Evaluating Mmp Expression In Patient Stratification And Other Therapeutic, Diagnostic And Prognostic Methods For Cancer

Wood; Clive R. ;   et al.

Patent Application Summary

U.S. patent application number 13/454534 was filed with the patent office on 2013-09-19 for evaluating mmp expression in patient stratification and other therapeutic, diagnostic and prognostic methods for cancer. This patent application is currently assigned to DYAX CORP.. The applicant listed for this patent is Laetitia Devy, Daniel T. Dransfield, Clive R. Wood. Invention is credited to Laetitia Devy, Daniel T. Dransfield, Clive R. Wood.

Application Number20130244890 13/454534
Document ID /
Family ID40795916
Filed Date2013-09-19

United States Patent Application 20130244890
Kind Code A1
Wood; Clive R. ;   et al. September 19, 2013

EVALUATING MMP EXPRESSION IN PATIENT STRATIFICATION AND OTHER THERAPEUTIC, DIAGNOSTIC AND PROGNOSTIC METHODS FOR CANCER

Abstract

Provided are compositions, methods and kits for quantifying the expression and/or activity of MMP-14 and other biomarkers of cancer, which may be used diagnostically and prognostically, e.g., in patient stratification and evaluation of appropriate therapeutic regimens.


Inventors: Wood; Clive R.; (Boston, MA) ; Dransfield; Daniel T.; (Hanson, MA) ; Devy; Laetitia; (Somerville, MA)
Applicant:
Name City State Country Type

Wood; Clive R.
Dransfield; Daniel T.
Devy; Laetitia

Boston
Hanson
Somerville

MA
MA
MA

US
US
US
Assignee: DYAX CORP.
Burlington
MA

Family ID: 40795916
Appl. No.: 13/454534
Filed: April 24, 2012

Related U.S. Patent Documents

Application Number Filing Date Patent Number
12337218 Dec 17, 2008 8183008
13454534
61025017 Jan 31, 2008
61008153 Dec 17, 2007

Current U.S. Class: 506/9 ; 435/23; 435/6.11; 435/6.12; 435/7.4
Current CPC Class: G01N 33/57492 20130101; C12Q 1/6886 20130101; G01N 33/57484 20130101
Class at Publication: 506/9 ; 435/7.4; 435/6.12; 435/6.11; 435/23
International Class: G01N 33/574 20060101 G01N033/574; C12Q 1/68 20060101 C12Q001/68

Claims



1-2. (canceled)

3. A method of monitoring the progress of a therapy for cancer in a subject, the method comprising evaluating an expressional ratio of MMP-14 to MMP-9, an expressional ratio of MMP-14 to MMP-2 or an expressional ratio of MMP-2 to MMP-9 in a sample from the subject, and wherein an expressional ratio of MMP-14 to MMP-9 or MMP-2 or an expressional ratio of MMP-2 to MMP-9 is greater than 1 in the subject following treatment compared to a reference set indicates successful progress of the therapy for cancer.

4. (canceled)

5. The method of claim 3, wherein the cancer is selected from the group consisting of: osteotropic cancer, breast cancer, lung cancer, colon cancer and prostate cancer.

6. The method of claim 5, wherein the sample is a tumor biopsy.

7. (canceled)

8. The method of claim 3, wherein the expressional ratio is the ratio of MMP-14 to MMP-9 expression or the ratio of MMP-14 to MMP-9 protein activity.

9. The method of claim 3, wherein the expressional ratio is the ratio of MMP-14 to MMP-2 expression or the ratio of MMP-14 to MMP-2 protein activity.

10. The method of claim 3, wherein the expression ratio is the ratio of MMP-2 to MMP-9 expression or the ratio of MMP-2 to MMP-9 protein activity.

11. The method of claim 3, wherein the MMP-14 binding protein is an antibody or antibody fragment.

12. The method of claim 11, wherein the antibody fragment is a single chain antibody, a Fab fragment, an sFab fragment, a F(ab').sub.2 fragment, an Fd fragment, an Fv fragment, an scFv fragment, or a domain antibody (dAb) fragment.

13. The method of claim 11, wherein the antibody or antibody fragment competes for binding with DX-2400.

14. The method of claim 8 or 9, wherein the expression is protein expression.

15. The method of claim 14, wherein the level of protein expression is determined using an MMP-14, MMP-9 and/or MMP-2 antibody.

16. The method of claim 3, wherein the reference set is determined in the subject before onset of treatment.

17. The method of claim 11, wherein the antibody or antibody fragment is a human antibody, an effectively human antibody or a humanized antibody.

18. The method of claim 3, wherein the cancer is melanoma.

19. The method of claim 3, wherein the cancer is a diffuse large B-cell lymphoma.

20. The method of claim 3, wherein the MMP-14 binding protein comprises heavy chain CDR1, CDR2 and CDR3 of SEQ ID NO:13 and light chain CDR1, CDR2 and CDR3 of SEQ ID NO:14.

21. The method of claim 20, wherein the MMP-14 binding protein is DX-2400.

22. The method of claim 20, wherein the MMP-14 binding protein is M0038-F01.

23. The method of claim 3, wherein the MMP-14 binding protein is DX-2410.
Description



CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Application Ser. No. 61/008,153, filed on Dec. 17, 2007 and U.S. Application Ser. No. 61/025,017, filed on Jan. 31, 2008. The disclosures of the prior applications are considered part of (and are incorporated by reference in) the disclosure of this application.

BACKGROUND

[0002] The membrane type (MT)-matrix metalloproteinases (MMPs) constitute a sub-group of membrane-anchored MMPs that are major mediators of pericellular proteolysis and physiological activators of pro-MMP-2. MT-MMPs activate the zymogenic form of MMP-2 (pro-MMP-2 or pro-gelatinase A). MMP-2, in turn, can activate pro-MMP-9. The MT-MMPs comprise six members of plasma-tethered MMPs, which include four type I transmembrane enzymes (MMP-14, -15, -16, and -24) and two glycosylphosphatidylinositol-anchored enzymes (MMP-17 and -25). In addition to being potent extracellular matrix (ECM)-degrading enzymes, the type I transmembrane MT-MMPs can also initiate a cascade of zymogen activation on the cell surface.

[0003] MMPs are extensively studied in cancer and inflammation, and are well-validated in preclinical studies. Existing treatments for cancer, such as chemotherapy and radiotherapy improve the quality of life with no life-prolonging benefits and have significant side effects. Other treatments, such as MMP inhibitors, are being developed and further refined, and may work most effectively in cancers where certain MMPs are being expressed.

[0004] Patient stratification allows healthcare providers to assess the risk/benefit ratio of a given treatment and to predict what patients may best respond to a certain course of treatment. In general, the higher the risk of a particular disease, the better the risk/benefit ratio. Relative risk reduction by a given treatment is often similar across subgroups divided by sex, age, blood pressure etc.; however, if the absolute risk is low it may not be worth taking a treatment with serious side effects. Patient stratification is also important in assessing the cost effectiveness of treatment for a given set of patients.

SUMMARY

[0005] Provided are compositions and methods for quantifying the expression or activity of MMP-14 and other biomarkers of cancer, for example, osteotropic cancer, breast cancer, lung cancer, colon cancer or prostate cancer, which may be used diagnostically (e.g., to identify patients who have cancer, or a particular subclass of cancer) and prognostically (e.g., to identify patients who are likely to develop cancer or respond well to a particular therapeutic for treating cancer). Kits for detecting MMP-14 and other biomarkers and for the practice of the methods incorporating such detection are also described herein.

[0006] Specifically, in certain embodiments, provided are methods of utilizing expression of and/or expression ratios of any two of MMP-14, MMP-2 and MMP-9 in tumors and other cancer cells in order to stratify patients and identify those who would benefit from MMP-14 inhibitor treatment. For example, patients possessing tumors which express both MMP-14 and MMP-2 may be candidates for MMP-14 inhibitor treatment, and patients with tumors expressing MMP-14 and not MMP-2 may also benefit from MMP-14 inhibitor treatment. In another example, those patients with a high MMP-14/low MMP-9 expression ratio may benefit from MMP-14 inhibitor treatment. Further, by evaluating expression of MMP-14 and other MMP biomarkers (e.g., in a sample from a patient), patients can be diagnosed and potentially be stratified into groupings with different prognoses or drug responses. In some embodiments, "Low" and "High" refer to the intensity of immunohistochemistry staining for MMP-14 and MMP-9 expression in a carcinoma. For example, staining levels that are substantially the same as background levels of staining or about 10%, about 20%, about 30%, or about 40% greater than background levels of staining can be considered to be low levels; and staining levels that are about 2, about 3, about 4 fold or greater than background levels of staining can be considered to be high levels. As another example, in some embodiments, when the ratio of MMP-14/MMP-9 is >1, there is more MMP-14 expression than MMP-9 expression and is considered to bea favorable indicator of MMP-14 binding protein (e.g., DX-2400) responsiveness in preclinical models and subjects, e.g., subjects with cancer. In this embodiment, these subjects would benefit from and/or are good candidates for (e.g., would be selected for) treatment with an MMP-14 binding protein. In some embodiments, when the ratio is <1, MMP-9 expression is higher than MMP-14 expression, and that could be an indication of a non-responsive or low responsive tumor, e.g., in a subject with a tumor. In these embodiments, a subject with a ratio of <1 would not be selected for and/or would not benefit from treatment with an MMP-14 binding protein. Expression levels, e.g., levels of staining can be quantified, e.g., as described herein.

[0007] Compositions and kits for the practice of these methods are also described herein. These embodiments of the present invention, other embodiments, and their features and characteristics will be apparent from the description, drawings, and claims that follow.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] FIG. 1 illustrates the relative expression levels of various MMPs, including MMP-14 and MMP-2, in different cancer cell lines. TGI: Tumor Growth Inhibition.

[0009] FIGS. 2 and 3 illustrate the effect of DX-2400 on tumor progression in xenograft animal models created using the cancer cell lines of FIG. 1.

[0010] FIG. 4 illustrates the effect of DX-2400 on metastasis incidence in xenograft animal models created using the cancer cell lines of FIG. 1.

[0011] FIGS. 5A, 5B, 5C show the MMP-14 expression levels in selected cell lines by Western blot (WB) analysis (FIG. 5A); and the effect of a MMP-14 antibody (DX-2400) on MMP-14 positive (FIG. 5B) and MMP-14 negative (FIG. 5C) tumors.

DETAILED DESCRIPTION

[0012] For convenience, before further description of the present invention, certain terms employed in the specification, examples and appended claims are defined here.

[0013] The singular forms "a", "an", and "the" include plural references unless the context clearly dictates otherwise.

[0014] The term "agonist", as used herein, is meant to refer to an agent that mimics or up-regulates (e.g., potentiates or supplements) the bioactivity of a protein. An agonist can be a wild-type protein or derivative thereof having at least one bioactivity of the wild-type protein. An agonist can also be a compound that upregulates expression of a gene or which increases at least one bioactivity of a protein. An agonist can also be a compound which increases the interaction of a polypeptide with another molecule, e.g., a target peptide or nucleic acid.

[0015] "Antagonist" as used herein is meant to refer to an agent that downregulates (e.g., suppresses or inhibits) at least one bioactivity of a protein. An antagonist can be a compound which inhibits or decreases the interaction between a protein and another molecule, e.g., a target peptide or enzyme substrate. An antagonist can also be a compound that downregulates expression of a gene or which reduces the amount of expressed protein present.

[0016] The term "antibody" refers to a protein that includes at least one immunoglobulin variable domain or immunoglobulin variable domain sequence. For example, an antibody can include a heavy (H) chain variable region (abbreviated herein as VH), and a light (L) chain variable region (abbreviated herein as VL). In another example, an antibody includes two heavy (H) chain variable regions and two light (L) chain variable regions. The term "antibody" encompasses antigen-binding fragments of antibodies (e.g., single chain antibodies, Fab and sFab fragments, F(ab').sub.2, Fd fragments, Fv fragments, scFv, and domain antibodies (dAb) fragments (de Wildt et al., Eur J. Immunol. 1996; 26(3):629-39)) as well as complete antibodies. An antibody can have the structural features of IgA, IgG, IgE, IgD, IgM (as well as subtypes thereof). Antibodies may be from any source, but primate (human and non-human primate) and primatized are preferred.

[0017] The VH and VL regions can be further subdivided into regions of hypervariability, termed "complementarity determining regions" ("CDR"), interspersed with regions that are more conserved, termed "framework regions" ("FR"). The extent of the framework regions and CDRs has been precisely defined (see, Kabat, E. A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242, and Chothia, C. et al. (1987) J. Mol. Biol. 196:901-917, see also www.hgmp.mrc.ac.uk). Kabat definitions are used herein. Each VH and VL is typically composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4.

[0018] The VH or VL chain of the antibody can further include all or part of a heavy or light chain constant region, to thereby form a heavy or light immunoglobulin chain, respectively. In one embodiment, the antibody is a tetramer of two heavy immunoglobulin chains and two light immunoglobulin chains, wherein the heavy and light immunoglobulin chains are inter-connected by, e.g., disulfide bonds. In IgGs, the heavy chain constant region includes three immunoglobulin domains, CH1, CH2 and CH3. The light chain constant region includes a CL domain. The variable region of the heavy and light chains contains a binding domain that interacts with an antigen. The constant regions of the antibodies typically mediate the binding of the antibody to host tissues or factors, including various cells of the immune system (e.g., effector cells) and the first component (Clq) of the classical complement system. The light chains of the immunoglobulin may be of types kappa or lambda. In one embodiment, the antibody is glycosylated. An antibody can be functional for antibody-dependent cytotoxicity and/or complement-mediated cytotoxicity.

[0019] One or more regions of an antibody can be human or effectively human. For example, one or more of the variable regions can be human or effectively human. For example, one or more of the CDRs can be human, e.g., HC CDR1, HC CDR2, HC CDR3, LC CDR1, LC CDR2, and LC CDR3. Each of the light chain CDRs can be human. HC CDR3 can be human. One or more of the framework regions can be human, e.g., FR1, FR2, FR3, and FR4 of the HC or LC. For example, the Fc region can be human. In one embodiment, all the framework regions are human, e.g., derived from a human somatic cell, e.g., a hematopoietic cell that produces immunoglobulins or a non-hematopoietic cell. In one embodiment, the human sequences are germline sequences, e.g., encoded by a germline nucleic acid. In one embodiment, the framework (FR) residues of a selected Fab can be converted to the amino-acid type of the corresponding residue in the most similar primate germline gene, especially the human germline gene. One or more of the constant regions can be human or effectively human. For example, at least 70, 75, 80, 85, 90, 92, 95, 98, or 100% of an immunoglobulin variable domain, the constant region, the constant domains (CH1, CH2, CH3, CL1), or the entire antibody can be human or effectively human.

[0020] All or part of an antibody can be encoded by an immunoglobulin gene or a segment thereof. Exemplary human immunoglobulin genes include the kappa, lambda, alpha (IgA1 and IgA2), gamma (IgG1, IgG2, IgG3, IgG4), delta, epsilon and mu constant region genes, as well as the many immunoglobulin variable region genes. Full-length immunoglobulin "light chains" (about 25 KDa or about 214 amino acids) are encoded by a variable region gene at the NH2-terminus (about 110 amino acids) and a kappa or lambda constant region gene at the COOH--terminus. Full-length immunoglobulin "heavy chains" (about 50 KDa or about 446 amino acids), are similarly encoded by a variable region gene (about 116 amino acids) and one of the other aforementioned constant region genes, e.g., gamma (encoding about 330 amino acids). The length of human HC varies considerably because HC CDR3 varies from about 3 amino-acid residues to over 35 amino-acid residues.

[0021] The term "binding" refers to an association, which may be a stable association, between two molecules, e.g., between a polypeptide of the invention and a binding partner, due to, for example, electrostatic, hydrophobic, ionic and/or hydrogen-bond interactions under physiological conditions.

[0022] The term "binding protein" refers to a protein or polypeptide that can interact with a target molecule. This term is used interchangeably with "ligand." An "MMP-14 binding protein" refers to a protein that can interact with MMP-14, and includes, in particular, proteins that preferentially interact with and/or inhibit MMP-14. For example, the MMP-14 binding protein may be an antibody.

[0023] "Biological activity" or "bioactivity" or "activity" or "biological function", which are used interchangeably, refer to an effector or antigenic function that is directly or indirectly performed by a polypeptide (whether in its native or denatured conformation), or by any subsequence thereof. Biological activities include binding to polypeptides, binding to other proteins or molecules, activity as a DNA binding protein, as a transcription regulator, ability to bind damaged DNA, etc. A bioactivity may be modulated by directly affecting the subject polypeptide. Alternatively, a bioactivity may be altered by modulating the level of the polypeptide, such as by modulating expression of the corresponding gene.

[0024] The term "biological sample", as used herein, refers to a sample obtained from an organism or from components (e.g., cells) of an organism. The sample may be of any biological tissue or fluid. Frequently the sample will be a "clinical sample" which is a sample derived from a patient. Such samples include, but are not limited to, sputum, blood, blood cells (e.g., white cells), tissue or fine needle biopsy samples, urine, peritoneal fluid, and pleural fluid, or cells therefrom. Biological samples may also include sections of tissues such as frozen sections taken for histological purposes.

[0025] The term "cancer" is meant to refer to an abnormal cell or cells, or a mass of tissue. The growth of these cells or tissues exceeds and is uncoordinated with that of the normal tissues or cells, and persists in the same excessive manner after cessation of the stimuli which evoked the change. These neoplastic tissues or cells show a lack of structural organization and coordination relative to normal tissues or cells which may result in a mass of tissues or cells which can be either benign or malignant. As used herein, cancer includes any neoplasm. This includes, but is not limited to, melanoma, adenocarcinoma, malignant glioma, prostatic carcinoma, kidney carcinoma, bladder carcinoma, pancreatic carcinoma, thyroid carcinoma, lung carcinoma, colon carcinoma, rectal carcinoma, brain carcinoma, liver carcinoma, breast carcinoma, ovary carcinoma, bone cancer, and the like.

[0026] A "combinatorial library" or "library" is a plurality of compounds, which may be termed "members," synthesized or otherwise prepared from one or more starting materials by employing either the same or different reactants or reaction conditions at each reaction in the library. In general, the members of any library show at least some structural diversity, which often results in chemical diversity. A library may have anywhere from two different members to about 10.sup.8 members or more. In certain embodiments, libraries of the present invention have more than about 12, 50 and 90 members. In certain embodiments of the present invention, the starting materials and certain of the reactants are the same, and chemical diversity in such libraries is achieved by varying at least one of the reactants or reaction conditions during the preparation of the library. Combinatorial libraries of the present invention may be prepared in solution or on the solid phase.

[0027] The term "diagnosing" includes prognosing and staging a disease or disorder.

[0028] "Gene" or "recombinant gene" refers to a nucleic acid molecule comprising an open reading frame and including at least one exon and (optionally) an intron sequence. "Intron" refers to a DNA sequence present in a given gene which is spliced out during mRNA maturation.

[0029] The terms "label" or "labeled" refer to incorporation or attachment, optionally covalently or non-covalently, of a detectable marker into a molecule, such as a polypeptide and especially an antibody. Various methods of labeling polypeptides are known in the art and may be used. Examples of labels for polypeptides include, but are not limited to, the following: radioisotopes, fluorescent labels, heavy atoms, enzymatic labels or reporter genes, chemiluminescent groups, biotinyl groups, predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags). Examples and use of such labels are described in more detail below. In some embodiments, labels are attached by spacer arms of various lengths to reduce potential steric hindrance. Particular examples of labels which may be used under the invention include fluorescein, rhodamine, dansyl, umbelliferone, Texas red, luminol, NADPH, alpha-galactosidase, beta-galactosidase and horseradish peroxidase.

[0030] The "level of expression of a gene in a cell" or "gene expression level" refers to the level of mRNA, as well as pre-mRNA nascent transcript(s), transcript processing intermediates, mature mRNA(s) and degradation products, encoded by the gene in the cell.

[0031] The term "modulation", when used in reference to a functional property or biological activity or process (e.g., enzyme activity or receptor binding), refers to the capacity to either up regulate (e.g., activate or stimulate), down regulate (e.g., inhibit or suppress) or otherwise change a quality of such property, activity or process. In certain instances, such regulation may be contingent on the occurrence of a specific event, such as activation of a signal transduction pathway, and/or may be manifest only in particular cell types.

[0032] The term "modulator" refers to a polypeptide, nucleic acid, macromolecule, complex, molecule, small molecule, compound, species or the like (naturally-occurring or non-naturally-occurring), or an extract made from biological materials such as bacteria, plants, fungi, or animal cells or tissues, that may be capable of causing modulation. Modulators may be evaluated for potential activity as inhibitors or activators (directly or indirectly) of a functional property, biological activity or process, or combination of them, (e.g., agonist, partial antagonist, partial agonist, inverse agonist, antagonist, anti-microbial agents, inhibitors of microbial infection or proliferation, and the like) by inclusion in assays. In such assays, many modulators may be screened at one time. The activity of a modulator may be known, unknown or partially known.

[0033] As used herein, the term "nucleic acid" refers to polynucleotides such as deoxyribonucleic acid (DNA), and, where appropriate, ribonucleic acid (RNA). The term should also be understood to include, as equivalents, analogs of either RNA or DNA made from nucleotide analogs, and, as applicable to the embodiment being described, single (sense or antisense) and double-stranded polynucleotides. ESTs, chromosomes, cDNAs, mRNAs, and rRNAs are representative examples of molecules that may be referred to as nucleic acids.

[0034] The term "osteotropic cancer" refers to metastatic cancer of the bone, i.e., a secondary cancer present in bone that originates from a primary cancer, such as that of the breast, lung, or prostate.

[0035] A "patient", "subject" or "host" to be treated by the subject method may mean either a human or non-human animal.

[0036] "Protein", "polypeptide" and "peptide" are used interchangeably herein when referring to a chain of amino acids prepared by protein synthesis techniques or to a gene product, e.g., as may be encoded by a coding sequence. By "gene product" it is meant a molecule that is produced as a result of transcription of a gene. Gene products include RNA molecules transcribed from a gene, as well as proteins translated from such transcripts.

[0037] "Recombinant protein", "heterologous protein" and "exogenous protein" are used interchangeably to refer to a polypeptide which is produced by recombinant DNA techniques, wherein generally, DNA encoding the polypeptide is inserted into a suitable expression vector which is in turn used to transform a host cell to produce the heterologous protein. That is, the polypeptide is expressed from a heterologous nucleic acid.

[0038] "Small molecule" as used herein, is meant to refer to a composition, which has a molecular weight of less than about 5 kD and most preferably less than about 4 kD. Small molecules can be nucleic acids, peptides, polypeptides, peptidomimetics, carbohydrates, lipids or other organic (carbon-containing) or inorganic molecules. Many pharmaceutical companies have extensive libraries of chemical and/or biological mixtures, often fungal, bacterial, or algal extracts, which can be screened with any of the assays of the invention to identify compounds that modulate a bioactivity.

[0039] "Stage classification" or "staging" is generally, classification of cancer by progression observable by the naked eye, and TNM classification (tumor-node-metastasis staging) is widely used internationally. The "stage classification" used in the present invention corresponds to the TNM classification ("Rinsho, Byori, Genpatsusei Kangan Toriatsukaikiyaku (Clinical and Pathological Codes for Handling Primary Liver Cancer)": 22 p. Nihon Kangangaku Kenkyukai (Liver Cancer Study Group of Japan) edition (3rd revised edition), Kanehara Shuppan, 1992).

[0040] "Therapeutic agent" or "therapeutic" refers to an agent capable of having a desired biological effect on a host. Chemotherapeutic and genotoxic agents are examples of therapeutic agents that are generally known to be chemical in origin, as opposed to biological, or cause a therapeutic effect by a particular mechanism of action, respectively. Examples of therapeutic agents of biological origin include growth factors, hormones, and cytokines. A variety of therapeutic agents are known in the art and may be identified by their effects. Certain therapeutic agents are capable of regulating red cell proliferation and differentiation. Examples include chemotherapeutic nucleotides, drugs, hormones, non-specific (non-antibody) proteins, oligonucleotides (e.g., antisense oligonucleotides that bind to a target nucleic acid sequence (e.g., mRNA sequence)), peptides, and peptidomimetics.

[0041] The term "therapeutically effective amount" refers to that amount of a modulator, drug or other molecule which is sufficient to effect treatment when administered to a subject in need of such treatment. The therapeutically effective amount will vary depending upon the subject and disease condition being treated, the weight and age of the subject, the severity of the disease condition, the manner of administration and the like, which can readily be determined by one of ordinary skill in the art.

[0042] The term "treating" as used herein is intended to encompass curing as well as ameliorating at least one symptom of any condition or disease.

[0043] MMP-14, MMP-2 and MMP-9 Biomarkers

[0044] Without wishing to be bound by theory, according to preferred embodiments of this disclosure, a cancer to be targeted with an anti-MMP-14 treatment (e.g., treatment with an MMP-14 binding protein, e.g., DX-2400) expresses MMP-14. In preferred embodiments, the MMP-14 is active. Thus, reagents, e.g., proteins (e.g., antibodies) that specifically bind the active form of MMP-14, e.g., DX-2400 (which binds to the catalytic domain of MMP-14) are suitable reagents to practice the methods described herein. In other embodiments, the total levels of MMP-14 (e.g., inactive and active MMP-14) are measured. As described herein, in a tumor model using cells which do not express MMP-14, the tumor xenograft of such cells did not respond to DX-2400 treatment. In contrast, a tumor xenograft model using cells that express MMP-14 did respond to DX-2400 treatment.

[0045] According to another preferred embodiment, without being bound by theory, in determining responsiveness to anti-MMP-14 treatment (e.g., treatment with an MMP-14 binding protein, e.g., DX-2400), the levels of MMP-9 (e.g., active MMP-9) are determined. In preferred embodiments, low to no levels of active MMP-9 indicate that the tumor will be responsive to anti-MMP-14 treatment. For example, MMP-9 activity levels can be determined using in situ film zymography or by using an antibody that binds to the active form of MMP-9, e.g., to an active site on MMP-9. Examples of such antibodies include 539A-M0166-F10 and 539A-M0240-B03. As support for this model, experiments were performed using BxPC-3 cells which express active MMP-14 (bind DX-2400) but a tumor of these cells in a xenograft model did not respond in vivo to DX-2400 treatment (see FIG. 3). After analyzing the tumor tissue, it was determined that these cells had very high levels of active MMP-9 (data not shown).

[0046] The present invention is based at least in part on the observation that certain cancers, particularly osteotropic cancer or bone metastatic cancer cell lines, express MMP-14 and activate proMMP-2, and that MMP-14 inhibitors show enhanced efficacy in cancer cells expressing MMP-14, MMP-2 and/or MMP-9.

[0047] MMP-14

[0048] MMP-14 is encoded by a gene designated as MMP-14, matrix metalloproteinase-14 precursor. Synonyms for MMP-14 include matrix metalloproteinase 14 (membrane-inserted), membrane-type-1 matrix metalloproteinase, membrane-type matrix metalloproteinase 1, MMP-14, MMP-X1, MT1MMP, MT1-MMP, MTMMP1, MT-MMP 1. MT-MMPs have similar structures, including a signal peptide, a prodomain, a catalytic domain, a hinge region, and a hemopexin domain (Wang, et al., 2004, J Biol Chem, 279:51148-55). According to SwissProt entry P50281, the signal sequence of MMP-14 precursor includes amino acid residues 1-20. The pro-peptide includes residues 21-111. Cys93 is annotated as a possible cysteine switch. Residues 112 through 582 make up the mature, active protein. The catalytic domain includes residues 112-317. The hemopexin domains includes residues 318-523. The transmembrane segment comprises residues 542 through 562.

[0049] MMP-14 can be shed from cells or found on the surface of cells, tethered by a single transmembrane amino-acid sequence. See, e.g., Osnkowski et al. (2004, J Cell Physiol, 200:2-10).

[0050] An exemplary amino acid sequence of human MMP-14 is:

TABLE-US-00001 (SEQ ID NO: 1; Genbank Accession No. CAA88372.1) MSPAPRPPRCLLLPLLTLGTALASLGSAQSSSFSPEAWLQQYGYLPPG DLRTHTQRSPQSLSAAIAAMQKFYGLQVTGKADADTMKAMRRPRCGVP DKFGAEIKANVRRKRYAIQGLKWQHNEITFCIQNYTPKVGEYATYEAI RKAFRVWESATPLRFREVPYAYIREGHEKQADIMIFFAEGFHGDSTPF DGEGGFLAHAYFPGPNIGGDTHFDSAEPWTVRNEDLNGNDIFLVAVHE LGHALGLEHSSDPSAIMAPFYQWMDTENFVLPDDDRRGIQQLYGGESG FPTKMPPQPRTTSRPSVPDKPKNPTYGPNICDGNFDTVAMLRGEMFVF KERWFWRVRNNQVMDGYPMPIGQFWRGLPASINTAYERKDGKFVFFKG DKHWVFDEASLEPGYPKHIKELGRGLPTDKIDAALFWMPNGKTYFFRG NKYYRFNEELRAVDSEYPKNIKVWEGIPESPRGSFMGSDEVFTYFYKG NKYWKFNNQKLKVEPGYPKSALRDWMGCPSGGRPDEGTEEETEVIIIE VDEEGGGAVSAAAVVLPVLLLLLVLAVGLAVFFFRRHGTPRRLLYCQR SLLDKV.

[0051] An exemplary amino acid sequence of mouse MMP-14 is:

TABLE-US-00002 SEQ ID NO: 2; GenBank Accession No. NP_032634.2 MSPAPRPSRSLLLPLLTLGTALASLGWAQGSNFSPEAWLQQYGYLPPGDLRTHTQRSPQSLSAAIAAMQKFYGL QVTGKADLATMMAMRRPRCGVPDKFGTEIKANVRRKRYAIQGLKWQHNEITFCIQNYTPKVGEYATFEAIRKAF RVWESATPLRFREVPYAYIREGHEKQADIMILFAEGFHGDSTPFDGEGGFLAHAYFPGPNIGGDTHFDSAEPWT VQNEDLNGNDIFLVAVHELGHALGLEHSNDPSAIMSPFYQWMDTENFVLPDDDRRGIQQLYGSKSGSPTKMPPQ PRTTSRPSVPDKPKNPAYGPNICDGNFDTVAMLRGEMFVFKERWFWRVRNNQVMDGYPMPIGQFWRGLPASINT AYERKDGKFVFFKGDKHWVFDEASLEPGYPKHIKELGRGLPTDKIDAALFWMPNGKTYFFRGNKYYRFNEEFRA VDSEYPKNIKVWEGIPESPRGSFMGSDEVFTYFYKGNKYWKFNNQKLKVEPGYPKSALRDWMGCPSGRRPDEGT EEETEVIIIEVDEEGSGAVSAAAVVLPVLLLLLVLAVGLAVFFFRRHGTPKRLLYCQRSLLDKV.

[0052] An exemplary MMP-14 protein can consist of or comprise the human or mouse MMP-14 amino acid sequence, a sequence that is 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to one of these sequences, or a fragment thereof, e.g., a fragment without the signal sequence or prodomain.

[0053] The mRNA sequences of human and murine MMP-14 may be found at GenBank Accession Nos Z48481 and NM.sub.--008608, respectively. The sequences of human and mouse MMP-14 mRNAs are as follows:

TABLE-US-00003 SEQ ID NO: 3: human MMP-14 mRNA 1 aagttcagtg cctaccgaag acaaaggcgc cccgagggag tggcggtgcg accccagggc 61 gtgggcccgg ccgcggagcc cacactgccc ggctgacccg gtggtctcgg accatgtctc 121 ccgccccaag acccccccgt tgtctcctgc tccccctgct cacgctcggc accgcgctcg 181 cctccctcgg ctcggcccaa agcagcagct tcagccccga agcctggcta cagcaatatg 241 gctacctgcc tcccggggac ctacgtaccc acacacagcg ctcaccccag tcactctcag 301 cggccatcgc tgccatgcag aagttttacg gcttgcaagt aacaggcaaa gctgatgcag 361 acaccatgaa ggccatgagg cgcccccgat gtggtgttcc agacaagttt ggggctgaga 421 tcaaggccaa tgttcgaagg aagcgctacg ccatccaggg tctcaaatgg caacataatg 481 aaatcacttt ctgcatccag aattacaccc ccaaggtggg cgagtatgcc acatacgagg 541 ccattcgcaa ggcgttccgc gtgtgggaga gtgccacacc actgcgcttc cgcgaggtgc 601 cctatgccta catccgtgag ggccatgaga agcaggccga catcatgatc ttctttgccg 661 agggcttcca tggcgacagc acgcccttcg atggtgaggg cggcttcctg gcccatgcct 721 acttcccagg ccccaacatt ggaggagaca cccactttga ctctgccgag ccttggactg 781 tcaggaatga ggatctgaat ggaaatgaca tcttcctggt ggctgtgcac gagctgggcc 841 atgccctggg gctcgagcat tccagtgacc cctcggccat catggcaccc ttttaccagt 901 ggatggacac ggagaatttt gtgctgcccg atgatgaccg ccggggcatc cagcaacttt 961 atgggggtga gtcagggttc cccaccaaga tgccccctca acccaggact acctcccggc 1021 cttctgttcc tgataaaccc aaaaacccca cctatgggcc caacatctgt gacgggaact 1081 ttgacaccgt ggccatgctc cgaggggaga tgtttgtctt caaggagcgc tggttctggc 1141 gggtgaggaa taaccaagtg atggatggat acccaatgcc cattggccag ttctggcggg 1201 gcctgcctgc gtccatcaac actgcctacg agaggaagga tggcaaattc gtcttcttca 1261 aaggagacaa gcattgggtg tttgatgagg cgtccctgga acctggctac cccaagcaca 1321 ttaaggagct gggccgaggg ctgcctaccg acaagattga tgctgctctc ttctggatgc 1381 ccaatggaaa gacctacttc ttccgtggaa acaagtacta ccgtttcaac gaagagctca 1441 gggcagtgga tagcgagtac cccaagaaca tcaaagtctg ggaagggatc cctgagtctc 1501 ccagagggtc attcatgggc agcgatgaag tcttcactta cttctacaag gggaacaaat 1561 actggaaatt caacaaccag aagctgaagg tagaaccggg ctaccccaag tcagccctga 1621 gggactggat gggctgccca tcgggaggcc ggccggatga ggggactgag gaggagacgg 1681 aggtgatcat cattgaggtg gacgaggagg gcggcggggc ggtgagcgcg gctgccgtgg 1741 tgctgcccgt gctgctgctg ctcctggtgc tggcggtggg ccttgcagtc ttcttcttca 1801 gacgccatgg gacccccagg cgactgctct actgccagcg ttccctgctg gacaaggtct 1861 gacgcccacc gccggcccgc ccactcctac cacaaggact ttgcctctga aggccagtgg 1921 cagcaggtgg tggtgggtgg gctgctccca tcgtcccgag ccccctcccc gcagcctcct 1981 tgcttctctc tgtcccctgg ctggcctcct tcaccctgac cgcctccctc cctcctgccc 2041 cggcattgca tcttccctag ataggtcccc tgagggctga gtgggagggc ggccctttcc 2101 agcctctgcc cctcagggga accctgtagc tttgtgtctg tccagcccca tctgaatgtg 2161 ttgggggctc tgcacttgaa ggcaggaccc tcagacctcg ctggtaaagg tcaaatgggg 2221 tcatctgctc cttttccatc ccctgacata ccttaacctc tgaactctga cctcaggagg 2281 ctctgggcac tccagccctg aaagccccag gtgtacccaa ttggcagcct ctcactactc 2341 tttctggcta aaaggaatct aatcttgttg agggtagaga ccctgagaca gtgtgagggg 2401 gtggggactg ccaagccacc ctaagacctt gggaggaaaa ctcagagagg gtcttcgttg 2461 ctcagtcagt caagttcctc ggagatctgc ctctgcctca cctaccccag ggaacttcca 2521 aggaaggagc ctgagccact ggggactaag tgggcagaag aaacccttgg cagccctgtg 2581 cctctcgaat gttagccttg gatggggctt tcacagttag aagagctgaa accaggggtg 2641 cagctgtcag gtagggtggg gccggtggga gaggcccggg tcagagccct gggggtgagc 2701 ctgaaggcca cagagaaaga accttgccca aactcaggca gctggggctg aggcccaaag 2761 gcagaacagc cagagggggc aggaggggac caaaaaggaa aatgaggacg tgcagcagca 2821 ttggaaggct ggggccgggc aggccaggcc aagccaagca gggggccaca gggtgggctg 2881 tggagctctc aggaagggcc ctgaggaagg cacacttgct cctgttggtc cctgtccttg 2941 ctgcccaggc agcgtggagg ggaagggtag ggcagccaga gaaaggagca gagaaggcac 3001 acaaacgagg aatgaggggc ttcacgagag gccacagggc ctggctggcc acgctgtccc 3061 ggcctgctca ccatctcagt gaggggcagg agctggggct cgcttaggct gggtccacgc 3121 ttccctggtg ccagcacccc tcaagcctgt ctcaccagtg gcctgccctc tcgctccccc 3181 acccagccca cccattgaag tctccttggg ccaccaaagg tggtggccat ggtaccgggg 3241 acttgggaga gtgagaccca gtggagggag caagaggaga gggatgtcgg gggggtgggg 3301 cacggggtag gggaaatggg gtgaacggtg ctggcagttc ggctagattt ctgtcttgtt 3361 tgtttttttg ttttgtttaa tgtatatttt tattataatt attatatatg aattccaaaa 3421 aaaaaaaaaa aaaaaaa SEQ ID NO: 4: mouse MMP-14 mRNA 1 caaaggagag cagagagggc ttccaactca gttcgccgac taagcagaag aaagatcaaa 61 aacggaaaag agaagagcaa acagacattt ccaggagcaa ttccctcacc tccaagccga 121 ccgcgctcta ggaatccaca ttccgttcct ttagaagaca aaggcgcccc aagagaggcg 181 gcgcgacccc agggcgtggg ccccgccgcg gagcccgcac cgcccggcgc cccgacgccg 241 gggaccatgt ctcccgcccc tcgaccctcc cgcagcctcc tgctccccct gctcacgctt 301 ggcacggcgc tcgcctccct cggctgggcc caaggcagca acttcagccc cgaagcctgg 361 ctgcagcagt atggctacct acctccaggg gacctgcgta cccacacaca acgctcaccc 421 cagtcactct cagctgccat tgccgccatg caaaagttct atggtttaca agtgacaggc 481 aaggctgatt tggcaaccat gatggccatg aggcgccctc gctgtggtgt tccggataag 541 tttgggactg agatcaaggc caatgttcgg aggaagcgct atgccattca gggcctcaag 601 tggcagcata atgagatcac tttctgcatt cagaattaca cccctaaggt gggcgagtat 661 gccacattcg aggccattcg gaaggccttc cgagtatggg agagtgccac gccactgcgc 721 ttccgagaag tgccctatgc ctacatccgg gagggacatg agaagcaggc tgacatcatg 781 atcttatttg ctgagggttt ccacggcgac agtacaccct ttgatggtga aggagggttc 841 ctggctcatg cctacttccc aggccccaat attggagggg atacccactt tgattctgcc 901 gagccctgga ctgtccaaaa tgaggatcta aatgggaatg acatcttctt ggtggctgtg 961 catgagttgg ggcatgccct aggcctggaa cattctaacg atccctccgc catcatgtcc 1021 cccttttacc agtggatgga cacagagaac ttcgtgttgc ctgatgacga tcgccgtggc 1081 atccagcaac tttatggaag caagtcaggg tcacccacaa agatgccccc tcaacccaga 1141 actacctctc ggccctctgt cccagataag cccaaaaacc ccgcctatgg gcccaacatc 1201 tgtgacggga actttgacac cgtggccatg ctccgaggag agatgtttgt cttcaaggag 1261 cgatggttct ggcgggtgag gaataaccaa gtgatggatg gatacccaat gcccattggc 1321 caattctgga ggggcctgcc tgcatccatc aatactgcct acgaaaggaa ggatggcaaa 1381 tttgtcttct tcaaaggaga taagcactgg gtgtttgacg aagcctccct ggaacccggg 1441 taccccaagc acattaagga gcttggccga gggctgccca cggacaagat cgatgcagct 1501 ctcttctgga tgcccaatgg gaagacctac ttcttccggg gcaataagta ctaccggttc 1561 aatgaagaat tcagggcagt ggacagcgag taccctaaaa acatcaaagt ctgggaagga 1621 atccctgaat ctcccagggg gtcattcatg ggcagtgatg aagtcttcac atacttctac 1681 aagggaaaca aatactggaa gttcaacaac cagaagctga aggtagagcc agggtacccc 1741 aagtcagctc tgcgggactg gatgggctgc ccttcggggc gccggcccga tgaggggact 1801 gaggaggaga cagaggtgat catcattgag gtggatgagg agggcagtgg agctgtgagt 1861 gcggccgccg tggtcctgcc ggtactactg ctgctcctgg tactggcagt gggcctcgct 1921 gtcttcttct tcagacgcca tgggacgccc aagcgactgc tttactgcca gcgttcgctg 1981 ctggacaagg tctgaccccc accactggcc cacccgcttc taccacaagg actttgcctc 2041 tgaaggccag tggctacagg tggtagcagg tgggctgctc tcacccgtcc tgggctccct 2101 ccctccagcc tcccttctca gtccctaatt ggcctctccc accctcaccc cagcattgct 2161 tcatccataa gtgggtccct tgagggctga gcagaagacg gtcggcctct ggccctcaag 2221 ggaatctcac agctcagtgt gtgttcagcc ctagttgaat gttgtcaagg ctcttattga 2281 aggcaagacc ctctgacctt ataggcaacg gccaaatggg gtcatctgct tcttttccat 2341 ccccctaact acatacctta aatctctgaa ctctgacctc aggaggctct gggcatatga 2401 gccctatatg taccaagtgt acctagttgg ctgcctcccg ccactctgac taaaaggaat 2461 cttaagagtg tacatttgga ggtggaaaga ttgttcagtt taccctaaag actttgataa 2521 gaaagagaaa gaaagaaaga aagaaagaaa gaaagaaaga aagaaagaaa gaaaaaaaaa 2581 aaa

[0054] An exemplary MMP-14 gene can consist of or comprise the human or mouse MMP-14 mRNA sequence, a sequence that is 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to one of these sequences, or a fragment thereof.

[0055] MMP-2

[0056] MMP-14 activates pro-MMP-2 causing a cascade of proteolysis that facilitates the mobility and invasiveness of tumor cells (Berno, et al., 2005, Endocr Relat Cancer, 12:393-406; Anilkumar, et al., 2005, Faseb J, 19:1326-8; Itoh and Seiki, 2005, J Cell Physiol; Lopez de Cicco, et al., 2005, Cancer Res, 65:4162-71; El Bedoui, et al., 2005, Cardiovasc Res, 67:317-25; Cao, et al., 2005, Thromb Haemost, 93:770-8; Sato, et al., 2005, Cancer Sci, 96:212-7; Dong, et al., 2005, Am J Pathol, 166:1173-86; Philip, et al., 2004, Glycoconj J, 21:429-41; Guo, et al., 2005, Am J Pathol, 166:877-90; Grossman, 2005, Urol Oncol, 23:222; Gilles, et al., 2001, J Cell Sci, 114:2967-76). Studies propose that this activation process requires both active MT1-MMP and the TIMP-2-bound MT1-MMP (Strongin et al, 1995, J Biol Chem, 270, 5331-5338; Butler et al, 1998, J Biol Chem, 273: 871-80; Kinoshita et al, 1998, J Biol Chem, 273, 16098-103). The TIMP-2 in the latter complex binds, through its C-terminal domain, to the hemopexin domain of pro-MMP-2, which may localize the zymogen close to the active MT1-MMP (Butler et al, 1998, J Biol Chem, 273: 871-80; Kinoshita et al, 1998).

[0057] MMP-2 is encoded by a gene designated as MMP-2, matrix metalloproteinase 2 preproprotein. Synonyms for MMP-2 include matrix metalloproteinase 2 (gelatinase A, 72 kD gelatinase, 72 kD type IV collagenase), TBE-1 (as secreted by H-ras oncogene-transformed human bronchial epithelial cells), MMP-II, CLG4, and CLG4A.

[0058] An exemplary amino acid sequence of human MMP-2 is:

TABLE-US-00004 (SEQ ID NO: 5; Genbank Accession No. NP_004521.1) MEALMARGAL TGPLRALCLL GCLLSHAAAA PSPIIKFPGD VAPKTDKELA VQYLNTFYGC PKESCNLFVL KDTLKKMQKF FGLPQTGDLD QNTIETMRKP RCGNPDVANY NFFPRKPKWD KNQITYRIIG YTPDLDPETV DDAFARAFQV WSDVTPLRFS RIHDGEADIM INFGRWEHGD GYPFDGKDGL LAHAFAPGTG VGGDSHFDDD ELWTLGEGQV VRVKYGNADG EYCKFPFLFN GKEYNSCTDT GRSDGFLWCS TTYNFEKDGK YGFCPHEALF TMGGNAEGQP CKFPFRFQGT SYDSCTTEGR TDGYRWCGTT EDYDRDKKYG FCPETAMSTV GGNSEGAPCV FPFTFLGNKY ESCTSAGRSD GKMWCATTAN YDDDRKWGFC PDQGYSLFLV AAHEFGHAMG LEHSQDPGAL MAPIYTYTKN FRLSQDDIKG IQELYGASPD IDLGTGPTPT LGPVTPEICK QDIVFDGIAQ IRGEIFFFKD RFIWRTVTPR DKPMGPLLVA TFWPELPEKI DAVYEAPQEE KAVFFAGNEY WIYSASTLER GYPKPLTSLG LPPDVQRVDA AFNWSKNKKT YIFAGDKFWR YNEVKKKMDP GFPKLIADAW NAIPDNLDAV VDLQGGGHSY FFKGAYYLKL ENQSLKSVKF GSIKSDWLGC.

[0059] An exemplary amino acid sequence of murine MMP-2 is:

TABLE-US-00005 (SEQ ID NO: 6; Genbank Accession No. NP_032636.1) MEARVAWGAL AGPLRVLCVL CCLLGRAIAA PSPIIKFPGD VAPKTDKELA VQYLNTFYGC PKESCNLFVL KDTLKKMQKF FGLPQTGDLD QNTIETMRKP RCGNPDVANY NFFPRKPKWD KNQITYRIIG YTPDLDPETV DDAFARALKV WSDVTPLRFS RIHDGEADIM INFGRWEHGD GYPFDGKDGL LAHAFAPGTG VGGDSHFDDD ELWTLGEGQV VRVKYGNADG EYCKFPFLFN GREYSSCTDT GRSDGFLWCS TTYNFEKDGK YGFCPHEALF TMGGNADGQP CKFPFRFQGT SYNSCTTEGR TDGYRWCGTT EDYDRDKKYG FCPETAMSTV GGNSEGAPCV FPFTFLGNKY ESCTSAGRND GKVWCATTTN YDDDRKWGFC PDQGYSLFLV AAHEFGHAMG LEHSQDPGAL MAPIYTYTKN FRLSHDDIKG IQELYGPSPD ADTDTGTGPT PTLGPVTPEI CKQDIVFDGI AQIRGEIFFF KDRFIWRTVT PRDKPTGPLL VATFWPELPE KIDAVYEAPQ EEKAVFFAGN EYWVYSASTL ERGYPKPLTS LGLPPDVQQV DAAFNWSKNK KTYIFAGDKF WRYNEVKKKM DPGFPKLIAD SWNAIPDNLD AVVDLQGGGH SYFFKGAYYL KLENQSLKSV KFGSIKSDWL GC.

[0060] An exemplary MMP-2 protein can consist of or comprise the human or mouse MMP-2 amino acid sequence, a sequence that is 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to one of these sequences, or a fragment thereof, e.g., a fragment without the signal sequence or prodomain.

[0061] The mRNA sequences of human and murine MMP-2 may be found at GenBank Accession Nos NM.sub.--004530 and NM.sub.--008610, respectively. The sequences of human and mouse MMP-2 mRNAs are as follows:

TABLE-US-00006 SEQ ID NO: 7: human MMP-2 mRNA 1 gcggctgccc tcccttgttt ccgctgcatc cagacttcct caggcggtgg ctggaggctg 61 cgcatctggg gctttaaaca tacaaaggga ttgccaggac ctgcggcggc ggcggcggcg 121 gcgggggctg gggcgcgggg gccggaccat gagccgctga gccgggcaaa ccccaggcca 181 ccgagccagc ggaccctcgg agcgcagccc tgcgccgcgg agcaggctcc aaccaggcgg 241 cgaggcggcc acacgcaccg agccagcgac ccccgggcga cgcgcggggc cagggagcgc 301 tacgatggag gcgctaatgg cccggggcgc gctcacgggt cccctgaggg cgctctgtct 361 cctgggctgc ctgctgagcc acgccgccgc cgcgccgtcg cccatcatca agttccccgg 421 cgatgtcgcc cccaaaacgg acaaagagtt ggcagtgcaa tacctgaaca ccttctatgg 481 ctgccccaag gagagctgca acctgtttgt gctgaaggac acactaaaga agatgcagaa 541 gttctttgga ctgccccaga caggtgatct tgaccagaat accatcgaga ccatgcggaa 601 gccacgctgc ggcaacccag atgtggccaa ctacaacttc ttccctcgca agcccaagtg 661 ggacaagaac cagatcacat acaggatcat tggctacaca cctgatctgg acccagagac 721 agtggatgat gcctttgctc gtgccttcca agtctggagc gatgtgaccc cactgcggtt 781 ttctcgaatc catgatggag aggcagacat catgatcaac tttggccgct gggagcatgg 841 cgatggatac ccctttgacg gtaaggacgg actcctggct catgccttcg ccccaggcac 901 tggtgttggg ggagactccc attttgatga cgatgagcta tggaccttgg gagaaggcca 961 agtggtccgt gtgaagtatg ggaacgccga tggggagtac tgcaagttcc ccttcttgtt 1021 caatggcaag gagtacaaca gctgcactga taccggccgc agcgatggct tcctctggtg 1081 ctccaccacc tacaactttg agaaggatgg caagtacggc ttctgtcccc atgaagccct 1141 gttcaccatg ggcggcaacg ctgaaggaca gccctgcaag tttccattcc gcttccaggg 1201 cacatcctat gacagctgca ccactgaggg ccgcacggat ggctaccgct ggtgcggcac 1261 cactgaggac tacgaccgcg acaagaagta tggcttctgc cctgagaccg ccatgtccac 1321 tgttggtggg aactcagaag gtgccccctg tgtcttcccc ttcactttcc tgggcaacaa 1381 atatgagagc tgcaccagcg ccggccgcag tgacggaaag atgtggtgtg cgaccacagc 1441 caactacgat gatgaccgca agtggggctt ctgccctgac caagggtaca gcctgttcct 1501 cgtggcagcc cacgagtttg gccacgccat ggggctggag cactcccaag accctggggc 1561 cctgatggca cccatttaca cctacaccaa gaacttccgt ctgtcccagg atgacatcaa 1621 gggcattcag gagctctatg gggcctctcc tgacattgac cttggcaccg gccccacccc 1681 cacgctgggc cctgtcactc ctgagatctg caaacaggac attgtatttg atggcatcgc 1741 tcagatccgt ggtgagatct tcttcttcaa ggaccggttc atttggcgga ctgtgacgcc 1801 acgtgacaag cccatggggc ccctgctggt ggccacattc tggcctgagc tcccggaaaa 1861 gattgatgcg gtatacgagg ccccacagga ggagaaggct gtgttctttg cagggaatga 1921 atactggatc tactcagcca gcaccctgga gcgagggtac cccaagccac tgaccagcct 1981 gggactgccc cctgatgtcc agcgagtgga tgccgccttt aactggagca aaaacaagaa 2041 gacatacatc tttgctggag acaaattctg gagatacaat gaggtgaaga agaaaatgga 2101 tcctggcttc cccaagctca tcgcagatgc ctggaatgcc atccccgata acctggatgc 2161 cgtcgtggac ctgcagggcg gcggtcacag ctacttcttc aagggtgcct attacctgaa 2221 gctggagaac caaagtctga agagcgtgaa gtttggaagc atcaaatccg actggctagg 2281 ctgctgagct ggccctggct cccacaggcc cttcctctcc actgccttcg atacaccggg 2341 cctggagaac tagagaagga cccggagggg cctggcagcc gtgccttcag ctctacagct 2401 aatcagcatt ctcactccta cctggtaatt taagattcca gagagtggct cctcccggtg 2461 cccaagaata gatgctgact gtactcctcc caggcgcccc ttccccctcc aatcccacca 2521 accctcagag ccacccctaa agagatactt tgatattttc aacgcagccc tgctttgggc 2581 tgccctggtg ctgccacact tcaggctctt ctcctttcac aaccttctgt ggctcacaga 2641 acccttggag ccaatggaga ctgtctcaag agggcactgg tggcccgaca gcctggcaca 2701 gggcagtggg acagggcatg gccaggtggc cactccagac ccctggcttt tcactgctgg 2761 ctgccttaga acctttctta cattagcagt ttgctttgta tgcactttgt ttttttcttt 2821 gggtcttgtt ttttttttcc acttagaaat tgcatttcct gacagaagga ctcaggttgt 2881 ctgaagtcac tgcacagtgc atctcagccc acatagtgat ggttcccctg ttcactctac 2941 ttagcatgtc cctaccgagt ctcttctcca ctggatggag gaaaaccaag ccgtggcttc 3001 ccgctcagcc ctccctgccc ctcccttcaa ccattcccca tgggaaatgt caacaagtat 3061 gaataaagac acctactgag tggccgtgtt tgccatctgt tttagcagag cctagacaag 3121 ggccacagac ccagccagaa gcggaaactt aaaaagtccg aatctctgct ccctgcaggg 3181 cacaggtgat ggtgtctgct ggaaaggtca gagcttccaa agtaaacagc aagagaacct 3241 cagggagagt aagctctagt ccctctgtcc tgtagaaaga gccctgaaga atcagcaatt 3301 ttgttgcttt attgtggcat ctgttcgagg tttgcttcct ctttaagtct gtttcttcat 3361 tagcaatcat atcagtttta atgctactac taacaatgaa cagtaacaat aatatccccc 3421 tcaattaata gagtgctttc tatgtgcaag gcacttttca cgtgtcacct attttaacct 3481 ttccaaccac ataaataaaa aaggccatta ttagttgaat cttattgatg aagagaaaaa 3541 aaaaaa SEQ ID NO: 8: mouse MMP-2 mRNA 1 ccagccggcc acatctggcg tctgcccgcc cttgtttccg ctgcatccag acttccctgg 61 tggctggagg ctctgtgtgc atccaggagt ttagatatac aaagggattg ccaggacctg 121 caagcacccg cggcagtggt gtgtattggg acgtgggacc ccgttatgag ctcctgagcc 181 ccgagaagca gaggcagtag agtaagggga tcgccgtgca gggcaggcgc cagccgggcg 241 gaccccaggg cacagccaga gacctcaggg tgacacgcgg agcccgggag cgcaacgatg 301 gaggcacgag tggcctgggg agcgctggcc ggacctctgc gggttctctg cgtcctgtgc 361 tgcctgttgg gccgcgccat cgctgcacca tcgcccatca tcaagttccc cggcgatgtc 421 gcccctaaaa cagacaaaga gttggcagtg caatacctga acactttcta tggctgcccc 481 aaggagagtt gcaacctctt tgtgctgaaa gataccctca agaagatgca gaagttcttt 541 gggctgcccc agacaggtga ccttgaccag aacaccatcg agaccatgcg gaagccaaga 601 tgtggcaacc cagatgtggc caactacaac ttcttccccc gcaagcccaa gtgggacaag 661 aaccagatca catacaggat cattggttac acacctgacc tggaccctga aaccgtggat 721 gatgcttttg ctcgggcctt aaaagtatgg agcgacgtca ctccgctgcg cttttctcga 781 atccatgatg gggaggctga catcatgatc aactttggac gctgggagca tggagatgga 841 tacccatttg atggcaagga tggactcctg gcacatgcct ttgccccggg cactggtgtt 901 gggggagatt ctcactttga tgatgatgag ctgtggaccc tgggagaagg acaagtggtc 961 cgcgtaaagt atgggaacgc tgatggcgag tactgcaagt tccccttcct gttcaacggt 1021 cgggaataca gcagctgtac agacactggt cgcagtgatg gcttcctctg gtgctccacc 1081 acatacaact ttgagaagga tggcaagtat ggcttctgcc cccatgaagc cttgtttacc 1141 atgggtggca atgcagatgg acagccctgc aagttcccgt tccgcttcca gggcacctcc 1201 tacaacagct gtaccaccga gggccgcacc gatggctacc gctggtgtgg caccaccgag 1261 gactatgacc gggataagaa gtatggattc tgtcccgaga ccgctatgtc cactgtgggt 1321 ggaaattcag aaggtgcccc atgtgtcttc cccttcactt tcctgggcaa caagtatgag 1381 agctgcacca gcgccggccg caacgatggc aaggtgtggt gtgcgaccac aaccaactac 1441 gatgatgacc ggaagtgggg cttctgtcct gaccaaggat atagcctatt cctcgtggca 1501 gcccatgagt tcggccatgc catggggctg gaacactctc aggaccctgg agctctgatg 1561 gccccgatct acacctacac caagaacttc cgattatccc atgatgacat caaggggatc 1621 caggagctct atgggccctc ccccgatgct gatactgaca ctggtactgg ccccacacca 1681 acactgggac ctgtcactcc ggagatctgc aaacaggaca ttgtctttga tggcatcgct 1741 cagatccgtg gtgagatctt cttcttcaag gaccggttta tttggcggac agtgacacca 1801 cgtgacaagc ccacaggtcc cttgctggtg gccacattct ggcctgagct cccagaaaag 1861 attgacgctg tgtatgaggc cccacaggag gagaaggctg tgttcttcgc agggaatgag 1921 tactgggtct attctgctag tactctggag cgaggatacc ccaagccact gaccagcctg 1981 gggttgcccc ctgatgtcca gcaagtagat gctgccttta actggagtaa gaacaagaag 2041 acatacatct ttgcaggaga caagttctgg agatacaatg aagtgaagaa gaaaatggac 2101 cccggtttcc ctaagctcat cgcagactcc tggaatgcca tccctgataa cctggatgcc 2161 gtcgtggacc tgcagggtgg tggtcatagc tacttcttca agggtgctta ttacctgaag 2221 ctggagaacc aaagtctcaa gagcgtgaag tttggaagca tcaaatcaga ctggctgggc 2281 tgctgagctg gccctgttcc cacgggccct atcatcttca tcgctgcaca ccaggtgaag 2341 gatgtgaagc agcctggcgg ctctgtcctc ctctgtagtt aaccagcctt ctccttcacc 2401 tggtgacttc agatttaaga gggtggcttc tttttgtgcc caaagaaagg tgctgactgt 2461 accctcccgg gtgctgcttc tccttcctgc ccaccctagg ggatgcttgg atatttgcaa 2521 tgcagccctc ctctgggctg ccctggtgct ccactcttct ggttcttcaa catctatgac 2581 ctttttatgg ctttcagcac tctcagagtt aatagagact ggcttaggag ggcactggtg 2641 gccctgttaa cagcctggca tggggcagtg gggtacaggt gtgccaaggt ggaaatcaga 2701 gacacctggt ttcacccttt ctgctgccca gacacctgca ccaccttaac tgttgctttt 2761 gtatgccctt cgctcgtttc cttcaacctt ttcagttttc cactccactg catttcctgc 2821 ccaaaggact cgggttgtct gacatcgctg catgatgcat ctcagcccgc ctagtgatgg 2881 ttcccctcct cactctgtgc agatcatgcc cagtcacttc ctccactgga tggaggagaa 2941 ccaagtcagt ggcttcctgc tcagccttct tgcttctccc tttaacagtt ccccatggga 3001 aatggcaaac aagtataaat aaagacaccc attgagtgac aaaaaaaaaa aaaaaaaaaa 3061 aaaaaaaaaa

[0062] An exemplary MMP-2 gene can consist of or comprise the human or mouse MMP-2 mRNA sequence, a sequence that is 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to one of these sequences, or a fragment thereof.

[0063] MMP-9

[0064] MMP-9 is a Zn+2 dependent endopeptidase, synthesized and secreted in monomeric form as zymogen. The structure is almost similar to MMP2. The nascent form of the protein shows an N-terminal signal sequence ("pre" domain) that directs the protein to the endoplasmic reticulum. The pre domain is followed by a propeptide-"pro" domain that maintains enzyme-latency until cleaved or disrupted, and a catalytic domain that contains the conserved zinc-binding region. A hemopexin/vitronectin-like domain is also seen, that is connected to the catalytic domain by a hinge or linker region. The hemopexin domain is involved in TIMP (Tissue Inhibitors of Metallo-Proteinases) binding e.g., TIMP-1 & TIMP-3, the binding of certain substrates, membrane activation, and some proteolytic activities. It also shows a series of three head-to-tail cysteine-rich repeats within its catalytic domain. These inserts resemble the collagen-binding type II repeats of fibronectin and are required to bind and cleave collagen and elastin.

[0065] Its primary function is degradation of proteins in the extracellular matrix. It proteolytically digests decorin, elastin, fibrillin, laminin, gelatin (denatured collagen), and types IV, V, XI and XVI collagen and also activates growth factors like proTGFb and proTNFa. Physiologically, MMP-9 in coordination with other MMPs, play a role in normal tissue remodeling events such as neurite growth, embryonic development, angiogenesis, ovulation, mammary gland involution and wound healing. MMP-9 with other MMPs is also involved in osteoblastic bone formation and/or inhibits osteoclastic bone resorption.

[0066] MMP-9 is encoded by a gene designated as matrix metallopeptidase 9 (gelatinase B, 92 kDa gelatinase, 92 kDa type IV collagenase). Synonyms for MMP-9 include CLG4 (Collagenase Type IV), CLG4B (Collagenase Type IV-B), and GELB (Gelatinase B).

[0067] An exemplary amino acid sequence of human MMP-9 is:

TABLE-US-00007 (SEQ ID NO: 9; Genbank Accession No. NP_004985) 1 mslwqplvlv llvlgccfaa prqrqstlvl fpgdlrtnlt drqlaeeyly rygytrvaem 61 rgeskslgpa llllqkqlsl petgeldsat lkamrtprcg vpdlgrfqtf egdlkwhhhn 121 itywiqnyse dlpravidda farafalwsa vtpltftrvy srdadiviqf gvaehgdgyp 181 fdgkdgllah afppgpgiqg dahfdddelw slgkgvvvpt rfgnadgaac hfpfifegrs 241 ysacttdgrs dglpwcstta nydtddrfgf cpserlytqd gnadgkpcqf pfifqgqsys 301 acttdgrsdg yrwcattany drdklfgfcp tradstvmgg nsagelcvfp ftflgkeyst 361 ctsegrgdgr lwcattsnfd sdkkwgfcpd qgyslflvaa hefghalgld hssvpealmy 421 pmyrftegpp lhkddvngir hlygprpepe prppttttpq ptapptvcpt gpptvhpser 481 ptagptgpps agptgpptag pstattvpls pvddacnvni fdaiaeignq lylfkdgkyw 541 rfsegrgsrp qgpfliadkw palprkldsv feerlskklf ffsgrqvwvy tgasvlgprr 601 ldklglgadv aqvtgalrsg rgkmllfsgr rlwrfdvkaq mvdprsasev drmfpgvpld 661 thdvfqyrek ayfcqdrfyw rvssrselnq vdqvgyvtyd ilqcped

[0068] An exemplary amino acid sequence of murine MMP-9 is:

TABLE-US-00008 (SEQ ID NO:10; Genbank Accession No. NP_038627) 1 mspwqpllla llafgcssaa pyqrqptfvv fpkdlktsnl tdtqlaeayl yrygytraaq 61 mmgekqslrp allmlqkqls lpqtgeldsq tlkairtprc gvpdvgrfqt fkglkwdhhn 121 itywiqnyse dlprdmidda farafavwge vapltftrvy gpeadiviqf gvaehgdgyp 181 fdgkdgllah afppgagvqg dahfdddelw slgkgvvipt yygnsngapc hfpftfegrs 241 ysacttdgrn dgtpwcstta dydkdgkfgf cpserlyteh gngegkpcvf pfifegrsys 301 acttkgrsdg yrwcattany dqdklygfcp trvdatvvgg nsagelcvfp fvflgkqyss 361 ctsdgrrdgr lwcattsnfd tdkkwgfcpd qgyslflvaa hefghalgld hssvpealmy 421 plysylegfp lnkddidgiq ylygrgskpd prppatttte pqptapptmc ptipptaypt 481 vgptvgptga pspgptssps pgptgapspg ptapptagss easteslspa dnpcnvdvfd 541 aiaeiqgalh ffkdgwywkf lnhrgsplqg pfltartwpa 1patldsafe dpqtkrvfff 601 sgrqmwvytg ktvlgprsld klglgpevth vsgllprrlg kallfskgrv wrfdlksqkv 661 dpqsvirvdk efsgvpwnsh difqyqdkay fchgkffwrv sfqnevnkvd hevnqvddvg 721 yvtydllqcp

[0069] An exemplary MMP-9 protein can consist of or comprise the human or mouse MMP-9 amino acid sequence, a sequence that is 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to one of these sequences, or a fragment thereof, e.g., a fragment without the signal sequence or prodomain.

[0070] The mRNA sequences of human and murine MMP-9 may be found at GenBank Accession Nos NM.sub.--004994 and NM.sub.--013599, respectively. The sequences of human and mouse MMP-9 mRNAs are as follows:

TABLE-US-00009 SEQ ID NO: 11: human MMP-9 mRNA 1 agacacctct gccctcacca tgagcctctg gcagcccctg gtcctggtgc tcctggtgct 61 gggctgctgc tttgctgccc ccagacagcg ccagtccacc cttgtgctct tccctggaga 121 cctgagaacc aatctcaccg acaggcagct ggcagaggaa tacctgtacc gctatggtta 181 cactcgggtg gcagagatgc gtggagagtc gaaatctctg gggcctgcgc tgctgcttct 241 ccagaagcaa ctgtccctgc ccgagaccgg tgagctggat agcgccacgc tgaaggccat 301 gcgaacccca cggtgcgggg tcccagacct gggcagattc caaacctttg agggcgacct 361 caagtggcac caccacaaca tcacctattg gatccaaaac tactcggaag acttgccgcg 421 ggcggtgatt gacgacgcct ttgcccgcgc cttcgcactg tggagcgcgg tgacgccgct 481 caccttcact cgcgtgtaca gccgggacgc agacatcgtc atccagtttg gtgtcgcgga 541 gcacggagac gggtatccct tcgacgggaa ggacgggctc ctggcacacg cctttcctcc 601 tggccccggc attcagggag acgcccattt cgacgatgac gagttgtggt ccctgggcaa 661 gggcgtcgtg gttccaactc ggtttggaaa cgcagatggc gcggcctgcc acttcccctt 721 catcttcgag ggccgctcct actctgcctg caccaccgac ggtcgctccg acggcttgcc 781 ctggtgcagt accacggcca actacgacac cgacgaccgg tttggcttct gccccagcga 841 gagactctac acccaggacg gcaatgctga tgggaaaccc tgccagtttc cattcatctt 901 ccaaggccaa tcctactccg cctgcaccac ggacggtcgc tccgacggct accgctggtg 961 cgccaccacc gccaactacg accgggacaa gctcttcggc ttctgcccga cccgagctga 1021 ctcgacggtg atggggggca actcggcggg ggagctgtgc gtcttcccct tcactttcct 1081 gggtaaggag tactcgacct gtaccagcga gggccgcgga gatgggcgcc tctggtgcgc 1141 taccacctcg aactttgaca gcgacaagaa gtggggcttc tgcccggacc aaggatacag 1201 tttgttcctc gtggcggcgc atgagttcgg ccacgcgctg ggcttagatc attcctcagt 1261 gccggaggcg ctcatgtacc ctatgtaccg cttcactgag gggcccccct tgcataagga 1321 cgacgtgaat ggcatccggc acctctatgg tcctcgccct gaacctgagc cacggcctcc 1381 aaccaccacc acaccgcagc ccacggctcc cccgacggtc tgccccaccg gaccccccac 1441 tgtccacccc tcagagcgcc ccacagctgg ccccacaggt cccccctcag ctggccccac 1501 aggtcccccc actgctggcc cttctacggc cactactgtg cctttgagtc cggtggacga 1561 tgcctgcaac gtgaacatct tcgacgccat cgcggagatt gggaaccagc tgtatttgtt 1621 caaggatggg aagtactggc gattctctga gggcaggggg agccggccgc agggcccctt 1681 ccttatcgcc gacaagtggc ccgcgctgcc ccgcaagctg gactcggtct ttgaggagcg 1741 gctctccaag aagcttttct tcttctctgg gcgccaggtg tgggtgtaca caggcgcgtc 1801 ggtgctgggc ccgaggcgtc tggacaagct gggcctggga gccgacgtgg cccaggtgac 1861 cggggccctc cggagtggca gggggaagat gctgctgttc agcgggcggc gcctctggag 1921 gttcgacgtg aaggcgcaga tggtggatcc ccggagcgcc agcgaggtgg accggatgtt 1981 ccccggggtg cctttggaca cgcacgacgt cttccagtac cgagagaaag cctatttctg 2041 ccaggaccgc ttctactggc gcgtgagttc ccggagtgag ttgaaccagg tggaccaagt 2101 gggctacgtg acctatgaca tcctgcagtg ccctgaggac tagggctccc gtcctgcttt 2161 ggcagtgcca tgtaaatccc cactgggacc aaccctgggg aaggagccag tttgccggat 2221 acaaactggt attctgttct ggaggaaagg gaggagtgga ggtgggctgg gccctctctt 2281 ctcacctttg ttttttgttg gagtgtttct aataaacttg gattctctaa cctttaaaaa 2341 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaa SEQ ID NO: 12: mouse MMP-9 mRNA 1 ctcaccatga gtccctggca gcccctgctc ctggctctcc tggctttcgg ctgcagctct 61 gctgcccctt accagcgcca gccgactttt gtggtcttcc ccaaagacct gaaaacctcc 121 aacctcacgg acacccagct ggcagaggca tacttgtacc gctatggtta cacccgggcc 181 gcccagatga tgggagagaa gcagtctcta cggccggctt tgctgatgct tcagaagcag 241 ctctccctgc cccagactgg tgagctggac agccagacac taaaggccat tcgaacacca 301 cgctgtggtg tcccagacgt gggtcgattc caaaccttca aaggcctcaa gtgggaccat 361 cataacatca catactggat ccaaaactac tctgaagact tgccgcgaga catgatcgat 421 gacgccttcg cgcgcgcctt cgcggtgtgg ggcgaggtgg cacccctcac cttcacccgc 481 gtgtacggac ccgaagcgga cattgtcatc cagtttggtg tcgcggagca cggagacggg 541 tatcccttcg acggcaagga cggccttctg gcacacgcct ttccccctgg cgccggcgtt 601 cagggagatg cccatttcga cgacgacgag ttgtggtcgc tgggcaaagg cgtcgtgatc 661 cccacttact atggaaactc aaatggtgcc ccatgtcact ttcccttcac cttcgaggga 721 cgctcctatt cggcctgcac cacagacggc cgcaacgacg gcacgccttg gtgtagcaca 781 acagctgact acgataagga cggcaaattt ggtttctgcc ctagtgagag actctacacg 841 gagcacggca acggagaagg caaaccctgt gtgttcccgt tcatctttga gggccgctcc 901 tactctgcct gcaccactaa aggccgctcg gatggttacc gctggtgcgc caccacagcc 961 aactatgacc aggataaact gtatggcttc tgccctaccc gagtggacgc gaccgtagtt 1021 gggggcaact cggcaggaga gctgtgcgtc ttccccttcg tcttcctggg caagcagtac 1081 tcttcctgta ccagcgacgg ccgcagggat gggcgcctct ggtgtgcgac cacatcgaac 1141 ttcgacactg acaagaagtg gggtttctgt ccagaccaag ggtacagcct gttcctggtg 1201 gcagcgcacg agttcggcca tgcactgggc ttagatcatt ccagcgtgcc ggaagcgctc 1261 atgtacccgc tgtatagcta cctcgagggc ttccctctga ataaagacga catagacggc 1321 atccagtatc tgtatggtcg tggctctaag cctgacccaa ggcctccagc caccaccaca 1381 actgaaccac agccgacagc acctcccact atgtgtccca ctatacctcc cacggcctat 1441 cccacagtgg gccccacggt tggccctaca ggcgccccct cacctggccc cacaagcagc 1501 ccgtcacctg gccctacagg cgccccctca cctggcccta cagcgccccc tactgcgggc 1561 tcttctgagg cctctacaga gtctttgagt ccggcagaca atccttgcaa tgtggatgtt 1621 tttgatgcta ttgctgagat ccagggcgct ctgcatttct tcaaggacgg ttggtactgg 1681 aagttcctga atcatagagg aagcccatta cagggcccct tccttactgc ccgcacgtgg 1741 ccagccctgc ctgcaacgct ggactccgcc tttgaggatc cgcagaccaa gagggttttc 1801 ttcttctctg gacgtcaaat gtgggtgtac acaggcaaga ccgtgctggg ccccaggagt 1861 ctggataagt tgggtctagg cccagaggta acccacgtca gcgggcttct cccgcgtcgt 1921 ctcgggaagg ctctgctgtt cagcaagggg cgtgtctgga gattcgactt gaagtctcag 1981 aaggtggatc cccagagcgt cattcgcgtg gataaggagt tctctggtgt gccctggaac 2041 tcacacgaca tcttccagta ccaagacaaa gcctatttct gccatggcaa attcttctgg 2101 cgtgtgagtt tccaaaatga ggtgaacaag gtggaccatg aggtgaacca ggtggacgac 2161 gtgggctacg tgacctacga cctcctgcag tgcccttgaa ctagggctcc ttctttgctt 2221 caaccgtgca gtgcaagtct ctagagacca ccaccaccac caccacacac aaaccccatc 2281 cgagggaaag gtgctagctg gccaggtaca gactggtgat ctcttctaga gactgggaag 2341 gagtggaggc aggcagggct ctctctgccc accgtccttt cttgttggac tgtttctaat 2401 aaacacggat ccccaacctt ttccagctac tttagtcaat cagcttatct gtagttgcag 2461 atgcatccga gcaagaagac aactttgtag ggtggattct gaccttttat ttttgtgtgg 2521 cgtctgagaa ttgaatcagc tggcttttgt gacaggcact tcaccggcta aaccacctct 2581 cccgactcca gcccttttat ttattatgta tgaggttatg ttcacatgca tgtatttaac 2641 ccacagaatg cttactgtgt gtcgggcgcg gctccaaccg ctgcataaat attaaggtat 2701 tcagttgccc ctactggaag gtattatgta actatttctc tcttacattg gagaacacca 2761 ccgagctatc cactcatcaa acatttattg agagcatccc tagggagcca ggctctctac 2821 tgggcgttag ggacagaaat gttggttctt ccttcaagga ttgctcagag attctccgtg 2881 tcctgtaaat ctgctgaaac cagaccccag actcctctct ctcccgagag tccaactcac 2941 tcactgtggt tgctggcagc tgcagcatgc gtatacagca tgtgtgctag agaggtagag 3001 ggggtctgtg cgttatggtt caggtcagac tgtgtcctcc aggtgagatg acccctcagc 3061 tggaactgat ccaggaagga taaccaagtg tcttcctggc agtctttttt aaataaatga 3121 ataaatgaat atttacttaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 3181 aaaaa

[0071] An exemplary MMP-9 gene can consist of or comprise the human or mouse MMP-9 mRNA sequence, a sequence that is 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to one of these sequences, or a fragment thereof.

[0072] Methods of evaluating levels of gene expression and protein activity, as well as evaluating the amounts of gene or protein molecules in a sample, are well-known in the art. Exemplary methods by which the expression of the MMP-14, MMP-2 or MMP-9 genes or the activity of the MMP-14, MMP-2 or MMP-9 proteins may be determined are further described below.

[0073] In certain embodiments, a method of evaluating the expression and/or activity of MMP-14, MMP-2 and/or MMP-9 in a cell may comprise a) determining in the cell the level of expression and/or activity of MMP-14, MMP-2 and/or MMP-9. The method may in certain embodiments further comprise calculating a ratio of the expression and/or activity level of two of MMP-14, MMP-2 and/or MMP-9 from the determined levels.

[0074] The above-described method may further comprise b) comparing the determined level of expression and/or activity of, or ratio of the level of expression and/or activity of two of, MMP-14, MMP-2 and/or MMP-9 with at least one reference set of levels of expression and/or activity of, or ratio of, MMP-14, MMP-2 and/or MMP-9, wherein the reference set indicates the state of the cell associated with the particular level of expression and/or activity of, or ratio of, MMP-14, MMP-2 and/or MMP-9.

[0075] Comparison to a reference set or profile is particularly useful in applications of the above-described methods, for example, when they are used in methods for diagnosing and prognosing cancer in a subject, or for screening candidate therapeutics for their efficacy in treating cancer or for stratifying patients based on their risk for or stage of cancer or for selecting a therapy for a patient having or suspected of having cancer. In certain preferred embodiments, the cancer is selected from the group consisting of: osteotropic cancer, breast cancer, lung cancer, colon cancer and prostate cancer.

[0076] Comparison of the expression and/or activity level of, or ratio of the level of expression and/or activity of two of, MMP-14, MMP-2 and/or MMP-9 with reference expression and/or activity levels, or ratios, e.g., expression and/or activity levels in diseased cells of a subject having cancer or in normal counterpart cells, is preferably conducted using computer systems. In one embodiment, expression and/or activity levels are obtained in two cells and these two sets of expression and/or activity levels are introduced into a computer system for comparison. In a preferred embodiment, one set of expression and/or activity levels is entered into a computer system for comparison with values that are already present in the computer system, or in computer-readable form that is then entered into the computer system.

[0077] In one embodiment, the invention provides computer readable forms of the gene expression or protein activity profile data of the invention, or of values corresponding to the level of expression and/or activity of, or ratios of the level of expression and/or activity of, MMP-14, MMP-2 and/or MMP-9. The values may be, for example, mRNA expression levels or AQUA.TM. scores. The values may also be mRNA levels, AQUA.TM. scores, or other measure of gene expression and/or protein activity normalized relative to a reference gene whose expression or protein whose activity is constant in numerous cells under numerous conditions. In other embodiments, the values in the computer are ratios of, or differences between, normalized or non-normalized levels in different samples.

[0078] The profile data may be in the form of a table, such as an Excel table. The data may be alone, or it may be part of a larger database, e.g., comprising other profiles. For example, the profile data of the invention may be part of a public database. The computer readable form may be in a computer. In another embodiment, the invention provides a computer displaying the profile data.

[0079] In one embodiment, the invention provides methods for determining the similarity between the level of expression and/or activity of, or ratio of the level of expression and/or activity of two of, MMP-14, MMP-2 and/or MMP-9 in a first cell, e.g., a cell of a subject, and that in a second cell, comprising obtaining the level of expression and/or activity of, or ratio of the level of expression and/or activity of two of, MMP-14, MMP-2 and/or MMP-9 in a first cell and entering these values into a computer comprising a database including records comprising values corresponding to levels of expression and/or activity of, or ratio of the level of expression and/or activity of two of, MMP-14, MMP-2 and/or MMP-9 in a second cell, and processor instructions, e.g., a user interface, capable of receiving a selection of one or more values for comparison purposes with data that is stored in the computer. The computer may further comprise a means for converting the comparison data into a diagram or chart or other type of output.

[0080] In another embodiment, at least one value representing the expression and/or activity level of, or ratio of the level of expression and/or activity of two of, MMP-14, MMP-2 and/or MMP-9 is entered into a computer system, comprising one or more databases with reference expression and/or activity levels, or ratios, obtained from more than one cell. For example, a computer may comprise expression and/or activity and/or ratio data of diseased and normal cells. Instructions are provided to the computer, and the computer is capable of comparing the data entered with the data in the computer to determine whether the data entered is more similar to that of a normal cell or of a diseased cell.

[0081] In another embodiment, the computer comprises values of expression and/or activity levels, or ratios, in cells of subjects at different stages of cancer and the computer is capable of comparing expression and/or activity and/or ratio data entered into the computer with the data stored, and produce results indicating to which of the expression and/or activity and/or ratio profiles in the computer, the one entered is most similar, such as to determine the stage of cancer in the subject.

[0082] In yet another embodiment, the reference expression and/or activity and/or ratio profiles in the computer are expression and/or activity and/or ratio profiles from cells of one or more subjects having cancer, which cells are treated in vivo or in vitro with a drug used for therapy of cancer. Upon entering of expression and/or activity and/or ratio data of a cell of a subject treated in vitro or in vivo with the drug, the computer is instructed to compare the data entered to the data in the computer, and to provide results indicating whether the expression and/or activity data input into the computer are more similar to those of a cell of a subject that is responsive to the drug or more similar to those of a cell of a subject that is not responsive to the drug. Thus, the results indicate whether the subject is likely to respond to the treatment with the drug (e.g., more likely to respond than not, e.g., greater than 50% likelihood of responding) or unlikely to respond to it (e.g., greater than 50% likelihood of not responding).

[0083] In one embodiment, the invention provides systems comprising a means for receiving expression and/or activity and/or ratio data for one or a plurality of genes and/or protein; a means for comparing the expression and/or activity and/or ratio data from each of said one or plurality of genes and/or proteins to a common reference frame; and a means for presenting the results of the comparison. A system may further comprise a means for clustering the data.

[0084] In another embodiment, the invention provides computer programs for analyzing expression and/or activity and/or ratio data comprising (a) a computer code that receives as input expression and/or activity and/or ratio data for at least one gene and (b) a computer code that compares said expression and/or activity and/or ratio data from each gene to a common reference frame.

[0085] The invention also provides machine-readable or computer-readable media including program instructions for performing the following steps: (a) comparing at least one value corresponding to the expression and/or activity level of, or ratio of the level of expression and/or activity of two of, MMP-14, MMP-2 and/or MMP-9 in a query cell with a database including records comprising reference expression and/or activity and/or ratio data of one or more reference cells and an annotation of the type of cell; and (b) indicating to which cell the query cell is most similar based on similarities of expression and/or activity profiles and/or ratios. The reference cells may be cells from subjects at different stages of cancer. The reference cells may also be cells from subjects responding or not responding to a particular drug treatment and optionally incubated in vitro or in vivo with the drug.

[0086] The reference cells may also be cells from subjects responding or not responding to several different treatments, and the computer system indicates a preferred treatment for the subject. Accordingly, the invention provides methods for selecting a therapy for a patient having cancer; the methods comprising: (a) providing the level of expression and/or activity of, or ratio of the level of expression and/or activity of two of, MMP-14, MMP-2 and/or MMP-9 in a diseased cell of the patient; (b) providing a plurality of reference profiles, each associated with a therapy; and (c) selecting the reference profile most similar to the subject expression and/or activity profile, or ratio, to thereby select a therapy for said patient. In a preferred embodiment step (c) is performed by a computer. The most similar reference profile or ratio may be selected by weighing a comparison value of the plurality using a weight value associated with the corresponding expression and/or activity data, or ratio.

[0087] A computer readable medium may further comprise a pointer to a descriptor of a stage of cancer or to a treatment for cancer.

[0088] In operation, the means for receiving expression and/or activity data, or ratios, the means for comparing the expression and/or activity data, or ratios, the means for presenting, the means for normalizing, and the means for clustering within the context of the systems of the present invention may involve a programmed computer with the respective functionalities described herein, implemented in hardware or hardware and software; a logic circuit or other component of a programmed computer that performs the operations specifically identified herein, dictated by a computer program; or a computer memory encoded with executable instructions representing a computer program that may cause a computer to function in the particular fashion described herein.

[0089] Those skilled in the art will understand that the systems and methods of the present invention may be applied to a variety of systems, including IBM.RTM.-compatible personal computers running MS-DOS.RTM. or Microsoft WINDOWS.RTM.. In an exemplary implementation, expression profiles are compared using a method described in U.S. Pat. No. 6,203,987. A user first loads expression profile or ratio data into the computer system. Geneset profile or ratio definitions are loaded into the memory from the storage media or from a remote computer, preferably from a dynamic geneset database system, through the network. Next the user causes execution of projection software which performs the steps of converting expression and/or activity profile, or ratio, to projected expression and/or activity profiles or ratios. The projected expression and/or activity profiles, or ratios, are then displayed.

[0090] In yet another exemplary implementation, a user first leads a projected profile or ratio into the memory. The user then causes the loading of a reference profile or ratio into the memory. Next, the user causes the execution of comparison software which performs the steps of objectively comparing the profiles or ratios.

[0091] Exemplary diagnostic tools and assays are set forth below, which comprise the above-described methodology.

[0092] In one embodiment, the invention provides methods for determining whether a subject has or is likely to develop cancer, comprising determining the level of expression and/or activity of MMP-14, MMP-2 and/or MMP-9 in a cell of the subject and comparing these levels of expression and/or activity, or ratio of the levels, with the levels of expression of or ratios of MMP-14, MMP-2 and/or MMP-9 in a diseased cell of a subject known to have cancer, such that a similar level of expression and/or activity of, or ratio of, MMP-14, MMP-2 and/or MMP-9 is indicative that the subject has or is likely to develop cancer or at least a symptom thereof. In a preferred embodiment, the cell is essentially of the same type as that which is diseased in the subject.

[0093] In another embodiment the expression and/or activity profiles, or ratios, of genes in the cell may be used to confirm that a subject has a specific type of cancer, and in particular, that the subject does not have a related disease or disease with similar symptoms. This may be important, in particular, in designing an optimal therapeutic regimen for the subject. It has been described in the art that expression and/or activity profiles or ratios may be used to distinguish one type of disease from a similar disease. For example, two subtypes of non-Hodgkin's lymphomas, one of which responds to current therapeutic methods and the other one which does not, could be differentiated by investigating 17,856 genes in specimens of patients suffering from diffuse large B-cell lymphoma (Alizadeh et al. Nature (2000) 405:503). Similarly, subtypes of cutaneous melanoma were predicted based on profiling 8150 genes (Bittner et al. Nature (2000) 406:536). In this case, features of the highly aggressive metastatic melanomas could be recognized. Numerous other studies comparing expression and/or activity profiles or ratios of cancer cells and normal cells have been described, including studies describing expression profiles distinguishing between highly and less metastatic cancers and studies describing new subtypes of diseases, e.g., new tumor types (see, e.g., Perou et al. (1999) PNAS 96: 9212; Perou et al. (2000) Nature 606:747; Clark et al. (2000) Nature 406:532; Alon et al. (1999) PNAS 96:6745; Golub et al. (1999) Science 286:531). Such distinction is known in the art as "differential diagnosis".

[0094] In yet another embodiment, the invention provides methods for determining the stage of cancer, i.e., for "staging" cancer. It is thought that the level of expression and/or activity of, or ratio of the level of expression and/or activity of two of, MMP-14, MMP-2 and/or MMP-9 changes with the stage of the disease. This could be confirmed, e.g., by analyzing the level of expression and/or activity of, or ratio of the level of expression and/or activity of two of, MMP-14, MMP-2 and/or MMP-9 in subjects having cancer at different stages, as determined by traditional methods. For example, the expression profile of a diseased cell in subjects at different stages of the disease may be determined as described herein. Then, to determine the stage of cancer in a subject, the level of expression and/or activity of, or ratio of the level of expression and/or activity of two of, MMP-14, MMP-2 and/or MMP-9, which varies with the stage of the disease, is determined. A similar level of expression and/or activity of, or ratio of the level of expression and/or activity of two of, MMP-14, MMP-2 and/or MMP-9 between that in a subject and that in a reference profile of a particular stage of the disease, indicates that the disease of the subject is at the particular stage.

[0095] Similarly, the methods may be used to determine the stage of the disease in a subject undergoing therapy, and thereby determine whether the therapy is effective. Accordingly, in one embodiment, the level of expression and/or activity of, or ratio of the level of expression and/or activity of two of, MMP-14, MMP-2 and/or MMP-9 is determined in a subject before the treatment and several times during the treatment. For example, a sample of RNA may be obtained from the subject and analyzed before the beginning of the therapy and every 12, 24, 36, 48, 60, or 72 hours during the therapy. Alternatively or in addition, samples may be analyzed once a week or once a month or once a year, e.g., over the course of the therapy. Changes in expression and/or activity levels of, or ratios of the level of expression and/or activity of two of, MMP-14, MMP-2 and/or MMP-9 over time and relative to diseased cells and normal cells will indicate whether the therapy is effective.

[0096] Further, the methods may be used to determine the stage of the disease in a subject after undergoing therapy, e.g., and thereby determine whether the therapy was effective and/or whether the disease is re-developing (e.g., whether the disease has returned, e.g., whether the disease has relapsed). Accordingly, in one embodiment, the level of expression and/or activity of, or ratio of the level of expression and/or activity of two of, MMP-14, MMP-2 and/or MMP-9 is determined in a subject during and/or immediately after the treatment and/or several times after the treatment. For example, a sample of RNA may be obtained from the subject and analyzed at the end of the therapy and once a week, once a month or once a year, e.g., for the next 1, 2, 3, 4, or 5 years. Changes in expression and/or activity levels of, or ratios of the level of expression and/or activity of two of, MMP-14, MMP-2 and/or MMP-9 over time and relative to diseased cells and normal cells can indicate whether the therapy was effective, and/or whether the disease is re-developing.

[0097] In yet another embodiment, the invention provides methods for determining the likelihood of success of a particular therapy in a subject having cancer. In one embodiment, a subject is started on a particular therapy, and the effectiveness of the therapy is determined, e.g., by determining the level of expression and/or activity of, or ratio of the level of expression and/or activity of two of, MMP-14, MMP-2 and/or MMP-9 in a cell of the subject. A normalization of the level of expression and/or activity of, or ratio of the level of expression and/or activity of two of, MMP-14, MMP-2 and/or MMP-9, i.e., a change in the expression and/or activity of level, or ratio, of the gene(s) such that their level of expression and/or activity or ratio, resembles more that of a non diseased cell, indicates that the treatment should be effective in the subject.

[0098] Prediction of the outcome of a treatment in a subject may also be undertaken in vitro. In one embodiment, cells are obtained from a subject to be evaluated for responsiveness to the treatment, and incubated in vitro with the therapeutic drug. The level of expression and/or activity of MMP-14, MMP-2 and/or MMP-9 is then measured in the cells and these values are compared to the level of expression and/or activity of MMP-14, MMP-2 and/or MMP-9 in a cell which is the normal counterpart cell of a diseased cell. The level of expression and/or activity may also be compared to that in a normal cell. In certain embodiments, the ratio of the level of expression and/or activity of two of MMP-14, MMP-2 and/or MMP-9 may be used. The comparative analysis is preferably conducted using a computer comprising a database of expression and/or activity profiles, or ratios, as described above. A level of expression and/or activity of, or ratio of the level of expression and/or activity of two of, MMP-14, MMP-2 and/or MMP-9 in the cells of the subject after incubation with the drug that is similar to their level of expression and/or activity, or ratio of the level of expression and/or activity, in a normal cell and different from that in a diseased cell is indicative that it is likely that the subject will respond positively to a treatment with the drug. On the contrary, a level of expression and/or activity of, or ratio of the level of expression and/or activity of two of, MMP-14, MMP-2 and/or MMP-9 in the cells of the subject after incubation with the drug that is similar to their level of expression and/or activity, or ratio, in a diseased cell and different from that in a normal cell is indicative that it is likely that the subject will not respond positively to a treatment with the drug.

[0099] Since it is possible that a drug does not act directly on the diseased cells, but is, e.g., metabolized, or acts on another cell which then secretes a factor that will effect the diseased cells, the above assay may also be conducted in a tissue sample of a subject, which contains cells other than the diseased cells. For example, a tissue sample comprising diseased cells is obtained from a subject; the tissue sample is incubated with the potential drug; optionally one or more diseased cells are isolated from the tissue sample, e.g., by microdissection or Laser Capture Microdissection (LCM, see infra); and the expression level of MMP-14, MMP-2 and/or MMP-9 is examined.

[0100] Provided also are methods for selecting a therapy for cancer for a patient from a selection of several different treatments. Certain subjects having cancer may respond better to one type of therapy than another type of therapy. In a preferred embodiment, the method comprises comparing the expression and/or activity level of, or ratio of the level of expression and/or activity of two of, MMP-14, MMP-2 and/or MMP-9 in the patient with that in cells of subjects treated in vitro or in vivo with one of several therapeutic drugs, which subjects are responders or non responders to one of the therapeutic drugs, and identifying the cell which has the most similar level of expression and/or activity of, or ratio of the level of expression and/or activity of two of, MMP-14, MMP-2 and/or MMP-9 to that of the patient, to thereby identify a therapy for the patient. The method may further comprise administering the therapy identified to the subject.

[0101] Methods of Evaluating the Expression and/or Activity of MMP-14, MMP-2 and/or MMP-9

[0102] The methods of diagnosing and prognosing cancer by evaluating the level of expression and/or activity of, or ratio of the level of expression and/or activity of two of, MMP-14, MMP-2 and/or MMP-9 and methods of screening candidate therapeutic agents which modulate the expression and/or activity of, or ratio of the level of expression and/or activity of two of, MMP-14, MMP-2 and/or MMP-9, described above, comprise determining the level of expression and/or activity of, or ratio of the level of expression and/or activity of two of, MMP-14, MMP-2 and/or MMP-9.

[0103] Methods for determining the expression level and ultimately the activity of MMP-14, MMP-2 and/or MMP-9 are well known in the art (and the ratio of such levels may be determined from the determined levels). For example, the expression level of MMP-14, MMP-2 and/or MMP-9 can be determined by reverse transcription-polymerase chain reaction (RT-PCR); dotblot analysis; Northern blot analysis and in situ hybridization. Alternatively, the level of MMP-14, MMP-2 and/or MMP-9 can be analyzed using an appropriate antibody. In certain embodiments, the amounts of MMP-14, MMP-2 and/or MMP-9 is determined using antibodies against MMP-14, MMP-2 and/or MMP-9.

[0104] In certain embodiments, the level of expression of MMP-14, MMP-2 and/or MMP-9 is determined by determining its AQUA.TM. score, e.g., by using the AQUA.TM. automated pathology system. AQUA.TM. (for Automated Quantitative Analysis) is a method of analysis of absolute measurement of protein expression in situ. This method allows measurements of protein expression within sub-cellular compartments that results in a number directly proportional to the number of molecules expressed per unit area. For example, to measure nuclear estrogen receptor (ER), the tissue is "masked" using keratin in one channel to normalize the area of tumor and to remove the stromal and other non-tumor material from analysis. Then an image is taken using DAPI to define a nuclear compartment. The pixels within the mask and within the DAPI-defined compartment are defined as nuclear. The intensity of expression of ER is then measured using a third channel. The intensity of that subset of pixels divided by the number of pixels (to normalize the area from spot to spot) to give an AQUA.TM. score. This score is directly proportional to the number of molecules of ER per unit area of tumor, as assessed by a standard curve of cell lines with known levels of ER protein expression. This method, including details of out-of-focus light subtraction imaging methods, is described in detail in a Nature Medicine paper (Camp, R. L., Chung, G. G. & Rimm, D. L. Automated subcellular localization and quantification of protein expression in tissue microarrays. Nat Med 8, 1323-7 (2002)), as well as U.S. Ser. No. 10/062,308, filed Feb. 1, 2002, both of which reference are incorporated herein by their entireties.

[0105] In other embodiments, methods of detecting the level of expression of MMP-14, MMP-2 and/or MMP-9 may comprise the use of a microarray. Arrays are often divided into microarrays and macroarrays, where microarrays have a much higher density of individual probe species per area. Microarrays may have as many as 1000 or more different probes in a 1 cm.sup.2 area. There is no concrete cut-off to demarcate the difference between micro- and macroarrays, and both types of arrays are contemplated for use with the invention.

[0106] Microarrays are known in the art and generally consist of a surface to which probes that correspond in sequence to gene products (e.g., cDNAs, mRNAs, oligonucleotides) are bound at known positions. In one embodiment, the microarray is an array (e.g., a matrix) in which each position represents a discrete binding site for a product encoded by a gene (e.g., a protein or RNA), and in which binding sites are present for products of most or almost all of the genes in the organism's genome. In certain embodiments, the binding site or site is a nucleic acid or nucleic acid analogue to which a particular cognate cDNA can specifically hybridize. The nucleic acid or analogue of the binding site may be, e.g., a synthetic oligomer, a full-length cDNA, a less-than full length cDNA, or a gene fragment.

[0107] Although in certain embodiments the microarray contains binding sites for products of all or almost all genes in the target organism's genome, such comprehensiveness is not necessarily required. Usually the microarray will have binding sites corresponding to at least 100, 500, 1000, 4000 genes or more. In certain embodiments, arrays will have anywhere from about 50, 60, 70, 80, 90, or even more than 95% of the genes of a particular organism represented. The microarray typically has binding sites for genes relevant to testing and confirming a biological network model of interest. Several exemplary human microarrays are publicly available.

[0108] The probes to be affixed to the arrays are typically polynucleotides. These DNAs can be obtained by, e.g., polymerase chain reaction (PCR) amplification of gene segments from genomic DNA, cDNA (e.g., by RT-PCR), or cloned sequences. PCR primers are chosen, based on the known sequence of the genes or cDNA, which result in amplification of unique fragments (e.g., fragments that do not share more than 10 bases of contiguous identical sequence with any other fragment on the microarray). Computer programs are useful in the design of primers with the required specificity and optimal amplification properties. See, e.g., Oligo pl version 5.0 (National Biosciences). In an alternative embodiment, the binding (hybridization) sites are made from plasmid or phage clones of genes, cDNAs (e.g., expressed sequence tags), or inserts therefrom (Nguyen et al., 1995, Genomics 29:207-209).

[0109] A number of methods are known in the art for affixing the nucleic acids or analogues to a solid support that makes up the array (Schena et al., 1995, Science 270:467-470; DeRisi et al., 1996, Nature Genetics 14:457-460; Shalon et al., 1996, Genome Res. 6:639-645; and Schena et al., 1995, Proc. Natl. Acad. Sci. USA 93:10539-11286).

[0110] Another method for making microarrays is by making high-density oligonucleotide arrays (Fodor et al., 1991, Science 251:767-773; Pease et al., 1994, Proc. Natl. Acad. Sci. USA 91:5022-5026; Lockhart et al., 1996, Nature Biotech 14:1675; U.S. Pat. Nos. 5,578,832; 5,556,752; and 5,510,270; Blanchard et al., 1996, 11: 687-90).

[0111] Other methods for making microarrays, e.g., by masking (Maskos and Southern, 1992, Nuc. Acids Res. 20:1679-1684), may also be used. In principal, any type of array, for example, dot blots on a nylon hybridization membrane (see Sambrook et al., Molecular Cloning--A Laboratory Manual (2nd Ed.), Vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1989), could be used, as will be recognized by those of skill in the art.

[0112] The nucleic acids to be contacted with the microarray may be prepared in a variety of ways, and may include nucleotides of the subject invention. Such nucleic acids are often labeled fluorescently. Nucleic acid hybridization and wash conditions are chosen so that the population of labeled nucleic acids will specifically hybridize to appropriate, complementary nucleic acids affixed to the matrix. Non-specific binding of the labeled nucleic acids to the array can be decreased by treating the array with a large quantity of non-specific DNA--a so-called "blocking" step.

[0113] When fluorescently labeled probes are used, the fluorescence emissions at each site of a transcript array may be detected by scanning confocal laser microscopy. When two fluorophores are used, a separate scan, using the appropriate excitation line, is carried out for each of the two fluorophores used. Fluorescent microarray scanners are commercially available from Affymetrix, Packard BioChip Technologies, BioRobotics and many other suppliers. Signals are recorded, quantitated and analyzed using a variety of computer software.

[0114] According to the method of the invention, the relative abundance of an mRNA in two cells or cell lines is scored as a perturbation and its magnitude determined (i.e., the abundance is different in the two sources of mRNA tested), or as not perturbed (i.e., the relative abundance is the same). As used herein, a difference between the two sources of RNA of at least a factor of about 25% (RNA from one source is 25% more abundant in one source than the other source), more usually about 50%, even more often by a factor of about 2 (twice as abundant), 3 (three times as abundant) or 5 (five times as abundant) is scored as a perturbation. Present detection methods allow reliable detection of difference of an order of about 2-fold to about 5-fold, but more sensitive methods are expected to be developed.

[0115] In addition to identifying a perturbation as positive or negative, it is advantageous to determine the magnitude of the perturbation. This can be carried out, as noted above, by calculating the ratio of the emission of the two fluorophores used for differential labeling, or by analogous methods that will be readily apparent to those of skill in the art.

[0116] In certain embodiments, the data obtained from such experiments reflects the relative expression of each gene represented in the microarray. Expression levels in different samples and conditions may now be compared using a variety of statistical methods.

[0117] In certain embodiments, the cell comprises a tissue sample, which may be present on a tissue microarray. For example, paraffin-embedded formalin-fixed specimens may be prepared, and punch "biopsy" cores taken from separate areas of the specimens. Each core may be arrayed into a separate recipient block, and sections cut and processed as previously described, for example, in Konenen, J. et al., Tissue microarrays for high-throughput molecular profiling of tumor specimens, (1987) Nat. Med. 4:844-7 and Chung, G. G. et al., Clin. Cancer Res. (In Press).

[0118] In other embodiments, the cell comprises a cell culture pellet, which may be present on a cell culture pellet microarray.

[0119] In certain embodiments, it is sufficient to determine the expression of one or only a few genes, as opposed to hundreds or thousands of genes. Although microarrays may be used in these embodiments, various other methods of detection of gene expression are available. This section describes a few exemplary methods for detecting and quantifying mRNA or polypeptide encoded thereby. Where the first step of the methods includes isolation of mRNA from cells, this step may be conducted as described above. Labeling of one or more nucleic acids may be performed as described above.

[0120] In one embodiment, mRNA obtained from a sample is reverse transcribed into a first cDNA strand and subjected to PCR, e.g., RT-PCR. House keeping genes, or other genes whose expression does not vary may be used as internal controls and controls across experiments. Following the PCR reaction, the amplified products may be separated by electrophoresis and detected. By using quantitative PCR, the level of amplified product will correlate with the level of RNA that was present in the sample. The amplified samples may also be separated on an agarose or polyacrylamide gel, transferred onto a filter, and the filter hybridized with a probe specific for the gene of interest. Numerous samples may be analyzed simultaneously by conducting parallel PCR amplification, e.g., by multiplex PCR.

[0121] "Dot blot" hybridization has gained wide-spread use, and many versions were developed (see, e.g., M. L. M. Anderson and B. D. Young, in Nucleic Acid Hybridization-A Practical Approach, B. D. Hames and S. J. Higgins, Eds., IRL Press, Washington D.C., Chapter 4, pp. 73-111, 1985).

[0122] In another embodiment, mRNA levels is determined by dot blot analysis and related methods (see, e.g., G. A. Beltz et al., in Methods in Enzymology, Vol. 100, Part B, R. Wu, L. Grossmam, K. Moldave, Eds., Academic Press, New York, Chapter 19, pp. 266-308, 1985). In one embodiment, a specified amount of RNA extracted from cells is blotted (i.e., non-covalently bound) onto a filter, and the filter is hybridized with a probe of the gene of interest. Numerous RNA samples may be analyzed simultaneously, since a blot may comprise multiple spots of RNA. Hybridization is detected using a method that depends on the type of label of the probe. In another dot blot method, one or more probes for a biomarker are attached to a membrane, and the membrane is incubated with labeled nucleic acids obtained from and optionally derived from RNA of a cell or tissue of a subject. Such a dot blot is essentially an array comprising fewer probes than a microarray.

[0123] Another format, the so-called "sandwich" hybridization, involves covalently attaching oligonucleotide probes to a solid support and using them to capture and detect multiple nucleic acid targets (see, e.g., M. Ranki et al. (1983) Gene, 21:77-85; A. M. Palva, et al, in UK Patent Application GB 2156074A, Oct. 2, 1985; T. M. Ranki and H. E. Soderlund in U.S. Pat. No. 4,563,419, Jan. 7, 1986; A. D. B. Malcolm and J. A. Langdale, in PCT WO 86/03782, Jul. 3, 1986; Y. Stabinsky, in U.S. Pat. No. 4,751,177, Jan. 14, 1988; T. H. Adams et al., in PCT WO 90/01564, Feb. 22, 1990; R. B. Wallace et al. (1979) Nucleic Acid Res. 6,11:3543; and B. J. Connor et al. (1983) PNAS 80:278-282). Multiplex versions of these formats are called "reverse dot blots."

[0124] mRNA levels may also be determined by Northern blots. Specific amounts of RNA are separated by gel electrophoresis and transferred onto a filter which is then hybridized with a probe corresponding to the gene of interest. This method, although more burdensome when numerous samples and genes are to be analyzed, provides the advantage of being very accurate.

[0125] Another method for high throughput analysis of gene expression is the serial analysis of gene expression (SAGE) technique, first described in Velculescu et al. (1995) Science 270, 484-487. Among the advantages of SAGE is that it has the potential to provide detection of all genes expressed in a given cell type, provides quantitative information about the relative expression of such genes, permits ready comparison of gene expression of genes in two cells, and yields sequence information that may be used to identify the detected genes. Thus far, SAGE methodology has proved itself to reliably detect expression of regulated and nonregulated genes in a variety of cell types (Velculescu et al. (1997) Cell 88, 243-251; Zhang et al. (1997) Science 276, 1268-1272 and Velculescu et al. (1999) Nat. Genet. 23, 387-388.

[0126] Techniques for producing and probing nucleic acids are further described, for example, in Sambrook et al., Molecular Cloning: A Laboratory Manual (New York, Cold Spring Harbor Laboratory, 1989).

[0127] Alternatively, the level of expression of MMP-14, MMP-2 and/or MMP-9 is determined by in situ hybridization. In one embodiment, a tissue sample is obtained from a subject, the tissue sample is sliced, and in situ hybridization is performed according to methods known in the art, to determine the level of expression of MMP-14, MMP-2 and/or MMP-9.

[0128] In other methods, the level of expression of MMP-14, MMP-2 and/or MMP-9 is detected by measuring the level of protein encoded by the MMP-14, MMP-2 and/or MMP-9 gene. This may be done, e.g., by immunoprecipitation, ELISA, or immunohistochemistry using an agent, e.g., an antibody, that specifically detects the protein encoded by the gene. Other techniques include Western blot analysis. Immunoassays are commonly used to quantitate the levels of proteins in cell samples, and many other immunoassay techniques are known in the art. The invention is not limited to a particular assay procedure, and therefore is intended to include both homogeneous and heterogeneous procedures. Exemplary immunoassays which may be conducted according to the invention include fluorescence polarization immunoassay (FPIA), fluorescence immunoassay (FIA), enzyme immunoassay (EIA), nephelometric inhibition immunoassay (NIA), enzyme linked immunosorbent assay (ELISA), and radioimmunoassay (RIA). An indicator moiety, or label group, may be attached to the subject antibodies and is selected so as to meet the needs of various uses of the method which are often dictated by the availability of assay equipment and compatible immunoassay procedures. General techniques to be used in performing the various immunoassays noted above are known to those of ordinary skill in the art.

[0129] In the case of polypeptides which are secreted from cells, the level of expression of these polypeptides may be measured in biological fluids.

[0130] The above-described methods may be performed using cells grown in cell culture, or on cell or tissue specimens from a subject. Specimens may be obtained from an individual to be tested using either "invasive" or "non-invasive" sampling means. A sampling means is said to be "invasive" if it involves the collection of nucleic acids from within the skin or organs of an animal (including, especially, a murine, a human, an ovine, an equine, a bovine, a porcine, a canine, or a feline animal). Examples of invasive methods include blood collection, semen collection, needle biopsy, pleural aspiration, umbilical cord biopsy, etc. Examples of such methods are discussed by Kim, C. H. et al. (1992) J. Virol. 66:3879-3882; Biswas, B. et al. (1990) Annals NY Acad. Sci. 590:582-583; Biswas, B. et al. (1991) J. Clin. Microbiol. 29:2228-2233. It is also possible to obtain a cell sample from a subject, and then to enrich it in the desired cell type. For example, cells may be isolated from other cells using a variety of techniques, such as isolation with an antibody binding to an epitope on the cell surface of the desired cell type.

[0131] In certain embodiments, a single cell is used in the analysis. It is also possible to obtain cells from a subject and culture the cells in vitro, such as to obtain a larger population of cells from which RNA may be extracted. Methods for establishing cultures of non-transformed cells, i.e., primary cell cultures, are known in the art.

[0132] When analyzing from tissue samples or cells from individuals, it may be important to prevent any further changes in gene expression after the tissue or cells has been removed from the subject. Changes in expression levels are known to change rapidly following perturbations, e.g., heat shock or activation with lipopolysaccharide (LPS) or other reagents. In addition, the RNA and proteins in the tissue and cells may quickly become degraded. Accordingly, in a preferred embodiment, the cells obtained from a subject are snap frozen as soon as possible.

[0133] Agents that Bind MMP-14, MMP-2 and/or MMP-9

[0134] Provided also are agents that bind MMP-14, MMP-2 and/or MMP-9 polypeptides. Preferably, such agents are anti-MMP-14, MMP-2 and/or MMP-9 antibodies or antigen-binding fragments thereof, including polyclonal and monoclonal antibodies, prepared according to conventional methodology. Antibodies and antigen-binding fragments thereof that bind MMP-14, MMP-2 and/or MMP-9 biomarkers are useful for determining MMP-14, MMP-2 and/or MMP-9 protein levels.

[0135] Antibodies and antigen-binding fragments thereof that bind MMP-14, MMP-2 and/or MMP-9 and are useful for determining MMP-14, MMP-2 and/or MMP-9 levels, include but are not limited to: antibodies or antigen-binding fragments thereof that bind specifically to a MMP-14, MMP-2 and/or MMP-9 or fragments or analogs thereof.

[0136] Significantly, as is well-known in the art, only a small portion of an antibody molecule, the paratrope, is involved in the binding of the antibody to its epitope (see, in general, Clark, W. R. (1986) The Experimental Foundations of Modem Immunology, Wiley & Sons, Inc., New York; Roitt, I. (1991) Essential Immunology, 7th Ed., Blackwell Scientific Publications, Oxford). The pFc' and Fc regions, for example, are effectors of the complement cascade but are not involved in antigen binding. An antibody from which the pFc' region has been enzymatically cleaved, or which has been produced without the pFc' region, designated an F(ab').sub.2 fragment, retains both of the antigen binding sites of an intact antibody. Similarly, an antibody from which the Fc region has been enzymatically cleaved, or which has been produced without the Fc region, designated an Fab fragment, retains one of the antigen binding sites of an intact antibody molecule. Proceeding further, Fab fragments consist of a covalently bound antibody light chain and a portion of the antibody heavy chain denoted Fd. The Fd fragments are the major determinant of antibody specificity (a single Fd fragment may be associated with up to ten different light chains without altering antibody specificity) and Fd fragments retain epitope-binding ability in isolation.

[0137] Within the antigen-binding portion of an antibody, as is well-known in the art, there are complementarity determining regions (CDRs), which directly interact with the epitope of the antigen, and framework regions (FRs), which maintain the tertiary structure of the paratope (see, in general, Clark, W. R. (1986) The Experimental Foundations of Modem Immunology, Wiley & Sons, Inc., New York; Roitt, I. (1991) Essential Immunology, 7th Ed., Blackwell Scientific Publications, Oxford). In both the heavy chain Fd fragment and the light chain of IgG immunoglobulins, there are four framework regions (FR1 through FR4) separated respectively by three complementarity determining regions (CDR1 through CDR3). The CDRs, and in particular the CDR3 regions, and more particularly the heavy chain CDR3, are largely responsible for antibody specificity.

[0138] It is now well-established in the art that the non-CDR regions of a mammalian antibody may be replaced with similar regions of conspecific or heterospecific antibodies while retaining the epitopic specificity of the original antibody. This is most clearly manifested in the development and use of "humanized" antibodies in which non-human CDRs are covalently joined to human FR and/or Fc/pFc' regions to produce a functional antibody. See, e.g., U.S. Pat. Nos. 4,816,567, 5,225,539, 5,585,089, 5,693,762 and 5,859,205.

[0139] Fully human monoclonal antibodies also can be prepared by immunizing mice transgenic for large portions of human immunoglobulin heavy and light chain loci. Following immunization of these mice (e.g., XENOMOUSE.TM. (Abgenix), HUMAB-MOUSE.TM. (Medarex/GenPharm)), monoclonal antibodies can be prepared according to standard hybridoma technology. These monoclonal antibodies will have human immunoglobulin amino acid sequences and therefore will not provoke human anti-mouse antibody (HAMA) responses when administered to humans.

[0140] Thus, as will be apparent to one of ordinary skill in the art, the present invention also provides for F(ab').sub.2, Fab, Fv and Fd fragments; chimeric antibodies in which the Fc and/or FR and/or CDR1 and/or CDR2 and/or light chain CDR3 regions have been replaced by homologous human or non-human sequences; chimeric F(ab').sub.2 fragment antibodies in which the FR and/or CDR1 and/or CDR2 and/or light chain CDR3 regions have been replaced by homologous human or non-human sequences; chimeric Fab fragment antibodies in which the FR and/or CDR1 and/or CDR2 and/or light chain CDR3 regions have been replaced by homologous human or non-human sequences; and chimeric Fd fragment antibodies in which the FR and/or CDR1 and/or CDR2 regions have been replaced by homologous human or non-human sequences. The present invention also includes so-called single chain antibodies.

[0141] Thus, the invention involves polypeptides of numerous size and type that bind specifically to MMP-14, MMP-2 and/or MMP-9 polypeptides and nucleic acids. These polypeptides may be derived also from sources other than antibody technology. For example, such polypeptide binding agents can be provided by degenerate peptide libraries which can be readily prepared in solution, in immobilized form or as phage display libraries. Combinatorial libraries also can be synthesized of peptides containing one or more amino acids. Libraries further can be synthesized of peptoids and non-peptide synthetic moieties.

[0142] Phage display can be particularly effective in identifying binding peptides useful according to the invention. Briefly, one prepares a phage library (using e.g. m13, fd, or lambda phage), displaying inserts from 4 to about 80 amino acid residues using conventional procedures. The inserts may represent, for example, a completely degenerate or biased array. One then can select phage-bearing inserts which bind to MMP-14, MMP-2 and/or MMP-9 molecules. This process can be repeated through several cycles of reselection of phage that bind to the MMP-14, MMP-2 and/or MMP-9 molecules. Repeated rounds lead to enrichment of phage bearing particular sequences. DNA sequence analysis can be conducted to identify the sequences of the expressed polypeptides. The minimal linear portion of the sequence that binds to the MMP-14, MMP-2 and/or MMP-9 molecules can be determined. One can repeat the procedure using a biased library containing inserts containing part of all of the minimal linear portion plus one or more additional degenerate residues upstream or downstream thereof. Yeast two-hybrid screening methods also may be used to identify polypeptides that bind to the MMP-14, MMP-2 and/or MMP-9 molecules. Thus, MMP-14, MMP-2 and/or MMP-9 molecules can be used to screen peptide libraries, including phage display libraries, to identify and select peptide binding partners of the MMP-14, MMP-2 and/or MMP-9 molecules.

[0143] Exemplary MMP-14 binding proteins that may be used either to detect MMP-14 or inhibit MMP-14 also include those M0031-002, M0031-F01, M0033-H07, M0037-009, M0037-D01, M0038-E06, M0038-F01, M0038-F08, M0039-H08, M0040-A06, M0040-A11, and M0043-G02. The amino acid sequences of exemplary Fab heavy chain (HC) and light chain (LC) variable regions of these binding proteins, and further descriptions of them and their discovery and production, are provided in pending application U.S. Ser. No. 11/648,423 (US 2007-0217997), which is hereby incorporated by reference herein in its entirety. Other exemplary MMP-14 binding proteins include DX-2400 and DX-2410. DX-2400 and M0038-F01 share HC and LC CDR amino acid sequences.

[0144] Exemplary MMP-9 binding proteins that may be used either to detect MMP-9 or inhibit MMP-9 include 539A-M0166-F10 and 539A-M0240-B03. The amino acid sequences of exemplary Fab heavy chain (HC) and light chain (LC) variable regions of these binding proteins, and further descriptions of them and their discovery and production, are provided in pending applications U.S. Ser. No. 61/033,075 and 61/054,938, which are hereby incorporated by reference herein in their entireties.

[0145] As detailed herein, the foregoing antibodies and other binding proteins may be used for example to isolate and identify MMP-14, MMP-2 and/or MMP-9 protein, e.g. to detect its expression in tissue samples. The antibodies may be coupled to specific diagnostic labeling agents for imaging of the protein or fragment thereof. Exemplary labels include, but are not limited to, labels which when fused to a MMP-14, MMP-2 and/or MMP-9 molecule produce a detectable fluorescent signal, including, for example, green fluorescent protein (GFP), enhanced green fluorescent protein (EGFP), Renilla reniformis green fluorescent protein, GFPmut2, GFPuv4, enhanced yellow fluorescent protein (EYFP), enhanced cyan fluorescent protein (ECFP), enhanced blue fluorescent protein (EBFP), citrine and red fluorescent protein from discosoma (dsRED). In another embodiment, a cancer biomarker polypeptide is conjugated to a fluorescent or chromogenic label. A wide variety of fluorescent labels are available from and/or extensively described in the Handbook of Fluorescent Probes and Research Products 8.sup.th Ed. (2001), available from Molecular Probes, Eugene, Oreg., as well as many other manufacturers.

[0146] In other embodiments, MMP-14, MMP-2 and/or MMP-9 is fused to a molecule that is readily detectable either by its presence or activity, including, but not limited to, luciferase, fluorescent protein (e.g., green fluorescent protein), chloramphenicol acetyl transferase, .beta.-galactosidase, secreted placental alkaline phosphatase, .beta.-lactamase, human growth hormone, and other secreted enzyme reporters.

[0147] Kits

[0148] The present invention provides kits for practice of the afore-described methods. In certain embodiments, kits may comprise antibodies against MMP-14, MMP-2 and/or MMP-9. In other embodiments, a kit may comprise appropriate reagents for determining the level of protein activity in the cells of a subject. In certain embodiments, the cell of a subject may be taken from a tumor biopsy.

[0149] In still other embodiments, a kit may comprise a microarray comprising probes of MMP-14, MMP-2 and/or MMP-9 genes or proteins. A kit may comprise one or more probes or primers for detecting the expression level of MMP-14, MMP-2 and/or MMP-9 and/or a solid support on which probes are attached and which may be used for detecting expression. A kit may further comprise controls, buffers, and instructions for use.

[0150] Kits may also comprise a library of MMP-14, MMP-2 and/or MMP-9 expression or activity levels associated with survival, response to therapy, stage of disease, etc., e.g., reference sets. In one embodiment, the kit comprises a computer readable medium on which is stored one or more measures of gene expression and/or protein activity associated with survival, response to therapy, stage of disease, etc., or at least values representing such measures of gene expression or protein activity associated with survival, response to therapy, stage of disease, etc. The kit may comprise ratio analysis software capable of being loaded into the memory of a computer system.

[0151] Kit components may be packaged for either manual or partially or wholly automated practice of the foregoing methods. In other embodiments involving kits, this invention contemplates a kit including compositions of the present invention, and optionally instructions for their use. Such kits may have a variety of uses, including, for example, imaging, diagnosis, therapy, and other applications.

EXEMPLIFICATION

[0152] The present invention is further illustrated by the following examples which should not be construed as limiting in any way.

Example 1

Expression of MMPs in Various Cancer Cell Lines and Correlation to MMP-14 Inhibitor Efficacy

[0153] FIG. 1 illustrates the relative expression levels of various MMPs, including MMP-14 and MMP-2, in different cancer cell lines. MDA-MB-231 expresses both MMP-14 and MMP-2 in over 50% of cells. MDA-MB-435, BT-474 and PC-3 express only MMP-14 in over 50% of cells. BxPC-3 and B16-F1 express MMP-14 in between 20% and 50% of cells (but not MMP-2). The MCF-7 passage of cells used for these experiments express MMP-14 in between 20% and 50% of cells (but not MMP-2).

[0154] The effect of DX-2400, an MMP-14 inhibitor, in inhibiting tumor growth, was strongest in MDA-MB-231, MDA-MB-435, BT-474 and PC-3, all of which express MMP-14 in over 50% of cells (FIGS. 2 and 3). Further, DX-2400 had an effect on metastasis on certain cell lines expressing MMP-14 in at least 20% of cells (FIG. 4).

Example 2

Tumor Growth Data with MMP-14-Positive and MMP-14-Negative Cancer Cells

[0155] FIG. 5A shows MMP-14 expression in MDA-MB-231, HUVEC, HT-1080 and MCF-7 cells using a commercial anti-MMP-14 antibody (rabbit polyclonal antibody to MMP-14, Abcam, Cambridge, Mass.). These data show that the MCF-7 cells used for these experiments are negative for MMP-14, in contrast to MDA-MB-231.

[0156] FIGS. 5B and 5C show activity of DX-2400 in MDA-MB-231 and MCF-7 tumor xenograft models. As shown in FIG. 5B, DX-2400 inhibited tumor growth of MDA-MB-231 cells. The results seen with some treatments were statistically significant (see, e.g., DX-2400 10 mg/kg, Q2D). Consistent with the lack of MMP-14 expression in the MCF7 cells used for these experiments, DX-2400 (10 mg/kg, ip, qod) did not inhibit MCF-7 tumor growth after two weeks of treatment (FIG. 5C). In these MCF-7 cells, DX-2400 exhibited minimal tumor growth delay (37%) compared to Tamoxifen (83%) after 40 days of treatment. The slight response observed with DX-2400 may be attributed to stromal cells (MMP-14 positive) present in the tumor.

[0157] Western blot analysis. To perform the Western blot experiments, whole cell protein extracts were prepared from cells using RIPA buffer. Equal amount of proteins (30 .mu.g) was resolved by 4-12% SDS-PAGE and electroblotted to a PVDF membrane. The blot was probed with a rabbit polyclonal antibody to MMP-14 (Abcam, Cambridge, Mass.) followed by an HRP-conjugated goat anti-rabbit antibody (Thermo Fisher Scientific). Proteins were detected using a Super Signal West Femto Maximum Sensitivity Substrate (Thermo Fisher Scientific). The blot was subsequently stripped and reprobed with a mouse monoclonal antibody to 8-actin (Abcam) followed by an HRP-conjugated goat anti-mouse antibody (Thermo Fisher Scientific).

Example 3

Exemplary MMP-14 Binding Antibodies

[0158] An exemplary MMP-14 antibody is M0038-F01. The variable domain sequences for M0038-F01 are:

TABLE-US-00010 VH (SEQ ID NO: 13) FR1--------------------------- CDR1- FR2----------- CDR2------- 38F01 IgG EVQLLESGGGLVQPGGSLRLSCAASGFTFS LYSMN WVRQAPGKGLEWVS SIYSSGGSTLY CDR2-- FR3----------------------------- CDR3-- FR4--------- 38F01 IgG ADSVKG RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR GRAFDI WGQGTMVTVSS CDR regions are in bold. VL (SEQ ID NO: 14) FR1-------------------- CDR1------- FR2------------ CDR2--- 38F01 IgG DIQMTQSPSSLSAFVGDKVTITC RASQSVGTYLN WYQQKAGKAPELLIY ATSNLRS GVPS FR3------------------------- CDR3------ FR4------- 38F01 IgG RFSGSGSGTDFTLTINTLQPEDFATYYC QQSYSIPRFT FGPGTKVDIK CDR regions are in bold.

[0159] Another exemplary MMP-14 antibody is DX-2400. The variable domain sequences for DX-2400 are:

TABLE-US-00011 VH: (SEQ ID NO: 15) FR1--------------------------- CDR1- FR2----------- CDR2------- DX-2400 EVQLLESGGGLVQPGGSLRLSCAASGFTFS LYSMN WVRQAPGKGLEWVS SIYSSGGSTLY CDR2-- FR3----------------------------- CDR3-- FR4--------- DX-2400 ADSVKG RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR GRAFDI WGQGTMVTVSS CDR regions are in bold. VL: (SEQ ID NO: 16) FR1-------------------- CDR1------- FR2------------ CDR2--- DX-2400 DIQMTQSPSSLSASVGDRVTITC RASQSVGTYLN WYQQKPGKAPKLLIY ATSNLRS GVPS FR3------------------------- CDR3------ FR4------- DX-2400 RFSGSGSGTDFTLTISSLQPEDFATYYC QQSYSIPRFT FGPGTKVDIK CDR regions are in bold.

[0160] Another exemplary MMP-14 antibody is M0033-H07. The variable domain sequences for M0033-H07 are:

TABLE-US-00012 VH: (SEQ ID NO: 17) FR1--------------------------- CDR1- FR2----------- CDR2------- 33H07 IgG EVQLLESGGGLVQPGGSLRLSCAASGFTFS VYGMV WVRQAPGKGLEWVS VISSSGGSTWY CDR2-- FR3----------------------------- CDR3------- FR4-------- 33H07 IgG ADSVKG RFTISRDNSKNTLYLQMNSLRAEDTALYYCAR PFSRRYGVFDY WGQGTLVTVSS CDR regions are in bold. VL: (SEQ ID NO: 18) FR1-------------------- CDR1------- FR2------------ CDR2--- 33H07 IgG DIQMTQSPSSLSASVGDRVTITC RASQGIRNFLA WYQQKPGKVPKLLVF GASALQS FR3----------------------------- CDR3----- FR4------- 33H07 IgG GVPSRFSGSGSGTDFTLTISGLQPEDVATYYC QKYNGVPLT FGGGTKVEIK CDR regions are in bold.

[0161] Another exemplary MMP-14 antibody is DX-2410. The variable domain sequences for 40 DX-2410 are:

TABLE-US-00013 VH: (SEQ ID NO: 19) FR1--------------------------- CDR1- FR2----------- CDR2------- DX2410 EVQLLESGGGLVQPGGSLRLSCAASGFTFS VYGMV WVRQAPGKGLEWVS VISSSGGSTWY CDR2-- FR3----------------------------- CDR3------- FR4-------- DX2410 ADSVKG RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR PFSRRYGVFDY WGQGTLVTVSS CDR regions are in bold. VL: (SEQ ID NO: 20) FR1-------------------- CDR1------- FR2------------ CDR2--- DX2410 DIQMTQSPSSLSASVGDRVTITC RASQGIRNFLA WYQQKPGKVPKLLIY GASALQS FR3----------------------------- CDR3----- FR4------- DX2410 GVPSRFSGSGSGTDFTLTISSLQPEDVATYYC QKYNGVPLT FGGGTKVEIK CDR regions are in bold.

Example 3

Exemplary MMP-9 Binding Antibodies

[0162] An exemplary MMP-9 antibody is 539A-M0166-F10. The amino acid sequences of variable regions of 539A-M0166-F10 sFAB are as follows:

TABLE-US-00014 539A-M0166-F10 (phage/SFAB) VL leader +VL (SEQ ID NO: 21) FYSHSAQSELTQPPSASAAPGQRVTISCSGSSSNIGSNTVTWYQKLPGTAPKLLIYNNYERPSGVPARFSGSKS- GTSASLAI SGLQSEDEADYYCATWDDSLIANYVFGSGTKVTVLGQPKANP 539A-M0166-F10 (phage/SFAB) VH leader +VH (SEQ ID NO: 22) MKKLLFAIPLVVPFVAQPAMAEVQLLESGGGLVQPGGSLRLSCAASGFTFSPYLMNWVRQAPGKGLEWVSSIYS- SGGGTGYA DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARIYHSSSGPFYGMDVWGQGTTVTVSSASTKGPSVFPLA- PSSKS

[0163] Another exemplary MMP-9 antibody is 539A-M0240-B03. 539A-M0240-B03 is a selective inhibitor of MMP-9. 539A-M0240-B03 can decrease or inhibit the activity of human and mouse MMP-9. The sequences of the complementarity determining regions (CDRs) of 539A-M0240-B03 light chain (LC) and heavy chain (HC) are as follows:

TABLE-US-00015 (SEQ ID NO: 23) LC CDR1: TGTSSDVGGYNYVS (SEQ ID NO: 24) LC CDR2: DVSKRPS (SEQ ID NO: 25) LC CDR3: CSYAGSYTLV (SEQ ID NO: 26) HC CDR1: TYQMV (SEQ ID NO: 27) HC CDR2: VIYPSGGPTVYADSVKG (SEQ ID NO: 28) HC CDR3: GEDYYDSSGPGAFDI

[0164] A protein containing the HC CDR sequences of 539A-M0240-B03 and the light chain sequence shown below can be used in the methods described herein. A protein containing the LC CDRs shown below and the HC CDRs of 539A-M0240-B03, or a protein containing the LC variable region (light V gene) shown below and the 539A-M0240-B03 HC CDRs can also be used in the methods described herein. The protein can include a constant region sequence, such as the constant region (LC-lambda1) shown below.

TABLE-US-00016 Light V gene = VL2_2e; J gene = JL3 (SEQ ID NO: 29) FR1-L CDR1-L FR2-L CDR2-L QSALTQPRSVSGSPGQSVTISC TGTSSDVGGYNYVS WYQQHPGKAPKLMIY DVSKRPS GVPD FR3-L CDR3-L FR4-L RFSGSKSGNTASLTISGLQAEDEADYYC CSYAGSYTLV FGGGTKLTVL ------------------- LC-lambda1 (SEQ ID NO: 30) GQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSL- TPEQWKSHRSYS CQVTHEGSTVEKTVAPTECS CDR regions are in bold.

[0165] The amino acid and nucleic acid sequences for another exemplary protein that can be used in the methods described herein are provided below. A protein containing the LC and HC CDRs shown below, or a protein containing the light chain and heavy chain variable regions (LV and HV, respectively) shown below can also be used in the methods described herein.

TABLE-US-00017 Light Chain Light V gene = VL2_2e 2e.2.2/V1-3/DPL12 Light J gene = JL3 ##STR00001## Heavy Chain Heavy V gene: VH3_3-23 DP-47/V3-23 Heavy J gene: JH3 ##STR00002## Light Variable Antibody A-Light: Parental clone (sFab; IgG in pBh1(f)) light variable ##STR00003## Heavy Variable Antibody A-Heavy: Parental clone (sFab; IgG in pBh1(f)) Heavy variable ##STR00004##

[0166] The amino acid and nucleic acid sequences for another exemplary protein that can be used in the methods described herein are provided below. A protein containing the LC and HC CDRs shown below, or a protein containing the light chain and heavy chain variable regions (LV and HV, respectively) shown below can also be used in the methods described herein. A protein containing the light chain and heavy chain (designated as LV+LC and HV+HC, respectively, below) sequences can also be used.

TABLE-US-00018 Light Chain Light V gene = VL2_2e 2e.2.2/V1-3/DPL12 Light J gene = JL3 ##STR00005## Heavy Chain Heavy V gene: VH3_3-23 DP-47/V3-23 Heavy J gene: JH3 ##STR00006## Light Variable Antibody B-Light: Germlined, codon optimized in GS vector ##STR00007## Heavy Variable Antibody B-Heavy: Germlined, codon optimized in GS vector ##STR00008## >Antibody B: LV + LC dna (SEQ ID NO: 43) CAGAGCGCCCTGACCCAGCCCAGAAGCGTGTCCGGCAGCCCAGGCCAGAGCGTGACCATCAGCTGCACCGGCAC- CAGCAGCGACGTGGGCGGCTACAACTACGT GTCCTGGTATCAGCAGCACCCCGGCAAGGCCCCCAAGCTGATGATCTACGACGTGTCCAAGAGGCCCAGCGGCG- TGCCCGACAGGTTCAGCGGCAGCAAGAGCG GCAACACCGCCAGCCTGACCATCTCCGGACTGCAGGCCGAGGACGAGGCCGACTACTACTGCTGCAGCTACGCC- GGCAGCTACACCCTGGTGTTCGGCGGAGGG ACCAAGCTGACCGTGCTGGGCCAGCCCAAGGCTGCCCCCAGCGTGACCCTGTTCCCCCCCAGCAGCGAGGAACT- GCAGGCCAACAAGGCCACACTGGTGTGCCT GATCAGCGACTTCTACCCAGGCGCCGTGACCGTGGCCTGGAAGGCCGACAGCAGCCCCGTGAAGGCCGGCGTGG- AGACAACCACCCCCAGCAAGCAGAGCAACA ACAAGTACGCCGCCAGCAGCTACCTGAGCCTGACCCCCGAGCAGTGGAAGTCCCACAGGTCCTACAGCTGCCAG- GTGACCCACGAGGGCAGCACCGTGGAGAAA ACCGTGGCCCCCACCGAGTGTAGCTGATGA >Antibody B: HV + HC dna (SEQ ID NO: 44) GAGGTGCAATTGCTGGAAAGCGGCGGAGGACTGGTGCAGCCAGGCGGCAGCCTGAGGCTGTCCTGCGCCGCCAG- CGGCTTCACCTTCAGCACCTACCAGATGGT GTGGGTGCGCCAGGCCCCAGGCAAGGGCCTGGAATGGGTGTCCGTGATCTACCCCAGCGGCGGACCCACCGTGT- ACGCCGACAGCGTGAAGGGCAGGTTCACCA TCAGCAGGGACAACAGCAAGAACACCCTGTACCTGCAGATGAACAGCCTGAGGGCCGAGGACACCGCCGTGTAC- TACTGCGCCAGGGGCGAGGACTACTACGAC AGCAGCGGCCCAGGCGCCTTCGACATCTGGGGCCAGGGCACAATGGTGACCGTGTCCAGCGCCAGCACCAAGGG- CCCCAGCGTGTTCCCGCTAGCACCTTCCTC CAAGTCCACCTCTGGCGGCACCGCCGCTCTGGGCTGCCTGGTGAAGGACTACTTCCCTGAGCCTGTGACCGTGA- GCTGGAACTCTGGCGCCCTGACCTCCGGCG TGCATACCTTCCCTGCCGTGCTGCAGTCCTCCGGCCTGTACTCCCTGTCCTCCGTGGTGACAGTGCCTTCCTCC- TCCCTGGGCACCCAGACCTACATCTGCAAC GTGAACCACAAGCCTTCCAACACCAAGGTGGACAAGCGGGTGGAGCCTAAGTCCTGCGACAAGACCCACACCTG- CCCTCCCTGCCCTGCCCCTGAGCTGCTGGG CGGACCCTCCGTGTTCCTGTTCCCTCCTAAGCCTAAGGACACCCTGATGATCTCCCGGACCCCTGAGGTGACCT- GCGTGGTGGTGGACGTGTCCCACGAGGACC CAGAGGTGAAGTTTAATTGGTATGTGGACGGCGTGGAGGTCCACAACGCCAAGACCAAGCCTCGGGAGGAACAG- TACAACTCCACCTACCGGGTGGTGTCCGTG CTGACCGTGCTGCACCAGGACTGGCTGAACGGCAAGGAATACAAGTGCAAAGTCTCCAACAAGGCCCTGCCTGC- CCCCATCGAGAAAACCATCTCCAAGGCCAA GGGCCAGCCTCGCGAGCCTCAGGTGTACACCCTGCCTCCTAGCCGGGAGGAAATGACCAAGAACCAGGTGTCCC- TGACCTGTCTGGTGAAGGGCTTCTACCCTT CCGATATCGCCGTGGAGTGGGAGTCCAACGGCCAGCCTGAGAACAACTACAAGACCACCCCTCCTGTGCTGGAC- TCCGACGGCTCCTTCTTCCTGTACTCCAAG CTGACCGTGGACAAGTCCCGGTGGCAGCAGGGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTGCACAA- CCACTACACCCAGAAGTCCCTGTCCCTGAG CCCTGGCAAGTGA >Antibody B: LV + LC aa (SEQ ID NO: 45) QSALTQPRSVSGSPGQSVTISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVSKRPSGVPDRFSGSKSGNTAS- LTISGLQAEDEADYYCCSYAGSYTLVFGGG TKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAA- SSYLSLTPEQWKSHRSYSCQVTHEGSTVEK TVAPTECSss >Antibody B: HV + HC aa (SEQ ID NO: 46) EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYQMVWVRQAPGKGLEWVSVIYPSGGPTVYADSVKGRFTISRDN- SKNTLYLQMNSLRAEDTAVYYCARGEDYYD SSGPGAFDIWGQGTMVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFP- AVLQSSGLYSLSSVVTVPSSSLGTQTYICN VNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKF- NWYVDGVEVHNAKTKPREEQYNSTYRVVSV LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAV- EWESNGQPENNYKTTPPVLDSDGSFFLYSK LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKs

REFERENCES

[0167] The contents of all cited references including literature references, issued patents, published or non-published patent applications cited throughout this application are hereby expressly incorporated by reference in their entireties. In case of conflict, the present application, including any definitions herein, will control.

EQUIVALENTS

[0168] A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.

Sequence CWU 1

1

461582PRTHomo sapiens 1Met Ser Pro Ala Pro Arg Pro Pro Arg Cys Leu Leu Leu Pro Leu Leu1 5 10 15Thr Leu Gly Thr Ala Leu Ala Ser Leu Gly Ser Ala Gln Ser Ser Ser 20 25 30Phe Ser Pro Glu Ala Trp Leu Gln Gln Tyr Gly Tyr Leu Pro Pro Gly 35 40 45Asp Leu Arg Thr His Thr Gln Arg Ser Pro Gln Ser Leu Ser Ala Ala 50 55 60Ile Ala Ala Met Gln Lys Phe Tyr Gly Leu Gln Val Thr Gly Lys Ala65 70 75 80Asp Ala Asp Thr Met Lys Ala Met Arg Arg Pro Arg Cys Gly Val Pro 85 90 95Asp Lys Phe Gly Ala Glu Ile Lys Ala Asn Val Arg Arg Lys Arg Tyr 100 105 110Ala Ile Gln Gly Leu Lys Trp Gln His Asn Glu Ile Thr Phe Cys Ile 115 120 125Gln Asn Tyr Thr Pro Lys Val Gly Glu Tyr Ala Thr Tyr Glu Ala Ile 130 135 140Arg Lys Ala Phe Arg Val Trp Glu Ser Ala Thr Pro Leu Arg Phe Arg145 150 155 160Glu Val Pro Tyr Ala Tyr Ile Arg Glu Gly His Glu Lys Gln Ala Asp 165 170 175Ile Met Ile Phe Phe Ala Glu Gly Phe His Gly Asp Ser Thr Pro Phe 180 185 190Asp Gly Glu Gly Gly Phe Leu Ala His Ala Tyr Phe Pro Gly Pro Asn 195 200 205Ile Gly Gly Asp Thr His Phe Asp Ser Ala Glu Pro Trp Thr Val Arg 210 215 220Asn Glu Asp Leu Asn Gly Asn Asp Ile Phe Leu Val Ala Val His Glu225 230 235 240Leu Gly His Ala Leu Gly Leu Glu His Ser Ser Asp Pro Ser Ala Ile 245 250 255Met Ala Pro Phe Tyr Gln Trp Met Asp Thr Glu Asn Phe Val Leu Pro 260 265 270Asp Asp Asp Arg Arg Gly Ile Gln Gln Leu Tyr Gly Gly Glu Ser Gly 275 280 285Phe Pro Thr Lys Met Pro Pro Gln Pro Arg Thr Thr Ser Arg Pro Ser 290 295 300Val Pro Asp Lys Pro Lys Asn Pro Thr Tyr Gly Pro Asn Ile Cys Asp305 310 315 320Gly Asn Phe Asp Thr Val Ala Met Leu Arg Gly Glu Met Phe Val Phe 325 330 335Lys Glu Arg Trp Phe Trp Arg Val Arg Asn Asn Gln Val Met Asp Gly 340 345 350Tyr Pro Met Pro Ile Gly Gln Phe Trp Arg Gly Leu Pro Ala Ser Ile 355 360 365Asn Thr Ala Tyr Glu Arg Lys Asp Gly Lys Phe Val Phe Phe Lys Gly 370 375 380Asp Lys His Trp Val Phe Asp Glu Ala Ser Leu Glu Pro Gly Tyr Pro385 390 395 400Lys His Ile Lys Glu Leu Gly Arg Gly Leu Pro Thr Asp Lys Ile Asp 405 410 415Ala Ala Leu Phe Trp Met Pro Asn Gly Lys Thr Tyr Phe Phe Arg Gly 420 425 430Asn Lys Tyr Tyr Arg Phe Asn Glu Glu Leu Arg Ala Val Asp Ser Glu 435 440 445Tyr Pro Lys Asn Ile Lys Val Trp Glu Gly Ile Pro Glu Ser Pro Arg 450 455 460Gly Ser Phe Met Gly Ser Asp Glu Val Phe Thr Tyr Phe Tyr Lys Gly465 470 475 480Asn Lys Tyr Trp Lys Phe Asn Asn Gln Lys Leu Lys Val Glu Pro Gly 485 490 495Tyr Pro Lys Ser Ala Leu Arg Asp Trp Met Gly Cys Pro Ser Gly Gly 500 505 510Arg Pro Asp Glu Gly Thr Glu Glu Glu Thr Glu Val Ile Ile Ile Glu 515 520 525Val Asp Glu Glu Gly Gly Gly Ala Val Ser Ala Ala Ala Val Val Leu 530 535 540Pro Val Leu Leu Leu Leu Leu Val Leu Ala Val Gly Leu Ala Val Phe545 550 555 560Phe Phe Arg Arg His Gly Thr Pro Arg Arg Leu Leu Tyr Cys Gln Arg 565 570 575Ser Leu Leu Asp Lys Val 5802582PRTMus musculus 2Met Ser Pro Ala Pro Arg Pro Ser Arg Ser Leu Leu Leu Pro Leu Leu1 5 10 15Thr Leu Gly Thr Ala Leu Ala Ser Leu Gly Trp Ala Gln Gly Ser Asn 20 25 30Phe Ser Pro Glu Ala Trp Leu Gln Gln Tyr Gly Tyr Leu Pro Pro Gly 35 40 45Asp Leu Arg Thr His Thr Gln Arg Ser Pro Gln Ser Leu Ser Ala Ala 50 55 60Ile Ala Ala Met Gln Lys Phe Tyr Gly Leu Gln Val Thr Gly Lys Ala65 70 75 80Asp Leu Ala Thr Met Met Ala Met Arg Arg Pro Arg Cys Gly Val Pro 85 90 95Asp Lys Phe Gly Thr Glu Ile Lys Ala Asn Val Arg Arg Lys Arg Tyr 100 105 110Ala Ile Gln Gly Leu Lys Trp Gln His Asn Glu Ile Thr Phe Cys Ile 115 120 125Gln Asn Tyr Thr Pro Lys Val Gly Glu Tyr Ala Thr Phe Glu Ala Ile 130 135 140Arg Lys Ala Phe Arg Val Trp Glu Ser Ala Thr Pro Leu Arg Phe Arg145 150 155 160Glu Val Pro Tyr Ala Tyr Ile Arg Glu Gly His Glu Lys Gln Ala Asp 165 170 175Ile Met Ile Leu Phe Ala Glu Gly Phe His Gly Asp Ser Thr Pro Phe 180 185 190Asp Gly Glu Gly Gly Phe Leu Ala His Ala Tyr Phe Pro Gly Pro Asn 195 200 205Ile Gly Gly Asp Thr His Phe Asp Ser Ala Glu Pro Trp Thr Val Gln 210 215 220Asn Glu Asp Leu Asn Gly Asn Asp Ile Phe Leu Val Ala Val His Glu225 230 235 240Leu Gly His Ala Leu Gly Leu Glu His Ser Asn Asp Pro Ser Ala Ile 245 250 255Met Ser Pro Phe Tyr Gln Trp Met Asp Thr Glu Asn Phe Val Leu Pro 260 265 270Asp Asp Asp Arg Arg Gly Ile Gln Gln Leu Tyr Gly Ser Lys Ser Gly 275 280 285Ser Pro Thr Lys Met Pro Pro Gln Pro Arg Thr Thr Ser Arg Pro Ser 290 295 300Val Pro Asp Lys Pro Lys Asn Pro Ala Tyr Gly Pro Asn Ile Cys Asp305 310 315 320Gly Asn Phe Asp Thr Val Ala Met Leu Arg Gly Glu Met Phe Val Phe 325 330 335Lys Glu Arg Trp Phe Trp Arg Val Arg Asn Asn Gln Val Met Asp Gly 340 345 350Tyr Pro Met Pro Ile Gly Gln Phe Trp Arg Gly Leu Pro Ala Ser Ile 355 360 365Asn Thr Ala Tyr Glu Arg Lys Asp Gly Lys Phe Val Phe Phe Lys Gly 370 375 380Asp Lys His Trp Val Phe Asp Glu Ala Ser Leu Glu Pro Gly Tyr Pro385 390 395 400Lys His Ile Lys Glu Leu Gly Arg Gly Leu Pro Thr Asp Lys Ile Asp 405 410 415Ala Ala Leu Phe Trp Met Pro Asn Gly Lys Thr Tyr Phe Phe Arg Gly 420 425 430Asn Lys Tyr Tyr Arg Phe Asn Glu Glu Phe Arg Ala Val Asp Ser Glu 435 440 445Tyr Pro Lys Asn Ile Lys Val Trp Glu Gly Ile Pro Glu Ser Pro Arg 450 455 460Gly Ser Phe Met Gly Ser Asp Glu Val Phe Thr Tyr Phe Tyr Lys Gly465 470 475 480Asn Lys Tyr Trp Lys Phe Asn Asn Gln Lys Leu Lys Val Glu Pro Gly 485 490 495Tyr Pro Lys Ser Ala Leu Arg Asp Trp Met Gly Cys Pro Ser Gly Arg 500 505 510Arg Pro Asp Glu Gly Thr Glu Glu Glu Thr Glu Val Ile Ile Ile Glu 515 520 525Val Asp Glu Glu Gly Ser Gly Ala Val Ser Ala Ala Ala Val Val Leu 530 535 540Pro Val Leu Leu Leu Leu Leu Val Leu Ala Val Gly Leu Ala Val Phe545 550 555 560Phe Phe Arg Arg His Gly Thr Pro Lys Arg Leu Leu Tyr Cys Gln Arg 565 570 575Ser Leu Leu Asp Lys Val 58033437DNAHomo sapiens 3aagttcagtg cctaccgaag acaaaggcgc cccgagggag tggcggtgcg accccagggc 60gtgggcccgg ccgcggagcc cacactgccc ggctgacccg gtggtctcgg accatgtctc 120ccgccccaag acccccccgt tgtctcctgc tccccctgct cacgctcggc accgcgctcg 180cctccctcgg ctcggcccaa agcagcagct tcagccccga agcctggcta cagcaatatg 240gctacctgcc tcccggggac ctacgtaccc acacacagcg ctcaccccag tcactctcag 300cggccatcgc tgccatgcag aagttttacg gcttgcaagt aacaggcaaa gctgatgcag 360acaccatgaa ggccatgagg cgcccccgat gtggtgttcc agacaagttt ggggctgaga 420tcaaggccaa tgttcgaagg aagcgctacg ccatccaggg tctcaaatgg caacataatg 480aaatcacttt ctgcatccag aattacaccc ccaaggtggg cgagtatgcc acatacgagg 540ccattcgcaa ggcgttccgc gtgtgggaga gtgccacacc actgcgcttc cgcgaggtgc 600cctatgccta catccgtgag ggccatgaga agcaggccga catcatgatc ttctttgccg 660agggcttcca tggcgacagc acgcccttcg atggtgaggg cggcttcctg gcccatgcct 720acttcccagg ccccaacatt ggaggagaca cccactttga ctctgccgag ccttggactg 780tcaggaatga ggatctgaat ggaaatgaca tcttcctggt ggctgtgcac gagctgggcc 840atgccctggg gctcgagcat tccagtgacc cctcggccat catggcaccc ttttaccagt 900ggatggacac ggagaatttt gtgctgcccg atgatgaccg ccggggcatc cagcaacttt 960atgggggtga gtcagggttc cccaccaaga tgccccctca acccaggact acctcccggc 1020cttctgttcc tgataaaccc aaaaacccca cctatgggcc caacatctgt gacgggaact 1080ttgacaccgt ggccatgctc cgaggggaga tgtttgtctt caaggagcgc tggttctggc 1140gggtgaggaa taaccaagtg atggatggat acccaatgcc cattggccag ttctggcggg 1200gcctgcctgc gtccatcaac actgcctacg agaggaagga tggcaaattc gtcttcttca 1260aaggagacaa gcattgggtg tttgatgagg cgtccctgga acctggctac cccaagcaca 1320ttaaggagct gggccgaggg ctgcctaccg acaagattga tgctgctctc ttctggatgc 1380ccaatggaaa gacctacttc ttccgtggaa acaagtacta ccgtttcaac gaagagctca 1440gggcagtgga tagcgagtac cccaagaaca tcaaagtctg ggaagggatc cctgagtctc 1500ccagagggtc attcatgggc agcgatgaag tcttcactta cttctacaag gggaacaaat 1560actggaaatt caacaaccag aagctgaagg tagaaccggg ctaccccaag tcagccctga 1620gggactggat gggctgccca tcgggaggcc ggccggatga ggggactgag gaggagacgg 1680aggtgatcat cattgaggtg gacgaggagg gcggcggggc ggtgagcgcg gctgccgtgg 1740tgctgcccgt gctgctgctg ctcctggtgc tggcggtggg ccttgcagtc ttcttcttca 1800gacgccatgg gacccccagg cgactgctct actgccagcg ttccctgctg gacaaggtct 1860gacgcccacc gccggcccgc ccactcctac cacaaggact ttgcctctga aggccagtgg 1920cagcaggtgg tggtgggtgg gctgctccca tcgtcccgag ccccctcccc gcagcctcct 1980tgcttctctc tgtcccctgg ctggcctcct tcaccctgac cgcctccctc cctcctgccc 2040cggcattgca tcttccctag ataggtcccc tgagggctga gtgggagggc ggccctttcc 2100agcctctgcc cctcagggga accctgtagc tttgtgtctg tccagcccca tctgaatgtg 2160ttgggggctc tgcacttgaa ggcaggaccc tcagacctcg ctggtaaagg tcaaatgggg 2220tcatctgctc cttttccatc ccctgacata ccttaacctc tgaactctga cctcaggagg 2280ctctgggcac tccagccctg aaagccccag gtgtacccaa ttggcagcct ctcactactc 2340tttctggcta aaaggaatct aatcttgttg agggtagaga ccctgagaca gtgtgagggg 2400gtggggactg ccaagccacc ctaagacctt gggaggaaaa ctcagagagg gtcttcgttg 2460ctcagtcagt caagttcctc ggagatctgc ctctgcctca cctaccccag ggaacttcca 2520aggaaggagc ctgagccact ggggactaag tgggcagaag aaacccttgg cagccctgtg 2580cctctcgaat gttagccttg gatggggctt tcacagttag aagagctgaa accaggggtg 2640cagctgtcag gtagggtggg gccggtggga gaggcccggg tcagagccct gggggtgagc 2700ctgaaggcca cagagaaaga accttgccca aactcaggca gctggggctg aggcccaaag 2760gcagaacagc cagagggggc aggaggggac caaaaaggaa aatgaggacg tgcagcagca 2820ttggaaggct ggggccgggc aggccaggcc aagccaagca gggggccaca gggtgggctg 2880tggagctctc aggaagggcc ctgaggaagg cacacttgct cctgttggtc cctgtccttg 2940ctgcccaggc agcgtggagg ggaagggtag ggcagccaga gaaaggagca gagaaggcac 3000acaaacgagg aatgaggggc ttcacgagag gccacagggc ctggctggcc acgctgtccc 3060ggcctgctca ccatctcagt gaggggcagg agctggggct cgcttaggct gggtccacgc 3120ttccctggtg ccagcacccc tcaagcctgt ctcaccagtg gcctgccctc tcgctccccc 3180acccagccca cccattgaag tctccttggg ccaccaaagg tggtggccat ggtaccgggg 3240acttgggaga gtgagaccca gtggagggag caagaggaga gggatgtcgg gggggtgggg 3300cacggggtag gggaaatggg gtgaacggtg ctggcagttc ggctagattt ctgtcttgtt 3360tgtttttttg ttttgtttaa tgtatatttt tattataatt attatatatg aattccaaaa 3420aaaaaaaaaa aaaaaaa 343742583DNAMus musculus 4caaaggagag cagagagggc ttccaactca gttcgccgac taagcagaag aaagatcaaa 60aacggaaaag agaagagcaa acagacattt ccaggagcaa ttccctcacc tccaagccga 120ccgcgctcta ggaatccaca ttccgttcct ttagaagaca aaggcgcccc aagagaggcg 180gcgcgacccc agggcgtggg ccccgccgcg gagcccgcac cgcccggcgc cccgacgccg 240gggaccatgt ctcccgcccc tcgaccctcc cgcagcctcc tgctccccct gctcacgctt 300ggcacggcgc tcgcctccct cggctgggcc caaggcagca acttcagccc cgaagcctgg 360ctgcagcagt atggctacct acctccaggg gacctgcgta cccacacaca acgctcaccc 420cagtcactct cagctgccat tgccgccatg caaaagttct atggtttaca agtgacaggc 480aaggctgatt tggcaaccat gatggccatg aggcgccctc gctgtggtgt tccggataag 540tttgggactg agatcaaggc caatgttcgg aggaagcgct atgccattca gggcctcaag 600tggcagcata atgagatcac tttctgcatt cagaattaca cccctaaggt gggcgagtat 660gccacattcg aggccattcg gaaggccttc cgagtatggg agagtgccac gccactgcgc 720ttccgagaag tgccctatgc ctacatccgg gagggacatg agaagcaggc tgacatcatg 780atcttatttg ctgagggttt ccacggcgac agtacaccct ttgatggtga aggagggttc 840ctggctcatg cctacttccc aggccccaat attggagggg atacccactt tgattctgcc 900gagccctgga ctgtccaaaa tgaggatcta aatgggaatg acatcttctt ggtggctgtg 960catgagttgg ggcatgccct aggcctggaa cattctaacg atccctccgc catcatgtcc 1020cccttttacc agtggatgga cacagagaac ttcgtgttgc ctgatgacga tcgccgtggc 1080atccagcaac tttatggaag caagtcaggg tcacccacaa agatgccccc tcaacccaga 1140actacctctc ggccctctgt cccagataag cccaaaaacc ccgcctatgg gcccaacatc 1200tgtgacggga actttgacac cgtggccatg ctccgaggag agatgtttgt cttcaaggag 1260cgatggttct ggcgggtgag gaataaccaa gtgatggatg gatacccaat gcccattggc 1320caattctgga ggggcctgcc tgcatccatc aatactgcct acgaaaggaa ggatggcaaa 1380tttgtcttct tcaaaggaga taagcactgg gtgtttgacg aagcctccct ggaacccggg 1440taccccaagc acattaagga gcttggccga gggctgccca cggacaagat cgatgcagct 1500ctcttctgga tgcccaatgg gaagacctac ttcttccggg gcaataagta ctaccggttc 1560aatgaagaat tcagggcagt ggacagcgag taccctaaaa acatcaaagt ctgggaagga 1620atccctgaat ctcccagggg gtcattcatg ggcagtgatg aagtcttcac atacttctac 1680aagggaaaca aatactggaa gttcaacaac cagaagctga aggtagagcc agggtacccc 1740aagtcagctc tgcgggactg gatgggctgc ccttcggggc gccggcccga tgaggggact 1800gaggaggaga cagaggtgat catcattgag gtggatgagg agggcagtgg agctgtgagt 1860gcggccgccg tggtcctgcc ggtactactg ctgctcctgg tactggcagt gggcctcgct 1920gtcttcttct tcagacgcca tgggacgccc aagcgactgc tttactgcca gcgttcgctg 1980ctggacaagg tctgaccccc accactggcc cacccgcttc taccacaagg actttgcctc 2040tgaaggccag tggctacagg tggtagcagg tgggctgctc tcacccgtcc tgggctccct 2100ccctccagcc tcccttctca gtccctaatt ggcctctccc accctcaccc cagcattgct 2160tcatccataa gtgggtccct tgagggctga gcagaagacg gtcggcctct ggccctcaag 2220ggaatctcac agctcagtgt gtgttcagcc ctagttgaat gttgtcaagg ctcttattga 2280aggcaagacc ctctgacctt ataggcaacg gccaaatggg gtcatctgct tcttttccat 2340ccccctaact acatacctta aatctctgaa ctctgacctc aggaggctct gggcatatga 2400gccctatatg taccaagtgt acctagttgg ctgcctcccg ccactctgac taaaaggaat 2460cttaagagtg tacatttgga ggtggaaaga ttgttcagtt taccctaaag actttgataa 2520gaaagagaaa gaaagaaaga aagaaagaaa gaaagaaaga aagaaagaaa gaaaaaaaaa 2580aaa 25835660PRTHomo sapiens 5Met Glu Ala Leu Met Ala Arg Gly Ala Leu Thr Gly Pro Leu Arg Ala1 5 10 15Leu Cys Leu Leu Gly Cys Leu Leu Ser His Ala Ala Ala Ala Pro Ser 20 25 30Pro Ile Ile Lys Phe Pro Gly Asp Val Ala Pro Lys Thr Asp Lys Glu 35 40 45Leu Ala Val Gln Tyr Leu Asn Thr Phe Tyr Gly Cys Pro Lys Glu Ser 50 55 60Cys Asn Leu Phe Val Leu Lys Asp Thr Leu Lys Lys Met Gln Lys Phe65 70 75 80Phe Gly Leu Pro Gln Thr Gly Asp Leu Asp Gln Asn Thr Ile Glu Thr 85 90 95Met Arg Lys Pro Arg Cys Gly Asn Pro Asp Val Ala Asn Tyr Asn Phe 100 105 110Phe Pro Arg Lys Pro Lys Trp Asp Lys Asn Gln Ile Thr Tyr Arg Ile 115 120 125Ile Gly Tyr Thr Pro Asp Leu Asp Pro Glu Thr Val Asp Asp Ala Phe 130 135 140Ala Arg Ala Phe Gln Val Trp Ser Asp Val Thr Pro Leu Arg Phe Ser145 150 155 160Arg Ile His Asp Gly Glu Ala Asp Ile Met Ile Asn Phe Gly Arg Trp 165 170 175Glu His Gly Asp Gly Tyr Pro Phe Asp Gly Lys Asp Gly Leu Leu Ala 180 185 190His Ala Phe Ala Pro Gly Thr Gly Val Gly Gly Asp Ser His Phe Asp 195 200 205Asp Asp Glu Leu Trp Thr Leu Gly Glu Gly Gln Val Val Arg Val Lys 210 215 220Tyr Gly Asn Ala Asp Gly Glu Tyr Cys Lys Phe Pro Phe Leu Phe Asn225 230 235 240Gly Lys Glu Tyr Asn Ser Cys Thr Asp Thr Gly Arg Ser Asp Gly Phe 245 250 255Leu Trp Cys Ser Thr Thr Tyr Asn Phe Glu Lys Asp Gly Lys Tyr Gly 260 265 270Phe Cys Pro His Glu Ala Leu Phe Thr Met Gly Gly Asn Ala Glu Gly 275 280 285Gln Pro Cys Lys Phe Pro Phe Arg Phe

Gln Gly Thr Ser Tyr Asp Ser 290 295 300Cys Thr Thr Glu Gly Arg Thr Asp Gly Tyr Arg Trp Cys Gly Thr Thr305 310 315 320Glu Asp Tyr Asp Arg Asp Lys Lys Tyr Gly Phe Cys Pro Glu Thr Ala 325 330 335Met Ser Thr Val Gly Gly Asn Ser Glu Gly Ala Pro Cys Val Phe Pro 340 345 350Phe Thr Phe Leu Gly Asn Lys Tyr Glu Ser Cys Thr Ser Ala Gly Arg 355 360 365Ser Asp Gly Lys Met Trp Cys Ala Thr Thr Ala Asn Tyr Asp Asp Asp 370 375 380Arg Lys Trp Gly Phe Cys Pro Asp Gln Gly Tyr Ser Leu Phe Leu Val385 390 395 400Ala Ala His Glu Phe Gly His Ala Met Gly Leu Glu His Ser Gln Asp 405 410 415Pro Gly Ala Leu Met Ala Pro Ile Tyr Thr Tyr Thr Lys Asn Phe Arg 420 425 430Leu Ser Gln Asp Asp Ile Lys Gly Ile Gln Glu Leu Tyr Gly Ala Ser 435 440 445Pro Asp Ile Asp Leu Gly Thr Gly Pro Thr Pro Thr Leu Gly Pro Val 450 455 460Thr Pro Glu Ile Cys Lys Gln Asp Ile Val Phe Asp Gly Ile Ala Gln465 470 475 480Ile Arg Gly Glu Ile Phe Phe Phe Lys Asp Arg Phe Ile Trp Arg Thr 485 490 495Val Thr Pro Arg Asp Lys Pro Met Gly Pro Leu Leu Val Ala Thr Phe 500 505 510Trp Pro Glu Leu Pro Glu Lys Ile Asp Ala Val Tyr Glu Ala Pro Gln 515 520 525Glu Glu Lys Ala Val Phe Phe Ala Gly Asn Glu Tyr Trp Ile Tyr Ser 530 535 540Ala Ser Thr Leu Glu Arg Gly Tyr Pro Lys Pro Leu Thr Ser Leu Gly545 550 555 560Leu Pro Pro Asp Val Gln Arg Val Asp Ala Ala Phe Asn Trp Ser Lys 565 570 575Asn Lys Lys Thr Tyr Ile Phe Ala Gly Asp Lys Phe Trp Arg Tyr Asn 580 585 590Glu Val Lys Lys Lys Met Asp Pro Gly Phe Pro Lys Leu Ile Ala Asp 595 600 605Ala Trp Asn Ala Ile Pro Asp Asn Leu Asp Ala Val Val Asp Leu Gln 610 615 620Gly Gly Gly His Ser Tyr Phe Phe Lys Gly Ala Tyr Tyr Leu Lys Leu625 630 635 640Glu Asn Gln Ser Leu Lys Ser Val Lys Phe Gly Ser Ile Lys Ser Asp 645 650 655Trp Leu Gly Cys 6606662PRTMus musculus 6Met Glu Ala Arg Val Ala Trp Gly Ala Leu Ala Gly Pro Leu Arg Val1 5 10 15Leu Cys Val Leu Cys Cys Leu Leu Gly Arg Ala Ile Ala Ala Pro Ser 20 25 30Pro Ile Ile Lys Phe Pro Gly Asp Val Ala Pro Lys Thr Asp Lys Glu 35 40 45Leu Ala Val Gln Tyr Leu Asn Thr Phe Tyr Gly Cys Pro Lys Glu Ser 50 55 60Cys Asn Leu Phe Val Leu Lys Asp Thr Leu Lys Lys Met Gln Lys Phe65 70 75 80Phe Gly Leu Pro Gln Thr Gly Asp Leu Asp Gln Asn Thr Ile Glu Thr 85 90 95Met Arg Lys Pro Arg Cys Gly Asn Pro Asp Val Ala Asn Tyr Asn Phe 100 105 110Phe Pro Arg Lys Pro Lys Trp Asp Lys Asn Gln Ile Thr Tyr Arg Ile 115 120 125Ile Gly Tyr Thr Pro Asp Leu Asp Pro Glu Thr Val Asp Asp Ala Phe 130 135 140Ala Arg Ala Leu Lys Val Trp Ser Asp Val Thr Pro Leu Arg Phe Ser145 150 155 160Arg Ile His Asp Gly Glu Ala Asp Ile Met Ile Asn Phe Gly Arg Trp 165 170 175Glu His Gly Asp Gly Tyr Pro Phe Asp Gly Lys Asp Gly Leu Leu Ala 180 185 190His Ala Phe Ala Pro Gly Thr Gly Val Gly Gly Asp Ser His Phe Asp 195 200 205Asp Asp Glu Leu Trp Thr Leu Gly Glu Gly Gln Val Val Arg Val Lys 210 215 220Tyr Gly Asn Ala Asp Gly Glu Tyr Cys Lys Phe Pro Phe Leu Phe Asn225 230 235 240Gly Arg Glu Tyr Ser Ser Cys Thr Asp Thr Gly Arg Ser Asp Gly Phe 245 250 255Leu Trp Cys Ser Thr Thr Tyr Asn Phe Glu Lys Asp Gly Lys Tyr Gly 260 265 270Phe Cys Pro His Glu Ala Leu Phe Thr Met Gly Gly Asn Ala Asp Gly 275 280 285Gln Pro Cys Lys Phe Pro Phe Arg Phe Gln Gly Thr Ser Tyr Asn Ser 290 295 300Cys Thr Thr Glu Gly Arg Thr Asp Gly Tyr Arg Trp Cys Gly Thr Thr305 310 315 320Glu Asp Tyr Asp Arg Asp Lys Lys Tyr Gly Phe Cys Pro Glu Thr Ala 325 330 335Met Ser Thr Val Gly Gly Asn Ser Glu Gly Ala Pro Cys Val Phe Pro 340 345 350Phe Thr Phe Leu Gly Asn Lys Tyr Glu Ser Cys Thr Ser Ala Gly Arg 355 360 365Asn Asp Gly Lys Val Trp Cys Ala Thr Thr Thr Asn Tyr Asp Asp Asp 370 375 380Arg Lys Trp Gly Phe Cys Pro Asp Gln Gly Tyr Ser Leu Phe Leu Val385 390 395 400Ala Ala His Glu Phe Gly His Ala Met Gly Leu Glu His Ser Gln Asp 405 410 415Pro Gly Ala Leu Met Ala Pro Ile Tyr Thr Tyr Thr Lys Asn Phe Arg 420 425 430Leu Ser His Asp Asp Ile Lys Gly Ile Gln Glu Leu Tyr Gly Pro Ser 435 440 445Pro Asp Ala Asp Thr Asp Thr Gly Thr Gly Pro Thr Pro Thr Leu Gly 450 455 460Pro Val Thr Pro Glu Ile Cys Lys Gln Asp Ile Val Phe Asp Gly Ile465 470 475 480Ala Gln Ile Arg Gly Glu Ile Phe Phe Phe Lys Asp Arg Phe Ile Trp 485 490 495Arg Thr Val Thr Pro Arg Asp Lys Pro Thr Gly Pro Leu Leu Val Ala 500 505 510Thr Phe Trp Pro Glu Leu Pro Glu Lys Ile Asp Ala Val Tyr Glu Ala 515 520 525Pro Gln Glu Glu Lys Ala Val Phe Phe Ala Gly Asn Glu Tyr Trp Val 530 535 540Tyr Ser Ala Ser Thr Leu Glu Arg Gly Tyr Pro Lys Pro Leu Thr Ser545 550 555 560Leu Gly Leu Pro Pro Asp Val Gln Gln Val Asp Ala Ala Phe Asn Trp 565 570 575Ser Lys Asn Lys Lys Thr Tyr Ile Phe Ala Gly Asp Lys Phe Trp Arg 580 585 590Tyr Asn Glu Val Lys Lys Lys Met Asp Pro Gly Phe Pro Lys Leu Ile 595 600 605Ala Asp Ser Trp Asn Ala Ile Pro Asp Asn Leu Asp Ala Val Val Asp 610 615 620Leu Gln Gly Gly Gly His Ser Tyr Phe Phe Lys Gly Ala Tyr Tyr Leu625 630 635 640Lys Leu Glu Asn Gln Ser Leu Lys Ser Val Lys Phe Gly Ser Ile Lys 645 650 655Ser Asp Trp Leu Gly Cys 66073546DNAHomo sapiens 7gcggctgccc tcccttgttt ccgctgcatc cagacttcct caggcggtgg ctggaggctg 60cgcatctggg gctttaaaca tacaaaggga ttgccaggac ctgcggcggc ggcggcggcg 120gcgggggctg gggcgcgggg gccggaccat gagccgctga gccgggcaaa ccccaggcca 180ccgagccagc ggaccctcgg agcgcagccc tgcgccgcgg agcaggctcc aaccaggcgg 240cgaggcggcc acacgcaccg agccagcgac ccccgggcga cgcgcggggc cagggagcgc 300tacgatggag gcgctaatgg cccggggcgc gctcacgggt cccctgaggg cgctctgtct 360cctgggctgc ctgctgagcc acgccgccgc cgcgccgtcg cccatcatca agttccccgg 420cgatgtcgcc cccaaaacgg acaaagagtt ggcagtgcaa tacctgaaca ccttctatgg 480ctgccccaag gagagctgca acctgtttgt gctgaaggac acactaaaga agatgcagaa 540gttctttgga ctgccccaga caggtgatct tgaccagaat accatcgaga ccatgcggaa 600gccacgctgc ggcaacccag atgtggccaa ctacaacttc ttccctcgca agcccaagtg 660ggacaagaac cagatcacat acaggatcat tggctacaca cctgatctgg acccagagac 720agtggatgat gcctttgctc gtgccttcca agtctggagc gatgtgaccc cactgcggtt 780ttctcgaatc catgatggag aggcagacat catgatcaac tttggccgct gggagcatgg 840cgatggatac ccctttgacg gtaaggacgg actcctggct catgccttcg ccccaggcac 900tggtgttggg ggagactccc attttgatga cgatgagcta tggaccttgg gagaaggcca 960agtggtccgt gtgaagtatg ggaacgccga tggggagtac tgcaagttcc ccttcttgtt 1020caatggcaag gagtacaaca gctgcactga taccggccgc agcgatggct tcctctggtg 1080ctccaccacc tacaactttg agaaggatgg caagtacggc ttctgtcccc atgaagccct 1140gttcaccatg ggcggcaacg ctgaaggaca gccctgcaag tttccattcc gcttccaggg 1200cacatcctat gacagctgca ccactgaggg ccgcacggat ggctaccgct ggtgcggcac 1260cactgaggac tacgaccgcg acaagaagta tggcttctgc cctgagaccg ccatgtccac 1320tgttggtggg aactcagaag gtgccccctg tgtcttcccc ttcactttcc tgggcaacaa 1380atatgagagc tgcaccagcg ccggccgcag tgacggaaag atgtggtgtg cgaccacagc 1440caactacgat gatgaccgca agtggggctt ctgccctgac caagggtaca gcctgttcct 1500cgtggcagcc cacgagtttg gccacgccat ggggctggag cactcccaag accctggggc 1560cctgatggca cccatttaca cctacaccaa gaacttccgt ctgtcccagg atgacatcaa 1620gggcattcag gagctctatg gggcctctcc tgacattgac cttggcaccg gccccacccc 1680cacgctgggc cctgtcactc ctgagatctg caaacaggac attgtatttg atggcatcgc 1740tcagatccgt ggtgagatct tcttcttcaa ggaccggttc atttggcgga ctgtgacgcc 1800acgtgacaag cccatggggc ccctgctggt ggccacattc tggcctgagc tcccggaaaa 1860gattgatgcg gtatacgagg ccccacagga ggagaaggct gtgttctttg cagggaatga 1920atactggatc tactcagcca gcaccctgga gcgagggtac cccaagccac tgaccagcct 1980gggactgccc cctgatgtcc agcgagtgga tgccgccttt aactggagca aaaacaagaa 2040gacatacatc tttgctggag acaaattctg gagatacaat gaggtgaaga agaaaatgga 2100tcctggcttc cccaagctca tcgcagatgc ctggaatgcc atccccgata acctggatgc 2160cgtcgtggac ctgcagggcg gcggtcacag ctacttcttc aagggtgcct attacctgaa 2220gctggagaac caaagtctga agagcgtgaa gtttggaagc atcaaatccg actggctagg 2280ctgctgagct ggccctggct cccacaggcc cttcctctcc actgccttcg atacaccggg 2340cctggagaac tagagaagga cccggagggg cctggcagcc gtgccttcag ctctacagct 2400aatcagcatt ctcactccta cctggtaatt taagattcca gagagtggct cctcccggtg 2460cccaagaata gatgctgact gtactcctcc caggcgcccc ttccccctcc aatcccacca 2520accctcagag ccacccctaa agagatactt tgatattttc aacgcagccc tgctttgggc 2580tgccctggtg ctgccacact tcaggctctt ctcctttcac aaccttctgt ggctcacaga 2640acccttggag ccaatggaga ctgtctcaag agggcactgg tggcccgaca gcctggcaca 2700gggcagtggg acagggcatg gccaggtggc cactccagac ccctggcttt tcactgctgg 2760ctgccttaga acctttctta cattagcagt ttgctttgta tgcactttgt ttttttcttt 2820gggtcttgtt ttttttttcc acttagaaat tgcatttcct gacagaagga ctcaggttgt 2880ctgaagtcac tgcacagtgc atctcagccc acatagtgat ggttcccctg ttcactctac 2940ttagcatgtc cctaccgagt ctcttctcca ctggatggag gaaaaccaag ccgtggcttc 3000ccgctcagcc ctccctgccc ctcccttcaa ccattcccca tgggaaatgt caacaagtat 3060gaataaagac acctactgag tggccgtgtt tgccatctgt tttagcagag cctagacaag 3120ggccacagac ccagccagaa gcggaaactt aaaaagtccg aatctctgct ccctgcaggg 3180cacaggtgat ggtgtctgct ggaaaggtca gagcttccaa agtaaacagc aagagaacct 3240cagggagagt aagctctagt ccctctgtcc tgtagaaaga gccctgaaga atcagcaatt 3300ttgttgcttt attgtggcat ctgttcgagg tttgcttcct ctttaagtct gtttcttcat 3360tagcaatcat atcagtttta atgctactac taacaatgaa cagtaacaat aatatccccc 3420tcaattaata gagtgctttc tatgtgcaag gcacttttca cgtgtcacct attttaacct 3480ttccaaccac ataaataaaa aaggccatta ttagttgaat cttattgatg aagagaaaaa 3540aaaaaa 354683070DNAMus musculus 8ccagccggcc acatctggcg tctgcccgcc cttgtttccg ctgcatccag acttccctgg 60tggctggagg ctctgtgtgc atccaggagt ttagatatac aaagggattg ccaggacctg 120caagcacccg cggcagtggt gtgtattggg acgtgggacc ccgttatgag ctcctgagcc 180ccgagaagca gaggcagtag agtaagggga tcgccgtgca gggcaggcgc cagccgggcg 240gaccccaggg cacagccaga gacctcaggg tgacacgcgg agcccgggag cgcaacgatg 300gaggcacgag tggcctgggg agcgctggcc ggacctctgc gggttctctg cgtcctgtgc 360tgcctgttgg gccgcgccat cgctgcacca tcgcccatca tcaagttccc cggcgatgtc 420gcccctaaaa cagacaaaga gttggcagtg caatacctga acactttcta tggctgcccc 480aaggagagtt gcaacctctt tgtgctgaaa gataccctca agaagatgca gaagttcttt 540gggctgcccc agacaggtga ccttgaccag aacaccatcg agaccatgcg gaagccaaga 600tgtggcaacc cagatgtggc caactacaac ttcttccccc gcaagcccaa gtgggacaag 660aaccagatca catacaggat cattggttac acacctgacc tggaccctga aaccgtggat 720gatgcttttg ctcgggcctt aaaagtatgg agcgacgtca ctccgctgcg cttttctcga 780atccatgatg gggaggctga catcatgatc aactttggac gctgggagca tggagatgga 840tacccatttg atggcaagga tggactcctg gcacatgcct ttgccccggg cactggtgtt 900gggggagatt ctcactttga tgatgatgag ctgtggaccc tgggagaagg acaagtggtc 960cgcgtaaagt atgggaacgc tgatggcgag tactgcaagt tccccttcct gttcaacggt 1020cgggaataca gcagctgtac agacactggt cgcagtgatg gcttcctctg gtgctccacc 1080acatacaact ttgagaagga tggcaagtat ggcttctgcc cccatgaagc cttgtttacc 1140atgggtggca atgcagatgg acagccctgc aagttcccgt tccgcttcca gggcacctcc 1200tacaacagct gtaccaccga gggccgcacc gatggctacc gctggtgtgg caccaccgag 1260gactatgacc gggataagaa gtatggattc tgtcccgaga ccgctatgtc cactgtgggt 1320ggaaattcag aaggtgcccc atgtgtcttc cccttcactt tcctgggcaa caagtatgag 1380agctgcacca gcgccggccg caacgatggc aaggtgtggt gtgcgaccac aaccaactac 1440gatgatgacc ggaagtgggg cttctgtcct gaccaaggat atagcctatt cctcgtggca 1500gcccatgagt tcggccatgc catggggctg gaacactctc aggaccctgg agctctgatg 1560gccccgatct acacctacac caagaacttc cgattatccc atgatgacat caaggggatc 1620caggagctct atgggccctc ccccgatgct gatactgaca ctggtactgg ccccacacca 1680acactgggac ctgtcactcc ggagatctgc aaacaggaca ttgtctttga tggcatcgct 1740cagatccgtg gtgagatctt cttcttcaag gaccggttta tttggcggac agtgacacca 1800cgtgacaagc ccacaggtcc cttgctggtg gccacattct ggcctgagct cccagaaaag 1860attgacgctg tgtatgaggc cccacaggag gagaaggctg tgttcttcgc agggaatgag 1920tactgggtct attctgctag tactctggag cgaggatacc ccaagccact gaccagcctg 1980gggttgcccc ctgatgtcca gcaagtagat gctgccttta actggagtaa gaacaagaag 2040acatacatct ttgcaggaga caagttctgg agatacaatg aagtgaagaa gaaaatggac 2100cccggtttcc ctaagctcat cgcagactcc tggaatgcca tccctgataa cctggatgcc 2160gtcgtggacc tgcagggtgg tggtcatagc tacttcttca agggtgctta ttacctgaag 2220ctggagaacc aaagtctcaa gagcgtgaag tttggaagca tcaaatcaga ctggctgggc 2280tgctgagctg gccctgttcc cacgggccct atcatcttca tcgctgcaca ccaggtgaag 2340gatgtgaagc agcctggcgg ctctgtcctc ctctgtagtt aaccagcctt ctccttcacc 2400tggtgacttc agatttaaga gggtggcttc tttttgtgcc caaagaaagg tgctgactgt 2460accctcccgg gtgctgcttc tccttcctgc ccaccctagg ggatgcttgg atatttgcaa 2520tgcagccctc ctctgggctg ccctggtgct ccactcttct ggttcttcaa catctatgac 2580ctttttatgg ctttcagcac tctcagagtt aatagagact ggcttaggag ggcactggtg 2640gccctgttaa cagcctggca tggggcagtg gggtacaggt gtgccaaggt ggaaatcaga 2700gacacctggt ttcacccttt ctgctgccca gacacctgca ccaccttaac tgttgctttt 2760gtatgccctt cgctcgtttc cttcaacctt ttcagttttc cactccactg catttcctgc 2820ccaaaggact cgggttgtct gacatcgctg catgatgcat ctcagcccgc ctagtgatgg 2880ttcccctcct cactctgtgc agatcatgcc cagtcacttc ctccactgga tggaggagaa 2940ccaagtcagt ggcttcctgc tcagccttct tgcttctccc tttaacagtt ccccatggga 3000aatggcaaac aagtataaat aaagacaccc attgagtgac aaaaaaaaaa aaaaaaaaaa 3060aaaaaaaaaa 30709707PRTHomo sapiens 9Met Ser Leu Trp Gln Pro Leu Val Leu Val Leu Leu Val Leu Gly Cys1 5 10 15Cys Phe Ala Ala Pro Arg Gln Arg Gln Ser Thr Leu Val Leu Phe Pro 20 25 30Gly Asp Leu Arg Thr Asn Leu Thr Asp Arg Gln Leu Ala Glu Glu Tyr 35 40 45Leu Tyr Arg Tyr Gly Tyr Thr Arg Val Ala Glu Met Arg Gly Glu Ser 50 55 60Lys Ser Leu Gly Pro Ala Leu Leu Leu Leu Gln Lys Gln Leu Ser Leu65 70 75 80Pro Glu Thr Gly Glu Leu Asp Ser Ala Thr Leu Lys Ala Met Arg Thr 85 90 95Pro Arg Cys Gly Val Pro Asp Leu Gly Arg Phe Gln Thr Phe Glu Gly 100 105 110Asp Leu Lys Trp His His His Asn Ile Thr Tyr Trp Ile Gln Asn Tyr 115 120 125Ser Glu Asp Leu Pro Arg Ala Val Ile Asp Asp Ala Phe Ala Arg Ala 130 135 140Phe Ala Leu Trp Ser Ala Val Thr Pro Leu Thr Phe Thr Arg Val Tyr145 150 155 160Ser Arg Asp Ala Asp Ile Val Ile Gln Phe Gly Val Ala Glu His Gly 165 170 175Asp Gly Tyr Pro Phe Asp Gly Lys Asp Gly Leu Leu Ala His Ala Phe 180 185 190Pro Pro Gly Pro Gly Ile Gln Gly Asp Ala His Phe Asp Asp Asp Glu 195 200 205Leu Trp Ser Leu Gly Lys Gly Val Val Val Pro Thr Arg Phe Gly Asn 210 215 220Ala Asp Gly Ala Ala Cys His Phe Pro Phe Ile Phe Glu Gly Arg Ser225 230 235 240Tyr Ser Ala Cys Thr Thr Asp Gly Arg Ser Asp Gly Leu Pro Trp Cys 245 250 255Ser Thr Thr Ala Asn Tyr Asp Thr Asp Asp Arg Phe Gly Phe Cys Pro 260 265 270Ser Glu Arg Leu Tyr Thr Gln Asp Gly Asn Ala Asp Gly Lys Pro Cys 275 280 285Gln Phe Pro Phe Ile Phe Gln Gly Gln Ser Tyr Ser Ala Cys Thr Thr 290 295 300Asp Gly Arg Ser Asp Gly Tyr Arg Trp Cys Ala Thr Thr Ala Asn Tyr305 310 315 320Asp Arg Asp Lys Leu Phe Gly Phe Cys Pro Thr Arg Ala Asp Ser Thr

325 330 335Val Met Gly Gly Asn Ser Ala Gly Glu Leu Cys Val Phe Pro Phe Thr 340 345 350Phe Leu Gly Lys Glu Tyr Ser Thr Cys Thr Ser Glu Gly Arg Gly Asp 355 360 365Gly Arg Leu Trp Cys Ala Thr Thr Ser Asn Phe Asp Ser Asp Lys Lys 370 375 380Trp Gly Phe Cys Pro Asp Gln Gly Tyr Ser Leu Phe Leu Val Ala Ala385 390 395 400His Glu Phe Gly His Ala Leu Gly Leu Asp His Ser Ser Val Pro Glu 405 410 415Ala Leu Met Tyr Pro Met Tyr Arg Phe Thr Glu Gly Pro Pro Leu His 420 425 430Lys Asp Asp Val Asn Gly Ile Arg His Leu Tyr Gly Pro Arg Pro Glu 435 440 445Pro Glu Pro Arg Pro Pro Thr Thr Thr Thr Pro Gln Pro Thr Ala Pro 450 455 460Pro Thr Val Cys Pro Thr Gly Pro Pro Thr Val His Pro Ser Glu Arg465 470 475 480Pro Thr Ala Gly Pro Thr Gly Pro Pro Ser Ala Gly Pro Thr Gly Pro 485 490 495Pro Thr Ala Gly Pro Ser Thr Ala Thr Thr Val Pro Leu Ser Pro Val 500 505 510Asp Asp Ala Cys Asn Val Asn Ile Phe Asp Ala Ile Ala Glu Ile Gly 515 520 525Asn Gln Leu Tyr Leu Phe Lys Asp Gly Lys Tyr Trp Arg Phe Ser Glu 530 535 540Gly Arg Gly Ser Arg Pro Gln Gly Pro Phe Leu Ile Ala Asp Lys Trp545 550 555 560Pro Ala Leu Pro Arg Lys Leu Asp Ser Val Phe Glu Glu Arg Leu Ser 565 570 575Lys Lys Leu Phe Phe Phe Ser Gly Arg Gln Val Trp Val Tyr Thr Gly 580 585 590Ala Ser Val Leu Gly Pro Arg Arg Leu Asp Lys Leu Gly Leu Gly Ala 595 600 605Asp Val Ala Gln Val Thr Gly Ala Leu Arg Ser Gly Arg Gly Lys Met 610 615 620Leu Leu Phe Ser Gly Arg Arg Leu Trp Arg Phe Asp Val Lys Ala Gln625 630 635 640Met Val Asp Pro Arg Ser Ala Ser Glu Val Asp Arg Met Phe Pro Gly 645 650 655Val Pro Leu Asp Thr His Asp Val Phe Gln Tyr Arg Glu Lys Ala Tyr 660 665 670Phe Cys Gln Asp Arg Phe Tyr Trp Arg Val Ser Ser Arg Ser Glu Leu 675 680 685Asn Gln Val Asp Gln Val Gly Tyr Val Thr Tyr Asp Ile Leu Gln Cys 690 695 700Pro Glu Asp70510730PRTMus musculus 10Met Ser Pro Trp Gln Pro Leu Leu Leu Ala Leu Leu Ala Phe Gly Cys1 5 10 15Ser Ser Ala Ala Pro Tyr Gln Arg Gln Pro Thr Phe Val Val Phe Pro 20 25 30Lys Asp Leu Lys Thr Ser Asn Leu Thr Asp Thr Gln Leu Ala Glu Ala 35 40 45Tyr Leu Tyr Arg Tyr Gly Tyr Thr Arg Ala Ala Gln Met Met Gly Glu 50 55 60Lys Gln Ser Leu Arg Pro Ala Leu Leu Met Leu Gln Lys Gln Leu Ser65 70 75 80Leu Pro Gln Thr Gly Glu Leu Asp Ser Gln Thr Leu Lys Ala Ile Arg 85 90 95Thr Pro Arg Cys Gly Val Pro Asp Val Gly Arg Phe Gln Thr Phe Lys 100 105 110Gly Leu Lys Trp Asp His His Asn Ile Thr Tyr Trp Ile Gln Asn Tyr 115 120 125Ser Glu Asp Leu Pro Arg Asp Met Ile Asp Asp Ala Phe Ala Arg Ala 130 135 140Phe Ala Val Trp Gly Glu Val Ala Pro Leu Thr Phe Thr Arg Val Tyr145 150 155 160Gly Pro Glu Ala Asp Ile Val Ile Gln Phe Gly Val Ala Glu His Gly 165 170 175Asp Gly Tyr Pro Phe Asp Gly Lys Asp Gly Leu Leu Ala His Ala Phe 180 185 190Pro Pro Gly Ala Gly Val Gln Gly Asp Ala His Phe Asp Asp Asp Glu 195 200 205Leu Trp Ser Leu Gly Lys Gly Val Val Ile Pro Thr Tyr Tyr Gly Asn 210 215 220Ser Asn Gly Ala Pro Cys His Phe Pro Phe Thr Phe Glu Gly Arg Ser225 230 235 240Tyr Ser Ala Cys Thr Thr Asp Gly Arg Asn Asp Gly Thr Pro Trp Cys 245 250 255Ser Thr Thr Ala Asp Tyr Asp Lys Asp Gly Lys Phe Gly Phe Cys Pro 260 265 270Ser Glu Arg Leu Tyr Thr Glu His Gly Asn Gly Glu Gly Lys Pro Cys 275 280 285Val Phe Pro Phe Ile Phe Glu Gly Arg Ser Tyr Ser Ala Cys Thr Thr 290 295 300Lys Gly Arg Ser Asp Gly Tyr Arg Trp Cys Ala Thr Thr Ala Asn Tyr305 310 315 320Asp Gln Asp Lys Leu Tyr Gly Phe Cys Pro Thr Arg Val Asp Ala Thr 325 330 335Val Val Gly Gly Asn Ser Ala Gly Glu Leu Cys Val Phe Pro Phe Val 340 345 350Phe Leu Gly Lys Gln Tyr Ser Ser Cys Thr Ser Asp Gly Arg Arg Asp 355 360 365Gly Arg Leu Trp Cys Ala Thr Thr Ser Asn Phe Asp Thr Asp Lys Lys 370 375 380Trp Gly Phe Cys Pro Asp Gln Gly Tyr Ser Leu Phe Leu Val Ala Ala385 390 395 400His Glu Phe Gly His Ala Leu Gly Leu Asp His Ser Ser Val Pro Glu 405 410 415Ala Leu Met Tyr Pro Leu Tyr Ser Tyr Leu Glu Gly Phe Pro Leu Asn 420 425 430Lys Asp Asp Ile Asp Gly Ile Gln Tyr Leu Tyr Gly Arg Gly Ser Lys 435 440 445Pro Asp Pro Arg Pro Pro Ala Thr Thr Thr Thr Glu Pro Gln Pro Thr 450 455 460Ala Pro Pro Thr Met Cys Pro Thr Ile Pro Pro Thr Ala Tyr Pro Thr465 470 475 480Val Gly Pro Thr Val Gly Pro Thr Gly Ala Pro Ser Pro Gly Pro Thr 485 490 495Ser Ser Pro Ser Pro Gly Pro Thr Gly Ala Pro Ser Pro Gly Pro Thr 500 505 510Ala Pro Pro Thr Ala Gly Ser Ser Glu Ala Ser Thr Glu Ser Leu Ser 515 520 525Pro Ala Asp Asn Pro Cys Asn Val Asp Val Phe Asp Ala Ile Ala Glu 530 535 540Ile Gln Gly Ala Leu His Phe Phe Lys Asp Gly Trp Tyr Trp Lys Phe545 550 555 560Leu Asn His Arg Gly Ser Pro Leu Gln Gly Pro Phe Leu Thr Ala Arg 565 570 575Thr Trp Pro Ala Leu Pro Ala Thr Leu Asp Ser Ala Phe Glu Asp Pro 580 585 590Gln Thr Lys Arg Val Phe Phe Phe Ser Gly Arg Gln Met Trp Val Tyr 595 600 605Thr Gly Lys Thr Val Leu Gly Pro Arg Ser Leu Asp Lys Leu Gly Leu 610 615 620Gly Pro Glu Val Thr His Val Ser Gly Leu Leu Pro Arg Arg Leu Gly625 630 635 640Lys Ala Leu Leu Phe Ser Lys Gly Arg Val Trp Arg Phe Asp Leu Lys 645 650 655Ser Gln Lys Val Asp Pro Gln Ser Val Ile Arg Val Asp Lys Glu Phe 660 665 670Ser Gly Val Pro Trp Asn Ser His Asp Ile Phe Gln Tyr Gln Asp Lys 675 680 685Ala Tyr Phe Cys His Gly Lys Phe Phe Trp Arg Val Ser Phe Gln Asn 690 695 700Glu Val Asn Lys Val Asp His Glu Val Asn Gln Val Asp Asp Val Gly705 710 715 720Tyr Val Thr Tyr Asp Leu Leu Gln Cys Pro 725 730112387DNAHomo sapiens 11agacacctct gccctcacca tgagcctctg gcagcccctg gtcctggtgc tcctggtgct 60gggctgctgc tttgctgccc ccagacagcg ccagtccacc cttgtgctct tccctggaga 120cctgagaacc aatctcaccg acaggcagct ggcagaggaa tacctgtacc gctatggtta 180cactcgggtg gcagagatgc gtggagagtc gaaatctctg gggcctgcgc tgctgcttct 240ccagaagcaa ctgtccctgc ccgagaccgg tgagctggat agcgccacgc tgaaggccat 300gcgaacccca cggtgcgggg tcccagacct gggcagattc caaacctttg agggcgacct 360caagtggcac caccacaaca tcacctattg gatccaaaac tactcggaag acttgccgcg 420ggcggtgatt gacgacgcct ttgcccgcgc cttcgcactg tggagcgcgg tgacgccgct 480caccttcact cgcgtgtaca gccgggacgc agacatcgtc atccagtttg gtgtcgcgga 540gcacggagac gggtatccct tcgacgggaa ggacgggctc ctggcacacg cctttcctcc 600tggccccggc attcagggag acgcccattt cgacgatgac gagttgtggt ccctgggcaa 660gggcgtcgtg gttccaactc ggtttggaaa cgcagatggc gcggcctgcc acttcccctt 720catcttcgag ggccgctcct actctgcctg caccaccgac ggtcgctccg acggcttgcc 780ctggtgcagt accacggcca actacgacac cgacgaccgg tttggcttct gccccagcga 840gagactctac acccaggacg gcaatgctga tgggaaaccc tgccagtttc cattcatctt 900ccaaggccaa tcctactccg cctgcaccac ggacggtcgc tccgacggct accgctggtg 960cgccaccacc gccaactacg accgggacaa gctcttcggc ttctgcccga cccgagctga 1020ctcgacggtg atggggggca actcggcggg ggagctgtgc gtcttcccct tcactttcct 1080gggtaaggag tactcgacct gtaccagcga gggccgcgga gatgggcgcc tctggtgcgc 1140taccacctcg aactttgaca gcgacaagaa gtggggcttc tgcccggacc aaggatacag 1200tttgttcctc gtggcggcgc atgagttcgg ccacgcgctg ggcttagatc attcctcagt 1260gccggaggcg ctcatgtacc ctatgtaccg cttcactgag gggcccccct tgcataagga 1320cgacgtgaat ggcatccggc acctctatgg tcctcgccct gaacctgagc cacggcctcc 1380aaccaccacc acaccgcagc ccacggctcc cccgacggtc tgccccaccg gaccccccac 1440tgtccacccc tcagagcgcc ccacagctgg ccccacaggt cccccctcag ctggccccac 1500aggtcccccc actgctggcc cttctacggc cactactgtg cctttgagtc cggtggacga 1560tgcctgcaac gtgaacatct tcgacgccat cgcggagatt gggaaccagc tgtatttgtt 1620caaggatggg aagtactggc gattctctga gggcaggggg agccggccgc agggcccctt 1680ccttatcgcc gacaagtggc ccgcgctgcc ccgcaagctg gactcggtct ttgaggagcg 1740gctctccaag aagcttttct tcttctctgg gcgccaggtg tgggtgtaca caggcgcgtc 1800ggtgctgggc ccgaggcgtc tggacaagct gggcctggga gccgacgtgg cccaggtgac 1860cggggccctc cggagtggca gggggaagat gctgctgttc agcgggcggc gcctctggag 1920gttcgacgtg aaggcgcaga tggtggatcc ccggagcgcc agcgaggtgg accggatgtt 1980ccccggggtg cctttggaca cgcacgacgt cttccagtac cgagagaaag cctatttctg 2040ccaggaccgc ttctactggc gcgtgagttc ccggagtgag ttgaaccagg tggaccaagt 2100gggctacgtg acctatgaca tcctgcagtg ccctgaggac tagggctccc gtcctgcttt 2160ggcagtgcca tgtaaatccc cactgggacc aaccctgggg aaggagccag tttgccggat 2220acaaactggt attctgttct ggaggaaagg gaggagtgga ggtgggctgg gccctctctt 2280ctcacctttg ttttttgttg gagtgtttct aataaacttg gattctctaa cctttaaaaa 2340aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaa 2387123185DNAMus musculus 12ctcaccatga gtccctggca gcccctgctc ctggctctcc tggctttcgg ctgcagctct 60gctgcccctt accagcgcca gccgactttt gtggtcttcc ccaaagacct gaaaacctcc 120aacctcacgg acacccagct ggcagaggca tacttgtacc gctatggtta cacccgggcc 180gcccagatga tgggagagaa gcagtctcta cggccggctt tgctgatgct tcagaagcag 240ctctccctgc cccagactgg tgagctggac agccagacac taaaggccat tcgaacacca 300cgctgtggtg tcccagacgt gggtcgattc caaaccttca aaggcctcaa gtgggaccat 360cataacatca catactggat ccaaaactac tctgaagact tgccgcgaga catgatcgat 420gacgccttcg cgcgcgcctt cgcggtgtgg ggcgaggtgg cacccctcac cttcacccgc 480gtgtacggac ccgaagcgga cattgtcatc cagtttggtg tcgcggagca cggagacggg 540tatcccttcg acggcaagga cggccttctg gcacacgcct ttccccctgg cgccggcgtt 600cagggagatg cccatttcga cgacgacgag ttgtggtcgc tgggcaaagg cgtcgtgatc 660cccacttact atggaaactc aaatggtgcc ccatgtcact ttcccttcac cttcgaggga 720cgctcctatt cggcctgcac cacagacggc cgcaacgacg gcacgccttg gtgtagcaca 780acagctgact acgataagga cggcaaattt ggtttctgcc ctagtgagag actctacacg 840gagcacggca acggagaagg caaaccctgt gtgttcccgt tcatctttga gggccgctcc 900tactctgcct gcaccactaa aggccgctcg gatggttacc gctggtgcgc caccacagcc 960aactatgacc aggataaact gtatggcttc tgccctaccc gagtggacgc gaccgtagtt 1020gggggcaact cggcaggaga gctgtgcgtc ttccccttcg tcttcctggg caagcagtac 1080tcttcctgta ccagcgacgg ccgcagggat gggcgcctct ggtgtgcgac cacatcgaac 1140ttcgacactg acaagaagtg gggtttctgt ccagaccaag ggtacagcct gttcctggtg 1200gcagcgcacg agttcggcca tgcactgggc ttagatcatt ccagcgtgcc ggaagcgctc 1260atgtacccgc tgtatagcta cctcgagggc ttccctctga ataaagacga catagacggc 1320atccagtatc tgtatggtcg tggctctaag cctgacccaa ggcctccagc caccaccaca 1380actgaaccac agccgacagc acctcccact atgtgtccca ctatacctcc cacggcctat 1440cccacagtgg gccccacggt tggccctaca ggcgccccct cacctggccc cacaagcagc 1500ccgtcacctg gccctacagg cgccccctca cctggcccta cagcgccccc tactgcgggc 1560tcttctgagg cctctacaga gtctttgagt ccggcagaca atccttgcaa tgtggatgtt 1620tttgatgcta ttgctgagat ccagggcgct ctgcatttct tcaaggacgg ttggtactgg 1680aagttcctga atcatagagg aagcccatta cagggcccct tccttactgc ccgcacgtgg 1740ccagccctgc ctgcaacgct ggactccgcc tttgaggatc cgcagaccaa gagggttttc 1800ttcttctctg gacgtcaaat gtgggtgtac acaggcaaga ccgtgctggg ccccaggagt 1860ctggataagt tgggtctagg cccagaggta acccacgtca gcgggcttct cccgcgtcgt 1920ctcgggaagg ctctgctgtt cagcaagggg cgtgtctgga gattcgactt gaagtctcag 1980aaggtggatc cccagagcgt cattcgcgtg gataaggagt tctctggtgt gccctggaac 2040tcacacgaca tcttccagta ccaagacaaa gcctatttct gccatggcaa attcttctgg 2100cgtgtgagtt tccaaaatga ggtgaacaag gtggaccatg aggtgaacca ggtggacgac 2160gtgggctacg tgacctacga cctcctgcag tgcccttgaa ctagggctcc ttctttgctt 2220caaccgtgca gtgcaagtct ctagagacca ccaccaccac caccacacac aaaccccatc 2280cgagggaaag gtgctagctg gccaggtaca gactggtgat ctcttctaga gactgggaag 2340gagtggaggc aggcagggct ctctctgccc accgtccttt cttgttggac tgtttctaat 2400aaacacggat ccccaacctt ttccagctac tttagtcaat cagcttatct gtagttgcag 2460atgcatccga gcaagaagac aactttgtag ggtggattct gaccttttat ttttgtgtgg 2520cgtctgagaa ttgaatcagc tggcttttgt gacaggcact tcaccggcta aaccacctct 2580cccgactcca gcccttttat ttattatgta tgaggttatg ttcacatgca tgtatttaac 2640ccacagaatg cttactgtgt gtcgggcgcg gctccaaccg ctgcataaat attaaggtat 2700tcagttgccc ctactggaag gtattatgta actatttctc tcttacattg gagaacacca 2760ccgagctatc cactcatcaa acatttattg agagcatccc tagggagcca ggctctctac 2820tgggcgttag ggacagaaat gttggttctt ccttcaagga ttgctcagag attctccgtg 2880tcctgtaaat ctgctgaaac cagaccccag actcctctct ctcccgagag tccaactcac 2940tcactgtggt tgctggcagc tgcagcatgc gtatacagca tgtgtgctag agaggtagag 3000ggggtctgtg cgttatggtt caggtcagac tgtgtcctcc aggtgagatg acccctcagc 3060tggaactgat ccaggaagga taaccaagtg tcttcctggc agtctttttt aaataaatga 3120ataaatgaat atttacttaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 3180aaaaa 318513115PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 13Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Leu Tyr 20 25 30Ser Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Ser Ser Ile Tyr Ser Ser Gly Gly Ser Thr Leu Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Gly Arg Ala Phe Asp Ile Trp Gly Gln Gly Thr Met Val Thr 100 105 110Val Ser Ser 11514108PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 14Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Phe Val Gly1 5 10 15Asp Lys Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Val Gly Thr Tyr 20 25 30Leu Asn Trp Tyr Gln Gln Lys Ala Gly Lys Ala Pro Glu Leu Leu Ile 35 40 45Tyr Ala Thr Ser Asn Leu Arg Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Asn Thr Leu Gln Pro65 70 75 80Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Ser Ile Pro Arg 85 90 95Phe Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys 100 10515115PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 15Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Leu Tyr 20 25 30Ser Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Ser Ser Ile Tyr Ser Ser Gly Gly Ser Thr Leu Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Gly Arg Ala Phe Asp Ile Trp Gly Gln Gly Thr Met Val Thr 100 105 110Val Ser Ser 11516108PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 16Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly1 5 10 15Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Val Gly Thr Tyr 20 25 30Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40

45Tyr Ala Thr Ser Asn Leu Arg Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65 70 75 80Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Ser Ile Pro Arg 85 90 95Phe Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys 100 10517120PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 17Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Val Tyr 20 25 30Gly Met Val Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Ser Val Ile Ser Ser Ser Gly Gly Ser Thr Trp Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Leu Tyr Tyr Cys 85 90 95Ala Arg Pro Phe Ser Arg Arg Tyr Gly Val Phe Asp Tyr Trp Gly Gln 100 105 110Gly Thr Leu Val Thr Val Ser Ser 115 12018107PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 18Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly1 5 10 15Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Arg Asn Phe 20 25 30Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Val Pro Lys Leu Leu Val 35 40 45Phe Gly Ala Ser Ala Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Gly Leu Gln Pro65 70 75 80Glu Asp Val Ala Thr Tyr Tyr Cys Gln Lys Tyr Asn Gly Val Pro Leu 85 90 95Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys 100 10519120PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 19Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Val Tyr 20 25 30Gly Met Val Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Ser Val Ile Ser Ser Ser Gly Gly Ser Thr Trp Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Pro Phe Ser Arg Arg Tyr Gly Val Phe Asp Tyr Trp Gly Gln 100 105 110Gly Thr Leu Val Thr Val Ser Ser 115 12020107PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 20Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly1 5 10 15Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Arg Asn Phe 20 25 30Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Val Pro Lys Leu Leu Ile 35 40 45Tyr Gly Ala Ser Ala Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65 70 75 80Glu Asp Val Ala Thr Tyr Tyr Cys Gln Lys Tyr Asn Gly Val Pro Leu 85 90 95Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys 100 10521124PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 21Phe Tyr Ser His Ser Ala Gln Ser Glu Leu Thr Gln Pro Pro Ser Ala1 5 10 15Ser Ala Ala Pro Gly Gln Arg Val Thr Ile Ser Cys Ser Gly Ser Ser 20 25 30Ser Asn Ile Gly Ser Asn Thr Val Thr Trp Tyr Gln Lys Leu Pro Gly 35 40 45Thr Ala Pro Lys Leu Leu Ile Tyr Asn Asn Tyr Glu Arg Pro Ser Gly 50 55 60Val Pro Ala Arg Phe Ser Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu65 70 75 80Ala Ile Ser Gly Leu Gln Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Ala 85 90 95Thr Trp Asp Asp Ser Leu Ile Ala Asn Tyr Val Phe Gly Ser Gly Thr 100 105 110Lys Val Thr Val Leu Gly Gln Pro Lys Ala Asn Pro 115 12022161PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 22Met Lys Lys Leu Leu Phe Ala Ile Pro Leu Val Val Pro Phe Val Ala1 5 10 15Gln Pro Ala Met Ala Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu 20 25 30Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe 35 40 45Thr Phe Ser Pro Tyr Leu Met Asn Trp Val Arg Gln Ala Pro Gly Lys 50 55 60Gly Leu Glu Trp Val Ser Ser Ile Tyr Ser Ser Gly Gly Gly Thr Gly65 70 75 80Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser 85 90 95Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr 100 105 110Ala Val Tyr Tyr Cys Ala Arg Ile Tyr His Ser Ser Ser Gly Pro Phe 115 120 125Tyr Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser 130 135 140Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys145 150 155 160Ser2314PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 23Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr Asn Tyr Val Ser1 5 10247PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 24Asp Val Ser Lys Arg Pro Ser1 52510PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 25Cys Ser Tyr Ala Gly Ser Tyr Thr Leu Val1 5 10265PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 26Thr Tyr Gln Met Val1 52717PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 27Val Ile Tyr Pro Ser Gly Gly Pro Thr Val Tyr Ala Asp Ser Val Lys1 5 10 15Gly2815PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 28Gly Glu Asp Tyr Tyr Asp Ser Ser Gly Pro Gly Ala Phe Asp Ile1 5 10 1529110PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 29Gln Ser Ala Leu Thr Gln Pro Arg Ser Val Ser Gly Ser Pro Gly Gln1 5 10 15Ser Val Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr 20 25 30Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu 35 40 45Met Ile Tyr Asp Val Ser Lys Arg Pro Ser Gly Val Pro Asp Arg Phe 50 55 60Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu65 70 75 80Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Cys Ser Tyr Ala Gly Ser 85 90 95Tyr Thr Leu Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu 100 105 11030106PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 30Gly Gln Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser1 5 10 15Glu Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp 20 25 30Phe Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro 35 40 45Val Lys Ala Gly Val Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn 50 55 60Lys Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys65 70 75 80Ser His Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val 85 90 95Glu Lys Thr Val Ala Pro Thr Glu Cys Ser 100 10531110PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 31Gln Tyr Glu Leu Thr Gln Pro Arg Ser Val Ser Gly Ser Pro Gly Gln1 5 10 15Ser Val Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr 20 25 30Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu 35 40 45Met Ile Tyr Asp Val Ser Lys Arg Pro Ser Gly Val Pro Asp Arg Phe 50 55 60 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu65 70 75 80Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Cys Ser Tyr Ala Gly Ser 85 90 95Tyr Thr Leu Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu 100 105 11032124PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 32Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Thr Tyr 20 25 30Gln Met Val Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Ser Val Ile Tyr Pro Ser Gly Gly Pro Thr Val Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Gly Glu Asp Tyr Tyr Asp Ser Ser Gly Pro Gly Ala Phe Asp 100 105 110Ile Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser 115 12033110PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 33Gln Tyr Glu Leu Thr Gln Pro Arg Ser Val Ser Gly Ser Pro Gly Gln1 5 10 15Ser Val Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr 20 25 30Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu 35 40 45Met Ile Tyr Asp Val Ser Lys Arg Pro Ser Gly Val Pro Asp Arg Phe 50 55 60Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu65 70 75 80Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Cys Ser Tyr Ala Gly Ser 85 90 95Tyr Thr Leu Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu 100 105 11034330DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 34cag tac gaa ttg act cag cct cgc tca gtg tcc ggg tct cct gga cag 48Gln Tyr Glu Leu Thr Gln Pro Arg Ser Val Ser Gly Ser Pro Gly Gln1 5 10 15tca gtc acc atc tcc tgc act gga acc agc agt gat gtt ggt ggt tat 96Ser Val Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr 20 25 30aac tat gtc tcc tgg tac caa cag cac cca ggc aaa gcc ccc aaa ctc 144Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu 35 40 45atg att tat gat gtc agt aag cgg ccc tca ggg gtc cct gat cgc ttc 192Met Ile Tyr Asp Val Ser Lys Arg Pro Ser Gly Val Pro Asp Arg Phe 50 55 60tct ggc tcc aag tct ggc aac acg gcc tcc ctg acc atc tct ggg ctc 240Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu65 70 75 80cag gct gag gat gag gct gat tat tac tgc tgc tca tat gca ggc agc 288Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Cys Ser Tyr Ala Gly Ser 85 90 95tac act ttg gtg ttc ggc gga ggg acc aag ctg acc gtc cta 330Tyr Thr Leu Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu 100 105 11035124PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 35Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Thr Tyr 20 25 30Gln Met Val Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Ser Val Ile Tyr Pro Ser Gly Gly Pro Thr Val Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Gly Glu Asp Tyr Tyr Asp Ser Ser Gly Pro Gly Ala Phe Asp 100 105 110Ile Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser 115 12036372DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 36gaa gtt caa ttg tta gag tct ggt ggc ggt ctt gtt cag cct ggt ggt 48Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15tct tta cgt ctt tct tgc gct gct tcc gga ttc act ttc tct act tac 96Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Thr Tyr 20 25 30cag atg gtt tgg gtt cgc caa gct cct ggt aaa ggt ttg gag tgg gtt 144Gln Met Val Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45tct gtt atc tat cct tct ggt ggc cct act gtt tat gct gac tcc gtt 192Ser Val Ile Tyr Pro Ser Gly Gly Pro Thr Val Tyr Ala Asp Ser Val 50 55 60aaa ggt cgc ttc act atc tct aga gac aac tct aag aat act ctc tac 240Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80ttg cag atg aac agc tta agg gct gag gac acg gcc gtg tat tac tgt 288Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95gcg aga ggg gag gac tac tat gat agt agt ggc ccg ggg gct ttt gat 336Ala Arg Gly Glu Asp Tyr Tyr Asp Ser Ser Gly Pro Gly Ala Phe Asp 100 105 110atc tgg ggc caa ggg aca atg gtc acc gtc tca agc 372Ile Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser 115 12037110PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 37Gln Ser Ala Leu Thr Gln Pro Arg Ser Val Ser Gly Ser Pro Gly Gln1 5 10 15Ser Val Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr 20 25 30Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu 35 40 45Met Ile Tyr Asp Val Ser Lys Arg Pro Ser Gly Val Pro Asp Arg Phe 50 55 60Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu65 70 75 80Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Cys Ser Tyr Ala Gly Ser 85 90 95Tyr Thr Leu Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu 100 105 11038124PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 38Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Thr Tyr 20 25 30Gln Met Val Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Ser Val Ile Tyr Pro Ser Gly Gly Pro Thr Val Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Gly Glu Asp Tyr Tyr Asp Ser Ser Gly Pro Gly Ala Phe Asp 100 105 110Ile Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser 115 12039330DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 39cag agc gcc ctg acc cag ccc aga agc gtg tcc ggc agc cca ggc cag 48Gln Ser Ala Leu Thr Gln Pro Arg Ser Val Ser Gly Ser Pro Gly Gln1 5

10 15agc gtg acc atc agc tgc acc ggc acc agc agc gac gtg ggc ggc tac 96Ser Val Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr 20 25 30aac tac gtg tcc tgg tat cag cag cac ccc ggc aag gcc ccc aag ctg 144Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu 35 40 45atg atc tac gac gtg tcc aag agg ccc agc ggc gtg ccc gac agg ttc 192Met Ile Tyr Asp Val Ser Lys Arg Pro Ser Gly Val Pro Asp Arg Phe 50 55 60agc ggc agc aag agc ggc aac acc gcc agc ctg acc atc tcc gga ctg 240Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu65 70 75 80cag gcc gag gac gag gcc gac tac tac tgc tgc agc tac gcc ggc agc 288Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Cys Ser Tyr Ala Gly Ser 85 90 95tac acc ctg gtg ttc ggc gga ggg acc aag ctg acc gtg ctg 330Tyr Thr Leu Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu 100 105 11040110PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 40Gln Ser Ala Leu Thr Gln Pro Arg Ser Val Ser Gly Ser Pro Gly Gln1 5 10 15Ser Val Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr 20 25 30Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu 35 40 45Met Ile Tyr Asp Val Ser Lys Arg Pro Ser Gly Val Pro Asp Arg Phe 50 55 60Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu65 70 75 80Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Cys Ser Tyr Ala Gly Ser 85 90 95Tyr Thr Leu Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu 100 105 11041372DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 41gag gtg caa ttg ctg gaa agc ggc gga gga ctg gtg cag cca ggc ggc 48Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15agc ctg agg ctg tcc tgc gcc gcc agc ggc ttc acc ttc agc acc tac 96Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Thr Tyr 20 25 30cag atg gtg tgg gtg cgc cag gcc cca ggc aag ggc ctg gaa tgg gtg 144Gln Met Val Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45tcc gtg atc tac ccc agc ggc gga ccc acc gtg tac gcc gac agc gtg 192Ser Val Ile Tyr Pro Ser Gly Gly Pro Thr Val Tyr Ala Asp Ser Val 50 55 60aag ggc agg ttc acc atc agc agg gac aac agc aag aac acc ctg tac 240Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80ctg cag atg aac agc ctg agg gcc gag gac acc gcc gtg tac tac tgc 288Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95gcc agg ggc gag gac tac tac gac agc agc ggc cca ggc gcc ttc gac 336Ala Arg Gly Glu Asp Tyr Tyr Asp Ser Ser Gly Pro Gly Ala Phe Asp 100 105 110atc tgg ggc cag ggc aca atg gtg acc gtg tcc agc 372Ile Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser 115 12042124PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 42Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Thr Tyr 20 25 30Gln Met Val Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Ser Val Ile Tyr Pro Ser Gly Gly Pro Thr Val Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Gly Glu Asp Tyr Tyr Asp Ser Ser Gly Pro Gly Ala Phe Asp 100 105 110Ile Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser 115 12043654DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 43cagagcgccc tgacccagcc cagaagcgtg tccggcagcc caggccagag cgtgaccatc 60agctgcaccg gcaccagcag cgacgtgggc ggctacaact acgtgtcctg gtatcagcag 120caccccggca aggcccccaa gctgatgatc tacgacgtgt ccaagaggcc cagcggcgtg 180cccgacaggt tcagcggcag caagagcggc aacaccgcca gcctgaccat ctccggactg 240caggccgagg acgaggccga ctactactgc tgcagctacg ccggcagcta caccctggtg 300ttcggcggag ggaccaagct gaccgtgctg ggccagccca aggctgcccc cagcgtgacc 360ctgttccccc ccagcagcga ggaactgcag gccaacaagg ccacactggt gtgcctgatc 420agcgacttct acccaggcgc cgtgaccgtg gcctggaagg ccgacagcag ccccgtgaag 480gccggcgtgg agacaaccac ccccagcaag cagagcaaca acaagtacgc cgccagcagc 540tacctgagcc tgacccccga gcagtggaag tcccacaggt cctacagctg ccaggtgacc 600cacgagggca gcaccgtgga gaaaaccgtg gcccccaccg agtgtagctg atga 654441365DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 44gaggtgcaat tgctggaaag cggcggagga ctggtgcagc caggcggcag cctgaggctg 60tcctgcgccg ccagcggctt caccttcagc acctaccaga tggtgtgggt gcgccaggcc 120ccaggcaagg gcctggaatg ggtgtccgtg atctacccca gcggcggacc caccgtgtac 180gccgacagcg tgaagggcag gttcaccatc agcagggaca acagcaagaa caccctgtac 240ctgcagatga acagcctgag ggccgaggac accgccgtgt actactgcgc caggggcgag 300gactactacg acagcagcgg cccaggcgcc ttcgacatct ggggccaggg cacaatggtg 360accgtgtcca gcgccagcac caagggcccc agcgtgttcc cgctagcacc ttcctccaag 420tccacctctg gcggcaccgc cgctctgggc tgcctggtga aggactactt ccctgagcct 480gtgaccgtga gctggaactc tggcgccctg acctccggcg tgcatacctt ccctgccgtg 540ctgcagtcct ccggcctgta ctccctgtcc tccgtggtga cagtgccttc ctcctccctg 600ggcacccaga cctacatctg caacgtgaac cacaagcctt ccaacaccaa ggtggacaag 660cgggtggagc ctaagtcctg cgacaagacc cacacctgcc ctccctgccc tgcccctgag 720ctgctgggcg gaccctccgt gttcctgttc cctcctaagc ctaaggacac cctgatgatc 780tcccggaccc ctgaggtgac ctgcgtggtg gtggacgtgt cccacgagga cccagaggtg 840aagtttaatt ggtatgtgga cggcgtggag gtccacaacg ccaagaccaa gcctcgggag 900gaacagtaca actccaccta ccgggtggtg tccgtgctga ccgtgctgca ccaggactgg 960ctgaacggca aggaatacaa gtgcaaagtc tccaacaagg ccctgcctgc ccccatcgag 1020aaaaccatct ccaaggccaa gggccagcct cgcgagcctc aggtgtacac cctgcctcct 1080agccgggagg aaatgaccaa gaaccaggtg tccctgacct gtctggtgaa gggcttctac 1140ccttccgata tcgccgtgga gtgggagtcc aacggccagc ctgagaacaa ctacaagacc 1200acccctcctg tgctggactc cgacggctcc ttcttcctgt actccaagct gaccgtggac 1260aagtcccggt ggcagcaggg caacgtgttc tcctgctccg tgatgcacga ggccctgcac 1320aaccactaca cccagaagtc cctgtccctg agccctggca agtga 136545218PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 45Gln Ser Ala Leu Thr Gln Pro Arg Ser Val Ser Gly Ser Pro Gly Gln1 5 10 15Ser Val Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr 20 25 30Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu 35 40 45Met Ile Tyr Asp Val Ser Lys Arg Pro Ser Gly Val Pro Asp Arg Phe 50 55 60Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu65 70 75 80Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Cys Ser Tyr Ala Gly Ser 85 90 95Tyr Thr Leu Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln 100 105 110Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu 115 120 125Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr 130 135 140Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys145 150 155 160Ala Gly Val Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr 165 170 175Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His 180 185 190Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys 195 200 205Thr Val Ala Pro Thr Glu Cys Ser Ser Ser 210 21546455PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 46Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Thr Tyr 20 25 30Gln Met Val Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Ser Val Ile Tyr Pro Ser Gly Gly Pro Thr Val Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Gly Glu Asp Tyr Tyr Asp Ser Ser Gly Pro Gly Ala Phe Asp 100 105 110Ile Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser Ala Ser Thr Lys 115 120 125Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly 130 135 140Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro145 150 155 160Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr 165 170 175Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val 180 185 190Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn 195 200 205Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Pro 210 215 220Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu225 230 235 240Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp 245 250 255Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp 260 265 270Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly 275 280 285Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn 290 295 300Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp305 310 315 320Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro 325 330 335Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu 340 345 350Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn 355 360 365Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile 370 375 380Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr385 390 395 400Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys 405 410 415Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys 420 425 430Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu 435 440 445Ser Leu Ser Pro Gly Lys Ser 450 455

* * * * *

References


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed