Error Correction Scheme In A Hearing System Wireless Network

PEDERSEN; Brian Dam

Patent Application Summary

U.S. patent application number 13/588875 was filed with the patent office on 2012-12-06 for error correction scheme in a hearing system wireless network. This patent application is currently assigned to GN ReSound A/S. Invention is credited to Brian Dam PEDERSEN.

Application Number20120311409 13/588875
Document ID /
Family ID40527882
Filed Date2012-12-06

United States Patent Application 20120311409
Kind Code A1
PEDERSEN; Brian Dam December 6, 2012

ERROR CORRECTION SCHEME IN A HEARING SYSTEM WIRELESS NETWORK

Abstract

A method of wireless data communication between a hearing instrument and another device, includes receiving N data packages A.sub.1, A.sub.2, . . . , A.sub.N, wherein the N data packages are obtained by dividing a data package D, receiving data package C, wherein the data package C is formed as a function of A.sub.1, A.sub.2, . . . , A.sub.N in accordance with a relationship C=(A.sub.1, A.sub.2, . . . , A.sub.N), performing error detection, and recovering A.sub.E, one of the data packages A.sub.1, A.sub.2, . . . , A.sub.N that contains an error, in accordance with a relationship A.sub.E=(A.sub.1, A.sub.2, . . . , C, . . . , A.sub.N), in which A.sub.1, A.sub.2, . . . , C, . . . , A.sub.N indicates that the data package C is used in place of A.sub.E in a list of arguments for the function .


Inventors: PEDERSEN; Brian Dam; (Ringsted, DK)
Assignee: GN ReSound A/S
Ballerup
DK

Family ID: 40527882
Appl. No.: 13/588875
Filed: August 17, 2012

Related U.S. Patent Documents

Application Number Filing Date Patent Number
12353192 Jan 13, 2009 8265099
13588875

Current U.S. Class: 714/776 ; 714/E11.032
Current CPC Class: H04R 25/558 20130101; H04R 25/554 20130101; H04L 1/004 20130101; H04R 2225/55 20130101; H04R 25/70 20130101; H04L 1/008 20130101; H04R 25/552 20130101
Class at Publication: 714/776 ; 714/E11.032
International Class: H03M 13/05 20060101 H03M013/05; G06F 11/10 20060101 G06F011/10; H04B 7/26 20060101 H04B007/26

Foreign Application Data

Date Code Application Number
Dec 22, 2008 DK PA 2008 01830

Claims



1-22. (canceled)

23. A method of data communication between a hearing instrument and another device, comprising: forming a data correction package C as a function of at least some of a plurality of data packages A.sub.1, A.sub.2, . . . , A.sub.N; and transmitting the data correction package C; wherein the act of transmitting the data correction package C is performed by the other device regardless of whether the hearing instrument detects an error; and wherein the data correction package C is for recovering A.sub.E, one of the data packages A.sub.1, A.sub.2, . . . , A.sub.N that contains the error.

24. The method of claim 23, wherein the data correction package C is formed in accordance with a relationship C=(A.sub.1, A.sub.2, . . . , A.sub.N); and wherein the data package C is formed to recover A.sub.E in accordance with a relationship A.sub.E=(A.sub.1, A.sub.2, . . . , C, . . . , A.sub.N), in which A.sub.1, A.sub.2, . . . , C, . . . , A.sub.N indicates that the data correction package C is used in place of A.sub.E in a list of arguments for the function .

25. The method of claim 24, wherein the function and the function are identical.

26. The method of claim 25, wherein the function is an exclusive-or function so that C=A.sub.1 .sym. A.sub.2 .sym. . . . .sym. A.sub.N and A.sub.E=A.sub.1 .sym. A.sub.2 .sym. . . . .sym. C .sym. . . . .sym. A.sub.N.

27. The method of claim 26, wherein N is equal to 2 so that C=A.sub.1 .sym. A.sub.2 and A.sub.1=C .sym. A.sub.2 and A.sub.2=A.sub.1 .sym. C.

28. The method of claim 23, further comprising transmitting the data packages A.sub.1, A.sub.2, . . . , A.sub.N from the other device to the hearing instrument.

29. The method of claim 28, wherein at least some of the packages A.sub.i, C are wirelessly transmitted in respective different frequency channels.

30. The method of claim 23, wherein the error is due to noise in a communication channel.

31. The method of claim 23, wherein the data correction package C is received by the hearing instrument in response to a detection of the error by the hearing instrument.

32. A method of data communication between a hearing instrument and another device, comprising: receiving N data packages A.sub.1, A.sub.2, . . . , A.sub.N; performing error detection; receiving data correction package C, wherein the data correction package C is formed as a function of at least some of the N data packages A.sub.1, A.sub.2, . . . , A.sub.N; and recovering A.sub.E, one of the data packages A.sub.1, A.sub.2, . . . , A.sub.N that contains an error based on the data correction package C; wherein the act of receiving the data correction package C is performed in response to a detection of the error; wherein both the act of receiving the data correction package C and the act of performing the error detection are performed by the hearing instrument; and wherein the data correction package C is received from the other device.

33. The method of claim 32, wherein the data correction package C is formed in accordance with a relationship C=(A.sub.1, A.sub.2, . . . , A.sub.N); and wherein A.sub.E is recovered in accordance with a relationship A.sub.E=(A.sub.1, A.sub.2, . . . , C, . . . , A.sub.N), in which A.sub.1, A.sub.2, . . . , C, . . . , A.sub.N indicates that the data package C is used in place of A.sub.E in a list of arguments for the function .

34. The method of claim 33, wherein the function and the function are identical.

35. The method of claim 34, wherein the function is an exclusive-or function so that C=A.sub.1 .sym. A.sub.2 .sym. . . . .sym. A.sub.N and A.sub.E=A.sub.1 .sym. A.sub.2 .sym. . . . .sym.C .sym. . . . .sym. A.sub.N.

36. The method of claim 35, wherein N is equal to 2 so that C=A.sub.1 .sym. A.sub.2 and A.sub.1=C .sym. A.sub.2 and A.sub.2=A.sub.1 .sym. C.

37. The method of claim 32, wherein at least some of the packages A.sub.i, C are received wirelessly in respective different frequency channels.

38. The method of claim 32, wherein the error is due to noise in a communication channel.

39. The method of claim 32, wherein the error detection is performed on each of the N data packages.

40. The method of claim 32, wherein the act of receiving the data correction package C in response to the detection of the error provides power saving for the hearing instrument that receives the data correction package C.

41. The method of claim 32, wherein the other device is carried by a user of the hearing instrument, and the hearing instrument and the other device are configured to communicate with each other through a Bluetooth network.

42. A device, comprising: a processing unit configured to form a data correction package as a function of a plurality of data packages; and a communication device configured to transmit the data correction package for reception by a hearing instrument regardless of whether the hearing instrument detects an error; wherein the data correction package is for recovering one of the data packages that contains the error.

43. The device of claim 42, wherein the communication device comprises a Bluetooth device.

44. The device of claim 42, wherein the error is due to noise in a communication channel.

45. The device of claim 42, wherein the communication device is also configured to transmit the plurality of data packages for reception by the hearing instrument.

46. The device of claim 45, wherein at least some of the plurality of packages and the data correction package are wirelessly transmitted in different respective frequency channels.

47. The device of claim 42, wherein the processing unit and the communication device are parts of another hearing instrument that is in communication with the hearing instrument.

48. A hearing system comprising the device of claim 47, and the hearing instrument.

49. The hearing system of claim 48, wherein the hearing instrument is configured to receive the data correction package in response to a detection of the error by the hearing instrument.

50. The hearing system of claim 48, wherein the hearing instrument comprises a first hearing aid, and the other hearing instrument comprises a second hearing aid.

51. The hearing system of claim 48, wherein the hearing instrument comprises a controller configured to control a receiver in the hearing instrument to receive the data correction package to provide power saving for the hearing instrument.

52. A hearing instrument, comprising: a receiver for receiving a plurality of data packages; and a controller that controls the receiver to receive a data correction package transmitted by a device, wherein the controller is configured to control the receiver to receive the data correction package in response to a detection of an error by the hearing instrument, the controller being a part of the hearing instrument; wherein the data correction package is based at least on some of the data packages, and is for recovering one of the data packages that contains the error.

53. A hearing system comprising the hearing instrument of claim 52, and the device, wherein the device comprises an additional hearing instrument.

54. The hearing system of claim 53, wherein the device is configured to transmit the data correction package regardless of whether the hearing instrument detects the error.

55. The hearing system of claim 53, wherein the hearing instrument comprises a first hearing aid, and the additional hearing instrument comprises a second hearing aid.

56. The hearing instrument of claim 52, wherein the receiver is configured to receive the data correction package through a Bluetooth network.

57. The hearing instrument of claim 52, wherein the receiver is configured to receive the plurality of data packages and the data correction package in respective different frequency channels.

58. The hearing instrument of claim 52, wherein the error is due to noise in a communication channel.

59. The hearing instrument of claim 52, wherein the controller is configured to control the receiver to receive the data correction package to provide power saving for the hearing instrument.
Description



RELATED APPLICATION DATA

[0001] This application claims priority to and the benefit of Danish Patent Application No. PA 2008 01830, filed Dec. 22, 2008, the entire disclosure of which is expressly incorporated by reference.

FIELD

[0002] The present application relates to a hearing instrument wireless network for wireless interconnection of hearing instruments with each other, and wireless interconnection of hearing instruments with other devices, such as remote controllers, fitting instruments, mobile phones, media players, headsets, door bells, alarm systems, broadcast systems, such as tele coil replacement, etc, etc.

BACKGROUND

[0003] WO 2004/110099 discloses a hearing aid wireless network with a communication protocol that is simple thereby requiring a small amount of code and power consumption during operation. Further, the acquisition time is low, and the latency is low.

[0004] Numerous schemes of correcting data transmission errors in noisy communication channels are known in the art. Typically, a number of bits is added to data bits in a data package according to a certain encoding scheme making it possible to detect a certain number of bit errors caused by noise in the communication channel and also correct a certain, typically smaller, number of bit errors in a de-coder. Some schemes include re-transmission of data packages. Error correction schemes increase the time needed for transmission and reception of a certain number of data bits, and wireless communication circuitry requires significant amounts of power during reception and transmission of data.

[0005] Typically, in a hearing instrument, such as a hearing aid, only a limited amount of power is available from the power supply. For example, in a hearing aid, power is typically supplied from a conventional ZnO.sub.2 battery.

SUMMARY

[0006] Thus, in a hearing system, it is desirable to minimize the time transmitters and receivers are actively performing transmission and reception, respectively. For example, it is desirable to minimize re-transmission of data packets.

[0007] Accordingly, a hearing system is provided, comprising a hearing instrument having a receiver for wireless data communication between the hearing instrument and another device in a wireless network. The hearing instrument may further have a communication controller that is configured for controlling the wireless data communication.

[0008] In accordance with the present error correction scheme, a data package D containing B bits to be transmitted, is divided into a number N of data packages A.sub.1, A.sub.2, . . . , A.sub.N, Preferably, but not necessarily, data packages A.sub.1, A.sub.2, . . . , A.sub.N contain identical number of bits

B N . ##EQU00001##

In order to be able to detect and correct possible bit errors in one data package A.sub.I a further data package C is formed as a function of A.sub.1, A.sub.2, . . . , A.sub.N:

C=(A.sub.1, A.sub.2, . . . , A.sub.N).

[0009] Then, the data packages A.sub.1, A.sub.2, . . . , A.sub.N, and C are transmitted wirelessly from a transmitting device in the wireless network.

[0010] In the hearing instrument or another device connected to the wireless network and for which the transmitted data packages are intended, the data receiver is activated, e.g. turned on, to perform data reception of data packages A.sub.1, A.sub.2, . . . , A.sub.N, and C. The data receiver also performs error detection and, in case of detection of error(s) in one of the data packages A.sub.1, A.sub.2, . . . , A.sub.N, namely A.sub.E, data recovery is performed based on the remaining data packages A.sub.1, A.sub.2, . . . , A.sub.N, and C in accordance with:

A.sub.E=(A.sub.1, A.sub.2, . . . , C, . . . , A.sub.N),

wherein A.sub.1, A.sub.2, . . . , C, . . . , A.sub.N indicates that data package C replaces the defective data package A.sub.E in the list of arguments of function . A.sub.E may be any one of the data packages A.sub.1, A.sub.2, . . . , A.sub.N.

[0011] Thus, the function is used to calculate redundant data information inserted into the transmitted data stream in accordance with specific algebraic relations so that the received data stream, in the event that errors have been introduced during data transmission, can be corrected using the corresponding reversed specific algebraic relations constituting the function .

[0012] It should be noted that division of original data package D with B bits into a number of data packages A.sub.1, A.sub.2, . . . , A.sub.N, e.g. of the same size

B N , ##EQU00002##

leads to the advantage that only one extra package C with a small number of bits, e.g.

B N , ##EQU00003##

needs to be transmitted and received. Thus, the time the receiver needs to be activated in order to be able to perform data recovery is only increased by

B N . ##EQU00004##

[0013] Preferably, the communication controller is configured to control the receiver in such a way that reception of data package C takes place solely in case of detection of error(s) in data packages A.sub.1, A.sub.2, . . . , A.sub.N. Hereby further power consumption by the receiver is saved when no error(s) is detected, since reception of data package C is not performed in case of error free data transmission of A.sub.1, A.sub.2, . . . , A.sub.N.

[0014] An error in the received data stream may be detected using e.g. parity bits, Hamming code, checksum, cyclic redundancy check, etc.

[0015] Accordingly, a hearing system is provided comprising a hearing instrument having a receiver for wireless data communication between the hearing instrument and another device in a wireless network, and a communication controller that is configured for controlling the receiver for data reception of data packages A.sub.1, A.sub.2, . . . , A.sub.N, and C. The receiver is further configured for performing error detection, and in case of detection of an error in one of the data packages A.sub.1, A.sub.2, . . . , C, . . . , A.sub.N, namely A.sub.E, for recovering the data package A.sub.E in accordance with: A.sub.E=(A.sub.1, A.sub.2, . . . C, . . . , A.sub.N), wherein A.sub.1, A.sub.2, . . . , C, . . . , A.sub.N indicates that data package C replaces defective data package A.sub.E in the list of arguments of function .

[0016] Thus, in a device connected in the wireless network, a communication controller of the device may be configured for always performing data reception of data package C in addition to data reception of data packages A.sub.1, A.sub.2, . . . , A.sub.N whether an error has been detected or not, for example in a device with plenty of power available. Still, data recovery may be performed solely in response to detection of an error in one, namely A.sub.E, of the received data packages A.sub.1, A.sub.2, . . . , A.sub.N.

[0017] However, in a device with limited amount of power available, data reception of data package C may be performed solely in response to detection of an error in one of the received data packages A.sub.1, A.sub.2, . . . , A.sub.N.

[0018] According to the present error correction scheme, the transmitting device always transmits the extra data package C for possible subsequent error correction; however, typically the transmitting device is a device with a large power supply, such as a remote controller, a fitting instrument, a mobile phone, a media players a headset, a door bell, an alarm system, a broadcast system, etc. The transmitting device may also be a hearing instrument.

[0019] Function and function may be identical functions.

[0020] In one embodiment, is an exclusive-or function so that

C=A.sub.1 .sym. A.sub.2 .sym. . . . .sym. A.sub.N

and

A.sub.E=A .sub.1.sym. A.sub.2 .sym. . . . .sym. C.sym. . . . .sym. A.sub.N.

[0021] For example, N may be equal to 2 so that data package D containing B bits to be transmitted is divided into 2 data packages A.sub.1 and A.sub.2, each of which contains

B 2 ##EQU00005##

bits. In order to be able to detect and correct possible bit errors in a data package, a further data package C is formed as a function of A.sub.1 and A.sub.2:

C=A.sub.1 .sym. A.sub.2.

[0022] Then, the data packages A.sub.1 and A.sub.2, and C are transmitted wirelessly from a transmitting device in the wireless network.

[0023] In the hearing instrument or another device connected to the wireless network and for which the transmitted data packages are intended, the data receiver is activated, e.g. turned on, to perform data reception of data packages A.sub.1 and A.sub.2 and C. The data receiver also performs error detection and, in case of detection of error(s) in A.sub.1 or A.sub.2, data recovery is performed based on:

A.sub.1=C .sym. A.sub.2 or A.sub.2=C .sym. A.sub.1.

[0024] It should be noted that division of original data package D with B bits into two data packages A.sub.1 and A.sub.2 of the same size

B 2 ##EQU00006##

bits, leads to the advantage that only one extra package C with

B 2 ##EQU00007##

bits needs to be transmitted and received. Thus, the time the receiver needs to be activated in order to be able to perform data recovery is only increased by

B 2 . ##EQU00008##

[0025] Preferably, the communication controller is configured to control the receiver in such a way that reception of data package C takes place solely in case of detection of error(s) in data package A.sub.1 or A.sub.2. Hereby further power consumption by the receiver is saved when no error(s) is detected, since reception of data package C is not performed in case of error free data transmission of A.sub.1 and A.sub.2.

[0026] The limited power supply requirement of the provided error correction scheme makes it suitable for incorporation in a hearing instrument with limited power supply capabilities.

[0027] The hearing instrument may be a hearing aid, a tinnitus relieving device, a tinnitus therapy device, a noise suppression device, etc., or any combination of two or more of such devices.

[0028] The receiver and transmitter of the hearing instrument may be comprised in a radio chip, such as the Nordic Semiconductor radio chip "nRF24I01". A radio chip of this type draws significant amounts of current both when it transmits and receives. A conventional ZnO.sub.2 battery is only capable of supplying the required amount of current for a limited time period, typically 1 millisecond. Continued supply of the required amount of current leads to a lowered supply voltage below which digital signal processing circuitry will stop operating properly. Further, the ZnO.sub.2 battery will require time to recover after having supplied current to the radio chip during communication. Typically, the radio chip duty cycle, i.e. the percentage of radio turn-on time with respect to the sum of the radio turn-on and radio turn-off time, must be kept below 10%.

[0029] In one embodiment, the receiver and communication controller operate according to a frequency diversification or spread spectrum scheme, i.e. the frequency range utilized by the wireless network is divided into a number of frequency channels, and data communication switch channels according to a predetermined scheme so that transmissions are distributed over the frequency range.

[0030] Preferably, a frequency hopping algorithm is provided that allows devices in the network to calculate what frequency channel the network will use at any given point in time without relying on the history of the network. For example, based on the present frequency channel number, a pseudo-random number generator calculates the next frequency channel number. This facilitates synchronization of a new device in the network, e.g. the new device comprises the same pseudo-random number generator as the devices already connected in the network. Thus, upon receipt of the current frequency channel number during acquisition, the new device will calculate the same next frequency channel number as the other devices in the network.

[0031] In a network operating according to a spread spectrum scheme, the communication has a low sensitivity to noise, since noise is typically present in specific frequency channels, and communication will only be performed in a specific frequency channel for a short time period after which communication is switched to another frequency channel.

[0032] Advantageously, each of the data packages A.sub.1, A.sub.2, . . . , A.sub.N may be transmitted in an individual frequency channel, i.e. subsequent to the transmission of one data package A.sub.P, a frequency hop is performed before transmission of the next data package A.sub.P+1 of the data packages A.sub.1, A.sub.2, . . . , A.sub.N. As mentioned above, noise is typically present in specific frequency channels so that a typical transmission error of this transmission scheme generates data corruption of a single package of the data packages A.sub.1, A.sub.2, . . . , A.sub.N while no errors are generated in the remaining data packages.

[0033] It is a further advantage of the hearing system operating according to a spread spectrum scheme that several networks may co-exist in close proximity, for example two or more hearing instrument users may be present in the same room without network interference, since the probability of two networks simultaneously using a specific frequency channel will be very low. Likewise, the hearing instrument network may coexist with other wireless networks utilizing the same frequency band, such as Bluetooth networks or other wireless local area networks. Hearing instruments according to some embodiments described herein may advantageously be incorporated into a binaural hearing aid system, wherein two hearing aids are interconnected through the wireless network for digital exchange of data, such as audio signals, signal processing parameters, control data, such as identification of signal processing programs, etc, etc, and optionally interconnected with other devices, such as a remote control, etc.

[0034] The receivers and transmitters of devices in the network may operate in accordance with a time-division-multiple-access (TDMA) frame structure, wherein time is divided into frames comprising a set of numbered time slots. Different devices in the network communicate in specific respective time slots. Thus, when connected in the network, the frames of the devices are synchronised.

[0035] Every device in the network has its own identification number, e.g. a 32-bit number. Globally unique identities are not required since the probability of two users having hearing instruments with identical identifications is negligible.

[0036] The hearing system may operate in the 2.4 GHz industrial scientific medical (ISM) band. The ISM band may for example be divided into 80 frequency channels of 1 MHz bandwidth. A frequency hopping TDM (Time Division Multiplex) scheme is preferred. During acquisition, the frequency hopping scheme may comprise a reduced number of frequency channels, e.g. less than 16 channels, preferably 4-8 channels, for faster acquisition. Channels of the reduced set of frequency channels are denoted acquisition channels. Preferably, the acquisition channels are distributed uniformly throughout the frequency band utilised by the network.

[0037] The duration of a time slot may for example be 1250 .mu.s (twice the length of a minimum Bluetooth.TM. slot). The slots may be numbered from 0 to 255.

[0038] 256 slots, i.e. slot 0 to slot 255, constitute a frame. Frames are also numbered.

[0039] Among factors influencing selection of the length of a slot, is the required lower latency of the system and a desired low overhead with respects to headers and PLL (Phase Locked Loop) locking. Preferably, the slot length is a multiple of 625 .mu.s, facilitating (i.e. not prevent) that the protocol can be implemented on BLUETOOTH.TM. enabled devices.

[0040] Each slot (except slot 128) is used for transmission by one specific device so that data collisions inside the network are prevented. Any slave device may transmit data in slot 128 and hence collisions may occur in this slot. The master device transmits timing information in slot 0. The slot and frame counters of a slave device are synchronized with the respective counters of the master device of the network.

[0041] A device may use one or more slots for transmission of data. Slots may be allocated during manufacture of a given device, or, slots may be allocated dynamically during acquisition. Preferably, the allocation table is stored in the master device.

[0042] In order to lower power consumption in the hearing instrument, the hearing instrument receiver and transmitter are activated, i.e. allowed to operate for reception and transmission, respectively, e.g. turned on, only in their respective time slots. Further, the bit rate can be made scalable in such a system: When low bit transfer rates are required, the transceiver need only be active a small fraction of the time. In this way power can be saved.

[0043] In accordance with some embodiments, a method of wireless data communication between a hearing instrument and another device, includes dividing a data package D into N data packages A.sub.1, A.sub.2, . . . , A.sub.N, forming a data package C as a function of A.sub.1, A.sub.2, . . . , A.sub.N in accordance with a relationship C=(A.sub.1, A.sub.2, . . . , A.sub.N), wirelessly transmitting the data packages A.sub.1, A.sub.2, . . . , A.sub.N, and wirelessly transmitting the data package C, wherein the data package C is for recovering A.sub.E, one of the data packages A.sub.1, A.sub.2, . . . , A.sub.N that contains an error, in accordance with a relationship A.sub.E=(A.sub.1, A.sub.2, . . . , C, . . . , A.sub.N), in which A.sub.1, A.sub.2, . . . , C, . . . , A.sub.N indicates that the data package C is used in place of A.sub.E in a list of arguments for the function .

[0044] In accordance with other embodiments, a system for wireless data communication between a hearing instrument and another device includes means for dividing a data package D into N data packages A.sub.1, A.sub.2, . . . , A.sub.N, means for forming a data package C as a function of A.sub.1, A.sub.2, . . . , A.sub.N in accordance with a relationship C=(A.sub.1, A.sub.2, . . . , A.sub.N), and means for wirelessly transmitting the data packages A.sub.1, A.sub.2, . . . , A.sub.N, and for wirelessly transmitting the data package C, wherein the data package C is for recovering A.sub.E, one of the data packages A.sub.1, A.sub.2, . . . , A.sub.N that contains an error, in accordance with a relationship A.sub.E=(A.sub.1, A.sub.2, . . . , C, . . . , A.sub.N), in which A.sub.1, A.sub.2, . . . , C, . . . , A.sub.N indicates that the data package C is used in place of A.sub.E in a list of arguments for the function .

[0045] In accordance with other embodiments, a method of wireless data communication between a hearing instrument and another device, includes receiving N data packages A.sub.1, A.sub.2, . . . , A.sub.N, wherein the N data packages are obtained by dividing a data package D, receiving data package C, wherein the data package C is formed as a function of A.sub.1, A.sub.2, . . . , A.sub.N in accordance with a relationship C=(A.sub.1, A.sub.2, . . . , A.sub.N), performing error detection, and recovering A.sub.E, one of the data packages A.sub.1, A.sub.2, . . . , A.sub.N that contains an error, in accordance with a relationship A.sub.E=(A.sub.1, A.sub.2, . . . , C, . . . , A.sub.N), in which A.sub.1, A.sub.2, . . . , C, . . . , A.sub.N indicates that the data package C is used in place of A.sub.E in a list of arguments for the function .

[0046] In accordance with other embodiments, a system for wireless data communication between a hearing instrument and another device includes means for receiving N data packages A.sub.1, A.sub.2, . . . , A.sub.N, and data package C, wherein the N data packages are obtained by dividing a data package D, and wherein the data package C is formed as a function of A.sub.1, A.sub.2, . . . , A.sub.N in accordance with a relationship C=(A.sub.1, A.sub.2, . . . , A.sub.N), means for performing error detection, and means for recovering A.sub.E, one of the data packages A.sub.1, A.sub.2, . . . , A.sub.N that contains an error, in accordance with a relationship A.sub.E=(A.sub.1, A.sub.2, . . . , C, . . . , A.sub.N), in which A.sub.1, A.sub.2, . . . , C, . . . , A.sub.N indicates that the data package C is used in place of A.sub.E in a list of arguments for the function .

[0047] In accordance with other embodiments, a hearing system includes a hearing instrument having a receiver for wireless data communication with another device in a wireless network, and a communication controller that is configured for controlling the wireless data communication, wherein the other device is configured for transmission of data packages A.sub.1, A.sub.2, . . . , A.sub.N, C, the data package C being a function of A.sub.1, A.sub.2, . . . , A.sub.N in accordance with a relationship C=(A.sub.1, A.sub.2, . . . , A.sub.N), and wherein the communication controller is configured for controlling the receiver for receiving the data packages A.sub.1, A.sub.2, . . . , A.sub.N, and C, performing error detection, and recovering A.sub.E, one of the data packages A.sub.1, A.sub.2, . . . , A.sub.N that contains an error, in accordance with a relationship A.sub.E=(A.sub.1, A.sub.2, . . . , C, . . . , A.sub.N), in which A.sub.1, A.sub.2, . . . , C, . . . , A.sub.N indicates that the data package C is used in place of A.sub.E in a list of arguments for the function

DESCRIPTION OF THE DRAWING FIGURES

[0048] The above and other features and advantages will become more apparent to those of ordinary skill in the art by describing in detail exemplary embodiments thereof with reference to the attached drawings in which:

[0049] FIG. 1 schematically illustrates a hearing system wireless network, and

[0050] FIG. 2 is a blocked schematic of a transceiver and communication controller according to some embodiments.

DETAIL DESCRIPTION

[0051] Some of the embodiments will now be described more fully hereinafter with reference to the accompanying drawings. The claimed invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Thus, the illustrated embodiments are not intended as an exhaustive description of the invention or as a limitation on the scope of the invention. In addition, an illustrated embodiment needs not have all the aspects or advantages shown. An aspect or an advantage described in conjunction with a particular embodiment is not necessarily limited to that embodiment and can be practiced in any other embodiments even if not so illustrated. Like reference numerals refer to like elements throughout.

[0052] FIG. 1 schematically illustrates a hearing system comprising a binaural hearing aid with a left ear hearing aid and a right ear hearing aid, each of which has a transceiver and communication controller for connection with a wireless network interconnecting the two hearing aids, and interconnecting the hearing aids and a plurality of other devices in the wireless network. In the example illustrated in FIG. 1, a doorbell, a mobile phone, a cordless phone, a TV-set, and a fitting instrument are also connected to the wireless network.

[0053] The illustrated embodiment operates in the 2.4 GHz industrial scientific medical (ISM) band. It comprises 80 frequency channels of 1 MHz bandwidth. The receivers and communication controllers of the shown devices operate according to a frequency diversification or spread spectrum scheme, i.e. the frequency range utilized by the network is divided into the 80 frequency channels, and transmissions switch channels according to a predetermined scheme so that transmissions are distributed over the ISM frequency range. A frequency hopping algorithm is provided that allows devices in the network to calculate what frequency channel the network will use at any given point in time without relying on the history of the network, e.g. based on the present frequency channel number, a pseudo-random number generator calculates the next frequency channel number. This facilitates synchronization of a new device in the network, e.g. the new device comprises the same pseudo-random number generator as the devices already connected in the network. Thus, upon receipt of the current frequency channel number during acquisition, the new device will calculate the same next frequency channel number as the other devices in the network. Preferably, one device in the network operates a master device of the network. Other devices in the system synchronize to the timing of the master device, and preferably, the master device is a hearing instrument, since the hearing instrument user will always carry the hearing instrument when he or she uses the network.

[0054] Communication in the illustrated network has low sensitivity to noise, since noise is typically present in specific frequency channels, and communication will only be performed in a specific frequency channel for a short time period after which communication is switched to another frequency channel.

[0055] A frequency hopping TDM scheme is utilized. During acquisition, the frequency hopping scheme comprises a reduced number of frequency channels, e.g. less than 16 channels, preferably 8 channels, for faster acquisition. Members of the reduced set of frequency channels are denoted acquisition channels. Preferably, the acquisition channels are distributed uniformly throughout the frequency band utilised by the network.

[0056] According to the time-division-multiple-access (TDMA) frame structure, the devices in the network transmit and receive data according to a coordinated time schedule wherein the time is divided into numbered time slots and different devices in the network communicate, e.g. receive data, in specific respective time slots. In order to lower power consumption in the hearing aid, the hearing aid receiver is turned on only in its time slot. Further, the bit rate can be made scalable in such a system: When low bit transfer rates are required, the receiver need only be active a small fraction of the time. In this way further power can be saved. A device may use one or more slots for transmission of data. Slots may be allocated during manufacture of a given device, or, slots may be allocated dynamically during acquisition. Preferably, the allocation table is stored in the master device.

[0057] In the illustrated hearing system, a data package D containing 32 bits to be transmitted is divided into 2 data packages A.sub.1 and A.sub.2, each of which contains 16 bits. In order to be able to detect and correct possible bit errors in a data package, a further data package C is formed as a function of A.sub.1 and A.sub.2:

C=A.sub.1 .sym. A.sub.2.

For example: [0058] D=11100110000110100101001110110001 and thus: [0059] A.sub.1=1110011000011010 [0060] A.sub.2=0101001110110001 whereby [0061] C=1011010110101011. Data recovery is now possible, since A.sub.1=C .sym. A.sub.2 and A.sub.2=C .sym. A.sub.1: [0062] A.sub.2=0101001110110001 [0063] C=1011010110101011 [0064] A.sub.1=1110011000011010 and [0065] A.sub.1=1110011000011010 [0066] C=1011010110101011. [0067] A.sub.2=0101001110110001

[0068] In the hearing instrument or another device connected to the wireless network and for which the transmitted data packages are intended, the data receiver is activated, e.g. turned on, to perform data reception of transmitted data packages A.sub.1 and A.sub.2 and C: [0069] 111001100001101001010011101100011011010110101011.

[0070] The data receiver also performs error detection and in case of detection of error(s) in A.sub.1 or A.sub.2, data recovery is performed based on:

A.sub.1=C .sym. A.sub.2 or A.sub.2=C .sym. A.sub.1.

[0071] Thus, if A.sub.1 is corrupted, A.sub.1 is recovered by performing the exclusive-or operation on C and A.sub.2. Correspondingly, if A.sub.2 is corrupted, A.sub.2 is recovered by performing the exclusive-or operation on C and A.sub.1.

[0072] It should be noted that division of original data package D with 32 bits into two data packages A.sub.1 and A.sub.2 of 16 bits, leads to the advantage that only one extra package C with 16 bits needs to be transmitted and received. Thus, the time the receiver needs to be activated in order to be able to perform data recovery is only increased by 16 bits transmission time. Division of original data package D into more than two data packages A further reduces the extra time the receiver needs to be activated in order to be able to perform data recovery.

[0073] Preferably, the communication controller is configured to control the receiver in such a way that reception of data package C takes place solely in case of detection of error(s) in data package A.sub.1 or A.sub.2. Hereby further power consumption by the receiver is saved, since the receiver is only active during reception of data packages A.sub.1 and A.sub.2 unless an error is detected during transmission of A.sub.1 and A.sub.2.

[0074] FIG. 2 is a blocked schematic of a transceiver and communication controller according to some embodiments. FIG. 2 also illustrates the major data flow into and out of the units. The RF chip interface receives a data stream from the RF chip.

[0075] The correlator 2 extracts the slot and frame timing from the sync word, so that the rest of the receive chain can be synchronized. Based on this timing, the header extraction block 3 analyses the package header and extracts the slot number and package length. Any errors in the header are reported. The data de-whitening block 4 de-whitens the package data. The data is then converted to 16 bits parallel by the serial-parallel conversion block 5. The package data is stored in an internal data buffer 6 by the data buffer interface 7. The data is then accessible to the DSP via the DSP interface 8 through the peripheral bus. A CRC (Cyclic Redundancy Check) check can also be performed on the package data 9. All internal configuration registers and results of header checks, CRC errors etc are accessible though the DSP interface. Slot and frame counters 10 are also provided as well as a number of hardware timers 11.

[0076] The controller state machine 12 is responsible for overall timing of the base-band engine.

[0077] At transmission, the RF chip interface 1 sends SPI commands to the RF chip for configuration.

[0078] The DSP writes a package of data to the data buffer 6, 7 via the DSP interface 8. The package data has a CRC calculated via the data CRC generation block 9. The combined data payload and CRC are then converted to serial 5 and whitened 4. The package header is constructed by the header generation block 3 and then appended to the data. The completed package is then streamed to the RF chip by the RF chip interface 1.

[0079] Although particular embodiments have been shown and described, it will be understood that they are not intended to limit the present inventions, and it will be obvious to those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the present inventions. The specification and drawings are, accordingly, to be regarded in an illustrative rather than restrictive sense. The claimed inventions are intended to cover alternatives, modifications, and equivalents.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed