Method And Apparatus For Managing Assignment During Handoff In Wireless Communication Systems

Barriac; Gwendolyn D.

Patent Application Summary

U.S. patent application number 13/542354 was filed with the patent office on 2013-01-10 for method and apparatus for managing assignment during handoff in wireless communication systems. This patent application is currently assigned to QUALCOMM Incorporated. Invention is credited to Gwendolyn D. Barriac.

Application Number20130010755 13/542354
Document ID /
Family ID37687691
Filed Date2013-01-10

United States Patent Application 20130010755
Kind Code A1
Barriac; Gwendolyn D. January 10, 2013

METHOD AND APPARATUS FOR MANAGING ASSIGNMENT DURING HANDOFF IN WIRELESS COMMUNICATION SYSTEMS

Abstract

A method and apparatus for managing assignment during a handoff in a wireless communication system is described. The method includes determining a desired forward link serving sector and receiving a valid assignment from the desired forward link serving sector. The method includes initiating a message indicating a change from a current forward link serving sector to the desired forward link serving sector and clearing forward link access terminal assignments associated with the current forward link serving sector.


Inventors: Barriac; Gwendolyn D.; (San Diego, CA)
Assignee: QUALCOMM Incorporated
San Diego
CA

Family ID: 37687691
Appl. No.: 13/542354
Filed: July 5, 2012

Related U.S. Patent Documents

Application Number Filing Date Patent Number
12529159 Mar 3, 2010
PCT/US06/41981 Oct 27, 2006
13542354
60731037 Oct 27, 2005

Current U.S. Class: 370/331
Current CPC Class: H04J 13/00 20130101; H04L 27/2601 20130101; H04L 5/0057 20130101; Y02D 30/32 20180101; H04B 7/2628 20130101; H04W 72/0473 20130101; H04W 52/325 20130101; Y02D 30/00 20180101; H04W 24/02 20130101; H04W 52/16 20130101; H04B 7/216 20130101; H04W 52/58 20130101; H04W 72/085 20130101; H04W 52/146 20130101; H04W 52/48 20130101
Class at Publication: 370/331
International Class: H04W 36/00 20090101 H04W036/00

Claims



1. A method of managing assignment during a handoff in a wireless communication system, comprising: determining, by an access terminal, a desired forward link serving sector, the desired forward link serving sector being one of plurality of forward link serving sectors; receiving by the access terminal a valid assignment from the desired forward link serving sector in response to a request from the access terminal for the handoff; initiating by the access terminal a message indicating a change from a current forward link serving sector to the desired forward link serving sector; and clearing forward link access terminal assignments associated with the current forward link serving sector.

2. The method of claim 1, wherein the valid assignment includes a sticky assignment with a supplemental bit set to zero or a non-sticky assignment.

3. The method of claim 1, wherein initiating the message by the access terminal comprises initiating a change forward link access command.

4. The method of claim 1, further comprising updating protocols in the access terminal to reflect the handoff to the desired forward link serving sector.

5. The method of claim 1, further comprising: comparing signal strengths from the plurality of forward link serving sectors; selecting the forward link serving sector providing the strongest signal strength as the desired forward link serving sector.

6. A computer program product comprising computer readable media having computer executable code stored thereon, the computer executable code comprising: code for determining a desired forward link serving sector, the desired forward link serving sector being one of plurality of forward link serving sectors; code for receiving an assignment from the desired forward link serving sector in response to a request from an access terminal for a handoff; code for initiating a message indicating a change from a current forward link serving sector to the desired forward link serving sector; and code for clearing forward link access terminal assignments associated with the current forward link serving sector.

7. The computer program product of claim 6, wherein the initiating a message by the access terminal comprises initiating a change forward link access command.

8. The computer program product of claim 6, further comprising code for updating protocols in the access terminal to reflect the handoff to the desired forward link serving sector.
Description



CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application is a divisional of co-pending, commonly assigned, U.S. patent application Ser. No. 12/529,159 entitled "METHOD AND APPARATUS FOR MANAGING ASSIGNMENT DURING HANDOFF IN WIRELESS COMMUNICATION SYSTEMS," filed Mar. 3, 2010 which is an application filed under 35 U.S.C. .sctn.371 of PCT/US2006/41981 filed Oct. 27, 2006, and claims priority to U.S. provisional patent application Ser. No. 60/731,037, entitled "METHODS AND APPARATUS FOR PROVIDING MOBILE BROADBAND WIRELESS HIGHER MAC", filed 10/27/2005, assigned to the assignee hereof, and expressly incorporated herein by reference

BACKGROUND

[0002] 1. Field

[0003] The present disclosure relates generally to wireless communications and more particularly to methods and apparatus for managing assignment during handoff.

[0004] 2. Background

[0005] Wireless communication systems have become a prevalent means by which a majority of people worldwide have come to communicate. Wireless communication devices have become smaller and more powerful in order to meet consumer needs and to improve portability and convenience. The increase in processing power in mobile devices such as cellular telephones has lead to an increase in demands on wireless network transmission systems. Such systems typically are not as easily updated as the cellular devices that communicate there over, As mobile device capabilities expand, it can be difficult to maintain an older wireless network system in a manner that facilitates fully exploiting new and improved wireless device capabilities

[0006] Wireless communication systems generally utilize different approaches to generate transmission resources in the form of channels. These systems may be code division multiplexing (CDM) systems, frequency division multiplexing (FDM) systems, and time division multiplexing (TOM) systems. One commonly utilized variant of FDM is orthogonal frequency division multiplexing (OFDM) that effectively partitions the overall system bandwidth into multiple orthogonal subcarriers. These subcarriers may also be referred to as tones, bins, and frequency channels. Each subcarrier can be modulated with data. With time division based techniques, each subcarrier can comprise a portion of sequential time slices or time slots. Each user may be provided with a one or more time slot and subcarrier combinations for transmitting and receiving information in a defined burst period or frame. The hopping schemes may generally be a symbol rate hopping scheme or a block hopping scheme.

[0007] Code division based techniques typically transmit data over a number of frequencies available at any time in a range. In general, data is digitized and spread over available bandwidth, wherein multiple users can be overlaid on the channel and respective users can be assigned a unique sequence code. Users can transmit in the same wide-band chunk of spectrum, wherein each user's signal is spread over the entire bandwidth by its respective unique spreading code. This technique can provide for sharing, wherein one or more users can concurrently transmit and receive. Such sharing can be achieved through spread spectrum digital modulation, wherein a user's stream of bits is encoded and spread across a very wide channel in a pseudo-random fashion. The receiver is designed to recognize the associated unique sequence code and undo the randomization in order to collect the bits for a particular user in a coherent manner.

[0008] A typical wireless communication network (e.g., employing frequency, time, and/or code division techniques) includes one or more base stations that provide a coverage area and one or more mobile (e.g., wireless) terminals that can transmit and receive data within the coverage area: A typical base station can simultaneously transmit multiple data streams for broadcast, multicast, and/or unicast services, wherein a data stream is a stream of data that can be of independent reception interest to a mobile terminal. A mobile terminal within the coverage area of that base station can be interested in receiving one, more than one or all the data streams transmitted from the base station. Likewise, a mobile terminal can transmit data to the base station or another mobile terminal. In these systems the bandwidth and other system resources are assigned utilizing a scheduler.

[0009] The signals, signal formats, signal exchanges, methods, processes, and techniques disclosed herein provide several advantages over known approaches. These include, for example, reduced signaling overhead, improved system throughput, increased signaling flexibility, reduced information processing, reduced transmission bandwidth, reduced bit processing, increased robustness, improved efficiency, and reduced transmission power.

SUMMARY

[0010] The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects: This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later

[0011] According to one embodiment, a method is provided for managing assignment during handoff in a wireless communication system, the method comprising determining if a forward link shared signaling (FLSS) Changed Indication is received from a RCC MAC protocol and clearing forward link access terminal assignments (FL-ATAs) associated with the FLSS.

[0012] According to another embodiment, a computer readable medium is described having a first set of instructions for determining if a forward link shared signaling (FLSS) Changed Indication is received from a RCC MAC protocol and a second set of instructions for clearing forward link access terminal assignments (FL-ATAs) associated with the old FLSS.

[0013] According to yet another embodiment, an apparatus operable in a wireless communication system is described which includes means for determining if a forward link shared signaling (FLSS) Changed Indication is received from a RCC MAC protocol and means for clearing forward link access terminal assignments (FL-ATAs) associated with the FLSS.

[0014] According to yet another embodiment, a method is provided for managing assignment during handoff in a wireless communication system, the method comprising determining if a forward link assignment block (FLAB)/non sticky forward link assignment block (NS-FLAB) comprising an access terminal's MACID and a supplement field set to `0` is received from a dedicated forward shared signaling (DFLSS), issuing a ChangeFLSS command to change from a forward link shared signaling (FLSS) to a DFLSS, ignoring the FLABs or NS-FLABs coming from sectors other than the current FLSS or DFLSS, determining if a forward link shared signaling (FLSS) Changed Indication is received from a RCC MAC protocol and clearing forward link access terminal assignments (FL-ATAs) associated with the:old FLSS and updating the appropriate FL-ATA/FL-NS-ATA according to the new FLAB/NS-FLAB.

[0015] According to yet another embodiment, a computer readable medium is described having a first set of instructions for determining if a forward link assignment block (FLAB) non sticky forward link assignment block (NS-FLAB) comprising an access terminal's MACID and a supplement field set to `0` is received from a dedicated forward shared signaling (DFLSS), a second set of instructions for issuing a ChangeFLSS command to change from a forward link shared signaling (FLSS) to a DFLSS, a third set of instructions for ignoring the FLABs or NS-FLABs coming from sectors other than the current FLSS or DFLSS, a fourth set of instructions for determining if a forward link shared signaling (FLSS)Changed Indication is received from a RCC MAC protocol and a fifth set of instructions for clearing forward link access terminal assignments (FL-ATAs) associated with the old FLSS and updating the appropriate FL-ATA/FL-NS-ATA according to the new FLAB/NS-FLAB.

[0016] According to yet another embodiment, an apparatus is described which comprises a processor configured to determine if a forward link assignment block (FLAB)/non sticky forward link assignment block (NS-FLAB) comprising an access terminal's MACID and a supplement field set to `0` is received from a dedicated forward shared signaling (DFLSS), the processor configured to issue a ChangeFLSS command to change from a forward link shared signaling (FLSS) to a DFLSS, the processor configured to ignore the FLABs or NS-FLABs coming from sectors other than the current FLSS or DFLSS, the processor configured to determine if a forward link shared signaling (FLSS)Changed Indication is received from a RCC MAC protocol, the processor configured to clear forward link access terminal assignments (FL-ATAs) associated with the old FLSS and update the appropriate FL-ATA/FL-NS-ATA according to the new FLAB/NS-FLAB and a memory coupled to the processor.

[0017] According to yet another embodiment, an apparatus operable in a wireless communication system is described which includes means for determining if a forward link assignment block (FLAB)/non sticky forward link assignment block (NS-FLAB) comprising an access terminal's MACID and a supplement field set to `0` is received from a dedicated forward shared signaling (DFLSS), means for issuing a ChangeFLSS command to change from a forward link shared signaling (FLSS) to a DFLSS, means for ignoring the FLABs or NS-FLABs coming from sectors other than the current FLSS or DFLSS, means for determining if a forward link shared signaling (FLSS) Changed Indication is received from a RCC MAC protocol and means for clearing forward link access terminal assignments (FL-ATAs) associated with the old FLSS and updating the appropriate FL-ATA/FL-NS-ATA according to the new FLAB/NS-FLAB.

[0018] To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.

[0019] The following description and the annexed drawings set forth in detail certain illustrative aspects of the one or more aspects. These aspects are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed and the described aspects are intended to include all such aspects and their equivalents

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] FIG. 1 illustrates embodiments of a multiple access wireless communication system;

[0021] FIG. 2 illustrates embodiments of a transmitter and receiver in a multiple access wireless communication system;

[0022] FIGS. 3A and 3B illustrate embodiments of superframe structures for a multiple access wireless communication system;

[0023] FIG. 4 illustrates embodiment of a communication between an access terminal and an access network;

[0024] FIG. 5A illustrates a flow diagram of a method of managing assignment during a handoff in a wireless communication system;

[0025] FIG. 5B illustrates one or more processors configured for managing assignment during handoff in a wireless communication system;

[0026] FIG. 6A is a flow diagram of steps performed during a handoff in a wireless communication system; and

[0027] FIG. 6B illustrates one or more processors configured for managing assignment during handoff in a wireless communication system.

DETAILED DESCRIPTION

[0028] Various embodiments are now described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of one or more embodiments. It may be evident, however, that such embodiment(s) may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to facilitate describing one or more embodiments.

[0029] Referring to FIG. 1, a multiple access wireless communication system according to one embodiment is illustrated. A multiple access wireless communication system 100 includes multiple cells, e.g. cells 102, 104, and 106. In the embodiment of FIG. 1, each cell 102, 104, and 106 may include an access point 150 that includes multiple sectors. The multiple sectors are formed by groups of antennas each responsible for communication with access terminals in a portion of the cell. In cell 102, antenna groups 112, 114, and 116 each correspond to a different sector. In cell 104, antenna groups 118, 120, and 122 each correspond to a different sector. In cell 106, antenna groups 124, 126, and 128 each correspond to a different sector.

[0030] Each cell includes several access terminals which are in communication with one or more sectors of each access point. For example, access terminals 130 and 132 are in communication base 142, access terminals 134 and 136 are in communication with access point 144, and access terminals 138 and 140 are in communication with access point 146.

[0031] Controller 130 is coupled to each of the cells 102, 104, and 106. Controller 130 may contain one or more connections to multiple networks, e.g. the Internet, other packet based networks, or circuit switched voice networks that provide information to, and from, the access terminals in communication with the cells of the multiple access wireless communication system 100. The controller 130 includes, or is coupled with, a scheduler that schedules transmission from and to access terminals. In other embodiments, the scheduler may reside in each individual cell, each sector of a cell, or a combination thereof.

[0032] As used herein, an access point may be a fixed station used for communicating with the terminals and may also be referred to as, and include some or all the functionality of, a base station, a Node B, or some other terminology. An access terminal may also be referred to as, and include some or all the functionality of, a user equipment (UE), a wireless communication device, terminal, a mobile station or some other terminology.

[0033] It should be noted that while FIG. 1, depicts physical sectors, i.e. having different antenna groups for different sectors, other approaches may be utilized. For example, utilizing multiple fixed "beams" that each cover different areas of the cell in frequency space may be utilized in lieu of, or in combination with physical sectors. Such an approach is depicted and disclosed in copending U.S. patent application Ser. No. 11/260,895, entitled "Adaptive Sectorization In Cellular System."

[0034] Referring to FIG. 2, a block diagram of an embodiment of a transmitter system 210 and a receiver system 250 in a MIMO system 200 is illustrated. At transmitter system 210, traffic data for a number of data streams is provided from a data source 212 to transmit (TX) data processor 214. In an embodiment, each data stream is transmitted over a respective transmit antenna. TX data processor 214 formats, codes, and interleaves the traffic data for each data stream based on a particular coding scheme selected for that data stream to provide coded data.

[0035] The coded data for each data stream may be multiplexed with pilot data using OFDM, or other orthogonalization or non-orthogonalization techniques. The pilot data is typically a known data pattern that is processed in a known manner and may be used at the receiver system to estimate the channel response. The multiplexed pilot and coded data for each data stream is then modulated (i.e., symbol mapped) based on one or more particular modulation schemes (e.g., BPSK, QSPK, M-PSK, or M-QAM) selected for that data stream to provide modulation symbols. The data rate, coding, and modulation for each data stream may be determined by instructions performed on provided by processor 230.

[0036] The modulation symbols for all data streams are then provided to a TX processor 220, which may further process the modulation symbols (e.g., for OFDM). TX processor 220 then provides N.sub.T modulation symbol streams to N.sub.T transmitters (TMTR) 222a through 222t. Each transmitter 222 receives and processes a respective symbol stream to provide one or more analog signals, and further conditions (e.g., amplifies, filters, and upconverts) the analog signals to provide a modulated signal suitable for transmission over-the MIMO channel. N.sub.T modulated signals from transmitters 221 a through 222t are then transmitted from N.sub.T antennas 224a through 224t, respectively.

[0037] At receiver system 250, the transmitted modulated signals are received by N.sub.R antennas 252a through 252r and the received signal from each antenna 252 is provided to a respective receiver (RCVR) 254. Each receiver 254 conditions (e.g., filters, amplifies, and downconverts) a respective received signal, digitizes the conditioned signal to provide samples, and further processes the samples to provide a corresponding "received" symbol stream.

[0038] An RX data processor 260 then receives and processes the N.sub.R received symbol streams from N.sub.R receivers 254 based on a particular receiver processing technique to provide N.sub.R "detected" symbol streams. The processing by RX data processor 260 is described in further detail below. Each detected symbol stream includes symbols that are estimates of the modulation symbols transmitted for the corresponding data stream. RX data processor 260 then demodulates, deinterleaves, and decodes each detected symbol stream to recover the traffic data for the data stream. The processing by RX data processor 218 is complementary to that performed by TX processor 220 and TX data processor 214 at transmitter system 210.

[0039] RX data processor 260 may be limited in the number of subcarriers that it may simultaneously demodulate, e.g. 512 subcarriers or 5 MHz, and such a receiver should be scheduled on a single carrier. This limitation may be a function of its FFT range, e.g. sample rates at which the processor 260 may operate, the memory available for FFT, or other functions available for demodulation. Further, the greater the number of subcarriers utilized, the greater the expense of the access terminal.

[0040] The channel response estimate generated by :RX processor 260 may be used to perform space, space/time processing at the receiver, adjust power levels, change modulation rates or schemes, or other actions. RX processor 260 may further estimate the signal-to-noise-and-interference ratios (SNRs) of the detected symbol streams, and possibly other channel characteristics, and provides these quantities to a processor 270. RX data processor 260 or processor 270 may further derive an estimate of the "operating" SNR for the system. Processor 270 then provides channel state information (CSI), which may comprise various types of information regarding the communication link and/or the received data stream. For example, the CSI may comprise only the operating SNR. In other embodiments, the CSI may comprise a channel quality indicator (CQI), which may be a numerical value indicative of one or more channel conditions. The CSI is then processed by a TX data processor 278, modulated by a modulator 280, conditioned by transmitters 254a through 254r, and transmitted back to transmitter system 210.

[0041] At transmitter system 210, the modulated signals from receiver system 250 are received by antennas 224, conditioned by receivers 222, demodulated by a demodulator 240, and processed by a RX data processor 242 to recover the CSI reported by the receiver system. The reported CSI is then provided to processor 230 and used to (1) determine the data rates and coding and modulation schemes to be used for the data streams and (2) generate various controls for TX data processor 214 and TX processor 220. Alternatively, the CSI may be utilized by processor 270 to determine modulation schemes and/or coding rates for transmission, along with other information. This may then be provided to the transmitter which uses this information, which may be quantized, to provide later transmissions to the receiver.

[0042] Processors 230 and 270 direct the operation at the transmitter and receiver systems, respectively. Memories 232 and 272 provide storage for program codes and data used by processors 230 and 270, respectively.

[0043] At the receiver, various processing techniques may be used to process the N.sub.R received signals to detect the N.sub.T transmitted symbol streams. These receiver processing techniques may be grouped into two primary categories (i) spatial and space-time receiver processing techniques (which are also referred to as equalization techniques); and (ii) "successive nulling/equalization and interference cancellation" receiver processing technique (which is also referred to as "successive interference cancellation" or "successive cancellation" receiver processing technique).

[0044] While FIG. 2 discusses a MIMO system, the same system may be applied to a multi-input single-output system where multiple transmit antennas, e.g. those on a base station, transmit one or more symbol streams to a single antenna device, e.g. a mobile station. Also, a single output to single input antenna system may be utilized in the same manner as described with respect to FIG. 2.

[0045] The transmission techniques described herein may be implemented by various means. For example, these techniques may be implemented in hardware, firmware, software, or a combination thereof. For a hardware implementation, the processing units at a transmitter may be implemented within one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, electronic devices, other electronic units designed to perform the functions described herein, or a combination thereof. The processing units at a receiver may also be implemented within one or more ASICs, DSPs, processors, and so on.

[0046] For a software implementation, the transmission techniques may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. The software codes may be stored in a memory (e.g., memory 230, 272x or 272y in FIG. 2) and executed by a processor (e.g., processor 232, 270x or 270y). The memory may be implemented within the processor or external to the processor.

[0047] It should be noted that the concept of channels herein refers to information or transmission types that may be transmitted by the access point or access terminal. It does not require or utilize fixed or predetermined blocks of subcarriers, time periods, or other resources dedicated to such transmissions.

[0048] Referring to FIGS. 3A and 3B, embodiments of superframe structures for a multiple access wireless communication system are illustrated. FIG. 3A illustrates embodiments of superframe structures for a frequency division duplexed (FDD) multiple access wireless communication system, while FIG. 3B illustrates embodiments of superframe structures for a time division duplexed (TDD) multiple access wireless communication system. The superframe preamble may be transmitted separately for each carrier or may span all of the carriers of the sector.

[0049] In both FIGS. 3A and 3B, the forward link transmission is divided into units of superframes. A superframe may consist of a superframe preamble followed by a series of frames. In an FDD system, the reverse link and the forward link transmission may occupy different frequency bandwidths so that transmissions on the links do not, or for the most part do not, overlap on any frequency subcarriers. In a TDD system, N forward link frames and M reverse link frames define the number of sequential forward link and reverse link frames that may be continuously transmitted prior to allowing transmission of the opposite type of frame. It should be noted that the number of N and M may be vary within a given superframe or between superframes.

[0050] In both FDD and TDD systems each superframe may comprise a superframe preamble. In certain embodiments, the superframe preamble includes a pilot channel that includes pilots that may be used for channel estimation by access terminals, a broadcast channel that includes configuration information that the access terminal may utilize to demodulate the information contained in the forward link frame. Further acquisition information such as timing and other information sufficient for an access terminal to communicate on one of the carriers and basic power control or offset information may also be included in the superframe preamble. In other cases, only some of the above and/or other information may be included in this superframe preamble.

[0051] As shown in FIGS. 3A and 3B, the superframe preamble is followed by a sequence of frames. Each frame may consist of a same or a different number of OFDM symbols, which may constitute a number of subcarriers that may simultaneously utilized for transmission over some defined period. Further, each frame may operate according to a symbol rate hopping mode, where one or more non-contiguous OFDM symbols are assigned to a user on a forward link or reverse link, or a block hopping mode, where users hop within a block of OFDM symbols. The actual blocks or OFDM symbols may or may not hop between frames.

[0052] FIG. 4 illustrates communication between an access terminal 402 and an access network 404 according to an embodiment. Using a communication link 406 and based upon predetermined timing, system conditions, or other decision criteria, the access network 404 will transmit information to the access terminal 402. The communication link may be implemented using communication protocols/standards such as World Interoperability for Microwave Access (WiMAX), infrared protocols such as Infrared Data Association (IrDA), short-range wireless protocols/technologies, Bluetooth.RTM. technology, ZigBee.RTM. protocol, ultra wide band (UWB) protocol, home radio frequency (HomeRF), shared wireless access protocol (SWAP), wideband technology such as a wireless Ethernet compatibility alliance (WECA), wireless fidelity alliance (Wi-Fi Alliance), 802.11 network technology, public switched telephone network technology, public heterogeneous communications network technology such as the Internet, private wireless communications network, land mobile radio network, code division multiple access (CDMA), wideband code division multiple access (WCDMA), universal mobile telecommunications system (UMTS), advanced mobile phone service (AMPS), time division multiple access (TDMA), frequency division multiple access (FDMA), orthogonal frequency division multiple (OFDM), orthogonal frequency division multiple access (OFDMA), orthogonal frequency division multiple FLASH (OFDM-FLASH), global system for mobile communications (GSM), single carrier (1.times.) radio transmission technology (RTT), evolution data only (EV-DO) technology, general packet radio service (GPRS), enhanced data GSM environment (EDGE), high speed downlink data packet access (HSPDA), analog and digital satellite systems, and any other technologies/protocols that may be used in at least one of a wireless communications network and a data communications network.

[0053] The access terminal 402 is configured to receive the information and the access network 404 is configured to transmit the information to the access terminal 402 using the communication link 406. The access terminal 402 receives information from the access network 404 for managing assignment during handoff. In an embodiment, the access terminal may clear all FL-ATAs associated with the old FLSS on receiving an FLSSChanged Indication from the RCC MAC protocol.

[0054] In another embodiment, the access terminal 402 issues a ChangeFLSS command to change from the FLSS to a DFLSS upon receiving an FLAB/NS-FLAB having an access terminal's MACID and having the supplement field set to "0" from the DFLSS, while the DFLSS is different from the FLSS. Further, the access terminal 402 ignores all FLABs or NS-FLABS coming from sectors other than the current FLSS or DFLSS. The access terminal 402 further clears all FT-ATAs associated with the old FLSS and updates the appropriate FL-ATA/FL-NS-ATA according to the new FLAB/NS-FLAB upon reception of an FLSSChanged Indication from a RCC MAC protocol.

[0055] FIG. 5A illustrates a flow diagram 500 of a method of managing assignment during a handoff in a wireless communication system. The flow begins in step 504, and in block 508, a determination is made whether a forward link serving sector (FLSS) change indication has been received. If the FLSS change indication has been received, in block 512 all assignments associated with the old FLSS is cleared. If the FLSS change indication has not been received, the flow ends in block 516.

[0056] FIG. 5B illustrates a processor 550 for managing assignment during handoff. The processor referred to may be electronic devices and may comprise one or more processors configured for providing indices. Processor 552 is configured to determine if a forward link shared signaling (FLSS)Changed Indication is received from a RCC MAC protocol and processor 554 is configured to clear forward link access terminal assignments (FL-ATAs) associated with the FLSS. The functionality of the discrete processors 552 to 554 depicted in the figure may be combined into a single processor 556. A memory 558 is also coupled to the processor 556.

[0057] In an embodiment, an apparatus is described which comprises means for determining if a forward link shared signaling (FLSS)Changed Indication is received from a RCC MAC protocol and means for clearing forward link access terminal assignments (FL-ATAs) associated with the FLSS. The means described herein may comprise one or more processors.

[0058] FIG. 6A is a flow diagram 600 of additional steps performed during a handoff in a wireless communication system. The flow begins in block 604, and in block 608 a determination is made whether a desired FLSS (DFLSS) is not equal to the FLSS. If the DFLSS is not equal to the FLSS, in block 612 a determination is made whether a valid assignment has been received from the DFLSS. If a valid assignment has been received, in block 616 and FLSS changed indication command is initiated by the access terminal. If the DFLSS is not equal to FLSS, the flow ends in block 620. According to embodiments, a computer program product includes computer readable media having computer executable code stored thereon comprising: code for determining a desired forward link serving sector, the desired forward link serving sector being one of plurality of forward link serving sectors; code for receiving an assignment from the desired forward link serving sector in response to a request from an access terminal for a handoff; code for initiating a message indicating a change from a current forward link serving sector to the desired forward link serving sector; and code for clearing forward link access terminal assignments associated with the current forward link serving sector.

[0059] FIG. 6B illustrates a processor 650 for managing assignment during handoff. The processor referred to may be electronic devices and may comprise one or more processors configured for managing assignment during handoff. Processor 652 is configured to determine if a forward link assignment block (FLAB)/non sticky forward link assignment block (NS-FLAB) comprising an access terminal's MACID and a supplement field set to `0` is received from a dedicated forward shared signaling (DFLSS). Processor 654 is configured to issue a ChangeFLSS command to change from a forward link shared signaling (FLSS) to a DFLSS and processor 656 is configured to ignore the FLABs or NS-FLABs coming from sectors other than the current FLSS or DFLSS. Processor 658 is configured to determine if a forward link shared signaling (FLSS)Changed Indication is received from a RCC MAC protocol and processor 660 is configured to clear forward link access terminal assignments (FL-ATAs) associated with the old FLSS and update the appropriate FL-ATA/FL-NS-ATA according to the new FLAB/NS-FLAB. The functionality of the discrete processors 652 to 660 depicted in the figure may be combined into a single processor 662. A memory 664 is also coupled to the processor 662.

[0060] In an embodiment, an apparatus is described which comprises means for means for determining if a forward link assignment block (FLAB)/non sticky forward link assignment block (NS-FLAB) comprising an access terminal's MACID and a supplement field set to `0` is received from a dedicated forward shared signaling (DFLSS), means for issuing a ChangeFLSS command to change from a forward link shared signaling (FLSS) to a DFLSS, means for ignoring the FLABs or NS-FLABs coming from sectors other than the current FLSS or DFLSS, means for determining if a forward link shared signaling (FLSS)Changed Indication is received from a RCC MAC protocol and means for clearing forward link access terminal assignments (FL-ATAs) associated with the old FLSS and updating the appropriate FL-ATA/FL-NS-ATA according to the new FLAB/NS-FLAB. The means described herein may comprise one or more processors.

[0061] Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments. Thus, the description is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed