Power Supply System For Memories

WU; KANG ;   et al.

Patent Application Summary

U.S. patent application number 13/302940 was filed with the patent office on 2013-01-17 for power supply system for memories. This patent application is currently assigned to HON HAI PRECISION INDUSTRY CO., LTD.. The applicant listed for this patent is BO TIAN, KANG WU. Invention is credited to BO TIAN, KANG WU.

Application Number20130016578 13/302940
Document ID /
Family ID47481635
Filed Date2013-01-17

United States Patent Application 20130016578
Kind Code A1
WU; KANG ;   et al. January 17, 2013

POWER SUPPLY SYSTEM FOR MEMORIES

Abstract

A power supply system for memory modules includes a control unit and a voltage regulator. The control unit includes a basic input/output system (BIOS) and a control chip connected to the BIOS. The BIOS controls the control chip to output a control signal according to the number of the memory modules mounted in memory slots. The voltage regulator is connected to the control chip through first and second general purpose input/output (GPIO) buses. The voltage regulator receives the control signal from the control chip through the first and second GPIO buses and regulates power supply modes, to output different phase voltages to the memory modules mounted in the memory slots.


Inventors: WU; KANG; (Shenzhen City, CN) ; TIAN; BO; (Shenzhen City, CN)
Applicant:
Name City State Country Type

WU; KANG
TIAN; BO

Shenzhen City
Shenzhen City

CN
CN
Assignee: HON HAI PRECISION INDUSTRY CO., LTD.
Tu-Cheng
TW

HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD.
Shenzhen City
CN

Family ID: 47481635
Appl. No.: 13/302940
Filed: November 22, 2011

Current U.S. Class: 365/226
Current CPC Class: G11C 5/04 20130101; G06F 1/26 20130101; G11C 5/147 20130101
Class at Publication: 365/226
International Class: G11C 5/14 20060101 G11C005/14

Foreign Application Data

Date Code Application Number
Jul 13, 2011 CN 201110195312.9

Claims



1. A power supply system applicable to memory modules mounted in memory slots, the power supply system comprising: a control unit comprising a basic input/output system (BIOS) and a control chip connected to the BIOS and the memory slots, wherein the BIOS controls the control chip to output a control signal according to the number of the memory modules mounted in the memory slots; and a voltage regulator connected to the control chip through first and second general purpose input/output (GPIO) buses, wherein the voltage regulator receives the control signal from the control chip through the first and second GPIO buses and regulates power supply modes, to output different phase voltages to the memory modules mounted in the memory slots.

2. The power supply system of claim 1, further comprising a pull-up circuit, wherein the pull-up circuit comprises at least one resistor, a first end of the at least one resistor is connected to a power source, and a second end of the at least one resistor is connected to at least one of the GPIO bus.

3. The power supply system of claim 1, wherein the control chip is a platform controller hub.

4. The power supply system of claim 1, wherein the control chip is a south bridge chip.

5. The power supply system of claim 1, wherein when the number of the memory module mounted in the memory slot is less than 3, the power supply modes of the voltage regulator is regulated to a one-phase power mode by the BIOS; when the number of the memory module mounted in the memory slot is greater than 3 and less than 6, the power supply modes of the voltage regulator is regulated to a two-phase power mode by the BIOS; when the number of the memory module mounted in the memory slot is greater than 6, the power supply modes of the voltage regulator is regulated to a full multiphase power mode by the BIOS.

6. The power supply system of claim 1, wherein the memory slots are dual in-line memory module memory slots.
Description



BACKGROUND

[0001] 1. Technical Field

[0002] The present disclosure relates to a power supply system for memories.

[0003] 2. Description of Related Art

[0004] Many memory modules are mounted in memory slots in a computer system for adding storage capacity. These memory modules receive voltage from a voltage regulator arranged on a motherboard of the computer system through the memory slots. However, the voltage regulator will provide full multiphase power to these memory slots, which may not be fully utilized, thus wasting energy. Therefore, there is room for improvement in the art.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] Many aspects of the embodiments can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present embodiments. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.

[0006] FIG. 1 is a block diagram of a power supply system for memories in accordance with an exemplary embodiment of the present disclosure.

[0007] FIG. 2 is a circuit diagram of the power supply system of FIG. 1.

DETAILED DESCRIPTION

[0008] The disclosure, including the drawings, is illustrated by way of example and not by way of limitation. References to "an" or "one" embodiment in this disclosure are not necessarily to the same embodiment, and such references mean at least one.

[0009] Referring to FIG. 1, a power supply system 1 is used for providing voltages to memory modules 20 which are mounted in memory slots 60 of a motherboard (not shown). The power supply system 1 in accordance with an exemplary embodiment includes a control unit 10, a pull-up circuit 30, and a voltage regulator 40. The control unit 10 is connected between the memory slots 60 and the pull-up circuit 30. The voltage regulator 40 is connected between the memory slots 60 and the pull-up circuit 30.

[0010] Referring to FIG. 2, in one embodiment, the memory slots 60 include eight dual in-line memory module (DIMM) memory slots. The control unit 10 includes a basic input/output system (BIOS) 100 and a control chip 102 connected to the BIOS 100. The control chip 102 is a platform controller hub (PCH) chip or a south bridge chip. The control chip 102 outputs a control signal to the voltage regulator 40 through first and second general purpose input/output (GPIO) buses 50 and 70. The control chip 102 reads information, such as storage capacity, frequencies, types, and locations of the memory modules 20, which are mounted in the memory slots 60 through a system management bus (SMBus) 80. The information of the memory modules 20 can be displayed, for conveniently regulating power supply modes of the voltage regulator 40 by the BIOS 100.

[0011] The pull-up circuit 30 includes resistors R1 and R2. First ends of the resistors R1 and R2 are connected to a power source VCC, and second ends of the resistors R1 and R2 are respectively connected to the first and second GPIO buses 50 and 70. When the first and second GPIO buses 50 and 70 receive high level signals, the resistors R1 and R2 stabilize the high level signals from the control chip 102 to the voltage regulator 40. In other embodiments, the pull-up circuit 30 is not inserted to save cost if stabilizing is not needed for the application.

[0012] In use, power supply modes of the voltage regulator 40 can be regulated by the BIOS 100. For example, when the number of the memory modules 20 mounted in the memory slots 60 is less than 3, the power supply mode of the voltage regulator 40 is regulated to a one-phase power mode. When the number of the memory modules 20 mounted in the memory slots 60 is greater than 3 and less than 6, the power supply mode of the voltage regulator 40 is regulated to a two-phase power mode. When the number of the memory modules 20 mounted in the memory slots 60 is greater than 6, the power supply mode of the voltage regulator 40 is regulated to a full multiphase power mode.

[0013] When the voltage regulator 40 are regulated to the one-phase power mode by the BIOS 100, the control chip 102 outputs low level signals to the voltage regulator 40 through the first and second GPIO buses 50 and 70. Thus, the voltage regulator 40 outputs one-phase power to the memory modules 20 mounted in the memory slots 60. When the voltage regulator 40 is regulated to the two-phase power mode by the BIOS 100, the control chip 102 outputs a low level signal and a high level signal to the voltage regulator 40 respectively through the first and second GPIO buses 50 and 70. Thus, the voltage regulator 40 outputs two-phase power to the memory modules 20 mounted in the memory slots 60. When the voltage regulator 40 is regulated to the full multiphase power mode by the BIOS 100, the control chip 102 outputs high level signals to the voltage regulator 40 through the first and second GPIO buses 50 and 70. Thus, the voltage regulator 40 outputs full multiphase power to the memory modules 20 mounted in the memory slots 60. In a default power mode of the voltage regulator 40, namely, the power supply mode of the voltage regulator 40 not regulated by the BIOS 100, the control chip 102 outputs high level signals to the voltage regulator 40 through the first and second GPIO buses 50 and 70, namely, the voltage regulator 40 outputs full multiphase power to the memory modules 20 mounted in the memory slots 60.

[0014] The power supply system 1 can control the power supply modes of the voltage regulator 40 by the BIOS 100, to make the voltage regulator 40 output different voltages to the memory modules 20 according to the number of the memory modules 20 mounted in the memory slots 60. Therefore, the power supply system 1 saves energy.

[0015] Even though numerous characteristics and advantages of the disclosure have been set forth in the foregoing description, together with details of the structure and function of the disclosure, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and the arrangement of parts within the principles of the disclosure to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed