Cancer Treatment With Recombinant Vector

Gruber; Harry E. ;   et al.

Patent Application Summary

U.S. patent application number 13/638490 was filed with the patent office on 2013-05-23 for cancer treatment with recombinant vector. This patent application is currently assigned to TOCAGEN INC.. The applicant listed for this patent is Harry E. Gruber, Douglas J. Jolly, Derek G. Ostertag, Omar Perez, Joan M. Robbins. Invention is credited to Harry E. Gruber, Douglas J. Jolly, Derek G. Ostertag, Omar Perez, Joan M. Robbins.

Application Number20130130986 13/638490
Document ID /
Family ID44763495
Filed Date2013-05-23

United States Patent Application 20130130986
Kind Code A1
Gruber; Harry E. ;   et al. May 23, 2013

CANCER TREATMENT WITH RECOMBINANT VECTOR

Abstract

This disclosure provides modified cytosine deaminases(CDs). The disclosure further relates to cells and vector expressing or comprising such modified CDs and methods of using such modified CDs in the treatment of disease and disorders. It further provides use of such modified CDs with a thymosin-alpha-1 polypeptide in the treatment of disease and disorders.


Inventors: Gruber; Harry E.; (Rancho Santa Fe, CA) ; Jolly; Douglas J.; (Encinitas, CA) ; Perez; Omar; (San Diego, CA) ; Ostertag; Derek G.; (San Diego, CA) ; Robbins; Joan M.; (San Diego, CA)
Applicant:
Name City State Country Type

Gruber; Harry E.
Jolly; Douglas J.
Perez; Omar
Ostertag; Derek G.
Robbins; Joan M.

Rancho Santa Fe
Encinitas
San Diego
San Diego
San Diego

CA
CA
CA
CA
CA

US
US
US
US
US
Assignee: TOCAGEN INC.
San Diego
CA

Family ID: 44763495
Appl. No.: 13/638490
Filed: March 29, 2011
PCT Filed: March 29, 2011
PCT NO: PCT/US11/30402
371 Date: January 16, 2013

Related U.S. Patent Documents

Application Number Filing Date Patent Number
61318728 Mar 29, 2010

Current U.S. Class: 514/12.9
Current CPC Class: A61K 48/00 20130101; C12N 2760/16032 20130101; A61K 31/513 20130101; A61P 35/00 20180101; C12N 7/00 20130101; C12N 9/78 20130101; C12N 2760/16021 20130101; A61K 38/2292 20130101; C12N 2760/16043 20130101; C12N 15/86 20130101; C12N 2740/13043 20130101
Class at Publication: 514/12.9
International Class: A61K 48/00 20060101 A61K048/00; A61K 38/22 20060101 A61K038/22

Claims



1. A therapeutic combination comprising a thymosin-1-alpha polypeptide and a replication retroviral vector for use in the treatment of a subject comprising a cell proliferative disease or disorder, wherein the replication competent retroviral vector comprises a retroviral GAG protein; a retroviral POL protein; a retroviral envelope; a retroviral polynucleotide comprising Long-Terminal Repeat (LTR) sequences at the 3' end of the retroviral polynucleotide sequence, a promoter sequence at the 5' end of the retroviral polynucleotide, said promoter being suitable for expression in a mammalian cell, a gag nucleic acid domain, a pol nucleic acid domain and an env nucleic acid domain; a cassette comprising an internal ribosome entry site (IRES) operably linked to a heterologous polynucleotide, wherein the cassette is positioned 5' to the 3' LTR and 3' to the env nucleic acid domain encoding the retroviral envelope; and cis-acting sequences necessary for reverse transcription, packaging and integration in a target cell.

2. The combination of claim 1, wherein the heterologous polynucleotide comprises a suicide gene that expresses a polypeptide that converts a non-toxic prodrug to a toxic drug.

3. The combination of claim 1, wherein the target cell is a cancer cell.

4. The combination of claim 1, wherein the target cell comprises a cell proliferative disorder.

5. The combination of claim 4, wherein the cell proliferative disorder is selected from the group consisting of lung cancer, colon-rectum cancer, breast cancer, prostate cancer, urinary tract cancer, uterine cancer, brain cancer, head and neck cancer, pancreatic cancer, melanoma, stomach cancer and ovarian cancer, rheumatoid arthritis or other autoimmune disease.

6. The combination of claim 1, wherein the retroviral vector is administered prior to the thymosin-alpha-1 polypeptide.

7. The combination of claim 1, wherein the retroviral polynucleotide sequence is derived from murine leukemia virus (MLV), Moloney murine leukemia virus (MoMLV), Feline leukemia virus (FeLV) Baboon endogenous retrovirus (BEV), porcine endogenous virus (PERV), the cat derived retrovirus RD114, squirrel monkey retrovirus, Xenotropic murine leukemia virus-related virus (XMRV), avian reticuloendotheliosis virus (REV), or Gibbon ape leukemia virus (GALV).

8. The combination of claim 1, wherein the retroviral envelope is an amphotropic MLV envelope.

9. The combination of claim 1, wherein the retrovirus is a gammaretrovirus.

10. The combination of claim 1, wherein the thymosin-alpha-1 polypeptide comprises at least 85% identity to SEQ ID NO:73 and having thymosin-alpha-1 activity.

11. The combination of claim 1, wherein the heterologous polynucleotide encodes a polypeptide having cytosine deaminase activity.

12. The combination of claim 1, wherein the heterologous polynucleotide is selected from the group consisting of a suicide gene and an immunopotentiating gene.

13. The combination of claim 1, wherein the retrovirus further comprises an miRNA.

14. The combination of claim 1, wherein the replication competent retrovirus comprises a retroviral GAG protein; a retroviral POL protein; a retroviral envelope; a retroviral polynucleotide comprising Long-Terminal Repeat (LTR) sequences at the 3' end of the retroviral polynucleotide sequence, a promoter sequence at the 5' end of the retroviral polynucleotide, said promoter being suitable for expression in a mammalian cell, a gag nucleic acid domain, a pol nucleic acid domain and an env nucleic acid domain; a cassette comprising an internal ribosome entry site (IRES) operably linked to a polynucleotide encoding cytosine deaminase, wherein the cassette is positioned 5' to the 3' LTR and 3' to the env nucleic acid domain encoding the retroviral envelope; and cis-acting sequences necessary for reverse transcription, packaging and integration in a target cell.

15. The combination of claim 1, wherein the thymosin-1-alpha and retroviral vector are formulated for delivery simultaneously.

16. A method of treating a subject with a cell proliferative disorder comprising: administering a thymosin-alpha-1 polypeptide to the subject either before, during or after administration of a replication competent retrovirus, the replication competent retrovirus comprising a retroviral GAG protein; a retroviral POL protein; a retroviral envelope; a retroviral polynucleotide comprising Long-Terminal Repeat (LTR) sequences at the 3' end of the retroviral polynucleotide sequence, a promoter sequence at the 5' end of the retroviral polynucleotide, said promoter being suitable for expression in a mammalian cell, a gag nucleic acid domain, a pol nucleic acid domain and an env nucleic acid domain; a cassette comprising an internal ribosome entry site (IRES) operably linked to a heterologous polynucleotide, wherein the cassette is positioned 5' to the 3' LTR and 3' to the env nucleic acid domain encoding the retroviral envelope; and cis-acting sequences necessary for reverse transcription, packaging and integration in a target cell.

17. The method of claim 16, wherein the retroviral polynucleotide sequence is derived from murine leukemia virus (MLV), Moloney murine leukemia virus (MoMLV), Feline leukemia virus (FeLV) Baboon endogenous retrovirus (BEV), porcine endogenous virus (PERV), the cat derived retrovirus RD114, squirrel monkey retrovirus, Xenotropic murine leukemia virus-related virus (XMRV), avian reticuloendotheliosis virus (REV), or Gibbon ape leukemia virus (GALV).

18. The method of claim 16, wherein the retroviral envelope is an amphotropic MLV envelope.

19. The method of claim 16, wherein the retrovirus is a gammaretrovirus.

20. The method of claim 16, wherein the target cell is a neoplastic cell.

21. The method of claim 16, wherein the cell proliferative disorder is selected from the group consisting of lung cancer, colon-rectum cancer, breast cancer, prostate cancer, urinary tract cancer, uterine cancer, brain cancer, head and neck cancer, pancreatic cancer, melanoma, stomach cancer and ovarian cancer, rheumatoid arthritis or other autoimmune disease.

22. The method of claim 16, wherein the thymosin-alpha-1 polypeptide comprises at least 85% identity to SEQ ID NO:73 and having a thymosin-alpha-1 activity.

23. The method of claim 16, wherein the heterologous polynucleotide encodes a polypeptide having cytosine deaminase activity.

24. The method of claim 16, wherein the heterologous polynucleotide is selected from the group consisting of a suicide gene and an immunopotentiating gene.

25. The method of claim 16, wherein the retrovirus further comprises an miRNA.

26. The method of claim 16, wherein the replication competent retrovirus comprising a retroviral GAG protein; a retroviral POL protein; a retroviral envelope; a retroviral polynucleotide comprising Long-Terminal Repeat (LTR) sequences at the 3' end of the retroviral polynucleotide sequence, a promoter sequence at the 5' end of the retroviral polynucleotide, said promoter being suitable for expression in a mammalian cell, a gag nucleic acid domain, a pol nucleic acid domain and an env nucleic acid domain; a cassette comprising an internal ribosome entry site (IRES) operably linked to a polynucleotide encoding cytosine deaminase, wherein the cassette is positioned 5' to the 3' LTR and 3' to the env nucleic acid domain encoding the retroviral envelope; and cis-acting sequences necessary for reverse transcription, packaging and integration in a target cell.
Description



CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional Application Ser. No. 61/318,728, filed Mar. 29, 2010, the disclosure of which is incorporated herein by reference.

TECHNICAL FIELD

[0002] This disclosure relates to replication competent retroviral vectors for treating cell proliferative. The disclosure further relates to the use of such replication competent retroviral vectors and factors for delivery and expression of heterologous nucleic acids.

BACKGROUND

[0003] Effective methods of delivering genes and heterologous nucleic acids to cells and subjects has been a goal researchers for scientific development and for possible treatments of diseases and disorders.

SUMMARY

[0004] The disclosure provides a therapeutic combination comprising a thymosin-1-alpha polypeptide and a replication retroviral vector for use in the treatment of a subject comprising a cell proliferative disease or disorder, wherein the replication competent retroviral vector comprises a retroviral GAG protein; a retroviral POL protein; a retroviral envelope; a retroviral polynucleotide comprising Long-Terminal Repeat (LTR) sequences at the 3' end of the retroviral polynucleotide sequence, a promoter sequence at the 5' end of the retroviral polynucleotide, said promoter being suitable for expression in a mammalian cell, a gag nucleic acid domain, a pol nucleic acid domain and an env nucleic acid domain; a cassette comprising an internal ribosome entry site (IRES) operably linked to a heterologous polynucleotide, wherein the cassette is positioned 5' to the 3' LTR and 3' to the env nucleic acid domain encoding the retroviral envelope; and cis-acting sequences necessary for reverse transcription, packaging and integration in a target cell. In one embodiment, the heterologous polynucleotide comprises a suicide gene that expresses a polypeptide that converts a non-toxic prodrug to a toxic drug. In another embodiment, the target cell is a cancer cell. In yet another embodiment, the target cell comprises a cell proliferative disorder. In a further embodiment, the cell proliferative disorder is selected from the group consisting of lung cancer, colon-rectum cancer, breast cancer, prostate cancer, urinary tract cancer, uterine cancer, brain cancer, head and neck cancer, pancreatic cancer, melanoma, stomach cancer and ovarian cancer, rheumatoid arthritis or other autoimmune disease. In one embodiment, the retroviral vector is administered prior to the thymosin-alpha-1 polypeptide. In another embodiment, the retroviral polynucleotide sequence is derived from murine leukemia virus (MLV), Moloney murine leukemia virus (MoMLV), Feline leukemia virus (FeLV) Baboon endogenous retrovirus (BEV), porcine endogenous virus (PERV), the cat derived retrovirus RD114, squirrel monkey retrovirus, Xenotropic murine leukemia virus-related virus (XMRV), avian reticuloendotheliosis virus (REV), or Gibbon ape leukemia virus (GALV). In yet another embodiment, the retroviral envelope is an amphotropic MLV envelope. In one embodiment, the retrovirus is a gammaretrovirus. In another embodiment, the thymosin-alpha-1 polypeptide comprises at least 85% identity to SEQ ID NO:73 and having a thymosin-alpha-1 activity. In yet another embodiment, the heterologous polynucleotide encodes a polypeptide having cytosine deaminase activity. In one embodiment, the heterologous polynucleotide is selected from the group consisting of a suicide gene and an immunopotentiating gene. In any of the foregoing embodiments, the retrovirus further comprises an miRNA. In a specific embodiment, the replication competent retrovirus comprising a retroviral GAG protein; a retroviral POL protein; a retroviral envelope; a retroviral polynucleotide comprising Long-Terminal Repeat (LTR) sequences at the 3' end of the retroviral polynucleotide sequence, a promoter sequence at the 5' end of the retroviral polynucleotide, said promoter being suitable for expression in a mammalian cell, a gag nucleic acid domain, a pol nucleic acid domain and an env nucleic acid domain; a cassette comprising an internal ribosome entry site (IRES) operably linked to a polynucleotide encoding cytosine deaminase, wherein the cassette is positioned 5' to the 3' LTR and 3' to the env nucleic acid domain encoding the retroviral envelope; and cis-acting sequences necessary for reverse transcription, packaging and integration in a target cell. In any of the foregoing embodiments, the thymosin-1-alpha and retroviral vector are formulated for delivery simultaneously.

[0005] The disclosure also provides a method of treating a subject with a cell proliferative disorder comprising administering a thymosin-alpha-1 polypeptide to the subject either before, during or after administration of a replication competent retrovirus comprising a retroviral GAG protein; a retroviral POL protein; a retroviral envelope; a retroviral polynucleotide comprising Long-Terminal Repeat (LTR) sequences at the 3' end of the retroviral polynucleotide sequence, a promoter sequence at the 5' end of the retroviral polynucleotide, said promoter being suitable for expression in a mammalian cell, a gag nucleic acid domain, a pol nucleic acid domain and an env nucleic acid domain; a cassette comprising an internal ribosome entry site (IRES) operably linked to a heterologous polynucleotide, wherein the cassette is positioned 5' to the 3' LTR and 3' to the env nucleic acid domain encoding the retroviral envelope; and cis-acting sequences necessary for reverse transcription, packaging and integration in a target cell. In one embodiment, the heterologous polynucleotide comprises a suicide gene that expresses a polypeptide that converts a non-toxic prodrug to a toxic drug. In another embodiment, the target cell is a cancer cell. In yet another embodiment, the target cell comprises a cell proliferative disorder. In a further embodiment, the cell proliferative disorder is selected from the group consisting of lung cancer, colon-rectum cancer, breast cancer, prostate cancer, urinary tract cancer, uterine cancer, brain cancer, head and neck cancer, pancreatic cancer, melanoma, stomach cancer and ovarian cancer, rheumatoid arthritis or other autoimmune disease. In one embodiment, the retroviral vector is administered prior to the thymosin-alpha-1 polypeptide. In another embodiment, the retroviral polynucleotide sequence is derived from murine leukemia virus (MLV), Moloney murine leukemia virus (MoMLV), Feline leukemia virus (FeLV) Baboon endogenous retrovirus (BEV), porcine endogenous virus (PERV), the cat derived retrovirus RD114, squirrel monkey retrovirus, Xenotropic murine leukemia virus-related virus (XMRV), avian reticuloendotheliosis virus (REV), or Gibbon ape leukemia virus (GALV). In yet another embodiment, the retroviral envelope is an amphotropic MLV envelope. In one embodiment, the retrovirus is a gammaretrovirus. In another embodiment, the thymosin-alpha-1 polypeptide comprises at least 85% identity to SEQ ID NO:73 and having a thymosin-alpha-1 activity. In yet another embodiment, the heterologous polynucleotide encodes a polypeptide having cytosine deaminase activity. In one embodiment, the heterologous polynucleotide is selected from the group consisting of a suicide gene and an immunopotentiating gene. In any of the foregoing embodiments, the retrovirus further comprises an miRNA. In a specific embodiment, the replication competent retrovirus comprising a retroviral GAG protein; a retroviral POL protein; a retroviral envelope; a retroviral polynucleotide comprising Long-Terminal Repeat (LTR) sequences at the 3' end of the retroviral polynucleotide sequence, a promoter sequence at the 5' end of the retroviral polynucleotide, said promoter being suitable for expression in a mammalian cell, a gag nucleic acid domain, a pol nucleic acid domain and an env nucleic acid domain; a cassette comprising an internal ribosome entry site (IRES) operably linked to a polynucleotide encoding cytosine deaminase, wherein the cassette is positioned 5' to the 3' LTR and 3' to the env nucleic acid domain encoding the retroviral envelope; and cis-acting sequences necessary for reverse transcription, packaging and integration in a target cell. In any of the foregoing embodiments, the thymosin-1-alpha and retroviral vector are formulated for delivery simultaneously.

[0006] The details of one or more embodiments of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0007] FIG. 1A-C shows an alignment of the Wild-type yeast cytosine deaminase (SEQ ID NO: 2) and a cytosine deaminase of the disclosure (SEQ ID NO: 4) and other sequences of the disclosure (SEQ ID NOs:31-40).

[0008] FIG. 2 shows a graph of cell killing data showing that modified vectors are more effective compared to the original wild type CD. The graph also shows that the new modified backbone (T5.0007) is more effective at killing than the old backbone (pACE-CD). Also shown is a table cataloguing the various vector constructs and their names

[0009] FIG. 3A-F shows (A) a schematic of a recombinant retroviral vector of the disclosure; (B) and (C) are plasmid maps of a polynucleotide of the disclosure. (D) sequence of the vector encoding part of pAC3-yCD2 of the disclosure. (E) schematics of recombinant vectors of the disclosure and (F) plasmid maps of vectors of the disclosure.

[0010] FIG. 4 shows that higher levels of yCD2 protein are observed compared to wild type yCD protein in infected U-87 cells.

[0011] FIG. 5 shows that a vector of the disclosure is genetically stable after 12 cycles of viral passages as assessed using PCR amplification. The figure also demonstrates that the vectors of the disclosure are more stable after longer passages compared to the vector pACE-CD (Kasahara et al.). In particular pAC3-CD is more stable than pACE-CD, demonstrating that the changed backbone has made the vector more stable. In addition pACE-yCD1 (T5.0001) and -yCD2 (T5-0002) are very much more stable than pAC-yCD, demonstrating that small and silent changes to the coding sequence of the transgene can have a very large effect on stability, leading to superior properties.

[0012] FIG. 6A-B shows cell killing assays and cytosine deaminase specific activity of cells infected with different vectors. (A) shows that cytosine deaminase and vector of the disclosure kill infected cells at least as well and perhaps better than the original pACE-CD when U87 infected cells are exposed to increasing levels of 5-FC. (B) shows that the specific CD activity of the disclosure (T5.0007, T5.0001 and T5.0002) are all increased compared to pACE-CD (T5.0000), and is in the order T5.0000<T5.0007<T5.0001<T5.0002.

[0013] FIG. 7 shows U-87 tumors treated with CD vector of the disclosure in vivo and explanted from mice treated with 4 cycles of 5-FC are still sensitive to the drug.

[0014] FIG. 8 shows dosing information and therapeutic effect in a Kaplan-Meyer survival analysis in a mouse model of brain cancer.

[0015] FIG. 9 shows dosing information and therapeutic effect in a Kaplan-Meyer survival analysis in a syngeneic mouse model.

[0016] FIG. 10 shows a survival curve for combination therapy with thymosin alpha 1 and a replication competent retrovirus of the disclosure expressing cytosine deaminase.

DETAILED DESCRIPTION

[0017] As used herein and in the appended claims, the singular forms "a," "and," and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a cell" includes a plurality of such cells and reference to "the agent" includes reference to one or more agents known to those skilled in the art, and so forth.

[0018] Also, the use of "or" means "and/or" unless stated otherwise. Similarly, "comprise," "comprises," "comprising" "include," "includes," and "including" are interchangeable and not intended to be limiting.

[0019] It is to be further understood that where descriptions of various embodiments use the term "comprising," those skilled in the art would understand that in some specific instances, an embodiment can be alternatively described using language "consisting essentially of" or "consisting of."

[0020] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this disclosure belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice of the disclosed methods and compositions, the exemplary methods, devices and materials are described herein.

[0021] General texts that describe molecular biological techniques useful herein, including the use of vectors, promoters and many other relevant topics, include Berger and Kimmel, Guide to Molecular Cloning Techniques, Methods in Enzymology Volume 152, (Academic Press, Inc., San Diego, Calif.) ("Berger"); Sambrook et al., Molecular Cloning--A Laboratory Manual, 2d ed., Vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1989 ("Sambrook") and Current Protocols in Molecular Biology, F. M. Ausubel et al., eds., Current Protocols, a joint venture between Greene Publishing Associates, Inc. and John Wiley & Sons, Inc., (supplemented through 1999) ("Ausubel"). Examples of protocols sufficient to direct persons of skill through in vitro amplification methods, including the polymerase chain reaction (PCR), the ligase chain reaction (LCR), Q.beta.-replicase amplification and other RNA polymerase mediated techniques (e.g., NASBA), e.g., for the production of the homologous nucleic acids of the disclosure are found in Berger, Sambrook, and Ausubel, as well as in Mullis et al. (1987) U.S. Pat. No. 4,683,202; Innis et al., eds. (1990) PCR Protocols: A Guide to Methods and Applications (Academic Press Inc. San Diego, Calif.) ("Innis"); Arnheim & Levinson (Oct. 1, 1990) C&EN 36-47; The Journal Of NIH Research (1991) 3: 81-94; Kwoh et al. (1989) Proc. Natl. Acad. Sci. USA 86: 1173; Guatelli et al. (1990) Proc. Nat'l. Acad. Sci. USA 87: 1874; Lomell et al. (1989) J. Clin. Chem 35: 1826; Landegren et al. (1988) Science 241: 1077-1080; Van Brunt (1990) Biotechnology 8: 291-294; Wu and Wallace (1989) Gene 4:560; Barringer et al. (1990) Gene 89:117; and Sooknanan and Malek (1995) Biotechnology 13: 563-564. Improved methods for cloning in vitro amplified nucleic acids are described in Wallace et al., U.S. Pat. No. 5,426,039. Improved methods for amplifying large nucleic acids by PCR are summarized in Cheng et al. (1994) Nature 369: 684-685 and the references cited therein, in which PCR amplicons of up to 40 kb are generated. One of skill will appreciate that essentially any RNA can be converted into a double stranded DNA suitable for restriction digestion, PCR expansion and sequencing using reverse transcriptase and a polymerase. See, e.g., Ausubel, Sambrook and Berger, all supra.

[0022] The publications discussed throughout the text are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior disclosure.

[0023] The disclosure provides methods and compositions useful for treating cell proliferative diseases and disorders. The disclosure provides replication competent retroviral vectors for gene delivery and combination therapies.

[0024] The terms "vector", "vector construct" and "expression vector" mean the vehicle by which a DNA or RNA sequence (e.g. a foreign gene) can be introduced into a host cell, so as to transform the host and promote expression (e.g. transcription and translation) of the introduced sequence. Vectors typically comprise the DNA of a transmissible agent, into which foreign DNA encoding a protein is inserted by restriction enzyme technology. A common type of vector is a "plasmid", which generally is a self-contained molecule of double-stranded DNA that can readily accept additional (foreign) DNA and which can readily introduced into a suitable host cell. A large number of vectors, including plasmid and fungal vectors, have been described for replication and/or expression in a variety of eukaryotic and prokaryotic hosts. Non-limiting examples include pKK plasmids (Clonetech), pUC plasmids, pET plasmids (Novagen, Inc., Madison, Wis.), pRSET or pREP plasmids (Invitrogen, San Diego, Calif.), or pMAL plasmids (New England Biolabs, Beverly, Mass.), and many appropriate host cells, using methods disclosed or cited herein or otherwise known to those skilled in the relevant art. Recombinant cloning vectors will often include one or more replication systems for cloning or expression, one or more markers for selection in the host, e.g., antibiotic resistance, and one or more expression cassettes.

[0025] The terms "express" and "expression" mean allowing or causing the information in a gene or DNA sequence to become manifest, for example producing a protein by activating the cellular functions involved in transcription and translation of a corresponding gene or DNA sequence. A DNA sequence is expressed in or by a cell to form an "expression product" such as a protein. The expression product itself, e.g. the resulting protein, may also be said to be "expressed" by the cell. A polynucleotide or polypeptide is expressed recombinantly, for example, when it is expressed or produced in a foreign host cell under the control of a foreign or native promoter, or in a native host cell under the control of a foreign promoter.

[0026] The disclosure provides replication competent viral vectors that contain a heterologous polynucleotide encoding, for example, a cytosine deaminase or mutant thereof that can be delivered to a cell or subject. The viral vector can be an adenoviral vector, a measles vector, a herpes vector, a retroviral vector (including a lentiviral vector), a rhabdoviral vector such as a Vesicular Stomatitis viral vector, a reovirus vector, a Seneca Valley Virus vector, a poxvirus vector (including animal pox or vaccinia derived vectors), a parvovirus vector (including an AAV vector), an alphavirus vector or other viral vector known to one skilled in the art (see also, e.g., Concepts in Genetic Medicine, ed. Boro Dropulic and Barrie Carter, Wiley, 2008, Hoboken, N.J.; The Development of Human Gene Therapy, ed. Theodore Friedmann, Cold Springs Harbor Laboratory Press, Cold springs Harbor, N.Y., 1999; Gene and Cell Therapy, ed. Nancy Smyth Templeton, Marcel Dekker Inc., New York, N.Y., 2000 and Gene Therapy: Therapeutic Mechanism and Strategies, ed. Nancy Smyth Templetone and Danilo D Lasic, Marcel Dekker, Inc., New York, N.Y., 2000; the disclosures of which are incorporated herein by reference).

[0027] In one embodiment, the viral vector can be a replication competent retroviral vector capable of infecting only replicating mammalian cells. In one embodiment, a replication competent retroviral vector comprises an internal ribosomal entry site (IRES) 5' to the heterologous polynucleotide encoding, e.g., a cytosine deaminase or the like. In one embodiment, the polynucleotide is 3' to a ENV polynucleotide of a retroviral vector. In one embodiment the viral vector is a retroviral vector capable of infecting target cells multiple times (5 or more per diploid cell).

[0028] The disclosure also provides replication competent retroviral vectors having increased stability relative to prior retroviral vectors. Such increased stability during infection and replication is important for the treatment of cell proliferative disorders. The combination of transduction efficiency, transgene stability and target selectivity is provided by the replication competent retrovirus. The compositions and methods provide insert stability and maintain transcription activity of the transgene and the translational viability of the encoded polypeptide.

[0029] The disclosure provides modified retroviral vectors. The modified retroviral vectors can be derived from members of the retroviridae family. The Retroviridae family consists of three groups: the spumaviruses-(or foamy viruses) such as the human foamy virus (HFV); the lentiviruses, as well as visna virus of sheep; and the oncoviruses (although not all viruses within this group are oncogenic). The term "lentivirus" is used in its conventional sense to describe a genus of viruses containing reverse transcriptase. The lentiviruses include the "immunodeficiency viruses" which include human immunodeficiency virus (HIV) type 1 and type 2 (HIV-1 and HIV-2) and simian immunodeficiency virus (SIV). The oncoviruses have historically been further subdivided into groups A, B, C and D on the basis of particle morphology, as seen under the electron microscope during viral maturation. A-type particles represent the immature particles of the B- and D-type viruses seen in the cytoplasm of infected cells. These particles are not infectious. B-type particles bud as mature virion from the plasma membrane by the enveloping of intracytoplasmic A-type particles. At the membrane they possess a toroidal core of 75 nm, from which long glycoprotein spikes project. After budding, B-type particles contain an eccentrically located, electron-dense core. The prototype B-type virus is mouse mammary tumor virus (MMTV). No intracytoplasmic particles can be observed in cells infected by C-type viruses. Instead, mature particles bud directly from the cell surface via a crescent `C`-shaped condensation which then closes on itself and is enclosed by the plasma membrane. Envelope glycoprotein spikes may be visible, along with a uniformly electron-dense core. Budding may occur from the surface plasma membrane or directly into intracellular vacuoles. The C-type viruses are the most commonly studied and include many of the avian and murine leukemia viruses (MLV). Bovine leukemia virus (BLV), and the human T-cell leukemia viruses types I and II (HTLV-I/II) are similarly classified as C-type particles because of the morphology of their budding from the cell surface. However, they also have a regular hexagonal morphology and more complex genome structures than the prototypic C-type viruses such as the murine leukemia viruses (MLV). D-type particles resemble B-type particles in that they show as ring-like structures in the infected cell cytoplasm, which bud from the cell surface, but the virion incorporate short surface glycoprotein spikes. The electron-dense cores are also eccentrically located within the particles. Mason Pfizer monkey virus (MPMV) is the prototype D-type virus.

[0030] Retroviruses have been classified in various ways but the nomenclature has been standardized in the last decade (see ICTVdB--The Universal Virus Database, v 4 on the World Wide Web (www) at ncbi.nlm.nih.gov/ICTVdb/ICTVdB/ and the text book "Retroviruses" Eds Coffin, Hughs and Varmus, Cold Spring Harbor Press 1997; the disclosures of which are incorporated herein by reference). In one embodiment, the replication competent retroviral vector can comprise an Orthoretrovirus or more typically a gamma retrovirus vector.

[0031] Retroviruses are defined by the way in which they replicate their genetic material. During replication the RNA is converted into DNA. Following infection of the cell a double-stranded molecule of DNA is generated from the two molecules of RNA which are carried in the viral particle by the molecular process known as reverse transcription. The DNA form becomes covalently integrated in the host cell genome as a provirus, from which viral RNAs are expressed with the aid of cellular and/or viral factors. The expressed viral RNAs are packaged into particles and released as infectious virion.

[0032] The retrovirus particle is composed of two identical RNA molecules. Each wild-type genome has a positive sense, single-stranded RNA molecule, which is capped at the 5' end and polyadenylated at the 3' tail. The diploid virus particle contains the two RNA strands complexed with gag proteins, viral enzymes (pol gene products) and host tRNA molecules within a `core` structure of gag proteins. Surrounding and protecting this capsid is a lipid bilayer, derived from host cell membranes and containing viral envelope (env) proteins. The env proteins bind to a cellular receptor for the virus and the particle typically enters the host cell via receptor-mediated endocytosis and/or membrane fusion.

[0033] After the outer envelope is shed, the viral RNA is copied into DNA by reverse transcription. This is catalyzed by the reverse transcriptase enzyme encoded by the pol region and uses the host cell tRNA packaged into the virion as a primer for DNA synthesis. In this way the RNA genome is converted into the more complex DNA genome.

[0034] The double-stranded linear DNA produced by reverse transcription may, or may not, have to be circularized in the nucleus. The provirus now has two identical repeats at either end, known as the long terminal repeats (LTR). The termini of the two LTR sequences produces the site recognized by a pol product--the integrase protein--which catalyzes integration, such that the provirus is always joined to host DNA two base pairs (bp) from the ends of the LTRs. A duplication of cellular sequences is seen at the ends of both LTRs, reminiscent of the integration pattern of transposable genetic elements. Retroviruses can integrate their DNAs at many sites in host DNA, but different retroviruses have different integration site preferences. HIV-1 and simian immunodeficiency virus DNAs preferentially integrate into expressed genes, murine leukemia virus (MLV) DNA preferentially integrates near transcriptional start sites (TSSs), and avian sarcoma leukosis virus (ASLV) and human T cell leukemia virus (HTLV) DNAs integrate nearly randomly, showing a slight preference for genes (Derse D, et al. (2007) Human T-cell leukemia virus type 1 integration target sites in the human genome: comparison with those of other retroviruses. J Virol 81:6731-6741; Lewinski M K, et al. (2006) Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog 2:e601).

[0035] Transcription, RNA splicing and translation of the integrated viral DNA is mediated by host cell proteins. Variously spliced transcripts are generated. In the case of the human retroviruses HIV-1/2 and HTLV-I/II viral proteins are also used to regulate gene expression. The interplay between cellular and viral factors is a factor in the control of virus latency and the temporal sequence in which viral genes are expressed.

[0036] Retroviruses can be transmitted horizontally and vertically. Efficient infectious transmission of retroviruses requires the expression on the target cell of receptors which specifically recognize the viral envelope proteins, although viruses may use receptor-independent, nonspecific routes of entry at low efficiency. Normally a viral infection leads to a single or few copies of viral genome per cell because of receptor masking or down-regulation that in turn leads to resistance to superinfection (Ch3 p 104 in "Retroviruses" J M Coffin, S H Hughes, & H E Varmus 1997 Cold Spring Harbor Laboratory Press, Cold Spring Harbor N.Y.; Fan et al. J. Virol 28:802, 1978). By manipulating the situation in tissue culture it is possible to get some level of multiple infection but this is typically less than 5 copies/diploid genome. In addition, the target cell type must be able to support all stages of the replication cycle after virus has bound and penetrated. Vertical transmission occurs when the viral genome becomes integrated in the germ line of the host. The provirus will then be passed from generation to generation as though it were a cellular gene. Hence endogenous proviruses become established which frequently lie latent, but which can become activated when the host is exposed to appropriate agents.

[0037] In many situations for using a recombinant replication competent retrovirus therapeutically, it is advantageous to have high levels of expression of the transgene that is encoded by the recombinant replication competent retrovirus. For example, with a prodrug activating gene such as the cytosine deaminase gene it is advantageous to have higher levels of expression of the CD protein in a cell so that the conversion of the prodrug 5-FC to 5-FU is more efficient. The disclosure provides recombinant replication competent retroviruses capable of infecting a target cell or target cell population multiple times resulting in an average number of copies/diploid genome of 5 or greater. Also provided are methods of treating a cell proliferative disorder, using a recombinant replication competent retrovirus capable of infecting a target cell or target cell population multiple times resulting in an average number of copies/diploid genome of 5 or greater. In further embodiments, a combination therapy comprising thymosin-alpha-1 is used to promote apoptosis and therapeutic effects of a RCR of the disclosure.

[0038] As mentioned above, the integrated DNA intermediate is referred to as a provirus. Prior gene therapy or gene delivery systems use methods and retroviruses that require transcription of the provirus and assembly into infectious virus while in the presence of an appropriate helper virus or in a cell line containing appropriate sequences enabling encapsidation without coincident production of a contaminating helper virus. As described below, a helper virus is not required for the production of the recombinant retrovirus of the disclosure, since the sequences for encapsidation are provided in the genome thus providing a replication competent retroviral vector for gene delivery or therapy.

[0039] Other existing replication competent retroviral vectors also tend to be unstable and lose sequences during horizontal or vertical transmission to an infected cell or host cell and during replication. This may be due in-part from the presence of extra nucleotide sequences that include repeats or which reduce the efficiency of a polymerase.

[0040] The retroviral genome and the proviral DNA of the disclosure have at least three genes: the gag, the pol, and the env, these genes may be flanked by one or two long terminal (LTR) repeat, or in the provirus are flanked by two long terminal repeat (LTR) and sequences containing cis-acting sequences such as psi. The gag gene encodes the internal structural (matrix, capsid, and nucleocapsid) proteins; the pol gene encodes the RNA-directed DNA polymerase (reverse transcriptase), protease and integrase; and the env gene encodes viral envelope glycoproteins. The 5' and/or 3' LTRs serve to promote transcription and polyadenylation of the virion RNAs. The LTR contains all other cis-acting sequences necessary for viral replication. Lentiviruses have additional genes including vif, vpr, tat, rev, vpu, nef, and vpx (in HIV-1, HIV-2 and/or SIV).

[0041] Adjacent to the 5' LTR are sequences necessary for reverse transcription of the genome (the tRNA primer binding site) and for efficient encapsidation of viral RNA into particles (the Psi site). If the sequences necessary for encapsidation (or packaging of retroviral RNA into infectious virion) are missing from the viral genome, the result is a cis defect which prevents encapsidation of genomic viral RNA. This type of modified vector is what has typically been used in prior gene delivery systems (i.e., systems lacking elements which are required for encapsidation of the virion) as `helper` elements providing viral proteins in trans that package a non-replicating, but packageable, RNA genome.

[0042] In a first embodiment, the disclosure provides a recombinant retrovirus capable of infecting a dividing cell or a cell having a cell proliferative disorder. The recombinant replication competent retrovirus of the disclosure comprises a polynucleotide sequence encoding a viral GAG, a viral POL, a viral ENV, a heterologous polynucleotide preceded by an internal ribosome entry site (IRES) encapsulated within a virion. In one embodiment the heterologous polynucleotide encodes a polypeptide having cytosine deaminase activity. In yet another embodiment, a polypeptide having thymosin-alpha-1 activity is administered simultaneously, prior to, or after administration of the retroviral vector.

[0043] The phrase "non-dividing" cell refers to a cell that does not go through mitosis. Non-dividing cells may be blocked at any point in the cell cycle, (e.g., G.sub.0/G.sub.1, G.sub.1/S, G.sub.2/M), as long as the cell is not actively dividing. For ex vivo infection, a dividing cell can be treated to block cell division by standard techniques used by those of skill in the art, including, irradiation, aphidocolin treatment, serum starvation, and contact inhibition. However, it should be understood that ex vivo infection is often performed without blocking the cells since many cells are already arrested (e.g., stem cells). For example, a recombinant lentivirus vector is capable of infecting non-dividing cells. Examples of pre-existing non-dividing cells in the body include neuronal, muscle, liver, skin, heart, lung, and bone marrow cells, and their derivatives. For dividing cells onco-retroviral vectors can be used.

[0044] By "dividing" cell is meant a cell that undergoes active mitosis, or meiosis. Such dividing cells include stem cells, skin cells (e.g., fibroblasts and keratinocytes), gametes, and other dividing cells known in the art. Of particular interest and encompassed by the term dividing cell are cells having cell proliferative disorders, such as neoplastic cells. The term "cell proliferative disorder" refers to a condition characterized by an abnormal number of cells. The condition can include both hypertrophic (the continual multiplication of cells resulting in an overgrowth of a cell population within a tissue) and hypotrophic (a lack or deficiency of cells within a tissue) cell growth or an excessive influx or migration of cells into an area of a body. The cell populations are not necessarily transformed, tumorigenic or malignant cells, but can include normal cells as well. Cell proliferative disorders include disorders associated with an overgrowth of connective tissues, such as various fibrotic conditions, including scleroderma, arthritis and liver cirrhosis. Cell proliferative disorders include neoplastic disorders such as head and neck carcinomas. Head and neck carcinomas would include, for example, carcinoma of the mouth, esophagus, throat, larynx, thyroid gland, tongue, lips, salivary glands, nose, paranasal sinuses, nasopharynx, superior nasal vault and sinus tumors, esthesioneuroblastoma, squamous call cancer, malignant melanoma, sinonasal undifferentiated carcinoma (SNUC), brain (including glioblastomas) or blood neoplasia. Also included are carcinoma's of the regional lymph nodes including cervical lymph nodes, prelaryngeal lymph nodes, pulmonary juxtaesophageal lymph nodes and submandibular lymph nodes (Harrison's Principles of Internal Medicine (eds., Isselbacher, et al., McGraw-Hill, Inc., 13th Edition, pp 1850-1853, 1994). Other cancer types, include, but are not limited to, lung cancer, colon-rectum cancer, breast cancer, prostate cancer, urinary tract cancer, uterine cancer lymphoma, oral cancer, pancreatic cancer, leukemia, melanoma, stomach cancer, skin cancer and ovarian cancer. The cell proliferative disease also includes rheumatoid arthritis (O'Dell NEJM 350:2591 2004) and other auto-immune disorders (Mackay et al NEJM 345:340 2001) that are often characterized by inappropriate proliferation of cells of the immune system.

[0045] The heterologous nucleic acid sequence is operably linked to an IRES. As used herein, the term "heterologous" nucleic acid sequence or transgene refers to (i) a sequence that does not normally exist in a wild-type retrovirus, (ii) a sequence that originates from a foreign species, or (iii) if from the same species, it may be substantially modified from its original form. Alternatively, an unchanged nucleic acid sequence that is not normally expressed in a cell is a heterologous nucleic acid sequence.

[0046] Depending upon the intended use of the retroviral vector of the disclosure any number of heterologous polynucleotide or nucleic acid sequences may be inserted into the retroviral vector. For example, for in vitro studies commonly used marker genes or reporter genes may be used, including, antibiotic resistance and fluorescent molecules (e.g., GFP). Additional polynucleotide sequences encoding any desired polypeptide sequence may also be inserted into the vector of the disclosure. Where in vivo delivery of a heterologous nucleic acid sequence is sought both therapeutic and non-therapeutic sequences may be used. For example, the heterologous sequence can encode a therapeutic molecule including antisense molecules (miRNA, siRNA) or ribozymes directed to a particular gene associated with a cell proliferative disorder or other gene-associated disease or disorder, the heterologous sequence can be a suicide gene (e.g., HSV-tk or PNP or cytosine deaminase; either modified or unmodified), a growth factor or a therapeutic protein (e.g., Factor IX, IL2, and the like). Other therapeutic proteins applicable to the disclosure are easily identified in the art.

[0047] In one embodiment, the heterologous polynucleotide within the vector comprises a cytosine deaminase that has been optimized for expression in a human cell. In a further embodiment, the cytosine deaminase comprises a sequence that has been human codon optimized and comprises mutations that increase the cytosine deaminase's stability (e.g., reduced degradation or increased thermo-stability) compared to a wild-type cytosine deaminase. In yet another embodiment, the heterologous polynucleotide encodes a fusion construct comprising a cytosine deaminase (either human codon optimized or non-optimized, either mutated or non-mutated) operably linked to a polynucleotide encoding a polypeptide having UPRT or OPRT activity. In another embodiment, the heterologous polynucleotide comprises a CD polynucleotide of the disclosure (e.g., SEQ ID NO:3, 5, 11, 13, 15, or 17).

[0048] In another embodiment, replication competent retroviral vector can comprise a heterologous polynucleotide encoding a polypeptide comprising a cytosine deaminase (as described herein) and may further comprise a polynucleotide comprising a miRNA or siRNA molecule either as part of the primary transcript from the viral promoter or linked to a promoter, which can be cell-type or tissue specific.

[0049] For examples, miRNAs that are down-regulated in cancers could be useful as anticancer agents. Examples include mir-128-1, let-7, miR-26, miR-124, and miR-137 (Esquela-Kerscher et al., 2008 Cell Cycle 7, 759-764; Kumar et al., 2008 Proc Natl Acad Sci USA 105, 3903-3908; Kota et al., 2009 Cell 137, 1005-1017; Silber et al., 2008 BMC Medicine 6:14 1-17). miR-128 expression has reported to be enriched in the central nervous system and has been observed to be down-regulated in glioblastomas (Sempere et al., 2004 Genome Biology 5:R13.5-11; Godlewski et al., 2008 Cancer Res 68: (22) 9125-9130). miR-128 is encoded by two distinct genes, miR-128-1 and miR-128-2. Both are processed into identical mature sequence. Bmi-1 and E2F3a have been reported to be the direct targets of miR-128 (Godlewski et al., 2008 Cancer Res 68: (22) 9125-9130; Zhang et al., 2009 J. Mol Med 87:43-51). In addition, Bmi-1 expression has been observed to be up-regulated in a variety of human cancers, including gliomas, mantle cell lymphomas, non-small cell lung cancer B-cell non-Hodgkin's lymphoma, breast, colorectal and prostate cancer. Furthermore, Bmi-1 has been demonstrated to be required for the self-renewal of stem cells from diverse tissues, including neuronal stem cells as well as "stem-like" cell population in gliomas.

[0050] In one embodiment, the disclosure provides a recombinant replication competent retroviral vector that contains a single copy of the miR-142-3p target sequence (142-3pT, SEQ ID NO:35) downstream of the transgene, such as yCD2 or GFP, linked to the IRES. In addition to miR181 and miR-223, the target sequence of other tissue or cell-enriched miRNA can be incorporated into the vector to restrict viral spread in specific tissue or cell type manner. For example, miR-133 and miR206 expressions are highly enriched in muscle cells (Kelly et al., 2008 Nature Medicine 14:11 1278-1283.

[0051] In another embodiment, the disclosure provides a recombinant replication competent retroviral vector that contains 4 copies of the 142-3pT (SEQ ID NO: 36) downstream of the transgene, such as yCD2 or GFP, linked to the IRES. In addition to miR181 and miR-223, the target sequence of other tissue or cell-enriched miRNA can be incorporated into the vector to restrict viral spread in specific tissue or cell type manner.

[0052] In yet further embodiments, the heterologous polynucleotide may comprise a cytokine such as an interleukin, interferon gamma or the like. Cytokines that may expressed from a retroviral vector of the disclosure include, but are not limited to, IL-1alpha, IL-1beta, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, IL-18, IL-19, IL-20, and IL-21, anti-CD40, CD40L, IFN-gamma and TNF-alpha, soluble forms of TNF-alpha, lymphotoxin-alpha (LT-alpha, also known as TNF-beta), LT-beta (found in complex heterotrimer LT-alpha2-beta), OPGL, FasL, CD27L, CD30L, CD40L, 4-1BBL, DcR3, OX40L, TNF-gamma (International Publication No. WO 96/14328), AIM-I (International Publication No. WO 97/33899), endokine-alpha (International Publication No. WO 98/07880), OPG, and neutrokine-alpha (International Publication No. WO 98/18921, OX40, and nerve growth factor (NGF), and soluble forms of Fas, CD30, CD27, CD40 and 4-IBB, TR2 (International Publication No. WO 96/34095), DR3 (International Publication No. WO 97/33904), DR4 (International Publication No. WO 98/32856), TR5 (International Publication No. WO 98/30693), TRANK, TR9 (International Publication No. WO 98/56892), TR10 (International Publication No. WO 98/54202), 312C2 (International Publication No. WO 98/06842), and TR12, and soluble forms CD154, CD70, and CD153. Angiogenic proteins may be useful in some embodiments, particularly for protein production from cell lines. Such angiogenic factors include, but are not limited to, Glioma Derived Growth Factor (GDGF), Platelet Derived Growth Factor-A (PDGF-A), Platelet Derived Growth Factor-B (PDGF-B), Placental Growth Factor (PIGF), Placental Growth Factor-2 (PIGF-2), Vascular Endothelial Growth Factor (VEGF), Vascular Endothelial Growth Factor-A (VEGF-A), Vascular Endothelial Growth Factor-2 (VEGF-2), Vascular Endothelial Growth Factor B (VEGF-3), Vascular Endothelial Growth Factor B-1 86 (VEGF-B186), Vascular Endothelial Growth Factor-D (VEGF-D), Vascular Endothelial Growth Factor-D (VEGF-D), and Vascular Endothelial Growth Factor-E (VEGF-E). Fibroblast Growth Factors may be delivered by a vector of the disclosure and include, but are not limited to, FGF-1, FGF-2, FGF-3, FGF-4, FGF-5, FGF-6, FGF-7, FGF-8, FGF-9, FGF-10, FGF-11, FGF-12, FGF-13, FGF-14, and FGF-15. Hematopoietic growth factors may be delivered using vectors of the disclosure, such growth factors include, but are not limited to, granulocyte macrophage colony stimulating factor (GM-CSF) (sargramostim), granulocyte colony stimulating factor (G-CSF) (filgrastim), macrophage colony stimulating factor (M-CSF, CSF-1) erythropoietin (epoetin alfa), stem cell factor (SCF, c-kit ligand, steel factor), megakaryocyte colony stimulating factor, PIXY321 (a GMCSF/IL-3) fusion protein and the like.

[0053] The term "regulatory nucleic acid sequence" refers collectively to promoter sequences, polyadenylation signals, transcription termination sequences, upstream regulatory domains, origins of replication, enhancers and the like, which collectively provide for the replication, transcription and translation of a coding sequence in a recipient cell. Not all of these control sequences need always be present so long as the selected coding sequence is capable of being replicated, transcribed and translated in an appropriate host cell. One skilled in the art can readily identify regulatory nucleic acid sequence from public databases and materials. Furthermore, one skilled in the art can identify a regulatory sequence that is applicable for the intended use, for example, in vivo, ex vivo, or in vitro.

[0054] An internal ribosome entry sites ("IRES") refers to a segment of nucleic acid that promotes the entry or retention of a ribosome during translation of a coding sequence usually 3' to the IRES. In some embodiments the IRES may comprise a splice acceptor/donor site, however, preferred IRESs lack a splice acceptor/donor site. Normally, the entry of ribosomes into messenger RNA takes place via the cap located at the 5' end of all eukaryotic mRNAs. However, there are exceptions to this universal rule. The absence of a cap in some viral mRNAs suggests the existence of alternative structures permitting the entry of ribosomes at an internal site of these RNAs. To date, a number of these structures, designated IRES on account of their function, have been identified in the 5' noncoding region of uncapped viral mRNAs, such as that, in particular, of picornaviruses such as the poliomyelitis virus (Pelletier et al., 1988, Mol. Cell. Biol., 8, 1103-1112) and the EMCV virus (encephalo-myocarditis virus (Jang et al., J. Virol., 1988, 62, 2636-2643). The disclosure provides the use of an IRES in the context of a replication-competent retroviral vector.

[0055] The term "promoter region" is used herein in its ordinary sense to refer to a nucleotide region comprising a DNA regulatory sequence, wherein the regulatory sequence is derived from a gene which is capable of binding RNA polymerase and initiating transcription of a downstream (3'-direction) coding sequence. The regulatory sequence may be homologous or heterologous to the desired gene sequence. For example, a wide range of promoters may be utilized, including viral or mammalian promoter as described above.

[0056] The heterologous nucleic acid sequence is typically under control of either the viral LTR promoter-enhancer signals or an internal promoter, and retained signals within the retroviral LTR can still bring about efficient integration of the vector into the host cell genome. Accordingly, the recombinant retroviral vectors of the disclosure, the desired sequences, genes and/or gene fragments can be inserted at several sites and under different regulatory sequences. For example, a site for insertion can be the viral enhancer/promoter proximal site (i.e., 5' LTR-driven gene locus). Alternatively, the desired sequences can be inserted into a regulatory sequence distal site (e.g., the IRES sequence 3' to the env gene) or where two or more heterologous sequences are present one heterologous sequence may be under the control of a first regulatory region and a second heterologous sequence under the control of a second regulatory region. Other distal sites include viral promoter sequences, where the expression of the desired sequence or sequences is through splicing of the promoter proximal cistron, an internal heterologous promoter as SV40 or CMV, or an internal ribosome entry site (IRES) can be used.

[0057] In one embodiment, the retroviral genome of the disclosure contains an IRES comprising a cloning site downstream of the IRES for insertion of a desired/heterologous polynucleotide. In one embodiment, the IRES is located 3' to the env gene in the retroviral vector, but 5' to the desired heterologous polynucleotide. Accordingly, a heterologous polynucleotide encoding a desired polypeptide may be operably linked to the IRES.

[0058] In another embodiment, a targeting polynucleotide sequence is included as part of the recombinant retroviral vector of the disclosure. The targeting polynucleotide sequence is a targeting ligand (e.g., peptide hormones such as heregulin, a single-chain antibodies, a receptor or a ligand for a receptor), a tissue-specific or cell-type specific regulatory element (e.g., a tissue-specific or cell-type specific promoter or enhancer), or a combination of a targeting ligand and a tissue-specific/cell-type specific regulatory element. Preferably, the targeting ligand is operably linked to the env protein of the retrovirus, creating a chimeric retroviral env protein. The viral GAG, viral POL and viral ENV proteins can be derived from any suitable retrovirus (e.g., MLV or lentivirus-derived). In another embodiment, the viral ENV protein is non-retrovirus-derived (e.g., CMV or VSV).

[0059] In one embodiment, the recombinant retrovirus of the disclosure is genetically modified in such a way that the virus is targeted to a particular cell type (e.g., smooth muscle cells, hepatic cells, renal cells, fibroblasts, keratinocytes, mesenchymal stem cells, bone marrow cells, chondrocyte, epithelial cells, intestinal cells, mammary cells, neoplastic cells, glioma cells, neuronal cells and others known in the art) such that the recombinant genome of the retroviral vector is delivered to a target non-dividing, a target dividing cell, or a target cell having a cell proliferative disorder.

[0060] In one embodiment, the retroviral vector is targeted to the cell by binding to cells having a molecule on the external surface of the cell. This method of targeting the retrovirus utilizes expression of a targeting ligand on the coat of the retrovirus to assist in targeting the virus to cells or tissues that have a receptor or binding molecule which interacts with the targeting ligand on the surface of the retrovirus. After infection of a cell by the virus, the virus injects its nucleic acid into the cell and the retrovirus genetic material can integrate into the host cell genome.

[0061] In another embodiment, targeting uses cell- or tissue-specific regulatory elements to promote expression and transcription of the viral genome in a targeted cell which actively utilizes the regulatory elements, as described more fully below. The transferred retrovirus genetic material is then transcribed and translated into proteins within the host cell. The targeting regulatory element is typically linked to the 5' and/or 3' LTR, creating a chimeric LTR.

[0062] By inserting a heterologous polynucleotide of interest into the viral vector of the disclosure, along with another gene which encodes, for example, the ligand for a receptor on a specific target cell, the vector is now target specific. Viral vectors can be made target specific by attaching, for example, a sugar, a glycolipid, or a protein. Targeting can be accomplished by using an antibody to target the viral vector. Those of skill in the art will know of, or can readily ascertain, specific polynucleotide sequences which can be inserted into the viral genome or proteins which can be attached to a viral envelope to allow target specific delivery of the viral vector containing the nucleic acid sequence of interest.

[0063] Thus, the disclosure includes in one embodiment, a chimeric env protein comprising a retroviral ENV protein operably linked to a targeting polypeptide. The targeting polypeptide can be a cell specific receptor molecule, a ligand for a cell specific receptor, an antibody or antibody fragment to a cell specific antigenic epitope or any other ligand easily identified in the art which is capable of binding or interacting with a target cell. Examples of targeting polypeptides or molecules include bivalent antibodies using biotin-streptavidin as linkers (Etienne-Julan et al., J. Of General Virol., 73, 3251-3255 (1992); Roux et al., Proc. Natl. Acad. Sci USA 86, 9079-9083 (1989)), recombinant virus containing in its envelope a sequence encoding a single-chain antibody variable region against a hapten (Russell et al., Nucleic Acids Research, 21, 1081-1085 (1993)), cloning of peptide hormone ligands into the retrovirus envelope (Kasahara et al., Science, 266, 1373-1376 (1994)), chimeric EPO/env constructs (Kasahara et al., 1994), single-chain antibody against the low density lipoprotein (LDL) receptor in the ecotropic MLV envelope, resulting in specific infection of HeLa cells expressing LDL receptor (Somia et al., Proc. Natl. Acad. Sci USA, 92, 7570-7574 (1995)), similarly the host range of ALV can be altered by incorporation of an integrin ligand, enabling the virus to now cross species to specifically infect rat glioblastoma cells (Valsesia-Wittmann et al., J. Virol. 68, 4609-4619 (1994)), and Dornberg and co-workers (Chu and Dornburg, J. Virol 69, 2659-2663 (1995); M. Engelstadter et al. Gene Therapy 8, 1202-1206 (2001)) have reported tissue-specific targeting of spleen necrosis virus (SNV), an avian retrovirus, using envelopes containing single-chain antibodies directed against tumor markers.

[0064] The disclosure provides a method of producing a recombinant retrovirus capable of infecting a target cell comprising transfecting a suitable host cell with the following: a vector comprising a polynucleotide sequence encoding a viral gag, a viral pol and a viral env, and a heterologous polynucleotide, operably linked to a regulatory nucleic acid sequence, and recovering the recombinant virus.

[0065] The retrovirus and methods of the disclosure provide a replication competent retrovirus that does not require helper virus or additional nucleic acid sequence or proteins in order to propagate and produce virion. For example, the nucleic acid sequences of the retrovirus of the disclosure encode a group specific antigen and reverse transcriptase, (and integrase and protease-enzymes necessary for maturation and reverse transcription), respectively, as discussed above. The viral gag and pol can be derived from a lentivirus, such as HIV or an oncovirus or gammaretrovirus such as MoMLV. In addition, the nucleic acid genome of the retrovirus of the disclosure includes a sequence encoding a viral envelope (ENV) protein. The env gene can be derived from any retroviruses. The env may be an amphotropic envelope protein which allows transduction of cells of human and other species, or may be an ecotropic envelope protein, which is able to transduce only mouse and rat cells. Further, it may be desirable to target the recombinant virus by linkage of the envelope protein with an antibody or a particular ligand for targeting to a receptor of a particular cell-type. As mentioned above, retroviral vectors can be made target specific by inserting, for example, a glycolipid, or a protein. Targeting is often accomplished by using an antibody to target the retroviral vector to an antigen on a particular cell-type (e.g., a cell type found in a certain tissue, or a cancer cell type). Those of skill in the art will know of, or can readily ascertain without undue experimentation, specific methods to achieve delivery of a retroviral vector to a specific target. In one embodiment, the env gene is derived from a non-retrovirus (e.g., CMV or VSV). Examples of retroviral-derived env genes include, but are not limited to: Moloney murine leukemia virus (MoMuLV), Harvey murine sarcoma virus (HaMuSV), murine mammary tumor virus (MuMTV), gibbon ape leukemia virus (GaLV), human immunodeficiency virus (HIV) and Rous Sarcoma Virus (RSV). Other env genes such as Vesicular stomatitis virus (VSV) (Protein G), cytomegalovirus envelope (CMV), or influenza virus hemagglutinin (HA) can also be used.

[0066] In one embodiment, the retroviral genome is derived from an onco-retrovirus, and more particularly a mammalian onco-retrovirus. In a further embodiment, the retroviral genome is derived from a gamma retrovirus, and more particularly a mammalian gamma retrovirus. By "derived" is meant that the parent polynucleotide sequence is an wild-type oncovirus which has been modified by insertion or removal of naturally occurring sequences (e.g., insertion of an IRES, insertion of a heterologous polynucleotide encoding a polypeptide or inhibitory nucleic acid of interest, swapping of a more effective promoter from a different retrovirus or virus in place of the wild-type promoter and the like).

[0067] In another embodiment, the disclosure provides retroviral vectors that are targeted using regulatory sequences. Cell- or tissue-specific regulatory sequences (e.g., promoters) can be utilized to target expression of gene sequences in specific cell populations. Suitable mammalian and viral promoters for the disclosure are described elsewhere herein. Accordingly, in one embodiment, the disclosure provides a retrovirus having tissue-specific promoter elements at the 5' end of the retroviral genome. Typically, the tissue-specific regulatory elements/sequences are in the U3 region of the LTR of the retroviral genome, including for example cell- or tissue-specific promoters and enhancers to neoplastic cells (e.g., tumor cell-specific enhancers and promoters), and inducible promoters (e.g., tetracycline).

[0068] Transcription control sequences of the disclosure can also include naturally occurring transcription control sequences naturally associated with a gene encoding a superantigen, a cytokine or a chemokine.

[0069] In some circumstances, it may be desirable to regulate expression. For example, different viral promoters with varying strengths of activity may be utilized depending on the level of expression desired. In mammalian cells, the CMV immediate early promoter if often used to provide strong transcriptional activation. Modified versions of the CMV promoter that are less potent have also been used when reduced levels of expression of the transgene are desired. When expression of a transgene in hematopoietic cells is desired, retroviral promoters such as the LTRs from MLV or MMTV can be used. Other viral promoters that can be used include SV40, RSV LTR, HIV-1 and HIV-2 LTR, adenovirus promoters such as from the E1A, E2A, or MLP region, AAV LTR, cauliflower mosaic virus, HSV-TK, and avian sarcoma virus.

[0070] Similarly tissue specific or selective promoters may be used to effect transcription in specific tissues or cells so as to reduce potential toxicity or undesirable effects to non-targeted tissues. For example, promoters such as the PSA, probasin, prostatic acid phosphatase or prostate-specific glandular kallikrein (hK2) may be used to target gene expression in the prostate. The Whey accessory protein (WAP) may be used for breast tissue expression (Andres et al., PNAS 84:1299-1303, 1987). Other promoters/regulatory domains that can be used are set forth in Table 1.

[0071] "Tissue-specific regulatory elements" are regulatory elements (e.g., promoters) that are capable of driving transcription of a gene in one tissue while remaining largely "silent" in other tissue types. It will be understood, however, that tissue-specific promoters may have a detectable amount of "background" or "base" activity in those tissues where they are silent. The degree to which a promoter is selectively activated in a target tissue can be expressed as a selectivity ratio (activity in a target tissue/activity in a control tissue). In this regard, a tissue specific promoter useful in the practice of the disclosure typically has a selectivity ratio of greater than about 5. Preferably, the selectivity ratio is greater than about 15.

[0072] In certain indications, it may be desirable to activate transcription at specific times after administration of the recombinant replication competent retrovirus of the disclosure (RRCR). This may be done with promoters that are hormone or cytokine regulatable. For example in therapeutic applications where the indication is a gonadal tissue where specific steroids are produced or routed to, use of androgen or estrogen regulated promoters may be advantageous. Such promoters that are hormone regulatable include MMTV, MT-1, ecdysone and RuBisco. Other hormone regulated promoters such as those responsive to thyroid, pituitary and adrenal hormones may be used. Cytokine and inflammatory protein responsive promoters that could be used include K and T Kininogen (Kageyama et al., 1987), c-fos, TNF-alpha, C-reactive protein (Arcone et al., 1988), haptoglobin (Oliviero et al., 1987), serum amyloid A2, C/EBP alpha, IL-1, IL-6 (Poli and Cortese, 1989), Complement C3 (Wilson et al., 1990), IL-8, alpha-1 acid glycoprotein (Prowse and Baumann, 1988), alpha-1 antitrypsin, lipoprotein lipase (Zechner et al., 1988), angiotensinogen (Ron et al., 1990), fibrinogen, c-jun (inducible by phorbol esters, TNF-alpha, UV radiation, retinoic acid, and hydrogen peroxide), collagenase (induced by phorbol esters and retinoic acid), metallothionein (heavy metal and glucocorticoid inducible), Stromelysin (inducible by phorbol ester, interleukin-1 and EGF), alpha-2 macroglobulin and alpha-1 antichymotrypsin. Tumor specific promoters such as osteocalcin, hypoxia-responsive element (HRE), MAGE-4, CEA, alpha-fetoprotein, GRP78/BiP and tyrosinase may also be used to regulate gene expression in tumor cells.

[0073] In addition, this list of promoters should not be construed to be exhaustive or limiting, those of skill in the art will know of other promoters that may be used in conjunction with the promoters and methods disclosed herein.

TABLE-US-00001 TABLE 1 TISSUE SPECIFIC PROMOTERS Tissue Promoter Pancreas Insulin Elastin Amylase pdr-1 pdx-1 glucokinase Liver Albumin PEPCK HBV enhancer .alpha. fetoprotein apolipoprotein C .alpha.-1 antitrypsin vitellogenin, NF-AB Transthyretin Skeletal muscle Myosin H chain Muscle creatine kinase Dystrophin Calpain p94 Skeletal alpha-actin fast troponin 1 Skin Keratin K6 Keratin K1 Lung CFTR Human cytokeratin 18 (K18) Pulmonary surfactant proteins A, B and C CC-10 P1 Smooth muscle sm22 .alpha. SM-alpha-actin Endothelium Endothelin-1 E-selectin von Willebrand factor TIE (Korhonen et al., 1995) KDR/flk-1 Melanocytes Tyrosinase Adipose tissue Lipoprotein lipase (Zechner et al., 1988) Adipsin (Spiegelman et al. , 1989) acetyl-CoA carboxylase (Pape and Kim, 1989) glycerophosphate dehydrogenase (Dani et al., 1989) adipocyte P2 (Hunt et al., 1986) Breast Whey Acidic Protein (WAP) (Andres et al. PNAS 84: 1299-1303 1987 Blood .beta.-globin

[0074] It will be further understood that certain promoters, while not restricted in activity to a single tissue type, may nevertheless show selectivity in that they may be active in one group of tissues, and less active or silent in another group. Such promoters are also termed "tissue specific", and are contemplated for use with the disclosure. For example, promoters that are active in a variety of central nervous system (CNS) neurons may be therapeutically useful in protecting against damage due to stroke, which may affect any of a number of different regions of the brain. Accordingly, the tissue-specific regulatory elements used in the disclosure, have applicability to regulation of the heterologous proteins as well as applicability as a targeting polynucleotide sequence in the present retroviral vectors.

[0075] In yet another embodiment, the disclosure provides plasmids comprising a recombinant retroviral derived construct. The plasmid can be directly introduced into a target cell or a cell culture such as NIH 3T3 or other tissue culture cells. The resulting cells release the retroviral vector into the culture medium.

[0076] The disclosure provides a polynucleotide construct comprising from 5' to 3': a promoter or regulatory region useful for initiating transcription; a psi packaging signal; a gag encoding nucleic acid sequence, a pol encoding nucleic acid sequence; an env encoding nucleic acid sequence; an internal ribosome entry site nucleic acid sequence; a heterologous polynucleotide encoding a marker, therapeutic or diagnostic polypeptide; and a LTR nucleic acid sequence. As described elsewhere herein and as follows the various segment of the polynucleotide construct of the disclosure (e.g., a recombinant replication competent retroviral polynucleotide) are engineered depending in part upon the desired host cell, expression timing or amount, and the heterologous polynucleotide. A replication competent retroviral construct of the disclosure (e.g., comprising SEQ ID NO:19, 20 or 22) can be divided up into a number of domains that may be individually modified by those of skill in the art.

[0077] For example, the promoter can comprise a CMV promoter having a sequence as set forth in SEQ ID NO:19, 20 or 22 from nucleotide 1 to about nucleotide 582 and may include modification to one or more (e.g., 2-5, 5-10, 10-20, 20-30, 30-50, 50-100 or more nucleic acid bases) so long as the modified promoter is capable of directing and initiating transcription. In one embodiment, the promoter or regulatory region comprises a CMV-R-U5 domain polynucleotide. The CMV-R-U5 domain comprises the immediately early promoter from human cytomegalovirus to the MLV R-U5 region. In one embodiment, the CMV-R-U5 domain polynucleotide comprises a sequence as set forth in SEQ ID NO:19, 20 or 22 from about nucleotide 1 to about nucleotide 1202 or sequences that are at least 95% identical to a sequence as set forth in SEQ ID NO:19, 20, or 22 wherein the polynucleotide promotes transcription of a nucleic acid molecule operably linked thereto. The gag domain of the polynucleotide may be derived from any number of retroviruses, but will typically be derived from an oncoretrovirus and more particularly from a mammalian oncoretrovirus. In one embodiment the gag domain comprises a sequence from about nucleotide number 1203 to about nucleotide 2819 or a sequence having at least 95%, 98%, 99% or 99.8% (rounded to the nearest 10.sup.th) identity thereto. The pol domain of the polynucleotide may be derived from any number of retroviruses, but will typically be derived from an oncoretrovirus and more particularly from a mammalian oncoretrovirus. In one embodiment the pol domain comprises a sequence from about nucleotide number 2820 to about nucleotide 6358 or a sequence having at least 95%, 98%, 99% or 99.9% (roundest to the nearest 10.sup.th) identity thereto. The env domain of the polynucleotide may be derived from any number of retroviruses, but will typically be derived from an oncoretrovirus or gamma-retrovirus and more particularly from a mammalian oncoretrovirus or gamma-retrovirus. In some embodiments the env coding domain comprises an amphotropic env domain. In one embodiment the env domain comprises a sequence from about nucleotide number 6359 to about nucleotide 8323 or a sequence having at least 95%, 98%, 99% or 99.8% (roundest to the nearest 10.sup.th) identity thereto. The IRES domain of the polynucleotide may be obtained from any number of internal ribosome entry sites. In one embodiment, IRES is derived from an encephalomyocarditis virus. In one embodiment the IRES domain comprises a sequence from about nucleotide number 8327 to about nucleotide 8876 or a sequence having at least 95%, 98%, or 99% (roundest to the nearest 10.sup.th) identity thereto so long as the domain allows for entry of a ribosome. The heterologous domain can comprise a cytosine deaminase of the disclosure. In one embodiment, the CD polynucleotide comprises a human codon optimized sequence. In yet another embodiment, the CD polynucleotide encodes a mutant polypeptide having cytosine deaminase, wherein the mutations confer increased thermal stabilization that increase the melting temperature (T.sub.m) by 10.degree. C. allowing sustained kinetic activity over a broader temperature range and increased accumulated levels of protein. In one embodiment, the cytosine deaminase comprises a sequence as set forth in SEQ ID NO:19 or 22 from about nucleotide number 8877 to about 9353. The heterologous domain may be followed by a polypurine rich domain. The 3' LTR can be derived from any number of retroviruses, typically an oncoretrovirus and preferably a mammalian oncoretrovirus. In one embodiment, the 3' LTR comprises a U3-R-U5 domain. In yet another embodiment the LTR comprises a sequence as set forth in SEQ ID NO:19 or 22 from about nucleotide 9405 to about 9998 or a sequence that is at least 95%, 98% or 99.5% (rounded to the nearest 10.sup.th) identical thereto.

[0078] The disclosure also provides a recombinant retroviral vector comprising from 5' to 3' a CMV-R-U5, fusion of the immediate early promoter from human cytomegalovirus to the MLV R-U5 region; a PBS, primer binding site for reverse transcriptase; a 5' splice site; a psi (.psi.) packaging signal; a gag, ORF for MLV group specific antigen; a pol, ORF for MLV polymerase polyprotein; a 3' splice site; a 4070A env, ORF for envelope protein of MLV strain 4070A; an IRES, internal ribosome entry site of encephalomyocarditis virus; a modified cytosine deaminase (thermostablized and codon optimized); a PPT, polypurine tract; and a U3-R-U5, MLV long terminal repeat. This structure is further depicted in FIG. 3.

[0079] The disclosure also provides a retroviral vector comprising a sequence as set forth in SEQ ID NO:19, 20 or 22.

[0080] The retroviral vectors can be used to treat a wide range of disease and disorders including a number of cell proliferative diseases and disorders (see, e.g., U.S. Pat. Nos. 4,405,712 and 4,650,764; Friedmann, 1989, Science, 244:1275-1281; Mulligan, 1993, Science, 260:926-932, R. Crystal, 1995, Science 270:404-410, each of which are incorporated herein by reference in their entirety, see also, The Development of Human Gene Therapy, Theodore Friedmann, Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1999. ISBN 0-87969-528-5, which is incorporated herein by reference in its entirety).

[0081] The disclosure also provides gene therapy for the treatment of cell proliferative disorders. Such therapy would achieve its therapeutic effect by introduction of an appropriate therapeutic polynucleotide (e.g., antisense, ribozymes, suicide genes, siRNA), into cells of subject having the proliferative disorder. Delivery of polynucleotide constructs can be achieved using the recombinant retroviral vector of the disclosure, particularly if it is based on MLV, which is capable of infecting dividing cells.

[0082] In addition, the therapeutic methods (e.g., the gene therapy or gene delivery methods) as described herein can be performed in vivo or ex vivo. It may be preferable to remove the majority of a tumor prior to gene therapy, for example surgically or by radiation. In some aspects, the retroviral therapy may be preceded or followed by surgery, chemotherapy or radiation therapy.

[0083] The methods and compositions of the disclosure are useful in combination therapies including therapies with bevacizumab. As described herein a replication competent retrovirus (RCR) of the disclosure comprising a therapeutic (e.g., a cytotoxic gene) is useful in treating cell proliferative disorders. An advantage of the RCR of the disclosure includes its ability to infect replicating cells cancer cells. Where the transgene of the vector comprises a cytotoxic gene (e.g., a gene that encodes a polypeptide that converts a non-cytotoxic agent to a cytotoxic agent) provides the ability to kill cancer cells.

[0084] In another embodiment, the methods and composition of the disclosure are useful in combination with agents that promote apoptosis or that modify expression of cytokines or agents that promote apoptosis. For example, a retroviral vector of the disclosure comprising a polynucleotide encoding a polypeptide having cytosine deaminase activity can be administered prior to, simultaneously with, or after administration of a peptide or polypeptide having thymosin-alpha-1 activity. In one embodiment, the thymosin-alpha-1 polypeptide is administered at about 0.1-16 mg/kg.

[0085] Thymosin alpha-1 (Zadaxin.TM.) functions by increasing the sensitivity of neoplastic cells to chemotherapeutic agents by upregulating pro-apoptotic proteins. Specifically, Thymosin alpha-1 upregulates pro-apoptotic FasL, FasR and TNFalpha-R1. In combination with a RCR of the disclosure, Thymosin alpha-1 functions as an adjuvant to increase the sensitivity of neoplastic cells to 5-FU thereby increasing the effectiveness of Toca 511 5-FC to 5-FU conversion as a chemotherapeutic agent after administration of RCR derived from T5.0002 and known as Toca 511. Thymosin alpha-1 can also function as an immunomodulatory agent increasing the recruitment and activity of immune components thereby leading to enhancement of vaccine effectiveness of RRV therapy.

[0086] A polypeptide having thymosin-alpha-1 activity refers to a polypeptide comprising thymosin-alpha-1 or a variant or homolog thereof. Thymosin-alpha-1 (TA1) is a 28-amino acid peptide and includes synthetic forms of a naturally occurring hormone that circulates in the thymus. TA1 stimulate thymocyte growth and differentiation, production of IL-2, T cell IL-2 receptors, IFN-.gamma. and IFN-.alpha.. Dosing regimes for TA1 are well known. In any case doses in humans can be over a wide range such as 1 to 100 mg/dose.

[0087] The disclosure thus provides administering alpha thymosin peptides ("thymosin peptides") to enhance cancer therapy with a replication competent retroviral vector of the disclosure comprising heterologous gene encoding a polypeptide having cytosine deaminase activity. Thymosin peptides include thymosin alpha 1 ("TA1"), and peptides having structural homology to TA1. TA1 is a peptide having the amino acid sequence Ser-Asp-Ala-Ala-Val-Asp-Thr-Ser-Ser-Glu-11e-Thr-Thr-Lys-Asp-Leu-Lys-Glu-L- ys-Lys-Glu-Val-Val-Glu-Glu-Ala-Glu-Asn (SEQ ID NO:73) The amino acid sequence of TA1 is disclosed in U.S. Pat. No. 4,079,137, the disclosure of which is hereby incorporated by reference. TA1 is a non-glycosylated 28-amino acid peptide having an acetylated N-terminus, and a molecular weight of about 3108. A synthetic version of TA1 is commercially available in certain countries under the trade name ZADAXIN.RTM..

[0088] It is believed that thymosin peptides (e.g., TA1), among other things, activate Toll-like Receptor 9 (TLR), resulting in increases in Th1 cells, B cells, and NK cells, thereby leading to enhancement of vaccine effectiveness. For example, TA1 may increase or enhance lymphocytic infiltration, secretion of chemotactic cytokines, maturation and differentiation of dendritic cells, secretion of thymopoeitic cytokines including IFN-alpha, IL-7, and IL-15, and B cell production of antibodies.

[0089] The thymosin peptides that find use with the vectors and methods of the disclosure include naturally occurring TA1 (e.g., TA1 purified or isolated from tissues), as well as synthetic TA1 and recombinant TA1. In some embodiments, the thymosin peptide comprises the amino acid sequence of SEQ ID NO:73 (where an acylated, e.g., acetylated, N-terminus is optional). In some embodiments, the thymosin peptide comprises an amino acid sequence that is substantially similar to TA1, and maintains the immunomodulatory activity of TA1. The substantially similar sequence may have, for example, from about 1 to about 10 amino acid deletions, insertions, and/or substitutions (collectively) with respect to TA1. For example, the thymosin peptide may have from about 1 to about 5 (e.g., 1, 2, or 3) amino acid insertions, deletions, and/or substitutions (collectively) with respect to TA1 so long as the peptide has one or more activities associated with a naturally occurring thymosin.

[0090] Thus, a thymosin peptide useful in the methods of the disclosure may comprise an abbreviated TA1 sequence, for example, having deletions of from 1 to about 10 amino acids, or from about 1 to 5 amino acids, or 1, 2 or 3 amino acids with respect to TA1. Such deletions may be at the N- or C-terminus, and/or internal, so long as the activity of the peptide is substantially maintained. Alternatively, or in addition, the substantially similar sequence may have from about 1 to about 5 amino acid insertions (e.g., 1, 2, or 3 amino acid insertions) with respect to TA1, where the immunomodulatory activity of TA1 is substantially maintained. Alternatively, or in addition, the substantially similar sequence may have from 1 to about 10 amino acid substitutions, where the immunomodulatory activity is substantially maintained. For example, the substantially similar sequence may have from 1 to about 5, or 1, 2, or 3 amino acid substitutions, which may include conservative and non-conservative substitutions. In some embodiments, the substitutions are conservative. Generally, conservative substitutions include substitutions of a chemically similar amino acid (e.g., polar, non-polar, or charged). Substituted amino acids may be selected from the standard 20 amino acids or may be a non-standard amino acid (e.g., a conserved non-standard amino acid).

[0091] In some embodiments, the thymosin peptide comprises an amino acid sequence having at least 70% sequence identity to SEQ ID NO:73, while maintaining the activity of a naturally occurring TA1. For example, the thymosin peptide may comprise an amino acid sequence having at least 80%, 90%, or 95% sequence identity to SEQ ID NO:73. The thymosin peptide may comprise an amino acid sequence having 100% sequence identity to SEQ ID NO:73. In all cases, the N-terminus may be optionally acylated (e.g., acetylated) or alkylated, for example, with a C1-10 or C1-C7 acyl or alkyl group.

[0092] The disclosure provides methods for treating cell proliferative disorders such as cancer and neoplasms comprising administering an RCR vector of the disclosure prior to, simultaneously with or following administration of a thymosin peptide. In another embodiment the combination of RCR and thymosin may also be followed by treatment with a chemotherapeutic agent or anti-cancer agent. In one aspect, the RCR vector is administered to a subject for a period of time prior to administration of the chemotherapeutic or anti-cancer agent that allows the RCR to infect and replicate. The subject is then treated with a chemotherapeutic agent or anti-cancer agent for a period of time and dosage to reduce proliferation or kill the cancer cells. In one aspect, if the treatment with the chemotherapeutic or anti-cancer agent reduces, but does not kill the cancer/tumor (e.g., partial remission or temporary remission), the subject may then be treated with a non-toxic therapeutic agent (e.g., 5-FC) that is converted to a toxic therapeutic agent in cells expression a cytotoxic gene (e.g., cytosine deaminase) from the RCR. The methods and compositions of the disclosure are useful in other combination therapies, for example, therapies with Thymosin alpha-1 (Zadaxin.TM.), trastuzumab (Herceptin), Leucovorin and other folic acid analogues, or other promoters of 5-FU activity (D. Papamichael Stem Cells 18:166-175 2000) such as dihydropyrimidine dehydrogenase [DPD] inhibitors [e.g. 5-Chloro-2,4-Dihydroxypyridine--Cdhp]) whose action is targeted, rather than systemic, when used in conjunction with the tumor targeted 5-FU production from 5-FC administration and CD expression from the vector of disclosure.

[0093] Leucovorin or other folic acid analogues promote 5-FU binding to thymidilate synthase, thereby inactivating this key enzyme in nucleic acid biosynthesis, and enhancing the efficacy of 5-FU.

[0094] DPD inhibitors block the activity of dihydropyrimdine dehydrogenasean enzyme that normally degrades about 80% of systemically administered 5-FU. DPD inhibition results in increased retention of 5-FU and frequently make 5-FU very much more toxic. In fact this can be life threatening in patients that have DPD deficiency (Ezeldin & Diasio Clinical Colorectal Cancer, Vol. 4, No. 3, 181-189, 2004). However, in the vectors of the disclosure, 5-FU is only produced locally in the tumor, and hence the increased toxicity is confined to the area of the tumor, where it is a benefit.

[0095] The disclosure provides a method of treating a subject having a cell proliferative disorder. The subject can be any mammal, and is preferably a human. The subject is contacted with a recombinant replication competent retroviral vector of the disclosure. The contacting can be in vivo or ex vivo. Methods of administering the retroviral vector of the disclosure are known in the art and include, for example, systemic administration, topical administration, intraperitoneal administration, intra-muscular administration, intracranial, cerebrospinal, as well as administration directly at the site of a tumor or cell-proliferative disorder. Other routes of administration are known in the art.

[0096] Thus, the disclosure includes various pharmaceutical compositions useful for treating a cell proliferative disorder. The pharmaceutical compositions according to the disclosure are prepared by bringing a retroviral vector containing a heterologous polynucleotide sequence useful in treating or modulating a cell proliferative disorder according to the disclosure into a form suitable for administration to a subject using carriers, excipients and additives or auxiliaries. Frequently used carriers or auxiliaries include magnesium carbonate, titanium dioxide, lactose, mannitol and other sugars, talc, milk protein, gelatin, starch, vitamins, cellulose and its derivatives, animal and vegetable oils, polyethylene glycols and solvents, such as sterile water, alcohols, glycerol and polyhydric alcohols. Intravenous vehicles include fluid and nutrient replenishers. Preservatives include antimicrobial, anti-oxidants, chelating agents and inert gases. Other pharmaceutically acceptable carriers include aqueous solutions, non-toxic excipients, including salts, preservatives, buffers and the like, as described, for instance, in Remington's Pharmaceutical Sciences, 15th ed. Easton: Mack Publishing Co., 1405-1412, 1461-1487 (1975) and The National Formulary XIV., 14th ed. Washington: American Pharmaceutical Association (1975), the contents of which are hereby incorporated by reference. The pH and exact concentration of the various components of the pharmaceutical composition are adjusted according to routine skills in the art. See Goodman and Gilman's The Pharmacological Basis for Therapeutics (7th ed.).

[0097] For example, and not by way of limitation, a retroviral vector useful in treating a cell proliferative disorder will include an amphotropic ENV protein, GAG, and POL proteins, a promoter sequence in the U3 region retroviral genome, and all cis-acting sequence necessary for replication, packaging and integration of the retroviral genome into the target cell.

[0098] The following Examples are intended to illustrate, but not to limit the disclosure. While such Examples are typical of those that might be used, other procedures known to those skilled in the art may alternatively be utilized.

EXAMPLES

Example 1

Modification of Vector Backbone of pACE-GFPemd to pAC3-GFPemd and Insertion of Cytosine Deaminase Gene Sequences in Place of GFP

[0099] The previous back bone of the pACE-GFPemd plasmid (U.S. Pat. No. 6,899,871, Wang et al. Hum Gene Ther 14:117 2003) was modified in 3 ways as shown in FIG. 3E. The modifications were made by PCR-mediated, oligonucleotide-directed mutagenesis (Logg et al., J. Mol Biol 369: 1214, 2007; see also "Molecular Biology and Biotechnology" Eds. J M. Walker, R. Rapley, Royal Society of Chemistry, London UK, 2000). The following modifications were made. 1) The nucleic acid sequence at the p15 region at the 3' end of the amphotropic env gene was originally derived from the ecotropic envelope--this sequence was replaced by the corresponding sequence from the 4070A amphotropic envelope; the encoded envelope amino acids are identical in the two constructs. 2) The IRES sequence 3' end was modified to allow easier insertion of transgenes of choice with insertion of a PstI1 site and small imperfect repeats at either end of the IRES transgene site were removed. 3) Residual viral sequence downstream of the 3'LTR was removed. The resultant plasmid is pACE-emdGFP (aka pACE-GFP, pACE-eGFP and T5.0006) was used as a basis for the vectors encoding cytosine deaminase and variants. Two methods of inserting the coding sequence cassettes were used initially. The first method resulted in the sequence 5'TTATAAT3' (SEQ ID NO:74), and the second in the sequence 5'TTATAA3'(SEQ ID NO:75) immediately upstream of the ATG start codon. The second method was simpler, as it involved simple PstI1 and Not1 enzyme cuts in the vector and the synthetic cytosine deaminase genes, followed by religation. Vectors with cytosine deaminase inserts were made both ways with the CDopt (CD1) and the CDopt+3pt (CD2) (see FIG. 2) coding sequences and infectious virus preps made by transient transfection of 293T cells as described in Example 3. U87 cells were then infected in culture, at an MOI of 0.1, and the cells grown until 100% infected. Cell extracts of 100% infected cells were assayed for cytosine deaminase activity as described in Example 6 and the specific activity of the enzyme was found to be equivalent for constructs with either upstream sequence, that were otherwise identical. Therefore in the table in FIG. 2, pACE-eGFP (T5.0006) and pACE-yCD (T5.0007) have the first upstream sequence, while all other constructs that were further tested have the second. Subsequently vectors with different gene inserts have been routinely constructed with straightforward PStI1 and Not I cuts.

[0100] See FIG. 3A below for a diagram of the vector construct for the initial transfected replication-competent retrovirus. CMV is the human CMV immediate early promoter, U3, R and U5 are the corresponding regions of the viral long terminal repeat (LTR). Gag, pol and env are the viral protein coding regions. FIGS. 3B and 3D shows the plasmid structure and a sequence of the disclosure.

[0101] The vector of the disclosure provides a number of differences compared to the vector of Tai et al., Mol. Ther. 12:842, 2005. The Tai et al. vector has been altered to eliminate about 70 bp of MLV sequence downstream from the 3'LTR. The DNA sequence downstream of the ClaI site in the envelope was changed to an amphotropic envelope sequence. This change does not change the amino acid sequence of the envelope. In addition, small repeats on either side of the IRES-CD cassette have been eliminated to avoid instability due to homologous recombination. These changes also unexpectedly provided increased stability of the vector during replication and passaging in host cells (FIG. 5).

[0102] It is recognized that after reverse transcription and the first integration event into treated cells, the DNA provirus and any subsequent progeny retrovirus has a conventional LTR structure from MLV on either end. This configuration has been shown to be stable after multiple cycles of infection (See FIG. 5 below).

Example 2

Genetic Enhancements to the Wild Type Yeast Cytosine Deaminase Gene

[0103] Two sets of changes have been made: (1) three positional mutations which change three amino acids (A23L, I140L and V108I) to increase thermal stability of the yeast cytosine deaminase protein and (2) additional gene sequence modifications to enhance human codon usage sequences to improve protein translation efficiency in human cells without further changes to the amino acid sequence.

[0104] Sequence design for CD included CD-optimized, CD-UPRT (+/- linker) and CD-OPRTase (+/- linker). The final cytosine deaminase coding sequence can comprise at the 5' end a PSI1 site (full length) and 3' end NotI site plus poly A tail for PSI1/Not1 cassette based strategy. Sequences cassettes were ordered from, and provided by, a commercial vendor (BioBasic Inc., Ontario, Canada).

[0105] The following sequence comprising a yeast cytosine deaminase was used for cloning, optimizing and mutation (the boxed nucleic acids comprise the restriction sites--PsiI and NotI--used in subsequent methods for cloning:

TABLE-US-00002 (SEQ ID NO: 43) ##STR00001## TATGAGGAGGCGGCCTTAGGTTACAAAGAGGGTGGTGTTCCTATTGGCGGATGTCTTATCAATAACA AAGACGGAAGTGTTCTCGGTCGTGGTCACAACATGAGATTTCAAAAGGGATCCGCCACACTACATGG TGAGATCTCCACTTTGGAAAACTGTGGGAGATTAGAGGGCAAAGTGTACAAAGATACCACTTTGTAT ACGACGCTGTCTCCATGCGACATGTGTACAGGTGCCATCATCATGTATGGTATTCCACGCTGTGTTG TCGGTGAGAACGTTAATTTCAAAAGTAAGGGCGAGAAATATTTACAAACTAGAGGTCACGAGGTTGT TGTTGTTGACGATGAGAGGTGTAAAAAGATCATGAAACAATTTATCGATGAAAGACCTCAGGATTGG ##STR00002## AAAAGGGGGG

The following Table summarizes the genes and resulting plasmid vectors that were made and their names.

TABLE-US-00003 TABLE Vector constructs and names Identity Reference Original 5'LTR Trans- Code name Name Prom Envelope Vector IRES gene 3'LTR T5.0000 pACE-yCD pACE-CD CMV Ampho pACE EMCV Wt yeast MLV U3 (Tai et al. (4070A) CD 2005) T5.0001 pAC3-yCD1 CDopt CMV Ampho pAC3 EMCV modified MLV U3 sequence (4070A) CD T5.0002 pAC3-yCD2 CDopt+3pt CMV Ampho pAC3 EMCV Modified MLV U3 (4070A) CD T5.0003 pAC3-yCD2-U Cdopt+3pt- CMV Ampho pAC3 EMCV CD2- MLV U3 UPRT (4070A) UPRT T5.0004 pAC3-yCD2-O CDopt+3pt- CMV Ampho pAC3 EMCV CD2- MLV U3 OPRT (4070A) OPRT T5.0005 pAC3-yCD2-LO CDopt+3pt- CMV Ampho pAC3 EMCV CD2-L- MLV U3 LINK-OPRT (4070A) OPRT T5.0006 pAC3-eGFP pAC3-emd, CMV Ampho pAC3 EMCV Emerald MLV U3 pAC3GFP (4070A) GFP T5.0007 pAC3-yCD pAC3-yCD CMV Ampho pAC3 EMCV Wt yeast MLV U3 (4070A) CD

[0106] The replication competent retroviral vector described by Kasahara et al. pACE-CD (U.S. Pat. No. 6,899,871, the disclosure of which is incorporated herein) was used as a basis for additional modifications. A vector (pAC3-yCD) was modified to express a modified yeast cytosine deaminase gene as described herein and was used in the constructs. See FIG. 3A below for a diagram of the vector construct for the initial transfected replication-competent retrovirus. CMV is the human CMV immediate early promoter, U3, R and U5 are the corresponding regions of the viral long terminal repeat (LTR). Gag, pol and env are the viral protein coding regions. FIGS. 3B and 3D shows the plasmid structure and a sequence of the disclosure.

[0107] After the genes were synthesized at a contractor (Bio Basic Inc., Markham, Ontario, Canada) they were inserted into the Psi1-Not1 site of the pAC3 vector backbone (FIG. 3). The plasmid backbone was normally generated by cutting the plasmid pAC3-eGFP with PsiI and NotI and purifying the large (about 11 kb) fragment encoding the plasmid and retroviral backbone)

[0108] A. Humanized Codon Optimized CD Gene (CD-Opt, Aka CD1, T5.0001).

[0109] A comparison of a human codon optimized cytosine deaminase of Conrad et al. and PCT WO 99/60008 indicates 91 total codons optimized in both, 36 codons identical, 47 codons had third base pair changes (all encode same amino acid) and 9 codons were different (however they encoded same amino acid). Of the 9 codons that differed:

TABLE-US-00004 AGC (Ser) to TCC (Ser) CGT (Arg) to AGG (Arg) CCA (Pro) to CCT (Pro)

[0110] All have equivalent GC content and encode the same amino acid. The native yeast gene sequence above was separately codon optimized to give the following CD gene (CD1) and was called T5.0001 when inserted into the plasmid vector pAC3 which encodes the replication competent retrovirus (RCR) with IRES.

TABLE-US-00005 (SEQ ID NO: 44) ##STR00003## AGGCCGCCCTGGGCTACAAGGAGGGCGGCGTGCCTATCGGCGGCTGTCTGATCAACAACAAGGACGG CAGTGTGCTGGGCAGGGGCCACAACATGAGGTTCCAGAAGGGCTCCGCCACCCTGCACGGCGAGATC TCCACCCTGGAGAACTGTGGCAGGCTGGAGGGCAAGGTGTACAAGGACACCACCCTGTACACCACCC TGTCCCCTTGTGACATGTGTACCGGCGCTATCATCATGTACGGCATCCCTAGGTGTGTGGTGGGCGA GAACGTGAACTTCAAGTCCAAGGGCGAGAAGTACCTGCAAACCAGGGGCCACGAGGTGGTGGTTGTT GACGATGAGAGGTGTAAGAAGATCATGAAGCAGTTCATCGACGAGAGGCCTCAGGACTGGTTCGAGG ##STR00004## G.

[0111] B. Heat Stabilized CD Gene.

[0112] Additional modifications were made to enhance the stability of the cytosine deaminase. Genetic enhancements to the wild type yeast cytosine deaminase gene were made to include three positional mutations which change three amino acids (A23L, I140L and V108I) to increase thermal stability of the yeast cytosine deaminase protein.

[0113] The following primer pairs were used in the generation of the gene for the cytosine deaminase polypeptide of the disclosure:

TABLE-US-00006 Site directed mutagenesis primers: Primers sense: (SEQ ID NO: 45) 5'-tcgaggatatcggcgagtgaaacccgttattctttttggc-3' Primers antisense: (SEQ ID NO: 46) 5'-gccaaaaagaataacgggtttcactcgccgatatcctcga-3' Primers sense: (SEQ ID NO: 47) 5'tcggcgagtgatccggcggcggcgcctccggcggcggcgcctccggcg gcggcgcctccggcggcggcgccaacccgttatt-3' Primers antisense: (SEQ ID NO: 48) 5'-aataacgggttggcgccgccgccggaggcgccgccgccggaggcgcc gccgccggaggcgccgccgccggatcactcgccga-3'

[0114] To increase the stability of the native yeast CD protein, three amino acid substitutions were engineered into the protein. These substitutions were alone or in combination with human codon optimization.

[0115] The three amino acid substitutions are: A23L, V108I, I140L. A sequence encoding these substitutions is shown below.

TABLE-US-00007 (SEQ ID NO: 3) ATGGTGACAGGGGGAATGGCAAGCAAGTGGGATCAGAAGGGTATGGACATTGCCTATGAGGAGGCGT TATTAGGTTACAAAGAGGGTGGTGTTCCTATTGGCGGATGTCTTATCAATAACAAAGACGGAAGTGT TCTCGGTCGTGGTCACAACATGAGATTTCAAAAGGGATCCGCCACACTACATGGTGAGATCTCCACT TTGGAAAACTGTGGGAGATTAGAGGGCAAAGTGTACAAAGATACCACTTTGTATACGACGCTGTCTC CATGCGACATGTGTACAGGTGCCATCATCATGTATGGTATTCCACGCTGTGTCATCGGTGAGAACGT TAATTTCAAAAGTAAGGGCGAGAAATATTTACAAACTAGAGGTCACGAGGTTGTTGTTGTTGACGAT GAGAGGTGTAAAAAGTTAATGAAACAATTTATCGATGAAAGACCTCAGGATTGGTTTGAAGATATTG ##STR00005##

[0116] The encoded polypeptide comprises the following sequence (substituted amino acids in underlined):

TABLE-US-00008 (SEQ ID NO: 4) 1 MVTGGMASKWDQKGMDIAYEEALLGYKEGGVPIGGCLINNKDGSVLGRGHNMRFQKGSAT 61 LHGEISTLENCGRLEGKVYKDTTLYTTLSPCDMCTGAIIMYGIPRCVIGENVNFKSKGEK 121 YLQTRGHEVVVVDDERCKKLMKQFIDERPQDWFEDIGE-

[0117] Final construct design that integrates 3 amino acid substitutions A23L/V108I/I140L utilizing preferred codons and uses preferred human codon usage for entire sequence (this gene is called CDopt+3pt [aka CD2] and T5.0002 when inserted into the plasmid vector pAC3 which encodes the RCR with IRES.

TABLE-US-00009 (SEQ ID NO: 49) 1 ATGGTGACCGGCGGCATGGCCTCCAAGTGGGATCAAAAGGGCATGGATATCGCTTACGAG 61 GAGGCCCTGCTGGGCTACAAGGAGGGCGGCGTGCCTATCGGCGGCTGTCTGATCAACAAC 121 AAGGACGGCAGTGTGCTGGGCAGGGGCCACAACATGAGGTTCCAGAAGGGCTCCGCCACC 181 CTGCACGGCGAGATCTCCACCCTGGAGAACTGTGGCAGGCTGGAGGGCAAGGTGTACAAG 241 GACACCACCCTGTACACCACCCTGTCCCCTTGTGACATGTGTACCGGCGCTATCATCATG 301 TACGGCATCCCTAGGTGTGTGATCGGCGAGAACGTGAACTTCAAGTCCAAGGGCGAGAAG 361 TACCTGCAAACCAGGGGCCACGAGGTGGTGGTTGTTGACGATGAGAGGTGTAAGAAGCTG 421 ATGAAGCAGTTCATCGACGAGAGGCCTCAGGACTGGTTCGAGGATATCGGCGAGTGATAA

Underlined codons denote preferred codons for amino acid substitutions.

[0118] Protein translation sequence alignment indicates preferred codon changes and amino acid substitutions result in desired protein structure:

[0119] CD-optimized sequence design (human codon preference+3 amino acid substitutions)

TABLE-US-00010 (SEQ ID NO: 50) ##STR00006## TACGAGGAGGCCCTGCTGGGCTACAAGGAGGGCGGCGTGCCTATCGGCGGCTGTCTGATCAACAACA AGGACGGCAGTGTGCTGGGCAGGGGCCACAACATGAGGTTCCAGAAGGGCTCCGCCACCCTGCACGG CGAGATCTCCACCCTGGAGAACTGTGGCAGGCTGGAGGGCAAGGTGTACAAGGACACCACCCTGTAC ACCACCCTGTCCCCTTGTGACATGTGTACCGGCGCTATCATCATGTACGGCATCCCTAGGTGTGTGA TCGGCGAGAACGTGAACTTCAAGTCCAAGGGCGAGAAGTACCTGCAAACCAGGGGCCACGAGGTGGT GGTTGTTGACGATGAGAGGTGTAAGAAGCTGATGAAGCAGTTCATCGACGAGAGGCCTCAGGACTGG ##STR00007## AAAAGGGGGG

[0120] C. Construction of CD-UPRT Fusion Gene (CDopt+3pt-UPRT, [Aka CDopt-UPRT and CD2-UPRT], T5.0003 in the pAC3 Plasmid RCR Vector).

[0121] A fusion construct was also developed comprising a CD polypeptide as described above linked to a UPRT polypeptide to generate a CD-optimized-UPRT. The following primers were used to delete the stop-start between the CD and UPRT.

Primer Sequences:

TABLE-US-00011 [0122] Primer Name Primer Sequence (5' to 3') (SEQ ID NO:) del118-123 5'-tcgaggatatcggcgagtgaaacccgttattctttttggc-3' (51) del118-123-antisense 5'-gccaaaaagaataacgggtttcactcgccgatatcctcga-3' (52) Energy Cost Length Duplex Energy of Primer Name (nt.) Tm at 68.degree. C. Mismatches del118-123 40 79.06.degree. C. -44.37 kcal/mole 21.1% del118-123-antisense 40 79.06.degree. C. -47.95 kcal/mole 20.3% Primer Name Primer-Template Duplex del118-123 (SEQ ID NOs: 51 and 53, respectively ##STR00008## del118-123-anti-sensense (SEQ ID NO: 54 and 52 respectively) ##STR00009##

[0123] The resulting fusion polynucleotide comprises 1296 bp and the sequence set forth immediately below:

TABLE-US-00012 (SEQ ID NO: 55) ##STR00010## TACGAGGAGGCCCTGCTGGGCTACAAGGAGGGCGGCGTGCCTATCGGCGGCTGTCTGATCAACAACA AGGACGGCAGTGTGCTGGGCAGGGGCCACAACATGAGGTTCCAGAAGGGCTCCGCCACCCTGCACGG CGAGATCTCCACCCTGGAGAACTGTGGCAGGCTGGAGGGCAAGGTGTACAAGGACACCACCCTGTAC ACCACCCTGTCCCCTTGTGACATGTGTACCGGCGCTATCATCATGTACGGCATCCCTAGGTGTGTGA TCGGCGAGAACGTGAACTTCAAGTCCAAGGGCGAGAAGTACCTGCAAACCAGGGGCCACGAGGTGGT GGTTGTTGACGATGAGAGGTGTAAGAAGCTGATGAAGCAGTTCATCGACGAGAGGCCTCAGGACTGG TTCGAGGATATCGGCGAGAACCCGTTATTCTTTTTGGCTTCTCCATTCTTGTACCTTACATATCTTA TATATTATCCAAACAAAGGGTCTTTCGTTAGCAAACCTAGAAATCTGCAAAAAATGTCTTCGGAACC ATTTAAGAACGTCTACTTGCTACCTCAAACAAACCAATTGCTGGGTTTGTACACCATCATCAGAAAT AAGAATACAACTAGACCTGATTTCATTTTCTACTCCGATAGAATCATCAGATTGTTGGTTGAAGAAG GTTTGAACCATCTACCTGTGCAAAAGCAAATTGTGGAAACTGACACCAACGAAAACTTCGAAGGTGT CTCATTCATGGGTAAAATCTGTGGTGTTTCCATTGTCAGAGCTGGTGAATCGATGGAGCAAGGATTA AGAGACTGTTGTAGGTCTGTGCGTATCGGTAAAATTTTAATTCAAAGGGACGAGGAGACTGCTTTAC CAAAGTTATTCTACGAAAAATTACCAGAGGATATATCTGAAAGGTATGTCTTCCTATTAGACCCAAT GCTGGCCACCGGTGGTAGTGCTATCATGGCTACAGAAGTCTTGATTAAGAGAGGTGTTAAGCCAGAG AGAATTTACTTCTTAAACCTAATCTGTAGTAAGGAAGGGATTGAAAAATACCATGCCGCCTTCCCAG AGGTCAGAATTGTTACTGGTGCCCTCGACAGAGGTCTAGATGAAAACAAGTATCTAGTTCCAGGGTT ##STR00011## TTTAGTCTCCAGAAAAAGGGGGG

[0124] D. Construction of CD-Linker UPRT Fusion Gene (CDopt+3pt-LINK-UPRT [Aka CDopt-LINKER-UPRT and CD2-L-UPRT].

[0125] A fusion construct was also developed by cloning a linker (Ser-Gly-Gly-Gly-Gly).sub.4 (SEQ ID NO:56) domain between and in frame with the CD polypeptide and the UPRT polypeptide to generated a CD-optimized-linker-UPRT sequence. The following primers were used to insert the linker.

TABLE-US-00013 Primer Name Primer Sequence (5' to 3')(SEQ ID NO:) ins_60nt_after_477 5'- tcggcgagtgatccggcggcggcgcctccggcggcggcgcctccggcg gcggcgcctccggcggcggcgccaacccgttatt-3'(57) ins_60nt_after_477- 5'- antisense aataacgggttggcgccgccgccggaggcgccgccgccggaggcgcc gccgccggaggcgccgccgccggatcactcgccga-3'(58) Energy Cost Length Duplex Energy at of Primer Name (nt.) Tm 68.degree. C. Mismatches ins_60nt_after_477 82 79.77.degree. C. -30.19 kcal/mole 83.3% ins_60nt_after_477- 82 79.77.degree. C. -32.31 kcal/mole 82.2% antisense

[0126] The resulting construct has size: 1356 bp and the sequence immediately below:

TABLE-US-00014 (SEQ ID NO: 59) ##STR00012## TACGAGGAGGCCCTGCTGGGCTACAAGGAGGGCGGCGTGCCTATCGGCGGCTGTCTGATCAACAACA AGGACGGCAGTGTGCTGGGCAGGGGCCACAACATGAGGTTCCAGAAGGGCTCCGCCACCCTGCACGG CGAGATCTCCACCCTGGAGAACTGTGGCAGGCTGGAGGGCAAGGTGTACAAGGACACCACCCTGTAC ACCACCCTGTCCCCTTGTGACATGTGTACCGGCGCTATCATCATGTACGGCATCCCTAGGTGTGTGA TCGGCGAGAACGTGAACTTCAAGTCCAAGGGCGAGAAGTACCTGCAAACCAGGGGCCACGAGGTGGT GGTTGTTGACGATGAGAGGTGTAAGAAGCTGATGAAGCAGTTCATCGACGAGAGGCCTCAGGACTGG TTCGAGGATATCGGCGAGTCCGGCGGCGGCGCCTCCGGCGGCGGCGCCTCCGGCGGCGGCGCCTCCG GCGGCGGCGCCAACCCGTTATTCTTTTTGGCTTCTCCATTCTTGTACCTTACATATCTTATATATTA TCCAAACAAAGGGTCTTTCGTTAGCAAACCTAGAAATCTGCAAAAAATGTCTTCGGAACCATTTAAG AACGTCTACTTGCTACCTCAAACAAACCAATTGCTGGGTTTGTACACCATCATCAGAAATAAGAATA CAACTAGACCTGATTTCATTTTCTACTCCGATAGAATCATCAGATTGTTGGTTGAAGAAGGTTTGAA CCATCTACCTGTGCAAAAGCAAATTGTGGAAACTGACACCAACGAAAACTTCGAAGGTGTCTCATTC ATGGGTAAAATCTGTGGTGTTTCCATTGTCAGAGCTGGTGAATCGATGGAGCAAGGATTAAGAGACT GTTGTAGGTCTGTGCGTATCGGTAAAATTTTAATTCAAAGGGACGAGGAGACTGCTTTACCAAAGTT ATTCTACGAAAAATTACCAGAGGATATATCTGAAAGGTATGTCTTCCTATTAGACCCAATGCTGGCC ACCGGTGGTAGTGCTATCATGGCTACAGAAGTCTTGATTAAGAGAGGTGTTAAGCCAGAGAGAATTT ACTTCTTAAACCTAATCTGTAGTAAGGAAGGGATTGAAAAATACCATGCCGCCTTCCCAGAGGTCAG AATTGTTACTGGTGCCCTCGACAGAGGTCTAGATGAAAACAAGTATCTAGTTCCAGGGTTGGGTGAC ##STR00013## TCCAGAAAAAGGGGGG

[0127] E. Construction of CD-OPRT Fusion Gene (CDopt+3pt-OPRT [Aka CDopt-OPRT and CD2-OPRT], T5.0004 when Inserted into the pAC3 Plasmid RCR Vector).

[0128] A fusion construct was also developed comprising a CD polypeptide as described above linked to an OPRT polypeptide to generate a CD-optimized-OPRTase (CD humanized+3ptmutation+OPRTase functional domain human).

[0129] The resulting construct comprises a size of 1269 bp and the sequence immediately below:

TABLE-US-00015 (SEQ ID NO: 60) ##STR00014## TACGAGGAGGCCCTGCTGGGCTACAAGGAGGGCGGCGTGCCTATCGGCGGCTGTCTGATCAACAACA AGGACGGCAGTGTGCTGGGCAGGGGCCACAACATGAGGTTCCAGAAGGGCTCCGCCACCCTGCACGG CGAGATCTCCACCCTGGAGAACTGTGGCAGGCTGGAGGGCAAGGTGTACAAGGACACCACCCTGTAC ACCACCCTGTCCCCTTGTGACATGTGTACCGGCGCTATCATCATGTACGGCATCCCTAGGTGTGTGA TCGGCGAGAACGTGAACTTCAAGTCCAAGGGCGAGAAGTACCTGCAAACCAGGGGCCACGAGGTGGT GGTTGTTGACGATGAGAGGTGTAAGAAGCTGATGAAGCAGTTCATCGACGAGAGGCCTCAGGACTGG TTCGAGGATATCGGCGAGGCGGTCGCTCGTGcagctttggggccattggtgacgggtctgtacgacg tgcaggctttcaagtttggggacttcgtgctgaagagcgggctttcctcccccatctacatcgatct gcggggcatcgtgtctcgaccgcgtcttctgagtcaggttgcagatattttattccaaactgcccaa aatgcaggcatcagttttgacaccgtgtgtggagtgccttatacagctttgccattggctacagtta tctgttcaaccaatcaaattccaatgcttattagaaggaaagaaacaaaggattatggaactaagcg tcttgtagaaggaactattaatccaggagaaacctgtttaatcattgaagatgttgtcaccagtgga tctagtgttttggaaactgttgaggttcttcagaaggagggcttgaaggtcactgatgccatagtgc tgttggacagagagcagggaggcaaggacaagttgcaggcgcacgggatccgcctccactcagtgtg tacattgtccaaaatgctggagattctcgagcagcagaaaaaagttgatgctgagacagttgggaga gtgaagaggtttattcaggagaatgtctttgtggcagcgaatcataatggttctcccctttctataa aggaagcacccaaagaactcaGCTTCGGTGCACGTGCAGAGCTGCCCAGGATCCACCCAGTTGCATC ##STR00015##

[0130] F. Construction of CD-Linker-OPRT Fusion Gene (CDopt+3pt-LINK-OPRT, [Aka CDopt-LINKER-OPRT and CD2-L-OPRT], T5.0005 in the pAC3 plasmid RCR vector).

[0131] A fusion construct was also developed by cloning a linker (Ser-Gly-Gly-Gly-Gly).sub.4) (SEQ ID NO:56) domain between and in frame with the CD polypeptide and the OPRT polypeptide to generated a CD-optimized-linker-OPRT sequence.

[0132] The resulting construct comprises a size of 1329 bp and the sequence immediately below:

TABLE-US-00016 (SEQ ID NO: 61) ##STR00016## TACGAGGAGGCCCTGCTGGGCTACAAGGAGGGCGGCGTGCCTATCGGCGGCTGTCTGATCAACAACA AGGACGGCAGTGTGCTGGGCAGGGGCCACAACATGAGGTTCCAGAAGGGCTCCGCCACCCTGCACGG CGAGATCTCCACCCTGGAGAACTGTGGCAGGCTGGAGGGCAAGGTGTACAAGGACACCACCCTGTAC ACCACCCTGTCCCCTTGTGACATGTGTACCGGCGCTATCATCATGTACGGCATCCCTAGGTGTGTGA TCGGCGAGAACGTGAACTTCAAGTCCAAGGGCGAGAAGTACCTGCAAACCAGGGGCCACGAGGTGGT GGTTGTTGACGATGAGAGGTGTAAGAAGCTGATGAAGCAGTTCATCGACGAGAGGCCTCAGGACTGG TTCGAGGATATCGGCGAGTCCGGCGGCGGCGCCTCCGGCGGCGGCGCCTCCGGCGGCGGCGCCTCCG GCGGCGGCGCCGCGGTCGCTCGTGcagctttggggccattggtgacgggtctgtacgacgtgcaggc tttcaagtttggggacttcgtgctgaagagcgggctttcctcccccatctacatcgatctgcggggc atcgtgtctcgaccgcgtcttctgagtcaggttgcagatattttattccaaactgcccaaaatgcag gcatcagttttgacaccgtgtgtggagtgccttatacagctttgccattggctacagttatctgttc aaccaatcaaattccaatgcttattagaaggaaagaaacaaaggattatggaactaagcgtcttgta gaaggaactattaatccaggagaaacctgtttaatcattgaagatgttgtcaccagtggatctagtg ttttggaaactgttgaggttcttcagaaggagggcttgaaggtcactgatgccatagtgctgttgga cagagagcagggaggcaaggacaagttgcaggcgcacgggatccgcctccactcagtgtgtacattg tccaaaatgctggagattctcgagcagcagaaaaaagttgatgctgagacagttgggagagtgaaga ggtttattcaggagaatgtctttgtggcagcgaatcataatggttctcccctttctataaaggaagc acccaaagaactcaGCTTCGGTGCACGTGCAGAGCTGCCCAGGATCCACCCAGTTGCATCGAAGTAA ##STR00017##

[0133] FIG. 4 demonstrates that higher levels of the human codon optimized with the three mutations for higher stability are observed compared to wild type yCD protein in infected U-87 cells.

Example 3

Vector Production by Transient Transfection

[0134] Vector can be produced in a number of ways, but the first step is to introduce the DNA vector into cells to allow production of infectious particles, that can then be harvested from the cell supernatant. Once infectious particles have been generated other methods of production can be implemented by those skilled in the art. Vector particles were generated by transient transfection of 293T cells (Pear et al. Proc Natl Acad Sci USA. 90:8392-8396 1993).

[0135] The 293T cells were thawed and put into culture, then passaged twice in T-75 flasks containing 15 mL of the DMEM medium that was prepared by mixing DMEM High Glucose medium (Hyclone#30081, 500 mL) with FBS (Hyclone# SH30070, 50 mL), L-Glutamine (Cellgro#25-005-CI, 5 mL), NEAA (Hyclone #SH30238, 5 mL), and Penicillin-strep (Cellgro#30-002-CI, 5 mL). The flasks were incubated at 37.degree. C. and 5% CO.sub.2. After the 3.sup.rd passage cells were seeded in 6 T-25's, each containing 5 mL of the medium, at a cell density of 1.8.times.10.sup.6 cells/T-25 (or 7.2.times.10.sup.4 cells/cm.sup.2). One day after seeding the T-25's, the cells were transfected with the T5.0002 plasmid that expressed the viral vector using the Calcium Phosphate Transfection Kit from Promega (Cat# E1200). Eighteen hours following transfection, the media in one set of the flasks (3 flasks each set) were replaced with fresh medium containing 10 mM NaB. The media in the 2.sup.nd set of the flasks were not replaced, which served as a control (zero NaB). Eight hours post NaB treatment the media in all flasks were replaced with the fresh medium containing no NaB. The expression was allowed to continue for both sets of flasks until the next day (22 hours duration). The supernatants from both sets of flasks were harvested and assayed for their titers by qPCR expressed in Transducing Units (TU)/ml (see Example 4).

[0136] The titer results are shown in the following table.

TABLE-US-00017 Second titer (after storing Condition First titer at -80.degree. C. for 68 days) Without NaB 1.5 (.+-.0.05) .times. 10.sup.6 TU/mL 1.2 (.+-.0.2) .times. 10.sup.6 TU/mL 10 mM NaB 1.4 (.+-.0.3) .times. 10.sup.6 TU/mL 7.0 (.+-.0.14) .times. 10.sup.5 TU/mL TU = transduction unit

[0137] Subsequent vector preparations were produced in this manner, without sodium butyrate. Other vector plasmids (Table 2) have been used in the same way to generate vector preparations with titers between 1E5 TU/ml and 1E7 TU/ml. Such material can be further purified and concentrated, if desired, as described below see also: U.S. Pat. No. 5,792,643; T. Rodrigues et al. J Gene Med 9:233 2007.

[0138] In certain embodiments of the disclosure the dosing was calculated by grams of brain weight. In such embodiments, the dosing of a replication competent retroviral vector of the disclosure useful in the methods for treatment can range from 10.sup.4 to 10.sup.6 TU per gram brain weight.

Example 4

Quantitative PCR Titering Assay

[0139] The functional vector concentration, or titer, is determined using a quantitative PCR-based (qPCR) method. In this method, vector is titered by infecting a transducible host cell line (e.g. PC-3 human prostatic carcinoma cells, ATCC Cat# CRL-1435) with a standard volume of vector and measuring the resulting amount of provirus present within the host cells after transduction. The cells and vector are incubated under standard culturing condition (37.degree. C., 5% CO.sub.2) for 24 hr to allow for complete infection prior to the addition of the anti-retroviral AZT to stop vector replication. Next, the cells are harvested from the culture dish and the genomic DNA (gDNA) is purified using an Invitrogen Purelink gDNA purification kit and eluted from the purification column with sterile RNase-/DNase-free water. The A.sub.260/A.sub.280 absorbance ratio is measured on a spectrophotometer to determine the concentration and relative purity of the sample. The gDNA concentrations are normalized with additional RNase-/DNase-free water to the lowest concentration of any given set of gDNA preparations such that the input DNA for the qPCR is constant for all samples analyzed. Genomic DNA purity is further assessed by electrophoresis of an aliquot of each sample on an ethidium bromide stained 0.8% agarose gel. If the sample passes an A.sub.260/A.sub.280 absorbance range of 1.8-2.0 and shows a single band of gDNA, then the sample is ready for qPCR analysis of provirus copy number of the vector. Using primers that interrogate the LTR region of the provirus (reverse-transcribed vector DNA and vector DNA that is integrated into the host gDNA), qPCR is performed to estimate the total number of transduction events that occurred when the known volume of vector was used to transduce the known number of cells. The number of transduction events per reaction is calculated from a standard curve that utilizes a target-carrying plasmid of known copy-number that is serial diluted from 10.sup.7 to 10 copies and measured under identical qPCR conditions as the samples. Knowing how many genomic equivalents were used for each qPCR reaction (from the concentration previously determined) and how many transduction events that occurred per reaction, we determine the total number of transduction events that occurred based on the total number of cells that were present at the time of transduction. This value is the titer of the vector after dilution into the medium containing the cells during the initial transduction. To calculate the corrected titer value, the dilution is corrected for by multiplying through by the volume of culture and the volume of titer divided by the volume of titer. These experiments are performed in replicate cultures and analyzed by qPCR using triplicate measurements for each condition to determine an average titer and with its associated standard deviation and coefficient of variance.

Example 5

Vector Testing

[0140] In order to be effective vector constructs and their derived infectious particles need to: (1) make good titer of virus by transient transfection (see Examples 3 and 4); (2) be stable upon multiple passages; (3) kill cells efficiently in the presence of 5-FC; and (4) express enzyme activity upon infection of target cells. Example 3 shows that useful titers can be obtained from the vectors.

[0141] Genetic Stability of Viral Vectors.

[0142] To demonstrate the stability the following experiment was performed. Approximately 10.sup.6 naive U-87 cells were initially infected with the viral vector at an MOI of 0.01, and grown until fully infected to complete a single cycle of infection. Supernatant is then repassed onto uninfected cells and the cycle repeated. In this experiment, twelve cycles have been completed in duplicate trials (FIG. 5 shows one of each of the duplicate trials; the other duplicates gave similar results). Genomic stability of the yCD2 or other transgene sequence is assessed by PCR amplification of the integrated provirus from the infected cells using MLV specific primers flanking the transgene insertion site. The appearance of any bands smaller than full-length amplicon would be an indicator of vector instability. FIG. 5 demonstrates that a vector of the disclosure (T5.0007-comprising the modified vector and CD heterologous polynucleotide) maintains stability for more passages than pACE-CD. Furthermore T5.0003 is somewhat less stable while T5.0004 and T5 appear about as stable as pACE-CD. pACE-CD has been used in mouse tumor studies and shows good anti-tumor effects in mouse models. However a more stable viral genome will be much more potent and long lasting in treatment of animals and humans, especially if multiple cycles of 5-FC treatment are required. Both T5.0001 and T5.0002 are markedly more stable than even T5.0007, as shown by the reduced presence of small bands at later passages (FIG. 5), showing that silent changes in a protein coding sequence or small changes that result in point mutations can lead to unexpectedly superior properties with more stable vector genomes.

[0143] Cell Killing Experiments.

[0144] The CellTiter 96 Aqueous One Solution Cell Proliferation Assay (MTS) is a colorimetric method for determining the number of viable cells in proliferation assays. We have utilized this assay to determine cell growth kinetics, as well as to determine the dose response of various cell lines to 5-Fluorocytosine (5-FC) and 5-Fluorouracil (5-FU).

[0145] Cells 100% infected with vector were seeded at 1000 cells/well in 96-well plates. They were monitored over an eight day period following treatment with various concentrations of 5-FC (5-FU for controls). An analysis of their cell growth was assessed every two days utilizing Promega's Cell Titer 96 AQueous One Solution reagent (MTS). Briefly, 20 .mu.l of MTS was mixed with 100 .mu.l media (as recommended by the manufacturer) and added to the samples in the 96-well plate. The samples were incubated for 60 minutes in a 37.degree. C./5% CO.sub.2 incubator. Thereafter, absorbance readings were taken on a plate reader at a 490 nm wavelength.

[0146] FIG. 6A shows the results of an experiment that demonstrates that the cytosine deaminase in cells expressing the yCD2 protein is at least as active as that from cells expressing the wild type yCD protein, by performing 5-FC titrations on U-87 cells infected either with AC3-yCD2 (vector) or AC3-yCD (vector). Briefly, U-87 cells 5 days post infection at a multiplicity of infection of 0.1 (i.e. 100% infected) with either AC3-yCD (wild type CD) vector or AC3-yCD2 (thermostabilized & codon optimized) vector were subject to increasing amounts of 5-FC or 0.1 mM of 5-FU as a positive control for 8 days. On day 8, cell cultures were assessed for viability using an MTS assay (Promega CellTiter 96 AQUEOUS One Solution Proliferation Assay). Data shows comparable killing between the two retroviral vectors at increasing doses of 5-FC treatment.

[0147] In similar in-vitro cell culture experiments with RG2 cells (ATCC Cat# CRL-2433), the RG2 cell line was transduced with 5 different vectors (pACE-CD, T5.0001, T5.0002, T5.0004, and T5.0007). It was subsequently subject to increasing concentrations of 5-FC (5-FU for controls) for 8 days and monitored as described above. The results are shown in FIG. 2. Concentrations of 0.01 mM were sufficient to induce complete killing with all vectors tested with the exception of wild type-yeast Cytosine Deaminase (pACE-yCD). It was less sensitive and required 1.0 mM of 5-FC for complete killing.

[0148] CD Expression Assay.

[0149] U87 cells were transduced at a multiplicity of infection (MOI) of 0.1, cultivated for 5 days to allow viral spread and cells from day 5 post transduction were harvested. The cells were then collected by centrifugation at 800.times.g for 5 min. The supernatant was aspirated away from the cell pellet and washed with 5 mL of phosphate buffered saline (PBS) and again centrifuged at 800.times.g for 5 min. The resulting cell pellet was taken up in 1.5 mL of PBS, resuspended by passage through a pipette tip and placed in a freezer at -20.degree. C. Cells were lysed by a freeze/thaw method. Previously resuspended cells were allowed to thaw at room temperature, passed through a pipette tip, mixed with protease inhibitor cocktail and again refrozen at -20.degree. C. Previous to the enzyme assay, the sample was again thawed at room temperature and passed through a pipette tip. The suspension was then centrifuged at 14,000 rpm in a tabletop centrifuge for 5 min. The supernatant was decanted away from the pellet and placed in a fresh eppendorf tube and placed on ice.

[0150] yCD enzyme activity was assessed by using an HPLC assay. The HPLC assay was performed on a Shimadzu LC20AT unit connected in series with a photoarray detector and autoinjector. The solid phase was a Hypersil BDS C.sub.18, HPLC column with a 5 .mu.m sphere size and 4.0.times.250 mm column dimensions. The mobile phase was 50 mM ammonium phosphate, pH 2.1, containing 0.01% tert-butylammonium perchlorate and 5% methanol; the system was equilibrated at 22.degree. C. All reagents were ACS grade and solvents were HPLC grade. A reaction mix was made consisting of 800 .mu.L with a final concentration of 0.125 mg/mL 5-FC (1 mM) in PBS and placed in a 1.5 mL autosampler vial. The reaction was then initiated by adding 200 .mu.L of each cell lysate. The reaction/autosampler vials were placed in the auto sampler and 5 .mu.L of the reaction mixture was injected. Time points were taken periodically by retrieving a 5 .mu.L aliquot from each reaction vial and analyzing on the HPLC column. The conversion rates of 5-FC to 5-FU were calculated by comparing the peak areas with known amounts from a previously generated standard curve of 5-FU. The rate of 5-FC conversion to 5-FU was derived by plotting the amount of 5-FU (in nmol) generated against its corresponding time interval. Protein concentration for the cell sample was derived and the Specific Activity of the cell lysate samples were calculated by dividing the conversion rate (nmol/min) by the amount of protein used in the assay in mg.

[0151] FIG. 6B shows the specific activity of various vectors after 5 days on transduction at an MOI of 0.1. The data demonstrate that pACE-yCD (T5.0000)<pAC3-yCD1 (T5.0001)<pAC3-CD2 (T5.0002) in terms of the specific activity of cytosine deaminase in tissue culture cells.

Example 6

Vector Purification and Concentration

[0152] A vector of the disclosure is manufactured by transient transfection on 293T cells (Example 3), followed by harvesting of the cell supernatant, filtration, benzonase treatment, diafiltration/concentration and dialysis. A further chromatography column step may be included, known to those skilled in the art (see for example U.S. Pat. No. 5,792,643; T. Rodriguez et al. J Gene Med 9:233 2007; WO2010148203. Vector is also produced from a permanently infected cell line and processed as above (see for example WO2010148203). Clinical material is released based on standard testing such as sterility, mycoplasma and endotoxins, plus product specific potency, strength, and identity testing. Titer is determined as Transducing Units (TU) by PCR quantitation of integrated viral vector DNA in target cells (Example 4). The final product is targeted to have a titer of up to 10.sup.9 TU/ml formulated in isotonic Tris-buffered sucrose solution, as a sterile injectable.

[0153] In general, to accurately and precisely determine the strength of vector lots, a quantitative PCR-based titer assay has been developed (described in general terms in example 4). The details of the assay procedure consist of the following steps:

[0154] Transduction.

[0155] Transductions are performed in a 12-well plate format using the stable human prostate adenocarcinoma derived PC-3 cell line. For each test sample, three dilutions of un-titered vector preparation are used to transduce PC-3 cells in triplicate wells. Viral replication is stopped 24 hours post-transduction with azidothymidine (AZT). Cells are maintained for an additional 24-64 hours prior to harvesting and genomic DNA purification.

[0156] Genomic DNA Preparation.

[0157] Qiagen DNeasy DNA Minikits are used to prepare genomic DNA from transduced harvested cells as per the manufacturer's protocol. DNA concentrations and quality are assessed by direct absorbance measurement using UV/vis spectrophotometry to determine the A260 and A260/A280 ratio.

[0158] Real-Time Quantitative PCR.

[0159] The BioRad CFX96 real-time PCR instrument or equivalent is used for performing quantitative PCR. Provector copy numbers present in each test sample are measured by using specific DNA oligonucleotide primers in conjunction with a TaqMan probe designed to amplify the integrated, or pro-retroviral, U3/Psi packaging versus the CMV/Psi plasmid promoter. Vector titer is expressed relative to a copy number standard curve. To generate the vector copy number standard curve, genomic DNA from PC-3 cells is spiked with a unique plasmid containing the pro-retroviral U3/Psi sequence. Vector test sample titers are obtained by calculating the number of transduced genomes in multiple dilutions using multiple reactions per dilution.

[0160] For each titer assessment, a non template control (wells containing all components except plasmid or genomic DNA) and a negative control (all components including equivalent genomic DNA from non-transduced PC-3 cells), is performed in triplicate. The titer values are expressed in transduction units per milliliter (TU/mL).

[0161] The potency of the vector of the disclosure is dependent on both the replication of the vector and the resultant cytosine deaminase (CD) activity in target cells. Therefore the potency assay measures the increase in CD activity over time as vector infection spreads in a previously uninfected cell line in tissue culture. The assay measures the enzymatic activity of the transferred yCD2 protein in transduced cells during early, middle and late stages of infection by monitoring the conversion of 5-fluorocytosine (5-FC) to 5-fluorouracil (5-FU), using reverse phase HPLC separation with UV detection. The increase of CD activity over the course of the infection is a function of the percent of cells infected over time and indicative of the TOCA 511 vector's ability to replicate. CD activity based on the 5-FC to 5-FU conversion rate is measured for each time point in CD units per mg of protein (the specific activity, SA). The increase in SA is then plotted over time, and reflects both the increase in the percentage of cells transduced as a result of viral replication in the culture, and the resultant transfer of CD activity. Accumulated data from multiple assays and vector lots has been used to determine an appropriate specification for this increase in SA of CD, for product release. The assay has 1, 3 and 5 day timepoints after an initial infection at an MOI of about 0.1 and a non-infected control.

[0162] CD activity from late stage infected cells (day 5 time point) was compared between lots to evaluate the use of this activity as an Identity test. The assay includes the following steps:

[0163] Transductions.

[0164] Transductions are performed in multi-well plate format on U87 cells. For each transduction, three suitable dilutions are used and each performed in triplicate. Cells are harvested at 0, 1, 3 and 5 days post transduction.

[0165] Set-Up of CD Reaction.

[0166] Cells are lysed and the total protein concentration determined using the BCA protein assay using BSA as a standard. For the yCD2 enzyme assay, an appropriate amount of cell lysate is added to buffer containing 5-FC such that the rate of 5-FU formation remains linear over 1-2 hours at 37.degree. C. The final volume for the reaction mixture is 100 .mu.L. After 2 h, the enzyme reaction is terminated by the addition of trichloroacetic acid, briefly vortexed and prepared for subsequent HPLC analyses. Cell lysates from non-transduced cells are used as a negative control while a similar assay using samples from 100% infected cells is used as a positive control.

[0167] HPLC Analysis.

[0168] The terminated reaction mixture is centrifuged at 12,000 rpm for 5 minutes at room temperature in a micro-centrifuge. The supernatant is then decanted away from the pellet and passed through a 0.2p filter to further remove particulates before injection onto a reverse phase HPLC column previously equilibrated with an aqueous based mobile phase containing phosphate buffer at a pH around 4.0. The chromatograms are followed at 260 nm and 280 nm to monitor both substrate consumption and product formation. Concentrations of either substrate or product are determined using the graphing and analysis capabilities of GraphPad by comparing them to previously generated standard curves calculated from known substrate or product concentrations. Amounts of 5-FU generated over 1-2 h are used to determine CD units of activity (1 unit of CD activity is defined as the formation 1 nmol of 5-FU per min) and the Specific Activity is calculated dividing this number by the amount of protein (from the cell lysate) used in the assay.

Example 7

Construction and Use of a Vector Encoding a Single Chain Antibody to CTLA-4 (CD 152)

[0169] Single chain antibodies are derived from known full antibody sequences that have a desired effect. Such sequences are available (e.g. WO2006048749, US2006165706, U.S. Pat. No. 7,034,121, Genbank Accession Numbers DJ437648, CS441506, CS441500, CS441494, CS441488, the disclosures of which are incorporated herein by reference). Such conventional antibody gene sequences are converted into single chain antibody (scFv) sequences by commonly used methods known to those skilled in the art (see for example Gilliland et al. "Rapid and reliable cloning of antibody variable regions and generation of recombinant single chain antibody fragments." Tissue Antigens 47, 1-20, 1996). Phage single chain antibodies to CTLA-4 are also available from screening phage-scFv libraries directly (Pistillo et al. Tissue Antigens 55:229 2000), and can be used directly for insertion into the replicating retroviral vectors of the disclosure. Regardless of how the sequence is derived, scFv are typically about 700-900 bp in length and are synthesized by a commercial vendor (BioBasic) with a PsiI site at the 5' end and compatible NotI site at the 3' end, as described previously. This sequence is then inserted into the replicating retroviral back bone from pAC3-yCD2 at the PsiI-NotI sites after removal of the yCD2 sequence. Vector is produced and titered as described, and further purified if necessary as described above. Human and Mouse CTLA4 are very homologous in sequence and the replicating retrovirus of the disclosure is first tested in a suitable syngeneic immunocompetent mouse models such as the CT26/BALB/c model and S91 mouse melanoma models, well known to those skilled in the art (see for example Hodge et al J. Immunol. 174:5994 2005). Outcome is measured by one or more of: modulation of tumor growth; lack of toxicity; generation of antitumor responses; shrinkage of remote lesions indicating systemic immunity. Doses are in the range of 10.sup.3 to 10.sup.7 TU in mice. In patients the vector is administered by intralesional injection into tumor, or by administration into the circulation that then carries the virus to the tumor. Doses are in the range of 10.sup.5 to 10.sup.11 TU.

Example 8

Anti-Melanoma Efficacy Studies with Anti CD152 Single Chain Antibody Expressing Vector in a Mouse Melanoma Model

[0170] Objective.

[0171] The objective of this study is to assess the effect of a novel MLV based replication-competent retroviral vector carrying single chain antibody directed against Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) also referred to as Cluster of differentiation 152 (CD152) sequence (pAC3-.alpha.CD152) on melanoma growth, when delivered via intratumoral (IT) injection in DBA/2 mice bearing subcutaneous melanoma (Cloudman S91).

[0172] Mice.

[0173] Female DBA/2 or BALB/c mice (age .about.8 weeks) are purchased from Jackson Laboratories (Bar Harbor, Me.). Mice are acclimated for 7 days after arrival before start of studies.

[0174] Cells.

[0175] Cloudman S91 cells (ATCC, Manassas Va.) are a spontaneously arising melanoma derived from DBA/2 mice. Cells are cultured in Dulbecco's modified Eagles medium with 10% fetal bovine serum, sodium pyruvate, and Glutamax (Hyclone, Logan Utah, and Invitrogen, San Diego Calif.). Cells are resuspended in PBS (Hyclone, Logan Utah) for implantation. S91 cells (1E6 in 100 .mu.L) are injected into the right flank of DBA/2 mice.

[0176] Vector.

[0177] Vectors preparations are made by transient transfection (or from a producer cell line in HT1080 cells) with titers of approximately 7E6TU/ml. For initial studies vector is not further purified or concentrated. For follow on experiments to determine full dose response curves, high titer purified material is prepared with a titer expected around 10.sup.8/ml. Vector is administered IT in a volume of 50-100 .mu.L and IV in 100 .mu.L the total dose/mouse of approximately 7E5 to 7E6 to 7ETU/mouse. Vector expressing .alpha.CD152 is identified as Toca .alpha.CD152.

[0178] Tumor Implantation and Vector Injection.

[0179] Five groups of female DBA/2 (55 mice, 9-10 weeks of age) are implanted subcutaneously with S91 melanoma cells (Day 0) and then dosed (day 4-7 depending on growth rate of the S91 tumor; approximately 50-100 mm.sup.3) with vehicle (Groups 1), with control vector [AC3-GFP(V), (Group2), intratumor (IT) Toca .alpha.CD152 vector injection (Groups 3), or intravenous Toca .alpha.CD152 vector injection (group 4). Group 5 mice have no tumor implanted and are intravenously injected with Toca .alpha.CD152 only.

[0180] Data Analysis.

[0181] Tumor growth analysis is carried out to 2000 mm.sup.3 or to 60 days based on which ever comes first. 10 mice from each group will be plotted for tumor size over time. Statistical significance will be determined using analysis of variance (ANOVA). P values of <0.05 are considered statistically significant in all analyses, which are performed with Prism 5 statistical software (GraphPad Software) or equivalent. In-life observations are also taken to assess any adverse events to .alpha.CD152 expression during treatment.

[0182] Results.

[0183] Delivery of .alpha.CD152 by replicating MLV IT shows a statistically significant retardation of growth compared to the controls. Delivery of .alpha.CD152 by replicating MLV intravenously shows a statistically significant retardation of growth compared to the controls abrogates melanoma burden from the DBA/2--Cloudman S91 mouse melanoma model. Further animal studies were performed as described more fully below.

Example 9

AC3-yCD2 Viral Vector is Therapeutic in an Intracranial Human Xenograft (U87) in Nude Mice

[0184] An intracranial xenograft model using the U87 human glioma cell line was established to test RCR vector spread and biodistribution as well as therapeutic efficacy of RCR-vector mediated cytosine deaminase suicide gene therapy in a nude mouse host.

[0185] Following acclimation, mice were randomly assigned to one of 8 Treatment groups (see group description below). Seven groups underwent intracranial administration into the right striatum of 1.times.10.sup.5 U87 cells administered/mouse on Day 0. Group 8 mice were not implanted with tumor. At Day 5, mice were injected with Formulation Buffer only, or an RCR vector at 9.times.10.sup.5/5 .mu.l, 9.times.10.sup.4/5 .mu.l, or 9.times.10.sup.3/5 .mu.l. Mice receiving no vector, or vector at 9.times.10.sup.5/5 .mu.l or 9.times.10.sup.3/5 .mu.l were randomized to receive 5-FC (500 mg/kg/day), administered as a single IP injection, beginning on Day 19, or no 5-FC. Mice receiving vector at mid dose all received 5-FC (i.e., No separate control group for this dose). 5-FC administration continued daily for 7 consecutive days followed by 15 days of no treatment. Cycles of drug plus rest were repeated up to 4 cycles. 10 mice from each group except group 8 were randomly assigned to the survival analysis category. The remaining mice were sacrificed according to a predetermined schedule.

TABLE-US-00018 Group Assignments and Dose Levels N per Analysis Category Test Drug (A)Survival (B)Scheduled Group article Volume TX N analysis Sacrifice 1 Form 5 .mu.l none 4 4 before buffer first drug cycle 2 Form 5 .mu.l 5-FC 10 10 buffer 3 T5.0002 9e5/5 .mu.l PBS 10 10 4 T5.0002 9e5/5 .mu.l 5FC 25 10 3 before start of each cycle, 15 total 5 T5.0002 9e4/5 .mu.l 5FC 10 10 6 T5.0002 9e3/5 .mu.l 5FC 25 10 3 before start of each cycle, 15 total 7 T5.0002 9e3/5 .mu.l PBS 10 10 8 NO none 5FC 15 3 before TUMOR start of each cycle, 15 total Total Number of Animals 109 60 49

[0186] Intravenous dosing was done via injection into the tail vein. Intraperitoneal dosing was done via injection into the abdomen with care taken to avoid the bladder. For intracranial injection mice were anesthetized with isoflurane and positioned in a stereotaxic device with blunt ear bars. The skin was shaved and betadine was used to treat the scalp to prepare the surgical site. The animal was placed on a heating pad and a scalpel used under sterile conditions to make a midline incision through the skin. Retraction of the skin and reflection of the fascia at the incision site will allow for visualization of the skull. A guide cannula with a 3 mm projection, fitted with a cap with a 3.5 mm projection, will be inserted through a small burr hole in the skull and attached with dental cement and three small screws to the skull. After hardening of the cement, the skin will be closed with sutures. The projected stereotaxic coordinates are AP=0.5-1.0 mm, ML=1.8-2.0 mm, DV=3.0 mm. Exact stereotaxic coordinates for the cohort of animals received will be determined in a pilot experiment (2-3 animals) by injecting dye and determining its location. The animals will be monitored during anesthesia recovery. Analgesics, buprenorphine, will be administered subcutaneously (SC) before the end of the procedure then buprenorphine will be administered approximately every 12 hrs for up to 3 days. Animals will be monitored on a daily basis. Cells or vector were intracranially infused through an injection cannula with a 3.5 mm projection inserted through the guide cannula. The rate was controlled with a syringe pump fitted with a Hamilton syringe and flexible tubing. For cell injection, 1 microliter of cells was delivered at a flow rate of 0.2 microliters per minute (5 minutes total). For vector injection, 5 microliters of vector was delivered at a flow rate 0f 0.33 microliters per minute (15 minutes total).

[0187] Vector was delivered and calculated as transforming units (TU) per gram of brain weight to the mice. Using such calculation the translation of dose can be calculated for other mammals including humans. FIG. 8 shows the effect on vector dose in this mouse model.

Example 10

AC3-yCD2(V) is Therapeutic in a Syngeneic Mouse Model of Brain Cancer

[0188] An intracranial implant model using the CT26 colorectal cancer cell line in syngeneic BALB/c mice was established to test RCR vector spread and biodistribution as well as therapeutic efficacy of RCR-vector mediated cytosine deaminase suicide gene therapy and its immunological impact.

[0189] This study included 129 animals, 0 Male, 119 Female and 10 contingency animals (10 Female). Following acclimation, mice were randomly assigned to one of 8 Treatment groups (see group description below). Seven groups underwent intracranial administration into the right striatum of 1.times.10.sup.4 CT26 cells administered/mouse on Day 0. Group 8 mice were not implanted with tumor. At Day 4, mice were injected with Formulation Buffer only, or vector at 9.times.10.sup.5/5 .mu.l, 9.times.10.sup.4/5 .mu.l, or 9.times.10.sup.3/5 .mu.l. Mice receiving no vector, or vector at 9.times.10.sup.5/5 .mu.l or 9.times.10.sup.3/5 .mu.l were randomized to receive 5-FC (500 mg/kg/BID), administered by IP injection, beginning on Day 13, or no 5-FC. Mice receiving vector at mid dose received 5-FC (ie. No separate control group for this dose). 5-FC administration continued daily for 7 consecutive days followed by 10 days of no treatment. Cycles of drug plus rest were repeated up to 4 cycles. 10 mice from each group except group 8 were randomly assigned to the survival analysis category. The remaining mice were sacrificed according to a predetermined schedule.

[0190] Naive sentinel mice were co-housed with the scheduled sacrifice animals and taken down at the same time points to assess vector transmittal through shedding.

TABLE-US-00019 Group Assignments and Dose Levels N per Analysis Category Test Drug (A)Survival (B)Scheduled (C) Group article Volume TX N analysis Sacrifice Sentinels 1 Form 5 .mu.l PBS 4 4 before buffer first drug cycle 2 Form 5 .mu.l 5FC 10 10 buffer 3 T5.0002 9E5/5 .mu.l PBS 10 10 4 T5.0002 9E5/5 .mu.l 5FC 25 10 3 before 1 before start of each start of each cycle, 15 cycle, 5 total total 5 T5.0002 9E4/5 .mu.l 5FC 10 10 6 T5.0002 9E3/5 .mu.l 5FC 25 10 3 before 1 before start of each start of each cycle, 15 cycle, 5 total total 7 T5.0002 9E3/5 .mu.l PBS 10 10 8 NO none 5FC 15 3 before TUMOR start of each cycle, 15 total Total Number of Animals 119 60 49 10

[0191] Intravenous dosing was done via injection into the tail vein. Intraperitoneal dosing was done via injection into the abdomen with care taken to avoid the bladder. For intracranial administration, mice with a guide cannula with a 3.2 mm projection implanted into the right striatum, and fitted with a cap with a 3.7 mm projection were used. The projected stereotaxic coordinates are AP=0.5-1.0 mm, ML=1.8-2.0 mm, DV=3.2 mm (from bregma). Cells or vector were intracranially infused through an injection cannula with a 3.7 mm projection inserted through the guide cannula. The rate was controlled with a syringe pump fitted with a Hamilton syringe and flexible tubing.

[0192] For cell injection, 1 microliter of cells was delivered at a flow rate of 0.2 microliter per minute (5 minutes total). For vector injection, 5 microliter of vector was delivered at a flow rate of 0.33 microliter per minute (15 minutes total).

[0193] Vector was delivered and calculated as transforming units (TU) per gram of brain weight to the mice. Using such calculation the translation of dose can be calculated for other mammals including humans. FIG. 9 shows the effect on vector dose in this mouse model when the vector is delivered intracranially.

Example 11

Construction and Testing of RCR Vectors Expressing miR-128-1 and miR128-2

[0194] Construction of Recombinant Replication Competent Retroviral Vector Containing a Heterologous Polynucleotide Sequence of Human pri-miRNA-128-1.

[0195] The replication competent retroviral vector, pAC3-miR-128-1 expressing miR-128-1 was derived from the backbone of pAC3-yCD2 described in one of the embodiments. The pAC3 backbone in the pAC3-miR-128-1 vector was isolated by endonuclease digestion of the pAC3-yCD2 plasmid DNA with Mlu I and Not I to remove the IRES-yCD2 polynucleotide sequence. The polynucleotide DNA sequence of pri-miR-128-1 was obtained from the product sheet of the pEP-mir-128-1 expression vector (Cell BioLabs Inc.) (SEQ ID NO: 31). DNA sequence of pri-miR-128-1 was synthesized with a Mlu I restriction enzyme site at the 5' end and a Not I restriction enzyme site at the 3' end of the double-stranded DNA fragment for subsequent insertion at the corresponding site in the Mlu I and Not I digested pAC3-yCD2 plasmid DNA described above. The resulting construct, pAC3-miR-128-1, encodes 3 genes: the gag, the pol, and the env, and the non-coding pri-miR-128-1 sequence.

[0196] Testing of Expression of Mature miR-128 from Cells Transduced with miR-128 Containing Recombinant Replication Competent Retroviral Vector.

[0197] In order to confirm the expression of miR-128 from cells transduced with miR-128 containing recombinant replication competent retroviral vectors, cells from day 9 post infection at which the maximal infectivity has reached were expanded and harvested to extract total RNA for detection of mature miRNA expression. The results from Taqman microRNA assay showed an over expression of mature miR-128 from both HT1080 and U87-MG cells transduced with pAC3-miR-128-1, pAC3-miR-128-2, and pAC3-H1-shRNAmiR128 vectors, respectively, compared to untransduced cells. In both cell lines, cells transduced with pAC3-miR-128-1 and pAC3-H1-shRNAmiR128 vector expressed higher level of mature miR-128 than cells transduced with pAC3-miR-128-2 vector.

Example 12

Construction and Testing of Recombinant Replication Competent Retroviral Vector Containing Heterologous Polynucleotide Sequences of IRES, yCD2, Human H1 Promoter and Human Pre-miR128-1

[0198] Construction.

[0199] The replication competent retroviral vector, pAC3-yCD2-H1-shRNAmiR128 is derived from the backbone of pAC3-yCD2 described in one of the embodiments. The pAC3-yCD2 backbone in the pAC3-yCD2-H1-shRNAmiR128 vector is isolated by endonuclease digestion of the pAC3-yCD2 plasmid DNA with Not I. The polynucleotide DNA sequence of the human H1 promoter is obtained from the product information of pSilencer 3.1 H1 hygro expression vector (Ambion), and the polynucleotide DNA sequence of the short hairpin structured pre-miR-128-1 is obtained from the http:(//)www.mirbase.org/. DNA sequence of pre-miR128-1 linked to the human H1 promoter (SEQ ID NO: 34) is synthesized with a Not I restriction enzyme site at both ends of the double-stranded DNA fragment for subsequent insertion at the corresponding site in Not I digested pAC3-yCD2 plasmid DNA described above. The resulting construct, pAC3-H1-shRNAmiR128, encodes 4 genes: the gag, the pol, and the env, and the yCD2, and the non-coding short hairpin structured pre-miR-128-1 sequence.

[0200] Vector stock is produced by transient transfection of the vector-encoding plasmid DNA into 293T cells using calcium phosphate method. Eighteen hours post transfection, the culture is replaced with fresh medium. Twenty-four hours post medium replacement, the supernatant containing the vector is collected and filtered through a 0.45 .mu.m filter and used immediately or stored in aliquots at -80.degree. C. for later use. Twenty micro-liter of the collected vector stocks is used to infect human prostate cancer cells, PC3. Twenty-four hours post infection, AZT is added to the cells to inhibit further viral replication. Forty-eight hours post infection, genomic DNA of infected PC3 cells is extracted for titer assay. The titer of the vector stocks is determined by qPCR with an inclusion of standards of known copy numbers.

[0201] Testing of Replication Kinetics of the pAC3-yCD2-H1-shRNAmiR128 Recombinant Replication Competent Retroviral Vectors in Culture.

[0202] In order to confirm that the incorporation of H1-pre-miR-128-1 replicates normally, calculated volume of each vector stocks collected from transient transfection mentioned above is used to infect fresh human fibrosarcoma cells, HT1080 and human glioma cells, U87-MG, respectively, at a MOI of 0.1. Transduced cells are passaged at day 3, 6 and 9 post infection. At each time point, a portion of cells are collected for genomic DNA extraction for qPCR. Dilutions of genomic DNA are made to generate aliquots of genomic DNA with same concentration for equal amount of genomic in-put in qPCR. Replication kinetics of each vectors are generated by plotting inversed C(t) values vs. time points. Result show that the vector replicates at similar kinetics compared to control MLV virus.

[0203] Testing of Expression of Mature miR-128 from Cells Transduced with the pAC3-yCD2-H1-shRNAmiR128 Recombinant Replication Competent Retroviral Vector.

[0204] To confirm the expression of miR-128 from cells transduced with pAC3-yCD2-H1-shRNAmiR128 recombinant replication competent retroviral vector, cells from day 9 post infection, at which the maximal infectivity is reached, are expanded and harvested to extract total RNA for detection of mature miRNA expression. Result from Taqman microRNA assay shows an over expression of mature miR-128 from both HT1080 and U87-MG cells transduced with the pAC3-yCD2-H1-shRNAmiR128compared to untransduced cells.

[0205] Testing of Bmi-1 Expression from Cells Transduced with pAC3-yCD2-H1-shRNAmiR128 Recombinant Replication Competent Retroviral Vectors to Demonstrate Target Engagement of miR-128.

[0206] Bmi-1 expression has been observed to be up-regulated in a variety of human cancers including glioblastoma, and has been shown to be the target of miR-128. To confirm target engagement of miR-128, Bmi-1 expression from cells transduced with pAC3-yCD2-H1-shRNAmiR128 is detected by qRT-PCR. The result shows that U87-MG cells transduced with pAC3-yCD2-H1-shRNAmiR128 express lower level of Bmi-1 than untransduced cells, whereas in HT1080 cells no significant difference was observed between transduced and untransduced cells. The data support the concept that miR-128 plays an important functional role in the central nervous system.

[0207] Testing of yCD2 Expression from Cells Transduced with pAC3-yCD2-H1-shRNAmiR128 by Immune-Blot.

[0208] To confirm the expression of yCD2 from cells transduced with pAC3-yCD2-H1-shRNAmiR128 recombinant replication competent retroviral vector, cells from day 9 post infection, at which the maximal infectivity is reached, are expanded and harvested to extract total protein for detection of yCD2 expression. The result from immune-blot shows normal expression yCD2 from both HT1080 and U87-MG cells transduced with the pAC3-yCD2-H1-shRNAmiR128 compared to pAC3-yCD2 transduced cells.

Example 13

Anti-Tumor Efficacy Studies with miRNA Expressing Vector in a Mouse/Human Xenograft Model

[0209] Objective.

[0210] The objective of this study is to assess the effect of a novel MLV based replication-competent retroviral vectors carrying the miR128 sequence (AC3-miR128-1(V); AC3-miR128-2(V); AC3-miR128-3(V) on survival, when delivered via intracranial (IC) injection in nude mice bearing a human glioma xenograft, at three Toca 511 dose levels.

[0211] Mice.

[0212] Female athymic nude-Foxn1 nu (nude) mice (age .about.8 weeks) are purchased from Harlan (Indianapolis Ind.). Mice are acclimated for 7 days after arrival. Mice undergo surgical placement of an indwelling guide cannula with a 3.0 mm projection implanted into the right striatum, and fitted with a cap containing a 3.5 mm projection. The stereotaxic coordinates are AP=+0.5 mm, ML=-1.8 mm (from bregma).

[0213] Cells.

[0214] U-87 MG cells (ATCC, Manassas Va.) are derived from a malignant glioma from a 44 year old Caucasian female. Cells are cultured in Dulbecco's modified Eagles medium with 10% fetal bovine serum, sodium pyruvate, and Glutamax (Hyclone, Logan Utah, and Invitrogen, San Diego Calif.). Cells are resuspended in PBS (Hyclone, Logan Utah) for implantation. U-87 MG cells (1E5 in 1 .mu.L) are infused at 0.2 .mu.L per minute (5 minutes, followed by a hold of 5 minutes) IC through an injection cannula with a 3.5 mm projection inserted through the guide cannula.

[0215] Vectors preparations are made by transient transfection (or from a producer cell line) and all have titers of approximately 5E6TU/ml. For initial studies vector is not further purified or concentrated. For follow on experiments to determine full dose response curves, high titer purified material is prepared with a titer of around 10E8/ml. Vector is administered IC in a volume of 5 ul or less for a minimum total dose/mouse of approximately 2.5E4 TU/mouse.

[0216] Tumor Implantation and Vector Injection.

[0217] Six groups of female athymic nude-Foxn1 nu mice (65 mice, 9-10 weeks of age) are implanted IC with U-87 tumor cells (Day 0) then dosed IC (day 4-7 depending on growth rate of the U87 cells) with vehicle (Groups 1), with control vector (AC3-GFP(V), Group2) or IC with AC3-miR128-1(V); AC3-miR128-2(V); AC3-miR128-3(V) (Groups 3-5). Group 6 mice were not implanted with tumor or vector.

[0218] Data Analysis.

[0219] Survival analysis to day 60 is performed on 10 mice each from Groups 1-6 and plotted as a Kaplan Meyer plot. Survival curves are compared by the log-rank test. P values of <0.05 are considered statistically significant in all analyses, which are performed with Prism 5 statistical software (GraphPad Software) or equivalent.

[0220] Results from treatment with the vectors show a statistically significant survival advantage in this human glioma xenograft model compared to treatment with control vector or vehicle alone.

Example 14

Thymosin Combination Therapy

[0221] Experiments using Thymosin Alpha 1 were performed in conjunction with Toca 511 treatment in the Tu2449/B6C3F1 glioma mouse model (U. Pohle et al. Int J Oncol. 15:829-834 (1999); HM. Smilowitz et al. J. Neurosurg 106:652-659 2007). Experiments were conducted in a similar manner to those in the BALB/c-CT26 model (Example 10), except that the initial intracranial cell innoculum was at 10.sup.4 cells and the 5-FC dosing was twice a day (BID) intra-peritoneally at 500 mg/kg, with 10 days off drug followed by 4 days with 5-FC administration. In addition to the administration of vector and 5-FC some groups were dosed with thymosin alpha 1(TA1). Thymosin Alpha 1 was obtained from Sigma Aldrich cat# T3641 and a stock solution made in sterile water at 400 .mu.g/mL. TA1 (200 .mu.g/kg, .about.40 .mu.g/animal) was given IP starting on day 7 SID for 28 days.

[0222] The results are presented in FIG. 10. Using a suboptimal dose of Toca511 (E3) and standard BID 5-FC dosing, the addition of thymosin alpha 1 increased the survival rate to that of the optimal E5 dosing of Toca 511. When compared to buffer only animals there was a significant survival advantage (p=0.0016, hazard ratio 0.1111, 95% CL 0.028 to 0.436). Further, using a suboptimal dose of Toca511 (E3), thymosin alpha 1 dosing, and standard BID 5-FC dosing resulted in a survival advantage compared to a suboptimal dose of Toca511 (E3) and only thymosin alpha 1 dosing.

[0223] A number of embodiments of the disclosure have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure. Accordingly, other embodiments are within the scope of the following claims.

Sequence CWU 1

1

731477DNASaccharomyces cerevisiaeCDS(1)..(477) 1atg gtg aca ggg gga atg gca agc aag tgg gat cag aag ggt atg gac 48Met Val Thr Gly Gly Met Ala Ser Lys Trp Asp Gln Lys Gly Met Asp 1 5 10 15 att gcc tat gag gag gcg gcc tta ggt tac aaa gag ggt ggt gtt cct 96Ile Ala Tyr Glu Glu Ala Ala Leu Gly Tyr Lys Glu Gly Gly Val Pro 20 25 30 att ggc gga tgt ctt atc aat aac aaa gac gga agt gtt ctc ggt cgt 144Ile Gly Gly Cys Leu Ile Asn Asn Lys Asp Gly Ser Val Leu Gly Arg 35 40 45 ggt cac aac atg aga ttt caa aag gga tcc gcc aca cta cat ggt gag 192Gly His Asn Met Arg Phe Gln Lys Gly Ser Ala Thr Leu His Gly Glu 50 55 60 atc tcc act ttg gaa aac tgt ggg aga tta gag ggc aaa gtg tac aaa 240Ile Ser Thr Leu Glu Asn Cys Gly Arg Leu Glu Gly Lys Val Tyr Lys 65 70 75 80 gat acc act ttg tat acg acg ctg tct cca tgc gac atg tgt aca ggt 288Asp Thr Thr Leu Tyr Thr Thr Leu Ser Pro Cys Asp Met Cys Thr Gly 85 90 95 gcc atc atc atg tat ggt att cca cgc tgt gtt gtc ggt gag aac gtt 336Ala Ile Ile Met Tyr Gly Ile Pro Arg Cys Val Val Gly Glu Asn Val 100 105 110 aat ttc aaa agt aag ggc gag aaa tat tta caa act aga ggt cac gag 384Asn Phe Lys Ser Lys Gly Glu Lys Tyr Leu Gln Thr Arg Gly His Glu 115 120 125 gtt gtt gtt gtt gac gat gag agg tgt aaa aag atc atg aaa caa ttt 432Val Val Val Val Asp Asp Glu Arg Cys Lys Lys Ile Met Lys Gln Phe 130 135 140 atc gat gaa aga cct cag gat tgg ttt gaa gat att ggt gag tag 477Ile Asp Glu Arg Pro Gln Asp Trp Phe Glu Asp Ile Gly Glu 145 150 155 2158PRTSaccharomyces cerevisiae 2Met Val Thr Gly Gly Met Ala Ser Lys Trp Asp Gln Lys Gly Met Asp 1 5 10 15 Ile Ala Tyr Glu Glu Ala Ala Leu Gly Tyr Lys Glu Gly Gly Val Pro 20 25 30 Ile Gly Gly Cys Leu Ile Asn Asn Lys Asp Gly Ser Val Leu Gly Arg 35 40 45 Gly His Asn Met Arg Phe Gln Lys Gly Ser Ala Thr Leu His Gly Glu 50 55 60 Ile Ser Thr Leu Glu Asn Cys Gly Arg Leu Glu Gly Lys Val Tyr Lys 65 70 75 80 Asp Thr Thr Leu Tyr Thr Thr Leu Ser Pro Cys Asp Met Cys Thr Gly 85 90 95 Ala Ile Ile Met Tyr Gly Ile Pro Arg Cys Val Val Gly Glu Asn Val 100 105 110 Asn Phe Lys Ser Lys Gly Glu Lys Tyr Leu Gln Thr Arg Gly His Glu 115 120 125 Val Val Val Val Asp Asp Glu Arg Cys Lys Lys Ile Met Lys Gln Phe 130 135 140 Ile Asp Glu Arg Pro Gln Asp Trp Phe Glu Asp Ile Gly Glu 145 150 155 3477DNAArtificial SequenceEngineered cytosine deaminase 3atg gtg aca ggg gga atg gca agc aag tgg gat cag aag ggt atg gac 48Met Val Thr Gly Gly Met Ala Ser Lys Trp Asp Gln Lys Gly Met Asp 1 5 10 15 att gcc tat gag gag gcg tta tta ggt tac aaa gag ggt ggt gtt cct 96Ile Ala Tyr Glu Glu Ala Leu Leu Gly Tyr Lys Glu Gly Gly Val Pro 20 25 30 att ggc gga tgt ctt atc aat aac aaa gac gga agt gtt ctc ggt cgt 144Ile Gly Gly Cys Leu Ile Asn Asn Lys Asp Gly Ser Val Leu Gly Arg 35 40 45 ggt cac aac atg aga ttt caa aag gga tcc gcc aca cta cat ggt gag 192Gly His Asn Met Arg Phe Gln Lys Gly Ser Ala Thr Leu His Gly Glu 50 55 60 atc tcc act ttg gaa aac tgt ggg aga tta gag ggc aaa gtg tac aaa 240Ile Ser Thr Leu Glu Asn Cys Gly Arg Leu Glu Gly Lys Val Tyr Lys 65 70 75 80 gat acc act ttg tat acg acg ctg tct cca tgc gac atg tgt aca ggt 288Asp Thr Thr Leu Tyr Thr Thr Leu Ser Pro Cys Asp Met Cys Thr Gly 85 90 95 gcc atc atc atg tat ggt att cca cgc tgt gtc atc ggt gag aac gtt 336Ala Ile Ile Met Tyr Gly Ile Pro Arg Cys Val Ile Gly Glu Asn Val 100 105 110 aat ttc aaa agt aag ggc gag aaa tat tta caa act aga ggt cac gag 384Asn Phe Lys Ser Lys Gly Glu Lys Tyr Leu Gln Thr Arg Gly His Glu 115 120 125 gtt gtt gtt gtt gac gat gag agg tgt aaa aag tta atg aaa caa ttt 432Val Val Val Val Asp Asp Glu Arg Cys Lys Lys Leu Met Lys Gln Phe 130 135 140 atc gat gaa aga cct cag gat tgg ttt gaa gat att ggt gag tag 477Ile Asp Glu Arg Pro Gln Asp Trp Phe Glu Asp Ile Gly Glu 145 150 155 4158PRTArtificial SequenceSynthetic Construct 4Met Val Thr Gly Gly Met Ala Ser Lys Trp Asp Gln Lys Gly Met Asp 1 5 10 15 Ile Ala Tyr Glu Glu Ala Leu Leu Gly Tyr Lys Glu Gly Gly Val Pro 20 25 30 Ile Gly Gly Cys Leu Ile Asn Asn Lys Asp Gly Ser Val Leu Gly Arg 35 40 45 Gly His Asn Met Arg Phe Gln Lys Gly Ser Ala Thr Leu His Gly Glu 50 55 60 Ile Ser Thr Leu Glu Asn Cys Gly Arg Leu Glu Gly Lys Val Tyr Lys 65 70 75 80 Asp Thr Thr Leu Tyr Thr Thr Leu Ser Pro Cys Asp Met Cys Thr Gly 85 90 95 Ala Ile Ile Met Tyr Gly Ile Pro Arg Cys Val Ile Gly Glu Asn Val 100 105 110 Asn Phe Lys Ser Lys Gly Glu Lys Tyr Leu Gln Thr Arg Gly His Glu 115 120 125 Val Val Val Val Asp Asp Glu Arg Cys Lys Lys Leu Met Lys Gln Phe 130 135 140 Ile Asp Glu Arg Pro Gln Asp Trp Phe Glu Asp Ile Gly Glu 145 150 155 5480DNAArtificial SequenceHuman codon optimized cytosine deaminase 5atg gtg acc ggc ggc atg gcc tcc aag tgg gat caa aag ggc atg gat 48Met Val Thr Gly Gly Met Ala Ser Lys Trp Asp Gln Lys Gly Met Asp 1 5 10 15 atc gct tac gag gag gcc gca ctg ggc tac aag gag ggc ggc gtg cct 96Ile Ala Tyr Glu Glu Ala Ala Leu Gly Tyr Lys Glu Gly Gly Val Pro 20 25 30 atc ggc ggc tgt ctg atc aac aac aag gac ggc agt gtg ctg ggc agg 144Ile Gly Gly Cys Leu Ile Asn Asn Lys Asp Gly Ser Val Leu Gly Arg 35 40 45 ggc cac aac atg agg ttc cag aag ggc tcc gcc acc ctg cac ggc gag 192Gly His Asn Met Arg Phe Gln Lys Gly Ser Ala Thr Leu His Gly Glu 50 55 60 atc tcc acc ctg gag aac tgt ggc agg ctg gag ggc aag gtg tac aag 240Ile Ser Thr Leu Glu Asn Cys Gly Arg Leu Glu Gly Lys Val Tyr Lys 65 70 75 80 gac acc acc ctg tac acc acc ctg tcc cct tgt gac atg tgt acc ggc 288Asp Thr Thr Leu Tyr Thr Thr Leu Ser Pro Cys Asp Met Cys Thr Gly 85 90 95 gct atc atc atg tac ggc atc cct agg tgt gtg gtc ggc gag aac gtg 336Ala Ile Ile Met Tyr Gly Ile Pro Arg Cys Val Val Gly Glu Asn Val 100 105 110 aac ttc aag tcc aag ggc gag aag tac ctg caa acc agg ggc cac gag 384Asn Phe Lys Ser Lys Gly Glu Lys Tyr Leu Gln Thr Arg Gly His Glu 115 120 125 gtg gtg gtt gtt gac gat gag agg tgt aag aag atc atg aag cag ttc 432Val Val Val Val Asp Asp Glu Arg Cys Lys Lys Ile Met Lys Gln Phe 130 135 140 atc gac gag agg cct cag gac tgg ttc gag gat atc ggc gag tga taa 480Ile Asp Glu Arg Pro Gln Asp Trp Phe Glu Asp Ile Gly Glu 145 150 155 6158PRTArtificial SequenceSynthetic Construct 6Met Val Thr Gly Gly Met Ala Ser Lys Trp Asp Gln Lys Gly Met Asp 1 5 10 15 Ile Ala Tyr Glu Glu Ala Ala Leu Gly Tyr Lys Glu Gly Gly Val Pro 20 25 30 Ile Gly Gly Cys Leu Ile Asn Asn Lys Asp Gly Ser Val Leu Gly Arg 35 40 45 Gly His Asn Met Arg Phe Gln Lys Gly Ser Ala Thr Leu His Gly Glu 50 55 60 Ile Ser Thr Leu Glu Asn Cys Gly Arg Leu Glu Gly Lys Val Tyr Lys 65 70 75 80 Asp Thr Thr Leu Tyr Thr Thr Leu Ser Pro Cys Asp Met Cys Thr Gly 85 90 95 Ala Ile Ile Met Tyr Gly Ile Pro Arg Cys Val Val Gly Glu Asn Val 100 105 110 Asn Phe Lys Ser Lys Gly Glu Lys Tyr Leu Gln Thr Arg Gly His Glu 115 120 125 Val Val Val Val Asp Asp Glu Arg Cys Lys Lys Ile Met Lys Gln Phe 130 135 140 Ile Asp Glu Arg Pro Gln Asp Trp Phe Glu Asp Ile Gly Glu 145 150 155 7756DNASaccharomyces cerevisiaeCDS(1)..(756) 7atg aac ccg tta ttc ttt ttg gct tct cca ttc ttg tac ctt aca tat 48Met Asn Pro Leu Phe Phe Leu Ala Ser Pro Phe Leu Tyr Leu Thr Tyr 1 5 10 15 ctt ata tat tat cca aac aaa ggg tct ttc gtt agc aaa cct aga aat 96Leu Ile Tyr Tyr Pro Asn Lys Gly Ser Phe Val Ser Lys Pro Arg Asn 20 25 30 ctg caa aaa atg tct tcg gaa cca ttt aag aac gtc tac ttg cta cct 144Leu Gln Lys Met Ser Ser Glu Pro Phe Lys Asn Val Tyr Leu Leu Pro 35 40 45 caa aca aac caa ttg ctg ggt ttg tac acc atc atc aga aat aag aat 192Gln Thr Asn Gln Leu Leu Gly Leu Tyr Thr Ile Ile Arg Asn Lys Asn 50 55 60 aca act aga cct gat ttc att ttc tac tcc gat aga atc atc aga ttg 240Thr Thr Arg Pro Asp Phe Ile Phe Tyr Ser Asp Arg Ile Ile Arg Leu 65 70 75 80 ttg gtt gaa gaa ggt ttg aac cat cta cct gtg caa aag caa att gtg 288Leu Val Glu Glu Gly Leu Asn His Leu Pro Val Gln Lys Gln Ile Val 85 90 95 gaa act gac acc aac gaa aac ttc gaa ggt gtc tca ttc atg ggt aaa 336Glu Thr Asp Thr Asn Glu Asn Phe Glu Gly Val Ser Phe Met Gly Lys 100 105 110 atc tgt ggt gtt tcc att gtc aga gct ggt gaa tcg atg gag caa gga 384Ile Cys Gly Val Ser Ile Val Arg Ala Gly Glu Ser Met Glu Gln Gly 115 120 125 tta aga gac tgt tgt agg tct gtg cgt atc ggt aaa att tta att caa 432Leu Arg Asp Cys Cys Arg Ser Val Arg Ile Gly Lys Ile Leu Ile Gln 130 135 140 agg gac gag gag act gct tta cca aag tta ttc tac gaa aaa tta cca 480Arg Asp Glu Glu Thr Ala Leu Pro Lys Leu Phe Tyr Glu Lys Leu Pro 145 150 155 160 gag gat ata tct gaa agg tat gtc ttc cta tta gac cca atg ctg gcc 528Glu Asp Ile Ser Glu Arg Tyr Val Phe Leu Leu Asp Pro Met Leu Ala 165 170 175 acc ggt ggt agt gct atc atg gct aca gaa gtc ttg att aag aga ggt 576Thr Gly Gly Ser Ala Ile Met Ala Thr Glu Val Leu Ile Lys Arg Gly 180 185 190 gtt aag cca gag aga att tac ttc tta aac cta atc tgt agt aag gaa 624Val Lys Pro Glu Arg Ile Tyr Phe Leu Asn Leu Ile Cys Ser Lys Glu 195 200 205 ggg att gaa aaa tac cat gcc gcc ttc cca gag gtc aga att gtt act 672Gly Ile Glu Lys Tyr His Ala Ala Phe Pro Glu Val Arg Ile Val Thr 210 215 220 ggt gcc ctc gac aga ggt cta gat gaa aac aag tat cta gtt cca ggg 720Gly Ala Leu Asp Arg Gly Leu Asp Glu Asn Lys Tyr Leu Val Pro Gly 225 230 235 240 ttg ggt gac ttt ggt gac aga tac tac tgt gtt taa 756Leu Gly Asp Phe Gly Asp Arg Tyr Tyr Cys Val 245 250 8251PRTSaccharomyces cerevisiae 8Met Asn Pro Leu Phe Phe Leu Ala Ser Pro Phe Leu Tyr Leu Thr Tyr 1 5 10 15 Leu Ile Tyr Tyr Pro Asn Lys Gly Ser Phe Val Ser Lys Pro Arg Asn 20 25 30 Leu Gln Lys Met Ser Ser Glu Pro Phe Lys Asn Val Tyr Leu Leu Pro 35 40 45 Gln Thr Asn Gln Leu Leu Gly Leu Tyr Thr Ile Ile Arg Asn Lys Asn 50 55 60 Thr Thr Arg Pro Asp Phe Ile Phe Tyr Ser Asp Arg Ile Ile Arg Leu 65 70 75 80 Leu Val Glu Glu Gly Leu Asn His Leu Pro Val Gln Lys Gln Ile Val 85 90 95 Glu Thr Asp Thr Asn Glu Asn Phe Glu Gly Val Ser Phe Met Gly Lys 100 105 110 Ile Cys Gly Val Ser Ile Val Arg Ala Gly Glu Ser Met Glu Gln Gly 115 120 125 Leu Arg Asp Cys Cys Arg Ser Val Arg Ile Gly Lys Ile Leu Ile Gln 130 135 140 Arg Asp Glu Glu Thr Ala Leu Pro Lys Leu Phe Tyr Glu Lys Leu Pro 145 150 155 160 Glu Asp Ile Ser Glu Arg Tyr Val Phe Leu Leu Asp Pro Met Leu Ala 165 170 175 Thr Gly Gly Ser Ala Ile Met Ala Thr Glu Val Leu Ile Lys Arg Gly 180 185 190 Val Lys Pro Glu Arg Ile Tyr Phe Leu Asn Leu Ile Cys Ser Lys Glu 195 200 205 Gly Ile Glu Lys Tyr His Ala Ala Phe Pro Glu Val Arg Ile Val Thr 210 215 220 Gly Ala Leu Asp Arg Gly Leu Asp Glu Asn Lys Tyr Leu Val Pro Gly 225 230 235 240 Leu Gly Asp Phe Gly Asp Arg Tyr Tyr Cys Val 245 250 91443DNAhomo sapiensCDS(1)..(1443) 9atg gct gtt gct cgt gct gct ctt ggt cct ctt gtt act ggt ctt tat 48Met Ala Val Ala Arg Ala Ala Leu Gly Pro Leu Val Thr Gly Leu Tyr 1 5 10 15 gat gtt caa gct ttt aaa ttt ggt gat ttt gtt ctt aaa tct ggt ctt 96Asp Val Gln Ala Phe Lys Phe Gly Asp Phe Val Leu Lys Ser Gly Leu 20 25 30 tct tct cct att tat att gat ctt cgt ggt att gtt tct cgt cct cgt 144Ser Ser Pro Ile Tyr Ile Asp Leu Arg Gly Ile Val Ser Arg Pro Arg 35 40 45 ctt ctt tct caa gtt gct gat att ctt ttt caa act gct caa aat gct 192Leu Leu Ser Gln Val Ala Asp Ile Leu Phe Gln Thr Ala Gln Asn Ala 50 55 60 ggt att tct ttt gat act gtt tgt ggt gtt cct tat act gct ctt cct 240Gly Ile Ser Phe Asp Thr Val Cys Gly Val Pro Tyr Thr Ala Leu Pro 65 70 75 80 ctt gct act gtt att tgt tct act aat caa att cct atg ctt att cgt 288Leu Ala Thr Val Ile Cys Ser Thr Asn Gln Ile Pro Met Leu Ile Arg 85 90 95 cgt aaa gaa act aaa gat tat ggt act aaa cgt ctt gtt gaa ggt act 336Arg Lys Glu Thr Lys Asp Tyr Gly Thr Lys Arg Leu Val Glu Gly Thr 100 105 110 att aat cct ggt gaa act tgt ctt att att gaa gat gtt gtt act tct 384Ile Asn Pro Gly Glu Thr Cys Leu Ile Ile Glu Asp Val Val Thr Ser 115 120 125 ggt tct tct gtt ctt gaa act gtt gaa gtt ctt caa aaa gaa ggt ctt 432Gly Ser Ser Val Leu Glu Thr Val Glu Val Leu Gln Lys Glu Gly Leu 130 135 140 aaa gtt act gat gct att gtt ctt ctt gat cgt gaa caa ggt ggt aaa 480Lys Val Thr Asp Ala Ile Val Leu Leu Asp Arg Glu Gln Gly Gly Lys 145 150

155 160 gat aaa ctt caa gct cat ggt att cgt ctt cat tct gtt tgt act ctt 528Asp Lys Leu Gln Ala His Gly Ile Arg Leu His Ser Val Cys Thr Leu 165 170 175 tct aaa atg ctt gaa att ctt gaa caa caa aaa aaa gtt gat gct gaa 576Ser Lys Met Leu Glu Ile Leu Glu Gln Gln Lys Lys Val Asp Ala Glu 180 185 190 act gtt ggt cgt gtt aaa cgt ttt att caa gaa aat gtt ttt gtt gct 624Thr Val Gly Arg Val Lys Arg Phe Ile Gln Glu Asn Val Phe Val Ala 195 200 205 gct aat cat aat ggt tct cct ctt tct att aaa gaa gct cct aaa gaa 672Ala Asn His Asn Gly Ser Pro Leu Ser Ile Lys Glu Ala Pro Lys Glu 210 215 220 ctt tct ttt ggt gct cgt gct gaa ctt cct cgt att cat cct gtt gct 720Leu Ser Phe Gly Ala Arg Ala Glu Leu Pro Arg Ile His Pro Val Ala 225 230 235 240 tct aaa ctt ctt cgt ctt atg caa aaa aaa gaa act aat ctt tgt ctt 768Ser Lys Leu Leu Arg Leu Met Gln Lys Lys Glu Thr Asn Leu Cys Leu 245 250 255 tct gct gat gtt tct ctt gct cgt gaa ctt ctt caa ctt gct gat gct 816Ser Ala Asp Val Ser Leu Ala Arg Glu Leu Leu Gln Leu Ala Asp Ala 260 265 270 ctt ggt cct tct att tgt atg ctt aaa act cat gtt gat att ctt aat 864Leu Gly Pro Ser Ile Cys Met Leu Lys Thr His Val Asp Ile Leu Asn 275 280 285 gat ttt act ctt gat gtt atg aaa gaa ctt att act ctt gct aaa tgt 912Asp Phe Thr Leu Asp Val Met Lys Glu Leu Ile Thr Leu Ala Lys Cys 290 295 300 cat gaa ttt ctt att ttt gaa gat cgt aaa ttt gct gat att ggt aat 960His Glu Phe Leu Ile Phe Glu Asp Arg Lys Phe Ala Asp Ile Gly Asn 305 310 315 320 act gtt aaa aaa caa tat gaa ggt ggt att ttt aaa att gct tct tgg 1008Thr Val Lys Lys Gln Tyr Glu Gly Gly Ile Phe Lys Ile Ala Ser Trp 325 330 335 gct gat ctt gtt aat gct cat gtt gtt cct ggt tct ggt gtt gtt aaa 1056Ala Asp Leu Val Asn Ala His Val Val Pro Gly Ser Gly Val Val Lys 340 345 350 ggt ctt caa gaa gtt ggt ctt cct ctt cat cgt ggt tgt ctt ctt att 1104Gly Leu Gln Glu Val Gly Leu Pro Leu His Arg Gly Cys Leu Leu Ile 355 360 365 gct gaa atg tct tct act ggt tct ctt gct act ggt gat tat act cgt 1152Ala Glu Met Ser Ser Thr Gly Ser Leu Ala Thr Gly Asp Tyr Thr Arg 370 375 380 gct gct gtt cgt atg gct gaa gaa cat tct gaa ttt gtt gtt ggt ttt 1200Ala Ala Val Arg Met Ala Glu Glu His Ser Glu Phe Val Val Gly Phe 385 390 395 400 att tct ggt tct cgt gtt tct atg aaa cct gaa ttt ctt cat ctt act 1248Ile Ser Gly Ser Arg Val Ser Met Lys Pro Glu Phe Leu His Leu Thr 405 410 415 cct ggt gtt caa ctt gaa gct ggt ggt gat aat ctt ggt caa caa tat 1296Pro Gly Val Gln Leu Glu Ala Gly Gly Asp Asn Leu Gly Gln Gln Tyr 420 425 430 aat tct cct caa gaa gtt att ggt aaa cgt ggt tct gat att att att 1344Asn Ser Pro Gln Glu Val Ile Gly Lys Arg Gly Ser Asp Ile Ile Ile 435 440 445 gtt ggt cgt ggt att att tct gct gct gat cgt ctt gaa gct gct gaa 1392Val Gly Arg Gly Ile Ile Ser Ala Ala Asp Arg Leu Glu Ala Ala Glu 450 455 460 atg tat cgt aaa gct gct tgg gaa gct tat ctt tct cgt ctt ggt gtt 1440Met Tyr Arg Lys Ala Ala Trp Glu Ala Tyr Leu Ser Arg Leu Gly Val 465 470 475 480 taa 144310480PRThomo sapiens 10Met Ala Val Ala Arg Ala Ala Leu Gly Pro Leu Val Thr Gly Leu Tyr 1 5 10 15 Asp Val Gln Ala Phe Lys Phe Gly Asp Phe Val Leu Lys Ser Gly Leu 20 25 30 Ser Ser Pro Ile Tyr Ile Asp Leu Arg Gly Ile Val Ser Arg Pro Arg 35 40 45 Leu Leu Ser Gln Val Ala Asp Ile Leu Phe Gln Thr Ala Gln Asn Ala 50 55 60 Gly Ile Ser Phe Asp Thr Val Cys Gly Val Pro Tyr Thr Ala Leu Pro 65 70 75 80 Leu Ala Thr Val Ile Cys Ser Thr Asn Gln Ile Pro Met Leu Ile Arg 85 90 95 Arg Lys Glu Thr Lys Asp Tyr Gly Thr Lys Arg Leu Val Glu Gly Thr 100 105 110 Ile Asn Pro Gly Glu Thr Cys Leu Ile Ile Glu Asp Val Val Thr Ser 115 120 125 Gly Ser Ser Val Leu Glu Thr Val Glu Val Leu Gln Lys Glu Gly Leu 130 135 140 Lys Val Thr Asp Ala Ile Val Leu Leu Asp Arg Glu Gln Gly Gly Lys 145 150 155 160 Asp Lys Leu Gln Ala His Gly Ile Arg Leu His Ser Val Cys Thr Leu 165 170 175 Ser Lys Met Leu Glu Ile Leu Glu Gln Gln Lys Lys Val Asp Ala Glu 180 185 190 Thr Val Gly Arg Val Lys Arg Phe Ile Gln Glu Asn Val Phe Val Ala 195 200 205 Ala Asn His Asn Gly Ser Pro Leu Ser Ile Lys Glu Ala Pro Lys Glu 210 215 220 Leu Ser Phe Gly Ala Arg Ala Glu Leu Pro Arg Ile His Pro Val Ala 225 230 235 240 Ser Lys Leu Leu Arg Leu Met Gln Lys Lys Glu Thr Asn Leu Cys Leu 245 250 255 Ser Ala Asp Val Ser Leu Ala Arg Glu Leu Leu Gln Leu Ala Asp Ala 260 265 270 Leu Gly Pro Ser Ile Cys Met Leu Lys Thr His Val Asp Ile Leu Asn 275 280 285 Asp Phe Thr Leu Asp Val Met Lys Glu Leu Ile Thr Leu Ala Lys Cys 290 295 300 His Glu Phe Leu Ile Phe Glu Asp Arg Lys Phe Ala Asp Ile Gly Asn 305 310 315 320 Thr Val Lys Lys Gln Tyr Glu Gly Gly Ile Phe Lys Ile Ala Ser Trp 325 330 335 Ala Asp Leu Val Asn Ala His Val Val Pro Gly Ser Gly Val Val Lys 340 345 350 Gly Leu Gln Glu Val Gly Leu Pro Leu His Arg Gly Cys Leu Leu Ile 355 360 365 Ala Glu Met Ser Ser Thr Gly Ser Leu Ala Thr Gly Asp Tyr Thr Arg 370 375 380 Ala Ala Val Arg Met Ala Glu Glu His Ser Glu Phe Val Val Gly Phe 385 390 395 400 Ile Ser Gly Ser Arg Val Ser Met Lys Pro Glu Phe Leu His Leu Thr 405 410 415 Pro Gly Val Gln Leu Glu Ala Gly Gly Asp Asn Leu Gly Gln Gln Tyr 420 425 430 Asn Ser Pro Gln Glu Val Ile Gly Lys Arg Gly Ser Asp Ile Ile Ile 435 440 445 Val Gly Arg Gly Ile Ile Ser Ala Ala Asp Arg Leu Glu Ala Ala Glu 450 455 460 Met Tyr Arg Lys Ala Ala Trp Glu Ala Tyr Leu Ser Arg Leu Gly Val 465 470 475 480 111227DNAArtificial SequenceFusion construct CDopt-UPRT 11atg gtg acc ggc ggc atg gcc tcc aag tgg gat caa aag ggc atg gat 48Met Val Thr Gly Gly Met Ala Ser Lys Trp Asp Gln Lys Gly Met Asp 1 5 10 15 atc gct tac gag gag gcc ctg ctg ggc tac aag gag ggc ggc gtg cct 96Ile Ala Tyr Glu Glu Ala Leu Leu Gly Tyr Lys Glu Gly Gly Val Pro 20 25 30 atc ggc ggc tgt ctg atc aac aac aag gac ggc agt gtg ctg ggc agg 144Ile Gly Gly Cys Leu Ile Asn Asn Lys Asp Gly Ser Val Leu Gly Arg 35 40 45 ggc cac aac atg agg ttc cag aag ggc tcc gcc acc ctg cac ggc gag 192Gly His Asn Met Arg Phe Gln Lys Gly Ser Ala Thr Leu His Gly Glu 50 55 60 atc tcc acc ctg gag aac tgt ggc agg ctg gag ggc aag gtg tac aag 240Ile Ser Thr Leu Glu Asn Cys Gly Arg Leu Glu Gly Lys Val Tyr Lys 65 70 75 80 gac acc acc ctg tac acc acc ctg tcc cct tgt gac atg tgt acc ggc 288Asp Thr Thr Leu Tyr Thr Thr Leu Ser Pro Cys Asp Met Cys Thr Gly 85 90 95 gct atc atc atg tac ggc atc cct agg tgt gtg atc ggc gag aac gtg 336Ala Ile Ile Met Tyr Gly Ile Pro Arg Cys Val Ile Gly Glu Asn Val 100 105 110 aac ttc aag tcc aag ggc gag aag tac ctg caa acc agg ggc cac gag 384Asn Phe Lys Ser Lys Gly Glu Lys Tyr Leu Gln Thr Arg Gly His Glu 115 120 125 gtg gtg gtt gtt gac gat gag agg tgt aag aag ctg atg aag cag ttc 432Val Val Val Val Asp Asp Glu Arg Cys Lys Lys Leu Met Lys Gln Phe 130 135 140 atc gac gag agg cct cag gac tgg ttc gag gat atc ggc gag aac ccg 480Ile Asp Glu Arg Pro Gln Asp Trp Phe Glu Asp Ile Gly Glu Asn Pro 145 150 155 160 tta ttc ttt ttg gct tct cca ttc ttg tac ctt aca tat ctt ata tat 528Leu Phe Phe Leu Ala Ser Pro Phe Leu Tyr Leu Thr Tyr Leu Ile Tyr 165 170 175 tat cca aac aaa ggg tct ttc gtt agc aaa cct aga aat ctg caa aaa 576Tyr Pro Asn Lys Gly Ser Phe Val Ser Lys Pro Arg Asn Leu Gln Lys 180 185 190 atg tct tcg gaa cca ttt aag aac gtc tac ttg cta cct caa aca aac 624Met Ser Ser Glu Pro Phe Lys Asn Val Tyr Leu Leu Pro Gln Thr Asn 195 200 205 caa ttg ctg ggt ttg tac acc atc atc aga aat aag aat aca act aga 672Gln Leu Leu Gly Leu Tyr Thr Ile Ile Arg Asn Lys Asn Thr Thr Arg 210 215 220 cct gat ttc att ttc tac tcc gat aga atc atc aga ttg ttg gtt gaa 720Pro Asp Phe Ile Phe Tyr Ser Asp Arg Ile Ile Arg Leu Leu Val Glu 225 230 235 240 gaa ggt ttg aac cat cta cct gtg caa aag caa att gtg gaa act gac 768Glu Gly Leu Asn His Leu Pro Val Gln Lys Gln Ile Val Glu Thr Asp 245 250 255 acc aac gaa aac ttc gaa ggt gtc tca ttc atg ggt aaa atc tgt ggt 816Thr Asn Glu Asn Phe Glu Gly Val Ser Phe Met Gly Lys Ile Cys Gly 260 265 270 gtt tcc att gtc aga gct ggt gaa tcg atg gag caa gga tta aga gac 864Val Ser Ile Val Arg Ala Gly Glu Ser Met Glu Gln Gly Leu Arg Asp 275 280 285 tgt tgt agg tct gtg cgt atc ggt aaa att tta att caa agg gac gag 912Cys Cys Arg Ser Val Arg Ile Gly Lys Ile Leu Ile Gln Arg Asp Glu 290 295 300 gag act gct tta cca aag tta ttc tac gaa aaa tta cca gag gat ata 960Glu Thr Ala Leu Pro Lys Leu Phe Tyr Glu Lys Leu Pro Glu Asp Ile 305 310 315 320 tct gaa agg tat gtc ttc cta tta gac cca atg ctg gcc acc ggt ggt 1008Ser Glu Arg Tyr Val Phe Leu Leu Asp Pro Met Leu Ala Thr Gly Gly 325 330 335 agt gct atc atg gct aca gaa gtc ttg att aag aga ggt gtt aag cca 1056Ser Ala Ile Met Ala Thr Glu Val Leu Ile Lys Arg Gly Val Lys Pro 340 345 350 gag aga att tac ttc tta aac cta atc tgt agt aag gaa ggg att gaa 1104Glu Arg Ile Tyr Phe Leu Asn Leu Ile Cys Ser Lys Glu Gly Ile Glu 355 360 365 aaa tac cat gcc gcc ttc cca gag gtc aga att gtt act ggt gcc ctc 1152Lys Tyr His Ala Ala Phe Pro Glu Val Arg Ile Val Thr Gly Ala Leu 370 375 380 gac aga ggt cta gat gaa aac aag tat cta gtt cca ggg ttg ggt gac 1200Asp Arg Gly Leu Asp Glu Asn Lys Tyr Leu Val Pro Gly Leu Gly Asp 385 390 395 400 ttt ggt gac aga tac tac tgt gtt taa 1227Phe Gly Asp Arg Tyr Tyr Cys Val 405 12408PRTArtificial SequenceSynthetic Construct 12Met Val Thr Gly Gly Met Ala Ser Lys Trp Asp Gln Lys Gly Met Asp 1 5 10 15 Ile Ala Tyr Glu Glu Ala Leu Leu Gly Tyr Lys Glu Gly Gly Val Pro 20 25 30 Ile Gly Gly Cys Leu Ile Asn Asn Lys Asp Gly Ser Val Leu Gly Arg 35 40 45 Gly His Asn Met Arg Phe Gln Lys Gly Ser Ala Thr Leu His Gly Glu 50 55 60 Ile Ser Thr Leu Glu Asn Cys Gly Arg Leu Glu Gly Lys Val Tyr Lys 65 70 75 80 Asp Thr Thr Leu Tyr Thr Thr Leu Ser Pro Cys Asp Met Cys Thr Gly 85 90 95 Ala Ile Ile Met Tyr Gly Ile Pro Arg Cys Val Ile Gly Glu Asn Val 100 105 110 Asn Phe Lys Ser Lys Gly Glu Lys Tyr Leu Gln Thr Arg Gly His Glu 115 120 125 Val Val Val Val Asp Asp Glu Arg Cys Lys Lys Leu Met Lys Gln Phe 130 135 140 Ile Asp Glu Arg Pro Gln Asp Trp Phe Glu Asp Ile Gly Glu Asn Pro 145 150 155 160 Leu Phe Phe Leu Ala Ser Pro Phe Leu Tyr Leu Thr Tyr Leu Ile Tyr 165 170 175 Tyr Pro Asn Lys Gly Ser Phe Val Ser Lys Pro Arg Asn Leu Gln Lys 180 185 190 Met Ser Ser Glu Pro Phe Lys Asn Val Tyr Leu Leu Pro Gln Thr Asn 195 200 205 Gln Leu Leu Gly Leu Tyr Thr Ile Ile Arg Asn Lys Asn Thr Thr Arg 210 215 220 Pro Asp Phe Ile Phe Tyr Ser Asp Arg Ile Ile Arg Leu Leu Val Glu 225 230 235 240 Glu Gly Leu Asn His Leu Pro Val Gln Lys Gln Ile Val Glu Thr Asp 245 250 255 Thr Asn Glu Asn Phe Glu Gly Val Ser Phe Met Gly Lys Ile Cys Gly 260 265 270 Val Ser Ile Val Arg Ala Gly Glu Ser Met Glu Gln Gly Leu Arg Asp 275 280 285 Cys Cys Arg Ser Val Arg Ile Gly Lys Ile Leu Ile Gln Arg Asp Glu 290 295 300 Glu Thr Ala Leu Pro Lys Leu Phe Tyr Glu Lys Leu Pro Glu Asp Ile 305 310 315 320 Ser Glu Arg Tyr Val Phe Leu Leu Asp Pro Met Leu Ala Thr Gly Gly 325 330 335 Ser Ala Ile Met Ala Thr Glu Val Leu Ile Lys Arg Gly Val Lys Pro 340 345 350 Glu Arg Ile Tyr Phe Leu Asn Leu Ile Cys Ser Lys Glu Gly Ile Glu 355 360 365 Lys Tyr His Ala Ala Phe Pro Glu Val Arg Ile Val Thr Gly Ala Leu 370 375 380 Asp Arg Gly Leu Asp Glu Asn Lys Tyr Leu Val Pro Gly Leu Gly Asp 385 390 395 400 Phe Gly Asp Arg Tyr Tyr Cys Val 405 131287DNAArtificial SequenceFusion construction - CDopt - linker - UPRT 13atg gtg acc ggc ggc atg gcc tcc aag tgg gat caa aag ggc atg gat 48Met Val Thr Gly Gly Met Ala Ser Lys Trp Asp Gln Lys Gly Met Asp 1 5 10 15 atc gct tac gag gag gcc ctg ctg ggc tac aag gag ggc ggc gtg cct 96Ile Ala Tyr Glu Glu Ala Leu Leu Gly Tyr Lys Glu Gly Gly Val Pro 20 25 30 atc ggc ggc tgt ctg atc aac aac aag gac ggc agt gtg ctg ggc agg 144Ile Gly Gly Cys Leu Ile Asn Asn Lys Asp Gly Ser Val Leu Gly Arg 35 40 45 ggc cac aac atg agg ttc cag aag ggc tcc gcc acc ctg cac ggc gag 192Gly His Asn Met Arg Phe Gln Lys Gly Ser Ala Thr Leu His Gly Glu 50 55 60 atc tcc acc ctg gag aac tgt

ggc agg ctg gag ggc aag gtg tac aag 240Ile Ser Thr Leu Glu Asn Cys Gly Arg Leu Glu Gly Lys Val Tyr Lys 65 70 75 80 gac acc acc ctg tac acc acc ctg tcc cct tgt gac atg tgt acc ggc 288Asp Thr Thr Leu Tyr Thr Thr Leu Ser Pro Cys Asp Met Cys Thr Gly 85 90 95 gct atc atc atg tac ggc atc cct agg tgt gtg atc ggc gag aac gtg 336Ala Ile Ile Met Tyr Gly Ile Pro Arg Cys Val Ile Gly Glu Asn Val 100 105 110 aac ttc aag tcc aag ggc gag aag tac ctg caa acc agg ggc cac gag 384Asn Phe Lys Ser Lys Gly Glu Lys Tyr Leu Gln Thr Arg Gly His Glu 115 120 125 gtg gtg gtt gtt gac gat gag agg tgt aag aag ctg atg aag cag ttc 432Val Val Val Val Asp Asp Glu Arg Cys Lys Lys Leu Met Lys Gln Phe 130 135 140 atc gac gag agg cct cag gac tgg ttc gag gat atc ggc gag tcc ggc 480Ile Asp Glu Arg Pro Gln Asp Trp Phe Glu Asp Ile Gly Glu Ser Gly 145 150 155 160 ggc ggc gcc tcc ggc ggc ggc gcc tcc ggc ggc ggc gcc tcc ggc ggc 528Gly Gly Ala Ser Gly Gly Gly Ala Ser Gly Gly Gly Ala Ser Gly Gly 165 170 175 ggc gcc aac ccg tta ttc ttt ttg gct tct cca ttc ttg tac ctt aca 576Gly Ala Asn Pro Leu Phe Phe Leu Ala Ser Pro Phe Leu Tyr Leu Thr 180 185 190 tat ctt ata tat tat cca aac aaa ggg tct ttc gtt agc aaa cct aga 624Tyr Leu Ile Tyr Tyr Pro Asn Lys Gly Ser Phe Val Ser Lys Pro Arg 195 200 205 aat ctg caa aaa atg tct tcg gaa cca ttt aag aac gtc tac ttg cta 672Asn Leu Gln Lys Met Ser Ser Glu Pro Phe Lys Asn Val Tyr Leu Leu 210 215 220 cct caa aca aac caa ttg ctg ggt ttg tac acc atc atc aga aat aag 720Pro Gln Thr Asn Gln Leu Leu Gly Leu Tyr Thr Ile Ile Arg Asn Lys 225 230 235 240 aat aca act aga cct gat ttc att ttc tac tcc gat aga atc atc aga 768Asn Thr Thr Arg Pro Asp Phe Ile Phe Tyr Ser Asp Arg Ile Ile Arg 245 250 255 ttg ttg gtt gaa gaa ggt ttg aac cat cta cct gtg caa aag caa att 816Leu Leu Val Glu Glu Gly Leu Asn His Leu Pro Val Gln Lys Gln Ile 260 265 270 gtg gaa act gac acc aac gaa aac ttc gaa ggt gtc tca ttc atg ggt 864Val Glu Thr Asp Thr Asn Glu Asn Phe Glu Gly Val Ser Phe Met Gly 275 280 285 aaa atc tgt ggt gtt tcc att gtc aga gct ggt gaa tcg atg gag caa 912Lys Ile Cys Gly Val Ser Ile Val Arg Ala Gly Glu Ser Met Glu Gln 290 295 300 gga tta aga gac tgt tgt agg tct gtg cgt atc ggt aaa att tta att 960Gly Leu Arg Asp Cys Cys Arg Ser Val Arg Ile Gly Lys Ile Leu Ile 305 310 315 320 caa agg gac gag gag act gct tta cca aag tta ttc tac gaa aaa tta 1008Gln Arg Asp Glu Glu Thr Ala Leu Pro Lys Leu Phe Tyr Glu Lys Leu 325 330 335 cca gag gat ata tct gaa agg tat gtc ttc cta tta gac cca atg ctg 1056Pro Glu Asp Ile Ser Glu Arg Tyr Val Phe Leu Leu Asp Pro Met Leu 340 345 350 gcc acc ggt ggt agt gct atc atg gct aca gaa gtc ttg att aag aga 1104Ala Thr Gly Gly Ser Ala Ile Met Ala Thr Glu Val Leu Ile Lys Arg 355 360 365 ggt gtt aag cca gag aga att tac ttc tta aac cta atc tgt agt aag 1152Gly Val Lys Pro Glu Arg Ile Tyr Phe Leu Asn Leu Ile Cys Ser Lys 370 375 380 gaa ggg att gaa aaa tac cat gcc gcc ttc cca gag gtc aga att gtt 1200Glu Gly Ile Glu Lys Tyr His Ala Ala Phe Pro Glu Val Arg Ile Val 385 390 395 400 act ggt gcc ctc gac aga ggt cta gat gaa aac aag tat cta gtt cca 1248Thr Gly Ala Leu Asp Arg Gly Leu Asp Glu Asn Lys Tyr Leu Val Pro 405 410 415 ggg ttg ggt gac ttt ggt gac aga tac tac tgt gtt taa 1287Gly Leu Gly Asp Phe Gly Asp Arg Tyr Tyr Cys Val 420 425 14428PRTArtificial SequenceSynthetic Construct 14Met Val Thr Gly Gly Met Ala Ser Lys Trp Asp Gln Lys Gly Met Asp 1 5 10 15 Ile Ala Tyr Glu Glu Ala Leu Leu Gly Tyr Lys Glu Gly Gly Val Pro 20 25 30 Ile Gly Gly Cys Leu Ile Asn Asn Lys Asp Gly Ser Val Leu Gly Arg 35 40 45 Gly His Asn Met Arg Phe Gln Lys Gly Ser Ala Thr Leu His Gly Glu 50 55 60 Ile Ser Thr Leu Glu Asn Cys Gly Arg Leu Glu Gly Lys Val Tyr Lys 65 70 75 80 Asp Thr Thr Leu Tyr Thr Thr Leu Ser Pro Cys Asp Met Cys Thr Gly 85 90 95 Ala Ile Ile Met Tyr Gly Ile Pro Arg Cys Val Ile Gly Glu Asn Val 100 105 110 Asn Phe Lys Ser Lys Gly Glu Lys Tyr Leu Gln Thr Arg Gly His Glu 115 120 125 Val Val Val Val Asp Asp Glu Arg Cys Lys Lys Leu Met Lys Gln Phe 130 135 140 Ile Asp Glu Arg Pro Gln Asp Trp Phe Glu Asp Ile Gly Glu Ser Gly 145 150 155 160 Gly Gly Ala Ser Gly Gly Gly Ala Ser Gly Gly Gly Ala Ser Gly Gly 165 170 175 Gly Ala Asn Pro Leu Phe Phe Leu Ala Ser Pro Phe Leu Tyr Leu Thr 180 185 190 Tyr Leu Ile Tyr Tyr Pro Asn Lys Gly Ser Phe Val Ser Lys Pro Arg 195 200 205 Asn Leu Gln Lys Met Ser Ser Glu Pro Phe Lys Asn Val Tyr Leu Leu 210 215 220 Pro Gln Thr Asn Gln Leu Leu Gly Leu Tyr Thr Ile Ile Arg Asn Lys 225 230 235 240 Asn Thr Thr Arg Pro Asp Phe Ile Phe Tyr Ser Asp Arg Ile Ile Arg 245 250 255 Leu Leu Val Glu Glu Gly Leu Asn His Leu Pro Val Gln Lys Gln Ile 260 265 270 Val Glu Thr Asp Thr Asn Glu Asn Phe Glu Gly Val Ser Phe Met Gly 275 280 285 Lys Ile Cys Gly Val Ser Ile Val Arg Ala Gly Glu Ser Met Glu Gln 290 295 300 Gly Leu Arg Asp Cys Cys Arg Ser Val Arg Ile Gly Lys Ile Leu Ile 305 310 315 320 Gln Arg Asp Glu Glu Thr Ala Leu Pro Lys Leu Phe Tyr Glu Lys Leu 325 330 335 Pro Glu Asp Ile Ser Glu Arg Tyr Val Phe Leu Leu Asp Pro Met Leu 340 345 350 Ala Thr Gly Gly Ser Ala Ile Met Ala Thr Glu Val Leu Ile Lys Arg 355 360 365 Gly Val Lys Pro Glu Arg Ile Tyr Phe Leu Asn Leu Ile Cys Ser Lys 370 375 380 Glu Gly Ile Glu Lys Tyr His Ala Ala Phe Pro Glu Val Arg Ile Val 385 390 395 400 Thr Gly Ala Leu Asp Arg Gly Leu Asp Glu Asn Lys Tyr Leu Val Pro 405 410 415 Gly Leu Gly Asp Phe Gly Asp Arg Tyr Tyr Cys Val 420 425 151200DNAArtificial SequenceFusion Construct - CDopt3 - OPRT 15atg gtg acc ggc ggc atg gcc tcc aag tgg gat caa aag ggc atg gat 48Met Val Thr Gly Gly Met Ala Ser Lys Trp Asp Gln Lys Gly Met Asp 1 5 10 15 atc gct tac gag gag gcc ctg ctg ggc tac aag gag ggc ggc gtg cct 96Ile Ala Tyr Glu Glu Ala Leu Leu Gly Tyr Lys Glu Gly Gly Val Pro 20 25 30 atc ggc ggc tgt ctg atc aac aac aag gac ggc agt gtg ctg ggc agg 144Ile Gly Gly Cys Leu Ile Asn Asn Lys Asp Gly Ser Val Leu Gly Arg 35 40 45 ggc cac aac atg agg ttc cag aag ggc tcc gcc acc ctg cac ggc gag 192Gly His Asn Met Arg Phe Gln Lys Gly Ser Ala Thr Leu His Gly Glu 50 55 60 atc tcc acc ctg gag aac tgt ggc agg ctg gag ggc aag gtg tac aag 240Ile Ser Thr Leu Glu Asn Cys Gly Arg Leu Glu Gly Lys Val Tyr Lys 65 70 75 80 gac acc acc ctg tac acc acc ctg tcc cct tgt gac atg tgt acc ggc 288Asp Thr Thr Leu Tyr Thr Thr Leu Ser Pro Cys Asp Met Cys Thr Gly 85 90 95 gct atc atc atg tac ggc atc cct agg tgt gtg atc ggc gag aac gtg 336Ala Ile Ile Met Tyr Gly Ile Pro Arg Cys Val Ile Gly Glu Asn Val 100 105 110 aac ttc aag tcc aag ggc gag aag tac ctg caa acc agg ggc cac gag 384Asn Phe Lys Ser Lys Gly Glu Lys Tyr Leu Gln Thr Arg Gly His Glu 115 120 125 gtg gtg gtt gtt gac gat gag agg tgt aag aag ctg atg aag cag ttc 432Val Val Val Val Asp Asp Glu Arg Cys Lys Lys Leu Met Lys Gln Phe 130 135 140 atc gac gag agg cct cag gac tgg ttc gag gat atc ggc gag gcg gtc 480Ile Asp Glu Arg Pro Gln Asp Trp Phe Glu Asp Ile Gly Glu Ala Val 145 150 155 160 gct cgt gca gct ttg ggg cca ttg gtg acg ggt ctg tac gac gtg cag 528Ala Arg Ala Ala Leu Gly Pro Leu Val Thr Gly Leu Tyr Asp Val Gln 165 170 175 gct ttc aag ttt ggg gac ttc gtg ctg aag agc ggg ctt tcc tcc ccc 576Ala Phe Lys Phe Gly Asp Phe Val Leu Lys Ser Gly Leu Ser Ser Pro 180 185 190 atc tac atc gat ctg cgg ggc atc gtg tct cga ccg cgt ctt ctg agt 624Ile Tyr Ile Asp Leu Arg Gly Ile Val Ser Arg Pro Arg Leu Leu Ser 195 200 205 cag gtt gca gat att tta ttc caa act gcc caa aat gca ggc atc agt 672Gln Val Ala Asp Ile Leu Phe Gln Thr Ala Gln Asn Ala Gly Ile Ser 210 215 220 ttt gac acc gtg tgt gga gtg cct tat aca gct ttg cca ttg gct aca 720Phe Asp Thr Val Cys Gly Val Pro Tyr Thr Ala Leu Pro Leu Ala Thr 225 230 235 240 gtt atc tgt tca acc aat caa att cca atg ctt att aga agg aaa gaa 768Val Ile Cys Ser Thr Asn Gln Ile Pro Met Leu Ile Arg Arg Lys Glu 245 250 255 aca aag gat tat gga act aag cgt ctt gta gaa gga act att aat cca 816Thr Lys Asp Tyr Gly Thr Lys Arg Leu Val Glu Gly Thr Ile Asn Pro 260 265 270 gga gaa acc tgt tta atc att gaa gat gtt gtc acc agt gga tct agt 864Gly Glu Thr Cys Leu Ile Ile Glu Asp Val Val Thr Ser Gly Ser Ser 275 280 285 gtt ttg gaa act gtt gag gtt ctt cag aag gag ggc ttg aag gtc act 912Val Leu Glu Thr Val Glu Val Leu Gln Lys Glu Gly Leu Lys Val Thr 290 295 300 gat gcc ata gtg ctg ttg gac aga gag cag gga ggc aag gac aag ttg 960Asp Ala Ile Val Leu Leu Asp Arg Glu Gln Gly Gly Lys Asp Lys Leu 305 310 315 320 cag gcg cac ggg atc cgc ctc cac tca gtg tgt aca ttg tcc aaa atg 1008Gln Ala His Gly Ile Arg Leu His Ser Val Cys Thr Leu Ser Lys Met 325 330 335 ctg gag att ctc gag cag cag aaa aaa gtt gat gct gag aca gtt ggg 1056Leu Glu Ile Leu Glu Gln Gln Lys Lys Val Asp Ala Glu Thr Val Gly 340 345 350 aga gtg aag agg ttt att cag gag aat gtc ttt gtg gca gcg aat cat 1104Arg Val Lys Arg Phe Ile Gln Glu Asn Val Phe Val Ala Ala Asn His 355 360 365 aat ggt tct ccc ctt tct ata aag gaa gca ccc aaa gaa ctc agc ttc 1152Asn Gly Ser Pro Leu Ser Ile Lys Glu Ala Pro Lys Glu Leu Ser Phe 370 375 380 ggt gca cgt gca gag ctg ccc agg atc cac cca gtt gca tcg aag taa 1200Gly Ala Arg Ala Glu Leu Pro Arg Ile His Pro Val Ala Ser Lys 385 390 395 16399PRTArtificial SequenceSynthetic Construct 16Met Val Thr Gly Gly Met Ala Ser Lys Trp Asp Gln Lys Gly Met Asp 1 5 10 15 Ile Ala Tyr Glu Glu Ala Leu Leu Gly Tyr Lys Glu Gly Gly Val Pro 20 25 30 Ile Gly Gly Cys Leu Ile Asn Asn Lys Asp Gly Ser Val Leu Gly Arg 35 40 45 Gly His Asn Met Arg Phe Gln Lys Gly Ser Ala Thr Leu His Gly Glu 50 55 60 Ile Ser Thr Leu Glu Asn Cys Gly Arg Leu Glu Gly Lys Val Tyr Lys 65 70 75 80 Asp Thr Thr Leu Tyr Thr Thr Leu Ser Pro Cys Asp Met Cys Thr Gly 85 90 95 Ala Ile Ile Met Tyr Gly Ile Pro Arg Cys Val Ile Gly Glu Asn Val 100 105 110 Asn Phe Lys Ser Lys Gly Glu Lys Tyr Leu Gln Thr Arg Gly His Glu 115 120 125 Val Val Val Val Asp Asp Glu Arg Cys Lys Lys Leu Met Lys Gln Phe 130 135 140 Ile Asp Glu Arg Pro Gln Asp Trp Phe Glu Asp Ile Gly Glu Ala Val 145 150 155 160 Ala Arg Ala Ala Leu Gly Pro Leu Val Thr Gly Leu Tyr Asp Val Gln 165 170 175 Ala Phe Lys Phe Gly Asp Phe Val Leu Lys Ser Gly Leu Ser Ser Pro 180 185 190 Ile Tyr Ile Asp Leu Arg Gly Ile Val Ser Arg Pro Arg Leu Leu Ser 195 200 205 Gln Val Ala Asp Ile Leu Phe Gln Thr Ala Gln Asn Ala Gly Ile Ser 210 215 220 Phe Asp Thr Val Cys Gly Val Pro Tyr Thr Ala Leu Pro Leu Ala Thr 225 230 235 240 Val Ile Cys Ser Thr Asn Gln Ile Pro Met Leu Ile Arg Arg Lys Glu 245 250 255 Thr Lys Asp Tyr Gly Thr Lys Arg Leu Val Glu Gly Thr Ile Asn Pro 260 265 270 Gly Glu Thr Cys Leu Ile Ile Glu Asp Val Val Thr Ser Gly Ser Ser 275 280 285 Val Leu Glu Thr Val Glu Val Leu Gln Lys Glu Gly Leu Lys Val Thr 290 295 300 Asp Ala Ile Val Leu Leu Asp Arg Glu Gln Gly Gly Lys Asp Lys Leu 305 310 315 320 Gln Ala His Gly Ile Arg Leu His Ser Val Cys Thr Leu Ser Lys Met 325 330 335 Leu Glu Ile Leu Glu Gln Gln Lys Lys Val Asp Ala Glu Thr Val Gly 340 345 350 Arg Val Lys Arg Phe Ile Gln Glu Asn Val Phe Val Ala Ala Asn His 355 360 365 Asn Gly Ser Pro Leu Ser Ile Lys Glu Ala Pro Lys Glu Leu Ser Phe 370 375 380 Gly Ala Arg Ala Glu Leu Pro Arg Ile His Pro Val Ala Ser Lys 385 390 395 171260DNAArtificial SequenceFusion Construct - CDopt3 - linker - OPRT 17atg gtg acc ggc ggc atg gcc tcc aag tgg gat caa aag ggc atg gat 48Met Val Thr Gly Gly Met Ala Ser Lys Trp Asp Gln Lys Gly Met Asp 1 5 10 15 atc gct tac gag gag gcc ctg ctg ggc tac aag gag ggc ggc gtg cct 96Ile Ala Tyr Glu Glu Ala Leu Leu Gly Tyr Lys Glu Gly Gly Val Pro 20 25 30 atc ggc ggc tgt ctg atc aac aac aag gac ggc agt gtg ctg ggc agg 144Ile Gly Gly Cys Leu Ile Asn Asn Lys Asp Gly Ser Val Leu Gly Arg 35 40 45 ggc cac aac atg agg ttc cag aag ggc tcc gcc acc ctg cac ggc gag 192Gly His Asn Met Arg Phe Gln Lys Gly Ser Ala Thr Leu His Gly Glu 50 55 60 atc tcc acc ctg gag aac tgt ggc agg ctg gag ggc aag gtg tac aag 240Ile Ser Thr Leu Glu Asn Cys Gly Arg Leu Glu Gly Lys Val Tyr Lys 65 70 75

80 gac acc acc ctg tac acc acc ctg tcc cct tgt gac atg tgt acc ggc 288Asp Thr Thr Leu Tyr Thr Thr Leu Ser Pro Cys Asp Met Cys Thr Gly 85 90 95 gct atc atc atg tac ggc atc cct agg tgt gtg atc ggc gag aac gtg 336Ala Ile Ile Met Tyr Gly Ile Pro Arg Cys Val Ile Gly Glu Asn Val 100 105 110 aac ttc aag tcc aag ggc gag aag tac ctg caa acc agg ggc cac gag 384Asn Phe Lys Ser Lys Gly Glu Lys Tyr Leu Gln Thr Arg Gly His Glu 115 120 125 gtg gtg gtt gtt gac gat gag agg tgt aag aag ctg atg aag cag ttc 432Val Val Val Val Asp Asp Glu Arg Cys Lys Lys Leu Met Lys Gln Phe 130 135 140 atc gac gag agg cct cag gac tgg ttc gag gat atc ggc gag tcc ggc 480Ile Asp Glu Arg Pro Gln Asp Trp Phe Glu Asp Ile Gly Glu Ser Gly 145 150 155 160 ggc ggc gcc tcc ggc ggc ggc gcc tcc ggc ggc ggc gcc tcc ggc ggc 528Gly Gly Ala Ser Gly Gly Gly Ala Ser Gly Gly Gly Ala Ser Gly Gly 165 170 175 ggc gcc gcg gtc gct cgt gca gct ttg ggg cca ttg gtg acg ggt ctg 576Gly Ala Ala Val Ala Arg Ala Ala Leu Gly Pro Leu Val Thr Gly Leu 180 185 190 tac gac gtg cag gct ttc aag ttt ggg gac ttc gtg ctg aag agc ggg 624Tyr Asp Val Gln Ala Phe Lys Phe Gly Asp Phe Val Leu Lys Ser Gly 195 200 205 ctt tcc tcc ccc atc tac atc gat ctg cgg ggc atc gtg tct cga ccg 672Leu Ser Ser Pro Ile Tyr Ile Asp Leu Arg Gly Ile Val Ser Arg Pro 210 215 220 cgt ctt ctg agt cag gtt gca gat att tta ttc caa act gcc caa aat 720Arg Leu Leu Ser Gln Val Ala Asp Ile Leu Phe Gln Thr Ala Gln Asn 225 230 235 240 gca ggc atc agt ttt gac acc gtg tgt gga gtg cct tat aca gct ttg 768Ala Gly Ile Ser Phe Asp Thr Val Cys Gly Val Pro Tyr Thr Ala Leu 245 250 255 cca ttg gct aca gtt atc tgt tca acc aat caa att cca atg ctt att 816Pro Leu Ala Thr Val Ile Cys Ser Thr Asn Gln Ile Pro Met Leu Ile 260 265 270 aga agg aaa gaa aca aag gat tat gga act aag cgt ctt gta gaa gga 864Arg Arg Lys Glu Thr Lys Asp Tyr Gly Thr Lys Arg Leu Val Glu Gly 275 280 285 act att aat cca gga gaa acc tgt tta atc att gaa gat gtt gtc acc 912Thr Ile Asn Pro Gly Glu Thr Cys Leu Ile Ile Glu Asp Val Val Thr 290 295 300 agt gga tct agt gtt ttg gaa act gtt gag gtt ctt cag aag gag ggc 960Ser Gly Ser Ser Val Leu Glu Thr Val Glu Val Leu Gln Lys Glu Gly 305 310 315 320 ttg aag gtc act gat gcc ata gtg ctg ttg gac aga gag cag gga ggc 1008Leu Lys Val Thr Asp Ala Ile Val Leu Leu Asp Arg Glu Gln Gly Gly 325 330 335 aag gac aag ttg cag gcg cac ggg atc cgc ctc cac tca gtg tgt aca 1056Lys Asp Lys Leu Gln Ala His Gly Ile Arg Leu His Ser Val Cys Thr 340 345 350 ttg tcc aaa atg ctg gag att ctc gag cag cag aaa aaa gtt gat gct 1104Leu Ser Lys Met Leu Glu Ile Leu Glu Gln Gln Lys Lys Val Asp Ala 355 360 365 gag aca gtt ggg aga gtg aag agg ttt att cag gag aat gtc ttt gtg 1152Glu Thr Val Gly Arg Val Lys Arg Phe Ile Gln Glu Asn Val Phe Val 370 375 380 gca gcg aat cat aat ggt tct ccc ctt tct ata aag gaa gca ccc aaa 1200Ala Ala Asn His Asn Gly Ser Pro Leu Ser Ile Lys Glu Ala Pro Lys 385 390 395 400 gaa ctc agc ttc ggt gca cgt gca gag ctg ccc agg atc cac cca gtt 1248Glu Leu Ser Phe Gly Ala Arg Ala Glu Leu Pro Arg Ile His Pro Val 405 410 415 gca tcg aag taa 1260Ala Ser Lys 18419PRTArtificial SequenceSynthetic Construct 18Met Val Thr Gly Gly Met Ala Ser Lys Trp Asp Gln Lys Gly Met Asp 1 5 10 15 Ile Ala Tyr Glu Glu Ala Leu Leu Gly Tyr Lys Glu Gly Gly Val Pro 20 25 30 Ile Gly Gly Cys Leu Ile Asn Asn Lys Asp Gly Ser Val Leu Gly Arg 35 40 45 Gly His Asn Met Arg Phe Gln Lys Gly Ser Ala Thr Leu His Gly Glu 50 55 60 Ile Ser Thr Leu Glu Asn Cys Gly Arg Leu Glu Gly Lys Val Tyr Lys 65 70 75 80 Asp Thr Thr Leu Tyr Thr Thr Leu Ser Pro Cys Asp Met Cys Thr Gly 85 90 95 Ala Ile Ile Met Tyr Gly Ile Pro Arg Cys Val Ile Gly Glu Asn Val 100 105 110 Asn Phe Lys Ser Lys Gly Glu Lys Tyr Leu Gln Thr Arg Gly His Glu 115 120 125 Val Val Val Val Asp Asp Glu Arg Cys Lys Lys Leu Met Lys Gln Phe 130 135 140 Ile Asp Glu Arg Pro Gln Asp Trp Phe Glu Asp Ile Gly Glu Ser Gly 145 150 155 160 Gly Gly Ala Ser Gly Gly Gly Ala Ser Gly Gly Gly Ala Ser Gly Gly 165 170 175 Gly Ala Ala Val Ala Arg Ala Ala Leu Gly Pro Leu Val Thr Gly Leu 180 185 190 Tyr Asp Val Gln Ala Phe Lys Phe Gly Asp Phe Val Leu Lys Ser Gly 195 200 205 Leu Ser Ser Pro Ile Tyr Ile Asp Leu Arg Gly Ile Val Ser Arg Pro 210 215 220 Arg Leu Leu Ser Gln Val Ala Asp Ile Leu Phe Gln Thr Ala Gln Asn 225 230 235 240 Ala Gly Ile Ser Phe Asp Thr Val Cys Gly Val Pro Tyr Thr Ala Leu 245 250 255 Pro Leu Ala Thr Val Ile Cys Ser Thr Asn Gln Ile Pro Met Leu Ile 260 265 270 Arg Arg Lys Glu Thr Lys Asp Tyr Gly Thr Lys Arg Leu Val Glu Gly 275 280 285 Thr Ile Asn Pro Gly Glu Thr Cys Leu Ile Ile Glu Asp Val Val Thr 290 295 300 Ser Gly Ser Ser Val Leu Glu Thr Val Glu Val Leu Gln Lys Glu Gly 305 310 315 320 Leu Lys Val Thr Asp Ala Ile Val Leu Leu Asp Arg Glu Gln Gly Gly 325 330 335 Lys Asp Lys Leu Gln Ala His Gly Ile Arg Leu His Ser Val Cys Thr 340 345 350 Leu Ser Lys Met Leu Glu Ile Leu Glu Gln Gln Lys Lys Val Asp Ala 355 360 365 Glu Thr Val Gly Arg Val Lys Arg Phe Ile Gln Glu Asn Val Phe Val 370 375 380 Ala Ala Asn His Asn Gly Ser Pro Leu Ser Ile Lys Glu Ala Pro Lys 385 390 395 400 Glu Leu Ser Phe Gly Ala Arg Ala Glu Leu Pro Arg Ile His Pro Val 405 410 415 Ala Ser Lys 1911892DNAArtificial SequenceRCR Vector - pAC3-yCD2 19tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata tggagttccg 60cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt 120gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc attgacgtca 180atgggtggag tatttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc 240aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta 300catgacctta tgggactttc ctacttggca gtacatctac gtattagtca tcgctattac 360catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg actcacgggg 420atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc aaaatcaacg 480ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg gtaggcgtgt 540acggtgggag gtctatataa gcagagctgg tttagtgaac cggcgccagt cctccgattg 600actgagtcgc ccgggtaccc gtgtatccaa taaaccctct tgcagttgca tccgacttgt 660ggtctcgctg ttccttggga gggtctcctc tgagtgattg actacccgtc agcgggggtc 720tttcatttgg gggctcgtcc gggatcggga gacccctgcc cagggaccac cgacccacca 780ccgggaggta agctggccag caacttatct gtgtctgtcc gattgtctag tgtctatgac 840tgattttatg cgcctgcgtc ggtactagtt agctaactag ctctgtatct ggcggacccg 900tggtggaact gacgagttcg gaacacccgg ccgcaaccct gggagacgtc ccagggactt 960cgggggccgt ttttgtggcc cgacctgagt ccaaaaatcc cgatcgtttt ggactctttg 1020gtgcaccccc cttagaggag ggatatgtgg ttctggtagg agacgagaac ctaaaacagt 1080tcccgcctcc gtctgaattt ttgctttcgg tttgggaccg aagccgcgcc gcgcgtcttg 1140tctgctgcag catcgttctg tgttgtctct gtctgactgt gtttctgtat ttgtctgaga 1200atatgggcca gactgttacc actcccttaa gtttgacctt aggtcactgg aaagatgtcg 1260agcggatcgc tcacaaccag tcggtagatg tcaagaagag acgttgggtt accttctgct 1320ctgcagaatg gccaaccttt aacgtcggat ggccgcgaga cggcaccttt aaccgagacc 1380tcatcaccca ggttaagatc aaggtctttt cacctggccc gcatggacac ccagaccagg 1440tcccctacat cgtgacctgg gaagccttgg cttttgaccc ccctccctgg gtcaagccct 1500ttgtacaccc taagcctccg cctcctcttc ctccatccgc cccgtctctc ccccttgaac 1560ctcctcgttc gaccccgcct cgatcctccc tttatccagc cctcactcct tctctaggcg 1620ccaaacctaa acctcaagtt ctttctgaca gtggggggcc gctcatcgac ctacttacag 1680aagacccccc gccttatagg gacccaagac cacccccttc cgacagggac ggaaatggtg 1740gagaagcgac ccctgcggga gaggcaccgg acccctcccc aatggcatct cgcctacgtg 1800ggagacggga gccccctgtg gccgactcca ctacctcgca ggcattcccc ctccgcgcag 1860gaggaaacgg acagcttcaa tactggccgt tctcctcttc tgacctttac aactggaaaa 1920ataataaccc ttctttttct gaagatccag gtaaactgac agctctgatc gagtctgttc 1980tcatcaccca tcagcccacc tgggacgact gtcagcagct gttggggact ctgctgaccg 2040gagaagaaaa acaacgggtg ctcttagagg ctagaaaggc ggtgcggggc gatgatgggc 2100gccccactca actgcccaat gaagtcgatg ccgcttttcc cctcgagcgc ccagactggg 2160attacaccac ccaggcaggt aggaaccacc tagtccacta tcgccagttg ctcctagcgg 2220gtctccaaaa cgcgggcaga agccccacca atttggccaa ggtaaaagga ataacacaag 2280ggcccaatga gtctccctcg gccttcctag agagacttaa ggaagcctat cgcaggtaca 2340ctccttatga ccctgaggac ccagggcaag aaactaatgt gtctatgtct ttcatttggc 2400agtctgcccc agacattggg agaaagttag agaggttaga agatttaaaa aacaagacgc 2460ttggagattt ggttagagag gcagaaaaga tctttaataa acgagaaacc ccggaagaaa 2520gagaggaacg tatcaggaga gaaacagagg aaaaagaaga acgccgtagg acagaggatg 2580agcagaaaga gaaagaaaga gatcgtagga gacatagaga gatgagcaag ctattggcca 2640ctgtcgttag tggacagaaa caggatagac agggaggaga acgaaggagg tcccaactcg 2700atcgcgacca gtgtgcctac tgcaaagaaa aggggcactg ggctaaagat tgtcccaaga 2760aaccacgagg acctcgggga ccaagacccc agacctccct cctgacccta gatgactagg 2820gaggtcaggg tcaggagccc ccccctgaac ccaggataac cctcaaagtc ggggggcaac 2880ccgtcacctt cctggtagat actggggccc aacactccgt gctgacccaa aatcctggac 2940ccctaagtga taagtctgcc tgggtccaag gggctactgg aggaaagcgg tatcgctgga 3000ccacggatcg caaagtacat ctagctaccg gtaaggtcac ccactctttc ctccatgtac 3060cagactgtcc ctatcctctg ttaggaagag atttgctgac taaactaaaa gcccaaatcc 3120actttgaggg atcaggagcc caggttatgg gaccaatggg gcagcccctg caagtgttga 3180ccctaaatat agaagatgag catcggctac atgagacctc aaaagagcca gatgtttctc 3240tagggtccac atggctgtct gattttcctc aggcctgggc ggaaaccggg ggcatgggac 3300tggcagttcg ccaagctcct ctgatcatac ctctgaaagc aacctctacc cccgtgtcca 3360taaaacaata ccccatgtca caagaagcca gactggggat caagccccac atacagagac 3420tgttggacca gggaatactg gtaccctgcc agtccccctg gaacacgccc ctgctacccg 3480ttaagaaacc agggactaat gattataggc ctgtccagga tctgagagaa gtcaacaagc 3540gggtggaaga catccacccc accgtgccca acccttacaa cctcttgagc gggctcccac 3600cgtcccacca gtggtacact gtgcttgatt taaaggatgc ctttttctgc ctgagactcc 3660accccaccag tcagcctctc ttcgcctttg agtggagaga tccagagatg ggaatctcag 3720gacaattgac ctggaccaga ctcccacagg gtttcaaaaa cagtcccacc ctgtttgatg 3780aggcactgca cagagaccta gcagacttcc ggatccagca cccagacttg atcctgctac 3840agtacgtgga tgacttactg ctggccgcca cttctgagct agactgccaa caaggtactc 3900gggccctgtt acaaacccta gggaacctcg ggtatcgggc ctcggccaag aaagcccaaa 3960tttgccagaa acaggtcaag tatctggggt atcttctaaa agagggtcag agatggctga 4020ctgaggccag aaaagagact gtgatggggc agcctactcc gaagacccct cgacaactaa 4080gggagttcct agggacggca ggcttctgtc gcctctggat ccctgggttt gcagaaatgg 4140cagccccctt gtaccctctc accaaaacgg ggactctgtt taattggggc ccagaccaac 4200aaaaggccta tcaagaaatc aagcaagctc ttctaactgc cccagccctg gggttgccag 4260atttgactaa gccctttgaa ctctttgtcg acgagaagca gggctacgcc aaaggtgtcc 4320taacgcaaaa actgggacct tggcgtcggc cggtggccta cctgtccaaa aagctagacc 4380cagtagcagc tgggtggccc ccttgcctac ggatggtagc agccattgcc gtactgacaa 4440aggatgcagg caagctaacc atgggacagc cactagtcat tctggccccc catgcagtag 4500aggcactagt caaacaaccc cccgaccgct ggctttccaa cgcccggatg actcactatc 4560aggccttgct tttggacacg gaccgggtcc agttcggacc ggtggtagcc ctgaacccgg 4620ctacgctgct cccactgcct gaggaagggc tgcaacacaa ctgccttgat atcctggccg 4680aagcccacgg aacccgaccc gacctaacgg accagccgct cccagacgcc gaccacacct 4740ggtacacgga tggaagcagt ctcttacaag agggacagcg taaggcggga gctgcggtga 4800ccaccgagac cgaggtaatc tgggctaaag ccctgccagc cgggacatcc gctcagcggg 4860ctgaactgat agcactcacc caggccctaa agatggcaga aggtaagaag ctaaatgttt 4920atactgatag ccgttatgct tttgctactg cccatatcca tggagaaata tacagaaggc 4980gtgggttgct cacatcagaa ggcaaagaga tcaaaaataa agacgagatc ttggccctac 5040taaaagccct ctttctgccc aaaagactta gcataatcca ttgtccagga catcaaaagg 5100gacacagcgc cgaggctaga ggcaaccgga tggctgacca agcggcccga aaggcagcca 5160tcacagagac tccagacacc tctaccctcc tcatagaaaa ttcatcaccc tacacctcag 5220aacattttca ttacacagtg actgatataa aggacctaac caagttgggg gccatttatg 5280ataaaacaaa gaagtattgg gtctaccaag gaaaacctgt gatgcctgac cagtttactt 5340ttgaattatt agactttctt catcagctga ctcacctcag cttctcaaaa atgaaggctc 5400tcctagagag aagccacagt ccctactaca tgctgaaccg ggatcgaaca ctcaaaaata 5460tcactgagac ctgcaaagct tgtgcacaag tcaacgccag caagtctgcc gttaaacagg 5520gaactagggt ccgcgggcat cggcccggca ctcattggga gatcgatttc accgagataa 5580agcccggatt gtatggctat aaatatcttc tagtttttat agataccttt tctggctgga 5640tagaagcctt cccaaccaag aaagaaaccg ccaaggtcgt aaccaagaag ctactagagg 5700agatcttccc caggttcggc atgcctcagg tattgggaac tgacaatggg cctgccttcg 5760tctccaaggt gagtcagaca gtggccgatc tgttggggat tgattggaaa ttacattgtg 5820catacagacc ccaaagctca ggccaggtag aaagaatgaa tagaaccatc aaggagactt 5880taactaaatt aacgcttgca actggctcta gagactgggt gctcctactc cccttagccc 5940tgtaccgagc ccgcaacacg ccgggccccc atggcctcac cccatatgag atcttatatg 6000gggcaccccc gccccttgta aacttccctg accctgacat gacaagagtt actaacagcc 6060cctctctcca agctcactta caggctctct acttagtcca gcacgaagtc tggagacctc 6120tggcggcagc ctaccaagaa caactggacc gaccggtggt acctcaccct taccgagtcg 6180gcgacacagt gtgggtccgc cgacaccaga ctaagaacct agaacctcgc tggaaaggac 6240cttacacagt cctgctgacc acccccaccg ccctcaaagt agacggcatc gcagcttgga 6300tacacgccgc ccacgtgaag gctgccgacc ccgggggtgg accatcctct agactgacat 6360ggcgcgttca acgctctcaa aaccccctca agataagatt aacccgtgga agcccttaat 6420agtcatggga gtcctgttag gagtagggat ggcagagagc ccccatcagg tctttaatgt 6480aacctggaga gtcaccaacc tgatgactgg gcgtaccgcc aatgccacct ccctcctggg 6540aactgtacaa gatgccttcc caaaattata ttttgatcta tgtgatctgg tcggagagga 6600gtgggaccct tcagaccagg aaccgtatgt cgggtatggc tgcaagtacc ccgcagggag 6660acagcggacc cggacttttg acttttacgt gtgccctggg cataccgtaa agtcggggtg 6720tgggggacca ggagagggct actgtggtaa atgggggtgt gaaaccaccg gacaggctta 6780ctggaagccc acatcatcgt gggacctaat ctcccttaag cgcggtaaca ccccctggga 6840cacgggatgc tctaaagttg cctgtggccc ctgctacgac ctctccaaag tatccaattc 6900cttccaaggg gctactcgag ggggcagatg caaccctcta gtcctagaat tcactgatgc 6960aggaaaaaag gctaactggg acgggcccaa atcgtgggga ctgagactgt accggacagg 7020aacagatcct attaccatgt tctccctgac ccggcaggtc cttaatgtgg gaccccgagt 7080ccccataggg cccaacccag tattacccga ccaaagactc ccttcctcac caatagagat 7140tgtaccggct ccacagccac ctagccccct caataccagt tacccccctt ccactaccag 7200tacaccctca acctccccta caagtccaag tgtcccacag ccacccccag gaactggaga 7260tagactacta gctctagtca aaggagccta tcaggcgctt aacctcacca atcccgacaa 7320gacccaagaa tgttggctgt gcttagtgtc gggacctcct tattacgaag gagtagcggt 7380cgtgggcact tataccaatc attccaccgc tccggccaac tgtacggcca cttcccaaca 7440taagcttacc ctatctgaag tgacaggaca gggcctatgc atgggggcag tacctaaaac 7500tcaccaggcc ttatgtaaca ccacccaaag cgccggctca ggatcctact accttgcagc 7560acccgccgga acaatgtggg cttgcagcac tggattgact ccctgcttgt ccaccacggt 7620gctcaatcta accacagatt attgtgtatt agttgaactc tggcccagag taatttacca 7680ctcccccgat tatatgtatg gtcagcttga acagcgtacc aaatataaaa gagagccagt 7740atcattgacc ctggcccttc tactaggagg attaaccatg ggagggattg cagctggaat 7800agggacgggg accactgcct taattaaaac ccagcagttt gagcagcttc atgccgctat 7860ccagacagac ctcaacgaag tcgaaaagtc aattaccaac ctagaaaagt cactgacctc 7920gttgtctgaa gtagtcctac agaaccgcag aggcctagat ttgctattcc taaaggaggg 7980aggtctctgc gcagccctaa aagaagaatg ttgtttttat gcagaccaca cggggctagt 8040gagagacagc atggccaaat taagagaaag gcttaatcag agacaaaaac tatttgagac 8100aggccaagga tggttcgaag ggctgtttaa tagatccccc tggtttacca ccttaatctc 8160caccatcatg ggacctctaa tagtactctt actgatctta ctctttggac cttgcattct 8220caatcgattg gtccaatttg ttaaagacag gatctcagtg gtccaggctc tggttttgac 8280tcagcaatat caccagctaa aacccataga gtacgagcca tgaacgcgtt actggccgaa

8340gccgcttgga ataaggccgg tgtgcgtttg tctatatgtt attttccacc atattgccgt 8400cttttggcaa tgtgagggcc cggaaacctg gccctgtctt cttgacgagc attcctaggg 8460gtctttcccc tctcgccaaa ggaatgcaag gtctgttgaa tgtcgtgaag gaagcagttc 8520ctctggaagc ttcttgaaga caaacaacgt ctgtagcgac cctttgcagg cagcggaacc 8580ccccacctgg cgacaggtgc ctctgcggcc aaaagccacg tgtataagat acacctgcaa 8640aggcggcaca accccagtgc cacgttgtga gttggatagt tgtggaaaga gtcaaatggc 8700tctcctcaag cgtattcaac aaggggctga aggatgccca gaaggtaccc cattgtatgg 8760gatctgatct ggggcctcgg tgcacatgct ttacatgtgt ttagtcgagg ttaaaaaaac 8820gtctaggccc cccgaaccac ggggacgtgg ttttcctttg aaaaacacga ttataaatgg 8880tgaccggcgg catggcctcc aagtgggatc aaaagggcat ggatatcgct tacgaggagg 8940ccctgctggg ctacaaggag ggcggcgtgc ctatcggcgg ctgtctgatc aacaacaagg 9000acggcagtgt gctgggcagg ggccacaaca tgaggttcca gaagggctcc gccaccctgc 9060acggcgagat ctccaccctg gagaactgtg gcaggctgga gggcaaggtg tacaaggaca 9120ccaccctgta caccaccctg tccccttgtg acatgtgtac cggcgctatc atcatgtacg 9180gcatccctag gtgtgtgatc ggcgagaacg tgaacttcaa gtccaagggc gagaagtacc 9240tgcaaaccag gggccacgag gtggtggttg ttgacgatga gaggtgtaag aagctgatga 9300agcagttcat cgacgagagg cctcaggact ggttcgagga tatcggcgag taagcggccg 9360cagataaaat aaaagatttt atttagtctc cagaaaaagg ggggaatgaa agaccccacc 9420tgtaggtttg gcaagctagc ttaagtaacg ccattttgca aggcatggaa aaatacataa 9480ctgagaatag agaagttcag atcaaggtca ggaacagatg gaacagctga atatgggcca 9540aacaggatat ctgtggtaag cagttcctgc cccggctcag ggccaagaac agatggaaca 9600gctgaatatg ggccaaacag gatatctgtg gtaagcagtt cctgccccgg ctcagggcca 9660agaacagatg gtccccagat gcggtccagc cctcagcagt ttctagagaa ccatcagatg 9720tttccagggt gccccaagga cctgaaatga ccctgtgcct tatttgaact aaccaatcag 9780ttcgcttctc gcttctgttc gcgcgcttct gctccccgag ctcaataaaa gagcccacaa 9840cccctcactc ggggcgccag tcctccgatt gactgagtcg cccgggtacc cgtgtatcca 9900ataaaccctc ttgcagttgc atccgacttg tggtctcgct gttccttggg agggtctcct 9960ctgagtgatt gactacccgt cagcgggggt ctttcattac atgtgagcaa aaggccagca 10020aaaggccagg aaccgtaaaa aggccgcgtt gctggcgttt ttccataggc tccgcccccc 10080tgacgagcat cacaaaaatc gacgctcaag tcagaggtgg cgaaacccga caggactata 10140aagataccag gcgtttcccc ctggaagctc cctcgtgcgc tctcctgttc cgaccctgcc 10200gcttaccgga tacctgtccg cctttctccc ttcgggaagc gtggcgcttt ctcaatgctc 10260acgctgtagg tatctcagtt cggtgtaggt cgttcgctcc aagctgggct gtgtgcacga 10320accccccgtt cagcccgacc gctgcgcctt atccggtaac tatcgtcttg agtccaaccc 10380ggtaagacac gacttatcgc cactggcagc agccactggt aacaggatta gcagagcgag 10440gtatgtaggc ggtgctacag agttcttgaa gtggtggcct aactacggct acactagaag 10500gacagtattt ggtatctgcg ctctgctgaa gccagttacc ttcggaaaaa gagttggtag 10560ctcttgatcc ggcaaacaaa ccaccgctgg tagcggtggt ttttttgttt gcaagcagca 10620gattacgcgc agaaaaaaag gatctcaaga agatcctttg atcttttcta cggggtctga 10680cgctcagtgg aacgaaaact cacgttaagg gattttggtc atgagattat caaaaaggat 10740cttcacctag atccttttaa attaaaaatg aagttttaaa tcaatctaaa gtatatatga 10800gtaaacttgg tctgacagtt accaatgctt aatcagtgag gcacctatct cagcgatctg 10860tctatttcgt tcatccatag ttgcctgact ccccgtcgtg tagataacta cgatacggga 10920gggcttacca tctggcccca gtgctgcaat gataccgcga gacccacgct caccggctcc 10980agatttatca gcaataaacc agccagccgg aagggccgag cgcagaagtg gtcctgcaac 11040tttatccgcc tccatccagt ctattaattg ttgccgggaa gctagagtaa gtagttcgcc 11100agttaatagt ttgcgcaacg ttgttgccat tgctgcaggc atcgtggtgt cacgctcgtc 11160gtttggtatg gcttcattca gctccggttc ccaacgatca aggcgagtta catgatcccc 11220catgttgtgc aaaaaagcgg ttagctcctt cggtcctccg atcgttgtca gaagtaagtt 11280ggccgcagtg ttatcactca tggttatggc agcactgcat aattctctta ctgtcatgcc 11340atccgtaaga tgcttttctg tgactggtga gtactcaacc aagtcattct gagaatagtg 11400tatgcggcga ccgagttgct cttgcccggc gtcaacacgg gataataccg cgccacatag 11460cagaacttta aaagtgctca tcattggaaa acgttcttcg gggcgaaaac tctcaaggat 11520cttaccgctg ttgagatcca gttcgatgta acccactcgt gcacccaact gatcttcagc 11580atcttttact ttcaccagcg tttctgggtg agcaaaaaca ggaaggcaaa atgccgcaaa 11640aaagggaata agggcgacac ggaaatgttg aatactcata ctcttccttt ttcaatatta 11700ttgaagcatt tatcagggtt attgtctcat gagcggatac atatttgaat gtatttagaa 11760aaataaacaa ataggggttc cgcgcacatt tccccgaaaa gtgccacctg acgtctaaga 11820aaccattatt atcatgacat taacctataa aaataggcgt atcacgaggc cctttcgtct 11880tcaagaattc at 118922011892DNAArtificial SequenceRCR Vector - pAC3-yCD 20tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata tggagttccg 60cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt 120gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc attgacgtca 180atgggtggag tatttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc 240aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta 300catgacctta tgggactttc ctacttggca gtacatctac gtattagtca tcgctattac 360catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg actcacgggg 420atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc aaaatcaacg 480ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg gtaggcgtgt 540acggtgggag gtctatataa gcagagctgg tttagtgaac cggcgccagt cctccgattg 600actgagtcgc ccgggtaccc gtgtatccaa taaaccctct tgcagttgca tccgacttgt 660ggtctcgctg ttccttggga gggtctcctc tgagtgattg actacccgtc agcgggggtc 720tttcatttgg gggctcgtcc gggatcggga gacccctgcc cagggaccac cgacccacca 780ccgggaggta agctggccag caacttatct gtgtctgtcc gattgtctag tgtctatgac 840tgattttatg cgcctgcgtc ggtactagtt agctaactag ctctgtatct ggcggacccg 900tggtggaact gacgagttcg gaacacccgg ccgcaaccct gggagacgtc ccagggactt 960cgggggccgt ttttgtggcc cgacctgagt ccaaaaatcc cgatcgtttt ggactctttg 1020gtgcaccccc cttagaggag ggatatgtgg ttctggtagg agacgagaac ctaaaacagt 1080tcccgcctcc gtctgaattt ttgctttcgg tttgggaccg aagccgcgcc gcgcgtcttg 1140tctgctgcag catcgttctg tgttgtctct gtctgactgt gtttctgtat ttgtctgaga 1200atatgggcca gactgttacc actcccttaa gtttgacctt aggtcactgg aaagatgtcg 1260agcggatcgc tcacaaccag tcggtagatg tcaagaagag acgttgggtt accttctgct 1320ctgcagaatg gccaaccttt aacgtcggat ggccgcgaga cggcaccttt aaccgagacc 1380tcatcaccca ggttaagatc aaggtctttt cacctggccc gcatggacac ccagaccagg 1440tcccctacat cgtgacctgg gaagccttgg cttttgaccc ccctccctgg gtcaagccct 1500ttgtacaccc taagcctccg cctcctcttc ctccatccgc cccgtctctc ccccttgaac 1560ctcctcgttc gaccccgcct cgatcctccc tttatccagc cctcactcct tctctaggcg 1620ccaaacctaa acctcaagtt ctttctgaca gtggggggcc gctcatcgac ctacttacag 1680aagacccccc gccttatagg gacccaagac cacccccttc cgacagggac ggaaatggtg 1740gagaagcgac ccctgcggga gaggcaccgg acccctcccc aatggcatct cgcctacgtg 1800ggagacggga gccccctgtg gccgactcca ctacctcgca ggcattcccc ctccgcgcag 1860gaggaaacgg acagcttcaa tactggccgt tctcctcttc tgacctttac aactggaaaa 1920ataataaccc ttctttttct gaagatccag gtaaactgac agctctgatc gagtctgttc 1980tcatcaccca tcagcccacc tgggacgact gtcagcagct gttggggact ctgctgaccg 2040gagaagaaaa acaacgggtg ctcttagagg ctagaaaggc ggtgcggggc gatgatgggc 2100gccccactca actgcccaat gaagtcgatg ccgcttttcc cctcgagcgc ccagactggg 2160attacaccac ccaggcaggt aggaaccacc tagtccacta tcgccagttg ctcctagcgg 2220gtctccaaaa cgcgggcaga agccccacca atttggccaa ggtaaaagga ataacacaag 2280ggcccaatga gtctccctcg gccttcctag agagacttaa ggaagcctat cgcaggtaca 2340ctccttatga ccctgaggac ccagggcaag aaactaatgt gtctatgtct ttcatttggc 2400agtctgcccc agacattggg agaaagttag agaggttaga agatttaaaa aacaagacgc 2460ttggagattt ggttagagag gcagaaaaga tctttaataa acgagaaacc ccggaagaaa 2520gagaggaacg tatcaggaga gaaacagagg aaaaagaaga acgccgtagg acagaggatg 2580agcagaaaga gaaagaaaga gatcgtagga gacatagaga gatgagcaag ctattggcca 2640ctgtcgttag tggacagaaa caggatagac agggaggaga acgaaggagg tcccaactcg 2700atcgcgacca gtgtgcctac tgcaaagaaa aggggcactg ggctaaagat tgtcccaaga 2760aaccacgagg acctcgggga ccaagacccc agacctccct cctgacccta gatgactagg 2820gaggtcaggg tcaggagccc ccccctgaac ccaggataac cctcaaagtc ggggggcaac 2880ccgtcacctt cctggtagat actggggccc aacactccgt gctgacccaa aatcctggac 2940ccctaagtga taagtctgcc tgggtccaag gggctactgg aggaaagcgg tatcgctgga 3000ccacggatcg caaagtacat ctagctaccg gtaaggtcac ccactctttc ctccatgtac 3060cagactgtcc ctatcctctg ttaggaagag atttgctgac taaactaaaa gcccaaatcc 3120actttgaggg atcaggagcc caggttatgg gaccaatggg gcagcccctg caagtgttga 3180ccctaaatat agaagatgag catcggctac atgagacctc aaaagagcca gatgtttctc 3240tagggtccac atggctgtct gattttcctc aggcctgggc ggaaaccggg ggcatgggac 3300tggcagttcg ccaagctcct ctgatcatac ctctgaaagc aacctctacc cccgtgtcca 3360taaaacaata ccccatgtca caagaagcca gactggggat caagccccac atacagagac 3420tgttggacca gggaatactg gtaccctgcc agtccccctg gaacacgccc ctgctacccg 3480ttaagaaacc agggactaat gattataggc ctgtccagga tctgagagaa gtcaacaagc 3540gggtggaaga catccacccc accgtgccca acccttacaa cctcttgagc gggctcccac 3600cgtcccacca gtggtacact gtgcttgatt taaaggatgc ctttttctgc ctgagactcc 3660accccaccag tcagcctctc ttcgcctttg agtggagaga tccagagatg ggaatctcag 3720gacaattgac ctggaccaga ctcccacagg gtttcaaaaa cagtcccacc ctgtttgatg 3780aggcactgca cagagaccta gcagacttcc ggatccagca cccagacttg atcctgctac 3840agtacgtgga tgacttactg ctggccgcca cttctgagct agactgccaa caaggtactc 3900gggccctgtt acaaacccta gggaacctcg ggtatcgggc ctcggccaag aaagcccaaa 3960tttgccagaa acaggtcaag tatctggggt atcttctaaa agagggtcag agatggctga 4020ctgaggccag aaaagagact gtgatggggc agcctactcc gaagacccct cgacaactaa 4080gggagttcct agggacggca ggcttctgtc gcctctggat ccctgggttt gcagaaatgg 4140cagccccctt gtaccctctc accaaaacgg ggactctgtt taattggggc ccagaccaac 4200aaaaggccta tcaagaaatc aagcaagctc ttctaactgc cccagccctg gggttgccag 4260atttgactaa gccctttgaa ctctttgtcg acgagaagca gggctacgcc aaaggtgtcc 4320taacgcaaaa actgggacct tggcgtcggc cggtggccta cctgtccaaa aagctagacc 4380cagtagcagc tgggtggccc ccttgcctac ggatggtagc agccattgcc gtactgacaa 4440aggatgcagg caagctaacc atgggacagc cactagtcat tctggccccc catgcagtag 4500aggcactagt caaacaaccc cccgaccgct ggctttccaa cgcccggatg actcactatc 4560aggccttgct tttggacacg gaccgggtcc agttcggacc ggtggtagcc ctgaacccgg 4620ctacgctgct cccactgcct gaggaagggc tgcaacacaa ctgccttgat atcctggccg 4680aagcccacgg aacccgaccc gacctaacgg accagccgct cccagacgcc gaccacacct 4740ggtacacgga tggaagcagt ctcttacaag agggacagcg taaggcggga gctgcggtga 4800ccaccgagac cgaggtaatc tgggctaaag ccctgccagc cgggacatcc gctcagcggg 4860ctgaactgat agcactcacc caggccctaa agatggcaga aggtaagaag ctaaatgttt 4920atactgatag ccgttatgct tttgctactg cccatatcca tggagaaata tacagaaggc 4980gtgggttgct cacatcagaa ggcaaagaga tcaaaaataa agacgagatc ttggccctac 5040taaaagccct ctttctgccc aaaagactta gcataatcca ttgtccagga catcaaaagg 5100gacacagcgc cgaggctaga ggcaaccgga tggctgacca agcggcccga aaggcagcca 5160tcacagagac tccagacacc tctaccctcc tcatagaaaa ttcatcaccc tacacctcag 5220aacattttca ttacacagtg actgatataa aggacctaac caagttgggg gccatttatg 5280ataaaacaaa gaagtattgg gtctaccaag gaaaacctgt gatgcctgac cagtttactt 5340ttgaattatt agactttctt catcagctga ctcacctcag cttctcaaaa atgaaggctc 5400tcctagagag aagccacagt ccctactaca tgctgaaccg ggatcgaaca ctcaaaaata 5460tcactgagac ctgcaaagct tgtgcacaag tcaacgccag caagtctgcc gttaaacagg 5520gaactagggt ccgcgggcat cggcccggca ctcattggga gatcgatttc accgagataa 5580agcccggatt gtatggctat aaatatcttc tagtttttat agataccttt tctggctgga 5640tagaagcctt cccaaccaag aaagaaaccg ccaaggtcgt aaccaagaag ctactagagg 5700agatcttccc caggttcggc atgcctcagg tattgggaac tgacaatggg cctgccttcg 5760tctccaaggt gagtcagaca gtggccgatc tgttggggat tgattggaaa ttacattgtg 5820catacagacc ccaaagctca ggccaggtag aaagaatgaa tagaaccatc aaggagactt 5880taactaaatt aacgcttgca actggctcta gagactgggt gctcctactc cccttagccc 5940tgtaccgagc ccgcaacacg ccgggccccc atggcctcac cccatatgag atcttatatg 6000gggcaccccc gccccttgta aacttccctg accctgacat gacaagagtt actaacagcc 6060cctctctcca agctcactta caggctctct acttagtcca gcacgaagtc tggagacctc 6120tggcggcagc ctaccaagaa caactggacc gaccggtggt acctcaccct taccgagtcg 6180gcgacacagt gtgggtccgc cgacaccaga ctaagaacct agaacctcgc tggaaaggac 6240cttacacagt cctgctgacc acccccaccg ccctcaaagt agacggcatc gcagcttgga 6300tacacgccgc ccacgtgaag gctgccgacc ccgggggtgg accatcctct agactgacat 6360ggcgcgttca acgctctcaa aaccccctca agataagatt aacccgtgga agcccttaat 6420agtcatggga gtcctgttag gagtagggat ggcagagagc ccccatcagg tctttaatgt 6480aacctggaga gtcaccaacc tgatgactgg gcgtaccgcc aatgccacct ccctcctggg 6540aactgtacaa gatgccttcc caaaattata ttttgatcta tgtgatctgg tcggagagga 6600gtgggaccct tcagaccagg aaccgtatgt cgggtatggc tgcaagtacc ccgcagggag 6660acagcggacc cggacttttg acttttacgt gtgccctggg cataccgtaa agtcggggtg 6720tgggggacca ggagagggct actgtggtaa atgggggtgt gaaaccaccg gacaggctta 6780ctggaagccc acatcatcgt gggacctaat ctcccttaag cgcggtaaca ccccctggga 6840cacgggatgc tctaaagttg cctgtggccc ctgctacgac ctctccaaag tatccaattc 6900cttccaaggg gctactcgag ggggcagatg caaccctcta gtcctagaat tcactgatgc 6960aggaaaaaag gctaactggg acgggcccaa atcgtgggga ctgagactgt accggacagg 7020aacagatcct attaccatgt tctccctgac ccggcaggtc cttaatgtgg gaccccgagt 7080ccccataggg cccaacccag tattacccga ccaaagactc ccttcctcac caatagagat 7140tgtaccggct ccacagccac ctagccccct caataccagt tacccccctt ccactaccag 7200tacaccctca acctccccta caagtccaag tgtcccacag ccacccccag gaactggaga 7260tagactacta gctctagtca aaggagccta tcaggcgctt aacctcacca atcccgacaa 7320gacccaagaa tgttggctgt gcttagtgtc gggacctcct tattacgaag gagtagcggt 7380cgtgggcact tataccaatc attccaccgc tccggccaac tgtacggcca cttcccaaca 7440taagcttacc ctatctgaag tgacaggaca gggcctatgc atgggggcag tacctaaaac 7500tcaccaggcc ttatgtaaca ccacccaaag cgccggctca ggatcctact accttgcagc 7560acccgccgga acaatgtggg cttgcagcac tggattgact ccctgcttgt ccaccacggt 7620gctcaatcta accacagatt attgtgtatt agttgaactc tggcccagag taatttacca 7680ctcccccgat tatatgtatg gtcagcttga acagcgtacc aaatataaaa gagagccagt 7740atcattgacc ctggcccttc tactaggagg attaaccatg ggagggattg cagctggaat 7800agggacgggg accactgcct taattaaaac ccagcagttt gagcagcttc atgccgctat 7860ccagacagac ctcaacgaag tcgaaaagtc aattaccaac ctagaaaagt cactgacctc 7920gttgtctgaa gtagtcctac agaaccgcag aggcctagat ttgctattcc taaaggaggg 7980aggtctctgc gcagccctaa aagaagaatg ttgtttttat gcagaccaca cggggctagt 8040gagagacagc atggccaaat taagagaaag gcttaatcag agacaaaaac tatttgagac 8100aggccaagga tggttcgaag ggctgtttaa tagatccccc tggtttacca ccttaatctc 8160caccatcatg ggacctctaa tagtactctt actgatctta ctctttggac cttgcattct 8220caatcgattg gtccaatttg ttaaagacag gatctcagtg gtccaggctc tggttttgac 8280tcagcaatat caccagctaa aacccataga gtacgagcca tgaacgcgtt actggccgaa 8340gccgcttgga ataaggccgg tgtgcgtttg tctatatgtt attttccacc atattgccgt 8400cttttggcaa tgtgagggcc cggaaacctg gccctgtctt cttgacgagc attcctaggg 8460gtctttcccc tctcgccaaa ggaatgcaag gtctgttgaa tgtcgtgaag gaagcagttc 8520ctctggaagc ttcttgaaga caaacaacgt ctgtagcgac cctttgcagg cagcggaacc 8580ccccacctgg cgacaggtgc ctctgcggcc aaaagccacg tgtataagat acacctgcaa 8640aggcggcaca accccagtgc cacgttgtga gttggatagt tgtggaaaga gtcaaatggc 8700tctcctcaag cgtattcaac aaggggctga aggatgccca gaaggtaccc cattgtatgg 8760gatctgatct ggggcctcgg tgcacatgct ttacatgtgt ttagtcgagg ttaaaaaaac 8820gtctaggccc cccgaaccac ggggacgtgg ttttcctttg aaaaacacga ttataaatgg 8880tgacaggggg aatggcaagc aagtgggatc agaagggtat ggacattgcc tatgaggagg 8940cggccttagg ttacaaagag ggtggtgttc ctattggcgg atgtcttatc aataacaaag 9000acggaagtgt tctcggtcgt ggtcacaaca tgagatttca aaagggatcc gccacactac 9060atggtgagat ctccactttg gaaaactgtg ggagattaga gggcaaagtg tacaaagata 9120ccactttgta tacgacgctg tctccatgcg acatgtgtac aggtgccatc atcatgtatg 9180gtattccacg ctgtgttgtc ggtgagaacg ttaatttcaa aagtaagggc gagaaatatt 9240tacaaactag aggtcacgag gttgttgttg ttgacgatga gaggtgtaaa aagatcatga 9300aacaatttat cgatgaaaga cctcaggatt ggtttgaaga tattggtgag taggcggccg 9360cagataaaat aaaagatttt atttagtctc cagaaaaagg ggggaatgaa agaccccacc 9420tgtaggtttg gcaagctagc ttaagtaacg ccattttgca aggcatggaa aaatacataa 9480ctgagaatag agaagttcag atcaaggtca ggaacagatg gaacagctga atatgggcca 9540aacaggatat ctgtggtaag cagttcctgc cccggctcag ggccaagaac agatggaaca 9600gctgaatatg ggccaaacag gatatctgtg gtaagcagtt cctgccccgg ctcagggcca 9660agaacagatg gtccccagat gcggtccagc cctcagcagt ttctagagaa ccatcagatg 9720tttccagggt gccccaagga cctgaaatga ccctgtgcct tatttgaact aaccaatcag 9780ttcgcttctc gcttctgttc gcgcgcttct gctccccgag ctcaataaaa gagcccacaa 9840cccctcactc ggggcgccag tcctccgatt gactgagtcg cccgggtacc cgtgtatcca 9900ataaaccctc ttgcagttgc atccgacttg tggtctcgct gttccttggg agggtctcct 9960ctgagtgatt gactacccgt cagcgggggt ctttcattac atgtgagcaa aaggccagca 10020aaaggccagg aaccgtaaaa aggccgcgtt gctggcgttt ttccataggc tccgcccccc 10080tgacgagcat cacaaaaatc gacgctcaag tcagaggtgg cgaaacccga caggactata 10140aagataccag gcgtttcccc ctggaagctc cctcgtgcgc tctcctgttc cgaccctgcc 10200gcttaccgga tacctgtccg cctttctccc ttcgggaagc gtggcgcttt ctcaatgctc 10260acgctgtagg tatctcagtt cggtgtaggt cgttcgctcc aagctgggct gtgtgcacga 10320accccccgtt cagcccgacc gctgcgcctt atccggtaac tatcgtcttg agtccaaccc 10380ggtaagacac gacttatcgc cactggcagc agccactggt aacaggatta gcagagcgag 10440gtatgtaggc ggtgctacag agttcttgaa gtggtggcct aactacggct acactagaag 10500gacagtattt ggtatctgcg ctctgctgaa gccagttacc ttcggaaaaa gagttggtag 10560ctcttgatcc ggcaaacaaa ccaccgctgg tagcggtggt ttttttgttt gcaagcagca 10620gattacgcgc agaaaaaaag gatctcaaga agatcctttg atcttttcta cggggtctga 10680cgctcagtgg aacgaaaact cacgttaagg gattttggtc atgagattat caaaaaggat 10740cttcacctag atccttttaa attaaaaatg aagttttaaa tcaatctaaa gtatatatga 10800gtaaacttgg tctgacagtt accaatgctt aatcagtgag gcacctatct cagcgatctg 10860tctatttcgt tcatccatag ttgcctgact ccccgtcgtg tagataacta cgatacggga 10920gggcttacca tctggcccca gtgctgcaat gataccgcga gacccacgct caccggctcc 10980agatttatca gcaataaacc agccagccgg aagggccgag cgcagaagtg gtcctgcaac 11040tttatccgcc tccatccagt ctattaattg ttgccgggaa gctagagtaa gtagttcgcc 11100agttaatagt ttgcgcaacg ttgttgccat tgctgcaggc atcgtggtgt cacgctcgtc 11160gtttggtatg gcttcattca gctccggttc ccaacgatca aggcgagtta catgatcccc 11220catgttgtgc aaaaaagcgg ttagctcctt cggtcctccg atcgttgtca gaagtaagtt 11280ggccgcagtg ttatcactca tggttatggc agcactgcat aattctctta ctgtcatgcc 11340atccgtaaga tgcttttctg tgactggtga gtactcaacc aagtcattct gagaatagtg 11400tatgcggcga

ccgagttgct cttgcccggc gtcaacacgg gataataccg cgccacatag 11460cagaacttta aaagtgctca tcattggaaa acgttcttcg gggcgaaaac tctcaaggat 11520cttaccgctg ttgagatcca gttcgatgta acccactcgt gcacccaact gatcttcagc 11580atcttttact ttcaccagcg tttctgggtg agcaaaaaca ggaaggcaaa atgccgcaaa 11640aaagggaata agggcgacac ggaaatgttg aatactcata ctcttccttt ttcaatatta 11700ttgaagcatt tatcagggtt attgtctcat gagcggatac atatttgaat gtatttagaa 11760aaataaacaa ataggggttc cgcgcacatt tccccgaaaa gtgccacctg acgtctaaga 11820aaccattatt atcatgacat taacctataa aaataggcgt atcacgaggc cctttcgtct 11880tcaagaattc at 118922112007DNAArtificial SequenceRCR Vector - pACE-CD 21tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata tggagttccg 60cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt 120gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc attgacgtca 180atgggtggag tatttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc 240aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta 300catgacctta tgggactttc ctacttggca gtacatctac gtattagtca tcgctattac 360catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg actcacgggg 420atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc aaaatcaacg 480ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg gtaggcgtgt 540acggtgggag gtctatataa gcagagctgg tttagtgaac cggcgccagt cctccgattg 600actgagtcgc ccgggtaccc gtgtatccaa taaaccctct tgcagttgca tccgacttgt 660ggtctcgctg ttccttggga gggtctcctc tgagtgattg actacccgtc agcgggggtc 720tttcatttgg gggctcgtcc gggatcggga gacccctgcc cagggaccac cgacccacca 780ccgggaggta agctggccag caacttatct gtgtctgtcc gattgtctag tgtctatgac 840tgattttatg cgcctgcgtc ggtactagtt agctaactag ctctgtatct ggcggacccg 900tggtggaact gacgagttcg gaacacccgg ccgcaaccct gggagacgtc ccagggactt 960cgggggccgt ttttgtggcc cgacctgagt ccaaaaatcc cgatcgtttt ggactctttg 1020gtgcaccccc cttagaggag ggatatgtgg ttctggtagg agacgagaac ctaaaacagt 1080tcccgcctcc gtctgaattt ttgctttcgg tttgggaccg aagccgcgcc gcgcgtcttg 1140tctgctgcag catcgttctg tgttgtctct gtctgactgt gtttctgtat ttgtctgaga 1200atatgggcca gactgttacc actcccttaa gtttgacctt aggtcactgg aaagatgtcg 1260agcggatcgc tcacaaccag tcggtagatg tcaagaagag acgttgggtt accttctgct 1320ctgcagaatg gccaaccttt aacgtcggat ggccgcgaga cggcaccttt aaccgagacc 1380tcatcaccca ggttaagatc aaggtctttt cacctggccc gcatggacac ccagaccagg 1440tcccctacat cgtgacctgg gaagccttgg cttttgaccc ccctccctgg gtcaagccct 1500ttgtacaccc taagcctccg cctcctcttc ctccatccgc cccgtctctc ccccttgaac 1560ctcctcgttc gaccccgcct cgatcctccc tttatccagc cctcactcct tctctaggcg 1620ccaaacctaa acctcaagtt ctttctgaca gtggggggcc gctcatcgac ctacttacag 1680aagacccccc gccttatagg gacccaagac cacccccttc cgacagggac ggaaatggtg 1740gagaagcgac ccctgcggga gaggcaccgg acccctcccc aatggcatct cgcctacgtg 1800ggagacggga gccccctgtg gccgactcca ctacctcgca ggcattcccc ctccgcgcag 1860gaggaaacgg acagcttcaa tactggccgt tctcctcttc tgacctttac aactggaaaa 1920ataataaccc ttctttttct gaagatccag gtaaactgac agctctgatc gagtctgttc 1980tcatcaccca tcagcccacc tgggacgact gtcagcagct gttggggact ctgctgaccg 2040gagaagaaaa acaacgggtg ctcttagagg ctagaaaggc ggtgcggggc gatgatgggc 2100gccccactca actgcccaat gaagtcgatg ccgcttttcc cctcgagcgc ccagactggg 2160attacaccac ccaggcaggt aggaaccacc tagtccacta tcgccagttg ctcctagcgg 2220gtctccaaaa cgcgggcaga agccccacca atttggccaa ggtaaaagga ataacacaag 2280ggcccaatga gtctccctcg gccttcctag agagacttaa ggaagcctat cgcaggtaca 2340ctccttatga ccctgaggac ccagggcaag aaactaatgt gtctatgtct ttcatttggc 2400agtctgcccc agacattggg agaaagttag agaggttaga agatttaaaa aacaagacgc 2460ttggagattt ggttagagag gcagaaaaga tctttaataa acgagaaacc ccggaagaaa 2520gagaggaacg tatcaggaga gaaacagagg aaaaagaaga acgccgtagg acagaggatg 2580agcagaaaga gaaagaaaga gatcgtagga gacatagaga gatgagcaag ctattggcca 2640ctgtcgttag tggacagaaa caggatagac agggaggaga acgaaggagg tcccaactcg 2700atcgcgacca gtgtgcctac tgcaaagaaa aggggcactg ggctaaagat tgtcccaaga 2760aaccacgagg acctcgggga ccaagacccc agacctccct cctgacccta gatgactagg 2820gaggtcaggg tcaggagccc ccccctgaac ccaggataac cctcaaagtc ggggggcaac 2880ccgtcacctt cctggtagat actggggccc aacactccgt gctgacccaa aatcctggac 2940ccctaagtga taagtctgcc tgggtccaag gggctactgg aggaaagcgg tatcgctgga 3000ccacggatcg caaagtacat ctagctaccg gtaaggtcac ccactctttc ctccatgtac 3060cagactgtcc ctatcctctg ttaggaagag atttgctgac taaactaaaa gcccaaatcc 3120actttgaggg atcaggagcc caggttatgg gaccaatggg gcagcccctg caagtgttga 3180ccctaaatat agaagatgag catcggctac atgagacctc aaaagagcca gatgtttctc 3240tagggtccac atggctgtct gattttcctc aggcctgggc ggaaaccggg ggcatgggac 3300tggcagttcg ccaagctcct ctgatcatac ctctgaaagc aacctctacc cccgtgtcca 3360taaaacaata ccccatgtca caagaagcca gactggggat caagccccac atacagagac 3420tgttggacca gggaatactg gtaccctgcc agtccccctg gaacacgccc ctgctacccg 3480ttaagaaacc agggactaat gattataggc ctgtccagga tctgagagaa gtcaacaagc 3540gggtggaaga catccacccc accgtgccca acccttacaa cctcttgagc gggctcccac 3600cgtcccacca gtggtacact gtgcttgatt taaaggatgc ctttttctgc ctgagactcc 3660accccaccag tcagcctctc ttcgcctttg agtggagaga tccagagatg ggaatctcag 3720gacaattgac ctggaccaga ctcccacagg gtttcaaaaa cagtcccacc ctgtttgatg 3780aggcactgca cagagaccta gcagacttcc ggatccagca cccagacttg atcctgctac 3840agtacgtgga tgacttactg ctggccgcca cttctgagct agactgccaa caaggtactc 3900gggccctgtt acaaacccta gggaacctcg ggtatcgggc ctcggccaag aaagcccaaa 3960tttgccagaa acaggtcaag tatctggggt atcttctaaa agagggtcag agatggctga 4020ctgaggccag aaaagagact gtgatggggc agcctactcc gaagacccct cgacaactaa 4080gggagttcct agggacggca ggcttctgtc gcctctggat ccctgggttt gcagaaatgg 4140cagccccctt gtaccctctc accaaaacgg ggactctgtt taattggggc ccagaccaac 4200aaaaggccta tcaagaaatc aagcaagctc ttctaactgc cccagccctg gggttgccag 4260atttgactaa gccctttgaa ctctttgtcg acgagaagca gggctacgcc aaaggtgtcc 4320taacgcaaaa actgggacct tggcgtcggc cggtggccta cctgtccaaa aagctagacc 4380cagtagcagc tgggtggccc ccttgcctac ggatggtagc agccattgcc gtactgacaa 4440aggatgcagg caagctaacc atgggacagc cactagtcat tctggccccc catgcagtag 4500aggcactagt caaacaaccc cccgaccgct ggctttccaa cgcccggatg actcactatc 4560aggccttgct tttggacacg gaccgggtcc agttcggacc ggtggtagcc ctgaacccgg 4620ctacgctgct cccactgcct gaggaagggc tgcaacacaa ctgccttgat atcctggccg 4680aagcccacgg aacccgaccc gacctaacgg accagccgct cccagacgcc gaccacacct 4740ggtacacgga tggaagcagt ctcttacaag agggacagcg taaggcggga gctgcggtga 4800ccaccgagac cgaggtaatc tgggctaaag ccctgccagc cgggacatcc gctcagcggg 4860ctgaactgat agcactcacc caggccctaa agatggcaga aggtaagaag ctaaatgttt 4920atactgatag ccgttatgct tttgctactg cccatatcca tggagaaata tacagaaggc 4980gtgggttgct cacatcagaa ggcaaagaga tcaaaaataa agacgagatc ttggccctac 5040taaaagccct ctttctgccc aaaagactta gcataatcca ttgtccagga catcaaaagg 5100gacacagcgc cgaggctaga ggcaaccgga tggctgacca agcggcccga aaggcagcca 5160tcacagagac tccagacacc tctaccctcc tcatagaaaa ttcatcaccc tacacctcag 5220aacattttca ttacacagtg actgatataa aggacctaac caagttgggg gccatttatg 5280ataaaacaaa gaagtattgg gtctaccaag gaaaacctgt gatgcctgac cagtttactt 5340ttgaattatt agactttctt catcagctga ctcacctcag cttctcaaaa atgaaggctc 5400tcctagagag aagccacagt ccctactaca tgctgaaccg ggatcgaaca ctcaaaaata 5460tcactgagac ctgcaaagct tgtgcacaag tcaacgccag caagtctgcc gttaaacagg 5520gaactagggt ccgcgggcat cggcccggca ctcattggga gatcgatttc accgagataa 5580agcccggatt gtatggctat aaatatcttc tagtttttat agataccttt tctggctgga 5640tagaagcctt cccaaccaag aaagaaaccg ccaaggtcgt aaccaagaag ctactagagg 5700agatcttccc caggttcggc atgcctcagg tattgggaac tgacaatggg cctgccttcg 5760tctccaaggt gagtcagaca gtggccgatc tgttggggat tgattggaaa ttacattgtg 5820catacagacc ccaaagctca ggccaggtag aaagaatgaa tagaaccatc aaggagactt 5880taactaaatt aacgcttgca actggctcta gagactgggt gctcctactc cccttagccc 5940tgtaccgagc ccgcaacacg ccgggccccc atggcctcac cccatatgag atcttatatg 6000gggcaccccc gccccttgta aacttccctg accctgacat gacaagagtt actaacagcc 6060cctctctcca agctcactta caggctctct acttagtcca gcacgaagtc tggagacctc 6120tggcggcagc ctaccaagaa caactggacc gaccggtggt acctcaccct taccgagtcg 6180gcgacacagt gtgggtccgc cgacaccaga ctaagaacct agaacctcgc tggaaaggac 6240cttacacagt cctgctgacc acccccaccg ccctcaaagt agacggcatc gcagcttgga 6300tacacgccgc ccacgtgaag gctgccgacc ccgggggtgg accatcctct agactgacat 6360ggcgcgttca acgctctcaa aaccccctca agataagatt aacccgtgga agcccttaat 6420agtcatggga gtcctgttag gagtagggat ggcagagagc ccccatcagg tctttaatgt 6480aacctggaga gtcaccaacc tgatgactgg gcgtaccgcc aatgccacct ccctcctggg 6540aactgtacaa gatgccttcc caaaattata ttttgatcta tgtgatctgg tcggagagga 6600gtgggaccct tcagaccagg aaccgtatgt cgggtatggc tgcaagtacc ccgcagggag 6660acagcggacc cggacttttg acttttacgt gtgccctggg cataccgtaa agtcggggtg 6720tgggggacca ggagagggct actgtggtaa atgggggtgt gaaaccaccg gacaggctta 6780ctggaagccc acatcatcgt gggacctaat ctcccttaag cgcggtaaca ccccctggga 6840cacgggatgc tctaaagttg cctgtggccc ctgctacgac ctctccaaag tatccaattc 6900cttccaaggg gctactcgag ggggcagatg caaccctcta gtcctagaat tcactgatgc 6960aggaaaaaag gctaactggg acgggcccaa atcgtgggga ctgagactgt accggacagg 7020aacagatcct attaccatgt tctccctgac ccggcaggtc cttaatgtgg gaccccgagt 7080ccccataggg cccaacccag tattacccga ccaaagactc ccttcctcac caatagagat 7140tgtaccggct ccacagccac ctagccccct caataccagt tacccccctt ccactaccag 7200tacaccctca acctccccta caagtccaag tgtcccacag ccacccccag gaactggaga 7260tagactacta gctctagtca aaggagccta tcaggcgctt aacctcacca atcccgacaa 7320gacccaagaa tgttggctgt gcttagtgtc gggacctcct tattacgaag gagtagcggt 7380cgtgggcact tataccaatc attccaccgc tccggccaac tgtacggcca cttcccaaca 7440taagcttacc ctatctgaag tgacaggaca gggcctatgc atgggggcag tacctaaaac 7500tcaccaggcc ttatgtaaca ccacccaaag cgccggctca ggatcctact accttgcagc 7560acccgccgga acaatgtggg cttgcagcac tggattgact ccctgcttgt ccaccacggt 7620gctcaatcta accacagatt attgtgtatt agttgaactc tggcccagag taatttacca 7680ctcccccgat tatatgtatg gtcagcttga acagcgtacc aaatataaaa gagagccagt 7740atcattgacc ctggcccttc tactaggagg attaaccatg ggagggattg cagctggaat 7800agggacgggg accactgcct taattaaaac ccagcagttt gagcagcttc atgccgctat 7860ccagacagac ctcaacgaag tcgaaaagtc aattaccaac ctagaaaagt cactgacctc 7920gttgtctgaa gtagtcctac agaaccgcag aggcctagat ttgctattcc taaaggaggg 7980aggtctctgc gcagccctaa aagaagaatg ttgtttttat gcagaccaca cggggctagt 8040gagagacagc atggccaaat taagagaaag gcttaatcag agacaaaaac tatttgagac 8100aggccaagga tggttcgaag ggctgtttaa tagatccccc tggtttacca ccttaatctc 8160caccatcatg ggacctctaa tagtactctt actgatctta ctctttggac cttgcattct 8220caatcgatta gtccaatttg ttaaagacag gatatcagtg gtccaggctc tagttttgac 8280tcaacaatat caccagctga agcctataga gtacgagcca tgacgtacgt tactggccga 8340agccgcttgg aataaggccg gtgtgcgttt gtctatatgt tattttccac catattgccg 8400tcttttggca atgtgagggc ccggaaacct ggccctgtct tcttgacgag cattcctagg 8460ggtctttccc ctctcgccaa aggaatgcaa ggtctgttga atgtcgtgaa ggaagcagtt 8520cctctggaag cttcttgaag acaaacaacg tctgtagcga ccctttgcag gcagcggaac 8580cccccacctg gcgacaggtg cctctgcggc caaaagccac gtgtataaga tacacctgca 8640aaggcggcac aaccccagtg ccacgttgtg agttggatag ttgtggaaag agtcaaatgg 8700ctctcctcaa gcgtattcaa caaggggctg aaggatgccc agaaggtacc ccattgtatg 8760ggatctgatc tggggcctcg gtgcacatgc tttacatgtg tttagtcgag gttaaaaaaa 8820cgtctaggcc ccccgaacca cggggacgtg gttttccttt gaaaaacacg ataataccat 8880ggtgacaggg ggaatggcaa gcaagtggga tcagaagggt atggacattg cctatgagga 8940ggcggcctta ggttacaaag agggtggtgt tcctattggc ggatgtctta tcaataacaa 9000agacggaagt gttctcggtc gtggtcacaa catgagattt caaaagggat ccgccacact 9060acatggtgag atctccactt tggaaaactg tgggagatta gagggcaaag tgtacaaaga 9120taccactttg tatacgacgc tgtctccatg cgacatgtgt acaggtgcca tcatcatgta 9180tggtattcca cgctgtgttg tcggtgagaa cgttaatttc aaaagtaagg gcgagaaata 9240tttacaaact agaggtcacg aggttgttgt tgttgacgat gagaggtgta aaaagatcat 9300gaaacaattt atcgatgaaa gacctcagga ttggtttgaa gatattggtg agtaggcggc 9360cgcgccatag ataaaataaa agattttatt tagtctccag aaaaaggggg gaatgaaaga 9420ccccacctgt aggtttggca agctagctta agtaacgcca ttttgcaagg catggaaaaa 9480tacataactg agaatagaga agttcagatc aaggtcagga acagatggaa cagctgaata 9540tgggccaaac aggatatctg tggtaagcag ttcctgcccc ggctcagggc caagaacaga 9600tggaacagct gaatatgggc caaacaggat atctgtggta agcagttcct gccccggctc 9660agggccaaga acagatggtc cccagatgcg gtccagccct cagcagtttc tagagaacca 9720tcagatgttt ccagggtgcc ccaaggacct gaaatgaccc tgtgccttgt ttaaactaac 9780caatcagttc gcttctcgct tctgttcgcg cgcttctgct ccccgagctc aataaaagag 9840cccacaaccc ctcactcggg gcgccagtcc tccgattgac tgagtcgccc gggtacccgt 9900gtatccaata aaccctcttg cagttgcatc cgacttgtgg tctcgctgtt ccttgggagg 9960gtctcctctg agtgattgac tacccgtcag cgggggtctt tcatttgggg gctcgtccgg 10020gatcgggaga cccctgccca gggaccaccg acccaccacc gggaggtaag ctggctgcct 10080cgcgcgtttc ggtgatgacg gtgaaaacct ctgacatgtg agcaaaaggc cagcaaaagg 10140ccaggaaccg taaaaaggcc gcgttgctgg cgtttttcca taggctccgc ccccctgacg 10200agcatcacaa aaatcgacgc tcaagtcaga ggtggcgaaa cccgacagga ctataaagat 10260accaggcgtt tccccctgga agctccctcg tgcgctctcc tgttccgacc ctgccgctta 10320ccggatacct gtccgccttt ctcccttcgg gaagcgtggc gctttctcaa tgctcacgct 10380gtaggtatct cagttcggtg taggtcgttc gctccaagct gggctgtgtg cacgaacccc 10440ccgttcagcc cgaccgctgc gccttatccg gtaactatcg tcttgagtcc aacccggtaa 10500gacacgactt atcgccactg gcagcagcca ctggtaacag gattagcaga gcgaggtatg 10560taggcggtgc tacagagttc ttgaagtggt ggcctaacta cggctacact agaaggacag 10620tatttggtat ctgcgctctg ctgaagccag ttaccttcgg aaaaagagtt ggtagctctt 10680gatccggcaa acaaaccacc gctggtagcg gtggtttttt tgtttgcaag cagcagatta 10740cgcgcagaaa aaaaggatct caagaagatc ctttgatctt ttctacgggg tctgacgctc 10800agtggaacga aaactcacgt taagggattt tggtcatgag attatcaaaa aggatcttca 10860cctagatcct tttaaattaa aaatgaagtt ttaaatcaat ctaaagtata tatgagtaaa 10920cttggtctga cagttaccaa tgcttaatca gtgaggcacc tatctcagcg atctgtctat 10980ttcgttcatc catagttgcc tgactccccg tcgtgtagat aactacgata cgggagggct 11040taccatctgg ccccagtgct gcaatgatac cgcgagaccc acgctcaccg gctccagatt 11100tatcagcaat aaaccagcca gccggaaggg ccgagcgcag aagtggtcct gcaactttat 11160ccgcctccat ccagtctatt aattgttgcc gggaagctag agtaagtagt tcgccagtta 11220atagtttgcg caacgttgtt gccattgctg caggcatcgt ggtgtcacgc tcgtcgtttg 11280gtatggcttc attcagctcc ggttcccaac gatcaaggcg agttacatga tcccccatgt 11340tgtgcaaaaa agcggttagc tccttcggtc ctccgatcgt tgtcagaagt aagttggccg 11400cagtgttatc actcatggtt atggcagcac tgcataattc tcttactgtc atgccatccg 11460taagatgctt ttctgtgact ggtgagtact caaccaagtc attctgagaa tagtgtatgc 11520ggcgaccgag ttgctcttgc ccggcgtcaa cacgggataa taccgcgcca catagcagaa 11580ctttaaaagt gctcatcatt ggaaaacgtt cttcggggcg aaaactctca aggatcttac 11640cgctgttgag atccagttcg atgtaaccca ctcgtgcacc caactgatct tcagcatctt 11700ttactttcac cagcgtttct gggtgagcaa aaacaggaag gcaaaatgcc gcaaaaaagg 11760gaataagggc gacacggaaa tgttgaatac tcatactctt cctttttcaa tattattgaa 11820gcatttatca gggttattgt ctcatgagcg gatacatatt tgaatgtatt tagaaaaata 11880aacaaatagg ggttccgcgc acatttcccc gaaaagtgcc acctgacgtc taagaaacca 11940ttattatcat gacattaacc tataaaaata ggcgtatcac gaggcccttt cgtcttcaag 12000aattcat 120072211893DNAArtificial SequenceRCR Vector - pAC3-yCD2 22tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata tggagttccg 60cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt 120gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc attgacgtca 180atgggtggag tatttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc 240aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta 300catgacctta tgggactttc ctacttggca gtacatctac gtattagtca tcgctattac 360catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg actcacgggg 420atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc aaaatcaacg 480ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg gtaggcgtgt 540acggtgggag gtctatataa gcagagctgg tttagtgaac cggcgccagt cctccgattg 600actgagtcgc ccgggtaccc gtgtatccaa taaaccctct tgcagttgca tccgacttgt 660ggtctcgctg ttccttggga gggtctcctc tgagtgattg actacccgtc agcgggggtc 720tttcatttgg gggctcgtcc gggatcggga gacccctgcc cagggaccac cgacccacca 780ccgggaggta agctggccag caacttatct gtgtctgtcc gattgtctag tgtctatgac 840tgattttatg cgcctgcgtc ggtactagtt agctaactag ctctgtatct ggcggacccg 900tggtggaact gacgagttcg gaacacccgg ccgcaaccct gggagacgtc ccagggactt 960cgggggccgt ttttgtggcc cgacctgagt ccaaaaatcc cgatcgtttt ggactctttg 1020gtgcaccccc cttagaggag ggatatgtgg ttctggtagg agacgagaac ctaaaacagt 1080tcccgcctcc gtctgaattt ttgctttcgg tttgggaccg aagccgcgcc gcgcgtcttg 1140tctgctgcag catcgttctg tgttgtctct gtctgactgt gtttctgtat ttgtctgaaa 1200atatgggcca gactgttacc actcccttaa gtttgacctt aggtcactgg aaagatgtcg 1260agcggatcgc tcacaaccag tcggtagatg tcaagaagag acgttgggtt accttctgct 1320ctgcagaatg gccaaccttt aacgtcggat ggccgcgaga cggcaccttt aaccgagacc 1380tcatcaccca ggttaagatc aaggtctttt cacctggccc gcatggacac ccagaccagg 1440tcccctacat cgtgacctgg gaagccttgg cttttgaccc ccctccctgg gtcaagccct 1500ttgtacaccc taagcctccg cctcctcttc ctccatccgc cccgtctctc ccccttgaac 1560ctcctcgttc gaccccgcct cgatcctccc tttatccagc cctcactcct tctctaggcg 1620ccaaacctaa acctcaagtt ctttctgaca gtggggggcc gctcatcgac ctacttacag 1680aagacccccc gccttatagg gacccaagac cacccccttc cgacagggac ggaaatggtg 1740gagaagcgac ccctgcggga gaggcaccgg acccctcccc aatggcatct cgcctacgtg 1800ggagacggga gccccctgtg gccgactcca ctacctcgca ggcattcccc ctccgcgcag 1860gaggaaacgg acagcttcaa tactggccgt tctcctcttc tgacctttac aactggaaaa 1920ataataaccc ttctttttct gaagatccag gtaaactgac agctctgatc gagtctgtcc 1980tcatcaccca tcagcccacc tgggacgact gtcagcagct gttggggact ctgctgaccg 2040gagaagaaaa acaacgggtg ctcttagagg ctagaaaggc ggtgcggggc gatgatgggc 2100gccccactca actgcccaat gaagtcgatg ccgcttttcc cctcgagcgc ccagactggg 2160attacaccac ccaggcaggt aggaaccacc tagtccacta tcgccagttg ctcctagcgg 2220gtctccaaaa cgcgggcaga agccccacca atttggccaa ggtaaaagga ataacacaag 2280ggcccaatga gtctccctcg gccttcctag agagacttaa ggaagcctat cgcaggtaca 2340ctccttatga

ccctgaggac ccagggcaag aaactaatgt gtctatgtct ttcatttggc 2400agtctgcccc agacattggg agaaagttag agaggttaga agatttaaaa aacaagacgc 2460ttggagattt ggttagagag gcagaaaaga tctttaataa acgagaaacc ccggaagaaa 2520gagaggaacg tatcaggaga gaaacagagg aaaaagaaga acgccgtagg acagaggatg 2580agcagaaaga gaaagaaaga gatcgtagga gacatagaga gatgagcaag ctattggcca 2640ctgtcgttag tggacagaaa caggatagac agggaggaga acgaaggagg tcccaactcg 2700atcgcgacca gtgtgcctac tgcaaagaaa aggggcactg ggctaaagat tgtcccaaga 2760aaccacgagg acctcgggga ccaagacccc agacctccct cctgacccta gatgactagg 2820gaggtcaggg tcaggagccc ccccctgaac ccaggataac cctcaaagtc ggggggcaac 2880ccgtcacctt cctggtagat actggggccc aacactccgt gctgacccaa aatcctggac 2940ccctaagtga taagtctgcc tgggtccaag gggctactgg aggaaagcgg tatcgctgga 3000ccacggatcg caaagtacat ctagctaccg gtaaggtcac ccactctttc ctccatgtac 3060cagactgtcc ctatcctctg ttaggaagag atttgctgac taaactaaaa gcccaaatcc 3120actttgaggg atcaggagcc caggttatgg gaccaatggg gcagcccctg caagtgttga 3180ccctaaatat agaagatgag tatcggctac atgagacctc aaaagagcca gatgtttctc 3240tagggtccac atggctgtct gattttcctc aggcctgggc ggaaaccggg ggcatgggac 3300tggcagttcg ccaagctcct ctgatcatac ctctgaaagc aacctctacc cccgtgtcca 3360taaaacaata ccccatgtca caagaagcca gactggggat caagccccac atacagagac 3420tgttggacca gggaatactg gtaccctgcc agtccccctg gaacacgccc ctgctacccg 3480ttaagaaacc agggactaat gattataggc ctgtccagga tctgagagaa gtcaacaagc 3540gggtggaaga catccacccc accgtgccca acccttacaa cctcttgagc gggctcccac 3600cgtcccacca gtggtacact gtgcttgatt taaaggatgc ctttttctgc ctgagactcc 3660accccaccag tcagcctctc ttcgcctttg agtggagaga tccagagatg ggaatctcag 3720gacaattgac ctggaccaga ctcccacagg gtttcaaaaa cagtcccacc ctgtttgatg 3780aggcactgca cagagaccta gcagacttcc ggatccagca cccagacttg atcctgctac 3840agtacgtgga tgacttactg ctggccgcca cttctgagct agactgccaa caaggtactc 3900gggccctgtt acaaacccta gggaacctcg ggtatcgggc ctcggccaag aaagcccaaa 3960tttgccagaa acaggtcaag tatctggggt atcttctaaa agagggtcag agatggctga 4020ctgaggccag aaaagagact gtgatggggc agcctactcc gaagacccct cgacaactaa 4080gggagttcct agggacggca ggcttctgtc gcctctggat ccctgggttt gcagaaatgg 4140cagccccctt gtaccctctc accaaaacgg ggactctgtt taattggggc ccagaccaac 4200aaaaggccta tcaagaaatc aagcaagctc ttctaactgc cccagccctg gggttgccag 4260atttgactaa gccctttgaa ctctttgtcg acgagaagca gggctacgcc aaaggtgtcc 4320taacgcaaaa actgggacct tggcgtcggc cggtggccta cctgtccaaa aagctagacc 4380cagtagcagc tgggtggccc ccttgcctac ggatggtagc agccattgcc gtactgacaa 4440aggatgcagg caagctaacc atgggacagc cactagtcat tctggccccc catgcagtag 4500aggcactagt caaacaaccc cccgaccgct ggctttccaa cgcccggatg actcactatc 4560aggccttgct tttggacacg gaccgggtcc agttcggacc ggtggtagcc ctgaacccgg 4620ctacgctgct cccactgcct gaggaagggc tgcaacacaa ctgccttgat atcctggccg 4680aagcccacgg aacccgaccc gacctaacgg accagccgct cccagacgcc gaccacacct 4740ggtacacgga tggaagcagt ctcttacaag agggacagcg taaggcggga gctgcggtga 4800ccaccgagac cgaggtaatc tgggctaaag ccctgccagc cgggacatcc gctcagcggg 4860ctgaactgat agcactcacc caggccctaa agatggcaga aggtaagaag ctaaatgttt 4920atactgatag ccgttatgct tttgctactg cccatatcca tggagaaata tacagaaggc 4980gtgggttgct cacatcagaa ggcaaagaga tcaaaaataa agacgagatc ttggccctac 5040taaaagccct ctttctgccc aaaagactta gcataatcca ttgtccagga catcaaaagg 5100gacacagcgc cgaggctaga ggcaaccgga tggctgacca agcggcccga aaggcagcca 5160tcacagagac tccagacacc tctaccctcc tcatagaaaa ttcatcaccc tacacctcag 5220aacattttca ttacacagtg actgatataa aggacctaac caagttgggg gccatttatg 5280ataaaacaaa gaagtattgg gtctaccaag gaaaacctgt gatgcctgac cagtttactt 5340ttgaattatt agactttctt catcagctga ctcacctcag cttctcaaaa atgaaggctc 5400tcctagagag aagccacagt ccctactaca tgctgaaccg ggatcgaaca ctcaaaaata 5460tcactgagac ctgcaaagct tgtgcacaag tcaacgccag caagtctgcc gttaaacagg 5520gaactagggt ccgcgggcat cggcccggca ctcattggga gatcgatttc accgagataa 5580agcccggatt gtatggctat aaatatcttc tagtttttat agataccttt tctggctgga 5640tagaagcctt cccaaccaag aaagaaaccg ccaaggtcgt aaccaagaag ctactagagg 5700agatcttccc caggttcggc atgcctcagg tattgggaac tgacaatggg cctgccttcg 5760tctccaaggt gagtcagaca gtggccgatc tgttggggat tgattggaaa ttacattgtg 5820catacagacc ccaaagctca ggccaggtag aaagaatgaa tagaaccatc aaggagactt 5880taactaaatt aacgcttgca actggctcta gagactgggt gctcctactc cccttagccc 5940tgtaccgagc ccgcaacacg ccgggccccc atggcctcac cccatatgag atcttatatg 6000gggcaccccc gccccttgta aacttccctg accctgacat gacaagagtt actaacagcc 6060cctctctcca agctcactta caggctctct acttagtcca gcacgaagtc tggagacctc 6120tggcggcagc ctaccaagaa caactggacc gaccggtggt acctcaccct taccgagtcg 6180gcgacacagt gtgggtccgc cgacaccaga ctaagaacct agaacctcgc tggaaaggac 6240cttacacagt cctgctgacc acccccaccg ccctcaaagt agacggcatc gcagcttgga 6300tacacgccgc ccacgtgaag gctgccgacc ccgggggtgg accatcctct agactgacat 6360ggcgcgttca acgctctcaa aaccccctca agataagatt aacccgtgga agcccttaat 6420agtcatggga gtcctgttag gagtagggat ggcagagagc ccccatcagg tctttaatgt 6480aacctggaga gtcaccaacc tgatgactgg gcgtaccgcc aatgccacct ccctcctggg 6540aactgtacaa gatgccttcc caaaattata ttttgatcta tgtgatctgg tcggagagga 6600gtgggaccct tcagaccagg aaccgtatgt cgggtatggc tgcaagtacc ccgcagggag 6660acagcggacc cggacttttg acttttacgt gtgccctggg cataccgtaa agtcggggtg 6720tgggggacca ggagagggct actgtggtaa atgggggtgt gaaaccaccg gacaggctta 6780ctggaagccc acatcatcgt gggacctaat ctcccttaag cgcggtaaca ccccctggga 6840cacgggatgc tctaaagttg cctgtggccc ctgctacgac ctctccaaag tatccaattc 6900cttccaaggg gctactcgag ggggcagatg caaccctcta gtcctagaat tcactgatgc 6960aggaaaaaag gctaactggg acgggcccaa atcgtgggga ctgagactgt accggacagg 7020aacagatcct attaccatgt tctccctgac ccggcaggtc cttaatgtgg gaccccgagt 7080ccccataggg cccaacccag tattacccga ccaaagactc ccttcctcac caatagagat 7140tgtaccggct ccacagccac ctagccccct caataccagt tacccccctt ccactaccag 7200tacaccctca acctccccta caagtccaag tgtcccacag ccacccccag gaactggaga 7260tagactacta gctctagtca aaggagccta tcaggcgctt aacctcacca atcccgacaa 7320gacccaagaa tgttggctgt gcttagtgtc gggacctcct tattacgaag gagtagcggt 7380cgtgggcact tataccaatc attccaccgc tccggccaac tgtacggcca cttcccaaca 7440taagcttacc ctatctgaag tgacaggaca gggcctatgc atgggggcag tacctaaaac 7500tcaccaggcc ttatgtaaca ccacccaaag cgccggctca ggatcctact accttgcagc 7560acccgccgga acaatgtggg cttgcagcac tggattgact ccctgcttgt ccaccacggt 7620gctcaatcta accacagatt attgtgtatt agttgaactc tggcccagag taatttacca 7680ctcccccgat tatatgtatg gtcagcttga acagcgtacc aaatataaaa gagagccagt 7740atcattgacc ctggcccttc tactaggagg attaaccatg ggagggattg cagctggaat 7800agggacgggg accactgcct taattaaaac ccagcagttt gagcagcttc atgccgctat 7860ccagacagac ctcaacgaag tcgaaaagtc aattaccaac ctagaaaagt cactgacctc 7920gttgtctgaa gtagtcctac agaaccgcag aggcctagat ttgctattcc taaaggaggg 7980aggtctctgc gcagccctaa aagaagaatg ttgtttttat gcagaccaca cggggctagt 8040gagagacagc atggccaaat taagagaaag gcttaatcag agacaaaaac tatttgagac 8100aggccaagga tggttcgaag ggctgtttaa tagatccccc tggtttacca ccttaatctc 8160caccatcatg ggacctctaa tagtactctt actgatctta ctctttggac cttgcattct 8220caatcgattg gtccaatttg ttaaagacag gatctcagtg gtccaggctc tggttttgac 8280tcagcaatat caccagctaa aacccataga gtacgagcca tgaacgcgtt actggccgaa 8340gccgcttgga ataaggccgg tgtgcgtttg tctatatgtt attttccacc atattgccgt 8400cttttggcaa tgtgagggcc cggaaacctg gccctgtctt cttgacgagc attcctaggg 8460gtctttcccc tctcgccaaa ggaatgcaag gtctgttgaa tgtcgtgaag gaagcagttc 8520ctctggaagc ttcttgaaga caaacaacgt ctgtagcgac cctttgcagg cagcggaacc 8580ccccacctgg cgacaggtgc ctctgcggcc aaaagccacg tgtataagat acacctgcaa 8640aggcggcaca accccagtgc cacgttgtga gttggatagt tgtggaaaga gtcaaatggc 8700tctcctcaag cgtattcaac aaggggctga aggatgccca gaaggtaccc cattgtatgg 8760gatctgatct ggggcctcgg tgcacatgct ttacatgtgt ttagtcgagg ttaaaaaaac 8820gtctaggccc cccgaaccac ggggacgtgg ttttcctttg aaaaacacga ttataaatgg 8880tgaccggcgg catggcctcc aagtgggatc aaaagggcat ggatatcgct tacgaggagg 8940ccctgctggg ctacaaggag ggcggcgtgc ctatcggcgg ctgtctgatc aacaacaagg 9000acggcagtgt gctgggcagg ggccacaaca tgaggttcca gaagggctcc gccaccctgc 9060acggcgagat ctccaccctg gagaactgtg gcaggctgga gggcaaggtg tacaaggaca 9120ccaccctgta caccaccctg tccccttgtg acatgtgtac cggcgctatc atcatgtacg 9180gcatccctag gtgtgtgatc ggcgagaacg tgaacttcaa gtccaagggc gagaagtacc 9240tgcaaaccag gggccacgag gtggtggttg ttgacgatga gaggtgtaag aagctgatga 9300agcagttcat cgacgagagg cctcaggact ggttcgagga tatcggcgag taagcggccg 9360cagataaaat aaaagatttt atttagtctc cagaaaaagg ggggaatgaa agaccccacc 9420tgtaggtttg gcaagctagc ttaagtaacg ccattttgca aggcatggaa aaatacataa 9480ctgagaatag agaagttcag atcaaggtca ggaacagatg gaacagctga atatgggcca 9540aacaggatat ctgtggtaag cagttcctgc cccggctcag ggccaagaac agatggaaca 9600gctgaatatg ggccaaacag gatatctgtg gtaagcagtt cctgccccgg ctcagggcca 9660agaacagatg gtccccagat gcggtccagc cctcagcagt ttctagagaa ccatcagatg 9720tttccagggt gccccaagga cctgaaatga ccctgtgcct tatttgaact aaccaatcag 9780ttcgcttctc gcttctgttc gcgcgcttct gctccccgag ctcaataaaa gagcccacaa 9840cccctcactc ggggcgccag tcctccgatt gactgagtcg cccgggtacc cgtgtatcca 9900ataaaccctc ttgcagttgc atccgacttg tggtctcgct gttccttggg agggtctcct 9960ctgagtgatt gactacccgt cagcgggggt ctttcattac atgtgagcaa aaggccagca 10020aaaggccagg aaccgtaaaa aggccgcgtt gctggcgttt ttccataggc tccgcccccc 10080tgacgagcat cacaaaaatc gacgctcaag tcagaggtgg cgaaacccga caggactata 10140aagataccag gcgtttcccc ctggaagctc cctcgtgcgc tctcctgttc cgaccctgcc 10200gcttaccgga tacctgtccg cctttctccc ttcgggaagc gtggcgcttt ctcatagctc 10260acgctgtagg tatctcagtt cggtgtaggt cgttcgctcc aagctgggct gtgtgcacga 10320accccccgtt cagcccgacc gctgcgcctt atccggtaac tatcgtcttg agtccaaccc 10380ggtaagacac gacttatcgc cactggcagc agccactggt aacaggatta gcagagcgag 10440gtatgtaggc ggtgctacag agttcttgaa gtggtggcct aactacggct acactagaag 10500gacagtattt ggtatctgcg ctctgctgaa gccagttacc ttcggaaaaa gagttggtag 10560ctcttgatcc ggcaaacaaa ccaccgctgg tagcggtggt ttttttgttt gcaagcagca 10620gattacgcgc agaaaaaaag gatctcaaga agatcctttg atcttttcta cggggtctga 10680cgctcagtgg aacgaaaact cacgttaagg gattttggtc atgagattat caaaaaggat 10740cttcacctag atccttttaa attaaaaatg aagttttaaa tcaatctaaa gtatatatga 10800gtaaacttgg tctgacagtt accaatgctt aatcagtgag gcacctatct cagcgatctg 10860tctatttcgt tcatccatag ttgcctgact ccccgtcgtg tagataacta cgatacggga 10920gggcttacca tctggcccca gtgctgcaat gataccgcga gacccacgct caccggctcc 10980agatttatca gcaataaacc agccagccgg aagggccgag cgcagaagtg gtcctgcaac 11040tttatccgcc tccatccagt ctattaattg ttgccgggaa gctagagtaa gtagttcgcc 11100agttaatagt ttgcgcaacg ttgttgccat tgctgcaggc atcgtggtgt cacgctcgtc 11160gtttggtatg gcttcattca gctccggttc ccaacgatca aggcgagtta catgatcccc 11220catgttgtgc aaaaaagcgg ttagctcctt cggtcctccg atcgttgtca gaagtaagtt 11280ggccgcagtg ttatcactca tggttatggc agcactgcat aattctctta ctgtcatgcc 11340atccgtaaga tgcttttctg tgactggtga gtactcaacc aagtcattct gagaatagtg 11400tatgcggcga ccgagttgct cttgcccggc gtcaacacgg gataataccg cgccacatag 11460cagaacttta aaagtgctca tcattggaaa acgttcttcg gggcgaaaac tctcaaggat 11520cttaccgctg ttgagatcca gttcgatgta acccactcgt gcacccaact gatcttcagc 11580atcttttact ttcaccagcg tttctgggtg agcaaaaaca ggaaggcaaa atgccgcaaa 11640aaagggaata agggcgacac ggaaatgttg aatactcata ctcttccttt ttcaatatta 11700ttgaagcatt tatcagggtt attgtctcat gagcggatac atatttgaat gtatttagaa 11760aaataaacaa ataggggttc cgcgcacatt tccccgaaaa gtgccacctg acgtctaaga 11820aaccattatt atcatgacat taacctataa aaataggcgt atcacgaggc cctttcgtct 11880tcaagaattc cat 11893234473DNAHomo sapiensCDS(175)..(3942) 23aaggggaggt aaccctggcc cctttggtcg gggccccggg cagccgcgcg ccccttccca 60cggggccctt tactgcgccg cgcgcccggc ccccacccct cgcagcaccc cgcgccccgc 120gccctcccag ccgggtccag ccggagccat ggggccggag ccgcagtgag cacc atg 177 Met 1 gag ctg gcg gcc ttg tgc cgc tgg ggg ctc ctc ctc gcc ctc ttg ccc 225Glu Leu Ala Ala Leu Cys Arg Trp Gly Leu Leu Leu Ala Leu Leu Pro 5 10 15 ccc gga gcc gcg agc acc caa gtg tgc acc ggc aca gac atg aag ctg 273Pro Gly Ala Ala Ser Thr Gln Val Cys Thr Gly Thr Asp Met Lys Leu 20 25 30 cgg ctc cct gcc agt ccc gag acc cac ctg gac atg ctc cgc cac ctc 321Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met Leu Arg His Leu 35 40 45 tac cag ggc tgc cag gtg gtg cag gga aac ctg gaa ctc acc tac ctg 369Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu Glu Leu Thr Tyr Leu 50 55 60 65 ccc acc aat gcc agc ctg tcc ttc ctg cag gat atc cag gag gtg cag 417Pro Thr Asn Ala Ser Leu Ser Phe Leu Gln Asp Ile Gln Glu Val Gln 70 75 80 ggc tac gtg ctc atc gct cac aac caa gtg agg cag gtc cca ctg cag 465Gly Tyr Val Leu Ile Ala His Asn Gln Val Arg Gln Val Pro Leu Gln 85 90 95 agg ctg cgg att gtg cga ggc acc cag ctc ttt gag gac aac tat gcc 513Arg Leu Arg Ile Val Arg Gly Thr Gln Leu Phe Glu Asp Asn Tyr Ala 100 105 110 ctg gcc gtg cta gac aat gga gac ccg ctg aac aat acc acc cct gtc 561Leu Ala Val Leu Asp Asn Gly Asp Pro Leu Asn Asn Thr Thr Pro Val 115 120 125 aca ggg gcc tcc cca gga ggc ctg cgg gag ctg cag ctt cga agc ctc 609Thr Gly Ala Ser Pro Gly Gly Leu Arg Glu Leu Gln Leu Arg Ser Leu 130 135 140 145 aca gag atc ttg aaa gga ggg gtc ttg atc cag cgg aac ccc cag ctc 657Thr Glu Ile Leu Lys Gly Gly Val Leu Ile Gln Arg Asn Pro Gln Leu 150 155 160 tgc tac cag gac acg att ttg tgg aag gac atc ttc cac aag aac aac 705Cys Tyr Gln Asp Thr Ile Leu Trp Lys Asp Ile Phe His Lys Asn Asn 165 170 175 cag ctg gct ctc aca ctg ata gac acc aac cgc tct cgg gcc tgc cac 753Gln Leu Ala Leu Thr Leu Ile Asp Thr Asn Arg Ser Arg Ala Cys His 180 185 190 ccc tgt tct ccg atg tgt aag ggc tcc cgc tgc tgg gga gag agt tct 801Pro Cys Ser Pro Met Cys Lys Gly Ser Arg Cys Trp Gly Glu Ser Ser 195 200 205 gag gat tgt cag agc ctg acg cgc act gtc tgt gcc ggt ggc tgt gcc 849Glu Asp Cys Gln Ser Leu Thr Arg Thr Val Cys Ala Gly Gly Cys Ala 210 215 220 225 cgc tgc aag ggg cca ctg ccc act gac tgc tgc cat gag cag tgt gct 897Arg Cys Lys Gly Pro Leu Pro Thr Asp Cys Cys His Glu Gln Cys Ala 230 235 240 gcc ggc tgc acg ggc ccc aag cac tct gac tgc ctg gcc tgc ctc cac 945Ala Gly Cys Thr Gly Pro Lys His Ser Asp Cys Leu Ala Cys Leu His 245 250 255 ttc aac cac agt ggc atc tgt gag ctg cac tgc cca gcc ctg gtc acc 993Phe Asn His Ser Gly Ile Cys Glu Leu His Cys Pro Ala Leu Val Thr 260 265 270 tac aac aca gac acg ttt gag tcc atg ccc aat ccc gag ggc cgg tat 1041Tyr Asn Thr Asp Thr Phe Glu Ser Met Pro Asn Pro Glu Gly Arg Tyr 275 280 285 aca ttc ggc gcc agc tgt gtg act gcc tgt ccc tac aac tac ctt tct 1089Thr Phe Gly Ala Ser Cys Val Thr Ala Cys Pro Tyr Asn Tyr Leu Ser 290 295 300 305 acg gac gtg gga tcc tgc acc ctc gtc tgc ccc ctg cac aac caa gag 1137Thr Asp Val Gly Ser Cys Thr Leu Val Cys Pro Leu His Asn Gln Glu 310 315 320 gtg aca gca gag gat gga aca cag cgg tgt gag aag tgc agc aag ccc 1185Val Thr Ala Glu Asp Gly Thr Gln Arg Cys Glu Lys Cys Ser Lys Pro 325 330 335 tgt gcc cga gtg tgc tat ggt ctg ggc atg gag cac ttg cga gag gtg 1233Cys Ala Arg Val Cys Tyr Gly Leu Gly Met Glu His Leu Arg Glu Val 340 345 350 agg gca gtt acc agt gcc aat atc cag gag ttt gct ggc tgc aag aag 1281Arg Ala Val Thr Ser Ala Asn Ile Gln Glu Phe Ala Gly Cys Lys Lys 355 360 365 atc ttt ggg agc ctg gca ttt ctg ccg gag agc ttt gat ggg gac cca 1329Ile Phe Gly Ser Leu Ala Phe Leu Pro Glu Ser Phe Asp Gly Asp Pro 370 375 380 385 gcc tcc aac act gcc ccg ctc cag cca gag cag ctc caa gtg ttt gag 1377Ala Ser Asn Thr Ala Pro Leu Gln Pro Glu Gln Leu Gln Val Phe Glu 390 395 400 act ctg gaa gag atc aca ggt tac cta tac atc tca gca tgg ccg gac 1425Thr Leu Glu Glu Ile Thr Gly Tyr Leu Tyr Ile Ser Ala Trp Pro Asp 405 410 415 agc ctg cct gac ctc agc gtc ttc cag aac ctg caa gta atc cgg gga 1473Ser Leu Pro Asp Leu Ser Val Phe Gln Asn Leu Gln Val Ile Arg Gly 420 425 430 cga att ctg cac aat ggc gcc tac tcg ctg acc ctg caa ggg ctg ggc 1521Arg Ile Leu His Asn Gly Ala Tyr Ser Leu Thr Leu Gln Gly Leu Gly 435 440 445 atc agc tgg ctg ggg ctg cgc tca ctg agg gaa ctg ggc agt gga ctg 1569Ile Ser Trp Leu Gly Leu Arg Ser Leu Arg

Glu Leu Gly Ser Gly Leu 450 455 460 465 gcc ctc atc cac cat aac acc cac ctc tgc ttc gtg cac acg gtg ccc 1617Ala Leu Ile His His Asn Thr His Leu Cys Phe Val His Thr Val Pro 470 475 480 tgg gac cag ctc ttt cgg aac ccg cac caa gct ctg ctc cac act gcc 1665Trp Asp Gln Leu Phe Arg Asn Pro His Gln Ala Leu Leu His Thr Ala 485 490 495 aac cgg cca gag gac gag tgt gtg ggc gag ggc ctg gcc tgc cac cag 1713Asn Arg Pro Glu Asp Glu Cys Val Gly Glu Gly Leu Ala Cys His Gln 500 505 510 ctg tgc gcc cga ggg cac tgc tgg ggt cca ggg ccc acc cag tgt gtc 1761Leu Cys Ala Arg Gly His Cys Trp Gly Pro Gly Pro Thr Gln Cys Val 515 520 525 aac tgc agc cag ttc ctt cgg ggc cag gag tgc gtg gag gaa tgc cga 1809Asn Cys Ser Gln Phe Leu Arg Gly Gln Glu Cys Val Glu Glu Cys Arg 530 535 540 545 gta ctg cag ggg ctc ccc agg gag tat gtg aat gcc agg cac tgt ttg 1857Val Leu Gln Gly Leu Pro Arg Glu Tyr Val Asn Ala Arg His Cys Leu 550 555 560 ccg tgc cac cct gag tgt cag ccc cag aat ggc tca gtg acc tgt ttt 1905Pro Cys His Pro Glu Cys Gln Pro Gln Asn Gly Ser Val Thr Cys Phe 565 570 575 gga ccg gag gct gac cag tgt gtg gcc tgt gcc cac tat aag gac cct 1953Gly Pro Glu Ala Asp Gln Cys Val Ala Cys Ala His Tyr Lys Asp Pro 580 585 590 ccc ttc tgc gtg gcc cgc tgc ccc agc ggt gtg aaa cct gac ctc tcc 2001Pro Phe Cys Val Ala Arg Cys Pro Ser Gly Val Lys Pro Asp Leu Ser 595 600 605 tac atg ccc atc tgg aag ttt cca gat gag gag ggc gca tgc cag cct 2049Tyr Met Pro Ile Trp Lys Phe Pro Asp Glu Glu Gly Ala Cys Gln Pro 610 615 620 625 tgc ccc atc aac tgc acc cac tcc tgt gtg gac ctg gat gac aag ggc 2097Cys Pro Ile Asn Cys Thr His Ser Cys Val Asp Leu Asp Asp Lys Gly 630 635 640 tgc ccc gcc gag cag aga gcc agc cct ctg acg tcc atc atc tct gcg 2145Cys Pro Ala Glu Gln Arg Ala Ser Pro Leu Thr Ser Ile Ile Ser Ala 645 650 655 gtg gtt ggc att ctg ctg gtc gtg gtc ttg ggg gtg gtc ttt ggg atc 2193Val Val Gly Ile Leu Leu Val Val Val Leu Gly Val Val Phe Gly Ile 660 665 670 ctc atc aag cga cgg cag cag aag atc cgg aag tac acg atg cgg aga 2241Leu Ile Lys Arg Arg Gln Gln Lys Ile Arg Lys Tyr Thr Met Arg Arg 675 680 685 ctg ctg cag gaa acg gag ctg gtg gag ccg ctg aca cct agc gga gcg 2289Leu Leu Gln Glu Thr Glu Leu Val Glu Pro Leu Thr Pro Ser Gly Ala 690 695 700 705 atg ccc aac cag gcg cag atg cgg atc ctg aaa gag acg gag ctg agg 2337Met Pro Asn Gln Ala Gln Met Arg Ile Leu Lys Glu Thr Glu Leu Arg 710 715 720 aag gtg aag gtg ctt gga tct ggc gct ttt ggc aca gtc tac aag ggc 2385Lys Val Lys Val Leu Gly Ser Gly Ala Phe Gly Thr Val Tyr Lys Gly 725 730 735 atc tgg atc cct gat ggg gag aat gtg aaa att cca gtg gcc atc aaa 2433Ile Trp Ile Pro Asp Gly Glu Asn Val Lys Ile Pro Val Ala Ile Lys 740 745 750 gtg ttg agg gaa aac aca tcc ccc aaa gcc aac aaa gaa atc tta gac 2481Val Leu Arg Glu Asn Thr Ser Pro Lys Ala Asn Lys Glu Ile Leu Asp 755 760 765 gaa gca tac gtg atg gct ggt gtg ggc tcc cca tat gtc tcc cgc ctt 2529Glu Ala Tyr Val Met Ala Gly Val Gly Ser Pro Tyr Val Ser Arg Leu 770 775 780 785 ctg ggc atc tgc ctg aca tcc acg gtg cag ctg gtg aca cag ctt atg 2577Leu Gly Ile Cys Leu Thr Ser Thr Val Gln Leu Val Thr Gln Leu Met 790 795 800 ccc tat ggc tgc ctc tta gac cat gtc cgg gaa aac cgc gga cgc ctg 2625Pro Tyr Gly Cys Leu Leu Asp His Val Arg Glu Asn Arg Gly Arg Leu 805 810 815 ggc tcc cag gac ctg ctg aac tgg tgt atg cag att gcc aag ggg atg 2673Gly Ser Gln Asp Leu Leu Asn Trp Cys Met Gln Ile Ala Lys Gly Met 820 825 830 agc tac ctg gag gat gtg cgg ctc gta cac agg gac ttg gcc gct cgg 2721Ser Tyr Leu Glu Asp Val Arg Leu Val His Arg Asp Leu Ala Ala Arg 835 840 845 aac gtg ctg gtc aag agt ccc aac cat gtc aaa att aca gac ttc ggg 2769Asn Val Leu Val Lys Ser Pro Asn His Val Lys Ile Thr Asp Phe Gly 850 855 860 865 ctg gct cgg ctg ctg gac att gac gag aca gag tac cat gca gat ggg 2817Leu Ala Arg Leu Leu Asp Ile Asp Glu Thr Glu Tyr His Ala Asp Gly 870 875 880 ggc aag gtg ccc atc aag tgg atg gcg ctg gag tcc att ctc cgc cgg 2865Gly Lys Val Pro Ile Lys Trp Met Ala Leu Glu Ser Ile Leu Arg Arg 885 890 895 cgg ttc acc cac cag agt gat gtg tgg agt tat ggt gtg act gtg tgg 2913Arg Phe Thr His Gln Ser Asp Val Trp Ser Tyr Gly Val Thr Val Trp 900 905 910 gag ctg atg act ttt ggg gcc aaa cct tac gat ggg atc cca gcc cgg 2961Glu Leu Met Thr Phe Gly Ala Lys Pro Tyr Asp Gly Ile Pro Ala Arg 915 920 925 gag atc cct gac ctg ctg gaa aag ggg gag cgg ctg ccc cag ccc ccc 3009Glu Ile Pro Asp Leu Leu Glu Lys Gly Glu Arg Leu Pro Gln Pro Pro 930 935 940 945 atc tgc acc att gat gtc tac atg atc atg gtc aaa tgt tgg atg att 3057Ile Cys Thr Ile Asp Val Tyr Met Ile Met Val Lys Cys Trp Met Ile 950 955 960 gac tct gaa tgt cgg cca aga ttc cgg gag ttg gtg tct gaa ttc tcc 3105Asp Ser Glu Cys Arg Pro Arg Phe Arg Glu Leu Val Ser Glu Phe Ser 965 970 975 cgc atg gcc agg gac ccc cag cgc ttt gtg gtc atc cag aat gag gac 3153Arg Met Ala Arg Asp Pro Gln Arg Phe Val Val Ile Gln Asn Glu Asp 980 985 990 ttg ggc cca gcc agt ccc ttg gac agc acc ttc tac cgc tca ctg ctg 3201Leu Gly Pro Ala Ser Pro Leu Asp Ser Thr Phe Tyr Arg Ser Leu Leu 995 1000 1005 gag gac gat gac atg ggg gac ctg gtg gat gct gag gag tat ctg 3246Glu Asp Asp Asp Met Gly Asp Leu Val Asp Ala Glu Glu Tyr Leu 1010 1015 1020 gta ccc cag cag ggc ttc ttc tgt cca gac cct gcc ccg ggc gct 3291Val Pro Gln Gln Gly Phe Phe Cys Pro Asp Pro Ala Pro Gly Ala 1025 1030 1035 ggg ggc atg gtc cac cac agg cac cgc agc tca tct acc agg agt 3336Gly Gly Met Val His His Arg His Arg Ser Ser Ser Thr Arg Ser 1040 1045 1050 ggc ggt ggg gac ctg aca cta ggg ctg gag ccc tct gaa gag gag 3381Gly Gly Gly Asp Leu Thr Leu Gly Leu Glu Pro Ser Glu Glu Glu 1055 1060 1065 gcc ccc agg tct cca ctg gca ccc tcc gaa ggg gct ggc tcc gat 3426Ala Pro Arg Ser Pro Leu Ala Pro Ser Glu Gly Ala Gly Ser Asp 1070 1075 1080 gta ttt gat ggt gac ctg gga atg ggg gca gcc aag ggg ctg caa 3471Val Phe Asp Gly Asp Leu Gly Met Gly Ala Ala Lys Gly Leu Gln 1085 1090 1095 agc ctc ccc aca cat gac ccc agc cct cta cag cgg tac agt gag 3516Ser Leu Pro Thr His Asp Pro Ser Pro Leu Gln Arg Tyr Ser Glu 1100 1105 1110 gac ccc aca gta ccc ctg ccc tct gag act gat ggc tac gtt gcc 3561Asp Pro Thr Val Pro Leu Pro Ser Glu Thr Asp Gly Tyr Val Ala 1115 1120 1125 ccc ctg acc tgc agc ccc cag cct gaa tat gtg aac cag cca gat 3606Pro Leu Thr Cys Ser Pro Gln Pro Glu Tyr Val Asn Gln Pro Asp 1130 1135 1140 gtt cgg ccc cag ccc cct tcg ccc cga gag ggc cct ctg cct gct 3651Val Arg Pro Gln Pro Pro Ser Pro Arg Glu Gly Pro Leu Pro Ala 1145 1150 1155 gcc cga cct gct ggt gcc act ctg gaa agg ccc aag act ctc tcc 3696Ala Arg Pro Ala Gly Ala Thr Leu Glu Arg Pro Lys Thr Leu Ser 1160 1165 1170 cca ggg aag aat ggg gtc gtc aaa gac gtt ttt gcc ttt ggg ggt 3741Pro Gly Lys Asn Gly Val Val Lys Asp Val Phe Ala Phe Gly Gly 1175 1180 1185 gcc gtg gag aac ccc gag tac ttg aca ccc cag gga gga gct gcc 3786Ala Val Glu Asn Pro Glu Tyr Leu Thr Pro Gln Gly Gly Ala Ala 1190 1195 1200 cct cag ccc cac cct cct cct gcc ttc agc cca gcc ttc gac aac 3831Pro Gln Pro His Pro Pro Pro Ala Phe Ser Pro Ala Phe Asp Asn 1205 1210 1215 ctc tat tac tgg gac cag gac cca cca gag cgg ggg gct cca ccc 3876Leu Tyr Tyr Trp Asp Gln Asp Pro Pro Glu Arg Gly Ala Pro Pro 1220 1225 1230 agc acc ttc aaa ggg aca cct acg gca gag aac cca gag tac ctg 3921Ser Thr Phe Lys Gly Thr Pro Thr Ala Glu Asn Pro Glu Tyr Leu 1235 1240 1245 ggt ctg gac gtg cca gtg tga accagaaggc caagtccgca gaagccctga 3972Gly Leu Asp Val Pro Val 1250 1255 tgtgtcctca gggagcaggg aaggcctgac ttctgctggc atcaagaggt gggagggccc 4032tccgaccact tccaggggaa cctgccatgc caggaacctg tcctaaggaa ccttccttcc 4092tgcttgagtt cccagatggc tggaaggggt ccagcctcgt tggaagagga acagcactgg 4152ggagtctttg tggattctga ggccctgccc aatgagactc tagggtccag tggatgccac 4212agcccagctt ggccctttcc ttccagatcc tgggtactga aagccttagg gaagctggcc 4272tgagagggga agcggcccta agggagtgtc taagaacaaa agcgacccat tcagagactg 4332tccctgaaac ctagtactgc cccccatgag gaaggaacag caatggtgtc agtatccagg 4392ctttgtacag agtgcttttc tgtttagttt ttactttttt tgttttgttt ttttaaagat 4452gaaataaaga cccaggggga g 4473241255PRTHomo sapiens 24Met Glu Leu Ala Ala Leu Cys Arg Trp Gly Leu Leu Leu Ala Leu Leu 1 5 10 15 Pro Pro Gly Ala Ala Ser Thr Gln Val Cys Thr Gly Thr Asp Met Lys 20 25 30 Leu Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met Leu Arg His 35 40 45 Leu Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu Glu Leu Thr Tyr 50 55 60 Leu Pro Thr Asn Ala Ser Leu Ser Phe Leu Gln Asp Ile Gln Glu Val 65 70 75 80 Gln Gly Tyr Val Leu Ile Ala His Asn Gln Val Arg Gln Val Pro Leu 85 90 95 Gln Arg Leu Arg Ile Val Arg Gly Thr Gln Leu Phe Glu Asp Asn Tyr 100 105 110 Ala Leu Ala Val Leu Asp Asn Gly Asp Pro Leu Asn Asn Thr Thr Pro 115 120 125 Val Thr Gly Ala Ser Pro Gly Gly Leu Arg Glu Leu Gln Leu Arg Ser 130 135 140 Leu Thr Glu Ile Leu Lys Gly Gly Val Leu Ile Gln Arg Asn Pro Gln 145 150 155 160 Leu Cys Tyr Gln Asp Thr Ile Leu Trp Lys Asp Ile Phe His Lys Asn 165 170 175 Asn Gln Leu Ala Leu Thr Leu Ile Asp Thr Asn Arg Ser Arg Ala Cys 180 185 190 His Pro Cys Ser Pro Met Cys Lys Gly Ser Arg Cys Trp Gly Glu Ser 195 200 205 Ser Glu Asp Cys Gln Ser Leu Thr Arg Thr Val Cys Ala Gly Gly Cys 210 215 220 Ala Arg Cys Lys Gly Pro Leu Pro Thr Asp Cys Cys His Glu Gln Cys 225 230 235 240 Ala Ala Gly Cys Thr Gly Pro Lys His Ser Asp Cys Leu Ala Cys Leu 245 250 255 His Phe Asn His Ser Gly Ile Cys Glu Leu His Cys Pro Ala Leu Val 260 265 270 Thr Tyr Asn Thr Asp Thr Phe Glu Ser Met Pro Asn Pro Glu Gly Arg 275 280 285 Tyr Thr Phe Gly Ala Ser Cys Val Thr Ala Cys Pro Tyr Asn Tyr Leu 290 295 300 Ser Thr Asp Val Gly Ser Cys Thr Leu Val Cys Pro Leu His Asn Gln 305 310 315 320 Glu Val Thr Ala Glu Asp Gly Thr Gln Arg Cys Glu Lys Cys Ser Lys 325 330 335 Pro Cys Ala Arg Val Cys Tyr Gly Leu Gly Met Glu His Leu Arg Glu 340 345 350 Val Arg Ala Val Thr Ser Ala Asn Ile Gln Glu Phe Ala Gly Cys Lys 355 360 365 Lys Ile Phe Gly Ser Leu Ala Phe Leu Pro Glu Ser Phe Asp Gly Asp 370 375 380 Pro Ala Ser Asn Thr Ala Pro Leu Gln Pro Glu Gln Leu Gln Val Phe 385 390 395 400 Glu Thr Leu Glu Glu Ile Thr Gly Tyr Leu Tyr Ile Ser Ala Trp Pro 405 410 415 Asp Ser Leu Pro Asp Leu Ser Val Phe Gln Asn Leu Gln Val Ile Arg 420 425 430 Gly Arg Ile Leu His Asn Gly Ala Tyr Ser Leu Thr Leu Gln Gly Leu 435 440 445 Gly Ile Ser Trp Leu Gly Leu Arg Ser Leu Arg Glu Leu Gly Ser Gly 450 455 460 Leu Ala Leu Ile His His Asn Thr His Leu Cys Phe Val His Thr Val 465 470 475 480 Pro Trp Asp Gln Leu Phe Arg Asn Pro His Gln Ala Leu Leu His Thr 485 490 495 Ala Asn Arg Pro Glu Asp Glu Cys Val Gly Glu Gly Leu Ala Cys His 500 505 510 Gln Leu Cys Ala Arg Gly His Cys Trp Gly Pro Gly Pro Thr Gln Cys 515 520 525 Val Asn Cys Ser Gln Phe Leu Arg Gly Gln Glu Cys Val Glu Glu Cys 530 535 540 Arg Val Leu Gln Gly Leu Pro Arg Glu Tyr Val Asn Ala Arg His Cys 545 550 555 560 Leu Pro Cys His Pro Glu Cys Gln Pro Gln Asn Gly Ser Val Thr Cys 565 570 575 Phe Gly Pro Glu Ala Asp Gln Cys Val Ala Cys Ala His Tyr Lys Asp 580 585 590 Pro Pro Phe Cys Val Ala Arg Cys Pro Ser Gly Val Lys Pro Asp Leu 595 600 605 Ser Tyr Met Pro Ile Trp Lys Phe Pro Asp Glu Glu Gly Ala Cys Gln 610 615 620 Pro Cys Pro Ile Asn Cys Thr His Ser Cys Val Asp Leu Asp Asp Lys 625 630 635 640 Gly Cys Pro Ala Glu Gln Arg Ala Ser Pro Leu Thr Ser Ile Ile Ser 645 650 655 Ala Val Val Gly Ile Leu Leu Val Val Val Leu Gly Val Val Phe Gly 660 665 670 Ile Leu Ile Lys Arg Arg Gln Gln Lys Ile Arg Lys Tyr Thr Met Arg 675 680 685 Arg Leu Leu Gln Glu Thr Glu Leu Val Glu Pro Leu Thr Pro Ser Gly 690 695 700 Ala Met Pro Asn Gln Ala Gln Met Arg Ile Leu Lys Glu Thr Glu Leu 705 710 715 720 Arg Lys Val Lys Val Leu Gly Ser Gly Ala Phe Gly Thr Val Tyr Lys 725 730 735 Gly Ile Trp Ile Pro Asp Gly Glu Asn Val Lys Ile Pro Val Ala Ile 740 745 750 Lys Val Leu Arg Glu Asn Thr Ser Pro Lys Ala Asn Lys Glu Ile Leu 755 760 765 Asp Glu Ala Tyr Val Met Ala Gly Val Gly Ser Pro Tyr Val Ser Arg 770 775 780 Leu Leu Gly Ile Cys Leu Thr Ser Thr Val Gln Leu Val Thr Gln Leu 785 790 795 800 Met Pro Tyr Gly Cys

Leu Leu Asp His Val Arg Glu Asn Arg Gly Arg 805 810 815 Leu Gly Ser Gln Asp Leu Leu Asn Trp Cys Met Gln Ile Ala Lys Gly 820 825 830 Met Ser Tyr Leu Glu Asp Val Arg Leu Val His Arg Asp Leu Ala Ala 835 840 845 Arg Asn Val Leu Val Lys Ser Pro Asn His Val Lys Ile Thr Asp Phe 850 855 860 Gly Leu Ala Arg Leu Leu Asp Ile Asp Glu Thr Glu Tyr His Ala Asp 865 870 875 880 Gly Gly Lys Val Pro Ile Lys Trp Met Ala Leu Glu Ser Ile Leu Arg 885 890 895 Arg Arg Phe Thr His Gln Ser Asp Val Trp Ser Tyr Gly Val Thr Val 900 905 910 Trp Glu Leu Met Thr Phe Gly Ala Lys Pro Tyr Asp Gly Ile Pro Ala 915 920 925 Arg Glu Ile Pro Asp Leu Leu Glu Lys Gly Glu Arg Leu Pro Gln Pro 930 935 940 Pro Ile Cys Thr Ile Asp Val Tyr Met Ile Met Val Lys Cys Trp Met 945 950 955 960 Ile Asp Ser Glu Cys Arg Pro Arg Phe Arg Glu Leu Val Ser Glu Phe 965 970 975 Ser Arg Met Ala Arg Asp Pro Gln Arg Phe Val Val Ile Gln Asn Glu 980 985 990 Asp Leu Gly Pro Ala Ser Pro Leu Asp Ser Thr Phe Tyr Arg Ser Leu 995 1000 1005 Leu Glu Asp Asp Asp Met Gly Asp Leu Val Asp Ala Glu Glu Tyr 1010 1015 1020 Leu Val Pro Gln Gln Gly Phe Phe Cys Pro Asp Pro Ala Pro Gly 1025 1030 1035 Ala Gly Gly Met Val His His Arg His Arg Ser Ser Ser Thr Arg 1040 1045 1050 Ser Gly Gly Gly Asp Leu Thr Leu Gly Leu Glu Pro Ser Glu Glu 1055 1060 1065 Glu Ala Pro Arg Ser Pro Leu Ala Pro Ser Glu Gly Ala Gly Ser 1070 1075 1080 Asp Val Phe Asp Gly Asp Leu Gly Met Gly Ala Ala Lys Gly Leu 1085 1090 1095 Gln Ser Leu Pro Thr His Asp Pro Ser Pro Leu Gln Arg Tyr Ser 1100 1105 1110 Glu Asp Pro Thr Val Pro Leu Pro Ser Glu Thr Asp Gly Tyr Val 1115 1120 1125 Ala Pro Leu Thr Cys Ser Pro Gln Pro Glu Tyr Val Asn Gln Pro 1130 1135 1140 Asp Val Arg Pro Gln Pro Pro Ser Pro Arg Glu Gly Pro Leu Pro 1145 1150 1155 Ala Ala Arg Pro Ala Gly Ala Thr Leu Glu Arg Pro Lys Thr Leu 1160 1165 1170 Ser Pro Gly Lys Asn Gly Val Val Lys Asp Val Phe Ala Phe Gly 1175 1180 1185 Gly Ala Val Glu Asn Pro Glu Tyr Leu Thr Pro Gln Gly Gly Ala 1190 1195 1200 Ala Pro Gln Pro His Pro Pro Pro Ala Phe Ser Pro Ala Phe Asp 1205 1210 1215 Asn Leu Tyr Tyr Trp Asp Gln Asp Pro Pro Glu Arg Gly Ala Pro 1220 1225 1230 Pro Ser Thr Phe Lys Gly Thr Pro Thr Ala Glu Asn Pro Glu Tyr 1235 1240 1245 Leu Gly Leu Asp Val Pro Val 1250 1255 251212DNAHomo sapiensCDS(1)..(1212) 25atg aca gcc atc atc aaa gag atc gtt agc aga aac aaa agg aga tat 48Met Thr Ala Ile Ile Lys Glu Ile Val Ser Arg Asn Lys Arg Arg Tyr 1 5 10 15 caa gag gat gga ttc gac tta gac ttg acc tat att tat cca aac att 96Gln Glu Asp Gly Phe Asp Leu Asp Leu Thr Tyr Ile Tyr Pro Asn Ile 20 25 30 att gct atg gga ttt cct gca gaa aga ctt gaa ggc gta tac agg aac 144Ile Ala Met Gly Phe Pro Ala Glu Arg Leu Glu Gly Val Tyr Arg Asn 35 40 45 aat att gat gat gta gta agg ttt ttg gat tca aag cat aaa aac cat 192Asn Ile Asp Asp Val Val Arg Phe Leu Asp Ser Lys His Lys Asn His 50 55 60 tac aag ata tac aat ctt tgt gct gaa aga cat tat gac acc gcc aaa 240Tyr Lys Ile Tyr Asn Leu Cys Ala Glu Arg His Tyr Asp Thr Ala Lys 65 70 75 80 ttt aat tgc aga gtt gca caa tat cct ttt gaa gac cat aac cca cca 288Phe Asn Cys Arg Val Ala Gln Tyr Pro Phe Glu Asp His Asn Pro Pro 85 90 95 cag cta gaa ctt atc aaa ccc ttt tgt gaa gat ctt gac caa tgg cta 336Gln Leu Glu Leu Ile Lys Pro Phe Cys Glu Asp Leu Asp Gln Trp Leu 100 105 110 agt gaa gat gac aat cat gtt gca gca att cac tgt aaa gct gga aag 384Ser Glu Asp Asp Asn His Val Ala Ala Ile His Cys Lys Ala Gly Lys 115 120 125 gga cga act ggt gta atg ata tgt gca tat tta tta cat cgg ggc aaa 432Gly Arg Thr Gly Val Met Ile Cys Ala Tyr Leu Leu His Arg Gly Lys 130 135 140 ttt tta aag gca caa gag gcc cta gat ttc tat ggg gaa gta agg acc 480Phe Leu Lys Ala Gln Glu Ala Leu Asp Phe Tyr Gly Glu Val Arg Thr 145 150 155 160 aga gac aaa aag gga gta act att ccc agt cag agg cgc tat gtg tat 528Arg Asp Lys Lys Gly Val Thr Ile Pro Ser Gln Arg Arg Tyr Val Tyr 165 170 175 tat tat agc tac ctg tta aag aat cat ctg gat tat aga cca gtg gca 576Tyr Tyr Ser Tyr Leu Leu Lys Asn His Leu Asp Tyr Arg Pro Val Ala 180 185 190 ctg ttg ttt cac aag atg atg ttt gaa act att cca atg ttc agt ggc 624Leu Leu Phe His Lys Met Met Phe Glu Thr Ile Pro Met Phe Ser Gly 195 200 205 gga act tgc aat cct cag ttt gtg gtc tgc cag cta aag gtg aag ata 672Gly Thr Cys Asn Pro Gln Phe Val Val Cys Gln Leu Lys Val Lys Ile 210 215 220 tat tcc tcc aat tca gga ccc aca cga cgg gaa gac aag ttc atg tac 720Tyr Ser Ser Asn Ser Gly Pro Thr Arg Arg Glu Asp Lys Phe Met Tyr 225 230 235 240 ttt gag ttc cct cag ccg tta cct gtg tgt ggt gat atc aaa gta gag 768Phe Glu Phe Pro Gln Pro Leu Pro Val Cys Gly Asp Ile Lys Val Glu 245 250 255 ttc ttc cac aaa cag aac aag atg cta aaa aag gac aaa atg ttt cac 816Phe Phe His Lys Gln Asn Lys Met Leu Lys Lys Asp Lys Met Phe His 260 265 270 ttt tgg gta aat aca ttc ttc ata cca gga cca gag gaa acc tca gaa 864Phe Trp Val Asn Thr Phe Phe Ile Pro Gly Pro Glu Glu Thr Ser Glu 275 280 285 aaa gta gaa aat gga agt cta tgt gat caa gaa atc gat agc att tgc 912Lys Val Glu Asn Gly Ser Leu Cys Asp Gln Glu Ile Asp Ser Ile Cys 290 295 300 agt ata gag cgt gca gat aat gac aag gaa tat cta gta ctt act tta 960Ser Ile Glu Arg Ala Asp Asn Asp Lys Glu Tyr Leu Val Leu Thr Leu 305 310 315 320 aca aaa aat gat ctt gac aaa gca aat aaa gac aaa gcc aac cga tac 1008Thr Lys Asn Asp Leu Asp Lys Ala Asn Lys Asp Lys Ala Asn Arg Tyr 325 330 335 ttt tct cca aat ttt aag gtg aag ctg tac ttc aca aaa aca gta gag 1056Phe Ser Pro Asn Phe Lys Val Lys Leu Tyr Phe Thr Lys Thr Val Glu 340 345 350 gag ccg tca aat cca gag gct agc agt tca act tct gta aca cca gat 1104Glu Pro Ser Asn Pro Glu Ala Ser Ser Ser Thr Ser Val Thr Pro Asp 355 360 365 gtt agt gac aat gaa cct gat cat tat aga tat tct gac acc act gac 1152Val Ser Asp Asn Glu Pro Asp His Tyr Arg Tyr Ser Asp Thr Thr Asp 370 375 380 tct gat cca gag aat gaa cct ttt gat gaa gat cag cat aca caa att 1200Ser Asp Pro Glu Asn Glu Pro Phe Asp Glu Asp Gln His Thr Gln Ile 385 390 395 400 aca aaa gtc tga 1212Thr Lys Val 26403PRTHomo sapiens 26Met Thr Ala Ile Ile Lys Glu Ile Val Ser Arg Asn Lys Arg Arg Tyr 1 5 10 15 Gln Glu Asp Gly Phe Asp Leu Asp Leu Thr Tyr Ile Tyr Pro Asn Ile 20 25 30 Ile Ala Met Gly Phe Pro Ala Glu Arg Leu Glu Gly Val Tyr Arg Asn 35 40 45 Asn Ile Asp Asp Val Val Arg Phe Leu Asp Ser Lys His Lys Asn His 50 55 60 Tyr Lys Ile Tyr Asn Leu Cys Ala Glu Arg His Tyr Asp Thr Ala Lys 65 70 75 80 Phe Asn Cys Arg Val Ala Gln Tyr Pro Phe Glu Asp His Asn Pro Pro 85 90 95 Gln Leu Glu Leu Ile Lys Pro Phe Cys Glu Asp Leu Asp Gln Trp Leu 100 105 110 Ser Glu Asp Asp Asn His Val Ala Ala Ile His Cys Lys Ala Gly Lys 115 120 125 Gly Arg Thr Gly Val Met Ile Cys Ala Tyr Leu Leu His Arg Gly Lys 130 135 140 Phe Leu Lys Ala Gln Glu Ala Leu Asp Phe Tyr Gly Glu Val Arg Thr 145 150 155 160 Arg Asp Lys Lys Gly Val Thr Ile Pro Ser Gln Arg Arg Tyr Val Tyr 165 170 175 Tyr Tyr Ser Tyr Leu Leu Lys Asn His Leu Asp Tyr Arg Pro Val Ala 180 185 190 Leu Leu Phe His Lys Met Met Phe Glu Thr Ile Pro Met Phe Ser Gly 195 200 205 Gly Thr Cys Asn Pro Gln Phe Val Val Cys Gln Leu Lys Val Lys Ile 210 215 220 Tyr Ser Ser Asn Ser Gly Pro Thr Arg Arg Glu Asp Lys Phe Met Tyr 225 230 235 240 Phe Glu Phe Pro Gln Pro Leu Pro Val Cys Gly Asp Ile Lys Val Glu 245 250 255 Phe Phe His Lys Gln Asn Lys Met Leu Lys Lys Asp Lys Met Phe His 260 265 270 Phe Trp Val Asn Thr Phe Phe Ile Pro Gly Pro Glu Glu Thr Ser Glu 275 280 285 Lys Val Glu Asn Gly Ser Leu Cys Asp Gln Glu Ile Asp Ser Ile Cys 290 295 300 Ser Ile Glu Arg Ala Asp Asn Asp Lys Glu Tyr Leu Val Leu Thr Leu 305 310 315 320 Thr Lys Asn Asp Leu Asp Lys Ala Asn Lys Asp Lys Ala Asn Arg Tyr 325 330 335 Phe Ser Pro Asn Phe Lys Val Lys Leu Tyr Phe Thr Lys Thr Val Glu 340 345 350 Glu Pro Ser Asn Pro Glu Ala Ser Ser Ser Thr Ser Val Thr Pro Asp 355 360 365 Val Ser Asp Asn Glu Pro Asp His Tyr Arg Tyr Ser Asp Thr Thr Asp 370 375 380 Ser Asp Pro Glu Asn Glu Pro Phe Asp Glu Asp Gln His Thr Gln Ile 385 390 395 400 Thr Lys Val 27597DNAHomo sapiensCDS(1)..(597) 27atg tca aac gtg cga gtg tct aac ggg agc cct agc ctg gag cgg atg 48Met Ser Asn Val Arg Val Ser Asn Gly Ser Pro Ser Leu Glu Arg Met 1 5 10 15 gac gcc agg cag gcg gag cac ccc aag ccc tcg gcc tgc agg aac ctc 96Asp Ala Arg Gln Ala Glu His Pro Lys Pro Ser Ala Cys Arg Asn Leu 20 25 30 ttc ggc ccg gtg gac cac gaa gag tta acc cgg gac ttg gag aag cac 144Phe Gly Pro Val Asp His Glu Glu Leu Thr Arg Asp Leu Glu Lys His 35 40 45 tgc aga gac atg gaa gag gcg agc cag cgc aag tgg aat ttc gat ttt 192Cys Arg Asp Met Glu Glu Ala Ser Gln Arg Lys Trp Asn Phe Asp Phe 50 55 60 cag aat cac aaa ccc cta gag ggc aag tac gag tgg caa gag gtg gag 240Gln Asn His Lys Pro Leu Glu Gly Lys Tyr Glu Trp Gln Glu Val Glu 65 70 75 80 aag ggc agc ttg ccc gag ttc tac tac aga ccc ccg cgg ccc ccc aaa 288Lys Gly Ser Leu Pro Glu Phe Tyr Tyr Arg Pro Pro Arg Pro Pro Lys 85 90 95 ggt gcc tgc aag gtg ccg gcg cag gag agc cag gat gtc agc ggg agc 336Gly Ala Cys Lys Val Pro Ala Gln Glu Ser Gln Asp Val Ser Gly Ser 100 105 110 cgc ccg gcg gcg cct tta att ggg gct ccg gct aac tct gag gac acg 384Arg Pro Ala Ala Pro Leu Ile Gly Ala Pro Ala Asn Ser Glu Asp Thr 115 120 125 cat ttg gtg gac cca aag act gat ccg tcg gac agc cag acg ggg tta 432His Leu Val Asp Pro Lys Thr Asp Pro Ser Asp Ser Gln Thr Gly Leu 130 135 140 gcg gag caa tgc gca gga ata agg aag cga cct gca acc gac gat tct 480Ala Glu Gln Cys Ala Gly Ile Arg Lys Arg Pro Ala Thr Asp Asp Ser 145 150 155 160 tct act caa aac aaa aga gcc aac aga aca gaa gaa aat gtt tca gac 528Ser Thr Gln Asn Lys Arg Ala Asn Arg Thr Glu Glu Asn Val Ser Asp 165 170 175 ggt tcc cca aat gcc ggt tct gtg gag cag acg ccc aag aag cct ggc 576Gly Ser Pro Asn Ala Gly Ser Val Glu Gln Thr Pro Lys Lys Pro Gly 180 185 190 ctc aga aga cgt caa acg taa 597Leu Arg Arg Arg Gln Thr 195 28198PRTHomo sapiens 28Met Ser Asn Val Arg Val Ser Asn Gly Ser Pro Ser Leu Glu Arg Met 1 5 10 15 Asp Ala Arg Gln Ala Glu His Pro Lys Pro Ser Ala Cys Arg Asn Leu 20 25 30 Phe Gly Pro Val Asp His Glu Glu Leu Thr Arg Asp Leu Glu Lys His 35 40 45 Cys Arg Asp Met Glu Glu Ala Ser Gln Arg Lys Trp Asn Phe Asp Phe 50 55 60 Gln Asn His Lys Pro Leu Glu Gly Lys Tyr Glu Trp Gln Glu Val Glu 65 70 75 80 Lys Gly Ser Leu Pro Glu Phe Tyr Tyr Arg Pro Pro Arg Pro Pro Lys 85 90 95 Gly Ala Cys Lys Val Pro Ala Gln Glu Ser Gln Asp Val Ser Gly Ser 100 105 110 Arg Pro Ala Ala Pro Leu Ile Gly Ala Pro Ala Asn Ser Glu Asp Thr 115 120 125 His Leu Val Asp Pro Lys Thr Asp Pro Ser Asp Ser Gln Thr Gly Leu 130 135 140 Ala Glu Gln Cys Ala Gly Ile Arg Lys Arg Pro Ala Thr Asp Asp Ser 145 150 155 160 Ser Thr Gln Asn Lys Arg Ala Asn Arg Thr Glu Glu Asn Val Ser Asp 165 170 175 Gly Ser Pro Asn Ala Gly Ser Val Glu Gln Thr Pro Lys Lys Pro Gly 180 185 190 Leu Arg Arg Arg Gln Thr 195 29894DNAHomo sapiensCDS(1)..(894) 29atg aca aca ccc aga aat tca gta aat ggg act ttc ccg gca gag cca 48Met Thr Thr Pro Arg Asn Ser Val Asn Gly Thr Phe Pro Ala Glu Pro 1 5 10 15 atg aaa ggc cct att gct atg caa tct ggt cca aaa cca ctc ttc agg 96Met Lys Gly Pro Ile Ala Met Gln Ser Gly Pro Lys Pro Leu Phe Arg 20 25 30 agg atg tct tca ctg gtg ggc ccc acg caa agc ttc ttc atg agg gaa 144Arg Met Ser Ser Leu Val Gly Pro Thr Gln Ser Phe Phe Met Arg Glu 35 40 45 tct aag act ttg ggg gct gtc cag att atg aat ggg ctc ttc cac att 192Ser Lys Thr Leu Gly Ala Val Gln Ile Met Asn Gly Leu Phe His Ile 50 55 60 gcc ctg ggg ggt ctt ctg atg atc cca gca ggg atc tat gca ccc atc 240Ala Leu Gly Gly Leu Leu Met Ile Pro Ala Gly Ile Tyr Ala Pro Ile 65 70 75 80 tgt gtg act gtg tgg tac cct ctc tgg gga ggc att atg tat att att 288Cys Val Thr Val Trp Tyr Pro Leu Trp Gly Gly Ile Met Tyr Ile Ile

85 90 95 tcc gga tca ctc ttg gca gca acg gag aaa aac tct agg aag tgt ttg 336Ser Gly Ser Leu Leu Ala Ala Thr Glu Lys Asn Ser Arg Lys Cys Leu 100 105 110 gtc aaa gga aaa atg ata atg aat tca ttg agc ctc ttt gct gcc att 384Val Lys Gly Lys Met Ile Met Asn Ser Leu Ser Leu Phe Ala Ala Ile 115 120 125 tct gga atg att ctt tca atc atg gac ata ctt aat att aaa att tcc 432Ser Gly Met Ile Leu Ser Ile Met Asp Ile Leu Asn Ile Lys Ile Ser 130 135 140 cat ttt tta aaa atg gag agt ctg aat ttt att aga gct cac aca cca 480His Phe Leu Lys Met Glu Ser Leu Asn Phe Ile Arg Ala His Thr Pro 145 150 155 160 tat att aac ata tac aac tgt gaa cca gct aat ccc tct gag aaa aac 528Tyr Ile Asn Ile Tyr Asn Cys Glu Pro Ala Asn Pro Ser Glu Lys Asn 165 170 175 tcc cca tct acc caa tac tgt tac agc ata caa tct ctg ttc ttg ggc 576Ser Pro Ser Thr Gln Tyr Cys Tyr Ser Ile Gln Ser Leu Phe Leu Gly 180 185 190 att ttg tca gtg atg ctg atc ttt gcc ttc ttc cag gaa ctt gta ata 624Ile Leu Ser Val Met Leu Ile Phe Ala Phe Phe Gln Glu Leu Val Ile 195 200 205 gct ggc atc gtt gag aat gaa tgg aaa aga acg tgc tcc aga ccc aaa 672Ala Gly Ile Val Glu Asn Glu Trp Lys Arg Thr Cys Ser Arg Pro Lys 210 215 220 tct aac ata gtt ctc ctg tca gca gaa gaa aaa aaa gaa cag act att 720Ser Asn Ile Val Leu Leu Ser Ala Glu Glu Lys Lys Glu Gln Thr Ile 225 230 235 240 gaa ata aaa gaa gaa gtg gtt ggg cta act gaa aca tct tcc caa cca 768Glu Ile Lys Glu Glu Val Val Gly Leu Thr Glu Thr Ser Ser Gln Pro 245 250 255 aag aat gaa gaa gac att gaa att att cca atc caa gaa gag gaa gaa 816Lys Asn Glu Glu Asp Ile Glu Ile Ile Pro Ile Gln Glu Glu Glu Glu 260 265 270 gaa gaa aca gag acg aac ttt cca gaa cct ccc caa gat cag gaa tcc 864Glu Glu Thr Glu Thr Asn Phe Pro Glu Pro Pro Gln Asp Gln Glu Ser 275 280 285 tca cca ata gaa aat gac agc tct cct taa 894Ser Pro Ile Glu Asn Asp Ser Ser Pro 290 295 30297PRTHomo sapiens 30Met Thr Thr Pro Arg Asn Ser Val Asn Gly Thr Phe Pro Ala Glu Pro 1 5 10 15 Met Lys Gly Pro Ile Ala Met Gln Ser Gly Pro Lys Pro Leu Phe Arg 20 25 30 Arg Met Ser Ser Leu Val Gly Pro Thr Gln Ser Phe Phe Met Arg Glu 35 40 45 Ser Lys Thr Leu Gly Ala Val Gln Ile Met Asn Gly Leu Phe His Ile 50 55 60 Ala Leu Gly Gly Leu Leu Met Ile Pro Ala Gly Ile Tyr Ala Pro Ile 65 70 75 80 Cys Val Thr Val Trp Tyr Pro Leu Trp Gly Gly Ile Met Tyr Ile Ile 85 90 95 Ser Gly Ser Leu Leu Ala Ala Thr Glu Lys Asn Ser Arg Lys Cys Leu 100 105 110 Val Lys Gly Lys Met Ile Met Asn Ser Leu Ser Leu Phe Ala Ala Ile 115 120 125 Ser Gly Met Ile Leu Ser Ile Met Asp Ile Leu Asn Ile Lys Ile Ser 130 135 140 His Phe Leu Lys Met Glu Ser Leu Asn Phe Ile Arg Ala His Thr Pro 145 150 155 160 Tyr Ile Asn Ile Tyr Asn Cys Glu Pro Ala Asn Pro Ser Glu Lys Asn 165 170 175 Ser Pro Ser Thr Gln Tyr Cys Tyr Ser Ile Gln Ser Leu Phe Leu Gly 180 185 190 Ile Leu Ser Val Met Leu Ile Phe Ala Phe Phe Gln Glu Leu Val Ile 195 200 205 Ala Gly Ile Val Glu Asn Glu Trp Lys Arg Thr Cys Ser Arg Pro Lys 210 215 220 Ser Asn Ile Val Leu Leu Ser Ala Glu Glu Lys Lys Glu Gln Thr Ile 225 230 235 240 Glu Ile Lys Glu Glu Val Val Gly Leu Thr Glu Thr Ser Ser Gln Pro 245 250 255 Lys Asn Glu Glu Asp Ile Glu Ile Ile Pro Ile Gln Glu Glu Glu Glu 260 265 270 Glu Glu Thr Glu Thr Asn Phe Pro Glu Pro Pro Gln Asp Gln Glu Ser 275 280 285 Ser Pro Ile Glu Asn Asp Ser Ser Pro 290 295 31596DNAhomo sapiens 31acgcgtactg gagtcaatga aagcaactat ttcaaaagat cagattactt accagtttca 60ctaataaaga tttattactt taaaccttta tcataaaatg tatgctttga atactgtgaa 120gtacactgca tataaggagt gtggtatagt ataaagaaac tttctgcagg tagtaattat 180agtgaagatt ttaggtttac aaagccctag ctgttttctg tgtagctttt attattctta 240tgactcttga caagtttgta gcttcaccat atacatttaa tattttgcaa taattggcct 300tgttcctgag ctgttggatt cggggccgta gcactgtctg agaggtttac atttctcaca 360gtgaaccggt ctctttttca gctgcttcct ggcttctttt tactcaggtt tccactgctt 420ttttgctttt tttaatgctg tatgaaggtg ttaacatttg tttatatttt tcattaattg 480taataccttt aaatcatgca tcatactcag aaatagggat tagaatttaa gtgacatctt 540tggcctaata taatttacct gttaaaaatt tgtgaaagct attgcttagc ggccgc 59632511DNAHomo sapiens 32acgcgtccat gtccgtacct ttctagttca taccttcttt taattttttt tttcttttca 60atttgaagag agtgcttcct ctgttcttaa ggctagggaa ccaaattagg ttgtttcaat 120atcgtgctaa aagatactgc ctttagaaga aggctattga caatccagcg tgtctcggtg 180gaactctgac tccatggttc actttcatga tggccacatg cctcctgccc agagcccggc 240agccactgtg cagtgggaag gggggccgat acactgtacg agagtgagta gcaggtctca 300cagtgaaccg gtctctttcc ctactgtgtc acactcctaa tggaatgccg ttatccaaag 360agcagcacga acccgacagg gctgagtggc ttgtgctagg gagaggtttg tgtcattcct 420gctgaccaaa ctgcaggaaa aactgctaat tgtcatgctg aagactgcct gacggggaga 480ctctgccttc tgtaagtagg tcagcggccg c 51133203DNAHomo sapiens 33acgcgtaatt catatttgca tgtcgctatg tgttctggga aatcaccata aacgtgaaat 60gtctttggat ttgggaatct tataagttct gtatgagacc actcggatga gctgttggat 120tcggggccgt agcactgtct gagaggttta catttctcac agtgaaccgg tctctttttc 180agctgcttct tttttgcggc cgc 20334205DNAHomo sapiens 34gcggccgcaa ttcatatttg catgtcgcta tgtgttctgg gaaatcacca taaacgtgaa 60atgtctttgg atttgggaat cttataagtt ctgtatgaga ccactcggat gagctgttgg 120attcggggcc gtagcactgt ctgagaggtt tacatttctc acagtgaacc ggtctctttt 180tcagctgctt cttttttgcg gccgc 2053545DNAArtificial SequenceDNA target sequence of the miR-142-3p 35gcggccgcgt cgactccata aagtaggaaa cactacagcg gccgc 4536128DNAArtificial SequenceDNA target sequence four time repeat miR-142-3pT4X 36gcggccgcgt cgactccata aagtaggaaa cactacacga ttccataaag taggaaacac 60tacaaccggt tccataaagt aggaaacact acatcactcc ataaagtagg aaacactaca 120gcggccgc 128371131DNAherpes simplex virus 1 37atggcttcgt accccggcca tcagcacgcg tctgcgttcg accaggctgc gcgttctcgc 60ggccatagca accgacgtac ggcgttgcgc cctcgccggc agcaagaagc cacggaagtc 120cgcccggagc agaaaatgcc cacgctactg cgggtttata tagacggtcc ccacgggatg 180gggaaaacca ccaccacgca actgctggtg gccctgggtt cgcgcgacga tatcgtctac 240gtacccgagc cgatgactta ctggcaggtg ctgggggctt ccgagacaat cgcgaacatc 300tacaccacac aacaccgcct cgaccagggt gagatatcgg ccggggacgc ggcggtggta 360atgacaagcg cccagataac aatgggcatg ccttatgccg tgaccgacgc cgttctggct 420cctcatatcg ggggggaggc tgggagctca catgccccgc ccccggccct caccctcatc 480ttcgaccgcc atcccatcgc cgccctcctg tgttacccgg ccgcgcgata ccttatgggc 540agcatgaccc cccaggccgt gctggcgttc gtggccctca tcccgccgac cttgcccggc 600acaaacatcg tgttgggggc ccttccggag gacagacaca tcgaccgcct ggccaaacgc 660cagcgccccg gcgagcggct tgacctggct atgctggccg cgattcgccg cgtttacgag 720ctgcttgcca atacggtgcg gtatctgcag ggcggcgggt cgtggcggga ggattgggga 780cagctttcgg ggacggccgt gccgccccag ggtgccgagc cccagagcaa cgcgggccca 840cgaccccata tcggggacac gttatttacc ctgtttcggg cccccgagtt gctggccccc 900aacggcgacc tgtataacgt gtttgcctgg gccttggacg tcttggccaa acgcctccgt 960cccatgcacg tctttatcct ggattacgac caatcgcccg ccggctaccg ggacgccctg 1020ctgcaactta cctccgggat ggtccagacc cacgtcacca cccccggctc cataccgacg 1080atctgcgacc tggcgcgcac gtttgcccgg gagatggggg aggctaacta a 113138499DNAHomo sapiens 38atgaaatata caagttatat cttggctttt cagctctgca tcgttttggg ttctcttggc 60tgttactgcc aggaccatat gtaaaagaag cagaaaacct taagaaatat tttaatgcag 120gtcattcaga tgtagcggat aatggaactc ttttcttagg cattttgaag aattggaaag 180aggagagtga cagaaaaata atgcagagcc aaattgtctc cttttacttc aaacttttta 240aaaactttaa agatgaccag agcatccaaa agagtgtgga gaccatcaag gaagacatga 300atgtaagttt ttcaatagca acaaaaagaa acgagatgac ttcgaaaagc tgactaatta 360ttcggtaact gacttgaatg tccaacgcaa agcaatacat gaactcatcc aagtgatggc 420tgaactgtcg ccagcagcta aaacagggaa gcgaaaaagg agtcagatgc tgtttcgagg 480tcgaagagca tcccagtaa 49939468DNAMus musculus 39atgaacgcta cacactgcat cttggctttg cagctcttcc tcatggctgt ttctggctgt 60tactgccacg gcacagtcat tgaaagccta gaaagtctga ataactattt taactcaagt 120ggcatagatg tggaagaaaa gagtctcttc ttggatatct ggaggaactg gcaaaaggat 180ggtgacatga aaatcctgca gagccagatt atctctttct acctcagact ctttgaagtc 240ttgaaagaca atcaggccat cagcaacaac ataagcgtca ttgaatcaca cctgattact 300accttcttca gcaacagcaa ggcgaaaaag gatgcattca tgagtattgc caagtttgag 360gtcaacaacc cacaggtcca gcgccaagca ttcaatgagc tcatccgagt ggtccaccag 420ctgttgccgg aatccagcct caggaagcgg aaaaggagtc gctgctga 46840462DNAHomo sapiens 40atgtacagga tgcaactcct gtcttgcatt gcactaagtc ttgcacttgt cacaaacagt 60gcacctactt caagttctac aaagaaaaca cagctacaac tggagcattt actgctggat 120ttacagatga ttttgaatgg aattaataat tacaagaatc ccaaactcac caggatgctc 180acatttaagt tttacatgcc caagaaggcc acagaactga aacatcttca gtgtctagaa 240gaagaactca aacctctgga ggaagtgcta aatttagctc aaagcaaaaa ctttcactta 300agacccaggg acttaatcag caatatcaac gtaatagttc tggaactaaa gggatctgaa 360acaacattca tgtgtgaata tgctgatgag acagcaacca ttgtagaatt tctgaacaga 420tggattacct tttgtcaaag catcatctca acactgactt ga 4624123RNAArtificial SequenceOligonucleotide primer 41uguaguguuu ccuacuuuau gga 234223RNAArtificial SequenceOligonucleotide primer 42uguaguguuu ccuacuuuau gga 2343546DNAArtificial SequenceYeast cytosine deaminase with cloning sites 43aacacgatta taaatggtga cagggggaat ggcaagcaag tgggatcaga agggtatgga 60cattgcctat gaggaggcgg ccttaggtta caaagagggt ggtgttccta ttggcggatg 120tcttatcaat aacaaagacg gaagtgttct cggtcgtggt cacaacatga gatttcaaaa 180gggatccgcc acactacatg gtgagatctc cactttggaa aactgtggga gattagaggg 240caaagtgtac aaagatacca ctttgtatac gacgctgtct ccatgcgaca tgtgtacagg 300tgccatcatc atgtatggta ttccacgctg tgttgtcggt gagaacgtta atttcaaaag 360taagggcgag aaatatttac aaactagagg tcacgaggtt gttgttgttg acgatgagag 420gtgtaaaaag atcatgaaac aatttatcga tgaaagacct caggattggt ttgaagatat 480tggtgagtag gcggccgcgc catagataaa ataaaagatt ttatttagtc tccagaaaaa 540gggggg 54644537DNAArtificial SequenceCD codon optimized with cloning sites 44ttataaatgg tgaccggcgg catggcctcc aagtgggatc aaaagggcat ggatatcgct 60tacgaggagg ccgccctggg ctacaaggag ggcggcgtgc ctatcggcgg ctgtctgatc 120aacaacaagg acggcagtgt gctgggcagg ggccacaaca tgaggttcca gaagggctcc 180gccaccctgc acggcgagat ctccaccctg gagaactgtg gcaggctgga gggcaaggtg 240tacaaggaca ccaccctgta caccaccctg tccccttgtg acatgtgtac cggcgctatc 300atcatgtacg gcatccctag gtgtgtggtg ggcgagaacg tgaacttcaa gtccaagggc 360gagaagtacc tgcaaaccag gggccacgag gtggtggttg ttgacgatga gaggtgtaag 420aagatcatga agcagttcat cgacgagagg cctcaggact ggttcgagga tatcggcgag 480tgataagcgg ccgcagataa aataaaagat tttatttagt ctccagaaaa agggggg 5374540DNAArtificial SequenceOligonucleotide primer 45tcgaggatat cggcgagtga aacccgttat tctttttggc 404640DNAArtificial SequenceOligonucleotide Primer 46gccaaaaaga ataacgggtt tcactcgccg atatcctcga 404782DNAArtificial SequenceOligonucleotide primer 47tcggcgagtg atccggcggc ggcgcctccg gcggcggcgc ctccggcggc ggcgcctccg 60gcggcggcgc caacccgtta tt 824882DNAArtificial SequenceOligonucleotide Primer 48aataacgggt tggcgccgcc gccggaggcg ccgccgccgg aggcgccgcc gccggaggcg 60ccgccgccgg atcactcgcc ga 8249480DNAArtificial SequenceCytosine deaminase codon optimized heat stabilized 49atggtgaccg gcggcatggc ctccaagtgg gatcaaaagg gcatggatat cgcttacgag 60gaggccctgc tgggctacaa ggagggcggc gtgcctatcg gcggctgtct gatcaacaac 120aaggacggca gtgtgctggg caggggccac aacatgaggt tccagaaggg ctccgccacc 180ctgcacggcg agatctccac cctggagaac tgtggcaggc tggagggcaa ggtgtacaag 240gacaccaccc tgtacaccac cctgtcccct tgtgacatgt gtaccggcgc tatcatcatg 300tacggcatcc ctaggtgtgt gatcggcgag aacgtgaact tcaagtccaa gggcgagaag 360tacctgcaaa ccaggggcca cgaggtggtg gttgttgacg atgagaggtg taagaagctg 420atgaagcagt tcatcgacga gaggcctcag gactggttcg aggatatcgg cgagtgataa 48050546DNAArtificial SequenceCytosine deaminase codon optimized heat stabilized 50aacacgatta taaatggtga ccggcggcat ggcctccaag tgggatcaaa agggcatgga 60tatcgcttac gaggaggccc tgctgggcta caaggagggc ggcgtgccta tcggcggctg 120tctgatcaac aacaaggacg gcagtgtgct gggcaggggc cacaacatga ggttccagaa 180gggctccgcc accctgcacg gcgagatctc caccctggag aactgtggca ggctggaggg 240caaggtgtac aaggacacca ccctgtacac caccctgtcc ccttgtgaca tgtgtaccgg 300cgctatcatc atgtacggca tccctaggtg tgtgatcggc gagaacgtga acttcaagtc 360caagggcgag aagtacctgc aaaccagggg ccacgaggtg gtggttgttg acgatgagag 420gtgtaagaag ctgatgaagc agttcatcga cgagaggcct caggactggt tcgaggatat 480cggcgagtaa gcggccgcgc catagataaa ataaaagatt ttatttagtc tccagaaaaa 540gggggg 5465140DNAArtificial SequenceOligonucleotide primer 51tcgaggatat cggcgagtga aacccgttat tctttttggc 405240DNAArtificial SequenceOligonucleotide Primer 52gccaaaaaga ataacgggtt tcactcgccg atatcctcga 405352DNAArtificial SequenceOligonucleotide primer complement 53ccaagctcct atagccgctc actatctact tgggcaataa gaaaaaccga ag 525452DNAArtificial SequenceOligonucleotide primer complement 54ggttcgagga tatcggcgag tgatagatga acccgttatt ctttttggct tc 52551296DNAArtificial SequenceCD-UPRT cloning sequence 55aacacgatta taaatggtga ccggcggcat ggcctccaag tgggatcaaa agggcatgga 60tatcgcttac gaggaggccc tgctgggcta caaggagggc ggcgtgccta tcggcggctg 120tctgatcaac aacaaggacg gcagtgtgct gggcaggggc cacaacatga ggttccagaa 180gggctccgcc accctgcacg gcgagatctc caccctggag aactgtggca ggctggaggg 240caaggtgtac aaggacacca ccctgtacac caccctgtcc ccttgtgaca tgtgtaccgg 300cgctatcatc atgtacggca tccctaggtg tgtgatcggc gagaacgtga acttcaagtc 360caagggcgag aagtacctgc aaaccagggg ccacgaggtg gtggttgttg acgatgagag 420gtgtaagaag ctgatgaagc agttcatcga cgagaggcct caggactggt tcgaggatat 480cggcgagaac ccgttattct ttttggcttc tccattcttg taccttacat atcttatata 540ttatccaaac aaagggtctt tcgttagcaa acctagaaat ctgcaaaaaa tgtcttcgga 600accatttaag aacgtctact tgctacctca aacaaaccaa ttgctgggtt tgtacaccat 660catcagaaat aagaatacaa ctagacctga tttcattttc tactccgata gaatcatcag 720attgttggtt gaagaaggtt tgaaccatct acctgtgcaa aagcaaattg tggaaactga 780caccaacgaa aacttcgaag gtgtctcatt catgggtaaa atctgtggtg tttccattgt 840cagagctggt gaatcgatgg agcaaggatt aagagactgt tgtaggtctg tgcgtatcgg 900taaaatttta attcaaaggg acgaggagac tgctttacca aagttattct acgaaaaatt 960accagaggat atatctgaaa ggtatgtctt cctattagac ccaatgctgg ccaccggtgg 1020tagtgctatc atggctacag aagtcttgat taagagaggt gttaagccag agagaattta 1080cttcttaaac ctaatctgta gtaaggaagg gattgaaaaa taccatgccg ccttcccaga 1140ggtcagaatt gttactggtg ccctcgacag aggtctagat gaaaacaagt atctagttcc 1200agggttgggt gactttggtg acagatacta ctgtgtttaa gcggccgcgc catagataaa 1260ataaaagatt ttatttagtc tccagaaaaa gggggg 1296565PRTArtificial SequencePeptide linker sequence 56Ser Gly Gly Gly Gly 1 5 5782DNAArtificial SequenceOligonucleotide primer 57tcggcgagtg atccggcggc ggcgcctccg gcggcggcgc ctccggcggc ggcgcctccg 60gcggcggcgc caacccgtta tt 825882DNAArtificial SequenceOligonucleotide primer 58aataacgggt tggcgccgcc gccggaggcg ccgccgccgg aggcgccgcc gccggaggcg 60ccgccgccgg atcactcgcc ga 82591356DNAArtificial SequenceCD codon optimized heat stabilized linker UPRT 59aacacgatta taaatggtga ccggcggcat ggcctccaag tgggatcaaa agggcatgga 60tatcgcttac gaggaggccc tgctgggcta caaggagggc ggcgtgccta tcggcggctg 120tctgatcaac aacaaggacg gcagtgtgct gggcaggggc cacaacatga ggttccagaa 180gggctccgcc accctgcacg gcgagatctc caccctggag aactgtggca ggctggaggg 240caaggtgtac aaggacacca ccctgtacac

caccctgtcc ccttgtgaca tgtgtaccgg 300cgctatcatc atgtacggca tccctaggtg tgtgatcggc gagaacgtga acttcaagtc 360caagggcgag aagtacctgc aaaccagggg ccacgaggtg gtggttgttg acgatgagag 420gtgtaagaag ctgatgaagc agttcatcga cgagaggcct caggactggt tcgaggatat 480cggcgagtcc ggcggcggcg cctccggcgg cggcgcctcc ggcggcggcg cctccggcgg 540cggcgccaac ccgttattct ttttggcttc tccattcttg taccttacat atcttatata 600ttatccaaac aaagggtctt tcgttagcaa acctagaaat ctgcaaaaaa tgtcttcgga 660accatttaag aacgtctact tgctacctca aacaaaccaa ttgctgggtt tgtacaccat 720catcagaaat aagaatacaa ctagacctga tttcattttc tactccgata gaatcatcag 780attgttggtt gaagaaggtt tgaaccatct acctgtgcaa aagcaaattg tggaaactga 840caccaacgaa aacttcgaag gtgtctcatt catgggtaaa atctgtggtg tttccattgt 900cagagctggt gaatcgatgg agcaaggatt aagagactgt tgtaggtctg tgcgtatcgg 960taaaatttta attcaaaggg acgaggagac tgctttacca aagttattct acgaaaaatt 1020accagaggat atatctgaaa ggtatgtctt cctattagac ccaatgctgg ccaccggtgg 1080tagtgctatc atggctacag aagtcttgat taagagaggt gttaagccag agagaattta 1140cttcttaaac ctaatctgta gtaaggaagg gattgaaaaa taccatgccg ccttcccaga 1200ggtcagaatt gttactggtg ccctcgacag aggtctagat gaaaacaagt atctagttcc 1260agggttgggt gactttggtg acagatacta ctgtgtttaa gcggccgcgc catagataaa 1320ataaaagatt ttatttagtc tccagaaaaa gggggg 1356601269DNAArtificial SequenceCD codon optimized heat stabilized OPRT 60aacacgatta taaatggtga ccggcggcat ggcctccaag tgggatcaaa agggcatgga 60tatcgcttac gaggaggccc tgctgggcta caaggagggc ggcgtgccta tcggcggctg 120tctgatcaac aacaaggacg gcagtgtgct gggcaggggc cacaacatga ggttccagaa 180gggctccgcc accctgcacg gcgagatctc caccctggag aactgtggca ggctggaggg 240caaggtgtac aaggacacca ccctgtacac caccctgtcc ccttgtgaca tgtgtaccgg 300cgctatcatc atgtacggca tccctaggtg tgtgatcggc gagaacgtga acttcaagtc 360caagggcgag aagtacctgc aaaccagggg ccacgaggtg gtggttgttg acgatgagag 420gtgtaagaag ctgatgaagc agttcatcga cgagaggcct caggactggt tcgaggatat 480cggcgaggcg gtcgctcgtg cagctttggg gccattggtg acgggtctgt acgacgtgca 540ggctttcaag tttggggact tcgtgctgaa gagcgggctt tcctccccca tctacatcga 600tctgcggggc atcgtgtctc gaccgcgtct tctgagtcag gttgcagata ttttattcca 660aactgcccaa aatgcaggca tcagttttga caccgtgtgt ggagtgcctt atacagcttt 720gccattggct acagttatct gttcaaccaa tcaaattcca atgcttatta gaaggaaaga 780aacaaaggat tatggaacta agcgtcttgt agaaggaact attaatccag gagaaacctg 840tttaatcatt gaagatgttg tcaccagtgg atctagtgtt ttggaaactg ttgaggttct 900tcagaaggag ggcttgaagg tcactgatgc catagtgctg ttggacagag agcagggagg 960caaggacaag ttgcaggcgc acgggatccg cctccactca gtgtgtacat tgtccaaaat 1020gctggagatt ctcgagcagc agaaaaaagt tgatgctgag acagttggga gagtgaagag 1080gtttattcag gagaatgtct ttgtggcagc gaatcataat ggttctcccc tttctataaa 1140ggaagcaccc aaagaactca gcttcggtgc acgtgcagag ctgcccagga tccacccagt 1200tgcatcgaag taagcggccg cgccatagat aaaataaaag attttattta gtctccagaa 1260aaagggggg 1269611329DNAArtificial SequenceCD codon optimized heat stabilized linker OPRT 61aacacgatta taaatggtga ccggcggcat ggcctccaag tgggatcaaa agggcatgga 60tatcgcttac gaggaggccc tgctgggcta caaggagggc ggcgtgccta tcggcggctg 120tctgatcaac aacaaggacg gcagtgtgct gggcaggggc cacaacatga ggttccagaa 180gggctccgcc accctgcacg gcgagatctc caccctggag aactgtggca ggctggaggg 240caaggtgtac aaggacacca ccctgtacac caccctgtcc ccttgtgaca tgtgtaccgg 300cgctatcatc atgtacggca tccctaggtg tgtgatcggc gagaacgtga acttcaagtc 360caagggcgag aagtacctgc aaaccagggg ccacgaggtg gtggttgttg acgatgagag 420gtgtaagaag ctgatgaagc agttcatcga cgagaggcct caggactggt tcgaggatat 480cggcgagtcc ggcggcggcg cctccggcgg cggcgcctcc ggcggcggcg cctccggcgg 540cggcgccgcg gtcgctcgtg cagctttggg gccattggtg acgggtctgt acgacgtgca 600ggctttcaag tttggggact tcgtgctgaa gagcgggctt tcctccccca tctacatcga 660tctgcggggc atcgtgtctc gaccgcgtct tctgagtcag gttgcagata ttttattcca 720aactgcccaa aatgcaggca tcagttttga caccgtgtgt ggagtgcctt atacagcttt 780gccattggct acagttatct gttcaaccaa tcaaattcca atgcttatta gaaggaaaga 840aacaaaggat tatggaacta agcgtcttgt agaaggaact attaatccag gagaaacctg 900tttaatcatt gaagatgttg tcaccagtgg atctagtgtt ttggaaactg ttgaggttct 960tcagaaggag ggcttgaagg tcactgatgc catagtgctg ttggacagag agcagggagg 1020caaggacaag ttgcaggcgc acgggatccg cctccactca gtgtgtacat tgtccaaaat 1080gctggagatt ctcgagcagc agaaaaaagt tgatgctgag acagttggga gagtgaagag 1140gtttattcag gagaatgtct ttgtggcagc gaatcataat ggttctcccc tttctataaa 1200ggaagcaccc aaagaactca gcttcggtgc acgtgcagag ctgcccagga tccacccagt 1260tgcatcgaag taagcggccg cgccatagat aaaataaaag attttattta gtctccagaa 1320aaagggggg 13296223DNAArtificial SequenceOligonucleotide primer 62ctgatcttac tctttggacc ttg 236324DNAArtificial SequenceOligonucleotide primer 63cccctttttc tggagactaa ataa 246419DNAArtificial SequenceOligonucleotide primer 64agcccacaac ccctcactc 196518DNAArtificial SequenceOligonucleotide primer 65tctcccgatc ccggacga 186626DNAArtificial SequenceOligonucleotide primer 66ccccaaatga aagacccccg ctgacg 266723DNAArtificial SequenceOligonucleotide primer 67atcatcatgt acggcatccc tag 236824DNAArtificial SequenceOligonucleotide primer 68tgaactgctt catcagcttc ttac 246925DNAArtificial SequenceOligonucleotide primer 69tcatcgtcaa caaccaccac ctcgt 257022DNAArtificial SequenceOligonucleotide primer 70aacctcaacc tcccctacaa gt 227120DNAArtificial SequenceOligonucleotide primer 71gttaagcgcc tgataggctc 207226DNAArtificial SequenceOligonucleotide primer 72agccaccccc aggaactgga gataga 267328PRTHomo sapiens 73Ser Asp Ala Ala Val Asp Thr Ser Ser Glu Ile Thr Thr Lys Asp Leu 1 5 10 15 Lys Glu Lys Lys Glu Val Val Glu Glu Ala Glu Asn 20 25

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed