Axmi-192 Family Of Pesticidal Genes And Methods For Their Use

Sampson; Kimberly S. ;   et al.

Patent Application Summary

U.S. patent application number 13/893647 was filed with the patent office on 2013-11-14 for axmi-192 family of pesticidal genes and methods for their use. The applicant listed for this patent is Athenix Corporation. Invention is credited to Rong Guo, Kimberly S. Sampson, Daniel J. Tomso.

Application Number20130303440 13/893647
Document ID /
Family ID42663694
Filed Date2013-11-14

United States Patent Application 20130303440
Kind Code A1
Sampson; Kimberly S. ;   et al. November 14, 2013

AXMI-192 FAMILY OF PESTICIDAL GENES AND METHODS FOR THEIR USE

Abstract

Compositions and methods for conferring pesticidal activity to bacteria, plants, plant cells, tissues and seeds are provided. Compositions comprising a coding sequence for a toxin polypeptide are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in plants and bacteria. Compositions also comprise transformed bacteria, plants, plant cells, tissues, and seeds. In particular, isolated toxin nucleic acid molecules are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed, and antibodies specifically binding to those amino acid sequences. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequence shown in SEQ ID NO:28-62, or the nucleotide sequence set forth in SEQ ID NO:1-27, as well as variants and fragments thereof.


Inventors: Sampson; Kimberly S.; (Durham, NC) ; Tomso; Daniel J.; (Bahama, NC) ; Guo; Rong; (Cary, NC)
Applicant:
Name City State Country Type

Athenix Corporation

Morrisville

NC

US
Family ID: 42663694
Appl. No.: 13/893647
Filed: May 14, 2013

Related U.S. Patent Documents

Application Number Filing Date Patent Number
12846900 Jul 30, 2010 8461415
13893647
61230659 Jul 31, 2009

Current U.S. Class: 514/4.5 ; 514/4.6; 530/300
Current CPC Class: C12N 15/8285 20130101; C12N 15/8286 20130101; C07K 2/00 20130101; Y02A 40/146 20180101; C07K 14/325 20130101
Class at Publication: 514/4.5 ; 530/300; 514/4.6
International Class: C07K 2/00 20060101 C07K002/00

Claims



1. A recombinant polypeptide with pesticidal activity, selected from the group consisting of: a) a polypeptide comprising the amino acid sequence of SEQ ID NO:34 or 35; b) a polypeptide comprising an amino acid sequence having at least 95% sequence identity to the amino acid sequence of SEQ ID NO:34 or 35, wherein said amino acid sequence has pesticidal activity; and c) a polypeptide that is encoded by the nucleotide sequence of SEQ ID NO:7.

2. The polypeptide of claim 1 further comprising heterologous amino acid sequences.

3. A composition comprising the polypeptide of claim 1.

4. The composition of claim 3, wherein said composition is selected from the group consisting of a powder, dust, pellet, granule, spray, emulsion, colloid, and solution.

5. The composition of claim 3, wherein said composition is prepared by desiccation, lyophilization, homogenization, extraction, filtration, centrifugation, sedimentation, or concentration of a culture of Bacillus thuringiensis cells.

6. The composition of claim 3, comprising from about 1% to about 99% by weight of said polypeptide.

7. A method for controlling a lepidopteran, coleopteran, or nematode pest population comprising contacting said population with an pesticidally-effective amount of the polypeptide of claim 1.

8. A method for killing a lepidopteran, coleopteran, or nematode pest, comprising contacting said pest with, or feeding to said pest, an pesticidally-effective amount of the polypeptide of claim 1.
Description



CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application is a divisional of U.S. patent application Ser. No. 12/846,900, filed Jul. 30, 2010, which claims the benefit of U.S. Provisional Application Ser. No. 61/230,659, filed Jul. 31, 2009, the contents of which are herein incorporated by reference in their entirety.

REFERENCE TO SEQUENCE LISTING SUBMITTED ELECTRONICALLY

[0002] The official copy of the sequence listing is submitted electronically via EFS-Web as an ASCII formatted sequence listing with a file named "APA067US01DSEQLIST.txt", created on May 14, 2013, and having a size of 273 kilobytes and is filed concurrently with the specification. The sequence listing contained in this ASCII formatted document is part of the specification and is herein incorporated by reference in its entirety.

FIELD OF THE INVENTION

[0003] This invention relates to the field of molecular biology. Provided are novel genes that encode pesticidal proteins. These proteins and the nucleic acid sequences that encode them are useful in preparing pesticidal formulations and in the production of transgenic pest-resistant plants.

BACKGROUND OF THE INVENTION

[0004] Bacillus thuringiensis is a Gram-positive spore forming soil bacterium characterized by its ability to produce crystalline inclusions that are specifically toxic to certain orders and species of insects, but are harmless to plants and other non-targeted organisms. For this reason, compositions including Bacillus thuringiensis strains or their insecticidal proteins can be used as environmentally-acceptable insecticides to control agricultural insect pests or insect vectors for a variety of human or animal diseases.

[0005] Crystal (Cry) proteins (delta-endotoxins) from Bacillus thuringiensis have potent insecticidal activity against predominantly Lepidopteran, Dipteran, and Coleopteran larvae. These proteins also have shown activity against Hymenoptera, Homoptera, Phthiraptera, Mallophaga, and Acari pest orders, as well as other invertebrate orders such as Nemathelminthes, Platyhelminthes, and Sarcomastigorphora (Feitelson (1993) The Bacillus Thuringiensis family tree. In Advanced Engineered Pesticides, Marcel Dekker, Inc., New York, N.Y.) These proteins were originally classified as CryI to CryV based primarily on their insecticidal activity. The major classes were Lepidoptera-specific (I), Lepidoptera- and Diptera-specific (II), Coleoptera-specific (III), Diptera-specific (IV), and nematode-specific (V) and (VI). The proteins were further classified into subfamilies; more highly related proteins within each family were assigned divisional letters such as Cry1A, Cry1B, Cry1C, etc. Even more closely related proteins within each division were given names such as Cry1C1, Cry1C2, etc.

[0006] A new nomenclature was recently described for the Cry genes based upon amino acid sequence homology rather than insect target specificity (Crickmore et al. (1998) Microbiol. Mol. Biol. Rev. 62:807-813). In the new classification, each toxin is assigned a unique name incorporating a primary rank (an Arabic number), a secondary rank (an uppercase letter), a tertiary rank (a lowercase letter), and a quaternary rank (another Arabic number). In the new classification, Roman numerals have been exchanged for Arabic numerals in the primary rank. Proteins with less than 45% sequence identity have different primary ranks, and the criteria for secondary and tertiary ranks are 78% and 95%, respectively.

[0007] The crystal protein does not exhibit insecticidal activity until it has been ingested and solubilized in the insect midgut. The ingested protoxin is hydrolyzed by proteases in the insect digestive tract to an active toxic molecule. (Hofte and Whiteley (1989) Microbiol. Rev. 53:242-255). This toxin binds to apical brush border receptors in the midgut of the target larvae and inserts into the apical membrane creating ion channels or pores, resulting in larval death.

[0008] Delta-endotoxins generally have five conserved sequence domains, and three conserved structural domains (see, for example, de Maagd et al. (2001) Trends Genetics 17:193-199). The first conserved structural domain consists of seven alpha helices and is involved in membrane insertion and pore formation. Domain II consists of three beta-sheets arranged in a Greek key configuration, and domain III consists of two antiparallel beta-sheets in "jelly-roll" formation (de Maagd et al., 2001, supra). Domains II and III are involved in receptor recognition and binding, and are therefore considered determinants of toxin specificity.

[0009] Aside from delta-endotoxins, there are several other known classes of pesticidal protein toxins. The VIP1/VIP2 toxins (see, for example, U.S. Pat. No. 5,770,696) are binary pesticidal toxins that exhibit strong activity on insects by a mechanism believed to involve receptor-mediated endocytosis followed by cellular toxification, similar to the mode of action of other binary ("A/B") toxins. A/B toxins such as VIP, C2, CDT, CST, or the B. anthracis edema and lethal toxins initially interact with target cells via a specific, receptor-mediated binding of "B" components as monomers. These monomers then form homoheptamers. The "B" heptamer-receptor complex then acts as a docking platform that subsequently binds and allows the translocation of an enzymatic "A" component(s) into the cytosol via receptor-mediated endocytosis. Once inside the cell's cytosol, "A" components inhibit normal cell function by, for example, ADP-ribosylation of G-actin, or increasing intracellular levels of cyclic AMP (cAMP). See Barth et al. (2004) Microbiol Mol Biol Rev 68:373-402.

[0010] The intensive use of B. thuringiensis-based insecticides has already given rise to resistance in field populations of the diamondback moth, Plutella xylostella (Ferre and Van Rie (2002) Annu. Rev. Entomol. 47:501-533). The most common mechanism of resistance is the reduction of binding of the toxin to its specific midgut receptor(s). This may also confer cross-resistance to other toxins that share the same receptor (Ferre and Van Rie (2002)).

SUMMARY OF INVENTION

[0011] Compositions and methods for conferring pest resistance to bacteria, plants, plant cells, tissues and seeds are provided. Compositions include nucleic acid molecules encoding sequences for toxin polypeptides, vectors comprising those nucleic acid molecules, and host cells comprising the vectors. Compositions also include the polypeptide sequences of the toxin, and antibodies to those polypeptides. The nucleotide sequences can be used in DNA constructs or expression cassettes for transformation and expression in organisms, including microorganisms and plants. The nucleotide or amino acid sequences may be synthetic sequences that have been designed for expression in an organism including, but not limited to, a microorganism or a plant. Compositions also comprise transformed bacteria, plants, plant cells, tissues, and seeds.

[0012] In particular, isolated or recombinant nucleic acid molecules corresponding to toxin nucleic acid sequences are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed. In particular, the present invention provides for an isolated nucleic acid molecule comprising a nucleotide sequence encoding the amino acid sequence shown in any of SEQ ID NO:28-62, or a nucleotide sequence set forth in any of SEQ ID NO:1-27, as well as variants and fragments thereof. Nucleotide sequences that are complementary to a nucleotide sequence of the invention, or that hybridize to a sequence of the invention are also encompassed.

[0013] The compositions and methods of the invention are useful for the production of organisms with pesticide resistance, specifically bacteria and plants. These organisms and compositions derived from them are desirable for agricultural purposes. The compositions of the invention are also useful for generating altered or improved toxin proteins that have pesticidal activity, or for detecting the presence of toxin proteins or nucleic acids in products or organisms.

DETAILED DESCRIPTION

[0014] The present invention is drawn to compositions and methods for regulating pest resistance or tolerance in organisms, particularly plants or plant cells. By "resistance" is intended that the pest (e.g., insect) is killed upon ingestion or other contact with the polypeptides of the invention. By "tolerance" is intended an impairment or reduction in the movement, feeding, reproduction, or other functions of the pest. The methods involve transforming organisms with a nucleotide sequence encoding a pesticidal protein of the invention. In particular, the nucleotide sequences of the invention are useful for preparing plants and microorganisms that possess pesticidal activity. Thus, transformed bacteria, plants, plant cells, plant tissues and seeds are provided. Compositions are pesticidal nucleic acids and proteins of bacterial species. The sequences find use in the construction of expression vectors for subsequent transformation into organisms of interest, as probes for the isolation of other homologous (or partially homologous) genes, and for the generation of altered pesticidal proteins by methods known in the art, such as domain swapping or DNA shuffling. The proteins find use in controlling or killing lepidopteran, coleopteran, dipteran, and nematode pest populations and for producing compositions with pesticidal activity.

[0015] By "pesticidal toxin" or "pesticidal protein" is intended a toxin that has toxic activity against one or more pests, including, but not limited to, members of the Lepidoptera, Diptera, and Coleoptera orders, or the Nematoda phylum, or a protein that has homology to such a protein. Pesticidal proteins have been isolated from organisms including, for example, Bacillus sp., Clostridium bifermentans and Paenibacillus popilliae. Pesticidal proteins include amino acid sequences deduced from the full-length nucleotide sequences disclosed herein, and amino acid sequences that are shorter than the full-length sequences, either due to the use of an alternate downstream start site, or due to processing that produces a shorter protein having pesticidal activity. Processing may occur in the organism the protein is expressed in, or in the pest after ingestion of the protein.

[0016] In various embodiments, the sequences disclosed herein have homology to delta-endotoxin proteins. Delta-endotoxins include proteins identified as cry1 through cry53, cytl and cyt2, and Cyt-like toxin. There are currently over 250 known species of delta-endotoxins with a wide range of specificities and toxicities. For an expansive list see Crickmore et al. (1998), Microbiol. Mol. Biol. Rev. 62:807-813, and for regular updates see Crickmore et al. (2003) "Bacillus thuringiensis toxin nomenclature," at www.biols.susx.ac.uk/Home/Neil_Crickmore/Bt/index. In some embodiments, the delta-endotoxin sequences disclosed herein include the nucleotide sequences set forth in any of SEQ ID NO:1-27, the amino acid sequences set forth in any of SEQ ID NO:28-62, as well as variants and fragments thereof.

[0017] Thus, provided herein are novel isolated or recombinant nucleotide sequences that confer pesticidal activity. Also provided are the amino acid sequences of the pesticidal proteins. The protein resulting from translation of this gene allows cells to control or kill pests that ingest it.

Isolated Nucleic Acid Molecules, and Variants and Fragments Thereof

[0018] One aspect of the invention pertains to isolated or recombinant nucleic acid molecules comprising nucleotide sequences encoding pesticidal proteins and polypeptides or biologically active portions thereof, as well as nucleic acid molecules sufficient for use as hybridization probes to identify nucleic acid molecules encoding proteins with regions of sequence homology. As used herein, the term "nucleic acid molecule" is intended to include DNA molecules (e.g., recombinant DNA, cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA.

[0019] An "isolated" nucleic acid sequence (or DNA) is used herein to refer to a nucleic acid sequence (or DNA) that is no longer in its natural environment, for example in an in vitro or in a recombinant bacterial or plant host cell. In some embodiments, an "isolated" nucleic acid is free of sequences (preferably protein encoding sequences) that naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For purposes of the invention, "isolated" when used to refer to nucleic acid molecules excludes isolated chromosomes. For example, in various embodiments, the isolated nucleic acid molecule encoding a pesticidal protein can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb, or 0.1 kb of nucleotide sequences that naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived. A pesticidal protein that is substantially free of cellular material includes preparations of protein having less than about 30%, 20%, 10%, or 5% (by dry weight) of non-pesticidal protein (also referred to herein as a "contaminating protein").

[0020] Nucleotide sequences encoding the proteins of the present invention include the sequence set forth in SEQ ID NO:1-27, and variants, fragments, and complements thereof. By "complement" is intended a nucleotide sequence that is sufficiently complementary to a given nucleotide sequence such that it can hybridize to the given nucleotide sequence to thereby form a stable duplex. The corresponding amino acid sequence for the toxin protein encoded by this nucleotide sequence are set forth in SEQ ID NO:28-62.

[0021] Nucleic acid molecules that are fragments of these nucleotide sequences encoding pesticidal proteins are also encompassed by the present invention. By "fragment" is intended a portion of the nucleotide sequence encoding a pesticidal protein. A fragment of a nucleotide sequence may encode a biologically active portion of a pesticidal protein, or it may be a fragment that can be used as a hybridization probe or PCR primer using methods disclosed below. Nucleic acid molecules that are fragments of a nucleotide sequence encoding a pesticidal protein comprise at least about 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1350, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2500, 3000, 3500, 4000, 4500, 5000 contiguous nucleotides, or up to the number of nucleotides present in a full-length nucleotide sequence encoding a pesticidal protein disclosed herein, depending upon the intended use. By "contiguous" nucleotides is intended nucleotide residues that are immediately adjacent to one another. Fragments of the nucleotide sequences of the present invention will encode protein fragments that retain the biological activity of the pesticidal protein and, hence, retain pesticidal activity. By "retains activity" is intended that the fragment will have at least about 30%, at least about 50%, at least about 70%, 80%, 90%, 95% or higher of the pesticidal activity of the pesticidal protein. In one embodiment, the pesticidal activity is coleoptericidal activity. In another embodiment, the pesticidal activity is lepidoptericidal activity. In another embodiment, the pesticidal activity is nematocidal activity. In another embodiment, the pesticidal activity is diptericidal activity. Methods for measuring pesticidal activity are well known in the art. See, for example, Czapla and Lang (1990) J. Econ. Entomol. 83:2480-2485; Andrews et al. (1988) Biochem. J. 252:199-206; Marrone et al. (1985) J. of Economic Entomology 78:290-293; and U.S. Pat. No. 5,743,477, all of which are herein incorporated by reference in their entirety.

[0022] A fragment of a nucleotide sequence that encodes a biologically active portion of a pesticidal protein of the invention will encode at least about 15, 25, 30, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100 contiguous amino acids, or up to the total number of amino acids present in a full-length pesticidal protein of the invention. In some embodiments, the fragment is a C-terminal truncation of at least about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 250, 300, 350, 400, 450, 500, 650, 600 or more amino acids relative to the amino acid sequences of the invention.

[0023] Preferred pesticidal proteins of the present invention are encoded by a nucleotide sequence sufficiently identical to the nucleotide sequence of SEQ ID NO:1-27. By "sufficiently identical" is intended an amino acid or nucleotide sequence that has at least about 60% or 65% sequence identity, about 70% or 75% sequence identity, about 80% or 85% sequence identity, about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity compared to a reference sequence using one of the alignment programs described herein using standard parameters. One of skill in the art will recognize that these values can be appropriately adjusted to determine corresponding identity of proteins encoded by two nucleotide sequences by taking into account codon degeneracy, amino acid similarity, reading frame positioning, and the like.

[0024] To determine the percent identity of two amino acid sequences or of two nucleic acids, the sequences are aligned for optimal comparison purposes. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences (i.e., percent identity=number of identical positions/total number of positions (e.g., overlapping positions).times.100). In another embodiment, the comparison is across the entirety of the reference sequence (i.e., across the entirety of any of SEQ ID NO:1-61) The percent identity between two sequences can be determined using techniques similar to those described below, with or without allowing gaps. In calculating percent identity, typically exact matches are counted.

[0025] The determination of percent identity between two sequences can be accomplished using a mathematical algorithm. A nonlimiting example of a mathematical algorithm utilized for the comparison of two sequences is the algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 87:2264, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5877. Such an algorithm is incorporated into the BLASTN and BLASTX programs of Altschul et al. (1990) J. Mol. Biol. 215:403. BLAST nucleotide searches can be performed with the BLASTN program, score=100, wordlength=12, to obtain nucleotide sequences homologous to pesticidal-like nucleic acid molecules of the invention. BLAST protein searches can be performed with the BLASTX program, score=50, wordlength=3, to obtain amino acid sequences homologous to pesticidal protein molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST (in BLAST 2.0) can be utilized as described in Altschul et al. (1997) Nucleic Acids Res. 25:3389. Alternatively, PSI-Blast can be used to perform an iterated search that detects distant relationships between molecules. See Altschul et al. (1997) supra. When utilizing BLAST, Gapped BLAST, and PSI-Blast programs, the default parameters of the respective programs (e.g., BLASTX and BLASTN) can be used. Alignment may also be performed manually by inspection.

[0026] Another non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the ClustalW algorithm (Higgins et al. (1994) Nucleic Acids Res. 22:4673-4680). ClustalW compares sequences and aligns the entirety of the amino acid or DNA sequence, and thus can provide data about the sequence conservation of the entire amino acid sequence. The ClustalW algorithm is used in several commercially available DNA/amino acid analysis software packages, such as the ALIGNX module of the Vector NTI Program Suite (Invitrogen Corporation, Carlsbad, Calif.). After alignment of amino acid sequences with ClustalW, the percent amino acid identity can be assessed. A non-limiting example of a software program useful for analysis of ClustalW alignments is GENEDOC.TM.. GENEDOC.TM. (Karl Nicholas) allows assessment of amino acid (or DNA) similarity and identity between multiple proteins. Another non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers and Miller (1988) CABIOS 4:11-17. Such an algorithm is incorporated into the ALIGN program (version 2.0), which is part of the GCG Wisconsin Genetics Software Package, Version 10 (available from Accelrys, Inc., 9685 Scranton Rd., San Diego, Calif., USA). When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used.

[0027] Unless otherwise stated, GAP Version 10, which uses the algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48(3):443-453, will be used to determine sequence identity or similarity using the following parameters: % identity and % similarity for a nucleotide sequence using GAP Weight of 50 and Length Weight of 3, and the nwsgapdna.cmp scoring matrix; % identity or % similarity for an amino acid sequence using GAP weight of 8 and length weight of 2, and the BLOSUM62 scoring program. Equivalent programs may also be used. By "equivalent program" is intended any sequence comparison program that, for any two sequences in question, generates an alignment having identical nucleotide residue matches and an identical percent sequence identity when compared to the corresponding alignment generated by GAP Version 10. The invention also encompasses variant nucleic acid molecules. "Variants" of the pesticidal protein encoding nucleotide sequences include those sequences that encode the pesticidal proteins disclosed herein but that differ conservatively because of the degeneracy of the genetic code as well as those that are sufficiently identical as discussed above. Naturally occurring allelic variants can be identified with the use of well-known molecular biology techniques, such as polymerase chain reaction (PCR) and hybridization techniques as outlined below. Variant nucleotide sequences also include synthetically derived nucleotide sequences that have been generated, for example, by using site-directed mutagenesis but which still encode the pesticidal proteins disclosed in the present invention as discussed below. Variant proteins encompassed by the present invention are biologically active, that is they continue to possess the desired biological activity of the native protein, that is, retaining pesticidal activity. By "retains activity" is intended that the variant will have at least about 30%, at least about 50%, at least about 70%, or at least about 80% of the pesticidal activity of the native protein. Methods for measuring pesticidal activity are well known in the art. See, for example, Czapla and Lang (1990) J. Econ. Entomol. 83: 2480-2485; Andrews et al. (1988) Biochem. J. 252:199-206; Marrone et al. (1985) J. of Economic Entomology 78:290-293; and U.S. Pat. No. 5,743,477, all of which are herein incorporated by reference in their entirety.

[0028] The skilled artisan will further appreciate that changes can be introduced by mutation of the nucleotide sequences of the invention thereby leading to changes in the amino acid sequence of the encoded pesticidal proteins, without altering the biological activity of the proteins. Thus, variant isolated nucleic acid molecules can be created by introducing one or more nucleotide substitutions, additions, or deletions into the corresponding nucleotide sequence disclosed herein, such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Such variant nucleotide sequences are also encompassed by the present invention.

[0029] For example, conservative amino acid substitutions may be made at one or more, predicted, nonessential amino acid residues. A "nonessential" amino acid residue is a residue that can be altered from the wild-type sequence of a pesticidal protein without altering the biological activity, whereas an "essential" amino acid residue is required for biological activity. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine).

[0030] Delta-endotoxins generally have five conserved sequence domains, and three conserved structural domains (see, for example, de Maagd et al. (2001) Trends Genetics 17:193-199). The first conserved structural domain consists of seven alpha helices and is involved in membrane insertion and pore formation. Domain II consists of three beta-sheets arranged in a Greek key configuration, and domain III consists of two antiparallel beta-sheets in "jelly-roll" formation (de Maagd et al., 2001, supra). Domains II and III are involved in receptor recognition and binding, and are therefore considered determinants of toxin specificity.

[0031] Amino acid substitutions may be made in nonconserved regions that retain function. In general, such substitutions would not be made for conserved amino acid residues, or for amino acid residues residing within a conserved motif, where such residues are essential for protein activity. Examples of residues that are conserved and that may be essential for protein activity include, for example, residues that are identical between all proteins contained in an alignment of similar or related toxins to the sequences of the invention (e.g., residues that are identical in an alignment of homologous proteins). Examples of residues that are conserved but that may allow conservative amino acid substitutions and still retain activity include, for example, residues that have only conservative substitutions between all proteins contained in an alignment of similar or related toxins to the sequences of the invention (e.g., residues that have only conservative substitutions between all proteins contained in the alignment homologous proteins). However, one of skill in the art would understand that functional variants may have minor conserved or nonconserved alterations in the conserved residues.

[0032] Alternatively, variant nucleotide sequences can be made by introducing mutations randomly along all or part of the coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for ability to confer pesticidal activity to identify mutants that retain activity. Following mutagenesis, the encoded protein can be expressed recombinantly, and the activity of the protein can be determined using standard assay techniques.

[0033] Using methods such as PCR, hybridization, and the like corresponding pesticidal sequences can be identified, isolated, or recovered from a sample (e.g., a sample containing nucleic acid sequences, such as a biological sample), such sequences having substantial identity to the sequences of the invention (e.g., at least about 70%, at least about 75%, 80%, 85%, 90%, 95% or more sequence identity across the entirety of the reference sequence) and having or conferring pesticidal activity. See, for example, Sambrook and Russell (2001) Molecular Cloning: A Laboratory Manual. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) and Innis, et al. (1990) PCR Protocols: A Guide to Methods and Applications (Academic Press, NY).

[0034] In a hybridization method, all or part of the pesticidal nucleotide sequence can be used to screen cDNA or genomic libraries. Methods for construction of such cDNA and genomic libraries are generally known in the art and are disclosed in Sambrook and Russell, 2001, supra. The so-called hybridization probes may be genomic DNA fragments, cDNA fragments, RNA fragments, or other oligonucleotides, and may be labeled with a detectable group such as .sup.32P, or any other detectable marker, such as other radioisotopes, a fluorescent compound, an enzyme, or an enzyme co-factor. Probes for hybridization can be made by labeling synthetic oligonucleotides based on the known pesticidal protein-encoding nucleotide sequence disclosed herein. Degenerate primers designed on the basis of conserved nucleotides or amino acid residues in the nucleotide sequence or encoded amino acid sequence can additionally be used. The probe typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, at least about 25, at least about 50, 75, 100, 125, 150, 175, or 200 consecutive nucleotides of nucleotide sequence encoding a pesticidal protein of the invention or a fragment or variant thereof. Methods for the preparation of probes for hybridization are generally known in the art and are disclosed in Sambrook and Russell, 2001, supra herein incorporated by reference.

[0035] For example, an entire pesticidal protein sequence disclosed herein, or one or more portions thereof, may be used as a probe capable of specifically hybridizing to corresponding pesticidal protein-like sequences and messenger RNAs. To achieve specific hybridization under a variety of conditions, such probes include sequences that are unique and are preferably at least about 10 nucleotides in length, or at least about 20 nucleotides in length. Such probes may be used to amplify corresponding pesticidal sequences from a chosen organism or sample by PCR. This technique may be used to isolate additional coding sequences from a desired organism or as a diagnostic assay to determine the presence of coding sequences in an organism. Hybridization techniques include hybridization screening of plated DNA libraries (either plaques or colonies; see, for example, Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.).

[0036] Hybridization of such sequences may be carried out under stringent conditions. By "stringent conditions" or "stringent hybridization conditions" is intended conditions under which a probe will hybridize to its target sequence to a detectably greater degree than to other sequences (e.g., at least 2-fold over background). Stringent conditions are sequence-dependent and will be different in different circumstances. By controlling the stringency of the hybridization and/or washing conditions, target sequences that are 100% complementary to the probe can be identified (homologous probing). Alternatively, stringency conditions can be adjusted to allow some mismatching in sequences so that lower degrees of similarity are detected (heterologous probing). Generally, a probe is less than about 1000 nucleotides in length, preferably less than 500 nucleotides in length.

[0037] Typically, stringent conditions will be those in which the salt concentration is less than about 1.5 M Na ion, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30.degree. C. for short probes (e.g., 10 to 50 nucleotides) and at least about 60.degree. C. for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. Exemplary low stringency conditions include hybridization with a buffer solution of 30 to 35% formamide, 1 M NaCl, 1% SDS (sodium dodecyl sulphate) at 37.degree. C., and a wash in 1.times. to 2.times.SSC (20.times.SSC=3.0 M NaCl/0.3 M trisodium citrate) at 50 to 55.degree. C. Exemplary moderate stringency conditions include hybridization in 40 to 45% formamide, 1.0 M NaCl, 1% SDS at 37.degree. C., and a wash in 0.5.times. to 1.times.SSC at 55 to 60.degree. C. Exemplary high stringency conditions include hybridization in 50% formamide, 1 M NaCl, 1% SDS at 37.degree. C., and a wash in 0.1.times.SSC at 60 to 65.degree. C. Optionally, wash buffers may comprise about 0.1% to about 1% SDS. Duration of hybridization is generally less than about 24 hours, usually about 4 to about 12 hours.

[0038] Specificity is typically the function of post-hybridization washes, the critical factors being the ionic strength and temperature of the final wash solution. For DNA-DNA hybrids, the T.sub.m can be approximated from the equation of Meinkoth and Wahl (1984) Anal. Biochem. 138:267-284: T.sub.m=81.5.degree. C.+16.6 (log M)+0.41 (% GC)-0.61 (% form)-500/L; where M is the molarity of monovalent cations, % GC is the percentage of guanosine and cytosine nucleotides in the DNA, % form is the percentage of formamide in the hybridization solution, and L is the length of the hybrid in base pairs. The T.sub.m is the temperature (under defined ionic strength and pH) at which 50% of a complementary target sequence hybridizes to a perfectly matched probe. T.sub.m is reduced by about 1.degree. C. for each 1% of mismatching; thus, T.sub.m, hybridization, and/or wash conditions can be adjusted to hybridize to sequences of the desired identity. For example, if sequences with >90% identity are sought, the T.sub.m can be decreased 10.degree. C. Generally, stringent conditions are selected to be about 5.degree. C. lower than the thermal melting point (T.sub.m) for the specific sequence and its complement at a defined ionic strength and pH. However, severely stringent conditions can utilize a hybridization and/or wash at 1, 2, 3, or 4.degree. C. lower than the thermal melting point (T.sub.m); moderately stringent conditions can utilize a hybridization and/or wash at 6, 7, 8, 9, or 10.degree. C. lower than the thermal melting point (T.sub.m); low stringency conditions can utilize a hybridization and/or wash at 11, 12, 13, 14, 15, or 20.degree. C. lower than the thermal melting point (T.sub.m). Using the equation, hybridization and wash compositions, and desired T.sub.m, those of ordinary skill will understand that variations in the stringency of hybridization and/or wash solutions are inherently described. If the desired degree of mismatching results in a T.sub.m of less than 45.degree. C. (aqueous solution) or 32.degree. C. (formamide solution), it is preferred to increase the SSC concentration so that a higher temperature can be used. An extensive guide to the hybridization of nucleic acids is found in Tijssen (1993) Laboratory Techniques in Biochemistry and Molecular Biology--Hybridization with Nucleic Acid Probes, Part I, Chapter 2 (Elsevier, New York); and Ausubel et al., eds. (1995) Current Protocols in Molecular Biology, Chapter 2 (Greene Publishing and Wiley-Interscience, New York). See Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.).

Isolated Proteins and Variants and Fragments Thereof

[0039] Pesticidal proteins are also encompassed within the present invention. By "pesticidal protein" is intended a protein having the amino acid sequence set forth in SEQ ID NO:28-62. Fragments, biologically active portions, and variants thereof are also provided, and may be used to practice the methods of the present invention. An "isolated protein" is used to refer to a protein that is no longer in its natural environment, for example in vitro or in a recombinant bacterial or plant host cell.

[0040] "Fragments" or "biologically active portions" include polypeptide fragments comprising amino acid sequences sufficiently identical to the amino acid sequence set forth in any of SEQ ID NO:28-62 and that exhibit pesticidal activity. A biologically active portion of a pesticidal protein can be a polypeptide that is, for example, 10, 25, 50, 100 or more amino acids in length. Such biologically active portions can be prepared by recombinant techniques and evaluated for pesticidal activity. Methods for measuring pesticidal activity are well known in the art. See, for example, Czapla and Lang (1990) J. Econ. Entomol. 83:2480-2485; Andrews et al. (1988) Biochem. J. 252:199-206; Marrone et al. (1985) J. of Economic Entomology 78:290-293; and U.S. Pat. No. 5,743,477, all of which are herein incorporated by reference in their entirety. As used here, a fragment comprises at least 8 contiguous amino acids of SEQ ID NO:28-62. The invention encompasses other fragments, however, such as any fragment in the protein greater than about 10, 20, 30, 50, 100, 150, 200, 250, 300, 350, 400, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, 1250, or 1300 amino acids.

[0041] By "variants" is intended proteins or polypeptides having an amino acid sequence that is at least about 60%, 65%, about 70%, 75%, about 80%, 85%, about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of any of SEQ ID NO:28-62. Variants also include polypeptides encoded by a nucleic acid molecule that hybridizes to the nucleic acid molecule of SEQ ID NO:1-27, or a complement thereof, under stringent conditions. Variants include polypeptides that differ in amino acid sequence due to mutagenesis. Variant proteins encompassed by the present invention are biologically active, that is they continue to possess the desired biological activity of the native protein, that is, retaining pesticidal activity. In some embodiments, the variants have improved activity. Methods for measuring pesticidal activity are well known in the art. See, for example, Czapla and Lang (1990) J. Econ. Entomol. 83:2480-2485; Andrews et al. (1988) Biochem. J. 252:199-206; Marrone et al. (1985) J. of Economic Entomology 78:290-293; and U.S. Pat. No. 5,743,477, all of which are herein incorporated by reference in their entirety.

[0042] Bacterial genes, such as the axmi genes of this invention, quite often possess multiple methionine initiation codons in proximity to the start of the open reading frame. Often, translation initiation at one or more of these start codons will lead to generation of a functional protein. These start codons can include ATG codons. However, bacteria such as Bacillus sp. also recognize the codon GTG as a start codon, and proteins that initiate translation at GTG codons contain a methionine at the first amino acid. On rare occasions, translation in bacterial systems can initiate at a TTG codon, though in this event the TTG encodes a methionine. Furthermore, it is not often determined a priori which of these codons are used naturally in the bacterium. Thus, it is understood that use of one of the alternate methionine codons may also lead to generation of pesticidal proteins. These pesticidal proteins are encompassed in the present invention and may be used in the methods of the present invention. It will be understood that, when expressed in plants, it will be necessary to alter the alternate start codon to ATG for proper translation.

[0043] Antibodies to the polypeptides of the present invention, or to variants or fragments thereof, are also encompassed. Methods for producing antibodies are well known in the art (see, for example, Harlow and Lane (1988) Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.; U.S. Pat. No. 4,196,265).

Altered or Improved Variants

[0044] It is recognized that DNA sequences of a pesticidal protein may be altered by various methods, and that these alterations may result in DNA sequences encoding proteins with amino acid sequences different than that encoded by a pesticidal protein of the present invention. This protein may be altered in various ways including amino acid substitutions, deletions, truncations, and insertions of one or more amino acids of SEQ ID NO:28-62, including up to about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 15, about 20, about 25, about 30, about 35, about 40, about 45, about 50, about 55, about 60, about 65, about 70, about 75, about 80, about 85, about 90, about 100, about 105, about 110, about 115, about 120, about 125, about 130 or more amino acid substitutions, deletions or insertions.

[0045] Methods for such manipulations are generally known in the art. For example, amino acid sequence variants of a pesticidal protein can be prepared by mutations in the DNA. This may also be accomplished by one of several forms of mutagenesis and/or in directed evolution. In some aspects, the changes encoded in the amino acid sequence will not substantially affect the function of the protein. Such variants will possess the desired pesticidal activity. However, it is understood that the ability of a pesticidal protein to confer pesticidal activity may be improved by the use of such techniques upon the compositions of this invention. For example, one may express a pesticidal protein in host cells that exhibit high rates of base misincorporation during DNA replication, such as XL-1 Red (Stratagene). After propagation in such strains, one can isolate the toxin DNA (for example by preparing plasmid DNA, or by amplifying by PCR and cloning the resulting PCR fragment into a vector), culture the toxin mutations in a non-mutagenic strain, and identify mutated toxin genes with pesticidal activity, for example by performing an assay to test for pesticidal activity. Generally, the protein is mixed and used in feeding assays. See, for example Marrone et al. (1985) J. of Economic Entomology 78:290-293. Such assays can include contacting plants with one or more pests and determining the plant's ability to survive and/or cause the death of the pests. Examples of mutations that result in increased toxicity are found in Schnepf et al. (1998) Microbiol. Mol. Biol. Rev. 62:775-806.

[0046] Alternatively, alterations may be made to the protein sequence of many proteins at the amino or carboxy terminus without substantially affecting activity. This can include insertions, deletions, or alterations introduced by modern molecular methods, such as PCR, including PCR amplifications that alter or extend the protein coding sequence by virtue of inclusion of amino acid encoding sequences in the oligonucleotides utilized in the PCR amplification. Alternatively, the protein sequences added can include entire protein-coding sequences, such as those used commonly in the art to generate protein fusions. Such fusion proteins are often used to (1) increase expression of a protein of interest (2) introduce a binding domain, enzymatic activity, or epitope to facilitate either protein purification, protein detection, or other experimental uses known in the art (3) target secretion or translation of a protein to a subcellular organelle, such as the periplasmic space of Gram-negative bacteria, or the endoplasmic reticulum of eukaryotic cells, the latter of which often results in glycosylation of the protein.

[0047] Variant nucleotide and amino acid sequences of the present invention also encompass sequences derived from mutagenic and recombinogenic procedures such as DNA shuffling. With such a procedure, one or more different pesticidal protein coding regions can be used to create a new pesticidal protein possessing the desired properties. In this manner, libraries of recombinant polynucleotides are generated from a population of related sequence polynucleotides comprising sequence regions that have substantial sequence identity and can be homologously recombined in vitro or in vivo. For example, using this approach, sequence motifs encoding a domain of interest may be shuffled between a pesticidal gene of the invention and other known pesticidal genes to obtain a new gene coding for a protein with an improved property of interest, such as an increased insecticidal activity. Strategies for such DNA shuffling are known in the art. See, for example, Stemmer (1994) Proc. Natl. Acad. Sci. USA 91:10747-10751; Stemmer (1994) Nature 370:389-391; Crameri et al. (1997) Nature Biotech. 15:436-438; Moore et al. (1997) J. Mol. Biol. 272:336-347; Zhang et al. (1997) Proc. Natl. Acad. Sci. USA 94:4504-4509; Crameri et al. (1998) Nature 391:288-291; and U.S. Pat. Nos. 5,605,793 and 5,837,458.

[0048] Domain swapping or shuffling is another mechanism for generating altered delta-endotoxin proteins. Domains may be swapped between delta-endotoxin proteins, resulting in hybrid or chimeric toxins with improved pesticidal activity or target spectrum. Methods for generating recombinant proteins and testing them for pesticidal activity are well known in the art (see, for example, Naimov et al. (2001) Appl. Environ. Microbiol. 67:5328-5330; de Maagd et al. (1996) Appl. Environ. Microbiol. 62:1537-1543; Ge et al. (1991) J. Biol. Chem. 266:17954-17958; Schnepf et al. (1990) J. Biol. Chem. 265:20923-20930; Rang et al. 91999) Appl. Environ. Microbiol. 65:2918-2925).

[0049] In yet another embodiment, variant nucleotide and/or amino acid sequences can be obtained using one or more of error-prone PCR, oligonucleotide-directed mutagenesis, assembly PCR, sexual PCR mutagenesis, in vivo mutagenesis, cassette mutagenesis, recursive ensemble mutagenesis, exponential ensemble mutagenesis, site-specific mutagenesis, gene reassembly, gene site saturation mutagenesis, permutational mutagenesis, synthetic ligation reassembly (SLR), recombination, recursive sequence recombination, phosphothioate-modified DNA mutagenesis, uracil-containing template mutagenesis, gapped duplex mutagenesis, point mismatch repair mutagenesis, repair-deficient host strain mutagenesis, chemical mutagenesis, radiogenic mutagenesis, deletion mutagenesis, restriction-selection mutagenesis, restriction-purification mutagenesis, artificial gene synthesis, ensemble mutagenesis, chimeric nucleic acid multimer creation, and the like.

Vectors

[0050] A pesticidal sequence of the invention may be provided in an expression cassette for expression in a plant of interest. By "plant expression cassette" is intended a DNA construct that is capable of resulting in the expression of a protein from an open reading frame in a plant cell. Typically these contain a promoter and a coding sequence. Often, such constructs will also contain a 3' untranslated region. Such constructs may contain a "signal sequence" or "leader sequence" to facilitate co-translational or post-translational transport of the peptide to certain intracellular structures such as the chloroplast (or other plastid), endoplasmic reticulum, or Golgi apparatus.

[0051] By "signal sequence" is intended a sequence that is known or suspected to result in cotranslational or post-translational peptide transport across the cell membrane. In eukaryotes, this typically involves secretion into the Golgi apparatus, with some resulting glycosylation. Insecticidal toxins of bacteria are often synthesized as protoxins, which are protolytically activated in the gut of the target pest (Chang (1987) Methods Enzymol. 153:507-516). In some embodiments of the present invention, the signal sequence is located in the native sequence, or may be derived from a sequence of the invention. By "leader sequence" is intended any sequence that when translated, results in an amino acid sequence sufficient to trigger co-translational transport of the peptide chain to a sub-cellular organelle. Thus, this includes leader sequences targeting transport and/or glycosylation by passage into the endoplasmic reticulum, passage to vacuoles, plastids including chloroplasts, mitochondria, and the like.

[0052] By "plant transformation vector" is intended a DNA molecule that is necessary for efficient transformation of a plant cell. Such a molecule may consist of one or more plant expression cassettes, and may be organized into more than one "vector" DNA molecule. For example, binary vectors are plant transformation vectors that utilize two non-contiguous DNA vectors to encode all requisite cis- and trans-acting functions for transformation of plant cells (Hellens and Mullineaux (2000) Trends in Plant Science 5:446-451). "Vector" refers to a nucleic acid construct designed for transfer between different host cells. "Expression vector" refers to a vector that has the ability to incorporate, integrate and express heterologous DNA sequences or fragments in a foreign cell. The cassette will include 5' and 3' regulatory sequences operably linked to a sequence of the invention. By "operably linked" is intended a functional linkage between a promoter and a second sequence, wherein the promoter sequence initiates and mediates transcription of the DNA sequence corresponding to the second sequence. Generally, operably linked means that the nucleic acid sequences being linked are contiguous and, where necessary to join two protein coding regions, contiguous and in the same reading frame. The cassette may additionally contain at least one additional gene to be cotransformed into the organism. Alternatively, the additional gene(s) can be provided on multiple expression cassettes.

[0053] "Promoter" refers to a nucleic acid sequence that functions to direct transcription of a downstream coding sequence. The promoter together with other transcriptional and translational regulatory nucleic acid sequences (also termed "control sequences") are necessary for the expression of a DNA sequence of interest.

[0054] Such an expression cassette is provided with a plurality of restriction sites for insertion of the pesticidal sequence to be under the transcriptional regulation of the regulatory regions.

[0055] The expression cassette will include in the 5'-3' direction of transcription, a transcriptional and translational initiation region (i.e., a promoter), a DNA sequence of the invention, and a translational and transcriptional termination region (i.e., termination region) functional in plants. The promoter may be native or analogous, or foreign or heterologous, to the plant host and/or to the DNA sequence of the invention. Additionally, the promoter may be the natural sequence or alternatively a synthetic sequence. Where the promoter is "native" or "homologous" to the plant host, it is intended that the promoter is found in the native plant into which the promoter is introduced. Where the promoter is "foreign" or "heterologous" to the DNA sequence of the invention, it is intended that the promoter is not the native or naturally occurring promoter for the operably linked DNA sequence of the invention.

[0056] The termination region may be native with the transcriptional initiation region, may be native with the operably linked DNA sequence of interest, may be native with the plant host, or may be derived from another source (i.e., foreign or heterologous to the promoter, the DNA sequence of interest, the plant host, or any combination thereof). Convenient termination regions are available from the Ti-plasmid of A. tumefaciens, such as the octopine synthase and nopaline synthase termination regions. See also Guerineau et al. (1991) Mol. Gen. Genet. 262:141-144; Proudfoot (1991) Cell 64:671-674; Sanfacon et al. (1991) Genes Dev. 5:141-149; Mogen et al. (1990) Plant Cell 2:1261-1272; Munroe et al. (1990) Gene 91:151-158; Ballas et al. (1989) Nucleic Acids Res. 17:7891-7903; and Joshi et al. (1987) Nucleic Acid Res. 15:9627-9639.

[0057] Where appropriate, the gene(s) may be optimized for increased expression in the transformed host cell. That is, the genes can be synthesized using host cell-preferred codons for improved expression, or may be synthesized using codons at a host-preferred codon usage frequency. Generally, the GC content of the gene will be increased. See, for example, Campbell and Gowri (1990) Plant Physiol. 92:1-11 for a discussion of host-preferred codon usage. Methods are available in the art for synthesizing plant-preferred genes. See, for example, U.S. Pat. Nos. 5,380,831, and 5,436,391, and Murray et al. (1989) Nucleic Acids Res. 17:477-498, herein incorporated by reference.

[0058] In one embodiment, the pesticidal sequence is targeted to the chloroplast for expression. In this manner, where the pesticidal sequence is not directly inserted into the chloroplast, the expression cassette will additionally contain a nucleic acid encoding a transit peptide to direct the pesticidal sequence to the chloroplasts. Such transit peptides are known in the art. See, for example, Von Heijne et al. (1991) Plant Mol. Biol. Rep. 9:104-126; Clark et al. (1989) J. Biol. Chem. 264:17544-17550; Della-Cioppa et al. (1987) Plant Physiol. 84:965-968; Romer et al. (1993) Biochem. Biophys. Res. Commun. 196:1414-1421; and Shah et al. (1986) Science 233:478-481.

[0059] The pesticidal gene to be targeted to the chloroplast may be optimized for expression in the chloroplast to account for differences in codon usage between the plant nucleus and this organelle. In this manner, the nucleic acids of interest may be synthesized using chloroplast-preferred codons. See, for example, U.S. Pat. No. 5,380,831, herein incorporated by reference.

Plant Transformation

[0060] Methods of the invention involve introducing a nucleotide construct into a plant. By "introducing" is intended to present to the plant the nucleotide construct in such a manner that the construct gains access to the interior of a cell of the plant. The methods of the invention do not require that a particular method for introducing a nucleotide construct to a plant is used, only that the nucleotide construct gains access to the interior of at least one cell of the plant. Methods for introducing nucleotide constructs into plants are known in the art including, but not limited to, stable transformation methods, transient transformation methods, and virus-mediated methods.

[0061] By "plant" is intended whole plants, plant organs (e.g., leaves, stems, roots, etc.), seeds, plant cells, propagules, embryos and progeny of the same. Plant cells can be differentiated or undifferentiated (e.g. callus, suspension culture cells, protoplasts, leaf cells, root cells, phloem cells, pollen).

[0062] "Transgenic plants" or "transformed plants" or "stably transformed" plants or cells or tissues refers to plants that have incorporated or integrated exogenous nucleic acid sequences or DNA fragments into the plant cell. These nucleic acid sequences include those that are exogenous, or not present in the untransformed plant cell, as well as those that may be endogenous, or present in the untransformed plant cell. "Heterologous" generally refers to the nucleic acid sequences that are not endogenous to the cell or part of the native genome in which they are present, and have been added to the cell by infection, transfection, microinjection, electroporation, microprojection, or the like.

[0063] The transgenic plants of the invention express one or more of the pesticidal sequences disclosed herein. In various embodiments, the transgenic plant further comprises one or more additional genes for insect resistance, for example, one or more additional genes for controlling coleopteran, lepidopteran, heteropteran, or nematode pests. It will be understood by one of skill in the art that the transgenic plant may comprise any gene imparting an agronomic trait of interest.

[0064] Transformation of plant cells can be accomplished by one of several techniques known in the art. The pesticidal gene of the invention may be modified to obtain or enhance expression in plant cells. Typically a construct that expresses such a protein would contain a promoter to drive transcription of the gene, as well as a 3' untranslated region to allow transcription termination and polyadenylation. The organization of such constructs is well known in the art. In some instances, it may be useful to engineer the gene such that the resulting peptide is secreted, or otherwise targeted within the plant cell. For example, the gene can be engineered to contain a signal peptide to facilitate transfer of the peptide to the endoplasmic reticulum. It may also be preferable to engineer the plant expression cassette to contain an intron, such that mRNA processing of the intron is required for expression.

[0065] Typically this "plant expression cassette" will be inserted into a "plant transformation vector". This plant transformation vector may be comprised of one or more DNA vectors needed for achieving plant transformation. For example, it is a common practice in the art to utilize plant transformation vectors that are comprised of more than one contiguous DNA segment. These vectors are often referred to in the art as "binary vectors". Binary vectors as well as vectors with helper plasmids are most often used for Agrobacterium-mediated transformation, where the size and complexity of DNA segments needed to achieve efficient transformation is quite large, and it is advantageous to separate functions onto separate DNA molecules. Binary vectors typically contain a plasmid vector that contains the cis-acting sequences required for T-DNA transfer (such as left border and right border), a selectable marker that is engineered to be capable of expression in a plant cell, and a "gene of interest" (a gene engineered to be capable of expression in a plant cell for which generation of transgenic plants is desired). Also present on this plasmid vector are sequences required for bacterial replication. The cis-acting sequences are arranged in a fashion to allow efficient transfer into plant cells and expression therein. For example, the selectable marker gene and the pesticidal sequence are located between the left and right borders. Often a second plasmid vector contains the trans-acting factors that mediate T-DNA transfer from Agrobacterium to plant cells. This plasmid often contains the virulence functions (Vir genes) that allow infection of plant cells by Agrobacterium, and transfer of DNA by cleavage at border sequences and vir-mediated DNA transfer, as is understood in the art (Hellens and Mullineaux (2000) Trends in Plant Science 5:446-451). Several types of Agrobacterium strains (e.g. LBA4404, GV3101, EHA101, EHA105, etc.) can be used for plant transformation. The second plasmid vector is not necessary for transforming the plants by other methods such as microprojection, microinjection, electroporation, polyethylene glycol, etc.

[0066] In general, plant transformation methods involve transferring heterologous DNA into target plant cells (e.g. immature or mature embryos, suspension cultures, undifferentiated callus, protoplasts, etc.), followed by applying a maximum threshold level of appropriate selection (depending on the selectable marker gene) to recover the transformed plant cells from a group of untransformed cell mass. Explants are typically transferred to a fresh supply of the same medium and cultured routinely. Subsequently, the transformed cells are differentiated into shoots after placing on regeneration medium supplemented with a maximum threshold level of selecting agent. The shoots are then transferred to a selective rooting medium for recovering rooted shoot or plantlet. The transgenic plantlet then grows into a mature plant and produces fertile seeds (e.g. Hiei et al. (1994) The Plant Journal 6:271-282; Ishida et al. (1996) Nature Biotechnology 14:745-750). Explants are typically transferred to a fresh supply of the same medium and cultured routinely. A general description of the techniques and methods for generating transgenic plants are found in Ayres and Park (1994) Critical Reviews in Plant Science 13:219-239 and Bommineni and Jauhar (1997) Maydica 42:107-120. Since the transformed material contains many cells; both transformed and non-transformed cells are present in any piece of subjected target callus or tissue or group of cells. The ability to kill non-transformed cells and allow transformed cells to proliferate results in transformed plant cultures. Often, the ability to remove non-transformed cells is a limitation to rapid recovery of transformed plant cells and successful generation of transgenic plants.

[0067] Transformation protocols as well as protocols for introducing nucleotide sequences into plants may vary depending on the type of plant or plant cell, i.e., monocot or dicot, targeted for transformation. Generation of transgenic plants may be performed by one of several methods, including, but not limited to, microinjection, electroporation, direct gene transfer, introduction of heterologous DNA by Agrobacterium into plant cells (Agrobacterium-mediated transformation), bombardment of plant cells with heterologous foreign DNA adhered to particles, ballistic particle acceleration, aerosol beam transformation (U.S. Published Application No. 20010026941; U.S. Pat. No. 4,945,050; International Publication No. WO 91/00915; U.S. Published Application No. 2002015066), Lec1 transformation, and various other non-particle direct-mediated methods to transfer DNA.

[0068] Methods for transformation of chloroplasts are known in the art. See, for example, Svab et al. (1990) Proc. Natl. Acad. Sci. USA 87:8526-8530; Svab and Maliga (1993) Proc. Natl. Acad. Sci. USA 90:913-917; Svab and Maliga (1993) EMBO J. 12:601-606. The method relies on particle gun delivery of DNA containing a selectable marker and targeting of the DNA to the plastid genome through homologous recombination. Additionally, plastid transformation can be accomplished by transactivation of a silent plastid-borne transgene by tissue-preferred expression of a nuclear-encoded and plastid-directed RNA polymerase. Such a system has been reported in McBride et al. (1994) Proc. Natl. Acad. Sci. USA 91:7301-7305.

[0069] Following integration of heterologous foreign DNA into plant cells, one then applies a maximum threshold level of appropriate selection in the medium to kill the untransformed cells and separate and proliferate the putatively transformed cells that survive from this selection treatment by transferring regularly to a fresh medium. By continuous passage and challenge with appropriate selection, one identifies and proliferates the cells that are transformed with the plasmid vector. Molecular and biochemical methods can then be used to confirm the presence of the integrated heterologous gene of interest into the genome of the transgenic plant.

[0070] The cells that have been transformed may be grown into plants in accordance with conventional ways. See, for example, McCormick et al. (1986) Plant Cell Reports 5:81-84. These plants may then be grown, and either pollinated with the same transformed strain or different strains, and the resulting hybrid having constitutive expression of the desired phenotypic characteristic identified. Two or more generations may be grown to ensure that expression of the desired phenotypic characteristic is stably maintained and inherited and then seeds harvested to ensure expression of the desired phenotypic characteristic has been achieved. In this manner, the present invention provides transformed seed (also referred to as "transgenic seed") having a nucleotide construct of the invention, for example, an expression cassette of the invention, stably incorporated into their genome.

Evaluation of Plant Transformation

[0071] Following introduction of heterologous foreign DNA into plant cells, the transformation or integration of heterologous gene in the plant genome is confirmed by various methods such as analysis of nucleic acids, proteins and metabolites associated with the integrated gene.

[0072] PCR analysis is a rapid method to screen transformed cells, tissue or shoots for the presence of incorporated gene at the earlier stage before transplanting into the soil (Sambrook and Russell (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.). PCR is carried out using oligonucleotide primers specific to the gene of interest or Agrobacterium vector background, etc.

[0073] Plant transformation may be confirmed by Southern blot analysis of genomic DNA (Sambrook and Russell, 2001, supra). In general, total DNA is extracted from the transformant, digested with appropriate restriction enzymes, fractionated in an agarose gel and transferred to a nitrocellulose or nylon membrane. The membrane or "blot" is then probed with, for example, radiolabeled .sup.32P target DNA fragment to confirm the integration of introduced gene into the plant genome according to standard techniques (Sambrook and Russell, 2001, supra).

[0074] In Northern blot analysis, RNA is isolated from specific tissues of transformant, fractionated in a formaldehyde agarose gel, and blotted onto a nylon filter according to standard procedures that are routinely used in the art (Sambrook and Russell, 2001, supra). Expression of RNA encoded by the pesticidal sequence is then tested by hybridizing the filter to a radioactive probe derived from a toxin, by methods known in the art (Sambrook and Russell, 2001, supra).

[0075] Western blot, biochemical assays and the like may be carried out on the transgenic plants to confirm the presence of protein encoded by the pesticidal gene by standard procedures (Sambrook and Russell, 2001, supra) using antibodies that bind to one or more epitopes present on the pesticidal protein.

Pesticidal Activity in Plants

[0076] In another aspect of the invention, one may generate transgenic plants expressing a toxin that has pesticidal activity. Methods described above by way of example may be utilized to generate transgenic plants, but the manner in which the transgenic plant cells are generated is not critical to this invention. Methods known or described in the art such as Agrobacterium-mediated transformation, biolistic transformation, and non-particle-mediated methods may be used at the discretion of the experimenter. Plants expressing a pesticidal sequence may be isolated by common methods described in the art, for example by transformation of callus, selection of transformed callus, and regeneration of fertile plants from such transgenic callus. In such process, one may use any gene as a selectable marker so long as its expression in plant cells confers ability to identify or select for transformed cells.

[0077] A number of markers have been developed for use with plant cells, such as resistance to chloramphenicol, the aminoglycoside G418, hygromycin, or the like. Other genes that encode a product involved in chloroplast metabolism may also be used as selectable markers. For example, genes that provide resistance to plant herbicides such as glyphosate, bromoxynil, or imidazolinone may find particular use. Such genes have been reported (Stalker et al. (1985) J. Biol. Chem. 263:6310-6314 (bromoxynil resistance nitrilase gene); and Sathasivan et al. (1990) Nucl. Acids Res. 18:2188 (AHAS imidazolinone resistance gene). Additionally, the genes disclosed herein are useful as markers to assess transformation of bacterial or plant cells. Methods for detecting the presence of a transgene in a plant, plant organ (e.g., leaves, stems, roots, etc.), seed, plant cell, propagule, embryo or progeny of the same are well known in the art. In one embodiment, the presence of the transgene is detected by testing for pesticidal activity.

[0078] Fertile plants expressing a pesticidal sequence may be tested for pesticidal activity, and the plants showing optimal activity selected for further breeding. Methods are available in the art to assay for pest activity. Generally, the protein is mixed and used in feeding assays. See, for example Marrone et al. (1985) J. of Economic Entomology 78:290-293.

[0079] The present invention may be used for transformation of any plant species, including, but not limited to, monocots and dicots. Examples of plants of interest include, but are not limited to, corn (maize), sorghum, wheat, sunflower, tomato, crucifers, peppers, potato, cotton, rice, soybean, sugarbeet, sugarcane, tobacco, barley, and oilseed rape, Brassica sp., alfalfa, rye, millet, safflower, peanuts, sweet potato, cassaya, coffee, coconut, pineapple, citrus trees, cocoa, tea, banana, avocado, fig, guava, mango, olive, papaya, cashew, macadamia, almond, oats, vegetables, ornamentals, and conifers.

[0080] Vegetables include, but are not limited to, tomatoes, lettuce, green beans, lima beans, peas, and members of the genus Curcumis such as cucumber, cantaloupe, and musk melon. Ornamentals include, but are not limited to, azalea, hydrangea, hibiscus, roses, tulips, daffodils, petunias, carnation, poinsettia, and chrysanthemum. Preferably, plants of the present invention are crop plants (for example, maize, sorghum, wheat, sunflower, tomato, crucifers, peppers, potato, cotton, rice, soybean, sugarbeet, sugarcane, tobacco, barley, oilseed rape., etc.).

Use in Pesticidal Control

[0081] General methods for employing strains comprising a nucleotide sequence of the present invention, or a variant thereof, in pesticide control or in engineering other organisms as pesticidal agents are known in the art. See, for example U.S. Pat. No. 5,039,523 and EP 0480762A2.

[0082] The Bacillus strains containing a nucleotide sequence of the present invention, or a variant thereof, or the microorganisms that have been genetically altered to contain a pesticidal gene and protein may be used for protecting agricultural crops and products from pests. In one aspect of the invention, whole, i.e., unlysed, cells of a toxin (pesticide)-producing organism are treated with reagents that prolong the activity of the pesticidal protein produced in the cell when the cell is applied to the environment of target pest(s).

[0083] Alternatively, the pesticide is produced by introducing a pesticidal gene into a cellular host. Expression of the pesticidal gene results, directly or indirectly, in the intracellular production and maintenance of the pesticide. In one aspect of this invention, these cells are then treated under conditions that prolong the activity of the pesticidal produced in the cell when the cell is applied to the environment of target pest(s). The resulting product retains the toxicity of the pesticidal protein. These naturally encapsulated pesticides may then be formulated in accordance with conventional techniques for application to the environment hosting a target pest, e.g., soil, water, and foliage of plants. See, for example EPA 0192319, and the references cited therein. Alternatively, one may formulate the cells expressing a gene of this invention such as to allow application of the resulting material as a pesticide.

[0084] Pesticidal Compositions

[0085] The active ingredients of the present invention are normally applied in the form of compositions and can be applied to the crop area or plant to be treated, simultaneously or in succession, with other compounds. These compounds can be fertilizers, weed killers, cryoprotectants, surfactants, detergents, pesticidal soaps, dormant oils, polymers, and/or time-release or biodegradable carrier formulations that permit long-term dosing of a target area following a single application of the formulation. They can also be selective herbicides, chemical insecticides, virucides, microbicides, amoebicides, pesticides, fungicides, bacteriocides, nematocides, molluscicides or mixtures of several of these preparations, if desired, together with further agriculturally acceptable carriers, surfactants or application-promoting adjuvants customarily employed in the art of formulation. Suitable carriers and adjuvants can be solid or liquid and correspond to the substances ordinarily employed in formulation technology, e.g. natural or regenerated mineral substances, solvents, dispersants, wetting agents, tackifiers, binders or fertilizers Likewise the formulations may be prepared into edible "baits" or fashioned into pest "traps" to permit feeding or ingestion by a target pest of the pesticidal formulation.

[0086] Methods of applying an active ingredient of the present invention or an agrochemical composition of the present invention that contains at least one of the pesticidal proteins produced by the bacterial strains of the present invention include leaf application, seed coating and soil application. The number of applications and the rate of application depend on the intensity of infestation by the corresponding pest.

[0087] The composition may be formulated as a powder, dust, pellet, granule, spray, emulsion, colloid, solution, or such like, and may be prepared by such conventional means as desiccation, lyophilization, homogenation, extraction, filtration, centrifugation, sedimentation, or concentration of a culture of cells comprising the polypeptide. In all such compositions that contain at least one such pesticidal polypeptide, the polypeptide may be present in a concentration of from about 1% to about 99% by weight.

[0088] Lepidopteran, dipteran, heteropteran, coleopteran, or nematode pests may be killed or reduced in numbers in a given area by the methods of the invention, or may be prophylactically applied to an environmental area to prevent infestation by a susceptible pest. Preferably the pest ingests, or is contacted with, a pesticidally-effective amount of the polypeptide. By "pesticidally-effective amount" is intended an amount of the pesticide that is able to bring about death to at least one pest, or to noticeably reduce pest growth, feeding, or normal physiological development. This amount will vary depending on such factors as, for example, the specific target pests to be controlled, the specific environment, location, plant, crop, or agricultural site to be treated, the environmental conditions, and the method, rate, concentration, stability, and quantity of application of the pesticidally-effective polypeptide composition. The formulations may also vary with respect to climatic conditions, environmental considerations, and/or frequency of application and/or severity of pest infestation.

[0089] The pesticide compositions described may be made by formulating either the bacterial cell, crystal and/or spore suspension, or isolated protein component with the desired agriculturally-acceptable carrier. The compositions may be formulated prior to administration in an appropriate means such as lyophilized, freeze-dried, desiccated, or in an aqueous carrier, medium or suitable diluent, such as saline or other buffer. The formulated compositions may be in the form of a dust or granular material, or a suspension in oil (vegetable or mineral), or water or oil/water emulsions, or as a wettable powder, or in combination with any other carrier material suitable for agricultural application. Suitable agricultural carriers can be solid or liquid and are well known in the art. The term "agriculturally-acceptable carrier" covers all adjuvants, inert components, dispersants, surfactants, tackifiers, binders, etc. that are ordinarily used in pesticide formulation technology; these are well known to those skilled in pesticide formulation. The formulations may be mixed with one or more solid or liquid adjuvants and prepared by various means, e.g., by homogeneously mixing, blending and/or grinding the pesticidal composition with suitable adjuvants using conventional formulation techniques. Suitable formulations and application methods are described in U.S. Pat. No. 6,468,523, herein incorporated by reference.

[0090] The plants can also be treated with one or more chemical compositions, including one or more herbicide, insecticides, or fungicides. Exemplary chemical compositions include: Fruits/Vegetables Herbicides: Atrazine, Bromacil, Diuron, Glyphosate, Linuron, Metribuzin, Simazine, Trifluralin, Fluazifop, Glufosinate, Halo sulfuron Gowan, Paraquat, Propyzamide, Sethoxydim, Butafenacil, Halosulfuron, Indaziflam; Fruits/Vegetables Insecticides: Aldicarb, Bacillus thuriengiensis, Carbaryl, Carbofuran, Chlorpyrifos, Cypermethrin, Deltamethrin, Diazinon, Malathion, Abamectin, Cyfluthrin/beta-cyfluthrin, Esfenvalerate, Lambda-cyhalothrin, Acequinocyl, Bifenazate, Methoxyfenozide, Novaluron, Chromafenozide, Thiacloprid, Dinotefuran, Fluacrypyrim, Tolfenpyrad, Clothianidin, Spirodiclofen, Gamma-cyhalothrin, Spiromesifen, Spinosad, Rynaxypyr, Cyazypyr, Spinoteram, Triflumuron, Spirotetramat, Imidacloprid, Flubendiamide, Thiodicarb, Metaflumizone, Sulfoxaflor, Cyflumetofen, Cyanopyrafen, Imidacloprid, Clothianidin, Thiamethoxam, Spinotoram, Thiodicarb, Flonicamid, Methiocarb, Emamectin-benzoate, Indoxacarb, Forthiazate, Fenamiphos, Cadusaphos, Pyriproxifen, Fenbutatin-oxid, Hexthiazox, Methomyl, 4-[[(6-Chlorpyridin-3-yl)methyl](2,2-difluorethyl)amino]furan-2(5H)-on; Fruits/Vegetables Fungicides: Carbendazim, Chlorothalonil, EBDCs, Sulphur, Thiophanate-methyl, Azoxystrobin, Cymoxanil, Fluazinam, Fosetyl, Iprodione, Kresoxim-methyl, Metalaxyl/mefenoxam, Trifloxystrobin, Ethaboxam, Iprovalicarb, Trifloxystrobin, Fenhexamid, Oxpoconazole fumarate, Cyazofamid, Fenamidone, Zoxamide, Picoxystrobin, Pyraclostrobin, Cyflufenamid, Boscalid; Cereals Herbicides: Isoproturon, Bromoxynil, Ioxynil, Phenoxies, Chlorsulfuron, Clodinafop, Diclofop, Diflufenican, Fenoxaprop, Florasulam, Fluoroxypyr, Metsulfuron, Triasulfuron, Flucarbazone, Iodosulfuron, Propoxycarbazone, Picolinafen, Mesosulfuron, Beflubutamid, Pinoxaden, Amidosulfuron, Thifensulfuron, Tribenuron, Flupyrsulfuron, Sulfosulfuron, Pyrasulfotole, Pyroxsulam, Flufenacet, Tralkoxydim, Pyroxasulfon; Cereals Fungicides: Carbendazim, Chlorothalonil, Azoxystrobin, Cyproconazole, Cyprodinil, Fenpropimorph, Epoxiconazole, Kresoxim-methyl, Quinoxyfen, Tebuconazole, Trifloxystrobin, Simeconazole, Picoxystrobin, Pyraclostrobin, Dimoxystrobin, Prothioconazole, Fluoxastrobin; Cereals Insecticides: Dimethoate, Lambda-cyhalthrin, Deltamethrin, alpha-Cypermethrin, B-cyfluthrin, Bifenthrin, Imidacloprid, Clothianidin, Thiamethoxam, Thiacloprid, Acetamiprid, Dinetofuran, Clorphyriphos, Metamidophos, Oxidemethon-methyl, Pirimicarb, Methiocarb; Maize Herbicides: Atrazine, Alachlor, Bromoxynil, Acetochlor, Dicamba, Clopyralid, (S-)Dimethenamid, Glufosinate, Glyphosate, Isoxaflutole, (S-)Metolachlor, Mesotrione, Nicosulfuron, Primisulfuron, Rimsulfuron, Sulcotrione, Foramsulfuron, Topramezone, Tembotrione, Saflufenacil, Thiencarbazone, Flufenacet, Pyroxasulfon; Maize Insecticides: Carbofuran, Chlorpyrifos, Bifenthrin, Cyazypyr, Fipronil, Imidacloprid, Lambda-Cyhalothrin, Tefluthrin, Terbufos, Thiamethoxam, Clothianidin, Spiromesifen, Flubendiamide, Triflumuron, Rynaxypyr, Deltamethrin, Thiodicarb, B-Cyfluthrin, Cypermethrin, Bifenthrin, Lufenuron, Triflumoron, Tefluthrin, Tebupirimphos, Ethiprole, Cyazypyr, Thiacloprid, Acetamiprid, Dinetofuran, Avermectin, Methiocarb, Spirodiclofen, Spirotetramat; Maize Fungicides: Fenitropan, Thiram, Prothioconazole, Tebuconazole, Trifloxystrobin; Rice Herbicides: Butachlor, Propanil, Azimsulfuron, Bensulfuron, Cyhalofop, Daimuron, Fentrazamide, Imazosulfuron, Mefenacet, Oxaziclomefone, Pyrazosulfuron, Pyributicarb, Quinclorac, Thiobencarb, Indanofan, Flufenacet, Fentrazamide, Halosulfuron, Oxaziclomefone, Benzobicyclon, Pyriftalid, Penoxsulam, Bispyribac, Oxadiargyl, Ethoxysulfuron, Pretilachlor, Mesotrione, Tefuryltrione, Oxadiazone, Fenoxaprop, Pyrimisulfan; Rice Insecticides: Diazinon, Fenitrothion, Fenobucarb, Monocrotophos, Benfuracarb, Buprofezin, Dinotefuran, Fipronil, Imidacloprid, Isoprocarb, Thiacloprid, Chromafenozide, Thiacloprid, Dinotefuran, Clothianidin, Ethiprole, Flubendiamide, Rynaxypyr, Deltamethrin, Acetamiprid, Thiamethoxam, Cyazypyr, Spinosad, Spinotoram, Emamectin-Benzoate, Cypermethrin, Chlorpyriphos, Cartap, Methamidophos, Etofenprox, Triazophos, 4-[[(6-Chlorpyridin-3-yl)methyl](2,2-difluorethyl)amino]furan-2(5H)-on, Carbofuran, Benfuracarb; Rice Fungicides: Thiophanate-methyl, Azoxystrobin, Carpropamid, Edifenphos, Ferimzone, Iprobenfos, Isoprothiolane, Pencycuron, Probenazole, Pyroquilon, Tricyclazole, Trifloxystrobin, Diclocymet, Fenoxanil, Simeconazole, Tiadinil; Cotton Herbicides: Diuron, Fluometuron, MSMA, Oxyfluorfen, Prometryn, Trifluralin, Carfentrazone, Clethodim, Fluazifop-butyl, Glyphosate, Norflurazon, Pendimethalin, Pyrithiobac-sodium, Trifloxysulfuron, Tepraloxydim, Glufosinate, Flumioxazin, Thidiazuron; Cotton Insecticides: Acephate, Aldicarb, Chlorpyrifos, Cypermethrin, Deltamethrin, Malathion, Monocrotophos, Abamectin, Acetamiprid, Emamectin Benzoate, Imidacloprid, Indoxacarb, Lambda-Cyhalothrin, Spinosad, Thiodicarb, Gamma-Cyhalothrin, Spiromesifen, Pyridalyl, Flonicamid, Flubendiamide, Triflumuron, Rynaxypyr, Beta-Cyfluthrin, Spirotetramat,

Clothianidin, Thiamethoxam, Thiacloprid, Dinetofuran, Flubendiamide, Cyazypyr, Spinosad, Spinotoram, gamma Cyhalothrin, 4-[[(6-Chlorpyridin-3-yl)methyl](2,2-difluorethyl)amino]furan-2(5H)-on, Thiodicarb, Avermectin, Flonicamid, Pyridalyl, Spiromesifen, Sulfoxaflor, Profenophos, Thriazophos, Endosulfan; Cotton Fungicides: Etridiazole, Metalaxyl, Quintozene; Soybean Herbicides: Alachlor, Bentazone, Trifluralin, Chlorimuron-Ethyl, Cloransulam-Methyl, Fenoxaprop, Fomesafen, Fluazifop, Glyphosate, Imazamox, Imazaquin, Imazethapyr, (S-)Metolachlor, Metribuzin, Pendimethalin, Tepraloxydim, Glufosinate; Soybean Insecticides: Lambda-cyhalothrin, Methomyl, Parathion, Thiocarb, Imidacloprid, Clothianidin, Thiamethoxam, Thiacloprid, Acetamiprid, Dinetofuran, Flubendiamide, Rynaxypyr, Cyazypyr, Spinosad, Spinotoram, Emamectin-Benzoate, Fipronil, Ethiprole, Deltamethrin, B-Cyfluthrin, gamma and lambda Cyhalothrin, 4-[[(6-Chlorpyridin-3-yl)methyl](2,2-difluorethyl)amino]furan-2(5H)-on, Spirotetramat, Spinodiclofen, Triflumuron, Flonicamid, Thiodicarb, beta-Cyfluthrin; Soybean Fungicides: Azoxystrobin, Cyproconazole, Epoxiconazole, Flutriafol, Pyraclostrobin, Tebuconazole, Trifloxystrobin, Prothioconazole, Tetraconazole; Sugarbeet Herbicides: Chloridazon, Desmedipham, Ethofumesate, Phenmedipham, Triallate, Clopyralid, Fluazifop, Lenacil, Metamitron, Quinmerac, Cycloxydim, Triflusulfuron, Tepraloxydim, Quizalofop; Sugarbeet Insecticides: Imidacloprid, Clothianidin, Thiamethoxam, Thiacloprid, Acetamiprid, Dinetofuran, Deltamethrin, B-Cyfluthrin, gamma/lambda Cyhalothrin, 4-[[(6-Chlorpyridin-3-yl)methyl](2,2-difluorethyl)amino]furan-2(5H)-on, Tefluthrin, Rynaxypyr, Cyaxypyr, Fipronil, Carbofuran; Canola Herbicides: Clopyralid, Diclofop, Fluazifop, Glufosinate, Glyphosate, Metazachlor, Trifluralin Ethametsulfuron, Quinmerac, Quizalofop, Clethodim, Tepraloxydim; Canola Fungicides: Azoxystrobin, Carbendazim, Fludioxonil, Iprodione, Prochloraz, Vinclozolin; Canola Insecticides: Carbofuran, Organophosphates, Pyrethroids, Thiacloprid, Deltamethrin, Imidacloprid, Clothianidin, Thiamethoxam, Acetamiprid, Dinetofuran, B-Cyfluthrin, gamma and lambda Cyhalothrin, tau-Fluvaleriate, Ethiprole, Spinosad, Spinotoram, Flubendiamide, Rynaxypyr, Cyazypyr, 4-[[(6-Chlorpyridin-3-yl)methyl](2,2-difluorethyl)amino]furan-2(5H)-on.

[0091] "Pest" includes but is not limited to, insects, fungi, bacteria, nematodes, mites, ticks, and the like. Insect pests include insects selected from the orders Coleoptera, Diptera, Hymenoptera, Lepidoptera, Mallophaga, Homoptera, Hemiptera, Orthroptera, Thysanoptera, Dermaptera, Isoptera, Anoplura, Siphonaptera, Trichoptera, etc., particularly Coleoptera, Lepidoptera, and Diptera.

[0092] The order Coleoptera includes the suborders Adephaga and Polyphaga. Suborder Adephaga includes the superfamilies Caraboidea and Gyrinoidea, while suborder Polyphaga includes the superfamilies Hydrophiloidea, Staphylinoidea, Cantharoidea, Cleroidea, Elateroidea, Dascilloidea, Dryopoidea, Byrrhoidea, Cucujoidea, Meloidea, Mordelloidea, Tenebrionoidea, Bostrichoidea, Scarabaeoidea, Cerambycoidea, Chrysomeloidea, and Curculionoidea. Superfamily Caraboidea includes the families Cicindelidae, Carabidae, and Dytiscidae. Superfamily Gyrinoidea includes the family Gyrinidae. Superfamily Hydrophiloidea includes the family Hydrophilidae. Superfamily Staphylinoidea includes the families Silphidae and Staphylinidae. Superfamily Cantharoidea includes the families Cantharidae and Lampyridae. Superfamily Cleroidea includes the families Cleridae and Dermestidae. Superfamily Elateroidea includes the families Elateridae and Buprestidae. Superfamily Cucujoidea includes the family Coccinellidae. Superfamily Meloidea includes the family Meloidae. Superfamily Tenebrionoidea includes the family Tenebrionidae. Superfamily Scarabaeoidea includes the families Passalidae and Scarabaeidae. Superfamily Cerambycoidea includes the family Cerambycidae. Superfamily Chrysomeloidea includes the family Chrysomelidae. Superfamily Curculionoidea includes the families Curculionidae and Scolytidae.

[0093] The order Diptera includes the Suborders Nematocera, Brachycera, and Cyclorrhapha. Suborder Nematocera includes the families Tipulidae, Psychodidae, Culicidae, Ceratopogonidae, Chironomidae, Simuliidae, Bibionidae, and Cecidomyiidae. Suborder Brachycera includes the families Stratiomyidae, Tabanidae, Therevidae, Asilidae, Mydidae, Bombyliidae, and Dolichopodidae. Suborder Cyclorrhapha includes the Divisions Aschiza and Aschiza. Division Aschiza includes the families Phoridae, Syrphidae, and Conopidae. Division Aschiza includes the Sections Acalyptratae and Calyptratae. Section Acalyptratae includes the families Otitidae, Tephritidae, Agromyzidae, and Drosophilidae. Section Calyptratae includes the families Hippoboscidae, Oestridae, Tachinidae, Anthomyiidae, Muscidae, Calliphoridae, and Sarcophagidae.

[0094] The order Lepidoptera includes the families Papilionidae, Pieridae, Lycaenidae, Nymphalidae, Danaidae, Satyridae, Hesperiidae, Sphingidae, Saturniidae, Geometridae, Arctiidae, Noctuidae, Lymantriidae, Sesiidae, and Tineidae.

[0095] Nematodes include parasitic nematodes such as root-knot, cyst, and lesion nematodes, including Heterodera spp., Meloidogyne spp., and Globodera spp.; particularly members of the cyst nematodes, including, but not limited to, Heterodera glycines (soybean cyst nematode); Heterodera schachtii (beet cyst nematode); Heterodera avenae (cereal cyst nematode); and Globodera rostochiensis and Globodera pailida (potato cyst nematodes). Lesion nematodes include Pratylenchus spp., e.g. Pratylenchus penetrans.

[0096] Insect pests of the invention for the major crops include: Maize: Ostrinia nubilalis, European corn borer; Agrotis ipsilon, black cutworm; Helicoverpa zea, corn earworm; Spodoptera frugiperda, fall armyworm; Diatraea grandiosella, southwestern corn borer; Elasmopalpus lignosellus, lesser cornstalk borer; Diatraea saccharalis, surgarcane borer; Diabrotica virgifera, western corn rootworm; Diabrotica longicornis barberi, northern corn rootworm; Diabrotica undecimpunctata howardi, southern corn rootworm; Melanotus spp., wireworms; Cyclocephala borealis, northern masked chafer (white grub); Cyclocephala immaculata, southern masked chafer (white grub); Popillia japonica, Japanese beetle; Chaetocnema pulicaria, corn flea beetle; Sphenophorus maidis, maize billbug; Rhopalosiphum maidis, corn leaf aphid; Anuraphis maidiradicis, corn root aphid; Blissus leucopterus leucopterus, chinch bug; Melanoplus femurrubrum, redlegged grasshopper; Melanoplus sanguinipes, migratory grasshopper; Hylemya platura, seedcorn maggot; Agromyza parvicornis, corn blot leafminer; Anaphothrips obscrurus, grass thrips; Solenopsis milesta, thief ant; Tetranychus urticae, twospotted spider mite; Sorghum: Chilo partellus, sorghum borer; Spodoptera frugiperda, fall armyworm; Helicoverpa zea, corn earworm; Elasmopalpus lignosellus, lesser cornstalk borer; Feltia subterranea, granulate cutworm; Phyllophaga crinita, white grub; Eleodes, Conoderus, and Aeolus spp., wireworms; Oulema melanopus, cereal leaf beetle; Chaetocnema pulicaria, corn flea beetle; Sphenophorus maidis, maize billbug; Rhopalosiphum maidis; corn leaf aphid; Sipha flava, yellow sugarcane aphid; Blissus leucopterus leucopterus, chinch bug; Contarinia sorghicola, sorghum midge; Tetranychus cinnabarinus, carmine spider mite; Tetranychus urticae, twospotted spider mite; Wheat: Pseudaletia unipunctata, army worm; Spodoptera frugiperda, fall armyworm; Elasmopalpus lignosellus, lesser cornstalk borer; Agrotis orthogonia, western cutworm; Elasmopalpus lignosellus, lesser cornstalk borer; Oulema melanopus, cereal leaf beetle; Hypera punctata, clover leaf weevil; Diabrotica undecimpunctata howardi, southern corn rootworm; Russian wheat aphid; Schizaphis graminum, greenbug; Macrosiphum avenae, English grain aphid; Melanoplus femurrubrum, redlegged grasshopper; Melanoplus differentialis, differential grasshopper; Melanoplus sanguinipes, migratory grasshopper; Mayetiola destructor, Hessian fly; Sitodiplosis mosellana, wheat midge; Meromyza americana, wheat stem maggot; Hylemya coarctata, wheat bulb fly; Frankliniella fusca, tobacco thrips; Cephus cinctus, wheat stem sawfly; Aceria tulipae, wheat curl mite; Sunflower: Suleima helianthana, sunflower bud moth; Homoeosoma electellum, sunflower moth; zygogramma exclamationis, sunflower beetle; Bothyrus gibbosus, carrot beetle; Neolasioptera murtfeldtiana, sunflower seed midge; Cotton: Heliothis virescens, cotton budworm; Helicoverpa zea, cotton bollworm; Spodoptera exigua, beet armyworm; Pectinophora gossypiella, pink bollworm; Anthonomus grandis, boll weevil; Aphis gossypii, cotton aphid; Pseudatomoscelis seriatus, cotton fleahopper; Trialeurodes abutilonea, bandedwinged whitefly; Lygus lineolaris, tarnished plant bug; Melanoplus femurrubrum, redlegged grasshopper; Melanoplus differentialis, differential grasshopper; Thrips tabaci, onion thrips; Franklinkiella fusca, tobacco thrips; Tetranychus cinnabarinus, carmine spider mite; Tetranychus urticae, twospotted spider mite; Rice: Diatraea saccharalis, sugarcane borer; Spodoptera frugiperda, fall armyworm; Helicoverpa zea, corn earworm; Colaspis brunnea, grape colaspis; Lissorhoptrus oryzophilus, rice water weevil; Sitophilus oryzae, rice weevil; Nephotettix nigropictus, rice leafhopper; Blissus leucopterus leucopterus, chinch bug; Acrosternum hilare, green stink bug; Soybean: Pseudoplusia includens, soybean looper; Anticarsia gemmatalis, velvetbean caterpillar; Plathypena scabra, green cloverworm; Ostrinia nubilalis, European corn borer; Agrotis ipsilon, black cutworm; Spodoptera exigua, beet armyworm; Heliothis virescens, cotton budworm; Helicoverpa zea, cotton bollworm; Epilachna varivestis, Mexican bean beetle; Myzus persicae, green peach aphid; Empoasca fabae, potato leafhopper; Acrosternum hilare, green stink bug; Melanoplus femurrubrum, redlegged grasshopper; Melanoplus differentialis, differential grasshopper; Hylemya platura, seedcorn maggot; Sericothrips variabilis, soybean thrips; Thrips tabaci, onion thrips; Tetranychus turkestani, strawberry spider mite; Tetranychus urticae, twospotted spider mite; Barley: Ostrinia nubilalis, European corn borer; Agrotis ipsilon, black cutworm; Schizaphis graminum, greenbug; Blissus leucopterus leucopterus, chinch bug; Acrosternum hilare, green stink bug; Euschistus servus, brown stink bug; Delia platura, seedcorn maggot; Mayetiola destructor, Hessian fly; Petrobia latens, brown wheat mite; Oil Seed Rape: Brevicoryne brassicae, cabbage aphid; Phyllotreta cruciferae, Flea beetle; Mamestra configurata, Bertha armyworm; Plutella xylostella, Diamond-back moth; Delia ssp., Root maggots.

Methods for Increasing Plant Yield

[0097] Methods for increasing plant yield are provided. The methods comprise providing a plant or plant cell expressing a polynucleotide encoding the pesticidal polypeptide sequence disclosed herein and growing the plant or a seed thereof in a field infested with a pest against which said polypeptide has pesticidal activity. In some embodiments, the polypeptide has pesticidal activity against a lepidopteran, coleopteran, dipteran, hemipteran, or nematode pest, and said field is infested with a lepidopteran, hemipteran, coleopteran, dipteran, or nematode pest.

[0098] As defined herein, the "yield" of the plant refers to the quality and/or quantity of biomass produced by the plant. By "biomass" is intended any measured plant product. An increase in biomass production is any improvement in the yield of the measured plant product. Increasing plant yield has several commercial applications. For example, increasing plant leaf biomass may increase the yield of leafy vegetables for human or animal consumption. Additionally, increasing leaf biomass can be used to increase production of plant-derived pharmaceutical or industrial products. An increase in yield can comprise any statistically significant increase including, but not limited to, at least a 1% increase, at least a 3% increase, at least a 5% increase, at least a 10% increase, at least a 20% increase, at least a 30%, at least a 50%, at least a 70%, at least a 100% or a greater increase in yield compared to a plant not expressing the pesticidal sequence.

[0099] In specific methods, plant yield is increased as a result of improved pest resistance of a plant expressing a pesticidal protein disclosed herein. Expression of the pesticidal protein results in a reduced ability of a pest to infest or feed on the plant, thus improving plant yield.

[0100] The following examples are offered by way of illustration and not by way of limitation.

EXPERIMENTAL

Example 1

Discovery of Novel Pesticidal Genes from Bacillus thuringiensis Having Homology to Pesticidal Genes

[0101] Novel pesticidal genes were identified from the bacterial strains listed in Table 1 using the following steps: [0102] Preparation of extrachromosomal DNA from the strain, which includes plasmids that typically harbor delta-endotoxin genes [0103] Mechanical shearing of extrachromosomal DNA to generate size-distributed fragments [0104] Cloning of .about.2 Kb to .about.10 Kb fragments of extrachromosomal DNA [0105] Outgrowth of .about.1500 clones of the extrachromosomal DNA [0106] Partial sequencing of the 1500 clones using primers specific to the cloning vector (end reads) [0107] Identification of putative toxin genes via homology analysis via the MiDAS approach (as described in U.S. Patent Publication No. 20040014091, which is herein incorporated by reference in its entirety) [0108] Sequence finishing (walking) of clones containing fragments of the putative toxin genes of interest

TABLE-US-00001 [0108] TABLE 1 Amino Molecular Nucleotide acid Gene weight SEQ ID SEQ ID name Strain (Da) Closest homolog NO NO axmi190 ATX12995 73761 37.9% Axmi143 1 28 axmi191 ATX12995 58498 27.7% Cry36Aa1 2 29 axmi192 ATX12995 90190 64.9% Cry20Aa1 3 30 axmi193 ATX12995 35179 43.7% Mtx2 4 31 axmi194 ATX24031 34428.86 22% Cry55Aa 5 32 axmi195 ATX24031 27107 45.6% Axmi194 6 33 axmi196.sup.5 ATX24031 161013 46.2% Cry5Aa1 7 34 axmi196 ATX24031 35% Cry13Aa1_trunc 35 (truncated) axmi197 ATX28233 40196.37 38.2% Axmi019 8 36 axmi198 ATX28233 43908 74.9% Axmi072 9 37 axmi199 ATX28233 40145 60.3% Axmi197 10 38 axmi200.sup.1 ATX15076 77098 40.8% Axmi134_trunc 11 39 axmi201.sup.2 ATX15076 64361 85.9% Axmi084 12 40 axmi202 ATX12978 72115 17.3% Mtx2 13 41 axmi203 ATX27776 110587 21.5% Axmi148 14 42 axmi203 43 (truncated) axmi204 ATX13053 65491 34.5% Axmi191 15 44 axmi206 ATX27753 63317 28.7% Axmi182 16 45 axmi207 ATX4846 146032 86.8% Axmi134 17 46 axmi207 ATX4846 83.6% Axmi134_trunc 47 (truncated) axmi208 ATX4846 142602 92.1% Axmi134 18 48 axmi208 92.8% Axmi134_trunc 49 (truncated) axmi209 ATX4846 34633 25.3% Axmi180 19 50 axmi210 ATX13028 131083 85.4% Axmi043 20 51 axmi210 80.5% Axmi043_trunc 52 (truncated) axmi211.sup.6 ATX13048 137085 74.1% Cry7Ca 21 53 axmi211 59.1% Cry7Ca_trunc 54 (truncated) axmi212.sup.7 ATX13003 86972 33.2% Axmi035 22 55 axmi213.sup.3 ATX13003 31570 27% Cry15Aa(Bti) 23 56 axmi214.sup.4 ATX13003 32786 48.3% Axmi213 24 57 axmi215 ATX13020 148168 60.3% Axmi155 25 58 axmi215 39.7% Axmi155_trunc 59 (truncated) axmi216 ATX13020 41897 28.5% Axmi194 26 60 axmi217 ATX13020 43043 24% Axmi185 27 61 .sup.1pairs with axmi201 .sup.2pairs with axmi200 .sup.3pairs with axmi214 .sup.4pairs with axmi213 .sup.5Upon examination of the sequence of ATX24031, two overlapping open reading frames (ORFs) were identified, each with homology to endotoxin-like genes. After inspection of these ORFs and their encoded proteins, it was apparent that these two ORFs likely originated from a single ORF that had suffered a single nucleotide insertion (or larger insertion creating a single nucleotide frame-shift) in the region from nucleotide 224 to 309 from the start of the first ORF. These orfs are designated herein as ATX24031_contig4_orf1 (SEQ ID NO: 63) and ATX424031_contig4_orf2 (SEQ ID NO: 64). The full-length sequence is set forth in SEQ ID NO: 65. A composite ORF that has homology to endotoxins over its entirely can be assembled by "fixing" the insertion to create a single ORF. While it is understood that multiple solutions can be created to yield such an ORF and these solutions will differ in the region of overlap between the ORFs, one solution is provided herein, which is designated as axmi196 (SEQ ID NO: 7). .sup.6A p19/CryBP1-like gene was identified immediately upstream of axmi211. The nucleotide sequence for this gene is set forth in SEQ ID NO: 66, and the amino acid sequence is set forth in SEQ ID NO: 67. .sup.6An p19-like gene was identified immediately upstream of axmi212. The nucleotide sequence for this gene is set forth in SEQ ID NO: 68, and the amino acid sequence is set forth in SEQ ID NO: 69.

Example 2

Expression in Bacillus

[0109] The pesticidal gene disclosed herein is amplified by PCR from pAX980, and the PCR product is cloned into the Bacillus expression vector pAX916, or another suitable vector, by methods well known in the art. The resulting Bacillus strain, containing the vector with axmi gene is cultured on a conventional growth media, such as CYS media (10 g/l Bacto-casitone; 3 g/l yeast extract; 6 g/l KH.sub.2PO.sub.4; 14 g/l K.sub.2HPO.sub.4; 0.5 mM MgSO.sub.4; 0.05 mM MnCl.sub.2; 0.05 mM FeSO.sub.4), until sporulation is evident by microscopic examination. Samples are prepared and tested for activity in bioassays.

Example 3

Insecticidal activity of Axmi-191 and Axmi-192

Gene Expression and Purification

[0110] The DNA regions encoding the toxin domains of axmi-191 and axmi-192 were separately cloned into an E. coli expression vector pMAL-C4x behind the malE gene coding for Maltose binding protein (MBP). These in-frame fusions resulted in MBP-Axmi fusion proteins expression in E. coli.

[0111] For expression in E. coli, BL21*DE3 was transformed with individual plasmids. Single colony was inoculated in LB supplemented with carbenicillin and glucose, and grown overnight at 37.degree. C. The following day, fresh medium was inoculated with 1% of overnight culture and grown at 37.degree. C. to logarithmic phase. Subsequently, cultures were induced with 0.3 mM IPTG for overnight at 20.degree. C. Each cell pellet was suspended in 20 mM Tris-Cl buffer, pH 7.4+200 mM NaCl+1 mM DTT+ protease inhibitors and sonicated. Analysis by SDS-PAGE confirmed expression of fusion proteins.

[0112] Total cell free extracts were run over amylose column attached to FPLC for affinity purification of MBP-axmi fusion proteins. Bound fusion protein was eluted from the resin with 10 mM maltose solution. Purified fusion proteins were then cleaved with Factor Xa to remove the amino terminal MBP tag from the Axmi protein. Cleavage and solubility of the proteins was determined by SDS-PAGE.

Insect Bioassays

[0113] Cleaved proteins were tested in insect assays with appropriate controls. A 5-day read of the plates showed that Axmi191 and Axmi192 had activity against diamondback moth species. Axmi 191 showed stunting and Axmi192 showed severe stunting and 100% mortality.

Example 4

Construction of Synthetic Sequences

[0114] In one aspect of the invention, synthetic toxin sequences were generated. These synthetic sequences have an altered DNA sequence relative to the parent toxin sequence, and encode a protein that is collinear with the parent toxin protein to which it corresponds, but lacks the C-terminal "crystal domain" present in many delta-endotoxin proteins.

[0115] In another aspect of the invention, modified versions of synthetic genes are designed such that the resulting peptide is targeted to a plant organelle, such as the endoplasmic reticulum or the apoplast. Peptide sequences known to result in targeting of fusion proteins to plant organelles are known in the art. For example, the N-terminal region of the acid phosphatase gene from the White Lupin Lupinus albus (Genebank ID GI:14276838; Miller et al. (2001) Plant Physiology 127: 594-606) is known in the art to result in endoplasmic reticulum targeting of heterologous proteins. If the resulting fusion protein also contains an endoplasmic retention sequence comprising the peptide N-terminus-lysine-aspartic acid-glutamic acid-leucine (i.e. the "KDEL" motif (SEQ ID NO: 70) at the C-terminus, the fusion protein will be targeted to the endoplasmic reticulum. If the fusion protein lacks an endoplasmic reticulum targeting sequence at the C-terminus, the protein will be targeted to the endoplasmic reticulum, but will ultimately be sequestered in the apoplast.

Example 5

Assays for Pesticidal Activity

[0116] The ability of a pesticidal protein to act as a pesticide upon a pest is often assessed in a number of ways. One way well known in the art is to perform a feeding assay. In such a feeding assay, one exposes the pest to a sample containing either compounds to be tested, or control samples. Often this is performed by placing the material to be tested, or a suitable dilution of such material, onto a material that the pest will ingest, such as an artificial diet. The material to be tested may be composed of a liquid, solid, or slurry. The material to be tested may be placed upon the surface and then allowed to dry. Alternatively, the material to be tested may be mixed with a molten artificial diet, then dispensed into the assay chamber. The assay chamber may be, for example, a cup, a dish, or a well of a microtiter plate.

[0117] Assays for sucking pests (for example aphids) may involve separating the test material from the insect by a partition, ideally a portion that can be pierced by the sucking mouth parts of the sucking insect, to allow ingestion of the test material. Often the test material is mixed with a feeding stimulant, such as sucrose, to promote ingestion of the test compound.

[0118] Other types of assays can include microinjection of the test material into the mouth, or gut of the pest, as well as development of transgenic plants, followed by test of the ability of the pest to feed upon the transgenic plant. Plant testing may involve isolation of the plant parts normally consumed, for example, small cages attached to a leaf, or isolation of entire plants in cages containing insects.

[0119] Other methods and approaches to assay pests are known in the art, and can be found, for example in Robertson, J. L. & H. K. Preisler. 1992. Pesticide bioassays with arthropods. CRC, Boca Raton, Fla. Alternatively, assays are commonly described in the journals "Arthropod Management Tests" and "Journal of Economic Entomology" or by discussion with members of the Entomological Society of America (ESA).

Example 6

Expression of pMal Fusion Proteins

[0120] For expression in E. coli, select genes of the invention were cloned into a pMal expression vector (New England Biolabs) such that the protein was expressed in E. coli with an N-terminal fusion to maltose binding protein (MBP). A nucleotide sequence encoding a truncated variant of Axmi207 (corresponding to positions 15 through 647 of SEQ ID NO:47) was used to test for bioactivity. The truncated variant Axmi207 sequence is set forth in SEQ ID NO:62. For Axmi196, Axmi204, and Axmi209, the full length native sequence was used.

[0121] These fusion proteins were then purified by affinity chromatography as known in the art. The purified proteins were then cleaved with protease as known in the art to separate the MBP from the protein of the invention. The resulting proteins were then tested in bioassays against selected pests. The results are shown in Table 2.

TABLE-US-00002 TABLE 2 axmi207 (truncated Pest axmi196 axmi204 variant) axmi209 DBM Severe stunt Severe stunt, Severe stunt, 100% 100% 100% mortality mortality mortality CPB 100% mortality SWCB Moderate Severe stunt, Strong stunt, stunt, 50% 100% 50% mortality mortality mortality VBC Stunted Stunted ECB Moderate stunt, 50% mortality Hz Stunted Stunted FAW Stunted SCB Strong stunt Stunted SCN 100% mortality C. elegans 100% mortality Pratylenchus 40% Penetrans mortality DBM--Diamondback moth CPB--Colorado potato beetle SWCB--Southwestern corn borer VBC--Velvetbean caterpillar ECB--European corn borer Hz--Helicoverpa zea FAW--Fall armyworm SCB--Sugarcane borer SCN--Soybean cyst nematode

Example 7

Vectoring of the Toxin Genes of the Invention for Plant Expression

[0122] Each of the coding regions of the genes of the invention is connected independently with appropriate promoter and terminator sequences for expression in plants. Such sequences are well known in the art and may include the rice actin promoter or maize ubiquitin promoter for expression in monocots, the Arabidopsis UBQ3 promoter or CaMV 35S promoter for expression in dicots, and the nos or PinII terminators. Techniques for producing and confirming promoter-gene-terminator constructs also are well known in the art.

Example 8

Transformation of the Genes of the Invention into Plant Cells by Agrobacterium-Mediated Transformation

[0123] Ears are collected 8-12 days after pollination. Embryos are isolated from the ears, and those embryos 0.8-1.5 mm in size are used for transformation. Embryos are plated scutellum side-up on a suitable incubation media, and incubated overnight at 25.degree. C. in the dark. However, it is not necessary per se to incubate the embryos overnight. Embryos are contacted with an Agrobacterium strain containing the appropriate vectors for Ti plasmid mediated transfer for 5-10 min, and then plated onto co-cultivation media for 3 days (25.degree. C. in the dark). After co-cultivation, explants are transferred to recovery period media for five days (at 25.degree. C. in the dark). Explants are incubated in selection media for up to eight weeks, depending on the nature and characteristics of the particular selection utilized. After the selection period, the resulting callus is transferred to embryo maturation media, until the formation of mature somatic embryos is observed. The resulting mature somatic embryos are then placed under low light, and the process of regeneration is initiated as known in the art. The resulting shoots are allowed to root on rooting media, and the resulting plants are transferred to nursery pots and propagated as transgenic plants.

Example 9

Transformation of Maize Cells with the Toxin Genes of the Invention

[0124] Maize ears are collected 8-12 days after pollination. Embryos are isolated from the ears, and those embryos 0.8-1.5 mm in size are used for transformation. Embryos are plated scutellum side-up on a suitable incubation media, such as DN62A5S media (3.98 g/L N6 Salts; 1 mL/L (of 1000.times. Stock) N6 Vitamins; 800 mg/L L-Asparagine; 100 mg/L Myo-inositol; 1.4 g/L L-Proline; 100 mg/L Casaminoacids; 50 g/L sucrose; 1 mL/L (of 1 mg/mL Stock) 2,4-D), and incubated overnight at 25.degree. C. in the dark.

[0125] The resulting explants are transferred to mesh squares (30-40 per plate), transferred onto osmotic media for 30-45 minutes, then transferred to a beaming plate (see, for example, PCT Publication No. WO/0138514 and U.S. Pat. No. 5,240,842).

[0126] DNA constructs designed to express the genes of the invention in plant cells are accelerated into plant tissue using an aerosol beam accelerator, using conditions essentially as described in PCT Publication No. WO/0138514 After beaming, embryos are incubated for 30 min on osmotic media, then placed onto incubation media overnight at 25.degree. C. in the dark. To avoid unduly damaging beamed explants, they are incubated for at least 24 hours prior to transfer to recovery media. Embryos are then spread onto recovery period media, for 5 days, 25.degree. C. in the dark, then transferred to a selection media. Explants are incubated in selection media for up to eight weeks, depending on the nature and characteristics of the particular selection utilized. After the selection period, the resulting callus is transferred to embryo maturation media, until the formation of mature somatic embryos is observed. The resulting mature somatic embryos are then placed under low light, and the process of regeneration is initiated by methods known in the art. The resulting shoots are allowed to root on rooting media, and the resulting plants are transferred to nursery pots and propagated as transgenic plants.

Materials

TABLE-US-00003 [0127] DN62A5S Media Components per liter Source Chu'S N6 Basal 3.98 g/L Phytotechnology Labs Salt Mixture (Prod. No. C 416) Chu's N6 Vitamin 1 mL/L (of 1000x Stock) Phytotechnology Labs Solution (Prod. No. C 149) L-Asparagine 800 mg/L Phytotechnology Labs Myo-inositol 100 mg/L Sigma L-Proline 1.4 g/L Phytotechnology Labs Casaminoacids 100 mg/L Fisher Scientific Sucrose 50 g/L Phytotechnology Labs 2,4-D (Prod. No. 1 mL/L (of 1 mg/mL Stock) Sigma D-7299)

[0128] Adjust the pH of the solution to pH to 5.8 with 1N KOH/1N KCl, add Gelrite (Sigma) to 3 g/L, and autoclave. After cooling to 50.degree. C., add 2 ml/L of a 5 mg/ml stock solution of Silver Nitrate (Phytotechnology Labs). Recipe yields about 20 plates.

[0129] All publications and patent applications mentioned in the specification are indicative of the level of skill of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

[0130] Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.

Sequence CWU 1

1

7011922DNABacillus thuringiensis 1ttggaaatta aaattggaag cggaggaaca tatatgaatc catataacaa cgaaagctat 60gaaattattg atttaaatac ttcaccttat ccttctaaca gaaataattc taggtatcct 120tatgcaaatg cttgcggttt tccagaaaac gtagattgga cagcaggcgc aagtgcaatg 180ataattgtag ctggtacttt attaagtgct ataggttcag gaggagtagg tatagttgct 240gcaggtatta tatcagttgg tacactattc cctttttttt ggcctcaaga taagcctact 300gcacaagtat ggaaagattt tattaaacaa ggggatacta taactaataa aacaatatca 360gcagccgtag aatctctagt actcgcagaa ttaaatggtt taaaatctat acttgatgtt 420tatactgatg ctttagaact ttggaaaaaa gataaaaata atatagtcaa tagagacaat 480gtaaaaagta tttttacaaa tttacatcta caatttgtag ccgctatgcc aaaatttgca 540acaaatggtt atgaagtaat attattatct acttacacag cagctgcact tcttcatatt 600acttttttac atgaagctct tcaatatgca aatgaatgga atttagctcg aagtgaagga 660accttctatc gtggacaatt aattcaagca atagaaaact acattaatta ttgtgaaaaa 720tggtatcgtg aaggtttaga gatacttaaa aattctactt gggatatata tgctgcgtat 780caaaatgaat acactctaag tatattaaat gttatttcaa tttttccaag atttgatata 840cgtaatttcc ctacaaatat agcaactcga ttagaatcta cacaaaaact ttatacaaca 900acaccaaata tgaaagcatt aaaaacaaat aactcaattg attatataaa agataaactt 960atacctcctt tagatttatt taaaaaatta aaaagtttaa ctttttatac atttttagat 1020agcaataacc aatatgatca tttacaaggt attgtaaata atagttatta tactaatatt 1080tccactaaca aaatcttttc ttctggaact accgaaggta gttcatatca actaggtttg 1140gcttctgatc aagttattta ctacactgac atcttccatc atctaaatca aagtaatttt 1200aaggatggtt cccttggaat taaaataatt aattttaata ttataaataa atataatgag 1260gtttctcaaa aatcttatga ttctaatgca acaagtaatc taatactaga agttatatta 1320ccttttctaa aaacaactga gaaagattat aaatatattt tatcttatat tacaataact 1380ccacagcaga tagtaggatg tctaagtcct agttatatat atggatttat ttggacacat 1440agtagtgtta atcttaacaa tactattcat tatacaaata aaaataattt ttctcaaatt 1500acacaaattt ctgcagtaaa agcatatctg aaaaaagatc gagtttcagt tatagaagga 1560ccaggtcata caggcggaga tttagttaaa tttacacaat gggatgattc aatttcaact 1620cattatcaat ttactagcag tggtgaatat aaaatacgtg tccgatatgc ttctactgct 1680caagttaatc aaaccagcgg acttagtatg acgatatacc ataaaggaaa tcctacagaa 1740acatgggatt taaacataaa taacaaatca gatacaatac ttaatttaaa tgaaccaaaa 1800tacaatcatt ttcaatacac agaatttcca aataaaactc ttataataaa taaagaccca 1860aattctccat acttagaact aagaatagac ttaagctata aaggaaatac tgcaacaact 1920ct 192221518DNABacillus thuringiensis 2atgaatggaa atggaaaaca tgataactgg aatcacaatc aacaaatatc aaatgtccaa 60atgaaccaca atcatggtag atcatatgat tgcagttgtc aacaaaatca gtatgggtat 120gagcaacaaa aacagcagta tgaacagaat aacagccaat atatgcagaa taatctggga 180aacgaaaata ggaatggatt gtatccttat caagaaaatc aatatgaaca aaataagaat 240tattatgcat caaacaattt aacatataat cagtctgatt tgtataattc taatcctcaa 300aatatgtata aacatcaaac atattctaat gatttttatt gttctcctag ctatacagca 360ggtgaaaata atatattaga tctattaggt acagaaagta aacaattcca aaaaatttca 420aatataaata ctaaagattt acatcgaagt ataactgcga gcaatactca aattggttat 480caaattgata ctcgtgttcc aggaccatgt aaaggtgtag attatcaaaa cacagtaacc 540tatgaacaaa attcaatagg tggcgattcc caatacttga ttttttataa aacggattat 600actgatgcat ttattattgc gaatagagca aatggtcgag ttttagaagt aatacctagt 660tcagttaatg gttttgtaac aatttctaat atgtttactt ataatcaaaa tcaacttttt 720attcgtacta aaatatcaaa taatgataat tcagatgatg ttccattttc tttaacaaca 780gaaaacaatc aaacattaaa catatgccat catgaatttc aatataatac taaaattaca 840gctcttgata atgcatatcg tttggatgat aaggttttat ttaaaccaac tagagataaa 900atcaacatat catttccaaa tatggtagtg aatgcgaagg agaaattacc agaacccgag 960gaattaacaa atatggataa gaatactctt tttataccga aagtgattat aagtaaaacg 1020ttaattccag gtataattgt aaacgatgta actttattaa aggagcaaca aatagcaaaa 1080agtccatatt atgtattaga atatgttcaa tcttgggaag aagtgtataa tgaaatagta 1140cctgcttata gaccttcgta tacttggact tcaacagatg gaattagaca cgttaatcta 1200ttagatataa agaatactat aaatatatca ataggtggaa ctagtcaagg ctggggatta 1260agatttagtg ataaatcaga tctttttaaa aacataatta catcagcatt cattataaaa 1320tcaacacaag ctccagatat gggattcagt gagaatgata tagatcagta ctatggtaag 1380aatattgaca gtagagttaa aatatatata aaaacccata atttaatatt aagacgttta 1440gatcaattga acaattcaat agctacatgg acaatatttg agaatacaaa acctgttata 1500agaacgtttc caattagt 151832337DNABacillus thuringiensis 3atgaaggata aaaaatactg gaaatacgag ggaggaacca aaatgaatcc ttatcagaat 60aagaatgaat atgaaatagt aaataatccg caaaattata atactgtttc caatagatat 120ccttacacga atgatccaaa tgttgcaata caaaatacga attataaaga ttggatgaat 180gggtatgaag aaattaatcc ttcttcaata tcgttaattt tagcttcaat aggaattctt 240aatcaagcaa ttgctttaac tggagtatta ggtaagacac cagaaattat taacatagta 300caagaaatgg tgggattaat tagcgggagt acaggcaatg atttattagt acatacagaa 360caacttattc aacaaacttt agcacaacag tatagaaacg cagcaaccgg agcggtgaat 420gctatatcta aatcatacaa tgattatttg atgtttttta ggcaatggga acgtaataga 480acttctcaaa atggactaca agtagagagt gcttttaata ctgttaatac tttatgtctt 540cgtactttaa ctcctcagga agcactttct cgcagaggat ttgaaactct tttattacca 600aactatgcac tagcggcaaa tttccatttg ttattattaa gagatgctgt tctttataga 660actcagtggt tacctaattt tatttcaact acaaatgcga atattgaaat attggaaagg 720tccataaatc aatatcgtaa tcattgtaat cattggtaca atgacggctt aaatagattt 780gcacgtacat cttttgatga ttgggttcgg tttaatgctt atcgtagaga tatgacgtta 840tcggtattag attttgttac agtatttcca acttataatc ctataaactt tccaacacca 900acaaatgttg aattgactag aatcgtttat accgatccaa taagtccacc tagaggatat 960gcaagaactg gctcacctag ttttcgtcaa atggaagatc taattatttc cggtagccct 1020agtttcttga atcaattaag tatatttaca acttattatc atgatcctcg taatgtaaat 1080agagactttt gggccgggaa tcggaattat ttaagcaatg ggacttctcg acagtctgga 1140gctaccacac cttggcgaac taatatacct atgcaaaaca ttgatatttt cagagtaaat 1200ctaactactc atgacattga tgatatatca cgaagttatg gaggagttca tagatctgat 1260ttcattggtg taaatacaat aaataatcaa agaacaacat tgttctatca ccaaaatgtg 1320gatacttccc gttttctaat aaggaatgaa acagtatttt taccagggga ttccggctta 1380gcaccaaatg aacgtaatta tactcacagg ttatttcaag tgatgaccac atatcgtact 1440aacccgaatg ctcgtagggc agctttttta catgcatgga cgcatagaag tttaagacgt 1500agaaatggat ttaggacgga tcagattatg caaatacctg ctgtgaagag cataagtaat 1560ggtggtgatc gtgcagtcat atcctatact ggagaaaata tgatgaaatt agataactta 1620actgcaagtt tatcctataa attaacagcg gaggattccg aagcatcgaa tacacgtttt 1680atagtgcgta ttcgttatgc tagtatgaac aataatagat tgaatcttat tttaaatggt 1740actcagatag catcgctgaa tgtggaaggt acaatgcaaa atggcggatc attaacaaat 1800cttcaatctg aaaattttaa atatgctaca ttttcaggta atttcaagat gggttctcag 1860tctatagtag gtatttttaa agagatatct aatgcagact ttattttaga taaaattgaa 1920ttgattccaa ttcattttat gccattatta gaacaaaaac aaagctacaa caattacgac 1980caaaacatgg atactacata tcaaccaaac tatgacactt ataatcaaaa tgccaatggt 2040atgtatgacg atacatacta tccaaataat aatgatagtt ataatcaaaa taataccgat 2100atgtatgatt caggctacaa taacaaccaa aatactaact ataattatga tcaagaatat 2160aatacttaca atcaaaatat ggaaaatacg tatgaccaat cgtatgaaaa ttacaatcca 2220gaaaccaaca attacaacca ataccctaat gatatgtaca atcaagagta tactaacgac 2280tacaaccaaa actccggctg caggtgtaac caagggtata ataataatta ccctaaa 23374966DNABacillus thuringiensis 4atgaatttct tgtacaattt tgtgacatta gatatgctaa tattaaatag attagaagga 60agtgatttta aaatgaagaa aaaagcaata gtgtgtggct tactagctag tactttatta 120ggcggcggta cttttgtaga tgctgtgagt gcggctgaaa ttcaaaaaac taatcattta 180aacaagtatg atagtgcaca agagaaagct ctacaagata ttaaccaaga agcgttacaa 240gatattgatc aaaaagtcaa taagatgatt gattctatcc cacccatttt tggatcaaaa 300tatacacgta cagatcgcta cggtgaaagt cttacttatt caggaataaa tctaaaagaa 360aataatagta caaatgttga accgatgtac tttggttcaa atacatttta taacgataca 420gagctagaac aatcctataa cactacttct tttagtgaag ctgttactaa atcaactact 480actcaaacac aaaatggatt taaatcaggt gtaactacag gaggaaaggt tgggatacct 540tttgtagctg aaggtgaagt gaaaatcaat cttgaatata attttacaca caccaattca 600aatactacta gcaagactac aactttaaca gcccctccac aacctgttaa ggttcctgca 660ggtaaagttt ataaagcaga cgtttatttt gaaaagaaat ctacttcggg tacggttgaa 720ctttatggag atctccttac aggtgtagta gccgagggaa ggacatcatt tgtaggtaac 780gtattacata aggcaactga tacacaaggg ctaattcaat ctcctgagga ttcaaataaa 840gttcgtgcgg ttggaaaagg aacgttcacc actgaacatg gctcaaactt tatcgtcaaa 900acatatgatg taacatcagg gcaaaaatcc gcaaaattgg tagatactag agtaatacct 960ataaaa 9665969DNABacillus thuringiensis 5atgaatttaa ggaggatttc tatgagagtt tataaaaaat tagcaacgtt ggcacctatt 60gctgcattaa gtacatccat tttatgttct cctgcaatga catttgcagc agaaaaagaa 120tcaacagtga aacaaaccac acaacaaagt gcggttcaac aaggtcgtat cattcaaggg 180tatcttatta aaaatggtgt gaaaatacca gtttatacag gtggattagt aacaaataag 240gctgaacaag gtgcagcagc atttccacaa ttgtcttcca atcctaatga tcctatccct 300caaaaaggtt ctatttcatc tgaagatgga aatattggag atattttata tttttctaaa 360actccaatgg gagataatgt ttatataaaa aaacttgaga ataacaacat tgaaattgga 420aaatataatc gaggcacttt agaattatcg aaatttgtga cagttaatgg agatccacag 480ggacctataa tgttatttga tgctacggta aaacgtgaaa cggcatttga aaaaattggt 540ggtgctgtac aaccaaaggc aacacaatat acttttagtc aagcggtaac atccggttta 600tcaacatcag atgcgattgg cggttcatta acattaggat ataaaatatc gcttaaagaa 660ggtggcggag tagtaccagc cgaagcaaca caggaattta gtacacaatt aagtgctaca 720tataatcata caattacagt gacaaaccaa acaacgaata cacaaacaca aacctttaaa 780cctatagaca gttatggaca atcaacctat gcagctgctg tgtatcaatt aaaatctcat 840tatacggtga ttccaggagc aggattacag aagggattaa atagtggata tgtgttagat 900caaacagcgt tttcatatag cgattctgat ttatatctag ctgtaacacc aggagcaggt 960tcaaatgta 9696756DNABacillus thuringiensis 6ttgatcacta atcaagcagc acaagcaagt gatgcaccct atccagaatt accatcgaat 60ccgaatgatg cgattccaaa tgccggggcc actcatgctg aaaatggaag tgtaggttcg 120gttttatatt ttaaacagat agatttaaat aatctgggag ctggcatagg aaatagtcaa 180aaagattatg tttacgtaga aaaaaaaggt gattctggat atgaattagg aaattacaat 240ccgttaactt tacaaagaac taaaattaaa gattatgata aatccagtga acttgcagaa 300aagatggatg gctattttaa aagtacaatt acacgagata ctttttttag taaaatcgga 360tctggtgtcg taccaaaaaa tgcagcgtat acctttagtc aagcagttac atccggttta 420actacatcag atgcgattgg gggtgcgcta acactcggat ataaagtaag tgttacagaa 480ggcggaggaa tattcccagc tgcagcgtca gaagaattta gtgcacaatt aacagcaact 540tataatcata cgattactgt ttccagccaa gtaacaaata ctcaaacatt gggcattaca 600aaagctgcag atggctatca atatgataaa tatgtaggcg ctgtatatca attgcattcc 660aagtatacat ttaaacctag tgatgaatta caatttgcaa tgaattcacc ttttggatat 720aaggtaattc ttaatcaacg agcacaatca ttccaa 75674323DNABacillus thuringiensis 7atgacaacaa taaatgaatt atatccggct gtaccttata atgtactggc atatgctcca 60ccacttaatt tagctgattc gacaccatgg ggtcaaatag ttgttgctga tgcaattaaa 120gaagcttggg ataattttca aaaatatggt gtattagatt taacagctat aaatcaaggg 180tttgatgatg caaatacagg ttcttttagt tatcaagctt taatacaaac tgttttgggt 240attataggta caattggtat gacagttcct gtggctgctc catttgcagc tacagcgcct 300attattagtt tatttgtagg atttttttgg cctaaaaaag ataagggacc acaattaatc 360gatataattg ataaagaaat taaaaaatta ttagataagg aattaggaga gcaaaaacgt 420aatgatttag ttagtgcttt aaatgagatg caagagggag caaatgagtt aagtgatatt 480atgactaatg cactttttga aggtactata cagggaaatg ttgttactaa tgataaccct 540caaggtaaaa ggcgaactcc taaagctcca acagttagtg attatgagaa tgtttattcg 600gcatattttg tggaacatgt ggattttaga aacaaaatat ctacgtttct tactggttct 660tatgatctta tagcactccc attatatgca ttagcaaaaa caatggagct ttcattgtat 720caatcattta ttaattttgc taataaatgg atggattttg tatatacaaa agcaattaat 780gaatcagcaa ctgatgatat gaaaagagat tatcaagcga gatacaatac tcaaaaaagt 840aatttagctg tacaaaaaac acaattgatt aacaaaatta aagatggtac agatgctgtt 900atgaaagttt ttaaagatac caataattta ccttcaatag gtactaataa attagcagta 960aatgctcgta ataagtatat tagggcctta caaataaatt gtttagattt agttgctttg 1020tggcctggct tatatccaga tgaatatctt ttaccattac aattagataa aacacgtgtt 1080gtattttctg atacaatggg acctgatgaa acacatgatg gtcaaatgaa agttttaaat 1140atattagact caactacaag ttataaccat caagatatag gaataagtac aactcaagat 1200gtaaattctt tattatttta tccaagaaaa gaactgttag aattagattt tgctaaatat 1260atttcatcta gtagtcgttt ttgggtttat ggatttggct taaaatattc agatgataac 1320ttttatagat atggtgataa cgatccaagc agtgatttta aacctgcata taagtggttt 1380acgaaaaatt cccagttcga aaaccttcct acttatggaa atcctactcc tattactaat 1440ttaaatgcta aaactcaagt aacttcttat cttgatgcat taatatatta tatagacgga 1500ggaactaatc tatataataa tgcgattctt catgatacag ggggttatat tccgggatat 1560ccaggtgtag aaggatatgg tatgagtaat aatgaacctt tagcaggaca aaaattaaat 1620gctttatatc ctataaaagt ggaaaatgta agtggttcac aaggaaaatt aggaacaata 1680gcagcttatg ttcctttaaa tttacaacca gaaaatatta ttggtgatgc tgatccgaat 1740acaggttttc cccttaatgt aattaaagga tttccatttg aaaaatatgg acctgattat 1800gagggacgag gaatttcggt tgtaaaagaa tggataaatg gtgcaaatgc tgtaaaattg 1860tctccaggtc aatcagttgg ggtacaaatt aaaaatataa caaaacaaaa ttatcaaatt 1920cgtactcgtt atgcaagtaa taacagtaat caagtatatt ttaatgtaga tccaggtgga 1980tcaccattat ttgcacaatc agtaacattt gaatctacaa caaatgttac aagtggccaa 2040caaggcgaaa atggtagata tacattaaaa actatttttt ctggtaatga tctacttaca 2100gtagaaatcc ctgttggaaa tttttatgtg catgttacga ataaaggatc ttctgatatc 2160tttttagatc gtcttgagtt ttctacagtt ccttcatatg ttatatattc aggtgattat 2220gatgctacag gtacagatga tgtcttattg tcagatccac atgagtattt ttatgatgtc 2280atagtgaatg gtactgctag tcattctagt gcagctactt ctatgaattt gctcaataaa 2340ggaaccgtag taagaagcat tgatattcca ggtcactcaa cgtcttattc tgtacagtat 2400tcagttccag aaggatttga tgaagttaga attctcagtt ctcttccgga tattagtgga 2460actataagag tagaatctag taaaccacct gtatttaaga atgatggtaa tagtggtgat 2520ggtggtaata ctgaatataa ttttaatttt gatttatcag gattgcaaga tactgggctt 2580tattctggta aacttaaatc tggtattcgt gtgcaaggta attacactta cacaggtgct 2640ccatctttaa atctggttgt ttacagaaat aatagtgttg tatccacttt tccagtaggt 2700tctccttttg atatcactat aacaacagaa actgataagg ttatcctttc attacaacct 2760caacatgggt tggcaacagt tactggtact ggcacaataa caattcctaa tgataaatta 2820gcaattgttt atgataagtt atttaaatta ccacatgatt tagaaaatat aagaatacaa 2880gtaaatgcat tattcatatc gagtacacaa aatgaattag ctaaagaagt aaatgaccat 2940gatattgaag aagttgcatt gaaagtagat gcattatcgg atgaagtatt tggaaaagag 3000aaaaaagaat tacgtaaact ggtcaatcaa gcgaaacgtt taagtaaagc acgaaacctt 3060ctggtaggag gcaattttga taattgggaa gcttggtata aaggaaaaga agttgcaaga 3120gtatctgatc atgaattatt gaagagtgat catgtattat taccgcctcc aactatgtat 3180ccatcctata tatatcaaaa agtagaagaa acaaaattaa agccaaatac tcgttatatg 3240atttctggtt tcatcgcaca tgcggaagat ttagaaattg tggtttctcg ttatgggcaa 3300gaagtaagga aaatagtgca agttccatat ggagaagctt tcccattaac atccaatgga 3360tcaatttgtt gtacaccaag ttttagacgt gatggaaaac tatcagatcc acatttcttt 3420agttatagta ttgatgtagg tgaactggat atgacggcag gtccaggtat tgaattggga 3480cttcgtattg tagatcgatt aggaatggcc cgtgtaagta atttagaaat tcgtgaagat 3540cgttctttaa cagcaaatga aatacgaaaa gtgcaacgta tggcaagaaa ttggagaacc 3600gaatatgaga aagaacgtgc agaagtaaca gcattaattg aacctgtatt aaaccaaatc 3660aatgcgttat atgaaaatgg agattggaat ggttctattc gttcagatat ttcgtactac 3720gatatagaat ctattgtatt accaacatta ccaagattac gtcattggtt tgttcctgat 3780atgttaactg aacatggaaa tatcatgaat cgattcgaag aagcattaaa tcgtgcttat 3840acacagctgg aaggaaatac actattgcat aacggtcatt ttacaacaga tgcggtaaat 3900tggatgatac aaggagatgc acatcaggta atattagaag atggtagacg tgtattacga 3960ttaccagact ggtcttcgag tgtatcccaa acaattgaaa tcgagaaatt tgatccagat 4020aaagaataca acttagtatt tcatgcgcaa ggagaaggaa cggttacgtt ggagcatgga 4080gaaaaaacaa aatatataga aacgcataca catcattttg cgaattttac aacatcacaa 4140agtcaaggaa ttacgtttga atcgaataag gtgaccgtgg aaatttcttc agaagatggg 4200gaattattgg tagatcatat cgcacttgtg gaagttccta tgtttaacaa gaatcaaatg 4260gtcaatgaaa atagagatgt aaatataaat agcaatacaa atatgaataa tagcaataat 4320caa 432381092DNABacillus thuringiensis 8atgttaataa aggagatgca atatatgcat tctattaaaa aatataaaaa ggttctatta 60attgcaccac ttgcttgtat gttaacaggt gctattttac ctacagctac tacagttcat 120gcacaagagg tagaaaataa aaaagctgta tcaatgatga agccgggagg agagtttgga 180gcaactaaat attcaaaaga aaatttagta aaggaaatca atcttagatt attaacagcg 240cttgatcgtt caacaagttt gcgtgaaaaa tttcatataa agggcaacga agttttagat 300gttagtcagc ttgatgacac atctaaacaa ttaatggaga aattacaatt aacagctgaa 360ggatcaattg atgtgaaacc acatgtcgat agctataaag atcttggtca aaccaatatt 420gttacatata acaatgataa cggagtggtt ggacagacat ataacacacc agaaacaaca 480gtaaaagaat ctgaaactca tacctactcg aatacagaag gggtgaaatt aggactcgag 540gtaggaacaa aaattacagt tggaattcca tttatcggaa aagatgaaac agaaataaaa 600gcaacatccg aattttctta tgaacataat gattcacaaa caaaaacgaa agaaactgat 660gttacgttta aatcccaacc agtagttgcc gctccaggtg gaacaaccac ttattatggt 720gatattaaaa cagcaacatt ttctggatca tttcaaagtg atgcttatgt agcaggcggt 780ttcgaattga aagttcctat cgcacatgat atggcttcgc caaaaataga tcgttatgaa 840acggctacgc tgacagctgc agatatatat gaaattttta atgcttctaa tgcgatagca 900gcaccaaatt acttaaaact tgataacgca ggtaaaaaag ttcttcttac agacaaagca 960acttttgata taaatggaca aggtggtttt tatacaacat tacaggttaa atttgttcct 1020aaagattcta ataaaaagcc tcaaatgatg tcttataaag aatatgtaca aaaaatgaac 1080aataatgaat ta 109291182DNABacillus thuringiensis 9atgtattcta ttaaaagata taaaaaggta gcaatagtag ccccacttgt ttgtttattg 60ggaacgggac taacatttgt taataaacca ataccagctg ctgcggcagt aactacaaat 120tattctacag cagattctgc atcaaatttc caacccatta gtaaatatac tttagccgga 180gatctatatg aacgatatat gagagctcta gtaagacatc ctgaattact ttcttcaggt 240ggtttaaaac cagtaactaa tcaaacggat ctagaacaaa tcgacggata ctacaaggta 300atggctcaat tcataagaga caataatcag aattttccat ctccttttaa tagaccaagt 360atgaaattga tgactggagt taatccgttt tttaattggg ctcctcaata tactaatctt 420tctactcaaa atgtaattaa cttagataat ccaaaagtag atgattataa agaagataat 480attgaactag ctacttatac taataacaca acatcagaac aaactttttc gacgccttca 540aaatcagaaa aagtaacaga ttctttcaca

tattctaatt cagaaggtgg aaaattagga 600gtttcttcca cgactacaat tagagcggga attccaatag cgcaagctca agaaactctt 660acaatgtcat ttgaagcaac ttataatcat acaagctcga atacatcttc tactgaaaag 720acagttacat atccatctca agtactaaag tgcctaccag gatatagaac ttctttaatt 780gtaaaagtat ctcaagcgaa tttttctggt acaatggatt ttgacgttga accaactgtg 840agttcattaa tagatggtat agaaaaaaat tggaaagaca taaaagacga taagacaata 900aaaggagata aaagtggaga ttacacagtc ccaaatcgac aagaattttt atataatgtg 960tataaatatt cagatttacc aattccatct tatgttaaat tagatgataa aaagaaaact 1020gtatcatttg gaaaagttac aactccatat acaggtgtag caggtcattt atcagaagca 1080aatgcaacac aagtaaaact ggaatcactt gataaagcac agaaaccaat tattatgcct 1140ttaaaacaat atcaacaaaa aattcaaaat catgaatctt tt 1182101080DNABacillus thuringiensis 10atgcattcta ttaaaaaata taaaaaaatt ctattagttg caccacttgc ttgtatgtta 60acaggtgcta ttttacctac agctactaca gttcatgcac aagaaatcaa gggaccgggg 120gtaatgaaac ctgacgttcc gtggaatcaa gaacattata cgaaagaaaa tttagcatgg 180cgtgcagcag atagactttc ctatgctgcg gatagaattc ctagtttacg tgagaaattt 240aaattaaaac caaacgaaca tttttattgt agcaatgaca cgaggtacta tatggaagaa 300accttattaa aaaacttgca attatcagct gaaggtccaa taaatgttac accacatgta 360gatagttata ctgatttagg acaaacaaat ttattaacat ataacaatga tgatggaatt 420gtagagcaaa aggcttctac accagaaact accattaaag aatcagaaac atcttcttat 480tctaataaag aaggagttac attgggagca gaggtggaat ctaaagtaac attcaatata 540ccatttatag tagctggaga aacaaaggta atagcgaaat ccgaattttc ttatgaacat 600gatgatactc aaactaagac ccatgaaaaa gaggtaacat ttaaatcaca agagatcgtt 660gctgctccag agggaacaac tacttattat ggttcaatca aaactgccaa tttttctgga 720tcgttccaaa gtgatgctgt agtaggtggt ggtgtaacgt taacccttcc tataggagta 780atggataagg atggtgggca gaaaaaaact catacggaaa cagctacttt aactgcagaa 840gatatgtatg agattttcaa agcaccaatg ccttgggaca tgaataaatt accaccatat 900ctaaaattag atgattctgg caaaagggtg ctactggcag aaaaagcaac ctttgatata 960aagggacaag gtggttttta tacagaaata caggcaaaat ttgttccaaa agacaaaaat 1020aagaaaacac aaattatgcc atacgcagag tatgtacaga aagtaaaaca gaatgctctt 1080112028DNABacillus thuringiensis 11gtgaaaagta tgaattcata tcaaaataaa aatgaatatg aaatattgga tgcttcacaa 60aataactcta ctatgtctac tcgttatcca aggtatccac tagcaaagga tccacaagct 120tctatgcaga ctacgaatta taaagattgg ctaaatctat gcgatactcc aaatatggaa 180aatccagagt ttcaatcagt aggaagaagc gcactttcta ttctcattaa ccttagctct 240agaatattat ccttattagg tattcctttc gcagcacaaa tcgggcaact ctggagctat 300acactcaacc tactatggcc tgtggcaaat aatgctactc aatgggaaat ttttatgcgc 360accatagaag aattaattaa tgcacgcata gagacttcgg taagaaatag agcccttgca 420gagctggcag gcttaggaaa catattagag gactataagg tggttttaca acgatggaat 480ctaaatccta ctaatccaac attgcaacgc gatgtggtac gccaatttga aatcgttcat 540gccttttttc gctttcaaat gccggtcttt gctgtagatg gttttgaagt accattattg 600ccagtatatg cttcggcagc taatcttcat ttgcttttac taagggatgt tgtaattaac 660ggagctcgtt ggggcttgga atctgatgta attaacgatt atcatgacct tcaattacgt 720cttacatcaa catatgtaga ccattgcgta acttggtaca acactggatt aaacaggtta 780attggcacaa atgctagaca atgggtaact tacaatcagt tccgtaggga gatgactata 840tccgtactag atattatttc attattttct aactatgatg ttcgtagata cccaacaaaa 900acacagagcg agctaacaag gatgatttat acagatccaa taggtaccga agggaatcaa 960tttattcctg ggtgggtaga taatgcacct tctttctcgg ttatagagaa tagtgtagtt 1020cgaagcccag gagctttcac ttttctggaa agggttggta ttttcacagg gttcttacat 1080ggatggagta gccggtctga gttttggtca gcccatagat tattttctag accggttttg 1140ggttggatat gggagagtgt tatttttggc aatccccaaa ataatattgg gtatcaagaa 1200gtggatttta cgaattttga tgtatttagc attaattcta gggccacttc tcatatgttc 1260ccaaatggca gtgctagatt atttggagtt ccacgagtta catttgattt atcgaatgta 1320actaataata atctagcaca aagaacttat aacagaccat ttacttttgg cggccaggat 1380atagtgtcga gattacctgg cgaaacaaca gagataccga atagtagtaa ctttagtcac 1440agactagccc atatttcatc ttttccagta ggtaacaatg gatcagtcct ctcatatggg 1500tggacacacc gtaatgtgaa tcgtcataat agactgaatc cgaacagtat tacacagatt 1560ccagctataa agtttgctag tggttctgca cggagaggtc ctgggcatac aggtggagat 1620cttgcaattg ctcaacaaca cagtggttat cagctgttta tgcaatcgcc ttcagcacaa 1680aggtaccgtc tccgtttgcg ttatgccggt atttcgggag gtagtatttc tgtttcgcat 1740cgggacgaaa ataatcaaaa catccttcat agtgctacat tcaatgttag ggctacatca 1800ggtcagctaa gatacgccga tttcatttat acagacctag aggagaacac aacgttgttt 1860gaaactcgaa atggagtgaa tctatataga ctaatgattt ttgtttcaag tggctctata 1920ttaattgacc gaattgagta tatccctgaa aatacaacaa ctatagaata tgaggaagaa 1980cgaaatctag aaaaagaaaa gaaagcggtg gacgatttgt ttaccaat 2028121701DNABacillus thuringiensis 12gtgaataata tgtataccaa taatatgaaa actacattaa aacttgagac gacagattat 60gaaatagatc aagcggcaat ttcaatagaa tgtatgtcag atgaacaaga tctacaggaa 120aaaatgatgt tatgggatga agtaaaactt gcaaaacaac tcagtcaatc tcgtaattta 180ctctacaatg gtgattttga agattcatcc aacggctgga aaacaagtaa taatattacg 240attcaattgg agaatcctat tttaaaaggg aaatacctca atatgcctgg agcacgagac 300atatatggaa ccatatttcc aacatatgtt tatcaaaaaa tagatgaatc taaattaaaa 360cccaatacac gttatcgagt aagaggtttt gtgggaagta gtaaagatct aaaattagtg 420gtaacacgtt atgagaaaga aattgatgct agtatggatg ttccaaatga tttgtcctat 480atgcagccta gcccttcatg tggggattat ggctgtgact catcatccca gccaatgatg 540aatcaaggat atcctacacc atatacagac gactatgctt ccgatatgta tgcatgctcg 600tcaaacctag gtaaaaaaca tgtgaagtgt cacgatcgtc atccatttga ttttcatatt 660gacaccggag aattagatac aaatacaaac ttaggtattt gtatcttatt taaaatttcc 720aatccagatg gatatgctac attaggaaat ctagaagtaa ttgaagaagg accactaaca 780agcgaagcgt tagcacatgt gaatcaaaag gaaaagaaat ggaatcaaca aatggagaaa 840aagcgatcgg aaacacaaca agcctatgat ccggcaaaac aagcagtaga tgcattattc 900acaaattcac aaggagaaga gttacactat catattactt tagatcatat tcagaacgcc 960aatcagttgg tacagtcgat tccttatgta caccatgctt ggttaccgga tgccccagga 1020atgaactatg atttatataa caatttaaag gtacgtatag aacaagcacg ttatttatac 1080gatgcacgaa atgtcataac aaatggcgac tttgcacagg ggctaacggg gtggcacgca 1140acaggtaaag tagacgtaca acaaatggat ggagcttctg tattagttct atcaaactgg 1200agtgcggggg tatctcagaa tctgcatgcc caagatcatc atggatatat gttacgtgtg 1260attgccaaaa aagaaggtcc tggaaaaggc tatgtaacga tgatggattg taatggacat 1320caggaaacac tgaagttcac ttcttgtgaa gaggggtata tgacaaaaac agtagaggta 1380ttcccagaaa gtgatcgtgt acggattgaa ataggagaaa ccgaaggtac attttatata 1440gatagcatcg agttgctttg tatgcaagga tatgctagca ataatacccc acacacaggt 1500aatatgtatg agcaaagtta taatggaatt tataatcaga atacgagcga tctgtatcac 1560caagggtata caaacaacta taaccaagaa tctagtagta tgtataatca aaattatact 1620aacaatgatg accagcattc cggttgcaca tgtaaccaag ggcataattc tggctgtaca 1680tgtaatcaag gatataaccg t 1701131920DNABacillus thuringiensis 13atggaagaat tagagttaaa aagaacaaac acactatctt ctgaggatgt gaatatttta 60caaattgaaa atttagtaaa agaatatgtt aagcaaacat atggtaattc agctgaaatc 120aaaaaacttt cattagatgg gttagatgtt ttgtataatt tagatattcc ttctatttta 180aagggtactt cttcttcttc tgctattaaa gttggtactg acaatttgaa taacccaaca 240gatacagcga aaaccattaa acttccagtt aaaaatgtac gaaaaaaaga atttaaggtt 300aaacctattc aagctttaaa ttttgaaaat ggtgcaacaa tcactaaaaa aagtataact 360tcaattccta gtattaatgc tacttttata gctttggctg aacagaattt tcaaaatgca 420cattttcata tagtaaacga tagtcaatct tatgaaaatg aaatacccat ctatgtacct 480ccacattcaa aagttgaaat aacatactac gtgaaagaaa tccaatttga tgcaattatt 540cagtccactg ccacaatagg tggatccata agttttgaat atattgttca tgataatggc 600catgaaggaa tagattttct tactattttc gaattagtaa atagccttaa tctaaatgac 660tttgaaattc aggaggcatc tgatgtacat ggtaaggtag tttataaagg gaaatcccaa 720tttcagggaa ctgtaggttt aaatttattc atgcaaatca aaggaacgcc attggatgaa 780agtaaaaata actatgaatt taccaaagta ctatcagagg acgttgaaat gagtctatct 840ccgtcggagg gagaatatta tattgatttc gggtcatctc ctaaattaac aaataaagaa 900gaagtaatag ttaaatttac aagagattac cttttgtcaa atgaccgcaa aaacgcatac 960gtacaacaac taccacgtct tgaatatgga gaagaagtta ctacattaaa atctattgat 1020actgctcatg aaaggaaaga aatcatagct tctacaatta atacttttca aaatccttct 1080gatacagaga ttaccagaaa tacaataaaa gagacattta gtacaacgga tacaattact 1140accactgcta caactgataa gtttcttgaa ctgggaggaa gtatagaaac ctctgcaaaa 1200ggaaaagttc cactagtcgc agaagcatct ataaaagtta cacagagtat aaaaggtggt 1260tggaaatggg taagtacaaa aactaataca agaacaaacg tccatacaat tgaaatacca 1320tcgcaatcta ttaaaatacc tccacacaaa atgtggaaat accagtatat tctaacaaaa 1380ttcgaatcaa gtggttattt aagctcagct tgggaaataa atactaaaga atctatgtca 1440gctccggagg ttcacatagg ttactataat aaagatcttc agaatccaag aaatataacg 1500gggctatcgg caaatgttga atctggaaat gtagttggac gtgtatttga attcaataaa 1560ttccagccag gaggacttca ttacaaaata ctgaatagtg aaaatatatt aaatgcaact 1620ccttatcaat tttttaaaga attagccaaa cgtgttaatc aatacccatt aatacaaaat 1680aatcctcgct atagacgatt aggaattctt ttgggatttg gaaaggacat atctcaaatc 1740acttgggaac ctcagataca ctataatgaa catgtgttat ttgatgctga agaactatta 1800aatgttttac gttttgatga tattgccaat aaagtatatg cacttgatgg aggcacacct 1860tttacagttg ctgtaggtca tgagctacta ccaaaagagt caatagaacc attaaataat 1920142898DNABacillus thuringiensis 14gtgatgaata tgagtaatac cttagcacct tataatgttt tgagaagtat ggatatgccg 60aacatatcag gaaccaagtg ggataaagga atgtttatca atgcacttga taatacttct 120tttcttttag agcttataga aaaaggaatt aatgatgatg atgatgtgtt aggtctgtta 180agttttattg gattaacagc cttagaggca attccaattg tgggtggagt tatgtccaaa 240cttgtttcta tgatattttt ccctacaaaa tcaagcatta atttccagaa gatatgggag 300caattagaaa aagctattga acaaatagtt gacaaaaaaa taactgaagc tatgatgtct 360cagctaatgc aagaaatagc cggtttagcc gatgtattag aagaatatag gaatgcttat 420gatttatata atggtaaaaa attatttaat ataccagata agatgacacc tggggattat 480ctgatcaatg tatttactac tgcaaatttg caattcattc agagaatacc gacatttcag 540aactctatat atgatgtagt gtttcttcca ttctttgttc acgctgctga aatgcatatt 600cttctgatta gggatgcagc aatacatggt caagaatggg ggatggatga aactgtacac 660caaaaattta aaagggattt aaaaacttta attaataaat attctagtta tttattagct 720acatataaaa aaggattaaa agaagcatcc gaaaaaaaac ttgaaaataa tgattttcca 780acatctaaca accaacatca ttatattaat acagttagat ggaatgtaat caatcaatat 840aaaagaggga tggctttaac tgtttttgat tttgcttaca aatggaagta ttaccaagaa 900gtttatcaaa ataatataac gttaaatcct gctagaacaa tttattcaga tattgcaggt 960tcggtatatc cttatgaaaa aactacaaat gaaattgata atattatcaa agagcagaat 1020cttaaatatc gcggactctt aaaagaactg ctaattaatc atggggatag aatcgatagt 1080attcaaagta agtatataag gaacaatgaa ataattgata gtaacagaac tgggggggct 1140ggtggaaggg caaccttttt cgatttaaaa tctccaataa ataacccttt catacaagta 1200aatatgtggt ctgaattagt accattctct ttaggattca aatattataa tggggaggag 1260tcaaaactta tatggggagg agggacccct gggaaacata agtttggttc ttatcattat 1320gtagggaata aagtgtcttc tattatagga tttggtaaaa atggaaccgg tggattcaac 1380tctttagatg caatggtagt tggttttaaa cgagatgatt atatacctga aaatagattt 1440gttggtgtaa acaaaaatgg tgaacctgta actaaagtaa tagatgcaga gaatttctac 1500caagagaagt ttcaatcaaa tataaaaatg atagatgagc ctatgtttgg agaggcggtt 1560ttacaattcg aaaattattc taataatctt aataaggata gttatgtgac atatcaaatt 1620gatgcaaaga tagagggtac ttacgaatta catgtaatta taggtgcaaa aaaacaaaaa 1680gataaaatag cttttaaaat ggctcttaat gaaaaacagc cagaaaagtt tataactgaa 1740ccctttaatg ccggtgatat ttgggaagga atatcattga gcgaaggctt agtttataag 1800agaatattat taggaaattt ccaacttaag aaaggtatga atcgtattac tattcacaat 1860ggggtcctcc aaacatcagc aaatataaaa acatggaatt tagctaaact agagttaaca 1920ctcacttctg atagcttaaa agaccctgat attacaactt tatatgataa agataattat 1980tcaggaacaa aaaagtttat tttcgagaat acgagtcgtt taaaagactt taatgataaa 2040acatcatcaa taaaagtcga gtctcattta gctggcatta ggatttatca agattacaat 2100tataaaggta agtctatgga ccttgtaggt ggagaaaaaa taagtttaaa aaatcattca 2160tttaataaca gagcttcttc agttaaattt gctaatatcg ttttatataa ccaagataac 2220tatcagggtt caagaaaact agtttttgaa gatattcctg atttaggaaa acaaagcttt 2280aacgataaaa cctcttcaat tgttgttagt tctaatgtat ctggtgctag actatatgaa 2340catgcttatt ataaaggtaa gtatgtggat gttgttggtg gacagaaact taatttaaaa 2400aatcatgtat taaataaaaa gatttcatcc attaaatttt ttaaagaggg tgaagtactt 2460aatggtgtat atcaaattat tactgcaata aataacacga gtgtaataga taaacatcta 2520gaaaattcta acgttcattt atgggagaat gcagaaaaca aaaatcaaaa atggcgaatt 2580gagtatgatg tggctaaaaa agcttatcaa attaagaata tgttggatga gaagttagta 2640ttatcaacgc atgagttatt tccaattttc tcagcactat attgtttacc taacaaaggt 2700tatgtttcgc aatactggat ttttgagtat gtaggaaatg gttattatat tattaaaaat 2760aaagcgtatc ctgattgggt attagatgta gatggtttga attctgataa tggtacttta 2820attaaattac attcacagca tgatttaact gatccactta ttaatgcgca aaaatttaaa 2880cttaaggata taaataat 2898151725DNABacillus thuringiensis 15atgaatggaa atggaagaca tgatggatgg aatcagaatc aacacataga aaatggacag 60atgaacccaa atcatagtgg atcttgtaag tgcgggtgtc aacaaaataa taatggatcg 120tatccttcga atgagtataa ttcaaataat aatggatcgt atccttcgaa tgagtataat 180tcaaataata atggatcgta tccttcgaat gagtataatt caaataataa tggatcgtat 240ccttcgaatg agtataattc aaataataat ggatcgtatc cttcgaatga gtataattca 300aataataatg gatcgtatcc ttcgaatgag tataattcaa ataataatgg atcgtatcct 360tcgaatgagt ataattcaaa taataatgga tcgtatcctt cgaatgagta taattcaaat 420aataatggat cgtattcttc gaatgagtat aattcaaata ataatggatc gtatccttcg 480aatgagtata attcaaataa taatggatcg tatccttcga atgagtataa ttcaaataat 540aatggatcgt atccttcgaa tgagtatgta ggaggatata gtatacaaga tggtttacct 600caagaaagta aacagtttca aaaaatttca aatatgaata ctagagataa tcatcgtgtt 660ttagacgcac aagatactta ttttggtcaa ttgattgata atcgtgtagg tgacacatgt 720aaatatgtag agcataaaaa ttcagtaatt tatgaactta gtaggcaacc tgtatatact 780cctgattccc aatatttcat tttttatcaa atggataatg ggaattttat aattgcgaat 840aaagaaaata gtcgagtttt agaagttata tttagttcag taaatggatt tgtaacaata 900tcaaatgagt ttaatgcaac ttcagatcaa cgttttaagg ttgttagatc aaagaatgat 960acattccgct tagtaacaga aggaaataaa acattaaata tatgtggtca ttcatttcaa 1020tataatacta aaattacagc tgtaaatgcg gatattgatg gtgataatta tttatttcaa 1080aaatctatgg ataaggatac aagggattta tatttcggaa caatatctaa taaaaatcca 1140gaaatattaa atgacccaag aaatttaaaa agtttagatg atcttggtga tgagccgaga 1200gcatttaaag gagccgcatt acttcctgct ctatttgtaa atgaccctag atattcagtg 1260catcgaagag tatcaaatag tccatattat tacttagagt atacacagta ttggcataga 1320atatggactg atgttttgcc tattgatggt tatggcgcat ggatagaaat gataggggta 1380acaaatgata cacaagtaaa tatgaaaaac ataatgaata ttacaataac tggaaaagat 1440ttaggtgtag atttgggtat agatttggga ttaagatttg gtgataagtc atttcttttt 1500gaacaaaaaa tcctttcagg attatctata cggaaaactg attatccaaa tctcggaata 1560gatgaaagag caatgtatca aagaaacaat agtaatttaa aaaccagatt tgtaagatac 1620gtgaaaaaac atgaatttgt attaagagat ttgaatggga gtaaggtagc tgaaccatgg 1680attatcacgg aagatagatc gattacgaaa gaatactctt caaat 1725161677DNABacillus thuringiensis 16atgaagtaca aaaatcgaac acgtgcaaaa tgcaaataca aacaagcgct tcttgtaaca 60gtagcaacaa tgacactagg agtaagtaca ttaggaagca atgcctcagc attcgctgat 120gaaaaagaaa agaatgttat tcagcaaaaa agtcctggca cttattatga agatgcgcaa 180aaaaatctgg gctccctagc acgatttgat acatgggcac aagatcttgg aaaaacaaca 240ggtgcaggga attataaaac tacacttggt atggcagaaa agctactacc aacaatttat 300aatgatttaa atagtggaaa tttcaacaat actgcaaggt ccattacgat gttatctaca 360gcgttgattc catatggagg agcattcatt tctccgataa ttgggatact ttggccagaa 420aacgggccaa atataaaaga aatgctgcag gaaatggaaa acaaacttgt tggtataatg 480gatgaaaaaa ttgaagccaa agatttagat gatcttgagg ctgcagtaaa aggattgatg 540gtaagtctaa aagaatttga aaactcattg aatggtaata taggtggtga atattattct 600gccctagctg atgtagactc acttaaccga ggtcgtataa cagccattca aaagggtttt 660aacgacctta ttagtgctac tagtaaaccg aagttcaaaa taacagaact tcctctatat 720acaattattg caactgctca cttgaatttc ttgaatactg tggaaaaaca gggaacttca 780cctaaaataa actacacaga agcagcctta aaagatcttc tacaaaatat gaagaagaat 840cacaaggatt atgcagatta tatagaaaaa acgtatacag aaggagaagc tagaatcaat 900agcaaactag aagataaaca aaaaatagaa caagatttag ctgccgtaaa ccaaaagcta 960tcggaaatgc ctcgtaaacc taagaatcac acccacgagg aagagaataa atttataatt 1020caaaaagaga agctttacgc gcaacaagac tctcttgaga aaaagttgtc tgaatacaat 1080gacttgatgt atcaaaagag tgatttttat agcaagacaa agggtagcga agcattccaa 1140atagcatcaa caggaaaaac gataccaact ccaagttggg ttaaaacaga aggaacgtgg 1200gtttgcgagg ctggtttttg gttttatatt gacgcaaaag ggcaaaagaa aagtgattgg 1260ttcaatgata agacacctga tggtaaggat agatggtatt accttagcac tgaaacacca 1320cgtctcgaca atgtaagggg gaatgcttat gttggaaaag gaacaatgct gactggttgg 1380ttccacgata cgcgtaaaga taagcagatc atcggtgtga atacgaagac tacttatgaa 1440tactggtatt acctcagccc agaaaaaaat cttaaaaact ctgccggaga actatttaag 1500cagggacaga tgatgacgaa atgggttgaa attaaggata caaagactgg tgaaccacac 1560tggtattatt tcaatcctga cgacggtagt atgacacatg ataaaaaagc ggtacaaatt 1620ggtgacaaaa aatatgattt tggttccaat ggtgtatgta caacgcctaa cggttac 1677173879DNABrevibacillus laterosporus 17atgaatcaga atcaaaataa aaatgaaatg caaattatag aaccttcaag tgattctttt 60ctttatagtc acaacaatta tccgtatgcc actgatccaa atacagtatt agaaggtagg 120aattataaag agtggctaaa taagtgtaca gataattata cagacgcttt acagagtccc 180gaagctactg ctatttcaaa aggagctgtt tctgctgcga tttctataag caccaaagtt 240cttggtttat taggtgttcc atttgcagct caaatcgggc aactttggac cttcatatta 300aatgcgttat ggccttcaga caatactcaa tgggaagagt tcatgagaca tgtagaagaa 360ctcataaacc aacgaatagc cgattatgca agaaataagg cacttgcaga attaacgggt 420ttaggtaata atctagattt atatatagag gctcttgatg attggaaacg aaatcctact 480agtcaagaag ctaaaacccg tgtaatagat agattccgta tagtagatgg attatttgaa 540gcatatatac cttcatttgc agtatcaggt tatcaagtac aattattaac ggtgtatgca 600gccgctgcaa atctccactt acttttatta agagattcca ctatttacgg aattgattgg 660ggattaagtc aaactaatgt taatgataat tacaatcgcc aaataagact caccgcaacg 720tatgcaaatc attgtacaac ttggtatcaa actggtttag aaagattgag gggttccaat 780gcttccagtt gggtcactta taataggttt cgaagggaaa tgacgttaac cgtattggat 840atttgttcct tattttcaaa ttatgattat cgtagttacc cagcagaggt aaggggagag 900attacgagag aaatttatac agacccagta ggtgtaggct gggtggatag tgcaccatca 960ttcggagaaa tagaaaatct agcaattagg gcaccaagaa ccgttacttg gttaaattca 1020acaagaattt ttacagggag

attgcagggc tggagtggta ctaacaatta ttgggcagct 1080cacatgcaaa acttctcaga aaccaattca ggaaatatac aatttgaagg tcctctctat 1140gggtcgacgg taggtactat tcatcgtact gatgattacg atatggggaa tcgagatatt 1200tacaccatta cttcacaagc tgttttaggc ctttgggcaa ctggtcaaag ggtgttgggg 1260gtcgcttcgg ctagatttac tttaagaaat cttttcaata atcttacaca ggtgctggtg 1320tatgagaacc caataagttc aacttttgga agttcaactt taactcatga attatctgga 1380gaaaactcag ataggccaac ttctagcgac tatagtcata gactaacgag tatcacaggt 1440tttcgagctg gagctaatgg aacggtccca gtgtttggtt ggacatctgc aactgttgat 1500cgtaacaata taattgagcg aaacaaaata acacaattcc caggtgttaa gtcacacact 1560ctcaacaatt gtcaagtagt taggggtact ggatttacag gaggagactg gttgagacca 1620aataataatg gtacatttag actaactatt acttcattct ccagccaatc ttaccgaatt 1680cgcttacgtt atgctacttc agtagggaat acttctttag ttatatcttc ttctgatgca 1740ggtatttctt ccacaacaat tccgcttacc tcaacaataa catcactgcc acaaactgta 1800ccataccaag cttttagggt tgtagattta cctattactt ttacaacacc tactacccaa 1860agaaattata cgtttgattt ccgtctccaa aatccatcaa acgcaaatgt attcattgat 1920agatttgaat ttgttccaat tgggggttct ttgtctgagt atgaaaccaa acatcagcta 1980gaaaaagcaa ggaaagcggt gaacgatttg tttaccaatg aatcgaaaaa tgtgttaaaa 2040aaagacacga ccgattatga tatagatcaa gctgcaaact tggtagaatg tgtatctgat 2100gaatgtgcaa atgctaaaat gatcctatta gatgaagtaa aatatgcgaa acaacttagc 2160gaagcccgca atctacttct aaatggtaat tttgaatacc aagatagaga tggggagaat 2220ccatggaaaa caagtcccaa tgttaccatc caagagaata accccatttt taaaggccgc 2280tatctcagta tgtcaggtgc gaacaatatc gaggcaacca atgagatatt tcccacttat 2340gtataccaaa aaattgatga atccaaatta aaaccttata cccgttataa agttcgaggt 2400tttgttggaa atagtaaaga tttagaatta ttggttacac ggtatgatga agaagtagat 2460gcgattttaa atgtaccaaa tgatatacca catgctccgc cacctttctg cggtgaattt 2520gatcgatgca agccgcattc ttatcctcct attaatccag aatgtcacca tgatgtaata 2580aataacattg aaatatcctc tccttgccaa cacaataaga tggtagataa cgctgatata 2640tcttatcgcc atagccgatt aagtaaaaaa catggcattt gtcatgaatc tcatcatttt 2700gaattccata ttgatacagg gaaaatcgat ttggtcgaaa atttgggaat ttgggttgta 2760tttaaaatat gttccacaga tggttacgca acattagata atttggaagt tattgaagag 2820ggtcctttag gagccgaatc cttagaacgt gtgaaaagaa gagaaaagaa atggaaacat 2880cacatggaac acaaatgttc agaaactaaa catgcatatc atgccgcaaa acaagcggtg 2940gtggcgttat tcaccaactc taaatatgat agattaaagt tcgaaacaac catatccaat 3000attctttttg ctgattatct cgtgcagtca attccgtatg tatataataa atggttacca 3060ggtgttccag gtatgaatta cgatatctat acagaattaa aaaatctgtt tacgggagct 3120ttcaatctat atgatcagcg aaatattata aaaaatggag actttaatcg tgggctcatg 3180cattggcatg cgacacctca tgcaagagta gagcaaataa tagataatag gtctgtgcta 3240gtgcttccaa attatgctgc caatgtttca caagaggttt gtttagaaca caatcgtggt 3300tatgtattac gtgtaacggc gaaaaaagaa ggccctggaa ttggatatgt tacattcagt 3360gattgtgcaa atcatataga aaagcttaca tttacttctt gcgattatgg tacaaacgta 3420gtgccatatg aacaatctaa ttatcctaca gacggagtac catatggaca acatggttgt 3480aatatagacg gagtaccgta tgaacaatcc ggttatcgta cagacggagt accgtatgaa 3540caatccggtt atcgtacaga cggagtaccg tacgaacaat ctggtcatcg tacagatgga 3600gtaccgtacg aacaatctgg ttatcgtaca gacggagtac catgcgaaca acatggttgt 3660catacagacg gactaccaca catacaacat ggttgtcgta cagacggact accacacata 3720caacatggtt gtcgtacaga cagatcaaga gatgaactac ttggttatgt gacaaaaacg 3780attgatgtat tccctaatac agataaagta cgtatcgaca ttggagaaac cgaaggtact 3840tttaaagtag aaagtgtaga actgatttgt atggaagag 3879183768DNABrevibacillus laterosporus 18atgaatcaaa atcaaaatca gaatcaaaat aaaaatgaac tgcaaatcat agaaccttca 60agcgattctt ttctttatag tcacaacaat tatccgtatg ccactgatcc aaatacagta 120ttacaaggta ggaattacaa agagtggcta aacatgtgta caggtacaga cgattcacga 180agtcccgaag ctgcttctac tgcaaaatca gctatttcag ttgcgattac tataagcacc 240acaattcttg gcttactagg tgttccgttt gcatctcaaa tcggggcatt ttataacttc 300gtattgaata cggtttggcc tcagggaaat aaccaatggg aagagttcat gagacatgta 360gaagatctca taaacgaacg aatagctgat tatgcaagaa gtaaggcact tgcagaatta 420gcgggtttag gtaataactt agatttatat agagaggctt ttgaagattg gagacgaaat 480cctactagtc aacaagctaa aacccgtgta atagaaagat ttcgtatact agatggtctt 540tttgaacaat atatgccatc atttgcagta caaggttttc aagtacaatt attaacagtg 600tatgcatccg ctgcaaatat ccatttattt ttattaagag atagctctat ttacggtttg 660gattggggat taagtcaaac taatgttaac gaaaattaca atcgccaaat aaggcacgcc 720gcaacgtatg caaatcattg tacaacttgg tatcaaactg gtttacaaag attgcaaggt 780accaatgcta ccagttgggt cgcttataat agatttagaa gggaaatgac attaacagta 840ttagatatta gttcattatt ttcaaattat gattatcgta gttatccaac agaggtaagg 900ggagagctta cgagagaaat ttatacggac ccagtaggta gaaactggca gaatagtgca 960ccatcattcg ctcaaataga aaatctagca attagggcac caagaaccgt tacttggtta 1020aattcaacaa gaatttctac agggaccttg cagggctgga gtggttctaa cagatattgg 1080gcagctcaca tgcaaaactt ttcagaaacc aattcaggaa atatacgatt tgacggtcct 1140ctatatgggt cgacggtagg tactattcat cgtactgatg attacgatat ggggaatcga 1200gatatttaca ccattacttc agaagttgtt gcctcccttt gggcaactgg tcaaactgtg 1260ttgggagtcg cttcggctag atttacttta agaaatcttt tcaataatct tacacaggcg 1320ctggtgtatg agaacccaat aagttcaagt tttaataggt caactttaac tcatgaatta 1380cctggagaaa actcagatag gccaacttct agcgactata gtcatagact atcgagtatc 1440acaggttttc gagctggagc taatggaacg gtcccagtgt ttggttggac atctgcaact 1500gttgatcgta acaatataat tgagcgaaac aaaataacac aattcccagg tgttaagtca 1560cacactctca acaattgtca agtagttagg ggtactggat ttacaggagg agactggttg 1620agaccaaata ataatggtac atttagacta actattactt cattctccag tcaatcttac 1680cgaattcgct tacgttatgc tacttcagta gggaatactt ctttagttat atcttcttct 1740gatggaggta tttcttccac aacaattccg cttacctcaa caataacatc actgccacaa 1800actgtaccat accaggcttt tagggttgta gatttaccta ttacttttac aacacctact 1860acccaaagaa attatacgtt tgatttccgt ctccaaaatc catcaaacgc aaatgtattc 1920attgatagaa ttgaatttgt tccaattggg ggttctttgt ctgagtatga aaccaaacat 1980cagctagaaa aagcaaggaa agcggtgaac gatttgttta ccaatgaatc gaaaaatgtg 2040ttaaaaaaag acacgaccga ttatgatata gatcaagctg caaacttggt agaatgtgta 2100tctgatgaat gtgcaaatgc taaaatgatc ctattagatg aagtaaaata tgcgaaacaa 2160cttagcgaag cccgcaatct acttctaaat ggtaattttg ataacataga tagagatggt 2220gagaatccat ggaaaacaag tcccaatgtt accatccaag agaataaccc catttttaaa 2280ggccgctatc ttagtatgtc aggtgcgaac aatatcgagg caaccaatga gatatttccc 2340acttatgcat accaaaaaat agatgaagca aaattaaaac cctatacgcg ttataaagtt 2400cgagggtttg ttggaaatag taaagattta gagttgttgg ttacacggta tgatgaagaa 2460gtagatgcaa ttttaaatgt accaaatgat ataccacatg ctccgccacc tttttgcggt 2520gaatttgatc gatgcaaccc gcattcttat cctcctatga atccagaatg tcaccatgat 2580gtaataaata acattgaaat atcctctcct tgccaacaca ataagatggt agataacgct 2640gatatatctt atcgccatag ccataaaaaa catggcattt gtcatgaatc tcatcatttc 2700gaattccata ttgatacagg gaaaatcgat ttggtcgaaa atttgggaat ttgggttata 2760tttaaaatat gttccacaga tggttacgca acattagata atttggaagt tattgaagag 2820cgtcctttag gagccgaatc attagaacgt gtgaaaagaa gagaaaagaa atggaaacat 2880cacatggaac acaagtgttc agaaactaaa cttgcatatc atgctgcaaa acaagcgctg 2940gtggggttat tcacaaacac tgaatatgat agattaaagt tcgaaacaac catatccaat 3000attctttttg ctgattatct cgtgcagtca attccgtatg tatataataa atggttacca 3060gatgttccag gtatgaattt cgagatctat acagaattaa aaaatctgta tacgggagct 3120ttcaatttat atgatcagcg aaatattata aaaaatggag actttaatcg cgggctcatg 3180cattggcatg cgacacctca tgcaagagta gagcaaatag ataataggtc tgtgctggtg 3240cttccaaatt atgctgccaa tgtttcacaa gaggtttgtt tagaacacaa tcgtggttat 3300gtattacgtg taacggcgaa aaaagaaggc cctggaattg gatatattac attcagtgat 3360tgtgcaaata atatagaaaa gctgacattt acttcttgcg attatggtac aaacgaagtg 3420ccgtatgagc aatctaatta tcctacagac ggagtttcat acggacacca tggttgtaat 3480atagacagag taaggtacga agaatctggt tatcgtacag acggtgtacc gtacgaacaa 3540tctggttatc gtgcagacgg agtatcgtac gaacaacatg gttgtcatac cgacggagta 3600ccatacaaac aacatggttg tcgtacggac agatcaagag atgaacaact tggttacgtg 3660acaaaaacga ttgatgtatt ccctgatact gataaagtac gtatcgacat tggagaaacc 3720gaaggtacct ttaaagtaga aagtgtggaa ctgatttgta tggaagag 376819951DNABrevibacillus laterosporus 19atgaaaaaat ttgcaagttt aattcttata agtgtgttcc ttttttcgag tacgcaattt 60gttcatgcgt catccacaga tgttcaagaa agattacggg acttggcaag agaaaatgaa 120gctggaaccc ttaatgaagc atggaatact aacttcaaac ccagtgatga acaacaattc 180tcttatagtc caactgaagg tattgttttc ttaacaccac ctaaaaatgt tattggcgaa 240agaagaattt cacagtataa agtaaataat gcatgggcta cattagaagg aagtccaacc 300gaagtatcgg ggacaccttt atatgtggga aaaaacgtat tagataactc aaaaggaaca 360agcgatcaag agctgttaac acccgagttt aactatacct atacggaaag cacttcaaat 420acaacaactc atggattaaa attaggagtc aaaaccactg ctaccatgaa attcccgatt 480gctcagggta gcatggaagc ttctactgaa tataactttc aagattcttc cactgatact 540acaactaaaa cagtatcata taaaagccca tcacaaaaga ttaaagtacc agcaggtaaa 600acctttagag ttttagcata cctaaatact ggatctattt caggtgaagc taacctttac 660gcaaatgttg ggggtatagc ttggggggtt ttaccaggtt atcccaatgg cggaggagta 720aatataggtg ctgtacttac caaatgccaa caaaaaggat ggggagattt cagaaacttt 780caacctagtg gaagagatgt aatcgttaaa ggccaaggta ctttcaaatc taattatgga 840acggacttca ttttaaaaat tgaagacatc acagattcaa agttacgaaa caataacggg 900agtggaactg tcgttcaaga gattaaagtt ccactaatta gaactgaaat a 951203462DNABacillus thuringiensis 20gtgaattttt tatttttagt taattatgaa aaaaataagt ttaaatataa tatacaagga 60gacttgaata tgaatcaaaa aaactatgat attataggtt cttcgacaaa cggcacaacg 120aaattacctg aagattataa cattataatt agtcctgatg cagccccaga ggctgttact 180attgcgattt caattacagg agaagtactg tctctttttg gtgttccagg tgcaacatta 240ggaagtactc ttcttaatac acttgttgat aaattatggc caaccaatac aaatactgta 300tggggtacat ttacagagga aactgcaaaa cttataaatg aagtatataa tccatcagat 360ccagtagtaa aagatgcaga tgctcgacta acatcgttac atgaatcgtt aaaattatat 420caattagcct ttggaaattg gtttaaatca caagataatt caaaactcaa agaagaggta 480cgacgccagt ttgatattac tcataataga tttgtaacta gtatgccttt ttttaaggta 540tcggactacg aaattagatt gttaacaaat tatgctcaag ctgctaatct tcatttaact 600tttttaagag atgcgtccat ttatgggctt gattggggtt tcagtgacga gcatagtaat 660gatttgtatg aacaacaaaa gaatcgtaca ggagaataca cagatcattg tgtaaagtgg 720tataacgcag gattagaaaa attaaaagga aatttaactg gggaaaattg gtacacttat 780aatagatttc gtagagaaat gacgttaatg gtgttagacg tagttgcatt atttccaaac 840tatgatacac gaatgtaccc gatcgcaacg tcatcagaac ttacaagaat gatttataca 900gatccaatcg cttatacaca aagcgatcca tggtacaaga taacatctct ttctttttcg 960aatattgaaa acagcgcgat tccaagtcct tctttcttca ggtggctaaa atccgtttca 1020attaatagcc agtggtgggg cagtggtcct aatcaaacct actattgggt tggacatgaa 1080ttggtatatt ctaattcaaa ttataatcaa tcacttaagg ttaaatacgg ggatcccaat 1140tcttatattg agccccctga ttctttcagt ttttcttcta cggatgttta cagaaccatc 1200tctgtcgtta gaaattcaat tagtaattat atagtaagtg aagttcaatt caattcaatt 1260agtaatacaa atcaaattag tgaagaaatt tataaacatc aatcaaattg gaatagaaga 1320gaaaccaaag attcaattac tgaactatcc ttagctgcta atcccccaac aacatttgga 1380aacgtagcag aatacagtca tagattagca tatatttcag aggcatacca aagtaacaac 1440ccatcaaaat acccagccta cattcctgta ttcggttgga cgcatacaag cgtacgttac 1500gataataaaa ttttcccgga caaaatcact caaattccag ctgttaaaag ttcctcagct 1560gaaggtggaa catggaaaaa tatagcgaaa ggtcctggat ttactggagg cgatgtgaca 1620acagctgttt cgccagcatt tataacagat gtaataaaaa tacacgttac tctagatcca 1680aattcacttt cacaaaaata tcgtgcacga cttcgctacg cttccaatgc atatgtagca 1740gctacattgt atacaaattc aagtagtaat tataattttg aacttacaaa aggtacaacg 1800gaacagttta caacatataa ttcataccag tatgtagata ttccaggttc aatacaattt 1860aatactactt ctgatacagt gtctgtttat ttgcatatgg attcaacaac taatgcaaac 1920gttcatgtag atagaattga attcattcca gtagatgaaa attacgataa cagagtaaca 1980ctagaaaaag cacagaaagc cgtgaatgcc ttgtttacag cgggaagaca tgcactccaa 2040acagatgtga cagattttaa agtagatcag gtttcaattt tagtggattg tgtatcaggg 2100gaattatatc ccaatgagaa acgcgaacta ctcagtttag tcaaatacgc aaaacgtttg 2160agttattccc gtaatttact cctagatcca acattcgatt ctattaattc atctgaggag 2220aatggctggc acggaagtaa tggtattgca attggcaatg ggaactttgt attcaaagga 2280aactatttaa ttttctcagg taccaatgat acacaatacc caacgtatct ctatcaaaaa 2340attgatgaat ccaagctcaa agaatataca cgctataaac tgagaggatt tatcgagagt 2400agtcaagatt tagaagcata tgtgattcgc tatgatgcaa aatatgaaac attggatgta 2460tccaataatc tatacccaga tatttctcct gtaaatgcat gcggagaacc caatcgttgt 2520gcggcactac catacctgga tgaaaatccg aggttagaat gtagttcgat acaagatggc 2580attttatctg attcgcattc attttctctc aatatagata caggttctat tgattccaat 2640gagaacgtag gaatttgggt gttgtttaaa atttccacac cggaagggta tgcgaaattt 2700ggaaacctag aagtgattga agatggccca gtcattggag aagcattagc ccgtgtgaaa 2760cgtcaagaaa cgaagtggag aaacaagttg acacaactgc gaacggaaac acaagcgatt 2820tatacacgcg caaaacaagc cattgataat ttattcacaa atgcacagga ctctcactta 2880aaaataggtg ctacattcgc gtcaattgtg gctgcgcgaa agattgtcca atccatacgt 2940gaagcgtata tgccatggtt atctatcgtc ccaggtgtaa attaccctat tttcacagag 3000ttgaatgaga gagtacagca agcatttcaa ttatatgatg tacggaatgt cgtgcgtaat 3060ggccgattcc tgaatggagt atcggattgg attgtgacat ctgatgtaac ggtacaagaa 3120gaaaatggga acaatgtatt agttctttcc aattgggatg cgcaagtatt acaatgtctg 3180aagctctatc aagatcgcgg atatatcttg cgtgtaacgg cacgtaaaga aggattggga 3240gaaggatata ttacaattac ggatgaagaa gggtatacag atcaattgac atttggcaca 3300tgtgaggaga tagatgcatc taacacgttc gtatccacag gttatattac aaaagaactg 3360gaattcttcc cagatacaga gaaagtgcgt atagaagtag gagaaacaga aggaaccttc 3420cgggtagaaa gtgtagaatt attcttgatg gaagaacact gt 3462213618DNABacillus thuringiensis 21atgcggttaa aaaaattact tgtatgtaat ataagaattg gaggaacaaa tatgaatttg 60ggaaactata atgaattcga tatcatagat attactgaaa acaatcagac taaaacatca 120cgatataata atgtgaatag acaagagaat ccatctaata tgattatttc aaatccttct 180tctaactatc ctctagcaaa caatccaaat acacccttcc aaaatataaa ttataaagat 240tttttgaata tgaatgagga gattgcaccg tatgcaagtt cgaaagatgt aatttttagt 300tcaatgaata tcattagaac cttcatgggt tttgcaggac atgggactgc tggaggtatt 360gttgcattat ttacggaagt attaagatta ctatggccta ataagcaaga tgagctttgg 420gaatcgttta tgaaagaagt agagaaactt attgaacaag aaataacaga tgcggtagta 480agtaaagctt tggcagaatt agagggttta agaaacgctt tgcaaggata tacagatgca 540ctggaagcat ggcaaaataa tcgtagtgat aaacttaagc aattactagt gtatgataga 600tttgtttcta cagaaaattt atttaaattt gcaatgccgt cttttagagt gggaggtttt 660gaagttccat tattaacagt atatgcacaa gccgcaaatc ttcacttatt attattaaaa 720aattccgaat tattcggggc agaatgggga atgcagcaat acgaaataga cctattttat 780aatgaacaaa aggattacgt agtagaatat acagatcatt gtgttaaatg gtatactgaa 840gggttaaata ggttgaagaa tgcaagcgga gtaaaaggta aggtatggga ggaatataat 900cgttttcgca gagaaatgac gattatggtg ttagatcttc ttccattatt tccaatctat 960gatgtacgca catatcctac ggaaacagta acagagttga caagacaaat tttcacagat 1020ccaataggtc ttagaggaat taatgagtcg aaatatcctg attggtatgg agctgcaagt 1080gatagtttca gtcttataga aaatagggca gtaccacaac ctagcttatt tcaatggtta 1140actgaattta aagtatatac taaatatgtt gaaccgaatg ataagcttac aattttggct 1200ggacacagtg taactactca atatactagc tattataaaa agagcacatt tacttatgga 1260gatacttcaa gtgctaattc atctagaact tttgacctac ttgctaaaga tgtatatcag 1320gttgattctg tagctgcagc aagtaaaagt gctacttggt atttggctgt tcctgaaatg 1380cgattatata gcattaatac taacaatata ttatctgaag attatttttc tttgagtact 1440aatataccat ccagtaagat gagacgtatg tattctagtg aggaattacc gataggaatc 1500tcggatacac ctatttatgg agatcttgag gaatatagtc ataggttaag ttttatttct 1560gaaattatgc ataactctgg aagtgtaaca ggttcaaata acatcaaagg aataattcca 1620gtattaggat ggacacatac aagtgtatct cctgaaaatt atattcacag ggataaaatt 1680tcacaattat atgctgttaa agcatacacc actagtaatg tttctgttgt aggaggacct 1740ggatttttag gaggaaatat aattaaaggt aataatgatc ctgctagcta taccggaagc 1800gtgagctggg caattagatt ggatggttca acagtaagtc gattccgtct tagaattccc 1860tatgctgctg aaacagatgg cacattttct attactgttc gagacgattt aggccctttt 1920actataaaga aggactttat agcaacaatg aaaccaggag atcctttatc atatggtaaa 1980tttgaatatt tagaatttga acaaacaatg agtcttaata ataagcatgg tcaatttttc 2040gttcatacag aaaatttaaa agatagaaat tctagtgtat attggaatag agttgaaatt 2100atcccggtgg atgaaaatta cgataacaga gtaagattag aaaaagcaca gaaagccgtg 2160aatgctttgt ttacagcggg aagacatgca ctccaaacaa atgtgacgga ttacaaagtg 2220gatcaggttt caatcttagt ggattctgta tcaggggaat tatatccaaa tgagaaacgc 2280gaactacaaa gtttagttaa atatgcaaaa cgtttgagct attcccgtaa tttacttcta 2340gatccaacat tcgattctat taattcatct gaggagaatg gctggtacgg aagtaatggt 2400attgcaattg gaaatgggaa ctttgtattc aaaggaaact atttaaattt ctcaggtacc 2460aatgatacac aatacccaac gtatctctat caaaaaattg atgaatccaa gctcaaagaa 2520tatacacgct ataaactgag aggatttatc gagagtagtc aagatttaga agcatatgtg 2580gttcgctatg atgcaaaaca tgaaacattg gatgtatcca ataatctatt cccagatatt 2640tctcctgtga atgcatgcgg agaacccaat cgttgtgcgg cactaccata cctggataaa 2700aatccgaggt tagaatgtag tttgatacaa gatggtattt tatctgattc gcattcattt 2760tctctcaata tagatacagg ttctattgat tccactgaga acgtaggaat ttgggtgttg 2820tttaaaattt ccacaccgga agggtatgcg aaatttggaa acctagaagt gattgaatat 2880ggcccagtca ttggagaagc attagcccgt gtgaaacgtc aagaaacgaa gtggagaaac 2940aagttgacac aactgcgaac ggaaacacaa gcgatttata cacgagcaaa acaagccatt 3000gataatttat tcacaaatac acaggactct tacctaaaaa taggtgctac attcgcgtca 3060attgtggctg cacgaaagat tgtccaatcc atacgtgaag cgtatatgtc atggttatct 3120atcgtcccag gtgtaaatta tcctattttc acagagttga atgagagagt acagcgagca 3180tttcaattat atgatgtacg gaatgtcgtg cgtaatggcc gattcctgag tggagtatca 3240gattggattg tgacatctga tgtaaaggta caagaagaaa atgggaacaa tgtattagtt 3300ctttccaatt gggatgcaca agtattacaa tgtctgaagc tctatcaaga tcgcggatat 3360atcttgcgtg taacggcacg taaggaagga ctcggagaag gatatattac aattacggat 3420gaagaagggc atacagatca attgacattt ggcacatgtg aggaaataga tgcatctaac 3480acgttcgtat ccacaggtta tattacaaaa gaactggaat tcttcccaga tacagagaaa 3540gtgcgcatag aaattggaga aacagaggga atattcaagg tggaaagtgt agaattattt 3600ttgatggaag atctatgt 3618222316DNABacillus thuringiensis 22atggtgaatg aaaatatgga tatgtataat aacaacggta gtatgaacgg aaatccagat 60atgtacaata aaaacggaag tatgaacgga aatacggatg tgtataataa caacggtagt 120atgaacggaa atccagatat gtacaataac aacggaagca tgaacggaaa

tacagatgtg 180tataataaca acggaagcat gaacggaaat ccagatgtgt ataataaaaa cggaagcatg 240gacggaaatc cagatatgta caataacaac ggaagcatga acggaaatac agatgtgtat 300aataaaaacg gaagcatgaa cggaaatcca gatatgtaca ataacaacgg aagtatgaac 360ggaaatacgg atgtgtacaa taacaacgga agtatgaacg gaaatacgga taatcaagtg 420ccggcttata acattctttc tgcggaaaac ccttctaata ttttagaaag tgatactaga 480tgcacactaa atgttaaaaa tgtgcaagat gaggctatct gtacaggtag taatttaacc 540aacgaaatag gtccacttgt tgttcccatt gcttttactc ctattattct aacgcctgca 600cttattgaag taggtaaatg gttaggagtt caaattggta aatgggctct aagtacagct 660ttaaaagaat taaaatcttt tctctttcca aattctgatc cccaaaggga aatggagaaa 720ttacgcatag aattagaaaa ttcatttaat aagaaattaa cagaagataa attgaatttt 780ttaactgccg cgtatactgg ttttaataat ttatctaatt cttttatttc tgcaaccgag 840cgtgtaaaag cagcagaaat tacattagct acagctcctt ctcaagaaaa tcaagatatt 900ttagatgaag ctagaacatt agcaagagac tattttgtga gtttacactc acaaatgata 960gtgtggcttc cccagtttga aattagtgga tatgaagaaa tttccttacc attatttact 1020cagatgtgca ctttacatct cactcatcta aaagatggag tattaatggg gcagaattgg 1080gggctttcta cagatgatat taaacatttt aaaggtgaat tttacagatt aagcaatgat 1140tacacttcta gagctttcga ttcatttcat agaggtttta atcgtttacg aacacaacaa 1200ggaacagctg gagtcataaa atttagaaca gccatgaatg catatgcttt tgacaatata 1260tataaatggt cattgttgcg ttatgagggt attaatccta ggataacaag aagtttatgg 1320cattatattg gatataattc atctttagga tctaatgatt ttaatacact atacaaactt 1380atggtgggta taccgcatga aagatttaga acagttgcaa taggatatcg tgctaaaaca 1440ggtgaggatt ggaaagttac aggggctaaa tcaacttttt attctggtgg tggtgaatgg 1500gttggaaacg tctccaaagc aacaagaatc cctgtttaca ctactaaaac ggattggagg 1560caatttgaaa gaagaataca tggcagatta ggaactgagc aatatactag atggcatctt 1620acaattcaag atacgaatat cattggtaat tcatatttaa ccggtttacc ctttgatatt 1680tcatatcctg attattttat ccgaacaatt tcagcaaaac cagaagccta ccctatttat 1740aaatcgctta gtctggggga taatccagga tacgtagtag acaatcctgg aaataacctt 1800attataggtt tttctcctga taatttaaaa acatttatga ctgatggaaa cagatatcat 1860tcaatagaat caggatatcc aacaaaccca tcttgtacta taccagcggt actttataat 1920agtgtaagta acccattcca agcttatttt aatgatgaat taggtaatgg ttcagatggg 1980agtataactt taatccgtcg aggtggtgca cattatcttg ttgattcaag atctgcttct 2040tatgacagaa gctttcgtct tataattaga attcaggcag ggagttctgc attcaaggta 2100acagtaagat caaggcacac atctgagagc tttgaattaa atttcacact tctttcagat 2160caagatatta attattatta tgattatata tcccaacctt ttaatctaag ctctacttac 2220tattatatag atgtagaacg tgttgttagt gatgacataa gagcgttaac ttttaatcaa 2280atgattatag ttccaactac agaattccag atatta 231623867DNABacillus thuringiensis 23atggcaattt acgatatagc agcagatttg ttcgatctta ccagatggta cgccgaacaa 60aattataatg caaatccaac aacatttaga ggggctaaag tatatgatcg aatcgtatca 120gatgttcaat ctataccgga aaaagtagat tttaatttga taccaggctt agcttatacg 180gtgaaaaatg aaatcgtaaa tgatactaat acagaacaat ctatgagtac aaaactcatg 240catacattaa ttgaatcaaa ttctgttaca accacaaaag gatataaaat tggaagtagt 300atcaaaaata cgtttagcgt aaacattgag ggaagttttt ttgttggtgg tgggtctaca 360gagcattcca ttgaagtatc agtaagtggg gaatataatc atagttcttc agaaactaaa 420acaaatacct cacagaaaac atgggaatat aacagcccta ttcttgtccc agcaaaaaca 480aaagttacag caactttaga tatttatgca ggaccagttg tagtcccagt aactttaaaa 540agtacagtta ctggaacggg tattgtgaat aattttccta acgtattaac gagtttaagt 600tacattgata gaaacaataa gttgtggaca gactctcttc caactgcttt gttatatgat 660tatcgaaatc agtggccagg aagtcagtct atttatgttg ggaagaatgg gggaggtgta 720caggtagaag gtaaagctga aatacaatta gaactaggtc tatactccat tgcaaccttc 780gactctcagc cactgtcagg gaacacaaca ggtaaagaag cagtgtattc taaggctata 840ctccgagatg gatctattat tgatatt 86724318DNABacillus thuringiensis 24taaattcaat tatgattcgt aattaaaatg tgaaaattaa caatctccga atttcatgtt 60aatttatggg tgtcaaataa aattatataa ggcctactta tattttcgag attactatat 120gaggcctaaa atatttaaca aattgctatg tcttgcatat aaacaaattt aagtatggtg 180aatttctcaa gatatatgta taaaaatgat aattatatcc tttgttgttt tttgtgaata 240gatgaatgct aactattctt acctatgaaa aatagattaa tttgcctata aagtattttt 300taaaaggagg aatgtatt 318253999DNABacillus thuringiensis 25ttggcacaat taaatgaaat ttatccaagt tattacaatg ttttagcata tccccctcta 60attctcgacg ataagagcct atatgatcag tatacagagt ggaagaaaaa aattgataag 120acttggaaac aatatgacaa agacttttta ccaaagcctt taatggattt aggaaaatct 180ctggcagagg cctataaggg tgatcctgat ggttaccttc atatcgcaaa cacagcaata 240agaatagctt tcttattgat accaggaggg caaactgctg cttttggtgt aaatcttgtg 300ctgaataaag caatagggat cttttatcct cctcaaaata aatctctatt tgatcaaatt 360aaggacgctg tatccaacct ggtggatcaa aaattgatag accaagaaat ctctggagta 420ctgattaaac ttaacagcct acagcagccc ctatcacgtt tcagcaattc catacagcga 480gctgttggaa aaccacagga cttcgacgac caaactacat catccaacgc aattattctt 540gatgagacac aggactgcag taaggacgat tcgtgttctt gttccaatac tcaacctcgt 600ccttctgatg cgcctctttg taccccatgt atttgtcgta tgaaggaagt tcaacaaaca 660ttcaacaact caagtactga tgttaaccga gcattaactg acatgaaaac aacgttaaag 720gacgtagtgg gtgcggatca actgagaagc tacatgcaaa tatatttacc gttatatgtg 780acggctgcta caatggagtt acaaatgtat aaaacctata ttgactttac acaaaaattc 840gatttcgatg taactggcac gacaaaggaa catgtaaacg agttacgtca aaaaatcaaa 900acgcatagtg agtacatcat gggcttattt aagaaatctt taccagaaat tagtaataat 960acaaaagaac aactaaatgc atatattaaa tatacacgta atataacttt gaatgctctt 1020gatatggtaa gtacatggaa atttttagac cctgttgact accctacgac tgctacattc 1080aatccgacta gaattatatt taacgatctt gcaggacctg ttgagtgtct gaatagcact 1140caggacagca ataaactaca ttttaatttc tttgatatga acggacagtc tatgcctaat 1200aatgatattt tcaattattt ttatagaggt atgcaagtaa aaggtctgca gatccaaacc 1260tatactagct ctgacaccaa aaatccacag cattttcctg taggattcct atcctcttat 1320tatggtagta acggtgattt tccatttgac aagagagtag atcctaacaa atttacaggg 1380ggaagcaaat ccgtcaaact gggagacgat gtatatgaga gccgttcagc tttaagtgta 1440ataaatgcag tgagtaatca gctacaagtt tttctaaact atattgatac agaagatttg 1500tattttgacc aatctgtatc ccctggtggc actgcatgtg ggtcaggtaa ttccacaatt 1560tggccagacc aaaaaattca agctatatac cctatacaac ctgataattc tcaaacatat 1620ccaagttatt attcaacaag taaaatagga tttgttacta cacttgtccc taatgatacc 1680actccatgga tcacttttac cgataacggc aataacagca tttatacgtt ttctgcagaa 1740aatacacgaa ctcttacagg ttcagcggga ccggttcgtg aatttataac tggttcagct 1800cctcttggac tgtctcctgg aggcggtgca caatattcta ttaatactag tgatgctcct 1860agcggagatt atcaggttcg cgttcatgta gccacacctg gctctggtgg gtcccttgct 1920atctcagttg atggaaaaac gcaaacttta caactaccgg atacaaatgt gaacgataca 1980aaccatatag cgggattcgc gggaacatat acgcttgctc ctgcaaccca agtagacgct 2040gcaaccctta aaccaaaggc acctactgaa aatattttcc cagtgcgtca aacatcttct 2100ctacctgtga gcataaccaa taattcttca acagttatta atatagaccg cattgaattt 2160gttcctgttt ctgctcctgc tcctgatcct agtcctgact ctggtaagcc aatacacaaa 2220tcagtgccta agacagtgac acaactaagc acaacgaaag agatttggtc atctactagc 2280gagtatgcta caactatatc ttttacaggg aatgtttata acgatgcttc cattacattt 2340cagttattaa gttcaggtca ggtagtgaaa gaatttccat ttaccggaaa cggggtcgcg 2400agtaaaccag gttttcatgg cagttcaccg tcctgctatg acacgcctta tccattttcc 2460caaccggacc tatcagtgcc taaatataat aaattgcagg tggtaatgaa gagcgatggt 2520tactcaaaac cttgtgatct tggcgactca ttccctaata cttttgatgc ggaaatagac 2580ataaagttta atttgagtga taccgcagac ttagcacaaa tcactgcaca agtgcaggga 2640ttattcacat cttcttcatc tacagaatta tctccaaacg tttccggcta tcaaattgat 2700caaatcgcac tgaaagtgaa tgcactatcc gatgaagtat tttgtaaaga aaaaatagta 2760ttacgcaaat tagtcaacaa agccaagcaa ttcatgaaga cacgtaatct gctgataggc 2820ggggattttg aaatacttga taaatgggca ttaggaacac aagctactat aaaagataat 2880tcatctttat ttaaagggaa tcacttattt ttacaaccga ctaatggcat atcttcatct 2940tatgcttatc aaaaaataga tgaatccaag ttaaaaccct acacacgcta taacgtttct 3000ggttttgtag cgcaaagtga acacttagaa attgtcgttt ctcgctatgg gaaagaaatc 3060gataaaatat taaatgtccc atatgaagaa gcattaccgg tttcttctgg gaatcagtcc 3120acttgttgca aaccatcttc ttgctcatgt tcagcttgta ctggtggacc acatccacat 3180ttctttagct atagcattga tgtcggtaag ctatatccag acttaaatcc aggaatagaa 3240tttggactgc gtcttgcaca cccaagtgga tatgcaaaag tcggcaatct cgaaattgta 3300gaagaacgcc ctcttacaaa cacagaaatt cgaaaaatcc aaagaaaaga agagaaatgg 3360aaaaaagcat gggatacaga acgggcagaa attaatgcca tccttcagcc agtcattaac 3420cagatcaatg ctttctatac aaatggagat tggaacggtt ctattcttcc tcatgtcaca 3480tatcaagacc tatataatat cgtattacca gaattatcaa aattaagaca ttggtttatg 3540aaagatcgtc caggtgaaca ctatactatc ctccaacaat tcaagcaagc tttagaacgc 3600gtattcaatc aattagaaga aagaaactta atccacaatg gtagttttac aaatggatta 3660gcaaattggc tggtagacgg agatacccaa ataactacct tagaaaatgg aaatctcgca 3720ttacaactct cagactggga tgcaagcgca tcacaatcca ttgatatctc ggactttgat 3780gaagataaag aatatacagt tcgcgtatat gcaaaaggaa aaggaaccat tagaactgta 3840aactgtgaaa atgagcccct atcctttaat acaaacacat tcacaatcct agaacaacga 3900ttatatttcg acaacccatc cgttctcctg cacatacaat cagaaggttc tgaattcgtc 3960ataggcagtg tggaactcat tgaattgtca gacgacgaa 3999261134DNABacillus thuringiensis 26ttgtattgta atacaatatt gcgaaaacgt tataaaaagt tagctacgat tataccgctt 60acaagtatgt cagccgttgc gattgcacct gctacgtctt ttgcagttga aacacaaaaa 120gcagatgttt catcacaaga agggccgatt caaggttacc agatggaaaa tggaaaaatt 180actcctgtgt acaaaaataa acttacccag tttaatacgg cggatgatat cgatcctggc 240cttccactac tcccagagaa tccatataat ccaattcctg atcatggaac tgcatatgtt 300gaatcaactg atataggaga tactgtatat ttcaaaccat ttgaaccccc taaaaataat 360gtattagagt taggtgactg tgatgataat acttatcagt ggtccgtatt tgtagattca 420cagaaatata aaagtgtagg atactttgtt caaaaacaag ccgatggtca aattagagtt 480ggatattata atccagaaga tttatctctg attacagatt caaaccatgc tttcgcagga 540gtgccaggtt tcaaactgac agcagaagag aaagctgaga tgcaacgaga tttaaatcga 600gaatatggcg atatatggga tggcacaagt aaactaaaac gagaaacaaa ctataaactt 660ctgccaaatg cctcaggtct acaggatgac gcatcgggat ttggttataa tcaaacatta 720acttcgggtg tatcaactac aaatatgttt ggaatagcga caacagttgg gtggaaaatg 780gggataaaag tatcggttgt tcctcttgtt gcagacgtta cgtcagagat tagtgcaagt 840ttaacagcta gttatcagca tactgtaaac gttacaaacc aaacgagttc gcaagtgaaa 900tttgacgtat caagagtaga taaccctgac tataagtata atgactatgc ggcagctgta 960tacaaaatat acacagacta tacattagaa ccgggtaaag gattatctcg ttttttagca 1020aagcaagatc ttaaagatcc tgtgcgtaca gctgcattag caaatacgaa ttatgcatat 1080gaaggttcaa aatactactt tacagtaaca cctggatcac acaagaaaat tgtg 1134271149DNABacillus thuringiensis 27atggattttt taaattatta taataaatta aaaaatgaat tggatgatgt aaattctaaa 60aaatattctt tagaatatac atcagatgga ttaatggttc aacctactga tgatccatta 120aacacaatgc ctttgcctga tagacctgta ttatctggaa acccaaatga ccctatccct 180tcagaaggaa caacacgtac agatattcaa aaacaaaatc cacccttttt tacatttaaa 240gtagtagcta aattagctta ttctggaaaa ggtgaaaatt gtcaaaaggc tcgtgcagca 300tcagtttatg gtgcagttct tgaacttgaa aaagttaaac aattaccaga atattctaat 360gtatatttat actcggaaac aggaataaaa acagatcgta gtaatataag atacaacacg 420gacggtataa tacaattttt gaatcctagt tttataaaca cattttcttc aaatcctata 480aaatatgggg atacagtagg ttatatttct tatccatatg atacattaaa atttccttct 540acaacacaat tagaacgttt ggtgtacttt aatttactag atagtaatat tcttgataaa 600cacattggtt ttgattggtc aaaaagtgtt acaaatggaa cagaagatac agaaatgtgg 660actcatagtt ccactgttgg cgctgaatta aatcttaaag atatactaca gatcaatgca 720agttatgagc atacattttc aacgtctcat atggagaaaa aagagaatac tgtatcaaaa 780actgctcatt ttaatagtcc tttacctcct tataactatg ctacatgggt agcagctata 840tatcaattat ccattcgata tcaacgtaca aatgcacaac cgatactaga tacgataaat 900gctgttaatt caggattaac agcatctgaa acagatattt atctgaaggc attatacggt 960gctgggaaga atggtaagcc tgctgtgggt gatccatcaa tattacacaa gttaagtaat 1020gtcatagaag atgcttatga atatttatat tattcggata ctctttattt tactcaaact 1080ccttctggaa acagcccaac accaaattct ccaaatcgca ttcaatttat tgccacagat 1140cctcaaagt 114928651PRTBacillus thuringiensis 28Met Glu Ile Lys Ile Gly Ser Gly Gly Thr Tyr Met Asn Pro Tyr Asn1 5 10 15 Asn Glu Ser Tyr Glu Ile Ile Asp Leu Asn Thr Ser Pro Tyr Pro Ser 20 25 30 Asn Arg Asn Asn Ser Arg Tyr Pro Tyr Ala Asn Ala Cys Gly Phe Pro 35 40 45 Glu Asn Val Asp Trp Thr Ala Gly Ala Ser Ala Met Ile Ile Val Ala 50 55 60 Gly Thr Leu Leu Ser Ala Ile Gly Ser Gly Gly Val Gly Ile Val Ala65 70 75 80 Ala Gly Ile Ile Ser Val Gly Thr Leu Phe Pro Phe Phe Trp Pro Gln 85 90 95 Asp Lys Pro Thr Ala Gln Val Trp Lys Asp Phe Ile Lys Gln Gly Asp 100 105 110 Thr Ile Thr Asn Lys Thr Ile Ser Ala Ala Val Glu Ser Leu Val Leu 115 120 125 Ala Glu Leu Asn Gly Leu Lys Ser Ile Leu Asp Val Tyr Thr Asp Ala 130 135 140 Leu Glu Leu Trp Lys Lys Asp Lys Asn Asn Ile Val Asn Arg Asp Asn145 150 155 160 Val Lys Ser Ile Phe Thr Asn Leu His Leu Gln Phe Val Ala Ala Met 165 170 175 Pro Lys Phe Ala Thr Asn Gly Tyr Glu Val Ile Leu Leu Ser Thr Tyr 180 185 190 Thr Ala Ala Ala Leu Leu His Ile Thr Phe Leu His Glu Ala Leu Gln 195 200 205 Tyr Ala Asn Glu Trp Asn Leu Ala Arg Ser Glu Gly Thr Phe Tyr Arg 210 215 220 Gly Gln Leu Ile Gln Ala Ile Glu Asn Tyr Ile Asn Tyr Cys Glu Lys225 230 235 240 Trp Tyr Arg Glu Gly Leu Glu Ile Leu Lys Asn Ser Thr Trp Asp Ile 245 250 255 Tyr Ala Ala Tyr Gln Asn Glu Tyr Thr Leu Ser Ile Leu Asn Val Ile 260 265 270 Ser Ile Phe Pro Arg Phe Asp Ile Arg Asn Phe Pro Thr Asn Ile Ala 275 280 285 Thr Arg Leu Glu Ser Thr Gln Lys Leu Tyr Thr Thr Thr Pro Asn Met 290 295 300 Lys Ala Leu Lys Thr Asn Asn Ser Ile Asp Tyr Ile Lys Asp Lys Leu305 310 315 320 Ile Pro Pro Leu Asp Leu Phe Lys Lys Leu Lys Ser Leu Thr Phe Tyr 325 330 335 Thr Phe Leu Asp Ser Asn Asn Gln Tyr Asp His Leu Gln Gly Ile Val 340 345 350 Asn Asn Ser Tyr Tyr Thr Asn Ile Ser Thr Asn Lys Ile Phe Ser Ser 355 360 365 Gly Thr Thr Glu Gly Ser Ser Tyr Gln Leu Gly Leu Ala Ser Asp Gln 370 375 380 Val Ile Tyr Tyr Thr Asp Ile Phe His His Leu Asn Gln Ser Asn Phe385 390 395 400 Lys Asp Gly Ser Leu Gly Ile Lys Ile Ile Asn Phe Asn Ile Ile Asn 405 410 415 Lys Tyr Asn Glu Val Ser Gln Lys Ser Tyr Asp Ser Asn Ala Thr Ser 420 425 430 Asn Leu Ile Leu Glu Val Ile Leu Pro Phe Leu Lys Thr Thr Glu Lys 435 440 445 Asp Tyr Lys Tyr Ile Leu Ser Tyr Ile Thr Ile Thr Pro Gln Gln Ile 450 455 460 Val Gly Cys Leu Ser Pro Ser Tyr Ile Tyr Gly Phe Ile Trp Thr His465 470 475 480 Ser Ser Val Asn Leu Asn Asn Thr Ile His Tyr Thr Asn Lys Asn Asn 485 490 495 Phe Ser Gln Ile Thr Gln Ile Ser Ala Val Lys Ala Tyr Leu Lys Lys 500 505 510 Asp Arg Val Ser Val Ile Glu Gly Pro Gly His Thr Gly Gly Asp Leu 515 520 525 Val Lys Phe Thr Gln Trp Asp Asp Ser Ile Ser Thr His Tyr Gln Phe 530 535 540 Thr Ser Ser Gly Glu Tyr Lys Ile Arg Val Arg Tyr Ala Ser Thr Ala545 550 555 560 Gln Val Asn Gln Thr Ser Gly Leu Ser Met Thr Ile Tyr His Lys Gly 565 570 575 Asn Pro Thr Glu Thr Trp Asp Leu Asn Ile Asn Asn Lys Ser Asp Thr 580 585 590 Ile Leu Asn Leu Asn Glu Pro Lys Tyr Asn His Phe Gln Tyr Thr Glu 595 600 605 Phe Pro Asn Lys Thr Leu Ile Ile Asn Lys Asp Pro Asn Ser Pro Tyr 610 615 620 Leu Glu Leu Arg Ile Asp Leu Ser Tyr Lys Gly Asn Thr Ala Thr Thr625 630 635 640 Leu Ile Asp Lys Ile Glu Phe Ile Pro Val Ser 645 650 29506PRTBacillus thuringiensis 29Met Asn Gly Asn Gly Lys His Asp Asn Trp Asn His Asn Gln Gln Ile1 5 10 15 Ser Asn Val Gln Met Asn His Asn His Gly Arg Ser Tyr Asp Cys Ser 20 25 30 Cys Gln Gln Asn Gln Tyr Gly Tyr Glu Gln Gln Lys Gln Gln Tyr Glu 35 40 45 Gln Asn Asn Ser Gln Tyr Met Gln Asn Asn Leu Gly Asn Glu Asn Arg 50 55 60 Asn Gly Leu Tyr Pro Tyr Gln Glu Asn Gln Tyr Glu Gln Asn Lys Asn65 70 75 80 Tyr Tyr Ala Ser Asn Asn Leu Thr Tyr Asn Gln Ser Asp Leu Tyr Asn 85 90 95 Ser Asn Pro Gln Asn Met Tyr Lys His Gln Thr Tyr Ser Asn Asp Phe 100 105 110 Tyr Cys Ser Pro Ser Tyr Thr Ala Gly Glu Asn Asn Ile Leu Asp Leu 115 120

125 Leu Gly Thr Glu Ser Lys Gln Phe Gln Lys Ile Ser Asn Ile Asn Thr 130 135 140 Lys Asp Leu His Arg Ser Ile Thr Ala Ser Asn Thr Gln Ile Gly Tyr145 150 155 160 Gln Ile Asp Thr Arg Val Pro Gly Pro Cys Lys Gly Val Asp Tyr Gln 165 170 175 Asn Thr Val Thr Tyr Glu Gln Asn Ser Ile Gly Gly Asp Ser Gln Tyr 180 185 190 Leu Ile Phe Tyr Lys Thr Asp Tyr Thr Asp Ala Phe Ile Ile Ala Asn 195 200 205 Arg Ala Asn Gly Arg Val Leu Glu Val Ile Pro Ser Ser Val Asn Gly 210 215 220 Phe Val Thr Ile Ser Asn Met Phe Thr Tyr Asn Gln Asn Gln Leu Phe225 230 235 240 Ile Arg Thr Lys Ile Ser Asn Asn Asp Asn Ser Asp Asp Val Pro Phe 245 250 255 Ser Leu Thr Thr Glu Asn Asn Gln Thr Leu Asn Ile Cys His His Glu 260 265 270 Phe Gln Tyr Asn Thr Lys Ile Thr Ala Leu Asp Asn Ala Tyr Arg Leu 275 280 285 Asp Asp Lys Val Leu Phe Lys Pro Thr Arg Asp Lys Ile Asn Ile Ser 290 295 300 Phe Pro Asn Met Val Val Asn Ala Lys Glu Lys Leu Pro Glu Pro Glu305 310 315 320 Glu Leu Thr Asn Met Asp Lys Asn Thr Leu Phe Ile Pro Lys Val Ile 325 330 335 Ile Ser Lys Thr Leu Ile Pro Gly Ile Ile Val Asn Asp Val Thr Leu 340 345 350 Leu Lys Glu Gln Gln Ile Ala Lys Ser Pro Tyr Tyr Val Leu Glu Tyr 355 360 365 Val Gln Ser Trp Glu Glu Val Tyr Asn Glu Ile Val Pro Ala Tyr Arg 370 375 380 Pro Ser Tyr Thr Trp Thr Ser Thr Asp Gly Ile Arg His Val Asn Leu385 390 395 400 Leu Asp Ile Lys Asn Thr Ile Asn Ile Ser Ile Gly Gly Thr Ser Gln 405 410 415 Gly Trp Gly Leu Arg Phe Ser Asp Lys Ser Asp Leu Phe Lys Asn Ile 420 425 430 Ile Thr Ser Ala Phe Ile Ile Lys Ser Thr Gln Ala Pro Asp Met Gly 435 440 445 Phe Ser Glu Asn Asp Ile Asp Gln Tyr Tyr Gly Lys Asn Ile Asp Ser 450 455 460 Arg Val Lys Ile Tyr Ile Lys Thr His Asn Leu Ile Leu Arg Arg Leu465 470 475 480 Asp Gln Leu Asn Asn Ser Ile Ala Thr Trp Thr Ile Phe Glu Asn Thr 485 490 495 Lys Pro Val Ile Arg Thr Phe Pro Ile Ser 500 505 30779PRTBacillus thuringiensis 30Met Lys Asp Lys Lys Tyr Trp Lys Tyr Glu Gly Gly Thr Lys Met Asn1 5 10 15 Pro Tyr Gln Asn Lys Asn Glu Tyr Glu Ile Val Asn Asn Pro Gln Asn 20 25 30 Tyr Asn Thr Val Ser Asn Arg Tyr Pro Tyr Thr Asn Asp Pro Asn Val 35 40 45 Ala Ile Gln Asn Thr Asn Tyr Lys Asp Trp Met Asn Gly Tyr Glu Glu 50 55 60 Ile Asn Pro Ser Ser Ile Ser Leu Ile Leu Ala Ser Ile Gly Ile Leu65 70 75 80 Asn Gln Ala Ile Ala Leu Thr Gly Val Leu Gly Lys Thr Pro Glu Ile 85 90 95 Ile Asn Ile Val Gln Glu Met Val Gly Leu Ile Ser Gly Ser Thr Gly 100 105 110 Asn Asp Leu Leu Val His Thr Glu Gln Leu Ile Gln Gln Thr Leu Ala 115 120 125 Gln Gln Tyr Arg Asn Ala Ala Thr Gly Ala Val Asn Ala Ile Ser Lys 130 135 140 Ser Tyr Asn Asp Tyr Leu Met Phe Phe Arg Gln Trp Glu Arg Asn Arg145 150 155 160 Thr Ser Gln Asn Gly Leu Gln Val Glu Ser Ala Phe Asn Thr Val Asn 165 170 175 Thr Leu Cys Leu Arg Thr Leu Thr Pro Gln Glu Ala Leu Ser Arg Arg 180 185 190 Gly Phe Glu Thr Leu Leu Leu Pro Asn Tyr Ala Leu Ala Ala Asn Phe 195 200 205 His Leu Leu Leu Leu Arg Asp Ala Val Leu Tyr Arg Thr Gln Trp Leu 210 215 220 Pro Asn Phe Ile Ser Thr Thr Asn Ala Asn Ile Glu Ile Leu Glu Arg225 230 235 240 Ser Ile Asn Gln Tyr Arg Asn His Cys Asn His Trp Tyr Asn Asp Gly 245 250 255 Leu Asn Arg Phe Ala Arg Thr Ser Phe Asp Asp Trp Val Arg Phe Asn 260 265 270 Ala Tyr Arg Arg Asp Met Thr Leu Ser Val Leu Asp Phe Val Thr Val 275 280 285 Phe Pro Thr Tyr Asn Pro Ile Asn Phe Pro Thr Pro Thr Asn Val Glu 290 295 300 Leu Thr Arg Ile Val Tyr Thr Asp Pro Ile Ser Pro Pro Arg Gly Tyr305 310 315 320 Ala Arg Thr Gly Ser Pro Ser Phe Arg Gln Met Glu Asp Leu Ile Ile 325 330 335 Ser Gly Ser Pro Ser Phe Leu Asn Gln Leu Ser Ile Phe Thr Thr Tyr 340 345 350 Tyr His Asp Pro Arg Asn Val Asn Arg Asp Phe Trp Ala Gly Asn Arg 355 360 365 Asn Tyr Leu Ser Asn Gly Thr Ser Arg Gln Ser Gly Ala Thr Thr Pro 370 375 380 Trp Arg Thr Asn Ile Pro Met Gln Asn Ile Asp Ile Phe Arg Val Asn385 390 395 400 Leu Thr Thr His Asp Ile Asp Asp Ile Ser Arg Ser Tyr Gly Gly Val 405 410 415 His Arg Ser Asp Phe Ile Gly Val Asn Thr Ile Asn Asn Gln Arg Thr 420 425 430 Thr Leu Phe Tyr His Gln Asn Val Asp Thr Ser Arg Phe Leu Ile Arg 435 440 445 Asn Glu Thr Val Phe Leu Pro Gly Asp Ser Gly Leu Ala Pro Asn Glu 450 455 460 Arg Asn Tyr Thr His Arg Leu Phe Gln Val Met Thr Thr Tyr Arg Thr465 470 475 480 Asn Pro Asn Ala Arg Arg Ala Ala Phe Leu His Ala Trp Thr His Arg 485 490 495 Ser Leu Arg Arg Arg Asn Gly Phe Arg Thr Asp Gln Ile Met Gln Ile 500 505 510 Pro Ala Val Lys Ser Ile Ser Asn Gly Gly Asp Arg Ala Val Ile Ser 515 520 525 Tyr Thr Gly Glu Asn Met Met Lys Leu Asp Asn Leu Thr Ala Ser Leu 530 535 540 Ser Tyr Lys Leu Thr Ala Glu Asp Ser Glu Ala Ser Asn Thr Arg Phe545 550 555 560 Ile Val Arg Ile Arg Tyr Ala Ser Met Asn Asn Asn Arg Leu Asn Leu 565 570 575 Ile Leu Asn Gly Thr Gln Ile Ala Ser Leu Asn Val Glu Gly Thr Met 580 585 590 Gln Asn Gly Gly Ser Leu Thr Asn Leu Gln Ser Glu Asn Phe Lys Tyr 595 600 605 Ala Thr Phe Ser Gly Asn Phe Lys Met Gly Ser Gln Ser Ile Val Gly 610 615 620 Ile Phe Lys Glu Ile Ser Asn Ala Asp Phe Ile Leu Asp Lys Ile Glu625 630 635 640 Leu Ile Pro Ile His Phe Met Pro Leu Leu Glu Gln Lys Gln Ser Tyr 645 650 655 Asn Asn Tyr Asp Gln Asn Met Asp Thr Thr Tyr Gln Pro Asn Tyr Asp 660 665 670 Thr Tyr Asn Gln Asn Ala Asn Gly Met Tyr Asp Asp Thr Tyr Tyr Pro 675 680 685 Asn Asn Asn Asp Ser Tyr Asn Gln Asn Asn Thr Asp Met Tyr Asp Ser 690 695 700 Gly Tyr Asn Asn Asn Gln Asn Thr Asn Tyr Asn Tyr Asp Gln Glu Tyr705 710 715 720 Asn Thr Tyr Asn Gln Asn Met Glu Asn Thr Tyr Asp Gln Ser Tyr Glu 725 730 735 Asn Tyr Asn Pro Glu Thr Asn Asn Tyr Asn Gln Tyr Pro Asn Asp Met 740 745 750 Tyr Asn Gln Glu Tyr Thr Asn Asp Tyr Asn Gln Asn Ser Gly Cys Arg 755 760 765 Cys Asn Gln Gly Tyr Asn Asn Asn Tyr Pro Lys 770 775 31322PRTBacillus thuringiensis 31Met Asn Phe Leu Tyr Asn Phe Val Thr Leu Asp Met Leu Ile Leu Asn1 5 10 15 Arg Leu Glu Gly Ser Asp Phe Lys Met Lys Lys Lys Ala Ile Val Cys 20 25 30 Gly Leu Leu Ala Ser Thr Leu Leu Gly Gly Gly Thr Phe Val Asp Ala 35 40 45 Val Ser Ala Ala Glu Ile Gln Lys Thr Asn His Leu Asn Lys Tyr Asp 50 55 60 Ser Ala Gln Glu Lys Ala Leu Gln Asp Ile Asn Gln Glu Ala Leu Gln65 70 75 80 Asp Ile Asp Gln Lys Val Asn Lys Met Ile Asp Ser Ile Pro Pro Ile 85 90 95 Phe Gly Ser Lys Tyr Thr Arg Thr Asp Arg Tyr Gly Glu Ser Leu Thr 100 105 110 Tyr Ser Gly Ile Asn Leu Lys Glu Asn Asn Ser Thr Asn Val Glu Pro 115 120 125 Met Tyr Phe Gly Ser Asn Thr Phe Tyr Asn Asp Thr Glu Leu Glu Gln 130 135 140 Ser Tyr Asn Thr Thr Ser Phe Ser Glu Ala Val Thr Lys Ser Thr Thr145 150 155 160 Thr Gln Thr Gln Asn Gly Phe Lys Ser Gly Val Thr Thr Gly Gly Lys 165 170 175 Val Gly Ile Pro Phe Val Ala Glu Gly Glu Val Lys Ile Asn Leu Glu 180 185 190 Tyr Asn Phe Thr His Thr Asn Ser Asn Thr Thr Ser Lys Thr Thr Thr 195 200 205 Leu Thr Ala Pro Pro Gln Pro Val Lys Val Pro Ala Gly Lys Val Tyr 210 215 220 Lys Ala Asp Val Tyr Phe Glu Lys Lys Ser Thr Ser Gly Thr Val Glu225 230 235 240 Leu Tyr Gly Asp Leu Leu Thr Gly Val Val Ala Glu Gly Arg Thr Ser 245 250 255 Phe Val Gly Asn Val Leu His Lys Ala Thr Asp Thr Gln Gly Leu Ile 260 265 270 Gln Ser Pro Glu Asp Ser Asn Lys Val Arg Ala Val Gly Lys Gly Thr 275 280 285 Phe Thr Thr Glu His Gly Ser Asn Phe Ile Val Lys Thr Tyr Asp Val 290 295 300 Thr Ser Gly Gln Lys Ser Ala Lys Leu Val Asp Thr Arg Val Ile Pro305 310 315 320 Ile Lys32323PRTBacillus thuringiensis 32Met Asn Leu Arg Arg Ile Ser Met Arg Val Tyr Lys Lys Leu Ala Thr1 5 10 15 Leu Ala Pro Ile Ala Ala Leu Ser Thr Ser Ile Leu Cys Ser Pro Ala 20 25 30 Met Thr Phe Ala Ala Glu Lys Glu Ser Thr Val Lys Gln Thr Thr Gln 35 40 45 Gln Ser Ala Val Gln Gln Gly Arg Ile Ile Gln Gly Tyr Leu Ile Lys 50 55 60 Asn Gly Val Lys Ile Pro Val Tyr Thr Gly Gly Leu Val Thr Asn Lys65 70 75 80 Ala Glu Gln Gly Ala Ala Ala Phe Pro Gln Leu Ser Ser Asn Pro Asn 85 90 95 Asp Pro Ile Pro Gln Lys Gly Ser Ile Ser Ser Glu Asp Gly Asn Ile 100 105 110 Gly Asp Ile Leu Tyr Phe Ser Lys Thr Pro Met Gly Asp Asn Val Tyr 115 120 125 Ile Lys Lys Leu Glu Asn Asn Asn Ile Glu Ile Gly Lys Tyr Asn Arg 130 135 140 Gly Thr Leu Glu Leu Ser Lys Phe Val Thr Val Asn Gly Asp Pro Gln145 150 155 160 Gly Pro Ile Met Leu Phe Asp Ala Thr Val Lys Arg Glu Thr Ala Phe 165 170 175 Glu Lys Ile Gly Gly Ala Val Gln Pro Lys Ala Thr Gln Tyr Thr Phe 180 185 190 Ser Gln Ala Val Thr Ser Gly Leu Ser Thr Ser Asp Ala Ile Gly Gly 195 200 205 Ser Leu Thr Leu Gly Tyr Lys Ile Ser Leu Lys Glu Gly Gly Gly Val 210 215 220 Val Pro Ala Glu Ala Thr Gln Glu Phe Ser Thr Gln Leu Ser Ala Thr225 230 235 240 Tyr Asn His Thr Ile Thr Val Thr Asn Gln Thr Thr Asn Thr Gln Thr 245 250 255 Gln Thr Phe Lys Pro Ile Asp Ser Tyr Gly Gln Ser Thr Tyr Ala Ala 260 265 270 Ala Val Tyr Gln Leu Lys Ser His Tyr Thr Val Ile Pro Gly Ala Gly 275 280 285 Leu Gln Lys Gly Leu Asn Ser Gly Tyr Val Leu Asp Gln Thr Ala Phe 290 295 300 Ser Tyr Ser Asp Ser Asp Leu Tyr Leu Ala Val Thr Pro Gly Ala Gly305 310 315 320 Ser Asn Val33252PRTBacillus thuringiensis 33Met Ile Thr Asn Gln Ala Ala Gln Ala Ser Asp Ala Pro Tyr Pro Glu1 5 10 15 Leu Pro Ser Asn Pro Asn Asp Ala Ile Pro Asn Ala Gly Ala Thr His 20 25 30 Ala Glu Asn Gly Ser Val Gly Ser Val Leu Tyr Phe Lys Gln Ile Asp 35 40 45 Leu Asn Asn Leu Gly Ala Gly Ile Gly Asn Ser Gln Lys Asp Tyr Val 50 55 60 Tyr Val Glu Lys Lys Gly Asp Ser Gly Tyr Glu Leu Gly Asn Tyr Asn65 70 75 80 Pro Leu Thr Leu Gln Arg Thr Lys Ile Lys Asp Tyr Asp Lys Ser Ser 85 90 95 Glu Leu Ala Glu Lys Met Asp Gly Tyr Phe Lys Ser Thr Ile Thr Arg 100 105 110 Asp Thr Phe Phe Ser Lys Ile Gly Ser Gly Val Val Pro Lys Asn Ala 115 120 125 Ala Tyr Thr Phe Ser Gln Ala Val Thr Ser Gly Leu Thr Thr Ser Asp 130 135 140 Ala Ile Gly Gly Ala Leu Thr Leu Gly Tyr Lys Val Ser Val Thr Glu145 150 155 160 Gly Gly Gly Ile Phe Pro Ala Ala Ala Ser Glu Glu Phe Ser Ala Gln 165 170 175 Leu Thr Ala Thr Tyr Asn His Thr Ile Thr Val Ser Ser Gln Val Thr 180 185 190 Asn Thr Gln Thr Leu Gly Ile Thr Lys Ala Ala Asp Gly Tyr Gln Tyr 195 200 205 Asp Lys Tyr Val Gly Ala Val Tyr Gln Leu His Ser Lys Tyr Thr Phe 210 215 220 Lys Pro Ser Asp Glu Leu Gln Phe Ala Met Asn Ser Pro Phe Gly Tyr225 230 235 240 Lys Val Ile Leu Asn Gln Arg Ala Gln Ser Phe Gln 245 250 341441PRTBacillus thuringiensis 34Met Thr Thr Ile Asn Glu Leu Tyr Pro Ala Val Pro Tyr Asn Val Leu1 5 10 15 Ala Tyr Ala Pro Pro Leu Asn Leu Ala Asp Ser Thr Pro Trp Gly Gln 20 25 30 Ile Val Val Ala Asp Ala Ile Lys Glu Ala Trp Asp Asn Phe Gln Lys 35 40 45 Tyr Gly Val Leu Asp Leu Thr Ala Ile Asn Gln Gly Phe Asp Asp Ala 50 55 60 Asn Thr Gly Ser Phe Ser Tyr Gln Ala Leu Ile Gln Thr Val Leu Gly65 70 75 80 Ile Ile Gly Thr Ile Gly Met Thr Val Pro Val Ala Ala Pro Phe Ala 85 90 95 Ala Thr Ala Pro Ile Ile Ser Leu Phe Val Gly Phe Phe Trp Pro Lys 100 105 110 Lys Asp Lys Gly Pro Gln Leu Ile Asp Ile Ile Asp Lys Glu Ile Lys 115 120 125 Lys Leu Leu Asp Lys Glu Leu Gly Glu Gln Lys Arg Asn Asp Leu Val 130 135 140 Ser Ala Leu Asn Glu Met Gln Glu Gly Ala Asn Glu Leu Ser Asp Ile145 150 155 160 Met Thr Asn Ala Leu Phe Glu Gly Thr Ile Gln Gly Asn Val Val Thr 165 170 175 Asn Asp Asn Pro Gln Gly Lys Arg Arg Thr Pro Lys Ala Pro Thr Val 180 185 190 Ser Asp Tyr Glu Asn Val Tyr Ser Ala Tyr Phe Val Glu His Val Asp 195 200 205 Phe Arg Asn Lys Ile Ser Thr Phe Leu Thr Gly Ser Tyr Asp Leu Ile 210 215 220 Ala Leu Pro Leu Tyr Ala Leu Ala Lys Thr Met Glu Leu Ser Leu Tyr225

230 235 240 Gln Ser Phe Ile Asn Phe Ala Asn Lys Trp Met Asp Phe Val Tyr Thr 245 250 255 Lys Ala Ile Asn Glu Ser Ala Thr Asp Asp Met Lys Arg Asp Tyr Gln 260 265 270 Ala Arg Tyr Asn Thr Gln Lys Ser Asn Leu Ala Val Gln Lys Thr Gln 275 280 285 Leu Ile Asn Lys Ile Lys Asp Gly Thr Asp Ala Val Met Lys Val Phe 290 295 300 Lys Asp Thr Asn Asn Leu Pro Ser Ile Gly Thr Asn Lys Leu Ala Val305 310 315 320 Asn Ala Arg Asn Lys Tyr Ile Arg Ala Leu Gln Ile Asn Cys Leu Asp 325 330 335 Leu Val Ala Leu Trp Pro Gly Leu Tyr Pro Asp Glu Tyr Leu Leu Pro 340 345 350 Leu Gln Leu Asp Lys Thr Arg Val Val Phe Ser Asp Thr Met Gly Pro 355 360 365 Asp Glu Thr His Asp Gly Gln Met Lys Val Leu Asn Ile Leu Asp Ser 370 375 380 Thr Thr Ser Tyr Asn His Gln Asp Ile Gly Ile Ser Thr Thr Gln Asp385 390 395 400 Val Asn Ser Leu Leu Phe Tyr Pro Arg Lys Glu Leu Leu Glu Leu Asp 405 410 415 Phe Ala Lys Tyr Ile Ser Ser Ser Ser Arg Phe Trp Val Tyr Gly Phe 420 425 430 Gly Leu Lys Tyr Ser Asp Asp Asn Phe Tyr Arg Tyr Gly Asp Asn Asp 435 440 445 Pro Ser Ser Asp Phe Lys Pro Ala Tyr Lys Trp Phe Thr Lys Asn Ser 450 455 460 Gln Phe Glu Asn Leu Pro Thr Tyr Gly Asn Pro Thr Pro Ile Thr Asn465 470 475 480 Leu Asn Ala Lys Thr Gln Val Thr Ser Tyr Leu Asp Ala Leu Ile Tyr 485 490 495 Tyr Ile Asp Gly Gly Thr Asn Leu Tyr Asn Asn Ala Ile Leu His Asp 500 505 510 Thr Gly Gly Tyr Ile Pro Gly Tyr Pro Gly Val Glu Gly Tyr Gly Met 515 520 525 Ser Asn Asn Glu Pro Leu Ala Gly Gln Lys Leu Asn Ala Leu Tyr Pro 530 535 540 Ile Lys Val Glu Asn Val Ser Gly Ser Gln Gly Lys Leu Gly Thr Ile545 550 555 560 Ala Ala Tyr Val Pro Leu Asn Leu Gln Pro Glu Asn Ile Ile Gly Asp 565 570 575 Ala Asp Pro Asn Thr Gly Phe Pro Leu Asn Val Ile Lys Gly Phe Pro 580 585 590 Phe Glu Lys Tyr Gly Pro Asp Tyr Glu Gly Arg Gly Ile Ser Val Val 595 600 605 Lys Glu Trp Ile Asn Gly Ala Asn Ala Val Lys Leu Ser Pro Gly Gln 610 615 620 Ser Val Gly Val Gln Ile Lys Asn Ile Thr Lys Gln Asn Tyr Gln Ile625 630 635 640 Arg Thr Arg Tyr Ala Ser Asn Asn Ser Asn Gln Val Tyr Phe Asn Val 645 650 655 Asp Pro Gly Gly Ser Pro Leu Phe Ala Gln Ser Val Thr Phe Glu Ser 660 665 670 Thr Thr Asn Val Thr Ser Gly Gln Gln Gly Glu Asn Gly Arg Tyr Thr 675 680 685 Leu Lys Thr Ile Phe Ser Gly Asn Asp Leu Leu Thr Val Glu Ile Pro 690 695 700 Val Gly Asn Phe Tyr Val His Val Thr Asn Lys Gly Ser Ser Asp Ile705 710 715 720 Phe Leu Asp Arg Leu Glu Phe Ser Thr Val Pro Ser Tyr Val Ile Tyr 725 730 735 Ser Gly Asp Tyr Asp Ala Thr Gly Thr Asp Asp Val Leu Leu Ser Asp 740 745 750 Pro His Glu Tyr Phe Tyr Asp Val Ile Val Asn Gly Thr Ala Ser His 755 760 765 Ser Ser Ala Ala Thr Ser Met Asn Leu Leu Asn Lys Gly Thr Val Val 770 775 780 Arg Ser Ile Asp Ile Pro Gly His Ser Thr Ser Tyr Ser Val Gln Tyr785 790 795 800 Ser Val Pro Glu Gly Phe Asp Glu Val Arg Ile Leu Ser Ser Leu Pro 805 810 815 Asp Ile Ser Gly Thr Ile Arg Val Glu Ser Ser Lys Pro Pro Val Phe 820 825 830 Lys Asn Asp Gly Asn Ser Gly Asp Gly Gly Asn Thr Glu Tyr Asn Phe 835 840 845 Asn Phe Asp Leu Ser Gly Leu Gln Asp Thr Gly Leu Tyr Ser Gly Lys 850 855 860 Leu Lys Ser Gly Ile Arg Val Gln Gly Asn Tyr Thr Tyr Thr Gly Ala865 870 875 880 Pro Ser Leu Asn Leu Val Val Tyr Arg Asn Asn Ser Val Val Ser Thr 885 890 895 Phe Pro Val Gly Ser Pro Phe Asp Ile Thr Ile Thr Thr Glu Thr Asp 900 905 910 Lys Val Ile Leu Ser Leu Gln Pro Gln His Gly Leu Ala Thr Val Thr 915 920 925 Gly Thr Gly Thr Ile Thr Ile Pro Asn Asp Lys Leu Ala Ile Val Tyr 930 935 940 Asp Lys Leu Phe Lys Leu Pro His Asp Leu Glu Asn Ile Arg Ile Gln945 950 955 960 Val Asn Ala Leu Phe Ile Ser Ser Thr Gln Asn Glu Leu Ala Lys Glu 965 970 975 Val Asn Asp His Asp Ile Glu Glu Val Ala Leu Lys Val Asp Ala Leu 980 985 990 Ser Asp Glu Val Phe Gly Lys Glu Lys Lys Glu Leu Arg Lys Leu Val 995 1000 1005 Asn Gln Ala Lys Arg Leu Ser Lys Ala Arg Asn Leu Leu Val Gly Gly 1010 1015 1020 Asn Phe Asp Asn Trp Glu Ala Trp Tyr Lys Gly Lys Glu Val Ala Arg1025 1030 1035 1040 Val Ser Asp His Glu Leu Leu Lys Ser Asp His Val Leu Leu Pro Pro 1045 1050 1055 Pro Thr Met Tyr Pro Ser Tyr Ile Tyr Gln Lys Val Glu Glu Thr Lys 1060 1065 1070 Leu Lys Pro Asn Thr Arg Tyr Met Ile Ser Gly Phe Ile Ala His Ala 1075 1080 1085 Glu Asp Leu Glu Ile Val Val Ser Arg Tyr Gly Gln Glu Val Arg Lys 1090 1095 1100 Ile Val Gln Val Pro Tyr Gly Glu Ala Phe Pro Leu Thr Ser Asn Gly1105 1110 1115 1120 Ser Ile Cys Cys Thr Pro Ser Phe Arg Arg Asp Gly Lys Leu Ser Asp 1125 1130 1135 Pro His Phe Phe Ser Tyr Ser Ile Asp Val Gly Glu Leu Asp Met Thr 1140 1145 1150 Ala Gly Pro Gly Ile Glu Leu Gly Leu Arg Ile Val Asp Arg Leu Gly 1155 1160 1165 Met Ala Arg Val Ser Asn Leu Glu Ile Arg Glu Asp Arg Ser Leu Thr 1170 1175 1180 Ala Asn Glu Ile Arg Lys Val Gln Arg Met Ala Arg Asn Trp Arg Thr1185 1190 1195 1200 Glu Tyr Glu Lys Glu Arg Ala Glu Val Thr Ala Leu Ile Glu Pro Val 1205 1210 1215 Leu Asn Gln Ile Asn Ala Leu Tyr Glu Asn Gly Asp Trp Asn Gly Ser 1220 1225 1230 Ile Arg Ser Asp Ile Ser Tyr Tyr Asp Ile Glu Ser Ile Val Leu Pro 1235 1240 1245 Thr Leu Pro Arg Leu Arg His Trp Phe Val Pro Asp Met Leu Thr Glu 1250 1255 1260 His Gly Asn Ile Met Asn Arg Phe Glu Glu Ala Leu Asn Arg Ala Tyr1265 1270 1275 1280 Thr Gln Leu Glu Gly Asn Thr Leu Leu His Asn Gly His Phe Thr Thr 1285 1290 1295 Asp Ala Val Asn Trp Met Ile Gln Gly Asp Ala His Gln Val Ile Leu 1300 1305 1310 Glu Asp Gly Arg Arg Val Leu Arg Leu Pro Asp Trp Ser Ser Ser Val 1315 1320 1325 Ser Gln Thr Ile Glu Ile Glu Lys Phe Asp Pro Asp Lys Glu Tyr Asn 1330 1335 1340 Leu Val Phe His Ala Gln Gly Glu Gly Thr Val Thr Leu Glu His Gly1345 1350 1355 1360 Glu Lys Thr Lys Tyr Ile Glu Thr His Thr His His Phe Ala Asn Phe 1365 1370 1375 Thr Thr Ser Gln Ser Gln Gly Ile Thr Phe Glu Ser Asn Lys Val Thr 1380 1385 1390 Val Glu Ile Ser Ser Glu Asp Gly Glu Leu Leu Val Asp His Ile Ala 1395 1400 1405 Leu Val Glu Val Pro Met Phe Asn Lys Asn Gln Met Val Asn Glu Asn 1410 1415 1420 Arg Asp Val Asn Ile Asn Ser Asn Thr Asn Met Asn Asn Ser Asn Asn1425 1430 1435 1440 Gln35731PRTBacillus thuringiensis 35Met Thr Thr Ile Asn Glu Leu Tyr Pro Ala Val Pro Tyr Asn Val Leu1 5 10 15 Ala Tyr Ala Pro Pro Leu Asn Leu Ala Asp Ser Thr Pro Trp Gly Gln 20 25 30 Ile Val Val Ala Asp Ala Ile Lys Glu Ala Trp Asp Asn Phe Gln Lys 35 40 45 Tyr Gly Val Leu Asp Leu Thr Ala Ile Asn Gln Gly Phe Asp Asp Ala 50 55 60 Asn Thr Gly Ser Phe Ser Tyr Gln Ala Leu Ile Gln Thr Val Leu Gly65 70 75 80 Ile Ile Gly Thr Ile Gly Met Thr Val Pro Val Ala Ala Pro Phe Ala 85 90 95 Ala Thr Ala Pro Ile Ile Ser Leu Phe Val Gly Phe Phe Trp Pro Lys 100 105 110 Lys Asp Lys Gly Pro Gln Leu Ile Asp Ile Ile Asp Lys Glu Ile Lys 115 120 125 Lys Leu Leu Asp Lys Glu Leu Gly Glu Gln Lys Arg Asn Asp Leu Val 130 135 140 Ser Ala Leu Asn Glu Met Gln Glu Gly Ala Asn Glu Leu Ser Asp Ile145 150 155 160 Met Thr Asn Ala Leu Phe Glu Gly Thr Ile Gln Gly Asn Val Val Thr 165 170 175 Asn Asp Asn Pro Gln Gly Lys Arg Arg Thr Pro Lys Ala Pro Thr Val 180 185 190 Ser Asp Tyr Glu Asn Val Tyr Ser Ala Tyr Phe Val Glu His Val Asp 195 200 205 Phe Arg Asn Lys Ile Ser Thr Phe Leu Thr Gly Ser Tyr Asp Leu Ile 210 215 220 Ala Leu Pro Leu Tyr Ala Leu Ala Lys Thr Met Glu Leu Ser Leu Tyr225 230 235 240 Gln Ser Phe Ile Asn Phe Ala Asn Lys Trp Met Asp Phe Val Tyr Thr 245 250 255 Lys Ala Ile Asn Glu Ser Ala Thr Asp Asp Met Lys Arg Asp Tyr Gln 260 265 270 Ala Arg Tyr Asn Thr Gln Lys Ser Asn Leu Ala Val Gln Lys Thr Gln 275 280 285 Leu Ile Asn Lys Ile Lys Asp Gly Thr Asp Ala Val Met Lys Val Phe 290 295 300 Lys Asp Thr Asn Asn Leu Pro Ser Ile Gly Thr Asn Lys Leu Ala Val305 310 315 320 Asn Ala Arg Asn Lys Tyr Ile Arg Ala Leu Gln Ile Asn Cys Leu Asp 325 330 335 Leu Val Ala Leu Trp Pro Gly Leu Tyr Pro Asp Glu Tyr Leu Leu Pro 340 345 350 Leu Gln Leu Asp Lys Thr Arg Val Val Phe Ser Asp Thr Met Gly Pro 355 360 365 Asp Glu Thr His Asp Gly Gln Met Lys Val Leu Asn Ile Leu Asp Ser 370 375 380 Thr Thr Ser Tyr Asn His Gln Asp Ile Gly Ile Ser Thr Thr Gln Asp385 390 395 400 Val Asn Ser Leu Leu Phe Tyr Pro Arg Lys Glu Leu Leu Glu Leu Asp 405 410 415 Phe Ala Lys Tyr Ile Ser Ser Ser Ser Arg Phe Trp Val Tyr Gly Phe 420 425 430 Gly Leu Lys Tyr Ser Asp Asp Asn Phe Tyr Arg Tyr Gly Asp Asn Asp 435 440 445 Pro Ser Ser Asp Phe Lys Pro Ala Tyr Lys Trp Phe Thr Lys Asn Ser 450 455 460 Gln Phe Glu Asn Leu Pro Thr Tyr Gly Asn Pro Thr Pro Ile Thr Asn465 470 475 480 Leu Asn Ala Lys Thr Gln Val Thr Ser Tyr Leu Asp Ala Leu Ile Tyr 485 490 495 Tyr Ile Asp Gly Gly Thr Asn Leu Tyr Asn Asn Ala Ile Leu His Asp 500 505 510 Thr Gly Gly Tyr Ile Pro Gly Tyr Pro Gly Val Glu Gly Tyr Gly Met 515 520 525 Ser Asn Asn Glu Pro Leu Ala Gly Gln Lys Leu Asn Ala Leu Tyr Pro 530 535 540 Ile Lys Val Glu Asn Val Ser Gly Ser Gln Gly Lys Leu Gly Thr Ile545 550 555 560 Ala Ala Tyr Val Pro Leu Asn Leu Gln Pro Glu Asn Ile Ile Gly Asp 565 570 575 Ala Asp Pro Asn Thr Gly Phe Pro Leu Asn Val Ile Lys Gly Phe Pro 580 585 590 Phe Glu Lys Tyr Gly Pro Asp Tyr Glu Gly Arg Gly Ile Ser Val Val 595 600 605 Lys Glu Trp Ile Asn Gly Ala Asn Ala Val Lys Leu Ser Pro Gly Gln 610 615 620 Ser Val Gly Val Gln Ile Lys Asn Ile Thr Lys Gln Asn Tyr Gln Ile625 630 635 640 Arg Thr Arg Tyr Ala Ser Asn Asn Ser Asn Gln Val Tyr Phe Asn Val 645 650 655 Asp Pro Gly Gly Ser Pro Leu Phe Ala Gln Ser Val Thr Phe Glu Ser 660 665 670 Thr Thr Asn Val Thr Ser Gly Gln Gln Gly Glu Asn Gly Arg Tyr Thr 675 680 685 Leu Lys Thr Ile Phe Ser Gly Asn Asp Leu Leu Thr Val Glu Ile Pro 690 695 700 Val Gly Asn Phe Tyr Val His Val Thr Asn Lys Gly Ser Ser Asp Ile705 710 715 720 Phe Leu Asp Arg Leu Glu Phe Ser Thr Val Pro 725 730 36364PRTBacillus thuringiensis 36Met Leu Ile Lys Glu Met Gln Tyr Met His Ser Ile Lys Lys Tyr Lys1 5 10 15 Lys Val Leu Leu Ile Ala Pro Leu Ala Cys Met Leu Thr Gly Ala Ile 20 25 30 Leu Pro Thr Ala Thr Thr Val His Ala Gln Glu Val Glu Asn Lys Lys 35 40 45 Ala Val Ser Met Met Lys Pro Gly Gly Glu Phe Gly Ala Thr Lys Tyr 50 55 60 Ser Lys Glu Asn Leu Val Lys Glu Ile Asn Leu Arg Leu Leu Thr Ala65 70 75 80 Leu Asp Arg Ser Thr Ser Leu Arg Glu Lys Phe His Ile Lys Gly Asn 85 90 95 Glu Val Leu Asp Val Ser Gln Leu Asp Asp Thr Ser Lys Gln Leu Met 100 105 110 Glu Lys Leu Gln Leu Thr Ala Glu Gly Ser Ile Asp Val Lys Pro His 115 120 125 Val Asp Ser Tyr Lys Asp Leu Gly Gln Thr Asn Ile Val Thr Tyr Asn 130 135 140 Asn Asp Asn Gly Val Val Gly Gln Thr Tyr Asn Thr Pro Glu Thr Thr145 150 155 160 Val Lys Glu Ser Glu Thr His Thr Tyr Ser Asn Thr Glu Gly Val Lys 165 170 175 Leu Gly Leu Glu Val Gly Thr Lys Ile Thr Val Gly Ile Pro Phe Ile 180 185 190 Gly Lys Asp Glu Thr Glu Ile Lys Ala Thr Ser Glu Phe Ser Tyr Glu 195 200 205 His Asn Asp Ser Gln Thr Lys Thr Lys Glu Thr Asp Val Thr Phe Lys 210 215 220 Ser Gln Pro Val Val Ala Ala Pro Gly Gly Thr Thr Thr Tyr Tyr Gly225 230 235 240 Asp Ile Lys Thr Ala Thr Phe Ser Gly Ser Phe Gln Ser Asp Ala Tyr 245 250 255 Val Ala Gly Gly Phe Glu Leu Lys Val Pro Ile Ala His Asp Met Ala 260 265 270 Ser Pro Lys Ile Asp Arg Tyr Glu Thr Ala Thr Leu Thr Ala Ala Asp 275 280 285 Ile Tyr Glu Ile Phe Asn Ala Ser Asn Ala Ile Ala Ala Pro Asn Tyr 290 295 300 Leu Lys Leu Asp Asn Ala Gly Lys Lys Val Leu Leu Thr Asp Lys Ala305 310 315 320 Thr Phe Asp Ile Asn Gly Gln Gly Gly Phe Tyr Thr Thr Leu Gln Val 325 330 335 Lys Phe Val Pro Lys Asp Ser Asn Lys Lys Pro Gln Met Met Ser Tyr 340 345 350 Lys Glu Tyr Val Gln Lys Met Asn Asn Asn Glu Leu 355 360 37394PRTBacillus thuringiensis 37Met

Tyr Ser Ile Lys Arg Tyr Lys Lys Val Ala Ile Val Ala Pro Leu1 5 10 15 Val Cys Leu Leu Gly Thr Gly Leu Thr Phe Val Asn Lys Pro Ile Pro 20 25 30 Ala Ala Ala Ala Val Thr Thr Asn Tyr Ser Thr Ala Asp Ser Ala Ser 35 40 45 Asn Phe Gln Pro Ile Ser Lys Tyr Thr Leu Ala Gly Asp Leu Tyr Glu 50 55 60 Arg Tyr Met Arg Ala Leu Val Arg His Pro Glu Leu Leu Ser Ser Gly65 70 75 80 Gly Leu Lys Pro Val Thr Asn Gln Thr Asp Leu Glu Gln Ile Asp Gly 85 90 95 Tyr Tyr Lys Val Met Ala Gln Phe Ile Arg Asp Asn Asn Gln Asn Phe 100 105 110 Pro Ser Pro Phe Asn Arg Pro Ser Met Lys Leu Met Thr Gly Val Asn 115 120 125 Pro Phe Phe Asn Trp Ala Pro Gln Tyr Thr Asn Leu Ser Thr Gln Asn 130 135 140 Val Ile Asn Leu Asp Asn Pro Lys Val Asp Asp Tyr Lys Glu Asp Asn145 150 155 160 Ile Glu Leu Ala Thr Tyr Thr Asn Asn Thr Thr Ser Glu Gln Thr Phe 165 170 175 Ser Thr Pro Ser Lys Ser Glu Lys Val Thr Asp Ser Phe Thr Tyr Ser 180 185 190 Asn Ser Glu Gly Gly Lys Leu Gly Val Ser Ser Thr Thr Thr Ile Arg 195 200 205 Ala Gly Ile Pro Ile Ala Gln Ala Gln Glu Thr Leu Thr Met Ser Phe 210 215 220 Glu Ala Thr Tyr Asn His Thr Ser Ser Asn Thr Ser Ser Thr Glu Lys225 230 235 240 Thr Val Thr Tyr Pro Ser Gln Val Leu Lys Cys Leu Pro Gly Tyr Arg 245 250 255 Thr Ser Leu Ile Val Lys Val Ser Gln Ala Asn Phe Ser Gly Thr Met 260 265 270 Asp Phe Asp Val Glu Pro Thr Val Ser Ser Leu Ile Asp Gly Ile Glu 275 280 285 Lys Asn Trp Lys Asp Ile Lys Asp Asp Lys Thr Ile Lys Gly Asp Lys 290 295 300 Ser Gly Asp Tyr Thr Val Pro Asn Arg Gln Glu Phe Leu Tyr Asn Val305 310 315 320 Tyr Lys Tyr Ser Asp Leu Pro Ile Pro Ser Tyr Val Lys Leu Asp Asp 325 330 335 Lys Lys Lys Thr Val Ser Phe Gly Lys Val Thr Thr Pro Tyr Thr Gly 340 345 350 Val Ala Gly His Leu Ser Glu Ala Asn Ala Thr Gln Val Lys Leu Glu 355 360 365 Ser Leu Asp Lys Ala Gln Lys Pro Ile Ile Met Pro Leu Lys Gln Tyr 370 375 380 Gln Gln Lys Ile Gln Asn His Glu Ser Phe385 390 38360PRTBacillus thuringiensis 38Met His Ser Ile Lys Lys Tyr Lys Lys Ile Leu Leu Val Ala Pro Leu1 5 10 15 Ala Cys Met Leu Thr Gly Ala Ile Leu Pro Thr Ala Thr Thr Val His 20 25 30 Ala Gln Glu Ile Lys Gly Pro Gly Val Met Lys Pro Asp Val Pro Trp 35 40 45 Asn Gln Glu His Tyr Thr Lys Glu Asn Leu Ala Trp Arg Ala Ala Asp 50 55 60 Arg Leu Ser Tyr Ala Ala Asp Arg Ile Pro Ser Leu Arg Glu Lys Phe65 70 75 80 Lys Leu Lys Pro Asn Glu His Phe Tyr Cys Ser Asn Asp Thr Arg Tyr 85 90 95 Tyr Met Glu Glu Thr Leu Leu Lys Asn Leu Gln Leu Ser Ala Glu Gly 100 105 110 Pro Ile Asn Val Thr Pro His Val Asp Ser Tyr Thr Asp Leu Gly Gln 115 120 125 Thr Asn Leu Leu Thr Tyr Asn Asn Asp Asp Gly Ile Val Glu Gln Lys 130 135 140 Ala Ser Thr Pro Glu Thr Thr Ile Lys Glu Ser Glu Thr Ser Ser Tyr145 150 155 160 Ser Asn Lys Glu Gly Val Thr Leu Gly Ala Glu Val Glu Ser Lys Val 165 170 175 Thr Phe Asn Ile Pro Phe Ile Val Ala Gly Glu Thr Lys Val Ile Ala 180 185 190 Lys Ser Glu Phe Ser Tyr Glu His Asp Asp Thr Gln Thr Lys Thr His 195 200 205 Glu Lys Glu Val Thr Phe Lys Ser Gln Glu Ile Val Ala Ala Pro Glu 210 215 220 Gly Thr Thr Thr Tyr Tyr Gly Ser Ile Lys Thr Ala Asn Phe Ser Gly225 230 235 240 Ser Phe Gln Ser Asp Ala Val Val Gly Gly Gly Val Thr Leu Thr Leu 245 250 255 Pro Ile Gly Val Met Asp Lys Asp Gly Gly Gln Lys Lys Thr His Thr 260 265 270 Glu Thr Ala Thr Leu Thr Ala Glu Asp Met Tyr Glu Ile Phe Lys Ala 275 280 285 Pro Met Pro Trp Asp Met Asn Lys Leu Pro Pro Tyr Leu Lys Leu Asp 290 295 300 Asp Ser Gly Lys Arg Val Leu Leu Ala Glu Lys Ala Thr Phe Asp Ile305 310 315 320 Lys Gly Gln Gly Gly Phe Tyr Thr Glu Ile Gln Ala Lys Phe Val Pro 325 330 335 Lys Asp Lys Asn Lys Lys Thr Gln Ile Met Pro Tyr Ala Glu Tyr Val 340 345 350 Gln Lys Val Lys Gln Asn Ala Leu 355 360 39676PRTBacillus thuringiensis 39Met Lys Ser Met Asn Ser Tyr Gln Asn Lys Asn Glu Tyr Glu Ile Leu1 5 10 15 Asp Ala Ser Gln Asn Asn Ser Thr Met Ser Thr Arg Tyr Pro Arg Tyr 20 25 30 Pro Leu Ala Lys Asp Pro Gln Ala Ser Met Gln Thr Thr Asn Tyr Lys 35 40 45 Asp Trp Leu Asn Leu Cys Asp Thr Pro Asn Met Glu Asn Pro Glu Phe 50 55 60 Gln Ser Val Gly Arg Ser Ala Leu Ser Ile Leu Ile Asn Leu Ser Ser65 70 75 80 Arg Ile Leu Ser Leu Leu Gly Ile Pro Phe Ala Ala Gln Ile Gly Gln 85 90 95 Leu Trp Ser Tyr Thr Leu Asn Leu Leu Trp Pro Val Ala Asn Asn Ala 100 105 110 Thr Gln Trp Glu Ile Phe Met Arg Thr Ile Glu Glu Leu Ile Asn Ala 115 120 125 Arg Ile Glu Thr Ser Val Arg Asn Arg Ala Leu Ala Glu Leu Ala Gly 130 135 140 Leu Gly Asn Ile Leu Glu Asp Tyr Lys Val Val Leu Gln Arg Trp Asn145 150 155 160 Leu Asn Pro Thr Asn Pro Thr Leu Gln Arg Asp Val Val Arg Gln Phe 165 170 175 Glu Ile Val His Ala Phe Phe Arg Phe Gln Met Pro Val Phe Ala Val 180 185 190 Asp Gly Phe Glu Val Pro Leu Leu Pro Val Tyr Ala Ser Ala Ala Asn 195 200 205 Leu His Leu Leu Leu Leu Arg Asp Val Val Ile Asn Gly Ala Arg Trp 210 215 220 Gly Leu Glu Ser Asp Val Ile Asn Asp Tyr His Asp Leu Gln Leu Arg225 230 235 240 Leu Thr Ser Thr Tyr Val Asp His Cys Val Thr Trp Tyr Asn Thr Gly 245 250 255 Leu Asn Arg Leu Ile Gly Thr Asn Ala Arg Gln Trp Val Thr Tyr Asn 260 265 270 Gln Phe Arg Arg Glu Met Thr Ile Ser Val Leu Asp Ile Ile Ser Leu 275 280 285 Phe Ser Asn Tyr Asp Val Arg Arg Tyr Pro Thr Lys Thr Gln Ser Glu 290 295 300 Leu Thr Arg Met Ile Tyr Thr Asp Pro Ile Gly Thr Glu Gly Asn Gln305 310 315 320 Phe Ile Pro Gly Trp Val Asp Asn Ala Pro Ser Phe Ser Val Ile Glu 325 330 335 Asn Ser Val Val Arg Ser Pro Gly Ala Phe Thr Phe Leu Glu Arg Val 340 345 350 Gly Ile Phe Thr Gly Phe Leu His Gly Trp Ser Ser Arg Ser Glu Phe 355 360 365 Trp Ser Ala His Arg Leu Phe Ser Arg Pro Val Leu Gly Trp Ile Trp 370 375 380 Glu Ser Val Ile Phe Gly Asn Pro Gln Asn Asn Ile Gly Tyr Gln Glu385 390 395 400 Val Asp Phe Thr Asn Phe Asp Val Phe Ser Ile Asn Ser Arg Ala Thr 405 410 415 Ser His Met Phe Pro Asn Gly Ser Ala Arg Leu Phe Gly Val Pro Arg 420 425 430 Val Thr Phe Asp Leu Ser Asn Val Thr Asn Asn Asn Leu Ala Gln Arg 435 440 445 Thr Tyr Asn Arg Pro Phe Thr Phe Gly Gly Gln Asp Ile Val Ser Arg 450 455 460 Leu Pro Gly Glu Thr Thr Glu Ile Pro Asn Ser Ser Asn Phe Ser His465 470 475 480 Arg Leu Ala His Ile Ser Ser Phe Pro Val Gly Asn Asn Gly Ser Val 485 490 495 Leu Ser Tyr Gly Trp Thr His Arg Asn Val Asn Arg His Asn Arg Leu 500 505 510 Asn Pro Asn Ser Ile Thr Gln Ile Pro Ala Ile Lys Phe Ala Ser Gly 515 520 525 Ser Ala Arg Arg Gly Pro Gly His Thr Gly Gly Asp Leu Ala Ile Ala 530 535 540 Gln Gln His Ser Gly Tyr Gln Leu Phe Met Gln Ser Pro Ser Ala Gln545 550 555 560 Arg Tyr Arg Leu Arg Leu Arg Tyr Ala Gly Ile Ser Gly Gly Ser Ile 565 570 575 Ser Val Ser His Arg Asp Glu Asn Asn Gln Asn Ile Leu His Ser Ala 580 585 590 Thr Phe Asn Val Arg Ala Thr Ser Gly Gln Leu Arg Tyr Ala Asp Phe 595 600 605 Ile Tyr Thr Asp Leu Glu Glu Asn Thr Thr Leu Phe Glu Thr Arg Asn 610 615 620 Gly Val Asn Leu Tyr Arg Leu Met Ile Phe Val Ser Ser Gly Ser Ile625 630 635 640 Leu Ile Asp Arg Ile Glu Tyr Ile Pro Glu Asn Thr Thr Thr Ile Glu 645 650 655 Tyr Glu Glu Glu Arg Asn Leu Glu Lys Glu Lys Lys Ala Val Asp Asp 660 665 670 Leu Phe Thr Asn 675 40567PRTBacillus thuringiensis 40Met Asn Asn Met Tyr Thr Asn Asn Met Lys Thr Thr Leu Lys Leu Glu1 5 10 15 Thr Thr Asp Tyr Glu Ile Asp Gln Ala Ala Ile Ser Ile Glu Cys Met 20 25 30 Ser Asp Glu Gln Asp Leu Gln Glu Lys Met Met Leu Trp Asp Glu Val 35 40 45 Lys Leu Ala Lys Gln Leu Ser Gln Ser Arg Asn Leu Leu Tyr Asn Gly 50 55 60 Asp Phe Glu Asp Ser Ser Asn Gly Trp Lys Thr Ser Asn Asn Ile Thr65 70 75 80 Ile Gln Leu Glu Asn Pro Ile Leu Lys Gly Lys Tyr Leu Asn Met Pro 85 90 95 Gly Ala Arg Asp Ile Tyr Gly Thr Ile Phe Pro Thr Tyr Val Tyr Gln 100 105 110 Lys Ile Asp Glu Ser Lys Leu Lys Pro Asn Thr Arg Tyr Arg Val Arg 115 120 125 Gly Phe Val Gly Ser Ser Lys Asp Leu Lys Leu Val Val Thr Arg Tyr 130 135 140 Glu Lys Glu Ile Asp Ala Ser Met Asp Val Pro Asn Asp Leu Ser Tyr145 150 155 160 Met Gln Pro Ser Pro Ser Cys Gly Asp Tyr Gly Cys Asp Ser Ser Ser 165 170 175 Gln Pro Met Met Asn Gln Gly Tyr Pro Thr Pro Tyr Thr Asp Asp Tyr 180 185 190 Ala Ser Asp Met Tyr Ala Cys Ser Ser Asn Leu Gly Lys Lys His Val 195 200 205 Lys Cys His Asp Arg His Pro Phe Asp Phe His Ile Asp Thr Gly Glu 210 215 220 Leu Asp Thr Asn Thr Asn Leu Gly Ile Cys Ile Leu Phe Lys Ile Ser225 230 235 240 Asn Pro Asp Gly Tyr Ala Thr Leu Gly Asn Leu Glu Val Ile Glu Glu 245 250 255 Gly Pro Leu Thr Ser Glu Ala Leu Ala His Val Asn Gln Lys Glu Lys 260 265 270 Lys Trp Asn Gln Gln Met Glu Lys Lys Arg Ser Glu Thr Gln Gln Ala 275 280 285 Tyr Asp Pro Ala Lys Gln Ala Val Asp Ala Leu Phe Thr Asn Ser Gln 290 295 300 Gly Glu Glu Leu His Tyr His Ile Thr Leu Asp His Ile Gln Asn Ala305 310 315 320 Asn Gln Leu Val Gln Ser Ile Pro Tyr Val His His Ala Trp Leu Pro 325 330 335 Asp Ala Pro Gly Met Asn Tyr Asp Leu Tyr Asn Asn Leu Lys Val Arg 340 345 350 Ile Glu Gln Ala Arg Tyr Leu Tyr Asp Ala Arg Asn Val Ile Thr Asn 355 360 365 Gly Asp Phe Ala Gln Gly Leu Thr Gly Trp His Ala Thr Gly Lys Val 370 375 380 Asp Val Gln Gln Met Asp Gly Ala Ser Val Leu Val Leu Ser Asn Trp385 390 395 400 Ser Ala Gly Val Ser Gln Asn Leu His Ala Gln Asp His His Gly Tyr 405 410 415 Met Leu Arg Val Ile Ala Lys Lys Glu Gly Pro Gly Lys Gly Tyr Val 420 425 430 Thr Met Met Asp Cys Asn Gly His Gln Glu Thr Leu Lys Phe Thr Ser 435 440 445 Cys Glu Glu Gly Tyr Met Thr Lys Thr Val Glu Val Phe Pro Glu Ser 450 455 460 Asp Arg Val Arg Ile Glu Ile Gly Glu Thr Glu Gly Thr Phe Tyr Ile465 470 475 480 Asp Ser Ile Glu Leu Leu Cys Met Gln Gly Tyr Ala Ser Asn Asn Thr 485 490 495 Pro His Thr Gly Asn Met Tyr Glu Gln Ser Tyr Asn Gly Ile Tyr Asn 500 505 510 Gln Asn Thr Ser Asp Leu Tyr His Gln Gly Tyr Thr Asn Asn Tyr Asn 515 520 525 Gln Glu Ser Ser Ser Met Tyr Asn Gln Asn Tyr Thr Asn Asn Asp Asp 530 535 540 Gln His Ser Gly Cys Thr Cys Asn Gln Gly His Asn Ser Gly Cys Thr545 550 555 560 Cys Asn Gln Gly Tyr Asn Arg 565 41640PRTBacillus thuringiensis 41Met Glu Glu Leu Glu Leu Lys Arg Thr Asn Thr Leu Ser Ser Glu Asp1 5 10 15 Val Asn Ile Leu Gln Ile Glu Asn Leu Val Lys Glu Tyr Val Lys Gln 20 25 30 Thr Tyr Gly Asn Ser Ala Glu Ile Lys Lys Leu Ser Leu Asp Gly Leu 35 40 45 Asp Val Leu Tyr Asn Leu Asp Ile Pro Ser Ile Leu Lys Gly Thr Ser 50 55 60 Ser Ser Ser Ala Ile Lys Val Gly Thr Asp Asn Leu Asn Asn Pro Thr65 70 75 80 Asp Thr Ala Lys Thr Ile Lys Leu Pro Val Lys Asn Val Arg Lys Lys 85 90 95 Glu Phe Lys Val Lys Pro Ile Gln Ala Leu Asn Phe Glu Asn Gly Ala 100 105 110 Thr Ile Thr Lys Lys Ser Ile Thr Ser Ile Pro Ser Ile Asn Ala Thr 115 120 125 Phe Ile Ala Leu Ala Glu Gln Asn Phe Gln Asn Ala His Phe His Ile 130 135 140 Val Asn Asp Ser Gln Ser Tyr Glu Asn Glu Ile Pro Ile Tyr Val Pro145 150 155 160 Pro His Ser Lys Val Glu Ile Thr Tyr Tyr Val Lys Glu Ile Gln Phe 165 170 175 Asp Ala Ile Ile Gln Ser Thr Ala Thr Ile Gly Gly Ser Ile Ser Phe 180 185 190 Glu Tyr Ile Val His Asp Asn Gly His Glu Gly Ile Asp Phe Leu Thr 195 200 205 Ile Phe Glu Leu Val Asn Ser Leu Asn Leu Asn Asp Phe Glu Ile Gln 210 215 220 Glu Ala Ser Asp Val His Gly Lys Val Val Tyr Lys Gly Lys Ser Gln225 230 235 240 Phe Gln Gly Thr Val Gly Leu Asn Leu Phe Met Gln Ile Lys Gly Thr 245 250 255 Pro Leu Asp Glu Ser Lys Asn Asn Tyr Glu Phe Thr Lys Val Leu Ser 260 265 270 Glu Asp Val Glu Met Ser Leu Ser Pro Ser Glu Gly Glu Tyr Tyr Ile 275 280 285 Asp Phe Gly Ser Ser Pro Lys Leu Thr Asn Lys Glu Glu Val Ile Val 290 295

300 Lys Phe Thr Arg Asp Tyr Leu Leu Ser Asn Asp Arg Lys Asn Ala Tyr305 310 315 320 Val Gln Gln Leu Pro Arg Leu Glu Tyr Gly Glu Glu Val Thr Thr Leu 325 330 335 Lys Ser Ile Asp Thr Ala His Glu Arg Lys Glu Ile Ile Ala Ser Thr 340 345 350 Ile Asn Thr Phe Gln Asn Pro Ser Asp Thr Glu Ile Thr Arg Asn Thr 355 360 365 Ile Lys Glu Thr Phe Ser Thr Thr Asp Thr Ile Thr Thr Thr Ala Thr 370 375 380 Thr Asp Lys Phe Leu Glu Leu Gly Gly Ser Ile Glu Thr Ser Ala Lys385 390 395 400 Gly Lys Val Pro Leu Val Ala Glu Ala Ser Ile Lys Val Thr Gln Ser 405 410 415 Ile Lys Gly Gly Trp Lys Trp Val Ser Thr Lys Thr Asn Thr Arg Thr 420 425 430 Asn Val His Thr Ile Glu Ile Pro Ser Gln Ser Ile Lys Ile Pro Pro 435 440 445 His Lys Met Trp Lys Tyr Gln Tyr Ile Leu Thr Lys Phe Glu Ser Ser 450 455 460 Gly Tyr Leu Ser Ser Ala Trp Glu Ile Asn Thr Lys Glu Ser Met Ser465 470 475 480 Ala Pro Glu Val His Ile Gly Tyr Tyr Asn Lys Asp Leu Gln Asn Pro 485 490 495 Arg Asn Ile Thr Gly Leu Ser Ala Asn Val Glu Ser Gly Asn Val Val 500 505 510 Gly Arg Val Phe Glu Phe Asn Lys Phe Gln Pro Gly Gly Leu His Tyr 515 520 525 Lys Ile Leu Asn Ser Glu Asn Ile Leu Asn Ala Thr Pro Tyr Gln Phe 530 535 540 Phe Lys Glu Leu Ala Lys Arg Val Asn Gln Tyr Pro Leu Ile Gln Asn545 550 555 560 Asn Pro Arg Tyr Arg Arg Leu Gly Ile Leu Leu Gly Phe Gly Lys Asp 565 570 575 Ile Ser Gln Ile Thr Trp Glu Pro Gln Ile His Tyr Asn Glu His Val 580 585 590 Leu Phe Asp Ala Glu Glu Leu Leu Asn Val Leu Arg Phe Asp Asp Ile 595 600 605 Ala Asn Lys Val Tyr Ala Leu Asp Gly Gly Thr Pro Phe Thr Val Ala 610 615 620 Val Gly His Glu Leu Leu Pro Lys Glu Ser Ile Glu Pro Leu Asn Asn625 630 635 640 42966PRTBacillus thuringiensis 42Met Met Asn Met Ser Asn Thr Leu Ala Pro Tyr Asn Val Leu Arg Ser1 5 10 15 Met Asp Met Pro Asn Ile Ser Gly Thr Lys Trp Asp Lys Gly Met Phe 20 25 30 Ile Asn Ala Leu Asp Asn Thr Ser Phe Leu Leu Glu Leu Ile Glu Lys 35 40 45 Gly Ile Asn Asp Asp Asp Asp Val Leu Gly Leu Leu Ser Phe Ile Gly 50 55 60 Leu Thr Ala Leu Glu Ala Ile Pro Ile Val Gly Gly Val Met Ser Lys65 70 75 80 Leu Val Ser Met Ile Phe Phe Pro Thr Lys Ser Ser Ile Asn Phe Gln 85 90 95 Lys Ile Trp Glu Gln Leu Glu Lys Ala Ile Glu Gln Ile Val Asp Lys 100 105 110 Lys Ile Thr Glu Ala Met Met Ser Gln Leu Met Gln Glu Ile Ala Gly 115 120 125 Leu Ala Asp Val Leu Glu Glu Tyr Arg Asn Ala Tyr Asp Leu Tyr Asn 130 135 140 Gly Lys Lys Leu Phe Asn Ile Pro Asp Lys Met Thr Pro Gly Asp Tyr145 150 155 160 Leu Ile Asn Val Phe Thr Thr Ala Asn Leu Gln Phe Ile Gln Arg Ile 165 170 175 Pro Thr Phe Gln Asn Ser Ile Tyr Asp Val Val Phe Leu Pro Phe Phe 180 185 190 Val His Ala Ala Glu Met His Ile Leu Leu Ile Arg Asp Ala Ala Ile 195 200 205 His Gly Gln Glu Trp Gly Met Asp Glu Thr Val His Gln Lys Phe Lys 210 215 220 Arg Asp Leu Lys Thr Leu Ile Asn Lys Tyr Ser Ser Tyr Leu Leu Ala225 230 235 240 Thr Tyr Lys Lys Gly Leu Lys Glu Ala Ser Glu Lys Lys Leu Glu Asn 245 250 255 Asn Asp Phe Pro Thr Ser Asn Asn Gln His His Tyr Ile Asn Thr Val 260 265 270 Arg Trp Asn Val Ile Asn Gln Tyr Lys Arg Gly Met Ala Leu Thr Val 275 280 285 Phe Asp Phe Ala Tyr Lys Trp Lys Tyr Tyr Gln Glu Val Tyr Gln Asn 290 295 300 Asn Ile Thr Leu Asn Pro Ala Arg Thr Ile Tyr Ser Asp Ile Ala Gly305 310 315 320 Ser Val Tyr Pro Tyr Glu Lys Thr Thr Asn Glu Ile Asp Asn Ile Ile 325 330 335 Lys Glu Gln Asn Leu Lys Tyr Arg Gly Leu Leu Lys Glu Leu Leu Ile 340 345 350 Asn His Gly Asp Arg Ile Asp Ser Ile Gln Ser Lys Tyr Ile Arg Asn 355 360 365 Asn Glu Ile Ile Asp Ser Asn Arg Thr Gly Gly Ala Gly Gly Arg Ala 370 375 380 Thr Phe Phe Asp Leu Lys Ser Pro Ile Asn Asn Pro Phe Ile Gln Val385 390 395 400 Asn Met Trp Ser Glu Leu Val Pro Phe Ser Leu Gly Phe Lys Tyr Tyr 405 410 415 Asn Gly Glu Glu Ser Lys Leu Ile Trp Gly Gly Gly Thr Pro Gly Lys 420 425 430 His Lys Phe Gly Ser Tyr His Tyr Val Gly Asn Lys Val Ser Ser Ile 435 440 445 Ile Gly Phe Gly Lys Asn Gly Thr Gly Gly Phe Asn Ser Leu Asp Ala 450 455 460 Met Val Val Gly Phe Lys Arg Asp Asp Tyr Ile Pro Glu Asn Arg Phe465 470 475 480 Val Gly Val Asn Lys Asn Gly Glu Pro Val Thr Lys Val Ile Asp Ala 485 490 495 Glu Asn Phe Tyr Gln Glu Lys Phe Gln Ser Asn Ile Lys Met Ile Asp 500 505 510 Glu Pro Met Phe Gly Glu Ala Val Leu Gln Phe Glu Asn Tyr Ser Asn 515 520 525 Asn Leu Asn Lys Asp Ser Tyr Val Thr Tyr Gln Ile Asp Ala Lys Ile 530 535 540 Glu Gly Thr Tyr Glu Leu His Val Ile Ile Gly Ala Lys Lys Gln Lys545 550 555 560 Asp Lys Ile Ala Phe Lys Met Ala Leu Asn Glu Lys Gln Pro Glu Lys 565 570 575 Phe Ile Thr Glu Pro Phe Asn Ala Gly Asp Ile Trp Glu Gly Ile Ser 580 585 590 Leu Ser Glu Gly Leu Val Tyr Lys Arg Ile Leu Leu Gly Asn Phe Gln 595 600 605 Leu Lys Lys Gly Met Asn Arg Ile Thr Ile His Asn Gly Val Leu Gln 610 615 620 Thr Ser Ala Asn Ile Lys Thr Trp Asn Leu Ala Lys Leu Glu Leu Thr625 630 635 640 Leu Thr Ser Asp Ser Leu Lys Asp Pro Asp Ile Thr Thr Leu Tyr Asp 645 650 655 Lys Asp Asn Tyr Ser Gly Thr Lys Lys Phe Ile Phe Glu Asn Thr Ser 660 665 670 Arg Leu Lys Asp Phe Asn Asp Lys Thr Ser Ser Ile Lys Val Glu Ser 675 680 685 His Leu Ala Gly Ile Arg Ile Tyr Gln Asp Tyr Asn Tyr Lys Gly Lys 690 695 700 Ser Met Asp Leu Val Gly Gly Glu Lys Ile Ser Leu Lys Asn His Ser705 710 715 720 Phe Asn Asn Arg Ala Ser Ser Val Lys Phe Ala Asn Ile Val Leu Tyr 725 730 735 Asn Gln Asp Asn Tyr Gln Gly Ser Arg Lys Leu Val Phe Glu Asp Ile 740 745 750 Pro Asp Leu Gly Lys Gln Ser Phe Asn Asp Lys Thr Ser Ser Ile Val 755 760 765 Val Ser Ser Asn Val Ser Gly Ala Arg Leu Tyr Glu His Ala Tyr Tyr 770 775 780 Lys Gly Lys Tyr Val Asp Val Val Gly Gly Gln Lys Leu Asn Leu Lys785 790 795 800 Asn His Val Leu Asn Lys Lys Ile Ser Ser Ile Lys Phe Phe Lys Glu 805 810 815 Gly Glu Val Leu Asn Gly Val Tyr Gln Ile Ile Thr Ala Ile Asn Asn 820 825 830 Thr Ser Val Ile Asp Lys His Leu Glu Asn Ser Asn Val His Leu Trp 835 840 845 Glu Asn Ala Glu Asn Lys Asn Gln Lys Trp Arg Ile Glu Tyr Asp Val 850 855 860 Ala Lys Lys Ala Tyr Gln Ile Lys Asn Met Leu Asp Glu Lys Leu Val865 870 875 880 Leu Ser Thr His Glu Leu Phe Pro Ile Phe Ser Ala Leu Tyr Cys Leu 885 890 895 Pro Asn Lys Gly Tyr Val Ser Gln Tyr Trp Ile Phe Glu Tyr Val Gly 900 905 910 Asn Gly Tyr Tyr Ile Ile Lys Asn Lys Ala Tyr Pro Asp Trp Val Leu 915 920 925 Asp Val Asp Gly Leu Asn Ser Asp Asn Gly Thr Leu Ile Lys Leu His 930 935 940 Ser Gln His Asp Leu Thr Asp Pro Leu Ile Asn Ala Gln Lys Phe Lys945 950 955 960 Leu Lys Asp Ile Asn Asn 965 43769PRTBacillus thuringiensis 43Met Met Asn Met Ser Asn Thr Leu Ala Pro Tyr Asn Val Leu Arg Ser1 5 10 15 Met Asp Met Pro Asn Ile Ser Gly Thr Lys Trp Asp Lys Gly Met Phe 20 25 30 Ile Asn Ala Leu Asp Asn Thr Ser Phe Leu Leu Glu Leu Ile Glu Lys 35 40 45 Gly Ile Asn Asp Asp Asp Asp Val Leu Gly Leu Leu Ser Phe Ile Gly 50 55 60 Leu Thr Ala Leu Glu Ala Ile Pro Ile Val Gly Gly Val Met Ser Lys65 70 75 80 Leu Val Ser Met Ile Phe Phe Pro Thr Lys Ser Ser Ile Asn Phe Gln 85 90 95 Lys Ile Trp Glu Gln Leu Glu Lys Ala Ile Glu Gln Ile Val Asp Lys 100 105 110 Lys Ile Thr Glu Ala Met Met Ser Gln Leu Met Gln Glu Ile Ala Gly 115 120 125 Leu Ala Asp Val Leu Glu Glu Tyr Arg Asn Ala Tyr Asp Leu Tyr Asn 130 135 140 Gly Lys Lys Leu Phe Asn Ile Pro Asp Lys Met Thr Pro Gly Asp Tyr145 150 155 160 Leu Ile Asn Val Phe Thr Thr Ala Asn Leu Gln Phe Ile Gln Arg Ile 165 170 175 Pro Thr Phe Gln Asn Ser Ile Tyr Asp Val Val Phe Leu Pro Phe Phe 180 185 190 Val His Ala Ala Glu Met His Ile Leu Leu Ile Arg Asp Ala Ala Ile 195 200 205 His Gly Gln Glu Trp Gly Met Asp Glu Thr Val His Gln Lys Phe Lys 210 215 220 Arg Asp Leu Lys Thr Leu Ile Asn Lys Tyr Ser Ser Tyr Leu Leu Ala225 230 235 240 Thr Tyr Lys Lys Gly Leu Lys Glu Ala Ser Glu Lys Lys Leu Glu Asn 245 250 255 Asn Asp Phe Pro Thr Ser Asn Asn Gln His His Tyr Ile Asn Thr Val 260 265 270 Arg Trp Asn Val Ile Asn Gln Tyr Lys Arg Gly Met Ala Leu Thr Val 275 280 285 Phe Asp Phe Ala Tyr Lys Trp Lys Tyr Tyr Gln Glu Val Tyr Gln Asn 290 295 300 Asn Ile Thr Leu Asn Pro Ala Arg Thr Ile Tyr Ser Asp Ile Ala Gly305 310 315 320 Ser Val Tyr Pro Tyr Glu Lys Thr Thr Asn Glu Ile Asp Asn Ile Ile 325 330 335 Lys Glu Gln Asn Leu Lys Tyr Arg Gly Leu Leu Lys Glu Leu Leu Ile 340 345 350 Asn His Gly Asp Arg Ile Asp Ser Ile Gln Ser Lys Tyr Ile Arg Asn 355 360 365 Asn Glu Ile Ile Asp Ser Asn Arg Thr Gly Gly Ala Gly Gly Arg Ala 370 375 380 Thr Phe Phe Asp Leu Lys Ser Pro Ile Asn Asn Pro Phe Ile Gln Val385 390 395 400 Asn Met Trp Ser Glu Leu Val Pro Phe Ser Leu Gly Phe Lys Tyr Tyr 405 410 415 Asn Gly Glu Glu Ser Lys Leu Ile Trp Gly Gly Gly Thr Pro Gly Lys 420 425 430 His Lys Phe Gly Ser Tyr His Tyr Val Gly Asn Lys Val Ser Ser Ile 435 440 445 Ile Gly Phe Gly Lys Asn Gly Thr Gly Gly Phe Asn Ser Leu Asp Ala 450 455 460 Met Val Val Gly Phe Lys Arg Asp Asp Tyr Ile Pro Glu Asn Arg Phe465 470 475 480 Val Gly Val Asn Lys Asn Gly Glu Pro Val Thr Lys Val Ile Asp Ala 485 490 495 Glu Asn Phe Tyr Gln Glu Lys Phe Gln Ser Asn Ile Lys Met Ile Asp 500 505 510 Glu Pro Met Phe Gly Glu Ala Val Leu Gln Phe Glu Asn Tyr Ser Asn 515 520 525 Asn Leu Asn Lys Asp Ser Tyr Val Thr Tyr Gln Ile Asp Ala Lys Ile 530 535 540 Glu Gly Thr Tyr Glu Leu His Val Ile Ile Gly Ala Lys Lys Gln Lys545 550 555 560 Asp Lys Ile Ala Phe Lys Met Ala Leu Asn Glu Lys Gln Pro Glu Lys 565 570 575 Phe Ile Thr Glu Pro Phe Asn Ala Gly Asp Ile Trp Glu Gly Ile Ser 580 585 590 Leu Ser Glu Gly Leu Val Tyr Lys Arg Ile Leu Leu Gly Asn Phe Gln 595 600 605 Leu Lys Lys Gly Met Asn Arg Ile Thr Ile His Asn Gly Val Leu Gln 610 615 620 Thr Ser Ala Asn Ile Lys Thr Trp Asn Leu Ala Lys Leu Glu Leu Thr625 630 635 640 Leu Thr Ser Asp Ser Leu Lys Asp Pro Asp Ile Thr Thr Leu Tyr Asp 645 650 655 Lys Asp Asn Tyr Ser Gly Thr Lys Lys Phe Ile Phe Glu Asn Thr Ser 660 665 670 Arg Leu Lys Asp Phe Asn Asp Lys Thr Ser Ser Ile Lys Val Glu Ser 675 680 685 His Leu Ala Gly Ile Arg Ile Tyr Gln Asp Tyr Asn Tyr Lys Gly Lys 690 695 700 Ser Met Asp Leu Val Gly Gly Glu Lys Ile Ser Leu Lys Asn His Ser705 710 715 720 Phe Asn Asn Arg Ala Ser Ser Val Lys Phe Ala Asn Ile Val Leu Tyr 725 730 735 Asn Gln Asp Asn Tyr Gln Gly Ser Arg Lys Leu Val Phe Glu Asp Ile 740 745 750 Pro Asp Leu Gly Lys Gln Ser Phe Asn Asp Lys Thr Ser Ser Ile Val 755 760 765 Val44575PRTBacillus thuringiensis 44Met Asn Gly Asn Gly Arg His Asp Gly Trp Asn Gln Asn Gln His Ile1 5 10 15 Glu Asn Gly Gln Met Asn Pro Asn His Ser Gly Ser Cys Lys Cys Gly 20 25 30 Cys Gln Gln Asn Asn Asn Gly Ser Tyr Pro Ser Asn Glu Tyr Asn Ser 35 40 45 Asn Asn Asn Gly Ser Tyr Pro Ser Asn Glu Tyr Asn Ser Asn Asn Asn 50 55 60 Gly Ser Tyr Pro Ser Asn Glu Tyr Asn Ser Asn Asn Asn Gly Ser Tyr65 70 75 80 Pro Ser Asn Glu Tyr Asn Ser Asn Asn Asn Gly Ser Tyr Pro Ser Asn 85 90 95 Glu Tyr Asn Ser Asn Asn Asn Gly Ser Tyr Pro Ser Asn Glu Tyr Asn 100 105 110 Ser Asn Asn Asn Gly Ser Tyr Pro Ser Asn Glu Tyr Asn Ser Asn Asn 115 120 125 Asn Gly Ser Tyr Pro Ser Asn Glu Tyr Asn Ser Asn Asn Asn Gly Ser 130 135 140 Tyr Ser Ser Asn Glu Tyr Asn Ser Asn Asn Asn Gly Ser Tyr Pro Ser145 150 155 160 Asn Glu Tyr Asn Ser Asn Asn Asn Gly Ser Tyr Pro Ser Asn Glu Tyr 165 170 175 Asn Ser Asn Asn Asn Gly Ser Tyr Pro Ser Asn Glu Tyr Val Gly Gly 180 185 190 Tyr Ser Ile Gln Asp Gly Leu Pro Gln Glu Ser Lys Gln Phe Gln Lys 195 200 205 Ile Ser Asn Met Asn Thr Arg Asp Asn His Arg Val Leu Asp Ala Gln 210 215 220

Asp Thr Tyr Phe Gly Gln Leu Ile Asp Asn Arg Val Gly Asp Thr Cys225 230 235 240 Lys Tyr Val Glu His Lys Asn Ser Val Ile Tyr Glu Leu Ser Arg Gln 245 250 255 Pro Val Tyr Thr Pro Asp Ser Gln Tyr Phe Ile Phe Tyr Gln Met Asp 260 265 270 Asn Gly Asn Phe Ile Ile Ala Asn Lys Glu Asn Ser Arg Val Leu Glu 275 280 285 Val Ile Phe Ser Ser Val Asn Gly Phe Val Thr Ile Ser Asn Glu Phe 290 295 300 Asn Ala Thr Ser Asp Gln Arg Phe Lys Val Val Arg Ser Lys Asn Asp305 310 315 320 Thr Phe Arg Leu Val Thr Glu Gly Asn Lys Thr Leu Asn Ile Cys Gly 325 330 335 His Ser Phe Gln Tyr Asn Thr Lys Ile Thr Ala Val Asn Ala Asp Ile 340 345 350 Asp Gly Asp Asn Tyr Leu Phe Gln Lys Ser Met Asp Lys Asp Thr Arg 355 360 365 Asp Leu Tyr Phe Gly Thr Ile Ser Asn Lys Asn Pro Glu Ile Leu Asn 370 375 380 Asp Pro Arg Asn Leu Lys Ser Leu Asp Asp Leu Gly Asp Glu Pro Arg385 390 395 400 Ala Phe Lys Gly Ala Ala Leu Leu Pro Ala Leu Phe Val Asn Asp Pro 405 410 415 Arg Tyr Ser Val His Arg Arg Val Ser Asn Ser Pro Tyr Tyr Tyr Leu 420 425 430 Glu Tyr Thr Gln Tyr Trp His Arg Ile Trp Thr Asp Val Leu Pro Ile 435 440 445 Asp Gly Tyr Gly Ala Trp Ile Glu Met Ile Gly Val Thr Asn Asp Thr 450 455 460 Gln Val Asn Met Lys Asn Ile Met Asn Ile Thr Ile Thr Gly Lys Asp465 470 475 480 Leu Gly Val Asp Leu Gly Ile Asp Leu Gly Leu Arg Phe Gly Asp Lys 485 490 495 Ser Phe Leu Phe Glu Gln Lys Ile Leu Ser Gly Leu Ser Ile Arg Lys 500 505 510 Thr Asp Tyr Pro Asn Leu Gly Ile Asp Glu Arg Ala Met Tyr Gln Arg 515 520 525 Asn Asn Ser Asn Leu Lys Thr Arg Phe Val Arg Tyr Val Lys Lys His 530 535 540 Glu Phe Val Leu Arg Asp Leu Asn Gly Ser Lys Val Ala Glu Pro Trp545 550 555 560 Ile Ile Thr Glu Asp Arg Ser Ile Thr Lys Glu Tyr Ser Ser Asn 565 570 575 45559PRTBacillus thuringiensis 45Met Lys Tyr Lys Asn Arg Thr Arg Ala Lys Cys Lys Tyr Lys Gln Ala1 5 10 15 Leu Leu Val Thr Val Ala Thr Met Thr Leu Gly Val Ser Thr Leu Gly 20 25 30 Ser Asn Ala Ser Ala Phe Ala Asp Glu Lys Glu Lys Asn Val Ile Gln 35 40 45 Gln Lys Ser Pro Gly Thr Tyr Tyr Glu Asp Ala Gln Lys Asn Leu Gly 50 55 60 Ser Leu Ala Arg Phe Asp Thr Trp Ala Gln Asp Leu Gly Lys Thr Thr65 70 75 80 Gly Ala Gly Asn Tyr Lys Thr Thr Leu Gly Met Ala Glu Lys Leu Leu 85 90 95 Pro Thr Ile Tyr Asn Asp Leu Asn Ser Gly Asn Phe Asn Asn Thr Ala 100 105 110 Arg Ser Ile Thr Met Leu Ser Thr Ala Leu Ile Pro Tyr Gly Gly Ala 115 120 125 Phe Ile Ser Pro Ile Ile Gly Ile Leu Trp Pro Glu Asn Gly Pro Asn 130 135 140 Ile Lys Glu Met Leu Gln Glu Met Glu Asn Lys Leu Val Gly Ile Met145 150 155 160 Asp Glu Lys Ile Glu Ala Lys Asp Leu Asp Asp Leu Glu Ala Ala Val 165 170 175 Lys Gly Leu Met Val Ser Leu Lys Glu Phe Glu Asn Ser Leu Asn Gly 180 185 190 Asn Ile Gly Gly Glu Tyr Tyr Ser Ala Leu Ala Asp Val Asp Ser Leu 195 200 205 Asn Arg Gly Arg Ile Thr Ala Ile Gln Lys Gly Phe Asn Asp Leu Ile 210 215 220 Ser Ala Thr Ser Lys Pro Lys Phe Lys Ile Thr Glu Leu Pro Leu Tyr225 230 235 240 Thr Ile Ile Ala Thr Ala His Leu Asn Phe Leu Asn Thr Val Glu Lys 245 250 255 Gln Gly Thr Ser Pro Lys Ile Asn Tyr Thr Glu Ala Ala Leu Lys Asp 260 265 270 Leu Leu Gln Asn Met Lys Lys Asn His Lys Asp Tyr Ala Asp Tyr Ile 275 280 285 Glu Lys Thr Tyr Thr Glu Gly Glu Ala Arg Ile Asn Ser Lys Leu Glu 290 295 300 Asp Lys Gln Lys Ile Glu Gln Asp Leu Ala Ala Val Asn Gln Lys Leu305 310 315 320 Ser Glu Met Pro Arg Lys Pro Lys Asn His Thr His Glu Glu Glu Asn 325 330 335 Lys Phe Ile Ile Gln Lys Glu Lys Leu Tyr Ala Gln Gln Asp Ser Leu 340 345 350 Glu Lys Lys Leu Ser Glu Tyr Asn Asp Leu Met Tyr Gln Lys Ser Asp 355 360 365 Phe Tyr Ser Lys Thr Lys Gly Ser Glu Ala Phe Gln Ile Ala Ser Thr 370 375 380 Gly Lys Thr Ile Pro Thr Pro Ser Trp Val Lys Thr Glu Gly Thr Trp385 390 395 400 Val Cys Glu Ala Gly Phe Trp Phe Tyr Ile Asp Ala Lys Gly Gln Lys 405 410 415 Lys Ser Asp Trp Phe Asn Asp Lys Thr Pro Asp Gly Lys Asp Arg Trp 420 425 430 Tyr Tyr Leu Ser Thr Glu Thr Pro Arg Leu Asp Asn Val Arg Gly Asn 435 440 445 Ala Tyr Val Gly Lys Gly Thr Met Leu Thr Gly Trp Phe His Asp Thr 450 455 460 Arg Lys Asp Lys Gln Ile Ile Gly Val Asn Thr Lys Thr Thr Tyr Glu465 470 475 480 Tyr Trp Tyr Tyr Leu Ser Pro Glu Lys Asn Leu Lys Asn Ser Ala Gly 485 490 495 Glu Leu Phe Lys Gln Gly Gln Met Met Thr Lys Trp Val Glu Ile Lys 500 505 510 Asp Thr Lys Thr Gly Glu Pro His Trp Tyr Tyr Phe Asn Pro Asp Asp 515 520 525 Gly Ser Met Thr His Asp Lys Lys Ala Val Gln Ile Gly Asp Lys Lys 530 535 540 Tyr Asp Phe Gly Ser Asn Gly Val Cys Thr Thr Pro Asn Gly Tyr545 550 555 461293PRTBrevibacillus laterosporus 46Met Asn Gln Asn Gln Asn Lys Asn Glu Met Gln Ile Ile Glu Pro Ser1 5 10 15 Ser Asp Ser Phe Leu Tyr Ser His Asn Asn Tyr Pro Tyr Ala Thr Asp 20 25 30 Pro Asn Thr Val Leu Glu Gly Arg Asn Tyr Lys Glu Trp Leu Asn Lys 35 40 45 Cys Thr Asp Asn Tyr Thr Asp Ala Leu Gln Ser Pro Glu Ala Thr Ala 50 55 60 Ile Ser Lys Gly Ala Val Ser Ala Ala Ile Ser Ile Ser Thr Lys Val65 70 75 80 Leu Gly Leu Leu Gly Val Pro Phe Ala Ala Gln Ile Gly Gln Leu Trp 85 90 95 Thr Phe Ile Leu Asn Ala Leu Trp Pro Ser Asp Asn Thr Gln Trp Glu 100 105 110 Glu Phe Met Arg His Val Glu Glu Leu Ile Asn Gln Arg Ile Ala Asp 115 120 125 Tyr Ala Arg Asn Lys Ala Leu Ala Glu Leu Thr Gly Leu Gly Asn Asn 130 135 140 Leu Asp Leu Tyr Ile Glu Ala Leu Asp Asp Trp Lys Arg Asn Pro Thr145 150 155 160 Ser Gln Glu Ala Lys Thr Arg Val Ile Asp Arg Phe Arg Ile Val Asp 165 170 175 Gly Leu Phe Glu Ala Tyr Ile Pro Ser Phe Ala Val Ser Gly Tyr Gln 180 185 190 Val Gln Leu Leu Thr Val Tyr Ala Ala Ala Ala Asn Leu His Leu Leu 195 200 205 Leu Leu Arg Asp Ser Thr Ile Tyr Gly Ile Asp Trp Gly Leu Ser Gln 210 215 220 Thr Asn Val Asn Asp Asn Tyr Asn Arg Gln Ile Arg Leu Thr Ala Thr225 230 235 240 Tyr Ala Asn His Cys Thr Thr Trp Tyr Gln Thr Gly Leu Glu Arg Leu 245 250 255 Arg Gly Ser Asn Ala Ser Ser Trp Val Thr Tyr Asn Arg Phe Arg Arg 260 265 270 Glu Met Thr Leu Thr Val Leu Asp Ile Cys Ser Leu Phe Ser Asn Tyr 275 280 285 Asp Tyr Arg Ser Tyr Pro Ala Glu Val Arg Gly Glu Ile Thr Arg Glu 290 295 300 Ile Tyr Thr Asp Pro Val Gly Val Gly Trp Val Asp Ser Ala Pro Ser305 310 315 320 Phe Gly Glu Ile Glu Asn Leu Ala Ile Arg Ala Pro Arg Thr Val Thr 325 330 335 Trp Leu Asn Ser Thr Arg Ile Phe Thr Gly Arg Leu Gln Gly Trp Ser 340 345 350 Gly Thr Asn Asn Tyr Trp Ala Ala His Met Gln Asn Phe Ser Glu Thr 355 360 365 Asn Ser Gly Asn Ile Gln Phe Glu Gly Pro Leu Tyr Gly Ser Thr Val 370 375 380 Gly Thr Ile His Arg Thr Asp Asp Tyr Asp Met Gly Asn Arg Asp Ile385 390 395 400 Tyr Thr Ile Thr Ser Gln Ala Val Leu Gly Leu Trp Ala Thr Gly Gln 405 410 415 Arg Val Leu Gly Val Ala Ser Ala Arg Phe Thr Leu Arg Asn Leu Phe 420 425 430 Asn Asn Leu Thr Gln Val Leu Val Tyr Glu Asn Pro Ile Ser Ser Thr 435 440 445 Phe Gly Ser Ser Thr Leu Thr His Glu Leu Ser Gly Glu Asn Ser Asp 450 455 460 Arg Pro Thr Ser Ser Asp Tyr Ser His Arg Leu Thr Ser Ile Thr Gly465 470 475 480 Phe Arg Ala Gly Ala Asn Gly Thr Val Pro Val Phe Gly Trp Thr Ser 485 490 495 Ala Thr Val Asp Arg Asn Asn Ile Ile Glu Arg Asn Lys Ile Thr Gln 500 505 510 Phe Pro Gly Val Lys Ser His Thr Leu Asn Asn Cys Gln Val Val Arg 515 520 525 Gly Thr Gly Phe Thr Gly Gly Asp Trp Leu Arg Pro Asn Asn Asn Gly 530 535 540 Thr Phe Arg Leu Thr Ile Thr Ser Phe Ser Ser Gln Ser Tyr Arg Ile545 550 555 560 Arg Leu Arg Tyr Ala Thr Ser Val Gly Asn Thr Ser Leu Val Ile Ser 565 570 575 Ser Ser Asp Ala Gly Ile Ser Ser Thr Thr Ile Pro Leu Thr Ser Thr 580 585 590 Ile Thr Ser Leu Pro Gln Thr Val Pro Tyr Gln Ala Phe Arg Val Val 595 600 605 Asp Leu Pro Ile Thr Phe Thr Thr Pro Thr Thr Gln Arg Asn Tyr Thr 610 615 620 Phe Asp Phe Arg Leu Gln Asn Pro Ser Asn Ala Asn Val Phe Ile Asp625 630 635 640 Arg Phe Glu Phe Val Pro Ile Gly Gly Ser Leu Ser Glu Tyr Glu Thr 645 650 655 Lys His Gln Leu Glu Lys Ala Arg Lys Ala Val Asn Asp Leu Phe Thr 660 665 670 Asn Glu Ser Lys Asn Val Leu Lys Lys Asp Thr Thr Asp Tyr Asp Ile 675 680 685 Asp Gln Ala Ala Asn Leu Val Glu Cys Val Ser Asp Glu Cys Ala Asn 690 695 700 Ala Lys Met Ile Leu Leu Asp Glu Val Lys Tyr Ala Lys Gln Leu Ser705 710 715 720 Glu Ala Arg Asn Leu Leu Leu Asn Gly Asn Phe Glu Tyr Gln Asp Arg 725 730 735 Asp Gly Glu Asn Pro Trp Lys Thr Ser Pro Asn Val Thr Ile Gln Glu 740 745 750 Asn Asn Pro Ile Phe Lys Gly Arg Tyr Leu Ser Met Ser Gly Ala Asn 755 760 765 Asn Ile Glu Ala Thr Asn Glu Ile Phe Pro Thr Tyr Val Tyr Gln Lys 770 775 780 Ile Asp Glu Ser Lys Leu Lys Pro Tyr Thr Arg Tyr Lys Val Arg Gly785 790 795 800 Phe Val Gly Asn Ser Lys Asp Leu Glu Leu Leu Val Thr Arg Tyr Asp 805 810 815 Glu Glu Val Asp Ala Ile Leu Asn Val Pro Asn Asp Ile Pro His Ala 820 825 830 Pro Pro Pro Phe Cys Gly Glu Phe Asp Arg Cys Lys Pro His Ser Tyr 835 840 845 Pro Pro Ile Asn Pro Glu Cys His His Asp Val Ile Asn Asn Ile Glu 850 855 860 Ile Ser Ser Pro Cys Gln His Asn Lys Met Val Asp Asn Ala Asp Ile865 870 875 880 Ser Tyr Arg His Ser Arg Leu Ser Lys Lys His Gly Ile Cys His Glu 885 890 895 Ser His His Phe Glu Phe His Ile Asp Thr Gly Lys Ile Asp Leu Val 900 905 910 Glu Asn Leu Gly Ile Trp Val Val Phe Lys Ile Cys Ser Thr Asp Gly 915 920 925 Tyr Ala Thr Leu Asp Asn Leu Glu Val Ile Glu Glu Gly Pro Leu Gly 930 935 940 Ala Glu Ser Leu Glu Arg Val Lys Arg Arg Glu Lys Lys Trp Lys His945 950 955 960 His Met Glu His Lys Cys Ser Glu Thr Lys His Ala Tyr His Ala Ala 965 970 975 Lys Gln Ala Val Val Ala Leu Phe Thr Asn Ser Lys Tyr Asp Arg Leu 980 985 990 Lys Phe Glu Thr Thr Ile Ser Asn Ile Leu Phe Ala Asp Tyr Leu Val 995 1000 1005 Gln Ser Ile Pro Tyr Val Tyr Asn Lys Trp Leu Pro Gly Val Pro Gly 1010 1015 1020 Met Asn Tyr Asp Ile Tyr Thr Glu Leu Lys Asn Leu Phe Thr Gly Ala1025 1030 1035 1040 Phe Asn Leu Tyr Asp Gln Arg Asn Ile Ile Lys Asn Gly Asp Phe Asn 1045 1050 1055 Arg Gly Leu Met His Trp His Ala Thr Pro His Ala Arg Val Glu Gln 1060 1065 1070 Ile Ile Asp Asn Arg Ser Val Leu Val Leu Pro Asn Tyr Ala Ala Asn 1075 1080 1085 Val Ser Gln Glu Val Cys Leu Glu His Asn Arg Gly Tyr Val Leu Arg 1090 1095 1100 Val Thr Ala Lys Lys Glu Gly Pro Gly Ile Gly Tyr Val Thr Phe Ser1105 1110 1115 1120 Asp Cys Ala Asn His Ile Glu Lys Leu Thr Phe Thr Ser Cys Asp Tyr 1125 1130 1135 Gly Thr Asn Val Val Pro Tyr Glu Gln Ser Asn Tyr Pro Thr Asp Gly 1140 1145 1150 Val Pro Tyr Gly Gln His Gly Cys Asn Ile Asp Gly Val Pro Tyr Glu 1155 1160 1165 Gln Ser Gly Tyr Arg Thr Asp Gly Val Pro Tyr Glu Gln Ser Gly Tyr 1170 1175 1180 Arg Thr Asp Gly Val Pro Tyr Glu Gln Ser Gly His Arg Thr Asp Gly1185 1190 1195 1200 Val Pro Tyr Glu Gln Ser Gly Tyr Arg Thr Asp Gly Val Pro Cys Glu 1205 1210 1215 Gln His Gly Cys His Thr Asp Gly Leu Pro His Ile Gln His Gly Cys 1220 1225 1230 Arg Thr Asp Gly Leu Pro His Ile Gln His Gly Cys Arg Thr Asp Arg 1235 1240 1245 Ser Arg Asp Glu Leu Leu Gly Tyr Val Thr Lys Thr Ile Asp Val Phe 1250 1255 1260 Pro Asn Thr Asp Lys Val Arg Ile Asp Ile Gly Glu Thr Glu Gly Thr1265 1270 1275 1280 Phe Lys Val Glu Ser Val Glu Leu Ile Cys Met Glu Glu 1285 1290 47647PRTBrevibacillus laterosporus 47Met Asn Gln Asn Gln Asn Lys Asn Glu Met Gln Ile Ile Glu Pro Ser1 5 10 15 Ser Asp Ser Phe Leu Tyr Ser His Asn Asn Tyr Pro Tyr Ala Thr Asp 20 25 30 Pro Asn Thr Val Leu Glu Gly Arg Asn Tyr Lys Glu Trp Leu Asn Lys 35 40 45 Cys Thr Asp Asn Tyr Thr Asp Ala Leu Gln Ser Pro Glu Ala Thr Ala 50 55 60 Ile Ser Lys Gly Ala Val Ser Ala Ala Ile Ser Ile Ser Thr Lys Val65 70 75 80 Leu Gly Leu Leu Gly Val Pro Phe Ala Ala Gln Ile Gly Gln Leu Trp 85 90 95 Thr

Phe Ile Leu Asn Ala Leu Trp Pro Ser Asp Asn Thr Gln Trp Glu 100 105 110 Glu Phe Met Arg His Val Glu Glu Leu Ile Asn Gln Arg Ile Ala Asp 115 120 125 Tyr Ala Arg Asn Lys Ala Leu Ala Glu Leu Thr Gly Leu Gly Asn Asn 130 135 140 Leu Asp Leu Tyr Ile Glu Ala Leu Asp Asp Trp Lys Arg Asn Pro Thr145 150 155 160 Ser Gln Glu Ala Lys Thr Arg Val Ile Asp Arg Phe Arg Ile Val Asp 165 170 175 Gly Leu Phe Glu Ala Tyr Ile Pro Ser Phe Ala Val Ser Gly Tyr Gln 180 185 190 Val Gln Leu Leu Thr Val Tyr Ala Ala Ala Ala Asn Leu His Leu Leu 195 200 205 Leu Leu Arg Asp Ser Thr Ile Tyr Gly Ile Asp Trp Gly Leu Ser Gln 210 215 220 Thr Asn Val Asn Asp Asn Tyr Asn Arg Gln Ile Arg Leu Thr Ala Thr225 230 235 240 Tyr Ala Asn His Cys Thr Thr Trp Tyr Gln Thr Gly Leu Glu Arg Leu 245 250 255 Arg Gly Ser Asn Ala Ser Ser Trp Val Thr Tyr Asn Arg Phe Arg Arg 260 265 270 Glu Met Thr Leu Thr Val Leu Asp Ile Cys Ser Leu Phe Ser Asn Tyr 275 280 285 Asp Tyr Arg Ser Tyr Pro Ala Glu Val Arg Gly Glu Ile Thr Arg Glu 290 295 300 Ile Tyr Thr Asp Pro Val Gly Val Gly Trp Val Asp Ser Ala Pro Ser305 310 315 320 Phe Gly Glu Ile Glu Asn Leu Ala Ile Arg Ala Pro Arg Thr Val Thr 325 330 335 Trp Leu Asn Ser Thr Arg Ile Phe Thr Gly Arg Leu Gln Gly Trp Ser 340 345 350 Gly Thr Asn Asn Tyr Trp Ala Ala His Met Gln Asn Phe Ser Glu Thr 355 360 365 Asn Ser Gly Asn Ile Gln Phe Glu Gly Pro Leu Tyr Gly Ser Thr Val 370 375 380 Gly Thr Ile His Arg Thr Asp Asp Tyr Asp Met Gly Asn Arg Asp Ile385 390 395 400 Tyr Thr Ile Thr Ser Gln Ala Val Leu Gly Leu Trp Ala Thr Gly Gln 405 410 415 Arg Val Leu Gly Val Ala Ser Ala Arg Phe Thr Leu Arg Asn Leu Phe 420 425 430 Asn Asn Leu Thr Gln Val Leu Val Tyr Glu Asn Pro Ile Ser Ser Thr 435 440 445 Phe Gly Ser Ser Thr Leu Thr His Glu Leu Ser Gly Glu Asn Ser Asp 450 455 460 Arg Pro Thr Ser Ser Asp Tyr Ser His Arg Leu Thr Ser Ile Thr Gly465 470 475 480 Phe Arg Ala Gly Ala Asn Gly Thr Val Pro Val Phe Gly Trp Thr Ser 485 490 495 Ala Thr Val Asp Arg Asn Asn Ile Ile Glu Arg Asn Lys Ile Thr Gln 500 505 510 Phe Pro Gly Val Lys Ser His Thr Leu Asn Asn Cys Gln Val Val Arg 515 520 525 Gly Thr Gly Phe Thr Gly Gly Asp Trp Leu Arg Pro Asn Asn Asn Gly 530 535 540 Thr Phe Arg Leu Thr Ile Thr Ser Phe Ser Ser Gln Ser Tyr Arg Ile545 550 555 560 Arg Leu Arg Tyr Ala Thr Ser Val Gly Asn Thr Ser Leu Val Ile Ser 565 570 575 Ser Ser Asp Ala Gly Ile Ser Ser Thr Thr Ile Pro Leu Thr Ser Thr 580 585 590 Ile Thr Ser Leu Pro Gln Thr Val Pro Tyr Gln Ala Phe Arg Val Val 595 600 605 Asp Leu Pro Ile Thr Phe Thr Thr Pro Thr Thr Gln Arg Asn Tyr Thr 610 615 620 Phe Asp Phe Arg Leu Gln Asn Pro Ser Asn Ala Asn Val Phe Ile Asp625 630 635 640 Arg Phe Glu Phe Val Pro Ile 645 481256PRTBrevibacillus laterosporus 48Met Asn Gln Asn Gln Asn Gln Asn Gln Asn Lys Asn Glu Leu Gln Ile1 5 10 15 Ile Glu Pro Ser Ser Asp Ser Phe Leu Tyr Ser His Asn Asn Tyr Pro 20 25 30 Tyr Ala Thr Asp Pro Asn Thr Val Leu Gln Gly Arg Asn Tyr Lys Glu 35 40 45 Trp Leu Asn Met Cys Thr Gly Thr Asp Asp Ser Arg Ser Pro Glu Ala 50 55 60 Ala Ser Thr Ala Lys Ser Ala Ile Ser Val Ala Ile Thr Ile Ser Thr65 70 75 80 Thr Ile Leu Gly Leu Leu Gly Val Pro Phe Ala Ser Gln Ile Gly Ala 85 90 95 Phe Tyr Asn Phe Val Leu Asn Thr Val Trp Pro Gln Gly Asn Asn Gln 100 105 110 Trp Glu Glu Phe Met Arg His Val Glu Asp Leu Ile Asn Glu Arg Ile 115 120 125 Ala Asp Tyr Ala Arg Ser Lys Ala Leu Ala Glu Leu Ala Gly Leu Gly 130 135 140 Asn Asn Leu Asp Leu Tyr Arg Glu Ala Phe Glu Asp Trp Arg Arg Asn145 150 155 160 Pro Thr Ser Gln Gln Ala Lys Thr Arg Val Ile Glu Arg Phe Arg Ile 165 170 175 Leu Asp Gly Leu Phe Glu Gln Tyr Met Pro Ser Phe Ala Val Gln Gly 180 185 190 Phe Gln Val Gln Leu Leu Thr Val Tyr Ala Ser Ala Ala Asn Ile His 195 200 205 Leu Phe Leu Leu Arg Asp Ser Ser Ile Tyr Gly Leu Asp Trp Gly Leu 210 215 220 Ser Gln Thr Asn Val Asn Glu Asn Tyr Asn Arg Gln Ile Arg His Ala225 230 235 240 Ala Thr Tyr Ala Asn His Cys Thr Thr Trp Tyr Gln Thr Gly Leu Gln 245 250 255 Arg Leu Gln Gly Thr Asn Ala Thr Ser Trp Val Ala Tyr Asn Arg Phe 260 265 270 Arg Arg Glu Met Thr Leu Thr Val Leu Asp Ile Ser Ser Leu Phe Ser 275 280 285 Asn Tyr Asp Tyr Arg Ser Tyr Pro Thr Glu Val Arg Gly Glu Leu Thr 290 295 300 Arg Glu Ile Tyr Thr Asp Pro Val Gly Arg Asn Trp Gln Asn Ser Ala305 310 315 320 Pro Ser Phe Ala Gln Ile Glu Asn Leu Ala Ile Arg Ala Pro Arg Thr 325 330 335 Val Thr Trp Leu Asn Ser Thr Arg Ile Ser Thr Gly Thr Leu Gln Gly 340 345 350 Trp Ser Gly Ser Asn Arg Tyr Trp Ala Ala His Met Gln Asn Phe Ser 355 360 365 Glu Thr Asn Ser Gly Asn Ile Arg Phe Asp Gly Pro Leu Tyr Gly Ser 370 375 380 Thr Val Gly Thr Ile His Arg Thr Asp Asp Tyr Asp Met Gly Asn Arg385 390 395 400 Asp Ile Tyr Thr Ile Thr Ser Glu Val Val Ala Ser Leu Trp Ala Thr 405 410 415 Gly Gln Thr Val Leu Gly Val Ala Ser Ala Arg Phe Thr Leu Arg Asn 420 425 430 Leu Phe Asn Asn Leu Thr Gln Ala Leu Val Tyr Glu Asn Pro Ile Ser 435 440 445 Ser Ser Phe Asn Arg Ser Thr Leu Thr His Glu Leu Pro Gly Glu Asn 450 455 460 Ser Asp Arg Pro Thr Ser Ser Asp Tyr Ser His Arg Leu Ser Ser Ile465 470 475 480 Thr Gly Phe Arg Ala Gly Ala Asn Gly Thr Val Pro Val Phe Gly Trp 485 490 495 Thr Ser Ala Thr Val Asp Arg Asn Asn Ile Ile Glu Arg Asn Lys Ile 500 505 510 Thr Gln Phe Pro Gly Val Lys Ser His Thr Leu Asn Asn Cys Gln Val 515 520 525 Val Arg Gly Thr Gly Phe Thr Gly Gly Asp Trp Leu Arg Pro Asn Asn 530 535 540 Asn Gly Thr Phe Arg Leu Thr Ile Thr Ser Phe Ser Ser Gln Ser Tyr545 550 555 560 Arg Ile Arg Leu Arg Tyr Ala Thr Ser Val Gly Asn Thr Ser Leu Val 565 570 575 Ile Ser Ser Ser Asp Gly Gly Ile Ser Ser Thr Thr Ile Pro Leu Thr 580 585 590 Ser Thr Ile Thr Ser Leu Pro Gln Thr Val Pro Tyr Gln Ala Phe Arg 595 600 605 Val Val Asp Leu Pro Ile Thr Phe Thr Thr Pro Thr Thr Gln Arg Asn 610 615 620 Tyr Thr Phe Asp Phe Arg Leu Gln Asn Pro Ser Asn Ala Asn Val Phe625 630 635 640 Ile Asp Arg Ile Glu Phe Val Pro Ile Gly Gly Ser Leu Ser Glu Tyr 645 650 655 Glu Thr Lys His Gln Leu Glu Lys Ala Arg Lys Ala Val Asn Asp Leu 660 665 670 Phe Thr Asn Glu Ser Lys Asn Val Leu Lys Lys Asp Thr Thr Asp Tyr 675 680 685 Asp Ile Asp Gln Ala Ala Asn Leu Val Glu Cys Val Ser Asp Glu Cys 690 695 700 Ala Asn Ala Lys Met Ile Leu Leu Asp Glu Val Lys Tyr Ala Lys Gln705 710 715 720 Leu Ser Glu Ala Arg Asn Leu Leu Leu Asn Gly Asn Phe Asp Asn Ile 725 730 735 Asp Arg Asp Gly Glu Asn Pro Trp Lys Thr Ser Pro Asn Val Thr Ile 740 745 750 Gln Glu Asn Asn Pro Ile Phe Lys Gly Arg Tyr Leu Ser Met Ser Gly 755 760 765 Ala Asn Asn Ile Glu Ala Thr Asn Glu Ile Phe Pro Thr Tyr Ala Tyr 770 775 780 Gln Lys Ile Asp Glu Ala Lys Leu Lys Pro Tyr Thr Arg Tyr Lys Val785 790 795 800 Arg Gly Phe Val Gly Asn Ser Lys Asp Leu Glu Leu Leu Val Thr Arg 805 810 815 Tyr Asp Glu Glu Val Asp Ala Ile Leu Asn Val Pro Asn Asp Ile Pro 820 825 830 His Ala Pro Pro Pro Phe Cys Gly Glu Phe Asp Arg Cys Asn Pro His 835 840 845 Ser Tyr Pro Pro Met Asn Pro Glu Cys His His Asp Val Ile Asn Asn 850 855 860 Ile Glu Ile Ser Ser Pro Cys Gln His Asn Lys Met Val Asp Asn Ala865 870 875 880 Asp Ile Ser Tyr Arg His Ser His Lys Lys His Gly Ile Cys His Glu 885 890 895 Ser His His Phe Glu Phe His Ile Asp Thr Gly Lys Ile Asp Leu Val 900 905 910 Glu Asn Leu Gly Ile Trp Val Ile Phe Lys Ile Cys Ser Thr Asp Gly 915 920 925 Tyr Ala Thr Leu Asp Asn Leu Glu Val Ile Glu Glu Arg Pro Leu Gly 930 935 940 Ala Glu Ser Leu Glu Arg Val Lys Arg Arg Glu Lys Lys Trp Lys His945 950 955 960 His Met Glu His Lys Cys Ser Glu Thr Lys Leu Ala Tyr His Ala Ala 965 970 975 Lys Gln Ala Leu Val Gly Leu Phe Thr Asn Thr Glu Tyr Asp Arg Leu 980 985 990 Lys Phe Glu Thr Thr Ile Ser Asn Ile Leu Phe Ala Asp Tyr Leu Val 995 1000 1005 Gln Ser Ile Pro Tyr Val Tyr Asn Lys Trp Leu Pro Asp Val Pro Gly 1010 1015 1020 Met Asn Phe Glu Ile Tyr Thr Glu Leu Lys Asn Leu Tyr Thr Gly Ala1025 1030 1035 1040 Phe Asn Leu Tyr Asp Gln Arg Asn Ile Ile Lys Asn Gly Asp Phe Asn 1045 1050 1055 Arg Gly Leu Met His Trp His Ala Thr Pro His Ala Arg Val Glu Gln 1060 1065 1070 Ile Asp Asn Arg Ser Val Leu Val Leu Pro Asn Tyr Ala Ala Asn Val 1075 1080 1085 Ser Gln Glu Val Cys Leu Glu His Asn Arg Gly Tyr Val Leu Arg Val 1090 1095 1100 Thr Ala Lys Lys Glu Gly Pro Gly Ile Gly Tyr Ile Thr Phe Ser Asp1105 1110 1115 1120 Cys Ala Asn Asn Ile Glu Lys Leu Thr Phe Thr Ser Cys Asp Tyr Gly 1125 1130 1135 Thr Asn Glu Val Pro Tyr Glu Gln Ser Asn Tyr Pro Thr Asp Gly Val 1140 1145 1150 Ser Tyr Gly His His Gly Cys Asn Ile Asp Arg Val Arg Tyr Glu Glu 1155 1160 1165 Ser Gly Tyr Arg Thr Asp Gly Val Pro Tyr Glu Gln Ser Gly Tyr Arg 1170 1175 1180 Ala Asp Gly Val Ser Tyr Glu Gln His Gly Cys His Thr Asp Gly Val1185 1190 1195 1200 Pro Tyr Lys Gln His Gly Cys Arg Thr Asp Arg Ser Arg Asp Glu Gln 1205 1210 1215 Leu Gly Tyr Val Thr Lys Thr Ile Asp Val Phe Pro Asp Thr Asp Lys 1220 1225 1230 Val Arg Ile Asp Ile Gly Glu Thr Glu Gly Thr Phe Lys Val Glu Ser 1235 1240 1245 Val Glu Leu Ile Cys Met Glu Glu 1250 1255 49649PRTBrevibacillus laterosporus 49Met Asn Gln Asn Gln Asn Gln Asn Gln Asn Lys Asn Glu Leu Gln Ile1 5 10 15 Ile Glu Pro Ser Ser Asp Ser Phe Leu Tyr Ser His Asn Asn Tyr Pro 20 25 30 Tyr Ala Thr Asp Pro Asn Thr Val Leu Gln Gly Arg Asn Tyr Lys Glu 35 40 45 Trp Leu Asn Met Cys Thr Gly Thr Asp Asp Ser Arg Ser Pro Glu Ala 50 55 60 Ala Ser Thr Ala Lys Ser Ala Ile Ser Val Ala Ile Thr Ile Ser Thr65 70 75 80 Thr Ile Leu Gly Leu Leu Gly Val Pro Phe Ala Ser Gln Ile Gly Ala 85 90 95 Phe Tyr Asn Phe Val Leu Asn Thr Val Trp Pro Gln Gly Asn Asn Gln 100 105 110 Trp Glu Glu Phe Met Arg His Val Glu Asp Leu Ile Asn Glu Arg Ile 115 120 125 Ala Asp Tyr Ala Arg Ser Lys Ala Leu Ala Glu Leu Ala Gly Leu Gly 130 135 140 Asn Asn Leu Asp Leu Tyr Arg Glu Ala Phe Glu Asp Trp Arg Arg Asn145 150 155 160 Pro Thr Ser Gln Gln Ala Lys Thr Arg Val Ile Glu Arg Phe Arg Ile 165 170 175 Leu Asp Gly Leu Phe Glu Gln Tyr Met Pro Ser Phe Ala Val Gln Gly 180 185 190 Phe Gln Val Gln Leu Leu Thr Val Tyr Ala Ser Ala Ala Asn Ile His 195 200 205 Leu Phe Leu Leu Arg Asp Ser Ser Ile Tyr Gly Leu Asp Trp Gly Leu 210 215 220 Ser Gln Thr Asn Val Asn Glu Asn Tyr Asn Arg Gln Ile Arg His Ala225 230 235 240 Ala Thr Tyr Ala Asn His Cys Thr Thr Trp Tyr Gln Thr Gly Leu Gln 245 250 255 Arg Leu Gln Gly Thr Asn Ala Thr Ser Trp Val Ala Tyr Asn Arg Phe 260 265 270 Arg Arg Glu Met Thr Leu Thr Val Leu Asp Ile Ser Ser Leu Phe Ser 275 280 285 Asn Tyr Asp Tyr Arg Ser Tyr Pro Thr Glu Val Arg Gly Glu Leu Thr 290 295 300 Arg Glu Ile Tyr Thr Asp Pro Val Gly Arg Asn Trp Gln Asn Ser Ala305 310 315 320 Pro Ser Phe Ala Gln Ile Glu Asn Leu Ala Ile Arg Ala Pro Arg Thr 325 330 335 Val Thr Trp Leu Asn Ser Thr Arg Ile Ser Thr Gly Thr Leu Gln Gly 340 345 350 Trp Ser Gly Ser Asn Arg Tyr Trp Ala Ala His Met Gln Asn Phe Ser 355 360 365 Glu Thr Asn Ser Gly Asn Ile Arg Phe Asp Gly Pro Leu Tyr Gly Ser 370 375 380 Thr Val Gly Thr Ile His Arg Thr Asp Asp Tyr Asp Met Gly Asn Arg385 390 395 400 Asp Ile Tyr Thr Ile Thr Ser Glu Val Val Ala Ser Leu Trp Ala Thr 405 410 415 Gly Gln Thr Val Leu Gly Val Ala Ser Ala Arg Phe Thr Leu Arg Asn 420 425 430 Leu Phe Asn Asn Leu Thr Gln Ala Leu Val Tyr Glu Asn Pro Ile Ser 435 440 445 Ser Ser Phe Asn Arg Ser Thr Leu Thr His Glu Leu Pro Gly Glu Asn 450 455 460 Ser Asp Arg Pro Thr Ser Ser Asp Tyr Ser His Arg Leu Ser Ser Ile465 470 475 480 Thr Gly Phe Arg Ala Gly Ala Asn Gly Thr Val Pro Val Phe Gly Trp 485

490 495 Thr Ser Ala Thr Val Asp Arg Asn Asn Ile Ile Glu Arg Asn Lys Ile 500 505 510 Thr Gln Phe Pro Gly Val Lys Ser His Thr Leu Asn Asn Cys Gln Val 515 520 525 Val Arg Gly Thr Gly Phe Thr Gly Gly Asp Trp Leu Arg Pro Asn Asn 530 535 540 Asn Gly Thr Phe Arg Leu Thr Ile Thr Ser Phe Ser Ser Gln Ser Tyr545 550 555 560 Arg Ile Arg Leu Arg Tyr Ala Thr Ser Val Gly Asn Thr Ser Leu Val 565 570 575 Ile Ser Ser Ser Asp Gly Gly Ile Ser Ser Thr Thr Ile Pro Leu Thr 580 585 590 Ser Thr Ile Thr Ser Leu Pro Gln Thr Val Pro Tyr Gln Ala Phe Arg 595 600 605 Val Val Asp Leu Pro Ile Thr Phe Thr Thr Pro Thr Thr Gln Arg Asn 610 615 620 Tyr Thr Phe Asp Phe Arg Leu Gln Asn Pro Ser Asn Ala Asn Val Phe625 630 635 640 Ile Asp Arg Ile Glu Phe Val Pro Ile 645 50317PRTBrevibacillus laterosporus 50Met Lys Lys Phe Ala Ser Leu Ile Leu Ile Ser Val Phe Leu Phe Ser1 5 10 15 Ser Thr Gln Phe Val His Ala Ser Ser Thr Asp Val Gln Glu Arg Leu 20 25 30 Arg Asp Leu Ala Arg Glu Asn Glu Ala Gly Thr Leu Asn Glu Ala Trp 35 40 45 Asn Thr Asn Phe Lys Pro Ser Asp Glu Gln Gln Phe Ser Tyr Ser Pro 50 55 60 Thr Glu Gly Ile Val Phe Leu Thr Pro Pro Lys Asn Val Ile Gly Glu65 70 75 80 Arg Arg Ile Ser Gln Tyr Lys Val Asn Asn Ala Trp Ala Thr Leu Glu 85 90 95 Gly Ser Pro Thr Glu Val Ser Gly Thr Pro Leu Tyr Val Gly Lys Asn 100 105 110 Val Leu Asp Asn Ser Lys Gly Thr Ser Asp Gln Glu Leu Leu Thr Pro 115 120 125 Glu Phe Asn Tyr Thr Tyr Thr Glu Ser Thr Ser Asn Thr Thr Thr His 130 135 140 Gly Leu Lys Leu Gly Val Lys Thr Thr Ala Thr Met Lys Phe Pro Ile145 150 155 160 Ala Gln Gly Ser Met Glu Ala Ser Thr Glu Tyr Asn Phe Gln Asp Ser 165 170 175 Ser Thr Asp Thr Thr Thr Lys Thr Val Ser Tyr Lys Ser Pro Ser Gln 180 185 190 Lys Ile Lys Val Pro Ala Gly Lys Thr Phe Arg Val Leu Ala Tyr Leu 195 200 205 Asn Thr Gly Ser Ile Ser Gly Glu Ala Asn Leu Tyr Ala Asn Val Gly 210 215 220 Gly Ile Ala Trp Gly Val Leu Pro Gly Tyr Pro Asn Gly Gly Gly Val225 230 235 240 Asn Ile Gly Ala Val Leu Thr Lys Cys Gln Gln Lys Gly Trp Gly Asp 245 250 255 Phe Arg Asn Phe Gln Pro Ser Gly Arg Asp Val Ile Val Lys Gly Gln 260 265 270 Gly Thr Phe Lys Ser Asn Tyr Gly Thr Asp Phe Ile Leu Lys Ile Glu 275 280 285 Asp Ile Thr Asp Ser Lys Leu Arg Asn Asn Asn Gly Ser Gly Thr Val 290 295 300 Val Gln Glu Ile Lys Val Pro Leu Ile Arg Thr Glu Ile305 310 315 511154PRTBacillus thuringiensis 51Met Asn Phe Leu Phe Leu Val Asn Tyr Glu Lys Asn Lys Phe Lys Tyr1 5 10 15 Asn Ile Gln Gly Asp Leu Asn Met Asn Gln Lys Asn Tyr Asp Ile Ile 20 25 30 Gly Ser Ser Thr Asn Gly Thr Thr Lys Leu Pro Glu Asp Tyr Asn Ile 35 40 45 Ile Ile Ser Pro Asp Ala Ala Pro Glu Ala Val Thr Ile Ala Ile Ser 50 55 60 Ile Thr Gly Glu Val Leu Ser Leu Phe Gly Val Pro Gly Ala Thr Leu65 70 75 80 Gly Ser Thr Leu Leu Asn Thr Leu Val Asp Lys Leu Trp Pro Thr Asn 85 90 95 Thr Asn Thr Val Trp Gly Thr Phe Thr Glu Glu Thr Ala Lys Leu Ile 100 105 110 Asn Glu Val Tyr Asn Pro Ser Asp Pro Val Val Lys Asp Ala Asp Ala 115 120 125 Arg Leu Thr Ser Leu His Glu Ser Leu Lys Leu Tyr Gln Leu Ala Phe 130 135 140 Gly Asn Trp Phe Lys Ser Gln Asp Asn Ser Lys Leu Lys Glu Glu Val145 150 155 160 Arg Arg Gln Phe Asp Ile Thr His Asn Arg Phe Val Thr Ser Met Pro 165 170 175 Phe Phe Lys Val Ser Asp Tyr Glu Ile Arg Leu Leu Thr Asn Tyr Ala 180 185 190 Gln Ala Ala Asn Leu His Leu Thr Phe Leu Arg Asp Ala Ser Ile Tyr 195 200 205 Gly Leu Asp Trp Gly Phe Ser Asp Glu His Ser Asn Asp Leu Tyr Glu 210 215 220 Gln Gln Lys Asn Arg Thr Gly Glu Tyr Thr Asp His Cys Val Lys Trp225 230 235 240 Tyr Asn Ala Gly Leu Glu Lys Leu Lys Gly Asn Leu Thr Gly Glu Asn 245 250 255 Trp Tyr Thr Tyr Asn Arg Phe Arg Arg Glu Met Thr Leu Met Val Leu 260 265 270 Asp Val Val Ala Leu Phe Pro Asn Tyr Asp Thr Arg Met Tyr Pro Ile 275 280 285 Ala Thr Ser Ser Glu Leu Thr Arg Met Ile Tyr Thr Asp Pro Ile Ala 290 295 300 Tyr Thr Gln Ser Asp Pro Trp Tyr Lys Ile Thr Ser Leu Ser Phe Ser305 310 315 320 Asn Ile Glu Asn Ser Ala Ile Pro Ser Pro Ser Phe Phe Arg Trp Leu 325 330 335 Lys Ser Val Ser Ile Asn Ser Gln Trp Trp Gly Ser Gly Pro Asn Gln 340 345 350 Thr Tyr Tyr Trp Val Gly His Glu Leu Val Tyr Ser Asn Ser Asn Tyr 355 360 365 Asn Gln Ser Leu Lys Val Lys Tyr Gly Asp Pro Asn Ser Tyr Ile Glu 370 375 380 Pro Pro Asp Ser Phe Ser Phe Ser Ser Thr Asp Val Tyr Arg Thr Ile385 390 395 400 Ser Val Val Arg Asn Ser Ile Ser Asn Tyr Ile Val Ser Glu Val Gln 405 410 415 Phe Asn Ser Ile Ser Asn Thr Asn Gln Ile Ser Glu Glu Ile Tyr Lys 420 425 430 His Gln Ser Asn Trp Asn Arg Arg Glu Thr Lys Asp Ser Ile Thr Glu 435 440 445 Leu Ser Leu Ala Ala Asn Pro Pro Thr Thr Phe Gly Asn Val Ala Glu 450 455 460 Tyr Ser His Arg Leu Ala Tyr Ile Ser Glu Ala Tyr Gln Ser Asn Asn465 470 475 480 Pro Ser Lys Tyr Pro Ala Tyr Ile Pro Val Phe Gly Trp Thr His Thr 485 490 495 Ser Val Arg Tyr Asp Asn Lys Ile Phe Pro Asp Lys Ile Thr Gln Ile 500 505 510 Pro Ala Val Lys Ser Ser Ser Ala Glu Gly Gly Thr Trp Lys Asn Ile 515 520 525 Ala Lys Gly Pro Gly Phe Thr Gly Gly Asp Val Thr Thr Ala Val Ser 530 535 540 Pro Ala Phe Ile Thr Asp Met Ile Lys Ile His Val Thr Leu Asp Pro545 550 555 560 Asn Ser Leu Ser Gln Lys Tyr Arg Ala Arg Leu Arg Tyr Ala Ser Asn 565 570 575 Ala Tyr Val Ala Ala Thr Leu Tyr Thr Asn Ser Ser Ser Asn Tyr Asn 580 585 590 Phe Glu Leu Thr Lys Gly Thr Thr Glu Gln Phe Thr Thr Tyr Asn Ser 595 600 605 Tyr Gln Tyr Val Asp Ile Pro Gly Ser Ile Gln Phe Asn Thr Thr Ser 610 615 620 Asp Thr Val Ser Val Tyr Leu His Met Asp Ser Thr Thr Asn Ala Asn625 630 635 640 Val His Val Asp Arg Ile Glu Phe Ile Pro Val Asp Glu Asn Tyr Asp 645 650 655 Asn Arg Val Thr Leu Glu Lys Ala Gln Lys Ala Val Asn Ala Leu Phe 660 665 670 Thr Ala Gly Arg His Ala Leu Gln Thr Asp Val Thr Asp Phe Lys Val 675 680 685 Asp Gln Val Ser Ile Leu Val Asp Cys Val Ser Gly Glu Leu Tyr Pro 690 695 700 Asn Glu Lys Arg Glu Leu Leu Ser Leu Val Lys Tyr Ala Lys Arg Leu705 710 715 720 Ser Tyr Ser Arg Asn Leu Leu Leu Asp Pro Thr Phe Asp Ser Ile Asn 725 730 735 Ser Ser Glu Glu Asn Gly Trp His Gly Ser Asn Gly Ile Ala Ile Gly 740 745 750 Asn Gly Asn Phe Val Phe Lys Gly Asn Tyr Leu Ile Phe Ser Gly Thr 755 760 765 Asn Asp Thr Gln Tyr Pro Thr Tyr Leu Tyr Gln Lys Ile Asp Glu Ser 770 775 780 Lys Leu Lys Glu Tyr Thr Arg Tyr Lys Leu Arg Gly Phe Ile Glu Ser785 790 795 800 Ser Gln Asp Leu Glu Ala Tyr Val Ile Arg Tyr Asp Ala Lys Tyr Glu 805 810 815 Thr Leu Asp Val Ser Asn Asn Leu Tyr Pro Asp Ile Ser Pro Val Asn 820 825 830 Ala Cys Gly Glu Pro Asn Arg Cys Ala Ala Leu Pro Tyr Leu Asp Glu 835 840 845 Asn Pro Arg Leu Glu Cys Ser Ser Ile Gln Asp Gly Ile Leu Ser Asp 850 855 860 Ser His Ser Phe Ser Leu Asn Ile Asp Thr Gly Ser Ile Asp Ser Asn865 870 875 880 Glu Asn Val Gly Ile Trp Val Leu Phe Lys Ile Ser Thr Pro Glu Gly 885 890 895 Tyr Ala Lys Phe Gly Asn Leu Glu Val Ile Glu Asp Gly Pro Val Ile 900 905 910 Gly Glu Ala Leu Ala Arg Val Lys Arg Gln Glu Thr Lys Trp Arg Asn 915 920 925 Lys Leu Thr Gln Leu Arg Thr Glu Thr Gln Ala Ile Tyr Thr Arg Ala 930 935 940 Lys Gln Ala Ile Asp Asn Leu Phe Thr Asn Ala Gln Asp Ser His Leu945 950 955 960 Lys Ile Gly Ala Thr Phe Ala Ser Ile Val Ala Ala Arg Lys Ile Val 965 970 975 Gln Ser Ile Arg Glu Ala Tyr Met Pro Trp Leu Ser Ile Val Pro Gly 980 985 990 Val Asn Tyr Pro Ile Phe Thr Glu Leu Asn Glu Arg Val Gln Gln Ala 995 1000 1005 Phe Gln Leu Tyr Asp Val Arg Asn Val Val Arg Asn Gly Arg Phe Leu 1010 1015 1020 Asn Gly Val Ser Asp Trp Ile Val Thr Ser Asp Val Thr Val Gln Glu1025 1030 1035 1040 Glu Asn Gly Asn Asn Val Leu Val Leu Ser Asn Trp Asp Ala Gln Val 1045 1050 1055 Leu Gln Cys Leu Lys Leu Tyr Gln Asp Arg Gly Tyr Ile Leu Arg Val 1060 1065 1070 Thr Ala Arg Lys Glu Gly Leu Gly Glu Gly Tyr Ile Thr Ile Thr Asp 1075 1080 1085 Glu Glu Gly Tyr Thr Asp Gln Leu Thr Phe Gly Thr Cys Glu Glu Ile 1090 1095 1100 Asp Ala Ser Asn Thr Phe Val Ser Thr Gly Tyr Ile Thr Lys Glu Leu1105 1110 1115 1120 Glu Phe Phe Pro Asp Thr Glu Lys Val Arg Ile Glu Val Gly Glu Thr 1125 1130 1135 Glu Gly Thr Phe Arg Val Glu Ser Val Glu Leu Phe Leu Met Glu Glu 1140 1145 1150 His Cys52651PRTBacillus thuringiensis 52Met Asn Phe Leu Phe Leu Val Asn Tyr Glu Lys Asn Lys Phe Lys Tyr1 5 10 15 Asn Ile Gln Gly Asp Leu Asn Met Asn Gln Lys Asn Tyr Asp Ile Ile 20 25 30 Gly Ser Ser Thr Asn Gly Thr Thr Lys Leu Pro Glu Asp Tyr Asn Ile 35 40 45 Ile Ile Ser Pro Asp Ala Ala Pro Glu Ala Val Thr Ile Ala Ile Ser 50 55 60 Ile Thr Gly Glu Val Leu Ser Leu Phe Gly Val Pro Gly Ala Thr Leu65 70 75 80 Gly Ser Thr Leu Leu Asn Thr Leu Val Asp Lys Leu Trp Pro Thr Asn 85 90 95 Thr Asn Thr Val Trp Gly Thr Phe Thr Glu Glu Thr Ala Lys Leu Ile 100 105 110 Asn Glu Val Tyr Asn Pro Ser Asp Pro Val Val Lys Asp Ala Asp Ala 115 120 125 Arg Leu Thr Ser Leu His Glu Ser Leu Lys Leu Tyr Gln Leu Ala Phe 130 135 140 Gly Asn Trp Phe Lys Ser Gln Asp Asn Ser Lys Leu Lys Glu Glu Val145 150 155 160 Arg Arg Gln Phe Asp Ile Thr His Asn Arg Phe Val Thr Ser Met Pro 165 170 175 Phe Phe Lys Val Ser Asp Tyr Glu Ile Arg Leu Leu Thr Asn Tyr Ala 180 185 190 Gln Ala Ala Asn Leu His Leu Thr Phe Leu Arg Asp Ala Ser Ile Tyr 195 200 205 Gly Leu Asp Trp Gly Phe Ser Asp Glu His Ser Asn Asp Leu Tyr Glu 210 215 220 Gln Gln Lys Asn Arg Thr Gly Glu Tyr Thr Asp His Cys Val Lys Trp225 230 235 240 Tyr Asn Ala Gly Leu Glu Lys Leu Lys Gly Asn Leu Thr Gly Glu Asn 245 250 255 Trp Tyr Thr Tyr Asn Arg Phe Arg Arg Glu Met Thr Leu Met Val Leu 260 265 270 Asp Val Val Ala Leu Phe Pro Asn Tyr Asp Thr Arg Met Tyr Pro Ile 275 280 285 Ala Thr Ser Ser Glu Leu Thr Arg Met Ile Tyr Thr Asp Pro Ile Ala 290 295 300 Tyr Thr Gln Ser Asp Pro Trp Tyr Lys Ile Thr Ser Leu Ser Phe Ser305 310 315 320 Asn Ile Glu Asn Ser Ala Ile Pro Ser Pro Ser Phe Phe Arg Trp Leu 325 330 335 Lys Ser Val Ser Ile Asn Ser Gln Trp Trp Gly Ser Gly Pro Asn Gln 340 345 350 Thr Tyr Tyr Trp Val Gly His Glu Leu Val Tyr Ser Asn Ser Asn Tyr 355 360 365 Asn Gln Ser Leu Lys Val Lys Tyr Gly Asp Pro Asn Ser Tyr Ile Glu 370 375 380 Pro Pro Asp Ser Phe Ser Phe Ser Ser Thr Asp Val Tyr Arg Thr Ile385 390 395 400 Ser Val Val Arg Asn Ser Ile Ser Asn Tyr Ile Val Ser Glu Val Gln 405 410 415 Phe Asn Ser Ile Ser Asn Thr Asn Gln Ile Ser Glu Glu Ile Tyr Lys 420 425 430 His Gln Ser Asn Trp Asn Arg Arg Glu Thr Lys Asp Ser Ile Thr Glu 435 440 445 Leu Ser Leu Ala Ala Asn Pro Pro Thr Thr Phe Gly Asn Val Ala Glu 450 455 460 Tyr Ser His Arg Leu Ala Tyr Ile Ser Glu Ala Tyr Gln Ser Asn Asn465 470 475 480 Pro Ser Lys Tyr Pro Ala Tyr Ile Pro Val Phe Gly Trp Thr His Thr 485 490 495 Ser Val Arg Tyr Asp Asn Lys Ile Phe Pro Asp Lys Ile Thr Gln Ile 500 505 510 Pro Ala Val Lys Ser Ser Ser Ala Glu Gly Gly Thr Trp Lys Asn Ile 515 520 525 Ala Lys Gly Pro Gly Phe Thr Gly Gly Asp Val Thr Thr Ala Val Ser 530 535 540 Pro Ala Phe Ile Thr Asp Met Ile Lys Ile His Val Thr Leu Asp Pro545 550 555 560 Asn Ser Leu Ser Gln Lys Tyr Arg Ala Arg Leu Arg Tyr Ala Ser Asn 565 570 575 Ala Tyr Val Ala Ala Thr Leu Tyr Thr Asn Ser Ser Ser Asn Tyr Asn 580 585 590 Phe Glu Leu Thr Lys Gly Thr Thr Glu Gln Phe Thr Thr Tyr Asn Ser 595 600 605 Tyr Gln Tyr Val Asp Ile Pro Gly Ser Ile Gln Phe Asn Thr Thr Ser 610 615 620 Asp Thr Val Ser Val Tyr Leu His Met Asp Ser Thr Thr Asn Ala Asn625 630 635 640 Val His Val Asp Arg Ile Glu Phe Ile Pro Val 645 650 531206PRTBacillus thuringiensis 53Met Arg Leu Lys Lys Leu Leu Val Cys Asn Ile Arg Ile Gly Gly Thr1 5 10

15 Asn Met Asn Leu Gly Asn Tyr Asn Glu Phe Asp Ile Ile Asp Ile Thr 20 25 30 Glu Asn Asn Gln Thr Lys Thr Ser Arg Tyr Asn Asn Val Asn Arg Gln 35 40 45 Glu Asn Pro Ser Asn Met Ile Ile Ser Asn Pro Ser Ser Asn Tyr Pro 50 55 60 Leu Ala Asn Asn Pro Asn Thr Pro Phe Gln Asn Ile Asn Tyr Lys Asp65 70 75 80 Phe Leu Asn Met Asn Glu Glu Ile Ala Pro Tyr Ala Ser Ser Lys Asp 85 90 95 Val Ile Phe Ser Ser Met Asn Ile Ile Arg Thr Phe Met Gly Phe Ala 100 105 110 Gly His Gly Thr Ala Gly Gly Ile Val Ala Leu Phe Thr Glu Val Leu 115 120 125 Arg Leu Leu Trp Pro Asn Lys Gln Asp Glu Leu Trp Glu Ser Phe Met 130 135 140 Lys Glu Val Glu Lys Leu Ile Glu Gln Glu Ile Thr Asp Ala Val Val145 150 155 160 Ser Lys Ala Leu Ala Glu Leu Glu Gly Leu Arg Asn Ala Leu Gln Gly 165 170 175 Tyr Thr Asp Ala Leu Glu Ala Trp Gln Asn Asn Arg Ser Asp Lys Leu 180 185 190 Lys Gln Leu Leu Val Tyr Asp Arg Phe Val Ser Thr Glu Asn Leu Phe 195 200 205 Lys Phe Ala Met Pro Ser Phe Arg Val Gly Gly Phe Glu Val Pro Leu 210 215 220 Leu Thr Val Tyr Ala Gln Ala Ala Asn Leu His Leu Leu Leu Leu Lys225 230 235 240 Asn Ser Glu Leu Phe Gly Ala Glu Trp Gly Met Gln Gln Tyr Glu Ile 245 250 255 Asp Leu Phe Tyr Asn Glu Gln Lys Asp Tyr Val Val Glu Tyr Thr Asp 260 265 270 His Cys Val Lys Trp Tyr Thr Glu Gly Leu Asn Arg Leu Lys Asn Ala 275 280 285 Ser Gly Val Lys Gly Lys Val Trp Glu Glu Tyr Asn Arg Phe Arg Arg 290 295 300 Glu Met Thr Ile Met Val Leu Asp Leu Leu Pro Leu Phe Pro Ile Tyr305 310 315 320 Asp Val Arg Thr Tyr Pro Thr Glu Thr Val Thr Glu Leu Thr Arg Gln 325 330 335 Ile Phe Thr Asp Pro Ile Gly Leu Arg Gly Ile Asn Glu Ser Lys Tyr 340 345 350 Pro Asp Trp Tyr Gly Ala Ala Ser Asp Ser Phe Ser Leu Ile Glu Asn 355 360 365 Arg Ala Val Pro Gln Pro Ser Leu Phe Gln Trp Leu Thr Glu Phe Lys 370 375 380 Val Tyr Thr Lys Tyr Val Glu Pro Asn Asp Lys Leu Thr Ile Leu Ala385 390 395 400 Gly His Ser Val Thr Thr Gln Tyr Thr Ser Tyr Tyr Lys Lys Ser Thr 405 410 415 Phe Thr Tyr Gly Asp Thr Ser Ser Ala Asn Ser Ser Arg Thr Phe Asp 420 425 430 Leu Leu Ala Lys Asp Val Tyr Gln Val Asp Ser Val Ala Ala Ala Ser 435 440 445 Lys Ser Ala Thr Trp Tyr Leu Ala Val Pro Glu Met Arg Leu Tyr Ser 450 455 460 Ile Asn Thr Asn Asn Ile Leu Ser Glu Asp Tyr Phe Ser Leu Ser Thr465 470 475 480 Asn Ile Pro Ser Ser Lys Met Arg Arg Met Tyr Ser Ser Glu Glu Leu 485 490 495 Pro Ile Gly Ile Ser Asp Thr Pro Ile Tyr Gly Asp Leu Glu Glu Tyr 500 505 510 Ser His Arg Leu Ser Phe Ile Ser Glu Ile Met His Asn Ser Gly Ser 515 520 525 Val Thr Gly Ser Asn Asn Ile Lys Gly Ile Ile Pro Val Leu Gly Trp 530 535 540 Thr His Thr Ser Val Ser Pro Glu Asn Tyr Ile His Arg Asp Lys Ile545 550 555 560 Ser Gln Leu Tyr Ala Val Lys Ala Tyr Thr Thr Ser Asn Val Ser Val 565 570 575 Val Gly Gly Pro Gly Phe Leu Gly Gly Asn Ile Ile Lys Gly Asn Asn 580 585 590 Asp Pro Ala Ser Tyr Thr Gly Ser Val Ser Trp Ala Ile Arg Leu Asp 595 600 605 Gly Ser Thr Val Ser Arg Phe Arg Leu Arg Ile Pro Tyr Ala Ala Glu 610 615 620 Thr Asp Gly Thr Phe Ser Ile Thr Val Arg Asp Asp Leu Gly Pro Phe625 630 635 640 Thr Ile Lys Lys Asp Phe Ile Ala Thr Met Lys Pro Gly Asp Pro Leu 645 650 655 Ser Tyr Gly Lys Phe Glu Tyr Leu Glu Phe Glu Gln Thr Met Ser Leu 660 665 670 Asn Asn Lys His Gly Gln Phe Phe Val His Thr Glu Asn Leu Lys Asp 675 680 685 Arg Asn Ser Ser Val Tyr Trp Asn Arg Val Glu Ile Ile Pro Val Asp 690 695 700 Glu Asn Tyr Asp Asn Arg Val Arg Leu Glu Lys Ala Gln Lys Ala Val705 710 715 720 Asn Ala Leu Phe Thr Ala Gly Arg His Ala Leu Gln Thr Asn Val Thr 725 730 735 Asp Tyr Lys Val Asp Gln Val Ser Ile Leu Val Asp Ser Val Ser Gly 740 745 750 Glu Leu Tyr Pro Asn Glu Lys Arg Glu Leu Gln Ser Leu Val Lys Tyr 755 760 765 Ala Lys Arg Leu Ser Tyr Ser Arg Asn Leu Leu Leu Asp Pro Thr Phe 770 775 780 Asp Ser Ile Asn Ser Ser Glu Glu Asn Gly Trp Tyr Gly Ser Asn Gly785 790 795 800 Ile Ala Ile Gly Asn Gly Asn Phe Val Phe Lys Gly Asn Tyr Leu Asn 805 810 815 Phe Ser Gly Thr Asn Asp Thr Gln Tyr Pro Thr Tyr Leu Tyr Gln Lys 820 825 830 Ile Asp Glu Ser Lys Leu Lys Glu Tyr Thr Arg Tyr Lys Leu Arg Gly 835 840 845 Phe Ile Glu Ser Ser Gln Asp Leu Glu Ala Tyr Val Val Arg Tyr Asp 850 855 860 Ala Lys His Glu Thr Leu Asp Val Ser Asn Asn Leu Phe Pro Asp Ile865 870 875 880 Ser Pro Val Asn Ala Cys Gly Glu Pro Asn Arg Cys Ala Ala Leu Pro 885 890 895 Tyr Leu Asp Lys Asn Pro Arg Leu Glu Cys Ser Leu Ile Gln Asp Gly 900 905 910 Ile Leu Ser Asp Ser His Ser Phe Ser Leu Asn Ile Asp Thr Gly Ser 915 920 925 Ile Asp Ser Thr Glu Asn Val Gly Ile Trp Val Leu Phe Lys Ile Ser 930 935 940 Thr Pro Glu Gly Tyr Ala Lys Phe Gly Asn Leu Glu Val Ile Glu Tyr945 950 955 960 Gly Pro Val Ile Gly Glu Ala Leu Ala Arg Val Lys Arg Gln Glu Thr 965 970 975 Lys Trp Arg Asn Lys Leu Thr Gln Leu Arg Thr Glu Thr Gln Ala Ile 980 985 990 Tyr Thr Arg Ala Lys Gln Ala Ile Asp Asn Leu Phe Thr Asn Thr Gln 995 1000 1005 Asp Ser Tyr Leu Lys Ile Gly Ala Thr Phe Ala Ser Ile Val Ala Ala 1010 1015 1020 Arg Lys Ile Val Gln Ser Ile Arg Glu Ala Tyr Met Ser Trp Leu Ser1025 1030 1035 1040 Ile Val Pro Gly Val Asn Tyr Pro Ile Phe Thr Glu Leu Asn Glu Arg 1045 1050 1055 Val Gln Arg Ala Phe Gln Leu Tyr Asp Val Arg Asn Val Val Arg Asn 1060 1065 1070 Gly Arg Phe Leu Ser Gly Val Ser Asp Trp Ile Val Thr Ser Asp Val 1075 1080 1085 Lys Val Gln Glu Glu Asn Gly Asn Asn Val Leu Val Leu Ser Asn Trp 1090 1095 1100 Asp Ala Gln Val Leu Gln Cys Leu Lys Leu Tyr Gln Asp Arg Gly Tyr1105 1110 1115 1120 Ile Leu Arg Val Thr Ala Arg Lys Glu Gly Leu Gly Glu Gly Tyr Ile 1125 1130 1135 Thr Ile Thr Asp Glu Glu Gly His Thr Asp Gln Leu Thr Phe Gly Thr 1140 1145 1150 Cys Glu Glu Ile Asp Ala Ser Asn Thr Phe Val Ser Thr Gly Tyr Ile 1155 1160 1165 Thr Lys Glu Leu Glu Phe Phe Pro Asp Thr Glu Lys Val Arg Ile Glu 1170 1175 1180 Ile Gly Glu Thr Glu Gly Ile Phe Lys Val Glu Ser Val Glu Leu Phe1185 1190 1195 1200 Leu Met Glu Asp Leu Cys 1205 54703PRTBacillus thuringiensis 54Met Arg Leu Lys Lys Leu Leu Val Cys Asn Ile Arg Ile Gly Gly Thr1 5 10 15 Asn Met Asn Leu Gly Asn Tyr Asn Glu Phe Asp Ile Ile Asp Ile Thr 20 25 30 Glu Asn Asn Gln Thr Lys Thr Ser Arg Tyr Asn Asn Val Asn Arg Gln 35 40 45 Glu Asn Pro Ser Asn Met Ile Ile Ser Asn Pro Ser Ser Asn Tyr Pro 50 55 60 Leu Ala Asn Asn Pro Asn Thr Pro Phe Gln Asn Ile Asn Tyr Lys Asp65 70 75 80 Phe Leu Asn Met Asn Glu Glu Ile Ala Pro Tyr Ala Ser Ser Lys Asp 85 90 95 Val Ile Phe Ser Ser Met Asn Ile Ile Arg Thr Phe Met Gly Phe Ala 100 105 110 Gly His Gly Thr Ala Gly Gly Ile Val Ala Leu Phe Thr Glu Val Leu 115 120 125 Arg Leu Leu Trp Pro Asn Lys Gln Asp Glu Leu Trp Glu Ser Phe Met 130 135 140 Lys Glu Val Glu Lys Leu Ile Glu Gln Glu Ile Thr Asp Ala Val Val145 150 155 160 Ser Lys Ala Leu Ala Glu Leu Glu Gly Leu Arg Asn Ala Leu Gln Gly 165 170 175 Tyr Thr Asp Ala Leu Glu Ala Trp Gln Asn Asn Arg Ser Asp Lys Leu 180 185 190 Lys Gln Leu Leu Val Tyr Asp Arg Phe Val Ser Thr Glu Asn Leu Phe 195 200 205 Lys Phe Ala Met Pro Ser Phe Arg Val Gly Gly Phe Glu Val Pro Leu 210 215 220 Leu Thr Val Tyr Ala Gln Ala Ala Asn Leu His Leu Leu Leu Leu Lys225 230 235 240 Asn Ser Glu Leu Phe Gly Ala Glu Trp Gly Met Gln Gln Tyr Glu Ile 245 250 255 Asp Leu Phe Tyr Asn Glu Gln Lys Asp Tyr Val Val Glu Tyr Thr Asp 260 265 270 His Cys Val Lys Trp Tyr Thr Glu Gly Leu Asn Arg Leu Lys Asn Ala 275 280 285 Ser Gly Val Lys Gly Lys Val Trp Glu Glu Tyr Asn Arg Phe Arg Arg 290 295 300 Glu Met Thr Ile Met Val Leu Asp Leu Leu Pro Leu Phe Pro Ile Tyr305 310 315 320 Asp Val Arg Thr Tyr Pro Thr Glu Thr Val Thr Glu Leu Thr Arg Gln 325 330 335 Ile Phe Thr Asp Pro Ile Gly Leu Arg Gly Ile Asn Glu Ser Lys Tyr 340 345 350 Pro Asp Trp Tyr Gly Ala Ala Ser Asp Ser Phe Ser Leu Ile Glu Asn 355 360 365 Arg Ala Val Pro Gln Pro Ser Leu Phe Gln Trp Leu Thr Glu Phe Lys 370 375 380 Val Tyr Thr Lys Tyr Val Glu Pro Asn Asp Lys Leu Thr Ile Leu Ala385 390 395 400 Gly His Ser Val Thr Thr Gln Tyr Thr Ser Tyr Tyr Lys Lys Ser Thr 405 410 415 Phe Thr Tyr Gly Asp Thr Ser Ser Ala Asn Ser Ser Arg Thr Phe Asp 420 425 430 Leu Leu Ala Lys Asp Val Tyr Gln Val Asp Ser Val Ala Ala Ala Ser 435 440 445 Lys Ser Ala Thr Trp Tyr Leu Ala Val Pro Glu Met Arg Leu Tyr Ser 450 455 460 Ile Asn Thr Asn Asn Ile Leu Ser Glu Asp Tyr Phe Ser Leu Ser Thr465 470 475 480 Asn Ile Pro Ser Ser Lys Met Arg Arg Met Tyr Ser Ser Glu Glu Leu 485 490 495 Pro Ile Gly Ile Ser Asp Thr Pro Ile Tyr Gly Asp Leu Glu Glu Tyr 500 505 510 Ser His Arg Leu Ser Phe Ile Ser Glu Ile Met His Asn Ser Gly Ser 515 520 525 Val Thr Gly Ser Asn Asn Ile Lys Gly Ile Ile Pro Val Leu Gly Trp 530 535 540 Thr His Thr Ser Val Ser Pro Glu Asn Tyr Ile His Arg Asp Lys Ile545 550 555 560 Ser Gln Leu Tyr Ala Val Lys Ala Tyr Thr Thr Ser Asn Val Ser Val 565 570 575 Val Gly Gly Pro Gly Phe Leu Gly Gly Asn Ile Ile Lys Gly Asn Asn 580 585 590 Asp Pro Ala Ser Tyr Thr Gly Ser Val Ser Trp Ala Ile Arg Leu Asp 595 600 605 Gly Ser Thr Val Ser Arg Phe Arg Leu Arg Ile Pro Tyr Ala Ala Glu 610 615 620 Thr Asp Gly Thr Phe Ser Ile Thr Val Arg Asp Asp Leu Gly Pro Phe625 630 635 640 Thr Ile Lys Lys Asp Phe Ile Ala Thr Met Lys Pro Gly Asp Pro Leu 645 650 655 Ser Tyr Gly Lys Phe Glu Tyr Leu Glu Phe Glu Gln Thr Met Ser Leu 660 665 670 Asn Asn Lys His Gly Gln Phe Phe Val His Thr Glu Asn Leu Lys Asp 675 680 685 Arg Asn Ser Ser Val Tyr Trp Asn Arg Val Glu Ile Ile Pro Val 690 695 700 55772PRTBacillus thuringiensis 55Met Val Asn Glu Asn Met Asp Met Tyr Asn Asn Asn Gly Ser Met Asn1 5 10 15 Gly Asn Pro Asp Met Tyr Asn Lys Asn Gly Ser Met Asn Gly Asn Thr 20 25 30 Asp Val Tyr Asn Asn Asn Gly Ser Met Asn Gly Asn Pro Asp Met Tyr 35 40 45 Asn Asn Asn Gly Ser Met Asn Gly Asn Thr Asp Val Tyr Asn Asn Asn 50 55 60 Gly Ser Met Asn Gly Asn Pro Asp Val Tyr Asn Lys Asn Gly Ser Met65 70 75 80 Asp Gly Asn Pro Asp Met Tyr Asn Asn Asn Gly Ser Met Asn Gly Asn 85 90 95 Thr Asp Val Tyr Asn Lys Asn Gly Ser Met Asn Gly Asn Pro Asp Met 100 105 110 Tyr Asn Asn Asn Gly Ser Met Asn Gly Asn Thr Asp Val Tyr Asn Asn 115 120 125 Asn Gly Ser Met Asn Gly Asn Thr Asp Asn Gln Val Pro Ala Tyr Asn 130 135 140 Ile Leu Ser Ala Glu Asn Pro Ser Asn Ile Leu Glu Ser Asp Thr Arg145 150 155 160 Cys Thr Leu Asn Val Lys Asn Val Gln Asp Glu Ala Ile Cys Thr Gly 165 170 175 Ser Asn Leu Thr Asn Glu Ile Gly Pro Leu Val Val Pro Ile Ala Phe 180 185 190 Thr Pro Ile Ile Leu Thr Pro Ala Leu Ile Glu Val Gly Lys Trp Leu 195 200 205 Gly Val Gln Ile Gly Lys Trp Ala Leu Ser Thr Ala Leu Lys Glu Leu 210 215 220 Lys Ser Phe Leu Phe Pro Asn Ser Asp Pro Gln Arg Glu Met Glu Lys225 230 235 240 Leu Arg Ile Glu Leu Glu Asn Ser Phe Asn Lys Lys Leu Thr Glu Asp 245 250 255 Lys Leu Asn Phe Leu Thr Ala Ala Tyr Thr Gly Phe Asn Asn Leu Ser 260 265 270 Asn Ser Phe Ile Ser Ala Thr Glu Arg Val Lys Ala Ala Glu Ile Thr 275 280 285 Leu Ala Thr Ala Pro Ser Gln Glu Asn Gln Asp Ile Leu Asp Glu Ala 290 295 300 Arg Thr Leu Ala Arg Asp Tyr Phe Val Ser Leu His Ser Gln Met Ile305 310 315 320 Val Trp Leu Pro Gln Phe Glu Ile Ser Gly Tyr Glu Glu Ile Ser Leu 325 330 335 Pro Leu Phe Thr Gln Met Cys Thr Leu His Leu Thr His Leu Lys Asp 340 345 350 Gly Val Leu Met Gly Gln Asn Trp Gly Leu Ser Thr Asp Asp Ile Lys 355 360 365 His Phe Lys Gly Glu Phe Tyr Arg Leu Ser Asn Asp Tyr Thr Ser Arg 370 375 380 Ala Phe Asp Ser Phe His Arg Gly Phe Asn Arg Leu Arg Thr Gln Gln385 390 395 400 Gly Thr Ala Gly Val Ile Lys Phe Arg Thr Ala Met Asn Ala Tyr Ala 405

410 415 Phe Asp Asn Ile Tyr Lys Trp Ser Leu Leu Arg Tyr Glu Gly Ile Asn 420 425 430 Pro Arg Ile Thr Arg Ser Leu Trp His Tyr Ile Gly Tyr Asn Ser Ser 435 440 445 Leu Gly Ser Asn Asp Phe Asn Thr Leu Tyr Lys Leu Met Val Gly Ile 450 455 460 Pro His Glu Arg Phe Arg Thr Val Ala Ile Gly Tyr Arg Ala Lys Thr465 470 475 480 Gly Glu Asp Trp Lys Val Thr Gly Ala Lys Ser Thr Phe Tyr Ser Gly 485 490 495 Gly Gly Glu Trp Val Gly Asn Val Ser Lys Ala Thr Arg Ile Pro Val 500 505 510 Tyr Thr Thr Lys Thr Asp Trp Arg Gln Phe Glu Arg Arg Ile His Gly 515 520 525 Arg Leu Gly Thr Glu Gln Tyr Thr Arg Trp His Leu Thr Ile Gln Asp 530 535 540 Thr Asn Ile Ile Gly Asn Ser Tyr Leu Thr Gly Leu Pro Phe Asp Ile545 550 555 560 Ser Tyr Pro Asp Tyr Phe Ile Arg Thr Ile Ser Ala Lys Pro Glu Ala 565 570 575 Tyr Pro Ile Tyr Lys Ser Leu Ser Leu Gly Asp Asn Pro Gly Tyr Val 580 585 590 Val Asp Asn Pro Gly Asn Asn Leu Ile Ile Gly Phe Ser Pro Asp Asn 595 600 605 Leu Lys Thr Phe Met Thr Asp Gly Asn Arg Tyr His Ser Ile Glu Ser 610 615 620 Gly Tyr Pro Thr Asn Pro Ser Cys Thr Ile Pro Ala Val Leu Tyr Asn625 630 635 640 Ser Val Ser Asn Pro Phe Gln Ala Tyr Phe Asn Asp Glu Leu Gly Asn 645 650 655 Gly Ser Asp Gly Ser Ile Thr Leu Ile Arg Arg Gly Gly Ala His Tyr 660 665 670 Leu Val Asp Ser Arg Ser Ala Ser Tyr Asp Arg Ser Phe Arg Leu Ile 675 680 685 Ile Arg Ile Gln Ala Gly Ser Ser Ala Phe Lys Val Thr Val Arg Ser 690 695 700 Arg His Thr Ser Glu Ser Phe Glu Leu Asn Phe Thr Leu Leu Ser Asp705 710 715 720 Gln Asp Ile Asn Tyr Tyr Tyr Asp Tyr Ile Ser Gln Pro Phe Asn Leu 725 730 735 Ser Ser Thr Tyr Tyr Tyr Ile Asp Val Glu Arg Val Val Ser Asp Asp 740 745 750 Ile Arg Ala Leu Thr Phe Asn Gln Met Ile Ile Val Pro Thr Thr Glu 755 760 765 Phe Gln Ile Leu 770 56289PRTBacillus thuringiensis 56Met Ala Ile Tyr Asp Ile Ala Ala Asp Leu Phe Asp Leu Thr Arg Trp1 5 10 15 Tyr Ala Glu Gln Asn Tyr Asn Ala Asn Pro Thr Thr Phe Arg Gly Ala 20 25 30 Lys Val Tyr Asp Arg Ile Val Ser Asp Val Gln Ser Ile Pro Glu Lys 35 40 45 Val Asp Phe Asn Leu Ile Pro Gly Leu Ala Tyr Thr Val Lys Asn Glu 50 55 60 Ile Val Asn Asp Thr Asn Thr Glu Gln Ser Met Ser Thr Lys Leu Met65 70 75 80 His Thr Leu Ile Glu Ser Asn Ser Val Thr Thr Thr Lys Gly Tyr Lys 85 90 95 Ile Gly Ser Ser Ile Lys Asn Thr Phe Ser Val Asn Ile Glu Gly Ser 100 105 110 Phe Phe Val Gly Gly Gly Ser Thr Glu His Ser Ile Glu Val Ser Val 115 120 125 Ser Gly Glu Tyr Asn His Ser Ser Ser Glu Thr Lys Thr Asn Thr Ser 130 135 140 Gln Lys Thr Trp Glu Tyr Asn Ser Pro Ile Leu Val Pro Ala Lys Thr145 150 155 160 Lys Val Thr Ala Thr Leu Asp Ile Tyr Ala Gly Pro Val Val Val Pro 165 170 175 Val Thr Leu Lys Ser Thr Val Thr Gly Thr Gly Ile Val Asn Asn Phe 180 185 190 Pro Asn Val Leu Thr Ser Leu Ser Tyr Ile Asp Arg Asn Asn Lys Leu 195 200 205 Trp Thr Asp Ser Leu Pro Thr Ala Leu Leu Tyr Asp Tyr Arg Asn Gln 210 215 220 Trp Pro Gly Ser Gln Ser Ile Tyr Val Gly Lys Asn Gly Gly Gly Val225 230 235 240 Gln Val Glu Gly Lys Ala Glu Ile Gln Leu Glu Leu Gly Leu Tyr Ser 245 250 255 Ile Ala Thr Phe Asp Ser Gln Pro Leu Ser Gly Asn Thr Thr Gly Lys 260 265 270 Glu Ala Val Tyr Ser Lys Ala Ile Leu Arg Asp Gly Ser Ile Ile Asp 275 280 285 Ile57295PRTBacillus thuringiensis 57Met Ala Ile His Asp Val Gly Thr Asp Leu Leu Glu Phe Ala Lys Trp1 5 10 15 Tyr Ala Thr Thr Asn Tyr Asn Ala Asn Pro Asn Thr Phe Arg Asn Pro 20 25 30 Gln Ile Phe Glu Ser Val Val Gly Glu Ser Glu Ile Ile Pro Lys Asn 35 40 45 Asp Thr Phe Glu Thr Ile Pro Lys Leu Thr Thr Val Val Thr Asp Val 50 55 60 Ile Ile Asn Asp Thr Ser Val Pro Gln Ser Ile Thr Pro Lys Ile Met65 70 75 80 Gln Lys Thr Ser Glu Thr Ile Thr Thr Thr Thr Thr Gln Gly Phe Lys 85 90 95 Val Gly Ser Glu Ile Lys Tyr Thr Asn Thr Met Lys Val Asn Leu Leu 100 105 110 Leu Val Gly Gly Val Ser Asn Ser Ile Ala Val Ser Ile Ser Ala Glu 115 120 125 Tyr Asn Tyr Ser Ser Ser Glu Thr Glu Thr Asn Ile Thr Glu Lys Ala 130 135 140 Trp Glu Tyr Asn Arg Pro Val Leu Val Leu Pro Arg Thr Lys Val Thr145 150 155 160 Ala Thr Leu Ser Ile Tyr Ser Gly Ser Phe Thr Ile Pro Val Thr Leu 165 170 175 Lys Ser Thr Ile Ser Gly Asn His Ile Ser Asn Ser Gly Tyr Gly Tyr 180 185 190 Ala Leu Ser Ser Ile Gly Tyr Thr Asp Tyr Asn Asn Arg Ser Trp Thr 195 200 205 Asp Ile Tyr Arg Thr Asn Phe Leu Tyr Asp Tyr Arg Asn Glu Trp Pro 210 215 220 Gly Arg Lys Pro Ile Tyr Val Gly Arg Asp Asn Ile Gly Val Lys Val225 230 235 240 Glu Gly Glu Ser Arg Val Asp Ala Glu Leu Gly Leu Tyr Ser Ile Val 245 250 255 Thr Phe Lys Glu Glu Pro Leu Pro Gly Asn Asn Leu Ile Gly Asn Gly 260 265 270 Arg Thr Tyr Ser Met Ala Ile Leu Arg Asp Gly Ser Thr Met Asp Ile 275 280 285 Ser Ile Pro Lys Asn Asn Asn 290 295 581333PRTBacillus thuringiensis 58Met Ala Gln Leu Asn Glu Ile Tyr Pro Ser Tyr Tyr Asn Val Leu Ala1 5 10 15 Tyr Pro Pro Leu Ile Leu Asp Asp Lys Ser Leu Tyr Asp Gln Tyr Thr 20 25 30 Glu Trp Lys Lys Lys Ile Asp Lys Thr Trp Lys Gln Tyr Asp Lys Asp 35 40 45 Phe Leu Pro Lys Pro Leu Met Asp Leu Gly Lys Ser Leu Ala Glu Ala 50 55 60 Tyr Lys Gly Asp Pro Asp Gly Tyr Leu His Ile Ala Asn Thr Ala Ile65 70 75 80 Arg Ile Ala Phe Leu Leu Ile Pro Gly Gly Gln Thr Ala Ala Phe Gly 85 90 95 Val Asn Leu Val Leu Asn Lys Ala Ile Gly Ile Phe Tyr Pro Pro Gln 100 105 110 Asn Lys Ser Leu Phe Asp Gln Ile Lys Asp Ala Val Ser Asn Leu Val 115 120 125 Asp Gln Lys Leu Ile Asp Gln Glu Ile Ser Gly Val Leu Ile Lys Leu 130 135 140 Asn Ser Leu Gln Gln Pro Leu Ser Arg Phe Ser Asn Ser Ile Gln Arg145 150 155 160 Ala Val Gly Lys Pro Gln Asp Phe Asp Asp Gln Thr Thr Ser Ser Asn 165 170 175 Ala Ile Ile Leu Asp Glu Thr Gln Asp Cys Ser Lys Asp Asp Ser Cys 180 185 190 Ser Cys Ser Asn Thr Gln Pro Arg Pro Ser Asp Ala Pro Leu Cys Thr 195 200 205 Pro Cys Ile Cys Arg Met Lys Glu Val Gln Gln Thr Phe Asn Asn Ser 210 215 220 Ser Thr Asp Val Asn Arg Ala Leu Thr Asp Met Lys Thr Thr Leu Lys225 230 235 240 Asp Val Val Gly Ala Asp Gln Leu Arg Ser Tyr Met Gln Ile Tyr Leu 245 250 255 Pro Leu Tyr Val Thr Ala Ala Thr Met Glu Leu Gln Met Tyr Lys Thr 260 265 270 Tyr Ile Asp Phe Thr Gln Lys Phe Asp Phe Asp Val Thr Gly Thr Thr 275 280 285 Lys Glu His Val Asn Glu Leu Arg Gln Lys Ile Lys Thr His Ser Glu 290 295 300 Tyr Ile Met Gly Leu Phe Lys Lys Ser Leu Pro Glu Ile Ser Asn Asn305 310 315 320 Thr Lys Glu Gln Leu Asn Ala Tyr Ile Lys Tyr Thr Arg Asn Ile Thr 325 330 335 Leu Asn Ala Leu Asp Met Val Ser Thr Trp Lys Phe Leu Asp Pro Val 340 345 350 Asp Tyr Pro Thr Thr Ala Thr Phe Asn Pro Thr Arg Ile Ile Phe Asn 355 360 365 Asp Leu Ala Gly Pro Val Glu Cys Leu Asn Ser Thr Gln Asp Ser Asn 370 375 380 Lys Leu His Phe Asn Phe Phe Asp Met Asn Gly Gln Ser Met Pro Asn385 390 395 400 Asn Asp Ile Phe Asn Tyr Phe Tyr Arg Gly Met Gln Val Lys Gly Leu 405 410 415 Gln Ile Gln Thr Tyr Thr Ser Ser Asp Thr Lys Asn Pro Gln His Phe 420 425 430 Pro Val Gly Phe Leu Ser Ser Tyr Tyr Gly Ser Asn Gly Asp Phe Pro 435 440 445 Phe Asp Lys Arg Val Asp Pro Asn Lys Phe Thr Gly Gly Ser Lys Ser 450 455 460 Val Lys Leu Gly Asp Asp Val Tyr Glu Ser Arg Ser Ala Leu Ser Val465 470 475 480 Ile Asn Ala Val Ser Asn Gln Leu Gln Val Phe Leu Asn Tyr Ile Asp 485 490 495 Thr Glu Asp Leu Tyr Phe Asp Gln Ser Val Ser Pro Gly Gly Thr Ala 500 505 510 Cys Gly Ser Gly Asn Ser Thr Ile Trp Pro Asp Gln Lys Ile Gln Ala 515 520 525 Ile Tyr Pro Ile Gln Pro Asp Asn Ser Gln Thr Tyr Pro Ser Tyr Tyr 530 535 540 Ser Thr Ser Lys Ile Gly Phe Val Thr Thr Leu Val Pro Asn Asp Thr545 550 555 560 Thr Pro Trp Ile Thr Phe Thr Asp Asn Gly Asn Asn Ser Ile Tyr Thr 565 570 575 Phe Ser Ala Glu Asn Thr Arg Thr Leu Thr Gly Ser Ala Gly Pro Val 580 585 590 Arg Glu Phe Ile Thr Gly Ser Ala Pro Leu Gly Leu Ser Pro Gly Gly 595 600 605 Gly Ala Gln Tyr Ser Ile Asn Thr Ser Asp Ala Pro Ser Gly Asp Tyr 610 615 620 Gln Val Arg Val His Val Ala Thr Pro Gly Ser Gly Gly Ser Leu Ala625 630 635 640 Ile Ser Val Asp Gly Lys Thr Gln Thr Leu Gln Leu Pro Asp Thr Asn 645 650 655 Val Asn Asp Thr Asn His Ile Ala Gly Phe Ala Gly Thr Tyr Thr Leu 660 665 670 Ala Pro Ala Thr Gln Val Asp Ala Ala Thr Leu Lys Pro Lys Ala Pro 675 680 685 Thr Glu Asn Ile Phe Pro Val Arg Gln Thr Ser Ser Leu Pro Val Ser 690 695 700 Ile Thr Asn Asn Ser Ser Thr Val Ile Asn Ile Asp Arg Ile Glu Phe705 710 715 720 Val Pro Val Ser Ala Pro Ala Pro Asp Pro Ser Pro Asp Ser Gly Lys 725 730 735 Pro Ile His Lys Ser Val Pro Lys Thr Val Thr Gln Leu Ser Thr Thr 740 745 750 Lys Glu Ile Trp Ser Ser Thr Ser Glu Tyr Ala Thr Thr Ile Ser Phe 755 760 765 Thr Gly Asn Val Tyr Asn Asp Ala Ser Ile Thr Phe Gln Leu Leu Ser 770 775 780 Ser Gly Gln Val Val Lys Glu Phe Pro Phe Thr Gly Asn Gly Val Ala785 790 795 800 Ser Lys Pro Gly Phe His Gly Ser Ser Pro Ser Cys Tyr Asp Thr Pro 805 810 815 Tyr Pro Phe Ser Gln Pro Asp Leu Ser Val Pro Lys Tyr Asn Lys Leu 820 825 830 Gln Val Val Met Lys Ser Asp Gly Tyr Ser Lys Pro Cys Asp Leu Gly 835 840 845 Asp Ser Phe Pro Asn Thr Phe Asp Ala Glu Ile Asp Ile Lys Phe Asn 850 855 860 Leu Ser Asp Thr Ala Asp Leu Ala Gln Ile Thr Ala Gln Val Gln Gly865 870 875 880 Leu Phe Thr Ser Ser Ser Ser Thr Glu Leu Ser Pro Asn Val Ser Gly 885 890 895 Tyr Gln Ile Asp Gln Ile Ala Leu Lys Val Asn Ala Leu Ser Asp Glu 900 905 910 Val Phe Cys Lys Glu Lys Ile Val Leu Arg Lys Leu Val Asn Lys Ala 915 920 925 Lys Gln Phe Met Lys Thr Arg Asn Leu Leu Ile Gly Gly Asp Phe Glu 930 935 940 Ile Leu Asp Lys Trp Ala Leu Gly Thr Gln Ala Thr Ile Lys Asp Asn945 950 955 960 Ser Ser Leu Phe Lys Gly Asn His Leu Phe Leu Gln Pro Thr Asn Gly 965 970 975 Ile Ser Ser Ser Tyr Ala Tyr Gln Lys Ile Asp Glu Ser Lys Leu Lys 980 985 990 Pro Tyr Thr Arg Tyr Asn Val Ser Gly Phe Val Ala Gln Ser Glu His 995 1000 1005 Leu Glu Ile Val Val Ser Arg Tyr Gly Lys Glu Ile Asp Lys Ile Leu 1010 1015 1020 Asn Val Pro Tyr Glu Glu Ala Leu Pro Val Ser Ser Gly Asn Gln Ser1025 1030 1035 1040 Thr Cys Cys Lys Pro Ser Ser Cys Ser Cys Ser Ala Cys Thr Gly Gly 1045 1050 1055 Pro His Pro His Phe Phe Ser Tyr Ser Ile Asp Val Gly Lys Leu Tyr 1060 1065 1070 Pro Asp Leu Asn Pro Gly Ile Glu Phe Gly Leu Arg Leu Ala His Pro 1075 1080 1085 Ser Gly Tyr Ala Lys Val Gly Asn Leu Glu Ile Val Glu Glu Arg Pro 1090 1095 1100 Leu Thr Asn Thr Glu Ile Arg Lys Ile Gln Arg Lys Glu Glu Lys Trp1105 1110 1115 1120 Lys Lys Ala Trp Asp Thr Glu Arg Ala Glu Ile Asn Ala Ile Leu Gln 1125 1130 1135 Pro Val Ile Asn Gln Ile Asn Ala Phe Tyr Thr Asn Gly Asp Trp Asn 1140 1145 1150 Gly Ser Ile Leu Pro His Val Thr Tyr Gln Asp Leu Tyr Asn Ile Val 1155 1160 1165 Leu Pro Glu Leu Ser Lys Leu Arg His Trp Phe Met Lys Asp Arg Pro 1170 1175 1180 Gly Glu His Tyr Thr Ile Leu Gln Gln Phe Lys Gln Ala Leu Glu Arg1185 1190 1195 1200 Val Phe Asn Gln Leu Glu Glu Arg Asn Leu Ile His Asn Gly Ser Phe 1205 1210 1215 Thr Asn Gly Leu Ala Asn Trp Leu Val Asp Gly Asp Thr Gln Ile Thr 1220 1225 1230 Thr Leu Glu Asn Gly Asn Leu Ala Leu Gln Leu Ser Asp Trp Asp Ala 1235 1240 1245 Ser Ala Ser Gln Ser Ile Asp Ile Ser Asp Phe Asp Glu Asp Lys Glu 1250 1255 1260 Tyr Thr Val Arg Val Tyr Ala Lys Gly Lys Gly Thr Ile Arg Thr Val1265 1270 1275 1280 Asn Cys Glu Asn Glu Pro Leu Ser Phe Asn Thr Asn Thr Phe Thr Ile 1285 1290 1295 Leu Glu Gln Arg Leu Tyr Phe Asp Asn Pro Ser Val Leu Leu His Ile 1300 1305 1310 Gln Ser Glu Gly Ser Glu Phe Val Ile Gly Ser Val Glu Leu Ile Glu 1315 1320 1325 Leu Ser Asp Asp Glu 1330 59723PRTBacillus thuringiensis 59Met Ala Gln Leu Asn Glu Ile Tyr Pro Ser Tyr Tyr Asn Val Leu Ala1 5 10 15 Tyr Pro Pro Leu Ile Leu Asp Asp Lys Ser Leu Tyr Asp

Gln Tyr Thr 20 25 30 Glu Trp Lys Lys Lys Ile Asp Lys Thr Trp Lys Gln Tyr Asp Lys Asp 35 40 45 Phe Leu Pro Lys Pro Leu Met Asp Leu Gly Lys Ser Leu Ala Glu Ala 50 55 60 Tyr Lys Gly Asp Pro Asp Gly Tyr Leu His Ile Ala Asn Thr Ala Ile65 70 75 80 Arg Ile Ala Phe Leu Leu Ile Pro Gly Gly Gln Thr Ala Ala Phe Gly 85 90 95 Val Asn Leu Val Leu Asn Lys Ala Ile Gly Ile Phe Tyr Pro Pro Gln 100 105 110 Asn Lys Ser Leu Phe Asp Gln Ile Lys Asp Ala Val Ser Asn Leu Val 115 120 125 Asp Gln Lys Leu Ile Asp Gln Glu Ile Ser Gly Val Leu Ile Lys Leu 130 135 140 Asn Ser Leu Gln Gln Pro Leu Ser Arg Phe Ser Asn Ser Ile Gln Arg145 150 155 160 Ala Val Gly Lys Pro Gln Asp Phe Asp Asp Gln Thr Thr Ser Ser Asn 165 170 175 Ala Ile Ile Leu Asp Glu Thr Gln Asp Cys Ser Lys Asp Asp Ser Cys 180 185 190 Ser Cys Ser Asn Thr Gln Pro Arg Pro Ser Asp Ala Pro Leu Cys Thr 195 200 205 Pro Cys Ile Cys Arg Met Lys Glu Val Gln Gln Thr Phe Asn Asn Ser 210 215 220 Ser Thr Asp Val Asn Arg Ala Leu Thr Asp Met Lys Thr Thr Leu Lys225 230 235 240 Asp Val Val Gly Ala Asp Gln Leu Arg Ser Tyr Met Gln Ile Tyr Leu 245 250 255 Pro Leu Tyr Val Thr Ala Ala Thr Met Glu Leu Gln Met Tyr Lys Thr 260 265 270 Tyr Ile Asp Phe Thr Gln Lys Phe Asp Phe Asp Val Thr Gly Thr Thr 275 280 285 Lys Glu His Val Asn Glu Leu Arg Gln Lys Ile Lys Thr His Ser Glu 290 295 300 Tyr Ile Met Gly Leu Phe Lys Lys Ser Leu Pro Glu Ile Ser Asn Asn305 310 315 320 Thr Lys Glu Gln Leu Asn Ala Tyr Ile Lys Tyr Thr Arg Asn Ile Thr 325 330 335 Leu Asn Ala Leu Asp Met Val Ser Thr Trp Lys Phe Leu Asp Pro Val 340 345 350 Asp Tyr Pro Thr Thr Ala Thr Phe Asn Pro Thr Arg Ile Ile Phe Asn 355 360 365 Asp Leu Ala Gly Pro Val Glu Cys Leu Asn Ser Thr Gln Asp Ser Asn 370 375 380 Lys Leu His Phe Asn Phe Phe Asp Met Asn Gly Gln Ser Met Pro Asn385 390 395 400 Asn Asp Ile Phe Asn Tyr Phe Tyr Arg Gly Met Gln Val Lys Gly Leu 405 410 415 Gln Ile Gln Thr Tyr Thr Ser Ser Asp Thr Lys Asn Pro Gln His Phe 420 425 430 Pro Val Gly Phe Leu Ser Ser Tyr Tyr Gly Ser Asn Gly Asp Phe Pro 435 440 445 Phe Asp Lys Arg Val Asp Pro Asn Lys Phe Thr Gly Gly Ser Lys Ser 450 455 460 Val Lys Leu Gly Asp Asp Val Tyr Glu Ser Arg Ser Ala Leu Ser Val465 470 475 480 Ile Asn Ala Val Ser Asn Gln Leu Gln Val Phe Leu Asn Tyr Ile Asp 485 490 495 Thr Glu Asp Leu Tyr Phe Asp Gln Ser Val Ser Pro Gly Gly Thr Ala 500 505 510 Cys Gly Ser Gly Asn Ser Thr Ile Trp Pro Asp Gln Lys Ile Gln Ala 515 520 525 Ile Tyr Pro Ile Gln Pro Asp Asn Ser Gln Thr Tyr Pro Ser Tyr Tyr 530 535 540 Ser Thr Ser Lys Ile Gly Phe Val Thr Thr Leu Val Pro Asn Asp Thr545 550 555 560 Thr Pro Trp Ile Thr Phe Thr Asp Asn Gly Asn Asn Ser Ile Tyr Thr 565 570 575 Phe Ser Ala Glu Asn Thr Arg Thr Leu Thr Gly Ser Ala Gly Pro Val 580 585 590 Arg Glu Phe Ile Thr Gly Ser Ala Pro Leu Gly Leu Ser Pro Gly Gly 595 600 605 Gly Ala Gln Tyr Ser Ile Asn Thr Ser Asp Ala Pro Ser Gly Asp Tyr 610 615 620 Gln Val Arg Val His Val Ala Thr Pro Gly Ser Gly Gly Ser Leu Ala625 630 635 640 Ile Ser Val Asp Gly Lys Thr Gln Thr Leu Gln Leu Pro Asp Thr Asn 645 650 655 Val Asn Asp Thr Asn His Ile Ala Gly Phe Ala Gly Thr Tyr Thr Leu 660 665 670 Ala Pro Ala Thr Gln Val Asp Ala Ala Thr Leu Lys Pro Lys Ala Pro 675 680 685 Thr Glu Asn Ile Phe Pro Val Arg Gln Thr Ser Ser Leu Pro Val Ser 690 695 700 Ile Thr Asn Asn Ser Ser Thr Val Ile Asn Ile Asp Arg Ile Glu Phe705 710 715 720 Val Pro Val60378PRTBacillus thuringiensis 60Met Tyr Cys Asn Thr Ile Leu Arg Lys Arg Tyr Lys Lys Leu Ala Thr1 5 10 15 Ile Ile Pro Leu Thr Ser Met Ser Ala Val Ala Ile Ala Pro Ala Thr 20 25 30 Ser Phe Ala Val Glu Thr Gln Lys Ala Asp Val Ser Ser Gln Glu Gly 35 40 45 Pro Ile Gln Gly Tyr Gln Met Glu Asn Gly Lys Ile Thr Pro Val Tyr 50 55 60 Lys Asn Lys Leu Thr Gln Phe Asn Thr Ala Asp Asp Ile Asp Pro Gly65 70 75 80 Leu Pro Leu Leu Pro Glu Asn Pro Tyr Asn Pro Ile Pro Asp His Gly 85 90 95 Thr Ala Tyr Val Glu Ser Thr Asp Ile Gly Asp Thr Val Tyr Phe Lys 100 105 110 Pro Phe Glu Pro Pro Lys Asn Asn Val Leu Glu Leu Gly Asp Cys Asp 115 120 125 Asp Asn Thr Tyr Gln Trp Ser Val Phe Val Asp Ser Gln Lys Tyr Lys 130 135 140 Ser Val Gly Tyr Phe Val Gln Lys Gln Ala Asp Gly Gln Ile Arg Val145 150 155 160 Gly Tyr Tyr Asn Pro Glu Asp Leu Ser Leu Ile Thr Asp Ser Asn His 165 170 175 Ala Phe Ala Gly Val Pro Gly Phe Lys Leu Thr Ala Glu Glu Lys Ala 180 185 190 Glu Met Gln Arg Asp Leu Asn Arg Glu Tyr Gly Asp Ile Trp Asp Gly 195 200 205 Thr Ser Lys Leu Lys Arg Glu Thr Asn Tyr Lys Leu Leu Pro Asn Ala 210 215 220 Ser Gly Leu Gln Asp Asp Ala Ser Gly Phe Gly Tyr Asn Gln Thr Leu225 230 235 240 Thr Ser Gly Val Ser Thr Thr Asn Met Phe Gly Ile Ala Thr Thr Val 245 250 255 Gly Trp Lys Met Gly Ile Lys Val Ser Val Val Pro Leu Val Ala Asp 260 265 270 Val Thr Ser Glu Ile Ser Ala Ser Leu Thr Ala Ser Tyr Gln His Thr 275 280 285 Val Asn Val Thr Asn Gln Thr Ser Ser Gln Val Lys Phe Asp Val Ser 290 295 300 Arg Val Asp Asn Pro Asp Tyr Lys Tyr Asn Asp Tyr Ala Ala Ala Val305 310 315 320 Tyr Lys Ile Tyr Thr Asp Tyr Thr Leu Glu Pro Gly Lys Gly Leu Ser 325 330 335 Arg Phe Leu Ala Lys Gln Asp Leu Lys Asp Pro Val Arg Thr Ala Ala 340 345 350 Leu Ala Asn Thr Asn Tyr Ala Tyr Glu Gly Ser Lys Tyr Tyr Phe Thr 355 360 365 Val Thr Pro Gly Ser His Lys Lys Ile Val 370 375 61383PRTBacillus thuringiensis 61Met Asp Phe Leu Asn Tyr Tyr Asn Lys Leu Lys Asn Glu Leu Asp Asp1 5 10 15 Val Asn Ser Lys Lys Tyr Ser Leu Glu Tyr Thr Ser Asp Gly Leu Met 20 25 30 Val Gln Pro Thr Asp Asp Pro Leu Asn Thr Met Pro Leu Pro Asp Arg 35 40 45 Pro Val Leu Ser Gly Asn Pro Asn Asp Pro Ile Pro Ser Glu Gly Thr 50 55 60 Thr Arg Thr Asp Ile Gln Lys Gln Asn Pro Pro Phe Phe Thr Phe Lys65 70 75 80 Val Val Ala Lys Leu Ala Tyr Ser Gly Lys Gly Glu Asn Cys Gln Lys 85 90 95 Ala Arg Ala Ala Ser Val Tyr Gly Ala Val Leu Glu Leu Glu Lys Val 100 105 110 Lys Gln Leu Pro Glu Tyr Ser Asn Val Tyr Leu Tyr Ser Glu Thr Gly 115 120 125 Ile Lys Thr Asp Arg Ser Asn Ile Arg Tyr Asn Thr Asp Gly Ile Ile 130 135 140 Gln Phe Leu Asn Pro Ser Phe Ile Asn Thr Phe Ser Ser Asn Pro Ile145 150 155 160 Lys Tyr Gly Asp Thr Val Gly Tyr Ile Ser Tyr Pro Tyr Asp Thr Leu 165 170 175 Lys Phe Pro Ser Thr Thr Gln Leu Glu Arg Leu Val Tyr Phe Asn Leu 180 185 190 Leu Asp Ser Asn Ile Leu Asp Lys His Ile Gly Phe Asp Trp Ser Lys 195 200 205 Ser Val Thr Asn Gly Thr Glu Asp Thr Glu Met Trp Thr His Ser Ser 210 215 220 Thr Val Gly Ala Glu Leu Asn Leu Lys Asp Ile Leu Gln Ile Asn Ala225 230 235 240 Ser Tyr Glu His Thr Phe Ser Thr Ser His Met Glu Lys Lys Glu Asn 245 250 255 Thr Val Ser Lys Thr Ala His Phe Asn Ser Pro Leu Pro Pro Tyr Asn 260 265 270 Tyr Ala Thr Trp Val Ala Ala Ile Tyr Gln Leu Ser Ile Arg Tyr Gln 275 280 285 Arg Thr Asn Ala Gln Pro Ile Leu Asp Thr Ile Asn Ala Val Asn Ser 290 295 300 Gly Leu Thr Ala Ser Glu Thr Asp Ile Tyr Leu Lys Ala Leu Tyr Gly305 310 315 320 Ala Gly Lys Asn Gly Lys Pro Ala Val Gly Asp Pro Ser Ile Leu His 325 330 335 Lys Leu Ser Asn Val Ile Glu Asp Ala Tyr Glu Tyr Leu Tyr Tyr Ser 340 345 350 Asp Thr Leu Tyr Phe Thr Gln Thr Pro Ser Gly Asn Ser Pro Thr Pro 355 360 365 Asn Ser Pro Asn Arg Ile Gln Phe Ile Ala Thr Asp Pro Gln Ser 370 375 380 62634PRTArtificial Sequencetruncated variant Axmi207 62Met Pro Ser Ser Asp Ser Phe Leu Tyr Ser His Asn Asn Tyr Pro Tyr 1 5 10 15 Ala Thr Asp Pro Asn Thr Val Leu Glu Gly Arg Asn Tyr Lys Glu Trp 20 25 30 Leu Asn Lys Cys Thr Asp Asn Tyr Thr Asp Ala Leu Gln Ser Pro Glu 35 40 45 Ala Thr Ala Ile Ser Lys Gly Ala Val Ser Ala Ala Ile Ser Ile Ser 50 55 60 Thr Lys Val Leu Gly Leu Leu Gly Val Pro Phe Ala Ala Gln Ile Gly 65 70 75 80 Gln Leu Trp Thr Phe Ile Leu Asn Ala Leu Trp Pro Ser Asp Asn Thr 85 90 95 Gln Trp Glu Glu Phe Met Arg His Val Glu Glu Leu Ile Asn Gln Arg 100 105 110 Ile Ala Asp Tyr Ala Arg Asn Lys Ala Leu Ala Glu Leu Thr Gly Leu 115 120 125 Gly Asn Asn Leu Asp Leu Tyr Ile Glu Ala Leu Asp Asp Trp Lys Arg 130 135 140 Asn Pro Thr Ser Gln Glu Ala Lys Thr Arg Val Ile Asp Arg Phe Arg 145 150 155 160 Ile Val Asp Gly Leu Phe Glu Ala Tyr Ile Pro Ser Phe Ala Val Ser 165 170 175 Gly Tyr Gln Val Gln Leu Leu Thr Val Tyr Ala Ala Ala Ala Asn Leu 180 185 190 His Leu Leu Leu Leu Arg Asp Ser Thr Ile Tyr Gly Ile Asp Trp Gly 195 200 205 Leu Ser Gln Thr Asn Val Asn Asp Asn Tyr Asn Arg Gln Ile Arg Leu 210 215 220 Thr Ala Thr Tyr Ala Asn His Cys Thr Thr Trp Tyr Gln Thr Gly Leu 225 230 235 240 Glu Arg Leu Arg Gly Ser Asn Ala Ser Ser Trp Val Thr Tyr Asn Arg 245 250 255 Phe Arg Arg Glu Met Thr Leu Thr Val Leu Asp Ile Cys Ser Leu Phe 260 265 270 Ser Asn Tyr Asp Tyr Arg Ser Tyr Pro Ala Glu Val Arg Gly Glu Ile 275 280 285 Thr Arg Glu Ile Tyr Thr Asp Pro Val Gly Val Gly Trp Val Asp Ser 290 295 300 Ala Pro Ser Phe Gly Glu Ile Glu Asn Leu Ala Ile Arg Ala Pro Arg 305 310 315 320 Thr Val Thr Trp Leu Asn Ser Thr Arg Ile Phe Thr Gly Arg Leu Gln 325 330 335 Gly Trp Ser Gly Thr Asn Asn Tyr Trp Ala Ala His Met Gln Asn Phe 340 345 350 Ser Glu Thr Asn Ser Gly Asn Ile Gln Phe Glu Gly Pro Leu Tyr Gly 355 360 365 Ser Thr Val Gly Thr Ile His Arg Thr Asp Asp Tyr Asp Met Gly Asn 370 375 380 Arg Asp Ile Tyr Thr Ile Thr Ser Gln Ala Val Leu Gly Leu Trp Ala 385 390 395 400 Thr Gly Gln Arg Val Leu Gly Val Ala Ser Ala Arg Phe Thr Leu Arg 405 410 415 Asn Leu Phe Asn Asn Leu Thr Gln Val Leu Val Tyr Glu Asn Pro Ile 420 425 430 Ser Ser Thr Phe Gly Ser Ser Thr Leu Thr His Glu Leu Ser Gly Glu 435 440 445 Asn Ser Asp Arg Pro Thr Ser Ser Asp Tyr Ser His Arg Leu Thr Ser 450 455 460 Ile Thr Gly Phe Arg Ala Gly Ala Asn Gly Thr Val Pro Val Phe Gly 465 470 475 480 Trp Thr Ser Ala Thr Val Asp Arg Asn Asn Ile Ile Glu Arg Asn Lys 485 490 495 Ile Thr Gln Phe Pro Gly Val Lys Ser His Thr Leu Asn Asn Cys Gln 500 505 510 Val Val Arg Gly Thr Gly Phe Thr Gly Gly Asp Trp Leu Arg Pro Asn 515 520 525 Asn Asn Gly Thr Phe Arg Leu Thr Ile Thr Ser Phe Ser Ser Gln Ser 530 535 540 Tyr Arg Ile Arg Leu Arg Tyr Ala Thr Ser Val Gly Asn Thr Ser Leu 545 550 555 560 Val Ile Ser Ser Ser Asp Ala Gly Ile Ser Ser Thr Thr Ile Pro Leu 565 570 575 Thr Ser Thr Ile Thr Ser Leu Pro Gln Thr Val Pro Tyr Gln Ala Phe 580 585 590 Arg Val Val Asp Leu Pro Ile Thr Phe Thr Thr Pro Thr Thr Gln Arg 595 600 605 Asn Tyr Thr Phe Asp Phe Arg Leu Gln Asn Pro Ser Asn Ala Asn Val 610 615 620 Phe Ile Asp Arg Phe Glu Phe Val Pro Ile 625 630 63306DNABacillus thuringiensis 63atgacaacaa taaatgaatt atatccggct gtaccttata atgtactggc atatgctcca 60ccacttaatt tagctgattc gacaccatgg ggtcaaatag ttgttgctga tgcaattaaa 120gaagcttggg ataattttca aaaatatggt gtattagatt taacagctat aaatcaaggg 180tttgatgatg caaatacagg ttcttttagt tatcaagctt taatacaaac tgttttgggt 240attataggta caatttggta tgacagttcc tgtggctgct ccatttgcag ctacagcgcc 300tattat 306644065DNABacillus thuringiensis 64atgacagttc ctgtggctgc tccatttgca gctacagcgc ctattattag tttatttgta 60ggattttttt ggcctaaaaa agataaggga ccacaattaa tcgatataat tgataaagaa 120attaaaaaat tattagataa ggaattagga gagcaaaaac gtaatgattt agttagtgct 180ttaaatgaga tgcaagaggg agcaaatgag ttaagtgata ttatgactaa tgcacttttt 240gaaggtacta tacagggaaa tgttgttact aatgataacc ctcaaggtaa aaggcgaact 300cctaaagctc caacagttag tgattatgag aatgtttatt cggcatattt tgtggaacat 360gtggatttta gaaacaaaat atctacgttt cttactggtt cttatgatct tatagcactc 420ccattatatg cattagcaaa aacaatggag ctttcattgt atcaatcatt tattaatttt 480gctaataaat ggatggattt tgtatataca aaagcaatta atgaatcagc aactgatgat 540atgaaaagag attatcaagc gagatacaat actcaaaaaa gtaatttagc tgtacaaaaa 600acacaattga ttaacaaaat taaagatggt acagatgctg ttatgaaagt ttttaaagat 660accaataatt taccttcaat aggtactaat aaattagcag taaatgctcg taataagtat 720attagggcct tacaaataaa ttgtttagat ttagttgctt tgtggcctgg cttatatcca 780gatgaatatc ttttaccatt acaattagat aaaacacgtg ttgtattttc tgatacaatg 840ggacctgatg aaacacatga

tggtcaaatg aaagttttaa atatattaga ctcaactaca 900agttataacc atcaagatat aggaataagt acaactcaag atgtaaattc tttattattt 960tatccaagaa aagaactgtt agaattagat tttgctaaat atatttcatc tagtagtcgt 1020ttttgggttt atggatttgg cttaaaatat tcagatgata acttttatag atatggtgat 1080aacgatccaa gcagtgattt taaacctgca tataagtggt ttacgaaaaa ttcccagttc 1140gaaaaccttc ctacttatgg aaatcctact cctattacta atttaaatgc taaaactcaa 1200gtaacttctt atcttgatgc attaatatat tatatagacg gaggaactaa tctatataat 1260aatgcgattc ttcatgatac agggggttat attccgggat atccaggtgt agaaggatat 1320ggtatgagta ataatgaacc tttagcagga caaaaattaa atgctttata tcctataaaa 1380gtggaaaatg taagtggttc acaaggaaaa ttaggaacaa tagcagctta tgttccttta 1440aatttacaac cagaaaatat tattggtgat gctgatccga atacaggttt tccccttaat 1500gtaattaaag gatttccatt tgaaaaatat ggacctgatt atgagggacg aggaatttcg 1560gttgtaaaag aatggataaa tggtgcaaat gctgtaaaat tgtctccagg tcaatcagtt 1620ggggtacaaa ttaaaaatat aacaaaacaa aattatcaaa ttcgtactcg ttatgcaagt 1680aataacagta atcaagtata ttttaatgta gatccaggtg gatcaccatt atttgcacaa 1740tcagtaacat ttgaatctac aacaaatgtt acaagtggcc aacaaggcga aaatggtaga 1800tatacattaa aaactatttt ttctggtaat gatctactta cagtagaaat ccctgttgga 1860aatttttatg tgcatgttac gaataaagga tcttctgata tctttttaga tcgtcttgag 1920ttttctacag ttccttcata tgttatatat tcaggtgatt atgatgctac aggtacagat 1980gatgtcttat tgtcagatcc acatgagtat ttttatgatg tcatagtgaa tggtactgct 2040agtcattcta gtgcagctac ttctatgaat ttgctcaata aaggaaccgt agtaagaagc 2100attgatattc caggtcactc aacgtcttat tctgtacagt attcagttcc agaaggattt 2160gatgaagtta gaattctcag ttctcttccg gatattagtg gaactataag agtagaatct 2220agtaaaccac ctgtatttaa gaatgatggt aatagtggtg atggtggtaa tactgaatat 2280aattttaatt ttgatttatc aggattgcaa gatactgggc tttattctgg taaacttaaa 2340tctggtattc gtgtgcaagg taattacact tacacaggtg ctccatcttt aaatctggtt 2400gtttacagaa ataatagtgt tgtatccact tttccagtag gttctccttt tgatatcact 2460ataacaacag aaactgataa ggttatcctt tcattacaac ctcaacatgg gttggcaaca 2520gttactggta ctggcacaat aacaattcct aatgataaat tagcaattgt ttatgataag 2580ttatttaaat taccacatga tttagaaaat ataagaatac aagtaaatgc attattcata 2640tcgagtacac aaaatgaatt agctaaagaa gtaaatgacc atgatattga agaagttgca 2700ttgaaagtag atgcattatc ggatgaagta tttggaaaag agaaaaaaga attacgtaaa 2760ctggtcaatc aagcgaaacg tttaagtaaa gcacgaaacc ttctggtagg aggcaatttt 2820gataattggg aagcttggta taaaggaaaa gaagttgcaa gagtatctga tcatgaatta 2880ttgaagagtg atcatgtatt attaccgcct ccaactatgt atccatccta tatatatcaa 2940aaagtagaag aaacaaaatt aaagccaaat actcgttata tgatttctgg tttcatcgca 3000catgcggaag atttagaaat tgtggtttct cgttatgggc aagaagtaag gaaaatagtg 3060caagttccat atggagaagc tttcccatta acatccaatg gatcaatttg ttgtacacca 3120agttttagac gtgatggaaa actatcagat ccacatttct ttagttatag tattgatgta 3180ggtgaactgg atatgacggc aggtccaggt attgaattgg gacttcgtat tgtagatcga 3240ttaggaatgg cccgtgtaag taatttagaa attcgtgaag atcgttcttt aacagcaaat 3300gaaatacgaa aagtgcaacg tatggcaaga aattggagaa ccgaatatga gaaagaacgt 3360gcagaagtaa cagcattaat tgaacctgta ttaaaccaaa tcaatgcgtt atatgaaaat 3420ggagattgga atggttctat tcgttcagat atttcgtact acgatataga atctattgta 3480ttaccaacat taccaagatt acgtcattgg tttgttcctg atatgttaac tgaacatgga 3540aatatcatga atcgattcga agaagcatta aatcgtgctt atacacagct ggaaggaaat 3600acactattgc ataacggtca ttttacaaca gatgcggtaa attggatgat acaaggagat 3660gcacatcagg taatattaga agatggtaga cgtgtattac gattaccaga ctggtcttcg 3720agtgtatccc aaacaattga aatcgagaaa tttgatccag ataaagaata caacttagta 3780tttcatgcgc aaggagaagg aacggttacg ttggagcatg gagaaaaaac aaaatatata 3840gaaacgcata cacatcattt tgcgaatttt acaacatcac aaagtcaagg aattacgttt 3900gaatcgaata aggtgaccgt ggaaatttct tcagaagatg gggaattatt ggtagatcat 3960atcgcacttg tggaagttcc tatgtttaac aagaatcaaa tggtcaatga aaatagagat 4020gtaaatataa atagcaatac aaatatgaat aatagcaata atcaa 4065654772DNABacillus thuringiensis 65tacccttcat atagtataaa gggacaacct cctatttata tatatattat tgtaattaca 60ttatagaaga tcaaacagaa aaaagttttt tgaattggtt caatatacca actatatagc 120ataaactatc tttgtattta tttataataa ttttttaagg agtgaaataa tgacaacaat 180aaatgaatta tatccggctg taccttataa tgtactggca tatgctccac cacttaattt 240agctgattcg acaccatggg gtcaaatagt tgttgctgat gcaattaaag aagcttggga 300taattttcaa aaatatggtg tattagattt aacagctata aatcaagggt ttgatgatgc 360aaatacaggt tcttttagtt atcaagcttt aatacaaact gttttgggta ttataggtac 420aatttggtat gacagttcct gtggctgctc catttgcagc tacagcgcct attattagtt 480tatttgtagg atttttttgg cctaaaaaag ataagggacc acaattaatc gatataattg 540ataaagaaat taaaaaatta ttagataagg aattaggaga gcaaaaacgt aatgatttag 600ttagtgcttt aaatgagatg caagagggag caaatgagtt aagtgatatt atgactaatg 660cactttttga aggtactata cagggaaatg ttgttactaa tgataaccct caaggtaaaa 720ggcgaactcc taaagctcca acagttagtg attatgagaa tgtttattcg gcatattttg 780tggaacatgt ggattttaga aacaaaatat ctacgtttct tactggttct tatgatctta 840tagcactccc attatatgca ttagcaaaaa caatggagct ttcattgtat caatcattta 900ttaattttgc taataaatgg atggattttg tatatacaaa agcaattaat gaatcagcaa 960ctgatgatat gaaaagagat tatcaagcga gatacaatac tcaaaaaagt aatttagctg 1020tacaaaaaac acaattgatt aacaaaatta aagatggtac agatgctgtt atgaaagttt 1080ttaaagatac caataattta ccttcaatag gtactaataa attagcagta aatgctcgta 1140ataagtatat tagggcctta caaataaatt gtttagattt agttgctttg tggcctggct 1200tatatccaga tgaatatctt ttaccattac aattagataa aacacgtgtt gtattttctg 1260atacaatggg acctgatgaa acacatgatg gtcaaatgaa agttttaaat atattagact 1320caactacaag ttataaccat caagatatag gaataagtac aactcaagat gtaaattctt 1380tattatttta tccaagaaaa gaactgttag aattagattt tgctaaatat atttcatcta 1440gtagtcgttt ttgggtttat ggatttggct taaaatattc agatgataac ttttatagat 1500atggtgataa cgatccaagc agtgatttta aacctgcata taagtggttt acgaaaaatt 1560cccagttcga aaaccttcct acttatggaa atcctactcc tattactaat ttaaatgcta 1620aaactcaagt aacttcttat cttgatgcat taatatatta tatagacgga ggaactaatc 1680tatataataa tgcgattctt catgatacag ggggttatat tccgggatat ccaggtgtag 1740aaggatatgg tatgagtaat aatgaacctt tagcaggaca aaaattaaat gctttatatc 1800ctataaaagt ggaaaatgta agtggttcac aaggaaaatt aggaacaata gcagcttatg 1860ttcctttaaa tttacaacca gaaaatatta ttggtgatgc tgatccgaat acaggttttc 1920cccttaatgt aattaaagga tttccatttg aaaaatatgg acctgattat gagggacgag 1980gaatttcggt tgtaaaagaa tggataaatg gtgcaaatgc tgtaaaattg tctccaggtc 2040aatcagttgg ggtacaaatt aaaaatataa caaaacaaaa ttatcaaatt cgtactcgtt 2100atgcaagtaa taacagtaat caagtatatt ttaatgtaga tccaggtgga tcaccattat 2160ttgcacaatc agtaacattt gaatctacaa caaatgttac aagtggccaa caaggcgaaa 2220atggtagata tacattaaaa actatttttt ctggtaatga tctacttaca gtagaaatcc 2280ctgttggaaa tttttatgtg catgttacga ataaaggatc ttctgatatc tttttagatc 2340gtcttgagtt ttctacagtt ccttcatatg ttatatattc aggtgattat gatgctacag 2400gtacagatga tgtcttattg tcagatccac atgagtattt ttatgatgtc atagtgaatg 2460gtactgctag tcattctagt gcagctactt ctatgaattt gctcaataaa ggaaccgtag 2520taagaagcat tgatattcca ggtcactcaa cgtcttattc tgtacagtat tcagttccag 2580aaggatttga tgaagttaga attctcagtt ctcttccgga tattagtgga actataagag 2640tagaatctag taaaccacct gtatttaaga atgatggtaa tagtggtgat ggtggtaata 2700ctgaatataa ttttaatttt gatttatcag gattgcaaga tactgggctt tattctggta 2760aacttaaatc tggtattcgt gtgcaaggta attacactta cacaggtgct ccatctttaa 2820atctggttgt ttacagaaat aatagtgttg tatccacttt tccagtaggt tctccttttg 2880atatcactat aacaacagaa actgataagg ttatcctttc attacaacct caacatgggt 2940tggcaacagt tactggtact ggcacaataa caattcctaa tgataaatta gcaattgttt 3000atgataagtt atttaaatta ccacatgatt tagaaaatat aagaatacaa gtaaatgcat 3060tattcatatc gagtacacaa aatgaattag ctaaagaagt aaatgaccat gatattgaag 3120aagttgcatt gaaagtagat gcattatcgg atgaagtatt tggaaaagag aaaaaagaat 3180tacgtaaact ggtcaatcaa gcgaaacgtt taagtaaagc acgaaacctt ctggtaggag 3240gcaattttga taattgggaa gcttggtata aaggaaaaga agttgcaaga gtatctgatc 3300atgaattatt gaagagtgat catgtattat taccgcctcc aactatgtat ccatcctata 3360tatatcaaaa agtagaagaa acaaaattaa agccaaatac tcgttatatg atttctggtt 3420tcatcgcaca tgcggaagat ttagaaattg tggtttctcg ttatgggcaa gaagtaagga 3480aaatagtgca agttccatat ggagaagctt tcccattaac atccaatgga tcaatttgtt 3540gtacaccaag ttttagacgt gatggaaaac tatcagatcc acatttcttt agttatagta 3600ttgatgtagg tgaactggat atgacggcag gtccaggtat tgaattggga cttcgtattg 3660tagatcgatt aggaatggcc cgtgtaagta atttagaaat tcgtgaagat cgttctttaa 3720cagcaaatga aatacgaaaa gtgcaacgta tggcaagaaa ttggagaacc gaatatgaga 3780aagaacgtgc agaagtaaca gcattaattg aacctgtatt aaaccaaatc aatgcgttat 3840atgaaaatgg agattggaat ggttctattc gttcagatat ttcgtactac gatatagaat 3900ctattgtatt accaacatta ccaagattac gtcattggtt tgttcctgat atgttaactg 3960aacatggaaa tatcatgaat cgattcgaag aagcattaaa tcgtgcttat acacagctgg 4020aaggaaatac actattgcat aacggtcatt ttacaacaga tgcggtaaat tggatgatac 4080aaggagatgc acatcaggta atattagaag atggtagacg tgtattacga ttaccagact 4140ggtcttcgag tgtatcccaa acaattgaaa tcgagaaatt tgatccagat aaagaataca 4200acttagtatt tcatgcgcaa ggagaaggaa cggttacgtt ggagcatgga gaaaaaacaa 4260aatatataga aacgcataca catcattttg cgaattttac aacatcacaa agtcaaggaa 4320ttacgtttga atcgaataag gtgaccgtgg aaatttcttc agaagatggg gaattattgg 4380tagatcatat cgcacttgtg gaagttccta tgtttaacaa gaatcaaatg gtcaatgaaa 4440atagagatgt aaatataaat agcaatacaa atatgaataa tagcaataat caataacttt 4500tatatgtaaa caggtgcaag tgtttgttgc acctgttttt tcaccctgtt tctaaaaaaa 4560tgaggaggtt agatgtatgc aaaagaaatc aaaagtaata gaaccaacaa ataatagtat 4620gtcagtaaat aataatattt cattaaaaac accgatgcca attgggtata gaaaaaaatc 4680aggttgtggt tgtgggaaac gtcgttaagt ggaaaatgaa tctgtggaat ggataaaaac 4740aagtgtgaaa gttgaacgtt catccaattt ac 477266723DNABacillus thuringiensis 66atggccgata tgcctgtaaa taatactcat atatcacaaa atgattttcc aatctgtaca 60actgaagaag aacgtttaat tccattttgt tgtttggttc agctaccaca tgattttcaa 120cttgttcctt attgcaaacc acgtcttgta tacaacattg gatgccttgg aacgactaaa 180gaaacgtgta aaaaaaccat acaagtagag gattgtggac aaacggaaat tgatttgcag 240atattaaagg caaaaggatg catcaccttt cttgtgaata tagatgtaga acctgtctgt 300gaagaagaga tttgctcgag tgttccgcac acaaaggaca tgattttgtg ttgtaaagga 360accgtatgtg tagacaaaat tttaaaatgc agtgttgact gtttacctga tattcattta 420gattgtgaga atgtaaaagt ttgtgattta caagtaaaat cactctgcga ggaagattgt 480cattctgtaa agattacagg gtattttcag atttgtattg attaaataaa gatttttaaa 540tgcatacttt tttacatcca ctcaaataga gagagtgttg caaggttaaa aagcaatatg 600tttttataaa tatttattta tttcttttgt cctggtgcag aaaaataaaa taatttcaaa 660atgatttttc taactttgcc ataatactac taaaaaggtg atagagagac taagaatgat 720aag 72367174PRTBacillus thuringiensis 67Met Ala Asp Met Pro Val Asn Asn Thr His Ile Ser Gln Asn Asp Phe1 5 10 15 Pro Ile Cys Thr Thr Glu Glu Glu Arg Leu Ile Pro Phe Cys Cys Leu 20 25 30 Val Gln Leu Pro His Asp Phe Gln Leu Val Pro Tyr Cys Lys Pro Arg 35 40 45 Leu Val Tyr Asn Ile Gly Cys Leu Gly Thr Thr Lys Glu Thr Cys Lys 50 55 60 Lys Thr Ile Gln Val Glu Asp Cys Gly Gln Thr Glu Ile Asp Leu Gln65 70 75 80 Ile Leu Lys Ala Lys Gly Cys Ile Thr Phe Leu Val Asn Ile Asp Val 85 90 95 Glu Pro Val Cys Glu Glu Glu Ile Cys Ser Ser Val Pro His Thr Lys 100 105 110 Asp Met Ile Leu Cys Cys Lys Gly Thr Val Cys Val Asp Lys Ile Leu 115 120 125 Lys Cys Ser Val Asp Cys Leu Pro Asp Ile His Leu Asp Cys Glu Asn 130 135 140 Val Lys Val Cys Asp Leu Gln Val Lys Ser Leu Cys Glu Glu Asp Cys145 150 155 160 His Ser Val Lys Ile Thr Gly Tyr Phe Gln Ile Cys Ile Asp 165 170 68589DNABacillus thuringiensis 68atgacatttg attacgagga agaagaaagg gatttgtccc aactccgacc atctgattct 60tcaagatcaa caggtgaacc aagaacggat tgtgacctaa ccacaaattg tgaagttcct 120ttttgttgcg tcgtcacgct cccacatgga tttcagtacg aatcccgaaa acaaacaaag 180cttgtatacg atattagttg tcttaccttt gcacacgaga tgtgtcaacg atctatcaac 240gtggatcagt gtggtacagt tgatgtagat ttacaagtct taaaaataaa gggctgtgtg 300tcactgtata tcaacgttcc gattctaccc attcgtgagg agacgatgtg tacgttacac 360agacagccga catctctcta tacctgttgt caggataccc tttgtgtaga tcatattgtg 420aaatgtagtg tgggaagtct cccttactac gtgttggatg gcaatcatat acaagtgtgt 480gacttacagg tacgtcctgt atcagaagta catccacacg tattacaagt atccggtcgt 540tttgagtttt tatatacgta agtatctata tgaggagtga gataaagat 58969186PRTBacillus thuringiensis 69Met Thr Phe Asp Tyr Glu Glu Glu Glu Arg Asp Leu Ser Gln Leu Arg1 5 10 15 Pro Ser Asp Ser Ser Arg Ser Thr Gly Glu Pro Arg Thr Asp Cys Asp 20 25 30 Leu Thr Thr Asn Cys Glu Val Pro Phe Cys Cys Val Val Thr Leu Pro 35 40 45 His Gly Phe Gln Tyr Glu Ser Arg Lys Gln Thr Lys Leu Val Tyr Asp 50 55 60 Ile Ser Cys Leu Thr Phe Ala His Glu Met Cys Gln Arg Ser Ile Asn65 70 75 80 Val Asp Gln Cys Gly Thr Val Asp Val Asp Leu Gln Val Leu Lys Ile 85 90 95 Lys Gly Cys Val Ser Leu Tyr Ile Asn Val Pro Ile Leu Pro Ile Arg 100 105 110 Glu Glu Thr Met Cys Thr Leu His Arg Gln Pro Thr Ser Leu Tyr Thr 115 120 125 Cys Cys Gln Asp Thr Leu Cys Val Asp His Ile Val Lys Cys Ser Val 130 135 140 Gly Ser Leu Pro Tyr Tyr Val Leu Asp Gly Asn His Ile Gln Val Cys145 150 155 160 Asp Leu Gln Val Arg Pro Val Ser Glu Val His Pro His Val Leu Gln 165 170 175 Val Ser Gly Arg Phe Glu Phe Leu Tyr Thr 180 185 704PRTArtificial SequenceER targeting peptide 70Lys Asp Glu Leu1

* * * * *

References


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed