Coryneform Bacterium Transformant and Process for Producing Aniline Using The Same

Yukawa; Hideaki ;   et al.

Patent Application Summary

U.S. patent application number 13/997107 was filed with the patent office on 2013-11-14 for coryneform bacterium transformant and process for producing aniline using the same. This patent application is currently assigned to Sumitomo Rubber Industries, Ltd.. The applicant listed for this patent is Masayuki Inui, Hideaki Yukawa. Invention is credited to Masayuki Inui, Hideaki Yukawa.

Application Number20130302860 13/997107
Document ID /
Family ID46383073
Filed Date2013-11-14

United States Patent Application 20130302860
Kind Code A1
Yukawa; Hideaki ;   et al. November 14, 2013

Coryneform Bacterium Transformant and Process for Producing Aniline Using The Same

Abstract

Provided is an aniline-producing transformant constructed by introducing a gene which encodes an enzyme having aminobenzoate decarboxylase activity into a coryneform bacterium as a host. Also provided is a process for producing aniline, which comprises a step of allowing the transformant to react in a reaction mixture containing aminobenzoic acid, an ester thereof, and/or a salt thereof under reducing conditions, and a step of recovering aniline from the reaction mixture.


Inventors: Yukawa; Hideaki; (Kyoto, JP) ; Inui; Masayuki; (Kyoto, JP)
Applicant:
Name City State Country Type

Yukawa; Hideaki
Inui; Masayuki

Kyoto
Kyoto

JP
JP
Assignee: Sumitomo Rubber Industries, Ltd.
Hyogo
JP

Research Institute of Innovative Technology for the Earth
Kyoto
JP

Family ID: 46383073
Appl. No.: 13/997107
Filed: December 24, 2011
PCT Filed: December 24, 2011
PCT NO: PCT/JP2011/080151
371 Date: July 30, 2013

Current U.S. Class: 435/128 ; 435/252.32
Current CPC Class: C12N 9/88 20130101; C12Y 401/01024 20130101; C12N 15/77 20130101; Y02P 20/52 20151101; C12P 13/001 20130101
Class at Publication: 435/128 ; 435/252.32
International Class: C12P 13/00 20060101 C12P013/00; C12N 15/77 20060101 C12N015/77

Foreign Application Data

Date Code Application Number
Dec 28, 2010 JP 2010-293972

Claims



1. An aniline-producing transformant constructed by introducing a gene which encodes an enzyme having aminobenzoate decarboxylase activity into a coryneform bacterium as a host.

2. The transformant of claim 1, wherein the gene which encodes an enzyme having aminobenzoate decarboxylase activity is a gene derived from Bacillus subtilis, a gene derived from Lactobacillus rhamnosus, a gene derived from Lactobacillus brevis, a gene derived from Pseudomonas putida, a gene derived from Escherichia coli, a gene derived from Saccharomyces cerevisiae, or a gene derived from Enterobacter cloacae.

3. The transformant of claim 1, wherein the gene which encodes an enzyme having aminobenzoate decarboxylase activity is the DNA of the following (a) or (b): (a) a DNA consisting of the base sequence of SEQ ID NO: 16, SEQ ID NO: 19, SEQ ID NO: 22, SEQ ID NO: 25, SEQ ID NO: 28, SEQ ID NO: 31, or SEQ ID NO: 34 (b) a DNA which hybridizes to a DNA consisting of a complementary base sequence of any of the DNAs of (a) under stringent conditions and which encodes a polypeptide having aminobenzoate decarboxylase activity.

4. The transformant of claim 1, wherein the coryneform bacterium as the host is Corynebacterium glutamicum.

5. The transformant of claim 4, wherein the coryneform bacterium as the host is Corynebacterium glutamicum R (FERM BP-18976), ATCC13032, or ATCC13869.

6. Corynebacterium glutamicum ANI-1 (Accession Number: NITE BP-1001), which is a transformant of Corynebacterium glutamicum.

7. A process for producing aniline, which comprises a step of allowing the transformant of claim 1 to react in a reaction mixture containing aminobenzoic acid, an ester thereof, and/or a salt thereof under reducing conditions, and a step of recovering aniline from the reaction mixture.

8. The process of claim 7, wherein the transformant does not substantially grow in the reaction step.

9. The process of claim 7, wherein the oxidation-reduction potential of the reaction mixture under reducing conditions is -200 mV to -500 mV.
Description



TECHNICAL FIELD

[0001] The present invention relates to a technique for producing aniline. In more detail, the present invention relates to a coryneform bacterium transformant constructed by specific gene recombination and thereby provided with an aniline-producing function, and relates to an efficient aniline-producing process using the transformant.

BACKGROUND ART

[0002] Against the backdrop of global warming and exhaustion of fossil resources, production of chemical products using renewable resources, along with production of biofuels, is recognized as an emerging industry, biorefinery, which is an important means for realizing a low-carbon society, and has attracted keen attention.

[0003] Aniline is widely used as raw materials for various products including chemical products, such as dyes and rubber product materials (a vulcanization accelerator and an antioxidant for tires, etc.); functional materials, such as and textiles and conductive polymers; agricultural chemicals; medicinal drugs; or the like.

[0004] Currently, aniline is chemically produced from crude oil as a raw material. Chemical processes for producing aniline include a process in which nitrobenzen is reduced with the use of tin or iron and hydrochloric acid; a process in which nitrobenzen is reduced by hydrogen addition with the use of a metal catalyst, such as copper or nickel; and a process called ammonolysis, in which chlorobenzene and ammonia are made to react at high temperature and pressure. They are all typical energy-consumptive processes in the chemical industry requiring great amounts of solvent and thermal energy. Therefore, in the light of global environment conservation and greenhouse gas reduction, there is an urgent need to develop an environment-conscious, energy saving process that allows production of aniline from renewable resources and can reduce carbon dioxide emissions and waste products, that is, to establish bioaniline production technologies.

[0005] However, production of bioaniline from renewable resources is less productive as compared to production of lactic acid or ethanol because the metabolic reaction from a raw material sugar consists of a great many steps. In addition, there are problems, such as inhibition of bacterial growth by produced aniline and cytotoxicity of aniline. Therefore, industrial production of aniline has been considered to be impossible.

[0006] Specifically known examples of technologies for producing aniline are as follows.

[0007] For example, Non Patent Literature 1 discloses that a slight amount of aniline is produced by culturing Mycobacterium smegmatis, washing the cells, and then adding 4-aminobenzoic acid. However, the process of Non Patent Literature 1 does not show practically sufficient aniline productivity. Non Patent Literature 1 does not mention any enzyme involved in aniline production from 4-aminobenzoic acid, let alone its activity or related gene.

[0008] Non Patent Literature 2 discloses that a slight amount of aniline is produced by adding anthranilic acid (2-aminobenzoic acid) or 4-aminobenzoic acid to washed cells of virulent Escherichia coli O111 or an extract from the cells. However, the process of Non Patent Literature 2 does not have practically sufficient aniline productivity. Non Patent Literature 2 does not mention any enzyme involved in aniline production from 4-aminobenzoic acid, let alone its activity or related gene.

[0009] Patent Literature 1 discloses a technology in which Streptomyces griseus is cultured in TSB culture medium (Trypticase Soy Broth) supplemented with glucose (raw material for aniline) under aerobic conditions for 4 to 5 days for aniline production. However, Patent Literature 1 does not specifically show the amount of produced aniline or the productivity. Therefore, the practicality of the method of Patent Literature 1 is unknown.

CITATION LIST

Patent Literature

[0010] [PTL 1] JP 2008-274225 A

Non Patent Literature

[0010] [0011] [NPL 1] The Journal of Biological Chemistry, Vol. 193, 1951, 453-458. [0012] [NPL 2] Journal of the American Chemical Society, Vol. 79, 1957, 628-630.

SUMMARY OF INVENTION

Technical Problem

[0013] An object of the present invention is to provide a microorganism capable of efficiently producing aniline from aminobenzoic acid, and a process for efficiently producing aniline from aminobenzoic acid.

Solution to Problem

[0014] The present inventors have wholeheartedly carried out investigations in order to achieve the object described above and obtained the findings that a transformant constructed by introducing an aminobenzoate decarboxylase gene into a coryneform bacterium can efficiently produce aniline from aminobenzoic acid and that the transformant has a particularly higher aniline productivity when growth is substantially inhibited in a reaction mixture under reducing conditions.

[0015] The present invention, which has been completed based on the above-mentioned findings, provides the following transformant and process for producing aniline.

[1] An aniline-producing transformant constructed by introducing a gene which encodes an enzyme having aminobenzoate decarboxylase activity into a coryneform bacterium as a host. [2] The transformant of the above [1], wherein the gene which encodes an enzyme having aminobenzoate decarboxylase activity is a gene derived from Bacillus subtilis, a gene derived from Lactobacillus rhamnosus, a gene derived from Lactobacillus brevis, a gene derived from Pseudomonas putida, a gene derived from Escherichia coli, a gene derived from Saccharomyces cerevisiae, or a gene derived from Enterobacter cloacae. [3] The transformant of the above [1], wherein the gene which encodes an enzyme having aminobenzoate decarboxylase activity is the DNA of the following (a) or (b). (a) a DNA consisting of the base sequence of SEQ ID NO: 16, SEQ ID NO: 19, SEQ ID NO: 22, SEQ ID NO: 25, SEQ ID NO: 28, SEQ ID NO: 31, or SEQ ID NO: 34 (b) a DNA which hybridizes to a DNA consisting of a complementary base sequence of any of the DNAs of (a) under stringent conditions and which encodes a polypeptide having aminobenzoate decarboxylase activity [4] The transformant of any one of the above [1] to [3], wherein the coryneform bacterium as the host is Corynebacterium glutamicum. [5] The transformant of the above [4], wherein the coryneform bacterium as the host is Corynebacterium glutamicum R (FERM BP-18976), ATCC13032, or ATCC13869. [6] Corynebacterium glutamicum ANI-1 (Accession Number: NITE BP-1001), which is a transformant of Corynebacterium glutamicum. [7] A process for producing aniline, which comprises a step of allowing the transformant of any one of the above [1] to [6] to react in a reaction mixture containing aminobenzoic acid, an ester thereof, and/or a salt thereof under reducing conditions, and a step of recovering aniline from the reaction mixture. [8] The process of the above [7], wherein the transformant does not substantially grow in the reaction step. [9] The process of the above [7] or [8], wherein the oxidation-reduction potential of the reaction mixture under reducing conditions is -200 mV to -500 mV.

Advantageous Effects of Invention

[0016] With the use of the transformant of the present invention, aniline can be efficiently produced from aminobenzoic acid, a salt thereof, and/or an ester thereof.

[0017] Generally, growth of microorganisms is inhibited by a solvent, such as aniline, because of its cytotoxicity, and therefore aniline production with the use of microorganisms has been difficult. According to the process of the present invention, however, aniline production with the use of microorganisms can be achieved with a practically sufficient efficiency.

BRIEF DESCRIPTION OF DRAWINGS

[0018] FIG. 1 shows the constructs of plasmids used in Examples.

DESCRIPTION OF EMBODIMENTS

[0019] Hereinafter, the present invention will be described in detail.

(I) Aniline-Producing Transformant

[0020] The transformant of the present invention capable of producing aniline is a transformant constructed by introducing a gene which encodes an enzyme having aminobenzoate decarboxylase activity into a coryneform bacterium as a host.

Host

[0021] The coryneform bacterium is a group of microorganisms defined in Bergey's Manual of Determinative Bacteriology, Vol. 8, 599 (1974), and is not particularly limited as long as it grows under normal aerobic conditions.

[0022] The specific examples include Corynebacterium, Brevibacterium, Arthrobacter, Mycobacterium and Micrococcus. Among the coryneform bacteria, Corynebacterium is preferred.

[0023] Examples of the Corynebacterium include Corynebacterium glutamicum, Corynebacterium efficiens, Corynebacterium ammoniagenes, Corynebacterium halotolerance, and Corynebacterium alkanolyticum.

[0024] Inter alia, Corynebacterium glutamicum is preferred for safety and high aniline production. Examples of preferred strains include Corynebacterium glutamicum R (FERM P-18976), ATCC13032, ATCC13869, ATCC13058, ATCC13059, ATCC13060, ATCC13232, ATCC13286, ATCC13287, ATCC13655, ATCC13745, ATCC13746, ATCC13761, ATCC14020, ATCC31831, MJ-233 (FERM BP-1497), and MJ-233AB-41 (FERM BP-1498). Inter alia, strains R (FERM P-18976), ATCC13032, and ATCC13869 are preferred.

[0025] According to molecular biological classification, names of some species of coryneform bacteria, such as Brevibacterium flavum, Brevibacterium lactofermentum, Brevibacterium divaricatum, and Corynebacterium lilium are standardized to Corynebacterium glutamicum (Liebl, W. et al., Transfer of Brevibacterium divaricatum DSM 20297T, "Brevibacterium flavum" DSM 20411, "Brevibacterium lactofermentum" DSM 20412 and DSM 1412, and Corynebacterium glutamicum and their distinction by rRNA gene restriction patterns. Int. J. Syst. Bacteriol. 41: 255-260. (1991); and Kazuo Komagata et al., "Classification of the coryneform group of bacteria", Fermentation and industry, 45: 944-963 (1987)).

[0026] Brevibacterium lactofermentum ATCC13869, Brevibacterium flavum MJ-233 (FERM BP-1497) and MJ-233AB-41 (FERM BP-1498), etc. of the old classification are also suitable as Corynebacterium glutamicum.

[0027] Examples of the Brevibacterium include Brevibacterium ammoniagenes (for example, ATCC6872).

[0028] Examples of the Arthrobacter include Arthrobacter globiformis (for example, ATCC8010, ATCC4336, ATCC21056, ATCC31250, ATCC31738 and ATCC35698).

[0029] Examples of the Mycobacterium include Mycobacterium bovis (for example, ATCC19210 and ATCC27289).

[0030] Examples of the Micrococcus include Micrococcus freudenreichii (for example, NO. 239 (FERM P-13221)), Micrococcus leuteus (for example, NO. 240 (FERM P-13222)), Micrococcus ureae (for example, IAM1010), and Micrococcus roseus (for example, IFO3764).

[0031] The coryneform bacteria may be, let alone a wild strain, a mutant thereof or an artificial recombinant thereof. Examples thereof include disruptants in which a gene of lactate dehydrogenase, phosphoenolpyruvate carboxylase, or malate dehydrogenase is disrupted. Using such a disruptant as a host can improve aniline productivity and reduce production of by-products.

[0032] Inter alia, preferred is a disruptant in which a lactate dehydrogenase gene is disrupted. In the disruptant, the lactate dehydrogenase gene is disrupted and the metabolic pathway from pyruvic acid to lactic acid is blocked. Inter alia, especially preferred is a disruptant of Corynebacterium glutamicum R (FERM P-18976) strain in which the lactate dehydrogenase gene is disrupted.

[0033] Such a disruptant can be prepared based on a conventional gene engineering process. Such a lactate dehydrogenase disruptant and the preparation process thereof are described in WO 2005/010182 A1.

[0034] Compared with other bacteria, coryneform bacteria are more resistant to solvents, such as aniline. Further, compared with other aerobic bacteria, coryneform bacteria more efficiently produce substances under reducing conditions where growth is substantially inhibited. In these respects, coryneform bacteria are suitable for the aniline production by the method of the present invention.

Aminobenzoate Decarboxylase Gene

[0035] Aminobenzoate decarboxylase is an enzyme that catalyzes a reaction in which aniline is produced by elimination of carbonic acid from aminobenzoic acid and the reverse reaction.

[0036] The gene which encodes an enzyme having aminobenzoate decarboxylase activity may be of any origin without particular limitation, and preferred examples thereof include a gene derived from Bacillus subtilis, a gene derived from Lactobacillus rhamnosus, a gene derived from Lactobacillus brevis, a gene derived from Pseudomonas putida, a gene derived from Escherichia coli, a gene derived from Saccharomyces cerevisiae, and a gene derived from Enterobacter cloacae. Inter alia, more preferred are a gene derived from Bacillus subtilis and a gene derived from Enterobacter cloacae. In particular, when the substrate is anthranilic acid (2-aminobenzoic acid), preferred is a gene derived from Bacillus subtilis, and when the substrate is 4-aminobenzoic acid, preferred is a gene derived from Enterobacter cloacae.

[0037] Examples of the gene derived from Bacillus subtilis include the DNA consisting of the base sequence of SEQ ID NO: 16, examples of the gene derived from Lactobacillus rhamnosus include the DNA consisting of the base sequence of SEQ ID NO: 19, examples of the gene derived from Lactobacillus brevis include the DNA consisting of the base sequence of SEQ ID NO: 22, examples of the gene derived from Pseudomonas putida include the DNA consisting of the base sequence of SEQ ID NO: 25, examples of the gene derived from Escherichia coli include the DNA consisting of the base sequence of SEQ ID NO: 28, examples of the gene derived from Saccharomyces cerevisiae include the DNA consisting of the base sequence of SEQ ID NO: 31, and examples of the gene derived from Enterobacter cloacae include the DNA consisting of the base sequence of SEQ ID NO: 34.

[0038] In the present invention, a DNA which hybridizes to a DNA consisting of a complementary base sequence of the base sequence of SEQ ID NO: 16, 19, 22, 25, 28, 31, or 34 under stringent conditions and which encodes a polypeptide having aminobenzoate decarboxylase activity can also be used.

[0039] The "stringent conditions" as used herein means general conditions, for example, the conditions described in Molecular Cloning, ALaboratory Manual, Second edition, 1989, Vol. 2, p. 11. 45. It means, in particular, conditions where hybridization occurs at a temperature 5 to 10.degree. C. below the melting temperature (Tm) of a perfect hybrid.

[0040] The aminobenzoate decarboxylase activity can be measured by a modified method of the method described in J. Am. Chem. Soc., 79, 628-630 (1957). Briefly, a coryneform bacterium is cultured in a nutrient medium at 33.degree. C. for 18 hours, washed with minimal medium twice, and resuspended in minimal medium to prepare intact cells. Subsequently, for the reaction, HEPES (pH 7.0) as a buffer solution is added to the intact cells so that the concentration is 25 mM, and anthranilic acid or 4-amino benzoate as a substrate is added so that the final concentration is 5 mM. After shaking at 200 rpm at 33.degree. C. for 6 hours, the reaction mixture was centrifuged to separate bacterial cells and supernatant. The supernatant is filtered through a 0.22-.mu.m filter, and the filtrate is used as a sample. The produced aniline can be quantified by GC/MS or HPLC.

[0041] In the present invention, a DNA consisting of a base sequence which has 90% or more, preferably 95% or more, more preferably 98% or more homology with the base sequence of SEQ ID NO: 16, 19, 22, 25, 28, 31, or 34 and which encodes a polypeptide having aminobenzoate decarboxylase activity can also be used.

[0042] The base sequence homology was calculated using GENETYX Ver. 8 (made by Genetyx).

[0043] The homologue of the DNA consisting of the base sequence of SEQ ID NO: 16, 19, 22, 25, 28, 31, or 34 can be selected from a DNA library of a different species by, for example, PCR or hybridization using a primer or a probe designed based on these base sequences, according to a conventional method, and as a result, a DNA which encodes a polypeptide having aminobenzoate decarboxylase activity can be obtained with a high probability.

Construction of Vector for Transformation

[0044] The DNA which encodes aminobenzoate decarboxylase is amplified by PCR and then cloned into a suitable vector which is replicable in a host.

[0045] The plasmid vector may be any plasmid vector as long as it comprises a gene responsible for autonomously replicating function in a coryneform bacterium. Specific examples of the plasmid vector include pAM330 derived from Brevibacterium lactofermentum 2256 (JP 58-67699 A; Miwa, K. et al., Cryptic plasmids in glutamic acid-producing bacteria. Agric. Biol. Chem. 48:2901-2903 (1984); and Yamaguchi, R. et al., Determination of the complete nucleotide sequence of the Brevibacterium lactofermentum plasmid pAM330 and the analysis of its genetic information. Nucleic Acids Symp. Ser. 16:265-267 (1985)); pHM1519 derived from Corynebacterium glutamicum ATCC13058 (Miwa, K. et al., Cryptic plasmids in glutamic acid-producing bacteria. Agric. Biol. Chem. 48:2901-2903 (1984)) and pCRY30 derived from the same (Kurusu, Y. et al., Identification of plasmid partition function in coryneform bacteria. Appl. Environ. Microbiol. 57:759-764 (1991)); pCG4 derived from Corynebacterium glutamicum T250 (JP 57-183799 A; and Katsumata, R. et al., Protoplast transformation of glutamate-producing bacteria with plasmid DNA. J. Bacteriol., 159:306-311 (1984)), pAG1, pAG3, pAG14 and pAG50 derived from the same (JP 62-166890 A), and pEK0, pEC5 and pEKEx1 derived from the same (Eikmanns, B. J. et al., A family of Corynebacterium glutamicum/Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing. Gene, 102:93-98 (1991)); etc.

[0046] Examples of a preferred promoter include promoter PgapA as a promoter of the glyceraldehyde-3-phosphate dehydrogenase A gene (gapA), promoter Pmdh as a promoter of the malate dehydrogenase gene (mdh), and promoter PldhA as a promoter of lactate dehydrogenase A gene (ldhA), all of which are derived from Corynebacterium glutamicum R, and inter alia, PgapA is preferred.

[0047] Examples of a preferred terminator include terminator rrnB T1T2 of Escherichia coli rRNA operon, terminator trpA of Escherichia coli, and terminator trp of Brevibacterium lactofermentum, and inter alia, terminator rrnB T1T2 is preferred.

Transformation

[0048] As a method of transformation, any publicly known method can be used without limitation. Examples of such a known method include the calcium chloride/rubidium chloride method, the calcium phosphate method, DEAE-dextran transfection, and electroporation. Inter alia, preferred for a coryneform bacterium is electroporation, which can be performed by a known method (Kurusu, Y. et al., Electroporation-transformation system for Coryneform bacteria by auxotrophic complementation., Agric. Biol. Chem. 54:443-447 (1990); and Vertes A. A. et al., Presence of mrr- and mcr-like restriction systems in Coryneform bacteria. Res. Microbial. 144:181-185 (1993)).

[0049] The transformant is cultured using a culture medium usually used for culture of microorganisms. The culture medium may be a natural or synthetic medium containing a carbon source, a nitrogen source, inorganic salts, other nutritional substances, etc.

[0050] Examples of the carbon source include carbohydrates and sugar alcohols such as glucose, fructose, sucrose, mannose, maltose, mannitol, xylose, arabinose, galactose, starch, molasses, sorbitol and glycerol; organic acids such as acetic acid, citric acid, lactic acid, fumaric acid, maleic acid and gluconic acid; and alcohols such as ethanol and propanol. Hydrocarbons, such as normal paraffin, etc. may also be used as desired. These carbon sources may be used alone or as a mixture of two or more thereof. The concentration of these carbon sources in the culture medium is usually about 0.1 to 10 w/v %.

[0051] Examples of the nitrogen source include inorganic or organic ammonium compounds, such as ammonium chloride, ammonium sulfate, ammonium nitrate, and ammonium acetate; urea; aqueous ammonia; sodium nitrate; and potassium nitrate. Nitrogen-containing organic compounds, such as corn steep liquor, meat extract, peptone, N--Z-amine, protein hydrolysate, amino acid, etc. may also be used. These nitrogen sources may be used alone or as a mixture of two or more thereof. The concentration of these nitrogen sources in the culture medium varies depending on the kind of the nitrogen compound, but is usually about 0.1 to 10 w/v %.

[0052] Examples of the inorganic salts include potassium dihydrogen phosphate, dipotassium hydrogenphosphate, magnesium sulfate, sodium chloride, iron(II) nitrate, manganese sulfate, zinc sulfate, cobalt sulfate, and calcium carbonate. These inorganic salts may be used alone or as a mixture of two or more thereof. The concentration of the inorganic salts in the culture medium varies depending on the kind of the inorganic salts, but is usually about 0.01 to 1 w/v %.

[0053] Examples of the nutritional substances include meat extract, peptone, polypeptone, yeast extract, dry yeast, corn steep liquor, skim milk powder, defatted soybean hydrochloric acid hydrolysate, and extract from animals, plants or microorganisms, and degradation products thereof. The concentration of the nutritional substances in the culture medium varies depending on the kind of the nutritional substances, but is usually about 0.1 to 10 w/v %. Further, vitamins may be added as needed. Examples of the vitamins include biotin, thiamine (vitamin B1), pyridoxine (vitamin B6), pantothenic acid, inositol, nicotinic acid, etc.

[0054] The pH of the culture medium is preferably about 5 to 8.

[0055] Examples of the preferable microbial culture medium include A medium (Inui, M. et al., Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J. Mol. Microbiol. Biotechnol. 7:182-196 (2004)), BT medium (Omumasaba, C. A. et al., Corynebacterium glutamicum glyceraldehyde-3-phosphate dehydrogenase isoforms with opposite, ATP-dependent regulation. J. Mol. Microbiol. Biotechnol. 8:91-103 (2004)), etc.

[0056] The culture temperature is about 15 to 45.degree. C., and the culture period is about 1 to 7 days.

(II) Process for Producing Aniline

[0057] Aniline can be produced by a process comprising a step of allowing the above-described transformant of the present invention to react in a reaction mixture containing aminobenzoic acid, a salt thereof, and/or an ester thereof, and a step of recovering aniline from the reaction mixture.

Growth of Microorganism

[0058] Before the reaction, the transformant is preferably cultured and grown under aerobic conditions at about 25 to 35.degree. C. for about 12 to 48 hours.

Culture Medium

[0059] The culture medium used for aerobic culture of the transformant before the reaction may be a natural or synthetic medium containing a carbon source, a nitrogen source, inorganic salts, other nutritional substances, etc.

[0060] Examples of the carbon source that can be used include sugars (monosaccharides such as glucose, fructose, mannose, xylose, arabinose, and galactose; disaccharides such as sucrose, maltose, lactose, cellobiose, xylobiose, and trehalose; polysaccharides such as starch; and molasses); sugar alcohols such as mannitol, sorbitol, xylitol, and glycerol; organic acids such as acetic acid, citric acid, lactic acid, fumaric acid, maleic acid and gluconic acid; alcohols such as ethanol and propanol; and hydrocarbons such as normal paraffin.

[0061] These carbon sources may be used alone or as a mixture of two or more thereof.

[0062] Examples of the nitrogen source that can be used include inorganic or organic ammonium compounds, such as ammonium chloride, ammonium sulfate, ammonium nitrate, and ammonium acetate; urea; aqueous ammonia; sodium nitrate; and potassium nitrate. Nitrogen-containing organic compounds, such as corn steep liquor, meat extract, peptone, N--Z-amine, protein hydrolysate, amino acid, etc. may also be used. These nitrogen sources may be used alone or as a mixture of two or more thereof. The concentration of these nitrogen sources in the culture medium varies depending on the kind of the nitrogen compound, but is usually about 0.1 to 10 w/v %.

[0063] Examples of the inorganic salts include potassium dihydrogen phosphate, dipotassium hydrogenphosphate, magnesium sulfate, sodium chloride, iron(II) nitrate, manganese sulfate, zinc sulfate, cobalt sulfate, and calcium carbonate. These inorganic salts may be used alone or as a mixture of two or more thereof. The concentration of the inorganic salts in the culture medium varies depending on the kind of the inorganic salts, but is usually about 0.01 to 1 w/v %.

[0064] Examples of the nutritional substances include meat extract, peptone, polypeptone, yeast extract, dry yeast, corn steep liquor, skim milk powder, defatted soybean hydrochloric acid hydrolysate, and extract from animals, plants or microorganisms, and degradation products thereof. The concentration of the nutritional substances in the culture medium varies depending on the kind of the nutritional substances, but is usually about 0.1 to 10 w/v %.

[0065] Further, vitamins may be added as needed. Examples of the vitamins include biotin, thiamine (vitamin B1), pyridoxine (vitamin B6), pantothenic acid, inositol, nicotinic acid, etc.

[0066] The pH of the culture medium is preferably about 6 to 8.

[0067] Specific examples of the preferable culture medium for coryneform bacteria include A medium (Inui, M. et al., Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J. Mol. Microbiol. Biotechnol. 7:182-196 (2004)), BT medium (Omumasaba, C. A. et al., Corynebacterium glutamicum glyceraldehyde-3-phosphate dehydrogenase isoforms with opposite, ATP-dependent regulation. J. Mol. Microbiol. Biotechnol. 8:91-103 (2004)), etc. Such a culture medium can be used after prepared so as to contain a sugar at a concentration in the above-mentioned range.

Reaction Mixture

[0068] As the reaction mixture, water, a buffer solution, an inorganic salt medium, or the like, containing an aniline precursor (raw material for aniline) can be used.

[0069] As the precursor, aminobenzoic acid, a salt thereof, and/or an ester thereof may be used. As the aminobenzoic acid, 2-aminobenzoic acid (o-aminobenzoic acid; anthranilic acid), 3-aminobenzoic acid (m-aminobenzoic acid), and 4-aminobenzoic acid (p-aminobenzoic acid) are all usable. Inter alia, preferred are 2-aminobenzoic acid and 4-aminobenzoic acid because they are soluble in water and thus easy to use for the reaction.

[0070] Examples of the salt include a sodium salt, a potassium salt, and a hydrochloride. Examples of the ester include esters with alcohols having 1 to 4 carbon atoms.

[0071] Salts are preferred because they are highly soluble in the reaction mixture. These precursors may be used alone or a mixture of two or more kinds.

[0072] The concentration of aminobenzoic acid, a salt thereof, and/or an ester thereof in the reaction mixture is preferably about 0.1 to 10 w/v %, more preferably about 0.5 to 7 w/v %, and still more preferably about 0.5 to 5 w/v %. When the concentration is in the above range, aniline can be efficiently produced.

[0073] Examples of the buffer solution include a phosphate buffer, a Tris buffer, a carbonate buffer, etc. The concentration of the buffer solution is preferably about 10 to 150 mM.

[0074] Examples of the inorganic salt medium include a medium containing one or more kinds of inorganic salts including potassium dihydrogen phosphate, dipotassium hydrogenphosphate, magnesium sulfate, sodium chloride, iron(II) nitrate, manganese sulfate, zinc sulfate, cobalt sulfate, and calcium carbonate. Inter alia, preferred is a medium containing magnesium sulfate. Specific example of the inorganic salt medium include BT medium (Omumasaba, C. A. et al., Corynebacterium glutamicum glyceraldehyde-3-phosphate dehydrogenase isoforms with opposite, ATP-dependent regulation. J. Mol. Microbiol. Biotechnol. 8:91-103 (2004)) etc. The concentration of the inorganic salts in the culture medium varies depending on the kind of the inorganic salts, but is usually about 0.01 to 1 w/v %.

[0075] The pH of the reaction mixture is preferably about 6 to 8. During the reaction, the pH of the reaction mixture is preferably kept nearly neutral, in particular at around 7 with the use of aqueous ammonia, aqueous sodium hydroxide, or the like, under the control of a pH controller (for example, Type: DT-1023 made by Able).

Reaction Conditions

[0076] The reaction temperature, that is, the temperature for keeping the transformant alive during the reaction is preferably about 20 to 40.degree. C., and more preferably about 25 to 35.degree. C. When the temperature is in the above range, aniline can be efficiently produced.

[0077] The reaction period is preferably about 1 to 7 days, and more preferably about 1 to 3 days.

[0078] The culture may be a batch process, a fed-batch process, or a continuous process. Inter alia, a batch process is preferred.

<Reducing Conditions>

[0079] The reaction may be performed under aerobic conditions or reducing conditions, but preferably is performed under reducing conditions. Under reducing conditions, coryneform bacteria do not substantially grow and can further efficiently produce aniline.

[0080] The "reducing conditions" is defined based on the oxidation-reduction potential of the reaction mixture. The oxidation-reduction potential of the reaction mixture is preferably about -200 mV to -500 mV, and more preferably about -250 mV to -500 mV.

[0081] The reducing conditions of the reaction mixture can be simply estimated with the use of resazurin indicator (in reducing conditions, decolorization from blue to colorless is observed). However, for precise measurement, a redox-potential meter (for example, ORP Electrodes made by BROADLEY JAMES) is used.

[0082] As a method of preparing a reaction mixture under reducing conditions, any publicly known method can be used without limitation. For example, as a liquid medium for preparation of the reaction mixture, an aqueous solution for a reaction mixture may be used instead of distillated water or the like. As reference for preparation of the aqueous solution for a reaction mixture, for example, the method for preparing a culture medium for strictly anaerobic microorganisms, such as sulfate-reducing microorganisms (Pfennig, N. et al.: The dissimilatory sulfate-reducing bacteria, In The Prokaryotes, A Handbook on Habitats, Isolation and Identification of Bacteria, Ed. by Starr, M. P. et al. Berlin, Springer Verlag, 926-940, 1981, or Nogeikagaku Jikkensho, Ed. by Kyoto Daigaku Nogakubu Nogeikagaku Kyoshitsu, Vol. 3, Sangyo Tosho, 1990, Issue 26) may be used, and such a method provides an aqueous solution under desired reducing conditions.

[0083] Specifically, by treating distillated water or the like with heat or under reduced pressure for removal of dissolved gases, an aqueous solution for a reaction mixture under reducing conditions can be obtained. In this case, for removal of dissolved gases, especially dissolved oxygen, distillated water or the like may be treated under reduced pressure of about 10 mmHg or less, preferably about 5 mmHg or less, more preferably about 3 mmHg or less, for about 1 to 60 minutes, preferably for about 5 to 40 minutes.

[0084] Alternatively, by adding a suitable reducing agent (for example, thioglycolic acid, ascorbic acid, cysteine hydrochloride, mercaptoacetic acid, thiol acetic acid, glutathione, sodium sulfide, etc.), an aqueous solution for a reaction mixture under reducing conditions can be prepared.

[0085] These methods may be suitably combined to prepare an effective aqueous solution for a reaction mixture under reducing conditions.

[0086] It is preferred to maintain the reducing conditions of the reaction mixture during the reaction. For maintenance of reducing conditions, it is preferred that oxygen from the outside of the reaction system is prevented to the utmost extent from entering the system. Specific examples of the method employed for this purpose include a method comprising encapsulating the reaction system with inert gas, such as nitrogen gas, carbon dioxide gas, etc. In some cases, for allowing the metabolic functions in the cells of the aerobic bacterium of the present invention to work effectively during the reaction, addition of a solution of various nutrients or a reagent solution for adjusting and maintaining the pH of the reaction system may be needed. In such a case, for more effective prevention of oxygen incorporation, it is effective to remove oxygen in the solutions to be added, in advance.

Recovery of Aniline

[0087] Through the culture performed in the above manner, aniline is produced in the reaction mixture. Aniline can be recovered by collecting the reaction mixture, and it is also feasible to isolate aniline from the reaction mixture by a known method. Examples of such a known method include distillation, the membrane permeation method, and the organic solvent extraction method.

EXAMPLES

[0088] Hereinafter, the present invention will be described in more detail by way of Examples, but the present invention is not limited thereto.

Example 1

[0089] Cloning and Expression of Aniline-Producing Genes

(1) Extraction of Chromosomal DNA from Microorganisms

[0090] To extract chromosomal DNA from Bacillus subtilis NBRC14144, the bacterium was inoculated into NBRC Medium No. 802 (10 g of polypeptone, 2 g of yeast extract, and 1 g of MgSO.sub.4.7H.sub.2O were dissolved in 1 L of distilled water) with the use of a platinum loop, and cultured with shaking at 37.degree. C. until the logarithmic growth phase. After the bacterial cells were collected, chromosomal DNA was recovered from the collected cells with the use of a DNA extraction kit (trade name: GenomicPrep Cells and Tissue DNA Isolation Kit, made by Amersham) according to the instruction manual.

[0091] To extract chromosomal DNA from Lactobacillus rhamnosus NBRC3425, the bacterium was inoculated into NBRC Medium No. 804 (5 g of polypeptone, 5 g of yeast extract, 5 g of glucose, and 1 g of MgSO.sub.4.7H.sub.2O were dissolved in 1 L of distilled water) with the use of a platinum loop, and cultured with shaking at 30.degree. C. until the logarithmic growth phase. After bacterial cells were collected, chromosomal DNA was recovered from the collected cells with the use of a DNA extraction kit (trade name: GenomicPrep Cells and Tissue DNA Isolation Kit, made by Amersham) according to the instruction manual.

[0092] To extract chromosomal DNA from Lactobacillus brevis ATCC367, the bacterium was inoculated in Lactobacilli MRS broth (made by Becton, Dickinson and Company, BD 288130) with use of a platinum loop, and cultured with shaking at 30.degree. C. until logarithmic growth phase. After bacterial cells were collected, chromosomal DNA was recovered from the collected cells with the use of a DNA extraction kit (trade name: GenomicPrep Cells and Tissue DNA Isolation Kit, made by Amersham) according to the instruction manual.

[0093] To extract chromosomal DNA from Pseudomonas putida (KT2440) ATCC47054, the bacterium was inoculated into LB Medium (10 g of tryptone, 5 g of yeast extract, and 5 g of NaCl were dissolved in 1 L of distilled water) with the use of a platinum loop, and cultured with shaking at 37.degree. C. until the logarithmic growth phase. After the bacterial cells were collected, chromosomal DNA was recovered from the collected cells with the use of a DNA extraction kit (trade name: GenomicPrep Cells and Tissue DNA Isolation Kit, made by Amersham) according to the instruction manual.

[0094] To extract chromosomal DNA from Escherichia coli (K-12 MG1655), the bacterium was inoculated into LB Medium (10 g of tryptone, 5 g of yeast extract, and 5 g of NaCl were dissolved in 1 L of distilled water) with the use of a platinum loop, and cultured with shaking at 37.degree. C. until the logarithmic growth phase. After the bacterial cells were collected, chromosomal DNA was recovered from the collected cells with the use of a DNA extraction kit (trade name: GenomicPrep Cells and Tissue DNA Isolation Kit, made by Amersham) according to the instruction manual.

[0095] To extract chromosomal DNA from Saccharomyces cerevisiae NBRC10217, the bacterium was inoculated into NBRC Medium No. 108 (10 g of glucose, 5 g of polypeptone, 3 g of yeast extract, and 3 g of malt extract were dissolved in 1 L of distilled water) with the use of a platinum loop, and cultured with shaking at 24.degree. C. until the logarithmic growth phase. After bacterial cells were collected, chromosomal DNA was recovered from the collected cells with the use of a DNA extraction kit (trade name: GenomicPrep Cells and Tissue DNA Isolation Kit, made by Amersham) according to the instruction manual.

[0096] To extract chromosomal DNA from Enterobacter cloacae NBRC13535, the bacterium was inoculated into NBRC Medium No. 802 (10 g of polypeptone, 2 g of yeast extract, and 1 g of MgSO.sub.4.7H.sub.2O were dissolved in 1 L of distilled water) with the use of a platinum loop, and cultured with shaking at 37.degree. C. until the logarithmic growth phase. After the bacterial cells were collected, chromosomal DNA was recovered from the collected cells with the use of a DNA extraction kit (trade name: GenomicPrep Cells and Tissue DNA Isolation Kit, made by Amersham) according to the instruction manual.

(2) Construction of Cloning Vectors

[0097] Construction of Cloning Vector pCRB22

[0098] A DNA fragment comprising a DNA replication origin sequence of pCASE1, a plasmid derived from Corynebacterium casei JCM12072 (hereinafter abbreviated as pCASE1-ori) and a DNA fragment comprising a cloning vector pHSG298 (made by Takara Bio, Inc.) were amplified by the following PCR method.

[0099] In the PCR, the following sets of primers were synthesized based on SEQ ID NO: 1 (pCASE1-ori sequence) and SEQ ID NO: 2 (cloning vector pHSG298) for cloning of the pCASE1-ori sequence and the cloning vector pHSG298, and were used.

Primers for pCASE1-Ori Sequence Amplification

TABLE-US-00001 (SEQ ID NO: 3) (a-1); 5'-AT AGATCT AGAACGTCCGTAGGAGC-3' (SEQ ID NO: 4) (b-1); 5'-AT AGATCT GACTTGGTTACGATGGAC-3'

[0100] Primers (a-1) and (b-1) each have a BglII restriction enzyme site added thereto.

Primers for Cloning Vector pHSG298 Amplification

TABLE-US-00002 (SEQ ID NO: 5) (a-2): 5'-AT AGATCT AGGTTTCCCGACTGGAAAG-3' (SEQ ID NO: 6) (b-2): 5'-AT AGATCT CGTGCCAGCTGCATTAATGA-3'

[0101] Primers (a-2) and (b-2) each have a BglII restriction enzyme site added thereto.

[0102] As the template DNA, total DNA extracted from Corynebacterium casei JCM12072 obtained from Japan Collection of Microorganisms (JCM) and cloning vector pHSG298 (made by Takara Bio, Inc.) were used.

[0103] Actual PCR was performed with the use of a thermal cycler, GeneAmp PCR System 9700 (made by Applied Biosystems) and TaKaRa LA Taq (made by Takara Bio, Inc.) as a reaction reagent under the conditions described below.

Reaction Mixture:

TABLE-US-00003 [0104] TaKaRa LA Taq .TM. (5 units/.mu.L) 0.5 .mu.L 10X LA PCR .TM. Buffer II 5 .mu.L (Mg.sup.2+ free) 25 mM MgCl.sub.2 5 .mu.L dNTP Mixture (2.5 mM each) 8 .mu.L Template DNA 5 .mu.L (DNA content: 1 .mu.g or less) The above 2 primers*.sup.) 0.5 .mu.L each (final conc.: 1 .mu.M) Sterile distilled water 25.5 .mu.L The above ingredients were mixed, and 50 .mu.L of the reaction mixture was subjected to PCR. *.sup.)For amplification of the pCASE1-ori sequence, a combination of primers (a-1) and (b-1), and for amplification of the cloning vector pHSG298, a combination of primers (a-2) and (b-2) were used.

PCR Cycle:

[0105] Denaturation step: 94.degree. C., 60 seconds

[0106] Annealing step: 52.degree. C., 60 seconds

[0107] Extension step: 72.degree. C. [0108] pCASE1-ori sequence: 150 seconds [0109] Cloning vector pHSG298: 180 seconds

[0110] A cycle consisting of the above 3 steps was repeated 30 times.

[0111] Using 10 .mu.L of the above-produced reaction mixture, 0.8% agarose gel electrophoresis was performed. In the case of the pCASE1-ori sequence, an about 1.4-kb DNA fragment was detected. In the case of the cloning vector pHSG298, an about 2.7-kb DNA fragment was detected.

[0112] 10 .mu.l, of the about 1.4-kb DNA fragment comprising the pCASE1-ori sequence derived from Corynebacterium casei, and 10 .mu.l, of the about 2.7-kb DNA fragment comprising the cloning vector pHSG298, both amplified by the above PCR, were each cut with the use of restriction enzyme BglII and processed at 70.degree. C. for 10 minutes for deactivation of the restriction enzyme. Both were mixed, and 1 .mu.L of T4 DNA ligase 10.times. buffer solution and 1 unit of T4 DNA ligase (made by Takara Bio, Inc.) were added thereto. Sterile distilled water was added thereto so that the total volume was 10 .mu.L, and the mixture was allowed to react at 15.degree. C. for 3 hours for ligation. This was named Ligation Liquid A.

[0113] With the use of the Ligation Liquid A, Escherichia coli JM109 was transformed by the calcium chloride method (Journal of Molecular Biology, 53, 159 (1970)) and was applied to LB agar medium (1% polypeptone, 0.5% yeast extract, 0.5% sodium chloride, and 1.5% agar) containing 50 .mu.g/mL of kanamycin.

[0114] A growing strain on the culture medium was subjected to liquid culture in the usual manner. Plasmid DNA was extracted from the culture and cut with the use of restriction enzyme BglII to confirm the inserted fragment. As a result, in addition to an about 2.7-kb DNA fragment of the cloning vector pHSG298, an about 1.4-kb DNA fragment of the pCASE-ori sequence was confirmed.

[0115] The cloning vector comprising the pCASE1-ori sequence was named pCRB22.

Construction of Cloning Vector pCRB207

[0116] A DNA fragment comprising a promoter sequence of the gapA gene encoding the glyceraldehyde-3-phosphate dehydrogenase (hereinafter abbreviated as PgapA) derived from Corynebacterium glutamicum R, and a DNA fragment comprising an rrnBT1T2 bidirectional terminator sequence (hereinafter abbreviated as terminator sequence) derived from a cloning vector pKK223-3 (made by Pharmacia) were amplified by the following method.

[0117] In the PCR, the following sets of primers were synthesized based on SEQ ID NO: 7 (PgapA sequence) and SEQ ID NO: 8 (terminator sequence) for cloning of the PgapA sequence and the terminator sequence, and were used.

Primers for PgapA Sequence Amplification

TABLE-US-00004 [0118] (SEQ ID NO: 9) (a-3); 5'-CTCT GTCGAC CCGAAGATCTGAAGATTCCTG-3' (SEQ ID NO: 10) (b-3); 5'-CTCT GTCGAC GGATCC CCATGG TGTGTCTCCTCTAAAGATTGTAGG-3'

[0119] Primer (a-3) has a SalI restriction enzyme site added thereto, and primer (b-3) has SalI, BamHI, and NcoI restriction enzyme sites added thereto.

Primers for Terminator Sequence Amplification

TABLE-US-00005 [0120] (SEQ ID NO: 11) (a-4); 5'-CTCT GCATGC CCATGG CTGTTTTGGCGGATGAGAGA-3' (SEQ ID NO: 12) (b-4); 5'-CTCT GCATGC TCATGA AAGAGTTTGTAGAAACGCAAAAAGG-3'

[0121] Primer (a-4) has SphI and NcoI restriction enzyme sites added thereto, and primer (b-4) has SphI and BspHI restriction enzyme sites added thereto.

[0122] As the template DNA, the chromosomal DNA extracted from Corynebacterium glutamicum R (FERM P-18976) and the plasmid pKK223-3 (made by Pharmacia) were used.

[0123] Actual PCR was performed with the use of a thermal cycler, GeneAmp PCR System 9700 (made by Applied Biosystems) and TaKaRa LA Taq (made by Takara Bio, Inc.) as a reaction reagent under the conditions described below.

Reaction Mixture:

TABLE-US-00006 [0124] TaKaRa LA Taq .TM. (5 units/.mu.L) 0.5 .mu.L 10X LA PCR .TM. Buffer II 5 .mu.L (Mg.sup.2+ free) 25 mM MgCl.sub.2 5 .mu.L dNTP Mixture (2.5 mM each) 8 .mu.L Template DNA 5 .mu.L (DNA content: 1 .mu.g or less) The above 2 primers*.sup.) 0.5 .mu.L each (final conc.: 1 .mu.M) Sterile distilled water 25.5 .mu.L The above ingredients were mixed, and 50 .mu.L of the reaction mixture was subjected to PCR. *.sup.)For amplification of the PgapA sequence, a combination of primers (a-3) and (b-3), and for amplification of the terminator sequence, a combination of primers (a-4) and (b-4) were used.

PCR Cycle:

[0125] Denaturation step: 94.degree. C., 60 seconds

[0126] Annealing step: 52.degree. C., 60 seconds

[0127] Extension step: 72.degree. C. [0128] PgapA sequence: 45 seconds [0129] Terminator sequence: 30 seconds

[0130] A cycle consisting of the above 3 steps was repeated 30 times.

[0131] Using 10 .mu.l, of the above-produced reaction mixture, 0.8% agarose gel electrophoresis was performed. In the case of the PgapA sequence, an about 0.6-kb DNA fragment was detected. In the case of the terminator sequence, an about 0.4-kb DNA fragment was detected.

[0132] 10 .mu.l, of the about 0.6-kb DNA fragment comprising the PgapA sequence derived from Corynebacterium glutamicum R, which was amplified by the above PCR, and the about 4.1-kb cloning vector pCRB22 were each cut with the use of restriction enzyme SalI and processed at 70.degree. C. for 10 minutes for deactivation of the restriction enzyme. Both were mixed, and 1 .mu.L of T4 DNA ligase 10.times. buffer solution and 1 unit of T4 DNA ligase (made by Takara Bio, Inc.) were added thereto. Sterile distilled water was added thereto so that the total volume was 10 .mu.L, and the mixture was allowed to react at 15.degree. C. for 3 hours for ligation. This was named Ligation Liquid B.

[0133] With the use of the Ligation Liquid B, Escherichia coli JM109 was transformed by the calcium chloride method (Journal of Molecular Biology, 53, 159 (1970)) and was applied to LB agar medium (1% polypeptone, 0.5% yeast extract, 0.5% sodium chloride, and 1.5% agar) containing 50 .mu.g/mL of kanamycin.

[0134] A growing strain on the culture medium was subjected to liquid culture in the usual manner. Plasmid DNA was extracted from the culture and cut with the use of restriction enzyme SalI to confirm the inserted fragment. As a result, in addition to an about 4.1-kb DNA fragment of the cloning vector pCRB22, an about 0.6-kb DNA fragment of the PgapA sequence was confirmed.

[0135] The cloning vector comprising the PgapA sequence was named pCRB206.

[0136] 10 .mu.L of the about 0.4-kb DNA fragment comprising the terminator sequence derived from the plasmid pKK223-3, which was amplified by the above PCR, was cut with the use of restriction enzymes NcoI and BspHI, 2 .mu.L of the above cloning vector pCRB206 was cut with the use of restriction enzyme NcoI, and both were processed at 70.degree. C. for 10 minutes for deactivation of the restriction enzymes. Both were mixed, and 1 .mu.L of T4 DNA ligase 10.times. buffer solution and 1 unit of T4 DNA ligase (made by Takara Bio, Inc.) were added thereto. Sterile distilled water was added thereto so that the total volume was 10 .mu.L, and the mixture was allowed to react at 15.degree. C. for 3 hours for ligation. This was named Ligation Liquid C.

[0137] With the use of the Ligation Liquid C, Escherichia coli JM109 was transformed by the calcium chloride method (Journal of Molecular Biology, 53, 159 (1970)) and was applied to LB agar medium (1% polypeptone, 0.5% yeast extract, 0.5% sodium chloride, and 1.5% agar) containing 50 .mu.g/mL of kanamycin.

[0138] A growing strain on the culture medium was subjected to liquid culture in the usual manner. Plasmid DNA was extracted from the culture and cut with the use of the restriction enzyme to confirm the inserted fragment. As a result, in addition to an about 4.7-kb DNA fragment of the cloning vector pCRB206, an about 0.4-kb DNA fragment of the terminator sequence was confirmed.

[0139] The cloning vector comprising the rrnBT1T2 terminator sequence was named pCRB207.

Construction of Cloning Vector pCRB209

[0140] A DNA fragment comprising a promoter sequence of the gapA (glyceraldehyde 3-phosphate dehydrogenase A) gene (hereinafter abbreviated as PgapA) derived from Corynebacterium glutamicum R was amplified by the following method.

[0141] In the PCR, the following set of primers was synthesized based on SEQ ID NO: 13 (pCRB207) for cloning of the pCRB207 sequence, and was used.

Primers for pCRB207 Sequence Amplification

TABLE-US-00007 (SEQ ID NO: 14) (a-5); 5'-CTCT CATATG CTGTTTTGGCGGATGAGAG-3' (SEQ ID NO: 15) (b-5); 5'-CTCT CATATG GTGTCTCCTCTAAAGATTGTAGG-3'

[0142] Primers (a-5) and (b-5) each have an NdeI restriction enzyme site added thereto.

[0143] As the template DNA, the cloning vector pCRB207 comprising a gapA promoter and a rrnBT1T2 terminator sequence was used.

[0144] Actual PCR was performed with the use of a thermal cycler, GeneAmp PCR System 9700 (made by Applied Biosystems) and TaKaRa LA Taq (made by Takara SHUZO) as a reaction reagent under the conditions described below.

Reaction Mixture:

TABLE-US-00008 [0145] TaKaRa LA Taq .TM. (5 units/.mu.L) 0.5 .mu.L 10X LA PCR .TM. Buffer II 5 .mu.L (Mg.sup.2+ free) 25 mM MgCl.sub.2 5 .mu.L dNTP Mixture (2.5 mM each) 8 .mu.L Template DNA 5 .mu.L (DNA content: 1 .mu.g or less) The above 2 primers*.sup.) 0.5 .mu.L each (final conc.: 1 .mu.M) Sterile distilled water 25.5 .mu.L The above ingredients were mixed, and 50 .mu.L of the reaction mixture was subjected to PCR. *.sup.)For amplification of the pCRB207 sequence, a combination of primers (a-5) and (b-5) was used.

PCR Cycle:

[0146] Denaturation step: 94.degree. C., 60 seconds

[0147] Annealing step: 52.degree. C., 60 seconds

[0148] Extension step: 72.degree. C., 307 seconds

[0149] A cycle consisting of the above 3 steps was repeated 30 times.

[0150] Using 10 .mu.L of the above-produced reaction mixture, 0.8% agarose gel electrophoresis was performed, and an about 5.1-kb DNA fragment comprising the cloning vector pCRB207 was detected.

[0151] 10 .mu.L of the about 5.1-kb DNA fragment comprising the gene derived from pCRB207, which was amplified by the above PCR, was cut with the use of restriction enzyme NdeI and processed at 70.degree. C. for 10 minutes for deactivation of the restriction enzyme. To this, 1 .mu.L of T4 DNA ligase 10.times. buffer solution and 1 unit of T4 DNA ligase (made by Takara SHUZO) were added. Sterile distilled water was added thereto so that the total volume was 10 .mu.L, and the mixture was allowed to react at 15.degree. C. for 3 hours for ligation. This was named Ligation Liquid D.

[0152] With the use of the Ligation Liquid D, Escherichia coli JM109 was transformed by the calcium chloride method (Journal of Molecular Biology, 53, 159 (1970)) and was applied to LB agar medium (1% polypeptone, 0.5% yeast extract, 0.5% sodium chloride, and 1.5% agar) containing 50 .mu.g/mL of kanamycin.

[0153] A growing strain on the culture medium was subjected to liquid culture in the usual manner. Plasmid DNA was extracted from the culture and cut with the use of restriction enzyme NdeI to confirm the inserted restriction enzyme site.

[0154] The cloning vector comprising the PgapA sequence and the rrnBT1T2 terminator sequence was named pCRB209.

(3) Cloning of Aniline-Producing Genes

[0155] Cloning of Aniline-Producing Gene Derived from Bacillus subtilis

[0156] A DNA fragment comprising the bsdBCD (hereinafter indicated as dec/BS) gene which encodes aminobenzoate decarboxylase derived from Bacillus subtilis was amplified by the PCR method as described below.

[0157] In the PCR, the following set of primers was synthesized based on SEQ ID NO: 16 (the dec/BS gene of Bacillus subtilis) with the use of "394 DNA/RNA Synthesizer" made by Applied Biosystems for cloning of the dec/BS gene, and was used.

Primers for dec/BS Gene Amplification

TABLE-US-00009 (SEQ ID NO: 17) (a-6); 5'-CTCT CATATG AAAGCAGAATTCAAGCGTAAAG-3' (SEQ ID NO: 18) (b-6); 5'-CTCT CATATG GATCAAGCCTTTCGTTCCG-3'

[0158] Primers (a-6) and (b-6) each have an NdeI restriction enzyme site added thereto.

Cloning of Aniline-Producing Gene Derived from Lactobacillus rhamnosus

[0159] A DNA fragment comprising the ubiDX (hereinafter indicated as dec/LR) gene which encodes aminobenzoate decarboxylase derived from Lactobacillus rhamnosus was amplified by the PCR method as described below.

[0160] In the PCR, the following set of primers was synthesized based on SEQ ID NO: 19 (the dec/LR gene of Lactobacillus rhamnosus) with the use of "394 DNA/RNA Synthesizer" made by Applied Biosystems for cloning of the dec/LR gene, and was used.

Primers for dec/LR Gene Amplification

TABLE-US-00010 (SEQ ID NO: 20) (a-7); 5'-CTCT CATATG ACAGCATCACCTTGGG-3' (SEQ ID NO: 21) (b-7); 5'-CTCT CATATG TCATCTTAACGACGCTCCATTC-3'

[0161] Primers (a-7) and (b-7) each have an NdeI restriction enzyme site added thereto.

Cloning of Aniline-Producing Gene Derived from Lactobacillus brevis

[0162] A DNA fragment comprising the LVIS.sub.--1987-LVIS.sub.--1986 (hereinafter indicated as dec/LB) gene which encodes aminobenzoate decarboxylase derived from Lactobacillus brevis was amplified by the PCR method as described below.

[0163] In the PCR, the following set of primers was synthesized based on SEQ ID NO: 22 (the dec/LB gene of Lactobacillus brevis) with the use of "394 DNA/RNA Synthesizer" made by Applied Biosystems for cloning of the dec/LB gene, and was used.

Primers for dec/LB Gene Amplification

TABLE-US-00011 (SEQ ID NO: 23) (a-8); 5'-CTCT CATATG GTAAATGATCCTTATGATTTACGAAAAG-3' (SEQ ID NO: 24) (b-8); 5'-CTCT CATATG CTAATCTCCCTCCCAACG-3'

[0164] Primers (a-8) and (b-8) each have an NdeI restriction enzyme site added thereto.

Cloning of Aniline-Producing Gene Derived from Pseudomonas putida

[0165] A DNA fragment comprising the ubiD (hereinafter indicated as dec/PP) gene which encodes aminobenzoate decarboxylase derived from Pseudomonas putida was amplified by the PCR method as described below.

[0166] In the PCR, the following set of primers was synthesized based on SEQ ID NO: 25 (the dec/PP gene of Pseudomonas putida) with the use of "394 DNA/RNA Synthesizer" made by Applied Biosystems for cloning of the dec/PP gene, and was used.

Primers for dec/PP Gene Amplification

TABLE-US-00012 (SEQ ID NO: 26) (a-9); 5'-CTCT CATATG AACGGGCCGGAAC-3' (SEQ ID NO: 27) (b-9); 5'-CTCT CATATG TCAATCATCCACCCCGAAG-3'

[0167] Primers (a-9) and (b-9) each have an NdeI restriction enzyme site added thereto.

Cloning of Aniline-Producing Gene Derived from Escherichia coli

[0168] A DNA fragment comprising the purEK (hereinafter indicated as dec/EC) gene which encodes aminobenzoate decarboxylase derived from Escherichia coli was amplified by the PCR method as described below.

[0169] In the PCR, the following set of primers was synthesized based on SEQ ID NO: 28 (the dec/EC gene of Escherichia coli) with the use of "394 DNA/RNA Synthesizer" made by Applied Biosystems for cloning of the dec/EC gene, and was used.

Primers for dec/EC Gene Amplification

TABLE-US-00013 (SEQ ID NO: 29) (a-10); 5'-CTCT CATATG TCTTCCCGCAATAATCCG-3' (SEQ ID NO: 30) (b-10); 5'-CTCT CATATG TTAACCGAACTTACTCTGCGC-3'

[0170] Primers (a-10) and (b-10) each have an NdeI restriction enzyme site added thereto.

Cloning of Aniline-Producing Gene Derived from Saccharomyces cerevisiae

[0171] A DNA fragment comprising the ADE2 (hereinafter indicated as dec/SC) gene which encodes aminobenzoate decarboxylase derived from Saccharomyces cerevisiae was amplified by the PCR method as described below.

[0172] In the PCR, the following set of primers was synthesized based on SEQ ID NO: 31 (the dec/SC gene of Saccharomyces cerevisiae) with use of "394 DNA/RNA Synthesizer" made by Applied Biosystems for cloning of the dec/SC gene, and was used.

Primers for dec/SC Gene Amplification

TABLE-US-00014 (SEQ ID NO: 32) (a-11); 5'-CTCT CCATGG ATTCTAGAACAGTTGGTATATTAG-3' (SEQ ID NO: 33) (b-11); 5'-CTCT CCATGG TTACTTGTTTTCTAGATAAGCTTCGTAAC-3'

[0173] Primers (a-11) and (b-11) each have an NcoI restriction enzyme site added thereto.

Cloning of Aniline-Producing Gene Derived from Enterobacter cloacae

[0174] A DNA fragment comprising the ECL.sub.--04083-ECL.sub.--04082-ECL.sub.--04081 (hereinafter indicated as dec/ECL) gene which encodes aminobenzoate decarboxylase derived from Enterobacter cloacae was amplified by the PCR method as described below.

[0175] In the PCR, the following set of primers was synthesized based on SEQ ID NO: 34 (the dec/ECL gene of Enterobacter cloacae) with the use of "394 DNA/RNA Synthesizer" made by Applied Biosystems for cloning of the dec/ECL gene, and was used.

Primers for dec/ECL Gene Amplification

TABLE-US-00015 (SEQ ID NO: 35) (a-12); 5'-CTCT CATATG AGATTGATCGTGGGAATGAC-3' (SEQ ID NO: 36) (b-12); 5'-CTCT CATATG TTACAGCAATGGCGGAATGG-3'

[0176] Primers (a-12) and (b-12) each have an NdeI restriction enzyme site added thereto.

[0177] As the template DNA for Bacillus subtilis, the chromosomal DNA extracted from Bacillus subtilis NBRC14144 obtained from NITE Biological Resource Center (NBRC) was used.

[0178] For Lactobacillus rhamnosus, the chromosomal DNA extracted from Lactobacillus rhamnosus NBRC3425 obtained from NITE Biological Resource Center (NBRC) was used.

[0179] For Lactobacillus brevis, the chromosomal DNA extracted from Lactobacillus brevis ATCC367 obtained from American Type Culture Collection (ATCC) was used.

[0180] For Pseudomonas putida, the chromosomal DNA extracted from Pseudomonas putida ATCC47054 obtained from American Type Culture Collection (ATCC) was used.

[0181] For Escherichia coli, the chromosomal DNA extracted from Escherichia coli K-12 MG1655 was used.

[0182] For Saccharomyces cerevisiae, the chromosomal DNA extracted from Saccharomyces cerevisiae NBRC10217 obtained from NITE Biological Resource Center (NBRC) was used.

[0183] For Enterobacter cloacae, the chromosomal DNA extracted from Enterobacter cloacae NBRC13535 obtained from NITE Biological Resource Center (NBRC) was used.

[0184] Actual PCR was performed with the use of a thermal cycler, GeneAmp PCR System 9700 (made by Applied Biosystems) and TaKaRa LA Tag (made by Takara Bio, Inc.) as a reaction reagent under the conditions described below.

Reaction Mixture:

TABLE-US-00016 [0185] TaKaRa LA Taq .TM. (5 units/.mu.L) 0.5 .mu.L 10X LA PCR .TM. Buffer II 5 .mu.L (Mg.sup.2+ free) 25 mM MgCl.sub.2 5 .mu.L dNTP Mixture (2.5 mM each) 8 .mu.L Template DNA 5 .mu.L (DNA content: 1 .mu.g or less) The above 2 primers*.sup.) 0.5 .mu.L each (final conc.: 1 .mu.M) Sterile distilled water 25.5 .mu.L The above ingredients were mixed, and 50 .mu.L of the reaction mixture was subjected to PCR. *.sup.)For amplification of the dec/BS gene of Bacillus subtilis, a combination of primers (a-6) and (b-6); for amplification of the dec/LR gene of Lactobacillus rhamnosus, a combination of primers (a-7) and (b-7); for amplification of the dec/LB gene of Lactobacillus brevis, a combination of primers (a-8) and (b-8); for amplification of the dec/PP gene of Pseudomonas putida, a combination of primers (a-9) and (b-9); for amplification of the dec/EC gene of Escherichia coli, a combination of primers (a-10) and (b-10); for amplification of the dec/SC gene of Saccharomyces cervisiae, a combination of primers (a-11) and (b-11); and for amplification of the dec/ECL gene of Enterobacter cloacae, a combination of primers (a-12) and (b-12) were used.

PCR Cycle:

[0186] Denaturation step: 94.degree. C., 60 seconds Annealing step: 52.degree. C., 60 seconds Extension step: 72.degree. C.

TABLE-US-00017 Bacillus subtilis dec/BS gene 137 seconds Lactobacillus rhamnosus dec/LR gene 123 seconds Lactobacillus brevis dec/LB gene 123 seconds Pseudomonas putida dec/PP gene 45 seconds Escherichia coli dec/EC gene 94 seconds Saccharomyces cervisiae dec/SC gene 103 seconds Enterobacter cloacae dec/ECL gene 135 seconds

[0187] A cycle consisting of the above 3 steps was repeated 30 times.

[0188] With the use of 10 .mu.l of the reaction mixture produced above, 0.8% agarose gel electrophoresis was performed. As a result, detected were an about 2.3-kb DNA fragment in the case of the Bacillus subtilis dec/BS gene, an about 2.1-kb DNA fragment in the case of the Lactobacillus rhamnosus dec/LR gene, an about 2.0-kb DNA fragment in the case of the Lactobacillus brevis dec/LB gene, an about 0.6-kb DNA fragment in the case of the Pseudomonas putida dec/PP gene, an about 1.6-kb DNA fragment in the case of the Escherichia coli dec/EC gene, an about 1.7-kb DNA fragment in the case of the Saccharomyces cerevisiae dec/SC gene, and an about 2.3-kb DNA fragment in the case of the Enterobacter cloacae dec/ECL gene.

(4) Construction of Aniline-Producing Gene Expression Plasmids

[0189] Cloning of Aniline-Producing Gene to pCRB207 10 .mu.L of the about 1.7-kb DNA fragment comprising the dec/SC gene derived from Saccharomyces cerevisiae amplified by the PCR in the above (3) and 2 .mu.L of the cloning vector pCRB207 comprising a promoter PgapA were each cut with the use of restriction enzyme NcoI and processed at 70.degree. C. for 10 minutes for deactivation of the restriction enzyme. Both were mixed, and 1 .mu.L of T4 DNA ligase 10.times. buffer solution and 1 unit of T4 DNA ligase (made by Takara Bio, Inc.) were added thereto. Sterile distilled water was added thereto so that the total volume was 10 .mu.L, and the mixture was allowed to react at 15.degree. C. for 3 hours for ligation. This was named Ligation Liquid E.

[0190] With the use of the Ligation Liquid E, Escherichia coli JM109 was transformed by the calcium chloride method (Journal of Molecular Biology, 53, 159 (1970)) and was applied to LB agar medium (1% polypeptone, 0.5% yeast extract, 0.5% sodium chloride, and 1.5% agar) containing 50 .mu.g/mL of kanamycin.

[0191] A growing strain on the culture medium was subjected to liquid culture in the usual manner. Plasmid DNA was extracted from the culture medium and cut with the use of the restriction enzyme to confirm the inserted fragment. As a result, in addition to an about 5.1-kb DNA fragment of the plasmid pCRB207, an about 1.7-kb inserted fragment of the dec/SC gene derived from Saccharomyces cerevisiae (Ligation Liquid E) was confirmed.

[0192] The plasmid comprising the dec/SC gene derived from Saccharomyces cerevisiae was named pCRB207-dec/SC (FIG. 1).

Cloning of Aniline-Producing Genes to pCRB209

[0193] 10 .mu.L of the about 2.3-kb DNA fragment comprising the dec/BS gene derived from Bacillus subtilis, the about 2.1-kb DNA fragment comprising the dec/LR gene derived from Lactobacillus rhamnosus, the about 2.0-kb DNA fragment comprising the dec/LB gene derived from Lactobacillus brevis, the about 0.6-kb DNA fragment comprising the dec/PP gene derived from Pseudomonas putida, the about 1.6-kb DNA fragment comprising the dec/EC gene derived from Escherichia coli, or the about 2.3-kb DNA fragment comprising the dec/ECL gene derived from Enterobacter cloacae amplified by the PCR in the above (3) and 2 .mu.L of the cloning vector pCRB209 comprising a promoter PgapA were each cut with the use of restriction enzyme NdeI and processed at 70.degree. C. for 10 minutes for deactivation of the restriction enzyme. Both were mixed, and 1 .mu.L of T4 DNA ligase 10.times. buffer solution and 1 unit of T4 DNA ligase (made by Takara Bio, Inc.) were added thereto. Sterile distilled water was added thereto so that the total volume was 10 .mu.L, and the mixture was allowed to react at 15.degree. C. for 3 hours for ligation. The resulting liquid was named Ligation Liquid F, G, H, I, J, or K.

[0194] With the use of each of the obtained 6 kinds of Ligation Liquids F, G, H, I, J, and K, Escherichia coli JM109 was transformed by the calcium chloride method (Journal of Molecular Biology, 53, 159 (1970)) and was applied to LB agar medium (1% polypeptone, 0.5% yeast extract, 0.5% sodium chloride, and 1.5% agar) containing 50 .mu.g/mL of kanamycin.

[0195] A growing strain on the culture medium was subjected to liquid culture in the usual manner. Plasmid DNA was extracted from the culture and cut with the use of restriction enzyme to confirm the inserted fragment. As a result, in addition to an about 5.1-kb DNA fragment of the plasmid pCRB209, confirmed were an about 2.3-kb inserted fragment in the case of the dec/BS gene derived from Bacillus subtilis (Ligation Liquid F), an about 2.1-kb inserted fragment in the case of the dec/LR derived from Lactobacillus rhamnosus (Ligation Liquid G), an about 2.0-kb inserted fragment in the case of the dec/LB gene derived from Lactobacillus brevis (Ligation Liquid H), an about 0.6-kb inserted fragment in the case of the dec/PP gene derived from Pseudomonas putida (Ligation Liquid I), an about 1.6-kb inserted fragment in the case of the dec/EC gene derived from Escherichia coli (Ligation Liquid J), and an about 2.3-kb inserted fragment in the case of the dec/ECL gene derived from Enterobacter cloacae (Ligation Liquid K).

[0196] The plasmid comprising the dec/BS gene derived from Bacillus subtilis was named pCRB209-dec/BS, the plasmid comprising the dec/LR gene derived from Lactobacillus rhamnosus was named pCRB209-dec/LR, the plasmid comprising the dec/LB gene derived from Lactobacillus brevis was named pCRB209-dec/LB, the plasmid comprising the dec/PP gene derived from Pseudomonas putida was named pCRB209-dec/PP, the plasmid comprising the dec/EC gene derived from Escherichia coli was named pCRB209-dec/EC, and the plasmid comprising the dec/ECL gene derived from Enterobacter cloacae was named pCRB209-dec/ECL (FIG. 1).

(5) Construction of Transgenic Strains for Aniline-Producing Gene

[0197] With the use of the above-described 7 kinds of plasmids pCRB209-dec/BS, pCRB209-dec/LR, pCRB209-dec/LB, pCRB209-dec/PP, pCRB209-dec/EC, pCRB207-dec/SC, and pCRB209-dec/ECL, transformation of Corynebacterium glutamicum R was performed by electroporation (Agric. Biol. Chem., Vol. 54, 443-447 (1990) and Res. Microbiol., Vol. 144, 181-185 (1993)), and each strain was applied to A agar medium containing 50 .mu.g/mL of kanamycin.

[0198] A growing strain on the culture medium was subjected to liquid culture in the usual manner. Plasmid DNA was extracted from the culture and cut with the use of restriction enzyme to confirm the inserted plasmid. As a result, introduction of the above-constructed plasmids pCRB209-dec/BS, pCRB209-dec/LR, pCRB209-dec/LB, pCRB209-dec/PP, pCRB209-dec/EC, pCRB207-dec/SC, and pCRB209-dec/ECL was confirmed.

[0199] The strain to which the plasmid pCRB209-dec/BS had been introduced was named Corynebacterium glutamicum ANI-1, the strain to which the plasmid pCRB209-dec/LR had been introduced was named Corynebacterium glutamicum ANI-2, the strain to which the plasmid pCRB209-dec/LB had been introduced was named Corynebacterium glutamicum ANI-3, the strain to which the plasmid pCRB209-dec/PP had been introduced was named Corynebacterium glutamicum ANI-4, the strain to which the plasmid pCRB209-dec/EC had been introduced was named Corynebacterium glutamicum ANI-5, the strain to which the plasmid pCRB207-dec/SC had been introduced was named Corynebacterium glutamicum ANI-6, and the strain to which the plasmid pCRB209-dec/ECL had been introduced was named Corynebacterium glutamicum ANI-7.

[0200] Corynebacterium glutamicum ANI-1 was deposited in Incorporated Administrative Agency National Institute of Technology and Evaluation, NITE Patent Microorganisms Depositary (2-5-8 Kazusakamatari, Kisarazu-shi, Chiba 292-0818 Japan) under Accession Number NITE BP-1001 on Nov. 16, 2010.

Example 2

Experiment of Aniline Production from Anthranilic Acid Using Corynebacterium glutamicum Aniline-Producing Gene Transgenic Strains

[0201] Each of the Corynebacterium glutamicum ANI-1 to ANI-7 strains constructed in Example 1 was applied to A agar medium (2 g of (NH.sub.2).sub.2CO, 7 g of (NH.sub.4).sub.2SO.sub.4, 0.5 g of KH.sub.2PO.sub.4, 0.5 g of K.sub.2HPO.sub.4, 0.5 g of MgSO.sub.4.7H.sub.2O, 1 mL of 0.06% (w/v) Fe.sub.2SO.sub.4.7H.sub.2O+0.042% (w/v) MnSO.sub.4.2H.sub.2O, 1 mL of 0.02% (w/v) biotin solution, 2 mL of 0.01% (w/v) thiamin solution, 2 g of yeast extract, 7 g of vitamin assay casamino acid, 40 g of glucose, and 15 g of agar were suspended in 1 L of distilled water) containing 50 .mu.g/mL of kanamycin, and left stand in the dark at 33.degree. C. for 20 hours.

[0202] An inoculation loop of each of the Corynebacterium glutamicum ANI-1 to ANI-7 strains grown on a plate as above was inoculated into a test tube containing 10 mL of A liquid medium containing 50 .mu.g/mL of kanamycin, and aerobically cultured with shaking at 33.degree. C. for 20 hours. The bacterial cells of each strain cultured and grown as above were collected by centrifugation (15,000.times.g at 4.degree. C. for 10 minutes). The obtained bacterial cells were washed twice with 10 mL of BT liquid medium (2 g of (NH.sub.2).sub.2CO, 7 g of (NH.sub.4).sub.2SO.sub.4, 0.5 g of KH.sub.2PO.sub.4, 0.5 g of K.sub.2HPO.sub.4, 0.5 g of MgSO.sub.4.7H.sub.2O, 1 mL of 0.06% (w/v) Fe.sub.2SO.sub.4.7H.sub.2O+0.042% (w/v) MnSO.sub.4.2H.sub.2O, 1 mL of 0.02% (w/v) biotin solution, 2 mL of 0.01% (w/v) thiamin solution) and then suspended in the BT liquid medium in such a way that the bacterial cell concentration would be OD.sub.610=10. To a 15-mL centrifuge tube, the cell suspension was transferred, anthranilic acid as a substrate was added so as to be 25 mM in concentration, and the reaction was allowed to proceed under reducing conditions (the ORP of the reaction mixture: -450 mV) in a water bath kept at 33.degree. C. with stirring for 6 hours. A sample of the reaction mixture was centrifuged (15,000.times.g at 4.degree. C. for 10 minutes), and the obtained supernatant was used for quantitative determination of aniline by GC/MS.

[0203] As a result, in the reaction under reducing conditions, the Corynebacterium glutamicum ANI-1 to ANI-7 strains had produced aniline as shown in Table 1 below.

TABLE-US-00018 TABLE 1 Experiment of aniline production of Corynebacterium glutamicum ANI-1 to ANI-7 strains with use of anthranilic acid as a substrate Amount of aniline Origin of aminobenzoate production Strain Host strain decarboxylase gene (mM) ANI-1 Corynebacterium Bacillus subtilis 0.75 ANI-2 glutamicum Lactobacillus rhamnosus 0.7 ANI-3 (Wild strain) Lactobacillus brevis 0.6 ANI-4 Pseudomonas putida 0.6 ANI-5 Escherichia coli 0.5 ANI-6 Saccharomyces cerevisiae 0.5 ANI-7 Enterobacter cloacae 0.5

[0204] Without the addition of kanamycin to the culture medium, the same experiment as above was conducted using Corynebacterium glutamicum wild strain. In this case, aniline production was not observed.

Example 3

Experiment of Aniline Production from 4-Aminobenzoate Using Corynebacterium glutamicum Aniline-Producing Gene Transgenic Strains

[0205] Each of the Corynebacterium glutamicum ANI-1 to ANI-7 strains constructed in Example 1 was applied to A agar medium (2 g of (NH.sub.2).sub.2CO, 7 g of (NH.sub.4).sub.2SO.sub.4, 0.5 g of KH.sub.2PO.sub.4, 0.5 g of K.sub.2HPO.sub.4, 0.5 g of MgSO.sub.4.7H.sub.2O, 1 mL of 0.06% (w/v) Fe.sub.2SO.sub.4.7H.sub.2O+0.042% (w/v) MnSO.sub.4.2H.sub.2O, 1 mL of 0.02% (w/v) biotin solution, 2 mL of 0.01% (w/v) thiamin solution, 2 g of yeast extract, 7 g of vitamin assay casamino acid, 40 g of glucose, and 15 g of agar were suspended in 1 L of distilled water) containing 50 .mu.g/mL of kanamycin, and left stand in the dark at 33.degree. C. for 20 hours.

[0206] An inoculation loop of each of the Corynebacterium glutamicum ANI-1 to ANI-7 strains grown on a plate as above was inoculated into a test tube containing 10 mL of A liquid medium containing 50 .mu.g/mL of kanamycin, and aerobically cultured with shaking at 33.degree. C. for 20 hours. The bacterial cells of each strain cultured and grown as above were collected by centrifugation (15,000.times.g at 4.degree. C. for 10 minutes). The obtained bacterial cells were washed twice with 10 mL of BT liquid medium (2 g of (NH.sub.2).sub.2CO, 7 g of (NH.sub.4).sub.2SO.sub.4, 0.5 g of KH.sub.2PO.sub.4, 0.5 g of K.sub.2HPO.sub.4, 0.5 g of MgSO.sub.4.7H.sub.2O, 1 mL of 0.06% (w/v) Fe.sub.2SO.sub.4.7H.sub.2O+0.042% (w/v) MnSO.sub.4.2H.sub.2O, 1 mL of 0.02% (w/v) biotin solution, 2 mL of 0.01% (w/v) thiamin solution) and then suspended in BT liquid medium in such a way that the bacterial cell concentration would be OD.sub.610=10. To a 15-mL centrifuge tube, the cell suspension was transferred, 4-aminobenzoate as a substrate was added so as to be 5 mM in concentration, and the reaction was allowed to proceed under reducing conditions (the ORP of the reaction mixture: -450 mV) in a water bath kept at 33.degree. C. with stirring for 6 hours. A sample of the reaction mixture was centrifuged (15,000.times.g at 4.degree. C. for 10 minutes), and the obtained supernatant was used for quantitative determination of aniline by GC/MS.

[0207] As a result, in the reaction under reducing conditions, the Corynebacterium glutamicum ANI-1 to ANI-7 strains had produced aniline as shown in Table 2 below.

TABLE-US-00019 TABLE 2 Experiment of aniline production of Corynebacterium glutamicum ANI-1 to ANI-7 strains with use of 4-aminobenzoate as a substrate Amount of aniline Origin of aminobenzoate production Strain Host strain decarboxylase gene (mM) ANI-1 Corynebacterium Bacillus subtilis 0.7 ANI-2 glutamicum Lactobacillus rhamnosus 0.65 ANI-3 (Wild strain) Lactobacillus brevis 0.6 ANI-4 Pseudomonas putida 0.6 ANI-5 Escherichia coli 0.5 ANI-6 Saccharomyces cerevisiae 0.5 ANI-7 Enterobacter cloacae 1.25

[0208] Without the addition of kanamycin to the culture medium, the same experiment as above was conducted using Corynebacterium glutamicum wild strain. In this case, aniline production was not observed.

INDUSTRIAL APPLICABILITY

[0209] According to the process of the present invention, aniline can be produced from aminobenzoic acid with a practical efficiency using microorganisms.

Sequence CWU 1

1

3611195DNAArtificial sequencepCASE1-ori 1atgaaaaccg accgtgcacg ctcgtgtgag aaagtcagct acatgagacc aactacccgc 60cctgagggac gctttgagca gctgtggctg ccgctgtggc cattggcaag cgatgacctc 120cgtgagggca tttaccgcac ctcacggaag aacgcgctgg ataagcgcta cgtcgaagcc 180aatcccgacg cgctctctaa cctcctggtc gttgacatcg accaggagga cgcgcttttg 240cgctctttgt gggacaggga ggactggaga cctaacgcgg tggttgaaaa ccccttaaac 300gggcacgcac acgctgtctg ggcgctcgcg gagccattta cccgcaccga atacgccaaa 360cgcaagcctt tggcctatgc cgcggctgtc accgaaggcc tacggcgctc tgtcgatggc 420gatagcggat actccgggct gatcaccaaa aaccccgagc acactgcatg ggatagtcac 480tggatcaccg ataagctgta tacgctcgat gagctgcgct tttggctcga agaaaccggc 540tttatgccgc ctgcgtcctg gaggaaaacg cggcggttct cgccagttgg tctaggtcgt 600aattgcgcac tctttgaaag cgcacgtacg tgggcatatc gggaggtcag aaagcatttt 660ggagacgctg acggcctagg ccgcgcaatc caaaccaccg cgcaagcact taaccaagag 720ctgtttgatg aaccactacc tgtggccgaa gttgactgta ttgccaggtc aatccataaa 780tggatcatca ccaagtcacg catgtggaca gacggcgccg ccgtctacga cgccacattc 840accgcaatgc aatccgcacg cgggaagaaa ggctggcaac gaagcgctga ggtgcgtcgt 900gaggctggac atactctttg gaggaacatt ggctaaggtt tatgcacgtt atccacgcaa 960cggaaaaaca gcccgcgagc tggcagaacg tgccggtatg tcggtgagaa cagctcaacg 1020atggacttcc gaaccgcgtg aagtgttcat taaacgtgcc aacgagaagc gtgctcgcgt 1080ccaggagctg cgcgccaaag gtctgtccat gcgcgctatc gcggcagaga ttggttgctc 1140ggtgggcacg gttcaccgct acgtcaaaga agttgaagag aagaaaaccg cgtaa 119522675DNAArtificial sequencepHSG298 2gaggtctgcc tcgtgaagaa ggtgttgctg actcatacca ggcctgaatc gccccatcat 60ccagccagaa agtgagggag ccacggttga tgagagcttt gttgtaggtg gaccagttgg 120tgattttgaa cttttgcttt gccacggaac ggtctgcgtt gtcgggaaga tgcgtgatct 180gatccttcaa ctcagcaaaa gttcgattta ttcaacaaag ccacgttgtg tctcaaaatc 240tctgatgtta cattgcacaa gataaaaata tatcatcatg aacaataaaa ctgtctgctt 300acataaacag taatacaagg ggtgttatga gccatattca acgggaaacg tcttgctcga 360agccgcgatt aaattccaac atggatgctg atttatatgg gtataaatgg gctcgcgata 420atgtcgggca atcaggtgcg acaatctatc gattgtatgg gaagcccgat gcgccagagt 480tgtttctgaa acatggcaaa ggtagcgttg ccaatgatgt tacagatgag atggtcagac 540taaactggct gacggaattt atgcctcttc cgaccatcaa gcattttatc cgtactcctg 600atgatgcatg gttactcacc actgcgatcc ccgggaaaac agcattccag gtattagaag 660aatatcctga ttcaggtgaa aatattgttg atgcgctggc agtgttcctg cgccggttgc 720attcgattcc tgtttgtaat tgtcctttta acagcgatcg cgtatttcgt ctcgctcagg 780cgcaatcacg aatgaataac ggtttggttg atgcgagtga ttttgatgac gagcgtaatg 840gctggcctgt tgaacaagtc tggaaagaaa tgcataagct tttgccattc tcaccggatt 900cagtcgtcac tcatggtgat ttctcacttg ataaccttat ttttgacgag gggaaattaa 960taggttgtat tgatgttgga cgagtcggaa tcgcagaccg ataccaggat cttgccatcc 1020tatggaactg cctcggtgag ttttctcctt cattacagaa acggcttttt caaaaatatg 1080gtattgataa tcctgatatg aataaattgc agtttcattt gatgctcgat gagtttttct 1140aatcagaatt ggttaattgg ttgtaacact ggcagagcat tacgctgact tgacgggacg 1200gcggctttgt tgaataaatc gcattcgcca ttcaggctgc gcaactgttg ggaagggcga 1260tcggtgcggg cctcttcgct attacgccag ctggcgaaag ggggatgtgc tgcaaggcga 1320ttaagttggg taacgccagg gttttcccag tcacgacgtt gtaaaacgac ggccagtgcc 1380aagcttgcat gcctgcaggt cgactctaga ggatccccgg gtaccgagct cgaattcgta 1440atcatgtcat agctgtttcc tgtgtgaaat tgttatccgc tcacaattcc acacaacata 1500cgagccggaa gcataaagtg taaagcctgg ggtgcctaat gagtgagcta actcacatta 1560attgcgttgc gctcactgcc cgctttccag tcgggaaacc tgtcgtgcca gctgcattaa 1620tgaatcggcc aacgcgcggg gagaggcggt ttgcgtattg gcgaactttt gctgagttga 1680aggatcagat cacgcatctt cccgacaacg cagaccgttc cgtggcaaag caaaagttca 1740aaatcagtaa ccgtcagtgc cgataagttc aaagttaaac ctggtgttga taccaacatt 1800gaaacgctga tcgaaaacgc gctgaaaaac gctgctgaat gtgcgagctt cttccgcttc 1860ctcgctcact gactcgctgc gctcggtcgt tcggctgcgg cgagcggtat cagctcactc 1920aaaggcggta atacggttat ccacagaatc aggggataac gcaggaaaga acatgtgagc 1980aaaaggccag caaaaggcca ggaaccgtaa aaaggccgcg ttgctggcgt ttttccatag 2040gctccgcccc cctgacgagc atcacaaaaa tcgacgctca agtcagaggt ggcgaaaccc 2100gacaggacta taaagatacc aggcgtttcc ccctggaagc tccctcgtgc gctctcctgt 2160tccgaccctg ccgcttaccg gatacctgtc cgcctttctc ccttcgggaa gcgtggcgct 2220ttctcaatgc tcacgctgta ggtatctcag ttcggtgtag gtcgttcgct ccaagctggg 2280ctgtgtgcac gaaccccccg ttcagcccga ccgctgcgcc ttatccggta actatcgtct 2340tgagtccaac ccggtaagac acgacttatc gccactggca gcagccactg gtaacaggat 2400tagcagagcg aggtatgtag gcggtgctac agagttcttg aagtggtggc ctaactacgg 2460ctacactaga aggacagtat ttggtatctg cgctctgctg aagccagtta ccttcggaaa 2520aagagttggt agctcttgat ccggcaaaca aaccaccgct ggtagcggtg gtttttttgt 2580ttgcaagcag cagattacgc gcagaaaaaa aggatctcaa gaagatcctt tgatcttttc 2640tacggggtct gacgctcagt ggaacgatcc gtcga 2675325DNAArtificial sequencePCR primer 3atagatctag aacgtccgta ggagc 25426DNAArtificial sequencePCR primer 4atagatctga cttggttacg atggac 26527DNAArtificial sequencePCR primer 5atagatctag gtttcccgac tggaaag 27628DNAArtificial sequencePCR primer 6atagatctcg tgccagctgc attaatga 287551DNACorynebacterium glutamicum 7ccgaagatct gaagattcct gatacaaatt ctgttgtgac ggaagatttg ttggaagaaa 60tctagtcgct cgtctcataa aaacgaccga gcctattggg attaccattg aagccagtgt 120gagttgcatc acactggctt caaatctgag actttacttt gtggattcac gggggtgtag 180tgcaattcat aattagcccc attcggggga gcagatcgcg gcgcgaacga tttcaggttc 240gttccctgca aaaactattt agcgcaagtg ttggaaatgc ccccgtctgg ggtcaatgtc 300tatttttgaa tgtgtttgta tgattttgaa tccgctgcaa aatctttgtt tccccgctaa 360agttggggac aggttgacac ggagttgact cgacgaatta tccaatgtga gtaggtttgg 420tgcgtgagtt ggaaaatttc gccatactcg cccttgggtt ctgtcagctc aagaattctt 480gagtgaccga tgctctgatt gacctaactg cttgacacat tgcatttcct acaatcttta 540gaggagacac a 5518425DNAArtificial sequencerrnBT1T2 terminator 8ctgttttggc ggatgagaga agattttcag cctgatacag attaaatcag aacgcagaag 60cggtctgata aaacagaatt tgcctggcgg cagtagcgcg gtggtcccac ctgaccccat 120gccgaactca gaagtgaaac gccgtagcgc cgatggtagt gtggggtctc cccatgcgag 180agtagggaac tgccaggcat caaataaaac gaaaggctca gtcgaaagac tgggcctttc 240gttttatctg ttgtttgtcg gtgaacgctc tcctgagtag gacaaatccg ccgggagcgg 300atttgaacgt tgcgaagcaa cggcccggag ggtggcgggc aggacgcccg ccataaactg 360ccaggcatca aattaagcag aaggccatcc tgacggatgg cctttttgcg tttctacaaa 420ctctt 425931DNAArtificial sequencePCR primer 9ctctgtcgac ccgaagatct gaagattcct g 311046DNAArtificial sequencePCR primer 10ctctgtcgac ggatccccat ggtgtgtctc ctctaaagat tgtagg 461136DNAArtificial sequencePCR primer 11ctctgcatgc ccatggctgt tttggcggat gagaga 361241DNAArtificial sequencePCR primer 12ctctgcatgc tcatgaaaga gtttgtagaa acgcaaaaag g 41135118DNAArtificial sequencepCRB207 13agatctaggt ttcccgactg gaaagcgggc agtgagcgca acgcaattaa tgtgagttag 60ctcactcatt aggcacccca ggctttacac tttatgcttc cggctcgtat gttgtgtgga 120attgtgagcg gataacaatt tcacacagga aacagctatg accatgatta cgaattcgag 180ctcggtaccc ggggatcctc tagagtcgac ccgaagatct gaagattcct gatacaaatt 240ctgttgtgac ggaagatttg ttggaagaaa tctagtcgct cgtctcataa aaacgaccga 300gcctattggg attaccattg aagccagtgt gagttgcatc acactggctt caaatctgag 360actttacttt gtggattcac gggggtgtag tgcaattcat aattagcccc attcggggga 420gcagatcgcg gcgcgaacga tttcaggttc gttccctgca aaaactattt agcgcaagtg 480ttggaaatgc ccccgtctgg ggtcaatgtc tatttttgaa tgtgtttgta tgattttgaa 540tccgctgcaa aatctttgtt tccccgctaa agttggggac aggttgacac ggagttgact 600cgacgaatta tccaatgtga gtaggtttgg tgcgtgagtt ggaaaatttc gccatactcg 660cccttgggtt ctgtcagctc aagaattctt gagtgaccga tgctctgatt gacctaactg 720cttgacacat tgcatttcct acaatcttta gaggagacac accatggctg ttttggcgga 780tgagagaaga ttttcagcct gatacagatt aaatcagaac gcagaagcgg tctgataaaa 840cagaatttgc ctggcggcag tagcgcggtg gtcccacctg accccatgcc gaactcagaa 900gtgaaacgcc gtagcgccga tggtagtgtg gggtctcccc atgcgagagt agggaactgc 960caggcatcaa ataaaacgaa aggctcagtc gaaagactgg gcctttcgtt ttatctgttg 1020tttgtcggtg aacgctctcc tgagtaggac aaatccgccg ggagcggatt tgaacgttgc 1080gaagcaacgg cccggagggt ggcgggcagg acgcccgcca taaactgcca ggcatcaaat 1140taagcagaag gccatcctga cggatggcct ttttgcgttt ctacaaactc tttcatgggg 1200atccgtcgac ctgcaggcat gcaagcttgg cactggccgt cgttttacaa cgtcgtgact 1260gggaaaaccc tggcgttacc caacttaatc gccttgcagc acatccccct ttcgccagct 1320ggcgtaatag cgaagaggcc cgcaccgatc gcccttccca acagttgcgc agcctgaatg 1380gcgaatgcga tttattcaac aaagccgccg tcccgtcaag tcagcgtaat gctctgccag 1440tgttacaacc aattaaccaa ttctgattag aaaaactcat cgagcatcaa atgaaactgc 1500aatttattca tatcaggatt atcaatacca tatttttgaa aaagccgttt ctgtaatgaa 1560ggagaaaact caccgaggca gttccatagg atggcaagat cctggtatcg gtctgcgatt 1620ccgactcgtc caacatcaat acaacctatt aatttcccct cgtcaaaaat aaggttatca 1680agtgagaaat caccatgagt gacgactgaa tccggtgaga atggcaaaag cttatgcatt 1740tctttccaga cttgttcaac aggccagcca ttacgctcgt catcaaaatc actcgcatca 1800accaaaccgt tattcattcg tgattgcgcc tgagcgagac gaaatacgcg atcgctgtta 1860aaaggacaat tacaaacagg aatcgaatgc aaccggcgca ggaacactgc cagcgcatca 1920acaatatttt cacctgaatc aggatattct tctaatacct ggaatgctgt tttcccgggg 1980atcgcagtgg tgagtaacca tgcatcatca ggagtacgga taaaatgctt gatggtcgga 2040agaggcataa attccgtcag ccagtttagt ctgaccatct catctgtaac atcattggca 2100acgctacctt tgccatgttt cagaaacaac tctggcgcat cgggcttccc atacaatcga 2160tagattgtcg cacctgattg cccgacatta tcgcgagccc atttataccc atataaatca 2220gcatccatgt tggaatttaa tcgcggcttc gagcaagacg tttcccgttg aatatggctc 2280ataacacccc ttgtattact gtttatgtaa gcagacagtt ttattgttca tgatgatata 2340tttttatctt gtgcaatgta acatcagaga ttttgagaca caacgtggct ttgttgaata 2400aatcgaactt ttgctgagtt gaaggatcag atcacgcatc ttcccgacaa cgcagaccgt 2460tccgtggcaa agcaaaagtt caaaatcacc aactggtcca cctacaacaa agctctcatc 2520aaccgtggct ccctcacttt ctggctggat gatggggcga ttcaggcctg gtatgagtca 2580gcaacacctt cttcacgagg cagacctctc gacggagttc cactgagcgt cagaccccgt 2640agaaaagatc aaaggatctt cttgagatcc tttttttctg cgcgtaatct gctgcttgca 2700aacaaaaaaa ccaccgctac cagcggtggt ttgtttgccg gatcaagagc taccaactct 2760ttttccgaag gtaactggct tcagcagagc gcagatacca aatactgttc ttctagtgta 2820gccgtagtta ggccaccact tcaagaactc tgtagcaccg cctacatacc tcgctctgct 2880aatcctgtta ccagtggctg ctgccagtgg cgataagtcg tgtcttaccg ggttggactc 2940aagacgatag ttaccggata aggcgcagcg gtcgggctga acggggggtt cgtgcacaca 3000gcccagcttg gagcgaacga cctacaccga actgagatac ctacagcgtg agctatgaga 3060aagcgccacg cttcccgaag ggagaaaggc ggacaggtat ccggtaagcg gcagggtcgg 3120aacaggagag cgcacgaggg agcttccagg gggaaacgcc tggtatcttt atagtcctgt 3180cgggtttcgc cacctctgac ttgagcgtcg atttttgtga tgctcgtcag gggggcggag 3240cctatggaaa aacgccagca acgcggcctt tttacggttc ctggcctttt gctggccttt 3300tgctcacatg ttctttcctg cgttatcccc tgattctgtg gataaccgta ttaccgcctt 3360tgagtgagct gataccgctc gccgcagccg aacgaccgag cgcagcgagt cagtgagcga 3420ggaagcggaa gaagctcgca cattcagcag cgtttttcag cgcgttttcg atcaacgttt 3480caatgttggt atcaacacca ggtttaactt tgaacttatc ggcactgacg gttactgatt 3540ttgaactttt gctttgccac ggaacggtct gcgttgtcgg gaagatgcgt gatctgatcc 3600ttcaactcag caaaagttcg ccaatacgca aaccgcctct ccccgcgcgt tggccgattc 3660attaatgcag ctggcacgag atctgacttg gttacgatgg actttgaaca cgccgagggt 3720gactaaaccg ctggatttac gcggttttct tctcttcaac ttctttgacg tagcggtgaa 3780ccgtgcccac cgagcaacca atctctgccg cgatagcgcg catggacaga cctttggcgc 3840gcagctcctg gacgcgagca cgcttctcgt tggcacgttt aatgaacact tcacgcggtt 3900cggaagtcca tcgttgagct gttctcaccg acataccggc acgttctgcc agctcgcggg 3960ctgtttttcc gttgcgtgga taacgtgcat aaaccttagc caatgttcct ccaaagagta 4020tgtccagcct cacgacgcac ctcagcgctt cgttgccagc ctttcttccc gcgtgcggat 4080tgcattgcgg tgaatgtggc gtcgtagacg gcggcgccgt ctgtccacat gcgtgacttg 4140gtgatgatcc atttatggat tgacctggca atacagtcaa cttcggccac aggtagtggt 4200tcatcaaaca gctcttggtt aagtgcttgc gcggtggttt ggattgcgcg gcctaggccg 4260tcagcgtctc caaaatgctt tctgacctcc cgatatgccc acgtacgtgc gctttcaaag 4320agtgcgcaat tacgacctag accaactggc gagaaccgcc gcgttttcct ccaggacgca 4380ggcggcataa agccggtttc ttcgagccaa aagcgcagct catcgagcgt atacagctta 4440tcggtgatcc agtgactatc ccatgcagtg tgctcggggt ttttggtgat cagcccggag 4500tatccgctat cgccatcgac agagcgccgt aggccttcgg tgacagccgc ggcataggcc 4560aaaggcttgc gtttggcgta ttcggtgcgg gtaaatggct ccgcgagcgc ccagacagcg 4620tgtgcgtgcc cgtttaaggg gttttcaacc accgcgttag gtctccagtc ctccctgtcc 4680cacaaagagc gcaaaagcgc gtcctcctgg tcgatgtcaa cgaccaggag gttagagagc 4740gcgtcgggat tggcttcgac gtagcgctta tccagcgcgt tcttccgtga ggtgcggtaa 4800atgccctcac ggaggtcatc gcttgccaat ggccacagcg gcagccacag ctgctcaaag 4860cgtccctcag ggcgggtagt tggtctcatg tagctgactt tctcacacga gcgtgcacgg 4920tcggttttca ttcataatac gacatttaac caagtcagat gtttccccgg tttccggggg 4980ttcccctgaa gaacccttcc agtgcgagcg aagcgagctc ctttggccgg cgcccctcag 5040gtagccctct aaggctccca gggctccgcc cctccctgag gttggctcaa gcctcctggt 5100ggctcctacg gacgttct 51181429DNAArtificial sequencePCR primer 14ctctcatatg ctgttttggc ggatgagag 291533DNAArtificial sequencePCR primer 15ctctcatatg gtgtctcctc taaagattgt agg 33162285DNABacillus subtilis 16atgaaagcag aattcaagcg taaaggaggg ggcaaagtga aactcgttgt cggaatgaca 60ggggcaacag gggccatttt cggggtcagg ctgctgcagt ggctgaaggc cgccggagtg 120gaaacccatc tcgttgtgtc tccttgggca aacgtcacga tcaaacacga aacaggctat 180acgttacaag aagtagaaca actggccaca tacacttact cacataagga tcaggcggca 240gccatttcaa gcgggtcgtt tgataccgat ggaatgattg ttgcgccgtg cagcatgaaa 300tctctcgcaa gcattcgcac aggaatggcg gataatctgc tgacacgtgc ggcggatgtc 360atgctcaagg agagaaaaaa actcgtcctc ttaacgagag agacgccttt gaaccaaatt 420catctcgaaa atatgctagc gcttacgaaa atgggcacca tcattcttcc tccgatgccg 480gcattttata atcggccgag aagcttagag gaaatggttg accatattgt ttttagaacg 540ttggaccaat tcggcattcg gcttcctgaa gcgaagcgct ggaatgggat tgaaaaacaa 600aaaggaggag cttgatcatg gcttatcaag atttcagaga atttctcgct gcccttgaaa 660aagaaggaca gctgcttaca gtgaatgaag aggtaaagcc ggaaccggat ttaggggcct 720ccgcacgggc agccagcaat cttggcgata aaagccctgc gctcttattt aacaacattt 780acggctatca taacgcgcga attgcgatga atgtcatcgg ctcttggcca aaccatgcca 840tgatgctggg catgccgaaa gacacaccgg taaaagaaca gttttttgaa ttcgcaaagc 900gttatgacca gtttccgatg ccggtcaaac gtgaggaaac agcgccattt catgaaaatg 960aaatcacaga agatatcaat ttgttcgata tactgcctct tttcagaatt aaccagggtg 1020atggaggcta ctatttagac aaagcatgtg tcatttcccg tgatcttgag gaccctgaca 1080acttcggcaa acaaaatgtc ggcatttaca gaatgcaagt caaaggaaaa gaccgccttg 1140gcattcagcc tgtcccgcag cacgatattg caatccatct gcgccaagct gaagaacgcg 1200gcatcaacct tccggtcact attgcgctcg gctgtgagcc ggtcattaca acggcggcat 1260cgactccgct tctctatgat caatcagaat acgaaatggc aggtgcgatt caaggcgaac 1320catatcgcat cgtcaaatca aagctgtctg atcttgatgt tccgtggggc gctgaagtgg 1380tgcttgaagg tgagattatt gccggagagc gcgaatatga agggccgttc ggtgaattca 1440caggccatta ttccggcgga cgcagcatgc cgattatcaa aattaaacgc gtctatcaca 1500gaaacaatcc gatctttgaa catttatact taggcatgcc ttggacagaa tgcgattaca 1560tgatcggcat taacacatgc gtgccgcttt atcagcagtt aaaagaagcg tatccgaacg 1620aaattgtggc agtgaacgcc atgtacacac acggtttaat cgcgattgtt tccacaaaaa 1680cccgctatgg cggatttgcg aaagcggtcg gcatgcgcgc actcacaacg ccgcacggac 1740tcggctactg caaaatggtc atagtcgttg atgaggatgt cgatccattc aaccttccgc 1800aggtcatgtg ggcgctttcg accaaaatgc atccgaaaca tgatgcggtc atcattccgg 1860acttatctgt cctgccgctt gatccgggat ccaatccatc aggaatcact cacaaaatga 1920ttctcgacgc cactacaccg gttgcgccgg aaacaagagg ccattattca cagccgcttg 1980attctccgct aacaacgaaa gaatgggaac aaaaactaat ggacttaatg aataaataag 2040gaaaggatgt tcgaaatgca tacatgtcct cgatgcgact caaaaaaggg agaagtcatg 2100agcaaatcgc ctgtagaagg cgcatgggaa gtttatcagt gccaaacatg cttttttaca 2160tggagatcct gtgaaccgga aagcattaca aatcccgaaa aatacaatcc agcgtttaaa 2220attgatccaa aggaaacaga aacagcaatt gaagttccgg cggtgccgga acgaaaggct 2280tgatc 22851732DNAArtificial sequencePCR primer 17ctctcatatg aaagcagaat tcaagcgtaa ag 321829DNAArtificial sequencePCR primer 18ctctcatatg gatcaagcct ttcgttccg 29192058DNALactobacillus rhamnosus 19atgacagcat caccttggga cttaagaaaa gtattggatg aactaaaaca ggatccgcag 60caatatcatg aaacagaggt gcaagtcgat cccgatgcag agcttgctgg cgtttatcgt 120tacatcggtg ccggtgggac ggtcgaacgt ccgacacagg aaggtccggc aatgatgttt 180aacaacgttg tcggcttccc aacgacaagg gttttgatcg gtttaatggc cagtcgcaag 240cgggttggca agatgtttca ccaagactat cacacacttg gtcgattctt gaacaaagcg 300gttttaaatc ctattcaacc cgttacagtc gaagaatcag cagcgcctgc gcatgaagtc 360gttgccaagg ctagtgaccc ggactttgac attagaaaac tcgttgcagc accaaccaat 420acgccacaag atgccggccc atacatcaca tgcggcgtag ttttgggttc caatatggcc 480aaaacaatga ctgatgtgac gattcatcgc atggttttgg aagataagga tacgcttggt 540atttatatca tgcccggtgg tcgccacatt ggtcattttg ctgaagaata tgaaaaagcc 600aataagccga tgccggtgac catcaacatt ggcttggatc cggccattac cattggtgcc 660acttttgaac cgcctaccac gccgcttggc tacgatgaac taggagttgc cggagccatt 720cgccaagaac ccgtgcaact ggttcaggct gtgaccgtca atgaaaaagc cattgcgcgt 780tcagaattta cactggaagg ctatatcatg cctaacacgc gtatccaaga agatatcaat 840acccataccg gcaaagccat gccagagttt cccggctatg acggtgatgc caatccggct 900ttgcaagtga ttaaagtgac ggctgtaacc catcggcgcg atcatcccat tatgcaaagt 960gtcatcggac ctagtgaaga acatgtctcc atggccggca ttccaaccga agccagcatt 1020ttacaacttg ttgatcgtgc catccccggc aaggtcaaga atgtgtacaa tcccccagct 1080ggtggcggca aactcatgac catcatgcaa attcacaaag ataatccagc tgatgaaggg 1140attcaacgtc aagctgcatt actcgctttt tcggcattca aagaactaaa aactgtttgg 1200ctggtcgatg

atgatgtcga tatttttgac atgaatgatg tcgtctggac aatgaacacg 1260cgttttcaag gtgatcagga catcatggta ttacctggca tgcgcaacca tccgcttgat 1320ccgtcagaac gaccgcaata tgatcccaag tctattcggg tacgcggaat gagttcgaag 1380acggtcattg atggtaccgt accatttgat atgcgcgatc aattcaaacg agcagccttt 1440aaaaaagttt ccgactggca aaaatatttg aaataggtga ttgaattgaa acgtattatc 1500gtagggatta ccggggcatc cggaactatt tacgctgtta acctgctcca gcatttacat 1560cgcctgcctg atgtcgaagt tcatttggtg atgagtgctt gggcaaagca aaacctgtca 1620cttgagaccg acatgaaaca aagcgaactc gaagctttgg cggattatgt ttatcctgtt 1680caaaaccaag gggcaaccat tgcaagcggc agttttttaa ccgatgcaat ggtcattgtt 1740ccggcaagca tgaaaaccat tgcgggcatt gcgatgggct ttgatgataa tctcattgga 1800cgagcagccg atgtcacgat taaagaacag cggcaattga ttattgtgcc gcgggaaaca 1860ccgcttagtc caattcatct ggataacctc gctaaactag cccacattgg cgttcaaatc 1920attccgccta ttccagcttt ctatcagcat ccccaaacca tccaggattt aattgagcat 1980cacaccatga aactattaga cgccttgcat attaaaaccg aaaccgctag tcgctggaat 2040ggagcgtcgt taagatga 20582026DNAArtificial sequencePCR primer 20ctctcatatg acagcatcac cttggg 262132DNAArtificial sequencePCR primer 21ctctcatatg tcatcttaac gacgctccat tc 32222045DNALactobacillus brevis 22atggtaaatg atccttatga tttacgaaaa gtattggccg agctaaaaac ccatgccaac 60cagtaccatg agacgaacgt agctgtgaat ccaaatgctg aattggctgg tgtttaccgc 120tatattggtg ctggagggac ggtaaaacgg ccgacgcaag aaggtccagc aatgatgttt 180aataacgttg aaggcttctc cgatacgaaa gtcctaatgg gattaatggc aaatcggcga 240cgagtggggc tcatgttcca tcatgattac caaaccctgg gaaaatttct aaatacagcg 300gttgaaaaac caatcccccc agtgatggtt actgacgcac ctacccacga ggtggttcac 360aaggccactg atccggactt tgatattcgt aaactcgttg cagcacctac gaatacaccg 420gaggacgcgg gaccttacat tacagtgggt gtcgtgttgg gatctaatat ggccaagact 480atgtcagatg tgacgattca ccgaatggtt ctagaagata aagacaagtt agggatttac 540attatgcctg gcggtcggca tattggtgcc tttgctaaag aatacgaggc cgctaataaa 600ccgatgccca tcacgattaa tattgggtta gatccggcca ttacgattgg gtgcaccttt 660gagccaccaa ctacaccatt ggggtataac gagctggggg tggctggtgc gatccgacaa 720gaagctgtgg gtctgaccaa agcgctaacc gttgatgaga atgctattgc ccgttctgaa 780ttcacgttgg aagggtatat catgcccaac gaacggatgc aagaggatat caatacccag 840acaggtaagg caatgcctga atttccgggt tacgacggtg atgctaatcc agccgtacag 900gtcattaaag taacggctgt cactcaccgg aagcatccaa ttatgcaaag tgtgattggg 960ccatccgaag agcatgtcag catggcagga attcccaccg aagcgagcat cttagaatta 1020acggatcgcg ctatcccggg taaagtttta aatgtttata atccacctgc aggcggagga 1080aaactgatga caattatgca gatccataag gatgatgcgg ccgatgaagg tattcagcgg 1140caagcagcac tgctggcatt ttcggcgttc aaagagttga agacagttat tttggtggat 1200gaagacgttg atatttttga tatgaacgat gtaatgtgga ccgtgaatac gcgtttccag 1260gccgatcagg atttaatgat attaccgggg atgcggaatc acccactgga cccgtcggaa 1320cgaccagagt atgatctgaa atctattcga acgcgaggca tgtcatcgaa gttggtgatt 1380gatggcacgg taccctttga tatgagggaa caatttgaac gcgcgaagtt taagccagtt 1440gctgactggg aaaaatattt gaaataaaag ggtgatggct gatgaaacgg attgtgattg 1500gggtgactgg tgcgtccggt acgatttacg cgattgattt gttaaaaaag ttacgggata 1560agccaggcgt tgaaacacat ttggtaatga gtccgtgggc caccaaaaac ttggcactag 1620aaacaagtta tacattagcc caagttaaag cgatggccga ctacacgtac agtgatcggg 1680accaaggggc taagattgct agcggttcat tcctacacga tgggatggtt attgttcccg 1740ctagcatgaa aacggtggcg ggtgttgcct atgggtttgg cgataatcta attgcgcggg 1800ctgccgatgt aactattaag gaacatcgac aattgatcat tgtcccacgg gaaacgccac 1860tgagtgtgat tcatctagag aatttaacga aactagccaa actaggcgcg caaattattc 1920cacctattcc cgccttttat aatcagccac aaaccattca agacttagtg gatcatcaga 1980ctatgaaggt actgggtgca tttggcattc agcaagtgac cgctaagcgt tgggagggag 2040attag 20452338DNAArtificial sequencePCR primer 23ctctcatatg gtaaatgatc cttatgattt acgaaaag 382428DNAArtificial sequencePCR primer 24ctctcatatg ctaatctccc tcccaacg 2825630DNAPseudomonas putida 25atgaacgggc cggaacgcat caccctggcc atgacgggcg cctcgggtgc ccagtatggc 60cttcgcctgc tcgattgcct ggtacgcgaa gaccgcgagg tgcacttcct gatttccaag 120gccgcacagt tggtgatggc caccgagacg gatgttgtgt tgccggccaa gccccaggcg 180atgcaggcct tcctgaccga atacaccggc gcggccgacg ggcagatccg tgtgtatggc 240aaggaagact ggatgtcgcc ggtagcctcg ggttctggcg ccccggcggc aatggtggtg 300gtcccctgtt ccactggcac cttgtcggcc attgccactg gcgcctgcaa caacctgatc 360gagcgtgctg ccgacgttac cctcaaggag cgtcgccagc tgatcctggt gccacgcgaa 420gcgccattct ccaccatcca cctggaaaac atgctcaagc tgtcgcaaat gggcgcggtg 480atcctgccgg cggcaccggg gttctatcac cagccgcaga ccatcgacga cctggtcgac 540tttgtcgtgg cgcgtatcct caacctgctg aacatccccc aggatatgtt gccgcgttgg 600ggcgagcacc acttcggggt ggatgattga 6302623DNAArtificial sequencePCR primer 26ctctcatatg aacgggccgg aac 232729DNAArtificial sequencePCR primer 27ctctcatatg tcaatcatcc accccgaag 29281574DNAEscerichia coli 28atgtcttccc gcaataatcc ggcgcgtgtc gccatcgtga tggggtccaa aagcgactgg 60gctaccatgc agttcgccgc cgaaatcttc gaaatcctga atgtcccgca ccacgttgaa 120gtggtttctg ctcaccgcac ccccgataaa ctgttcagct tcgccgaaag cgccgaagag 180aacggttatc aggtgattat tgcgggcgca ggcggcgcag cgcatctgcc aggcatgatt 240gccgccaaaa cgctggtgcc ggtgctgggc gtgccagtac agagcgccgc actgagcggt 300gtcgatagcc tctactccat cgtacaaatg ccgcgcggca ttccggtggg tacgctggcg 360attggtaaag ctggcgcggc aaacgcggcg ttactggcag cacaaattct tgcgactcat 420gataaagaac tgcaccagcg tctgaatgac tggcgcaaag cccagaccga cgaagtgctg 480gaaaacccgg acccgcgagg tgcggcatga aacaggtttg cgtcctcggt aacgggcagt 540taggccgtat gctgcgtcag gcaggcgaac cgttaggcat tgctgtctgg ccagtcgggc 600tggacgctga accggcggcg gtgccttttc aacaaagcgt gattaccgct gagatagaac 660gctggccgga aaccgcatta acccgcgagc tggcgcgcca tccggccttt gtgaaccgcg 720atgtgttccc gattattgct gaccgtctga ctcagaagca gcttttcgat aagctccacc 780tgccgactgc accgtggcag ttacttgccg aacgcagcga gtggcctgcg gtgtttgatc 840gtttaggtga gctggcgatt gttaagcgtc gcactggtgg ttatgacggt cgcggtcaat 900ggcgtttacg cgcaaatgaa accgaacagt taccggcaga gtgttacggc gaatgtattg 960tcgagcaggg cattaacttc tctggtgaag tgtcgctggt tggcgcgcgc ggctttgatg 1020gcagcaccgt gttttatccg ctgacgcata acctgcatca ggacggtatt ttgcgcacca 1080gcgtcgcttt tccgcaggcc aacgcacagc agcaggcgca agccgaagag atgctgtcgg 1140cgattatgca ggagctgggc tatgtgggcg tgatggcgat ggagtgtttt gtcaccccgc 1200aaggtctgtt gatcaacgaa ctggcaccgc gtgtgcataa cagcggtcac tggacacaaa 1260acggtgccag catcagccag tttgagctgc atctgcgggc gattaccgat ctgccgttac 1320cgcaaccagt ggtgaataat ccgtcggtga tgatcaatct gattggtagc gatgtgaatt 1380atgactggct gaaactgccg ctggtgcatc tgcactggta cgacaaagaa gtccgtccgg 1440ggcgtaaagt ggggcatctg aatttgaccg acagcgacac atcgcgtctg actgcgacgc 1500tggaagcctt aatcccgctg ctgccgccgg aatatgccag cggcgtgatt tgggcgcaga 1560gtaagttcgg ttaa 15742928DNAArtificial sequencePCR primer 29ctctcatatg tcttcccgca ataatccg 283031DNAArtificial sequencePCR primer 30ctctcatatg ttaaccgaac ttactctgcg c 31311716DNASaccharomyces cerevisiae 31atggattcta gaacagttgg tatattagga gggggacaat tgggacgtat gattgttgag 60gcagcaaaca ggctcaacat taagacggta atactagatg ctgaaaattc tcctgccaaa 120caaataagca actccaatga ccacgttaat ggctcctttt ccaatcctct tgatatcgaa 180aaactagctg aaaaatgtga tgtgctaacg attgagattg agcatgttga tgttcctaca 240ctaaagaatc ttcaagtaaa acatcccaaa ttaaaaattt acccttctcc agaaacaatc 300ggattgatac aagacaaata tattcaaaaa gagcatttaa tcaaaaatgg tatagcagtt 360acccaaagtg ttcctgtgga acaagccagt gagacgtccc tattgaatgt tggaagagat 420ttgggttttc cattcgtctt gaaatcgagg actttggcat acgatggaag aggtaacttc 480gttgtaaaga ataaggaaat gattccggaa gctttggaag tactgaagga tcgtcctttg 540tacgccgaaa aatgggcacc atttactaaa gaattagcag tcatgattgt gagatctgtt 600aacggtttag tgttttctta cccaattgta gagactatcc acaaggacaa tatttgtgac 660ttatgttatg cgcctgctag agttccggac tccgttcaac ttaaggcgaa gttgttggca 720gaaaatgcaa tcaaatcttt tcccggttgt ggtatatttg gtgtggaaat gttctattta 780gaaacagggg aattgcttat taacgaaatt gccccaaggc ctcacaactc tggacattat 840accattgatg cttgcgtcac ttctcaattt gaagctcatt tgagatcaat attggatttg 900ccaatgccaa agaatttcac atctttctcc accattacaa cgaacgccat tatgctaaat 960gttcttggag acaaacatac aaaagataaa gagctagaaa cttgcgaaag agcattggcg 1020actccaggtt cctcagtgta cttatatgga aaagagtcta gacctaacag aaaagtaggt 1080cacataaata ttattgcctc cagtatggcg gaatgtgaac aaaggcttaa ctacattaca 1140ggtagaactg atattccaat caaaatctct gtcgctcaaa agttggactt ggaagcaatg 1200gtcaaaccat tggttggaat catcatggga tcagactctg acttgccggt aatgtctgcc 1260gcatgtgcgg ttttaaaaga ttttggcgtt ccatttgaag tgacaatagt ctctgctcat 1320agaactccac ataggatgtc agcatatgct atttccgcaa gcaagcgtgg aattaaaaca 1380attatcgctg gagctggtgg ggctgctcac ttgccaggta tggtggctgc aatgacacca 1440cttcctgtca tcggtgtgcc cgtaaaaggt tcttgtctag atggagtaga ttctttacat 1500tcaattgtgc aaatgcctag aggtgttcca gtagctaccg tcgctattaa taatagtacg 1560aacgctgcgc tgttggctgt cagactgctt ggcgcttatg attcaagtta tacaacaaaa 1620atggaacagt ttttattgaa gcaagaagaa gaagttcttg tcaaagcaca aaagttagaa 1680actgtcggtt acgaagctta tctagaaaac aagtaa 17163234DNAArtificial sequencePCR primer 32ctctccatgg attctagaac agttggtata ttag 343339DNAArtificial sequencePCR primer 33ctctccatgg ttacttgttt tctagataag cttcgtaac 39342252DNAEnterobacter cloacae 34atgagattga tcgtgggaat gacgggagca acaggtgctc cgctgggtgt ggctttactg 60caggcgttac gtgacatgcc agaggttgaa acccatctgg tgatgtcgaa atgggcgaaa 120accaccattg agctggaaac gccttatacc gcgcaggatg tcgccgccct ggcagatgtc 180gttcacagtc ctgccgatca ggctgccacc atctcctccg gctcgtttcg taccgacggc 240atgatcgtca ttccctgcag catgaaaacg ctggcgggta tccgcgcggg ctatgccgaa 300gggctggtgg gccgtgcggc agacgtggtg ctgaaagagg ggcgcaagct ggtgctggtc 360ccgcgtgaaa cgccgctcag caccattcat ctggagaaca tgctcgcgct ttcccgcatg 420ggggtggcga tggtgccgcc catgcctgcg tattacaacc acccgcaaac cgccgatgat 480atcacccagc atatcgtgac ccgcgtactc gaccagtttg gtctggagca caaaaaggcg 540cgtcgctgga acggcctgca ggcggcgaaa catttttcac aggagaataa cgatggcatt 600tgatgatttg agaagcttcc tgcaggcgct agatgagcaa gggcaactgc tgaaaattga 660agaagaggtc aatgcggagc cggatctggc ggcggccgct aacgcgacgg gacgtatcgg 720tgatggtgcg cctgcgctgt ggttcgataa cattcgcggg tttaccgatg ccagggtggt 780gatgaacacc atcggctcct ggcagaacca cgccatttcg atggggctgc cggcgaatac 840cccggtcaaa aagcagatcg atgagtttat tcgccgctgg gataaattcc cggtcgcacc 900ggagcgccgg gccaaccccg catgggcgca gaatacggtg gacggtgagg agattaacct 960gttcgacatc ctgccgctgt ttcgcctgaa cgacggggac ggcggttttt atctcgacaa 1020agcgtgcgtt gtctcgcgcg atccgctcga cccggaccat ttcggcaagc agaacgtcgg 1080tatttaccgc atggaagtga agggcaaacg taagctcggc ctgcagccgg tgccgatgca 1140tgatatcgcc ctgcatctgc ataaagccga agagcgtggt gaagacctgc cgattgcgat 1200tacgttgggc aacgatccga tcatcaccct gatgggcgca acgccgctga aatacgatca 1260gtccgagtat gaaatggccg gggcgctgcg tgaaagcccg tacccgattg cgaccgcgcc 1320gttgaccggc ttcgatgtgc cgtgggggtc tgaagtgatc ctggaagggg tgattgaagg 1380ccgtaaacgt gaaattgaag ggccgttcgg tgagtttacc gggcactatt cgggcggacg 1440caatatgacg gtggtccgta ttgataaagt ctcgtaccgc accaaaccga ttttcgaatc 1500cctctatctc gggatgccct ggaccgagat cgactacctg atggggccag ccacctgtgt 1560gccgctttac cagcaactga aagcggagtt ccctgaagtg caggcggtga acgcgatgta 1620tacccacggt ctgctggcga tcatctccac caaaaaacgc tacggtggtt ttgcccgcgc 1680ggtcggttta cgcgccatga ccacgccgca tggcctgggc tatgtgaaga tggtgattat 1740ggtggatgaa gatgtcgatc cgttcaacct gccgcaggtg atgtgggcgc tgtcatcaaa 1800agtgaacccg gcaggggatc tggtgcagct gccgaacatg tcggttcttg agcttgatcc 1860tgggtccagc ccggcaggca tcaccgacaa gctgattatt gatgccacca cgcctgttgc 1920gccggataac cgcggtcact acagccagcc ggtgcaggat ttacctgaaa ccaaagcctg 1980ggctgaaaag ctgactgcga tgctggcagc acgccaataa ggaggaaaag atgatttgtc 2040cacgttgtgc cgatgagcaa attgaggtga tggccacatc accggtgaaa gggatctgga 2100cggtttatca gtgccagcat tgcctgtata cctggcgcga tactgagccg ctgcgtcgta 2160ccagccgcga acattaccct gaagcgttcc gcatgacgca gaaggatatt gatgaggcgc 2220cgcaggtacc gaccattccg ccattgctgt aa 22523530DNAArtificial sequencePCR primer 35ctctcatatg agattgatcg tgggaatgac 303630DNAArtificial sequencePCR primer 36ctctcatatg ttacagcaat ggcggaatgg 30

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed