Composition of matter comprising of the creation of a low molecular weight hydrocarbon fluid exhibiting mainly oligomerized pentenes mainly comprised of 2-Methyl-2-Butene subunits as well as related plant isoprenoids composed of 2-Methyl-1-Butene subunits and other hydrocarbons from Euphorbia tiruca

Matthews; Stephen Daniel

Patent Application Summary

U.S. patent application number 12/931433 was filed with the patent office on 2012-08-02 for composition of matter comprising of the creation of a low molecular weight hydrocarbon fluid exhibiting mainly oligomerized pentenes mainly comprised of 2-methyl-2-butene subunits as well as related plant isoprenoids composed of 2-methyl-1-butene subunits and other hydrocarbons from euphorbia tiruca. Invention is credited to Stephen Daniel Matthews.

Application Number20120197052 12/931433
Document ID /
Family ID46577871
Filed Date2012-08-02

United States Patent Application 20120197052
Kind Code A1
Matthews; Stephen Daniel August 2, 2012

Composition of matter comprising of the creation of a low molecular weight hydrocarbon fluid exhibiting mainly oligomerized pentenes mainly comprised of 2-Methyl-2-Butene subunits as well as related plant isoprenoids composed of 2-Methyl-1-Butene subunits and other hydrocarbons from Euphorbia tirucalli biomass and a process for the extraction and refinement in making the same composition through the creation of solvent permeable batting mat and a multi-phase solvent extraction

Abstract

A composition of matter with of the creation of low molecular weight hydrocarbon fluid called Phytoleum from Euphorbia tirucalli biomass and a process for the extraction and refinement in making the same composition through the creation of a batting mat and multi-phase solvent extraction. A preferred embodiment includes the steps of manufacturing a fibrous batting mat from the raw biomass, crushing the biomass, shearing the biomass with a rotating knives blade array, compressing the biomass by passing the biomass through press rollers, amalgonating the biomass into a Batting Mat, subjecting the Batting Mat to a phased multi-wash solvent system, extracting the solvents and oils liquid solution for recovery, subjecting the liquid solution to a centrifugation system to extract the Phytoleum hydrocarbon oil from the other components, and refining the final product to yield Phytoleum which is a composition of matter including Tirucallene A and Tirucallene B and other oligomerized pentenes.


Inventors: Matthews; Stephen Daniel; (Navarre, FL)
Family ID: 46577871
Appl. No.: 12/931433
Filed: February 1, 2011

Current U.S. Class: 585/240
Current CPC Class: C10G 1/02 20130101; C10L 1/232 20130101; C10G 1/04 20130101; Y02P 30/20 20151101; C10L 2200/0469 20130101; C10L 1/04 20130101; C10L 2290/30 20130101; C10G 1/042 20130101; C10G 2300/1014 20130101; C10G 2300/4012 20130101; C10G 2300/44 20130101; C10G 2400/22 20130101
Class at Publication: 585/240
International Class: C10G 1/00 20060101 C10G001/00

Claims



1. A composition of matter comprising of the creation of a low molecular weight hydrocarbon fluid exhibiting mainly oligomerized pentenes mainly comprised of 2-Methyl-2-Butene subunits as well as related plant isoprenoids composed of 2-Methyl-1-Butene subunits and other hydrocarbons from Euphorbia tirucalli biomass prepared by the steps of a process for the extraction and refinement in making the same composition through the creation of solvent permeable batting mat and a multi-phase solvent extraction

2. A composition of matter as claimed in claim 1 further comprising the step(s) of the manufacture of a fibrous batting mat from the raw biomass of Euphorbia tirucalli by applying compressive and shearing forces to the biomass to create a material that is conducive and efficient for solvent flow and extraction through a 3 step process: (a) the reduction of particle size achieved by application of a hammermill crushing of the fresh biomass of Euphorbia tirucalli; then, (b) the crushed raw biomass of Euphorbia tirucalli is subjected to shearing forces from a rotating knife blade array to orient the fibrous strands in a parallel arrangement; and then, (c) the strands of the sheared Euphorbia tirucalli are compressed by passing the hammered and sheared Euphorbia tirucalli biomass through a series of sets of press rollers to expectorate fluids and prepare the biomass mat for batting;

3. A composition of matter as claimed in claim 2 wherein said Euphorbia tirucalli processed biomass is amalgonated by the Batt Maker into a Batting Mat comprised of multiple individual layers of the claim 2 processed biomass mat layered one atop another to create a fairly uniform biomass layer from the raw biomass;

4. A composition of matter as claimed in claim 3 wherein said Batting Mat material is subjected to a phased multi-wash solvent system preferably using hexane or other non-polar solvent solutions sequentially selected for removal of hydrocarbon oil constituents;

5. A composition of matter as claimed in claim 4 wherein said phased multi-wash system is refined by a continuous system of washing solvents through the Batting Mat using gravity or pressurized solvent flows to achieve the most economical level of gradient of solvent/oil mixture for extraction;

6. A composition of matter as claimed in claim 5 further comprising the steps of processing the solvent saturated batting mat through an expectoration system of roller presses to prepare the Batting Mat material to be sequentially resubmitted to the phased multi-wash solvent system as claimed in claim 5;

7. A composition of matter as claimed in claim 6 further comprising the steps of completion of the expectoration and extraction of the hydrocarbon oils from the batting mat by subjecting the material processed under claim 6 to physical and thermal processes to fully extract and drive off the solvents for recovery;

8. A composition of matter as claimed in claim 7 wherein said waste biomass bagasse mat would be brought into an evaporator/boiler chamber where the remaining solvent would be driven off from the batting mat using heat and or negative pressure;

9. A composition of matter as claimed in claim 8 further comprising the steps of subjecting the liquid solution extracted in the process to a centrifugation system comprised of an array of centrifuges to separate and extract the Phytoleum hydrocarbon oil from the other components; and

10. A composition of matter as claimed in claim 9 further comprising the steps of refining the final product by the application of pressure and thermal processes to remove any remaining components from the Phytoleum hydrocarbon oil yielding Phytoleum including Tirucallene A and Tirucallene B and other oligomerized pentenes.

11. A process for producing Phytoleum--a composition of matter comprising of the creation of a low molecular weight hydrocarbon fluid exhibiting mainly oligomerized pentenes mainly comprised of 2-Methyl-2-Butene subunits as well as related plant isoprenoids composed of 2-Methyl-1-Butene subunits and other hydrocarbons from Euphorbia tirucalli biomass through the process of the extraction and refinement in making the same composition through the creation of a solvent permeable batting mat and a multi-phase solvent extraction comprising the steps of:

12. A process for producing Phytoleum--a composition of matter as claimed in claim 11 further comprising the step(s) of the manufacture of a fibrous batting mat from the fresh biomass of Euphorbia tirucalli by applying compressive and shearing forces to the biomass to create a material that is conducive and efficient for solvent flow and extraction through a three (3) step process: (a) the raw biomass of Euphorbia tirucalli is processed for the reduction of particle size achieved by application of a hammermill crushing of the fresh biomass of Euphorbia tirucalli; then, (b) the crushed raw biomass of Euphorbia tirucalli is subjected to shearing forces from a rotating knives blade array to orient the fibrous strands in a parallel arrangement; then, (c) the strands of the sheared Euphorbia tirucalli are compressed by passing the hammered and sheared Euphorbia tirucalli biomass through a series of sets of press rollers to expectorate fluids and prepare the biomass mat for batting;

13. A process for producing Phytoleum--a composition of matter as claimed in claim 12 wherein said Euphorbia tirucalli processed biomass is amalgonated by the Batt Maker into a Batting Mat comprised of multiple individual layers of the claim 12 processed biomass mat layered one atop another to create a fairly uniform biomass layer from the raw biomass;

14. A process for producing Phytoleum--a composition of matter as claimed in claim 13 wherein said Batting Mat material is subjected to a phased multi-wash solvent system preferably using hexane or other non-polar solvent solutions sequentially selected for removal of hydrocarbon oil constituents;

15. A process for producing Phytoleum--a composition of matter as claimed in claim 14 wherein said phased multi-wash system is refined by a continuous system of washing solvents through the Batting Mat using gravity or pressurized solvent flows to achieve the most economical level of gradient of solvent/Phytoleum oil mixture for extraction;

16. A process for producing Phytoleum--a composition of matter as claimed in claim 15 further comprising the steps of processing the solvent saturated batting mat through an expectoration system of roller presses to prepare the Batting Mat material to be sequentially resubmitted to the phased multi-wash solvent system as claimed in claim 15;

17. A process for producing Phytoleum--a composition of matter as claimed in claim 16 further comprising the step(s) of completion of the expectoration and extraction of the hydrocarbon oils from the batting mat by subjecting the material processed under claim 16 to physical and thermal processes to fully extract and drive off the solvents for recovery;

18. A process for producing Phytoleum--a composition of matter as claimed in claim 17 wherein said waste biomass bagasse mat would be brought into an evaporator/boiler chamber where the remaining solvent would be driven off from the batting mat using heat and or negative pressure;

19. A process for producing Phytoleum--a composition of matter as claimed in claim 18 further comprising the steps of subjecting the liquid solution extracted in the process to a centrifugation system comprised of an array of centrifuges to separate and extract the Phytoleum hydrocarbon oil from the other components; and

20. A process for producing Phytoleum--a composition of matter as claimed in claim 19 further comprising the steps of refining the final product by the application of pressure and thermal processes to remove any remaining components from the Phytoleum hydrocarbon oil yielding Phytoleum including Tirucallene A and Tirucallene B and other oligomerized pentenes.
Description



CROSS REFERENCE TO RELATED APPLICATIONS

[0001] Not Applicable

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

[0002] Not Applicable

DESCRIPTION OF ATTACHED APPENDIX

[0003] Not Applicable

BACKGROUND OF THE INVENTION

[0004] This invention relates generally to the field of the manufacture of hydrocarbon fuels and more specifically to a composition of matter comprising of the creation of a low molecular weight hydrocarbon fluid exhibiting mainly oligomerized pentenes mainly comprised of 2-Methyl-2-Butene subunits as well as related plant isoprenoids composed of other isoprene derived 2-Methyl-1-Butene subunits and other hydrocarbons from Euphorbia tirucalli biomass and a process for the extraction and refinement in making the same composition through the creation of solvent permeable batting mat and a multi-phase solvent extraction methodology.

[0005] Hydrocarbons are the source of many fuel and chemical feedstocks used for industry and commerce in the world. Petroleum is the predominant source of these hydrocarbons. This petroleum is sourced from geological deposits located beneath the earth. These hydrocarbons are then refined and reformed and used as source chemicals for fuels and feedstocks. Traditionally these hydrocarbons are sourced from geological resources. However, hydrocarbons can be found in most living organisms. As hydrocarbons are produced by living organisms, these organisms can be cultivated and processed for use as source hydrocarbons. The ideal organisms for use as petroleum substitutes use the power of the Sun to fully reduce carbon dioxide into source hydrocarbons.

[0006] Higher plants produce hydrocarbon compounds composed primarily of isoprenoids. These are often in the form of terpenes made from pentene subunits. Most plants produce these isoprenoid terpenes in small amounts and utilize them to form more complex biochemicals. But some plants produce terpenes as a major metabolic product that can form a plurality of total dry biomass. A prominent example is Euphorbia tirucalli. The biochemicals in this species are very low in molecular weight and are mainly hydrocarbon. Plants that isolate and concentrate large amounts of hydrocarbons can be found often in the Pinaceae, Myrtaceae, Styraceae and Euphorbiaceae families. These are more commonly known as the pine, myrtle, styrax and spurge families. Pines from antiquity to early modern times had their hydrocarbons used as tar for naval stores, or terpentine for cleaning solvents. Myrtles and styraxes generally yield more oxygenated and pleasant smelling hydrocarbons that are used in cough drops and vapor rubs containing Eucalyptus. Spurges are so named because their hydrocarbon products are often poisonous and cause the body to purge itself of "toxins" that were thought to cause disease before the discovery of bacteria. Euphorbia tirucalli itself is sometimes utilized as an herbal remedy in it's native ranges of Africa and the subject of modern cancer research.

[0007] Some members of the family Euphorbiaceae, Pinaceae, and Myrtlaceae in particular have very high levels of hydrocarbon present within tissues. Higher plants, such as Euphorbia tirucalli, produce hydrocarbons primarily from isoprene derived pentenes, 2-Methyl-2-Butene, and 2-Methyl-1-Butene. These pentenes are then constructed via cellular metabolism into other chemicals such as hormones, energy stores, or defense chemicals. Another unique isoprene derived class of molecules are rubbers. Rubbers are diene polymers composed of long poly-isoprene chains and can have a wide range of molecular weights depending on the number of isoprene monomers. Euphorbia tirucalli has a relatively low molecular weight group of oligomerized pentene metabolites, made of a few monomers, and the invention actually facilitates and selects for lower molecular weight hydrocarbons via batt solvent action. Herbaceous hydrocarbon bearing plants that produce large amounts of liquid terpenes are ideal for use in this invention. This invention focuses on Euphorbia tirucalli as the preferred plant for use in this invention due to its unique botanical structure and agronomic characteristics.

[0008] Attempts in the prior art have focused on enzyme and pyrolysis based assistance in elevating levels of hydrocarbon recovered per unit biomass of other plants with similar botanical and hydrocarbon bearing characteristics. The prior art suffered from inefficiencies due to the energy costs required to achieve pyrolysis, the heat generated in the process, and the costs to derive the enzymes required for processing the biomass and extracting hydrocarbons. The prior art also suffered from inefficient and unpredictable yields of hydrocarbons from the raw biomass feedstocks. These early inventions existed in an environment of low oil prices coupled with less knowledge of plant agronomy and biochemistry. Today oil prices are much higher, making the benefit of these inventions per unit of biomass less economically attractive.

[0009] The use of plant hydrocarbons is not new, but a novelty of this invention deals with a process isolating and selecting for petroleum-like hydrocarbons from hydrocarbon bearing plants--particularly Euphorbia tirucalli--for the creation of a composition of matter to be used as a petroleum substitute. The nature of this invention includes a process for preparing and executing a low temperature solvent extraction of plant hydrocarbon. This invention develops a simpler and more economic way of yielding a composition of matter suitable as a petroleum substitute, Phytoleum, from plant biomass in a continuous process focusing on Euphorbia tirucalli as the preferred plant for use.

BRIEF SUMMARY OF THE INVENTION

[0010] The primary object of the invention is to provide for the creation of a new hydrocarbon fluid fuel source to be called Phytoleum.

[0011] Another object of the invention is to provide for the creation of a renewable hydrocarbon fluid fuel source that is carbon neutral.

[0012] A further object of the invention is to provide for the creation of a hydrocarbon fluid fuel source that is compatible with existing means of distribution and augmentation of existing petroleum-based fuels.

[0013] Still yet another object of the invention is to provide for the creation of a plant based source for hydrocarbon fluid fuel that is sufficiently high yielding to be economically viable.

[0014] Another object of the invention is to provide a process for the efficient extraction and refinement of naturally occurring hydrocarbon elements in plant based organic material.

[0015] Another object of the invention is to provide a process for the utilization of solvents in the extraction and refinement of naturally occurring hydrocarbon elements in plant based organic material.

[0016] A further object of the invention is to identify Euphorbia tirucalli biomass in the process of the extraction and refinement of a new hydrocarbon fluid fuel source.

[0017] Other objects and advantages of the present invention will become apparent from the following descriptions, taken in connection with the accompanying drawings, wherein, by way of illustration and example, an embodiment of the present invention is disclosed.

[0018] In accordance with a preferred embodiment of the invention, there is disclosed the creation of a composition of matter comprising of a low molecular weight hydrocarbon fluid comprised mainly of oligomerized pentenes chief among those being 2-Methyl-2-Butene subunits as well as related plant isoprenoids composed of 2-Methyl-1-Butene subunits and other hydrocarbons from Euphorbia tirucalli biomass and a process for the extraction and refinement in making the same composition through the creation of solvent permeable batting mat and a multi-phase solvent extraction.

[0019] In accordance with a preferred embodiment of the invention, there is disclosed a process for producing Phytoleum--a composition of matter comprising of the creation of a low molecular weight hydrocarbon fluid comprised mainly of oligomerized pentenes chief among those being 2-Methyl-2-Butene subunits as well as related plant isoprenoids composed of 2-Methyl-1-Butene subunits and other hydrocarbons from Euphorbia tirucalli biomass through the process of the extraction and refinement in making the same composition through the creation of a solvent permeable batting mat and a multi-phase solvent extraction comprising the steps of subjecting Euphorbia tirucalli biomass to compressive and shear forces forms a solvent permeable mat of biomass, producing from Euphorbia tirucalli biomass a fibrous solvent permeable batting mat, subjecting the batting mat to a multiple phased solvent wash system, and refining the end product for isolation of the Phytoleum end product.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] The drawings constitute a part of this specification and include exemplary embodiments to the invention, which may be embodied in various forms. It is to be understood that in some instances various aspects of the invention may be shown exaggerated or enlarged to facilitate an understanding of the invention.

[0021] FIG. 1 is a depiction of Euphorbia tirucalli biomass.

[0022] FIG. 2 is a high-level flow chart schematic diagram of the overall process of converting raw biomass into Phytoleum, water, water solubles, and bagasse.

[0023] FIG. 3 is a illustrated block diagram of the batt making process, consisting of two parts; FIG. 3 Part 1 and FIG. 3 Part 2.

[0024] FIG. 3 Part 1 is a illustrated block diagram of the initial biomass handling in the batt making process and consists of FIG. 3, Part 1 A, B, C and D.

[0025] FIG. 3, Part 1(A) is a depiction of raw biomass entering the process chain.

[0026] FIG. 3, Part 1(B) is a depiction of a hammermill pulverizing biomass.

[0027] FIG. 3, Part 1(C) is a depiction of biomass after a reduction on volume.

[0028] FIG. 3, Part 1(D) is a depiction of a rotating knives blade array shredding the biomass and ginning the fibers.

[0029] FIG. 3 Part 2 is a illustrated block diagram of the batt making process after initial handling; consisting of FIG. 3, Part 2 E, F, G and H.

[0030] FIG. 3, Part 2(E) is a depiction of crushed and cut biomass.

[0031] FIG. 3, Part 2(F) is a depiction of a press roller and manifold.

[0032] FIG. 3, Part 2(G) is a depiction of aligning the biomass vertically to produce a batt with parallel grain.

[0033] FIG. 3, Part 2(H) is a depiction of the final batt.

[0034] FIG. 4 is a side view representation of a single solvent multiphase wash unit

[0035] FIG. 5 is a side view representation of a batt solvent recovery system.

[0036] FIG. 6 is a illustrated block diagram of the liquid fraction handling and lipophyllic and hydrophyllic fraction separation, consisting of three parts.

[0037] FIG. 6 includes a depiction of a liquid fraction collection holding tank.

[0038] FIG. 6 includes a depiction of a clarifying process to remove contaminants.

[0039] FIG. 6 includes a depiction of a centrifuge unit separating lipophyllic and hydrophyllic fractions.

[0040] FIG. 7 is a high-level schematic of a simple distillation and solvent recovery unit.

[0041] FIG. 8 is a depiction of the major chemical subunits found in Phytoleum.

[0042] FIG. 9 is a depiction of chemicals found in the Phytoleum naphtha fraction; 2,6-dimethyl-2,6-butadiene or "Tirucallene A", and 2,7-dimethyl-2,6-butadiene or "Tirucallene B", as well as an example monoterpene limonene.

[0043] FIG. 10 is a depiction of chemicals found in the Phytoleum grease fraction; farnesene, phytane, and squalene.

[0044] FIG. 11 is a depiction of example chemicals found in the Phytoleum tar fraction; consisting of Parts 1 and 2.

[0045] FIG. 11 Part 1 is a depiction of chlorophyll a.

[0046] FIG. 11 Part 2 is a depiction of beta carotene and lupenone.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0047] Detailed descriptions of the preferred embodiment are provided herein. It is to be understood, however, that the present invention may be embodied in various forms. Therefore, specific details disclosed herein are not to be interpreted as limiting, but rather as a basis for the claims and as a representative basis for teaching one skilled in the art to employ the present invention in virtually any appropriately detailed system, structure or manner.

[0048] The invention relates to a process by which a composition of matter being a liquid hydrocarbon mixture is extracted from Euphorbia tirucalli biomass via pulverization of said biomass then a multiple phased solvent wash and recovery is employed to purify the material and recover the solvent from the plant hydrocarbon. The composition of matter yielded as a hydrocarbon material is suitable for use as a fuel or chemical feedstock.

[0049] A schematic representation of the overall process is shown in FIG. 2.

[0050] The first step in the process is the formation of a fibrous batting mat from the fresh biomass of Euphorbia tirucalli (see FIG. 3 Part 1(A)) which will allow for efficient flow of solvent through the material to remove hydrocarbon oils. This is achieved by applying compressive and shearing forces to the biomass to create a material that is conducive and efficient for solvent flow and extraction. The preferred methodology for the pulverizing of Euphorbia tirucalli involves three main steps. First is the particle reduction size achieved by a hammermill (see FIG. 3 Part 1(B)). Next the Euphorbia tirucalli should be subjected to shearing forces from a rotating knives blade array (see FIG. 3 Part 1(D)). This orients the strands much like a cotton gin to a parallel arrangement and readies them for ball making (see FIG. 3 Part 2(E)). Finally a run through a set of press rollers expectorates juice and prepares the biomass for batting (see FIG. 3 Part 2(F)). Expectoration makes batting easier and will later facilitate solvent flow.

[0051] The material is then amalgonated into a batting. The individual layers of the biomass mat are layered one atop another to create a fairly uniform biomass layer from the raw biomass, which necessary for efficient processing due to its biological origins in the field raw biomass has a high degree of physical variability. This batt making is key for creating a biomass product of fairly uniform mechanical properties for the solvent wash machinery. A schematic of the batt maker overall process is shown in both FIG. 3 Part 1(A, B, C, and D) together with FIG. 3 Part 2(E,F,G, and H).

[0052] The batt maker takes the material from the pulverization unit and arranges it into multiple layers. This is done by moving the pulverized material into separate streams via a manifold and reorienting the layers one on top of another vertically to form a continuous batt of material with a similar consistency for the solvent wash (see FIG. 3 Part 2(H)). The preferred methodology for preparation the batt is for the batt to be constructed in layers of parallel strand orientation. This is best for solvent flow and the material fibers when processed to a width of one-quarter inch or less in order to have sufficient "cross cling" to allow for strength during processing. The number of layers in the bat will be determined by the volume of throughput of the solvent extractor in the next phase. The batt manufacture is important to maximize Phytoleum yield, because the consistency of the mat will allow for predictable levels of solvent flow for optimum oil extraction.

[0053] In the dry milling of this biomass, meaning no additional process water is added during milling, an aqueous solution will also be produced. This aqueous portion arising from the milling will be recovered and added into the solvent extraction stream or juice as shown in FIG. 3, Part 2(F).

[0054] The overall resulting product from this first series of steps is a solvent permeable fibrous mat of material suitable for solvent extraction (see FIG. 3, Part 2(H)) and a liquid aqueous solution representing lysed cellular contents and vascular water that was in the fresh biomass that will be defined as press water or "juice" (see FIG. 3, Part 2(H)).

[0055] The next step is to subject the batt material to a phased multi-wash solvent system. The solvent of preferable use in the methodology is hexane however other non-polar solvent solutions can be used in this process. The multi-wash solvent system also is conducive to multiple types of solvent solutions if a sequentially selected removal of hydrocarbon oil constituents is desired.

[0056] The multi phase wash system is defined by a continuous system of washing solvent through the mat to where a gradient of solvent/oil mixture is achieved. The preferable method would be to use gravity, however other systems using pressure and mechanical forces could be used to achieve a similar effect. The solvent/oil gradient is crucial to this aspect of the invention as this allows for the most economical level of solvent to be used to extract the oil. This correlates with lower volumes of solvent needed to extract the hydrocarbon oil to minimize solvent loss and decrease the per unit energy needed to recover the solvent after extraction. The schematic representation of the overall unit is shown in FIG. 4.

[0057] Once the solvent has flowed through the mat it is collected at the loading end of the unit as washer outflow as shown in FIG. 4. Also an expectorating system consisting of a roll press is used to expectorate solvent from within the mat before exiting the unit as batt outflow as shown in FIG. 4. The preferred methodology for efficient operation of the expectoration system for processing of Euphorbia tirucalli biomass consists of expectorator rollers oriented upward against gravity as shown in the FIG. 4. This is to allow for the expectorated juice and solvent solution to be removed from the mat before it is able to be reabsorbed through capillary action of the batting mat itself. An alternative or supplemental methodology is to use a pressure scheme or roller sequence to accomplish the same objective of removing the liquid while not allowing its re-uptake into the mat. The mat would then enter another solvent wash unit. The number of units utilized in production would differ based on plant hydrocarbon content, throughput speed of the plant, and the number and types of different solvents utilized.

[0058] After the mat has transited though all solvent wash units, it would move to a solvent recovery unit to recover the solvent remaining in the mat for collection and reuse. The mat would be heated to drive off solvent until the levels remaining in the mat are suitable for system discharge.

[0059] In this manner, the waste biomass bagasse mat would be brought into an evaporator/boiler chamber as shown in FIG. 5. The remains of the solvent would be driven off from the batting mat using heat with or without negative pressure. This is done to recover solvent for economical processing, as well as reduce waste chemical discharge to the environment to levels compliant with governmental regulations. The size and operating conditions of the unit would correspond to throughput and the levels and type of solvent remaining in the batting mat depending on substrate.

[0060] The solution decanted from the washer units will consist of a mixture of water, water solubles, and a solvent/Phytoleum mixture. The press water or juice from the matting step would also be added to the stream as the juice will contain some oil solubles in its raw state. This stream of liquids and solubles would be subjected to a clarification process to remove any dirt or foreign objects that may still be in the liquids from the washer units. Water and oil solubles need to be separated from the stream and this is best achieved via centrifugation. The schematic representations for these steps for separation of the oils and water are shown in FIG. 6 although other separation schemes such as a gravity driven separation system could be utilized, albeit more slowly. To yield a continuous system, an array of centrifuges would be employed. In this manner, the juice/solvent/Phytoleum mixture is brought into a centrifugal array.

[0061] The mixture to be centrifuged exists in two phases--One lipophyllic, the solvent/Phytoleum solution, and one hydrophillic, the juice. After centrifugation, the solvent/Phytoleum oil mixture would head to an evaporator or distillation column to remove the solvent as shown in FIG. 7. The solvent could be recovered and reused. The mixed solution of Phytoleum and solvent are brought to a boil, where the hexane is being removed from the solution. This can be achieved at fairly low temperatures of about 70 to 80 degrees Celsius for hexane and pressures at around 1 atmosphere while most other non-polar solvents will require 80 to 90 degrees Celsius at around 1 atmosphere. This decreases the necessary complexity of the system, which would translate to lower costs and ease of adoption of the technology. Alternative methodologies utilize different pressure and temperature combinations which would also result in the removal of solvent including vacuum distillation. The simple distillation schematic as shown in FIG. 7 could then be followed by a fractional distillation to further process and refine the resulting Phytoleum into its constituent fractions.

[0062] The Phytoleum itself has fairly unique characteristics compared to vegetable oils, fats, and other more well known lipophyllic biological derivatives. In particular the Euphorbia tirucalli Phytoleum is comprised of terpenes, chlorophyll, carotenes, as well as some other until now less defined and less well known materials. These metabolites which make up a plurality of the Euphorbia tirucalli Phytoleum are primarily of oligomerized pentenes. These metabolites that comprise the Phytoleum oil have large portions of 2-Methyl-2-Butene subunits. These are low molecular weight hydrocarbons with very desirable properties for the petroleum industry. They are sometimes manufactured as gasoline additives and plastic polymer precursors. They can be directly distilled and utilized as a fuel or in combination with the other Phytoleum constituents be refined into a suite of light petrochemical products. The Building Blocks of the composition are shown in FIG. 8 and are comprised of Isoprene, 2-Methyl-2-Butene, and 2-Methyl-1-Butene.

[0063] In the preferred exercise of the invention the process yields a composition of matter, Phytoleum (see FIG. 9, FIG. 10, FIG. 11, Part 1, and FIG. 11, Part 2), of which the bulk is biologically synthesized from pentenes such that the number of carbons in Phytoleum chemicals is almost always a multiple of five. In Euphorbia tirucalii derived Phytoleum the number of carbons is also usually a multiple of ten. Given that the number of carbons in a molecule is usually one of the greatest factors determining hydrocarbon characteristics, and that pentene derived hydrocarbons are usually only liquid up to C30, the Phytoleum can be separated after extraction into three distinct fractions; naphtha, grease, and tar (see FIG. 9, FIG. 10, FIG. 11, Part 1, and FIG. 11, Part 2).

[0064] The lightest and ideally most abundant fraction is the Phytoleum naphtha fraction (C10, rarer C5, C15) as shown in FIG. 9. This is a clear to pale yellow liquid with a high vapor pressure and a boiling point from 30 to 200 degrees Celsius exhibiting a boiling point of mainly 170 to 180 degrees Celsius. The naptha fraction is comprised mainly of 2,6-dimethyl-2,6-butadiene and 2,7-dimethyl-2,6-butadiene (Tirucallene A and Tirucallene B), with lesser concentrations of farnesene and any other monoterpenes such as Limonene (see FIG. 9). The second fraction is a Phytoleum grease (C20, mainly C30, rarer C15, C25) as shown in FIG. 10. This is a light to golden brown liquid comprised mainly of squalene with lesser concentrations of farnesene geranylgeranene and the related phytanes. This fraction will also hold any diterpenes that may be present in the Phytoleum. The third fraction is a Phytoleum tar (C35 and up, some C30, also non pentene hydrocarbons) some examples of which are shown in FIG. 11, Part 1 and in FIG. 11, Part 2. This fraction holds all the solid and semisolid hydrocarbons and is usually dark green due to the presence of chlorophyll. This fraction is comprised of rubbers, carotenes, chlorophyll, and larger terpenoid molecules. Ketone groups are also present in this fraction in sterols and chlorophyll itself. However there are little to no alcohols.

[0065] While the invention has been described in connection with a preferred embodiment, it is not intended to limit the scope of the invention to the particular form set forth, but on the contrary, it is intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims. Although the present invention has been described in considerable detail with reference to certain preferred versions thereof, other versions are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of the preferred versions contained therein. Any element in a claim that does not explicitly state "means for" performing a specified function, or "step for" performing a specified function, is not to be interpreted as a "means" or "step" clause as specified in 35 U.S.C. Section 112 Paragraph 6. In particular, the use of the "step of" in the claims is not intended to invoke the provisions of 35 U.S.C. Section 112 Paragraph 6.

[0066] The reader's attention is directed to all papers and documents which are filed concurrently with this specification and which are open to public inspection with this specification, and the contents of all such papers and documents are incorporated herein by reference. All features disclosed in this specification (including any accompanying claims, abstract, and drawings) may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise. Unless expressly stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed