Combination Therapies For B-cell Lymphomas Comprising Administration Of Anti-cd20 Antibody

Grillo-Lopez; Antonio J.

Patent Application Summary

U.S. patent application number 13/868753 was filed with the patent office on 2013-10-17 for combination therapies for b-cell lymphomas comprising administration of anti-cd20 antibody. The applicant listed for this patent is Biogen Idec, Inc.. Invention is credited to Antonio J. Grillo-Lopez.

Application Number20130273039 13/868753
Document ID /
Family ID22256115
Filed Date2013-10-17

United States Patent Application 20130273039
Kind Code A1
Grillo-Lopez; Antonio J. October 17, 2013

COMBINATION THERAPIES FOR B-CELL LYMPHOMAS COMPRISING ADMINISTRATION OF ANTI-CD20 ANTIBODY

Abstract

New combined therapeutic regimens for treatment of B-cell lymphomas are disclosed which comprise, in particular, administration of anti-CD20 antibodies to patients having low-, intermediate- or high-grade non-Hodgkin's lymphomas.


Inventors: Grillo-Lopez; Antonio J.; (Rancho Santa Fe, CA)
Applicant:
Name City State Country Type

Biogen Idec, Inc.

Weston

MA

US
Family ID: 22256115
Appl. No.: 13/868753
Filed: April 23, 2013

Related U.S. Patent Documents

Application Number Filing Date Patent Number
13524837 Jun 15, 2012
13868753
11840956 Aug 18, 2007 8329172
13524837
10196732 Jul 17, 2002
11840956
09372202 Aug 11, 1999 6455043
10196732
60096180 Aug 11, 1998

Current U.S. Class: 424/133.1
Current CPC Class: A61K 38/2013 20130101; A61K 38/193 20130101; C02F 1/003 20130101; A61P 35/04 20180101; C02F 2307/02 20130101; A61K 39/39541 20130101; A61P 35/00 20180101; A61K 51/1027 20130101; A61P 35/02 20180101; A61K 2039/545 20130101; A61K 39/39541 20130101; A61K 31/704 20130101; A61K 31/573 20130101; A61K 51/1069 20130101; A61K 39/39558 20130101; C07K 2317/24 20130101; C07K 2317/77 20130101; C07K 16/3061 20130101; A61P 43/00 20180101; A61K 2300/00 20130101; A61K 38/212 20130101; A61K 38/217 20130101; A61K 31/675 20130101; C07K 2317/56 20130101; C07K 16/2887 20130101; A61K 2039/505 20130101; A61K 31/475 20130101; A61P 37/00 20180101
Class at Publication: 424/133.1
International Class: A61K 39/395 20060101 A61K039/395

Claims



1. A method of treating a B-cell lymphoma patient comprising administering rituximab to the patient, monitoring for adverse events during therapy and discontinuing therapy if a grade 3 or grade 4 adverse event occurs in the patient, and wherein the adverse event is grade 3 or grade 4 arrhythmia.
Description



CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is a continuation of U.S. patent application Ser. No. 13/524,837 filed Jun. 15, 2012, which is a divisional application of U.S. patent application Ser. No. 11/840,956, filed Aug. 18, 2007 (now U.S. Pat. No. 8,329,172 issued Dec. 11, 2012) which is a continuation of U.S. patent application Ser. No. 10/196,732, filed Jul. 17, 2002 (abandoned), which is a continuation of U.S. patent application Ser. No. 09/372,202, filed Aug. 11, 1999, (now U.S. Pat. No. 6,455,043 issued Sep. 24, 2002) which claims priority under 35 U.S.C. Section 119(e) and the benefit of U.S. Provisional Application Ser. No. 60/096,180 filed Aug. 11, 1998, the disclosures of which are incorporated herein by reference in their entireties.

FIELD OF THE INVENTION

[0002] The invention relates to the use of anti-CD20 antibodies or fragments thereof in the treatment of B-cell lymphomas, particularly the use of such antibodies and fragments in combined therapeutic regimens.

BACKGROUND OF THE INVENTION

[0003] The use of antibodies to the CD20 antigen as diagnostic and/or therapeutic agents for B-cell lymphoma has previously been reported. CD20 is a useful marker or target for B-cell lymphomas as this antigen is expressed at very high densities on the surface of malignant B-cells, i.e., B-cells wherein unabated proliferation can lead to B-cell lymphomas.

[0004] CD20 or Bp35 is a B-lymphocyte-restricted differentiation antigen that is expressed during early pre-B-cell development and remains until plasma cell differentiation. It is believed by some that the CD20 molecule may regulate a step in the B-cell activation process which is required for cell cycle initiation and differentiation. Moreover, as noted, CD20 is usually expressed at very high levels on neoplastic ("tumor") B-cells. The CD20 antigen is appealing for targeted therapy, because it does not shed, modulate, or internalize.

[0005] Previous reported therapies involving anti-CD20 antibodies have involved the administration of a therapeutic anti-CD20 antibody either alone or in conjunction with a second radiolabeled anti-CD20 antibody, or a chemotherapeutic agent.

[0006] In fact, the Food and Drug Administration has approved the therapeutic use of one such anti-CD20 antibody, RITUXAN.RTM., for use in relapsed and previously treated low-grade non-Hodgkin's lymphoma (NHL). Also, the use of RITUXAN.RTM. in combination with a radiolabeled murine anti-CD20 antibody has been suggested for the treatment of B-cell lymphoma.

[0007] However, while anti-CD20 antibodies and, in particular, RITUXAN.RTM. (U.S.; in Britain, MABTHERA.RTM.; in general Rituximab), have been reported to be effective for treatment of B-cell lymphomas, such as non-Hodgkin's lymphoma, the treated patients are often subject to disease relapse. Therefore, it would be beneficial if more effective treatment regimens could be developed. More specifically, it would be advantageous if anti-CD20 antibodies had a beneficial effect in combination with other lymphoma treatments, and if new combined therapeutic regimens could be developed to lessen the likelihood or frequency of relapse. Also, it would be helpful if current treatment protocols for B-cell lymphoma were improved whereby patients with lymphomas which are refractory to other treatment methods could be treated with chimeric or radiolabeled anti-CD20 antibodies. It would also be helpful if treatment with anti-CD20 antibodies, particularly in combination with other treatments, could be used as therapy for other types of lymphoma besides low grade, follicular non-Hodgkin's lymphoma (NHL).

SUMMARY OF THE INVENTION

[0008] The present invention discloses combined therapeutic treatments for B-cell lymphomas, and reports the benefits of treating relapsed or refractory B-cell lymphomas with chimeric and radiolabeled anti-CD20 antibodies. In particular, it has been found that treatment with anti-CD20 antibody provides a beneficial synergistic effect when administered in combination with cytokines, radiotherapy, myeloablative therapy, or chemotherapy. Surprisingly, patients who had prior bone marrow or stem cell transplantation had an unexpected increase in the over-all response rate when compared with patients with no prior therapy.

BRIEF DESCRIPTION OF THE FIGURES

[0009] FIG. 1. Time to progression (TTP) for all 151 assessable patients and TTP for 76 responders (CR or PR). Kaplan-Meier projected overall median TTP is 9.0 months (95% confidence interval [CI], 6.7 to 11.4); projected TTP for responders is 12.5 months (95% CI, 11.0 to 16.0).

[0010] FIG. 2. Adverse events attributed to antibody, or cause unknown, stratified by infusion number. As depicted by solid and white shading, 96% of events were grade 1 or 2.

DETAILED DESCRIPTION OF THE INVENTION

[0011] This invention encompasses combined therapeutic regimens for the treatment of B-cell lymphomas. In general, such methods include a method for treating relapsed B-cell lymphoma, where a patient having prior treatment for lymphoma has relapsed and is administered a therapeutically effective amount of a chimeric anti-CD20 antibody. Such prior treatments can include, for example, previous treatment with anti-CD20 antibodies, treatments which included a bone marrow or stem cell transplantation, radiotherapy and chemotherapy. The previous chemotherapy may be selected from a wide group of chemotherapeutic agents and combination regimens, including CHOP, ICE, Mitozantrone, Cytarabine, DVP, ATRA, Idarubicin, hoelzer chemotherapy regime, La La chemotherapy regime, ABVD, CEOP, 2-CdA, FLAG & IDA with or without subsequent G-CSF treatment), VAD, M & P, C-Weekly, ABCM, MOPP and DHAP.

[0012] Also included in the methods of the invention are methods for treating a subject having B-cell lymphoma wherein the subject is refractory for other therapeutic treatments, including all those listed above, i.e., treatment with chimeric anti-CD20 antibody, treatments which included a bone marrow or stem cell transplantation, radiotherapy and chemotherapy. In particular, encompassed are methods of treating a patient who has not exhibited appreciable tumor remission or regression after administration of a chimeric anti-CD20 antibody, comprising administering to said patient a radiolabeled anti-CD20 antibody.

[0013] In particular, the methods of treating a patient with a radiolabeled antibody after a chimeric antibody are performed whereby the radiolabeled anti-CD20 antibody is administered from about one week to about two years after said administration of said chimeric anti-CD20 antibody. More particularly, the radiolabeled anti-CD20 antibody is administered from about one week to about nine months after said administration of said chimeric anti-CD20 antibody.

[0014] While any anti-CD20 antibodies can be used for the methods of the present invention, a preferred chimeric antibody is C2B8 (IDEC Pharmaceuticals, Rituximab). A preferred radiolabeled antibody is Y2B8, which is a murine antibody labeled with yttrium-90 (.sup.90Y). However, antibodies with other radiolabels may be used, particularly those labeled with a beta or alpha isotope. Anti-CD 19 antibodies may also be used.

[0015] One of skill in the art would know the parameters for choosing a particular type of anti-CD20 antibody. For instance, chimeric and humanized antibodies are beneficial for decreased immunogenicity, and for facilitating antibody effector mediated immune reactions via the human constant region domains. Murine and other mammalian antibodies, in contrast, are beneficial for delivering a radiolabel to the tumor cell, as such antibodies generally have a decreased half-life in vivo.

[0016] Antibody treatments performed initially to which patients are refractory or have relapsed may include initial treatments with chimeric antibodies or mammalian antibodies. Also encompassed are initial treatments with other antibodies, including anti-CD19 antibodies and anti-Lym antibodies, and treatments with antibodies labeled with cytotoxic moieties, such as toxins, and radiolabels, e.g., ONCOLYM.RTM. (Techniclone) or BEXXAR.RTM. (Coulter).

[0017] It should be clear that the combined therapeutic regimens of the present invention can be performed whereby said therapies are given simultaneously, i.e., the anti-CD20 antibody is administered concurrently or within the same time frame (i.e., the therapies are going on concurrently, but the agents are not administered precisely at the same time). The anti-CD20 antibodies of the present invention may also be administered prior to or subsequent to the other therapies. Sequential administration may be performed regardless of whether the patient responds to the first therapy to decrease the possibility of remission or relapse.

[0018] The combined therapies of the present invention include a method for treating B-cell lymphoma comprising administering at least one chimeric anti-CD20 antibody and at least one cytokine. In particular, the invention includes a method for treating B-cell lymphoma comprising administering a synergistic therapeutic combination comprising at least one anti-CD20 antibody and at least one cytokine, wherein the therapeutic effect is better than the additive effects of either therapy administered alone. Preferred cytokines are selected from the group consisting of alpha interferon, gamma interferon, IL-2, GM-CSF and G-CSF. Again, the anti-CD20 antibody and the cytokine(s) may be administered sequentially, in either order, or in combination.

[0019] Also included in the present invention is a method for treating B-cell lymphoma comprising administering to a patient a therapeutically effective amount of a chimeric anti-CD20 antibody before, during or subsequent to a chemotherapeutic regimen. Such a chemotherapy regimen may be selected from the group consisting of, at the very least, CHOP, ICE, Mitozantrone, Cytarabine, DVP, ATRA, Idarubicin, hoelzer chemotherapy regime, La La chemotherapy regime, ABVD, CEOP, 2-CdA, FLAG & IDA with or without subsequent G-CSF treatment), VAD, M & P, C-Weekly, ABCM, MOPP and DHAP.

[0020] Also encompassed are methods for treating B-cell lymphoma comprising administering to a patient a therapeutically effective amount of a chimeric anti-CD20 antibody before, during or subsequent to a bone marrow or peripheral stem cell transplant. Such bone marrow transplant may also be accompanied by other therapeutic regimens such as chemotherapy. The antibodies of the present invention may also be used in a method of reducing residual CD20+ tumor cells in bone marrow or stem cells before or after myeloablative therapy by administering to a patient a chimeric anti-CD20 antibody. It may also be possible to use such antibodies in vitro to induce apoptosis of tumor cells and reduce or cure bone marrow or stem cell preparations of residual tumor cells before they are infused back into the patient.

[0021] It should be understood that stem cell transplants may be allogeneic or autologous. If the transplant is allogeneic, i.e., from another person, the disclosed therapeutic regimens may include treatments with immunosuppressive drugs before administration of the anti-CD20 antibodies. Coadministration of other drugs designed to enhance acceptance of the transplant and stimulate the production and differentiation of immune cells is also contemplated. For instance, it has been shown that administration of GM-CSF to marrow transplant recipients promotes the development of specific bone marrow cells which in turn produces circulating infection-fighting neutrophils, and increased the survival rate of marrow transplant recipients.

[0022] The methods of the present invention may be used to treat a variety of B-cell lymphomas, including low grade/follicular non-Hodgkin's lymphoma (NHL), small lymphocytic (SL) NHL, intermediate grade/follicular NHL, intermediate grade diffuse NHL, high grade immunoblastic NHL, high grade lymphoblastic NHL, high grade small non-cleaved cell NHL, bulky disease NHL and Waldenstrom's Macroglobulinemia. It should be clear to those of skill in the art that these lymphomas will often have different names due to changing systems of classification, and that patients having lymphomas classified under different names may also benefit from the combined therapeutic regimens of the present invention.

[0023] For instance, a recent classification system proposed by European and American pathologists is called the Revised European American Lymphoma (REAL) Classification. This classification system recognizes Mantle cell lymphoma and Marginal cell lymphoma among other peripheral B-cell neoplasms, and separates some classifications into grades based on cytology, i.e., small cell, mixed small and large, large cell. It will be understood that all such classified lymphomas may benefit from the combined therapies of the present invention.

[0024] The U.S. National Cancer Institute (NCl) has in turn divided some of the REAL classes into more clinically useful "indolent" or "aggressive" lymphoma designations. Indolent lymphomas include follicular cell lymphomas, separated into cytology "grades," diffuse small lymphocytic lymphoma/chronic lymphocytic leukemia (CLL), lymphoplasmacytoid/Waldenstrom's Macroglobulinemia, Marginal zone lymphoma and Hairy cell leukemia. Aggressive lymphomas include diffuse mixed and large cell lymphoma, Burkitt's lymphoma/diffuse small non-cleaved cell lymphoma, Lymphoblastic lymphoma, Mantle cell lymphoma and AIDS-related lymphoma. These lymphomas may also benefit from the combined therapeutic regimens of the present invention.

[0025] Non-Hodgkin's lymphoma has also been classified on the basis of "grade" based on other disease characteristics including low-grade, intermediate-grade and high-grade lymphomas. Low-grade lymphoma usually presents as a nodal disease, and is often indolent or slow-growing. Intermediate- and high-grade disease usually presents as a much more aggressive disease with large extranodal bulky tumors. Intermediate- and high-grade disease, as well as low grade NHL, may benefit from the combined therapeutic regimens of the present invention.

[0026] The Ann Arbor classification system is also commonly used for patients with NHL. In this system, stages I, II, III, and IV of adult NHL can be classified into A and B categories depending on whether the patient has well-defined generalized symptoms (B) or not (A). The B designation is given to patients with the following symptoms: unexplained loss of more than 10% body weight in the 6 months prior to diagnosis, unexplained fever with temperatures above 38.degree. C. and drenching night sweats.

Occasionally, specialized staging systems are used: Stage I--involvement of a single lymph node region or localized involvement of a single extralymphatic organ or site. Stage II--involvement of two or more lymph node regions on the same side of the diaphragm or localized involvement of a single associated extralymphatic organ or site and its regional lymph nodes with or without other lymph node regions on the same side of the diaphragm. Stage III--involvement of lymph node regions on both sides of the diaphragm, possibly accompanying localized involvement of an extralymphatic organ or site, involvement of the spleen, or both. Stage IV--disseminated (multifocal) involvement of 1 or more extralymphatic sites with or without associated lymph node involvement or isolated extralymphatic organ involvement with distant (non-regional) nodal involvement. For further details, see The International Non-Hodgkin's Lymphoma Prognostic Factors Project: A predictive model for aggressive non-Hodgkin's lymphoma. New England J. Med. 329(14): 987-994 (1993).

[0027] Preferred antibodies, dosage regimens and particular combinations of therapy will now be illustrated by way of the following exemplary data.

Rituximab and Y2B8

[0028] Non-Hodgkin's lymphoma (NHL) affects approximately 250,000 people in the United States. The majority of patients with NHL are not cured by chemotherapy, radiotherapy, or high-dose treatment with autologous bone marrow (ABMT) or peripheral blood stem cell (PBSC) support.

[0029] Approximately 80% of non-Hodgkin's lymphomas are B-cell malignancies and >95% of these express the CD20 antigen on the cell surface. This antigen is an attractive target for immunotherapy because it is found exclusively on B-cells, and not on hematopoietic stem cells, pro-B-cells, normal plasma cells, or other normal tissues. It is not shed from the cell surface and does not modulate upon antibody binding (1).

[0030] Rituximab is one of a new generation of monoclonal antibodies developed to overcome limitations encountered with murine antibodies, including short half-life, limited ability to stimulate human effector functions, and immunogenicity (2,3).

[0031] Rituximab is a genetically engineered monoclonal antibody with murine light- and heavy-chain variable regions and human gamma I heavy-chain and kappa light-chain constant regions. The chimeric antibody is composed of two heavy chains of 451 amino acids and two light chains of 213 amino acids and has an approximate molecular weight of 145 kD. Rituximab is more effective than its murine parent in fixing complement and mediating ADCC, and it mediates CDC in the presence of human complement (4). The antibody inhibits cell growth in the B-cell lines FL-18, Ramos, and Raji, sensitizes chemoresistant human lymphoma cell lines to diphtheria toxin, ricin, CDDP, doxorubicin, and etoposide, and induces apoptosis in the DHL-4 human B-cell lymphoma line in a dose-dependent manner (5). In humans, the half-life of the antibody is approximately 60 hours after the first infusion and increases with each dose to 174 hours after the fourth infusion. The immunogenicity of the antibody is low; of 355 patients in seven clinical studies, only three (<1%) had a detectable anti-chimeric antibody (HACA) response.

[0032] Rituximab was genetically engineered using the murine 2B8 antibody. The 2B8 antibody has also been conjugated to different radiolabels for diagnostic and therapeutic purposes. To this end, copending application Ser. Nos. 08/475,813 (now U.S. Pat. No. 6,682,734); 08/475,815 (now U.S. Pat. No. 6,399,061) and 08/478,967 (now U.S. Pat. No. 5,843,439), all herein incorporated by reference in their entirety, disclose radiolabeled anti-CD20 conjugates for diagnostic "imaging" of B-cell lymphoma tumors before administration of therapeutic antibody. "In2B8" conjugate comprises a murine monoclonal antibody, 2B8, specific to human CD20 antigen, that is attached to Indium[111] (.sup.111In) via a bifunctional chelator, i.e., MX-DTPA (diethylene-triaminepentaacetic acid), which comprises a 1:1 mixture of 1-isothiocyanatobenzyl-3-methyl-DTPA and 1-methyl-3-isothiocyanatobenzyl-DTPA. Indium-[111] is selected as a diagnostic radionuclide because it emits gamma radiation and finds prior usage as an imaging agent.

[0033] Patents relating to chelators and chelator conjugates are known in the art. For instance, U.S. Pat. No. 4,831,175 of Gansow is directed to polysubstituted diethylenetriaminepentaacetic acid chelates and protein conjugates containing the same, and methods for their preparation. U.S. Pat. Nos. 5,099,069, 5,246,692, 5,286,850, and 5,124,471 of Gansow also relate to polysubstituted DTPA chelates. These patents are incorporated herein in their entirety.

[0034] The specific bifunctional chelator used to facilitate chelation in application Ser. Nos. 08/475,813, 08/475,815 and 08/478,967 (now U.S. Pat. Nos. 6,682,734; 6,399,061; and. 5,843,439, respectively) was selected as it possesses high affinity for trivalent metals, and provides for increased tumor-to-non-tumor ratios, decreased bone uptake, and greater in vivo retention of radionuclide at target sites, i.e., B-cell lymphoma tumor sites. However, other bifunctional chelators are known in the art and may also be beneficial in tumor therapy.

[0035] Also disclosed in application Ser. Nos. 08/475,813, 08/475,815 and 08/478,967 are radiolabeled therapeutic antibodies for the targeting and destruction of B-cell lymphomas and tumor cells. In particular, the Y2B8 conjugate comprises the same anti-human CD20 murine monoclonal antibody, 2B8, attached to yttrium-[90] (.sup.90Y) via the same bifunctional chelator. This radionuclide was selected for therapy for several reasons. The 64 hour half-life of .sup.90Y is long enough to allow antibody accumulation by the tumor and, unlike e.g. .sup.131I, it is a pure beta emitter of high energy with no accompanying gamma irradiation in its decay, with a range of 100 to 1000 cell diameters. The minimal amount of penetrating radiation allows for outpatient administration of .sup.90Y-labeled antibodies. Furthermore, internalization of labeled antibodies is not required for cell killing, and the local emission of ionizing radiation should be lethal for adjacent tumor cells lacking the target antigen.

[0036] Because the .sup.90Y radionuclide was attached to the 2B8 antibody using the same bifunctional chelator molecule MX-DTPA, the Y2B8 conjugate possesses the same advantages discussed above, e.g., increased retention of radionuclide at a target site (tumor). However, unlike .sup.111In, it cannot be used for imaging purposes due to the lack of gamma radiation associated therewith. Thus, a diagnostic "imaging" radionuclide, such as .sup.111In, can be used for determining the location and relative size of a tumor prior to and/or following administration of therapeutic chimeric or .sup.90Y-labeled antibodies in the combined regimens of the invention. Additionally, indium-labeled antibody enables dosimetric assessment to be made.

[0037] Depending on the intended use of the antibody, i.e., as a diagnostic or therapeutic reagent, other radiolabels are known in the art and have been used for similar purposes. For instance, radionuclides which have been used in clinical diagnosis include .sup.131I, .sup.125I, .sup.123I, .sup.99Tc, .sup.67Ga, as well as .sup.111In. Antibodies have also been labeled with a variety of radionuclides for potential use in targeted immunotherapy (Peirersz et al. (1987) The use of monoclonal antibody conjugates for the diagnosis and treatment of cancer. Immunol. Cell Biol. 65: 111-125). These radionuclides include .sup.188Re and .sup.186Re as well as .sup.90Y, and to a lesser extent .sup.199Au and .sup.67Cu. I-(131) has also been used for therapeutic purposes. U.S. Pat. No. 5,460,785 provides a listing of such radioisotopes and is herein incorporated by reference.

[0038] As reported in copending application Ser. Nos. 08/475,813, 08/475,815 and 08/478,967 (now U.S. Pat. Nos. 6,682,734; 6,399,061; and. 5,843,439, respectively), administration of the radiolabeled Y2B8 conjugate, as well as unlabeled chimeric anti-CD20 antibody, resulted in significant tumor reduction in mice harboring a B-cell lymphoblastic tumor. Moreover, human clinical trials reported therein showed significant B-cell depletion in lymphoma patients infused with chimeric anti-CD20 antibody. In fact, chimeric 2B8 has recently been heralded the nation's first FDA-approved anti-cancer monoclonal antibody under the name of RITUXAN.RTM.. Thus, at least one chimeric anti-CD20 antibody has been shown to demonstrate therapeutic efficacy in the treatment of B-cell lymphoma.

[0039] In addition, U.S. application Ser. No. 08/475,813 (now U.S. Pat. No. 6,682,734) herein incorporated by reference, discloses sequential administration of RITUXAN.RTM., a chimeric anti-CD20, with both or either indium-labeled or yttrium-labeled marine monoclonal antibody. Although the radiolabeled antibodies used in these combined therapies are murine antibodies, initial treatment with chimeric anti-CD20 sufficiently depletes the B-cell population such that the HAMA response is decreased, thereby facilitating a combined therapeutic and diagnostic regimen.

[0040] Thus, in this context of combined immunotherapy, murine antibodies may find particular utility as diagnostic reagents. Moreover, it was shown in U.S. application Ser. No. 08/475,813 (now U.S. Pat. No. 6,399,061) that a therapeutically effective dosage of the yttrium-labeled anti-CD20 antibody following administration of RITUXAN.RTM. is sufficient to (a) clear any remaining peripheral blood B-cells not cleared by the chimeric anti-CD20 antibody; (b) begin B-cell depletion from lymph nodes; or (c) begin B-cell depletion from other tissues.

[0041] Thus, conjugation of radiolabels to cancer therapeutic antibodies provides a valuable clinical tool which may be used to assess the potential therapeutic efficacy of such antibodies, create diagnostic reagents to monitor the progress of treatment, and devise additional therapeutic reagents which may be used to enhance the initial tumor killing potential of the chimeric antibody. Given the proven efficacy of an anti-CD20 antibody in the treatment of non-Hodgkin's lymphoma, and the known sensitivity of lymphocytes to radioactivity, it would be highly advantageous for such chimeric and radiolabeled therapeutic antibodies to find use in combined therapeutic regimens which decrease the frequency of relapsed or refractory non-Hodgkin's lymphoma. In addition, it would be beneficial if such combined therapeutic regimens found use in the treatment of other B-cell lymphomas.

Low-Grade or Follicular NHL

[0042] Single-Agent Studies with Relapsed or Refractory NHL

[0043] FDA approval of Rituximab was based on five single-agent studies primarily in patients with low-grade or follicular NHL. An early Phase I study of single Rituximab infusions ranging from 10-500 mg/m.sup.2 demonstrated that the maximum tolerated dose had not been reached; however, the length of infusion time at the highest dose was not considered feasible for outpatient therapy. The ORR in 15 patients was 13% (Table 1)(6).

TABLE-US-00001 TABLE 1 Rituximab: Summary of Efficacy Results Median Median DR TIP Study Description Indication N* ORR CR PR (months) (months) References Phase I/II, Single-Dose Relapsed B-Cell Lymphoma 15 2 (13%) 0 (0%) 2 (13%) NA.dagger. 8.1 6 Single Agent Phase I/II, Multiple-Dose Relapsed Low-, Intermediate-, 34 17 (50%) 3 (9%) 14 (41%) 8.6 10.2 7 Dose-Ranging and High-Grade Lymphoma Phase II; Multiple-Dose Newly Diagnosed and Relapsed 38 38 (100%) 22 (58%) 16 (42%) 35.3+ 36.7+ 21, 22 Combined with CHOP Low-Grade or Follicular B-Cell Lymphoma Phase III, Multiple-Dose Relapsed Low-Grade or 151 76 (50%) 9 (6%) 67 (44%) 11.6 13.2 8, 9 Single-Agent Follicular B-Cell Lymphoma Phase II, Multiple-Dose Relapsed Low-Grade or 35 21 (60%) 5 (14%) 16 (46%) 13.4+ 19.4+ 13 Single-Agent Follicular B-Cell Lymphoma Phase II, Multiple-Dose, Relapsed Low-Grade or 38 17 (45%) 4 (11%) 13 (34%) 22.3+ 25.2+ 29 Combined with Interferon Follicular B-Cell Lymphoma Phase II, Multiple-Dose, Relapsed Low-Grade or 28 12 (43%) 1 (4%) 11 (39%) 5.9 8.1 14 Single-Agent Follicular B-Cell Lymphoma, Bulky Disease Phase II, Multiple-Dose, Relapsed Low-Grade or 57 23 (40%) 6 (11%) 17 (29%) 15.0+ 16.7+ 19, 20 Single-Agent Follicular B-Cell Lymphoma, Retreatment Phase II, Multiple-Dose Previously Untreated 30 29 (96%) 19 (63%) 10 (33%) 1 I+ 17+ 34 Combined with CHOP Intermediate- or High-Grade Modality Lymphoma Phase II, Alternative Intermediate- or High-Grade B- 54 17 (32%) 5 (9%) 12 (22%) NA.dagger. 8.2+ 33 Multiple Dosing Cell Lymphoma

[0044] In Phase I of a Phase I/II dose-ranging study, patients received 125-375 mg/m.sup.2 administered as four weekly infusions. No dose-related toxicities were demonstrated, and 375 mg/m.sup.2 was chosen as the Phase II dose. Tumor regressions were observed in 17 of 37 (46%) patients who received this dose, including 3 (8%) complete responses (CR) and 14 (38%) partial responses PR (7).

Rituximab Pivotal Trial in Low-Grade or Follicular Lymphoma

[0045] Purpose:

[0046] The CD20 antigen is expressed on more than 90% of B-cell lymphomas. It is appealing for targeted therapy, because it does not shed or modulate. A chimeric monoclonal antibody more effectively mediates host effector functions and is itself less immunogenic than are murine antibodies.

[0047] Patients and Methods:

[0048] This was a multiinstitutional trial of the chimeric anti-CD20 antibody, IDEC-C2B8. Patients with relapsed low grade or follicular lymphoma received an outpatient treatment course of IDEC-C2B8 375 mg/m.sup.2 intravenously weekly for four doses.

[0049] Results:

[0050] From 31 centers, 166 patients were entered. Of this intent-to-treat group, 48% responded. With a median follow-up duration of 11.8 months, the projected median time to progression for responders is 13.0 months. Serum antibody levels were sustained longer after the fourth infusion than after the first, and were higher in responders and in patients with lower tumor burden. The majority of adverse events occurred during the first infusion and were grade 1 or 2; fever and chills were the most common events. Only 12% of patients had grade 3 and 3% grade 4 toxicities. A human antichimeric antibody was detected in only one patient.

[0051] Conclusion:

[0052] The response rate of 48% with IDEC-C2B8 is comparable to results with single-agent cytotoxic chemotherapy. Toxicity was mild. Attention needs to be paid to the rate of antibody infusion, with titration according to toxicity. Further investigation of this agent is warranted, including its use in conjunction with standard chemotherapy.

Patients and Methods

Eligibility

[0053] Adult patients with relapsed low grade or follicular B-cell lymphoma, histologically confirmed and positive for CD20, were eligible. Patients with chronic lymphocytic leukemia (lymphocytes>5.times.10.sup.9/L) were excluded. Patients had to have either not responded to primary therapy or relapsed (not more than four times), have progressive measurable disease, and sign an institutional review board-approved informed consent. They had to be at least 3 weeks beyond prior standard therapy including corticosteroids, and have recovered from significant toxicities from prior therapies. Patients had to have good performance status (Zubrod 0 to 2) and adequate hematologic, renal, and hepatic function. Patients were excluded if they had lesions>10 cm in diameter, CNS lymphoma, AIDS-related lymphoma, pleural effusions or ascites secondary to lymphoma, active opportunistic infection, serious nonmalignant disease, prior investigational therapies including prior anti-CD20 therapy, or recent major surgery.

Therapy

[0054] The antibody dose was 375 mg/m.sup.2, administered intravenously once weekly for a total of four infusions (days 1, 8, 15, and 22) on an outpatient basis. IDEC-C2B8 was produced and supplied by IDEC Pharmaceuticals Corp. The drug was reconstituted in normal saline to a concentration of 1 mg/mL and given through a 0.22-.mu.m in-line filter. Oral premedication with acetaminophen or diphenhydramine was permitted; corticosteroids were prohibited. The initial infusion rate was 50 mg/h, with subsequent infusion rate increase if no toxicity was seen. Guidelines were specified for interruption of infusion, with resumption once adverse events subsided.

Definition of End Points

[0055] Complete response (CR) required the resolution of all symptoms and signs of lymphoma, including bone marrow clearing, for at least 28 days. Partial response (PR) required a .gtoreq.50% decrease in the sum of the products of perpendicular measurements of lesions, without any evidence of progressive disease for at least 28 days. Patients who did not achieve a CR or PR were considered nonresponders, even if there was a net decrease (<50%) of measurable disease. Time to progression was measured from the first infusion until progression.

[0056] An independent panel of nine radiologists and lymphoma specialists reviewed and verified all CT scans of patients who exhibited a .gtoreq.40% reduction in tumor size as measured by the investigator. This refereed response designation is the one used for this report.

Results

Response

[0057] The overall response rate for the intent-to-treat group of all 166 patients was 48%, of which 6% were CRs and the remainder PRs.

[0058] A detailed analysis of efficacy was also performed on a subset of 151 patients, excluding 15 patients for the following reasons: one never started treatment for personal reasons; eight received one or more doses of corticosteroids during the evaluation period (a protocol violation that was strictly enforced to avoid any confusion about the efficacy of the antibody); one had surgery within 4 weeks of study entry (an exclusion criterion); one lacked measurable lesions; and four did not complete all four doses because of grade 3 or 4 adverse events (they were included in the toxicity analysis).

[0059] The response rate for these 151 assessable patients was virtually identical to that of the intent-to-treat group, with a 50% response rate, including 6% CRs. Among those who did not achieve a CR or PR, the majority (56 of 75) nonetheless had a net decrease of measurable disease (mean decrease, 32%). With a median follow-up duration of 11.8 months, the projected median time to progression for responders is 13.0 months for the intent-to-treat group and 12.5 months for the assessable group (FIG. 1); 53 of 76 responders have not yet relapsed. To date, only nine patients have died, all of progressive lymphoma.

[0060] Table 2 lists response according to clinical features. Significantly lower response rates were noted for patients with the following: SL lymphoma compared with other cell types; positive bone marrow; .gtoreq.two extranodal sites; and, among the subset of 118 patients with follicular lymphomas, those without detectable bcl-2 gene rearrangement by PCR in the peripheral blood or bone marrow. Unexpectedly, the 23 patients whose prior therapy had included high-dose regimens with stem-cell or bone marrow transplantation had a significantly higher response rate than those who had not received transplant regimens (78% v 43%, P<0.01). Patients who had achieved a CR or PR with their last prior chemotherapy course had a nonsignificant but somewhat better response to the antibody than those who were resistant to chemotherapy (53% v 36%, P=0.06).

TABLE-US-00002 TABLE 2 Patient Features and Response No. of % Patients CR + PR P Feature All patients 166 48 -- Assessable patients* 151 50 -- Age .gtoreq.60 years 67 51 NS Sex: male 95 48 NS Histology Small lymphocytic 30 13 <.01.dagger. Follicular small cleaved 60 60 Follicular mixed 48 60 Follicular large cell 10 60 Other 3 33 Elevated LDH.sctn. 46 43 NS Elevated .beta..sub.2-microglobulin.sctn. 41 56 NS Bulk.sctn. <5 cm 88 56 NS .gtoreq.5 cm 61 43 Marrow.sctn. Negative 66 61 .03 Positive 83 42 bcl-2 in peripheral blood Negative 62 52 .04 Positive 55 71 bcl-2 in bone marrow Negative 60 52 .05 Positive 52 71 .gtoreq.2 extranodal site 75 39 .01 Abbreviations: LDH, lactate dehydrogenase; NS, not significant. *Subset analyses conducted on the assessable group of 151 patients (see text); results for the intent-to-treat group were virtually identical. .dagger.Comparison of SL versus follicular histologies. One each with: mucosa-associated lymphoid tissue (MALT); low-grade B-cell lymphoma, not otherwise specified; and marginal-zone lymphoma. .sctn.Data available for LDH on 143, .beta..sub.2-microglobulin on 148, bulk on 149, and marrow status on 149. For follicular lymphoma only.

Adverse Events

[0061] Adverse events generally occurred during therapy or within the first 30 days following therapy (Table 3). The majority were observed during the first infusion (FIG. 2) and were grade 1 or 2. After the first infusion, most patients (55%) had no toxicity for the remainder of treatment.

[0062] Adverse events were typically brief. The median duration of nausea was 1 hour, fever 3 hours, bronchospasm less than 30 minutes, hypotension 1.6 hours, and rash and pruritus 2 hours. The antibody infusion rate was titrated according to adverse events. The mean duration of the first dose was 5.2 hours (range, 2.5 to 20); 33% of patients had interruptions. During the second, third, and fourth doses, the frequency of interruptions decreased to 6%, 2%, and 1%, respectively, and the mean durations of the infusions were 3.5, 3.3, and 3.3 hours, respectively.

TABLE-US-00003 TABLE 3 Adverse Events During Therapy NCI Grade % of 1-2 3 4 Patients Event Any 599 18 2 84 General Fever 84 -- -- 43 Chills 51 2 -- 28 Headache 26 1 -- 14 Asthenia 25 -- -- 13 Pain 22 -- -- 11 Pruritus 21 1 -- 13 Rash 16 -- -- 10 Urticaria 9 1 -- 6 Angioedema 27 1 -- 14 Dizziness 11 -- -- 6 Digestive Nausea 34 1 -- 18 Vomiting 13 1 -- 8 Diarrhea 10 -- -- 4 Respiratory Bronchospasm 15 1 -- 8 Dyspnea 1 1 -- 1 Rhinitis 14 1 -- 7 Cough increase 4 1 -- 3 Cardiovascular Hypotension 18 1 -- 10 Arrhythmia 5 2 1 2 Hematologic Anemia 1 1 -- 1 Thrombocytopenia 5 1 -- 3 Leukopenia 12 1 -- 7 Neutropenia 6 -- 1 4 NOTE. Includes all grade 3 or 4 events that were considered related to the antibody, and most frequent (.gtoreq. 10 occurrences) other events, for all patients (N = 165 since 1 patient withdrew before receiving any antibody). "During Therapy" includes from day 1 to 30 days after the fourth infusion; for later events, see text. Abbreviation: NCI, National Cancer Institute.

[0063] Thirteen patients had hemoglobin levels decrease to as low as 8 to 10 g/dL, and four had levels of 7.6 to 7.9; recovery occurred in a median of 7 days. Three patients with pretreatment platelet counts of 76,000 to 85,000.times.10.sup.9/L had counts decrease to 63,000 to 72,000 at a median of 19 days, with recovery by a median of 7 days; one patient with a pretreatment platelet count of 90,000 had a count of 27,000 at day 23, with recovery to 86,000 in 6 days. Fourteen patients had granulocytes decrease to a level of 1 to 1.5.times.10.sup.9/L at median of 41 days, with recovery by a median of 8 days; two patients had granulocytes decrease to 0.5 to 0.9 at day 9 and day 23, with recovery to greater than 2.0 by 6 to 7 days; one had a granulocyte count of 0.1 at day 51, with recovery by 4 days. The remainder of patients, 86% of the population, had no cytopenias. Thus, the median (.+-.SE) values for hemoglobin, platelets, leukocytes, and granulocytes remained within normal limits throughout the treatment period.

[0064] Infections that occurred either during therapy or for up to a year thereafter were predominantly bacterial (37 of 68), and the vast majority were minor (61 of 68 grade 1 or 2; none grade 4). The respiratory tract was the source in 19 and the urinary tract in three; gastroenteritis occurred in three. There were three episodes of bacteremia, one with Listeria detected before the third infusion, one staphylococcal, and one polymicrobial, which was felt to be catheter-related; all resolved with antibiotics. Viral infections included herpes simplex in 10 and herpes zoster in five.

[0065] After therapy and during the first year of follow-up evaluation, a total of 98 related adverse events were reported in 45 patients, of which 81% were grade 1 or 2. The most common late (from 31 days to 1 year after the last antibody infusion) adverse events were hematologic: 13 neutropenia (five grade 3, one grade 4), 10 leukopenia (one grade 3, no grade 4), and one RBC aplasia.

Discussion

[0066] The response rate was 50% with this outpatient four-dose course of therapy with IDEC-C2B8 for patients with relapsed low grade or follicular lymphoma.

[0067] The toxicity of the current program was notably mild, particularly with respect to myelosuppressive toxicities that are typical of standard chemotherapy or RIT. Adverse events occurred mainly with the first infusion, in a constellation that typically included modest (grade 1 or 2) and brief (minutes to hours) fever, chills, and aches. By the second and subsequent infusions, the majority of patients experienced no further infusion-related toxicities

[0068] The overall response rate (ORR) was 48% with a 6% CR and a 42% PR rate(8). The median time to progression (TTP) for responders was 13.2 months and the median duration of response (DR) was 11.6 months. Twenty-two of 80 (28%) responders remain in ongoing remission at 20.9+ to 32.9+ months (9).

[0069] Administration of Rituximab resulted in a rapid and sustained depletion of B-cells. Circulating B-cells were depleted within the first three doses with sustained depletion for up to six to nine months post-treatment in 83% of patients. Median B-cell levels returned to normal by 12 months following treatment. Although median NK cell counts remained unchanged, a positive correlation was observed between higher absolute NK cell counts at baseline and response to Rituximab (10).

[0070] Several baseline prognostic factors were analyzed to determine their correlation to response. Significantly, in 23 patients relapsed after ABMT or PBSC, the ORR was 78% versus 43% in patients who did not undergo prior high-dose therapy (p<0.01). In a multivariate analysis, the ORR was higher in patients with follicular NHL as compared with small lymphocytic lymphoma (58% vs. 12%, p<0.01), and higher in patients with chemosensitive relapse as compared with chemoresistant relapse (53% vs. 36%, p=0.06). No effect on response rate was associated with: age>60 years, extranodal disease, prior anthracycline therapy, or bone marrow involvement.

[0071] A statistically significant correlation was found between the median serum antibody concentration and response at multiple time points during treatment and follow up (11).

[0072] Serum levels of antibody were higher in patients with follicular NHL compared with small lymphocytic lymphoma. Mean serum antibody was also inversely correlated with measurements of tumor bulk and with the number of circulating B-cells at baseline. The association of lower serum antibody concentrations with higher numbers of circulating NHL cells and with higher tumor bulk suggest that the main mode of antibody clearance is to tumor cells. The association of high serum antibody concentrations with response and lower tumor bulk or circulating cells suggests that higher or more doses of Rituximab may be necessary to induce responses in some subsets of patients, such as those with bulky disease.

[0073] Nevertheless, responses were seen with Rituximab in 43% of patients with tumors>5 cm and in 35% of patients with tumors>7 cm, suggesting that treatment of patients with bulky disease with Rituximab is feasible. This is surprising considering it was long thought that antibody therapy is not conducive to treating bulky disease due to the compact nature of the tumors.

[0074] In a study conducted in Japan (12), patients with relapsed B-cell lymphoma were treated with either 250 mg/m.sup.2 (N=4) or 375 mg/m.sup.2 (N=8) of Rituximab weekly times four. Of 11 evaluable patients, 8 had follicular NHL, 2 had diffuse large-cell NHL, and one had mantle-cell lymphoma. Two of the 11 had a CR and 5 had a PR for an ORR of 64%; all responders had follicular histology.

[0075] Because Rituximab serum levels and response were positively correlated in previous studies, a Phase II study of eight weekly doses of 375 mg/m.sup.2 Rituximab was conducted in low-grade or follicular NHL patients. The ORR was 60% in evaluable patients, with a 14% CR and a 46% PR rate. Median values for TTP in responders and DR were 13.4+ months and 19.4+ months, respectively (13). Though it is difficult to compare across studies, it appears that TTP and DR may be improved by using more doses.

[0076] Contrary to early assumptions about antibody therapy being useful only in micrometastatic disease, Rituximab.RTM. is quite active in high bulk disease. In a separate study, 31 patients with relapsed or refractory, bulky low-grade NHL (single lesion of >10 cm in diameter) received 375 mg/m.sup.2 Rituximab as four weekly infusions. Twelve of 28 evaluable patients (43%) demonstrated a CR (1, 4%) or PR (11, 39%)(14).

Waldenstrom's Macroglobulinemia

[0077] Waldenstrom's Macroglobulinemia (WM) is a malignancy wherein B lymphocytes secrete excessive amounts of IgM antibodies. WM usually occurs in people over sixty, but has been detected in adults in their early thirties. WM today is considered a rare incurable indolent malignancy, which has in the past been treated by plasmaphoresis to reduce serum viscosity. Chemotherapeutic drugs such as an alkylating agent and a corticosteroid are often prescribed. The most recommended drug for WM has been Leustatin (2CdA).

[0078] A report on seven patients with Waldenstrom's macroglobulinemia where the patients were treated with Rituximab (375 mg/m.sup.2 weekly times 4)(15) noted responses in 4 (57%) of patients. Median progression-free survival was 8 months (range 3-27+ months). Thus, Rituximab should be useful in combined therapeutic protocols, particularly with chemotherapeutic reagents such as 2CdA.

Chronic Lymphocytic Leukemia (CLL)

[0079] CLL is the liquid (leukemic) equivalent of small lymphocytic lymphoma (SLL). Patients with SLL had lower serum levels and a lower response rate when treated with the standard dose of Rituximab than patients with other low-grade NHL subtypes. This is probably due to the very high levels of circulating tumor cells in patients with CLL, and because malignant cells involved in CLL are thought to have reduced levels of expression of CD20 on the cell surface.

[0080] Nevertheless, the present inventors have discovered that hematologic malignancies such as CLL may be treated with Rituximab. A recent clinical study evaluated treatment of CLL patients at higher doses of Rituximab (16). All patients receive a first dose of 375 mg/m.sup.3 to minimize infusion-relapsed side effects. Subsequent weekly dosages (3) remained the same but were given at an increased dose level. Sixteen patients have been treated at dosages of 500-1500 mg/m.sup.3. Medium age was 66 years (range, 25-78). Eighty-one percent had end-stage III-IV disease. Medium white blood cell count was 40.times.10.sup.9/L (range, 4-200), Hgb 11.6 g/dl (range, 7.7-14.7), platelets 75.times.10.sup.9/L, (range, 16-160), median .beta..sub.2 immunoglobulin was 4.5 mg/L (range, 3.1-9.2). Median numbers of prior therapies was 2.5 (range 1-9). Sixty percent of patients were refractory to treatment. Two patients developed severe hypertension with the first dose (375 mg/m.sup.2); another one received further therapy. Toxicity at subsequent escalated dosages has been mild although no patient at the 1500 mg/m.sup.2 dose level has been fully evaluated. Eight patients have completed therapy (4 at 500 mg/m.sup.2, 3 at 650 mg/m.sup.2, 1 at 825 mg/m.sup.2). One patient treated at 560 mg/m.sup.2 achieved full remission. One patient has progressive lympocytosis on treatment and all other patients had reduction in peripheral blood lymphocytosis but less effect on lymph nodes. Dose escalation studies are ongoing.

[0081] Another approach to improving response in CLL patients is to upregulate the CD20 antigen using cytokines. In an in vitro study, mononuclear cells from CLL patients were incubated for 24 hours with various cytokines. Flow cytometry results showed significant up-regulation by IL-4, GM-CSF, and TNF-alpha (17). In fact, recent data suggests that the upregulation of CD20 observed on CLL cells may be limited to tumor cells (Venogopal et al. Poster--PanPacific Lymphoma meeting, June 1999. Cytokine-induced upregulation of CD20 antigen expression in chronic lymphocytic leukemia (CLL) cells may be limited to tumor cells). Preliminary data also suggest that interferon alpha also upregulates CD20 on CLL cells after only 24 hours when applied at a concentration of 500 to 1000 U/ml.

[0082] Thus, by administering certain cytokines to CLL patients prior to or concurrently with administration of Rituximab, the expression of CD20 on the surface of malignant B-cells may be upregulated, thereby rendering CD20, as well as other cell surface markers such as CD 19, a more attractive target for immunotherapy. A collaborative study has been initiated to test for optimal cytokine doses for CD20 upregulation in vivo. The study protocol involves treating ten patients initially with GM-CSF at 250 mcg/m.sup.2 SQ QD X 3, ten patients with IL-4 mcg/kg SQ QD X 3, and ten patients with G-CSF at 5 mcg/kg SQ QD X 3. Mononuclear cells will be separated by Ficon Hypaque centrifugation for apoptotic studies to determine if upregulation of CD20 translates to enhanced killing of tumor cells by Rituximab.

[0083] Antibody treatment of CLL can be combined with other conventional chemotherapeutic treatments known to be useful for the treatment of CLL. The most frequently used single agent for CLL is chlorambucil (leukeran), given either as 0.1 mg/kg daily or 0.4 to 1.0 mg/kg every 4 weeks. Chlorambucil is often combined with oral prednisone (30 to 100 mg/m.sup.2/d), which is useful in the management of autoimmune cytopenias. Cyclophosphamide is an alternative to chlorambucil, the usual dose being 1-2 g/m.sup.2 every 3-4 weeks together with vincristine and steroids (e.g., COP regimen).

[0084] Various drug combinations have been used for CLL, including COP (cyclophosphamide, Oncovin, and prednisone), and CHOP (these three drugs plus doxorubicin). Fludarabine has shown an effect in the treatment of CLL, and gave an ORR of 50% in a group of patients treated with 25-30 mg/m.sup.2/d every 3-4 weeks. http://www.cancernetwork.com. Although some patients have been shown to be refractory for fludarabine. Such patients may also be resistant to 2-CdA because often, patients who are refractory to fludarabine are also refractory to 2-CDA (O'Brien et al. N. Engl. J. Med. 330: 319-322 (1994)).

[0085] Hence, anti-CD20 antibody therapy will be particularly useful for patients who are refractory or who have relapsed after treatment with chemotherapeutic drugs. Rituximab therapy may also be combined with radiotherapy in these patients. TBI with a low fraction size of 15 cGy to total doses of 75 to 150 cGy has been shown to be effective in about one-third of patients.

[0086] A Phase II trial is currently being conducted by CALGB in CLL patients. Rituximab and fludarabine are administered concurrently, followed by Rituximab consolidation versus fludarabine induction followed by Rituximab.

Rituximab with Myeloablative Therapy

[0087] Myeloablative therapy has yielded responses in indolent lymphomas; however, residual tumor cells may remain despite high-dose therapy and the PBSC reinfused may contain tumor cells. Rituximab is being used before stem cell mobilization and after transplant to reduce residual CD20+ tumor cells and contamination of the bone marrow or stem cells harvested. Interim results demonstrated that no CD20+ cells were detectable in harvested cells. Eighteen of 24 patients achieved engraftment and the treatment was well tolerated. PCR testing is ongoing to evaluate residual tumor cells (18).

Retreatment of Relapsed Low-Grade NHL with Rituximab

[0088] A trial evaluating retreatment of 53 patients who had responded to Rituximab and later relapsed has been reported (19). Seven of 56 evaluable patients (13%) obtained a CR and 16 a PR (29%), for an ORR of 42%. Four patients who had a second response received a third treatment; 3 of these responded.

[0089] After treatment with two courses of Rituximab, one patient's tumor, initially classified as follicular, small cleaved cell NHL, no longer expressed the CD20 antigen and was unresponsive to Rituximab at the time of transformation to diffuse, large-cell NHL (20).

[0090] Thus, while retreatment with Rituximab is effective for treating patients who have relapsed after prior treatment with Rituximab, there may be an increased incidence of CD20-tumor cells after secondary treatment. This observation supports the utility of the combined therapeutic treatment regimens described herein.

Combination of Rituximab and CHOP Chemotherapy for Low-Grade NHL

[0091] Chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) is an effective first-line therapy for low-grade or follicular NHL. Though initial response rates are high, relapse eventually occurs and subsequent chemotherapy regimens produce remissions with shorter durations. A Phase II trial was initiated to evaluate the combination of CHOP and Rituximab (21) in newly diagnosed and relapsed low-grade or follicular NHL because their mechanisms of action are not cross-resistant, and Rituximab is synergistic with certain cytotoxic drugs, including doxorubicin (5).

[0092] Twenty-nine of 38 patients received no prior anticancer therapy. CHOP was administered at standard doses every three weeks for six cycles with six infusions of Rituximab (375 mg/m.sup.2). Rituximab infusions 1 and 2 were administered on Days 1 and 6 before the first CHOP cycle, which started on Day 8. Rituximab infusions 3 and 4 were given 2 days before the third and fifth CHOP cycles, respectively, and infusions 5 and 6 were given on Days 134 and 141, respectively, after the sixth CHOP cycle.

[0093] In this combination study, 100% of the 38 patients treated responded (CR, 58%; PR, 42%). Of 35 evaluable patients who completed treatment, there were 63% CR, and 37% PR(21). Median DR is 35.3+ months with median progression-free survival not reached after a median observation time of 36.7+ months. Twenty patients are still in remission after 36+ months to 53.4+ months (22). This DR is impressive even for first-line treatment, and 24% of this trial population had relapsed after chemotherapy.

[0094] In a study to be conducted by CALGB, 40 patients with low-grade NHL will receive Rituximab weekly times 8 and oral cyclophosphamide daily starting on Day 8. Twenty patients will receive Rituximab alone for 8 weekly doses.

[0095] A Phase III study conducted by ECOG in patients with low-grade NHL is comparing the combination of cyclophosphamide and fludarabine (Arm A) with standard CVP therapy (Arm B). In the randomization to Arm A or Arm B, patients are stratified by age, tumor burden, histology, and B symptoms. Responders in both arms will undergo a second randomization to Rituximab maintenance therapy (375 mg/m.sup.2 weekly times 4 every 6 months for 2 years (Arm C) or to observation (Arm D).

Combination of Rituximab with Cytokines

[0096] Rituximab Plus Interferon Alpha

[0097] Interferon is a cytokine involved in modulating the immune system (23). Mechanisms by which interferon may increase the effectiveness of antibodies include the potentiation of antigen expression (24), increased targeting of antibodies into tumors (25,26), and enhanced cytotoxicity of immunotoxins (27).

[0098] In a combination trial, interferon-alpha (Roferon-A), a cytokine with a single-agent clinical activity in NHL (28), and Rituximab were given to patients with relapsed low-grade or follicular NHL. Interferon-alpha (2.5 or 5 MIU) was administered subcutaneously, three times weekly for 12 weeks. Rituximab.RTM. was administered by IV infusion weekly for four doses (375 mg/m.sup.2) starting on the fifth week of treatment. The ORR was 45% (17/38 patients); 11% had a CR and 34% had a PR. Kaplan-Meier estimates of the median DR and TTP in responders were 22.3+ and 25.2+ months, respectively (29). Previous combination studies of interferon-alpha and chemotherapeutic regimens containing anthracyclines yielded prolonged time to progression, but did not consistently increase response or survival rates (30-32). These early results suggest that the combination of Rituximab and interferon-alpha may prolong the time to progression relative to Rituximab alone.

[0099] Rituximab Plus G-CSF

[0100] In a separate study, Rituximab and G-CSF are being evaluated in relapsed low-grade NHL. It has been demonstrated in vitro as well as in vivo in healthy volunteers that G-CSF, via its effect on myeloid precursor cells, induces FcRI-positive neutrophils that are capable of functioning as effector cells in ADCC. Therefor, a Phase VII study was initiated to evaluate the toxicity and efficacy of the combined treatment.

[0101] Both in Phase I and Phase II, patients were administered a standard dose of G-CSF (5 .mu.g/kg/day) administered for three days, starting 2 days before administration of Rituximab. Phase I consisted of a dose escalation of Rituximab (125, 250, or 375 mg/m.sup.2 weekly X4). Early results in 9 patients evaluated so far yielded an ORR of 67% (44% CR, 22% PR) with minor toxicity in 8 of the 9 patients (33). The most frequent adverse events were fever (4/8 patients), rhinitis (4/8), chills (3/8) and headaches (3/8), which were comparable to the adverse events observed previously in administration of Rituximab alone. The Phase II part of the study has been initiated, which will examine the efficacy of the combination of G-CSF and 375 mg/m.sup.2 Rituximab X4.

[0102] Rituximab Plus IL-2

[0103] High-dose therapy with autologous peripheral blood stem cells (PBSC) or bone marrow (BM) rescue has been used to treat NHL, however success remains limited by the high risk of relapse, which is 50-80%. In an effort to improve durable remissions post-transplant, immunotherapy including high dose and low dose therapy with IL-2 has been studied in a number of treatment centers. Such studies have suggested that IL-2 therapy does demonstrate early post-transplant anti-Tumor activity.

[0104] Initially following autologous transplant, patients display delayed immune reconstitution which potentially results in diminished immune-mediated tumor eradication (43, 44). Indeed, it has been shown that both CD$+ T cells and cytotoxic CD8+ T cells are depressed (45-49). In vitro assays have demonstrated a profound suppression of T cell cytolytic and proliferative responses as well as decreased production of IL-2 in response to mitogens and soluble antigens. However, soluble IL-2 is able to restore these immune responses suggesting that immune cells in patients after autologous transplant are capable of responding to exogenous IL-2 (47). Peripheral blood NK activity also remains lower following BMT than control values and the NK activity is also augmented by addition of exogenous IL-2 (49). These data suggest that administration of IL-2 to patients shortly after stem cell transplant may enhance immune responsiveness at a critical period when tumor burden is minimal and when immune responsiveness in the absence of IL-2 is lacking.

[0105] For instance, Caligiuru et al. have shown that IL-2 (Hoffman-LaRoche) administered at 0.45.times.10.sup.6 U/M.sup.2/day by 24 hour CIV for 12 weeks was able to expand the absolute number of CD56 bright NK cells (50-52). This regimen was administered to non-transplant patients in the outpatient setting with little toxicity.

[0106] Animal models have shown that non-LAK inducing low doses of IL-2 dramatically enhances anti-tumor activity when administered with tumor-specific T effector cells (53). In addition, Soiffer et al. (54) administered low doses of IL-2 to 13 autologous BMT or T cell depleted allogeneic BMT recipients undergoing treatment for relapsed leukemia or lymphoma. Enhanced immunological responsiveness was demonstrated in the laboratory with a 5- to 40-fold increase in circulating CD56 bright CD16+ CD3- NK cells. Moreover, this low dose regimen of IL-2 resulted in augmented in vitro killing of the NK targets K562. When Soiffer et al. (55) updated the outcome of 29 allogeneic BMT patients who received low dose IL-2, they found superior survival for these patients (70%) compared to histological controls (30%, p=0.41).

[0107] Lauria et al. (56) treated 11 patients with high grade NHL at a median of 42 days after ABMT with IL-2 at a dose of 2.times.10.sup.6 IU/m.sup.2 god for two weeks and then 3.times.10.sup.6 IU/m.sup.2 twice a week for a year. Phenotypic analysis showed a persistent and significant (p=0.001) increase in the proportion and absolute number of total lymphocytes and especially of both CD16 and CD56 NK cells after 6 months of therapy. None of the patients progressed with a median follow-up of twenty-two months (range 10-42 months) after starting therapy. In addition, two patients with residual disease after ABMT, one in the liver and second in the lymph nodes, obtained a complete response after 7 and 10 months of IL-2 therapy.

[0108] Vey et al. (57) treated 25 patients with refractory or relapsed HD (11 patients) and NHL (14 patients) with low dose IL-2.48% of the patients had resistant disease at transplant and 84% achieved CR after ABMT. IL-2 was started at a mean of 54 days after transplant and consisted of a first cycle of 5 days followed by 4 cycles of 2 days every other week. Patients received a mean of 160.times.10.sup.6 IU/m.sup.2 of IL-2. After a five year follow-up, the probability of survival and DFS is 72% (HD 73% and NHL 70%) and 45% (HD 36% and NHL 48%).

[0109] A group at the Fred Hutchinson Cancer Research Center (FHCRC) has recently found that low dose IL-2 therapy was well-tolerated in the outpatient setting, and that remissions in patients treated with low dose IL-2 tended to be longer than without IL-2 treatment. IL-2 therapy was associated with an increase in the number of certain populations of immune cells, including CD8+ CD69+ cells; CD16+ CD8+ cells; CD16+CD69+ cells; CD16+ CD56+ cells; CD16+ CD122+ cells; CD16+ Dr+ cells; and CD8+CD56+ cells. There was also an increase in the expression of lytic activity against the tumor targets K562 and Daudi, with a median of 5.9-fold and 6.5-fold increase, respectively. Relapses, when they occurred, occurred at a median of 17.8 months after transplant, and therefor remissions were reported to be characteristically longer than what was historically seen in transplant recipients without IL-2 therapy.

[0110] Given the encouraging data gathered from single therapy studies with IL-2 on ABMT transplant recipients, it seemed reasonable to combine IL-2 therapy with Rituximab post transplant, given that Rituximab's biological activity appears to be mediated through ADCC and complement-mediated lytic activity. Thus, a Phase I trial has been initiated in collaboration with the FHCRC to evaluate the safety and potential efficacy of a combined therapeutic regimen.

[0111] A separate Phase II study is also being performed to evaluate the efficacy and the incidence of HACA formation in patients receiving low-dose IL-2 and RITUXAN.RTM.. A specific objective of this study is to assess whether ADCC is enhanced by in vivo exposure to IL-2 and whether ADCC activity correlates with clinical response. Inclusion criteria for patients are histologically confirmed stage II-IV low-grade, follicular B-cell or mantle cell lymphoma. Mantle cell lymphoma, for the purposes of this clinical study, is defined as CD5+, CD23-(if available) and/or bcl-1+ by immunohistochemistry. Patients who did not respond to or have relapsed following their first treatment with a standard therapy, i.e., chemotherapy, radiotherapy, ABMT and/or immunotherapy, are eligible.

[0112] Rituximab Plus GM-CSF for the Treatment of Relapsed Low Grade or Follicular B-Cell Lymphoma

[0113] Two separate Phase II trials have also been initiated to test the efficacy of combined treatment with Rituximab and GM-CSF. One study involves 40 patients with relapsed low grade B-cell lymphoma, and comprises administering Rituximab at 375 mg/m.sup.2 weekly .times.4 (d. 1, 8, 15, 22) and GM-CSF (Leukine, Immunex) at 250 mcg sc three times weekly for 8 weeks, starting one hour before the first dose of Rituximab. This study will be used to evaluate the clinical efficacy (overall response rate (ORR), overall complete response rate, time to progression and failure-free survival) of the combined therapeutic regimen, to characterize the safety (qualitative, quantitative, duration and reversibility of adverse events) of the combined therapy, and to determine the effects of the combined therapy on relevant lymphocyte subsets and cytokines. The second study plans to also monitor immunologic parameters to assess the mechanism of killing (complement C3 and C4, CH50, flow cytometry for CD3, CD4, CD8, CD16, CD19 and CD56 and ADCC assay).

[0114] Rituximab Plus Gamma-Interferon

[0115] Gamma-interferon may also be useful in combined therapy with Rituximab for treating patients with low-grade or higher-grade lymphomas. It is has recently been found that gamma-interferon upregulates CD20 expression on multiple myeloma (MM) patient plasma cells, patient B-cells, as well as on normal donor B-cells (Treon et al., Lugano, 1999). In fact, Treon and colleagues have shown that gamma-interferon augments binding of these cells to Rituximab. Induction of CD20 expression on plasma cells occurred in a dose dependent manner, with upregulation seen with as little as 1 U/ml of interferon gamma. A plateau occurred at 100 U/ml at 48 hours. Thus, gamma-interferon may also be beneficial when administered in combination with Rituximab.

Intermediate-Grade and High-Grade NHL

Single-Agent Studies

[0116] In a study conducted in Europe and Australia, alternative dosing schedules were evaluated in 54 relapsed or refractory intermediate- or high-grade NHL patients (34). Rituximab was infused at 375 mg/m.sup.2 weekly for 8 doses or at 375 mg/m.sup.2 once followed by 500 mg/m.sup.2 weekly for 7 doses. The ORR was 31%; (CR 9%, PR 22%) no significant difference between the dosing regimens was observed. Patients with diffuse large-cell lymphoma (N=30) had an ORR of 37% and those with mantle-cell lymphoma (N=12) had an ORR of 33%.

Combination of Rituximab and CHOP Chemotherapy

[0117] In another study, 31 patients with intermediate- or high-grade NHL (19 females, 12 males, median age 49) received Rituximab on Day 1 of each of six 21-day cycles of CHOP (35). Of 30 evaluable patients, there were 19 CR (63%) and 10 PR (33%), for an ORR of 96%. This regimen was considered well tolerated and may result in higher response rates than with Rituximab or CHOP alone.

[0118] The NCI Division of Cancer Treatment and Diagnosis is collaborating with IDEC Pharmaceuticals Corporation to explore Rituximab treatment in other indications. A Phase II trial of CHOP versus CHOP and Rituximab is being conducted by ECOG, CALGB, and SWOG in older patients (>60 years) with mixed, diffuse large cell, and immunoblastic large cell histology NHL (N=630 planned). This study includes a secondary randomization to maintenance with Rituximab versus non-maintenance.

[0119] A Phase III trial of Rituximab and CHOP in 40 patients with previously untreated mantle-cell lymphoma is also ongoing at the Dana Farber Institute. Rituximab.RTM. is administered on Day 1 and CHOP is given on Days 1-3 every 21 days for 6 cycles. Accrual for this study has been completed. A Phase II trial of CHOP followed by Rituximab in newly diagnosed follicular lymphoma conducted by SWOG has also been completed. Results of these two trials are being analyzed.

[0120] A Phase II trial of CHOP and Rituximab versus CHOP alone in HIV-related NHL conducted by the AIDS Malignancy Consortium is ongoing; 120 patients are planned.

Rituximab after Myeloablative Therapy Relapse

[0121] Rituximab has shown promising early results in patients with relapsed intermediate-grade NHL after high-dose therapy with autologous PBSC support. Six of seven patients responded (1 CR and 5 PR) and one patient had stable disease; therapy was well tolerated (36).

Safety Experience

[0122] Adverse events and clinical laboratory data from 315 patients in the five single-agent U.S. studies were combined to provide a safety profile of Rituximab in patients with low-grade or follicular NHL. The majority of adverse events were infusion-related and occurred with decreasing frequency after the first infusion. The most common infusion-related events were fever (49%), chills (32%), nausea (18%), fatigue (16%), headache (14%), angioedema (13%), pruritus (10%), and occasionally, hypotension (10%) and bronchospasm (8%). During the treatment period (up to 30 days following the last dose), 10% of patients experienced Grade 3 or 4 adverse events, which were primarily infusion-related or hematologic. Thrombocytopenia (<50,000 platelets/mm.sup.3) occurred in 1.3% of patients, neutropenia (<1000/mm.sup.3) occurred in 1.9%, and anemia (<8 gm/dL) occurred in 1.0%. Although Rituximab induced B-cell depletion in 70%-80% of patients, abnormally decreased serum immunoglobulins were observed in a minority of patients and the incidence of infection did not appear to be increased.

[0123] Hypotension requiring interruption of the Rituximab infusion occurred in 10% of patients and was Grade 3 or 4 in 1%. Angioedema was reported in 13% of patients and was considered serious in one patient. Bronchospasm occurred in 8% of patients; 2% were treated with bronchodilators. A single report of bronchiolitis obliterans was noted. Most patients experienced no further infusion-related toxicities by the second and subsequent infusions. The percentage of patients reporting adverse events upon retreatment was similar to that reported following the first course (14).

[0124] Four patients developed arrhythmias during Rituximab infusion. One of the four discontinued treatment because of ventricular tachycardia and supraventricular tachycardias. The other three patients experienced trigeminy (N=1) and irregular pulse (N=2) and did not require discontinuation of therapy. Angina was reported during infusion and myocardial infarction occurred four days post-infusion in one subject with a prior history of myocardial infarction.

[0125] The overall incidence of adverse events and Grade 3 and 4 adverse events was higher in patients with bulky disease than in patients with non-bulky disease. The incidence of dizziness, neutropenia, thrombocytopenia, myalgia, anemia, and chest pain was higher in patients with lesions>10 cm. The incidence of Grade 3 or 4 neutropenia, anemia, hypotension, and dyspnea was also higher in patients with bulky disease compared with patients with lesions<10 cm (19).

[0126] Since FDA approval of Rituximab for treatment of relapsed or refractory low-grade or follicular NHL in 1997, an estimated 17,000 patients have been treated. In May, 1998, descriptions of eight post-marketing reports of severe infusion-related adverse events associated with the use of Rituximab that resulted in fatal outcomes were summarized. In seven of the eight fatalities, severe symptoms occurred during the first Rituximab infusion. The cause of death was not reported or remains unknown for two of the eight cases. Severe respiratory events, including hypoxia, pulmonary infiltrates, or adult respiratory distress syndrome contributed to six of the eight reported deaths. One patient had a pretreatment lymphocyte count of 600,000/mm.sup.3; another, a creatinine of 8; a third, a respiratory rate of 40; and a fourth, pancytopenia. Patients with a high tumor burden or with a high number of circulating malignant cells may be at higher risk and these patients should be monitored closely throughout each infusion.

[0127] Most of the adverse events recently described were previously observed in Rituximab clinical studies. One notable exception is an infusion-related syndrome associated with rapid tumor lysis, that was reported in six patients with high numbers of circulating tumor cells (37,38). This syndrome was characterized by fever, rigors, bronchospasm with associated hypoxemia, a rapid decline in peripheral lymphocytes, laboratory evidence of tumor destruction, and transient, severe thrombocytopenia. These patients had diagnoses of B-prolymphocytic leukemia (N=2), chronic lymphocytic leukemia (N=2), mantle-cell lymphoma (N=1), or transformed NHL (N=1); all had elevated circulating lymphocytes, bulky adenopathy, and organomegaly. Although five of these six patients required hospitalization, symptoms resolved and subsequent Rituximab treatments were well tolerated; the last patient refused further therapy and died of progressive disease two weeks later.

[0128] In a separate report of seven patients with CLL and one patient with mantle-cell lymphoma, tumor lysis syndrome was observed after the first Rituximab infusion in those patients with lymphocyte counts>10.times.10.sup.9 L, (39).

Radioimmunotherapy with .sup.90Yttrium-Labeled Anti-CD20 Antibody in Combination with Rituximab

[0129] Another therapeutic approach to NHL under evaluation is a radiolabeled anti-CD20 antibody (IDEC-Y2B8) in combination with Rituximab. IDEC-Y2B8 (.sup.90Y-ibritumomab tiuxetan) is a murine IgG.sub.1 kappa anti-CD20 antibody conjugated to .sup.90Y via a chelator, MX-DTPA, which is covalently bound to the antibody. Rituximab (250 mg/m2) is administered prior to IDEC-Y2B8 to deplete peripheral B lymphocytes and improve biodistribution of the radiolabeled antibody.

[0130] In a recently reported Phase I/II study (40-42), patients with low-grade NHL (N=34), intermediate-grade NHL (N=14), or mantle-cell lymphoma (N=3) were treated with IDEC-Y2B8. The median age was 60, 71% were male, and 96% were Caucasian. Of 51 patients with relapsed or refractory NHL, 34 (67%) responded to single doses of 0.2, 0.3, or 0.4 mCi/kg of IDEC-Y2B8. The ORR was 82% (28/34) for patients with low-grade or follicular NHL and was 43% (6/14) for patients with intermediate-grade lymphoma. No patients with mantle-cell disease responded.

[0131] A Phase III randomized study comparing IDEC-Y2B8 with Rituximab (375 mg/m.sup.2 weekly times 4) for treatment of low-grade follicular or transformed NHL patients is ongoing. Another Phase III trial is also being conducted in patients with relapsed NHL who are refractory to Rituximab.

SUMMARY

[0132] In the absence of curative therapy for NHL, the objective of treatment is to achieve control of the disease for a meaningful duration and provide relief of tumor-related symptoms without undue toxicity. Treatment with Rituximab is a brief, 22-day outpatient therapy with limited adverse events in most patients. In clinical studies, 50% of evaluable relapsed or chemotherapy refractory low-grade or follicular NHL patients achieved complete or partial responses. These responses were durable without maintenance therapy; the median TTP for responders was 13.2 months and the median DR was 11.6 months in the pivotal study.

[0133] Rituximab is approved as a safe and effective treatment for patients with relapsed low-grade or follicular B-cell NHL. It has significant clinical activity, a novel mechanism of action, and compares favorably with alternative therapies in response rate and response duration. Completion of ongoing studies will verify the role of alternative Rituximab regimens and Rituximab in the treatment of other CD20+ B-lymphocyte malignancies.

REFERENCES

[0134] 1. Press O., Appelbaum F, Ledbetter J, Martin P, Zarling J, Kidd P, Thomas E. Monoclonal antibody 1F5 (anti-CD20) serotherapy of human B-cell lymphomas. Blood 1987; 69:584-591. [0135] 2. Dillman R. O. Antibodies as cytotoxic therapy. Journal of Clinical Oncology 1994; 12:1497-1515. [0136] 3. Grossbard M., Press O, Appelbaum F, Bernstein I, Nadler L. Monoclonal antibody-based therapies of leukemia and lymphoma. Blood 1992; 80:863-878. [0137] 4. Reff M., Camer K., Chambers K., Chinn P., Leonard J, Raab R., Newman R., Hanna N., Anderson D. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 1994; 83:435-445. [0138] 5. Demidem A., Lam T, Alas S, Hariharan K, Hanna N, Bonavida B. Chimeric anti-CD20 (IDEC-C2B8) monoclonal antibody sensitizes a B cell lymphoma cell line to cell killing by cytotoxic drugs. Cancer Biotherapy & Radiopharmaceuticals 1997; 12:177-186. [0139] 6. Maloney D., Liles T, Czerwinski D, Waldichuk C, Rosenberg J, Grillo-Lopez A, Levy R. Phase I clinical trial using escalating single-dose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B-cell lymphoma. Blood 1994; 84:2457-2466. [0140] 7. Maloney D, Grillo-Lopez A, White C, Bodkin D, Schilder R, Neidhart J, Janakiraman N, Foon K, Liles T-M, Dallaire B, Wey K, Royston I, Davis T, Levy R. IDEC-C2B8 (Rituximab.RTM.) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin's lymphoma. Blood 1997; 90: 2188-2195. [0141] 8. McLaughlin P, Grillo-Lopez A, Link B, Levy R, Czuczman M, Williams M, Heyman M, Bence-Bruckler I, White C, Cabanillas F, Jain V, Ho A, Lister J, Wey K, Shen D, Dallaire B. Rituximab.RTM. chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a 4-dose treatment program. Journal of Clinical Oncology 1998; 16:2825-2833. [0142] 9. McLaughlin P, Grillo-Lopez A, Maloney D, Link B, Levy R, Czuczman M, Cabanillas F, Dallaire B, White C. Efficacy controls and long-term follow-up of patients treated with rituximab for relapsed or refractory, low-grade or follicular NHL. Blood 1998; 92:414a-415a. [0143] 10. Janakiraman N, McLaughlin P, White C, Maloney D, Shen D, Grillo-Lopez A. Rituximab: Correlation between effector cells and clinical activity in NHL. Blood 1998; 92 (10 Suppl 1):337a. [0144] 11. Berinstein N, Grillo-Lopez A, White C, Bence-Bruckler I, Maloney D, Czuczman M, Green D, Rosenberg J, McLaughlin P, Shen D. Association of serum Rituximab (IDEC-C2B8) concentration and anti-tumor response in the treatment of recurrent low-grade or follicular non-Hodgkin's lymphoma. Annals of Oncology 1998; 9:995-1001. [0145] 12. Tobinai K, Kobayashi Y, Narabayashi M, Ogura M, Kagami Y, Morishima Y, Ohtsu T, Igarashi T, Sasaki Y, Kinoshita T, Murate T. Feasibility and pharmacokinetic study of a chimeric anti-CD20 monoclonal antibody (IDEC-C2B8, rituximab) in relapsed B-cell lymphoma. Annals of Oncology 1998; 9:527-534. [0146] 13. Piro L, White C, Grillo-Lopez A, Janakiraman N, Saven A, Beck T, Varns C, Shuey S, Czuczman M, Lynch J, Kolitz J, Jain V. Extended Rituxan (anti-CD20 monoclonal antibody) therapy for relapsed or refractory low-grade or follicular non-Hodgkin's lymphoma. 1999; Submitted [0147] 14. Davis T, White C, Grillo-Lopez A, Velasquez W, Link B, Maloney D, Dillman R, Williams M, Mohrbacher A, Weaver R, Dowden S, Levy R. Rituximab: First report of a Phase II (PII) trial in NHL patients (pts) with bulky disease. Blood 1998; 92 (10 Suppl 1):414a. [0148] 15. Byrd J, White C, Thomas S, Veldsquez W, Rosenberg J, Grillo-Lopez A. Rituximab therapy in previously treated Waldenstrom's Macroglobulinemia: Preliminary evidence of activity. Blood 1998; 92 (IC) Suppl 1): 106(a). [0149] 16. O'Brien S, Freireich E, Andreeff M, Lerner S, Keating M. Phase I/III Study of Rituxan in chronic lymphocytic leukemia (CLL). Blood 1998; 92:105a, #431. [0150] 17. Venugopal P, Sivararnan S, Huang X, Chopra H, O'Brein T, Jajeh A, Preisler H. Upregulation of CD20 expression in chronic lymphocytic leukemia (CLL) cells by in vitro exposure to cytokines. Blood 1998; 10:247a. [0151] 18. Flinn I, O'Donnell P, Noga S, Vogelsang G, Greyer M, Goodrich A, Abrams R, Marcellus D, Miller C, Jones R., Ambinder R. In vivo purging and adjuvant immunotherapy with Rituximab PBSC transplant for NHL. Blood 1998; 92:648a, #2673. [0152] 19. Davis T, Levy R, White C, Czuczman M, McLaughlin P, Link B, Varns C, Weaver R, Grillo-Lopez A. Rituximab: Phase II (PII) retreatment (ReRx) study in patients (pts) with low-grade or follicular (LG/F) NHL. Blood 1998; 92 (10 Suppl 1):414a. [0153] 20. Davis T, Czerwinski D, Levy R. Therapy of B cell lymphoma with anti-CD20 antibodies can result in the loss of CD20 antigen expression. Clinical Cancer Research 1999; 5: In press. [0154] 21. Czuczman M, Grillo-Lopez A, White C, Saleh M, Gordon L, LoBuglio F, Jonas C, Klippenstein D, Dallaire B, Varns C. Treatment of patients with low-grade B-cell lymphoma with the combination of chimeric anti-CD20 monoclonal antibody and CHOP chemotherapy. Journal of Clinical Oncology 1999; 17:268-276. [0155] 22. White C, Czuczman M, Grillo-Lopez A, White C, Saleh M, Gordon L, LoBuglio A, Jonas C, Alkuzweny B, Dowen S. Rituximab/CHOP chemoimmunotherapy in patients (pts) with low grade lymphoma (LG/F NHL): Progression free survival (PFS) after three years (median) follow-up. Proceedings of ASCO 1999, In press. [0156] 23. Wadler S, Schwartz E. Principles in the biomodulation of cytotoxic drugs by interferons. Seminars in Oncology 1992; 19:45-48. [0157] 24. Nakamura K, Kubo A, Hosokawa S, Nagaike K, Hashimoto S. Effect of alpha-interferon on anti-alpha-fetoprotein-monoclonal-antibody targeting of hepatoma. Oncology 1993; 50:35-40. [0158] 25. Greiner J, Guadagni F, Noguchi P, Pestka S, Colcher D, Fisher P, Schlom J. Recombinant interferon enhances monoclonal antibody-targeting of carcinoma lesions in vivo. Science 1987; 235:895-898. [0159] 26. Murray J, Zukiwski A, Mujoo K, Rosenblum M. Recombinant alpha-interferon enhances tumor targeting of an antimelanoma monoclonal antibody in vivo. Journal of Biological Response Modifiers 1990; 9:556-563. [0160] 27. Yokota S, Hara H, Luo Y, Seon B. Synergistic potentiation of in vivo antitumor activity of anti-human T-leukemia immunotoxins by recombinant alpha-interferon and daunorubicin. Cancer Research 1990; 50:32-37. [0161] 28. Grillo-Lopez A, Dallaire B, Shen C, Varns C, McClure A, Caralli V. Treatment options for patients with relapsed low-grade or follicular lymphoma: The role of IDEC-C2B8. Antibody Immunoconjugates and Radiopharmaceuticals 1995; 8:60. [0162] 29. Davis T, Maloney D, White C, Grillo-Lopez A, Williams M, Weiner G, Sklenar T, Levy R. Combination immunotherapy of low grade or follicular (LG/F) non-Hodgkin's lymphoma (NHL) with Rituximab and alpha interferon: Interim analysis. Proceedings of the American Society of Clinical Oncology 1998; 17:11a. [0163] 30. Smalley R, Andersen J, Hawkins M, Bhide V, O'Connell M, Oken M, Borden E. Interferon alfa combined with cytotoxic chemotherapy for patients with non-Hodgkin's lymphoma. New England Journal of Medicine 1992; 327: 1336-1341. [0164] 31. Hagenbeek A, Carde P, Meerwaldt J H, Somers R, Thomas J, De Bock R, Raemaekers J M, van Hoof A, De Wolf-Peeters C, van Glabbeke M. Maintenance of remission with human recombinant interferon alfa-2a in patients with stages In and IV low-grade malignant non-Hodgkin's lymphoma. European Organization for Research and Treatment of Cancer Lymphoma Cooperative Group. Journal of Clinical Oncology 1998; 16:41-47. [0165] 32. Solal-Celigny P, Lepage E, Brousse N, Tendler C, Brice P, Haioun C, Gabarre J, Pignon B, Tertian G, Bouabdallah R, Rossi J-F, Doyen C, Coiffier B. Doxorubicin-containing regimen with or without interferon alfa-2b for advanced follicular lymphomas: Final analysis of survival and toxicity in the groupe d'etude des lymphomes folliculaires 86 trial. Journal of Clinical Oncology 1998; 16:2332-2338. [0166] 33. van der Kolk L, Grillo-Lopez A, Gerritsen W, Jonkhoff A, Baars J, van Oers M. Chimeric anti-CD20 monoclonal antibody (rituximab) plus G-CSF in relapsed B-cell lymphoma: A phase I/II clinical trial. Blood 1998; 92:241b, #4037. [0167] 34. Coiffier B, Haioun C, Ketterer N, Engert A, Tilly H, Ma D, Johnson P, Lister A, Feuring-Buske M, Radford J A, Capdeville R, Diehl V, Reyes F. Rituximab (anti-CD20 monoclonal antibody) for the treatment of patients with relapsing or refractory aggressive lymphoma: a multicenter phase H study. Blood 1998; 92:1927-1932. [0168] 35. Link B, Grossbard M, Fisher R, Czuczman M, Gilman P, Lowe A, Vose J. Phase II pilot study of the safety and efficacy of rituximab in combination with CHOP chemotherapy in patients with previously untreated- or high-grade NHL. Proceedings of the American Society of Clinical Oncology 1998; 17:3a. [0169] 36. Tsai, D, Moore H, Porter D, Vaughn D, Luger S, Loh R, Schuster S, Stadtmauer E. Progressive intermediate grade non-Hodgkin's lymphoma after high dose therapy and autologous peripheral stem cell transplantation (PSCT) has a high response rate to Rituximab. Blood 1998; 92:415a, #1713. [0170] 37. Byrd J, Waselenko J, Maneatis T, Murphy T, Weickrum R, Ward F, White C. Rituximab therapy in hematologic malignancy patients with circulating blood tumor cells: Association with increased infusion-related side effects and rapid tumor lysis. Blood 1998; 92 (10 Suppl 1): 106a. [0171] 38. Jensen M, Winkler U, Manzke O, Diehl V, Engert A. Rapid tumor lysis in a patient with B-cell chronic lymphocytic leukemia and lymphocytosis treated with an anti-CD20 monoclonal antibody (IDEC-C2B8, rituximab). Annals of Hematology 1998; 77:89-91. [0172] 39. Winkler U, Jensen M, Manzke O, Tesch H, Bohlen H, Diehl V, Engert A. Severe side effects in patients with B-cell chronic lymphocytic leukemia (CLL) and lymphocytosis treated with the monoclonal antibody Rituximab. Blood 1998; 92:285b, #4228. [0173] 40. Witzig T, White C, Wiseman G, Gordon L, Emmanouilides C, Raubitschek A, Janakiraman N, Gutheil J, Spies S, Silverman D, Parker E, Grillo-Lopez A. Phase I/II trial of IDEC-Y2B8 radioimmunotherapy for treatment of relapsed or refractory CD20 positive B-cell non-Hodgkin's lymphoma. Journal of Clinical Oncology 1999; Submitted. [0174] 41. Wiseman G, White C, Witzig T, Gordon L, Emmanouilides C, Raubitschek A, Janakiraman N, Spies S, Silverman D, Gutheil J, Schilder R, Parker E, Rosenberg J, Grillo-Lopez A. IDEC-Y2B8 radioimmunotherapy: Baseline bone marrow involvement and platelet count are better predictors of hematologic toxicity than dosimetry. Blood 1998; 92:417a. [0175] 42. Witzig T, White C, Wiseman G, Gordon L, Emmanouilides C, Raubitschek A, Janakiraman N, Spies S, Silverman D, Gutheil J, Schilder R, Ding E, Shen D, Grillo-Lopez A. IDEC-Y2B8 Radioimmunotherapy: Responses in patients with splenomegaly. Blood 1998; 92:417(a). [0176] 43. Witherspoon R P, Lum L G, Storb R Immunologic reconstitution after bone marrow grafting. Semin Hematol 21:2, 1984. [0177] 44. Anderson, K C et al. Hematological engraftment and immune reconstitution posttransplant with anti-B1 purged autologous bone marrow. Blood 69:597, 1987. [0178] 45. Lum L G. Kinetics of immune reconstitution after human marrow transplantation. Blood 69:369, 1987. [0179] 46. Azogui O., Gluckman E., Fradelizi, D., Inhibition of IL-2 production after human allogeneic bone marrow transplantation. J. Immunol. 131:1205, 1983 [0180] 47. Welte, K. et al, Defective Interleukin-2 production in patients after bone marrow transplantation and in vitro restoration of defective T lymphocite proliferation by highly purified Interleukin. Blood 64:380, 1984. [0181] 48. Cayeau, S. et al., T-cell ontogeny after bone marrow transplantation: failure to synthesize Interleukin-2 (IL-2) and lack of CD2- and CD3-mediated proliferation by both CDE4+ and CD8+ cells even in the presence of exogenous IL-2. Blood 74:2270, 1989. [0182] 49. Bosley, A. et al., Interleukin-2 as consolidative immunotherapy against minimal residual disease. Nouv Rev Fr Hematol 32:13, 1990. [0183] 50. Caligiuri, M. A. et al, Extended continuous infusion low-dose recombinant Interleukin-2 in advanced cancer. Prolonged immunomodulation without significant toxicity. J Clin Oncol 9:2110, 1991. [0184] 51. Caligiuri, M. A. et al, Selective immune modulation of NK cells following prolonged infusions of low dose recombinant IL-2. J Clin Invest 91:123, 1993. [0185] 52. Caligiuri, M. A., Low-dose recombinant Interleukin-2 therapy: rationale and potential clinical applications. SEM in Oncol 20:3, 1993. [0186] 53. Klarnet, J. P. et al, Antigen-driven T cell clones can proliferate in vivo, eradicate disseminated leukemia and provide specific immunologic memory. J Immunol. 138:4012, 1987. [0187] 54. Soiffer, R. J. et al, Clinical and immunologic effects of prolonged infusion of low-dose recombinant Interleukin-2 after autologous and T cell-depleted allogeneic bone marrow transplantation. Blood 79:517, 1992. [0188] 55. Soiffer, R. J. et al, Effect of low-dose Interleukin-2 on disease relapse after T-cell depleted allogeneic bone marrow transplantation. Blood 84:964, 1994. [0189] 56. Lauria, F. et al, Immunologic and clinical modifications following low-dose subcutaneous administration of rIL-2 in non-Hodgkin's lymphoma patients after autologous bone marrow transplantation. BMT 18:79, 1996. [0190] 57. Vey, N. et al, A pilot study of autologous bone marrow transplantation followed by recombinant Interleukin-2 in malignant lymphomas. Leukemia & Lymphoma 21:107, 1996. [0191] 58. Venugopal, P. et al, Upregulation of CD20 expression in CLL cells by cytokines. Submitted to ASH Meeting, December 1998.

* * * * *

References


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed