Novel Expression-regulating Sequences And Expression Products In The Field Of Filamentous Fungi

Emalfarb; Mark Aaron ;   et al.

Patent Application Summary

U.S. patent application number 13/046772 was filed with the patent office on 2013-06-06 for novel expression-regulating sequences and expression products in the field of filamentous fungi. The applicant listed for this patent is Mark Aaron Emalfarb, Peter Jan Punt, Cornelia Maria Johanna Van Zeijl. Invention is credited to Mark Aaron Emalfarb, Peter Jan Punt, Cornelia Maria Johanna Van Zeijl.

Application Number20130143271 13/046772
Document ID /
Family ID8171350
Filed Date2013-06-06

United States Patent Application 20130143271
Kind Code A1
Emalfarb; Mark Aaron ;   et al. June 6, 2013

NOVEL EXPRESSION-REGULATING SEQUENCES AND EXPRESSION PRODUCTS IN THE FIELD OF FILAMENTOUS FUNGI

Abstract

The invention pertains to novel proteins corresponding to Chrysosporium glycosyl hydrolases of families 7 and 10, exhibiting a minimum aminoacid identity of 70 and 75%, respectively, with the amino acid sequence of SEQ ID No's 2 and 4, and to a protein corresponding to a Chrysosporium glyceraldehyde phosphate dehydrogenase, exhibiting at least 86% amino acid identity with the partial amino acid sequence of SEQ ID No. 6. The invention further relates to nucleic acid sequences encoding these proteins, and especially to promoter sequences regulating the expression of the corresponding genes. The preferred host for expressing these genes is a fungus, especially a Chrysosporium strain.


Inventors: Emalfarb; Mark Aaron; (Jupiter, FL) ; Punt; Peter Jan; (Houten, NL) ; Van Zeijl; Cornelia Maria Johanna; (Vleuten de Meern, NL)
Applicant:
Name City State Country Type

Emalfarb; Mark Aaron
Punt; Peter Jan
Van Zeijl; Cornelia Maria Johanna

Jupiter
Houten
Vleuten de Meern

FL

US
NL
NL
Family ID: 8171350
Appl. No.: 13/046772
Filed: March 14, 2011

Related U.S. Patent Documents

Application Number Filing Date Patent Number
10257629 Apr 11, 2003 7906309
PCT/NL01/00301 Apr 17, 2001
13046772
09548938 Apr 13, 2000 6573086
10257629
PCT/NL99/00618 Oct 6, 1999
09548938
PCT/EP98/06496 Oct 6, 1998
PCT/NL99/00618

Current U.S. Class: 435/72 ; 435/190; 435/200; 435/254.11; 435/320.1; 536/23.2; 536/24.32
Current CPC Class: C12Y 302/01008 20130101; C12N 9/248 20130101; C12N 9/2437 20130101; C12Y 302/01004 20130101; C12N 9/0008 20130101; C12N 9/24 20130101; C12Y 302/01091 20130101
Class at Publication: 435/72 ; 435/200; 435/190; 536/23.2; 435/320.1; 435/254.11; 536/24.32
International Class: C12N 9/24 20060101 C12N009/24; C12N 9/00 20060101 C12N009/00

Foreign Application Data

Date Code Application Number
Apr 13, 2000 EP 00201343.1

Claims



1. A protein corresponding to a Chrysosporium glycosyl hydrolase family 7, exhibiting at least 75% amino acid identity [as determined by BLAST algorithm] with the amino acid sequence of SEQ ID No.2 or a part thereof having at least 20 contiguous amino acids which are identical to the corresponding part of the amino acid sequence 1-246 or 394-526 of SEQ ID No.2.

2. A protein corresponding to a Chrysosporium glyceraldehyde phosphate dehydrogenase, exhibiting at least 86% amino acid identity [as determined by BLAST algorithm] with the partial amino acid sequence of SEQ ID No. 6 or a part thereof having at least 20 contiguous amino acids which are identical to the corresponding part of the amino acid sequence 1-277 of SEQ ID No. 6.

3. A process of hydrolysing .beta.-glucosidic bonds, comprising the use of an enzyme according to claim 1.

4. A nucleic acid sequence encoding a protein according to claim 1.

5. A nucleic acid sequence encoding a protein according to claim 2.

6. A nucleic acid sequence comprising at least 70% of the nucleotides contained in the 5'-non-coding region of the nucleic acid sequence of any one of SEQ ID No's 1 and 5.

7. A nucleic acid construct comprising a nucleic acid expression-regulatory region derived from Chrysosporium, contained in the 5'-noncoding region of the nucleic acid sequence of any one of SEQ ID No's 1 and 5, operationally linked to a nucleic acid sequence encoding a polypeptide of interest.

8. A recombinant microbial strain, preferably a fungal strain, containing a nucleic acid sequence according to claim 7, and capable of expressing the polypeptide encoded by the coding nucleic acid sequence.

9. A recombinant microbial strain, preferably a fungal strain, containing a nucleic acid sequence according to claim 8, and capable of expressing the polypeptide encoded by the coding nucleic acid sequence.

10. A recombinant microbial strain, preferably a fungal strain, containing a nucleic acid sequence according to claim 9, and capable of expressing the polypeptide encoded by the coding nucleic acid sequence.

11. A recombinant microbial strain, preferably a fungal strain, containing a nucleic acid sequence according to claim 10, and capable of expressing the polypeptide encoded by the coding nucleic acid sequence.

12. A process of producing a polypeptide using a construct according to claim 10.

13. A process of producing a polypeptide using a microbial strain according to claim 11.

14. An oligonucleotide probe comprising at least 15 contiguous nucleotides of the nucleic acid sequence of any one of SEQ ID No's 1 and 5, or its complement.

15. An oligonucleotide probe according to claim 14, wherein the probe is 20-50 nucleotides in length.

16. An oligonucleotide probe according to claim 14 wherein the probe is labeled with a detectable label.
Description



FIELD OF THE INVENTION

[0001] The subject invention relates to novel enzymes derived from filamentous fungi, especially from strains of the genus Chrysosporium, and to coding sequences and expression-regulating sequences for these enzymes. The present invention is an extension on the invention disclosed in WO 00/20555 (PCT/NL99/00618), filed Oct. 6, 1999, not published prior to the present priority date. The latter disclosure is herein incorporated by reference.

BACKGROUND TO THE INVENTION

[0002] A number of hosts for gene expression and methods of transformation have been disclosed in the prior art. Bacteria are often mentioned e.g. Escherichia coli. E. coli is however a micro-organism incapable of secretion of a number of proteins or polypeptides and as such is undesirable as host cell for production of protein or polypeptide at the industrial level. An additional disadvantage for E. coli, which is valid also for bacteria in general, is that prokaryotes cannot provide additional modifications required for numerous eukaryotic proteins or polypeptides to be produced in an active form. Glycosylation of proteins and proper folding of proteins are examples of processing required to ensure an active protein or polypeptide is produced. To ensure such processing one can sometimes use mammalian cells; however, the disadvantage of such cells is that they are often difficult to maintain and require expensive media. Such transformation systems are therefore not practical for production of proteins or polypeptides at the industrial level. They may be cost efficient for highly priced pharmaceutical compounds requiring relatively low amounts, but certainly not for industrial enzymes.

[0003] A number of fungal expression systems have been developed e.g. Aspergillus niger, Aspergillus awamori, Aspergillus nidulans, Trichoderma reesei. A number of others have been suggested but for various reasons have not found wide-spread acceptance or use. In general terms the ideal host must fulfil a large number of criteria: [0004] The ideal host must be readily fermented using inexpensive medium. [0005] The ideal host should use the medium efficiently. [0006] The ideal host must produce the polypeptide or protein in high yield, i.e. must exhibit high protein to biomass ratio. [0007] The ideal host should be capable of efficient secretion of the protein or polypeptide. [0008] The ideal host must enable ease of isolation and purification of the desired protein or poly-peptide. [0009] The ideal host must process the desired protein or polypeptide such that it is produced in an active farm not requiring additional activation or modification steps. [0010] The ideal host should be readily transformed. [0011] The ideal host should allow a wide range of expression regulatory elements to be used thus ensuring ease of application and versatility. [0012] The ideal host should allow use of easily selectable markers that are cheap to use. [0013] The ideal host should produce stable transformants. [0014] The ideal host should allow cultivation under conditions not detrimental to the protein or polypeptide product, e.g. low viscosity, low shear.

[0015] WO 96/02563 and U.S. Pat. Nos. 5,602,004, 5,604,129 and 5,695,985 to Novo Nordisk describe the drawbacks of Aspergillus and Trichoderma systems and suggest that cultivation conditions for other fungi may be more suited to large scale protein production. The only examples provided for any transformed cultures are those of Myceliophthora thermophila, Acremonium alabamense, Thielavia terrestris and Sporotrichum cellulophilum strains. The Sporotrichum strain is reported to lyse and produce green pigment under fermentation conditions not leading to such results for the other strains. A non-sporulating mutant of Thielavia terrestris is described as being the organism of choice by virtue of its morphology. However it is also stated that the protoplasting efficiency of Thielavia and Acremonium (whereby the Acremonium strain used was the imperfect state of the Thielavia strain used) is low and that hygromycin was not useful as a selection marker. A large number of others are suggested as being potentially useful by virtue of their morphology but no transformation thereof is described. The suggested strains are Corynascus, Thermoascus, Chaetomium, Ctenomyces, Scytalidium and Talaromyces. The transformed hosts are mentioned as only producing low levels of the introduced Humicola xylanase with Thielavia producing the lowest amount; however, the information is ambiguous and could actually infer Thielavia was the best embodiment. The nomenclature of this reference is based on the ATCC names of Industrial Fungi of 1994. Thus it is apparent that no high degree of heterologous expression was achieved and in fact no positive correlation could be derived between the postulated morphology and the degree of expression. If any correlation could be made, it was more likely to be negative. According to the 1996 ATCC fungal classification Sporotrichum thermophilum ATCC 20493 is a Myceliophthora thermophila strain. Currently the strain is still identified as Myceliophthora thermophila. The unpredictability of the art is apparent from these recent disclosures.

[0016] WO 97/26330 of Novo Nordisk suggests a method of obtaining mutants of filamentous fungal parent cells having an improved property for production of heterologous polypeptide. The method comprises first finding a specific altered morphology followed by assessing whether a transformant produces more heterologous polypeptide than the parent. The method is illustrated only for strains of Fusarium A3/5 and Aspergillus oryzae. The method is suggested to be applicable for Aspergillus, Trichoderma, Thielavia, Fusarium, Neurospora, Acremonium, Tolyplocadium, Humicola, Seytalidium, Myceliophthora or Mucor. As stated above, the unpredictability in the art and also the unpredictability of the method of the cited application do not provide a generally applicable teaching with a reasonable expectation of success.

[0017] In WO 00/20555, we have described an alternative fungal expression system with the simplicity of use of the above-mentioned Aspergilli and Trichoderma fulfilling the above requirements. The new system provides the additional advantages that transformation rates are higher than those for the frequently used Trichoderma reesei system. In addition the culture conditions offer the additional bonus of being advantageous for the polypeptide product.

DETAILED DESCRIPTION OF THE INVENTION

[0018] We now describe a number of industrially interesting enzymes derived from Chrysosporium strains, together with full sequence information. We also describe novel promoter systems derived from Chrysosporium strains and useful for expressing homologous and heterologous genes.

[0019] The present invention is in particular concerned with glycosyl hydrolases of the families 7 (e.g. cellobiohydrolases) and 10 (e.g. xylanases), and glyceraldehyde phosphate dehydrogenases, as identified by their amino acid sequence, as well as peptides derived from these enzymatic proteins, and with nucleic acid sequences encoding these peptides and proteins, as well as, in particular, with regulating sequences related to these genes.

[0020] In particular, the present invention pertains to isolated or recombinant enzymic proteins or active parts thereof of the three classes referred to above, including mutants thereof having at least a certain degree of sequence identity as specified in the further disclosure and in the claims, as well as nucleic acid sequences encoding these proteins or parts thereof, and/or nucleic acid sequences regulating their expression. These enzymes are especially: (1) a glycosyl hydrolase of family 7 (cellobiohydrolase, CBH1) having at least 75%, preferably at least 80% or even at least 85% amino acid identity with the sequence of SEQ ID No 2; (2) a glycosyl hydrolase of family 10 (endo-xylanase XYL1) having at least 70%, preferably at least 75% or even at least 80% amino acid identity with the sequence of SEQ ID No 4; and (3) a glyceraldehyde phosphate dehydrogenase (GPD1) having at least 86%, preferably at least 90% or even at least 93% amino acid identity with the sequence of SEQ ID No 6. Polypeptides and nucleic acid sequences encoding these poly-peptides, having at least 20, preferably at least 30 contiguous amino acids of SEQ ID No's 2, 4 and 6 are also a preferred part of the invention. The corresponding nucleotide sequences are depicted in SEQ ID No's 1 (cbh1), 3 (xy11) and 5 (gpd1), respectively.

[0021] The recombinant enzymes may comprise essentially the complete protein, or a truncated protein having at least part of the enzymatic activity. Such truncated part may be the catalytic domain, or at least about 75% of the amino acids thereof. By way of example, the catalytic domain of the CBH1 according to the invention comprises the amino acids 20-495 of the aminoacid sequence of SEQ ID No. 2, and the catalytic domain of the XYL1 according to the invention comprises the aminoacids 54-384 of the aminoacid sequence of SEQ ID No. 4. The catalytic domain may or may not be combined with a signal sequence originating from another protein and/or with a carbohydrate-binding domain from another enzymic protein. Alternatively, the cellulose-binding domain of the enzymes of the invention (CBH1 and XYL1) may be fused to catalytic domains of other enzymic proteins.

[0022] The nucleic acid sequences according to the invention may be complete protein-encoding regions or oligonucleotides or, preferentially, expression-regulating sequences. Oligonucleotides may be used also as probes for identifying genes corresponding to, but not identical to the genes of SEQ ID No.'s 1, 3 and 5; these genes, when fulfilling the percentage identity criteria defined herein, as well as encoding and non-encoding parts thereof and their expression products are also part of the invention. Oligonucletoides are preferably 15-75, most preferably 20-50 nucleotides in length.

[0023] The invention also pertains to expression systems (cassettes) comprising either an expression-regulating region (including a promoter) of any of the three protein classes fused to a gene encoding another protein of interest, or an encoding region of any of these proteins fused to another expression regulating region, or both the expression-regulating region and the protein-encoding region of these novel proteins. The expression-regulating region comprises at least 60%, preferably at least 70%, more preferably at least 75% or even 80% of the 5'-non-coding region of SEQ ID No.'s 1, 3 and 5, and/or at least 20, especially at least 40 contiguous nucleotides from these 5' non-coding regions. Terminating sequences similarly derived from the 3' non-coding regions of the genes of the invention are also useful in expressing cassettes, whether combined with homologous or heterologous genes.

[0024] The polynucleotides and oligonucleotides of the invention can have the minimum sequence identity with the corresponding sequences of SEQ ID NO's 1, 3 or 5, or, alternatively hybridise under stringent conditions with these given sequences. Stringent hybridisation conditions are those as understood in the art, e.g. hybridisation in 6.times.SSC (20.times.SSC per 1000 ml:175.3 g NaCl, 107.1 g sodium citrate.5H.sub.2O, pH 7.0), 0.1% SDS, 0.05% sodium pyrophosphate, 5*Denhardt's solution and 20 .mu.g/ml denatured herring sperm DNA at 56.degree. C. for 18-24 hrs followed by two 30 min. washes in 5.times.SSC, 0.1% SDS at 56.degree. C. and two 30 min. washes in 2.times.SSC, 0.1% SSC at 56.degree. C.

[0025] These expression systems may be contained in a Chrysosporium host, such as a Chrysosporium lucknowense host, or in another non-fungal or, preferably, fungal host. Examples of other fungal hosts are other Chrysosporium species or strains, Fusarium species, Aspergillus species etc. Such host may be advantageously a host that does not itself, intrinsically or as a result of the culture conditions, produce a protein corresponding to the protein of interest, so as to simplify the recovery of the protein of interest.

[0026] Where reference is made in this specification and in the appending claims to "polypeptides" or "peptides" or "polypeptides of interest" or "peptides of interest" as the products of the expression system of the invention, this term also comprise proteins, i.e. polypeptides having a particular function and/or secondary and/or tertiary structure. Where reference is made to a percentage amino acid identity, such identity relates to a complete protein or to a specific part defined by initial and final amino acid number, as determined by the conventionally used BLAST algorithm.

[0027] In the fungal expression system described in WO 00/20555, the pH of the culture medium can be neutral or alkaline thus no longer subjecting the produced protein or polypeptide to aggressive and potentially inactivating acid pH. It is also possible to culture at acid pH such as pH 4 for cases where the protein or polypeptide is better suited to an acidic environment. Suitably culture can occur at a pH between 4.0-10.0. A preference however exists for neutral to alkaline pH as the host strain exhibits better growth at such pH, e.g. between 6 and 9. Growth at alkaline pH which can be from pH 8 up and can even be as high as 10 is also a good alternative for some cases. Also the cultivation temperature of such host strains is advantageous to the stability of some types of produced polypeptide. The cultivation temperature is suitably at a temperature of 23-43.degree. C. Clearly such conditions are of particular interest for production of mammalian polypeptides. The selected temperature will depend on cost effectiveness of the cultivation and sensitivity of the polypeptide or cultivation strain.

[0028] It has also been ascertained that the biomass to viscosity relation and the amount of protein produced is exceedingly favourable for the Chrysosporium host. Comparisons have been carried out with Trichoderma longibrachiatum (formerly also known as Trichoderma reesei) and with Aspergillus niger. Trichoderma longibrachiatum gave 2.5-5 g/l biomass, Aspergillus niger gave 5-10 g/l biomass and the Chrysosporium host gave 0.5-1 g/l biomass under their respective optimised conditions. This thus offers 5-10 fold improvement over the commercially used strains. The subject invention is directed at expression systems comprising a nucleic acid sequence encoding a heterologous protein or polypeptide, said nucleic acid sequence being operably linked to an expression regulating region described below and optionally a secretion signal encoding sequence and/or a carrier protein encoding sequence. Preferably a recombinant strain according to the invention will secrete the polypeptide of interest. This will avoid the necessity of disrupting the cell in order to isolate the polypeptide of interest and also minimise the risk of degradation of the expressed product by other components of the host cell.

[0029] Chrysosporium can be defined by morphology consistent with that disclosed in Barnett and Hunter 1972, Illustrated Genera of Imperfect Fungi, 3rd Edition of Burgess Publishing Company. Other sources providing details concerning classification of fungi of the genus Chrysosporium are known e.g. Sutton Classification (Van Oorschot, C. A. N. (1980) "A revision of Chrysosporium and allied genera" in Studies in Mycology No. 20 of the CBS in Baarn, The Netherlands p 1-36). CBS is one of the depository institutes of the Budapest Treaty. According to these teachings the genus Chrysosporium falls within the family Moniliaceae which belongs to the order Hyphomycetales.

[0030] The following strains are defined as Chrysosporium but the definition of Chrysosporium is not limited to these strains: C. botryoides, C. carmichaelii, C. crassitunicatum, C. europae, C. evolceannui, C. farinicola, C. fastidium, C. filiforme, C. georgiae, C. globiferum, C. globiferum var. articulatum, C. globiferum var. niveum, C. hirundo, C. hispanicum, C. holmii, C. indicum, C. inops, C. keratinophilum, C. kreiselii, C. kuzurovianum, C. lignorum, C. lobatum, C. lucknowense, C. lucknowense Garg 27K, C. medium, C. medium var. spissescens, C. mephiticum, C. merdarium, C. merdarium var. roseum, C. minor, C. pannicola, C. parvum, C. parvum var. crescens, C. pilosum, C. pseudomerdarium, C. pyriformis, C. queenslandicum, C. sigleri, C. sulfureum, C. synchronum, C. tropicum, C. undulatum, C. vallenarense, C. vespertilium, C. zonatum.

[0031] C. lucknowense forms one of the species of Chrysosporium that have raised particular interest as it has provided a natural high producer of cellulase proteins (WO 98/15633 and related U.S. Pat. No. 5,811,381). The characteristics of this Chrysosporium lucknowense are:

[0032] Colonies attain 55 mm diameter on Sabouraud glucose agar in 14 days, are cream-coloured, felty and fluffy; dense and 3-5 mm high; margins are defined, regular, and fimbriate; reverse pale yellow to cream-coloured. Hyphae are hyaline, smooth- and thin-walled, little branched. Aerial hyphae are mostly fertile and closely septate, about 1-3.5 .mu.m wide. Submerged hyphae are infertile, about 1-4.5 pan wide, with the thinner hyphae often being contorted. Conidia are terminal and lateral, mostly sessile or on short, frequently conical protrusions or short side branches. Conidia are solitary but in close proximity to one another, 1-4 conidia developing on one hyphal cell, subhyaline, fairly thin- and smooth-walled, mostly subglobose, also clavate orobovoid, 1-celled, 2.5-11.times.1.5-6 .mu.m, with broad basal scars (1-2 .mu.m). Intercalary conidia are absent. Chlamydospores are absent. ATCC 44006, CBS 251.72, CBS 143.77 and CBS 272.77 are examples of Chrysosporium lucknowense strains and other examples are provided in WO 98/15633 (U.S. Pat. No. 5,811,381).

[0033] A further strain was isolated from this species with an even higher production capacity for cellulases. This strain is called C1 by its internal notation and was deposited with the International Depository of the All Russian Collection of micro-organisms of the Russian Academy of Sciences Bakrushina Street 8, Moscow, Russia 113184 on Aug. 29, 1996, as a deposit according to the Budapest Treaty and was assigned Accession Number VKM F-3500D. It is called Chrysosporium lucknowense Garg 27K. The characteristics of the C1 strain are as follows:

[0034] Colonies grow to about 55-66 mm diameter in size on potato-dextrose agar in about 7 days; are white-cream-coloured, felty, 2-3 .mu.m high at the centre; margins are defined, regular, fimbriate; reverse pale, cream-coloured. Hyphae are hyaline, smooth- and thin-walled, little branched. Aerial hyphae are fertile, septate, 2-3 mm wide. Submerged hyphae are infertile. Conidia are terminal and lateral; sessile or on short side branches; absent; solitary, but in close proximity to one another, hyaline, thin- and smooth-walled, subglobose, clavate or obovoid, 1-celled, 4-10 .mu.m. Chlamydo-spores are absent. Intercalary conidia are absent.

[0035] The method of isolation of the C1 strain is described in WO 98/15633, U.S. Pat. No. 5,811,381, and U.S. Pat. No. 6,015,707. Also included within the definition of Chrysosporium are strains derived from Chrysosporium predecessors including those that have mutated somewhat either naturally or by induced mutagenesis. Mutants of Chrysosporium can be obtained by induced mutagenesis, especially by a combination of irradiation and chemical mutagenesis.

[0036] For example strain C1 was mutagenised by subjecting it to ultraviolet light to generate strain UV13-6. This strain was subsequently further mutated with N-methyl-N'-nitro-N-nitrosoguanidine to generate strain NG7C-19. The latter strain in turn was subjected to mutation by ultraviolet light resulting in strain UV18-25. During this mutation process the morphological characteristics have varied somewhat in culture in liquid or on plates as well as under the microscope. With each successive mutagenesis the cultures showed less of the fluffy and felty appearance on plates that are described as being characteristic of Chrysosporium, until the colonies attained a flat and matted appearance. A brown pigment observed with the wild type strain in some media was also less prevalent in mutant strains. In liquid culture the mutant UV 18-25 was noticeably less viscous than the wild type strain C1 and the mutants UV13-6 and NG7C-19. While all strains maintained the gross microscopic characteristics of Chrysosporium, the mycelia became narrower with each successive mutation and with UV18-25 distinct fragmentation of the mycelia could be observed. This mycelial fragmentation is likely to be the cause of the lower viscosity associated with cultures of UV 18-25. The ability of the strains to sporulate decreased with each mutagenic step. The above illustrates that for a strain to belong to the genus Chrysosporium there is some leeway from the above morphological definition. At each mutation step production of cellulase and extracellular proteins has in addition also increased, while several mutations resulted in decrease of protease expression. Criteria with which fungal taxonomy can be determined are available from CBS, VKMF and ATCC for example. The strains internally designated as Chrysosporium strain C1, strain UV13-6, strain NG7C-19 and strain UV 18-25, have been deposited in accordance with the Budapest Treaty with the All Russian Collection (VKM) depository institute in Moscow. Wild type C1 strain was deposited with number VKM F-3500 D, deposit date Aug. 29, 1996, C1 UV13-6 mutant was deposited as VKM F-3632 D (Sep. 2, 1998), C1 NG7c-19 mutant was deposited as VKM F-3633 D (Sep. 2, 1998) and C1 UV18-25 mutant was deposited as VKM F-3631 D (Sep. 2, 1998).

[0037] It is preferable to use non-toxic Chrysosporium strains of which a number are known in the art as this will reduce risks to the environment upon large scale production and simplify production procedures with the concomitant reduction in costs.

[0038] An expression-regulating region is a DNA sequence recognised by the host Chrysosporium strain for expression. It comprises a promoter sequence operably linked to a nucleic acid sequence encoding the polypeptide to be expressed. The promoter is linked such that the positioning vis-a-vis the initiation codon of the sequence to be expressed allows expression. The promoter sequence can be constitutive or inducible. Any expression regulating sequence or combination thereof capable of permitting expression of a polypeptide from a Chrysosporium strain is envisaged. The expression regulating sequence is suitably a fungal expression-regulating region e.g. an ascomycete regulating region. Suitably the fungal expression regulating region is a regulating region from any of the following genera of fungi: Aspergillus, Trichoderma, Chrysosporium, Hansenula, Mucor, Pichia, Neurospora, Tolypocladium, Rhizomucor, Fusarium, Penicillium, Saccharomyces, Talaromyces or alternative sexual forms thereof like Emericella, Hypocrea e.g. the cellobiohydrolase promoter from Trichoderma, glucoamylase promoter from Aspergillus, glyceraldehyde phosphate dehydrogenase promoter from Aspergillus, alcohol dehydrogenase A and alcohol dehydrogenase R promoter of Aspergillus, TAKA amylase promoter from Aspergillus, phosphoglycerate and cross-pathway control promoters of Neurospora, aspartic proteinase promoter of Rhizomucor miehei, lipase promoter of Rhizomucor miehei and beta-galactosidase promoter of Penicillium canescens. An expression regulating sequence from the same genus as the host strain is extremely suitable, as it is most likely to be specifically adapted to the specific host. Thus preferably the expression regulating sequence is one from a Chrysosporium strain.

[0039] Preferably an expression-regulating region enabling high expression in the selected host is applied. This is preferably an expression-regulating region derived from Chrysosporium according to the invention. It can also be a high expression-regulating region derived from a heterologous host, such as are well known in the art. Specific examples of proteins known to be expressed in large quantities and thus providing suitable expression regulating sequences for the invention are without being limited thereto hydrophobin, protease, amylase, xylanase, pectinase, esterase, beta-galactosidase, cellulase (e.g. endo-glucanase, cellobiohydrolase) and polygalacturonase. The high production has been ascertained in both solid state and submerged fermentation conditions. Assays for assessing the presence or production of such proteins are well known in the art. The catalogues of Sigma and Megazyme for example provide numerous examples. Megazyme is located at Bray Business Park, Bray, County Wicklow in Ireland. Sigma Aldrich has many affiliates world wide e.g. USA P.O. Box 14508 St. Louis Mo. For cellulase we refer to commercially available assays such as CMCase assays, endoviscometric assays, Avicelase assays, beta-glucanase assays, RBBCMCase assays, Cellazyme C assays. Xylanase assays are also commercially available (e.g. DNS and Megazyme). Alternatives are well known to a person skilled in the art and can be found from general literature concerning the subject and such information is considered incorporated herein by reference. By way of example we refer to "Methods in Enzymology" Volume 1, 1955 right through to volumes 297-299 of 1998. Suitably a Chrysosporium promoter sequence is applied to ensure good recognition thereof by the host.

[0040] We hive found that heterologous expression-regulating sequences work as efficiently in Chrysosporium as native Chrysosporium sequences. This allows well known constructs and vectors to be used in transformation of Chrysosporium as well as offering numerous other possibilities for constructing vectors enabling good rates of expression in this novel expression and secretion host. For example standard Aspergillus transformation techniques can be used as described for example by Christiansen et al in Bio/Technol. 6:1419-1422 (1988). Other documents providing details of Aspergillus transformation vectors, e.g. U.S. Pat. Nos. 4,816,405, 5,198,345, 5,503,991, 5,364,770 and 5,578,463, EP-B-215.594 (also for Trichoderma) and their contents are incorporated by reference. As extremely high expression rates for cellulase have been ascertained for Chrysosporium strains, the expression regulating regions of such proteins are particularly preferred. We refer for specific examples to the previously mentioned deposited Chrysosporium strains.

[0041] A nucleic acid construct comprising a nucleic acid expression regulatory region from Chrysosporium, preferably from Chrysosporium lucknowense or a derivative thereof forms a preferred embodiment of the invention, as does the mutant Chrysosporium strain comprising such operably linked to a gene encoding a polypeptide to be expressed. Such a nucleic acid construct will be an expression regulatory region from Chrysosporium associated with cellulase or xylanase expression, preferably cellobiohydrolase expression, or glyceraldehyde phosphate dehydrogenase expression, as detailed below. The nucleic acid sequence according to the invention can suitably be obtained from a Chrysosporium strain, such strain being defined elsewhere in the description. The manner in which promoter sequences can be determined are numerous and well known in the art. Nuclease deletion experiments of the region upstream of the ATG codon at the beginning of the relevant gene will provide such sequence. Also for example analysis of consensus sequences can lead to finding a gene of interest. Using hybridisation and amplification techniques one skilled in the art can readily arrive at the corresponding promoter sequences. The promoter sequences of C1 endoglucanases were identified in this manner, by cloning the corresponding genes. Preferred promoters according to the invention are the 55 kDa cellobio-hydrolase (CBH1) promoter, the 30 kDa xylanase (Xyl1) promoters, and the glyceraldehyde phosphate dehydrogenase promoter, as the enzymes are expressed at high level by their own promoters. The corresponding promoter sequences are identified in a straightforward manner by cloning as described in WO 00/20555, using the sequence information given in SEQ ID No. 1 (for CBH1) and SEQ ID No. 3 (for Xyl1), respectively. The promoters of the carbohydrate-degrading enzymes of Chrysosporium, especially C1 promoters, can advantageously be used for expressing desired polypeptides in a host organism, especially a fungal or other microbial host organism. Promoter sequences having at least 65%, preferably at least 70%, most preferably at least 75% nucleotide sequence identity with the sequence given in SEQ ID No's 1, 3 and 5, or with the sequences found for other Chrysosporium genes, are part of the present invention.

[0042] For particular embodiments of the recombinant strain and the nucleic acid sequence according to the invention we also refer to the examples. We also refer for the recombinant strains to prior art describing high expression promoter sequences in particular those providing high expression in fungi e.g. such as are disclosed for Aspergillus and Trichoderma. The prior art provides a number of expression regulating regions for use in Aspergillus e.g. U.S. Pat. No. 5,252,726 of Novo and U.S. Pat. No. 5,705,358 of Unilever. The contents of such prior art are hereby incorporated by reference.

[0043] The hydrophobin gene is a fungal gene that is highly expressed. It is thus suggested that the promoter sequence of a hydrophobin gene, preferably from Chrysosporium, may be suitably applied as expression regulating sequence in a suitable embodiment of the invention. Trichoderma reesei and Trichoderma harzianum gene sequences for hydrophobin have been disclosed for example in the prior art as well as a gene sequence for Aspergillus fumigatus and Aspergillus nidulans and the relevant sequence information is hereby incorporated by reference (Munoz et al, Curr. Genet. 1997, 32(3):225-230; Nakari-Setala T. et al, Eur. J. Biochem. 1996 15:235 (1-2):248-255, M. Parta et al, Infect. Immun. 1994 62 (10): 4389-4395 and Stringer M. A. et al. Mol. Microbiol. 1995 16(1):33-44). Using this sequence information a person skilled in the art can obtain the expression regulating sequences of Chrysosporium hydrophobin genes without undue experimentation following standard techniques as suggested already above. A recombinant Chrysosporium strain according to the invention can comprise a hydrophobin-regulating region operably linked to the sequence encoding the polypeptide of interest.

[0044] An expression regulating sequence can also additionally comprise an enhancer or silencer. These are also well known in the prior art and are usually located some distance away from the promoter. The expression regulating sequences can also comprise promoters with activator binding sites and repressor binding sites. In some cases such sites may also be modified to eliminate this type of regulation. Filamentous fungal promoters in which creA sites are present have been described. Such creA sites can be mutated to ensure the glucose repression normally resulting from the presence of the non-mutated sites is eliminated. Gist-Brocades' WO 94/13820 illustrates this principle. Use of such a promoter enables production of the polypeptide encoded by the nucleic acid sequence regulated by the promoter in the presence of glucose. The same principle is also apparent from WO 97/09438. These promoters can be used either with or without their creA sites. Mutants in which the creA sites have been mutated can be used as expression regulating sequences in a recombinant strain according to the invention and the nucleic acid sequence it regulates can then be expressed in the presence of glucose. Such Chrysosporium promoters ensure derepression in an analogous manner to that illustrated in WO 97/09438. The identity of creA sites is known from the prior art. Alternatively, it is possible to apply a promoter with CreA binding sites that have not been mutated in a host strain with a mutation elsewhere in the repression system e.g. in the creA gene itself, so that the strain can, notwithstanding the presence of creA binding sites, produce the protein or polypeptide in the presence of glucose.

[0045] Terminator sequences are also expression-regulating sequences and these are operably linked to the 3' terminus of the sequence to be expressed. Any fungal terminator is likely to be functional in the host Chrysosporium strain according to the invention. Examples are A. nidulans trpC terminator (1), A. niger alpha-glucosidase terminator (2), A. niger glucoamylase terminator (3), Mucor miehei carboxylprotease terminator (U.S. Pat. No. 5,578,463) and the Trichoderma reesei cellobiohydrolase terminator. Naturally Chrysosporium terminator sequences will function in Chrysosporium and are suitable e.g. CBH1 terminator.

[0046] A suitable recombinant Chrysosporium strain to be used according to the invention has the nucleic acid sequence to be expressed operably linked to a sequence encoding the amino acid sequence defined as signal sequence. A signal sequence is an amino acid sequence which when operably linked to the amino acid sequence of the expressed polypeptide allows secretion thereof from the host fungus. Such a signal sequence may be one normally associated with the heterologous polypeptide or may be one native to the host. It can also be foreign to both host and the polypeptide. The nucleic acid sequence encoding the signal sequence must be positioned in frame to permit translation of the signal sequence and the heterologous polypeptide. Any signal sequence capable of permitting secretion of a polypeptide from a Chrysosporium strain is envisaged. Such a signal sequence is suitably a fungal signal sequence, preferably an ascomycete signal sequence.

[0047] Suitable examples of signal sequences can be derived from yeasts in general or any of the following specific genera of fungi: Aspergillus, Trichoderma, Chrysosporium, Pichia, Neurospora, Rhizomucor, Hansenula, Humicola, Mucor, Tolypocladium, Fusarium, Penicillium, Saccharomyces, Talaromyces or alternative sexual forms thereof like Emericella, Hypocrea. Signal sequences that are particularly useful are often natively associated with the following proteins a cellobiohydrolase, an endoglucanase, a beta-galactosidase, a xylanase, a pectinase, an esterase, a hydrophobin, a protease or an amylase. Examples include amylase or glucoamylase of Aspergillus or Humicola (4), TAKA amylase of Aspergillus oryzae, alpha-amylase of Aspergillus niger, carboxyl peptidase of Mucor (U.S. Pat. No. 5,578,463), a lipase or proteinase from Rhizomucor miehei, cellobiohydrolase of Trichoderma (5), beta-galactosidase of Penicillium canescens and alpha mating factor of Saccharomyces.

[0048] Alternatively the signal sequence can be from an amylase or subtilisin gene of a strain of Bacillus. A signal sequence from the same genus as the host strain is extremely suitable as it is most likely to be specifically adapted to the specific host thus preferably the signal sequence is a signal sequence of Chrysosporium, especially of Chrysosporium strain C1, strain UV13-6, strain NG7C-19 and strain UV18-25, referred to above. Signal sequences from filamentous fungi, yeast and bacteria are useful. Signal sequences of non-fungal origin are also considered useful, particularly bacterial, plant and mammalian.

[0049] A recombinant host to be used according to any of the embodiments of the invention can further comprise a selectable marker. Such a selectable marker will permit easy selection of transformed or transfected cells. A selectable marker often encodes a gene product providing a specific type of resistance foreign to the non-transformed strain. This can be resistance to heavy metals, antibiotics and biocides in general. Prototrophy is also a useful selectable marker of the non-antibiotic variety. Non-antibiotic selectable markers can be preferred where the protein or polypeptide of interest is to be used in food or pharmaceuticals with a view to speedier or less complicated regulatory approval of such a product. Very often the GRAS indication is used for such markers. A number of such markers are available to the person skilled in the art. The FDA e.g. provides a list of such. Most commonly used are selectable markers selected from the group conferring resistance to a drug or relieving a nutritional defect e.g. the group comprising amdS (acetamidase), hph (hygromycin phosphotransferase), pyrG (orotidine-5'-phosphate decarboxylase), trpC (anthranilate synthase), argB (ornithine carbamoyltransferase), sC (sulphate adenyl-transferase), bar (phosphinothricin acetyltransferase), glufosinate resistance, niaD (nitrate reductase), a bleomycin resistance gene, more specifically Sh ble, sulfonylurea resistance e.g. acetolactate synthase mutation ilv1. Selection can also be carried out by virtue of cotransformation where the selection marker is on a separate vector or where the selection marker is on the same nucleic acid fragment as the polypeptide-encoding sequence for the polypeptide of interest.

[0050] As used herein the term heterologous polypeptide is a protein or polypeptide not normally expressed and secreted by the Chrysosporium host strain used for expression according to the invention. The polypeptide can be of plant or animal (vertebrate or invertebrate) origin e.g. mammalian, fish, insect, or micro-organism origin, with the proviso it does not occur in the host strain. A mammal can include a human. A micro-organism comprises viruses, bacteria, archae-bacteria and fungi i.e. filamentous fungi and yeasts. Bergey's Manual for Bacterial Determinology provides adequate lists of bacteria and archaebacteria. For pharmaceutical purposes quite often a preference will exist for human proteins thus a recombinant host according to the invention forming a preferred embodiment will be a host wherein the polypeptide is of human origin. For purposes such as food production suitably the heterologous polypeptide will be of animal, plant or algal origin. Such embodiments are therefore also considered suitable examples of the invention. Alternative embodiments that are useful also include a heterologous polypeptide of any of bacterial, yeast, viral, archaebacterial and fungal origin. Fungal origin is most preferred.

[0051] A suitable embodiment of the invention will comprise a heterologous nucleic acid sequence with adapted codon usage. Such a sequence encodes the native amino acid sequence of the host from which it is derived, but has a different nucleic acid sequence, i.e. a nucleic acid sequence in which certain codons have been replaced by other codons encoding the same amino acid but which are more readily used by the host strain being used for expression. This can lead to better expression of the heterologous nucleic acid sequence. This is common practice to a person skilled in the art. This adapted codon usage can be carried out on the basis of known codon usage of fungal vis-a-vis non-fungal codon usage. It can also be even more specifically adapted to codon usage of Chrysosporium itself. The similarities are such that codon usage as observed in Trichoderma, Humicola and Aspergillus should enable exchange of sequences of such organisms without adaptation of codon usage. Details are available to the skilled person concerning the codon usage of these fungi and are incorporated herein by reference.

[0052] The invention is not restricted to the above-mentioned recombinant Chrysosporium strains, but also covers a recombinant Chrysosporium strain comprising a nucleic acid sequence encoding a homologous protein for a Chrysosporium strain, said nucleic acid sequence being operably linked to an expression-regulating region and said recombinant strain expressing more of said protein than the corresponding non-recombinant strain under the same conditions. In the case of homologous polypeptide of interest such is preferably a neutral or alkaline enzyme like a hydrolase, a protease or a carbohydrate degrading enzyme as already described elsewhere. The polypeptide may also be acidic. Preferably the recombinant strain will express the polypeptide in greater amounts than the non-recombinant strain. All comments mentioned vis-a-vis the heterologous polypeptide are also valid (mutatis mutandis) for the homologous polypeptide cellulase.

[0053] Thus the invention also covers genetically engineered microbial strains wherein the sequence that is introduced can be of Chrysosporium origin. Such a strain can, however, be distinguished from natively occurring strains by virtue of for example heterologous sequences being present in the nucleic acid sequence used to transform or transfect the Chrysosporium, by virtue of the fact that multiple copies of the sequence encoding the polypeptide of interest are present or by virtue of the fact that these are expressed in an amount exceeding that of the non-engineered strain under identical conditions or by virtue of the fact that expression occurs under normally non-expressing conditions. The latter can be the case if an inducible promoter regulates the sequence of interest contrary to the non-recombinant situation or if another factor induces the expression than is the case in the non-engineered strain. The invention is directed at strains derived through engineering either using classical genetic technologies or genetic engineering methodologies.

[0054] The expression systems and host strains containing them according to the invention can comprise a nucleic acid sequence encoding a heterologous protein selected from carbohydrate-degrading enzymes (cellulases, xylanases, mannanases, mannosidases, pectinases, amylases, e.g. glucoamylases, .alpha.-amylases, .alpha.- and .beta.-galactosidases, .alpha.- and .beta.-glucosidases, .beta.-glucanases, chitinases, chitanases), proteases (endoproteases, amino-proteases, amino- and carboxy-peptidases, keratinases), other hydrolases (lipases, esterases, phytases), oxidoreductases (catalases, glucose-oxidases) and transferases (transglycosylases, transglutaminases, isomerases and invertases).

[0055] The most interesting products to be produced according to invention are cellulases, xylanases, pectinases, lipases and proteases, wherein cellulases and xylanases cleave beta-1,4-bonds, and cellulases comprise endoglucanases, cellobiohydrolases and beta-glucosidases. These proteins are extremely useful in various industrial processes known in the art. Specifically for cellulases we refer e.g. to WO 98/15633 describing cellobiohydrolases and endoglucanases of use. The contents of said application are hereby incorporated by reference.

[0056] A recombinant according to the invention may have a nucleic acid sequence encoding the polypeptide of interest encodes a polypeptide that is inactivated or unstable at acid pH i.e. pH below 6, even below pH 5.5, more suitably even below pH 5 and even as low as or lower than pH 4. This is a particularly interesting embodiment, as the generally disclosed fungal expression systems are not cultured under conditions that are neutral to alkaline, but are cultured at acidic pH. Thus the system according to the invention provides a safe fungal expression system for proteins or polypeptides that are susceptible to being inactivated or are unstable at acid pH.

[0057] Quite specifically a recombinant strain as defined in any of the embodiments according to the invention, wherein the nucleic acid sequence encoding the polypeptide of interest encodes a protein or polypeptide exhibiting optimal activity and/or stability at a pH above 5, preferably at neutral or alkaline pH (i.e. above 7) and/or at a pH higher than 6, is considered a preferred embodiment of the invention. More than 50%, more than 70% and even more than 90% of optimal activities at such pH values are anticipated as being particularly useful embodiments. A polypeptide expressed under the cultivation conditions does not necessarily have to be active at the cultivation conditions, in fact it can be advantageous for it to be cultured under conditions under which it is inactive as its active form could be detrimental to the host. What is however required is for the protein or polypeptide to be stable under the cultivation conditions. The stability can be thermal stability. It can also be stability against specific compositions or chemicals, such as are present for example in compositions or processes of production or application of the polypeptide or protein of interest. LAS in detergent compositions comprising cellulases or lipases, etc. is an example of a chemical often detrimental to proteins. The time periods of use in applications can vary from short to long exposure so stability can be over a varying length of time varying per application. The skilled person will be able to ascertain the correct conditions on a case by case basis. One can use a number of commercially available assays to determine the optimal activities of the various enzymatic products. The catalogues of Sigma and Megazyme for example show such. Specific examples of tests are mentioned elsewhere in the description. The manufacturers provide guidance on the application.

[0058] A Chrysosporium strain can be suitably used to transform or transfect with the sequence of interest to be expressed and such a strain exhibits a relatively low biomass. We have found that Chrysosporium strains having a biomass two to five times lower than that of Trichoderma reesei when cultured to a viscosity of 200-600 cP at the end of fermentation and exhibiting a biomass of 10 to 20 times lower than that of Aspergillus niger when cultured to a viscosity of 1500-2000 cP under corresponding conditions, i.e. their respective optimal cultivation conditions can provide a high level of expression. This level of expression far exceeds that of the two commercial reference strains at a much lower biomass and at much lower viscosity. This means that the yield of expression of such Chrysosporium strains will be appreciably higher than from Aspergillus niger and Trichoderma reesei. Such a transformed or transfected Chrysosporium strain forms a suitable embodiment of the invention.

[0059] We find a biomass of 0.5-1.0 g/l for Chrysosporium strain C1(18-25) as opposed to 2.5-5.0 g/l for Trichoderma reesei and 5-10 g/l of Aspergillus niger under the above described conditions. In the Examples we provide details of this process.

[0060] In a suitable embodiment a recombinant Chrysosporium strain produces protein or poly-peptide in at least the amount equivalent to the production in moles per liter of cellulase by the strain UV13-6 or C-19, and most preferably at least equivalent to or higher than that of the strain UV18-25 under the corresponding or identical conditions, i.e. their respective optimal cultivation conditions.

[0061] We have also found that expression and secretion rates are exceedingly high when using a Chrysosporium strain exhibiting the mycelial morphology of strain UV 18-25 i.e. fragmented short mycelia. Thus a recombinant strain according to the invention will preferably exhibit such morphology. The invention however also covers non-recombinant strains or otherwise engineered strains of Chrysosporium exhibiting this novel and inventive characteristic. Also covered by the invention is a recombinant Chrysosporium strain in any of the embodiments described according to the invention further exhibiting reduced sporulation in comparison to C1, preferably below that of strain UV13-6, preferably below that of NG7C-19, preferably below that of UV18-25 under equivalent fermenter conditions. Also covered by the invention is a recombinant Chrysosporium strain in any of the embodiments described according to the invention further exhibiting at least the amount of protein production ratio to biomass in comparison to C1, preferably in comparison to that of any of strains UV13-6, NG7C-19 and UV18-25 under equivalent fermenter conditions. The invention however also covers non-recombinant strains or otherwise engineered strains of Chrysosporium exhibiting this novel and inventive characteristic as such or in combination with any of the other embodiments.

[0062] Another attractive embodiment of the invention also covers a recombinant Chrysosporium strain exhibiting a viscosity below that of strain NG7C-19, preferably below that of UV18-25 under corresponding or identical fermenter conditions. The invention however also covers non-recombinant strains or otherwise engineered strains of Chrysosporium exhibiting this novel and inventive characteristic as such or in combination with any of the other embodiments. We have determined that the viscosity of a culture of UV18-25 is below 10 cP opposed to that of Trichoderma reesei being of the order 200-600 cP, with that of Aspergillus niger being of the order 1500-2000 cP under their respective optimal culture conditions at the end of fermentation. The process used for such determination is provided in the examples.

[0063] Viscosity can be assessed in many cases by visual monitoring. The fluidity of the substance can vary to such a large extent that it can be nearly solid, sauce-like or liquid. Viscosity can also readily be ascertained by Brookfield rotational viscometry, use of kinematic viscosity tubes, falling ball viscometer or cup type viscometer. The yields from such a low viscosity culture are higher than from the commercial known higher viscosity cultures per time unit and per cell.

[0064] The processing of such low viscosity cultures according to the invention is advantageous in particular when the cultures are scaled up. The subject Chrysosporium strains with the low viscosity perform very well in cultures as large as up to 150,000 liter cultures. Thus any culture size up to 150,000 litres provides a useful embodiment of the invention. Any other conventional size of fermentation should be carried out well with the strains according to the invention. The reasoning behind this is that problems can arise in large scale production with the formation of aggregates that have mycelia that are too dense and/or are unevenly distributed. The media as a result cannot be effectively utilised during the culture thus leading to an inefficient production process in particular in large scale fermentations i.e. over 150,000 liters. Aeration and mixing become problematic leading to oxygen and nutrient starvation and thus reduced concentration of productive biomass and reduced yield of polypeptide during the culture and/or can result in longer fermentation times. In addition high viscosity and high shear are not desirable in commercial fermentation processes and in current commercial processes they are the production limiting factors. All these negative aspects can be overcome by the Chrysosporium host according to the invention which exhibits much better characteristics than Trichoderma reesei, Aspergillus niger and Aspergillus oryzae that are commercially used in this respect i.e. exhibits better protein production levels and viscosity properties and biomass figures.

[0065] A Chrysosporium strain according to any of the above-mentioned embodiments of the invention, said strain further exhibiting production of one or more of the fungal enzymes selected from the carbohydrate-degrading enzymes, proteases, other hydrolases, oxidoreductase, and transferases mentioned above, is considered a particularly useful embodiment of the invention. The most interesting products are specifically cellulases, xylanases, pectinases, lipases and proteases. Also useful as embodiment of the invention however is a Chrysosporium strain exhibiting production of one or more fungal enzymes that exhibit neutral or alkaline optimal stability and/or activity, preferably alkaline optimal stability and/or activity, said enzyme being selected from carbohydrate-degrading enzymes, hydrolases and proteases, preferably hydrolases and carbohydrate-degrading enzymes. In the case of non-recombinant Chrysosporium, such enzymes are suitably other than cellulase as disclosed in WO 98/15633. Enzymes of particular interest are xylanases, proteases, esterases, alpha galactosidases, beta-galactosidases, beta-glucanases and pectinases. The enzymes are not limited to the aforementioned. The comments vis-a-vis stability and activity elsewhere in the description are valid here also.

[0066] The invention also covers a method of producing a polypeptide of interest, said method comprising culturing a host strain (e.g. fungal such as of the genera Chrysosporium, Aspergillus, Trichoderma, Hansenula, Mucor, Pichia, Neurospora, Tolypocladium, Rhizomucor, Fusarium, Penicillium or bacterial or other microbial) in any of the embodiments according to the invention under conditions permitting expression and preferably secretion of the polypeptide and recovering the subsequently produced polypeptide of interest.

[0067] Where protein or polypeptide is mentioned, variants and mutants e.g. substitution, insertion or deletion mutants of naturally occurring proteins are intended to be included that exhibit the activity of the non-mutant. The same is valid vis-a-vis the corresponding nucleic acid sequences. Processes such as gene shuffling, protein engineering and directed evolution site directed mutagenesis and random mutagenesis are processes through which such polypeptides, variants or mutants can be obtained. U.S. Pat. No. 5,223,409, U.S. Pat. No. 5,780,279 and U.S. Pat. No. 5,770,356 provide teaching of directed evolution. Using this process a library of randomly mutated gene sequences created for example by gene shuffling via error prone PCR occurs in any cell type. Each gene has a secretion region and an immobilising region attached to it such that the resulting protein is secreted and stays fixed to the host surface. Subsequently conditions are created that necessitate the biological activity of the particular polypeptide. This occurs for a number of cycles ultimately leading to a final gene with the desired characteristics. In other words a speeded up directed process of evolution. U.S. Pat. No. 5,763,192 also describes a process for obtaining DNA, RNA, peptides, polypeptides or protein by way of synthetic polynucleotide coupling stochastically generated sequences, introduction thereof into a host followed by selection of the host cell with the corresponding predetermined characteristic.

[0068] Another application of the method of the present invention is in the process of "directed evolution", wherein novel protein-encoding DNA sequences are generated, the encoded proteins are expressed in a host cell, and those sequences encoding proteins having a desired characteristic are mutated and expressed again. The process is repeated for a number of cycles until a protein with the desired characteristics is obtained. Gene shuffling, protein engineering, error-prone PCR, site-directed mutagenesis, and combinatorial and random mutagenesis are examples of processes through which novel DNA sequences encoding exogenous proteins can be generated. U.S. Pat. Nos. 5,223,409, 5,780,279 and 5,770,356 provide teaching of directed evolution. See also Kuchner and Arnold, Trends in Biotechnology, 15:523-530 (1997); Schmidt-Dannert and Arnold, Trends in Biotech., 17:135-136 (1999); Arnold and Volkov, Curr. Opin. Chem. Biol., 3:54-59 (1999); Zhao et al., Manual of Industrial Microbiology and Biotechnology, 2nd Ed., (Demain and Davies, eds.) pp. 597-604, ASM Press, Washington D.C., 1999; Arnold and Wintrode, Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis, and Bioseparation, (Flickinger and Drew, eds.) pp. 971-987, John Wiley & Sons, New York, 1999; and Minshull and Stemmer, Curr. Opin. Chem. Biol. 3:284-290.

[0069] An application of combinatorial mutagenesis is disclosed in Hu et al., Biochemistry. 1998 37:10006-10015. U.S. Pat. No. 5,763,192 describes a process for obtaining novel protein-encoding DNA sequences by stochastically generating synthetic sequences, introducing them into a host, and selecting host cells with the desired characteristic. Methods for effecting artificial gene recombination (DNA shuffling) include random priming recombination (Z. Shao, et al., Nucleic Acids Res., 26:681-683 (1998)), the staggered extension process (H. Zhao et al., Nature Biotech., 16:258-262 (1998)), and heteroduplex recombination (A. Volkov et al., Nucleic Acids Res., 27:e18 (1999)). Error-prone PCR is yet another approach (Song and Rhee, Appl. Environ. Microbiol. 66:890-894 (2000)).

[0070] There are two widely-practised methods of carrying out the selection step in a directed evolution process. In one method, the protein activity of interest is somehow made essential to the survival of the host cells. For example, if the activity desired is a cellulase active at pH 8, a cellulase gene could be mutated and introduced into the host cells. The transformants are grown with cellulose as the sole carbon source, and the pH raised gradually until only a few survivors remain. The mutated cellulase gene from the survivors, which presumably encodes a cellulase active at relatively high pH, is subjected to another round of mutation, and the process is repeated until transformants that can grow on cellulose at pH 8 are obtained. Thermostable variants of enzymes can likewise be evolved, by cycles of gene mutation and high-temperature culturing of host cells (Liao et al., Proc. Natl. Acad. Sci. USA 83:576-580 (1986); Giver et al., Proc. Natl. Acad. Sci. USA 95:12809-12813 (1998).

[0071] An alternative to the massively parallel "survival of the fittest" approach is serial screening. In this approach, individual transformants are screened by traditional methods, such as observation of cleared or coloured zones around colonies growing on indicator media, colorimetric or fluorometric enzyme assays, immunoassays, binding assays, etc. See for example Joo et al., Nature 399:670-673 (1999), where a cytochrome P450 monooxygenase not requiring NADH as a cofactor was evolved by cycles of mutation and screening; May et al., Nature Biotech. 18:317-320 (2000), where a hydantoinase of reversed stereoselectivity was evolved in a similar fashion; and Miyazaki et al., J. Mol. Biol. 297:1015-1026 (2000), where a thermostable subtilisin was evolved.

[0072] Standard cloning and protein or polypeptide isolation techniques can be used to arrive at the required sequence information. Parts of known sequences can be used as probes to isolate other homologues in other genera and strains. The nucleic acid sequence encoding a particular enzyme activity can be used to screen a Chrysosporium library for example. A person skilled in the art will realise which hybridisation conditions are appropriate. Conventional methods for nucleic acid hybridisation construction of libraries and cloning techniques are described in Sambrook et al (Eeds) (1989) In "Molecular Cloning. A Laboratory Manual" Cold Spring Harbor, Press Plainview, New York, and Ausubel et al (Eds) "Current Protocols in Molecular Biology" (1987) John Wiley and Sons, New York. The relevant information can also be derived from later handbooks and patents, as well as from various commercially available kits in the field.

[0073] In an alternative embodiment, said method comprises culturing a strain according to the invention under conditions permitting expression and preferably secretion of the protein or poly-peptide or precursor thereof and recovering the subsequently produced polypeptide and optionally subjecting the precursor to additional isolation and purification steps to obtain the polypeptide of interest. Such a method may suitably comprise a cleavage step of the precursor into the polypeptide or precursor of interest. The cleavage step can be cleavage with a Kex-2 like protease, any basic amino acid paired protease or Kex-2 for example when a protease cleavage site links a well secreted protein carrier and the polypeptide of interest. A person skilled in the art can readily find Kex-2-like protease sequences as consensus sequence details for such are available and a number of alternatives have already been disclosed e.g. furin.

[0074] Suitably in a method for production of the polypeptide according to any of the embodiments of the invention the cultivation occurs at pH higher than 5, preferably 5-10, more preferably 6-9. Suitably in such a method the cultivation occurs at a temperature between 25-43.degree. C., preferably 30-40.degree. C. The strain used in the method according to the invention is quite suitably a recombinant Chrysosporium strain or other fungal or non-fungal strain. The method according to the invention in such a case can further be preceded by the step of production of a recombinant strain according to the invention. The selection of the appropriate conditions will depend on the nature of the polypeptide to be expressed and such selection lies well within the realm of normal activity of a person skilled in the art.

[0075] The method of production of a recombinant strain according to the invention is also part of the subject invention. The method comprises stably introducing a nucleic acid sequence encoding a heterologous or homologous polypeptide into a suitable host strain, said nucleic acid sequence being operably linked to an expression regulating region, said introduction occurring in a manner known per se for transforming filamentous fungi. As stated above numerous references hereof are available and a small selection has been cited. The information provided is sufficient to enable the skilled person to carry out the method without undue burden. The method comprises introduction of a nucleic acid sequence comprising any of the nucleic acid elements described in the various embodiments of the recombinant strain according to the invention as such or in combination.

[0076] By way of example the introduction can occur using the protoplast transformation method. The method is described in the examples. Alternative protoplast or spheroplast transformation methods are known and can be used as have been described in the prior art for other filamentous fungi. Details of such methods can be found in many of the cited references and are thus incorporated by reference. A method according to the invention suitably comprises using a non-recombinant strain as starting material for introduction of the desired sequence encoding the polypeptide of interest.

[0077] The subject invention also covers a method of producing Chrysosporium enzyme, said method comprising culturing a Chrysosporium or other strain in or on a cultivation medium at pH higher than 5, preferably 5-10, more preferably 6-9, suitably 6-7.5, 7.5-9 as examples of neutral and alkaline pH ranges.

[0078] More in general the invention further covers a method of producing enzymes exhibiting neutral or alkaline optimal activity and/or stability, preferably alkaline optimal activity and/or stability. The preferred ranges vis-a-vis pH and optimal activity as well as assays with which to determine such have been provided elsewhere in the description. The enzyme should be selected from carbohydrate-degrading enzymes, proteases, other hydrolases, oxidoreductases, and transferases, as described above, said method comprising cultivating a host cell transformed or transfected with the corresponding enzyme-encoding nucleic acid sequence. Suitably such an enzyme will be a Chrysosporium enzyme. A suitable method such as this comprises production specifically of cellulase, xylanase, pectinase, lipase and protease, wherein cellulase and xylanase cleave .beta.-1,4-bonds and cellulase comprises endoglucanase, cellobiohydrolase and .beta.-glucosidase. The method according to the invention can comprise cultivating any Chrysosporium host according to the invention comprising nucleic acid encoding such aforementioned enzymes. Suitably the production of non-recombinant Chrysosporium hosts according to the invention is directed at production of carbohydrate degrading enzymes, hydrolases and proteases. In such a case the enzyme is suitably other than a cellulase. Methods of isolating are analogous to those described in WO 98/15633 and are incorporated by reference.

[0079] The enzymes produced according to the invention are also covered by the invention. Enzymes of Chrysosporium origin as can be isolated from non-recombinant Chrysosporium strains according to the invention are also covered. They exhibit the aforementioned stability, activity characteristics. Suitably they are stable in the presence of LAS. In particular proteases with pI 4-9.5, proteases with a MW of 25-95 kD, xylanases with pI between 4.0 and 9.5, xylanases with MW between 25 and 65 kD, endoglucanases with a pI between 3.5 and 6.5, endoglucanases with MW of 25-55 kDa, .beta.-glucosidases, .alpha.,.beta.-galactosidases with a pI of 4-4.5, .beta.-glucosidases, .alpha.,.beta.-galactosidases with a MW of 45-50 kDa, cellobiohydrolases of pl 4-5, cellobiohydrolases of MW 45-75 kDa, e.g. a MW of 55 kD and pI 4.4, polygalacturonases, with a pI of 4.0-5.0 polygalacturonase of 60-70 kDa, e.g. 65-kDa, esterases with a pl 4-5, and esterases with a MW of 95-105 kDa with the afore-mentioned stability, activity characteristics are claimed. The molecular weights (MW) are those determined by SDS-PAGE. The non-recombinant i.e. natively occurring enzyme is other than cellulase as disclosed in WO 98/15633. Enzymes with combinations of the pI values and molecular weights mentioned above are also covered.

[0080] The invention is also concerned with the (over)production of non-protein products by the mutant (recombinant) strains of the invention. Such non-protein products include primary metabolites such as organic acids, amino acids, and secondary such as antibiotics, e.g. penicillins and cephalosporins and other therapeutics. These products are the result of combinations of biochemical pathways, involving several fungal genes of interest. Fungal primary and secondary metabolites and procedures for producing these metabolites in fungal organisms are well known in the art. Examples of the production of primary metabolites have been described by Mattey M., The Production of Organic Acids, Current Reviews in Biotechnology, 12, 87-132 (1992). Examples of the production of secondary metabolites have been described by Penalva et al. The Optimization of Penicillin Biosynthesis in Fungi, Trends in Biotechnology 16, 483-489 (1998).

EXAMPLES

Examples of Transformation Comparing Chrysosporium, Trichoderma and Tolypocladium Geodes

[0081] Two untransformed Chrysosporium C1 strains and one Trichoderma reesei reference strain were tested on two media (Gs pH 6.8 and Pridham agar, PA, pH 6.8). To test the antibiotic resistance level spores were collected from 7 day old PDA plates. Selective plates were incubated at 32.degree. C. and scored after 2.4 and 5 days. It followed that the C-1 strains NG7C-19 and UV18-25 clearly have a low basal resistance level both to phleomycin and hygromycin. This level is comparable to that for a reference T. reesei commonly used laboratory strain. Thus there is clear indication these two standard fungal selectable markers can be used well in Chrysosporium strains. Problems with other standard fungal selectable markers should not be expected.

[0082] Selection of Sh-ble (phleomycin-resistance) transformed Chrysosporium strains was successfully carried out at 50 .mu.g/ml. This was also the selection level used for T. reesei thus showing that differential selection can be easily achieved in Chrysosporium. The same comments are valid for transformed strains with hygromycin resistance at a level of 150 .mu.g/ml.

[0083] The protoplast transformation technique was used on Chrysosporium based on the most generally applied fungal transformation technology. All spores from one 90 mm PDA plate were recovered in 8 ml IC 1 and transferred into a shake flask of 50 ml IC1 medium for incubation for 15 hours at 35.degree. C. and 200 rpm. After this the culture was centrifuged, the pellet was washed in MnP, brought back into solution in 10 ml MnP and 10 mg/ml Caylase C.sub.3 and incubated for 30 minutes at 35.degree. C. with agitation (150 rpm).

[0084] The solution was filtered and the filtrate was subjected to centrifugation for 10 minutes at 3500 rpm. The pellet was washed with 10 ml MnPCa.sup.2+. This was centrifuged for 10 minutes at 25.degree. C. Then 50 microlitres of cold MPC was added. The mixture was kept on ice for 30 minutes whereupon 2.5 ml PMC was added. After 15 minutes at room temperature 500 microlitres of the treated protoplasts were mixed to 3 ml of MnR Soft and immediately plated out on a MnR plate containing phleomycin or hygromycin as selection agent. After incubation for five days at 30.degree. C. transformants were analysed (clones become visible after 48 hours). Transformation efficiency was determined using 10 microgrammes of reference plasmid pAN8-1.sup.19. The results are presented in the following Table 1.

TABLE-US-00001 TABLE 1 Transformation efficiency (using 10 .mu.g of reference plasmid pAN8-1) T. reesei NG7C-19 UV18-25 Viability 10.sup.6/200 .mu.l 5 10.sup.6/200 .mu.l 5 10.sup.6/200 .mu.l Transformants 2500 10.sup.4 10.sup.4 Per 200 .mu.l Transformants per 2500 2000 2000 10.sup.6 viable cells

The Chrysosporium transformant's viability is superior to that of Trichoderma. The transformability of the strains is comparable and thus the number of transformants obtained in one experiment lies 4 times higher for Chrysosporium than for T. reesei. Thus the Chrysosporium transformation system not only equals the commonly used T. reesei system, but even outperforms it. This improvement can prove especially useful for vectors that are less transformation efficient than pAN8-1. Examples of such less efficient transformation vectors are protein carrier vectors for production of non-fungal proteins which generally yield 10 times fewer transformants.

[0085] A number of other transformation and expression vectors were constructed with homologous Chrysosporium protein encoding sequences and also with heterologous protein encoding sequences for use in transformation experiments with Chrysosporium.

[0086] Examples of expression systems include a Chrysosporium xylanase Xyl 1 promoter fragment linked to a xylanase signal sequence in frame with a xylanase open reading frame followed by a xylanase terminator sequence. Transformant selection is carried out by using cotransformation with a selectable vector.

[0087] Another example is a Chrysosporium lucknowense cellobiohydrolase promoter linked to Penicillium endoglucanase 3 signal sequence in frame with the Penicillium endoglucanase 3 open reading frame followed by the Chrysosporium cellobiohydrolase terminator sequence. In addition this vector carries a second expression cassette with a selection marker i.e. the aceetamidase S gene (AmdS gene).

[0088] A further example comprises Chrysosporium glyceraldehyde-3-phosphate dehydrogenase 1 promoter linked to the Aspergillus niger glucoamylase signal sequence and the glucoamylase open reading frame fused to the human Interleukine 6 open reading frame. In adddition this vector carries a second expression cassette with a selection marker i.e. the AmdS gene.

[0089] A still further example is a Aspergillus nidulans glyceraldehyde-3-phosphate dehydrogenase A promoter linked to the endoglucanase 5 open reading frame followed by a Aspergillus nidulans terminator sequence.

Examples of Heterologous and Homologous Expression of Chrysosporium Transformants

[0090] C1 strains (NG7C-19 and/or UV18-25) have been tested for their ability to secrete various hetero-logous proteins: a bacterial protein (Streptoalloteichus hindustanus phleomycin-resistance protein, Sh ble), a fungal protein (Trichoderma reesei xylanase II, XYN2) and a human protein (the human lysozyme, BIZ).

C1 Secretion of Trichoderma reesei xylanase II (XYN2). C1 strain UV18-25 has been transformed by the plasmids pUT1064 and pUT1065. pUT1064 presents the two following fungal expression cassettes:

[0091] The first cassette allows the selection of phleomycin-resistant transformants: [0092] Neurospora crassa cross-pathway control gene 1 (cpc-1) promoter.sup.14 [0093] Streptoalloteichus hindustanus phleomycin-resistance gene Sh ble.sup.4 [0094] Aspergillus nidulans tryptophan-synthase (trpC) terminator.sup.5

[0095] The second cassette is the xylanase production cassette: [0096] T. reesei strain TR2 cbh1 promoter.sup.15 [0097] T. reesei strain TR2 xyn2 gene (including its signal sequence).sup.16-T. reesei strain TR2 cbh1 terminator.sup.15

[0098] The vector also carries an E. coli replication origin from plasmid pUC19.sup.6. The plasmid detailed map is provided in FIG. 1.

pUT1065 presents the following fungal expression cassette: [0099] A. nidulans glyceraldehyde-3-phosphate dehydrogenase (gpdA) promoter.sup.2 [0100] A synthetic T. reesei cellobiohydrolase I (cbh1) signal sequence.sup.1, 3 [0101] S. hindustanus phleomycin-resistance gene Sh ble.sup.4 used as carrier-protein.sup.10 [0102] A linker peptide (SGERK) featuring a KEX2-like protease cleavage site.sup.1 [0103] T. reesei strain TR2xyn2 gene (without signal sequence).sup.16 [0104] A. nidulans tryptophan-synthase (trpC) terminator.sup.5

[0105] The vector also carries the beta-lactamase gene (bla) and an E. coli replication origin from plasmid pUC18.sup.6. The plasmid detailed map is provided in FIG. 2.

C1 protoplasts were transformed with plasmid pUT1064 or pUT1065 following the same procedure already described in the above example. The fusion protein in plasmid pUT1065 (Sh ble :: XYN2) is functional with respect to the phleomycin resistance thus allowing easy selection of the C1 transformants. Moreover, the level of phleomycin resistance correlates roughly with the level of xyn2 expression. In pUT1064, xyn2 was cloned with its own signal sequence.

[0106] The xylanase production of C1 transformants (phleomycin-resistant clones) was analysed by xylanase activity assay as follows: Primary transformants were toothpicked to GS+phleomycin (5 .mu.g/ml) plates (resistance verification) and also on XYLAN plates (xylanase activity detection by clearing zone visualisation.sup.17). Plates were grown for 5 days at 32.degree. C. Each validated clone was subcloned onto XYLAN plates. Two subclones per transformant were used to inoculate PDA plates in order to get spores for liquid culture initiation. The liquid cultures in IC1+5 g/l KPhtalate were grown 5 days at 27.degree. C. (shaking 180 rpm). Then, the cultures were centrifuged (5000 g, 10 min.). From these samples, xylanase activity was measured by DNS technique according to Miller et al..sup.18

TABLE-US-00002 TABLE 2 Active XYN2 production levels in C1 (best producers) Active xylanase II concentration Xylanase II specific activity in culture media in culture media Untransformed UV18-25 3.9 U./ml 3.8 U./mg total prot. UV18-25::1064 clone 7-1 4.7 U./ml 4.7 U./mg total prot. UV18-25::1064 clone 7-2 4.4 U./ml 4.3 U./mg total prot. UV18-25::1065 clone 1-1 29.7 U./ml 25.6 U./mg total prot. UV18-25::1065 clone 1-2 30.8 U./ml 39.4 U./mg total prot.

These data show that:

[0107] 1) Points 1 to 4 from example 2 are confirmed.

[0108] 2) C1 can be used as host for the secretion of a heterologous fungal protein.

APPENDIX TO THE EXAMPLES

Media

Transformation Media:

TABLE-US-00003 [0109] Mandels Base: MnP Medium: KH.sub.2PO.sub.4 2.0 g/l Mandels Base with (NH.sub.4).sub.2SO.sub.4 1.4 g/l Peptone 1 g/l MgSO.sub.4.cndot.7H.sub.2O 0.3 g/l MES 2 g/l CaCl.sub.2.sup.- 0.3 g/l Sucrose 100 g/l Oligoelements 1.0 ml/l Adjust pH to 5 MnR MnP CA.sup.2+: MnP + sucrose 130 g/l MnP Medium + 50 mM Yeast extract 2.5 g/l CaCl.sub.2 2H.sub.2O Glucose 2.5 g/l Adjust pH to 6.5 Agar 15 g/l MnR Soft: MnR with only 7.5 g/l of agar. MPC: CaCl.sub.2 50 mM pH 5.8 MOPS 10 mM PEG 40%

For Selection and Culture

TABLE-US-00004 [0110] GS: Glucose 10 g/l [Merieux] Biosoyase 5 g/l pH should be 6.8 Agar 15 g/l PDA: Potato Dextrose Agar 39 g/l [Difco] pH should be 5.5 MPG: Mandels Base with K.Phtalate 5 g/l Glucose 30 g/l Yeast extract 5 g/l

[0111] The regeneration media (MnR) supplemented with 50 .mu.g/ml phleomycin or 100-150 .mu.g/ml hygromycin is used to select transformants. GS medium, supplemented with 5 .mu.g/ml phleomycin is used to confirm antibiotic resistance.

[0112] PDA is a complete medium for fast growth and good sporulation. Liquid media are inoculated with 1/20th of spore suspension (all spores from one 90 mm PDA plate in 5 ml 0.1% Tween). Such cultures are grown at 27.degree. C. in shake flasks (200 rpm).

Isolation and Characterisation of C1 Genes and Gene Expression Sequences of CBH1, XYL1, and GPD

Construction of a BlueSTAR Gene Library of UV18-25

[0113] Chromosomal DNA of UV18-25 was partially digested with Sau3A, fragments of 12-15 kb were isolated and ligated in a BamHI site of cloning vector BlueSTAR. Packaging of 20% of the ligation mixture resulted in a gene library of 4.6.times.10.sup.4 independent clones. This library was multiplied and stored at 4.degree. C. and -80.degree. C. The rest of the ligation mixture was also stored at 4.degree. C. Screening the Gene Library of UV18-25 for Isolation of the Genes for cbh1, xyl1 and gpd1

[0114] For the isolation of the different genes, in total .+-.7.5.times.10.sup.4 individual BlueSTAR phages per probe were hybridised in duplo. Hybridisation was carried out with the PCR fragments of cbh1, and xyl1 (as described in WO 00/20555) at homologous conditions (65.degree. C.; 0.2.times.SSC) and with the gpd1 gene of A. niger at heterologous conditions (53.degree. C.; 0.5.times.SSC). The number of positive signals is given in Table 3. The positive clones were rescreened and for each clone two individual phages were used for further experiments. DNA of the different clones was analysed by restriction analysis to determine the number of different clones isolated from each gene (results are given in Table 3). As for each of the 3 genes, 4-6 different clones were isolated, we conclude that the primary gene library (.+-.4-5.times.10.sup.4 clones) represents about 5.times. genome of UV18-25. From this result we conclude that the complete genome of UV 18-25 is represented in 9.times.10.sup.3 clones. Based on an average genomic insert of 13 kb, this would indicate a genome size of .+-.120 Mb, which is 3 times the size of the Aspergillus genome.

[0115] PCR reactions with specific primers for the gene present on the plasmid (based on previous sequence determination from the isolated PCR fragments) and the T7 and T3 primer present in the polylinker of pBlueSTAR we were able to determine the location of the genes in a number of clones. From each gene a plasmid was used for sequence determination of the gene.

TABLE-US-00005 TABLE 3 Screening of 7.5 .times. 10.sup.4 phages of the gene library of UV18-25 with PCR fragments of UV18-25 for the cbh1 gene and the xy1l gene (homologous conditions) and with the gpdA gene of A. niger (heterologous conditions). DNA isolation and restriction analysis was used to determine the number of different clones. Positive in positive in clone used for Gene first screening rescreening different clones sequencing cbh1 8 7 4 pCBH7 xyl1 9 6 5 pXyl5 gpd1 12 12 6 pGPD4

Sequence Analysis of the Cloned Genes

[0116] For the cbh1, xyl1, and the gpd1 gene, the results of the sequence determination are represented in SEQ ID No's 1, 3 and 5 respectively. Also the deduced amino acid sequences of the proteins are represented in these SEQ ID No's 2, 4 and 6. Some properties of the proteins are given in Table 4. It should be mentioned that the position of the start of the translation and the introns is based on homology with genes from the same family (i.e. paper genetics).

CBH1

[0117] From the amino acid sequences of CBH1, we concluded that the protein is about 63 kD in size and that a cellulose-binding domain (CBD) is present at the C-terminal part of the protein. Interestingly, no evidence was found for the presence of a CBD in the isolated 55 kD major protein. However, the presence of the isolated peptides from this 55 kD major protein in the encoded CBH1 protein (SEQ ID No.1, 2), confirms that the 55 kD protein is encoded by the cloned gene. A possible explanation of these results is that the 55 kD protein is a truncated version of the CBH1 protein lacking the CBD.

[0118] The cellobiohydrolase CBH1 has activity against MUF-cellobioside, MUF lactoside, FP and avicel, also against p-nitrophenyl .beta.-glucoside, cellobiose and p-nitrophenyl lactoside. Its activity toward MUF cellobioside is inhibited by cellobiose with inhibition constant of 0.4 mM. The Michaelis constant toward MUF cellobioside was 0.14 mM, toward MUF lactoside was 4 mM and toward CMC was 3.6 WI. The pH optimum is from 4.5 to 7.50% of maximum activity toward CMC and 80% activity toward RBB-CMC is kept at pH 8. 70-80% activity within pH 5-8 is kept during 25 hours of incubation. The temperature optimum is 60-70.degree. C. CBH1 is a member of the cellobiohydrolase family 7. The corresponding CBH promoter, which is a preferred embodiment of the invention, is indicated in SEQ ID No. 1.

Xyl1

[0119] From the amino acid sequences of Xyl1 we conclude that also here a CBD is present, in this protein at the N-terminal side (i.e. directly attached to or at less than 5 amino acids distance from the signal sequence). In the literature only few more xylanases with a CBD are known (Fusarium oxysporum, Humicola grisea and Neocallimastix patriciarum). The estimated size of the Xyl1 protein is 43 kD and several peptides isolated from a 30 kD xylanase originate from this protein (SEQ ID No. 3, 4). Several isolated peptides could not be found in the encoded sequence. This could indicate that alternative xylanase proteins are present in UV18-25. In previous analyses, no evidence was found for the presence of CBD in this 30 kD protein. Also from these results we hypothesized that the CBD of the protein is cleaved off by proteolysis. This hypothesis will be analysed further (by determination of activities, N-terminal sequences and sizes of the different proteins in the different C1 strains: C1 wild type, NG7C, UV13-6, UV 18-25 and protease mutants of UV18-25). Also the effect of the presence or absence of the CBD on enzymatic activities is analysed in more detail. Overexpression of the full length genes in various C1 hosts may be considered.

[0120] The presence of a cellulose-binding domain (CBD) is a particular feature of this enzyme. The only other known family 10 glycolytic enzyme (xylanase) having an N-terminal CBD is the Fusarium oxysporum XylF. The CBD of the Chtysosporium lucknowense Xyl1 protein has the sequence: WGQCG GQGWT GPTTC VSGAV CQFVN DWYSQ CV (amino acids 22-53 of SEQ ID No. 4). This sequence does not comply to the CBD consensus sequence described in U.S. Pat. No. 5,763,254 (Novo). This consensus sequence of U.S. Pat. No. 5,763,254 is: W/Y-G/A-Q-C-G G-Q/I/N-GN-W/F/Y-S/T/N/Q G-P/A/C-T/R/K-T/CN-C X-X-G/P-S/T/F/L/A/--T/K C-V/T/R/E/K-K/Q/A-Q/1-N Q/D/A-W/F/Y-Y-Y/S/H/A-Q C-L/I/QN/T, wherein W/Y means either W or Y etc., X means any amino acid, and - means absent. Four differences with the most degenerate consensus sequence are present in Xyl1, which are underlined in sequence 7 above. The invention thus pertains to xylanases having an N-terminal CBD different from this consensus CBD and other than the Fusarium oxysporum xylanase. More particularly the xylanase of the invention has a CBD having at least 55%, especially at least 65%, preferably at least 75% sequence identity with the sequence 7 above. Preferably the CBD contains one of the amino acids Phe, Tyr and Trp at position 23, or at least one of the four amino acids Val at position 20, Gln at position 22, Phe at position 23, and Val at position 24. Preferred sequences comprise Cys-Xaa-Phe, Xaa-Phe-Val, Cys-Xaa-Phe-Val, Cys-Gln-Phe, Val-Cys-Xaa-Phe, Gln-Phe-Val, Gln-Trp-Val, Gln-Tyr-Val, Val-Cys-Gln, Val-Cys-Gln-Phe, and Val-Cys-Xaa-Phe-Val, wherein Xaa is any amino acid or preferably Val, Thr, Arg, Glu, Gln or Lys, or most preferably Gln or Glu.

[0121] The xylanase does not possess MUF cellobiase activity and is thus a true xylanase. It possesses high activity within a broad pH range from 5-8 maintaining 65% of maximum activity at pH 9-10; it is a member of the xylanase F family. The corresponding xylanase promoter, which is a preferred embodiment of the invention, is shown in SEQ ID No. 3. The Michaelis constant towards birch xylan is 4.2 g/l for the 30 kD xylanase. Temperature optimum was high and equal to 70.degree. C. for the xylanase.

Gpd1

[0122] The DNA sequence of the C-terminal part of the gpd1 gene is not determined. The promoter sequences of this gene is a preferred embodiment of the present invention and is depicted in SEQ ID No. 5.

[0123] The expression level of four Chrysosporium genes was studied by Northern analysis. Various strains of C. lucknowense were grown in rich medium containing pharmedia with cellulose and lactose (medium 1) or rich medium containing pharmedia and glucose (medium 2) at 33.degree. C. After 48 h, mycelium was harvested and RNA was isolated. The RNA was hybridised with 4 different probes: EG5, EG6, Xyl1 and CBH. After exposure, the Northern blots were stripped and hybridised again with a probe for ribosomal L3 as a control for the amount of mRNA on the blot. Most strains showed very high response for CBH and high response for Xyl1 in medium 1; in medium 2, half of the strain showed high response for all genes, and the other half showed low response. The order of expression strength was deducted from these data as CBH>Xy11>EG5>EG6.

[0124] The protein Xyl1 of C. lucknowense is 67% identical (72% homologous) to its closest homologue in the Genbank DATABASE (Table 4). The strong homology of the CBH1 protein to its related Humicola grisea homologue (74% identical/82% homologous) is noteworthy. It is also noted that in all cases the closest homologues originate from Fusarium, Humicola or other Pyrenomycetous (Sordariamycetous) fungi (Table 4), whereas Chrysosporium belongs to the Plectomycetous (Eurotiomycetous) fungi according to the NCBI database (Table 4). Thus the invention also pertains to glycanolytic enzymes, especially cellobiohydrolases and xylanases comprising a CBD, derived from plectomycetous fungi.

TABLE-US-00006 TABLE 4 Structural and comparative data of CBH1, Xyl1, and GPD1 of the invention. isolated number glycosidase from of amino related sequences family C1 acids introns remarks (% identity/% homology) CBH1 7 70 kD 526 1 CBD Humicola grisea (74/82) 55 kD (63 kD) (CBH1: P15828) Fusarium oxysporum (58/68) (CBH: P46238) Neurospora crassa (60/69) (CBH1: P38676) XYL1 10 30 kD 333 3 CBD Fusarium oxysporum (67/72) (43 kD) (XylF: P46239) Penicillium simplissicum (63/72) (XylF: P56588) Aspergillus aculeatus (61/70) (XylF: O59859) GPD1 -- -- Incomplete 2+? -- Podospora anserina (85/89) (GPD: P32637) Neurospora crassa 80/86) (GPD: U67457) Cryphonectria parasitica 80/85) (GPD: P19089)

DESCRIPTION OF THE FIGURES

[0125] FIG. 1 is a pUT1064 map

[0126] FIG. 2 is a pUT1065 map

REFERENCES

The Contents Hereof are Incorporated

[0127] 1. Calmels T. P., Martin F., Durand H., and Tiraby G. (1991) Proteolytic events in the processing of secreted proteins in fungi. J Biotechnol 17(1): p. 51-66. [0128] 2. Punt P. J., Dingemanse M. A., Jacobs-Meijsing B. J., Pouwels P. H., and van den Hondel C. A. (1988) Isolation and characterization of the glyceraldehyde-3-phosphate dehydrogenase gene of Aspergillus nidulans. Gene 69(1): p. 49-57. [0129] 3. Shoemaker S., Schweickart V., Ladner M., Gelfand D., Kwok S., Myambo K., and Innis M. (1983) Molecular cloning of exo-cellobiohydrolase I derived from Trichoderma reesei strain L27. Bio/Technology October:691-696. [0130] 4. Drocourt D., Calmels T., Reynes J. P., Baron M., and Tiraby G. (1990) Cassettes of the Streptoalloteichus hindustanus ble gene for transformation of lower and higher eukaryotes to phleomycin resistance. Nucleic Acids Res 18(13): p. 4009. [0131] 5. Mullaney E. J., Hamer J. E., Roberti K. A., Yelton M. M., and Timberlake W. E. (1985) Primary structure of the trpC gene from Aspergillus nidulans. Mol Gen Genet. 199(1): p. 37-45. [0132] 6. Yanisch-Perron C., Vieira J., and Messing J. (1987) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the MI3mp18 and pUC19 vectors. Gene 33:103-119. [0133] 7. Durand H., Baron M., Calmels T., and Tiraby G. (1988) Classical and molecular genetics applied to Trichoderma reesei for the selection of improved cellulolytic industrial strains, in Biochemistry and genetics of cellulose degradation, J. P. Aubert, Editor. Academic Press. p. 135-151. [0134] 8. Lowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J. (1951) Protein measurements with the folin phenol reagent. J. Biol. Chem. 193: 265-275. [0135] 9. Parriche M., Bousson J. C., Baron M., and Tiraby G. Development of heterologous protein secretion systems in filamentous fungi. in 3rd European Conference on Fungal Genetics. 1996. Munster, Germany. [0136] 10. Baron M., Tiraby G., Calmels T., Parriche M., and Durand H. (1992) Efficient secretion of human lysozyme fused to the Sh ble phleomycin resistance protein by the fungus Tolypocladium geodes. J Biotechnol 24(3): p. 253-266. [0137] 11. Jeenes D. J., Marczinke B., MacKenzie D. A., and Archer D. B. (1993) A truncated glucoamylase gene fusion for heterologous protein secretion from Aspergillus niger. FEMS Microbiol. Lett. 107(2-3): p. 267-271. [0138] 12. Stone P. J., Makoff A. J., Parish J. H., and Radford A. (1993) Cloning and sequence-analysis of the glucoamylase gene of neurospora-crassa. Current Genetics 24(3): p. 205-211. [0139] 13. Morsky P. (1983) Turbidimetric determination of lysozyme with Micrococcus lysodeikticus cells: Reexamination of reaction conditions. Analytical Biochem. 128:77-85. [0140] 14. Paluh J. L., Orbach M. J., Legerton T. L., and Yanofsky C. (1988) The cross pathway control gene of Neurospora crassa, cpc-1, encodes a protein similar to GCN4 of yeast and the DNA-binding domain of the oncogene v-jun-encoded protein. Proc. Natl. Acad. Sci. USA 85(11): p. 3728-32. [0141] 15. Nakari T., Onnela M. L., Ilmen M., Nevalainen K., and Penttila M. (1994) Fungal promoters active in the presence of glucose, WO 94/04673, Alko. [0142] 16. Torronen A., Mach R. L., Messner R., Gonzalez R., Kalkkinen N., Harkki A., and Kubicek C. P. (1992) The two major xylanases from Trichoderma reesei: characterization of both enzymes and genes. Biotechnology (N Y) 10(11): p. 1461-5. [0143] 17. Farkas V. (1985) Novel media for detection of microbial producers of cellulase and xylanase. FEMS Microbiol. Letters 28:137-140. [0144] 18. Miller G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31:426-428. [0145] 19. Punt P. J., Mattern I. E., van den Hondel C. A. M. J. J. (1988) A vector for Aspergillus transformation conferring phleomycin resistance. Fungal Genetics Newsletter 35, 25-30.

TABLE-US-00007 [0145] SEQ ID No 1: DNA sequence and amino acid of complete Chrysosporium CBH1 gene including promoter and terminator sequences. Promoter sequence (1- 1779), terminator sequence (3427-4451) and intron sequence (2179- 2256) are given in small case. aaggtatccgatttggggaacgtcgatgaaagtattgcaaaagtgacgagagttgcgcaa 60 ctaactcgctgccgaagaagctgcggaagaaagagaacaccgaaagtggaataacgttac 120 ggatgtcctgacctcaaagttgaaaccagcccttcctgctctatttgggaaagcggcttg 180 cccttgaatgcgctgcactgtggcacgactaccagtgatcgggaggagcaaactaccctg 240 gtccgttccttggtggggcggcactaggcccaacttagggtgatcggaggtcgatgccgc 300 ggtcctcgttggtctgggctcttctcatttcccggtttgcaccccccgttgcacctgctg 360 atcgcccgccaacgccgatgaggttgcgcccagaccgacaatcaccgcggctgcattccc 420 aagtatattgaagatggcaccaggtacccggttttgcgtcccagtcgtttggtgccaaat 480 ttgggagtttttgagcctcaagatctggggaaatcgacctcaacttccatacaagttaaa 540 gtcgcacacacggcgagttccacgaagagacacatttttttctgaaggcctctctccccg 600 cacatcagaaaccaccaaataccaagactgcagaagccggggtaagtgggccaccgggac 660 tacactaaaatgcggggagaagcgagatccgttgcgaagggaagggatggggtgtgctgc 720 ggctttctccgctctcgtgcgccttttgcttgaatctagtgtacaccagggtaggctccg 780 aaggagtatctacggcagcgctgttcgtgctgcgttgagagtcagggcggagacgagcag 840 gcgacaggagcctcgcaccggcacttcggatcgcatttgcgcggagcgtcaaatacgctc 900 ttctgcggtcatcagagagcatcgtgaaccaaggttcttccgcagggcggcctgggcttc 960 gcagagtcgcactcggcggacgccttccgtgtcacccctgataacctggctgccgcgccc 1020 agactcctccaatgaggtgtgtggttgccctcgccgacccttcagcaaccttaatcgctt 1080 ccatcgcacggctccacgtcctcgaacgatgccctcagtccgtgcccggccgtggcaacc 1140 ataacgtgacatcgccgcccagcctactagccgctatcgaccggttaggcttgtcaccgc 1200 agcgcccattctccatcgggcctctactctgatccacctcacccaccgcaagcactagcg 1260 agcctcaccagagtgcaagcgacacgacccgcttggcccttcgtccttgactatctccca 1320 gacctcttgccatcttgccgacgccgcccccttttttttctcctccccctgccggcaggt 1380 cggtggccccagtcccgagatggcattgctccgttgtccatgacgacccatcattcgatg 1440 gctgactggcacactcgtcttgtttgagcatcgacggcccgcggcccgtctcccacggta 1500 cggaacctcgttgtacagtacctctcgtaatgatacccaacaccggggccgagcgctggg 1560 agggcggcgttcccgagaagccgggaaggcggctggccggctgacctttgtgacttggcg 1620 atggatgcggccatggagaatgtccgtccgaagcgacgcgacaattagcctggctaccat 1680 cgatataaattgggtgattcccagctcttgatgggcgtgtcttctgcctggcagccctcg 1740 tcttcagatcaagcaactgtgtgctgatcctcttccgccATGTACGCCAAGTTCGCGACC 1800 M Y A K F A T CTCGCCGCCCTTGTGGCTGGCGCCGCTGCTCAGAACGCCTGCACTCTGACCGCTGAGAAC 1860 L A A L V A G A A A Q N A C T L T A E N CACCCCTCGCTGACGTGGTCCAAGTGCACGTCTGGCGGCAGCTGCACCAGCGTCCAGGGT 1920 H P S L T W S K C T S G G S C T S V Q G TCCATCACCATCGACGCCAACTGGCGGTGGACTCACCGGACCGATAGCGCCACCAACTGC 1980 S I T I D A N W R W T H R T D S A T N C TACGAGGGCAACAAGTGGGATACTTCGTACTGCAGCGATGGTCCTTCTTGCGCCTCCAAG 2040 Y E G N K W D T S Y C S D G P S C A S K TGCTGCATCGACGGCGCTGACTACTCGAGCACCTATGGCATCACCACGAGCGGTAACTCC 2100 C C I D G A D Y S S T Y G I T T S G N S CTGAACCTCAAGTTCGTCACCAAGGGCCAGTACTCGACCAACATCGGCTCGCGTACCTAC 2160 L N L K F V T K G Q Y S T N I G S R T Y CTGATGGAGAGCGACACCAAGTACCAGAgtaagttcctctcgcacccggccgccgggaga 2220 L M E S D T K Y Q M tgatggcgcccagcccgctgacgcgaatgacacaGTGTTCCAGCTCCTCGGCAACGAGTT 2280 F Q L L G N E F CACCTTCGATGTCGACGTCTCCAACCTCGGCTGCGGCCTCAATGGCGCCCTCTACTTCGT 2340 T F D V D V S N L G C G L N G A L Y F V GTCCATGGATGCCGATGGTGGCATGTCCAAGTACTCGGGCAACAAGGCAGGTGCCAAGTA 2400 S M D A D G G M S K Y S G N K A G A K Y CGGTACCGGCTACTGTGATTCTCAGTGCCCCCGCGACCTCAAGTTCATCAACGGCGAGGC 2460 G T G Y C D S Q C P R D L K F I N G E A CAACGTAGAGAACTGGCAGAGCTCGACCAACGATGCCAACGCCGGCACGGGCAAGTACGG 2520 N V E N W Q S S T N D A N A G T G K Y G CAGCTGCTGCTCCGAGATGGACGTCTGGGAGGCCAACAACATGGCCGCCGCCTTCACTCC 2580 S C C S E M D V W E A N N M A A A F T P CCACCCTTGCACCGTGATCGGCCAGTCGCGCTGCGAGGGCGACTCGTGCGGCGGTACCTA 2640 H P C W V I G Q S R C E G D S C G G T Y CAGCACCGACCGCTATGCCGGCATCTGCGACCCCGACGGATGCGACTTCAACTCGTACCG 2700 S T D R Y A G I C D P D G C D F N S Y R CCAGGGCAACAAGACCTTCTACGGCAAGGGCATGACGGTCGACACGACCAAGAAGATCAC 2760 Q G N K T F Y G K G M T V D T T K K I T GGTCGTCACCCAGTTCCTCAAGAACTCGGCCGGCGAGCTCTCCGAGATCAAGCGGTTCTA 2820 V V T Q F L K N S A G E L S E I K R F Y CGTCCAGAACGGCAAGGTCATCCCCAACTCCGAGTCCACCATCCCGGGCGTCGAGGGCAA 2880 V Q N G K V I P N S E S T I P G V E G N CTCCATCACCCAGGACTGGTGCGACCGCCAGAAGGCCGCCTTCGGCGACGTGACCGACTT 2940 S I T Q D W C D R Q K A A F G D V T D ? NCAGGACAAGGGCGGCATGGTCCAGATGGGCAAGGCCCTCGCGGGGCCCATGGTCCTCGT 3000 Q D K G G M V Q M G K A L A G P M V L V CATGTCCATCTGGGACGACCACGCCGTCAACATGCTCTGGCTCGACTCCACCTGGCCCAT 3060 M S I W D D H A V N M L W L D S T W P I CGACGGCGCCGGCAAGCCGGGCGCCGAGCGCGGTGCCTGCCCCACCACCTCGGGCGTCCC 3120 D G A G K P G A E R G A C P T T S G V P CGCTGAGGTCGAGGCCGAGGCCCCCAACTCCAACGTCATCTTCTCCAACATCCGCTTCGG 3180 A E V E A E A P N S N V I F S N I R F G CCCCATCGGCTCCACCGTCTCCGGCCTGCCCGACGGCGGCAGCGGCAACCCCAACCCGCC 3240 P I G S T V S G L P D G G S G N P N P P CGTCAGCTCGTCCACCCCGGTCCCCTCCTCGTCCACCACATCCTCCGGTTCCTCCGGCCC 3300 V S S S T P V P S S S T T S S G S S G P GACTGGCGGCACGGGTGTCGCTAAGCACTATGAGCAATGCGGAGGAATCGGGTTCACTGG 3360 T G G T G V A K H Y E Q C G G I G F T G CCCTACCCAGTGCGAGAGCCCCTACACTTGCACCAAGCTGAATGACTGGTACTCGCAGTG 3420 P T Q C E S P Y T C T K L N D W Y S Q C CCTGTAAacgaacctctctgaaggaggttctgagacacgcgcgattcttctgtatatagt 3480 L * tttatttttcactctggagtgcttcgctccaccagtacataaaccttttttttcacgtaa 3540 caaaatggcttcttttcagaccatgtgaaccatcttgatgccttgacctcttcagttctc 3600 actttaacgtagttcgcgttagtctgtatgtcccagttgcatgtagttgagataaatacc 3660 cctggaagtgggtctgggcctttgtgggacggagccctctttctgtggtctggagagccc 3720 gctctctaccgcctaccttcttaccacagtacactactcacacattgctgaactgaccca 3780 tcataccgtactttatcctgttaattcgtggtgctgtcgactattctatttgctcaaatg 3840 gagagcacattcatcggcgcagggatacacggtttatggaccccaagagtgtaaggacta 3900 ttattagtaatattatatgcctctaggcgccttaacttcaacaggcgagcactactaatc 3960 aacttttggtagacccaattacaaacgaccatacgtgccggaaattttgggattccgtcc 4020 gctctccccaaccaagctagaagaggcaacgaacagccaatcccggtgctaattaaatta 4080 tatggttcattttttttaaaaaaattttttcttcccattttcctctcgcttttctttttc 4140 gcatcgtagttgatcaaagtccaagtcaagcgagctatttgtgctatagctcggtggcta 4200 taatcagtacagcttagagaggctgtaaaggtatgataccacagcagtattcgcgctata 4260 agcggcactcctagactaattgttacggtctacagaagtaggtaataaaagcgttaattg 4320 ttctaaatactagaggcacttagagaagctatctaaatatatattgaccctagcttatta 4380 tccctattagtaagttagttagctctaacctatagatagccaaatgctataataggtacc 4440 agggttcaaaa 4451 SEQ ID No: 2: Amino acid of complete Chrysosporium CBH1 protein. The putative signal peptide (1-19) is shown in italic letters and the cellulose binding domain (496-526) is shown in bold underlined letters. MYAKFATLAA LVAGAAAQNA CTLTAENHPS LTWSKCTSGG SCTSVQGSIT 50 IDANWRWTHR TDSATNCYEG NKWDTSYCSD GPSCASKCCI DGADYSSTYG 100 ITTSGNSLNL KFVTKGQYST NIGSRTYLME SDTKYQMFQL LGNEFTFDVD 150 VSNLGCGLNG ALYFVSMDAD GGMSKYSGNK AGAKYGTGYC DSQCPRDLKF 200 INGEANVENW QSSTNDANAG TGKYGSCCSE MDVWEANNMA AAFTPHPC?V 250 IGQSRCEGDS CGGTYSTDRY AGICDPDGCD FNSYRQGNKT FYGKGMTVDT 300 TKKITVVTQF LKNSAGELSE IKRFYVQNGK VIPNSESTIP GVEGNSITQD 350 WCDRQKAAFG DVTD?QDKGG MVQMGKALAG PMVLVMSIWD DHAVNMLWLD 400 STWPIDGAGK PGAERGACPT TSGVPAEVEA EAPNSNVIFS NIRFGPIGST 450 VSGLPDGGSG NPNPPVSSST PVPSSSTTSS GSSGPTGGTG VAKHYEQCGG 500 IGFTGPTQCE SPYTCTKLND WYSQCL * 526 SEQ ID No. 3 DNA sequence sequence of complete Chrysosporium Xyl1 gene including promoter and terminator sequences. Promoter sequence (1-969), terminator sequence (2428-3030(3028)) and intron sequences (1043- 1116, 1181-1332(1331), 1596(1595)-1674(1672) are given in small case. tcatcaacttggcgtttggatgtactaatattacacgtcgtttgcnnagcggagtctgtg 60 tcatctccgtggggtcgggtgctccagacgacgcttcgggccgatcctgaattcgggaag 120 gaaacggttcggctaatcaggtcctctaaaatataacgaagcactacagagggagttcct 180 cagaggacatcgtatcaaccgaagaacgaagcgccgaaaggactgatcaaaacaggagta 240 ggtagggatgtgtgagtacctaaactttccatacctgacataaaatcatcatggtgcttc 300 agacctgtttgatgaggcgagggcggaggccgcattgtattttcgttccttccttctttt 360 tgttagtatatctnagggttccatcgtaaaatggaatcttccagctctactagtaattag 420 aacaatagttctgatgtcgtgcgccaagctttttcagatgactgccaaaaacccatcatg 480 ggtatggacaaaagcagtaatcggagtcacaacgccgcattttccttcatgatttccgtc 540 aaccggagaggtcggaggaggactccggccacatgtgatgcgaagaagtacatggcgcca 600 tggttctaacctcttatagtctgaaaatgcgcggaggccagcgaagccaagcccgggaac 660 cgttcttgtcatggtttcagtattgtttcgctaaacattctatccgattcgcgataggtg 720 cggctgccaccgaaggttgtatccttaaagctttggtaagtacggagtacggaaatggaa 780 acgcgccgcagtcctggttccatcggtatcctccgcatgctccgccaaaaaaagaaaacc 840 cgggtatgtttacaaaggatataagagacaagatgcaccacccgcccccttcccatctgc 900 cggttgcccacgtcgccgtcgactgcttgtccgcttcctacctgcagcctctttcagaga 960 ccatcaaacATGCGTACTCTTACGTTCGTGCTGGCAGCCGCCCCGGTGGCTGTGCTTGCC 1020 M R T L T F V L A A A P V A V L A

CAATCTCCTCTGTGGGGCCAGTgtatgtaattgccttactcggaaaatagtcaccactag 1080 Q S P L W G Q C agggacttaagctcactacttcctgtttcacaatagGCGGCGGTCAAGGCTGGACAGGTC 1140 G G Q G W T G CCACGACCTGCGTTTCtGGCGCAGTATGCCAATTCGTCAAgtcagtaactgcttttatt 1200 P T T C V S G A V C Q F V N tcttttctctctgggattacgatttcgttttgcacttagcttggttctgcatttcattgt 1260 tgtattgttctctttttgtgtgtgagaggttttattaccacctaaaggccatttgctaac 1320 aaatctccccagTGACTGGTACTCCCAATGCGTGCCCGGATCGAGCAACCCTCCTACGGG 1380 D W Y S Q C V P G S S N P P T G CACCACCAGCAGCACCACTGGAAGCACCCCGGCTCCTACTGGCGGCGGCGGCAGCGGAAC 1440 T T S S T T G S T P A P T G G G G S G T CGGCCTCCACGACAAATTCAAGGCCAAGGGCAAGCTCTACTTCGGAACCGAGATCGATCA 1500 G L H D K F K A K G K L Y F G T E I D H CTACCATCTCAACAACAATGCCTTGACCAACATTGTCAAGAAAGACTTTGGTCAAGTCAC 1560 Y H L N N N A L T N I V K K D F G Q V T TCACGAGAACAGCTTGAAGTGGGATGCTACTGAGCgtgagtgacctctcctccttctccc 1620 H E N S L K W D A T E P gacaataatagataattacgagccggttcgaggctgacattgcgcgattctagCGAGCC 1680 S R GCAATCAATTCAACTTTGCCAACGCCGACGCGGTTGTCAACTTTGCCCAGGCCAACGGCA 1740 N Q F N F A N A D A V V N F A Q A N G K AGCTCATCCGCGGCCACACCCTCCTCTGGCACTCTCAGCTGCCGCAGTGGGTGCAGAACA 1800 L I R G H T L L W H S Q L P Q W V Q N I TCAACGACCGCAACACCTTGACCCAGGTCATCGAGAACCACGTCACCACCCTTGTCACTC 1860 N D R N T L T Q V I E N H V T T L V T R GCTACAAGGGCAAGATCCTCCACTGGGACGTCGTTAACGAGATCTTTGCCGAGGACGGCT 1920 Y K G K I L H W D V V N E I F A E D G S CGCTCCGCGACAGCGTCTTCAGCCGCGTCCTCGGCGAGGACTTTGTCGGCATCGCCTTCC 1980 L R D S V F S R V L G E D F V G I A F R GCGCCGCCCGCGCCGCCGATCCCAACGCCAAGCTCTACATCAACGACTACAACCTCGACA 2040 A A R A A D P N A K L Y I N D Y N L D I TTGCCAACTACGCCAAGGTGACCCGGGGCATGGTCGAGAAGGTCAACAAGTGGATCGCCC 2100 A N Y A K V T R G M V E K V N K W I A Q AGGGCATCCCGATCGACGGCATCGGCACCCAGTGCCACCTGGCCGGGCCCGGCGGGTGGA 2160 G I P I D G I G T Q C H L A G P G G W N ACACGGCCGCCGGCGTCCCCGACGCCCTCAAGGCCCTCGCCGCGGCCAACGTCAAGGAGA 2220 T A A G V P D A L K A L A A A N V K E I TCGCCATCACCGAGCTCGACATCGCCGGCGCCTCCGCCAACGACTACCTCACCGTCATGA 2280 A I T E L D I A G A S A N D Y L T V M N ACGCCTGCCTCCAGGTCTCCAAGTGCGTCGGCATCACCGTCTGGGGCGTCTCTGACAAGG 2340 A C L Q V S K C V G I T V W G V S D K D ACAGCTGGAGGTCGAGCAGCAACCCGCTCCTCTTCGACAGCAACTACCAGCCAAAGGCGG 2400 S W R S S S N P L L F D S N Y Q P K A A CATACAATGCTCTGATTAATGCCTTGTAAgaggaggtatattatttttagaggcaatgaa 2460 Y N A L I N A L * gctaggaggaaagaggggaagtgaggtaattagctaggacaggcaaatctagcagcaatt 2520 ataagtcaacactatataaaatattcctataatggcttgtgcttcggtgtgcaaaaaaaa 2580 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaactcaaaaacaaaaatgatccaacatgatt 2640 cgaaatggcgaccttgcaaatgcacacctcagataataccactatacaatacaccttaaa 2700 tggcacctaaatccatttgtctgcggtcatagacggggcttaagaagcctgggatgcagg 2760 tgtcgatgcaagggttacgtcagtgtatgatatgagtatgaaccatgctgtctgggtaat 2820 tctccactttccctccccttacgactcttcgggtgtgcctctctagaaagtcgactcctg 2880 gcgcctcagatcgccctttggctctgttcggtacaatgacgtccgctggtttcttccaaa 2940 gaccaggtatttctcccgtggcaacaaagaataccaaatacctatatcgaaccgtagtct 3000 tctgataattagatgtctctcaaggcgcgg 3030 SEQ ID No. 4 Amino acid sequence of complete Chrysosporium Xyl1 protein. The signal peptide (1-20) is shown in italic letters and the cellulose binding domain (22-53) is shown in bold underlined letters. 1 MRTLTFVLAA APVAVLAQSP LWGQCGGQGW TGPTTCVSGA VCQFVNDWYS 51 QCVPGSSNPP TGTTSSTTGS TPAPTGGGGS GTGLHDKFKA KGKLYFGTEI 101 DHYHLNNNAL TNIVKKDFGQ VTENSLKWDA TEPSRNQFNF ANADAVVNFA 151 QANGKLIRGH TLLWHSQLPQ WVQNINDRNT LTQVIENHVT TLVTRYKGKI 201 LHWDVVNEIF AEDGSLRDSV FSRVLGEDFV GIAFRAARAA DPNAKLYIND 251 YNLDIANYAK VTRGMVEKVN KWIAQGIPID GIGTQCHLAG PGGWNTAAGV 301 PDALKALAAA NVKEIAITEL DIAGASANDY LTVMNACLQV SKCVGITVWG 351 VSDKDSWRSS SNPLLFDSNY QPKAAYNALI NAL* SEQ ID No: 5 DNA sequence of partial Chrysosporium GPD1 gene including promoter sequences. Promoter sequence (1-1555) and intron sequence (1682- 1781) are given in small case. The 3' end of the gene is lacking. tgagcagcaatgagcagcaatgagcattcctgggccaccgagtctgagtgccagtacgga 60 gtatcgtacttcgtaccggggtttgatttggtgacggtgcttttcacctctcgatgcccg 120 aaatcgggtctaagctgagtttgatcaaatatgtgactccaacatcgcccccttcggcaa 180 accccgtcgacacgtgtgtcatccttccattgcaagcgatcactcgcagggcgtgacgat 240 gaacgagatttttgcccggaccgattcgcggatatagcggcagccgaccagccctaccac 300 actgatggccgtgtcactagtgtatgctcccagaaccgcaagcatacactgggcaatgct 360 tggtatgcagttgaggcagctttatgtttccatacccttccacttcggctcggggactcg 420 gcggggtcgcggaagtttgacggcagccgtcgggccttaggccgagattaccgtggttgt 480 ggcccagttttagccgttcccgtccgtttcctaccggaccatgattttcgtgaaccattg 540 caatcccgaagcgcatttccgacgttaaggagttacctccgctgcccagaattcatgatc 600 gtggccggctcaaggcagcgtggcggggcatccgtgtcaagctcccaggaggaggtgcgc 660 gatttcaaatccgggccaaaacaggccaagactggctggccaaaaaaaggagcgtagacg 720 gcccgggacatcggacgtcagctcgcagccacccaaaaccggtccgatctactcgcttac 780 tgtggtagttcaggtacttttgagtagtaaaaacgctacggcagggccggggggttcccc 840 ggtgacggaggtgcctctgcggtggcgaacatcccacgcactctcgagctacggtgacac 900 ctcgtgtcctgttggtcttgcaatgctggggcggcaggaaatgcgtcgcgctcctcccgg 960 ccaagacctaaaacagacagcgccgcaaagtcgctcactagcaccgcgaaacgaagatgc 1020 cccacctcaacgcaatctgtgatgcaagcaattgggaaggctcaccccacctcagcgagg 1080 ggctcaaccatttttattatcagctcatgccaccacaacatgactgttttctttccttgc 1140 tcatcccacatttgacaaaaatcgtcgattaatctctttccatacaggccgtccgcgctc 1200 tgataaccacataaaagtctcttcagtcaacagctcaaagctccctcatccctccaggta 1260 agcagccaaagagctcccccacggaccccgcactgcctcatcccgcctgtatcggacctg 1320 cgcgacccagcagagaatcccaaacctttgctgcttgctgcccggttccggactgagctg 1380 caacccaagcctttaaaaagcttttcccttctcccacggtgtcaactctgtcctatccct 1440 ccgacatccgttgagctcaacaactccccgaaccttttaccccgcgccgagctacccctc 1500 catcaaaccaccctgacagctcgctcactcacctccccacatcacagaaatcaaaATGAC 1560 M T -- TATCAAGGTCGGCATCAACGGTTTCGGCCGTATCGGCCGTATCGTCTTCCGCAACTCCAT 1620 I K V G I N G F G R I G R I V F R N S I -- CGAGCACTCGGATGTCGAGATCGTTGCCGTCAACGACCCCTTCATTGAGCCCAAGTACGC 1680 E H S D V E I V A V N D P F I E P K Y A -- Tgtaagtagttttttttttccttcctcgcgttctttcctgttccatcgacagtacgagat 1740 GatcttgcaggcggatcggagctaaccgcgattgtcgtacagGAGTACATGCTCAAGTAT 1800 E Y M L K Y -- GACTCGACCCACGGTATCTTCAACGGCACCATCGCCGTCGAGGGCAACGACCTCATTGTC 1860 D S T H G I F N G T I A V E G N D L I V -- AACGGCAAGAGGGTCAAGTTCTACACTGAGCGGGMCCCCGCCAACATTCCCTGGARGGAA 1920 N G K R V K F Y T E R ? P A N I P W ? E -- ACTGGTGCCGAGTACATMRTCGAGTCGACCGGTGTGTTCACCAMCACCSAGAAGGCTAGC 1980 T G A E Y I ? E S T G V F T ? T ? K A S -- GCCCACCTCAAGGGCGGCGCCAAGCGCGTCATCATCTCTGCTCCCTCGGCCGATGCCCCC 2040 A H L K G G A K R V I I S A P S A D A P -- ATGTACGTCATGGGCGTCAACGAGAAGACCTACGACGGCAAGGCCCAGGTCATCTCTAAC 2100 M Y V M G V N E K T Y D G K A Q V I S N -- GCCTCGTGCACCACCAACTGCCTGGCTCCCCTCGCCAAGGTCATCCACGACAAGTTCGGC 2160 A S C T T N C L A P L A K V I H D K F G -- CTCGTTGAGGGTCTCATGACCACCGTCCACTCCTACACTGCCACCCAGAAGACCGTCGAT 2220 L V E G L M T T V H S Y T A T Q K T V D -- GGTCCCTCTGCCAAGGACTGGCGTGGTGGCCGTGGTGCTGCTCAGAACATCATCCCCAGC 2280 G P S A K D W R G G R G A A Q N I I P S -- AGCACTGGCGCCGCCAAGGCCGTCGGCAAGGTCATCCCTGAGCTCAACGGCAAGCTCACC 2340 S T G A A K A V G K V I P E L N G K L T -- GGCATGTCCCTCCGTGTCCCCACCCCCAACGTTTCCGTTGTCGACCTCACCTGCCGCCTC 2400 G M S L R V P T P N V S V V D L T C R L -- GAGAAGGAGGCTACCTACGACGACATCAAGGCCGCCATCAAGGAGGCCGCCGCCGGCCCC 2460 E K E A T Y D D I K A A I K E A A A G P -- CTCAAGGgtgagttatctggttcctttttttttttttggagaacgacacatgctgataaa 2520 L K G acccagGCATCCTCGACTACACTGAGG 2547 I L D Y T E SEQ ID No. 6 Amino acid of partial Chrysosporium GPD1 protein (the C-terminus is lacking in the sequence available). MTIKVGINGF GRIGRIVFRN SIEHSDVEIV AVNDPFIEPK YAEYMLKYDS THGIFNGTIA VEGNDLIVNG KRVKFYTER? PANIPW?ETG AEYI?ESTGV FT?T?KASAH LKGGAKRVII SAPSADAPMY VMGVNEKTYD GKAQVISNAS CTTNCLAPLA KVIHDKFGLV EGLMTTVHSY TATQKTVDGP SAKDWRGGRG AAQNIIPSST GAAKAVGKVI PELNGKLTGM SLRVPTPNVS VVDLTCRLEK EATYDDIKAA IKEAAAGPLK GILDYTE

Sequence CWU 1

1

1214451DNAChrysosporium lucknowenseCDS(1780)..(2188)CDS(2256)..(3424)modified_base(2941)a, t, c, g, other or unknown 1aaggtatccg atttggggaa cgtcgatgaa agtattgcaa aagtgacgag agttgcgcaa 60ctaactcgct gccgaagaag ctgcggaaga aagagaacac cgaaagtgga ataacgttac 120ggatgtcctg acctcaaagt tgaaaccagc ccttcctgct ctatttggga aagcggcttg 180cccttgaatg cgctgcactg tggcacgact accagtgatc gggaggagca aactaccctg 240gtccgttcct tggtggggcg gcactaggcc caacttaggg tgatcggagg tcgatgccgc 300ggtcctcgtt ggtctgggct cttctcattt cccggtttgc accccccgtt gcacctgctg 360atcgcccgcc aacgccgatg aggttgcgcc cagaccgaca atcaccgcgg ctgcattccc 420aagtatattg aagatggcac caggtacccg gttttgcgtc ccagtcgttt ggtgccaaat 480ttgggagttt ttgagcctca agatctgggg aaatcgacct caacttccat acaagttaaa 540gtcgcacaca cggcgagttc cacgaagaga cacatttttt tctgaaggcc tctctccccg 600cacatcagaa accaccaaat accaagactg cagaagccgg ggtaagtggg ccaccgggac 660tacactaaaa tgcggggaga agcgagatcc gttgcgaagg gaagggatgg ggtgtgctgc 720ggctttctcc gctctcgtgc gccttttgct tgaatctagt gtacaccagg gtaggctccg 780aaggagtatc tacggcagcg ctgttcgtgc tgcgttgaga gtcagggcgg agacgagcag 840gcgacaggag cctcgcaccg gcacttcgga tcgcatttgc gcggagcgtc aaatacgctc 900ttctgcggtc atcagagagc atcgtgaacc aaggttcttc cgcagggcgg cctgggcttc 960gcagagtcgc actcggcgga cgccttccgt gtcacccctg ataacctggc tgccgcgccc 1020agactcctcc aatgaggtgt gtggttgccc tcgccgaccc ttcagcaacc ttaatcgctt 1080ccatcgcacg gctccacgtc ctcgaacgat gccctcagtc cgtgcccggc cgtggcaacc 1140ataacgtgac atcgccgccc agcctactag ccgctatcga ccggttaggc ttgtcaccgc 1200agcgcccatt ctccatcggg cctctactct gatccacctc acccaccgca agcactagcg 1260agcctcacca gagtgcaagc gacacgaccc gcttggccct tcgtccttga ctatctccca 1320gacctcttgc catcttgccg acgccgcccc cttttttttc tcctccccct gccggcaggt 1380cggtggcccc agtcccgaga tggcattgct ccgttgtcca tgacgaccca tcattcgatg 1440gctgactggc acactcgtct tgtttgagca tcgacggccc gcggcccgtc tcccacggta 1500cggaacctcg ttgtacagta cctctcgtaa tgatacccaa caccggggcc gagcgctggg 1560agggcggcgt tcccgagaag ccgggaaggc ggctggccgg ctgacctttg tgacttggcg 1620atggatgcgg ccatggagaa tgtccgtccg aagcgacgcg acaattagcc tggctaccat 1680cgatataaat tgggtgattc ccagctcttg atgggcgtgt cttctgcctg gcagccctcg 1740tcttcagatc aagcaactgt gtgctgatcc tcttccgcc atg tac gcc aag ttc 1794 Met Tyr Ala Lys Phe 1 5gcg acc ctc gcc gcc ctt gtg gct ggc gcc gct gct cag aac gcc tgc 1842Ala Thr Leu Ala Ala Leu Val Ala Gly Ala Ala Ala Gln Asn Ala Cys 10 15 20act ctg acc gct gag aac cac ccc tcg ctg acg tgg tcc aag tgc acg 1890Thr Leu Thr Ala Glu Asn His Pro Ser Leu Thr Trp Ser Lys Cys Thr 25 30 35tct ggc ggc agc tgc acc agc gtc cag ggt tcc atc acc atc gac gcc 1938Ser Gly Gly Ser Cys Thr Ser Val Gln Gly Ser Ile Thr Ile Asp Ala 40 45 50aac tgg cgg tgg act cac cgg acc gat agc gcc acc aac tgc tac gag 1986Asn Trp Arg Trp Thr His Arg Thr Asp Ser Ala Thr Asn Cys Tyr Glu 55 60 65ggc aac aag tgg gat act tcg tac tgc agc gat ggt cct tct tgc gcc 2034Gly Asn Lys Trp Asp Thr Ser Tyr Cys Ser Asp Gly Pro Ser Cys Ala70 75 80 85tcc aag tgc tgc atc gac ggc gct gac tac tcg agc acc tat ggc atc 2082Ser Lys Cys Cys Ile Asp Gly Ala Asp Tyr Ser Ser Thr Tyr Gly Ile 90 95 100acc acg agc ggt aac tcc ctg aac ctc aag ttc gtc acc aag ggc cag 2130Thr Thr Ser Gly Asn Ser Leu Asn Leu Lys Phe Val Thr Lys Gly Gln 105 110 115tac tcg acc aac atc ggc tcg cgt acc tac ctg atg gag agc gac acc 2178Tyr Ser Thr Asn Ile Gly Ser Arg Thr Tyr Leu Met Glu Ser Asp Thr 120 125 130aag tac cag a gtaagttcct ctcgcacccg gccgccggga gatgatggcg 2228Lys Tyr Gln 135cccagcccgc tgacgcgaat gacacag tg ttc cag ctc ctc ggc aac gag ttc 2281 Met Phe Gln Leu Leu Gly Asn Glu Phe 140 145acc ttc gat gtc gac gtc tcc aac ctc ggc tgc ggc ctc aat ggc gcc 2329Thr Phe Asp Val Asp Val Ser Asn Leu Gly Cys Gly Leu Asn Gly Ala 150 155 160ctc tac ttc gtg tcc atg gat gcc gat ggt ggc atg tcc aag tac tcg 2377Leu Tyr Phe Val Ser Met Asp Ala Asp Gly Gly Met Ser Lys Tyr Ser 165 170 175ggc aac aag gca ggt gcc aag tac ggt acc ggc tac tgt gat tct cag 2425Gly Asn Lys Ala Gly Ala Lys Tyr Gly Thr Gly Tyr Cys Asp Ser Gln 180 185 190tgc ccc cgc gac ctc aag ttc atc aac ggc gag gcc aac gta gag aac 2473Cys Pro Arg Asp Leu Lys Phe Ile Asn Gly Glu Ala Asn Val Glu Asn 195 200 205tgg cag agc tcg acc aac gat gcc aac gcc ggc acg ggc aag tac ggc 2521Trp Gln Ser Ser Thr Asn Asp Ala Asn Ala Gly Thr Gly Lys Tyr Gly210 215 220 225agc tgc tgc tcc gag atg gac gtc tgg gag gcc aac aac atg gcc gcc 2569Ser Cys Cys Ser Glu Met Asp Val Trp Glu Ala Asn Asn Met Ala Ala 230 235 240gcc ttc act ccc cac cct tgc acc gtg atc ggc cag tcg cgc tgc gag 2617Ala Phe Thr Pro His Pro Cys Thr Val Ile Gly Gln Ser Arg Cys Glu 245 250 255ggc gac tcg tgc ggc ggt acc tac agc acc gac cgc tat gcc ggc atc 2665Gly Asp Ser Cys Gly Gly Thr Tyr Ser Thr Asp Arg Tyr Ala Gly Ile 260 265 270tgc gac ccc gac gga tgc gac ttc aac tcg tac cgc cag ggc aac aag 2713Cys Asp Pro Asp Gly Cys Asp Phe Asn Ser Tyr Arg Gln Gly Asn Lys 275 280 285acc ttc tac ggc aag ggc atg acg gtc gac acg acc aag aag atc acg 2761Thr Phe Tyr Gly Lys Gly Met Thr Val Asp Thr Thr Lys Lys Ile Thr290 295 300 305gtc gtc acc cag ttc ctc aag aac tcg gcc ggc gag ctc tcc gag atc 2809Val Val Thr Gln Phe Leu Lys Asn Ser Ala Gly Glu Leu Ser Glu Ile 310 315 320aag cgg ttc tac gtc cag aac ggc aag gtc atc ccc aac tcc gag tcc 2857Lys Arg Phe Tyr Val Gln Asn Gly Lys Val Ile Pro Asn Ser Glu Ser 325 330 335acc atc ccg ggc gtc gag ggc aac tcc atc acc cag gac tgg tgc gac 2905Thr Ile Pro Gly Val Glu Gly Asn Ser Ile Thr Gln Asp Trp Cys Asp 340 345 350cgc cag aag gcc gcc ttc ggc gac gtg acc gac ttn cag gac aag ggc 2953Arg Gln Lys Ala Ala Phe Gly Asp Val Thr Asp Xaa Gln Asp Lys Gly 355 360 365ggc atg gtc cag atg ggc aag gcc ctc gcg ggg ccc atg gtc ctc gtc 3001Gly Met Val Gln Met Gly Lys Ala Leu Ala Gly Pro Met Val Leu Val370 375 380 385atg tcc atc tgg gac gac cac gcc gtc aac atg ctc tgg ctc gac tcc 3049Met Ser Ile Trp Asp Asp His Ala Val Asn Met Leu Trp Leu Asp Ser 390 395 400acc tgg ccc atc gac ggc gcc ggc aag ccg ggc gcc gag cgc ggt gcc 3097Thr Trp Pro Ile Asp Gly Ala Gly Lys Pro Gly Ala Glu Arg Gly Ala 405 410 415tgc ccc acc acc tcg ggc gtc ccc gct gag gtc gag gcc gag gcc ccc 3145Cys Pro Thr Thr Ser Gly Val Pro Ala Glu Val Glu Ala Glu Ala Pro 420 425 430aac tcc aac gtc atc ttc tcc aac atc cgc ttc ggc ccc atc ggc tcc 3193Asn Ser Asn Val Ile Phe Ser Asn Ile Arg Phe Gly Pro Ile Gly Ser 435 440 445acc gtc tcc ggc ctg ccc gac ggc ggc agc ggc aac ccc aac ccg ccc 3241Thr Val Ser Gly Leu Pro Asp Gly Gly Ser Gly Asn Pro Asn Pro Pro450 455 460 465gtc agc tcg tcc acc ccg gtc ccc tcc tcg tcc acc aca tcc tcc ggt 3289Val Ser Ser Ser Thr Pro Val Pro Ser Ser Ser Thr Thr Ser Ser Gly 470 475 480tcc tcc ggc ccg act ggc ggc acg ggt gtc gct aag cac tat gag caa 3337Ser Ser Gly Pro Thr Gly Gly Thr Gly Val Ala Lys His Tyr Glu Gln 485 490 495tgc gga gga atc ggg ttc act ggc cct acc cag tgc gag agc ccc tac 3385Cys Gly Gly Ile Gly Phe Thr Gly Pro Thr Gln Cys Glu Ser Pro Tyr 500 505 510act tgc acc aag ctg aat gac tgg tac tcg cag tgc ctg taaacgaacc 3434Thr Cys Thr Lys Leu Asn Asp Trp Tyr Ser Gln Cys Leu 515 520 525tctctgaagg aggttctgag acacgcgcga ttcttctgta tatagtttta tttttcactc 3494tggagtgctt cgctccacca gtacataaac cttttttttc acgtaacaaa atggcttctt 3554ttcagaccat gtgaaccatc ttgatgcctt gacctcttca gttctcactt taacgtagtt 3614cgcgttagtc tgtatgtccc agttgcatgt agttgagata aatacccctg gaagtgggtc 3674tgggcctttg tgggacggag ccctctttct gtggtctgga gagcccgctc tctaccgcct 3734accttcttac cacagtacac tactcacaca ttgctgaact gacccatcat accgtacttt 3794atcctgttaa ttcgtggtgc tgtcgactat tctatttgct caaatggaga gcacattcat 3854cggcgcaggg atacacggtt tatggacccc aagagtgtaa ggactattat tagtaatatt 3914atatgcctct aggcgcctta acttcaacag gcgagcacta ctaatcaact tttggtagac 3974ccaattacaa acgaccatac gtgccggaaa ttttgggatt ccgtccgctc tccccaacca 4034agctagaaga ggcaacgaac agccaatccc ggtgctaatt aaattatatg gttcattttt 4094tttaaaaaaa ttttttcttc ccattttcct ctcgcttttc tttttcgcat cgtagttgat 4154caaagtccaa gtcaagcgag ctatttgtgc tatagctcgg tggctataat cagtacagct 4214tagagaggct gtaaaggtat gataccacag cagtattcgc gctataagcg gcactcctag 4274actaattgtt acggtctaca gaagtaggta ataaaagcgt taattgttct aaatactaga 4334ggcacttaga gaagctatct aaatatatat tgaccctagc ttattatccc tattagtaag 4394ttagttagct ctaacctata gatagccaaa tgctataata ggtaccaggg ttcaaaa 44512526PRTChrysosporium lucknowenseMOD_RES(365)Any amino acid 2Met Tyr Ala Lys Phe Ala Thr Leu Ala Ala Leu Val Ala Gly Ala Ala1 5 10 15Ala Gln Asn Ala Cys Thr Leu Thr Ala Glu Asn His Pro Ser Leu Thr 20 25 30Trp Ser Lys Cys Thr Ser Gly Gly Ser Cys Thr Ser Val Gln Gly Ser 35 40 45Ile Thr Ile Asp Ala Asn Trp Arg Trp Thr His Arg Thr Asp Ser Ala 50 55 60Thr Asn Cys Tyr Glu Gly Asn Lys Trp Asp Thr Ser Tyr Cys Ser Asp65 70 75 80Gly Pro Ser Cys Ala Ser Lys Cys Cys Ile Asp Gly Ala Asp Tyr Ser 85 90 95Ser Thr Tyr Gly Ile Thr Thr Ser Gly Asn Ser Leu Asn Leu Lys Phe 100 105 110Val Thr Lys Gly Gln Tyr Ser Thr Asn Ile Gly Ser Arg Thr Tyr Leu 115 120 125Met Glu Ser Asp Thr Lys Tyr Gln Met Phe Gln Leu Leu Gly Asn Glu 130 135 140Phe Thr Phe Asp Val Asp Val Ser Asn Leu Gly Cys Gly Leu Asn Gly145 150 155 160Ala Leu Tyr Phe Val Ser Met Asp Ala Asp Gly Gly Met Ser Lys Tyr 165 170 175Ser Gly Asn Lys Ala Gly Ala Lys Tyr Gly Thr Gly Tyr Cys Asp Ser 180 185 190Gln Cys Pro Arg Asp Leu Lys Phe Ile Asn Gly Glu Ala Asn Val Glu 195 200 205Asn Trp Gln Ser Ser Thr Asn Asp Ala Asn Ala Gly Thr Gly Lys Tyr 210 215 220Gly Ser Cys Cys Ser Glu Met Asp Val Trp Glu Ala Asn Asn Met Ala225 230 235 240Ala Ala Phe Thr Pro His Pro Cys Thr Val Ile Gly Gln Ser Arg Cys 245 250 255Glu Gly Asp Ser Cys Gly Gly Thr Tyr Ser Thr Asp Arg Tyr Ala Gly 260 265 270Ile Cys Asp Pro Asp Gly Cys Asp Phe Asn Ser Tyr Arg Gln Gly Asn 275 280 285Lys Thr Phe Tyr Gly Lys Gly Met Thr Val Asp Thr Thr Lys Lys Ile 290 295 300Thr Val Val Thr Gln Phe Leu Lys Asn Ser Ala Gly Glu Leu Ser Glu305 310 315 320Ile Lys Arg Phe Tyr Val Gln Asn Gly Lys Val Ile Pro Asn Ser Glu 325 330 335Ser Thr Ile Pro Gly Val Glu Gly Asn Ser Ile Thr Gln Asp Trp Cys 340 345 350Asp Arg Gln Lys Ala Ala Phe Gly Asp Val Thr Asp Xaa Gln Asp Lys 355 360 365Gly Gly Met Val Gln Met Gly Lys Ala Leu Ala Gly Pro Met Val Leu 370 375 380Val Met Ser Ile Trp Asp Asp His Ala Val Asn Met Leu Trp Leu Asp385 390 395 400Ser Thr Trp Pro Ile Asp Gly Ala Gly Lys Pro Gly Ala Glu Arg Gly 405 410 415Ala Cys Pro Thr Thr Ser Gly Val Pro Ala Glu Val Glu Ala Glu Ala 420 425 430Pro Asn Ser Asn Val Ile Phe Ser Asn Ile Arg Phe Gly Pro Ile Gly 435 440 445Ser Thr Val Ser Gly Leu Pro Asp Gly Gly Ser Gly Asn Pro Asn Pro 450 455 460Pro Val Ser Ser Ser Thr Pro Val Pro Ser Ser Ser Thr Thr Ser Ser465 470 475 480Gly Ser Ser Gly Pro Thr Gly Gly Thr Gly Val Ala Lys His Tyr Glu 485 490 495Gln Cys Gly Gly Ile Gly Phe Thr Gly Pro Thr Gln Cys Glu Ser Pro 500 505 510Tyr Thr Cys Thr Lys Leu Asn Asp Trp Tyr Ser Gln Cys Leu 515 520 52533028DNAChrysosporium lucknowenseCDS(970)..(1042)CDS(1117)..(1180)CDS(1332)..(1594)CDS(1673)..(- 2424)modified_base(46)..(47)a, t, c, g, other or unknown 3tcatcaactt ggcgtttgga tgtactaata ttacacgtcg tttgcnnagc ggagtctgtg 60tcatctccgt ggggtcgggt gctccagacg acgcttcggg ccgatcctga attcgggaag 120gaaacggttc ggctaatcag gtcctctaaa atataacgaa gcactacaga gggagttcct 180cagaggacat cgtatcaacc gaagaacgaa gcgccgaaag gactgatcaa aacaggagta 240ggtagggatg tgtgagtacc taaactttcc atacctgaca taaaatcatc atggtgcttc 300agacctgttt gatgaggcga gggcggaggc cgcattgtat tttcgttcct tccttctttt 360tgttagtata tctnagggtt ccatcgtaaa atggaatctt ccagctctac tagtaattag 420aacaatagtt ctgatgtcgt gcgccaagct ttttcagatg actgccaaaa acccatcatg 480ggtatggaca aaagcagtaa tcggagtcac aacgccgcat tttccttcat gatttccgtc 540aaccggagag gtcggaggag gactccggcc acatgtgatg cgaagaagta catggcgcca 600tggttctaac ctcttatagt ctgaaaatgc gcggaggcca gcgaagccaa gcccgggaac 660cgttcttgtc atggtttcag tattgtttcg ctaaacattc tatccgattc gcgataggtg 720cggctgccac cgaaggttgt atccttaaag ctttggtaag tacggagtac ggaaatggaa 780acgcgccgca gtcctggttc catcggtatc ctccgcatgc tccgccaaaa aaagaaaacc 840cgggtatgtt tacaaaggat ataagagaca agatgcacca cccgccccct tcccatctgc 900cggttgccca cgtcgccgtc gactgcttgt ccgcttccta cctgcagcct ctttcagaga 960ccatcaaac atg cgt act ctt acg ttc gtg ctg gca gcc gcc ccg gtg gct 1011 Met Arg Thr Leu Thr Phe Val Leu Ala Ala Ala Pro Val Ala 1 5 10gtg ctt gcc caa tct cct ctg tgg ggc cag t gtatgtaatt gccttactcg 1062Val Leu Ala Gln Ser Pro Leu Trp Gly Gln15 20gaaaatagtc accactagag ggacttaagc tcactacttc ctgtttcaca atag gc 1118 Cys 25ggc ggt caa ggc tgg aca ggt ccc acg acc tgc gtt tct ggc gca gta 1166Gly Gly Gln Gly Trp Thr Gly Pro Thr Thr Cys Val Ser Gly Ala Val 30 35 40tgc caa ttc gtc aa gtcagtaact gcttttattt cttttctctc tgggattacg 1220Cys Gln Phe Val Asn 45atttcgtttt gcacttagct tggttctgca tttcattgtt gtattgttct ctttttgtgt 1280gtgagaggtt ttattaccac ctaaaggcca tttgctaaca aatctcccca g t gac 1335 Asptgg tac tcc caa tgc gtg ccc gga tcg agc aac cct cct acg ggc acc 1383Trp Tyr Ser Gln Cys Val Pro Gly Ser Ser Asn Pro Pro Thr Gly Thr 50 55 60acc agc agc acc act gga agc acc ccg gct cct act ggc ggc ggc ggc 1431Thr Ser Ser Thr Thr Gly Ser Thr Pro Ala Pro Thr Gly Gly Gly Gly 65 70 75agc gga acc ggc ctc cac gac aaa ttc aag gcc aag ggc aag ctc tac 1479Ser Gly Thr Gly Leu His Asp Lys Phe Lys Ala Lys Gly Lys Leu Tyr80 85 90 95ttc gga acc gag atc gat cac tac cat ctc aac aac aat gcc ttg acc 1527Phe Gly Thr Glu Ile Asp His Tyr His Leu Asn Asn Asn Ala Leu Thr 100 105 110aac att gtc aag aaa gac ttt ggt caa gtc act cac gag aac agc ttg 1575Asn Ile Val Lys Lys Asp Phe Gly Gln Val Thr His Glu Asn Ser Leu 115 120 125aag tgg gat gct act gag c gtgagtgacc tctcctcctt ctcccgacaa 1624Lys Trp Asp Ala Thr Glu 130taatagataa ttacgagccg gttcgaggct gacattgcgc gattctag cg agc cgc 1680 Pro Ser Arg 135aat caa ttc aac ttt gcc aac gcc gac gcg gtt gtc aac ttt gcc cag 1728Asn Gln Phe Asn Phe Ala Asn Ala Asp Ala Val Val Asn Phe Ala Gln 140 145 150gcc aac ggc aag ctc atc cgc ggc cac acc ctc ctc tgg cac tct cag 1776Ala Asn Gly Lys Leu Ile Arg Gly His Thr Leu Leu Trp His Ser Gln 155 160 165ctg ccg cag tgg gtg cag aac atc aac gac cgc aac acc ttg acc cag 1824Leu Pro Gln Trp Val Gln Asn Ile Asn Asp Arg Asn Thr Leu Thr Gln 170 175 180gtc atc gag aac cac gtc acc acc ctt gtc act cgc tac aag ggc aag 1872Val Ile Glu Asn His

Val Thr Thr Leu Val Thr Arg Tyr Lys Gly Lys185 190 195 200atc ctc cac tgg gac gtc gtt aac gag atc ttt gcc gag gac ggc tcg 1920Ile Leu His Trp Asp Val Val Asn Glu Ile Phe Ala Glu Asp Gly Ser 205 210 215ctc cgc gac agc gtc ttc agc cgc gtc ctc ggc gag gac ttt gtc ggc 1968Leu Arg Asp Ser Val Phe Ser Arg Val Leu Gly Glu Asp Phe Val Gly 220 225 230atc gcc ttc cgc gcc gcc cgc gcc gcc gat ccc aac gcc aag ctc tac 2016Ile Ala Phe Arg Ala Ala Arg Ala Ala Asp Pro Asn Ala Lys Leu Tyr 235 240 245atc aac gac tac aac ctc gac att gcc aac tac gcc aag gtg acc cgg 2064Ile Asn Asp Tyr Asn Leu Asp Ile Ala Asn Tyr Ala Lys Val Thr Arg 250 255 260ggc atg gtc gag aag gtc aac aag tgg atc gcc cag ggc atc ccg atc 2112Gly Met Val Glu Lys Val Asn Lys Trp Ile Ala Gln Gly Ile Pro Ile265 270 275 280gac ggc atc ggc acc cag tgc cac ctg gcc ggg ccc ggc ggg tgg aac 2160Asp Gly Ile Gly Thr Gln Cys His Leu Ala Gly Pro Gly Gly Trp Asn 285 290 295acg gcc gcc ggc gtc ccc gac gcc ctc aag gcc ctc gcc gcg gcc aac 2208Thr Ala Ala Gly Val Pro Asp Ala Leu Lys Ala Leu Ala Ala Ala Asn 300 305 310gtc aag gag atc gcc atc acc gag ctc gac atc gcc ggc gcc tcc gcc 2256Val Lys Glu Ile Ala Ile Thr Glu Leu Asp Ile Ala Gly Ala Ser Ala 315 320 325aac gac tac ctc acc gtc atg aac gcc tgc ctc cag gtc tcc aag tgc 2304Asn Asp Tyr Leu Thr Val Met Asn Ala Cys Leu Gln Val Ser Lys Cys 330 335 340gtc ggc atc acc gtc tgg ggc gtc tct gac aag gac agc tgg agg tcg 2352Val Gly Ile Thr Val Trp Gly Val Ser Asp Lys Asp Ser Trp Arg Ser345 350 355 360agc agc aac ccg ctc ctc ttc gac agc aac tac cag cca aag gcg gca 2400Ser Ser Asn Pro Leu Leu Phe Asp Ser Asn Tyr Gln Pro Lys Ala Ala 365 370 375tac aat gct ctg att aat gcc ttg taagaggagg tatattattt ttagaggcaa 2454Tyr Asn Ala Leu Ile Asn Ala Leu 380tgaagctagg aggaaagagg ggaagtgagg taattagcta ggacaggcaa atctagcagc 2514aattataagt caacactata taaaatattc ctataatggc ttgtgcttcg gtgtgcaaaa 2574aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaactcaa aaacaaaaat gatccaacat 2634gattcgaaat ggcgaccttg caaatgcaca cctcagataa taccactata caatacacct 2694taaatggcac ctaaatccat ttgtctgcgg tcatagacgg ggcttaagaa gcctgggatg 2754caggtgtcga tgcaagggtt acgtcagtgt atgatatgag tatgaaccat gctgtctggg 2814taattctcca ctttccctcc ccttacgact cttcgggtgt gcctctctag aaagtcgact 2874cctggcgcct cagatcgccc tttggctctg ttcggtacaa tgacgtccgc tggtttcttc 2934caaagaccag gtatttctcc cgtggcaaca aagaatacca aatacctata tcgaaccgta 2994gtcttctgat aattagatgt ctctcaaggc gcgg 30284384PRTChrysosporium lucknowense 4Met Arg Thr Leu Thr Phe Val Leu Ala Ala Ala Pro Val Ala Val Leu1 5 10 15Ala Gln Ser Pro Leu Trp Gly Gln Cys Gly Gly Gln Gly Trp Thr Gly 20 25 30Pro Thr Thr Cys Val Ser Gly Ala Val Cys Gln Phe Val Asn Asp Trp 35 40 45Tyr Ser Gln Cys Val Pro Gly Ser Ser Asn Pro Pro Thr Gly Thr Thr 50 55 60Ser Ser Thr Thr Gly Ser Thr Pro Ala Pro Thr Gly Gly Gly Gly Ser65 70 75 80Gly Thr Gly Leu His Asp Lys Phe Lys Ala Lys Gly Lys Leu Tyr Phe 85 90 95Gly Thr Glu Ile Asp His Tyr His Leu Asn Asn Asn Ala Leu Thr Asn 100 105 110Ile Val Lys Lys Asp Phe Gly Gln Val Thr His Glu Asn Ser Leu Lys 115 120 125Trp Asp Ala Thr Glu Pro Ser Arg Asn Gln Phe Asn Phe Ala Asn Ala 130 135 140Asp Ala Val Val Asn Phe Ala Gln Ala Asn Gly Lys Leu Ile Arg Gly145 150 155 160His Thr Leu Leu Trp His Ser Gln Leu Pro Gln Trp Val Gln Asn Ile 165 170 175Asn Asp Arg Asn Thr Leu Thr Gln Val Ile Glu Asn His Val Thr Thr 180 185 190Leu Val Thr Arg Tyr Lys Gly Lys Ile Leu His Trp Asp Val Val Asn 195 200 205Glu Ile Phe Ala Glu Asp Gly Ser Leu Arg Asp Ser Val Phe Ser Arg 210 215 220Val Leu Gly Glu Asp Phe Val Gly Ile Ala Phe Arg Ala Ala Arg Ala225 230 235 240Ala Asp Pro Asn Ala Lys Leu Tyr Ile Asn Asp Tyr Asn Leu Asp Ile 245 250 255Ala Asn Tyr Ala Lys Val Thr Arg Gly Met Val Glu Lys Val Asn Lys 260 265 270Trp Ile Ala Gln Gly Ile Pro Ile Asp Gly Ile Gly Thr Gln Cys His 275 280 285Leu Ala Gly Pro Gly Gly Trp Asn Thr Ala Ala Gly Val Pro Asp Ala 290 295 300Leu Lys Ala Leu Ala Ala Ala Asn Val Lys Glu Ile Ala Ile Thr Glu305 310 315 320Leu Asp Ile Ala Gly Ala Ser Ala Asn Asp Tyr Leu Thr Val Met Asn 325 330 335Ala Cys Leu Gln Val Ser Lys Cys Val Gly Ile Thr Val Trp Gly Val 340 345 350Ser Asp Lys Asp Ser Trp Arg Ser Ser Ser Asn Pro Leu Leu Phe Asp 355 360 365Ser Asn Tyr Gln Pro Lys Ala Ala Tyr Asn Ala Leu Ile Asn Ala Leu 370 375 38052547DNAChrysosporium lucknowenseGPD1 gene 5tgagcagcaa tgagcagcaa tgagcattcc tgggccaccg agtctgagtg ccagtacgga 60gtatcgtact tcgtaccggg gtttgatttg gtgacggtgc ttttcacctc tcgatgcccg 120aaatcgggtc taagctgagt ttgatcaaat atgtgactcc aacatcgccc ccttcggcaa 180accccgtcga cacgtgtgtc atccttccat tgcaagcgat cactcgcagg gcgtgacgat 240gaacgagatt tttgcccgga ccgattcgcg gatatagcgg cagccgacca gccctaccac 300actgatggcc gtgtcactag tgtatgctcc cagaaccgca agcatacact gggcaatgct 360tggtatgcag ttgaggcagc tttatgtttc catacccttc cacttcggct cggggactcg 420gcggggtcgc ggaagtttga cggcagccgt cgggccttag gccgagatta ccgtggttgt 480ggcccagttt tagccgttcc cgtccgtttc ctaccggacc atgattttcg tgaaccattg 540caatcccgaa gcgcatttcc gacgttaagg agttacctcc gctgcccaga attcatgatc 600gtggccggct caaggcagcg tggcggggca tccgtgtcaa gctcccagga ggaggtgcgc 660gatttcaaat ccgggccaaa acaggccaag actggctggc caaaaaaagg agcgtagacg 720gcccgggaca tcggacgtca gctcgcagcc acccaaaacc ggtccgatct actcgcttac 780tgtggtagtt caggtacttt tgagtagtaa aaacgctacg gcagggccgg ggggttcccc 840ggtgacggag gtgcctctgc ggtggcgaac atcccacgca ctctcgagct acggtgacac 900ctcgtgtcct gttggtcttg caatgctggg gcggcaggaa atgcgtcgcg ctcctcccgg 960ccaagaccta aaacagacag cgccgcaaag tcgctcacta gcaccgcgaa acgaagatgc 1020cccacctcaa cgcaatctgt gatgcaagca attgggaagg ctcaccccac ctcagcgagg 1080ggctcaacca tttttattat cagctcatgc caccacaaca tgactgtttt ctttccttgc 1140tcatcccaca tttgacaaaa atcgtcgatt aatctctttc catacaggcc gtccgcgctc 1200tgataaccac ataaaagtct cttcagtcaa cagctcaaag ctccctcatc cctccaggta 1260agcagccaaa gagctccccc acggaccccg cactgcctca tcccgcctgt atcggacctg 1320cgcgacccag cagagaatcc caaacctttg ctgcttgctg cccggttccg gactgagctg 1380caacccaagc ctttaaaaag cttttccctt ctcccacggt gtcaactctg tcctatccct 1440ccgacatccg ttgagctcaa caactccccg aaccttttac cccgcgccga gctacccctc 1500catcaaacca ccctgacagc tcgctcactc acctccccac atcacagaaa tcaaa atg 1558 Met 1act atc aag gtc ggc atc aac ggt ttc ggc cgt atc ggc cgt atc gtc 1606Thr Ile Lys Val Gly Ile Asn Gly Phe Gly Arg Ile Gly Arg Ile Val 5 10 15ttc cgc aac tcc atc gag cac tcg gat gtc gag atc gtt gcc gtc aac 1654Phe Arg Asn Ser Ile Glu His Ser Asp Val Glu Ile Val Ala Val Asn 20 25 30gac ccc ttc att gag ccc aag tac gct gtaagtagtt ttttttttcc 1701Asp Pro Phe Ile Glu Pro Lys Tyr Ala 35 40ttcctcgcgt tctttcctgt tccatcgaca gtacgagatg atcttgcagg cggatcggag 1761ctaaccgcga ttgtcgtaca g gag tac atg ctc aag tat gac tcg acc cac 1812 Glu Tyr Met Leu Lys Tyr Asp Ser Thr His 45 50ggt atc ttc aac ggc acc atc gcc gtc gag ggc aac gac ctc att gtc 1860Gly Ile Phe Asn Gly Thr Ile Ala Val Glu Gly Asn Asp Leu Ile Val 55 60 65aac ggc aag agg gtc aag ttc tac act gag cgg gmc ccc gcc aac att 1908Asn Gly Lys Arg Val Lys Phe Tyr Thr Glu Arg Xaa Pro Ala Asn Ile 70 75 80ccc tgg arg gaa act ggt gcc gag tac atm rtc gag tcg acc ggt gtg 1956Pro Trp Xaa Glu Thr Gly Ala Glu Tyr Ile Xaa Glu Ser Thr Gly Val85 90 95 100ttc acc amc acc sag aag gct agc gcc cac ctc aag ggc ggc gcc aag 2004Phe Thr Xaa Thr Xaa Lys Ala Ser Ala His Leu Lys Gly Gly Ala Lys 105 110 115cgc gtc atc atc tct gct ccc tcg gcc gat gcc ccc atg tac gtc atg 2052Arg Val Ile Ile Ser Ala Pro Ser Ala Asp Ala Pro Met Tyr Val Met 120 125 130ggc gtc aac gag aag acc tac gac ggc aag gcc cag gtc atc tct aac 2100Gly Val Asn Glu Lys Thr Tyr Asp Gly Lys Ala Gln Val Ile Ser Asn 135 140 145gcc tcg tgc acc acc aac tgc ctg gct ccc ctc gcc aag gtc atc cac 2148Ala Ser Cys Thr Thr Asn Cys Leu Ala Pro Leu Ala Lys Val Ile His 150 155 160gac aag ttc ggc ctc gtt gag ggt ctc atg acc acc gtc cac tcc tac 2196Asp Lys Phe Gly Leu Val Glu Gly Leu Met Thr Thr Val His Ser Tyr165 170 175 180act gcc acc cag aag acc gtc gat ggt ccc tct gcc aag gac tgg cgt 2244Thr Ala Thr Gln Lys Thr Val Asp Gly Pro Ser Ala Lys Asp Trp Arg 185 190 195ggt ggc cgt ggt gct gct cag aac atc atc ccc agc agc act ggc gcc 2292Gly Gly Arg Gly Ala Ala Gln Asn Ile Ile Pro Ser Ser Thr Gly Ala 200 205 210gcc aag gcc gtc ggc aag gtc atc cct gag ctc aac ggc aag ctc acc 2340Ala Lys Ala Val Gly Lys Val Ile Pro Glu Leu Asn Gly Lys Leu Thr 215 220 225ggc atg tcc ctc cgt gtc ccc acc ccc aac gtt tcc gtt gtc gac ctc 2388Gly Met Ser Leu Arg Val Pro Thr Pro Asn Val Ser Val Val Asp Leu 230 235 240acc tgc cgc ctc gag aag gag gct acc tac gac gac atc aag gcc gcc 2436Thr Cys Arg Leu Glu Lys Glu Ala Thr Tyr Asp Asp Ile Lys Ala Ala245 250 255 260atc aag gag gcc gcc gcc ggc ccc ctc aag g gtgagttatc tggttccttt 2487Ile Lys Glu Ala Ala Ala Gly Pro Leu Lys 265 270tttttttttt ggagaacgac acatgctgat aaaacccag gc atc ctc gac tac act 2543 Gly Ile Leu Asp Tyr Thr 275gag g 2547Glu6277PRTChrysosporium lucknowenseMOD_RES(80)Asp or Ala 6Met Thr Ile Lys Val Gly Ile Asn Gly Phe Gly Arg Ile Gly Arg Ile1 5 10 15Val Phe Arg Asn Ser Ile Glu His Ser Asp Val Glu Ile Val Ala Val 20 25 30Asn Asp Pro Phe Ile Glu Pro Lys Tyr Ala Glu Tyr Met Leu Lys Tyr 35 40 45Asp Ser Thr His Gly Ile Phe Asn Gly Thr Ile Ala Val Glu Gly Asn 50 55 60Asp Leu Ile Val Asn Gly Lys Arg Val Lys Phe Tyr Thr Glu Arg Xaa65 70 75 80Pro Ala Asn Ile Pro Trp Xaa Glu Thr Gly Ala Glu Tyr Ile Xaa Glu 85 90 95Ser Thr Gly Val Phe Thr Xaa Thr Xaa Lys Ala Ser Ala His Leu Lys 100 105 110Gly Gly Ala Lys Arg Val Ile Ile Ser Ala Pro Ser Ala Asp Ala Pro 115 120 125Met Tyr Val Met Gly Val Asn Glu Lys Thr Tyr Asp Gly Lys Ala Gln 130 135 140Val Ile Ser Asn Ala Ser Cys Thr Thr Asn Cys Leu Ala Pro Leu Ala145 150 155 160Lys Val Ile His Asp Lys Phe Gly Leu Val Glu Gly Leu Met Thr Thr 165 170 175Val His Ser Tyr Thr Ala Thr Gln Lys Thr Val Asp Gly Pro Ser Ala 180 185 190Lys Asp Trp Arg Gly Gly Arg Gly Ala Ala Gln Asn Ile Ile Pro Ser 195 200 205Ser Thr Gly Ala Ala Lys Ala Val Gly Lys Val Ile Pro Glu Leu Asn 210 215 220Gly Lys Leu Thr Gly Met Ser Leu Arg Val Pro Thr Pro Asn Val Ser225 230 235 240Val Val Asp Leu Thr Cys Arg Leu Glu Lys Glu Ala Thr Tyr Asp Asp 245 250 255Ile Lys Ala Ala Ile Lys Glu Ala Ala Ala Gly Pro Leu Lys Gly Ile 260 265 270Leu Asp Tyr Thr Glu 275732PRTArtificial SequenceDescription of Artificial Sequence Synthetic consensus sequence 7Xaa Xaa Gln Cys Gly Gly Xaa Xaa Xaa Xaa Gly Xaa Xaa Xaa Cys Xaa1 5 10 15Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa Asn Xaa Xaa Tyr Xaa Gln Cys Xaa 20 25 3085PRTArtificial SequenceDescription of Artificial Sequence Synthetic linker peptide 8Ser Gly Glu Arg Lys1 594PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide sequence 9Val Cys Gln Phe1105PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide sequence 10Val Cys Xaa Phe Val1 5114PRTArtificialDescription of Artificial Sequence Synthetic consensus sequence 11Cys Xaa Phe Val1124PRTArtificialDescription of Artificial Sequence Synthetic consensus sequence 12Val Cys Xaa Phe1

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed