Novel Vesicular Stomatitis Virus And Virus Rescue System

PARKS; Christopher L. ;   et al.

Patent Application Summary

U.S. patent application number 13/623437 was filed with the patent office on 2013-04-18 for novel vesicular stomatitis virus and virus rescue system. This patent application is currently assigned to International AIDS Vaccine Initiative. The applicant listed for this patent is International AIDS Vaccine Initiative. Invention is credited to Christy Jurgens, Christopher L. PARKS, Kevin Wright, Maoli Yuan.

Application Number20130095556 13/623437
Document ID /
Family ID48086242
Filed Date2013-04-18

United States Patent Application 20130095556
Kind Code A1
PARKS; Christopher L. ;   et al. April 18, 2013

NOVEL VESICULAR STOMATITIS VIRUS AND VIRUS RESCUE SYSTEM

Abstract

The present relation relates to recombinant vesicular stomatitis virus for use as prophylactic and therapeutic vaccines as well as the preparation and purification of immunogenic compositions which are formulated into the vaccines of the present invention.


Inventors: PARKS; Christopher L.; (Boonton, NJ) ; Yuan; Maoli; (Brooklyn, NY) ; Wright; Kevin; (Brooklyn, NY) ; Jurgens; Christy; (Rahway, NJ)
Applicant:
Name City State Country Type

International AIDS Vaccine Initiative;

New York

NY

US
Assignee: International AIDS Vaccine Initiative
New York
NY

Family ID: 48086242
Appl. No.: 13/623437
Filed: September 20, 2012

Related U.S. Patent Documents

Application Number Filing Date Patent Number
61537497 Sep 21, 2011

Current U.S. Class: 435/235.1
Current CPC Class: C12N 2760/20221 20130101; C12N 2760/20243 20130101; C12N 15/86 20130101; C12N 7/00 20130101; C12N 2800/22 20130101
Class at Publication: 435/235.1
International Class: C12N 7/00 20060101 C12N007/00

Claims



1. A vesicular stomatitis virus (VSV) genomic clone comprising: (a) a VSV genome encoding and expressing a nucleocapsid, phosphoprotein, matrix, glycoprotein and large protein, wherein the VSV genome comprises nucleotide substitutions and amino acid coding changes to improve replicative fitness and genetic stability, (b) a cloning vector, (c) an extended T7 promoter, (d) a hammerhead ribozyme, (e) a hepatitis delta virus ribozyme and T7 terminator (f) unique restriction endonuclease cleavage sites in a VSV genomic sequence (g) a leader and a trailer that are cis-acting sequences controlling mRNA synthesis and replication

2. The VSV genomic clone of claim 1, wherein the cloning vector is pSP72 (Genbank X65332.2)

3. The VSV genomic clone of claim 1, wherein the extended T7 promoter is PT7-g10.

4. The VSV genomic clone of claim 1, wherein the unique restriction endonuclease cleavage sites are 1367 NheI, 2194 SpeI, 2194 BstBI, 4687 PacI, 7532 AvaI, 10190 SalI and 11164 AflII.

5. The VSV genomic clone of claim 1, wherein the VSV genomic clone is depicted in FIG. 1.

6. The VSV genomic clone of claim 1, wherein the nucleotide position is according to GenBank Accession Number EF197793 and wherein the nucleotide substitutions are selected from the group consisting of 1371 CA>GC (NheI) After 2195 insert TAG (SpeI) (all genome numbers below adjusted to include +3 bp) 3036 G>T improves match to consensus transcription stop signal 3853 X>A (was an ambiguity in Genbank file) 4691 T>A to generate PacI 7546 C>A silent change in L coding sequence eliminates a BstBI site 1960 TAC>TCC to change Y>S 3247 GTA>ATA to change V>I 3729 AAG>GAG to change K>E 4191 GTA>GAA to change V>E 4386 GGT>GAT to change G>D 4491 ACC>ATC to change T>I 5339 ATT>CTT to change I>L 5834 ACT>GCT to change T>A and 10959 AGA>AAA to change R>K.

7. The VSV genomic clone of claim 1, wherein the nucleotide position is according to GenBank Accession Number EF197793 and wherein the nucleotide substitutions are selected from the group consisting of: TABLE-US-00007 Nucleotide position in Nucleotide position Nucleotide EF197793 in rEF197793 Change Purpose 1 Substitution 1371-2 Substitution 1371-2 CA > GC Creates a unique NheI cleavage site between N and P gens 2 Substitution 1960-2 Substitution 1960-2 TAC > TCC Y > S substitution in P protein amino acid sequence to agree with consensus. 3 Insert after 2195 3 base insert after Insert TAG Creates a unique SpeI site 2195 between P and M genes 4 Substitution 3039 Substitution 3042 G > T Improves agreement with consensus. Also improves agreement with consensus transcription stop signal 5 Substitution 3234-6 Substitution 3237-9 GTA > ATA V > I substitution in P protein amino acid sequence to agree with consensus. 6 Substitution 3729-31 Substitution 3732-34 AAG > GAG K > E substitution in G protein amino acid sequence to agree with consensus. 7 Substitution 3856 Substitution 3859 N > A Replace unknown base in Genbank file with consensus 8 Substitution 4191-93 Substitution 4194-6 GTA > GAA V > E substitution in G protein amino acid sequence to agree with consensus. 9 Substitution 4386-88 Substitution 4389-92 GGT > GAT G > D substitution in G protein amino acid sequence to agree with consensus. 10 Substitution 4491-93 Substitution 4494-96 ACC > ATC T > I substitution in G protein amino acid sequence to agree with consensus. 11 Substitution 4694 Substitution 4697 T > A Creates unique PacI cleavage site between G and L genes 12 Substitution 5339-41 Substitution 5342-44 ATT > CTT I > L substitution in L protein amino acid sequence to agree with consensus. 13 Substitution 5834-6 Substitution 5837-40 ACT > GCT T > A substitution in L protein amino acid sequence to agree with consensus. 14 Substitution 10959-61 Substitution 10962-64 AGA > AAA R > K substitution in L protein amino acid sequence to agree with consensus. 15 Substitution 7546 Substitution 7549 C > A Eliminates a BstBI site in the L gene sequence making the BstBI site between the M and G genes unique. This substitution was silent for amino acid coding.

8. The VSV genomic clone of claim 1, wherein the nucleotide sequences of the VSV genome encoding and expressing a nucleocapsid, phosphoprotein, matrix, glycoprotein and large protein are selected from the group consisting of FIGS. 2B-2G.

9. The VSV genomic clone of claim 1, wherein the nucleotide sequences of the VSV genome encoding and expressing a nucleocapsid, phosphoprotein, matrix, glycoprotein and large protein are selected from the group consisting of FIGS. 3A-3G.

10. A method for rescuing VSV comprising combining a T7 RNA polymerase promoter and a hammerhead ribozyme sequence to increase the efficiency of synthesis and processing of full-length VSV genomic RNA in transfected cells.

11. The method of claim 10, wherein the T7 RNA polymerase promoter is a minimal functional sequence designed to initiate transcription very close to or precisely at the 5' terminus of the genomic clone.

12. The method of claim 11, wherein the T7 promoter is a T7 promoter sequence that enhances formation of stable initiation and elongation complexes and a hammerhead ribozyme sequence at the 5' terminus that catalyzes removal of extra nucleotides restoring the authentic 5' terminus of the genomic transcript.

13. The method of claim 10, wherein the plasmids encoding VSV nucleocapsid, phosphoprotein, matrix, glycoprotein and large protein are optimized to improve expression of the trans-acting proteins to initiate virus rescue.

14. The method of claim 13, where the optimization is codon optimization.

15. The method of claim 14, wherein the codon optimization comprises replacing a VSV nucleotide sequence with codons used by highly expressed mammalian genes.

16. The method of claim 14, wherein the codon optimization comprises eliminating potential RNA processing signals in the coding sequence that might direct unwanted RNA splicing or cleavage/polyadenylation reaction, wherein the eliminating comprises: (a) identifying potential splice site signals and remove by introducing synonymous codons and/or (b) scanning an insert for consensus cleavage/polyadenylation signals (AAUAAA) and introducing synonymous codons to disrupt the consensus cleavage/polyadenylation signals.

17. The method of claim 14, wherein the codon optimization comprises (a) adding a preferred translational start sequence (the Kozak sequence) and/or (b) adding a preferred translational stop codon.

18. The method of claim 14, wherein the codon optimization comprises scanning a sequence for homopolymeric stretches of 5 nucleotides or more and interrupting the sequences by introducing synonymous codons.

19. The method of claim 14, wherein the codon optimization comprises scanning a sequence for restriction endonuclease cleavage sites and eliminate any unwanted recognitions signals.

20. The method of claim 14, wherein the codon optimization comprises confirming that a modified sequence translates into an expected amino acid sequence.
Description



INCORPORATION BY REFERENCE

[0001] This application claims priority to U.S. provisional patent application Ser. No. 61/537,497 filed Sep. 21, 2011. Reference is made to U.S. patent application Ser. No. 12/708,940 filed Feb. 19, 2010.

[0002] The foregoing applications, and all documents cited therein or during their prosecution ("appln cited documents") and all documents cited or referenced herein ("herein cited documents"), and all documents cited or referenced in herein cited documents, together with any manufacturer's instructions, descriptions, product specifications, and product sheets for any products mentioned herein or in any document incorporated by reference herein, are hereby incorporated herein by reference, and may be employed in the practice of the invention.

FIELD OF THE INVENTION

[0003] The present invention relates to a novel vesicular stomatitis virus for use in prophylactic and therapeutic vaccines.

BACKGROUND OF THE INVENTION

[0004] Vesicular stomatitis virus (VSV) is a member of the Rhabdoviridae family of enveloped viruses that contain a single-stranded, nonsegmented, negative-sense RNA genome. The VSV genome is composed of 5 genes arranged sequentially 3'-N-P-M-G-L-S', which each encode a polypeptide found in mature virions (Rose et al. 2001. Rhabdoviridae: the viruses and their replication., p. 1221-1244. In D. M. Knipe and P. M. Howley (ed.), Fields Virology, vol. 1. Lippincott, Williams and Wilkins, Philadelphia). The virus naturally infects livestock, but is known to infect humans producing mild illness or no symptoms of infection (Clarke et al. 2006. Springer seminars in immunopathology 28:239-253 and Letchworth et al. 1999. Vet J 157:239-260).

[0005] VSV is an important technology platform. It is a promising human vaccine vector candidate for a variety of reasons, notably, i) as mentioned above, it does not cause serious disease in humans; ii) genetic systems have been developed for producing recombinant viruses (Conzelmann. 2004. Curr Top Microbiol Immunol 283:1-41); iii) it can be modified to express foreign proteins; iv) it expresses foreign proteins abundantly; v) it elicits immune responses in infected humans (Reif et al. 1987. Am J Trop Med Hyg 36:177-182); and vi) it has been safely tested as a vaccine vector in many animal models including nonhuman primates (Clarke et al. 2006. Springer seminars in immunopathology 28:239-253).

[0006] There remains a need to express immunogens in recombinant vaccines. To do so, it is advantageous to have a vector that is genetically stable, easily modified, and efficiently propagated.

[0007] Citation or identification of any document in this application is not an admission that such document is available as prior art to the present application.

SUMMARY OF THE INVENTION

[0008] The invention stems, in part, from Applicants wishing to design a vector with a clearly defined and documented lineage that was specifically modified without altering amino acid coding or the function of cis-acting sequences to facilitate subsequent VSV vector construction. It was also important and practical to start with a VSV isolate adapted for propagation in primate epithelial cell lines (rather than commonly-used BHK fibroblastic cells) to promote greater genetic stability during VSV vector production in Vero cells used for vaccine manufacturing. Because Applicants' vaccine development plans included construction of highly modified VSV vectors that Applicants anticipated to be difficult to rescue, Applicants designed a cloning plasmid that included strategic modifications to increase the productivity of Applicants' recombinant virus rescue system.

[0009] The present invention relates to a vesicular stomatitis virus (VSV) genomic clone which may comprise: (a) a VSV genome encoding and expressing a nucleocapsid, phosphoprotein, matrix, glycoprotein and large protein, wherein the VSV genome may comprise nucleotide substitutions and amino acid coding changes to improve replicative fitness and genetic stability, (b) a cloning vector, (c) an extended T7 promoter, (d) a hammerhead ribozyme, (e) a hepatitis delta virus ribozyme and T7 terminator, (f) unique restriction endonuclease cleavage sites in a VSV genomic sequence and/or (g) a leader and a trailer that are cis-acting sequences controlling mRNA synthesis and replication.

[0010] In one embodiment, the cloning vector may be pSP72 (Genbank X65332.2). In another embodiment, the extended T7 promoter may be PT7-g10 (Lopez et al. 1997. Journal of molecular biology 269:41-51, the disclosure of which is incorporated by reference). RNA polymerase T7 functions first as a DNA binding protein that recognizes a specific DNA sequence and subsequently transitions its activity into an elongating RNA polymerase. The nature of the nucleotide sequence of the region initially transcribed by the polymerase plays a role in the transition from DNA binding protein to an elongating polymerase complex. The transcribed region in the PT7-g10 promoter may include nucleotide sequences that promote more efficient transition from DNA binding protein to elonagating RNA polymerase. (Temiakov D, Mentesana P E, Ma K, Mustaev A, Borukhov S, McAllister W T. The specificity loop of T7 RNA polymerase interacts first with the promoter and then with the elongating transcript, suggesting a mechanism for promoter clearance. Proc Natl Acad Sci USA. 2000 Dec. 19; 97(26):14109-14, the disclosure of which is incorporated by reference).

[0011] In another embodiment, the unique restriction endonuclease cleavage sites may be 1367 NheI, 2194 SpeI, 2194 BstBI, 4687 PacI, 7532 AvaI, 10190 SalI and 11164 AflII. In yet another embodiment, the VSV genomic clones may be depicted in FIG. 1. In another embodiment, SphI and XhoI may be added for cloning into position 1 between the leader and N gene junction of the VSV genomic clones depicted in FIG. 1.

[0012] The nucleotide substitutions in the VSV genome may be selected from the group consisting of: 1371 CA>GC (NheI), after 2195 insert TAG (SpeI) (all genome numbers subsequent to this insertion have been adjusted to include +3 bp), 3036 G>T improves match to consensus transcription stop signal, 3853 X>A (an ambiguity in Genbank file EF197793.1), 4691 T>A to generate PacI, 7546 C>A silent change in L coding sequence eliminates a BstBI site. Additionally, amino acids substitutions may be introduced to increase match with a VSV consensus using nucleotide substitutions selected from 1960 TAC>TCC to change Y>S, 3247 GTA>ATA to change V>I, 3729 AAG>GAG to change K>E, 4191 GTA>GAA to change V>E, 4386 GGT>GAT to change G>D, 4491 ACC>ATC to change T>I, 5339 ATT>CTT to change I>L, 5834 ACT>GCT to change T>A and/or 10959 AGA>AAA to change R>K, wherein the nucleotide position is according to GenBank Accession Number EF197793. The nucleotide substitutions in the VSV genome (wherein the nucleotide position is according to GenBank Accession Number EF197793) may be selected from the group consisting of:

TABLE-US-00001 Nucleotide position Nucleotide position Nucleotide in EF197793 in rEF197793 Change Purpose 1 Substitution 1371-2 Substitution 1371-2 CA > GC Creates a unique NheI cleavage site between N and P gens 2 Substitution 1960-2 Substitution 1960-2 TAC > TCC Y > S substitution in P protein amino acid sequence to agree with consensus. 3 Insert after 2195 3 base insert after Insert TAG Creates a unique SpeI site 2195 between P and M genes 4 Substitution 3039 Substitution 3042 G > T Improves agreement with consensus. Also improves agreement with consensus transcription stop signal 5 Substitution 3234-6 Substitution 3237-9 GTA > ATA V > I substitution in P protein amino acid sequence to agree with consensus. 6 Substitution 3729-31 Substitution 3732-34 AAG > GAG K > E substitution in G protein amino acid sequence to agree with consensus. 7 Substitution 3856 Substitution 3859 N > A Replace unknown base in Genbank file with consensus 8 Substitution 4191-93 Substitution 4194-6 GTA > GAA V > E substitution in G protein amino acid sequence to agree with consensus. 9 Substitution 4386-88 Substitution 4389-92 GGT > GAT G > D substitution in G protein amino acid sequence to agree with consensus. 10 Substitution 4491-93 Substitution 4494-96 ACC > ATC T > I substitution in G protein amino acid sequence to agree with consensus. 11 Substitution 4694 Substitution 4697 T > A Creates unique PacI cleavage site between G and L genes 12 Substitution 5339-41 Substitution 5342-44 ATT > CTT I > L substitution in L protein amino acid sequence to agree with consensus. 13 Substitution 5834-6 Substitution 5837-40 ACT > GCT T > A substitution in L protein amino acid sequence to agree with consensus. 14 Substitution 10959-61 Substitution 10962-64 AGA > AAA R > K substitution in L protein amino acid sequence to agree with consensus. 15 Substitution 7546 Substitution 7549 C > A Eliminates a BstBI site in the L gene sequence making the BstBI site between the M and G genes unique. This substitution was silent for amino acid coding.

[0013] The VSV genomic clone may comprise the nucleotide sequences of the VSV genome encoding and expressing a nucleocapsid, phosphoprotein, matrix, glycoprotein and large protein may be selected from the group consisting of FIGS. 2B-2G. The VSV genomic clone may also comprise the nucleotide sequences of the VSV genome encoding and expressing a nucleocapsid, phosphoprotein, matrix, glycoprotein and large protein may be selected from the group consisting of FIGS. 3A-3G.

[0014] The present invention also relates to method for rescuing VSV, which may comprise combining a T7 RNA polymerase promoter and a hammerhead ribozyme sequence to increase the efficiency of synthesis and processing of full-length VSV genomic RNA in transfected cells.

[0015] In one embodiment, the T7 RNA polymerase promoter may be a minimal functional sequence designed to initiate transcription very close to or precisely at the 5' terminus of the genomic clone. Advantageously, the T7 promoter may be a T7 promoter sequence that enhances formation of stable initiation and elongation complexes and a hammerhead ribozyme sequence at the 5' terminus that catalyzes removal of extra nucleotides restoring the authentic 5' terminus of the genomic transcript.

[0016] In another embodiment, the plasmids used to support virus rescue encoding VSV nucleocapsid, phosphoprotein, matrix, glycoprotein and large protein may be optimized to improve expression of the trans-acting proteins to initiate virus rescue. Advantageously, the optimization is codon optimization. In one embodiment, the gene optimization may comprise replacing a VSV nucleotide sequence with codons used by highly expressed mammalian genes. In another embodiment, the codon optimization may comprise eliminating potential RNA processing signals in the coding sequence that might direct unwanted RNA splicing or cleavage/polyadenylation reaction, wherein the eliminating may comprise: (a) identifying potential splice site signals and remove by introducing synonymous codons and/or (b) scanning an insert for consensus cleavage/polyadenylation signals (AAUAAA) and introducing synonymous codons to disrupt the consensus cleavage/polyadenylation signals. In yet another embodiment, the gene optimization may comprise (a) adding a preferred translational start sequence (the Kozak sequence) and/or (b) adding a preferred translational stop codon. In still another embodiment, the gene optimization may comprise scanning a sequence for homopolymeric stretches of 5 nucleotides or more and interrupting the sequences by introducing synonymous codons. In another embodiment, the gene optimization may comprise scanning a sequence for restriction endonuclease cleavage sites and eliminate any unwanted recognitions signals. In yet another embodiment, the gene optimization may comprise confirming that a modified sequence translates into the expected amino acid sequence.

[0017] Accordingly, it is an object of the invention to not encompass within the invention any previously known product, process of making the product, or method of using the product such that Applicants reserve the right and hereby disclose a disclaimer of any previously known product, process, or method. It is further noted that the invention does not intend to encompass within the scope of the invention any product, process, or making of the product or method of using the product, which does not meet the written description and enablement requirements of the USPTO (35 U.S.C. .sctn.112, first paragraph) or the EPO (Article 83 of the EPC), such that Applicants reserve the right and hereby disclose a disclaimer of any previously described product, process of making the product, or method of using the product.

[0018] It is noted that in this disclosure and particularly in the claims and/or paragraphs, terms such as "comprises", "comprised", "comprising" and the like can have the meaning attributed to it in U.S. patent law; e.g., they can mean "includes", "included", "including", and the like; and that terms such as "consisting essentially of" and "consists essentially of" have the meaning ascribed to them in U.S. patent law, e.g., they allow for elements not explicitly recited, but exclude elements that are found in the prior art or that affect a basic or novel characteristic of the invention.

[0019] These and other embodiments are disclosed or are obvious from and encompassed by, the following Detailed Description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] The following detailed description, given by way of example, but not intended to limit the invention solely to the specific embodiments described, may best be understood in conjunction with the accompanying drawings, in which:

[0021] FIG. 1 depicts a schematic structure of a VSV genomic clone of the invention. Features include (a) a cloning vector based on pSP72 (Genbank X65332.2), (b) an extended T7 promoter is PT7-g10 described by Lopez et al. (Lopez et al., 1997. Journal of molecular biology 269:41-51), (c) a hammerhead ribozyme designed following the rules for constructing self-cleaving RNA sequences (Inoue et al. 2003. J Virol Methods 107:229-236 and Ruffner et al. 1990. Biochemistry 29:10695-10702), (d) a hepatitis delta virus ribozyme and T7 terminator as described before for the measles virus rescue system (Radecke et at 1995. The EMBO journal 14:5773-5784, 23 and Sidhu et al, 1995, Virology 208:800-807), (e) unique restriction endonuclease cleavage sites indicated above the VSV genomic sequence (red), (f) leader and trailer as cis-acting sequences in the termini that control mRNA synthesis and replication and (g) N, nucleocapsid; P, phosphoprotein; M, matrix; G, glycoprotein; L, large protein.

[0022] FIG. 2A depicts a schematic VSV genome and cloning fragments where fragments A and G are combined to produce fragment VSV-AG. The AG fragment may be cloned first. There are BsmBI sites added to the termini of AG fragment, which may be used to add ribozyme sequences to the termini without addition of nucleotides introduced by the restriction enzyme cleavage site. There may be a polylinker added between the combined A-G fragments (NheI-BstBI-PacI-AvaI-SalI-AflII). After cloning the VSV-AG fragment into the Dual Ribozyme vector, B through F may be inserted in subsequent cloning steps.

[0023] FIG. 2B depicts a sequence of genome fragment VSV-A/G (1489 bp).

[0024] FIG. 2C depicts a sequence of genome fragment B (1645 bp).

[0025] FIG. 2D depicts a sequence of genome fragment C (1689 bp).

[0026] FIG. 2E depicts a sequence of genome fragment D (2851 bp).

[0027] FIG. 2F depicts a sequence of genome fragment E (2664).

[0028] FIG. 2G depicts a sequence of genome fragment F (930).

[0029] FIG. 3A depicts a schematic VSV annotated rVSV genomic cDNA and mRNA transcriptional control and processing signals.

[0030] FIGS. 3B-3G depict a sequence of the VSV of FIG. 3A.

DETAILED DESCRIPTION

[0031] Applicants used VSV to develop several types of HIV vaccine candidate including VSV-SIV and VSV-HIV chimeric viruses in which the natural VSV attachment protein (G) is functionally replaced with SIV/HIV Env and EnvG hybrids, vectors designed with Env epitopes grafted into VSV G and vectors designed to display a variety of Env immunogens as transmembrane proteins on the surface of VSV particles and infected cells.

[0032] Applicants used VSV to develop technology platforms for antibody-based screening and selection procedures that will allow Applicants to evolve novel Env immunogens. These methods take advantage of the fact that VSV evolves rapidly when selective pressure is applied (Novella. 2003. Curr Opin Microbiol 6:399-405). Methods in development include a procedure that allows Applicants to select for Env mutants that bind most strongly with monoclonal antibodies, a method for rapidly producing mutants that escape neutralizing antibodies that bind HIV Env, and a method for generating live or inactivated VSV particles displaying Env.

[0033] All of the recombinant VSVs are based on a genomic DNA clone Applicants designed. Applicants decided to develop Applicants' own VSV vector for several reasons. First, Applicants wanted to begin Applicants' vaccine development program with a vector that has a clearly defined and documented lineage. Second, Applicants planned to introduce a limited number of strategic nucleotide changes into the genome that would facilitate subsequent VSV vector construction without altering amino acid coding or the function of cis-acting sequences. Third, it was important and practical to start with a VSV isolate adapted for propagation in primate epithelial cell lines (rather than commonly-used BHK fibroblastic cells) to promote greater genetic stability during VSV vector production in Vero cells used for vaccine manufacturing. Finally, because Applicants' vaccine development plans included construction of highly modified VSV vectors that Applicants anticipated to be difficult to rescue, Applicants designed a cloning plasmid that included strategic modifications to increase the productivity of Applicants' rescue system.

[0034] Applicants could have used the VSV vector background developed in 1995 at Yale University (Lawson et al. 1995. Proceedings of the National Academy of Sciences of the United States of America 92:4477-4481) as Applicants' starting material. Applicants decided against this option because the Yale vector is a hybrid constructed from sequences originating from multiple VSV isolates propagated under diverse laboratory conditions (it was constructed when molecular cloning was considerably more complex and costly), and for Applicants' purposes, the Yale clone also needed further modification to introduce unique restriction enzyme cleavage sites. Thus, Applicants found it simpler to engineer a vector fitting Applicants' needs by assembling synthetic DNA fragments based on a virus genomic sequence described in a manuscript by Remold and colleagues (Remold et al. 2008. Mol Biol Evol 25:1138-1147). In the end, Applicants' vector nucleotide sequence differs from circulating wild-type viruses (VSV Indiana) and the Yale molecular clone by about 1%.

[0035] To construct Applicants' VSV genomic clone (FIG. 1), Applicants started with the sequence (Genbank Accession EF197793) of a VSV isolate (Mudd Summers Strain, Indiana Serotype) adapted to growth in human epithelial cell lines (Remold et al. 2008. Mol Biol Evol 25:1138-1147). Applicants modified EF197793 nucleotide sequence to create unique restriction endonuclease cleavage sites (FIG. 1 and Table 1) that would facilitate subsequent genetic modification, and Applicants also introduced a number of nucleotide substitutions and amino acid coding changes that Applicants anticipated would improve the replicative fitness and genetic stability of Applicants' recombinant vector based on analysis of consensus sequences generated by aligning the genomes of lab-adapted and circulating wild-type viruses. The modified version of the EF197793 sequence (rEF197793 in Table 1) was then used as a template to have 6 DNA fragments synthesized, which Applicants subsequently assembled into the recombinant full-length genomic clone (FIGS. 2A-2G). An annotated modified VSV genomic sequence is included in FIGS. 3A-3G.

[0036] Applicants also introduced improvements to the plasmid DNA cloning vector that enhanced Applicants' ability to rescue recombinant VSV vectors from transfected cells. Applicants did this because, as mentioned above, Applicants' vaccine development plans included construction of highly modified VSV vectors that Applicants anticipated would be difficult to rescue because Applicants are adding one or more foreign gene inserts and also introducing changes expected to decrease replicative fitness. Negative-strand RNA virus rescue from cloned DNAs is a multistep process that includes: 1) cotransfection of multiple plasmid DNAs including the plasmid DNA containing the VSV genomic cDNA, a plasmid encoding bacteriophage T7 RNA polymerase, and multiple plasmids expressing viral proteins (i.e. VSV N, P, M, G, and L) needed to initiate virus replication in transfected cells; 2) intracellular synthesis of a full-length genomic RNA by bacteriophage T7 RNA polymerase; 3) precise processing of the primary genomic transcript to produce requisite termini for replication; 4) de novo packaging of the genomic RNA by the viral nucleocapsid protein to generate a functional template for RNA replication; 5) and finally, initiation of RNA synthesis by the viral RNA-dependent RNA polymerase (Conzelmann. 2004. Curr Top Microbiol Immunol 283:1-41 and Neumann et al. 2002. J Gen Virol 83:2635-2662). The rescue process is relatively inefficient and at times it restricts the ability to rescue the desired recombinant, although incremental improvements (Ghanem et al. 2011. European Journal of cell biology, Inoue et al. J Virol Methods 107:229-236, Parks et al. 1999. J Virol 73:3560-3566, Witko et al. 2010. J Virol Methods 164:43-50 and Witko et al. 2006. J Virol Methods 135:91-101) in the rescue procedure have made it more efficient since it was first described (Schnell et al. 1994. Embo J 13:4195-4203). As described herein, to improve Applicants' VSV rescue system, Applicants used a novel combination of a more efficient T7 RNA polymerase promoter and a hammerhead ribozyme sequence to increase the efficiency of synthesis and processing of full-length VSV genomic RNA in transfected cells.

[0037] The T7 RNA polymerase promoter used in published virus rescue methods is a minimal functional sequence designed to initiate transcription very close to or precisely at the 5' terminus of the genomic clone (Lawson et al. 1995. Proceedings of the National Academy of Sciences of the United States of America 92:4477-4481, Radecke et al. 1995. The EMBO Journal 14:5773-5784 and Schnell et al. 1994. Embo J 13:4195-4203). Although this promoter design is effective for forming the 5' end of the genomic transcript, it is not the most efficient promoter for initiating productive RNA synthesis. Thus, to improve VSV rescue efficiency, Applicants developed a modified plasmid that uses a longer T7 promoter sequence known to enhance formation of stable initiation and elongation complexes (Lopez et al. 1997. Journal of molecular biology 269:41-51). Because the longer T7 promoter includes downstream transcribed bacteriophage sequences, extra nucleotides are added to the primary VSV genomic transcript. To remove these extra nucleotides, Applicants have incorporated a hammerhead ribozyme (Inoue et al. J Virol Methods 107:229-236 and Ruffner et al. 1990. Biochemistry 29:10695-10702) sequence at the 5' that which catalyzes removal of extra nucleotides restoring the authentic 5' end of the genomic transcript.

[0038] Finally, the VSV rescue system Applicants developed uses protocols similar to those described before with modification (Witko et al. 2006. J Virol Methods 135:91-101). The most significant change is that Applicants have `optimized` (Examples 3 and 4) Applicants' plasmids encoding N, P, M, G, and L and placed the optimized genes under control of the human cytomegalovirus promoter to improve expression of the trans-acting proteins needed to initiate virus rescue. This modification of the rescue system was suggested by results showing that codon optimization significantly enhances expression in transfected cells of plasmid-encoded viral G proteins from respiratory syncytial virus and VSV (Ternette et al. 2007. Virol J 4:51 and Witko et al. 2010. J Virol Methods 164:43-50).

[0039] The present invention also encompasses methods of producing or eliciting an immune response that may comprise administering to an animal, advantageously a mammal, any one of the herein disclosed recombinant VSV vectors.

[0040] The terms "protein", "peptide", "polypeptide", and "amino acid sequence" are used interchangeably herein to refer to polymers of amino acid residues of any length. The polymer may be linear or branched, it may comprise modified amino acids or amino acid analogs, and it may be interrupted by chemical moieties other than amino acids. The terms also encompass an amino acid polymer that has been modified naturally or by intervention; for example disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation or modification, such as conjugation with a labeling or bioactive component.

[0041] As used herein, the terms "antigen" or "immunogen" are used interchangeably to refer to a substance, typically a protein, which is capable of inducing an immune response in a subject. The term also refers to proteins that are immunologically active in the sense that once administered to a subject (either directly or by administering to the subject a nucleotide sequence or vector that encodes the protein) is able to evoke an immune response of the humoral and/or cellular type directed against that protein.

[0042] The term "antibody" includes intact molecules as well as fragments thereof, such as Fab, F(ab').sub.2, Fv and scFv which are capable of binding the epitope determinant. These antibody fragments retain some ability to selectively bind with its antigen or receptor and include, for example: [0043] (i) Fab, the fragment which contains a monovalent antigen-binding fragment of an antibody molecule may be produced by digestion of whole antibody with the enzyme papain to yield an intact light chain and a portion of one heavy chain; [0044] (ii) Fab', the fragment of an antibody molecule may be obtained by treating whole antibody with pepsin, followed by reduction, to yield an intact light chain and a portion of the heavy chain; two Fab' fragments are obtained per antibody molecule; [0045] (iii) F(ab').sub.2, the fragment of the antibody that may be obtained by treating whole antibody with the enzyme pepsin without subsequent reduction; F(ab')2 is a dimer of two Fab' fragments held together by two disulfide bonds; [0046] (iv) scFv, including a genetically engineered fragment containing the variable region of a heavy and a light chain as a fused single chain molecule.

[0047] General methods of making these fragments are known in the art. (See for example, Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, New York (1988), which is incorporated herein by reference).

[0048] It should be understood that the proteins, including the antibodies and/or antigens of the invention may differ from the exact sequences illustrated and described herein. Thus, the invention contemplates deletions, additions and substitutions to the sequences shown, so long as the sequences function in accordance with the methods of the invention. In this regard, particularly preferred substitutions will generally be conservative in nature, i.e., those substitutions that take place within a family of amino acids. For example, amino acids are generally divided into four families: (1) acidic--aspartate and glutamate; (2) basic--lysine, arginine, histidine; (3) non-polar--alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan; and (4) uncharged polar--glycine, asparagine, glutamine, cysteine, serine threonine, tyrosine. Phenylalanine, tryptophan, and tyrosine are sometimes classified as aromatic amino acids. It is reasonably predictable that an isolated replacement of leucine with isoleucine or valine, or vice versa; an aspartate with a glutamate or vice versa; a threonine with a serine or vice versa; or a similar conservative replacement of an amino acid with a structurally related amino acid, will not have a major effect on the biological activity. Proteins having substantially the same amino acid sequence as the sequences illustrated and described but possessing minor amino acid substitutions that do not substantially affect the immunogenicity of the protein are, therefore, within the scope of the invention.

[0049] As used herein the terms "nucleotide sequences" and "nucleic acid sequences" refer to deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) sequences, including, without limitation, messenger RNA (mRNA), DNA/RNA hybrids, or synthetic nucleic acids. The nucleic acid may be single-stranded, or partially or completely double-stranded (duplex). Duplex nucleic acids may be homoduplex or heteroduplex.

[0050] As used herein the term "transgene" may used to refer to "recombinant" nucleotide sequences that may be derived from any of the nucleotide sequences encoding the proteins of the present invention. The term "recombinant" means a nucleotide sequence that has been manipulated "by man" and which does not occur in nature, or is linked to another nucleotide sequence or found in a different arrangement in nature. It is understood that manipulated "by man" means manipulated by some artificial means, including by use of machines, codon optimization, restriction enzymes, etc.

[0051] For example, in one embodiment the nucleotide sequences may be mutated such that the activity of the encoded proteins in vivo is abrogated. In another embodiment the nucleotide sequences may be codon optimized, for example the codons may be optimized for human use. In preferred embodiments the nucleotide sequences of the invention are both mutated to abrogate the normal in vivo function of the encoded proteins, and codon optimized for human use. For example, each of the Gag, Pol, Env, Nef, RT, and IN sequences of the invention may be altered in these ways.

[0052] As regards codon optimization, the nucleic acid molecules of the invention have a nucleotide sequence that encodes the antigens of the invention and may be designed to employ codons that are used in the genes of the subject in which the antigen is to be produced. Many viruses, including HIV and other lentiviruses, use a large number of rare codons and, by altering these codons to correspond to codons commonly used in the desired subject, enhanced expression of the antigens may be achieved. In a preferred embodiment, the codons used are "humanized" codons, i.e., the codons are those that appear frequently in highly expressed human genes (Andre et al., J. Virol. 72:1497-1503, 1998) instead of those codons that are frequently used by HIV. Such codon usage provides for efficient expression of the transgenic HIV proteins in human cells. Any suitable method of codon optimization may be used. Such methods, and the selection of such methods, are well known to those of skill in the art. In addition, there are several companies that will optimize codons of sequences, such as Geneart (geneart.com). Thus, the nucleotide sequences of the invention may readily be codon optimized.

[0053] The invention further encompasses nucleotide sequences encoding functionally and/or antigenically equivalent variants and derivatives of the antigens of the invention and functionally equivalent fragments thereof. These functionally equivalent variants, derivatives, and fragments display the ability to retain antigenic activity. For instance, changes in a DNA sequence that do not change the encoded amino acid sequence, as well as those that result in conservative substitutions of amino acid residues, one or a few amino acid deletions or additions, and substitution of amino acid residues by amino acid analogs are those which will not significantly affect properties of the encoded polypeptide. Conservative amino acid substitutions are glycine/alanine; valine/isoleucine/leucine; asparagine/glutamine; aspartic acid/glutamic acid; serine/threonine/methionine; lysine/arginine; and phenylalanine/tyrosine/tryptophan. In one embodiment, the variants have at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% homology or identity to the antigen, epitope, immunogen, peptide or polypeptide of interest.

[0054] For the purposes of the present invention, sequence identity or homology is determined by comparing the sequences when aligned so as to maximize overlap and identity while minimizing sequence gaps. In particular, sequence identity may be determined using any of a number of mathematical algorithms. A nonlimiting example of a mathematical algorithm used for comparison of two sequences is the algorithm of Karlin & Altschul, Proc. Natl. Acad. Sci. USA 1990; 87: 2264-2268, modified as in Karlin & Altschul, Proc. Natl. Acad. Sci. USA 1993; 90: 5873-5877.

[0055] Another example of a mathematical algorithm used for comparison of sequences is the algorithm of Myers & Miller, CABIOS 1988; 4: 11-17. Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM 120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 may be used. Yet another useful algorithm for identifying regions of local sequence similarity and alignment is the FASTA algorithm as described in Pearson & Lipman, Proc. Natl. Acad. Sci. USA 1988; 85: 2444-2448.

[0056] Advantageous for use according to the present invention is the WU-BLAST (Washington University BLAST) version 2.0 software. WU-BLAST version 2.0 executable programs for several UNIX platforms may be downloaded from ftp://blast.wust1.edu/blast/executables. This program is based on WU-BLAST version 1.4, which in turn is based on the public domain NCBI-BLAST version 1.4 (Altschul & Gish, 1996, Local alignment statistics, Doolittle ed., Methods in Enzymology 266: 460-480; Altschul et al., Journal of Molecular Biology 1990; 215: 403-410; Gish & States, 1993; Nature Genetics 3: 266-272; Karlin & Altschul, 1993; Proc. Natl. Acad. Sci. USA 90: 5873-5877; all of which are incorporated by reference herein).

[0057] The various recombinant nucleotide sequences and antibodies and/or antigens of the invention are made using standard recombinant DNA and cloning techniques. Such techniques are well known to those of skill in the art. See for example, "Molecular Cloning: A Laboratory Manual", second edition (Sambrook et al. 1989).

[0058] The nucleotide sequences of the present invention may be inserted into "vectors." The term "vector" is widely used and understood by those of skill in the art, and as used herein the term "vector" is used consistent with its meaning to those of skill in the art. For example, the term "vector" is commonly used by those skilled in the art to refer to a vehicle that allows or facilitates the transfer of nucleic acid molecules from one environment to another or that allows or facilitates the manipulation of a nucleic acid molecule.

[0059] Any vector that allows expression of the antibodies and/or antigens of the present invention may be used in accordance with the present invention. In certain embodiments, the antigens and/or antibodies of the present invention may be used in vitro (such as using cell-free expression systems) and/or in cultured cells grown in vitro in order to produce the encoded HIV-antigens and/or antibodies which may then be used for various applications such as in the production of proteinaceous vaccines. For such applications, any vector that allows expression of the antigens and/or antibodies in vitro and/or in cultured cells may be used.

[0060] For applications where it is desired that the antibodies and/or antigens be expressed in vivo, for example when the transgenes of the invention are used in DNA or DNA-containing vaccines, any vector that allows for the expression of the antibodies and/or antigens of the present invention and is safe for use in vivo may be used. In preferred embodiments the vectors used are safe for use in humans, mammals and/or laboratory animals.

[0061] For the antibodies and/or antigens of the present invention to be expressed, the protein coding sequence should be "operably linked" to regulatory or nucleic acid control sequences that direct transcription and translation of the protein. As used herein, a coding sequence and a nucleic acid control sequence or promoter are said to be "operably linked" when they are covalently linked in such a way as to place the expression or transcription and/or translation of the coding sequence under the influence or control of the nucleic acid control sequence. The "nucleic acid control sequence" may be any nucleic acid element, such as, but not limited to promoters, enhancers, IRES, introns, and other elements described herein that direct the expression of a nucleic acid sequence or coding sequence that is operably linked thereto. The term "promoter" will be used herein to refer to a group of transcriptional control modules that are clustered around the initiation site for RNA polymerase II and that when operationally linked to the protein coding sequences of the invention lead to the expression of the encoded protein. The expression of the transgenes of the present invention may be under the control of a constitutive promoter or of an inducible promoter, which initiates transcription only when exposed to some particular external stimulus, such as, without limitation, antibiotics such as tetracycline, hormones such as ecdysone, or heavy metals. The promoter may also be specific to a particular cell-type, tissue or organ. Many suitable promoters and enhancers are known in the art, and any such suitable promoter or enhancer may be used for expression of the transgenes of the invention. For example, suitable promoters and/or enhancers may be selected from the Eukaryotic Promoter Database (EPDB).

[0062] The present invention relates to a recombinant vesicular stomatitis virus (VSV) vector expressing a foreign epitope. Advantageously, the epitope is an HIV epitope. Any HIV epitope may be expressed in a VSV vector. Advantageously, the HIV epitope is an HIV antigen, HIV epitope or an HIV immunogen, such as, but not limited to, the HIV antigens, HIV epitopes or HIV immunogens of U.S. Pat. Nos. 7,341,731; 7,335,364; 7,329,807; 7,323,553; 7,320,859; 7,311,920; 7,306,798; 7,285,646; 7,285,289; 7,285,271; 7,282,364; 7,273,695; 7,270,997; 7,262,270; 7,244,819; 7,244,575; 7,232,567; 7,232,566; 7,223,844; 7,223,739; 7,223,534; 7,223,368; 7,220,554; 7,214,530; 7,211,659; 7,211,432; 7,205,159; 7,198,934; 7,195,768; 7,192,555; 7,189,826; 7,189,522; 7,186,507; 7,179,645; 7,175,843; 7,172,761; 7,169,550; 7,157,083; 7,153,509; 7,147,862; 7,141,550; 7,129,219; 7,122,188; 7,118,859; 7,118,855; 7,118,751; 7,118,742; 7,105,655; 7,101,552; 7,097,971 7,097,842; 7,094,405; 7,091,049; 7,090,648; 7,087,377; 7,083,787; 7,070,787; 7,070,781; 7,060,273; 7,056,521; 7,056,519; 7,049,136; 7,048,929; 7,033,593; 7,030,094; 7,022,326; 7,009,037; 7,008,622; 7,001,759; 6,997,863; 6,995,008; 6,979,535; 6,974,574; 6,972,126; 6,969,609; 6,964,769; 6,964,762; 6,958,158; 6,956,059; 6,953,689; 6,951,648; 6,946,075; 6,927,031; 6,919,319; 6,919,318; 6,919,077; 6,913,752; 6,911,315; 6,908,617; 6,908,612; 6,902,743; 6,900,010; 6,893,869; 6,884,785; 6,884,435; 6,875,435; 6,867,005; 6,861,234; 6,855,539; 6,841,381 6,841,345; 6,838,477; 6,821,955; 6,818,392; 6,818,222; 6,815,217; 6,815,201; 6,812,026; 6,812,025; 6,812,024; 6,808,923; 6,806,055; 6,803,231; 6,800,613; 6,800,288; 6,797,811; 6,780,967; 6,780,598; 6,773,920; 6,764,682; 6,761,893; 6,753,015; 6,750,005; 6,737,239; 6,737,067; 6,730,304; 6,720,310; 6,716,823; 6,713,301; 6,713,070; 6,706,859; 6,699,722; 6,699,656; 6,696,291; 6,692,745; 6,670,181; 6,670,115; 6,664,406; 6,657,055; 6,657,050; 6,656,471; 6,653,066; 6,649,409; 6,649,372; 6,645,732; 6,641,816; 6,635,469; 6,613,530; 6,605,427; 6,602,709 6,602,705; 6,600,023; 6,596,477; 6,596,172; 6,593,103; 6,593,079; 6,579,673; 6,576,758; 6,573,245; 6,573,040; 6,569,418; 6,569,340; 6,562,800; 6,558,961; 6,551,828; 6,551,824; 6,548,275; 6,544,780; 6,544,752; 6,544,728; 6,534,482; 6,534,312; 6,534,064; 6,531,572; 6,531,313; 6,525,179; 6,525,028; 6,524,582; 6,521,449; 6,518,030; 6,518,015; 6,514,691; 6,514,503; 6,511,845; 6,511,812; 6,511,801; 6,509,313; 6,506,384; 6,503,882; 6,495,676; 6,495,526; 6,495,347; 6,492,123; 6,489,131; 6,489,129; 6,482,614; 6,479,286; 6,479,284; 6,465,634; 6,461,615 6,458,560; 6,458,527; 6,458,370; 6,451,601; 6,451,592; 6,451,323; 6,436,407; 6,432,633; 6,428,970; 6,428,952; 6,428,790; 6,420,139; 6,416,997; 6,410,318; 6,410,028; 6,410,014; 6,407,221; 6,406,710; 6,403,092; 6,399,295; 6,392,013; 6,391,657; 6,384,198; 6,380,170; 6,376,170; 6,372,426; 6,365,187; 6,358,739; 6,355,248; 6,355,247; 6,348,450; 6,342,372; 6,342,228; 6,338,952; 6,337,179; 6,335,183; 6,335,017; 6,331,404; 6,329,202; 6,329,173; 6,328,976; 6,322,964; 6,319,666; 6,319,665; 6,319,500; 6,319,494; 6,316,205; 6,316,003; 6,309,633; 6,306,625 6,296,807; 6,294,322; 6,291,239; 6,291,157; 6,287,568; 6,284,456; 6,284,194; 6,274,337; 6,270,956; 6,270,769; 6,268,484; 6,265,562; 6,265,149; 6,262,029; 6,261,762; 6,261,571; 6,261,569; 6,258,599; 6,258,358; 6,248,332; 6,245,331; 6,242,461; 6,241,986; 6,235,526; 6,235,466; 6,232,120; 6,228,361; 6,221,579; 6,214,862; 6,214,804; 6,210,963; 6,210,873; 6,207,185; 6,203,974; 6,197,755; 6,197,531; 6,197,496; 6,194,142; 6,190,871; 6,190,666; 6,168,923; 6,156,302; 6,153,408; 6,153,393; 6,153,392; 6,153,378; 6,153,377; 6,146,635; 6,146,614; 6,143,876 6,140,059; 6,140,043; 6,139,746; 6,132,992; 6,124,306; 6,124,132; 6,121,006; 6,120,990; 6,114,507; 6,114,143; 6,110,466; 6,107,020; 6,103,521; 6,100,234; 6,099,848; 6,099,847; 6,096,291; 6,093,405; 6,090,392; 6,087,476; 6,083,903; 6,080,846; 6,080,725; 6,074,650; 6,074,646; 6,070,126; 6,063,905; 6,063,564; 6,060,256; 6,060,064; 6,048,530; 6,045,788; 6,043,347; 6,043,248; 6,042,831; 6,037,165; 6,033,672; 6,030,772; 6,030,770; 6,030,618; 6,025,141; 6,025,125; 6,020,468; 6,019,979; 6,017,543; 6,017,537; 6,015,694; 6,015,661; 6,013,484; 6,013,432 6,007,838; 6,004,811; 6,004,807; 6,004,763; 5,998,132; 5,993,819; 5,989,806; 5,985,926; 5,985,641; 5,985,545; 5,981,537; 5,981,505; 5,981,170; 5,976,551; 5,972,339; 5,965,371; 5,962,428; 5,962,318; 5,961,979; 5,961,970; 5,958,765; 5,958,422; 5,955,647; 5,955,342; 5,951,986; 5,951,975; 5,942,237; 5,939,277; 5,939,074; 5,935,580; 5,928,930; 5,928,913; 5,928,644; 5,928,642; 5,925,513; 5,922,550; 5,922,325; 5,919,458; 5,916,806; 5,916,563; 5,914,395; 5,914,109; 5,912,338; 5,912,176; 5,912,170; 5,906,936; 5,895,650; 5,891,623; 5,888,726; 5,885,580 5,885,578; 5,879,685; 5,876,731; 5,876,716; 5,874,226; 5,872,012; 5,871,747; 5,869,058; 5,866,694; 5,866,341; 5,866,320; 5,866,319; 5,866,137; 5,861,290; 5,858,740; 5,858,647; 5,858,646; 5,858,369; 5,858,368; 5,858,366; 5,856,185; 5,854,400; 5,853,736; 5,853,725; 5,853,724; 5,852,186; 5,851,829; 5,851,529; 5,849,475; 5,849,288; 5,843,728; 5,843,723; 5,843,640; 5,843,635; 5,840,480; 5,837,510; 5,837,250; 5,837,242; 5,834,599; 5,834,441; 5,834,429; 5,834,256; 5,830,876; 5,830,641; 5,830,475; 5,830,458; 5,830,457; 5,827,749; 5,827,723; 5,824,497 5,824,304; 5,821,047; 5,817,767; 5,817,754; 5,817,637; 5,817,470; 5,817,318; 5,814,482; 5,807,707; 5,804,604; 5,804,371; 5,800,822; 5,795,955; 5,795,743; 5,795,572; 5,789,388; 5,780,279; 5,780,038; 5,776,703; 5,773,260; 5,770,572; 5,766,844; 5,766,842; 5,766,625; 5,763,574; 5,763,190; 5,762,965; 5,759,769; 5,756,666; 5,753,258; 5,750,373; 5,747,641; 5,747,526; 5,747,028; 5,736,320; 5,736,146; 5,733,760; 5,731,189; 5,728,385; 5,721,095; 5,716,826; 5,716,637; 5,716,613; 5,714,374; 5,709,879; 5,709,860; 5,709,843; 5,705,331; 5,703,057; 5,702,707 5,698,178; 5,688,914; 5,686,078; 5,681,831; 5,679,784; 5,674,984; 5,672,472; 5,667,964; 5,667,783; 5,665,536; 5,665,355; 5,660,990; 5,658,745; 5,658,569; 5,643,756; 5,641,624; 5,639,854; 5,639,598; 5,637,677; 5,637,455; 5,633,234; 5,629,153; 5,627,025; 5,622,705; 5,614,413; 5,610,035; 5,607,831; 5,606,026; 5,601,819; 5,597,688; 5,593,972; 5,591,829; 5,591,823; 5,589,466; 5,587,285; 5,585,254; 5,585,250; 5,580,773; 5,580,739; 5,580,563; 5,573,916; 5,571,667; 5,569,468; 5,558,865; 5,556,745; 5,550,052; 5,543,328; 5,541,100; 5,541,057; 5,534,406 5,529,765; 5,523,232; 5,516,895; 5,514,541; 5,510,264; 5,500,161; 5,480,967; 5,480,966; 5,470,701; 5,468,606; 5,462,852; 5,459,127; 5,449,601; 5,447,838; 5,447,837; 5,439,809; 5,439,792; 5,418,136; 5,399,501; 5,397,695; 5,391,479; 5,384,240; 5,374,519; 5,374,518; 5,374,516; 5,364,933; 5,359,046; 5,356,772; 5,354,654; 5,344,755; 5,335,673; 5,332,567; 5,320,940; 5,317,009; 5,312,902; 5,304,466; 5,296,347; 5,286,852; 5,268,265; 5,264,356; 5,264,342; 5,260,308; 5,256,767; 5,256,561; 5,252,556; 5,230,998; 5,230,887; 5,227,159; 5,225,347; 5,221,610; 5,217,861; 5,208,321; 5,206,136; 5,198,346; 5,185,147; 5,178,865; 5,173,400; 5,173,399; 5,166,050; 5,156,951; 5,135,864; 5,122,446; 5,120,662; 5,103,836; 5,100,777; 5,100,662; 5,093,230; 5,077,284; 5,070,010; 5,068,174; 5,066,782; 5,055,391; 5,043,262; 5,039,604; 5,039,522; 5,030,718; 5,030,555; 5,030,449; 5,019,387; 5,013,556; 5,008,183; 5,004,697; 4,997,772; 4,983,529; 4,983,387; 4,965,069; 4,945,082; 4,921,787; 4,918,166; 4,900,548; 4,888,290; 4,886,742; 4,885,235; 4,870,003; 4,869,903; 4,861,707; 4,853,326; 4,839,288; 4,833,072 and 4,795,739.

[0063] Advantageously, the HIV epitope may be an Env precursor or gp160 epitope. The Env precursor or gp160 epitope may be recognized by antibodies PG9, PG16, 2G12, b12, 2F5, 4E10, Z13, or other broad potent neutralizing antibodies.

[0064] In another embodiment, HN, or immunogenic fragments thereof, may be utilized as the HIV epitope. For example, the HN nucleotides of U.S. Pat. Nos. 7,393,949, 7,374,877, 7,306,901, 7,303,754, 7,173,014, 7,122,180, 7,078,516, 7,022,814, 6,974,866, 6,958,211, 6,949,337, 6,946,254, 6,896,900, 6,887,977, 6,870,045, 6,803,187, 6,794,129, 6,773,915, 6,768,004, 6,706,268, 6,696,291, 6,692,955, 6,656,706, 6,649,409, 6,627,442, 6,610,476, 6,602,705, 6,582,920, 6,557,296, 6,531,587, 6,531,137, 6,500,623, 6,448,078, 6,429,306, 6,420,545, 6,410,013, 6,407,077, 6,395,891, 6,355,789, 6,335,158, 6,323,185, 6,316,183, 6,303,293, 6,300,056, 6,277,561, 6,270,975, 6,261,564, 6,225,045, 6,222,024, 6,194,391, 6,194,142, 6,162,631, 6,114,167, 6,114,109, 6,090,392, 6,060,587, 6,057,102, 6,054,565, 6,043,081, 6,037,165, 6,034,233, 6,033,902, 6,030,769, 6,020,123, 6,015,661, 6,010,895, 6,001,555, 5,985,661, 5,980,900, 5,972,596, 5,939,538, 5,912,338, 5,869,339, 5,866,701, 5,866,694, 5,866,320, 5,866,137, 5,864,027, 5,861,242, 5,858,785, 5,858,651, 5,849,475, 5,843,638, 5,840,480, 5,821,046, 5,801,056, 5,786,177, 5,786,145, 5,773,247, 5,770,703, 5,756,674, 5,741,706, 5,705,612, 5,693,752, 5,688,637, 5,688,511, 5,684,147, 5,665,577, 5,585,263, 5,578,715, 5,571,712, 5,567,603, 5,554,528, 5,545,726, 5,527,895, 5,527,894, 5,223,423, 5,204,259, 5,144,019, 5,051,496 and 4,942,122 are useful for the present invention.

[0065] Any epitope recognized by an HIV antibody may be used in the present invention. For example, the anti-HIV antibodies of U.S. Pat. Nos. 6,949,337, 6,900,010, 6,821,744, 6,768,004, 6,613,743, 6,534,312, 6,511,830, 6,489,131, 6,242,197, 6,114,143, 6,074,646, 6,063,564, 6,060,254, 5,919,457, 5,916,806, 5,871,732, 5,824,304, 5,773,247, 5,736,320, 5,637,455, 5,587,285, 5,514,541, 5,317,009, 4,983,529, 4,886,742, 4,870,003 and 4,795,739 are useful for the present invention. Furthermore, monoclonal anti-HIV antibodies of U.S. Pat. Nos. 7,074,556, 7,074,554, 7,070,787, 7,060,273, 7,045,130, 7,033,593, RE39,057, 7,008,622, 6,984,721, 6,972,126, 6,949,337, 6,946,465, 6,919,077, 6,916,475, 6,911,315, 6,905,680, 6,900,010, 6,825,217, 6,824,975, 6,818,392, 6,815,201, 6,812,026, 6,812,024, 6,797,811, 6,768,004, 6,703,019, 6,689,118, 6,657,050, 6,608,179, 6,600,023, 6,596,497, 6,589,748, 6,569,143, 6,548,275, 6,525,179, 6,524,582, 6,506,384, 6,498,006, 6,489,131, 6,465,173, 6,461,612, 6,458,933, 6,432,633, 6,410,318, 6,406,701, 6,395,275, 6,391,657, 6,391,635, 6,384,198, 6,376,170, 6,372,217, 6,344,545, 6,337,181, 6,329,202, 6,319,665, 6,319,500, 6,316,003, 6,312,931, 6,309,880, 6,296,807, 6,291,239, 6,261,558, 6,248,514, 6,245,331, 6,242,197, 6,241,986, 6,228,361, 6,221,580, 6,190,871, 6,177,253, 6,146,635, 6,146,627, 6,146,614, 6,143,876, 6,132,992, 6,124,132, RE36,866, 6,114,143, 6,103,238, 6,060,254, 6,039,684, 6,030,772, 6,020,468, 6,013,484, 6,008,044, 5,998,132, 5,994,515, 5,993,812, 5,985,545, 5,981,278, 5,958,765, 5,939,277, 5,928,930, 5,922,325, 5,919,457, 5,916,806, 5,914,109, 5,911,989, 5,906,936, 5,889,158, 5,876,716, 5,874,226, 5,872,012, 5,871,732, 5,866,694, 5,854,400, 5,849,583, 5,849,288, 5,840,480, 5,840,305, 5,834,599, 5,831,034, 5,827,723, 5,821,047, 5,817,767, 5,817,458, 5,804,440, 5,795,572, 5,783,670, 5,776,703, 5,773,225, 5,766,944, 5,753,503, 5,750,373, 5,747,641, 5,736,341, 5,731,189, 5,707,814, 5,702,707, 5,698,178, 5,695,927, 5,665,536, 5,658,745, 5,652,138, 5,645,836, 5,635,345, 5,618,922, 5,610,035, 5,607,847, 5,604,092, 5,601,819, 5,597,896, 5,597,688, 5,591,829, 5,558,865, 5,514,541, 5,510,264, 5,478,753, 5,374,518, 5,374,516, 5,344,755, 5,332,567, 5,300,433, 5,296,347, 5,286,852, 5,264,221, 5,260,308, 5,256,561, 5,254,457, 5,230,998, 5,227,159, 5,223,408, 5,217,895, 5,180,660, 5,173,399, 5,169,752, 5,166,050, 5,156,951, 5,140,105, 5,135,864, 5,120,640, 5,108,904, 5,104,790, 5,049,389, 5,030,718, 5,030,555, 5,004,697, 4,983,529, 4,888,290, 4,886,742 and 4,853,326, are also useful for the present invention.

[0066] The vectors used in accordance with the present invention should typically be chosen such that they contain a suitable gene regulatory region, such as a promoter or enhancer, such that the antigens and/or antibodies of the invention may be expressed.

[0067] For example, when the aim is to express the antibodies and/or antigens of the invention in vitro, or in cultured cells, or in any prokaryotic or eukaryotic system for the purpose of producing the protein(s) encoded by that antibody and/or antigen, then any suitable vector may be used depending on the application. For example, plasmids, viral vectors, bacterial vectors, protozoan vectors, insect vectors, baculovirus expression vectors, yeast vectors, mammalian cell vectors, and the like, may be used. Suitable vectors may be selected by the skilled artisan taking into consideration the characteristics of the vector and the requirements for expressing the antibodies and/or antigens under the identified circumstances.

[0068] When the aim is to express the antibodies and/or antigens of the invention in vivo in a subject, for example in order to generate an immune response against an HIV-1 antigen and/or protective immunity against HIV-1, expression vectors that are suitable for expression on that subject, and that are safe for use in vivo, should be chosen. For example, in some embodiments it may be desired to express the antibodies and/or antigens of the invention in a laboratory animal, such as for pre-clinical testing of the HIV-1 immunogenic compositions and vaccines of the invention. In other embodiments, it will be desirable to express the antibodies and/or antigens of the invention in human subjects, such as in clinical trials and for actual clinical use of the immunogenic compositions and vaccine of the invention. Any vectors that are suitable for such uses may be employed, and it is well within the capabilities of the skilled artisan to select a suitable vector. In some embodiments it may be preferred that the vectors used for these in vivo applications are attenuated to vector from amplifying in the subject. For example, if plasmid vectors are used, preferably they will lack an origin of replication that functions in the subject so as to enhance safety for in vivo use in the subject. If viral vectors are used, preferably they are attenuated or replication-defective in the subject, again, so as to enhance safety for in vivo use in the subject.

[0069] In preferred embodiments of the present invention viral vectors are used. Viral expression vectors are well known to those skilled in the art and include, for example, viruses such as adenoviruses, adeno-associated viruses (AAV), alphaviruses, herpesviruses, retroviruses and poxviruses, including avipox viruses, attenuated poxviruses, vaccinia viruses, and the modified vaccinia Ankara virus (MVA; ATCC Accession No. VR-1566). Such viruses, when used as expression vectors are innately non-pathogenic in the selected subjects such as humans or have been modified to render them non-pathogenic in the selected subjects. For example, replication-defective adenoviruses and alphaviruses are well known and may be used as gene delivery vectors.

[0070] The present invention relates to recombinant vesicular stomatitis (VSV) vectors, however, other vectors may be contemplated in other embodiments of the invention such as, but not limited to, prime boost administration which may comprise administration of a recombinant VSV vector in combination with another recombinant vector expressing one or more HIV epitopes.

[0071] VSV is a very practical, safe, and immunogenic vector for conducting animal studies, and an attractive candidate for developing vaccines for use in humans. VSV is a member of the Rhabdoviridae family of enveloped viruses containing a nonsegmented, negative-sense RNA genome. The genome is composed of 5 genes arranged sequentially 3'-N-P-M-G-L-5', each encoding a polypeptide found in mature virions. Notably, the surface glycoprotein G is a transmembrane polypeptide that is present in the viral envelope as a homotrimer, and like Env, it mediates cell attachment and infection.

[0072] The VSVs of U.S. Pat. Nos. 7,468,274; 7,419,829; 7,419,674; 7,344,838; 7,332,316; 7,329,807; 7,323,337; 7,259,015; 7,244,818; 7,226,786; 7,211,247; 7,202,079; 7,198,793; 7,198,784; 7,153,510; 7,070,994; 6,969,598; 6,958,226; RE38,824; PPI5,957; 6,890,735; 6,887,377; 6,867,326; 6,867,036; 6,858,205; 6,835,568; 6,830,892; 6,818,209; 5 6,790,641; 6,787,520; 6,743,620; 6,740,764; 6,740,635; 6,740,320; 6,682,907; 6,673,784; 6,673,572; 6,669,936; 6,653,103; 6,607,912; 6,558,923; 6,555,107; 6,533,855; 6,531,123; 6,506,604; 6,500,623; 6,497,873; 6,489,142; 6,410,316; 6,410,313; 6,365,713; 6,348,312; 6,326,487; 6,312,682; 6,303,331; 6,277,633; 6,207,455; 6,200,811; 6,190,650; 6,171,862; 6,143,290; 6,133,027; 6,121,434; 6,103,462; 6,069,134; 6,054,127; 6,034,073; 5,969,211; 10 5,935,822; 5,888,727; 5,883,081; 5,876,727; 5,858,740; 5,843,723; 5,834,256; 5,817,491; 5,792,604; 5,789,229; 5,773,003; 5,763,406; 5,760,184; 5,750,396; 5,739,018; 5,698,446; 5,686,279; 5,670,354; 5,540,923; 5,512,421; 5,090,194; 4,939,176; 4,738,846; 4,622,292; 4,556,556 and 4,396,628 may be contemplated by the present invention.

[0073] The nucleotide sequences and vectors of the invention may be delivered to cells, for example if the aim is to express HIV-1 antigens in cells in order to produce and isolate the expressed proteins, such as from cells grown in culture. For expressing the antibodies and/or antigens in cells any suitable transfection, transformation, or gene delivery methods may be used. Such methods are well known by those skilled in the art, and one of skill in the art would readily be able to select a suitable method depending on the nature of the nucleotide sequences, vectors, and cell types used. For example, transfection, transformation, microinjection, infection, electroporation, lipofection, or liposome-mediated delivery could be used. Expression of the antibodies and/or antigens may be carried out in any suitable type of host cells, such as bacterial cells, yeast, insect cells, and mammalian cells. The antibodies and/or antigens of the invention may also be expressed including using in vitro transcription/translation systems. All of such methods are well known by those skilled in the art, and one of skill in the art would readily be able to select a suitable method depending on the nature of the nucleotide sequences, vectors, and cell types used.

[0074] In preferred embodiments, the nucleotide sequences, antibodies and/or antigens of the invention are administered in vivo, for example where the aim is to produce an immunogenic response in a subject. A "subject" in the context of the present invention may be any animal. For example, in some embodiments it may be desired to express the transgenes of the invention in a laboratory animal, such as for pre-clinical testing of the HIV-1 immunogenic compositions and vaccines of the invention. In other embodiments, it will be desirable to express the antibodies and/or antigens of the invention in human subjects, such as in clinical trials and for actual clinical use of the immunogenic compositions and vaccine of the invention. In preferred embodiments the subject is a human, for example a human that is infected with, or is at risk of infection with, HIV-1.

[0075] For such in vivo applications the nucleotide sequences, antibodies and/or antigens of the invention are preferably administered as a component of an immunogenic composition which may comprise the nucleotide sequences and/or antigens of the invention in admixture with a pharmaceutically acceptable carrier. The immunogenic compositions of the invention are useful to stimulate an immune response against HIV-1 and may be used as one or more components of a prophylactic or therapeutic vaccine against HIV-1 for the prevention, amelioration or treatment of AIDS. The nucleic acids and vectors of the invention are particularly useful for providing genetic vaccines, i.e. vaccines for delivering the nucleic acids encoding the antibodies and/or antigens of the invention to a subject, such as a human, such that the antibodies and/or antigens are then expressed in the subject to elicit an immune response.

[0076] The compositions of the invention may be injectable suspensions, solutions, sprays, lyophilized powders, syrups, elixirs and the like. Any suitable form of composition may be used. To prepare such a composition, a nucleic acid or vector of the invention, having the desired degree of purity, is mixed with one or more pharmaceutically acceptable carriers and/or excipients. The carriers and excipients must be "acceptable" in the sense of being compatible with the other ingredients of the composition. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include, but are not limited to, water, saline, phosphate buffered saline, dextrose, glycerol, ethanol, or combinations thereof, buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptide; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g., Zn-protein complexes); and/or non-ionic surfactants such as TWEEN.TM., PLURONICS.TM. or polyethylene glycol (PEG).

[0077] An immunogenic or immunological composition may also be formulated in the form of an oil-in-water emulsion. The oil-in-water emulsion may be based, for example, on light liquid paraffin oil (European Pharmacopea type); isoprenoid oil such as squalane, squalene, EICOSANE.TM. or tetratetracontane; oil resulting from the oligomerization of alkene(s), e.g., isobutene or decene; esters of acids or of alcohols containing a linear alkyl group, such as plant oils, ethyl oleate, propylene glycol di(caprylate/caprate), glyceryl tri(caprylate/caprate) or propylene glycol dioleate; esters of branched fatty acids or alcohols, e.g., isostearic acid esters. The oil advantageously is used in combination with emulsifiers to form the emulsion. The emulsifiers may be nonionic surfactants, such as esters of sorbitan, mannide (e.g., anhydromannitol oleate), glycerol, polyglycerol, propylene glycol, and oleic, isostearic, ricinoleic, or hydroxystearic acid, which are optionally ethoxylated, and polyoxypropylene-polyoxyethylene copolymer blocks, such as the Pluronic.RTM. products, e.g., L121. The adjuvant may be a mixture of emulsifier(s), micelle-forming agent, and oil such as that which is commercially available under the name Provax.RTM. (IDEC Pharmaceuticals, San Diego, Calif.).

[0078] The immunogenic compositions of the invention may contain additional substances, such as wetting or emulsifying agents, buffering agents, or adjuvants to enhance the effectiveness of the vaccines (Remington's Pharmaceutical Sciences, 18th edition, Mack Publishing Company, (ed.) 1980).

[0079] Adjuvants may also be included. Adjuvants include, but are not limited to, mineral salts (e.g., AlK(SO.sub.4).sub.2, AlNa(SO.sub.4).sub.2, AlNH(SO.sub.4).sub.2, silica, alum, Al(OH).sub.3, Ca3(PO.sub.4).sub.2, kaolin, or carbon), polynucleotides with or without immune stimulating complexes (ISCOMs) (e.g., CpG oligonucleotides, such as those described in Chuang, T. H. et al, (2002) J. Leuk. Biol. 71(3): 538-44; Ahmad-Nejad, P. et al (2002) Eur. J. Immunol. 32(7): 1958-68; poly IC or poly AU acids, polyarginine with or without CpG (also known in the art as IC31; see Schellack, C. et al (2003) Proceedings of the 34th Annual Meeting of the German Society of Immunology; Lingnau, K. et al (2002) Vaccine 20(29-30): 3498-508), JuvaVax.TM. (U.S. Pat. No. 6,693,086), certain natural substances (e.g., wax D from Mycobacterium tuberculosis, substances found in Cornyebacterium parvum, Bordetella pertussis, or members of the genus Brucella), flagellin (Toll-like receptor 5 ligand; see McSorley, S. J. et al (2002) J. Immunol. 169(7): 3914-9), saponins such as QS21, QS17, and QS7 (U.S. Pat. Nos. 5,057,540; 5,650,398; 6,524,584; 6,645,495), monophosphoryl lipid A, in particular, 3-de-O-acylated monophosphoryl lipid A (3D-MPL), imiquimod (also known in the art as IQM and commercially available as Aldara.RTM.; U.S. Pat. Nos. 4,689,338; 5,238,944; Zuber, A. K. et al (2004) 22(13-14): 1791-8), and the CCR5 inhibitor CMPD167 (see Veazey, R. S. et al (2003) J. Exp. Med. 198: 1551-1562).

[0080] Aluminum hydroxide or phosphate (alum) are commonly used at 0.05 to 0.1% solution in phosphate buffered saline. Other adjuvants that may be used, especially with DNA vaccines, are cholera toxin, especially CTA1-DD/ISCOMs (see Mowat, A. M. et al (2001) J. Immunol. 167(6): 3398-405), polyphosphazenes (Allcock, H. R. (1998) App. Organometallic Chem. 12(10-11): 659-666; Payne, L. G. et al (1995) Pharm. Biotechnol. 6: 473-93), cytokines such as, but not limited to, IL-2, IL-4, GM-CSF, IL-12, IL-15 IGF-1, IFN-.alpha., IFN-.beta., and IFN-.gamma. (Boyer et al., (2002) J. Liposome Res. 121:137-142; WO01/095919), immunoregulatory proteins such as CD4OL (ADX40; see, for example, WO03/063899), and the CD1a ligand of natural killer cells (also known as CRONY or .alpha.-galactosyl ceramide; see Green, T. D. et al, (2003) J. Virol. 77(3): 2046-2055), immunostimulatory fusion proteins such as IL-2 fused to the Fc fragment of immunoglobulins (Barouch et al., Science 290:486-492, 2000) and co-stimulatory molecules B7.1 and B7.2 (Boyer), all of which may be administered either as proteins or in the form of DNA, on the same expression vectors as those encoding the antigens of the invention or on separate expression vectors.

[0081] In an advantageous embodiment, the adjuvants may be lecithin is combined with an acrylic polymer (Adjuplex-LAP), lecithin coated oil droplets in an oil-in-water emulsion (Adjuplex-LE) or lecithin and acrylic polymer in an oil-in-water emulsion (Adjuplex-LAO) (Advanced BioAdjuvants (ABA)).

[0082] The immunogenic compositions may be designed to introduce the nucleic acids or expression vectors to a desired site of action and release it at an appropriate and controllable rate. Methods of preparing controlled-release formulations are known in the art. For example, controlled release preparations may be produced by the use of polymers to complex or absorb the immunogen and/or immunogenic composition. A controlled-release formulation may be prepared using appropriate macromolecules (for example, polyesters, polyamino acids, polyvinyl, pyrrolidone, ethylenevinylacetate, methylcellulose, carboxymethylcellulose, or protamine sulfate) known to provide the desired controlled release characteristics or release profile. Another possible method to control the duration of action by a controlled-release preparation is to incorporate the active ingredients into particles of a polymeric material such as, for example, polyesters, polyamino acids, hydrogels, polylactic acid, polyglycolic acid, copolymers of these acids, or ethylene vinylacetate copolymers. Alternatively, instead of incorporating these active ingredients into polymeric particles, it is possible to entrap these materials into microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsule and poly-(methylmethacrylate) microcapsule, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions. Such techniques are disclosed in New Trends and Developments in Vaccines, Voller et al. (eds.), University Park Press, Baltimore, Md., 1978 and Remington's Pharmaceutical Sciences, 16th edition.

[0083] Suitable dosages of the nucleic acids and expression vectors of the invention (collectively, the immunogens) in the immunogenic composition of the invention may be readily determined by those of skill in the art. For example, the dosage of the immunogens may vary depending on the route of administration and the size of the subject. Suitable doses may be determined by those of skill in the art, for example by measuring the immune response of a subject, such as a laboratory animal, using conventional immunological techniques, and adjusting the dosages as appropriate. Such techniques for measuring the immune response of the subject include but are not limited to, chromium release assays, tetramer binding assays, IFN-.gamma. ELISPOT assays, IL-2 ELISPOT assays, intracellular cytokine assays, and other immunological detection assays, e.g., as detailed in the text "Antibodies: A Laboratory Manual" by Ed Harlow and David Lane.

[0084] When provided prophylactically, the immunogenic compositions of the invention are ideally administered to a subject in advance of HIV infection, or evidence of HIV infection, or in advance of any symptom due to AIDS, especially in high-risk subjects. The prophylactic administration of the immunogenic compositions may serve to provide protective immunity of a subject against HIV-1 infection or to prevent or attenuate the progression of AIDS in a subject already infected with HIV-1. When provided therapeutically, the immunogenic compositions may serve to ameliorate and treat AIDS symptoms and are advantageously used as soon after infection as possible, preferably before appearance of any symptoms of AIDS but may also be used at (or after) the onset of the disease symptoms.

[0085] The immunogenic compositions may be administered using any suitable delivery method including, but not limited to, intramuscular, intravenous, intradermal, mucosal, and topical delivery. Such techniques are well known to those of skill in the art. More specific examples of delivery methods are intramuscular injection, intradermal injection, and subcutaneous injection. However, delivery need not be limited to injection methods. Further, delivery of DNA to animal tissue has been achieved by cationic liposomes (Watanabe et al., (1994) Mol. Reprod. Dev. 38:268-274; and WO 96/20013), direct injection of naked DNA into animal muscle tissue (Robinson et al., (1993) Vaccine 11:957-960; Hoffman et al., (1994) Vaccine 12: 1529-1533; Xiang et al., (1994) Virology 199: 132-140; Webster et al., (1994) Vaccine 12: 1495-1498; Davis et al., (1994) Vaccine 12: 1503-1509; and Davis et al., (1993) Hum. Mol. Gen. 2: 1847-1851), or intradermal injection of DNA using "gene gun" technology (Johnston et al., (1994) Meth. Cell Biol. 43:353-365). Alternatively, delivery routes may be oral, intranasal or by any other suitable route. Delivery may also be accomplished via a mucosal surface such as the anal, vaginal or oral mucosa. Immunization schedules (or regimens) are well known for animals (including humans) and may be readily determined for the particular subject and immunogenic composition. Hence, the immunogens may be administered one or more times to the subject. Preferably, there is a set time interval between separate administrations of the immunogenic composition. While this interval varies for every subject, typically it ranges from 10 days to several weeks, and is often 2, 4, 6 or 8 weeks. For humans, the interval is typically from 2 to 6 weeks. The immunization regimes typically have from 1 to 6 administrations of the immunogenic composition, but may have as few as one or two or four. The methods of inducing an immune response may also include administration of an adjuvant with the immunogens. In some instances, annual, biannual or other long interval (5-10 years) booster immunization may supplement the initial immunization protocol.

[0086] The present methods also include a variety of prime-boost regimens, for example DNA prime-VSV boost regimens. In these methods, one or more priming immunizations are followed by one or more boosting immunizations. The actual immunogenic composition may be the same or different for each immunization and the type of immunogenic composition (e.g., containing protein or expression vector), the route, and formulation of the immunogens may also be varied. For example, if an expression vector is used for the priming and boosting steps, it may either be of the same or different type (e.g., DNA or bacterial or viral expression vector). One useful prime-boost regimen provides for two priming immunizations, four weeks apart, followed by two boosting immunizations at 4 and 8 weeks after the last priming immunization. It should also be readily apparent to one of skill in the art that there are several permutations and combinations that are encompassed using the DNA, bacterial and viral expression vectors of the invention to provide priming and boosting regimens.

[0087] The prime-boost regimen may also include VSV vectors that derive their G protein or G/Stem protein from different serotype vesicular stomatitis viruses (Rose N F, Roberts A, Buonocore L, Rose J K. Glycoprotein exchange vectors based on vesicular stomatitis virus allow effective boosting and generation of neutralizing antibodies to a primary isolate of human immunodeficiency virus type 1. J. Virol. 2000 December; 74(23):10903-10). The VSV vectors used in these examples contain a G or G/Stem protein derived from the Indiana serotype of VSV. Vectors may also be constructed to express G or G/Stem molecules derived from other VSV serotypes (i.e. vesicular stomatitis New Jersey virus or vesicular stomatitis Alagoas virus) or other vesiculoviruses (i.e. Chandipura virus, Cocal virus, Isfahan virus). Thus a prime may be delivered in the context of a G or G/Stem moelcule that is from the Indiana serotype and the immune system may be boosted with a vector that expresses epitopes in the context of second serotype like New Jersey. This circumvents anti-G immunity elicited by the prime, and helps focus the boost response against the foreign epitope.

[0088] A specific embodiment of the invention provides methods of inducing an immune response against HIV in a subject by administering an immunogenic composition of the invention, preferably which may comprise an VSV vector containing RNA encoding one or more of the epitopes of the invention, one or more times to a subject wherein the epitopes are expressed at a level sufficient to induce a specific immune response in the subject. Such immunizations may be repeated multiple times at time intervals of at least 2, 4 or 6 weeks (or more) in accordance with a desired immunization regime.

[0089] The immunogenic compositions of the invention may be administered alone, or may be co-administered, or sequentially administered, with other HIV immunogens and/or HIV immunogenic compositions, e.g., with "other" immunological, antigenic or vaccine or therapeutic compositions thereby providing multivalent or "cocktail" or combination compositions of the invention and methods of employing them. Again, the ingredients and manner (sequential or co-administration) of administration, as well as dosages may be determined taking into consideration such factors as the age, sex, weight, species and condition of the particular subject, and the route of administration.

[0090] When used in combination, the other HIV immunogens may be administered at the same time or at different times as part of an overall immunization regime, e.g., as part of a prime-boost regimen or other immunization protocol. In an advantageous embodiment, the other HIV immunogen is env, preferably the HIV env trimer.

[0091] Many other HIV immunogens are known in the art, one such preferred immunogen is HIVA (described in WO 01/47955), which may be administered as a protein, on a plasmid (e.g., pTHr.HIVA) or in a viral vector (e.g., MVA.HIVA). Another such HIV immunogen is RENTA (described in PCT/US2004/037699), which may also be administered as a protein, on a plasmid (e.g., pTHr.RENTA) or in a viral vector (e.g., MVA.RENTA).

[0092] For example, one method of inducing an immune response against HIV in a human subject may comprise administering at least one priming dose of an HIV immunogen and at least one boosting dose of an HIV immunogen, wherein the immunogen in each dose may be the same or different, provided that at least one of the immunogens is an epitope of the present invention, a nucleic acid encoding an epitope of the invention or an expression vector, preferably a VSV vector, encoding an epitope of the invention, and wherein the immunogens are administered in an amount or expressed at a level sufficient to induce an HIV-specific immune response in the subject. The HIV-specific immune response may include an HIV-specific T-cell immune response or an HIV-specific B-cell immune response. Such immunizations may be done at intervals, preferably of at least 2-6 or more weeks.

[0093] It is to be understood and expected that variations in the principles of invention as described above may be made by one skilled in the art and it is intended that such modifications, changes, and substitutions are to be included within the scope of the present invention.

[0094] The invention will now be further described by way of the following non-limiting examples.

EXAMPLES

Example 1

Recombinant VSV Vector Construction

[0095] Structure of the IAVI VSV genomic clone as depicted in FIG. 1.

Features include: [0096] 1. The cloning vector is based on pSP72 (Genbank X65332.2). [0097] 2. The extended T7 promoter is PT7-g10 described by Lopez et al. (Lopez et al., 1997. Journal of molecular biology 269:41-51) [0098] 3. The hammerhead ribozyme was designed following the rules for constructing self-cleaving RNA sequences (Inoue et al. 2003. J Virol Methods 107:229-236 and Ruffner et al. 1990. Biochemistry 29:10695-10702). [0099] 4. The hepatitis delta virus ribozyme and T7 RNA polymerase terminator were used as described before for the measles virus rescue system (Radecke et al. 1995. The EMBO journal 14:5773-5784, 23 and Sidhu et al, 1995. Virology 208:800-807) [0100] 5. Unique restriction endonuclease cleavage sites in the recombinant VSV genomne (red) are indicated above the genome map. [0101] 6. The Leader and Trailer are cis-acting sequences in the termini that control mRNA synthesis and replication. [0102] 7. The viral proteins N, nucleocapsid; P, phosphoprotein; M, matrix; G, glycoprotein; L, large protein.

[0103] Recombinant VSV Vector Construction [0104] Indiana Serotype [0105] Based on Genbank EF197793--modified as described below: [0106] Nucleotide substitutions introduced to generate unique restriction sites or bring sequence closer to consensus [0107] 1371 CA>GC (NheI) [0108] After 2195 insert TAG (SpeI) (all genome numbers below adjusted to include +3 by introduced by this insertion) [0109] 3036 G>T improves match to consensus transcription stop signal [0110] 3853 X>A (X was an ambiguity in Genbank file) [0111] 4691 T>A to generate PacI [0112] 7546 C>A silent change in L coding sequence eliminates a BstBI site [0113] 1960 TAC>TCC to change Y>S [0114] 3247 GTA>ATA to change V>I [0115] 3729 AAG>GAG to change K>E [0116] 4191 GTA>GAA to change V>E [0117] 4386 GGT>GAT to change G>D [0118] 4491 ACC>ATC to change T>I [0119] 5339 ATT>CTT to change I>L [0120] 5834 ACT>GCT to change T>A [0121] 10959 AGA>AAA to change R>K

[0122] A VSV genome and cloning fragments are depicted in FIGS. 2A-G.

TABLE-US-00002 TABLE 1 Modifications introduced into the VSV genomic sequence (Genbank accession EF197793) are listed. Note that Line 3 includes a 3 base insertion, which shifts numbering in the recombinant genomic clone (rEF197793). If nucleotide substitutions were introduced to change amino acid coding, the base change in the codon is indicated in red. Nucleotide position Nucleotide position Nucleotide in EF197793 in rEF197793 Change Purpose 1 Substitution 1371-2 Substitution 1371-2 CA > GC Creates a unique NheI cleavage site between N and P gens 2 Substitution 1960-2 Substitution 1960-2 TAC > TCC Y > S substitution in P protein amino acid sequence to agree with consensus. 3 Insert after 2195 3 base insert after Insert TAG Creates a unique SpeI site 2195 between P and M genes 4 Substitution 3039 Substitution 3042 G > T Improves agreement with consensus. Also improves agreement with consensus transcription stop signal 5 Substitution 3234-6 Substitution 3237-9 GTA > ATA V > I substitution in P protein amino acid sequence to agree with consensus. 6 Substitution 3729-31 Substitution 3732-34 AAG > GAG K > E substitution in G protein amino acid sequence to agree with consensus. 7 Substitution 3856 Substitution 3859 N > A Replace unknown base in Genbank file with consensus 8 Substitution 4191-93 Substitution 4194-6 GTA > GAA V > E substitution in G protein amino acid sequence to agree with consensus. 9 Substitution 4386-88 Substitution 4389-92 GGT > GAT G > D substitution in G protein amino acid sequence to agree with consensus. 10 Substitution 4491-93 Substitution 4494-96 ACC > ATC T > I substitution in G protein amino acid sequence to agree with consensus. 11 Substitution 4694 Substitution 4697 T > A Creates unique PacI cleavage site between G and L genes 12 Substitution 5339-41 Substitution 5342-44 ATT > CTT I > L substitution in L protein amino acid sequence to agree with consensus. 13 Substitution 5834-6 Substitution 5837-40 ACT > GCT T > A substitution in L protein amino acid sequence to agree with consensus. 14 Substitution 10959-61 Substitution 10962-64 AGA > AAA R > K substitution in L protein amino acid sequence to agree with consensus. 15 Substitution 7546 Substitution 7549 C > A Eliminates a BstBI site in the L gene sequence making the BstBI site between the M and G genes unique. This substitution was silent for amino acid coding.

[0123] Genbank X65332.2: Cloning vector pSP72

TABLE-US-00003 LOCUS X65332 2462 bp DNA circular SYN 25 JAN. 2000 DEFINITION Cloning vector pSP72. ACCESSION X65332 VERSION X65332.2 GI:6759494 KEYWORDS beta-lactamase; bla gene; cloning vector; multiple cloning site; promoter. SOURCE Cloning vector pSP72 ORGANISM Cloning vector pSP72 other sequences; artificial sequences; vectors. REFERENCE 1 AUTHORS Technical, Services. TITLE Direct Submission JOURNAL Submitted (23 MAR. 1992) Technical Services, Promega Corporation, 2800 Woods Hollow Road, Madison, Wi 53711-5399, USA REMARK revised by [2] REFERENCE 2 AUTHORS Technical, Services. TITLE Direct Submission JOURNAL Submitted (28 MAY 1993) Technical Services, Promega Corporation, 2800 Woods Hollow Road, Madison, Wi 53711-5399, USA REMARK revised by [3] REFERENCE 3 (bases 1 to 2462) AUTHORS Technical, Services. TITLE Direct Submission JOURNAL Submitted (12 JAN. 2000) Technical Services, Promega Corporation, 2800 Woods Hollow Road, Madison, Wi 53711-5399, USA COMMENT On Jan. 26, 2000 this sequence version replaced gi:58239. See X65300-X65335 for related vector sequences This vector can be obtained from Promega Corporation, Madison, WI Call one of the following numbers for order or technical information: Order or Technical 800-356-9526 In Wisconsin 800-356-9526 Outside U.S. 608-274-4330. FEATURES Location/Qualifiers source 1 . . . 2462 /organism="Cloning vector pSP72" /mol_type="other DNA" /db_xref="taxon:90137" promoter join(2446 . . . 2462,1 . . . 3) /note="SP6 promoter" misc_feature 1 /note="SP6 transcription initiation site" misc_feature 4 . . . 90 /note="multiple cloning sites" promoter 99 . . . 118 /note="T7 promoter" misc_feature 101 /note="T7 transcription initiation site" gene complement(1135 . . . 1995) /gene="bla" CDS complement(1135 . . . 1995) /gene="bla" /codon_start=1 /transl_table=11 /product="Beta-lactamase" /protein_id="CAA46432.1" /db_xref="GI:58240" /translation="MSIQHFRVALIPFFAAFCLPVFAHPETLVKVKDAEDQLGARVGY IELDLNSGKILESFRPEERFPMMSTFKVLLCGAVLSRIDAGQEQLGRRIHYSQNDLVE YSPVTEKHLTDGMTVRELCSAAITMSDNTAANLLLTTIGGPKELTAFLHNMGDHVTRL DRWEPELNEAIPNDERDTTMPVAMATTLRKLLTGELLTLASRQQLIDWMEADKVAGPL LRSALPAGWFIADKSGAGERGSRGIIAALGPDGKPSRIVVIYTTGSQATMDERNRQIA EIGASLIKHW" ORIGIN 1 gaactcgagc agctgaagct tgcatgcctg caggtcgact ctagaggatc cccgggtacc 61 gagctcgaat tcatcgatga tatcagatct gccggtctcc ctatagtgag tcgtattaat 121 ttcgataagc caggttaacc tgcattaatg aatcggccaa cgcgcgggga gaggcggttt 181 gcgtattggg cgctcttccg cttcctcgct cactgactcg ctgcgctcgg tcgttcggct 241 gcggcgagcg gtatcagctc actcaaaggc ggtaatacgg ttatccacag aatcagggga 301 taacgcagga aagaacatgt gagcaaaagg ccagcaaaag gccaggaacc gtaaaaaggc 361 cgcgttgctg gcgtttttcc ataggctccg cccccctgac gagcatcaca aaaatcgacg 421 ctcaagtcag aggtggcgaa acccgacagg actataaaga taccaggcgt ttccccctgg 481 aagctccctc gtgcgctctc ctgttccgac cctgccgctt accggatacc tgtccgcctt 541 tctcccttcg ggaagcgtgg cgctttctca tagctcacgc tgtaggtatc tcagttcggt 601 gtaggtcgtt cgctccaagc tgggctgtgt gcacgaaccc cccgttcagc ccgaccgctg 661 cgccttatcc ggtaactatc gtcttgagtc caacccggta agacacgact tatcgccact 721 ggcagcagcc actggtaaca ggattagcag agcgaggtat gtaggcggtg ctacagagtt 781 cttgaagtgg tggcctaact acggctacac tagaagaaca gtatttggta tctgcgctct 841 gctgaagcca gttaccttcg gaaaaagagt tggtagctct tgatccggca aacaaaccac 901 cgctggtagc ggtggttttt ttgtttgcaa gcagcagatt acgcgcagaa aaaaaggatc 961 tcaagaagat cctttgatct tttctacggg gtctgacgct cagtggaacg aaaactcacg 1021 ttaagggatt ttggtcatga gattatcaaa aaggatcttc acctagatcc ttttaaatta 1081 aaaatgaagt tttaaatcaa tctaaagtat atatgagtaa acttggtctg acagttacca 1141 atgcttaatc agtgaggcac ctatctcagc gatctgtcta tttcgttcat ccatagttgc 1201 ctgactcccc gtcgtgtaga taactacgat acgggagggc ttaccatctg gccccagtgc 1261 tgcaatgata ccgcgagacc cacgctcacc ggctccagat ttatcagcaa taaaccagcc 1321 agccggaagg gccgagcgca gaagtggtcc tgcaacttta tccgcctcca tccagtctat 1381 taattgttgc cgggaagcta gagtaagtag ttcgccagtt aatagtttgc gcaacgttgt 1441 tgccattgct acaggcatcg tggtgtcacg ctcgtcgttt ggtatggctt cattcagctc 1501 cggttcccaa cgatcaaggc gagttacatg atcccccatg ttgtgcaaaa aagcggttag 1561 ctccttcggt cctccgatcg ttgtcagaag taagttggcc gcagtgttat cactcatggt 1621 tatggcagca ctgcataatt ctcttactgt catgccatcc gtaagatgct tttctgtgac 1681 tggtgagtac tcaaccaagt cattctgaga atagtgtatg cggcgaccga gttgctcttg 1741 cccggcgtca atacgggata ataccgcgcc acatagcaga actttaaaag tgctcatcat 1801 tggaaaacgt tcttcggggc gaaaactctc aaggatctta ccgctgttga gatccagttc 1861 gatgtaaccc actcgtgcac ccaactgatc ttcagcatct tttactttca ccagcgtttc 1921 tgggtgagca aaaacaggaa ggcaaaatgc cgcaaaaaag ggaataaggg cgacacggaa 1981 atgttgaata ctcatactct tcctttttca atattattga agcatttatc agggttattg 2041 tctcatgagc ggatacatat ttgaatgtat ttagaaaaat aaacaaatag gggttccgcg 2101 cacatttccc cgaaaagtgc cacctgacgt ctaagaaacc attattatca tgacattaac 2161 ctataaaaat aggcgtatca cgaggccctt tcgtctcgcg cgtttcggtg atgacggtga 2221 aaacctctga cacatgcagc tcccggagac ggtcacagct tgtctgtaag cggatgccgg 2281 gagcagacaa gcccgtcagg gcgcgtcagc gggtgttggc gggtgtcggg gctggcttaa 2341 ctatgcggca tcagagcaga ttgtactgag agtgcaccat atggacatat tgtcgttaga 2401 acgcggctac aattaataca taaccttatg tatcatacac atacgattta ggtgacacta 2461 ta//

[0124] Genbank EF197793: Vesicular stomatitis Indiana virus, complete genome

TABLE-US-00004 LOCUS EF197793 11161 bp cRNA linear VRL 15 APR. 2007 DEFINITION Vesicular stomatitis Indiana virus, complete genome. ACCESSION EF197793 VERSION EF197793.1 GI:144678900 SOURCE Vesicular stomatitis Indiana virus ORGANISM Vesicular stomatitis Indiana virus Viruses; ssRNA negative-strand viruses; Mononegavirales; Rhabdoviridae; Dimarhabdovirus supergroup; Vesiculovirus. REFERENCE 1 (bases 1 to 11161) AUTHORS Remold, S. K., Rambaut, A. and Turner, P. T. TITLE Evolutionary genomics of host adaptation in Vesicular stomatitis virus JOURNAL Unpublished REFERENCE 2 (bases 1 to 11161) AUTHORS Remold, S.K. TITLE Direct Submission JOURNAL Submitted (22 DEC. 2006) Biology, University of Louisville, 139 Life Sciences Building, Louisville, KY 40292, USA FEATURES Location/Qualifiers source 1 . . . 11161 /organism="Vesicular stomatitis Indiana virus" /mol_type="viral cRNA" /isolate="MARMC from S.F. Elena Lab, 2001" /db_xref="taxon:11277" /country="USA" gene 51 . . . 1376 /gene="N" CDS 64 . . . 1332 /gene="N" /codon_start=1 /product="nucleoprotein" /protein_id="ABP01780.1" /db_xref="GI:144678901" /translation="MSVTVKRIIDNTVIVPKLPANEDPVEYPADYFRKSKEIPLYINT TKSLSDLRGYVYQGLKSGNVSIIHVNSYLYGALKDIRGKLDKDWSSFGINIGKAGDTI GIFDLVSLKALDGVLPDGVSDASRTSADDKWLPLYLLGLYRVGRTQMPEYRKRLMDGL TNQCKMINEQFEPLVPEGRDIFDVWGNDSNYTKIVAAVDMFFHMFKKHECASFRYGTI VSRFKDCAALATFGHLCKITGMSTEDVTTWILNREVADEMVQMMLPGQEIDKADSYMP YLIDFGLSSKSPYSSVKNPAFHFWGQLTALLLRSTRARNARQPDDIEYTSLTTAGLLY AYAVGSSADLAQQFCVGDSKYTPDDSTGGLTTNAPPQGRDVVEWLGWFEDQNRKPTPD MMQYAKRAVMSLQGLREKTIGKYAKSEFDK" gene 1386 . . . 2199 /gene="P" CDS 1396 . . . 2193 /gene="P" /codon_start=1 /product="phosphoprotein" /protein_id="ABP01781.1" /db_xref="GI:144678902" /translation="MDNLTKVREYLKSYSRLDQAVGEIDEIEAQRAEKSNYELFQEDG VEEHTRPSYFQAADDSDTESEPEIEDNQGLYVPDPEAEQVEGFIQGPLDDYADEDVDV VFTSDWKQPELESDEHGKTLRLTLPEGLSGEQKSQWLLTIKAVVQSAKHWNLAECTFE ASGEGVIIKKRQITPDVYKVTPVMNTHPYQSEAVSDVWSLSKTSMTFQPKKASLQPLT ISLDELFSSRGEFISVGGNGRMSHKEAILLGLRYKKLYNQARVKYSL" gene 2209 . . . 3039 /gene="M" CDS 2250 . . . 2939 /gene="M" /codon_start=1 /product="matrix" /protein_id="ABP01782.1" /db_xref="GI:144678903" /translation="MSSLKKILGLKGKGKKSKKLGIAPPPYEEDTNMEYAPSAPIDKS YFGVDEMDTHDPNQLRYEKFFFTVKMTVRSNRPFRTYSDVAAAVSHWDHMYIGMAGKR PFYKILAFLGSSNLKATPAVLADQGQPEYHAHCEGRAYLPHRMGKTPPMLNVPEHFRR PFNIGLYKGTIELTMTIYDDESLEAAPMIWDHFNSSKFSDFREKALMFGLIVEKKASG AWVLDSVSHFK" gene 3049 . . . 4713 /gene="G" CDS 3078 . . . 4613 /gene="G" /codon_start=1 /product="glycoprotein" /protein_id="ABP01783.1" /db_xref="GI:144678904" /translation="MKCLLYLAFLFIGVNCKFTIVFPHNQKGNWKNVPSNYHYCPSSS DLNWHNDLVGTALQVKMPKSHKAIQADGWMCHASKWVTTCDFRWYGPKYITHSIRSFT PSVEQCKESIEQTKQGTWLNPGFPPQSCGYATVTDAEAAIVQVTPHHVLVDEYTGEWV DSQFINGKCSNDICPTVHNSTTWHSDYKVKGLCDSNLISMDITFFSEDGELSSLGKKG TGFRSNYFAYETGDKACKMQYCKHWGVRLPSGVWFEMADKXLFAAARFPECPEGSSIS APSQTSVDVSLIQDVERILDYSLCQETWSKIRAGLPISPVDLSYLAPKNPGTGPVFTI INGTLKYFETRYIRVDIAAPILSRMVGMISGTTTERVLWDDWAPYEDVEIGPNGVLRT SSGYKFPLYMIGHGMLDSDLHLSSKAQVFEHPHIQDAASQLPDGETLFFGDTGLSKNP IEFVEGWFSSWKSSIASFFFTIGLIIGLFLVLRVGIYLCIKLKHTKKRQIYTDIEMNR LGK" gene 4723 . . . 11095 /gene="L" CDS 4733 . . . 11062 /gene="L" /codon start=1 /product="large protein" /protein_id="ABP01784.1" /db_xref="GI:144678905" /translation="MEVHDFETDEFNDFNEDDYATREFLNPDERMTYLNHADYNLNSP LISDDIDNLIRKFNSLPIPSMWDSKNWDGVLEMLTSCQANPISTSQMHKWMGSWLMSD NHDASQGYSFLHEVDKEAEITFDVVETFIRGWGNKPIEYIKKERWTDSFKILAYLCQK FLDLHKLTLILNAVSEVELLNLARTFKGKVRRSSHGTNICRIRVPSLGPTFISEGWAY FKKLDILMDRNFLLMVKDVIIGRMQTVLSMVCRIDNLFSEQDIFSLLNIYRIGDKIVE RQGNFSYDLIKMVEPICNLKLMKLARESRPLVPQFPHFENHIKTSVDEGAKIDRGIRF LHDQIMSVKTVDLTLVIYGSFRHWGHPFIDYYTGLEKLHSQVTMKKDIDVSYAKALAS DLARIVLFQQFNDHKKWFVNGDLLPHDHPFKSHVKENTWPTAAQVQDFGDKWHELPLI KCFEIPDLLDPSIIYSDKSHSMNRSEVLKHVRMNPNTPIPSKKVLQTMLDTKATNWKE FLKEIDEKGLDDDDLIIGLKGKERELKLAGRFFSLMSWKLREYFVITEYLIKTHFVPM FKGLTMADDLTAVIKKMLDSSSGQGLKSYEAICIANHIDYEKWNNHQRKLSNGPVFRV MGQFLGYPSLIERTHEFFEKSLIYYNGRPDLMRVHNNTLINSTSQRVCWQGQEGGLEG LRQKGWSILNLLVIQREAKIRNTAVKVLAQGDNQVICTQYKTKKSRNVVELQGALNQM VSNNEKIMTAIKIGTGKLGLLINDDETMQSADYLNYGKIPIFRGVIRGLETKRWSRVT CVTNDQIPTCANIMSSVSTNALTVAHFAENPINAMIQYNYFGTFARLLLMMHDPALRQ SLYEVQDKIPGLHSSTFKYAMLYLDPSIGGVSGMSLSRFLIRAFPDPVTESLSFWRFI HVHARSEHLKEMSAVFGNPEIAKFRITHIDKLVEDPTSLNIAMGMSPANLLKTEVKKC LIESRQTIRNQVIKDATIYLYHEEDRLRSFLWSINPLFPRFLSEFKSGTFLGVADGLI SLFQNSRTIRNSFKKKYHRELDDLIVRSEVSSLTHLGKLHLRRGSCKMWTCSATHADT LRYKSWGRTVIGTTVPHPLEMLGPQHRKETPCAPCNTSGFNYVSVHCPDGIHDVFSSR GPLPAYLGSKTSESTSILQPWERESKVPLIKRATRLRDAISWFVEPDSKLAMTILSNI HSLTGEEWTKRQHGFKRTGSALHRFSTSRMSHGGFASQSTAALTRLMATTDTMRDLGD QNFDFLFQATLLYAQITTTVARDGWITSCTDHYHIACKSCLRPIEEITLDSSMDYTPP DVSHVLKTWRNGEGSWGQEIKQIYPLEGNWKNLAPAEQSYQVGRCIGFLYGDLAYRKS THAEDSSLFPLSIQGRIRGRGFLKGLLDGLMRASCCQVIHRRSLAHLKRPANAVYGGL IYLIDKLSVSPPFLSLTRSGPIRDELETIPHKIPTSYPTSNRDMGVIVRNYFKYQCRL IEKGKYRSHYSQLWLFSDVLSIDFIGPFSISTTLLQILYKPFLSGKDKNELRELANLS SLLRSGEGWEDIHVKFFTKDILLCPEEIRHACKFGIAKDNNKDMSYPPWGRESRGTIT TIPVYYTTTPYPKMLEMPPRIQNPLLSGIRLGQLPTGAHYKIRSILHGMGIHYRDFLS CGDGSGGMTAALLRENVHSRGIFNSLLELSGSVMRGASPEPPSALETLGGDKSRCVNG ETCWEYPSDLCDPRTWDYFLRLKAGLGLQIDLIVMDMEVRDSSTSLKIETNVRNYVHR ILDEQGVLIYKTYGTYICESEKNAVTILGPMFKTVDLVQTEFSSSQTSEVYMVCKGLK KLIDEPNPDWSSINESWKNLYAFQSSEQEFARAKKVSTYFTLTGIPSQFIPDPFVNIE TMLQIFGVPTGVSHAAALKSSDRPADLLTISLFYMAIISYYNINHIRVGPIPPNPPSD GIAQNVGIAITGISFWLSLMEKDIPLYQQCLAVIQQSFPIRWEAVSVKGGYKQKWSTR GDGLPKDTRISDSLAPIGNWIRSLELVRNQVRLNPFNEILFNQLCRTVDNHLKWSNLR RNTGMIEWINRRISKEDRSILMLKSDLHEENSWRD" ORIGIN 1 acgaagacaa acaaaccatt attatcatta aaaggctcag gagaaacttt aacagtaatc 61 aaaatgtctg ttacagtcaa gagaatcatt gacaacacag tcatagttcc aaaacttcct 121 gcaaatgagg atccagtgga atacccggca gattacttca gaaaatcaaa ggagattcct 181 ctttacatca atactacaaa aagtttgtca gatctaagag gatatgtcta ccaaggcctc 241 aaatccggaa atgtatcaat catacatgtc aacagctact tgtatggagc attgaaggac 301 atccggggta agttggataa agattggtca agtttcggaa taaacatcgg gaaggcaggg 361 gatacaatcg gaatatttga ccttgtatcc ttgaaagccc tggacggtgt acttccagat 421 ggagtatcgg atgcttccag aaccagcgca gatgacaaat ggttgccttt gtatctactt 481 ggcttataca gagtgggcag aacacaaatg cctgaataca gaaaaaggct catggatggg 541 ctgacaaatc aatgcaaaat gatcaatgaa cagtttgaac ctcttgtgcc agaaggtcgt 601 gacatttttg atgtgtgggg aaatgacagt aattacacaa aaattgtcgc tgcagtggac 661 atgttcttcc acatgttcaa aaaacatgaa tgtgcctcgt tcagatacgg aactattgtt 721 tccagattca aagattgtgc tgcattggca acatttggac acctctgcaa aataaccgga 781 atgtctacag aagatgtgac gacctggatc ttgaaccgag aagttgcaga tgagatggtc 841 caaatgatgc ttccaggcca agaaattgac aaggctgatt catacatgcc ttatttgatc 901 gactttggat tgtcttctaa gtctccatat tcttccgtca aaaaccctgc cttccacttc 961 tgggggcaat tgacagctct tctgctcaga tccaccagag caaggaatgc ccgacagcct 1021 gatgacattg agtatacatc tcttactaca gcaggtttgt tgtacgctta tgcagtagga 1081 tcctctgctg acttggcaca acagttttgt gttggagata gcaaatacac tccagatgat 1141 agtaccggag gattgacgac taatgcaccg ccacaaggca gagatgtggt cgaatggctc 1201 ggatggtttg aagatcaaaa cagaaaaccg actcctgata tgatgcagta tgcgaaacga 1261 gcagtcatgt cactgcaagg cctaagagag aagacaattg gcaagtatgc taagtcagag 1321 tttgacaaat gaccctataa ttctcagatc acctattata tattatgcta catatgaaaa 1381 aaactaacag atatcatgga taatctcaca aaagttcgtg agtatctcaa gtcctattct 1441 cgtctagatc aggcggtagg agagatagat gagatcgaag cacaacgagc tgaaaagtcc 1501 aattatgagt tgttccaaga ggacggagtg gaagagcata ctaggccctc ttattttcag 1561 gcagcagatg attctgacac agaatctgaa ccagaaattg aagacaatca aggcttgtat 1621 gtaccagatc cggaagctga gcaagttgaa ggctttatac aggggccttt agatgactat 1681 gcagatgagg acgtggatgt tgtattcact tcggactgga aacagcctga gcttgaatcc 1741 gacgagcatg gaaagacctt acggttgaca ttgccagagg gtttaagtgg agagcagaaa 1801 tcccagtggc ttttgacgat taaagcagtc gttcaaagtg ccaaacactg gaatctggca 1861 gagtgcacat ttgaagcatc gggagaaggg gtcatcataa aaaagcgcca gataactccg 1921 gatgtatata aggtcactcc agtgatgaac acacatccgt accaatcaga agccgtatca 1981 gatgtttggt ctctctcaaa gacatccatg actttccaac ccaagaaagc aagtcttcag 2041 cctctcacca tatccttgga tgaattgttc tcatctagag gagaattcat ctctgtcgga 2101 ggtaacggac gaatgtctca taaagaggcc atcctgctcg gtctgaggta caaaaagttg 2161 tacaatcagg cgagagtcaa atattctctg tagactatga aaaaaagtaa cagatatcac 2221 aatctaagtg ttatcccaat ccattcatca tgagttcctt aaagaagatt ctcggtctga 2281 aggggaaagg taagaaatct aagaaattag ggatcgcacc acccccttat gaagaggaca 2341 ctaacatgga gtatgctccg agcgctccaa ttgacaaatc ctattttgga gttgacgaga 2401 tggacactca tgatccgaat caattaagat atgagaaatt cttctttaca gtgaaaatga 2461 cggttagatc taatcgtccg ttcagaacat actcagatgt ggcagccgct gtatcccatt 2521 gggatcacat gtacatcgga atggcaggga aacgtccctt ctacaagatc ttggcttttt 2581 tgggttcttc taatctaaag gccactccag cggtattggc agatcaaggt caaccagagt 2641 atcatgctca ctgtgaaggc agggcttatt tgccacacag aatggggaag acccctccca 2701 tgctcaatgt accagagcac ttcagaagac cattcaatat aggtctttac aagggaacga 2761 ttgagctcac aatgaccatc tacgatgatg agtcactgga agcagctcct atgatctggg 2821 atcatttcaa ttcttccaaa ttttctgatt tcagagagaa ggccttaatg tttggcctga 2881 ttgtcgagaa aaaggcatct ggagcttggg tcctggattc tgtcagccac ttcaaatgag 2941 ctagtctagc ttccagcttc tgaacaatcc ccggtttact cagtctctcc taattccagc 3001 ctttcgaaca actaatatcc tgtcttctct atcccgatga aaaaaactaa cagagatcga 3061 tctgtttcct tgacaccatg aagtgccttt tgtacttagc ttttttattc atcggggtga 3121 attgcaagtt caccatagtt tttccacaca accaaaaagg aaactggaaa aatgttcctt 3181 ccaattacca ttattgcccg tcaagctcag atttaaattg gcataatgac ttagtaggca 3241 cagccttaca agtcaaaatg cccaagagtc acaaggctat tcaagcagac ggttggatgt 3301 gtcatgcttc caaatgggtc actacttgtg atttccgctg gtacggaccg aagtatataa 3361 cacattccat ccgatccttc actccatctg tagaacaatg caaggaaagc attgaacaaa 3421 cgaaacaagg aacttggctg aatccaggct tccctcctca aagttgtgga tatgcaactg 3481 tgacggatgc tgaagcagcg attgtccagg tgactcctca ccatgtgctt gttgatgaat 3541 acacaggaga atgggttgat tcacagttca tcaacggaaa atgcagcaat gacatatgcc 3601 ccactgtcca taactccaca acctggcatt ccgactataa ggtcaaaggg ctatgtgatt 3661 ctaacctcat ttccatggac atcaccttct tctcagagga cggagagcta tcatccctag 3721 gaaagaaggg cacagggttc agaagtaact actttgctta tgaaactgga gacaaggcct 3781 gcaaaatgca gtactgcaag cattggggag tcagactccc atcaggtgtc tggttcgaga 3841 tggctgataa ggmtctcttt gctgcagcca gattccctga atgcccagaa gggtcaagta 3901 tctctgctcc atctcagacc tcagtggatg taagtctcat tcaggacgtt gagaggatct 3961 tggattattc cctctgccaa gaaacctgga gcaaaatcag agcgggtctt cccatctctc 4021 cagtggatct cagctatctt gctcctaaaa acccaggaac cggtcctgtc tttaccataa 4081 tcaatggtac cctaaaatac tttgagacca gatacatcag agtcgatatt gctgctccaa 4141 tcctctcaag aatggtcgga atgatcagtg gaactaccac agaaagggta ctgtgggatg 4201 actgggctcc atatgaagac gtggaaattg gacccaatgg agttctgagg accagttcag 4261 gatataagtt tcctttatat atgattggac atggtatgtt ggactccgat cttcatctta 4321 gctcaaaggc tcaggtgttt gaacatcctc acattcaaga cgctgcttcg cagcttcctg 4381 atggtgagac tttatttttt ggtgatactg ggctatccaa aaatccaatc gagtttgtag 4441 aaggttggtt cagtagttgg aagagctcta ttgcctcttt tttctttacc atagggttaa 4501 tcattggact attcttggtt ctccgagttg gtatttatct ttgcattaaa ttaaagcaca 4561 ccaagaaaag acagatttat acagacatag agatgaaccg acttggaaag taactcaaat 4621 cctgcacaac agattcttca tgtttgaacc aaatcaactt gtgatatcat gctcaaagag 4681 gccttaatta tattttaatt tttaattttt atgaaaaaaa ctaacagcaa tcatggaagt 4741 ccacgatttt gagaccgacg agttcaatga tttcaatgaa gatgactatg ccacaagaga 4801 attcctgaat cccgatgagc gcatgacgta cttgaatcat gctgattaca atttgaattc 4861 tcctctaatt agtgatgata ttgacaattt gatcaggaaa ttcaattctc ttccgattcc 4921 ctcgatgtgg gatagtaaga actgggatgg agttcttgag atgttaacat catgtcaagc 4981 caatcccatc tcaacatctc agatgcataa atggatggga agttggttaa tgtctgataa 5041 tcatgatgcc agtcaagggt atagtttttt acatgaagtg gacaaagagg cagaaataac 5101 atttgacgtg gtggagacct tcatccgcgg ctggggcaac aaaccaattg aatacatcaa 5161 aaaggaaaga tggactgact cattcaaaat tctcgcttat ttgtgtcaaa agtttttgga 5221 cttacacaag ttgacattaa tcttaaatgc tgtctctgag gtggaattgc tcaacttggc 5281 gaggactttc aaaggcaaag tcagaagaag ttctcatgga acgaacatat gcaggattag 5341 ggttcccagc ttgggtccta cttttatttc agaaggatgg gcttacttca agaaacttga 5401 tattctaatg gaccgaaact ttctgttaat ggtcaaagat gtgattatag ggaggatgca 5461 aacggtgcta tccatggtat gtagaataga caacctgttc tcagagcaag acatcttctc 5521 ccttctaaat atctacagaa ttggagataa aattgtggag aggcagggaa atttttctta 5581 tgacttgatt aaaatggtgg aaccgatatg caacttgaag ctgatgaaat tagcaagaga 5641 atcaaggcct ttagtcccac aattccctca ttttgaaaat catatcaaga cttctgttga 5701 tgaaggggca aaaattgacc gaggtataag attcctccat gatcagataa tgagtgtgaa 5761 aacagtggat ctcacactgg tgatttatgg atcgttcaga cattggggtc atccttttat 5821 agattattac actggactag aaaaattaca ttcccaagta accatgaaga aagatattga 5881 tgtgtcatat gcaaaagcac ttgcaagtga tttagctcgg attgttctat ttcaacagtt 5941 caatgatcat aaaaagtggt tcgtgaatgg agacttgctc cctcatgatc atccctttaa 6001 aagtcatgtt aaagaaaata catggcctac agctgctcaa gttcaagatt ttggagataa 6061 atggcatgaa cttccgctga ttaaatgttt tgaaataccc gacttactag acccatcgat 6121 aatatactct gacaaaagtc attcaatgaa taggtcagag gtgttgaaac atgtccgaat 6181 gaatccgaac actcctatcc ctagtaaaaa ggtgttgcag actatgttgg acacaaaggc 6241 taccaattgg aaagaatttc ttaaagagat tgatgagaag ggcttagatg atgatgatct 6301 aattattggt cttaaaggaa aggagaggga actgaagttg gcaggtagat ttttctccct 6361 aatgtcttgg aaattgcgag aatactttgt aattaccgaa tatttgataa agactcattt 6421 cgtccctatg tttaaaggcc tgacaatggc ggacgatcta actgcagtca ttaaaaagat 6481 gttagattcc tcatccggcc aaggattgaa gtcatatgag gcaatttgca tagccaatca 6541 cattgattac gaaaaatgga ataaccacca aaggaagtta tcaaacggcc cagtgttccg 6601 agttatgggc cagttcttag gttatccatc cttaatcgag agaactcatg aattttttga 6661 gaaaagtctt atatactaca atggaagacc agacttgatg cgtgttcaca acaacacact 6721 gatcaattca acctcccaac gagtttgttg gcaaggacaa gagggtggac tggaaggtct 6781 acggcaaaaa ggatggagta tcctcaatct actggttatt caaagagagg ctaaaatcag 6841 aaacactgct gtcaaagtct tggcacaagg tgataatcaa gttatttgca cacagtataa 6901 aacgaagaaa tcgagaaacg ttgtagaatt acagggtgct ctcaatcaaa tggtttctaa 6961 taatgagaaa attatgactg caatcaaaat agggacaggg aagttaggac ttttgataaa 7021 tgacgatgag actatgcaat ctgcagatta cttgaattat ggaaaaatac cgattttccg

7081 tggagtgatt agagggttag agaccaagag atggtcacga gtgacttgtg tcaccaatga 7141 ccaaataccc acttgtgcta atataatgag ctcagtttcc acaaatgctc tcaccgtagc 7201 tcattttgct gagaacccaa tcaatgccat gatacagtac aattattttg ggacatttgc 7261 tagactcttg ttgatgatgc atgatcctgc tcttcgtcaa tcattgtatg aagttcaaga 7321 taagataccg ggcttgcaca gttctacttt caaatacgcc atgttgtatt tggacccttc 7381 cattggagga gtgtcgggca tgtctttgtc caggtttttg attagagcct tcccagatcc 7441 cgtaacagaa agtctctcat tctggagatt catccatgta catgctcgaa gtgagcatct 7501 gaaggagatg agtgcagtat ttggaaaccc cgagatagcc aagtttcgaa taactcacat 7561 agacaagcta gtagaagatc caacctctct gaacatcgct atgggaatga gtccagcgaa 7621 cttgttaaag actgaggtta aaaaatgctt aatcgaatca agacaaacca tcaggaacca 7681 ggtgattaag gatgcaacca tatatttgta tcatgaagag gatcggctca gaagtttctt 7741 atggtcaata aatcctctgt tccctagatt tttaagtgaa ttcaaatcag gcactttttt 7801 gggagtcgca gacgggctca tcagtctatt tcaaaattct cgtactattc ggaactcctt 7861 taagaaaaag tatcataggg aattggatga tttgattgtg aggagtgagg tatcctcttt 7921 gacacattta gggaaacttc atttgagaag gggatcatgt aaaatgtgga catgttcagc 7981 tactcatgct gacacattaa gatacaaatc ctggggccgt acagttattg ggacaactgt 8041 accccatcca ttagaaatgt tgggtccaca acatcgaaaa gagactcctt gtgcaccatg 8101 taacacatca gggttcaatt atgtttctgt gcattgtcca gacgggatcc atgacgtctt 8161 tagttcacgg ggaccattgc ctgcttatct agggtctaaa acatctgaat ctacatctat 8221 tttgcagcct tgggaaaggg aaagcaaagt cccactgatt aaaagagcta cacgtcttag 8281 agatgctatc tcttggtttg ttgaacccga ctctaaacta gcaatgacta tactttctaa 8341 catccactct ttaacaggcg aagaatggac caaaaggcag catgggttca aaagaacagg 8401 gtctgccctt cataggtttt cgacatctcg gatgagccat ggtgggttcg catctcagag 8461 cactgcagca ttgaccaggt tgatggcaac tacagacacc atgagggatc tgggagatca 8521 gaatttcgac tttttattcc aagcaacgtt gctctatgct caaattacca ccactgttgc 8581 aagagacgga tggatcacca gttgtacaga tcattatcat attgcctgta agtcctgttt 8641 gagacccata gaagagatca ccctggactc aagtatggac tacacgcccc cagatgtatc 8701 ccatgtgctg aagacatgga ggaatgggga aggttcgtgg ggacaagaga taaaacagat 8761 ctatccttta gaagggaatt ggaagaattt agcacctgct gagcaatcct atcaagtcgg 8821 cagatgtata ggttttctat atggagactt ggcgtataga aaatctactc atgccgagga 8881 cagttctcta tttcctctat ctatacaagg tcgtattaga ggtcgaggtt tcttaaaagg 8941 gttgctagac ggattaatga gagcaagttg ctgccaagta atacaccgga gaagtctggc 9001 tcatttgaag aggccggcca acgcagtgta cggaggtttg atttacttga ttgataaatt 9061 gagtgtatca cctccattcc tttctcttac tagatcagga cctattagag acgaattaga 9121 aacgattccc cacaagatcc caacctccta tccgacaagc aaccgtgata tgggggtgat 9181 tgtcagaaat tacttcaaat accaatgccg tctaattgaa aagggaaaat acagatcaca 9241 ttattcacaa ttatggttat tctcagatgt cttatccata gacttcattg gaccattctc 9301 tatttccacc accctcttgc aaatcctata caagccattt ttatctggga aagataagaa 9361 tgagttgaga gagctggcaa atctttcttc attgctaaga tcaggagagg ggtgggaaga 9421 catacatgtg aaattcttca ccaaggacat attattgtgt ccagaggaaa tcagacatgc 9481 ttgcaagttc gggattgcta aggataataa taaagacatg agctatcccc cttggggaag 9541 ggaatccaga gggacaatta caacaatccc tgtttattat acgaccaccc cttacccaaa 9601 gatgctagag atgcctccaa gaatccaaaa tcccctgctg tccggaatca ggttgggcca 9661 attaccaact ggcgctcatt ataaaattcg gagtatatta catggaatgg gaatccatta 9721 cagggacttc ttgagttgtg gagacggctc cggagggatg actgctgcat tactacgaga 9781 aaatgtgcat agcagaggaa tattcaatag tctgttagaa ttatcagggt cagtcatgcg 9841 aggcgcctct cctgagcccc ccagtgccct agaaacttta ggaggagata aatcgagatg 9901 tgtaaatggt gaaacatgtt gggaatatcc atctgactta tgtgacccaa ggacttggga 9961 ctatttcctc cgactcaaag caggcttggg gcttcaaatt gatttaattg taatggatat 10021 ggaagttcgg gattcttcta ctagcctgaa aattgagacg aatgttagaa attatgtgca 10081 ccggattttg gatgagcaag gagttttaat ctacaagact tatggaacat atatttgtga 10141 gagcgaaaag aatgcagtaa caatccttgg tcccatgttc aagacggtcg acttagttca 10201 aacagaattt agtagttctc aaacgtctga agtatatatg gtatgtaaag gtttgaagaa 10261 attaatcgat gaacccaatc ccgattggtc ttccatcaat gaatcctgga aaaacctgta 10321 cgcattccag tcatcagaac aggaatttgc cagagcaaag aaggttagta catactttac 10381 cttgacaggt attccctccc aattcattcc tgatcctttt gtaaacattg agactatgct 10441 acaaatattc ggagtaccca cgggtgtgtc tcatgcggct gccttaaaat catctgatag 10501 acctgcagat ttattgacca ttagcctttt ttatatggcg attatatcgt attataacat 10561 caatcatatc agagtaggac cgatacctcc gaacccccca tcagatggaa ttgcacaaaa 10621 tgtggggatc gctataactg gtataagctt ttggctgagt ttgatggaga aagacattcc 10681 actatatcaa cagtgtttag cagttatcca gcaatcattc ccgattaggt gggaggctgt 10741 ttcagtaaaa ggaggataca agcagaagtg gagtactaga ggtgatgggc tcccaaaaga 10801 tacccgaatt tcagactcct tggccccaat cgggaactgg atcagatctc tggaattggt 10861 ccgaaaccaa gttcgtctaa atccattcaa tgagatcttg ttcaatcagc tatgtcgtac 10921 agtggataat catttgaaat ggtcaaattt gcgaagaaac acaggaatga ttgaatggat 10981 caatagacga atttcaaaag aagaccggtc tatactgatg ttgaagagtg acctacacga 11041 ggaaaactct tggagagatt aaaaaatcat gaggagactc caaactttaa gtatgaaaaa 11101 aactttgatc cttaagaccc tcttgtggtt tttatttttt atctggtttt gtggtcttcg 11161 t//

Example 2

Vsv Genome and Cloning Fragments

[0125] FIG. 2A depicts a schematic of a VSV genome and cloning fragments.

[0126] In the sequences provided in FIGS. 2B-2G, terminal fragments A and G are combined to produce fragment VS V-AG. [0127] The DNA fragments are designed for cloning into pSP72 or other similar cloning vectors. Before adding VSV cDNA sequences, the cloning plasmid is modified by insertion of the hammerhead and hepatitis delta virus ribozyme sequences. A BsmBI restriction enzyme cleavage site is placed between the ribozyme sequences (5'-hammerhead ribozyme-BsmBI-hepatitis delta virus ribozyme-3') for the purpose of inserting the VSV-AG fragment. [0128] The AG fragment was designed with BsmBI sites at the 5' and 3' termini (lower case nucleotides) for insertion between the ribozyme sequences introduced in the step above. Because BsmBI cleaves distal to its recognition sequence (see bullet below), this enzyme may be used to join the AG fragment directly to the ribozymes while also eliminating the non-VSV nucleotides added to create the enzyme cleavage signal. (Ball L A, Pringle C R, Flanagan B, Perepelitsa V P, Wertz G W. Phenotypic consequences of rearranging the P, M, and G genes of vesicular stomatitis virus. J. Virol. 1999 June; 73(6):4705-12, the disclosure of which is incorporated by reference). [0129] Like other restriction endonucleases of this type (BspMI, Earl, Plel, SfaNI and others), BsmBI cleaves distal to its recognition sequence:

TABLE-US-00005 [0129] 5'-CGTCTC/N-3' 3'-GCAGAGNNNNN/N-5'

[0130] N is any nucleotide and/indicates cleavage site. [0131] The VSV-AG fragment also is designed to facilitate subsequent cloning. Between the fused A and G fragments there is a polylinker sequence (noted in red nucleotides) that contains restriction endonuclease cleavage sites needed for sequential cloning of Fragments B-F to assemble a full-length clone. The polylinker contains 5'-NheI-BstBI-PacI-AvaI-SalI-AflII-3' restriction endonuclease cleavage sites. Polylinker nucleotides are replaced by VSV genomic sequence as the full-length clone is assembled.

Example 3

Virus Rescue Support Plasmid Insert Optimization

[0132] Strategy for optimizing gene inserts encoding VSV N, P, M, G, and L for construction of plasmid DNAs encoding trans-acting proteins needed to initiate virus rescue. Gene inserts were optimized using steps in Example 4 then synthesized by a contract lab and subsequently cloned into a plasmid under the control of the hCMV promoter and enhancer.

Example 4

Coding Sequence Optimization and Gene Design

[0133] Step 1. Replace VSV sequence with codons used by highly expressed mammalian genes. Use the CodonJuggle program found in the GeneDesign Webtool (Richardson et al. 2010. Nucleic Acids Res 38:2603-2606 and Richardson et al. 2006. Genome Res 16:550-556).

[0134] Step 2. Eliminate potential RNA processing signals in the coding sequence that might direct unwanted RNA splicing or cleavage/polyadenylation reaction. [0135] a) Identify potential splice site signals and remove by introducing synonymous codons. Splice site predictions were made with the webtool at the Berkeley Drosophila Genome Project website (Reese et al. 1997. J Comput Biol 4:311-323). [0136] b) Scan the insert for consensus cleavage/polyadenylation signals (AAUAAA) (Zhao et al. 1999. MMBR 63:405-445). Disrupt by introducing synonymous codons.

[0137] Step 3 [0138] a) Add a preferred translational start sequence (the Kozak sequence) (Kochetov et al. 1998. FEBS letters 440:351-355, Kozak. 1999. Gene 234:187-208, Kozak. 1991. J Biol Chem 266:19867-19870 and Zhang. 1998. Human molecular genetics 7:919-932). [0139] b) Add a preferred translational stop codon at the 3' end (Kochetov et al. 1998. FEBS letters 440:351-355, Sun et al. 2005. J Mol Evol 61:437-444 and Zhang. 1998. Human molecular genetics 7:919-932).

[0140] Step 4. Scan the sequence for homopolymeric stretches of 5 nucleotides or more. Interrupt these sequences by introducing synonymous codons.

[0141] Step 5. Scan the sequence for restriction endonuclease cleavage sites and eliminate any unwanted recognitions signals.

[0142] Step 6. Confirm that the modified sequence translates into the expected amino acid sequence.

[0143] The invention is further described by the following numbered paragraphs:

[0144] 1. A vesicular stomatitis virus (VSV) genomic clone comprising:

[0145] (a) a VSV genome encoding and expressing a nucleocapsid, phosphoprotein, matrix, glycoprotein and large protein, wherein the VSV genome comprises nucleotide substitutions and amino acid coding changes to improve replicative fitness and genetic stability,

[0146] (b) a cloning vector,

[0147] (c) an extended T7 promoter,

[0148] (d) a hammerhead ribozyme,

[0149] (e) a hepatitis delta virus ribozyme and T7 terminator

[0150] (f) unique restriction endonuclease cleavage sites in a VSV genomic sequence

[0151] (g) a leader and a trailer that are cis-acting sequences controlling mRNA synthesis and replication

[0152] 2. The VSV genomic clone of paragraph 1, wherein the cloning vector is pSP72 (Genbank X65332.2)

[0153] 3. The VSV genomic clone of paragraph 1 or 2, wherein the extended T7 promoter is PT7-g10.

[0154] 4. The VSV genomic clone of any one of paragraphs 1 to 3, wherein the unique restriction endonuclease cleavage sites are 1367 NheI, 2194 SpeI, 2194 BstBI, 4687 PacI, 7532 AvaI, 10190 SalI and 11164 AflII.

[0155] 5. The VSV genomic clone of any one of paragraphs 1 to 4, wherein the VSV genomic clone is depicted in FIG. 1.

[0156] 6. The VSV genomic clone of any one of paragraphs 1 to 5, wherein the nucleotide position is according to GenBank Accession Number EF197793 and wherein the nucleotide substitutions are selected from the group consisting of [0157] 1371 CA>GC (NheI) [0158] After 2195 insert TAG (SpeI) (all genome numbers below adjusted to include +3 bp) [0159] 3036 G>T improves match to consensus transcription stop signal [0160] 3853 X>A (was an ambiguity in Genbank file) [0161] 4691 T>A to generate PacI [0162] 7546 C>A silent change in L coding sequence eliminates a BstBI site [0163] 1960 TAC>TCC to change Y>S [0164] 3247 GTA>ATA to change V>I [0165] 3729 AAG>GAG to change K>E [0166] 4191 GTA>GAA to change V>E [0167] 4386 GGT>GAT to change G>D [0168] 4491 ACC>ATC to change T>I [0169] 5339 ATT>CTT to change I>L [0170] 5834 ACT>GCT to change T>A and [0171] 10959 AGA>AAA to change R>K.

[0172] 7. The VSV genomic clone of any one of paragraphs 1 to 6, wherein the nucleotide position is according to GenBank Accession Number EF197793 and wherein the nucleotide substitutions are selected from the group consisting of:

TABLE-US-00006 Nucleotide position Nucleotide position Nucleotide in EF197793 in rEF197793 Change Purpose 1 Substitution 1371-2 Substitution 1371-2 CA > GC Creates a unique NheI cleavage site between N and P gens 2 Substitution 1960-2 Substitution 1960-2 TAC > TCC Y > S substitution in P protein amino acid sequence to agree with consensus. 3 Insert after 2195 3 base insert after Insert TAG Creates a unique SpeI site 2195 between P and M genes 4 Substitution 3039 Substitution 3042 G > T Improves agreement with consensus. Also improves agreement with consensus transcription stop signal 5 Substitution 3234-6 Substitution 3237-9 GTA > ATA V > I substitution in P protein amino acid sequence to agree with consensus. 6 Substitution 3729-31 Substitution 3732-34 AAG > GAG K > E substitution in G protein amino acid sequence to agree with consensus. 7 Substitution 3856 Substitution 3859 N > A Replace unknown base in Genbank file with consensus 8 Substitution 4191-93 Substitution 4194-6 GTA > GAA V > E substitution in G protein amino acid sequence to agree with consensus. 9 Substitution 4386-88 Substitution 4389-92 GGT > GAT G > D substitution in G protein amino acid sequence to agree with consensus. 10 Substitution 4491-93 Substitution 4494-96 ACC > ATC T > I substitution in G protein amino acid sequence to agree with consensus. 11 Substitution 4694 Substitution 4697 T > A Creates unique PacI cleavage site between G and L genes 12 Substitution 5339-41 Substitution 5342-44 ATT > CTT I > L substitution in L protein amino acid sequence to agree with consensus. 13 Substitution 5834-6 Substitution 5837-40 ACT > GCT T > A substitution in L protein amino acid sequence to agree with consensus. 14 Substitution 10959-61 Substitution 10962-64 AGA > AAA R > K substitution in L protein amino acid sequence to agree with consensus. 15 Substitution 7546 Substitution 7549 C > A Eliminates a BstBI site in the L gene sequence making the BstBI site between the M and G genes unique. This substitution was silent for amino acid coding.

[0173] 8. The VSV genomic clone of any one of paragraphs 1 to 7, wherein the nucleotide sequences of the VSV genome encoding and expressing a nucleocapsid, phosphoprotein, matrix, glycoprotein and large protein are selected from the group consisting of FIGS. 2B-2G.

[0174] 9. The VSV genomic clone of any one of paragraphs 1 to 7, wherein the nucleotide sequences of the VSV genome encoding and expressing a nucleocapsid, phosphoprotein, matrix, glycoprotein and large protein are selected from the group consisting of FIGS. 3A-3G, 10. A method for rescuing VSV comprising combining a T7 RNA polymerase promoter and a hammerhead ribozyme sequence to increase the efficiency of synthesis and processing of full-length VSV genomic RNA in transfected cells.

[0175] 11. The method of paragraph 10, wherein the T7 RNA polymerase promoter is a minimal functional sequence designed to initiate transcription very close to or precisely at the 5' terminus of the genomic clone.

[0176] 12. The method of paragraph 11, wherein the T7 promoter is a T7 promoter sequence that enhances formation of stable initiation and elongation complexes and a hammerhead ribozyme sequence at the 5' terminus that catalyzes removal of extra nucleotides restoring the authentic 5' terminus of the genomic transcript.

[0177] 13. The method of any one of paragraphs 10 to 12, wherein the plasmids encoding VSV nucleocapsid, phosphoprotein, matrix, glycoprotein and large protein are optimized to improve expression of the trans-acting proteins to initiate virus rescue.

[0178] 14. The method of paragraph 13, where the optimization is codon optimization.

[0179] 15. The method of paragraph 14, wherein the codon optimization comprises replacing a VSV nucleotide sequence with codons used by highly expressed mammalian genes.

[0180] 16. The method of paragraph 14 or 15, wherein the codon optimization comprises eliminating potential RNA processing signals in the coding sequence that might direct unwanted RNA splicing or cleavage/polyadenylation reaction, wherein the eliminating comprises: [0181] (a) identifying potential splice site signals and remove by introducing synonymous codons and/or [0182] (b) scanning an insert for consensus cleavage/polyadenylation signals (AAUAAA) and introducing synonymous codons to disrupt the consensus cleavage/polyadenylation signals.

[0183] 17. The method of any one of paragraphs 14 to 16, wherein the codon optimization comprises [0184] (a) adding a preferred translational start sequence (the Kozak sequence) and/or [0185] (b) adding a preferred translational stop codon.

[0186] 18. The method of any one of paragraphs 14 to 17, wherein the codon optimization comprises scanning a sequence for homopolymeric stretches of 5 nucleotides or more and interrupting the sequences by introducing synonymous codons.

[0187] 19. The method of any one of paragraphs 14 to 18, wherein the codon optimization comprises scanning a sequence for restriction endonuclease cleavage sites and eliminate any unwanted recognitions signals.

[0188] 20. The method of any one of paragraphs 14 to 19, wherein the codon optimization comprises confirming that a modified sequence translates into an expected amino acid sequence.

[0189] Having thus described in detail preferred embodiments of the present invention, it is to be understood that the invention defined by the above paragraphs is not to be limited to particular details set forth in the above description as many apparent variations thereof are possible without departing from the spirit or scope of the present invention.

Sequence CWU 1

1

181286PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 1Met Ser Ile Gln His Phe Arg Val Ala Leu Ile Pro Phe Phe Ala Ala 1 5 10 15 Phe Cys Leu Pro Val Phe Ala His Pro Glu Thr Leu Val Lys Val Lys 20 25 30 Asp Ala Glu Asp Gln Leu Gly Ala Arg Val Gly Tyr Ile Glu Leu Asp 35 40 45 Leu Asn Ser Gly Lys Ile Leu Glu Ser Phe Arg Pro Glu Glu Arg Phe 50 55 60 Pro Met Met Ser Thr Phe Lys Val Leu Leu Cys Gly Ala Val Leu Ser 65 70 75 80 Arg Ile Asp Ala Gly Gln Glu Gln Leu Gly Arg Arg Ile His Tyr Ser 85 90 95 Gln Asn Asp Leu Val Glu Tyr Ser Pro Val Thr Glu Lys His Leu Thr 100 105 110 Asp Gly Met Thr Val Arg Glu Leu Cys Ser Ala Ala Ile Thr Met Ser 115 120 125 Asp Asn Thr Ala Ala Asn Leu Leu Leu Thr Thr Ile Gly Gly Pro Lys 130 135 140 Glu Leu Thr Ala Phe Leu His Asn Met Gly Asp His Val Thr Arg Leu 145 150 155 160 Asp Arg Trp Glu Pro Glu Leu Asn Glu Ala Ile Pro Asn Asp Glu Arg 165 170 175 Asp Thr Thr Met Pro Val Ala Met Ala Thr Thr Leu Arg Lys Leu Leu 180 185 190 Thr Gly Glu Leu Leu Thr Leu Ala Ser Arg Gln Gln Leu Ile Asp Trp 195 200 205 Met Glu Ala Asp Lys Val Ala Gly Pro Leu Leu Arg Ser Ala Leu Pro 210 215 220 Ala Gly Trp Phe Ile Ala Asp Lys Ser Gly Ala Gly Glu Arg Gly Ser 225 230 235 240 Arg Gly Ile Ile Ala Ala Leu Gly Pro Asp Gly Lys Pro Ser Arg Ile 245 250 255 Val Val Ile Tyr Thr Thr Gly Ser Gln Ala Thr Met Asp Glu Arg Asn 260 265 270 Arg Gln Ile Ala Glu Ile Gly Ala Ser Leu Ile Lys His Trp 275 280 285 22462DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 2gaactcgagc agctgaagct tgcatgcctg caggtcgact ctagaggatc cccgggtacc 60gagctcgaat tcatcgatga tatcagatct gccggtctcc ctatagtgag tcgtattaat 120ttcgataagc caggttaacc tgcattaatg aatcggccaa cgcgcgggga gaggcggttt 180gcgtattggg cgctcttccg cttcctcgct cactgactcg ctgcgctcgg tcgttcggct 240gcggcgagcg gtatcagctc actcaaaggc ggtaatacgg ttatccacag aatcagggga 300taacgcagga aagaacatgt gagcaaaagg ccagcaaaag gccaggaacc gtaaaaaggc 360cgcgttgctg gcgtttttcc ataggctccg cccccctgac gagcatcaca aaaatcgacg 420ctcaagtcag aggtggcgaa acccgacagg actataaaga taccaggcgt ttccccctgg 480aagctccctc gtgcgctctc ctgttccgac cctgccgctt accggatacc tgtccgcctt 540tctcccttcg ggaagcgtgg cgctttctca tagctcacgc tgtaggtatc tcagttcggt 600gtaggtcgtt cgctccaagc tgggctgtgt gcacgaaccc cccgttcagc ccgaccgctg 660cgccttatcc ggtaactatc gtcttgagtc caacccggta agacacgact tatcgccact 720ggcagcagcc actggtaaca ggattagcag agcgaggtat gtaggcggtg ctacagagtt 780cttgaagtgg tggcctaact acggctacac tagaagaaca gtatttggta tctgcgctct 840gctgaagcca gttaccttcg gaaaaagagt tggtagctct tgatccggca aacaaaccac 900cgctggtagc ggtggttttt ttgtttgcaa gcagcagatt acgcgcagaa aaaaaggatc 960tcaagaagat cctttgatct tttctacggg gtctgacgct cagtggaacg aaaactcacg 1020ttaagggatt ttggtcatga gattatcaaa aaggatcttc acctagatcc ttttaaatta 1080aaaatgaagt tttaaatcaa tctaaagtat atatgagtaa acttggtctg acagttacca 1140atgcttaatc agtgaggcac ctatctcagc gatctgtcta tttcgttcat ccatagttgc 1200ctgactcccc gtcgtgtaga taactacgat acgggagggc ttaccatctg gccccagtgc 1260tgcaatgata ccgcgagacc cacgctcacc ggctccagat ttatcagcaa taaaccagcc 1320agccggaagg gccgagcgca gaagtggtcc tgcaacttta tccgcctcca tccagtctat 1380taattgttgc cgggaagcta gagtaagtag ttcgccagtt aatagtttgc gcaacgttgt 1440tgccattgct acaggcatcg tggtgtcacg ctcgtcgttt ggtatggctt cattcagctc 1500cggttcccaa cgatcaaggc gagttacatg atcccccatg ttgtgcaaaa aagcggttag 1560ctccttcggt cctccgatcg ttgtcagaag taagttggcc gcagtgttat cactcatggt 1620tatggcagca ctgcataatt ctcttactgt catgccatcc gtaagatgct tttctgtgac 1680tggtgagtac tcaaccaagt cattctgaga atagtgtatg cggcgaccga gttgctcttg 1740cccggcgtca atacgggata ataccgcgcc acatagcaga actttaaaag tgctcatcat 1800tggaaaacgt tcttcggggc gaaaactctc aaggatctta ccgctgttga gatccagttc 1860gatgtaaccc actcgtgcac ccaactgatc ttcagcatct tttactttca ccagcgtttc 1920tgggtgagca aaaacaggaa ggcaaaatgc cgcaaaaaag ggaataaggg cgacacggaa 1980atgttgaata ctcatactct tcctttttca atattattga agcatttatc agggttattg 2040tctcatgagc ggatacatat ttgaatgtat ttagaaaaat aaacaaatag gggttccgcg 2100cacatttccc cgaaaagtgc cacctgacgt ctaagaaacc attattatca tgacattaac 2160ctataaaaat aggcgtatca cgaggccctt tcgtctcgcg cgtttcggtg atgacggtga 2220aaacctctga cacatgcagc tcccggagac ggtcacagct tgtctgtaag cggatgccgg 2280gagcagacaa gcccgtcagg gcgcgtcagc gggtgttggc gggtgtcggg gctggcttaa 2340ctatgcggca tcagagcaga ttgtactgag agtgcaccat atggacatat tgtcgttaga 2400acgcggctac aattaataca taaccttatg tatcatacac atacgattta ggtgacacta 2460ta 24623422PRTVesicular stomatitis Indiana virus 3Met Ser Val Thr Val Lys Arg Ile Ile Asp Asn Thr Val Ile Val Pro 1 5 10 15 Lys Leu Pro Ala Asn Glu Asp Pro Val Glu Tyr Pro Ala Asp Tyr Phe 20 25 30 Arg Lys Ser Lys Glu Ile Pro Leu Tyr Ile Asn Thr Thr Lys Ser Leu 35 40 45 Ser Asp Leu Arg Gly Tyr Val Tyr Gln Gly Leu Lys Ser Gly Asn Val 50 55 60 Ser Ile Ile His Val Asn Ser Tyr Leu Tyr Gly Ala Leu Lys Asp Ile 65 70 75 80 Arg Gly Lys Leu Asp Lys Asp Trp Ser Ser Phe Gly Ile Asn Ile Gly 85 90 95 Lys Ala Gly Asp Thr Ile Gly Ile Phe Asp Leu Val Ser Leu Lys Ala 100 105 110 Leu Asp Gly Val Leu Pro Asp Gly Val Ser Asp Ala Ser Arg Thr Ser 115 120 125 Ala Asp Asp Lys Trp Leu Pro Leu Tyr Leu Leu Gly Leu Tyr Arg Val 130 135 140 Gly Arg Thr Gln Met Pro Glu Tyr Arg Lys Arg Leu Met Asp Gly Leu 145 150 155 160 Thr Asn Gln Cys Lys Met Ile Asn Glu Gln Phe Glu Pro Leu Val Pro 165 170 175 Glu Gly Arg Asp Ile Phe Asp Val Trp Gly Asn Asp Ser Asn Tyr Thr 180 185 190 Lys Ile Val Ala Ala Val Asp Met Phe Phe His Met Phe Lys Lys His 195 200 205 Glu Cys Ala Ser Phe Arg Tyr Gly Thr Ile Val Ser Arg Phe Lys Asp 210 215 220 Cys Ala Ala Leu Ala Thr Phe Gly His Leu Cys Lys Ile Thr Gly Met 225 230 235 240 Ser Thr Glu Asp Val Thr Thr Trp Ile Leu Asn Arg Glu Val Ala Asp 245 250 255 Glu Met Val Gln Met Met Leu Pro Gly Gln Glu Ile Asp Lys Ala Asp 260 265 270 Ser Tyr Met Pro Tyr Leu Ile Asp Phe Gly Leu Ser Ser Lys Ser Pro 275 280 285 Tyr Ser Ser Val Lys Asn Pro Ala Phe His Phe Trp Gly Gln Leu Thr 290 295 300 Ala Leu Leu Leu Arg Ser Thr Arg Ala Arg Asn Ala Arg Gln Pro Asp 305 310 315 320 Asp Ile Glu Tyr Thr Ser Leu Thr Thr Ala Gly Leu Leu Tyr Ala Tyr 325 330 335 Ala Val Gly Ser Ser Ala Asp Leu Ala Gln Gln Phe Cys Val Gly Asp 340 345 350 Ser Lys Tyr Thr Pro Asp Asp Ser Thr Gly Gly Leu Thr Thr Asn Ala 355 360 365 Pro Pro Gln Gly Arg Asp Val Val Glu Trp Leu Gly Trp Phe Glu Asp 370 375 380 Gln Asn Arg Lys Pro Thr Pro Asp Met Met Gln Tyr Ala Lys Arg Ala 385 390 395 400 Val Met Ser Leu Gln Gly Leu Arg Glu Lys Thr Ile Gly Lys Tyr Ala 405 410 415 Lys Ser Glu Phe Asp Lys 420 4265PRTVesicular stomatitis Indiana virus 4Met Asp Asn Leu Thr Lys Val Arg Glu Tyr Leu Lys Ser Tyr Ser Arg 1 5 10 15 Leu Asp Gln Ala Val Gly Glu Ile Asp Glu Ile Glu Ala Gln Arg Ala 20 25 30 Glu Lys Ser Asn Tyr Glu Leu Phe Gln Glu Asp Gly Val Glu Glu His 35 40 45 Thr Arg Pro Ser Tyr Phe Gln Ala Ala Asp Asp Ser Asp Thr Glu Ser 50 55 60 Glu Pro Glu Ile Glu Asp Asn Gln Gly Leu Tyr Val Pro Asp Pro Glu 65 70 75 80 Ala Glu Gln Val Glu Gly Phe Ile Gln Gly Pro Leu Asp Asp Tyr Ala 85 90 95 Asp Glu Asp Val Asp Val Val Phe Thr Ser Asp Trp Lys Gln Pro Glu 100 105 110 Leu Glu Ser Asp Glu His Gly Lys Thr Leu Arg Leu Thr Leu Pro Glu 115 120 125 Gly Leu Ser Gly Glu Gln Lys Ser Gln Trp Leu Leu Thr Ile Lys Ala 130 135 140 Val Val Gln Ser Ala Lys His Trp Asn Leu Ala Glu Cys Thr Phe Glu 145 150 155 160 Ala Ser Gly Glu Gly Val Ile Ile Lys Lys Arg Gln Ile Thr Pro Asp 165 170 175 Val Tyr Lys Val Thr Pro Val Met Asn Thr His Pro Tyr Gln Ser Glu 180 185 190 Ala Val Ser Asp Val Trp Ser Leu Ser Lys Thr Ser Met Thr Phe Gln 195 200 205 Pro Lys Lys Ala Ser Leu Gln Pro Leu Thr Ile Ser Leu Asp Glu Leu 210 215 220 Phe Ser Ser Arg Gly Glu Phe Ile Ser Val Gly Gly Asn Gly Arg Met 225 230 235 240 Ser His Lys Glu Ala Ile Leu Leu Gly Leu Arg Tyr Lys Lys Leu Tyr 245 250 255 Asn Gln Ala Arg Val Lys Tyr Ser Leu 260 265 5229PRTVesicular stomatitis Indiana virus 5Met Ser Ser Leu Lys Lys Ile Leu Gly Leu Lys Gly Lys Gly Lys Lys 1 5 10 15 Ser Lys Lys Leu Gly Ile Ala Pro Pro Pro Tyr Glu Glu Asp Thr Asn 20 25 30 Met Glu Tyr Ala Pro Ser Ala Pro Ile Asp Lys Ser Tyr Phe Gly Val 35 40 45 Asp Glu Met Asp Thr His Asp Pro Asn Gln Leu Arg Tyr Glu Lys Phe 50 55 60 Phe Phe Thr Val Lys Met Thr Val Arg Ser Asn Arg Pro Phe Arg Thr 65 70 75 80 Tyr Ser Asp Val Ala Ala Ala Val Ser His Trp Asp His Met Tyr Ile 85 90 95 Gly Met Ala Gly Lys Arg Pro Phe Tyr Lys Ile Leu Ala Phe Leu Gly 100 105 110 Ser Ser Asn Leu Lys Ala Thr Pro Ala Val Leu Ala Asp Gln Gly Gln 115 120 125 Pro Glu Tyr His Ala His Cys Glu Gly Arg Ala Tyr Leu Pro His Arg 130 135 140 Met Gly Lys Thr Pro Pro Met Leu Asn Val Pro Glu His Phe Arg Arg 145 150 155 160 Pro Phe Asn Ile Gly Leu Tyr Lys Gly Thr Ile Glu Leu Thr Met Thr 165 170 175 Ile Tyr Asp Asp Glu Ser Leu Glu Ala Ala Pro Met Ile Trp Asp His 180 185 190 Phe Asn Ser Ser Lys Phe Ser Asp Phe Arg Glu Lys Ala Leu Met Phe 195 200 205 Gly Leu Ile Val Glu Lys Lys Ala Ser Gly Ala Trp Val Leu Asp Ser 210 215 220 Val Ser His Phe Lys 225 6511PRTVesicular stomatitis Indiana virusMOD_RES(259)..(259)Any amino acid 6Met Lys Cys Leu Leu Tyr Leu Ala Phe Leu Phe Ile Gly Val Asn Cys 1 5 10 15 Lys Phe Thr Ile Val Phe Pro His Asn Gln Lys Gly Asn Trp Lys Asn 20 25 30 Val Pro Ser Asn Tyr His Tyr Cys Pro Ser Ser Ser Asp Leu Asn Trp 35 40 45 His Asn Asp Leu Val Gly Thr Ala Leu Gln Val Lys Met Pro Lys Ser 50 55 60 His Lys Ala Ile Gln Ala Asp Gly Trp Met Cys His Ala Ser Lys Trp 65 70 75 80 Val Thr Thr Cys Asp Phe Arg Trp Tyr Gly Pro Lys Tyr Ile Thr His 85 90 95 Ser Ile Arg Ser Phe Thr Pro Ser Val Glu Gln Cys Lys Glu Ser Ile 100 105 110 Glu Gln Thr Lys Gln Gly Thr Trp Leu Asn Pro Gly Phe Pro Pro Gln 115 120 125 Ser Cys Gly Tyr Ala Thr Val Thr Asp Ala Glu Ala Ala Ile Val Gln 130 135 140 Val Thr Pro His His Val Leu Val Asp Glu Tyr Thr Gly Glu Trp Val 145 150 155 160 Asp Ser Gln Phe Ile Asn Gly Lys Cys Ser Asn Asp Ile Cys Pro Thr 165 170 175 Val His Asn Ser Thr Thr Trp His Ser Asp Tyr Lys Val Lys Gly Leu 180 185 190 Cys Asp Ser Asn Leu Ile Ser Met Asp Ile Thr Phe Phe Ser Glu Asp 195 200 205 Gly Glu Leu Ser Ser Leu Gly Lys Lys Gly Thr Gly Phe Arg Ser Asn 210 215 220 Tyr Phe Ala Tyr Glu Thr Gly Asp Lys Ala Cys Lys Met Gln Tyr Cys 225 230 235 240 Lys His Trp Gly Val Arg Leu Pro Ser Gly Val Trp Phe Glu Met Ala 245 250 255 Asp Lys Xaa Leu Phe Ala Ala Ala Arg Phe Pro Glu Cys Pro Glu Gly 260 265 270 Ser Ser Ile Ser Ala Pro Ser Gln Thr Ser Val Asp Val Ser Leu Ile 275 280 285 Gln Asp Val Glu Arg Ile Leu Asp Tyr Ser Leu Cys Gln Glu Thr Trp 290 295 300 Ser Lys Ile Arg Ala Gly Leu Pro Ile Ser Pro Val Asp Leu Ser Tyr 305 310 315 320 Leu Ala Pro Lys Asn Pro Gly Thr Gly Pro Val Phe Thr Ile Ile Asn 325 330 335 Gly Thr Leu Lys Tyr Phe Glu Thr Arg Tyr Ile Arg Val Asp Ile Ala 340 345 350 Ala Pro Ile Leu Ser Arg Met Val Gly Met Ile Ser Gly Thr Thr Thr 355 360 365 Glu Arg Val Leu Trp Asp Asp Trp Ala Pro Tyr Glu Asp Val Glu Ile 370 375 380 Gly Pro Asn Gly Val Leu Arg Thr Ser Ser Gly Tyr Lys Phe Pro Leu 385 390 395 400 Tyr Met Ile Gly His Gly Met Leu Asp Ser Asp Leu His Leu Ser Ser 405 410 415 Lys Ala Gln Val Phe Glu His Pro His Ile Gln Asp Ala Ala Ser Gln 420 425 430 Leu Pro Asp Gly Glu Thr Leu Phe Phe Gly Asp Thr Gly Leu Ser Lys 435 440 445 Asn Pro Ile Glu Phe Val Glu Gly Trp Phe Ser Ser Trp Lys Ser Ser 450 455 460 Ile Ala Ser Phe Phe Phe Thr Ile Gly Leu Ile Ile Gly Leu Phe Leu 465 470 475 480 Val Leu Arg Val Gly Ile Tyr Leu Cys Ile Lys Leu Lys His Thr Lys 485 490 495 Lys Arg Gln Ile Tyr Thr Asp Ile Glu Met Asn Arg Leu Gly Lys 500 505 510 72109PRTVesicular stomatitis Indiana virus 7Met Glu Val His Asp Phe Glu Thr Asp Glu Phe Asn Asp Phe Asn Glu 1 5 10 15 Asp Asp Tyr Ala Thr Arg Glu Phe Leu Asn Pro Asp Glu Arg Met Thr 20 25 30 Tyr Leu Asn His Ala Asp Tyr Asn Leu Asn Ser Pro Leu Ile Ser Asp 35 40 45 Asp Ile Asp Asn Leu Ile Arg Lys Phe Asn Ser Leu Pro Ile Pro Ser 50 55 60 Met Trp Asp Ser Lys Asn Trp Asp Gly Val Leu Glu Met Leu Thr Ser 65 70 75 80 Cys Gln Ala Asn Pro Ile Ser Thr Ser Gln Met His Lys Trp Met Gly 85 90 95 Ser Trp Leu Met Ser Asp Asn His Asp Ala Ser Gln Gly Tyr Ser Phe 100 105 110 Leu His Glu Val Asp Lys Glu Ala Glu Ile Thr Phe Asp Val Val Glu 115 120 125 Thr Phe Ile Arg Gly Trp Gly Asn Lys Pro Ile Glu Tyr Ile Lys Lys 130 135 140 Glu Arg Trp Thr Asp Ser Phe Lys Ile Leu Ala Tyr

Leu Cys Gln Lys 145 150 155 160 Phe Leu Asp Leu His Lys Leu Thr Leu Ile Leu Asn Ala Val Ser Glu 165 170 175 Val Glu Leu Leu Asn Leu Ala Arg Thr Phe Lys Gly Lys Val Arg Arg 180 185 190 Ser Ser His Gly Thr Asn Ile Cys Arg Ile Arg Val Pro Ser Leu Gly 195 200 205 Pro Thr Phe Ile Ser Glu Gly Trp Ala Tyr Phe Lys Lys Leu Asp Ile 210 215 220 Leu Met Asp Arg Asn Phe Leu Leu Met Val Lys Asp Val Ile Ile Gly 225 230 235 240 Arg Met Gln Thr Val Leu Ser Met Val Cys Arg Ile Asp Asn Leu Phe 245 250 255 Ser Glu Gln Asp Ile Phe Ser Leu Leu Asn Ile Tyr Arg Ile Gly Asp 260 265 270 Lys Ile Val Glu Arg Gln Gly Asn Phe Ser Tyr Asp Leu Ile Lys Met 275 280 285 Val Glu Pro Ile Cys Asn Leu Lys Leu Met Lys Leu Ala Arg Glu Ser 290 295 300 Arg Pro Leu Val Pro Gln Phe Pro His Phe Glu Asn His Ile Lys Thr 305 310 315 320 Ser Val Asp Glu Gly Ala Lys Ile Asp Arg Gly Ile Arg Phe Leu His 325 330 335 Asp Gln Ile Met Ser Val Lys Thr Val Asp Leu Thr Leu Val Ile Tyr 340 345 350 Gly Ser Phe Arg His Trp Gly His Pro Phe Ile Asp Tyr Tyr Thr Gly 355 360 365 Leu Glu Lys Leu His Ser Gln Val Thr Met Lys Lys Asp Ile Asp Val 370 375 380 Ser Tyr Ala Lys Ala Leu Ala Ser Asp Leu Ala Arg Ile Val Leu Phe 385 390 395 400 Gln Gln Phe Asn Asp His Lys Lys Trp Phe Val Asn Gly Asp Leu Leu 405 410 415 Pro His Asp His Pro Phe Lys Ser His Val Lys Glu Asn Thr Trp Pro 420 425 430 Thr Ala Ala Gln Val Gln Asp Phe Gly Asp Lys Trp His Glu Leu Pro 435 440 445 Leu Ile Lys Cys Phe Glu Ile Pro Asp Leu Leu Asp Pro Ser Ile Ile 450 455 460 Tyr Ser Asp Lys Ser His Ser Met Asn Arg Ser Glu Val Leu Lys His 465 470 475 480 Val Arg Met Asn Pro Asn Thr Pro Ile Pro Ser Lys Lys Val Leu Gln 485 490 495 Thr Met Leu Asp Thr Lys Ala Thr Asn Trp Lys Glu Phe Leu Lys Glu 500 505 510 Ile Asp Glu Lys Gly Leu Asp Asp Asp Asp Leu Ile Ile Gly Leu Lys 515 520 525 Gly Lys Glu Arg Glu Leu Lys Leu Ala Gly Arg Phe Phe Ser Leu Met 530 535 540 Ser Trp Lys Leu Arg Glu Tyr Phe Val Ile Thr Glu Tyr Leu Ile Lys 545 550 555 560 Thr His Phe Val Pro Met Phe Lys Gly Leu Thr Met Ala Asp Asp Leu 565 570 575 Thr Ala Val Ile Lys Lys Met Leu Asp Ser Ser Ser Gly Gln Gly Leu 580 585 590 Lys Ser Tyr Glu Ala Ile Cys Ile Ala Asn His Ile Asp Tyr Glu Lys 595 600 605 Trp Asn Asn His Gln Arg Lys Leu Ser Asn Gly Pro Val Phe Arg Val 610 615 620 Met Gly Gln Phe Leu Gly Tyr Pro Ser Leu Ile Glu Arg Thr His Glu 625 630 635 640 Phe Phe Glu Lys Ser Leu Ile Tyr Tyr Asn Gly Arg Pro Asp Leu Met 645 650 655 Arg Val His Asn Asn Thr Leu Ile Asn Ser Thr Ser Gln Arg Val Cys 660 665 670 Trp Gln Gly Gln Glu Gly Gly Leu Glu Gly Leu Arg Gln Lys Gly Trp 675 680 685 Ser Ile Leu Asn Leu Leu Val Ile Gln Arg Glu Ala Lys Ile Arg Asn 690 695 700 Thr Ala Val Lys Val Leu Ala Gln Gly Asp Asn Gln Val Ile Cys Thr 705 710 715 720 Gln Tyr Lys Thr Lys Lys Ser Arg Asn Val Val Glu Leu Gln Gly Ala 725 730 735 Leu Asn Gln Met Val Ser Asn Asn Glu Lys Ile Met Thr Ala Ile Lys 740 745 750 Ile Gly Thr Gly Lys Leu Gly Leu Leu Ile Asn Asp Asp Glu Thr Met 755 760 765 Gln Ser Ala Asp Tyr Leu Asn Tyr Gly Lys Ile Pro Ile Phe Arg Gly 770 775 780 Val Ile Arg Gly Leu Glu Thr Lys Arg Trp Ser Arg Val Thr Cys Val 785 790 795 800 Thr Asn Asp Gln Ile Pro Thr Cys Ala Asn Ile Met Ser Ser Val Ser 805 810 815 Thr Asn Ala Leu Thr Val Ala His Phe Ala Glu Asn Pro Ile Asn Ala 820 825 830 Met Ile Gln Tyr Asn Tyr Phe Gly Thr Phe Ala Arg Leu Leu Leu Met 835 840 845 Met His Asp Pro Ala Leu Arg Gln Ser Leu Tyr Glu Val Gln Asp Lys 850 855 860 Ile Pro Gly Leu His Ser Ser Thr Phe Lys Tyr Ala Met Leu Tyr Leu 865 870 875 880 Asp Pro Ser Ile Gly Gly Val Ser Gly Met Ser Leu Ser Arg Phe Leu 885 890 895 Ile Arg Ala Phe Pro Asp Pro Val Thr Glu Ser Leu Ser Phe Trp Arg 900 905 910 Phe Ile His Val His Ala Arg Ser Glu His Leu Lys Glu Met Ser Ala 915 920 925 Val Phe Gly Asn Pro Glu Ile Ala Lys Phe Arg Ile Thr His Ile Asp 930 935 940 Lys Leu Val Glu Asp Pro Thr Ser Leu Asn Ile Ala Met Gly Met Ser 945 950 955 960 Pro Ala Asn Leu Leu Lys Thr Glu Val Lys Lys Cys Leu Ile Glu Ser 965 970 975 Arg Gln Thr Ile Arg Asn Gln Val Ile Lys Asp Ala Thr Ile Tyr Leu 980 985 990 Tyr His Glu Glu Asp Arg Leu Arg Ser Phe Leu Trp Ser Ile Asn Pro 995 1000 1005 Leu Phe Pro Arg Phe Leu Ser Glu Phe Lys Ser Gly Thr Phe Leu 1010 1015 1020 Gly Val Ala Asp Gly Leu Ile Ser Leu Phe Gln Asn Ser Arg Thr 1025 1030 1035 Ile Arg Asn Ser Phe Lys Lys Lys Tyr His Arg Glu Leu Asp Asp 1040 1045 1050 Leu Ile Val Arg Ser Glu Val Ser Ser Leu Thr His Leu Gly Lys 1055 1060 1065 Leu His Leu Arg Arg Gly Ser Cys Lys Met Trp Thr Cys Ser Ala 1070 1075 1080 Thr His Ala Asp Thr Leu Arg Tyr Lys Ser Trp Gly Arg Thr Val 1085 1090 1095 Ile Gly Thr Thr Val Pro His Pro Leu Glu Met Leu Gly Pro Gln 1100 1105 1110 His Arg Lys Glu Thr Pro Cys Ala Pro Cys Asn Thr Ser Gly Phe 1115 1120 1125 Asn Tyr Val Ser Val His Cys Pro Asp Gly Ile His Asp Val Phe 1130 1135 1140 Ser Ser Arg Gly Pro Leu Pro Ala Tyr Leu Gly Ser Lys Thr Ser 1145 1150 1155 Glu Ser Thr Ser Ile Leu Gln Pro Trp Glu Arg Glu Ser Lys Val 1160 1165 1170 Pro Leu Ile Lys Arg Ala Thr Arg Leu Arg Asp Ala Ile Ser Trp 1175 1180 1185 Phe Val Glu Pro Asp Ser Lys Leu Ala Met Thr Ile Leu Ser Asn 1190 1195 1200 Ile His Ser Leu Thr Gly Glu Glu Trp Thr Lys Arg Gln His Gly 1205 1210 1215 Phe Lys Arg Thr Gly Ser Ala Leu His Arg Phe Ser Thr Ser Arg 1220 1225 1230 Met Ser His Gly Gly Phe Ala Ser Gln Ser Thr Ala Ala Leu Thr 1235 1240 1245 Arg Leu Met Ala Thr Thr Asp Thr Met Arg Asp Leu Gly Asp Gln 1250 1255 1260 Asn Phe Asp Phe Leu Phe Gln Ala Thr Leu Leu Tyr Ala Gln Ile 1265 1270 1275 Thr Thr Thr Val Ala Arg Asp Gly Trp Ile Thr Ser Cys Thr Asp 1280 1285 1290 His Tyr His Ile Ala Cys Lys Ser Cys Leu Arg Pro Ile Glu Glu 1295 1300 1305 Ile Thr Leu Asp Ser Ser Met Asp Tyr Thr Pro Pro Asp Val Ser 1310 1315 1320 His Val Leu Lys Thr Trp Arg Asn Gly Glu Gly Ser Trp Gly Gln 1325 1330 1335 Glu Ile Lys Gln Ile Tyr Pro Leu Glu Gly Asn Trp Lys Asn Leu 1340 1345 1350 Ala Pro Ala Glu Gln Ser Tyr Gln Val Gly Arg Cys Ile Gly Phe 1355 1360 1365 Leu Tyr Gly Asp Leu Ala Tyr Arg Lys Ser Thr His Ala Glu Asp 1370 1375 1380 Ser Ser Leu Phe Pro Leu Ser Ile Gln Gly Arg Ile Arg Gly Arg 1385 1390 1395 Gly Phe Leu Lys Gly Leu Leu Asp Gly Leu Met Arg Ala Ser Cys 1400 1405 1410 Cys Gln Val Ile His Arg Arg Ser Leu Ala His Leu Lys Arg Pro 1415 1420 1425 Ala Asn Ala Val Tyr Gly Gly Leu Ile Tyr Leu Ile Asp Lys Leu 1430 1435 1440 Ser Val Ser Pro Pro Phe Leu Ser Leu Thr Arg Ser Gly Pro Ile 1445 1450 1455 Arg Asp Glu Leu Glu Thr Ile Pro His Lys Ile Pro Thr Ser Tyr 1460 1465 1470 Pro Thr Ser Asn Arg Asp Met Gly Val Ile Val Arg Asn Tyr Phe 1475 1480 1485 Lys Tyr Gln Cys Arg Leu Ile Glu Lys Gly Lys Tyr Arg Ser His 1490 1495 1500 Tyr Ser Gln Leu Trp Leu Phe Ser Asp Val Leu Ser Ile Asp Phe 1505 1510 1515 Ile Gly Pro Phe Ser Ile Ser Thr Thr Leu Leu Gln Ile Leu Tyr 1520 1525 1530 Lys Pro Phe Leu Ser Gly Lys Asp Lys Asn Glu Leu Arg Glu Leu 1535 1540 1545 Ala Asn Leu Ser Ser Leu Leu Arg Ser Gly Glu Gly Trp Glu Asp 1550 1555 1560 Ile His Val Lys Phe Phe Thr Lys Asp Ile Leu Leu Cys Pro Glu 1565 1570 1575 Glu Ile Arg His Ala Cys Lys Phe Gly Ile Ala Lys Asp Asn Asn 1580 1585 1590 Lys Asp Met Ser Tyr Pro Pro Trp Gly Arg Glu Ser Arg Gly Thr 1595 1600 1605 Ile Thr Thr Ile Pro Val Tyr Tyr Thr Thr Thr Pro Tyr Pro Lys 1610 1615 1620 Met Leu Glu Met Pro Pro Arg Ile Gln Asn Pro Leu Leu Ser Gly 1625 1630 1635 Ile Arg Leu Gly Gln Leu Pro Thr Gly Ala His Tyr Lys Ile Arg 1640 1645 1650 Ser Ile Leu His Gly Met Gly Ile His Tyr Arg Asp Phe Leu Ser 1655 1660 1665 Cys Gly Asp Gly Ser Gly Gly Met Thr Ala Ala Leu Leu Arg Glu 1670 1675 1680 Asn Val His Ser Arg Gly Ile Phe Asn Ser Leu Leu Glu Leu Ser 1685 1690 1695 Gly Ser Val Met Arg Gly Ala Ser Pro Glu Pro Pro Ser Ala Leu 1700 1705 1710 Glu Thr Leu Gly Gly Asp Lys Ser Arg Cys Val Asn Gly Glu Thr 1715 1720 1725 Cys Trp Glu Tyr Pro Ser Asp Leu Cys Asp Pro Arg Thr Trp Asp 1730 1735 1740 Tyr Phe Leu Arg Leu Lys Ala Gly Leu Gly Leu Gln Ile Asp Leu 1745 1750 1755 Ile Val Met Asp Met Glu Val Arg Asp Ser Ser Thr Ser Leu Lys 1760 1765 1770 Ile Glu Thr Asn Val Arg Asn Tyr Val His Arg Ile Leu Asp Glu 1775 1780 1785 Gln Gly Val Leu Ile Tyr Lys Thr Tyr Gly Thr Tyr Ile Cys Glu 1790 1795 1800 Ser Glu Lys Asn Ala Val Thr Ile Leu Gly Pro Met Phe Lys Thr 1805 1810 1815 Val Asp Leu Val Gln Thr Glu Phe Ser Ser Ser Gln Thr Ser Glu 1820 1825 1830 Val Tyr Met Val Cys Lys Gly Leu Lys Lys Leu Ile Asp Glu Pro 1835 1840 1845 Asn Pro Asp Trp Ser Ser Ile Asn Glu Ser Trp Lys Asn Leu Tyr 1850 1855 1860 Ala Phe Gln Ser Ser Glu Gln Glu Phe Ala Arg Ala Lys Lys Val 1865 1870 1875 Ser Thr Tyr Phe Thr Leu Thr Gly Ile Pro Ser Gln Phe Ile Pro 1880 1885 1890 Asp Pro Phe Val Asn Ile Glu Thr Met Leu Gln Ile Phe Gly Val 1895 1900 1905 Pro Thr Gly Val Ser His Ala Ala Ala Leu Lys Ser Ser Asp Arg 1910 1915 1920 Pro Ala Asp Leu Leu Thr Ile Ser Leu Phe Tyr Met Ala Ile Ile 1925 1930 1935 Ser Tyr Tyr Asn Ile Asn His Ile Arg Val Gly Pro Ile Pro Pro 1940 1945 1950 Asn Pro Pro Ser Asp Gly Ile Ala Gln Asn Val Gly Ile Ala Ile 1955 1960 1965 Thr Gly Ile Ser Phe Trp Leu Ser Leu Met Glu Lys Asp Ile Pro 1970 1975 1980 Leu Tyr Gln Gln Cys Leu Ala Val Ile Gln Gln Ser Phe Pro Ile 1985 1990 1995 Arg Trp Glu Ala Val Ser Val Lys Gly Gly Tyr Lys Gln Lys Trp 2000 2005 2010 Ser Thr Arg Gly Asp Gly Leu Pro Lys Asp Thr Arg Ile Ser Asp 2015 2020 2025 Ser Leu Ala Pro Ile Gly Asn Trp Ile Arg Ser Leu Glu Leu Val 2030 2035 2040 Arg Asn Gln Val Arg Leu Asn Pro Phe Asn Glu Ile Leu Phe Asn 2045 2050 2055 Gln Leu Cys Arg Thr Val Asp Asn His Leu Lys Trp Ser Asn Leu 2060 2065 2070 Arg Arg Asn Thr Gly Met Ile Glu Trp Ile Asn Arg Arg Ile Ser 2075 2080 2085 Lys Glu Asp Arg Ser Ile Leu Met Leu Lys Ser Asp Leu His Glu 2090 2095 2100 Glu Asn Ser Trp Arg Asp 2105 811161DNAVesicular stomatitis Indiana virus 8acgaagacaa acaaaccatt attatcatta aaaggctcag gagaaacttt aacagtaatc 60aaaatgtctg ttacagtcaa gagaatcatt gacaacacag tcatagttcc aaaacttcct 120gcaaatgagg atccagtgga atacccggca gattacttca gaaaatcaaa ggagattcct 180ctttacatca atactacaaa aagtttgtca gatctaagag gatatgtcta ccaaggcctc 240aaatccggaa atgtatcaat catacatgtc aacagctact tgtatggagc attgaaggac 300atccggggta agttggataa agattggtca agtttcggaa taaacatcgg gaaggcaggg 360gatacaatcg gaatatttga ccttgtatcc ttgaaagccc tggacggtgt acttccagat 420ggagtatcgg atgcttccag aaccagcgca gatgacaaat ggttgccttt gtatctactt 480ggcttataca gagtgggcag aacacaaatg cctgaataca gaaaaaggct catggatggg 540ctgacaaatc aatgcaaaat gatcaatgaa cagtttgaac ctcttgtgcc agaaggtcgt 600gacatttttg atgtgtgggg aaatgacagt aattacacaa aaattgtcgc tgcagtggac 660atgttcttcc acatgttcaa aaaacatgaa tgtgcctcgt tcagatacgg aactattgtt 720tccagattca aagattgtgc tgcattggca acatttggac acctctgcaa aataaccgga 780atgtctacag aagatgtgac gacctggatc ttgaaccgag aagttgcaga tgagatggtc 840caaatgatgc ttccaggcca agaaattgac aaggctgatt catacatgcc ttatttgatc 900gactttggat tgtcttctaa gtctccatat tcttccgtca aaaaccctgc cttccacttc 960tgggggcaat tgacagctct tctgctcaga tccaccagag caaggaatgc ccgacagcct 1020gatgacattg agtatacatc tcttactaca gcaggtttgt tgtacgctta tgcagtagga 1080tcctctgctg acttggcaca acagttttgt gttggagata gcaaatacac tccagatgat 1140agtaccggag gattgacgac taatgcaccg ccacaaggca gagatgtggt cgaatggctc 1200ggatggtttg aagatcaaaa cagaaaaccg actcctgata tgatgcagta tgcgaaacga 1260gcagtcatgt cactgcaagg cctaagagag aagacaattg gcaagtatgc taagtcagag 1320tttgacaaat gaccctataa ttctcagatc acctattata tattatgcta catatgaaaa 1380aaactaacag atatcatgga taatctcaca aaagttcgtg agtatctcaa gtcctattct 1440cgtctagatc aggcggtagg agagatagat gagatcgaag cacaacgagc tgaaaagtcc 1500aattatgagt tgttccaaga ggacggagtg gaagagcata ctaggccctc ttattttcag 1560gcagcagatg attctgacac agaatctgaa ccagaaattg aagacaatca aggcttgtat 1620gtaccagatc cggaagctga gcaagttgaa ggctttatac aggggccttt agatgactat 1680gcagatgagg acgtggatgt tgtattcact tcggactgga aacagcctga gcttgaatcc 1740gacgagcatg gaaagacctt acggttgaca ttgccagagg gtttaagtgg agagcagaaa 1800tcccagtggc ttttgacgat taaagcagtc gttcaaagtg ccaaacactg gaatctggca

1860gagtgcacat ttgaagcatc gggagaaggg gtcatcataa aaaagcgcca gataactccg 1920gatgtatata aggtcactcc agtgatgaac acacatccgt accaatcaga agccgtatca 1980gatgtttggt ctctctcaaa gacatccatg actttccaac ccaagaaagc aagtcttcag 2040cctctcacca tatccttgga tgaattgttc tcatctagag gagaattcat ctctgtcgga 2100ggtaacggac gaatgtctca taaagaggcc atcctgctcg gtctgaggta caaaaagttg 2160tacaatcagg cgagagtcaa atattctctg tagactatga aaaaaagtaa cagatatcac 2220aatctaagtg ttatcccaat ccattcatca tgagttcctt aaagaagatt ctcggtctga 2280aggggaaagg taagaaatct aagaaattag ggatcgcacc acccccttat gaagaggaca 2340ctaacatgga gtatgctccg agcgctccaa ttgacaaatc ctattttgga gttgacgaga 2400tggacactca tgatccgaat caattaagat atgagaaatt cttctttaca gtgaaaatga 2460cggttagatc taatcgtccg ttcagaacat actcagatgt ggcagccgct gtatcccatt 2520gggatcacat gtacatcgga atggcaggga aacgtccctt ctacaagatc ttggcttttt 2580tgggttcttc taatctaaag gccactccag cggtattggc agatcaaggt caaccagagt 2640atcatgctca ctgtgaaggc agggcttatt tgccacacag aatggggaag acccctccca 2700tgctcaatgt accagagcac ttcagaagac cattcaatat aggtctttac aagggaacga 2760ttgagctcac aatgaccatc tacgatgatg agtcactgga agcagctcct atgatctggg 2820atcatttcaa ttcttccaaa ttttctgatt tcagagagaa ggccttaatg tttggcctga 2880ttgtcgagaa aaaggcatct ggagcttggg tcctggattc tgtcagccac ttcaaatgag 2940ctagtctagc ttccagcttc tgaacaatcc ccggtttact cagtctctcc taattccagc 3000ctttcgaaca actaatatcc tgtcttctct atcccgatga aaaaaactaa cagagatcga 3060tctgtttcct tgacaccatg aagtgccttt tgtacttagc ttttttattc atcggggtga 3120attgcaagtt caccatagtt tttccacaca accaaaaagg aaactggaaa aatgttcctt 3180ccaattacca ttattgcccg tcaagctcag atttaaattg gcataatgac ttagtaggca 3240cagccttaca agtcaaaatg cccaagagtc acaaggctat tcaagcagac ggttggatgt 3300gtcatgcttc caaatgggtc actacttgtg atttccgctg gtacggaccg aagtatataa 3360cacattccat ccgatccttc actccatctg tagaacaatg caaggaaagc attgaacaaa 3420cgaaacaagg aacttggctg aatccaggct tccctcctca aagttgtgga tatgcaactg 3480tgacggatgc tgaagcagcg attgtccagg tgactcctca ccatgtgctt gttgatgaat 3540acacaggaga atgggttgat tcacagttca tcaacggaaa atgcagcaat gacatatgcc 3600ccactgtcca taactccaca acctggcatt ccgactataa ggtcaaaggg ctatgtgatt 3660ctaacctcat ttccatggac atcaccttct tctcagagga cggagagcta tcatccctag 3720gaaagaaggg cacagggttc agaagtaact actttgctta tgaaactgga gacaaggcct 3780gcaaaatgca gtactgcaag cattggggag tcagactccc atcaggtgtc tggttcgaga 3840tggctgataa ggmtctcttt gctgcagcca gattccctga atgcccagaa gggtcaagta 3900tctctgctcc atctcagacc tcagtggatg taagtctcat tcaggacgtt gagaggatct 3960tggattattc cctctgccaa gaaacctgga gcaaaatcag agcgggtctt cccatctctc 4020cagtggatct cagctatctt gctcctaaaa acccaggaac cggtcctgtc tttaccataa 4080tcaatggtac cctaaaatac tttgagacca gatacatcag agtcgatatt gctgctccaa 4140tcctctcaag aatggtcgga atgatcagtg gaactaccac agaaagggta ctgtgggatg 4200actgggctcc atatgaagac gtggaaattg gacccaatgg agttctgagg accagttcag 4260gatataagtt tcctttatat atgattggac atggtatgtt ggactccgat cttcatctta 4320gctcaaaggc tcaggtgttt gaacatcctc acattcaaga cgctgcttcg cagcttcctg 4380atggtgagac tttatttttt ggtgatactg ggctatccaa aaatccaatc gagtttgtag 4440aaggttggtt cagtagttgg aagagctcta ttgcctcttt tttctttacc atagggttaa 4500tcattggact attcttggtt ctccgagttg gtatttatct ttgcattaaa ttaaagcaca 4560ccaagaaaag acagatttat acagacatag agatgaaccg acttggaaag taactcaaat 4620cctgcacaac agattcttca tgtttgaacc aaatcaactt gtgatatcat gctcaaagag 4680gccttaatta tattttaatt tttaattttt atgaaaaaaa ctaacagcaa tcatggaagt 4740ccacgatttt gagaccgacg agttcaatga tttcaatgaa gatgactatg ccacaagaga 4800attcctgaat cccgatgagc gcatgacgta cttgaatcat gctgattaca atttgaattc 4860tcctctaatt agtgatgata ttgacaattt gatcaggaaa ttcaattctc ttccgattcc 4920ctcgatgtgg gatagtaaga actgggatgg agttcttgag atgttaacat catgtcaagc 4980caatcccatc tcaacatctc agatgcataa atggatggga agttggttaa tgtctgataa 5040tcatgatgcc agtcaagggt atagtttttt acatgaagtg gacaaagagg cagaaataac 5100atttgacgtg gtggagacct tcatccgcgg ctggggcaac aaaccaattg aatacatcaa 5160aaaggaaaga tggactgact cattcaaaat tctcgcttat ttgtgtcaaa agtttttgga 5220cttacacaag ttgacattaa tcttaaatgc tgtctctgag gtggaattgc tcaacttggc 5280gaggactttc aaaggcaaag tcagaagaag ttctcatgga acgaacatat gcaggattag 5340ggttcccagc ttgggtccta cttttatttc agaaggatgg gcttacttca agaaacttga 5400tattctaatg gaccgaaact ttctgttaat ggtcaaagat gtgattatag ggaggatgca 5460aacggtgcta tccatggtat gtagaataga caacctgttc tcagagcaag acatcttctc 5520ccttctaaat atctacagaa ttggagataa aattgtggag aggcagggaa atttttctta 5580tgacttgatt aaaatggtgg aaccgatatg caacttgaag ctgatgaaat tagcaagaga 5640atcaaggcct ttagtcccac aattccctca ttttgaaaat catatcaaga cttctgttga 5700tgaaggggca aaaattgacc gaggtataag attcctccat gatcagataa tgagtgtgaa 5760aacagtggat ctcacactgg tgatttatgg atcgttcaga cattggggtc atccttttat 5820agattattac actggactag aaaaattaca ttcccaagta accatgaaga aagatattga 5880tgtgtcatat gcaaaagcac ttgcaagtga tttagctcgg attgttctat ttcaacagtt 5940caatgatcat aaaaagtggt tcgtgaatgg agacttgctc cctcatgatc atccctttaa 6000aagtcatgtt aaagaaaata catggcctac agctgctcaa gttcaagatt ttggagataa 6060atggcatgaa cttccgctga ttaaatgttt tgaaataccc gacttactag acccatcgat 6120aatatactct gacaaaagtc attcaatgaa taggtcagag gtgttgaaac atgtccgaat 6180gaatccgaac actcctatcc ctagtaaaaa ggtgttgcag actatgttgg acacaaaggc 6240taccaattgg aaagaatttc ttaaagagat tgatgagaag ggcttagatg atgatgatct 6300aattattggt cttaaaggaa aggagaggga actgaagttg gcaggtagat ttttctccct 6360aatgtcttgg aaattgcgag aatactttgt aattaccgaa tatttgataa agactcattt 6420cgtccctatg tttaaaggcc tgacaatggc ggacgatcta actgcagtca ttaaaaagat 6480gttagattcc tcatccggcc aaggattgaa gtcatatgag gcaatttgca tagccaatca 6540cattgattac gaaaaatgga ataaccacca aaggaagtta tcaaacggcc cagtgttccg 6600agttatgggc cagttcttag gttatccatc cttaatcgag agaactcatg aattttttga 6660gaaaagtctt atatactaca atggaagacc agacttgatg cgtgttcaca acaacacact 6720gatcaattca acctcccaac gagtttgttg gcaaggacaa gagggtggac tggaaggtct 6780acggcaaaaa ggatggagta tcctcaatct actggttatt caaagagagg ctaaaatcag 6840aaacactgct gtcaaagtct tggcacaagg tgataatcaa gttatttgca cacagtataa 6900aacgaagaaa tcgagaaacg ttgtagaatt acagggtgct ctcaatcaaa tggtttctaa 6960taatgagaaa attatgactg caatcaaaat agggacaggg aagttaggac ttttgataaa 7020tgacgatgag actatgcaat ctgcagatta cttgaattat ggaaaaatac cgattttccg 7080tggagtgatt agagggttag agaccaagag atggtcacga gtgacttgtg tcaccaatga 7140ccaaataccc acttgtgcta atataatgag ctcagtttcc acaaatgctc tcaccgtagc 7200tcattttgct gagaacccaa tcaatgccat gatacagtac aattattttg ggacatttgc 7260tagactcttg ttgatgatgc atgatcctgc tcttcgtcaa tcattgtatg aagttcaaga 7320taagataccg ggcttgcaca gttctacttt caaatacgcc atgttgtatt tggacccttc 7380cattggagga gtgtcgggca tgtctttgtc caggtttttg attagagcct tcccagatcc 7440cgtaacagaa agtctctcat tctggagatt catccatgta catgctcgaa gtgagcatct 7500gaaggagatg agtgcagtat ttggaaaccc cgagatagcc aagtttcgaa taactcacat 7560agacaagcta gtagaagatc caacctctct gaacatcgct atgggaatga gtccagcgaa 7620cttgttaaag actgaggtta aaaaatgctt aatcgaatca agacaaacca tcaggaacca 7680ggtgattaag gatgcaacca tatatttgta tcatgaagag gatcggctca gaagtttctt 7740atggtcaata aatcctctgt tccctagatt tttaagtgaa ttcaaatcag gcactttttt 7800gggagtcgca gacgggctca tcagtctatt tcaaaattct cgtactattc ggaactcctt 7860taagaaaaag tatcataggg aattggatga tttgattgtg aggagtgagg tatcctcttt 7920gacacattta gggaaacttc atttgagaag gggatcatgt aaaatgtgga catgttcagc 7980tactcatgct gacacattaa gatacaaatc ctggggccgt acagttattg ggacaactgt 8040accccatcca ttagaaatgt tgggtccaca acatcgaaaa gagactcctt gtgcaccatg 8100taacacatca gggttcaatt atgtttctgt gcattgtcca gacgggatcc atgacgtctt 8160tagttcacgg ggaccattgc ctgcttatct agggtctaaa acatctgaat ctacatctat 8220tttgcagcct tgggaaaggg aaagcaaagt cccactgatt aaaagagcta cacgtcttag 8280agatgctatc tcttggtttg ttgaacccga ctctaaacta gcaatgacta tactttctaa 8340catccactct ttaacaggcg aagaatggac caaaaggcag catgggttca aaagaacagg 8400gtctgccctt cataggtttt cgacatctcg gatgagccat ggtgggttcg catctcagag 8460cactgcagca ttgaccaggt tgatggcaac tacagacacc atgagggatc tgggagatca 8520gaatttcgac tttttattcc aagcaacgtt gctctatgct caaattacca ccactgttgc 8580aagagacgga tggatcacca gttgtacaga tcattatcat attgcctgta agtcctgttt 8640gagacccata gaagagatca ccctggactc aagtatggac tacacgcccc cagatgtatc 8700ccatgtgctg aagacatgga ggaatgggga aggttcgtgg ggacaagaga taaaacagat 8760ctatccttta gaagggaatt ggaagaattt agcacctgct gagcaatcct atcaagtcgg 8820cagatgtata ggttttctat atggagactt ggcgtataga aaatctactc atgccgagga 8880cagttctcta tttcctctat ctatacaagg tcgtattaga ggtcgaggtt tcttaaaagg 8940gttgctagac ggattaatga gagcaagttg ctgccaagta atacaccgga gaagtctggc 9000tcatttgaag aggccggcca acgcagtgta cggaggtttg atttacttga ttgataaatt 9060gagtgtatca cctccattcc tttctcttac tagatcagga cctattagag acgaattaga 9120aacgattccc cacaagatcc caacctccta tccgacaagc aaccgtgata tgggggtgat 9180tgtcagaaat tacttcaaat accaatgccg tctaattgaa aagggaaaat acagatcaca 9240ttattcacaa ttatggttat tctcagatgt cttatccata gacttcattg gaccattctc 9300tatttccacc accctcttgc aaatcctata caagccattt ttatctggga aagataagaa 9360tgagttgaga gagctggcaa atctttcttc attgctaaga tcaggagagg ggtgggaaga 9420catacatgtg aaattcttca ccaaggacat attattgtgt ccagaggaaa tcagacatgc 9480ttgcaagttc gggattgcta aggataataa taaagacatg agctatcccc cttggggaag 9540ggaatccaga gggacaatta caacaatccc tgtttattat acgaccaccc cttacccaaa 9600gatgctagag atgcctccaa gaatccaaaa tcccctgctg tccggaatca ggttgggcca 9660attaccaact ggcgctcatt ataaaattcg gagtatatta catggaatgg gaatccatta 9720cagggacttc ttgagttgtg gagacggctc cggagggatg actgctgcat tactacgaga 9780aaatgtgcat agcagaggaa tattcaatag tctgttagaa ttatcagggt cagtcatgcg 9840aggcgcctct cctgagcccc ccagtgccct agaaacttta ggaggagata aatcgagatg 9900tgtaaatggt gaaacatgtt gggaatatcc atctgactta tgtgacccaa ggacttggga 9960ctatttcctc cgactcaaag caggcttggg gcttcaaatt gatttaattg taatggatat 10020ggaagttcgg gattcttcta ctagcctgaa aattgagacg aatgttagaa attatgtgca 10080ccggattttg gatgagcaag gagttttaat ctacaagact tatggaacat atatttgtga 10140gagcgaaaag aatgcagtaa caatccttgg tcccatgttc aagacggtcg acttagttca 10200aacagaattt agtagttctc aaacgtctga agtatatatg gtatgtaaag gtttgaagaa 10260attaatcgat gaacccaatc ccgattggtc ttccatcaat gaatcctgga aaaacctgta 10320cgcattccag tcatcagaac aggaatttgc cagagcaaag aaggttagta catactttac 10380cttgacaggt attccctccc aattcattcc tgatcctttt gtaaacattg agactatgct 10440acaaatattc ggagtaccca cgggtgtgtc tcatgcggct gccttaaaat catctgatag 10500acctgcagat ttattgacca ttagcctttt ttatatggcg attatatcgt attataacat 10560caatcatatc agagtaggac cgatacctcc gaacccccca tcagatggaa ttgcacaaaa 10620tgtggggatc gctataactg gtataagctt ttggctgagt ttgatggaga aagacattcc 10680actatatcaa cagtgtttag cagttatcca gcaatcattc ccgattaggt gggaggctgt 10740ttcagtaaaa ggaggataca agcagaagtg gagtactaga ggtgatgggc tcccaaaaga 10800tacccgaatt tcagactcct tggccccaat cgggaactgg atcagatctc tggaattggt 10860ccgaaaccaa gttcgtctaa atccattcaa tgagatcttg ttcaatcagc tatgtcgtac 10920agtggataat catttgaaat ggtcaaattt gcgaagaaac acaggaatga ttgaatggat 10980caatagacga atttcaaaag aagaccggtc tatactgatg ttgaagagtg acctacacga 11040ggaaaactct tggagagatt aaaaaatcat gaggagactc caaactttaa gtatgaaaaa 11100aactttgatc cttaagaccc tcttgtggtt tttatttttt atctggtttt gtggtcttcg 11160t 1116191489DNAVesicular stomatitis indiana virus 9atagtcgaga cgacgaagac aaacaaacca ttattatcat taaaaggctc aggagaaact 60ttaacagtaa tcaaaatgtc tgttacagtc aagagaatca ttgacaacac agtcatagtt 120ccaaaacttc ctgcaaatga ggatccagtg gaatacccgg cagattactt cagaaaatca 180aaggagattc ctctttacat caatactaca aaaagtttgt cagatctaag aggatatgtc 240taccaaggcc tcaaatccgg aaatgtatca atcatacatg tcaacagcta cttgtatgga 300gcattgaagg acatccgggg taagttggat aaagattggt caagtttcgg aataaacatc 360gggaaggcag gggatacaat cggaatattt gaccttgtat ccttgaaagc cctggacggt 420gtacttccag atggagtatc ggatgcttcc agaaccagcg cagatgacaa atggttgcct 480ttgtatctac ttggcttata cagagtgggc agaacacaaa tgcctgaata cagaaaaagg 540ctcatggatg ggctgacaaa tcaatgcaaa atgatcaatg aacagtttga acctcttgtg 600ccagaaggtc gtgacatttt tgatgtgtgg ggaaatgaca gtaattacac aaaaattgtc 660gctgcagtgg acatgttctt ccacatgttc aaaaaacatg aatgtgcctc gttcagatac 720ggaactattg tttccagatt caaagattgt gctgcattgg caacatttgg acacctctgc 780aaaataaccg gaatgtctac agaagatgtg acgacctgga tcttgaaccg agaagttgca 840gatgagatgg tccaaatgat gcttccaggc caagaaattg acaaggctga ttcatacatg 900ccttatttga tcgactttgg attgtcttct aagtctccat attcttccgt caaaaaccct 960gccttccact tctgggggca attgacagct cttctgctca gatccaccag agcaaggaat 1020gcccgacagc ctgatgacat tgagtataca tctcttacta cagcaggttt gttgtacgct 1080tatgcagtag gatcctctgc tgacttggca caacagtttt gtgttggaga tagcaaatac 1140actccagatg atagtaccgg aggattgacg actaatgcac cgccacaagg cagagatgtg 1200gtcgaatggc tcggatggtt tgaagatcaa aacagaaaac cgactcctga tatgatgcag 1260tatgcgaaac gagcagtcat gtcactgcaa ggcctaagag agaagacaat tggcaagtat 1320gctaagtcag agtttgacaa atgaccctat aattctcaga tcacctatta tatattatgc 1380tagcttgttc gaactcttaa ttaacgcccc gagtatgtcg acgtacttaa gaccctcttg 1440tggtttttat tttttatctg gttttgtggt cttcgtcgtc tccggccgg 1489101645DNAVesicular stomatitis indiana virus 10gctagctatg aaaaaaacta acagatatca tggataatct cacaaaagtt cgtgagtatc 60tcaagtccta ttctcgtcta gatcaggcgg taggagagat agatgagatc gaagcacaac 120gagctgaaaa gtccaattat gagttgttcc aagaggacgg agtggaagag catactaggc 180cctcttattt tcaggcagca gatgattctg acacagaatc tgaaccagaa attgaagaca 240atcaaggctt gtatgtacca gatccggaag ctgagcaagt tgaaggcttt atacaggggc 300ctttagatga ctatgcagat gaggacgtgg atgttgtatt cacttcggac tggaaacagc 360ctgagcttga atccgacgag catggaaaga ccttacggtt gacattgcca gagggtttaa 420gtggagagca gaaatcccag tggcttttga cgattaaagc agtcgttcaa agtgccaaac 480actggaatct ggcagagtgc acatttgaag catcgggaga aggggtcatc ataaaaaagc 540gccagataac tccggatgta tataaggtca ctccagtgat gaacacacat ccgtcccaat 600cagaagccgt atcagatgtt tggtctctct caaagacatc catgactttc caacccaaga 660aagcaagtct tcagcctctc accatatcct tggatgaatt gttctcatct agaggagaat 720tcatctctgt cggaggtaac ggacgaatgt ctcataaaga ggccatcctg ctcggtctga 780ggtacaaaaa gttgtacaat caggcgagag tcaaatattc tctgtagact agtatgaaaa 840aaagtaacag atatcacaat ctaagtgtta tcccaatcca ttcatcatga gttccttaaa 900gaagattctc ggtctgaagg ggaaaggtaa gaaatctaag aaattaggga tcgcaccacc 960cccttatgaa gaggacacta acatggagta tgctccgagc gctccaattg acaaatccta 1020ttttggagtt gacgagatgg acactcatga tccgaatcaa ttaagatatg agaaattctt 1080ctttacagtg aaaatgacgg ttagatctaa tcgtccgttc agaacatact cagatgtggc 1140agccgctgta tcccattggg atcacatgta catcggaatg gcagggaaac gtcccttcta 1200caagatcttg gcttttttgg gttcttctaa tctaaaggcc actccagcgg tattggcaga 1260tcaaggtcaa ccagagtatc atgctcactg tgaaggcagg gcttatttgc cacacagaat 1320ggggaagacc cctcccatgc tcaatgtacc agagcacttc agaagaccat tcaatatagg 1380tctttacaag ggaacgattg agctcacaat gaccatctac gatgatgagt cactggaagc 1440agctcctatg atctgggatc atttcaattc ttccaaattt tctgatttca gagagaaggc 1500cttaatgttt ggcctgattg tcgagaaaaa ggcatctgga gcttgggtcc tggattctgt 1560cagccacttc aaatgagcta gtctagcttc cagcttctga acaatccccg gtttactcag 1620tctctcctaa ttccagcctt tcgaa 1645111645DNAVesicular stomatitis indiana virus 11gctagctatg aaaaaaacta acagatatca tggataatct cacaaaagtt cgtgagtatc 60tcaagtccta ttctcgtcta gatcaggcgg taggagagat agatgagatc gaagcacaac 120gagctgaaaa gtccaattat gagttgttcc aagaggacgg agtggaagag catactaggc 180cctcttattt tcaggcagca gatgattctg acacagaatc tgaaccagaa attgaagaca 240atcaaggctt gtatgtacca gatccggaag ctgagcaagt tgaaggcttt atacaggggc 300ctttagatga ctatgcagat gaggacgtgg atgttgtatt cacttcggac tggaaacagc 360ctgagcttga atccgacgag catggaaaga ccttacggtt gacattgcca gagggtttaa 420gtggagagca gaaatcccag tggcttttga cgattaaagc agtcgttcaa agtgccaaac 480actggaatct ggcagagtgc acatttgaag catcgggaga aggggtcatc ataaaaaagc 540gccagataac tccggatgta tataaggtca ctccagtgat gaacacacat ccgtcccaat 600cagaagccgt atcagatgtt tggtctctct caaagacatc catgactttc caacccaaga 660aagcaagtct tcagcctctc accatatcct tggatgaatt gttctcatct agaggagaat 720tcatctctgt cggaggtaac ggacgaatgt ctcataaaga ggccatcctg ctcggtctga 780ggtacaaaaa gttgtacaat caggcgagag tcaaatattc tctgtagact agtatgaaaa 840aaagtaacag atatcacaat ctaagtgtta tcccaatcca ttcatcatga gttccttaaa 900gaagattctc ggtctgaagg ggaaaggtaa gaaatctaag aaattaggga tcgcaccacc 960cccttatgaa gaggacacta acatggagta tgctccgagc gctccaattg acaaatccta 1020ttttggagtt gacgagatgg acactcatga tccgaatcaa ttaagatatg agaaattctt 1080ctttacagtg aaaatgacgg ttagatctaa tcgtccgttc agaacatact cagatgtggc 1140agccgctgta tcccattggg atcacatgta catcggaatg gcagggaaac gtcccttcta 1200caagatcttg gcttttttgg gttcttctaa tctaaaggcc actccagcgg tattggcaga 1260tcaaggtcaa ccagagtatc atgctcactg tgaaggcagg gcttatttgc cacacagaat 1320ggggaagacc cctcccatgc tcaatgtacc agagcacttc agaagaccat tcaatatagg 1380tctttacaag ggaacgattg agctcacaat gaccatctac gatgatgagt cactggaagc 1440agctcctatg atctgggatc atttcaattc ttccaaattt tctgatttca gagagaaggc 1500cttaatgttt ggcctgattg tcgagaaaaa ggcatctgga gcttgggtcc tggattctgt 1560cagccacttc aaatgagcta gtctagcttc cagcttctga acaatccccg gtttactcag 1620tctctcctaa ttccagcctt tcgaa 1645122851DNAVesicular stomatitis indiana virus 12ttaattaaat tttaattttt aatttttatg aaaaaaacta acagcaatca tggaagtcca 60cgattttgag accgacgagt tcaatgattt caatgaagat gactatgcca caagagaatt 120cctgaatccc gatgagcgca tgacgtactt gaatcatgct gattacaatt tgaattctcc 180tctaattagt gatgatattg acaatttgat caggaaattc aattctcttc cgattccctc 240gatgtgggat agtaagaact gggatggagt tcttgagatg ttaacatcat gtcaagccaa 300tcccatctca acatctcaga tgcataaatg gatgggaagt tggttaatgt ctgataatca 360tgatgccagt caagggtata gttttttaca tgaagtggac aaagaggcag aaataacatt 420tgacgtggtg gagaccttca tccgcggctg gggcaacaaa ccaattgaat acatcaaaaa 480ggaaagatgg actgactcat tcaaaattct cgcttatttg tgtcaaaagt ttttggactt 540acacaagttg acattaatct taaatgctgt ctctgaggtg gaattgctca acttggcgag 600gactttcaaa ggcaaagtca gaagaagttc tcatggaacg aacatatgca ggcttagggt 660tcccagcttg ggtcctactt

ttatttcaga aggatgggct tacttcaaga aacttgatat 720tctaatggac cgaaactttc tgttaatggt caaagatgtg attataggga ggatgcaaac 780ggtgctatcc atggtatgta gaatagacaa cctgttctca gagcaagaca tcttctccct 840tctaaatatc tacagaattg gagataaaat tgtggagagg cagggaaatt tttcttatga 900cttgattaaa atggtggaac cgatatgcaa cttgaagctg atgaaattag caagagaatc 960aaggccttta gtcccacaat tccctcattt tgaaaatcat atcaagactt ctgttgatga 1020aggggcaaaa attgaccgag gtataagatt cctccatgat cagataatga gtgtgaaaac 1080agtggatctc acactggtga tttatggatc gttcagacat tggggtcatc cttttataga 1140ttattacgct ggactagaaa aattacattc ccaagtaacc atgaagaaag atattgatgt 1200gtcatatgca aaagcacttg caagtgattt agctcggatt gttctatttc aacagttcaa 1260tgatcataaa aagtggttcg tgaatggaga cttgctccct catgatcatc cctttaaaag 1320tcatgttaaa gaaaatacat ggcctacagc tgctcaagtt caagattttg gagataaatg 1380gcatgaactt ccgctgatta aatgttttga aatacccgac ttactagacc catcgataat 1440atactctgac aaaagtcatt caatgaatag gtcagaggtg ttgaaacatg tccgaatgaa 1500tccgaacact cctatcccta gtaaaaaggt gttgcagact atgttggaca caaaggctac 1560caattggaaa gaatttctta aagagattga tgagaagggc ttagatgatg atgatctaat 1620tattggtctt aaaggaaagg agagggaact gaagttggca ggtagatttt tctccctaat 1680gtcttggaaa ttgcgagaat actttgtaat taccgaatat ttgataaaga ctcatttcgt 1740ccctatgttt aaaggcctga caatggcgga cgatctaact gcagtcatta aaaagatgtt 1800agattcctca tccggccaag gattgaagtc atatgaggca atttgcatag ccaatcacat 1860tgattacgaa aaatggaata accaccaaag gaagttatca aacggcccag tgttccgagt 1920tatgggccag ttcttaggtt atccatcctt aatcgagaga actcatgaat tttttgagaa 1980aagtcttata tactacaatg gaagaccaga cttgatgcgt gttcacaaca acacactgat 2040caattcaacc tcccaacgag tttgttggca aggacaagag ggtggactgg aaggtctacg 2100gcaaaaagga tggagtatcc tcaatctact ggttattcaa agagaggcta aaatcagaaa 2160cactgctgtc aaagtcttgg cacaaggtga taatcaagtt atttgcacac agtataaaac 2220gaagaaatcg agaaacgttg tagaattaca gggtgctctc aatcaaatgg tttctaataa 2280tgagaaaatt atgactgcaa tcaaaatagg gacagggaag ttaggacttt tgataaatga 2340cgatgagact atgcaatctg cagattactt gaattatgga aaaataccga ttttccgtgg 2400agtgattaga gggttagaga ccaagagatg gtcacgagtg acttgtgtca ccaatgacca 2460aatacccact tgtgctaata taatgagctc agtttccaca aatgctctca ccgtagctca 2520ttttgctgag aacccaatca atgccatgat acagtacaat tattttggga catttgctag 2580actcttgttg atgatgcatg atcctgctct tcgtcaatca ttgtatgaag ttcaagataa 2640gataccgggc ttgcacagtt ctactttcaa atacgccatg ttgtatttgg acccttccat 2700tggaggagtg tcgggcatgt ctttgtccag gtttttgatt agagccttcc cagatcccgt 2760aacagaaagt ctctcattct ggagattcat ccatgtacat gctcgaagtg agcatctgaa 2820ggagatgagt gcagtatttg gaaaccccga g 2851132664DNAVesicular stomatitis indiana virus 13cccgagatag ccaagttccg aataactcac atagacaagc tagtagaaga tccaacctct 60ctgaacatcg ctatgggaat gagtccagcg aacttgttaa agactgaggt taaaaaatgc 120ttaatcgaat caagacaaac catcaggaac caggtgatta aggatgcaac catatatttg 180tatcatgaag aggatcggct cagaagtttc ttatggtcaa taaatcctct gttccctaga 240tttttaagtg aattcaaatc aggcactttt ttgggagtcg cagacgggct catcagtcta 300tttcaaaatt ctcgtactat tcggaactcc tttaagaaaa agtatcatag ggaattggat 360gatttgattg tgaggagtga ggtatcctct ttgacacatt tagggaaact tcatttgaga 420aggggatcat gtaaaatgtg gacatgttca gctactcatg ctgacacatt aagatacaaa 480tcctggggcc gtacagttat tgggacaact gtaccccatc cattagaaat gttgggtcca 540caacatcgaa aagagactcc ttgtgcacca tgtaacacat cagggttcaa ttatgtttct 600gtgcattgtc cagacgggat ccatgacgtc tttagttcac ggggaccatt gcctgcttat 660ctagggtcta aaacatctga atctacatct attttgcagc cttgggaaag ggaaagcaaa 720gtcccactga ttaaaagagc tacacgtctt agagatgcta tctcttggtt tgttgaaccc 780gactctaaac tagcaatgac tatactttct aacatccact ctttaacagg cgaagaatgg 840accaaaaggc agcatgggtt caaaagaaca gggtctgccc ttcataggtt ttcgacatct 900cggatgagcc atggtgggtt cgcatctcag agcactgcag cattgaccag gttgatggca 960actacagaca ccatgaggga tctgggagat cagaatttcg actttttatt ccaagcaacg 1020ttgctctatg ctcaaattac caccactgtt gcaagagacg gatggatcac cagttgtaca 1080gatcattatc atattgcctg taagtcctgt ttgagaccca tagaagagat caccctggac 1140tcaagtatgg actacacgcc cccagatgta tcccatgtgc tgaagacatg gaggaatggg 1200gaaggttcgt ggggacaaga gataaaacag atctatcctt tagaagggaa ttggaagaat 1260ttagcacctg ctgagcaatc ctatcaagtc ggcagatgta taggttttct atatggagac 1320ttggcgtata gaaaatctac tcatgccgag gacagttctc tatttcctct atctatacaa 1380ggtcgtatta gaggtcgagg tttcttaaaa gggttgctag acggattaat gagagcaagt 1440tgctgccaag taatacaccg gagaagtctg gctcatttga agaggccggc caacgcagtg 1500tacggaggtt tgatttactt gattgataaa ttgagtgtat cacctccatt cctttctctt 1560actagatcag gacctattag agacgaatta gaaacgattc cccacaagat cccaacctcc 1620tatccgacaa gcaaccgtga tatgggggtg attgtcagaa attacttcaa ataccaatgc 1680cgtctaattg aaaagggaaa atacagatca cattattcac aattatggtt attctcagat 1740gtcttatcca tagacttcat tggaccattc tctatttcca ccaccctctt gcaaatccta 1800tacaagccat ttttatctgg gaaagataag aatgagttga gagagctggc aaatctttct 1860tcattgctaa gatcaggaga ggggtgggaa gacatacatg tgaaattctt caccaaggac 1920atattattgt gtccagagga aatcagacat gcttgcaagt tcgggattgc taaggataat 1980aataaagaca tgagctatcc cccttgggga agggaatcca gagggacaat tacaacaatc 2040cctgtttatt atacgaccac cccttaccca aagatgctag agatgcctcc aagaatccaa 2100aatcccctgc tgtccggaat caggttgggc caattaccaa ctggcgctca ttataaaatt 2160cggagtatat tacatggaat gggaatccat tacagggact tcttgagttg tggagacggc 2220tccggaggga tgactgctgc attactacga gaaaatgtgc atagcagagg aatattcaat 2280agtctgttag aattatcagg gtcagtcatg cgaggcgcct ctcctgagcc ccccagtgcc 2340ctagaaactt taggaggaga taaatcgaga tgtgtaaatg gtgaaacatg ttgggaatat 2400ccatctgact tatgtgaccc aaggacttgg gactatttcc tccgactcaa agcaggcttg 2460gggcttcaaa ttgatttaat tgtaatggat atggaagttc gggattcttc tactagcctg 2520aaaattgaga cgaatgttag aaattatgtg caccggattt tggatgagca aggagtttta 2580atctacaaga cttatggaac atatatttgt gagagcgaaa agaatgcagt aacaatcctt 2640ggtcccatgt tcaagacggt cgac 266414930DNAVesicular stomatitis indiana virus 14gtcgacttag ttcaaacaga atttagtagt tctcaaacgt ctgaagtata tatggtatgt 60aaaggtttga agaaattaat cgatgaaccc aatcccgatt ggtcttccat caatgaatcc 120tggaaaaacc tgtacgcatt ccagtcatca gaacaggaat ttgccagagc aaagaaggtt 180agtacatact ttaccttgac aggtattccc tcccaattca ttcctgatcc ttttgtaaac 240attgagacta tgctacaaat attcggagta cccacgggtg tgtctcatgc ggctgcctta 300aaatcatctg atagacctgc agatttattg accattagcc ttttttatat ggcgattata 360tcgtattata acatcaatca tatcagagta ggaccgatac ctccgaaccc cccatcagat 420ggaattgcac aaaatgtggg gatcgctata actggtataa gcttttggct gagtttgatg 480gagaaagaca ttccactata tcaacagtgt ttagcagtta tccagcaatc attcccgatt 540aggtgggagg ctgtttcagt aaaaggagga tacaagcaga agtggagtac tagaggtgat 600gggctcccaa aagatacccg aatttcagac tccttggccc caatcgggaa ctggatcaga 660tctctggaat tggtccgaaa ccaagttcgt ctaaatccat tcaatgagat cttgttcaat 720cagctatgtc gtacagtgga taatcatttg aaatggtcaa atttgcgaaa aaacacagga 780atgattgaat ggatcaatag acgaatttca aaagaagacc ggtctatact gatgttgaag 840agtgacctac acgaggaaaa ctcttggaga gattaaaaaa tcatgaggag actccaaact 900ttaagtatga aaaaaacttt gatccttaag 9301523DNAVesicular stomatitis indiana virus 15tatgaaaaaa actaacagat atc 231623DNAVesicular stomatitis indiana virus 16tatgaaaaaa agtaacagcg atc 231711164DNAVesicular stomatitis indiana virus 17acgaagacaa acaaaccatt attatcatta aaaggctcag gagaaacttt aacagtaatc 60aaaatgtctg ttacagtcaa gagaatcatt gacaacacag tcatagttcc aaaacttcct 120gcaaatgagg atccagtgga atacccggca gattacttca gaaaatcaaa ggagattcct 180ctttacatca atactacaaa aagtttgtca gatctaagag gatatgtcta ccaaggcctc 240aaatccggaa atgtatcaat catacatgtc aacagctact tgtatggagc attgaaggac 300atccggggta agttggataa agattggtca agtttcggaa taaacatcgg gaaggcaggg 360gatacaatcg gaatatttga ccttgtatcc ttgaaagccc tggacggtgt acttccagat 420ggagtatcgg atgcttccag aaccagcgca gatgacaaat ggttgccttt gtatctactt 480ggcttataca gagtgggcag aacacaaatg cctgaataca gaaaaaggct catggatggg 540ctgacaaatc aatgcaaaat gatcaatgaa cagtttgaac ctcttgtgcc agaaggtcgt 600gacatttttg atgtgtgggg aaatgacagt aattacacaa aaattgtcgc tgcagtggac 660atgttcttcc acatgttcaa aaaacatgaa tgtgcctcgt tcagatacgg aactattgtt 720tccagattca aagattgtgc tgcattggca acatttggac acctctgcaa aataaccgga 780atgtctacag aagatgtgac gacctggatc ttgaaccgag aagttgcaga tgagatggtc 840caaatgatgc ttccaggcca agaaattgac aaggctgatt catacatgcc ttatttgatc 900gactttggat tgtcttctaa gtctccatat tcttccgtca aaaaccctgc cttccacttc 960tgggggcaat tgacagctct tctgctcaga tccaccagag caaggaatgc ccgacagcct 1020gatgacattg agtatacatc tcttactaca gcaggtttgt tgtacgctta tgcagtagga 1080tcctctgctg acttggcaca acagttttgt gttggagata gcaaatacac tccagatgat 1140agtaccggag gattgacgac taatgcaccg ccacaaggca gagatgtggt cgaatggctc 1200ggatggtttg aagatcaaaa cagaaaaccg actcctgata tgatgcagta tgcgaaacga 1260gcagtcatgt cactgcaagg cctaagagag aagacaattg gcaagtatgc taagtcagag 1320tttgacaaat gaccctataa ttctcagatc acctattata tattatgcta gctatgaaaa 1380aaactaacag atatcatgga taatctcaca aaagttcgtg agtatctcaa gtcctattct 1440cgtctagatc aggcggtagg agagatagat gagatcgaag cacaacgagc tgaaaagtcc 1500aattatgagt tgttccaaga ggacggagtg gaagagcata ctaggccctc ttattttcag 1560gcagcagatg attctgacac agaatctgaa ccagaaattg aagacaatca aggcttgtat 1620gtaccagatc cggaagctga gcaagttgaa ggctttatac aggggccttt agatgactat 1680gcagatgagg acgtggatgt tgtattcact tcggactgga aacagcctga gcttgaatcc 1740gacgagcatg gaaagacctt acggttgaca ttgccagagg gtttaagtgg agagcagaaa 1800tcccagtggc ttttgacgat taaagcagtc gttcaaagtg ccaaacactg gaatctggca 1860gagtgcacat ttgaagcatc gggagaaggg gtcatcataa aaaagcgcca gataactccg 1920gatgtatata aggtcactcc agtgatgaac acacatccgt cccaatcaga agccgtatca 1980gatgtttggt ctctctcaaa gacatccatg actttccaac ccaagaaagc aagtcttcag 2040cctctcacca tatccttgga tgaattgttc tcatctagag gagaattcat ctctgtcgga 2100ggtaacggac gaatgtctca taaagaggcc atcctgctcg gtctgaggta caaaaagttg 2160tacaatcagg cgagagtcaa atattctctg tagactagta tgaaaaaaag taacagatat 2220cacaatctaa gtgttatccc aatccattca tcatgagttc cttaaagaag attctcggtc 2280tgaaggggaa aggtaagaaa tctaagaaat tagggatcgc accaccccct tatgaagagg 2340acactaacat ggagtatgct ccgagcgctc caattgacaa atcctatttt ggagttgacg 2400agatggacac tcatgatccg aatcaattaa gatatgagaa attcttcttt acagtgaaaa 2460tgacggttag atctaatcgt ccgttcagaa catactcaga tgtggcagcc gctgtatccc 2520attgggatca catgtacatc ggaatggcag ggaaacgtcc cttctacaag atcttggctt 2580ttttgggttc ttctaatcta aaggccactc cagcggtatt ggcagatcaa ggtcaaccag 2640agtatcatgc tcactgtgaa ggcagggctt atttgccaca cagaatgggg aagacccctc 2700ccatgctcaa tgtaccagag cacttcagaa gaccattcaa tataggtctt tacaagggaa 2760cgattgagct cacaatgacc atctacgatg atgagtcact ggaagcagct cctatgatct 2820gggatcattt caattcttcc aaattttctg atttcagaga gaaggcctta atgtttggcc 2880tgattgtcga gaaaaaggca tctggagctt gggtcctgga ttctgtcagc cacttcaaat 2940gagctagtct agcttccagc ttctgaacaa tccccggttt actcagtctc tcctaattcc 3000agcctttcga acaactaata tcctgtcttc tctatcccta tgaaaaaaac taacagagat 3060cgatctgttt ccttgacacc atgaagtgcc ttttgtactt agctttttta ttcatcgggg 3120tgaattgcaa gttcaccata gtttttccac acaaccaaaa aggaaactgg aaaaatgttc 3180cttccaatta ccattattgc ccgtcaagct cagatttaaa ttggcataat gacttaatag 3240gcacagcctt acaagtcaaa atgcccaaga gtcacaaggc tattcaagca gacggttgga 3300tgtgtcatgc ttccaaatgg gtcactactt gtgatttccg ctggtacgga ccgaagtata 3360taacacattc catccgatcc ttcactccat ctgtagaaca atgcaaggaa agcattgaac 3420aaacgaaaca aggaacttgg ctgaatccag gcttccctcc tcaaagttgt ggatatgcaa 3480ctgtgacgga tgctgaagca gcgattgtcc aggtgactcc tcaccatgtg cttgttgatg 3540aatacacagg agaatgggtt gattcacagt tcatcaacgg aaaatgcagc aatgacatat 3600gccccactgt ccataactcc acaacctggc attccgacta taaggtcaaa gggctatgtg 3660attctaacct catttccatg gacatcacct tcttctcaga ggacggagag ctatcatccc 3720taggaaagga gggcacaggg ttcagaagta actactttgc ttatgaaact ggagacaagg 3780cctgcaaaat gcagtactgc aagcattggg gagtcagact cccatcaggt gtctggttcg 3840agatggctga taaggatctc tttgctgcag ccagattccc tgaatgccca gaagggtcaa 3900gtatctctgc tccatctcag acctcagtgg atgtaagtct cattcaggac gttgagagga 3960tcttggatta ttccctctgc caagaaacct ggagcaaaat cagagcgggt cttcccatct 4020ctccagtgga tctcagctat cttgctccta aaaacccagg aaccggtcct gtctttacca 4080taatcaatgg taccctaaaa tactttgaga ccagatacat cagagtcgat attgctgctc 4140caatcctctc aagaatggtc ggaatgatca gtggaactac cacagaaagg gaactgtggg 4200atgactgggc tccatatgaa gacgtggaaa ttggacccaa tggagttctg aggaccagtt 4260caggatataa gtttccttta tatatgattg gacatggtat gttggactcc gatcttcatc 4320ttagctcaaa ggctcaggtg tttgaacatc ctcacattca agacgctgct tcgcagcttc 4380ctgatgatga gactttattt tttggtgata ctgggctatc caaaaatcca atcgagtttg 4440tagaaggttg gttcagtagt tggaagagct ctattgcctc ttttttcttt atcatagggt 4500taatcattgg actattcttg gttctccgag ttggtattta tctttgcatt aaattaaagc 4560acaccaagaa aagacagatt tatacagaca tagagatgaa ccgacttgga aagtaactca 4620aatcctgcac aacagattct tcatgtttga accaaatcaa cttgtgatat catgctcaaa 4680gaggccttaa ttaaatttta atttttaatt tttatgaaaa aaactaacag caatcatgga 4740agtccacgat tttgagaccg acgagttcaa tgatttcaat gaagatgact atgccacaag 4800agaattcctg aatcccgatg agcgcatgac gtacttgaat catgctgatt acaatttgaa 4860ttctcctcta attagtgatg atattgacaa tttgatcagg aaattcaatt ctcttccgat 4920tccctcgatg tgggatagta agaactggga tggagttctt gagatgttaa catcatgtca 4980agccaatccc atctcaacat ctcagatgca taaatggatg ggaagttggt taatgtctga 5040taatcatgat gccagtcaag ggtatagttt tttacatgaa gtggacaaag aggcagaaat 5100aacatttgac gtggtggaga ccttcatccg cggctggggc aacaaaccaa ttgaatacat 5160caaaaaggaa agatggactg actcattcaa aattctcgct tatttgtgtc aaaagttttt 5220ggacttacac aagttgacat taatcttaaa tgctgtctct gaggtggaat tgctcaactt 5280ggcgaggact ttcaaaggca aagtcagaag aagttctcat ggaacgaaca tatgcaggct 5340tagggttccc agcttgggtc ctacttttat ttcagaagga tgggcttact tcaagaaact 5400tgatattcta atggaccgaa actttctgtt aatggtcaaa gatgtgatta tagggaggat 5460gcaaacggtg ctatccatgg tatgtagaat agacaacctg ttctcagagc aagacatctt 5520ctcccttcta aatatctaca gaattggaga taaaattgtg gagaggcagg gaaatttttc 5580ttatgacttg attaaaatgg tggaaccgat atgcaacttg aagctgatga aattagcaag 5640agaatcaagg cctttagtcc cacaattccc tcattttgaa aatcatatca agacttctgt 5700tgatgaaggg gcaaaaattg accgaggtat aagattcctc catgatcaga taatgagtgt 5760gaaaacagtg gatctcacac tggtgattta tggatcgttc agacattggg gtcatccttt 5820tatagattat tacgctggac tagaaaaatt acattcccaa gtaaccatga agaaagatat 5880tgatgtgtca tatgcaaaag cacttgcaag tgatttagct cggattgttc tatttcaaca 5940gttcaatgat cataaaaagt ggttcgtgaa tggagacttg ctccctcatg atcatccctt 6000taaaagtcat gttaaagaaa atacatggcc tacagctgct caagttcaag attttggaga 6060taaatggcat gaacttccgc tgattaaatg ttttgaaata cccgacttac tagacccatc 6120gataatatac tctgacaaaa gtcattcaat gaataggtca gaggtgttga aacatgtccg 6180aatgaatccg aacactccta tccctagtaa aaaggtgttg cagactatgt tggacacaaa 6240ggctaccaat tggaaagaat ttcttaaaga gattgatgag aagggcttag atgatgatga 6300tctaattatt ggtcttaaag gaaaggagag ggaactgaag ttggcaggta gatttttctc 6360cctaatgtct tggaaattgc gagaatactt tgtaattacc gaatatttga taaagactca 6420tttcgtccct atgtttaaag gcctgacaat ggcggacgat ctaactgcag tcattaaaaa 6480gatgttagat tcctcatccg gccaaggatt gaagtcatat gaggcaattt gcatagccaa 6540tcacattgat tacgaaaaat ggaataacca ccaaaggaag ttatcaaacg gcccagtgtt 6600ccgagttatg ggccagttct taggttatcc atccttaatc gagagaactc atgaattttt 6660tgagaaaagt cttatatact acaatggaag accagacttg atgcgtgttc acaacaacac 6720actgatcaat tcaacctccc aacgagtttg ttggcaagga caagagggtg gactggaagg 6780tctacggcaa aaaggatgga gtatcctcaa tctactggtt attcaaagag aggctaaaat 6840cagaaacact gctgtcaaag tcttggcaca aggtgataat caagttattt gcacacagta 6900taaaacgaag aaatcgagaa acgttgtaga attacagggt gctctcaatc aaatggtttc 6960taataatgag aaaattatga ctgcaatcaa aatagggaca gggaagttag gacttttgat 7020aaatgacgat gagactatgc aatctgcaga ttacttgaat tatggaaaaa taccgatttt 7080ccgtggagtg attagagggt tagagaccaa gagatggtca cgagtgactt gtgtcaccaa 7140tgaccaaata cccacttgtg ctaatataat gagctcagtt tccacaaatg ctctcaccgt 7200agctcatttt gctgagaacc caatcaatgc catgatacag tacaattatt ttgggacatt 7260tgctagactc ttgttgatga tgcatgatcc tgctcttcgt caatcattgt atgaagttca 7320agataagata ccgggcttgc acagttctac tttcaaatac gccatgttgt atttggaccc 7380ttccattgga ggagtgtcgg gcatgtcttt gtccaggttt ttgattagag ccttcccaga 7440tcccgtaaca gaaagtctct cattctggag attcatccat gtacatgctc gaagtgagca 7500tctgaaggag atgagtgcag tatttggaaa ccccgagata gccaagttcc gaataactca 7560catagacaag ctagtagaag atccaacctc tctgaacatc gctatgggaa tgagtccagc 7620gaacttgtta aagactgagg ttaaaaaatg cttaatcgaa tcaagacaaa ccatcaggaa 7680ccaggtgatt aaggatgcaa ccatatattt gtatcatgaa gaggatcggc tcagaagttt 7740cttatggtca ataaatcctc tgttccctag atttttaagt gaattcaaat caggcacttt 7800tttgggagtc gcagacgggc tcatcagtct atttcaaaat tctcgtacta ttcggaactc 7860ctttaagaaa aagtatcata gggaattgga tgatttgatt gtgaggagtg aggtatcctc 7920tttgacacat ttagggaaac ttcatttgag aaggggatca tgtaaaatgt ggacatgttc 7980agctactcat gctgacacat taagatacaa atcctggggc cgtacagtta ttgggacaac 8040tgtaccccat ccattagaaa tgttgggtcc acaacatcga aaagagactc cttgtgcacc 8100atgtaacaca tcagggttca attatgtttc tgtgcattgt ccagacggga tccatgacgt 8160ctttagttca cggggaccat tgcctgctta tctagggtct aaaacatctg aatctacatc 8220tattttgcag ccttgggaaa gggaaagcaa agtcccactg attaaaagag ctacacgtct 8280tagagatgct atctcttggt ttgttgaacc cgactctaaa ctagcaatga ctatactttc 8340taacatccac tctttaacag gcgaagaatg gaccaaaagg cagcatgggt tcaaaagaac 8400agggtctgcc cttcataggt tttcgacatc tcggatgagc catggtgggt tcgcatctca 8460gagcactgca gcattgacca ggttgatggc aactacagac accatgaggg atctgggaga 8520tcagaatttc gactttttat tccaagcaac gttgctctat gctcaaatta ccaccactgt 8580tgcaagagac ggatggatca ccagttgtac agatcattat catattgcct gtaagtcctg 8640tttgagaccc atagaagaga tcaccctgga ctcaagtatg gactacacgc ccccagatgt 8700atcccatgtg ctgaagacat ggaggaatgg ggaaggttcg tggggacaag agataaaaca 8760gatctatcct ttagaaggga attggaagaa tttagcacct gctgagcaat cctatcaagt 8820cggcagatgt ataggttttc tatatggaga cttggcgtat agaaaatcta ctcatgccga 8880ggacagttct

ctatttcctc tatctataca aggtcgtatt agaggtcgag gtttcttaaa 8940agggttgcta gacggattaa tgagagcaag ttgctgccaa gtaatacacc ggagaagtct 9000ggctcatttg aagaggccgg ccaacgcagt gtacggaggt ttgatttact tgattgataa 9060attgagtgta tcacctccat tcctttctct tactagatca ggacctatta gagacgaatt 9120agaaacgatt ccccacaaga tcccaacctc ctatccgaca agcaaccgtg atatgggggt 9180gattgtcaga aattacttca aataccaatg ccgtctaatt gaaaagggaa aatacagatc 9240acattattca caattatggt tattctcaga tgtcttatcc atagacttca ttggaccatt 9300ctctatttcc accaccctct tgcaaatcct atacaagcca tttttatctg ggaaagataa 9360gaatgagttg agagagctgg caaatctttc ttcattgcta agatcaggag aggggtggga 9420agacatacat gtgaaattct tcaccaagga catattattg tgtccagagg aaatcagaca 9480tgcttgcaag ttcgggattg ctaaggataa taataaagac atgagctatc ccccttgggg 9540aagggaatcc agagggacaa ttacaacaat ccctgtttat tatacgacca ccccttaccc 9600aaagatgcta gagatgcctc caagaatcca aaatcccctg ctgtccggaa tcaggttggg 9660ccaattacca actggcgctc attataaaat tcggagtata ttacatggaa tgggaatcca 9720ttacagggac ttcttgagtt gtggagacgg ctccggaggg atgactgctg cattactacg 9780agaaaatgtg catagcagag gaatattcaa tagtctgtta gaattatcag ggtcagtcat 9840gcgaggcgcc tctcctgagc cccccagtgc cctagaaact ttaggaggag ataaatcgag 9900atgtgtaaat ggtgaaacat gttgggaata tccatctgac ttatgtgacc caaggacttg 9960ggactatttc ctccgactca aagcaggctt ggggcttcaa attgatttaa ttgtaatgga 10020tatggaagtt cgggattctt ctactagcct gaaaattgag acgaatgtta gaaattatgt 10080gcaccggatt ttggatgagc aaggagtttt aatctacaag acttatggaa catatatttg 10140tgagagcgaa aagaatgcag taacaatcct tggtcccatg ttcaagacgg tcgacttagt 10200tcaaacagaa tttagtagtt ctcaaacgtc tgaagtatat atggtatgta aaggtttgaa 10260gaaattaatc gatgaaccca atcccgattg gtcttccatc aatgaatcct ggaaaaacct 10320gtacgcattc cagtcatcag aacaggaatt tgccagagca aagaaggtta gtacatactt 10380taccttgaca ggtattccct cccaattcat tcctgatcct tttgtaaaca ttgagactat 10440gctacaaata ttcggagtac ccacgggtgt gtctcatgcg gctgccttaa aatcatctga 10500tagacctgca gatttattga ccattagcct tttttatatg gcgattatat cgtattataa 10560catcaatcat atcagagtag gaccgatacc tccgaacccc ccatcagatg gaattgcaca 10620aaatgtgggg atcgctataa ctggtataag cttttggctg agtttgatgg agaaagacat 10680tccactatat caacagtgtt tagcagttat ccagcaatca ttcccgatta ggtgggaggc 10740tgtttcagta aaaggaggat acaagcagaa gtggagtact agaggtgatg ggctcccaaa 10800agatacccga atttcagact ccttggcccc aatcgggaac tggatcagat ctctggaatt 10860ggtccgaaac caagttcgtc taaatccatt caatgagatc ttgttcaatc agctatgtcg 10920tacagtggat aatcatttga aatggtcaaa tttgcgaaaa aacacaggaa tgattgaatg 10980gatcaataga cgaatttcaa aagaagaccg gtctatactg atgttgaaga gtgacctaca 11040cgaggaaaac tcttggagag attaaaaaat catgaggaga ctccaaactt taagtatgaa 11100aaaaactttg atccttaaga ccctcttgtg gtttttattt tttatctggt tttgtggtct 11160tcgt 111641812DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 18nnnnnngaga cg 12

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed