (NS), SEQ ID NO: 23 (HA) or SEQ ID NO: 24 (NA).

[0039] Influenza strains which contain one, two, three, four five, six or seven of the segments of the 105p30 or PR8-X strains can also be used as donor strains.

[0040] The invention can be practised with donor strains having a viral segment that has at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95% or at least about 99% identity to a sequence of SEQ ID NOs 11-14 or 18-22. For example, due to the degeneracy of the genetic code, it is possible to have the same polypeptide encoded by several nucleic acids with different sequences. Thus, the invention may be practised with viral segments that encode the same polypeptides as the sequences of SEQ ID NOs 11-14 or 18-22. For example, the nucleic acid sequences of SEQ ID NOs: 3 and 28 have only 73% identity even though they encode the same viral protein.

[0041] The invention may also be practised with viral segments that encode polypeptides that have at least 80%, at least 85%, at least 90%, at least 95% or at least 99% identity to the polypeptide sequences encoded by SEQ ID NOs 11-14 or 18-22.

[0042] Variations in the DNA and the amino acid sequence may also stem from spontaneous mutations which can occur during passaging of the viruses. Such variant influenza strains can also be used in the invention.

Reassortant Viruses

[0043] The invention provides reassortant influenza viruses which comprise backbone segments from two or more influenza donor strains. The PB 1 and PB2 segments may be from the same donor strain.

[0044] The invention also provides reassortant influenza viruses comprising at least one backbone viral segment from an influenza virus strain that can grow to higher viral titres in MDCK cells in the same time and under the same growth conditions compared with A/Puerto Rico/8/34.

[0045] The invention provides reassortant influenza viruses comprising at least one backbone viral segment from the donor strains of the invention, e.g. a PR8-X or 105p30 strain. The reassortant influenza viruses of the invention can be reassortants between two, three or more different influenza strains provided that at least one viral segment is derived from a donor strain of the invention.

[0046] Influenza viruses are segmented negative strand RNA viruses. Influenza A and B viruses have eight segments (NP, M, NS, PA, PB1, HA and NA) whereas influenza C virus has seven. The reassortant viruses of the invention contain the backbone segments from two or more donor strains, or at least one (i.e. one, two, three, four, five or six) backbone viral segment from the donor strains of the invention. The backbone viral segments are those which do not encode HA or NA. Thus, backbone segments will typically encode the PB1, PB2, PA, NP, M.sub.1, M.sub.2, NS.sub.1 and NS.sub.2 polypeptides of the influenza virus. The reassortant viruses will not typically contain the segments encoding HA and NA from the donor strains even though reassortant viruses which comprise either the HA or the NA but not both from the donor strains of the invention are also envisioned.

[0047] When the reassortant viruses of the invention are reassortants comprising the backbone segments from a single donor strain, the reassortant viruses will generally include segments from the donor strain and the vaccine strain in a ratio of 1:7, 2:6, 3:5, 4:4, 5:3, 6:2 or 7:1. Having a majority of segments from the donor strain, in particular a ratio of 6:2, is typical. When the reassortant viruses comprise backbone segments from two donor strains, the reassortant virus will generally include segments from the first donor strain, the seconds donor strain and the vaccine strain in a ratio of 1:1:6, 1:2:5, 1:3:4, 1:4:3, 1:5:2, 1:6:1, 2:1:5, 2:2:4, 2:3:3, 2:4:2, 2:5:1, 3:1:2, 3:2:1, 4:1:3, 4:2:2, 4:3:1, 5:1:2, 5:2:1 or 6:1:1.

[0048] Preferably, the reassortant viruses do not contain the HA segment of the donor strain as this encodes the main vaccine antigens of the influenza virus and should therefore come from the vaccine strain. The reassortant viruses of the invention therefore preferably have at least the HA segment and typically the HA and NA segments from the vaccine strain.

[0049] The invention also encompasses reassortant viruses which contain viral segments from more than one, for example two or three different, donor strain(s) wherein at least one viral segment, preferably not HA, is derived from the PR8-X or 105p30 influenza strains. Such reassortant influenza viruses will typically contain the HA and/or NA segment from a vaccine strain. Where the reassortants contain viral segments from more than one influenza donor strain, the further donor strain(s) can be any donor strain including the donor strains of the invention. For example, some of the viral segments may be derived from the A/PR/8/34 or AA/6/60 (A/Ann Arbor/6/60) influenza strains. Reassortants containing viral segments from the AA/6/60 strain may be advantageous, for example, where the reassortant virus is to be used in a live attenuated influenza vaccine.

[0050] The invention also encompasses reassortants which comprise viral segments from more than one vaccine strain provided that the reassortant comprises a backbone according to the present invention. For example, the reassortant influenza viruses may comprise the HA segment from one donor strain and the NA segment from a different donor strain.

[0051] The reassortant viruses of the invention can grow to higher viral titres than the wild-type vaccine strain from which some of the viral segment(s) of the reassortant virus are derived in the same time (for example 12 hours, 24 hours, 48 hours or 72 hours) and under the same growth conditions. The viral titre can be determined by standard methods known to those of skill in the art. The reassortant viruses of the invention can achieve a viral titre which is at least 10% higher, at least 20% higher, at least 50% higher, at least 100% higher, at least 200% higher, at least 500% higher, or at least 1000% higher than the viral titre of the wild type vaccine strain in the same time frame and under the same conditions.

[0052] The invention is suitable for reassorting pandemic as well as inter-pandemic (seasonal) influenza vaccine strains. The reassortant influenza strains may contain the influenza A virus HA subtypes H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15 or H16. They may contain the influenza A virus NA subtypes N1, N2, N3, N4, N5, N6, N7, N8 or N9. Where the vaccine strain used in the reassortant influenza viruses of the invention is a seasonal influenza strain, the vaccine strain may have a H1 or H3 subtype. In one aspect of the invention the vaccine strain is a H1N1 or H.sub.3N.sub.2 strain.

[0053] The vaccine strains for use in the invention may also be pandemic strains or potentially pandemic strains. The characteristics of an influenza strain that give it the potential to cause a pandemic outbreak are: (a) it contains a new hemagglutinin compared to the hemagglutinins in currently-circulating human strains, i.e. one that has not been evident in the human population for over a decade (e.g. H2), or has not previously been seen at all in the human population (e.g. H5, H6 or H9, that have generally been found only in bird populations), such that the human population will be immunologically naive to the strain's hemagglutinin; (b) it is capable of being transmitted horizontally in the human population; and (c) it is pathogenic to humans. A vaccine strain with H5 hemagglutinin type is preferred where the reassortant virus is used in vaccines for immunizing against pandemic influenza, such as a H5N1 strain. Other possible strains include H5N3, H9N2, H2N2, H7N1 and H7N7, and any other emerging potentially pandemic strains. The invention is particularly suitable for producing reassortant viruses for use in vaccine for protecting against potential pandemic virus strains that can or have spread from a non-human animal population to humans, for example a swine-origin H1N1 influenza strain.

[0054] The reassortant influenza strain of the invention may comprise the HA segment and/or the NA segment from an A/California/4/09 strain. Thus, for instance, the HA gene segment may encode a H1 hemagglutinin which is more closely related to SEQ ID NO: 32 than to SEQ ID NO: 25 (i.e. has a higher degree sequence identity when compared to SEQ ID NO: 32 than to SEQ ID NO: 25 using the same algorithm and parameters). SEQ ID NOs: 32 and 25 are 80% identical. Similarly, the NA gene may encode a N1 neuraminidase which is more closely related to SEQ ID NO: 27 than to SEQ ID NO: 26. SEQ ID NOs: 27 and 26 are 82% identical.

[0055] Strains which can be used as vaccine strains include strains which are resistant to antiviral therapy (e.g. resistant to oseltamivir [6] and/or zanamivir), including resistant pandemic strains [7].

[0056] The choice of donor strain for use in the methods of the invention can depend on the vaccine strain which is to be reassorted. As reassortants between evolutionary distant strains might not replicate well in cell culture, it is possible that the donor strain and the vaccine strain have the same HA and/or NA subtype. In other embodiments, however, the vaccine strain and the donor strain can have different HA and/or NA subtypes, and this arrangement can facilitate selection for reassortant viruses that contain the HA and/or NA segment from the vaccine strain. Therefore, although the 105p30 and PR8-X strains contain the H1 influenza subtype these donor strains can be used for vaccine strains which do not contain the H1 influenza subtype.

[0057] Reassortants of the donor strains of the invention wherein the HA and/or NA segment has been changed to another subtype can also be used. The H1 influenza subtype of the 105p30 or PR8-X strain may be changed, for example, to a H3 or H5 subtype.

[0058] Thus, the invention encompasses an influenza A virus which comprises one, two, three, four, five, six or seven viral segments from the 105p30 or PR8-X strains of the invention and a HA segment which is not of the H1 subtype. The reassortant donor strains may further comprise an NA segment which is not of the N1 subtype. Suitable techniques for reassorting the donor strains will be evident to those of skill in the art.

[0059] The invention also encompasses reassortant donor strains which comprise at least one, at least two, at least three, at least four, at least five, at least six or at least seven viral segments from the 105p30 or PR8-X strains of the invention and a H1 HA segment which is derived from a different influenza strain.

[0060] Reassortant viruses which contain an NS segment that does not encode a functional NS protein are also within the scope of the present invention. NS 1 knockout mutants are described in reference 8. These NS1-mutant virus strains are particularly suitable for preparing live attenuated influenza vaccines.

[0061] The `second influenza strain` used in the methods of the invention is different to the donor strain which is used.

Reverse Genetics

[0062] The invention is particularly suitable for producing reassortant influenza virus strains through reverse genetics techniques. In these techniques, the viruses are produced in culture hosts using an expression system.

[0063] In one aspect, the expression system may encode the PB1 and PB2 segments from the same donor strain. In this aspect of the invention, the system may encode at least one (i.e. one, two three or four) of the segments NP, M, NS and/or PA from another influenza donor strain.

[0064] In another aspect, the system may encode 1 or more (e.g. 1, 2, 3, 4, 5 or 6) genome segments from the PR8-X strain, but usually this/these will not include the PR8-X HA segment and usually will not include the PR8-X NA segment. Thus the system may encode at least one of segments NP, M, NS, PA, PB1 and/or PB2 (possibly all six) from PR8-X.

[0065] The system may encode 1 or more (e.g. 1, 2, 3, 4, 5 or 6) genome segments from the 105p30 strain, but usually this/these will not include the 105p30 HA segment and usually will not include the 105p30 NA segment. Thus the system may encode at least one of segments NP, M, NS, PA, PB1 and/or PB2 (possibly all six) from 105p30.

[0066] Reverse genetics for influenza A and B viruses can be practised with 12 plasmids to express the four proteins required to initiate replication and transcription (PB 1, PB2, PA and nucleoprotein) and all eight viral genome segments. To reduce the number of constructs, however, a plurality of RNA polymerase I transcription cassettes (for viral RNA synthesis) can be included on a single plasmid (e.g. sequences encoding 1, 2, 3, 4, 5, 6, 7 or all 8 influenza vRNA segments), and a plurality of protein-coding regions with RNA polymerase II promoters on another plasmid (e.g. sequences encoding 1, 2, 3, 4, 5, 6, 7 or 8 influenza mRNA transcripts) [9]. It is also possible to include one or more influenza vRNA segments under control of a pol I promoter and one or more influenza protein coding regions under control of another promoter, in particular a pol II promoter, on the same plasmid. This is preferably done by using bi-directional plasmids.

[0067] Preferred aspects of the reference 9 method involve: (a) PB 1, PB2 and PA mRNA-encoding regions on a single expression construct; and (b) all 8 vRNA encoding segments on a single expression construct. Including the neuraminidase (NA) and hemagglutinin (HA) segments on one expression construct and the six other viral segments on another expression construct is particularly preferred as newly emerging influenza virus strains usually have mutations in the NA and/or HA segments. Therefore, the advantage of having the HA and/or NA segments on a separate expression construct is that only the vector comprising the HA and NA sequence needs to be replaced. Thus, in one aspect of the invention the NA and/or HA segments of the vaccine strain may be included on one expression construct and the vRNA encoding segments from the donor strain(s) of the invention, excluding the HA and/or NA segment(s), are included on a different expression construct. The invention thus provides an expression construct comprising one, two, three, four, five or six vRNA encoding backbone viral segments of a donor strain of the invention. The expression construct may not comprise HA and/or NA viral segments that produce a functional HA and/or NA protein.

[0068] Known reverse genetics systems involve expressing DNA molecules which encode desired viral RNA (vRNA) molecules from pol I promoters, bacterial RNA polymerase promoters, bacteriophage polymerase promoters, etc. As influenza viruses require the presence of viral polymerase to complete the life cycle, systems may also provide these proteins e.g. the system further comprises DNA molecules that encode viral polymerase proteins such that expression of both types of DNA leads to assembly of a complete infectious virus. It is also possible to supply the viral polymerase as a protein.

[0069] Where reverse genetics is used for the expression of influenza vRNA, it will be evident to the person skilled in the art that precise spacing of the sequence elements with reference to each other is important for the polymerase to initiate replication. It is therefore important that the DNA molecule encoding the viral RNA is positioned correctly between the pol I promoter and the termination sequence, but this positioning is well within the capabilities of those who work with reverse genetics systems.

[0070] In order to produce a recombinant virus, a cell must express all segments of the viral genome which are necessary to assemble a virion. DNA cloned into the expression constructs of the present invention preferably provides all of the viral RNA and proteins, but it is also possible to use a helper virus to provide some of the RNA and proteins, although systems which do not use a helper virus are preferred. As the influenza virus is a segmented virus, the viral genome will usually be expressed using more than one expression construct in the methods of the invention. It is also envisioned, however, to combine one or more segments or even all segments of the viral genome on a single expression construct.

[0071] In some embodiments an expression construct will also be included which leads to expression of an accessory protein in the host cell. For instance, it can be advantageous to express a non-viral serine protease (e.g. trypsin) as part of a reverse genetics system.

Expression Constructs

[0072] Expression constructs used in the expression systems of the invention may be uni-directional or bi-directional expression constructs. Where more than one transgene is used in the methods (whether on the same or different expression constructs) it is possible to use uni-directional and/or bi-directional expression.

[0073] As influenza viruses require a protein for infectivity, it is generally preferred to use bi-directional expression constructs as this reduces the total number of expression constructs required by the host cell. Thus, the method of the invention may utilise at least one bi-directional expression construct wherein a gene or cDNA is located between an upstream pol II promoter and a downstream non-endogenous pol I promoter. Transcription of the gene or cDNA from the pol II promoter produces capped positive-sense viral mRNA which can be translated into a protein, while transcription from the non-endogenous pol I promoter produces negative-sense vRNA. The bi-directional expression construct may be a bi-directional expression vector.

[0074] Bi-directional expression constructs contain at least two promoters which drive expression in different directions (i.e. both 5' to 3' and 3' to 5') from the same construct. The two promoters can be operably linked to different strands of the same double stranded DNA. Preferably, one of the promoters is a pol I promoter and at least one of the other promoters is a pol II promoter. This is useful as the pol I promoter can be used to express uncapped vRNAs while the pol II promoter can be used to transcribe mRNAs which can subsequently be translated into proteins, thus allowing simultaneous expression of RNA and protein from the same construct. Where more than one expression construct is used within an expression system, the promoters may be a mixture of endogenous and non-endogenous promoters.

[0075] The pol I and pol II promoters used in the expression constructs may be endogenous to an organism from the same taxonomic order from which the host cell is derived. Alternatively, the promoters can be derived from an organism in a different taxonomic order than the host cell. The term "order" refers to conventional taxonomic ranking, and examples of orders are primates, rodentia, carnivora, marsupialia, cetacean, etc. Humans and chimpanzees are in the same taxonomic order (primates), but humans and dogs are in different orders (primates vs. carnivora). For example, the human pol I promoter can be used to express viral segments in canine cells (e.g. MDCK cells).

[0076] The expression construct will typically include an RNA transcription termination sequence. The termination sequence may be an endogenous termination sequence or a termination sequence which is not endogenous to the host cell. Suitable termination sequences will be evident to those of skill in the art and include, but are not limited to, RNA polymerase I transcription termination sequence, RNA polymerase II transcription termination sequence, and ribozymes. Furthermore, the expression constructs may contain one or more polyadenylation signals for mRNAs, particularly at the end of a gene whose expression is controlled by a pol II promoter.

[0077] An expression system may contain at least two, at least three, at least four, at least five, at least six, at least seven, at least eight, at least nine, at least ten, at least eleven or at least twelve expression constructs.

[0078] An expression construct may be a vector, such as a plasmid or other episomal construct. Such vectors will typically comprise at least one bacterial and/or eukaryotic origin of replication. Furthermore, the vector may comprise a selectable marker which allows for selection in prokaryotic and/or eukaryotic cells. Examples of such selectable markers are genes conferring resistance to antibiotics, such as ampicillin or kanamycin. The vector may further comprise one or more multiple cloning sites to facilitate cloning of a DNA sequence.

[0079] As an alternative, an expression construct may be a linear expression construct. Such linear expression constructs will typically not contain any amplification and/or selection sequences. However, linear constructs comprising such amplification and/or selection sequences are also within the scope of the present invention. Reference 10 describes a linear expression construct which describes individual linear expression constructs for each viral segment. It is also possible to include more than one, for example two, three four, five or six viral segments on the same linear expression construct. Such a system has been described, for example, in reference 11.

[0080] Expression constructs can be generated using methods known in the art. Such methods were described, for example, in reference 12. Where the expression construct is a linear expression construct, it is possible to linearise it before introduction into the host cell utilising a single restriction enzyme site. Alternatively, it is possible to excise the expression construct from a vector using at least two restriction enzyme sites. Furthermore, it is also possible to obtain a linear expression construct by amplifying it using a nucleic acid amplification technique (e.g. by PCR).

[0081] The expression constructs used in the systems of the invention may be non-bacterial expression constructs. This means that the construct can drive expression in a eukaryotic cell of viral RNA segments encoded therein, but it does not include components which would be required for propagation of the construct in bacteria. Thus the construct will not include a bacterial origin of replication (ori), and usually will not include a bacterial selection marker (e.g. an antibiotic resistance marker). Such expression constructs are described in reference 13 which is incorporated by reference.

[0082] The expression constructs may be prepared by chemical synthesis. The expression constructs may either be prepared entirely by chemical synthesis or in part. Suitable methods for preparing expression constructs by chemical synthesis are described, for example, in reference 13 which is incorporated by reference.

[0083] The expression constructs of the invention can be introduced into host cells using any technique known to those of skill in the art. For example, expression constructs of the invention can be introduced into host cells by employing electroporation, DEAE-dextran, calcium phosphate precipitation, liposomes, microinjection, or microparticle-bombardment.

Cells

[0084] The culture host for use in the present invention can be any eukaryotic cell that can produce the virus of interest. The invention will typically use a cell line although, for example, primary cells may be used as an alternative. The cell will typically be mammalian. Suitable mammalian cells include, but are not limited to, hamster, cattle, primate (including humans and monkeys) and dog cells. Various cell types may be used, such as kidney cells, fibroblasts, retinal cells, lung cells, etc. Examples of suitable hamster cells are the cell lines having the names BHK21 or HKCC. Suitable monkey cells are e.g. African green monkey cells, such as kidney cells as in the Vero cell line [14-15]. Suitable dog cells are e.g. kidney cells, as in the CLDK and MDCK cell lines.

[0085] Further suitable cells include, but are not limited to: CHO; 293T; BHK; MRC 5; PER.C6 [16]; FRhL2; WI-38; etc. Suitable cells are widely available e.g. from the American Type Cell Culture (ATCC) collection [17], from the Coriell Cell Repositories [18], or from the European Collection of Cell Cultures (ECACC). For example, the ATCC supplies various different Vero cells under catalogue numbers CCL 81, CCL 81.2, CRL 1586 and CRL-1587, and it supplies MDCK cells under catalogue number CCL 34. PERC6 is available from the ECACC under deposit number 96022940.

[0086] Preferred cells for use in the invention are MDCK cells [19-20], derived from Madill Darby canine kidney. The original MDCK cells are available from the ATCC as CCL 34. It is preferred that derivatives of MDCK cells are used. Such derivatives were described, for instance, in reference 19 which discloses MDCK cells that were adapted for growth in suspension culture (`MDCK 33016` or `33016-PF`, deposited as DSM ACC 2219; see also ref. 19). Furthermore, reference 21 discloses MDCK-derived cells that grow in suspension in serum free culture (`B-702`, deposited as FERM BP-7449). In some embodiments, the MDCK cell line used may be tumorigenic. It is also envisioned to use non-tumorigenic MDCK cells. For example, reference 22 discloses non tumorigenic MDCK cells, including `MDCK-S` (ATCC PTA-6500), `MDCK-SF101` (ATCC PTA-6501), `MDCK-SF102` (ATCC PTA-6502) and `MDCK-SF103` (ATCC PTA-6503). Reference 23 discloses MDCK cells with high susceptibility to infection, including `MDCK.5F1` cells (ATCC CRL 12042).

[0087] It is possible to use a mixture of more than one cell type to practise the methods of the present invention. However, it is preferred that the methods of the invention are practised with a single cell type e.g. with monoclonal cells. Preferably, the cells used in the methods of the present invention are from a single cell line. Furthermore, the same cell line may be used for reassorting the virus and for any subsequent propagation of the virus.

[0088] Preferably, the cells are cultured in the absence of serum, to avoid a common source of contaminants. Various serum-free media for eukaryotic cell culture are known to the person skilled in the art (e.g. Iscove's medium, ultra CHO medium (BioWhittaker), EX-CELL (JRH Biosciences)). Furthermore, protein-free media may be used (e.g. PF-CHO (JRH Biosciences)). Otherwise, the cells for replication can also be cultured in the customary serum-containing media (e.g. MEM or DMEM medium with 0.5% to 10% of fetal calf serum).

[0089] The cells may be in adherent culture or in suspension.

Conventional Reassortment

[0090] Traditionally, influenza viruses are reassorted by co-infecting a culture host, usually eggs, with a donor strain and a vaccine strain. Reassortant viruses are selected by adding antibodies with specificity for the HA and/or NA proteins of the donor strain in order to select for reassortant viruses that contain the vaccine strain's HA and/or NA proteins. Over several passages of this treatment one can select for fast growing reassortant viruses containing the vaccine strain's HA and/or NA segments.

[0091] The invention is suitable for use in these methods. It can be easier to use vaccine strains with a different HA and/or NA subtype compared to the donor strain(s) as this facilitates selection for reassortant viruses. It is also possible, however, to use vaccine strains with the same HA and/or NA subtype as the donor strain(s) and in some aspects of the invention this preferred. In this case, antibodies with preferential specificity for the HA and/or NA proteins of the donor strain(s) should be available.

Virus Preparation

[0092] In one embodiment, the invention provides a method for producing influenza viruses comprising steps of (a) infecting a culture host with a reassortant virus of the invention; (b) culturing the host from step (a) to produce the virus; and optionally (c) purifying the virus obtained in step (b).

[0093] The culture host may be cells or embryonated hen eggs. Where cells are used as a culture host in this aspect of the invention, it is known that cell culture conditions (e.g. temperature, cell density, pH value, etc.) are variable over a wide range subject to the cell line and the virus employed and can be adapted to the requirements of the application. The following information therefore merely represents guidelines.

[0094] As mentioned above, cells are preferably cultured in serum-free or protein-free media.

[0095] Multiplication of the cells can be conducted in accordance with methods known to those of skill in the art. For example, the cells can be cultivated in a perfusion system using ordinary support methods like centrifugation or filtration. Moreover, the cells can be multiplied according to the invention in a fed-batch system before infection. In the context of the present invention, a culture system is referred to as a fed-batch system in which the cells are initially cultured in a batch system and depletion of nutrients (or part of the nutrients) in the medium is compensated by controlled feeding of concentrated nutrients. It can be advantageous to adjust the pH value of the medium during multiplication of cells before infection to a value between pH 6.6 and pH 7.8 and especially between a value between pH 7.2 and pH 7.3. Culturing of cells preferably occurs at a temperature between 30 and 40.degree. C. When culturing the infected cells (step ii), the cells are preferably cultured at a temperature of between 30.degree. C. and 36.degree. C. or between 32.degree. C. and 34.degree. C. or at 33.degree. C. This is particularly preferred, as it has been shown that incubation of infected cells in this temperature range results in production of a virus that results in improved efficacy when formulated into a vaccine [24].

[0096] Oxygen partial pressure can be adjusted during culturing before infection preferably at a value between 25% and 95% and especially at a value between 35% and 60%. The values for the oxygen partial pressure stated in the context of the invention are based on saturation of air. Infection of cells occurs at a cell density of preferably about 8-25.times.10.sup.5 cells/mL in the batch system or preferably about 5-20.times.10.sup.6 cells/mL in the perfusion system. The cells can be infected with a viral dose (MOI value, "multiplicity of infection"; corresponds to the number of virus units per cell at the time of infection) between 10.sup.-8 and 10, preferably between 0.0001 and 0.5.

[0097] Virus may be grown on cells in adherent culture or in suspension. Microcarrier cultures can be used. In some embodiments, the cells may thus be adapted for growth in suspension.

[0098] The methods according to the invention also include harvesting and isolation of viruses or the proteins generated by them. During isolation of viruses or proteins, the cells are separated from the culture medium by standard methods like separation, filtration or ultrafiltration. The viruses or the proteins are then concentrated according to methods sufficiently known to those skilled in the art, like gradient centrifugation, filtration, precipitation, chromatography, etc., and then purified. It is also preferred according to the invention that the viruses are inactivated during or after purification. Virus inactivation can occur, for example, by .beta.-propiolactone or formaldehyde at any point within the purification process.

[0099] The culture host may be eggs. The current standard method for influenza virus growth for vaccines uses embryonated SPF hen eggs, with virus being purified from the egg contents (allantoic fluid). It is also possible to passage a virus through eggs and subsequently propagate it in cell culture and vice versa.

Vaccine

[0100] The invention utilises virus produced according to the method to produce vaccines.

[0101] Vaccines (particularly for influenza virus) are generally based either on live virus or on inactivated virus. Inactivated vaccines may be based on whole virions, `split` virions, or on purified surface antigens. Antigens can also be presented in the form of virosomes. The invention can be used for manufacturing any of these types of vaccine.

[0102] Where an inactivated virus is used, the vaccine may comprise whole virion, split virion, or purified surface antigens (for influenza, including hemagglutinin and, usually, also including neuraminidase). Chemical means for inactivating a virus include treatment with an effective amount of one or more of the following agents: detergents, formaldehyde, .beta.-propiolactone, methylene blue, psoralen, carboxyfullerene (C60), binary ethylamine, acetyl ethyleneimine, or combinations thereof. Non-chemical methods of viral inactivation are known in the art, such as for example UV light or gamma irradiation.

[0103] Virions can be harvested from virus-containing fluids, e.g. allantoic fluid or cell culture supernatant, by various methods. For example, a purification process may involve zonal centrifugation using a linear sucrose gradient solution that includes detergent to disrupt the virions. Antigens may then be purified, after optional dilution, by diafiltration.

[0104] Split virions are obtained by treating purified virions with detergents (e.g. ethyl ether, polysorbate 80, deoxycholate, tri-N-butyl phosphate, Triton X-100, Triton N101, cetyltrimethylammonium bromide, Tergitol NP9, etc.) to produce subvirion preparations, including the `Tween-ether` splitting process. Methods of splitting influenza viruses, for example are well known in the art e.g. see refs. 25-26, etc. Splitting of the virus is typically carried out by disrupting or fragmenting whole virus, whether infectious or non-infectious with a disrupting concentration of a splitting agent. The disruption results in a full or partial solubilisation of the virus proteins, altering the integrity of the virus. Preferred splitting agents are non-ionic and ionic (e.g. cationic) surfactants e.g. alkylglycosides, alkylthioglycosides, acyl sugars, sulphobetaines, betains, polyoxyethylenealkylethers, N,N-dialkyl-Glucamides, Hecameg, alkylphenoxy-polyethoxyethanols, NP9, quaternary ammonium compounds, sarcosyl, CTABs (cetyl trimethyl ammonium bromides), tri-N-butyl phosphate, Cetavlon, myristyltrimethylammonium salts, lipofectin, lipofectamine, and DOT-MA, the octyl- or nonylphenoxy polyoxyethanols (e.g. the Triton surfactants, such as Triton X-100 or Triton N101), polyoxyethylene sorbitan esters (the Tween surfactants), polyoxyethylene ethers, polyoxyethlene esters, etc. One useful splitting procedure uses the consecutive effects of sodium deoxycholate and formaldehyde, and splitting can take place during initial virion purification (e.g. in a sucrose density gradient solution). Thus a splitting process can involve clarification of the virion-containing material (to remove non-virion material), concentration of the harvested virions (e.g. using an adsorption method, such as CaHPO.sub.4 adsorption), separation of whole virions from non-virion material, splitting of virions using a splitting agent in a density gradient centrifugation step (e.g. using a sucrose gradient that contains a splitting agent such as sodium deoxycholate), and then filtration (e.g. ultrafiltration) to remove undesired materials. Split virions can usefully be resuspended in sodium phosphate-buffered isotonic sodium chloride solution. Examples of split influenza vaccines are the BEGRIVAC.TM., FLUARIX.TM., FLUZONE.TM. and FLUSHIELD.TM. products.

[0105] Purified influenza virus surface antigen vaccines comprise the surface antigens hemagglutinin and, typically, also neuraminidase. Processes for preparing these proteins in purified form are well known in the art. The FLUVIRIN.TM., AGRIPPAL.TM. and INFLUVAC.TM. products are influenza subunit vaccines.

[0106] Another form of inactivated antigen is the virosome [27] (nucleic acid free viral-like liposomal particles). Virosomes can be prepared by solubilization of virus with a detergent followed by removal of the nucleocapsid and reconstitution of the membrane containing the viral glycoproteins. An alternative method for preparing virosomes involves adding viral membrane glycoproteins to excess amounts of phospholipids, to give liposomes with viral proteins in their membrane.

[0107] The methods of the invention may also be used to produce live vaccines. Such vaccines are usually prepared by purifying virions from virion-containing fluids. For example, the fluids may be clarified by centrifugation, and stabilized with buffer (e.g. containing sucrose, potassium phosphate, and monosodium glutamate). Various forms of influenza virus vaccine are currently available (e.g. see chapters 17 & 18 of reference 28). Live virus vaccines include MedImmune's FLUMIST.TM. product (trivalent live virus vaccine).

[0108] The virus may be attenuated. The virus may be temperature-sensitive. The virus may be cold-adapted. These three features are particularly useful when using live virus as an antigen.

[0109] HA is the main immunogen in current inactivated influenza vaccines, and vaccine doses are standardised by reference to HA levels, typically measured by SRID. Existing vaccines typically contain about 15 .mu.g of HA per strain, although lower doses can be used e.g. for children, or in pandemic situations, or when using an adjuvant. Fractional doses such as 1/2 (i.e. 7.5 .mu.g HA per strain), 1/4 and 1/8 have been used, as have higher doses (e.g. 3.times. or 9.times. doses [29,30]). Thus vaccines may include between 0.1 and 150 .mu.g of HA per influenza strain, preferably between 0.1 and 50 .mu.g e.g. 0.1-20 .mu.g, 0.1-15 .mu.g, 0.1-10 .mu.g, 0.5-5 .mu.g, etc. Particular doses include e.g. about 45, about 30, about 15, about 10, about 7.5, about 5, about 3.8, about 3.75, about 1.9, about 1.5, etc. per strain.

[0110] For live vaccines, dosing is measured by median tissue culture infectious dose (TCID.sub.50) rather than HA content, and a TCID.sub.50 of between 10.sup.6 and 10.sup.8 (preferably between 10.sup.6.5-10.sup.7.5) per strain is typical.

[0111] Influenza strains used with the invention may have a natural HA as found in a wild-type virus, or a modified HA. For instance, it is known to modify HA to remove determinants (e.g. hyper-basic regions around the HA1/HA2 cleavage site) that cause a virus to be highly pathogenic in avian species. The use of reverse genetics facilitates such modifications.

[0112] As well as being suitable for immunizing against inter-pandemic strains, the compositions of the invention are particularly useful for immunizing against pandemic or potentially-pandemic strains. The invention is suitable for vaccinating humans as well as non-human animals

[0113] Other strains whose antigens can usefully be included in the compositions are strains which are resistant to antiviral therapy (e.g. resistant to oseltamivir [31] and/or zanamivir), including resistant pandemic strains [32].

[0114] Compositions of the invention may include antigen(s) from one or more (e.g. 1, 2, 3, 4 or more) influenza virus strains, including influenza A virus and/or influenza B virus provided that at least one influenza strain is a reassortant influenza strain of the invention. Compositions wherein at least two, at least three or all of the antigens are from reassortant influenza strains of the invention are also envisioned. Where a vaccine includes more than one strain of influenza, the different strains are typically grown separately and are mixed after the viruses have been harvested and antigens have been prepared. Thus a process of the invention may include the step of mixing antigens from more than one influenza strain. A trivalent vaccine is typical, including antigens from two influenza A virus strains and one influenza B virus strain. A tetravalent vaccine is also useful [33], including antigens from two influenza A virus strains and two influenza B virus strains, or three influenza A virus strains and one influenza B virus strain.

Pharmaceutical Compositions

[0115] Vaccine compositions manufactured according to the invention are pharmaceutically acceptable. They usually include components in addition to the antigens e.g. they typically include one or more pharmaceutical carrier(s) and/or excipient(s). As described below, adjuvants may also be included. A thorough discussion of such components is available in reference 34.

[0116] Vaccine compositions will generally be in aqueous form. However, some vaccines may be in dry form, e.g. in the form of injectable solids or dried or polymerized preparations on a patch.

[0117] Vaccine compositions may include preservatives such as thiomersal or 2-phenoxyethanol. It is preferred, however, that the vaccine should be substantially free from (i.e. less than 5 .mu.g/ml) mercurial material e.g. thiomersal-free [Error! Bookmark not defined, 35]. Vaccines containing no mercury are more preferred. An .alpha.-tocopherol succinate can be included as an alternative to mercurial compounds [Error! Bookmark not defined.]. Preservative-free vaccines are particularly preferred.

[0118] To control tonicity, it is preferred to include a physiological salt, such as a sodium salt. Sodium chloride (NaCl) is preferred, which may be present at between 1 and 20 mg/ml. Other salts that may be present include potassium chloride, potassium dihydrogen phosphate, disodium phosphate dehydrate, magnesium chloride, calcium chloride, etc.

[0119] Vaccine compositions will generally have an osmolality of between 200 mOsm/kg and 400 mOsm/kg, preferably between 240-360 mOsm/kg, and will more preferably fall within the range of 290-310 mOsm/kg. Osmolality has previously been reported not to have an impact on pain caused by vaccination [36], but keeping osmolality in this range is nevertheless preferred.

[0120] Vaccine compositions may include one or more buffers. Typical buffers include: a phosphate buffer; a Tris buffer; a borate buffer; a succinate buffer; a histidine buffer (particularly with an aluminum hydroxide adjuvant); or a citrate buffer. Buffers will typically be included in the 5-20 mM range.

[0121] The pH of a vaccine composition will generally be between 5.0 and 8.1, and more typically between 6.0 and 8.0 e.g. 6.5 and 7.5, or between 7.0 and 7.8. A process of the invention may therefore include a step of adjusting the pH of the bulk vaccine prior to packaging.

[0122] The vaccine composition is preferably sterile. The vaccine composition is preferably non-pyrogenic e.g. containing <1 EU (endotoxin unit, a standard measure) per dose, and preferably <0.1 EU per dose. The vaccine composition is preferably gluten-free.

[0123] Vaccine compositions of the invention may include detergent e.g. a polyoxyethylene sorbitan ester surfactant (known as `Tweens`), an octoxynol (such as octoxynol-9 (Triton X-100) or t-octylphenoxypolyethoxyethanol), a cetyl trimethyl ammonium bromide (`CTAB`), or sodium deoxycholate, particularly for a split or surface antigen vaccine. The detergent may be present only at trace amounts. Thus the vaccine may include less than 1 mg/ml of each of octoxynol-10 and polysorbate 80. Other residual components in trace amounts could be antibiotics (e.g. neomycin, kanamycin, polymyxin B).

[0124] A vaccine composition may include material for a single immunisation, or may include material for multiple immunisations (i.e. a `multidose` kit). The inclusion of a preservative is preferred in multidose arrangements. As an alternative (or in addition) to including a preservative in multidose compositions, the compositions may be contained in a container having an aseptic adaptor for removal of material.

[0125] Influenza vaccines are typically administered in a dosage volume of about 0.5 ml, although a half dose (i.e. about 0.25 ml) may be administered to children.

[0126] Compositions and kits are preferably stored at between 2.degree. C. and 8.degree. C. They should not be frozen. They should ideally be kept out of direct light.

Host Cell DNA

[0127] Where virus has been isolated and/or grown on a cell line, it is standard practice to minimize the amount of residual cell line DNA in the final vaccine, in order to minimize any potential oncogenic activity of the DNA.

[0128] Thus a vaccine composition prepared according to the invention preferably contains less than 10 ng (preferably less than 1 ng, and more preferably less than 100 pg) of residual host cell DNA per dose, although trace amounts of host cell DNA may be present.

[0129] It is preferred that the average length of any residual host cell DNA is less than 500 bp e.g. less than 400 bp, less than 300 bp, less than 200 bp, less than 100 bp, etc.

[0130] Contaminating DNA can be removed during vaccine preparation using standard purification procedures e.g. chromatography, etc. Removal of residual host cell DNA can be enhanced by nuclease treatment e.g. by using a DNase. A convenient method for reducing host cell DNA contamination is disclosed in references 37 & 38, involving a two-step treatment, first using a DNase (e.g. Benzonase), which may be used during viral growth, and then a cationic detergent (e.g. CTAB), which may be used during virion disruption. Treatment with an alkylating agent, such as .beta.-propiolactone, can also be used to remove host cell DNA, and advantageously may also be used to inactivate virions [39].

Adjuvants

[0131] Compositions of the invention may advantageously include an adjuvant, which can function to enhance the immune responses (humoral and/or cellular) elicited in a subject who receives the composition. Preferred adjuvants comprise oil-in-water emulsions. Various such adjuvants are known, and they typically include at least one oil and at least one surfactant, with the oil(s) and surfactant(s) being biodegradable (metabolisable) and biocompatible. The oil droplets in the emulsion are generally less than 5 .mu.m in diameter, and ideally have a sub-micron diameter, with these small sizes being achieved with a microfluidiser to provide stable emulsions. Droplets with a size less than 220 nm are preferred as they can be subjected to filter sterilization.

[0132] The emulsion can comprise oils such as those from an animal (such as fish) or vegetable source. Sources for vegetable oils include nuts, seeds and grains. Peanut oil, soybean oil, coconut oil, and olive oil, the most commonly available, exemplify the nut oils. Jojoba oil can be used e.g. obtained from the jojoba bean. Seed oils include safflower oil, cottonseed oil, sunflower seed oil, sesame seed oil and the like. In the grain group, corn oil is the most readily available, but the oil of other cereal grains such as wheat, oats, rye, rice, teff, triticale and the like may also be used. 6-10 carbon fatty acid esters of glycerol and 1,2-propanediol, while not occurring naturally in seed oils, may be prepared by hydrolysis, separation and esterification of the appropriate materials starting from the nut and seed oils. Fats and oils from mammalian milk are metabolizable and may therefore be used in the practice of this invention. The procedures for separation, purification, saponification and other means necessary for obtaining pure oils from animal sources are well known in the art. Most fish contain metabolizable oils which may be readily recovered. For example, cod liver oil, shark liver oils, and whale oil such as spermaceti exemplify several of the fish oils which may be used herein. A number of branched chain oils are synthesized biochemically in 5-carbon isoprene units and are generally referred to as terpenoids. Shark liver oil contains a branched, unsaturated terpenoids known as squalene, 2,6,10,15,19,23-hexamethyl-2,6,10,14,18,22-tetracosahexaene, which is particularly preferred herein. Squalane, the saturated analog to squalene, is also a preferred oil. Fish oils, including squalene and squalane, are readily available from commercial sources or may be obtained by methods known in the art. Another preferred oil is .alpha.-tocopherol (see below).

[0133] Mixtures of oils can be used.

[0134] Surfactants can be classified by their `HLB` (hydrophile/lipophile balance). Preferred surfactants of the invention have a HLB of at least 10, preferably at least 15, and more preferably at least 16. The invention can be used with surfactants including, but not limited to: the polyoxyethylene sorbitan esters surfactants (commonly referred to as the Tweens), especially polysorbate 20 and polysorbate 80; copolymers of ethylene oxide (E0), propylene oxide (PO), and/or butylene oxide (BO), sold under the DOWFAX.TM. tradename, such as linear EO/PO block copolymers; octoxynols, which can vary in the number of repeating ethoxy(oxy-1,2-ethanediyl) groups, with octoxynol-9 (Triton X-100, or t-octylphenoxypolyethoxyethanol) being of particular interest; (octylphenoxy)polyethoxyethanol (IGEPAL CA-630/NP-40); phospholipids such as phosphatidylcholine (lecithin); nonylphenol ethoxylates, such as the Tergitol.TM. NP series; polyoxyethylene fatty ethers derived from lauryl, cetyl, stearyl and oleyl alcohols (known as Brij surfactants), such as triethyleneglycol monolauryl ether (Brij 30); and sorbitan esters (commonly known as the SPANs), such as sorbitan trioleate (Span 85) and sorbitan monolaurate. Non-ionic surfactants are preferred. Preferred surfactants for including in the emulsion are Tween 80 (polyoxyethylene sorbitan monooleate), Span 85 (sorbitan trioleate), lecithin and Triton X-100.

[0135] Mixtures of surfactants can be used e.g. Tween 80/Span 85 mixtures. A combination of a polyoxyethylene sorbitan ester such as polyoxyethylene sorbitan monooleate (Tween 80) and an octoxynol such as t-octylphenoxypolyethoxyethanol (Triton X-100) is also suitable. Another useful combination comprises laureth 9 plus a polyoxyethylene sorbitan ester and/or an octoxynol.

[0136] Preferred amounts of surfactants (% by weight) are: polyoxyethylene sorbitan esters (such as Tween 80) 0.01 to 1%, in particular about 0.1%; octyl- or nonylphenoxy polyoxyethanols (such as Triton X-100, or other detergents in the Triton series) 0.001 to 0.1%, in particular 0.005 to 0.02%; polyoxyethylene ethers (such as laureth 9) 0.1 to 20%, preferably 0.1 to 10% and in particular 0.1 to 1% or about 0.5%.

[0137] Where the vaccine contains a split virus, it is preferred that it contains free surfactant in the aqueous phase. This is advantageous as the free surfactant can exert a `splitting effect` on the antigen, thereby disrupting any unsplit virions and/or virion aggregates that might otherwise be present. This can improve the safety of split virus vaccines [40].

[0138] Preferred emulsions have an average droplets size of <1 .mu.m e.g. .ltoreq.750 nm, .ltoreq.500 nm, .ltoreq.400 nm, .ltoreq.300 nm, .ltoreq.250 nm, .ltoreq.220 nm, .ltoreq.200 nm, or smaller. These droplet sizes can conveniently be achieved by techniques such as microfluidisation.

[0139] Specific oil-in-water emulsion adjuvants useful with the invention include, but are not limited to: [0140] A submicron emulsion of squalene, Tween 80, and Span 85. The composition of the emulsion by volume can be about 5% squalene, about 0.5% polysorbate 80 and about 0.5% Span 85. In weight terms, these ratios become 4.3% squalene, 0.5% polysorbate 80 and 0.48% Span 85. This adjuvant is known as `MF59` [41-42], as described in more detail in Chapter 10 of ref. 43 and chapter 12 of ref. 44. The MF59 emulsion advantageously includes citrate ions e.g. 10 mM sodium citrate buffer. [0141] An emulsion comprising squalene, a tocopherol, and polysorbate 80. The emulsion may include phosphate buffered saline. These emulsions may have by volume from 2 to 10% squalene, from 2 to 10% tocopherol and from 0.3 to 3% polysorbate 80, and the weight ratio of squalene:tocopherol is preferably <1 (e.g. 0.90) as this can provide a more stable emulsion. Squalene and polysorbate 80 may be present volume ratio of about 5:2 or at a weight ratio of about 11:5. Thus the three components (squalene, tocopherol, polysorbate 80) may be present at a weight ratio of 1068:1186:485 or around 55:61:25. One such emulsion (`AS03`) can be made by dissolving Tween 80 in PBS to give a 2% solution, then mixing 90 ml of this solution with a mixture of (5 g of DL a tocopherol and 5 ml squalene), then microfluidising the mixture. The resulting emulsion may have submicron oil droplets e.g. with an average diameter of between 100 and 250 nm, preferably about 180 nm. The emulsion may also include a 3-de-O-acylated monophosphoryl lipid A (3d MPL). Another useful emulsion of this type may comprise, per human dose, 0.5-10 mg squalene, 0.5-11 mg tocopherol, and 0.1-4 mg polysorbate 80 [45] e.g. in the ratios discussed above. [0142] An emulsion of squalene, a tocopherol, and a Triton detergent (e.g. Triton X-100). The emulsion may also include a 3d-MPL (see below). The emulsion may contain a phosphate buffer. [0143] An emulsion comprising a polysorbate (e.g. polysorbate 80), a Triton detergent (e.g. Triton X-100) and a tocopherol (e.g. an .alpha.-tocopherol succinate). The emulsion may include these three components at a mass ratio of about 75:11:10 (e.g. 750 .mu.g/ml polysorbate 80, 110 .mu.g/ml Triton X-100 and 100 .mu.g/ml .alpha.-tocopherol succinate), and these concentrations should include any contribution of these components from antigens. The emulsion may also include squalene. The emulsion may also include a 3d-MPL (see below). The aqueous phase may contain a phosphate buffer. [0144] An emulsion of squalane, polysorbate 80 and poloxamer 401 ("Pluronic.TM. L121"). The emulsion can be formulated in phosphate buffered saline, pH 7.4. This emulsion is a useful delivery vehicle for muramyl dipeptides, and has been used with threonyl-MDP in the "SAF-1" adjuvant [46] (0.05-1% Thr-MDP, 5% squalane, 2.5% Pluronic L121 and 0.2% polysorbate 80). It can also be used without the Thr-MDP, as in the "AF" adjuvant [47] (5% squalane, 1.25% Pluronic L121 and 0.2% polysorbate 80). Microfluidisation is preferred. [0145] An emulsion comprising squalene, an aqueous solvent, a polyoxyethylene alkyl ether hydrophilic nonionic surfactant (e.g. polyoxyethylene (12) cetostearyl ether) and a hydrophobic nonionic surfactant (e.g. a sorbitan ester or mannide ester, such as sorbitan monoleate or `Span 80`). The emulsion is preferably thermoreversible and/or has at least 90% of the oil droplets (by volume) with a size less than 200 nm [48]. The emulsion may also include one or more of: alditol; a cryoprotective agent (e.g. a sugar, such as dodecylmaltoside and/or sucrose); and/or an alkylpolyglycoside. The emulsion may include a TLR4 agonist [49]. Such emulsions may be lyophilized. [0146] An emulsion of squalene, poloxamer 105 and Abil-Care [50]. The final concentration (weight) of these components in adjuvanted vaccines are 5% squalene, 4% poloxamer 105 (pluronic polyol) and 2% Abil-Care 85 (Bis-PEG/PPG-16/16 PEG/PPG-16/16 dimethicone; caprylic/capric triglyceride). [0147] An emulsion having from 0.5-50% of an oil, 0.1-10% of a phospholipid, and 0.05-5% of a non-ionic surfactant. As described in reference 51, preferred phospholipid components are phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, phosphatidic acid, sphingomyelin and cardiolipin. Submicron droplet sizes are advantageous. [0148] A submicron oil-in-water emulsion of a non-metabolisable oil (such as light mineral oil) and at least one surfactant (such as lecithin, Tween 80 or Span 80). Additives may be included, such as QuilA saponin, cholesterol, a saponin-lipophile conjugate (such as GPI-0100, described in reference 52, produced by addition of aliphatic amine to desacylsaponin via the carboxyl group of glucuronic acid), dimethyldioctadecylammonium bromide and/or N,N-dioctadecyl-N,N-bis(2-hydroxyethyl)propanediamine. [0149] An emulsion in which a saponin (e.g. QuilA or QS21) and a sterol (e.g. a cholesterol) are associated as helical micelles [53]. [0150] An emulsion comprising a mineral oil, a non-ionic lipophilic ethoxylated fatty alcohol, and a non-ionic hydrophilic surfactant (e.g. an ethoxylated fatty alcohol and/or polyoxyethylene-polyoxypropylene block copolymer) [54]. [0151] An emulsion comprising a mineral oil, a non-ionic hydrophilic ethoxylated fatty alcohol, and a non-ionic lipophilic surfactant (e.g. an ethoxylated fatty alcohol and/or polyoxyethylene-polyoxypropylene block copolymer) [54].

[0152] In some embodiments an emulsion may be mixed with antigen extemporaneously, at the time of delivery, and thus the adjuvant and antigen may be kept separately in a packaged or distributed vaccine, ready for final formulation at the time of use. In other embodiments an emulsion is mixed with antigen during manufacture, and thus the composition is packaged in a liquid adjuvanted form. The antigen will generally be in an aqueous form, such that the vaccine is finally prepared by mixing two liquids. The volume ratio of the two liquids for mixing can vary (e.g. between 5:1 and 1:5) but is generally about 1:1. Where concentrations of components are given in the above descriptions of specific emulsions, these concentrations are typically for an undiluted composition, and the concentration after mixing with an antigen solution will thus decrease.

Packaging of Vaccine Compositions

[0153] Suitable containers for compositions of the invention (or kit components) include vials, syringes (e.g. disposable syringes), nasal sprays, etc. These containers should be sterile.

[0154] Where a composition/component is located in a vial, the vial is preferably made of a glass or plastic material. The vial is preferably sterilized before the composition is added to it. To avoid problems with latex-sensitive patients, vials are preferably sealed with a latex-free stopper, and the absence of latex in all packaging material is preferred. The vial may include a single dose of vaccine, or it may include more than one dose (a `multidose` vial) e.g. 10 doses. Preferred vials are made of colourless glass.

[0155] A vial can have a cap (e.g. a Luer lock) adapted such that a pre-filled syringe can be inserted into the cap, the contents of the syringe can be expelled into the vial (e.g. to reconstitute lyophilised material therein), and the contents of the vial can be removed back into the syringe. After removal of the syringe from the vial, a needle can then be attached and the composition can be administered to a patient. The cap is preferably located inside a seal or cover, such that the seal or cover has to be removed before the cap can be accessed. A vial may have a cap that permits aseptic removal of its contents, particularly for multidose vials.

[0156] Where a component is packaged into a syringe, the syringe may have a needle attached to it. If a needle is not attached, a separate needle may be supplied with the syringe for assembly and use. Such a needle may be sheathed. Safety needles are preferred. 1-inch 23-gauge, 1-inch 25-gauge and 5/8-inch 25-gauge needles are typical. Syringes may be provided with peel-off labels on which the lot number, influenza season and expiration date of the contents may be printed, to facilitate record keeping. The plunger in the syringe preferably has a stopper to prevent the plunger from being accidentally removed during aspiration. The syringes may have a latex rubber cap and/or plunger. Disposable syringes contain a single dose of vaccine. The syringe will generally have a tip cap to seal the tip prior to attachment of a needle, and the tip cap is preferably made of a butyl rubber. If the syringe and needle are packaged separately then the needle is preferably fitted with a butyl rubber shield. Preferred syringes are those marketed under the trade name "Tip-Lok".TM..

[0157] Containers may be marked to show a half-dose volume e.g. to facilitate delivery to children. For instance, a syringe containing a 0.5 ml dose may have a mark showing a 0.25 ml volume.

[0158] Where a glass container (e.g. a syringe or a vial) is used, then it is preferred to use a container made from a borosilicate glass rather than from a soda lime glass.

[0159] A kit or composition may be packaged (e.g. in the same box) with a leaflet including details of the vaccine e.g. instructions for administration, details of the antigens within the vaccine, etc. The instructions may also contain warnings e.g. to keep a solution of adrenaline readily available in case of anaphylactic reaction following vaccination, etc.

Methods of Treatment, and Administration of the Vaccine

[0160] The invention provides a vaccine manufactured according to the invention. These vaccine compositions are suitable for administration to human or non-human animal subjects, such as pigs or birds, and the invention provides a method of raising an immune response in a subject, comprising the step of administering a composition of the invention to the subject. The invention also provides a composition of the invention for use as a medicament, and provides the use of a composition of the invention for the manufacture of a medicament for raising an immune response in a subject.

[0161] The immune response raised by these methods and uses will generally include an antibody response, preferably a protective antibody response. Methods for assessing antibody responses, neutralising capability and protection after influenza virus vaccination are well known in the art. Human studies have shown that antibody titers against hemagglutinin of human influenza virus are correlated with protection (a serum sample hemagglutination-inhibition titer of about 30-40 gives around 50% protection from infection by a homologous virus) [55]. Antibody responses are typically measured by hemagglutination inhibition, by microneutralisation, by single radial immunodiffusion (SRID), and/or by single radial hemolysis (SRH). These assay techniques are well known in the art.

[0162] Compositions of the invention can be administered in various ways. The most preferred immunisation route is by intramuscular injection (e.g. into the arm or leg), but other available routes include subcutaneous injection, intranasal [56-57], oral [58], intradermal [59,60], transcutaneous, transdermal [61], etc.

[0163] Vaccines prepared according to the invention may be used to treat both children and adults. Influenza vaccines are currently recommended for use in pediatric and adult immunisation, from the age of 6 months. Thus a human subject may be less than 1 year old, 1-5 years old, 5-15 years old, 15-55 years old, or at least 55 years old. Preferred subjects for receiving the vaccines are the elderly (e.g. >50 years old, .gtoreq.60 years old, and preferably .gtoreq.65 years), the young (e.g. .ltoreq.5 years old), hospitalised subjects, healthcare workers, armed service and military personnel, pregnant women, the chronically ill, immunodeficient subjects, subjects who have taken an antiviral compound (e.g. an oseltamivir or zanamivir compound; see below) in the 7 days prior to receiving the vaccine, people with egg allergies and people travelling abroad. The vaccines are not suitable solely for these groups, however, and may be used more generally in a population. For pandemic strains, administration to all age groups is preferred.

[0164] Preferred compositions of the invention satisfy 1, 2 or 3 of the CPMP criteria for efficacy. In adults (18-60 years), these criteria are: (1) .gtoreq.70% seroprotection; (2) .gtoreq.40% seroconversion; and/or (3) a GMT increase of .gtoreq.2.5-fold. In elderly (>60 years), these criteria are: (1) .gtoreq.60% seroprotection; (2) .gtoreq.30% seroconversion; and/or (3) a GMT increase of .gtoreq.2-fold. These criteria are based on open label studies with at least 50 patients.

[0165] Treatment can be by a single dose schedule or a multiple dose schedule. Multiple doses may be used in a primary immunisation schedule and/or in a booster immunisation schedule. In a multiple dose schedule the various doses may be given by the same or different routes e.g. a parenteral prime and mucosal boost, a mucosal prime and parenteral boost, etc. Administration of more than one dose (typically two doses) is particularly useful in immunologically naive patients e.g. for people who have never received an influenza vaccine before, or for vaccinating against a new HA subtype (as in a pandemic outbreak). Multiple doses will typically be administered at least 1 week apart (e.g. about 2 weeks, about 3 weeks, about 4 weeks, about 6 weeks, about 8 weeks, about 10 weeks, about 12 weeks, about 16 weeks, etc.).

[0166] Vaccines produced by the invention may be administered to patients at substantially the same time as (e.g. during the same medical consultation or visit to a healthcare professional or vaccination centre) other vaccines e.g. at substantially the same time as a measles vaccine, a mumps vaccine, a rubella vaccine, a MMR vaccine, a varicella vaccine, a MMRV vaccine, a diphtheria vaccine, a tetanus vaccine, a pertussis vaccine, a DTP vaccine, a conjugated H. influenzae type b vaccine, an inactivated poliovirus vaccine, a hepatitis B virus vaccine, a meningococcal conjugate vaccine (such as a tetravalent A-C-W135-Y vaccine), a respiratory syncytial virus vaccine, a pneumococcal conjugate vaccine, etc. Administration at substantially the same time as a pneumococcal vaccine and/or a meningococcal vaccine is particularly useful in elderly patients.

[0167] Similarly, vaccines of the invention may be administered to patients at substantially the same time as (e.g. during the same medical consultation or visit to a healthcare professional) an antiviral compound, and in particular an antiviral compound active against influenza virus (e.g. oseltamivir and/or zanamivir). These antivirals include neuraminidase inhibitors, such as a (3R,4R,5S)-4-acetylamino-5-amino-3(1-ethylpropoxy)-1-cyclohexene-1-carbox- ylic acid or 5-(acetylamino)-4-[(aminoiminomethyl)-amino]-2,6-anhydro-3,4,5-trideoxy-D- -glycero-D-galactonon-2-enonic acid, including esters thereof (e.g. the ethyl esters) and salts thereof (e.g. the phosphate salts). A preferred antiviral is (3R,4R,5S)-4-acetylamino-5-amino-3(1-ethylpropoxy)-1-cyclohexene-1-carbox- ylic acid, ethyl ester, phosphate (1:1), also known as oseltamivir phosphate (TAMIFLU.TM.).

General

[0168] The term "comprising" encompasses "including" as well as "consisting" e.g. a composition "comprising" X may consist exclusively of X or may include something additional e.g. X+Y.

[0169] The word "substantially" does not exclude "completely" e.g. a composition which is "substantially free" from Y may be completely free from Y. Where necessary, the word "substantially" may be omitted from the definition of the invention.

[0170] The term "about" in relation to a numerical value x is optional and means, for example, x.+-.10%.

[0171] Unless specifically stated, a process comprising a step of mixing two or more components does not require any specific order of mixing. Thus components can be mixed in any order. Where there are three components then two components can be combined with each other, and then the combination may be combined with the third component, etc.

[0172] The various steps of the methods may be carried out at the same or different times, in the same or different geographical locations, e.g. countries, and by the same or different people or entities.

[0173] Where animal (and particularly bovine) materials are used in the culture of cells, they should be obtained from sources that are free from transmissible spongiform encephalopathies (TSEs), and in particular free from bovine spongiform encephalopathy (BSE). Overall, it is preferred to culture cells in the total absence of animal-derived materials.

[0174] Where a compound is administered to the body as part of a composition then that compound may alternatively be replaced by a suitable prodrug.

[0175] References to a percentage sequence identity between two amino acid sequences means that, when aligned, that percentage of amino acids are the same in comparing the two sequences. This alignment and the percent homology or sequence identity can be determined using software programs known in the art, for example those described in section 7.7.18 of reference 62. A preferred alignment is determined by the Smith-Waterman homology search algorithm using an affine gap search with a gap open penalty of 12 and a gap extension penalty of 2, BLOSUM matrix of 62. The Smith-Waterman homology search algorithm is taught in reference 63.

[0176] References to a percentage sequence identity between two nucleic acid sequences mean that, when aligned, that percentage of bases are the same in comparing the two sequences. This alignment and the percent homology or sequence identity can be determined using software programs known in the art, for example those described in section 7.7.18 of reference 62. A preferred alignment program is GCG Gap (Genetics Computer Group, Wisconsin, Suite Version 10.1), preferably using default parameters, which are as follows: open gap=3; extend gap=1.

BRIEF DESCRIPTION OF THE DRAWINGS

[0177] FIG. 1 illustrates virus titers (by Focus-Formation assay (FFA); (A) and HA titers (by Red Blood Cell Hemagglutination assay; (B) at different times post-infection of wt PR8 and PR8-X viruses grown in MDCK cells. The solid line in (A) and hatched columns in (B) represent results with wild-type PR8. The dotted line in (A) and empty columns in (B) represent results with wild-type PR8-X. The x-axis shows the hours post infection and the y-axis in (A) and (B) shows the virus titer (IU/ml) and HA titre, respectively.

[0178] FIG. 2 illustrates virus titers (by FFA; (A) and HA titers (by Red Blood Cell Hemagglutination assay; (B) at different times post-infection of reverse genetics derived PR8 and PR8-X viruses grown in MDCK cells. The solid line in (A) and hatched columns in (B) represent results with PR8. The dotted line in (A) and empty columns in (B) represent results with RG-derived PR8-X. The x-axis shows the hours post infection and the y-axis in (A) and (B) shows the virus titer (IU/ml) and HA titre, respectively.

[0179] FIG. 3 compares virus titers (by FFA; (A) and HA titers (by Red Blood Cell Hemagglutination assay; (B)--at different times post-infection in MDCK cells of reverse genetics-derived 6:2 reassortant viruses made with either PR8 or PR8-X backbone segments which contain the HA and NA segments from PR8-X. The solid line in (A) and hatched columns in (B) represent results with the PR8 backbone. The dotted line in (A) and empty columns in (B) represent results with the PR8-X backbone. The x-axis shows the hours post infection and the y-axis in (A) and (B) shows the virus titer (IU/ml) and HA titre, respectively.

[0180] FIG. 4 compares virus titers by FFA (A) and HA titers (by Red Blood Cell Hemagglutination assay; (B) at different times post-infection in MDCK cells of reverse genetics-derived 6:2 reassortant viruses made with either wt PR8 or PR8-X backbone segments which contain the HA and NA segments from a pandemic H1 strain (strain 1). The solid line in (A) and hatched columns in (B) represent results with the wt PR8 backbone. The dotted line in (A) and empty columns in (B) represent results with the PR8-X backbone. The x-axis shows the hours post infection and the y-axis in (A) and (B) shows the virus titer (IU/ml) and HA titre, respectively.

[0181] FIG. 5 compares virus titers by a focus-formation assay (FFA) (A) and HA titers (B) at different times post-infection in MDCK cells of reverse genetics-derived 6:2 reassortant viruses made with either PR8 or PR8-X backbone segments which contain the HA and NA segments from 105p30. The solid line in (A) and hatched columns in (B) represent results with the wt PR8 backbone. The dotted line in (A) and empty columns in (B) represent results with the PR8-X backbone. The x-axis shows the hours post infection and the y-axis shows the virus titer (IU/ml).

[0182] FIG. 6 illustrates virus titers by a focus-formation assay (FFA) at different times post-infection of wild-type PR8-X and 105p30 viruses (A) or reverse genetics-derived PR8-X and 105p30 viruses (B) grown in MDCK cells. In (A) and (B), the solid lines represent results with 105p30. The dotted lines represent results with PR8-X. The x-axis shows the hours post infection and the y-axis in (A) and (B) shows the virus titer (IU/ml) and HA titre, respectively.

[0183] FIG. 7 shows the growth characteristics of reassortant viruses containing the backbone segments of the wt PR8 strain (line with triangles) or 105p30 strain (line with squares) and the HA and NA segments of a pandemic H1 influenza strain (strain 2). The x-axis in (A) and (B) indicates the hours post infection. The y-axis in (A) shows the titre Log 10 in FFU per mL. The y-axis in (B) shows the titre log 10 in virus particles per mL.

[0184] FIG. 8 compares virus titers by a focus-formation assay (FFA) at different times post-infection in MDCK cells of reverse genetics-derived 6:2 reassortant viruses made with either 105p30 or PR8-X backbone segments which contain the HA and NA segments from (A) a H1 strain (strain 1) or (B) a pandemic H1 strain (strain 2). The solid lines represent results with the 105p30 backbone. The dotted lines represent results with the PR8-X backbone. The x-axis shows the hours post infection and the y-axis shows the virus titer (IU/ml).

[0185] FIG. 9 compares virus titers by a focus-formation assay (FFA) at different times post-infection in MDCK cells of reverse genetics-derived 6:2 reassortant viruses made with either the #17, #19, or PR8-X backbone in combination with the HA and NA segments from (A) a pandemic H1 strain (strain 3) or (B) a H3 (strain 1). In (A) and (B), the dotted lines with the circle markers represent results with the #17 backbone. The solid lines with diamond markers represent results with the #19 backbone. The dotted lines with square markers represent results with the PR8-X backbone. The x-axis shows the hours post infection and the y-axis shows the virus titer (IU/ml).

[0186] FIG. 10 compares virus titers by a focus-formation assay (FFA) at different times post-infection in MDCK cells of a panel of different reverse genetics-derived 6:2 reassortant viruses made with either the chimeric #19 or PR8-X backbone plus the HA and NA segments from the following strains: (A) a pandemic H1 strain (strain 2), (B) a pandemic H1 strain (strain 4)-In (A) and (B), the solid lines with the triangle markers represent results with the #19 backbone. The dotted lines with square markers represent results with the PR8-X backbone. The x-axis shows the hours post infection and the y-axis shows the virus titer (IU/ml).

[0187] FIG. 11 compares virus titers by a focus-formation assay (FFA) at different times post-infection in MDCK cells of a panel of different reverse genetics-derived 6:2 reassortant viruses made with either the chimeric #19 or PR8-X backbone plus the HA and NA segments from the following strains: (C) a H1 strain (strain 2), (D) a H1 strain (strain 3). In (C) and (D), the solid lines with the triangle markers represent results with the #19 backbone. The dotted lines with square markers represent results with the PR8-X backbone. The x-axis shows the hours post infection and the y-axis shows the virus titer (IU/ml).

[0188] FIG. 12 compares virus titers by a focus-formation assay (FFA) at different times post-infection in MDCK cells of a panel of different reverse genetics-derived 6:2 reassortant viruses made with either the chimeric #19 or PR8-X backbone plus the HA and NA segments from the following strain: a H3 strain (strain 2). In FIG. 12, the solid lines with the triangle markers represent results with the #19 backbone. The dotted lines with square markers represent results with the PR8-X backbone. The x-axis shows the hours post infection and the y-axis shows the virus titer (IU/ml).

[0189] FIG. 13 compares HA yields (by lectin-capture ELISA) at 60 hr post-infection in MDCK cells of different 6:2 reassortant viruses made with either the chimeric #19 (empty columns) or PR8-X backbone (solid columns) plus the HA and NA segments from the following strains: (A) a pandemic H1 strain (strain 2), (B) a pandemic H1 strain (strain 4). Corresponding 6:2 reassortant viruses made by classical reassortment ("classical") with the wt PR8 backbone were included as controls (hatched columns). The y-axis shows the HA content in .mu.g per mL.

[0190] FIG. 14 compares HA yields (by lectin-capture ELISA) at 60 hr post-infection in MDCK cells of different 6:2 reassortant viruses made with either the chimeric #19 (empty columns) or PR8-X backbone (solid columns) plus the HA and NA segments from the following strains: (C) a H3 strain (strain 1), or (D) a H3 strain (strain 2). Corresponding 6:2 reassortant viruses made by classical reassortment ("classical") with the wt PR8 backbone were included as controls (hatched columns) The y-axis shows the HA content in .mu.g per mL.

[0191] FIG. 15 shows the growth curves of reassortant influenza viruses. (A) shows growth curves of reassortant influenza viruses comprising backbones 17, 18, 19 and 20 (as shown in table 1; line with diamonds, squares, triangles and crosses, respectively), a control comprising the same HA and NA segments from a H3 influenza strain (strain 1) but all backbone segments from PR8-X (line with circles) and the equivalent wildtype strain (line with plus sign). The x axis indicates the hours post infection (hpi) and the y-axis shows IU/mL. (B) shows the growth curve of reassortant influenza viruses comprising backbones 17 and 19 (line with diamonds and triangles, respectively) and the HA segments from a H3 influenza strain (strain 3), a control comprising the same HA and NA segments but all backbone segments from PR8-X (line with plus sign) and the equivalent wildtype strain (line with circles).

[0192] FIG. 16 shows the results of a FFA (A) and HA-ELISA (B) assay using reassortant influenza viruses comprising backbone 19 (open box), PR8-X backbone (hatched box) and the wildtype influenza virus (dotted box). (A) and (B) show the results with a H1 influenza strain (strain 2). The y axis in (A) indicates the virus titre in IU/mL and the y axis in (B) indicates HA in .mu.g/mL.

[0193] FIG. 17 shows the results of a FFA (C) and HA-ELISA (D) assay using reassortant influenza viruses comprising backbone 19 (open box), PR8-X backbone (hatched box) and the wildtype influenza virus (dotted box). (C) and (D) show the results with a H3 influenza virus strain. The y axis in (C) indicates the virus titre in IU/mL and the y axis in (D) indicates HA in .mu.g/mL.

[0194] FIG. 18 is an alignment of the M1 viral segment of A/New Caledonia/20/99 (SEQ ID NO: 33) and 105p30 (SEQ ID NO: 45).

MODES FOR CARRYING OUT THE INVENTION

Development of New Donor Strains

[0195] In order to provide high-growth donor strains, the donor strain A/Puerto Rico/8/34 is passaged in MDCK 33016 cells five times. Using this method, the inventors were able to obtain the strain PR8-X which shows improved growth characteristics compared with the original strain.

[0196] The 105p30 influenza donor strain was provided by isolating an A/New Caledonia/20/1999 influenza virus from a clinical isolate in MDCK 33016 cells and passaging the virus 30 times. The resulting strain has a M segment with lysine in the position corresponding to amino acid 95 of SEQ ID NO: 33 when aligned to SEQ ID NO: 33.

Growth Characteristics of Wt PR8 and PR8-X Viruses

[0197] In order to compare the growth characteristics of PR8-X and wt PR8 donor strains, the viral titre of these virus strains is measured in MDCK cells by focus-forming assays and hemagglutination assays.

Focus-Forming Assays (FFA)

[0198] For the FFA, uninfected MDCK cells are plated at a density of 1.8.times.10.sup.4 cells/well in 96 well plates in 100 .mu.l of DMEM with 10% FCS. The next day, medium is aspirated and cells are infected with viruses in a volume of 50 .mu.l (viruses diluted in DMEM+1% FCS). The cells are incubated at 37.degree. C. until the next day.

[0199] At several time points after infection, the medium is aspirated and the cells washed once with PBS. 50 .mu.l of ice-cold 50%/50% acetone-methanol is added to each well followed by incubation at -20.degree. C. for 30 minutes. The acetone mix is aspirated and the cells washed once with PBST (PBS+0.1% Tween). 50 .mu.l of 2% BSA in PBS is added to each well followed by incubation at room temperature (RT) for 30 minutes. 50 .mu.l of a 1:6000 dilution of anti-NP is added in blocking buffer followed by incubation at RT for 1 hours. The antibody solution is aspirated and the cells washed three times with PBST. Secondary antibody (goat anti mouse) is added at a dilution 1:2000 in 50 .mu.l blocking buffer and the plate is incubated at RT for 1 hours. The antibody solution is aspirated and the cells washed three times with PBST. 50 .mu.l of KPL True Blue is added to each well and incubated for 10 minutes. The reaction is stopped by aspirating the True-Blue and washing once with dH.sub.2O. The water is aspirated and the cells are left to dry.

[0200] The results (FIG. 1) show that the PR8-X strain can grow to higher titres in the same time frame compared to the wt PR8 strain from which it is derived.

Growth Characteristics of Reassortant Viruses Containing PR8-X or Wt PR8 Backbones

[0201] In order to test the suitability of the PR8-X strain as a donor strain for virus reassortment, reassortant viruses are produced by reverse genetics which contain the HA and NA proteins from a pandemic H1 strain and the other viral segments from either PR8-X or PR8. The viral titres of these reassortant viruses are determined by FFA and HA assays as described above. The results are shown in FIG. 4.

[0202] The results indicate that reassortant viruses which contain viral segments from PR8-X grow faster in MDCK cells compared to reassortant viruses containing viral segments from the PR8/34 strain.

Growth Characteristics of 105p30 Strain Compared with PR8-X

[0203] MDCK cells are infected with 105p30 and PR8-X at a moi of 10.sup.-3 and samples are taken at several time points after infection. The titre is determined by a FFA assay. The results show that 105p30 grows even faster in MDCK cells compared to PR8-X (FIG. 6).

Growth Characteristics of Reassortant Viruses Containing 105p30 or wt PR8 Backbones

[0204] In order to test the suitability of the 105p30 strain as a donor strain for virus reassortment, reverse genetics is used to produce reassortant viruses that contain the HA and NA segments from a pandemic H1 influenza strain and the backbone segments either from the 105p30 or the wt PR8 strain. MDCK cells are infected with the reassortant viruses at a moi of 10.sup.-3 and samples are taken 1 hour, 12 hours, 36 hours and 60 hours after infection. The titres are determined either by focus-forming assays or by determining the virus particles by real-time detection PCR. The reassortant viruses that contain the backbone segments from the 105p30 strain grow faster than the viruses that are reassorted with the backbone segments of the wt PR8 strain. This shows that the 105p30 strain is a good donor strain for producing fast-growing reassortant viruses (FIG. 7).

Rescue of Influenza Viruses Using Backbone Segments from Two Donor Strains

[0205] The rescue efficiency of reassortant influenza viruses containing the HA and NA segments from a H3 influenza virus and backbone segments from the 105p30 and the PR8-X donor strains is tested in MDCK cells. The reassortant influenza viruses contain backbone segments of the 105p30 and the PR8-X donor strains, as indicated in the following table:

TABLE-US-00001 TABLE 1 Backbone # FB1 PB2 PA NP M NS 1 PR8-X PR8-X PR8-X 105p30 105p30 105p30 2 PR8-X PR8-X 105p30 PR8-X 105p30 105p30 3 PR8-X PR8-X 105p30 105p30 PR8-X 105p30 4 PR8-X PR8-X 105p30 105p30 105p30 PR8-X 5 PR8-X 105p30 PR8-X PR8-X 105p30 105p30 6 PR8-X 105p30 PR8-X 105p30 PR8-X 105p30 7 PR8-X 105p30 PR8-X 105p30 105p30 PR8-X 8 PR8-X 105p30 105p30 PR8-X PR8-X 105p30 9 PR8-X 105p30 105p30 PR8-X 105p30 PR8-X 10 PR8-X 105p30 105p30 105p30 PR8-X PR8-X 11 105p30 PR8-X PR8-X PR8-X 105p30 105p30 12 105p30 PR8-X PR8-X 105p30 PR8-X 105p30 13 105p30 PR8-X PR8-X 105p30 105p30 PR8-X 14 105p30 PR8-X 105p30 PR8-X 105p30 PR8-X 15 105p30 PR8-X 105p30 PR8-X PR8-X 105p30 16 105p30 PR8-X 105p30 105p30 PR8-X PR8-X 17 105p30 105p30 PR8-X PR8-X PR8-X 105p30 18 105p30 105p30 PR8-X PR8-X 105p30 PR8-X 19 105p30 105p30 PR8-X 105p30 PR8-X PR8-X 20 105p30 105p30 105p30 PR8-X PR8-X PR8-X

[0206] Reassortant influenza viruses which contain a backbone according to number 3, 4, 10, 11, 14 and 16-20 are rescuable. Influenza viruses which contain backbones number 3, 4, 10, 11 or 16 achieve viral titres of less than 10.sup.2 IU/mL. Influenza viruses containing backbone numbers 17 and 18 achieve viral titres between 10.sup.2 and 10.sup.6 IU/mL and influenza viruses having backbone numbers 19 and 20 even achieve titres of more than 10.sup.6 IU/mL.

[0207] These data show that influenza viruses in which the PB 1 and PB2 segments come from the same influenza donor strain can show a higher rescue efficiency compared with influenza viruses in which these segments come from different influenza donor strains.

Growth Characteristics of Reassortant Influenza Viruses Containing Backbone Segments from Two Donor Strains

[0208] Reassortant influenza strains are created which contain backbone numbers 17, 18, 19 and 20 (as shown in table 1 above) and the HA and NA segments from a H3 influenza strain (strain 1). As controls, the equivalent wildtype H3 influenza virus, and a reassortant influenza virus comprising the same HA and NA segments and all backbone segments from PR8-X are used.

[0209] Furthermore, reassortant influenza strains are produced which contain backbone numbers 17 and 19 and the HA and NA segments from either a second H3 influenza (strain 1) virus or a pandemic H1 influenza virus (strain 3). As controls for the H3 strain, the equivalent wildtype H3 (strain 2) influenza virus, and a reassortant influenza virus comprising the same HA and NA segments and all backbone segments from PR8-X is used. For the pandemic H1 influenza virus a reassortant influenza virus comprising the same HA and NA segments and all backbone segments from PR8-X is used.

[0210] The reassortant influenza viruses and the control viruses are grown in MDCK cells and the viral titre is measured by FFA at different time points. For the reassortant H3 viruses (strain 1) containing backbones 17, 19 and 20, and the H3 influenza viruses (strain 3) containing backbones 17 and 19, the influenza viruses containing backbone segments from two donor strains grow to higher titres compared with the wildtype virus and the reassortant virus which contains backbone segments from only a single donor strain (see FIG. 13, FIG. 14 and FIG. 15(A)).

[0211] For the pandemic H1 influenza virus, the reassortant influenza strains containing backbones 17 and 19 grow to higher titres compared with the control which contained all backbone segments from PR8-X (see FIG. 9).

[0212] The data show that reassortant influenza viruses which contain backbone segments from two different donor strains can show improved growth rates compared with reassortant influenza viruses which contain backbone segments from only a single donor strain.

[0213] The experiments were also repeated using reassortant influenza viruses which contain backbone 19 or the backbone segments from PR8-X in combination with the HA and NA segments from four different H1 strains or a H3 strain. The results are shown in FIG. 10, FIG. 11, and FIG. 12.

Reassortant Influenza Viruses with Backbone Segments from Two Different Donor Strains Give Higher Yields

[0214] To test whether reassortant influenza viruses containing backbone segments from two different influenza donor strains can also provide higher yields, the HA yield of the reassortant strains is tested by HA-ELISA. To this end, the same reassortant influenza viruses as described above containing backbone #19 and the HA/NA segments of the H3 (strain 2) and H1 influenza strains are used. As controls, the equivalent wildtype influenza viruses and reassortant influenza viruses comprising the same HA and NA segments and all backbone segments from PR8-X are used. In addition, the viral titres are confirmed with a FFA assay.

[0215] The results confirm that the reassortant influenza strains which contain backbone segments from two different donor strains can grow to higher yields compared with influenza viruses which contained all backbones from PR8-X (see FIG. 16 (A) and FIG. 17 (C)). Furthermore, reassortant influenza viruses comprising backbone segments from two donor strains also give higher HA yields (see FIG. 16 (B) and FIG. 17 (D)).

[0216] These data show that reassortant influenza viruses which contain backbone segments from two donor strains give higher yields compared with reassortant influenza viruses which contain backbone segments from only a single donor strains.

[0217] It will be understood that the invention has been described by way of example only and modifications may be made whilst remaining within the scope and spirit of the invention.

TABLE-US-00002 SEQUENCES SEQUENCE: 1 (PA, A/New Caledonia/20/1999) GATTCGAAATGGAAGATTTTGTGCGACAATGCTTCAATCCGATGATTGTCGAGCTTGCGGAAAAGGCAATGAAA- G AGTATGGAGAGGACCTGAAAATCGAAACAAACAAATTTGCAGCAATATGCACTCACTTGGAAGTATGCTTCATG- T ATTCAGATTTTCATTTCATCAATGAGCAAGGCGAATCAATAATAGTAGAGCCTGAGGACCCAAATGCACTTTTA- A AGCACAGATTTGAGATAATAGAGGGACGAGATCGTACAATGGCATGGACAGTTGTAAACAGTATTTGCAACACC- A CAGGAGCTGAGAAACCAAAGTTTCTGCCAGATCTGTATGATTACAAAGAGAATAGATTCATCGAGATTGGAGTG- A CAAGGAGGGAAGTTCACATATACTATCTGGAAAAGGCCAACAAAATTAAATCTGAGAAGACACACATTCACATT- T TCTCATTCACTGGCGAAGAAATGGCCACAAAGGCCGATTACACTCTCGATGAAGAAAGCAGGGCTAGGATTAAA- A CCAGACTATTCACCATAAGACAAGAAATGGCAAGCAGAGGTCTTTGGGACTCCTTTCGTCAGTCCGAAAGAGGC- G AAGAAACAATTGAAGAAAGATTTGAAATCACAGGGACAATGCGCAGGCTCGCTGACCAAAGCCTTCCGCCGAAC- T TCTCCTGCATTGAGAATTTTAGAGCCTATGTGGATGGATTTGAACCGAACGGCTACATTGAGGGCAAGCTTTCT- C AAATGTCCAAAGAAGTAAATGCTAGAATTGAGCCTTTTTTGAAAACAACACCACGACCAATTAGACTTCCGGAT- G GGCCTCCTTGTTTTCAGCGGTCAAAATTCCTGCTGATGGATTCTTTAAAATTAAGCATTGAGGATCCAAATCAT- G AAGGAGAGGGAATACCACTATATGATGCAATCAAGTGTATGAGAACATTCTTTGGATGGAAAGAACCCTCTGTT- G TCAAGCCACACGGGAAGGGAATAAATCCGAATTATCTGCTGTCATGGAAGCAGGTATTGGAAGAGCTGCAGGAC- A TTGAGAGTGAGGAGAAGATTCCAAGAACAAAAAACATGAAAAAAACGAGTCAGCTAAAGTGGGCACTTGGTGAG- A ACATGGCACCAGAGAAGGTGGATTTTGATGACTGTAAAGATATAAGCGATTTGAAGCAATATGATAGTGACGAA- C CTGAATTAAGGTCATTTTCAAGTTGGATCCAGAATGAGTTCAACAAGGCATGCGAGCTGACCGATTCAATCTGG- A TAGAGCTCGATGAGATTGGAGAAGATGTGGCCCCGATTGAACACATTGCAAGCATGAGAAGAAATTACTTCACA- G CTGAGGTGTCCCATTGCAGAGCCACAGAATATATAATGAAGGGGGTATACATTAATACTGCTTTGCTTAATGCA- T CCTGTGCAGCAATGGATGATTTCCAACTAATTCCCATGATAAGCAAATGTAGAACTAAAGAGGGAAGGAGAAAG- A CCAATTTGTACGGCTTCATCGTAAAAGGAAGATCTCACTTAAGGAATGACACCGATGTGGTAAACTTTGTGAGC- A TGGAGTTTTCCCTCACTGACCCAAGACTTGAGCCACACAAATGGGAGAAGTACTGTGTTCTTGAGATAGGAGAT- A TGCTTCTAAGGAGTGCAATAGGCCAAGTGTCAAGGCCCATGTTCTTGTATGTAAGGACAAATGGAACCTCAAAA- A TTAAAATGAAATGGGGAATGGAGATGAGGCGTTGCCTCCTCCAATCCCTTCAACAAATAGAGAGCATGATTGAA- G CTGAGTCCTCCGTCAAGGAGAAAGACATGACAAAAGAGTTTTTTGAGAATAGATCAGAAACATGGCCCATTGGA- G AGTCACCAAAAGGAGTGGAAGAAGGTTCCATTGGGAAAGTATGCAGGACACTATTGGCTAAGTCAGTATTCAAT- A GTCTGTATGCATCTCCACAATTAGAAGGATTTTCAGCTGAGTCAAGAAAGTTGCTCCTCATTGTTCAGGCTCTT- A GGGACAATCTGGAACCTGGGACCTTTGATCTTGGGGGGCTATATGAAGCAATTGAGGAGTGCCTGATTAATGAT- C CCTGGGTTTTGCTTAATGCTTCTTGGTTCAACTCCTTCCTAACACATGCATTGAGATAGCTGGGGCAATGCTAC- T ATTTACTATCCATACTGTCCAAAAAA SEQUENCE: 2 (PB1, A/New Caledonia/20/1999) AATGGATGTCAATCCGACATTACTTTTCTTAAAAGTGCCAGCACAAAATGCTATAAGCACAACTTTTCCTTATA- C TGGTGACCCTCCTTACAGCCATGGGACAGGAACAGGGTACACCATGGATACAGTCAACAGGACACATCAGTACT- C AGAAAGAGGAAGATGGACAAAAAATACCGAAACTGGAGCACCGCAACTCAACCCAATTGATGGGCCACTACCAA- A AGACAATGAACCAAGTGGCTATGCCCAAACAGATTGTGTATTAGAAGCAATGGCTTTCCTTGAGGAATCCCATC- C TGGTATTTTTGAAAACTCTTGTATTGAAACAATGGAGGTTGTTCAGCAAACAAGGGTGGACAAACTGACACAAG- G CAGACAGACCTATGACTGGACTCTAAATAGGAACCAGCCTGCTGCCACAGCATTGGCCAACACTATAGAAGTGT- T CAGATCAAACGGCCTCATAGCAAATGAATCTGGGAGGCTAATAGACTTCCTTAAAGATGTAATGGAGTCGATGG- A CAGAGACGAAGTAGAGATCACAACTCATTTTCAAAGAAAGAGGAGAGTGAGAGACAATGTAACTAAAAAAATGG- T GACCCAAAGAACAATAGGCAAAAAGAAACATAAATTAGACAAAAGAAGTTACCTAATTAGGGCATTAACCCTGA- A CACAATGACCAAAGATGCTGAGAGGGGGAAACTAAAACGCAGAGCAATTGCAACCCCAGGAATGCAAATAAGGG- G GTTTGTATACTTTGTTGAGACACTGGCAAGAAGCATATGTGAAAAGCTTGAACAATCAGGGTTGCCAGTTGGAG- G AAATGAAAAGAAAGCAAAGTTAGCAAATGTTGTAAGGAAGATGATGACCAACTCCCAGGACACTGAAATTTCTT- T CACCATCACTGGAGATAACACAAAATGGAACGAAAATCAAAACCCTAGAATGTTCTTGGCCATGATCACATATA- T AACCAAAAATCAGCCTGAATGGTTCAGAAATATTCTAAGTATTGCTCCAATAATGTTTTCAAACAAAATGGCGA- G ACTAGGTAAGGGGTACATGTTTGAAAGCAAGAGTATGAAACTGAGAACTCAAATACCTGCAGAGATGCTAGCCA- A CATAGATTTGAAATATTTCAATGATTCAACTAAAAAGAAAATTGAAAAAATCCGGCCATTATTAATAGATGGAA- C TGCATCATTGAGTCCTGGAATGATGATGGGCATGTTCAATATGTTAAGCACCGTCTTGGGCGTCTCCATTCTGA- A TCTTGGGCAAAAGAGATACACCAAGACTACTTACTGGTGGGATGGTCTTCAATCGTCTGATGATTTTGCTCTGA- T TGTGAATGCACCCAACTATGCAGGAATTCAAGCTGGAGTTGACAGGTTTTATCGAACCTGTAAGCTGCTCGGAA- T TAATATGAGCAAAAAGAAGTCTTACATAAACAGAACAGGTACCTTTGAGTTCACGAGCTTTTTCTATCGTTATG- G GTTTGTTGCCAATTTCAGCATGGAGCTTCCTAGTTTTGGGGTGTCTGGGGTCAATGAATCTGCAGACATGAGTA- T TGGAGTCACTGTCATCAAAAACAATATGATAAACAATGACCTTGGCCCAGCAACTGCTCAAATGGCCCTTCAGT- T ATTTATAAAAGATTACAGGTACACGTATCGATGCCACAGAGGTGACACACAAATACAAACCCGGAGATCATTTG- A GATAAAGAAACTATGGGACCAAACCCGCTCCAAAGCTGGGCTGTTGGTCTCTGATGGAGGCCCCAATTTATATA- A CATTAGAAATCTCCATATTCCTGAAGTCTGCTTGAAATGGGAGTTGATGGATGAGGATTACCAGGGGCGTTTAT- G CAACCCATTGAACCCGTTTGTCAGTCATAAAGAGATTGAATCAGTGAACAATGCAGTGATGATGCCGGCACATG- G TCCAGCCAAAAATATGGAGTATGACGCTGTTGCAACAACACACTCCTGGGTTCCCAAAAGGAATCGATCCATTT- T GAATACGAGCCAAAGGGGGATACTTGAGGATGAGCAAATGTATCAGAGGTGCTGCAATTTATTTGAAAAATTCT- T CCCAAGTAGCTCATACAGAAGACCAGTTGGAATATCCAGTATGGTAGAGGCTATGGTTTCCAGAGCCCGAATTG- A TGCACGGATTGATTTCGAATCTGGAAGGATAAAAAAAGAGGAATTCGCTGAGATCATGAAGACCTGTTCCACCA- T TGAAGACCTCAGACGGCAAAAATAGGGAATTTGGCTTGTCCTTCATGAAAA SEQUENCE: 3 (PB2, A/New Caledonia/20/1999) AATATGGAAAGAATAAAAGAGCTAAGGAATCTGATGTCACAATCTCGCACTCGCGAGATACTTACAAAAACTAC- T GTAGACCACATGGCCATAATCAAGAAATACACATCAGGAAGACAGGAGAAAAACCCATCACTTAGAATGAAATG- G ATGATGGCAATGAAATACCCAATTACAGCAGATAAAAGGATAACGGAAATGATTCCTGAAAGAAATGAGCAAGG- A CAGACATTATGGAGTAAAGTGAATGATGCCGGATCAGACCGAGTGATGATATCACCCCTGGCTGTGACATGGTG- G AACAGAAATGGACCAGTGGCAAGTACTATTCACTATCCAAAAATCTACAAAACTTACTTTGAAAAGGTTGAAAG- G TTAAAACATGGAACCTTTGGCCCTGTACACTTTAGAAACCAAGTCAAAATACGCCGAAGAGTCGACATAAATCC- T GGTCATGCAGACCTCAGCGCCAAGGAGGCACAGGATGTAATTATGGAAGTTGTTTTCCCTAATGAAGTGGGAGC- C AGAATACTAACATCAGAATCGCAATTAACGATAACCAAGGAGAAAAAAGAAGAACTCCAGAATTGCAAAATTTC- C CCTTTGATGGTTGCATACATGTTAGAGAGGGAACTTGTCCGCAAAACGAGATTTCTCCCGGTTGCTGGTGGAAC- A AGCAGTGTGTACATTGAAGTTTTGCATTTAACACAGGGGACATGCTGGGAGCAGATGTACACTCCAGGTGGGGA- G GTGAGGAATGATGATGTTGATCAAAGCCTAATTATTGCTGCTAGGAACATAGTGAGAAGAGCTGCAGTATCAGC- A GATCCACTAGCATCTTTATTAGAAATGTGCCATAGCACACAGATTGGTGGGACAAGGATGGTGGATATTCTCAG- G CAAAATCCAACAGAAGAACAAGCTGTGGATATATGCAAAGCAGCAATGGGGCTGAGAATCAGTTCATCCTTCAG- T TTTGGCGGATTCACATTTAAGAGAACAAGTGGATCATCAGTCAAAAGGGAGGAAGAAGTGCTCACGGGCAATCT- G CAAACATTGAAGCTAACTGTGCATGAGGGATATGAAGAGTTCACAATGGTTGGGAAAAGGGCAACAGCTATACT- C AGAAAAGCAACCAGGAGATTGATTCAACTAATAGTGAGTGGAAGAGACGAACAGTCAATAGTCGAAGCAATAGT- T GTAGCAATGGTATTCTCACAAGAAGATTGCATGGTAAAAGCAGTTAGAGGTGATCTGAATTTCGTTAATAGAGC- G AATCAGCGGTTGAATCCCATGCATCAACTTTTGAGACATTTTCAGAAGGATGCTAAAGTACTTTTCTTAAATTG- G GGAATTGAACCTATCGACAATGTGATGGGAATGATTGGGATATTACCTGATATGACTCCAAGTACCGAGATGTC- A ATGAGAGGAGTGAGAGTCAGCAAAATGGGTGTAGATGAATACTCCAATGCTGAAAGGGTAGTGGTGAGCATTGA- C CGTTTTTTGAGAGTCCGGGACCAAAGAGGAAATGTACTACTGTCTCCAGAGGAAGTCAGTGAAACACAGGGAAC- A

GAGAAACTGACAATAACTTACTCTTCATCAATGATGTGGGAGATTAATGGCCCTGAGTCAGTGTTGATCAATAC- C TATCAGTGGATCATCAGAAACTGGGAGACTGTTAAAATTCAGTGGTCTCAGAACCCTACAATGCTATACAATAA- A ATGGAATTCGAGCCATTTCAGTCTCTAGTCCCTAAGGCCATTAGAGGCCAATACAGTGGGTTTGTTAGAACTCT- A TTTCAACAAATGAGGGATGTGCTTGGGACCTTTGACACAACTCAGATAATAAAACTTCTTCCCTTTGCAGCCGC- T CCACCAAAGCAAAGTAGAATGCAATTCTCATCATTGACTGTGAATGTGAGGGGATCAGGAATGAGAATACTTGT- A AGGGGTAATTCTCCAGTATTCAACTACAACAAGACCACTAAGAGACTCACAGTCCTCGGAAAGGATGCTGGCAC- T TTAACTGAAGACCCAGATGAAGGCACAGCTGGAGTGGAATCTGCTGTTCTAAGGGGATTCCTCATTCTAGGCAA- A GAAGATAGAAGATATGGGCCAGCATTAAGCATCAATGAATTGAGCAACCTTGCGAAAGGGGAAAAAGCTAATGT- G CTAATTGGGCAAGGGGACGTAGTGTTGGTAATGAAACGAAAACGGGACTCTAGCATACTTACTGACAGCCAGAC- A GCGACCAAAAGAATTCGGATGGCCATCAATTAATTTCGAATAATTTAAA SEQUENCE: 4 (NP, A/New Caledonia/20/1999) ATCACTCACTGAGTGACATCAAAGTCATGGCGTCCCAAGGCACCAAACGGTCTTACGAACAGATGGAGACTGAT- G GGGAACGCCAGAATGCAACTGAAATCAGAGCATCCGTCGGAAGAATGATTGGTGGAATTGGGCGATTCTACATC- C AAATGTGCACCGAGCTTAAACTCAATGATTATGAGGGACGACTGATCCAGAACAGCTTGACAATAGAGAGAATG- G TGCTCTCTGCTTTTGATGAGAGGAGGAATAAATATCTGGAAGAACATCCCAGCGCGGGGAAAGATCCTAAGAAA- A CTGGAGGACCCATATACAAGAGAGTAGATGGAAAGTGGGTGAGGGAACTCGTCCTTTATGACAAAGAAGAAATA- A GGCGGATTTGGCGCCAAGCCAACAATGGTGATGATGCAACGGCTGGTTTGACTCACATTATGATCTGGCATTCT- A ATTTGAATGATACAACTTACCAGAGGACAAGAGCTCTTGTCCGCACCGGAATGGATCCCAGGATGTGCTCTTTG- A TGCAAGGTTCAACTCTCCCTAGAAGATCTGGAGCAGCAGGCGCTGCAGTCAAAGGAGTTGGGACAATGGTGTTG- G AGTTAATCAGGATGATCAAACGTGGGATCAATGACCGAAACTTCTGGAGGGGTGAGAATGGAAGAAAAACAAGG- A TTGCTTATGAGAGAATGTGCAACATTCTCAAAGGAAAATTTCAAACAGCTGCACAAAAAGCAATGATGGATCAA- G TGAGAGAAAGCCGGAACCCAGGAAATGCTGAGATCGAAGATCTCACTTTTCTGGCACGGTCTGCACTCATATTA- A GAGGGTCAGTTGCTCACAAGTCTTGCCTGCCTGCCTGTGTGTATGGACCAGCCGTAGCCAGTGGGTACGACTTC- G AAAAAGAGGGATACTCTTTGGTAGGGGTAGACCCTTTTAAACTGCTTCAAACCAGTCAGGTATACAGCCTAATC- A GACCAAACGAGAATCCCGCACACAAGAGTCAGTTGGTGTGGATGGCATGCAATTCTGCTGCATTTGAAGATCTA- A GAGTGTCAAGCTTCATCAGAGGGACAAGAGTACTTCCAAGGGGGAAGCTCTCCACTAGAGGAGTACAAATTGCT- T CAAATGAAAACATGGATGCTATTGTATCAAGTACTCTTGAACTGAGAAGCAGATACTGGGCCATAAGAACCAGA- A GTGGAGGGAACACTAATCAACAAAGGGCCTCTGCGGGCCAAATCAGCACACAACCTACGTTTTCTGTGCAGAGA- A ACCTCCCATTTGACAAAACAACCATCATGGCAGCATTCACTGGGAATACGGAGGGAAGAACATCAGACATGAGG- G CAGAAATCATAAAGATGATGGAAAGTGCAAGACCAGAAGAAGTGTCCTTCCAGGGGCGGGGAGTCTTTGAGCTC- T CGGACGAAAGGGCAACGAACCCGATCGTGCCCTCCTTTGACATGAGTAATGAAGGATCTTATTTCTTCGGAGAC- A ATGCAGAGGAGTACGACAATTAATGAA SEQUENCE: 5 (M, A/New Caledonia/20/1999) GATGAGTCTTCTAACCGAGGTCGAAACGTACGTTCTCTCTATCGTCCCGTCAGGCCCCCTCAAAGCCGAGATCG- C ACAGAGACTTGAAAATGTCTTTGCTGGAAAGAATACCGATCTTGAGGCTCTCATGGAATGGCTAAAGACAAGAC- C AATCCTGTCACCTCTGACTAAGGGGATTTTAGGATTTGTGTTCACGCTCACCGTGCCCAGTGAGCGAGGACTGC- A GCGTAGACGCTTTGTCCAAAATGCCCTTAATGGGAATGGGGATCCAAATAATATGGACAGAGCAGTTAAACTGT- A TCGAAAGCTTAAGAGGGAGATAACATTCCATGGGGCCAAAGAAATAGCACTCAGTTATTCTGCTGGTGCACTTG- C CAGTTGTATGGGACTCATATACAACAGGATGGGGGCTGTGACCACCGAATCAGCATTTGGCCTTATATGCGCAA- C CTGTGAACAGATTGCCGACTCCCAGCATAAGTCTCATAGGCAAATGGTAACAACAACCAACCCATTAATAAGAC- A TGAGAACAGAATGGTTCTGGCCAGCACTACAGCTAAGGCTATGGAGCAAATGGCTGGATCGAGTGAACAAGCAG- C TGAGGCCATGGAGGTTGCTAGTCAGGCCAGGCAGATGGTGCAGGCAATGAGAGCCATTGGGACTCATCCTAGCT- C TAGCACTGGTCTGAAAAATGATCTCCTTGAAAATTTGCAGGCCTATCAGAAACGAATGGGGGTGCAGATGCAAC- G ATTCAAGTGATCCTCTTGTTGTTGCCGCAAGTATAATTGGGATTGTGCACCTGATATTGTGGATTATTGATCGC- C TTTTTTCCAAAAGCATTTATCGTATCTTTAAACACGGTTTAAAAAGAGGGCCTTCTACGGAAGGAGTACCAGAG- T CTATGAGGGAAGAATATCGAGAGGAACAGCAGAATGCTGTGGATGCTGACGATGGTCATTTTGTCAGCATAGAG- C TAGAGTAAA SEQUENCE: 6 (NS, A/New Caledonia/20/1999) ATGGATTCCCACACTGTGTCAAGCTTTCAGGTAGATTGCTTCCTTTGGCATGTCCGCAAACAAGTTGCAGACCA- A GATCTAGGCGATGCCCCATTCCTTGATCGGCTTCGCCGAGATCAGAAGTCTCTAAAGGGAAGAGGCAGCACTCT- C GGTCTGAACATCGAAACAGCCACTTGTGTTGGAAAGCAAATAGTAGAGAGGATTCTGAAAGAAGAATCCGATGA- G GCATTTAAAATGACCATGGCCTCCGCACTTGCTTCGCGGTACCTAACTGACATGACTATTGAAGAAATGTCAAG- G GACTGGTTCATGCTCATGCCCAAGCAGAAAGTGGCTGGCCCTCTTTGTGTCAGAATGGACCAGGCGATAATGGA- T AAGAACATCATACTGAAAGCGAATTTCAGTGTGATTTTTGACCGGTTGGAGAATCTGACATTACTAAGGGCTTT- C ACCGAAGAGGGAGCAATTGTTGGCGAAATTTCACCATTGCCTTCTCTTCCAGGACATACTAATGAGGATGTCAA- A AATGCAATTGGGGTCCTCATCGGGGGACTTGAATGGAATGATAACACAGTTCGAGTCTCTGAAACTCTACAGAG- A TTCGCTTGGAGAAGCAGTAATGAGACTGGGGGACCTCCATTCACTCCAACACAGAAACGGAAAATGGCGGGAAC- A ATTAGGTCAGAAGTTTGAAGAAATAAGATGGCTGATTGAAGAAGTGAGGCATAAATTGAAGACGACAGAGAATA- G TTTTGAGCAAATAACATTTATGCAAGCATTACAGCTATTGTTTGAAGTGGAACAAGAGATTAGAACGTTTTCGT- T TCAGCTTATTTAATGATAA SEQUENCE: 7 (HA, A/New Caledonia/20/1999) CCAAAATGAAAGCAAAACTACTGGTCCTGTTATGTACATTTACAGCTACATATGCAGACACAATATGTATAGGC- T ACCATGCCAACAACTCAACCGACACTGTTGACACAGTACTTGAGAAGAATGTGACAGTGACACACTCTGTCAAC- C TACTTGAGGACAGTCACAATGGAAAACTATGTCTACTAAAAGGAATAGCCCCACTACAATTGGGTAATTGCAGC- G TTGCCGGATGGATCTTAGGAAACCCAGAATGCGAATTACTGATTTCCAAGGAATCATGGTCCTACATTGTAGAA- A CACCAAATCCTGAGAATGGAACATGTTACCCAGGGTATTTCGCCGACTATGAGGAACTGAGGGAGCAATTGAGT- T CAGTATCTTCATTTGAGAGATTCGAAATATTCCCCAAAGAAAGCTCATGGCCCAACCACACCGTAACCGGAGTA- T CAGCATCATGCTCCCATAATGGGAAAAGCAGTTTTTACAGAAATTTGCTATGGCTGACGGGGAAGAATGGTTTG- T ACCCAAACCTGAGCAAGTCCTATGTAAACAACAAAGAGAAAGAAGTCCTTGTACTATGGGGTGTTCATCACCCG- C CTAACATAGGGAACCAAAGGGCCCTCTATCATACAGAAAATGCTTATGTCTCTGTAGTGTCTTCACATTATAGC- A GAAGATTCACCCCAGAAATAGCCAAAAGACCCAAAGTAAGAGATCAGGAAGGAAGAATCAACTACTACTGGACT- C TGCTGGAACCTGGGGATACAATAATATTTGAGGCAAATGGAAATCTAATAGCGCCATGGTATGCTTTTGCACTG- A GTAGAGGCTTTGGATCAGGAATCATCACCTCAAATGCACCAATGGATGAATGTGATGCGAAGTGTCAAACACCT- C AGGGAGCTATAAACAGCAGTCTTCCTTTCCAGAATGTACACCCAGTCACAATAGGAGAGTGTCCAAAGTATGTC- A GGAGTGCAAAATTAAGGATGGTTACAGGACTAAGGAACATCCCATCCATTCAATCCAGAGGTTTGTTTGGAGCC- A TTGCCGGTTTCATTGAAGGGGGGTGGACTGGAATGGTAGATGGGTGGTATGGTTATCATCATCAGAATGAGCAA- G GATCTGGCTATGCTGCAGATCAAAAAAGTACACAAAATGCCATTAACGGGATTACAAACAAGGTGAATTCTGTA- A TTGAGAAAATGAACACTCAATTCACAGCTGTGGGCAAAGAATTCAACAAATTGGAAAGAAGGATGGAAAACTTA- A ATAAAAAAGTTGATGATGGGTTTCTAGACATTTGGACATATAATGCAGAATTGTTGGTTCTACTGGAAAATGAA- A GGACTTTGGATTTCCATGACTCCAATGTGAAGAATCTGTATGAGAAAGTAAAAAGCCAATTAAAGAATAATGCC- A AAGAAATAGGAAACGGGTGTTTTGAATTCTATCACAAGTGTAACAATGAATGCATGGAGAGTGTGAAAAATGGA- A CTTATGACTATCCAAAATATTCCGAAGAATCAAAGTTAAACAGGGAGAAAATTGATGGAGTGAAATTGGAATCA- A TGGGAGTCTATCAGATTCTGGCGATCTACTCAACTGTCGCCAGTTCCCTGGTTCTTTTGGTCTCCCTGGGGGCA- A TCAGCTTCTGGATGTGTTCCAATGGGTCTTTGCAGTGTAGAATATGCATCTGAGACCAGAATTTCAGAAATATA- A GAA SEQUENCE: 8 (NA, A/New Caledonia/20/1999) AATGAATCCAAATCAAAAAATAATAACCATTGGATCAATCAGTATAGCAATCGGAATAATTAGTCTAATGTTGC- A AATAGGAAATATTATTTCAATATGGGCTAGTCACTCAATCCAAACTGGAAGTCAAAACCACACTGGAGTATGCA- A CCAAAGAATCATCACATATGAAAACAGCACCTGGGTGAATCACACATATGTTAATATTAACAACACTAATGTTG-

T TGCTGGAAAGGACAAAACTTCAGTGACATTGGCCGGCAATTCATCTCTTTGTTCTATCAGTGGATGGGCTATAT- A CACAAAAGACAACAGCATAAGAATTGGCTCCAAAGGAGATGTTTTTGTCATAAGAGAACCTTTCATATCATGTT- C TCACTTGGAATGCAGAACCTTTTTTCTGACCCAAGGTGCTCTATTAAATGACAAACATTCAAATGGGACCGTTA- A GGACAGAAGTCCTTATAGGGCCTTAATGAGCTGTCCTCTAGGTGAAGCTCCGTCCCCATACAATTCAAAGTTTG- A ATCAGTTGCATGGTCAGCAAGCGCATGCCATGATGGCATGGGCTGGTTAACAATCGGAATTTCTGGTCCAGACA- A TGGAGCTGTGGCTGTACTAAAATACAACGGCATAATAACTGAAACCATAAAAAGTTGGAAAAAGCGAATATTAA- G AACACAAGAGTCTGAATGTGTCTGTGTGAACGGGTCATGTTTCACCATAATGACCGATGGCCCGAGTAATGGGG- C CGCCTCGTACAAAATCTTCAAGATCGAAAAGGGGAAGGTTACTAAATCAATAGAGTTGAATGCACCCAATTTTC- A TTATGAGGAATGTTCCTGTTACCCAGACACTGGCACAGTGATGTGTGTATGCAGGGACAACTGGCATGGTTCAA- A TCGACCTTGGGTGTCTTTTAATCAAAACCTGGATTATCAAATAGGATACATCTGCAGTGGGGTGTTCGGTGACA- A TCCGCGTCCCAAAGATGGAGAGGGCAGCTGTAATCCAGTGACTGTTGATGGAGCAGACGGAGTAAAGGGGTTTT- C ATACAAATATGGTAATGGTGTTTGGATAGGAAGGACTAAAAGTAACAGACTTAGAAAGGGGTTTGAGATGATTT- G GGATCCTAATGGATGGACAGATACCGACAGTGATTTCTCAGTGAAACAGGATGTTGTGGCAATAACTGATTGGT- C AGGGTACAGCGGAAGTTTCGTTCAACATCCTGAGTTAACAGGATTGGACTGTATAAGACCTTGCTTCTGGGTTG- A GTTAGTCAGAGGACTGCCTAGAGAAAATACAACAATCTGGACTAGTGGGAGCAGCATTTCTTTTTGTGGCGTAA- A TAGTGATACTGCAAACTGGTCTTGGCCAGACGGTGCTGAGTTGCCGTTCACCATTGACAAGTAG SEQUENCE: 9 (PA, PR8-X) AGCGAAAGCAGGTACTGATCCAAAATGGAAGATTTTGTGCGACAATGCTTCAATCCGATGATTGTCGAGCTTGC- G GAAAAAACAATGAAAGAGTATGGGGAGGACCTGAAAATCGAAACAAACAAATTTGCAGCAATATGCACTCACTT- G GAAGTATGCTTCATGTATTCAGATTTTCACTTCATCAATGAGCAAGGCGAGTCAATAATCGTAGAACTTGGTGA- T CCAAATGCACTTTTGAAGCACAGATTTGAAATAATCGAGGGAAGAGATCGCACAATGGCCTGGACAGTAGTAAA- C AGTATTTGCAACACTACAGGGGCTGAGAAACCAAAGTTTCTACCAGATTTGTATGATTACAAGGAGAATAGATT- T ATCGAAATTGGAGTAACAAGGAGAGAAGTTCACATATACTATCTGGAAAAGGCCAATAAAATTAAATCTGAGAA- A ACACACATCCACATTTTCTCGTTCACTGGGGAAGAAATGGCCACAAAGGCAGACTACACTCTCGATGAAGAAAG- C AGGGCTAGGATCAAAACCAGACTATTCACCATAAGACAAGAAATGGCCAGCAGAGGCCTCTGGGATTCCTTTCG- T CAGTCCGAGAGAGGAGAAGAGACAATTGAAGAAAGGTTTGAAATCACAGGAACAATGCGCAAGCTTGCCGACCA- A AGTCTCCCGCCGAACTTCTCCAGCCTTGAAAATTTTAGAGCCTATGTGGATGGATTCGAACCGAACGGCTACAT- T GAGGGCAAGCTGTCTCAAATGTCCAAAGAAGTAAATGCTAGAATTGAACCTTTTTTGAAAACAACACCACGACC- A CTTAGACTTCCGAATGGGCCTCCCTGTTCTCAGCGGTCCAAATTCCTGCTGATGGATGCCTTAAAATTAAGCAT- T GAGGACCCAAGTCATGAAGGAGAGGGAATACCGCTATATGATGCAATCAAATGCATGAGAACATTCTTTGGATG- G AAGGAACCCAATGTTGTTAAACCACACGAAAAGGGAATAAATCCAAATTATCTTCTGTCATGGAAGCAAGTACT- G GCAGAACTGCAGGACATTGAGAATGAGGAGAAAATTCCAAAGACTAAAAATATGAAGAAAACAAGTCAGCTAAA- G TGGGCACTTGGTGAGAACATGGCACCAGAAAAGGTAGACTTTGACGACTGTAAAGATGTAGGTGATTTGAAGCA- A TATGATAGTGATGAACCAGAATTGAGGTCGCTTGCAAGTTGGATTCAGAATGAGTTTAACAAGGCATGCGAACT- G ACAGATTCAAGCTGGATAGAGCTCGATGAGATTGGAGAAGATGTGGCTCCAATTGAACACATTGCAAGCATGAG- A AGGAATTATTTCACATCAGAGGTGTCTCACTGCAGAGCCACAGAATACATAATGAAGGGGGTGTACATCAATAC- T GCCTTGCTTAATGCATCTTGTGCAGCAATGGATGATTTCCAATTAATTCCAATGATAAGCAAGTGTAGAACTAA- G GAGGGAAGGCGAAAGACCAACTTGTATGGTTTCATCATAAAAGGAAGATCCCACTTAAGGAATGACACCGACGT- G GTAAACTTTGTGAGCATGGAGTTTTCTCTCACTGACCCAAGACTTGAACCACATAAATGGGAGAAGTACTGTGT- T CTTGAGATAGGAGATATGCTTATAAGAAGTGCCATAGGCCAGGTTTCAAGGCCCATGTTCTTGTATGTGAGAAC- A AATGGAACCTCAAAAATTAAAATGAAATGGGGAATGGAGATGAGGCGTTGCCTCCTCCAGTCACTTCAACAAAT- T GAGAGTATGATTGAAGCTGAGTCCTCTGTCAAAGAGAAAGACATGACCAAAGAGTTCTTTGAGAACAAATCAGA- A ACATGGCCCATTGGAGAGTCCCCCAAAGGAGTGGAGGAAAGTTCCATTGGGAAGGTCTGCAGGACTTTATTAGC- A AAGTCGGTATTCAACAGCTTGTATGCATCTCCACAACTAGAAGGATTTTCAGCTGAATCAAGAAAACTGCTTCT- T ATCGTTCAGGCTCTTAGGGACAACCTTGAACCTGGGACCTTTGATCTTGGGGGGCTATATGAAGCAATTGAGGA- G TGCCTGATTAATGATCCCTGGGTTTTGCTTAATGCTTCTTGGTTCAACTCCTTCCTTACACATGCATTGAGTTA- G TTGTGGCAGTGCTACTATTTGCTATCCATACTGTCCAAAAAAGTACCTTGTTTCTACT SEQUENCE: 10 (PB1, PR8-X) AGCGAAAGCAGGCAAACCATTTGAATGGATGTCAATCCGACCTTACTTTTCTTAAAAGTGCCAACACAAAATGC- T ATAAGCACAACTTTCCCTTATACTGGAGACCCTCCTTACAGCCATGGGACAGGAACAGGATACACCATGGATAC- T GTCAACAGGACACATCAGTACTCAGAAAAGGGAAGATGGACAACAAACACCGAAACTGGAGCACCGCAACTCAA- C CCGATTGATGGGCCACTGCCAGAAGACAATGAACCAAGTGGTTATGCCCAAACAGATTGTGTATTGGAGGCGAT- G GCTTTCCTTGAGGAATCCCATCCTGGTATTTTTGAAAACTCGTGTATTGAAACGATGGAGGTTGTTCAGCAAAC- A CGAGTAGACAAGCTGACACAAGGCCGACAGACCTATGACTGGACTCTAAATAGAAACCAACCTGCTGCAACAGC- A TTGGCCAACACAATAGAAGTGTTCAGATCAAATGGCCTCACGGCCAATGAGTCTGGAAGGCTCATAGACTTCCT- T AAGGATGTAATGGAGTCAATGAACAAAGAAGAAATGGGGATCACAACTCATTTTCAGAGAAAGAGACGGGTGAG- A GACAATATGACTAAGAAAATGATAACACAGAGAACAATGGGTAAAAAGAAGCAGAGATTGAACAAAAGGAGTTA- T CTAATTAGAGCATTGACCCTGAACACAATGACCAAAGATGCTGAGAGAGGGAAGCTAAAACGGAGAGCAATTGC- A ACCCCAGGGATGCAAATAAGGGGGTTTGTATACTTTGTTGAGACACTGGCAAGGAGTATATGTGAGAAACTTGA- A CAATCAGGGTTGCCAGTTGGAGGCAATGAGAAGAAAGCAAAGTTGGCAAATGTTGTAAGGAAGATGATGACCAA- T TCTCAGGACACCGAACTTTCTTTCACCATCACTGGAGATAACACCAAATGGAACGAAAATCAGAATCCTCGGAT- G TTTTTGGCCATGATCACATATATGACCAGAAATCAGCCCGAATGGTTCAGAAATGTTCTAAGTATTGCTCCAAT- A ATGTTCTCAAACAAAATGGCGAGACTGGGAAAAGGGTATATGTTTGAGAGCAAGAGTATGAAACTTAGAACTCA- A ATACCTGCAGAAATGCTAGCAAGCATCGATTTGAAATATTTCAATGATTCAACAAGAAAGAAGATTGAAAAAAT- C CGACCGCTCTTAATAGAGGGGACTGCATCATTGAGCCCTGGAATGATGATGGGCATGTTCAATATGTTAAGCAC- T GTATTAGGCGTCTCCATCCTGAATCTTGGACAAAAGAGATACACCAAGACTACTTACTGGTGGGATGGTCTTCA- A TCCTCTGACGATTTTGCTCTGATTGTGAATGCACCCAATCATGAAGGGATTCAAGCCGGAGTCGACAGGTTTTA- T CGAACCTGTAAGCTACTTGGAATCAATATGAGCAAGAAAAAGTCTTACATAAACAGAACAGGTACATTTGAATT- C ACAAGTTTTTTCTATCGTTATGGGTTTGTTGCCAATTTCAGCATGGAGCTTCCCAGTTTTGGGGTGTCTGGGAT- C AACGAGTCAGCGGACATGAGTATTGGAGTTACTGTCATCAAAAACAATATGATAAACAATGATCTTGGTCCAGC- A ACAGCTCAAATGGCCCTTCAGTTGTTCATCAAAGATTACAGGTACACGTACCGATGCCATAGAGGTGACACACA- A ATACAAACCCGAAGATCATTTGAAATAAAGAAACTGTGGGAGCAAACCCGTTCCAAAGCTGGACTGCTGGTCTC- C GACGGAGGCCCAAATTTATACAACATTAGAAATCTCCACATTCCTGAAGTCTGCCTAAAATGGGAATTGATGGA- T GAGGATTACCAGGGGCGTTTATGCAACCCACTGAACCCATTTGTCAGCCATAAAGAAATTGAATCAATGAACAA- T GCAGTGATGATGCCAGCACATGGTCCAGCCAAAAACATGGAGTATGATGCTGTTGCAACAACACACTCCTGGAT- C CCCAAAAGAAATCGATCCATCTTGAATACAAGTCAAAGAGGAGTACTTGAGGATGAACAAATGTACCAAAGGTG- C TGCAATTTATTTGAAAAATTCTTCCCCAGCAGTTCATACAGAAGACCAGTCGGGATATCCAGTATGGTGGAGGC- T ATGGTTTCCAGAGCCCGAATTGATGCACGGATTGATTTCGAATCTGGAAGGATAAAGAAAGAAGAGTTCACTGA- G ATCATGAAGATCTGTTCCACCATTGAAGAGCTCAGACGGCAAAAATAGTGAATTTAGCTTGTCCTTCATGAAAA- A ATGCCTTGTTTCTACT SEQUENCE: 11 (PB2, PR8-X) AGCGAAAGCAGGTCAATTATATTCAATATGGAAAGAATAAAAGAACTAAGAAATCTAATGTCGCAGTCTCGCAC- C CGCGAGATACTCACAAAAACCACCGTGGACCATATGGCCATAATCAAGAAGTACACATCAGGAAGACAGGAGAA- G AACCCAGCACTTAGGATGAAATGGATGATGGCAATGAAATATCCAATTACAGCAGACAAGAGGATAACGGAAAT- G ATTCCTGAGAGAAATGAGCAAGGACAAACTTTATGGAGTAAAATGAATGATGCCGGATCAGACCGAGTGATGGT- A TCACCTCTGGCTGTGACATGGTGGAATAGGAATGGACCAATAACAAATACAGTTCATTATCCAAAAATCTACAA- A

ACTTATTTTGAAAGAGTAGAAAGGCTAAAGCATGGAACCTTTGGCCCTGTCCATTTTAGAAACCAAGTCAAAAT- A CGTCGGAGAGTTGACATAAATCCTGGTCATGCAGATCTCAGTGCCAAGGAGGCACAGGATGTAATCATGGAAGT- T GTTTTCCCTAACGAAGTGGGAGCCAGGATACTAACATCGGAATCGCAACTAACGATAACCAAAGAGAAGAAAGA- A GAACTCCAGGATTGCAAAATTTCTCCTTTGATGGTTGCATACATGTTGGAGAGAGAACTGGTCCGCAAAACGAG- A TTCCTCCCAGTGGCTGGTGGAACAAGCAGTGTGTACATTGAAGTGTTGCATTTGACTCAAGGAACATGCTGGGA- A CAGATGTATACTCCAGGAGGGGAAGTGAGGAATGATGATGTTGATCAAAGCTTGATTATTGCTGCTAGGAACAT- A GTGAGAAGAGCTGCAGTATCAGCAGATCCACTAGCATCTTTATTGGAGATGTGCCACAGCACACAGATTGGTGG- A ATTAGGATGGTAGACATCCTTAGGCAGAACCCAACAGAAGAGCAAGCCGTGGATATATGCAAGGCTGCAATGGG- A CTGAGAATTAGCTCATCCTTCAGTTTTGGTGGATTCACATTTAAGAGAACAAGCGGATCATCAGTCAAGAGAGA- G GAAGAGGTGCTTACGGGAAATCTTCAAACATTGAAGATAAGAGTGCATGAGGGATATGAAGAGTTCACAATGGT- T GGGAGAAGAGCAACAGCCATACTCAGAAAAGCAACCAGGAGATTGATTCAGCTGATAGTGAGTGGGAGAGACGA- A CAGTCGATTGCCGAAGCAATAATTGTGGCCATGGTATTTTCACAAGAGGATTGTATGATAAAAGCAGTCAGAGG- T GATCTGAATTTCGTCAATAGGGCGAATCAGCGATTGAATCCTATGCATCAACTTTTAAGACATTTTCAGAAGGA- T GCGAGAGTGCTTTTTCAAAATTGGGGAGTTGAACCTATCGACAATGTGATGGGAATGATTGGGATATTGCCCGA- C ATGACTCCAAGCATCGAGATGTCAATGAGAGGAGTGAGAATCAGCAAAATGGGTGTAGATGAGTACTCCAGCAC- G GAGAGGGTAGTGGTGAGCATTGACCGTTTTTTGAGAATCCGGGACCAACGAGGAAATGTACTACTGTCTCCCGA- G GAGGTCAGTGAAACACAGGGAACAGAGAAACTGACAATAACTTACTCATCGTCAATGATGTGGGAGATTAATGG- T CCTGAATCAGTATTGGTCAATACCTATCAATGGATCATCAGAAACTGGGAAACTGTTAAAATTCAGTGGTCCCA- G AACCCTACAATGCTATACAATAAAATGGAATTTGAACCATTTCAGTCTTTAGTACCTAAGGCCATTAGAGGCCA- A TACAGTGGGTTTGTAAGAACTCTGTTCCAACAAATGAGGGATGTGCTTGGGACATTTGATACCGCACAGATAAT- A AAACTTCTTCCCTTCGCAGCCGCTCCACCAAAGCAAAGTAGAATGCAGTTCTCCTCATTTACTGTGAATGTGAG- G GGATCAGGAATGAGAATACTTGTAAGGGGCAATTCTCCTGTATTCAACTATAACAAGGCCACGAAGAGACTCAC- A GTTCTCGGAAAGGATGCTGGCACTTTAACTGAAGACCCAGATGAAGGCACAGCTGGAGTGGAGTCCGCTGTTCT- G AGGGGATTCCTCATTCTGGGCAAAGAAGACAAGAGATATGGGCCAGCACTAAGCATCAATGAACTGAGCAACCT- T GCGAAAGGAGAGAAGGCTAATGTGCTAATTGGGCAAGGAGACGTGGTGTTGGTAATGAAACGGAAACGGGACTC- T AGCATACTTACTGACAGCCAGACAGCGACCAAAAGAATTCGGATGGCCATCAATTAGTGTCGAATAGTTTAAAA- A CGACCTTGTTTCTACT SEQUENCE: 12 (NP, PR8-X) AGCAAAAGCAGGGTAGATAATCACTCACTGAGTGACATCAAAATCATGGCGTCTCAAGGCACCAAACGATCTTA- C GAACAGATGGAGACTGATGGAGAACGCCAGAATGCCACTGAAATCAGAGCATCCGTCGGAAAAATGATTGGTGG- A ATTGGACGATTCTACATCCAAATGTGCACCGAACTCAAACTCAGTGATTATGAGGGACGGTTGATCCAAAACAG- C TTAACAATAGAGAGAATGGTGCTCTCTGCTTTTGACGAAAGGAGAAATAAATACCTTGAAGAACATCCCAGTGC- G GGAAAAGATCCTAAGAAAACTGGAGGACCTATATACAGGAGAGTAAACGGAAAGTGGATGAGAGAACTCATCCT- T TATGACAAAGAAGAAATAAGGCGAATCTGGCGCCAAGCTAATAATGGTGACGATGCAACGGCTGGTCTGACTCA- C ATGATGATCTGGCATTCCAATTTGAATGATGCAACTTATCAGAGGACAAGAGCTCTTGTTCGCACCGGAATGGA- T CCCAGGATGTGCTCTCTGATGCAAGGTTCAACTCTCCCTAGGAGGTCTGGAGCCGCAGGTGCTGCAGTCAAAGG- A GTTGGAACAATGGTGATGGAATTGGTCAGAATGATCAAACGTGGGATCAATGATCGGAACTTCTGGAGGGGTGA- G AATGGACGAAAAACAAGAATTGCTTATGAAAGAATGTGCAACATTCTCAAAGGGAAATTTCAAACTGCTGCACA- A AAAGCAATGATGGATCAAGTGAGAGAGAGCCGGAACCCAGGGAATGCTGAGTTCGAAGATCTCACTTTTCTAGC- A CGGTCTGCACTCATATTGAGAGGGTCGGTTGCTCACAAGTCCTGCCTGCCTGCCTGTGTGTATGGACCTGCCGT- A GCCAGTGGGTACGACTTTGAAAGGGAGGGATACTCTCTAGTCGGAATAGACCCTTTCAGACTGCTTCAAAACAG- C CAAGTGTACAGCCTAATCAGACCAAATGAGAATCCAGCACACAAGAGTCAACTGGTGTGGATGGCATGCCATTC- T GCCGCATTTGAAGATCTAAGAGTATTAAGCTTCATCAAAGGGACGAAGGTGCTCCCAAGAGGGAAGCTTTCCAC- T AGAGGAGTTCAAATTGCTTCCAATGAAAATATGGAGACTATGGAATCAAGTACACTTGAACTGAGAAGCAGGTA- C TGGGCCATAAGGACCAGAAGTGGAGGAAACACCAATCAACAGAGGGCATCTGCGGGCCAAATCAGCATACAACC- T ACGTTCTCAGTACAGAGAAATCTCCCTTTTGACAGAACAACCATTATGGCAGCATTCAATGGGAATACAGAGGG- G AGAACATCTGACATGAGGACCGAAATCATAAGGATGATGGAAAGTGCAAGACCAGAAGATGTGTCTTTCCAGGG- G CGGGGAGTCTTCGAGCTCTCGGACGAAAAGGCAGCGAGCCCGATCGTGCCTTCCTTTGACATGAGTAATGAAGG- A TCTTATTTCTTCGGAGACAATGCAGAGGAGTACGACAATTAAAGAAAAATACCCTTGTTTCTACT SEQUENCE: 13 (M, PR8-X) AGCAAAAGCAGGTAGATATTGAAAGATGAGTCTTCTAACCGAGGTCGAAACGTACGTACTCTCTATCATCCCGT- C AGGCCCCCTCAAAGCCGAGATCGCACAGAGACTTGAAGATGTCTTTGCAGGGAAGAACACCGATCTTGAGGTTC- T CATGGAATGGCTAAAGACAAGACCAATCCTGTCACCTCTGACTAAGGGGATTTTAGGATTTGTGTTCACGCTCA- C CGTGCCCAGTGAGCGAGGACTGCAGCGTAGACGCTTTGTCCAAAATGCCCTTAATGGGAACGGGGATCCAAATA- A CATGGACAAAGCAGTTAAACTGTATAGGAAGCTCAAGAGGGAGATAACATTCCATGGGGCCAAAGAAATCTCAC- T CAGTTATTCTGCTGGTGCACTTGCCAGTTGTATGGGCCTCATATACAACAGGATGGGGGCTGTGACCACTGAAG- T GGCATTTGGCCTGGTATGTGCAACCTGTGAACAGATTGCTGACTCCCAGCATCGGTCTCATAGGCAAATGGTGA- C AACAACCAATCCACTAATCAGACATGAGAACAGAATGGTTTTAGCCAGCACTACAGCTAAGGCTATGGAGCAAA- T GGCTGGATCGAGTGAGCAAGCAGCAGAGGCCATGGAGGTTGCTAGTCAGGCTAGACAAATGGTGCAAGCGATGA- G AACCATTGGGACTCATCCTAGCTCCAGTGCTGGTCTGAAAAATGATCTTCTTGAAAATTTGCAGGCCTATCAGA- A ACGAATGGGGGTGCAGATGCAACGGTTCAAGTGATCCTCTCACTATTGCCGCAAATATCATTGGGATCTTGCAC- T TGACATTGTGGATTCTTGATCGTCTTTTTTTCAAATGCATTTACCGTCGCTTTAAATACGGACTGAAAGGAGGG- C CTTCTACGGAAGGAGTGCCAAAGTCTATGAGGGAAGAATATCGAAAGGAACAGCAGAGTGCTGTGGATGCTGAC- G ATGGTCATTTTGTCAGCATAGAGCTGGAGTAAAAAACTACCTTGTTTCTACT SEQUENCE: 14 (NS, PR8-X) AGCAAAAGCAGGGTGACAAAAACATAATGGATCCAAACACTGTGTCAAGCTTTCAGGTAGATTGCTTTCTTTGG- C ATGTCCGCAAACGAGTTGCAGACCAAGAACTAGGTGATGCCCCATTCCTTGATCGGCTTCGCCGAGATCAGAAA- T CCCTAAGAGGAAGGGGCAGTACTCTCGGTCTGGACATCAAGACAGCCACACGTGCTGGAAAGCAGATAGTGGAG- C GGATTCTGAAAGAAGAATCCGATGAGGCACTTAAAATGACCATGGCCTCTGTACCTGCGTCGCGTTACCTAACT- G ACATGACTCTTGAGGAAATGTCAAGGGACTGGTCCATGCTCATACCCAAGCAGAAAGTGGCAGGCCCTCTTTGT- A TCAGAATGGACCAGGCGATCATGGATAAGAACATCATACTGAAAGCGAACTTCAGTGTGATTTTTGACCGGCTG- G AGACTCTAATATTGCTAAGGGCTTTCACCGAAGAGGGAGCAATTGTTGGCGAAATTTCACCATTGCCTTCTCTT- C CAGGACATACTGCTGAGGATGTCAAAAATGCAGTTGGAGTCCTCATCGGAGGACTTGAATGGAATGATAACACA- G TTCGAGTCTCTGAAACTCTACAGAGATTCGCTTGGAGAAGCAGTAATGAGAATGGGAGACCTCCACTCACTCCA- A AACAGAAACGAGAAATGGCGGGAACAATTAGGTCAGAAGTTTGAAGAAATAAGATGGTTGATTGAAGAAGTGAG- A CACAAACTGAAGATAACAGAGAATAGTTTTGAGCAAATAACATTTATGCAAGCCTTACATCTATTGCTTGAAGT- G GAGCAAGAGATAAGAACTTTCTCGTTTCAGCTTATTTAGTACTAAAAAACACCCTTGTTTCTACT SEQUENCE: 15 (HA, PR8-X) AGCAAAAGCAGGGGAAAATAAAAACAACCAAAATGAAGGCAAACCTACTGGTCCTGTTATGTGCACTTGCAGCT- G CAGATGCAGACACAATATGTATAGGCTACCATACGAACAATTCAACCGACACTGTTGACACAGTACTCGAGAAG- A ATGTGACAGTGACACACTCTGTTAACCTGCTCGAAGACAGCCACAACGGAAAACTATGTAGATTAAAAGGAATA- G CCCCACTACAATTGGGGAAATGTAACATCGCCGGATGGCTCTTGGGAAACCCAGAATGCGACCCACTGCTTCCA- G TGAGATCATGGTCCTACATTGTAGAAACACCAAACTCTGAGAATGGAATATGTTATCCAGGAGATTTCATCGAC- T ATGAGGAGCTGAGGGAGCAATTGAGCTCAGTGTCATCATTCGAAAGATTCGAAATATTTCCCAAAGAAAGCTCA- T GGCCCAACCACAACACAAACGGAGTAACGGCAGCATGCTCCCATGAGGGGAAAAGCAGTTTTTACAGAAATTTG- C TATGGCTGACGGAGAAGGAGGGCTCATACCCAAAGCTGAAAAATTCTTATGTGAACAAAAAAGGGAAAGAAGTC- C TTGTACTGTGGGGTATTCATCACCCGCCTAACAGTAAGGAACAACAGAATCTCTATCAGAATGAAAATGCTTAT- G TCTCTGTAGTGACTTCAAATTATAACAGGAGATTTACCCCGGAAATAGCAGAAAGACCCAAAGTAAGAGATCAA- G

CTGGGAGGATGAACTATTACTGGACCTTGCTAAAACCCGGAGACACAATAATATTTGAGGCAAATGGAAATCTA- A TAGCACCAATGTATGCTTTCGCACTGAGTAGAGGCTTTGGGTCCGGCATCATCACCTCAAACGCATCAATGCAT- G AGTGTAACACGAAGTGTCAAACACCCCTGGGAGCTATAAACAGCAGTCTCCCTTACCAGAATATACACCCAGTC- A CAATAGGAGAGTGCCCAAAATACGTCAGGAGTGCCAAATTGAGGATGGTTACAGGACTAAGGAACATTCCGTCC- A TTCAATCCAGAGGTCTATTTGGAGCCATTGCCGGTTTTATTGAAGGGGGATGGACTGGAATGATAGATGGATGG- T ATGGTTATCATCATCAGAATGAACAGGGATCAGGCTATGCAGCGGATCAAAAAAGCACACAAAATGCCATTAAC- G GGATTACAAACAAGGTGAACACTGTTATCGAGAAAATGAACATTCAATTCACAGCTGTGGGTAAAGAATTCAAC- A AATTAGAAAAAAGGATGGAAAATTTAAATAAAAAAGTTGATGATGGATTTCTGGACATTTGGACATATAATGCA- G AATTGTTAGTTCTACTGGAAAATGAAAGGACTCTGGAATTCCATGACTCAAATGTGAAGAATCTGTATGAGAAA- G TAAAAAGCCAATTAAAGAATAATGCCAAAGAAATCGGAAATGGATGTTTTGAGTTCTACCACAAGTGTGACAAT- G AATGCATGGAAAGTGTAAGAAATGGGACTTATGATTATCCCAAATATTCAGAAGAGTCAAAGTTGAACAGGGAA- A AGGTAGATGGAGTGAAATTGGAATCAATGGGGATCTATCAGATTCTGGCGATCTACTCAACTGTCGCCAGTTCA- C TGGTGCTTTTGGTCTCCCTGGGGGCAATCAGTTTCTGGATGTGTTCTAATGGATCTTTGCAGTGCAGAATATGC- A TCTGAGATTAGAATTTCAGAGATATGAGGAAAAACACCCTTGTTTCTACT SEQUENCE: 16 (NA, PR8-X) AGCAAAAGCAGGGGTTTAAAATGAATCCAAATCAGAAAATAATAACCATTGGATCAATCTGTCTGGTAGTCGGA- C TAATTAGCCTAATATTGCAAATAGGGAATATAATCTCAATATGGATTAGCCATTCAATTCAAACTGGAAGTCAA- A ACCATACTGGAATATGCAACCAAAACATCATTACCTATAAAAATAGCACCTGGGTAAAGGACACAACTTCAGTG- A TATTAACCGGCAATTCATCTCTTTGTCCCATCCGTGGGTGGGCTATATACAGCAAAGACAATAGCATAAGAATT- G GTTCCAAAGGAGACGTTTTTGTCATAAGAGAGCCCTTTATTTCATGTTCTCACTTGGAATGCAGGACCTTTTTT- C TGACCCAAGGTGCCTTACTGAATGACAAGCATTCAAGTGGGACTGTTAAGGACAGAAGCCCTTATAGGGCCTTA- A TGAGCTGCCCTGTCGGTGAAGCTCCGTCCCCGTACAATTCAAGATTTGAATCGGTTGCTTGGTCAGCAAGTGCA- T GTCATGATGGCATGGGCTGGCTAACAATCGGAATTTCAGGTCCAGATAATGGAGCAGTGGCTGTATTAAAATAC- A ACGGCATAATAACTGAAACCATAAAAAGTTGGAGGAAGAAAATATTGAGGACACAAGAGTCTGAATGTGCCTGT- G TAAATGGTTCATGTTTTACTATAATGACTGATGGCCCGAGTGATGGGCTGGCCTCGTACAAAATTTTCAAGATC- G AAAAGGGGAAGGTTACTAAATCAATAGAGTTGAATGCACCTAATTCTCACTATGAGGAATGTTCCTGTTACCCT- G ATACCGACAAAGTGATGTGTGTGTGCAGAGACAATTGGCATGGTTCGAACCGGCCATGGGTGTCTTTCGATCAA- A ACCTGGATTATCAAATAGGATACATCTGCAGTGGGGTTTTCGGTGACAACCCGCGTCCCGAAGATGGAACAGGC- A GCTGTGGTCCAGTGTATGTTGATGGAGCAAACGGAGTAAAGGGATTTTCATATAGGTATGGTAATGGTGTTTGG- A TAGGAAGGACCAAAAGTCACAGTTCCAGACATGGGTTTGAGATGATTTGGGATCCTAATGGATGGACAGAGACT- G ATAGTAAGTTCTCTGTGAGGCAAGATGTTGTGGCAATGACTGATTGGTCAGGGTATAGCGGAAGTTTCGTTCAA- C ATCCTGAGCTGACAGGGCTAGACTGTATGAGGCCGTGCTTCTGGGTTGAATTAATCAGGGGACGACCTAAAGAA- A AAACAATCTGGACTAGTGCGAGCAGCATTTCTTTTTGTGGCGTGAATAGTGATACTGTAGATTGGTCTTGGCCA- G ACGGTGCTGAGTTGCCATTCAGCATTGACAAGTAGTCTGTTCAAAAAACTCCTTGTTTCTACT SEQUENCE: 17 (PA, 105p30) AGCGAAAGCAGGTACTGATTCGAAATGGAAGATTTTGTGCGACAATGCTTCAATCCGATGATTGTCGAGCTTGC- G GAAAAGGCAATGAAAGAGTATGGAGAGGACCTGAAAATCGAAACAAACAAATTTGCAGCAATATGCACCCACTT- G GAAGTATGCTTCATGTATTCAGATTTTCATTTCATCAATGAGCAAGGCGAATCAATAATAGTAGAGCCTGAGGA- C CCAAATGCACTTTTAAAACACAGATTTGAGATAATAGAGGGGCGAGATCGTACAATGGCATGGACAGTTGTAAA- C AGTATTTGCAACACCACAGGAGCTGAGAAACCAAAGTTTCTGCCAGATCTGTATGATTACAAAGAGAATAGGTT- C ATCGAAATTGGAGTGACAAGGAGAGAAGTTCACATATACTATCTGGAAAAGGCCAACAAAATTAAATCTGAGAA- G ACACATATTCACATTTTCTCATTTACTGGCGAAGAAATGGCCACAAAGGCCGATTACACTCTCGATGAAGAAAG- C AGGGCTAGAATTAAAACCAGACTATTCACCATAAGGCAAGAAATGGCAAGCAGAGGTCTTTGGGACTCCTTTCG- T CAGTCCGAAAGAGGCGAAGAGACAATTGAAGAAAGGTTTGAAATCACAGGGACAATGCGCAGGCTCGCTGATCA- A AGCCTTCCGCCGAACTTCTCCTGCATTGAGAATTTTAGAGCCTATGTGGATGGATTTGAACCGAACGGCTACAT- T GAGGGCAAGCTTTCTCAAATGTCCAAAGAAGTAAATGCTAAAATTGAGCCTTTTTTGAAAACAACACCTCGACC- A ATTAGACTTCCGAATGGGCCTCCTTGTTTTCAGCGGTCAAAATTCCTGCTGATGGATTCTTTAAAATTAAGCAT- T GAGGATCCAAATCATGAAGGGGAGGGAATACCACTATATGATGCAATCAAGTGTATGAGAACATTCTTTGGATG- G AAAGAACCCACTGTTGTCAAGCCACACGAGAAGGGAATAAATCCGAATTATCTGCTGTCGTGGAAGCAGGTGTT- G GAAGAGCTGCAGGACATTGAGAGTGAGGAGAAGATTCCAAGAACAAAAAACATGAAAAAAACGAGTCAGTTAAA- G TGGGCACTTGGTGAGAACATGGCACCAGAGAAGGTGGATTTTGATGACTGTAAAGATATAAGCGATTTGAAGCA- A TATGATAGTGACGAACCTGAATTAAGGTCATTTTCAAGTTGGATCCAGAATGAGTTCAACAAGGCATGCGAGCT- G ACCGATTCAATCTGGATAGAGCTCGATGAGATTGGAGAAGATGTGGCCCCGATTGAACACATTGCAAGCATGAG- A AGAAATTACTTCACAGCTGAGGTGTCCCATTGCAGAGCCACTGAATATATAATGAAAGGGGTATACATTAATAC- T GCTTTGCTTAATGCATCCTGTGCAGCAATGGATGATTTCCAACTAATTCCTATGATAAGCAAATGTAGAACTAA- A GAGGGAAGGAGAAAGACCAATTTGTACGGCTTCATCATAAAAGGAAGATCTCACTTAAGGAATGATACCGATGT- G GTAAACTTTGTGAGCATGGAGTTTTCCCTCACTGACCCAAGACTTGAGCCACACAAATGGGAGAAGTACTGTGT- T CTTGAGATAGGAGATATGCTTCTAAGGAGTGCAATAGGCCAAGTGTCAAGGCCCATGTTCTTGTATGTAAGAAC- A AATGGAACCTCAAAAATTAAAATGAAATGGGGAATGGAGATGAGGCGTTGCCTCCTCCAATCCCTCCAACAAAT- A GAGAGCATGATTGAAGCTGAGTCCTCTGTCAAGGAGAAAGACATGACAAAAGAGTTTTTTGAGAATAGATCAGA- A ACATGGCCCATTGGAGAGTCACCAAAAGGAGTGGAAGAAGGTTCCATTGGGAAAGTATGCAGGACACTATTGGC- T AAATCAGTATTCAATAGTCTGTATGCATCTCCACAATTAGAAGGATTTTCAGCTGAGTCAAGAAAGTTGCTCCT- T ATTGTTCAGGCTCTTAGGGACAATCTGGAACCTGGGACCTTTGATCTTGGGGGACTATATGAAGCAATTGAGGA- G TGCCTGATTAATGATCCCTGGGTTTTGCTTAATGCTTCTTGGTTCAACTCCTTCCTAAAACATGCATTGAGATA- G CTGAGGCAATGCTACTATTTGTTATCCATACTGTCCAAAAAAGTA SEQUENCE: 18 (PB1, 105p30) AGCGAAAGCAGGCAAACCATTTGAATGGATGTCAATCCGACATTACTTTTCTTAAAAGTGCCAGCACAAAATGC- T ATAAGCACAACTTTTCCTTATACTGGTGACCCTCCTTACAGCCATGGAACAGGAACAGGATACACCATGGATAC- A GTCAACAGGACACATCAGTACTCAGAAAGAGGAAGATGGACGAAAAATACCGAAACTGGAGCACCGCAACTCAA- C CCAATTGATGGGCCACTACCAGAAGACAATGAACCAAGTGGCTATGCCCAAACAGATTGTGTATTAGAGGCAAT- G GCTTTCCTTGAAGAATCCCATCCTGGTATTTTTGAAAACTCTTGTATTGAAACAATGGAGGTTGTTCAGCAAAC- A AGGGTGGACAAACTGACACAAGGCAGACAAACCTATGACTGGACTCTAAATAGGAACCAGCCTGCTGCCACAGC- A TTGGCAAACACCATAGAAGTATTCAGATCAAATGGCCTCATAGCAAATGAATCTGGAAGGCTAATAGACTTCCT- T AAAGATGTAATGGAGTCGATGGACAGAGACGAAGTAGAGGTCACAACTCATTTTCAAAGAAAGAGGAGAGTGAG- A GACAATGTAACTAAAAAAATGGTGACCCAAAGAACAATAGGAAAAAAGAAACATAAATTAGACAAAAGAAGTTA- C CTAATTAGGGCATTAACCCTGAACACAATGACCAAAGATGCTGAGAGGGGGAAACTAAAACGCAGAGCAATTGC- A ACCCCAGGAATGCAAATAAGGGGGTTTGTATACTTTGTTGAGACACTGGCAAGAAGCATATGTGAAAAGCTTGA- A CAATCAGGGTTGCCAGTTGGAGGAAATGAGAAGAAAGCAAAGTTAGCAAATGTTGTAAGGAAGATGATGACCAA- C TCCCAGGACACTGAAATTTCTTTTACCATCACTGGAGATAACACAAAATGGAACGAAAATCAAAACCCTAGAAT- G TTCTTGGCCATGATCACATATATAACCAAAGATCAGCCTGAATGGTTCAGAAATATTCTAAGTATTGCTCCAAT- A ATGTTTTCAAACAAAATGGCGAGACTAGGTAGGGGGTATATGTTTGAAAGCAAGAGTATGAAACTGAGAACCCA- A ATACCTGCAGAGATGCTAGCCAACATAGATTTGAAATATTTCAATGATTCAACTAAAAAGAAAATTGAAAAAAT- T CGACCATTATTAATAGATGGAACTGCATCATTGAGTCCTGGAATGATGATGGGCATGTTCAATATGTTAAGCAC- C GTCTTGGGCGTTTCCATTCTGAATCTTGGGCAAAAAAGATACACCAAGACTACTTACTGGTGGGATGGTCTTCA- A TCGTCTGATGATTTTGCTTTGATTGTGAATGCACCCAATTATGCAGGAATTCAAGCTGGAGTTGACAGGTTTTA- T CGAACCTGTAAGCTGCTCGGAATTAATATGAGCAAAAAGAAGTCTTACATAAACAGAACAGGTACCTTTGAATT- C ACGAGCTTTTTCTATCGTTATGGGTTTGTTGCCAATTTCAGCATGGAGCTTCCTAGTTTTGGGGTGTCTGGGGT-

C AATGAATCTGCAGACATGAGTATTGGAGTCACTGTCATCAAAAACAATATGATAAACAATGACCTTGGCCCAGC- A ACTGCTCAAATGGCCCTTCAGTTATTTATAAAAGATTACAGGTACACTTATCGATGCCACAGAGGTGACACACA- A ATACAAACCCGGAGATCATTTGAAATAAAGAAACTATGGGACCAAACCCGCTCCAAAGCTGGGCTGTTGGTCTC- T GATGGAGGCCCCAATTTATATAACATTAGGAATCTACATATTCCTGAAGTCTGCTTGAAATGGGAGTTGATGGA- T GAGGATTACCAGGGGCGTTTATGCAACCCATTGAACCCGTTTGTCAGCCATAAAGAGATTGAATCAGTGAACAA- T GCAGTGATAATGCCGGCACATGGTCCAGCCAAAAATATGGAGTATGACGCTGTTGCAACAACACACTCTTGGGT- C CCCAAAAGAAATCGATCCATTTTAAACACGAGCCAAAGAGGGATACTTGAAGATGAGCAAATGTACCAAAGGTG- C TGCAATTTATTTGAAAAATTCTTCCCAAGTAGCTCATACAGAAGACCAGTTGGAATATCCAGTATGGTAGAGGC- T ATGGTTTCAAGAGCCCGAATTGATGCACGGATTGATTTCGAATCTGGAAGGATAAAGAAAGAGGAATTCGCTGA- G ATCATGAAGACCTGTTCCACCATTGAAGACCTCAGACGGCAAAAATAGGGAATTTGGCTTGTCCTTCATGAAAA- A ATGCCTTGTTTCTACT SEQUENCE: 19 (PB2, 105p30) AGCGAAAGCAGGTCAATTATATTCAATATGGAAAGAATAAAAGAGCTAAGGAATCTGATGTCACAATCTCGCAC- T CGCGAGATACTTACCAAAACTACTGTAGACCACATGGCCATAATAAAGAAATACACATCAGGAAGACAGGAGAA- A AACCCATCACTTAGGATGAAATGGATGATGGCAATGAAATACCCAATTACAGCTGATAAAAGGATAACGGAAAT- G ATTCCTGAAAGAAATGAGCAAGGACAGACACTATGGAGTAAAGTGAATGATGCCGGATCAGACCGAGTGATGAT- A TCACCCCTAGCTGTGACATGGTGGAACAGAAATGGACCAGTGGCAAACACTATCCACTATCCAAAAATCTACAA- A ACTTACTTTGAAAAGGTTGAAAGGTTAAAACATGGAACCTTTGGCCCTGTACACTTTAGAAACCAAGTCAAAAT- A CGCCGAAGAGTCGACATAAATCCTGGTCATGCAGACCTCAGCGCCAAGGAGGCACAGGATGTAATTATGGAAGT- T GTTTTCCCTAATGAAGTGGGAGCCAGAATACTAACATCAGAATCGCAATTAACGATAACTAAGGAGAAAAAAGA- G GAACTCCAGAATTGCAAAATTTCCCCTTTGATGGTTGCATACATGTTAGAGAGGGAACTTGTCCGCAAAACAAG- A TTTCTCCCGGTTGCAGGTGGAACAAGCAGTGTGTACATTGAAGTTTTGCATTTAACACAGGGGACATGCTGGGA- G CAGATGTACACTCCAGGTGGGGAGGTGAGGAATGATGATGTTGATCAAAGCCTAATTATTGCTGCTAGGAACAT- A GTGAGAAGAGCTGCAGTATCAGCAGATCCACTAGCATCTTTATTAGAAATGTGCCATAGCACACAGATTGGTGG- A ACAAGGATGGTGGATATTCTCAGGCAAAATCCAACAGAAGAACAAGCTGTGGACATATGCAAAGCAGCAATGGG- G CTGAGAATCAGTTCATCCTTCAGTTTTGGCGGATTCACATTTAAGAGAACAAGTGGATCGTCAGTCAAAAGGGA- G GAAGAAGTGCTAACGGGCAATCTGCAAACATTGAAGCTAACTGTGCATGAGGGATATGAAGAATTCACAATAGT- T GGGAAAAAGGCAACAGCTATACTCAGAAAAGCAACCAGGAGATTGATTCAACTAATAGTGAGTGGAAGAGACGA- A CAGTCAATAGTCGAAGCAATAGTTGTAGCAATGGTATTCTCACAAGAAGATTGCATGGTAAAAGCGGTTAGAGG- T GATCTGAATTTCGTTAATAGAGCGAATCAGCGGTTGAATCCCATGCATCAACTTTTGAGACATTTTCAGAAGGA- T GCTAAAGTACTTTTCCTAAATTGGGGAATTGAACATATTGACAATGTGATGGGAATGATTGGGATATTACCTGA- T ATGACTCCAAGTACCGAGATGTCAATGAGAGGAGTGAGAGTCAGCAAAATGGGTGTAGATGAATACTCCAATGC- T GAAAGGGTAGTGGTAAGCATTGACCGTTTTTTGAGGGTCCGGGACCAAAGAGGAAATGTATTACTGTCTCCAGA- G GAAGTCAGTGAAACACAAGGAACAGAGAAACTGACAATAACTTACTCTTCATCATTGATGTGGGAGATTAATGG- C CCTGAGTCAGTGTTGATCAATACCTACCAATGGATCATCAGAAACTGGGAGACTGTTAAAATTCAGTGGTCTCA- G AACCCTACAATGCTATACAATAAAATGGAATTTGAGCCATTTCAATCTCTAGTCCCCAAGGCCATTAGAGGCCA- A TACAGTGGGTTTGTTAGAACTCTATTTCAACAAATGAGGGATGTGCTCGGGACCTTTGACACAACTCAGATAAT- A AAACTTCTTCCCTTTGCAGCCGCTCCACCAAAGCAAAGTAGAATGCAATTCTCGTCATTAACTGTGAATGTGAG- G GGATCAGGAATGAGAATACTTGTAAGGGGTAATTCTCCAGTATTCAACTACAACAAGACCACTAAGAGACTCAC- A ATCCTCGGAAAGGATGCTGGCACTTTAACTGAAGACCCAGATGAAGGCACAGCTGGAGTGGAATCTGCTGTTTT- A AGGGGATTCCTCATTCTAGGCAAAGAAGATAGAAGATATGGGCCAGCATTAAGCATCAGTGAATTGAGCAACCT- T GCGAAAGGGGAGAAAGCTAATGTGCTAATTGGGCAAGGGGATGTAGTGTTGGTAATGAAACGAAAACGGGACTC- T AGCATACTTACTGACAGCCAGACAGCGACCAAAAGAATTCGGATGGCCATCAATTAATTTCGAATAATTTAAAA- A CGACCTTGTTTCTACT SEQUENCE: 20 (NP, 105p30) AGCAAAAGCAGGGTAGATAATCACTCACTGAGTGACATCAAAGTCATGGCGTCCCAAGGCACCAAACGGTCTTA- C GAACAGATGGAGACTGATGGGGAACGCCAGAATGCAACTGAAATCAGAGCATCCGTCGGAAGAATGATTGGGGG- A ATTGGGCGATTCTACATCCAAATGTGCACCGAGCTTAAGCTCAATGATTATGAGGGACGACTGATCCAGAACAG- C TTAACAATAGAGAGAATGGTGCTTTCTGCTTTTGATGAGAGGAGAAATAAATATCTGGAAGAACATCCCAGCGC- A GGGAAAGATCCTAAGAAAACTGGAGGACCCATATACAAGAGAGTAGATGGAAAGTGGGTGAGGGAACTCGTCCT- T TATGACAAAGAAGAAATAAGGCGGATTTGGCGCCAAGCCAACAATGGTGATGATGCAACAGCTGGTTTGACTCA- C ATTATGATCTGGCATTCTAATTTGAATGATACAACTTACCAGAGGACAAGAGCTCTTGTCCGCACCGGAATGGA- T CCCAGGATGTGCTCTTTGATGCAAGGTTCAACTCTCCCTAGAAGATCTGGAGCAGCAGGCGCTGCAGTCAAAGG- A GTTGGGACAATGGTATTGGAGTTAATCAGGATGATCAAACGTGGGATCAACGACCGAAACTTCTGGAGGGGTGA- G AATGGGAGAAAAACAAGGATTGCTTATGAGAGAATGTGCAACATTCTCAAAGGAAAATTTCAAACAGCTGCACA- A AAAGCAATGATGGATCAAGTGAGAGAAAGCCGGAACCCAGGAAATGCTGAGATCGAAGATCTCACTTTTCTGGC- A CGGTCTGCACTCATATTGAGAGGATCAGTTGCTCACAAGTCTTGCCTGCCTGCTTGTGTGTATGGACCAGCCGT- A GCCAGTGGGTATGACTTCGAAAAAGAGGGATACTCTTTGGTGGGAGTAGACCCTTTCAAACTGCTTCAAACCAG- T CAGGTATACAGCCTAATTAGACCAAACGAGAATCCCGCACACAAGAGCCAGTTGGTGTGGATGGCATGCAATTC- T GCTGCATTTGAAGATCTAAGAGTGTCAAGCTTCATCAGAGGGACAAGAGTACTTCCAAGGGGGAAGCTCTCCAC- T AGAGGAGTACAAATTGCTTCAAATGAAAACATGGATGCTATTGTCTCAAGTACTCTTGAACTGAGAAGCAGATA- C TGGGCCATAAGAACCAGAAGTGGAGGGAACACCAATCAACAAAGGGCCTCTGCGGGCCAAATCAGCACACAACC- T ACGTTTTCTGTGCAGAGAAACCTCCCATTTGACAAAACAACCATCATGGCAGCATTCACTGGGAATACAGAGGG- A AGAACATCAGACATGCGGGCAGAAATCATAAAGATGATGGAAAGTGCAAGACCAGAAGAAGTGTCCTTCCAGGG- A CGGGGAGTCTTTGAGCTCTCGGACGAAAGGGCAACGAACCCGATCGTGCCCTCCTTTGACATGAGTAATGAAGG- A TCTTATTTCTTCGGAGACAATGCAGAGGAGTACGACAATTAATGAAAAATACCCTTGTTTCTACT SEQUENCE: 21 (M, 105p30) AGCAAAAGCAGGTAGATATTGAAAGATGAGTCTTCTAACCGAGGTCGAAACGTACGTTCTCTCTATCGTCCCAT- C AGGCCCCCTCAAAGCCGAGATCGCACAGAGACTTGAAGATGTATTTGCTGGAAAGAATACCGATCTTGAGGCTC- T CATGGAATGGCTAAAGACAAGACCAATCCTGTCACCTCTGACTAAGGGGATTTTAGGATTTGTGTTCACGCTCA- C CGTGCCCAGTGAGCGAGGACTGCAGCGTAGACGCTTTGTCCAAAATGCCCTTAATGGGAATGGGGATCCAAATA- A TATGGACAAGGCTGTCAAACTGTATCGAAAGCTTAAGAGGGAGATAACATTCCATGGGGCCAAAGAAATAGCAC- T CAGTTATTCTGCTGGAGCACTTGCCAGTTGTATGGGACTCATATACAACAGGATGGGGGCTGTGACCACCGAAT- C AGCATTTGGCCTTATATGTGCAACCTGTGAACAGATTGCCGACTCCCAGCATAAGTCTCATAGGCAAATGGTAA- C AACAACCAATCCATTAATAAGACATGAGAACAGAATGGTTCTGGCCAGCACTACAGCTAAGGCTATGGAGCAAA- T GGCTGGATCGAGTGAACAAGCAGCTGAGGCCATGGAGGTTGCTAGTCAGGCCAGGCAGATGGTGCAGGCAATGA- G AGCCATTGGGACTCATCCTAGCTCTAGCACTGGTCTGAAAAATGATCTCCTTGAAAATTTGCAGGCCTATCAGA- A ACGAATGGGGGTGCAGATGCAACGATTCAAGTGATCCTCTTGTTGTTGCCGCAAGTATAATTGGGATTGTGCAC- C TGATATTGTGGATTATTGATCGCCTTTTTTCCAAAAGCATTTATCGTATTTTTAAACACGGTTTAAAAAGAGGG- C CTTCTACGGAAGGAGTACCGGAGTCTATGAGGGAAGAATATCGAGAGGAACAGCAGAATGCTGTGGATGCTGAC- G ATGGTCATTTTGTCAGCATAGAGCTAGAGTAAAAAACTACCTTGTTTCTACT SEQUENCE: 22 (NS, 105p30) AGCAAAAGCAGGGTGGCAAAGACATAATGGATTCCCACACTGTGTCAAGCTTTCAGGTAGATTGTTTCCTTTGG- C ATGTCCGCAAACAAGTTGCAGACCAAGATCTAGGCGATGCCCCCTTCCTTGATCGGCTTCGCCGAGATCAGAAG- T CTCTAAAGGGACGAGGCAACACTCTCGGTCTGAACATCGAAACAGCCACTTGTGTTGGAAAGCAAATAGTAGAG- A GGATTCTGAAAGAAGAATCCGATGAGACATTTAGAATGACCATGGCCTCCGCACTTGCTTCGCGGTACCTAACT- G ACATGACTGTTGAAGAAATGTCAAGGGACTGGTTCATGCTCATGCCCAAGCAGAAAGTGGCTGGCCCTCTTTGT- G

TCAGAATGGACCAGGCGATAATGGATAAGAACATCATACTGAAAGCGAACTTCAGTGTGATTTTTGACCGGTTG- G AGAATCTGACATTACTAAGGGCTTTCACCGAAGAGGGAGCAATTGTTGGCGAAATTTCACCATTGCCTTCTTTT- C CAGGACATACTAATGAGGATGTCAAAAATGCAATTGGGGTCCTCATCGGGGGACTTGAATGGAATGATAACACA- G TTCGAGTCTCTGAAGCTCTACAGAGATTCGCTTGGAGAAGCAGTAATGAGACTGGGGGACCTCCATTCACTACA- A CACAGAAACGGAAAATGGCGGGAACAATTAGGTCAGAAGTTTGAAGAAATAAGATGGCTGATTGAAGAAGTGAG- G CATAAATTGAAGACGACAGAGAGTAGTTTTGAACAAATAACATTTATGCAAGCATTACAGCTATTGTTTGAAGT- G GAACAAGAGATTAGAACGTTCTCGTTTCAGCTTATTTAATGATAAAAACACCCTTGTTTCTACT SEQUENCE: 23 (HA, 105p30) AGCGAAAGCAGGGGAAAATAAAAGCAACCAAAATGAAAGTAAAACTACTGGTTCTGTTATGTACATTTACAGCT- A CATATGCAGACACAATATGTATAGGCTACCATGCCAACAACTCAACCGACACTGTTGACACAGTACTTGAGAAG- A ATGTAACAGTGACACACTCTGTCAACCTACTTGAGGACAGTCACAATGGAAAACTATGTCTACTAAAAGGAATA- G CCCCACTACAATTGGGTAATTGCAGCGTTGCCGGATGGATCTTAGGAAACCCAGAATGCGAATTACTGATTTCC- A AGGAATCATGGTCCTACATTGTAGAAACACCAAATCCTGAGAATGGAACATGTTACCCAGGGTATTTCGCCGAC- T ATGAGGAACTGAGGGAGCAATTGAGTTCAGTATCTTCATTTGAAAGGTTCGAAATATTCCCCAAAGAGAGCTCA- T GGCCCAACCACACCGTAACCGGAGTATCAGCATCATGCTCCCATAACGGGAAAAGCAGTTTTTACAGAAATTTG- C TATGGCTGACGGGGAAGAATGGTTTGTACCCAAACCTGAGCAAGTCCTATGCAAACAACAAAGAGAAAGAAGTC- C TTGTACTATGGGGTGTTCATCACCCGCCTAACATAGGGGACCAAAGGGCCCTCTATCATACAGAAAATGCTTAT- G TCTCTGTAGTGTCTTCACATTATAGCAGAAGATTCACCCCAGAAATAGCCAAAAGACCCAAGGTGAGAGACCAG- G AAGGAAGAATCAACTACTACTGGACTCTGCTGGAACCCGGGGATACAATAATATTTGAGGCAAATGGAAATCTA- A TAGCGCCAAGGTATGCTTTCGCACTGAGTAGAGGCTTGGGATCAGGAATCATCACCTCAAATGCACCAATGGAT- G AATGTGATGCAAAGTGTCAAACACCTCAGGGAGCTATAAACAGCAGTCTTCCTTTCCAGAATGTACACCCAGTC- A CAATAGGAGAGTGTCCAAAGTATGTCAGGAGTGCAAAATTAAGGATGGTTACAGGACTAAGGAACATCCCATCC- A TTCAATCCAGAGGTTTGTTTGGAGCAATTGCCGGTTTCATTGAAGGGGGGTGGACTGGAATGGTAGATGGTTGG- T ATGGTTATCATCATCAGAATGAGCAAGGATCTGGGTATGCTGCAGATCAAAAAAGCACACAAAATGCCATTAAC- G GGATTACAAACAAGGTGAATTCTGTAATTGAGAAAATGAACACTCAATTCACAGCTGTGGGCAAAGAATTCAAC- A AATTGGAAAGAAGGATGGAAAACTTAAATAAAAAAGTTGATGATGGGTTTCTAGACATTTGGACCTATAATGCA- G AATTGTTGGTTCTACTGGAAAATGAAAGGACTTTGGATTTCCATGACTCCAACGTGAAGAATCTGTATGAGAAA- G TAAAAAGCCAATTAAAGAATAATGCCAAAGAAATAGGAAACGGGTGTTTTGAATTCTATCACAAGTGTAACGAT- G AATGCATGGAGAGTGTGAAAAATGGAACTTATGACTATCCAAAATATTCCGAAGAATCAAAGTTAAACAGAGAG- A AAATTGATGGAGTGAAATTGGAATCAATGGGAGTCTATCAGATTCTGGCGATCTACTCAACAGTCGCCAGTTCC- C TGGTTCTTTTGGTCTCCCTGGGGGCAATCAGCTTCTGGATGTGTTCCAATGGGTCTTTGCAGTGTAGAATATGC- A TCTAAGACCAGAATTTCAGAAATATAAGGAAAAACACCCTTGTTTCTACT SEQUENCE: 24 (NA, 105p30) AGCAAAAGCAGGAGTTTAAAATGAATCCAAATCAAAAAATAATAACCATTGGATCAATCAGTATAGCAATCGGA- A TAATTAGTCTAATGTTGCAAATAGGAAATATTATTTCAATATGGGCTAGTCACTCAATCCAAACTGGAAGTCAA- A ACCACACTGGAATATGCAACCAAAAAATCATCACATATGAAAACAGCACCTGGGTGAATCACACATATGTTAAT- A TTAACAACACTAATGTTGTTGCTGGAAAGGACAAAACTTCAGTGACACTGGCCGGCAATTCATCTCTTTGTCCT- A TCAGTGGATGGGCTATATACACAAAAGACAACAGCATAAGAATTGGCTCCAAAGGAGATGTTTTTGTCATAAGA- G AACCTTTCATATCATGTTCTCACTTGGAATGCAGAACCTTTTTTCTGACCCAAGGTGCTCTATTAAATGACAAA- C ATTCAAATGGAACCGTTAAGGACAGAAGTCCTTATAGGGCCTTAATGAGCTGTCCTCTAGGTGAAGCCCCGTCA- C CATACAATTCAAAGTTTGAATCAGTTGCATGGTCAGCAAGCGCATGCCATGATGGCAAGGGCTGGTTAACAATC- G GAATTTCTGGTCCAGACAATGGAGCTGTGGCTGTACTAAAATACAACGGAATAATAACTGAAACCATAAAAAGT- T GGGAAAAGCGAATATTGAGAACACAAGAGTCTGAATGTGTTTGTGTGAACGGGTCATGTTTCACCATAATGACC- G ATGGCCCGAGTAATGGGGCCGCCTCGTACAAAATCTTCAAGATCGAAAAGGGGAAGGTTACTAAATCAACAGAG- T TGAATGCACCCAATTTTCATTATGAGGAATGTTCCTGTTACCCAGACACTGGCACAGTGATGTGTGTATGCAGG- G ACAACTGGCATGGTTCAAATCGACCTTGGGTATCTTTTAATCAAAACTTGGATTATCAAATAGGATACATCTGC- A GTGGAGTGTTCGGTGACAATCCGCGTCCCAAAGATGGGAAGGGCAGCTGTAATCCAGTGACTGTTGATGGAGCA- G ACGGAGTTAAGGGGTTTTCATACAAATATGGTAATGGTGTTTGGATAGGAAGGACTAAAAGTAACAGACTTAGA- A AGGGGTTTGAGATGATTTGGGATCCTAATGGATGGACAGATACCGACAGTGATTTCTCAGTGAAACAGGATGTT- G TGGCAATAACTGATTGGTCAGGGTACAGCGGAAGTTTCGTCCAACATCCTGAGTTAACAGGATTGGACTGTATA- A GACCTTGCTTCTGGGTTGAGTTAGTCAGAGGACTGCCTAGAGAAAATACAACAATCTGGACTAGTGGGAGCAGC- A TTTCTTTTTGTGGCGTTGATAGTGATACTGCAAATTGGTCTTGGCCAGACGGTGCTGAGTTGCCGTTCACCATT- G ACAAGTAGCTCGTTGAAAAAAACTCCTTGTTTCTACT SEQUENCE: 25 (HA, A/Chile/1/1983) MKAKLLVLLCALSATDADTICIGYHANNSTDTVDTVLEKNVTVTHSVNLLEDNHNGKLCKLKGIAPLQLGKCSI- A GWILGNPECESLFSKKSWSYIAETPNSENGTCYPGYFADYEELREQLSSVSSFERFEIFPKESSWPKHNVTKGV- T AACSHKGKSSFYRNLLWLTEKNGSYPNLSKSYVNNKEKEVLVLWGVHHPSNIEDQKTIYRKENAYVSVVSSHYN- R RFTPEIAKRPKVRNQEGRINYYWTLLEPGDTIIFEANGNLIAPWYAFALSRGFGSGIITSNASMDECDAKCQTP- Q GAINSSLPFQNVHPVTIGECPKYVRSTKLRMVTGLRNIPSIQSRGLFGAIAGFIEGGWTGMIDGWYGYHHQNEQ- G SGYAADQKSTQNAINGITNKVNSIIEKMNTQFTAVGKEENKLEKRMENLNKKVDDGFLDIWTYNAELLVLLENE- R TLDFHDSNVKNLYEKVKSQLKNNAKEIGNGCFEFYHKCNNECMESVKNGTYDYPKYSEESKLNREKIDGVKLES- M GVYQILAIYSTVASSLVLLVSLGAISFWMCSNGSLQCRICI SEQUENCE: 26 (NA, A/Chile/1/1983) MNPNQKIITIGSICMTIGIISLILQIGNIISIWVSHSIQTGSQNHTGICNQRIITYENSTWVNQTYVNINNTNV- V AGKDTTSVTLAGNSSLCPIRGWAIYSKDNSIRIGSKGDVFVIREPFISCSHLECRTFFLTQGALLNDKHSNGTV- K DRSPYRALMSCPIGEAPSPYNSRFESVAWSASACHDGMGWLTIGISGPDDGAVAVLKYNGIITETIKSWRKRIL- R TQESECVCVNGSCFTIMTDGPSNGPASYRIFKIEKGKITKSIELDAPNSHYEECSCYPDTGTVMCVCRDNWHGS- N RPWVSFNQNLDYQIGYICSGVFGDNPRPKDGKGSCDPVTVDGADGVKGFSYRYGNGVWIGRTKSNSSRKGFEMI- W DPNGWTDTDSNFLVKQDVVAMTDWSGYSGSFVQHPELTGLDCMRPCFWVELVRGRPREGTTVWTSGSSISFCGV- N SDTANWSWPDGAELPFTIDK SEQUENCE: 27 (NA, A/California/04/09) MNPNQKIITIGSVCMTIGMANLILQIGNIISIWISHSIQLGNQNQIETCNQSVITYENNTWVNQTYVNISNTNF- A AGQSVVSVKLAGNSSLCPVSGWAIYSKDNSVRIGSKGDVFVIREPFISCSPLECRTFFLTQGALLNDKHSNGTI- K DRSPYRTLMSCPIGEVPSPYNSRFESVAWSASACHDGINWLTIGISGPDNGAVAVLKYNGIITDTIKSWRNNIL- R TQESECACVNGSCFTVMTDGPSNGQASYKIFRIEKGKIVKSVEMNAPNYHYEECSCYPDSSEITCVCRDNWHGS- N RPWVSFNQNLEYQIGYICSGIFGDNPRPNDKTGSCGPVSSNGANGVKGFSFKYGNGVWIGRTKSISSRNGFEMI- W DPNGWTGTDNNFSIKQDIVGINEWSGYSGSFVQHPELTGLDCIRPCFWVELIRGRPKENTIWTSGSSISFCGVN- S DTVGWSWPDGAELPFTIDK SEQUENCE: 28 (encodes the same amino acid sequence as SEQUENCE: 3) ATGGAACGCATTAAAGAACTGCGCAACCTGATGAGCCAGAGCCGCACCCGCGAAATTCTGACCAAAACCACCGT- G GATCATATGGCGATTATTAAAAAATATACCAGCGGCCGCCAGGAAAAAAACCCGAGCCTGCGCATGAAATGGAT- G ATGGCGATGAAATATCCGATTACCGCGGATAAACGCATTACCGAAATGATTCCGGAACGCAACGAACAGGGCCA- G ACCCTGTGGAGCAAAGTGAACGATGCGGGCAGCGATCGCGTGATGATTAGCCCGCTGGCGGTGACCTGGTGGAA- C CGCAACGGCCCGGTGGCGAGCACCATTCATTATCCGAAAATTTATAAAACCTATTTTGAAAAAGTGGAACGCCT- G AAACATGGCACCTTTGGCCCGGTGCATTTTCGCAACCAGGTGAAAATTCGCCGCCGCGTGGATATTAACCCGGG- C CATGCGGATCTGAGCGCGAAAGAAGCGCAGGATGTGATTATGGAAGTGGTGTTTCCGAACGAAGTGGGCGCGCG- C ATTCTGACCAGCGAAAGCCAGCTGACCATTACCAAAGAAAAAAAAGAAGAACTGCAGAACTGCAAAATTAGCCC- G CTGATGGTGGCGTATATGCTGGAACGCGAACTGGTGCGCAAAACCCGCTTTCTGCCGGTGGCGGGCGGCACCAG- C AGCGTGTATATTGAAGTGCTGCATCTGACCCAGGGCACCTGCTGGGAACAGATGTATACCCCGGGCGGCGAAGT- G CGCAACGATGATGTGGATCAGAGCCTGATTATTGCGGCGCGCAACATTGTGCGCCGCGCGGCGGTGAGCGCGGA- T

CCGCTGGCGAGCCTGCTGGAAATGTGCCATAGCACCCAGATTGGCGGCACCCGCATGGTGGATATTCTGCGCCA- G AACCCGACCGAAGAACAGGCGGTGGATATTTGCAAAGCGGCGATGGGCCTGCGCATTAGCAGCAGCTTTAGCTT- T GGCGGCTTTACCTTTAAACGCACCAGCGGCAGCAGCGTGAAACGCGAAGAAGAAGTGCTGACCGGCAACCTGCA- G ACCCTGAAACTGACCGTGCATGAAGGCTATGAAGAATTTACCATGGTGGGCAAACGCGCGACCGCGATTCTGCG- C AAAGCGACCCGCCGCCTGATTCAGCTGATTGTGAGCGGCCGCGATGAACAGAGCATTGTGGAAGCGATTGTGGT- G GCGATGGTGTTTAGCCAGGAAGATTGCATGGTGAAAGCGGTGCGCGGCGATCTGAACTTTGTGAACCGCGCGAA- C CAGCGCCTGAACCCGATGCATCAGCTGCTGCGCCATTTTCAGAAAGATGCGAAAGTGCTGTTTCTGAACTGGGG- C ATTGAACCGATTGATAACGTGATGGGCATGATTGGCATTCTGCCGGATATGACCCCGAGCACCGAAATGAGCAT- G CGCGGCGTGCGCGTGAGCAAAATGGGCGTGGATGAATATAGCAACGCGGAACGCGTGGTGGTGAGCATTGATCG- C TTTCTGCGCGTGCGCGATCAGCGCGGCAACGTGCTGCTGAGCCCGGAAGAAGTGAGCGAAACCCAGGGCACCGA- A AAACTGACCATTACCTATAGCAGCAGCATGATGTGGGAAATTAACGGCCCGGAAAGCGTGCTGATTAACACCTA- T CAGTGGATTATTCGCAACTGGGAAACCGTGAAAATTCAGTGGAGCCAGAACCCGACCATGCTGTATAACAAAAT- G GAATTTGAACCGTTTCAGAGCCTGGTGCCGAAAGCGATTCGCGGCCAGTATAGCGGCTTTGTGCGCACCCTGTT- T CAGCAGATGCGCGATGTGCTGGGCACCTTTGATACCACCCAGATTATTAAACTGCTGCCGTTTGCGGCGGCGCC- G CCGAAACAGAGCCGCATGCAGTTTAGCAGCCTGACCGTGAACGTGCGCGGCAGCGGCATGCGCATTCTGGTGCG- C GGCAACAGCCCGGTGTTTAACTATAACAAAACCACCAAACGCCTGACCGTGCTGGGCAAAGATGCGGGCACCCT- G ACCGAAGATCCGGATGAAGGCACCGCGGGCGTGGAAAGCGCGGTGCTGCGCGGCTTTCTGATTCTGGGCAAAGA- A GATCGCCGCTATGGCCCGGCGCTGAGCATTAACGAACTGAGCAACCTGGCGAAAGGCGAAAAAGCGAACGTGCT- G ATTGGCCAGGGCGATGTGGTGCTGGTGATGAAACGCAAACGCGATAGCAGCATTCTGACCGATAGCCAGACCGC- G ACCAAACGCATTCGCATGGCGATTAAC SEQUENCE: 29 (PA, A/New Caledonia/20/1999) medfvrqcfnpmivelaekamkeygedpkietnkfaaicthlevcfmysdfhfidergesiivesgdpnallkh- r feiiegrdrimawtvvnsicnttgvekpkflpdlydykenrfieigvtrrevhiyylekankiksekthihifs- f tgeematkadytldeesrariktrlftirqemasrslwdsfrqsergeetieekfeitgtmrkladqslppnfp- s lenfrayvdgfepngciegklsqmskevnakiepflrttprplrlpdgplchqrskfllmdalklsiedpsheg- e giplydaikcmktffgwkepnivkphekginpnylmawkqvlaelqdieneekiprtknmkrtsqlkwalgenm- a pekvdfddckdvgdlkqydsdepeprslaswvqnefnkaceltdsswieldeigedvapiehiasmrrnyftae- v shcrateyimkgvyintallnascaamddfqlipmiskcrtkegrrktnlygfiikgrshlrndtdvvnfvsme- f sltdprlephkwekycvleigdmllrtaigqvsrpmflyvrtngtskikmkwgmemrrcllqslqqiesmieae- s svkekdmtkeffenksetwpigesprgveegsigkvcrtllaksvfnslyaspqlegfsaesrklllivqalrd- n lepgtfdlgglyeaieeclindpwvllnaswfnsflthalk SEQUENCE: 30 (PB1, A/New Caledonia/20/1999) mdvnptllflkvpaqnaisttfpytgdppyshgtgtgytmdtvnrthqysergrwtkntetgapqlnpidgplp- k dnepsgyaqtdcvleamafleeshpgifenscietmevvqqtrvdkltqgrqtydwtlnrnqpaatalantiev- f rsnglianesgrlidflkdvmesmdrdevevtthfqrkrrvrdnvtkkmvtqrtigkkkhkldkrsyliraltl- n tmtkdaergklkrraiatpgmqirgfvyfvetlarsicekleqsglpvggnekkaklanvvrkmmtnsqdteis- f titgdntkwnenqnprmflamityitknqpewfrnilsiapimfsnkmarlgkgymfesksmklrtqipaemla- n idlkyfndstkrkiekirpllidgtaslspgmmmgmfnmlstvlgvsilnlgqkrytkttywwdglqssddfal- i vnapnyagiqagvdrfyrtckllginmskkksyinrtgtfeftsffyrygfvanfsmelpsfgvsgvnesadms- i gvtviknnminndlgpataqmalqlfikdyrytyrchrgdtqiqtrrsfeikklwdqtrskagllvsdggpnly- n irnlhipevclkwelmdedyqgrlcnpsnpfvshkeiesvnnavmmpahgpaknmeydavatthswvpkrnrsi- l ntsqrgiledeqmyqrccnlfekffpsssyrrpvgissmveamvsraridaridfesgrikkeefaeimktcst- i edlrrqk SEQUENCE: 31 (PB2, A/New Caledonia/20/1999) merikelrnlmsqsrtreiltkttvdhmaiikkytsgrqeknpslrmkwmmamkypitadkritemiperneqg- q tlwskvndagsdrvmisplavtwwnrngpvastihypkiyktyfekverlkhgtfgpvhfrnqvkirrrvdinp- g hadlsakeaqdvimevvfpnevgariltsesqltitkekkeelqnckisplmvaymlerelvrktrflpvaggt- s svyievlhltqgtcweqmytpggevrnddvdqsliiaarnivrraavsadplasllemchstqiggtrmvdilr- q npteeqavdickaamglrisssfsfggftfkrtsgssvkreeevltgnlqtlkltvhegyeeftmvgkratail- r katrrliqlivsgrdeqsiveaivvamvfsqedcmvkavrgdlnfvnranqrlnpmhqllrhfqkdakvlflnw- g iepidnvmgmigilpdmtpstemsmrgvrvskmgvdeysnaervvvsidrflrvrdqrgnvllspeevsetqgt- e kltitysssmmweingpesvlintyqwiirnwetvkiqwsqnptmlynkmefepfqslvpkairgqysgfvrtl- f qqmrdvlgtfdttqiikllpfaaappkqsrmqfssltvnvrgsgmrilvrgnspvfnynkttkrltvlgkdagt- l tedpdegtagvesavlrgflilgkedrrygpalsinelsnlakgekanvligqgdvvlvmkrkrdssiltdsqt- a tkrirmain SEQUENCE: 32 (NP, A/New Caledonia/20/1999) masqgtkrsyeqmetdgerqnateirasvgrmiggigrfyiqmctelklndyegrliqnsltiermvlsafder- r nkyleehpsagkdpkktggpiykrvdgkwvrelvlydkeeirriwrqanngddataglthimiwhsnlndttyq- r tralvrtgmdprmcslmqgstlprrsgaagaavkgvgtmvlelirmikrgindrnfwrgengrktriayermcn- i lkgkfqtaaqkammdqvresrnpgnaeiedltflarsalilrgsvahksclpacvygpavasgydfekegyslv- g vdpfkllqtsqvyslirpnenpahksqlvwmacnsaafedlrvssfirgtrvlprgklstrgvqiasnenmdai- v sstlelrsrywairtrsggntnqqrasagqistqptfsvqrnlpfdkttimaaftgntegrtsdmraeiikmme- s arpeevsfqgrgvfelsderatnpivpsfdmsnegsyffgdnaeeydn SEQUENCE: 33 (M1, A/New Caledonia/20/1999) mslltevetyvlsivpsgplkaeiaqrlenvfagkntdlealmewlktrpilspltkgilgfvftltvpsergl- q rrrfvqnalngngdpnnmdravklyrklkreitfhgakeialsysagalascmgliynrmgavttesafglica- t ceqiadsqhkshrqmvtttnplirhenrmvlasttakameqmagsseqaaeamevasqarqmvqamraigthps- s stglkndllenlqayqkrmgvqmqrfk SEQUENCE: 34 (NA, A/New Caledonia/20/1999) mnpnqkiitigsisiaigiislmlqigniisiwashsiqtgsqnhtgvcnqriityenstwvnhtyvninntnv- v agkdktsvtlagnsslcsisgwaiytkdnsirigskgdvfvirepfiscshlecrtffltqgallndkhsngtv- k drspyralmscplgeapspynskfesvawsasachdgmgwltigisgpdngavavlkyngiitetikswkkril- r tqesecvcvngscftimtdgpsngaasykifkiekgkvtksielnapnfhyeecscypdtgtvmcvcrdnwhgs- n rpwvsfnqnldyqigyicsgvfgdnprpkdgegscnpvtvdgadgvkgfsykygngvwigrtksnrlrkgfemi- w dpngwtdtdsdfsvkqdvvaitdwsgysgsfvqhpeltgldcirpcfwvelvrglprenttiwtsgssisfcgv- n sdtanwswpdgaelpftidk SEQUENCE: 35 (PA, A/Wisconsin/67/2005) medfvrqcfnpmivelaekamkeygedlkietnkfaaicthlevcfmysdfhfineqgesivvelddpnallkh- r feiiegrdrtmawtvvnsicnttgagkpkflpdlydykenrfieigvtrrevhiyylekankiksenthihifs- f tgeematkadytldeesrariktrlftirqemanrglwdsfrqsergeetieekfeitgtmrrladqslppnfs- c lenfrayvdgfepngciegklsqmskevnaqiepflkttprpiklpngppcyqrskfllmdalklsiedpsheg- e giplydaikcmktffgwkepyivkphekginsnyllswkqvlselqdieneekiprtknmkktsqlkwalgenm- a pekvdfencrdisdlkqydsdepelrslsswiqnefnkaceltdsvwieldeigedvapiehiasmrrnyftae- v shcrateyimkgvyintallnascaamddfqlipmiskcrtkegrrktnlygfiikgrshlrndtdvvnfvsme- f sltdprlephkwekycvleigdmllrsaigqisrpmflyvrtngtskvkmkwgmemrrcllqslqqiesmieae- s svkekdmtkeffenkseawpigespkgveegsigkvcrtllaksvfnslyaspqlegfsaesrklllvvqalrd- n lepgtfdlgglyeaieeclindpwvllnaswfnsflthalk SEQUENCE: 36 (PB1, A/Wisconsin/67/2005) mdvnptllflkvpaqnaisttfpytgdppyshgtgtgytmdtvnrthqysekgkwttntetgapqlnpidgplp- e dnepsgyaqtdcvleamafleeshpgifenscletmeavqqtrvdrltqgrqtydwtlnrnqpaatalantiev- f rsngltanesgrlidflkdvmesmdkeemeitthfqrkrrvrdnmtkkmvtqrtigkkkqrvnkrgyliraltl- n tmtkdaergklkrraiatpgmqirgfvyfvetlarsicekleqsglpvggnekkaklanvvrkmmtnsqdtels-

f titgdntkwnenqnprmflamityitknqpewfrnilsiapimfsnkmarlgkgymfeskrmklrtqipaemla- s idlkyfnestrkkiekirpllidgtaslspgmmmgmfnmlstvlgvsilnlgqkkytkttywwdglqssddfal- i vnapnhegiqagvnrfyrtcklvginmskkksyinktgtfeftsffyrygfvanfsmelpsfgvsginesadms- i gvtviknnminndlgpataqmalqlfikdyrytyrchrgdtqiqtrrsfelkklwdqtqsragllvsdggpnly- n irnlhipevclkwelmdenyrgrlcnplnpfvshkeiesvnnavvmpahgpaksmeydavatthswipkrnrsi- l ntsqrgiledeqmyqkccnlfekffpsssyrrpigissmveamvsraridaridfesgrikkeefseimkicst- i eelrrqr SEQUENCE: 37 (PB2, A/Wisconsin/67/2005) merikelrnlmsqsrtreiltkttvdhmaiikkytsgrqeknpslrmkwmmamkypitadkritemvperneqg- q tlwskmsdagsdrvmvsplavtwwnrngpvtstvhypkvyktyfdkverlkhgtfgpvhfrnqvkirrrvdinp- g hadlsakeaqdvimevvfpnevgariltsesqltitkekkeelrdckisplmvaymlerelvrktrflpvaggt- s siyievlhltqgtcweqmytpggevrnddvdqsliiaarnivrraavsadplasllemchstqiggtrmvdilr- q npteeqavdickaamglrisssfsfggftfkrtsgssvkkeeevltgnlqtlkirvhegyeeftmvgkratail- r katrrlvqlivsgrdeqsiaeaiivamvfsqedcmikavrgdlnfvnranqrlnpmhqllrhfqkdakvlfqnw- g iehidsvmgmvgvlpdmtpstemsmrgirvskmgvdeysstervvvsidrflrvrdqrgnvllspeevsetqgt- e rltitysssmmweingpesvlvntyqwiirnweavkiqwsqnpamlynkmefepfqslvpkairsqysgfvrtl- f qqmrdvlgtfdttqiikllpfaaappkqsrmqfssltvnvrgsgmrilvrgnspvfnynkttkrltilgkdagt- l iedpdestsgvesavlrgfliigkedrrygpalsinelsnlakgekanvligqgdvvlvmkrkrdssiltdsqt- a tkrirmain SEQUENCE: 38 (NP, A/Wisconsin/67/2005) masqgtkrsyeqmetdgdrqnateirasvgkmidgigrfyiqmctelklsdyegrliqnsltiekmvlsafder- r nkyleehpsagkdpkktggpiyrrvdgkwmrelvlydkeeirriwrqanngedataglthimiwhsnlndatyq- r tralvrtgmdprmcslmqgstlprrsgaagaavkgigtmvmelirmvkrgindrnfwrgengrktrsayermcn- i lkgkfqtaaqramvdqvresrnpgnaeiedliflarsalilrgsvahksclpacvygpavssgynfekegyslv- g idpfkllqnsqvyslirpnenpahksqlvwmachsaafedlrllsfirgtkvsprgklstrgvqiasnenmdnm- g sgtlelrsgywairtrsggntnqqrasagqtsvqptfsvqrnlpfekstimaaftgntegrtsdmraeiirmme- g akpeevsfrgrgvfelsdekatnpivpsfdmsnegsyffgdnaeeydn SEQUENCE: 39 (M1, A/Wisconsin/67/2005) mslltevetyvlsivpsgplkaeiaqrledvfagkntdlealmewlktrpilspltkgilgfvftltvpsergl- q rrrfvqnalngngdpnnmdkavklyrklkreitfhgakeialsysagalascmgliynrmgavttevafglvca- t ceqiadsqhrshrqmvattnplirhenrmvlasttakameqmagsseqaaeameiasqarqmvqamraigthps- s stglrddllenlqtyqkrmgvqmqrfk SEQUENCE: 40 (M2, A/Wisconsin/67/2005) mslltevetpirnewgcrcndssdplvvaaniigilhlilwildrlffkcvyrlfkhglkrgpstegvpesmre- e yrkeqqnavdaddshfvsiele SEQUENCE: 41 (NS, A/Wisconsin/67/2005) AATGGATTCCAACACTGTGTCAAGTTTCCAGGTAGATTGCTTTCTTTGGCATATCCGGAAACAAGTTGTAGACC- A AGAACTGAGTGATGCCCCATTCCTTGATCGGCTTCGCCGAGATCAGAGGTCCCTAAGGGGAAGAGGCAATACTC- T CGGTCTAGACATCAAAGCAGCCACCCATGTTGGAAAGCAAATTGTAGAAAAGATTCTGAAAGAAGAATCTGATG- A GGCACTTAAAATGACCATGGTCTCCACACCTGCTTCGCGATACATAACTGACATGACTATTGAGGAATTGTCAA- G AAACTGGTTCATGCTAATGCCCAAGCAGAAAGTGGAAGGACCTCTTTGCATCAGAATGGACCAGGCAATCATGG- A GAAAAACATCATGTTGAAAGCGAATTTCAGTGTGATTTCTGACCGACTAGAGACCATAGTATTACTAAGGGCTT- T CACCGAAGAGGGAGCAATTGTTGGCGAAATCTCACCATTGCCTTCTTTTCCAGGACATACTATTGAGGATGTCA- A AAATGCAATTGGGGTCCTCATCGGAGGACTTGAATGGAATGATAACACAGTTCGAGTCTCTAAAAATCTACAGA- G ATTCGCTTGGAGAAGCAGTAATGAGAATGGGGGACCTCCACTTACTCCAAAACAGAAACGGAAAATGGCGAGAA- C AGCTAGGTCAAAAGTTTGAAGAGATAAGATGGCTGATTGAAGAAGTGAGACACAGACTAAAAACAACTGAAAAT- A GCTTTGAACAAATAACATTCATGCAAGCATTACAACTGCTGTTTGAAGTGGAACAGGAGATAAGAACTTTCTCA- T TTCAGCTTATTTAATGATAAA SEQUENCE: 42 (HA, A/Wisconsin/67/2005) mktiialsyilclvfaqklpgndnstatlclghhavpngtivktitndqievtnatelvqssstggicdsphqi- l dgenctlidallgdpqcdgfqnkkwdlfverskaysncypydvpdyaslrslvassgtlefndesfnwtgvtqn- g tsssckrrsnnsffsrlnwlthlkfkypalnvtmpnnekfdklyiwgvhhpvtdndqiflyaqasgritvstkr- s qqtvipnigsrprirnipsrisiywtivkpgdillinstgnliaprgyfkirsgkssimrsdapigkcnsecit- p ngsipndkpfqnvnritygacpryvkqntlklatgmrnvpekqtrgifgaiagfiengwegmvdgwygfrhqns- e gigqaadlkstqaainqingklnrligktnekfhqiekefsevegriqdlekyvedtkidlwsynaellvalen- q htidltdsemnklfertkkqlrenaedmgngcfkiyhkcdnacigsirngtydhdvyrdealnnrfqikgvelk- s gykdwilwisfaiscfllcvallgfimwacqkgnircnici SEQUENCE: 43 (NA, A/Wisconsin/67/2005) mnpnqkiitigsvsltisticffmqiailittvtlhfkqyefnsppnnqvmlceptiierniteivyltnttie- k eicpklaeyrnwskpqcnitgfapfskdnsirlsaggdiwvtrepyvscdpdkcyqfalgqgttlnnvhsndtv- h drtpyrtllmnelgvpfhlgtkqvciawsssschdgkawlhvcvtgddknatasfiyngrlvdsivswskeilr- t qesecvcingtctvvmtdgsasgkadtkilfieegkivhtstlsgsaqhveecscyprylgvrcvcrdnwkgsn- r pivdinikdysivssyvcsglvgdtprkndssssshcldpnneegghgvkgwafddgndvwmgrtiseklrsgy- e tfkviegwsnpnsklqinrqvivdrgnrsgysgifsvegkscinrcfyvelirgrkeetevlwtsnsivvfcgt- s gtygtgswpdgadinlmpi SEQUENCE: 44 (PA, 105p30) medfvrqcfnpmivelaekamkeygedpkietnkfaaicthlevcfmysdfhfidergesiivesgdpnallkh- r feiiegrdrimawtvinsicnttgvekpkflpdlydykenrfieigvtrrevhiyylekankiksekthihifs- f tgeematkadytldeesrariktrlftirqemaskslwdsfrqsergeetieekfeitgtmrkladqslppnfp- s lenfrayvdgfepngciegklsqmskevnakiepflrttprplrlpdgplchqrskfllmdalklsiedpsheg- e giplydaikcmktffgwkepnivkphekginpnylmawkqvlaelqdieneekiprtknmkrtsqlkwalgenm- a pekvdfddckdvgdlkqydsdepeprslaswvqnefnkaceltdsswieldeigedvapiehiasmrrnyftae- v shcrateyimkgvyintallnascaamddfqlipmiskcrtkegrrktnlygfiikgrshlrndtdvvnfvsme- f sltdprlephkwekycvleigdmllrtaigqvsrpmflyvrtngtskikmkwgmemrrcllqslqqiesmieae- s svkekdmtkeffenksetwpigesprgveegsigkvcrtllaksvfnslyaspqlegfsaesrklllivqalrd- n lepgtfdlgglyeaieeclindpwvllnaswfnsflthalk SEQUENCE: 45 (M1, 105p30) mslltevetyvlsivpsgplkaeiaqrlenvfagkntdlealmewlktrpilspltkgilgfvftltvpsergl- q rrrfvqnalngngdpnnmdkavklyrklkreitfhgakeialsysagalascmgliynrmgavttesafglica- t ceqiadsqhkshrqmvtttnplirhenrmvlasttakameqmagsseqaaeamevasqarqmvqamraigthps- s stglkndllenlqayqkrmgvqmqrfk SEQUENCE: 46 (A/Texas/1/77 PB1) mdvnptllflkipaqnaisttfpytgdppyshgtgtgytmdtvnrthqysekgkwttntetgapqlnpidgplp- e dnepsgyaqtdcvleamafleeshpgifenscletmevvqqtrvdrltqgrqtydwtlnrnqpaatalantiev- f rsngltanesgrlidflkdvmesmdkeeieitthfqrkrrvrdnmtkkmvtqrtigkkkqrvnkrsyliraltl- n tmtkdaergklkrraiatpgmqirgfvyfvetlarsicekleqsglpvggnekkaklanvvrkmmtnsqdtels- f titgdntkwnenqnprmflamityitknqpewfrnilsiapimfsnkmarlgkgymfeskrmklrtqipaemla- s idlkyfnestrkkiekirpllidgtaslspgmmmgmfnmlstvlgvsilnlgqkkytkttywwdglqssddfal- i vnapnhegiqagvdrfyrtcklvginmskkksyinrtgtfeftsffyrygfvanfsmelpsfgvsginesadms- i gvtviknnminndlgpataqmalqlfikdyrytyrchrgdtqiqtrrsfelkklweqtrskagllvsdggpnly- n irnlhipevclkwelmdedyqgrlcnplnpfvshkeiesvnnavvmpahgpaksmeydavatthswipkrnrsi- l ntsqrgiledeqmyqkccnlfekffpsssyrrpvgissmveamvsraridaridfesgrikkeefseimkicst- i eelrrqkq SEQUENCE: 47 (A/Puerto Rico/8/34 PA)

medfvrqcfnpmivelaektmkeygedlkietnkfaaicthlevcfmysdfhfineqgesiivelgdpnallkh- r feiiegrdrtmawtvvnsicnttgaekpkflpdlydykenrfieigvtrrevhiyylekankiksekthihifs- f tgeematkadytldeesrariktrlftirqemasrglwdsfrqsergeetieerfeitgtmrkladqslppnfs- s lenfrayvdgfepngyiegklsqmskevnariepflkttprplrlpngppcsqrskfllmdalklsiedpsheg- e giplydaikcmrtffgwkepnvvkphekginpnyllswkqvlaelqdieneekipktknmkktsqlkwalgenm- a pekvdfddckdvgdlkqydsdepelrslaswiqnefnkaceltdsswieldeigedvapiehiasmrrnyftse- v shcrateyimkgvyintallnascaamddfqlipmiskcrtkegrrktnlygfiikgrshlrndtdvvnfvsme- f sltdprlephkwekycvleigdmlirsaigqvsrpmflyvrtngtskikmkwgmemrrcllqslqqiesmieae- s svkekdmtkeffenksetwpigespkgveessigkvcrtllaksvfnslyaspqlegfsaesrklllivqalrd- n lepgtfdlgglyeaieeclindpwvllnaswfnsflthals SEQUENCE: 48 (A/Puerto Rico/8/34 NP) masqgtkrsyeqmetdgerqnateirasvgkmiggigrfyiqmctelklsdyegrliqnsltiermvlsafder- r nkyleehpsagkdpkktggpiyrrvngkwmrelilydkeeirriwrqanngddataglthmmiwhsnlndatyq- r tralvrtgmdprmcslmqgstlprrsgaagaavkgvgtmvmelvrmikrgindrnfwrgengrktriayermcn- i lkgkfqtaaqkammdqvresrdpgnaefedltflarsalilrgsvahksclpacvygpavasgydferegyslv- g idpfrllqnsqvyslirpnenpahks SEQUENCE: 49 (A/Puerto Rico/8/34 M) mslltevetyvlsiipsgplkaeiaqrledvfagkntdlevlmewlktrpilspltkgilgfvftltvpsergl- q rrrfvqnalngngdpnnmdkavklyrklkreitfhgakeislsysagalascmgliynrmgavttevafglvca- t ceqiadsqhrshrqmvtttnplirhenrmvlasttakameqmagsseqaaeamevasqarqmvqamrtigthps- s saglkndllenlqayqkrmgvqmqrfk SEQUENCE: 50 (HA, A/California/04/09) mkailvvllytfatanadtlcigyhannstdtvdtvleknvtvthsvnlledkhngklcklrgvaplhlgkcni- agw ilgnpeceslstasswsyivetpssdngtcypgdfidyeelreqlssyssferfeifpktsswpnhdsnkgvta- acp hagaksfyknliwlvkkgnsypklsksyindkgkevlvlwgihhpstsadqqslyqnadtyvfvgssryskkfk- pei airpkvrdqegrmnyywtlvepgdkitfeatgnlvvpryafamernagsgiiisdtpvhdcnttcqtpkgaint- slp fqnihpitigkcpkyvkstklrlatglrnipsiqsrglfgaiagfieggwtgmvdgwygyhhqneqgsgyaadl- kst qnaideitnkvnsviekmntqftavgkefnhlekrienlnkkvddgfldiwtynaellvllenertldyhdsnv- knl yekvrsqlknnakeigngcfefyhkcdntcmesvkngtydypkyseeaklnreeidgvklestriyqilaiyst- vas slvlvvslgaisfwmcsngslqcrici

REFERENCES

[0218] [1] WO2007/002008 [0219] [2] WO2007/124327 [0220] [3] WO2010/070098 [0221] [4] Needleman & Wunsch (1970) J. Mol. Biol. 48, 443-453. [0222] [5] Rice et al. (2000) Trends Genet. 16:276-277. [0223] [6] Herlocher et al. (2004) J Infect Dis 190(9):1627-30. [0224] [7] Le et al. (2005) Nature 437(7062):1108. [0225] [8] U.S. Pat. No. 6,468,544. [0226] [9] Neumann et al. (2005) Proc Natl Acad Sci USA 102: 16825-9 [0227] [10] WO2009/000891 [0228] [11] U.S. provisional application No. 61/273,151 [0229] [12] Sambrook et al, Molecular Cloning: A Laboratory Manual, 2 ed., 1989, Cold Spring Harbor Press, Cold Spring Harbor, N.Y. [0230] [13] WO2011/012999 [0231] [14] Kistner et al. (1998) Vaccine 16:960-8. [0232] [15] Bruhl et al. (2000) Vaccine 19:1149-58. [0233] [16] Pau et al. (2001) Vaccine 19:2716-21. [0234] [17] http://www.atcc.org/ [0235] [18] http://locus.umdnj.edu/ [0236] [19] WO97/37000. [0237] [20] Halperin et al. (2002) Vaccine 20:1240-7. [0238] [21] EP-A-1260581 (WO01/64846) [0239] [22] WO2006/071563 [0240] [23] WO2005/113758 [0241] [24] WO97/37001 [0242] [25] WO02/28422. [0243] [26] WO2005/113756. [0244] [27] Huckriede et al. (2003) Methods Enzymol 373:74-91. [0245] [28] Vaccines. (eds. Plotkins & Orenstein). 4th edition, 2004, ISBN: 0-7216-9688-0 [0246] [29] Treanor et al. (1996) J Infect Dis 173:1467-70. [0247] [30] Keitel et al. (1996) Clin Diagn Lab Immunol 3:507-10. [0248] [31] Herlocher et al. (2004) J Infect Dis 190(9):1627-30. [0249] [32] Le et al. (2005) Nature 437(7062):1108. [0250] [33] WO2008/068631. [0251] [34] Gennaro (2000) Remington: The Science and Practice of Pharmacy. 20th edition, ISBN: 0683306472. [0252] [35] Banzhoff (2000) Immunology Letters 71:91-96. [0253] [36] Nony et al. (2001) Vaccine 27:3645-51. [0254] [37] EP-B-0870508. [0255] [38] U.S. Pat. No. 5,948,410. [0256] [39] WO2007/052163. [0257] [40] WO2007/052061 [0258] [41] WO90/14837. [0259] [42] Podda (2001) Vaccine 19: 2673-2680. [0260] [43] Vaccine Design: The Subunit and Adjuvant Approach (eds. Powell & Newman) Plenum Press 1995 (ISBN 0-306-44867-X). [0261] [44] Vaccine Adjuvants: Preparation Methods and Research Protocols (Volume 42 of Methods in Molecular Medicine series). ISBN: 1-59259-083-7. Ed. O'Hagan. [0262] [45] WO2008/043774. [0263] [46] Allison & Byars (1992) Res Immunol 143:519-25. [0264] [47] Hariharan et al. (1995) Cancer Res 55:3486-9. [0265] [48] US-2007/014805. [0266] [49] US-2007/0191314. [0267] [50] Suli et al. (2004) Vaccine 22(25-26):3464-9. [0268] [51] WO95/11700. [0269] [52] U.S. Pat. No. 6,080,725. [0270] [53] WO2005/097181. [0271] [54] WO2006/113373. [0272] [55] Potter & Oxford (1979) Br Med Bull 35: 69-75. [0273] [56] Greenbaum et al. (2004) Vaccine 22:2566-77. [0274] [57] Piascik (2003) J Am Pharm Assoc (Wash DC). 43:728-30. [0275] [58] Mann et al. (2004) Vaccine 22:2425-9. [0276] [59] Halperin et al. (1979) Am J Public Health 69:1247-50. [0277] [60] Herbert et al. (1979) J Infect Dis 140:234-8. [0278] [61] Chen et al. (2003) Vaccine 21:2830-6. [0279] [62] Current Protocols in Molecular Biology (F. M. Ausubel et al., eds., 1987) Supplement 30. [0280] [63] Smith & Waterman (1981) Adv. Appl. Math. 2: 482-489.

Sequence CWU 1

1

5012201DNAInfluenza A virus 1gattcgaaat ggaagatttt gtgcgacaat gcttcaatcc gatgattgtc gagcttgcgg 60aaaaggcaat gaaagagtat ggagaggacc tgaaaatcga aacaaacaaa tttgcagcaa 120tatgcactca cttggaagta tgcttcatgt attcagattt tcatttcatc aatgagcaag 180gcgaatcaat aatagtagag cctgaggacc caaatgcact tttaaagcac agatttgaga 240taatagaggg acgagatcgt acaatggcat ggacagttgt aaacagtatt tgcaacacca 300caggagctga gaaaccaaag tttctgccag atctgtatga ttacaaagag aatagattca 360tcgagattgg agtgacaagg agggaagttc acatatacta tctggaaaag gccaacaaaa 420ttaaatctga gaagacacac attcacattt tctcattcac tggcgaagaa atggccacaa 480aggccgatta cactctcgat gaagaaagca gggctaggat taaaaccaga ctattcacca 540taagacaaga aatggcaagc agaggtcttt gggactcctt tcgtcagtcc gaaagaggcg 600aagaaacaat tgaagaaaga tttgaaatca cagggacaat gcgcaggctc gctgaccaaa 660gccttccgcc gaacttctcc tgcattgaga attttagagc ctatgtggat ggatttgaac 720cgaacggcta cattgagggc aagctttctc aaatgtccaa agaagtaaat gctagaattg 780agcctttttt gaaaacaaca ccacgaccaa ttagacttcc ggatgggcct ccttgttttc 840agcggtcaaa attcctgctg atggattctt taaaattaag cattgaggat ccaaatcatg 900aaggagaggg aataccacta tatgatgcaa tcaagtgtat gagaacattc tttggatgga 960aagaaccctc tgttgtcaag ccacacggga agggaataaa tccgaattat ctgctgtcat 1020ggaagcaggt attggaagag ctgcaggaca ttgagagtga ggagaagatt ccaagaacaa 1080aaaacatgaa aaaaacgagt cagctaaagt gggcacttgg tgagaacatg gcaccagaga 1140aggtggattt tgatgactgt aaagatataa gcgatttgaa gcaatatgat agtgacgaac 1200ctgaattaag gtcattttca agttggatcc agaatgagtt caacaaggca tgcgagctga 1260ccgattcaat ctggatagag ctcgatgaga ttggagaaga tgtggccccg attgaacaca 1320ttgcaagcat gagaagaaat tacttcacag ctgaggtgtc ccattgcaga gccacagaat 1380atataatgaa gggggtatac attaatactg ctttgcttaa tgcatcctgt gcagcaatgg 1440atgatttcca actaattccc atgataagca aatgtagaac taaagaggga aggagaaaga 1500ccaatttgta cggcttcatc gtaaaaggaa gatctcactt aaggaatgac accgatgtgg 1560taaactttgt gagcatggag ttttccctca ctgacccaag acttgagcca cacaaatggg 1620agaagtactg tgttcttgag ataggagata tgcttctaag gagtgcaata ggccaagtgt 1680caaggcccat gttcttgtat gtaaggacaa atggaacctc aaaaattaaa atgaaatggg 1740gaatggagat gaggcgttgc ctcctccaat cccttcaaca aatagagagc atgattgaag 1800ctgagtcctc cgtcaaggag aaagacatga caaaagagtt ttttgagaat agatcagaaa 1860catggcccat tggagagtca ccaaaaggag tggaagaagg ttccattggg aaagtatgca 1920ggacactatt ggctaagtca gtattcaata gtctgtatgc atctccacaa ttagaaggat 1980tttcagctga gtcaagaaag ttgctcctca ttgttcaggc tcttagggac aatctggaac 2040ctgggacctt tgatcttggg gggctatatg aagcaattga ggagtgcctg attaatgatc 2100cctgggtttt gcttaatgct tcttggttca actccttcct aacacatgca ttgagatagc 2160tggggcaatg ctactattta ctatccatac tgtccaaaaa a 220122301DNAInfluenza A virus 2aatggatgtc aatccgacat tacttttctt aaaagtgcca gcacaaaatg ctataagcac 60aacttttcct tatactggtg accctcctta cagccatggg acaggaacag ggtacaccat 120ggatacagtc aacaggacac atcagtactc agaaagagga agatggacaa aaaataccga 180aactggagca ccgcaactca acccaattga tgggccacta ccaaaagaca atgaaccaag 240tggctatgcc caaacagatt gtgtattaga agcaatggct ttccttgagg aatcccatcc 300tggtattttt gaaaactctt gtattgaaac aatggaggtt gttcagcaaa caagggtgga 360caaactgaca caaggcagac agacctatga ctggactcta aataggaacc agcctgctgc 420cacagcattg gccaacacta tagaagtgtt cagatcaaac ggcctcatag caaatgaatc 480tgggaggcta atagacttcc ttaaagatgt aatggagtcg atggacagag acgaagtaga 540gatcacaact cattttcaaa gaaagaggag agtgagagac aatgtaacta aaaaaatggt 600gacccaaaga acaataggca aaaagaaaca taaattagac aaaagaagtt acctaattag 660ggcattaacc ctgaacacaa tgaccaaaga tgctgagagg gggaaactaa aacgcagagc 720aattgcaacc ccaggaatgc aaataagggg gtttgtatac tttgttgaga cactggcaag 780aagcatatgt gaaaagcttg aacaatcagg gttgccagtt ggaggaaatg aaaagaaagc 840aaagttagca aatgttgtaa ggaagatgat gaccaactcc caggacactg aaatttcttt 900caccatcact ggagataaca caaaatggaa cgaaaatcaa aaccctagaa tgttcttggc 960catgatcaca tatataacca aaaatcagcc tgaatggttc agaaatattc taagtattgc 1020tccaataatg ttttcaaaca aaatggcgag actaggtaag gggtacatgt ttgaaagcaa 1080gagtatgaaa ctgagaactc aaatacctgc agagatgcta gccaacatag atttgaaata 1140tttcaatgat tcaactaaaa agaaaattga aaaaatccgg ccattattaa tagatggaac 1200tgcatcattg agtcctggaa tgatgatggg catgttcaat atgttaagca ccgtcttggg 1260cgtctccatt ctgaatcttg ggcaaaagag atacaccaag actacttact ggtgggatgg 1320tcttcaatcg tctgatgatt ttgctctgat tgtgaatgca cccaactatg caggaattca 1380agctggagtt gacaggtttt atcgaacctg taagctgctc ggaattaata tgagcaaaaa 1440gaagtcttac ataaacagaa caggtacctt tgagttcacg agctttttct atcgttatgg 1500gtttgttgcc aatttcagca tggagcttcc tagttttggg gtgtctgggg tcaatgaatc 1560tgcagacatg agtattggag tcactgtcat caaaaacaat atgataaaca atgaccttgg 1620cccagcaact gctcaaatgg cccttcagtt atttataaaa gattacaggt acacgtatcg 1680atgccacaga ggtgacacac aaatacaaac ccggagatca tttgagataa agaaactatg 1740ggaccaaacc cgctccaaag ctgggctgtt ggtctctgat ggaggcccca atttatataa 1800cattagaaat ctccatattc ctgaagtctg cttgaaatgg gagttgatgg atgaggatta 1860ccaggggcgt ttatgcaacc cattgaaccc gtttgtcagt cataaagaga ttgaatcagt 1920gaacaatgca gtgatgatgc cggcacatgg tccagccaaa aatatggagt atgacgctgt 1980tgcaacaaca cactcctggg ttcccaaaag gaatcgatcc attttgaata cgagccaaag 2040ggggatactt gaggatgagc aaatgtatca gaggtgctgc aatttatttg aaaaattctt 2100cccaagtagc tcatacagaa gaccagttgg aatatccagt atggtagagg ctatggtttc 2160cagagcccga attgatgcac ggattgattt cgaatctgga aggataaaaa aagaggaatt 2220cgctgagatc atgaagacct gttccaccat tgaagacctc agacggcaaa aatagggaat 2280ttggcttgtc cttcatgaaa a 230132299DNAInfluenza A virus 3aatatggaaa gaataaaaga gctaaggaat ctgatgtcac aatctcgcac tcgcgagata 60cttacaaaaa ctactgtaga ccacatggcc ataatcaaga aatacacatc aggaagacag 120gagaaaaacc catcacttag aatgaaatgg atgatggcaa tgaaataccc aattacagca 180gataaaagga taacggaaat gattcctgaa agaaatgagc aaggacagac attatggagt 240aaagtgaatg atgccggatc agaccgagtg atgatatcac ccctggctgt gacatggtgg 300aacagaaatg gaccagtggc aagtactatt cactatccaa aaatctacaa aacttacttt 360gaaaaggttg aaaggttaaa acatggaacc tttggccctg tacactttag aaaccaagtc 420aaaatacgcc gaagagtcga cataaatcct ggtcatgcag acctcagcgc caaggaggca 480caggatgtaa ttatggaagt tgttttccct aatgaagtgg gagccagaat actaacatca 540gaatcgcaat taacgataac caaggagaaa aaagaagaac tccagaattg caaaatttcc 600cctttgatgg ttgcatacat gttagagagg gaacttgtcc gcaaaacgag atttctcccg 660gttgctggtg gaacaagcag tgtgtacatt gaagttttgc atttaacaca ggggacatgc 720tgggagcaga tgtacactcc aggtggggag gtgaggaatg atgatgttga tcaaagccta 780attattgctg ctaggaacat agtgagaaga gctgcagtat cagcagatcc actagcatct 840ttattagaaa tgtgccatag cacacagatt ggtgggacaa ggatggtgga tattctcagg 900caaaatccaa cagaagaaca agctgtggat atatgcaaag cagcaatggg gctgagaatc 960agttcatcct tcagttttgg cggattcaca tttaagagaa caagtggatc atcagtcaaa 1020agggaggaag aagtgctcac gggcaatctg caaacattga agctaactgt gcatgaggga 1080tatgaagagt tcacaatggt tgggaaaagg gcaacagcta tactcagaaa agcaaccagg 1140agattgattc aactaatagt gagtggaaga gacgaacagt caatagtcga agcaatagtt 1200gtagcaatgg tattctcaca agaagattgc atggtaaaag cagttagagg tgatctgaat 1260ttcgttaata gagcgaatca gcggttgaat cccatgcatc aacttttgag acattttcag 1320aaggatgcta aagtactttt cttaaattgg ggaattgaac ctatcgacaa tgtgatggga 1380atgattggga tattacctga tatgactcca agtaccgaga tgtcaatgag aggagtgaga 1440gtcagcaaaa tgggtgtaga tgaatactcc aatgctgaaa gggtagtggt gagcattgac 1500cgttttttga gagtccggga ccaaagagga aatgtactac tgtctccaga ggaagtcagt 1560gaaacacagg gaacagagaa actgacaata acttactctt catcaatgat gtgggagatt 1620aatggccctg agtcagtgtt gatcaatacc tatcagtgga tcatcagaaa ctgggagact 1680gttaaaattc agtggtctca gaaccctaca atgctataca ataaaatgga attcgagcca 1740tttcagtctc tagtccctaa ggccattaga ggccaataca gtgggtttgt tagaactcta 1800tttcaacaaa tgagggatgt gcttgggacc tttgacacaa ctcagataat aaaacttctt 1860ccctttgcag ccgctccacc aaagcaaagt agaatgcaat tctcatcatt gactgtgaat 1920gtgaggggat caggaatgag aatacttgta aggggtaatt ctccagtatt caactacaac 1980aagaccacta agagactcac agtcctcgga aaggatgctg gcactttaac tgaagaccca 2040gatgaaggca cagctggagt ggaatctgct gttctaaggg gattcctcat tctaggcaaa 2100gaagatagaa gatatgggcc agcattaagc atcaatgaat tgagcaacct tgcgaaaggg 2160gaaaaagcta atgtgctaat tgggcaaggg gacgtagtgt tggtaatgaa acgaaaacgg 2220gactctagca tacttactga cagccagaca gcgaccaaaa gaattcggat ggccatcaat 2280taatttcgaa taatttaaa 229941527DNAInfluenza A virus 4atcactcact gagtgacatc aaagtcatgg cgtcccaagg caccaaacgg tcttacgaac 60agatggagac tgatggggaa cgccagaatg caactgaaat cagagcatcc gtcggaagaa 120tgattggtgg aattgggcga ttctacatcc aaatgtgcac cgagcttaaa ctcaatgatt 180atgagggacg actgatccag aacagcttga caatagagag aatggtgctc tctgcttttg 240atgagaggag gaataaatat ctggaagaac atcccagcgc ggggaaagat cctaagaaaa 300ctggaggacc catatacaag agagtagatg gaaagtgggt gagggaactc gtcctttatg 360acaaagaaga aataaggcgg atttggcgcc aagccaacaa tggtgatgat gcaacggctg 420gtttgactca cattatgatc tggcattcta atttgaatga tacaacttac cagaggacaa 480gagctcttgt ccgcaccgga atggatccca ggatgtgctc tttgatgcaa ggttcaactc 540tccctagaag atctggagca gcaggcgctg cagtcaaagg agttgggaca atggtgttgg 600agttaatcag gatgatcaaa cgtgggatca atgaccgaaa cttctggagg ggtgagaatg 660gaagaaaaac aaggattgct tatgagagaa tgtgcaacat tctcaaagga aaatttcaaa 720cagctgcaca aaaagcaatg atggatcaag tgagagaaag ccggaaccca ggaaatgctg 780agatcgaaga tctcactttt ctggcacggt ctgcactcat attaagaggg tcagttgctc 840acaagtcttg cctgcctgcc tgtgtgtatg gaccagccgt agccagtggg tacgacttcg 900aaaaagaggg atactctttg gtaggggtag acccttttaa actgcttcaa accagtcagg 960tatacagcct aatcagacca aacgagaatc ccgcacacaa gagtcagttg gtgtggatgg 1020catgcaattc tgctgcattt gaagatctaa gagtgtcaag cttcatcaga gggacaagag 1080tacttccaag ggggaagctc tccactagag gagtacaaat tgcttcaaat gaaaacatgg 1140atgctattgt atcaagtact cttgaactga gaagcagata ctgggccata agaaccagaa 1200gtggagggaa cactaatcaa caaagggcct ctgcgggcca aatcagcaca caacctacgt 1260tttctgtgca gagaaacctc ccatttgaca aaacaaccat catggcagca ttcactggga 1320atacggaggg aagaacatca gacatgaggg cagaaatcat aaagatgatg gaaagtgcaa 1380gaccagaaga agtgtccttc caggggcggg gagtctttga gctctcggac gaaagggcaa 1440cgaacccgat cgtgccctcc tttgacatga gtaatgaagg atcttatttc ttcggagaca 1500atgcagagga gtacgacaat taatgaa 15275984DNAInfluenza A virus 5gatgagtctt ctaaccgagg tcgaaacgta cgttctctct atcgtcccgt caggccccct 60caaagccgag atcgcacaga gacttgaaaa tgtctttgct ggaaagaata ccgatcttga 120ggctctcatg gaatggctaa agacaagacc aatcctgtca cctctgacta aggggatttt 180aggatttgtg ttcacgctca ccgtgcccag tgagcgagga ctgcagcgta gacgctttgt 240ccaaaatgcc cttaatggga atggggatcc aaataatatg gacagagcag ttaaactgta 300tcgaaagctt aagagggaga taacattcca tggggccaaa gaaatagcac tcagttattc 360tgctggtgca cttgccagtt gtatgggact catatacaac aggatggggg ctgtgaccac 420cgaatcagca tttggcctta tatgcgcaac ctgtgaacag attgccgact cccagcataa 480gtctcatagg caaatggtaa caacaaccaa cccattaata agacatgaga acagaatggt 540tctggccagc actacagcta aggctatgga gcaaatggct ggatcgagtg aacaagcagc 600tgaggccatg gaggttgcta gtcaggccag gcagatggtg caggcaatga gagccattgg 660gactcatcct agctctagca ctggtctgaa aaatgatctc cttgaaaatt tgcaggccta 720tcagaaacga atgggggtgc agatgcaacg attcaagtga tcctcttgtt gttgccgcaa 780gtataattgg gattgtgcac ctgatattgt ggattattga tcgccttttt tccaaaagca 840tttatcgtat ctttaaacac ggtttaaaaa gagggccttc tacggaagga gtaccagagt 900ctatgaggga agaatatcga gaggaacagc agaatgctgt ggatgctgac gatggtcatt 960ttgtcagcat agagctagag taaa 9846844DNAInfluenza A virus 6atggattccc acactgtgtc aagctttcag gtagattgct tcctttggca tgtccgcaaa 60caagttgcag accaagatct aggcgatgcc ccattccttg atcggcttcg ccgagatcag 120aagtctctaa agggaagagg cagcactctc ggtctgaaca tcgaaacagc cacttgtgtt 180ggaaagcaaa tagtagagag gattctgaaa gaagaatccg atgaggcatt taaaatgacc 240atggcctccg cacttgcttc gcggtaccta actgacatga ctattgaaga aatgtcaagg 300gactggttca tgctcatgcc caagcagaaa gtggctggcc ctctttgtgt cagaatggac 360caggcgataa tggataagaa catcatactg aaagcgaatt tcagtgtgat ttttgaccgg 420ttggagaatc tgacattact aagggctttc accgaagagg gagcaattgt tggcgaaatt 480tcaccattgc cttctcttcc aggacatact aatgaggatg tcaaaaatgc aattggggtc 540ctcatcgggg gacttgaatg gaatgataac acagttcgag tctctgaaac tctacagaga 600ttcgcttgga gaagcagtaa tgagactggg ggacctccat tcactccaac acagaaacgg 660aaaatggcgg gaacaattag gtcagaagtt tgaagaaata agatggctga ttgaagaagt 720gaggcataaa ttgaagacga cagagaatag ttttgagcaa ataacattta tgcaagcatt 780acagctattg tttgaagtgg aacaagagat tagaacgttt tcgtttcagc ttatttaatg 840ataa 84471728DNAInfluenza A virus 7ccaaaatgaa agcaaaacta ctggtcctgt tatgtacatt tacagctaca tatgcagaca 60caatatgtat aggctaccat gccaacaact caaccgacac tgttgacaca gtacttgaga 120agaatgtgac agtgacacac tctgtcaacc tacttgagga cagtcacaat ggaaaactat 180gtctactaaa aggaatagcc ccactacaat tgggtaattg cagcgttgcc ggatggatct 240taggaaaccc agaatgcgaa ttactgattt ccaaggaatc atggtcctac attgtagaaa 300caccaaatcc tgagaatgga acatgttacc cagggtattt cgccgactat gaggaactga 360gggagcaatt gagttcagta tcttcatttg agagattcga aatattcccc aaagaaagct 420catggcccaa ccacaccgta accggagtat cagcatcatg ctcccataat gggaaaagca 480gtttttacag aaatttgcta tggctgacgg ggaagaatgg tttgtaccca aacctgagca 540agtcctatgt aaacaacaaa gagaaagaag tccttgtact atggggtgtt catcacccgc 600ctaacatagg gaaccaaagg gccctctatc atacagaaaa tgcttatgtc tctgtagtgt 660cttcacatta tagcagaaga ttcaccccag aaatagccaa aagacccaaa gtaagagatc 720aggaaggaag aatcaactac tactggactc tgctggaacc tggggataca ataatatttg 780aggcaaatgg aaatctaata gcgccatggt atgcttttgc actgagtaga ggctttggat 840caggaatcat cacctcaaat gcaccaatgg atgaatgtga tgcgaagtgt caaacacctc 900agggagctat aaacagcagt cttcctttcc agaatgtaca cccagtcaca ataggagagt 960gtccaaagta tgtcaggagt gcaaaattaa ggatggttac aggactaagg aacatcccat 1020ccattcaatc cagaggtttg tttggagcca ttgccggttt cattgaaggg gggtggactg 1080gaatggtaga tgggtggtat ggttatcatc atcagaatga gcaaggatct ggctatgctg 1140cagatcaaaa aagtacacaa aatgccatta acgggattac aaacaaggtg aattctgtaa 1200ttgagaaaat gaacactcaa ttcacagctg tgggcaaaga attcaacaaa ttggaaagaa 1260ggatggaaaa cttaaataaa aaagttgatg atgggtttct agacatttgg acatataatg 1320cagaattgtt ggttctactg gaaaatgaaa ggactttgga tttccatgac tccaatgtga 1380agaatctgta tgagaaagta aaaagccaat taaagaataa tgccaaagaa ataggaaacg 1440ggtgttttga attctatcac aagtgtaaca atgaatgcat ggagagtgtg aaaaatggaa 1500cttatgacta tccaaaatat tccgaagaat caaagttaaa cagggagaaa attgatggag 1560tgaaattgga atcaatggga gtctatcaga ttctggcgat ctactcaact gtcgccagtt 1620ccctggttct tttggtctcc ctgggggcaa tcagcttctg gatgtgttcc aatgggtctt 1680tgcagtgtag aatatgcatc tgagaccaga atttcagaaa tataagaa 172881414DNAInfluenza A virus 8aatgaatcca aatcaaaaaa taataaccat tggatcaatc agtatagcaa tcggaataat 60tagtctaatg ttgcaaatag gaaatattat ttcaatatgg gctagtcact caatccaaac 120tggaagtcaa aaccacactg gagtatgcaa ccaaagaatc atcacatatg aaaacagcac 180ctgggtgaat cacacatatg ttaatattaa caacactaat gttgttgctg gaaaggacaa 240aacttcagtg acattggccg gcaattcatc tctttgttct atcagtggat gggctatata 300cacaaaagac aacagcataa gaattggctc caaaggagat gtttttgtca taagagaacc 360tttcatatca tgttctcact tggaatgcag aacctttttt ctgacccaag gtgctctatt 420aaatgacaaa cattcaaatg ggaccgttaa ggacagaagt ccttataggg ccttaatgag 480ctgtcctcta ggtgaagctc cgtccccata caattcaaag tttgaatcag ttgcatggtc 540agcaagcgca tgccatgatg gcatgggctg gttaacaatc ggaatttctg gtccagacaa 600tggagctgtg gctgtactaa aatacaacgg cataataact gaaaccataa aaagttggaa 660aaagcgaata ttaagaacac aagagtctga atgtgtctgt gtgaacgggt catgtttcac 720cataatgacc gatggcccga gtaatggggc cgcctcgtac aaaatcttca agatcgaaaa 780ggggaaggtt actaaatcaa tagagttgaa tgcacccaat tttcattatg aggaatgttc 840ctgttaccca gacactggca cagtgatgtg tgtatgcagg gacaactggc atggttcaaa 900tcgaccttgg gtgtctttta atcaaaacct ggattatcaa ataggataca tctgcagtgg 960ggtgttcggt gacaatccgc gtcccaaaga tggagagggc agctgtaatc cagtgactgt 1020tgatggagca gacggagtaa aggggttttc atacaaatat ggtaatggtg tttggatagg 1080aaggactaaa agtaacagac ttagaaaggg gtttgagatg atttgggatc ctaatggatg 1140gacagatacc gacagtgatt tctcagtgaa acaggatgtt gtggcaataa ctgattggtc 1200agggtacagc ggaagtttcg ttcaacatcc tgagttaaca ggattggact gtataagacc 1260ttgcttctgg gttgagttag tcagaggact gcctagagaa aatacaacaa tctggactag 1320tgggagcagc atttcttttt gtggcgtaaa tagtgatact gcaaactggt cttggccaga 1380cggtgctgag ttgccgttca ccattgacaa gtag 141492233DNAInfluenza A virus 9agcgaaagca ggtactgatc caaaatggaa gattttgtgc gacaatgctt caatccgatg 60attgtcgagc ttgcggaaaa aacaatgaaa gagtatgggg aggacctgaa aatcgaaaca 120aacaaatttg cagcaatatg cactcacttg gaagtatgct tcatgtattc agattttcac 180ttcatcaatg agcaaggcga gtcaataatc gtagaacttg gtgatccaaa tgcacttttg 240aagcacagat ttgaaataat cgagggaaga gatcgcacaa tggcctggac agtagtaaac 300agtatttgca acactacagg ggctgagaaa ccaaagtttc taccagattt gtatgattac 360aaggagaata gatttatcga aattggagta acaaggagag aagttcacat atactatctg 420gaaaaggcca ataaaattaa atctgagaaa acacacatcc acattttctc gttcactggg 480gaagaaatgg ccacaaaggc agactacact ctcgatgaag aaagcagggc taggatcaaa 540accagactat tcaccataag acaagaaatg gccagcagag gcctctggga ttcctttcgt 600cagtccgaga gaggagaaga gacaattgaa gaaaggtttg aaatcacagg aacaatgcgc 660aagcttgccg accaaagtct cccgccgaac ttctccagcc ttgaaaattt tagagcctat 720gtggatggat tcgaaccgaa cggctacatt gagggcaagc tgtctcaaat gtccaaagaa 780gtaaatgcta gaattgaacc ttttttgaaa acaacaccac gaccacttag acttccgaat 840gggcctccct gttctcagcg gtccaaattc ctgctgatgg atgccttaaa attaagcatt 900gaggacccaa gtcatgaagg agagggaata ccgctatatg atgcaatcaa atgcatgaga 960acattctttg gatggaagga acccaatgtt gttaaaccac acgaaaaggg aataaatcca 1020aattatcttc tgtcatggaa gcaagtactg gcagaactgc aggacattga gaatgaggag 1080aaaattccaa agactaaaaa tatgaagaaa acaagtcagc taaagtgggc acttggtgag 1140aacatggcac cagaaaaggt agactttgac gactgtaaag atgtaggtga tttgaagcaa 1200tatgatagtg atgaaccaga attgaggtcg cttgcaagtt ggattcagaa tgagtttaac

1260aaggcatgcg aactgacaga ttcaagctgg atagagctcg atgagattgg agaagatgtg 1320gctccaattg aacacattgc aagcatgaga aggaattatt tcacatcaga ggtgtctcac 1380tgcagagcca cagaatacat aatgaagggg gtgtacatca atactgcctt gcttaatgca 1440tcttgtgcag caatggatga tttccaatta attccaatga taagcaagtg tagaactaag 1500gagggaaggc gaaagaccaa cttgtatggt ttcatcataa aaggaagatc ccacttaagg 1560aatgacaccg acgtggtaaa ctttgtgagc atggagtttt ctctcactga cccaagactt 1620gaaccacata aatgggagaa gtactgtgtt cttgagatag gagatatgct tataagaagt 1680gccataggcc aggtttcaag gcccatgttc ttgtatgtga gaacaaatgg aacctcaaaa 1740attaaaatga aatggggaat ggagatgagg cgttgcctcc tccagtcact tcaacaaatt 1800gagagtatga ttgaagctga gtcctctgtc aaagagaaag acatgaccaa agagttcttt 1860gagaacaaat cagaaacatg gcccattgga gagtccccca aaggagtgga ggaaagttcc 1920attgggaagg tctgcaggac tttattagca aagtcggtat tcaacagctt gtatgcatct 1980ccacaactag aaggattttc agctgaatca agaaaactgc ttcttatcgt tcaggctctt 2040agggacaacc ttgaacctgg gacctttgat cttggggggc tatatgaagc aattgaggag 2100tgcctgatta atgatccctg ggttttgctt aatgcttctt ggttcaactc cttccttaca 2160catgcattga gttagttgtg gcagtgctac tatttgctat ccatactgtc caaaaaagta 2220ccttgtttct act 2233102341DNAInfluenza A virus 10agcgaaagca ggcaaaccat ttgaatggat gtcaatccga ccttactttt cttaaaagtg 60ccaacacaaa atgctataag cacaactttc ccttatactg gagaccctcc ttacagccat 120gggacaggaa caggatacac catggatact gtcaacagga cacatcagta ctcagaaaag 180ggaagatgga caacaaacac cgaaactgga gcaccgcaac tcaacccgat tgatgggcca 240ctgccagaag acaatgaacc aagtggttat gcccaaacag attgtgtatt ggaggcgatg 300gctttccttg aggaatccca tcctggtatt tttgaaaact cgtgtattga aacgatggag 360gttgttcagc aaacacgagt agacaagctg acacaaggcc gacagaccta tgactggact 420ctaaatagaa accaacctgc tgcaacagca ttggccaaca caatagaagt gttcagatca 480aatggcctca cggccaatga gtctggaagg ctcatagact tccttaagga tgtaatggag 540tcaatgaaca aagaagaaat ggggatcaca actcattttc agagaaagag acgggtgaga 600gacaatatga ctaagaaaat gataacacag agaacaatgg gtaaaaagaa gcagagattg 660aacaaaagga gttatctaat tagagcattg accctgaaca caatgaccaa agatgctgag 720agagggaagc taaaacggag agcaattgca accccaggga tgcaaataag ggggtttgta 780tactttgttg agacactggc aaggagtata tgtgagaaac ttgaacaatc agggttgcca 840gttggaggca atgagaagaa agcaaagttg gcaaatgttg taaggaagat gatgaccaat 900tctcaggaca ccgaactttc tttcaccatc actggagata acaccaaatg gaacgaaaat 960cagaatcctc ggatgttttt ggccatgatc acatatatga ccagaaatca gcccgaatgg 1020ttcagaaatg ttctaagtat tgctccaata atgttctcaa acaaaatggc gagactggga 1080aaagggtata tgtttgagag caagagtatg aaacttagaa ctcaaatacc tgcagaaatg 1140ctagcaagca tcgatttgaa atatttcaat gattcaacaa gaaagaagat tgaaaaaatc 1200cgaccgctct taatagaggg gactgcatca ttgagccctg gaatgatgat gggcatgttc 1260aatatgttaa gcactgtatt aggcgtctcc atcctgaatc ttggacaaaa gagatacacc 1320aagactactt actggtggga tggtcttcaa tcctctgacg attttgctct gattgtgaat 1380gcacccaatc atgaagggat tcaagccgga gtcgacaggt tttatcgaac ctgtaagcta 1440cttggaatca atatgagcaa gaaaaagtct tacataaaca gaacaggtac atttgaattc 1500acaagttttt tctatcgtta tgggtttgtt gccaatttca gcatggagct tcccagtttt 1560ggggtgtctg ggatcaacga gtcagcggac atgagtattg gagttactgt catcaaaaac 1620aatatgataa acaatgatct tggtccagca acagctcaaa tggcccttca gttgttcatc 1680aaagattaca ggtacacgta ccgatgccat agaggtgaca cacaaataca aacccgaaga 1740tcatttgaaa taaagaaact gtgggagcaa acccgttcca aagctggact gctggtctcc 1800gacggaggcc caaatttata caacattaga aatctccaca ttcctgaagt ctgcctaaaa 1860tgggaattga tggatgagga ttaccagggg cgtttatgca acccactgaa cccatttgtc 1920agccataaag aaattgaatc aatgaacaat gcagtgatga tgccagcaca tggtccagcc 1980aaaaacatgg agtatgatgc tgttgcaaca acacactcct ggatccccaa aagaaatcga 2040tccatcttga atacaagtca aagaggagta cttgaggatg aacaaatgta ccaaaggtgc 2100tgcaatttat ttgaaaaatt cttccccagc agttcataca gaagaccagt cgggatatcc 2160agtatggtgg aggctatggt ttccagagcc cgaattgatg cacggattga tttcgaatct 2220ggaaggataa agaaagaaga gttcactgag atcatgaaga tctgttccac cattgaagag 2280ctcagacggc aaaaatagtg aatttagctt gtccttcatg aaaaaatgcc ttgtttctac 2340t 2341112341DNAInfluenza A virus 11agcgaaagca ggtcaattat attcaatatg gaaagaataa aagaactaag aaatctaatg 60tcgcagtctc gcacccgcga gatactcaca aaaaccaccg tggaccatat ggccataatc 120aagaagtaca catcaggaag acaggagaag aacccagcac ttaggatgaa atggatgatg 180gcaatgaaat atccaattac agcagacaag aggataacgg aaatgattcc tgagagaaat 240gagcaaggac aaactttatg gagtaaaatg aatgatgccg gatcagaccg agtgatggta 300tcacctctgg ctgtgacatg gtggaatagg aatggaccaa taacaaatac agttcattat 360ccaaaaatct acaaaactta ttttgaaaga gtagaaaggc taaagcatgg aacctttggc 420cctgtccatt ttagaaacca agtcaaaata cgtcggagag ttgacataaa tcctggtcat 480gcagatctca gtgccaagga ggcacaggat gtaatcatgg aagttgtttt ccctaacgaa 540gtgggagcca ggatactaac atcggaatcg caactaacga taaccaaaga gaagaaagaa 600gaactccagg attgcaaaat ttctcctttg atggttgcat acatgttgga gagagaactg 660gtccgcaaaa cgagattcct cccagtggct ggtggaacaa gcagtgtgta cattgaagtg 720ttgcatttga ctcaaggaac atgctgggaa cagatgtata ctccaggagg ggaagtgagg 780aatgatgatg ttgatcaaag cttgattatt gctgctagga acatagtgag aagagctgca 840gtatcagcag atccactagc atctttattg gagatgtgcc acagcacaca gattggtgga 900attaggatgg tagacatcct taggcagaac ccaacagaag agcaagccgt ggatatatgc 960aaggctgcaa tgggactgag aattagctca tccttcagtt ttggtggatt cacatttaag 1020agaacaagcg gatcatcagt caagagagag gaagaggtgc ttacgggaaa tcttcaaaca 1080ttgaagataa gagtgcatga gggatatgaa gagttcacaa tggttgggag aagagcaaca 1140gccatactca gaaaagcaac caggagattg attcagctga tagtgagtgg gagagacgaa 1200cagtcgattg ccgaagcaat aattgtggcc atggtatttt cacaagagga ttgtatgata 1260aaagcagtca gaggtgatct gaatttcgtc aatagggcga atcagcgatt gaatcctatg 1320catcaacttt taagacattt tcagaaggat gcgagagtgc tttttcaaaa ttggggagtt 1380gaacctatcg acaatgtgat gggaatgatt gggatattgc ccgacatgac tccaagcatc 1440gagatgtcaa tgagaggagt gagaatcagc aaaatgggtg tagatgagta ctccagcacg 1500gagagggtag tggtgagcat tgaccgtttt ttgagaatcc gggaccaacg aggaaatgta 1560ctactgtctc ccgaggaggt cagtgaaaca cagggaacag agaaactgac aataacttac 1620tcatcgtcaa tgatgtggga gattaatggt cctgaatcag tattggtcaa tacctatcaa 1680tggatcatca gaaactggga aactgttaaa attcagtggt cccagaaccc tacaatgcta 1740tacaataaaa tggaatttga accatttcag tctttagtac ctaaggccat tagaggccaa 1800tacagtgggt ttgtaagaac tctgttccaa caaatgaggg atgtgcttgg gacatttgat 1860accgcacaga taataaaact tcttcccttc gcagccgctc caccaaagca aagtagaatg 1920cagttctcct catttactgt gaatgtgagg ggatcaggaa tgagaatact tgtaaggggc 1980aattctcctg tattcaacta taacaaggcc acgaagagac tcacagttct cggaaaggat 2040gctggcactt taactgaaga cccagatgaa ggcacagctg gagtggagtc cgctgttctg 2100aggggattcc tcattctggg caaagaagac aagagatatg ggccagcact aagcatcaat 2160gaactgagca accttgcgaa aggagagaag gctaatgtgc taattgggca aggagacgtg 2220gtgttggtaa tgaaacggaa acgggactct agcatactta ctgacagcca gacagcgacc 2280aaaagaattc ggatggccat caattagtgt cgaatagttt aaaaacgacc ttgtttctac 2340t 2341121565DNAInfluenza A virus 12agcaaaagca gggtagataa tcactcactg agtgacatca aaatcatggc gtctcaaggc 60accaaacgat cttacgaaca gatggagact gatggagaac gccagaatgc cactgaaatc 120agagcatccg tcggaaaaat gattggtgga attggacgat tctacatcca aatgtgcacc 180gaactcaaac tcagtgatta tgagggacgg ttgatccaaa acagcttaac aatagagaga 240atggtgctct ctgcttttga cgaaaggaga aataaatacc ttgaagaaca tcccagtgcg 300ggaaaagatc ctaagaaaac tggaggacct atatacagga gagtaaacgg aaagtggatg 360agagaactca tcctttatga caaagaagaa ataaggcgaa tctggcgcca agctaataat 420ggtgacgatg caacggctgg tctgactcac atgatgatct ggcattccaa tttgaatgat 480gcaacttatc agaggacaag agctcttgtt cgcaccggaa tggatcccag gatgtgctct 540ctgatgcaag gttcaactct ccctaggagg tctggagccg caggtgctgc agtcaaagga 600gttggaacaa tggtgatgga attggtcaga atgatcaaac gtgggatcaa tgatcggaac 660ttctggaggg gtgagaatgg acgaaaaaca agaattgctt atgaaagaat gtgcaacatt 720ctcaaaggga aatttcaaac tgctgcacaa aaagcaatga tggatcaagt gagagagagc 780cggaacccag ggaatgctga gttcgaagat ctcacttttc tagcacggtc tgcactcata 840ttgagagggt cggttgctca caagtcctgc ctgcctgcct gtgtgtatgg acctgccgta 900gccagtgggt acgactttga aagggaggga tactctctag tcggaataga ccctttcaga 960ctgcttcaaa acagccaagt gtacagccta atcagaccaa atgagaatcc agcacacaag 1020agtcaactgg tgtggatggc atgccattct gccgcatttg aagatctaag agtattaagc 1080ttcatcaaag ggacgaaggt gctcccaaga gggaagcttt ccactagagg agttcaaatt 1140gcttccaatg aaaatatgga gactatggaa tcaagtacac ttgaactgag aagcaggtac 1200tgggccataa ggaccagaag tggaggaaac accaatcaac agagggcatc tgcgggccaa 1260atcagcatac aacctacgtt ctcagtacag agaaatctcc cttttgacag aacaaccatt 1320atggcagcat tcaatgggaa tacagagggg agaacatctg acatgaggac cgaaatcata 1380aggatgatgg aaagtgcaag accagaagat gtgtctttcc aggggcgggg agtcttcgag 1440ctctcggacg aaaaggcagc gagcccgatc gtgccttcct ttgacatgag taatgaagga 1500tcttatttct tcggagacaa tgcagaggag tacgacaatt aaagaaaaat acccttgttt 1560ctact 1565131027DNAInfluenza A virus 13agcaaaagca ggtagatatt gaaagatgag tcttctaacc gaggtcgaaa cgtacgtact 60ctctatcatc ccgtcaggcc ccctcaaagc cgagatcgca cagagacttg aagatgtctt 120tgcagggaag aacaccgatc ttgaggttct catggaatgg ctaaagacaa gaccaatcct 180gtcacctctg actaagggga ttttaggatt tgtgttcacg ctcaccgtgc ccagtgagcg 240aggactgcag cgtagacgct ttgtccaaaa tgcccttaat gggaacgggg atccaaataa 300catggacaaa gcagttaaac tgtataggaa gctcaagagg gagataacat tccatggggc 360caaagaaatc tcactcagtt attctgctgg tgcacttgcc agttgtatgg gcctcatata 420caacaggatg ggggctgtga ccactgaagt ggcatttggc ctggtatgtg caacctgtga 480acagattgct gactcccagc atcggtctca taggcaaatg gtgacaacaa ccaatccact 540aatcagacat gagaacagaa tggttttagc cagcactaca gctaaggcta tggagcaaat 600ggctggatcg agtgagcaag cagcagaggc catggaggtt gctagtcagg ctagacaaat 660ggtgcaagcg atgagaacca ttgggactca tcctagctcc agtgctggtc tgaaaaatga 720tcttcttgaa aatttgcagg cctatcagaa acgaatgggg gtgcagatgc aacggttcaa 780gtgatcctct cactattgcc gcaaatatca ttgggatctt gcacttgaca ttgtggattc 840ttgatcgtct ttttttcaaa tgcatttacc gtcgctttaa atacggactg aaaggagggc 900cttctacgga aggagtgcca aagtctatga gggaagaata tcgaaaggaa cagcagagtg 960ctgtggatgc tgacgatggt cattttgtca gcatagagct ggagtaaaaa actaccttgt 1020ttctact 102714890DNAInfluenza A virus 14agcaaaagca gggtgacaaa aacataatgg atccaaacac tgtgtcaagc tttcaggtag 60attgctttct ttggcatgtc cgcaaacgag ttgcagacca agaactaggt gatgccccat 120tccttgatcg gcttcgccga gatcagaaat ccctaagagg aaggggcagt actctcggtc 180tggacatcaa gacagccaca cgtgctggaa agcagatagt ggagcggatt ctgaaagaag 240aatccgatga ggcacttaaa atgaccatgg cctctgtacc tgcgtcgcgt tacctaactg 300acatgactct tgaggaaatg tcaagggact ggtccatgct catacccaag cagaaagtgg 360caggccctct ttgtatcaga atggaccagg cgatcatgga taagaacatc atactgaaag 420cgaacttcag tgtgattttt gaccggctgg agactctaat attgctaagg gctttcaccg 480aagagggagc aattgttggc gaaatttcac cattgccttc tcttccagga catactgctg 540aggatgtcaa aaatgcagtt ggagtcctca tcggaggact tgaatggaat gataacacag 600ttcgagtctc tgaaactcta cagagattcg cttggagaag cagtaatgag aatgggagac 660ctccactcac tccaaaacag aaacgagaaa tggcgggaac aattaggtca gaagtttgaa 720gaaataagat ggttgattga agaagtgaga cacaaactga agataacaga gaatagtttt 780gagcaaataa catttatgca agccttacat ctattgcttg aagtggagca agagataaga 840actttctcgt ttcagcttat ttagtactaa aaaacaccct tgtttctact 890151775DNAInfluenza A virus 15agcaaaagca ggggaaaata aaaacaacca aaatgaaggc aaacctactg gtcctgttat 60gtgcacttgc agctgcagat gcagacacaa tatgtatagg ctaccatacg aacaattcaa 120ccgacactgt tgacacagta ctcgagaaga atgtgacagt gacacactct gttaacctgc 180tcgaagacag ccacaacgga aaactatgta gattaaaagg aatagcccca ctacaattgg 240ggaaatgtaa catcgccgga tggctcttgg gaaacccaga atgcgaccca ctgcttccag 300tgagatcatg gtcctacatt gtagaaacac caaactctga gaatggaata tgttatccag 360gagatttcat cgactatgag gagctgaggg agcaattgag ctcagtgtca tcattcgaaa 420gattcgaaat atttcccaaa gaaagctcat ggcccaacca caacacaaac ggagtaacgg 480cagcatgctc ccatgagggg aaaagcagtt tttacagaaa tttgctatgg ctgacggaga 540aggagggctc atacccaaag ctgaaaaatt cttatgtgaa caaaaaaggg aaagaagtcc 600ttgtactgtg gggtattcat cacccgccta acagtaagga acaacagaat ctctatcaga 660atgaaaatgc ttatgtctct gtagtgactt caaattataa caggagattt accccggaaa 720tagcagaaag acccaaagta agagatcaag ctgggaggat gaactattac tggaccttgc 780taaaacccgg agacacaata atatttgagg caaatggaaa tctaatagca ccaatgtatg 840ctttcgcact gagtagaggc tttgggtccg gcatcatcac ctcaaacgca tcaatgcatg 900agtgtaacac gaagtgtcaa acacccctgg gagctataaa cagcagtctc ccttaccaga 960atatacaccc agtcacaata ggagagtgcc caaaatacgt caggagtgcc aaattgagga 1020tggttacagg actaaggaac attccgtcca ttcaatccag aggtctattt ggagccattg 1080ccggttttat tgaaggggga tggactggaa tgatagatgg atggtatggt tatcatcatc 1140agaatgaaca gggatcaggc tatgcagcgg atcaaaaaag cacacaaaat gccattaacg 1200ggattacaaa caaggtgaac actgttatcg agaaaatgaa cattcaattc acagctgtgg 1260gtaaagaatt caacaaatta gaaaaaagga tggaaaattt aaataaaaaa gttgatgatg 1320gatttctgga catttggaca tataatgcag aattgttagt tctactggaa aatgaaagga 1380ctctggaatt ccatgactca aatgtgaaga atctgtatga gaaagtaaaa agccaattaa 1440agaataatgc caaagaaatc ggaaatggat gttttgagtt ctaccacaag tgtgacaatg 1500aatgcatgga aagtgtaaga aatgggactt atgattatcc caaatattca gaagagtcaa 1560agttgaacag ggaaaaggta gatggagtga aattggaatc aatggggatc tatcagattc 1620tggcgatcta ctcaactgtc gccagttcac tggtgctttt ggtctccctg ggggcaatca 1680gtttctggat gtgttctaat ggatctttgc agtgcagaat atgcatctga gattagaatt 1740tcagagatat gaggaaaaac acccttgttt ctact 1775161413DNAInfluenza A virus 16agcaaaagca ggggtttaaa atgaatccaa atcagaaaat aataaccatt ggatcaatct 60gtctggtagt cggactaatt agcctaatat tgcaaatagg gaatataatc tcaatatgga 120ttagccattc aattcaaact ggaagtcaaa accatactgg aatatgcaac caaaacatca 180ttacctataa aaatagcacc tgggtaaagg acacaacttc agtgatatta accggcaatt 240catctctttg tcccatccgt gggtgggcta tatacagcaa agacaatagc ataagaattg 300gttccaaagg agacgttttt gtcataagag agccctttat ttcatgttct cacttggaat 360gcaggacctt ttttctgacc caaggtgcct tactgaatga caagcattca agtgggactg 420ttaaggacag aagcccttat agggccttaa tgagctgccc tgtcggtgaa gctccgtccc 480cgtacaattc aagatttgaa tcggttgctt ggtcagcaag tgcatgtcat gatggcatgg 540gctggctaac aatcggaatt tcaggtccag ataatggagc agtggctgta ttaaaataca 600acggcataat aactgaaacc ataaaaagtt ggaggaagaa aatattgagg acacaagagt 660ctgaatgtgc ctgtgtaaat ggttcatgtt ttactataat gactgatggc ccgagtgatg 720ggctggcctc gtacaaaatt ttcaagatcg aaaaggggaa ggttactaaa tcaatagagt 780tgaatgcacc taattctcac tatgaggaat gttcctgtta ccctgatacc gacaaagtga 840tgtgtgtgtg cagagacaat tggcatggtt cgaaccggcc atgggtgtct ttcgatcaaa 900acctggatta tcaaatagga tacatctgca gtggggtttt cggtgacaac ccgcgtcccg 960aagatggaac aggcagctgt ggtccagtgt atgttgatgg agcaaacgga gtaaagggat 1020tttcatatag gtatggtaat ggtgtttgga taggaaggac caaaagtcac agttccagac 1080atgggtttga gatgatttgg gatcctaatg gatggacaga gactgatagt aagttctctg 1140tgaggcaaga tgttgtggca atgactgatt ggtcagggta tagcggaagt ttcgttcaac 1200atcctgagct gacagggcta gactgtatga ggccgtgctt ctgggttgaa ttaatcaggg 1260gacgacctaa agaaaaaaca atctggacta gtgcgagcag catttctttt tgtggcgtga 1320atagtgatac tgtagattgg tcttggccag acggtgctga gttgccattc agcattgaca 1380agtagtctgt tcaaaaaact ccttgtttct act 1413172220DNAInfluenza A virus 17agcgaaagca ggtactgatt cgaaatggaa gattttgtgc gacaatgctt caatccgatg 60attgtcgagc ttgcggaaaa ggcaatgaaa gagtatggag aggacctgaa aatcgaaaca 120aacaaatttg cagcaatatg cacccacttg gaagtatgct tcatgtattc agattttcat 180ttcatcaatg agcaaggcga atcaataata gtagagcctg aggacccaaa tgcactttta 240aaacacagat ttgagataat agaggggcga gatcgtacaa tggcatggac agttgtaaac 300agtatttgca acaccacagg agctgagaaa ccaaagtttc tgccagatct gtatgattac 360aaagagaata ggttcatcga aattggagtg acaaggagag aagttcacat atactatctg 420gaaaaggcca acaaaattaa atctgagaag acacatattc acattttctc atttactggc 480gaagaaatgg ccacaaaggc cgattacact ctcgatgaag aaagcagggc tagaattaaa 540accagactat tcaccataag gcaagaaatg gcaagcagag gtctttggga ctcctttcgt 600cagtccgaaa gaggcgaaga gacaattgaa gaaaggtttg aaatcacagg gacaatgcgc 660aggctcgctg atcaaagcct tccgccgaac ttctcctgca ttgagaattt tagagcctat 720gtggatggat ttgaaccgaa cggctacatt gagggcaagc tttctcaaat gtccaaagaa 780gtaaatgcta aaattgagcc ttttttgaaa acaacacctc gaccaattag acttccgaat 840gggcctcctt gttttcagcg gtcaaaattc ctgctgatgg attctttaaa attaagcatt 900gaggatccaa atcatgaagg ggagggaata ccactatatg atgcaatcaa gtgtatgaga 960acattctttg gatggaaaga acccactgtt gtcaagccac acgagaaggg aataaatccg 1020aattatctgc tgtcgtggaa gcaggtgttg gaagagctgc aggacattga gagtgaggag 1080aagattccaa gaacaaaaaa catgaaaaaa acgagtcagt taaagtgggc acttggtgag 1140aacatggcac cagagaaggt ggattttgat gactgtaaag atataagcga tttgaagcaa 1200tatgatagtg acgaacctga attaaggtca ttttcaagtt ggatccagaa tgagttcaac 1260aaggcatgcg agctgaccga ttcaatctgg atagagctcg atgagattgg agaagatgtg 1320gccccgattg aacacattgc aagcatgaga agaaattact tcacagctga ggtgtcccat 1380tgcagagcca ctgaatatat aatgaaaggg gtatacatta atactgcttt gcttaatgca 1440tcctgtgcag caatggatga tttccaacta attcctatga taagcaaatg tagaactaaa 1500gagggaagga gaaagaccaa tttgtacggc ttcatcataa aaggaagatc tcacttaagg 1560aatgataccg atgtggtaaa ctttgtgagc atggagtttt ccctcactga cccaagactt 1620gagccacaca aatgggagaa gtactgtgtt cttgagatag gagatatgct tctaaggagt 1680gcaataggcc aagtgtcaag gcccatgttc ttgtatgtaa gaacaaatgg aacctcaaaa 1740attaaaatga aatggggaat ggagatgagg cgttgcctcc tccaatccct ccaacaaata 1800gagagcatga ttgaagctga gtcctctgtc aaggagaaag acatgacaaa agagtttttt 1860gagaatagat cagaaacatg gcccattgga gagtcaccaa aaggagtgga agaaggttcc 1920attgggaaag tatgcaggac actattggct aaatcagtat tcaatagtct gtatgcatct 1980ccacaattag aaggattttc agctgagtca agaaagttgc tccttattgt tcaggctctt 2040agggacaatc tggaacctgg gacctttgat cttgggggac tatatgaagc aattgaggag 2100tgcctgatta atgatccctg ggttttgctt aatgcttctt ggttcaactc cttcctaaaa

2160catgcattga gatagctgag gcaatgctac tatttgttat ccatactgtc caaaaaagta 2220182341DNAInfluenza A virus 18agcgaaagca ggcaaaccat ttgaatggat gtcaatccga cattactttt cttaaaagtg 60ccagcacaaa atgctataag cacaactttt ccttatactg gtgaccctcc ttacagccat 120ggaacaggaa caggatacac catggataca gtcaacagga cacatcagta ctcagaaaga 180ggaagatgga cgaaaaatac cgaaactgga gcaccgcaac tcaacccaat tgatgggcca 240ctaccagaag acaatgaacc aagtggctat gcccaaacag attgtgtatt agaggcaatg 300gctttccttg aagaatccca tcctggtatt tttgaaaact cttgtattga aacaatggag 360gttgttcagc aaacaagggt ggacaaactg acacaaggca gacaaaccta tgactggact 420ctaaatagga accagcctgc tgccacagca ttggcaaaca ccatagaagt attcagatca 480aatggcctca tagcaaatga atctggaagg ctaatagact tccttaaaga tgtaatggag 540tcgatggaca gagacgaagt agaggtcaca actcattttc aaagaaagag gagagtgaga 600gacaatgtaa ctaaaaaaat ggtgacccaa agaacaatag gaaaaaagaa acataaatta 660gacaaaagaa gttacctaat tagggcatta accctgaaca caatgaccaa agatgctgag 720agggggaaac taaaacgcag agcaattgca accccaggaa tgcaaataag ggggtttgta 780tactttgttg agacactggc aagaagcata tgtgaaaagc ttgaacaatc agggttgcca 840gttggaggaa atgagaagaa agcaaagtta gcaaatgttg taaggaagat gatgaccaac 900tcccaggaca ctgaaatttc ttttaccatc actggagata acacaaaatg gaacgaaaat 960caaaacccta gaatgttctt ggccatgatc acatatataa ccaaagatca gcctgaatgg 1020ttcagaaata ttctaagtat tgctccaata atgttttcaa acaaaatggc gagactaggt 1080agggggtata tgtttgaaag caagagtatg aaactgagaa cccaaatacc tgcagagatg 1140ctagccaaca tagatttgaa atatttcaat gattcaacta aaaagaaaat tgaaaaaatt 1200cgaccattat taatagatgg aactgcatca ttgagtcctg gaatgatgat gggcatgttc 1260aatatgttaa gcaccgtctt gggcgtttcc attctgaatc ttgggcaaaa aagatacacc 1320aagactactt actggtggga tggtcttcaa tcgtctgatg attttgcttt gattgtgaat 1380gcacccaatt atgcaggaat tcaagctgga gttgacaggt tttatcgaac ctgtaagctg 1440ctcggaatta atatgagcaa aaagaagtct tacataaaca gaacaggtac ctttgaattc 1500acgagctttt tctatcgtta tgggtttgtt gccaatttca gcatggagct tcctagtttt 1560ggggtgtctg gggtcaatga atctgcagac atgagtattg gagtcactgt catcaaaaac 1620aatatgataa acaatgacct tggcccagca actgctcaaa tggcccttca gttatttata 1680aaagattaca ggtacactta tcgatgccac agaggtgaca cacaaataca aacccggaga 1740tcatttgaaa taaagaaact atgggaccaa acccgctcca aagctgggct gttggtctct 1800gatggaggcc ccaatttata taacattagg aatctacata ttcctgaagt ctgcttgaaa 1860tgggagttga tggatgagga ttaccagggg cgtttatgca acccattgaa cccgtttgtc 1920agccataaag agattgaatc agtgaacaat gcagtgataa tgccggcaca tggtccagcc 1980aaaaatatgg agtatgacgc tgttgcaaca acacactctt gggtccccaa aagaaatcga 2040tccattttaa acacgagcca aagagggata cttgaagatg agcaaatgta ccaaaggtgc 2100tgcaatttat ttgaaaaatt cttcccaagt agctcataca gaagaccagt tggaatatcc 2160agtatggtag aggctatggt ttcaagagcc cgaattgatg cacggattga tttcgaatct 2220ggaaggataa agaaagagga attcgctgag atcatgaaga cctgttccac cattgaagac 2280ctcagacggc aaaaataggg aatttggctt gtccttcatg aaaaaatgcc ttgtttctac 2340t 2341192341DNAInfluenza A virus 19agcgaaagca ggtcaattat attcaatatg gaaagaataa aagagctaag gaatctgatg 60tcacaatctc gcactcgcga gatacttacc aaaactactg tagaccacat ggccataata 120aagaaataca catcaggaag acaggagaaa aacccatcac ttaggatgaa atggatgatg 180gcaatgaaat acccaattac agctgataaa aggataacgg aaatgattcc tgaaagaaat 240gagcaaggac agacactatg gagtaaagtg aatgatgccg gatcagaccg agtgatgata 300tcacccctag ctgtgacatg gtggaacaga aatggaccag tggcaaacac tatccactat 360ccaaaaatct acaaaactta ctttgaaaag gttgaaaggt taaaacatgg aacctttggc 420cctgtacact ttagaaacca agtcaaaata cgccgaagag tcgacataaa tcctggtcat 480gcagacctca gcgccaagga ggcacaggat gtaattatgg aagttgtttt ccctaatgaa 540gtgggagcca gaatactaac atcagaatcg caattaacga taactaagga gaaaaaagag 600gaactccaga attgcaaaat ttcccctttg atggttgcat acatgttaga gagggaactt 660gtccgcaaaa caagatttct cccggttgca ggtggaacaa gcagtgtgta cattgaagtt 720ttgcatttaa cacaggggac atgctgggag cagatgtaca ctccaggtgg ggaggtgagg 780aatgatgatg ttgatcaaag cctaattatt gctgctagga acatagtgag aagagctgca 840gtatcagcag atccactagc atctttatta gaaatgtgcc atagcacaca gattggtgga 900acaaggatgg tggatattct caggcaaaat ccaacagaag aacaagctgt ggacatatgc 960aaagcagcaa tggggctgag aatcagttca tccttcagtt ttggcggatt cacatttaag 1020agaacaagtg gatcgtcagt caaaagggag gaagaagtgc taacgggcaa tctgcaaaca 1080ttgaagctaa ctgtgcatga gggatatgaa gaattcacaa tagttgggaa aaaggcaaca 1140gctatactca gaaaagcaac caggagattg attcaactaa tagtgagtgg aagagacgaa 1200cagtcaatag tcgaagcaat agttgtagca atggtattct cacaagaaga ttgcatggta 1260aaagcggtta gaggtgatct gaatttcgtt aatagagcga atcagcggtt gaatcccatg 1320catcaacttt tgagacattt tcagaaggat gctaaagtac ttttcctaaa ttggggaatt 1380gaacatattg acaatgtgat gggaatgatt gggatattac ctgatatgac tccaagtacc 1440gagatgtcaa tgagaggagt gagagtcagc aaaatgggtg tagatgaata ctccaatgct 1500gaaagggtag tggtaagcat tgaccgtttt ttgagggtcc gggaccaaag aggaaatgta 1560ttactgtctc cagaggaagt cagtgaaaca caaggaacag agaaactgac aataacttac 1620tcttcatcat tgatgtggga gattaatggc cctgagtcag tgttgatcaa tacctaccaa 1680tggatcatca gaaactggga gactgttaaa attcagtggt ctcagaaccc tacaatgcta 1740tacaataaaa tggaatttga gccatttcaa tctctagtcc ccaaggccat tagaggccaa 1800tacagtgggt ttgttagaac tctatttcaa caaatgaggg atgtgctcgg gacctttgac 1860acaactcaga taataaaact tcttcccttt gcagccgctc caccaaagca aagtagaatg 1920caattctcgt cattaactgt gaatgtgagg ggatcaggaa tgagaatact tgtaaggggt 1980aattctccag tattcaacta caacaagacc actaagagac tcacaatcct cggaaaggat 2040gctggcactt taactgaaga cccagatgaa ggcacagctg gagtggaatc tgctgtttta 2100aggggattcc tcattctagg caaagaagat agaagatatg ggccagcatt aagcatcagt 2160gaattgagca accttgcgaa aggggagaaa gctaatgtgc taattgggca aggggatgta 2220gtgttggtaa tgaaacgaaa acgggactct agcatactta ctgacagcca gacagcgacc 2280aaaagaattc ggatggccat caattaattt cgaataattt aaaaacgacc ttgtttctac 2340t 2341201565DNAInfluenza A virus 20agcaaaagca gggtagataa tcactcactg agtgacatca aagtcatggc gtcccaaggc 60accaaacggt cttacgaaca gatggagact gatggggaac gccagaatgc aactgaaatc 120agagcatccg tcggaagaat gattggggga attgggcgat tctacatcca aatgtgcacc 180gagcttaagc tcaatgatta tgagggacga ctgatccaga acagcttaac aatagagaga 240atggtgcttt ctgcttttga tgagaggaga aataaatatc tggaagaaca tcccagcgca 300gggaaagatc ctaagaaaac tggaggaccc atatacaaga gagtagatgg aaagtgggtg 360agggaactcg tcctttatga caaagaagaa ataaggcgga tttggcgcca agccaacaat 420ggtgatgatg caacagctgg tttgactcac attatgatct ggcattctaa tttgaatgat 480acaacttacc agaggacaag agctcttgtc cgcaccggaa tggatcccag gatgtgctct 540ttgatgcaag gttcaactct ccctagaaga tctggagcag caggcgctgc agtcaaagga 600gttgggacaa tggtattgga gttaatcagg atgatcaaac gtgggatcaa cgaccgaaac 660ttctggaggg gtgagaatgg gagaaaaaca aggattgctt atgagagaat gtgcaacatt 720ctcaaaggaa aatttcaaac agctgcacaa aaagcaatga tggatcaagt gagagaaagc 780cggaacccag gaaatgctga gatcgaagat ctcacttttc tggcacggtc tgcactcata 840ttgagaggat cagttgctca caagtcttgc ctgcctgctt gtgtgtatgg accagccgta 900gccagtgggt atgacttcga aaaagaggga tactctttgg tgggagtaga ccctttcaaa 960ctgcttcaaa ccagtcaggt atacagccta attagaccaa acgagaatcc cgcacacaag 1020agccagttgg tgtggatggc atgcaattct gctgcatttg aagatctaag agtgtcaagc 1080ttcatcagag ggacaagagt acttccaagg gggaagctct ccactagagg agtacaaatt 1140gcttcaaatg aaaacatgga tgctattgtc tcaagtactc ttgaactgag aagcagatac 1200tgggccataa gaaccagaag tggagggaac accaatcaac aaagggcctc tgcgggccaa 1260atcagcacac aacctacgtt ttctgtgcag agaaacctcc catttgacaa aacaaccatc 1320atggcagcat tcactgggaa tacagaggga agaacatcag acatgcgggc agaaatcata 1380aagatgatgg aaagtgcaag accagaagaa gtgtccttcc agggacgggg agtctttgag 1440ctctcggacg aaagggcaac gaacccgatc gtgccctcct ttgacatgag taatgaagga 1500tcttatttct tcggagacaa tgcagaggag tacgacaatt aatgaaaaat acccttgttt 1560ctact 1565211027DNAInfluenza A virus 21agcaaaagca ggtagatatt gaaagatgag tcttctaacc gaggtcgaaa cgtacgttct 60ctctatcgtc ccatcaggcc ccctcaaagc cgagatcgca cagagacttg aagatgtatt 120tgctggaaag aataccgatc ttgaggctct catggaatgg ctaaagacaa gaccaatcct 180gtcacctctg actaagggga ttttaggatt tgtgttcacg ctcaccgtgc ccagtgagcg 240aggactgcag cgtagacgct ttgtccaaaa tgcccttaat gggaatgggg atccaaataa 300tatggacaag gctgtcaaac tgtatcgaaa gcttaagagg gagataacat tccatggggc 360caaagaaata gcactcagtt attctgctgg agcacttgcc agttgtatgg gactcatata 420caacaggatg ggggctgtga ccaccgaatc agcatttggc cttatatgtg caacctgtga 480acagattgcc gactcccagc ataagtctca taggcaaatg gtaacaacaa ccaatccatt 540aataagacat gagaacagaa tggttctggc cagcactaca gctaaggcta tggagcaaat 600ggctggatcg agtgaacaag cagctgaggc catggaggtt gctagtcagg ccaggcagat 660ggtgcaggca atgagagcca ttgggactca tcctagctct agcactggtc tgaaaaatga 720tctccttgaa aatttgcagg cctatcagaa acgaatgggg gtgcagatgc aacgattcaa 780gtgatcctct tgttgttgcc gcaagtataa ttgggattgt gcacctgata ttgtggatta 840ttgatcgcct tttttccaaa agcatttatc gtatttttaa acacggttta aaaagagggc 900cttctacgga aggagtaccg gagtctatga gggaagaata tcgagaggaa cagcagaatg 960ctgtggatgc tgacgatggt cattttgtca gcatagagct agagtaaaaa actaccttgt 1020ttctact 102722889DNAInfluenza A virus 22agcaaaagca gggtggcaaa gacataatgg attcccacac tgtgtcaagc tttcaggtag 60attgtttcct ttggcatgtc cgcaaacaag ttgcagacca agatctaggc gatgccccct 120tccttgatcg gcttcgccga gatcagaagt ctctaaaggg acgaggcaac actctcggtc 180tgaacatcga aacagccact tgtgttggaa agcaaatagt agagaggatt ctgaaagaag 240aatccgatga gacatttaga atgaccatgg cctccgcact tgcttcgcgg tacctaactg 300acatgactgt tgaagaaatg tcaagggact ggttcatgct catgcccaag cagaaagtgg 360ctggccctct ttgtgtcaga atggaccagg cgataatgga taagaacatc atactgaaag 420cgaacttcag tgtgattttt gaccggttgg agaatctgac attactaagg gctttcaccg 480aagagggagc aattgttggc gaaatttcac cattgccttc ttttccagga catactaatg 540aggatgtcaa aaatgcaatt ggggtcctca tcgggggact tgaatggaat gataacacag 600ttcgagtctc tgaagctcta cagagattcg cttggagaag cagtaatgag actgggggac 660ctccattcac tacaacacag aaacggaaaa tggcgggaac aattaggtca gaagtttgaa 720gaaataagat ggctgattga agaagtgagg cataaattga agacgacaga gagtagtttt 780gaacaaataa catttatgca agcattacag ctattgtttg aagtggaaca agagattaga 840acgttctcgt ttcagcttat ttaatgataa aaacaccctt gtttctact 889231775DNAInfluenza A virus 23agcgaaagca ggggaaaata aaagcaacca aaatgaaagt aaaactactg gttctgttat 60gtacatttac agctacatat gcagacacaa tatgtatagg ctaccatgcc aacaactcaa 120ccgacactgt tgacacagta cttgagaaga atgtaacagt gacacactct gtcaacctac 180ttgaggacag tcacaatgga aaactatgtc tactaaaagg aatagcccca ctacaattgg 240gtaattgcag cgttgccgga tggatcttag gaaacccaga atgcgaatta ctgatttcca 300aggaatcatg gtcctacatt gtagaaacac caaatcctga gaatggaaca tgttacccag 360ggtatttcgc cgactatgag gaactgaggg agcaattgag ttcagtatct tcatttgaaa 420ggttcgaaat attccccaaa gagagctcat ggcccaacca caccgtaacc ggagtatcag 480catcatgctc ccataacggg aaaagcagtt tttacagaaa tttgctatgg ctgacgggga 540agaatggttt gtacccaaac ctgagcaagt cctatgcaaa caacaaagag aaagaagtcc 600ttgtactatg gggtgttcat cacccgccta acatagggga ccaaagggcc ctctatcata 660cagaaaatgc ttatgtctct gtagtgtctt cacattatag cagaagattc accccagaaa 720tagccaaaag acccaaggtg agagaccagg aaggaagaat caactactac tggactctgc 780tggaacccgg ggatacaata atatttgagg caaatggaaa tctaatagcg ccaaggtatg 840ctttcgcact gagtagaggc ttgggatcag gaatcatcac ctcaaatgca ccaatggatg 900aatgtgatgc aaagtgtcaa acacctcagg gagctataaa cagcagtctt cctttccaga 960atgtacaccc agtcacaata ggagagtgtc caaagtatgt caggagtgca aaattaagga 1020tggttacagg actaaggaac atcccatcca ttcaatccag aggtttgttt ggagcaattg 1080ccggtttcat tgaagggggg tggactggaa tggtagatgg ttggtatggt tatcatcatc 1140agaatgagca aggatctggg tatgctgcag atcaaaaaag cacacaaaat gccattaacg 1200ggattacaaa caaggtgaat tctgtaattg agaaaatgaa cactcaattc acagctgtgg 1260gcaaagaatt caacaaattg gaaagaagga tggaaaactt aaataaaaaa gttgatgatg 1320ggtttctaga catttggacc tataatgcag aattgttggt tctactggaa aatgaaagga 1380ctttggattt ccatgactcc aacgtgaaga atctgtatga gaaagtaaaa agccaattaa 1440agaataatgc caaagaaata ggaaacgggt gttttgaatt ctatcacaag tgtaacgatg 1500aatgcatgga gagtgtgaaa aatggaactt atgactatcc aaaatattcc gaagaatcaa 1560agttaaacag agagaaaatt gatggagtga aattggaatc aatgggagtc tatcagattc 1620tggcgatcta ctcaacagtc gccagttccc tggttctttt ggtctccctg ggggcaatca 1680gcttctggat gtgttccaat gggtctttgc agtgtagaat atgcatctaa gaccagaatt 1740tcagaaatat aaggaaaaac acccttgttt ctact 1775241462DNAInfluenza A virus 24agcaaaagca ggagtttaaa atgaatccaa atcaaaaaat aataaccatt ggatcaatca 60gtatagcaat cggaataatt agtctaatgt tgcaaatagg aaatattatt tcaatatggg 120ctagtcactc aatccaaact ggaagtcaaa accacactgg aatatgcaac caaaaaatca 180tcacatatga aaacagcacc tgggtgaatc acacatatgt taatattaac aacactaatg 240ttgttgctgg aaaggacaaa acttcagtga cactggccgg caattcatct ctttgtccta 300tcagtggatg ggctatatac acaaaagaca acagcataag aattggctcc aaaggagatg 360tttttgtcat aagagaacct ttcatatcat gttctcactt ggaatgcaga accttttttc 420tgacccaagg tgctctatta aatgacaaac attcaaatgg aaccgttaag gacagaagtc 480cttatagggc cttaatgagc tgtcctctag gtgaagcccc gtcaccatac aattcaaagt 540ttgaatcagt tgcatggtca gcaagcgcat gccatgatgg caagggctgg ttaacaatcg 600gaatttctgg tccagacaat ggagctgtgg ctgtactaaa atacaacgga ataataactg 660aaaccataaa aagttgggaa aagcgaatat tgagaacaca agagtctgaa tgtgtttgtg 720tgaacgggtc atgtttcacc ataatgaccg atggcccgag taatggggcc gcctcgtaca 780aaatcttcaa gatcgaaaag gggaaggtta ctaaatcaac agagttgaat gcacccaatt 840ttcattatga ggaatgttcc tgttacccag acactggcac agtgatgtgt gtatgcaggg 900acaactggca tggttcaaat cgaccttggg tatcttttaa tcaaaacttg gattatcaaa 960taggatacat ctgcagtgga gtgttcggtg acaatccgcg tcccaaagat gggaagggca 1020gctgtaatcc agtgactgtt gatggagcag acggagttaa ggggttttca tacaaatatg 1080gtaatggtgt ttggatagga aggactaaaa gtaacagact tagaaagggg tttgagatga 1140tttgggatcc taatggatgg acagataccg acagtgattt ctcagtgaaa caggatgttg 1200tggcaataac tgattggtca gggtacagcg gaagtttcgt ccaacatcct gagttaacag 1260gattggactg tataagacct tgcttctggg ttgagttagt cagaggactg cctagagaaa 1320atacaacaat ctggactagt gggagcagca tttctttttg tggcgttgat agtgatactg 1380caaattggtc ttggccagac ggtgctgagt tgccgttcac cattgacaag tagctcgttg 1440aaaaaaactc cttgtttcta ct 146225566PRTInfluenza A virus 25Met Lys Ala Lys Leu Leu Val Leu Leu Cys Ala Leu Ser Ala Thr Asp 1 5 10 15 Ala Asp Thr Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Asp Thr 20 25 30 Val Asp Thr Val Leu Glu Lys Asn Val Thr Val Thr His Ser Val Asn 35 40 45 Leu Leu Glu Asp Asn His Asn Gly Lys Leu Cys Lys Leu Lys Gly Ile 50 55 60 Ala Pro Leu Gln Leu Gly Lys Cys Ser Ile Ala Gly Trp Ile Leu Gly 65 70 75 80 Asn Pro Glu Cys Glu Ser Leu Phe Ser Lys Lys Ser Trp Ser Tyr Ile 85 90 95 Ala Glu Thr Pro Asn Ser Glu Asn Gly Thr Cys Tyr Pro Gly Tyr Phe 100 105 110 Ala Asp Tyr Glu Glu Leu Arg Glu Gln Leu Ser Ser Val Ser Ser Phe 115 120 125 Glu Arg Phe Glu Ile Phe Pro Lys Glu Ser Ser Trp Pro Lys His Asn 130 135 140 Val Thr Lys Gly Val Thr Ala Ala Cys Ser His Lys Gly Lys Ser Ser 145 150 155 160 Phe Tyr Arg Asn Leu Leu Trp Leu Thr Glu Lys Asn Gly Ser Tyr Pro 165 170 175 Asn Leu Ser Lys Ser Tyr Val Asn Asn Lys Glu Lys Glu Val Leu Val 180 185 190 Leu Trp Gly Val His His Pro Ser Asn Ile Glu Asp Gln Lys Thr Ile 195 200 205 Tyr Arg Lys Glu Asn Ala Tyr Val Ser Val Val Ser Ser His Tyr Asn 210 215 220 Arg Arg Phe Thr Pro Glu Ile Ala Lys Arg Pro Lys Val Arg Asn Gln 225 230 235 240 Glu Gly Arg Ile Asn Tyr Tyr Trp Thr Leu Leu Glu Pro Gly Asp Thr 245 250 255 Ile Ile Phe Glu Ala Asn Gly Asn Leu Ile Ala Pro Trp Tyr Ala Phe 260 265 270 Ala Leu Ser Arg Gly Phe Gly Ser Gly Ile Ile Thr Ser Asn Ala Ser 275 280 285 Met Asp Glu Cys Asp Ala Lys Cys Gln Thr Pro Gln Gly Ala Ile Asn 290 295 300 Ser Ser Leu Pro Phe Gln Asn Val His Pro Val Thr Ile Gly Glu Cys 305 310 315 320 Pro Lys Tyr Val Arg Ser Thr Lys Leu Arg Met Val Thr Gly Leu Arg 325 330 335 Asn Ile Pro Ser Ile Gln Ser Arg Gly Leu Phe Gly Ala Ile Ala Gly 340 345 350 Phe Ile Glu Gly Gly Trp Thr Gly Met Ile Asp Gly Trp Tyr Gly Tyr 355 360 365 His His Gln Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Gln Lys Ser 370 375 380 Thr Gln Asn Ala Ile Asn Gly Ile Thr Asn Lys Val Asn Ser Ile Ile 385 390 395 400 Glu Lys Met Asn Thr Gln Phe Thr Ala Val Gly Lys Glu Phe Asn Lys 405 410 415 Leu Glu Lys Arg Met Glu Asn Leu Asn Lys Lys Val Asp Asp Gly Phe 420 425 430 Leu Asp Ile Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Leu Glu Asn 435 440 445 Glu Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys Asn Leu Tyr Glu 450 455 460 Lys Val Lys Ser Gln Leu Lys Asn Asn Ala Lys

Glu Ile Gly Asn Gly 465 470 475 480 Cys Phe Glu Phe Tyr His Lys Cys Asn Asn Glu Cys Met Glu Ser Val 485 490 495 Lys Asn Gly Thr Tyr Asp Tyr Pro Lys Tyr Ser Glu Glu Ser Lys Leu 500 505 510 Asn Arg Glu Lys Ile Asp Gly Val Lys Leu Glu Ser Met Gly Val Tyr 515 520 525 Gln Ile Leu Ala Ile Tyr Ser Thr Val Ala Ser Ser Leu Val Leu Leu 530 535 540 Val Ser Leu Gly Ala Ile Ser Phe Trp Met Cys Ser Asn Gly Ser Leu 545 550 555 560 Gln Cys Arg Ile Cys Ile 565 26470PRTInfluenza A virus 26Met Asn Pro Asn Gln Lys Ile Ile Thr Ile Gly Ser Ile Cys Met Thr 1 5 10 15 Ile Gly Ile Ile Ser Leu Ile Leu Gln Ile Gly Asn Ile Ile Ser Ile 20 25 30 Trp Val Ser His Ser Ile Gln Thr Gly Ser Gln Asn His Thr Gly Ile 35 40 45 Cys Asn Gln Arg Ile Ile Thr Tyr Glu Asn Ser Thr Trp Val Asn Gln 50 55 60 Thr Tyr Val Asn Ile Asn Asn Thr Asn Val Val Ala Gly Lys Asp Thr 65 70 75 80 Thr Ser Val Thr Leu Ala Gly Asn Ser Ser Leu Cys Pro Ile Arg Gly 85 90 95 Trp Ala Ile Tyr Ser Lys Asp Asn Ser Ile Arg Ile Gly Ser Lys Gly 100 105 110 Asp Val Phe Val Ile Arg Glu Pro Phe Ile Ser Cys Ser His Leu Glu 115 120 125 Cys Arg Thr Phe Phe Leu Thr Gln Gly Ala Leu Leu Asn Asp Lys His 130 135 140 Ser Asn Gly Thr Val Lys Asp Arg Ser Pro Tyr Arg Ala Leu Met Ser 145 150 155 160 Cys Pro Ile Gly Glu Ala Pro Ser Pro Tyr Asn Ser Arg Phe Glu Ser 165 170 175 Val Ala Trp Ser Ala Ser Ala Cys His Asp Gly Met Gly Trp Leu Thr 180 185 190 Ile Gly Ile Ser Gly Pro Asp Asp Gly Ala Val Ala Val Leu Lys Tyr 195 200 205 Asn Gly Ile Ile Thr Glu Thr Ile Lys Ser Trp Arg Lys Arg Ile Leu 210 215 220 Arg Thr Gln Glu Ser Glu Cys Val Cys Val Asn Gly Ser Cys Phe Thr 225 230 235 240 Ile Met Thr Asp Gly Pro Ser Asn Gly Pro Ala Ser Tyr Arg Ile Phe 245 250 255 Lys Ile Glu Lys Gly Lys Ile Thr Lys Ser Ile Glu Leu Asp Ala Pro 260 265 270 Asn Ser His Tyr Glu Glu Cys Ser Cys Tyr Pro Asp Thr Gly Thr Val 275 280 285 Met Cys Val Cys Arg Asp Asn Trp His Gly Ser Asn Arg Pro Trp Val 290 295 300 Ser Phe Asn Gln Asn Leu Asp Tyr Gln Ile Gly Tyr Ile Cys Ser Gly 305 310 315 320 Val Phe Gly Asp Asn Pro Arg Pro Lys Asp Gly Lys Gly Ser Cys Asp 325 330 335 Pro Val Thr Val Asp Gly Ala Asp Gly Val Lys Gly Phe Ser Tyr Arg 340 345 350 Tyr Gly Asn Gly Val Trp Ile Gly Arg Thr Lys Ser Asn Ser Ser Arg 355 360 365 Lys Gly Phe Glu Met Ile Trp Asp Pro Asn Gly Trp Thr Asp Thr Asp 370 375 380 Ser Asn Phe Leu Val Lys Gln Asp Val Val Ala Met Thr Asp Trp Ser 385 390 395 400 Gly Tyr Ser Gly Ser Phe Val Gln His Pro Glu Leu Thr Gly Leu Asp 405 410 415 Cys Met Arg Pro Cys Phe Trp Val Glu Leu Val Arg Gly Arg Pro Arg 420 425 430 Glu Gly Thr Thr Val Trp Thr Ser Gly Ser Ser Ile Ser Phe Cys Gly 435 440 445 Val Asn Ser Asp Thr Ala Asn Trp Ser Trp Pro Asp Gly Ala Glu Leu 450 455 460 Pro Phe Thr Ile Asp Lys 465 470 27469PRTInfluenza A virus 27Met Asn Pro Asn Gln Lys Ile Ile Thr Ile Gly Ser Val Cys Met Thr 1 5 10 15 Ile Gly Met Ala Asn Leu Ile Leu Gln Ile Gly Asn Ile Ile Ser Ile 20 25 30 Trp Ile Ser His Ser Ile Gln Leu Gly Asn Gln Asn Gln Ile Glu Thr 35 40 45 Cys Asn Gln Ser Val Ile Thr Tyr Glu Asn Asn Thr Trp Val Asn Gln 50 55 60 Thr Tyr Val Asn Ile Ser Asn Thr Asn Phe Ala Ala Gly Gln Ser Val 65 70 75 80 Val Ser Val Lys Leu Ala Gly Asn Ser Ser Leu Cys Pro Val Ser Gly 85 90 95 Trp Ala Ile Tyr Ser Lys Asp Asn Ser Val Arg Ile Gly Ser Lys Gly 100 105 110 Asp Val Phe Val Ile Arg Glu Pro Phe Ile Ser Cys Ser Pro Leu Glu 115 120 125 Cys Arg Thr Phe Phe Leu Thr Gln Gly Ala Leu Leu Asn Asp Lys His 130 135 140 Ser Asn Gly Thr Ile Lys Asp Arg Ser Pro Tyr Arg Thr Leu Met Ser 145 150 155 160 Cys Pro Ile Gly Glu Val Pro Ser Pro Tyr Asn Ser Arg Phe Glu Ser 165 170 175 Val Ala Trp Ser Ala Ser Ala Cys His Asp Gly Ile Asn Trp Leu Thr 180 185 190 Ile Gly Ile Ser Gly Pro Asp Asn Gly Ala Val Ala Val Leu Lys Tyr 195 200 205 Asn Gly Ile Ile Thr Asp Thr Ile Lys Ser Trp Arg Asn Asn Ile Leu 210 215 220 Arg Thr Gln Glu Ser Glu Cys Ala Cys Val Asn Gly Ser Cys Phe Thr 225 230 235 240 Val Met Thr Asp Gly Pro Ser Asn Gly Gln Ala Ser Tyr Lys Ile Phe 245 250 255 Arg Ile Glu Lys Gly Lys Ile Val Lys Ser Val Glu Met Asn Ala Pro 260 265 270 Asn Tyr His Tyr Glu Glu Cys Ser Cys Tyr Pro Asp Ser Ser Glu Ile 275 280 285 Thr Cys Val Cys Arg Asp Asn Trp His Gly Ser Asn Arg Pro Trp Val 290 295 300 Ser Phe Asn Gln Asn Leu Glu Tyr Gln Ile Gly Tyr Ile Cys Ser Gly 305 310 315 320 Ile Phe Gly Asp Asn Pro Arg Pro Asn Asp Lys Thr Gly Ser Cys Gly 325 330 335 Pro Val Ser Ser Asn Gly Ala Asn Gly Val Lys Gly Phe Ser Phe Lys 340 345 350 Tyr Gly Asn Gly Val Trp Ile Gly Arg Thr Lys Ser Ile Ser Ser Arg 355 360 365 Asn Gly Phe Glu Met Ile Trp Asp Pro Asn Gly Trp Thr Gly Thr Asp 370 375 380 Asn Asn Phe Ser Ile Lys Gln Asp Ile Val Gly Ile Asn Glu Trp Ser 385 390 395 400 Gly Tyr Ser Gly Ser Phe Val Gln His Pro Glu Leu Thr Gly Leu Asp 405 410 415 Cys Ile Arg Pro Cys Phe Trp Val Glu Leu Ile Arg Gly Arg Pro Lys 420 425 430 Glu Asn Thr Ile Trp Thr Ser Gly Ser Ser Ile Ser Phe Cys Gly Val 435 440 445 Asn Ser Asp Thr Val Gly Trp Ser Trp Pro Asp Gly Ala Glu Leu Pro 450 455 460 Phe Thr Ile Asp Lys 465 282277DNAInfluenza A virus 28atggaacgca ttaaagaact gcgcaacctg atgagccaga gccgcacccg cgaaattctg 60accaaaacca ccgtggatca tatggcgatt attaaaaaat ataccagcgg ccgccaggaa 120aaaaacccga gcctgcgcat gaaatggatg atggcgatga aatatccgat taccgcggat 180aaacgcatta ccgaaatgat tccggaacgc aacgaacagg gccagaccct gtggagcaaa 240gtgaacgatg cgggcagcga tcgcgtgatg attagcccgc tggcggtgac ctggtggaac 300cgcaacggcc cggtggcgag caccattcat tatccgaaaa tttataaaac ctattttgaa 360aaagtggaac gcctgaaaca tggcaccttt ggcccggtgc attttcgcaa ccaggtgaaa 420attcgccgcc gcgtggatat taacccgggc catgcggatc tgagcgcgaa agaagcgcag 480gatgtgatta tggaagtggt gtttccgaac gaagtgggcg cgcgcattct gaccagcgaa 540agccagctga ccattaccaa agaaaaaaaa gaagaactgc agaactgcaa aattagcccg 600ctgatggtgg cgtatatgct ggaacgcgaa ctggtgcgca aaacccgctt tctgccggtg 660gcgggcggca ccagcagcgt gtatattgaa gtgctgcatc tgacccaggg cacctgctgg 720gaacagatgt ataccccggg cggcgaagtg cgcaacgatg atgtggatca gagcctgatt 780attgcggcgc gcaacattgt gcgccgcgcg gcggtgagcg cggatccgct ggcgagcctg 840ctggaaatgt gccatagcac ccagattggc ggcacccgca tggtggatat tctgcgccag 900aacccgaccg aagaacaggc ggtggatatt tgcaaagcgg cgatgggcct gcgcattagc 960agcagcttta gctttggcgg ctttaccttt aaacgcacca gcggcagcag cgtgaaacgc 1020gaagaagaag tgctgaccgg caacctgcag accctgaaac tgaccgtgca tgaaggctat 1080gaagaattta ccatggtggg caaacgcgcg accgcgattc tgcgcaaagc gacccgccgc 1140ctgattcagc tgattgtgag cggccgcgat gaacagagca ttgtggaagc gattgtggtg 1200gcgatggtgt ttagccagga agattgcatg gtgaaagcgg tgcgcggcga tctgaacttt 1260gtgaaccgcg cgaaccagcg cctgaacccg atgcatcagc tgctgcgcca ttttcagaaa 1320gatgcgaaag tgctgtttct gaactggggc attgaaccga ttgataacgt gatgggcatg 1380attggcattc tgccggatat gaccccgagc accgaaatga gcatgcgcgg cgtgcgcgtg 1440agcaaaatgg gcgtggatga atatagcaac gcggaacgcg tggtggtgag cattgatcgc 1500tttctgcgcg tgcgcgatca gcgcggcaac gtgctgctga gcccggaaga agtgagcgaa 1560acccagggca ccgaaaaact gaccattacc tatagcagca gcatgatgtg ggaaattaac 1620ggcccggaaa gcgtgctgat taacacctat cagtggatta ttcgcaactg ggaaaccgtg 1680aaaattcagt ggagccagaa cccgaccatg ctgtataaca aaatggaatt tgaaccgttt 1740cagagcctgg tgccgaaagc gattcgcggc cagtatagcg gctttgtgcg caccctgttt 1800cagcagatgc gcgatgtgct gggcaccttt gataccaccc agattattaa actgctgccg 1860tttgcggcgg cgccgccgaa acagagccgc atgcagttta gcagcctgac cgtgaacgtg 1920cgcggcagcg gcatgcgcat tctggtgcgc ggcaacagcc cggtgtttaa ctataacaaa 1980accaccaaac gcctgaccgt gctgggcaaa gatgcgggca ccctgaccga agatccggat 2040gaaggcaccg cgggcgtgga aagcgcggtg ctgcgcggct ttctgattct gggcaaagaa 2100gatcgccgct atggcccggc gctgagcatt aacgaactga gcaacctggc gaaaggcgaa 2160aaagcgaacg tgctgattgg ccagggcgat gtggtgctgg tgatgaaacg caaacgcgat 2220agcagcattc tgaccgatag ccagaccgcg accaaacgca ttcgcatggc gattaac 227729716PRTInfluenza A virus 29Met Glu Asp Phe Val Arg Gln Cys Phe Asn Pro Met Ile Val Glu Leu 1 5 10 15 Ala Glu Lys Ala Met Lys Glu Tyr Gly Glu Asp Pro Lys Ile Glu Thr 20 25 30 Asn Lys Phe Ala Ala Ile Cys Thr His Leu Glu Val Cys Phe Met Tyr 35 40 45 Ser Asp Phe His Phe Ile Asp Glu Arg Gly Glu Ser Ile Ile Val Glu 50 55 60 Ser Gly Asp Pro Asn Ala Leu Leu Lys His Arg Phe Glu Ile Ile Glu 65 70 75 80 Gly Arg Asp Arg Ile Met Ala Trp Thr Val Val Asn Ser Ile Cys Asn 85 90 95 Thr Thr Gly Val Glu Lys Pro Lys Phe Leu Pro Asp Leu Tyr Asp Tyr 100 105 110 Lys Glu Asn Arg Phe Ile Glu Ile Gly Val Thr Arg Arg Glu Val His 115 120 125 Ile Tyr Tyr Leu Glu Lys Ala Asn Lys Ile Lys Ser Glu Lys Thr His 130 135 140 Ile His Ile Phe Ser Phe Thr Gly Glu Glu Met Ala Thr Lys Ala Asp 145 150 155 160 Tyr Thr Leu Asp Glu Glu Ser Arg Ala Arg Ile Lys Thr Arg Leu Phe 165 170 175 Thr Ile Arg Gln Glu Met Ala Ser Arg Ser Leu Trp Asp Ser Phe Arg 180 185 190 Gln Ser Glu Arg Gly Glu Glu Thr Ile Glu Glu Lys Phe Glu Ile Thr 195 200 205 Gly Thr Met Arg Lys Leu Ala Asp Gln Ser Leu Pro Pro Asn Phe Pro 210 215 220 Ser Leu Glu Asn Phe Arg Ala Tyr Val Asp Gly Phe Glu Pro Asn Gly 225 230 235 240 Cys Ile Glu Gly Lys Leu Ser Gln Met Ser Lys Glu Val Asn Ala Lys 245 250 255 Ile Glu Pro Phe Leu Arg Thr Thr Pro Arg Pro Leu Arg Leu Pro Asp 260 265 270 Gly Pro Leu Cys His Gln Arg Ser Lys Phe Leu Leu Met Asp Ala Leu 275 280 285 Lys Leu Ser Ile Glu Asp Pro Ser His Glu Gly Glu Gly Ile Pro Leu 290 295 300 Tyr Asp Ala Ile Lys Cys Met Lys Thr Phe Phe Gly Trp Lys Glu Pro 305 310 315 320 Asn Ile Val Lys Pro His Glu Lys Gly Ile Asn Pro Asn Tyr Leu Met 325 330 335 Ala Trp Lys Gln Val Leu Ala Glu Leu Gln Asp Ile Glu Asn Glu Glu 340 345 350 Lys Ile Pro Arg Thr Lys Asn Met Lys Arg Thr Ser Gln Leu Lys Trp 355 360 365 Ala Leu Gly Glu Asn Met Ala Pro Glu Lys Val Asp Phe Asp Asp Cys 370 375 380 Lys Asp Val Gly Asp Leu Lys Gln Tyr Asp Ser Asp Glu Pro Glu Pro 385 390 395 400 Arg Ser Leu Ala Ser Trp Val Gln Asn Glu Phe Asn Lys Ala Cys Glu 405 410 415 Leu Thr Asp Ser Ser Trp Ile Glu Leu Asp Glu Ile Gly Glu Asp Val 420 425 430 Ala Pro Ile Glu His Ile Ala Ser Met Arg Arg Asn Tyr Phe Thr Ala 435 440 445 Glu Val Ser His Cys Arg Ala Thr Glu Tyr Ile Met Lys Gly Val Tyr 450 455 460 Ile Asn Thr Ala Leu Leu Asn Ala Ser Cys Ala Ala Met Asp Asp Phe 465 470 475 480 Gln Leu Ile Pro Met Ile Ser Lys Cys Arg Thr Lys Glu Gly Arg Arg 485 490 495 Lys Thr Asn Leu Tyr Gly Phe Ile Ile Lys Gly Arg Ser His Leu Arg 500 505 510 Asn Asp Thr Asp Val Val Asn Phe Val Ser Met Glu Phe Ser Leu Thr 515 520 525 Asp Pro Arg Leu Glu Pro His Lys Trp Glu Lys Tyr Cys Val Leu Glu 530 535 540 Ile Gly Asp Met Leu Leu Arg Thr Ala Ile Gly Gln Val Ser Arg Pro 545 550 555 560 Met Phe Leu Tyr Val Arg Thr Asn Gly Thr Ser Lys Ile Lys Met Lys 565 570 575 Trp Gly Met Glu Met Arg Arg Cys Leu Leu Gln Ser Leu Gln Gln Ile 580 585 590 Glu Ser Met Ile Glu Ala Glu Ser Ser Val Lys Glu Lys Asp Met Thr 595 600 605 Lys Glu Phe Phe Glu Asn Lys Ser Glu Thr Trp Pro Ile Gly Glu Ser 610 615 620 Pro Arg Gly Val Glu Glu Gly Ser Ile Gly Lys Val Cys Arg Thr Leu 625 630 635 640 Leu Ala Lys Ser Val Phe Asn Ser Leu Tyr Ala Ser Pro Gln Leu Glu 645 650 655 Gly Phe Ser Ala Glu Ser Arg Lys Leu Leu Leu Ile Val Gln Ala Leu 660 665 670 Arg Asp Asn Leu Glu Pro Gly Thr Phe Asp Leu Gly Gly Leu Tyr Glu 675 680 685 Ala Ile Glu Glu Cys Leu Ile Asn Asp Pro Trp Val Leu Leu Asn Ala 690 695 700 Ser Trp Phe Asn Ser Phe Leu Thr His Ala Leu Lys 705 710 715 30757PRTInfluenza A virus 30Met Asp Val Asn Pro Thr Leu Leu Phe Leu Lys Val Pro Ala Gln Asn 1 5 10 15 Ala Ile Ser Thr Thr Phe Pro Tyr Thr Gly Asp Pro Pro Tyr Ser His 20 25 30 Gly Thr Gly Thr Gly Tyr Thr Met Asp Thr Val Asn Arg Thr His Gln 35 40 45 Tyr Ser Glu Arg Gly Arg Trp Thr Lys Asn Thr Glu Thr Gly Ala Pro 50 55 60 Gln Leu Asn Pro Ile Asp Gly Pro Leu Pro Lys Asp Asn Glu Pro Ser 65 70 75 80 Gly Tyr Ala Gln Thr Asp Cys Val Leu Glu Ala Met Ala Phe Leu Glu 85 90 95 Glu Ser His Pro Gly Ile Phe Glu Asn Ser Cys Ile Glu Thr Met Glu 100 105 110 Val Val Gln Gln Thr Arg Val Asp Lys Leu Thr Gln Gly Arg Gln Thr 115 120 125 Tyr Asp Trp Thr Leu Asn Arg Asn Gln Pro Ala Ala Thr Ala Leu Ala 130 135 140 Asn Thr Ile Glu Val Phe Arg Ser Asn Gly Leu Ile Ala Asn Glu Ser 145 150 155 160 Gly Arg Leu Ile Asp Phe Leu Lys Asp Val Met Glu Ser Met Asp Arg 165 170 175 Asp Glu Val Glu Val Thr Thr His Phe Gln Arg Lys Arg Arg Val Arg 180

185 190 Asp Asn Val Thr Lys Lys Met Val Thr Gln Arg Thr Ile Gly Lys Lys 195 200 205 Lys His Lys Leu Asp Lys Arg Ser Tyr Leu Ile Arg Ala Leu Thr Leu 210 215 220 Asn Thr Met Thr Lys Asp Ala Glu Arg Gly Lys Leu Lys Arg Arg Ala 225 230 235 240 Ile Ala Thr Pro Gly Met Gln Ile Arg Gly Phe Val Tyr Phe Val Glu 245 250 255 Thr Leu Ala Arg Ser Ile Cys Glu Lys Leu Glu Gln Ser Gly Leu Pro 260 265 270 Val Gly Gly Asn Glu Lys Lys Ala Lys Leu Ala Asn Val Val Arg Lys 275 280 285 Met Met Thr Asn Ser Gln Asp Thr Glu Ile Ser Phe Thr Ile Thr Gly 290 295 300 Asp Asn Thr Lys Trp Asn Glu Asn Gln Asn Pro Arg Met Phe Leu Ala 305 310 315 320 Met Ile Thr Tyr Ile Thr Lys Asn Gln Pro Glu Trp Phe Arg Asn Ile 325 330 335 Leu Ser Ile Ala Pro Ile Met Phe Ser Asn Lys Met Ala Arg Leu Gly 340 345 350 Lys Gly Tyr Met Phe Glu Ser Lys Ser Met Lys Leu Arg Thr Gln Ile 355 360 365 Pro Ala Glu Met Leu Ala Asn Ile Asp Leu Lys Tyr Phe Asn Asp Ser 370 375 380 Thr Lys Arg Lys Ile Glu Lys Ile Arg Pro Leu Leu Ile Asp Gly Thr 385 390 395 400 Ala Ser Leu Ser Pro Gly Met Met Met Gly Met Phe Asn Met Leu Ser 405 410 415 Thr Val Leu Gly Val Ser Ile Leu Asn Leu Gly Gln Lys Arg Tyr Thr 420 425 430 Lys Thr Thr Tyr Trp Trp Asp Gly Leu Gln Ser Ser Asp Asp Phe Ala 435 440 445 Leu Ile Val Asn Ala Pro Asn Tyr Ala Gly Ile Gln Ala Gly Val Asp 450 455 460 Arg Phe Tyr Arg Thr Cys Lys Leu Leu Gly Ile Asn Met Ser Lys Lys 465 470 475 480 Lys Ser Tyr Ile Asn Arg Thr Gly Thr Phe Glu Phe Thr Ser Phe Phe 485 490 495 Tyr Arg Tyr Gly Phe Val Ala Asn Phe Ser Met Glu Leu Pro Ser Phe 500 505 510 Gly Val Ser Gly Val Asn Glu Ser Ala Asp Met Ser Ile Gly Val Thr 515 520 525 Val Ile Lys Asn Asn Met Ile Asn Asn Asp Leu Gly Pro Ala Thr Ala 530 535 540 Gln Met Ala Leu Gln Leu Phe Ile Lys Asp Tyr Arg Tyr Thr Tyr Arg 545 550 555 560 Cys His Arg Gly Asp Thr Gln Ile Gln Thr Arg Arg Ser Phe Glu Ile 565 570 575 Lys Lys Leu Trp Asp Gln Thr Arg Ser Lys Ala Gly Leu Leu Val Ser 580 585 590 Asp Gly Gly Pro Asn Leu Tyr Asn Ile Arg Asn Leu His Ile Pro Glu 595 600 605 Val Cys Leu Lys Trp Glu Leu Met Asp Glu Asp Tyr Gln Gly Arg Leu 610 615 620 Cys Asn Pro Ser Asn Pro Phe Val Ser His Lys Glu Ile Glu Ser Val 625 630 635 640 Asn Asn Ala Val Met Met Pro Ala His Gly Pro Ala Lys Asn Met Glu 645 650 655 Tyr Asp Ala Val Ala Thr Thr His Ser Trp Val Pro Lys Arg Asn Arg 660 665 670 Ser Ile Leu Asn Thr Ser Gln Arg Gly Ile Leu Glu Asp Glu Gln Met 675 680 685 Tyr Gln Arg Cys Cys Asn Leu Phe Glu Lys Phe Phe Pro Ser Ser Ser 690 695 700 Tyr Arg Arg Pro Val Gly Ile Ser Ser Met Val Glu Ala Met Val Ser 705 710 715 720 Arg Ala Arg Ile Asp Ala Arg Ile Asp Phe Glu Ser Gly Arg Ile Lys 725 730 735 Lys Glu Glu Phe Ala Glu Ile Met Lys Thr Cys Ser Thr Ile Glu Asp 740 745 750 Leu Arg Arg Gln Lys 755 31759PRTInfluenza A virus 31Met Glu Arg Ile Lys Glu Leu Arg Asn Leu Met Ser Gln Ser Arg Thr 1 5 10 15 Arg Glu Ile Leu Thr Lys Thr Thr Val Asp His Met Ala Ile Ile Lys 20 25 30 Lys Tyr Thr Ser Gly Arg Gln Glu Lys Asn Pro Ser Leu Arg Met Lys 35 40 45 Trp Met Met Ala Met Lys Tyr Pro Ile Thr Ala Asp Lys Arg Ile Thr 50 55 60 Glu Met Ile Pro Glu Arg Asn Glu Gln Gly Gln Thr Leu Trp Ser Lys 65 70 75 80 Val Asn Asp Ala Gly Ser Asp Arg Val Met Ile Ser Pro Leu Ala Val 85 90 95 Thr Trp Trp Asn Arg Asn Gly Pro Val Ala Ser Thr Ile His Tyr Pro 100 105 110 Lys Ile Tyr Lys Thr Tyr Phe Glu Lys Val Glu Arg Leu Lys His Gly 115 120 125 Thr Phe Gly Pro Val His Phe Arg Asn Gln Val Lys Ile Arg Arg Arg 130 135 140 Val Asp Ile Asn Pro Gly His Ala Asp Leu Ser Ala Lys Glu Ala Gln 145 150 155 160 Asp Val Ile Met Glu Val Val Phe Pro Asn Glu Val Gly Ala Arg Ile 165 170 175 Leu Thr Ser Glu Ser Gln Leu Thr Ile Thr Lys Glu Lys Lys Glu Glu 180 185 190 Leu Gln Asn Cys Lys Ile Ser Pro Leu Met Val Ala Tyr Met Leu Glu 195 200 205 Arg Glu Leu Val Arg Lys Thr Arg Phe Leu Pro Val Ala Gly Gly Thr 210 215 220 Ser Ser Val Tyr Ile Glu Val Leu His Leu Thr Gln Gly Thr Cys Trp 225 230 235 240 Glu Gln Met Tyr Thr Pro Gly Gly Glu Val Arg Asn Asp Asp Val Asp 245 250 255 Gln Ser Leu Ile Ile Ala Ala Arg Asn Ile Val Arg Arg Ala Ala Val 260 265 270 Ser Ala Asp Pro Leu Ala Ser Leu Leu Glu Met Cys His Ser Thr Gln 275 280 285 Ile Gly Gly Thr Arg Met Val Asp Ile Leu Arg Gln Asn Pro Thr Glu 290 295 300 Glu Gln Ala Val Asp Ile Cys Lys Ala Ala Met Gly Leu Arg Ile Ser 305 310 315 320 Ser Ser Phe Ser Phe Gly Gly Phe Thr Phe Lys Arg Thr Ser Gly Ser 325 330 335 Ser Val Lys Arg Glu Glu Glu Val Leu Thr Gly Asn Leu Gln Thr Leu 340 345 350 Lys Leu Thr Val His Glu Gly Tyr Glu Glu Phe Thr Met Val Gly Lys 355 360 365 Arg Ala Thr Ala Ile Leu Arg Lys Ala Thr Arg Arg Leu Ile Gln Leu 370 375 380 Ile Val Ser Gly Arg Asp Glu Gln Ser Ile Val Glu Ala Ile Val Val 385 390 395 400 Ala Met Val Phe Ser Gln Glu Asp Cys Met Val Lys Ala Val Arg Gly 405 410 415 Asp Leu Asn Phe Val Asn Arg Ala Asn Gln Arg Leu Asn Pro Met His 420 425 430 Gln Leu Leu Arg His Phe Gln Lys Asp Ala Lys Val Leu Phe Leu Asn 435 440 445 Trp Gly Ile Glu Pro Ile Asp Asn Val Met Gly Met Ile Gly Ile Leu 450 455 460 Pro Asp Met Thr Pro Ser Thr Glu Met Ser Met Arg Gly Val Arg Val 465 470 475 480 Ser Lys Met Gly Val Asp Glu Tyr Ser Asn Ala Glu Arg Val Val Val 485 490 495 Ser Ile Asp Arg Phe Leu Arg Val Arg Asp Gln Arg Gly Asn Val Leu 500 505 510 Leu Ser Pro Glu Glu Val Ser Glu Thr Gln Gly Thr Glu Lys Leu Thr 515 520 525 Ile Thr Tyr Ser Ser Ser Met Met Trp Glu Ile Asn Gly Pro Glu Ser 530 535 540 Val Leu Ile Asn Thr Tyr Gln Trp Ile Ile Arg Asn Trp Glu Thr Val 545 550 555 560 Lys Ile Gln Trp Ser Gln Asn Pro Thr Met Leu Tyr Asn Lys Met Glu 565 570 575 Phe Glu Pro Phe Gln Ser Leu Val Pro Lys Ala Ile Arg Gly Gln Tyr 580 585 590 Ser Gly Phe Val Arg Thr Leu Phe Gln Gln Met Arg Asp Val Leu Gly 595 600 605 Thr Phe Asp Thr Thr Gln Ile Ile Lys Leu Leu Pro Phe Ala Ala Ala 610 615 620 Pro Pro Lys Gln Ser Arg Met Gln Phe Ser Ser Leu Thr Val Asn Val 625 630 635 640 Arg Gly Ser Gly Met Arg Ile Leu Val Arg Gly Asn Ser Pro Val Phe 645 650 655 Asn Tyr Asn Lys Thr Thr Lys Arg Leu Thr Val Leu Gly Lys Asp Ala 660 665 670 Gly Thr Leu Thr Glu Asp Pro Asp Glu Gly Thr Ala Gly Val Glu Ser 675 680 685 Ala Val Leu Arg Gly Phe Leu Ile Leu Gly Lys Glu Asp Arg Arg Tyr 690 695 700 Gly Pro Ala Leu Ser Ile Asn Glu Leu Ser Asn Leu Ala Lys Gly Glu 705 710 715 720 Lys Ala Asn Val Leu Ile Gly Gln Gly Asp Val Val Leu Val Met Lys 725 730 735 Arg Lys Arg Asp Ser Ser Ile Leu Thr Asp Ser Gln Thr Ala Thr Lys 740 745 750 Arg Ile Arg Met Ala Ile Asn 755 32498PRTInfluenza A virus 32Met Ala Ser Gln Gly Thr Lys Arg Ser Tyr Glu Gln Met Glu Thr Asp 1 5 10 15 Gly Glu Arg Gln Asn Ala Thr Glu Ile Arg Ala Ser Val Gly Arg Met 20 25 30 Ile Gly Gly Ile Gly Arg Phe Tyr Ile Gln Met Cys Thr Glu Leu Lys 35 40 45 Leu Asn Asp Tyr Glu Gly Arg Leu Ile Gln Asn Ser Leu Thr Ile Glu 50 55 60 Arg Met Val Leu Ser Ala Phe Asp Glu Arg Arg Asn Lys Tyr Leu Glu 65 70 75 80 Glu His Pro Ser Ala Gly Lys Asp Pro Lys Lys Thr Gly Gly Pro Ile 85 90 95 Tyr Lys Arg Val Asp Gly Lys Trp Val Arg Glu Leu Val Leu Tyr Asp 100 105 110 Lys Glu Glu Ile Arg Arg Ile Trp Arg Gln Ala Asn Asn Gly Asp Asp 115 120 125 Ala Thr Ala Gly Leu Thr His Ile Met Ile Trp His Ser Asn Leu Asn 130 135 140 Asp Thr Thr Tyr Gln Arg Thr Arg Ala Leu Val Arg Thr Gly Met Asp 145 150 155 160 Pro Arg Met Cys Ser Leu Met Gln Gly Ser Thr Leu Pro Arg Arg Ser 165 170 175 Gly Ala Ala Gly Ala Ala Val Lys Gly Val Gly Thr Met Val Leu Glu 180 185 190 Leu Ile Arg Met Ile Lys Arg Gly Ile Asn Asp Arg Asn Phe Trp Arg 195 200 205 Gly Glu Asn Gly Arg Lys Thr Arg Ile Ala Tyr Glu Arg Met Cys Asn 210 215 220 Ile Leu Lys Gly Lys Phe Gln Thr Ala Ala Gln Lys Ala Met Met Asp 225 230 235 240 Gln Val Arg Glu Ser Arg Asn Pro Gly Asn Ala Glu Ile Glu Asp Leu 245 250 255 Thr Phe Leu Ala Arg Ser Ala Leu Ile Leu Arg Gly Ser Val Ala His 260 265 270 Lys Ser Cys Leu Pro Ala Cys Val Tyr Gly Pro Ala Val Ala Ser Gly 275 280 285 Tyr Asp Phe Glu Lys Glu Gly Tyr Ser Leu Val Gly Val Asp Pro Phe 290 295 300 Lys Leu Leu Gln Thr Ser Gln Val Tyr Ser Leu Ile Arg Pro Asn Glu 305 310 315 320 Asn Pro Ala His Lys Ser Gln Leu Val Trp Met Ala Cys Asn Ser Ala 325 330 335 Ala Phe Glu Asp Leu Arg Val Ser Ser Phe Ile Arg Gly Thr Arg Val 340 345 350 Leu Pro Arg Gly Lys Leu Ser Thr Arg Gly Val Gln Ile Ala Ser Asn 355 360 365 Glu Asn Met Asp Ala Ile Val Ser Ser Thr Leu Glu Leu Arg Ser Arg 370 375 380 Tyr Trp Ala Ile Arg Thr Arg Ser Gly Gly Asn Thr Asn Gln Gln Arg 385 390 395 400 Ala Ser Ala Gly Gln Ile Ser Thr Gln Pro Thr Phe Ser Val Gln Arg 405 410 415 Asn Leu Pro Phe Asp Lys Thr Thr Ile Met Ala Ala Phe Thr Gly Asn 420 425 430 Thr Glu Gly Arg Thr Ser Asp Met Arg Ala Glu Ile Ile Lys Met Met 435 440 445 Glu Ser Ala Arg Pro Glu Glu Val Ser Phe Gln Gly Arg Gly Val Phe 450 455 460 Glu Leu Ser Asp Glu Arg Ala Thr Asn Pro Ile Val Pro Ser Phe Asp 465 470 475 480 Met Ser Asn Glu Gly Ser Tyr Phe Phe Gly Asp Asn Ala Glu Glu Tyr 485 490 495 Asp Asn 33252PRTInfluenza A virus 33Met Ser Leu Leu Thr Glu Val Glu Thr Tyr Val Leu Ser Ile Val Pro 1 5 10 15 Ser Gly Pro Leu Lys Ala Glu Ile Ala Gln Arg Leu Glu Asn Val Phe 20 25 30 Ala Gly Lys Asn Thr Asp Leu Glu Ala Leu Met Glu Trp Leu Lys Thr 35 40 45 Arg Pro Ile Leu Ser Pro Leu Thr Lys Gly Ile Leu Gly Phe Val Phe 50 55 60 Thr Leu Thr Val Pro Ser Glu Arg Gly Leu Gln Arg Arg Arg Phe Val 65 70 75 80 Gln Asn Ala Leu Asn Gly Asn Gly Asp Pro Asn Asn Met Asp Arg Ala 85 90 95 Val Lys Leu Tyr Arg Lys Leu Lys Arg Glu Ile Thr Phe His Gly Ala 100 105 110 Lys Glu Ile Ala Leu Ser Tyr Ser Ala Gly Ala Leu Ala Ser Cys Met 115 120 125 Gly Leu Ile Tyr Asn Arg Met Gly Ala Val Thr Thr Glu Ser Ala Phe 130 135 140 Gly Leu Ile Cys Ala Thr Cys Glu Gln Ile Ala Asp Ser Gln His Lys 145 150 155 160 Ser His Arg Gln Met Val Thr Thr Thr Asn Pro Leu Ile Arg His Glu 165 170 175 Asn Arg Met Val Leu Ala Ser Thr Thr Ala Lys Ala Met Glu Gln Met 180 185 190 Ala Gly Ser Ser Glu Gln Ala Ala Glu Ala Met Glu Val Ala Ser Gln 195 200 205 Ala Arg Gln Met Val Gln Ala Met Arg Ala Ile Gly Thr His Pro Ser 210 215 220 Ser Ser Thr Gly Leu Lys Asn Asp Leu Leu Glu Asn Leu Gln Ala Tyr 225 230 235 240 Gln Lys Arg Met Gly Val Gln Met Gln Arg Phe Lys 245 250 34470PRTInfluenza A virus 34Met Asn Pro Asn Gln Lys Ile Ile Thr Ile Gly Ser Ile Ser Ile Ala 1 5 10 15 Ile Gly Ile Ile Ser Leu Met Leu Gln Ile Gly Asn Ile Ile Ser Ile 20 25 30 Trp Ala Ser His Ser Ile Gln Thr Gly Ser Gln Asn His Thr Gly Val 35 40 45 Cys Asn Gln Arg Ile Ile Thr Tyr Glu Asn Ser Thr Trp Val Asn His 50 55 60 Thr Tyr Val Asn Ile Asn Asn Thr Asn Val Val Ala Gly Lys Asp Lys 65 70 75 80 Thr Ser Val Thr Leu Ala Gly Asn Ser Ser Leu Cys Ser Ile Ser Gly 85 90 95 Trp Ala Ile Tyr Thr Lys Asp Asn Ser Ile Arg Ile Gly Ser Lys Gly 100 105 110 Asp Val Phe Val Ile Arg Glu Pro Phe Ile Ser Cys Ser His Leu Glu 115 120 125 Cys Arg Thr Phe Phe Leu Thr Gln Gly Ala Leu Leu Asn Asp Lys His 130 135 140 Ser Asn Gly Thr Val Lys Asp Arg Ser Pro Tyr Arg Ala Leu Met Ser 145 150 155 160 Cys Pro Leu Gly Glu Ala Pro Ser Pro Tyr Asn Ser Lys Phe Glu Ser 165 170 175 Val Ala Trp Ser Ala Ser Ala Cys His Asp Gly Met Gly Trp Leu Thr 180 185 190 Ile Gly Ile Ser Gly Pro Asp Asn Gly Ala Val Ala Val Leu Lys Tyr 195 200 205 Asn Gly Ile Ile Thr Glu Thr Ile Lys Ser Trp Lys Lys Arg Ile Leu 210

215 220 Arg Thr Gln Glu Ser Glu Cys Val Cys Val Asn Gly Ser Cys Phe Thr 225 230 235 240 Ile Met Thr Asp Gly Pro Ser Asn Gly Ala Ala Ser Tyr Lys Ile Phe 245 250 255 Lys Ile Glu Lys Gly Lys Val Thr Lys Ser Ile Glu Leu Asn Ala Pro 260 265 270 Asn Phe His Tyr Glu Glu Cys Ser Cys Tyr Pro Asp Thr Gly Thr Val 275 280 285 Met Cys Val Cys Arg Asp Asn Trp His Gly Ser Asn Arg Pro Trp Val 290 295 300 Ser Phe Asn Gln Asn Leu Asp Tyr Gln Ile Gly Tyr Ile Cys Ser Gly 305 310 315 320 Val Phe Gly Asp Asn Pro Arg Pro Lys Asp Gly Glu Gly Ser Cys Asn 325 330 335 Pro Val Thr Val Asp Gly Ala Asp Gly Val Lys Gly Phe Ser Tyr Lys 340 345 350 Tyr Gly Asn Gly Val Trp Ile Gly Arg Thr Lys Ser Asn Arg Leu Arg 355 360 365 Lys Gly Phe Glu Met Ile Trp Asp Pro Asn Gly Trp Thr Asp Thr Asp 370 375 380 Ser Asp Phe Ser Val Lys Gln Asp Val Val Ala Ile Thr Asp Trp Ser 385 390 395 400 Gly Tyr Ser Gly Ser Phe Val Gln His Pro Glu Leu Thr Gly Leu Asp 405 410 415 Cys Ile Arg Pro Cys Phe Trp Val Glu Leu Val Arg Gly Leu Pro Arg 420 425 430 Glu Asn Thr Thr Ile Trp Thr Ser Gly Ser Ser Ile Ser Phe Cys Gly 435 440 445 Val Asn Ser Asp Thr Ala Asn Trp Ser Trp Pro Asp Gly Ala Glu Leu 450 455 460 Pro Phe Thr Ile Asp Lys 465 470 35716PRTInfluenza A virus 35Met Glu Asp Phe Val Arg Gln Cys Phe Asn Pro Met Ile Val Glu Leu 1 5 10 15 Ala Glu Lys Ala Met Lys Glu Tyr Gly Glu Asp Leu Lys Ile Glu Thr 20 25 30 Asn Lys Phe Ala Ala Ile Cys Thr His Leu Glu Val Cys Phe Met Tyr 35 40 45 Ser Asp Phe His Phe Ile Asn Glu Gln Gly Glu Ser Ile Val Val Glu 50 55 60 Leu Asp Asp Pro Asn Ala Leu Leu Lys His Arg Phe Glu Ile Ile Glu 65 70 75 80 Gly Arg Asp Arg Thr Met Ala Trp Thr Val Val Asn Ser Ile Cys Asn 85 90 95 Thr Thr Gly Ala Gly Lys Pro Lys Phe Leu Pro Asp Leu Tyr Asp Tyr 100 105 110 Lys Glu Asn Arg Phe Ile Glu Ile Gly Val Thr Arg Arg Glu Val His 115 120 125 Ile Tyr Tyr Leu Glu Lys Ala Asn Lys Ile Lys Ser Glu Asn Thr His 130 135 140 Ile His Ile Phe Ser Phe Thr Gly Glu Glu Met Ala Thr Lys Ala Asp 145 150 155 160 Tyr Thr Leu Asp Glu Glu Ser Arg Ala Arg Ile Lys Thr Arg Leu Phe 165 170 175 Thr Ile Arg Gln Glu Met Ala Asn Arg Gly Leu Trp Asp Ser Phe Arg 180 185 190 Gln Ser Glu Arg Gly Glu Glu Thr Ile Glu Glu Lys Phe Glu Ile Thr 195 200 205 Gly Thr Met Arg Arg Leu Ala Asp Gln Ser Leu Pro Pro Asn Phe Ser 210 215 220 Cys Leu Glu Asn Phe Arg Ala Tyr Val Asp Gly Phe Glu Pro Asn Gly 225 230 235 240 Cys Ile Glu Gly Lys Leu Ser Gln Met Ser Lys Glu Val Asn Ala Gln 245 250 255 Ile Glu Pro Phe Leu Lys Thr Thr Pro Arg Pro Ile Lys Leu Pro Asn 260 265 270 Gly Pro Pro Cys Tyr Gln Arg Ser Lys Phe Leu Leu Met Asp Ala Leu 275 280 285 Lys Leu Ser Ile Glu Asp Pro Ser His Glu Gly Glu Gly Ile Pro Leu 290 295 300 Tyr Asp Ala Ile Lys Cys Met Lys Thr Phe Phe Gly Trp Lys Glu Pro 305 310 315 320 Tyr Ile Val Lys Pro His Glu Lys Gly Ile Asn Ser Asn Tyr Leu Leu 325 330 335 Ser Trp Lys Gln Val Leu Ser Glu Leu Gln Asp Ile Glu Asn Glu Glu 340 345 350 Lys Ile Pro Arg Thr Lys Asn Met Lys Lys Thr Ser Gln Leu Lys Trp 355 360 365 Ala Leu Gly Glu Asn Met Ala Pro Glu Lys Val Asp Phe Glu Asn Cys 370 375 380 Arg Asp Ile Ser Asp Leu Lys Gln Tyr Asp Ser Asp Glu Pro Glu Leu 385 390 395 400 Arg Ser Leu Ser Ser Trp Ile Gln Asn Glu Phe Asn Lys Ala Cys Glu 405 410 415 Leu Thr Asp Ser Val Trp Ile Glu Leu Asp Glu Ile Gly Glu Asp Val 420 425 430 Ala Pro Ile Glu His Ile Ala Ser Met Arg Arg Asn Tyr Phe Thr Ala 435 440 445 Glu Val Ser His Cys Arg Ala Thr Glu Tyr Ile Met Lys Gly Val Tyr 450 455 460 Ile Asn Thr Ala Leu Leu Asn Ala Ser Cys Ala Ala Met Asp Asp Phe 465 470 475 480 Gln Leu Ile Pro Met Ile Ser Lys Cys Arg Thr Lys Glu Gly Arg Arg 485 490 495 Lys Thr Asn Leu Tyr Gly Phe Ile Ile Lys Gly Arg Ser His Leu Arg 500 505 510 Asn Asp Thr Asp Val Val Asn Phe Val Ser Met Glu Phe Ser Leu Thr 515 520 525 Asp Pro Arg Leu Glu Pro His Lys Trp Glu Lys Tyr Cys Val Leu Glu 530 535 540 Ile Gly Asp Met Leu Leu Arg Ser Ala Ile Gly Gln Ile Ser Arg Pro 545 550 555 560 Met Phe Leu Tyr Val Arg Thr Asn Gly Thr Ser Lys Val Lys Met Lys 565 570 575 Trp Gly Met Glu Met Arg Arg Cys Leu Leu Gln Ser Leu Gln Gln Ile 580 585 590 Glu Ser Met Ile Glu Ala Glu Ser Ser Val Lys Glu Lys Asp Met Thr 595 600 605 Lys Glu Phe Phe Glu Asn Lys Ser Glu Ala Trp Pro Ile Gly Glu Ser 610 615 620 Pro Lys Gly Val Glu Glu Gly Ser Ile Gly Lys Val Cys Arg Thr Leu 625 630 635 640 Leu Ala Lys Ser Val Phe Asn Ser Leu Tyr Ala Ser Pro Gln Leu Glu 645 650 655 Gly Phe Ser Ala Glu Ser Arg Lys Leu Leu Leu Val Val Gln Ala Leu 660 665 670 Arg Asp Asn Leu Glu Pro Gly Thr Phe Asp Leu Gly Gly Leu Tyr Glu 675 680 685 Ala Ile Glu Glu Cys Leu Ile Asn Asp Pro Trp Val Leu Leu Asn Ala 690 695 700 Ser Trp Phe Asn Ser Phe Leu Thr His Ala Leu Lys 705 710 715 36757PRTInfluenza A virus 36Met Asp Val Asn Pro Thr Leu Leu Phe Leu Lys Val Pro Ala Gln Asn 1 5 10 15 Ala Ile Ser Thr Thr Phe Pro Tyr Thr Gly Asp Pro Pro Tyr Ser His 20 25 30 Gly Thr Gly Thr Gly Tyr Thr Met Asp Thr Val Asn Arg Thr His Gln 35 40 45 Tyr Ser Glu Lys Gly Lys Trp Thr Thr Asn Thr Glu Thr Gly Ala Pro 50 55 60 Gln Leu Asn Pro Ile Asp Gly Pro Leu Pro Glu Asp Asn Glu Pro Ser 65 70 75 80 Gly Tyr Ala Gln Thr Asp Cys Val Leu Glu Ala Met Ala Phe Leu Glu 85 90 95 Glu Ser His Pro Gly Ile Phe Glu Asn Ser Cys Leu Glu Thr Met Glu 100 105 110 Ala Val Gln Gln Thr Arg Val Asp Arg Leu Thr Gln Gly Arg Gln Thr 115 120 125 Tyr Asp Trp Thr Leu Asn Arg Asn Gln Pro Ala Ala Thr Ala Leu Ala 130 135 140 Asn Thr Ile Glu Val Phe Arg Ser Asn Gly Leu Thr Ala Asn Glu Ser 145 150 155 160 Gly Arg Leu Ile Asp Phe Leu Lys Asp Val Met Glu Ser Met Asp Lys 165 170 175 Glu Glu Met Glu Ile Thr Thr His Phe Gln Arg Lys Arg Arg Val Arg 180 185 190 Asp Asn Met Thr Lys Lys Met Val Thr Gln Arg Thr Ile Gly Lys Lys 195 200 205 Lys Gln Arg Val Asn Lys Arg Gly Tyr Leu Ile Arg Ala Leu Thr Leu 210 215 220 Asn Thr Met Thr Lys Asp Ala Glu Arg Gly Lys Leu Lys Arg Arg Ala 225 230 235 240 Ile Ala Thr Pro Gly Met Gln Ile Arg Gly Phe Val Tyr Phe Val Glu 245 250 255 Thr Leu Ala Arg Ser Ile Cys Glu Lys Leu Glu Gln Ser Gly Leu Pro 260 265 270 Val Gly Gly Asn Glu Lys Lys Ala Lys Leu Ala Asn Val Val Arg Lys 275 280 285 Met Met Thr Asn Ser Gln Asp Thr Glu Leu Ser Phe Thr Ile Thr Gly 290 295 300 Asp Asn Thr Lys Trp Asn Glu Asn Gln Asn Pro Arg Met Phe Leu Ala 305 310 315 320 Met Ile Thr Tyr Ile Thr Lys Asn Gln Pro Glu Trp Phe Arg Asn Ile 325 330 335 Leu Ser Ile Ala Pro Ile Met Phe Ser Asn Lys Met Ala Arg Leu Gly 340 345 350 Lys Gly Tyr Met Phe Glu Ser Lys Arg Met Lys Leu Arg Thr Gln Ile 355 360 365 Pro Ala Glu Met Leu Ala Ser Ile Asp Leu Lys Tyr Phe Asn Glu Ser 370 375 380 Thr Arg Lys Lys Ile Glu Lys Ile Arg Pro Leu Leu Ile Asp Gly Thr 385 390 395 400 Ala Ser Leu Ser Pro Gly Met Met Met Gly Met Phe Asn Met Leu Ser 405 410 415 Thr Val Leu Gly Val Ser Ile Leu Asn Leu Gly Gln Lys Lys Tyr Thr 420 425 430 Lys Thr Thr Tyr Trp Trp Asp Gly Leu Gln Ser Ser Asp Asp Phe Ala 435 440 445 Leu Ile Val Asn Ala Pro Asn His Glu Gly Ile Gln Ala Gly Val Asn 450 455 460 Arg Phe Tyr Arg Thr Cys Lys Leu Val Gly Ile Asn Met Ser Lys Lys 465 470 475 480 Lys Ser Tyr Ile Asn Lys Thr Gly Thr Phe Glu Phe Thr Ser Phe Phe 485 490 495 Tyr Arg Tyr Gly Phe Val Ala Asn Phe Ser Met Glu Leu Pro Ser Phe 500 505 510 Gly Val Ser Gly Ile Asn Glu Ser Ala Asp Met Ser Ile Gly Val Thr 515 520 525 Val Ile Lys Asn Asn Met Ile Asn Asn Asp Leu Gly Pro Ala Thr Ala 530 535 540 Gln Met Ala Leu Gln Leu Phe Ile Lys Asp Tyr Arg Tyr Thr Tyr Arg 545 550 555 560 Cys His Arg Gly Asp Thr Gln Ile Gln Thr Arg Arg Ser Phe Glu Leu 565 570 575 Lys Lys Leu Trp Asp Gln Thr Gln Ser Arg Ala Gly Leu Leu Val Ser 580 585 590 Asp Gly Gly Pro Asn Leu Tyr Asn Ile Arg Asn Leu His Ile Pro Glu 595 600 605 Val Cys Leu Lys Trp Glu Leu Met Asp Glu Asn Tyr Arg Gly Arg Leu 610 615 620 Cys Asn Pro Leu Asn Pro Phe Val Ser His Lys Glu Ile Glu Ser Val 625 630 635 640 Asn Asn Ala Val Val Met Pro Ala His Gly Pro Ala Lys Ser Met Glu 645 650 655 Tyr Asp Ala Val Ala Thr Thr His Ser Trp Ile Pro Lys Arg Asn Arg 660 665 670 Ser Ile Leu Asn Thr Ser Gln Arg Gly Ile Leu Glu Asp Glu Gln Met 675 680 685 Tyr Gln Lys Cys Cys Asn Leu Phe Glu Lys Phe Phe Pro Ser Ser Ser 690 695 700 Tyr Arg Arg Pro Ile Gly Ile Ser Ser Met Val Glu Ala Met Val Ser 705 710 715 720 Arg Ala Arg Ile Asp Ala Arg Ile Asp Phe Glu Ser Gly Arg Ile Lys 725 730 735 Lys Glu Glu Phe Ser Glu Ile Met Lys Ile Cys Ser Thr Ile Glu Glu 740 745 750 Leu Arg Arg Gln Arg 755 37759PRTInfluenza A virus 37Met Glu Arg Ile Lys Glu Leu Arg Asn Leu Met Ser Gln Ser Arg Thr 1 5 10 15 Arg Glu Ile Leu Thr Lys Thr Thr Val Asp His Met Ala Ile Ile Lys 20 25 30 Lys Tyr Thr Ser Gly Arg Gln Glu Lys Asn Pro Ser Leu Arg Met Lys 35 40 45 Trp Met Met Ala Met Lys Tyr Pro Ile Thr Ala Asp Lys Arg Ile Thr 50 55 60 Glu Met Val Pro Glu Arg Asn Glu Gln Gly Gln Thr Leu Trp Ser Lys 65 70 75 80 Met Ser Asp Ala Gly Ser Asp Arg Val Met Val Ser Pro Leu Ala Val 85 90 95 Thr Trp Trp Asn Arg Asn Gly Pro Val Thr Ser Thr Val His Tyr Pro 100 105 110 Lys Val Tyr Lys Thr Tyr Phe Asp Lys Val Glu Arg Leu Lys His Gly 115 120 125 Thr Phe Gly Pro Val His Phe Arg Asn Gln Val Lys Ile Arg Arg Arg 130 135 140 Val Asp Ile Asn Pro Gly His Ala Asp Leu Ser Ala Lys Glu Ala Gln 145 150 155 160 Asp Val Ile Met Glu Val Val Phe Pro Asn Glu Val Gly Ala Arg Ile 165 170 175 Leu Thr Ser Glu Ser Gln Leu Thr Ile Thr Lys Glu Lys Lys Glu Glu 180 185 190 Leu Arg Asp Cys Lys Ile Ser Pro Leu Met Val Ala Tyr Met Leu Glu 195 200 205 Arg Glu Leu Val Arg Lys Thr Arg Phe Leu Pro Val Ala Gly Gly Thr 210 215 220 Ser Ser Ile Tyr Ile Glu Val Leu His Leu Thr Gln Gly Thr Cys Trp 225 230 235 240 Glu Gln Met Tyr Thr Pro Gly Gly Glu Val Arg Asn Asp Asp Val Asp 245 250 255 Gln Ser Leu Ile Ile Ala Ala Arg Asn Ile Val Arg Arg Ala Ala Val 260 265 270 Ser Ala Asp Pro Leu Ala Ser Leu Leu Glu Met Cys His Ser Thr Gln 275 280 285 Ile Gly Gly Thr Arg Met Val Asp Ile Leu Arg Gln Asn Pro Thr Glu 290 295 300 Glu Gln Ala Val Asp Ile Cys Lys Ala Ala Met Gly Leu Arg Ile Ser 305 310 315 320 Ser Ser Phe Ser Phe Gly Gly Phe Thr Phe Lys Arg Thr Ser Gly Ser 325 330 335 Ser Val Lys Lys Glu Glu Glu Val Leu Thr Gly Asn Leu Gln Thr Leu 340 345 350 Lys Ile Arg Val His Glu Gly Tyr Glu Glu Phe Thr Met Val Gly Lys 355 360 365 Arg Ala Thr Ala Ile Leu Arg Lys Ala Thr Arg Arg Leu Val Gln Leu 370 375 380 Ile Val Ser Gly Arg Asp Glu Gln Ser Ile Ala Glu Ala Ile Ile Val 385 390 395 400 Ala Met Val Phe Ser Gln Glu Asp Cys Met Ile Lys Ala Val Arg Gly 405 410 415 Asp Leu Asn Phe Val Asn Arg Ala Asn Gln Arg Leu Asn Pro Met His 420 425 430 Gln Leu Leu Arg His Phe Gln Lys Asp Ala Lys Val Leu Phe Gln Asn 435 440 445 Trp Gly Ile Glu His Ile Asp Ser Val Met Gly Met Val Gly Val Leu 450 455 460 Pro Asp Met Thr Pro Ser Thr Glu Met Ser Met Arg Gly Ile Arg Val 465 470 475 480 Ser Lys Met Gly Val Asp Glu Tyr Ser Ser Thr Glu Arg Val Val Val 485 490 495 Ser Ile Asp Arg Phe Leu Arg Val Arg Asp Gln Arg Gly Asn Val Leu 500 505 510 Leu Ser Pro Glu Glu Val Ser Glu Thr Gln Gly Thr Glu Arg Leu Thr 515 520 525 Ile Thr Tyr Ser Ser Ser Met Met Trp Glu Ile Asn Gly Pro Glu Ser 530 535 540 Val Leu Val Asn Thr Tyr Gln Trp Ile Ile Arg Asn Trp Glu Ala Val 545 550 555 560 Lys Ile Gln Trp Ser Gln Asn Pro Ala Met Leu Tyr Asn Lys Met Glu

565 570 575 Phe Glu Pro Phe Gln Ser Leu Val Pro Lys Ala Ile Arg Ser Gln Tyr 580 585 590 Ser Gly Phe Val Arg Thr Leu Phe Gln Gln Met Arg Asp Val Leu Gly 595 600 605 Thr Phe Asp Thr Thr Gln Ile Ile Lys Leu Leu Pro Phe Ala Ala Ala 610 615 620 Pro Pro Lys Gln Ser Arg Met Gln Phe Ser Ser Leu Thr Val Asn Val 625 630 635 640 Arg Gly Ser Gly Met Arg Ile Leu Val Arg Gly Asn Ser Pro Val Phe 645 650 655 Asn Tyr Asn Lys Thr Thr Lys Arg Leu Thr Ile Leu Gly Lys Asp Ala 660 665 670 Gly Thr Leu Ile Glu Asp Pro Asp Glu Ser Thr Ser Gly Val Glu Ser 675 680 685 Ala Val Leu Arg Gly Phe Leu Ile Ile Gly Lys Glu Asp Arg Arg Tyr 690 695 700 Gly Pro Ala Leu Ser Ile Asn Glu Leu Ser Asn Leu Ala Lys Gly Glu 705 710 715 720 Lys Ala Asn Val Leu Ile Gly Gln Gly Asp Val Val Leu Val Met Lys 725 730 735 Arg Lys Arg Asp Ser Ser Ile Leu Thr Asp Ser Gln Thr Ala Thr Lys 740 745 750 Arg Ile Arg Met Ala Ile Asn 755 38498PRTInfluenza A virus 38Met Ala Ser Gln Gly Thr Lys Arg Ser Tyr Glu Gln Met Glu Thr Asp 1 5 10 15 Gly Asp Arg Gln Asn Ala Thr Glu Ile Arg Ala Ser Val Gly Lys Met 20 25 30 Ile Asp Gly Ile Gly Arg Phe Tyr Ile Gln Met Cys Thr Glu Leu Lys 35 40 45 Leu Ser Asp Tyr Glu Gly Arg Leu Ile Gln Asn Ser Leu Thr Ile Glu 50 55 60 Lys Met Val Leu Ser Ala Phe Asp Glu Arg Arg Asn Lys Tyr Leu Glu 65 70 75 80 Glu His Pro Ser Ala Gly Lys Asp Pro Lys Lys Thr Gly Gly Pro Ile 85 90 95 Tyr Arg Arg Val Asp Gly Lys Trp Met Arg Glu Leu Val Leu Tyr Asp 100 105 110 Lys Glu Glu Ile Arg Arg Ile Trp Arg Gln Ala Asn Asn Gly Glu Asp 115 120 125 Ala Thr Ala Gly Leu Thr His Ile Met Ile Trp His Ser Asn Leu Asn 130 135 140 Asp Ala Thr Tyr Gln Arg Thr Arg Ala Leu Val Arg Thr Gly Met Asp 145 150 155 160 Pro Arg Met Cys Ser Leu Met Gln Gly Ser Thr Leu Pro Arg Arg Ser 165 170 175 Gly Ala Ala Gly Ala Ala Val Lys Gly Ile Gly Thr Met Val Met Glu 180 185 190 Leu Ile Arg Met Val Lys Arg Gly Ile Asn Asp Arg Asn Phe Trp Arg 195 200 205 Gly Glu Asn Gly Arg Lys Thr Arg Ser Ala Tyr Glu Arg Met Cys Asn 210 215 220 Ile Leu Lys Gly Lys Phe Gln Thr Ala Ala Gln Arg Ala Met Val Asp 225 230 235 240 Gln Val Arg Glu Ser Arg Asn Pro Gly Asn Ala Glu Ile Glu Asp Leu 245 250 255 Ile Phe Leu Ala Arg Ser Ala Leu Ile Leu Arg Gly Ser Val Ala His 260 265 270 Lys Ser Cys Leu Pro Ala Cys Val Tyr Gly Pro Ala Val Ser Ser Gly 275 280 285 Tyr Asn Phe Glu Lys Glu Gly Tyr Ser Leu Val Gly Ile Asp Pro Phe 290 295 300 Lys Leu Leu Gln Asn Ser Gln Val Tyr Ser Leu Ile Arg Pro Asn Glu 305 310 315 320 Asn Pro Ala His Lys Ser Gln Leu Val Trp Met Ala Cys His Ser Ala 325 330 335 Ala Phe Glu Asp Leu Arg Leu Leu Ser Phe Ile Arg Gly Thr Lys Val 340 345 350 Ser Pro Arg Gly Lys Leu Ser Thr Arg Gly Val Gln Ile Ala Ser Asn 355 360 365 Glu Asn Met Asp Asn Met Gly Ser Gly Thr Leu Glu Leu Arg Ser Gly 370 375 380 Tyr Trp Ala Ile Arg Thr Arg Ser Gly Gly Asn Thr Asn Gln Gln Arg 385 390 395 400 Ala Ser Ala Gly Gln Thr Ser Val Gln Pro Thr Phe Ser Val Gln Arg 405 410 415 Asn Leu Pro Phe Glu Lys Ser Thr Ile Met Ala Ala Phe Thr Gly Asn 420 425 430 Thr Glu Gly Arg Thr Ser Asp Met Arg Ala Glu Ile Ile Arg Met Met 435 440 445 Glu Gly Ala Lys Pro Glu Glu Val Ser Phe Arg Gly Arg Gly Val Phe 450 455 460 Glu Leu Ser Asp Glu Lys Ala Thr Asn Pro Ile Val Pro Ser Phe Asp 465 470 475 480 Met Ser Asn Glu Gly Ser Tyr Phe Phe Gly Asp Asn Ala Glu Glu Tyr 485 490 495 Asp Asn 39252PRTInfluenza A virus 39Met Ser Leu Leu Thr Glu Val Glu Thr Tyr Val Leu Ser Ile Val Pro 1 5 10 15 Ser Gly Pro Leu Lys Ala Glu Ile Ala Gln Arg Leu Glu Asp Val Phe 20 25 30 Ala Gly Lys Asn Thr Asp Leu Glu Ala Leu Met Glu Trp Leu Lys Thr 35 40 45 Arg Pro Ile Leu Ser Pro Leu Thr Lys Gly Ile Leu Gly Phe Val Phe 50 55 60 Thr Leu Thr Val Pro Ser Glu Arg Gly Leu Gln Arg Arg Arg Phe Val 65 70 75 80 Gln Asn Ala Leu Asn Gly Asn Gly Asp Pro Asn Asn Met Asp Lys Ala 85 90 95 Val Lys Leu Tyr Arg Lys Leu Lys Arg Glu Ile Thr Phe His Gly Ala 100 105 110 Lys Glu Ile Ala Leu Ser Tyr Ser Ala Gly Ala Leu Ala Ser Cys Met 115 120 125 Gly Leu Ile Tyr Asn Arg Met Gly Ala Val Thr Thr Glu Val Ala Phe 130 135 140 Gly Leu Val Cys Ala Thr Cys Glu Gln Ile Ala Asp Ser Gln His Arg 145 150 155 160 Ser His Arg Gln Met Val Ala Thr Thr Asn Pro Leu Ile Arg His Glu 165 170 175 Asn Arg Met Val Leu Ala Ser Thr Thr Ala Lys Ala Met Glu Gln Met 180 185 190 Ala Gly Ser Ser Glu Gln Ala Ala Glu Ala Met Glu Ile Ala Ser Gln 195 200 205 Ala Arg Gln Met Val Gln Ala Met Arg Ala Ile Gly Thr His Pro Ser 210 215 220 Ser Ser Thr Gly Leu Arg Asp Asp Leu Leu Glu Asn Leu Gln Thr Tyr 225 230 235 240 Gln Lys Arg Met Gly Val Gln Met Gln Arg Phe Lys 245 250 4097PRTInfluenza A virus 40Met Ser Leu Leu Thr Glu Val Glu Thr Pro Ile Arg Asn Glu Trp Gly 1 5 10 15 Cys Arg Cys Asn Asp Ser Ser Asp Pro Leu Val Val Ala Ala Asn Ile 20 25 30 Ile Gly Ile Leu His Leu Ile Leu Trp Ile Leu Asp Arg Leu Phe Phe 35 40 45 Lys Cys Val Tyr Arg Leu Phe Lys His Gly Leu Lys Arg Gly Pro Ser 50 55 60 Thr Glu Gly Val Pro Glu Ser Met Arg Glu Glu Tyr Arg Lys Glu Gln 65 70 75 80 Gln Asn Ala Val Asp Ala Asp Asp Ser His Phe Val Ser Ile Glu Leu 85 90 95 Glu 41846DNAInfluenza A virus 41aatggattcc aacactgtgt caagtttcca ggtagattgc tttctttggc atatccggaa 60acaagttgta gaccaagaac tgagtgatgc cccattcctt gatcggcttc gccgagatca 120gaggtcccta aggggaagag gcaatactct cggtctagac atcaaagcag ccacccatgt 180tggaaagcaa attgtagaaa agattctgaa agaagaatct gatgaggcac ttaaaatgac 240catggtctcc acacctgctt cgcgatacat aactgacatg actattgagg aattgtcaag 300aaactggttc atgctaatgc ccaagcagaa agtggaagga cctctttgca tcagaatgga 360ccaggcaatc atggagaaaa acatcatgtt gaaagcgaat ttcagtgtga tttctgaccg 420actagagacc atagtattac taagggcttt caccgaagag ggagcaattg ttggcgaaat 480ctcaccattg ccttcttttc caggacatac tattgaggat gtcaaaaatg caattggggt 540cctcatcgga ggacttgaat ggaatgataa cacagttcga gtctctaaaa atctacagag 600attcgcttgg agaagcagta atgagaatgg gggacctcca cttactccaa aacagaaacg 660gaaaatggcg agaacagcta ggtcaaaagt ttgaagagat aagatggctg attgaagaag 720tgagacacag actaaaaaca actgaaaata gctttgaaca aataacattc atgcaagcat 780tacaactgct gtttgaagtg gaacaggaga taagaacttt ctcatttcag cttatttaat 840gataaa 84642566PRTInfluenza A virus 42Met Lys Thr Ile Ile Ala Leu Ser Tyr Ile Leu Cys Leu Val Phe Ala 1 5 10 15 Gln Lys Leu Pro Gly Asn Asp Asn Ser Thr Ala Thr Leu Cys Leu Gly 20 25 30 His His Ala Val Pro Asn Gly Thr Ile Val Lys Thr Ile Thr Asn Asp 35 40 45 Gln Ile Glu Val Thr Asn Ala Thr Glu Leu Val Gln Ser Ser Ser Thr 50 55 60 Gly Gly Ile Cys Asp Ser Pro His Gln Ile Leu Asp Gly Glu Asn Cys 65 70 75 80 Thr Leu Ile Asp Ala Leu Leu Gly Asp Pro Gln Cys Asp Gly Phe Gln 85 90 95 Asn Lys Lys Trp Asp Leu Phe Val Glu Arg Ser Lys Ala Tyr Ser Asn 100 105 110 Cys Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Ser Leu Arg Ser Leu Val 115 120 125 Ala Ser Ser Gly Thr Leu Glu Phe Asn Asp Glu Ser Phe Asn Trp Thr 130 135 140 Gly Val Thr Gln Asn Gly Thr Ser Ser Ser Cys Lys Arg Arg Ser Asn 145 150 155 160 Asn Ser Phe Phe Ser Arg Leu Asn Trp Leu Thr His Leu Lys Phe Lys 165 170 175 Tyr Pro Ala Leu Asn Val Thr Met Pro Asn Asn Glu Lys Phe Asp Lys 180 185 190 Leu Tyr Ile Trp Gly Val His His Pro Val Thr Asp Asn Asp Gln Ile 195 200 205 Phe Leu Tyr Ala Gln Ala Ser Gly Arg Ile Thr Val Ser Thr Lys Arg 210 215 220 Ser Gln Gln Thr Val Ile Pro Asn Ile Gly Ser Arg Pro Arg Ile Arg 225 230 235 240 Asn Ile Pro Ser Arg Ile Ser Ile Tyr Trp Thr Ile Val Lys Pro Gly 245 250 255 Asp Ile Leu Leu Ile Asn Ser Thr Gly Asn Leu Ile Ala Pro Arg Gly 260 265 270 Tyr Phe Lys Ile Arg Ser Gly Lys Ser Ser Ile Met Arg Ser Asp Ala 275 280 285 Pro Ile Gly Lys Cys Asn Ser Glu Cys Ile Thr Pro Asn Gly Ser Ile 290 295 300 Pro Asn Asp Lys Pro Phe Gln Asn Val Asn Arg Ile Thr Tyr Gly Ala 305 310 315 320 Cys Pro Arg Tyr Val Lys Gln Asn Thr Leu Lys Leu Ala Thr Gly Met 325 330 335 Arg Asn Val Pro Glu Lys Gln Thr Arg Gly Ile Phe Gly Ala Ile Ala 340 345 350 Gly Phe Ile Glu Asn Gly Trp Glu Gly Met Val Asp Gly Trp Tyr Gly 355 360 365 Phe Arg His Gln Asn Ser Glu Gly Ile Gly Gln Ala Ala Asp Leu Lys 370 375 380 Ser Thr Gln Ala Ala Ile Asn Gln Ile Asn Gly Lys Leu Asn Arg Leu 385 390 395 400 Ile Gly Lys Thr Asn Glu Lys Phe His Gln Ile Glu Lys Glu Phe Ser 405 410 415 Glu Val Glu Gly Arg Ile Gln Asp Leu Glu Lys Tyr Val Glu Asp Thr 420 425 430 Lys Ile Asp Leu Trp Ser Tyr Asn Ala Glu Leu Leu Val Ala Leu Glu 435 440 445 Asn Gln His Thr Ile Asp Leu Thr Asp Ser Glu Met Asn Lys Leu Phe 450 455 460 Glu Arg Thr Lys Lys Gln Leu Arg Glu Asn Ala Glu Asp Met Gly Asn 465 470 475 480 Gly Cys Phe Lys Ile Tyr His Lys Cys Asp Asn Ala Cys Ile Gly Ser 485 490 495 Ile Arg Asn Gly Thr Tyr Asp His Asp Val Tyr Arg Asp Glu Ala Leu 500 505 510 Asn Asn Arg Phe Gln Ile Lys Gly Val Glu Leu Lys Ser Gly Tyr Lys 515 520 525 Asp Trp Ile Leu Trp Ile Ser Phe Ala Ile Ser Cys Phe Leu Leu Cys 530 535 540 Val Ala Leu Leu Gly Phe Ile Met Trp Ala Cys Gln Lys Gly Asn Ile 545 550 555 560 Arg Cys Asn Ile Cys Ile 565 43469PRTInfluenza A virus 43Met Asn Pro Asn Gln Lys Ile Ile Thr Ile Gly Ser Val Ser Leu Thr 1 5 10 15 Ile Ser Thr Ile Cys Phe Phe Met Gln Ile Ala Ile Leu Ile Thr Thr 20 25 30 Val Thr Leu His Phe Lys Gln Tyr Glu Phe Asn Ser Pro Pro Asn Asn 35 40 45 Gln Val Met Leu Cys Glu Pro Thr Ile Ile Glu Arg Asn Ile Thr Glu 50 55 60 Ile Val Tyr Leu Thr Asn Thr Thr Ile Glu Lys Glu Ile Cys Pro Lys 65 70 75 80 Leu Ala Glu Tyr Arg Asn Trp Ser Lys Pro Gln Cys Asn Ile Thr Gly 85 90 95 Phe Ala Pro Phe Ser Lys Asp Asn Ser Ile Arg Leu Ser Ala Gly Gly 100 105 110 Asp Ile Trp Val Thr Arg Glu Pro Tyr Val Ser Cys Asp Pro Asp Lys 115 120 125 Cys Tyr Gln Phe Ala Leu Gly Gln Gly Thr Thr Leu Asn Asn Val His 130 135 140 Ser Asn Asp Thr Val His Asp Arg Thr Pro Tyr Arg Thr Leu Leu Met 145 150 155 160 Asn Glu Leu Gly Val Pro Phe His Leu Gly Thr Lys Gln Val Cys Ile 165 170 175 Ala Trp Ser Ser Ser Ser Cys His Asp Gly Lys Ala Trp Leu His Val 180 185 190 Cys Val Thr Gly Asp Asp Lys Asn Ala Thr Ala Ser Phe Ile Tyr Asn 195 200 205 Gly Arg Leu Val Asp Ser Ile Val Ser Trp Ser Lys Glu Ile Leu Arg 210 215 220 Thr Gln Glu Ser Glu Cys Val Cys Ile Asn Gly Thr Cys Thr Val Val 225 230 235 240 Met Thr Asp Gly Ser Ala Ser Gly Lys Ala Asp Thr Lys Ile Leu Phe 245 250 255 Ile Glu Glu Gly Lys Ile Val His Thr Ser Thr Leu Ser Gly Ser Ala 260 265 270 Gln His Val Glu Glu Cys Ser Cys Tyr Pro Arg Tyr Leu Gly Val Arg 275 280 285 Cys Val Cys Arg Asp Asn Trp Lys Gly Ser Asn Arg Pro Ile Val Asp 290 295 300 Ile Asn Ile Lys Asp Tyr Ser Ile Val Ser Ser Tyr Val Cys Ser Gly 305 310 315 320 Leu Val Gly Asp Thr Pro Arg Lys Asn Asp Ser Ser Ser Ser Ser His 325 330 335 Cys Leu Asp Pro Asn Asn Glu Glu Gly Gly His Gly Val Lys Gly Trp 340 345 350 Ala Phe Asp Asp Gly Asn Asp Val Trp Met Gly Arg Thr Ile Ser Glu 355 360 365 Lys Leu Arg Ser Gly Tyr Glu Thr Phe Lys Val Ile Glu Gly Trp Ser 370 375 380 Asn Pro Asn Ser Lys Leu Gln Ile Asn Arg Gln Val Ile Val Asp Arg 385 390 395 400 Gly Asn Arg Ser Gly Tyr Ser Gly Ile Phe Ser Val Glu Gly Lys Ser 405 410 415 Cys Ile Asn Arg Cys Phe Tyr Val Glu Leu Ile Arg Gly Arg Lys Glu 420 425 430 Glu Thr Glu Val Leu Trp Thr Ser Asn Ser Ile Val Val Phe Cys Gly 435 440 445 Thr Ser Gly Thr Tyr Gly Thr Gly Ser Trp Pro Asp Gly Ala Asp Ile 450 455 460 Asn Leu Met Pro Ile 465 44716PRTInfluenza A virus 44Met Glu Asp Phe Val Arg Gln Cys Phe Asn Pro Met Ile Val Glu Leu 1 5 10 15 Ala Glu Lys Ala Met Lys Glu Tyr Gly Glu Asp Pro Lys Ile Glu Thr 20 25 30 Asn Lys Phe Ala Ala Ile Cys Thr His Leu Glu Val Cys Phe Met Tyr 35 40 45 Ser Asp Phe His Phe Ile Asp Glu Arg Gly Glu Ser Ile Ile Val Glu 50 55 60 Ser Gly Asp Pro Asn Ala Leu Leu Lys His Arg Phe Glu Ile Ile Glu 65

70 75 80 Gly Arg Asp Arg Ile Met Ala Trp Thr Val Ile Asn Ser Ile Cys Asn 85 90 95 Thr Thr Gly Val Glu Lys Pro Lys Phe Leu Pro Asp Leu Tyr Asp Tyr 100 105 110 Lys Glu Asn Arg Phe Ile Glu Ile Gly Val Thr Arg Arg Glu Val His 115 120 125 Ile Tyr Tyr Leu Glu Lys Ala Asn Lys Ile Lys Ser Glu Lys Thr His 130 135 140 Ile His Ile Phe Ser Phe Thr Gly Glu Glu Met Ala Thr Lys Ala Asp 145 150 155 160 Tyr Thr Leu Asp Glu Glu Ser Arg Ala Arg Ile Lys Thr Arg Leu Phe 165 170 175 Thr Ile Arg Gln Glu Met Ala Ser Lys Ser Leu Trp Asp Ser Phe Arg 180 185 190 Gln Ser Glu Arg Gly Glu Glu Thr Ile Glu Glu Lys Phe Glu Ile Thr 195 200 205 Gly Thr Met Arg Lys Leu Ala Asp Gln Ser Leu Pro Pro Asn Phe Pro 210 215 220 Ser Leu Glu Asn Phe Arg Ala Tyr Val Asp Gly Phe Glu Pro Asn Gly 225 230 235 240 Cys Ile Glu Gly Lys Leu Ser Gln Met Ser Lys Glu Val Asn Ala Lys 245 250 255 Ile Glu Pro Phe Leu Arg Thr Thr Pro Arg Pro Leu Arg Leu Pro Asp 260 265 270 Gly Pro Leu Cys His Gln Arg Ser Lys Phe Leu Leu Met Asp Ala Leu 275 280 285 Lys Leu Ser Ile Glu Asp Pro Ser His Glu Gly Glu Gly Ile Pro Leu 290 295 300 Tyr Asp Ala Ile Lys Cys Met Lys Thr Phe Phe Gly Trp Lys Glu Pro 305 310 315 320 Asn Ile Val Lys Pro His Glu Lys Gly Ile Asn Pro Asn Tyr Leu Met 325 330 335 Ala Trp Lys Gln Val Leu Ala Glu Leu Gln Asp Ile Glu Asn Glu Glu 340 345 350 Lys Ile Pro Arg Thr Lys Asn Met Lys Arg Thr Ser Gln Leu Lys Trp 355 360 365 Ala Leu Gly Glu Asn Met Ala Pro Glu Lys Val Asp Phe Asp Asp Cys 370 375 380 Lys Asp Val Gly Asp Leu Lys Gln Tyr Asp Ser Asp Glu Pro Glu Pro 385 390 395 400 Arg Ser Leu Ala Ser Trp Val Gln Asn Glu Phe Asn Lys Ala Cys Glu 405 410 415 Leu Thr Asp Ser Ser Trp Ile Glu Leu Asp Glu Ile Gly Glu Asp Val 420 425 430 Ala Pro Ile Glu His Ile Ala Ser Met Arg Arg Asn Tyr Phe Thr Ala 435 440 445 Glu Val Ser His Cys Arg Ala Thr Glu Tyr Ile Met Lys Gly Val Tyr 450 455 460 Ile Asn Thr Ala Leu Leu Asn Ala Ser Cys Ala Ala Met Asp Asp Phe 465 470 475 480 Gln Leu Ile Pro Met Ile Ser Lys Cys Arg Thr Lys Glu Gly Arg Arg 485 490 495 Lys Thr Asn Leu Tyr Gly Phe Ile Ile Lys Gly Arg Ser His Leu Arg 500 505 510 Asn Asp Thr Asp Val Val Asn Phe Val Ser Met Glu Phe Ser Leu Thr 515 520 525 Asp Pro Arg Leu Glu Pro His Lys Trp Glu Lys Tyr Cys Val Leu Glu 530 535 540 Ile Gly Asp Met Leu Leu Arg Thr Ala Ile Gly Gln Val Ser Arg Pro 545 550 555 560 Met Phe Leu Tyr Val Arg Thr Asn Gly Thr Ser Lys Ile Lys Met Lys 565 570 575 Trp Gly Met Glu Met Arg Arg Cys Leu Leu Gln Ser Leu Gln Gln Ile 580 585 590 Glu Ser Met Ile Glu Ala Glu Ser Ser Val Lys Glu Lys Asp Met Thr 595 600 605 Lys Glu Phe Phe Glu Asn Lys Ser Glu Thr Trp Pro Ile Gly Glu Ser 610 615 620 Pro Arg Gly Val Glu Glu Gly Ser Ile Gly Lys Val Cys Arg Thr Leu 625 630 635 640 Leu Ala Lys Ser Val Phe Asn Ser Leu Tyr Ala Ser Pro Gln Leu Glu 645 650 655 Gly Phe Ser Ala Glu Ser Arg Lys Leu Leu Leu Ile Val Gln Ala Leu 660 665 670 Arg Asp Asn Leu Glu Pro Gly Thr Phe Asp Leu Gly Gly Leu Tyr Glu 675 680 685 Ala Ile Glu Glu Cys Leu Ile Asn Asp Pro Trp Val Leu Leu Asn Ala 690 695 700 Ser Trp Phe Asn Ser Phe Leu Thr His Ala Leu Lys 705 710 715 45252PRTInfluenza A virus 45Met Ser Leu Leu Thr Glu Val Glu Thr Tyr Val Leu Ser Ile Val Pro 1 5 10 15 Ser Gly Pro Leu Lys Ala Glu Ile Ala Gln Arg Leu Glu Asn Val Phe 20 25 30 Ala Gly Lys Asn Thr Asp Leu Glu Ala Leu Met Glu Trp Leu Lys Thr 35 40 45 Arg Pro Ile Leu Ser Pro Leu Thr Lys Gly Ile Leu Gly Phe Val Phe 50 55 60 Thr Leu Thr Val Pro Ser Glu Arg Gly Leu Gln Arg Arg Arg Phe Val 65 70 75 80 Gln Asn Ala Leu Asn Gly Asn Gly Asp Pro Asn Asn Met Asp Lys Ala 85 90 95 Val Lys Leu Tyr Arg Lys Leu Lys Arg Glu Ile Thr Phe His Gly Ala 100 105 110 Lys Glu Ile Ala Leu Ser Tyr Ser Ala Gly Ala Leu Ala Ser Cys Met 115 120 125 Gly Leu Ile Tyr Asn Arg Met Gly Ala Val Thr Thr Glu Ser Ala Phe 130 135 140 Gly Leu Ile Cys Ala Thr Cys Glu Gln Ile Ala Asp Ser Gln His Lys 145 150 155 160 Ser His Arg Gln Met Val Thr Thr Thr Asn Pro Leu Ile Arg His Glu 165 170 175 Asn Arg Met Val Leu Ala Ser Thr Thr Ala Lys Ala Met Glu Gln Met 180 185 190 Ala Gly Ser Ser Glu Gln Ala Ala Glu Ala Met Glu Val Ala Ser Gln 195 200 205 Ala Arg Gln Met Val Gln Ala Met Arg Ala Ile Gly Thr His Pro Ser 210 215 220 Ser Ser Thr Gly Leu Lys Asn Asp Leu Leu Glu Asn Leu Gln Ala Tyr 225 230 235 240 Gln Lys Arg Met Gly Val Gln Met Gln Arg Phe Lys 245 250 46758PRTInfluenza A virus 46Met Asp Val Asn Pro Thr Leu Leu Phe Leu Lys Ile Pro Ala Gln Asn 1 5 10 15 Ala Ile Ser Thr Thr Phe Pro Tyr Thr Gly Asp Pro Pro Tyr Ser His 20 25 30 Gly Thr Gly Thr Gly Tyr Thr Met Asp Thr Val Asn Arg Thr His Gln 35 40 45 Tyr Ser Glu Lys Gly Lys Trp Thr Thr Asn Thr Glu Thr Gly Ala Pro 50 55 60 Gln Leu Asn Pro Ile Asp Gly Pro Leu Pro Glu Asp Asn Glu Pro Ser 65 70 75 80 Gly Tyr Ala Gln Thr Asp Cys Val Leu Glu Ala Met Ala Phe Leu Glu 85 90 95 Glu Ser His Pro Gly Ile Phe Glu Asn Ser Cys Leu Glu Thr Met Glu 100 105 110 Val Val Gln Gln Thr Arg Val Asp Arg Leu Thr Gln Gly Arg Gln Thr 115 120 125 Tyr Asp Trp Thr Leu Asn Arg Asn Gln Pro Ala Ala Thr Ala Leu Ala 130 135 140 Asn Thr Ile Glu Val Phe Arg Ser Asn Gly Leu Thr Ala Asn Glu Ser 145 150 155 160 Gly Arg Leu Ile Asp Phe Leu Lys Asp Val Met Glu Ser Met Asp Lys 165 170 175 Glu Glu Ile Glu Ile Thr Thr His Phe Gln Arg Lys Arg Arg Val Arg 180 185 190 Asp Asn Met Thr Lys Lys Met Val Thr Gln Arg Thr Ile Gly Lys Lys 195 200 205 Lys Gln Arg Val Asn Lys Arg Ser Tyr Leu Ile Arg Ala Leu Thr Leu 210 215 220 Asn Thr Met Thr Lys Asp Ala Glu Arg Gly Lys Leu Lys Arg Arg Ala 225 230 235 240 Ile Ala Thr Pro Gly Met Gln Ile Arg Gly Phe Val Tyr Phe Val Glu 245 250 255 Thr Leu Ala Arg Ser Ile Cys Glu Lys Leu Glu Gln Ser Gly Leu Pro 260 265 270 Val Gly Gly Asn Glu Lys Lys Ala Lys Leu Ala Asn Val Val Arg Lys 275 280 285 Met Met Thr Asn Ser Gln Asp Thr Glu Leu Ser Phe Thr Ile Thr Gly 290 295 300 Asp Asn Thr Lys Trp Asn Glu Asn Gln Asn Pro Arg Met Phe Leu Ala 305 310 315 320 Met Ile Thr Tyr Ile Thr Lys Asn Gln Pro Glu Trp Phe Arg Asn Ile 325 330 335 Leu Ser Ile Ala Pro Ile Met Phe Ser Asn Lys Met Ala Arg Leu Gly 340 345 350 Lys Gly Tyr Met Phe Glu Ser Lys Arg Met Lys Leu Arg Thr Gln Ile 355 360 365 Pro Ala Glu Met Leu Ala Ser Ile Asp Leu Lys Tyr Phe Asn Glu Ser 370 375 380 Thr Arg Lys Lys Ile Glu Lys Ile Arg Pro Leu Leu Ile Asp Gly Thr 385 390 395 400 Ala Ser Leu Ser Pro Gly Met Met Met Gly Met Phe Asn Met Leu Ser 405 410 415 Thr Val Leu Gly Val Ser Ile Leu Asn Leu Gly Gln Lys Lys Tyr Thr 420 425 430 Lys Thr Thr Tyr Trp Trp Asp Gly Leu Gln Ser Ser Asp Asp Phe Ala 435 440 445 Leu Ile Val Asn Ala Pro Asn His Glu Gly Ile Gln Ala Gly Val Asp 450 455 460 Arg Phe Tyr Arg Thr Cys Lys Leu Val Gly Ile Asn Met Ser Lys Lys 465 470 475 480 Lys Ser Tyr Ile Asn Arg Thr Gly Thr Phe Glu Phe Thr Ser Phe Phe 485 490 495 Tyr Arg Tyr Gly Phe Val Ala Asn Phe Ser Met Glu Leu Pro Ser Phe 500 505 510 Gly Val Ser Gly Ile Asn Glu Ser Ala Asp Met Ser Ile Gly Val Thr 515 520 525 Val Ile Lys Asn Asn Met Ile Asn Asn Asp Leu Gly Pro Ala Thr Ala 530 535 540 Gln Met Ala Leu Gln Leu Phe Ile Lys Asp Tyr Arg Tyr Thr Tyr Arg 545 550 555 560 Cys His Arg Gly Asp Thr Gln Ile Gln Thr Arg Arg Ser Phe Glu Leu 565 570 575 Lys Lys Leu Trp Glu Gln Thr Arg Ser Lys Ala Gly Leu Leu Val Ser 580 585 590 Asp Gly Gly Pro Asn Leu Tyr Asn Ile Arg Asn Leu His Ile Pro Glu 595 600 605 Val Cys Leu Lys Trp Glu Leu Met Asp Glu Asp Tyr Gln Gly Arg Leu 610 615 620 Cys Asn Pro Leu Asn Pro Phe Val Ser His Lys Glu Ile Glu Ser Val 625 630 635 640 Asn Asn Ala Val Val Met Pro Ala His Gly Pro Ala Lys Ser Met Glu 645 650 655 Tyr Asp Ala Val Ala Thr Thr His Ser Trp Ile Pro Lys Arg Asn Arg 660 665 670 Ser Ile Leu Asn Thr Ser Gln Arg Gly Ile Leu Glu Asp Glu Gln Met 675 680 685 Tyr Gln Lys Cys Cys Asn Leu Phe Glu Lys Phe Phe Pro Ser Ser Ser 690 695 700 Tyr Arg Arg Pro Val Gly Ile Ser Ser Met Val Glu Ala Met Val Ser 705 710 715 720 Arg Ala Arg Ile Asp Ala Arg Ile Asp Phe Glu Ser Gly Arg Ile Lys 725 730 735 Lys Glu Glu Phe Ser Glu Ile Met Lys Ile Cys Ser Thr Ile Glu Glu 740 745 750 Leu Arg Arg Gln Lys Gln 755 47716PRTInfluenza A virus 47Met Glu Asp Phe Val Arg Gln Cys Phe Asn Pro Met Ile Val Glu Leu 1 5 10 15 Ala Glu Lys Thr Met Lys Glu Tyr Gly Glu Asp Leu Lys Ile Glu Thr 20 25 30 Asn Lys Phe Ala Ala Ile Cys Thr His Leu Glu Val Cys Phe Met Tyr 35 40 45 Ser Asp Phe His Phe Ile Asn Glu Gln Gly Glu Ser Ile Ile Val Glu 50 55 60 Leu Gly Asp Pro Asn Ala Leu Leu Lys His Arg Phe Glu Ile Ile Glu 65 70 75 80 Gly Arg Asp Arg Thr Met Ala Trp Thr Val Val Asn Ser Ile Cys Asn 85 90 95 Thr Thr Gly Ala Glu Lys Pro Lys Phe Leu Pro Asp Leu Tyr Asp Tyr 100 105 110 Lys Glu Asn Arg Phe Ile Glu Ile Gly Val Thr Arg Arg Glu Val His 115 120 125 Ile Tyr Tyr Leu Glu Lys Ala Asn Lys Ile Lys Ser Glu Lys Thr His 130 135 140 Ile His Ile Phe Ser Phe Thr Gly Glu Glu Met Ala Thr Lys Ala Asp 145 150 155 160 Tyr Thr Leu Asp Glu Glu Ser Arg Ala Arg Ile Lys Thr Arg Leu Phe 165 170 175 Thr Ile Arg Gln Glu Met Ala Ser Arg Gly Leu Trp Asp Ser Phe Arg 180 185 190 Gln Ser Glu Arg Gly Glu Glu Thr Ile Glu Glu Arg Phe Glu Ile Thr 195 200 205 Gly Thr Met Arg Lys Leu Ala Asp Gln Ser Leu Pro Pro Asn Phe Ser 210 215 220 Ser Leu Glu Asn Phe Arg Ala Tyr Val Asp Gly Phe Glu Pro Asn Gly 225 230 235 240 Tyr Ile Glu Gly Lys Leu Ser Gln Met Ser Lys Glu Val Asn Ala Arg 245 250 255 Ile Glu Pro Phe Leu Lys Thr Thr Pro Arg Pro Leu Arg Leu Pro Asn 260 265 270 Gly Pro Pro Cys Ser Gln Arg Ser Lys Phe Leu Leu Met Asp Ala Leu 275 280 285 Lys Leu Ser Ile Glu Asp Pro Ser His Glu Gly Glu Gly Ile Pro Leu 290 295 300 Tyr Asp Ala Ile Lys Cys Met Arg Thr Phe Phe Gly Trp Lys Glu Pro 305 310 315 320 Asn Val Val Lys Pro His Glu Lys Gly Ile Asn Pro Asn Tyr Leu Leu 325 330 335 Ser Trp Lys Gln Val Leu Ala Glu Leu Gln Asp Ile Glu Asn Glu Glu 340 345 350 Lys Ile Pro Lys Thr Lys Asn Met Lys Lys Thr Ser Gln Leu Lys Trp 355 360 365 Ala Leu Gly Glu Asn Met Ala Pro Glu Lys Val Asp Phe Asp Asp Cys 370 375 380 Lys Asp Val Gly Asp Leu Lys Gln Tyr Asp Ser Asp Glu Pro Glu Leu 385 390 395 400 Arg Ser Leu Ala Ser Trp Ile Gln Asn Glu Phe Asn Lys Ala Cys Glu 405 410 415 Leu Thr Asp Ser Ser Trp Ile Glu Leu Asp Glu Ile Gly Glu Asp Val 420 425 430 Ala Pro Ile Glu His Ile Ala Ser Met Arg Arg Asn Tyr Phe Thr Ser 435 440 445 Glu Val Ser His Cys Arg Ala Thr Glu Tyr Ile Met Lys Gly Val Tyr 450 455 460 Ile Asn Thr Ala Leu Leu Asn Ala Ser Cys Ala Ala Met Asp Asp Phe 465 470 475 480 Gln Leu Ile Pro Met Ile Ser Lys Cys Arg Thr Lys Glu Gly Arg Arg 485 490 495 Lys Thr Asn Leu Tyr Gly Phe Ile Ile Lys Gly Arg Ser His Leu Arg 500 505 510 Asn Asp Thr Asp Val Val Asn Phe Val Ser Met Glu Phe Ser Leu Thr 515 520 525 Asp Pro Arg Leu Glu Pro His Lys Trp Glu Lys Tyr Cys Val Leu Glu 530 535 540 Ile Gly Asp Met Leu Ile Arg Ser Ala Ile Gly Gln Val Ser Arg Pro 545 550 555 560 Met Phe Leu Tyr Val Arg Thr Asn Gly Thr Ser Lys Ile Lys Met Lys 565 570 575 Trp Gly Met Glu Met Arg Arg Cys Leu Leu Gln Ser Leu Gln Gln Ile 580 585 590 Glu Ser Met Ile Glu Ala Glu Ser Ser Val Lys Glu Lys Asp Met Thr 595 600 605 Lys Glu Phe Phe Glu Asn Lys Ser Glu Thr Trp Pro Ile Gly Glu Ser 610 615 620 Pro Lys Gly Val Glu Glu Ser Ser Ile Gly Lys Val Cys Arg Thr Leu 625 630 635 640 Leu Ala Lys Ser Val Phe Asn Ser Leu

Tyr Ala Ser Pro Gln Leu Glu 645 650 655 Gly Phe Ser Ala Glu Ser Arg Lys Leu Leu Leu Ile Val Gln Ala Leu 660 665 670 Arg Asp Asn Leu Glu Pro Gly Thr Phe Asp Leu Gly Gly Leu Tyr Glu 675 680 685 Ala Ile Glu Glu Cys Leu Ile Asn Asp Pro Trp Val Leu Leu Asn Ala 690 695 700 Ser Trp Phe Asn Ser Phe Leu Thr His Ala Leu Ser 705 710 715 48326PRTInfluenza A virus 48Met Ala Ser Gln Gly Thr Lys Arg Ser Tyr Glu Gln Met Glu Thr Asp 1 5 10 15 Gly Glu Arg Gln Asn Ala Thr Glu Ile Arg Ala Ser Val Gly Lys Met 20 25 30 Ile Gly Gly Ile Gly Arg Phe Tyr Ile Gln Met Cys Thr Glu Leu Lys 35 40 45 Leu Ser Asp Tyr Glu Gly Arg Leu Ile Gln Asn Ser Leu Thr Ile Glu 50 55 60 Arg Met Val Leu Ser Ala Phe Asp Glu Arg Arg Asn Lys Tyr Leu Glu 65 70 75 80 Glu His Pro Ser Ala Gly Lys Asp Pro Lys Lys Thr Gly Gly Pro Ile 85 90 95 Tyr Arg Arg Val Asn Gly Lys Trp Met Arg Glu Leu Ile Leu Tyr Asp 100 105 110 Lys Glu Glu Ile Arg Arg Ile Trp Arg Gln Ala Asn Asn Gly Asp Asp 115 120 125 Ala Thr Ala Gly Leu Thr His Met Met Ile Trp His Ser Asn Leu Asn 130 135 140 Asp Ala Thr Tyr Gln Arg Thr Arg Ala Leu Val Arg Thr Gly Met Asp 145 150 155 160 Pro Arg Met Cys Ser Leu Met Gln Gly Ser Thr Leu Pro Arg Arg Ser 165 170 175 Gly Ala Ala Gly Ala Ala Val Lys Gly Val Gly Thr Met Val Met Glu 180 185 190 Leu Val Arg Met Ile Lys Arg Gly Ile Asn Asp Arg Asn Phe Trp Arg 195 200 205 Gly Glu Asn Gly Arg Lys Thr Arg Ile Ala Tyr Glu Arg Met Cys Asn 210 215 220 Ile Leu Lys Gly Lys Phe Gln Thr Ala Ala Gln Lys Ala Met Met Asp 225 230 235 240 Gln Val Arg Glu Ser Arg Asp Pro Gly Asn Ala Glu Phe Glu Asp Leu 245 250 255 Thr Phe Leu Ala Arg Ser Ala Leu Ile Leu Arg Gly Ser Val Ala His 260 265 270 Lys Ser Cys Leu Pro Ala Cys Val Tyr Gly Pro Ala Val Ala Ser Gly 275 280 285 Tyr Asp Phe Glu Arg Glu Gly Tyr Ser Leu Val Gly Ile Asp Pro Phe 290 295 300 Arg Leu Leu Gln Asn Ser Gln Val Tyr Ser Leu Ile Arg Pro Asn Glu 305 310 315 320 Asn Pro Ala His Lys Ser 325 49252PRTInfluenza A virus 49Met Ser Leu Leu Thr Glu Val Glu Thr Tyr Val Leu Ser Ile Ile Pro 1 5 10 15 Ser Gly Pro Leu Lys Ala Glu Ile Ala Gln Arg Leu Glu Asp Val Phe 20 25 30 Ala Gly Lys Asn Thr Asp Leu Glu Val Leu Met Glu Trp Leu Lys Thr 35 40 45 Arg Pro Ile Leu Ser Pro Leu Thr Lys Gly Ile Leu Gly Phe Val Phe 50 55 60 Thr Leu Thr Val Pro Ser Glu Arg Gly Leu Gln Arg Arg Arg Phe Val 65 70 75 80 Gln Asn Ala Leu Asn Gly Asn Gly Asp Pro Asn Asn Met Asp Lys Ala 85 90 95 Val Lys Leu Tyr Arg Lys Leu Lys Arg Glu Ile Thr Phe His Gly Ala 100 105 110 Lys Glu Ile Ser Leu Ser Tyr Ser Ala Gly Ala Leu Ala Ser Cys Met 115 120 125 Gly Leu Ile Tyr Asn Arg Met Gly Ala Val Thr Thr Glu Val Ala Phe 130 135 140 Gly Leu Val Cys Ala Thr Cys Glu Gln Ile Ala Asp Ser Gln His Arg 145 150 155 160 Ser His Arg Gln Met Val Thr Thr Thr Asn Pro Leu Ile Arg His Glu 165 170 175 Asn Arg Met Val Leu Ala Ser Thr Thr Ala Lys Ala Met Glu Gln Met 180 185 190 Ala Gly Ser Ser Glu Gln Ala Ala Glu Ala Met Glu Val Ala Ser Gln 195 200 205 Ala Arg Gln Met Val Gln Ala Met Arg Thr Ile Gly Thr His Pro Ser 210 215 220 Ser Ser Ala Gly Leu Lys Asn Asp Leu Leu Glu Asn Leu Gln Ala Tyr 225 230 235 240 Gln Lys Arg Met Gly Val Gln Met Gln Arg Phe Lys 245 250 50566PRTInfluenza A virus 50Met Lys Ala Ile Leu Val Val Leu Leu Tyr Thr Phe Ala Thr Ala Asn 1 5 10 15 Ala Asp Thr Leu Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Asp Thr 20 25 30 Val Asp Thr Val Leu Glu Lys Asn Val Thr Val Thr His Ser Val Asn 35 40 45 Leu Leu Glu Asp Lys His Asn Gly Lys Leu Cys Lys Leu Arg Gly Val 50 55 60 Ala Pro Leu His Leu Gly Lys Cys Asn Ile Ala Gly Trp Ile Leu Gly 65 70 75 80 Asn Pro Glu Cys Glu Ser Leu Ser Thr Ala Ser Ser Trp Ser Tyr Ile 85 90 95 Val Glu Thr Pro Ser Ser Asp Asn Gly Thr Cys Tyr Pro Gly Asp Phe 100 105 110 Ile Asp Tyr Glu Glu Leu Arg Glu Gln Leu Ser Ser Val Ser Ser Phe 115 120 125 Glu Arg Phe Glu Ile Phe Pro Lys Thr Ser Ser Trp Pro Asn His Asp 130 135 140 Ser Asn Lys Gly Val Thr Ala Ala Cys Pro His Ala Gly Ala Lys Ser 145 150 155 160 Phe Tyr Lys Asn Leu Ile Trp Leu Val Lys Lys Gly Asn Ser Tyr Pro 165 170 175 Lys Leu Ser Lys Ser Tyr Ile Asn Asp Lys Gly Lys Glu Val Leu Val 180 185 190 Leu Trp Gly Ile His His Pro Ser Thr Ser Ala Asp Gln Gln Ser Leu 195 200 205 Tyr Gln Asn Ala Asp Thr Tyr Val Phe Val Gly Ser Ser Arg Tyr Ser 210 215 220 Lys Lys Phe Lys Pro Glu Ile Ala Ile Arg Pro Lys Val Arg Asp Gln 225 230 235 240 Glu Gly Arg Met Asn Tyr Tyr Trp Thr Leu Val Glu Pro Gly Asp Lys 245 250 255 Ile Thr Phe Glu Ala Thr Gly Asn Leu Val Val Pro Arg Tyr Ala Phe 260 265 270 Ala Met Glu Arg Asn Ala Gly Ser Gly Ile Ile Ile Ser Asp Thr Pro 275 280 285 Val His Asp Cys Asn Thr Thr Cys Gln Thr Pro Lys Gly Ala Ile Asn 290 295 300 Thr Ser Leu Pro Phe Gln Asn Ile His Pro Ile Thr Ile Gly Lys Cys 305 310 315 320 Pro Lys Tyr Val Lys Ser Thr Lys Leu Arg Leu Ala Thr Gly Leu Arg 325 330 335 Asn Ile Pro Ser Ile Gln Ser Arg Gly Leu Phe Gly Ala Ile Ala Gly 340 345 350 Phe Ile Glu Gly Gly Trp Thr Gly Met Val Asp Gly Trp Tyr Gly Tyr 355 360 365 His His Gln Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Leu Lys Ser 370 375 380 Thr Gln Asn Ala Ile Asp Glu Ile Thr Asn Lys Val Asn Ser Val Ile 385 390 395 400 Glu Lys Met Asn Thr Gln Phe Thr Ala Val Gly Lys Glu Phe Asn His 405 410 415 Leu Glu Lys Arg Ile Glu Asn Leu Asn Lys Lys Val Asp Asp Gly Phe 420 425 430 Leu Asp Ile Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Leu Glu Asn 435 440 445 Glu Arg Thr Leu Asp Tyr His Asp Ser Asn Val Lys Asn Leu Tyr Glu 450 455 460 Lys Val Arg Ser Gln Leu Lys Asn Asn Ala Lys Glu Ile Gly Asn Gly 465 470 475 480 Cys Phe Glu Phe Tyr His Lys Cys Asp Asn Thr Cys Met Glu Ser Val 485 490 495 Lys Asn Gly Thr Tyr Asp Tyr Pro Lys Tyr Ser Glu Glu Ala Lys Leu 500 505 510 Asn Arg Glu Glu Ile Asp Gly Val Lys Leu Glu Ser Thr Arg Ile Tyr 515 520 525 Gln Ile Leu Ala Ile Tyr Ser Thr Val Ala Ser Ser Leu Val Leu Val 530 535 540 Val Ser Leu Gly Ala Ile Ser Phe Trp Met Cys Ser Asn Gly Ser Leu 545 550 555 560 Gln Cys Arg Ile Cys Ile 565

* * * * *

References


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed