Methods And Composition For The Identification Of Antibiotics That Are Not Susceptible To Antibiotic Resistance

Cunningham; Philip R.

Patent Application Summary

U.S. patent application number 13/758595 was filed with the patent office on 2013-12-19 for methods and composition for the identification of antibiotics that are not susceptible to antibiotic resistance. This patent application is currently assigned to Wayne State University. The applicant listed for this patent is WAYNE STATE UNIVERSITY. Invention is credited to Philip R. Cunningham.

Application Number20130337544 13/758595
Document ID /
Family ID30003301
Filed Date2013-12-19

United States Patent Application 20130337544
Kind Code A1
Cunningham; Philip R. December 19, 2013

METHODS AND COMPOSITION FOR THE IDENTIFICATION OF ANTIBIOTICS THAT ARE NOT SUSCEPTIBLE TO ANTIBIOTIC RESISTANCE

Abstract

Compositions are provided to identify functional mutant ribosomes that may be used as drug targets. The compositions allow isolation and analysis of mutations that would normally be lethal and allow direct selection of rRNA mutants with predetermined levels of ribosome function. The compositions of the present invention may be used to identify antibiotics to treat a large number of human pathogens through the use of genetically engineered rRNA genes from a variety of species. The invention further provides novel plasmid constructs to be used in the methods of the invention.


Inventors: Cunningham; Philip R.; (Troy, MI)
Applicant:
Name City State Country Type

WAYNE STATE UNIVERSITY

Detroit

MI

US
Assignee: Wayne State University
Detroit
MI

Family ID: 30003301
Appl. No.: 13/758595
Filed: February 4, 2013

Related U.S. Patent Documents

Application Number Filing Date Patent Number
12771340 Apr 30, 2010 8367319
13758595
11436349 May 18, 2006 7709196
12771340
10612224 Jul 1, 2003 7081341
11436349
60452012 Mar 5, 2003
60393237 Jul 1, 2002

Current U.S. Class: 435/252.3 ; 435/320.1
Current CPC Class: C12N 15/70 20130101; C12N 15/1058 20130101; C12N 15/1086 20130101
Class at Publication: 435/252.3 ; 435/320.1
International Class: C12N 15/70 20060101 C12N015/70

Claims



1. A plasmid comprising an rRNA gene having a mutant Anti-Shine-Dalgarno sequence, at least one mutation in said rRNA gene, and a genetically engineered gene which encodes a selectable marker having a mutant Shine-Dalgarno sequence, wherein the mutant Anti-Shine-Dalgarno and the mutant Shine-Dalgarno sequence are a mutually compatible pair.

2. The plasmid of claim 1, wherein the rRNA gene is from a species selected from the group consisting of Mycobacterium tuberculosis, Pseudomonas aeruginosa, Salmonella typhi, Yersenia pestis, Staphylococcus aureus, Streptococcus pyogenes, Enterococcus faecalis, Chlamydia trachomatis, Saccharomyces cerevesiae, Candida alhicans, and trypanosome.

3. The plasmid of claim 1, wherein the selectable marker is chloramphenicol acetyltransferase (CAT), green fluorescent protein (GFP), or both CAT and GFP.

4. The plasmid of claim 1, wherein the mutant Anti-Shine-Dalgarno sequence is selected from the group consisting of SEQ ID NOs: 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, and 159.

5. The plasmid of claim 1, wherein the mutant Shine-Dalgarno sequence is selected from the group consisting of SEQ ID NOs: 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, and 158.

6. The plasmid of claim 4, wherein the mutant Anti-Shine-Dalgarno sequence and the mutant SD sequence are a mutually compatible pair.

7. The plasmid of claim 6, wherein the mutually compatible mutant Shine-Dalgarno and mutant Anti-Shine-Dalgarno pair permits translation by the rRNA of the selectable marker.

8. The plasmid of claim 3, wherein the selectable marker is CAT.

9. The plasmid of claim 3, wherein the selectable marker is GFP.

10. A cell comprising the plasmid of claim 1.

11. The cell of claim 10, wherein the mutations in the rRNA gene affect the quantity of selectable marker produced.

12. The cell of claim 10, wherein the cell is a bacterial cell.

13. The plasmid of claim 1, wherein the DNA sequence encoding the rRNA gene is under the control of an inducible promoter.

14. A plasmid comprising an E. coli 16S rRNA gene having a mutant Anti-Shine-Dalgarno sequence, at least one mutation in said 16S rRNA gene, and a genetically engineered gene which encodes GFP having a mutant Shine-Dalgarno sequence, wherein the mutant Anti-Shine-Dalgarno and the mutant Shine-Dalgarno sequence are a mutually compatible pair.

15. The plasmid of claim 14, wherein the mutant Anti-Shine-Dalgarno sequence is selected from the group consisting of SEQ ID NOs: 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, and 159.

16. The plasmid of claim 14, wherein the mutant Shine-Dalgarno sequence is selected from the group consisting of SEQ ID NOs: 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, and 158.

17. The plasmid of claim 15, wherein the mutant Anti-Shine-Dalgarno sequence and the mutant Shine-Dalgarno sequence are a mutually compatible pair.

18. The plasmid of claim 17, wherein the mutually compatible mutant Shine-Dalgarno and mutant Anti-Shine-Dalgarno pair permits translation by the mutant 16S rRNA of the selectable marker GFP.

19. A cell comprising the plasmid of claim 14.

20. The cell of claim 19, wherein the mutation in the 16S rRNA gene affects the quantity of selectable marker produced.

21. The cell of claim 19, wherein the cell is a bacterial cell.

22. The plasmid of claim 14, wherein the DNA sequence encoding the 16S rRNA gene is under the control of an inducible promoter.
Description



RELATED APPLICATIONS

[0001] The present application is a divisional of U.S. patent application Ser. No. 12/771,340, filed on Apr. 30, 2010, which is a continuation of U.S. patent application Ser. No. 11/436,349, filed on May 18, 2006, now U.S. Pat. No. 7,709,196; which is a divisional of U.S. patent application Ser. No. 10/612,224, filed on Jul. 1, 2003, now U.S. Pat. No. 7,081,341; which claims priority from U.S. provisional patent application Ser. No. 60/393,237, filed on Jul. 1, 2002, and U.S. provisional patent application Ser. No. 60/452,012, filed on Mar. 5, 2003, all of which are expressly incorporated by reference.

SEQUENCE LISTING

[0002] The instant application contains a Sequence Listing which is identical to the Sequence Listing submitted in the parent application Ser. No. 12/771,340, filed on Apr. 30, 2010 via EFS-Web in ASCII format on Aug. 10, 2010 and is hereby incorporated by reference in its entirety. The ASCII copy is entitled "WSS59703_SEQLIST.txt" and is 111,235 bytes in size.

BACKGROUND OF THE INVENTION

[0003] Ribosomes are composed of one large and one small subunit containing three or four RNA molecules and over fifty proteins. The part of the ribosome that is directly involved in protein synthesis is the ribosomal RNA (rRNA). The ribosomal proteins are responsible for folding the rRNAs into their correct three-dimensional structures. Ribosomes and the protein synthesis process are very similar in all organisms. One difference between bacteria and other organisms, however, is the way that ribosomes recognize mRNA molecules that are ready to be translated. In bacteria, this process involves a base-pairing interaction between several nucleotides near the beginning of the mRNA and an equal number of nucleotides at the end of the ribosomal RNA molecule in the small subunit. The mRNA sequence is known as the Shine-Dalgarno (SD) sequence and its counterpart on the rRNA is called the Anti-Shine-Dalgarno (ASD) sequence.

[0004] There is now extensive biochemical, genetic and phylogenetic evidence indicating that rRNA is directly involved in virtually every aspect of ribosome function (Garrett, R. A., et al. (2000) The Ribosome: Structure, Function, Antibiotics, and Cellular Interactions. ASM Press, Washington, D.C.). Genetic and functional analyses of rRNA mutations in E. coli and most other organisms have been complicated by the presence of multiple rRNA genes and by the occurrence of dominant lethal rRNA mutations. Because there are seven rRNA operons in E. coli, the phenotypic expression of rRNA mutations may be affected by the relative amounts of mutant and wild-type ribosomes in the cell. Thus, detection of mutant phenotypes can be hindered by the presence of wild-type ribosomes. A variety of approaches have been designed to circumvent these problems.

[0005] One common approach uses cloned copies of a wild-type rRNA operon (Brosius, J., et al. (1981) Plasmid 6: 112-118; Sigmund, C. D. et al. (1982) Proc. Natl. Acad. Sci. U.S.A. 79: 5602-5606). Several groups have used this system to detect phenotypic differences caused by a high level of expression of mutant ribosomes. Recently, a strain of E. coli was constructed in which the only supply of ribosomal RNA was plasmid encoded (Asai, T., (1999) J. Bacteriol. 181: 3803-3809). This system has been used to study transcriptional regulation of rRNA synthesis, as well as ribosomal RNA function (Voulgaris, J., et al. (1999) J. Bacteriol. 181: 4170-4175; Koosha, H., et al. (2000) RNA. 6: 1166-1173; Sergiev, P. V., et al. (2000) J. Mol. Biol. 299: 379-389; O'Connor, M. et al. (2001) Nucl. Acids Res. 29: 1420-1425; O'Connor, M., et al. (2001) Nucl. Acids Res. 29: 710-715; Vila-Sanjurjo, A. et al. (2001) J. Mol. Biol. 308: 457-463); Morosyuk S. V., et al. (2000) J. Mol. Biol. 300 (1):113-126; Morosyuk S. V., et al. (2001) J. Mol. Biol. 307 (1):197-210; and Morosyuk S. V., et al. (2001) J. Mol. Biol. 307 (1):211-228. Hui et al. showed that mRNA could be directed to a specific subset of plasmid-encoded ribosomes by altering the message binding site (MBS) of the ribosome while at the same time altering the ribosome binding site (RBS) of an mRNA (Hui, A., et al. (1987) Methods Enzymol. 153: 432-452).

[0006] Although each of the above methods has contributed significantly to the understanding of rRNA function, progress in this field has been hampered both by the complexity of translation and by difficulty in applying standard genetic selection techniques to these systems.

[0007] Resistance to antibiotics, a matter of growing concern, is caused partly by antibiotic overuse. According to a study published by the Journal of the American Medical Association in 2001, between 1989 to 1999 American adults made some 6.7 million visits a year to the doctor for sore throat. In 73% of those visits, the study found, the patient was treated with antibiotics, though only 5%-17% of sore throats are caused by bacterial infections, the only kind that respond to antibiotics. Macrolide antibiotics in particular are becoming extremely popular for treatment of upper respiratory infections, in part because of their typically short, convenient course of treatment. Research has linked such vast use to a rise in resistant bacteria and the recent development of multiple drug resistance has underscored the need for antibiotics which are highly specific and refractory to the development of drug resistance.

[0008] Microorganisms can be resistant to antibiotics by four mechanisms. First, resistance can occur by reducing the amount of antibiotic that accumulates in the cell. Cells can accomplish this by either reducing the uptake of the antibiotic into the cell or by pumping the antibiotic out of the cell. Uptake mediated resistance often occurs, because a particular organism does not have the antibiotic transport protein on the cell surface or occasionally when the constituents of the membrane are mutated in a way that interferes with transport of the antibiotic into a cell. Uptake mediated resistance is only possible in instances where the drug gains entry through a nonessential transport molecule. Efflux mechanisms of antibiotic resistance occur via transporter proteins. These can be highly specific transporters that transport a particular antibiotic, such as tetracycline, out of the cell or they can be more general transporters that transport groups of molecules with similar characteristics out of the cell. The most notorious example of a nonspecific transporter is the multidrug resistance transporter (MDR).

[0009] Inactivating the antibiotic is another mechanism by which microorganisms can become resistant to antibiotics. Antibiotic inactivation is accomplished when an enzyme in the cell chemically alters the antibiotic so that it no longer binds to its intended target. These enzymes are usually very specific and have evolved over millions of years, along with the antibiotics that they inactivate. Examples of antibiotics that are enzymatically inactivated are penicillin, chloramphenicol, and kanamycin.

[0010] Resistance can also occur by modifying or overproducing the target site. The target molecule of the antibiotic is either mutated or chemically modified so that it no long binds the antibiotic. This is possible only if modification of the target does not interfere with normal cellular functions. Target site overproduction is less common but can also produce cells that are resistant to antibiotics.

[0011] Lastly, target bypass is a mechanism by which microorganisms can become resistant to antibiotics. In bypass mechanisms, two metabolic pathways or targets exist in the cell and one is not sensitive to the antibiotic. Treatment with the antibiotic selects cells with more reliance on the second, antibiotic-resistant pathway.

[0012] Among these mechanisms, the greatest concern for new antibiotic development is target site modification. Enzymatic inactivation and specific transport mechanisms require the existence of a substrate specific enzyme to inactivate or transport the antibiotic out of the cell. Enzymes have evolved over millions of years in response to naturally occurring antibiotics. Since microorganisms cannot spontaneously generate new enzymes, these mechanisms are unlikely to pose a significant threat to the development of new synthetic antibiotics. Target bypass only occurs in cells where redundant metabolic pathways exist. As understanding of the MDR transporters increases, it is increasingly possible to develop drugs that are not transported out of the cell by them. Thus, target site modification poses the greatest risk for the development of antibiotic resistance for new classes of antibiotic and this is particularly true for those antibiotics that target ribosomes. The only new class of antibiotics in thirty-five years, the oxazolidinones, is a recent example of an antibiotic that has been compromised because of target site modification. Resistant strains containing a single mutation in rRNA developed within seven months of its use in the clinical settings.

SUMMARY OF THE INVENTION

[0013] The present invention provides compositions and methods which may be used to identify antibiotics that are not susceptible to the development of antibiotic resistance. In particular, rRNA genes from E. coli and other disease causing organisms are genetically engineered to allow identification of functional mutant ribosomes that may be used as drug targets, e.g., to screen chemical and peptide libraries to identify compounds that bind to all functional mutant ribosomes but do not bind to human ribosomes. Antibiotics that recognize all biologically active forms of the target molecule and are therefore not susceptible to the development of drug resistance by target site modification are thus identified.

[0014] The invention provides plasmid constructs comprising an rRNA gene having a mutant ASD sequence set forth in FIGS. 12 (SEQ ID NOS:24-47), 13 (SEQ ID NOS:48-61), 15 (SEQ ID NOS:62-111), and 16 (SEQ ID NOS:112-159), at least one mutation in the rRNA gene, and a genetically engineered gene which encodes a selectable marker having a mutant SD sequence set forth in FIGS. 12, 13, 15, and 16. The mutant SD-ASD sequences are mutually compatible pairs and therefore permit translation of only the mRNA containing the compatible mutant SD sequence, i.e., translation of the selectable marker. In one embodiment, the selectable marker is chosen from the group consisting of chloramphenicol acetyltransferase (CAT), green fluorescent protein (GFP), or both CAT and GFP. In another embodiment, the DNA sequence encoding the rRNA gene is under the control of an inducible promoter.

[0015] The rRNA gene may be selected from a variety of species, thereby providing for the identification of functional mutant ribosomes that may be used as drug targets to identify drug candidates that are effective against the selected species. Examples of species include, without limitation, Mycobacterium tuberculosis (tuberculosis), Pseudomonas aeruginosa (multidrug resistant nosocomial infections), Salmonella typhi (typhoid fever), Yersenia pestis (plague), Staphylococcus aureus (multidrug resistant infections causing impetigo, folliculitis, abcesses, boils, infected lacerations, endocarditis, meningitis, septic arthritis, pneumonia, osteomyelitis, and toxic shock), Streptococcus pyogenes (streptococcal sore throat, scarlet fever, impetigo, erysipelas, puerperal fever, and necrotizing fascitis), Enterococcus faecalis (vancomycin resistant nosocomial infections, endocarditis, and bacteremia), Chlamydia trachomatis (lymphogranuloma venereum, trachoma and inclusion conjunctivitis, nongonococcal urethritis, epididymitis, cervicitis, urethritis, infant pneumonia, pelvic inflammatory diseases, Reiter's syndrome (oligoarthritis) and neonatal conjunctivitis), Saccharomyces cerevesiae, Candida albicans, and trypanosomes. In one embodiment, the rRNA gene is from Mycobacterium tuberculosis (see, e.g., Example 6 and FIG. 17).

[0016] In still other embodiments of the invention, the rRNA genes are mitochondrial rRNA genes, i.e., eukaryotic rRNA genes (e.g., human mitochondrial rRNA genes).

[0017] The plasmid constructs of the invention, such as the plasmid constructs set forth in FIGS. 22-26, may include novel mutant ASD and SD sequences set forth herein. In particular, the present invention provides novel mutant ASD sequences and novel mutant SD sequences, set forth in FIGS. 12, 13, 15, and 16, which may be used in the plasmid constructs and methods of the invention. The mutant ASD and mutant SD sequences may be used as mutually compatible pairs (see FIGS. 12, 13, 15, and 16). It will be appreciated that the mutually compatible pairs of mutant ASD and SD sequences interact as pairs in the form of RNA and permit translation of only the mRNAs containing the compatible mutant SD sequence.

[0018] In another aspect, the present invention provides a plasmid comprising an E. coli 16S rRNA gene having a mutant ASD sequence, at least one mutation in said 16S rRNA gene, and a genetically engineered gene which encodes a selectable marker, e.g., GFP, having a mutant SD sequence. In another embodiment, the 16S rRNA gene is from a species other than E. coli. In one embodiment, the mutant ASD sequence is selected from the sequences set forth in FIGS. 12, 13, 15, and 16. In another embodiment, the mutant SD sequence is selected from the sequences set forth in FIGS. 12, 13, 15, and 16. In yet another embodiment, the mutant ASD sequence and the mutant SD sequence are in mutually compatible pairs (see FIGS. 12, 13, 15, and 16). Each mutually compatible mutant SD and mutant ASD pair permits translation by the selectable marker.

[0019] In one embodiment, the invention features a cell comprising a plasmid of the invention. In another embodiment, the cell is a bacterial cell.

[0020] It will be appreciated that the rRNA gene used in the methods of the present invention may be from the 16S rRNA, 23S rRNA, and 55S rRNA gene.

[0021] Other features and advantages of the invention will be apparent from the following detailed description and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] FIG. 1 depicts the plasmid construct pRNA123. The locations of specific sites in pRNA123 are as follows: the 16S rRNA E. coli rrnB operon corresponds to nucleic acids 1-1542; the 16S MBS (message binding sequence) GGGAU corresponds to nucleic acids 1536-1540; the 16S-23S spacer region corresponds to nucleic acids 1543-1982; the 23S rRNA of E. coli rrnB operon corresponds to nucleic acids 1983-4886; the 23S-5S spacer region corresponds to nucleic acids 4887-4982; the 5S rRNA of E. coli rrnB operon corresponds to nucleic acids 4983-5098; the terminator T1 of E. coli rrnB operon corresponds to nucleic acids 5102-5145; the terminator T2 of E. coli rrnB operon corresponds to nucleic acids 5276-5305; the bla (.beta.-lactamase; ampicillin resistance) corresponds to nucleic acids 6575-7432; the replication origin corresponds to nucleic acids 7575-8209; the rop (Rop protein) corresponds to nucleic acids 8813-8622; the GFP corresponds to nucleic acids 10201-9467; the GFP RBS (ribosome binding sequence) AUCCC corresponds to nucleic acids 10213-10209; the trp.sup.c promoter corresponds to nucleic acids 10270-10230; the trp.sup.c promoter corresponds to nucleic acids 10745-10785; the CAT RBS AUCCC corresponds to nucleic acids 10802-10806; the cam (chloramphenicol acetyltransferase: CAT) corresponds to nucleic acids 10814-11473; the lacI.sup.q promoter corresponds to nucleic acids 11782-11859; the lacI.sup.q (lac repressor) corresponds to nucleic acids 11860-12942; and the lacUV5 promoter corresponds to nucleic acids 12985-13026.

[0023] FIG. 2 depicts a scheme for construction of pRNA9. The abbreviations in FIG. 2 are defined as follows: Ap.sup.r, ampicillin resistance; cam, CAT gene; lacI.sup.q, lactose repressor; PlacUV5, lacUV5 promoter; Ptrp.sup.c, constitutive trp promoter. The restriction sites used are also indicated.

[0024] FIG. 3 depicts an autoradiogram of sequencing gels with pRNA8-rMBS-rRBS. The mutagenic MBS and RBS are shown: B 5 C, G, T; D 5 A, G, T; H 5 A, C, T; V 5 A, C, G. The start codon of cam and the 39 end of 16S rRNA are indicated. Panel A depicts the RBS of the CAT gene. Panel B depicts the MBS of the 16S rRNA gene.

[0025] FIG. 4 depicts a graph of the effect of MBSs on growth. The abbreviations in FIG. 4 are defined as follows: pBR322; vector: pRNA6; RBS 5 GUGUG, MBS 5 CACAC: pRNA9; RBS 5 GGAGG (wt), MBS 5 CCUCC (wt): and Clone 1.times.24; RBS 5 AUCCC, MBS 5 GGGAU.

[0026] FIG. 5 depicts a scheme for construction of pRNA122. The abbreviations in FIG. 5 are defined as follows: Ap.sup.r, ampicillin resistance; cam, CAT gene; lacI.sup.q, lactose repressor; PlacUV5, lacUV5 promoter; Ptrp.sup.c, constitutive trp promoter; N 5 A, C, G, and T. The four nucleotides mutated are underlined and the restriction sites used are indicated.

[0027] FIG. 6 depicts a plasmid-derived ribosome distribution and CAT activity. Cultures were induced (or not) in early log phase (as shown in FIG. 4) and samples were withdrawn for CAT assay and total RNA preparation at the points indicated. Open squares represent the percent plasmid-derived rRNA in uninduced cells. Closed squares represent the percent plasmid-derived rRNA in induced cells. Open circles represent CAT activity in uninduced cells. Closed circles represent CAT activity in induced cells.

[0028] FIG. 7 depicts a scheme for construction of single mutations at positions 516 or 535. The abbreviations in FIG. 7 are defined as follows: Ap.sup.r, ampicillin resistance; cam, CAT gene; lacI.sup.q, lactose repressor; PlacUV5, lacUV5 promoter; Ptrp.sup.c, constitutive trp promoter. C516 was substituted to V (A, C, or G) and A535 was substituted to B (C, G, or T,) in pRNA122 and the restriction sites that were used are also indicated.

[0029] FIG. 8 depicts the functional analysis of mutations constructed at positions 516 and 535 of 16S rRNA in pRNA122. Nucleotide identities are indicated in the order of 516:535 and mutations are underlined. pRNA122 containing the wild-type MBS (wt. MBS) was used as a negative control to assess the degree of MIC and the level of CAT activity due to CAT mRNA translation by wild-type ribosomes. Standard error of the mean is used to indicate the range of the assay results.

[0030] FIG. 9 depicts a description and use of oligodeoxynucleotides (SEQ ID NOS:6-23). Primer binding sites are indicated by the number of nucleotides from the 5' nucleotide of the coding region. Negative numbers indicate binding sites 5' to the coding region.

[0031] FIG. 10 describes several plasmids used in Example 4.

[0032] FIG. 11 depicts the specificity of the selected recombinants. The concentrations of chloramphenicol used are indicated and the unit of MIC is micrograms of chloramphenicol/mL.

[0033] FIG. 12 depicts novel mutant ASD sequences and novel mutant SD sequences of the present invention (SEQ ID NOS:24-47). FIG. 12 also shows a sequence analysis of chloramphenicol resistant isolates. The mutated nucleotides are underlined and potential duplex formations are boxed. CAT activity was measured twice for each culture and the unit is CPM/0.1 .mu.L, of culture/OD600. Induction was measured by dividing CAT activity in induced cells with CAT activity in uninduced cells. A -1 indicates no induction, while a +1 indicates induction with 1 mM IPTG.

[0034] FIG. 13 depicts novel mutant ASD sequences and novel mutant SD sequences of the present invention (SEQ ID NOS:48-61). FIG. 13 also shows a sequence analysis of CAT mRNA mutants. Potential duplex formations are boxed and the mutated nucleotides are underlined. The start codon (AUG) is in bold. A -1 indicates no induction, while a +1 indicates induction with 1 mM IPTG.

[0035] FIG. 14 depicts the effect of Pseudouridine-516 Substitutions on subunit assembly. The percent plasmid-derived 30S data are presented as the percentage of the total 30S in each peak and in crude ribosomes.

[0036] FIG. 15 depicts novel mutant ASD sequences and novel mutant SD sequences of the present invention (SEQ ID NOS:62-111).

[0037] FIG. 16 depicts novel mutant ASD sequences and novel mutant SD sequences of the present invention (SEQ ID NOS:112-159).

[0038] FIG. 17 depicts a hybrid construct. This hybrid construct contains a 16S rRNA from Mycobacterium tuberculosis. The specific sites on the hybrid construct are as follows: the part of rRNA from E. coli rrnB operon corresponds to nucleic acids 1-931; the part of 16S rRNA from Mycobacterium tuberculosis rrnB operon corresponds to nucleic acids 932-1542; the 16S MBS (message binding sequence) GGGAU corresponds to nucleic acids 1536-1540; the terminator T1 of E. coli rrnB operon corresponds to nucleic acids 1791-1834; the terminator T2 of E. coli rrnB operon corresponds to nucleic acids 1965-1994; the replication origin corresponds to nucleic acids 3054-2438; the bla (.beta.-lactamase; ampicillin resistance) corresponds to nucleic acids 3214-4074; the GFP corresponds to nucleic acids 5726-4992; the GFP RBS (ribosome binding sequence) AUCCC corresponds to nucleic acids 5738-5734; the trp.sup.c promoter corresponds to nucleic acids 5795-5755; the trp.sup.c promoter corresponds to nucleic acids 6270-6310; the CAT RBS (ribosome binding sequence) AUCCC corresponds to nucleic acids 6327-6331; the cam (chloramphenicol acetyltransferase; CAT) corresponds to nucleic acids 6339-6998; the lacI.sup.q promoter corresponds to nucleic acids 7307-7384; the lacI.sup.q (lac repressor) corresponds to nucleic acids 7385-8467; and the lacUV5 promoter corresponds to nucleic acids 8510-8551.

[0039] FIG. 18 depicts a plasmid map of pRNA122.

[0040] FIG. 19 depicts a table of sequences and MICs of functional mutants (SEQ ID NOS:160-238). Sequences are ranked by the minimum inhibitory concentration ("MIC") of chloramphenicol required to fully inhibit growth of cells expressing the mutant ribosomes. The nucleotide sequences ("Nucleotide sequence") are the 790 loop sequences selected from the pool of functional, randomized mutants. Mutations are underlined. The number of mutations ("Number of mutations") in each mutant sequence are indicated, as well as the number of occurrences ("Number of occurrences") which represents the number of clones with the indicated sequence. The sequence and activity of the unmutated control, pRNA122 (WT, wild-type) is depicted in the first row of FIG. 19, in which the MIC is 600 .mu.g/ml.

[0041] FIG. 20 depicts the 790-loop sequence variation. In the consensus sequence R=A or G; N=A, C, G or U; M=A or C; H=A, C or U; W=A or U; Y=C or U; .DELTA.=deletion; and underlined numbers indicate the wild-type E. coli sequence.

[0042] FIG. 21 depicts functional and thermodynamic analysis of positions 787 and 795. Mutations have been underlined and "n.d." represents not determined. FIG. 21 shows site-directed mutations ("Nucleotide") that were constructed using PCR, as described for the random mutants, except that the mutagenic primers contained substitutions corresponding only to positions 787 and 795. In order to determine ribosome function ("Mean CAT activity"), each strain was grown and assayed for CAT activity at least twice, the data were averaged, and presented as percentages of the unmutated control, pRNA122+the standard error of the mean. The ratio of plasmid to chromosome-derived rRNA in 30S and 70 S ribosomes ("% Mutant 30S in 30S peak/70S peak") was determined by primer extension. Cultures were grown and assayed at least twice and the mean values are presented as a percentage of the total 30S in each peak .+-.the standard error of the mean. Thermodynamic parameters ("Thermodynamics") are for the higher-temperature transition of model oligonucleotides and are the average of results for four or five different oligomer concentrations. Standard errors for the .DELTA.G.degree. 37 are .+-.5% (1 kcal=4184 J). Errors in T.sub.m are estimated as .+-.1.degree. C. All solutions were at pH 7.

[0043] FIG. 22 depicts the DNA sequence of pRNA8 (SEQ ID NO:1).

[0044] FIG. 23 depicts the DNA sequence of pRNA122 (SEQ ID NO:2).

[0045] FIG. 24 depicts the DNA sequence of pRNA123 (SEQ ID NO:3).

[0046] FIG. 25 depicts the DNA sequence of pRNA123 Mycobacterium tuberculosis-2 (pRNA123 containing a hybrid of E. coli and Mycobacterium tuberculosis 16S rRNA genes) (SEQ ID NO:4).

[0047] FIG. 26 depicts the DNA sequence of pRep-Mycobacterium tuberculosis-2 (containing a puc19 derivative containing the rRNA operon from pRNA122; however, the 23S and 5S rRNA genes are deleted) (SEQ ID NO:5).

[0048] FIGS. 2-14 may be found in Lee, K., et al. Genetic Approaches to Studying Protein Synthesis Effects of Mutations at Pseudouridine 516 and A535 in Escherichia coli 16S rRNA. Symposium: Translational Control: A Mechanistic Perspective at the Experimental Biology 2001 Meeting (2001); and FIGS. 18-21 may be found in Lee, K. et al., J. Mol. Biol. 269: 732-743 (1997), all of which are expressly incorporated by reference herein.

DETAILED DESCRIPTION OF THE INVENTION

[0049] Compositions and methods are provided to identify functional mutant ribosomes suitable as drug targets. The compositions and methods allow isolation and analysis of mutations that would normally be lethal and allow direct selection of rRNA mutants with predetermined levels of ribosome function. The compositions and methods of the present invention may be used to identify antibiotics to treat generally and/or selectively human pathogens.

[0050] According to one embodiment of the invention, a functional genomics database for rRNA genes of a variety of species may be generated. In particular, the rRNA gene is randomly mutated using a generalized mutational strategy. A host cell is then transformed with a mutagenized plasmid of the invention comprising: an rRNA gene having a mutant ASD sequence, the mutated rRNA gene, and a genetically engineered gene which encodes a selectable marker having a mutant SD sequence. The selectable marker gene, such as CAT, may be used to select mutants that are functional, e.g., by plating the transformed cells onto growth medium containing chloramphenicol. The mutant rRNA genes contained in each plasmid DNA of the individual clones from each colony are selected and characterized. The function of each of the mutant rRNA genes is assessed by measuring the amount of an additional selectable marker gene, such as GFP, produced by each clone upon induction of the rRNA operon. A functional genomics database may thus be assembled, which contains the sequence and functional data of the functional mutant rRNA genes. In particular, functionally important regions of the rRNA gene that will serve as drug targets are identified by comparing the sequences of the functional genomics database and correlating the sequence with the amount of GFP protein produced.

[0051] In another embodiment, the nucleotides in the functionally important target regions identified in the above methods may be simultaneously randomly mutated, e.g., by using standard methods of molecular mutagenesis, and cloned into a plasmid of the invention to form a plasmid pool containing random mutations at each of the nucleotide positions in the target region. The resulting pool of plasmids containing random mutations is then used to transform cells, e.g., E. coli cells, and form a library of clones, each of which contains a unique combination of mutations in the target region. The library of mutant clones are grown in the presence of IPTG to induce production of the mutant rRNA genes and a selectable marker is used, such as CAT, to select clones of rRNA mutants containing nucleotide combinations of the target region that produce functional ribosomes. The rRNA genes producing functional ribosomes are sequenced and may be incorporated into a database.

[0052] In yet another embodiment, a series of oligonucleotides may be synthesized that contain the functionally-important nucleotides and nucleotide motifs within the target region and may be used to sequentially screen compounds and compound libraries to identify compounds that recognize (bind to) the functionally important sequences and motifs. The compounds that bind to all of the oligonucleotides are then counterscreened against oligonucleotides and/or other RNA containing molecules to identify drug candidates. Drug candidates selected by the methods of the present invention are thus capable of recognizing all of the functional variants of the target sequence, i.e., the target cannot be mutated in a way that the drug cannot bind, without causing loss of function to the ribosome.

[0053] In still another embodiment, after the first stage mutagenesis of the entire rRNA is performed using techniques known in the art, e.g., error-prone PCR mutagenesis, the mutants are analyzed to identify regions within the rRNA that are important for function. These regions are then sorted based on their phylogenetic conservation, as described herein, and are then used for further mutagenesis.

[0054] Ribosomal RNA sequences from each species are different and the more closely related two species are, the more their rRNAs are alike. For instance, humans and monkeys have very similar rRNA sequences, but humans and bacteria have very different rRNA sequences. These differences may be utilized for the development of very specific drugs with a narrow spectrum of action and also for the development of broad-spectrum drugs that inhibit large groups of organisms that are only distantly related, such as all bacteria.

[0055] In another embodiment, the functionally important regions identified above are divided into groups based upon whether or not they occur in closely related groups of organisms. For instance, some regions of rRNA are found in all bacteria but not in other organisms. Other areas of rRNA are found only in closely related groups of bacteria, such as all of the members of a particular species, e.g., members of the genus Mycobacterium or Streptococcus.

[0056] In a further embodiment, the regions found in very large groups of organisms, e.g., all bacteria or all fungi, are used to develop broad-spectrum antibiotics that may be used to treat infections from a large number of organisms within that group. The methods of the present invention may be performed on these regions and functional mutant ribosomes identified. These functional mutant ribosomes may be screened, for example, with compound libraries.

[0057] In yet another embodiment, regions that are located only in relatively small groups of organisms, such as all members of the genus Streptococcus or all members of the genus Mycobacterium, may be used to design narrow spectrum antibiotics that will only inhibit the growth of organisms that fall within these smaller groups. The methods of the present invention may be performed on these regions and functional mutant ribosomes identified. These functional mutant ribosomes will be screened, e.g., compound libraries.

[0058] The invention provides novel plasmid constructs, e.g. pRNA123 (FIGS. 1 and 24). The novel plasmid constructs of the present invention employ novel mutant ASD and mutant SD sequences set forth in FIGS. 12, 13, 15 and 16. The mutant ASD and mutant SD sequences may be used as mutually compatible pairs (see FIGS. 12, 13, 15 and 16). It will be appreciated that the mutually compatible pairs of mutant ASD and SD sequences interact as pairs in the form of RNA, to permit translation of only the mRNAs containing the altered SD sequence.

DEFINITIONS

[0059] As used herein, each of the following terms has the meaning associated with it in this section.

[0060] The articles "a" and "an" are used herein to refer to one or to more than one (i.e. to at least one) of the grammatical object of the article. By way of example, "an element" means one element or more than one element.

[0061] An "inducible" promoter is a nucleotide sequence which, when operably linked with a polynucleotide which encodes or specifies a gene product, causes the gene product to be produced in a living cell substantially only when an inducer which corresponds to the promoter is present in the cell.

[0062] As used herein, the term "mutation" includes an alteration in the nucleotide sequence of a given gene or regulatory sequence from the naturally occurring or normal nucleotide sequence. A mutation may be a single nucleotide alteration (e.g., deletion, insertion, substitution, including a point mutation), or a deletion, insertion, or substitution of a number of nucleotides.

[0063] By the term "selectable marker" is meant a gene whose expression allows one to identify functional mutant ribosomes.

[0064] Various aspects of the invention are described in further detail in the following subsections:

I. Isolated Nucleic Acid Molecules

[0065] As used herein, the term "nucleic acid molecule" is intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA.

[0066] The term "isolated nucleic acid molecule" includes nucleic acid molecules which are separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. For example, with regards to genomic DNA, the term "isolated" includes nucleic acid molecules which are separated from the chromosome with which the genomic DNA is naturally associated. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. Moreover, an "isolated" nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material, or culture medium, when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized.

[0067] A nucleic acid molecule of the present invention, e.g., a nucleic acid molecule having the nucleotide sequence set forth in FIGS. 12, 13, 15, and 16, or a portion thereof, can be isolated using standard molecular biology techniques and the sequence information provided herein. Using all or portion of the nucleic acid sequence set forth in FIGS. 12, 13, 15, and 16 as a hybridization probe, the nucleic acid molecules of the present invention can be isolated using standard hybridization and cloning techniques (e.g., as described in Sambrook, J., Fritsh, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989).

[0068] Moreover, a nucleic acid molecule encompassing all or a portion of the sequence set forth in FIGS. 12, 13, 15, and 16 can be isolated by the polymerase chain reaction (PCR) using synthetic oligonucleotide primers designed based upon the sequence set forth in FIGS. 12, 13, 15, and 16.

[0069] A nucleic acid of the invention can be amplified using cDNA, mRNA or, alternatively, genomic DNA as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to the nucleotide sequences of the present invention can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.

[0070] In another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule which is a complement of the nucleotide sequence set forth in FIGS. 12, 13, 15, and 16, or a portion of any of these nucleotide sequences. A nucleic acid molecule which is complementary to the nucleotide sequence shown in FIGS. 12, 13, 15, and 16, is one which is sufficiently complementary to the nucleotide sequence shown in FIGS. 12, 13, 15, and 16, such that it can hybridize to the nucleotide sequence shown in FIGS. 12, 13, 15, and 16, respectively, thereby forming a stable duplex.

II. Recombinant Expression Vectors and Host Cells

[0071] Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid molecule of the present invention (or a portion thereof). As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "expression vectors". In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.

[0072] The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operatively linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, "operably linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell). The term "regulatory sequence" is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel (1990) Methods Enzymol. 185:3-7. Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cells and those which direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, and the like. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein.

[0073] Expression of proteins in prokaryotes is most often carried out in E. coli with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Such fusion vectors typically serve three purposes: 1) to increase expression of recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase. Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith, D. B. and Johnson, K. S. (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, N.J.) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein.

[0074] Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amann et al. (1988) Gene 69:301-315) and pET 11d (Studier et al. (1990) Methods Enzymol. 185:60-89). Target gene expression from the pTrc vector relies on host RNA polymerase transcription from a hybrid trp-lac fusion promoter. Target gene expression from the pET 11d vector relies on transcription from a T7 gn10-lac fusion promoter mediated by a coexpressed viral RNA polymerase (T7 gn1). This viral polymerase is supplied by host strains BL21(DE3) or HMS174(DE3) from a resident prophage harboring a T7 gn1 gene under the transcriptional control of the lacUV 5 promoter.

[0075] One strategy to maximize recombinant protein expression in E. coli is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein (Gottesman, S. (1990) Methods Enzymol. 185:119-128). Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in E. coli (Wada et al. (1992) Nucleic Acids Res. 20:2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.

[0076] In another embodiment, the expression vector may be a yeast expression vector. Examples of vectors for expression in yeast S. cerevisiae include pYepSec1 (Baldari et al. (1987) Embo J. 6:229-234), pMFa (Kurjan and Herskowitz (1982) Cell 30:933-943), pJRY88 (Schultz et al. (1987) Gene 54:113-123), pYES2 (Invitrogen Corporation, San Diego, Calif.), and picZ (Invitrogen Corp, San Diego, Calif.).

[0077] In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, B. (1987) Nature 329:840) and pMT2PC (Kaufman et al. (1987) EMBO J. 6:187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells see chapters 16 and 17 of Sambrook, J. et al., Molecular Cloning: A Laboratory Manual. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.

[0078] In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al. (1987) Genes Dev. 1:268-277), lymphoid-specific promoters (Calame and Eaton (1988) Adv. Immunol. 43:235-275), particular promoters of T cell receptors (Winoto and Baltimore (1989) EMBO J. 8:729-733) and immunoglobulins (Banerji et al. (1983) Cell 33:729-740; Queen and Baltimore (1983) Cell 33:741-748), neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle (1989) Proc. Natl. Acad. Sci. USA 86:5473-5477), pancreas-specific promoters (Edlund et al. (1985) Science 230:912-916), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Pat. No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, for example by the murine hox promoters (Kessel and Gruss (1990) Science 249:374-379).

[0079] Another aspect of the invention pertains to host cells into which a the nucleic acid molecule of the invention is introduced. The terms "host cell" and "recombinant host cell" are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.

[0080] A host cell can be any prokaryotic or eukaryotic cell. Other suitable host cells are known to those skilled in the art.

[0081] Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook et al. (Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989), and other laboratory manuals.

[0082] For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that encoding a protein or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).

III. Uses and Methods of the Invention

[0083] The nucleic acid molecules described herein may be used in a plasmid construct, e.g. pRNA123, to carry out one or more of the following methods: (1) creation of a functional genomics database of the rRNA genes generated by the methods of the present invention; (2) mining of the database to identify functionally important regions of the rRNA; (3) identification of functionally important sequences and structural motifs within each target region; (4) screening compounds and compound libraries against a series of functional variants of the target sequence to identify compounds that bind to all functional variants of the target sequence; and (5) counterscreening the compounds against nontarget RNAs, such as human ribosomes or ribosomal RNA sequences.

[0084] This invention is further illustrated by the following examples, which should not be construed as limiting. The contents of all references, patents and published patent applications cited throughout this application, as well as the Figures and Appendices, are incorporated herein by reference.

SPECIFIC EXAMPLES

Example 1

Identification of Mutant SD and Mutant ASD Combinations

[0085] It has been shown that by coordinately changing the SD and ASD, a particular mRNA containing an altered SD could be targeted to ribosomes containing the altered ASD. This and all other efforts to modify the ASD, however, have proved lethal, as cells containing these mutations died within two hours after the genes containing them were activated.

[0086] Using random mutagenesis and genetic selection, mutant SD-ASD combinations were screened in order to identify nonlethal SD-ASD combinations. The mutant SD-ASD mutually compatible pairs are set forth in FIGS. 12, 13 15 and 16. The mutually compatible pairs of mutant sequences interact as pairs in the form of RNA. The novel mutant SD-ASD sequence combinations of the present invention permit translation of only the mRNAs containing the altered SD sequence.

Example 2

Construction of the pRNA123 Plasmid

[0087] A plasmid construct of the present invention identified as the pRNA123 plasmid, is set forth in FIGS. 1 and 24. E. coli cells contain a single chromosome with seven copies of the rRNA genes and all of the genes for the ribosomal proteins. The plasmid, pRNA123, in the cell contains a genetically engineered copy of one of the rRNA genes from E. coli and two genetically engineered genes that are not normally found in E. coli, referred to herein as a "selectable markers." One gene encodes the protein chloramphenicol acetyltransferase (CAT). This protein renders cells resistant to chloramphenicol by chemically modifying the antibiotic. Another gene, the Green Fluorescent Protein (GFP), is also included in the system. GFP facilitates high-throughput functional analysis. The amount of green light produced upon irradiation with ultraviolet light is proportional to the amount of GFP present in the cell.

[0088] Ribosomes from pRNA123 have an altered ASD sequence. Therefore, the ribosomes can only translate mRNAs that have an altered SD sequence. Only two genes in the cell produce mRNAs with altered SD sequences that may be translated by the plasmid-encoded ribosomes: the CAT and GFP gene. Mutations in rRNA affect the ability of the resulting mutant ribosome to make protein. The present invention thus provides a system whereby the mutations in the plasmid-encoded rRNA gene only affect the amount of GFP and CAT produced. A decrease in plasmid ribosome function makes the cell more sensitive to chloramphenicol and reduces the amount of green fluorescence of the cells. Translation of the other mRNAs in the cell is unaffected since these mRNAs are translated only by ribosomes that come from the chromosome. Hence, cells containing functional mutants may be identified and isolated via the selectable marker.

Example 3

Genetic System for Functional Analysis of Ribosomal RNA

[0089] Identification of Functionally Important Regions of rRNA.

[0090] Functionally important regions of rRNA molecules that may be used as drug targets using a functional genomics approach may be identified through a series of steps. Namely, in step I.a., the entire rRNA gene is randomly mutated using error-prone PCR or another generalized mutational strategy. In step I.b., a host cell is then transformed with a mutagenized plasmid comprising: an rRNA gene having a mutant ASD sequence, at least one mutation in said rRNA gene, and a genetically engineered gene which encodes a selectable marker having a mutant SD sequence, and production of the rRNA genes from the plasmid are induced by growing the cells in the presence of IPTG. In step I.c., the CAT gene is used to select mutants that are functional by plating the transformed cells onto growth medium containing chloramphenicol. In step I.d., individual clones from each of the colonies obtained in step I.c. are isolated. In step I.e., the plasmid DNA from each of the individual clones from step I.d. is isolated. In step I.f., the rRNA genes contained in each of the plasmids that had been isolated in step I.e. are sequenced. In step I.g., the function of each of the mutants from step I.f. is assessed by measuring the amount of GFP produced by each clone from step I.e. upon induction of the rRNA operon. In step I.h., a functional genomics database is assembled containing the sequence and functional data from steps I.f. and I.g. In step I.i., functionally important regions of the rRNA gene that will serve as drug targets are identified. Functionally important regions may be identified by comparing the sequences of all of the functional genomics database constructed in step I.g. and correlating the sequence with the amount of GFP protein produced. Contiguous sequences of three or more rRNA nucleotides, in which substitution of the nucleotides in the region produces significant loss of function, will constitute a functionally important region and therefore a potential drug target.

[0091] Isolation of Functional Variants of the Target Regions.

[0092] A second aspect of the invention features identification of mutations of the target site that might lead to antibiotic resistance using a process termed, "instant evolution", as described below. In step II.a., for a given target region identified in step I.i., each of the nucleotides in the target region is simultaneously randomly mutated using standard methods of molecular mutagenesis, such as cassette mutagenesis or PCR mutagenesis, and cloned into the plasmid of step I.b. to form a plasmid pool containing random mutations at each of the nucleotide positions in the target region. In step II.b., the resulting pool of plasmids containing random mutations from step II.a. is used to transform E. coli cells and form a library of clones, each of which contains a unique combination of mutations in the target region. In step II.c., the library of mutant clones from step II.b. is grown in the presence of IPTG to induce production of the mutant rRNA genes. In step II.d., the induced mutants are plated on medium containing chloramphenicol, and CAT is used to select clones of rRNA mutants containing nucleotide combinations of the target region that produce functional ribosomes. In step II.e., the functional clones isolated in step II.d. are sequenced and GFP is used to measure ribosome function in each one. In step II.f., the data from step II.e. are incorporated into a mutational database.

[0093] Isolation of Drug Leads.

[0094] In step III.a., the database in step II.f. is analyzed to identify functionally-important nucleotides and nucleotide motifs within the target region. In step III.b., the information from step III.a. is used to synthesize a series of oligonucleotides that contain the functionally important nucleotides and nucleotide motifs identified in step III.a. In step III.c., the oligonucleotides from step III.b. are used to sequentially screen compounds and compound libraries to identify compounds that recognize (bind to) the functionally important sequences and motifs. In step III.d., compounds that bind to all of the oligonucleotides are counterscreened against oligonucleotides and/or other RNA containing molecules to identify drug candidates. "Drug candidates" are compounds that 1) bind to all of the oligonucleotides containing the functionally important nucleotides and nucleotide motifs, but do not bind to molecules that do not contain the functionally important nucleotides and nucleotide motifs and 2) do not recognize human ribosomes. Drug candidates selected by the methods of the present invention therefore recognize all of the functional variants of the target sequence, i.e., the target cannot be mutated in a way that the drug cannot bind, without causing loss of function to the ribosome.

Example 4

Genetic System for Studying Protein Synthesis

[0095] Materials and Methods

[0096] Reagents.

[0097] All reagents and chemicals were as in Lee, K., et al. (1996) RNA 2: 1270-1285. PCR-directed mutagenesis was performed essentially by the method of Higuchi, R. (1989) PCR Technology (Erlich, H. A., ed.), pp. 61-70. Stockton Press, New York, N.Y. The primers used in the present invention are listed in FIG. 9. The plasmids used in the present invention are listed in FIG. 10.

[0098] Bacterial Strains and Media.

[0099] All plasmids were maintained and expressed in E. coli DH5 (supE44, hsdR17, recA1, endA1, gyrA96, thi-1 and relA1) (36). To induce synthesis of plasmid-derived rRNA from the lacUV5 promoter, IPTG was added to a final concentration of 1 mM. Chloramphenicol acetyltransferase activity was determined essentially as described by Nielsen et al. (1989) Anal. Biochem. 179: 19-23. Cultures for CAT assays were grown in LB-Ap100. MIC were determined by standard methods in microtiter plates as described in Lee, K., et al. (1997) J. Mol. Biol. 269: 732-743.

[0100] Primer Extension.

[0101] To determine the ratio of plasmid to chromosome-derived rRNA, pRNA104 containing cells growing in LB-Ap100 were harvested at the time intervals indicated and total RNA was extracted using the Qiagen RNeasy kit (Chatsworth, Calif.). The 30S, 70S, and crude ribosomes were isolated from 200 mL of induced, plasmid containing cells by the method of Powers and Noller (Powers, T. et al. (1991) EMBO J. 10: 2203-2214). The purified RNA was analyzed by primer extension according to Sigmund, C. D., et al. (1988) Methods Enzymol. 164: 673-690.

[0102] Experimental Procedures

[0103] Generation of pRNA9 Construct.

[0104] The initial construct, pRNA9, was generated using the following methods. Plasmid pRNA9 contains a copy of the rrnB operon from pKK3535 under transcriptional regulation of the lacUV5 promoter; this well-characterized promoter is not subject to catabolic repression and is easily and reproducibly inducible with isopropyl-.beta.-D-thiogalactoside (IPTG). To minimize transcription in the absence of inducer, PCR was used to amplify and subclone the lac repressor variant, lacI.sup.q (Calos, M. P. (1978) Nature 274: 762-765) from pSPORT1 (Life Technologies, Rockville, Md.). The chloramphenicol acetyltransferase gene (cam) is present and transcribed constitutively from a mutant tryptophan promoter, trp.sup.c (De Boer, H. A., et al. (1983) Proc. Natl. Acad. Sci. U.S.A. 80: 21-25; Hui, A., et al. (1987) Proc. Natl. Acad. Sci. U.S.A. 84: 4762-4766). The .beta.-lactamase gene is also present to allow maintenance of plasmids in the host strain. To allow genetic selection, the CAT structural gene from pJLS1021 (Schottel, J. L., et al. (1984) Gene 28: 177-193) was amplified and placed downstream of a constitutive trp.sup.c promoter using PCR. Expression of the CAT gene in E. coli renders the cell resistant to chloramphenicol and the minimal inhibitory concentration, hereinafter referred to as MIC, of chloramphenicol increases proportionally with the amount of CAT protein produced (Lee, K., et al. (1996) RNA 2: 1270-1285; Lee, K., et al. (1997) J. Mol. Biol. 269: 732-743) An overview of the steps used to construct the system is shown in FIG. 2.

[0105] Selection of a New MBS-RBS Pair.

[0106] To isolate message binding site-ribosome binding site, hereinafter referred to as MBS-RBS, combinations that are nonlethal and efficiently translated only by plasmid-derived ribosomes, a random mutagenesis and selection scheme were used. In particular, the plasmid-encoded 16S MBS and CAT RBS were randomly mutated using PCR so that the wild-type nucleotide at each position was excluded. An autoradiogram of sequencing gels with pRNA8-rMBS-rRBS is provided in FIG. 3. The resulting 2.5.times.10.sup.6 doubly mutated transformants were induced for 3.5 hours in SOC medium containing 1 mM IPTG and plated on Luria broth medium containing 100 .mu.g/mL ampicillin, 350 .mu.g/mL chloramphenicol and 1 mM IPTG. To confirm the presence of all three alternative nucleotides at each mutated position, plasmid DNA from approximately 2.0.times.10.sup.5 transformants was sequenced (FIG. 3).

Results

[0107] The data show that all of the nonexcluded nucleotides were equally represented in the random pool. Of the 2.5.times.10.sup.6 transformants plated, 536 survived the chloramphenicol selection. The efficiency of the selected MBS-RBS combinations was determined by measuring the minimal inhibitory concentration, hereinafter referred to as MIC, of chloramphenicol for each survivor in the presence and absence of inducer (FIG. 11) (Lee, K., et al. (1996) RNA 2: 1270-1285; Lee, K., et al. (1997) J. Mol. Biol. 269: 732-743). Nine of the isolates (1.7%) showed MIC in the presence of inducer, which were lower than the 350 .mu.g/mL concentration at which they were selected. These were slow growing mutants that appeared after 48 hours during the initial isolation. The MIC, however, were scored after only 24 hours. The MIC for 451 of the isolates (84.1%) were between 400 and 600 .mu.g/mL, and the remaining 76 clones (14.2%) were 600 .mu.g/mL. The difference in chloramphenicol resistance between induced and uninduced cells (.DELTA.MIC) is the amount of CAT translation by plasmid-derived ribosomes only. A specific interaction between plasmid-derived ribosomes and CAT mRNA was indicated in 79 (14.7%) of the clones, which showed four-to eightfold increases in CAT resistance upon addition of IPTG (FIG. 11).

[0108] Based on these analyses, 11 clones were retained for additional study. The MBS and RBS in plasmids from these clones were sequenced and CAT assays and growth curves were performed (FIGS. 4 and 12). Although a wide range of inducibility was observed, there was no correlation between specificity and predicted free energy (.DELTA.G .degree..sup.37). Purines were preferred in all of the MBS positions, but the RBS did not show this sort of selectivity. This can be explained partially by the observation that the selected RBS can base pair with sequences adjacent to the mutated region of 16S rRNA (Lee, K., et al. (1996) RNA 2: 1270-1285).

[0109] Growth curves were performed for all of the selected mutants and compared with strains containing control constructs (FIG. 4). Only one mutant (IX24) is shown in FIG. 4, but all strains containing the selected MBS/RBS sequences showed the same pattern of growth as this mutant. Because of its induction profile, strain IX24 (containing plasmid pRNA100) was chosen for additional experimentation. To eliminate the possibility that mutations outside the MBS and RBS had been inadvertently selected, the DraIII and XbaI fragment containing the MBS and the KpnI and XhoI fragment containing the RBS sequence from pRNA100 (FIG. 5) were transferred to pRNA9.

[0110] Specificity of the System.

[0111] The rate of ribosome induction and the ratio of plasmid to chromosome-derived rRNA at each stage of growth were determined. For this, a pRNA100 derivative, pRNA104, which contains a C1192U mutation in 16S rRNA was constructed (Sigmund, C. D., et al. (1984) Nucleic Acids Res. 12: 4653-4663; Triman, K., et al. (1989) J. Mol. Biol. 209: 645-653) so that plasmid-derived rRNA could be differentiated from wild-type rRNA by primer extension. The C1192U mutation does not affect ribosome function in other expression systems (Sigmund, C. D., et al. (1984) Nucleic Acids Res. 12: 4653-4663; Makosky, P. C. et al. (1987) Biochimie 69: 885-889). To show that the same is true in the present system, CAT activity was measured after 3 hours induction with 1 mM IPTG in DH5 cells expressing pRNA100 or pRNA104 and the two were compared. In these experiments, no significant difference between cells expressing pRNA104 (99.2.+-.2.8%) or pRNA100 (100%) was observed.

[0112] To determine the percentage of plasmid-derived ribosomes in cells containing the plasmid, total RNA was isolated from DH5 cells carrying pRNA104 before and after induction with IPTG and subjected to primer extension analysis (Lee, K., et al. (1997) J. Mol. Biol. 269: 732-743; Sigmund, C. D., et al. (1984) Nucleic Acids Res. 12: 4653-4663; Makosky, P. C. et al. (1987) Biochimie 69: 885-889). Maximum induction of plasmid-derived ribosomes occurred 3 hours after induction at which point they constituted approximately 40% of the total ribosome pool (FIG. 6). CAT activities in these cells paralleled induction of plasmid-derived ribosomes and began to decrease 4 hours after induction, presumably due to protein degradation during stationary phase. In uninduced cells, approximately 3% of the total ribosome pool contains plasmid-derived ribosomes because of basal level transcription from the lacUV5 promoter.

[0113] Optimization of the System.

[0114] Chloramphenicol resistance in uninduced cells containing pRNA100 is 75 .mu.g/mL (FIG. 13, MIC=100 .mu.g/mL). By measuring CAT resistance in a derivative of pRNA100 containing a wild-type 16S rRNA gene, it was determined that approximately one-half of this background activity was due to CAT translation by wild-type ribosomes (FIG. 13, pRNA100 1 wt MBS). The remaining activity in uninduced cells is presumably due to leakiness of the lacUV5 promoter (FIG. 6). The nucleotide sequence located between the RBS and the start codon in mRNA affects translational efficiency (Calos, M. P. (1978) Nature 274: 762-765; Stormo, G. D., et al. (1982) Nucleic Acids Res. 10: 2971-2996; Chen, H., et al. (1994) Nucl. Acids Res. 22: 4953-4957). In pRNA100, three of the nucleotides found in this region of the CAT mRNA are complementary with the 3' terminus of wild-type E. coli 16S RNA (FIG. 11, pRNA100 1 wt MBS). To eliminate the possibility that this was contributing to CAT translation in the absence of plasmid-encoded ribosomes, four nucleotides in the CAT gene (underlined in FIG. 11) were randomly mutagenized and screened to identify mutants with reduced translation by host ribosomes. A total of 2000 clones were screened in the absence of plasmid-encoded ribosomes using pCAM9 and six poorly translated CAT sequences were isolated (FIG. 13). Next, the BamHI fragment of pRNA100 containing lacI.sup.q and the rrnB operon was added, and MIC, CAT assays and growth curves were performed on cells expressing these constructs (data not shown).

[0115] Based on these data, pRNA122 was chosen because it produced a slightly better induction profile than the others (FIGS. 11 and 23). Translation of the pRNA122 CAT message by wild-type ribosomes (FIG. 11, pRNA122 1 wt MBS) produces cells that are sensitive to chloramphenicol concentrations <10 .mu.g/mL. In the presence of specialized ribosomes (FIG. 13, pRNA122), the background chloramphenicol MIC is between 40 and 50 .mu.g/mL and the MIC for induced cells is between 550 and 600 ng/mL, producing an approximately 13-fold increase in CAT expression upon induction in pRNA122. Induction of the rrnB operon in pRNA100 produces only an eightfold increase.

[0116] Use of the System.

[0117] To test the system, the effects of nucleotide substitutions at the sole pseudouridine in E. coli 16S rRNA, located at position 516 were examined. Because pseudouridine and U form equally stable base pairs with adenosine (Maden, B. E. (1990) Prog. Nucleic Acid Res. Mol. Biol. 39: 241-303), mutations at A535 were also constructed to determine whether the potential for base pair formation between these two loci affected ribosome function. The mutations were constructed initially in a pUC19 (Yanisch-Perron, C., et al. (1985) Gene 33: 103-119) derivative containing the 16S RNA gene, p16ST, as shown in FIG. 7 and then transferred to pRNA122 for analysis. This two-step process was used, because the SacII restriction site located between the two mutated positions is unique in pRNA16ST and is not unique in pRNA122. The effect of the mutations in pRNA122 on protein synthesis in vivo was determined by measuring the MIC and CAT activity of the mutant cells (FIG. 8). At position 516, ribosomes containing the single transition mutation, pseudouridine-516C, produced approximately 60% of the amount of functional CAT protein produced by wild-type ribosomes. The transversion mutations, pseudouridine-516A or pseudouridine-516G, however, reduced ribosome function by >90%. All of the single mutations at position 535 retained >50% of the function of wild-type ribosomes. To examine the possibility that the potential for base pairing between positions 516 and 535 is necessary for ribosome function, all possible mutations between these loci were also constructed and analyzed (FIG. 8). These data show that all of the double mutants were inactive (10% or less of the wild-type) regardless of the potential to base pair. To examine the reasons for loss of function in the 516 mutants, ribosomes from cells expressing single mutations at position 516 were fractionated by sucrose density gradient centrifugation and the 30S and 70S peaks were analyzed by primer extension to determine the percentage of plasmid-derived 30S subunits present. The data in FIG. 14 show a strong correlation between ribosome function and the presence of plasmid-derived ribosomes in the 70S ribosomal fraction, indicating that mutations at positions 516 affect the ability of the mutant 30S subunits to form 70S ribosomes.

[0118] The references cited in Example 4 may be found in Lee, K., et al. Genetic Approaches to Studying Protein Synthesis: Effects of Mutations at Pseudouridine-516 and A535 in Escherichia coli 16S rRNA. Symposium: Translational Control: A Mechanistic Perspective at the Experimental Biology 2001 Meeting (2001) and at Lee, K. et al. (2001) Genetic Approaches to Studying Protein Synthesis: Effects of Mutations at Pseudouridine-516 and A535 in Escherichia coli 16S rRNA. J. Nutrition 131 (11):2994-3004.

Example 5

In Vivo Determination of RNA Structure-Function Relationships

[0119] Materials and Methods

[0120] Reagents.

[0121] Restriction enzymes, ligase, AMV reverse transcriptase and calf intestine alkaline phosphatase were from New England Biolabs and from Gibco-BRL. Sequenase modified DNA polymerase, nucleotides and sequencing buffers were from USB/Amersham. Oligonucleotides were synthesized on-site using a Beckman Oligo 1000 DNA synthesizer. Amplitaq DNA polymerase and PCR reagents were from Perkin-Elmer-Cetus. [.sup.3H]Chloramphenicol (30.1 Ci/mmol) was from Amersham and [.alpha.-.sup.35 S]dATP (1000 Ci/mmol) was from New England Nuclear. Other chemicals were from Sigma.

[0122] pRNA122.

[0123] The key features of this construct are: (1) it contains a copy of the rrnB operon from pKK3535 (Brosius. J., et al. (1981) Plasmid 6:112-118.) under transcriptional regulation of the lacUV5 promoter; (2) it contains a copy of the lactose repressor allele lacI.sup.q (Calos, M. P. (1978) Nature 274:762-769; (3) the chloramphenicol acetyltransferase gene (cam) is present and transcribed constitutively from a mutant tryptophan promoter, trp.sup.c (de Boer, H. A., et al. (1983) Proc. Natl. Acad. Sci. USA 80:21-25); (4) the RBS of the CAT message has been changed from the wild-type, 5'-GGAGG to 5'-AUCCC, and the MBS of the 16S rRNA gene has been changed to 5'-GGGAU; and (5) the .beta.-lactamase gene is present to allow maintenance of plasmids in the host strain.

[0124] Bacterial Strains and Media.

[0125] Plasmids were maintained and expressed in E. coli DH5 (supE44, hsdR17, recA1, endA1, gyrA96, thi-1; Hanahan, D. (1983) J. Mol. Biol. 166:557-580). Cultures were grown in LB medium (Luria, S. E. & Burrous, J. W. (1957) J. Bacteriol. 74:461-476) or LB medium containing 100 .mu.g/ml ampicillin (LB-Ap100). To induce synthesis of plasmid-derived rRNA from the lacUV5 promoter, IPTG was added to a final concentration of 1 mM at the times indicated in each experiment. Strains were transformed by electroporation (Dower, W. J., et al. (1988) Nucl. Acids Res. 16: 6127) using a Gibco-BRL Cell Porator. Unless otherwise indicated, transformants were grown in SOC medium (Hanahan, 1983, supra) for one hour prior to plating on selective medium to allow expression of plasmid-derived genes.

[0126] Chloramphenicol Acetyltransferase Assays.

[0127] CAT activity was determined essentially as described (Nielsen, D. A. et al. (1989) Anal. Biochem. 60:191-227). Cultures for CAT assays were grown in LB-Ap100. Briefly, 0.5 ml aliquots of mid-log cultures (unless otherwise indicated) were added to an equal volume of 500 mM Tris-HCl (pH8) and lysed using 0.01% (w/v) SDS and chloroform (Miller, J. H. (1992) A Short Course in Bacterial Genetics, (Miller, J. H., ed.), pp. 71-80, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.). The resulting lysate was either used directly or diluted in assay buffer prior to use. Assay mixtures contained cell extract (5 .mu.l or 10 .mu.L1), 250 mM Tris (pH 8), 214 .mu.M butyryl-coenzyme A (Bu-CoA), and 40 .mu.M [.sup.3H]chloramphenicol in a 125 .mu.l volume. Two concentrations of lysate were assayed for one hour at 37.degree. C. to ensure that the signal was proportional to protein concentrations. The product, butyryl-[.sup.3H]chloramphenicol was extracted into 2,6,10,14-tetramethylpentadecane:xylenes (2:1) and measured directly in a Beckman LS-3801 liquid scintillation counter. Blanks were prepared exactly as described above, except that uninoculated LB medium was used instead of culture.

[0128] Minimum Inhibitory Concentration Determination.

[0129] MICs were determined by standard methods in microtiter plates or on solid medium. Overnight cultures grown in LB-Ap100 were diluted and induced in the same medium containing 1 mM IPTG for three hours. Approximately 10.sup.4 induced cells were then added to wells (or spotted onto solid medium) containing LB-Ap100+IPTG (1 mM) and chloramphenicol at increasing concentrations. Cultures were grown for 24 hours and the lowest concentration of chloramphenicol that completely inhibited growth was designated as the MIC.

[0130] Random Mutagenesis and Selection.

[0131] Random mutagenesis of the 790 loop was performed essentially by the method of Higuchi (1989) using PCR and cloned in pRNA122 using the unique BglII and DraIII restriction sites (Higuchi, R. (1989) PCR Technology (Erlich, H. A., ed.), pp. 61-70, Stockton Press, New York) (FIG. 18). For each set of mutations, four primers were used: two "outside" primers and two "inside" primers. The two outside primers were designed to anneal to either side of the BglII and DraIII restriction sites in pRNA122 (FIG. 2). These primers were 16S-DraIII, 5'-GACAATCTGTGTGAGCACTA-3' (SEQ ID NO:239) and 16S-535, 5'-TGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGT-3' (SEQ ID NO:240). The inside primers were 165-786R, 5'-CCTGTTTGCTCCCCACGCTTTCGCACCTGAGCG-3' (SEQ ID NO:241) and 16S-ASS-3,5'-CTCAGGTGCGAAAGCGTGGGGAGCAAACAGGNNNNNNNNNCCTGGTAGTCC ACGCC GTAA-3' (SEQ ID NO:242) (N=A, T, C and G). Thus, 4.sup.9=262,144 possible combinations were created, with the exception of 320 sequences that were eliminated because they formed either BglII or DraIII recognition sites (256 BglII sites and 64 DraIII sites).

[0132] Transformants were incubated in SOC medium containing 1 mM IPTG for four hours to induce rRNA synthesis and then plated on LB agar containing 100 .mu.g/ml chloramphenicol. A total of 2.times.10.sup.6 transformants were plated yielding approximately 2000 chloramphenicol-resistant survivors. Next, 736 of these survivors were randomly chosen and assayed to determine the MIC of chloramphenicol necessary to completely inhibit growth in cells expressing mutant ribosomes. From this pool, 182 transformants with MICs greater than 100 .mu.g/ml were randomly selected and sequenced.

[0133] Site-Directed Mutation of Positions 787 and 795.

[0134] Mutations at positions 787 and 795 were constructed as described above for the random mutants, except that the inside primers were 16S-786R (see above) and 16S-ASS-4,5'-CTCAGGTGCGAAAGCGTGGGGAGCAAACAGGNTTAGATANCCTGGTAGTCC ACGCCGTAA-3' (SEQ ID NO:243) (N=A, T, C and G). Transformants were selected on LB-Ap100 agar plates and grouped according to their MICs for chloramphenicol. Representatives from each group were then sequenced to identify the mutations.

[0135] Primer Extension.

[0136] To determine the ratio of plasmid to chromosome-derived rRNA, 30S and 70 S ribosomes were isolated from 200 ml of induced, plasmid containing cells by the method of Powers & Noller (1991). The purified RNA was then used in primer extension experiments (Triman, K., et al. (1989) J. Mol. Biol. 209:643-653). End-labeled primers complementary to sequences 3' to the 788 and 795 mutation sites were annealed to rRNA from induced cells and extended through the mutation site using AMV reverse transcriptase. The primers used were: 165-806R, 5'-GGACTACCAGGGTATCT-3' (SEQ ID NO:244); 165-814R, 5'-TACGGCGTGGACTACCA-3' (SEQ ID NO:245). For wild-type pRNA122 ribosomes, position 1192 in the 16S RNA gene was changed from C to U and primers were constructed as described above (Triman et al., 1989, supra). This mutation has previously been shown not to affect subunit association (Sigmund, C. D., et al. (1988) Methods Enzymol. 164:673-689). The extension mixture contained a mixture of three deoxyribonucleotides and one dideoxyribonucleotide. The cDNAs were resolved by PAGE and the ratios of mutant to non-mutant ribosomes were determined by comparing the amount of radioactivity in each of the two bands.

[0137] Oligoribonucleotide Synthesis.

[0138] Oligoribonucleotides were synthesized on solid support with the phosphoramidite method (Capaldi, D. & Reese, C. (1994) Nucl. Acids Res. 22:2209-2216) on a Cruachem PS 250 DNA/RNA synthesizer. Oligomers were removed from solid support and deprotected by treatment with ammonia and acid following the manufacturer's recommendations. The RNA was purified on a silica gel Si500F TLC plate (Baker) eluted for five hours with n-propanol/ammonia/water (55:35:10, by vol.). Bands were visualized with an ultraviolet lamp and the least mobile band was cut out and eluted three times with 1 ml of purified water. Oligomers were further purified with a Sep-pak C-18 cartridge (Waters) and desalted by continuous-flow dialysis (BRL). Purities were checked by analytical C-8 HPLC (Perceptive Biosystems) and were greater than 95%.

[0139] Experimental Procedures

[0140] Sequence Analysis of Functional Mutants.

[0141] Random mutations were introduced simultaneously at all nine positions (787 to 795) in the 790 loop. Functional (chloramphenicol-resistant) mutants were then selected in E. coli DH5 cells (Hanahan, 1983, supra) and the effects of these mutations on ribosome function were determined. A total of 182 mutants that retained chloramphenicol resistance were randomly selected and sequenced. Wild-type 790-loop sequences were obtained from 81 of the sequenced transformants, while the remaining 101 contained mutant sequences. One of the transformants was chloramphenicol-resistant in the absence of inducer, presumably due to a spontaneous mutation in the CAT gene, and was excluded from further analysis. Of 100 sequenced functional mutants, 14 were duplicates and four sequences occurred three times. Thus, 78 different, functional, 790-loop mutants were analyzed (FIG. 19). According to resampling theory, this distribution indicates that of the 4.sup.9=262,144 possible sequences, only 190 (standard deviation 30) unique sequences exist in the pool of selected functional mutants. Of the 78 mutants, 44 contained four to six substitutions out of the nine bases mutated and 21 of these retained greater than 50% of the wild-type activity. The minimal inhibitory concentration (MIC) of chloramphenicol for cells expressing wild-type rRNA from pRNA122 is 600 .mu.g/ml. MICs of the mutants ranged from 150 to 550 .mu.g/ml with a mean of 320 .mu.g/ml (standard deviation 89). The median and mode were both 350 .mu.g/ml.

[0142] Functional 790-loop mutants showed strong nucleotide preferences at all mutated positions, except positions 788 and 792, which showed a random distribution (FIG. 20) but significant covariation. No mutations were observed at U789 or G791. Mutations at these positions, however, were present in mutants that were selected for loss of function (not shown). Thus, these nucleotides appear to be directly involved in ribosome function. U789 is strictly conserved among bacteria but is frequently C789 among other organisms (FIG. 20). Chemical protection studies have shown that G791 is specifically protected from kethoxal modification in 70 S ribosomes and polysomes (Brow, D. A. & Noller, H. F. (1983) J. Mol. Biol. 163: 112-118; Moazed, D. & Noller, H. F. (1986) J. Mol. Biol. 191: 483-493); and by poly(U) (Moazed & Noller, 1986, supra) and that G791 becomes more accessible to kethoxal modification when 30S subunits are converted from the "inactive" to "active" conformation (Moazed et al., 1986, supra).

[0143] Purines were strongly selected at position 787 (97.4%) while A and, to a lesser extent, C were preferred at position 790 (98.7%) and U was completely excluded at both positions. At both position 793 and 795, A, C and U were equally distributed but G was selected against. Adenine and uracil were preferred at position 794 (81.8%).

[0144] Non-random distribution of nucleotides among the selected functional clones indicates that nucleotide identity affects the level of ribosome function. To examine this, the mean activities (MICs) of ribosomes containing all mutations at a given position were compared by single-factor analysis of variance between ribosome function (MIC) and nucleotide identity at each mutated position. Positions that showed a significant effect of nucleotide identity upon the level of ribosome function were 787 (P<0.001), 788 (P<0.05) and 795 (P<0.001). The absence of mutations at positions U789 and G791 in the functional clones prevents statistical analysis of these positions but mutations at these positions presumably strongly affect ribosome function as well.

[0145] FIG. 20 shows a comparison of the selected functional mutants with current phylogenetic data (R. Gutell, unpublished results; Gutell, R. R. (1994) Nucl. Acids Res. 22(17): 3502-3507; Maidak, B. L. et al. (1996) Nucl. Acids Res. 24: 82-85). While nucleotide preferences in the selected mutants are similar to those observed in the phylogenetic data, the mutant sequences selected in this study show much more variability than those found in nature. This may be because all of the positions in the loop were mutated simultaneously, allowing normally deleterious mutations in one position to be compensated for by mutations at other positions, a process that is unlikely to occur in nature. In addition, none of the mutants was as functional as the wild-type, suggesting that wild-type 790-loop sequences have been selected for optimal activity or that other portions of the translational machinery have been optimized to function with the wild-type sequence.

[0146] To identify potential nucleotide covariation within the loop, the paired distribution of selected nucleotides was examined for goodness of fit. The most significant covariations were observed between positions 787 and 795 (P<0.001) and between positions 790 and 793 (P<0.001). For positions 790 and 793, only eight double mutants were available for analysis; therefore, the covariation observed between these positions should be regarded with caution. Position 788, which showed no nucleotide specificity, did show significant covariation with positions 787 (P<0.01), 794 (P<0.01) and 795 (P<0.01).

[0147] Analysis of Site-Directed Mutations Constructed at the Base of the Loop: Functional Analysis of Mutations at Positions 787 and 795. The observed covariations among positions 787, 788 and 795 are particularly interesting, since nucleotide identity at these positions correlated with the level of ribosome function. Further analysis of nucleotides at positions 787 and 795 revealed that 72 of the 78 functional mutants have the potential to form mismatched base-pairs (A.cndot.C, G.cndot.U, A.cndot.A and G.cndot.G). Other mismatches, such as G.cndot.A and U.cndot.G, however, were not found. In addition, only four sequences with an A.cndot.U Watson-Crick pair and no sequences with a U.cndot.A, G.cndot.C or C.cndot.G pair were present, suggesting that strong base-pairs between these positions inhibit ribosome function. Therefore all possible nucleotide combinations at positions 787 and 795 were constructed and analyzed without changing other nucleotides in the 790 loop. Ribosome function of the mutants (FIG. 21) varied from 84% (A.cndot.A) to 1% (C.cndot.G) of the wild-type. As predicted by analysis of the pool of functional random mutants, site-directed mutants with G.cndot.C, C.cndot.G and U.cndot.A Watson-Crick pairs between positions 787 and 795 were strongly inhibitory.

[0148] Results

[0149] These data suggest that strong pairing between nucleotides at positions 787 and 795 inhibits ribosome function. In addition, some of the site-directed substitutions at positions 787 and 795 that produced functional ribosomes were largely excluded from the pool of mutants in which all of the loop positions were mutated simultaneously (e.g. CC, CU, UU and UC). The observed nucleotide preferences at positions 787 and 795 in the selected random pool presumably reflect interaction of nucleotides at these positions with other nucleotides in the loop. This is consistent with our findings of extensive covariations among these sites.

[0150] Perturbations of the 790 loop have been shown to affect ribosomal subunit association (Herr, W., et al. (1979) J. Mol. Biol. 130: 433-449; Tapprich, W. & Hill, W., (1986) Proc. Natl. Acad. Sci. USA 83: 556-560; Tapprich, W., et al. (1989) Proc. Natl. Acad. Sci. USA 86: 4927-4931). Therefore several of the 787 to 795 mutants were tested for their ability to form 70 S ribosomes. Ribosomes were isolated from selected mutants and the distribution of mutant ribosomes in both the 70 S and 30S peaks was determined by primer extension (FIG. 21). These data show that CAT activity correlates with the presence of mutant 30S subunits in the 70 S ribosome pool. Thus, loss of function may be due to the inability of mutant 30S and 50 S subunits to associate. Another explanation for this observation is that the mutations may directly affect a stage of the protein synthesis process prior to subunit association, such as initiation, which prevents subsequent steps from occurring. Other mutations in the 16S rRNA have been identified for which this appears to be the case (Cunningham, P., et al. (1993) Biochemistry 32: 7172-7180).

[0151] The references cited in Example 5 may be found in Lee, K. et al., J. Mol. Biol. 269: 732-743 (1997), expressly incorporated by reference herein.

Example 6

Construction of a Hybrid Construct

[0152] A plasmid construct of the present invention identified as the hybrid construct, is set forth in FIGS. 17 and 25. This hybrid construct contains a 16S rRNA from Mycobacterium tuberculosis. The specific sites on the hybrid construct are as follows: the part of rRNA from E. coli rrnB operon corresponds to nucleic acids 1-931; the part of 16S rRNA from Mycobacterium tuberculosis rrn operon corresponds to nucleic acids 932-1542; the 16S MBS GGGAU corresponds to nucleic acids 1536-1540; the terminator T1 of E. coli rrnB operon corresponds to nucleic acids 1791-1834; the terminator T2 of E. coli rrnB operon corresponds to nucleic acids 1965-1994; the replication origin corresponds to nucleic acids 3054-2438; the bla (.beta.-lactamase; ampicillin resistance) corresponds to nucleic acids 3214-4074; the GFP corresponds to nucleic acids 5726-4992; the GFP RBS (ribosome binding sequence) AUCCC corresponds to nucleic acids 5738-5734; the trp.sup.c promoter corresponds to nucleic acids 5795-5755; the trp.sup.c promoter corresponds to nucleic acids 6270-6310; the CAT RBS (ribosome binding sequence) AUCCC corresponds to nucleic acids 6327-6331; the cam (chloramphenicol acetyltransferase; CAT) corresponds to nucleic acids 6339-6998; the lacI.sup.q promoter corresponds to nucleic acids 7307-7384; the lacI.sup.q (lac repressor) corresponds to nucleic acids 7385-8467; and the lac UV5 promoter corresponds to nucleic acids 8510-8551.

[0153] All references cited herein are expressly incorporated by reference.

EQUIVALENTS

[0154] Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

Sequence CWU 1

1

245110903DNAArtificial Sequenceprimer 1gacgccgggc aagagcaact cggtcgccgc atacactatt ctcagaatga cttggttgag 60tactcaccag tcacagaaaa gcatcttacg gatggcatga cagtaagaga attatgcagt 120gctgccataa ccatgagtga taacactgcg gccaacttac ttctgacaac gatcggagga 180ccgaaggagc taaccgcttt tttgcacaac atgggggatc atgtaactcg ccttgatcgt 240tgggaaccgg agctgaatga agccatacca aacgacgagc gtgacaccac gatgcctgca 300gcaatggcaa caacgttgcg caaactatta actggcgaac tacttactct agcttcccgg 360caacaattaa tagactggat ggaggcggat aaagttgcag gaccacttct gcgctcggcc 420cttccggctg gctggtttat tgctgataaa tctggagccg gtgagcgtgg gtctcgcggt 480atcattgcag cactggggcc agatggtaag ccctcccgta tcgtagttat ctacacgacg 540gggagtcagg caactatgga tgaacgaaat agacagatcg ctgagatagg tgcctcactg 600attaagcatt ggtaactgtc agaccaagtt tactcatata tactttagat tgatttaaaa 660cttcattttt aatttaaaag gatctaggtg aagatccttt ttgataatct catgaccaaa 720atcccttaac gtgagttttc gttccactga gcgtcagacc ccttaataag atgatcttct 780tgagatcgtt ttggtctgcg cgtaatctct tgctctgaaa acgaaaaaac cgccttgcag 840ggcggttttt cgaaggttct ctgagctacc aactctttga accgaggtaa ctggcttgga 900ggagcgcagt caccaaaact tgtcctttca gtttagcctt aaccggcgca tgacttcaag 960actaactcct ctaaatcaat taccagtggc tgctgccagt ggtgcttttg catgtctttc 1020cgggttggac tcaagacgat agttaccgga taaggcgcag cggtcggact gaacgggggg 1080ttcgtgcata cagtccagct tggagcgaac tgcctacccg gaactgagtg tcaggcgtgg 1140aatgagacaa acgcggccat aacagcggaa tgacaccggt aaaccgaaag gcaggaacag 1200gagagcgcac gagggagccg ccagggggaa acgcctggta tctttatagt cctgtcgggt 1260ttcgccacca ctgatttgag cgtcagattt cgtgatgctt gtcagggggg cggagcctat 1320ggaaaaacgg ctttgccgcg gccctctcac ttccctgtta agtatcttcc tggcatcttc 1380caggaaatct ccgccccgtt cgtaagccat ttccgctcgc cgcagtcgaa cgaccgagcg 1440tagcgagtca gtgagcgagg aagcggaata tatcctgtat cacatattct gctgacgcac 1500cggtgcagcc ttttttctcc tgccacatga agcacttcac tgacaccctc atcagtgcca 1560acatagtaag ccagtataca ctccgctagc atcgtccatt ccgacagcat cgccagtcac 1620tatggcgtgc tgctagcgct atatgcgttg atgcaatttc tatgcgcacc cgttctcgga 1680gcactgtccg accgctttgg ccgccgccca gtcctgctcg cttcgctact tggagccact 1740atcgactacg cgatcatggc gaccacaccc gtcctgtgga tcctctacgc cggacgcatc 1800gtggccggcc acgatgcgtc cggcgtagag gatctattta acgaccctgc cctgaaccga 1860cgaccgggtc gaatttgctt tcgaatttct gccattcatc cgcttattat cacttattca 1920ggcgtagcac caggcgttta agggcaccaa taactgcctt aaaaaaatta cgccccgccc 1980tgccactcat cgcagtactg ttgtaattca ttaagcattc tgccgacatg gaagccatca 2040cagacggcat gatgaacctg aatcgccagc ggcatcagca ccttgtcgcc ttgcgtataa 2100tatttgccca tggtgaaaac gggggcgaag aagttgtcca tattggccac gtttaaatca 2160aaactggtga aactcaccca gggattggct gagacgaaaa acatattctc aataaaccct 2220ttagggaaat aggccaggtt ttcaccgtaa cacgccacat cttgcgaata tatgtgtaga 2280aactgccgga aatcgtcgtg gtattcactc cagagcgatg aaaacgtttc agtttgctca 2340tggaaaacgg tgtaacaagg gtgaacacta tcccatatca ccagctcacc gtctttcatt 2400gccatacgga attccggatg agcattcatc aggcgggcaa gaatgtgaat aaaggccgga 2460taaaacttgt gcttattttt ctttacggtc tttaaaaagg ccgtaatatc cagctgaacg 2520gtctggttat aggtacattg agcaactgac tgaaatgcct caaaatgttc tttacgatgc 2580cattgggata tatcaacggt ggtatatcca gtgatttttt tctccatttc tcgagcacac 2640tgaaagcggc cgcttccaca cattaaacta gttcgatgat taattgtcaa cagctcgccg 2700ctatatgcgt tgatgcaatt tctatgcgca cccgttctcg gagcactgtc cgaccgcttt 2760ggccgccgcc cagtcctgct cgcttcgcta cttggagcca ctatcgacta cgcgatcatg 2820gcgaccacac ccgtcctgtg gatcccagac gagttaagtc accatacgtt agtacaggtt 2880gccactcttt tggcagacgc agacctacgg ctacaatagc gaagcggtcc tggtattcat 2940gtttaaaaat actgtcgcga tagccaaaac ggcactcttt ggcagttaag cgcacttgct 3000tgcctgtcgc cagttcaaca gaatcaacat aagcgcaaac tcgctgtaat tctacgccat 3060aagcaccaat attctggata ggtgatgagc cgacacaacc aggaattaat gccagatttt 3120ccagaccagg cataccttcc tgcaaagtgt attttaccag acgatgccag ttttctccgg 3180ctcctacatg taaataccac gcatcaggtt catcatgaat ttcgatacct ttgatccggt 3240tgatgatcac cgtgccgcga tagtcctcca gaaaaagtac attacttcct tcacccagaa 3300taagaacggg ttgtccttct gcggttgcat actgccaggc attgagtaat tgttgttcgt 3360cttcggcaca tacaatgtgc tgagcattat gatcaatgcc aaatgtgttc cagggtttta 3420aggagtggtt catagctgct ttcctgatgc aaaaacgagg ctagtttacc gtatctgtgg 3480ggggatggct tgtagatatg acgacaggaa gagtttgtag aaacgcaaaa aggccatccg 3540tcaggatggc cttctgctta atttgatgcc tggcagttta tggcgggcgt cctgcccgcc 3600accctccggg ccgttgcttc gcaacgttca aatccgctcc cggcggattt gtcctactca 3660ggagagcgtt caccgacaaa caacagataa aacgaaaggc ccagtctttc gactgagcct 3720ttcgttttat ttgatgcctg gcagttccct actctcgcat ggggagaccc cacactacca 3780tcggcgctac ggcgtttcac ttctgagttc ggcatggggt caggtgggac caccgcgcta 3840ctgccgccag gcaaattctg ttttatcaga ccgcttctgc gttctgattt aatctgtatc 3900aggctgaaaa tcttctctca tccgccaaaa cagcttcggc gttgtaaggt taagcctcac 3960ggttcattag taccggttag ctcaacgcat cgctgcgctt acacacccgg cctatcaacg 4020tcgtcgtctt caacgttcct tcaggaccct taaagggtca gggagaactc atctcggggc 4080aagtttcgtg cttagatgct ttcagcactt atctcttccg catttagcta ccgggcagtg 4140ccattggcat gacaacccga acaccagtga tgcgtccact ccggtcctct cgtactagga 4200gcagcccccc tcagttctcc agcgcccacg gcagataggg accgaactgt ctcacgacgt 4260tctaaaccca gctcgcgtac cactttaaat ggcgaacagc catacccttg ggacctactt 4320cagccccagg atgtgatgag ccgacatcga ggtgccaaac accgccgtcg atatgaactc 4380ttgggcggta tcagcctgtt atccccggag taccttttat ccgttgagcg atggcccttc 4440cattcagaac caccggatca ctatgacctg ctttcgcacc tgctcgcgcc gtcacgctcg 4500cagtcaagct ggcttatgcc attgcactaa cctcctgatg tccgaccagg attagccaac 4560cttcgtgctc ctccgttact ctttaggagg agaccgcccc agtcaaacta cccaccagac 4620actgtccgca acccggatta cgggtcaacg ttagaacatc aaacattaaa gggtggtatt 4680tcaaggtcgg ctccatgcag actggcgtcc acacttcaaa gcctcccacc tatcctacac 4740atcaaggctc aatgttcagt gtcaagctat agtaaaggtt cacggggtct ttccgtcttg 4800ccgcgggtac actgcatctt cacagcgagt tcaatttcac tgagtctcgg gtggagacag 4860cctggccatc attacgccat tcgtgcaggt cggaacttac ccgacaagga atttcgctac 4920cttaggaccg ttatagttac ggccgccgtt taccggggct tcgatcaaga gcttcgcttg 4980cgctaacccc atcaattaac cttccggcac cgggcaggcg tcacaccgta tacgtccact 5040ttcgtgtttg cacagtgctg tgtttttaat aaacagttgc agccagctgg tatcttcgac 5100tgatttcagc tccatccgcg agggacctca cctacatatc agcgtgcctt ctcccgaagt 5160tacggcacca ttttgcctag ttccttcacc cgagttctct caagcgcctt ggtattctct 5220acctgaccac ctgtgtcggt ttggggtacg atttgatgtt acctgatgct tagaggcttt 5280tcctggaagc agggcatttg ttgcttcagc accgtagtgc ctcgtcatca cgcctcagcc 5340ttgattttcc ggatttgcct ggaaaaccag cctacacgct taaaccggga caaccgtcgc 5400ccggccaaca tagccttctc cgtcccccct tcgcagtaac accaagtaca ggaatattaa 5460cctgtttccc atcgactacg cctttcggcc tcgccttagg ggtcgactca ccctgccccg 5520attaacgttg gacaggaacc cttggtcttc cggcgagcgg gcttttcacc cgctttatcg 5580ttacttatgt cagcattcgc acttctgata cctccagcat gcctcacagc acaccttcgc 5640aggcttacag aacgctcccc tacccaacaa cgcataagcg tcgctgccgc agcttcggtg 5700catggtttag ccccgttaca tcttccgcgc aggccgactc gaccagtgag ctattacgct 5760ttctttaaat gatggctgct tctaagccaa catcctggct gtctgggcct tcccacatcg 5820tttcccactt aaccatgact ttgggacctt agctggcggt ctgggttgtt tccctcttca 5880cgacggacgt tagcacccgc cgtgtgtctc ccgtgataac attctccggt attcgcagtt 5940tgcatcgggt tggtaagtcg ggatgacccc cttgccgaaa cagtgctcta cccccggaga 6000tgaattcacg aggcgctacc taaatagctt tcggggagaa ccagctatct cccggtttga 6060ttggcctttc acccccagcc acaagtcatc cgctaatttt tcaacattag tcggttcggt 6120cctccagtta gtgttaccca accttcaacc tgcccatggc tagatcaccg ggtttcgggt 6180ctataccctg caacttaacg cccagttaag actcggtttc ccttcggctc ccctattcgg 6240ttaaccttgc tacagaatat aagtcgctga cccattatac aaaaggtacg cagtcacacg 6300cctaagcgtg ctcccactgc ttgtacgtac acggtttcag gttctttttc actcccctcg 6360ccggggttct tttcgccttt ccctcacggt actggttcac tatcggtcag tcaggagtat 6420ttagccttgg aggatggtcc ccccatattc agacaggata ccacgtgtcc cgccctactc 6480atcgagctca cagcatgtgc atttttgtgt acggggctgt caccctgtat cgcgcgcctt 6540tccagacgct tccactaaca cacacactga ttcaggctct gggctgctcc ccgttcgctc 6600gccgctactg ggggaatctc ggttgatttc ttttcctcgg ggtacttaga tgtttcagtt 6660cccccggttc gcctcattaa cctatggatt cagttaatga tagtgtgtcg aaacacactg 6720ggtttcccca ttcggaaatc gccggttata acggttcata tcaccttacc gacgcttatc 6780gcagattagc acgtccttca tcgcctctga ctgccagggc atccaccgtg tacgcttagt 6840cgcttaacct cacaacccga agatgtttct ttcgattcat catcgtgttg cgaaaatttg 6900agagactcac gaacaactct cgttgttcag tgtttcaatt ttcagcttga tccagatttt 6960taaagagcaa aaatctcaaa catcacccga agatgagttt tgagatatta aggtcggcga 7020ctttcactca caaaccagca agtggcgtcc cctaggggat tcgaacccct gttaccgccg 7080tgaaagggcg gtgtcctggg cctctagacg aaggggacac gaaaattgct tatcacgcgt 7140tgcgtgatat tttcgtgtag ggtgagcttt cattaataga aagcgaacgg ccttattctc 7200ttcagcctca ctcccaacgc gtaaacgcct tgcttttcac tttctatcag acaatctgtg 7260tgagcactac aaagtacgct tctttaaggt aagtgtgtga tccaaccgca ggttccccta 7320cggttacctt gttacgactt caccccagtc atgaatcaca aagtggtaag cgccctcccg 7380aaggttaagc tacctacttc ttttgcaacc cactcccatg gtgtgacggg cggtgtgtac 7440aaggcccggg aacgtattca ccgtggcatt ctgatccacg attactagcg attccgactt 7500catggagtcg agttgcagac tccaatccgg actacgacgc actttatgag gtccgcttgc 7560tctcgcgagg tcgcttctct ttgtatgcgc cattgtagca cgtgtgtagc cctggtcgta 7620agggccatga tgacttgacg tcatccccac cttcctccag tttatcactg gcagtctcct 7680ttgagttccc ggccggaccg ctggcaacaa aggataaggg ttgcgctcgt tgcgggactt 7740aacccaacat ttcacaacac gagctgacga cagccatgca gcacctgtct cacggttccc 7800gaaggcacat tctcatctct gaaaacttcc gtggatgtca agaccaggta aggttcttcg 7860cgttgcatcg aattaaacca catgctccac cgcttgtgcg ggcccccgtc aattcatttg 7920agttttaacc ttgcggccgt actccccagg cggtcgactt aacgcgttag ctccggaagc 7980cacgcctcaa gggcacaacc tccaagtcga catcgtttac ggcgtggact accagggtat 8040ctaatcctgt ttgctcccca cgctttcgca cctgagcgtc agtcttcgtc cagggggccg 8100ccttcgccac cggtattcct ccagatctct acgcatttca ccgctacacc tggaattcta 8160cccccctcta cgagactcaa gcttgccagt atcagatgca gttcccaggt tgagcccggg 8220gatttcacat ctgacttaac aaaccgcctg cgtgcgcttt acgcccagta attccgatta 8280acgcttgcac cctccgtatt accgcggctg ctggcacgga gttagccggt gcttcttctg 8340cgggtaacgt caatgagcaa aggtattaac tttactccct tcctccccgc tgaaagtact 8400ttacaacccg aaggccttct tcatacacgc ggcatggctg catcaggctt gcgcccattg 8460tgcaatattc cccactgctg cctcccgtag gagtctggac cgtgtctcag ttccagtgtg 8520gctggtcatc ctctcagacc agctagggat cgtcgcctag gtgagccgtt accccaccta 8580ctagctaatc ccatctgggc acatccgatg gcaagaggcc cgaaggtccc cctctttggt 8640cttgcgacgt tatgcggtat tagctaccgt ttccagtagt tatccccctc catcaggcag 8700tttcccagac attactcacc cgtccgccac tcgtcagcaa agaagcaagc ttcttcctgt 8760taccgttcga cttgcatgtg ttaggcctgc cgccagcgtt caatctgagc catgatcaaa 8820ctcttcaatt taaaagtttg acgctcaaag aattaaactt cgtaatgaat tacgtgttca 8880ctcttgagac ttggtattca tttttcgtct tgcgacgtta agaatccgta tcttcgagtg 8940cccacacaga ttgtctgata aattgttaaa gagcagtgcc gcttcgcttt ttctcagcgg 9000ccgctgtgtg aaattgttat ccgctcacaa ttccacacat tatacgagcc ggaagcataa 9060agtgtaaagc ctggggtgcc taatgagtga gctaactcac attaattgcg ttgcgctcac 9120tgcccgcttt ccagtcggga aacctgtcgt gccagctgca ttaatgaatc ggccaacgcg 9180cggggagagg cggtttgcgt attgggcgcc agggtggttt ttcttttcac cagtgagacg 9240ggcaacagct gattgccctt caccgcctgg ccctgagaga gttgcagcaa gcggtccacg 9300ctggtttgcc ccagcaggcg aaaatcctgt ttgatggtgg ttgacggcgg gatataacat 9360gagctgtctt cggtatcgtc gtatcccact accgagatat ccgcaccaac gcgcagcccg 9420gactcggtaa tggcgcgcat tgcgcccagc gccatctgat cgttggcaac cagcatcgca 9480gtgggaacga tgccctcatt cagcatttgc atggtttgtt gaaaaccgga catggcactc 9540cagtcgcctt cccgttccgc tatcggctga atttgattgc gagtgagata tttatgccag 9600ccagccagac gcagacgcgc cgagacagaa cttaatgggc ccgctaacag cgcgatttgc 9660tggtgaccca atgcgaccag atgctccacg cccagtcgcg taccgtcttc atgggagaaa 9720ataatactgt tgatgggtgt ctggtcagag acatcaagaa ataacgccgg aacattagtg 9780caggcagctt ccacagcaat ggcatcctgg tcatccagcg gatagttaat gatcagccca 9840ctgacccgtt gcgcgagaag attgtgcacc gccgctttac aggcttcgac gccgcttcgt 9900tctaccatcg acaccaccac gctggcaccc agttgatcgg cgcgagattt aatcgccgcg 9960acaatttgcg acggcgcgtg cagggccaga ctggaggtgg caacgccaat cagcaacgac 10020tgtttgcccg ccagttgttg tgccacgcgg ttgggaatgt aattcagctc cgccatcgcc 10080gcttccactt tttcccgcgt tttcgcagaa acgtggctgg cctggttcac cacgcgggaa 10140acggtctgat aagagacacc ggcatactct gcgacatcgt ataacgttac tggtttcaca 10200ttcaccaccc tgaattgact ctcttccggg cgctatcatg ccataccgcg aaaggttttg 10260caccattcga tggtgtcgga tcctagagcg cacgaatgag ggccgacagg aagcaaagct 10320gaaaggaatc aaatttggcc gcaggcgtac cgtggacagg aacgtcgtgc tgacgcttca 10380tcagaagggc actggtgcaa cggaaattgc tcatcagctc agtattgccc gctccacggt 10440ttataaaatt cttgaagacg aaagggcctc gtgcatacgc ctatttttat aggttaatgt 10500catgataata atggtttctt agacgtcagg tggcactttt cggggaaatg tgcgcggaac 10560ccctatttgt ttatttttct aaatacattc aaatatgtat ccgctcatga gacaataacc 10620ctgataaatg cttcaataat attgaaaaag gaagagtatg agtattcaac atttccgtgt 10680cgcccttatt cccttttttg cggcattttg ccttcctgtt tttgctcacc cagaaacgct 10740ggtgaaagta aaagatgctg aagatcagtt gggtgcacga gtgggttaca tcgaactgga 10800tctcaacagc ggtaagatcc ttgagagttt tcgccccgaa gaacgttttc caatgatgag 10860cacttttaaa gttctgctat gtggcgcggt attatcccgt gtt 10903211918DNAArtificial Sequenceprimer 2gatcctctac gccggacgca tcgtggccgg ccacgatgcg tccggcgtag aggatctatt 60taacgaccct gccctgaacc gacgaccggg tcgaatttgc tttcgaattt ctgccattca 120tccgcttatt atcacttatt caggcgtagc accaggcgtt taagggcacc aataactgcc 180ttaaaaaaat tacgccccgc cctgccactc atcgcagtac tgttgtaatt cattaagcat 240tctgccgaca tggaagccat cacagacggc atgatgaacc tgaatcgcca gcggcatcag 300caccttgtcg ccttgcgtat aatatttgcc catggtgaaa acgggggcga agaagttgtc 360catattggcc acgtttaaat caaaactggt gaaactcacc cagggattgg ctgagacgaa 420aaacatattc tcaataaacc ctttagggaa ataggccagg ttttcaccgt aacacgccac 480atcttgcgaa tatatgtgta gaaactgccg gaaatcgtcg tggtattcac tccagagcga 540tgaaaacgtt tcagtttgct catggaaaac ggtgtaacaa gggtgaacac tatcccatat 600caccagctca ccgtctttca ttgccatacg gaattccgga tgagcattca tcaggcgggc 660aagaatgtga ataaaggccg gataaaactt gtgcttattt ttctttacgg tctttaaaaa 720ggccgtaata tccagctgaa cggtctggtt ataggtacat tgagcaactg actgaaatgc 780ctcaaaatgt tctttacgat gccattggga tatatcaacg gtggtatatc cagtgatttt 840tttctccatt tgcggaggga tatgaaagcg gccgcttcca cacattaaac tagttcgatg 900attaattgtc aacagctcgc cggcggcacc tcgctaacgg attcaccact ccaagaattg 960gagccaatcg attcttgcgg agaactgtga atgcgcaaac caacccttgg cagaacatat 1020ccatcgcgtc cgccatctcc agcagccgca cgcggcgcat ctcgggcagc gttgggtcct 1080ggccacgggt gcgcatgatc gtgctcctgt cgttgaggac ccggctaggc tggcggggtt 1140gccttactgg ttagcagaat gaatcaccga tacgcgagcg aacgtgaagc gactgctgct 1200gcaaaacgtc tgcgacctga gcaacaacat gaatggtctt cggtttccgt gtttcgtaaa 1260gtctggaaac gcggaagtca gcgccctgca ccattatgtt ccggatctgg gtaccgagct 1320cgaattcact ggccgtcgtt ttacaacgtc gtgactggga aaaccctggc gttacccaac 1380ttaatcgcct tgcagcacat ccccctttcg ccaggcatcg caggatgctg ctggctaccc 1440tgtggaacac ctacatctgt attaacgaag cgctggcatt gaccctgagt gatttttctc 1500tggtcccgcc gcatccatac cgccagttgt ttaccctcac aacgttccag taaccgggca 1560tgttcatcat cagtaacccg tatcgtgagc atcctctctc gtttcatcgg tatcattacc 1620cccatgaaca gaaattcccc cttacacgga ggcatcaagt gaccaaacag gaaaaaaccg 1680cccttaacat ggcccgcttt atcagaagcc agacattaac gcttctggag aaactcaacg 1740agctggacgc ggatgaacag gcagacatct gtgaatcgct tcacgaccac gctgatgagc 1800tttaccgcag ctgcctcgcg cgtttcggtg atgacggtga aaacctctga cacatgcagc 1860tcccggagac ggtcacagct tgtctgtaag cggatgccgg gagcagacaa gcccgtcagg 1920gcgcgtcagc gggtgttggc gggtgtcggg gcgcagccat gacccagtca cgtagcgata 1980gcggagtgta tactggctta actatgcggc atcagagcag attgtactga gagtgcacca 2040tatgcggtgt gaaataccgc acagatgcgt aaggagaaaa taccgcatca ggcgctcttc 2100cgcttcctcg ctcactgact cgctgcgctc ggtcgttcgg ctgcggcgag cggtatcagc 2160tcactcaaag gcggtaatac ggttatccac agaatcaggg gataacgcag gaaagaacat 2220gtgagcaaaa ggccagcaaa aggccaggaa ccgtaaaaag gccgcgttgc tggcgttttt 2280ccataggctc cgcccccctg acgagcatca caaaaatcga cgctcaagtc agaggtggcg 2340aaacccgaca ggactataaa gataccaggc gtttccccct ggaagctccc tcgtgcgctc 2400tcctgttccg accctgccgc ttaccggata cctgtccgcc tttctccctt cgggaagcgt 2460ggcgctttct catagctcac gctgtaggta tctcagttcg gtgtaggtcg ttcgctccaa 2520gctgggctgt gtgcacgaac cccccgttca gcccgaccgc tgcgccttat ccggtaacta 2580tcgtcttgag tccaacccgg taagacacga cttatcgcca ctggcagcag ccactggtaa 2640caggattagc agagcgaggt atgtaggcgg tgctacagag ttcttgaagt ggtggcctaa 2700ctacggctac actagaagga cagtatttgg tatctgcgct ctgctgaagc cagttacctt 2760cggaaaaaga gttggtagct cttgatccgg caaacaaacc accgctggta gcggtggttt 2820ttttgtttgc aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag atcctttgat 2880cttttctacg gggtctgacg ctcagtggaa cgaaaactca cgttaaggga ttttggtcat 2940gagattatca aaaaggatct tcacctagat ccttttaaat taaaaatgaa gttttaaatc 3000aatctaaagt atatatgagt aaacttggtc tgacagttac caatgcttaa tcagtgaggc 3060acctatctca gcgatctgtc tatttcgttc atccatagtt gcctgactcc ccgtcgtgta 3120gataactacg atacgggagg gcttaccatc tggccccagt gctgcaatga taccgcgaga 3180cccacgctca ccggctccag atttatcagc aataaaccag ccagccggaa gggccgagcg 3240cagaagtggt cctgcaactt tatccgcctc catccagtct attaattgtt gccgggaagc 3300tagagtaagt agttcgccag ttaatagttt gcgcaacgtt gttgccattg ctgcaggcat 3360cgtggtgtca cgctcgtcgt ttggtatggc ttcattcagc tccggttccc aacgatcaag 3420gcgagttaca tgatccccca tgttgtgcaa aaaagcggtt agctccttcg gtcctccgat 3480cgttgtcaga agtaagttgg ccgcagtgtt atcactcatg gttatggcag cactgcataa 3540ttctcttact gtcatgccat ccgtaagatg cttttctgtg actggtgagt actcaaccaa 3600gtcattctga gaatagtgta tgcggcgacc gagttgctct tgcccggcgt caacacggga 3660taataccgcg ccacatagca gaactttaaa agtgctcatc attggaaaac gttcttcggg 3720gcgaaaactc tcaaggatct taccgctgtt gagatccagt tcgatgtaac ccactcgtgc 3780acccaactga tcttcagcat cttttacttt caccagcgtt tctgggtgag caaaaacagg 3840aaggcaaaat gccgcaaaaa agggaataag ggcgacacgg aaatgttgaa tactcatact 3900cttccttttt caatattatt gaagcattta tcagggttat tgtctcatga gcggatacat 3960atttgaatgt atttagaaaa ataaacaaat aggggttccg cgcacatttc cccgaaaagt 4020gccacctgac gtctaagaaa ccattattat catgacatta acctataaaa ataggcgtat

4080cacgaggccc tttcgtcttc aagaattctc atgtttgaca gcttatcatc gataagcttt 4140aatgcggtag tttatcacag ttaaattgct aacgcagtca ggcaccgtgt atgaaatcta 4200acaatgcgct catcgtcatc ctcggcaccg tcaccctgga tgctgtaggc ataggcttgg 4260ttatgccggt actgccgggc ctcttgcggg atatcgtcca ttccgacagc atcgccagtc 4320actatggcgt gctgctagcg ctatatgcgt tgatgcaatt tctatgcgca cccgttctcg 4380gagcactgtc cgaccgcttt ggccgccgcc cagtcctgct cgcttcgcta cttggagcca 4440ctatcgacta cgcgatcatg gcgaccacac ccgtcctgtg gatcccagac gagttaagtc 4500accatacgtt agtacaggtt gccactcttt tggcagacgc agacctacgg ctacaatagc 4560gaagcggtcc tggtattcat gtttaaaaat actgtcgcga tagccaaaac ggcactcttt 4620ggcagttaag cgcacttgct tgcctgtcgc cagttcaaca gaatcaacat aagcgcaaac 4680tcgctgtaat tctacgccat aagcaccaat attctggata ggtgatgagc cgacacaacc 4740aggaattaat gccagatttt ccagaccagg cataccttcc tgcaaagtgt attttaccag 4800acgatgccag ttttctccgg ctcctacatg taaataccac gcatcaggtt catcatgaat 4860ttcgatacct ttgatccggt tgatgatcac cgtgccgcga tagtcctcca gaaaaagtac 4920attacttcct tcacccagaa taagaacggg ttgtccttct gcggttgcat actgccaggc 4980attgagtaat tgttgttcgt cttcggcaca tacaatgtgc tgagcattat gatcaatgcc 5040aaatgtgttc cagggtttta aggagtggtt catagctgct ttcctgatgc aaaaacgagg 5100ctagtttacc gtatctgtgg ggggatggct tgtagatatg acgacaggaa gagtttgtag 5160aaacgcaaaa aggccatccg tcaggatggc cttctgctta atttgatgcc tggcagttta 5220tggcgggcgt cctgcccgcc accctccggg ccgttgcttc gcaacgttca aatccgctcc 5280cggcggattt gtcctactca ggagagcgtt caccgacaaa caacagataa aacgaaaggc 5340ccagtctttc gactgagcct ttcgttttat ttgatgcctg gcagttccct actctcgcat 5400ggggagaccc cacactacca tcggcgctac ggcgtttcac ttctgagttc ggcatggggt 5460caggtgggac caccgcgcta ctgccgccag gcaaattctg ttttatcaga ccgcttctgc 5520gttctgattt aatctgtatc aggctgaaaa tcttctctca tccgccaaaa cagcttcggc 5580gttgtaaggt taagcctcac ggttcattag taccggttag ctcaacgcat cgctgcgctt 5640acacacccgg cctatcaacg tcgtcgtctt caacgttcct tcaggaccct taaagggtca 5700gggagaactc atctcggggc aagtttcgtg cttagatgct ttcagcactt atctcttccg 5760catttagcta ccgggcagtg ccattggcat gacaacccga acaccagtga tgcgtccact 5820ccggtcctct cgtactagga gcagcccccc tcagttctcc agcgcccacg gcagataggg 5880accgaactgt ctcacgacgt tctaaaccca gctcgcgtac cactttaaat ggcgaacagc 5940catacccttg ggacctactt cagccccagg atgtgatgag ccgacatcga ggtgccaaac 6000accgccgtcg atatgaactc ttgggcggta tcagcctgtt atccccggag taccttttat 6060ccgttgagcg atggcccttc cattcagaac caccggatca ctatgacctg ctttcgcacc 6120tgctcgcgcc gtcacgctcg cagtcaagct ggcttatgcc attgcactaa cctcctgatg 6180tccgaccagg attagccaac cttcgtgctc ctccgttact ctttaggagg agaccgcccc 6240agtcaaacta cccaccagac actgtccgca acccggatta cgggtcaacg ttagaacatc 6300aaacattaaa gggtggtatt tcaaggtcgg ctccatgcag actggcgtcc acacttcaaa 6360gcctcccacc tatcctacac atcaaggctc aatgttcagt gtcaagctat agtaaaggtt 6420cacggggtct ttccgtcttg ccgcgggtac actgcatctt cacagcgagt tcaatttcac 6480tgagtctcgg gtggagacag cctggccatc attacgccat tcgtgcaggt cggaacttac 6540ccgacaagga atttcgctac cttaggaccg ttatagttac ggccgccgtt taccggggct 6600tcgatcaaga gcttcgcttg cgctaacccc atcaattaac cttccggcac cgggcaggcg 6660tcacaccgta tacgtccact ttcgtgtttg cacagtgctg tgtttttaat aaacagttgc 6720agccagctgg tatcttcgac tgatttcagc tccatccgcg agggacctca cctacatatc 6780agcgtgcctt ctcccgaagt tacggcacca ttttgcctag ttccttcacc cgagttctct 6840caagcgcctt ggtattctct acctgaccac ctgtgtcggt ttggggtacg atttgatgtt 6900acctgatgct tagaggcttt tcctggaagc agggcatttg ttgcttcagc accgtagtgc 6960ctcgtcatca cgcctcagcc ttgattttcc ggatttgcct ggaaaaccag cctacacgct 7020taaaccggga caaccgtcgc ccggccaaca tagccttctc cgtcccccct tcgcagtaac 7080accaagtaca ggaatattaa cctgtttccc atcgactacg cctttcggcc tcgccttagg 7140ggtcgactca ccctgccccg attaacgttg gacaggaacc cttggtcttc cggcgagcgg 7200gcttttcacc cgctttatcg ttacttatgt cagcattcgc acttctgata cctccagcat 7260gcctcacagc acaccttcgc aggcttacag aacgctcccc tacccaacaa cgcataagcg 7320tcgctgccgc agcttcggtg catggtttag ccccgttaca tcttccgcgc aggccgactc 7380gaccagtgag ctattacgct ttctttaaat gatggctgct tctaagccaa catcctggct 7440gtctgggcct tcccacatcg tttcccactt aaccatgact ttgggacctt agctggcggt 7500ctgggttgtt tccctcttca cgacggacgt tagcacccgc cgtgtgtctc ccgtgataac 7560attctccggt attcgcagtt tgcatcgggt tggtaagtcg ggatgacccc cttgccgaaa 7620cagtgctcta cccccggaga tgaattcacg aggcgctacc taaatagctt tcggggagaa 7680ccagctatct cccggtttga ttggcctttc acccccagcc acaagtcatc cgctaatttt 7740tcaacattag tcggttcggt cctccagtta gtgttaccca accttcaacc tgcccatggc 7800tagatcaccg ggtttcgggt ctataccctg caacttaacg cccagttaag actcggtttc 7860ccttcggctc ccctattcgg ttaaccttgc tacagaatat aagtcgctga cccattatac 7920aaaaggtacg cagtcacacg cctaagcgtg ctcccactgc ttgtacgtac acggtttcag 7980gttctttttc actcccctcg ccggggttct tttcgccttt ccctcacggt actggttcac 8040tatcggtcag tcaggagtat ttagccttgg aggatggtcc ccccatattc agacaggata 8100ccacgtgtcc cgccctactc atcgagctca cagcatgtgc atttttgtgt acggggctgt 8160caccctgtat cgcgcgcctt tccagacgct tccactaaca cacacactga ttcaggctct 8220gggctgctcc ccgttcgctc gccgctactg ggggaatctc ggttgatttc ttttcctcgg 8280ggtacttaga tgtttcagtt cccccggttc gcctcattaa cctatggatt cagttaatga 8340tagtgtgtcg aaacacactg ggtttcccca ttcggaaatc gccggttata acggttcata 8400tcaccttacc gacgcttatc gcagattagc acgtccttca tcgcctctga ctgccagggc 8460atccaccgtg tacgcttagt cgcttaacct cacaacccga agatgtttct ttcgattcat 8520catcgtgttg cgaaaatttg agagactcac gaacaactct cgttgttcag tgtttcaatt 8580ttcagcttga tccagatttt taaagagcaa aaatctcaaa catcacccga agatgagttt 8640tgagatatta aggtcggcga ctttcactca caaaccagca agtggcgtcc cctaggggat 8700tcgaacccct gttaccgccg tgaaagggcg gtgtcctggg cctctagacg aaggggacac 8760gaaaattgct tatcacgcgt tgcgtgatat tttcgtgtag ggtgagcttt cattaataga 8820aagcgaacgg ccttattctc ttcagcctca ctcccaacgc gtaaacgcct tgcttttcac 8880tttctatcag acaatctgtg tgagcactac aaagtacgct tctttaaggt aatcccatga 8940tccaaccgca ggttccccta cggttacctt gttacgactt caccccagtc atgaatcaca 9000aagtggtaag cgccctcccg aaggttaagc tacctacttc ttttgcaacc cactcccatg 9060gtgtgacggg cggtgtgtac aaggcccggg aacgtattca ccgtggcatt ctgatccacg 9120attactagcg attccgactt catggagtcg agttgcagac tccaatccgg actacgacgc 9180actttatgag gtccgcttgc tctcgcgagg tcgcttctct ttgtatgcgc cattgtagca 9240cgtgtgtagc cctggtcgta agggccatga tgacttgacg tcatccccac cttcctccag 9300tttatcactg gcagtctcct ttgagttccc ggccggaccg ctggcaacaa aggataaggg 9360ttgcgctcgt tgcgggactt aacccaacat ttcacaacac gagctgacga cagccatgca 9420gcacctgtct cacggttccc gaaggcacat tctcatctct gaaaacttcc gtggatgtca 9480agaccaggta aggttcttcg cgttgcatcg aattaaacca catgctccac cgcttgtgcg 9540ggcccccgtc aattcatttg agttttaacc ttgcggccgt actccccagg cggtcgactt 9600aacgcgttag ctccggaagc cacgcctcaa gggcacaacc tccaagtcga catcgtttac 9660ggcgtggact accagggtat ctaatcctgt ttgctcccca cgctttcgca cctgagcgtc 9720agtcttcgtc cagggggccg ccttcgccac cggtattcct ccagatctct acgcatttca 9780ccgctacacc tggaattcta cccccctcta cgagactcaa gcttgccagt atcagatgca 9840gttcccaggt tgagcccggg gatttcacat ctgacttaac aaaccgcctg cgtgcgcttt 9900acgcccagta attccgatta acgcttgcac cctccgtatt accgcggctg ctggcacgga 9960gttagccggt gcttcttctg cgggtaacgt caatgagcaa aggtattaac tttactccct 10020tcctccccgc tgaaagtact ttacaacccg aaggccttct tcatacacgc ggcatggctg 10080catcaggctt gcgcccattg tgcaatattc cccactgctg cctcccgtag gagtctggac 10140cgtgtctcag ttccagtgtg gctggtcatc ctctcagacc agctagggat cgtcgcctag 10200gtgagccgtt accccaccta ctagctaatc ccatctgggc acatccgatg gcaagaggcc 10260cgaaggtccc cctctttggt cttgcgacgt tatgcggtat tagctaccgt ttccagtagt 10320tatccccctc catcaggcag tttcccagac attactcacc cgtccgccac tcgtcagcaa 10380agaagcaagc ttcttcctgt taccgttcga cttgcatgtg ttaggcctgc cgccagcgtt 10440caatctgagc catgatcaaa ctcttcaatt taaaagtttg acgctcaaag aattaaactt 10500cgtaatgaat tacgtgttca ctcttgagac ttggtattca tttttcgtct tgcgacgtta 10560agaatccgta tcttcgagtg cccacacaga ttgtctgata aattgttaaa gagcagtgcc 10620gcttcgcttt ttctcagcgg ccgctgtgtg aaattgttat ccgctcacaa ttccacacat 10680tatacgagcc ggaagcataa agtgtaaagc ctggggtgcc taatgagtga gctaactcac 10740attaattgcg ttgcgctcac tgcccgcttt ccagtcggga aacctgtcgt gccagctgca 10800ttaatgaatc ggccaacgcg cggggagagg cggtttgcgt attgggcgcc agggtggttt 10860ttcttttcac cagtgagacg ggcaacagct gattgccctt caccgcctgg ccctgagaga 10920gttgcagcaa gcggtccacg ctggtttgcc ccagcaggcg aaaatcctgt ttgatggtgg 10980ttgacggcgg gatataacat gagctgtctt cggtatcgtc gtatcccact accgagatat 11040ccgcaccaac gcgcagcccg gactcggtaa tggcgcgcat tgcgcccagc gccatctgat 11100cgttggcaac cagcatcgca gtgggaacga tgccctcatt cagcatttgc atggtttgtt 11160gaaaaccgga catggcactc cagtcgcctt cccgttccgc tatcggctga atttgattgc 11220gagtgagata tttatgccag ccagccagac gcagacgcgc cgagacagaa cttaatgggc 11280ccgctaacag cgcgatttgc tggtgaccca atgcgaccag atgctccacg cccagtcgcg 11340taccgtcttc atgggagaaa ataatactgt tgatgggtgt ctggtcagag acatcaagaa 11400ataacgccgg aacattagtg caggcagctt ccacagcaat ggcatcctgg tcatccagcg 11460gatagttaat gatcagccca ctgacccgtt gcgcgagaag attgtgcacc gccgctttac 11520aggcttcgac gccgcttcgt tctaccatcg acaccaccac gctggcaccc agttgatcgg 11580cgcgagattt aatcgccgcg acaatttgcg acggcgcgtg cagggccaga ctggaggtgg 11640caacgccaat cagcaacgac tgtttgcccg ccagttgttg tgccacgcgg ttgggaatgt 11700aattcagctc cgccatcgcc gcttccactt tttcccgcgt tttcgcagaa acgtggctgg 11760cctggttcac cacgcgggaa acggtctgat aagagacacc ggcatactct gcgacatcgt 11820ataacgttac tggtttcaca ttcaccaccc tgaattgact ctcttccggg cgctatcatg 11880ccataccgcg aaaggttttg caccattcga tggtgtcg 11918313278DNAArtificial Sequenceprimer 3aaattgaaga gtttgatcat ggctcagatt gaacgctggc ggcaggccta acacatgcaa 60gtcgaacggt aacaggaaga agcttgcttc tttgctgacg agtggcggac gggtgagtaa 120tgtctgggaa actgcctgat ggagggggat aactactgga aacggtagct aataccgcat 180aacgtcgcaa gaccaaagag ggggaccttc gggcctcttg ccatcggatg tgcccagatg 240ggattagcta gtaggtgggg taacggctca cctaggcgac gatccctagc tggtctgaga 300ggatgaccag ccacactgga actgagacac ggtccagact cctacgggag gcagcagtgg 360ggaatattgc acaatgggcg caagcctgat gcagccatgc cgcgtgtatg aagaaggcct 420tcgggttgta aagtactttc agcggggagg aagggagtaa agttaatacc tttgctcatt 480gacgttaccc gcagaagaag caccggctaa ctccgtgcca gcagccgcgg taatacggag 540ggtgcaagcg ttaatcggaa ttactgggcg taaagcgcac gcaggcggtt tgttaagtca 600gatgtgaaat ccccgggctc aacctgggaa ctgcatctga tactggcaag cttgagtctc 660gtagaggggg gtagaattcc aggtgtagcg gtgaaatgcg tagagatctg gaggaatacc 720ggtggcgaag gcggccccct ggacgaagac tgacgctcag gtgcgaaagc gtggggagca 780aacaggatta gataccctgg tagtccacgc cgtaaacgat gtcgacttgg aggttgtgcc 840cttgaggcgt ggcttccgga gctaacgcgt taagtcgacc gcctggggag tacggccgca 900aggttaaaac tcaaatgaat tgacgggggc ccgcacaagc ggtggagcat gtggtttaat 960tcgatgcaac gcgaagaacc ttacctggtc ttgacatcca cggaagtttt cagagatgag 1020aatgtgcctt cgggaaccgt gagacaggtg ctgcatggct gtcgtcagct cgtgttgtga 1080aatgttgggt taagtcccgc aacgagcgca acccttatcc tttgttgcca gcggtccggc 1140cgggaactca aaggagactg ccagtgataa actggaggaa ggtggggatg acgtcaagtc 1200atcatggccc ttacgaccag ggctacacac gtgctacaat ggcgcataca aagagaagcg 1260acctcgcgag agcaagcgga cctcataaag tgcgtcgtag tccggattgg agtctgcaac 1320tcgactccat gaagtcggaa tcgctagtaa tcgtggatca gaatgccacg gtgaatacgt 1380tcccgggcct tgtacacacc gcccgtcaca ccatgggagt gggttgcaaa agaagtaggt 1440agcttaacct tcgggagggc gcttaccact ttgtgattca tgactggggt gaagtcgtaa 1500caaggtaacc gtaggggaac ctgcggttgg atcatgggat taccttaaag aagcgtactt 1560tgtagtgctc acacagattg tctgatagaa agtgaaaagc aaggcgttta cgcgttggga 1620gtgaggctga agagaataag gccgttcgct ttctattaat gaaagctcac cctacacgaa 1680aatatcacgc aacgcgtgat aagcaatttt cgtgtcccct tcgtctagag gcccaggaca 1740ccgccctttc acggcggtaa caggggttcg aatcccctag gggacgccac ttgctggttt 1800gtgagtgaaa gtcgccgacc ttaatatctc aaaactcatc ttcgggtgat gtttgagatt 1860tttgctcttt aaaaatctgg atcaagctga aaattgaaac actgaacaac gagagttgtt 1920cgtgagtctc tcaaattttc gcaacacgat gatgaatcga aagaaacatc ttcgggttgt 1980gaggttaagc gactaagcgt acacggtgga tgccctggca gtcagaggcg atgaaggacg 2040tgctaatctg cgataagcgt cggtaaggtg atatgaaccg ttataaccgg cgatttccga 2100atggggaaac ccagtgtgtt tcgacacact atcattaact gaatccatag gttaatgagg 2160cgaaccgggg gaactgaaac atctaagtac cccgaggaaa agaaatcaac cgagattccc 2220ccagtagcgg cgagcgaacg gggagcagcc cagagcctga atcagtgtgt gtgttagtgg 2280aagcgtctgg aaaggcgcgc gatacagggt gacagccccg tacacaaaaa tgcacatgct 2340gtgagctcga tgagtagggc gggacacgtg gtatcctgtc tgaatatggg gggaccatcc 2400tccaaggcta aatactcctg actgaccgat agtgaaccag taccgtgagg gaaaggcgaa 2460aagaaccccg gcgaggggag tgaaaaagaa cctgaaaccg tgtacgtaca agcagtggga 2520gcacgcttag gcgtgtgact gcgtaccttt tgtataatgg gtcagcgact tatattctgt 2580agcaaggtta accgaatagg ggagccgaag ggaaaccgag tcttaactgg gcgttaagtt 2640gcagggtata gacccgaaac ccggtgatct agccatgggc aggttgaagg ttgggtaaca 2700ctaactggag gaccgaaccg actaatgttg aaaaattagc ggatgacttg tggctggggg 2760tgaaaggcca atcaaaccgg gagatagctg gttctccccg aaagctattt aggtagcgcc 2820tcgtgaattc atctccgggg gtagagcact gtttcggcaa gggggtcatc ccgacttacc 2880aacccgatgc aaactgcgaa taccggagaa tgttatcacg ggagacacac ggcgggtgct 2940aacgtccgtc gtgaagaggg aaacaaccca gaccgccagc taaggtccca aagtcatggt 3000taagtgggaa acgatgtggg aaggcccaga cagccaggat gttggcttag aagcagccat 3060catttaaaga aagcgtaata gctcactggt cgagtcggcc tgcgcggaag atgtaacggg 3120gctaaaccat gcaccgaagc tgcggcagcg acgcttatgc gttgttgggt aggggagcgt 3180tctgtaagcc tgcgaaggtg tgctgtgagg catgctggag gtatcagaag tgcgaatgct 3240gacataagta acgataaagc gggtgaaaag cccgctcgcc ggaagaccaa gggttcctgt 3300ccaacgttaa tcggggcagg gtgagtcgac ccctaaggcg aggccgaaag gcgtagtcga 3360tgggaaacag gttaatattc ctgtacttgg tgttactgcg aaggggggac ggagaaggct 3420atgttggccg ggcgacggtt gtcccggttt aagcgtgtag gctggttttc caggcaaatc 3480cggaaaatca aggctgaggc gtgatgacga ggcactacgg tgctgaagca acaaatgccc 3540tgcttccagg aaaagcctct aagcatcagg taacatcaaa tcgtacccca aaccgacaca 3600ggtggtcagg tagagaatac caaggcgctt gagagaactc gggtgaagga actaggcaaa 3660atggtgccgt aacttcggga gaaggcacgc tgatatgtag gtgaggtccc tcgcggatgg 3720agctgaaatc agtcgaagat accagctggc tgcaactgtt tattaaaaac acagcactgt 3780gcaaacacga aagtggacgt atacggtgtg acgcctgccc ggtgccggaa ggttaattga 3840tggggttagc gcaagcgaag ctcttgatcg aagccccggt aaacggcggc cgtaactata 3900acggtcctaa ggtagcgaaa ttccttgtcg ggtaagttcc gacctgcacg aatggcgtaa 3960tgatggccag gctgtctcca cccgagactc agtgaaattg aactcgctgt gaagatgcag 4020tgtacccgcg gcaagacgga aagaccccgt gaacctttac tatagcttga cactgaacat 4080tgagccttga tgtgtaggat aggtgggagg ctttgaagtg tggacgccag tctgcatgga 4140gccgaccttg aaataccacc ctttaatgtt tgatgttcta acgttgaccc gtaatccggg 4200ttgcggacag tgtctggtgg gtagtttgac tggggcggtc tcctcctaaa gagtaacgga 4260ggagcacgaa ggttggctaa tcctggtcgg acatcaggag gttagtgcaa tggcataagc 4320cagcttgact gcgagcgtga cggcgcgagc aggtgcgaaa gcaggtcata gtgatccggt 4380ggttctgaat ggaagggcca tcgctcaacg gataaaaggt actccgggga taacaggctg 4440ataccgccca agagttcata tcgacggcgg tgtttggcac ctcgatgtcg gctcatcaca 4500tcctggggct gaagtaggtc ccaagggtat ggctgttcgc catttaaagt ggtacgcgag 4560ctgggtttag aacgtcgtga gacagttcgg tccctatctg ccgtgggcgc tggagaactg 4620aggggggctg ctcctagtac gagaggaccg gagtggacgc atcactggtg ttcgggttgt 4680catgccaatg gcactgcccg gtagctaaat gcggaagaga taagtgctga aagcatctaa 4740gcacgaaact tgccccgaga tgagttctcc ctgacccttt aagggtcctg aaggaacgtt 4800gaagacgacg acgttgatag gccgggtgtg taagcgcagc gatgcgttga gctaaccggt 4860actaatgaac cgtgaggctt aaccttacaa cgccgaagct gttttggcgg atgagagaag 4920attttcagcc tgatacagat taaatcagaa cgcagaagcg gtctgataaa acagaatttg 4980cctggcggca gtagcgcggt ggtcccacct gaccccatgc cgaactcaga agtgaaacgc 5040cgtagcgccg atggtagtgt ggggtctccc catgcgagag tagggaactg ccaggcatca 5100aataaaacga aaggctcagt cgaaagactg ggcctttcgt tttatctgtt gtttgtcggt 5160gaacgctctc ctgagtagga caaatccgcc gggagcggat ttgaacgttg cgaagcaacg 5220gcccggaggg tggcgggcag gacgcccgcc ataaactgcc aggcatcaaa ttaagcagaa 5280ggccatcctg acggatggcc tttttgcgtt tctacaaact cttcctgtcg tcatatctac 5340aagccatccc cccacagata cggtaaacta gcctcgtttt tgcatcagga aagcagctat 5400gaaccactcc ttaaaaccct ggaacacatt tggcattgat cataatgctc agcacattgt 5460atgggcctta agggcccaac aattactcaa tgcctggcag tatgcaaccg cagaaggaca 5520acccgttctt attctgggtg aaggaagtaa tgtacttttt ctggaggact atcgcggcac 5580ggtgatcatc aaccggatca aaggtatcga aattcatgat gaacctgatg cgtggtattt 5640acatgtagga gccggagaaa actggcatcg tctggtaaaa tacactttgc aggaaggtat 5700gcctggtctg gaaaatctgg cattaattcc tggttgtgtc ggctcatcac ctatccagaa 5760tattggtgct tatggcgtag aattacagcg agtttgcgct tatgttgatt ctgttgaact 5820ggcgacaggc aagcaagtgc gcttaactgc caaagagtgc cgttttggct atcgcgacag 5880tatttttaaa catgaatacc aggaccgctt cgctattgta gccgtaggtc tgcgtctgcc 5940aaaagagtgg caacctgtac taacgtatgg tgacttaact cgtctgggat ccacaggacg 6000ggtgtggtcg ccatgatcgc gtagtcgata gtggctccaa gtagcgaagc gagcaggact 6060gggcggcggc caaagcggtc ggacagtgct ccgagaacgg gtgcgcatag aaattgcatc 6120aacgcatata gcgctagcag cacgccatag tgactggcga tgctgtcgga atggacgata 6180tcccgcaaga ggcccggcag taccggcata accaagccta tgcctacagc atccagggtg 6240acggtgccga ggatgacgat gagcgcattg ttagatttca tacacggtgc ctgactgcgt 6300tagcaattta actgtgataa actaccgcat taaagcttat cgatgataag ctgtcaaaca 6360tgagaattct tgaagacgaa agggcctcgt gatacgccta tttttatagg ttaatgtcat 6420gataataatg gtttcttaga cgtcaggtgg cacttttcgg ggaaatgtgc gcggaacccc 6480tatttgttta tttttctaaa tacattcaaa tatgtatccg ctcatgagac aataaccctg 6540ataaatgctt caataatatt gaaaaaggaa gagtatgagt attcaacatt tccgtgtcgc 6600ccttattccc ttttttgcgg cattttgcct tcctgttttt gctcacccag aaacgctggt 6660gaaagtaaaa gatgctgaag atcagttggg tgcacgagtg ggttacatcg aactggatct 6720caacagcggt aagatccttg agagttttcg ccccgaagaa cgttttccaa tgatgagcac 6780ttttaaagtt ctgctatgtg gcgcggtatt atcccgtgtt gacgccgggc aagagcaact 6840cggtcgccgc atacactatt ctcagaatga cttggttgag tactcaccag tcacagaaaa 6900gcatcttacg gatggcatga cagtaagaga attatgcagt gctgccataa ccatgagtga 6960taacactgcg gccaacttac ttctgacaac gatcggagga ccgaaggagc taaccgcttt 7020tttgcacaac atgggggatc atgtaactcg ccttgatcgt tgggaaccgg agctgaatga 7080agccatacca aacgacgagc gtgacaccac gatgcctgca gcaatggcaa caacgttgcg 7140caaactatta actggcgaac tacttactct

agcttcccgg caacaattaa tagactggat 7200ggaggcggat aaagttgcag gaccacttct gcgctcggcc cttccggctg gctggtttat 7260tgctgataaa tctggagccg gtgagcgtgg gtctcgcggt atcattgcag cactggggcc 7320agatggtaag ccctcccgta tcgtagttat ctacacgacg gggagtcagg caactatgga 7380tgaacgaaat agacagatcg ctgagatagg tgcctcactg attaagcatt ggtaactgtc 7440agaccaagtt tactcatata tactttagat tgatttaaaa cttcattttt aatttaaaag 7500gatctaggtg aagatccttt ttgataatct catgaccaaa atcccttaac gtgagttttc 7560gttccactga gcgtcagacc ccgtagaaaa gatcaaagga tcttcttgag atcctttttt 7620tctgcgcgta atctgctgct tgcaaacaaa aaaaccaccg ctaccagcgg tggtttgttt 7680gccggatcaa gagctaccaa ctctttttcc gaaggtaact ggcttcagca gagcgcagat 7740accaaatact gtccttctag tgtagccgta gttaggccac cacttcaaga actctgtagc 7800accgcctaca tacctcgctc tgctaatcct gttaccagtg gctgctgcca gtggcgataa 7860gtcgtgtctt accgggttgg actcaagacg atagttaccg gataaggcgc agcggtcggg 7920ctgaacgggg ggttcgtgca cacagcccag cttggagcga acgacctaca ccgaactgag 7980atacctacag cgtgagctat gagaaagcgc cacgcttccc gaagggagaa aggcggacag 8040gtatccggta agcggcaggg tcggaacagg agagcgcacg agggagcttc cagggggaaa 8100cgcctggtat ctttatagtc ctgtcgggtt tcgccacctc tgacttgagc gtcgattttt 8160gtgatgctcg tcaggggggc ggagcctatg gaaaaacgcc agcaacgcgg cctttttacg 8220gttcctggcc ttttgctggc cttttgctca catgttcttt cctgcgttat cccctgattc 8280tgtggataac cgtattaccg cctttgagtg agctgatacc gctcgccgca gccgaacgac 8340cgagcgcagc gagtcagtga gcgaggaagc ggaagagcgc ctgatgcggt attttctcct 8400tacgcatctg tgcggtattt cacaccgcat atggtgcact ctcagtacaa tctgctctga 8460tgccgcatag ttaagccagt atacactccg ctatcgctac gtgactgggt catggctgcg 8520ccccgacacc cgccaacacc cgctgacgcg ccctgacggg cttgtctgct cccggcatcc 8580gcttacagac aagctgtgac cgtctccggg agctgcatgt gtcagaggtt ttcaccgtca 8640tcaccgaaac gcgcgaggca gctgcggtaa agctcatcag cgtggtcgtg aagcgattca 8700cagatgtctg cctgttcatc cgcgtccagc tcgttgagtt tctccagaag cgttaatgtc 8760tggcttctga taaagcgggc catgttaagg gcggtttttt cctgtttggt cacttgatgc 8820ctccgtgtaa gggggaattt ctgttcatgg gggtaatgat accgatgaaa cgagagagga 8880tgctcacgat acgggttact gatgatgaac atgcccggtt actggaacgt tgtgagggta 8940aacaactggc ggtatggatg cggcgggacc agagaaaaat cactcagggt caatgccagc 9000gcttcgttaa tacagatgta ggtgttccac agggtagcca gcagcatcct gcgatgcctg 9060gcgaaagggg gatgtgctgc aaggcgatta agttgggtaa cgccagggtt ttcccagtca 9120cgacgttgta aaacgacggc cagtgaattc gagctcggta cctgcactga cgacaggaag 9180agtttgtaga aacgcaaaaa ggccatccgt caggatggcc ttctgcttaa tttgatgcct 9240ggcagtttat ggcgggcgtc ctgcccgcca ccctccgggc cgttgcttcg caacgttcaa 9300atccgctccc ggcggatttg tcctactcag gagagcgttc accgacaaac aacagataaa 9360acgaaaggcc cagtctttcg actgagcctt tcgttttatt tgatgcctgg cagttcccta 9420ctctcgcatg gggagacccc acactaccat cggcgctacg actagattat ttgtagagct 9480catccatgcc atgtgtaatc ccagcagcag ttacaaactc aagaaggacc atgtggtcac 9540gcttttcgtt gggatctttc gaaagggcag attgtgtcga caggtaatgg ttgtctggta 9600aaaggacagg gccatcgcca attggagtat tttgttgata atggtctgct agttgaacgg 9660atccatcttc aatgttgtgg cgaattttga agttagcttt gattccattc ttttgtttgt 9720ctgccgtgat gtatacattg tgtgagttat agttgtactc gagtttgtgt ccgagaatgt 9780ttccatcttc tttaaaatca atacctttta actcgatacg attaacaagg gtatcacctt 9840caaacttgac ttcagcacgc gtcttgtagt tcccgtcatc tttgaaagat atagtgcgtt 9900cctgtacata accttcgggc atggcactct tgaaaaagtc atgccgtttc atatgatccg 9960gataacggga aaagcattga acaccataag agaaagtagt gacaagtgtt ggccatggaa 10020caggtagttt tccagtagtg caaataaatt taagggtaag ctttccgtat gtagcatcac 10080cttcaccctc tccactgaca gaaaatttgt gcccattaac atcaccatct aattcaacaa 10140gaattgggac aactccagtg aaaagttctt ctcctttgct cgcagtgatt tttttctcca 10200tttgcggagg gatatgaaag cggccgcttc cacacattaa actagttcga tgattaattg 10260tcaacagctc gccggcggca cctcgctaac ggattcacca ctccaagaat tggagccaat 10320cgattcttgc ggagaactgt gaatgcgggt acccagatcc ggaacataat ggtgcagggc 10380gctgacttcc gcgtttccag actttacgaa acacggaaac cgaagaccat tcatgttgtt 10440gctcaggtcg cagacgtttt gcagcagcag tcgcttcacg ttcgctcgcg tatcggtgat 10500tcattctgct aaccagtaag gcaaccccgc cagcctagcc gggtcctcaa cgacaggagc 10560acgatcatgc gcacccgtgg ccaggaccca acgctgcccg agatgcgccg cgtgcggctg 10620ctggagatgg cggacgcgat ggatatgttc tgccaagggt tggtttgcgc attcacagtt 10680ctccgcaaga atcgattggc tccaattctt ggagtggtga atccgttagc gaggtgccgc 10740cggcgagctg ttgacaatta atcatcgaac tagtttaatg tgtggaagcg gccgctttca 10800tatccctccg caaatggaga aaaaaatcac tggatatacc accgttgata tatcccaatg 10860gcatcgtaaa gaacattttg aggcatttca gtcagttgct caatgtacct ataaccagac 10920cgttcagctg gatattacgg cctttttaaa gaccgtaaag aaaaataagc acaagtttta 10980tccggccttt attcacattc ttgcccgcct gatgaatgct catccggaat tccgtatggc 11040aatgaaagac ggtgagctgg tgatatggga tagtgttcac ccttgttaca ccgttttcca 11100tgagcaaact gaaacgtttt catcgctctg gagtgaatac cacgacgatt tccggcagtt 11160tctacacata tattcgcaag atgtggcgtg ttacggtgaa aacctggcct atttccctaa 11220agggtttatt gagaatatgt ttttcgtctc agccaatccc tgggtgagtt tcaccagttt 11280tgatttaaac gtggccaata tggacaactt cttcgccccc gttttcacca tgggcaaata 11340ttatacgcaa ggcgacaagg tgctgatgcc gctggcgatt caggttcatc atgccgtctg 11400tgatggcttc catgtcggca gaatgcttaa tgaattacaa cagtactgcg atgagtggca 11460gggcggggcg taattttttt aaggcagtta ttggtgccct taaacgcctg gtgctacgcc 11520tgaataagtg ataataagcg gatgaatggc agaaattcga aagcaaattc gacccggtcg 11580tcggttcagg gcagggtcgt taaatagccg cttatgtcta ttgctggttt acggtttatt 11640gactacccga agcagtgtga ccctgtgctt ctcaaatgcc tgagggcagt ttgctcaggt 11700ctcccgtggg ggggaataat taacggtatg agccttacgg cggacggatc gtggccgcaa 11760gtgggtccgg ctagaggatc cgacaccatc gaatggtgca aaacctttcg cggtatggca 11820tgatagcgcc cggaagagag tcaattcagg gtggtgaatg tgaaaccagt aacgttatac 11880gatgtcgcag agtatgccgg tgtctcttat cagaccgttt cccgcgtggt gaaccaggcc 11940agccacgttt ctgcgaaaac gcgggaaaaa gtggaagcgg cgatggcgga gctgaattac 12000attcccaacc gcgtggcaca acaactggcg ggcaaacagt cgttgctgat tggcgttgcc 12060acctccagtc tggccctgca cgcgccgtcg caaattgtcg cggcgattaa atctcgcgcc 12120gatcaactgg gtgccagcgt ggtggtgtcg atggtagaac gaagcggcgt cgaagcctgt 12180aaagcggcgg tgcacaatct tctcgcgcaa cgggtcagtg ggctgatcat taactatccg 12240ctggatgacc aggatgccat tgctgtggaa gctgcctgca ctaatgttcc ggcgttattt 12300cttgatgtct ctgaccagac acccatcaac agtattattt tctcccatga agacggtacg 12360cgactgggcg tggagcatct ggtcgcattg ggtcaccagc aaatcgcgct gttagcgggc 12420ccattaagtt ctgtctcggc gcgtctgcgt ctggctggct ggcataaata tctcactcgc 12480aatcaaattc agccgatagc ggaacgggaa ggcgactgga gtgccatgtc cggttttcaa 12540caaaccatgc aaatgctgaa tgagggcatc gttcccactg cgatgctggt tgccaacgat 12600cagatggcgc tgggcgcaat gcgcgccatt accgagtccg ggctgcgcgt tggtgcggat 12660atctcggtag tgggatacga cgataccgaa gacagctcat gttatatccc gccgtcaacc 12720accatcaaac aggattttcg cctgctgggg caaaccagcg cggaccgctt gctgcaactc 12780tctcagggcc aggcggtgaa gggcaatcag ctgttgcccg tctcactggt gaaaagaaaa 12840accaccctgg cgcccaatac gcaaaccgcc tctccccgcg cgttggccga ttcattaatg 12900cagctggcac gacaggtttc ccgactggaa agcgggcagt gagcgcaacg caattaatgt 12960gagttagctc actcattagg caccccaggc tttacacttt atgcttccgg ctcgtataat 13020gtgtggaatt gtgagcggat aacaatttca cacagcggcc gctgagaaaa agcgaagcgg 13080cactgctctt taacaattta tcagacaatc tgtgtgggca ctcgaagata cggattctta 13140acgtcgcaag acgaaaaatg aataccaagt ctcaagagtg aacacgtaat tcattacgaa 13200gtttaattct ttgagcgtca aacttttaac gacggccagt gaattcgagc tcggtacctg 13260cactgacgac aggaagag 13278413227DNAArtificial Sequenceprimer 4aaattgaaga gtttgatcat ggctcagatt gaacgctggc ggcaggccta acacatgcaa 60gtcgaacggt aacaggaaga agcttgcttc tttgctgacg agtggcggac gggtgagtaa 120tgtctgggaa actgcctgat ggagggggat aactactgga aacggtagct aataccgcat 180aacgtcgcaa gaccaaagag ggggaccttc gggcctcttg ccatcggatg tgcccagatg 240ggattagcta gtaggtgggg taacggctca cctaggcgac gatccctagc tggtctgaga 300ggatgaccag ccacactgga actgagacac ggtccagact cctacgggag gcagcagtgg 360ggaatattgc acaatgggcg caagcctgat gcagccatgc cgcgtgtatg aagaaggcct 420tcgggttgta aagtactttc agcggggagg aagggagtaa agttaatacc tttgctcatt 480gacgttaccc gcagaagaag caccggctaa ctccgtgcca gcagccgcgg taatacggag 540ggtgcaagcg ttaatcggaa ttactgggcg taaagcgcac gcaggcggtt tgttaagtca 600gatgtgaaat ccccgggctc aacctgggaa ctgcatctga tactggcaag cttgagtctc 660gtagaggggg gtagaattcc aggtgtagcg gtgaaatgcg tagagatctg gaggaatacc 720ggtggcgaag gcggccccct ggacgaagac tgacgctcag gtgcgaaagc gtggggagca 780aacaggatta gataccctgg tagtccacgc cgtaaacgat gtcgacttgg aggttgtgcc 840cttgaggcgt ggcttccgga gctaacgcgt taagtcgacc gcctggggag tacggccgca 900aggttaaaac tcaaatgaat tgacgggggc ccgcacaagc ggcggagcat gtggattaat 960tcgatgcaac gcgaagaacc ttacctgggt ttgacatgca caggacgcgt ctagagatag 1020gcgttccctt gtggcctgtg tgcaggtggt gcatggctgt cgtcagctcg tgtcgtgaga 1080tgttgggtta agtcccgcaa cgagcgcaac ccttgtctca tgttgccagc acgtaatggt 1140ggggactcgt gagagactgc cggggtcaac tcggaggaag gtggggatga cgtcaagtca 1200tcatgcccct tatgtccagg gcttcacaca tgctacaatg gccggtacaa agggctgcga 1260tgccgcgagg ttaagcgaat ccttaaaagc cggtctcagt tcggatcggg gtctgcaact 1320cgaccccgtg aagtcggagt cgctagtaat cgcagatcag caacgctgcg gtgaatacgt 1380tcccgggcct tgtacacacc gcccgtcacg tcatgaaagt cggtaacacc cgaagccagt 1440ggcctaaccc tcgggaggga gctgtcgaag gtgggatcgg cgattgggac gaagtcgtaa 1500caaggtaacc gtaggggaac ctgcggttgg atcatgggat taccttaaag aagcgtactt 1560tgtagtgctc acacagattg tctgatagaa agtgaaaagc aaggcgttta cgcgttggga 1620gtgaggctga agagaataag gccgttcgct ttctattaat gaaagctcac cctacacgaa 1680aatatcacgc aacgcgtgat aagcaatttt cgtgtcccct tcgtctagag gcccaggaca 1740ccgccctttc acggcggtaa caggggttcg aatcccctag gggacgccac ttgctggttt 1800gtgagtgaaa gtcgccgacc ttaatatctc aaaactcatc ttcgggtgat gtttgagatt 1860tttgctcttt aaaaatctgg atcaagctga aaattgaaac actgaacaac gagagttgtt 1920cgtgagtctc tcaaattttc gcaacacgat gatgaatcga aagaaacatc ttcgggttgt 1980gaggttaagc gactaagcgt acacggtgga tgccctggca gtcagaggcg atgaaggacg 2040tgctaatctg cgataagcgt cggtaaggtg atatgaaccg ttataaccgg cgatttccga 2100atggggaaac ccagtgtgtt tcgacacact atcattaact gaatccatag gttaatgagg 2160cgaaccgggg gaactgaaac atctaagtac cccgaggaaa agaaatcaac cgagattccc 2220ccagtagcgg cgagcgaacg gggagcagcc cagagcctga atcagtgtgt gtgttagtgg 2280aagcgtctgg aaaggcgcgc gatacagggt gacagccccg tacacaaaaa tgcacatgct 2340gtgagctcga tgagtagggc gggacacgtg gtatcctgtc tgaatatggg gggaccatcc 2400tccaaggcta aatactcctg actgaccgat agtgaaccag taccgtgagg gaaaggcgaa 2460aagaaccccg gcgaggggag tgaaaaagaa cctgaaaccg tgtacgtaca agcagtggga 2520gcacgcttag gcgtgtgact gcgtaccttt tgtataatgg gtcagcgact tatattctgt 2580agcaaggtta accgaatagg ggagccgaag ggaaaccgag tcttaactgg gcgttaagtt 2640gcagggtata gacccgaaac ccggtgatct agccatgggc aggttgaagg ttgggtaaca 2700ctaactggag gaccgaaccg actaatgttg aaaaattagc ggatgacttg tggctggggg 2760tgaaaggcca atcaaaccgg gagatagctg gttctccccg aaagctattt aggtagcgcc 2820tcgtgaattc atctccgggg gtagagcact gtttcggcaa gggggtcatc ccgacttacc 2880aacccgatgc aaactgcgaa taccggagaa tgttatcacg ggagacacac ggcgggtgct 2940aacgtccgtc gtgaagaggg aaacaaccca gaccgccagc taaggtccca aagtcatggt 3000taagtgggaa acgatgtggg aaggcccaga cagccaggat gttggcttag aagcagccat 3060catttaaaga aagcgtaata gctcactggt cgagtcggcc tgcgcggaag atgtaacggg 3120gctaaaccat gcaccgaagc tgcggcagcg acgcttatgc gttgttgggt aggggagcgt 3180tctgtaagcc tgcgaaggtg tgctgtgagg catgctggag gtatcagaag tgcgaatgct 3240gacataagta acgataaagc gggtgaaaag cccgctcgcc ggaagaccaa gggttcctgt 3300ccaacgttaa tcggggcagg gtgagtcgac ccctaaggcg aggccgaaag gcgtagtcga 3360tgggaaacag gttaatattc ctgtacttgg tgttactgcg aaggggggac ggagaaggct 3420atgttggccg ggcgacggtt gtcccggttt aagcgtgtag gctggttttc caggcaaatc 3480cggaaaatca aggctgaggc gtgatgacga ggcactacgg tgctgaagca acaaatgccc 3540tgcttccagg aaaagcctct aagcatcagg taacatcaaa tcgtacccca aaccgacaca 3600ggtggtcagg tagagaatac caaggcgctt gagagaactc gggtgaagga actaggcaaa 3660atggtgccgt aacttcggga gaaggcacgc tgatatgtag gtgaggtccc tcgcggatgg 3720agctgaaatc agtcgaagat accagctggc tgcaactgtt tattaaaaac acagcactgt 3780gcaaacacga aagtggacgt atacggtgtg acgcctgccc ggtgccggaa ggttaattga 3840tggggttagc gcaagcgaag ctcttgatcg aagccccggt aaacggcggc cgtaactata 3900acggtcctaa ggtagcgaaa ttccttgtcg ggtaagttcc gacctgcacg aatggcgtaa 3960tgatggccag gctgtctcca cccgagactc agtgaaattg aactcgctgt gaagatgcag 4020tgtacccgcg gcaagacgga aagaccccgt gaacctttac tatagcttga cactgaacat 4080tgagccttga tgtgtaggat aggtgggagg ctttgaagtg tggacgccag tctgcatgga 4140gccgaccttg aaataccacc ctttaatgtt tgatgttcta acgttgaccc gtaatccggg 4200ttgcggacag tgtctggtgg gtagtttgac tggggcggtc tcctcctaaa gagtaacgga 4260ggagcacgaa ggttggctaa tcctggtcgg acatcaggag gttagtgcaa tggcataagc 4320cagcttgact gcgagcgtga cggcgcgagc aggtgcgaaa gcaggtcata gtgatccggt 4380ggttctgaat ggaagggcca tcgctcaacg gataaaaggt actccgggga taacaggctg 4440ataccgccca agagttcata tcgacggcgg tgtttggcac ctcgatgtcg gctcatcaca 4500tcctggggct gaagtaggtc ccaagggtat ggctgttcgc catttaaagt ggtacgcgag 4560ctgggtttag aacgtcgtga gacagttcgg tccctatctg ccgtgggcgc tggagaactg 4620aggggggctg ctcctagtac gagaggaccg gagtggacgc atcactggtg ttcgggttgt 4680catgccaatg gcactgcccg gtagctaaat gcggaagaga taagtgctga aagcatctaa 4740gcacgaaact tgccccgaga tgagttctcc ctgacccttt aagggtcctg aaggaacgtt 4800gaagacgacg acgttgatag gccgggtgtg taagcgcagc gatgcgttga gctaaccggt 4860actaatgaac cgtgaggctt aaccttacaa cgccgaagct gttttggcgg atgagagaag 4920attttcagcc tgatacagat taaatcagaa cgcagaagcg gtctgataaa acagaatttg 4980cctggcggca gtagcgcggt ggtcccacct gaccccatgc cgaactcaga agtgaaacgc 5040cgtagcgccg atggtagtgt ggggtctccc catgcgagag tagggaactg ccaggcatca 5100aataaaacga aaggctcagt cgaaagactg ggcctttcgt tttatctgtt gtttgtcggt 5160gaacgctctc ctgagtagga caaatccgcc gggagcggat ttgaacgttg cgaagcaacg 5220gcccggaggg tggcgggcag gacgcccgcc ataaactgcc aggcatcaaa ttaagcagaa 5280ggccatcctg acggatggcc tttttgcgtt tctacaaact cttcctgtcg tcatatctac 5340aagccatccc cccacagata cggtaaacta gcctcgtttt tgcatcagga aagcagctat 5400gaaccactcc ttaaaaccct ggaacacatt tggcattgat cataatgctc agcacattgt 5460atgggcctta agggcccaac aattactcaa tgcctggcag tatgcaaccg cagaaggaca 5520acccgttctt attctgggtg aaggaagtaa tgtacttttt ctggaggact atcgcggcac 5580ggtgatcatc aaccggatca aaggtatcga aattcatgat gaacctgatg cgtggtattt 5640acatgtagga gccggagaaa actggcatcg tctggtaaaa tacactttgc aggaaggtat 5700gcctggtctg gaaaatctgg cattaattcc tggttgtgtc ggctcatcac ctatccagaa 5760tattggtgct tatggcgtag aattacagcg agtttgcgct tatgttgatt ctgttgaact 5820ggcgacaggc aagcaagtgc gcttaactgc caaagagtgc cgttttggct atcgcgacag 5880tatttttaaa catgaatacc aggaccgctt cgctattgta gccgtaggtc tgcgtctgcc 5940aaaagagtgg caacctgtac taacgtatgg tgacttaact cgtctgggat ccacaggacg 6000ggtgtggtcg ccatgatcgc gtagtcgata gtggctccaa gtagcgaagc gagcaggact 6060gggcggcggc caaagcggtc ggacagtgct ccgagaacgg gtgcgcatag aaattgcatc 6120aacgcatata gcgctagcag cacgccatag tgactggcga tgctgtcgga atggacgata 6180tcccgcaaga ggcccggcag taccggcata accaagccta tgcctacagc atccagggtg 6240acggtgccga ggatgacgat gagcgcattg ttagatttca tacacggtgc ctgactgcgt 6300tagcaattta actgtgataa actaccgcat taaagcttat cgatgataag ctgtcaaaca 6360tgagaattct tgaagacgaa agggcctcgt gatacgccta tttttatagg ttaatgtcat 6420gataataatg gtttcttaga cgtcaggtgg cacttttcgg ggaaatgtgc gcggaacccc 6480tatttgttta tttttctaaa tacattcaaa tatgtatccg ctcatgagac aataaccctg 6540ataaatgctt caataatatt gaaaaaggaa gagtatgagt attcaacatt tccgtgtcgc 6600ccttattccc ttttttgcgg cattttgcct tcctgttttt gctcacccag aaacgctggt 6660gaaagtaaaa gatgctgaag atcagttggg tgcacgagtg ggttacatcg aactggatct 6720caacagcggt aagatccttg agagttttcg ccccgaagaa cgttttccaa tgatgagcac 6780ttttaaagtt ctgctatgtg gcgcggtatt atcccgtgtt gacgccgggc aagagcaact 6840cggtcgccgc atacactatt ctcagaatga cttggttgag tactcaccag tcacagaaaa 6900gcatcttacg gatggcatga cagtaagaga attatgcagt gctgccataa ccatgagtga 6960taacactgcg gccaacttac ttctgacaac gatcggagga ccgaaggagc taaccgcttt 7020tttgcacaac atgggggatc atgtaactcg ccttgatcgt tgggaaccgg agctgaatga 7080agccatacca aacgacgagc gtgacaccac gatgcctgca gcaatggcaa caacgttgcg 7140caaactatta actggcgaac tacttactct agcttcccgg caacaattaa tagactggat 7200ggaggcggat aaagttgcag gaccacttct gcgctcggcc cttccggctg gctggtttat 7260tgctgataaa tctggagccg gtgagcgtgg gtctcgcggt atcattgcag cactggggcc 7320agatggtaag ccctcccgta tcgtagttat ctacacgacg gggagtcagg caactatgga 7380tgaacgaaat agacagatcg ctgagatagg tgcctcactg attaagcatt ggtaactgtc 7440agaccaagtt tactcatata tactttagat tgatttaaaa cttcattttt aatttaaaag 7500gatctaggtg aagatccttt ttgataatct catgaccaaa atcccttaac gtgagttttc 7560gttccactga gcgtcagacc ccgtagaaaa gatcaaagga tcttcttgag atcctttttt 7620tctgcgcgta atctgctgct tgcaaacaaa aaaaccaccg ctaccagcgg tggtttgttt 7680gccggatcaa gagctaccaa ctctttttcc gaaggtaact ggcttcagca gagcgcagat 7740accaaatact gtccttctag tgtagccgta gttaggccac cacttcaaga actctgtagc 7800accgcctaca tacctcgctc tgctaatcct gttaccagtg gctgctgcca gtggcgataa 7860gtcgtgtctt accgggttgg actcaagacg atagttaccg gataaggcgc agcggtcggg 7920ctgaacgggg ggttcgtgca cacagcccag cttggagcga acgacctaca ccgaactgag 7980atacctacag cgtgagctat gagaaagcgc cacgcttccc gaagggagaa aggcggacag 8040gtatccggta agcggcaggg tcggaacagg agagcgcacg agggagcttc cagggggaaa 8100cgcctggtat ctttatagtc ctgtcgggtt tcgccacctc tgacttgagc gtcgattttt 8160gtgatgctcg tcaggggggc ggagcctatg gaaaaacgcc agcaacgcgg cctttttacg 8220gttcctggcc ttttgctggc cttttgctca catgttcttt cctgcgttat cccctgattc 8280tgtggataac cgtattaccg cctttgagtg agctgatacc gctcgccgca gccgaacgac 8340cgagcgcagc gagtcagtga gcgaggaagc ggaagagcgc ctgatgcggt attttctcct 8400tacgcatctg tgcggtattt cacaccgcat atggtgcact ctcagtacaa tctgctctga 8460tgccgcatag ttaagccagt atacactccg ctatcgctac gtgactgggt catggctgcg 8520ccccgacacc cgccaacacc cgctgacgcg ccctgacggg cttgtctgct cccggcatcc 8580gcttacagac aagctgtgac cgtctccggg agctgcatgt gtcagaggtt ttcaccgtca 8640tcaccgaaac gcgcgaggca gctgcggtaa agctcatcag cgtggtcgtg aagcgattca 8700cagatgtctg cctgttcatc cgcgtccagc tcgttgagtt tctccagaag cgttaatgtc 8760tggcttctga taaagcgggc catgttaagg gcggtttttt cctgtttggt cacttgatgc 8820ctccgtgtaa gggggaattt ctgttcatgg gggtaatgat accgatgaaa cgagagagga

8880tgctcacgat acgggttact gatgatgaac atgcccggtt actggaacgt tgtgagggta 8940aacaactggc ggtatggatg cggcgggacc agagaaaaat cactcagggt caatgccagc 9000gcttcgttaa tacagatgta ggtgttccac agggtagcca gcagcatcct gcgatgcctg 9060gcgaaagggg gatgtgctgc aaggcgatta agttgggtaa cgccagggtt ttcccagtca 9120cgacgttgta aaacgacggc cagtgaattc gagctcggta cctgcactga cgacaggaag 9180agtttgtaga aacgcaaaaa ggccatccgt caggatggcc ttctgcttaa tttgatgcct 9240ggcagtttat ggcgggcgtc ctgcccgcca ccctccgggc cgttgcttcg caacgttcaa 9300atccgctccc ggcggatttg tcctactcag gagagcgttc accgacaaac aacagataaa 9360acgaaaggcc cagtctttcg actgagcctt tcgttttatt tgatgcctgg cagttcccta 9420ctctcgcatg gggagacccc acactaccat cggcgctacg actagattat ttgtagagct 9480catccatgcc atgtgtaatc ccagcagcag ttacaaactc aagaaggacc atgtggtcac 9540gcttttcgtt gggatctttc gaaagggcag attgtgtcga caggtaatgg ttgtctggta 9600aaaggacagg gccatcgcca attggagtat tttgttgata atggtctgct agttgaacgg 9660atccatcttc aatgttgtgg cgaattttga agttagcttt gattccattc ttttgtttgt 9720ctgccgtgat gtatacattg tgtgagttat agttgtactc gagtttgtgt ccgagaatgt 9780ttccatcttc tttaaaatca atacctttta actcgatacg attaacaagg gtatcacctt 9840caaacttgac ttcagcacgc gtcttgtagt tcccgtcatc tttgaaagat atagtgcgtt 9900cctgtacata accttcgggc atggcactct tgaaaaagtc atgccgtttc atatgatccg 9960gataacggga aaagcattga acaccataag agaaagtagt gacaagtgtt ggccatggaa 10020caggtagttt tccagtagtg caaataaatt taagggtaag ctttccgtat gtagcatcac 10080cttcaccctc tccactgaca gaaaatttgt gcccattaac atcaccatct aattcaacaa 10140gaattgggac aactccagtg aaaagttctt ctcctttgct cgcagtgatt tttttctcca 10200tttgcggagg gatatgaaag cggccgcttc cacacattaa actagttcga tgattaattg 10260tcaacagctc gccggcggca cctcgctaac ggattcacca ctccaagaat tggagccaat 10320cgattcttgc ggagaactgt gaatgcgggt acccagatcc ggaacataat ggtgcagggc 10380gctgacttcc gcgtttccag actttacgaa acacggaaac cgaagaccat tcatgttgtt 10440gctcaggtcg cagacgtttt gcagcagcag tcgcttcacg ttcgctcgcg tatcggtgat 10500tcattctgct aaccagtaag gcaaccccgc cagcctagcc gggtcctcaa cgacaggagc 10560acgatcatgc gcacccgtgg ccaggaccca acgctgcccg agatgcgccg cgtgcggctg 10620ctggagatgg cggacgcgat ggatatgttc tgccaagggt tggtttgcgc attcacagtt 10680ctccgcaaga atcgattggc tccaattctt ggagtggtga atccgttagc gaggtgccgc 10740cggcgagctg ttgacaatta atcatcgaac tagtttaatg tgtggaagcg gccgctttca 10800tatccctccg caaatggaga aaaaaatcac tggatatacc accgttgata tatcccaatg 10860gcatcgtaaa gaacattttg aggcatttca gtcagttgct caatgtacct ataaccagac 10920cgttcagctg gatattacgg cctttttaaa gaccgtaaag aaaaataagc acaagtttta 10980tccggccttt attcacattc ttgcccgcct gatgaatgct catccggaat tccgtatggc 11040aatgaaagac ggtgagctgg tgatatggga tagtgttcac ccttgttaca ccgttttcca 11100tgagcaaact gaaacgtttt catcgctctg gagtgaatac cacgacgatt tccggcagtt 11160tctacacata tattcgcaag atgtggcgtg ttacggtgaa aacctggcct atttccctaa 11220agggtttatt gagaatatgt ttttcgtctc agccaatccc tgggtgagtt tcaccagttt 11280tgatttaaac gtggccaata tggacaactt cttcgccccc gttttcacca tgggcaaata 11340ttatacgcaa ggcgacaagg tgctgatgcc gctggcgatt caggttcatc atgccgtctg 11400tgatggcttc catgtcggca gaatgcttaa tgaattacaa cagtactgcg atgagtggca 11460gggcggggcg taattttttt aaggcagtta ttggtgccct taaacgcctg gtgctacgcc 11520tgaataagtg ataataagcg gatgaatggc agaaattcga aagcaaattc gacccggtcg 11580tcggttcagg gcagggtcgt taaatagccg cttatgtcta ttgctggttt acggtttatt 11640gactacccga agcagtgtga ccctgtgctt ctcaaatgcc tgagggcagt ttgctcaggt 11700ctcccgtggg ggggaataat taacggtatg agccttacgg cggacggatc gtggccgcaa 11760gtgggtccgg ctagaggatc cgacaccatc gaatggtgca aaacctttcg cggtatggca 11820tgatagcgcc cggaagagag tcaattcagg gtggtgaatg tgaaaccagt aacgttatac 11880gatgtcgcag agtatgccgg tgtctcttat cagaccgttt cccgcgtggt gaaccaggcc 11940agccacgttt ctgcgaaaac gcgggaaaaa gtggaagcgg cgatggcgga gctgaattac 12000attcccaacc gcgtggcaca acaactggcg ggcaaacagt cgttgctgat tggcgttgcc 12060acctccagtc tggccctgca cgcgccgtcg caaattgtcg cggcgattaa atctcgcgcc 12120gatcaactgg gtgccagcgt ggtggtgtcg atggtagaac gaagcggcgt cgaagcctgt 12180aaagcggcgg tgcacaatct tctcgcgcaa cgggtcagtg ggctgatcat taactatccg 12240ctggatgacc aggatgccat tgctgtggaa gctgcctgca ctaatgttcc ggcgttattt 12300cttgatgtct ctgaccagac acccatcaac agtattattt tctcccatga agacggtacg 12360cgactgggcg tggagcatct ggtcgcattg ggtcaccagc aaatcgcgct gttagcgggc 12420ccattaagtt ctgtctcggc gcgtctgcgt ctggctggct ggcataaata tctcactcgc 12480aatcaaattc agccgatagc ggaacgggaa ggcgactgga gtgccatgtc cggttttcaa 12540caaaccatgc aaatgctgaa tgagggcatc gttcccactg cgatgctggt tgccaacgat 12600cagatggcgc tgggcgcaat gcgcgccatt accgagtccg ggctgcgcgt tggtgcggat 12660atctcggtag tgggatacga cgataccgaa gacagctcat gttatatccc gccgtcaacc 12720accatcaaac aggattttcg cctgctgggg caaaccagcg cggaccgctt gctgcaactc 12780tctcagggcc aggcggtgaa gggcaatcag ctgttgcccg tctcactggt gaaaagaaaa 12840accaccctgg cgcccaatac gcaaaccgcc tctccccgcg cgttggccga ttcattaatg 12900cagctggcac gacaggtttc ccgactggaa agcgggcagt gagcgcaacg caattaatgt 12960gagttagctc actcattagg caccccaggc tttacacttt atgcttccgg ctcgtataat 13020gtgtggaatt gtgagcggat aacaatttca cacagcggcc gctgagaaaa agcgaagcgg 13080cactgctctt taacaattta tcagacaatc tgtgtgggca ctcgaagata cggattctta 13140acgtcgcaag acgaaaaatg aataccaagt ctcaagagtg aacacgtaat tcattacgaa 13200gtttaattct ttgagcgtca aactttt 1322758752DNAArtificial Sequenceprimer 5aaattgaaga gtttgatcat ggctcagatt gaacgctggc ggcaggccta acacatgcaa 60gtcgaacggt aacaggaaga agcttgcttc tttgctgacg agtggcggac gggtgagtaa 120tgtctgggaa actgcctgat ggagggggat aactactgga aacggtagct aataccgcat 180aacgtcgcaa gaccaaagag ggggaccttc gggcctcttg ccatcggatg tgcccagatg 240ggattagcta gtaggtgggg taacggctca cctaggcgac gatccctagc tggtctgaga 300ggatgaccag ccacactgga actgagacac ggtccagact cctacgggag gcagcagtgg 360ggaatattgc acaatgggcg caagcctgat gcagccatgc cgcgtgtatg aagaaggcct 420tcgggttgta aagtactttc agcggggagg aagggagtaa agttaatacc tttgctcatt 480gacgttaccc gcagaagaag caccggctaa ctccgtgcca gcagccgcgg taatacggag 540ggtgcaagcg ttaatcggaa ttactgggcg taaagcgcac gcaggcggtt tgttaagtca 600gatgtgaaat ccccgggctc aacctgggaa ctgcatctga tactggcaag cttgagtctc 660gtagaggggg gtagaattcc aggtgtagcg gtgaaatgcg tagagatctg gaggaatacc 720ggtggcgaag gcggccccct ggacgaagac tgacgctcag gtgcgaaagc gtggggagca 780aacaggatta gataccctgg tagtccacgc cgtaaacgat gtcgacttgg aggttgtgcc 840cttgaggcgt ggcttccgga gctaacgcgt taagtcgacc gcctggggag tacggccgca 900aggttaaaac tcaaatgaat tgacgggggc ccgcacaagc ggcggagcat gtggattaat 960tcgatgcaac gcgaagaacc ttacctgggt ttgacatgca caggacgcgt ctagagatag 1020gcgttccctt gtggcctgtg tgcaggtggt gcatggctgt cgtcagctcg tgtcgtgaga 1080tgttgggtta agtcccgcaa cgagcgcaac ccttgtctca tgttgccagc acgtaatggt 1140ggggactcgt gagagactgc cggggtcaac tcggaggaag gtggggatga cgtcaagtca 1200tcatgcccct tatgtccagg gcttcacaca tgctacaatg gccggtacaa agggctgcga 1260tgccgcgagg ttaagcgaat ccttaaaagc cggtctcagt tcggatcggg gtctgcaact 1320cgaccccgtg aagtcggagt cgctagtaat cgcagatcag caacgctgcg gtgaatacgt 1380tcccgggcct tgtacacacc gcccgtcacg tcatgaaagt cggtaacacc cgaagccagt 1440ggcctaaccc tcgggaggga gctgtcgaag gtgggatcgg cgattgggac gaagtcgtaa 1500caaggtaacc gtaggggaac ctgcggttgg atcatgggat taccttaaag aagcgtactt 1560tgtagtgctc acacagattg tctgatagaa agtgaaaagc aaggcgttta cgcgttggga 1620gtgaggctga agagaataag gccgttcgct ttctattaat gaaagctcac cctacacgaa 1680aatatcacgc aacgcgtgat aagcaatttt cgtgtcccct tcgtctagac gtagcgccga 1740tggtagtgtg gggtctcccc atgcgagagt agggaactgc caggcatcaa ataaaacgaa 1800aggctcagtc gaaagactgg gcctttcgtt ttatctgttg tttgtcggtg aacgctctcc 1860tgagtaggac aaatccgccg ggagcggatt tgaacgttgc gaagcaacgg cccggagggt 1920ggcgggcagg acgcccgcca taaactgcca ggcatcaaat taagcagaag gccatcctga 1980cggatggcct ttttgcgttt ctacaaactc ttcctgtcgt cactgcaggc atgcaagctt 2040ggcgtaatca tggtcatagc tgtttcctgt gtgaaattgt tatccgctca caattccaca 2100caacatacga gccggaagca taaagtgtaa agcctggggt gcctaatgag tgagctaact 2160cacattaatt gcgttgcgct cactgcccgc tttccagtcg ggaaacctgt cgtgccagct 2220gcattaatga atcggccaac gcgcggggag aggcggtttg cgtattgggc gctcttccgc 2280ttcctcgctc actgactcgc tgcgctcggt cgttcggctg cggcgagcgg tatcagctca 2340ctcaaaggcg gtaatacggt tatccacaga atcaggggat aacgcaggaa agaacatgtg 2400agcaaaaggc cagcaaaagg ccaggaaccg taaaaaggcc gcgttgctgg cgtttttcca 2460taggctccgc ccccctgacg agcatcacaa aaatcgacgc tcaagtcaga ggtggcgaaa 2520cccgacagga ctataaagat accaggcgtt tccccctgga agctccctcg tgcgctctcc 2580tgttccgacc ctgccgctta ccggatacct gtccgccttt ctcccttcgg gaagcgtggc 2640gctttctcat agctcacgct gtaggtatct cagttcggtg taggtcgttc gctccaagct 2700gggctgtgtg cacgaacccc ccgttcagcc cgaccgctgc gccttatccg gtaactatcg 2760tcttgagtcc aacccggtaa gacacgactt atcgccactg gcagcagcca ctggtaacag 2820gattagcaga gcgaggtatg taggcggtgc tacagagttc ttgaagtggt ggcctaacta 2880cggctacact agaaggacag tatttggtat ctgcgctctg ctgaagccag ttaccttcgg 2940aaaaagagtt ggtagctctt gatccggcaa acaaaccacc gctggtagcg gtggtttttt 3000tgtttgcaag cagcagatta cgcgcagaaa aaaaggatct caagaagatc ctttgatctt 3060ttctacgggg tctgacgctc agtggaacga aaactcacgt taagggattt tggtcatgag 3120attatcaaaa aggatcttca cctagatcct tttaaattaa aaatgaagtt ttaaatcaat 3180ctaaagtata tatgagtaaa cttggtctga cagttaccaa tgcttaatca gtgaggcacc 3240tatctcagcg atctgtctat ttcgttcatc catagttgcc tgactccccg tcgtgtagat 3300aactacgata cgggagggct taccatctgg ccccagtgct gcaatgatac cgcgagaccc 3360acgctcaccg gctccagatt tatcagcaat aaaccagcca gccggaaggg ccgagcgcag 3420aagtggtcct gcaactttat ccgcctccat ccagtctatt aattgttgcc gggaagctag 3480agtaagtagt tcgccagtta atagtttgcg caacgttgtt gccattgcta caggcatcgt 3540ggtgtcacgc tcgtcgtttg gtatggcttc attcagctcc ggttcccaac gatcaaggcg 3600agttacatga tcccccatgt tgtgcaaaaa agcggttagc tccttcggtc ctccgatcgt 3660tgtcagaagt aagttggccg cagtgttatc actcatggtt atggcagcac tgcataattc 3720tcttactgtc atgccatccg taagatgctt ttctgtgact ggtgagtact caaccaagtc 3780attctgagaa tagtgtatgc ggcgaccgag ttgctcttgc ccggcgtcaa tacgggataa 3840taccgcgcca catagcagaa ctttaaaagt gctcatcatt ggaaaacgtt cttcggggcg 3900aaaactctca aggatcttac cgctgttgag atccagttcg atgtaaccca ctcgtgcacc 3960caactgatct tcagcatctt ttactttcac cagcgtttct gggtgagcaa aaacaggaag 4020gcaaaatgcc gcaaaaaagg gaataagggc gacacggaaa tgttgaatac tcatactctt 4080cctttttcaa tattattgaa gcatttatca gggttattgt ctcatgagcg gatacatatt 4140tgaatgtatt tagaaaaata aacaaatagg ggttccgcgc acatttcccc gaaaagtgcc 4200acctgacgtc taagaaacca ttattatcat gacattaacc tataaaaata ggcgtatcac 4260gaggcccttt cgtctcgcgc gtttcggtga tgacggtgaa aacctctgac acatgcagct 4320cccggagacg gtcacagctt gtctgtaagc ggatgccggg agcagacaag cccgtcaggg 4380cgcgtcagcg ggtgttggcg ggtgtcgggg ctggcttaac tatgcggcat cagagcagat 4440tgtactgaga gtgcaccata tgcggtgtga aataccgcac agatgcgtaa ggagaaaata 4500ccgcatcagg cgccattcgc cattcaggct gcgcaactgt tgggaagggc gatcggtgcg 4560ggcctcttcg ctattacgcc agctggcgaa agggggatgt gctgcaaggc gattaagttg 4620ggtaacgcca gggttttccc agtcacgacg ttgtaaaacg acggccagtg aattcgagct 4680cggtacctgc agtgacgaca ggaagagttt gtagaaacgc aaaaaggcca tccgtcagga 4740tggccttctg cttaatttga tgcctggcag tttatggcgg gcgtcctgcc cgccaccctc 4800cgggccgttg cttcgcaacg ttcaaatccg ctcccggcgg atttgtccta ctcaggagag 4860cgttcaccga caaacaacag ataaaacgaa aggcccagtc tttcgactga gcctttcgtt 4920ttatttgatg cctggcagtt ccctactctc gcatggggag accccacact accatcggcg 4980ctacgtctag attatttgta gagctcatcc atgccatgtg taatcccagc agcagttaca 5040aactcaagaa ggaccatgtg gtcacgcttt tcgttgggat ctttcgaaag ggcagattgt 5100gtcgacaggt aatggttgtc tggtaaaagg acagggccat cgccaattgg agtattttgt 5160tgataatggt ctgctagttg aacggatcca tcttcaatgt tgtggcgaat tttgaagtta 5220gctttgattc cattcttttg tttgtctgcc gtgatgtata cattgtgtga gttatagttg 5280tactcgagtt tgtgtccgag aatgtttcca tcttctttaa aatcaatacc ttttaactcg 5340atacgattaa caagggtatc accttcaaac ttgacttcag cacgcgtctt gtagttcccg 5400tcatctttga aagatatagt gcgttcctgt acataacctt cgggcatggc actcttgaaa 5460aagtcatgcc gtttcatatg atccggataa cgggaaaagc attgaacacc ataagagaaa 5520gtagtgacaa gtgttggcca tggaacaggt agttttccag tagtgcaaat aaatttaagg 5580gtaagctttc cgtatgtagc atcaccttca ccctctccac tgacagaaaa tttgtgccca 5640ttaacatcac catctaattc aacaagaatt gggacaactc cagtgaaaag ttcttctcct 5700ttgctagcag tgattttttt ctccatttgc ggagggatat gaaagcggcc gcttccacac 5760attaaactag ttcgatgatt aattgtcaac agctcgccgg cggcacctcg ctaacggatt 5820caccactcca agaattggag ccaatcgatt cttgcggaga actgtgaatg cgggtaccca 5880gatccggaac ataatggtgc agggcgctga cttccgcgtt tccagacttt acgaaacacg 5940gaaaccgaag accattcatg ttgttgctca ggtcgcagac gttttgcagc agcagtcgct 6000tcacgttcgc tcgcgtatcg gtgattcatt ctgctaacca gtaaggcaac cccgccagcc 6060tagccgggtc ctcaacgaca ggagcacgat catgcgcacc cgtggccagg acccaacgct 6120gcccgagatg cgccgcgtgc ggctgctgga gatggcggac gcgatggata tgttctgcca 6180agggttggtt tgcgcattca cagttctccg caagaatcga ttggctccaa ttcttggagt 6240ggtgaatccg ttagcgaggt gccgccggcg agctgttgac aattaatcat cgaactagtt 6300taatgtgtgg aagcggccgc tttcatatcc ctccgcaaat ggagaaaaaa atcactggat 6360ataccaccgt tgatatatcc caatggcatc gtaaagaaca ttttgaggca tttcagtcag 6420ttgctcaatg tacctataac cagaccgttc agctggatat tacggccttt ttaaagaccg 6480taaagaaaaa taagcacaag ttttatccgg cctttattca cattcttgcc cgcctgatga 6540atgctcatcc ggaattccgt atggcaatga aagacggtga gctggtgata tgggatagtg 6600ttcacccttg ttacaccgtt ttccatgagc aaactgaaac gttttcatcg ctctggagtg 6660aataccacga cgatttccgg cagtttctac acatatattc gcaagatgtg gcgtgttacg 6720gtgaaaacct ggcctatttc cctaaagggt ttattgagaa tatgtttttc gtctcagcca 6780atccctgggt gagtttcacc agttttgatt taaacgtggc caatatggac aacttcttcg 6840cccccgtttt caccatgggc aaatattata cgcaaggcga caaggtgctg atgccgctgg 6900cgattcaggt tcatcatgcc gtctgtgatg gcttccatgt cggcagaatg cttaatgaat 6960tacaacagta ctgcgatgag tggcagggcg gggcgtaatt tttttaaggc agttattggt 7020gcccttaaac gcctggtgct acgcctgaat aagtgataat aagcggatga atggcagaaa 7080ttcgaaagca aattcgaccc ggtcgtcggt tcagggcagg gtcgttaaat agccgcttat 7140gtctattgct ggtttacggt ttattgacta cccgaagcag tgtgaccctg tgcttctcaa 7200atgcctgagg gcagtttgct caggtctccc gtggggggga ataattaacg gtatgagcct 7260tacggcggac ggatcgtggc cgcaagtggg tccggctaga ggatccgaca ccatcgaatg 7320gtgcaaaacc tttcgcggta tggcatgata gcgcccggaa gagagtcaat tcagggtggt 7380gaatgtgaaa ccagtaacgt tatacgatgt cgcagagtat gccggtgtct cttatcagac 7440cgtttcccgc gtggtgaacc aggccagcca cgtttctgcg aaaacgcggg aaaaagtgga 7500agcggcgatg gcggagctga attacattcc caaccgcgtg gcacaacaac tggcgggcaa 7560acagtcgttg ctgattggcg ttgccacctc cagtctggcc ctgcacgcgc cgtcgcaaat 7620tgtcgcggcg attaaatctc gcgccgatca actgggtgcc agcgtggtgg tgtcgatggt 7680agaacgaagc ggcgtcgaag cctgtaaagc ggcggtgcac aatcttctcg cgcaacgggt 7740cagtgggctg attattaact atccgctgga tgaccaggat gccattgctg tggaagctgc 7800ctgcactaat gttccggcgt tatttcttga tgtctctgac cagacaccca tcaacagtat 7860tattttctcc catgaagacg gtacgcgact gggcgtggag catctggtcg cattgggcca 7920ccagcaaatc gcgctgttag cgggcccatt aagttctgtc tcggcgcgtc tgcgtctggc 7980tggctggcat aaatatctca ctcgcaatca aattcagccg atagcggaac gggaaggcga 8040ctggagtgcc atgtccggtt ttcaacaaac catgcaaatg ctgaatgagg gcatcgttcc 8100cactgcgatg ctggttgcca acgatcagat ggcgctgggc gcaatgcgcg ccattaccga 8160gtccgggctg cgcgttggtg cggatatctc ggtagtggga tacgacgata ccgaagacag 8220ctcatgttat atcccgccgt caaccaccat caaacaggat tttcgcctgc tggggcaaac 8280cagcgtggac cgcttgctgc aactctctca gggccaggcg gtgaagggca atcagctgtt 8340gcccgtctca ctggtgaaaa gaaaaaccac cctggcgccc aatacgcaaa ccgcctctcc 8400ccgcgcgttg gccgattcat taatgcagct ggcacgacag gtttcccgac tggaaagcgg 8460gcagtgagcg caacgcaatt aatgtgagtt agctcactca ttaggcaccc caggctttac 8520actttatgct tccggctcgt ataatgtgtg gaattgtgag cggataacaa tttcacacag 8580cggccgctga gaaaaagcga agcggcactg ctctttaaca atttatcaga caatctgtgt 8640gggcactcga agatacggat tcttaacgtc gcaagacgaa aaatgaatac caagtctcaa 8700gagtgaacac gtaattcatt acgaagttta attctttgag cgtcaaactt tt 8752620DNAArtificial Sequenceprimer 6ataggggttc cgcgcacatt 20748DNAArtificial Sequenceprimer 7ctcgagcctc ctgaaagcgg ccgcaactca aaaaatacgc ccggtagt 48820DNAArtificial Sequenceprimer 8aaatcgtcgt ggtattcact 20944DNAArtificial Sequenceprimer 9gcggccgctt tcaggaggct cgagaaatgg agaaaaaaat cact 441059DNAArtificial Sequenceprimer 10ggccgctagc cggcgagctg ttgacaatta atcatcgaac tagtttaatg tgtggaagc 591159DNAArtificial Sequenceprimer 11ggccgcttcc acacattaaa ctagttcgat gattaattgt caacagctcg ccggctagc 591217DNAArtificial Sequenceprimer 12tcgagcacac tgaaagc 171317DNAArtificial Sequenceprimer 13ggccgctttc agtgtgc 171468DNAArtificial Sequenceprimer 14ggtcataggc ggccgctgtg tgaaattgtt atccgctcac aattccacac attatacgag 60ccggaagc 681534DNAArtificial Sequenceprimer 15ttggatccga caccatcgaa tggtgcaaaa cctt 341629DNAArtificial Sequenceprimer 16gaagggatcc ggcgaagatg tttctctgg 291727DNAArtificial Sequenceprimer 17gcggccgctt aaaataattt tctgacc 271831DNAArtificial Sequenceprimer 18ccacaagctt cgcacctgag cgtcagtctt c 311937DNAArtificial Sequenceprimer 19aaaattattt taagcggccg ctgagaaaaa gcgaagc 372020DNAArtificial Sequenceprimer 20ggcgactttc actcacaaac 202165DNAArtificial Sequenceprimer 21gtcgaagctt ggtaaccgta ggggaacctg cggttggatc acacacttac cttaaagaag 60cgtac 652254DNAArtificial Sequenceprimer 22ttaatgtgtg gaagcggccg ctttcatatc cctnnnnaaa tggagaaaaa aatc 542319DNAArtificial Sequenceprimer 23cagcaccttg tcgccttgc 192411DNAArtificial Sequenceprimer 24caggaggcuc g 112511RNAArtificial Sequenceprimer 25ucaccuccuu a

112611RNAArtificial Sequenceprimer 26cagugugcuc g 112711RNAArtificial Sequenceprimer 27ucacacacuu a 112811RNAArtificial Sequenceprimer 28cauaucccuc g 112911RNAArtificial Sequenceprimer 29ucagggauuu a 113011RNAArtificial Sequenceprimer 30caaacaccuc g 113111RNAArtificial Sequenceprimer 31ucaagagguu a 113211RNAArtificial Sequenceprimer 32cauaccucuc g 113311RNAArtificial Sequenceprimer 33ucaugagguu a 113411RNAArtificial Sequenceprimer 34cauaauccuc g 113511RNAArtificial Sequenceprimer 35ucagaggauu a 113611RNAArtificial Sequenceprimer 36caaauaccuc g 113711RNAArtificial Sequenceprimer 37ucaugagguu a 113811RNAArtificial Sequenceprimer 38cacauaccuc g 113911RNAArtificial Sequenceprimer 39ucaugagguu a 114011RNAArtificial Sequenceprimer 40caccgaccuc g 114111RNAArtificial Sequenceprimer 41ucaagagguu a 114211RNAArtificial Sequenceprimer 42cauaucccuc g 114311RNAArtificial Sequenceprimer 43ucaugggauu a 114411RNAArtificial Sequenceprimer 44caacuaccuc g 114511RNAArtificial Sequenceprimer 45ucaugagguu a 114611RNAArtificial Sequenceprimer 46cauauaccuc g 114711RNAArtificial Sequenceprimer 47ucaagagguu a 114818RNAArtificial Sequenceprimer 48cauaucccuc gagaaaug 184914RNAArtificial Sequenceprimer 49ggaucauggg auua 145018RNAArtificial Sequenceprimer 50cauaucccuc gagaaaug 185114RNAArtificial Sequenceprimer 51ggaucaccuc cuua 145218RNAArtificial Sequenceprimer 52cauaucccuc cgcaaaug 185314RNAArtificial Sequenceprimer 53ggaucauggg auua 145418RNAArtificial Sequenceprimer 54cauaucccuc cgcaaaug 185514RNAArtificial Sequenceprimer 55ggaucaccuc cuua 145618RNAArtificial Sequenceprimer 56cauaucccuc cugaaaug 185714RNAArtificial Sequenceprimer 57ggaucauggg auua 145817RNAArtificial Sequenceprimer 58cauaucccuc ccaaaug 175914RNAArtificial Sequenceprimer 59ggaucauggg auua 146018RNAArtificial Sequenceprimer 60cauaucccuc cacaaaug 186114RNAArtificial Sequenceprimer 61ggaucauggg auua 146211RNAArtificial Sequenceprimer 62caggaggcuc g 116311RNAArtificial Sequenceprimer 63ucaccuccuu a 116411RNAArtificial Sequenceprimer 64caauccccuc g 116511RNAArtificial Sequenceprimer 65ucaagggauu a 116611RNAArtificial Sequenceprimer 66cauaccucuc g 116711RNAArtificial Sequenceprimer 67ucaauggguu a 116811RNAArtificial Sequenceprimer 68cacaguccuc g 116911RNAArtificial Sequenceprimer 69ucagacgauu a 117011RNAArtificial Sequenceprimer 70caaaccacuc g 117111RNAArtificial Sequenceprimer 71ucagugauuu a 117211RNAArtificial Sequenceprimer 72cauagcccuc g 117311RNAArtificial Sequenceprimer 73ucauuggguu a 117411RNAArtificial Sequenceprimer 74caucuuccuc g 117511RNAArtificial Sequenceprimer 75ucaggagguu a 117611RNAArtificial Sequenceprimer 76caauuaucuc g 117711RNAArtificial Sequenceprimer 77ucagaauuuu a 117811RNAArtificial Sequenceprimer 78cacagaacuc g 117911RNAArtificial Sequenceprimer 79ucaaucaguu a 118011RNAArtificial Sequenceprimer 80caaaguucuc g 118111RNAArtificial Sequenceprimer 81ucaaugaguu a 118211RNAArtificial Sequenceprimer 82caauucacuc g 118311RNAArtificial Sequenceprimer 83ucagugaauu a 118411RNAArtificial Sequenceprimer 84caacucacuc g 118511RNAArtificial Sequenceprimer 85ucagaguguu a 118611RNAArtificial Sequenceprimer 86caacccacuc g 118711RNAArtificial Sequenceprimer 87ucaugggauu a 118811RNAArtificial Sequenceprimer 88caucguucuc g 118911RNAArtificial Sequenceprimer 89ucaaagaguu a 119011RNAArtificial Sequenceprimer 90cacaccacuc g 119111RNAArtificial Sequenceprimer 91ucaugguuuu a 119211RNAArtificial Sequenceprimer 92cacccaccuc g 119311RNAArtificial Sequenceprimer 93ucaaaggguu a 119411RNAArtificial Sequenceprimer 94caucccacuc g 119511RNAArtificial Sequenceprimer 95ucaagggguu a 119611RNAArtificial Sequenceprimer 96caaacuccuc g 119711RNAArtificial Sequenceprimer 97ucauacuauu a 119811RNAArtificial Sequenceprimer 98cauacaucuc g 119911RNAArtificial Sequenceprimer 99ucaagaguuu a 1110011RNAArtificial Sequenceprimer 100caacucucuc g 1110111RNAArtificial Sequenceprimer 101ucaggagauu a 1110211RNAArtificial Sequenceprimer 102caaauaucuc g 1110311RNAArtificial Sequenceprimer 103ucagagauuu a 1110411RNAArtificial Sequenceprimer 104cauaccucuc g 1110511RNAArtificial Sequenceprimer 105ucaugagguu a 1110611RNAArtificial Sequenceprimer 106cauaguacuc g 1110711RNAArtificial Sequenceprimer 107ucauggauuu a 1110811RNAArtificial Sequenceprimer 108caauccacuc g 1110911RNAArtificial Sequenceprimer 109ucaguggauu a 1111011RNAArtificial Sequenceprimer 110cacagaucuc g 1111111RNAArtificial Sequenceprimer 111ucaggcuuuu a 1111211RNAArtificial Sequenceprimer 112cauagcacuc g 1111311RNAArtificial Sequenceprimer 113ucaugcuauu a 1111411RNAArtificial Sequenceprimer 114caacuaacuc g 1111511RNAArtificial Sequenceprimer 115ucauaguguu a 1111611RNAArtificial Sequenceprimer 116caaauaucuc g 1111711RNAArtificial Sequenceprimer 117ucaagguauu a 1111811RNAArtificial Sequenceprimer 118caaauaucuc g 1111911RNAArtificial Sequenceprimer 119ucaggagauu a 1112011RNAArtificial Sequenceprimer 120cacuccucuc g 1112111RNAArtificial Sequenceprimer 121ucagaggauu a 1112211RNAArtificial Sequenceprimer 122cauauuccuc g 1112311RNAArtificial Sequenceprimer 123ucauggaauu a 1112411RNAArtificial Sequenceprimer 124caaccuacuc g 1112511RNAArtificial Sequenceprimer 125ucaggagauu a 1112611RNAArtificial Sequenceprimer 126caauccacuc g 1112711RNAArtificial Sequenceprimer 127ucaggagauu a 1112811RNAArtificial Sequenceprimer 128caacccccuc g 1112911RNAArtificial Sequenceprimer 129ucagaggguu a 1113011RNAArtificial Sequenceprimer 130caaacaucuc g 1113111RNAArtificial Sequenceprimer 131ucaagauguu a 1113211RNAArtificial Sequenceprimer 132caucccacuc g 1113311RNAArtificial Sequenceprimer 133ucaggguauu a 1113411RNAArtificial Sequenceprimer 134cacugaucuc g 1113511RNAArtificial Sequenceprimer 135ucagaggauu a 1113611RNAArtificial Sequenceprimer 136cauaucccuc g 1113711RNAArtificial Sequenceprimer 137ucagggauuu a 1113811RNAArtificial Sequenceprimer 138caaacaccuc g 1113911RNAArtificial Sequenceprimer 139ucaagagguu a 1114011RNAArtificial Sequenceprimer 140caacgaacuc g 1114111RNAArtificial Sequenceprimer 141ucagaguguu a 1114211RNAArtificial Sequenceprimer 142caucuaucuc g 1114311RNAArtificial Sequenceprimer 143ucaggagauu a 1114411RNAArtificial Sequenceprimer 144cauaccucuc g 1114511RNAArtificial Sequenceprimer 145ucaugagguu a 1114611RNAArtificial Sequenceprimer 146cauauaacuc g 1114711RNAArtificial Sequenceprimer 147ucaagagauu a 1114811RNAArtificial Sequenceprimer 148caaauaccuc g 1114911RNAArtificial Sequenceprimer 149ucaugagguu a 1115011RNAArtificial Sequenceprimer 150cacauaccuc g 1115111RNAArtificial Sequenceprimer 151ucaugagguu a 1115211RNAArtificial Sequenceprimer 152caccgaccuc g 1115311RNAArtificial Sequenceprimer 153ucaagagguu a 1115411RNAArtificial Sequenceprimer 154cauaucccuc g 1115511RNAArtificial Sequenceprimer 155ucaugggguu a 1115611RNAArtificial Sequenceprimer 156caacuaccuc g 1115711RNAArtificial Sequenceprimer 157ucaugagguu a 1115811RNAArtificial Sequenceprimer 158cauauaccuc g 1115911RNAArtificial Sequenceprimer 159ucaagagguu a 111609RNAArtificial Sequenceprimer 160auuagauac 91619RNAArtificial Sequenceprimer 161auuagguaa 91629RNAArtificial Sequenceprimer 162auucgacau 91639RNAArtificial Sequenceprimer 163aauagguac 91649RNAArtificial Sequenceprimer 164aauagucuc 91659RNAArtificial Sequenceprimer 165auuagcuac 91669RNAArtificial Sequenceprimer 166auucgacac 91679RNAArtificial Sequenceprimer 167acuagcaca 91689RNAArtificial Sequenceprimer 168acuagcuuc 91699RNAArtificial Sequenceprimer 169aauagauac 91709RNAArtificial Sequenceprimer 170aauaguauc 91719RNAArtificial Sequenceprimer 171aaucgccuc 91729RNAArtificial Sequenceprimer 172gauagguau 91739RNAArtificial Sequenceprimer 173auuaggcac 91749RNAArtificial Sequenceprimer 174aauagguuc 91759RNAArtificial Sequenceprimer 175aauagucaa 91769RNAArtificial Sequenceprimer 176aaucgucuc 91779RNAArtificial Sequenceprimer 177auuagaaaa 91789RNAArtificial Sequenceprimer 178auuagcgac 91799RNAArtificial Sequenceprimer 179auuaggagc 91809RNAArtificial Sequenceprimer 180auuaggcaa 91819RNAArtificial Sequenceprimer 181aguagccuc 91829RNAArtificial Sequenceprimer 182aguagcuuc 91839RNAArtificial Sequenceprimer 183aguaggauc 91849RNAArtificial Sequenceprimer 184aguagguuc 91859RNAArtificial Sequenceprimer 185aguagucuc 91869RNAArtificial Sequenceprimer 186acuagauau 91879RNAArtificial Sequenceprimer 187acuagaucc 91889RNAArtificial Sequenceprimer 188acuagcaac 91899RNAArtificial Sequenceprimer 189acuagcauc 91909RNAArtificial Sequenceprimer 190acuagcuaa 91919RNAArtificial Sequenceprimer 191acuaggcuc 91929RNAArtificial Sequenceprimer 192acuaguaac

91939RNAArtificial Sequenceprimer 193acuaguauc 91949RNAArtificial Sequenceprimer 194acuaguuuc 91959RNAArtificial Sequenceprimer 195aauagauuc 91969RNAArtificial Sequenceprimer 196aauagcagc 91979RNAArtificial Sequenceprimer 197aauagccaa 91989RNAArtificial Sequenceprimer 198aauagccac 91999RNAArtificial Sequenceprimer 199aauagccua 92009RNAArtificial Sequenceprimer 200aauagcuaa 92019RNAArtificial Sequenceprimer 201guuaguuau 92029RNAArtificial Sequenceprimer 202gguaguagu 92039RNAArtificial Sequenceprimer 203gguagucag 92049RNAArtificial Sequenceprimer 204gauaguagu 92059RNAArtificial Sequenceprimer 205aauagaaac 92069RNAArtificial Sequenceprimer 206guuagauag 92079RNAArtificial Sequenceprimer 207gguagcuuu 92089RNAArtificial Sequenceprimer 208gguaguuug 92099RNAArtificial Sequenceprimer 209auucggaaa 92109RNAArtificial Sequenceprimer 210auuggagac 92119RNAArtificial Sequenceprimer 211acuagacgc 92129RNAArtificial Sequenceprimer 212acuagccaa 92139RNAArtificial Sequenceprimer 213acuaggcua 92149RNAArtificial Sequenceprimer 214aauagcaca 92159RNAArtificial Sequenceprimer 215aauagucau 92169RNAArtificial Sequenceprimer 216aauagucca 92179RNAArtificial Sequenceprimer 217cuuaguuaa 92189RNAArtificial Sequenceprimer 218guuagagau 92199RNAArtificial Sequenceprimer 219guuagucau 92209RNAArtificial Sequenceprimer 220gguagccuu 92219RNAArtificial Sequenceprimer 221gguaggaau 92229RNAArtificial Sequenceprimer 222gguagguag 92239RNAArtificial Sequenceprimer 223gguagguuu 92249RNAArtificial Sequenceprimer 224gguaguuuu 92259RNAArtificial Sequenceprimer 225gauagccuu 92269RNAArtificial Sequenceprimer 226gauaguccu 92279RNAArtificial Sequenceprimer 227auuagauga 92289RNAArtificial Sequenceprimer 228aguagcuuu 92299RNAArtificial Sequenceprimer 229aguaguuag 92309RNAArtificial Sequenceprimer 230agucgccuc 92319RNAArtificial Sequenceprimer 231acuagaguc 92329RNAArtificial Sequenceprimer 232aaucgcagc 92339RNAArtificial Sequenceprimer 233cauaguuuu 92349RNAArtificial Sequenceprimer 234gguagaugu 92359RNAArtificial Sequenceprimer 235gguagucgu 92369RNAArtificial Sequenceprimer 236ggucgcuau 92379RNAArtificial Sequenceprimer 237gcuaguaag 92389RNAArtificial Sequenceprimer 238gguagguug 923920DNAArtificial Sequenceprimer 239gacaatctgt gtgagcacta 2024036DNAArtificial Sequenceprimer 240tgccagcagc cgcggtaata cggagggtgc aagcgt 3624133DNAArtificial Sequenceprimer 241cctgtttgct ccccacgctt tcgcacctga gcg 3324260DNAArtificial Sequenceprimer 242ctcaggtgcg aaagcgtggg gagcaaacag gnnnnnnnnn cctggtagtc cacgccgtaa 6024360DNAArtificial Sequenceprimer 243ctcaggtgcg aaagcgtggg gagcaaacag gnttagatan cctggtagtc cacgccgtaa 6024417DNAArtificial Sequenceprimer 244ggactaccag ggtatct 1724517DNAArtificial Sequenceprimer 245tacggcgtgg actacca 17

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed