Immune System Modulating Composition

Vazquez Boland; Jose Antonio

Patent Application Summary

U.S. patent application number 13/508181 was filed with the patent office on 2012-09-06 for immune system modulating composition. Invention is credited to Jose Antonio Vazquez Boland.

Application Number20120225078 13/508181
Document ID /
Family ID41509193
Filed Date2012-09-06

United States Patent Application 20120225078
Kind Code A1
Vazquez Boland; Jose Antonio September 6, 2012

IMMUNE SYSTEM MODULATING COMPOSITION

Abstract

Rhodococcus equi (R.equi) has been determined to have a major adhesion factor encoded by a rpl pathogenicity island which enables host colonisation, wherein the rpl pathogenicity islandis absent from non-pathogenic Rhodococcus species. Further, the proteins (Rpl) encoded by the rpl pathogenicity island have been determined to be major immunodominant antigens. There is provided a novel diagnostic marker and vaccine candidate for R. equi in horses and other susceptible species.


Inventors: Vazquez Boland; Jose Antonio; (Edinburgh, GB)
Family ID: 41509193
Appl. No.: 13/508181
Filed: November 11, 2010
PCT Filed: November 11, 2010
PCT NO: PCT/GB2010/051889
371 Date: May 4, 2012

Current U.S. Class: 424/139.1 ; 424/190.1; 424/245.1; 435/320.1; 435/325; 435/6.12; 435/7.92; 436/501; 506/9; 514/1.1; 514/44R; 530/324; 530/326; 530/387.2; 530/387.9; 536/23.7
Current CPC Class: C12Q 1/689 20130101; C07K 14/36 20130101; C07K 2317/76 20130101; G01N 2333/34 20130101; G01N 33/56911 20130101; A61K 39/05 20130101; C07K 16/1267 20130101; A61K 2039/552 20130101; A61K 2039/53 20130101; G01N 2500/04 20130101
Class at Publication: 424/139.1 ; 424/190.1; 424/245.1; 435/6.12; 435/7.92; 435/325; 435/320.1; 436/501; 506/9; 514/1.1; 514/44.R; 530/324; 530/326; 530/387.2; 530/387.9; 536/23.7
International Class: A61K 39/395 20060101 A61K039/395; C12Q 1/68 20060101 C12Q001/68; G01N 33/566 20060101 G01N033/566; C12N 5/10 20060101 C12N005/10; C12N 15/63 20060101 C12N015/63; C07H 21/04 20060101 C07H021/04; A61K 38/00 20060101 A61K038/00; A61K 31/7088 20060101 A61K031/7088; C07K 14/34 20060101 C07K014/34; C07K 7/08 20060101 C07K007/08; C07K 16/42 20060101 C07K016/42; C07K 16/12 20060101 C07K016/12; A61K 39/00 20060101 A61K039/00; C40B 30/04 20060101 C40B030/04

Foreign Application Data

Date Code Application Number
Nov 11, 2009 GB 0919733.6

Claims



1. A polypeptide associated with pilus formation in R. equi comprising an amino acid sequence encoded by a polynucleotide sequence as set forth in any one of SEQ ID NO 1, SEQ ID NO 2, SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 6, SEQ ID NO 7, SEQ ID NO 8, and SEQ ID NO 9 or a fragment, derivative or variant of such a polypeptide.

2. A polypeptide as claimed in claim 1 comprising an amino acid sequence encoded by a polynucleotide sequence as set forth in any one of SEQ ID NO 1, SEQ ID NO 2, SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 8, and SEQ ID NO 9 or a fragment, derivative or variant of such a polypeptide.

3. A polypeptide sequence as claimed in claim 1 comprising an amino acid sequence encoded by a polynucleotide sequence as set forth in any one of SEQ ID NO 2, SEQ ID NO 3, and SEQ ID NO 4 or a fragment, derivative or variant of such a polypeptide.

4. A polypeptide sequence as claimed in claim 1 wherein the polypeptide is encoded by a polynucleotide sequence comprising ATGAACCTCTTCTTCGCGAACCTGTACCTCATGGGCTTAGACGTCAA GGACCGTCTGACCCGTGACGACCGCGGCGCCACTGCGGTCGAGTAC GGACTGATGGTCGCCGGCATCGCGATGGTGATCATTGTTGCGGTTTT CGCCTTCGGCGATAAGATTACCGACCTCTTCGATGGCTTCAACTTCG ACGATCCCGGCGGCGAGTAG (SEQ ID NO 2) or a fragment, derivative or variant of such a polypeptide.

5. A polypeptide as claimed in claim 1 wherein the polypeptide comprises an amino acid sequence MNLFFANLYLMGLDVKDRLTRDDRGATAVEYGLMVAGIAMVIIVAVFAFG DKITDLFDGFNFDDPGGE (SEQ ID NO 10) or a fragment, derivative or variant of such a polypeptide.

6. A polypeptide as claimed in claim 1 wherein the polypeptide comprises an amino acid sequence DKITDLFDGFNFDDPGGE (SEQ ID NO 11) or a fragment, or derivative or variant of such a polypeptide.

7. A polypeptide as claimed in claim 1 wherein the polypeptide comprises an amino acid sequence DKITDLFDGFNFDDPGGE (SEQ ID NO 11) or a fragment, or derivative of such a polypeptide.

8. A polypeptide as claimed in claim 1 wherein the polypeptide comprises an amino acid sequence DKITDLFDGFNFDDPGGE (SEQ ID NO 11).

9. A composition comprising a polypeptide or a fragment, derivative, or variant thereof according to claim 1, together with a pharmaceutically acceptable carrier.

10. An antibody or an antigen binding fragment of said antibody which has binding specificity to a polypeptide according to claim 1.

11. An anti-idiotypic antibody which has binding specificity to an antibody or an antigen binding fragment of said antibody of claim 10.

12. A construct comprising an isolated nucleic acid sequence which encodes a polypeptide as claimed in claim 1 operably linked to a promoter which is functional to allow transcription of the nucleic acid sequence.

13. At least (i) one polypeptide associated with pilus formation in R. equi or a fragment, derivative or variant thereof, or (ii) one nucleic acid which encodes least one polypeptide associated with pilus formation in R. equi, or (iii) one antibody or an antigen binding fragment of said antibody which has binding specificity to at least one polypeptide associated with pilus formation in R. equi, or (iv) one construct comprising an isolated nucleic acid molecule which encodes a polypeptide as claimed in claim 1 operably linked to a promoter which is functional to allow transcription of the nucleic acid sequence for use in medicine.

14. At least (i) one polypeptide comprising an amino acid sequence encoded by a polynucleotide sequence selected from any one of SEQ ID NO 1, SEQ ID NO 2, SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 6, SEQ ID NO 7, SEQ ID NO 8, and SEQ ID NO 9 or a fragment, derivative, or variant thereof as claimed in claim 1, or (ii) one antibody or an antigen binding fragment of said antibody which has binding specificity to such a polypeptide, or (iii) one construct comprising an isolated nucleic acid molecule which encodes such a polypeptide as claimed in claim 1 operably linked to a promoter which is functional to allow transcription of the nucleic acid sequence for use in medicine, preferably in the treatment or prevention of a disease caused by R. equi.

15. A polypeptide comprising an amino acid sequence encoded by a polynucleotide sequence selected from any one of SEQ ID NO 1, SEQ ID NO 2, SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 6, SEQ ID NO 7, SEQ ID NO 8, and SEQ ID NO 9 or a fragment, derivative, or variant thereof as claimed in claim 1 for use in the treatment or prevention of a disease caused by R. equi.

16. An antibody or an antigen binding fragment of said antibody which has binding specificity to a polypeptide comprising an amino acid sequence encoded by a polynucleotide sequence selected from any one of SEQ ID NO 1, SEQ ID NO 2, SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 6, SEQ ID NO 7, SEQ ID NO 8, and SEQ ID NO 9 or a fragment, derivative, or variant thereof for use in the treatment or prevention of a disease caused by R. equi.

17. An isolated nucleic acid molecule which encodes a polypeptide comprising an amino acid sequence encoded by a polynucleotide sequence selected from any one of SEQ ID NO 1, SEQ ID NO 2, SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 6, SEQ ID NO 7, SEQ ID NO 8, and SEQ ID NO 9 or a fragment, derivative, or variant thereof for use in the treatment or prevention of a disease caused by R. equi.

18. A construct comprising an isolated nucleic acid molecule which encodes a polypeptide comprising an amino acid sequence encoded by a polynucleotide sequence selected from any one of SEQ ID NO 1, SEQ ID NO 2, SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 6, SEQ ID NO 7, SEQ ID NO 8, and SEQ ID NO 9 or a fragment, derivative, or variant thereof operably linked to a promoter which is functional to allow transcription of the nucleic acid sequence for use in the treatment or prevention of a disease caused by R. equi.

19. A method of treating or preventing a disease or condition, in particular a disease or condition caused by R. equi, comprising the step of administering (i) at least one polypeptide associated with pilus formation in R. equi, (ii) a nucleic acid which encodes least one polypeptide associated with pilus formation in R. equi, or (iii) an antibody or an antigen binding fragment of said antibody which has binding specificity to at least one polypeptide associated with pilus formation in R. equi, to a subject, in particular a subject suffering from, or suspected to be suffering from, or at risk of a condition mediated by R. equi.

20. The method as claimed in claim 19 comprising the step of administering (i) a polypeptide comprising an amino acid sequence encoded by a polynucleotide sequence selected from any one of SEQ ID NO 1, SEQ ID NO 2, SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 6, SEQ ID NO 7, SEQ ID NO 8, and SEQ ID NO 9 or a fragment, derivative, or variant thereof as claimed in claim 1, or (ii) an antibody or an antigen binding fragment of said antibody which has binding specificity to such a polypeptide, or (iii) a construct comprising an isolated nucleic acid molecule which encodes such a polypeptide as claimed in claim 1 operably linked to a promoter which is functional to allow transcription of the nucleic acid sequence to a subject, in particular a subject suffering from, or suspected to be suffering from, or at risk of a condition mediated by R. equi.

21. A method of detecting R. equi in a sample comprising the step of detecting (i) a polypeptide comprising an amino acid sequence encoded by a polynucleotide sequence selected from any one of SEQ ID NO 1, SEQ ID NO 2, SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 6, SEQ ID NO 7, SEQ ID NO 8, and SEQ ID NO 9 or a fragment, derivative, or variant thereof as claimed in claim 1, or (ii) an antibody or an antigen binding fragment of said antibody which has binding specificity to such a polypeptide, or (ii) a nucleic acid molecule which encodes such a polypeptide as claimed in claim 1 in a sample.

22. The method as claimed in claim 21 for diagnosing a disease or condition caused by R. equi comprising the step of detecting (i) a polypeptide associated with Rpl pilus formation, preferably an amino acid sequence encoded by a polynucleotide sequence selected from any one of SEQ ID NO 1, SEQ ID NO 2, SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 6, SEQ ID NO 7, SEQ ID NO 8, and SEQ ID NO 9 or a fragment, derivative, or variant thereof as claimed in claim 1, or (ii) an antibody or an antigen binding fragment of said antibody which has binding specificity to such a polypeptide, or (ii) a nucleic acid molecule which encodes such a polypeptide as claimed in claim 1 in a biological sample from a subject suffering from, suspected to be suffering from, or at risk of such a condition.

23. A kit for use in the method of detecting R. equi wherein the kit comprises (i) a polypeptide associated with Rpl pilus formation, preferably comprising an amino acid sequence encoded by a polynucleotide sequence selected from any one of SEQ ID NO 1, SEQ ID NO 2, SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 6, SEQ ID NO 7, SEQ ID NO 8, and SEQ ID NO 9 or a fragment, derivative, or variant thereof as claimed in claim 1, or (ii) an antibody or an antigen binding fragment of said antibody which has binding specificity to such a polypeptide, or (iii) nucleic acid probes capable of binding to a nucleic acid sequence which encodes a polypeptide associated with pilus formation, preferably at least one of SEQ ID NO 1, SEQ ID NO 2, SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 6, SEQ ID NO 7, SEQ ID NO 8, and SEQ ID NO 9, under stringent conditions.

24. A kit for use in the method of claim 22 wherein the kit comprises (i) a polypeptide comprising an amino acid sequence encoded by a polynucleotide sequence selected from any one of SEQ ID NO 1, SEQ ID NO 2, SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 6, SEQ ID NO 7, SEQ ID NO 8, and SEQ ID NO 9 or a fragment, derivative, or variant thereof as claimed in claim 1, or (ii) an antibody or an antigen binding fragment of said antibody which has binding specificity to such a polypeptide, or (iii) nucleic acid probes capable of binding to a nucleic acid sequence which encodes a polypeptide associated with pilus formation, preferably at least one of SEQ ID NO 1, SEQ ID NO 2, SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 6, SEQ ID NO 7, SEQ ID NO 8, and SEQ ID NO 9, under stringent conditions.

25. A method of screening for agents capable of binding to a polypeptide comprising an amino acid sequence encoded by a polynucleotide sequence selected from any one of SEQ ID NO 1, SEQ ID NO 2, SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 6, SEQ ID NO 7, SEQ ID NO 8, and SEQ ID NO 9 or a fragment, derivative, or variant thereof as claimed in claim 1 comprising the steps: providing a candidate immunogenic R. equi polypeptide comprising an amino acid sequence encoded by a polynucleotide sequence selected from any one of SEQ ID NO 1, SEQ ID NO 2, SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 6, SEQ ID NO 7, SEQ ID NO 8, and SEQ ID NO 9 or a fragment, derivative, or variant thereof as claimed in claim 1, providing a test agent to the candidate immunogenic R. equi polypeptide, and determining whether said test agent can bind to said candidate immunogenic R. equi polypeptide.

26. An isolated or recombinant nucleic acid encoding a polypeptide associated with pilus formation in R. equi.

27. An isolated or recombinant nucleic acid as claimed in claim 26 comprising a polynucleotide sequence comprising a sequence as set forth in any one of SEQ ID NO 1, SEQ ID NO 2, SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 6, SEQ ID NO 7, SEQ ID NO 8, and SEQ ID NO 9.

28. An isolated or recombinant nucleic acid as claimed in claim 26 comprising a polynucleotide sequence comprising a sequence as set forth in any one of SEQ ID NO 1, SEQ ID NO 2, SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 8, and SEQ ID NO 9.

29. An isolated or recombinant nucleic acid as claimed in claim 26 comprising a polynucleotide sequence comprising a sequence as set forth in any one of SEQ ID NO 2, SEQ ID NO 3, and SEQ ID NO 4.

30. An isolated or recombinant nucleic acid as claimed in claim 26 comprising a polynucleotide sequence comprising a sequence as set forth by SEQ ID NO 2.

31. An isolated or recombinant nucleic acid as claimed in claim 26 comprising a polynucleotide sequence consisting of a sequence as set forth by SEQ ID NO 2.

32. A vector comprising an isolated or recombinant nucleic acid as claimed in claim 26.

33. An isolated or recombinant cell comprising a vector as claimed in claim 32.

34. A composition capable of generating an immune response in a host comprising one or more surface-associated or secreted polypeptides of R. equi wherein said polypeptides are associated with formation of pili of R. equi.

35. A composition as claimed in claim 34 wherein said composition comprises (i) at least one polypeptide associated with pilus formation in R. equi, (ii) a nucleic acid which encodes least one polypeptide associated with pilus formation in R. equi, or (iii) a polypeptide comprising an amino acid sequence encoded by a polynucleotide sequence selected from any one of SEQ ID NO 1, SEQ ID NO 2, SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 6, SEQ ID NO 7, SEQ ID NO 8, and SEQ ID NO 9 or a fragment, derivative, or variant thereof as claimed in claim 1, or (iv) a construct comprising an isolated nucleic acid molecule which encodes such a polypeptide as claimed in claim 1 operably linked to a promoter which is functional to allow transcription of the nucleic acid sequence.

36. Use of the composition of claim 34 to vaccinate a subject such that R. equi infection in the subject is inhibited or minimised.

37. Use as claimed in claim 36 wherein the subject is a horse or a foal.
Description



FIELD OF THE INVENTION

[0001] The present invention relates to polypeptides encoded by Rhodococcus (Corynebacterium) equi (R. equi), compositions including such polypeptides (Rpl) and antibodies to such polypeptides, which can be useful in the treatment of animals, specifically horses and foals, to minimise infection of animals, by R. equi. The invention further relates to methods of detection of R. equi using polypeptides (Rpl), antibodies with binding specificity to said polypeptides or nucleic acids or the like with binding specificity to nucleic acids encoding such polypeptides using, for example, PCR.

BACKGROUND TO THE INVENTION

[0002] Rhodococcus equi is a Gram-positive, facultative intracellular coccobacillus classified in the order of Acitnomycetales. It is primarily a soil organism. It has been recognised as a positive agent of a debilitating and potentially fatal bronchopneumonia affecting foals worldwide. R. equi is considered to be one of the most significant pathogens in the equine breeding industry.

[0003] The successful early diagnosis and treatment of Rhodococcus equi in foals and management of the foals environment to reduce the risk of contracting the disease are, arguably, among the most challenging experiences currently facing equine stud farms. Presently the treatment of R. equi disease is by the prolonged administration of a combination of antimicrobials, macrolides, i.e. erythromycin, azithromycin or clarithromycin, and rifampicin. However, as this therapy risks antibiotic resistance and adverse drug reactions in the foal and the dam, improved means of therapy and prophylactic treatment are required.

[0004] R. equi can also affect non-equine species. In pigs R. equi is associated with granulomatous lymphadenitis of cervical lymphatic tissue and in man R. equi can cause cavitary pneumonia, predominantly in immunocompromised individuals especially those with acquired immune deficiency syndrome (AIDS). As a consequence of the AIDS pandemic, R. equi pneumonia has become a disease of increasing significance in human medicine. R. equi infections have also been described in cattle, sheep, goats, lama, cats and dogs, but disease in these species is rare with lesions confined to lymph node abscessation or wound infection.

[0005] Infection by R. equi relies on the ability of R. equi to colonise the airways and replicate inside macrophages which is dependent on its capacity to interfere with endosomal maturation following phagocytosis and to prevent acidification of the vacuole in which it resides. Eventually, intracellular proliferation of the pathogen leads to the necrotic death of the marcophages accompanied by massive damage to lung tissue characterised by cavitation and granuloma formation.

[0006] Studies of the virulent strains of R. equi have determined that such strains possess an extra chromosomal DNA element known as a plasmid, which is associated with virulence. Plasmids isolated from regular strains infecting foals have been proposed to include a region that represents a pathogenicity island, which is a DNA fragment containing genes required for virulence. The pathogenicity island identified contains a family of nine virulence associated protein (Vap) chains (VapA-VapC-Vap-I, pseudo-VapE). Killed/inactivated R. equi organisms do not illicit protective immunity, and there is no consistent evidence that protein or DNA vaccines, based on the highly immunogenic VapA surface antigen, are efficacious in producing protection against a Rhodococcal pneumonia in foals. In view of the lack of an efficacious vaccine, R. equi infection is a major cause of mortality in young foals and the heavy economic losses incurred due to R. equi has a major economic impact in countries where thoroughbred racing and breeding is important (USA, Australia, Ireland, Argentina, UK, France, Spain, Germany, Austria, Japan etc.). There is a need for treatment regimes and a vaccine to be developed which can be used to control R. equi on farms, in particular stud farms.

SUMMARY OF THE INVENTION

[0007] The inventors have determined a novel diagnostic marker and vaccine candidate for Rhodococcus equi in horses and other susceptible species and treatment means. Specifically, the inventors have identified a rpl pathogenicity island that differs from the yap pathogenicity island and the inventors have determined the rpl pathogenicity island, in particular RplB, encodes a major adhesion factor of R. equi which enables host colonisation. The proteins (Rpl) encoded by the rpl pathogenicity island are considered to be major immunodominant antigens. The inventors have further determined that the rpl pathogenicity island is absent from non-pathogenic Rhodococcus species. These findings allow the use of probes to proteins or nucleic acid of the rpl pathogenicity island and antibodies with binding specificity to the proteins encoded by the rpl pathogenicity island in methods of detection of R. equi. Further, it enables the use of nucleic acids encoding proteins or proteins of the rpl pathogenicity island as immune system modulators, in particular to provoke a protective immune response to subsequent antigen challenge in an animal.

[0008] Accordingly, a first aspect of the invention provides at least one immunogenic R. equi polypeptide having an amino acid sequence, encoded by a polynucleotide sequence comprising a polynucleotide sequence of a gene selected from a gene as listed at table one, or a fragment, derivative or variant of such a polypeptide.

TABLE-US-00001 TABLE ONE Proposed function of SEQ rpl encoded Position in R. equi ID locus Identifier protein 103S NO rplA REQ_18350 Prepilin Position 1938280-1939068 1 peptidase (complement) in 103S genome rplB REQ_18360 Pilin subunit Position 1939395-1939601 2 in 103S genome rplC REQ_18370 Minor pilin Position 3 protein 1939683.-1940084 in 103S genome rplD REQ_18380 Putative Position 1940093-1941037 4 lipoprotein 1940084 in 103S genome rplE REQ_18390 Pilus assembly Position 1941047-1941784 5 protein in 103S genome rplF REQ_18400 Pilus assembly Position 1941781-1942980 6 ATPase in 103S genome rplG REQ_18410 Secretion Position 1942977-1944374 7 apparatus in 103S ATPsae genome rplH REQ_18420 Secretion Position 1944371-1946239 8 apparatus in 103S integral genome membrane protein rplI REQ_18430 Secretion Position 1946262-1947152 9 apparatus in 103S integral genome membrane protein

[0009] In embodiments of the invention, the polypeptide or derivative or variant or fragment thereof can be encoded by a polynucleotide sequence comprising a polynucleotide sequence of a gene as listed in Table 2

TABLE-US-00002 TABLE TWO Proposed function of SEQ rpl encoded Position in R. equi ID locus Identifier protein 103S NO rplA REQ_18350 Prepilin Position 1938280-1939068 1 peptidase (complement) in 103S genome rplB REQ_18360 Pilin subunit Position 1939395-1939601 2 in 103S genome rplC REQ_18370 Minor pilin Position 3 protein 1939683.-1940084 in 103S genome rplD REQ_18380 Putative Position 1940093-1941037 4 lipoprotein 1940084 in 103S genome rplE REQ_18390 Pilus assembly Position 1941047-1941784 5 protein in 103S genome rplH REQ_18420 Secretion Position 1944371-1946239 8 apparatus in 103S integral genome membrane protein rplI REQ_18430 Secretion Position 1946262-1947152 9 apparatus in 103S integral genome membrane protein

[0010] In particular embodiments the polypeptide or a derivative or variant or fragment thereof can be encoded by a polynucleotide sequence comprising a polynucleotide sequence of a gene selected from rplB (SEQ ID NO 2), rplC (SEQ ID NO 3), or rplD (SEQ ID NO 4). In an alternative embodiment, the polypeptide or a derivative can be encoded by a polynucleotide sequence comprising a polynucleotide sequence of a gene selected from rplB (SEQ ID NO 2), rplA (SEQ ID NO 1) or rplE (SEQ ID NO 5).

[0011] In embodiments of the invention, the polypeptide or a derivative or fragment thereof is encoded by a polynucleotide sequence comprising a polynucleotide sequence of a gene selected from the list of genes of Table 1, more preferably selected from the list of genes of Table 2.

[0012] In embodiments of the invention, the polypeptide or a derivative or fragment or variant thereof is encoded by a polynucleotide sequence consisting essentially of or consisting of a polynucleotide sequence of a gene selected from the list of genes of Table 1, more preferably selected from the list of genes of Table 2.

[0013] In embodiments, the polypeptide is encoded by a polynucleotide sequence comprising the polynucleotide sequence of a gene encoding Rpl pilin ATGAACCTCTTCTTCGCGAACCTGTACCTCATGGGCTTAGACGTCAA GGACCGTCTGACCCGTGACGACCGCGGCGCCACTGCGGTCGAGTAC GGACTGATGGTCGCCGGCATCGCGATGGTGATCATTGTTGCGGTTTT CGCCTTCGGCGATAAGATTACCGACCTCTTCGATGGCTTCAACTTCG ACGATCCCGGCGGCGAGTAG (SEQ ID NO 2).

[0014] In embodiments, the polypeptide is encoded by a polynucleotide sequence consisting essentially of or consisting of the polynucleotide sequence of a gene encoding Rpl pilin ATGAACCTCTTCTTCGCGAACCTGTACCTCATGGGCTTAGACGTCAA GGACCGTCTGACCCGTGACGACCGCGGCGCCACTGCGGTCGAGTAC GGACTGATGGTCGCCGGCATCGCGATGGTGATCATTGTTGCGGTTTT CGCCTTCGGCGATAAGATTACCGACCTCTTCGATGGCTTCAACTTCG ACGATCCCGGCGGCGAGTAG (SEQ ID NO 2).

[0015] In embodiments, the polypeptide is encoded by a polynucleotide sequence comprising a fragment of the polynucleotide sequence of a gene encoding Rpl pilin ATGAACCTCTTCTTCGCGAACCTGTACCTCATGGGCTTAGACGTCAA GGACCGTCTGACCCGTGACGACCGCGGCGCCACTGCGGTCGAGTAC GGACTGATGGTCGCCGGCATCGCGATGGTGATCATTGTTGCGGTTTT CGCCTTCGGCGATAAGATTACCGACCTCTTCGATGGCTTCAACTTCG ACGATCCCGGCGGCGAGTAG (SEQ ID NO 2)

[0016] wherein the polypeptide encoded by the fragment is a biologically active immunogenic fragment of a polypeptide encoded by the polynucleotide sequence comprising the polynucleotide sequence of the gene encoding Rpl pilin ATGAACCTCTTCTTCGCGAACCTGTACCTCATGGGCTTAGACGTCAA GGACCGTCTGACCCGTGACGACCGCGGCGCCACTGCGGTCGAGTAC GGACTGATGGTCGCCGGCATCGCGATGGTGATCATTGTTGCGGTTTT CGCCTTCGGCGATAAGATTACCGACCTCTTCGATGGCTTCAACTTCG ACGATCCCGGCGGCGAGTAG (SEQ ID NO 2).

[0017] In embodiments, a derivative or fragment or variant can be an immunogenic derivative or fragment or variant that can provide an immune response in which antibodies with binding specificity to at least one of SEQ ID NO 1, 2, 3, 4, 5, 6, 7, 8, and 9 are generated for example antibodies cross-reactive to the biologically active immunogenic fragment and at least one of SEQ ID NO 1, 2, 3, 4, 5, 6, 7, 8 and 9.

[0018] In particular embodiments such fragments, derivatives or variants can functionally provide a pilus in R. equi. Such derivatives, fragments or variants can be biologically active derivatives, fragments or variants.

[0019] In embodiments the Rpl pilin polypeptide (RplB) can comprise an amino acid sequence MNLFFANLYLMGLDVKDRLTRDDRGATAVEYGLMVAGIAMVIIVAVFAFG DKITDLFDGFNFDDPGGE (SEQ ID NO 10).

[0020] In embodiments, a polypeptide of the invention can consist of an amino acid sequence MNLFFANLYLMGLDVKDRLTRDDRGATAVEYGLMVAGIAMVIIVAVFAFG DKITDLFDGFNFDDPGGE (SEQ ID NO 10).

[0021] In embodiments a polypeptide of the invention can comprise DKITDLFDGFNFDDPGGE (SEQ ID NO 11) or can be a variant thereof wherein such variant has at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10 amino acids different to that of SEQ ID NO 11. Substituted amino acids may suitably be conservative or non conservative amino acids. Alternatively, the variant may include insertions or deletions. Suitably, in embodiments a variant can demonstrate analogous biological function as a RplB pilin subunit or SEQ ID NO 11. In embodiments, a conserved variant may be provided by amino acid sequences comprising DKITDLFDGFNFDDPGGE (SEQ ID NO 11) wherein amino acids as shown are replaced by amino acids which are structurally conservative. For example, an aliphatic amino acid (alanine, serine, valine, leucine, isoleucine or the like) can be substituted with another suitable aliphatic amino acid, a hydrophobic amino acid (tyrosine, phenylalanine, tryptophan) can be substituted by another hydrophobic amino acid or a charged amino acid can be substituted by another charged amino acid. In such conserved variants, additional amino acids may be substituted.

[0022] In embodiments a polypeptide of the invention can comprise the amino acid sequence DKITDLFDGFNFDDPGGE (SEQ ID NO 11). In embodiments a polypeptide of the invention consists of, or consists essentially of the amino acid sequence DKITDLFDGFNFDDPGGE (SEQ ID NO 11).

[0023] A polypeptide of the invention may be provided using recombinant means or may be a synthetic polypeptide or may be extracted from R. equi bacteria, R. equi culture supernatant or from biological material infected with R. equi. In embodiments an isolated immunogenic polypeptide of the invention is expressed at the bacterial cell surface of a R. equi, or is secreted from R. equi.

[0024] In embodiments, a polypeptide of the invention, or a fragment, derivative or variant thereof comprises an amino acid sequence of at least one polypeptide selected from the group consisting of the list provided by Table 3 or as set out in the sequences of FIG. 9.

TABLE-US-00003 TABLE THREE Rpl protein Identifier Proposed function SEQ ID NO RplA REQ_18350 Prepilin peptidase 12 product RplB REQ_18360 Pilin subunit 13 product RplC REQ_18370 Minor pilin protein 14 product RplD REQ_18380 Putative lipoprotein 15 product RplE REQ_18390 Pilus assembly 16 product protein RplF REQ_18400 Pilus assembly 17 product ATPase RplG REQ_18410 Secretion apparatus 18 product ATPsae RplH REQ_18420 Secretion apparatus 19 product integral membrane protein RplI REQ_18430 Secretion apparatus 20 product integral membrane protein

[0025] All of the polypeptides shown in Table 3 are encoded in the rpl locus and are part of the R. equi Rpl pilus biogenesis machinery.

[0026] In embodiments a polypeptide of the invention can be encoded by an R. equi. strain isolated from horses. In embodiments the polypeptide can be isolated from horses and can be from a virulent strain of R. equi. In embodiments, polypeptides of the invention can be made synthetically or recombinantly using techniques which are widely available in the art.

[0027] The polypeptide of the invention may be optionally linked to an immunogenic carrier. Said immunogenic carrier may be a heterologous polypeptide, lipid, liposome, or another acceptable carrier molecule. Suitably, a polypeptide of the invention may be linked to the immunogenic carrier by chemical coupling or a polypeptide of the invention may be expressed as a fusion protein with the immunogenic carrier. A polypeptide of the invention, and/or a biologically active and/or immunogenic fragment, or derivative, or variant thereof, can be provided in an immunogenic composition, for example to raise antisera or monoclonal antibodies for passive immunisation, or as a vaccine. Alternatively, a polypeptide of the invention, fragment, derivative or variant thereof may be useful in an assay to detect antibodies specific for the polypeptide, including diagnostic assays. As set out herein, in embodiments, a derivative of a polypeptide of the invention can be a composite of specific polypeptide sequences of the invention, for example composites of SEQ ID NO 10, SEQ ID NO 11 and a polypeptide as set out in Table 3 or fragments thereof, or nucleotide sequences for example as set out at Table 1 or Table 2 disclosed herein. In embodiments, the nucleic acid sequences can be used to form concatemers and may be used to provide polypeptide sequences, for example relevant epitopes may be put in tandem or provided in multiples of 3, 4, 5, 6, or greater than 10, greater than 20 or more. Further, in embodiments a derivative can include a scrambled or chimeric polypeptide containing combinations of different relevant Rpl polypeptides. In such embodiments the combinations of relevant Rpl polypeptides can be provided in multiples of 2, 3, 4, 5, 6, or greater than 10, greater than 20 or more.

[0028] It is important to note that even with knowledge of the genome of R. equi strain 103S, it would not be apparent that R. equi produced pili appendages or that the nine-gene locus encompassing nucleotide positions 1,938,280 to 1,947,152 (locus tags REQ18350-430) encoded a pilus biogenesis apparatus responsible for the production of R. equi pili involved in virulence and host colonisation. Pili are widespread among bacteria and can serve many functions unrelated to virulence. For example pili can facilitate attachment of bacteria to environmental surfaces such as soil particles, biofilm formation, be mediators of bacterial motility or enable adhesion to other bacteria. As will be appreciated, depending on pili function, in some instances, pili may not provide an immunogenic determinant suitable for vaccine development or be able to act as a diagnostic marker.

[0029] Using visualisation by electron microscopy and genetic molecular analysis, the inventors demonstrated for the first that R. equi produces pili appendages or fimibriae, identified that the rpl locus R. equi encodes the pilus biogenesis apparatus, and further determined that proteins of R. equi pili are major virulence factors involved in host colonisation and that they are major immunodominant antigens. The latter determination would not have been suggested from sequence data alone.

[0030] According to a second aspect of the present invention there is provided an isolated or recombinant nucleic acid encoding a polypeptide associated with pilus formation in R. equi. In embodiments of the invention there is provided an isolated or recombinant nucleic acid comprising a polynucleotide sequence comprising or consisting of a sequence as set forth in any one of SEQ ID NO 1, SEQ ID NO 2, SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 6, SEQ ID NO 7, SEQ ID NO 8, and SEQ ID NO 9 or a variant or derivative or fragment thereof, for example as illustrated in the sequences of FIG. 10.

[0031] Due to the known degeneracy of the genetic code, a polynucleotide sequence which differs from those indicated by any one of SEQ ID 1, 2, 3, 4, 5, 6, 7, 8 or 9 can encode an active immunogenic derivative, variant or fragment and/or a biologically active derivative, variant or fragment of a polypeptide of the invention. In embodiments, a polynucleotide sequence which encodes such a derivative, fragment or variant sequence or an immunogenic biologically active derivative or fragment can result from silent mutations (e.g., occurring during PCR amplification), or nucleotide substitutions, deletions or insertions or the like or can be the product of deliberate mutagenesis of a native sequence. Variant polypeptides may be encoded by variant polynucleotide sequences having sequence homology (identity) of greater than at least 85%, 86%, 87%, 88%, 89%, preferably at least 90%, 91%, 92%, 93%, 94%, and more preferably 95%, 96%, 97%, 98%, 99% but less than 100% contiguous nucleotide sequence homology to any one of SEQ ID NO 1, 2, 3, 4, 5, 6, 7, 8, or 9 or fragments thereof. A variant polypeptide may be encoded by a polynucleotide sequence including nucleotide bases not present in the corresponding wild type nucleic acid molecule and/or internal deletions relative to the corresponding wild type nucleic acid molecule, such as SEQ ID NOs 1, 2, 3, 4, 5, 6, 7, or 8. Polynucleotide sequences encoding fragments of a polypeptide of the invention may be greater than 30 nucleotides in length, greater than 50 nucleotides in length, greater than 100 nucleotides in length, or greater than 150 nucleotides in length. The invention also provides isolated nucleic acids useful in the production of polypeptides. Suitably said biologically active immunogenic derivative, fragment or variant can elicit an immune response wherein the antibodies generated to said derivative, fragment or variant have a binding specificity to any one of SEQ ID NO 1, 2, 3, 4, 5, 6, 7, 8 or 9. In embodiments, there can be provided a polynucleotide sequence comprising or consisting of a sequence as set out in any one of SEQ ID NO 1, SEQ ID NO 2, SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 6, SEQ ID NO 7, SEQ ID NO 8, and SEQ ID NO 9.

[0032] In further embodiments there is provided an isolated or recombinant nucleic acid comprising a polynucleotide sequence comprising or consisting of a sequence as set forth in any one of SEQ ID NO 1, SEQ ID NO 2, SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 8, and SEQ ID NO 9. In additional embodiments, there is provided an isolated or recombinant nucleic acid comprising a polynucleotide sequence comprising or consisting of a sequence as set forth in any one of SEQ ID NO 2, SEQ ID NO 3, and SEQ ID NO 4. In specific embodiments there is provided an isolated or recombinant nucleic acid comprising a polynucleotide sequence comprising or consisting of a sequence as set forth in SEQ ID NO 2.

[0033] Polypeptides of the invention or a biologically active immunogenic fragment, derivative, or variant thereof may be prepared as a pharmaceutical preparation or composition. Such preparations will comprise the polypeptide or a biologically active immunogenic fragment, derivative, or variant thereof and a suitable carrier, diluent or excipient. These preparations may be administered by a variety of routes, for example, oral, buccal, topical, intramuscular, intravenous, subcutaneous, intranasal or the like.

[0034] In a third aspect of the present invention, there is provided a composition comprising a polypeptide or antibody according to the invention, or a biologically active immunogenic fragment, derivative, or variant thereof, together with a pharmaceutically acceptable carrier. A carrier and/or excipient useful in a composition of the present invention will generally not inhibit to any significant degree a relevant biological activity of the polypeptide or antibody of the invention. Alternatively, or in addition, the carrier or excipient can comprise a compound that enhances uptake and/or delivery and/or efficacy of the polypeptide and/or antibody as described herein. Alternatively, or in addition, the carrier or excipient can comprise a compound that enhances the activity of a polypeptide and/or antibody as described herein and/or reduces inhibition of said polypeptide or antibody by degradative enzymes in the site of administration and/or on route to the site of action and/or at the site of action. For example, the carrier or excipient may comprise a protease inhibitor and/or a DNase inhibitor and/or an RNase inhibitor to thereby enhance the stability of a polypeptide and/or antibody as described herein above or nucleic acid encoding same.

[0035] As will be apparent to the person skilled in the art based on the foregoing description, the methods of the present invention further comprise providing, producing or obtaining a composition comprising a polypeptide and/or an antibody or nucleic acid encoding said polypeptide. Suitable methods for producing such compositions will be apparent to the skilled artisan based on the disclosure herein. A polypeptide can also be delivered with other relevant antigens in a polyvalent protein vaccine.

[0036] In certain further aspects, the present invention provides an antibody which has binding specificity to at least one of the polypeptides of the invention or a fragment, derivative, or variant thereof, or an antigen binding fragment of said antibody. Accordingly, in a fourth aspect of the invention there is provided an antibody which specifically binds to a polypeptide of the invention or an epitope, fragment, derivative or variant thereof. Antibodies of the present invention may confer protection against infection with R. equi. Additionally or alternatively, an antibody can specifically bind to a polypeptide of the invention or can bind to an epitope of the pili provided on R. equi or an R. equi antigen of the pili and whilst not conveying protection against infection with R. equi, may be a useful in an immunoassay for the detection of polypeptides of the invention or for diagnosis of R. equi infection.

[0037] In certain embodiments, the antibody can be a polyclonal antibody. Alternatively, the antibody can be a monoclonal antibody, a chimeric antibody, or a synthesized or a synthetic antibody. Methods for producing a polyclonal and monoclonal antibodies are well known in the art and an antibody provided against a polypeptide of the pili is described herein.

[0038] In certain further aspects, the present invention further extends to a method of producing an antibody which specifically binds to at least one polypeptide of the present invention, or a biologically active and/or immunogenic fragment, derivative or variant thereof, said method comprising: [0039] (i) immunising a host with a polypeptide or a fragment, derivative, or variant thereof as described herein according to any embodiment, and [0040] (ii) recovering antibodies generated by the host against said polypeptide or a fragment, derivative, or variant thereof.

[0041] The present invention also provides a method for producing an antibody that binds to an antibody which specifically binds to at least one polypeptide of the present invention or a fragment, derivative, or variant thereof (i.e., a method for producing an anti-idiotypic antibody), said method comprising: [0042] (i) immunising a host with an antibody that binds to a polypeptide of the invention or a fragment, derivative, or variant thereof or an antigen binding fragment of said antibody, [0043] (ii) identifying antibodies generated by the host against an antigen binding site of said antibody; and [0044] (iii) recovering the antibodies identified at (ii).

[0045] The present invention also provides an anti-idiotypic antibody that selectively binds to an antibody that binds to a polypeptide or a fragment, derivative, or variant thereof as described herein or an antigen binding fragment of said antibody.

[0046] In a fifth aspect of the present invention there is provided a composition comprising an antibody of the invention together with a pharmaceutical carrier.

[0047] The invention also provides vectors comprising nucleic acids of the invention and cells comprising such vectors.

[0048] In the sixth aspect of the invention there is provided a construct comprising a nucleic acid molecule which encodes a polypeptide of the invention, for example an isolated nucleic acid, or a fragment, derivative, or variant thereof operably linked to a promoter which is functional to allow transcription of the nucleic acid sequence and the expression of an R. equi polypeptide of the invention.

[0049] The present invention also provides a process for producing a polypeptide or a fragment, derivative, or variant thereof as described herein according to any embodiment, said method comprising culturing a cell comprising a nucleic acid encoding a polypeptide or a fragment, derivative, or variant thereof of the present invention operably linked to a promoter under conditions suitable for expression of the polypeptide or a fragment, derivative, or variant thereof. A suitable nucleic acid may comprise a polynucleotide sequence or fragment thereof of a gene selected from Table 1, or more preferably Table 2. In one example, the method additionally comprises recovering the polypeptide from the cell culture, e.g., from the medium in which the cell is cultured.

[0050] In embodiments the present invention provides a method of producing a polypeptide or a fragment, derivative, or variant thereof of the invention, said method comprising the steps of: [0051] (i) culturing a host cell comprising a nucleic acid encoding a polypeptide of the present invention or a vector encoding the same, and [0052] (ii) recovering the polypeptide of the present invention from the host cell or culture medium.

[0053] In embodiments, the construct comprises an isolated nucleic acid which encodes a polypeptide of the invention or a fragment, derivative, or variant thereof operably linked to a promoter which is functional in a host cell to allow transcription of the nucleic acid sequence and the expression of a R. equi polypeptide of the invention.

[0054] In alternative embodiments, the construct comprises an isolated nucleic acid which encodes a polypeptide of the invention or a fragment, derivative, or variant thereof operably linked to a promoter which is functional in a heterologous host system, for example an attenuated vaccinal strain, including, but not limited to, a microbial system, a virus, a parasite, an attenuated pathogen or normal or immuno-stimulating microbiota. Suitably, the heterologous host system construct may be delivered as a live vaccine alone or in combination with other relevant protective antigens in a polyvalent vaccine.

[0055] In embodiments, the construct can comprise a nucleic acid comprising a polynucleotide sequence of a gene selected from at least one gene identified by Table 1, more preferably a gene selected from Table 2, operably linked to a promoter.

[0056] In embodiments, the construct can comprise a nucleic acid sequence comprising a polynucleotide sequence of SEQ ID NO 1, 2, 3, 4, 5, 6, 7, 8 or 9, more preferably a polynucleotide sequence which can encode SEQ ID NO 10 or 11.

[0057] In a seventh aspect of the invention there is provided a construct of the sixth aspect of the present invention in combination with a pharmaceutical carrier.

[0058] In an eighth aspect of the present invention there is provided a composition capable of treating or preventing a disease caused by R. equi, comprising one or more surface-associated (a polypeptide naturally associated to the surface structures or on the outer surface of R. equi.) or secreted polypeptides of R. equi wherein said polypeptides form pili of R. equi. In embodiments the composition can be a vaccine capable of preventing a disease caused by R. equi, which results in the production of antibodies against a polypeptide of R. equi which can form the pili of R. equi and wherein the polypeptide is reactive against antibodies or immune cells recovered from animals repeatedly infected with R. equi.

[0059] In embodiments, the polypeptide of R. equi which can form the pili of R. equi, wherein the polypeptide is reactive against antibodies and/or immune cells recovered from animals repeatedly infected with R. equi comprises the amino acid sequence encoded by a polynucleotide sequence of a gene selected from Table 1, or more preferably Table 2 or is an immunogenic fragment or variant or derivative of such a polypeptide.

[0060] In embodiments of the invention, the subject for which the vaccine can be administered is a foal and immunisation results in an immune response which inhibits or prevents R. equi infection and results in the production of antibodies employed as an immunogen.

[0061] In embodiments the subject to which the vaccine is administered can be a horse and immunisation results in an immune response which inhibits or prevents R. equi., or in the production of antibodies to the polypeptide employed as an immunogen.

[0062] While the invention is particularly directed to polypeptide suitable as antigen in a vaccine for use in horses or foals, it will be clearly understood that it is applicable to any other animal which is susceptible to infection with R. equi, including humans, pigs, cattle, sheep, goats, lama, cats or animals which have a similar biology and would be understood to share a high degree of genomic similarity to horses. It will also be appreciated that the diagnostic, therapeutic and prophylactic aspects of the invention are also applicable to subjects which have been exposed to an animal infected with R. equi, or an environmental source contaminated with R. equi such as faeces, soil, or the like.

[0063] According to a ninth aspect of the present invention there is provided a method of treating or preventing a disease or condition caused by R. equi comprising the step of administering a polypeptide of the invention or a fragment, derivative, or variant, an antibody, a nucleic acid, composition and/or a vaccine of the invention to subjects suffering from, or suspected to be suffering from, or at risk of a condition mediated by R. equi.

[0064] There is provided the use of a polypeptide of the invention or a biologically active and/or immunogenic fragment, derivative, or variant, an antibody, a nucleic acid, composition and/or a vaccine of the invention in the preparation of a medicament for the treatment of a condition mediated by R. equi. In embodiments the treatment may be prophylactic treatment to prevent or inhibit infection.

[0065] There is provided a polypeptide of the invention or a fragment, derivative, or variant, an antibody, a nucleic acid, composition and/or a vaccine of the invention for use in the treatment of a condition mediated by R. equi. In embodiments the treatment may be prophylactic treatment to prevent or inhibit infection.

[0066] According to a tenth aspect of the present invention there is provided a method of detecting R. equi comprising the step of detecting a polypeptide of the invention or a fragment, derivative, or variant, or an antibody of the invention in a sample, or a polynucleotide of the invention which can encode a polypeptide of the invention or fragment thereof. In embodiments, a sample may be a soil sample.

[0067] In embodiments, there is provided a method of diagnosing a disease or condition caused by R. equi comprising the step of detecting a polypeptide of the invention or a fragment, derivative, or variant, or an antibody of the invention in a biological sample from a subject suffering from, suspected to be suffering from, or at risk of such a condition, or a polynucleotide of the invention which can encode a polypeptide of the invention or fragment thereof.

[0068] Detection of a polypeptide or an antibody of the invention may be achieved by a variety of methods, including but not limited immunoassay methods such as radioimmuno assay, enzyme linked immunoabsorbent assays (ELISA), chemiluminescence assays, immunohistochemistry, immunoblotting, for example Western blotting, immunofluorescence and mass spectrometry. An example of use of an antibody to detect a polypeptide of a R. equi pili (RplB) is provided in the Examples herein.

[0069] Suitably, detection of antibodies with binding specificity to a polypeptide encoded by any one of SEQ ID NO 1, 2, 3, 4, 5, 6, 7, 8, or 9 may be used as a test for R. equi in horses. In embodiments, PCR testing for nucleic acids encoding a polypeptide of the pili, for example as encoded by any one of SEQ ID NO 1, 2, 3, 4, 5, 6, 7, 8, or 9 may be used as a test for R. equi, particularly where a quantitative detection is preferred. Based on the nucleic acid sequence data provided herein, suitable primers or probes for use in the detection of nucleic acid sequences which can encode polypeptides of the pili of R. equi could be provided as would be understood in the art. As will be understood, suitably, in embodiments, said probes or primers can hybridise to the nucleic acid sequences encoding peptides associated with pilus formation, preferably any one of SEQ ID NO 1, 2, 3, 4, 5, 6, 7, 8, or 9, under stringent conditions. Hybridisation refers to the binding, duplexing, or hybridizing of a molecule only to a particular nucleotide sequence under stringent conditions when that sequence is present in a complex mixture (e.g., total cellular) DNA or RNA. Stringent hybridisation occurs when a nucleic acid binds the target nucleic acid with minimal background. Typically, to achieve stringent hybridisation, temperatures of around 1.degree. C. to about 20.degree. C., more preferably 5.degree. C. to about 20.degree. C. below the Tm (melting temperature at which half the molecules dissociate from their partner) are used. However, it is further defined by ionic strength and pH of the solution. An example of highly stringent wash conditions is 0.15 M NaCl at 72.degree. C. for about 15 minutes. An example of a stringent wash condition is a 0.2.times.SSC wash at 65.degree. C. for 15 minutes (see, Sambrook and Russell, infra, for a description of SSC buffer). Often, a high stringency wash is preceded by a low stringency wash to remove background probe signal. An example of a medium stringency wash for a duplex of, for example, more than 100 nucleotides, is 1.times.SSC at 45.degree. C. for 15 minutes. An example of a low stringency wash for a duplex of for example more than 100 nucleotides, is 4-6.times.SSC at 40.degree. C. for 15 minutes. For short probes (for example about 10 to 50 nucleotides), stringent conditions typically involve salt concentrations of less than about 1.5 M, more preferably about 0.01 to 1.0 M, Na ion concentration (or other salts) at pH 7.0 to 8.3, and the temperature is typically at least about 30.degree. C. and at least about 60.degree. C. for long probes (for example, >50 nucleotides). Detection of a polynucleotide of the invention may be by any suitable means, for example using PCR, a microarray or the like as would be known in the art.

[0070] In an eleventh aspect of the present invention there is provide a kit to detect R. equi wherein the kit comprises a polypeptide or antibody of the invention or a nucleic acid probe. In embodiments a kit can comprise a polypeptide or antibody of the invention.

[0071] In embodiments, the kit is for use in the method of diagnosing a disease or condition caused by R. equi wherein the kit comprises a polypeptide or antibody of the invention or a nucleic acid probe. In embodiments a kit can comprise a polypeptide or antibody of the invention.

[0072] In embodiments, the kit can include a solid support, for example a test strip, plastic bead or the like to which polypeptide or antibody of the invention can be coated. The kit may include a detection antibody capable of binding to a polypeptide or antibody of the invention which comprises a detectable label or binding site for a detectable label. Suitably a labelling molecule can include an enzyme, fluorescent label or radiolabel. Binding sites for detectable labels include avidin, biotin, streptavidin and the like.

[0073] Additionally, the kit can include instructions for using the kit to practise the present invention. The instructions should be in writing in a tangible form or stored in an electronically retrievable form. A further aspect of the present invention provides a method of screening immunogenic R. equi polypeptides of the invention or a fragment, derivative, or variant thereof to determine if a test agent can bind to said polypeptide comprising the steps: providing a candidate immunogenic R. equi polypeptide of the invention or a fragment, derivative, or variant thereof, providing a test agent to the candidate immunogenic R. equi polypeptide and determining whether said test agent can bind to said candidate immunogenic R. equi polypeptide.

[0074] A test agent which can bind to a R. equi polypeptide of the invention may inhibit the activity of said polypeptide, minimise its secretion or inhibit its ability to form functional pili. In embodiments, such a test agent may be a useful therapeutic.

[0075] The present invention also provides the use of a polypeptide or a fragment, derivative, or variant thereof or an antibody as described herein in medicine.

[0076] In a twelfth aspect, the present invention provides the use of a polypeptide of the invention or a fragment, derivative, or variant thereof, an antibody, composition and/or vaccine of the invention in the treatment or prevention of a disease or condition caused by R. equi.

[0077] In one embodiment of the invention, a method of treatment comprises the steps:

[0078] (i) identifying a subject suffering from a disorder associated with or R. equi or at risk of developing R. equi;

[0079] (ii) administering a polypeptide, or composition as described herein to said subject.

[0080] In another embodiment, the invention provides a method of treatment comprising administering or recommending a polypeptide, or a fragment, derivative, or variant thereof or an antibody or composition as described herein to a subject previously identified as having R. equi infection or suffering from a condition associated with R. equi infection. The invention may also provide a method of treatment of a subject in need thereof, said method comprising: [0081] (i) identifying a subject suffering from a disorder associated with or R. equi or at risk of developing R. equi; [0082] (ii) obtaining a polypeptide or a fragment, derivative, or variant thereof as described herein according to any embodiment, [0083] (iii) formulating the polypeptide or antibody with a suitable carrier and/or excipient to form a composition wherein said composition is in an amount sufficient to reduce or prevent or inhibit R. equi infection or suffering from a condition associated with R. equi infection and [0084] (iv) administering said composition to said subject.

[0085] In a further embodiment there is provided a method of treatment of a subject in need thereof, said method comprising: [0086] (i) identifying a subject suffering from a disorder associated with or R. equi. or at risk of developing R. equi.; [0087] (ii) obtaining a polypeptide or a fragment, derivative, or variant thereof or an antibody as described herein according to any embodiment, [0088] (iii) formulating the polypeptide or antibody with a suitable carrier and/or excipient to form a composition wherein said composition is in an amount sufficient to reduce or prevent or inhibit R. equi infection or suffering from a condition associated with R. equi infection and [0089] (iv) recommending administration of a composition at (iii).

[0090] In embodiments a polypeptide on the invention can be provided to a subject to generate a protective immune response in the subject. In particular embodiments the polypeptide may act as a vaccine.

[0091] Sequences identified in the patent application include:

TABLE-US-00004 SEQ ID NO 1 rpIA REQ_18350> - 3104103:3104891 GTGATCGTCGCAGCGGGCGTCGGCGCCGCACTCCTGGGTATCCTCG CCGGGGCGTTCGCGAACAGTGCGATCGACCGCGTGCGCCTGGAGA CCGCGTGCGCCGAGCCGAAGTCGACCCCCACCGGCTCAACCCCGC CGCCCCCCTCCCCTGCGTCCGCGGTAGCCACCCGGATCGCGATGAT CGACACCATCACGCGACGACACGACATCAGTGCCCGCCGCGTGCTC GTCGAACTCGCAACGGCCCTCCTGTTCGTCGGGATCACTCTCCGTCT CGCCGCTCTCGGTCTTCTCCCGGCAACACCGGCCTATCTCTTGCAAA CGGCTGCCGAACTTCCTCGTCGTACCGTCGTACCCGATCGTATTCGC CTGCCTTTCAGTGGGTTCCGTCGTGCCGTTCTGTTCGGGGTCTACTT CGTACTAGCCCTGATCTATCCGGCCGGCATGGGGTTCGGCGACGTC AAACTTGCCGGCGTCATCGGCGCCGTCCTCGCCTACCTGTCGTACG GCACATTGCTCGTCGGGGCGTTTCTCGCGTTCCTGGTGGCCGCACT CGTCGGCCTGATCATCCTGGTCACCCGTCGCGGTCGGATCGGGACC ACGATTCCCTTCGGGCCGTACATGATTGCGGCGGCCATCGTTGCGAT CCTGGCGGCCGATCCGCTGGCGCGCGCGTATCTGGACTGGGCCGC CGCGGCCTGA SEQ ID NO 2 rpIB REQ_18360> - 1939395:1939601 ATGAACCTCTTCTTCGCGAACCTGTACCTCATGGGCTTAGACGTCAA GGACCGTCTGACCCGTGACGACCGCGGCGCCACTGCGGTCGAGTAC GGACTGATGGTCGCCGGCATCGCGATGGTGATCATTGTTGCGGTTTT CGCCTTCGGCGATAAGATTACCGACCTCTTCGATGGCTTCAACTTCG ACGATCCCGGCGGCGAGTAG SEQ ID NO 3 rpIC REQ_18370> - 1939683:1940084 ATGAAGCGCCTCACTTCCGATTCAGGGGTCGCCGCAGTCGAATTCGC TCTCGTCGTTCCGATCCTGATCACACTGGTCCTCGGCATCGTGGAGT TCGGTCGGGGTTACAACGTCCAGAACGCGGTCAGCGCTGCTGCCCG CGAGGGTGCACGGACGATGGCGATCAAGAAGGATCCGGCGGCGGC GCGTGCTGCCGTGAAGGGCGCGGGTGTGTTCAGTCCGGCGATCACC GATGCGGAGATCTGCATCAGCACTTCGGGAACGCAGGGCTGTTCGG CAACGTCGTGTCCGAGCGGAAGTACCGTGACGCTCACGGTCAGCTA TCCACTCGAGTACATGACGGGACTCTTTCCCGGTAAGCCGACGCTCA CCGGCACGGGGGTCATGCGATGCGGTGGGTGA SEQ ID NO 4 rpID REQ_18380> - 1940093:1941037 ATGTCGAATGACGAGCGCGGGGTCGTCGCCGTGCTCGTTGCGATCC TCATGGTCGTGCTCCTGGGATGTGCTGCGATCTCGGTCGACATCGGT GCGAACTATGTCGTCAAACGTCAGTTGCAGAACGGGGCCGATGCGG CTGCGCTCGCCGTAGCTCAGGAATCCAGTTGCAAGGCAGGATCTTCC GCCTCATCCGTGTCGAGCCTTGTCCAGGCGAACGTCAACAGCTCGTC GGCTGCAAGTGCGGCGGTGATCGACGGTGTGAAGCGGAAGGTGAC GGTCACTGCGTCGGCGGTGGGTGACGACGGCCTCGCCGGCCGGAG GAACGTGTTCGCTCCGGTCCTCGGAGTCGACCGCAGCGAGATCTCG GCGTCTGCGACTGCAAGCTGCGTGTTTCCCCTCGGGGGGACCGCGG AACTCCCGCTCACGTTCCACAAGTGCCATTTCGACGAATCCCGCAGT CTGGACGTGAAGATCCTCGTCGCCTACAACGTGACGGCGCCGCGCT GCAATGGAACCTCGGGAAATGCGGCACCGGGCAATTTCGGCTGGCT GCAGGGGGCGAACGGTCGATGCCCGGCGAAGATCGACGCCGCCGT CTACGCAACACCGGGCGACACCGGTAACAACATTCCGGGGCCGTGC AAGGACACCATCAAGCAGTTTCAGAATGCCGTCGTGCGGGTCCCGAT CTACGACGTCGCAGGTGGAACCGGAAGCGGTGGATGGTTTCACGTC GTCGGTTTGGCTGCCTTCAAGATTCAGGGCTACCGGCTGAGCGGCA ACCCGGAGTTCAACTGGAACAACGATGTTCACGGGGCGCTGAGTTG CACCGGCAGCTGTCGCGGCATCATCGGCACCTTCGTGAAGATTGTCA GCCTCGATTCGGATCTGACGCCGGGAGGGATCGATTTCGGCGTGAG TACGATCAGCTTGCTCGATTAG SEQ ID NO 5 rpIE REQ_18390> - 1941047:1941784 TTGAGAACCCGAATCATTGCTGCGATCTGTGCGATCGTTCTCGCGGT CGCGGGAACCCTCGCCCTGATCTCGTATGTACGCGGGGCCGATGCC CGCGCCCTGGCGGGTACACGCACCGTCGATGTGCTCGTCGCCGATC AGACGATTCCGAAGAACACTCCCGCTGATTCGCTCGTGGGAATGGTT GTGGTCAAGAAACTTCCGGAAATGGCGGTGCTACCCGATCGGGTGA CCAGTCTCGACCAACTGTCCGGCAAGGTCGCGCTGACCGACCTCCT GCCTGGCGAACAACTGGTCTCGGCGCGATTCGTCGACCCGGCGACC GCCCGAAGTCAGGACCAGGGAGGAATCCCCGAGGGGATGCAGGAG GTGACGGTTCTTCTCGAGCCGCAACGCGCACTGGGAGGCCACATCG CGTCGGGCGATACCGTCGGCGTCTTCATGTCCTTCTCGCCGCCCGT CAAGAACTACGAAACACATCTGAGATTGCAGAAAGTGCGAGTCACGC GGGTCCAGGGAACGTTCTCCAACGCCGACGAAGGGGATTCGGCCAC GGTCGACTCGTCGCCGAGCCCTGCTCCCACCGAGGCCTTTCTCGTC TCGCTGGCGGTCGACGTGCCGATGGCGGAGCGCGTCGTTTTCGCCG CGGAGCACGGGACCATCTGGCTTTCCAATGAGCCGCCGAGTTCGAA CGAGGCCGGGGCATCCGTGGTCTCCCCGGAAGGAGTGTTCCGATGA SEQ ID NO 6 rpIF REQ_18400> - 1941781:1942980 ATGAGCCGCATCGTCCTGCTGACCGATCGCGACGATTTCGCCCGCC GCGTGTACCACGCCGCGGACGGCAACCTTCTGGTGTTGCCGGCGCA GCCGGTTCCCCGGGGGCCGGCGCAGTTGGTCGGGCTCGGCGTGAC CGTGCAACCAGAAGTTCTCGTTCTCGGTCCGGACGTGCCGGAAGTG GAGGGCCTCTCCCTCGCCGGCCGGATCGATCATTCGACGCCCGGCA CCACGGTGGTTCTGGCCAGTGATGCGGGCACCGACGTGTGGTTGCG GGCGATGCGCGCCGGCGTGCGGGACGTGATGTCGCCGGAGGCGGA GATCGCGGACGTTCGTGCGGTACTCGATCGAGCGGGCCAGGCCGCA CTGGCGCGACGTCAGGGGGCGAGTGCACCGGCGGAGCAGCATGCG GTTCAAGGGAAGGTCATCGTGGTCGCGTCGCCGAAAGGCGGAACCG GAAAGACCACCGTTGCGACGAATCTTGCAGTAGGACTCGCGGCGGC AGCGCCTCACTCGACGGTGTTGGTGGACCTCGACGTGCAGTTCGGG GACGTTGCCAGTGCTCTCCAGTTGGTTCCGGAACATTGCCTGACCGA CGCCGTCGCGGGCCCGGCCAGCCAGGACATGATCGTCCTCAAGACC GTCCTGACACCCCATTCCACAGGACTGCATGCGCTGTGTGGGTCGG ACTCGCCCGCGGCGGGCGACAGCATCACCGGCGAGCAGGTGAGCA CTCTGCTGACGCAGTTGGCGGCCGAATTCCGGTACGTGGTCGTCGA CACCGCGCCCGGTTTGCTCGAACACACCCTGGCGGCGCTCGACCTT GCTACCGACGTCGTGTTGGTGTCGGGTATGGACGTGCCCAGCGTCC GCGGGATGCACAAGGAACTGCAATTGCTGACGGAGCTGAATCTGGG TCCGGTCGTGCGGCATGTCGTGCTCAACTTTGCGGATCGACGCGAG GGGCTGACGGTCCAGGACATCCAGAACACCATCGGGGTCCCCGCCG ATATCGTGATCAAGCGCTCGAAAGCCGTTGCCCTCTCGACGAACCGG GGGGTTCCACTGCTTCAGAACCCGGGTCGGGATCGCACTGCGAAAG AGTTGTGGCGACTCGTCGGCCGTATCGATCCGGCTCCCGATACCGC CAAGGGTGGACGCGCGCGGCATCGGGCAGCCGAGGCGGTGGGTGC GAAATGA SEQ ID NO 7 rpIG REQ_18410> - 1942977:1944374 ATGAGACTGTCCCAACGGCTCGAGGCCGTGCGCGGAGCCGCACCC GTCGAAGCCGCCGCACCGATCCCGCCGGGGAAGCAGGGGAAGGCG AAAACGTCCCTCCCTCCGGCCGACGCTCTCGCCGAACTGAAGGACC GTGCGAGTGCGGCCCTGTACACCCGGATCGGCACCCGCTTCAACGA CTCCTCGTTGAGCGAGGAGCAACTGCATCTCCTGGTCCGTGAGGAA CTGGCCGAAATCGTGGAGCAGGAGACGACGCCACTCACCTTCGACG AACGGCAGCGCCTGCTCCGTGAGGTTGCCGACGAGGTACTGGGGCA CGGACCGCTCCAGCGGCTACTGGAGGACCCGTCGGTCACCGAGATC ATGGTCAACAGCCACGACATGGTCTACGTCGAGCGGGACGGCACCC TCGTCCGCAGCTCCGCGCGATTCGCGGACGAGGCGCACCTGCGTCG CGTGATCGAACGCATCGTTTCCGCCGTCGGTCGACGGATCGACGAA TCGTCCCCGCTCGTGGATGCACGCTTGGCGGATGGCTCCCGTGTCA ACGCGGTGATCCCACCGCTCGCATTCAACGGCTCCTCGCTCACCATT CGAAAGTTCTCGAAAGATCCGTTCCAGGTCGACGATCTCATCGCCTT CGGCACTCTCTCGCACGAGATGGCCGAACTGCTCGACGCGTGTGTG CAGGCGCGACTGAACGTCATCGTCTCGGGCGGCACGGGCACGGGG AAGACGACGCTGCTCAACGTGCTCTCGTCGTTCATTCCGGAAGGGGA GCGGATCGTCACCATCGAGGACGCCGTGGAACTGCAACTTCAGCAG GACCACGTCGTACGGTTGGAGAGCCGACCGCCGAACATCGAGGGCA AGGGTGCCGTCACCATCCGCGACCTGGTGCGGAACTCGCTGCGTAT GCGTCCCGACCGCATCGTGGTGGGGGAGTGTCGCGGAGGCGAGAG TCTCGACATGCTGCAAGCGATGAACACCGGTCACGACGGGTCGCTG TCGACGGTGCATGCGAATTCGCCCCGTGACGCCATCGCGCGCTTGG AGACGCTCGTGTTGATGGCCGGCATGGACCTGCCGTTGCGGGCGAT

CCGGGAGCAGATTGCTTCGGCGGTCGACGTGATCGTGCAGCTCACT CGACTACGTGACGGCACTCGGCGAGTGACCCACGTGACCGAGGTCC AGGGCATGGAGGGTGAGATCGTCACCCTGCAGGATGCCTTCCTGTT CGACTACAGCGCCGGCGTCGACGCGCGCGGGCGATTCCTCGGCAG ACCGCAGCCGACCGGAGTGCGGCCGCGGTTCACCGACAGATTCCGA GATCTCGGTATTGCTTTGTCGCCGAGTGTTTTCGGGGTGGGAGAACC CTCCCGGGGGCGGGTATGA SEQ ID NO 8 rpIH REQ_18420> - 1944371:1946239 ATGAGCCGGTGCGTGGTGGCCGTCGTGCTCGCCCTCGGTGCGGGT GTTCTGGGAATTCCCGCCGTAGCCGCGGCGGCCGAGGAGGCTGTCC AGGTCTCGGCGGTCGACACGACCCGGTTTCCCGACATCGAGGTGTC CATCCTCGCGCCGCCCGGTATCGAAGGGCAGGCGATCGATCCGGGA ACGTTCGCGCTCACCGAGGGCGGCGTGCCGCGAGAGATCGAGGTC AGGCAGCAGCCGGGTTCCGAGCAGGACATCGTGCTCGCAATCGACG TGTCCGGGGGCATGTCGGGTCCGGCGCTGGACGACGTGAAGCGCG CCGCATCGGATTTCGTGCGGCAGGCGCCGGCCGGCGCCCACATCG GAATCGTCGCGATCTCGTCGACGCCACAGGTGCTCTCGGAACTGAC GACGGACTCCGAGGACCTGCTCCGCAGGATCGACGGACTGAAGGCG GGCGGCAACAGCGCGATCGCAGATTCGGTGGTGACCGCCGCCGAG ATGCTCGAGCGCGGCGAAGCGGCCAACAACATCCTGCTTCTGTTGA CGGACGGCGCCGACACGTCGAGTGCACACTCGATGTCGGAACTCCC GTCCGTCCTGAGTCGGTCGCGCGCGTCGCTGTACGCCGTGCAGATG TCGACACCCGAGACGAACTCTGCTCTCCTGCAGCAGGTTGCGCGGG AGTCGCGCGGTCAGTACGCGTCTGCGGGTGATACGGCGGCGCTGG GTGCGATCTACCAGTCGGCCGCTCGCGCGCTCGGAAACCTGTACGT CGTCCGATACCGATCGGAAGCGAATGGCGATACCCAGGTGGTGGCG AGCGTGCGCAGCGGCGCAGCCGGCCGAGTGAGCGATCCGTTCCCG GTGACATTGCCCGGTGTGGTGCCGACGCCGAGCGTCGTCGCCGGG ACCGTCGACGGTTTCTTCACGTCTTCGACGGGGCTGGTGATCGGGC TCCTAGCGTGCTACTCGGCGCTTGCGGGAGGCGTGCTGGCGGTCGC CGGTAGAGCGCCCGCGAGGATTTCGGCAGCACGTCGTGGGCGGCA GGACGGACGGGACTCGATGCTGTCCCGATTCGCGGAACGGCTGGTG CAGTGGATCGATCAGAACCTGAGGAGACGCGGACGCATCGCTGCCC GCACCCAGGCGCTACAGGAGGCGGGGCTGAAGCTTCGTCCAGGTGA CTTCATCGCCCTGGTCGGTGCTGCGGCGATCACCGCTGCGGCGATC GGTCTCCTGGCTTCGGGCATCGTGGCGGCGCTCTTGCTCGCGGCGA TCACAGTGGGATTGTCGAGAATCTATCTCCGTGTGATGGCCGGTAGG CGTCGGGCCGCGTTCGCTGATCAGCTCGACGATTCCCTGCAGCTGC TGGCCAGCAATCTCCGAGCCGGGCACAGCATGCTCCGAGCGCTCGA TTCCCTTTCCCGAGAGGCGGAGGTGCCGACTTCGGAGGAGTTCGCT CGGATCGTCAACGAGACTCGGGTGGGACGTGATCTCAACGAGTCTC TCGACGACGTGGCCCGGCGGATGCGAAGTGACGATTTCAACTGGAT AGCTCAGGCAATCGCCATCAACCGTGAGGTCGGAGGCGACCTCGCG GAAGTCCTCGACCAGGTGGGCAACACCATTCGAGAGCGAAATCAGAT TCGACGGCAGGTGAAAGCCCTTGCTGCCGAGGGGAAACTGTCCGCC TACGTGCTGATGGCGCTGCCCTTCGGTCTCACCGCATTTCTGCTCGT CTCGAATCCGGACTACCTGTCGAAGTTGACGGGTAGCGCCATCGGC TACGTGATGATCGCGGTGGGGCTCGTCATGCTGACCGTCGGTGGGC TGTGGATGAACAAGGTTGTCTCGGTCAAGTTCTAG SEQ ID NO 9 rpII REQ_18430> - 1946262:1947152 GTGATTCCACCGCTGGTGCTCATGGCGGCGCTGTCCGTCGGCGGGG CGTTGGGTGTTCTGGTGTGGTTGACGGTCGGCGCCCGAGATCCGGA ACGCGGACCCGCCCTTCGGAACCTGCAGTCGCAGCTGGCGTTGCCG ATTCCGGAGTCGGGAGGCGCGCCACCGCTTTCGCTCGGCCGATTCG TGAAGCTGCTGTCGCCGCCCGGGACGATGGCCCGCTTGGAACGACT GCACATCCTTGCCGGTCGTCCAGCGGCGTGGGTTCCGGAACGGGCC GCGATGGCGAAGATCGTTCTCGCCGCGGCCGCCGCCCTGCTCGGC CTTCTCGCGGTGGGTGCGTCGCCTGGCGTCGGCCGGGTGCTGTTCG CTGCGGCCGCCGTCGCGCTGGCGTATTTCGTCCCGGAACTTCTCCT GCAGAGCAGGGGGCAGGAGCGCCAAGCCGCGATCGAACTGGCGCT TGCCGACACCCTCGACCAGATGACGATCGCAGTCGAGGCGGGCCTG GGGTTCGAAGCCGCCATGCAGCGGGCCGCGAAGAACGGAAAGGGG CCGCTGGCCGAGGAATTCATCCGGACATTGCAGGACATACAGATGG GGCAGTCGAGGCGAATCGCGTACCTGGATCTTGCCGCCAGAACGAA AGCACCCAACTTGCGGAGGTTCCTTCGGGCCGTCATCCAAGCCGAC GAGTACGGCGTGGCCATCGCCGAGGTCCTGCGGACCCAGGCCTCG GAGATGCGTCTGAAACGCCGTCAGAGTGCTGAGGAGAAGGCGATGA AGGTTCCGGTGAAGGTGCTGTTTCCGTTGATGACCTGCATCCTGCCG ACCATCTTCATCGTGATCCTGGGTCCGGCGGTGATCAACATGATGGA GGTCTTGGGCGGTATGTAA SEQ ID NO 12 RpIA: VIVAAGVGAALLGILAGAFANSAIDRVRLETACAEPKSTPTGSTPPPPSP ASAVATRIAMIDTITRRHDISARRVLVELATALLFVGITLRLAALGLLPA TPAYLWFAAVGIALAVIDIDCKRLPNFLVVPSYPIVFACLSVGSVVTGDW SALLRAAIGAAVLFGVYFVLALIYPAGMGFGDVKLAGVIGAVLAYLSYGT LLVGAFLAFLVAALVGLIILVTRRGRIGTTIPFGPYMIAAAIVAILAADP LARAYLDWAAAA SEQ ID NO 13 RpIB: MNLFFANLYLMGLDVKDRLTRDDRGATAVEYGLMVAGIAMVIIVAVFAFG DKITDLFDGFNFDDPGGE SEQ ID NO 14 RpIC: MKRLTSDSGVAAVEFALVVPILITLVLGIVEFGRGYNVQNAVSAAAREGA RTMAIKKDPAAARAAVKGAGVFSPAITDAEICISTSGTQGCSATSCPSGS TVTLTVSYPLEYMTGLFPGKPTLTGTGVMRCGG SEQ ID NO 15 RpID: MSNDERGVVAVLVAILMVVLLGCAAISVDIGANYVVKRQLQNGADAAALA VAQESSCKAGSSASSVSSLVQANVNSSSAASAAVIDGVKRKVTVTASAV GDDGLAGRRNVFAPVLGVDRSEISASATASCVFPLGGTAELPLTFHKCH FDESRSLDVKILVAYNVTAPRCNGTSGNAAPGNFGWLQGANGRCPAKI DAAVYATPGDTGNNIPGPCKDTIKQFQNAVVRVPIYDVAGGTGSGGWF HVVGLAAFKIQGYRLSGNPEFNWNNDVHGALSCTGSCRGIIGTFVKIVSL DSDLTPGGIDFGVSTISLLD SEQ ID NO 16 RpIE: LRTRIIAAICAIVLAVAGTLALISYVRGADARALAGTRTVDVLVADQTIP KNTPADSLVGMVVVKKLPEMAVLPDRVTSLDQLSGKVALTDLLPGEQLVS ARFVDPATARSQDQGGIPEGMQEVTVLLEPQRALGGHIASGDTVGVFMSF SPPVKNYETHLRLQKVRVTRVQGTFSNADEGDSATVDSSPSPAPTEAFL VSLAVDVPMAERVVFAAEHGTIWLSNEPPSSNEAGASVVSP EGVFR SEQ ID NO 17 RpIF: MSRIVLLTDRDDFARRVYHAADGNLLVLPAQPVPRGPAQLVGLGVTVQP EVLVLGPDVPEVEGLSLAGRIDHSTPGTTVVLASDAGTDVWLRAMRAGV RDVMSPEAEIADVRAVLDRAGQAALARRQGASAPAEQHAVQGKVIVVA SPKGGTGKTTVATNLAVGLAAAAPHSTVLVDLDVQFGDVASALQLVPEH CLTDAVAGPASQDMIVLKTVLTPHSTGLHALCGSDSPAAGDSITGEQVST LLTQLAAEFRYVVVDTAPGLLEHTLAALDLATDVVLVSGMDVPSVRGMH KELQLLTELNLGPVVRHVVLNFADRREGLTVQDIQNTIGVPADIVIKRSK AVALSTNRGVPLLQNPGRDRTAKELWRLVGRIDPAPDTAKGGRARHRAA EAVGAK SEQ ID NO 18 RpIG: MRLSQRLEAVRGAAPVEAAAPIPPGKQGKAKTSLPPADALAELKDRASA ALYTRIGTRFNDSSLSEEQLHLLVREELAEIVEQETTPLTFDERQRLLRE VADEVLGHGPLQRLLEDPSVTEIMVNSHDMVYVERDGTLVRSSARFADEA HLRRVIERIVSAVGRRIDESSPLVDARLADGSRVNAVIPPLAFNGSSLTI RKFSKDPFQVDDLIAFGTLSHEMAELLDACVQARLNVIVSGGTGTGKTTL LNVLSSFIPEGERIVTIEDAVELQLQQDHVVRLESRPPNIEGKGAVTIRD LVRNSLRMRPDRIVVGECRGGESLDMLQAMNTGHDGSLSTVHANSPRDAI ARLETLVLMAGMDLPLRAIREQIASAVDVIVQLTRLRDGTRRVTHVTEVQ GMEGEIVTLQDAFLFDYSAGVDARGRFLGRPQPTGVRPRFTDRFRDLGI ALSPSVFGVGEPSRGRV SEQ ID NO 19 RpIH: MSRCVVAVVLALGAGVLGIPAVAAAAEEAVQVSAVDTTRFPDIEVSILAP PGIEGQAIDPGTFALTEGGVPREIEVRQQPGSEQDIVLAIDVSGGMSGPA LDDVKRAASDFVRQAPAGAHIGIVAISSTPQVLSELTTDSEDLLRRIDGL KAGGNSAIADSVVTAAEMLERGEAANNILLLLTDGADTSSAHSMSELPSV LSRSRASLYAVQMSTPETNSALLQQVARESRGQYASAGDTAALGAIYQSA

ARALGNLYVVRYRSEANGDTQVVASVRSGAAGRVSDPFPVTLPGVVPT PSVVAGTVDGFFTSSTGLVIGLLACYSALAGGVLAVAGRAPARISAARRG RQDGRDSMLSRFAERLVQWIDQNLRRRGRIAARTQALQEAGLKLRPGD FIALVGAAAITAAAIGLLASGIVAALLLAAITVGLSRIYLRVMAGRRRAA FADQLDDSLQLLASNLRAGHSMLRALDSLSREAEVPTSEEFARIVNETRV GRDLNESLDDVARRMRSDDFNWIAQAIAINREVGGDLAEVLDQVGNTIRE RNQIRRQVKALAAEGKLSAYVLMALPFGLTAFLLVSNPDYLSKLTGSAIG YVMIAVGLVMLTVGGLWMNKVVSVKF SEQ ID NO 20 RpII: VIPPLVLMAALSVGGALGVLVWLTVGARDPERGPALRNLQSQLALPIPES GGAPPLSLGRFVKLLSPPGTMARLERLHILAGRPAAWVPERAAMAKIVLA AAAALLGLLAVGASPGVGRVLFAAAAVALAYFVPELLLQSRGQERQAAIE LALADTLDQMTIAVEAGLGFEAAMQRAAKNGKGPLAEEFIRTLQDIQMG QSRRIAYLDLAARTKAPNLRRFLRAVIQADEYGVAIAEVLRTQASEMRLK RRQSAEEKAMKVPVKVLFPLMTCILPTIFIVILGPAVINMMEVLGGM

[0092] Preferred features and embodiments of each aspect of the invention are as for each of the other aspects mutatis mutandis unless context demands otherwise.

[0093] Each document, reference, patent application or patent cited in this text is expressly incorporated herein in their entirety by reference, which means it should be read and considered by the reader as part of this text. That the document, reference, patent application or patent cited in the text is not repeated in this text is merely for reasons of conciseness. Reference to cited material or information contained in the text should not be understood as a concession that the material or information was part of the common general knowledge or was known in any country.

[0094] Throughout the specification, unless the context demands otherwise, the terms `comprise` or `include`, or variations such as `comprises` or `comprising`, `includes` or `including` will be understood to imply the includes of a stated integer or group of integers, but not the exclusion of any other integer or group of integers.

[0095] By "consisting essentially of" it is meant that a nucleic acid does not include additional, substituted or deleted nucleotide(s) to a polynucleotide sequence of the invention described herein or a polypeptide does not include additional, substituted, or deleted amino acids which significantly alter the character of a sequence of the invention such that it is not immunogenic and biologically active.

[0096] As used herein, the singular forms "a", "an", and "the" include the corresponding plural reference unless the context clearly dictates otherwise.

[0097] Where a range of values is expressed, it will be understood that this range encompasses the upper and lower limits of the range and all values in between these limits.

[0098] The terms "polypeptide", "protein" and "peptide" are herein used interchangeably.

[0099] The term "isolated" refers to materials, such as nucleic acid molecules, which are substantially free or otherwise removed from components that normally accompany or interact with the materials in a naturally occurring environment. An isolated nucleic acid typically contains less than about 50%, preferably less than about 75%, and most preferably less than about 90% of the components with which it was originally associated. Polypeptides, antibodies and nucleic acids of the invention as disclosed herein can be isolated.

[0100] The terms "polynucleotide", "polynucleotide sequence", and "nucleic acid sequence" are used interchangeably herein. A "polynucleotide" as used herein refers to purine- and pyrimidine-containing polymers of any length, either polyribonucleotides or polydeoxyribonucleotides, which can be single or double stranded, such as, for example, DNA-DNA, DNA-RNA and RNA-RNA. A polynucleotide may optionally contain synthetic, non-natural or altered nucleotide bases. A polynucleotide in the form of a polymer of DNA may be comprised of one or more strands of cDNA, genomic DNA, synthetic DNA, or mixtures thereof.

[0101] A "derivative" of a polypeptide as used herein will be understood to include polypeptides which have been subject to chemical modifications, including esterification, amidation, reduction, methylation, fusion to another peptide and the like. The polypeptide derivatives may be modified such that the modifications increase the stability and/or immunogenicity and/or bioavailability of the polypeptide derivative in comparison to the unmodified polypeptide. Covalent derivatives of the peptides or polypeptides of the invention can be prepared by linking the chemical moieties to functional groups on the amino acid side chains or at the N-terminus or C-terminus of the antigenic polypeptide. Conjugation of a polypeptide to another peptide may further be achieved by genetic means through the use of recombinant DNA techniques that are well know in the art, such as those set forth in the teachings of Sambrook et al. Molecular Cloning: A Laboratory Manual, 2 ed. Vol. 1, pp. 1.101-104, Cold Spring Harbor Laboratory Press, (1989) and F.M. Ausubel et al. Current Protocols in Molecular Biology, Eds. J.Wiley Press (2006), the relevant portions of which are incorporated herein by reference.

[0102] A "variant" polypeptide of the invention can be a polypeptide which has an amino acid sequence which differs from the polypeptide encoded by SEQ ID NO 1, 2, 3, 4, 5, 6, 7, 8 or 9 due to the presence of one or more deletions, insertions, or substitutions of amino acid residues. In embodiments, a variant has at least 85%, 86%, 87%, 88%, 89%, preferably at least 90%, 91%, 92%, 93%, 94%, and more preferably 95%, 96%, 97%, 98%, 99% but less than 100% contiguous amino acid sequence identity to the corresponding polypeptide encoded by the nucleotide sequence as disclosed herein. Percentage identity may be determined using, for example computer programs as would be known by one skilled in the art.

[0103] Variants can include polypeptides in which individual amino acids of the polypeptide of the invention are substituted by other amino acids which are closely related as understood in the art, for example, substitution of one hydrophobic residue such as isoleucine, valine, leucine or methionine for another, or the substitution of one polar residue for another, such as arginine for lysine, glutamic for aspartic acid or glutamine for asparagine.

[0104] In embodiments, a fragment of a polypeptide of the present invention can consist of a truncated version of a polypeptide of the invention which has been truncated by 1, 2, 3, 4 or more than 5, more than 10, or more than 20 amino acids. An antigenic fragment may be generated using for example C-terminal deletion of any one of the polynucleotide sequences of the genes as listed in Table 1 or Table 2 and said C-terminal deletion constructs may then be inserted into a suitable prokaryotic or eukaryotic expression plasmid. The antigenic activity of the expression products derived from the constructs may then be tested by assessing reactivity with antisera from naturally and/or experimentally infected horse or foals using immunoblotting methods. Alternatively a series of synthetic polypeptide fragments with greater than 85%, greater than 90%, greater than 95%, or 100% sequence identity to portions of any one the polypeptides encoded by a polynucleotide sequence of a gene of Table 1 or more preferably Table 2 can be generated. These peptides may then be reacted with antisera from naturally or experimentally infected horses using an ELISA method to determine which peptide fragments are antigenic. Alternatively, synthetic peptides may be used to immunise, for example, mice, rabbits, or horses and the antisera produced can be assessed for reactivity with R. equi using indirect immunofluorescence assays. In this way immunogenic fragments may be identified and R. equi-specific antisera may be produced. These two latter approaches described are particularly advantageous for small peptides that contain linear, continuous epitopes.

[0105] "Operably linked" means that a nucleic acid molecule is placed in functional relationship with another nucleic acid molecule. Generally an operably linked promoter will be linked such that it is contiguous with and in the same reading phase as the gene to be expressed.

[0106] Generally the terms "treating", "treatment" and the like are used to mean affecting a subject tissue or cell to obtain a desired pharmacological and/or physiological effect. As used herein, the term "treatment" and associated terms such as "treat" and "treating" means the reduction of the progression, severity and/or duration of infection or for the amelioration of at least one of the symptoms thereof by R. equi or may be prophylactic (preventative treatment). The term `treatment` therefore refers to any regimen that can benefit a subject. References herein to "therapeutic" and "prophylactic" treatments are to be considered in their broadest context. The term "therapeutic" does not necessarily imply that a subject is treated until total recovery. Similarly, "prophylactic" does not necessarily mean that the subject will not eventually contract a disease condition.

[0107] As used herein, the term "subject" refers to an animal, preferably a mammal and in particular a horse.

FIGURES

[0108] Embodiments of the present invention will now be described by way of example only with reference to the accompanying figures in which:

[0109] FIG. 1 illustrates the R. equi pilus locus (rpl). (A) The 9 Kb rpl horizontally acquired (HGT) island (REQ18350-430) is absent from nonpathogenic Rhodococcus spp. (e.g. R. jostii RHA1 and R. erythropolis PR4). rpl genes have were detected in all R. equi clinical isolates (.apprxeq.300 isolates tested). rpl gene products which are considered to be encoded are: A, prepilin peptidase; B, pilin subunit; C, TadE minor pilin; D, putative lipoprotein; E, CpaB pilus assembly protein; F, CpaE pilus assembly protein; GHI, Tad transport machinery. (B) Electron micrograph of R. equi 103S pili (indicated by arrowheads). Bar=0.5 .mu.m. (C) R. equi pili visualized by immunofluorescence microscopy (.times.1,000 magnification). Reproduced from Letek et al. 2010, PLoS Genet. 6: e1001145).

[0110] FIG. 2 illustrates a demonstration by targeted mutant construction and genetic re-complementation analysis that the rpl locus encodes the R. equi pilus. Negative staining transmission electron micrographs of wild-type R. equi 103S (WT) (panel A), isogenic rplB deletion mutant of 103S (.DELTA.rplB, apiliated) (panel B), rplB-complemented mutant (piliated) (panel C), and mock-complemented mutant with an empty vector (no rplB gene). Bar=0.5 .mu.m (panel D).

[0111] FIG. 3 illustrates the effect of rplB gene deletion and complementation on R. equi adhesion to (A) macrophages (J774A.1 cell line) and (B) epithelial cells (HeLa cell line), two key target cell types in the pathogenesis of airborne lung infection. Data expressed as percentage of the control (WT); mean of at least three independent duplicate experiments.+-.SEM.

[0112] FIG. 4 illustrates the adhesion phenotype to (A) epithelial cells (HeLa cell line) and (B) macrophages (J774A.1 cell line) with additional rpl knock-out mutants (rplA and rplE).

[0113] FIG. 5 illustrates Rpl pili are essential for R. equi lung colonization in mice as demonstrated using a novel in vivo lung infection model in mice developed by the inventors. It is based on a competitive virulence assay in which each mouse receives an intranasal inoculum containing 50% of wild-type (WT) R. equi bacteria and 50% of mutant (.DELTA.rplB) R. equi bacteria. t=0 means 60 min after delivery of the intranasal inoculum.

[0114] FIG. 6 illustrates production in rabbits of a specific antibody against the putative R. equi pilin subunit (RplB). (A) Amino acid sequence of putative RplB prepilin and of the C-terminal peptide used to raise a rabbit polyclonal antibody (boxed). Arrowhead indicates putative cleavage site of the prepilin. (B) Immunodetection of the RplB pilin by SDS-PAGE western blot analysis of whole cell extracts of wild-type R. equi (WT), an isogenic in-frame deletion rplB mutant (.DELTA.rplB), the rplB-complemented mutant (.DELTA.rplB+rplB), and a mock-complement mutant (.DELTA.rplB+vector), using the anti-RplB peptide antibody (diluted 1:1,000; secondary antibody, alkaline phosphatase-conjugated mouse anti-rabbit monoclonal antibody, 1:10,000 diluted; reaction revealed with NBT/BCIP substrate. The anti-Rpl antibody specifically detects the Rpl pilin subunit in WT and re-completed rpl mutant, not in the apiliated rpl mutant and mock-complemented mutant. (C) Detection of Rpl pili production in R. equi by immunofluorescence using the anti-RplB peptide antibody and the same bacteria as in (B) (630.times. magnification, Leica AF6000 microscope).

[0115] FIG. 7 illustrates Inhibition of R. equi attachment to (A) macrophages and (B) epithelial cells by an anti-RplB antibody. Prior to the adhesion assay, the antibody raised against the RplB (pilin subunit) peptide (see FIG. 6A) was incubated for 60 min at 37.degree. C. (40 .mu.l/ml of a suspension in cell culture medium of exponentially grown R. equi bacteria at a density calculated for a multiplicity of infection of 15:1). As a control, the R. equi bacterial cell suspension was pre-incubated with an irrelevant antiserum (anti-Listeria monocytogenes rabbit polyclonal antibody).

[0116] FIG. 8 illustrates RplB pilin antigens are recognized in vivo and elicit a strong antibody response in naturally infected foals. Representative example of the reactivity against the Rpl pilin of horse sera from bacteriologically confirmed cases of foal pneumonia, as determined by SDS-PAGE western blot analysis with whole cell extracts of wild-type R. equi (WT) and the isogenic .DELTA.rplB mutant. All convalescent sera tested to date gave a strong reaction against the RplB pilin antigen whereas normal (non-case) sera did not. The Rpl pili dissociate into 18 kDa polypeptides that probably correspond to SDS-resistant homo-tetramers (predicted molecular mass of RplB pilin, 4.95 kDa) that remain non-covalently bound by strong monomer-monomer interactions via the N-terminal hydrophobic region of the pilin subunit. (A) indicates RplB is the first antigen detected in a curde R. equi protein preparation by the antibodies present in case sera.

[0117] FIG. 9 illustrates variability of RplB amino acid sequence in R. equi strains and of other Rpl proteins.

[0118] FIG. 10 illustrates the nucleotide sequences encoding Rpl proteins of other strains of R. equi.

DETAILED DESCRIPTION OF THE INVENTION

[0119] As indicated above, the inventors have identified polypeptides which play an important role in virulence of R equi and have used this knowledge to identify polypeptides which can be used to mediate an immune response in infected subjects, particularly horses, and in particular foals. Whilst the amino acid sequences of the polypeptides determined for the identified strain are noted, as will be understood, biologically active immunogenic fragments, derivatives or variants of such a polypeptide can also be used. As discussed variant polypeptides can comprise amino acid percent identity with the amino acid sequences disclosed herein. Alternatively, polypeptides of the invention may be encoded by variant nucleic acid sequences which have nucleotide percent identity with the polynucleotide sequences disclosed herein.

[0120] The percent identity of two or more sequences may be determined by visual inspection and mathematical calculation. Alternatively, the percent identity of two nucleic acid sequences can be determined by comparing sequence information using the GAP computer program, version 6.0 described by Devereux et al. (Nucl. Acids Res. 12:387, 1984) and available from the University of Wisconsin Genetics Computer Group (UWGCG). The preferred default parameters for the GAP program include: (1) a unary comparison matrix (containing a value of 1 for identities and 0 for non-identities) for nucleotides, and the weighted comparison matrix of Gribskov and Burgess, Nucl. Acids Res. 14:6745, 1986, as described by Schwartz and Dayhoff, eds., Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, pp. 353-358, 1979; (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap; and (3) no penalty for end gaps. Other programs used by one skilled in the art of sequence comparison may also be used.

[0121] Polypeptides of the invention may be prepared by any of a number of conventional techniques. A nucleic acid encoding a peptide or a biologically active immunogenic fragment, derivative, or variant thereof, may be subcloned into an expression vector for production of the polypeptide or fragment. The DNA sequence advantageously is fused to a sequence encoding a suitable leader or signal peptide and/or a promoter operable in a cell into which the nucleic acid is to be introduced. Alternatively, the desired fragment may be chemically synthesized using known techniques. DNA fragments also may be produced by restriction endonuclease digestion of a full length cloned DNA sequence, and isolated by electrophoresis on agarose gels. If necessary, oligonucleotides that reconstruct the 5' or 3' terminus to a desired point may be ligated to a DNA fragment generated by restriction enzyme digestion. Such oligonucleotides may additionally contain a restriction endonuclease cleavage site upstream of the desired coding sequence, and position an initiation codon (ATG) at the N-terminus of the coding sequence.

[0122] Polymerase chain reaction (PCR) procedure also may be employed to isolate and amplify a DNA sequence encoding a desired polypeptide fragment. Oligonucleotides that define the desired termini of the DNA fragment are employed as 5' and 3' primers. The oligonucleotides may additionally contain recognition sites for restriction endonucleases, to facilitate insertion of the amplified DNA fragment into an expression vector. PCR techniques are described in Saiki et al., Science 239:487 (1988); Recombinant DNA Methodology, Wu et al., eds., Academic Press, Inc., San Diego (1989), pp. 189-196; and PCR Protocols: A Guide to Methods and Applications, Innis et al., eds., Academic Press, Inc. (1990).

[0123] The invention encompasses polypeptides and biologically active immunogenic fragments, derivatives, or variants thereof in various forms, including those that are naturally occurring or produced through various techniques such as procedures involving recombinant DNA technology. For example, nucleotides encoding polypeptides of the invention can be derived from SEQ ID NO 1, 2, 3, 4, 5, 6, 7, 8, or 9 by in vitro mutagenesis, which includes site-directed mutagenesis, random mutagenesis, and in vitro nucleic acid synthesis. Such forms include, but are not limited to, derivatives, variants, and oligomers, as well as fusion proteins or fragments thereof.

Polypeptide Derivatives

[0124] Embodiments of a derivative of a polypeptide of the invention can comprise one or more non-naturally occurring amino acids or amino acid analogs, including non-genetically encoded L-amino acids, synthetic L-amino acids or D-enantiomers of an amino acid. Suitably, embodiments of a derivative can comprise one or more residues selected from the group consisting of: hydroxyproline, .beta.-alanine, 2,3-diaminopropionic acid, .alpha.-aminoisobutyric acid, N-methylglycine (sarcosine), ornithine, citrulline, t-butylalanine, t-butylglycine, N-methylisoleucine, phenylglycine, cyclohexylalanine, norleucine, naphthylalanine, pyridylananine 3-benzothienyl alanine 4-chlorophenylalanine, 2-fluorophenylalanine, 3-fluorophenylalanine, 4-fluorophenylalanine, penicillamine, 1,2,3,4-tetrahydrotic isoquinoline-3-carboxylic acid .beta.-2-thienylalanine, methionine sulfoxide, homoarginine, N-acetyl lysine, 2,4-diamino butyric acid, p-aminophenylalanine, N-methylvaline, homocysteine, homoserine, .epsilon.-amino hexanoic acid, .delta.-amino valeric acid, 2,3-diaminobutyric acid and mixtures thereof. Other amino acid residues that are useful for making the polypeptides and polypeptide derivatives described herein can be found, e.g., in Fasman, 1989, CRC Practical Handbook of Biochemistry and Molecular Biology, CRC Press, Inc., and the references cited therein.

[0125] In embodiments, derivatives of polypeptides of the invention can also comprise an isostere of a polypeptide. The term "isostere" as used herein is intended to include a chemical structure that can be substituted for a second chemical structure because the steric conformation of the first structure fits a binding site specific for the second structure. The term specifically includes peptide back-bone modifications (i.e., amide bond mimetics) known to those skilled in the art. Such modifications include modifications of the amide nitrogen, the .alpha.-carbon, amide carbonyl, complete replacement of the amide bond, extensions, deletions or backbone crosslinks. Several peptide backbone modifications are known, including .psi.[CH2S], .psi.[CH2NH], .psi.[CSNH2], .psi.[NHCO], .psi.[COCH2], and .psi.[(E) or (Z) CH.dbd.CH]. In the nomenclature used above, .psi. indicates the absence of an amide bond. The structure that replaces the amide group is specified within the brackets. Other modifications include, for example, an N-alkyl (or aryl) substitution (.psi.[CONR]), or backbone crosslinking to construct lactams and other cyclic structures. In another example, a polypeptide derivative may be a retro-peptide analog. A retro-peptide analog comprises a reversed amino acid sequence of a polypeptide described herein. For example, a retro-peptide analog of a polypeptide comprises a reversed amino acid sequence of a sequence set forth in any one of SEQ ID NO 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20. Retro-inverso polypeptides may be complete or partial. Complete retro-inverso peptides are those in which a complete sequence of a polypeptide described herein is reversed and the chirality of each amino acid in a sequence is inverted, other than glycine, because glycine does not have a chiral analog. Partial retro-inverso polypeptides are those in which only some of the peptide bonds are reversed and the chirality of only those amino acid residues in the reversed portion is inverted. For example, one or two or three or four or five or more than 10, more than 20, more than 30, more than 40 or more than 50 amino acid residues are D-amino acids. Suitably a polypeptide of and for use in the present invention may be further modified using at least one of C and/or N-terminal capping, and/or cysteine residue capping. Suitably, a polypeptide of and for use in the present invention may be capped at the N terminal residue with an acetyl group. Suitably, a polypeptide of and for use in the present invention may be capped at the C terminal with an amide group. Suitably, thiol groups of cysteines of polypeptides of the invention may be capped with acetamido methyl groups. In embodiments, the term derivative can include scrambled polypeptides comprising immunodominant epitopes of the rpl encoded pilus for example fragments of SEQ ID NOs 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20. In embodiments derivatives can be encoded by rpl genes or fragments thereof which encode immunodominant epitopes of Rpl pilus provided in tandem, or as longer repeat stretches, for example concatemerized, to increase the immunogenicity of the encoded polypeptides. In embodiments, combinations of polypeptides of the invention (and corresponding nucleic acid sequences) can be fused in a single polypeptide.

Polypeptide Synthesis

[0126] A polypeptide or a biologically active immunogenic fragment, derivative, or variant thereof may be synthesized using any suitable chemical method known to the person skilled in the art. For example, synthetic peptides can be prepared using known techniques of solid phase, liquid phase, or peptide condensation, or any combination thereof, and can include natural and/or unnatural amino acids. Amino acids used for peptide synthesis may be standard Boc (N.alpha.-amino protected N.alpha.-t-butyloxycarbonyl) amino acid resin with the deprotecting, neutralization, coupling and wash protocols of the original solid phase procedure of Merrifield, J. Am. Chem. Soc., 85:2149-2154, 1963, or the base-labile Na-amino protected 9-fluorenylmethoxycarbonyl (Fmoc) amino acids described by Carpino and Han, J. Org. Chem., 37:3403-3409, 1972. Both Fmoc and Boc N.alpha.-amino protected amino acids can be obtained from various commercial sources, such as, for example, Fluka, Bachem, Advanced Chemtech, Sigma, Cambridge Research Biochemical, Bachem, or Peninsula Labs.

[0127] Generally, chemical synthesis methods comprise the sequential addition of one or more amino acids to a growing peptide chain. Normally, either the amino or carboxyl group of the first amino acid is protected by a suitable protecting group. The protected or derivatized amino acid can then be either attached to an inert solid support or utilized in solution by adding the next amino acid in the sequence having the complementary (amino or carboxyl) group suitably protected, under conditions that allow for the formation of an amide linkage. The protecting group is then removed from the newly added amino acid residue and the next amino acid (suitably protected) is then added, and so forth. After the desired amino acids have been linked in the proper sequence, any remaining protecting groups (and any solid support, if solid phase synthesis techniques are used) are removed sequentially or concurrently, to render the final polypeptide. By simple modification of this general procedure, it is possible to add more than one amino acid at a time to a growing chain, for example, by coupling (under conditions which do notracemize chiral centers) a protected tripeptide with a properly protected dipeptide to form, after deprotection, a pentapeptide. See, e.g., J. M. Stewart and J. D. Young, Solid Phase Peptide Synthesis (Pierce Chemical Co., Rockford, Ill. 1984) and G. Barany and R. B. Merrifield, The Peptides: Analysis, Synthesis, Biology, editors E. Gross and J. Meienhofer, Vol. 2, (Academic Press, New York, 1980), pp. 3-254, for solid phase peptide synthesis techniques; and M. Bodansky, Principles of Peptide Synthesis, (Springer-Verlag, Berlin 1984)and E. Gross and J. Meienhofer, Eds., The Peptides: Analysis. Synthesis. Biology, Vol. 1, for classical solution synthesis. Typical protecting groups include t-butyloxycarbonyl (Boc), 9-fluorenylmethoxycarbonyl (Fmoc) benzyloxycarbonyl (Cbz); p-toluenesulfonyl (Tx); 2,4-dinitrophenyl; benzyl (Bzl); biphenylisopropyloxycarboxy-carbonyl, t-amyloxycarbonyl, isobornyloxycarbonyl, o-bromobenzyloxycarbonyl, cyclohexyl, isopropyl, acetyl, o-nitrophenylsulfonyl and the like.

[0128] Typical solid supports are cross-linked polymeric supports. These can include divinylbenzene cross-linked-styrene-based polymers, for example, divinylbenzene-hydroxymethylstyrene copolymers, divinylbenzene-chloromethylstyrene copolymers and divinylbenzene-benzhydrylaminopolystyrene copolymers.

[0129] A peptide or a biologically active immunogenic fragment, derivative, or variant thereof as described herein according to any embodiment can also be chemically prepared by other methods such as by the method of simultaneous multiple peptide synthesis. See, e. g., Houghten Proc. Natl. Acad. Sci. USA 82: 5131-5135, 1985 or U.S. Pat. No. 4,631,211.

Recombinant Polypeptide Production

[0130] Alternatively, or in addition, a peptide or a biologically active immunogenic fragment, derivative, or variant thereof can be produced as a recombinant protein. To facilitate the production of a recombinant polypeptide, nucleic acid encoding the same is preferably isolated or synthesized. Typically the nucleic acid encoding the recombinant protein is/are isolated using a known method, such as, for example, amplification (e.g., using PCR or splice overlap extension) or isolated from nucleic acid from R. equi using one or more restriction enzymes or isolated from a library of nucleic acids.

[0131] Methods for such isolation will be apparent to the ordinary skilled artisan and/or described in Ausubel et al (In: Current Protocols in Molecular Biology. Wiley Interscience, ISBN 047 150338, 1987), Sambrook et al (In: Molecular Cloning: Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, New York, Third Edition 2001).

[0132] For expressing protein by recombinant means, a protein-encoding nucleic acid is placed in operable connection with a promoter or other regulatory sequence capable of regulating expression in a cell-free system or cellular system. For example, nucleic acid comprising a sequence that encodes a polypeptide of the pili of R. equi is placed in operable connection with a suitable promoter and maintained in a suitable cell for a time and under conditions sufficient for expression to occur.

[0133] A number of other gene construct systems for expressing a nucleic acid of a gene selected from Table 1 or Table 2 in bacterial cells are well-known in the art and are described for example, in Ausubel et al (In: Current Protocols in Molecular Biology. Wiley Interscience, ISBN 047 150338, 1987), and Sambrook et al (In: Molecular Cloning: Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, New York, Third Edition 2001).

[0134] A wide range of additional host/vector systems suitable for expressing a polypeptide of the present invention are available publicly, and described, for example, in Sambrook et al (In: Molecular cloning, A laboratory manual, second edition, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1989).

[0135] Following expression of a polypeptide, isolation and purification of the polypeptide may be accomplished by any suitable technique, as would be known in the art.

Compositions

[0136] A polypeptide or a biologically active immunogenic fragment, derivative, or variant thereof may be administered alone, but will preferably be administered as a pharmaceutical composition, which will generally comprise a suitable pharmaceutically acceptable excipient, diluent or carrier selected depending on the intended route of administration. Examples of suitable pharmaceutical carriers include; water, glycerol and ethanol.

[0137] The term "carrier or excipient" as used herein, refers to a carrier or excipient that is conventionally used in the art to facilitate the storage, administration, and/or the biological activity of an active compound. A carrier may also reduce any undesirable side effects of the active compound. A suitable carrier is, for example, stable, e.g., incapable of reacting with other ingredients in the formulation. In one example, the carrier does not produce significant local or systemic adverse effect in recipients at the dosages and concentrations employed for treatment. Such carriers and excipients are generally known in the art. Suitable carriers for this invention include those conventionally used, e.g., water, saline, aqueous dextrose, and glycols are preferred liquid carriers, particularly (when isotonic) for solutions. Suitable pharmaceutical carriers and excipients include starch, cellulose, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, magnesium stearate, sodium stearate, glycerol monostearate, sodium chloride, glycerol, propylene glycol, water, ethanol, and the like.

[0138] Pharmaceutical composition adapted for oral administration may be presented as discrete units such as capsules, soft gels, or tablets; powders or granules; solutions or suspensions in aqueous or non-aqueous liquids; edible foams or whips; or oil-in-water liquid emulsions or water-in-oil liquid emulsions.

[0139] Pharmaceutical compositions provided as formulations adapted for parenteral administration include aqueous and non-aqueous sterile injection solutions which contain a polypeptide or a biologically active immunogenic fragment, derivative, or variant thereof or a antibody of the invention and optionally, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents. The formulations may be presented in unit-dose or multi-dose containers, for example sealed ampules and vials, and may be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets.

Administration

[0140] As will be appreciated by a person of skill in the art, selecting an administration regimen for a therapeutic composition or vaccine of the invention depends on several factors, including the serum or tissue turnover rate of a polypeptide of the invention or an antibody invention, the level of symptoms, the immunogenicity of the polypeptide, and the accessibility of the target cells in the biological matrix. Preferably, an administration regimen maximizes the amount of therapeutic compound delivered to the subject consistent with an acceptable level of side effects. Accordingly, the amount of polypeptide, antibody or composition delivered depends in part on the polypeptide, antibody or composition and the severity of the condition being treated.

[0141] A polypeptide or antibody can be provided, for example, by continuous infusion, or by doses at intervals of, e.g., one day, one week, or 1-7 times per week. A preferred dose protocol is one involving the maximal dose or dose frequency that avoids significant undesirable side effects. A total weekly dose depends on the type and activity of the compound being used. Determination of the appropriate dose is made by a veterinarian or clinician, for example using parameters or factors known or suspected in the art to affect treatment or predicted to affect treatment.

EXAMPLES

Example 1

[0142] Using electron microscopy and other microscopical techniques we demonstrated that R. equi produces long, thick and apparently rigid pili appendages, typically between two and four per bacteria cell (FIG. 1 panels BC).

Example 2

Genome Sequencing

[0143] Genome sequencing of the complete genome sequence of R. equi strain 103S was determined in an international collaborative venture. The genome has just over 5 million base pairs and encodes 4598 genes of average length value 1009 pairs of nucleotides.

Example 3

[0144] Demonstration that the rpl (R. equi pili) locus (nucleotide positions 1,938,280 to 1,947,152, locus tags REQ18350-430) encodes the R. equi pilus by targeted mutant construction and genetic re-complementation analysis.

[0145] An in-frame deletion mutant was constructed in the rplB gene putatively encoding the Rpl pilin subunit (RplB). Homologous recombination methodology previously devised (Navas et al. 2001, Identification and mutagenesis by allelic exchange of choE, encoding a cholesterol oxidase from the intracellular pathogen Rhodococcus equi. J. Bacteriol. 183: 4796-4805), and a novel suicide vector, pSelAct, for positive selection of double recombinants on 5-fluorocytosine (5-FC) (van der Geize et al. 2008, A novel method to generate unmarked gene deletions in the intracellular pathogen Rhodococcus equi using 5-fluorocytosine conditional lethality. Nucleic Acids Res. 36: el 51) was used in this approach. The .DELTA.rplB mutant was complemented by stably inserting the rplB gene plus corresponding promoter region into the R. equi chromosome using the integrative vector pSET152 (Hong and Hondalus 2008, Site-specific integration of Streptomyces PhiC31 integrase-based vectors in the chromosome of Rhodococcus equi. FEMS Microbiol. Lett. 287: 63-68). As shown in FIG. 2, the inactivation of the rplB gene results in loss of pili formation by R. equi. Pili formation is restored upon reintroduction of the rplB gene in the .DELTA.rplB mutant but not by complementation with an empty vector, demonstrating that rplB is a gene directly responsible for the piliated phenotype.

Example 4

[0146] Demonstration that the R. equi pili mediate attachment to mammalian cells.

[0147] The .DELTA.rplB mutant was tested in adhesion assays using monolayers of two cell types relevant to R. equi infection: epithelial cells to which the pathogen have to adhere to during the initial stages of lung colonization, and macrophages, which are used as host cells for bacterial intracellular replication. The rplB mutant was severely impaired in attachment to both eukaryotic cell types, and its complementation with the rplB gene but not an empty vector restored wild-type cytoadhesiveness (FIG. 3).

[0148] Two additional mutants were constructed in rplA and rplE (FIG. 1A) and they also caused a significant reduction of R. equi cytoadhesiveness (FIG. 4), indicating that other genes from the rpl locus are involved in pilus-mediated attachment to eukaryotic cells (not shown).

Example 5

[0149] Demonstration that the R. equi pili are essential for lung colonization in vivo in a mouse model of R. equi infection.

[0150] A novel in vivo model of competitive R. equi lung infection in mice was developed and used to test the virulence of the rplB mutant in comparison to rplB-proficient (wild-type) bacteria. R. equi wild-type and an isogenic rplB knock-out mutant in equal amounts were inoculated intranasally to Balb/c mice. At specific time points after infection, the bacterial population was determined in lungs and tracheas to assess airway colonisation. The spleens were also analysed to determine the capacity of the bacteria to overwhelm local defences and spread deeper into host tissues. FIG. 4 shows that the mutant, initially accounting for 50% of the inoculum, was only detectable--in much less proportion--during the two first time points sampled (0 and 24 hour post inoculation), indicating that apiliated bacteria are immediately cleared from the lungs and thus substantially less virulent. In the first time point, only a very small fraction of the bacteria that translocated to the spleen were mutants. These data indicate that a wild-type capacity to attach to host cells via the Rpl pili is essential for host colonisation by R. equi.

Example 6

[0151] Demonstration that the RplB (putative pilin subunit) protein is antigenic in vivo in rabbits.

[0152] The synthetic RplB peptide indicated in FIG. 6A was used to hyperimmunize rabbits. The antiserum specifically detected the RplB pilin subunit in whole cell extracts of R. equi (FIG. 6B) and the production of Rpl pili in R. equi by immunofluorescence (FIG. 6C), indicating that it is immunogenic in vivo in rabbits.

Example 7

[0153] Demonstration that RplB elicits neutralizing antibodies that inhibit R. equi attachment.

[0154] The rabbit hyperimmune anti-RplB antiserum was used in attachment-inhibition assays in HeLa epithelial cells and J774A.1 macrophages. FIG. 7 shows that the RplB antiserum, but not an irrelevant antiserum, inhibited R. equi cytoadhesion. Given the key role of the Rpl pili in lung colonization by R. equi (FIG. 4), these data indicate that RplB is a vaccine target to prevent lung infection by the pathogen.

[0155] This is evidence that indicates that the pilin subunit RplB is recognised by the immune system in vivo and the animal body mounts a specific immune response with production of specific antibodies to the R. equi pilin subunit RplB. As the polyclonal antiserum containing anti-RplB antibodies inhibits attachment of R. equi to monolayers of HeLa epithelial cells or J774 macrophages if added to the infection assays, which effect is not seen if the Rpl antiserum is not added, or if an unrelated control antiserum raised against other bacteria (e.g. Listeria) is used, this indicates a protective function of the antibodies through inhibition of bacterial attachment to host cells, the first phase of host colonisation during infection.

Example 8

[0156] Demonstration that the RplB putative pilin subunit is an immunodominant antigen in naturally infected foals.

[0157] Using SDS-PAGE western immunoblotting and whole-cell extracts from wild-type and rplB (apiliated) deletion mutant bacteria, it was shown that the sera from natural cases of R. equi infection in foals contain antibodies to the RplB putative pilin subunit (FIG. 8). The RplB protein is the first detected in the crude R. equi protein preparation by the antibodies present in the case sera. Thus, the RplB pilin subunit is recognized in vivo by the foal's immune system during R. equi infection and is an immunodominant antigen. Normal, non-case sera did not react against the RplB protein, indicating that this antigen provides a suitable maker for the early detection and diagnosis of R. equi infection in foals.

[0158] Although the invention has been particularly shown and described with reference to particular examples, it will be understood by those skilled in the art that various changes in the form and details may be made therein without departing from the scope of the present invention.

Sequence CWU 1

1

731702DNARhodococcus equi 1gtgatcgtcg cagcgggcgt cggcgccgca ctcctgggta tcctcgccgg ggcgttcgcg 60aacagtgcga tcgaccgcgt gcgcctggag accgcgtgcg ccgagccgaa gtcgaccccc 120accggctcaa ccccgccgcc cccctcccct gcgtccgcgg tagccacccg gatcgcgatg 180atcgacacca tcacgcgacg acacgacatc agtgcccgcc gcgtgctcgt cgaactcgca 240acggccctcc tgttcgtcgg gatcactctc cgtctcgccg ctctcggtct tctcccggca 300acaccggcct atctcttgca aacggctgcc gaacttcctc gtcgtaccgt cgtacccgat 360cgtattcgcc tgcctttcag tgggttccgt cgtgccgttc tgttcggggt ctacttcgta 420ctagccctga tctatccggc cggcatgggg ttcggcgacg tcaaacttgc cggcgtcatc 480ggcgccgtcc tcgcctacct gtcgtacggc acattgctcg tcggggcgtt tctcgcgttc 540ctggtggccg cactcgtcgg cctgatcatc ctggtcaccc gtcgcggtcg gatcgggacc 600acgattccct tcgggccgta catgattgcg gcggccatcg ttgcgatcct ggcggccgat 660ccgctggcgc gcgcgtatct ggactgggcc gccgcggcct ga 7022207DNARhodococcus equi 2atgaacctct tcttcgcgaa cctgtacctc atgggcttag acgtcaagga ccgtctgacc 60cgtgacgacc gcggcgccac tgcggtcgag tacggactga tggtcgccgg catcgcgatg 120gtgatcattg ttgcggtttt cgccttcggc gataagatta ccgacctctt cgatggcttc 180aacttcgacg atcccggcgg cgagtag 2073402DNARhodococcus equi 3atgaagcgcc tcacttccga ttcaggggtc gccgcagtcg aattcgctct cgtcgttccg 60atcctgatca cactggtcct cggcatcgtg gagttcggtc ggggttacaa cgtccagaac 120gcggtcagcg ctgctgcccg cgagggtgca cggacgatgg cgatcaagaa ggatccggcg 180gcggcgcgtg ctgccgtgaa gggcgcgggt gtgttcagtc cggcgatcac cgatgcggag 240atctgcatca gcacttcggg aacgcagggc tgttcggcaa cgtcgtgtcc gagcggaagt 300accgtgacgc tcacggtcag ctatccactc gagtacatga cgggactctt tcccggtaag 360ccgacgctca ccggcacggg ggtcatgcga tgcggtgggt ga 4024945DNARhodococcus equi 4atgtcgaatg acgagcgcgg ggtcgtcgcc gtgctcgttg cgatcctcat ggtcgtgctc 60ctgggatgtg ctgcgatctc ggtcgacatc ggtgcgaact atgtcgtcaa acgtcagttg 120cagaacgggg ccgatgcggc tgcgctcgcc gtagctcagg aatccagttg caaggcagga 180tcttccgcct catccgtgtc gagccttgtc caggcgaacg tcaacagctc gtcggctgca 240agtgcggcgg tgatcgacgg tgtgaagcgg aaggtgacgg tcactgcgtc ggcggtgggt 300gacgacggcc tcgccggccg gaggaacgtg ttcgctccgg tcctcggagt cgaccgcagc 360gagatctcgg cgtctgcgac tgcaagctgc gtgtttcccc tcggggggac cgcggaactc 420ccgctcacgt tccacaagtg ccatttcgac gaatcccgca gtctggacgt gaagatcctc 480gtcgcctaca acgtgacggc gccgcgctgc aatggaacct cgggaaatgc ggcaccgggc 540aatttcggct ggctgcaggg ggcgaacggt cgatgcccgg cgaagatcga cgccgccgtc 600tacgcaacac cgggcgacac cggtaacaac attccggggc cgtgcaagga caccatcaag 660cagtttcaga atgccgtcgt gcgggtcccg atctacgacg tcgcaggtgg aaccggaagc 720ggtggatggt ttcacgtcgt cggtttggct gccttcaaga ttcagggcta ccggctgagc 780ggcaacccgg agttcaactg gaacaacgat gttcacgggg cgctgagttg caccggcagc 840tgtcgcggca tcatcggcac cttcgtgaag attgtcagcc tcgattcgga tctgacgccg 900ggagggatcg atttcggcgt gagtacgatc agcttgctcg attag 9455738DNARhodococcus equi 5ttgagaaccc gaatcattgc tgcgatctgt gcgatcgttc tcgcggtcgc gggaaccctc 60gccctgatct cgtatgtacg cggggccgat gcccgcgccc tggcgggtac acgcaccgtc 120gatgtgctcg tcgccgatca gacgattccg aagaacactc ccgctgattc gctcgtggga 180atggttgtgg tcaagaaact tccggaaatg gcggtgctac ccgatcgggt gaccagtctc 240gaccaactgt ccggcaaggt cgcgctgacc gacctcctgc ctggcgaaca actggtctcg 300gcgcgattcg tcgacccggc gaccgcccga agtcaggacc agggaggaat ccccgagggg 360atgcaggagg tgacggttct tctcgagccg caacgcgcac tgggaggcca catcgcgtcg 420ggcgataccg tcggcgtctt catgtccttc tcgccgcccg tcaagaacta cgaaacacat 480ctgagattgc agaaagtgcg agtcacgcgg gtccagggaa cgttctccaa cgccgacgaa 540ggggattcgg ccacggtcga ctcgtcgccg agccctgctc ccaccgaggc ctttctcgtc 600tcgctggcgg tcgacgtgcc gatggcggag cgcgtcgttt tcgccgcgga gcacgggacc 660atctggcttt ccaatgagcc gccgagttcg aacgaggccg gggcatccgt ggtctccccg 720gaaggagtgt tccgatga 73861200DNARhodococcus equi 6atgagccgca tcgtcctgct gaccgatcgc gacgatttcg cccgccgcgt gtaccacgcc 60gcggacggca accttctggt gttgccggcg cagccggttc cccgggggcc ggcgcagttg 120gtcgggctcg gcgtgaccgt gcaaccagaa gttctcgttc tcggtccgga cgtgccggaa 180gtggagggcc tctccctcgc cggccggatc gatcattcga cgcccggcac cacggtggtt 240ctggccagtg atgcgggcac cgacgtgtgg ttgcgggcga tgcgcgccgg cgtgcgggac 300gtgatgtcgc cggaggcgga gatcgcggac gttcgtgcgg tactcgatcg agcgggccag 360gccgcactgg cgcgacgtca gggggcgagt gcaccggcgg agcagcatgc ggttcaaggg 420aaggtcatcg tggtcgcgtc gccgaaaggc ggaaccggaa agaccaccgt tgcgacgaat 480cttgcagtag gactcgcggc ggcagcgcct cactcgacgg tgttggtgga cctcgacgtg 540cagttcgggg acgttgccag tgctctccag ttggttccgg aacattgcct gaccgacgcc 600gtcgcgggcc cggccagcca ggacatgatc gtcctcaaga ccgtcctgac accccattcc 660acaggactgc atgcgctgtg tgggtcggac tcgcccgcgg cgggcgacag catcaccggc 720gagcaggtga gcactctgct gacgcagttg gcggccgaat tccggtacgt ggtcgtcgac 780accgcgcccg gtttgctcga acacaccctg gcggcgctcg accttgctac cgacgtcgtg 840ttggtgtcgg gtatggacgt gcccagcgtc cgcgggatgc acaaggaact gcaattgctg 900acggagctga atctgggtcc ggtcgtgcgg catgtcgtgc tcaactttgc ggatcgacgc 960gaggggctga cggtccagga catccagaac accatcgggg tccccgccga tatcgtgatc 1020aagcgctcga aagccgttgc cctctcgacg aaccgggggg ttccactgct tcagaacccg 1080ggtcgggatc gcactgcgaa agagttgtgg cgactcgtcg gccgtatcga tccggctccc 1140gataccgcca agggtggacg cgcgcggcat cgggcagccg aggcggtggg tgcgaaatga 120071398DNARhodococcus equi 7atgagactgt cccaacggct cgaggccgtg cgcggagccg cacccgtcga agccgccgca 60ccgatcccgc cggggaagca ggggaaggcg aaaacgtccc tccctccggc cgacgctctc 120gccgaactga aggaccgtgc gagtgcggcc ctgtacaccc ggatcggcac ccgcttcaac 180gactcctcgt tgagcgagga gcaactgcat ctcctggtcc gtgaggaact ggccgaaatc 240gtggagcagg agacgacgcc actcaccttc gacgaacggc agcgcctgct ccgtgaggtt 300gccgacgagg tactggggca cggaccgctc cagcggctac tggaggaccc gtcggtcacc 360gagatcatgg tcaacagcca cgacatggtc tacgtcgagc gggacggcac cctcgtccgc 420agctccgcgc gattcgcgga cgaggcgcac ctgcgtcgcg tgatcgaacg catcgtttcc 480gccgtcggtc gacggatcga cgaatcgtcc ccgctcgtgg atgcacgctt ggcggatggc 540tcccgtgtca acgcggtgat cccaccgctc gcattcaacg gctcctcgct caccattcga 600aagttctcga aagatccgtt ccaggtcgac gatctcatcg ccttcggcac tctctcgcac 660gagatggccg aactgctcga cgcgtgtgtg caggcgcgac tgaacgtcat cgtctcgggc 720ggcacgggca cggggaagac gacgctgctc aacgtgctct cgtcgttcat tccggaaggg 780gagcggatcg tcaccatcga ggacgccgtg gaactgcaac ttcagcagga ccacgtcgta 840cggttggaga gccgaccgcc gaacatcgag ggcaagggtg ccgtcaccat ccgcgacctg 900gtgcggaact cgctgcgtat gcgtcccgac cgcatcgtgg tgggggagtg tcgcggaggc 960gagagtctcg acatgctgca agcgatgaac accggtcacg acgggtcgct gtcgacggtg 1020catgcgaatt cgccccgtga cgccatcgcg cgcttggaga cgctcgtgtt gatggccggc 1080atggacctgc cgttgcgggc gatccgggag cagattgctt cggcggtcga cgtgatcgtg 1140cagctcactc gactacgtga cggcactcgg cgagtgaccc acgtgaccga ggtccagggc 1200atggagggtg agatcgtcac cctgcaggat gccttcctgt tcgactacag cgccggcgtc 1260gacgcgcgcg ggcgattcct cggcagaccg cagccgaccg gagtgcggcc gcggttcacc 1320gacagattcc gagatctcgg tattgctttg tcgccgagtg ttttcggggt gggagaaccc 1380tcccgggggc gggtatga 139881869DNARhodococcus equi 8atgagccggt gcgtggtggc cgtcgtgctc gccctcggtg cgggtgttct gggaattccc 60gccgtagccg cggcggccga ggaggctgtc caggtctcgg cggtcgacac gacccggttt 120cccgacatcg aggtgtccat cctcgcgccg cccggtatcg aagggcaggc gatcgatccg 180ggaacgttcg cgctcaccga gggcggcgtg ccgcgagaga tcgaggtcag gcagcagccg 240ggttccgagc aggacatcgt gctcgcaatc gacgtgtccg ggggcatgtc gggtccggcg 300ctggacgacg tgaagcgcgc cgcatcggat ttcgtgcggc aggcgccggc cggcgcccac 360atcggaatcg tcgcgatctc gtcgacgcca caggtgctct cggaactgac gacggactcc 420gaggacctgc tccgcaggat cgacggactg aaggcgggcg gcaacagcgc gatcgcagat 480tcggtggtga ccgccgccga gatgctcgag cgcggcgaag cggccaacaa catcctgctt 540ctgttgacgg acggcgccga cacgtcgagt gcacactcga tgtcggaact cccgtccgtc 600ctgagtcggt cgcgcgcgtc gctgtacgcc gtgcagatgt cgacacccga gacgaactct 660gctctcctgc agcaggttgc gcgggagtcg cgcggtcagt acgcgtctgc gggtgatacg 720gcggcgctgg gtgcgatcta ccagtcggcc gctcgcgcgc tcggaaacct gtacgtcgtc 780cgataccgat cggaagcgaa tggcgatacc caggtggtgg cgagcgtgcg cagcggcgca 840gccggccgag tgagcgatcc gttcccggtg acattgcccg gtgtggtgcc gacgccgagc 900gtcgtcgccg ggaccgtcga cggtttcttc acgtcttcga cggggctggt gatcgggctc 960ctagcgtgct actcggcgct tgcgggaggc gtgctggcgg tcgccggtag agcgcccgcg 1020aggatttcgg cagcacgtcg tgggcggcag gacggacggg actcgatgct gtcccgattc 1080gcggaacggc tggtgcagtg gatcgatcag aacctgagga gacgcggacg catcgctgcc 1140cgcacccagg cgctacagga ggcggggctg aagcttcgtc caggtgactt catcgccctg 1200gtcggtgctg cggcgatcac cgctgcggcg atcggtctcc tggcttcggg catcgtggcg 1260gcgctcttgc tcgcggcgat cacagtggga ttgtcgagaa tctatctccg tgtgatggcc 1320ggtaggcgtc gggccgcgtt cgctgatcag ctcgacgatt ccctgcagct gctggccagc 1380aatctccgag ccgggcacag catgctccga gcgctcgatt ccctttcccg agaggcggag 1440gtgccgactt cggaggagtt cgctcggatc gtcaacgaga ctcgggtggg acgtgatctc 1500aacgagtctc tcgacgacgt ggcccggcgg atgcgaagtg acgatttcaa ctggatagct 1560caggcaatcg ccatcaaccg tgaggtcgga ggcgacctcg cggaagtcct cgaccaggtg 1620ggcaacacca ttcgagagcg aaatcagatt cgacggcagg tgaaagccct tgctgccgag 1680gggaaactgt ccgcctacgt gctgatggcg ctgcccttcg gtctcaccgc atttctgctc 1740gtctcgaatc cggactacct gtcgaagttg acgggtagcg ccatcggcta cgtgatgatc 1800gcggtggggc tcgtcatgct gaccgtcggt gggctgtgga tgaacaaggt tgtctcggtc 1860aagttctag 18699891DNARhodococcus equi 9gtgattccac cgctggtgct catggcggcg ctgtccgtcg gcggggcgtt gggtgttctg 60gtgtggttga cggtcggcgc ccgagatccg gaacgcggac ccgcccttcg gaacctgcag 120tcgcagctgg cgttgccgat tccggagtcg ggaggcgcgc caccgctttc gctcggccga 180ttcgtgaagc tgctgtcgcc gcccgggacg atggcccgct tggaacgact gcacatcctt 240gccggtcgtc cagcggcgtg ggttccggaa cgggccgcga tggcgaagat cgttctcgcc 300gcggccgccg ccctgctcgg ccttctcgcg gtgggtgcgt cgcctggcgt cggccgggtg 360ctgttcgctg cggccgccgt cgcgctggcg tatttcgtcc cggaacttct cctgcagagc 420agggggcagg agcgccaagc cgcgatcgaa ctggcgcttg ccgacaccct cgaccagatg 480acgatcgcag tcgaggcggg cctggggttc gaagccgcca tgcagcgggc cgcgaagaac 540ggaaaggggc cgctggccga ggaattcatc cggacattgc aggacataca gatggggcag 600tcgaggcgaa tcgcgtacct ggatcttgcc gccagaacga aagcacccaa cttgcggagg 660ttccttcggg ccgtcatcca agccgacgag tacggcgtgg ccatcgccga ggtcctgcgg 720acccaggcct cggagatgcg tctgaaacgc cgtcagagtg ctgaggagaa ggcgatgaag 780gttccggtga aggtgctgtt tccgttgatg acctgcatcc tgccgaccat cttcatcgtg 840atcctgggtc cggcggtgat caacatgatg gaggtcttgg gcggtatgta a 8911068PRTRhodococcus equi 10Met Asn Leu Phe Phe Ala Asn Leu Tyr Leu Met Gly Leu Asp Val Lys1 5 10 15Asp Arg Leu Thr Arg Asp Asp Arg Gly Ala Thr Ala Val Glu Tyr Gly 20 25 30Leu Met Val Ala Gly Ile Ala Met Val Ile Ile Val Ala Val Phe Ala 35 40 45Phe Gly Asp Lys Ile Thr Asp Leu Phe Asp Gly Phe Asn Phe Asp Asp 50 55 60Pro Gly Gly Glu651118PRTRhodococcus equi 11Asp Lys Ile Thr Asp Leu Phe Asp Gly Phe Asn Phe Asp Asp Pro Gly1 5 10 15Gly Glu12262PRTRhodococcus equi 12Val Ile Val Ala Ala Gly Val Gly Ala Ala Leu Leu Gly Ile Leu Ala1 5 10 15Gly Ala Phe Ala Asn Ser Ala Ile Asp Arg Val Arg Leu Glu Thr Ala 20 25 30Cys Ala Glu Pro Lys Ser Thr Pro Thr Gly Ser Thr Pro Pro Pro Pro 35 40 45Ser Pro Ala Ser Ala Val Ala Thr Arg Ile Ala Met Ile Asp Thr Ile 50 55 60Thr Arg Arg His Asp Ile Ser Ala Arg Arg Val Leu Val Glu Leu Ala65 70 75 80Thr Ala Leu Leu Phe Val Gly Ile Thr Leu Arg Leu Ala Ala Leu Gly 85 90 95Leu Leu Pro Ala Thr Pro Ala Tyr Leu Trp Phe Ala Ala Val Gly Ile 100 105 110Ala Leu Ala Val Ile Asp Ile Asp Cys Lys Arg Leu Pro Asn Phe Leu 115 120 125Val Val Pro Ser Tyr Pro Ile Val Phe Ala Cys Leu Ser Val Gly Ser 130 135 140Val Val Thr Gly Asp Trp Ser Ala Leu Leu Arg Ala Ala Ile Gly Ala145 150 155 160Ala Val Leu Phe Gly Val Tyr Phe Val Leu Ala Leu Ile Tyr Pro Ala 165 170 175Gly Met Gly Phe Gly Asp Val Lys Leu Ala Gly Val Ile Gly Ala Val 180 185 190Leu Ala Tyr Leu Ser Tyr Gly Thr Leu Leu Val Gly Ala Phe Leu Ala 195 200 205Phe Leu Val Ala Ala Leu Val Gly Leu Ile Ile Leu Val Thr Arg Arg 210 215 220Gly Arg Ile Gly Thr Thr Ile Pro Phe Gly Pro Tyr Met Ile Ala Ala225 230 235 240Ala Ile Val Ala Ile Leu Ala Ala Asp Pro Leu Ala Arg Ala Tyr Leu 245 250 255Asp Trp Ala Ala Ala Ala 2601368PRTRhodococcus equi 13Met Asn Leu Phe Phe Ala Asn Leu Tyr Leu Met Gly Leu Asp Val Lys1 5 10 15Asp Arg Leu Thr Arg Asp Asp Arg Gly Ala Thr Ala Val Glu Tyr Gly 20 25 30Leu Met Val Ala Gly Ile Ala Met Val Ile Ile Val Ala Val Phe Ala 35 40 45Phe Gly Asp Lys Ile Thr Asp Leu Phe Asp Gly Phe Asn Phe Asp Asp 50 55 60Pro Gly Gly Glu6514133PRTRhodococcus equi 14Met Lys Arg Leu Thr Ser Asp Ser Gly Val Ala Ala Val Glu Phe Ala1 5 10 15Leu Val Val Pro Ile Leu Ile Thr Leu Val Leu Gly Ile Val Glu Phe 20 25 30Gly Arg Gly Tyr Asn Val Gln Asn Ala Val Ser Ala Ala Ala Arg Glu 35 40 45Gly Ala Arg Thr Met Ala Ile Lys Lys Asp Pro Ala Ala Ala Arg Ala 50 55 60Ala Val Lys Gly Ala Gly Val Phe Ser Pro Ala Ile Thr Asp Ala Glu65 70 75 80Ile Cys Ile Ser Thr Ser Gly Thr Gln Gly Cys Ser Ala Thr Ser Cys 85 90 95Pro Ser Gly Ser Thr Val Thr Leu Thr Val Ser Tyr Pro Leu Glu Tyr 100 105 110Met Thr Gly Leu Phe Pro Gly Lys Pro Thr Leu Thr Gly Thr Gly Val 115 120 125Met Arg Cys Gly Gly 13015314PRTRhodococcus equi 15Met Ser Asn Asp Glu Arg Gly Val Val Ala Val Leu Val Ala Ile Leu1 5 10 15Met Val Val Leu Leu Gly Cys Ala Ala Ile Ser Val Asp Ile Gly Ala 20 25 30Asn Tyr Val Val Lys Arg Gln Leu Gln Asn Gly Ala Asp Ala Ala Ala 35 40 45Leu Ala Val Ala Gln Glu Ser Ser Cys Lys Ala Gly Ser Ser Ala Ser 50 55 60Ser Val Ser Ser Leu Val Gln Ala Asn Val Asn Ser Ser Ser Ala Ala65 70 75 80Ser Ala Ala Val Ile Asp Gly Val Lys Arg Lys Val Thr Val Thr Ala 85 90 95Ser Ala Val Gly Asp Asp Gly Leu Ala Gly Arg Arg Asn Val Phe Ala 100 105 110Pro Val Leu Gly Val Asp Arg Ser Glu Ile Ser Ala Ser Ala Thr Ala 115 120 125Ser Cys Val Phe Pro Leu Gly Gly Thr Ala Glu Leu Pro Leu Thr Phe 130 135 140His Lys Cys His Phe Asp Glu Ser Arg Ser Leu Asp Val Lys Ile Leu145 150 155 160Val Ala Tyr Asn Val Thr Ala Pro Arg Cys Asn Gly Thr Ser Gly Asn 165 170 175Ala Ala Pro Gly Asn Phe Gly Trp Leu Gln Gly Ala Asn Gly Arg Cys 180 185 190Pro Ala Lys Ile Asp Ala Ala Val Tyr Ala Thr Pro Gly Asp Thr Gly 195 200 205Asn Asn Ile Pro Gly Pro Cys Lys Asp Thr Ile Lys Gln Phe Gln Asn 210 215 220Ala Val Val Arg Val Pro Ile Tyr Asp Val Ala Gly Gly Thr Gly Ser225 230 235 240Gly Gly Trp Phe His Val Val Gly Leu Ala Ala Phe Lys Ile Gln Gly 245 250 255Tyr Arg Leu Ser Gly Asn Pro Glu Phe Asn Trp Asn Asn Asp Val His 260 265 270Gly Ala Leu Ser Cys Thr Gly Ser Cys Arg Gly Ile Ile Gly Thr Phe 275 280 285Val Lys Ile Val Ser Leu Asp Ser Asp Leu Thr Pro Gly Gly Ile Asp 290 295 300Phe Gly Val Ser Thr Ile Ser Leu Leu Asp305 31016245PRTRhodococcus equi 16Leu Arg Thr Arg Ile Ile Ala Ala Ile Cys Ala Ile Val Leu Ala Val1 5 10 15Ala Gly Thr Leu Ala Leu Ile Ser Tyr Val Arg Gly Ala Asp Ala Arg 20 25 30Ala Leu Ala Gly Thr Arg Thr Val Asp Val Leu Val Ala Asp Gln Thr 35 40 45Ile Pro Lys Asn Thr Pro Ala Asp Ser Leu Val Gly Met Val Val Val 50 55 60Lys Lys Leu Pro Glu Met Ala Val Leu Pro Asp Arg Val Thr Ser Leu65 70 75 80Asp Gln Leu Ser Gly Lys Val Ala Leu Thr Asp Leu Leu Pro Gly Glu 85 90 95Gln Leu Val Ser Ala Arg Phe Val Asp Pro Ala Thr Ala Arg Ser Gln 100 105 110Asp Gln Gly Gly Ile Pro Glu Gly Met Gln Glu Val Thr Val Leu Leu 115 120 125Glu Pro Gln Arg Ala Leu Gly Gly His Ile Ala Ser Gly Asp Thr Val 130 135 140Gly Val Phe Met Ser Phe Ser Pro Pro Val Lys Asn Tyr Glu Thr His145 150

155 160Leu Arg Leu Gln Lys Val Arg Val Thr Arg Val Gln Gly Thr Phe Ser 165 170 175Asn Ala Asp Glu Gly Asp Ser Ala Thr Val Asp Ser Ser Pro Ser Pro 180 185 190Ala Pro Thr Glu Ala Phe Leu Val Ser Leu Ala Val Asp Val Pro Met 195 200 205Ala Glu Arg Val Val Phe Ala Ala Glu His Gly Thr Ile Trp Leu Ser 210 215 220Asn Glu Pro Pro Ser Ser Asn Glu Ala Gly Ala Ser Val Val Ser Pro225 230 235 240Glu Gly Val Phe Arg 24517399PRTRhodococcus equi 17Met Ser Arg Ile Val Leu Leu Thr Asp Arg Asp Asp Phe Ala Arg Arg1 5 10 15Val Tyr His Ala Ala Asp Gly Asn Leu Leu Val Leu Pro Ala Gln Pro 20 25 30Val Pro Arg Gly Pro Ala Gln Leu Val Gly Leu Gly Val Thr Val Gln 35 40 45Pro Glu Val Leu Val Leu Gly Pro Asp Val Pro Glu Val Glu Gly Leu 50 55 60Ser Leu Ala Gly Arg Ile Asp His Ser Thr Pro Gly Thr Thr Val Val65 70 75 80Leu Ala Ser Asp Ala Gly Thr Asp Val Trp Leu Arg Ala Met Arg Ala 85 90 95Gly Val Arg Asp Val Met Ser Pro Glu Ala Glu Ile Ala Asp Val Arg 100 105 110Ala Val Leu Asp Arg Ala Gly Gln Ala Ala Leu Ala Arg Arg Gln Gly 115 120 125Ala Ser Ala Pro Ala Glu Gln His Ala Val Gln Gly Lys Val Ile Val 130 135 140Val Ala Ser Pro Lys Gly Gly Thr Gly Lys Thr Thr Val Ala Thr Asn145 150 155 160Leu Ala Val Gly Leu Ala Ala Ala Ala Pro His Ser Thr Val Leu Val 165 170 175Asp Leu Asp Val Gln Phe Gly Asp Val Ala Ser Ala Leu Gln Leu Val 180 185 190Pro Glu His Cys Leu Thr Asp Ala Val Ala Gly Pro Ala Ser Gln Asp 195 200 205Met Ile Val Leu Lys Thr Val Leu Thr Pro His Ser Thr Gly Leu His 210 215 220Ala Leu Cys Gly Ser Asp Ser Pro Ala Ala Gly Asp Ser Ile Thr Gly225 230 235 240Glu Gln Val Ser Thr Leu Leu Thr Gln Leu Ala Ala Glu Phe Arg Tyr 245 250 255Val Val Val Asp Thr Ala Pro Gly Leu Leu Glu His Thr Leu Ala Ala 260 265 270Leu Asp Leu Ala Thr Asp Val Val Leu Val Ser Gly Met Asp Val Pro 275 280 285Ser Val Arg Gly Met His Lys Glu Leu Gln Leu Leu Thr Glu Leu Asn 290 295 300Leu Gly Pro Val Val Arg His Val Val Leu Asn Phe Ala Asp Arg Arg305 310 315 320Glu Gly Leu Thr Val Gln Asp Ile Gln Asn Thr Ile Gly Val Pro Ala 325 330 335Asp Ile Val Ile Lys Arg Ser Lys Ala Val Ala Leu Ser Thr Asn Arg 340 345 350Gly Val Pro Leu Leu Gln Asn Pro Gly Arg Asp Arg Thr Ala Lys Glu 355 360 365Leu Trp Arg Leu Val Gly Arg Ile Asp Pro Ala Pro Asp Thr Ala Lys 370 375 380Gly Gly Arg Ala Arg His Arg Ala Ala Glu Ala Val Gly Ala Lys385 390 39518465PRTRhodococcus equi 18Met Arg Leu Ser Gln Arg Leu Glu Ala Val Arg Gly Ala Ala Pro Val1 5 10 15Glu Ala Ala Ala Pro Ile Pro Pro Gly Lys Gln Gly Lys Ala Lys Thr 20 25 30Ser Leu Pro Pro Ala Asp Ala Leu Ala Glu Leu Lys Asp Arg Ala Ser 35 40 45Ala Ala Leu Tyr Thr Arg Ile Gly Thr Arg Phe Asn Asp Ser Ser Leu 50 55 60Ser Glu Glu Gln Leu His Leu Leu Val Arg Glu Glu Leu Ala Glu Ile65 70 75 80Val Glu Gln Glu Thr Thr Pro Leu Thr Phe Asp Glu Arg Gln Arg Leu 85 90 95Leu Arg Glu Val Ala Asp Glu Val Leu Gly His Gly Pro Leu Gln Arg 100 105 110Leu Leu Glu Asp Pro Ser Val Thr Glu Ile Met Val Asn Ser His Asp 115 120 125Met Val Tyr Val Glu Arg Asp Gly Thr Leu Val Arg Ser Ser Ala Arg 130 135 140Phe Ala Asp Glu Ala His Leu Arg Arg Val Ile Glu Arg Ile Val Ser145 150 155 160Ala Val Gly Arg Arg Ile Asp Glu Ser Ser Pro Leu Val Asp Ala Arg 165 170 175Leu Ala Asp Gly Ser Arg Val Asn Ala Val Ile Pro Pro Leu Ala Phe 180 185 190Asn Gly Ser Ser Leu Thr Ile Arg Lys Phe Ser Lys Asp Pro Phe Gln 195 200 205Val Asp Asp Leu Ile Ala Phe Gly Thr Leu Ser His Glu Met Ala Glu 210 215 220Leu Leu Asp Ala Cys Val Gln Ala Arg Leu Asn Val Ile Val Ser Gly225 230 235 240Gly Thr Gly Thr Gly Lys Thr Thr Leu Leu Asn Val Leu Ser Ser Phe 245 250 255Ile Pro Glu Gly Glu Arg Ile Val Thr Ile Glu Asp Ala Val Glu Leu 260 265 270Gln Leu Gln Gln Asp His Val Val Arg Leu Glu Ser Arg Pro Pro Asn 275 280 285Ile Glu Gly Lys Gly Ala Val Thr Ile Arg Asp Leu Val Arg Asn Ser 290 295 300Leu Arg Met Arg Pro Asp Arg Ile Val Val Gly Glu Cys Arg Gly Gly305 310 315 320Glu Ser Leu Asp Met Leu Gln Ala Met Asn Thr Gly His Asp Gly Ser 325 330 335Leu Ser Thr Val His Ala Asn Ser Pro Arg Asp Ala Ile Ala Arg Leu 340 345 350Glu Thr Leu Val Leu Met Ala Gly Met Asp Leu Pro Leu Arg Ala Ile 355 360 365Arg Glu Gln Ile Ala Ser Ala Val Asp Val Ile Val Gln Leu Thr Arg 370 375 380Leu Arg Asp Gly Thr Arg Arg Val Thr His Val Thr Glu Val Gln Gly385 390 395 400Met Glu Gly Glu Ile Val Thr Leu Gln Asp Ala Phe Leu Phe Asp Tyr 405 410 415Ser Ala Gly Val Asp Ala Arg Gly Arg Phe Leu Gly Arg Pro Gln Pro 420 425 430Thr Gly Val Arg Pro Arg Phe Thr Asp Arg Phe Arg Asp Leu Gly Ile 435 440 445Ala Leu Ser Pro Ser Val Phe Gly Val Gly Glu Pro Ser Arg Gly Arg 450 455 460Val46519622PRTRhodococcus equi 19Met Ser Arg Cys Val Val Ala Val Val Leu Ala Leu Gly Ala Gly Val1 5 10 15Leu Gly Ile Pro Ala Val Ala Ala Ala Ala Glu Glu Ala Val Gln Val 20 25 30Ser Ala Val Asp Thr Thr Arg Phe Pro Asp Ile Glu Val Ser Ile Leu 35 40 45Ala Pro Pro Gly Ile Glu Gly Gln Ala Ile Asp Pro Gly Thr Phe Ala 50 55 60Leu Thr Glu Gly Gly Val Pro Arg Glu Ile Glu Val Arg Gln Gln Pro65 70 75 80Gly Ser Glu Gln Asp Ile Val Leu Ala Ile Asp Val Ser Gly Gly Met 85 90 95Ser Gly Pro Ala Leu Asp Asp Val Lys Arg Ala Ala Ser Asp Phe Val 100 105 110Arg Gln Ala Pro Ala Gly Ala His Ile Gly Ile Val Ala Ile Ser Ser 115 120 125Thr Pro Gln Val Leu Ser Glu Leu Thr Thr Asp Ser Glu Asp Leu Leu 130 135 140Arg Arg Ile Asp Gly Leu Lys Ala Gly Gly Asn Ser Ala Ile Ala Asp145 150 155 160Ser Val Val Thr Ala Ala Glu Met Leu Glu Arg Gly Glu Ala Ala Asn 165 170 175Asn Ile Leu Leu Leu Leu Thr Asp Gly Ala Asp Thr Ser Ser Ala His 180 185 190Ser Met Ser Glu Leu Pro Ser Val Leu Ser Arg Ser Arg Ala Ser Leu 195 200 205Tyr Ala Val Gln Met Ser Thr Pro Glu Thr Asn Ser Ala Leu Leu Gln 210 215 220Gln Val Ala Arg Glu Ser Arg Gly Gln Tyr Ala Ser Ala Gly Asp Thr225 230 235 240Ala Ala Leu Gly Ala Ile Tyr Gln Ser Ala Ala Arg Ala Leu Gly Asn 245 250 255Leu Tyr Val Val Arg Tyr Arg Ser Glu Ala Asn Gly Asp Thr Gln Val 260 265 270Val Ala Ser Val Arg Ser Gly Ala Ala Gly Arg Val Ser Asp Pro Phe 275 280 285Pro Val Thr Leu Pro Gly Val Val Pro Thr Pro Ser Val Val Ala Gly 290 295 300Thr Val Asp Gly Phe Phe Thr Ser Ser Thr Gly Leu Val Ile Gly Leu305 310 315 320Leu Ala Cys Tyr Ser Ala Leu Ala Gly Gly Val Leu Ala Val Ala Gly 325 330 335Arg Ala Pro Ala Arg Ile Ser Ala Ala Arg Arg Gly Arg Gln Asp Gly 340 345 350Arg Asp Ser Met Leu Ser Arg Phe Ala Glu Arg Leu Val Gln Trp Ile 355 360 365Asp Gln Asn Leu Arg Arg Arg Gly Arg Ile Ala Ala Arg Thr Gln Ala 370 375 380Leu Gln Glu Ala Gly Leu Lys Leu Arg Pro Gly Asp Phe Ile Ala Leu385 390 395 400Val Gly Ala Ala Ala Ile Thr Ala Ala Ala Ile Gly Leu Leu Ala Ser 405 410 415Gly Ile Val Ala Ala Leu Leu Leu Ala Ala Ile Thr Val Gly Leu Ser 420 425 430Arg Ile Tyr Leu Arg Val Met Ala Gly Arg Arg Arg Ala Ala Phe Ala 435 440 445Asp Gln Leu Asp Asp Ser Leu Gln Leu Leu Ala Ser Asn Leu Arg Ala 450 455 460Gly His Ser Met Leu Arg Ala Leu Asp Ser Leu Ser Arg Glu Ala Glu465 470 475 480Val Pro Thr Ser Glu Glu Phe Ala Arg Ile Val Asn Glu Thr Arg Val 485 490 495Gly Arg Asp Leu Asn Glu Ser Leu Asp Asp Val Ala Arg Arg Met Arg 500 505 510Ser Asp Asp Phe Asn Trp Ile Ala Gln Ala Ile Ala Ile Asn Arg Glu 515 520 525Val Gly Gly Asp Leu Ala Glu Val Leu Asp Gln Val Gly Asn Thr Ile 530 535 540Arg Glu Arg Asn Gln Ile Arg Arg Gln Val Lys Ala Leu Ala Ala Glu545 550 555 560Gly Lys Leu Ser Ala Tyr Val Leu Met Ala Leu Pro Phe Gly Leu Thr 565 570 575Ala Phe Leu Leu Val Ser Asn Pro Asp Tyr Leu Ser Lys Leu Thr Gly 580 585 590Ser Ala Ile Gly Tyr Val Met Ile Ala Val Gly Leu Val Met Leu Thr 595 600 605Val Gly Gly Leu Trp Met Asn Lys Val Val Ser Val Lys Phe 610 615 62020296PRTRhodococcus equi 20Val Ile Pro Pro Leu Val Leu Met Ala Ala Leu Ser Val Gly Gly Ala1 5 10 15Leu Gly Val Leu Val Trp Leu Thr Val Gly Ala Arg Asp Pro Glu Arg 20 25 30Gly Pro Ala Leu Arg Asn Leu Gln Ser Gln Leu Ala Leu Pro Ile Pro 35 40 45Glu Ser Gly Gly Ala Pro Pro Leu Ser Leu Gly Arg Phe Val Lys Leu 50 55 60Leu Ser Pro Pro Gly Thr Met Ala Arg Leu Glu Arg Leu His Ile Leu65 70 75 80Ala Gly Arg Pro Ala Ala Trp Val Pro Glu Arg Ala Ala Met Ala Lys 85 90 95Ile Val Leu Ala Ala Ala Ala Ala Leu Leu Gly Leu Leu Ala Val Gly 100 105 110Ala Ser Pro Gly Val Gly Arg Val Leu Phe Ala Ala Ala Ala Val Ala 115 120 125Leu Ala Tyr Phe Val Pro Glu Leu Leu Leu Gln Ser Arg Gly Gln Glu 130 135 140Arg Gln Ala Ala Ile Glu Leu Ala Leu Ala Asp Thr Leu Asp Gln Met145 150 155 160Thr Ile Ala Val Glu Ala Gly Leu Gly Phe Glu Ala Ala Met Gln Arg 165 170 175Ala Ala Lys Asn Gly Lys Gly Pro Leu Ala Glu Glu Phe Ile Arg Thr 180 185 190Leu Gln Asp Ile Gln Met Gly Gln Ser Arg Arg Ile Ala Tyr Leu Asp 195 200 205Leu Ala Ala Arg Thr Lys Ala Pro Asn Leu Arg Arg Phe Leu Arg Ala 210 215 220Val Ile Gln Ala Asp Glu Tyr Gly Val Ala Ile Ala Glu Val Leu Arg225 230 235 240Thr Gln Ala Ser Glu Met Arg Leu Lys Arg Arg Gln Ser Ala Glu Glu 245 250 255Lys Ala Met Lys Val Pro Val Lys Val Leu Phe Pro Leu Met Thr Cys 260 265 270Ile Leu Pro Thr Ile Phe Ile Val Ile Leu Gly Pro Ala Val Ile Asn 275 280 285Met Met Glu Val Leu Gly Gly Met 290 29521262PRTRhodococcus equi 21Val Ile Val Ala Ala Gly Val Gly Ala Ala Leu Leu Gly Ile Leu Ala1 5 10 15Gly Ala Phe Ala Asn Ser Ala Ile Asp Arg Val Arg Leu Glu Thr Ala 20 25 30Cys Ala Glu Pro Lys Ser Thr Pro Thr Gly Ser Thr Pro Pro Pro Pro 35 40 45Ser Pro Ala Ser Ala Val Ala Thr Arg Ile Ala Met Ile Asp Thr Ile 50 55 60Thr Arg Arg Arg Asp Ile Ser Ala Arg Arg Met Leu Val Glu Leu Ala65 70 75 80Thr Ala Leu Leu Phe Val Ala Ile Thr Leu Arg Leu Ala Ala Leu Gly 85 90 95Leu Leu Pro Ala Ala Pro Ala Tyr Leu Trp Phe Ala Val Ile Gly Ile 100 105 110Ala Leu Ala Val Ile Asp Ile Asp Cys Lys Arg Leu Pro Asn Phe Leu 115 120 125Val Val Pro Ser Tyr Pro Ile Val Phe Ala Cys Leu Ala Val Gly Ser 130 135 140Val Val Thr Gly Asp Trp Ser Ala Leu Leu Arg Ala Ala Ile Gly Ala145 150 155 160Ala Val Leu Phe Gly Phe Tyr Phe Val Leu Ala Leu Ile Tyr Pro Ala 165 170 175Gly Met Gly Phe Gly Asp Val Lys Leu Ala Gly Val Ile Gly Ala Val 180 185 190Leu Ala Tyr Leu Ser Tyr Gly Thr Leu Leu Val Gly Ala Phe Leu Ala 195 200 205Phe Leu Val Ala Ala Leu Val Gly Leu Ile Ile Leu Val Thr Arg Arg 210 215 220Gly Arg Ile Gly Thr Thr Ile Pro Phe Gly Pro Tyr Met Ile Ala Ala225 230 235 240Ala Val Val Ala Ile Leu Ala Ala Asp Pro Leu Ala Arg Ala Tyr Leu 245 250 255Asp Trp Ala Ala Ala Ala 26022262PRTRhodococcus equi 22Val Ile Val Ala Ala Gly Val Gly Ala Ala Leu Leu Gly Ile Leu Ala1 5 10 15Gly Ala Phe Ala Asn Ser Ala Ile Asp Arg Val Arg Leu Glu Thr Ala 20 25 30Cys Ala Glu Pro Arg Ala Thr Pro Thr Gly Ser Thr Pro Pro Pro Pro 35 40 45Ser Pro Thr Ser Ala Val Ala Thr Arg Ile Ala Met Ile Asp Thr Ile 50 55 60Thr Arg Arg Arg Asp Ile Ser Ala Arg Arg Met Leu Val Glu Leu Ala65 70 75 80Thr Ala Leu Leu Phe Val Ala Ile Thr Leu Arg Leu Ala Ala Leu Asp 85 90 95Leu Leu Pro Ala Ala Pro Ala Tyr Leu Trp Phe Ala Val Ile Gly Ile 100 105 110Ala Leu Ala Val Ile Asp Ile Asp Cys Lys Arg Leu Pro Asn Phe Leu 115 120 125Val Val Pro Ser Tyr Pro Ile Val Phe Ala Cys Leu Ala Val Gly Ser 130 135 140Val Val Thr Gly Asp Trp Ser Ala Leu Leu Arg Ala Ala Ile Gly Ala145 150 155 160Ala Val Leu Phe Gly Phe Tyr Phe Val Leu Ala Leu Ile Tyr Pro Ala 165 170 175Gly Met Gly Phe Gly Asp Val Lys Leu Ala Gly Val Ile Gly Ala Val 180 185 190Leu Ala Tyr Leu Ser Tyr Gly Thr Leu Leu Val Gly Ala Phe Leu Ala 195 200 205Phe Leu Val Ala Ala Leu Val Gly Leu Ile Ile Leu Val Thr Arg Arg 210 215 220Gly Arg Ile Gly Thr Thr Ile Pro Phe Gly Pro Tyr Met Ile Ala Ala225 230 235 240Ala Val Val Ala Ile Leu Ala Ala Asp Pro Leu Ala Arg Ala Tyr Leu 245 250 255Asp Trp Ala Ala Ala Ala 26023262PRTRhodococcus equi 23Val Ile Val Ala Ala Gly Val Gly Ala Ala Leu Leu Gly Ile Leu Ala1 5 10 15Gly Ala Phe Ala Asn Ser Ala Ile Asp Arg Val Arg Leu Glu Thr Ala 20 25 30Cys Ala Glu Pro Lys Ser Thr Pro Ala Asn Ser Thr Pro Pro Ser Pro 35 40 45Ser Pro Thr Ser Ala Val Ala Ala Arg Ile Ala Met Ile Asp Thr Ile 50 55 60Thr

Arg Arg His Asp Ile Ser Ala Arg Arg Val Leu Val Glu Leu Ala65 70 75 80Thr Ala Leu Leu Phe Val Ala Ile Thr Leu Arg Leu Ala Ala Leu Asp 85 90 95Leu Leu Pro Ala Ala Pro Ala Tyr Leu Trp Phe Ala Val Val Gly Ile 100 105 110Ala Leu Ala Val Ile Asp Ile Asp Cys Lys Arg Leu Pro Asn Phe Leu 115 120 125Val Val Pro Ser Tyr Pro Ile Val Phe Ala Cys Leu Ala Val Gly Ser 130 135 140Val Val Thr Gly Asp Trp Ser Ala Leu Leu Arg Ala Ala Ile Gly Ala145 150 155 160Ala Val Leu Phe Gly Phe Tyr Phe Val Leu Ala Leu Ile Tyr Pro Ala 165 170 175Gly Met Gly Phe Gly Asp Val Lys Leu Ala Gly Val Ile Gly Ala Val 180 185 190Leu Ala Tyr Leu Ser Tyr Gly Thr Leu Leu Val Gly Ala Phe Leu Ala 195 200 205Phe Leu Val Ala Ala Leu Val Gly Leu Ile Ile Leu Val Thr Arg Arg 210 215 220Gly Arg Ile Gly Thr Thr Ile Pro Phe Gly Pro Tyr Met Ile Ala Ala225 230 235 240Ala Val Val Ala Ile Leu Ala Ala Asp Pro Leu Ala Arg Ala Tyr Leu 245 250 255Asp Trp Ala Ala Ala Ala 2602470PRTRhodococcus equi 24Met Asn Leu Phe Phe Ala Asn Leu Tyr Leu Met Gly Leu Asp Val Lys1 5 10 15Asp Arg Leu Thr Arg Asp Asp Arg Gly Ala Thr Ala Val Glu Tyr Gly 20 25 30Leu Met Val Ala Gly Ile Ala Met Val Ile Leu Ile Ala Val Phe Ala 35 40 45Phe Gly Gly Lys Ile Ser Glu Leu Phe Ser Gly Phe Asn Phe Asp Lys 50 55 60Pro Ala Ala Ser Gly Thr65 702567PRTRhodococcus equi 25Met Asn Leu Phe Phe Ala Asn Leu Tyr Leu Met Gly Leu Asp Val Lys1 5 10 15Asp Arg Leu Thr Arg Asp Asp Arg Gly Ala Thr Ala Val Glu Tyr Gly 20 25 30Leu Met Val Ala Gly Ile Ala Met Val Ile Ile Ile Ala Val Phe Ala 35 40 45Phe Gly Gly Arg Leu Ser Thr Leu Phe Gln Asn Phe Asn Phe Ala Asn 50 55 60Pro Gly Asn652663PRTArtificial SequenceConsensus amino acid sequence of amino acid sequence alignment of SEQ ID NO 24 and SEQ ID NO 25 26Met Asn Leu Phe Phe Ala Asn Leu Tyr Leu Met Gly Leu Asp Val Lys1 5 10 15Asp Arg Leu Thr Arg Asp Asp Arg Gly Ala Thr Ala Val Glu Tyr Gly 20 25 30Leu Met Val Ala Gly Ile Ala Met Val Ile Ile Ile Ala Val Phe Ala 35 40 45Phe Gly Gly Lys Ile Ser Leu Phe Gly Phe Asn Phe Asp Pro Gly 50 55 6027135PRTRhodococcus equi 27Val Ile Met Lys Arg Leu Thr Ser Asp Ser Gly Val Ala Ala Val Glu1 5 10 15Phe Ala Leu Val Val Pro Ile Leu Ile Thr Leu Val Leu Gly Ile Val 20 25 30Glu Phe Gly Arg Gly Tyr Asn Val Gln Asn Ala Val Ser Ala Ala Ala 35 40 45Arg Glu Gly Ala Arg Thr Met Ala Ile Lys Lys Asp Pro Ala Ala Ala 50 55 60Arg Ala Ala Val Lys Gly Ala Gly Val Phe Ser Pro Ala Ile Thr Asp65 70 75 80Ala Glu Ile Cys Ile Ser Thr Ser Gly Ser Gln Gly Cys Ser Ala Thr 85 90 95Ser Cys Pro Ser Gly Ser Thr Val Thr Leu Thr Val Ser Tyr Pro Leu 100 105 110Glu Tyr Met Thr Gly Leu Phe Pro Gly Lys Pro Thr Leu Thr Gly Thr 115 120 125Gly Val Met Arg Cys Gly Gly 130 13528130PRTRhodococcus equi 28Leu Arg Ser Asp Ser Gly Val Ala Ala Val Glu Phe Ala Leu Val Val1 5 10 15Pro Ile Leu Ile Thr Leu Val Leu Gly Ile Val Glu Phe Gly Arg Gly 20 25 30Tyr Asn Val Gln Asn Ala Val Ser Ala Ala Ala Arg Glu Gly Ala Arg 35 40 45Thr Met Ala Ile Lys Lys Asp Pro Ala Ala Ala Arg Ala Ala Val Lys 50 55 60Gly Ala Gly Val Phe Ser Pro Ala Ile Thr Asp Ala Glu Ile Cys Ile65 70 75 80Ser Thr Ser Gly Thr Gln Gly Cys Ser Ala Thr Ser Cys Pro Ser Gly 85 90 95Ser Thr Val Thr Leu Thr Val Ser Tyr Pro Leu Glu Tyr Met Thr Gly 100 105 110Leu Phe Pro Gly Lys Pro Thr Leu Thr Gly Thr Gly Val Met Arg Cys 115 120 125Gly Gly 13029135PRTRhodococcus equi 29Met Gly Met Arg Arg Phe Gly Ser Asp Ser Gly Ala Ala Ala Val Glu1 5 10 15Phe Ala Leu Val Val Pro Ile Leu Ile Thr Leu Val Leu Gly Ile Val 20 25 30Glu Phe Gly Arg Gly Tyr Asn Val Gln Asn Ala Val Ser Ala Ala Ala 35 40 45Arg Glu Gly Ala Arg Thr Met Ala Ile Lys Lys Asp Pro Ala Ala Ala 50 55 60Arg Ala Ala Val Lys Gly Ala Gly Val Phe Ser Pro Ala Ile Thr Asp65 70 75 80Ala Glu Ile Cys Ile Ser Thr Ser Gly Thr Gln Gly Cys Ser Ala Thr 85 90 95Ser Cys Pro Ser Gly Ser Thr Val Thr Leu Thr Val Ser Tyr Pro Leu 100 105 110Glu Tyr Met Thr Gly Leu Phe Pro Gly Lys Pro Thr Leu Thr Gly Thr 115 120 125Gly Val Met Arg Cys Gly Gly 130 13530321PRTRhodococcus equi 30Met Arg Trp Val Arg Ser Arg Met Ser Asn Asp Glu Arg Gly Val Val1 5 10 15Ala Val Leu Val Ala Ile Leu Met Val Val Leu Leu Gly Cys Ala Ala 20 25 30Ile Ser Val Asp Ile Gly Ala Asn Tyr Val Val Lys Arg Gln Leu Gln 35 40 45Asn Gly Ala Asp Ala Ala Ala Leu Ala Val Ala Gln Glu Ser Ser Cys 50 55 60Lys Ala Gly Ser Ser Ala Ser Ser Val Ser Ser Leu Val Gln Ala Asn65 70 75 80Val Asn Ser Ser Ser Ala Ser Ser Ala Ala Val Ile Asp Gly Val Lys 85 90 95Arg Lys Val Thr Val Thr Ala Ser Ala Val Gly Asp Asp Gly Leu Ala 100 105 110Gly Arg Arg Asn Val Phe Ala Pro Val Leu Gly Val Asp Arg Ser Glu 115 120 125Ile Ser Ala Ser Ala Thr Ala Ser Cys Val Phe Pro Leu Gly Gly Thr 130 135 140Ala Glu Leu Pro Leu Thr Phe His Lys Cys His Phe Asp Glu Ser Arg145 150 155 160Ser Leu Asp Val Lys Ile Leu Val Ala Tyr Asn Val Thr Ala Pro Arg 165 170 175Cys Asn Gly Thr Ser Gly Asn Ala Ala Pro Gly Asn Phe Gly Trp Leu 180 185 190Gln Gly Ala Asn Gly Arg Cys Pro Ala Lys Ile Asp Ala Ala Val Tyr 195 200 205Ala Thr Pro Gly Asp Thr Gly Asn Asn Ile Pro Gly Pro Cys Lys Asp 210 215 220Thr Ile Lys Gln Phe Gln Asn Ala Val Val Arg Val Pro Ile Tyr Asp225 230 235 240Val Ala Gly Gly Thr Gly Ser Gly Gly Trp Phe His Val Val Gly Leu 245 250 255Ala Ala Phe Lys Ile Gln Gly Tyr Arg Leu Ser Gly Asn Pro Glu Phe 260 265 270Asn Trp Asn Asn Asp Val His Gly Ala Leu Ser Cys Thr Gly Ser Cys 275 280 285Arg Gly Ile Ile Gly Thr Phe Val Lys Ile Val Ser Leu Asp Ser Asp 290 295 300Leu Thr Pro Gly Gly Ile Asp Phe Gly Val Ser Thr Ile Ser Leu Leu305 310 315 320Asp31321PRTRhodococcus equi 31Met Arg Trp Val Arg Ser Arg Met Ser Asn Asp Glu Arg Gly Val Val1 5 10 15Ala Val Leu Val Ala Ile Leu Met Val Val Leu Leu Gly Cys Ala Ala 20 25 30Ile Ser Val Asp Ile Gly Ala Asn Tyr Val Val Lys Arg Gln Leu Gln 35 40 45Asn Gly Ala Asp Ala Ala Ala Leu Ala Val Ala Gln Glu Ser Asn Cys 50 55 60Lys Ala Gly Ser Ser Ala Ser Ser Val Ser Ser Leu Val Gln Ala Asn65 70 75 80Val Asn Ser Ser Ser Ala Ser Ser Ala Ala Val Ile Asp Gly Val Lys 85 90 95Arg Lys Val Thr Val Thr Ala Ser Ala Val Gly Asp Asp Gly Leu Ala 100 105 110Gly Arg Arg Asn Val Phe Ala Pro Val Leu Gly Val Asp Arg Ser Glu 115 120 125Ile Ser Ala Ser Ala Thr Ala Ser Cys Val Phe Pro Leu Gly Gly Thr 130 135 140Ala Glu Leu Pro Leu Thr Phe His Lys Cys His Phe Asp Glu Ser Arg145 150 155 160Ser Leu Asp Val Lys Ile Leu Val Ala Tyr Asn Val Thr Ala Pro Arg 165 170 175Cys Asn Gly Thr Ser Gly Asn Ala Ala Pro Gly Asn Phe Gly Trp Leu 180 185 190Gln Gly Ala Asn Gly Arg Cys Pro Ala Lys Ile Asp Pro Thr Val Tyr 195 200 205Ala Thr Pro Gly Asp Thr Gly Asn Asn Ile Pro Gly Pro Cys Lys Asp 210 215 220Thr Ile Lys Gln Phe Gln Asn Ala Val Val Arg Val Pro Ile Tyr Asp225 230 235 240Val Ala Gly Gly Thr Gly Ser Gly Gly Trp Phe His Val Val Gly Leu 245 250 255Ala Ala Phe Lys Ile Gln Gly Tyr Arg Leu Ser Gly Asn Pro Glu Phe 260 265 270Asn Trp Asn Asn Asp Val His Gly Ala Leu Ser Cys Thr Gly Ser Cys 275 280 285Arg Gly Ile Ile Gly Thr Phe Val Lys Ile Val Ser Leu Asp Ser Asp 290 295 300Leu Thr Pro Gly Gly Ile Asp Phe Gly Val Ser Thr Ile Ser Leu Leu305 310 315 320Asp32321PRTRhodococcus equi 32Met Arg Trp Val Arg Ser Arg Met Ser Asn Asp Glu Arg Gly Val Val1 5 10 15Ala Val Phe Val Ala Ile Leu Met Val Val Leu Leu Gly Cys Ala Ala 20 25 30Ile Ser Val Asp Ile Gly Ala Asn Tyr Val Val Lys Arg Gln Leu Gln 35 40 45Asn Gly Ala Asp Ala Ala Ala Leu Ala Val Ala Gln Glu Ser Ser Cys 50 55 60Lys Ala Gly Ser Ser Ala Ser Ser Val Ser Arg Leu Val Gln Ala Asn65 70 75 80Val Asn Ser Ser Ser Ala Ser Ser Ala Ala Val Ile Asp Gly Val Lys 85 90 95Arg Lys Val Thr Val Thr Ala Ser Ala Val Gly Asp Asp Gly Leu Ala 100 105 110Gly Arg Arg Asn Val Phe Ala Pro Val Leu Gly Val Asp Arg Ser Glu 115 120 125Ile Ser Ala Ser Ala Thr Ala Ser Cys Val Phe Pro Leu Gly Gly Thr 130 135 140Ala Glu Leu Pro Leu Thr Phe His Lys Cys His Phe Asp Glu Ser Arg145 150 155 160Ser Leu Asp Val Lys Ile Leu Val Ala Tyr Asn Val Thr Ala Pro Arg 165 170 175Cys Asn Gly Thr Ser Gly Asn Ala Ala Pro Gly Asn Phe Gly Trp Leu 180 185 190Gln Gly Val Asn Gly Arg Cys Pro Ala Lys Ile Asp Ala Ala Val Tyr 195 200 205Ala Thr Pro Gly Asp Thr Gly Asn Asn Ile Pro Gly Pro Cys Lys Asp 210 215 220Thr Ile Lys Gln Phe Gln Asn Ala Val Val Arg Val Pro Ile Tyr Asp225 230 235 240Val Ala Gly Gly Thr Gly Ser Gly Gly Trp Phe His Val Val Gly Leu 245 250 255Ala Ala Phe Lys Ile Gln Gly Tyr Arg Leu Ser Gly Asn Pro Glu Phe 260 265 270Asn Trp Asn Asn Asp Val His Gly Ala Leu Ser Cys Thr Gly Ser Cys 275 280 285Arg Gly Ile Ile Gly Thr Phe Val Lys Ile Val Ser Leu Asp Ser Asp 290 295 300Leu Thr Pro Gly Gly Ile Asp Phe Gly Val Ser Thr Ile Ser Leu Leu305 310 315 320Asp33245PRTRhodococcus equi 33Leu Arg Thr Arg Ile Ile Ala Ala Ile Cys Ala Ile Val Leu Ala Val1 5 10 15Ala Gly Thr Leu Ala Leu Ile Ser Tyr Val Arg Gly Ala Asp Ala Arg 20 25 30Ala Leu Ala Gly Thr Arg Thr Val Asp Val Leu Val Ala Asp Gln Thr 35 40 45Ile Pro Lys Asn Thr Pro Ala Asp Ser Leu Val Gly Met Val Val Val 50 55 60Lys Lys Leu Pro Glu Met Ala Val Leu Pro Glu Arg Val Thr Ser Leu65 70 75 80Asp Gln Leu Ser Gly Lys Val Ala Leu Thr Asp Leu Leu Pro Gly Glu 85 90 95Gln Leu Val Ser Ala Arg Phe Ala Asp Pro Ala Thr Ala Arg Ser Gln 100 105 110Asp Gln Gly Gly Ile Pro Glu Gly Met Gln Glu Val Thr Val Leu Leu 115 120 125Glu Pro Gln Arg Ala Leu Gly Gly His Ile Ala Ser Gly Asp Thr Val 130 135 140Gly Val Phe Met Ser Phe Ser Pro Pro Val Lys Asn Tyr Glu Thr His145 150 155 160Leu Arg Leu Gln Lys Val Arg Val Thr Arg Val Gln Gly Thr Phe Ser 165 170 175Asn Ala Asp Glu Gly Asp Ser Ala Thr Val Asp Ser Ser Pro Ser Pro 180 185 190Ala Pro Thr Glu Ala Phe Leu Val Ser Leu Ala Val Asp Val Pro Met 195 200 205Ala Glu Arg Val Val Phe Ala Ala Glu His Gly Thr Ile Trp Leu Ser 210 215 220Asn Glu Pro Leu Ser Ser Asn Glu Ala Gly Ala Ser Val Val Ser Pro225 230 235 240Glu Gly Val Phe Arg 24534245PRTRhodococcus equi 34Leu Arg Thr Arg Ile Ile Ala Ala Ile Cys Ala Ile Val Leu Ala Val1 5 10 15Ala Gly Thr Leu Ala Leu Ile Ser Tyr Val Arg Gly Ala Asp Ala Arg 20 25 30Ala Leu Ala Gly Thr Arg Thr Val Asp Val Leu Val Ala Asp Gln Thr 35 40 45Ile Pro Lys Asn Thr Pro Ala Asp Ser Leu Val Gly Met Val Val Val 50 55 60Lys Lys Leu Pro Glu Met Ala Val Leu Pro Glu Arg Val Thr Ser Leu65 70 75 80Asp Gln Leu Ser Gly Lys Val Ala Leu Thr Asp Leu Leu Pro Gly Glu 85 90 95Gln Leu Val Ser Ala Arg Phe Ala Asp Pro Ala Thr Ala Arg Ser Gln 100 105 110Asp Gln Gly Gly Ile Pro Glu Gly Met Gln Glu Val Thr Val Leu Leu 115 120 125Glu Pro Gln Arg Ala Leu Gly Gly His Ile Ala Pro Gly Asp Thr Val 130 135 140Gly Val Phe Met Ser Phe Ser Pro Pro Val Lys Asn Tyr Glu Thr His145 150 155 160Leu Arg Leu Gln Lys Val Arg Val Thr Arg Val Gln Gly Thr Phe Ser 165 170 175Asn Ala Asp Glu Gly Asp Ser Ala Thr Val Asp Ser Ser Pro Ser Pro 180 185 190Ala Pro Thr Glu Ala Phe Leu Val Ser Leu Ala Val Asp Val Pro Met 195 200 205Ala Glu Arg Val Val Phe Ala Ala Glu His Gly Thr Ile Trp Leu Ser 210 215 220Asn Glu Pro Leu Ser Ser Asn Glu Ala Gly Ala Ser Val Val Ser Pro225 230 235 240Glu Gly Val Phe Arg 24535245PRTRhodococcus equi 35Leu Arg Thr Arg Ile Ile Ala Ala Ile Cys Ala Ile Val Leu Ala Val1 5 10 15Ala Gly Thr Leu Ala Leu Ile Ser Tyr Val Arg Gly Ala Asp Ala Arg 20 25 30Ala Leu Ala Gly Thr Arg Thr Val Asp Val Leu Val Ala Asp Gln Thr 35 40 45Ile Pro Lys Asn Thr Pro Ala Asp Ser Leu Val Gly Met Val Val Val 50 55 60Lys Lys Leu Pro Glu Met Ala Val Leu Pro Asp Arg Val Thr Ser Leu65 70 75 80Asp Gln Leu Ser Gly Lys Val Ala Leu Thr Asp Leu Leu Pro Gly Glu 85 90 95Gln Leu Val Ser Ala Arg Phe Val Asp Pro Ala Thr Ala Arg Ser Gln 100 105 110Asp Gln Gly Gly Ile Pro Glu Gly Met Gln Glu Val Thr Val Leu Leu 115 120 125Glu Pro Gln Arg Ala Leu Gly Gly His Ile Ala Ser Gly Asp Thr Val 130 135 140Gly Val Phe Met Ser Phe Ser Pro Pro Val Lys Asn Tyr Glu Thr His145 150 155 160Leu Arg Leu Gln Lys Val Arg Val Thr Arg Val Gln Gly Thr Phe Ser 165 170 175Asn Ala Asp Glu

Gly Asp Ser Ala Thr Val Asp Ser Ser Pro Ser Pro 180 185 190Ala Pro Thr Glu Ala Phe Leu Val Ser Leu Ala Val Asp Val Pro Met 195 200 205Ala Glu Arg Val Val Phe Ala Ala Glu His Gly Thr Ile Trp Leu Ser 210 215 220Asn Glu Pro Leu Ser Ser Asn Glu Ala Gly Ala Ser Val Val Ser Pro225 230 235 240Glu Gly Val Phe Arg 24536399PRTRhodococcus equi 36Met Ser Arg Ile Val Leu Leu Thr Asp Arg Asp Asp Phe Ala Arg Arg1 5 10 15Val Tyr His Ala Ala Asp Gly Asn Leu Leu Val Leu Pro Ala Gln Pro 20 25 30Val Pro Arg Gly Pro Ala Gln Leu Val Gly Leu Gly Val Thr Val Gln 35 40 45Pro Glu Val Leu Val Leu Gly Pro Asp Val Pro Glu Val Glu Gly Leu 50 55 60Ser Leu Ala Gly Arg Ile Asp His Ser Thr Pro Gly Thr Thr Val Val65 70 75 80Leu Ala Ser Asp Ala Gly Thr Asp Val Trp Leu Arg Ala Met Arg Ala 85 90 95Gly Val Arg Asp Val Met Ser Pro Glu Ala Glu Ile Ala Asp Val Arg 100 105 110Ala Val Leu Asp Arg Ala Gly Gln Ala Ala Leu Ala Arg Arg Gln Gly 115 120 125Ala Ser Ala Pro Ala Glu Gln His Ala Val Gln Gly Lys Val Ile Val 130 135 140Val Ala Ser Pro Lys Gly Gly Thr Gly Lys Thr Thr Val Ala Thr Asn145 150 155 160Leu Ala Val Gly Leu Ala Ala Ala Ala Pro His Ser Thr Val Leu Val 165 170 175Asp Leu Asp Val Gln Phe Gly Asp Val Ala Ser Ala Leu Gln Leu Val 180 185 190Pro Glu His Cys Leu Thr Asp Ala Val Ala Gly Pro Ala Ser Gln Asp 195 200 205Met Ile Val Leu Lys Thr Val Leu Thr Pro His Ser Thr Gly Leu His 210 215 220Ala Leu Cys Gly Ser Asp Ser Pro Ala Ala Gly Asp Ser Ile Thr Gly225 230 235 240Glu Gln Val Ser Thr Leu Leu Thr Gln Leu Ala Ala Glu Phe Arg Tyr 245 250 255Val Val Val Asp Thr Ala Pro Gly Leu Leu Glu His Thr Leu Ala Ala 260 265 270Leu Asp Leu Ala Thr Asp Val Val Leu Val Ser Gly Met Asp Val Pro 275 280 285Ser Val Arg Gly Met His Lys Glu Leu Gln Leu Leu Ala Glu Leu Asn 290 295 300Leu Gly Pro Val Val Arg His Val Val Leu Asn Phe Ala Asp Arg Arg305 310 315 320Glu Gly Leu Thr Val Gln Asp Ile Gln Asn Thr Ile Gly Val Pro Ala 325 330 335Asp Ile Val Ile Lys Arg Ser Lys Ala Val Ala Leu Ser Thr Asn Arg 340 345 350Gly Val Pro Leu Leu Gln Asn Pro Gly Arg Asp Arg Thr Ala Lys Glu 355 360 365Leu Trp Arg Leu Val Gly Arg Ile Asp Pro Ala Pro Asp Thr Thr Lys 370 375 380Gly Gly Arg Ala Arg His Arg Ala Ala Glu Ala Val Gly Ala Lys385 390 39537398PRTRhodococcus equi 37Met Ser Arg Ile Val Leu Leu Thr Asp Arg Asp Asp Ala Arg Arg Val1 5 10 15Tyr His Ala Ala Asp Gly Asn Leu Leu Val Leu Pro Ala Gln Pro Val 20 25 30Pro Arg Gly Pro Ala Gln Leu Val Gly Leu Gly Val Thr Val Gln Pro 35 40 45Asp Val Leu Val Leu Gly Pro Asp Val Pro Glu Val Glu Gly Leu Ser 50 55 60Leu Ala Gly Arg Ile Asp His Ser Thr Pro Gly Thr Thr Val Val Leu65 70 75 80Ala Ser Asp Ala Gly Thr Asp Val Trp Leu Arg Ala Met Arg Ala Gly 85 90 95Val Arg Asp Val Met Ser Pro Glu Ala Glu Ile Ala Asp Val Arg Ala 100 105 110Val Leu Asp Arg Ala Gly Gln Ala Ala Leu Ala Arg Arg Gln Gly Ala 115 120 125Ser Ala Pro Ala Glu Gln His Ala Val Gln Gly Lys Val Ile Val Val 130 135 140Ala Ser Pro Lys Gly Gly Thr Gly Lys Thr Thr Val Ala Thr Asn Leu145 150 155 160Ala Val Gly Leu Ala Ala Ala Ala Pro His Ser Thr Val Leu Val Asp 165 170 175Leu Asp Val Gln Phe Gly Asp Val Ala Ser Ala Leu Gln Leu Val Pro 180 185 190Glu His Cys Leu Thr Asp Ala Val Ala Ser Pro Ala Ser Gln Asp Met 195 200 205Ile Val Leu Lys Thr Val Leu Thr Pro His Ser Thr Gly Leu His Ala 210 215 220Leu Cys Gly Ser Asp Ser Pro Ala Ala Gly Asp Ser Ile Thr Gly Glu225 230 235 240Gln Val Ser Thr Leu Leu Thr Gln Leu Ala Ala Glu Phe Arg Tyr Val 245 250 255Val Val Asp Thr Ala Pro Gly Leu Leu Glu His Thr Leu Ala Ala Leu 260 265 270Asp Leu Ala Thr Asp Val Val Leu Val Ser Gly Met Asp Val Pro Ser 275 280 285Val Arg Gly Met His Lys Glu Leu Gln Leu Leu Thr Glu Leu Asn Leu 290 295 300Gly Pro Val Val Arg His Val Val Leu Asn Phe Ala Asp Arg Arg Glu305 310 315 320Gly Leu Thr Val Gln Asp Ile Gln Asn Thr Ile Gly Val Pro Ala Asp 325 330 335Ile Val Ile Lys Arg Ser Lys Ala Val Ala Leu Ser Thr Asn Arg Gly 340 345 350Val Pro Leu Leu Gln Asn Pro Gly Arg Asp Arg Thr Ala Lys Glu Leu 355 360 365Trp Arg Leu Val Gly Arg Ile Asp Pro Ala Pro Asp Thr Ala Lys Gly 370 375 380Gly Arg Ala Arg His Arg Ala Ala Glu Ala Val Gly Ala Lys385 390 39538399PRTRhodococcus equi 38Met Ser Arg Ile Val Leu Leu Thr Asp Arg Asp Asp Phe Ala Arg Arg1 5 10 15Val Tyr His Ala Ala Asp Gly Asn Leu Leu Val Leu Pro Ala Gln Pro 20 25 30Val Pro Arg Gly Pro Ala Gln Leu Val Gly Leu Gly Val Thr Val Gln 35 40 45Pro Asp Val Leu Val Leu Gly Pro Asp Val Pro Glu Val Glu Gly Leu 50 55 60Ser Leu Ala Gly Arg Ile Asp His Ser Thr Pro Gly Thr Thr Val Val65 70 75 80Leu Ala Ser Asp Ala Gly Thr Asp Val Trp Leu Arg Ala Met Arg Ala 85 90 95Gly Val Arg Asp Val Met Ser Pro Glu Ala Glu Ile Ala Asp Val Arg 100 105 110Ala Val Leu Asp Arg Ala Gly Gln Ala Ala Leu Ala Arg Arg Gln Gly 115 120 125Ala Ser Ala Pro Ala Glu Gln His Ala Val Gln Gly Lys Val Ile Val 130 135 140Val Ala Ser Pro Lys Gly Gly Thr Gly Lys Thr Thr Val Ala Thr Asn145 150 155 160Leu Ala Val Gly Leu Ala Ala Ala Ala Pro His Ser Thr Val Leu Val 165 170 175Asp Leu Asp Val Gln Phe Gly Asp Val Ala Ser Ala Leu Gln Leu Val 180 185 190Pro Glu His Cys Leu Thr Asp Ala Val Ala Ser Pro Ala Ser Gln Asp 195 200 205Met Ile Val Leu Lys Thr Val Leu Thr Pro His Ser Thr Gly Leu His 210 215 220Ala Leu Cys Gly Ser Asp Ser Pro Ala Ala Gly Asp Ser Ile Thr Gly225 230 235 240Glu Gln Val Ser Thr Leu Leu Thr Gln Leu Ala Ala Glu Phe Arg Tyr 245 250 255Val Val Val Asp Thr Ala Pro Gly Leu Leu Glu His Thr Leu Ala Ala 260 265 270Leu Asp Leu Ala Thr Asp Val Val Leu Val Ser Gly Met Asp Val Pro 275 280 285Ser Val Arg Gly Met His Lys Glu Leu Gln Leu Leu Thr Glu Leu Asn 290 295 300Leu Gly Pro Val Val Arg His Val Val Leu Asn Phe Ala Asp Arg Arg305 310 315 320Glu Gly Leu Thr Val Gln Asp Ile Gln Asn Thr Ile Gly Val Pro Ala 325 330 335Asp Ile Val Ile Lys Arg Ser Lys Ala Val Ala Leu Ser Thr Asn Arg 340 345 350Gly Val Pro Leu Leu Gln Asn Pro Gly Arg Asp Arg Thr Ala Lys Glu 355 360 365Leu Trp Arg Leu Val Gly Arg Ile Asp Pro Ala Pro Asp Thr Ala Lys 370 375 380Gly Gly Arg Ala Arg His Arg Ala Ala Glu Ala Val Gly Ala Lys385 390 39539465PRTRhodococcus equi 39Met Arg Leu Ser Gln Arg Leu Glu Ala Val Arg Gly Ala Ala Pro Val1 5 10 15Glu Ala Ala Ala Pro Ile Pro Pro Gly Lys Gln Gly Lys Ala Lys Thr 20 25 30Ser Leu Pro Pro Ala Asp Ala Leu Ala Glu Leu Lys Asp Arg Ala Ser 35 40 45Ala Ala Leu Tyr Thr Arg Ile Gly Thr Arg Phe Asn Asp Ser Ser Leu 50 55 60Ser Glu Glu Gln Leu His Leu Leu Val Arg Glu Glu Leu Ala Glu Ile65 70 75 80Val Glu Gln Glu Thr Thr Pro Leu Thr Phe Asp Glu Arg Gln Arg Leu 85 90 95Leu Arg Glu Val Ala Asp Glu Val Leu Gly His Gly Pro Leu Gln Arg 100 105 110Leu Leu Glu Asp Pro Ser Val Thr Glu Ile Met Val Asn Ser His Asp 115 120 125Met Val Tyr Val Glu Arg Asp Gly Thr Leu Val Arg Ser Ser Ala Arg 130 135 140Phe Ala Asp Glu Ala His Leu Arg Arg Val Ile Glu Arg Ile Val Ser145 150 155 160Ala Val Gly Arg Arg Ile Asp Glu Ser Ser Pro Leu Val Asp Ala Arg 165 170 175Leu Ala Asp Gly Ser Arg Val Asn Ala Val Ile Pro Pro Leu Ala Phe 180 185 190Asn Gly Ser Ser Leu Thr Ile Arg Lys Phe Ser Lys Asp Pro Phe Gln 195 200 205Val Asp Asp Leu Ile Ala Phe Gly Thr Leu Ser His Glu Met Ala Glu 210 215 220Leu Leu Asp Ala Cys Val Gln Ala Arg Leu Asn Val Ile Val Ser Gly225 230 235 240Gly Thr Gly Thr Gly Lys Thr Thr Leu Leu Asn Val Leu Ser Ser Phe 245 250 255Ile Pro Glu Gly Glu Arg Ile Val Thr Ile Glu Asp Ala Val Glu Leu 260 265 270Gln Leu Gln Gln Asp His Val Val Arg Leu Glu Ser Arg Pro Pro Asn 275 280 285Ile Glu Gly Lys Gly Ala Val Thr Ile Arg Asp Leu Val Arg Asn Ser 290 295 300Leu Arg Met Arg Pro Asp Arg Ile Val Val Gly Glu Cys Arg Gly Gly305 310 315 320Glu Ser Leu Asp Met Leu Gln Ala Met Asn Thr Gly His Asp Gly Ser 325 330 335Leu Ser Thr Val His Ala Asn Ser Pro Arg Asp Ala Ile Ala Arg Leu 340 345 350Glu Thr Leu Val Leu Met Ala Gly Met Asp Leu Pro Leu Arg Ala Ile 355 360 365Arg Glu Gln Ile Ala Ser Ala Val Asp Val Ile Val Gln Leu Thr Arg 370 375 380Leu Arg Asp Gly Thr Arg Arg Val Thr His Val Thr Glu Val Gln Gly385 390 395 400Met Glu Gly Glu Ile Val Thr Leu Gln Asp Ala Phe Leu Phe Asp Tyr 405 410 415Ser Ala Gly Val Asp Ala Arg Gly Arg Phe Leu Gly Arg Pro Gln Pro 420 425 430Thr Gly Val Arg Pro Arg Phe Thr Asp Lys Phe Arg Asp Leu Gly Ile 435 440 445Ala Leu Ser Pro Ser Val Phe Gly Val Gly Glu Pro Ser Arg Gly Arg 450 455 460Ala46540465PRTRhodococcus equi 40Met Arg Leu Ser Gln Arg Leu Glu Ala Val Arg Gly Ala Ala Pro Val1 5 10 15Glu Ala Ala Ala Pro Ile Pro Pro Gly Lys Gln Gly Lys Ala Lys Thr 20 25 30Ser Leu Pro Pro Ala Asp Ala Leu Ala Glu Leu Lys Asp Arg Ala Ser 35 40 45Ala Ala Leu Tyr Thr Arg Ile Gly Thr Arg Phe Asn Asp Ser Ser Leu 50 55 60Ser Glu Glu Gln Leu His Leu Leu Val Arg Glu Glu Leu Ala Glu Ile65 70 75 80Val Glu Gln Glu Thr Thr Pro Leu Thr Phe Asp Glu Arg Gln Arg Leu 85 90 95Leu Arg Glu Val Ala Asp Glu Val Leu Gly His Gly Pro Leu Gln Arg 100 105 110Leu Leu Glu Asp Pro Ser Val Thr Glu Ile Met Val Asn Ser His Asp 115 120 125Met Val Tyr Val Glu Arg Asp Gly Thr Leu Val Arg Ser Ser Ala Arg 130 135 140Phe Ala Asp Glu Ala His Leu Arg Arg Val Ile Glu Arg Ile Val Ser145 150 155 160Ala Val Gly Arg Arg Ile Asp Glu Ser Ser Pro Leu Val Asp Ala Arg 165 170 175Leu Ala Asp Gly Ser Arg Val Asn Ala Val Ile Pro Pro Leu Ala Phe 180 185 190Asn Gly Ser Ser Leu Thr Ile Arg Lys Phe Ser Lys Asp Pro Phe Gln 195 200 205Val Asp Asp Leu Ile Ala Phe Gly Thr Leu Ser His Glu Met Ala Glu 210 215 220Leu Leu Asp Ala Cys Val Gln Ala Arg Leu Asn Val Ile Val Ser Gly225 230 235 240Gly Thr Gly Thr Gly Lys Thr Thr Leu Leu Asn Val Leu Ser Ser Phe 245 250 255Ile Pro Glu Gly Glu Arg Ile Val Thr Ile Glu Asp Ala Val Glu Leu 260 265 270Gln Leu Gln Gln Asp His Val Val Arg Leu Glu Ser Arg Pro Pro Asn 275 280 285Ile Glu Gly Lys Gly Ala Val Thr Ile Arg Asp Leu Val Arg Asn Ser 290 295 300Leu Arg Met Arg Pro Asp Arg Ile Val Val Gly Glu Cys Arg Gly Gly305 310 315 320Glu Ser Leu Asp Met Leu Gln Ala Met Asn Thr Gly His Asp Gly Ser 325 330 335Leu Ser Thr Val His Ala Asn Ser Pro Arg Asp Ala Ile Ala Arg Leu 340 345 350Glu Thr Leu Val Leu Met Ala Gly Met Asp Leu Pro Leu Arg Ala Ile 355 360 365Arg Glu Gln Ile Ala Ser Ala Val Asp Val Ile Val Gln Leu Thr Arg 370 375 380Leu Arg Asp Gly Thr Arg Arg Val Thr His Val Thr Glu Val Gln Gly385 390 395 400Met Glu Gly Glu Ile Val Thr Leu Gln Asp Ala Phe Leu Phe Asp Tyr 405 410 415Ser Ala Gly Val Asp Ala Arg Gly Arg Phe Leu Gly Arg Pro Gln Pro 420 425 430Thr Gly Val Arg Pro Arg Phe Thr Asp Lys Phe Arg Asp Leu Gly Ile 435 440 445Ala Leu Ser Pro Ser Val Phe Gly Val Gly Glu Pro Ser Arg Gly Arg 450 455 460Ala46541465PRTRhodococcus equi 41Met Arg Leu Ser Gln Arg Leu Glu Ala Val Arg Gly Ala Ala Pro Val1 5 10 15Glu Ala Ala Ala Pro Ile Pro Pro Gly Lys Gln Gly Lys Ala Lys Thr 20 25 30Ser Leu Pro Pro Ala Asp Ala Leu Ala Glu Leu Lys Asp Arg Ala Ser 35 40 45Ala Ala Leu Tyr Thr Arg Ile Gly Thr Arg Phe Asn Asp Ser Ser Leu 50 55 60Ser Glu Glu Gln Leu His Leu Leu Val Arg Glu Glu Leu Ala Glu Ile65 70 75 80Val Glu Gln Glu Thr Thr Pro Leu Thr Phe Asp Glu Arg Gln Arg Leu 85 90 95Leu Arg Glu Val Ala Asp Glu Val Leu Gly His Gly Pro Leu Gln Arg 100 105 110Leu Leu Glu Asp Pro Ser Val Thr Glu Ile Met Val Asn Ser His Asp 115 120 125Met Val Tyr Val Glu Arg Asp Gly Thr Leu Val Arg Ser Ser Ala Arg 130 135 140Phe Ala Asp Glu Ala His Leu Arg Arg Val Ile Glu Arg Ile Val Ser145 150 155 160Ala Val Gly Arg Arg Ile Asp Glu Ser Ser Pro Leu Val Asp Ala Arg 165 170 175Leu Ala Asp Gly Ser Arg Val Asn Ala Val Ile Pro Pro Leu Ala Phe 180 185 190Asn Gly Ser Ser Leu Thr Ile Arg Lys Phe Ser Lys Asp Pro Phe Gln 195 200 205Val Asp Asp Leu Ile Ala Phe Gly Thr Leu Ser His Glu Met Ala Glu 210 215 220Leu Leu Asp Ala Cys Val Gln Ala Arg Leu Asn Val Ile Val Ser Gly225 230 235 240Gly Thr Gly Thr Gly Lys Thr Thr Leu Leu Asn Val Leu Ser Ser Phe 245 250 255Ile Pro Glu Gly Glu Arg Ile Val Thr Ile Glu Asp Ala Val Glu Leu 260 265 270Gln Leu Gln Gln Asp His Val Val Arg Leu

Glu Ser Arg Pro Pro Asn 275 280 285Ile Glu Gly Lys Gly Ala Val Thr Ile Arg Asp Leu Val Arg Asn Ser 290 295 300Leu Arg Met Arg Pro Asp Arg Ile Val Val Gly Glu Cys Arg Gly Gly305 310 315 320Glu Ser Leu Asp Met Leu Gln Ala Met Asn Thr Gly His Asp Gly Ser 325 330 335Leu Ser Thr Val His Ala Asn Ser Pro Arg Asp Ala Ile Ala Arg Leu 340 345 350Glu Thr Leu Val Leu Met Ala Gly Met Asp Leu Pro Leu Arg Ala Ile 355 360 365Arg Glu Gln Ile Ala Ser Ala Val Asp Val Ile Val Gln Leu Thr Arg 370 375 380Leu Arg Asp Gly Thr Arg Arg Val Thr His Val Thr Glu Val Gln Gly385 390 395 400Met Glu Gly Glu Ile Val Thr Leu Gln Asp Ala Phe Leu Phe Asp Tyr 405 410 415Ser Ala Gly Val Asp Ala Arg Gly Arg Phe Leu Gly Arg Pro Gln Pro 420 425 430Thr Gly Val Arg Pro Arg Phe Thr Asp Lys Phe Arg Asp Leu Gly Ile 435 440 445Ala Leu Ser Pro Ser Val Phe Gly Val Gly Glu Pro Ser Arg Gly Arg 450 455 460Ala46542623PRTRhodococcus equi 42Met Ser Arg Cys Val Val Ala Val Val Leu Ala Leu Gly Ala Gly Val1 5 10 15Leu Gly Ile Pro Ala Val Ala Ala Ala Ala Glu Thr Glu Ala Val Gln 20 25 30Val Ser Ala Val Asp Thr Thr Arg Phe Pro Asp Ile Glu Val Ser Ile 35 40 45Leu Ala Pro Pro Gly Ile Glu Gly Gln Ala Ile Asp Pro Gly Thr Phe 50 55 60Ala Leu Thr Glu Gly Gly Val Pro Arg Glu Ile Glu Val Arg Gln Gln65 70 75 80Pro Gly Ser Glu Gln Asp Ile Val Leu Ala Ile Asp Val Ser Gly Gly 85 90 95Met Ser Gly Pro Ala Leu Asp Asp Val Lys Arg Ala Ala Ser Asp Phe 100 105 110Val Arg Gln Ala Pro Thr Gly Ala His Ile Gly Ile Val Ala Ile Ser 115 120 125Ser Thr Pro Gln Val Leu Ser Glu Leu Thr Thr Asp Ser Glu Asp Leu 130 135 140Leu Arg Arg Ile Asp Gly Leu Lys Ala Gly Gly Asn Ser Ala Ile Ala145 150 155 160Asp Ser Val Val Thr Ala Ala Glu Met Leu Glu Arg Gly Glu Ala Ala 165 170 175Asn Asn Ile Leu Leu Leu Leu Thr Asp Gly Ala Asp Thr Ser Ser Ala 180 185 190His Ser Met Ser Glu Leu Pro Ser Val Leu Ser Arg Ser Arg Ala Ser 195 200 205Leu Tyr Ala Val Gln Met Ser Thr Pro Glu Thr Asn Ser Ala Leu Leu 210 215 220Gln Gln Val Ala Arg Glu Ser Arg Gly Gln Tyr Ala Ser Ala Gly Asp225 230 235 240Thr Ala Ala Leu Gly Ala Ile Tyr Gln Ser Ala Ala Arg Ala Leu Gly 245 250 255Asn Leu Tyr Val Val Arg Tyr Arg Ser Glu Ala Asn Gly Asp Thr Gln 260 265 270Val Val Ala Ser Val Arg Ser Gly Ala Ala Gly Arg Val Ser Asp Pro 275 280 285Phe Pro Val Thr Leu Pro Gly Val Val Pro Thr Pro Ser Val Val Ala 290 295 300Gly Thr Val Asp Gly Phe Phe Thr Ser Ser Thr Gly Leu Val Ile Gly305 310 315 320Leu Leu Ala Cys Tyr Ser Ala Leu Ala Gly Gly Val Leu Ala Val Ala 325 330 335Gly Arg Ala Pro Ala Arg Ile Ser Ala Ala Arg Arg Gly Arg Gln Asp 340 345 350Gly Arg Asp Ser Met Leu Ser Arg Phe Ala Glu Arg Leu Val Gln Trp 355 360 365Ile Asp Gln Asn Leu Arg Arg Arg Gly Arg Ile Ala Ala Arg Thr Gln 370 375 380Ala Leu Gln Glu Ala Gly Leu Lys Leu Arg Pro Gly Asp Phe Ile Ala385 390 395 400Leu Val Gly Ala Ala Ala Ile Thr Ala Ala Ala Ile Gly Leu Leu Ala 405 410 415Ser Gly Ile Val Ala Ala Leu Leu Leu Ala Ala Ile Thr Val Gly Leu 420 425 430Ser Arg Ile Tyr Leu Arg Val Met Ala Gly Arg Arg Arg Ala Ala Phe 435 440 445Ala Asp Gln Leu Asp Asp Ser Leu Gln Leu Leu Ala Ser Asn Leu Arg 450 455 460Ala Gly His Ser Met Leu Arg Ala Leu Asp Ser Leu Ser Arg Glu Ala465 470 475 480Glu Val Pro Thr Ser Glu Glu Phe Ala Arg Ile Val Asn Glu Thr Arg 485 490 495Val Gly Arg Asp Leu Asn Glu Ser Leu Asp Asp Val Ala Arg Arg Met 500 505 510Arg Ser Asp Asp Phe Asn Trp Ile Ala Gln Ala Ile Ala Ile Asn Arg 515 520 525Glu Val Gly Gly Asp Leu Ala Glu Val Leu Asp Gln Val Gly Asn Thr 530 535 540Ile Arg Glu Arg Asn Gln Ile Arg Arg Gln Val Lys Ala Leu Ala Ala545 550 555 560Glu Gly Lys Leu Ser Ala Tyr Val Leu Met Ala Leu Pro Phe Gly Leu 565 570 575Thr Ala Phe Leu Leu Val Ser Asn Pro Asp Tyr Leu Ser Lys Leu Thr 580 585 590Gly Ser Ala Ile Gly Tyr Val Met Ile Ala Val Gly Leu Val Met Leu 595 600 605Thr Val Gly Gly Leu Trp Met Asn Lys Val Val Ser Val Lys Phe 610 615 62043621PRTRhodococcus equi 43Met Ser Arg Cys Val Val Ala Val Val Leu Ala Leu Gly Ala Gly Val1 5 10 15Leu Gly Ile Pro Ala Val Ala Ala Ala Ala Glu Thr Glu Ala Val Gln 20 25 30Val Ser Ala Val Asp Thr Thr Arg Phe Pro Asp Ile Glu Val Ser Ile 35 40 45Leu Ala Pro Pro Gly Ile Glu Gly Gln Ala Ile Asp Pro Gly Thr Phe 50 55 60Ala Leu Thr Glu Gly Gly Val Pro Arg Glu Ile Glu Val Arg Gln Gln65 70 75 80Pro Gly Ser Glu Gln Asp Ile Val Leu Ala Ile Asp Val Ser Gly Gly 85 90 95Met Ser Gly Pro Ala Leu Asp Asp Val Lys Arg Ala Ala Ser Asp Phe 100 105 110Val Arg Gln Ala Pro Thr Gly Ala His Ile Gly Ile Val Ala Ile Ser 115 120 125Ser Thr Pro Gln Val Leu Ser Glu Leu Thr Thr Asp Ser Glu Asp Leu 130 135 140Leu Arg Arg Ile Asp Gly Leu Lys Ala Gly Gly Asn Ser Ala Ile Ala145 150 155 160Asp Ser Val Val Thr Ala Ala Glu Met Leu Glu Arg Gly Glu Ala Ala 165 170 175Asn Asn Ile Leu Leu Leu Leu Thr Asp Gly Ala Asp Thr Ser Ser Ala 180 185 190His Ser Met Ser Glu Leu Pro Ser Val Leu Ser Arg Ser Arg Ala Ser 195 200 205Leu Tyr Ala Val Gln Met Ser Thr Pro Glu Thr Asn Ser Ala Leu Leu 210 215 220Gln Gln Val Ala Arg Glu Ser Arg Gly Gln Tyr Ala Ser Ala Gly Asp225 230 235 240Thr Ala Ala Leu Gly Ala Ile Tyr Gln Ser Ala Ala Arg Ala Leu Gly 245 250 255Asn Leu Tyr Val Val Arg Tyr Arg Ser Glu Ala Asn Gly Asp Thr Gln 260 265 270Val Val Ala Ser Val Arg Ser Gly Ala Ala Gly Arg Val Ser Asp Pro 275 280 285Phe Pro Val Thr Leu Pro Gly Val Val Pro Thr Pro Ser Val Val Ala 290 295 300Gly Thr Val Asp Gly Phe Phe Thr Ser Ser Thr Gly Leu Val Ile Gly305 310 315 320Leu Leu Ala Cys Tyr Ser Ala Leu Ala Gly Leu Ala Val Ala Gly Arg 325 330 335Gly Pro Ala Arg Ile Ser Ala Ala Arg Arg Gly Arg Gln Asp Gly Arg 340 345 350Asp Ser Met Leu Ser Arg Phe Ala Glu Arg Leu Val Gln Trp Ile Asp 355 360 365Gln Asn Leu Arg Arg Arg Gly Arg Ile Ala Ala Arg Thr Gln Ala Leu 370 375 380Gln Glu Ala Gly Leu Lys Leu Arg Pro Gly Asp Phe Ile Ala Leu Val385 390 395 400Gly Ala Ala Ala Ile Thr Ala Ala Ala Ile Gly Leu Leu Ala Ser Gly 405 410 415Ile Val Ala Ala Leu Leu Leu Ala Ala Ile Thr Val Gly Leu Ser Arg 420 425 430Ile Tyr Leu Arg Val Met Ala Gly Arg Arg Arg Ala Ala Phe Ala Asp 435 440 445Gln Leu Asp Asp Ser Leu Gln Leu Leu Ala Ser Asn Leu Arg Ala Gly 450 455 460His Ser Met Leu Arg Ala Leu Asp Ser Leu Ser Arg Glu Ala Glu Val465 470 475 480Pro Thr Ser Glu Glu Phe Ala Arg Ile Val Asn Glu Thr Arg Val Gly 485 490 495Arg Asp Leu Asn Glu Ser Leu Asp Asp Val Ala Arg Arg Met Arg Ser 500 505 510Asp Asp Phe Asn Trp Ile Ala Gln Ala Ile Ala Ile Asn Arg Glu Val 515 520 525Gly Gly Asp Leu Ala Glu Val Leu Asp Gln Val Gly Asn Thr Ile Arg 530 535 540Glu Arg Asn Gln Ile Arg Arg Gln Val Lys Ala Leu Ala Ala Glu Gly545 550 555 560Lys Leu Ser Ala Tyr Val Leu Met Ala Leu Pro Phe Gly Leu Thr Ala 565 570 575Phe Leu Leu Val Ser Asn Pro Asp Tyr Leu Ser Lys Leu Thr Gly Ser 580 585 590Ala Ile Gly Tyr Val Met Ile Ala Val Gly Leu Val Met Leu Thr Val 595 600 605Gly Gly Leu Trp Met Asn Lys Val Val Ser Val Lys Phe 610 615 62044620PRTRhodococcus equi 44Met Ser Arg Cys Val Val Ala Val Val Leu Ala Leu Gly Ala Gly Val1 5 10 15Leu Gly Ile Pro Ala Val Ala Ala Ala Glu Ala Val Gln Val Ser Ala 20 25 30Val Asp Thr Thr Arg Phe Pro Asp Ile Glu Val Ser Ile Leu Ala Pro 35 40 45Pro Gly Ile Glu Gly Gln Ala Ile Asp Pro Gly Thr Phe Ala Leu Thr 50 55 60Glu Gly Gly Val Pro Arg Glu Ile Glu Val Arg Gln Gln Pro Gly Ser65 70 75 80Glu Gln Asp Ile Val Leu Ala Ile Asp Val Ser Gly Gly Met Ser Gly 85 90 95Pro Ala Leu Asp Asp Val Lys Arg Ala Ala Ser Asp Phe Val Arg Gln 100 105 110Ala Pro Thr Gly Ala His Ile Gly Ile Val Ala Ile Ser Ser Thr Pro 115 120 125Gln Val Leu Ser Glu Leu Thr Thr Asp Ser Glu Asp Leu Leu Arg Arg 130 135 140Ile Asp Gly Leu Lys Ala Gly Gly Asn Ser Ala Ile Ala Asp Ser Val145 150 155 160Val Thr Ala Ala Glu Met Leu Glu Arg Gly Glu Ala Ala Asn Asn Ile 165 170 175Leu Leu Leu Leu Thr Asp Gly Ala Asp Thr Ser Ser Ala His Ser Met 180 185 190Ser Glu Leu Pro Ser Val Leu Ser Arg Ser Arg Ala Ser Leu Tyr Ala 195 200 205Val Gln Met Ser Thr Pro Glu Thr Asn Ser Ala Leu Leu Gln Gln Val 210 215 220Ala Arg Glu Ser Arg Gly Gln Tyr Ala Ser Ala Gly Asp Thr Ala Ala225 230 235 240Leu Gly Ala Ile Tyr Gln Ser Ala Ala Arg Ala Leu Gly Asn Leu Tyr 245 250 255Val Val Arg Tyr Arg Ser Glu Ala Asn Gly Asp Thr Gln Val Val Ala 260 265 270Ser Val Arg Ser Gly Ala Ala Gly Arg Val Ser Asp Pro Phe Pro Val 275 280 285Thr Leu Pro Gly Val Val Pro Thr Pro Ser Val Val Ala Gly Thr Val 290 295 300Asp Gly Phe Phe Thr Ser Ser Thr Gly Leu Val Ile Gly Leu Leu Ala305 310 315 320Cys Tyr Ser Ala Leu Ala Gly Gly Val Leu Ala Val Ala Gly Arg Ala 325 330 335Pro Ala Arg Ile Ser Ala Ala Arg Arg Gly Arg Gln Asp Gly Arg Asp 340 345 350Ser Met Leu Ser Arg Phe Ala Glu Arg Leu Val Gln Trp Ile Asp Gln 355 360 365Asn Leu Arg Arg Arg Gly Arg Ile Ala Ala Arg Thr Gln Ala Leu Gln 370 375 380Glu Ala Gly Leu Lys Leu Arg Pro Gly Asp Phe Ile Ala Leu Val Gly385 390 395 400Ala Ala Ala Ile Thr Ala Ala Ala Ile Gly Leu Leu Ala Ser Gly Ile 405 410 415Val Ala Ala Leu Leu Leu Ala Ala Ile Thr Val Gly Leu Ser Arg Ile 420 425 430Tyr Leu Arg Val Met Ala Gly Arg Arg Arg Ala Ala Phe Ala Asp Gln 435 440 445Leu Asp Asp Ser Leu Gln Leu Leu Ala Ser Asn Leu Arg Ala Gly His 450 455 460Ser Met Leu Arg Ala Leu Asp Ser Leu Ser Arg Glu Ala Glu Val Pro465 470 475 480Thr Ser Glu Glu Phe Ala Arg Ile Val Asn Glu Thr Arg Val Gly Arg 485 490 495Asp Leu Asn Glu Ala Leu Asp Asp Val Ala Arg Arg Met Arg Ser Asp 500 505 510Asp Phe Asn Trp Ile Ala Gln Ala Ile Ala Ile Asn Arg Glu Val Gly 515 520 525Gly Asp Leu Ala Glu Val Leu Asp Gln Val Gly Asn Thr Ile Arg Glu 530 535 540Arg Asn Gln Ile Arg Arg Gln Val Lys Ala Leu Ala Ala Glu Gly Lys545 550 555 560Leu Ser Ala Tyr Val Leu Met Ala Leu Pro Phe Gly Leu Thr Ala Phe 565 570 575Leu Leu Val Ser Asn Pro Asp Tyr Leu Ser Lys Leu Thr Gly Ser Ala 580 585 590Ile Gly Tyr Val Met Ile Ala Val Gly Leu Val Met Leu Thr Val Gly 595 600 605Gly Leu Trp Met Asn Lys Val Val Ser Val Lys Phe 610 615 62045296PRTRhodococcus equi 45Val Ile Pro Pro Leu Val Leu Met Ala Ala Leu Ser Val Gly Gly Ala1 5 10 15Leu Gly Val Leu Val Trp Leu Thr Ala Gly Ala Arg Asp Pro Glu Arg 20 25 30Gly Pro Ala Leu Gln Asn Leu Gln Ser Gln Leu Ala Leu Pro Ile Pro 35 40 45Glu Ser Gly Gly Ala Pro Pro Leu Ser Leu Gly Arg Phe Val Lys Leu 50 55 60Leu Ser Pro Pro Gly Thr Met Ala Arg Leu Glu Arg Leu His Ile Leu65 70 75 80Ala Gly Arg Pro Ala Ala Trp Val Pro Glu Arg Ala Ala Met Ala Lys 85 90 95Ile Val Leu Ala Ala Ala Ala Ala Leu Leu Gly Leu Leu Ala Val Gly 100 105 110Ala Ser Pro Gly Val Gly Arg Val Leu Phe Ala Ala Ala Ala Val Ala 115 120 125Leu Ala Tyr Phe Val Pro Glu Leu Leu Leu Gln Ser Arg Gly Gln Glu 130 135 140Arg Gln Ala Ala Ile Glu Leu Ala Leu Ala Asp Thr Leu Asp Gln Met145 150 155 160Thr Ile Ala Val Glu Ala Gly Leu Gly Phe Glu Ala Ala Met Gln Arg 165 170 175Ala Ala Lys Asn Gly Lys Gly Pro Leu Ala Glu Glu Phe Ile Arg Thr 180 185 190Leu Gln Asp Ile Gln Met Gly Gln Ser Arg Arg Ile Ala Tyr Leu Asp 195 200 205Leu Ala Ala Arg Thr Lys Ala Pro Asn Leu Arg Arg Phe Leu Arg Ala 210 215 220Val Ile Gln Ala Asp Glu Tyr Gly Val Ala Ile Ala Glu Val Leu Arg225 230 235 240Thr Gln Ala Ser Glu Met Arg Leu Lys Arg Arg Gln Ser Ala Glu Glu 245 250 255Lys Ala Met Lys Val Pro Val Lys Val Leu Phe Pro Leu Met Thr Cys 260 265 270Ile Leu Pro Thr Ile Phe Ile Val Ile Leu Gly Pro Ala Val Ile Asn 275 280 285Met Met Glu Val Leu Gly Gly Met 290 29546296PRTRhodococcus equi 46Val Ile Pro Pro Leu Val Leu Val Ala Ala Leu Ser Val Gly Gly Ala1 5 10 15Leu Gly Val Leu Val Trp Leu Thr Ala Gly Ala Arg Asp Pro Glu Arg 20 25 30Gly Pro Ala Leu Gln Asn Leu Gln Ser Gln Leu Ala Leu Pro Ile Pro 35 40 45Val Ser Gly Gly Ala Pro Pro Leu Ser Leu Gly Arg Phe Val Lys Leu 50 55 60Leu Ser Pro Pro Gly Thr Met Ala Arg Leu Glu Arg Leu His Ile Leu65 70 75 80Ala Gly Arg Pro Ala Ala Trp Val Pro Glu Arg Ala Ala Met Ala Lys 85 90 95Ile Val Leu Ala Ala Ala Ala Ala Leu Leu Gly Leu Leu Ala Val Gly 100 105

110Ala Ser Pro Gly Val Gly Arg Val Leu Phe Ala Ala Ala Ala Val Ala 115 120 125Leu Ala Tyr Phe Val Pro Glu Leu Leu Leu Gln Ser Arg Gly Gln Glu 130 135 140Arg Gln Ala Ala Ile Glu Leu Ala Leu Ala Asp Thr Leu Asp Gln Met145 150 155 160Thr Ile Ala Val Glu Ala Gly Leu Gly Phe Glu Ala Ala Met Gln Arg 165 170 175Ala Ala Lys Asn Gly Lys Gly Pro Leu Ala Glu Glu Phe Ile Arg Thr 180 185 190Leu Gln Asp Ile Gln Met Gly Gln Ser Arg Arg Ile Ala Tyr Leu Asp 195 200 205Leu Ala Ala Arg Thr Lys Ala Pro Asn Leu Arg Arg Phe Leu Arg Ala 210 215 220Val Ile Gln Ala Asp Glu Tyr Gly Val Ala Ile Ala Glu Val Leu Arg225 230 235 240Thr Gln Ala Ser Glu Met Arg Leu Lys Arg Arg Gln Ser Ala Glu Glu 245 250 255Lys Ala Met Lys Val Pro Val Lys Val Leu Phe Pro Leu Met Thr Cys 260 265 270Ile Leu Pro Thr Ile Phe Ile Val Ile Leu Gly Pro Ala Val Ile Asn 275 280 285Met Met Glu Val Leu Gly Gly Met 290 29547296PRTRhodococcus equi 47Val Ile Pro Pro Leu Val Leu Met Ala Ala Leu Ser Val Gly Gly Ala1 5 10 15Leu Gly Val Leu Val Trp Leu Thr Ala Gly Ala Arg Asp Pro Glu Arg 20 25 30Gly Pro Ala Leu Gln Asn Leu Gln Ser Gln Leu Ala Leu Pro Ile Pro 35 40 45Glu Ser Gly Gly Ala Pro Pro Ile Ser Leu Gly Arg Phe Val Lys Leu 50 55 60Leu Ser Pro Pro Gly Thr Met Ala Arg Leu Glu Arg Leu His Ile Leu65 70 75 80Ala Gly Arg Pro Ala Ala Trp Val Pro Glu Arg Ala Ala Met Ala Lys 85 90 95Ile Val Leu Ala Ala Ala Ala Ala Leu Leu Gly Leu Leu Ala Ala Gly 100 105 110Ala Ser Pro Gly Val Gly Arg Val Leu Phe Ala Ala Ala Ala Val Ala 115 120 125Leu Ala Tyr Phe Val Pro Glu Leu Leu Leu Gln Ser Arg Val Gln Glu 130 135 140Arg Gln Ala Ala Ile Glu Leu Ala Leu Ala Asp Thr Leu Asp Gln Met145 150 155 160Thr Ile Ala Val Glu Ala Gly Leu Gly Phe Glu Ala Ala Met Gln Arg 165 170 175Ala Ala Lys Asn Gly Lys Gly Pro Leu Ala Glu Glu Phe Ile Arg Thr 180 185 190Leu Gln Asp Ile Gln Met Gly Gln Ser Arg Arg Ile Ala Tyr Leu Asp 195 200 205Leu Ala Ala Arg Thr Lys Ala Pro Asn Leu Arg Arg Phe Leu Arg Ala 210 215 220Val Ile Gln Ala Asp Glu Tyr Gly Val Ala Ile Ala Glu Val Leu Arg225 230 235 240Thr Gln Ala Ser Glu Met Arg Leu Lys Arg Arg Gln Ser Ala Glu Glu 245 250 255Lys Ala Met Lys Val Pro Val Lys Val Leu Phe Pro Leu Met Thr Cys 260 265 270Ile Leu Pro Thr Ile Phe Ile Val Ile Leu Gly Pro Ala Val Ile Asn 275 280 285Met Met Glu Val Leu Gly Gly Met 290 29548789DNARhodococcus equi 48gtgatcgtcg cagcgggcgt cggcgctgcc ctcctgggca tcctcgccgg ggcgttcgca 60aacagtgcga tcgaccgcgt gcgcctggag accgcgtgcg ccgagccgaa gtcgaccccc 120gccaactcaa ccccgccgtc cccctcccct acgtccgcgg tggccgcccg gatcgcgatg 180atcgacacca tcacgcgacg acacgacatc agtgcccgcc gcgtgctcgt cgaactcgca 240actgccctcc tgttcgtcgc gatcactctc cgtctcgccg ctctcgatct tctcccggca 300gcaccggcct atctctggtt cgccgtcgtc gggatcgccc tcgccgtcat cgacatcgat 360tgcaaacggc tgccgaactt cctcgtcgta ccgtcgtacc cgatcgtatt cgcctgcctg 420gcagtgggtt ccgtcgtcac gggcgactgg tcggccctgc tgcgcgccgc gatcggtgcc 480gccgtcctgt tcgggttcta cttcgtactc gccctgatct atccggccgg catggggttc 540ggcgacgtca aacttgccgg cgtcatcggc gccgtcctcg cctacctgtc gtacggcaca 600ctgctcgtcg gggcgtttct cgcgttcctg gtggccgcac tcgtcggcct gatcatcctg 660gtcacccgtc gcggacggat cgggaccacg attcccttcg ggccgtacat gattgcggcg 720gccgtcgttg cgatcctggc agccgatccg ctggcgcgtg cgtatctgga ctgggccgcc 780gcggcctga 78949789DNARhodococcus equi 49gtgatcgtcg cagcgggcgt cggcgccgca ctcctgggca tccttgccgg ggcattcgca 60aacagtgcga tcgaccgcgt gcgcctggag accgcgtgcg ccgagccgag ggcgaccccc 120accggctcaa ccccgccgcc cccctcccct acgtccgcgg tagccacccg gatcgcgatg 180atcgacacca tcacgcgacg acgcgacatc agtgcccgcc gcatgctcgt cgaactcgca 240acggccctcc tgttcgtcgc gatcactctc cgtctcgccg ctctcgatct tctcccggca 300gcaccggcct atctctggtt cgccgtcatc gggatcgccc tcgccgtcat cgacatcgat 360tgcaaacggc tgccgaactt cctcgtcgta ccgtcgtacc cgatcgtatt cgcctgcctg 420gcagtgggtt ccgtcgtcac gggcgactgg tcggccctgc tgcgcgccgc gatcggtgcc 480gccgtcctgt tcgggttcta cttcgtactc gccctgatct atccggccgg catggggttc 540ggcgacgtca aacttgccgg cgtcatcggc gccgtcctcg cctacctgtc gtacggcaca 600ctgctcgtcg gggcgtttct cgcgttcctg gtggccgcac tcgtgggcct catcatcctg 660gtcacccgtc gcggtcggat cgggaccacg attcccttcg ggccgtacat gattgcggcg 720gccgtcgttg cgatcctcgc ggccgatccg ctggcgcgtg cgtatctgga ctgggccgcc 780gcggcctga 78950789DNARhodococcus equi 50gtgatcgtcg cagcgggcgt cggcgccgca ctcctgggta tcctcgccgg ggcgttcgcg 60aacagtgcga tcgaccgcgt gcgcctggag accgcgtgcg ccgagccgaa gtcgaccccc 120accggctcaa ccccgccgcc cccctcccct gcgtccgcgg tagccacccg gatcgcgatg 180atcgacacca tcacgcgacg acgcgacatc agtgcccgcc gcatgctcgt cgaactcgca 240acggccctcc tgttcgtcgc gatcactctc cgtctcgccg ctctcggtct tctcccggca 300gcaccggcct atctctggtt cgccgtcatc gggatcgccc tcgccgtcat cgacatcgat 360tgcaaacggc tgccgaactt cctcgtcgta ccgtcgtacc cgatcgtatt cgcctgcctg 420gcagtgggtt ccgtcgtcac gggcgactgg tcggccctgc tgcgcgccgc gatcggtgcc 480gccgtcctgt tcgggttcta cttcgtactc gccctgatct atccggccgg catggggttc 540ggcgacgtca aacttgccgg cgtcatcggc gccgtcctcg cctacctgtc gtacggcaca 600ctgctcgtcg gggcgtttct cgcgttcctg gtggccgcac tcgtcggcct gatcatcctg 660gtcacccgtc gcggacggat cgggaccacg attcccttcg ggccgtacat gattgcggcg 720gccgtcgttg cgatcctggc ggccgatccg ctggcgcgcg cgtatctgga ctgggccgcc 780gcggcctga 78951213DNARhodococcus equi 51atgaacctct tcttcgcgaa cctgtacctc atgggcttag acgtcaagga ccgtctgacc 60cgtgacgacc gcggcgccac tgcggtcgag tacggactga tggtcgccgg catcgcgatg 120gtgatcctca ttgcggtctt cgccttcggc ggcaagatca gcgagctgtt tagcggcttc 180aatttcgaca agcccgctgc gtcgggcacg tag 21352204DNARhodococcus equi 52atgaacctct tcttcgcgaa cctgtacctc atgggcttag acgtcaagga ccgtctgacc 60cgtgacgacc gcggcgccac tgcggtcgag tacggactga tggtcgccgg catcgcgatg 120gtgatcatca tcgccgtctt tgccttcggc ggcagactca gcaccctgtt ccagaacttc 180aacttcgcca acccgggtaa ctag 20453408DNARhodococcus equi 53atgggcatgc gccgttttgg ttctgattct ggtgctgccg cagtcgaatt cgctctcgtt 60gttccgattc tgatcacact ggtcctcggc atcgtggagt tcggtcgggg atacaacgtc 120cagaacgcgg tcagcgctgc tgcccgcgag ggtgcacgga cgatggcgat caagaaggat 180ccggcggcgg cgcgtgccgc cgtgaagggc gcgggtgtgt tcagtccggc gatcaccgat 240gcggagatct gcatcagcac ttcgggaacg cagggctgtt cggcaacgtc gtgcccgagc 300ggaagtaccg tgacgctcac ggtcagctat ccactcgagt acatgacggg actctttccc 360ggtaagccga cgctcaccgg cacgggggtc atgcgatgcg gtgggtga 40854408DNARhodococcus equi 54gtgatcatga agcgcctcac ttccgattca ggggtcgccg cagtcgaatt cgctctcgtc 60gttccgatcc tgatcacact ggtcctcggc atcgtcgagt tcggtcgggg atacaacgtc 120cagaacgcgg tcagcgctgc tgcccgcgag ggtgcacgga cgatggcgat caagaaggat 180ccggcggcgg cgcgtgccgc cgtgaagggc gcgggtgtgt tcagtccggc gatcaccgat 240gcggagatct gcatcagcac ttcgggctcg cagggctgtt cggcaacgtc gtgtccgagc 300ggaagtaccg tgacgctcac ggtcagctat ccactcgagt acatgacggg actctttccc 360ggtaagccga cgctcaccgg cacgggggtc atgcgatgcg gtgggtga 40855393DNARhodococcus equi 55ttgcgttccg attcaggggt cgccgcagtc gaattcgctc tcgtcgttcc gatcctgatc 60acactggtcc tcggcatcgt ggagttcggt cggggttaca acgtccagaa cgcggtcagc 120gctgctgccc gcgagggtgc acggacgatg gcgatcaaga aggatccggc ggcggcgcgt 180gctgccgtga agggcgcggg tgtgttcagt ccggcgatca ccgatgcgga gatctgcatc 240agcacttcgg gaacgcaggg ctgttcggca acgtcgtgtc cgagcggaag taccgtgacg 300ctcacggtca gctatccact cgagtacatg acgggactct ttcccggtaa gccgacgctc 360accggcacgg gggtcatgcg atgcggtggg tga 39356966DNARhodococcus equi 56atgcggtggg tgaggtctcg catgtctaat gacgagcgcg gggtcgtcgc cgtgctcgtc 60gcgatcctca tggtcgtgct cctgggatgt gctgcgatct cggtcgacat cggtgcgaac 120tatgtcgtca aacgtcagtt gcagaacggg gccgatgcgg ctgcgctcgc cgtagctcag 180gaatccagtt gcaaggcagg atcttccgcc tcatccgtgt cgagccttgt ccaggcgaac 240gtcaacagct cgtcggcttc aagtgcggcg gtgatcgacg gtgtgaagcg gaaggtgacg 300gtcactgcgt cggcggtggg tgacgacggc ctcgccggcc ggaggaacgt gttcgctccg 360gtcctcggag tcgaccgcag cgagatctcg gcgtctgcga ctgcaagctg cgtgtttccc 420ctcgggggga ccgcggaact cccgctcacg ttccacaagt gccatttcga cgaatcccgc 480agtctggacg tgaagatcct cgtcgcctac aacgtgacgg cgccgcgctg caacggaacc 540tcgggaaatg cggcaccggg caatttcggc tggctgcagg gggcgaacgg tcgatgcccg 600gcgaagatcg acgccgccgt ctatgcaaca ccgggcgaca ccggtaacaa cattccgggg 660ccgtgcaagg acaccatcaa gcagtttcag aatgccgtcg tccgggtccc gatctacgac 720gtcgcaggtg gaaccggaag cggtggatgg tttcacgtcg tcggtttggc tgccttcaag 780attcagggct accggctgag cggcaacccg gagttcaact ggaacaacga tgttcacggg 840gcgctgagtt gcaccggcag ctgtcgcggc atcatcggca ccttcgtgaa aattgtcagc 900ctcgattcgg atctgacgcc gggagggatc gatttcggcg tgagtacgat cagcttgctc 960gattag 96657966DNARhodococcus equi 57atgcggtggg tgaggtctcg catgtcgaat gacgagcgcg gggtcgtcgc cgtgttcgtc 60gcgatcctca tggtcgtgct cctgggatgt gctgcgatct cggtcgacat cggtgcgaac 120tatgtcgtca aacgtcagtt gcagaacggg gccgatgcgg ctgcgctcgc cgtagctcag 180gaatccagtt gcaaggcagg atcttccgcc tcatccgtgt cgaggcttgt ccaggcgaac 240gtcaacagct cgtcggcttc aagtgcggcg gtgatcgacg gtgtgaagcg gaaggtgacg 300gtcactgcgt cggcggtggg tgacgacggc ctcgccggcc ggaggaacgt gttcgctccg 360gtcctcggag tcgaccgcag cgagatctcg gcgtctgcga ctgcaagctg cgtgtttccc 420ctcgggggga ccgcggaact cccgctcacg ttccacaagt gccatttcga cgaatcccgc 480agtctggacg tgaagatcct cgtcgcctac aacgtgacgg cgccgcgctg caacggaacc 540tcgggaaatg cggcaccggg caatttcggc tggctacagg gggtgaacgg tcgatgcccg 600gcgaagatcg acgcggccgt ctatgcaaca ccgggcgaca ccggtaacaa cattccgggg 660ccgtgcaagg acaccatcaa gcagtttcag aatgccgtcg tccgggtccc gatctacgac 720gtcgcaggtg gaaccggaag cggtggatgg tttcacgtcg tcggtttggc tgccttcaag 780attcagggct accggctgag cggcaacccg gagttcaact ggaacaacga tgttcacgga 840gcgctgagtt gcaccggcag ctgtcgcggc atcatcggca ccttcgtgaa aattgtcagc 900ctcgattcgg atctgacgcc gggagggatc gatttcggcg tgagtacgat cagcttgctc 960gattag 96658966DNARhodococcus equi 58atgcggtggg tgaggtctcg catgtctaat gacgagcgcg gggtcgtcgc cgtgctcgtc 60gcgatcctca tggtcgtgct cctgggatgt gctgcgatct cggtcgacat cggtgcgaac 120tatgtcgtca aacgtcagtt gcagaacggg gccgatgcgg ctgcgctcgc cgtagctcag 180gaatccaatt gcaaggcagg atcttccgcc tcatccgtgt cgagccttgt ccaggcgaac 240gtcaacagct cgtcggcttc aagtgcggcg gtgatcgacg gtgtgaagcg gaaggtgacg 300gtcactgcgt cggcggtggg tgacgacggc ctcgccggcc ggaggaacgt gttcgctccg 360gtcctcggag tcgaccgcag cgagatctcg gcgtctgcga ctgcaagctg cgtgtttccc 420ctcgggggga ccgcggaact cccgctcacg ttccacaagt gccatttcga cgaatcccgc 480agtctggacg tgaagatcct cgtcgcctac aacgtgacgg cgccgcgctg caacggaacc 540tcgggaaatg cggcaccggg caatttcggc tggctgcagg gggcgaacgg tcgatgcccg 600gcgaagatcg accccaccgt ctatgcaaca ccgggcgaca ccggtaacaa cattccgggg 660ccgtgcaagg acaccatcaa gcagtttcag aatgccgtcg tccgggtccc gatctacgac 720gtcgcaggtg gaaccggaag cggtggatgg tttcacgtcg tcggtttggc tgccttcaag 780attcagggct accggctgag cggcaacccg gagttcaact ggaacaacga tgttcacggg 840gcgctgagtt gcaccggcag ctgtcgcggc atcatcggta ccttcgtgaa aattgtcagc 900ctcgattcgg atctgacgcc gggagggatc gatttcggcg tgagtacgat cagcttgctc 960gattag 96659738DNARhodococcus equi 59ttgagaaccc gaatcattgc tgcgatctgt gcgatcgttc tcgcggtcgc gggaaccctc 60gccctgatct cgtatgtacg cggggccgat gcccgcgccc tggcgggtac acgcaccgtc 120gatgtgctcg tcgccgatca gacgattccg aagaacactc ccgccgattc gctcgtggga 180atggttgtgg tcaagaaact tccggaaatg gcggtgctac ccgaacgggt gaccagtctc 240gaccaactgt ccggcaaggt cgcgctgacc gacctcctac ctggcgaaca actggtctcg 300gcgcgattcg ccgacccggc gaccgcccga agtcaggacc agggaggaat ccccgagggg 360atgcaggagg tgacggttct tctcgagccg caacgcgcac tgggaggcca catcgcgtca 420ggcgataccg tcggcgtctt catgtccttc tcgccgcccg tcaagaacta cgaaacacat 480ctgagattgc agaaagtgcg agtcacgcgg gtccagggaa cgttttccaa cgccgacgaa 540ggggattcgg ccacggtcga ctcgtcgccg agccctgctc ccaccgaggc ctttctcgtc 600tcgctggcgg tcgacgtgcc gatggcggag cgcgtcgttt tcgccgcgga gcacgggacc 660atctggcttt ccaatgagcc gctgagttcg aacgaggccg gggcatccgt ggtctccccg 720gaaggagtgt tccgatga 73860738DNARhodococcus equi 60ttgagaaccc gaatcattgc tgcgatctgt gcgatcgttc tcgcggtcgc gggaaccctc 60gccctgatct cgtatgtacg cggggccgat gcccgcgccc tggcgggtac acgcaccgtc 120gatgtgctcg tcgccgatca gacgattccg aagaacactc ccgccgattc gctcgtggga 180atggttgtgg tcaagaaact tccggaaatg gcggtgctac ccgaacgggt gaccagtctc 240gaccaactgt ccggcaaggt cgcgctgacc gacctcctgc cgggcgaaca actggtctcg 300gcgcgattcg cagacccggc gaccgcccga agtcaggacc agggaggaat ccccgagggg 360atgcaggagg tgacggttct tctcgagccc caacgcgcac tgggaggcca catcgcgccg 420ggcgataccg tcggcgtctt catgtccttc tcgccgcccg tcaagaacta cgaaacacat 480ctgagattgc agaaagtgcg agtcacgcgg gtccagggaa cgttttccaa cgccgacgaa 540ggggattcgg ccacggtcga ctcgtcgccg agccctgctc ccaccgaggc ctttctcgtc 600tcgctggcgg tcgacgtgcc gatggcggag cgcgtcgttt tcgccgcgga gcacgggacc 660atctggcttt ccaatgagcc gctgagttcg aacgaggccg gggcatccgt ggtctccccg 720gaaggagtgt tccgatga 73861738DNARhodococcus equi 61ttgagaaccc gaatcattgc tgcgatctgt gcgatcgttc tcgcggtcgc gggaaccctc 60gccctgatct cgtatgtacg cggggccgat gcccgcgccc tggcgggtac acgcaccgtc 120gatgtgctcg tcgccgatca gacgattccg aagaacactc ccgccgattc gctcgtggga 180atggttgtgg tcaagaaact tccggaaatg gcggtgctac ccgatcgggt gaccagtctc 240gaccaactgt ccggcaaggt cgcgctgacc gacctcctgc ctggcgaaca actggtctcg 300gcgcgattcg tcgacccggc gaccgcccga agtcaggacc agggaggaat ccccgagggg 360atgcaggagg tgacggttct tctcgagccg caacgcgcac tgggaggcca catcgcgtca 420ggcgataccg tcggcgtctt catgtccttc tcgccgcccg tcaagaacta cgaaacacat 480ctgagattgc agaaagtgcg agtcacgcgg gtccagggaa cgttctccaa cgccgacgaa 540ggggattcgg ccacggtcga ctcgtcgccg agccctgctc ccaccgaggc ctttctcgtc 600tcgctggcgg tcgacgtgcc gatggcggag cgcgtcgttt tcgccgcgga gcacgggacc 660atctggcttt ccaatgagcc gctgagttcg aacgaggccg gggcatccgt ggtctccccg 720gaaggagtgt tccgatga 738621200DNARhodococcus equi 62atgagccgca tcgtcctgct gaccgatcgc gacgatttcg cccgccgcgt gtaccacgcc 60gcggacggca accttctggt gttgccggcg cagccggttc cccgggggcc ggcgcagttg 120gtcgggctcg gcgtgaccgt gcaacccgaa gttctcgttc tcggtccgga cgtgccggaa 180gtggagggcc tctccctcgc cggccggatc gatcattcga cgcccggcac cacggtggtt 240ctggccagtg atgcgggcac cgacgtgtgg ttgcgggcga tgcgcgccgg cgtgcgggac 300gtgatgtcgc cggaggcgga gatcgcggac gttcgtgcgg tactcgatcg agcgggccag 360gccgcactgg cgcgacgtca gggggcgagt gcaccggcgg agcagcatgc ggttcaaggg 420aaggtcatcg tggtcgcgtc gccgaaaggc ggaaccggaa agaccaccgt tgcgacgaat 480cttgcagtag gactcgcggc ggcagcgcct cactcgacgg tgttggtgga cctcgacgtg 540cagttcgggg acgttgccag tgctctccag ttggttccgg aacattgcct gaccgacgcc 600gtcgcgggcc cggccagcca ggacatgatc gtcctcaaga ccgtccttac accccattcc 660acaggactgc atgcgctgtg tgggtccgac tcgcccgcgg cgggcgacag catcaccggc 720gagcaggtga gcactctgct gacgcagttg gcggccgaat tccggtacgt ggtcgtcgac 780accgcgcccg gtttgctcga acacaccctg gcggcgctcg acctcgctac cgacgtcgtg 840ttggtgtcgg gtatggacgt gcccagcgtc cgcgggatgc acaaggaact gcagttgctg 900gcggagctga atctgggtcc ggtcgtgcgg catgtcgtgc tcaactttgc ggatcgacgc 960gaggggctga cggtccagga catccagaac accatcgggg tccccgccga tatcgtgatc 1020aagcggtcga aagccgttgc cctctcgacg aaccggggtg ttccactgct tcagaacccg 1080ggtcgggatc gcactgcgaa agagttgtgg cgactcgtcg gccgtatcga tccggctccc 1140gataccacca agggtggacg cgcgcggcat cgggcagccg aggcggtggg ggcgaaatga 1200631200DNARhodococcus equi 63atgagccgca tcgtcctgct gaccgatcgc gacgattycg cccgccgcgt gtaccacgcc 60gcggacggca accttctggt gttgccggcg cagccggttc cccgggggcc ggcgcagttg 120gtcgggctcg gcgtgaccgt gcaacccgac gttctcgttc tcggtccgga cgtgccggaa 180gtggagggcc tctccctcgc cggccggatc gatcattcga cgcccggcac cacggtggtt 240ctggccagtg atgcgggcac cgacgtgtgg ttgagggcga tgcgcgccgg cgtgcgggac 300gtgatgtcgc cggaggcgga gatcgcggac gttcgtgccg tactcgatcg agcaggtcag 360gccgcgctgg cgcgacgtca gggggcgagt gcaccggcgg agcagcatgc ggttcaaggg 420aaggtcatcg tggtcgcgtc gccgaaaggc ggaaccggaa agaccaccgt tgcgacgaat 480cttgcagtcg gactcgcggc ggcagcgcct cactccacgg tgttggtgga cctcgacgtg 540cagttcggcg acgttgccag tgctctccag ttggttccgg aacattgcct gaccgacgcc 600gtcgcgagcc cggccagcca ggacatgatc gtcctcaaga ccgtcctgac accccattcc 660acaggactgc atgcgctgtg tggatcggac tcgcccgcgg cgggcgacag catcaccggc 720gagcaggtga gcactctgct gacgcagttg gcggccgaat tccggtacgt ggtcgtcgac

780accgcgcccg gtttgctcga acacaccctg gcggcgctcg accttgctac cgacgtcgtg 840ttggtgtcgg gtatggacgt gcccagcgtc cgcgggatgc acaaggaact gcaattgctg 900acggagctga atctgggtcc ggtcgtgcgg catgtcgtgc tcaactttgc ggatcgacgc 960gaggggctga cggtccagga catccagaac accatcgggg tccccgccga tatcgtgatc 1020aagcgctcga aagccgttgc cctctcgacg aaccgggggg ttccactgct tcagaacccg 1080ggtcgggatc gcactgcgaa agagttgtgg cgactcgtcg gccgtatcga tccggctccc 1140gataccgcca agggtggacg cgcgcggcat cgggcagccg aggcggtggg tgcgaaatga 1200641200DNARhodococcus equi 64atgagccgca tcgtcctgct gaccgatcgc gacgatttcg cccgccgcgt gtaccacgcc 60gcggacggca accttctggt gttgccggcg cagccggttc cccgggggcc ggcgcagttg 120gtcgggctcg gcgtgaccgt gcaacccgac gttctcgttc tcggtccgga cgtgccggaa 180gtggagggcc tctccctcgc cggccggatc gatcattcga cgcccggcac cacggtggtt 240ctggccagtg atgcgggcac cgacgtgtgg ttgagggcga tgcgcgccgg cgtgcgggac 300gtgatgtcgc cggaggcgga gatcgcggac gttcgtgccg tactcgatcg agcaggtcag 360gccgcgctgg cgcgacgtca gggggcgagt gcaccggcgg agcagcatgc ggttcaaggg 420aaggtcatcg tggtcgcgtc gccgaaaggc ggaaccggaa agaccaccgt tgcgacgaat 480cttgcagtcg gactcgcggc ggcagcgcct cactccacgg tgttggtgga cctcgacgtg 540cagttcggcg acgttgccag tgctctccag ttggttccgg aacattgcct gaccgacgcc 600gtcgcgagcc cggccagcca ggacatgatc gtcctcaaga ccgtcctgac accccattcc 660acaggactgc atgcgctgtg tggatcggac tcgcccgcgg cgggcgacag cattaccggc 720gagcaggtga gcactctgct gacgcagttg gcggccgaat tccggtacgt ggtcgtcgac 780accgcgcccg gtttgctcga acacaccctg gcggcgctcg accttgctac cgacgtcgtg 840ttggtgtcgg gtatggacgt gcccagcgtc cgcgggatgc acaaggaact gcaattgctg 900acggagctga atctgggtcc ggtcgtgcgg catgtcgtgc tcaactttgc ggatcgacgc 960gaggggctga cggtccagga catccagaac accatcgggg tccccgccga tatcgtgatc 1020aagcgctcga aagccgttgc cctctcgacg aaccgggggg ttccactgct tcagaacccg 1080ggtcgggatc gcactgcgaa agagttgtgg cgactcgtcg gccgtatcga tccggctccc 1140gataccgcca agggtggacg cgcgcggcat cgggcagccg aggcggtggg tgcgaaatga 1200651398DNARhodococcus equi 65atgagactgt cccaacggct cgaggccgtg cgcggagccg cacccgtcga agccgccgca 60ccgatcccgc cggggaagca ggggaaggcg aaaacgtccc tccctccggc cgacgctctc 120gccgaactga aggaccgtgc gagtgcggcc ctgtacaccc ggatcggcac ccgcttcaac 180gactcctcgt tgagcgagga gcaactgcat ctcctggtcc gtgaggaact ggccgaaatc 240gtggagcaag agacgacgcc actcaccttc gacgaacggc agcgcctgct ccgtgaggtt 300gccgacgagg tactggggca cggaccgctc cagcggctac tggaggaccc gtcggtcacc 360gagatcatgg tcaacagcca cgacatggtc tacgtcgagc gggacggcac cctcgtccgc 420agctccgcgc gattcgcgga cgaggcgcac ctgcgtcgcg tgatcgaacg catcgtttcc 480gccgtcggtc gacggatcga cgaatcgtcc ccgctcgtgg atgcacgctt ggcggatggc 540tcccgtgtca acgcggtgat cccaccgctc gcattcaacg gctcctcgct caccattcga 600aagttctcga aagatccgtt ccaggtcgac gatctcatcg ccttcggcac tctctcgcac 660gagatggccg aactgctcga cgcgtgtgtg caggcgcgac tgaacgtcat cgtctcgggc 720ggcacgggca cggggaagac gacgctgctc aacgtgctct cgtcgttcat tccggaaggg 780gagcggatcg tcaccatcga ggacgccgtg gaactgcaac ttcagcagga ccacgtcgta 840cggttggaga gccgaccgcc gaacatcgag ggcaagggtg ccgtcaccat ccgcgacctg 900gtgcggaact cgctgcgtat gcgtcccgac cgcatcgtgg tgggggagtg tcgcggaggc 960gagagtctcg acatgctgca agcgatgaac accggtcacg acgggtcgct gtcgacggtg 1020catgcgaatt cgccccgtga cgccatcgcg cgcttggaga cgctcgtgtt gatggcgggc 1080atggacttgc cgttgcgggc gatccgggag cagattgctt cggcggtcga cgtgatcgtg 1140cagctcactc gactacgtga cggcactcgg cgagtgaccc acgtgaccga ggtccagggc 1200atggagggtg agatcgtcac actgcaggat gccttcctgt tcgactacag cgccggcgtc 1260gacgcgcgcg ggcgattcct cggcagaccg cagccgacgg gagtgcggcc gcggttcacc 1320gacaaattcc gagatctcgg tattgctttg tcgccgagtg ttttcggggt gggagaaccc 1380tcccgggggc gggcatga 1398661398DNARhodococcus equi 66atgagactgt cccaacggct cgaggccgtg cgcggagccg cacccgtcga agccgccgca 60ccgatcccgc cggggaagca ggggaaggcg aagacgtccc tccctccggc cgacgctctc 120gccgaactga aggaccgtgc gagtgcggcc ctgtacaccc ggatcggcac ccgcttcaac 180gactcctcgt tgagcgagga gcaactgcat ctcctggtcc gtgaggaact ggccgagatc 240gtggagcagg agacgacgcc actcaccttc gacgagcggc agcgcctgct ccgtgaggtc 300gccgacgagg tactggggca cggaccgctt cagcggctac tggaggaccc gtcggtcacc 360gagatcatgg tcaacagcca cgacatggtc tacgtcgagc gggacggcac cctcgttcgc 420agctccgcgc gattcgcgga cgaggcgcac ctgcgccgcg tgatcgaacg catcgtttcc 480gccgtcggtc gacggatcga cgaatcgtcc ccgctcgtgg atgcacgctt ggcggacggc 540tcccgtgtca acgcggtgat cccaccgctc gcattcaacg gctcctcgct caccattcga 600aagttctcga aagatccgtt ccaggtcgac gatctcatcg ccttcggcac tctctcgcac 660gagatggccg aactgctcga cgcgtgtgtg caggcgcgac tgaacgtcat cgtctcgggc 720ggcacgggca cggggaagac gacgctgctc aacgtgctct cgtcgttcat tccggaaggg 780gagcggatcg tcaccatcga ggacgccgtg gaactgcaac ttcagcagga ccacgtcgta 840cggttggaga gccgaccgcc gaacatcgag ggcaagggcg ccgtcaccat ccgtgacctg 900gtgcggaact cgctgcgtat gcgtcctgac cgcatcgtgg tgggggagtg tcgcggaggc 960gagagtctcg acatgctgca agcgatgaac accggtcacg acgggtcgct gtcgacggtg 1020catgcgaatt cgccccgtga cgccatcgcg cgcttggaga cgctcgtgtt gatggcgggc 1080atggacctgc cgttgcgggc gatccgggag cagattgctt cggcggtcga cgtgatcgtg 1140cagctcactc gactacgtga cggcactcgg cgagtgaccc acgtgaccga ggtccagggc 1200atggagggtg agatcgtcac cctgcaggat gccttcctgt tcgactacag cgccggcgtc 1260gacgcgcgcg ggcgattcct cggcagaccg cagccgaccg gagtgcggcc gcggttcacc 1320gacaaattcc gagatctcgg tattgctttg tcgccgagtg ttttcggggt gggagaaccc 1380tcccgggggc gggcatga 1398671398DNARhodococcus equi 67atgagactgt cccaacggct cgaggccgtg cgcggagccg cacccgtcga agcggccgca 60ccgatcccgc cggggaagca ggggaaggcg aagacgtccc tccctccggc cgacgctctc 120gccgaactga aggaccgtgc gagtgcggcc ctgtacaccc ggatcggcac ccgcttcaac 180gactcctcgt tgagcgagga gcaactgcat ctcctggtcc gtgaggaact ggccgaaatc 240gtggagcaag agacgacgcc actcaccttc gacgaacggc agcgcctgct ccgtgaggtc 300gccgacgagg tactggggca cggaccgctc cagcggctac tggaggaccc gtcggtcacc 360gagatcatgg tcaacagcca cgacatggtc tacgtcgagc gggacggcac cctcgtccgc 420agctccgcgc gattcgcgga cgaggcgcac ctgcgtcgcg tgatcgaacg catcgtttcc 480gccgtcggtc gacggatcga cgaatcgtcc ccgctcgtgg atgcacgctt ggcggatggc 540tcccgtgtca acgcggtgat cccaccgctc gcattcaacg gctcctcgct caccattcga 600aagttctcga aagatccgtt ccaggtcgac gatctcatcg ccttcggcac tctctcgcac 660gagatggccg aactgctcga cgcgtgtgtg caggcgcgac tgaacgtcat cgtctcgggc 720ggcacgggca cggggaagac gacgctgctc aacgtgctct cgtcgttcat tccggaaggg 780gagcggatcg tcaccatcga ggacgccgtg gaactgcaac ttcagcagga ccacgtcgta 840cggttggaga gccgaccgcc gaacatcgag ggcaagggcg ccgtcaccat ccgcgacctg 900gtgcggaact cgctgcgtat gcgtcccgac cgcatcgtgg tgggggagtg tcgcggaggc 960gagagtctcg acatgctgca agcgatgaac accggtcacg acgggtcgct gtcgacggtg 1020catgcgaatt cgccccgtga cgccatcgcg cgcttggaga cgctcgtgtt gatggcgggc 1080atggacctgc cgttgcgggc gatccgggag cagattgctt cggcggtcga cgtgatcgtg 1140cagctcactc gactacgtga cggcactcgg cgagtgaccc acgtgaccga ggtccagggc 1200atggagggtg agatcgtcac cctgcaggat gccttcctgt tcgactacag cgccggcgtc 1260gacgcgcgcg ggcgattcct cggcagaccg cagccgaccg gagtgcggcc gcggttcacc 1320gacaaattcc gagatctcgg tattgctttg tcgccgagtg ttttcggggt gggagaaccc 1380tcccgggggc gggcatga 1398681869DNARhodococcus equimisc_feature(78)..(80)n is a, c, g, or t 68atgagtcggt gcgtggtggc cgtcgtgctc gccctcggtg cgggtgttct gggaattcct 60gccgtagccg cggcgccnnn ggaggctgtc caggtctcgg cggtcgacac gacccggttt 120cccgacatcg aggtgtccat cctcgcgccg cccggtatcg aagggcaggc gatcgatccg 180ggaacgttcg cgctcaccga gggcggcgtg ccgcgagaga tcgaggtcag gcagcagccg 240ggttccgagc aggacatcgt gctcgcaatc gacgtgtccg ggggcatgtc gggtccggcg 300ctggacgacg tgaagcgcgc cgcatcggat ttcgtgcggc aggcgccgac cggcgcccac 360atcggaatcg tcgcgatctc gtcgacgcca caggtgctct cggaactgac gacggactcc 420gaggacctgc tccgcaggat cgacggactg aaggcgggcg gcaacagcgc gatcgcagat 480tcggtggtga ccgccgccga gatgctcgag cgcggcgaag cggccaacaa catcctgctt 540ctgttgacgg acggcgccga cacgtcgagt gcacactcga tgtcggaact cccgtccgtc 600ctgagtcggt cgcgcgcgtc gctgtacgcc gtgcagatgt cgacacccga gacgaactct 660gctctcctgc agcaggttgc gcgggagtcg cgcggtcagt acgcgtctgc gggtgatacg 720gcggcgctgg gtgcgatcta ccagtcggcc gctcgcgcgc tcggaaacct gtacgtcgtc 780cgataccgat cggaagcgaa cggcgatacc caggtggtgg cgagcgtgcg cagcggcgca 840gccggccgag tgagcgatcc gttcccggtg acattgcccg gtgtggtgcc gacgccgagc 900gtcgtcgccg ggaccgtcga cggtttcttc acgtcttcga cggggctggt gatcgggctc 960ctagcgtgct actcggcgct tgcgggaggc gtgctggcgg tcgccggtag agcgcccgcg 1020aggatttcgg cagcacgtcg tgggcggcag gacggacggg actcgatgct gtcccgattc 1080gcggaacggc tggtgcagtg gatcgatcag aacctgagga gacgcggacg catcgctgcc 1140cgcacccagg cgctacagga ggcggggctg aagcttcgtc caggtgactt catcgccctg 1200gtcggtgctg cggcgatcac cgctgcggcg atcggtctcc tggcttcggg catcgtggcg 1260gcgctcttgc tcgcggcgat cacagtggga ttgtcgagaa tctatctccg tgtgatggcc 1320ggtaggcgtc gggccgcgtt cgctgatcag ctcgacgatt ccctgcagct gctggccagc 1380aatctccgag ccgggcacag catgctccga gcgctcgatt ccctttcccg agaggcggag 1440gtgccgactt cggaggagtt cgctcggatc gtcaacgaga ctcgggtggg acgtgatctc 1500aacgaggctc tcgacgacgt ggcccggcgg atgcgaagtg acgatttcaa ctggatagct 1560caggcgatcg ccatcaaccg tgaggtcgga ggcgacctcg cggaagtcct cgaccaggtg 1620ggcaacacca ttcgagagcg aaatcagatt cgacggcagg tgaaagccct tgctgccgag 1680gggaaactgt ccgcctacgt gctgatggcg ctgcccttcg gtctcaccgc atttctgctc 1740gtctcgaatc cggactacct gtcgaagttg acgggtagcg ccatcggcta cgtgatgatc 1800gcggtggggc tcgtcatgct gaccgtcggt gggctgtgga tgaacaaggt tgtctcggtc 1860aagttctag 1869691872DNARhodococcus equimisc_feature(991)..(996)n is a, c, g, or t 69atgagtcggt gcgtggtggc cgtcgtgctc gccctcggtg cgggtgttct gggaattcct 60gccgtagccg cggcggccga gacggaggct gtccaggtct cggcggtcga cacgacccgg 120tttcccgaca tcgaggtgtc catcctcgcg ccgcccggta tcgaagggca ggcgatcgat 180ccgggaacgt tcgcgctcac cgagggaggc gtgccgcgag agatcgaggt caggcagcag 240ccgggttccg agcaggacat cgtgctcgca atcgacgtgt ccgggggcat gtcgggtccg 300gcgctggacg acgtgaagcg cgccgcatcg gatttcgtac ggcaggcgcc gaccggcgcc 360cacatcggaa tcgtcgcgat ctcgtcgacg ccacaggtgc tctcggaact gacgacggac 420tccgaggacc tgctccgcag gatcgacgga ctgaaggcgg gcggcaacag cgcgatcgca 480gattcggtgg tgaccgccgc cgagatgctc gagcgcggcg aagcggccaa caacatcctg 540cttctgttga cggacggcgc cgacacgtcg agtgcacact cgatgtcgga actcccgtcc 600gtcctgagtc ggtcgcgcgc gtcgctgtac gccgtgcaga tgtcgacacc cgagacgaac 660tctgctctcc tgcagcaggt tgcgcgggag tcgcgcggtc agtacgcgtc tgcgggtgat 720acggcggcgc tgggtgcgat ctaccagtcg gccgctcgcg cgctcggaaa cctgtacgtc 780gtccgatacc gatcggaagc gaacggcgat acccaggtgg tggcgagcgt gcgcagcggc 840gcagccggcc gagtgagcga tccgttcccg gtgacattgc ccggtgtggt gccgacgccg 900agcgtcgtcg ccgggaccgt cgacggtttc ttcacgtctt cgacggggct ggtgatcggg 960ctcctagcgt gctactcggc gcttgcggga nnnnnnctgg cggtcgccgg tagagggccc 1020gcgaggattt cggcagcacg tcgtgggcgg caggacggac gggactcgat gctgtcccga 1080ttcgcggaac ggctggtgca gtggatcgat cagaacctga ggagacgcgg acgcatcgct 1140gcccgcaccc aggcgctaca ggaggcgggg ctgaagcttc gtccaggtga cttcatcgcc 1200ctggtcggtg ctgcggcgat caccgctgcg gcgatcggtc tcctggcttc gggcatcgtg 1260gcggcgctct tgctcgcggc gatcacagtg ggattgtcga gaatctatct ccgggtgatg 1320gccggtaggc gtcgggccgc gttcgctgat cagctcgacg attccctgca gctgctggcc 1380agcaatctcc gagccgggca cagcatgctc cgagcgctcg attccctttc ccgggaggcg 1440gaggtgccga cttcggagga gttcgctcgg atcgtcaacg agactcgggt gggacgtgat 1500ctcaacgagt ctctcgacga cgtggcccgg cggatgcgaa gtgacgattt caactggata 1560gctcaggcga tcgccatcaa ccgtgaggtc ggaggcgacc tcgcggaagt cctcgaccag 1620gtgggcaaca ccattcgaga gcgaaatcag attcgacggc aggtgaaagc ccttgctgcc 1680gaggggaaac tgtccgccta cgtgctgatg gcgctgccct tcggtctcac cgcatttctg 1740ctcgtctcga atccggacta cctgtcgaag ttgacgggta gcgccatcgg ctacgtgatg 1800atcgcggtgg ggctcgtcat gctgaccgtc ggtgggctgt ggatgaacaa ggttgtctcg 1860gtcaagttct ag 1872701872DNARhodococcus equi 70atgagtcggt gcgtggtggc cgtcgtgctc gccctcggtg cgggtgttct gggaattcct 60gccgtagccg cggcggccga gacggaggct gtccaggtct cggcggtcga cacgacccgg 120tttcccgaca tcgaggtgtc catcctcgcg ccgcccggta tcgaagggca ggcgatcgat 180ccgggaacgt tcgcgctcac cgagggaggc gtgccgcgag agatcgaggt caggcagcag 240ccgggttccg agcaggacat cgtgctcgca atcgacgtgt ccgggggcat gtcgggtccg 300gcgctggacg acgtgaagcg cgccgcatcg gatttcgtgc ggcaggcgcc gaccggcgcc 360cacatcggaa tcgtcgcgat ctcgtcgacg ccacaggtgc tctcggaact gacgacggac 420tccgaggacc tgctccgcag gatcgacgga ctgaaggcgg gcggcaacag cgcgatcgca 480gattcggtgg tgaccgccgc cgagatgctc gagcgcggcg aagcggccaa caacatcctg 540cttctgttga cggacggcgc cgacacgtcg agtgcacact cgatgtcgga actcccgtcc 600gtcctgagtc ggtcgcgcgc gtcgctgtac gccgtgcaga tgtcgacgcc cgagacgaac 660tctgctctcc tgcagcaggt tgcgcgggag tcgcgcggtc agtacgcgtc tgcgggtgat 720acggcggcgc tgggtgcgat ctaccagtcg gccgctcgcg cgctcggaaa cctgtacgtc 780gtccgatacc gatcggaagc gaacggcgat acccaggtgg tggcgagcgt gcgcagcggc 840gcagccggcc gagtgagcga tccgttcccg gtgacattgc ccggtgtggt gccgacgccg 900agcgtcgtcg ccgggaccgt cgacggtttc ttcacgtctt cgacggggct ggtgatcggg 960ctcctagcgt gctactcggc gcttgcggga ggcgtgctgg cggtcgccgg tagagcgccc 1020gcgaggattt cggcagcacg tcgtgggcgg caggacggac gggactcgat gctgtcccga 1080ttcgcggaac ggctggtgca gtggatcgat cagaacctga ggagacgcgg acgcatcgct 1140gcccgaaccc aggcgctaca ggaggcgggg ctgaagcttc gtccaggtga cttcatcgcc 1200ctggtcggtg ctgcggcgat caccgctgcg gcgatcggtc tcctggcttc gggcatcgtg 1260gcggcgctct tgctcgcggc gatcacagtg ggattgtcga gaatctatct ccgtgtgatg 1320gccggtaggc gtcgggccgc gttcgctgat cagctcgacg attccctgca gctgctggcc 1380agcaatctcc gagccgggca cagcatgctc cgagcgctcg attccctttc ccgagaggcg 1440gaggtgccga cttcggagga gttcgctcgg atcgtcaacg agactcgggt gggacgtgat 1500ctcaacgagt ctctcgacga cgtggcccgg cggatgcgaa gtgacgattt caactggata 1560gctcaggcga tcgccatcaa ccgtgaggtc ggaggcgacc tcgcggaagt cctcgaccag 1620gtcggcaaca ccattcgaga gcgaaatcag attcgacggc aggtgaaagc ccttgctgcc 1680gaggggaaac tgtccgccta cgtgctgatg gcgctgccct tcggtctcac cgcatttctg 1740ctcgtctcga atccggacta cctgtcgaag ttgacgggta gcgccatcgg ctacgtgatg 1800atcgcggtgg ggctcgtcat gctgaccgtc ggtgggctgt ggatgaacaa ggttgtctcg 1860gtcaagttct ag 187271891DNARhodococcus equi 71gtgattccac cgctggtgct catggcggcg ctgtccgtcg gcggggcgtt gggtgttctg 60gtgtggttga cggccggcgc ccgagatcca gaacgcggac ccgcccttca gaacctgcag 120tcgcagctgg cgttgccgat tccggagtcg ggaggcgcgc caccgctttc gctcggccga 180ttcgtgaagc tgctgtcgcc gcccgggacg atggcccgct tggaacgact gcacatcctt 240gccggtcgtc cagcggcgtg ggttccggaa cgggccgcga tggcgaagat cgttctcgcc 300gcggccgccg ccctgctcgg ccttctcgcg gtgggtgcgt cgcctggcgt cggccgggtg 360ctgttcgctg cggccgccgt cgcgctggcg tatttcgtcc cggaacttct cctgcagagc 420agggggcagg agcgccaagc cgcgatcgaa ctggcgcttg ccgacaccct cgaccagatg 480acgatcgcag tcgaggcggg cctggggttc gaagccgcca tgcagcgggc cgcgaagaac 540ggaaaggggc cgctggccga ggaattcatc cggacattgc aggacataca gatggggcag 600tcgaggcgaa tcgcgtacct ggatcttgcc gccagaacga aagcacccaa cttgcggagg 660ttccttcggg ccgtcatcca agccgacgag tacggcgtgg ccatcgccga ggtcctgcgg 720acccaggcct cggagatgcg tctgaaacgc cgtcagagtg ctgaggagaa ggcgatgaag 780gttccggtga aggtgctgtt tccgttgatg acctgcatcc tgccgaccat cttcatcgtg 840atcctgggtc cggcggtgat caacatgatg gaggtcttgg gcggtatgta a 89172891DNARhodococcus equi 72gtgattccac cgctggtgct catggcggcg ctgtccgtcg gcggggcgtt gggtgttctg 60gtgtggttga cggccggcgc ccgagatccg gaacgcggac ccgcccttca gaacctccag 120tcgcagctgg cgctgccgat tccggagtcg ggaggcgcgc caccgatttc gctcggccga 180ttcgtgaagc tgctgtcgcc acccgggacg atggcccggt tggaacgact gcacatcctt 240gccggtcgtc cagcggcgtg ggttccggaa cgggccgcga tggcgaagat cgttctcgcc 300gcggccgccg ccctgctcgg ccttctcgcg gcgggtgcgt cgcctggcgt cggccgggtg 360ctgttcgctg cggccgccgt cgcgctggcg tatttcgtcc cggaacttct cctgcagagc 420agggtgcagg agcgccaagc cgcgatcgaa ctggcgcttg ccgacaccct cgaccagatg 480acgatcgcag tcgaggcggg cctggggttc gaagccgcaa tgcagcgggc cgcgaagaac 540ggaaaggggc cgctggccga ggaattcatc cggacattgc aggacataca gatggggcag 600tcgaggcgaa tcgcgtacct ggatcttgcc gccagaacga aagcaccgaa cttgcggagg 660ttccttcggg ccgtcatcca agccgacgag tacggcgtgg ccatcgccga ggttttgcgg 720acccaggcct cggagatgcg tctgaaacgc cgtcagagtg ctgaggagaa ggcgatgaag 780gttccggtga aggtgctgtt tccattgatg acctgcatcc tgccgaccat cttcatcgtg 840atcctgggtc cggcggtgat caacatgatg gaggtcctgg gcggtatgta a 89173891DNARhodococcus equi 73gtgattccac cgctggtgct cgtggcggcg ctgtccgtcg gcggggcgtt gggtgttctg 60gtgtggttga cggccggcgc ccgagatccg gaacgcggac ccgcccttca gaacctccag 120tcgcagctgg cgttgccgat tccggtgtcg ggaggcgcgc caccgctttc gctcggccga 180ttcgtgaagc tgctgtcgcc gcccgggacg atggcccgct tggaacgact gcacatcctt 240gccggtcgtc cagcggcgtg ggttccggaa cgggccgcga tggcgaagat cgttctcgcc 300gcggccgccg ccctgctcgg ccttctcgcg gtgggtgcgt cgcctggcgt cggccgggtg 360ctgttcgctg cggccgccgt cgcgctggcg tatttcgtcc cggaacttct cctgcagagc 420agggggcagg agcgccaagc cgcgatcgaa ctggcgcttg ccgacaccct cgaccagatg 480acgatcgcag tcgaggcggg cctggggttc gaagccgcca tgcagcgggc cgcgaagaac 540ggaaaggggc cgctggccga ggaattcatc cggacattgc aggacataca gatggggcag 600tcgaggcgaa tcgcgtacct ggatcttgcc gccagaacga aagcacccaa cttgcggagg 660ttccttcggg ccgtcatcca agccgacgag tacggcgtgg ccatcgccga ggtcctgcgg 720acccaggcct cggagatgcg tctgaaacgc cgtcagagtg ctgaggagaa ggcgatgaag 780gttccggtga aggtgctgtt tccgttgatg acctgcatcc tgccgaccat cttcatcgtg 840atcctgggtc cggcggtgat caacatgatg gaggtcttgg gcggtatgta a 891

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed