Engineered Microorganisms With Enhanced Fermentation Activity

Picataggio; Stephen ;   et al.

Patent Application Summary

U.S. patent application number 13/382903 was filed with the patent office on 2012-07-19 for engineered microorganisms with enhanced fermentation activity. Invention is credited to Jose Miguel LaPlaza, Stephen Picataggio, Kirsty Anne Lily Salmon.

Application Number20120184007 13/382903
Document ID /
Family ID43429863
Filed Date2012-07-19

United States Patent Application 20120184007
Kind Code A1
Picataggio; Stephen ;   et al. July 19, 2012

ENGINEERED MICROORGANISMS WITH ENHANCED FERMENTATION ACTIVITY

Abstract

Provided herein are genetically modified microorganisms that have enhanced fermentation activity, and methods for making and using such microorganisms.


Inventors: Picataggio; Stephen; (Carlsbad, CA) ; Salmon; Kirsty Anne Lily; (Carlsbad, CA) ; LaPlaza; Jose Miguel; (Carlsbad, CA)
Family ID: 43429863
Appl. No.: 13/382903
Filed: July 9, 2010
PCT Filed: July 9, 2010
PCT NO: PCT/US2010/041607
371 Date: March 15, 2012

Related U.S. Patent Documents

Application Number Filing Date Patent Number
61224430 Jul 9, 2009
61316780 Mar 23, 2010
61334097 May 12, 2010

Current U.S. Class: 435/161
Current CPC Class: Y02E 50/16 20130101; C12N 9/92 20130101; Y02E 50/17 20130101; Y02E 50/10 20130101; C12P 7/10 20130101; C12N 9/88 20130101
Class at Publication: 435/161
International Class: C12P 7/06 20060101 C12P007/06

Claims



1-35. (canceled)

36. A method for producing ethanol, comprising contacting an engineered yeast with a feedstock that contains one or more hexose sugars under conditions in which the yeast synthesizes ethanol, which yeast comprises: (i) alterations that add or increase a phosphogluconate dehydratase activity, a 2-keto-3-deoxygluconate-6-phosphate aldolase activity, and a 6-phosphogluconolactonase activity; (ii) alterations that reduce or substantially remove a phosphofructokinase 1 (PFK1) activity, phosphofructokinase 2 (PFK2) activity, or PFK1 and PFK2 activity; and (iii) a nucleotide sequence identification tag having a nucleotide sequence chosen from the following six (6) nucleotide sequences: TABLE-US-00097 (SEQ ID NO: 448) GCGTCCATACCGGACCGTCCATCCGTCCCGGCGGGCTATCGTTAGTCCC CGCGAGCGGATTCCGAGGTGTCGATGACGCGCTCGGTCCCCGCATCTCG GGGTGGCCCGCACCTAGCTTAAGCGGACTACGAAGCGCGGGGCGAGCGG CGACGATCGCGTACTCACACTCGGACCTCGCGGGTCGGCTCGGAGCCCT GGTCA (SEQ ID NO: 449) AGCGGTCAGTGCACGGGACGCGATCGGGCACCCTCGACGCAGCGATGGG CCGTGCGTCGTGTAGTCCGATAGTGCCGGCGTCGCTCGGTAAGCCCCTT ATACCTGCGCGCTGGCGAGAGATGGGTTCGCGAGTCTAGCGCGATCGCT CTAGAGGGTCCAGGAGTACCTACACGGCGCGAGGCGCGGACATCCTAGG GCGCA (SEQ ID NO: 450) CCCCTGCGTTTGCCGAGCGACGAGTCCTACACCCTGTCCGCGCCCGAGC AGGGTCGTCCCCGCGAACCGACGGATGCGCGGCCCGAATCGCCTAGACC CCTACGGGGCGGCTCGCTCGGCCCCGCCTGACCGGTCGATCCCACGAGA CCCCGCCCTATAGGGAGAGCACCGACCCGCCTCCTCGGGCCTTACGGCG TGCGA (SEQ ID NO: 451) GCCAGTGTAGAGATCCGGGGATCCCCAGCGCCTGGAGCTAGGCCCACGG CGTCTGACCGGGTGTACCGGGCCCCCTAGGACGGGTGCGCCCGTAGTCC GTCTGCGAGGGGGCCGTCCGGTCGGGGGCATCCGGCGCTCCGCGGGGAG GCGCTACGTGCCCGACCGGGGGAGTCGAGTCTCTATGCTCGCGACCGCG TGCGA (SEQ ID NO: 452) AAGCGCGCACTACGTCAGGCATAGCGTACTGGGCTTGCGGAGCCACGCG GGCGCGGAGCGGGCCGGTTGAGTGCGGGATAGACGGACCGTACGCATGC CTCAAGTCGACGGTACGGGGGGCAGGGTAGCTGGGATCCGAGGCGGGTA GGCGTCGGCCGCGACTGTGCCCGTACGACGGGAGAACCCCCCGCGCGAG TTGGA (SEQ ID NO: 453) ACGTCGGCAGGCCCGCTCGGTTCCGAGCACCGGATCGACGCTACACGAG GCCCGACACTAGGCGCGTACTCCGGGGGGGTCCGCCTCCGTCCCGTGAG TATCGCGGGCGGGAACAGGGCGGGCTGCCGGGGCCGACCGGTGTGGGGC GTGACTCCGACCGACTCGGGCGAGGGCCGCCTAGTCGCGAAGGACGCGC GACCA

37. The method of claim 36, wherein the yeast is a Saccharomyces spp. yeast.

38. The method of claim 37, wherein the yeast is a Saccharomyces cerevisiae yeast.

39. The method of claim 36, wherein the engineered yeast synthesizes ethanol to about 85% to about 99% of theoretical yield.

40. The method of claim 36, comprising recovering ethanol synthesized by the engineered yeast.

41. The method of claim 36, wherein the conditions are fermentation conditions.

42. The method of claim 36, wherein the yeast comprises heterologous polynucleotides that encode independently a phosphogluconate dehydratase enzyme and a 2-keto-3-deoxygluconate-6-phosphate aldolase enzyme.

43. The method of claim 42, wherein the polynucleotides encoding the phosphogluconate dehydratase enzyme and the 3-deoxygluconate-6-phosphate aldolase enzyme independently are from an Escherichia spp. microbe or Psuedomonas spp. microbe.

44. The method of claim 43, wherein the Escherichia spp. microbe is an Escherichia coli strain.

45. The method of claim 43, wherein the Pseudomonas spp. microbe is a Pseudomonas aeruginosa strain.

46. The method of claim 43, wherein the polynucleotide that encodes the phosphogluconate dehydratase enzyme is from a Pseudomonas aeruginosa strain.

47. The method of claim 46, wherein the polynucleotide that encodes the phosphogluconate dehydratase enzyme encodes an amino acid sequence comprising the polypeptide sequence of SEQ ID NO: 70.

48. The method of claim 36, wherein the yeast comprises a heterologous polynucleotide, or multiple copies of an endogenous polynucleotide, that encodes a 6-phosphogluconolactonase enzyme.

49. The method of claim 48, wherein the polynucleotide that encodes the 6-phosphogluconolactonase enzyme encodes an amino acid sequence comprising the polypeptide sequence of SEQ ID NO: 120.

50. The method of claim 36, wherein the yeast comprises a genetic alteration that increases or adds a glucose-6-phosphate dehydrogenase activity.

51. The method of claim 50, wherein the yeast comprises a heterologous polynucleotide that encodes a glucose-6-phosphate dehydrogenase enzyme, or wherein the yeast comprises multiple copies of an endogenous polynucleotide that encodes a glucose-6-phosphate dehydrogenase enzyme.

52. The method of claim 51, wherein the polynucleotide that encodes the glucose-6-phosphate dehydrogenase enzyme encodes an amino acid sequence comprising the polypeptide sequence of any one of SEQ ID NOS: 119, 123, 127 and 129.

53. The method of claim 36, wherein the yeast comprises an alteration in one or more polynucleotides that inhibits production of one or more enzymes chosen from a phosphoglucoisomerase (PGI) enzyme, 6-phosphogluconate dehydrogenase (decarboxylating) enzyme, transketolase enzyme, transaldolase enzyme, or combination thereof.

54. The method of claim 53, wherein the transketolase enzyme is encoded by a TKL-1 coding sequence comprising SEQ ID NO: 428.

55. The method of claim 53, wherein the transaldolase is encoded by a TAL-1 coding sequence comprising SEQ ID NO: 426.
Description



RELATED PATENT APPLICATION(S)

[0001] This patent application is a national stage of international patent application no. PCT/2010/041607 filed Jul. 9, 2010, entitled ENGINEERED MICROORGANISMS WITH ENHANCED FERMENTATION ACTIVITY, naming Stephen Picataggio, Kirsty Anne Lily Salmon, and Jose Miguel LaPlaza as inventors, and designated by Attorney Docket No. VRD-1002-PC2, which claims the benefit of U.S. provisional patent application No. 61/224,430 filed on Jul. 9, 2009, entitled USE OF ENGINEERED MICROORGANISMS WITH ENHANCED FERMENTATION ACTIVITY, naming Stephen Picataggio as inventor and designated by Attorney Docket No. VRD-1002-PV; claims the benefit of U.S. provisional patent application No. 61/316,780 filed on Mar. 23, 2010, entitled USE OF ENGINEERED MICROORGANISMS WITH ENHANCED FERMENTATION ACTIVITY, naming Stephen Picataggio as inventor and designated by Attorney Docket No. VRD-1002-PV2; and claims the benefit of U.S. provisional patent application No. 61/334,097 filed on May 12, 2010, entitled ENGINEERED MICROORGANISMS WITH ENHANCED FERMENTATION ACTIVITY, naming Stephen Picataggio as inventor and designated by Attorney Docket No. VRD-1002-PV3. The entire contents of the foregoing patent applications are incorporated herein by reference, including, without limitation, all text, tables and drawings.

SEQUENCE LISTING

[0002] The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Feb. 10, 2012, is named VRD12US2.txt and is 410,500 bytes in size.

FIELD

[0003] The technology relates in part to genetically modified microorganisms that have enhanced fermentation activity, and methods for making and using such microorganisms.

BACKGROUND

[0004] Microorganisms employ various enzyme-driven biological pathways to support their own metabolism and growth. A cell synthesizes native proteins, including enzymes, in vivo from deoxyribonucleic acid (DNA). DNA first is transcribed into a complementary ribonucleic acid (RNA) that comprises a ribonucleotide sequence encoding the protein. RNA then directs translation of the encoded protein by interaction with various cellular components, such as ribosomes. The resulting enzymes participate as biological catalysts in pathways involved in production of molecules utilized or secreted by the organism.

[0005] These pathways can be exploited for the harvesting of the naturally produced products. The pathways also can be altered to increase production or to produce different products that may be commercially valuable. Advances in recombinant molecular biology methodology allow researchers to isolate DNA from one organism and insert it into another organism, thus altering the cellular synthesis of enzymes or other proteins. Such genetic engineering can change the biological pathways within the host organism, causing it to produce a desired product. Microorganic industrial production can minimize the use of caustic chemicals and production of toxic byproducts, thus providing a "clean" source for certain products.

SUMMARY

[0006] Provided herein are engineered microorganisms having enhanced fermentation activity. In certain non-limiting embodiments, such microorganisms are capable of generating a target product with enhanced fermentation efficiency by, for example, (i) preferentially utilizing a particular glycolysis pathway, which increases yield of a target product, upon a change in fermentation conditions; (ii) reducing cell division rates upon a change in fermentation conditions, thereby diverting nutrients towards production of a target product; (iii) having the ability to readily metabolize five-carbon sugars; and/or (iv) having the ability to readily metabolize carbon dioxide; and combinations of the foregoing. In some embodiments, a target product is ethanol or succinic acid.

[0007] Thus, provided in certain embodiments are engineered microorganisms that comprise: (a) a functional Embden-Meyerhoff glycolysis pathway that metabolizes six-carbon sugars under aerobic fermentation conditions, and (b) a genetic modification that reduces an Embden-Meyerhoff glycolysis pathway member activity upon exposure of the engineered microorganism to anaerobic fermentation conditions, whereby the engineered microorganisms preferentially metabolize six-carbon sugars by the Enter-Doudoroff pathway under the anaerobic fermentation conditions. In some embodiments, the genetic modification is insertion of a promoter into genomic DNA in operable linkage with a polynucleotide that encodes the Embden-Meyerhoff glycolysis pathway member activity. In certain embodiments, the genetic modification is provision of a heterologous promoter polynucleotide in operable linkage with a polynucleotide that encodes the Embden-Meyerhoff glycolysis pathway member activity. In some embodiments, the genetic modification is a deletion or disruption of a polynucleotide that encodes, or regulates production of, the Embden-Meyerhoff glycolysis pathway member, and the microorganism comprises a heterologous nucleic acid that includes a polynucleotide encoding the Embden-Meyerhoff glycolysis pathway member operably linked to a polynucleotide that down-regulates production of the member under anaerobic fermentation conditions. In certain embodiments, the Embden-Meyerhoff glycolysis pathway member activity is a phosphofructokinase activity. In some embodiments, the activity of one or more (e.g., 2, 3, 4, 5 or more) pathway members in an EM pathway is reduced or removed to undetectable levels.

[0008] Also provided in some embodiments are engineered microorganisms that comprise a genetic modification that inhibits cell division upon exposure to a change in fermentation conditions, where: the genetic modification comprises introduction of a heterologous promoter operably linked to a polynucleotide encoding a polypeptide that regulates the cell cycle of the microorganism; and the promoter activity is altered by the change in fermentation conditions. Provided also in certain embodiments are engineered microorganisms that comprise a genetic modification that inhibits cell division and/or cell proliferation upon exposure of the microorganisms to a change in fermentation conditions. In certain embodiments, the genetic modification inhibits cell division, inhibits cell proliferation, inhibits the cell cycle and/or induces cell cycle arrest. In some embodiments, the change in fermentation conditions is a switch to anaerobic fermentation conditions, and in certain embodiments, the change in fermentation conditions is a switch to an elevated temperature. In some embodiments, the polypeptide that regulates the cell cycle has thymidylate synthase activity. In certain embodiments, the promoter activity is reduced by the change in fermentation conditions. In some embodiments, the genetic modification is a temperature sensitive mutation.

[0009] Provided also in some embodiments are methods for manufacturing a target product produced by an engineered microorganism, which comprise: (a) culturing an engineered microorganism described herein under aerobic conditions; and (b) culturing the engineered microorganism after (a) under anaerobic conditions, whereby the engineered microorganism produces the target product. Also provided in some embodiments are methods for producing a target product by an engineered microorganism, which comprise: (a) culturing an engineered microorganism described herein under a first set of fermentation conditions; and (b) culturing the engineered microorganism after (a) under a second set of fermentation conditions different than the first set of fermentation conditions, whereby the second set of fermentation conditions inhibits cell division and/or cell proliferation of the engineered microorganism. In certain embodiments, the target product is ethanol or succinic acid. In some embodiments, the host microorganism from which the engineered microorganism is produced does not produce a detectable amount of the target product. In certain embodiments, the culture conditions comprise fermentation conditions, comprise introduction of biomass, comprise introduction of a six-carbon sugar (e.g., glucose), and/or comprise introduction of a five-carbon sugar (e.g., xylulose, xylose); or combinations of the foregoing. In some embodiments, the target product is produced with a yield of greater than about 0.3 grams per gram of glucose added, and in certain embodiments, a method comprises purifying the target product from the cultured microorganisms. In some embodiments, a method comprises modifying the target product, thereby producing modified target product. In certain embodiments, a method comprises placing the cultured microorganisms, the target product or the modified target product in a container, and in certain embodiments, a method comprises shipping the container. In some embodiments, the second set of fermentation conditions comprises an elevated temperature as compared to the temperature in the first set of fermentation conditions. In certain embodiments, the genetic modification inhibits the cell cycle of the engineered microorganism upon exposure to the second set of fermentation conditions. In some embodiments, the genetic modification inhibits cell proliferation, inhibits cell division, inhibits the cell cycle and/or induces cell cycle arrest upon exposure to the second set of fermentation conditions. In certain embodiments, the genetic modification inhibits thymidylate synthase activity upon exposure to the change in fermentation conditions, and sometimes the genetic modification comprises a temperature sensitive mutation.

[0010] Also provided in certain embodiments are methods for manufacturing an engineered microorganism, which comprise: (a) introducing a genetic modification to a host microorganism that reduces an Embden-Meyerhoff glycolysis pathway member activity upon exposure of the engineered microorganism to anaerobic conditions; and (b) selecting for engineered microorganisms that (i) metabolize six-carbon sugars by the Embden-Meyerhoff glycolysis pathway under aerobic fermentation conditions, and (ii) preferentially metabolize six-carbon sugars by the Enter-Doudoroff pathway under the anaerobic fermentation conditions. In some embodiments, the genetic modification is insertion of a promoter into genomic DNA in operable linkage with a polynucleotide that encodes the Embden-Meyerhoff glycolysis pathway member activity. The genetic modification sometimes is provision of a heterologous promoter polynucleotide in operable linkage with a polynucleotide that encodes the Embden-Meyerhoff glycolysis pathway member activity. In certain embodiments, the genetic modification is a deletion or disruption of a polynucleotide that encodes, or regulates production of, the Embden-Meyerhoff glycolysis pathway member, and the microorganism comprises a heterologous nucleic acid that includes a polynucleotide encoding the Embden-Meyerhoff glycolysis pathway member operably linked to a polynucleotide that down-regulates production of the member under anaerobic fermentation conditions. In some embodiments, the Embden-Meyerhoff glycolysis pathway member activity is a phosphofructokinase activity. In certain embodiments, the activity of one or more (e.g., 2, 3, 4, 5 or more) pathway members in an EM pathway is reduced or removed to undetectable levels. Provided also in some embodiments are methods for manufacturing an engineered microorganism, which comprise: (a) introducing a genetic modification to a host microorganism that inhibits cell division upon exposure to a change in fermentation conditions, thereby producing engineered microorganisms; and (b) selecting for engineered microorganisms with inhibited cell division upon exposure of the engineered microorganisms to the change in fermentation conditions. In certain embodiments, the change in fermentation conditions comprises a change to anaerobic fermentation conditions. The change in fermentation conditions sometimes comprises a change to an elevated temperature. In some embodiments, the genetic modification inhibits the cell cycle of the engineered microorganism upon exposure to the change in fermentation conditions. The genetic modification sometimes inhibits cell division, inhibits the cell cycle, inhibits cell proliferation and/or induces cell cycle arrest upon exposure to the change in fermentation conditions. In some embodiments, the genetic modification inhibits thymidylate synthase activity upon exposure to the change in fermentation conditions, and in certain embodiments, the genetic modification comprises a temperature sensitive mutation.

[0011] In certain embodiments pertaining to engineered microorganisms, and methods of making or using such microorganisms, the microorganism comprises a genetic modification that adds or alters a five-carbon sugar metabolic activity. In some embodiments, the microorganism comprises a genetic alteration that adds or alters xylose isomerase activity. In certain embodiments, the microorganism comprises a genetic alteration that adds or alters five-carbon sugar transporter activity, and sometimes the transporter activity is a transporter facilitator activity or an active transporter activity. In some embodiments, the microorganism comprises a genetic alteration that adds or alters carbon dioxide fixation activity, and sometimes the genetic alteration that adds or alters phosphoenolpyruvate (PEP) carboxylase activity. In certain embodiments, the microorganism comprises a genetic modification that reduces or removes an alcohol dehydrogenase 2 activity. In some embodiments the microorganism is an engineered yeast, such as a Saccharomyces yeast (e.g., S. cerevisiae), for example.

[0012] Additional embodiments can be found in Example 29: Examples of the embodiments. Certain embodiments are described further in the following description, examples, claims and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The drawings illustrate embodiments of the technology and are not limiting. For clarity and ease of illustration, the drawings are not made to scale and, in some instances, various aspects may be shown exaggerated or enlarged to facilitate an understanding of particular embodiments.

[0014] FIG. 1 depicts a metabolic pathway that produces ethanol as by product of cellular respiration. The solid lines represent activities present in the Embden-Meyerhoff pathway (e.g., aerobic respiration). Dashed lines represent activities associated with the Entner-Doudoroff pathway (e.g., anaerobic respiration). One or both pathways often can be operational in a microorganism. The level of activity of each pathway can vary from organism to organism. The arrow from FBP (e.g., Fructose-1,6-bisphosphate, also referred to as F-1,6-BP) to G3P (e.g., glcyeraldehyde-3-phosphate), illustrates wild type levels of conversion of FBP to two molecules of G3P. In the embodiments shown in FIGS. 2, 3 and 5 a smaller arrow from FBP to G3P is illustrated, indicating reduced or no conversion of FBP to G3P. The reduction in conversion of FBP to G3P illustrated in FIGS. 2, 3 and 5 is a result of the reduction or elimination of the previous activity that converts fructose-6-phosphate (F6P) to FBP (e.g., the activity of PFK).

[0015] FIG. 2 depicts an engineered metabolic pathway that can be used to produce ethanol more efficiently in a host microorganism in which the pathway has been engineered. The solid lines in FIGS. 2-5 represent the metabolic pathway naturally found in a host organism (e.g., Saccharomyces cerevisiae, for example). The dashed lines in FIGS. 2-5 represent a novel activity or pathway engineered into a microorganism to allow increased ethanol production efficiency. In FIG. 2 the activity of an enzyme in the Embden-Meyerhoff pathway, phosphofructokinase (e.g., PFK) is permanently or temporarily reduced or eliminated. The inactivation is shown as the "X" in FIG. 2. Disruption of the activity of PFK serves to inactivate the Embden-Meyerhoff pathway (EM pathway). To allow cells to survive with a non-functional PFK, two activities from the Entner-Doudoroff pathway (ED pathway) have been introduced into a host organism engineered with the reduced or non-functional EM pathway. The introduced activities allow survival with an inactivated EM pathway in addition to increased efficiency of ethanol production.

[0016] FIG. 3 depicts an engineered metabolic pathway that can be used to produce ethanol using xylose as a carbon source by introducing the activity into a microorganism. The engineered microorganism can convert xylose to xylulose in a single reaction using the introduced xylose isomerase activity. Xylulose then can be fermented to ethanol by entering the EM pathway. Engineered microorganisms also can use the increased efficiency of ethanol production associated with inactivation of the EM pathway and introduction of activities of the ED pathway, shown in FIG. 2 and discussed below. The ability to utilize xylose efficiently (e.g., concurrently with six-carbon sugars or prior to the depletion of six-carbon sugars) can be provided by the introduction of the novel activity, xylose isomerase.

[0017] FIG. 4 depicts an engineered metabolic pathway that can be used to increase the efficiency of ethanol production (and other products) by introducing the ability to fix atmospheric carbon dioxide into a microorganism. The engineered microorganism can incorporate or fix atmospheric carbon dioxide into organic molecules using the introduced phosphoenolpyruvate carboxylase activity. Carbon dioxide incorporated in this manner can be used as an additional carbon source that can increase production of many organic molecules, including ethanol. Non-limiting examples of other products whose production can benefit from carbon fixation include; pyruvate, oxaloacetate, glyceraldehyde-3-phosphate and the like. The pathway depicted in FIG. 4 illustrates the introduction of the novel carbon dioxide fixation activity in the background of a fully functional EM pathway, and an introduced ED pathway. It is understood the introduction of the carbon fixation activity can benefit microorganisms that have no other modifications to any metabolic pathways. It also is understood that microorganism modified in one, or multiple, other metabolic pathways can benefit from the introduction of a carbon fixation activity.

[0018] FIG. 5 shows a combination of some engineered metabolic pathways described herein. The combination of engineered metabolic pathways shown in FIG. 5 can provide significant increases in the production of ethanol (or other products) when compared to the wild type organism or organisms lacking one, two, three or more of the modifications. Other combinations of engineered metabolic pathways not shown in FIG. 5 are possible, including but not limited to, combinations including increased alcohol tolerance, modified alcohol dehydrogenase 2 activity and/or modified thymidylate synthase activity, as described herein. Therefore, FIG. 5 also illustrates an embodiment of a method for generating an engineered microorganism with the ability to produce a greater amount of target product comprising expressing one or more genetically modified activities, described herein, in a host organism that produces the desired target (e.g., ethanol, pyruvate, oxaloacetate and the like, for example) via one or more metabolic pathways. In some embodiments, the combination of metabolic pathways includes those depicted in FIG. 5 in addition to combinations including one, two or three of the following activities; increased alcohol tolerance, modified alcohol dehydrogenase 2 activity and modified thymidylate synthase activity.

[0019] FIG. 6 shows DNA and amino acid sequence alignments for the nucleotide sequences of EDA (FIG. 6A (SEQ ID NOS 266-269, respectively, in order of appearance), 6B (SEQ ID NOS 270-273, respectively, in order of appearance)) and EDD (FIG. 6C (SEQ ID NOS 454-457, respectively, in order of appearance), 6D (SEQ ID NOS 458-461, respectively, in order of appearance)) genes from Zymomonas mobilis (native and optimized) and Escherichia coli.

[0020] FIG. 7 shows a representative western blot used to detect the presence of an enzyme associated with an activity described herein.

[0021] FIGS. 8A and 8B show representative Western blots used to detect levels of various exogenous EDD and EDA gene combinations expressed in a host organism. Experimental conditions and results are described in Example 9.

[0022] FIG. 9 graphically displays the relative activities of the various EDD/EDA combinations generated as described in Example 10.

[0023] FIG. 10 graphically represents the fermentation efficiency of engineered yeast strains carrying exogenous EDD/EDA gene combinations. Vector=p426GPD/p425GPD; EE=EDD-E. coli/EDA-E. coli, EP=EDD-E. coli/EDA-PAO1; PE=EDD-PAO1/EDA-E. coli, PP=EDD-PAO1/EDA-PAO1. Experimental conditions and results are described in Example 11. FIGS. 11A and 11B graphically illustrate fermentation data (e.g., cell growth, glucose usage and ethanol production) for engineered yeast strains generated as described herein. FIG. 11A illustrates the fermentation data for engineered strain BF428 (BY4742 with vector controls), and FIG. 11B illustrates the fermentation data for engineered strain BF591 (BY4742 with EDD-PAO1/EDA-PAO1). Experimental conditions and results are described in Example 12.

[0024] FIGS. 12A and 12B graphically illustrate fermentation data for engineered yeast strains described herein. FIG. 12A illustrates the fermentation data for engineered strain BF738 (BY4742 tal1 with vector controls p426GPD and p425GPD). FIG. 12B illustrates the fermentation data for engineered strain BF741 (BY4742 tal1 with plasmids pBF290 (EDD-PAO1) and pBF292 (EDA-PAO1). Experimental conditions and results are described in Example 13.

[0025] FIGS. 13A and 13B graphically illustrate fermentation data for engineered yeast strains as described herein. FIG. 13A illustrates the fermentation data for BF740 grown on 2% dextrose, and FIG. 13B illustrates the fermentation data for BF743 grown on 2% dextrose. Strain descriptions, experimental conditions and results are described in Example 14. FIG. 14 graphically illustrates the results of coupled assay kinetics for single plasmid and two plasmid edd/eda expression vector systems. Vector construction and experimental conditions are described in Example 16.

[0026] FIG. 15 shows a western blot of E. coli crude extract illustrated the presence of the EDD protein at the expected size. Lane 1 is a standard size ladder (Novex Sharp standard), Lane 2 is 1 .mu.g BF1055 cell lysate, Lane 3 is 10 .mu.g BF1055 cell lysate, Lane 4 is 1.5 .mu.g BF1706 cell lysate, Lane 5 is 15 .mu.g BF1706 cell lysate. Experimental methods and results are described in Example 22. FIG. 16 graphically illustrates the results of activity evaluations of EDA genes expressed in yeast. Experimental methods and results are described in Example 22.

DETAILED DESCRIPTION

[0027] Ethanol is a two carbon, straight chain, primary alcohol that can be produced from fermentation (e.g., cellular respiration processes) or as a by-product of petroleum refining. Ethanol has widespread use in medicine, consumables, and in industrial processes where it often is used as an essential solvent and a precursor, or feedstock, for the synthesis of other products (e.g., ethyl halides, ethyl esters, diethyl ether, acetic acid, ethyl amines and to a lesser extent butadiene, for example). The largest use of ethanol, worldwide, is as a motor fuel and fuel additive. Greater than 90% of the cars produced world wide can run efficiently on hydrous ethanol (e.g., 95% ethanol and 5% water). Ethanol also is commonly used for production of heat and light.

[0028] World production of ethanol exceeds 50 gigaliters (e.g., 1.3.times.10.sup.10 US gallons), with 69% of the world supply coming from Brazil and the United States. The United States fuel ethanol industry is based largely on corn biomass. The use of corn biomass for ethanol production may not yield a positive net energy gain, and further has the potential of diverting land that could be used for food production into ethanol production. It is possible that cellulosic crops may displace corn as the main fuel crop for producing bio-ethanol. Non-limiting examples of cellulosic crops and waste materials include switchgrass and wood pulp waste from paper production and wood milling industries.

[0029] Biomass produced in the paper pulping and wood milling industries contains both 5 and six-carbon sugars. Use of this wasted biomass could allow production of significant amounts of bio-fuels and products, while reducing the use of land that could be used for food production. Predominant forms of sugars in the biomass produced in wood and paper pulping and wood milling industries are glucose and xylose.

[0030] Provided herein are methods for producing ethanol, ethanol derivatives and/or conjugates and other organic chemical intermediates (e.g., pyruvate, acetaldehyde, glyceraldehyde-3-phospate, and the like) using biological systems. Such production systems may have significantly less environmental impact and could be economically competitive with current manufacturing systems. Thus, provided herein are methods for manufacturing ethanol and other organic chemical intermediates by engineered microorganisms. In some embodiments microorganisms are engineered to contain at least one heterologous gene encoding an enzyme, where the enzyme is a member of a novel pathway engineered into the microorganism. In certain embodiments, an organism may be selected for elevated activity of a native enzyme.

[0031] Genetically engineered microorganisms described herein produce organic molecules for industrial uses. The organisms are designed to be "feedstock flexible" in that they can use five-carbon sugars (e.g., pentose sugars such as xylose, for example), six-carbon sugars (e.g., hexose sugars such as glucose or fructose, for example) or both as carbon sources. Further, the organisms described herein have been designed to be highly efficient in their use of hexose sugars to produce desired organic molecules. To that end, the microorganisms described herein are "pathway flexible" such that the microorganisms are able to direct hexose sugars primarily to either (i) the traditional glycolysis pathway (the Embden-Meyerhoff pathway) thereby generating ATP energy for cell growth and division at certain times, or (ii) a separate glycolytic pathway (the Entner-Doudoroff pathway) thereby producing significant levels of pyruvic acid, a key 3-carbon intermediate for producing many desired industrial organic molecules.

[0032] Pathway selection in the microorganism can be directed via one or more environmental switches such as a temperature change, oxygen level change, addition or subtraction of a component of the culture medium, or combinations thereof. The metabolic pathway flexibility of microorganisms described herein allow the microorganisms to efficiently use hexose sugars, which ultimately can lead to microorganisms capable of producing a greater amount of industrial chemical product per gram of feedstock as compared with conventional microorganisms (e.g., the organism from which the engineered organism was generated, for example). In some embodiments, the metabolic pathway flexibility of the engineered microorganisms described herein is generated by adding or increasing metabolic activities associated with the Entner-Doudoroff pathway. In certain embodiments the metabolic activities added are phosphogluconate dehydratase (e.g., EDD gene), 2-keto-3-deoxygluconate-6-phosphate aldolase (e.g., EDA gene) or both.

[0033] A number of industrially useful microorganisms (e.g., microorganisms used in fermentation processes, yeast for example), metabolize xylose inefficiently or are incapable of metabolizing xylose. Many organisms that can metabolize xylose do so only after all glucose and/or other six-carbon sugars have been depleted. The microorganisms described herein have been engineered to efficiently utilize five-carbon sugars (e.g., xylose, for example) as an alternative or additional source of carbon, concurrently with and/or prior to six-carbon sugar usage, by the incorporation of a heterologous nucleic acid (e.g., gene) encoding a xylose isomerase, in some embodiments, Xylose isomerase converts the five-carbon sugar xylose to xylulose. Xylulose can ultimately be converted to pyruvic acid or to ethanol through metabolism via the Embden-Meyerhoff or Entner-Doudoroff pathways.

[0034] Many non-photosynthetic organisms are not capable of incorporating inorganic atmospheric carbon into organic carbon compounds, via carbon fixation pathways, to any appreciable degree, or at all.

[0035] Often, microorganisms used in industrial fermentation process also are incapable of significant carbon fixation. The ability to incorporate atmospheric carbon dioxide, or carbon dioxide waste from respiration in fermentation processes, can increase the amount of industrial chemical product produced per gram of feedstock, in certain embodiments. Thus, the microorganisms described herein also can be modified to add or increase the ability to incorporate carbon from carbon dioxide into industrial chemical products, in some embodiments. In certain embodiments, the microorganisms described herein are engineered to express enzymes such as phosphoenolpyruvate carboxylase ("PEP" carboxylase) and/or ribulose 1,5-bis-phosphate carboxylase ("Rubisco"), thus allowing the use of carbon dioxide as an additional source of carbon.

[0036] A particularly useful industrial chemical product produced by fermentation is ethanol. Ethanol is an end product of cellular respiration and is produced from acetaldehyde by an alcohol dehydrogenase activity (e.g., by an enzyme like alcohol dehydrogenase 1 or ADH1, for example). However, ethanol can readily be converted back to acetaldehyde by the action of the enzyme alcohol dehydrogenase 2 (e.g., ADH2), thus lowering the yield of ethanol produced. In some embodiments, microorganisms described herein are modified to reduce or eliminate the activity of ADH2, to allow increased yields of ethanol. In certain embodiments, the engineered microorganisms described herein also are modified to have a higher tolerance to alcohol, thus enabling even higher yields of alcohol as a fermentation product without inhibition of cellular processes due to increased levels of alcohol in the growth medium.

Microorganisms

[0037] A microorganism selected often is suitable for genetic manipulation and often can be cultured at cell densities useful for industrial production of a target product. A microorganism selected often can be maintained in a fermentation device.

[0038] The term "engineered microorganism" as used herein refers to a modified microorganism that includes one or more activities distinct from an activity present in a microorganism utilized as a starting point (hereafter a "host microorganism"). An engineered microorganism includes a heterologous polynucleotide in some embodiments, and in certain embodiments, an engineered organism has been subjected to selective conditions that alter an activity, or introduce an activity, relative to the host microorganism. Thus, an engineered microorganism has been altered directly or indirectly by a human being. A host microorganism sometimes is a native microorganism, and at times is a microorganism that has been engineered to a certain point.

[0039] In some embodiments an engineered microorganism is a single cell organism, often capable of dividing and proliferating. A microorganism can include one or more of the following features: aerobe, anaerobe, filamentous, non-filamentous, monoploid, dipoid, auxotrophic and/or non-auxotrophic. In certain embodiments, an engineered microorganism is a prokaryotic microorganism (e.g., bacterium), and in certain embodiments, an engineered microorganism is a non-prokaryotic microorganism. In some embodiments, an engineered microorganism is a eukaryotic microorganism (e.g., yeast, fungi, amoeba).

[0040] Any suitable yeast may be selected as a host microorganism, engineered microorganism or source for a heterologous polynucleotide. Yeast include, but are not limited to, Yarrowia yeast (e.g., Y. lipolytica (formerly classified as Candida lipolytica)), Candida yeast (e.g., C. revkaufi, C. pulcherrima, C. tropicalis, C. utilis), Rhodotorula yeast (e.g., R. glutinus, R. graminis), Rhodosporidium yeast (e.g., R. toruloides), Saccharomyces yeast (e.g., S. cerevisiae, S. bayanus, S. pastorianus, S. carlsbergensis), Cryptococcus yeast, Trichosporon yeast (e.g., T. pullans, T. cutaneum), Pichia yeast (e.g., P. pastoris) and Lipomyces yeast (e.g., L. starkeyii, L. lipoferus). In some embodiments, a yeast is a S. cerevisiae strain including, but not limited to, YGR240CBY4742 (ATCC accession number 4015893) and BY4742 (ATCC accession number 201389). In some embodiments, a yeast is a Y. lipolytica strain that includes, but is not limited to, ATCC20362, ATCC8862, ATCC18944, ATCC20228, ATCC76982 and LGAM S(7)1 strains (Papanikolaou S., and Aggelis G., Bioresour. Technol. 82(1):43-9 (2002)). In certain embodiments, a yeast is a C. tropicalis strain that includes, but is not limited to, ATCC20336, ATCC20913, SU-2 (ura3-/ura3-), ATCC20962, H5343 (beta oxidation blocked; U.S. Pat. No. 5,648,247) strains.

[0041] Any suitable fungus may be selected as a host microorganism, engineered microorganism or source for a heterologous polynucleotide. Non-limiting examples of fungi include, but are not limited to, Aspergillus fungi (e.g., A. parasiticus, A. nidulans), Thraustochytrium fungi, Schizochytrium fungi and Rhizopus fungi (e.g., R. arrhizus, R. oryzae, R. nigricans), Orpinomyces or Piromyces. In some embodiments, a fungus is an A. parasiticus strain that includes, but is not limited to, strain ATCC24690, and in certain embodiments, a fungus is an A. nidulans strain that includes, but is not limited to, strain ATCC38163.

[0042] Any suitable prokaryote may be selected as a host microorganism, engineered microorganism or source for a heterologous polynucleotide. A Gram negative or Gram positive bacteria may be selected. Examples of bacteria include, but are not limited to, Bacillus bacteria (e.g., B. subtilis, B. megaterium, B. stearothermophilus), Bacteroides bacteria (e.g., Bacteroides uniformis, Bacteroides thetaiotaomicron), Clostridium bacteria (e.g., C. phytofermentans, C. thermohydrosulfuricum, C. cellulyticum (H10)), Acinetobacter bacteria, Norcardia baceteria, Lactobacillus bacterial (e.g., Lactobacillus pentosus), Xanthobacter bacteria, Escherichia bacteria (e.g., E. coli (e.g., strains DH10B, Stb12, DH5-alpha, DB3, DB3.1), DB4, DB5, JDP682 and ccdA-over (e.g., U.S. application Ser. No. 09/518,188))), Streptomyces bacteria (e.g., Streptomyces rubiginosus, Streptomyces murinus), Erwinia bacteria, Klebsiella bacteria, Serratia bacteria (e.g., S. marcessans), Pseudomonas bacteria (e.g., P. aeruginosa), Salmonella bacteria (e.g., S. typhimurium, S. typhi), Thermus bacteria (e.g., Thermus thermophilus), and Thermotoga bacteria (e.g., Thermotoga maritiima, Thermotoga neopolitana) and Ruminococcus (e.g., Ruminococcus environmental samples, Ruminococcus albus, Ruminococcus bromii, Ruminococcus callidus, Ruminococcus flavefaciens, Ruminococcus gauvreauii, Ruminococcus gnavus, Ruminococcus lactaris, Ruminococcus obeum, Ruminococcus sp., Ruminococcus sp. 14531, Ruminococcus sp. 15975, Ruminococcus sp. 16442, Ruminococcus sp. 18P13, Ruminococcus sp. 25F6, Ruminococcus sp. 25F7, Ruminococcus sp. 25F8, Ruminococcus sp. 4.sub.--1.sub.--47FAA, Ruminococcus sp. 5, Ruminococcus sp. 5.sub.--1.sub.--39BFAA, Ruminococcus sp. 7L75, Ruminococcus sp. 8.sub.--1.sub.--37FAA, Ruminococcus sp. 9SE51, Ruminococcus sp. C36, Ruminococcus sp. CB10, Ruminococcus sp. CB3, Ruminococcus sp. CCUG 37327 A, Ruminococcus sp. CE2, Ruminococcus sp. CJ60, Ruminococcus sp. CJ63, Ruminococcus sp. CO1, Ruminococcus sp. CO12, Ruminococcus sp. CO22, Ruminococcus sp. CO27, Ruminococcus sp. CO28, Ruminococcus sp. CO34, Ruminococcus sp. CO41, Ruminococcus sp. CO47, Ruminococcus sp. CO7, Ruminococcus sp. CS1, Ruminococcus sp. CS6, Ruminococcus sp. DJF_VR52, Ruminococcus sp. DJF_VR66, Ruminococcus sp. DJF_VR67, Ruminococcus sp. DJF_VR70k1, Ruminococcus sp. DJF_VR87, Ruminococcus sp. Eg2, Ruminococcus sp. Egf, Ruminococcus sp. END-1, Ruminococcus sp. FD1, Ruminococcus sp. GM2/1, Ruminococcus sp. ID1, Ruminococcus sp. ID8, Ruminococcus sp. K-1, Ruminococcus sp. KKA Seq234, Ruminococcus sp. M-1, Ruminococcus sp. M10, Ruminococcus sp. M22, Ruminococcus sp. M23, Ruminococcus sp. M6, Ruminococcus sp. M73, Ruminococcus sp. M76, Ruminococcus sp. MLG080-3, Ruminococcus sp. NML 00-0124, Ruminococcus sp. Pei041, Ruminococcus sp. SC101, Ruminococcus sp. SC103, Ruminococcus sp. Siijpesteijn 1948, Ruminococcus sp. WAL 17306, Ruminococcus sp. YE281, Ruminococcus sp. YE58, Ruminococcus sp. YE71, Ruminococcus sp. ZS2-15, Ruminococcus torques). Bacteria also include, but are not limited to, photosynthetic bacteria (e.g., green non-sulfur bacteria (e.g., Choroflexus bacteria (e.g., C. aurantiacus), Chloronema bacteria (e.g., C. gigateum)), green sulfur bacteria (e.g., Chlorobium bacteria (e.g., C. limicola), Pelodictyon bacteria (e.g., P. luteolum), purple sulfur bacteria (e.g., Chromatium bacteria (e.g., C. okenii)), and purple non-sulfur bacteria (e.g., Rhodospirillum bacteria (e.g., R. rubrum), Rhodobacter bacteria (e.g., R. sphaeroides, R. capsulatus), and Rhodomicrobium bacteria (e.g., R. vanellii)).

[0043] Cells from non-microbial organisms can be utilized as a host microorganism, engineered microorganism or source for a heterologous polynucleotide. Examples of such cells, include, but are not limited to, insect cells (e.g., Drosophila (e.g., D. melanogaster), Spodoptera (e.g., S. frugiperda Sf9 or Sf21 cells) and Trichoplusa (e.g., High-Five cells); nematode cells (e.g., C. elegans cells); avian cells; amphibian cells (e.g., Xenopus laevis cells); reptilian cells; and mammalian cells (e.g., NIH3T3, 293, CHO, COS, VERO, C127, BHK, Per-C6, Bowes melanoma and HeLa cells).

[0044] Microorganisms or cells used as host organisms or source for a heterologous polynucleotide are commercially available. Microorganisms and cells described herein, and other suitable microorganisms and cells are available, for example, from Invitrogen Corporation, (Carlsbad, Calif.), American Type Culture Collection (Manassas, Va.), and Agricultural Research Culture Collection (NRRL; Peoria, Ill.).

[0045] Host microorganisms and engineered microorganisms may be provided in any suitable form. For example, such microorganisms may be provided in liquid culture or solid culture (e.g., agar-based medium), which may be a primary culture or may have been passaged (e.g., diluted and cultured) one or more times. Microorganisms also may be provided in frozen form or dry form (e.g., lyophilized). Microorganisms may be provided at any suitable concentration.

Six-Carbon Sugar Metabolism and Activities

[0046] Six-carbon or hexose sugars can be metabolized using one of two pathways in many organisms. One pathway, the Embden-Meyerhoff pathway (EM pathway), operates primarily under aerobic (e.g., oxygen rich) conditions. The other pathway, the Entner-Doudoroff pathway (ED pathway), operates primarily under anaerobic (e.g., oxygen poor) conditions, producing pyruvate that can be converted to lactic acid. Lactic acid can be further metabolized upon a return to appropriate conditions. The EM pathway produces two ATP for each six-carbon sugar metabolized, as compared to one ATP produced for each six-carbon sugar metabolized in the ED pathway. Thus the ED pathway yields ethanol more efficiently than the EM pathway with respect to a given amount of input carbon, as seen by the lower net energy yield. However, yeast preferentially use the EM pathway for metabolism of six-carbon sugars, thereby preferentially using the pathway that yields more energy and less desired product.

[0047] The following steps and enzymatic activities metabolize six-carbon sugars via the EM pathway. Six-carbon sugars (glucose, sucrose, fructose, hexose and the like) are converted to glucose-6-phosphate by hexokinase or glucokinase (e.g., HXK or GLK, respectively). Glucose-6-phosphate can be converted to fructose-6-phosphate by phosphoglucoisomerase (e.g., PGI). Fructose-6-phosphate can be converted to fructose-1,6-bisphosphate by phosphofructokinase (e.g., PFK). Fructose-1,6-bisphosphate (F1,6BP) represents a key intermediate in the metabolism of six-carbon sugars, as the next enzymatic reaction converts the six-carbon sugar into two 3 carbon sugars. The reaction is catalyzed by fructose bisphosphate aldolase and yields a mixture of dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G-3-P). The mixture of the two 3 carbon sugars is preferentially converted to glyceraldehyde-3-phosphate by the action of triosephosphate isomerase. G-3-P is converted is converted to 1,3-diphosphoglycerate (1,3-DPG) by glyceraldehyde-3-phosphate dehydrogenase (GLD). 1,3-DPG is converted to 3-phosphoglycerate (3-P-G by phosphoglycerate kinase (PGK). 3-P-G is converted to 2-phosphoglycerate (2-P-G) by phophoglycero mutase (GPM). 2-P-G is converted to phosphoenolpyruvate (PEP) by enolase (ENO). PEP is converted to pyruvate (PYR) by pyruvate kinase (PYK). PYR is converted to acetaldehyde by pyruvate dicarboxylase (PDC). Acetaldehyde is converted to ethanol by alcohol dehydrogenase 1 (ADH1).

[0048] Many enzymes in the EM pathway are reversible. The enzymes in the EM pathway that are not reversible, and provide a useful activity with which to control six-carbon sugar metabolism, via the EM pathway, include, but are not limited to phosphofructokinase and alcohol dehydrogenase. In some embodiments, reducing or eliminating the activity of phosphofructokinase may inactivate the EM pathway. Engineering microorganisms with modified activities in PFK and/or ADH may yield increased product output as compared to organisms with the wild type activities, in certain embodiments. In some embodiments, modifying a reverse activity (e.g., the enzyme responsible for catalyzing the reverse activity of ADH, for example) may also yield an increase in product yield by reducing or eliminating the back conversion of products by the backwards reaction. The activity which catalyzes the conversion of ethanol to acetaldehyde is alcohol dehydrogenase 2 (ADH2). Reducing or eliminating the activity of ADH2 can increase the yield of ethanol per unit of carbon input due to the inactivation of the conversion of ethanol to acetaldehyde, in certain embodiments. In addition to enzyme activities that are not reversible, certain reversible activities also can be used to control six-carbon sugar metabolism via the EM pathway, in some embodiments. A non-limiting example of a reversible enzymatic activity that can be utilized to control six-carbon sugar metabolism includes phosphoglucose isomerase (PGI).

[0049] A microorganism may be engineered to include or regulate one or more activities in the Embden-Meyerhoff pathway, for example. In some embodiments, one or more of these activities may be altered such that the activity or activities can be increased or decreased according to a change in environmental conditions. In certain embodiments, one or more of the activities (e.g., PGI, PFK or ADH2) can be altered to allow regulated control and an alternative pathway for more efficient carbon metabolism can be provided (e.g., one or more activities from the ED pathway, for example). An engineered organism with the EM pathway under regulatable control and a novel or enhanced ED pathway would be useful for producing significantly more ethanol or other end product from a given amount of input feedstock. The term "activity" as used herein refers to the functioning of a microorganism's natural or engineered biological pathways to yield various products including ethanol and its precursors. Ethanol (or other product) producing activity can be provided by any non-mammalian source in certain embodiments. Such sources include, without limitation, eukaryotes such as yeast and fungi and prokaryotes such as bacteria. In some embodiments, the activity of one or more (e.g., 2, 3, 4, 5 or more) pathway members in an EM pathway is reduced or removed to undetectable levels.

[0050] An engineered microorganism may, in some embodiments, preferentially metabolize six-carbon sugars via the ED pathway as opposed to the EM pathway under certain conditions. Such engineered microorganisms may metabolize about 60% or more of the available six-carbon sugars via the ED pathway (e.g., about 62%, 64%, 66%, 68%, 70%, 72%, 74%, 76%, 78%, 80%, 82%, 84%, 86%, 88%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99%, or greater than any one of the foregoing), and such fraction of the available six-carbon sugars are not metabolized by the EM pathway, under certain conditions. A microorganism may metabolize six-carbon sugars substantially via the ED pathway, and not the EM pathway, in certain embodiments (e.g., 99% or greater, or 100%, of the available six-carbon sugars are metabolized via the ED pathway). A six-carbon sugar is deemed as being metabolized via a particular pathway when the sugar is converted to end metabolites of the pathway, and not intermediate metabolites only, of the particular pathway. A microorganism may preferentially metabolize certain sugars under the ED pathway after a certain time after the microorganism is exposed to a certain set of conditions (e.g., there may be a time delay after a microorganism is exposed to a certain set of conditions before the microorganism preferentially metabolizes sugars by the ED pathway).

[0051] Certain novel activities involved in the metabolism of six-carbon sugars by the ED pathway can be engineered into a desired yeast strain to increase the efficiency of ethanol (or other products) production. Yeast do not have an activity that converts 6-phophogluconate to 2-keto-3-deoxy-6-p-gluconate or an activity that converts 2-keto-3-deoxy-6-p-gluconate to pyruvate. Addition of these activities to engineered yeast can allow the engineered microorganisms to increase fermentation efficiency by allowing yeast to ferment ethanol under anaerobic condition without having to use the EM pathway and expend additional energy. Therefore, by providing novel activities associated with converting 6-phophogluconate to 2-keto-3-deoxy-6-p-gluconate and 2-keto-3-deoxy-6-p-gluconate to pyruvate, the engineered microorganism can benefit by producing ethanol more efficiently, with respect to a given amount of input carbon, than by using the native EM pathway.

[0052] Bacteria often have enzymatic activities that confer the ability to anaerobically metabolize six-carbon sugars to ethanol. These activities are associated with the ED pathway and include, but are not limited to, phosphogluconate dehydratase (e.g., the EDD gene, for example), and 2-keto-3-deoxygluconate-6-phosphate aldolase (e.g., the EDA gene, for example). Phosphogluconate dehydratase converts 6-phophogluconate to 2-keto-3-deoxy-6-p-gluconate. 2-keto-3-deoxygluconate-6-phosphate aldolase converts 2-keto-3-deoxy-6-p-gluconate to pyruvate. In some embodiments, these activities can be introduced into a host organism to generate an engineered microorganism which gains the ability to use the ED pathway to produce ethanol more efficiently than the non-engineered starting organism, by virtue of the lower net energy yield by the ED pathway. A microorganism may be engineered to include or regulate one or more activities in the Entner-Doudoroff pathway. In some embodiments, one or more of these activities may be altered such that the activity or activities can be increased or decreased according to a change in environmental conditions. Nucleic acid sequences encoding Embden-Meyerhoff pathway and Entner-Doudoroff pathway activities can be obtained from any suitable organism (e.g., plants, bacteria, and other microorganisms, for example) and any of these activities can be used herein with the proviso that the nucleic acid sequence is naturally active in the chosen microorganism when expressed, or can be altered or modified to be active.

[0053] Yeast also can have endogenous or heterologous enzymatic activities that enable the organism to anaerobically metabolize six carbon sugars. Saccharomyces cerevisiae used in fermentation often convert glucose-6-phospate (G-6-P) to fructose-6-phosphate (F-6-P) via phosphoglucose isomerase (EC 5.3.1.9), up to 95% of G-6-P is converted to F-6-P in this manner for example. Only a minor proportion of G-6-P is converted to 6-phophoglucono-lactone (6-PGL) by an alternative enzyme, glucose-6-phosphate dehydrogenase (EC 1.1.1.49). Yeast engineered to carry both Entner-Doudoroff (ED) and Embden-Meyerhoff (EM) pathways often covert sugars to ethanol using the EM pathway preferentially. Inactivation of one or more activities in the EM pathway can result in conversion of sugars to ethanol using the ED pathway preferentially, in some embodiments.

[0054] Phosphoglucose isomerase (EC 5.3.1.9) catalyzes the reversible interconversion of glucose-6-phosphate and fructose-6-phosphate. Phosphoglucose isomerase is encoded by the PGI1 gene in S. cerevisiae. The proposed mechanism for sugar isomerization involves several steps and is thought to occur via general acid/base catalysis. Since glucose 6-phosphate and fructose 6-phosphate exist predominantly in their cyclic forms, PGI is believed to catalyze first the opening of the hexose ring to yield the straight chain form of the substrates. Glucose 6-phosphate and fructose 6-phosphate then undergo isomerization via formation of a cis-enediol intermediate with the double bond located between C-1 and C-2. Phosphoglucose isomerase sometimes also is referred to as glucose-6-phosphate isomerase or phosphohexose isomerase.

[0055] PGI is involved in different pathways in different organisms. In some higher organisms PGI is involved in glycolysis, and in mammals PGI also is involved in gluconeogenesis. In plants PGI is involved in carbohydrate biosynthesis, and in some bacteria PGI provides a gateway for fructose into the Entner-Doudoroff pathway. PGI also is known as neuroleukin (a neurotrophic factor that mediates the differentiation of neurons), autocrine motility factor (a tumor-secreted cytokine that regulates cell motility), differentiation and maturation mediator and myofibril-bound serine proteinase inhibitor, and has different roles inside and outside the cell. In the cytoplasm, PGI catalyses the second step in glycolysis, while outside the cell it serves as a nerve growth factor and cytokine. PGI activity is involved in cell cycle progression and completion of the gluconeogenic events of sporulation in S. cerevisiae.

[0056] In certain embodiments, phosphoglucose isomerase activity is altered in an engineered microorganism. In some embodiments phosphoglucose isomerase activity is decreased or disrupted in an engineered microorganism. In certain embodiments, decreasing or disrupting phosphoglucose isomerase activity may be desirable to decrease or eliminate the isomerization of glucose-6-phosphate to fructose-6-phosphate, thereby increasing the proportion of glucose-6-phosphate converted to gluconolactone-6-phosphate by the activity encoded by ZWF1 (e.g., glucose-6-phosphate dehydrogenase). Increased levels of gluconolactone-6-phosphate can be further metabolized and thereby improve fermentation of sugar to ethanol via activities in the Entner-Doudoroff pathway, even in the presence of the enzymes comprising the Embden-Meyerhoff pathway. Decreased or disrupted phosphoglucose isomerase (EC 5.3.1.9) activity in yeast may be achieved by any suitable method, or as described herein. Non-limiting examples of methods suitable for decreasing or disrupting the activity of phosphoglucose isomerase include use of a regulated promoter, use of a weak constitutive promoter, disruption of one of the two copies of the gene in a diploid yeast, disruption of both copies of the gene in a diploid yeast, expression of an anti-sense nucleic acid, expression of an siRNA, over expression of a negative regulator of the endogenous promoter, alteration of the activity of an endogenous or heterologous gene, use of a heterologus gene with lower specific activity, the like or combinations thereof. In some embodiments, a gene used to knockout one activity can also introduce or increase another activity. PGI1 genes may be native to S. cerevisiae, or may be obtained from a heterologous source.

[0057] Glucose-6-phosphate dehydrogenase (EC 1.1.1.49) catalyzes the first step of the pentose phosphate pathway, and is encoded by the S. cerevisiae gene, zwf1. The reaction for the first step in the PPP pathway is;

D-glucose 6-phosphate+NADP.sup.+=D-glucono-1,5-lactone 6-phosphate+NADPH+H.sup.+

[0058] This reaction is irreversible and rate-limiting for efficient fermentation of sugar via the Entner-Doudoroff pathway. The enzyme regenerates NADPH from NADP+ and is important both for maintaining cytosolic levels of NADPH and protecting yeast against oxidative stress. Zwf1p expression in yeast is constitutive, and the activity is inhibited by NADPH such that processes that decrease the cytosolic levels of NADPH stimulate the oxidative branch of the pentose phosphate pathway. Amplification of glucose-6-phosphate dehydrogenase activity in yeast may be desirable to increase the proportion of glucose-6-phosphate converted to 6-phosphoglucono-lactone and thereby improve fermentation of sugar to ethanol via the Entner-Doudoroff pathway, even in the presence of the enzymes comprising the Embden-Meyerhoff pathway.

[0059] Glucose-6-phosphate dehydrogenase (EC 1.1.1.49) activity in yeast may be amplified by over-expression of the zwf1 gene by any suitable method. Non-limiting examples of methods suitable to amplify or over express zwf1 include amplifying the number of ZWF1 genes in yeast following transformation with a high-copy number plasmid (e.g., such as one containing a 2 uM origin of replication), integration of multiple copies of ZWF1 into the yeast genome, over-expression of the ZWF1 gene directed by a strong promoter, the like or combinations thereof. The ZWF1 gene may be native to S. cerevisiae, or it may be obtained from a heterologous source. 6-phosphogluconolactonase (EC 3.1.1.31) catalyzes the second step of the ED (e.g., pentose phosphate pathway), and is encoded by S. cerevisiae genes SOL3 and SOL4. The reaction for the second step of the pentose phosphate pathway is;

6-phospho-D-glucono-1,5-lactone+H2O=6-phospho-D-gluconate

[0060] Amplification of 6-phosphogluconolactonase activity in yeast may be desirable to increase the proportion of 6-phospho-D-glucono-1,5-lactone converted to 6-phospho-D-gluconate and thereby improve fermentation of sugar to ethanol via the Entner-Doudoroff pathway, even in the presence of the enzymes comprising the Embden-Meyerhoff pathway. For example, over expression of SOL3 is known to increase the rate of carbon source utilization to result in faster growth on xylose than wild type.

[0061] The Saccharomyces cerevisiae SOL protein family includes Sol3p and Sol4p. Both localize predominantly in the cytosol, exhibit 6-phosphogluconolactonase activity and function in the pentose phosphate pathway. 6-phosphogluconolactonase (EC 3.1.1.31) activity in yeast may be amplified by over-expression of the SOL3 and/or SOL4 gene(s) by any suitable method. Non-limiting examples of methods to amplify or over express SOL3 and SOL4 include increasing the number of SOL3 and/or SOL4 genes in yeast by transformation with a high-copy number plasmid, integration of multiple copies of SOL3 and/or SOL4 gene(s) into the yeast genome, over-expression of the SOL3 and/or SOL4 gene(s) directed by a strong promoter, the like or combinations thereof. The SOL3 and/or SOL4 gene(s) may be native to S. cerevisiae, or may be obtained from a heterologous source. For example, Sol3p and Sol4p have similarity to each other, and to Candida albicans Sol1p, Schizosaccharomyces pombe Sol1p, human PGLS which is associated with 6-phosphogluconolactonase deficiency, and human H6PD which is associated with cortisone reductase deficiency. Sol3p and Sol4p are also similar to the 6-phosphogluconolactonases in bacteria (Pseudomonas aeruginosa) and eukaryotes (Drosophila melanogaster, Arabidopsis thaliana, and Trypanosoma brucei), to the glucose-6-phosphate dehydrogenase enzymes from bacteria (Mycobacterium leprae) and eukaryotes (Plasmodium falciparum and rabbit liver microsomes), and have regions of similarity to proteins of the Nag family, including human GNPI and Escherichia coli NagB.

[0062] Phosphogluconate dehydrogenase (EC:1.1.1.44) catalyzes the second oxidative reduction of NADP+ to NADPH in the cytosolic oxidative branch of the pentose phosphate pathway, and is encoded by the S. cerevisiae genes GND1 and GND2. GND1 encodes the major isoform of the enzyme accounting for up to 80% of phosphogluconate dehydrogenase activity, while GND2 encodes the minor isoform of the enzyme. Phosphogluconate dehydrogenase sometimes also is referred to as phosphogluconic acid dehydrogenase, 6-phosphogluconic dehydrogenase, 6-phosphogluconic carboxylase, 6-phosphogluconate dehydrogenase (decarboxylating), and 6-phospho-D-gluconate dehydrogenase. Phosphogluconate dehydrogenase belongs to the family of oxidoreductases, specifically those acting on the CH--OH group of donor with NAD.sup.+ or NADP.sup.+ as the acceptor. The reaction for the second oxidative reduction of NADP+ to NADPH in the cytosolic oxidative branch of the pentose phosphate pathway is;

6-phospho-D-gluconate+NADPD-ribulose 5-phosphate+CO.sub.2+NADPH

[0063] Decreasing the level of 6-phosphogluconolactonase activity in yeast may be desirable to decrease the proportion of 6-phospho-D-gluconate converted to D-ribulose 5-phosphate thereby increasing the levels of the intermediate gluconate-6-phosphate available for conversion to 6-dehydro-3-deoxy-gluconate-6-phosphate, in some embodiments involving engineered microorganisms including increased EDA and EDD activities, thereby improving fermentation of sugar to ethanol via the Entner-Doudoroff pathway, even in the presence of the enzymes comprising the Embden-Meyerhoff pathway.

[0064] Decreasing or disrupting 6-phosphogluconolactonase activity in yeast may be achieved by any suitable method, or as described herein. Non-limiting examples of methods suitable for decreasing the activity of 6-phosphogluconate dehydrogenase include use of a regulated promoter, use of a weak constitutive promoter, disruption of one of the two copies of the gene in a diploid yeast (e.g., partial gene knockout), disrupting both copies of the gene in a diploid yeast (e.g., complete gene knockout) expression of an anti-sense nucleic acid, expression of an siRNA, over expression of a negative regulator of the endogenous promoter, alteration of the activity of an endogenous or heterologous gene, use of a heterologus gene with lower specific activity, the like or combinations thereof. In some embodiments, a gene used to knockout one activity can also introduce or increase another activity. GND1 and/or GND2 gene(s) may be native to S. cerevisiae, or may be obtained from a heterologous source. For example, S. cerevisiae GND1 and GND2 have similarity to each other, and to the phosphogluconate dehydrogenase nucleotide sequences of Candida parapsilosis, Cryptococcus neoformans and humans.

Five-Carbon Sugar Metabolism and Activities

[0065] As noted above, five-carbon sugars are the second most predominant form of sugars in lignocelluosic waste biomass produced in wood pulp and wood milling industries. Furthermore, xylose is the second most abundant carbohydrate in nature. However, the conversion of biomass to energy (e.g., ethanol, for example) has not proven economically attractive because many organisms cannot metabolize hemicellulose. Biomass and waste biomass contain both cellulose and hemicellulose. Many industrially applicable organisms can metabolize five-carbon sugars (e.g., xylose, pentose and the like), but may do so at low efficiency, or may not begin metabolizing five-carbon sugars until all six-carbon sugars have been depleted from the growth medium. Many yeast and fungus grow slowly on xylose and other five-carbon sugars. Some yeast, such as S. cerevisiae do not naturally use xylose, or do so only if there are no other carbon sources. An engineered microorganism (e.g., yeast, for example) that could grow rapidly on xylose and provide ethanol and/or other products as a result of fermentation of xylose can be useful due to the ability to use a feedstock source that is currently underutilized while also reducing the need for petrochemicals.

[0066] The pentose phosphate pathway (PPP), which is a biochemical route for xylose metabolism, is found in virtually all cellular organisms where it provides D-ribose for nucleic acid biosynthesis, D-erythrose 4-phosphate for the synthesis of aromatic amino acids and NADPH for anabolic reactions. The PPP is thought of as having two phases. The oxidative phase converts the hexose, D-glucose 6P, into the pentose, D-ribulose 5P, plus CO2 and NADPH. The non-oxidative phase converts D-ribulose 5P into D-ribose 5P, D-xylulose 5P, D-sedoheptulose 7P, D-erythrose 4P, D-fructose 6P and D-glyceraldehyde 3P. D-Xylose and L-arabinose enter the PPP through D-xylulose.

[0067] Certain organisms (e.g., yeast, filamentous fungus and other eukaryotes, for example) require two or more activities to convert xylose to a usable from that can be metabolized in the pentose phosphate pathway. The activities are a reduction and an oxidation carried out by xylose reductase (XYL1) and xylitol dehydrogenase (XYL2), respectively. Xylose reductase converts D-xylose to xylitol. Xylitol dehydrogenase converts xylitol to D-xylulose. The use of these activities sometimes can inhibit cellular function due to cofactor and metabolite imbalances.

[0068] Some organisms (e.g., certain bacteria, for example) require only one activity, xylose isomerase (xylA). Xylose isomerase converts xylose directly to xylulose. Xylulose can then be converted to xylulose-5-phosphate by xylulose kinase. Phosphorylation of xylulose then allows the five-carbon sugar to be further converted by transketolase (e.g., TKL1/TKL2) to enter the EM pathway for further metabolism at either fructose-6-phosphate or glyceraldehyde-3-phosphate. In some embodiments, where the EM pathway is inactivated, five-carbon sugars enter the EM pathway and are further converted for use by the ED pathway. Therefore, engineering a microorganism with xylose isomerase activity may allow rapid growth on xylose when compared to the non-engineered microorganism, while avoiding cofactor and metabolite imbalances.

[0069] A microorganism may be engineered to include or regulate one or more activities in a five-carbon sugar metabolism pathway (e.g., pentose phosphate pathway, for example). In some embodiments, an engineered microorganism can comprise a xylose isomerase activity. In some embodiments, the xylose isomerase activity may be altered such that the activity can be increased or decreased according to a change in environmental conditions. Nucleic acid sequences encoding xylose isomerase activities can be obtained from any suitable bacteria (e.g., Piromyces, Orpinomyces, Bacteroides thetaiotaomicron, Clostridium phytofermentans, Thermus thermophilus and Ruminococcus (e.g., R. flavefaciens) and any of these activities can be used herein with the proviso that the nucleic acid sequence is naturally active in the chosen microorganism when expressed, or can be altered or modified to be active.

Carbon Dioxide Metabolism and Activities

[0070] Microorganisms grown in fermentors often are grown under anaerobic conditions, with limited or no gas exchange. Therefore the atmosphere inside fermentors sometimes is carbon dioxide rich. Unlike photosynthetic organisms, many microorganisms suitable for use in industrial fermentation processes do not incorporate atmospheric carbon (e.g., CO.sub.2) to any significant degree, or at all. Thus, to ensure that increasing levels of carbon dioxide do not inhibit cell growth and the fermentation process, methods to remove carbon dioxide from the interior of fermentors can be useful.

[0071] Photosynthetic organisms make use of atmospheric carbon by incorporating the carbon available in carbon dioxide into organic carbon compounds by a process known as carbon fixation. The activities responsible for a photosynthetic organism's ability to fix carbon dioxide include phosphoenolpyruvate carboxylase (e.g., PEP carboxylase) or ribulose 1,5-bis-phosphate carboxylase (e.g., Rubisco). PEP carboxylase catalyzes the addition of carbon dioxide to phosphoenolpyruvate to generate the four-carbon compound oxaloacetate. Oxaloacetate can be used in other cellular processes or be further converted to yield several industrially useful products (e.g., malate, succinate, citrate and the like). Rubisco catalyzes the addition of carbon dioxide and ribulose-1,5-bisphosphate to generate 2 molecules of 3-phosphoglycerate. 3-phosphoglycerate can be further converted to ethanol via cellular fermentation or used to produce other commercially useful products. Nucleic acid sequences encoding PEP carboxylase and Rubisco activities can be obtained from any suitable organism (e.g., plants, bacteria, and other microorganisms, for example) and any of these activities can be used herein with the proviso that the nucleic acid sequence is either naturally active in the chosen microorganism when expressed, or can be altered or modified to be active.

Examples of Altered Activities

[0072] In some embodiments, engineered microorganisms can include modifications to one or more (e.g., 1, 2, 3, 4, 5, 6 or all) of the following activities: phosphofructokinase activity (PFK1 A subunit, PFK2 B subunit), phosphogluconate dehydratase activity (EDD), 2-keto-3-deoxygluconate-6-phosphate aldolase activity (EDA), xylose isomerase activity (xylA), phosphoenolpyruvate carboxylase activity (PEP carboxylase), alcohol dehydrogenase 2 activity (ADH2), thymidylate synthase activity, phosphoglucose isomerase activity (PGI1), transaldolase activity (TAL1), transketolase activity (TKL1, TKL2), 6-phosphogluconolactonase activity (SOL3, SOL4), Glucose-6-phosphate dehydrogenase activity (ZWF1), 6-phosphogluconate dehydrogenase (decarboxylating) activity (GND1, GND2), galactose permease activity (GAL2), high affinity glucose transport activity (HXT7), glucose/xylose transport activity (GXS1, GXF1) and combinations of the foregoing.

[0073] The term "phosphofructokinase activity" as used herein refers to conversion of fructose-6-phosphate to fructose-1,6-bisphosphate. Phosphofructokinase activity may be provided by an enzyme that includes one or two subunits (referred to hereafter as "subunit A" and/or "subunit B").

[0074] The term "inactivating the Embden-Meyerhoff pathway" as used herein refers to reducing or eliminating the activity of one or more activities in the Embden-Meyerhoff pathway, including but not limited to phosphofructokinase activity. In some embodiments, the phosphofructokinase activity can be reduced or eliminated by introduction of an untranslated RNA molecule (e.g., antisense RNA, RNAi, and the like, for example). In certain embodiments, the untranslated RNA is encoded by a heterologous nucleotide sequence introduced to a host microorganism.

[0075] In some embodiments, the phosphofructokinase activity can be temporarily or permanently reduced or eliminated by genetic modification, as described below. In certain embodiments, the genetic modification renders the activity responsive to changes in the environment. In some embodiments, the genetic modification disrupts synthesis of a functional nucleic acid encoding the activity or produces a nonfunctional polypeptide or protein. Nucleic acid sequences that can be used to reduce or eliminate the activity of phosphofructokinase activity can have sequences partially or substantially complementary to sequences described herein. Presence or absence of the amount of phosphofructokinase activity can be detected by any suitable method known in the art, including requiring a five-carbon sugar carbon source or a functional Entner-Doudoroff pathway for growth. Inactivation of the Embden-Meyerhoff pathway is described in further detail below. As referred to herein, "substantially complementary" with respect to sequences refers to nucleotide sequences that will hybridize with each other. The stringency of the hybridization conditions can be altered to tolerate varying amounts of sequence mismatch. Included are regions of counterpart, target and capture nucleotide sequences 55% or more, 56% or more, 57% or more, 58% or more, 59% or more, 60% or more, 61% or more, 62% or more, 63% or more, 64% or more, 65% or more, 66% or more, 67% or more, 68% or more, 69% or more, 70% or more, 71% or more, 72% or more, 73% or more, 74% or more, 75% or more, 76% or more, 77% or more, 78% or more, 79% or more, 80% or more, 81% or more, 82% or more, 83% or more, 84% or more, 85% or more, 86% or more, 87% or more, 88% or more, 89% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more or 99% or more complementary to each other.

[0076] The term "phosphogluconate dehydratase activity" as used herein refers to conversion of 6-phophogluconate to 2-keto-3-deoxy-6-p-gluconate. The phosphogluconate dehydratase activity can be provided by a polypeptide. In some embodiments, the polypeptide is encoded by a heterologous nucleotide sequence introduced to a host microorganism. Nucleic acid sequences conferring phosphogluconate dehydratase activity can be obtained from a number of sources, including Zymomonas mobilis and Escherichia coli. Examples of an amino acid sequence of a polypeptide having phosphogluconate dehydratase activity, and a nucleotide sequence of a polynucleotide that encodes the polypeptide, are presented below in tables. Presence, absence or amount of phosphogluconate dehydratase activity can be detected by any suitable method known in the art, including western blot analysis.

[0077] The term "2-keto-3-deoxygluconate-6-phosphate aldolase activity" as used herein refers to conversion of 2-keto-3-deoxy-6-p-gluconate to pyruvate. The 2-keto-3-deoxygluconate-6-phosphate aldolase activity can be provided by a polypeptide. In some embodiments, the polypeptide is encoded by a heterologous nucleotide sequence introduced to a host microorganism. Nucleic acid sequences conferring 2-keto-3-deoxygluconate-6-phosphate aldolase activity can be obtained from a number of sources, including Zymomonas mobilis and Escherichia coli. Examples of an amino acid sequence of a polypeptide having 2-keto-3-deoxygluconate-6-phosphate aldolase activity, and a nucleotide sequence of a polynucleotide that encodes the polypeptide, are presented below in tables. Presence, absence or amount of 2-keto-3-deoxygluconate-6-phosphate aldolase activity can be detected by any suitable method known in the art, including western blot analysis.

[0078] The term "xylose isomerase activity" as used herein refers to conversion of xylose to xylulose. The xylose isomerase activity can be provided by a polypeptide. In some embodiments, the polypeptide is encoded by a heterologous nucleotide sequence introduced to a host microorganism. Nucleic acid sequences conferring xylose isomerase activity can be obtained from a number of sources, including Piromyces, Orpinomyces, Bacteroides (e.g., B. thetaiotaomicron, B. uniformis, B. stercoris), Clostrialies (e.g., Clostrialies BVAB3), Clostridium (e.g., C. phytofermentans, C. thermohydrosulfuricum, C. cellulyticum), Thermus thermophilus, Eschericia coli, Streptomyces (e.g., S. rubiginosus, S. murinus), Bacillus stearothermophilus, Lactobacillus pentosus, Thermotoga (e.g., T. maritime, T. neopolitana) and Ruminococcus (e.g., Ruminococcus environmental samples, Ruminococcus albus, Ruminococcus bromii, Ruminococcus callidus, Ruminococcus flavefaciens, Ruminococcus gauvreauii, Ruminococcus gnavus, Ruminococcus lactaris, Ruminococcus obeum, Ruminococcus sp., Ruminococcus sp. 14531, Ruminococcus sp. 15975, Ruminococcus sp. 16442, Ruminococcus sp. 18P13, Ruminococcus sp. 25F6, Ruminococcus sp. 25F7, Ruminococcus sp. 25F8, Ruminococcus sp. 4.sub.--1.sub.--47FAA, Ruminococcus sp. 5, Ruminococcus sp. 5.sub.--1.sub.--39BFAA, Ruminococcus sp. 7L75, Ruminococcus sp. 8.sub.--1.sub.--37FAA, Ruminococcus sp. 9SE51, Ruminococcus sp. C36, Ruminococcus sp. CB10, Ruminococcus sp. CB3, Ruminococcus sp. CCUG 37327 A, Ruminococcus sp. CE2, Ruminococcus sp. CJ60, Ruminococcus sp. CJ63, Ruminococcus sp. CO1, Ruminococcus sp. CO12, Ruminococcus sp. CO22, Ruminococcus sp. CO27, Ruminococcus sp. CO28, Ruminococcus sp. CO34, Ruminococcus sp. CO41, Ruminococcus sp. CO47, Ruminococcus sp. CO7, Ruminococcus sp. CS1, Ruminococcus sp. CS6, Ruminococcus sp. DJF_VR52, Ruminococcus sp. DJF_VR66, Ruminococcus sp. DJF_VR67, Ruminococcus sp. DJF_VR70k1, Ruminococcus sp. DJF_VR87, Ruminococcus sp. Eg2, Ruminococcus sp. Egf, Ruminococcus sp. END-1, Ruminococcus sp. FD1, Ruminococcus sp. GM2/1, Ruminococcus sp. ID1, Ruminococcus sp. ID8, Ruminococcus sp. K-1, Ruminococcus sp. KKA Seq234, Ruminococcus sp. M-1, Ruminococcus sp. M10, Ruminococcus sp. M22, Ruminococcus sp. M23, Ruminococcus sp. M6, Ruminococcus sp. M73, Ruminococcus sp. M76, Ruminococcus sp. MLG080-3, Ruminococcus sp. NML 00-0124, Ruminococcus sp. Pei041, Ruminococcus sp. SC101, Ruminococcus sp. SC103, Ruminococcus sp. Siijpesteijn 1948, Ruminococcus sp. WAL 17306, Ruminococcus sp. YE281, Ruminococcus sp. YE58, Ruminococcus sp. YE71, Ruminococcus sp. ZS2-15, Ruminococcus torques). Examples of an amino acid sequence of a polypeptide having xylose isomerase activity, and a nucleotide sequence of a polynucleotide that encodes the polypeptide, are presented below in tables. Presence, absence or amount of xylose isomerase activity can be detected by any suitable method known in the art, including western blot analysis.

[0079] The term "phosphoenolpyruvate carboxylase activity" as used herein refers to the addition of carbon dioxide to phosphoenolpyruvate to generate the four-carbon compound oxaloacetate. The phosphoenolpyruvate carboxylase activity can be provided by a polypeptide. In some embodiments, the polypeptide is encoded by a heterologous nucleotide sequence introduced to a host microorganism. Nucleic acid sequences conferring phosphoenolpyruvate carboxylase activity can be obtained from a number of sources, including Zymomonas mobilis. Examples of an amino acid sequence of a polypeptide having phosphoenolpyruvate carboxylase activity, and a nucleotide sequence of a polynucleotide that encodes the polypeptide, are presented below in tables. Presence, absence or amount of xylose isomerase activity can be detected by any suitable method known in the art.

[0080] The term "alcohol dehydrogenase 2 activity" as used herein refers to conversion of ethanol to acetaldehyde, which is the reverse of the forward action catalyzed by alcohol dehydrogenase 1. The term "inactivation of the conversion of ethanol to acetaldehyde" refers to a reduction or elimination in the activity of alcohol dehydrogenase 2. Reducing or eliminating the activity of alcohol dehydrogenase 2 activity can lead to an increase in ethanol production. In some embodiments, the alcohol dehydrogenase 2 activity can be reduced or eliminated by introduction of an untranslated RNA molecule (e.g., antisense RNA, RNAi, and the like, for example). In certain embodiments, the untranslated RNA is encoded by a heterologous nucleotide sequence introduced to a host microorganism.

[0081] In some embodiments, the alcohol dehydrogenase 2 activity can be temporarily or permanently reduced or eliminated by genetic modification, as described below. In certain embodiments, the genetic modification renders the activity responsive to changes in the environment. In some embodiments, the genetic modification disrupts synthesis of a functional nucleic acid encoding the activity or produces a nonfunctional polypeptide or protein. Nucleic acid sequences that can be used to reduce or eliminate the activity of alcohol dehydrogenase 2 can have sequences partially or substantially complementary to nucleic acid sequences that encode alcohol dehydrogenase 2 activity. Presence or absence of the amount of alcohol dehydrogenase 2 activity can be detected by any suitable method known in the art, including inability to grown in media with ethanol as the sole carbon source.

[0082] The term "thymidylate synthase activity" as used herein refers to a reductive methylation, where deoxyuridine monophosphate (dUMP) and N5,N10-methylene tetrahydrofolate are together used to generate thymidine monophosphate (dTMP), yielding dihydrofolate as a secondary product. The term "temporarily inactivate thymidylate synthase activity" refers to a temporary reduction or elimination in the activity of thymidylate synthase when the modified organism is shifted to a non-permissive temperature. The activity can return to normal upon return to a permissive temperature. Temporarily inactivating thymidylate synthase uncouples cell growth from cell division while under the non permissive temperature. This inactivation in turn allows the cells to continue fermentation without producing biomass and dividing, thus increasing the yield of product produced during fermentation.

[0083] In some embodiments, the thymidylate synthase activity can be temporarily reduced or eliminated by genetic modification, as described below. In certain embodiments, the genetic modification renders the activity responsive to changes in the environment. Nucleic acid sequences conferring temperature sensitive thymidylate synthase activity can be obtained from S. cerevisiae strain 172066 (accession number 208583). The cdc21 mutation in S. cerevisiae strain 172066 has a point mutation at position G139S relative to the initiating methionine. Examples of nucleotide sequences used to PCR amplify the polynucleotide encoding the temperature sensitive polypeptide, are presented below in tables. Presence, absence or amount of thymidylate synthase activity can be detected by any suitable method known in the art, including growth arrest at the non-permissive temperature.

[0084] Thymidylate synthase is one of many polypeptides that regulate the cell cycle. The cell cycle may be inhibited in engineered microorganisms under certain conditions (e.g., temperature shift, dissolved oxygen shift), which can result in inhibited or reduced cell proliferation, inhibited or reduced cell division, and sometimes cell cycle arrest (collectively "cell cycle inhibition"). Upon exposure to triggering conditions, a microorganism may display cell cycle inhibition after a certain time after the microorganism is exposed to the triggering conditions (e.g., there may be a time delay after a microorganism is exposed to a certain set of conditions before the microorganism displays cell cycle inhibition). Where cell cycle inhibition results in reduced cell proliferation, cell proliferation rates may be reduced by about 50% or greater, for example (e.g., reduced by about 52%, 54%, 56%, 58%, 60%, 62%, 64%, 66%, 68%, 70%, 72%, 74%, 76%, 78%, 80%, 82%, 84%, 86%, 88%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99%, or greater than any one of the foregoing). Where cell cycle inhibition results a reduced number of cells undergoing cell division, the rate of cell division may be reduced by about 50% or greater, for example (e.g., the number of cells undergoing division is reduced by about 52%, 54%, 56%, 58%, 60%, 62%, 64%, 66%, 68%, 70%, 72%, 74%, 76%, 78%, 80%, 82%, 84%, 86%, 88%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99%, or greater than any one of the foregoing). Where cell cycle inhibition results in cell cycle arrest, cells may be arrested at any stage of the cell cycle (e.g., resting G.sub.0 phase, interphase (e.g., G.sub.1, S, G.sub.2 phases), mitosis (e.g., prophase, prometaphase, metaphase, anaphase, telophase)) and different percentages of cells in a population can be arrested at different stages of the cell cycle.

[0085] The term "phosphoglucose isomerase activity" as used herein refers to the conversion of glucose-6-phosphate to fructose-6-phosphate. The term "inactivation of the conversion of glucose-6-phosphate to fructose-6-phosphate" refers to a reduction or elimination in the activity of phosphoglucose isomerase. Reducing or eliminating the activity of phosphoglucose isomerase activity can lead to an increase in ethanol production. In some embodiments, the phosphoglucose isomerase activity can be reduced or eliminated by introduction of an untranslated RNA molecule (e.g., antisense RNA, RNAi, and the like, for example). In certain embodiments, the untranslated RNA is encoded by a heterologous nucleotide sequence introduced to a host microorganism.

[0086] In some embodiments, the phosphoglucose isomerase activity can be temporarily or permanently reduced or eliminated by genetic modification, as described below. In certain embodiments, the genetic modification renders the activity responsive to changes in the environment. In some embodiments, the genetic modification disrupts synthesis of a functional nucleic acid encoding the activity or produces a nonfunctional polypeptide or protein. Nucleic acid sequences that can be used to reduce or eliminate the activity of phosphoglucose isomerase can have sequences partially or substantially complementary to nucleic acid sequences that encode phosphoglucose isomerase activity. Presence or absence of the amount of phosphoglucose isomerase activity can be detected by any suitable method known in the art, including nucleic acid based analysis and western blot analysis.

[0087] The term "glucose-6-phosphate dehydrogenase activity" as used herein refers to conversion of glucose-6-phosphate to gluconolactone-6-phosphate coupled with the generation of NADPH. The glucose-6-phosphate dehydrogenase aldolase activity can be provided by a polypeptide. In some embodiments, the polypeptide is encoded by a heterologous nucleotide sequence introduced to a host microorganism. Nucleic acid sequences conferring glucose-6-phosphate dehydrogenase activity can be obtained from a number of sources, including, but not limited to S. cerevisiae Examples of a nucleotide sequence of a polynucleotide that encodes the polypeptide, are presented below in tables. Presence, absence or amount of glucose-6-phosphate dehydrogenase activity can be detected by any suitable method known in the art, including western blot analysis.

[0088] The term "6-phosphogluconolactonase activity" as used herein refers to conversion of gluconolactone-6-phosphate to gluconate-6-phosphate. The 6-phosphogluconolactonase activity can be provided by a polypeptide. In some embodiments, the polypeptide is encoded by a heterologous nucleotide sequence introduced to a host microorganism. Nucleic acid sequences conferring 6-phosphogluconolactonase activity can be obtained from a number of sources, including, but not limited to S. cerevisiae. Examples of an amino acid sequence of a polypeptide having 6-phosphogluconolactonase activity, and a nucleotide sequence of a polynucleotide that encodes the polypeptide, are presented below in tables. Presence, absence or amount of 6-phosphogluconolactonase activity can be detected by any suitable method known in the art, including nucleic acid based analysis and western blot analysis.

[0089] The term "6-phosphogluconate dehydrogenase (decarboxylating) activity" as used herein refers to the conversion of gluconate-6-phosphate to ribulose-5-phosphate. The term "inactivation of the conversion of gluconate-6-phosphate to ribulose-5-phosphate" refers to a reduction or elimination in the activity of 6-phosphogluconate dehydrogenase. Reducing or eliminating the activity of 6-phosphogluconate dehydrogenase (decarboxylating) activity can lead to an increase in ethanol production. In some embodiments, the 6-phosphogluconate dehydrogenase (decarboxylating) activity can be reduced or eliminated by introduction of an untranslated RNA molecule (e.g., antisense RNA, RNAi, and the like, for example). In certain embodiments, the untranslated RNA is encoded by a heterologous nucleotide sequence introduced to a host microorganism.

[0090] In some embodiments, the 6-phosphogluconate dehydrogenase (decarboxylating) activity can be temporarily or permanently reduced or eliminated by genetic modification, as described below. In certain embodiments, the genetic modification renders the activity responsive to changes in the environment. In some embodiments, the genetic modification disrupts synthesis of a functional nucleic acid encoding the activity or produces a nonfunctional polypeptide or protein. Nucleic acid sequences that can be used to reduce or eliminate the activity of 6-phosphogluconate dehydrogenase (decarboxylating) can have sequences partially or substantially complementary to nucleic acid sequences that encode 6-phosphogluconate dehydrogenase (decarboxylating) activity. Presence or absence of the amount of 6-phosphogluconate dehydrogenase (decarboxylating) activity can be detected by any suitable method known in the art, including nucleic acid based analysis and western blot analysis.

[0091] The term "transketolase activity" as used herein refers to conversion of xylulose-5-phosphate and ribose-5-phosphate to sedoheptulose-7-phosphate and glyceraldehyde-3-phosphate. The transketolase activity can be provided by a polypeptide. In some embodiments, the polypeptide is encoded by a heterologous nucleotide sequence introduced to a host microorganism. Nucleic acid sequences conferring transketolase activity can be obtained from a number of sources, including, but not limited to S. cerevisiae, Kluyveromyces, Pichia, Escherichia, Bacillus, Ruminococcus, Schizosaccharomyces, and Candida. Examples of an amino acid sequence of a polypeptide having transketolase activity, and a nucleotide sequence of a polynucleotide that encodes the polypeptide, are presented below in the examples. The term "inactivation of the conversion of xylulose-5-phosphate and ribose-5-phosphate to sedoheptulose-7-phosphate and glyceraldehyde-3-phosphate" refers to a reduction or elimination in the activity of transketolase. Reducing or eliminating the activity of transketolase activity can lead to an increase in ethanol production. In some embodiments, the transketolase activity can be reduced or eliminated by introduction of an untranslated RNA molecule (e.g., antisense RNA, RNAi, and the like, for example). In certain embodiments, the untranslated RNA is encoded by a heterologous nucleotide sequence introduced to a host microorganism.

[0092] In some embodiments, the transketolase activity can be temporarily or permanently reduced or eliminated by genetic modification, as described below. In certain embodiments, the genetic modification renders the activity responsive to changes in the environment. In some embodiments, the genetic modification disrupts synthesis of a functional nucleic acid encoding the activity or produces a nonfunctional polypeptide or protein. Nucleic acid sequences that can be used to reduce or eliminate the activity of transketolase can have sequences partially or substantially complementary to nucleic acid sequences that encode transketolase activity. Presence, absence or amount of transketolase activity can be detected by any suitable method known in the art, including nucleic acid based analysis and western blot analysis.

[0093] The term "transaldolase activity" as used herein refers to conversion of sedoheptulose 7-phosphate and glyceraldehyde 3-phosphate to erythrose 4-phosphate and fructose 6-phosphate.

[0094] The transaldolase activity can be provided by a polypeptide. In some embodiments, the polypeptide is encoded by a heterologous nucleotide sequence introduced to a host microorganism. Nucleic acid sequences conferring transaldolase activity can be obtained from a number of sources, including, but not limited to S. cerevisiae, Kluyveromyces, Pichia, Escherichia, Bacillus, Ruminococcus, Schizosaccharomyces, and Candida. Examples of an amino acid sequence of a polypeptide having transaldolase activity, and a nucleotide sequence of a polynucleotide that encodes the polypeptide, are presented below in the examples. The term "inactivation of the conversion of sedoheptulose 7-phosphate and glyceraldehyde 3-phosphate to erythrose 4-phosphate and fructose 6-phosphate" refers to a reduction or elimination in the activity of transaldolase. Reducing or eliminating the activity of transaldolase activity can lead to an increase in ethanol production. In some embodiments, the transaldolase activity can be reduced or eliminated by introduction of an untranslated RNA molecule (e.g., antisense RNA, RNAi, and the like, for example). In certain embodiments, the untranslated RNA is encoded by a heterologous nucleotide sequence introduced to a host microorganism.

[0095] In some embodiments, the transaldolase activity can be temporarily or permanently reduced or eliminated by genetic modification, as described below. In certain embodiments, the genetic modification renders the activity responsive to changes in the environment. In some embodiments, the genetic modification disrupts synthesis of a functional nucleic acid encoding the activity or produces a nonfunctional polypeptide or protein. Nucleic acid sequences that can be used to reduce or eliminate the activity of transaldolase can have sequences partially or substantially complementary to nucleic acid sequences that encode transaldolase activity. Presence, absence or amount of transaldolase activity can be detected by any suitable method known in the art, including nucleic acid based analysis and western blot analysis.

[0096] The term "galactose permease activity" as used herein refers to the import of galactose into a cell or organism by an activity that transports galactose across cell membranes. The galactose permease activity can be provided by a polypeptide. In some embodiments, the polypeptide is encoded by a heterologous nucleotide sequence introduced to a host microorganism. Nucleic acid sequences conferring galactose permease activity can be obtained from a number of sources, including, but not limited to S. cerevisiae, Candida albicans, Debaryomyces hansenii, Schizosaccharomyces pombe, Arabidopsis thaliana, and Colwellia psychrerythraea. Examples of an amino acid sequence of a polypeptide having galactose permease activity, and a nucleotide sequence of a polynucleotide that encodes the polypeptide, are presented below in the Examples. Presence, absence or amount of galactose permease activity can be detected by any suitable method known in the art, including nucleic acid based analysis and western blot analysis.

[0097] The term "glucose/xylose transport activity" as used herein refers to the import of glucose and/or xylose into a cell or organism by an activity that transports glucose and/or xylose across cell membranes. The glucose/xylose transport activity can be provided by a polypeptide. In some embodiments, the polypeptide is encoded by a heterologous nucleotide sequence introduced to a host microorganism. Nucleic acid sequences conferring glucose/xylose transport activity can be obtained from a number of sources, including, but not limited to Pichia yeast, Saccharomyces cerevisiae, Candida albicans, Debaryomyces hansenii, Schizosaccaromyces pombe. Examples of an amino acid sequence of a polypeptide having glucose/xylose transport activity, and a nucleotide sequence of a polynucleotide that encodes the polypeptide, are presented below in the Examples. Presence, absence or amount of glucose/xylose transport activity can be detected by any suitable method known in the art, including nucleic acid based analysis and western blot analysis.

[0098] The terms "high affinity glucose transport activity" and "hexose transport activity" as used herein refer to the import of glucose and other hexose sugars into a cell or organism by an activity that transports glucose and other hexose sugars across cell membranes. The high affinity glucose transport activity or hexose transport activity can be provided by a polypeptide. In some embodiments, the polypeptide is encoded by a heterologous nucleotide sequence introduced to a host microorganism. Nucleic acid sequences conferring high affinity glucose transport activity or hexose transport activity can be obtained from a number of sources, including, but not limited to S. cerevisiae, Pichia yeast, Candida albicans, Debaryomyces hansenii, Schizosaccaromyces pombe. Presence, absence or amount of glucose/xylose transport activity can be detected by any suitable method known in the art, including nucleic acid based analysis and western blot analysis.

[0099] Activities described herein can be modified to generate microorganisms engineered to allow a method of independently regulating or controlling (e.g., ability to independently turn on or off, or increase or decrease, for example) six-carbon sugar metabolism, five-carbon sugar metabolism, atmospheric carbon metabolism (e.g., carbon dioxide fixation) or combinations thereof. In some embodiments, regulated control of a desired activity can be the result of a genetic modification. In certain embodiments, the genetic modification can be modification of a promoter sequence. In some embodiments the modification can increase of decrease an activity encoded by a gene operably linked to the promoter element. In certain embodiments, the modification to the promoter element can add or remove a regulatory sequence. In some embodiments the regulatory sequence can respond to a change in environmental or culture conditions. Non-limiting examples of culture conditions that could be used to regulate an activity in this manner include, temperature, light, oxygen, salt, metals and the like. Additional methods for altering an activity by modification of a promoter element are given below.

[0100] In some embodiments, the genetic modification can be to an ORF. In certain embodiments, the modification of the ORF can increase or decrease expression of the ORF. In some embodiments modification of the ORF can alter the efficiency of translation of the ORF. In certain embodiments, modification of the ORF can alter the activity of the polypeptide or protein encoded by the ORF. Additional methods for altering an activity by modification of an ORF are given below.

[0101] In some embodiments, the genetic modification can be to an activity associated with cell division (e.g., cell division cycle or CDC activity, for example). In certain embodiments the cell division cycle activity can be thymidylate synthase activity. In certain embodiments, regulated control of cell division can be the result of a genetic modification. In some embodiments, the genetic modification can be to a nucleic acid sequence that encodes thymidylate synthase. In certain embodiments, the genetic modification can temporarily inactivate thymidylate synthase activity by rendering the activity temperature sensitive (e.g., heat resistant, heat sensitive, cold resistant, cold sensitive and the like).

[0102] In some embodiments, the genetic modification can modify a promoter sequence operably linked to a gene encoding an activity involved in control of cell division. In some embodiments the modification can increase of decrease an activity encoded by a gene operably linked to the promoter element. In certain embodiments, the modification to the promoter element can add or remove a regulatory sequence. In some embodiments the regulatory sequence can respond to a change in environmental or culture conditions. Non-limiting examples of culture conditions that could be used to regulate an activity in this manner include, temperature, light, oxygen, salt, metals and the like. In some embodiments, an engineered microorganism comprising one or more activities described above or below can be used in to produce ethanol by inhibiting cell growth and cell division by use of a temperature sensitive cell division control activity while allowing cellular fermentation to proceed, thereby producing a significant increase in ethanol yield when compared to the native organism.

Polynucleotides and Polypeptides

[0103] A nucleic acid (e.g., also referred to herein as nucleic acid reagent, target nucleic acid, target nucleotide sequence, nucleic acid sequence of interest or nucleic acid region of interest) can be from any source or composition, such as DNA, cDNA, gDNA (genomic DNA), RNA, siRNA (short inhibitory RNA), RNAi, tRNA or mRNA, for example, and can be in any form (e.g., linear, circular, supercoiled, single-stranded, double-stranded, and the like). A nucleic acid can also comprise DNA or RNA analogs (e.g., containing base analogs, sugar analogs and/or a non-native backbone and the like). It is understood that the term "nucleic acid" does not refer to or infer a specific length of the polynucleotide chain, thus polynucleotides and oligonucleotides are also included in the definition. Deoxyribonucleotides include deoxyadenosine, deoxycytidine, deoxyguanosine and deoxythymidine. For RNA, the uracil base is uridine.

[0104] A nucleic acid sometimes is a plasmid, phage, autonomously replicating sequence (ARS), centromere, artificial chromosome, yeast artificial chromosome (e.g., YAC) or other nucleic acid able to replicate or be replicated in a host cell. In certain embodiments a nucleic acid can be from a library or can be obtained from enzymatically digested, sheared or sonicated genomic DNA (e.g., fragmented) from an organism of interest. In some embodiments, nucleic acid subjected to fragmentation or cleavage may have a nominal, average or mean length of about 5 to about 10,000 base pairs, about 100 to about 1,000 base pairs, about 100 to about 500 base pairs, or about 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000 or 10000 base pairs. Fragments can be generated by any suitable method in the art, and the average, mean or nominal length of nucleic acid fragments can be controlled by selecting an appropriate fragment-generating procedure by the person of ordinary skill. In some embodiments, the fragmented DNA can be size selected to obtain nucleic acid fragments of a particular size range.

[0105] Nucleic acid can be fragmented by various methods known to the person of ordinary skill, which include without limitation, physical, chemical and enzymic processes. Examples of such processes are described in U.S. Patent Application Publication No. 20050112590 (published on May 26, 2005, entitled "Fragmentation-based methods and systems for sequence variation detection and discovery," naming Van Den Boom et al.). Certain processes can be selected by the person of ordinary skill to generate non-specifically cleaved fragments or specifically cleaved fragments. Examples of processes that can generate non-specifically cleaved fragment sample nucleic acid include, without limitation, contacting sample nucleic acid with apparatus that expose nucleic acid to shearing force (e.g., passing nucleic acid through a syringe needle; use of a French press); exposing sample nucleic acid to irradiation (e.g., gamma, x-ray, UV irradiation; fragment sizes can be controlled by irradiation intensity); boiling nucleic acid in water (e.g., yields about 500 base pair fragments) and exposing nucleic acid to an acid and base hydrolysis process.

[0106] Nucleic acid may be specifically cleaved by contacting the nucleic acid with one or more specific cleavage agents. The term "specific cleavage agent" as used herein refers to an agent, sometimes a chemical or an enzyme that can cleave a nucleic acid at one or more specific sites. Specific cleavage agents often will cleave specifically according to a particular nucleotide sequence at a particular site. Examples of enzymic specific cleavage agents include without limitation endonucleases (e.g., DNase (e.g., DNase I, II); RNase (e.g., RNase E, F, H, P); Cleavase.TM. enzyme; Taq DNA polymerase; E. coli DNA polymerase I and eukaryotic structure-specific endonucleases; murine FEN-1 endonucleases; type I, II or III restriction endonucleases such as Acc I, Afl III, Alu I, Alw44 I, Apa I, Asn I, Ava I, Ava II, BamH I, Ban II, Bcl I, Bgl I. Bgl II, Bln I, Bsm I, BssH II, BstE II, Cfo I, Cla I, Dde I, Dpn I, Dra I, EclX I, EcoR I, EcoR I, EcoR II, EcoR V, Hae II, Hae II, Hind III, Hind III, Hpa I, Hpa II, Kpn I, Ksp I, Mlu I, MluN I, Msp I, Nci I, Nco I, Nde I, Nde II, Nhe I, Not I, Nru I, Nsi I, Pst I, Pvu I, Pvu II, Rsa I, Sac I, Sal I, Sau3A I, Sca I, ScrF I, Sfi I, Sma I, Spe I, Sph I, Ssp I, Stu I, Sty I, Swa I, Taq I, Xba I, Xho I); glycosylases (e.g., uracil-DNA glycolsylase (UDG), 3-methyladenine DNA glycosylase, 3-methyladenine DNA glycosylase II, pyrimidine hydrate-DNA glycosylase, FaPy-DNA glycosylase, thymine mismatch-DNA glycosylase, hypoxanthine-DNA glycosylase, 5-Hydroxymethyluracil DNA glycosylase (HmUDG), 5-Hydroxymethylcytosine DNA glycosylase, or 1,N6-etheno-adenine DNA glycosylase); exonucleases (e.g., exonuclease III); ribozymes, and DNAzymes. Sample nucleic acid may be treated with a chemical agent, or synthesized using modified nucleotides, and the modified nucleic acid may be cleaved. In non-limiting examples, sample nucleic acid may be treated with (i) alkylating agents such as methylnitrosourea that generate several alkylated bases, including N3-methyladenine and N3-methylguanine, which are recognized and cleaved by alkyl purine DNA-glycosylase; (ii) sodium bisulfite, which causes deamination of cytosine residues in DNA to form uracil residues that can be cleaved by uracil N-glycosylase; and (iii) a chemical agent that converts guanine to its oxidized form, 8-hydroxyguanine, which can be cleaved by formamidopyrimidine DNA N-glycosylase. Examples of chemical cleavage processes include without limitation alkylation, (e.g., alkylation of phosphorothioate-modified nucleic acid); cleavage of acid lability of P3'-N5'-phosphoroamidate-containing nucleic acid; and osmium tetroxide and piperidine treatment of nucleic acid.

[0107] As used herein, the term "complementary cleavage reactions" refers to cleavage reactions that are carried out on the same nucleic acid using different cleavage reagents or by altering the cleavage specificity of the same cleavage reagent such that alternate cleavage patterns of the same target or reference nucleic acid or protein are generated. In certain embodiments, nucleic acids of interest may be treated with one or more specific cleavage agents (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more specific cleavage agents) in one or more reaction vessels (e.g., nucleic acid of interest is treated with each specific cleavage agent in a separate vessel).

[0108] A nucleic acid suitable for use in the embodiments described herein sometimes is amplified by any amplification process known in the art (e.g., PCR, RT-PCR and the like). Nucleic acid amplification may be particularly beneficial when using organisms that are typically difficult to culture (e.g., slow growing, require specialize culture conditions and the like). The terms "amplify", "amplification", "amplification reaction", or "amplifying" as used herein, refer to any in vitro processes for multiplying the copies of a target sequence of nucleic acid. Amplification sometimes refers to an "exponential" increase in target nucleic acid. However, "amplifying" as used herein can also refer to linear increases in the numbers of a select target sequence of nucleic acid, but is different than a one-time, single primer extension step. In some embodiments, a limited amplification reaction, also known as pre-amplification, can be performed. Pre-amplification is a method in which a limited amount of amplification occurs due to a small number of cycles, for example 10 cycles, being performed. Pre-amplification can allow some amplification, but stops amplification prior to the exponential phase, and typically produces about 500 copies of the desired nucleotide sequence(s). Use of pre-amplification may also limit inaccuracies associated with depleted reactants in standard PCR reactions.

[0109] In some embodiments, a nucleic acid reagent sometimes is stably integrated into the chromosome of the host organism, or a nucleic acid reagent can be a deletion of a portion of the host chromosome, in certain embodiments (e.g., genetically modified organisms, where alteration of the host genome confers the ability to selectively or preferentially maintain the desired organism carrying the genetic modification). Such nucleic acid reagents (e.g., nucleic acids or genetically modified organisms whose altered genome confers a selectable trait to the organism) can be selected for their ability to guide production of a desired protein or nucleic acid molecule. When desired, the nucleic acid reagent can be altered such that codons encode for (i) the same amino acid, using a different tRNA than that specified in the native sequence, or (ii) a different amino acid than is normal, including unconventional or unnatural amino acids (including detectably labeled amino acids). As described herein, the term "native sequence" refers to an unmodified nucleotide sequence as found in its natural setting (e.g., a nucleotide sequence as found in an organism).

[0110] A nucleic acid or nucleic acid reagent can comprise certain elements often selected according to the intended use of the nucleic acid. Any of the following elements can be included in or excluded from a nucleic acid reagent. A nucleic acid reagent, for example, may include one or more or all of the following nucleotide elements: one or more promoter elements, one or more 5' untranslated regions (5'UTRs), one or more regions into which a target nucleotide sequence may be inserted (an "insertion element"), one or more target nucleotide sequences, one or more 3' untranslated regions (3'UTRs), and one or more selection elements. A nucleic acid reagent can be provided with one or more of such elements and other elements may be inserted into the nucleic acid before the nucleic acid is introduced into the desired organism. In some embodiments, a provided nucleic acid reagent comprises a promoter, 5'UTR, optional 3'UTR and insertion element(s) by which a target nucleotide sequence is inserted (i.e., cloned) into the nucleotide acid reagent. In certain embodiments, a provided nucleic acid reagent comprises a promoter, insertion element(s) and optional 3'UTR, and a 5' UTR/target nucleotide sequence is inserted with an optional 3'UTR. The elements can be arranged in any order suitable for expression in the chosen expression system (e.g., expression in a chosen organism, or expression in a cell free system, for example), and in some embodiments a nucleic acid reagent comprises the following elements in the 5' to 3' direction: (1) promoter element, 5'UTR, and insertion element(s); (2) promoter element, 5'UTR, and target nucleotide sequence; (3) promoter element, 5'UTR, insertion element(s) and 3'UTR; and (4) promoter element, 5'UTR, target nucleotide sequence and 3'UTR.

[0111] A promoter element typically is required for DNA synthesis and/or RNA synthesis. A promoter element often comprises a region of DNA that can facilitate the transcription of a particular gene, by providing a start site for the synthesis of RNA corresponding to a gene. Promoters generally are located near the genes they regulate, are located upstream of the gene (e.g., 5' of the gene), and are on the same strand of DNA as the sense strand of the gene, in some embodiments.

[0112] A promoter often interacts with a RNA polymerase. A polymerase is an enzyme that catalyses synthesis of nucleic acids using a preexisting nucleic acid reagent. When the template is a DNA template, an RNA molecule is transcribed before protein is synthesized. Enzymes having polymerase activity suitable for use in the present methods include any polymerase that is active in the chosen system with the chosen template to synthesize protein. In some embodiments, a promoter (e.g., a heterologous promoter) also referred to herein as a promoter element, can be operably linked to a nucleotide sequence or an open reading frame (ORF). Transcription from the promoter element can catalyze the synthesis of an RNA corresponding to the nucleotide sequence or ORF sequence operably linked to the promoter, which in turn leads to synthesis of a desired peptide, polypeptide or protein. The term "operably linked" as used herein with respect to promoters refers to a nucleic acid sequence (e.g., a coding sequence) present on the same nucleic acid molecule as a promoter element and whose expression is under the control of said promoter element.

[0113] Promoter elements sometimes exhibit responsiveness to regulatory control. Promoter elements also sometimes can be regulated by a selective agent. That is, transcription from promoter elements sometimes can be turned on, turned off, up-regulated or down-regulated, in response to a change in environmental, nutritional or internal conditions or signals (e.g., heat inducible promoters, light regulated promoters, feedback regulated promoters, hormone influenced promoters, tissue specific promoters, oxygen and pH influenced promoters, promoters that are responsive to selective agents (e.g., kanamycin) and the like, for example). Promoters influenced by environmental, nutritional or internal signals frequently are influenced by a signal (direct or indirect) that binds at or near the promoter and increases or decreases expression of the target sequence under certain conditions.

[0114] Non-limiting examples of selective or regulatory agents that can influence transcription from a promoter element used in embodiments described herein include, without limitation, (1) nucleic acid segments that encode products that provide resistance against otherwise toxic compounds (e.g., antibiotics); (2) nucleic acid segments that encode products that are otherwise lacking in the recipient cell (e.g., essential products, tRNA genes, auxotrophic markers); (3) nucleic acid segments that encode products that suppress the activity of a gene product; (4) nucleic acid segments that encode products that can be readily identified (e.g., phenotypic markers such as antibiotics (e.g., .beta.-lactamase), .beta.-galactosidase, green fluorescent protein (GFP), yellow fluorescent protein (YFP), red fluorescent protein (RFP), cyan fluorescent protein (CFP), and cell surface proteins); (5) nucleic acid segments that bind products that are otherwise detrimental to cell survival and/or function; (6) nucleic acid segments that otherwise inhibit the activity of any of the nucleic acid segments described in Nos. 1-5 above (e.g., antisense oligonucleotides); (7) nucleic acid segments that bind products that modify a substrate (e.g., restriction endonucleases); (8) nucleic acid segments that can be used to isolate or identify a desired molecule (e.g., specific protein binding sites); (9) nucleic acid segments that encode a specific nucleotide sequence that can be otherwise non-functional (e.g., for PCR amplification of subpopulations of molecules); (10) nucleic acid segments that, when absent, directly or indirectly confer resistance or sensitivity to particular compounds; (11) nucleic acid segments that encode products that either are toxic or convert a relatively non-toxic compound to a toxic compound (e.g., Herpes simplex thymidine kinase, cytosine deaminase) in recipient cells; (12) nucleic acid segments that inhibit replication, partition or heritability of nucleic acid molecules that contain them; and/or (13) nucleic acid segments that encode conditional replication functions, e.g., replication in certain hosts or host cell strains or under certain environmental conditions (e.g., temperature, nutritional conditions, and the like). In some embodiments, the regulatory or selective agent can be added to change the existing growth conditions to which the organism is subjected (e.g., growth in liquid culture, growth in a fermentor, growth on solid nutrient plates and the like for example).

[0115] In some embodiments, regulation of a promoter element can be used to alter (e.g., increase, add, decrease or substantially eliminate) the activity of a peptide, polypeptide or protein (e.g., enzyme activity for example). For example, a microorganism can be engineered by genetic modification to express a nucleic acid reagent that can add a novel activity (e.g., an activity not normally found in the host organism) or increase the expression of an existing activity by increasing transcription from a homologous or heterologous promoter operably linked to a nucleotide sequence of interest (e.g., homologous or heterologous nucleotide sequence of interest), in certain embodiments. In some embodiments, a microorganism can be engineered by genetic modification to express a nucleic acid reagent that can decrease expression of an activity by decreasing or substantially eliminating transcription from a homologous or heterologous promoter operably linked to a nucleotide sequence of interest, in certain embodiments.

[0116] In some embodiments the activity can be altered using recombinant DNA and genetic techniques known to the artisan. Methods for engineering microorganisms are further described herein. Tables herein provide non-limiting lists of yeast promoters that are up-regulated by oxygen, yeast promoters that are down-regulated by oxygen, yeast transcriptional repressors and their associated genes, DNA binding motifs as determined using the MEME sequence analysis software. Potential regulator binding motifs can be identified using the program MEME to search intergenic regions bound by regulators for overrepresented sequences. For each regulator, the sequences of intergenic regions bound with p-values less than 0.001 were extracted to use as input for motif discovery. The MEME software was run using the following settings: a motif width ranging from 6 to 18 bases, the "zoops" distribution model, a 6th order Markov background model and a discovery limit of 20 motifs. The discovered sequence motifs were scored for significance by two criteria: an E-value calculated by MEME and a specificity score. The motif with the best score using each metric is shown for each regulator. All motifs presented are derived from datasets generated in rich growth conditions with the exception of a previously published dataset for epitope-tagged Gal4 grown in galactose

[0117] In some embodiments, the altered activity can be found by screening the organism under conditions that select for the desired change in activity. For example, certain microorganisms can be adapted to increase or decrease an activity by selecting or screening the organism in question on a media containing substances that are poorly metabolized or even toxic. An increase in the ability of an organism to grow a substance that is normally poorly metabolized would result in an increase in the growth rate on that substance, for example. A decrease in the sensitivity to a toxic substance might be manifested by growth on higher concentrations of the toxic substance, for example. Genetic modifications that are identified in this manner sometimes are referred to as naturally occurring mutations or the organisms that carry them can sometimes be referred to as naturally occurring mutants. Modifications obtained in this manner are not limited to alterations in promoter sequences. That is, screening microorganisms by selective pressure, as described above, can yield genetic alterations that can occur in non-promoter sequences, and sometimes also can occur in sequences that are not in the nucleotide sequence of interest, but in a related nucleotide sequences (e.g., a gene involved in a different step of the same pathway, a transport gene, and the like). Naturally occurring mutants sometimes can be found by isolating naturally occurring variants from unique environments, in some embodiments.

[0118] In addition to the regulated promoter sequences, regulatory sequences, and coding polynucleotides provided herein, a nucleic acid reagent may include a polynucleotide sequence 70% or more identical to the foregoing (or to the complementary sequences). That is, a nucleotide sequence that is at least 70% or more, 71% or more, 72% or more, 73% or more, 74% or more, 75% or more, 76% or more, 77% or more, 78% or more, 79% or more, 80% or more, 81% or more, 82% or more, 83% or more, 84% or more, 85% or more, 86% or more, 87% or more, 88% or more, 89% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more identical to a nucleotide sequence described herein can be utilized. The term "identical" as used herein refers to two or more nucleotide sequences having substantially the same nucleotide sequence when compared to each other. One test for determining whether two nucleotide sequences or amino acids sequences are substantially identical is to determine the percent of identical nucleotide sequences or amino acid sequences shared.

[0119] Calculations of sequence identity can be performed as follows. Sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). The length of a reference sequence aligned for comparison purposes is sometimes 30% or more, 40% or more, 50% or more, often 60% or more, and more often 70% or more, 80% or more, 90% or more, or 100% of the length of the reference sequence. The nucleotides or amino acids at corresponding nucleotide or polypeptide positions, respectively, are then compared among the two sequences. When a position in the first sequence is occupied by the same nucleotide or amino acid as the corresponding position in the second sequence, the nucleotides or amino acids are deemed to be identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, introduced for optimal alignment of the two sequences.

[0120] Comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. Percent identity between two amino acid or nucleotide sequences can be determined using the algorithm of Meyers & Miller, CABIOS 4: 11-17 (1989), which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4. Also, percent identity between two amino acid sequences can be determined using the Needleman & Wunsch, J. Mol. Biol. 48: 444-453 (1970) algorithm which has been incorporated into the GAP program in the GCG software package (available at the http address www.gcg.com), using either a Blossum 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. Percent identity between two nucleotide sequences can be determined using the GAP program in the GCG software package (available at http address www.gcg.com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. A set of parameters often used is a Blossum 62 scoring matrix with a gap open penalty of 12, a gap extend penalty of 4, and a frameshift gap penalty of 5.

[0121] Sequence identity can also be determined by hybridization assays conducted under stringent conditions. As use herein, the term "stringent conditions" refers to conditions for hybridization and washing. Stringent conditions are known to those skilled in the art and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y., 6.3.1-6.3.6 (1989). Aqueous and non-aqueous methods are described in that reference and either can be used. An example of stringent hybridization conditions is hybridization in 6.times. sodium chloride/sodium citrate (SSC) at about 45.degree. C., followed by one or more washes in 0.2.times.SSC, 0.1% SDS at 50.degree. C. Another example of stringent hybridization conditions are hybridization in 6.times. sodium chloride/sodium citrate (SSC) at about 45.degree. C., followed by one or more washes in 0.2.times.SSC, 0.1% SDS at 55.degree. C. A further example of stringent hybridization conditions is hybridization in 6.times. sodium chloride/sodium citrate (SSC) at about 45.degree. C., followed by one or more washes in 0.2.times.SSC, 0.1% SDS at 60.degree. C. Often, stringent hybridization conditions are hybridization in 6.times. sodium chloride/sodium citrate (SSC) at about 45.degree. C., followed by one or more washes in 0.2.times.SSC, 0.1% SDS at 65.degree. C. More often, stringency conditions are 0.5M sodium phosphate, 7% SDS at 65.degree. C., followed by one or more washes at 0.2.times.SSC, 1% SDS at 65.degree. C.

[0122] As noted above, nucleic acid reagents may also comprise one or more 5' UTR's, and one or more 3'UTR's. A 5' UTR may comprise one or more elements endogenous to the nucleotide sequence from which it originates, and sometimes includes one or more exogenous elements. A 5' UTR can originate from any suitable nucleic acid, such as genomic DNA, plasmid DNA, RNA or mRNA, for example, from any suitable organism (e.g., virus, bacterium, yeast, fungi, plant, insect or mammal). The artisan may select appropriate elements for the 5' UTR based upon the chosen expression system (e.g., expression in a chosen organism, or expression in a cell free system, for example). A 5' UTR sometimes comprises one or more of the following elements known to the artisan: enhancer sequences (e.g., transcriptional or translational), transcription initiation site, transcription factor binding site, translation regulation site, translation initiation site, translation factor binding site, accessory protein binding site, feedback regulation agent binding sites, Pribnow box, TATA box, -35 element, E-box (helix-loop-helix binding element), ribosome binding site, replicon, internal ribosome entry site (IRES), silencer element and the like. In some embodiments, a promoter element may be isolated such that all 5' UTR elements necessary for proper conditional regulation are contained in the promoter element fragment, or within a functional subsequence of a promoter element fragment.

[0123] A 5'UTR in the nucleic acid reagent can comprise a translational enhancer nucleotide sequence.

[0124] A translational enhancer nucleotide sequence often is located between the promoter and the target nucleotide sequence in a nucleic acid reagent. A translational enhancer sequence often binds to a ribosome, sometimes is an 18S rRNA-binding ribonucleotide sequence (i.e., a 40S ribosome binding sequence) and sometimes is an internal ribosome entry sequence (IRES). An IRES generally forms an RNA scaffold with precisely placed RNA tertiary structures that contact a 40S ribosomal subunit via a number of specific intermolecular interactions. Examples of ribosomal enhancer sequences are known and can be identified by the artisan (e.g., Mignone et al., Nucleic Acids Research 33: D141-D146 (2005); Paulous et al., Nucleic Acids Research 31: 722-733 (2003); Akbergenov et al., Nucleic Acids Research 32: 239-247 (2004); Mignone et al., Genome Biology 3(3): reviews0004.1-0001.10 (2002); Gallie, Nucleic Acids Research 30: 3401-3411 (2002); Shaloiko et al., http address www.interscience.wiley.com, DOI: 10.1002/bit.20267; and Gallie et al., Nucleic Acids Research 15: 3257-3273 (1987)).

[0125] A translational enhancer sequence sometimes is a eukaryotic sequence, such as a Kozak consensus sequence or other sequence (e.g., hydroid polyp sequence, GenBank accession no. U07128). A translational enhancer sequence sometimes is a prokaryotic sequence, such as a Shine-Dalgarno consensus sequence. In certain embodiments, the translational enhancer sequence is a viral nucleotide sequence. A translational enhancer sequence sometimes is from a 5' UTR of a plant virus, such as Tobacco Mosaic Virus (TMV), Alfalfa Mosaic Virus (AMV); Tobacco Etch Virus (ETV); Potato Virus Y (PVY); Turnip Mosaic (poty) Virus and Pea Seed Borne Mosaic Virus, for example. In certain embodiments, an omega sequence about 67 bases in length from TMV is included in the nucleic acid reagent as a translational enhancer sequence (e.g., devoid of guanosine nucleotides and includes a 25 nucleotide long poly (CAA) central region).

[0126] A 3' UTR may comprise one or more elements endogenous to the nucleotide sequence from which it originates and sometimes includes one or more exogenous elements. A 3' UTR may originate from any suitable nucleic acid, such as genomic DNA, plasmid DNA, RNA or mRNA, for example, from any suitable organism (e.g., a virus, bacterium, yeast, fungi, plant, insect or mammal). The artisan can select appropriate elements for the 3' UTR based upon the chosen expression system (e.g., expression in a chosen organism, for example). A 3' UTR sometimes comprises one or more of the following elements known to the artisan: transcription regulation site, transcription initiation site, transcription termination site, transcription factor binding site, translation regulation site, translation termination site, translation initiation site, translation factor binding site, ribosome binding site, replicon, enhancer element, silencer element and polyadenosine tail. A 3' UTR often includes a polyadenosine tail and sometimes does not, and if a polyadenosine tail is present, one or more adenosine moieties may be added or deleted from it (e.g., about 5, about 10, about 15, about 20, about 25, about 30, about 35, about 40, about 45 or about 50 adenosine moieties may be added or subtracted).

[0127] In some embodiments, modification of a 5' UTR and/or a 3' UTR can be used to alter (e.g., increase, add, decrease or substantially eliminate) the activity of a promoter. Alteration of the promoter activity can in turn alter the activity of a peptide, polypeptide or protein (e.g., enzyme activity for example), by a change in transcription of the nucleotide sequence(s) of interest from an operably linked promoter element comprising the modified 5' or 3' UTR. For example, a microorganism can be engineered by genetic modification to express a nucleic acid reagent comprising a modified 5' or 3' UTR that can add a novel activity (e.g., an activity not normally found in the host organism) or increase the expression of an existing activity by increasing transcription from a homologous or heterologous promoter operably linked to a nucleotide sequence of interest (e.g., homologous or heterologous nucleotide sequence of interest), in certain embodiments. In some embodiments, a microorganism can be engineered by genetic modification to express a nucleic acid reagent comprising a modified 5' or 3' UTR that can decrease the expression of an activity by decreasing or substantially eliminating transcription from a homologous or heterologous promoter operably linked to a nucleotide sequence of interest, in certain embodiments.

[0128] A nucleotide reagent sometimes can comprise a target nucleotide sequence. A "target nucleotide sequence" as used herein encodes a nucleic acid, peptide, polypeptide or protein of interest, and may be a ribonucleotide sequence or a deoxyribonucleotide sequence.

[0129] A target nucleic acid sometimes can comprise a chimeric nucleic acid (or chimeric nucleotide sequence), which can encode a chimeric protein (or chimeric amino acid sequence). The term "chimeric" as used herein refers to a nucleic acid or nucleotide sequence, or encoded product thereof, containing sequences from two or more different sources. Any suitable source can be selected, including, but not limited to, a sequence from a nucleic acid, nucleotide sequence, ribosomal nucleic acid, RNA, DNA, regulatory nucleotide sequence (e.g., promoter, URL, enhancer, repressor and the like), coding nucleic acid, gene, nucleic acid linker, nucleic acid tag, amino acid sequence, peptide, polypeptide, protein, chromosome, and organism. A chimeric molecule can include a sequence of contiguous nucleotides or amino acids from a source including, but not limited to, a virus, prokaryote, eukaryote, genus, species, homolog, ortholog, paralog and isozyme, nucleic acid linkers, nucleic acid tags, the like and combinations thereof). A chimeric molecule can be generated by placing in juxtaposition fragments of related or unrelated nucleic acids, nucleotide sequences or DNA segments, in some embodiments. In certain embodiments the nucleic acids, nucleotide sequences or DNA segments can be native or wild type sequences, mutant sequences or engineered sequences (completely engineered or engineered to a point, for example).

[0130] In some embodiments, a chimera includes about 1, 2, 3, 4 or 5 sequences (e.g., contiguous nucleotides, contiguous amino acids) from one organism and 1, 2, 3, 4 or 5 sequences (e.g., contiguous nucleotides, contiguous amino acids) from another organism. The organisms sometimes are a microbe, such as a bacterium (e.g., gram positive, gram negative), yeast or fungus (e.g., aerobic fungus, anaerobic fungus), for example. In some embodiments, the organisms are bacteria, the organisms are yeast or the organisms are fungi (e.g., different species), and sometimes one organism is a bacterium or yeast and another is a fungus. A chimeric molecule may contain up to about 99% of sequences from one organism (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 96, 97, 98, 99%) and the balance percentage from one or more other organisms. In certain embodiments, a chimeric molecule includes altered codons (in the case of a chimeric nucleic acid) and one or more mutations (e.g., point mutations, nucleotide substitutions, amino acid substitutions).

[0131] A chimera sometimes is the result of recombination between two or more nucleic acids, nucleotide sequences or genes, and sometimes is the result of genetic manipulation (e.g., designed and/or generated by the hand of a human being). Any suitable nucleic acid or nucleotide sequence and method for combining nucleic acids or nucleotide sequences can be used to generate a chimeric nucleic acid or nucleotide sequence. Non-limiting examples of nucleic acid and nucleotide sequence sources and methods for generating chimeric nucleic acids and nucleotide sequences are presented herein.

[0132] In some embodiments, fragments used to generate a chimera can be juxtaposed as units (e.g., nucleic acid from the sources are combined end to end and not interspersed. In embodiments where a chimera includes one stretch of contiguous nucleotides for each organism, nucleotide sequence combinations can be noted as DNA source 1 DNA source 2 or DNA source 1/DNA source 2/DNA source 3, the like and combinations thereof, for example. In certain embodiments, fragments used to generate a chimera can be juxtaposed such that one or more fragments from one or more sources can be interspersed with other fragments used to generate the chimera (e.g., DNA source 1/DNA source 2/DNA source 1/DNA source 3/DNA source 2/DNA source 1). In some embodiments, the nucleotide sequence length of the fragments used to generate a chimera can be in the range from about 5 base pairs to about 5,000 base pairs (e.g., about 5 base pairs (bp), about 10 bp, about 15 bp, about 20 bp, about 25 bp, about 30 bp, about 35 bp, about 40 bp, about 45 bp, about 50 bp, about 55 bp, about 60 bp, about bp, about 65 bp, about 70 bp, about 75 bp, about 80 bp, about 85 bp, about 90 bp, about 95 bp, about 100 bp, about 125 bp, about 150 bp, about 175 bp, about 200 bp, about 250 bp, about 300 bp, about 350 bp, about 400 bp, about 450 bp, about 500 bp, about 550 bp, about 600 bp, about 650 bp, about 700 bp, about 750 bp, about 800 bp, about 850 bp, about 900 bp, about 950 bp, about 1000 bp, about 1500 bp, about 2000 bp, about 2500 bp, about 3000 bp, about 3500 bp, about 4000 bp, about 4500 bp, or about 5000 bp).

[0133] In certain embodiments, a chimeric nucleic acid or nucleotide sequence encodes the same activity as the activity encoded by the source nucleic acids or nucleotide sequences. In some embodiments, a chimeric nucleic acid or nucleotide sequence has a similar or the same activity, but the amount of the activity, or kinetics of the activity, are altered (e.g., increased, decreased). In certain embodiments, a chimeric nucleic acid or nucleotide sequence encodes a different activity, and in some embodiments a chimeric nucleic acid or nucleotide sequences encodes a chimeric activity (e.g., a combination of two or more activities).

[0134] A target nucleic acid sometimes is an untranslated ribonucleic acid and sometimes is a translated ribonucleic acid. An untranslated ribonucleic acid may include, but is not limited to, a small interfering ribonucleic acid (siRNA), a short hairpin ribonucleic acid (shRNA), other ribonucleic acid capable of RNA interference (RNAi), an antisense ribonucleic acid, or a ribozyme. A translatable target nucleotide sequence (e.g., a target ribonucleotide sequence) sometimes encodes a peptide, polypeptide or protein, which are sometimes referred to herein as "target peptides," "target polypeptides" or "target proteins."

[0135] Any peptides, polypeptides or proteins, or an activity catalyzed by one or more peptides, polypeptides or proteins may be encoded by a target nucleotide sequence and may be selected by a person of ordinary skill in the art. Representative proteins include enzymes (e.g., phosphofructokinase activity, phosphogluconate dehydratase activity, 2-keto-3-deoxygluconate-6-phosphate aldolase activity, xylose isomerase activity, phosphoenolpyruvate carboxylase activity, alcohol dehydrogenase 2 activity and thymidylate synthase activity and the like, for example), antibodies, serum proteins (e.g., albumin), membrane bound proteins, hormones (e.g., growth hormone, erythropoietin, insulin, etc.), cytokines, etc., and include both naturally occurring and exogenously expressed polypeptides. Representative activities (e.g., enzymes or combinations of enzymes which are functionally associated to provide an activity) include phosphofructokinase activity, phosphogluconate dehydratase activity, 2-keto-3-deoxygluconate-6-phosphate aldolase activity, xylose isomerase activity, phosphoenolpyruvate carboxylase activity, alcohol dehydrogenase 2 activity and thymidylate synthase activity and the like for example. The term "enzyme" as used herein refers to a protein which can act as a catalyst to induce a chemical change in other compounds, thereby producing one or more products from one or more substrates.

[0136] Specific polypeptides (e.g., enzymes) useful for embodiments described herein are listed hereafter. The term "protein" as used herein refers to a molecule having a sequence of amino acids linked by peptide bonds. This term includes fusion proteins, oligopeptides, peptides, cyclic peptides, polypeptides and polypeptide derivatives, whether native or recombinant, and also includes fragments, derivatives, homologs, and variants thereof. A protein or polypeptide sometimes is of intracellular origin (e.g., located in the nucleus, cytosol, or interstitial space of host cells in vivo) and sometimes is a cell membrane protein in vivo. In some embodiments (described above, and in further detail below in Engineering and Alteration Methods), a genetic modification can result in a modification (e.g., increase, substantially increase, decrease or substantially decrease) of a target activity.

[0137] A translatable nucleotide sequence generally is located between a start codon (AUG in ribonucleic acids and ATG in deoxyribonucleic acids) and a stop codon (e.g., UAA (ochre), UAG (amber) or UGA (opal) in ribonucleic acids and TAA, TAG or TGA in deoxyribonucleic acids), and sometimes is referred to herein as an "open reading frame" (ORF). A nucleic acid reagent sometimes comprises one or more ORFs. An ORF may be from any suitable source, sometimes from genomic DNA, mRNA, reverse transcribed RNA or complementary DNA (cDNA) or a nucleic acid library comprising one or more of the foregoing, and is from any organism species that contains a nucleic acid sequence of interest, protein of interest, or activity of interest. Non-limiting examples of organisms from which an ORF can be obtained include bacteria, yeast, fungi, human, insect, nematode, bovine, equine, canine, feline, rat or mouse, for example.

[0138] A nucleic acid reagent sometimes comprises a nucleotide sequence adjacent to an ORF that is translated in conjunction with the ORF and encodes an amino acid tag. The tag-encoding nucleotide sequence is located 3' and/or 5' of an ORF in the nucleic acid reagent, thereby encoding a tag at the C-terminus or N-terminus of the protein or peptide encoded by the ORF. Any tag that does not abrogate in vitro transcription and/or translation may be utilized and may be appropriately selected by the artisan. Tags may facilitate isolation and/or purification of the desired ORF product from culture or fermentation media.

[0139] A tag sometimes specifically binds a molecule or moiety of a solid phase or a detectable label, for example, thereby having utility for isolating, purifying and/or detecting a protein or peptide encoded by the ORF. In some embodiments, a tag comprises one or more of the following elements: FLAG (e.g., DYKDDDDKG (SEQ ID NO: 29)), V5 (e.g., GKPIPNPLLGLDST (SEQ ID NO: 30)), c-MYC (e.g., EQKLISEEDL (SEQ ID NO: 31)), HSV (e.g., QPELAPEDPED (SEQ ID NO: 32)), influenza hemaglutinin, HA (e.g., YPYDVPDYA (SEQ ID NO: 33)), VSV-G (e.g., YTDIEMNRLGK (SEQ ID NO: 34)), bacterial glutathione-S-transferase, maltose binding protein, a streptavidin- or avidin-binding tag (e.g., pcDNA.TM.6 BioEase.TM. Gateway.RTM. Biotinylation System (Invitrogen)), thioredoxin, .beta.-galactosidase, VSV-glycoprotein, a fluorescent protein (e.g., green fluorescent protein or one of its many color variants (e.g., yellow, red, blue)), a polylysine or polyarginine sequence, a polyhistidine sequence (e.g., His6 (SEQ ID NO: 35)) or other sequence that chelates a metal (e.g., cobalt, zinc, copper), and/or a cysteine-rich sequence that binds to an arsenic-containing molecule. In certain embodiments, a cysteine-rich tag comprises the amino acid sequence CC-Xn-CC (SEQ ID NO: 36), wherein X is any amino acid and n is 1 to 3, and the cysteine-rich sequence sometimes is CCPGCC (SEQ ID NO: 37). In certain embodiments, the tag comprises a cysteine-rich element and a polyhistidine element (e.g., CCPGCC (SEQ ID NO: 37) and His6 (SEQ ID NO: 35)).

[0140] A tag often conveniently binds to a binding partner. For example, some tags bind to an antibody (e.g., FLAG) and sometimes specifically bind to a small molecule. For example, a polyhistidine tag specifically chelates a bivalent metal, such as copper, zinc and cobalt; a polylysine or polyarginine tag specifically binds to a zinc finger; a glutathione S-transferase tag binds to glutathione; and a cysteine-rich tag specifically binds to an arsenic-containing molecule. Arsenic-containing molecules include LUMIO.TM. agents (Invitrogen, California), such as FlAsH.TM. (EDT2[4',5'-bis(1,3,2-dithioarsolan-2-yl)fluorescein-(1,2-ethan- edithiol)2]) and ReAsH reagents (e.g., U.S. Pat. No. 5,932,474 to Tsien et al., entitled "Target Sequences for Synthetic Molecules;" U.S. Pat. No. 6,054,271 to Tsien et al., entitled "Methods of Using Synthetic Molecules and Target Sequences;" U.S. Pat. Nos. 6,451,569 and 6,008,378; published U.S. Patent Application 2003/0083373, and published PCT Patent Application WO 99/21013, all to Tsien et al. and all entitled "Synthetic Molecules that Specifically React with Target Sequences"). Such antibodies and small molecules sometimes are linked to a solid phase for convenient isolation of the target protein or target peptide.

[0141] A tag sometimes comprises a sequence that localizes a translated protein or peptide to a component in a system, which is referred to as a "signal sequence" or "localization signal sequence" herein. A signal sequence often is incorporated at the N-terminus of a target protein or target peptide, and sometimes is incorporated at the C-terminus. Examples of signal sequences are known to the artisan, are readily incorporated into a nucleic acid reagent, and often are selected according to the organism in which expression of the nucleic acid reagent is performed. A signal sequence in some embodiments localizes a translated protein or peptide to a cell membrane. Examples of signal sequences include, but are not limited to, a nucleus targeting signal (e.g., steroid receptor sequence and N-terminal sequence of SV40 virus large T antigen); mitochondrial targeting signal (e.g., amino acid sequence that forms an amphipathic helix); peroxisome targeting signal (e.g., C-terminal sequence in YFG from S. cerevisiae); and a secretion signal (e.g., N-terminal sequences from invertase, mating factor alpha, PHO5 and SUC2 in S. cerevisiae; multiple N-terminal sequences of B. subtilis proteins (e.g., Tjalsma et al., Microbiol. Molec. Biol. Rev. 64: 515-547 (2000)); alpha amylase signal sequence (e.g., U.S. Pat. No. 6,288,302); pectate lyase signal sequence (e.g., U.S. Pat. No. 5,846,818); precollagen signal sequence (e.g., U.S. Pat. No. 5,712,114); OmpA signal sequence (e.g., U.S. Pat. No. 5,470,719); Iam beta signal sequence (e.g., U.S. Pat. No. 5,389,529); B. brevis signal sequence (e.g., U.S. Pat. No. 5,232,841); and P. pastoris signal sequence (e.g., U.S. Pat. No. 5,268,273)).

[0142] A tag sometimes is directly adjacent to the amino acid sequence encoded by an ORF (i.e., there is no intervening sequence) and sometimes a tag is substantially adjacent to an ORF encoded amino acid sequence (e.g., an intervening sequence is present). An intervening sequence sometimes includes a recognition site for a protease, which is useful for cleaving a tag from a target protein or peptide. In some embodiments, the intervening sequence is cleaved by Factor Xa (e.g., recognition site I (E/D)GR), thrombin (e.g., recognition site LVPRGS (SEQ ID NO: 38)), enterokinase (e.g., recognition site DDDDK (SEQ ID NO: 39)), TEV protease (e.g., recognition site ENLYFQG (SEQ ID NO: 40)) or PreScission.TM. protease (e.g., recognition site LEVLFQGP (SEQ ID NO: 41)), for example.

[0143] An intervening sequence sometimes is referred to herein as a "linker sequence," and may be of any suitable length selected by the artisan. A linker sequence sometimes is about 1 to about 20 amino acids in length, and sometimes about 5 to about 10 amino acids in length. The artisan may select the linker length to substantially preserve target protein or peptide function (e.g., a tag may reduce target protein or peptide function unless separated by a linker), to enhance disassociation of a tag from a target protein or peptide when a protease cleavage site is present (e.g., cleavage may be enhanced when a linker is present), and to enhance interaction of a tag/target protein product with a solid phase. A linker can be of any suitable amino acid content, and often comprises a higher proportion of amino acids having relatively short side chains (e.g., glycine, alanine, serine and threonine).

[0144] A nucleic acid reagent sometimes includes a stop codon between a tag element and an insertion element or ORF, which can be useful for translating an ORF with or without the tag. Mutant tRNA molecules that recognize stop codons (described above) suppress translation termination and thereby are designated "suppressor tRNAs." Suppressor tRNAs can result in the insertion of amino acids and continuation of translation past stop codons (e.g., U.S. Patent Application No. 60/587,583, filed Jul. 14, 2004, entitled "Production of Fusion Proteins by Cell-Free Protein Synthesis,"; Eggertsson, et al., (1988) Microbiological Review 52(3):354-374, and Engleerg-Kukla, et al. (1996) in Escherichia coli and Salmonella Cellular and Molecular Biology, Chapter 60, pps 909-921, Neidhardt, et al. eds., ASM Press, Washington, D.C.). A number of suppressor tRNAs are known, including but not limited to, supE, supP, supD, supF and supZ suppressors, which suppress the termination of translation of the amber stop codon; supB, gIT, supL, supN, supC and supM suppressors, which suppress the function of the ochre stop codon and glyT, trpT and Su-9 suppressors, which suppress the function of the opal stop codon. In general, suppressor tRNAs contain one or more mutations in the anti-codon loop of the tRNA that allows the tRNA to base pair with a codon that ordinarily functions as a stop codon. The mutant tRNA is charged with its cognate amino acid residue and the cognate amino acid residue is inserted into the translating polypeptide when the stop codon is encountered. Mutations that enhance the efficiency of termination suppressors (i.e., increase stop codon read-through) have been identified. These include, but are not limited to, mutations in the uar gene (also known as the prfA gene), mutations in the ups gene, mutations in the sueA, sueB and sueC genes, mutations in the rpsD (ramA) and rpsE (spcA) genes and mutations in the rplL gene.

[0145] Thus, a nucleic acid reagent comprising a stop codon located between an ORF and a tag can yield a translated ORF alone when no suppressor tRNA is present in the translation system, and can yield a translated ORF-tag fusion when a suppressor tRNA is present in the system. Suppressor tRNA can be generated in cells transfected with a nucleic acid encoding the tRNA (e.g., a replication incompetent adenovirus containing the human tRNA-Ser suppressor gene can be transfected into cells, or a YAC containing a yeast or bacterial tRNA suppressor gene can be transfected into yeast cells, for example). Vectors for synthesizing suppressor tRNA and for translating ORFs with or without a tag are available to the artisan (e.g., Tag-On-Demand.TM. kit (Invitrogen Corporation, California); Tag-On-Demand.TM. Suppressor Supernatant Instruction Manual, Version B, 6 Jun. 2003, at http address www.invitrogen.com/content/sfs/manuals/tagondemand_supernatant_man.pdf; Tag-On-Demand.TM. Gateway.RTM. Vector Instruction Manual, Version B, 20 June, 2003 at http address www.invitrogen.com/content/sfs/manuals/tagondemand_vectors_man.pdf; and Capone et al., Amber, ochre and opal suppressor tRNA genes derived from a human serine tRNA gene. EMBO J. 4:213, 1985).

[0146] Any convenient cloning strategy known in the art may be utilized to incorporate an element, such as an ORF, into a nucleic acid reagent. Known methods can be utilized to insert an element into the template independent of an insertion element, such as (1) cleaving the template at one or more existing restriction enzyme sites and ligating an element of interest and (2) adding restriction enzyme sites to the template by hybridizing oligonucleotide primers that include one or more suitable restriction enzyme sites and amplifying by polymerase chain reaction (described in greater detail herein). Other cloning strategies take advantage of one or more insertion sites present or inserted into the nucleic acid reagent, such as an oligonucleotide primer hybridization site for PCR, for example, and others described hereafter. In some embodiments, a cloning strategy can be combined with genetic manipulation such as recombination (e.g., recombination of a nucleic acid reagent with a nucleic acid sequence of interest into the genome of the organism to be modified, as described further below). In some embodiments, the cloned ORF(s) can produce (directly or indirectly) a desired product, by engineering a microorganism with one or more ORFs of interest, which microorganism comprises one or more altered activities selected from the group consisting of phosphofructokinase activity, phosphogluconate dehydratase activity, 2-keto-3-deoxygluconate-6-phosphate aldolase activity, xylose isomerase activity, phosphoenolpyruvate carboxylase activity, alcohol dehydrogenase 2 activity, sugar transport activity, phosphoglucoisomerase activity, transaldolase activity, transketolase activity, glucose-6-phosphate dehydrogenase activity, 6-phosphogluconolactonase activity, 6-phosphogluconate dehydrogenase (decarboxylating) activity, and thymidylate synthase activity.

[0147] In some embodiments, the nucleic acid reagent includes one or more recombinase insertion sites. A recombinase insertion site is a recognition sequence on a nucleic acid molecule that participates in an integration/recombination reaction by recombination proteins. For example, the recombination site for Cre recombinase is IoxP, which is a 34 base pair sequence comprised of two 13 base pair inverted repeats (serving as the recombinase binding sites) flanking an 8 base pair core sequence (e.g., FIG. 1 of Sauer, B., Curr. Opin. Biotech. 5:521-527 (1994)). Other examples of recombination sites include attB, attP, attL, and attR sequences, and mutants, fragments, variants and derivatives thereof, which are recognized by the recombination protein A Int and by the auxiliary proteins integration host factor (IHF), FIS and excisionase (Xis) (e.g., U.S. Pat. Nos. 5,888,732; 6,143,557; 6,171,861; 6,270,969; 6,277,608; and 6,720,140; U.S. patent application Ser. No. 09/517,466, filed Mar. 2, 2000, and 09/732,914, filed Aug. 14, 2003, and in U.S. patent publication no. 2002-0007051-A1; Landy, Curr. Opin. Biotech. 3:699-707 (1993)).

[0148] Examples of recombinase cloning nucleic acids are in Gateway.RTM. systems (Invitrogen, California), which include at least one recombination site for cloning a desired nucleic acid molecules in vivo or in vitro. In some embodiments, the system utilizes vectors that contain at least two different site-specific recombination sites, often based on the bacteriophage lambda system (e.g., att1 and att2), and are mutated from the wild-type (att0) sites. Each mutated site has a unique specificity for its cognate partner att site (i.e., its binding partner recombination site) of the same type (for example attB1 with attP1, or attL1 with attR1) and will not cross-react with recombination sites of the other mutant type or with the wild-type att0 site. Different site specificities allow directional cloning or linkage of desired molecules thus providing desired orientation of the cloned molecules. Nucleic acid fragments flanked by recombination sites are cloned and subcloned using the Gateway.RTM. system by replacing a selectable marker (for example, ccdB) flanked by att sites on the recipient plasmid molecule, sometimes termed the Destination Vector. Desired clones are then selected by transformation of a ccdB sensitive host strain and positive selection for a marker on the recipient molecule. Similar strategies for negative selection (e.g., use of toxic genes) can be used in other organisms such as thymidine kinase (TK) in mammals and insects.

[0149] A recombination system useful for engineering yeast is outlined briefly. The system makes use of the ura3 gene (e.g., for S. cerevisiae and C. albicans, for example) or ura4 and ura5 genes (e.g., for S. pombe, for example) and toxicity of the nucleotide analogue 5-Fluoroorotic acid (5-FOA). The ura3 or ura4 and ura5 genes encode orotine-5'-monophosphate (OMP) dicarboxylase. Yeast with an active ura3 or ura4 and ura5 gene (phenotypically Ura+) convert 5-FOA to fluorodeoxyuridine, which is toxic to yeast cells. Yeast carrying a mutation in the appropriate gene(s) or having a knock out of the appropriate gene(s) can grow in the presence of 5-FOA, if the media is also supplemented with uracil.

[0150] A nucleic acid engineering construct can be made which may comprise the URA3 gene or cassette (for S. cerevisiae), flanked on either side by the same nucleotide sequence in the same orientation. The ura3 cassette comprises a promoter, the ura3 gene and a functional transcription terminator. Target sequences which direct the construct to a particular nucleic acid region of interest in the organism to be engineered are added such that the target sequences are adjacent to and abut the flanking sequences on either side of the ura3 cassette. Yeast can be transformed with the engineering construct and plated on minimal media without uracil. Colonies can be screened by PCR to determine those transformants that have the engineering construct inserted in the proper location in the genome. Checking insertion location prior to selecting for recombination of the ura3 cassette may reduce the number of incorrect clones carried through to later stages of the procedure. Correctly inserted transformants can then be replica plated on minimal media containing 5-FOA to select for recombination of the ura3 cassette out of the construct, leaving a disrupted gene and an identifiable footprint (e.g., nucleic acid sequence) that can be use to verify the presence of the disrupted gene. The technique described is useful for disrupting or "knocking out" gene function, but also can be used to insert genes or constructs into a host organisms genome in a targeted, sequence specific manner. Further detail will be described below in the engineering section and in the example section.

[0151] In certain embodiments, a nucleic acid reagent includes one or more topoisomerase insertion sites. A topoisomerase insertion site is a defined nucleotide sequence recognized and bound by a site-specific topoisomerase. For example, the nucleotide sequence 5'-(C/T)CCTT-3' is a topoisomerase recognition site bound specifically by most poxvirus topoisomerases, including vaccinia virus DNA topoisomerase I. After binding to the recognition sequence, the topoisomerase cleaves the strand at the 3'-most thymidine of the recognition site to produce a nucleotide sequence comprising 5'-(C/T)CCTT-PO.sub.4-TOPO, a complex of the topoisomerase covalently bound to the 3' phosphate via a tyrosine in the topoisomerase (e.g., Shuman, J. Biol. Chem. 266:11372-11379, 1991; Sekiguchi and Shuman, Nucl. Acids Res. 22:5360-5365, 1994; U.S. Pat. No. 5,766,891; PCT/US95/16099; and PCT/US98/12372). In comparison, the nucleotide sequence 5'-GCAACTT-3' is a topoisomerase recognition site for type IA E. coli topoisomerase III. An element to be inserted often is combined with topoisomerase-reacted template and thereby incorporated into the nucleic acid reagent (e.g., http address www.invitrogen.com/downloads/F-13512_Topo_Flyer.pdf; http address at world wide web uniform resource locator invitrogen.com/content/sfs/brochures/710.sub.--021849%20_B_TOPOCloning_br- o.pdf; TOPO TA Cloning.RTM. Kit and Zero Blunt.RTM. TOPO.RTM. Cloning Kit product information).

[0152] A nucleic acid reagent sometimes contains one or more origin of replication (ORI) elements. In some embodiments, a template comprises two or more ORIs, where one functions efficiently in one organism (e.g., a bacterium) and another functions efficiently in another organism (e.g., a eukaryote, like yeast for example). In some embodiments, an ORI may function efficiently in one species (e.g., S. cerevisiae, for example) and another ORI may function efficiently in a different species (e.g., S. pombe, for example). A nucleic acid reagent also sometimes includes one or more transcription regulation sites.

[0153] A nucleic acid reagent can include one or more selection elements (e.g., elements for selection of the presence of the nucleic acid reagent, and not for activation of a promoter element which can be selectively regulated). Selection elements often are utilized using known processes to determine whether a nucleic acid reagent is included in a cell. In some embodiments, a nucleic acid reagent includes two or more selection elements, where one functions efficiently in one organism and another functions efficiently in another organism. Examples of selection elements include, but are not limited to, (1) nucleic acid segments that encode products that provide resistance against otherwise toxic compounds (e.g., antibiotics); (2) nucleic acid segments that encode products that are otherwise lacking in the recipient cell (e.g., essential products, tRNA genes, auxotrophic markers); (3) nucleic acid segments that encode products that suppress the activity of a gene product; (4) nucleic acid segments that encode products that can be readily identified (e.g., phenotypic markers such as antibiotics (e.g., .beta.-lactamase), .beta.-galactosidase, green fluorescent protein (GFP), yellow fluorescent protein (YFP), red fluorescent protein (RFP), cyan fluorescent protein (CFP), and cell surface proteins); (5) nucleic acid segments that bind products that are otherwise detrimental to cell survival and/or function; (6) nucleic acid segments that otherwise inhibit the activity of any of the nucleic acid segments described in Nos. 1-5 above (e.g., antisense oligonucleotides); (7) nucleic acid segments that bind products that modify a substrate (e.g., restriction endonucleases); (8) nucleic acid segments that can be used to isolate or identify a desired molecule (e.g., specific protein binding sites); (9) nucleic acid segments that encode a specific nucleotide sequence that can be otherwise non-functional (e.g., for PCR amplification of subpopulations of molecules); (10) nucleic acid segments that, when absent, directly or indirectly confer resistance or sensitivity to particular compounds; (11) nucleic acid segments that encode products that either are toxic or convert a relatively non-toxic compound to a toxic compound (e.g., Herpes simplex thymidine kinase, cytosine deaminase) in recipient cells; (12) nucleic acid segments that inhibit replication, partition or heritability of nucleic acid molecules that contain them; and/or (13) nucleic acid segments that encode conditional replication functions, e.g., replication in certain hosts or host cell strains or under certain environmental conditions (e.g., temperature, nutritional conditions, and the like).

[0154] A nucleic acid reagent is of any form useful for in vivo transcription and/or translation. A nucleic acid sometimes is a plasmid, such as a supercoiled plasmid, sometimes is a yeast artificial chromosome (e.g., YAC), sometimes is a linear nucleic acid (e.g., a linear nucleic acid produced by PCR or by restriction digest), sometimes is single-stranded and sometimes is double-stranded. A nucleic acid reagent sometimes is prepared by an amplification process, such as a polymerase chain reaction (PCR) process or transcription-mediated amplification process (TMA). In TMA, two enzymes are used in an isothermal reaction to produce amplification products detected by light emission (see, e.g., Biochemistry 1996 Jun. 25; 35(25):8429-38 and http address world wide web uniform resource locator devicelink.com/ivdt/archive/00/11/007.html). Standard PCR processes are known (e.g., U.S. Pat. Nos. 4,683,202; 4,683,195; 4,965,188; and 5,656,493), and generally are performed in cycles. Each cycle includes heat denaturation, in which hybrid nucleic acids dissociate; cooling, in which primer oligonucleotides hybridize; and extension of the oligonucleotides by a polymerase (i.e., Taq polymerase). An example of a PCR cyclical process is treating the sample at 95.degree. C. for 5 minutes; repeating forty-five cycles of 95.degree. C. for 1 minute, 59.degree. C. for 1 minute, 10 seconds, and 72.degree. C. for 1 minute 30 seconds; and then treating the sample at 72.degree. C. for 5 minutes. Multiple cycles frequently are performed using a commercially available thermal cycler. PCR amplification products sometimes are stored for a time at a lower temperature (e.g., at 4.degree. C.) and sometimes are frozen (e.g., at -20.degree. C.) before analysis.

[0155] In some embodiments, a nucleic acid reagent, protein reagent, protein fragment reagent or other reagent described herein is isolated or purified. The term "isolated" as used herein refers to material removed from its original environment (e.g., the natural environment if it is naturally occurring, or a host cell if expressed exogenously), and thus is altered "by the hand of man" from its original environment. The term "purified" as used herein with reference to molecules does not refer to absolute purity. Rather, "purified" refers to a substance in a composition that contains fewer substance species in the same class (e.g., nucleic acid or protein species) other than the substance of interest in comparison to the sample from which it originated. "Purified," if a nucleic acid or protein for example, refers to a substance in a composition that contains fewer nucleic acid species or protein species other than the nucleic acid or protein of interest in comparison to the sample from which it originated. Sometimes, a protein or nucleic acid is "substantially pure," indicating that the protein or nucleic acid represents at least 50% of protein or nucleic acid on a mass basis of the composition. Often, a substantially pure protein or nucleic acid is at least 75% on a mass basis of the composition, and sometimes at least 95% on a mass basis of the composition.

Engineering and Alteration Methods

[0156] Methods and compositions (e.g., nucleic acid reagents) described herein can be used to generate engineered microorganisms. As noted above, the term "engineered microorganism" as used herein refers to a modified organism that includes one or more activities distinct from an activity present in a microorganism utilized as a starting point for modification (e.g., host microorganism or unmodified organism). Engineered microorganisms typically arise as a result of a genetic modification, usually introduced or selected for, by one of skill in the art using readily available techniques. Non-limiting examples of methods useful for generating an altered activity include, introducing a heterologous polynucleotide (e.g., nucleic acid or gene integration, also referred to as "knock in"), removing an endogenous polynucleotide, altering the sequence of an existing endogenous nucleic acid sequence (e.g., site-directed mutagenesis), disruption of an existing endogenous nucleic acid sequence (e.g., knock outs and transposon or insertion element mediated mutagenesis), selection for an altered activity where the selection causes a change in a naturally occurring activity that can be stably inherited (e.g., causes a change in a nucleic acid sequence in the genome of the organism or in an epigenetic nucleic acid that is replicated and passed on to daughter cells), PCR-based mutagenesis, and the like. The term "mutagenesis" as used herein refers to any modification to a nucleic acid (e.g., nucleic acid reagent, or host chromosome, for example) that is subsequently used to generate a product in a host or modified organism. Non-limiting examples of mutagenesis include, deletion, insertion, substitution, rearrangement, point mutations, suppressor mutations and the like. Mutagenesis methods are known in the art and are readily available to the artisan. Non-limiting examples of mutagenesis methods are described herein and can also be found in Maniatis, T., E. F. Fritsch and J. Sambrook (1982) Molecular Cloning: a Laboratory Manual; Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

[0157] The term "genetic modification" as used herein refers to any suitable nucleic acid addition, removal or alteration that facilitates production of a target product (e.g., phosphogluconate dehydratase activity, 2-keto-3-deoxygluconate-6-phosphate aldolase activity, xylose isomerase activity, or phosphoenolpyruvate carboxylase activity, for example). in an engineered microorganism. Genetic modifications include, without limitation, insertion of one or more nucleotides in a native nucleic acid of a host organism in one or more locations, deletion of one or more nucleotides in a native nucleic acid of a host organism in one or more locations, modification or substitution of one or more nucleotides in a native nucleic acid of a host organism in one or more locations, insertion of a non-native nucleic acid into a host organism (e.g., insertion of an autonomously replicating vector), and removal of a non-native nucleic acid in a host organism (e.g., removal of a vector).

[0158] The term "heterologous polynucleotide" as used herein refers to a nucleotide sequence not present in a host microorganism in some embodiments. In certain embodiments, a heterologous polynucleotide is present in a different amount (e.g., different copy number) than in a host microorganism, which can be accomplished, for example, by introducing more copies of a particular nucleotide sequence to a host microorganism (e.g., the particular nucleotide sequence may be in a nucleic acid autonomous of the host chromosome or may be inserted into a chromosome). A heterologous polynucleotide is from a different organism in some embodiments, and in certain embodiments, is from the same type of organism but from an outside source (e.g., a recombinant source).

[0159] The term "altered activity" as used herein refers to an activity in an engineered microorganism that is added or modified relative to the host microorganism (e.g., added, increased, reduced, inhibited or removed activity). An activity can be altered by introducing a genetic modification to a host microorganism that yields an engineered microorganism having added, increased, reduced, inhibited or removed activity.

[0160] An added activity often is an activity not detectable in a host microorganism. An increased activity generally is an activity detectable in a host microorganism that has been increased in an engineered microorganism. An activity can be increased to any suitable level for production of a target product (e.g., adipic acid, 6-hydroxyhexanoic acid), including but not limited to less than 2-fold (e.g., about 10% increase to about 99% increase; about 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% increase), 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, of 10-fold increase, or greater than about 10-fold increase. A reduced or inhibited activity generally is an activity detectable in a host microorganism that has been reduced or inhibited in an engineered microorganism. An activity can be reduced to undetectable levels in some embodiments, or detectable levels in certain embodiments. An activity can be decreased to any suitable level for production of a target product (e.g., adipic acid, 6-hydroxyhexanoic acid), including but not limited to less than 2-fold (e.g., about 10% decrease to about 99% decrease; about 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% decrease), 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, of 10-fold decrease, or greater than about 10-fold decrease.

[0161] An altered activity sometimes is an activity not detectable in a host organism and is added to an engineered organism. An altered activity also may be an activity detectable in a host organism and is increased in an engineered organism. An activity may be added or increased by increasing the number of copies of a polynucleotide that encodes a polypeptide having a target activity, in some embodiments. In certain embodiments an activity can be added or increased by inserting into a host microorganism a heterologous polynucleotide that encodes a polypeptide having the added activity. In certain embodiments, an activity can be added or increased by inserting into a host microorganism a heterologous polynucleotide that is (i) operably linked to another polynucleotide that encodes a polypeptide having the added activity, and (ii) up regulates production of the polynucleotide. Thus, an activity can be added or increased by inserting or modifying a regulatory polynucleotide operably linked to another polynucleotide that encodes a polypeptide having the target activity. In certain embodiments, an activity can be added or increased by subjecting a host microorganism to a selective environment and screening for microorganisms that have a detectable level of the target activity. Examples of a selective environment include, without limitation, a medium containing a substrate that a host organism can process and a medium lacking a substrate that a host organism can process.

[0162] An altered activity sometimes is an activity detectable in a host organism and is reduced, inhibited or removed (i.e., not detectable) in an engineered organism. An activity may be reduced or removed by decreasing the number of copies of a polynucleotide that encodes a polypeptide having a target activity, in some embodiments. In some embodiments, an activity can be reduced or removed by (i) inserting a polynucleotide within a polynucleotide that encodes a polypeptide having the target activity (disruptive insertion), and/or (ii) removing a portion of or all of a polynucleotide that encodes a polypeptide having the target activity (deletion or knock out, respectively). In certain embodiments, an activity can be reduced or removed by inserting into a host microorganism a heterologous polynucleotide that is (i) operably linked to another polynucleotide that encodes a polypeptide having the target activity, and (ii) down regulates production of the polynucleotide. Thus, an activity can be reduced or removed by inserting or modifying a regulatory polynucleotide operably linked to another polynucleotide that encodes a polypeptide having the target activity.

[0163] An activity also can be reduced or removed by (i) inhibiting a polynucleotide that encodes a polypeptide having the activity or (ii) inhibiting a polynucleotide operably linked to another polynucleotide that encodes a polypeptide having the activity. A polynucleotide can be inhibited by a suitable technique known in the art, such as by contacting an RNA encoded by the polynucleotide with a specific inhibitory RNA (e.g., RNAi, siRNA, ribozyme). An activity also can be reduced or removed by contacting a polypeptide having the activity with a molecule that specifically inhibits the activity (e.g., enzyme inhibitor, antibody). In certain embodiments, an activity can be reduced or removed by subjecting a host microorganism to a selective environment and screening for microorganisms that have a reduced level or removal of the target activity.

[0164] In some embodiments, an untranslated ribonucleic acid, or a cDNA can be used to reduce the expression of a particular activity or enzyme. For example, a microorganism can be engineered by genetic modification to express a nucleic acid reagent that reduces the expression of an activity by producing an RNA molecule that is partially or substantially homologous to a nucleic acid sequence of interest which encodes the activity of interest. The RNA molecule can bind to the nucleic acid sequence of interest and inhibit the nucleic acid sequence from performing its natural function, in certain embodiments. In some embodiments, the RNA may alter the nucleic acid sequence of interest which encodes the activity of interest in a manner that the nucleic acid sequence of interest is no longer capable of performing its natural function (e.g., the action of a ribozyme for example).

[0165] In certain embodiments, nucleotide sequences sometimes are added to, modified or removed from one or more of the nucleic acid reagent elements, such as the promoter, 5'UTR, target sequence, or 3'UTR elements, to enhance, potentially enhance, reduce, or potentially reduce transcription and/or translation before or after such elements are incorporated in a nucleic acid reagent. In some embodiments, one or more of the following sequences may be modified or removed if they are present in a 5'UTR: a sequence that forms a stable secondary structure (e.g., quadruplex structure or stem loop stem structure (e.g., EMBL sequences X12949, AF274954, AF139980, AF152961, S95936, U194144, AF116649 or substantially identical sequences that form such stem loop stem structures)); a translation initiation codon upstream of the target nucleotide sequence start codon; a stop codon upstream of the target nucleotide sequence translation initiation codon; an ORF upstream of the target nucleotide sequence translation initiation codon; an iron responsive element (IRE) or like sequence; and a 5' terminal oligopyrimidine tract (TOP, e.g., consisting of 5-15 pyrimidines adjacent to the cap). A translational enhancer sequence and/or an internal ribosome entry site (IRES) sometimes is inserted into a 5'UTR (e.g., EMBL nucleotide sequences J04513, X87949, M95825, M12783, AF025841, AF013263, AF006822, M17169, M13440, M22427, D14838 and M17446 and substantially identical nucleotide sequences).

[0166] An AU-rich element (ARE, e.g., AUUUA repeats) and/or splicing junction that follows a non-sense codon sometimes is removed from or modified in a 3'UTR. A polyadenosine tail sometimes is inserted into a 3'UTR if none is present, sometimes is removed if it is present, and adenosine moieties sometimes are added to or removed from a polyadenosine tail present in a 3'UTR. Thus, some embodiments are directed to a process comprising: determining whether any nucleotide sequences that increase, potentially increase, reduce or potentially reduce translation efficiency are present in the elements, and adding, removing or modifying one or more of such sequences if they are identified. Certain embodiments are directed to a process comprising: determining whether any nucleotide sequences that increase or potentially increase translation efficiency are not present in the elements, and incorporating such sequences into the nucleic acid reagent.

[0167] In some embodiments, an activity can be altered by modifying the nucleotide sequence of an ORF. An ORF sometimes is mutated or modified (for example, by point mutation, deletion mutation, insertion mutation, PCR based mutagenesis and the like) to alter, enhance or increase, reduce, substantially reduce or eliminate the activity of the encoded protein or peptide. The protein or peptide encoded by a modified ORF sometimes is produced in a lower amount or may not be produced at detectable levels, and in other embodiments, the product or protein encoded by the modified ORF is produced at a higher level (e.g., codons sometimes are modified so they are compatible with tRNA's preferentially used in the host organism or engineered organism). To determine the relative activity, the activity from the product of the mutated ORF (or cell containing it) can be compared to the activity of the product or protein encoded by the unmodified ORF (or cell containing it).

[0168] In some embodiments, an ORF nucleotide sequence sometimes is mutated or modified to alter the triplet nucleotide sequences used to encode amino acids (e.g., amino acid codon triplets, for example). Modification of the nucleotide sequence of an ORF to alter codon triplets sometimes is used to change the codon found in the original sequence to better match the preferred codon usage of the organism in which the ORF or nucleic acid reagent will be expressed. For example, the codon usage, and therefore the codon triplets encoded by a nucleic acid sequence from bacteria may be different from the preferred codon usage in eukaryotes like yeast or plants. Preferred codon usage also may be different between bacterial species. In certain embodiments an ORF nucleotide sequences sometimes is modified to eliminate codon pairs and/or eliminate mRNA secondary structures that can cause pauses during translation of the mRNA encoded by the ORF nucleotide sequence. Translational pausing sometimes occurs when nucleic acid secondary structures exist in an mRNA, and sometimes occurs due to the presence of codon pairs that slow the rate of translation by causing ribosomes to pause. In some embodiments, the use of lower abundance codon triplets can reduce translational pausing due to a decrease in the pause time needed to load a charged tRNA into the ribosome translation machinery. Therefore, to increase transcriptional and translational efficiency in bacteria (e.g., where transcription and translation are concurrent, for example) or to increase translational efficiency in eukaryotes (e.g., where transcription and translation are functionally separated), the nucleotide sequence of a nucleotide sequence of interest can be altered to better suit the transcription and/or translational machinery of the host and/or genetically modified microorganism. In certain embodiment, slowing the rate of translation by the use of lower abundance codons, which slow or pause the ribosome, can lead to higher yields of the desired product due to an increase in correctly folded proteins and a reduction in the formation of inclusion bodies.

[0169] Codons can be altered and optimized according to the preferred usage by a given organism by determining the codon distribution of the nucleotide sequence donor organism and comparing the distribution of codons to the distribution of codons in the recipient or host organism. Techniques described herein (e.g., site directed mutagenesis and the like) can then be used to alter the codons accordingly. Comparisons of codon usage can be done by hand, or using nucleic acid analysis software commercially available to the artisan.

[0170] Modification of the nucleotide sequence of an ORF also can be used to correct codon triplet sequences that have diverged in different organisms. For example, certain yeast (e.g., C. tropicalis and C. maltosa) use the amino acid triplet CUG (e.g., CTG in the DNA sequence) to encode serine. CUG typically encodes leucine in most organisms. In order to maintain the correct amino acid in the resultant polypeptide or protein, the CUG codon must be altered to reflect the organism in which the nucleic acid reagent will be expressed. Thus, if an ORF from a bacterial donor is to be expressed in either Candida yeast strain mentioned above, the heterologous nucleotide sequence must first be altered or modified to the appropriate leucine codon. Therefore, in some embodiments, the nucleotide sequence of an ORF sometimes is altered or modified to correct for differences that have occurred in the evolution of the amino acid codon triplets between different organisms. In some embodiments, the nucleotide sequence can be left unchanged at a particular amino acid codon, if the amino acid encoded is a conservative or neutral change in amino acid when compared to the originally encoded amino acid.

[0171] In some embodiments, an activity can be altered by modifying translational regulation signals, like a stop codon for example. A stop codon at the end of an ORF sometimes is modified to another stop codon, such as an amber stop codon described above. In some embodiments, a stop codon is introduced within an ORF, sometimes by insertion or mutation of an existing codon. An ORF comprising a modified terminal stop codon and/or internal stop codon often is translated in a system comprising a suppressor tRNA that recognizes the stop codon. An ORF comprising a stop codon sometimes is translated in a system comprising a suppressor tRNA that incorporates an unnatural amino acid during translation of the target protein or target peptide. Methods for incorporating unnatural amino acids into a target protein or peptide are known, which include, for example, processes utilizing a heterologous tRNA/synthetase pair, where the tRNA recognizes an amber stop codon and is loaded with an unnatural amino acid (e.g., World Wide Web URL iupac.org/news/prize/2003/wang.pdf).

[0172] Depending on the portion of a nucleic acid reagent (e.g., Promoter, 5' or 3' UTR, ORI, ORF, and the like) chosen for alteration (e.g., by mutagenesis, introduction or deletion, for example) the modifications described above can alter a given activity by (i) increasing or decreasing feedback inhibition mechanisms, (ii) increasing or decreasing promoter initiation, (iii) increasing or decreasing translation initiation, (iv) increasing or decreasing translational efficiency, (v) modifying localization of peptides or products expressed from nucleic acid reagents described herein, or (vi) increasing or decreasing the copy number of a nucleotide sequence of interest, (vii) expression of an anti-sense RNA, RNAi, siRNA, ribozyme and the like. In some embodiments, alteration of a nucleic acid reagent or nucleotide sequence can alter a region involved in feedback inhibition (e.g., 5' UTR, promoter and the like). A modification sometimes is made that can add or enhance binding of a feedback regulator and sometimes a modification is made that can reduce, inhibit or eliminate binding of a feedback regulator.

[0173] In certain embodiments, alteration of a nucleic acid reagent or nucleotide sequence can alter sequences involved in transcription initiation (e.g., promoters, 5' UTR, and the like). A modification sometimes can be made that can enhance or increase initiation from an endogenous or heterologous promoter element. A modification sometimes can be made that removes or disrupts sequences that increase or enhance transcription initiation, resulting in a decrease or elimination of transcription from an endogenous or heterologous promoter element.

[0174] In some embodiments, alteration of a nucleic acid reagent or nucleotide sequence can alter sequences involved in translational initiation or translational efficiency (e.g., 5' UTR, 3' UTR, codon triplets of higher or lower abundance, translational terminator sequences and the like, for example). A modification sometimes can be made that can increase or decrease translational initiation, modifying a ribosome binding site for example. A modification sometimes can be made that can increase or decrease translational efficiency. Removing or adding sequences that form hairpins and changing codon triplets to a more or less preferred codon are non-limiting examples of genetic modifications that can be made to alter translation initiation and translation efficiency.

[0175] In certain embodiments, alteration of a nucleic acid reagent or nucleotide sequence can alter sequences involved in localization of peptides, proteins or other desired products (e.g., adipic acid, for example). A modification sometimes can be made that can alter, add or remove sequences responsible for targeting a polypeptide, protein or product to an intracellular organelle, the periplasm, cellular membranes, or extracellularly. Transport of a heterologous product to a different intracellular space or extracellularly sometimes can reduce or eliminate the formation of inclusion bodies (e.g., insoluble aggregates of the desired product).

[0176] In some embodiments, alteration of a nucleic acid reagent or nucleotide sequence can alter sequences involved in increasing or decreasing the copy number of a nucleotide sequence of interest. A modification sometimes can be made that increases or decreases the number of copies of an ORF stably integrated into the genome of an organism or on an epigenetic nucleic acid reagent. Non-limiting examples of alterations that can increase the number of copies of a sequence of interest include, adding copies of the sequence of interest by duplication of regions in the genome (e.g., adding additional copies by recombination or by causing gene amplification of the host genome, for example), cloning additional copies of a sequence onto a nucleic acid reagent, or altering an ORI to increase the number of copies of an epigenetic nucleic acid reagent. Non-limiting examples of alterations that can decrease the number of copies of a sequence of interest include, removing copies of the sequence of interest by deletion or disruption of regions in the genome, removing additional copies of the sequence from epigenetic nucleic acid reagents, or altering an ORI to decrease the number of copies of an epigenetic nucleic acid reagent.

[0177] In certain embodiments, increasing or decreasing the expression of a nucleotide sequence of interest can also be accomplished by altering, adding or removing sequences involved in the expression of an anti-sense RNA, RNAi, siRNA, ribozyme and the like. The methods described above can be used to modify expression of anti-sense RNA, RNAi, siRNA, ribozyme and the like.

[0178] Engineered microorganisms can be prepared by altering, introducing or removing nucleotide sequences in the host genome or in stably maintained epigenetic nucleic acid reagents, as noted above. The nucleic acid reagents use to alter, introduce or remove nucleotide sequences in the host genome or epigenetic nucleic acids can be prepared using the methods described herein or available to the artisan.

[0179] Nucleic acid sequences having a desired activity can be isolated from cells of a suitable organism using lysis and nucleic acid purification procedures available in Maniatis, T., E. F. Fritsch and J. Sambrook (1982) Molecular Cloning: a Laboratory Manual; Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. or with commercially available cell lysis and DNA purification reagents and kits. In some embodiments, nucleic acids used to engineer microorganisms can be provided for conducting methods described herein after processing of the organism containing the nucleic acid. For example, the nucleic acid of interest may be extracted, isolated, purified or amplified from a sample (e.g., from an organism of interest or culture containing a plurality of organisms of interest, like yeast or bacteria for example). The term "isolated" as used herein refers to nucleic acid removed from its original environment (e.g., the natural environment if it is naturally occurring, or a host cell if expressed exogenously), and thus is altered "by the hand of man" from its original environment. An isolated nucleic acid generally is provided with fewer non-nucleic acid components (e.g., protein, lipid) than the amount of components present in a source sample. A composition comprising isolated sample nucleic acid can be substantially isolated (e.g., about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater than 99% free of non-nucleic acid components). The term "purified" as used herein refers to sample nucleic acid provided that contains fewer nucleic acid species than in the sample source from which the sample nucleic acid is derived. A composition comprising sample nucleic acid may be substantially purified (e.g., about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater than 99% free of other nucleic acid species). The term "amplified" as used herein refers to subjecting nucleic acid of a cell, organism or sample to a process that linearly or exponentially generates amplicon nucleic acids having the same or substantially the same nucleotide sequence as the nucleotide sequence of the nucleic acid in the sample, or portion thereof. As noted above, the nucleic acids used to prepare nucleic acid reagents as described herein can be subjected to fragmentation or cleavage.

[0180] Amplification of nucleic acids is sometimes necessary when dealing with organisms that are difficult to culture. Where amplification may be desired, any suitable amplification technique can be utilized. Non-limiting examples of methods for amplification of polynucleotides include, polymerase chain reaction (PCR); ligation amplification (or ligase chain reaction (LCR)); amplification methods based on the use of Q-beta replicase or template-dependent polymerase (see US Patent Publication Number US20050287592); helicase-dependant isothermal amplification (Vincent et al., "Helicase-dependent isothermal DNA amplification". EMBO reports 5 (8): 795-800 (2004)); strand displacement amplification (SDA); thermophilic SDA nucleic acid sequence based amplification (3SR or NASBA) and transcription-associated amplification (TAA). Non-limiting examples of PCR amplification methods include standard PCR, AFLP-PCR, Allele-specific PCR, Alu-PCR, Asymmetric PCR, Colony PCR, Hot start PCR, Inverse PCR (IPCR), In situ PCR (ISH), Intersequence-specific PCR (ISSR-PCR), Long PCR, Multiplex PCR, Nested PCR, Quantitative PCR, Reverse Transcriptase PCR(RT-PCR), Real Time PCR, Single cell PCR, Solid phase PCR, combinations thereof, and the like. Reagents and hardware for conducting PCR are commercially available.

[0181] Protocols for conducting the various type of PCR listed above are readily available to the artisan. PCR conditions can be dependent upon primer sequences, target abundance, and the desired amount of amplification, and therefore, one of skill in the art may choose from a number of PCR protocols available (see, e.g., U.S. Pat. Nos. 4,683,195 and 4,683,202; and PCR Protocols: A Guide to Methods and Applications, Innis et al., eds, 1990. PCR often is carried out as an automated process with a thermostable enzyme. In this process, the temperature of the reaction mixture is cycled through a denaturing region, a primer-annealing region, and an extension reaction region automatically. Machines specifically adapted for this purpose are commercially available. A non-limiting example of a PCR protocol that may be suitable for embodiments described herein is, treating the sample at 95.degree. C. for 5 minutes; repeating forty-five cycles of 95.degree. C. for 1 minute, 59.degree. C. for 1 minute, 10 seconds, and 72.degree. C. for 1 minute 30 seconds; and then treating the sample at 72.degree. C. for 5 minutes. Additional PCR protocols are described in the example section. Multiple cycles frequently are performed using a commercially available thermal cycler. Suitable isothermal amplification processes known and selected by the person of ordinary skill in the art also may be applied, in certain embodiments. In some embodiments, nucleic acids encoding polypeptides with a desired activity can be isolated by amplifying the desired sequence from an organism having the desired activity using oligonucleotides or primers designed based on sequences described herein

[0182] Amplified, isolated and/or purified nucleic acids can be cloned into the recombinant DNA vectors described in Figures herein or into suitable commercially available recombinant DNA vectors. Cloning of nucleic acid sequences of interest into recombinant DNA vectors can facilitate further manipulations of the nucleic acids for preparation of nucleic acid reagents, (e.g., alteration of nucleotide sequences by mutagenesis, homologous recombination, amplification and the like, for example). Standard cloning procedures (e.g., enzymic digestion, ligation, and the like) are readily available to the artisan and can be found in Maniatis, T., E. F. Fritsch and J. Sambrook (1982) Molecular Cloning: a Laboratory Manual; Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

[0183] In some embodiments, nucleic acid sequences prepared by isolation or amplification can be used, without any further modification, to add an activity to a microorganism and thereby generate a genetically modified or engineered microorganism. In certain embodiments, nucleic acid sequences prepared by isolation or amplification can be genetically modified to alter (e.g., increase or decrease, for example) a desired activity. In some embodiments, nucleic acids, used to add an activity to an organism, sometimes are genetically modified to optimize the heterologous polynucleotide sequence encoding the desired activity (e.g., polypeptide or protein, for example). The term "optimize" as used herein can refer to alteration to increase or enhance expression by preferred codon usage. The term optimize can also refer to modifications to the amino acid sequence to increase the activity of a polypeptide or protein, such that the activity exhibits a higher catalytic activity as compared to the "natural" version of the polypeptide or protein.

[0184] Nucleic acid sequences of interest can be genetically modified using methods known in the art. Mutagenesis techniques are particularly useful for small scale (e.g., 1, 2, 5, 10 or more nucleotides) or large scale (e.g., 50, 100, 150, 200, 500, or more nucleotides) genetic modification. Mutagenesis allows the artisan to alter the genetic information of an organism in a stable manner, either naturally (e.g., isolation using selection and screening) or experimentally by the use of chemicals, radiation or inaccurate DNA replication (e.g., PCR mutagenesis). In some embodiments, genetic modification can be performed by whole scale synthetic synthesis of nucleic acids, using a native nucleotide sequence as the reference sequence, and modifying nucleotides that can result in the desired alteration of activity. Mutagenesis methods sometimes are specific or targeted to specific regions or nucleotides (e.g., site-directed mutagenesis, PCR-based site-directed mutagenesis, and in vitro mutagenesis techniques such as transplacement and in vivo oligonucleotide site-directed mutagenesis, for example). Mutagenesis methods sometimes are non-specific or random with respect to the placement of genetic modifications (e.g., chemical mutagenesis, insertion element (e.g., insertion or transposon elements) and inaccurate PCR based methods, for example).

[0185] Site directed mutagenesis is a procedure in which a specific nucleotide or specific nucleotides in a DNA molecule are mutated or altered. Site directed mutagenesis typically is performed using a nucleic acid sequence of interest cloned into a circular plasmid vector. Site-directed mutagenesis requires that the wild type sequence be known and used a platform for the genetic alteration. Site-directed mutagenesis sometimes is referred to as oligonucleotide-directed mutagenesis because the technique can be performed using oligonucleotides which have the desired genetic modification incorporated into the complement a nucleotide sequence of interest. The wild type sequence and the altered nucleotide are allowed to hybridize and the hybridized nucleic acids are extended and replicated using a DNA polymerase. The double stranded nucleic acids are introduced into a host (e.g., E. coli, for example) and further rounds of replication are carried out in vivo. The transformed cells carrying the mutated nucleic acid sequence are then selected and/or screened for those cells carrying the correctly mutagenized sequence. Cassette mutagenesis and PCR-based site-directed mutagenesis are further modifications of the site-directed mutagenesis technique. Site-directed mutagenesis can also be performed in vivo (e.g., transplacement "pop-in pop-out", In vivo site-directed mutagenesis with synthetic oligonucleotides and the like, for example).

[0186] PCR-based mutagenesis can be performed using PCR with oligonucleotide primers that contain the desired mutation or mutations. The technique functions in a manner similar to standard site-directed mutagenesis, with the exception that a thermocycler and PCR conditions are used to replace replication and selection of the clones in a microorganism host. As PCR-based mutagenesis also uses a circular plasmid vector, the amplified fragment (e.g., linear nucleic acid molecule) containing the incorporated genetic modifications can be separated from the plasmid containing the template sequence after a sufficient number of rounds of thermocycler amplification, using standard electrophorectic procedures. A modification of this method uses linear amplification methods and a pair of mutagenic primers that amplify the entire plasmid. The procedure takes advantage of the E. coli Dam methylase system which causes DNA replicated in vivo to be sensitive to the restriction endonucleases DpnI. PCR synthesized DNA is not methylated and is therefore resistant to DpnI. This approach allows the template plasmid to be digested, leaving the genetically modified, PCR synthesized plasmids to be isolated and transformed into a host bacteria for DNA repair and replication, thereby facilitating subsequent cloning and identification steps. A certain amount of randomness can be added to PCR-based sited directed mutagenesis by using partially degenerate primers.

[0187] Recombination sometimes can be used as a tool for mutagenesis. Homologous recombination allows the artisan to specifically target regions of known sequence for insertion of heterologous nucleotide sequences using the host organisms natural DNA replication and repair enzymes. Homologous recombination methods sometimes are referred to as "pop in pop out" mutagenesis, transplacement, knock out mutagenesis or knock in mutagenesis. Integration of a nucleic acid sequence into a host genome is a single cross over event, which inserts the entire nucleic acid reagent (e.g., pop in). A second cross over event excises all but a portion of the nucleic acid reagent, leaving behind a heterologous sequence, often referred to as a "footprint" (e.g., pop out). Mutagenesis by insertion (e.g., knock in) or by double recombination leaving behind a disrupting heterologous nucleic acid (e.g., knock out) both server to disrupt or "knock out" the function of the gene or nucleic acid sequence in which insertion occurs. By combining selectable markers and/or auxotrophic markers with nucleic acid reagents designed to provide the appropriate nucleic acid target sequences, the artisan can target a selectable nucleic acid reagent to a specific region, and then select for recombination events that "pop out" a portion of the inserted (e.g., "pop in") nucleic acid reagent.

[0188] Such methods take advantage of nucleic acid reagents that have been specifically designed with known target nucleic acid sequences at or near a nucleic acid or genomic region of interest. Popping out typically leaves a "foot print" of left over sequences that remain after the recombination event. The left over sequence can disrupt a gene and thereby reduce or eliminate expression of that gene. In some embodiments, the method can be used to insert sequences, upstream or downstream of genes that can result in an enhancement or reduction in expression of the gene. In certain embodiments, new genes can be introduced into the genome of a host organism using similar recombination or "pop in" methods. An example of a yeast recombination system using the ura3 gene and 5-FOA were described briefly above and further detail is presented herein.

[0189] A method for modification is described in Alani et al., "A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains", Genetics 116(4):541-545 August 1987. The original method uses a Ura3 cassette with 1000 base pairs (bp) of the same nucleotide sequence cloned in the same orientation on either side of the URA3 cassette. Targeting sequences of about 50 bp are added to each side of the construct. The double stranded targeting sequences are complementary to sequences in the genome of the host organism. The targeting sequences allow site-specific recombination in a region of interest. The modification of the original technique replaces the two 1000 bp sequence direct repeats with two 200 bp direct repeats. The modified method also uses 50 bp targeting sequences. The modification reduces or eliminates recombination of a second knock out into the 1000 bp repeat left behind in a first mutagenesis, therefore allowing multiply knocked out yeast. Additionally, the 200 bp sequences used herein are uniquely designed, self-assembling sequences that leave behind identifiable footprints. The technique used to design the sequences incorporate design features such as low identity to the yeast genome, and low identity to each other. Therefore a library of the self-assembling sequences can be generated to allow multiple knockouts in the same organism, while reducing or eliminating the potential for integration into a previous knockout.

[0190] As noted above, the URA3 cassette makes use of the toxicity of 5-FOA in yeast carrying a functional URA3 gene. Uracil synthesis deficient yeast are transformed with the modified URA3 cassette, using standard yeast transformation protocols, and the transformed cells are plated on minimal media minus uracil. In some embodiments, PCR can be used to verify correct insertion into the region of interest in the host genome, and certain embodiments the PCR step can be omitted. Inclusion of the PCR step can reduce the number of transformants that need to be counter selected to "pop out" the URA3 cassette. The transformants (e.g., all or the ones determined to be correct by PCR, for example) can then be counter-selected on media containing 5-FOA, which will select for recombination out (e.g., popping out) of the URA3 cassette, thus rendering the yeast ura3 deficient again, and resistant to 5-FOA toxicity. Targeting sequences used to direct recombination events to specific regions are presented herein. A modification of the method described above can be used to integrate genes in to the chromosome, where after recombination a functional gene is left in the chromosome next to the 200 bp footprint.

[0191] In some embodiments, other auxotrophic or dominant selection markers can be used in place of URA3 (e.g., an auxotrophic selectable marker), with the appropriate change in selection media and selection agents. Auxotrophic selectable markers are used in strains deficient for synthesis of a required biological molecule (e.g., amino acid or nucleoside, for example). Non-limiting examples of additional auxotrophic markers include; HIS3, TRP1, LEU2, LEU2-d, and LYS2. Certain auxotrophic markers (e.g., URA3 and LYS2) allow counter selection to select for the second recombination event that pops out all but one of the direct repeats of the recombination construct. HIS3 encodes an activity involved in histidine synthesis. TRP1 encodes an activity involved in tryptophan synthesis. LEU2 encodes an activity involved in leucine synthesis. LEU2-d is a low expression version of LEU2 that selects for increased copy number (e.g., gene or plasmid copy number, for example) to allow survival on minimal media without leucine. LYS2 encodes an activity involved in lysine synthesis, and allows counter selection for recombination out of the LYS2 gene using alpha-amino adipate (.alpha.-amino adipate).

[0192] Dominant selectable markers are useful because they also allow industrial and/or prototrophic strains to be used for genetic manipulations. Additionally, dominant selectable markers provide the advantage that rich medium can be used for plating and culture growth, and thus growth rates are markedly increased. Non-limiting examples of dominant selectable markers include; Tn903 kan.sup.r, Cm.sup.r, Hyg.sup.r, CUP1, and DHFR. Tn903 kan.sup.r encodes an activity involved in kanamycin antibiotic resistance (e.g., typically neomycin phosphotransferase II or NPTII, for example). Cm.sup.r encodes an activity involved in chloramphenicol antibiotic resistance (e.g., typically chloramphenicol acetyl transferase or CAT, for example). Hyg.sup.r encodes an activity involved in hygromycin resistance by phosphorylation of hygromycin B (e.g., hygromycin phosphotransferase, or HPT). CUP1 encodes an activity involved in resistance to heavy metal (e.g., copper, for example) toxicity. DHFR encodes a dihydrofolate reductase activity which confers resistance to methotrexate and sulfanilamde compounds.

[0193] In contrast to site-directed or specific mutagenesis, random mutagenesis does not require any sequence information and can be accomplished by a number of widely different methods. Random mutagenesis often is used to generate mutant libraries that can be used to screen for the desired genotype or phenotype. Non-limiting examples of random mutagenesis include; chemical mutagenesis, UV-induced mutagenesis, insertion element or transposon-mediated mutagenesis, DNA shuffling, error-prone PCR mutagenesis, and the like.

[0194] Chemical mutagenesis often involves chemicals like ethyl methanesulfonate (EMS), nitrous acid, mitomycin C, N-methyl-N-nitrosourea (MNU), diepoxybutane (DEB), 1, 2, 7, 8-diepoxyoctane (DEO), methyl methane sulfonate (MMS), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), 4-nitroquinoline 1-oxide (4-NQO), 2-methyloxy-6-chloro-9(3-[ethyl-2-chloroethyl]-aminopropylamino)-acridine- dihydrochloride (ICR-170), 2-amino purine (2AP), and hydroxylamine (HA), provided herein as non-limiting examples. These chemicals can cause base-pair substitutions, frameshift mutations, deletions, transversion mutations, transition mutations, incorrect replication, and the like. In some embodiments, the mutagenesis can be carried out in vivo. Sometimes the mutagenic process involves the use of the host organisms DNA replication and repair mechanisms to incorporate and replicate the mutagenized base or bases.

[0195] Another type of chemical mutagenesis involves the use of base-analogs. The use of base-analogs cause incorrect base pairing which in the following round of replication is corrected to a mismatched nucleotide when compared to the starting sequence. Base analog mutagenesis introduces a small amount of non-randomness to random mutagenesis, because specific base analogs can be chose which can be incorporated at certain nucleotides in the starting sequence. Correction of the mispairing typically yields a known substitution. For example, Bromo-deoxyuridine (BrdU) can be incorporated into DNA and replaces T in the sequence. The host DNA repair and replication machinery can sometime correct the defect, but sometimes will mispair the BrdU with a G. The next round of replication then causes a G-C transversion from the original A-T in the native sequence.

[0196] Ultra violet (UV) induced mutagenesis is caused by the formation of thymidine dimers when UV light irradiates chemical bonds between two adjacent thymine residues. Excision repair mechanism of the host organism correct the lesion in the DNA, but occasionally the lesion is incorrectly repaired typically resulting in a C to T transition.

[0197] Insertion element or transposon-mediated mutagenesis makes use of naturally occurring or modified naturally occurring mobile genetic elements. Transposons often encode accessory activities in addition to the activities necessary for transposition (e.g., movement using a transposase activity, for example). In many examples, transposon accessory activities are antibiotic resistance markers (e.g., see Tn903 kan.sup.r described above, for example). Insertion elements typically only encode the activities necessary for movement of the nucleic acid sequence. Insertion element and transposon mediated mutagenesis often can occur randomly, however specific target sequences are known for some transposons. Mobile genetic elements like IS elements or Transposons (Tn) often have inverted repeats, direct repeats or both inverted and direct repeats flanking the region coding for the transposition genes. Recombination events catalyzed by the transposase cause the element to remove itself from the genome and move to a new location, leaving behind a portion of an inverted or direct repeat. Classic examples of transposons are the "mobile genetic elements" discovered in maize. Transposon mutagenesis kits are commercially available which are designed to leave behind a 5 codon insert (e.g., Mutation Generation System kit, Finnzymes, World Wide Web URL finnzymes.us, for example). This allows the artisan to identify the insertion site, without fully disrupting the function of most genes.

[0198] DNA shuffling is a method which uses DNA fragments from members of a mutant library and reshuffles the fragments randomly to generate new mutant sequence combinations. The fragments are typically generated using DNaseI, followed by random annealing and re-joining using self priming PCR. The DNA overhanging ends, from annealing of random fragments, provide "primer" sequences for the PCR process. Shuffling can be applied to libraries generated by any of the above mutagenesis methods.

[0199] Error prone PCR and its derivative rolling circle error prone PCR uses increased magnesium and manganese concentrations in conjunction with limiting amounts of one or two nucleotides to reduce the fidelity of the Taq polymerase. The error rate can be as high as 2% under appropriate conditions, when the resultant mutant sequence is compared to the wild type starting sequence. After amplification, the library of mutant coding sequences must be cloned into a suitable plasmid.

[0200] Although point mutations are the most common types of mutation in error prone PCR, deletions and frameshift mutations are also possible. There are a number of commercial error-prone PCR kits available, including those from Stratagene and Clontech (e.g., World Wide Web URL strategene.com and World Wide Web URL clontech.com, respectively, for example). Rolling circle error-prone PCR is a variant of error-prone PCR in which wild-type sequence is first cloned into a plasmid, the whole plasmid is then amplified under error-prone conditions.

[0201] As noted above, organisms with altered activities can also be isolated using genetic selection and screening of organisms challenged on selective media or by identifying naturally occurring variants from unique environments. For example, 2-Deoxy-D-glucose is a toxic glucose analog. Growth of yeast on this substance yields mutants that are glucose-deregulated. A number of mutants have been isolated using 2-Deoxy-D-glucose including transport mutants, and mutants that ferment glucose and galactose simultaneously instead of glucose first then galactose when glucose is depleted. Similar techniques have been used to isolate mutant microorganisms that can metabolize plastics (e.g., from landfills), petrochemicals (e.g., from oil spills), and the like, either in a laboratory setting or from unique environments.

[0202] Similar methods can be used to isolate naturally occurring mutations in a desired activity when the activity exists at a relatively low or nearly undetectable level in the organism of choice, in some embodiments. The method generally consists of growing the organism to a specific density in liquid culture, concentrating the cells, and plating the cells on various concentrations of the substance to which an increase in metabolic activity is desired. The cells are incubated at a moderate growth temperature, for 5 to 10 days. To enhance the selection process, the plates can be stored for another 5 to 10 days at a low temperature. The low temperature sometimes can allow strains that have gained or increased an activity to continue growing while other strains are inhibited for growth at the low temperature. Following the initial selection and secondary growth at low temperature, the plates can be replica plated on higher or lower concentrations of the selection substance to further select for the desired activity.

[0203] A native, heterologous or mutagenized polynucleotide can be introduced into a nucleic acid reagent for introduction into a host organism, thereby generating an engineered microorganism. Standard recombinant DNA techniques (restriction enzyme digests, ligation, and the like) can be used by the artisan to combine the mutagenized nucleic acid of interest into a suitable nucleic acid reagent capable of (i) being stably maintained by selection in the host organism, or (ii) being integrating into the genome of the host organism. As noted above, sometimes nucleic acid reagents comprise two replication origins to allow the same nucleic acid reagent to be manipulated in bacterial before final introduction of the final product into the host organism (e.g., yeast or fungus for example). Standard molecular biology and recombinant DNA methods available to one of skill in the art can be found in Maniatis, T., E. F. Fritsch and J. Sambrook (1982) Molecular Cloning: a Laboratory Manual; Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

[0204] Nucleic acid reagents can be introduced into microorganisms using various techniques. Non-limiting examples of methods used to introduce heterologous nucleic acids into various organisms include; transformation, transfection, transduction, electroporation, ultrasound-mediated transformation, particle bombardment and the like. In some instances the addition of carrier molecules (e.g., bis-benzimdazolyl compounds, for example, see U.S. Pat. No. 5,595,899) can increase the uptake of DNA in cells typically though to be difficult to transform by conventional methods. Conventional methods of transformation are readily available to the artisan and can be found in Maniatis, T., E. F. Fritsch and J. Sambrook (1982) Molecular Cloning: a Laboratory Manual; Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

Culture, Production and Process Methods

[0205] Engineered microorganisms often are cultured under conditions that optimize yield of a target molecule. A non-limiting example of such a target molecule is ethanol. Culture conditions often can alter (e.g., add, optimize, reduce or eliminate, for example) activity of one or more of the following activities: phosphofructokinase activity, phosphogluconate dehydratase activity, 2-keto-3-deoxygluconate-6-phosphate aldolase activity, xylose isomerase activity, phosphoenolpyruvate carboxylase activity, alcohol dehydrogenase 2 activity and thymidylate synthase activities. In general, conditions that may be optimized include the type and amount of carbon source, the type and amount of nitrogen source, the carbon-to-nitrogen ratio, the oxygen level, growth temperature, pH, length of the biomass production phase, length of target product accumulation phase, and time of cell harvest.

[0206] The term "fermentation conditions" as used herein refers to any culture conditions suitable for maintaining a microorganism (e.g., in a static or proliferative state). Fermentation conditions can include several parameters, including without limitation, temperature, oxygen content, nutrient content (e.g., glucose content), pH, agitation level (e.g., revolutions per minute), gas flow rate (e.g., air, oxygen, nitrogen gas), redox potential, cell density (e.g., optical density), cell viability and the like. A change in fermentation conditions (e.g., switching fermentation conditions) is an alteration, modification or shift of one or more fermentation parameters. For example, one can change fermentation conditions by increasing or decreasing temperature, increasing or decreasing pH (e.g., adding or removing an acid, a base or carbon dioxide), increasing or decreasing oxygen content (e.g., introducing air, oxygen, carbon dioxide, nitrogen) and/or adding or removing a nutrient (e.g., one or more sugars or sources of sugar, biomass, vitamin and the like), or combinations of the foregoing. Examples of fermentation conditions are described herein. Aerobic conditions often comprise greater than about 50% dissolved oxygen (e.g., about 52%, 54%, 56%, 58%, 60%, 62%, 64%, 66%, 68%, 70%, 72%, 74%, 76%, 78%, 80%, 82%, 84%, 86%, 88%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99%, or greater than any one of the foregoing). Anaerobic conditions often comprise less than about 50% dissolved oxygen (e.g., about 1%, 2%, 4%, 6%, 8%, 10%, 12%, 14%, 16%, 18%, 20%, 22%, 24%, 26%, 28%, 30%, 32%, 34%, 36%, 38%, 40%, 42%, 44%, 46%, 48%, or less than any one of the foregoing).

[0207] Culture media generally contain a suitable carbon source. Carbon sources may include, but are not limited to, monosaccharides (e.g., glucose, fructose, xylose), disaccharides (e.g., lactose, sucrose), oligosaccharides, polysaccharides (e.g., starch, cellulose, hemicellulose, other lignocellulosic materials or mixtures thereof), sugar alcohols (e.g., glycerol), and renewable feedstocks (e.g., cheese whey permeate, cornsteep liquor, sugar beet molasses, barley malt). Carbon sources also can be selected from one or more of the following non-limiting examples: linear or branched alkanes (e.g., hexane), linear or branched alcohols (e.g., hexanol), fatty acids (e.g., about 10 carbons to about 22 carbons), esters of fatty acids, monoglycerides, diglycerides, triglycerides, phospholipids and various commercial sources of fatty acids including vegetable oils (e.g., soybean oil) and animal fats. A carbon source may include one-carbon sources (e.g., carbon dioxide, methanol, formaldehyde, formate and carbon-containing amines) from which metabolic conversion into key biochemical intermediates can occur. It is expected that the source of carbon utilized may encompass a wide variety of carbon-containing sources and will only be limited by the choice of the engineered microorganism(s).

[0208] Nitrogen may be supplied from an inorganic (e.g., (NH.sub.4).sub.2SO.sub.4) or organic source (e.g., urea or glutamate). In addition to appropriate carbon and nitrogen sources, culture media also can contain suitable minerals, salts, cofactors, buffers, vitamins, metal ions (e.g., Mn.sup.+2, Co.sup.+2, Zn.sup.+2, Mg.sup.+2) and other components suitable for culture of microorganisms. Engineered microorganisms sometimes are cultured in complex media (e.g., yeast extract-peptone-dextrose broth (YPD)). In some embodiments, engineered microorganisms are cultured in a defined minimal media that lacks a component necessary for growth and thereby forces selection of a desired expression cassette (e.g., Yeast Nitrogen Base (DIFCO Laboratories, Detroit, Mich.)). Culture media in some embodiments are common commercially prepared media, such as Yeast Nitrogen Base (DIFCO Laboratories, Detroit, Mich.). Other defined or synthetic growth media may also be used and the appropriate medium for growth of the particular microorganism are known.

[0209] A variety of host organisms can be selected for the production of engineered microorganisms. Non-limiting examples include yeast and fungi. In specific embodiments, yeast are cultured in YPD media (10 g/L Bacto Yeast Extract, 20 g/L Bacto Peptone, and 20 g/L Dextrose). Filamentous fungi, in particular embodiments, are grown in CM (Complete Medium) containing 10 g/L Dextrose, 2 g/L Bacto Peptone, 1 g/L Bacto Yeast Extract, 1 g/L Casamino acids, 50 mL/L 20.times. Nitrate Salts (120 g/L NaNO.sub.3, 10.4 g/L KCl, 10.4 g/L MgSO.sub.4.7H.sub.2O, 1 mL/L 1000.times. Trace Elements (22 g/L ZnSO.sub.4.7H.sub.2O, 11 g/L H.sub.3BO.sub.3, 5 g/L MnCl.sub.2.7H.sub.2O, 5 g/L FeSO.sub.4.7H.sub.2O, 1.7 g/L CoCl.sub.2.6H.sub.2O, 1.6 g/L CuSO.sub.4.5H.sub.2O, 1.5 g/L Na.sub.2MoO.sub.4.2H.sub.2O, and 50 g/L Na.sub.4EDTA), and 1 mL/L Vitamin Solution (100 mg each of Biotin, pyridoxine, thiamine, riboflavin, p-aminobenzoic acid, and nicotinic acid in 100 mL water).

[0210] A suitable pH range for the fermentation often is between about pH 4.0 to about pH 8.0, where a pH in the range of about pH 5.5 to about pH 7.0 sometimes is utilized for initial culture conditions. Culturing may be conducted under aerobic or anaerobic conditions, where microaerobic conditions sometimes are maintained. A two-stage process may be utilized, where one stage promotes microorganism proliferation and another state promotes production of target molecule. In a two-stage process, the first stage may be conducted under aerobic conditions (e.g., introduction of air and/or oxygen) and the second stage may be conducted under anaerobic conditions (e.g., air or oxygen are not introduced to the culture conditions).

[0211] A variety of fermentation processes may be applied for commercial biological production of a target product. In some embodiments, commercial production of a target product from a recombinant microbial host is conducted using a batch, fed-batch or continuous fermentation process, for example.

[0212] A batch fermentation process often is a closed system where the media composition is fixed at the beginning of the process and not subject to further additions beyond those required for maintenance of pH and oxygen level during the process. At the beginning of the culturing process the media is inoculated with the desired organism and growth or metabolic activity is permitted to occur without adding additional sources (i.e., carbon and nitrogen sources) to the medium. In batch processes the metabolite and biomass compositions of the system change constantly up to the time the culture is terminated. In a typical batch process, cells proceed through a static lag phase to a high-growth log phase and finally to a stationary phase, wherein the growth rate is diminished or halted. Left untreated, cells in the stationary phase will eventually die.

[0213] A variation of the standard batch process is the fed-batch process, where the carbon source is continually added to the fermentor over the course of the fermentation process. Fed-batch processes are useful when catabolite repression is apt to inhibit the metabolism of the cells or where it is desirable to have limited amounts of carbon source in the media at any one time. Measurement of the carbon source concentration in fed-batch systems may be estimated on the basis of the changes of measurable factors such as pH, dissolved oxygen and the partial pressure of waste gases (e.g., CO.sub.2). Batch and fed-batch culturing methods are known in the art. Examples of such methods may be found in Thomas D. Brock in Biotechnology: A Textbook of Industrial Microbiology, 2.sup.nd ed., (1989) Sinauer Associates Sunderland, Mass. and Deshpande, Mukund V., Appl. Biochem. Biotechnol., 36:227 (1992).

[0214] In continuous fermentation process a defined media often is continuously added to a bioreactor while an equal amount of culture volume is removed simultaneously for product recovery. Continuous cultures generally maintain cells in the log phase of growth at a constant cell density. Continuous or semi-continuous culture methods permit the modulation of one factor or any number of factors that affect cell growth or end product concentration. For example, an approach may limit the carbon source and allow all other parameters to moderate metabolism. In some systems, a number of factors affecting growth may be altered continuously while the cell concentration, measured by media turbidity, is kept constant. Continuous systems often maintain steady state growth and thus the cell growth rate often is balanced against cell loss due to media being drawn off the culture. Methods of modulating nutrients and growth factors for continuous culture processes, as well as techniques for maximizing the rate of product formation, are known and a variety of methods are detailed by Brock, supra.

[0215] In various embodiments ethanol may be purified from the culture media or extracted from the engineered microorganisms. Culture media may be tested for ethanol concentration and drawn off when the concentration reaches a predetermined level. Detection methods are known in the art, including but not limited to the use of a hydrometer and infrared measurement of vibrational frequency of dissolved ethanol using the CH band at 2900 cm.sup.-1. Ethanol may be present at a range of levels as described herein.

[0216] A target product sometimes is retained within an engineered microorganism after a culture process is completed, and in certain embodiments, the target product is secreted out of the microorganism into the culture medium. For the latter embodiments, (i) culture media may be drawn from the culture system and fresh medium may be supplemented, and/or (ii) target product may be extracted from the culture media during or after the culture process is completed. Engineered microorganisms may be cultured on or in solid, semi-solid or liquid media. In some embodiments media is drained from cells adhering to a plate. In certain embodiments, a liquid-cell mixture is centrifuged at a speed sufficient to pellet the cells but not disrupt the cells and allow extraction of the media, as known in the art. The cells may then be resuspended in fresh media. Target product may be purified from culture media according to methods known in the art.

[0217] In certain embodiments, target product is extracted from the cultured engineered microorganisms. The microorganism cells may be concentrated through centrifugation at speed sufficient to shear the cell membranes. In some embodiments, the cells may be physically disrupted (e.g., shear force, sonication) or chemically disrupted (e.g., contacted with detergent or other lysing agent). The phases may be separated by centrifugation or other method known in the art and target product may be isolated according to known methods.

[0218] Commercial grade target product sometimes is provided in substantially pure form (e.g., 90% pure or greater, 95% pure or greater, 99% pure or greater or 99.5% pure or greater). In some embodiments, target product may be modified into any one of a number of downstream products. For example, ethanol may be derivatized or further processed to produce ethyl halides, ethyl esters, diethyl ether, acetic acid, ethyl amines, butadiene, solvents, food flavorings, distilled spirits and the like.

[0219] Target product may be provided within cultured microbes containing target product, and cultured microbes may be supplied fresh or frozen in a liquid media or dried. Fresh or frozen microbes may be contained in appropriate moisture-proof containers that may also be temperature controlled as necessary. Target product sometimes is provided in culture medium that is substantially cell-free. In some embodiments target product or modified target product purified from microbes is provided, and target product sometimes is provided in substantially pure form. In certain embodiments, ethanol can be provided in anhydrous or hydrous forms. Ethanol may be transported in a variety of containers including pints, quarts, liters, gallons, drums (e.g., 10 gallon or 55 gallon, for example) and the like.

[0220] In certain embodiments, a target product (e.g., ethanol, succinic acid) is produced with a yield of about 0.30 grams of target product, or greater, per gram of glucose added during a fermentation process (e.g., about 0.31 grams of target product per gram of glucose added, or greater; about 0.32 grams of target product per gram of glucose added, or greater; about 0.33 grams of target product per gram of glucose added, or greater; about 0.34 grams of target product per gram of glucose added, or greater; about 0.35 grams of target product per gram of glucose added, or greater; about 0.36 grams of target product per gram of glucose added, or greater; about 0.37 grams of target product per gram of glucose added, or greater; about 0.38 grams of target product per gram of glucose added, or greater; about 0.39 grams of target product per gram of glucose added, or greater; about 0.40 grams of target product per gram of glucose added, or greater; about 0.41 grams of target product per gram of glucose added, or greater; 0.42 grams of target product per gram of glucose added, or greater; 0.43 grams of target product per gram of glucose added, or greater; 0.44 grams of target product per gram of glucose added, or greater; 0.45 grams of target product per gram of glucose added, or greater; 0.46 grams of target product per gram of glucose added, or greater; 0.47 grams of target product per gram of glucose added, or greater; 0.48 grams of target product per gram of glucose added, or greater; 0.49 grams of target product per gram of glucose added, or greater; 0.50 grams of target product per gram of glucose added, or greater; 0.51 grams of target product per gram of glucose added, or greater; 0.52 grams of target product per gram of glucose added, or greater; 0.53 grams of target product per gram of glucose added, or greater; 0.54 grams of target product per gram of glucose added, or greater; 0.55 grams of target product per gram of glucose added, or greater; 0.56 grams of target product per gram of glucose added, or greater; 0.57 grams of target product per gram of glucose added, or greater; 0.58 grams of target product per gram of glucose added, or greater; 0.59 grams of target product per gram of glucose added, or greater; 0.60 grams of target product per gram of glucose added, or greater; 0.61 grams of target product per gram of glucose added, or greater; 0.62 grams of target product per gram of glucose added, or greater; 0.63 grams of target product per gram of glucose added, or greater; 0.64 grams of target product per gram of glucose added, or greater; 0.65 grams of target product per gram of glucose added, or greater; 0.66 grams of target product per gram of glucose added, or greater; 0.67 grams of target product per gram of glucose added, or greater; 0.68 grams of target product per gram of glucose added, or greater; 0.69 or 0.70 grams of target product per gram of glucose added or greater). In some embodiments, 0.45 grams of target product per gram of glucose added, or greater, is produced during the fermentation process.

EXAMPLES

[0221] The examples set forth below illustrate certain embodiments and do not limit the technology.

[0222] Certain examples set forth below utilize standard recombinant DNA and other biotechnology protocols known in the art. Many such techniques are described in detail in Maniatis, T., E. F. Fritsch and J. Sambrook (1982) Molecular Cloning: a Laboratory Manual; Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. DNA mutagenesis can be accomplished using the Stratagene (San Diego, Calif.) "QuickChange" kit according to the manufacturer's instructions, or by one of the other types of mutagenesis described above.

Example 1

Activation of the Entner-Doudoroff Pathway in Yeast Cells

[0223] Genomic DNA from Zymomonas mobilis (ZM4) was obtained from the American Type Culture Collection (ATCC accession number 31821 D-5). The genes encoding phosphogluconate dehydratase EC 4.2.1.12 (referred to as "edd") and 2-keto-3-deoxygluconate-6-phosphate aldolase EC 4.2.1.14 (referred to as "eda") were isolated from the ZM4 genomic DNA using the following oligonucleotides:

TABLE-US-00001 The ZM4 eda gene: (SEQ ID No: 1) 5'-aactgactagtaaaaaaatgcgtgatatcgattcc-3' (SEQ ID No: 2) 5'-agtaactcgagctactaggcaacagcagcgcgcttg-3' The ZM4 edd gene: (SEQ ID NO: 3) 5'-aactgactagtaaaaaaatgactgatctgcattcaacg-3' (SEQ ID NO: 4) 5'-agtaactcgagctactagataccggcacctgcatatattgc-3'

[0224] E. coli genomic DNA was prepared using Qiagen DNeasy blood and tissue kit according to the manufacture's protocol. The E. coli edd and eda constructs were isolated from E. coli genomic DNA using the following oligonucleotides:

TABLE-US-00002 The E. coli eda gene: (SEQ ID NO: 5) 5'-aactgactagtaaaaaaatgaaaaactggaaaacaagtgcag aatc-3' (SEQ ID NO: 6) 5'-agtaactcgagctactacagcttagcgccttctacagcttcacg-3' The E. coli edd gene: (SEQ ID NO: 7) 5'-aactgactagtaaaaaaatgaatccacaattgttacgcgtaacaaa tcg-3' (SEQ ID NO: 8) 5'agtaactcgagctactaaaaagtgatacaggttgcgccctgttcgg cac-3'

[0225] All oligonucleotides set forth above were purchased from Integrated DNA technologies ("IDT", Coralville, Iowa). These oligonucleotides were designed to incorporate a SpeI restriction endonuclease cleavage site upstream and a XhoI restriction endonuclease cleavage site downstream of the edd and eda gene constructs such that these sites could be used to clone these genes into yeast expression vectors p426GPD (ATCC accession number 87361) and p425GPD (ATCC accession number 87359). In addition to incorporating restriction endonuclease cleavage sites, the forward oligonucleotides were designed to incorporate six consecutive AAAAAA nucleotides immediately upstream of the ATG initiation codon. This ensured that there was a conserved kozak sequence important for efficient translation initiation in yeast.

[0226] Cloning the edd and eda genes from ZM4 and E. coli genomic DNA was accomplished using the following procedure: About 100 ng of ZM4 or E. coli genomic DNA, 1 .mu.M of the oligonucleotide primer set listed above, 2.5 U of PfuUltra High-Fidelity DNA polymerase (Stratagene), 300 .mu.M dNTPs (Roche), and 1.times.PfuUltra reaction buffer was mixed in a final reaction volume of 50 .mu.l. A BIORAD DNA Engine Tetrad 2 Peltier thermal cycler was used for the PCR reactions and the following cycle conditions were used: 5 min denaturation step at 95.degree. C., followed by 30 cycles of 20 sec at 95.degree. C., 20 sec at 55.degree. C., and 1 min at 72.degree. C., and a final step of 5 min at 72.degree. C.

[0227] In an attempt to maximize expression of the ZM4 edd and eda genes in yeast, two different approaches were undertaken to optimize the ZM4 edd and eda genes. The first approach was to remove translational pauses from the polynucleotide sequence by designing the gene to incorporate only codons that are preferred in yeast. This optimization is referred to as the "hot rod" optimization. In the second approach, translational pauses which are present in the native organism gene sequence are matched in the heterologous expression host organism by substituting the codon usage pattern of that host organism. This optimization is referred to as the "matched" optimization. The final gene and protein sequences for edd and eda from the ZM4 native, hot rod (HR) and matched versions, as well as the E. coli native are shown in FIG. 6.

[0228] Certain sequences in FIG. 6 are presented at the end of this Example 1. The matched version of ZM4 edd and ZM4 eda genes were synthesized by IDT, and the hot rod version was constructed using methods described in Larsen et al. (Int. J. Bioinform. Res. Appl; 2008:4[3]; 324-336).

[0229] Each version of each edd and eda gene was inserted into the yeast expression vector p426GPD (GPD promoter, 2 micron, URA3) (ATCC accession number 87361) between the SpeI and XhoI cloning sites. Each version of the eda gene was also inserted into the SpeI and XhoI sites of the yeast expression vector p425GPD (GPD promoter, 2 micron, LEU3) (ATCC accession number 87359). For each edd and eda version, 3' His tagged and non tagged p426 GPD constructs were made. Please refer to table 1 for all oligonucleotides used for PCR amplification of edd and eda constructs for cloning into p425 and p426 GPD vectors. All cloning procedures were conducted according to standard cloning procedures described by Maniatis et al.

[0230] Each edd and eda p426GPD construct was transformed into Saccharomyces cerevisiae strain BY4742 (MATalpha his3delta1 leu2delta0 lys2delta0 ura3delta0) (ATCC accession number 201389). This strain has a deletion of the his3 gene, an imidazoleglycerol-phosphate dehydratase which catalyzes the sixth step in histidine biosynthesis; a deletion of leu2 gene, a beta-isopropylmalate dehydrogenase which catalyzes the third step in the leucine biosynthesis pathway; a deletion of the lys2 gene, an alpha aminoadipate reductase which catalyzes the fifth step in biosynthesis of lysine; and a deletion of the ura3 gene, an orotidine-5'-phosphate decarboxylase which catalyzes the sixth enzymatic step in the de novo biosynthesis of pyrimidines. The genotype of BY4742 makes it an auxotroph for histidine, leucine, lysine and uracil.

[0231] Transformation of the p426GPD plasmids containing an edd or an eda variant gene into yeast strain BY4742 was accomplished using the Zymo Research frozen-EZ yeast transformation II kit according to the manufacturer's protocol. The transformed BY4742 cells were selected by growth on a synthetic dextrose medium (SD) (0.67% yeast nitrogen base-2% dextrose) containing complete amino acids minus uracil (Krackeler Scientific Inc). Plates were incubated at about 30.degree. C. for about 48 hours. Transformant colonies for each edd and eda variant were inoculated onto 5 ml of SD minus uracil medium and cells were grown at about 30.degree. C. and shaken at about 250 rpm for about 24 hours. Cells were harvested by centrifugation at 1000.times.g for about 5 minutes, after which protein crude extract was prepared with Y-PER Plus (Thermo Scientific) according to the manufacturer's instructions. Whole cell extract protein concentrations were determined using the Coomassie Plus Protein Assay (Thermo Scientific) according to the manufacturer's directions. For each edd and eda variant His-tagged construct, about 10 .mu.g of soluble and insoluble fractions were loaded on 4-12% NuPAGE Novex Bis-Tris protein gels (Invitrogen) and proteins were analyzed by western using anti-(His).sub.6 mouse monoclonal antibody (`(His).sub.6` disclosed as SEQ ID NO: 35) (Abcam) and HRP-conjugated secondary antibody (Abcam). Supersignal West Pico Chemiluminescent substrate (Thermo Scientific) was used for western detection according to manufacturer's instructions. All edd variants showed expression in both soluble and insoluble fractions whereas only the E. coli eda variant showed expression in the soluble fraction.

[0232] In order to confirm that edd and eda variants were functional in yeast, the combined edd and eda activities were assayed by the formation of pyruvate, coupled to the NADH-dependent activity of lactate dehydrogenase. Transformation of combined edd (in p426GPD) and edd (in p425GPD) constructs was accomplished with the Zymo Research frozen-EZ yeast transformation II kit based on manufacturer's protocol. As a negative control, p425GPD and p426GPD vectors were also transformed into BY4742. Transformants (16 different combinations total including the variant edd and eda combinations plus vector controls) were selected on synthetic dextrose medium (SD) (0.67% yeast nitrogen base-2% dextrose) containing complete amino acids minus uracil and leucine. Transformants of edd and eda variant combinations were inoculated onto 5 ml of SD minus uracil and leucine and cells were grown at about 30.degree. C. in shaker flasks at about 250 rpm for about 24 hours. Fresh overnight culture was used to inoculate about 100 ml of (SD media minus uracil and leucine containing about 0.01 g ergosterol/L and about 400 .mu.l of Tween80) to an initial inoculum OD.sub.600nm of about 0.1 and grown anaerobically at about 30.degree. C. for approximately 14 hours until cells reached an OD.sub.600nm of 3-4. The cells were centrifuged at about 3000 g for about 10 minutes. The cells were then washed with 25 ml deionized H.sub.2O and centrifuged at 3000 g for 10 min. the cells were resuspended at about 2 ml/g of cell pellet) in lysis buffer (50 mM TrisCl pH7, 10 mM MgCl.sub.2 1.times. Calbiochem protease inhibitor cocktail set III). Approximately 900 .mu.l of glass beads were added and cells were lysed by vortexing at maximum speed for 4.times.30 seconds. Cell lysate was removed from the glass beads, placed into fresh tubes and spun at about 10,000 g for about 10 minutes at about 4.degree. C. The supernatant containing whole cell extract (WCE) was transferred to a fresh tube. WCE protein concentrations were measured using the Coomassie Plus Protein Assay (Thermo Scientific) according to the manufacturer's directions. A total of about 750 .mu.g of WCE was used for the edd and eda coupled assay. For this assay, about 750 .mu.g of WCE was mixed with about 2 mM 6-phosphogluconate and about 4.5 U lactate dehydrogenase in a final volume of about 400 .mu.l. A total of about 100 .mu.l of NADH was added to this reaction to a final molarity of about 0.3 mM, and NADH oxidation was monitored for about 10 minutes at about 340 nM using a DU800 spectrophotometer.

TABLE-US-00003 ZM4 HR EDA GENE (SEQ ID NO: 42) ATGAGAGACATTGATTCTGTTATGAGATTGGCTCCAGTTATGCCAGTCTT TGGTTAAGAAGATATAGCTGATGCTAAGCCAATTGCTGAGGCTTTGGTTG CTGGTGGTTTAAATGTTTTGGAAGTTACATTGAGAACTCCATGTGCTTTG GAAGCTATTAAAATTATGAAGGAAGTTCCAGGTGCTGTTGTTGGTGCTGG TACTGTTTTAAACGCTAAAATGTTGGATCAAGCTCAAGAAGCTGGTTGTG AGTTCTTTGTATCACCAGGTTTGACTGCTGATTTGGGAAAACATGCTGTT GCTCAAAAAGCGGCTCTTCTACCAGGGGTTGCTAATGCTGCTGATGTTAT GTTGGGATTGGATTTGGGTTTGGATAGATTTAAATTCTTCCCAGCTGAAA ATATAGGTGGTTTGCCAGCTTTAAAATCTATGGCTTCTGTTTTTAGACAA GTTAGATTTTGTCCAACTGGAGGAATTACTCCGACTTCTGCTCCAAAATA TTTGGAAAATCCATCTATTTTGTGTGTTGGTGGTTCTTGGGTTGTTCCAG CGGGTAAACCAGATGTTGCGAAAATTACTGCTTTGGCTAAAGAGGCTTCA GCTTTTAAAAGAGCTGCTGTGGCGTAG ZM4 HR EDD GENE (SEQ ID NO: 43) ATGACGGATTTGCATTCAACTGTTGAGAAAGTAACTGCTAGAGTAATTGA AAGATCAAGGGAAACTAGAAAGGCTTATTTGGATTTGATACAATATGAGA GGGAAAAAGGTGTTGATAGACCAAATTTGTCTTGTTCTAATTTGGCTCAT GGTTTTGCTGCTATGAATGGTGATAAACCAGCTTTGAGAGATTTTAATAG AATGAATATAGGTGTAGTTACTTCTTATAATGATATGTTGTCTGCTCATG AACCATATTATAGATATCCAGAACAAATGAAGGTTTTTGCTCGTGAAGTT GGTGCTACAGTTCAAGTTGCTGGTGGTGTTCCTGCAATGTGTGATGGTGT TACTCAAGGTCAACCAGGTATGGAAGAATCTTTGTTTTCCAGAGATGTAA TTGCTTTGGCTACATCTGTTTCATTGTCTCACGGAATGTTTGAAGGTGCT GCATTGTTGGGAATTTGTGATAAAATTGTTCCAGGTTTGTTGATGGGTGC TTTGAGGTTCGGTCATTTGCCAACTATTTTGGTTCCATCTGGTCCAATGA CTACTGGAATCCCAAATAAAGAAAAGATTAGAATTAGACAATTGTATGCT CAAGGAAAAATTGGTCAAAAGGAATTGTTGGATATGGAAGCTGCCTGTTA TCATGCTGAAGGTACTTGTACTTTTTATGGTACTGCTAACACTAATCAGA TGGTTATGGAAGTTTTGGGTTTGCACATGCCAGGTAGTGCATTCGTTACT CCAGGTACTCCACTGAGACAGGCTTTGACTAGAGCTGCTGTTCATAGAGT TGCAGAGTTGGGTTGGAAAGGTGATGATTATAGACCTTTGGGTAAAATTA TTGATGAGAAATCTATTGTTAATGCTATTGTTGGTTTGTTAGCTACAGGT GGTTCTACAAATCATACAATGCATATTCCGGCCATAGCTAGAGCAGCAGG GGTTATAGTTAATTGGAATGATTTTCATGATTTGTCTGAAGTTGTTCCAT TGATTGCTAGAATTTATCCAAATGGTCCTAGAGATATAAATGAATTTCAA AATGCAGGAGGAATGGCTTATGTAATTAAAGAATTGTTGAGTGCGAATTT GTTAAATAGAGATGTTACTACTATTGCTAAAGGAGGGATAGAAGAATATG CTAAAGCTCCAGCTCTGAACGATGCGGGTGAATTGGTGTGGAAACCGGCT GGCGAACCTGGGGACGACACAATTTTGAGACCAGTATCTAATCCATTTGC TAAAGATGGTGGTTTGCGTCTCTTGGAAGGTAATTTGGGTAGAGCAATGT ATAAGGCTTCTGCTGTAGATCCAAAATTCTGGACTATTGAAGCTCCCGTT AGAGTTTTCTCTGATCAAGATGATGTTCAAAAGGCTTTTAAAGCAGGCGA GTTAAATAAAGATGTTATAGTTGTTGTTAGATTTCAAGGTCCTCGTGCTA ATGGTATGCCTGAATTGCATAAGTTGACTCCTGCGCTAGGCGTATTGCAA GATAATGGTTATAAGGTTGCTTTAGTTACTGATGGTAGAATGTCTGGTGC AACTGGTAAAGTACCGGTGGCTCTGCATGTTTCACCAGAGGCTTTAGGAG GTGGGGCGATTGGCAAGTTGAGAGATGGCGATATAGTTAGAATTTCTGTT GAAGAAGGTAAATTAGAGGCTCTTGTCCCCGCCGACGAGTGGAATGCTAG ACCACATGCTGAGAAGCCCGCTTTTAGACCTGGTACTGGGAGAGAATTGT TTGACATTTTTAGACAAAACGCTGCTAAGGCTGAGGATGGTGCAGTTGCA ATTTATGCTGGGGCAGGGATCTAG ZM4 MATCHED EDA GENE (SEQ ID NO: 44) ATGAGGGATATTGATAGTGTGATGAGGTTAGCCCCTGTTATGCCTGTTCT CGTTATTGAAGATATTGCAGATGCCAAACCTATTGCCGAAGCACTCGTTG CAGGTGGTCTAAACGTTCTAGAAGTGACACTAAGGACTCCTTGTGCACTA GAAGCTATTAAGATTATGAAGGAAGTTCCTGGTGCTGTTGTTGGTGCTGG TACAGTTCTAAACGCCAAAATGCTCGACCAGGCACAAGAAGCAGGTTGCG AATTTTTCGTTTCACCTGGTCTAACTGCCGACCTCGGAAAGCACGCAGTT GCTCAAAAAGCCGCATTACTACCCGGTGTTGCAAATGCAGCAGATGTGAT GCTAGGTCTAGACCTAGGTCTAGATAGGTTCAAGTTCTTCCCTGCCGAAA ACATTGGTGGTCTACCTGCTCTAAAGAGTATGGCATCAGTTTTCAGGCAA GTTAGGTTCTGCCCTACTGGAGGTATAACTCCTACAAGTGCACCTAAATA TCTAGAAAACCCTAGTATTCTATGCGTTGGTGGTTCATGGGTTGTTCCTG CCGGAAAACCCGATGTTGCCAAAATTACAGCCCTCGCAAAAGAAGCAAGT GCATTCAAGAGGGCAGCAGTTGCTTAG ZM4 MATCHED EDD GENE (SEQ ID NO: 45) ATGACGGATCTACATAGTACAGTGGAGAAGGTTACTGCCAGGGTTATTGA AAGGAGTAGGGAAACTAGGAAGGCATATCTAGATTTAATTCAATATGAGA GGGAAAAAGGAGTGGACAGGCCCAACCTAAGTTGTAGCAACCTAGCACAT GGATTCGCCGCAATGAATGGTGACAAGCCCGCATTAAGGGACTTCAACAG GATGAATATTGGAGTTGTGACGAGTTACAACGATATGTTAAGTGCACATG AACCCTATTATAGGTATCCTGAGCAAATGAAGGTGTTTGCAAGGGAAGTT GGAGCCACAGTTCAAGTTGCTGGTGGAGTGCCTGCAATGTGCGATGGTGT GACTCAGGGTCAACCTGGAATGGAAGAATCCCTATTTTCAAGGGATGTTA TTGCATTAGCAACTTCAGTTTCATTATCACATGGTATGTTTGAAGGGGCA GCTCTACTCGGTATATGTGACAAGATTGTTCCTGGTCTACTAATGGGAGC ACTAAGGTTTGGTCACCTACCTACTATTCTAGTTCCCAGTGGACCTATGA CAACGGGTATACCTAACAAAGAAAAAATTAGGATTAGGCAACTCTATGCA CAAGGTAAAATTGGACAAAAAGAACTACTAGATATGGAAGCCGCATGCTA CCATGCAGAAGGTACTTGCACTTTCTATGGTACAGCCAACACTAACCAGA TGGTTATGGAAGTTCTCGGTCTACATATGCCCGGTAGTGCCTTTGTTACT CCTGGTACTCCTCTCAGGCAAGCACTAACTAGGGCAGCAGTGCATAGGGT TGCAGAATTAGGTTGGAAGGGAGACGATTATAGGCCTCTAGGTAAAATTA TTGACGAAAAAAGTATTGTTAATGCAATTGTTGGTCTATTAGCCACTGGT GGTAGTACTAACCATACGATGCATATTCCTGCTATTGCAAGGGCAGCAGG TGTTATTGTTAACTGGAATGACTTCCATGATCTATCAGAAGTTGTTCCTT TAATTGCTAGGATTTACCCTAATGGACCTAGGGACATTAACGAATTTCAA AATGCCGGAGGAATGGCATATGTTATTAAGGAACTACTATCAGCAAATCT ACTAAACAGGGATGTTACAACTATTGCTAAGGGAGGTATAGAAGAATACG CTAAGGCACCTGCCCTAAATGATGCAGGAGAATTAGTTTGGAAGCCCGCA GGAGAACCTGGTGATGACACTATTCTAAGGCCTGTTTCAAATCCTTTCGC CAAAGATGGAGGTCTAAGGCTCTTAGAAGGTAACCTAGGAAGGGCCATGT ACAAGGCTAGCGCCGTTGATCCTAAATTCTGGACTATTGAAGCCCCTGTT AGGGTTTTCTCAGACCAGGACGATGTTCAAAAAGCCTTCAAGGCAGGAGA ACTAAACAAAGACGTTATTGTTGTTGTTAGGTTCCAAGGACCTAGGGCCA ACGGTATGCCTGAATTACATAAGCTAACTCCTGCATTAGGTGTTCTACAA GATAATGGATACAAAGTTGCATTAGTGACGGATGGTAGGATGAGTGGTGC AACTGGTAAAGTTCCTGTTGCATTACATGTTTCACCCGAAGCACTAGGAG GTGGTGCTATTGGTAAACTTAGGGATGGAGATATTGTTAGGATTAGTGTT GAAGAAGGAAAACTTGAAGCACTCGTTCCCGCAGATGAGTGGAATGCAAG GCCTCATGCAGAAAAACCTGCATTCAGGCCTGGGACTGGGAGGGAATTAT TTGATATTTTCAGGCAAAATGCAGCAAAAGCAGAAGACGGTGCCGTTGCC ATCTATGCCGGTGCTGGTATATAG

Example 2

Inactivation of the Embden-Meyerhof Pathway in Yeast

[0233] Saccharomyces cerevisiae strain YGR240CBY4742 was obtained from the ATCC (accession number 4015893). This strain is genetically identical to S. cerevisiae strain BY4742, except that YGR420C, the gene encoding the PFK1 enzyme, which is the alpha subunit of heterooctameric phosphofructokinase, has been deleted. A DNA construct designed to delete the gene encoding the PFK2 enzyme via homologous recombination was prepared. This construct substituted the gene encoding HIS3 (imidazoleglycerol-phosphate dehydratase, an enzyme required for synthesis of histidine) for the PFK2 gene. The DNA construct comprised, in the 5' to 3' direction, 100 bases of the 5' end of the open reading frame of PFK2, followed by the HIS3 promoter, HIS3 open reading frame, HIS3 terminator, and 100 bp of the 3' end of the PFK2 open reading frame.

[0234] This construct was prepared by two rounds of PCR. In the first round, about 100 ng of BY4742 genomic DNA was used as a template. The genomic DNA was prepared from cells using the Zymo Research Yeastar kit according to the manufacturer's instructions. PCR was performed using the following primers:

TABLE-US-00004 (SEQ ID NO: 9) 5'-tgcatattccgttcaatcttataaagctgccatagatttttacacc aagtcgttttaagagcttggtgagcgcta-3' (SEQ ID NO: 10) 5'-cttgccagtgaatgacctttggcattctcatggaaacttcagttt catagtcgagttcaagagaaaaaaaaagaa-3'

[0235] The PCR reaction conditions were the same as those set forth in Example 1 for preparing the edd and eda genes.

[0236] For the second round of PCR, approximately 1 .mu.l of the first PCR product was used as a template. The second round of PCR reaction was performed with the following primer set:

TABLE-US-00005 (SEQ ID NO: 11) 5'-atgactgttactactccttttgtgaatggtacttcttattgtaccg tcactgcatattccgttcaatcttataaa-3' (SEQ ID NO: 12) 5'-ttaatcaactctctttcttccaaccaaatggtcagcaatgagtct ggtagcttgccagtgaatgacctttggcat-3'

[0237] PCR conditions for this reaction were the same as for the first reaction immediately above. The final PCR product was separated by agarose gel electrophoresis, excised, and purified using MP Biomedicals Geneclean II kit according to the manufacturer's instructions.

[0238] Approximately 2 .mu.g of the purified DNA was used for transformation of the yeast strain YGR240CBY4742 by lithium acetate procedure as described by Shiestl and Gietz with an additional recovery step added after the heat shock step. Essentially after heat shock, cells were centrifuged at 500.times.g for 2 min and resuspended in 1 ml of YP-Ethanol (1% yeast extract-2% peptone-2% ethanol) and incubated at 30.degree. C. for 2 hours prior to plating on selective media containing SC-Ethanol (0.67% yeast nitrogen base-2% ethanol) containing complete amino acids minus histidine. The engineered transformant strain referred to as YGR420CBY4742.DELTA.PFK2 has PFK1 and PFK2 genes deleted and is an auxotroph for leucine, uracil and lysine.

[0239] The YGR420CBY4742.DELTA.PFK2 strain was used for transformation of the combination of edd-p426 GPD (edd variants in p426 GPD) and eda-p425 GPD (eda variants in p425 GPD) variant constructs. A total of 16 combinations of edd-p426 GPD and eda-p425 GPD variant constructs were tested. Each combination was transformed into YGR420CBY4742.DELTA.PFK2. For all transformation, 1 .mu.g of edd-p426 GPD and 1 .mu.g of eda-p425 GPD was used. All transformants from each edd-p426 GPD and eda-p425 GPD construct combination were selected on SC-Ethanol (0.67% yeast nitrogen base-2% ethanol) containing complete amino acids minus uracil and leucine.

[0240] To confirm that the edd and eda variants are functional in yeast, a complementation test for growth of YGR420CBY4742.DELTA.PFK2 strain on YPD (1% yeast extract-2% peptone-2% dextrose) and YPGluconate (1% yeast extract-2% peptone-2% gluconate) was performed. Viable colonies of edd-p426 GPD and eda-p425 GPD variant construct combinations grown on SC-Ethanol minus uracil and leucine were patched to plates containing SC-ethanol minus uracil and leucine and incubated at 30.degree. C. for 48 hrs. These patches were used to inoculate 5 ml of YPD media to an initial inoculum OD.sub.600nm of 0.1 and the cells were grown anaerobically at 30.degree. C. for 3 to 7 days.

Example 3

Preparation of Carbon Dioxide Fixing Yeast Cells

[0241] Total genomic DNA from Zymomonas mobilis was obtained from ATCC (ATCC Number 31821). The Z. mobilis gene encoding the enzyme phosphoenolpyruvate carboxylase ("PEP carboxylase") was isolated from this genomic DNA and cloned using PCR amplification. PCR was performed in a total volume of about 50 micro-liters in the presence of about 20 nanograms of Z. mobilis genomic DNA, about 0.2 mM of 5' forward primer, about 0.2 mM of 3' reverse primer, about 0.2 mM of dNTP, about 1 micro-liter of pfu UltraII DNA polymerase (Stratagene, La Jolla, Calif.), and 1.times.PCR buffer (Stratagene, La Jolla, Calif.). PCR was carried out in a thermocycler using the following program: Step One "95.degree. C. for 10 minutes" for 1 cycle, followed by Step Two "95.degree. C. for 20 seconds, 65.degree. C. for 30 seconds, and 72.degree. C. for 45 seconds" for 35 cycles, followed by Step Three "72.degree. C. for 5 minutes" for 1 cycle, and then Step Four "4.degree. C. Hold" to stop the reaction. The primers for the PCR reaction were:

TABLE-US-00006 (SEQ ID NO: 13) 5'GACTAACTGAACTAGTAAAAAAATGACCAAGCCGCGCACAATTAA TCAG-3' (SEQ ID NO: 14) 5'AAGTGAGTAACTCGAGTTATTAACCGCTGTTGCGAAGTGCCGT CGC-3'

[0242] The DNA sequence of native Z. Mobilis PEP carboxylase is set forth as SEQ ID NO:20.

[0243] The cloned gene was inserted into the vector pGPD426 (ATCC Number: 87361) in between the SpeI and XhoI sites. The final plasmid containing the PEP carboxylase gene was named pGPD426 PEPC.

[0244] Separately, a similar plasmid, referred to as pGPD426 N-his PEPC was constructed to insert a six-histidine tag (SEQ ID NO: 35) at the N-terminus of the PEPC sequence for protein expression verification in yeast. This plasmid was constructed using two rounds of PCR to extend the 5' end of the PEPC gene to incorporate a six-histidine tag (SEQ ID NO: 35) at the N-terminus of the PEPC protein. The two 5' forward primers used sequentially were:

TABLE-US-00007 (SEQ ID NO: 15) 5'ATGTCTCATCATCATCATCATCATACCAAGCCGCGCACAATTAAT CAGAAC-3' and (SEQ ID NO: 16) 5'GACTAACTGAACTAGTAAAAAAATGTCTCATCATCATCATCATCAT ACCAAG-3'

[0245] The same 3' primer was used as described above. The PCR was performed in a total volume of about 50 micro-liters in the presence of about 20 nanograms of Z Mobilis PEP carboxylase polynucleotide, about 0.2 mM of 5' forward primer, about 0.2 mM of 3' reverse primer, about 0.2 mM of dNTP, about 1 micro-liter of pfu UltraII DNA polymerase (Stratagene, La Jolla, Calif.), and 1.times.PCR buffer (Stratagene, La Jolla, Calif.). The PCR was carried out in a thermocycler using the following program: Step One "95.degree. C. for 10 minutes" for 1 cycle, followed by Step Two "95.degree. C. for 20 seconds, 65.degree. C. for 30 seconds, and 72.degree. C. for 45 seconds" for 35 cycles, followed Step Three "72.degree. C. for 5 minutes" for 1 cycle, and then Step Four "4.degree. C. Hold" to stop the reaction.

[0246] To increase protein expression level of Z. Mobilis PEP carboxylase in yeast, the PEPC coding sequence was optimized to incorporate frequently used codons obtained from yeast glycolytic genes. The resulting PEP carboxylase amino acid sequence remains identical to the wild type.

[0247] The codon optimized PEP carboxylase DNA sequence was ordered from IDT and was inserted into the vector pGPD426 at the SpeI and XhoI site. The final plasmid containing the codon optimized PEP carboxylase gene was named pGPD426 PEPC_opti. A similar plasmid, named pGPD426 N-his PEPC_opti was constructed to insert a six-histidine tag (SEQ ID NO: 35) at the N-terminus of the optimized PEPC gene for protein expression verification in yeast.

[0248] To construct pGPD426 N-his PEPC_opti, two rounds of PCR were performed to extend the 5' end of the codon optimized PEPC gene to incorporate the six-histidine tag (SEQ ID NO: 35) at the N-terminus of the PEPC protein. Two 5' forward primers used in sequential order were:

TABLE-US-00008 (SEQ ID NO: 17) 5'ATGTCTCATCATCATCATCATCATATGACCAAGCCAAGAACTATTA ACCAAAACCC-3' and (SEQ ID NO: 18) 5'GACTAACTGAACTAGTAAAAAAATGTCTCATCATCATCATCATCA TATGACCAAGCCAAG 3'

[0249] The 3' reverse primer sequence used for both PCR reactions was:

TABLE-US-00009 (SEQ ID NO: 19) 5'AAGTGAGTAACTCGAGTTATTAACCGGAGTTTCTCAAAGCAGTAGCG ATAG3'

[0250] Both PCR reactions were performed in a total volume of about 50 micro-liters in the presence of about 20 nanograms of the codon optimized PEP carboxylase polynucleotide, about 0.2 mM of 5' forward primer, about 0.2 mM of 3' reverse primer, about 0.2 mM of dNTP, about 1 micro-liter of pfu UltraII DNA polymerase (Stratagene, La Jolla, Calif.), and 1.times.PCR buffer (Stratagene, La Jolla, Calif.). PCR reactions were carried out in a thermocycler using the following program: Step One "95.degree. C. for 10 minutes" for 1 cycle, followed by Step Two "95.degree. C. for 20 seconds, 65.degree. C. for 30 seconds, and 72.degree. C. for 45 seconds" for 35 cycles, followed Step Three "72.degree. C. for 5 minutes" for 1 cycle, and then Step Four "4.degree. C. Hold" to stop the reaction.

[0251] Saccharomyces cerevisiae strain BY4742 was cultured in YPD medium to an OD of about 1.0, and then prepared for transformation using the Frozen-EZ Yeast Transformation II kit (Zymo Research, Orange, Calif.) and following the manufacturer's instructions. Approximately 500 micrograms of each plasmid was added to the cells, and transformation was accomplished by addition of PEG solution ("Solution 3" in the Frozen-EZ Yeast Transformation II kit) and incubation at about 30.degree. C. for an hour. After transformation, the cells were plated on synthetic complete medium (described in Example IV below) minus uracil (sc-ura) medium, grown for about 48 hours at about 30.degree. C., and transformants were selected based on auxotrophic complementation.

[0252] Following a similar procedure, the same plasmids were individually transformed using the procedure described above into the following yeast mutant strains: YKR097W (ATCC Number 4016013, APCK, in the phosphoenolpyruvate carboxykinase gene is deleted), YGL062W (ATCC Number 4014429, .DELTA.PYC1, in which the pyruvate carboxylase 1 gene is deleted), and YBR218C (ATCC Number 4013358, .DELTA.PYC2, in which the pyruvate carboxylase 2 gene is deleted).

[0253] The transformed yeast cells were grown aerobically in a shake flask in synthetic complete medium minus uracil (see Example IV) containing 1% glucose to mid-log phase (an OD of 2.0). The mid-log phase cultures were then used to inoculate a fresh culture (in sc-ura medium with 1% glucose) to an initial OD of 0.1 at which time the cultures were then grown anaerobically in a serum bottle. Culture samples were drawn periodically to monitor the level of glucose consumption and ethanol production.

TABLE-US-00010 DNA sequence of the native Z. mobilis PEP carboxylase gene (SEQ ID NO: 20): ACTAGTAAAAAAATGACCAAGCCGCGCACAATTAATCAGAACCCAGACCTTCGCTATTTTGGT AACCTGCTCGGTCAGGTTATTAAGGAACAAGGCGGAGAGTCTTTATTCAACCAGATCGAGCAA ATTCGCTCTGCCGCGATTAGACGCCATCGGGGTATTGTTGACAGCACCGAGCTAAGTTCTCG CTTAGCCGATCTCGACCTTAATGACATGTTCTCTTTTGCACATGCCTTTTTGCTGTTTTCAATG CTGGCCAATTTGGCTGATGATCGTCAGGGAGATGCCCTTGATCCTGATGCCAATATGGCAAGT GCCCTTAAGGACATAAAAGCCAAAGGCGTCAGTCAGCAGGCGATCATTGATATGATCGACAAA GCCTGCATTGTGCCTGTTCTGACAGCACATCCGACCGAAGTCCGTCGGAAAAGTATGCTTGA CCATTATAATCGCATTGCAGGTTTAATGCGGTTAAAAGATGCTGGACAAACGGTGACCGAAGA TGGTCTTCCGATCGAAGATGCGTTAATCCAGCAAATCACGATATTATGGCAGACTCGTCCGCT CATGCTGCAAAAGCTGACCGTGGCTGATGAAATCGAAACTGCCCTGTCTTTCTTAAGAGAAAC TTTTCTGCCTGTTCTGCCCCAGATTTATGCAGAATGGGAAAAATTGCTTGGTAGTTCTATTCCA AGCTTTATCAGACCTGGTAATTGGATTGGTGGTGACCGTGACGGTAACCCCAATGTCAATGCC GATACGATCATGCTGTCTTTGAAGCGCAGCTCGGAAACGGTATTGACGGATTATCTCAACCGT CTTGATAAACTGCTTTCCAACCTTTCGGTCTCAACCGATATGGTTTCGGTATCCGATGATATTC TACGTCTAGCCGATAAAAGTGGTGACGATGCTGCGATCCGTGCGGATGAACCTTATCGTCGT GCCTTAAATGGTATTTATGACCGTTTAGCCGCTACCTATCGTCAGATCGCCGGTCGCAACCCT TCGCGCCCAGCCTTGCGTTCTGCAGAAGCCTATAAACGGCCTCAAGAATTGCTGGCTGATTT GAAGACCTTGGCCGAAGGCTTGGGTAAATTGGCAGAAGGTAGTTTTAAGGCATTGATCCGTTC GGTTGAAACCTTTGGTTTCCATTTGGCCACCCTCGATCTGCGTCAGAATTCGCAGGTTCATGA AAGAGTTGTCAATGAACTGCTACGGACAGCCACCGTTGAAGCCGATTATTTATCTCTATCGGA AGAAGATCGCGTTAAGCTGTTAAGACGGGAATTGTCGCAGCCGCGGACTCTATTCGTTCCGC GCGCCGATTATTCCGAAGAAACGCGTTCTGAACTTGATATTATTCAGGCAGCAGCCCGCGCC CATGAAATTTTTGGCCCTGAATCCATTACGACTTATTTGATTTCGAATGGCGAAAGCATTTCCG ATATTCTGGAAGTCTATTTGCTTTTGAAAGAAGCAGGGCTGTATCAAGGGGGTGCTAAGCCAA AAGCGGCGATTGAAGCTGCGCCTTTATTCGAGACGGTGGCCGATCTTGAAAATGCGCCAAAG GTCATGGAGGAATGGTTCAAGCTGCCTGAAGCGCAAGCCATTGCAAAGGCACATGGCGTTCA GGAAGTGATGGTTGGCTATTCTGACTCCAATAAGGACGGCGGATATCTGACCTCGGTTTGGG GTCTTTATAAGGCTTGCCTCGCTTTGGTGCCGATTTTTGAGAAAGCCGGTGTACCGATCCAGT TTTTCCATGGACGGGGTGGTTCCGTTGGTCGCGGTGGTGGTTCCAACTTTAATGCCATTCTGT CGCAGCCAGCCGGAGCCGTCAAAGGGCGTATCCGTTATACAGAACAGGGTGAAGTCGTGGC GGCCAAATATGGCACCCATGAAAGCGCTATTGCCCATCTGGATGAGGCCGTAGCGGCGACTT TGATTACGTCTTTGGAAGCACCGACCATTGTCGAGCCAGAGTTTAGTCGTTACCGTAAGGCCT TGGATCAGATCTCAGATTCAGCTTTCCAGGCCTATCGCCAATTGGTCTATGGAACGAAGGGCT TCCGTAAATTCTTTAGTGAATTTACGCCTTTGCCGGAAATTGCCCTGTTAAAGATCGGGTCACG CCCACCTAGCCGCAAAAAATCCGACCGGATTGAAGATCTACGCGCTATTCCTTGGGTGTTTAG CTGGTCTCAAGTTCGAGTCATGTTACCCGGTTGGTTCGGTTTCGGTCAGGCTTTATATGACTT TGAAGATACCGAGCTGTTACAGGAAATGGCAAGCCGTTGGCCGTTTTTCCGCACGACTATTCG GAATATGGAACAGGTGATGGCACGTTCCGATATGACGATCGCCAAGCATTATCTGGCCTTGGT TGAGGATCAGACAAATGGTGAGGCTATCTATGATTCTATCGCGGATGGCTGGAATAAAGGTTG TGAAGGTCTGTTAAAGGCAACCCAGCAGAATTGGCTGTTGGAACGCTTTCCGGCGGTTGATA ATTCGGTGCAGATGCGTCGGCCTTATCTGGAACCGCTTAATTACTTACAGGTCGAATTGCTGA AGAAATGGCGGGGAGGTGATACCAACCCGCATATCCTCGAATCTATTCAGCTGACAATCAATG CCATTGCGACGGCACTTCGCAACAGCGGTTAATAACTCGAG DNA sequence of the codon optimized PEP carboxylase gene (SEQ ID NO: 21): ACTAGTAAAAAAATGACCAAGCCAAGAACTATTAACCAAAACCCAGACTTGAGATACTTCGGTA ACTTGTTGGGTCAAGTTATCAAGGAACAAGGTGGTGAATCTTTGTTCAACCAAATTGAACAAAT CAGATCCGCTGCTATTAGAAGACACAGAGGTATCGTCGACTCTACCGAATTGTCCTCTAGATT GGCTGACTTGGACTTGAACGACATGTTCTCCTTCGCTCACGCTTTCTTGTTGTTCTCTATGTTG GCTAACTTGGCTGACGACAGACAAGGTGACGCTTTGGACCCAGACGCTAACATGGCTTCCGC TTTGAAGGACATTAAGGCTAAGGGTGTTTCTCAACAAGCTATCATTGACATGATCGACAAGGC TTGTATTGTCCCAGTTTTGACTGCTCACCCAACCGAAGTCAGAAGAAAGTCCATGTTGGACCA CTACAACAGAATCGCTGGTTTGATGAGATTGAAGGACGCTGGTCAAACTGTTACCGAAGACG GTTTGCCAATTGAAGACGCTTTGATCCAACAAATTACTATCTTGTGGCAAACCAGACCATTGAT GTTGCAAAAGTTGACTGTCGCTGACGAAATTGAAACCGCTTTGTCTTTCTTGAGAGAAACTTTC TTGCCAGTTTTGCCACAAATCTACGCTGAATGGGAAAAGTTGTTGGGTTCCTCTATTCCATCCT TCATCAGACCAGGTAACTGGATTGGTGGTGACAGAGACGGTAACCCAAACGTCAACGCTGAC ACCATCATGTTGTCTTTGAAGAGATCCTCTGAAACTGTTTTGACCGACTACTTGAACAGATTGG ACAAGTTGTTGTCCAACTTGTCTGTCTCCACTGACATGGTTTCTGTCTCCGACGACATTTTGAG ATTGGCTGACAAGTCTGGTGACGACGCTGCTATCAGAGCTGACGAACCATACAGAAGAGCTT TGAACGGTATTTACGACAGATTGGCTGCTACCTACAGACAAATCGCTGGTAGAAACCCATCCA GACCAGCTTTGAGATCTGCTGAAGCTTACAAGAGACCACAAGAATTGTTGGCTGACTTGAAGA CTTTGGCTGAAGGTTTGGGTAAGTTGGCTGAAGGTTCCTTCAAGGCTTTGATTAGATCTGTTG AAACCTTCGGTTTCCACTTGGCTACTTTGGACTTGAGACAAAACTCCCAAGTCCACGAAAGAG TTGTCAACGAATTGTTGAGAACCGCTACTGTTGAAGCTGACTACTTGTCTTTGTCCGAAGAAG ACAGAGTCAAGTTGTTGAGAAGAGAATTGTCTCAACCAAGAACCTTGTTCGTTCCAAGAGCTG ACTACTCCGAAGAAACTAGATCTGAATTGGACATCATTCAAGCTGCTGCTAGAGCTCACGAAA TCTTCGGTCCAGAATCCATTACCACTTACTTGATCTCTAACGGTGAATCCATTTCTGACATCTT GGAAGTCTACTTGTTGTTGAAGGAAGCTGGTTTGTACCAAGGTGGTGCTAAGCCAAAGGCTG CTATTGAAGCTGCTCCATTGTTCGAAACCGTTGCTGACTTGGAAAACGCTCCAAAGGTCATGG AAGAATGGTTCAAGTTGCCAGAAGCTCAAGCTATCGCTAAGGCTCACGGTGTTCAAGAAGTCA TGGTTGGTTACTCCGACTCTAACAAGGACGGTGGTTACTTGACTTCCGTCTGGGGTTTGTACA AGGCTTGTTTGGCTTTGGTTCCAATTTTCGAAAAGGCTGGTGTCCCAATCCAATTCTTCCACG GTAGAGGTGGTTCTGTTGGTAGAGGTGGTGGTTCCAACTTCAACGCTATTTTGTCTCAACCAG CTGGTGCTGTCAAGGGTAGAATCAGATACACCGAACAAGGTGAAGTTGTCGCTGCTAAGTAC GGTACTCACGAATCCGCTATTGCTCACTTGGACGAAGCTGTTGCTGCTACCTTGATCACTTCT TTGGAAGCTCCAACCATTGTCGAACCAGAATTCTCCAGATACAGAAAGGCTTTGGACCAAATC TCTGACTCCGCTTTCCAAGCTTACAGACAATTGGTTTACGGTACTAAGGGTTTCAGAAAGTTCT TCTCTGAATTCACCCCATTGCCAGAAATTGCTTTGTTGAAGATCGGTTCCAGACCACCATCTAG AAAGAAGTCCGACAGAATTGAAGACTTGAGAGCTATCCCATGGGTCTTCTCTTGGTCCCAAGT TAGAGTCATGTTGCCAGGTTGGTTCGGTTTCGGTCAAGCTTTGTACGACTTCGAAGACACTGA ATTGTTGCAAGAAATGGCTTCTAGATGGCCATTCTTCAGAACCACTATTAGAAACATGGAACAA GTTATGGCTAGATCCGACATGACCATCGCTAAGCACTACTTGGCTTTGGTCGAAGACCAAACT AACGGTGAAGCTATTTACGACTCTATCGCTGACGGTTGGAACAAGGGTTGTGAAGGTTTGTTG AAGGCTACCCAACAAAACTGGTTGTTGGAAAGATTCCCAGCTGTTGACAACTCCGTCCAAATG AGAAGACCATACTTGGAACCATTGAACTACTTGCAAGTTGAATTGTTGAAGAAGTGGAGAGGT GGTGACACTAACCCACACATTTTGGAATCTATCCAATTGACCATTAACGCTATCGCTACTGCTT TGAGAAACTCCGGTTAATAACTCGAG

Example 4

Production of Pentose Sugar Utilizing Yeast Cells

[0254] The full length gene encoding the enzyme xylose isomerase from Ruminococcus flavefaciens strain 17 (also known as Ruminococcus flavefaciens strain Siijpesteijn 1948) with a substitution at position 513 (in which cytidine was replaced by guanidine) was synthesized by Integrated DNA Technologies, Inc. ("IDT", Coralville, Iowa; www.idtdna.com). The sequence of this gene is set forth below as SEQ ID NO:22.

TABLE-US-00011 SEQ ID NO: 22 atggaatttttcagcaatatcggtaaaattcagtatcagggaccaaaaagtactgatcctctctcatttaagta- ctataaccctgaagaagtca tcaacggaaagacaatgcgcgagcatctgaagttcgctctttcatggtggcacacaatgggcggcgacggaaca- gatatgttcggctgc ggcacaacagacaagacctggggacagtccgatcccgctgcaagagcaaaggctaaggttgacgcagcattcga- gatcatggataa gctctccattgactactattgtttccacgatcgcgatctttctcccgagtatggcagcctcaaggctaccaacg- atcagcttgacatagttacag actatatcaaggagaagcagggcgacaagttcaagtgcctctggggtacagcaaagtgcttcgatcatccaaga- ttcatgcacggtgca ggtacatctccttctgctgatgtattcgctttctcagctgctcagatcaagaaggctctGgagtcaacagtaaa- gctcggcggtaacggttac gttttctggggcggacgtgaaggctatgagacacttcttaatacaaatatgggactcgaactcgacaatatggc- tcgtcttatgaagatggct gttgagtatggacgttcgatcggcttcaagggcgacttctatatcgagcccaagcccaaggagcccacaaagca- tcagtacgatttcgata cagctactgttctgggattcctcagaaagtacggtctcgataaggatttcaagatgaatatcgaagctaaccac- gctacacttgctcagcata cattccagcatgagctccgtgttgcaagagacaatggtgtgttcggttctatcgacgcaaaccagggcgacgtt- cttcttggatgggataca gaccagttccccacaaatatctacgatacaacaatgtgtatgtatgaagttatcaaggcaggcggcttcacaaa- cggcggtctcaacttcg acgctaaggcacgcagagggagcttcactcccgaggatatcttctacagctatatcgcaggtatggatgcattt- gctctgggcttcagagct gctctcaagcttatcgaagacggacgtatcgacaagttcgttgctgacagatacgcttcatggaataccggtat- cggtgcagacataatcgc aggtaaggcagatttcgcatctcttgaaaagtatgctcttgaaaagggcgaggttacagcttcactctcaagcg- gcagacaggaaatgctg gagtctatcgtaaataacgttcttttcagtctgtaa

[0255] Separately, PCR was conducted to add a DNA sequence encoding 6 histidines (SEQ ID NO: 35) to the 3' terminus of this gene.

[0256] Two variants designed to remove the translational pauses in the gene were prepared using the DNA self-assembly method of Larsen et al., supra. One variant contained DNA sequence encoding a 6-hisitidine tag (SEQ ID NO: 35) at the 5' terminus, and the other version did not. The annealing temperature for the self assembly reactions was about 48 degrees Celsius. This gene variant is referred to as a "Hot Rod" or "HR" gene variant. The sequence of this HR gene is set forth below as SEQ ID NO: 23:

TABLE-US-00012 SEQ ID NO: 23 ATGGAGTTCTTTTCTAATATAGGTAAAATTCAGTATCAAGGTCCAAAATC TACAGATCCATTGTCTTTTAAATATTATAATCCAGAAGAAGTTATAAATG GTAAAACTATGAGAGAACATTTAAAATTTGCTTTGTCTTGGTGGCATACT ATGGGTGGTGATGGTACTGATATGTTCGGTTGTGGTACTACTGATAAAAC TTGGGGTCAATCTGATCCAGCTGCTAGAGCAAAAGCCAAAGTAGATGCAG CCTTTGAAATTATGGATAAATTGTCTATTGATTATTATTGTTTTCATGAT AGAGATTTGTCTCCTGAATATGGTTCTTTAAAAGCAACTAATGATCAATT GGACATTGTTACGGATTATATTAAAGAAAAACAAGGTGATAAATTTAAAT GTTTGTGGGGCACTGCGAAATGTTTTGATCATCCACGTTTTATGCATGGT GCGGGGACGAGTCCTTCTGCTGATGTTTTTGCTTTTTCTGCCGCTCAAAT TAAGAAGGCATTGGAATCAACTGTTAAATTAGGTGGGAACGGGTATGTAT TCTGGGGAGGAAGGGAAGGTTATGAAACATTATTAAACACTAATATGGGT TTGGAATTGGATAATATGGCTAGATTGATGAAAATGGCTGTAGAATACGG AAGGTCTATTGGTTTTAAGGGTGACTTTTATATTGAACCAAAACCTAAAG AGCCTACTAAACATCAATATGATTTTGATACTGCTACAGTTTTGGGATTC TTGAGAAAATATGGTCTGGATAAAGATTTTAAAATGAATATAGAAGCTAA TCATGCAACACTCGCACAACATACTTTTCAACATGAATTGAGAGTTGCCA GAGATAACGGAGTTTTTGGATCTATCGATGCAAACCAGGGAGACGTTTTG CTAGGATGGGATACTGATCAATTTCCAACTAACATTTATGATACTACTAT GTGTATGTATGAAGTAATTAAGGCAGGAGGCTTTACTAATGGCGGATTAA ACTTTGATGCGAAGGCTAGGCGTGGTAGTTTCACTCCAGAGGATATATTC TATTCTTATATTGCTGGAATGGATGCTTTCGCGTTAGGTTTCAGGGCAGC ACTAAAATTGATTGAAGATGGTAGAATTGATAAGTTTGTAGCTGATAGAT ATGCTTCTTGGAATACTGGAATAGGAGCAGATATAATCGCTGGGAAAGCC GACTTCGCCAGTCTGGAAAAATATGCGCTTGAAAAAGGAGAAGTTACTGC CAGCTTAAGTTCCGGTCGTCAAGAAATGTTGGAATCTATTGTAAACAATG TTTTATTTTCTCTG

[0257] For cloning purposes, PCR was used to engineer a unique SpeI restriction site into the 5' end of each of the xylose isomerase genes, and to engineer a unique XhoI restriction site at the 3' end. In addition, a version of each gene was created that contained a 6-HIS tag (SEQ ID NO: 35) at the 3' end of each gene to enable detection of the proteins using Western analysis.

[0258] PCR amplifications were performed in about 50 .mu.l reactions containing 1.times.PfuI I Ultra reaction buffer (Stratagene, San Diego, Calif.), 0.2 mM dNTPs, 0.2 .mu.M specific 5' and 3' primers, and 1 U PfuUltra II polymerase (Stratagene, San Diego, Calif.). The reactions were cycled at 95.degree. C. for 10 minutes, followed by 30 rounds of amplification (95.degree. C. for 30 seconds, 62.degree. C. for 30 seconds, 72.degree. C. for 30 seconds) and a final extension incubation at 72.degree. C. for 5 minutes. Amplified PCR products were cloned into pCR Blunt II TOPO (Life Sciences, Carlsbad, Calif.) and confirmed by sequencing (GeneWiz, La Jolla, Calif.). The PCR primers for these reactions were:

TABLE-US-00013 (SEQ ID NO: 26) 5'ACTTGACTACTAGTATGGAGTTCTTTTCTAATATAGGTAAAATT 3' (without the His tag): (SEQ ID NO: 27) AGTCAAGTCTCGAGCAGAGAAAATAAAACATTGTTTACAATAGA 3' (with the His tag): (SEQ ID NO: 28) AGTCAAGTCTCGAGCTAATGATGATGATGATGATGCAGAGAAAATAAAA CATTGTTTAC

[0259] Separately, the xylose isomerase gene from Piromyces, strain E2 (Harhangi et al., Arch. Microbiol., 180(2): 134-141 (2003)) was synthesized by IDT. The sequence of this gene is set forth below as SEQ ID NO: 24.

TABLE-US-00014 1 atggctaagg aatatttccc acaaattcaa aagattaagt tcgaaggtaa ggattctaag 61 aatccattag ccttccacta ctacgatgct gaaaaggaag tcatgggtaa gaaaatgaag 121 gattggttac gtttcgccat ggcctggtgg cacactcttt gcgccgaagg tgctgaccaa 181 ttcggtggag gtacaaagtc tttcccatgg aacgaaggta ctgatgctat tgaaattgcc 241 aagcaaaagg ttgatgctgg tttcgaaatc atgcaaaagc ttggtattcc atactactgt 301 ttccacgatg ttgatcttgt ttccgaaggt aactctattg aagaatacga atccaacctt 361 aaggctgtcg ttgcttacct caaggaaaag caaaaggaaa ccggtattaa gcttctctgg 421 agtactgcta acgtcttcgg tcacaagcgt tacatgaacg gtgcctccac taacccagac 481 tttgatgttg tcgcccgtgc tattgttcaa attaagaacg ccatagacgc cggtattgaa 541 cttggtgctg aaaactacgt cttctggggt ggtcgtgaag gttacatgag tctccttaac 601 actgaccaaa agcgtgaaaa ggaacacatg gccactatgc ttaccatggc tcgtgactac 661 gctcgttcca agggattcaa gggtactttc ctcattgaac caaagccaat ggaaccaacc 721 aagcaccaat acgatgttga cactgaaacc gctattggtt tccttaaggc ccacaactta 781 gacaaggact tcaaggtcaa cattgaagtt aaccacgcta ctcttgctgg tcacactttc 841 gaacacgaac ttgcctgtgc tgttgatgct ggtatgctcg gttccattga tgctaaccgt 901 ggtgactacc aaaacggttg ggatactgat caattcccaa ttgatcaata cgaactcgtc 961 caagcttgga tggaaatcat ccgtggtggt ggtttcgtta ctggtggtac caacttcgat 1021 gccaagactc gtcgtaactc tactgacctc gaagacatca tcattgccca cgtttctggt 1081 atggatgcta tggctcgtgc tcttgaaaac gctgccaagc tcctccaaga atctccatac 1141 accaagatga agaaggaacg ttacgcttcc ttcgacagtg gtattggtaa ggactttgaa 1201 gatggtaagc tcaccctcga acaagtttac gaatacggta agaagaacgg tgaaccaaag 1261 caaacttctg gtaagcaaga actctacgaa gctattgttg ccatgtacca ataa

[0260] Two hot rod ("HR") versions of the Piromyces xylose isomerase gene were prepared using the method of Larsen et al., supra. One version contained DNA sequence encoding a 6-histidine tag (SEQ ID NO: 35) at the 5' terminus and the other did not. The annealing temperature for the self-assembling oligonucleotides was about 48 degrees Celsius. The sequence of this gene is set forth below as

TABLE-US-00015 SEQ ID NO: 25 ATGGCTAAAGAATATTTTCCACAAATTCAGAAAATTAAATTTGAAGGTAAAGATTCTAAAAATCCATTGGCTTT- CCATTA TTATGATGCTGAAAAAGAAGTTATGGGTAAAAAGATGAAAGATTGGTTGAGATTCGCTATGGCTTGGTGGCATA- CTCTAT GTGCTGAAGGAGCTGATCAATTTGGAGGAGGTACTAAATCTTTTCCTTGGAATGAAGGTACTGACGCTATTGAA- ATTGCT AAGCAGAAAGTAGACGCGGGTTTTGAAATTATGCAAAAATTGGGAATACCATATTATTGTTTTCATGATGTTGA- TTTGGT ATCTGAGGGTAATTCTATTGAAGAATATGAATCTAATTTAAAAGCTGTTGTTGCTTACTTAAAAGAAAAACAAA- AAGAAA CTGGAATTAAATTGTTGTGGTCTACAGCTAATGTTTTCGGTCATAAAAGATATATGAATGGTGCTTCTACAAAT- CCAGAT TTTGATGTTGTAGCTAGAGCTATTGTTCAAATTAAAAATGCTATAGATGCAGGAATTGAATTAGGTGCCGAAAA- TTATGT TTTCTGGGGAGGTAGAGAAGGTTATATGTCTTTGTTAAATACTGATCAAAAACGTGAAAAGGAACACATGGCAA- CTATGT TGACAATGGCTAGGGATTATGCTAGATCTAAAGGTTTTAAAGGTACTTTCTTGATTGAGCCAAAACCTATGGAA- CCAACT AAACATCAATATGACGTTGACACTGAAACTGCTATTGGTTTCTTAAAAGCTCATAATTTGGATAAAGATTTTAA- GGTTAA TATAGAAGTTAATCATGCTACACTAGCTGGTCATACTTTTGAACATGAATTAGCTTGTGCAGTTGATGCCGGTA- TGTTAG GTTCTATCGACGCAAATAGAGGTGATTATCAAAATGGTTGGGACACAGATCAATTTCCAATAGATCAATATGAA- TTGGTT CAAGCATGGATGGAAATTATTAGGGGTGGAGGCTTCGTTACAGGTGGAACTAATTTTGATGCTAAAACTAGGAG- AAATTC TACAGATCTTGAAGATATAATTATTGCTCATGTATCTGGTATGGATGCGATGGCCCGTGCTTTGGAAAATGCAG- CTAAAT TACTTCAAGAATCTCCTTATACTAAAATGAAAAAGGAAAGATATGCTTCTTTTGATTCTGGAATAGGTAAGGAT- TTTGAA GATGGTAAATTGACATTGGAACAAGTTTATGAATATGGTAAGAAGAATGGAGAACCAAAACAAACTTCTGGTAA- ACAAGA ATTATATGAGGCTATAGTAGCTATGTATCAAtaa.

[0261] For cloning purposes, a unique SpeI restriction site was engineered at the 5' end of each of the XI genes, and a unique XhoI restriction site was engineered at the 3' end. When needed, a 6-HIS tag (SEQ ID NO: 35) was engineered at the 3' end of each gene sequence to enable detection of the proteins using Western analysis. The primers are listed in Table X. PCR amplifications were performed in 50 .mu.l reactions containing 1.times.PfuI I Ultra reaction buffer (Stratagene, San Diego, Calif.), 0.2 mM dNTPs, 0.2 .mu.M specific 5' and 3' primers, and 1 U PfuUltra II polymerase (Stratagene, San Diego, Calif.). The reactions were cycled at 95.degree. C. for 10 minutes, followed by 30 rounds of amplification (95.degree. C. for 30 seconds, 62.degree. C. for 30 seconds, 72.degree. C. for 30 seconds) and a final extension incubation at 72.degree. C. for 5 minutes. Amplified PCR products were cloned into pCR Blunt II TOPO (Life Sciences, Carlsbad, Calif.) and confirmed by sequencing (GeneWiz).

[0262] The primers used for PCR were:

TABLE-US-00016 5' (native gene) (SEQ ID NO: 46) ACTAGTATGGCTAAGGAATATTTCCCACAAATTCAAAAG 3' (native gene) (SEQ ID NO: 47) CTCGAGCTACTATTGGTACATGGCAACAATAGC 3' (native gene plus His tag) (SEQ ID NO: 48) CTCGAGCTACTAATGATGATGATGATGATGTTGGTACATGGCAACAATA GCTTCG 5' (hot rod gene) (SEQ ID NO: 49) ACTAGTATGGCTAAAGAATATTTTCCACAAATTCAG 3' (hot rod gene) (SEQ ID NO: 50) CTCGAGTTATTGATACATAGCTACTATAGCCTC 3' (hot rod gene plus His tag) (SEQ ID NO: 51) CTCGAGTTAATGATGATGATGATGATGTTGATACATAGCTACTATAGC CTCATTGTTTAC

[0263] The genes encoding the native and HR versions of xylose isomerase were separately inserted into the vector p426GDP (ATCC catalog number 87361).

[0264] Saccharomyces cerevisiae strain BY4742 cells (ATCC catalog number 201389) were cultured in YPD media (10 g Yeast Extract, 20 g Bacto-Peptone, 20 g Glucose, 1 L total) at about 30.degree. C. Separate aliquots of the cells were transformed with the plasmid constructs containing the various xylose isomerase constructs or with the vector alone. Transformation was accomplished using the Zymo kit (Catalog number T2001; Zymo Research Corp., Orange, Calif. 92867) using about 1 .mu.g plasmid DNA and cultured on SC media (set forth below) containing glucose but no uracil (20 g glucose; 2.21 g SC dry mix, 6.7 g Yeast Nitrogen Base, 1 L total) for 2-3 days at about 30.degree. C.

[0265] Synthetic Complete Medium mix (minus uracil) contained:

TABLE-US-00017 0.4 g Adenine hemisulfate 3.5 g Arginine 1 g Glutamic Acid 0.433 g Histidine 0.4 g Myo-Inositol 5.2 g Isoleucine 2.63 g Leucine 0.9 g Lysine 1.5 g Methionine 0.8 g Phenylalanine 1.1 g Serine 1.2 g Threonine 0.8 g Tryptophan 0.2 g Tyrosine 1.2 g Valine

[0266] For expression and activity analysis, transformed cells containing the various xylose isomerase constructs were selected from the cultures and grown in about 100 ml of SC-Dextrose (minus uracil) to an OD.sub.600 of about 4.0. The S. cerevisiae cultures that were transformed with the various xylose isomerase-histidine constructs were then lysed using YPER-Plus reagent (Thermo Scientific, catalog number 78999) according to the manufacturer's directions. Protein quantitation of the lysates was performed using the Coomassie-Plus kit (Thermo Scientific, catalog number 23236) as directed by the manufacturer. Denaturing and native Western blot analyses were then conducted. To detect his-tagged xylose isomerase polypeptides Western analysis was employed. Gels were transferred onto a nitrocellulose membrane (0.45 micron, Thermo Scientific, San Diego, Calif.) using Western blotting filter paper (Thermo Scientific) using a Bio-Rad Mini Trans-Blot Cell (BioRad, Hercules, Calif.) system for approximately 90 minutes at 40V. Following transfer, the membrane was washed in 1.times.PBS (EMD, San Diego, Calif.), 0.05% Tween-20 (Fisher Scientific, Fairlawn, N.J.) for 2-5 minutes with gentle shaking. The membrane was blocked in 3% BSA dissolved in 1.times.PBS and 0.05% Tween-20 at room temperature for about 2 hours with gentle shaking. The membrane was washed once in 1.times.PBS and 0.05% Tween-20 for about 5 minutes with gentle shaking. The membrane was then incubated at room temperature with the 1:5000 dilution of primary antibody (Ms mAB to 6.times.His Tag (SEQ ID NO: 35), AbCam, Cambridge, Mass.) in 0.3% BSA (Fraction V, EMD, San Diego, Calif.) dissolved in 1.times.PBS and 0.05% Tween-20 with gentle shaking. Incubation was allowed to proceed for about 1 hour with gentle shaking. The membrane was then washed three times for 5 minutes each with 1.times.PBS and 0.05% Tween-20 with gentle shaking. The secondary antibody [Dnk pAb to Ms IgG (HRP), AbCam, Cambridge, Mass.] was used at 1:15000 dilution in 0.3% BSA and allowed to incubate for about 90 minutes at room temperature with gentle shaking. The membrane was washed three times for about 5 minutes using 1.times.PBS and 0.05% Tween-20 with gentle shaking. The membrane was then incubated with 5 ml of Supersignal West Pico Chemiluminescent substrate (Thermo Scientific, San Diego, Calif.) for 1 minute and then was exposed to a phosphorimager (Bio-Rad Universal Hood II, Bio-Rad, Hercules, Calif.) for about 10-100 seconds. The results are shown in FIG. 7. As can be seen, both Piromyces ("P" in FIG. 7) and Ruminococcus ("R" in FIG. 7) xylose isomerases are expressed in both the soluble and insoluble fractions of the yeast cells.

[0267] To measure activity of the various xylose isomerase constructs, assays were performed according to Kuyper et al. (FEMS Yeast Res., 4:69 [2003]). About 20 .mu.g of soluble whole cell extract was incubated in the presence of 100 mM Tris, pH 7.5, 10 mM MgCl.sub.2, 0.15 mM NADH (Sigma, St. Louis, Mo.), and about 2 U sorbitol dehydrogenase (Roche) at about 30.degree. C. To start the reaction, about 100 .mu.l of xylose was added at various final concentrations of 40-500 mM. A Beckman DU-800 was utilized with an Enzyme Mechanism software package (Beckman Coulter, Inc.), and the change in the A.sub.340 was monitored for 2-3 minutes.

Example 5

Preparation of Selective Growth Yeast

[0268] The yeast gene cdc21 encodes thymidylate synthase, which is required for de novo synthesis of pyrimidine deoxyribonucleotides. A cdc 21 mutant, strain 17206, (ATCC accession number 208583) has a point mutation G139S relative to the initiating methionine. The restrictive temperature of this temperature sensitive mutant is 37.degree. C., which arrests cell division at S phase, so that little or no cell growth and division occurs at or above this temperature.

[0269] Saccharomyces cerevisiae strain YGR420CBY4742.DELTA.PFK2 was used as the starting cell line to create the cdc21 growth sensitive mutant. A construct for homologous recombination was prepared to replace the wild type thymidylate synthase YGR420CBY4742.DELTA.PFK2 for the cdc21 mutant. This construct was made in various steps. First, the cdc21 mutant region from Saccharomyces cerevisiae strain 17206 was PCR amplified using the following primers:

TABLE-US-00018 CDC21_fwd: (SEQ ID NO: 52) 5'-aatcgatcaaagcttctaaatacaagacgtgcgatgacgactatac tggac-3' CDC21_rev: (SEQ ID NO: 53) 5'-taccgtactacccgggtatatagtctttttgccctggtgttcctt aataatttc-3'

[0270] For this PCR amplification reaction Saccharomyces cerevisiae 17206 genomic DNA was used. The genomic DNA was extracted using Zymo research YeaStar Genomic DNA kit according to instructions. In the PCR amplification reaction 100 ng of 17206 genomic DNA, 1 .mu.M of the oligonucleotide primer set listed above, 2.5 U of PfuUltra High-Fidelity DNA polymerase (Stratagene), 300 .mu.M dNTPs (Roche), and 1.times.PfuUltra reaction buffer was mixed in a final reaction volume of 500. Using a BIORAD DNA Engine Tetrad 2 Peltier thermal cycler the following cycle conditions were used: 5 min denaturation step at 95.degree. C., followed by 30 cycles of 20 sec at 95.degree. C., 20 sec at 50.degree. C., and 1 min at 72.degree. C., and a final step of 5 min at 72.degree. C. This PCR product was digested with HindIII and XmaI restriction endonucleases and cloned in the HindIII and XmaI sites of PUC19 (NEB) according to standard cloning procedures described by Maniatis in Molecular Cloning.

[0271] The genomic DNA of BR214-4a (ATTC accession number 208600) was extracted using Zymo research YeaStar Genomic DNA kit according to instructions. The lys2 gene with promoter and terminator regions was PCR amplified from BR214-4a genomic DNA using the following primers:

TABLE-US-00019 Lys2Fwd: (SEQ ID NO: 54) 5'-tgctaatgacccgggaattccacttgcaattacataaaaaattcc ggcgg-3' Lys2Rev: (SEQ ID NO: 55) 5'-atgatcattgagctcagcttcgcaagtattcattttagacccat ggtgg-3'.

[0272] The PCR cycle was identical to that just described above but with genomic DNA of BR214-4a instead. XmaI and SacI restriction sites were designed to flank this DNA construct to clone it into the XmaI and SacI sites of the PUC19-cdc21 vector according to standard cloning procedures described by Maniatis in Molecular Cloning. The new construct with the cdc21 mutation with a lys2 directly downstream of that will be referred to as PUC19-cdc2'-lys2.

[0273] The final step involved the cloning of the downstream region of thymidylate synthase into the PUC19-cdc2'-lys2 vector immediately downstream of the lys2 gene. The downstream region of the thymidylate synthase was amplified from BY4742 genomic DNA (ATCC accession number 201389D-5 using the following primers:

TABLE-US-00020 ThymidylateSynthase_DownFwd: (SEQ ID NO: 56) 5'-tgctaatgagagctctcattttttggtgcgatatgtttttggtt gatg-3' and ThymidylateSynthatse_DownRev: (SEQ ID NO: 57) 5'-aatgatcatgagctcgtcaacaagaactaaaaaattgttcaaaa atgc-3'.

[0274] This final construct is referred as PUC19-cdc2'-lys2-ThymidylateSynthase_down. The sequence is set forth in the tables. A final PCR amplification reaction of this construct was performed using the following PCR primers:

TABLE-US-00021 ThymidylateSynthase::cdc21 fwd: (SEQ ID NO: 58) 5'-ctaaatacaagacgtgcgatgacgactatactgg-3' and ThymidylateSynthase::cdc21 rev: (SEQ ID NO: 59) 5'-gtcaacaagaactaaaaaattgttcaaaaatgcaattgtc-3'.

[0275] The PCR reaction was identical to that described above but using 100 ng of the PUC19-cdc2'-lys2-ThymidylateSynthase_down construct as a template.

[0276] The final PCR product was separated by agarose gel electrophoresis, excised, and purified using MP Biomedicals Geneclean II kit as recommended. Homologous recombination of YGR420CBY4742.DELTA.PFK2 to replace the wt thymidylate synthase for the cdc21 mutant was accomplished using 10 .mu.g of the purified PCR product to transform YGR420CBY4742.DELTA.PFK2 strain using same transformation protocol described above. Transformants were selected by culturing the cells on selective media containing SC-Ethanol (0.67% yeast nitrogen base-2% ethanol) containing complete amino acids minus lysine.

[0277] The genome of this final engineered strain contains the mutated cdc21 gene, and has both the PFK1 and PFK2 genes deleted. This final engineered strain will be transformed with the best combination of edd-p426 GPD and eda-p425 GPD variant constructs. Ethanol and glucose measurements will be monitored during aerobic and anaerobic growth conditions using Roche ethanol and glucose kits according to instructions.

Example 6

Examples of Polynucleotide Regulators

[0278] Provided in the tables hereafter are non-limiting examples of regulator polynucleotides that can be utilized in embodiments herein. Such polynucleotides may be utilized in native form or may be modified for use herein. Examples of regulatory polynucleotides include those that are regulated by oxygen levels in a system (e.g., up-regulated or down-regulated by relatively high oxygen levels or relatively low oxygen levels)

TABLE-US-00022 Regulated Yeast Promoters - Up-regulated by oxygen Relative Relative Gene mRNA level mRNA level ORF name name (Aerobic) (Anaerobic) Ratio YPL275W 4389 30 219.5 YPL276W 2368 30 118.4 YDR256C CTA1 2076 30 103.8 YHR096C HXT5 1846 30 72.4 YDL218W 1189 30 59.4 YCR010C 1489 30 48.8 YOR161C 599 30 29.9 YPL200W 589 30 29.5 YGR110W 1497 30 27 YNL237W YTP1 505 30 25.2 YBR116C 458 30 22.9 YOR348C PUT4 451 30 22.6 YBR117C TKL2 418 30 20.9 YLL052C 635 30 20 YNL195C 1578 30 19.4 YPR193C 697 30 15.7 YDL222C 301 30 15 YNL335W 294 30 14.6 YPL036W PMA2 487 30 12.8 YML122C 206 30 10.3 YGR067C 236 30 10.2 YPR192W 204 30 10.2 YNL014W 828 30 9.8 YFL061W 256 30 9.1 YNR056C 163 30 8.1 YOR186W 153 30 7.6 YDR222W 196 30 6.5 YOR338W 240 30 6.3 YPR200C 113 30 5.7 YMR018W 778 30 5.2 YOR364W 123 30 5.1 YNL234W 93 30 4.7 YNR064C 85 30 4.2 YGR213C RTA1 104 30 4 YCL064C CHA1 80 30 4 YOL154W 302 30 3.9 YPR150W 79 30 3.9 YPR196W MAL63 30 30 3.6 YDR420W HKR1 221 30 3.5 YJL216C 115 30 3.5 YNL270C ALP1 67 30 3.3 YHL016C DUR3 224 30 3.2 YOL131W 230 30 3 YOR077W RTS2 210 30 3 YDR536W STL1 55 30 2.7 YNL150W 78 30 2.6 YHR212C 149 30 2.4 YJL108C 106 30 2.4 YGR069W 49 30 2.4 YDR106W 60 30 2.3 YNR034W SOL1 197 30 2.2 YEL073C 104 30 2.1 YOL141W 81 30 1.8

TABLE-US-00023 Regulated Yeast Promoters - Down-regulated by oxygen Relative Relative Gene mRNA level mRNA level ORF name name (Aerobic) (Anaerobic) Ratio YJR047C ANB1 30 4901 231.1 YMR319C FET4 30 1159 58 YPR194C 30 982 49.1 YIR019C STA1 30 981 22.8 YHL042W 30 608 12 YHR210C 30 552 27.6 YHR079B SAE3 30 401 2.7 YGL162W STO1 30 371 9.6 YHL044W 30 334 16.7 YOL015W 30 320 6.1 YCLX07W 30 292 4.2 YIL013C PDR11 30 266 10.6 YDR046C 30 263 13.2 YBR040W FIG1 30 257 12.8 YLR040C 30 234 2.9 YOR255W 30 231 11.6 YOL014W 30 229 11.4 YAR028W 30 212 7.5 YER089C 30 201 6.2 YFL012W 30 193 9.7 YDR539W 30 187 3.4 YHL043W 30 179 8.9 YJR162C 30 173 6 YMR165C SMP2 30 147 3.5 YER106W 30 145 7.3 YDR541C 30 140 7 YCRX07W 30 138 3.3 YHR048W 30 137 6.9 YCL021W 30 136 6.8 YOL160W 30 136 6.8 YCRX08W 30 132 6.6 YMR057C 30 109 5.5 YDR540C 30 83 4.2 YOR378W 30 78 3.9 YBR085W AAC3 45 1281 28.3 YER188W 47 746 15.8 YLL065W GIN11 50 175 3.5 YDL241W 58 645 11.1 YBR238C 59 274 4.6 YCR048W ARE1 60 527 8.7 YOL165C 60 306 5.1 YNR075W 60 251 4.2 YJL213W 60 250 4.2 YPL265W DIP5 61 772 12.7 YDL093W PMT5 62 353 5.7 YKR034W DAL80 63 345 5.4 YKR053C 66 1268 19.3 YJR147W 68 281 4.1

TABLE-US-00024 Known and putative DNA binding motifs Regulator Known Consensus Motif SEQ ID NO: Abf1 TCRNNNNNNACG 60 Cbf1 RTCACRTG Gal4 CGGNNNNNNNNNNNCCG 61 Gcn4 TGACTCA Gcr1 CTTCC Hap2 CCAATNA Hap3 CCAATNA Hap4 CCAATNA Hsf1 GAANNTTCNNGAA 62 Ino2 ATGTGAAA Mata(A1) TGATGTANNT 93 Mcm1 CCNNNWWRGG 94 Mig1 WWWWSYGGGG 95 Pho4 CACGTG Rap1 RMACCCANNCAYY 96 Reb1 CGGGTRR Ste12 TGAAACA Swi4 CACGAAA Swi6 CACGAAA Yap1 TTACTAA Putative DNA Binding Motifs Best Motif (scored by E- SEQ Best Motif (scored by SEQ Regulator value) ID NO: Hypergeometric) ID NO: Abf1 TYCGT--R-ARTGAYA 97 TYCGT--R-ARTGAYA 210 Ace2 RRRAARARAA-A-RARAA 98 GTGTGTGTGTGTGTG 211 Adr1 A-AG-GAGAGAG-GGCAG 99 YTSTYSTT-TTGYTWTT 212 Arg80 T--CCW-TTTKTTTC 100 GCATGACCATCCACG 213 Arg81 AAAAARARAAAARMA 101 GSGAYARMGGAMAAAAA 214 Aro80 YKYTYTTYTT----KY 102 TRCCGAGRYW-SSSGCGS 215 Ash1 CGTCCGGCGC 103 CGTCCGGCGC 216 Azf1 GAAAAAGMAAAAAAA 104 AARWTSGARG-A--CSAA 217 Bas1 TTTTYYTTYTTKY-TY-T 105 CS-CCAATGK--CS 218 Cad1 CATKYTTTTTTKYTY 106 GCT-ACTAAT 219 Cbf1 CACGTGACYA 107 CACGTGACYA 220 Cha4 CA---ACACASA-A 108 CAYAMRTGY-C 221 Cin5 none none Crz1 GG-A-A--AR-ARGGC- 109 TSGYGRGASA 222 Cup9 TTTKYTKTTY-YTTTKTY 110 K-C-C---SCGCTACKGC 223 Dal81 WTTKTTTTTYTTTTT-T 111 SR-GGCMCGGC-SSG 224 Dal82 TTKTTTTYTTC 112 TACYACA-CACAWGA 225 Dig1 AAA--RAA-GARRAA-AR 132 CCYTG-AYTTCW-CTTC 226 Dot6 GTGMAK-MGRA-G-G 133 GTGMAK-MGRA-G-G 227 Fhl1 -TTWACAYCCRTACAY-Y 134 -TTWACAYCCRTACAY-Y 228 Fkh1 TTT-CTTTKYTT-YTTTT 135 AAW-RTAAAYARG 229 Fkh2 AAARA-RAAA-AAAR-AA 136 GG-AAWA-GTAAACAA 230 Fzf1 CACACACACACACACAC 137 SASTKCWCTCKTCGT 231 Gal4 TTGCTTGAACGSATGCCA 138 TTGCTTGAACGSATGCCA 232 Gal4 (Gal) YCTTTTTTTTYTTYYKG 139 CGGM---CW-Y--CCCG 233 Gat1 none none Gat3 RRSCCGMCGMGRCGCGCS 140 RGARGTSACGCAKRTTCT 234 Gcn4 AAA-ARAR-RAAAARRAR 141 TGAGTCAY Gcr1 GGAAGCTGAAACGYMWRR 142 GGAAGCTGAAACGYMWRR 235 Gcr2 GGAGAGGCATGATGGGGG 143 AGGTGATGGAGTGCTCAG 236 Gln3 CT-CCTTTCT 144 GKCTRR-RGGAGA-GM 237 Grf10 GAAARRAAAAAAMRMARA 145 -GGGSG-T-SYGT-CGA 238 Gts1 G-GCCRS--TM 146 AG-AWGTTTTTGWCAAMA 239 Haa1 none none Hal9 TTTTTTYTTTTY-KTTTT 147 KCKSGCAGGCWTTKYTCT 240 Hap2 YTTCTTTTYT-Y-C-KT- 148 G-CCSART-GC 241 Hap3 T-SYKCTTTTCYTTY 149 SGCGMGGG--CC-GACCG 242 Hap4 STT-YTTTY-TTYTYYYY 150 YCT-ATTSG-C-GS 243 Hap5 YK-TTTWYYTC 151 T-TTSMTT-YTTTCCK-C 244 Hir1 AAAA-A-AARAR-AG 152 CCACKTKSGSCCT-S 245 Hir2 WAAAAAAGAAAA-AAAAR 153 CRSGCYWGKGC 246 Hms1 AAA-GG-ARAM 154 -AARAAGC-GGGCAC-C 247 Hsf1 TYTTCYAGAA--TTCY 155 TYTTCYAGAA--TTCY 248 Ime4 CACACACACACACACACA 156 CACACACACACACACACA 249 Ino2 TTTYCACATGC 157 SCKKCGCKSTSSTTYAA 250 Ino4 G--GCATGTGAAAA 158 G--GCATGTGAAAA 251 Ixr1 GAAAA-AAAAAAAARA-A 159 CTTTTTTTYYTSGCC 252 Leu3 GAAAAARAARAA-AA 160 GCCGGTMMCGSYC-- 253 Mac1 YTTKT--TTTTTYTYTTT 161 A--TTTTTYTTKYGC 254 Mal13 GCAG-GCAGG 162 AAAC-TTTATA-ATACA 255 Mal33 none none Mata1 GCCC-C CAAT-TCT-CK 256 Mbp1 TTTYTYKTTT-YYTTTTT 163 G-RR-A-ACGCGT-R 257 Mcm1 TTTCC-AAW-RGGAAA 164 TTTCC-AAW-RGGAAA 258 Met31 YTTYYTTYTTTTYTYTTC 165 Met4 MTTTTTYTYTYTTC 166 Mig1 TATACA-AGMKRTATATG 167 Mot3 TMTTT-TY-CTT-TTTWK 168 Msn1 KT--TTWTTATTCC-C 169 Msn2 ACCACC Msn4 R--AAAA-RA-AARAAAT 170 Mss11 TTTTTTTTCWCTTTKYC 171 Ndd1 TTTY-YTKTTTY-YTTYT 172 Nrg1 TTY--TTYTT-YTTTYYY 173 Pdr1 T-YGTGKRYGT-YG 174 Phd1 TTYYYTTTTTYTTTTYTT 175 Pho4 GAMAAAAAARAAAAR 176 Put3 CYCGGGAAGCSAMM-CCG 177 Rap1 GRTGYAYGGRTGY 178 Rcs1 KMAARAAAAARAAR 179 Reb1 RTTACCCGS Rfx1 AYGRAAAARARAAAARAA 180 Rgm1 GGAKSCC-TTTY-GMRTA 181 Rgt1 CCCTCC Rim101 GCGCCGC Rlm1 TTTTC-KTTTYTTTTTC 182 Rme1 ARAAGMAGAAARRAA 183 Rox1 YTTTTCTTTTY-TTTTT 184 Rph1 ARRARAAAGG- 185 Rtg1 YST-YK-TYTT-CTCCCM 186 Rtg3 GARA-AAAAR-RAARAAA 187 Sfl1 CY--GGSSA-C 188 Sfp1 CACACACACACACAYA 189 Sip4 CTTYTWTTKTTKTSA 190 Skn7 YTTYYYTYTTTYTYYTTT 191 Sko1 none Smp1 AMAAAAARAARWARA-AA 192 Sok2 ARAAAARRAAAAAG-RAA 193 Stb1 RAARAAAAARCMRSRAAA 194 Ste12 TTYTKTYTY-TYYKTTTY 195 Stp1 GAAAAMAA-AAAAA-AAA 196 Stp2 YAA-ARAARAAAAA-AAM 197 Sum1 TY-TTTTTTYTTTTT-TK 198 Swi4 RAARAARAAA-AA-R-AA 199 Swi5 CACACACACACACACACA 200 Swi6 RAARRRAAAAA-AAAMAA 201 Thi2 GCCAGACCTAC 202 Uga3 GG-GGCT Yap1 TTYTTYTTYTTTY-YTYT 203 Yap3 none

Yap5 YKSGCGCGYCKCGKCGGS 204 Yap6 TTTTYYTTTTYYYYKTT 205 Yap7 none Yfl044c TTCTTKTYYTTTT 206 Yjl206c TTYTTTTYTYYTTTYTTT 207 Zap1 TTGCTTGAACGGATGCCA 208 Zms1 MG-MCAAAAATAAAAS 209

TABLE-US-00025 Transcriptional repressors Associated Gene(s) Description(s) WHI5 Repressor of G1 transcription that binds to SCB binding factor (SBF) at SCB target promoters in early G1; phosphorylation of Whi5p by the CDK, Cln3p/Cdc28p relieves repression and promoter binding by Whi5; periodically expressed in G1 TUP1 General repressor of transcription, forms complex with Cyc8p, involved in the establishment of repressive chromatin structure through interactions with histones H3 and H4, appears to enhance expression of some genes ROX1 Heme-dependent repressor of hypoxic genes; contains an HMG domain that is responsible for DNA bending activity SFL1 Transcriptional repressor and activator; involved in repression of flocculation-related genes, and activation of stress responsive genes; negatively regulated by cAMP-dependent protein kinase A subunit Tpk2p RIM101 Transcriptional repressor involved in response to pH and in cell wall construction; required for alkaline pH-stimulated haploid invasive growth and sporulation; activated by proteolytic processing; similar to A. nidulans PacC RDR1 Transcriptional repressor involved in the control of multidrug resistance; negatively regulates expression of the PDR5 gene; member of the Gal4p family of zinc cluster proteins SUM1 Transcriptional repressor required for mitotic repression of middle sporulation-specific genes; also acts as general replication initiation factor; involved in telomere maintenance, chromatin silencing; regulated by pachytene checkpoint XBP1 Transcriptional repressor that binds to promoter sequences of the cyclin genes, CYS3, and SMF2; expression is induced by stress or starvation during mitosis, and late in meiosis; member of the Swi4p/Mbp1p family; potential Cdc28p substrate NRG2 Transcriptional repressor that mediates glucose repression and negatively regulates filamentous growth; has similarity to Nrg1p NRG1 Transcriptional repressor that recruits the Cyc8p-Tup1p complex to promoters; mediates glucose repression and negatively regulates a variety of processes including filamentous growth and alkaline pH response CUP9 Homeodomain-containing transcriptional repressor of PTR2, which encodes a major peptide transporter; imported peptides activate ubiquitin-dependent proteolysis, resulting in degradation of Cup9p and de-repression of PTR2 transcription YOX1 Homeodomain-containing transcriptional repressor, binds to Mcm1p and to early cell cycle boxes (ECBs) in the promoters of cell cycle- regulated genes expressed in M/G1 phase; expression is cell cycle- regulated; potential Cdc28p substrate RFX1 Major transcriptional repressor of DNA-damage-regulated genes, recruits repressors Tup1p and Cyc8p to their promoters; involved in DNA damage and replication checkpoint pathway; similar to a family of mammalian DNA binding RFX1-4 proteins MIG3 Probable transcriptional repressor involved in response to toxic agents such as hydroxyurea that inhibit ribonucleotide reductase; phosphorylation by Snf1p or the Mec1p pathway inactivates Mig3p, allowing induction of damage response genes RGM1 Putative transcriptional repressor with proline-rich zinc fingers; overproduction impairs cell growth YHP1 One of two homeobox transcriptional repressors (see also Yox1p), that bind to Mcm1p and to early cell cycle box (ECB) elements of cell cycle regulated genes, thereby restricting ECB-mediated transcription to the M/G1 interval HOS4 Subunit of the Set3 complex, which is a meiotic-specific repressor of sporulation specific genes that contains deacetylase activity; potential Cdc28p substrate CAF20 Phosphoprotein of the mRNA cap-binding complex involved in translational control, repressor of cap-dependent translation initiation, competes with eIF4G for binding to eIF4E SAP1 Putative ATPase of the AAA family, interacts with the Sin1p transcriptional repressor in the two-hybrid system SET3 Defining member of the SET3 histone deacetylase complex which is a meiosis-specific repressor of sporulation genes; necessary for efficient transcription by RNAPII; one of two yeast proteins that contains both SET and PHD domains RPH1 JmjC domain-containing histone demethylase which can specifically demethylate H3K36 tri- and dimethyl modification states; transcriptional repressor of PHR1; Rph1p phosphorylation during DNA damage is under control of the MEC1-RAD53 pathway YMR181C Protein of unknown function; mRNA transcribed as part of a bicistronic transcript with a predicted transcriptional repressor RGM1/YMR182C; mRNA is destroyed by nonsense-mediated decay (NMD); YMR181C is not an essential gene YLR345W Similar to 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase enzymes responsible for the metabolism of fructoso-2,6- bisphosphate; mRNA expression is repressed by the Rfx1p-Tup1p- Ssn6p repressor complex; YLR345W is not an essential gene MCM1 Transcription factor involved in cell-type-specific transcription and pheromone response; plays a central role in the formation of both repressor and activator complexes PHR1 DNA photolyase involved in photoreactivation, repairs pyrimidine dimers in the presence of visible light; induced by DNA damage; regulated by transcriptional repressor Rph1p HOS2 Histone deacetylase required for gene activation via specific deacetylation of lysines in H3 and H4 histone tails; subunit of the Set3 complex, a meiotic-specific repressor of sporulation specific genes that contains deacetylase activity RGT1 Glucose-responsive transcription factor that regulates expression of several glucose transporter (HXT) genes in response to glucose; binds to promoters and acts both as a transcriptional activator and repressor SRB7 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA polymerase II holoenzyme; essential for transcriptional regulation; target of the global repressor Tup1p GAL11 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA polymerase II holoenzyme; affects transcription by acting as target of activators and repressors

TABLE-US-00026 Transcriptional activators Associated Gene(s) Description(s) SKT5 Activator of Chs3p (chitin synthase III), recruits Chs3p to the bud neck via interaction with Bni4p; has similarity to Shc1p, which activates Chs3p during sporulation MSA1 Activator of G1-specific transcription factors, MBF and SBF, that regulates both the timing of G1-specific gene transcription, and cell cycle initiation; potential Cdc28p substrate AMA1 Activator of meiotic anaphase promoting complex (APC/C); Cdc20p family member; required for initiation of spore wall assembly; required for Clb1p degradation during meiosis STB5 Activator of multidrug resistance genes, forms a heterodimer with Pdr1p; contains a Zn(II)2Cys6 zinc finger domain that interacts with a PDRE (pleotropic drug resistance element) in vitro; binds Sin3p in a two-hybrid assay RRD2 Activator of the phosphotyrosyl phosphatase activity of PP2A, peptidyl- prolyl cis/trans-isomerase; regulates G1 phase progression, the osmoresponse, microtubule dynamics; subunit of the Tap42p-Pph21p- Rrd2p complex BLM10 Proteasome activator subunit; found in association with core particles, with and without the 19S regulatory particle; required for resistance to bleomycin, may be involved in protecting against oxidative damage; similar to mammalian PA200 SHC1 Sporulation-specific activator of Chs3p (chitin synthase III), required for the synthesis of the chitosan layer of ascospores; has similarity to Skt5p, which activates Chs3p during vegetative growth; transcriptionally induced at alkaline pH NDD1 Transcriptional activator essential for nuclear division; localized to the nucleus; essential component of the mechanism that activates the expression of a set of late-S-phase-specific genes IMP2' Transcriptional activator involved in maintenance of ion homeostasis and protection against DNA damage caused by bleomycin and other oxidants, contains a C-terminal leucine-rich repeat LYS14 Transcriptional activator involved in regulation of genes of the lysine biosynthesis pathway; requires 2-aminoadipate semialdehyde as co- inducer MSN1 Transcriptional activator involved in regulation of invertase and glucoamylase expression, invasive growth and pseudohyphal differentiation, iron uptake, chromium accumulation, and response to osmotic stress; localizes to the nucleus HAA1 Transcriptional activator involved in the transcription of TPO2, YRO2, and other genes putatively encoding membrane stress proteins; involved in adaptation to weak acid stress UGA3 Transcriptional activator necessary for gamma-aminobutyrate (GABA)- dependent induction of GABA genes (such as UGA1, UGA2, UGA4); zinc-finger transcription factor of the Zn(2)-Cys(6) binuclear cluster domain type; localized to the nucleus GCR1 Transcriptional activator of genes involved in glycolysis; DNA-binding protein that interacts and functions with the transcriptional activator Gcr2p GCR2 Transcriptional activator of genes involved in glycolysis; interacts and functions with the DNA-binding protein Gcr1p GAT1 Transcriptional activator of genes involved in nitrogen catabolite repression; contains a GATA-1-type zinc finger DNA-binding motif; activity and localization regulated by nitrogen limitation and Ure2p GLN3 Transcriptional activator of genes regulated by nitrogen catabolite repression (NCR), localization and activity regulated by quality of nitrogen source PUT3 Transcriptional activator of proline utilization genes, constitutively binds PUT1 and PUT2 promoter sequences and undergoes a conformational change to form the active state; has a Zn(2)-Cys(6) binuclear cluster domain ARR1 Transcriptional activator of the basic leucine zipper (bZIP) family, required for transcription of genes involved in resistance to arsenic compounds PDR3 Transcriptional activator of the pleiotropic drug resistance network, regulates expression of ATP-binding cassette (ABC) transporters through binding to cis-acting sites known as PDREs (PDR responsive elements) MSN4 Transcriptional activator related to Msn2p; activated in stress conditions, which results in translocation from the cytoplasm to the nucleus; binds DNA at stress response elements of responsive genes, inducing gene expression MSN2 Transcriptional activator related to Msn4p; activated in stress conditions, which results in translocation from the cytoplasm to the nucleus; binds DNA at stress response elements of responsive genes, inducing gene expression PHD1 Transcriptional activator that enhances pseudohyphal growth; regulates expression of FLO11, an adhesin required for pseudohyphal filament formation; similar to StuA, an A. nidulans developmental regulator; potential Cdc28p substrate FHL1 Transcriptional activator with similarity to DNA-binding domain of Drosophila forkhead but unable to bind DNA in vitro; required for rRNA processing; isolated as a suppressor of splicing factor prp4 VHR1 Transcriptional activator, required for the vitamin H-responsive element (VHRE) mediated induction of VHT1 (Vitamin H transporter) and BIO5 (biotin biosynthesis intermediate transporter) in response to low biotin concentrations CDC20 Cell-cycle regulated activator of anaphase-promoting complex/cyclosome (APC/C), which is required for metaphase/anaphase transition; directs ubiquitination of mitotic cyclins, Pds1p, and other anaphase inhibitors; potential Cdc28p substrate CDH1 Cell-cycle regulated activator of the anaphase-promoting complex/cyclosome (APC/C), which directs ubiquitination of cyclins resulting in mitotic exit; targets the APC/C to specific substrates including Cdc20p, Ase1p, Cin8p and Fin1p AFT2 Iron-regulated transcriptional activator; activates genes involved in intracellular iron use and required for iron homeostasis and resistance to oxidative stress; similar to Aft1p MET4 Leucine-zipper transcriptional activator, responsible for the regulation of the sulfur amino acid pathway, requires different combinations of the auxiliary factors Cbf1p, Met28p, Met31p and Met32p CBS2 Mitochondrial translational activator of the COB mRNA; interacts with translating ribosomes, acts on the COB mRNA 5'-untranslated leader CBS1 Mitochondrial translational activator of the COB mRNA; membrane protein that interacts with translating ribosomes, acts on the COB mRNA 5'-untranslated leader CBP6 Mitochondrial translational activator of the COB mRNA; phosphorylated PET111 Mitochondrial translational activator specific for the COX2 mRNA; located in the mitochondrial inner membrane PET494 Mitochondrial translational activator specific for the COX3 mRNA, acts together with Pet54p and Pet122p; located in the mitochondrial inner membrane PET122 Mitochondrial translational activator specific for the COX3 mRNA, acts together with Pet54p and Pet494p; located in the mitochondrial inner membrane RRD1 Peptidyl-prolyl cis/trans-isomerase, activator of the phosphotyrosyl phosphatase activity of PP2A; involved in G1 phase progression, microtubule dynamics, bud morphogenesis and DNA repair; subunit of the Tap42p-Sit4p-Rrd1p complex YPR196W Putative maltose activator POG1 Putative transcriptional activator that promotes recovery from pheromone induced arrest; inhibits both alpha-factor induced G1 arrest and repression of CLN1 and CLN2 via SCB/MCB promoter elements; potential Cdc28p substrate; SBF regulated MSA2 Putative transcriptional activator, that interacts with G1-specific transcription factor, MBF and G1-specific promoters; ortholog of Msa2p, an MBF and SBF activator that regulates G1-specific transcription and cell cycle initiation PET309 Specific translational activator for the COX1 mRNA, also influences stability of intron-containing COX1 primary transcripts; localizes to the mitochondrial inner membrane; contains seven pentatricopeptide repeats (PPRs) TEA1 Ty1 enhancer activator required for full levels of Ty enhancer-mediated transcription; C6 zinc cluster DNA-binding protein PIP2 Autoregulatory oleate-specific transcriptional activator of peroxisome proliferation, contains Zn(2)-Cys(6) cluster domain, forms heterodimer with Oaf1p, binds oleate response elements (OREs), activates beta- oxidation genes CHA4 DNA binding transcriptional activator, mediates serine/threonine activation of the catabolic L-serine (L-threonine) deaminase (CHA1); Zinc-finger protein with Zn[2]-Cys[6] fungal-type binuclear cluster domain SFL1 Transcriptional repressor and activator; involved in repression of flocculation-related genes, and activation of stress responsive genes; negatively regulated by cAMP-dependent protein kinase A subunit Tpk2p RDS2 Zinc cluster transcriptional activator involved in conferring resistance to ketoconazole CAT8 Zinc cluster transcriptional activator necessary for derepression of a variety of genes under non-fermentative growth conditions, active after diauxic shift, binds carbon source responsive elements ARO80 Zinc finger transcriptional activator of the Zn2Cys6 family; activates transcription of aromatic amino acid catabolic genes in the presence of aromatic amino acids SIP4 C6 zinc cluster transcriptional activator that binds to the carbon source- responsive element (CSRE) of gluconeogenic genes; involved in the positive regulation of gluconeogenesis; regulated by Snf1p protein kinase; localized to the nucleus SPT10 Putative histone acetylase, sequence-specific activator of histone genes, binds specifically and highly cooperatively to pairs of UAS elements in core histone promoters, functions at or near the TATA box MET28 Basic leucine zipper (bZIP) transcriptional activator in the Cbf1p- Met4p-Met28p complex, participates in the regulation of sulfur metabolism GCN4 Basic leucine zipper (bZIP) transcriptional activator of amino acid biosynthetic genes in response to amino acid starvation; expression is tightly regulated at both the transcriptional and translational levels CAD1 AP-1-like basic leucine zipper (bZIP) transcriptional activator involved in stress responses, iron metabolism, and pleiotropic drug resistance; controls a set of genes involved in stabilizing proteins; binds consensus sequence TTACTAA INO2 Component of the heteromeric Ino2p/Ino4p basic helix-loop-helix transcription activator that binds inositol/choline-responsive elements (ICREs), required for derepression of phospholipid biosynthetic genes in response to inositol depletion THI2 Zinc finger protein of the Zn(II)2Cys6 type, probable transcriptional activator of thiamine biosynthetic genes SWI4 DNA binding component of the SBF complex (Swi4p-Swi6p), a transcriptional activator that in concert with MBF (Mbp1-Swi6p) regulates late G1-specific transcription of targets including cyclins and genes required for DNA synthesis and repair HAP5 Subunit of the heme-activated, glucose-repressed Hap2/3/4/5 CCAAT- binding complex, a transcriptional activator and global regulator of respiratory gene expression; required for assembly and DNA binding activity of the complex HAP3 Subunit of the heme-activated, glucose-repressed Hap2p/3p/4p/5p CCAAT-binding complex, a transcriptional activator and global regulator of respiratory gene expression; contains sequences contributing to both complex assembly and DNA binding HAP2 Subunit of the heme-activated, glucose-repressed Hap2p/3p/4p/5p CCAAT-binding complex, a transcriptional activator and global regulator of respiratory gene expression; contains sequences sufficient for both complex assembly and DNA binding HAP4 Subunit of the heme-activated, glucose-repressed Hap2p/3p/4p/5p CCAAT-binding complex, a transcriptional activator and global regulator of respiratory gene expression; provides the principal activation function of the complex YML037C Putative protein of unknown function with some characteristics of a transcriptional activator; may be a target of Dbf2p-Mob1p kinase; GFP- fusion protein co-localizes with clathrin-coated vesicles; YML037C is not an essential gene TRA1 Subunit of SAGA and NuA4 histone acetyltransferase complexes; interacts with acidic activators (e.g., Gal4p) which leads to transcription activation; similar to human TRRAP, which is a cofactor for c-Myc mediated oncogenic transformation YLL054C Putative protein of unknown function with similarity to Pip2p, an oleate- specific transcriptional activator of peroxisome proliferation; YLL054C is not an essential gene RTG2 Sensor of mitochondrial dysfunction; regulates the subcellular location of Rtg1p and Rtg3p, transcriptional activators of the retrograde (RTG) and TOR pathways; Rtg2p is inhibited by the phosphorylated form of

Mks1p YBR012C Dubious open reading frame, unlikely to encode a functional protein; expression induced by iron-regulated transcriptional activator Aft2p JEN1 Lactate transporter, required for uptake of lactate and pyruvate; phosphorylated; expression is derepressed by transcriptional activator Cat8p during respiratory growth, and repressed in the presence of glucose, fructose, and mannose MRP1 Mitochondrial ribosomal protein of the small subunit; MRP1 exhibits genetic interactions with PET122, encoding a COX3-specific translational activator, and with PET123, encoding a small subunit mitochondrial ribosomal protein MRP17 Mitochondrial ribosomal protein of the small subunit; MRP17 exhibits genetic interactions with PET122, encoding a COX3-specific translational activator TPI1 Triose phosphate isomerase, abundant glycolytic enzyme; mRNA half- life is regulated by iron availability; transcription is controlled by activators Reb1p, Gcr1p, and Rap1p through binding sites in the 5' non-coding region PKH3 Protein kinase with similarity to mammalian phosphoinositide- dependent kinase 1 (PDK1) and yeast Pkh1p and Pkh2p, two redundant upstream activators of Pkc1p; identified as a multicopy suppressor of a pkh1 pkh2 double mutant YGL079W Putative protein of unknown function; green fluorescent protein (GFP)- fusion protein localizes to the endosome; identified as a transcriptional activator in a high-throughput yeast one-hybrid assay TFB1 Subunit of TFIIH and nucleotide excision repair factor 3 complexes, required for nucleotide excision repair, target for transcriptional activators PET123 Mitochondrial ribosomal protein of the small subunit; PET123 exhibits genetic interactions with PET122, which encodes a COX3 mRNA- specific translational activator MHR1 Protein involved in homologous recombination in mitochondria and in transcription regulation in nucleus; binds to activation domains of acidic activators; required for recombination-dependent mtDNA partitioning MCM1 Transcription factor involved in cell-type-specific transcription and pheromone response; plays a central role in the formation of both repressor and activator complexes EGD1 Subunit beta1 of the nascent polypeptide-associated complex (NAC) involved in protein targeting, associated with cytoplasmic ribosomes; enhances DNA binding of the Gal4p activator; homolog of human BTF3b STE5 Pheromone-response scaffold protein; binds Ste11p, Ste7p, and Fus3p kinases, forming a MAPK cascade complex that interacts with the plasma membrane and Ste4p-Ste18p; allosteric activator of Fus3p that facilitates Ste7p-mediated activation RGT1 Glucose-responsive transcription factor that regulates expression of several glucose transporter (HXT) genes in response to glucose; binds to promoters and acts both as a transcriptional activator and repressor TYE7 Serine-rich protein that contains a basic-helix-loop-helix (bHLH) DNA binding motif; binds E-boxes of glycolytic genes and contributes to their activation; may function as a transcriptional activator in Ty1-mediated gene expression VMA13 Subunit H of the eight-subunit V1 peripheral membrane domain of the vacuolar H+-ATPase (V-ATPase), an electrogenic proton pump found throughout the endomembrane system; serves as an activator or a structural stabilizer of the V-ATPase GAL11 Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA polymerase II holoenzyme; affects transcription by acting as target of activators and repressors VAC14 Protein involved in regulated synthesis of PtdIns(3,5)P(2), in control of trafficking of some proteins to the vacuole lumen via the MVB, and in maintenance of vacuole size and acidity; interacts with Fig4p; activator of Fab1p

Example 7

Heterologous Xylose Isomerase Expression in Yeast

[0279] Provided hereafter are non-limiting examples of certain organisms from which nucleic acids that encode a polypeptide having xylose isomerase activity can be obtained. Certain nucleic acid encoded polypeptides having active xylose isomerase activity can be expressed in an engineered yeast (S. cerevisiae).

TABLE-US-00027 Xylose isomerase Active? type Donor Organism (yes/no) (Type 1/Type 2) Piromyces Yes Type 2 Orpinomyces Yes Bacteroides thetaiotaomicron Yes Clostridium phytofermentans Yes Thermus thermophilus Yes Type 1 Ruminococcus flavefaciens Yes Escherichia coli No Bacillus subtilis No Lactobacillus pentoses No Leifsoria xyli subsp. Cynodontis No Clostridium thermosulfurogenes No Bacillus licheniformis No Burkholderia xenovorans No Psudomonas savastanoi No Robiginitalea biformata No Saccharophagus degradans No Staphylococcus xylosus No Streptomyces diastaticus subsp diastaticus No Xanthomonas campestris No Salmonella enterica serovar Typhimurium No Agrobacterium tumefaciens No Arabidopsis thaliana No Pseudomonas syringae No Actinoplanes missouriensis No Streptomyces rubiginosus No Epilopiscium No

Example 8

Examples of Nucleic Acid and Amino Acid Sequences

[0280] Provided hereafter and non-limiting examples of certain nucleic acid sequences.

TABLE-US-00028 Nucleic acid Organism/ Accession No. or Gene Name ATCC identifier other identifier Nucleotide Sequence Xylose Ruminococcus AJ132472 atggaatttt tcagcaatat cggtaaaatt cagtatcagg gaccaaaaag tactgatcct Isomerase flavefaciens ctctcattta agtactataa ccctgaagaa gtcatcaacg gaaagacaat gcgcgagcat (XI-RF strain 17 ctgaagttcg ctctttcatg gtggcacaca atgggcggcg acggaacaga tatgttcggc Native) tgcggcacaa cagacaagac ctggggacag tccgatcccg ctgcaagagc aaaggctaag gttgacgcag cattcgagat catggataag ctctccattg actactattg tttccacgat cgcgatcttt ctcccgagta tggcagcctc aaggctacca acgatcagct tgacatagtt acagactata tcaaggagaa gcagggcgac aagttcaagt gcctctgggg tacagcaaag tgcttcgatc atccaagatt catgcacggt gcaggtacat ctccttctgc tgatgtattc gctttctcag ctgctcagat caagaaggct ctcgagtcaa cagtaaagct cggcggtaac ggttacgttt tctggggcgg acgtgaaggc tatgagacac ttcttaatac aaatatggga ctcgaactcg acaatatggc tcgtcttatg aagatggctg ttgagtatgg acgttcgatc ggcttcaagg gcgacttcta tatcgagccc aagcccaagg agcccacaaa gcatcagtac gatttcgata cagctactgt tctgggattc ctcagaaagt acggtctcga taaggatttc aagatgaata tcgaagctaa ccacgctaca cttgctcagc atacattcca gcatgagctc cgtgttgcaa gagacaatgg tgtgttcggt tctatcgacg caaaccaggg cgacgttctt cttggatggg atacagacca gttccccaca aatatctacg atacaacaat gtgtatgtat gaagttatca aggcaggcgg cttcacaaac ggcggtctca acttcgacgc taaggcacgc agagggagct tcactcccga ggatatcttc tacagctata tcgcaggtat ggatgcattt gctctgggct tcagagctgc tctcaagctt atcgaagacg gacgtatcga caagttcgtt gctgacagat acgcttcatg gaataccggt atcggtgcag acataatcgc aggtaaggca gatttcgcat ctcttgaaaa gtatgctctt gaaaagggcg aggttacagc ttcactctca agcggcagac aggaaatgct ggagtctatc gtaaataacg ttcttttcag tctgtaa (SEQ ID NO: 259) Xylose Based on Based on AJ132472 atggaatttttcagcaatatcggtaaaattcagtatcagggaccaaaaagtactgatcctctctcatttaagt- actataacc isomerase Ruminococcus ctgaagaagtcatcaacggaaagacaatgcgcgagcatctgaagttcgctctttcatggtggcacacaatggg- cggc (point flavefaciens gacggaacagatatgttcggctgcggcacaacagacaagacctggggacagtccgatcccgctgcaagagcaa- a mutation) strain 17 ggctaaggttgacgcagcattcgagatcatggataagctctccattgactactattgtttccacgatcgcgat- ctttctccc gagtatggcagcctcaaggctaccaacgatcagcttgacatagttacagactatatcaaggagaagcaggg- cgaca agttcaagtgcctctggggtacagcaaagtgcttcgatcatccaagattcatgcacggtgcaggtacatct- ccttctgctg atgtattcgctttctcagctgctcagatcaagaaggctctGgagtcaacagtaaagctcggcggtaacggt- tacgttttct ggggcggacgtgaaggctatgagacacttcttaatacaaatatgggactcgaactcgacaatatggctcgt- cttatga agatggctgttgagtatggacgttcgatcggcttcaagggcgacttctatatcgagcccaagcccaaggag- cccaca aagcatcagtacgatttcgatacagctactgttctgggattcctcagaaagtacggtctcgataaggattt- caagatgaa tatcgaagctaaccacgctacacttgctcagcatacattccagcatgagctccgtgttgcaagagacaatg- gtgtgttcg gttctatcgacgcaaaccagggcgacgttcttcttggatgggatacagaccagttccccacaaatatctac- gatacaac aatgtgtatgtatgaagttatcaaggcaggcggcttcacaaacggcggtctcaacttcgacgctaaggcac- gcagag ggagcttcactcccgaggatatcttctacagctatatcgcaggtatggatgcatttgctctgggcttcaga- gctgctctcaa gcttatcgaagacggacgtatcgacaagttcgttgctgacagatacgcttcatggaataccggtatcggtg- cagacata atcgcaggtaaggcagatttcgcatctcttgaaaagtatgctcttgaaaagggcgaggttacagcttcact- ctcaagcg gcagacaggaaatgctggagtctatcgtaaataacgttcttttcagtctgtaa (SEQ ID NO: 260) Xylose atggagttcttttctaatataggtaaaattcagtatcaaggtccaaaatc isomerase tacagatccattgtcttttaaatattataatccagaagaagttataaatg (XI-RF_HR) gtaaaactatgagagaacatttaaaatttgctttgtcttggtggcatact atgggtggtgatggtactgatatgttcggttgtggtactactgataaaac ttggggtcaatctgatccagctgctagagcaaaagccaaagtagatgcag cctttgaaattatggataaattgtctattgattattattgttttcatgat agagatttgtctcctgaatatggttctttaaaagcaactaatgatcaatt ggacattgttacggattatattaaagaaaaacaaggtgataaatttaaat gtttgtggggcactgcgaaatgttttgatcatccacgttttatgcatggt gcggggacgagtccttctgctgatgtttttgctttttctgccgctcaaat taagaaggcattggaatcaactgttaaattaggtgggaacgggtatgtat tctggggaggaagggaaggttatgaaacattattaaacactaatatgggt ttggaattggataatatggctagattgatgaaaatggctgtagaatacgg aaggtctattggttttaagggtgacttttatattgaaccaaaacctaaag agcctactaaacatcaatatgattttgatactgctacagttttgggattc ttgagaaaatatggtctggataaagattttaaaatgaatatagaagctaa tcatgcaacactcgcacaacatacttttcaacatgaattgagagttgcca gagataacggagtttttggatctatcgatgcaaaccagggagacgttttg ctaggatgggatactgatcaatttccaactaacatttatgatactactat gtgtatgtatgaagtaattaaggcaggaggctttactaatggcggattaa actttgatgcgaaggctaggcgtggtagtttcactccagaggatatattc tattcttatattgctggaatggatgctttcgcgttaggtttcagggcagc actaaaattgattgaagatggtagaattgataagtttgtagctgatagat atgcttcttggaatactggaataggagcagatataatcgctgggaaagcc gacttcgccagtctggaaaaatatgcgcttgaaaaaggagaagttactgc cagcttaagttccggtcgtcaagaaatgttggaatctattgtaaacaatg ttttattttctctg (SEQ ID NO: 261) Xylose Piromyces sp. E2 AJ249909 atggctaagg aatatttccc acaaattcaa aagattaagt tcgaaggtaa ggattctaag isomerase aatccattag ccttccacta ctacgatgct gaaaaggaag tcatgggtaa gaaaatgaag (XI-P Native) gattggttac gtttcgccat ggcctggtgg cacactcttt gcgccgaagg tgctgaccaa ttcggtggag gtacaaagtc tttcccatgg aacgaaggta ctgatgctat tgaaattgcc aagcaaaagg ttgatgctgg tttcgaaatc atgcaaaagc ttggtattcc atactactgt ttccacgatg ttgatcttgt ttccgaaggt aactctattg aagaatacga atccaacctt aaggctgtcg ttgcttacct caaggaaaag caaaaggaaa ccggtattaa gcttctctgg agtactgcta acgtcttcgg tcacaagcgt tacatgaacg gtgcctccac taacccagac tttgatgttg tcgcccgtgc tattgttcaa attaagaacg ccatagacgc cggtattgaa cttggtgctg aaaactacgt cttctggggt ggtcgtgaag gttacatgag tctccttaac actgaccaaa agcgtgaaaa ggaacacatg gccactatgc ttaccatggc tcgtgactac gctcgttcca agggattcaa gggtactttc ctcattgaac caaagccaat ggaaccaacc aagcaccaat acgatgttga cactgaaacc gctattggtt tccttaaggc ccacaactta gacaaggact tcaaggtcaa cattgaagtt aaccacgcta ctcttgctgg tcacactttc gaacacgaac ttgcctgtgc tgttgatgct ggtatgctcg gttccattga tgctaaccgt ggtgactacc aaaacggttg ggatactgat caattcccaa ttgatcaata cgaactcgtc caagcttgga tggaaatcat ccgtggtggt ggtttcgtta ctggtggtac caacttcgat gccaagactc gtcgtaactc tactgacctc gaagacatca tcattgccca cgtttctggt atggatgcta tggctcgtgc tcttgaaaac gctgccaagc tcctccaaga atctccatac accaagatga agaaggaacg ttacgcttcc ttcgacagtg gtattggtaa ggactttgaa gatggtaagc tcaccctcga acaagtttac gaatacggta agaagaacgg tgaaccaaag caaacttctg gtaagcaaga actctacgaa gctattgttg ccatgtacca ataa (SEQ ID NO: 262) Xylose Based on ATGGCTAAAGAATATTTTCCACAAATTCAGAAAATTAAATTTGAAGGTAAAGATTC Isomerase Piromyces sp. E2 TAAAAATCCATTGGCTTTCCATTATTATGATGCTGAAAAAGAAGTTATGGGTAAAA (XI-P-HR1) AGATGAAAGATTGGTTGAGATTCGCTATGGCTTGGTGGCATACTCTATGTGCTG AAGGAGCTGATCAATTTGGAGGAGGTACTAAATCTTTTCCTTGGAATGAAGGTA CTGACGCTATTGAAATTGCTAAGCAGAAAGTAGACGCGGGTTTTGAAATTATGC AAAAATTGGGAATACCATATTATTGTTTTCATGATGTTGATTTGGTATCTGAGGGT AATTCTATTGAAGAATATGAATCTAATTTAAAAGCTGTTGTTGCTTACTTAAAAGA AAAACAAAAAGAAACTGGAATTAAATTGTTGTGGTCTACAGCTAATGTTTTCGGT CATAAAAGATATATGAATGGTGCTTCTACAAATCCAGATTTTGATGTTGTAGCTA GAGCTATTGTTCAAATTAAAAATGCTATAGATGCAGGAATTGAATTAGGTGCCGA AAATTATGTTTTCTGGGGAGGTAGAGAAGGTTATATGTCTTTGTTAAATACTGAT CAAAAACGTGAAAAGGAACACATGGCAACTATGTTGACAATGGCTAGGGATTAT GCTAGATCTAAAGGTTTTAAAGGTACTTTCTTGATTGAGCCAAAACCTATGGAAC CAACTAAACATCAATATGACGTTGACACTGAAACTGCTATTGGTTTCTTAAAAGC TCATAATTTGGATAAAGATTTTAAGGTTAATATAGAAGTTAATCATGCTACACTAG CTGGTCATACTTTTGAACATGAATTAGCTTGTGCAGTTGATGCCGGTATGTTAGG TTCTATCGACGCAAATAGAGGTGATTATCAAAATGGTTGGGACACAGATCAATTT CCAATAGATCAATATGAATTGGTTCAAGCATGGATGGAAATTATTAGGGGTGGA GGCTTCGTTACAGGTGGAACTAATTTTGATGCTAAAACTAGGAGAAATTCTACAG ATCTTGAAGATATAATTATTGCTCATGTATCTGGTATGGATGCGATGGCCCGTGC TTTGGAAAATGCAGCTAAATTACTTCAAGAATCTCCTTATACTAAAATGAAAAAGG AAAGATATGCTTCTTTTGATTCTGGAATAGGTAAGGATTTTGAAGATGGTAAATT GACATTGGAACAAGTTTATGAATATGGTAAGAAGAATGGAGAACCAAAACAAACT TCTGGTAAACAAGAATTATATGAGGCTATAGTAGCTATGTATCAAtaa (SEQ ID NO: 263) PEP Zymomonas ATCC 31821 ACTAGTAAAAAAATGACCAAGCCGCGCACAATTAATCAGAACCCAGACCTTCGC Carboxylase mobilis TATTTTGGTAACCTGCTCGGTCAGGTTATTAAGGAACAAGGCGGAGAGTCTTTAT (PEPC- TCAACCAGATCGAGCAAATTCGCTCTGCCGCGATTAGACGCCATCGGGGTATTG Native) TTGACAGCACCGAGCTAAGTTCTCGCTTAGCCGATCTCGACCTTAATGACATGT TCTCTTTTGCACATGCCTTTTTGCTGTTTTCAATGCTGGCCAATTTGGCTGATGA TCGTCAGGGAGATGCCCTTGATCCTGATGCCAATATGGCAAGTGCCCTTAAGGA CATAAAAGCCAAAGGCGTCAGTCAGCAGGCGATCATTGATATGATCGACAAAGC CTGCATTGTGCCTGTTCTGACAGCACATCCGACCGAAGTCCGTCGGAAAAGTAT GCTTGACCATTATAATCGCATTGCAGGTTTAATGCGGTTAAAAGATGCTGGACAA ACGGTGACCGAAGATGGTCTTCCGATCGAAGATGCGTTAATCCAGCAAATCACG ATATTATGGCAGACTCGTCCGCTCATGCTGCAAAAGCTGACCGTGGCTGATGAA ATCGAAACTGCCCTGTCTTTCTTAAGAGAAACTTTTCTGCCTGTTCTGCCCCAGA TTTATGCAGAATGGGAAAAATTGCTTGGTAGTTCTATTCCAAGCTTTATCAGACC TGGTAATTGGATTGGTGGTGACCGTGACGGTAACCCCAATGTCAATGCCGATAC GATCATGCTGTCTTTGAAGCGCAGCTCGGAAACGGTATTGACGGATTATCTCAA CCGTCTTGATAAACTGCTTTCCAACCTTTCGGTCTCAACCGATATGGTTTCGGTA TCCGATGATATTCTACGTCTAGCCGATAAAAGTGGTGACGATGCTGCGATCCGT GCGGATGAACCTTATCGTCGTGCCTTAAATGGTATTTATGACCGTTTAGCCGCTA CCTATCGTCAGATCGCCGGTCGCAACCCTTCGCGCCCAGCCTTGCGTTCTGCA GAAGCCTATAAACGGCCTCAAGAATTGCTGGCTGATTTGAAGACCTTGGCCGAA GGCTTGGGTAAATTGGCAGAAGGTAGTTTTAAGGCATTGATCCGTTCGGTTGAA ACCTTTGGTTTCCATTTGGCCACCCTCGATCTGCGTCAGAATTCGCAGGTTCAT GAAAGAGTTGTCAATGAACTGCTACGGACAGCCACCGTTGAAGCCGATTATTTA TCTCTATCGGAAGAAGATCGCGTTAAGCTGTTAAGACGGGAATTGTCGCAGCCG CGGACTCTATTCGTTCCGCGCGCCGATTATTCCGAAGAAACGCGTTCTGAACTT GATATTATTCAGGCAGCAGCCCGCGCCCATGAAATTTTTGGCCCTGAATCCATT ACGACTTATTTGATTTCGAATGGCGAAAGCATTTCCGATATTCTGGAAGTCTATT TGCTTTTGAAAGAAGCAGGGCTGTATCAAGGGGGTGCTAAGCCAAAAGCGGCG ATTGAAGCTGCGCCTTTATTCGAGACGGTGGCCGATCTTGAAAATGCGCCAAAG GTCATGGAGGAATGGTTCAAGCTGCCTGAAGCGCAAGCCATTGCAAAGGCACA TGGCGTTCAGGAAGTGATGGTTGGCTATTCTGACTCCAATAAGGACGGCGGATA TCTGACCTCGGTTTGGGGTCTTTATAAGGCTTGCCTCGCTTTGGTGCCGATTTTT GAGAAAGCCGGTGTACCGATCCAGTTTTTCCATGGACGGGGTGGTTCCGTTGG TCGCGGTGGTGGTTCCAACTTTAATGCCATTCTGTCGCAGCCAGCCGGAGCCG TCAAAGGGCGTATCCGTTATACAGAACAGGGTGAAGTCGTGGCGGCCAAATAT GGCACCCATGAAAGCGCTATTGCCCATCTGGATGAGGCCGTAGCGGCGACTTT GATTACGTCTTTGGAAGCACCGACCATTGTCGAGCCAGAGTTTAGTCGTTACCG TAAGGCCTTGGATCAGATCTCAGATTCAGCTTTCCAGGCCTATCGCCAATTGGT CTATGGAACGAAGGGCTTCCGTAAATTCTTTAGTGAATTTACGCCTTTGCCGGAA ATTGCCCTGTTAAAGATCGGGTCACGCCCACCTAGCCGCAAAAAATCCGACCG GATTGAAGATCTACGCGCTATTCCTTGGGTGTTTAGCTGGTCTCAAGTTCGAGT CATGTTACCCGGTTGGTTCGGTTTCGGTCAGGCTTTATATGACTTTGAAGATACC GAGCTGTTACAGGAAATGGCAAGCCGTTGGCCGTTTTTCCGCACGACTATTCGG AATATGGAACAGGTGATGGCACGTTCCGATATGACGATCGCCAAGCATTATCTG GCCTTGGTTGAGGATCAGACAAATGGTGAGGCTATCTATGATTCTATCGCGGAT GGCTGGAATAAAGGTTGTGAAGGTCTGTTAAAGGCAACCCAGCAGAATTGGCTG TTGGAACGCTTTCCGGCGGTTGATAATTCGGTGCAGATGCGTCGGCCTTATCTG GAACCGCTTAATTACTTACAGGTCGAATTGCTGAAGAAATGGCGGGGAGGTGAT ACCAACCCGCATATCCTCGAATCTATTCAGCTGACAATCAATGCCATTGCGACG GCACTTCGCAACAGCGGTTAATAACTCGAG (SEQ ID NO: 264) PEP Based on ACTAGTAAAAAAATGACCAAGCCAAGAACTATTAACCAAAACCCAGACTTGAGAT Carboxylase Zymomonas ACTTCGGTAACTTGTTGGGTCAAGTTATCAAGGAACAAGGTGGTGAATCTTTGTT (PEPC-HR) mobilis CAACCAAATTGAACAAATCAGATCCGCTGCTATTAGAAGACACAGAGGTATCGT CGACTCTACCGAATTGTCCTCTAGATTGGCTGACTTGGACTTGAACGACATGTT CTCCTTCGCTCACGCTTTCTTGTTGTTCTCTATGTTGGCTAACTTGGCTGACGAC AGACAAGGTGACGCTTTGGACCCAGACGCTAACATGGCTTCCGCTTTGAAGGA CATTAAGGCTAAGGGTGTTTCTCAACAAGCTATCATTGACATGATCGACAAGGCT TGTATTGTCCCAGTTTTGACTGCTCACCCAACCGAAGTCAGAAGAAAGTCCATG TTGGACCACTACAACAGAATCGCTGGTTTGATGAGATTGAAGGACGCTGGTCAA ACTGTTACCGAAGACGGTTTGCCAATTGAAGACGCTTTGATCCAACAAATTACTA TCTTGTGGCAAACCAGACCATTGATGTTGCAAAAGTTGACTGTCGCTGACGAAA TTGAAACCGCTTTGTCTTTCTTGAGAGAAACTTTCTTGCCAGTTTTGCCACAAAT CTACGCTGAATGGGAAAAGTTGTTGGGTTCCTCTATTCCATCCTTCATCAGACCA GGTAACTGGATTGGTGGTGACAGAGACGGTAACCCAAACGTCAACGCTGACAC CATCATGTTGTCTTTGAAGAGATCCTCTGAAACTGTTTTGACCGACTACTTGAAC AGATTGGACAAGTTGTTGTCCAACTTGTCTGTCTCCACTGACATGGTTTCTGTCT CCGACGACATTTTGAGATTGGCTGACAAGTCTGGTGACGACGCTGCTATCAGAG CTGACGAACCATACAGAAGAGCTTTGAACGGTATTTACGACAGATTGGCTGCTA CCTACAGACAAATCGCTGGTAGAAACCCATCCAGACCAGCTTTGAGATCTGCTG AAGCTTACAAGAGACCACAAGAATTGTTGGCTGACTTGAAGACTTTGGCTGAAG GTTTGGGTAAGTTGGCTGAAGGTTCCTTCAAGGCTTTGATTAGATCTGTTGAAAC CTTCGGTTTCCACTTGGCTACTTTGGACTTGAGACAAAACTCCCAAGTCCACGA AAGAGTTGTCAACGAATTGTTGAGAACCGCTACTGTTGAAGCTGACTACTTGTCT TTGTCCGAAGAAGACAGAGTCAAGTTGTTGAGAAGAGAATTGTCTCAACCAAGA ACCTTGTTCGTTCCAAGAGCTGACTACTCCGAAGAAACTAGATCTGAATTGGAC ATCATTCAAGCTGCTGCTAGAGCTCACGAAATCTTCGGTCCAGAATCCATTACCA CTTACTTGATCTCTAACGGTGAATCCATTTCTGACATCTTGGAAGTCTACTTGTT GTTGAAGGAAGCTGGTTTGTACCAAGGTGGTGCTAAGCCAAAGGCTGCTATTGA AGCTGCTCCATTGTTCGAAACCGTTGCTGACTTGGAAAACGCTCCAAAGGTCAT GGAAGAATGGTTCAAGTTGCCAGAAGCTCAAGCTATCGCTAAGGCTCACGGTGT TCAAGAAGTCATGGTTGGTTACTCCGACTCTAACAAGGACGGTGGTTACTTGAC TTCCGTCTGGGGTTTGTACAAGGCTTGTTTGGCTTTGGTTCCAATTTTCGAAAAG GCTGGTGTCCCAATCCAATTCTTCCACGGTAGAGGTGGTTCTGTTGGTAGAGGT GGTGGTTCCAACTTCAACGCTATTTTGTCTCAACCAGCTGGTGCTGTCAAGGGT AGAATCAGATACACCGAACAAGGTGAAGTTGTCGCTGCTAAGTACGGTACTCAC GAATCCGCTATTGCTCACTTGGACGAAGCTGTTGCTGCTACCTTGATCACTTCTT TGGAAGCTCCAACCATTGTCGAACCAGAATTCTCCAGATACAGAAAGGCTTTGG ACCAAATCTCTGACTCCGCTTTCCAAGCTTACAGACAATTGGTTTACGGTACTAA GGGTTTCAGAAAGTTCTTCTCTGAATTCACCCCATTGCCAGAAATTGCTTTGTTG AAGATCGGTTCCAGACCACCATCTAGAAAGAAGTCCGACAGAATTGAAGACTTG AGAGCTATCCCATGGGTCTTCTCTTGGTCCCAAGTTAGAGTCATGTTGCCAGGT TGGTTCGGTTTCGGTCAAGCTTTGTACGACTTCGAAGACACTGAATTGTTGCAA GAAATGGCTTCTAGATGGCCATTCTTCAGAACCACTATTAGAAACATGGAACAAG

TTATGGCTAGATCCGACATGACCATCGCTAAGCACTACTTGGCTTTGGTCGAAG ACCAAACTAACGGTGAAGCTATTTACGACTCTATCGCTGACGGTTGGAACAAGG GTTGTGAAGGTTTGTTGAAGGCTACCCAACAAAACTGGTTGTTGGAAAGATTCC CAGCTGTTGACAACTCCGTCCAAATGAGAAGACCATACTTGGAACCATTGAACT ACTTGCAAGTTGAATTGTTGAAGAAGTGGAGAGGTGGTGACACTAACCCACACA TTTTGGAATCTATCCAATTGACCATTAACGCTATCGCTACTGCTTTGAGAAACTC CGGTTAATAACTCGAG (SEQ ID NO: 265) EDA Zymomonas 31821D-5 5'-aactgactagtaaaaaaatgcgtgatatcgattcc-3' (SEQ ID No: 1) Primers mobilis (ZM4) 5'-agtaactcgagctactaggcaacagcagcgcgcttg-3' (SEQ ID No: 2) EDD Zymomonas 31821D-5 5'-aactgactagtaaaaaaatgactgatctgcattcaacg-3' (SEQ ID NO: 3) Primers mobilis (ZM4) 5'-agtaactcgagctactagataccggcacctgcatatattgc-3' (SEQ ID NO: 4) EDA Escherichia coli 5'-aactgactagtaaaaaaatgaaaaactggaaaacaagtgcagaatc-3' (SEQ ID NO: 5) Primers 5'-agtaactcgagctactacagcttagcgccttctacagcttcacg-3' (SEQ ID NO: 6) EDD Escherichia coli 5'-aactgactagtaaaaaaatgaatccacaattgttacgcgtaacaaatcg-3'(SEQ ID NO: 7) Primers 5'agtaactcgagctactaaaaagtgatacaggttgcgccctgttcggcac-3' (SEQ ID NO: 8) PFK primers Saccharomyces 4015893 5'-tgcatattccgttcaatcttataaagctgccatagatttttacaccaagtcgttttaagagcttggtgag- cgcta-3' cerevisiae (SEQ ID NO: 9) YGR240CBY4742 5'-cttgccagtgaatgacctttggcattctcatggaaacttcagtttcatagtcgagttcaagagaaaaaaa- aagaa- 3' (SEQ ID NO: 10) 5'-atgactgttactactccttttgtgaatggtacttcttattgtaccgtcactgcatattccgttcaatc- ttataaa-3' (SEQ ID NO: 11) 5'-ttaatcaactctctttcttccaaccaaatggtcagcaatgagtctggtagcttgccagtgaatgacct- ttggcat- 3'(SEQ ID NO: 12) Thymidilate Saccharomyces 208583 CDC21_fwd: 5'-aatcgatcaaagcttctaaatacaagacgtgcgatgacgactatactggac-3' (SEQ ID synthase cerevisiae strain NO: 52) Primers 17206 CDC21_rev: 5'-taccgtactacccgggtatatagtctttttgccctggtgttccttaataatttc-3' (SEQ ID NO: (cdc21) 53) ThymidylateSynthase::cdc21 fwd: 5'-ctaaatacaagacgtgcgatgacgactatactgg-3' (SEQ ID NO: 58) ThymidylateSynthase::cdc21 rev: 5'-gtcaacaagaactaaaaaattgttcaaaaatgcaattgtc-3'. (SEQ ID NO: 59) LYS2 BR214-4a 208600 Lys2Fwd: 5'-tgctaatgacccgggaattccacttgcaattacataaaaaattccggcgg-3' (SEQ ID NO: 54) Lys2Rev: 5'-atgatcattgagctcagcttcgcaagtattcattttagacccatggtgg-3'. (SEQ ID NO: 55) PEPC Zymomonas 5' forward (5'- Primers mobilis GACTAACTGAACTAGTAAAAAAATGACCAAGCCGCGCACAATTAATCAG-3') (SEQ ID NO: 13) 3' reverse (5'- AAGTGAGTAACTCGAGTTATTAACCGCTGTTGCGAAGTGCCGTCGC-3'). (SEQ ID NO: 14)

[0281] Provided hereafter are non-limiting examples of certain amino acid sequences.

TABLE-US-00029 Amino acid Organism/ATCC Accession No. or Gene Name identifier other identifier Amino Acid Sequence Xylose Ruminococcus CAB51938.1 MEFFSNIGKIQYQGPKSTDPLSFKYYNPEEVINGKTMREHLKFALSWWHTMGGDGTDM Isomerase flavefaciens FGCGTTDKTWGQSDPAARAKAKVDAAFEIMDKLSIDYYCFHDRDLSPEYGSLKATNDQL (XI-RF strain 17 DIVTDYIKEKQGDKFKCLWGTAKCFDHPRFMHGAGTSPSADVFAFSAAQIKKALESTVKL Native) GGNGYVFWGGREGYETLLNTNMGLELDNMARLMKMAVEYGRSIGFKGDFYIEPKPKEP TKHQYDFDTATVLGFLRKYGLDKDFKMNIEANHATLAQHTFQHELRVARDNGVFGSIDA NQGDVLLGWDTDQFPTNIYDTTMCMYEVIKAGGFTNGGLNFDAKARRGSFTPEDIFYSY IAGMDAFALGFRAALKLIEDGRIDKFVADRYASWNTGIGADIIAGKADFASLEKYALEKG EVTASLSSGRQEMLESIVNNVLFSL (SEQ ID NO: 274) Xylose Piromyces CAB76571.1 MAKEYFPQIQKIKFEGKDSKNPLAFHYYDAEKEVMGKKMKDWLR isomerase sp. E2 FAMAWWHTLCAEGADQFGGGTKSFPWNEGTDAIEIAKQKVDAGFEIMQKLGIPYYCFH (XI-P Native) DVDLVSEGNSIEEYESNLKAVVAYLKEKQKETGIKLLWSTANVFGHKRYMNGASTNPD FDVVARAIVQIKNAIDAGIELGAENYVFWGGREGYMSLLNTDQKREKEHMATMLTMAR DYARSKGFKGTFLIEPKPMEPTKHQYDVDTETAIGFLKAHNLDKDFKVNIEVNHATLA GHTFEHELACAVDAGMLGSIDANRGDYQNGWDTDQFPIDQYELVQAWMEIIRGGGFVT GGTNFDAKTRRNSTDLEDIIIAHVSGMDAMARALENAAKLLQESPYTKMKKERYASFDSG IGKDFEDGKLTLEQVYEYGKKNGEPKQTSGKQELYEAIVAMYQ (SEQ ID NO: 275)

Example 9

Activation of the Entner-Doudoroff Pathway in Yeast Cells Using EDD and EDA Genes from Pseudomonas aeruginosa Strain PAO1

[0282] Pseudomonas aeruginosa strain PAO1 DNA was prepared using Qiagen DNeasy Blood and Tissue kit (Qiagen, Valencia, Calif.) according to the manufacture's instructions. The P. aeruginosa edd and eda constructs were isolated from P. aeruginosa genomic DNA using the following oligonucleotides:

TABLE-US-00030 The P. aeruginosa edd gene: (SEQ ID NO: 63) 5'-aactgaactgactagtaaaaaaatgcaccctcgtgtgctcgaagt- 3' (SEQ ID NO: 64) 5'-agtaaagtaaaagcttctactagcgccagccgttgaggctct-3' The P. aeruginosa edd gene with 6-HIS c-terminal tag (SEQ ID NO: 35): (SEQ ID NO 63) 5'-aactgaactgactagtaaaaaaatgcaccctcgtgtgctcgaagt- 3' (SEQ ID NO: 65) 5'-agtaaagtaaaagcttctactaatgatgatgatgatgatggcgccag ccgttgaggctc-3' The P. aeruginosa eda gene: (SEQ ID NO: 66) 5'-aactgaactgactagtaaaaaaatgcacaaccttgaacagaagacc- 3' (SEQ ID NO: 67) 5'-agtaaagtaactcgagctattagtgtctgcggtgctcggcgaa-3' The P. aeruginosa eda gene with 6-HIS c-terminal tag (SEQ ID NO: 35): (SEQ ID NO: 66) 5'-aactgaactgactagtaaaaaaatgcacaaccttgaacagaagacc- 3' (SEQ ID NO: 68) 5'-taaagtaactcgagctactaatgatgatgatgatgatggtgtctgcg gtgctcggcgaa-3'

[0283] All oligonucleotides set forth above were purchased from Integrated technologies ("IDT", Coralville, Iowa). These oligonucleotides were designed to incorporate a SpeI restriction endonuclease cleavage site upstream of a HindIII restriction endonuclease cleavage site or downstream of an XhoI restriction endonuclease cleavage site, with respect to the edd and eda gene constructs. These restriction endonuclease sites could be used to clone the edd and eda genes into yeast expression vectors p426GPD (ATCC accession number 87361) and p425GPD (ATCC accession number 87359). In addition to incorporating restriction endonuclease cleavage sites, the forward oligonucleotides also incorporate six consecutive A nucleotides (e.g., AAAAAA) immediately upstream of the ATG initiation codon. The six consecutive A nucleotides ensured that there was a conserved ribosome binding sequence for efficient translation initiation in yeast.

[0284] PCR amplification of the genes were performed as follows: about 100 ng of the genomic P. aeruginosa PAO1 DNA was added to 1.times.Pfu Ultra II buffer, 0.3 mM dNTPs, 0.3 .mu.mol gene-specific primers (SEQ. ID. NOS: 63-68, and combinations as indicated), and 1 U Pfu Ultra II polymerase (Agilent, La Jolla, Calif.) in a 50 .mu.l reaction mix. This was cycled as follows: 95.degree. C. 10 minutes followed by 30 rounds of 95.degree. C. for 20 seconds, 50.degree. C. (eda amplifications) or 53.degree. C. (edd amplifications) for 30 seconds, and 72.degree. C. for 15 seconds (eda amplifications) or 30 seconds (edd amplifications). A final 5 minute extension reaction at 72.degree. C. also was included. The about 670 bp (eda) or 1830 bp product (edd) was TOPO cloned into the pCR Blunt II TOPO vector (Life Technologies, Carlsbad, Calif.) according to the manufacturer's recommendations.

[0285] The nucleotide and amino acid sequences of the P. aeruginosa edd and eda genes are given below as SEQ ID NOS. 69-72.

TABLE-US-00031 P. aeruginosa edd nucleotide sequence: SEQ ID NO: 69 ATGCACCCTCGTGTGCTCGAAGTCACCCGCCGCATCCAGGCCCGTAGCGCGGCCACTCGCC AGCGCTACCTCGAGATGGTCCGGGCTGCGGCCAGCAAGGGGCCGCACCGCGGCACCCTGC CGTGCGGCAACCTCGCCCACGGGGTCGCGGCCTGTGGCGAAAGCGACAAGCAGACCCTGC GGCTGATGAACCAGGCCAACGTGGCCATCGTTTCCGCCTACAACGACATGCTCTCGGCGCAC CAGCCGTTCGAGCGCTTTCCGGGGCTGATCAAGCAGGCGCTGCACGAGATCGGTTCGGTCG GCCAGTTCGCCGGCGGCGTGCCGGCCATGTGCGACGGGGTGACCCAGGGCGAGCCGGGCA TGGAACTGTCGCTGGCCAGCCGCGACGTGATCGCCATGTCCACCGCCATCGCGCTGTCTCA CAACATGTTCGATGCAGCGCTGTGCCTGGGTGTTTGCGACAAGATCGTGCCGGGCCTGCTGA TCGGCTCGCTGCGCTTCGGCCACCTGCCCACCGTGTTCGTCCCGGCCGGGCCGATGCCGAC CGGCATCTCCAACAAGGAAAAGGCCGCGGTGCGCCAACTGTTCGCCGAAGGCAAGGCCACT CGCGAAGAGCTGCTGGCCTCGGAAATGGCCTCCTACCATGCACCCGGCACCTGCACCTTCTA TGGCACCGCCAATACCAACCAGTTGCTGGTGGAGGTGATGGGCCTGCACTTGCCCGGTGCC TCCTTCGTCAACCCGAACACCCCCCTGCGCGACGAACTCACCCGCGAAGCGGCACGCCAGG CCAGCCGGCTGACCCCCGAGAACGGCAACTACGTGCCGATGGCGGAGATCGTCGACGAGAA GGCCATCGTCAACTCGGTGGTGGCGCTGCTCGCCACCGGCGGCTCGACCAACCACACCCTG CACCTGCTGGCGATCGCCCAGGCGGCGGGCATCCAGTTGACCTGGCAGGACATGTCCGAGC TGTCCCATGTGGTGCCGACCCTGGCGCGCATCTATCCGAACGGCCAGGCCGACATCAACCA CTTCCAGGCGGCCGGCGGCATGTCCTTCCTGATCCGCCAACTGCTCGACGGCGGGCTGCTT CACGAGGACGTACAGACCGTCGCCGGCCCCGGCCTGCGCCGCTACACCCGCGAGCCGTTC CTCGAGGATGGCCGGCTGGTCTGGCGCGAAGGGCCGGAACGGAGTCTCGACGAAGCCATC CTGCGTCCGCTGGACAAGCCGTTCTCCGCCGAAGGCGGCTTGCGCCTGATGGAGGGCAACC TCGGTCGCGGCGTGATGAAGGTCTCGGCGGTGGCGCCGGAACACCAGGTGGTCGAGGCGC CGGTACGGATCTTCCACGACCAGGCCAGCCTGGCCGCGGCCTTCAAGGCCGGCGAGCTGGA GCGCGACCTGGTCGCCGTGGTGCGTTTCCAGGGCCCGCGGGCGAACGGCATGCCGGAGCT GCACAAGCTCACGCCGTTCCTCGGGGTCCTGCAGGATCGTGGCTTCAAGGTGGCGCTGGTC ACCGACGGGCGCATGTCCGGGGCGTCGGGCAAGGTGCCCGCGGCCATCCATGTGAGTCCG GAAGCCATCGCCGGCGGTCCGCTGGCGCGCCTGCGCGACGGCGACCGGGTGCGGGTGGAT GGGGTGAACGGCGAGTTGCGGGTGCTGGTCGACGACGCCGAATGGCAGGCGCGCAGCCTG GAGCCGGCGCCGCAGGACGGCAATCTCGGTTGCGGCCGCGAGCTGTTCGCCTTCATGCGCA ACGCCATGAGCAGCGCGGAAGAGGGCGCCTGCAGCTTTACCGAGAGCCTCAACGGCTGGCG CTAGTAG P. aeruginosa edd amino sequence: SEQ ID NO: 70 MHPRVLEVTRRIQARSAATRQRYLEMVRAAASKGPHRGTLPCGNLAHGVAACGESDKQTLRLMN QANVAIVSAYNDMLSAHQPFERFPGLIKQALHEIGSVGQFAGGVPAMCDGVTQGEPGMELSLASR DVIAMSTAIALSHNMFDAALCLGVCDKIVPGLLIGSLRFGHLPTVFVPAGPMPTGISNKEKAAVRQL FAEGKATREELLASEMASYHAPGTCTFYGTANTNQLLVEVMGLHLPGASFVNPNTPLRDELTREA ARQASRLTPENGNYVPMAEIVDEKAIVNSVVALLATGGSTNHTLHLLAIAQAAGIQLTWQDMSELS HVVPTLARIYPNGQADINHFQAAGGMSFLIRQLLDGGLLHEDVQTVAGPGLRRYTREPFLEDGRLV WREGPERSLDEAILRPLDKPFSAEGGLRLMEGNLGRGVMKVSAVAPEHQVVEAPVRIFHDQASLA AAFKAGELERDLVAVVRFQGPRANGMPELHKLTPFLGVLQDRGFKVALVTDGRMSGASGKVPAAI HVSPEAIAGGPLARLRDGDRVRVDGVNGELRVLVDDAEWQARSLEPAPQDGNLGCGRELFAFM RNAMSSAEEGACSFTESLNGWR P. aeruginosa eda nucleotide sequence: SEQ ID NO: 71 ATGCACAACCTTGAACAGAAGACCGCCCGCATCGACACGCTGTGCCGGGAGGCGCGCATCC TCCCGGTGATCACCATCGACCGCGAGGCGGACATCCTGCCGATGGCCGATGCCCTCGCCGC CGGCGGCCTGACCGCCCTGGAGATCACCCTGCGCACGGCGCACGGGCTGACCGCCATCCG GCGCCTCAGCGAGGAGCGCCCGCACCTGCGCATCGGCGCCGGCACCGTGCTCGACCCGCG GACCTTCGCCGCCGCGGAAAAGGCCGGGGCGAGCTTCGTGGTCACCCCGGGTTGCACCGA CGAGTTGCTGCGCTTCGCCCTGGACAGCGAAGTCCCGCTGTTGCCCGGCGTGGCCAGCGCT TCCGAGATCATGCTCGCCTACCGCCATGGCTACCGCCGCTTCAAGCTGTTTCCCGCCGAAGT CAGCGGCGGCCCGGCGGCGCTGAAGGCGTTCTCGGGACCATTCCCCGATATCCGCTTCTGC CCCACCGGAGGCGTCAGCCTGAACAATCTCGCCGACTACCTGGCGGTACCCAACGTGATGT GCGTCGGCGGCACCTGGATGCTGCCCAAGGCCGTGGTCGACCGCGGCGACTGGGCCCAGG TCGAGCGCCTCAGCCGCGAAGCCCTGGAGCGCTTCGCCGAGCACCGCAGACACTAATAG P. aeruginosa eda amino sequence: SEQ ID NO: 72 MHNLEQKTARIDTLCREARILPVITIDREADILPMADALAAGGLTALEITLRTAHGLTAIRRLSEERPH LRIGAGTVLDPRTFAAAEKAGASFVVTPGCTDELLRFALDSEVPLLPGVASASEIMLAYRHGYRRF KLFPAEVSGGPAALKAFSGPFPDIRFCPTGGVSLNNLADYLAVPNVMCVGGTWMLPKAVVDRGD WAQVERLSREALERFAEHRRH

[0286] Cloning of PAO1 Edd and Eda Genes into Yeast Expression Vectors

[0287] Following sequence confirmation (GeneWiz), the about 670 bp SpeI-XhoI eda and about 1830 bp SpeI-HindIII edd fragments were cloned into the corresponding restriction sites in plasmids p425GPD and p426GPD vectors (Mumberg et al., 1995, Gene 156: 119-122; obtained from ATCC #87361; PubMed: 7737504), respectively. Briefly, about 50 ng of SpeI-XhoI-digested p425GPD vector was ligated to about 50 ng of SpeI/XhoI-restricted eda fragment in a 10 .mu.l reaction with 1.times. T4 DNA ligase buffer and 1 U T4 DNA ligase (Fermentas) overnight at 16.degree. C. About 3 .mu.l of this reaction was used to transform DH5.alpha. competent cells (Zymo Research) and plated onto LB agar media containing 100 .mu.g/ml ampicillin. Similarly, about 50 ng of SpeI-HindIII-digested p426GPD vector was ligated to about 42 ng of SpeI/HindIII-restricted edd fragment in a 10 .mu.l reaction with 1.times. T4 DNA ligase buffer and 1 U T4 DNA ligase (Fermentas) overnight at 16.degree. C. About 3 .mu.l of this reaction was used to transform DH5.alpha. competent cells (Zymo Research) and plated onto LB agar media containing 100 .mu.g/ml ampicillin.

[0288] A haploid Saccharomyces cerevisiae strain (BY4742; ATCC catalog number 201389) was cultured in YPD media (10 g Yeast Extract, 20 g Bacto-Peptone, 20 g Glucose, 1 L total) at about 30.degree. C. Separate aliquots of these cultured cells were transformed with a plasmid construct(s) containing the eda gene alone, the eda and edd genes, or with vector alone. Transformation was accomplished using the Zymo frozen yeast transformation kit (Catalog number T2001; Zymo Research Corp., Orange, Calif.). To 50 .mu.l of cells was added approximately 0.5-1 .mu.g plasmid DNA and the cells were cultured on SC drop out media with glucose minus leucine (eda), minus uracil and minus leucine (eda and edd) (about 20 g glucose; about 2.21 g SC drop-out mix [described below], about 6.7 g yeast nitrogen base, all in about 1 L of water); this mixture was cultured for 2-3 days at about 30.degree. C. SC drop-out mix contained the following ingredients (Sigma); all indicated weights are approximate:

TABLE-US-00032 0.4 g Adenine hemisulfate 3.5 g Arginine 1 g Glutamic Acid 0.433 g Histidine 0.4 g Myo-Inositol 5.2 g Isoleucine 2.63 g Leucine 0.9 g Lysine 1.5 g Methionine 0.8 g Phenylalanine 1.1 g Serine 1.2 g Threonine 0.8 g Tryptophan 0.2 g Tyrosine 0.2 g Uracil 1.2 g Valine

[0289] Activity and Western Analyses

[0290] Cell lysates of the various EDD and EDA expressing strains were prepared as follows. About 50 to 100 ml of SCD-ura-leu media containing 10 mM MnCl.sub.2 was used to culture strains containing the desired plasmid constructs. When cultured aerobically, strains were grown in a 250 ml baffled shaker flask. When grown anaerobically, 400 .mu.l/L Tween-80 (British Drug Houses, Ltd., West Chester, Pa.) plus 0.01 g/L Ergosterol (Alef Aesar, Ward Hill, Mass.) were added and the culture was grown in a 250 ml serum bottle outfitted with a butyl rubber stopper with an aluminum crimp cap. Each strain was inoculated at an initial OD.sub.600 of about 0.2 and grown to an OD.sub.600 of about 3-4. Cells were grown at 30.degree. C. at 200 rpm.

[0291] Yeast cells were harvested by centrifugation at 1046.times.g (e.g., approximately 3000 rpm) for 5 minutes at 4.degree. C. The supernatant was discarded and the cells were resuspended in 25 mL cold sterile water. This wash step was repeated once. Washed cell pellets were resuspended in 1 mL sterile water, transferred to 1.5 mL screw cap tube, and centrifuged at 16,100.times.g (e.g., approximately 13,200 rpm) for 3 minutes at 4.degree. C.

[0292] Cell pellets were resuspended in about 800-1000 .mu.l of freshly prepared lysis buffer (50 mM Tris-Cl pH 7.0, 10 mM MgCl2, 1.times. protease inhibitor cocktail EDTA-free (Thermo Scientific, Waltham, Mass.) and the tube filled with zirconia beads to avoid any headspace in the tube. The tubes were placed in a Mini BeadBeater (Bio Spec Products, Inc., Bartlesville, Okla.) and vortexed twice for 30 seconds at room temperature. The supernatant was transferred to a new 1.5 mL microcentrifuge tube and centrifuged twice to remove cell debris at 16,100.times.g (e.g., approximately 13,200 rpm) for 10 minutes, at 4.degree. C. Quantification of the lysates was performed using the Coomassie-Plus kit (Thermo Scientific, San Diego, Calif.) as directed by the manufacturer ('6-HIS' below disclosed as SEQ ID NO: 35).

TABLE-US-00033 Strain EDD EDA BF428 p426GPD (vector control) p425GPD (vector control) BF604 E. coli native E. coli native BF460 E. coli native with 6-HIS E. coli native with 6-HIS BF591 PAO1 native PAO1 native BF568 PAO1 native with 6-HIS PAO1 native with 6-HIS BF592 PAO1 native E. coli native BF603 E. coli native PAO1 native

[0293] About 5-10 .mu.g of total cell extract was used for SDS-gel [NuPage 4-12% Bis-Tris gels (Life Technologies, Carlsbad, Calif.)] electrophoresis and Western blot analyses.

[0294] SDS-PAGE gels were performed according to the manufacturer's recommendation using NuPage MES-SDS Running Buffer at 1.times. concentration with the addition of NuPage antioxidant into the cathode chamber at a 1.times. concentration. Novex Sharp Protein Standards (Life Technologies, Carlsbad, Calif.) were used as standards. For Western analysis, gels were transferred onto a nitrocellulose membrane (0.45 micron, Thermo Scientific, San Diego, Calif.) using Western blotting filter paper (Thermo Scientific) using a Bio-Rad Mini Trans-Blot Cell (BioRad, Hercules, Calif.) system for approximately 90 minutes at 40V. Following transfer, the membrane was washed in 1.times. PBS (EMD, San Diego, Calif.), 0.05% Tween-20 (Fisher Scientific, Fairlawn, N.J.) for 2-5 minutes with gentle shaking. The membrane was blocked in 3% BSA dissolved in 1.times.PBS and 0.05% Tween-20 at room temperature for about 2 hours with gentle shaking. The membrane was washed once in 1.times.PBS and 0.05% Tween-20 for about 5 minutes with gentle shaking. The membrane was then incubated at room temperature with the 1:5000 dilution of primary antibody (Ms mAB to 6.times.His Tag (SEQ ID NO: 35), AbCam, Cambridge, Mass.) in 0.3% BSA (Fraction V, EMD, San Diego, Calif.) dissolved in 1.times.PBS and 0.05% Tween-20 with gentle shaking.

[0295] Incubation was allowed to proceed for about 1 hour with gentle shaking. The membrane was then washed three times for 5 minutes each with 1.times.PBS and 0.05% Tween-20 with gentle shaking. The secondary antibody [Dnk pAb to Ms IgG (HRP), AbCam, Cambridge, Mass.] was used at 1:15000 dilution in 0.3% BSA and allowed to incubate for about 90 minutes at room temperature with gentle shaking. The membrane was washed three times for about 5 minutes using 1.times.PBS and 0.05% Tween-20 with gentle shaking. The membrane incubated with 5 ml of Supersignal West Pico Chemiluminescent substrate (Thermo Scientific, San Diego, Calif.) for 1 minute and then was exposed to a phosphorimager (Bio-Rad Universal Hood II, Bio-Rad, Hercules, Calif.) for about 10-100 seconds.

[0296] The results of the Western blots, shown in FIGS. 8A and 8B. Included in the expression data are engineered and/or optimized versions of certain eda and edd genes. The genes were modified to include a C-terminal HIS tag to facilitate purification. The two letters refer to the EDD and EDA source, respectively. P is from P. aeruginosa, PAO1, E is from E. coli, Z is from Zymomonas mobilis ZM4, hot rod is the optimized version of Zymomonas mobilis, Harmonized is the codon harmonized version of Zymomonas mobilis, V refers to the vector(s). Both total crude extract and the solubilized extract are shown. The results presented in FIGS. 8A and 8B indicate that the PAO1 EDD protein is expressed and soluble in S. cerevisiae. The results also demonstrate that the E. coli EDA protein is expressed and soluble. It was not clear from these experiments if the PAO1 EDA was soluble in yeast.

Example 10

EDD and EDA Activity Assays

[0297] Cell lysates of the various EDD and EDA expressing strains were prepared as follows. About 50 to 100 ml of SCD-ura-leu media containing 10 mM MnCl.sub.2 was used. When cultured aerobically, strains were grown in a 250 ml baffled shake flask. When grown anaerobically, 4000/L Tween-80 (British Drug Houses, Ltd., West Chester, Pa.) plus 0.01 g/L Ergosterol (Alef Aesar, Ward Hill, Mass.) were added and the culture was grown in a 250 ml serum bottle outfitted with a butyl rubber stopper with an aluminum crimp cap. Each strain was inoculated at an initial OD.sub.600 of about 0.2 and grown to an OD.sub.600 of about 3-4. Cells were grown at 30.degree. C. at 200 rpm.

[0298] Yeast cells were harvested by centrifugation at 1046.times.g (3000 rpm) for 5 minutes at 4.degree. C. The supernatant was discarded and the cells were resuspended in 25 mL cold sterile water. This wash step was repeated once. Washed cell pellets were resuspended in 1 mL sterile water, transferred to 1.5 mL screw cap tube, and centrifuged at 16,100.times.g (13,200 rpm) for 3 minutes at 4.degree. C. Cell pellets were resuspended in about 800-1000 .mu.l of freshly prepared lysis buffer (50 mM Tris-Cl pH 7.0, 10 mM MgCl.sub.2, 1.times. protease inhibitor cocktail EDTA-free (Thermo Scientific, Waltham, Mass.) and the tube filled with zirconia beads to avoid any headspace in the tube. The tubes were placed in a Mini BeadBeater (Bio Spec Products, Inc., Bartlesville, Okla.) and vortexed twice for 30 seconds at room temperature. The supernatant was transferred to a new 1.5 mL microcentrifuge tube and centrifuged twice to remove cell debris at 16,100.times.g (13,200 rpm) for 10 minutes, at 4.degree. C. Quantification of the lysates was performed using the Coomassie-Plus kit (Thermo Scientific, San Diego, Calif.) as directed by the manufacturer.

[0299] About 750 .mu.g of crude extract was assayed using 1.times. assay buffer (50 mM Tris-Cl pH 7.0, 10 mM MgCl2), 3 U lactate dehydrogenase (5 .mu.g/.mu.L in 50 mM Tris-Cl pH 7.0), and 10 .mu.l 1 mM 6-phosphogluconate dissolved in 50 mM Tris-Cl pH 7.0 were mixed in a reaction of about 400 .mu.l. This reaction mix was transferred to a 1 ml Quartz cuvette and allowed to incubate about 5 minutes at 30.degree. C. To this reaction, 100 .mu.l of 1.5 mM NADH (prepared in 50 mM Tris-Cl pH 7.0) was added, and the change in Abs.sub.340nm over the course of 5 minutes at 30.degree. C. was monitored in a Beckman DU-800 spectrophotometer using the Enzyme Mechanism software package (Beckman Coulter, Inc, Brea, Calif.).

[0300] The table below presents the relative specific activities for BY4742 strains expressing EDD and EDA from either P. aeruginosa (PAO1) or E. coli sources. The results presented in the table below indicate that each of the listed combinations of EDD and EDA genes, when expressed in S. cerevisiae strain BY4742, confers activity.

TABLE-US-00034 Gene Km Vmax Specific Activity Combination (M.sup.-1) (mmol min.sup.-1) (mmol min.sup.-1 mg.sup.-1) EDD-P/EDA-P 1.04 .times. 10.sup.-3 0.21930 0.3451 EDD-P/EDA-E 2.06 .times. 10.sup.-3 0.27280 0.3637 EDD-E/EDA-P 1.43 .times. 10.sup.-3 0.09264 0.1235 EDD-E/EDA-E 0.839 .times. 10.sup.-3 0.16270 0.2169

[0301] The data presented above is also presented graphically in FIG. 9. FIG. 9 graphically displays the relative activities of the various EDD/EDA combinations presented in the table above, as measured in assays using 750 micrograms of crude extract. From the height of the PE bar in FIG. 9, and the data presented in the table above, it is evident that the combinations conferring the highest level of activity were the EDD-P/EDA-E (e.g., PE) and EDD-P/EDA-P (e.g., PP) combinations.

Example 11

Improved Ethanol Yield from Yeast Strains Expressing EDD and EDA Constructs

[0302] Strains BF428 (vector control), BF591 (EDD-PAO1/EDA-PAO1), BF592 (EDD-PAO1/EDA-E. coli), BF603 (EDD-E. coli/EDA-PAO1) and BF604 (EDD-E. coli/EDA-E. coli) were inoculated into 15 ml SCD-ura-leu media containing 400 .mu.l/L Tween-80 (British Drug Houses, Ltd., West Chester, Pa.) plus 0.01 g/L Ergosterol (EMD, San Diego, Calif.) in 20 ml Hungate tubes outfitted with a butyl rubber stopper and sealed with an aluminum crimped cap to prevent oxygen from entering the culture at an initial OD.sub.600 of 0.5 and grown for about 20 hours. Glucose and ethanol in the culture media were assayed using YSI 2700 BioAnalyzer instruments (world wide web uniform resource locator ysi.com), according to the manufacturer's recommendations at 0 and 20 hours post inoculation. The results of the fermentation of glucose to ethanol are showing graphically in FIG. 10. The results presented in FIG. 9 indicate that the presence of the EDD/EDA combinations in S. cerevisiae increase the yield of ethanol produced, when compared to a vector-only control. The EDD/EDA combinations that showed the greatest fermentation efficiency in yeast were EDD-P/EDA-E (e.g., PE) and EDD-E/EDA-P (e.g., EP).

Example 12

Improved Ethanol Yield from Yeast Strains Expressing EDD and EDA from PAO1 in Fermentors

[0303] A fermentation test of the strain BF591 [BY4742 with plasmids pBF290 (p426GPD-EDD_PAO1) and pBF292 (p425GPD-EDA_PAO1)] was conducted against BF428 (BY4742 p426GPD/p425GPD) control strain in 700 ml w.v. Multifors multiplexed fermentors. The fermentation medium was SC-Ura-Leu with about 2% glucose. Vessels were inoculated with about a 6.25% inoculum from overnight cultures grown in about 50 ml SC-Ura-Leu with about 2% glucose.

[0304] The cultures were grown aerobically at about 30.degree. C. with about 250 rpm agitation, 1 vvm sparge of process air, (21% O2). The pH was controlled at around 5.0 with 0.25 N NaOH. Once glucose concentrations dropped below 0.5 g/L the fermentation was switched to anaerobic conditions. Before changing to anaerobic conditions, samples were taken to measure glucose concentrations and biomass by OD.sub.600 as reported in Table B. Ethanol and glucose concentrations in the fermentation broth were monitored using YSI 2700 BioAnalyzer instruments.

[0305] The table below presents the elapsed fermentation time (EFT), the biomass and glucose at the start of anaerobic fermentation in a 400 ml fermentor. The edd and eda combinations carried by the strains are described above.

TABLE-US-00035 Glucose Strain EFT (hrs) OD.sub.600 nm (g/L) BF591 32 4.50 .047 BF428 27 4.81 .062

[0306] At the beginning of the anaerobic portion of the fermentation, a bolus of 20 g/L glucose plus 3.35 g/L of yeast nitrogen base without amino acids was added to the fermentors. In addition, 4 ml/L of 2.5 g/L ergosterol in ethanol, 0.4 ml/L Tween 80, and 0.01% AF-204 were added to each fermentor. Oxygen was purged with 100% N2 sparged at about 1 vvm until pO2 was below 1%.

[0307] Samples were taken every 2 to 7 hours and measured for ethanol and glucose concentrations and OD.sub.600. The fermentation was harvested when the glucose concentration was below 0.05 g/L, at 50 hours elapsed fermentation time (EFT). Ethanol and glucose concentrations and OD.sub.600 of the final sample are reported in the table below.

TABLE-US-00036 Ethanol Glucose Strain OD.sub.600 nm (g/L) (g/L) BF591 5.6 17.1 .04 BF428 5.6 15.8 0

[0308] The data presented in the table above also is presented graphically in FIGS. 11A and 11B. FIG. 11A presents the fermentation data from strain BF428 (BY4742 with vector controls) and FIG. 11B presents the fermentation data from strain BF591 (BY4742 with EDD-PAO1/EDA-PAO1). Fermentation profiles for strains BF 428 and BF 591, grown on 2% dextrose, were calculated and are presented in the table below.

TABLE-US-00037 Strain Yx/s Yp/s Yp/x Qp qp BF428 0.24 0.40 7.19 0.02 0.05 BF591 0.23 0.43 7.44 0.02 0.07 Yx/s = OD/g glucose Yp/s = q ethanol/g glucose Yp/x = g ethanol/OD Qp = g ethanol/Lh.sup.-1 qp = g ethanol/ODh.sup.-1

[0309] The results from the fermentation show that the BF591 has a higher ethanol yield (triangles, compare FIG. 11A and FIG. 11B) than the control BF428 strain. The calculated yield of ethanol was also determined to be higher in the engineered BF591 strain (0.43 g ethanol/g glucose) than that of the BF428 control strain (0.40 g ethanol/g glucose).

Example 13

Improved Ethanol Yield in a Tall Strain of S. cerevisiae Expressing EDD and EDA from PAO1

[0310] To generate BY4741 and BY4742 tal1 mutant strains, the following procedure was used:

TABLE-US-00038 Oligonucleotides (SEQ ID NO: 276) #350 - 5'-TAAAACGACGGCCAGTGAAT-3' (SEQ ID NO: 277) #351 - 5'-TGCAGGTCGACTCTAGAGGAT-3' (SEQ ID NO: 278) #352 - 5'-GTGTGCGTGTATGTGTACACCTGTATTTAATTTCCTTACT CGCGGGTTTTTCTAAAACGACGGCCAGTGAAT-3' (SEQ ID NO: 279) #353 - 5'-TGTACCAGTCTAGAATTCTACCAACAAATGGGGAAATCAA AGTAACTTGGGCTGCAGGTCGACTCTAGAGGA-3'

[0311] All oligonucleotides set forth above were purchased from Integrated Technologies ("IDT", Coralville, Iowa). PCR amplification of the genes were performed as follows: about 50 ng of the pBFU-719 DNA (e.g., plasmid with unique 200-mer sequence) was added to 1.times.Pfu Ultra II buffer, 0.3 mM dNTPs, 0.3 .mu.mol gene-specific primers (#350/#351 in the first round), and 1 U Pfu Ultra II polymerase (Agilent, La Jolla, Calif.) in a 50 .mu.l reaction mix. The reaction mixture was cycled as follows: 95.degree. C. 10 minutes followed by 30 rounds of 95.degree. C. for 20 seconds, 60.degree. C. for 30 seconds, and 72.degree. C. for 45 seconds. A final 5 minute extension reaction at 72.degree. C. was also included. A second round of PCR amplification was done using 50 ng of the first round PCR amplification with 1.times.Pfu Ultra II buffer, 0.3 mM dNTPs, 0.3 .mu.mol gene-specific primers (#352/#353 in the second round), and 1 U Pfu Ultra II polymerase (Agilent, La Jolla, Calif.) in a 50 .mu.l reaction mix. The second reaction mixture was cycled as follows: 95.degree. C. 10 minutes followed by 30 rounds of 95.degree. C. for 20 seconds, 60.degree. C. for 30 seconds, and 72.degree. C. for 45 seconds. A final 5 minute extension reaction at 72.degree. C. was also included. The final PCR product was purified using the Zymo Research DNA Clean & Concentrator-25 kit (Zymo Research, Orange, Calif.).

[0312] Transformation was accomplished by a high-efficiency competency method. A 5 ml culture of the BY4742 or BY4741 strain was grown overnight at about 30.degree. C. with shaking at about 200 rpm. A suitable amount of this overnight culture was added to 60 ml of YPD media to obtain an initial OD600 of about 0.2 (approximately 2.times.10.sup.6 cells/ml). The cells were allowed to grow at 30.degree. C. with agitation (about 200 rpm) until the OD.sub.600 was about 1. The cells were then centrifuged at 3000 rpm for 5 min, washed with 10 ml sterile water and re-centrifuged. The cell pellet was resuspended in 1 ml sterile water, transferred to a 1.5 ml sterile microcentrifuge tube and spun down at 4000.times.g for about 5 minutes. This cell pellet was resuspended in 1 ml sterile 1.times.TE/LiOAC solution (10 mM Tris-HCl, 1 mM EDTA, 100 mM LiOAc, pH7.5) and re-centrifuged at about 4000.times.g for about 5 minutes. The cell pellet was resuspended in 0.25 ml 1.times.TE/LiOAc solution. For the transformation, 50 .mu.l of these cells were aliquoted to a 1.5 ml microcentrifuge tube and about 1 .mu.g purified PCR product and 5 .mu.l of salmon sperm DNA that had been previously boiled for about 5 minutes and placed on ice. 300 .mu.l of a sterile PEG solution was then added (40% PEG 3500, 10 mM Tris-HCl, 1 mM EDTA, 100 mM LiOAc, pH7.5). This mixture was allowed to incubate at 30.degree. C. for about one hour with gentle mixing every 15 minutes. About 40 .mu.l DMSO (Sigma, St. Louis, Mo.) was added to the incubating mixture, and the mixture heat shocked at about 42.degree. C. for about 15 minutes. The cells were pelleted in a microcentrifuge at 13000 rpm for about 30 seconds and the supernatant removed. The cells were resuspended in 1 ml 1.times.TE (10 mM Tris-HCl, 1 mM EDTA, pH 7.5), centrifuged at 13000 rpm for about 30 seconds and resuspended in 1 ml 1.times.TE. About 100-200 .mu.l of cells were plated onto SCD-URA media, as described above, and allowed to grow at about 30.degree. C. for about 3 days. After 3 days, transformed colonies were streaked for single colonies on SCD-URA plates and allowed to grow at about 30.degree. C. for about 3 days. From these plates, single colonies were streaked onto SCD agar plates (20 g/L agar in SCD media) containing 1 g/L 5-FOA (Research Products International Corp, Mt. Prospect, Ill.), and also inoculated into YPD liquid broth. The plates were allowed to grow at about 30.degree. C. for about 4 days and the liquid culture was grown overnight at about 30.degree. C. with agitation of about 200 rpm.

[0313] To confirm that integration of the construct was correct, genomic DNA was prepared from the YPD overnight cultures. Briefly, the yeast cells were pelleted by centrifugation at room temperature for 5 minutes at approximately 3000 rpm. The cell pellet was resuspended in 200 .mu.l of breaking buffer (2% Triton X-100, 1% SDS, 100 mM NaCl, 10 mM Tris pH8, 1 mM EDTA) and placed into a 1.5 ml microcentrifuge tube containing about 200 .mu.l glass beads and about 200 .mu.l of phenol:chloroform:isoamyl alcohol (Ambion, Austin, Tex.). The mixture was vortexed for about 2 to 5 minutes at room temperature. About 200 .mu.l of sterile water was then added and the mixture vortexed again. The mixture was centrifuged for about 10 minutes at about 13000 rpm and the aqueous layer transferred to a new microcentrifuge tube. About 1/10th of the aqueous layers volume of 3M NaOAc ((British Drug Houses, Ltd., West Chester, Pa.) was added to the aqueous layer and 2.5.times. the total volume of the mixture of ethanol was added and mixed well. The genomic DNA was then precipitated by placing the tubes at -80.degree. C. for at least one hour (or in a dry ice/ethanol bath for about 30 minutes). The tubes were then centrifuged at about 13000 rpm for 5 minutes at about 4.degree. C. to pellet the DNA. The DNA pellet was then washed two times or more times with about 200 .mu.l of 70% ethanol and re-centrifuged. The DNA pellet was dried using vacuum assisted air drying and resuspended in about 50 to 200 .mu.l 1.times.TE.

[0314] The genomic DNA isolated as described above was used in a PCR amplification reaction consisting of about 50 ng of the genomic DNA was added to 1.times.Pfu Ultra II buffer, 0.3 mM dNTPs, 0.3 .mu.mol gene-specific primers (#276/#277), and 1 U Pfu Ultra II polymerase (Agilent, La Jolla, Calif.) in a 50 .mu.l reaction mix. The reaction mix was cycled as follows: 95.degree. C. 10 minutes followed by 30 rounds of 95.degree. C. for 20 seconds, 60.degree. C. for 30 seconds, and 72.degree. C. for 45 seconds. A final 5 minute extension reaction at 72.degree. C. was also included. A second round of PCR amplification was done using 50 ng of the first round PCR amplification with 1.times.Pfu Ultra II buffer, 0.3 mM dNTPs, 0.3 .mu.mol gene-specific primers (#352/#353 in the second round), and 1 U Pfu Ultra II polymerase (Agilent, La Jolla, Calif.) in a 50 .mu.l reaction mix. The second mixture was cycled as follows: 95.degree. C. 10 minutes followed by 30 rounds of 95.degree. C. for 20 seconds, 55.degree. C. for 30 seconds, and 72.degree. C. for about 30 seconds. A final 5 minute extension reaction at 72.degree. C. was also included.

[0315] Positive colonies from the screen in YPD that had a PCR product of about 1600 bp indicating the insertion of the integration construct in the TAL1 locus, and that grew on the plates containing 5-FOA were grown overnight in YPD at about 30.degree. C. with agitation of about 200 rpm. Genomic DNA was prepared as above and checked by PCR amplification using primers #276 and #277 (described below). Positive clones were identified which had a PCR product of 359 bp indicating the deletion of the tal1 locus and the remaining portion of the 200-mer tag. The strain carrying the correct traits was labeled as BF716. The BY4741 version was labeled as BF717.

TABLE-US-00039 Oligonucleotides (SEQ ID NO: 280) #276 - 5'-GTCGACTGGAAATCTGGAAGGTTGGT-3' (SEQ ID NO: 281) #277 - 5'-GTCGACGCTTTGCTGCAAGGATTCAT-3'

[0316] The BY4742 tal1 strain was then made competent using the high efficiency competent method as described above. About 500 ng of plasmids pBF290 and pBF292 or with plasmids p426GPD and p425GPD were used to transform the BY4742 tal1 strain. The final transformation mixture was plated onto SCD-ura-leu plates and grown at about 30.degree. C. for about 3 days. Strain BF716 (BY4742 tal1) with p426GPD/p425GPD was labeled as BF738. Strain BF716 with pBF290/pBF292 was labeled as BF741.

[0317] A fermentation test of the BF738 was conducted against BF741 in a 400 ml multiplexed fermentor. The fermentation medium utilized was SC-Ura-Leu with 2% glucose. Cultures were grown overnight in 50 ml SC-Ura-Leu 2% glucose and used to inoculate the fermentors at 4 to 5% inoculum. OD.sub.600 readings of the inoculum are shown in the table below.

TABLE-US-00040 Strain OD.sub.600 nm BF741 (tal1 PP) 3.70 BF738 (tal1 VV) 3.80

[0318] The cultures were grown aerobically at about 30.degree. C. with about 250 rpm agitation, 0.5 vvm sparge of process air, 21% O.sub.2. pH was controlled at 5.0 with 1N NaOH. Glucose concentrations in the fermentation broth were monitored by YSI 2700 BioAnalyzers during aerobic fermentation. Once glucose was depleted the fermentation was switched to anaerobic conditions. Before changing to anaerobic conditions samples were taken to measure glucose usage. Biomass was measured by monitoring the optical density of the growth medium at 600 nanometers (e.g., OD.sub.600). EFT at glucose depletion, glucose concentrations and OD.sub.600 are shown in the table below. The table below reports the amount of biomass in the fermentor and the amount of ethanol produced in grams per liter, after the specified amount of time (EFT), by the respective strains.

TABLE-US-00041 Strain EFT (hrs) OD.sub.600 nm Glucose (g/L) BF741 (tal1 PP) 43.5 2.50 0.045 BF738 (tal1 VV) 31 2.95 0.192

[0319] At the beginning of anaerobic fermentation, about 19 g/L glucose, 3.7 g/L YNB, 4 ml/L of 2.5 g/L ergosterol (in ethanol), 0.4 ml/L Tween 80, and 0.01% AF-204 were added to each fermentor. Oxygen was purged with 100% N.sub.2 sparged at 0.25 vvm for the remainder of the fermentation. Samples were taken every 4 to 12 hours and analyzed for ethanol production and glucose utilization using the YSI Bioanalyzers, and amount of biomass by OD.sub.600. The fermentations were harvested when the glucose bolus was depleted. Anaerobic ethanol produced, anaerobic glucose consumption and OD.sub.600 of the final sample are shown in the table below.

TABLE-US-00042 Ethanol Glucose Strain OD.sub.600 nm Produced (g/L) Consumed (g/L) BF741 (tal1 PP) 3.75 8.1 18.99 BF738 (tal1 VV) 3.6 6.5 18.168

[0320] The results are also presented graphically in FIGS. 12A and 12B. FIG. 12A illustrates the fermentation data for strain BF738 (BY4742 tal1 with vector controls p426GPD and p425GPD) and FIG. 12B illustrates the fermentation data for strain BF741 (BY4742 tal1 with plasmids pBF290 (EDD-PAO1) and pBF292 (EDA-PAO1). The results presented above and in FIGS. 12A and 12B indicate that strain BF741, which expresses the activities encoded by the eda and edd genes, yields more ethanol than control strain BF738. Strain BF741 produced about 0.43 g ethanol per gram of glucose consumed whereas strain BF738 produced only 0.36 g ethanol per gram of glucose consumed. Fermentation profiles were calculated for strains BF738 and BF741 and are presented below.

TABLE-US-00043 Strain Yx/s Yp/s Yp/x Qp qp BF738 0.198 0.358 3.76 0.371 0.103 BF741 0.203 0.439 2.16 0.439 0.131 Yx/s = OD/g glucose, Yp/s = q ethanol/g glucose, Yp/x = g ethanol/OD Qp = g ethanol/Lh.sup.-1, qp = g ethanol/ODh.sup.-1

Example 14

Complementation and Improved Ethanol Yield in a pfk1 Strain of S. cerevisiae expressing the EDA and EDD Genes from P. aeruginosa

[0321] Strain BF205 (YGR240C/BY4742, ATCC Cat. No. 4015893; PubMed: 10436161) was transformed with plasmids p426GPD and p425GPD or with plasmids pBF290 (p426GPD/EDD-PAO1) and pBF292 (p426GPD/EDA-PAO1), generating strains BF740 (vector controls) and BF743, respectively. Transformation was accomplished by a high-efficiency competency method using 500 ng of plasmids p426GPD and p425GPD or plasmids pBF290 and pBF292. Transformants were plated onto SCD-ura-leu agar plates and grown at about 30.degree. C. for about 3 days. The final strains were named BF740 (BY4742 pfk1 with plasmids p426GPD and p425GPD) and BF743 (BY4742-pfk1, pBF290/pBF292).

[0322] A fermentation test of the control strain BF740 (BY4742 pfk1 with plasmids p426GPD and p425GPD) was conducted against BF743 (BY4742-pfk1, pBF290/pBF292) in 400 ml w.v. Multifors multiplexed fermentors. The fermentation medium was SC-Ura-Leu with 2% glucose. Vessels were inoculated with about a 10% inoculum from overnight cultures grown in about 50 ml SC-Ura-Leu with about 2% glucose and normalized to 0.5 OD.sub.600. The actual inoculated ODs for the fermentations are shown in the table below.

TABLE-US-00044 Strain OD.sub.600 nm BF740 (pfk1 VV) 0.571 BF743 (pfk1 PP) 0.535

[0323] The cultures were grown aerobically at about 30.degree. C. with about 250 rpm agitation, 1 vvm sparge of process air, (21% O.sub.2). The pH was controlled at around 5.0 with 0.25 N NaOH. Once glucose concentrations dropped below 0.5 g/L the fermentation was switched to anaerobic conditions. Before changing to anaerobic conditions, samples were taken to measure glucose concentrations and biomass by OD.sub.600 as shown in the table below. The table below shows the beginning cell biomass and glucose concentration (in grams per liter of nutrient broth). Ethanol and glucose concentrations in the fermentation broth were monitored using a YSI 2700 BioAnalyzer.

TABLE-US-00045 Ethanol Glucose Strain OD.sub.600 nm (g/L) (g/L) BF740 5.94 5.67 0.033 BF743 5.82 5.82 0.034

[0324] At the beginning of the anaerobic portion of the fermentation, a bolus of about 18 g/L glucose plus about 4 ml/L of 2.5 g/L ergosterol in Ethanol, 0.4 ml/L Tween 80, and 0.01% AF-204 were added to each fermentor. Oxygen was purged with 100% N.sub.2 sparged at about 1 vvm until pO.sub.2 was below 1%. Samples were taken every 4 to 8 hours and measured for ethanol and glucose concentrations and biomass (OD.sub.600). The fermentation was harvested when the glucose concentration was below 0.05 g/L, at about 42 hours elapsed fermentation time (EFT). Ethanol and glucose concentrations and OD.sub.600 of the final sample are shown in the table below.

TABLE-US-00046 Ethanol Glucose Strain OD.sub.600 nm (g/L) (g/L) BF740 6.4 5.07 14.6 BF743 5.09 13.37 0.042

[0325] The results also are present graphically in FIGS. 13A and 13B. The results presented in FIG. 13A illustrate the fermentation data for strain BF740 grown on 2% dextrose and the results presented in FIG. 13B illustrate the fermentation data for strain BF743 grown on 2% dextrose. The results indicate that the BY4742 pfk1 mutant strain, BF740 cannot utilize glucose nor produce ethanol under anaerobic conditions. However, the engineered strain BF743 is capable of both utilizing glucose and producing ethanol under anaerobic conditions. Strain BF743 has a yield of about 0.39 g ethanol per gram of glucose consumed versus no yield in the control strain BF740. The fermentation profile for strains BF740 and BF743 are presented in the table below.

TABLE-US-00047 Strain Yx/s Yp/s Yp/x Qp qp BF740 2.133 -0.700 -0.328 -0.022 -0.003 BF743 0.264 0.390 1.483 0.178 0.035 Yx/s = OD/g glucose, Yp/s = q ethanol/g glucose, Yp/x = g ethanol/OD Qp = g ethanol/Lh.sup.-1, qp = g ethanol/ODh.sup.-1

Example 15

EDD and EDA Activities from Other Sources

[0326] The EDD and EDA genes also have been isolated from additional sources and tested for the ability to direct fermentation in yeast. The additional EDD and EDA genes have been isolated from Shewanella oneidensis, Gluconobacter oxydans, and Ruminococcus flavefaciens. Genomic DNA was purchased from ATCC for both S. oneidensis (Cat. No. 700550D) and G. oxydans (621 HD-5). R. flavefaciens, strain C94 (NCDO 2213) was also purchased from ATCC (Cat. No. 19208). To prepare genomic DNA, R. flavefaciens was grown in cooked meat media (Becton Dickinson, Franklin Lakes, N.J. USA) overnight at 37.degree. C. and genomic DNA was isolated using a Qiagen DNeasy Blood and Tissue kit according to the manufacture's protocol. The eda and edd genes were PCR amplified from the corresponding genomic DNA using the following sets of PCR oligonucleotides. The nucleotide and amino acid sequences of eda and edd genes PCR amplified using the following sets of PCR oligonucleotide primers, also is given below.

TABLE-US-00048 The S. oneidensis edd gene: (SEQ. ID. NO: 73) 5'-GTTCACTGCactagtaaaaaaATGCACTCAGTCGTTCAATCTG-3' (SEQ. ID. NO: 74) 5'-CTTCGAGATCTCGAGTTAGTAAAGTTCATCGATGGC-3' The S. oneidensis eda gene: (SEQ. ID. NO: 75) 5'-GTTCACTGCactagtaaaaaaATGCTTGAGAATAACTGGTC-3' (SEQ. ID. NO: 76) 5'-CTTCGAGATCTCGAGTTAAAGTCCGCCAATCGCCTC-3' The G. oxydans edd gene: (SEQ. ID. NO: 77) 5'-GTTCACTGCactagtaaaaaaATGTCTCTGAATCCCGTCGTC-3' (SEQ. ID. NO: 78) 5'-CTTCGAGATCTCGAGTTAGTGAATGTCGTCGCCAAC-3' The G. oxydans eda gene: (SEQ. ID. NO: 79) 5'-GTTCACTGCactagtaaaaaaATGATCGATACTGCCAAACTC-3' (SEQ. ID. NO: 80) 5'-CTTCGAGATCTCGAGTCAGACCGTGAAGAGTGCCGC-3' The R. flavefaciens edd gene: (SEQ. ID. NO: 81) 5'-GTTCACTGCactagtaaaaaaATGAGCGATAATTTTTTCTGCG-3' (SEQ. ID. NO: 82) 5'-CTTCGAGATCTCGAGCTATTTCCTGTTGATGATAGC-3' S. oneidensis 6-phosphogluconate dehydratase (edd) (SEQ. ID. NO: 83) ATGCACTCAGTCGTTCAATCTGTTACTGACAGAATTATTGCCCGTAGCAAAGCATCTCGTGAA GCATACCTTGCTGCGTTAAACGATGCCCGTAACCATGGTGTACACCGAAGTTCCTTAAGTTGC GGTAACTTAGCCCACGGTTTTGCGGCTTGTAATCCCGATGACAAAAATGCATTGCGTCAATTG ACGAAGGCCAATATTGGGATTATCACCGCATTCAACGATATGTTATCTGCACACCAACCCTAT GAAACCTATCCTGATTTGCTGAAAAAAGCCTGTCAGGAAGTCGGTAGTGTTGCGCAGGTGGC TGGCGGTGTTCCCGCCATGTGTGACGGCGTGACTCAAGGTCAGCCCGGTATGGAATTGAGCT TACTGAGCCGTGAAGTGATTGCGATGGCAACCGCGGTTGGCTTATCACACAATATGTTTGATG GAGCCTTACTCCTCGGTATTTGCGATAAAATTGTACCGGGTTTACTGATTGGTGCCTTAAGTTT TGGCCATTTACCTATGTTGTTTGTGCCCGCAGGCCCAATGAAATCGGGTATTCCTAATAAGGA AAAAGCTCGCATTCGTCAGCAATTTGCTCAAGGTAAGGTCGATAGAGCACAACTGCTCGAAGC GGAAGCCCAGTCTTACCACAGTGCGGGTACTTGTACCTTCTATGGTACCGCTAACTCGAACCA ACTGATGCTCGAAGTGATGGGGCTGCAATTGCCGGGTTCATCTTTTGTGAATCCAGACGATCC ACTGCGCGAAGCCTTAAACAAAATGGCGGCCAAGCAGGTTTGTCGTTTAACTGAACTAGGCA CTCAATACAGTCCGATTGGTGAAGTCGTTAACGAAAAATCGATAGTGAATGGTATTGTTGCATT GCTCGCGACGGGTGGTTCAACAAACTTAACCATGCACATTGTGGCGGCGGCCCGTGCTGCA GGTATTATCGTCAACTGGGATGACTTTTCGGAATTATCCGATGCGGTGCCTTTGCTGGCACGT GTTTATCCAAACGGTCATGCGGATATTAACCATTTCCACGCTGCGGGTGGTATGGCTTTCCTT ATCAAAGAATTACTCGATGCAGGTTTGCTGCATGAGGATGTCAATACTGTCGCGGGTTATGGT CTGCGCCGTTACACCCAAGAGCCTAAACTGCTTGATGGCGAGCTGCGCTGGGTCGATGGCC CAACAGTGAGTTTAGATACCGAAGTATTAACCTCTGTGGCAACACCATTCCAAAACAACGGTG GTTTAAAGCTGCTGAAGGGTAACTTAGGCCGCGCTGTGATTAAAGTGTCTGCCGTTCAGCCAC AGCACCGTGTGGTGGAAGCGCCCGCAGTGGTGATTGACGATCAAAACAAACTCGATGCGTTA TTTAAATCCGGCGCATTAGACAGGGATTGTGTGGTGGTGGTGAAAGGCCAAGGGCCGAAAGC CAACGGTATGCCAGAGCTGCATAAACTAACGCCGCTGTTAGGTTCATTGCAGGACAAAGGCTT TAAAGTGGCACTGATGACTGATGGTCGTATGTCGGGCGCATCGGGCAAAGTACCTGCGGCGA TTCATTTAACCCCTGAAGCGATTGATGGCGGGTTAATTGCAAAGGTACAAGACGGCGATTTAA TCCGAGTTGATGCACTGACCGGCGAGCTGAGTTTATTAGTCTCTGACACCGAGCTTGCCACC AGAACTGCCACTGAAATTGATTTACGCCATTCTCGTTATGGCATGGGGCGTGAGTTATTTGGA GTACTGCGTTCAAACTTAAGCAGTCCTGAAACCGGTGCGCGTAGTACTAGCGCCATCGATGA ACTTTACTAA S. oneidensis 6-phosphogluconate dehydratase (edd)-Amino Acid sequence (SEQ. ID. NO: 84) MHSVVQSVTDRIIARSKASREAYLAALNDARNHGVHRSSLSCGNLAHGFAACNPDDKNALRQLTK ANIGIITAFNDMLSAHQPYETYPDLLKKACQEVGSVAQVAGGVPAMCDGVTQGQPGMELSLLSRE VIAMATAVGLSHNMFDGALLLGICDKIVPGLLIGALSFGHLPMLFVPAGPMKSGIPNKEKARIRQQF AQGKVDRAQLLEAEAQSYHSAGTCTFYGTANSNQLMLEVMGLQLPGSSFVNPDDPLREALNKMA AKQVCRLTELGTQYSPIGEVVNEKSIVNGIVALLATGGSTNLTMHIVAAARAAGIIVNWDDFSELSD AVPLLARVYPNGHADINHFHAAGGMAFLIKELLDAGLLHEDVNTVAGYGLRRYTQEPKLLDGELR WVDGPTVSLDTEVLTSVATPFQNNGGLKLLKGNLGRAVIKVSAVQPQHRVVEAPAVVIDDQNKLD ALFKSGALDRDCVVVVKGQGPKANGMPELHKLTPLLGSLQDKGFKVALMTDGRMSGASGKVPAA IHLTPEAIDGGLIAKVQDGDLIRVDALTGELSLLVSDTELATRTATEIDLRHSRYGMGRELFGVLRSN LSSPETGARSTSAIDELY G. oxydans 6-phosphogluconate dehydratase (edd) (SEQ. ID. NO: 85) ATGTCTCTGAATCCCGTCGTCGAGAGCGTGACTGCCCGTATCATCGAGCGTTCGAAAGTCTC CCGTCGCCGGTATCTCGCCCTGATGGAGCGCAACCGCGCCAAGGGTGTGCTCCGGCCCAAG CTGGCCTGCGGTAATCTGGCGCATGCCATCGCAGCGTCCAGCCCCGACAAGCCGGATCTGA TGCGTCCCACCGGGACCAATATCGGCGTGATCACGACCTATAACGACATGCTCTCGGCGCAT CAGCCGTATGGCCGCTATCCCGAGCAGATCAAGCTGTTCGCCCGTGAAGTCGGTGCGACGG CCCAGGTTGCAGGCGGCGCACCAGCAATGTGTGATGGTGTGACGCAGGGGCAGGAGGGCAT GGAACTCTCCCTGTTCTCCCGTGACGTGATCGCCATGTCCACGGCGGTCGGGCTGAGCCAC GGCATGTTTGAGGGCGTGGCGCTGCTGGGCATCTGTGACAAGATTGTGCCGGGCCTTCTGAT GGGCGCGCTGCGCTTCGGTCATCTCCCGGCCATGCTGATCCCGGCAGGGCCAATGCCGTCC GGTCTTCCAAACAAGGAAAAGCAGCGCATCCGCCAGCTCTATGTGCAGGGCAAGGTCGGGC AGGACGAGCTGATGGAAGCGGAAAACGCCTCCTATCACAGCCCGGGCACCTGCACGTTCTAT GGCACGGCCAATACGAACCAGATGATGGTCGAAATCATGGGTCTGATGATGCCGGACTCGGC TTTCATCAATCCCAACACGAAGCTGCGTCAGGCAATGACCCGCTCGGGTATTCACCGTCTGG CCGAAATCGGCCTGAACGGCGAGGATGTGCGCCCGCTCGCTCATTGCGTAGACGAAAAGGC CATCGTGAATGCGGCGGTCGGGTTGCTGGCGACGGGTGGTTCGACCAACCATTCGATCCATC TTCCTGCTATCGCCCGTGCCGCTGGTATCCTGATCGACTGGGAAGACATCAGCCGCCTGTCG TCCGCGGTTCCGCTGATCACCCGTGTTTATCCGAGCGGTTCCGAGGACGTGAACGCGTTCAA CCGCGTGGGTGGTATGCCGACCGTGATCGCCGAACTGACGCGCGCCGGGATGCTGCACAAG GACATTCTGACGGTCTCTCGTGGCGGTTTCTCCGATTATGCCCGTCGCGCATCGCTGGAAGG CGATGAGATCGTCTACACCCACGCGAAGCCGTCCACGGACACCGATATCCTGCGCGATGTGG CTACGCCTTTCCGGCCCGATGGCGGTATGCGCCTGATGACTGGTAATCTGGGCCGCGCGAT CTACAAGAGCAGCGCTATTGCGCCCGAGCACCTGACCGTTGAAGCGCCGGCACGGGTCTTC CAGGACCAGCATGACGTCCTCACGGCCTATCAGAATGGTGAGCTTGAGCGTGATGTTGTCGT GGTCGTCCGGTTCCAGGGACCGGAAGCCAACGGCATGCCGGAGCTTCACAAGCTGACCCCG ACTCTGGGCGTGCTTCAGGATCGCGGCTTCAAGGTGGCCCTGCTGACGGATGGACGCATGT CCGGTGCGAGCGGCAAGGTGCCGGCCGCCATTCATGTCGGTCCCGAAGCGCAGGTTGGCG GTCCGATCGCCCGCGTGCGGGACGGCGACATGATCCGTGTCTGCGCGGTGACGGGACAGAT CGAGGCTCTGGTGGATGCCGCCGAGTGGGAGAGCCGCAAGCCGGTCCCGCCGCCGCTCCC GGCATTGGGAACGGGCCGCGAACTGTTCGCGCTGATGCGTTCGGTGCATGATCCGGCCGAG GCTGGCGGATCCGCGATGCTGGCCCAGATGGATCGCGTGATCGAAGCCGTTGGCGACGACA TTCACTAA G. oxydans 6-phosphogluconate dehydratase (edd)-Amino Acid sequence (SEQ. ID. NO: 86) MSLNPVVESVTARIIERSKVSRRRYLALMERNRAKGVLRPKLACGNLAHAIAASSPDKPDLMRPTG TNIGVITTYNDMLSAHQPYGRYPEQIKLFAREVGATAQVAGGAPAMCDGVTQGQEGMELSLFSRD VIAMSTAVGLSHGMFEGVALLGICDKIVPGLLMGALRFGHLPAMLIPAGPMPSGLPNKEKQRIRQL YVQGKVGQDELMEAENASYHSPGTCTFYGTANTNQMMVEIMGLMMPDSAFINPNTKLRQAMTR SGIHRLAEIGLNGEDVRPLAHCVDEKAIVNAAVGLLATGGSTNHSIHLPAIARAAGILIDWEDISRLSS AVPLITRVYPSGSEDVNAFNRVGGMPTVIAELTRAGMLHKDILTVSRGGFSDYARRASLEGDEIVY THAKPSTDTDILRDVATPFRPDGGMRLMTGNLGRAIYKSSAIAPEHLTVEAPARVFQDQHDVLTAY QNGELERDVVVVVRFQGPEANGMPELHKLTPTLGVLQDRGFKVALLTDGRMSGASGKVPAAIHV GPEAQVGGPIARVRDGDMIRVCAVTGQIEALVDAAEWESRKPVPPPLPALGTGRELFALMRSVHD PAEAGGSAMLAQMDRVIEAVGDDIH R. flavefaciens phosphogluconate dehydratase/DHAD (SEQ. ID. NO: 87) ATGAGCGATAATTTTTTCTGCGAGGGTGCGGATAAAGCCCCTCAGCGTTCACTTTTCAATGCA CTGGGCATGACTAAAGAGGAAATGAAGCGTCCCCTCGTTGGTATCGTTTCTTCCTACAATGAG ATCGTTCCCGGCCATATGAACATCGACAAGCTGGTCGAAGCCGTTAAGCTGGGTGTAGCTAT GGGCGGCGGCACTCCTGTTGTTTTCCCTGCTATCGCTGTATGCGACGGTATCGCTATGGGTC ACACAGGCATGAAGTACAGCCTTGTTACCCGTGACCTTATTGCCGATTCTACAGAGTGTATGG CTCTTGCTCATCACTTCGACGCACTGGTAATGATACCTAACTGCGACAAGAACGTTCCCGGCC TGCTTATGGCGGCTGCACGTATCAATGTTCCTACTGTATTCGTAAGCGGCGGCCCTATGCTTG CAGGCCATGTAAAGGGTAAGAAGACCTCTCTTTCATCCATGTTCGAGGCTGTAGGCGCTTACA CAGCAGGCAAGATAGACGAGGCTGAACTTGACGAATTCGAGAACAAGACCTGCCCTACCTGC GGTTCATGTTCGGGTATGTATACCGCTAACTCCATGAACTGCCTCACTGAGGTACTGGGTATG GGTCTCAGAGGCAACGGCACTATCCCTGCTGTTTACTCCGAGCGTATCAAGCTTGCAAAGCA GGCAGGTATGCAGGTTATGGAACTCTACAGAAAGAATATCCGCCCTCTCGATATCATGACAGA GAAGGCTTTCCAGAACGCTCTCACAGCTGATATGGCTCTTGGATGTTCCACAAACAGTATGCT CCATCTCCCTGCTATCGCCAACGAATGCGGCATAAATATCAACCTTGACATGGCTAACGAGAT AAGCGCCAAGACTCCTAACCTCTGCCATCTTGCACCGGCAGGCCACACCTACATGGAAGACC TCAACGAAGCAGGCGGAGTTTATGCAGTTCTCAACGAGCTGAGCAAAAAGGGACTTATCAACA CCGACTGCATGACTGTTACAGGCAAGACCGTAGGCGAGAATATCAAGGGCTGCATCAACCGT GACCCTGAGACTATCCGTCCTATCGACAACCCATACAGTGAAACAGGCGGAATCGCCGTACT CAAGGGCAATCTTGCTCCCGACAGATGTGTTGTGAAGAGAAGCGCAGTTGCTCCCGAAATGC TGGTACACAAAGGCCCTGCAAGAGTATTCGACAGCGAGGAAGAAGCTATCAAGGTCATCTAT GAGGGCGGTATCAAGGCAGGCGACGTTGTTGTTATCCGTTACGAAGGCCCTGCAGGCGGCC CCGGCATGAGAGAAATGCTCTCTCCTACATCAGCTATACAGGGTGCAGGTCTCGGCTCAACT

GTTGCTCTAATCACTGACGGACGTTTCAGCGGCGCTACCCGTGGTGCGGCTATCGGACACGT ATCCCCCGAAGCTGTAAACGGCGGTACTATCGCATATGTCAAGGACGGCGATATTATCTCCAT CGACATACCGAATTACTCCATCACTCTTGAAGTATCCGACGAGGAGCTTGCAGAGCGCAAAAA GGCAATGCCTATCAAGCGCAAGGAGAACATCACAGGCTATCTGAAGCGCTATGCACAGCAGG TATCATCCGCAGACAAGGGCGCTATCATCAACAGGAAATAG R. flavefaciens phosphogluconate dehydratase/DHAD-Amino Acid sequence (SEQ. ID. NO: 88) MSDNFFCEGADKAPQRSLFNALGMTKEEMKRPLVGIVSSYNEIVPGHMNIDKLVEAVKLGVAMGG GTPVVFPAIAVCDGIAMGHTGMKYSLVTRDLIADSTECMALAHHFDALVMIPNCDKNVPGLLMAAA RINVPTVFVSGGPMLAGHVKGKKTSLSSMFEAVGAYTAGKIDEAELDEFENKTCPTCGSCSGMYT ANSMNCLTEVLGMGLRGNGTIPAVYSERIKLAKQAGMQVMELYRKNIRPLDIMTEKAFQNALTAD MALGCSTNSMLHLPAIANECGININLDMANEISAKTPNLCHLAPAGHTYMEDLNEAGGVYAVLNEL SKKGLINTDCMTVTGKTVGENIKGCINRDPETIRPIDNPYSETGGIAVLKGNLAPDRCVVKRSAVAP EMLVHKGPARVFDSEEEAIKVIYEGGIKAGDVVVIRYEGPAGGPGMREMLSPTSAIQGAGLGSTVA LITDGRFSGATRGAAIGHVSPEAVNGGTIAYVKDGDIISIDIPNYSITLEVSDEELAERKKAMPIKRKE NITGYLKRYAQQVSSADKGAIINRK

[0327] Pair wise homology comparisons for various edd proteins are presented in the table below. The comparisons were made using ClustalW software (ClustalW and ClustalX version 2; Larkin M. A., Blackshields G., Brown N. P., Chema R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A., Lopez R., Thompson J. D., Gibson T. J. and Higgins D. G., Bioinformatics 2007 23(21): 2947-2948). ClustalW is a free alignment tool available at the European Bioinformatics Institute website (e.g., world wide web uniform resource locator ebi.ac.uk, specific ClustalW location is ebi.ac.uk/Tools/clustalw2/index.html). PAO1=Pseudomonas aeruginosa PAO1, E.C.=Eschericia coli, S.O.=S. oneidensis, G.O.=G. oxydans, R.F.=Ruminococcus flavefaciens.

TABLE-US-00049 PAO1 E.C. S.O. G.O. R.F. PAO1 100 62 62 55 29 E.C. 62 100 66 56 30 S.O. 62 66 100 56 28 G.O. 55 56 56 100 28 R.F. 29 30 28 28 100

TABLE-US-00050 S. oneidensis keto-hydroxyglutarate-aldolase/keto-deoxy-phosphogluconate aldolase (eda) (SEQ. ID. NO: 89) ATGCTTGAGAATAACTGGTCATTACAACCACAAGATATTTTTAAACGCAGCCCTATTGTTCCTG TTATGGTGATTAACAAGATTGAACATGCGGTGCCCTTAGCTAAAGCGCTGGTTGCCGGAGGG ATAAGCGTGTTGGAAGTGACATTACGCACGCCATGCGCCCTTGAAGCTATCACCAAAATCGCC AAGGAAGTGCCTGAGGCGCTGGTTGGCGCGGGGACTATTTTAAATGAAGCCCAGCTTGGACA GGCTATCGCCGCTGGTGCGCAATTTATTATCACTCCAGGTGCGACAGTTGAGCTGCTCAAAG CGGGCATGCAAGGACCGGTGCCGTTAATTCCGGGCGTTGCCAGTATTTCCGAGGTGATGACG GGCATGGCGCTGGGCTACACTCACTTTAAATTCTTCCCTGCTGAAGCGTCAGGTGGCGTTGA TGCGCTTAAGGCTTTCTCTGGGCCGTTAGCAGATATCCGCTTCTGCCCAACAGGTGGAATTAC CCCGAGCAGCTATAAAGATTACTTAGCGCTGAAGAATGTCGATTGTATTGGTGGCAGCTGGAT TGCTCCTACCGATGCGATGGAGCAGGGCGATTGGGATCGTATCACTCAGCTGTGTAAAGAGG CGATTGGCGGACTTTAA S. oneidensis keto-hydroxyglutarate-aldolase/keto-deoxy-phosphogluconate aldolase (eda)-Amino Acid sequence (SEQ. ID. NO: 90) MLENNWSLQPQDIFKRSPIVPVMVINKIEHAVPLAKALVAGGISVLEVTLRTPCALEAITKIAKEVPEA LVGAGTILNEAQLGQAIAAGAQFIITPGATVELLKAGMQGPVPLIPGVASISEVMTGMALGYTHFKF FPAEASGGVDALKAFSGPLADIRFCPTGGITPSSYKDYLALKNVDCIGGSWIAPTDAMEQGDWDRI TQLCKEAIGGL G. oxydans keto-hydroxyglutarate-aldolase/keto-deoxy-phosphogluconate aldolase (eda) (SEQ. ID. NO: 91) ATGATCGATACTGCCAAACTCGACGCCGTCATGAGCCGTTGTCCGGTCATGCCGGTGCTGGT GGTCAATGATGTGGCTCTGGCCCGCCCGATGGCCGAGGCTCTGGTGGCGGGTGGACTGTCC ACGCTGGAAGTCACGCTGCGCACGCCCTGCGCCCTTGAAGCTATTGAGGAAATGTCGAAAGT ACCAGGCGCGCTGGTCGGTGCCGGTACGGTGCTGAATCCGTCCGACATGGACCGTGCCGTG AAGGCGGGTGCGCGCTTCATCGTCAGCCCCGGCCTGACCGAGGCGCTGGCAAAGGCGTCG GTTGAGCATGACGTCCCCTTCCTGCCAGGCGTTGCCAATGCGGGTGACATCATGCGGGGTCT GGATCTGGGTCTGTCACGCTTCAAGTTCTTCCCGGCTGTGACGAATGGCGGCATTCCCGCGC TCAAGAGCTTGGCCAGTGTTTTTGGCAGCAATGTCCGTTTCTGCCCCACGGGCGGCATTACG GAAGAGAGCGCACCGGACTGGCTGGCGCTTCCCTCCGTGGCCTGCGTCGGCGGATCCTGG GTGACGGCCGGCACGTTCGATGCGGACAAGGTCCGTCAGCGCGCCACGGCTGCGGCACTCT TCACGGTCTGA G. oxydans keto-hydroxyglutarate-aldolase/keto-deoxy-phosphogluconate aldolase (eda)-Amino Acid (SEQ. ID. NO: 92) MIDTAKLDAVMSRCPVMPVLVVNDVALARPMAEALVAGGLSTLEVTLRTPCALEAIEEMSKVPGAL VGAGTVLNPSDMDRAVKAGARFIVSPGLTEALAKASVEHDVPFLPGVANAGDIMRGLDLGLSRFK FFPAVTNGGIPALKSLASVFGSNVRFCPTGGITEESAPDWLALPSVACVGGSWVTAGTFDADKVR QRATAAALFTV

[0328] Pair wise homology comparisons for various eda proteins are presented in the table below. The comparisons were made using ClustalW software (ClustalW and ClustalX version 2; Larkin M. A., Blackshields G., Brown N. P., Chema R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A., Lopez R., Thompson J. D., Gibson T. J. and Higgins D. G., Bioinformatics 2007 23(21): 2947-2948). PAO1=Pseudomonas aeruginosa PAO1, E.C.=Eschericia coli, S.O.=S. oneidensis, G.O.=G. oxydans, R.F.=Ruminococcus flavefaciens.

TABLE-US-00051 PAO1 E.C. S.O. G.O. PAO1 100 41 44 40 E.C. 41 100 60 46 S.O. 44 60 100 45 G.O. 40 46 45 100

[0329] All oligonucleotides set forth above were purchased from Integrated technologies ("IDT", Coralville, Iowa). These oligonucleotides were designed to incorporate a SpeI restriction endonuclease cleavage site upstream and an XhoI restriction endonuclease cleavage site downstream of the edd and eda gene constructs, such that the sites could be used to clone the genes into yeast expression vectors p426GPD (ATCC accession number 87361) and p425GPD (ATCC accession number 87359). In addition to incorporating restriction endonuclease cleavage sites, the forward oligonucleotides were designed to incorporate six consecutive A nucleotides immediately upstream of the ATG initiation codon.

[0330] PCR amplification of the genes were performed as follows: about 100 ng of the genomic DNA was added to 1.times.Pfu Ultra II buffer, 0.3 mM dNTPs, 0.3 .mu.mol gene-specific primers and 1 U Pfu Ultra II polymerase (Agilent, La Jolla, Calif.) in a 50 .mu.l reaction mix. The reaction mixture was cycled as follows: 95.degree. C. 10 minutes followed by 30 rounds of 95.degree. C. for 20 seconds, 50.degree. C. (eda amplifications) or 53.degree. C. (edd amplifications) for 30 seconds, and 72.degree. C. for 15 seconds (eda amplifications) or 30 seconds (edd amplifications). A final 5 minute extension reaction at 72.degree. C. was also included. Each amplified product was TOPO cloned into the pCR Blunt II TOPO vector (Life Technologies, Carlsbad, Calif.) according to the manufacturer's recommendations and the sequences verified (GeneWiz, La Jolla, Calif.).

[0331] Cloning of New Edd and Eda Genes into Yeast Expression Vectors

[0332] Each of the sequence-verified eda and edd fragments were subcloned into the corresponding restriction sites in plasmids p425GPD and p426GPD vectors (ATCC #87361; PubMed: 7737504). Briefly, about 50 ng of SpeI-XhoI-digested p425GPD vector was ligated to about 50 ng of SpeI/XhoI-restricted eda or edd fragment in a 10 .mu.l reaction with 1.times. T4 DNA ligase buffer and 1 U T4 DNA ligase (Fermentas) overnight at 16.degree. C. About 3 .mu.l of this reaction was used to transform DH5.alpha. competent cells (Zymo Research) and plated onto LB agar media containing 100 .mu.g/ml ampicillin. Final constructs were confirmed by restriction endonuclease digests and sequence verification (GeneWiz, La Jolla, Calif.).

[0333] In Vivo Assay to Determine Optimal EDD/EDA Combination

[0334] To determine the optimal EDD/EDA gene combinations, a yeast strain was developed to enable in vivo gene combination evaluation. Growth on glucose was impaired in this strain by disrupting both copies of phosphofructokinase (PFK), however, the strain could grow normally on galactose due to the presence of a single plasmid copy of the PFK2 gene under the control of a GAL1 promoter. The strain can only grow on glucose if a functional EDD/EDA is present in the cell. The strain was generated using strain BF205 (YGR240C/BY4742, ATCC Cat. No. 4015893; Winzeler E A, et al. Science 285: 901-906, 1999, PubMed: 10436161) as the starting strain.

[0335] PFK2 Expressing Plasmid

[0336] The plasmid expressing the PFK2 gene under the control of the GAL1 promoter, for use in the in vivo edd/eda gene combination evaluations, was constructed by first isolating the PFK2 gene. Primers JML/89 and JML/95 were used to amplify the PFK2 gene from BY4742 in a PCR reaction containing about 100 ng of the genomic DNA, 1.times.Pfu Ultra II buffer, 0.3 mM dNTPs, 0.3 .mu.mol gene-specific primers, and 1 U Pfu Ultra II polymerase (Agilent, La Jolla, Calif.) in a 50 .mu.l reaction mix. The reactions were cycled as follows: 95.degree. C. for 10 minutes followed by 10 rounds of 95.degree. C. for 20 seconds, 55.degree. C. for 20 seconds, and 72.degree. C. for 90 seconds and 25 rounds of 95.degree. C. for 20 seconds, 62.degree. C. for 20 seconds, and 72.degree. C. for 90 seconds. A final 5 minute extension reaction at 72.degree. C. was also included. Each amplified product was TOPO cloned into the pCR Blunt II TOPO vector (Life Technologies, Carlsbad, Calif.) according to the manufacturer's recommendations and sequence verified (GeneWiz, San Diego, Calif.). The sequences of JML/89 and JML/95 are given below.

TABLE-US-00052 JML/89 (SEQ ID NO: 282) ACTAGTATGACTGTTACTACTCCTTTTGTGAATGGTAC JML/95 (SEQ ID NO: 283) CTCGAGTTAATCAACTCTCTTTCTTCCAACCAAATGGTC

[0337] The primers used were designed to include a unique SpeI restriction site at the 5' end of the gene and a unique XhoI restriction site at the 3' end of the gene. This SpeI-XhoI fragment (approximately 2900 bp) was cloned into the SpeI-XhoI sites of the yeast vector p416GAL (ATCC Cat. No. 87332; Mumberg D, et al., Nucleic Acids Res. 22: 5767-5768, 1994. PubMed: 7838736) in a 10 .mu.l ligation reaction containing about 50 ng of the p416GAL plasmid and about 100 ng of the PFK2 fragment with 1.times. ligation buffer and 1 U T4 DNA ligase (Fermentas). This ligation reaction was allowed to incubate at room temperature for about one hour and was transformed into competent DH5.alpha. (Zymo Research, Orange, Calif.) and plated onto LB plates containing 100 .mu.g/ml ampicillin. The final plasmid was verified by restriction digests and sequence confirmed (GeneWiz, San Diego, Calif.) and was called pBF744. Plasmid pBF744 was transformed in yeast strain BF205 (BY4742 pfk1) using the procedure outlined below. This resulting strain was called BF1477. [0338] 1. Inoculate 5 mLs YPD with a single yeast colony. Grow 0/N at 30.degree. C. [0339] 2. Next day: add 50 .mu.l culture to 450 .mu.l fresh YPD, check A660. Add suitable amount of cells to 60 mLs fresh YPD to give an A660=0.2 (2.times.10.sup.6 cells/mL). Grow to A660=1.0 (2.times.10.sup.7 cells/mL), approximately 5 hours. [0340] 3. Boil a solution of 10 mg/ml salmon sperm DNA for 5 min, then quick chill on ice. [0341] 4. Spin down 50 mL cells at 3000 rpm for 5 min, wash in 10 mL sterile water, recentrifuge. [0342] 5. Resuspend in 1 mL sterile water. Transfer to 1.5 mL sterile microfuge tube, spin down. [0343] 6. Resuspend in 1 mL sterile TE/LiOAC solution. Spin down, resuspend in 0.25 mLs TE/LiOAc (4.times.10.sup.9 cells). [0344] 7. In a 1.5 mL microfuge tube, mix 50 .mu.l yeast cells with 1-5 .mu.g transforming DNA and 5 .mu.l single stranded carrier DNA (boiled salmon sperm DNA). [0345] 8. Add 300 .mu.l sterile PEG solution. Mix thoroughly. Incubate at 30.degree. C. for 60 min with gentle mixing every 15 min. [0346] 9. Add 40 .mu.l DMSO, mix thoroughly. Heat shock at 42.degree. C. for 15 min. [0347] 10. Microfuge cells at 13000 rpm for 30 seconds, remove supernatant. Resuspend in 1 mL 1.times.TE, microfuge 30 sec. Resuspend in 1 mL 1.times.TE. Plate 100-200 .mu.l on selective media (SCD-ura).

[0348] pfk2 Knockout Cassette

[0349] A knockout cassette for the PFK2 gene was constructed by first PCR amplifying about 300 bp of the 5' and 3' flanking regions of the PFK2 gene from S. cerevisiae, strain BY4742 using primers JML/85 and JML/87 and primers JML/86 and JML/88, respectively. These flanking regions were designed such that the 5' flanking region had a HindIII site at its 5' edge and a BamHI site at its 3' end. The 3' flanking region had a BamHI site at its 5' edge and a EcoRI site at its 3' edge. The nucleotide sequence of the PFK2 gene and the primers used for amplification of the PFK2 gene are given below.

TABLE-US-00053 S. cerevisiae PFK2 (from genomic sequence) SEQ. ID. NO: 121 ATGACTGTTACTACTCCTTTTGTGAATGGTACTTCTTATTGTACCGTCACTGCATATTCCGTTCA ATCTTATAAAGCTGCCATAGATTTTTACACCAAGTTTTTGTCATTAGAAAACCGCTCTTCTCCAG ATGAAAACTCCACTTTATTGTCTAACGATTCCATCTCTTTGAAGATCCTTCTACGTCCTGATGAA AAAATCAATAAAAATGTTGAGGCTCATTTGAAGGAATTGAACAGTATTACCAAGACTCAAGACT GGAGATCACATGCCACCCAATCCTTGGTATTTAACACTTCCGACATCTTGGCAGTCAAGGACA CTCTAAATGCTATGAACGCTCCTCTTCAAGGCTACCCAACAGAACTATTTCCAATGCAGTTGTA CACTTTGGACCCATTAGGTAACGTTGTTGGTGTTACTTCTACTAAGAACGCAGTTTCAACCAAG CCAACTCCACCACCAGCACCAGAAGCTTCTGCTGAGTCTGGTCTTTCCTCTAAAGTTCACTCT TACACTGATTTGGCTTACCGTATGAAAACCACCGACACCTATCCATCTCTGCCAAAGCCATTG AACAGGCCTCAAAAGGCAATTGCCGTCATGACTTCCGGTGGTGATGCTCCAGGTATGAACTCT AACGTTAGAGCCATCGTGCGTTCCGCTATCTTCAAAGGTTGTCGTGCCTTTGTTGTCATGGAA GGTTATGAAGGTTTGGTTCGTGGTGGTCCAGAATACATCAAGGAATTCCACTGGGAAGACGTC CGTGGTTGGTCTGCTGAAGGTGGTACCAACATTGGTACTGCCCGTTGTATGGAATTCAAGAAG CGCGAAGGTAGATTATTGGGTGCCCAACATTTGATTGAGGCCGGTGTCGATGCTTTGATCGTT TGTGGTGGTGACGGTTCTTTGACTGGTGCTGATCTGTTTAGATCAGAATGGCCTTCTTTGATC GAGGAATTGTTGAAAACAAACAGAATTTCCAACGAACAATACGAAAGAATGAAGCATTTGAATA TTTGCGGTACTGTCGGTTCTATTGATAACGATATGTCCACCACGGATGCTACTATTGGTGCTTA CTCTGCCTTGGACAGAATCTGTAAGGCCATCGATTACGTTGAAGCCACTGCCAACTCTCACTC AAGAGCTTTCGTTGTTGAAGTTATGGGTAGAAACTGTGGTTGGTTAGCTTTATTAGCTGGTATC GCCACTTCCGCTGACTATATCTTTATTCCAGAGAAGCCAGCCACTTCCAGCGAATGGCAAGAT CAAATGTGTGACATTGTCTCCAAGCACAGATCAAGGGGTAAGAGAACCACCATTGTTGTTGTT GCAGAAGGTGCTATCGCTGCTGACTTGACCCCAATTTCTCCAAGCGACGTCCACAAAGTTCTA GTTGACAGATTAGGTTTGGATACAAGAATTACTACCTTAGGTCACGTTCAAAGAGGTGGTACT GCTGTTGCTTACGACCGTATCTTGGCTACTTTACAAGGTCTTGAGGCCGTTAATGCCGTTTTG GAATCCACTCCAGACACCCCATCACCATTGATTGCTGTTAACGAAAACAAAATTGTTCGTAAAC CATTAATGGAATCCGTCAAGTTGACCAAAGCAGTTGCAGAAGCCATTCAAGCTAAGGATTTCA AGAGAGCTATGTCTTTAAGAGACACTGAGTTCATTGAACATTTAAACAATTTCATGGCTATCAA CTCTGCTGACCACAACGAACCAAAGCTACCAAAGGACAAGAGACTGAAGATTGCCATTGTTAA TGTCGGTGCTCCAGCTGGTGGTATCAACTCTGCCGTCTACTCGATGGCTACTTACTGTATGTC CCAAGGTCACAGACCATACGCTATCTACAATGGTTGGTCTGGTTTGGCAAGACATGAAAGTGT TCGTTCTTTGAACTGGAAGGATATGTTGGGTTGGCAATCCCGTGGTGGTTCTGAAATCGGTAC TAACAGAGTCACTCCAGAAGAAGCAGATCTAGGTATGATTGCTTACTATTTCCAAAAGTACGAA TTTGATGGTTTGATCATCGTTGGTGGTTTCGAAGCTTTTGAATCTTTACATCAATTAGAGAGAG CAAGAGAAAGTTATCCAGCTTTCAGAATCCCAATGGTCTTGATACCAGCTACTTTGTCTAACAA TGTTCCAGGTACTGAATACTCTTTGGGTTCTGATACCGCTTTGAATGCTCTAATGGAATACTGT GATGTTGTTAAACAATCCGCTTCTTCAACCAGAGGTAGAGCCTTCGTTGTCGATTGTCAAGGT GGTAACTCAGGCTATTTGGCCACTTACGCTTCTTTGGCTGTTGGTGCTCAAGTCTCTTATGTC CCAGAAGAAGGTATTTCTTTGGAGCAATTGTCCGAGGATATTGAATACTTAGCTCAATCTTTTG AAAAGGCAGAAGGTAGAGGTAGATTTGGTAAATTGATTTTGAAGAGTACAAACGCTTCTAAGG CTTTATCAGCCACTAAATTGGCTGAAGTTATTACTGCTGAAGCCGATGGCAGATTTGACGCTA AGCCAGCTTATCCAGGTCATGTACAACAAGGTGGTTTGCCATCTCCAATTGATAGAACAAGAG CCACTAGAATGGCCATTAAAGCTGTCGGCTTCATCAAAGACAACCAAGCTGCCATTGCTGAAG CTCGTGCTGCCGAAGAAAACTTCAACGCTGATGACAAGACCATTTCTGACACTGCTGCTGTCG TTGGTGTTAAGGGTTCACATGTCGTTTACAACTCCATTAGACAATTGTATGACTATGAAACTGA AGTTTCCATGAGAATGCCAAAGGTCATTCACTGGCAAGCTACCAGACTCATTGCTGACCATTT GGTTGGAAGAAAGAGAGTTGATTAA JML/85 (SEQ ID NO: 284) AAGCTTTTAATTAATATAACGCTATGACGGTAGTTGAATGTTAAAAAC JML/86 (SEQ ID NO: 285) GAATTCTTAATTAAAGAGAACAAAGTATTTAACGCACATGTATAAATATTG JML/87 (SEQ ID NO: 286) GGATCCGCATGCGGCCGGCCAGCTTTTAATCAAGGAAGTAATAAATAAAGGAC JML/88 (SEQ ID NO: 287) GGATCCGAGCTCGCGGCCGCAGCTTTTGAACAATGAATTTTTTGTTCCTTTC

[0350] The nucleic acid fragments were amplified using the following conditions; about 100 ng of the BY4742 genomic DNA was added to 1.times.Pfu Ultra II buffer, 0.3 mM dNTPs, 0.3 .mu.mol gene-specific primers, and 1 U Pfu Ultra II polymerase (Agilent, La Jolla, Calif.) in a 50 .mu.l reaction mix. The reaction was cycled at 95.degree. C. for 10 minutes, followed by 30 rounds of 95.degree. C. for 20 seconds, 58.degree. C. for 30 seconds, and 72.degree. C. for 20 seconds. A final 5 minute extension reaction at 72.degree. C. was also included. Each amplified product was TOPO cloned into the pCR Blunt II TOPO vector (Life Technologies, Carlsbad, Calif.) according to the manufacturer's recommendations and the sequence of the construct was verified (GeneWiz, San Diego, Calif.). The resulting plasmids were named pBF648 (5' flanking region) and pBF649 (3' flanking region). A three fragment ligation was performed using about 100 ng of the 5' flanking region HindIII-BamHI fragment, about 100 ng of the 3' flanking region BamHI-EcoRI fragment and about 50 ng of pUC19 digested with HindIII and EcoRI in a 5 .mu.l ligation reaction containing 1.times. ligation buffer and 1 U T4 DNA ligase (Fermentas). This reaction was incubated at room temperature for about one hour. About 2 .mu.l of this reaction mix was used to transform competent DH5.alpha. cells (Zymo Research, Orange, Calif.) and plated onto LB agar media containing 100 .mu.g/ml ampicillin. The final construct was confirmed by restriction endonuclease digests and sequence verification (GeneWiz, San Diego, Calif.), resulting in plasmid pBF653.

[0351] Lys 2 Gene Cloning

[0352] The Lys2 gene was isolated by PCR amplification from pRS317 (ATCC Cat. No. 77157; Sikorski R S, Boeke J D. Methods Enzymol. 194: 302-318, 1991. PubMed: 2005795) using primers JML/93 and JML/94. PCR amplification was performed as follows: about 25 ng of the pRS317 plasmid DNA was added to 1.times. Pfu Ultra II buffer, 0.3 mM dNTPs, 0.3 .mu.mol gene-specific primers, and 1 U Pfu Ultra II polymerase (Agilent, La Jolla, Calif.) in a 50 .mu.l reaction mix. The reactions were cycled at: 95.degree. C. 10 minutes followed by 10 rounds of 95.degree. C. for 20 seconds, 55.degree. C. for 30 seconds, and 72.degree. C. for 2 minutes, followed by 25 more rounds of 95.degree. C. for 20 seconds, 62.degree. C. for 30 seconds, and 72.degree. C. for 2 minutes. A final 5 minute extension reaction at 72.degree. C. was also included. The amplified product was TOPO cloned into the pCR Blunt II TOPO vector as described herein, resulting in plasmid pBF656. The nucleotide sequence of Lys2 gene and the primers used for amplification of the Lys2 gene are given below.

TABLE-US-00054 JML/93 (SEQ ID NO: 288) GCGGCCGCAGCTTCGCAAGTATTCATTTTAGACCCATG JML/94 (SEQ ID NO: 289) GGCCGGCCGGTACCAATTCCACTTGCAATTACATAAAAAATTCC Lys 2 (from genomic sequence database), SEQ. ID. NO: 122 ATGACTAACGAAAAGGTCTGGATAGAGAAGTTGGATAATCCAACTCTTTCAGTGTTACCACAT GACTTTTTACGCCCACAACAAGAACCTTATACGAAACAAGCTACATATTCGTTACAGCTACCTC AGCTCGATGTGCCTCATGATAGTTTTTCTAACAAATACGCTGTCGCTTTGAGTGTATGGGCTG CATTGATATATAGAGTAACCGGTGACGATGATATTGTTCTTTATATTGCGAATAACAAAATCTTA AGATTCAATATTCAACCAACGTGGTCATTTAATGAGCTGTATTCTACAATTAACAATGAGTTGAA CAAGCTCAATTCTATTGAGGCCAATTTTTCCTTTGACGAGCTAGCTGAAAAAATTCAAAGTTGC CAAGATCTGGAAAGGACCCCTCAGTTGTTCCGTTTGGCCTTTTTGGAAAACCAAGATTTCAAAT TAGACGAGTTCAAGCATCATTTAGTGGACTTTGCTTTGAATTTGGATACCAGTAATAATGCGCA TGTTTTGAACTTAATTTATAACAGCTTACTGTATTCGAATGAAAGAGTAACCATTGTTGCGGAC CAATTTACTCAATATTTGACTGCTGCGCTAAGCGATCCATCCAATTGCATAACTAAAATCTCTC TGATCACCGCATCATCCAAGGATAGTTTACCTGATCCAACTAAGAACTTGGGCTGGTGCGATT TCGTGGGGTGTATTCACGACATTTTCCAGGACAATGCTGAAGCCTTCCCAGAGAGAACCTGTG TTGTGGAGACTCCAACACTAAATTCCGACAAGTCCCGTTCTTTCACTTATCGCGACATCAACC GCACTTCTAACATAGTTGCCCATTATTTGATTAAAACAGGTATCAAAAGAGGTGATGTAGTGAT GATCTATTCTTCTAGGGGTGTGGATTTGATGGTATGTGTGATGGGTGTCTTGAAAGCCGGCGC AACCTTTTCAGTTATCGACCCTGCATATCCCCCAGCCAGACAAACCATTTACTTAGGTGTTGCT AAACCACGTGGGTTGATTGTTATTAGAGCTGCTGGACAATTGGATCAACTAGTAGAAGATTAC ATCAATGATGAATTGGAGATTGTTTCAAGAATCAATTCCATCGCTATTCAAGAAAATGGTACCA TTGAAGGTGGCAAATTGGACAATGGCGAGGATGTTTTGGCTCCATATGATCACTACAAAGACA CCAGAACAGGTGTTGTAGTTGGACCAGATTCCAACCCAACCCTATCTTTCACATCTGGTTCCG AAGGTATTCCTAAGGGTGTTCTTGGTAGACATTTTTCCTTGGCTTATTATTTCAATTGGATGTC CAAAAGGTTCAACTTAACAGAAAATGATAAATTCACAATGCTGAGCGGTATTGCACATGATCCA ATTCAAAGAGATATGTTTACACCATTATTTTTAGGTGCCCAATTGTATGTCCCTACTCAAGATGA TATTGGTACACCGGGCCGTTTAGCGGAATGGATGAGTAAGTATGGTTGCACAGTTACCCATTT AACACCTGCCATGGGTCAATTACTTACTGCCCAAGCTACTACACCATTCCCTAAGTTACATCAT GCGTTCTTTGTGGGTGACATTTTAACAAAACGTGATTGTCTGAGGTTACAAACCTTGGCAGAA AATTGCCGTATTGTTAATATGTACGGTACCACTGAAACACAGCGTGCAGTTTCTTATTTCGAAG TTAAATCAAAAAATGACGATCCAAACTTTTTGAAAAAATTGAAAGATGTCATGCCTGCTGGTAA AGGTATGTTGAACGTTCAGCTACTAGTTGTTAACAGGAACGATCGTACTCAAATATGTGGTATT GGCGAAATAGGTGAGATTTATGTTCGTGCAGGTGGTTTGGCCGAAGGTTATAGAGGATTACCA GAATTGAATAAAGAAAAATTTGTGAACAACTGGTTTGTTGAAAAAGATCACTGGAATTATTTGG ATAAGGATAATGGTGAACCTTGGAGACAATTCTGGTTAGGTCCAAGAGATAGATTGTACAGAA CGGGTGATTTAGGTCGTTATCTACCAAACGGTGACTGTGAATGTTGCGGTAGGGCTGATGATC AAGTTAAAATTCGTGGGTTCAGAATCGAATTAGGAGAAATAGATACGCACATTTCCCAACATCC ATTGGTAAGAGAAAACATTACTTTAGTTCGCAAAAATGCCGACAATGAGCCAACATTGATCACA TTTATGGTCCCAAGATTTGACAAGCCAGATGACTTGTCTAAGTTCCAAAGTGATGTTCCAAAGG AGGTTGAAACTGACCCTATAGTTAAGGGCTTAATCGGTTACCATCTTTTATCCAAGGACATCAG GACTTTCTTAAAGAAAAGATTGGCTAGCTATGCTATGCCTTCCTTGATTGTGGTTATGGATAAA CTACCATTGAATCCAAATGGTAAAGTTGATAAGCCTAAACTTCAATTCCCAACTCCCAAGCAAT TAAATTTGGTAGCTGAAAATACAGTTTCTGAAACTGACGACTCTCAGTTTACCAATGTTGAGCG CGAGGTTAGAGACTTATGGTTAAGTATATTACCTACCAAGCCAGCATCTGTATCACCAGATGAT TCGTTTTTCGATTTAGGTGGTCATTCTATCTTGGCTACCAAAATGATTTTTACCTTAAAGAAAAA GCTGCAAGTTGATTTACCATTGGGCACAATTTTCAAGTATCCAACGATAAAGGCCTTTGCCGC GGAAATTGACAGAATTAAATCATCGGGTGGATCATCTCAAGGTGAGGTCGTCGAAAATGTCAC TGCAAATTATGCGGAAGACGCCAAGAAATTGGTTGAGACGCTACCAAGTTCGTACCCCTCTCG AGAATATTTTGTTGAACCTAATAGTGCCGAAGGAAAAACAACAATTAATGTGTTTGTTACCGGT GTCACAGGATTTCTGGGCTCCTACATCCTTGCAGATTTGTTAGGACGTTCTCCAAAGAACTAC AGTTTCAAAGTGTTTGCCCACGTCAGGGCCAAGGATGAAGAAGCTGCATTTGCAAGATTACAA AAGGCAGGTATCACCTATGGTACTTGGAACGAAAAATTTGCCTCAAATATTAAAGTTGTATTAG GCGATTTATCTAAAAGCCAATTTGGTCTTTCAGATGAGAAGTGGATGGATTTGGCAAACACAG TTGATATAATTATCCATAATGGTGCGTTAGTTCACTGGGTTTATCCATATGCCAAATTGAGGGA TCCAAATGTTATTTCAACTATCAATGTTATGAGCTTAGCCGCCGTCGGCAAGCCAAAGTTCTTT GACTTTGTTTCCTCCACTTCTACTCTTGACACTGAATACTACTTTAATTTGTCAGATAAACTTGT TAGCGAAGGGAAGCCAGGCATTTTAGAATCAGACGATTTAATGAACTCTGCAAGCGGGCTCA CTGGTGGATATGGTCAGTCCAAATGGGCTGCTGAGTACATCATTAGACGTGCAGGTGAAAGG GGCCTACGTGGGTGTATTGTCAGACCAGGTTACGTAACAGGTGCCTCTGCCAATGGTTCTTCA AACACAGATGATTTCTTATTGAGATTTTTGAAAGGTTCAGTCCAATTAGGTAAGATTCCAGATAT CGAAAATTCCGTGAATATGGTTCCAGTAGATCATGTTGCTCGTGTTGTTGTTGCTACGTCTTTG AATCCTCCCAAAGAAAATGAATTGGCCGTTGCTCAAGTAACGGGTCACCCAAGAATATTATTC AAAGACTACTTGTATACTTTACACGATTATGGTTACGATGTCGAAATCGAAAGCTATTCTAAAT GGAAGAAATCATTGGAGGCGTCTGTTATTGACAGGAATGAAGAAAATGCGTTGTATCCTTTGC TACACATGGTCTTAGACAACTTACCTGAAAGTACCAAAGCTCCGGAACTAGACGATAGGAACG CCGTGGCATCTTTAAAGAAAGACACCGCATGGACAGGTGTTGATTGGTCTAATGGAATAGGTG TTACTCCAGAAGAGGTTGGTATATATATTGCATTTTTAAACAAGGTTGGATTTTTACCTCCACCA ACTCATAATGACAAACTTCCACTGCCAAGTATAGAACTAACTCAAGCGCAAATAAGTCTAGTTG CTTCAGGTGCTGGTGCTCGTGGAAGCTCCGCAGCAGCTTAA

[0353] The knockout cassette was fully assembled by cloning the NotI-FseI LYS2 fragment from plasmid pBF656 into the NotI-FseI sites located between the 5' and 3' flanking PFK2 regions in plasmid pBF653. About 50 ng of plasmid pBF653 digested with NotI and FseI was ligated to about 100 ng of the NotI-FseI LYS2 fragment from plasmid pBF656 in a 5 .mu.l reaction containing 1.times. ligation buffer and 1 U T4 DNA ligase (Fermentas) for about 1 hour at room temperature. About 2 .mu.l of this reaction was used to transform competent DH5.alpha. (Zymo Research, Orange, Calif.) and plated on 100 .mu.g/ml ampicillin. The structure of the final plasmid, pBF745, was confirmed by restriction enzyme digests. The approximately 5 kbp PacI fragment containing the LYS2 cassette and PFK2 flanking regions was gel extracted using the Zymoclean Gel DNA Recovery Kit (Zymo Research, Orange, Calif.) according to the manufacturer's conditions.

[0354] Strain BF1477 was transformed with the about 5 kbp PacI fragment using the method described above (LiOAc/PEG method) generating strain BF1411. Strain BF1411 has the ability to grow on galactose as a carbon source, but cannot grow on glucose. Various combinations of the EDD and EDA constructs can be expressed in this strain and monitored for growth on glucose. Strains which show growth on glucose (or the highest growth rate on glucose) can be further characterized to determine which combination of EDD and EDA genes is present. Using the strain and method described herein, libraries of EDD and EDA genes can be screened for improved activities and activity combinations in a host organism.

Example 16

Single Plasmid System for Industrial Yeast

[0355] A single plasmid system expressing EDD and EDA for industrial yeast was constructed as follows: The approximately 2800 bp fragment containing the GPD1 promoter, EDD-PAO1 gene and CYC1 terminator from plasmid pBF291 (p426GPD with EDD-PAO1) was PCR amplified using primers KAS/5'-BamHI-Pgpd and KAS/3'-NdeI-CYCt, described below. About 25 ng of the plasmid DNA was added to 1.times.Pfu Ultra II buffer, 0.3 mM dNTPs, 0.3 .mu.mol gene-specific primers, and 1 U Pfu Ultra II polymerase (Agilent, La Jolla, Calif.) in a 50 .mu.l reaction mix. The reaction was cycled at 95.degree. C. for 10 minutes, followed by 30 rounds of 95.degree. C. for 20 seconds, 55.degree. C. for 30 seconds, and 72.degree. C. for 45 seconds. A final 5 minute extension reaction at 72.degree. C. was also included. The amplified product was TOPO cloned into the pCR Blunt II TOPO vector, as described herein, and the final plasmid was sequence verified and designated, pBF475.

TABLE-US-00055 KAS/5'-BamHI-Pgpd (SEQ ID NO: 290) GGATCCgtttatcattatcaatactcgccatttcaaag KAS/3'-Ndel-CYCt (SEQ ID NO: 291) CATATGttgggtaccggccgcaaattaaagccttcgagcg

[0356] An approximately 1500 bp KANMX4 cassette was PCR amplified from plasmid pBF413 HO-poly-KanMX4-HO (ATCC Cat. No. 87804) using primers KAS/5'-Bam_NdeI-KANMX4 and KAS/3'-Sal_NheI-KANMX4, described below.

TABLE-US-00056 KAS/5'-Bam_Ndel-KANMX4 (SEQ ID NO: 292) GGATTCagtcagatCATATGggtacccccgggttaattaaggcgcgccag atctg KAS/3'-Sal_Nhel-KANMX4 (SEQ ID NO: 293) GTCGACaggcctactgtacgGCTAGCgaattcgagctcgttttcgacact ggatggcggc

[0357] About 25 ng of plasmid pBF413 HO-poly-KanMX4-HO DNA was added to 1.times.Pfu Ultra II buffer, 0.3 mM dNTPs, 0.3 .mu.mol gene-specific primers and 1 U Pfu Ultra II polymerase (Agilent, La Jolla, Calif.) in a 50 .mu.l reaction mix. The reaction was cycled at 95.degree. C. for 10 minutes, followed by 30 rounds of 95.degree. C. for 20 seconds, 55.degree. C. for 30 seconds, and 72.degree. C. for 30 seconds. A final 5 minute extension reaction at 72.degree. C. was also included. The amplified product was TOPO cloned into the pCR Blunt II TOPO vector, as described herein. The resulting plasmid was sequence verified and designated, pBF465.

[0358] An approximately 225 bp ADH1 terminator was PCR amplified from the genome of BY4742 using primers KAS/5'-Xba-XhoI-ADHt and KAS/3'-StuI-ADHS. The sequence of primers KAS/5'-Xba-XhoI-ADHt and KAS/3'-StuI-ADHS is given below.

TABLE-US-00057 KAS/5'-Xba-Xhol-ADHt (SEQ ID NO: 294) tctagaCTCGAGtaataagcgaatttcttatgatttatg KAS/3'-Stul-ADH5 (SEQ ID NO: 295) aagcttAGGCCTggagcgatttgcaggcatttgc

[0359] About 100 ng of genomic DNA from BY4742 was added to 1.times.Pfu Ultra II buffer, 0.3 mM dNTPs, 0.3 .mu.mol gene-specific primers and 1 U Pfu Ultra II polymerase (Agilent, La Jolla, Calif.) in a 50 .mu.l reaction mix. The reaction was cycled at 95.degree. C. for 10 minutes, followed by 30 rounds of 95.degree. C. for 20 seconds, 55.degree. C. for 30 seconds, and 72.degree. C. for 15 seconds. A final 5 minute extension reaction at 72.degree. C. was also included. The amplified product was TOPO cloned into the pCR Blunt II TOPO vector according to the manufacturer's recommendations and sequence verified. The resulting plasmid was designated pBF437.

[0360] The TEF2 promoter was PCR amplified from the genome of BY4742 using primers KAS/5'-Xba-XhoI-ADHt and KAS/3'-StuI-ADHS, described below.

TABLE-US-00058 KAS/5'-Bam-Nhel-Ptef (SEQ ID NO: 296) GGATCCgctagcACCGCGAATCCTTACATCACACCC KAS/3'-Xbal-Spel-Ptef (SEQ ID NO: 297) tctagaCTCGAGtaataagcgaatttcttatgatttatg

[0361] About 100 ng of genomic DNA from BY4742 was added to 1.times.Pfu Ultra II buffer, 0.3 mM dNTPs, 0.3 .mu.mol gene-specific primers, and 1 U Pfu Ultra II polymerase (Agilent, La Jolla, Calif.) in a 50 .mu.l reaction mix. This was cycled at 95.degree. C. for 10 minutes, followed by 30 rounds of 95.degree. C. for 20 seconds, 55.degree. C. for 30 seconds, and 72.degree. C. for 15 seconds. A final 5 minute extension reaction at 72.degree. C. was also included. The amplified product was TOPO cloned into the pCR Blunt II TOPO vector (Life Technologies, Carlsbad, Calif.) according to the manufacturer's recommendations and sequence verified (GeneWiz, San Diego, Calif.). The resulting plasmid was called pBF440.

[0362] The EDA gene cassettes were constructed as follows: First the TEF2 promoter from the plasmid pBF440 was digested with BamHI and XbaI and was cloned into the BamHI and XbaI sites of pUC19 creating plasmid pBF480. Plasmid pBF480 was then digested with XbaI and HindIII and was ligated to the XbaI-HindIII fragment from plasmid pBF437 containing the ADH1 terminator, creating plasmid pBF521. Plasmid pBF521 was then digested with SpeI and XhoI and then ligated to either SpeI-XhoI fragment containing either the PAO1 eda gene from plasmid pBF292 or the E. coli eda gene from plasmid pBF268. The 2 plasmids generated, depending on the eda gene chosen, were designated pBF523 (e.g., containing the PAO1-eda) and pBF568 (e.g., containing the E. coli-eda), respectively. The approximately 1386 bp TEF-EDA-ADHt cassette from either plasmid pBF 523 or pBF568 was then gel extracted using the NheI-StuI sites.

[0363] The final vector was generated by first altering the Nde1 site in pUC19 using the mutagenesis primers described below.

TABLE-US-00059 KAS/SDM-Ndel-pUC18-5 (SEQ ID NO: 298) gattgtactgagagtgcacaatatgcggtgtgaaatacc KAS/SDM-Ndel-pUC18-3 (SEQ ID NO: 299) ggtatttcacaccgcatattgtgcactctcagtacaatc

[0364] About 50 ng of pUC19 plasmid DNA was added to 1.times.Pfu Ultra II buffer, 0.3 mM dNTPs, 0.3 .mu.mol SDM-specific primers and 1 U Pfu Ultra II polymerase (Agilent, La Jolla, Calif.) in a 50 .mu.l reaction mix. The reaction was cycled at 95.degree. C. for 10 minutes, followed by 15 rounds of 95.degree. C. for 15 seconds, 55.degree. C. for 40 seconds, and 72.degree. C. for 3 minutes. A final 10 minute extension reaction at 72.degree. C. was also included. The PCR reaction mixture was then digested with 30 U of DpnI for about 2 hours and 5 .mu.l of the digested PCR reaction mixture was used to transform competent DH5.alpha. (Zymo Research, Orange, Calif.) and plated onto LB plates containing 100 .mu.g/ml ampicillin. The structure of the final plasmid, pBF421, was confirmed by restriction digests.

[0365] An approximately 1359 bp EcoRI fragment containing the 2.mu. yeast origin cassette was cloned into the EcoRI site of plasmid pBF421 in a 10 .mu.l ligation reaction mixture containing 1.times. ligation buffer, 50 ng of EcoRI-digested pBF421 80 ng of EcoRI-digested 2.mu. cassette, and 1 U T4 DNA ligase (Fermentas). The reaction was incubated at room temperature for about 2 hours and 3 .mu.l of this was used to transform competent DH5.alpha. (Zymo Research, Orange, Calif.). The structure of the resultant plasmid, pBF429, was confirmed by restriction enzyme digests.

[0366] Plasmid pBF429 was then digested with BamHI and SalI and ligated to the BamHI-SalI KANMX4 cassette described above. The resultant plasmid, designated pBF515, was digested with BamHI and NdeI and ligated to the BamHI-NdeI fragment containing the 2802 bp GPD-EDD-CYCt fragment from pBF475. The resulting plasmid, designated pBF522, was digested with NheI-StuI and was ligated to the 1386 bp NheI-StuI TEF-EDA-ADHt fragment from plasmids pBF523 or pBF568, creating final plasmids pBF524 and pBF612.

[0367] Expression levels of each of the single plasmid eda/edd expression system vectors was assayed and compared against the original eda/edd two plasmid expression system vectors. The results, presented in FIG. 14, graphically illustrate edd/eda coupled assay kinetics for the single and two plasmid systems. The kinetics graphs for both expression systems show substantially similar enzyme kinetics over the major of the time course.

Example 17

Nucleotide and Amino Acid Sequences of Over Expressed Activities Useful for Increasing Sugar Transport and/or Sugar Metabolism

[0368] As noted herein, increased or over expression of certain activities can result in increased ethanol production due to an increase in the utilization of the fermentation substrate, sometimes due to an increase in transport and/or metabolism of a desired sugar. Non-limiting examples of activities that can be over expressed to increase ethanol production by increasing sugar transport and/or metabolism include activities encoded by the genes gxf1, gxs1, hxt7, zwf1, gal2, sol3, sol4, the like, homologs thereof (e.g., Candida albicans Sol1p, Schizosaccharomyces pombe Sol1p, human PGLS and human H6PD), that can be expressed in a desired host organism, and combinations thereof. Nucleotide and amino acid sequences for some of these additional activities are given below. In some embodiments, 1, 2, 3, 4, 5, 6 or more of the non-limiting additional activities can be increased in expression or over expressed in an engineered host, thereby increasing transport and/or metabolism of a desired carbon source, wherein increased transport and/or metabolism of a desired carbon source results in increased ethanol production.

TABLE-US-00060 Nucleotide Sequences Debaryomyces hansenii gxf1 (SEQ ID NO: 113) ATGTCTCAAGAAGAATATAGTTCTGGGGTACAAACCCCAGTTTCTAACCATTCTGGTTTAGAGA AAGAAGAGCAACACAAGTTAGACGGTTTAGATGAGGATGAAATTGTCGATCAATTACCTTCTTT ACCAGAAAAATCAGCTAAGGATTATTTATTAATTTCTTTCTTCTGTGTATTAGTTGCATTTGGTG GTTTTGTTTTCGGTTTCGATACTGGTACTATCTCAGGTTTCGTTAACATGAGTGATTACTTGGA AAGATTCGGTGAGCTTAATGCAGATGGTGAATATTTCTTATCTAATGTTAGAACTGGTTTGATT GTTGCTATTTTTAATGTTGGTTGTGCTGTCGGTGGTATTTTCTTATCTAAGATTGCTGATGTTTA TGGTAGAAGAATTGGTCTTATGTTTTCCATGATTATTTATGTGATTGGTATAATTGTTCAAATCT CAGCTTCTGACAAGTGGTATCAAATCGTTGTTGGTAGAGCTATTGCAGGTTTAGCTGTTGGTA CCGTTTCTGTCTTATCCCCATTATTCATTGGTGAATCAGCACCTAAAACCTTAAGAGGTACTTT AGTGTGTTGTTTCCAATTATGTATTACCTTAGGTATCTTCTTAGGTTACTGTACTACATATGGTA CTAAAACCTACACCGACTCTAGACAATGGAGAATTCCATTAGGTTTATGTTTTGTTTGGGCTAT CATGTTGGTTATTGGTATGGTTTGCATGCCAGAATCACCAAGATACTTAGTTGTCAAGAACAAG ATTGAAGAAGCTAAGAAATCGATTGGTAGATCCAACAAGGTTTCACCAGAAGATCCTGCTGTT TACACCGAAGTCCAATTGATTCAAGCAGGTATTGAAAGAGAAAGTTTAGCTGGTTCTGCCTCTT GGACCGAATTGGTTACTGGTAAGCCAAGAATCTTTCGTAGAGTCATTATGGGTATTATGTTACA ATCTTTACAACAATTGACTGGTGACAACTATTTCTTCTACTATGGTACTACTATTTTCCAAGCTG TCGGTATGACTGATTCCTTCCAAACATCTATTGTTTTAGGTGTTGTTAACTTTGCATCTACATTT CTCGGTATCTACACAATTGAAAGATTCGGTAGAAGATTATGTTTGTTAACTGGTTCTGTCTGTA TGTTCGTTTGTTTCATCATTTACTCCATTTTGGGTGTTACAAACTTATATATTGATGGCTACGAT GGTCCAACTTCGGTTCCAACCGGTGATGCGATGATTTTCATTACTACCTTATACATTTTCTTCT TCGCATCCACCTGGGCTGGTGGTGTCTACTGTATCGTTTCCGAAACATACCCATTGAGAATTA GATCTAAGGCCATGTCCGTTGCCACCGCTGCTAACTGGATTTGGGGTTTCTTGATCTCTTTCT TCACTCCATTCATCACCTCGGCTATCCACTTCTACTACGGTTTCGTTTTCACAGGATGTTTGTT ATTCTCGTTCTTTTACGTTTACTTCTTTGTTGTTGAAACTAAGGGATTAACTTTAGAAGAAGTTG ATGAATTGTATGCCCAAGGTGTTGCCCCATGGAAGTCATCGAAATGGGTTCCACCAACCAAGG AAGAAATGGCCCATTCTTCAGGATATGCTGCTGAAGCCAAACCTCACGATCAACAAGTATAA Saccharomyces cerevisiae gal2 (SEQ ID NO: 114) ATGGCAGTTGAGGAGAACAATATGCCTGTTGTTTCACAGCAACCCCAAGCTGGTGAAGAC GTGATCTCTTCACTCAGTAAAGATTCCCATTTAAGCGCACAATCTCAAAAGTATTCTAAT GATGAATTGAAAGCCGGTGAGTCAGGGTCTGAAGGCTCCCAAAGTGTTCCTATAGAGATA CCCAAGAAGCCCATGTCTGAATATGTTACCGTTTCCTTGCTTTGTTTGTGTGTTGCCTTC GGCGGCTTCATGTTTGGCTGGGATACCGGTACTATTTCTGGGTTTGTTGTCCAAACAGAC TTTTTGAGAAGGTTTGGTATGAAACATAAGGATGGTACCCACTATTTGTCAAACGTCAGA ACAGGTTTAATCGTCGCCATTTTCAATATTGGCTGTGCCTTTGGTGGTATTATACTTTCC AAAGGTGGAGATATGTATGGCCGTAAAAAGGGTCTTTCGATTGTCGTCTCGGTTTATATA GTTGGTATTATCATTCAAATTGCCTCTATCAACAAGTGGTACCAATATTTCATTGGTAGA ATCATATCTGGTTTGGGTGTCGGCGGCATCGCCGTCTTATGTCCTATGTTGATCTCTGAA ATTGCTCCAAAGCACTTGAGAGGCACACTAGTTTCTTGTTATCAGCTGATGATTACTGCA GGTATCTTTTTGGGCTACTGTACTAATTACGGTACAAAGAGCTATTCGAACTCAGTTCAA TGGAGAGTTCCATTAGGGCTATGTTTCGCTTGGTCATTATTTATGATTGGCGCTTTGACG TTAGTTCCTGAATCCCCACGTTATTTATGTGAGGTGAATAAGGTAGAAGACGCCAAGCGT TCCATTGCTAAGTCTAACAAGGTGTCACCAGAGGATCCTGCCGTCCAGGCAGAGTTAGAT CTGATCATGGCCGGTATAGAAGCTGAAAAACTGGCTGGCAATGCGTCCTGGGGGGAATTA TTTTCCACCAAGACCAAAGTATTTCAACGTTTGTTGATGGGTGTGTTTGTTCAAATGTTC CAACAATTAACCGGTAACAATTATTTTTTCTACTACGGTACCGTTATTTTCAAGTCAGTT GGCCTGGATGATTCCTTTGAAACATCCATTGTCATTGGTGTAGTCAACTTTGCCTCCACT TTCTTTAGTTTGTGGACTGTCGAAAACTTGGGACATCGTAAATGTTTACTTTTGGGCGCT GCCACTATGATGGCTTGTATGGTCATCTACGCCTCTGTTGGTGTTACTAGATTATATCCT CACGGTAAAAGCCAGCCATCTTCTAAAGGTGCCGGTAACTGTATGATTGTCTTTACCTGT TTTTATATTTTCTGTTATGCCACAACCTGGGCGCCAGTTGCCTGGGTCATCACAGCAGAA TCATTCCCACTGAGAGTCAAGTCGAAATGTATGGCGTTGGCCTCTGCTTCCAATTGGGTA TGGGGGTTCTTGATTGCATTTTTCACCCCATTCATCACATCTGCCATTAACTTCTACTAC GGTTATGTCTTCATGGGCTGTTTGGTTGCCATGTTTTTTTATGTCTTTTTCTTTGTTCCA GAAACTAAAGGCCTATCGTTAGAAGAAATTCAAGAATTATGGGAAGAAGGTGTTTTACCT TGGAAATCTGAAGGCTGGATTCCTTCATCCAGAAGAGGTAATAATTACGATTTAGAGGAT TTACAACATGACGACAAACCGTGGTACAAGGCCATGCTAGAATAA Saccharomyces cerevisiae sol3 (SEQ ID NO: 115) ATGGTGACAGTCGGTGTGTTTTCTGAGAGGGCTAGTTTGACCCATCAATTGGGGGAATTC ATCGTCAAGAAACAAGATGAGGCGCTGCAAAAGAAGTCAGACTTTAAAGTTTCCGTTAGC GGTGGCTCTTTGATCGATGCTCTGTATGAAAGTTTAGTAGCGGACGAATCACTATCTTCT CGAGTGCAATGGTCTAAATGGCAAATCTACTTCTCTGATGAAAGAATTGTGCCACTGACG GACGCTGACAGCAATTATGGTGCCTTCAAGAGAGCTGTTCTAGATAAATTACCCTCGACT AGTCAGCCAAACGTTTATCCCATGGACGAGTCCTTGATTGGCAGCGATGCTGAATCTAAC AACAAAATTGCTGCAGAGTACGAGCGTATCGTACCTCAAGTGCTTGATTTGGTACTGTTG GGCTGTGGTCCTGATGGACACACTTGTTCCTTATTCCCTGGAGAAACACATAGGTACTTG CTGAACGAAACAACCAAAAGAGTTGCTTGGTGCCACGATTCTCCCAAGCCTCCAAGTGAC AGAATCACCTTCACTCTGCCTGTGTTGAAAGACGCCAAAGCCCTGTGTTTTGTGGCTGAG GGCAGTTCCAAACAAAATATAATGCATGAGATCTTTGACTTGAAAAACGATCAATTGCCA ACCGCATTGGTTAACAAATTATTTGGTGAAAAAACATCCTGGTTCGTTAATGAGGAAGCT TTTGGAAAAGTTCAAACGAAAACTTTTTAG Saccharomyces cerevisiae zwf1 (SEQ ID NO: 116) ATGAGTGAAGGCCCCGTCAAATTCGAAAAAAATACCGTCATATCTGTCTTTGGTGCGTCA GGTGATCTGGCAAAGAAGAAGACTTTTCCCGCCTTATTTGGGCTTTTCAGAGAAGGTTAC CTTGATCCATCTACCAAGATCTTCGGTTATGCCCGGTCCAAATTGTCCATGGAGGAGGAC CTGAAGTCCCGTGTCCTACCCCACTTGAAAAAACCTCACGGTGAAGCCGATGACTCTAAG GTCGAACAGTTCTTCAAGATGGTCAGCTACATTTCGGGAAATTACGACACAGATGAAGGC TTCGACGAATTAAGAACGCAGATCGAGAAATTCGAGAAAAGTGCCAACGTCGATGTCCCA CACCGTCTCTTCTATCTGGCCTTGCCGCCAAGCGTTTTTTTGACGGTGGCCAAGCAGATC AAGAGTCGTGTGTACGCAGAGAATGGCATCACCCGTGTAATCGTAGAGAAACCTTTCGGC CACGACCTGGCCTCTGCCAGGGAGCTGCAAAAAAACCTGGGGCCCCTCTTTAAAGAAGAA GAGTTGTACAGAATTGACCATTACTTGGGTAAAGAGTTGGTCAAGAATCTTTTAGTCTTG AGGTTCGGTAACCAGTTTTTGAATGCCTCGTGGAATAGAGACAACATTCAAAGCGTTCAG ATTTCGTTTAAAGAGAGGTTCGGCACCGAAGGCCGTGGCGGCTATTTCGACTCTATAGGC ATAATCAGAGACGTGATGCAGAACCATCTGTTACAAATCATGACTCTCTTGACTATGGAA AGACCGGTGTCTTTTGACCCGGAATCTATTCGTGACGAAAAGGTTAAGGTTCTAAAGGCC GTGGCCCCCATCGACACGGACGACGTCCTCTTGGGCCAGTACGGTAAATCTGAGGACGGG TCTAAGCCCGCCTACGTGGATGATGACACTGTAGACAAGGACTCTAAATGTGTCACTTTT GCAGCAATGACTTTCAACATCGAAAACGAGCGTTGGGAGGGCGTCCCCATCATGATGCGT GCCGGTAAGGCTTTGAATGAGTCCAAGGTGGAGATCAGACTGCAGTACAAAGCGGTCGCA TCGGGTGTCTTCAAAGACATTCCAAATAACGAACTGGTCATCAGAGTGCAGCCCGATGCC GCTGTGTACCTAAAGTTTAATGCTAAGACCCCTGGTCTGTCAAATGCTACCCAAGTCACA GATCTGAATCTAACTTACGCAAGCAGGTACCAAGACTTTTGGATTCCAGAGGCTTACGAG GTGTTGATAAGAGACGCCCTACTGGGTGACCATTCCAACTTTGTCAGAGATGACGAATTG GATATCAGTTGGGGCATATTCACCCCATTACTGAAGCACATAGAGCGTCCGGACGGTCCA ACACCGGAAATTTACCCCTACGGATCAAGAGGTCCAAAGGGATTGAAGGAATATATGCAA AAACACAAGTATGTTATGCCCGAAAAGCACCCTTACGCTTGGCCCGTGACTAAGCCAGAA GATACGAAGGATAATTAG Amino Acid Sequences Debaryomyces hansenii gxf1 (SEQ ID NO: 117) 1 MSQEEYSSGV QTPVSNHSGL EKEEQHKLDG LDEDEIVDQL PSLPEKSAKD YLLISFFCVL 61 VAFGGFVFGF DTGTISGFVN MSDYLERFGE LNADGEYFLS NVRTGLIVAI FNVGCAVGGI 121 FLSKIADVYG RRIGLMFSMI IYVIGIIVQI SASDKWYQIV VGRAIAGLAV GTVSVLSPLF 181 IGESAPKTLR GTLVCCFQLC ITLGIFLGYC TTYGTKTYTD SRQWRIPLGL CFVWAIMLVI 241 GMVCMPESPR YLVVKNKIEE AKKSIGRSNK VSPEDPAVYT EVQLIQAGIE RESLAGSASW 301 TELVTGKPRI FRRVIMGIML QSLQQLTGDN YFFYYGTTIF QAVGMTDSFQ TSIVLGVVNF 361 ASTFLGIYTI ERFGRRLCLL TGSVCMFVCF IIYSILGVTN LYIDGYDGPT SVPTGDAMIF 421 ITTLYIFFFA STWAGGVYCI VSETYPLRIR SKAMSVATAA NWIWGFLISF FTPFITSAIH 481 FYYGFVFTGC LLFSFFYVYF FVVETKGLTL EEVDELYAQG VAPWKSSKWV PPTKEEMAHS 541 SGYAAEAKPH DQQV Saccharomyces cerevisiae gal2 (SEQ ID NO: 118) 1 MAVEENNMPV VSQQPQAGED VISSLSKDSH LSAQSQKYSN DELKAGESGS 51 EGSQSVPIEI PKKPMSEYVT VSLLCLCVAF GGFMFGWDTG TISGFVVQTD 101 FLRRFGMKHK DGTHYLSNVR TGLIVAIFNI GCAFGGIILS KGGDMYGRKK 151 GLSIVVSVYI VGIIIQIASI NKWYQYFIGR IISGLGVGGI AVLCPMLISE 201 IAPKHLRGTL VSCYQLMITA GIFLGYCTNY GTKSYSNSVQ WRVPLGLCFA 251 WSLFMIGALT LVPESPRYLC EVNKVEDAKR SIAKSNKVSP EDPAVQAELD 301 LIMAGIEAEK LAGNASWGEL FSTKTKVFQR LLMGVFVQMF QQLTGNNYFF 351 YYGTVIFKSV GLDDSFETSI VIGVVNFAST FFSLWTVENL GHRKCLLLGA 401 ATMMACMVIY ASVGVTRLYP HGKSQPSSKG AGNCMIVFTC FYIFCYATTW 451 APVAWVITAE SFPLRVKSKC MALASASNWV WGFLIAFFTP FITSAINFYY 501 GYVFMGCLVA MFFYVFFFVP ETKGLSLEEI QELWEEGVLP WKSEGWIPSS 551 RRGNNYDLED LQHDDKPWYK AMLE Saccharomyces cerevisiae zwf1 (SEQ ID NO: 119) 1 MSEGPVKFEK NTVISVFGAS GDLAKKKTFP ALFGLFREGY LDPSTKIFGY

51 ARSKLSMEED LKSRVLPHLK KPHGEADDSK VEQFFKMVSY ISGNYDTDEG 101 FDELRTQIEK FEKSANVDVP HRLFYLALPP SVFLTVAKQI KSRVYAENGI 151 TRVIVEKPFG HDLASARELQ KNLGPLFKEE ELYRIDHYLG KELVKNLLVL 201 RFGNQFLNAS WNRDNIQSVQ ISFKERFGTE GRGGYFDSIG IIRDVMQNHL 251 LQIMTLLTME RPVSFDPESI RDEKVKVLKA VAPIDTDDVL LGQYGKSEDG 301 SKPAYVDDDT VDKDSKCVTF AAMTFNIENE RWEGVPIMMR AGKALNESKV 351 EIRLQYKAVA SGVFKDIPNN ELVIRVQPDA AVYLKFNAKT PGLSNATQVT 401 DLNLTYASRY QDFWIPEAYE VLIRDALLGD HSNFVRDDEL DISWGIFTPL 451 LKHIERPDGP TPEIYPYGSR GPKGLKEYMQ KHKYVMPEKH PYAWPVTKPE 501 DTKDN Saccharomyces cerevisiae sol3 (SEQ ID NO: 120) 1 MVTVGVFSER ASLTHQLGEF IVKKQDEALQ KKSDFKVSVS GGSLIDALYE 51 SLVADESLSS RVQWSKWQIY FSDERIVPLT DADSNYGAFK RAVLDKLPST 101 SQPNVYPMDE SLIGSDAESN NKIAAEYERI VPQVLDLVLL GCGPDGHTCS 151 LFPGETHRYL LNETTKRVAW CHDSPKPPSD RITFTLPVLK DAKALCFVAE 201 GSSKQNIMHE IFDLKNDQLP TALVNKLFGE KTSWFVNEEA FGKVQTKTF

Example 18

Cloning of Additional ZWF1 Candidate Genes

[0369] A variety of ZWF1 genes were cloned from S. cerevisiae, Zymomonas mobilis, Pseudomonas fluorescens (zwf1 and zwf2), and P. aeruginosa strain PAO1. The sequences of these additional ZWF1 genes are given below.

TABLE-US-00061 zwf1 from P. fluorescens Amino Acid Sequence (SEQ. ID. NO: 123) MTTTRKKSKALPAPPTTLFLFGARGDLVKRLLMPALYNLSRDGLLDEGLRIVGVDHNAVSDAEFAT LLEDFLRDEVLNKQGQGAAVDAAVWARLTRGINYVQGDFLDDSTYAELAARIAASGTGNAVFYLA TAPRFFSEVVRRLGSAGLLEEGPQAFRRVVIEKPFGSDLQTAEALNGCLLKVMSEKQIYRIDHYLG KETVQNILVSRFSNSLFEAFWNNHYIDHVQITAAETVGVETRGSFYEHTGALRDMVPNHLFQLLAM VAMEPPAAFGADAVRGEKAKVVGAIRPWSVEEARANSVRGQYSAGEVAGKALAGYREEANVAP DSSTETYVALKVMIDNWRWVGVPFYLRTGKRMSVRDTEIVICFKPAPYAQFRDTEVERLLPTYLRI QIQPNEGMWFDLLAKKPGPSLDMANIELGFAYRDFFEMQPSTGYETLIYDCLIGDQTLFQRADNIE NGWRAVQPFLDAWQQDASLQNYPAGVDGPAAGDELLARDGRVWRPLG Nucleotide Sequence (SEQ. ID. NO: 124) ATGACCACCACGCGAAAGAAGTCCAAGGCGTTGCCGGCGCCGCCGACCACGCTGTTCCTGT TCGGCGCCCGCGGTGATCTGGTCAAGCGCCTGCTGATGCCGGCGCTGTACAACCTCAGCCG CGACGGTTTGCTGGATGAGGGGCTGCGGATTGTCGGCGTCGACCACAACGCGGTGAGCGAC GCCGAGTTCGCCACGCTGCTGGAAGACTTCCTTCGCGATGAAGTGCTCAACAAGCAAGGCCA GGGGGCGGCGGTGGATGCCGCCGTCTGGGCCCGCCTGACCCGGGGCATCAACTATGTCCA GGGCGATTTTCTCGACGACTCCACCTATGCCGAACTGGCGGCGCGGATTGCCGCCAGCGGC ACCGGCAACGCGGTGTTCTACCTGGCCACCGCACCGCGCTTCTTCAGTGAAGTGGTGCGCC GCCTGGGCAGCGCCGGGTTGCTGGAGGAGGGGCCGCAGGCTTTTCGCCGGGTGGTGATCG AAAAACCCTTCGGCTCCGACCTGCAGACCGCCGAAGCCCTCAACGGCTGCCTGCTCAAGGTC ATGAGCGAGAAGCAGATCTATCGCATCGACCATTACCTGGGCAAGGAAACGGTCCAGAACAT CCTGGTCAGCCGTTTTTCCAACAGCCTGTTCGAGGCATTCTGGAACAACCATTACATCGACCA CGTGCAGATCACCGCGGCGGAAACCGTCGGCGTGGAAACCCGTGGCAGCTTTTATGAACAC ACCGGTGCCCTGCGGGACATGGTGCCCAACCACCTGTTCCAGTTGCTGGCGATGGTGGCCA TGGAGCCGCCCGCTGCCTTTGGCGCCGATGCGGTACGTGGCGAAAAGGCCAAGGTGGTGG GGGCTATCCGCCCCTGGTCCGTGGAAGAGGCCCGGGCCAACTCGGTGCGCGGCCAGTACA GCGCCGGTGAAGTGGCCGGCAAGGCCCTGGCGGGCTACCGCGAGGAAGCCAACGTGGCGC CGGACAGCAGCACCGAAACCTACGTTGCGCTGAAGGTGATGATCGACAACTGGCGCTGGGT CGGGGTGCCGTTCTACCTGCGCACCGGCAAGCGCATGAGTGTGCGCGACACCGAGATCGTC ATCTGCTTCAAGCCGGCGCCCTATGCACAGTTCCGCGATACCGAGGTCGAGCGCCTGTTGCC GACCTACCTGCGGATCCAGATCCAGCCCAACGAAGGCATGTGGTTCGACCTGCTGGCGAAAA AGCCCGGGCCGAGCCTGGACATGGCCAACATCGAACTGGGTTTTGCCTACCGCGACTTTTTC GAGATGCAGCCCTCCACCGGCTACGAAACCCTGATCTACGACTGCCTGATCGGCGACCAGAC CCTGTTCCAGCGCGCCGACAACATCGAGAACGGCTGGCGCGCGGTGCAACCCTTCCTCGAT GCCTGGCAACAGGACGCCAGCTTGCAGAACTACCCGGCGGGCGTGGATGGCCCGGCAGCC GGGGATGAACTGCTGGCCCGGGATGGCCGCGTATGGCGACCCCTGGGGTGA zwf2 from P. fluorescens Amino Acid Sequence (SEQ. ID. NO: 125) MPSITVEPCTFALFGALGDLALRKLFPALYQLDAAGLLHDDTRILALAREPGSEQEHLANIETELHKY VGDKDIDSQVLQRFLVRLSYLHVDFLKAEDYVALAERVGSEQRLIAYFATPAAVYGAICENLSRVGL NQHTRVVLEKPIGSDLDSSRKVNDAVAQFFPETRIYRIDHYLGKETVQNLIALRFANSLFETQWNQ NYISHVEITVAEKVGIEGRWGYFDKAGQLRDMIQNHLLQLLCLIAMDPPADLSADSIRDEKVKVLKA LAPISPEGLTTQVVRGQYIAGHSEGQSVPGYLEEENSNTQSDTETFVALRADIRNWRWAGVPFYL RTGKRMPQKLSQIVIHFKEPSHYIFAPEQRLQISNKLIIRLQPDEGISLRVMTKEQGLDKGMQLRSG PLQLNFSDTYRSARIPDAYERLLLEVMRGNQNLFVRKDEIEAAWKWCDQLIAGWKKSGDAPKPYA AGSWGPMSSIALITRDGRSWYGDI Nucleotide Sequence (SEQ. ID. NO: 126) ATGCCTTCGATAACGGTTGAACCCTGCACCTTTGCCTTGTTTGGCGCGCTGGGCGATCTGGC GCTGCGTAAGCTGTTTCCTGCCCTGTACCAACTCGATGCCGCCGGTTTGCTGCATGACGACA CGCGCATCCTGGCCCTGGCCCGCGAGCCTGGCAGCGAGCAGGAACACCTGGCGAATATCGA AACCGAGCTGCACAAGTATGTCGGCGACAAGGATATCGATAGCCAGGTCCTGCAGCGTTTTC TCGTCCGCCTGAGCTACCTGCATGTGGACTTCCTCAAGGCCGAGGACTACGTCGCCCTGGCC GAACGTGTCGGCAGCGAGCAGCGCCTGATTGCCTACTTCGCCACGCCGGCGGCGGTGTATG GCGCGATCTGCGAAAACCTCTCCCGGGTCGGGCTCAACCAGCACACCCGTGTGGTCCTGGA AAAACCCATCGGCTCGGACCTGGATTCATCACGCAAGGTCAACGACGCGGTGGCGCAGTTCT TCCCGGAAACCCGCATCTACCGGATCGACCACTACCTGGGCAAGGAAACGGTGCAGAACCTG ATTGCCCTGCGTTTCGCCAACAGCCTGTTCGAAACCCAGTGGAACCAGAACTACATCTCCCAC GTGGAAATCACCGTGGCCGAGAAGGTCGGCATCGAAGGTCGCTGGGGCTATTTCGACAAGG CCGGCCAACTGCGGGACATGATCCAGAACCACTTGCTGCAACTGCTCTGCCTGATCGCGATG GACCCGCCGGCCGACCTTTCGGCCGACAGCATCCGCGACGAGAAGGTCAAGGTGCTCAAGG CCCTGGCGCCCATCAGCCCGGAAGGCCTGACCACCCAGGTGGTGCGCGGCCAGTACATCGC CGGCCACAGCGAAGGCCAGTCGGTGCCGGGCTACCTGGAGGAAGAAAACTCCAACACCCAG AGCGACACCGAGACCTTCGTCGCCCTGCGCGCCGATATCCGCAACTGGCGCTGGGCCGGTG TGCCTTTCTACCTGCGCACCGGCAAGCGCATGCCACAGAAGCTGTCGCAGATCGTCATCCAC TTCAAGGAACCCTCGCACTACATCTTCGCCCCCGAGCAGCGCCTGCAGATCAGCAACAAGCT GATCATCCGCCTGCAGCCGGACGAAGGTATCTCGTTGCGGGTGATGACCAAGGAGCAGGGC CTGGACAAGGGCATGCAACTGCGCAGCGGTCCGTTGCAGCTGAATTTTTCCGATACCTATCG CAGTGCACGGATCCCCGATGCCTACGAGCGGTTGTTGCTGGAAGTGATGCGCGGCAATCAG AACCTGTTTGTGCGCAAAGATGAAATCGAAGCCGCGTGGAAGTGGTGTGACCAGTTGATTGC CGGGTGGAAGAAATCCGGCGATGCGCCCAAGCCGTACGCGGCCGGGTCCTGGGGGCCGAT GAGCTCCATTGCACTGATCACGCGGGATGGGAGGTCTTGGTATGGCGATATCTaA zwf1 from P. aeruginosa, PAO1 Amino Acid Sequence (SEQ. ID. NO: 127) MPDVRVLPCTLALFGALGDLALRKLFPALYQLDRENLLHRDTRVLALARDEGAPAEHLATLEQRLR LAVPAKEWDDVVWQRFRERLDYLSMDFLDPQAYVGLREAVDDELPLVAYFATPASVFGGICENLA AAGLAERTRVVLEKPIGHDLESSREVNEAVARFFPESRIYRIDHYLGKETVQNLIALRFANSLFETQ WNQNHISHVEITVAEKVGIEGRWGYFDQAGQLRDMVQNHLLQLLCLIAMDPPSDLSADSIRDEKV KVLRALEPIPAEQLASRVVRGQYTAGFSDGKAVPGYLEEEHANRDSDAETFVALRVDIRNWRWS GVPFYLRTGKRMPQKLSQIVIHFKEPPHYIFAPEQRSLISNRLIIRLQPDEGISLQVMTKDQGLGKG MQLRTGPLQLSFSETYHAARIPDAYERLLLEVTQGNQYLFVRKDEVEFAWKWCDQLIAGWERLSE APKPYPAGSWGPVASVALVARDGRSWYGDF Nucleotide Sequence (SEQ. ID. NO: 128) ATGCCTGATGTCCGCGTTCTGCCTTGCACGTTAGCGCTGTTCGGTGCGCTGGGCGATCTCGC CTTGCGCAAGCTGTTCCCGGCGCTCTACCAACTCGATCGTGAGAACCTGCTGCACCGCGATA CCCGCGTCCTGGCCCTGGCCCGTGACGAAGGCGCTCCCGCCGAACACCTGGCGACGCTGG AGCAGCGCCTGCGCCTGGCAGTGCCGGCGAAGGAGTGGGACGACGTGGTCTGGCAGCGTT TCCGCGAACGCCTCGACTACCTGAGCATGGACTTCCTCGACCCGCAGGCCTATGTCGGCTTG CGCGAGGCGGTGGATGACGAACTGCCGCTGGTCGCCTACTTCGCCACGCCGGCCTCGGTGT TCGGCGGCATCTGCGAGAACCTCGCCGCCGCCGGTCTCGCCGAGCGCACCCGGGTGGTGC TGGAGAAGCCCATCGGTCATGACCTGGAGTCGTCCCGCGAGGTCAACGAGGCAGTCGCCCG GTTCTTCCCGGAAAGCCGCATCTACCGGATCGACCATTACCTGGGCAAGGAGACGGTGCAGA ACCTGATCGCCCTGCGCTTCGCCAACAGCCTCTTCGAGACCCAGTGGAACCAGAACCACATC TCCCACGTGGAGATCACCGTGGCCGAGAAGGTCGGCATCGAAGGCCGCTGGGGCTACTTCG ACCAGGCCGGGCAACTGCGCGACATGGTGCAGAACCACCTGCTGCAACTGCTCTGCCTGAT CGCCATGGATCCGCCCAGCGACCTTTCGGCGGACAGCATTCGCGACGAGAAGGTCAAGGTC CTCCGCGCCCTCGAGCCGATTCCCGCAGAACAACTGGCTTCGCGCGTGGTGCGTGGGCAGT ACACCGCCGGTTTCAGCGACGGCAAGGCAGTGCCGGGCTACCTGGAGGAGGAACATGCGAA TCGCGACAGCGACGCGGAAACCTTCGTCGCCCTGCGCGTGGACATCCGCAACTGGCGCTGG TCGGGCGTGCCGTTCTACCTGCGCACCGGCAAGCGCATGCCGCAGAAGCTGTCGCAGATCG TCATCCACTTCAAGGAGCCGCCGCACTACATCTTCGCTCCCGAGCAGCGTTCGCTGATCAGC AACCGGCTGATCATCCGCCTGCAGCCGGACGAAGGTATCTCCCTGCAAGTGATGACCAAGGA CCAGGGCCTGGGCAAGGGCATGCAATTGCGTACCGGCCCGCTGCAACTGAGTTTTTCCGAG ACCTACCACGCGGCGCGGATTCCCGATGCCTACGAGCGTCTGCTGCTGGAGGTCACCCAGG GCAACCAGTACCTGTTCGTGCGCAAGGACGAGGTGGAGTTCGCCTGGAAGTGGTGCGACCA GCTGATCGCTGGCTGGGAACGCCTGAGCGAAGCGCCCAAGCCGTATCCGGCGGGGAGTTG GGGGCCGGTGGCCTCGGTGGCCCTGGTGGCCCGCGATGGGAGGAGTTGGTATGGCGATTT CTGA zwf1 from Z. mobilis Amino Acid Sequence (SEQ. ID. NO: 129) MTNTVSTMILFGSTGDLSQRMLLPSLYGLDADGLLADDLRIVCTSRSEYDTDGFRDFAEKALDRFV ASDRLNDDAKAKFLNKLFYATVDITDPTQFGKLADLCGPVEKGIAIYLSTAPSLFEGAIAGLKQAGLA GPTSRLALEKPLGQDLASSDHINDAVLKVFSEKQVYRIDHYLGKETVQNLLTLRFGNALFEPLWNS KGIDHVQISVAETVGLEGRIGYFDGSGSLRDMVQSHILQLVALVAMEPPAHMEANAVRDEKVKVF RALRPINNDTVFTHTVTGQYGAGVSGGKEVAGYIDELGQPSDTETFVAIKAHVDNWRWQGVPFYI RTGKRLPARRSEIVVQFKPVPHSIFSSSGGILQPNKLRIVLQPDETIQISMMVKEPGLDRNGAHMRE VWLDLSLTDVFKDRKRRIAYERLMLDLIEGDATLFVRRDEVEAQWVWIDGIREGWKANSMKPKTY VSGTWGPSTAIALAERDGVTWYD Nucleotide Sequence (SEQ. ID. NO: 130) ATGACAAATACCGTTTCGACGATGATATTGTTTGGCTCGACTGGCGACCTTTCACAGCGTATG CTGTTGCCGTCGCTTTATGGTCTTGATGCCGATGGTTTGCTTGCAGATGATCTGCGTATCGTC TGCACCTCTCGTAGCGAATACGACACAGATGGTTTCCGTGATTTTGCAGAAAAAGCTTTAGAT CGCTTTGTCGCTTCTGACCGGTTAAATGATGACGCTAAAGCTAAATTCCTTAACAAGCTTTTCT ACGCGACGGTCGATATTACGGATCCGACCCAATTCGGAAAATTAGCTGACCTTTGTGGCCCG GTCGAAAAAGGTATCGCCATTTATCTTTCGACTGCGCCTTCTTTGTTTGAAGGGGCAATCGCT GGCCTGAAACAGGCTGGTCTGGCTGGTCCAACTTCTCGCCTGGCGCTTGAAAAACCTTTAGG TCAAGATCTTGCTTCTTCCGATCATATTAATGATGCGGTTTTGAAAGTTTTCTCTGAAAAGCAA GTTTATCGTATTGACCATTATCTGGGTAAAGAAACGGTTCAGAATCTTCTGACCCTGCGTTTTG

GTAATGCTTTGTTTGAACCGCTTTGGAATTCAAAAGGCATTGACCACGTTCAGATCAGCGTTG CTGAAACGGTTGGTCTTGAAGGTCGTATCGGTTATTTCGACGGTTCTGGCAGCTTGCGCGATA TGGTTCAAAGCCATATCCTTCAGTTGGTCGCTTTGGTTGCAATGGAACCACCGGCTCATATGG AAGCCAACGCTGTTCGTGACGAAAAGGTAAAAGTTTTCCGCGCTCTGCGTCCGATCAATAACG ACACCGTCTTTACGCATACCGTTACCGGTCAATATGGTGCCGGTGTTTCTGGTGGTAAAGAAG TTGCCGGTTACATTGACGAACTGGGTCAGCCTTCCGATACCGAAACCTTTGTTGCTATCAAAG CGCATGTTGATAACTGGCGTTGGCAGGGTGTTCCGTTCTATATCCGCACTGGTAAGCGTTTAC CTGCACGTCGTTCTGAAATCGTGGTTCAGTTTAAACCTGTTCCGCATTCGATTTTCTCTTCTTC AGGTGGTATCTTGCAGCCGAACAAGCTGCGTATTGTCTTACAGCCTGATGAAACCATCCAGAT TTCTATGATGGTGAAAGAACCGGGTCTTGACCGTAACGGTGCGCATATGCGTGAAGTTTGGCT GGATCTTTCCCTCACGGATGTGTTTAAAGACCGTAAACGTCGTATCGCTTATGAACGCCTGAT GCTTGATCTTATCGAAGGCGATGCTACTTTATTTGTGCGTCGTGACGAAGTTGAGGCGCAGTG GGTTTGGATTGACGGAATTCGTGAAGGCTGGAAAGCCAACAGTATGAAGCCAAAAACCTATGT CTCTGGTACATGGGGGCCTTCAACTGCTATAGCTCTGGCCGAACGTGATGGAGTAACTTGGT ATGACTGA

[0370] All the above genes were PCR amplified from their genomic DNA sources with and without c-terminal 6-HIS tags (SEQ ID NO: 35) and cloned into the yeast expression vector p426GPD for testing.

[0371] Assays of Candidate ZWF1 Genes

[0372] Strain BY4742 zwf1 (ATCC Cat. No. 4011971; Winzeler E A, et al. Science 285: 901-906, 1999. PubMed: 10436161) was used as the base strain for all ZWF1 assays. The assays were performed as follows: A 5 ml overnight of the strain expressing the ZWF1 gene was grown in SCD-ura. A 50 ml culture of the strain was then grown for about 18 hours from an initial (OD.sub.600 of about 0.2 until it had reached about OD.sub.600 of about 4. The cells were centrifuged at 1046.times.g washed twice with 25 ml cold sterile water, and resuspended in 2 ml/g Yper Plus (Thermo Scientific) plus 1.times. protease inhibitors (EDTA-free). The cells were allowed to lyse at room temperature for about 30 minutes with constant rotation of the tubes. The lysate was centrifuged at 16,100.times.g for 10 minutes at 4.degree. C. and the supernatants were transferred to a new 1.5 ml microcentrifuge tube. Quantification of the lysates was performed using the Coomassie-Plus kit (Thermo Scientific, San Diego, Calif.) as directed by the manufacturer.

[0373] Each kinetic assay was done using approximately 50 to 60 .mu.g of crude extract in a reaction mixture containing 50 mM Tris-HCl, pH 8.9, and 1 mM NADP+ or NAD+. The reaction was started with 20 mM glucose-6-phosphate and the reaction was monitored at A340. The specific activity was measured as the .mu.mol substrate/min/mg protein. The results of the assays are presented in the table below.

TABLE-US-00062 Vmax Km Specific Activity Zwf1 Cofactors (.mu.mol min.sup.-1) (M.sup.-1) (.mu.mol min.sup.-1 mg.sup.-1) S. cerevisiae NAD+ NA NA NA NADP+ 0.9523 0.4546 224.07 S. cerevisiae + NAD+ NA NA NA His NADP+ 0.7267 0.4109 164.79 ZM4 NAD+ NA NA NA NADP+ NA NA NA ZM4 + His NAD+ 0.0213 0.0156 0.1267 NADP+ 0.0027 0.0140 0.0160 P. fluorescens NAD+ 0.0158 0.6201 0.3132 1 NADP+ 0.0213 0.8171 0.4208 P. fluorescens NAD+ 0.0126 4.9630 0.2473 1 + His NADP+ 0.0139 0.9653 0.2739 P. fluorescens NAD+ ND ND ND 2 NADP+ NA NA NA P. fluorescens NAD+ NA NA NA 2 + His NADP+ ND ND ND PAO1 NAD+ NA NA NA NADP+ 0.0104 0.6466 0.1564 PAO1 + His NAD+ 0.0074 0.0071 0.1098 NADP+ 0.0123 3.9050 0.1823 NA = cannot be calculated (substrate not used by enzyme) ND = was not determined (either not enough crude available or cells did not grow)

[0374] Altering Cofactor Preference of S. cerevisiae ZWF1

[0375] ZWF1 from S. cerevisiae is an NADP.sup.+-only utilizing enzyme. Site-directed mutagenesis was used to alter of ZWF1 so that the altered ZWF1 could also utilize NAD+, thereby improving the REDOX balance within the cell. Site directed mutagenesis reactions were performed in the same manner for all mutations, and for mutants which include more than one mutation, each mutation was performed sequentially. About 50 ng of plasmid DNA was added to 1.times.Pfu Ultra II buffer, 0.3 mM dNTPs, 0.3 .mu.mol site directed mutagenesis specific primers, and 1 U Pfu Ultra II polymerase (Agilent, La Jolla, Calif.) in a 50 .mu.l reaction mix. The reaction was cycled at 95.degree. C. for 10 minutes, followed by 15 rounds of 95.degree. C. for 15 seconds, 55.degree. C. for 40 seconds, and 72.degree. C. for 3 minutes. A final 10 minute extension reaction at 72.degree. C. was also included. The PCR reaction mixture was then digested with 30 U of DpnI for about 2 hours and 5 .mu.l of the digested PCR reaction mixture was used to transform competent DH5.alpha. (Zymo Research, Orange, Calif.) and plated onto LB plates containing the appropriate antibiotics. The table below lists mutants generated in a first round of mutagenesis.

TABLE-US-00063 Mutant # zwf1_sc Codon changes 1 A24G GCA -> GGT 2 A24G/T28G GCA -> GGT, ACT -> GGT 3 A51N GCC -> AAT 4 A51D GCC -> GAT 5 T28F ACT -> TTT 6 K46R AAG -> AGA 7 Y40L TAC -> TTG 8 F33Y TTT -> TAC 9 T28L ACT -> TTG 10 V16L GTC -> TTG 11 V13T GTC -> ACT 12 L66E CTA -> GAA 13 A24G/A51D GCA -> GGT, GCC -> GAT 14 A24G/T28G/A51D GCA -> GGT, ACT -> GGT, GCC -> GAT 15 R52D CGG -> GAT 16 A51D/R52A GCC -> GAT, CGG -> GCT 17 A24G/A51D/R52A GCA -> GGT, GCC -> GAT, CGG -> GCT 18 A24G/T28G/A51D/ GCA -> GGT, ACT -> GGT, R52A GCC -> GAT, CGG -> GCT 19 A51D/R52H GCC -> GAT, CGG -> CAT 20 R52H CGG -> CAT 21 D22R GAT -> AGA

[0376] The oligonucleotides, utilized to generate the mutants listed in the table above, are listed in the table below. All oligonucleotides were purchased from Integrated DNA Technologies (IDT).

TABLE-US-00064 Base Mutation plasmid Oligo Name Nucleotide sequence SEQ ID NO: 1 pBF300 ka/zwf1sc_A24Gfor gtgcgtcaggtgatctgggtaagaagaagacttttccc 300 1 pBF300 ka/zwf1sc_A24Grev gggaaaagtcttcttcttacccagatcacctgacgcac 301 2 pBF300 ka/zwf1sc_T28Gfor gtgatctgggtaagaagaagggttttcccgccttatttgg 302 2 pBF300 ka/zwf1sc_T28Grev CCAAATAAGGCGGGAAAACCCTTCTTCT 303 TACCCAGATCAC 3 pBF300 ka/zwf1sc_A51Nfor ccttgatccatctaccaagatcttcggttataatcggtccaaa 304 ttgtccat 3 pBF300 ka/zwf1sc_A51Nrev atggacaatttggaccgattataaccgaagatcttggtagat 305 ggatcaagg 4 pBF300 ka/zwf1sc_A51Dfor atctaccaagatcttcggttatgatcggtccaaattgtccatg 306 4 pBF300 ka/zwf1sc_A51Drev catggacaatttggaccgatcataaccgaagatcttggtag 307 at 5 pBF300 ka/zwf1sc_T28Ffor ggtgatctggcaaagaagaagttttttcccgccttatttggg 308 5 pBF300 ka/zwf1sc_T28Frev cccaaataaggcgggaaaaaacttcttctttgccagatcacc 309 6 pBF300 ka/zwf1sc_K46Rfor taccttgatccatctaccagaatcttcggttatgcccggt 310 6 pBF300 ka/zwf1sc_K46Rrev accgggcataaccgaagattctggtagatggatcaaggta 311 7 pBF300 ka/zwf1sc_Y39Lfor gggcttttcagagaaggtttgcttgatccatctaccaaga 312 7 pBF300 ka/zwf1sc_Y39Lrev tcttggtagatggatcaagcaaaccttctctgaaaagccc 313 8 pBF300 ka/zwf1sc_F33Yfor gaagaagacttttcccgccttatacgggcttttcagagaag 314 8 pBF300 ka/zwf1sc_F33Yrev cttctctgaaaagcccgtataaggcgggaaaagtcttcttc 315 9 pBF300 ka/zwf1sc_T28Lfor gtcaggtgatctggcaaagaagaagttgtttcccgccttattt 316 gg 9 pBF300 ka/zwf1sc_T28Lrev ccaaataaggcgggaaacaacttcttctttgccagatcacc 317 tgac 10 pBF300 ka/zwf1sc_V16Lfor cgaaaaaaataccgtcatatctttgtttggtgcgtcaggtgat 318 ctg 10 pBF300 ka/zwf1sc_V16rev cagatcacctgacgcaccaaacaaagatatgacggtattt 319 ttttcg 12 pBF300 ka/zwf1sc_L66Efor gacctgaagtcccgtgtcgaaccccacttgaaaaaacc 320 12 pBF300 ka/zwf1sc_L66Erev ggttttttcaagtggggttcgacacgggacttcaggtc 321 13 pBF374 ka/zwf1sc_A24Gfor gtgcgtcaggtgatctgggtaagaagaagacttttccc 322 13 pBF374 ka/zwf1sc_A24Grev gggaaaagtcttcttcttacccagatcacctgacgcac 323 14 pBF374 ka/zwf1sc_A24Gfor gtgcgtcaggtgatctgggtaagaagaagacttttccc 324 14 pBF374 ka/zwf1sc_A24Grev gggaaaagtcttcttcttacccagatcacctgacgcac 325 15 pBF300 KA/zwf1mut15for accaagatcttcggttatgccgattccaaattgtccatggag 326 gag 15 pBF300 KA/zwf1mut15rev ctcctccatggacaatttggaatcggcataaccgaagatctt 327 ggt 16 pBF374 KA/zwf1mut16for tccatctaccaagatcttcggttatgatgcttccaaattgtcca 328 tggaggaggac 16 pBF374 KA/zwf1mut16rev gtcctcctccatggacaatttggaagcatcataaccgaaga 329 tcttggtagatgga 17 pBF441 KA/zwf1mut16for tccatctaccaagatcttcggttatgatgcttccaaattgtcca 330 tggaggaggac 17 pBF441 KA/zwf1mut16rev gtcctcctccatggacaatttggaagcatcataaccgaaga 331 tcttggtagatgga 18 pBF442 KA/zwf1mut16for tccatctaccaagatcttcggttatgatgcttccaaattgtcca 332 tggaggaggac 18 pBF442 KA/zwf1mut16rev gtcctcctccatggacaatttggaagcatcataaccgaaga 333 tcttggtagatgga 19 pBF374 KA/zwf1sc_mut19for aagatcttcggttatgatcattccaaattgtccatggagg 334 19 pBF374 KA/zwf1sc_mut19rev cctccatggacaatttggaatgatcataaccgaagatctt 335 20 pBF300 KA/zwf1sc_mut20for aagatcttcggttatgcccattccaaattgtccatggagg 336 20 pBF300 KA/zwf1sc_mut20rev cctccatggacaatttggaatgggcataaccgaagatctt 337

[0377] Initial kinetic screening of the ZWF1 mutants generated as described above, identified the following altered ZWF1 genes and preliminary cofactor phenotype.

TABLE-US-00065 NAD+ NADP+ Mutant # zwf1_sc usage usage 1 A24G No Yes 2 A24G/T28G No No 3 A51N No Yes 4 A51D Yes No 5 T28F No Yes 6 K46R No Yes 7 Y40L No Yes 8 F33Y No Yes 9 T28L No Yes 10 V16L No Yes 11 V13T ND ND 12 L66E No Yes 13 A24G/A51D Yes No 14 A24G/T28G/A51D No No 15 R52D No No 16 A51D/R52A No No 17 A24G/A51D/R52A No No 18 A24G/T28G/A51D/R52A ND ND 19 A51D/R52H ND ND 20 R52H ND ND 21 D22R ND ND ND = not determined

[0378] Mutants 4 (A51D) and 13 (A24G/A51D) were identified as mutants which enabled NAD+ utilization with concomitant loss of NADP+ utilization.

[0379] Cloning of SOL3

[0380] The SOL3 gene from S. cerevisiae was cloned as follows. The approximately 750 bp SOL3 gene was PCR amplified from the BY4742 genome using primers KAS/5-SOL3-NheI and KAS/3'-SOL3-SalI, shown below.

TABLE-US-00066 KAS/5-SOL3-NheI (SEQ ID NO: 338) gctagcatggtgacagtcggtgtgttttctgag KAS/3'-SOL3-SalI (SEQ ID NO: 339) gtcgacctaaaaagttttcgtttgaacttttcc

[0381] About 100 ng of genomic DNA from S. cerevisiae strain BY4742 was added to 1.times.Pfu Ultra II buffer, 0.3 mM dNTPs, 0.3 .mu.mol gene-specific primers, and 1 U Pfu Ultra II polymerase (Agilent, La Jolla, Calif.) in a 50 .mu.l reaction mix. The reaction was cycled at 95.degree. C. for 10 minutes, followed by 30 rounds of 95.degree. C. for 20 seconds, 55.degree. C. for 30 seconds, and 72.degree. C. for 15 seconds. A final 5 minute extension reaction at 72.degree. C. was also included. The amplified product was TOPO cloned into the pCR Blunt II TOPO vector (Life Technologies, Carlsbad, Calif.) according to the manufacturer's recommendations and sequence verified (GeneWiz, San Diego, Calif.). The resultant plasmid was designated pBF301. The sequence of the S. cerevisiae SOL3 gene is given below.

TABLE-US-00067 S. cerevisiae SOL3 (SEQ. ID. NO: 131) ATGGTGACAGTCGGTGTGTTTTCTGAGAGGGCTAGTTTGACCCATCAAT TGGGGGAATTCATCGTCAAGAAACAAGATGAGGCGCTGCAAAAGAAGTCA GACTTTAAAGTTTCCGTTAGCGGTGGCTCTTTGATCGATGCTCTGTATG AAAGTTTAGTAGCGGACGAATCACTATCTTCTCGAGTGCAATGGTCTAA ATGGCAAATCTACTTCTCTGATGAAAGAATTGTGCCACTGACGGACGCT GACAGCAATTATGGTGCCTTCAAGAGAGCTGTTCTAGATAAATTACCCT CGACTAGTCAGCCAAACGTTTATCCCATGGACGAGTCCTTGATTGGCAG CGATGCTGAATCTAACAACAAAATTGCTGCAGAGTACGAGCGTATCGTA CCTCAAGTGCTTGATTTGGTACTGTTGGGCTGTGGTCCTGATGGACACA CTTGTTCCTTATTCCCTGGAGAAACACATAGGTACTTGCTGAACGAAAC AACCAAAAGAGTTGCTTGGTGCCACGATTCTCCCAAGCCTCCAAGTGAC AGAATCACCTTCACTCTGCCTGTGTTGAAAGACGCCAAAGCCCTGTGTT TTGTGGCTGAGGGCAGTTCCAAACAAAATATAATGCATGAGATCTTTGA CTTGAAAAACGATCAATTGCCAACCGCATTGGTTAACAAATTATTTGGT GAAAAAACATCCTGGTTCGTTAATGAGGAAGCTTTTGGAAAAGTTCAAA CGAAAACTTTTTAG

[0382] The NheI-SalI SOL3 gene fragment from plasmid pBF301 will be cloned into the SpeI-XhoI site in plasmids p413GPD and p423GPD (HIS3 marker-based plasmids; ATCC 87354 and ATCC 87355).

[0383] Testing of ZWF1/SOL3 Combinations in BY4742

[0384] A URA blaster cassette was digested with NotI and ligated into the MET17 integration cassette plasmid pBF691 to generate the Met17 knockout plasmid pBF772. Plasmid pBF772 was digested with PacI and linear fragments were purified by Zymo PCR purification kit (Zymo Research, Orange, Calif.) and concentrated in 10 .mu.l ddH2O. LiCl2 high efficiency transformation was performed as shown described. About 1 .mu.g linear MET17 knockout fragment was transformed into 50 .mu.l fresh made BY4742 competent cells and cells were plated onto SCD-Ura plates at 30.degree. C. for about 2-3 days. A single URA+ colony was streaked out on a SCD-Ura plate and grown at 30.degree. C. for about 2-3 days. A single colony was inoculated overnight in YPD medium at 30.degree. C. 50 .mu.l of the overnight culture was then plated onto SCD complete -5FOA plates and incubated at 30.degree. C. for about 3 days.

[0385] A single colony which grew on SCD complete-5FOA plates was then picked and inoculated in YPD medium and grown at 30.degree. C. overnight. Yeast genomic DNA was extracted by YeaStar genomic extraction kit (Zymo Research, Orange, Calif.) and confirmation of the strain was confirmed by PCR using primers JML/237 and JML/238, shown below.

TABLE-US-00068 JML/237: (SEQ ID NO: 340) CCAACACTAAGAAATAATTTCGCCATTTCTTG JML/238: (SEQ ID NO: 341) GCCAACAATTAAATCCAAGTTCACCTATTCTG

[0386] The PCR amplification was performed as follows: 10 ng of yeast genomic DNA with 0.1 .mu.mol gene specific primers, 1.times.Pfu Ultra II buffer, 0.2 mmol dNTPs, and 0.2 U Taq DNA polymerase. The PCR mixture was cycled at 95.degree. C. for 2 minutes, followed by 30 cycles of 95.degree. C. for 20 seconds, 55.degree. C. for 30 seconds and 72.degree. C. for 45 seconds. A final step of 72.degree. C. for 5 minutes was also included. The resultant strain was designated BF1618.

[0387] Strain BF1618 is undergoing transformation with the following plasmid combinations. Additionally, the affect of the ZWF1 mutant constructs will also be evaluated with and without SOL3 constructs. The table below shows the plasmid combinations being transformed into strain BF1618.

TABLE-US-00069 Test Strain EDD EDA ZWF1 SOL3 1 2.mu. 2.mu. cen/ars NONE 2 2.mu. 2.mu. 2.mu. NONE 3 2.mu. 2.mu. cen/ars cen/ars 4 2.mu. 2.mu. 2.mu. 2.mu. 5 2.mu. 2.mu. NONE cen/ars 6 2.mu. 2.mu. NONE 2.mu.

[0388] Strains with improved ethanol production may benefit from two or more copies of the ZWF1 gene due to increased flux of the carbon towards the alternative pathway. A strain embodiment currently under construction has the phenotype; pfk1, ZWF1, SOL3, tal1, EDD-PAO1*, EDA-E. coli*, where the "*" represents additional copies of the gene. It is believed that multiple copies of the EDD and EDA genes may provide additional increases in ethanol production.

Example 19

Construction of the KanMX-ATO1-L75Q Cassette

[0389] A unique disruption cassette suitable for use when auxotrophic markers are unavailable, such as in diploid industrial strains or haploids derived from such strains, was constructed to allow homologous recombination or integration of sequences in the absence of traditional auxotrophic marker selection. The primers used for amplification of nucleic acids utilized to generate the disruption cassette are described in the table below.

TABLE-US-00070 JML/ ACTAGTATGTCTGACAAGGAACAAACGAGC (SEQ ID NO: 5'ScAto1SpeI 51 342) JML/ CTCGAGTTAAAAGATTACCCTTTCAGTAGATGGTAATG 3'ScAto1XhoI 52 (SEQ ID NO: 343) JML/ caagcctttggtggtacccagaatccagggttagctcc ScATO(L75Q)_For 55 (SEQ ID NO: 344) JML/ ggagctaaccctggattctgggtaccaccaaaggcttg ScATO(L75Q)_Rev 56 (SEQ ID NO: 345) JML/ ggtacaacgcatatgcagatgttgctacaaagcagaa (SEQ ScATO1G259D_For 57 ID NO: 346) JML/ ttctgctttgtagcaacatctgcatatgcgttgtacc (SEQ ScATO1G259D_Rev 58 ID NO: 347) JML/ GACGACGTCTAGAAAAGAATACTGGAGAAATGAAAAGAAAAC ReplacesJML/30 59 (SEQ ID NO: 348) JML/ GCATGCTTAATTAATGCGAGGCATATTTATGGTGAAGG F'of5'FlankingRegionof 63 (SEQ ID NO: 349) ScURA3 JML/ GGCCGGCCAGATCTGCGGCCGCGGCCAGCAAAACTAAAAAAC F'of3'FlankingRegionof 64 TGTATTATAAG (SEQ ID NO: 350) ScURA3 JML/ GCGGCCGCAGATCTGGCCGGCCGATTTATCTTCGTTTCCTGC R'of5'FlankingRegionof 65 AGGTTTTTG (SEQ ID NO: 351) ScURA3 JML/ GAATTCTTAATTAACTTTTGTTCCACTACTTTTTGGAACTCT R'of3FlankingRegionofSc 66 TG (SEQ ID NO: 352) URA3 JML/ GCATGCGCGGCCGCACGTCGGCAGGCCCG (SEQ ID NO: F'200mer-R 67 353) JML/ CGAAGGACGCGCGACCAAGTTTATCATTATCAATACTCGCCA F'200mer-R-pGPD-ATO1- 68 TTTC (SEQ ID NO: 354) CYC JML/ GAAATGGCGAGTATTGATAATGATAAACTTGGTCGCGCGTCC R'pGPD-ATO1-CYC- 69 TTCG (SEQ ID NO: 355) 200mer-R JML/ GTCGACCCGCAAATTAAAGCCTTCGAGC (SEQ ID NO: R-pGPD-ATO1-CYC 70 356) JML/ GTCGACGTACCCCCGGGTTAATTAAGGCG (SEQ ID NO: F-KanMX 71 357) JML/ GTCGAAAACGAGCTCGAATTCGACGTCGGCAGGCCCG F-KanMX-200mer-R 72 (SEQ ID NO: 358) JML/ CGGGCCTGCCGACGTCGAATTCGAGCTCGTTTTCGAC (SEQ R-200mer-R-KanMX 73 ID NO: 359) JML/ GGATCCGCGGCCGCTGGTCGCGCGTCCTTCG (SEQ ID R-200mer-R 74 NO: 360)

[0390] ScATO1 was amplified from genomic DNA (gDNA) isolated from BY4742 with primers oJML51 and oJML52 and cloned into pCR Blunt II-TOPO (Invitrogen, Carlsbad, Calif.). Site Directed Mutagenesis (SDM) was performed on that plasmid with oJML55 and oJML56, as described herein. The mutagenized clone was re-amplified with primers oJML51 and oJML52 and cloned into pCR Blunt II-TOPO (Invitrogen, Carlsbad, Calif.), and designated ATO1-L75Q. ATO1-L75Q was subcloned into p416GPD using SpeI/XhoI restriction enzyme sites. The resulting plasmid was designated pJLV048.

[0391] The 5' and 3' flanking regions of URA3 were amplified via PCR of the 5' regions with primers oJML63 and oJML65, the 3' region with primers oJML64 and oJML66. The amplified nucleic acids were annealed and re-amplified with oligonucleotides oJML63 and oJML66. The template used was TURBO gDNA. The PCR product was Topo cloned into pCR-Blunt II. The desired sequence was moved as an EcoRI-SphI fragment into vector pUC19 and designated pJLV63.

[0392] The R-KanMX fragment was made as follows: The KANMX fragment was first amplified from pBF524 with primers oJML71 and oJML73. The R-200-mer from plasmid pBF32 was then amplified using primers oJML72 and oJML74. The two fragments were annealed together and PCR amplified using primers oJML67 and oJML70 and topo cloned using pCR-Blunt II. The final plasmid construct was designated pJLV062. The R-P.sub.TDH3-ATO1-L75Q construct was generated by amplifying a mixture of PCR oJML67-oJM L69 (pBF32)+PCR oJML68-oJML70 (pJLV048). The resulting plasmid was designated pJLV065. The R-PT.sub.DH3-ATO1 L75Q (SalI/SphI) fragment from pJLV065 was ligated in a 3 piece ligation to the SalI/BamHI (R-KanMX) fragment from pJLV063 into the BamHI/SphI site of pUC19. The entire R-KanMX-P.sub.TDH3-ATO1-L75Q-R fragment was ligated as a NotI piece into the NotI site of pJLV63 and designated pJLV74. The letter "R" with reference to nucleic acid fragments, primers, plasmids and unique 200-mer sequence tags, refers to a unique 200-mer tag identification number. The unique sequence tags are described in Example 28. A table describing the intermediate and final plasmids is presented below.

TABLE-US-00071 pJLV0035 pBF493 pCR-Topo BluntII-ScATO1 PCR oJML51, oJML52 (SDM L75Q oJML55, oJML56 (Clone of ScATO1 Not Kept) pJLV0048 pBF506 pRS416-ProGPD-ScATO1 XhoI-SpeI (pRAS416-GPD) + XhoI- L75Q SpeI(pJLV035) pJLV0061 pBF604 pCR-Topo BluntII-5' + 3' PCR oJML63, oJML66 (PCR oJML63, oJML65 ScURA3 gDNA ScTURBO + PCR oJML64, oJML66 gDNA ScTURBO) pJLV0062 pBF605 pCR-Topo BluntII-KanMX- PCR oJML71-oJML74 (PCR oJML71, oJML73 200m-448 pBF524 + PCR oJML72, oJML74 pBF32) pJLV0063 pBF606 pUC19-5 + 3' ScURA3 EcoR1-SphI(pJLV0061) + EcoR1- SphI(pUC19) pJLV0065 pBF608 pCR-Topo BluntII-200m448- PCR oJML67-oJML70 (PCR oJML67-oJML59 ProGDP-ScATO1 L75Q (pBF32) + PCR oJML68-oJML70 (pJLV048)) pJLV0070 pBF650 pUC19-200m448-ProGDP- SalI/SphI (pJLV0065) + BamHI/SalI ScATO1 L75Q-KanMX- (pJLV0062) + SphI/BamHI (pUC19) 200m448 pJLV0074 pBF654 pUC19-5' URA3-200m448- NotI(pJLV070) + NotI(pJLV063) ProGDP-ScATO1 L75Q- KanMX-200m448-3' URA3

Example 20

Construction of the Ura3 Disruptions in Each Haploid

[0393] Haploid yeast strains were transformed with 2 to 3 .mu.g of a PvuII, SphI digested ura3::R-KanMX-ATO1-L75Q-R disruption cassette using the high-efficiency Li-PEG procedure with a heat shock time of 8 minutes. Transformants were plated on YPD plus G418 (200 .mu.g/ml) plates. Colonies were re-streaked onto ScD FOA plates. Single colonies were replica plated on ScD-ura, ScD+FOA, YPD, and YPD G418 200 .mu.g/ml plates. Ura-FOA.sup.R G418.sup.R colonies were grown overnight in YPD. Genomic DNA was extracted and the presence of the KanMX-ATO1-L75Q gene in the URA3 loci was verified by PCR. 50 .mu.l of each overnight culture was plated on ScD Acetate (2 g/L), pH 4.0, plates. Colonies were restreaked on ScD Acetate plates and single colonies grown overnight in YPD. Disruptions of the URA3 loci were verified by PCR with primers complementary to a region outside of the flanking region used for the disruption. The presence of the unique 200-mer sequence was verified by PCR with primers complementary to the 200-mer in combination with primers complementary to a region outside of the flanking region used for the disruption. The absence of the URA3 loci was verified by PCR that amplifies a 500 bp region of the Actin gene open reading frame and a 300 bp region of the URA3 open reading frame. The primers utilized for amplification and verification are presented, respectively, in the tables below.

[0394] Primers used for amplification of URA and Actin

TABLE-US-00072 JML/211 GAGGGCACAGTTAAGCCGCTAAAGG(SEQ ID NO: URA3 361) JML/212 GTCAACAGTACCCTTAGTATATTCTCCAGTAGCTAGG URA3 GAG(SEQ ID NO: 362) JML/213 CGTTACCCAATTGAACACGGTATTGTCAC(SEQ ID ACT1 NO: 363) JML/214 GAAGATTGAGCAGCGGTTTGCATTTC(SEQ ID NO: ACT1 364)

[0395] Primers used to verify the presence or absence of URA3

TABLE-US-00073 JML/67 GCATGCgcggccgcACGTC F'200mer-R GGCAGGCCCG(SEQ ID NO: 365) JML/74 GGATCCgcggccgcTGGTC R-200mer-R GCGCGTCCTTCG(SEQ ID NO: 366) JML/102 gagtcaaacgacgttgaaa PCRtoverifydisruptiono ttgaggctactgc(SEQ fURA3 ID NO: 367) JML/103 GATTACTGCTGCTGTTCCA PCRtoverifydisruptiono GCCCATATCCAAC(SEQ fURA3 ID NO: 368)

Example 21

EDA Gene Integration Method and Constructs

[0396] Plasmid DNA was digested with PacI using manufacturers suggestions. The digestions were purified using the GeneJET.TM. Gel Extraction Kit I (Fermentas). Each column was eluted with 20 .mu.l of Elution buffer and multiple digests were combined. S. cerevisiae was transformed using the high-efficiency Li-PEG procedure with 2 to 3 .mu.g of DNA and transformants were selected on ScD-ura solid media. Correct integrations were confirmed by PCR analysis with primers outside the flanking regions used as the disruption cassette and primers complementary to either the open reading frame of EDA or the 200-mer repeat. Oligonucleotide primers utilized for verification are described in the tables below.

[0397] Primers--Outside

TABLE-US-00074 YBR110.5 5' GGCAATCAAATTGGGAACGAACAA JML/187 TG (SEQ ID NO: 369) 3' CTCAAGGTATCCTCATGGCCAAGCAATAC JML/188 (SEQ ID NO: 370) YDL075.5 5' GGGTCTACAAACTGTTGTTGTCGAAGAAGA JML/189 TG (SEQ ID NO: 371) 3' CATTCAGTTCCAATGATTTATTGACAGTGC JML/190 AC (SEQ ID NO: 372)

[0398] Primers--Repeat and EDA Going Out

TABLE-US-00075 JML/276 CCTACCCGCCTCGGATCCCAGCTACC R-repeat (SEQ ID NO: 373) JML/277 GGTAGCTGGGATCCGAGGCGGGTAGG R-repeat (SEQ ID NO: 374) JML/278 CCTCCCGGCACAGCGTGTCGATGC R at the 5'EDA (SEQ ID NO: 375)

[0399] PaEDA Going Out and Similar Primers for EcEDA

TABLE-US-00076 JML/ CGAAGCCCTGGAGCGCTTCGC PCR for PaEDA 297 (SEQ ID NO: 376) going out at the 3' of the ORF JML/ GTGGTCAGGATTGATTCTGCACTTGTTTT PCR for EcEDA 298 CCAG (SEQ ID NO: 377) Reverse at the 5' end JML/ CGCGTGAAGCTGTAGAAGGCGCTAAG PCR for EcEDA 299 (SEQ ID NO: 378) Forward at the 3' end

[0400] The PCR reactions were performed in a final reaction volume of 25 .mu.l using the following amplification profile; 1 cycle at 94 degrees C. for 2 minutes, followed by 35 cycles of 94 degrees C. for 30 seconds, 52 degrees C. for 30 second and 72 degrees C. for 2 minutes.

[0401] Construction of EDA Disruption Cassettes

[0402] P.sub.TDH3-PaEDA was amplified from pBF292 using primers oJML225 and oJML226, shown in the table below and Topo cloned in pCR Blunt II to make pJLV95.

TABLE-US-00077 JML/225 GAGCTCGGCCGCAAATTAAAGCCTT 3'cyCTERMINATOR CGAG (SEQ ID NO: 379) JML/226 GGCCGGCCGTTTATCATTATCAATAC 5'PROMOTERgpd TCGCCATTTCAAAGAATACG (SEQ ID NO: 380)

[0403] The desired fragment was moved as a FseI-SacI piece into pBF730 or pBF731 (the integration cassette of either YBR110.5 or YDL075.5, respectively) to make plasmids pJLV114 and pJLV115, respectively. YBR110.5 is located in between loci YBR110 and YBR111, and YDL075.5 is located in between loci YDL075 and YDL076. The R-URA3-R sequence was moved into these plasmids as a NotI fragment to make pJLV119 and pJLV120. The resultant plasmids are described in the table below.

TABLE-US-00078 pJLV0095 pBF777 pCR-Topo BluntII-PaEDA PCR oJML225- oJML226 (pBF292) pJLV0114 pBF862 pUC19-5'-YBR110.5-PGDP1- FseI- PaEDA-TCYC-3'YBR110.5 SacI(pBF730) + FseI-SacI(pJLV95) pJLV0115 pBF863 pUC19-5'-YDL075.5-PGDP1- FseI- PaEDA-TCYC-3'YDL075.5 SacI(pBF731) + FseI-SacI(pJLV95) pJLV0119 pBF867 pUC19-5'-YBR110.5-PGDP1- NotI(pBF742) + PaEDA-TCYC-R-URA3-R- NotI(pJLV114) 3'YBR110.5 pJLV0120 pBF868 pUC19-5'-YDL075.5-PGDP1- NotI(pBF742) + PaEDA-TCYC-R-URA3-R- NotI(pJLV115) 3'YDL075.5

Example 22

Isolation and Evaluation of Additional EDA Genes

[0404] EDA genes isolated from a variety of sources were expressed in yeast and evaluated independently of EDA activity, to identify EDA activities suitable of inclusion in an engineered yeast strain. The EDA activities were was independently assessed by adding saturating amounts of over expressed E. coli EDD extracts to S. cerevisiae EDA extracts lacking EDD (Chemyan et al., Protein Science 16:2368-2377, 2007). The relative activities of EDAs, expressed in S. cerevisiae, were compared and ranked in this way. The activity of integrated EDAs in Thermosacc-Gold haploids, were also evaluated in this manner. The table below describes oligonucleotide primers used to isolate the various EDA genes.

TABLE-US-00079 SEQ ID Name Description Sequence NO: KA/EDA- Cloning primer for Shewanella GTTCACTGCACTAGTAAAAAAATG 381 SoFor oneidensis EDA CTTGAGAATAACTGGTC KA/EDA- Cloning primer for Shewanella CTTCGAGATCTCGAGTTAAAGTCC 382 SoRev oneidensis EDA GCCAATCGCCTC KA/EDA- Cloning primer for Gluconobacter GTTCACTGCACTAGTAAAAAAATG 383 GoFor oxydansEDA ATCGATACTGCCAAACTC KA/EDA- Cloning primer for Gluconobacter CTTCGAGATCTCGAGTCAGACCGT 384 GoRev oxydans EDA GAAGAGTGCCGC KA/EDA- Cloning primer for Bacilluis GTTCACTGCACTAGTAAAAAAATG 385 BLFor licheniformis EDA GTATTGTCACACATCGAAG KA/EDA- Cloning primer for Bacilluis CTTCGAGATCTCGAGTTACTGTTT 386 BLRev licheniformis EDA TGCTGCTTCAACAAATTG KA/EDA- Cloning primer for Bacillus subtilis GTTCACTGCACTAGTAAAAAAATG 387 BsFor EDA GAGTCCAAAGTCGTTGAAAACC KA/EDA- Cloning primer for Bacillus subtilis CTTCGAGATCTCGAGTTACACTTG 388 BsRev EDA GAAAACAGCCTGCAAATCC KA/EDA- Cloning primer for Pseudomonas GTTCACTGCACTAGTAAAAAAATG 389 PfFor fluorescens EDA ACAAACCTCGCCCCGACC KA/EDA- Cloning primer for Pseudomonas CTTCGAGATCTCGAGTCAGTCCAG 390 PfRev fluorescens EDA CAGGGCCAGG KA/EDA- Cloning primer for GTTCACTGCACTAGTAAAAAAATG 391 PsFor Pseudomonas syringae EDA ACACAGAACGAAAATAATCAGCCGC KA/EDA- Cloning primer for CTTCGAGATCTCGAGTCAGTCAAA 392 PsRev Pseudomonas syringae EDA CAGCGCCAGCGC KA/EDA- Cloning primer for GTTCACTGCACTAGTAAAAAAATG 393 SdFor Saccharaophagus degradans GCTATTACAAAAGAATTTTTAGCT EDA CCAG KA/EDA- Cloning primer for CTTCGAGATCTCGAGTTAGCTAGA 394 SdRev Saccharaophagus degradans AATTTTAGCGGTAGTTGCC EDA KA/EDA- Cloning primer for GTTCACTGCACTAGTAAAAAAATG 395 XaFor Xanthamonas axonopodis EDA ACGATTGCCCAGACCCAG KA/EDA- Cloning primer for CTTCGAGATCTCGAGTCAGCCCGC 396 XaRev Xanthamonas axonopodis EDA CCGCACC KA/NdeI Cloning primer for E. coli GTTCACTGCCATATGAATCCACAA 397 EDDfor EDD TTGTTACGCGTAACAAATCGAATC ATTG KA/XhoI Cloning primer for E. coli CTTCGAGATCTCGAGTTAAAAAGT 398 EDDrev EDD GATACAGGTTGCGCCCTGTTCGGC

[0405] Listed below are the amino acid sequences, nucleotide sequences and accession numbers of the EDA genes evaluated as described in this Example.

TABLE-US-00080 Accession Strain Amino Acid Number Species Number Nucleotide Sequence Sequence YP_526856.1 Saccharophagus 2-40 ATGGCTATTACAAAAGAATTTTTAGCTCCAGTTGGCGTAATGCCTGT MAITKEFLAPVGVMPVV degradans TGTGGTTGTGGATCGTGTAGAAGATGCGGTGCCTATTACAAACGCAT VVDRVEDAVPITNALKA TAAAAGCCGGCGGTATTAAAGCAGTTGAGATTACTTTACGTACTCCT GGIKAVEITLRTPAALD GCGGCACTGGATGCTATTCGCGCTATTAAAGCTGAGTGTGAAGACAT AIRAIKAECEDILVGVG CCTGGTGGGGGTAGGTACGGTTATTAACCATCAAAACCTTAAAGATA TVINHQNLKDIAAIGVD TTGCTGCAATTGGTGTTGATTTCGCCGTATCTCCTGGTTACACCCCA FAVSPGYTPTLLKQAQD ACATTGCTGAAGCAAGCGCAAGATTTGGGCGTAGAAATGTTGCCTGG LGVEMLPGVTSPSEVML TGTAACTTCGCCTTCTGAAGTTATGCTTGGTATGGAGCTAGGTTTGT GMELGLSCFKLFPAVAV CTTGCTTCAAGCTATTCCCTGCGGTTGCAGTAGGTGGTTTGCCATTA GGLPLLKSIGGPLPQVS CTTAAGTCTATTGGTGGCCCATTACCACAGGTTTCCTTCTGTCCAAC FCPTGGLTIDTFTDFLA AGGCGGTTTGACTATCGATACTTTCACCGACTTCTTGGCATTGCCTA LPNVACVGGTWLVPADA ACGTTGCTTGTGTGGGTGGTACTTGGTTGGTGCCTGCAGATGCTGTT VAAKNWQAITDIAAATT GCAGCTAAAAACTGGCAAGCTATTACTGATATTGCGGCGGCAACTAC AKISS (SEQ ID NO: CGCTAAAATTTCTAGCTAA (SEQ ID NO: 399) 400) Xanthomonas ATCC ATGACGATTGCCCAGACCCAGAACACCGCCGAACAGTTGCTGCGCGA MTIAQTQNTAEQLLRDA axonopodis pv. 13902 TGCCGGCATCTTGCCCGTGGTCACCGTGGACACGCTGGATCAGGCGC GILPVVTVDTLDQARRV Vasculorum GCCGCGTCGCCGATGCGTTGCTCGAAGGCGGCCTGCCCGCGATCGAG ADALLEGGLPAIELTLR CTGACCCTTCGCACGCCAGTGGCGATCGACGCGCTGGCGATGCTCAA TPVAIDALAMLKRELPN GCGCGAGCTTCCTAACATCTTGATCGGTGCCGGCACCGTGCTGAGCG ILIGAGTVLSELQLRQS AATTGCAGCTGCGTCAGTCGGTGGATGCCGGTGCAGACTTCCTGGTG VDAGADFLVTPGTPAPL ACCCCGGGCACGCCGGCGCCGCTGGCGCGCCTGCTGGCGGATGCGCC ARLLADAPIPAVPGAAT GATCCCGGCCGTTCCCGGCGCGGCCACTCCGACCGAGCTGCTGACCT PTELLTLMGLGFRVCKL TGATGGGTCTTGGCTTTCGCGTCTGCAAGCTGTTCCCGGCCACCGCC FPATAVGGLQMLRGLAG GTGGGCGGTCTGCAGATGCTCAGGGGCCTGGCCGGCCCGCTGTCCGA PLSELKLCPTGGISEAN GCTCAAGCTGTGCCCCACCGGCGGCATCAGCGAGGCCAACGCCGCCG AAEFLSQPNVLCIGGSW AGTTCCTGTCGCAGCCGAACGTGCTGTGCATCGGCGGTTCGTGGATG MVPKDWLAHGQWDKVKE GTCCCCAAGGATTGGCTGGCGCACGGCCAATGGGACAAGGTCAAGGA SSAKAAAIVRQVRAG AAGCTCGGCCAAGGCGGCGGCGATCGTGCGGCAGGTGCGGGCGGGCT (SEQ ID NO: 402) GA (SEQ ID NO: 401) AA055695.1 Pseudomonas Pv. ATGACACAGAACGAAAATAATCAGCCGCTCACCAGCATGGCGAACAA MTQNENNQPLTSMANKI syringiae Tomato GATTGCCCGGATCGACGAACTCTGCGCCAAGGCAAAGATTCTGCCGG ARIDELCAKAKILPVIT str TCATCACCATTGCCCGTGATCAGGACGTATTGCCACTGGCCGACGCG IARDQDVLPLADALAAG DC3000 CTGGCCGCTGGTGGCATGACGGCTCTGGAAATCACCCTGCGCTCGGC GMTALEITLRSAFGLSA GTTCGGACTGAGTGCGATCCGCATTTTGCGCGAGCAGCGCCCAGAGC IRILREQRPELCTGAGT TGTGCACTGGCGCCGGGACCATTCTGGACCGCAAGATGCTGGCCGAC ILDRKMLADAEAAGSQF GCCGAGGCGGCGGGCTCGCAATTCATTGTGACCCCCGGCAGCACGCA IVTPGSTQELLQAALDS GGAACTGTTGCAGGCGGCGCTCGACAGCCCGTTGCCCCTGTTGCCAG PLPLLPGVSSASEIMIG GCGTCAGCAGCGCGTCGGAAATCATGATCGGCTATGCCTTGGGTTAT YALGYRRFKLFPAEISG CGCCGCTTCAAGCTGTTCCCGGCAGAAATCAGCGGCGGTGTGGCAGC GVAAIKALGGPFNEVRF GATCAAGGCCTTGGGCGGGCCTTTCAACGAGGTGCGTTTCTGCCCGA CPTGGVNEQNLKNYMAL CGGGCGGCGTCAACGAGCAGAACCTCAAGAACTACATGGCCTTGCCC PNVMCVGGTWMIDNAWV AACGTCATGTGCGTCGGCGGGACATGGATGATTGATAACGCCTGGGT KNGDWGRIQEATAQALA CAAGAATGGCGACTGGGGCCGCATTCAGGAAGCCACGGCACAGGCGC LFD (SEQ ID NO: TGGCGCTGTTTGACTGA (SEQ ID NO: 403) 404) NP_718073.1 Shewanella MR-1 ATGCTTGAGAATAACTGGTCATTACAACCACAAGATATTTTTAAACG MLENNWSLQPQDIFKRS oneidensis CAGCCCTATTGTTCCTGTTATGGTGATTAACAAGATTGAACATGCGG PIVPVMVINKIEHAVPL TGCCCTTAGCTAAAGCGCTGGTTGCCGGAGGGATAAGCGTGTTGGAA AKALVAGGISVLEVTLR GTGACATTACGCACGCCATGCGCCCTTGAAGCTATCACCAAAATCGC TPCALEAITKIAKEVPE CAAGGAAGTGCCTGAGGCGCTGGTTGGCGCGGGGACTATTTTAAATG ALVGAGTILNEAQLGQA AAGCCCAGCTTGGACAGGCTATCGCCGCTGGTGCGCAATTTATTATC IAAGAQFIITPGATVEL ACTCCAGGTGCGACAGTTGAGCTGCTCAAAGCGGGCATGCAAGGACC LKAGMQGPVPLIPGVAS GGTGCCGTTAATTCCGGGCGTTGCCAGTATTTCCGAGGTGATGACGG ISEVMTGMALGYTHFKF GCATGGCGCTGGGCTACACTCACTTTAAATTCTTCCCTGCTGAAGCG FPAEASGGVDALKAFSG TCAGGTGGCGTTGATGCGCTTAAGGCTTTCTCTGGGCCGTTAGCAGA PLADIRFCPTGGITPSS TATCCGCTTCTGCCCAACAGGTGGAATTACCCCGAGCAGCTATAAAG YKDYLALKNVDCIGGSW ATTACTTAGCGCTGAAGAATGTCGATTGTATTGGTGGCAGCTGGATT IAPTDAMEQGDWDRITQ GCTCCTACCGATGCGATGGAGCAGGGCGATTGGGATCGTATCACTCA LCKEAIGGL (SEQ ID GCTGTGTAAAGAGGCGATTGGCGGACTTTAA (SEQ ID NO: NO: 406) 405) YP_261692 Pseudomonas Pf-5 ATGACAAACCTCGCCCCGACCGTTTCCATGGCGGACAAAGTTGCCCT MTNLAPTVSMADKVALI fluorescens GATCGACAGCCTCTGCGCCAAGGCGCGGATCCTGCCGGTGATCACCA DSLCAKARILPVITIAR TTGCCCGCGAGCAGGATGTCCTGCCGCTGGCCGATGCCCTGGCGGCC EQDVLPLADALAAGGLT GGCGGCCTGACCGCCCTGGAAGTGACCCTGCGTTCGCAGTTCGGCCT ALEVTLRSQFGLKAIQI CAAGGCGATCCAGATCCTGCGCGAACAGCGCCCGGAGCTGGTGACCG LREQRPELVTGAGTVLD GTGCCGGCACCGTGCTCGACCCGCAGATGCTGGTGGCGGCGGAAGCG PQMLVAAEAAGSQFIVT GCAGGTTCGCAGTTCATCGTCACCCCGGGCATCACCCGCGACCTGCT PGITRDLLQASVASPIP GCAAGCCAGCGTGGCCAGCCCGATTCCCCTGCTGCCGGGGATCAGCA LLPGISNASGIMEGYAL ATGCCTCCGGGATCATGGAGGGTTATGCCCTGGGCTACCGCCGCTTC GYRRFKLFPAEVSGGVA AAGCTGTTCCCGGCGGAAGTCAGTGGTGGCGTGGCGGCGATCAAGGC AIKALGGPFGEVKFCPT CCTGGGCGGGCCGTTCGGCGAGGTCAAGTTCTGCCCTACCGGCGGCG GGVGPANIKSYMALKNV TCGGCCCGGCCAATATCAAGAGCTACATGGCGCTCAAGAATGTGATG MCVGGSWMLDPEWIKNG TGTGTCGGCGGTAGCTGGATGCTCGATCCCGAGTGGATCAAGAACGG DWARIQECTAEALALLD CGACTGGGCACGGATCCAGGAGTGCACGGCCGAGGCCCTGGCCCTGC (SEQ ID NO: 408) TGGACTGA (SEQ ID NO: 407) ZP_03591973.1 Bacillus subtilis ATGGAGTCCAAAGTCGTTGAAAACCGTCTGAAAGAAGCAAAGCTGAT MESKVVENRLKEAKLIA subtilis str. TGCAGTCATTCGTTCAAAGGATAAGCAGGAGGCCTGTCAGCAGATTG VIRSKDKQEACQQIESL 168 AGAGTTTATTAGATAAAGGGATTCGTGCAGTTGAAGTGACGTATACG LDKGIRAVEVTYTTPGA ACCCCCGGGGCATCAGATATTATCGAATCCTTCCGTAATAGGGAAGA SDIIESFRNREDILIGA TATTTTAATTGGCGCGGGTACGGTCATCAGCGCGCAGCAAGCTGGGG GTVISAQQAGEAAKAGA AAGCTGCTAAGGCTGGCGCGCAGTTTATTGTCAGTCCGGGTTTTTCA QFIVSPGFSADLAEHLS GCTGATCTTGCTGAACATCTATCTTTTGTAAAGACACATTATATCCC FVKTHYIPGVLTPSEIM CGGCGTCTTGACTCCGAGCGAAATTATGGAAGCGCTGACATTCGGTT EALTFGFTTLKLFPSGV TTACGACATTAAAGCTGTTCCCAAGCGGTGTGTTTGGCATTCCGTTT FGIPFMKNLAGPFPQVT ATGAAAAATTTAGCGGGTCCTTTCCCGCAGGTGACCTTTATTCCGAC FIPTGGIHPSEVPDWLR AGGCGGGATACATCCGTCTGAAGTGCCTGATTGGCTTAGAGCCGGAG AGAGAVGVGSQLGSCSK CTGGCGCCGTCGGAGTCGGCAGCCAGTTGGGCAGCTGTTCAAAAGAG EDLQAVFQV (SEQ ID GATTTGCAGGCTGTTTTCCAAGTGTAA (SEQ ID NO: 409) NO: 410) YP_081150.2 Bacillus ATCC ATGGTATTGTCACACATCGAAGAACAAAAACTGATTGCGATCATCCG MVLSHIEEQKLIAIIRG licheniformis 14580 CGGATACAATCCGGAGGAGGCAGTGAGCATTGCCGGCGCCTTAAAAG YNPEEAVSIAGALKAGG CGGGCGGCATCAGGCTTGTGGAGATTACGCTTAATTCCCCTCAAGCG IRLVEITLNSPQAIKAI ATCAAAGCGATTGAAGCGGTTTCAGAGCATTTTGGGGACGAAATGCT EAVSEHFGDEMLVGAGT TGTCGGAGCGGGAACCGTACTTGATCCCGAATCTGCGAGAGCGGCGC VLDPESARAALLAGARF TTTTAGCCGGCGCGCGGTTTATCCTGTCTCCGACCGTCAATGAAGAG ILSPTVNEETIKLTKRY ACGATCAAGCTGACAAAACGGTATGGAGCGGTCAGCATTCCAGGCGC GAVSIPGAFTPTEILTA TTTTACCCCGACTGAAATATTGACGGCGTATGAAAGCGGGGGAGACA YESGGDIIKVFPGTMGP TCATCAAGGTATTTCCCGGAACAATGGGGCCTGGCTATATCAAGGAT GYIKDIHGPLPHIPLLP ATCCACGGACCGCTTCCGCATATTCCGCTGCTTCCGACTGGAGGAGT TGGVGLENLHEFLQAGA CGGATTGGAAAACCTTCACGAGTTTCTGCAGGCCGGTGCGGTCGGAG VGAGIGGSLVRANKDVN CGGGAATCGGCGGTTCGCTTGTTCGGGCTAATAAAGATGTTAATGAC DAFLEELSKKAKQFVEA GCGTTTTTAGAAGAGCTGTCCAAAAAAGCAAAGCAATTTGTTGAAGC AKQ (SEQ ID NO: AGCAAAACAGTAA (SEQ ID NO: 411) 412) YP_190869.1 Gluconobacter 62IH ATGATCGATACTGCCAAACTCGACGCCGTCATGAGCCGTTGTCCGGT MIDTAKLDAVMSRCPVM oxydans CATGCCGGTGCTGGTGGTCAATGATGTGGCTCTGGCCCGCCCGATGG PVLVVNDVALARPMAEA CCGAGGCTCTGGTGGCGGGTGGACTGTCCACGCTGGAAGTCACGCTG LVAGGLSTLEVTLRTPC CGCACGCCCTGCGCCCTTGAAGCTATTGAGGAAATGTCGAAAGTACC ALEAIEEMSKVPGALVG AGGCGCGCTGGTCGGTGCCGGTACGGTGCTGAATCCGTCCGACATGG AGTVLNPSDMDRAVKAG ACCGTGCCGTGAAGGCGGGTGCGCGCTTCATCGTCAGCCCCGGCCTG ARFIVSPGLTEALAKAS ACCGAGGCGCTGGCAAAGGCGTCGGTTGAGCATGACGTCCCCTTCCT VEHDVPFLPGVANAGDI GCCAGGCGTTGCCAATGCGGGTGACATCATGCGGGGTCTGGATCTGG MRGLDLGLSRFKFFPAV GTCTGTCACGCTTCAAGTTCTTCCCGGCTGTGACGAATGGCGGCATT TNGGIPALKSLASVFGS CCCGCGCTCAAGAGCTTGGCCAGTGTTTTTGGCAGCAATGTCCGTTT NVRFCPTGGITEESAPD CTGCCCCACGGGCGGCATTACGGAAGAGAGCGCACCGGACTGGCTGG WLALPSVACVGGSWVTA CGCTTCCCTCCGTGGCCTGCGTCGGCGGATCCTGGGTGACGGCCGGC GTFDADKVRQRATAAAL ACGTTCGATGCGGACAAGGTCCGTCAGCGCGCCACGGCTGCGGCACT FTV (SEQ ID NO: CTTCACGGTCTGA (SEQ ID NO: 413) 414) NP_251871.1 P. aeruginosa PAO1 ATGAAAAACTGGAAAACAAGTGCAGAATCAATCCTGACCACCGGCCC MKNWKTSAESILTTGPV Codon GGTTGTACCGGTTATCGTGGTAAAAAAACTGGAACACGCGGTGCCGA VPVIVVKKLEHAVPMAK Optimized TGGCAAAAGCGTTGGTTGCTGGTGGGGTGCGCGTTCTGGAAGTGACT ALVAGGVRVLEVTLRTE CTGCGTACCGAGTGTGCAGTTGACGCTATCCGTGCTATCGCCAAAGA CAVDAIRAIAKEVPEAI AGTGCCTGAAGCGATTGTGGGTGCCGGTACGGTGCTGAATCCACAGC VGAGTVLNPQQLAEVTE AGCTGGCAGAAGTCACTGAAGCGGGTGCACAGTTCGCAATTAGCCCG AGAQFAISPGLTEPLLK GGTCTGACCGAGCCGCTGCTGAAAGCTGCTACCGAAGGGACTATTCC AATEGTIPLIPGISTVS TCTGATTCCGGGGATCAGCACTGTTTCCGAACTGATGCTGGGTATGG ELMLGMDYGLKEFKFFP ACTACGGTTTGAAAGAGTTCAAATTCTTCCCGGCTGAAGCTAACGGC AEANGGVKALQAIAGPF GGCGTGAAAGCCCTGCAGGCGATCGCGGGTCCGTTCTCCCAGGTCCG SQVRFCPTGGISPANYR TTTCTGCCCGACGGGTGGTATTTCTCCGGCTAACTACCGTGACTACC DYLALKSVLCIGGSWLV TGGCGCTGAAAAGCGTGCTGTGCATCGGTGGTTCCTGGCTGGTTCCG PADALEAGDYDRITKLA GCAGATGCGCTGGAAGCGGGCGATTACGACCGCATTACTAAGCTGGC REAVEGAKL (SEQ ID GCGTGAAGCTGTAGAAGGCGCTAAGCTGTAA (SEQ ID NO: NO: 416) 415) PAO1-Ec5 ATGAAAAACTGGAAACAGAAGACCGCCCGCATCGACACGCTGTGCCG MKNWKQKTARIDTLCRE GGAGGCGCGCATCCTCCCGGTGATCACCATCGACCGCGAGGCGGACA ARILPVITIDREADILP TCCTGCCGATGGCCGATGCCCTCGCCGCCGGCGGCCTGACCGCCCTG MADALAAGGLTALEITL GAGATCACCCTGCGCACGGCGCACGGGCTGACCGCCATCCGGCGCCT RTAHGLTAIRRLSEERP CAGCGAGGAGCGCCCGCACCTGCGCATCGGCGCCGGCACCGTGCTCG HLRIGAGTVLDPRTFAA ACCCGCGGACCTTCGCCGCCGCGGAAAAGGCCGGGGCGAGCTTCGTG AEKAGASFVVTPGCTDE GTCACCCCGGGTTGCACCGACGAGTTGCTGCGCTTCGCCCTGGACAG LLRFALDSEVPLLPGVA CGAAGTCCCGCTGTTGCCCGGCGTGGCCAGCGCTTCCGAGATCATGC SASEIMLAYRHGYRRFK TCGCCTACCGCCATGGCTACCGCCGCTTCAAGCTGTTTCCCGCCGAA LFPAEVSGGPAALKAFS GTCAGCGGCGGCCCGGCGGCGCTGAAGGCGTTCTCGGGACCATTCCC GPFPDIRFCPTGGVSLN CGATATCCGCTTCTGCCCCACCGGAGGCGTCAGCCTGAACAATCTCG NLADYLAVPNVMCVGGT CCGACTACCTGGCGGTACCCAACGTGATGTGCGTCGGCGGCACCTGG WMLPKAVVDRGDWAQVE ATGCTGCCCAAGGCCGTGGTCGACCGCGGCGACTGGGCCCAGGTCGA RLSREALERFAEHRRH GCGCCTCAGCCGCGAAGCCCTGGAGCGCTTCGCCGAGCACCGCAGAC (SEQ ID NO: 418) ACTAATAGCTCGAGTTACTTTACT (SEQ ID NO: 417) PAO1-Ec10 ATGAAAAACTGGAAAACAAGTGCAGAATCAATCGACACGCTGTGCCG MKNWKTSAESIDTLCRE GGAGGCGCGCATCCTCCCGGTGATCACCATCGACCGCGAGGCGGACA ARILPVITIDREADILP TCCTGCCGATGGCCGATGCCCTCGCCGCCGGCGGCCTGACCGCCCTG MADALAAGGLTALEITL GAGATCACCCTGCGCACGGCGCACGGGCTGACCGCCATCCGGCGCCT RTAHGLTAIRRLSEERP CAGCGAGGAGCGCCCGCACCTGCGCATCGGCGCCGGCACCGTGCTCG HLRIGAGTVLDPRTFAA ACCCGCGGACCTTCGCCGCCGCGGAAAAGGCCGGGGCGAGCTTCGTG AEKAGASFVVTPGCTDE GTCACCCCGGGTTGCACCGACGAGTTGCTGCGCTTCGCCCTGGACAG LLRFALDSEVPLLPGVA CGAAGTCCCGCTGTTGCCCGGCGTGGCCAGCGCTTCCGAGATCATGC SASEIMLAYRHGYRRFK TCGCCTACCGCCATGGCTACCGCCGCTTCAAGCTGTTTCCCGCCGAA LFPAEVSGGPAALKAFS GTCAGCGGCGGCCCGGCGGCGCTGAAGGCGTTCTCGGGACCATTCCC GPFPDIRFCPTGGVSLN CGATATCCGCTTCTGCCCCACCGGAGGCGTCAGCCTGAACAATCTCG NLADYLAVPNVMCVGGT CCGACTACCTGGCGGTACCCAACGTGATGTGCGTCGGCGGCACCTGG WMLPKAVVDRGDWAQVE ATGCTGCCCAAGGCCGTGGTCGACCGCGGCGACTGGGCCCAGGTCGA RLSREALERFAEHRRH GCGCCTCAGCCGCGAAGCCCTGGAGCGCTTCGCCGAGCACCGCAGAC (SEQ ID NO: 420) ACTAATAGCTCGAGTTACTTTACT (SEQ ID NO: 419) PAO1-Ec15 ATGAAAAACTGGAAAACAAGTGCAGAATCAATCCTGACCACCGGCCG MKNWKTSAESILTTGRE GGAGGCGCGCATCCTCCCGGTGATCACCATCGACCGCGAGGCGGACA ARILPVITIDREADILP TCCTGCCGATGGCCGATGCCCTCGCCGCCGGCGGCCTGACCGCCCTG MADALAAGGLTALEITL GAGATCACCCTGCGCACGGCGCACGGGCTGACCGCCATCCGGCGCCT RTAHGLTAIRRLSEERP CAGCGAGGAGCGCCCGCACCTGCGCATCGGCGCCGGCACCGTGCTCG HLRIGAGTVLDPRTFAA ACCCGCGGACCTTCGCCGCCGCGGAAAAGGCCGGGGCGAGCTTCGTG AEKAGASFVVTPGCTDE GTCACCCCGGGTTGCACCGACGAGTTGCTGCGCTTCGCCCTGGACAG LLRFALDSEVPLLPGVA CGAAGTCCCGCTGTTGCCCGGCGTGGCCAGCGCTTCCGAGATCATGC SASEIMLAYRHGYRRFK TCGCCTACCGCCATGGCTACCGCCGCTTCAAGCTGTTTCCCGCCGAA LFPAEVSGGPAALKAFS GTCAGCGGCGGCCCGGCGGCGCTGAAGGCGTTCTCGGGACCATTCCC GPFPDIRFCPTGGVSLN CGATATCCGCTTCTGCCCCACCGGAGGCGTCAGCCTGAACAATCTCG NLADYLAVPNVMCVGGT CCGACTACCTGGCGGTACCCAACGTGATGTGCGTCGGCGGCACCTGG WMLPKAVVDRGDWAQVE ATGCTGCCCAAGGCCGTGGTCGACCGCGGCGACTGGGCCCAGGTCGA RLSREALERFAEHRRH GCGCCTCAGCCGCGAAGCCCTGGAGCGCTTCGCCGAGCACCGCAGAC (SEQ ID NO: 422) ACTAATAGCTCGAGTTACTTTACT (SEQ ID NO: 421)

[0406] EDA extracts were prepared using the following protocol.

Day 1

[0407] Grow 5 ml LB-Kan preps of BF1055 (BL21/DE3 with pET26b empty vector) and BF1706 (BL21DE3 with pET26b+E. coli EDD).

[0408] Grow 5 ml preps of each EDA construct expressed in S. cerevisiae in appropriate selective media (e.g. ScD-leu).

Day 2

[0409] Grow 50 ml LB-Kan prep of BF1055, 2% (v/v) inoculate.

[0410] Grow 50 ml prep of BF1706 using Novagen's Overnight Express (46.45 ml LB-Kan, 1 ml solution 1, 2.5 ml solution 2, 50 .mu.l solution 3, 5 .mu.l of 1M MnCl.sub.2, 50 .mu.l of 0.5 M FeCl.sub.2), 2% (v/v) inoculate.

[0411] Grow 50 ml prep of each EDA construct expressed in S. cerevisiae in appropriate selective media+10 mM MnCl.sub.2. Inoculate to OD.sub.600 of 0.2.

Day 3

[0412] EDD extractions (adapted from Chemyan et al, Protein Science 16:2368-2377, 2007): [0413] 1) Pellet cells in 50 ml conical tubes, 4.degree. C., 3,000 rpm, 10 mins, discard supernatant. [0414] 2) Resuspend in 2 ml degassed PDGH buffer (20 mM MES pH 6.5, 30 mM NaCl, 5 mM MnCl.sub.2, 0.5 mM FeCl.sub.2, 10 mM 2-mercaptoethanol, 10 mM cysteine, sparged with nitrogen gas). Move to hungate tube. [0415] 3) Add 0.1% Triton X-100, 10 ng/ml DNase, 10 .mu.g/ml PMSF, 10 .mu.g/ml TAME (N.alpha.-(p-toluene sulfonyl)-L-arginine methyl ester), 100 .mu.g/ml lysozyme. [0416] 4) Sparge hungate tube with nitrogen gas, cap and seal. Incubate 2 hours at 37.degree. C., swirl occasionally. [0417] 5) Clarify by centrifugation in 2-ml tube, 4.degree. C., 10 mins, 14,000 rpm. Keep supernatant. [0418] 6) Treat with 150 mM pyruvate and 10 mM sodium cyanoborohydride (work in hood) to inactivate aldolase activity. Incubate 30 mins at room temperature. [0419] 7) During incubation, pre-equilibrate PD-10 column from GE [0420] a. Remove top cap, pour off storage buffer. [0421] b. Cut off bottom tip, fit in 50 ml conical with adapter. [0422] c. Pour 5 ml of 20 mM MES buffer, pH 6.5 (total of 5 times). Discard flow-through. [0423] 8) Run sample through column, then add MES buffer to a total of 2.5 ml volume added. Discard flow-through. [0424] 9) Run 3.5 ml 20 mM MES pH 6.5 buffer to elute protein. Discard column in appropriate waste receptacle. [0425] 10) Perform Bradford assay (1:10 or 1:20 dilution).

EDA Extractions:

[0425] [0426] 1) Spin down in 50 ml conicals, 4.degree. C., 3,400 rpm, 5 mins. Wash 2.times. with 25 ml water. [0427] 2) Resuspend in 1 ml lysis buffer (50 mM Tris-HCl, pH 7, 10 mM MgCl.sub.2, 1.times. protease inhibitor. [0428] 3) Add 1 cap of zirconia beads, vortex 4-6 times, 15 sec bursts, ice in between. [0429] 4) Spin down cell debris, 4.degree. C., 14,000 rpm, 10 mins. Save supernatant. [0430] 5) Perform Bradford assay (1:2 dilution).

Activity Assays:

[0431] Each reaction contains 50 mM Tris-HCl, pH 7, 10 mM MgCl.sub.2, 0.15 mM NADH, 15 .mu.g LDH, saturating amounts of EDD determined empirically (usually .about.100 .mu.g), 1-50 .mu.g EDA (depending on level of activity), and 1 mM 6-phosphogluconate. Reactions are started by the addition of 6-phosphogluconate and monitored for 5 mins at 30.degree. C.

[0432] Results

[0433] The S. cerevisiae strains tested for EDA activity are described in the table below. yCH strains are Thermosacc-based (Lallemand). BF strains are based on BY4742.

TABLE-US-00081 Strain Vector Construct BF542 pBF150 Zymomonas mobilis EDA BF1689 pBF892 PAO1 + 5aa E. coli EDA BF1691 pBF894 PAO1 + 10aa E. coli EDA BF1693 pBF896 PAO1 + 15aa E. coli EDA BF1721 pBF909 Bacilluis licheniformis EDA BF1722 pBF910 Bacillus subtilis EDA BF1723 pBF911 Pseudomonas fluorescens EDA BF1724 pBF912 Pseudomonas syringae EDA BF1725 pBF913 Saccharaophagus degradans EDA BF1726 pBF914 Xanthamonas axonopodis EDA BF1727 pBF766 Escherichia coli EDA BF1728 pBF764 Pseudomonas aeruginosa EDA BF1729 pBF729 Gluconobacter oxydans EDA BF1730 pBF727 Shewanella oneidensis EDA BF1775 pBF87 p425GPD (empty vector) BF1776 pBF928 PAO1 EDA codon optimized for S. cerevisiae

[0434] E. coli expressed EDD was prepared and confirmed by western blot analysis as shown in FIG. 15. The expected size of EDD is approximately 66 kilodaltons (kDa). A band of approximately that size (e.g., as determined by the nearest sized protein standard of approximately 60 kDa) was identified by western blot. The E. coli expressed EDD was used with S. cerevisiae expressed EDA's to evaluate the EDA activities. The results of EDA kinetic assays are presented in the table below.

TABLE-US-00082 EDD/EDA slope % max EC/EC 0.3467 100.00 EC/SO 0.1907 55.00 EC/BS 0.0897 25.87 EC/GO 0.0848 24.46 EC/PCO 0.084 24.23 EC/PA 0.0533 15.37 EC/PE5 0.0223 6.43 EC/PE10 0.0218 6.29 EC/SD 0.015 4.33 EC/PS 0.0135 3.89 EC/BL 0.0112 3.23 EC/ZM 0.0109 3.14 EC/PF 0.0082 2.37 EC/V 0.0074 2.13 EC/XA 0.0065 1.87 EC/PE15 0.005 1.44

[0435] In the results presented above, the slope of the E. coli (EC) EDA is outside the linear range for accurate detection, and is therefore underestimated. For the other EDA's, when compared to the E. coli EDA, the calculated percentage of maximum activity (e.g., % max) is overestimated, however the slopes are accurate. The results of this experiment indicate that the E. coli EDA has higher activity as compared to the other EDA activities evaluated herein, and is approximately 16-fold more active than the EDA from P. aeruginosa. EDA's from X. anoxopodis and a chimera between E. coli EDA and P. aeruginosa (e.g., PE15) show less activity than the vector control. Codon-optimized EDA from P. aeruginosa showed a slight improvement over the native sequence, however chimeric versions (e.g., PE5, PE10, PE15) showed less activity than native. The experiments were repeated using 100 .mu.g of EDD and 25 .mu.g of EDA cell lysates in each reaction (unless otherwise noted, such as 5 .mu.g of E. coli EDA). The reactions in the repeated experiment all were in the linear range of detection and the results of these additional kinetic assays are shown graphically in FIG. 16, and in the table below. E. coli EDA was again found to be the most active of those EDA's tested.

TABLE-US-00083 EDA slope % max EC 0.462 100.00 SO 0.128 27.71 GO 0.0544 11.77 PCO 0.0539 11.67 BS 0.0505 10.93 PA 0.0273 5.91 V 0.0006 0.13

Example 23

Nucleotide and Amino Acid Sequence of S. cerevisiae Phosphoglucose Isomerase

[0436] Phosphoglucose isomerase (PGI1) activity was decreased or disrupted, in some embodiments, to favor the conversion of glucose-6-phosphate to gluconolactone-6-phosphate by the activity of ZWF1 (e.g., glucose-6-phosphate dehydrogenase). The nucleotide sequence of the S. cerevisiae PGI1 gene altered to decrease or disrupt phosphoglucose isomerase activity is shown below.

TABLE-US-00084 PGI1 nucleotide sequence (SEQ ID NO: 423) ATGTCCAATAACTCATTCACTAACTTCAAACTGGCCACTGAATTGCCAG CCTGGTCTAAGTTGCAAAAAATTTATGAATCTCAAGGTAAGACTTTGTC TGTCAAGCAAGAATTCCAAAAAGATGCCAAGCGTTTTGAAAAATTGAAC AAGACTTTCACCAACTATGATGGTTCCAAAATCTTGTTCGACTACTCAA AGAACTTGGTCAACGATGAAATCATTGCTGCATTGATTGAACTGGCCAA GGAGGCTAACGTCACCGGTTTGAGAGATGCTATGTTCAAAGGTGAACAC ATCAACTCCACTGAAGATCGTGCTGTCTACCACGTCGCATTGAGAAACA GAGCTAACAAGCCAATGTACGTTGATGGTGTCAACGTTGCTCCAGAAGT CGACTCTGTCTTGAAGCACATGAAGGAGTTCTCTGAACAAGTTCGTTCT GGTGAATGGAAGGGTTATACCGGTAAGAAGATCACCGATGTTGTTAACA TCGGTATTGGTGGTTCCGATTTGGGTCCAGTCATGGTCACTGAGGCTTT GAAGCACTACGCTGGTGTCTTGGATGTCCACTTCGTTTCCAACATTGAC GGTACTCACATTGCTGAAACCTTGAAGGTTGTTGACCCAGAAACTACTT TGTTTTTGATTGCTTCCAAGACTTTCACTACCGCTGAAACTATCACTAA CGCTAACACTGCCAAGAACTGGTTCTTGTCGAAGACAGGTAATGATCCA TCTCACATTGCTAAGCATTTCGCTGCTTTGTCCACTAACGAAACCGAAG TTGCCAAGTTCGGTATTGACACCAAAAACATGTTTGGTTTCGAAAGTTG GGTCGGTGGTCGTTACTCTGTCTGGTCGGCTATTGGTTTGTCTGTTGCC TTGTACATTGGCTATGACAACTTTGAGGCTTTCTTGAAGGGTGCTGAAG CCGTCGACAACCACTTCACCCAAACCCCATTGGAAGACAACATTCCATT GTTGGGTGGTTTGTTGTCTGTCTGGTACAACAACTTCTTTGGTGCTCAA ACCCATTTGGTTGCTCCATTCGACCAATACTTGCACAGATTCCCAGCCTA CTTGCAACAATTGTCAATGGAATCTAACGGTAAGTCTGTTACCAGAGGT AACGTGTTTACTGACTACTCTACTGGTTCTATCTTGTTTGGTGAACCAG CTACCAACGCTCAACACTCTTTCTTCCAATTGGTTCACCAAGGTACCAA GTTGATTCCATCTGATTTCATCTTAGCTGCTCAATCTCATAACCCAATT GAGAACAAATTACATCAAAAGATGTTGGCTTCAAACTTCTTTGCTCAAG CTGAAGCTTTAATGGTTGGTAAGGATGAAGAACAAGTTAAGGCTGAAGG TGCCACTGGTGGTTTGGTCCCACACAAGGTCTTCTCAGGTAACAGACCA ACTACCTCTATCTTGGCTCAAAAGATTACTCCAGCTACTTTGGGTGCTT TGATTGCCTACTACGAACATGTTACTTTCACTGAAGGTGCCATTTGGAA TATCAACTCTTTCGACCAATGGGGTGTTGAATTGGGTAAAGTCTTGGCT AAAGTCATCGGCAAGGAATTGGACAACTCCTCCACCATTTCTACCCACG ATGCTTCTACCAACGGTTTAATCAATCAATTCAAGGAATGGATGTGA

Example 24

Nucleotide and Amino Acid Sequence of S. cerevisiae 6-Phosphogluconate Dehydrogenase (Decarboxylating)

[0437] 6-phosphogluconate dehydrogenase (decarboxylating) (GND1) activity was decreased or disrupted, in some embodiments, to minimize or eliminate the conversion of gluconate-6-phophate to ribulose-5-phosphate. The nucleotide sequence of the S. cerevisiae GND1 and GND2 genes altered to decrease or disrupt 6-phosphogluconate dehydrogenase (decarboxylating) activity is shown below.

TABLE-US-00085 GND1/YHR183W (SEQ ID NO: 424) ATGTCTGCTGATTTCGGTTTGATTGGTTTGGCCGTCATGGGTCAAAATT TGATCTTGAACGCTGCTGACCACGGTTTCACTGTTTGTGCTTACAACAG AACTCAATCCAAGGTCGACCATTTCTTGGCCAATGAAGCTAAGGGCAAA TCTATCATCGGTGCTACTTCCATTGAAGATTTCATCTCCAAATTGAAGA GACCTAGAAAGGTCATGCTTTTGGTTAAAGCTGGTGCTCCAGTTGACGC TTTGATCAACCAAATCGTCCCACTTTTGGAAAAGGGTGATATTATCATC GATGGTGGTAACTCTCACTTCCCAGATTCTAATAGACGTTACGAAGAAT TGAAGAAGAAGGGTATTCTTTTCGTTGGTTCTGGTGTCTCCGGTGGTGA GGAAGGTGCCCGTTACGGTCCATCTTTGATGCCAGGTGGTTCTGAAGAA GCTTGGCCACATATTAAGAACATCTTCCAATCCATCTCTGCTAAATCCG ACGGTGAACCATGTTGCGAATGGGTTGGCCCAGCCGGTGCTGGTCACTA CGTCAAGATGGTTCACAACGGTATTGAATACGGTGATATGCAATTGATT TGTGAAGCTTATGACATCATGAAGAGATTGGGTGGGTTTACCGATAAGG AAATCAGTGACGTTTTTGCCAAATGGAACAATGGTGTCTTGGATTCCTT CTTGGTCGAAATTACCAGAGATATTTTGAAATTCGACGACGTCGACGGT AAGCCATTAGTTGAAAAAATCATGGATACTGCTGGTCAAAAGGGTACTG GTAAGTGGACTGCCATCAACGCCTTGGATTTGGGTATGCCAGTTACTTT GATTGGTGAAGCTGTCTTTGCCCGTTGTCTATCTGCTTTGAAGAACGAG AGAATTAGAGCCTCCAAGGTCTTACCAGGCCCAGAAGTTCCAAAAGACG CCGTCAAGGACAGAGAACAATTTGTCGATGATTTGGAACAAGCTTTGTA TGCTTCCAAGATTATTTCTTACGCTCAAGGTTTCATGTTGATCCGTGAA GCTGCTGCTACTTATGGCTGGAAACTAAACAACCCTGCCATCGCTTTGAT GTGGAGAGGTGGTTGTATCATTAGATCTGTTTTCTTGGGTCAAATCACA AAGGCCTACAGAGAAGAACCAGATTTGGAAAACTTGTTGTTCAACAAGT TCTTCGCTGATGCCGTCACCAAGGCTCAATCTGGTTGGAGAAAGTCAAT TGCGTTGGCTACCACCTACGGTATCCCAACACCAGCCTTTTCCACCGCT TTGTCTTTCTACGATGGGTACAGATCTGAAAGATTGCCAGCCAACTTAC TACAAGCTCAACGTGACTACTTTGGTGCTCACACTTTCAGAGTGTTGCC AGAATGTGCTTCTGACAACTTGCCAGTAGACAAGGATATCCATATCAAC TGGACTGGCCACGGTGGTAATGTTTCTTCCTCTACATACCAAGCTTAA GND2/YGR256W (SEQ ID NO: 425) ATGTCAAAGGCAGTAGGTGATTTAGGCTTAGTTGGTTTAGCCGTGATGG GTCAAAATTTGATCTTAAACGCAGCGGATCACGGATTTACCGTGGTTGC TTATAATAGGACGCAATCAAAGGTAGATAGGTTTCTAGCTAATGAGGCA AAAGGAAAATCAATAATTGGTGCAACTTCAATTGAGGACTTGGTTGCGA AACTAAAGAAACCTAGAAAGATTATGCTTTTAATCAAAGCCGGTGCTCC GGTCGACACTTTAATAAAGGAACTTGTACCACATCTTGATAAAGGCGAC ATTATTATCGACGGTGGTAACTCACATTTCCCGGACACTAACAGACGCT ACGAAGAGCTAACAAAGCAAGGAATTCTTTTTGTGGGCTCTGGTGTCTC AGGCGGTGAAGATGGTGCACGTTTTGGTCCATCTTTAATGCCTGGTGGG TCAGCAGAAGCATGGCCGCACATCAAGAACATCTTTCAATCTATTGCCG CCAAATCAAACGGTGAGCCATGCTGCGAATGGGTGGGGCCTGCCGGTTC TGGTCACTATGTGAAGATGGTACACAACGGTATCGAGTACGGTGATATG CAGTTGATTTGCGAGGCTTACGATATCATGAAACGAATTGGCCGGTTTA CGGATAAAGAGATCAGTGAAGTATTTGACAAGTGGAACACTGGAGTTTT GGATTCTTTCTTGATTGAAATCACGAGGGACATTTTAAAATTCGATGAC GTCGACGGTAAGCCATTGGTGGAAAAAATTATGGATACTGCCGGTCAAA AGGGTACTGGTAAATGGACTGCAATCAACGCCTTGGATTTAGGAATGCC AGTCACTTTAATTGGGGAGGCTGTTTTCGCTCGTTGTTTGTCAGCCATA AAGGACGAACGTAAAAGAGCTTCGAAACTTCTGGCAGGACCAACAGTAC CAAAGGATGCAATACATGATAGAGAACAATTTGTGTATGATTTGGAACA AGCATTATACGCTTCAAAGATTATTTCATATGCTCAAGGTTTCATGCTG ATCCGCGAAGCTGCCAGATCATACGGCTGGAAATTAAACAACCCAGCTA TTGCTCTAATGTGGAGAGGTGGCTGTATAATCAGATCTGTGTTCTTAGC TGAGATTACGAAGGCTTATAGGGACGATCCAGATTTGGAAAATTTATTA TTCAACGAGTTCTTCGCTTCTGCAGTTACTAAGGCCCAATCCGGTTGGA GAAGAACTATTGCCCTTGCTGCTACTTACGGTATTCCAACTCCAGCTTT CTCTACTGCTTTAGCGTTTTACGACGGCTATAGATCTGAGAGGCTACCA GCAAACTTGTTACAAGCGCAACGTGATTATTTTGGCGCTCATACATTTA GAATTTTACCTGAATGTGCTTCTGCCCATTTGCCAGTAGACAAGGATAT TCATATCAATTGGACTGGGCACGGAGGTAATATATCTTCCTCAACCTAC CAAGCTTAA

Example 25

Nucleotide and Amino Acid Sequence of S. cerevisiae Transaldolase

[0438] Transaldolase (TAL1) activity was increased in some embodiments, and in certain embodiments transaldolase activity was decreased or disrupted. Transaldolase converts sedoheptulose 7-phosphate and glyceraldehyde 3-phosphate to erythrose 4-phosphate and fructose 6-phosphate. The rationale for increasing or decreasing transaldolase activity is described herein with respect to various embodiments. The nucleotide sequence of the S. cerevisiae TAL1 gene altered to increase or decrease transaldolase activity, and the encoded amino acid sequence are shown below.

TABLE-US-00086 TAL1 nucleotide sequence (SEQ ID NO: 426) ATGTCTGAACCAGCTCAAAAGAAACAAAAGGTTGCTAACAACTCTCTAG AACAATTGAAAGCCTCCGGCACTGTCGTTGTTGCCGACACTGGTGATTT CGGCTCTATTGCCAAGTTTCAACCTCAAGACTCCACAACTAACCCATCA TTGATCTTGGCTGCTGCCAAGCAACCAACTTACGCCAAGTTGATCGATG TTGCCGTGGAATACGGTAAGAAGCATGGTAAGACCACCGAAGAACAAGT CGAAAATGCTGTGGACAGATTGTTAGTCGAATTCGGTAAGGAGATCTTA AAGATTGTTCCAGGCAGAGTCTCCACCGAAGTTGATGCTAGATTGTCTT TTGACACTCAAGCTACCATTGAAAAGGCTAGACATATCATTAAATTGTT TGAACAAGAAGGTGTCTCCAAGGAAAGAGTCCTTATTAAAATTGCTTCC ACTTGGGAAGGTATTCAAGCTGCCAAAGAATTGGAAGAAAAGGACGGTA TCCACTGTAATTTGACTCTATTATTCTCCTTCGTTCAAGCAGTTGCCTG TGCCGAGGCCCAAGTTACTTTGATTTCCCCATTTGTTGGTAGAATTCTA GACTGGTACAAATCCAGCACTGGTAAAGATTACAAGGGTGAAGCCGACC CAGGTGTTATTTCCGTCAAGAAAATCTACAACTACTACAAGAAGTACGG TTACAAGACTATTGTTATGGGTGCTTCTTTCAGAAGCACTGACGAAATC AAAAACTTGGCTGGTGTTGACTATCTAACAATTTCTCCAGCTTTATTGG ACAAGTTGATGAACAGTACTGAACCTTTCCCAAGAGTTTTGGACCCTGT CTCCGCTAAGAAGGAAGCCGGCGACAAGATTTCTTACATCAGCGACGAA TCTAAATTCAGATTCGACTTGAATGAAGACGCTATGGCCACTGAAAAAT TGTCCGAAGGTATCAGAAAATTCTCTGCCGATATTGTTACTCTATTCGA CTTGATTGAAAAGAAAGTTACCGCTTAA TAL1 amino acid sequence (SEQ ID NO: 427) MSEPAQKKQKVANNSLEQLKASGTVVVADTGDFGSIAKFQPQDSTTNPS LILAAAKQPTYAKLIDVAVEYGKKHGKTTEEQVENAVDRLLVEFGKEIL KIVPGRVSTEVDARLSFDTQATIEKARHIIKLFEQEGVSKERVLIKIAS TWEGIQAAKELEEKDGIHCNLTLLFSFVQAVACAEAQVTLISPFVGRIL DWYKSSTGKDYKGEADPGVISVKKIYNYYKKYGYKTIVMGASFRSTDEI KNLAGVDYLTISPALLDKLMNSTEPFPRVLDPVSAKKEAGDKISYISDE SKFRFDLNEDAMATEKLSEGIRKFSADIVTLFDLIEKKVTA

Example 26

Nucleotide and Amino Acid Sequence of S. cerevisiae Transketolase

[0439] Transketolase (TKL1 and TKL2) activity was increased in some embodiments, and in certain embodiments transaldolase activity was decreased or disrupted. Transketolase converts xylulose-5-phosphate and ribose-5-phosphate to sedoheptulose-7-phosphate and glyceraldehyde-3-phosphate. The rationale for increasing or decreasing transketolase activity is described herein with respect to various embodiments. The nucleotide sequence of the S. cerevisiae TKL1 gene altered to increase or decrease transketolase activity, and the encoded amino acid sequence are shown below.

TABLE-US-00087 TKL1 nucleotide sequence (SEQ ID NO: 428) ATGACTCAATTCACTGACATTGATAAGCTAGCCGTCTCCACCATAAGAA TTTTGGCTGTGGACACCGTATCCAAGGCCAACTCAGGTCACCCAGGTGC TCCATTGGGTATGGCACCAGCTGCACACGTTCTATGGAGTCAAATGCGC ATGAACCCAACCAACCCAGACTGGATCAACAGAGATAGATTTGTCTTGT CTAACGGTCACGCGGTCGCTTTGTTGTATTCTATGCTACATTTGACTGG TTACGATCTGTCTATTGAAGACTTGAAACAGTTCAGACAGTTGGGTTCC AGAACACCAGGTCATCCTGAATTTGAGTTGCCAGGTGTTGAAGTTACTA CCGGTCCATTAGGTCAAGGTATCTCCAACGCTGTTGGTATGGCCATGGC TCAAGCTAACCTGGCTGCCACTTACAACAAGCCGGGCTTTACCTTGTCT GACAACTACACCTATGTTTTCTTGGGTGACGGTTGTTTGCAAGAAGGTA TTTCTTCAGAAGCTTCCTCCTTGGCTGGTCATTTGAAATTGGGTAACTT GATTGCCATCTACGATGACAACAAGATCACTATCGATGGTGCTACCAGT ATCTCATTCGATGAAGATGTTGCTAAGAGATACGAAGCCTACGGTTGGG AAGTTTTGTACGTAGAAAATGGTAACGAAGATCTAGCCGGTATTGCCAA GGCTATTGCTCAAGCTAAGTTATCCAAGGACAAACCAACTTTGATCAAA ATGACCACAACCATTGGTTACGGTTCCTTGCATGCCGGCTCTCACTCTG TGCACGGTGCCCCATTGAAAGCAGATGATGTTAAACAACTAAAGAGCAA ATTCGGTTTCAACCCAGACAAGTCCTTTGTTGTTCCACAAGAAGTTTAC GACCACTACCAAAAGACAATTTTAAAGCCAGGTGTCGAAGCCAACAACA AGTGGAACAAGTTGTTCAGCGAATACCAAAAGAAATTCCCAGAATTAGG TGCTGAATTGGCTAGAAGATTGAGCGGCCAACTACCCGCAAATTGGGAA TCTAAGTTGCCAACTTACACCGCCAAGGACTCTGCCGTGGCCACTAGAA AATTATCAGAAACTGTTCTTGAGGATGTTTACAATCAATTGCCAGAGTT GATTGGTGGTTCTGCCGATTTAACACCTTCTAACTTGACCAGATGGAAG GAAGCCCTTGACTTCCAACCTCCTTCTTCCGGTTCAGGTAACTACTCTG GTAGATACATTAGGTACGGTATTAGAGAACACGCTATGGGTGCCATAAT GAACGGTATTTCAGCTTTCGGTGCCAACTACAAACCATACGGTGGTACT TTCTTGAACTTCGTTTCTTATGCTGCTGGTGCCGTTAGATTGTCCGCTT TGTCTGGCCACCCAGTTATTTGGGTTGCTACACATGACTCTATCGGTGTA CGGTGAAGATGGTCCAACCATCAACCTATTGAAACTTTAGCACACTTCA GATCCCTACCAAACATTCAAGTTTGGAGACCAGCTGATGGTAACGAAGT TTCTGCCGCCTACAAGAACTCTTTAGAATCCAAGCATACTCCAAGTATC ATTGCTTTGTCCAGACAAAACTTGCCACAATTGGAAGGTAGCTCTATTG AAAGCGCTTCTAAGGGTGGTTACGTACTACAAGATGTTGCTAACCCAGA TATTATTTTAGTGGCTACTGGTTCCGAAGTGTCTTTGAGTGTTGAAGCT GCTAAGACTTTGGCCGCAAAGAACATCAAGGCTCGTGTTGTTTCTCTAC CAGATTTCTTCACTTTTGACAAACAACCCCTAGAATACAGACTATCAGT CTTACCAGACAACGTTCCAATCATGTCTGTTGAAGTTTTGGCTACCACA TGTTGGGGCAAATACGCTCATCAATCCTTCGGTATTGACAGATTTGGTG CCTCCGGTAAGGCACCAGAAGTCTTCAAGTTCTTCGGTTTCACCCCAGA AGGTGTTGCTGAAAGAGCTCAAAAGACCATTGCATTCTATAAGGGTGAC AAGCTAATTTCTCCTTTGAAAAAAGCTTTCTAA TKL1 amino acid sequence (SEQ ID NO: 429) MTQFTDIDKLAVSTIRILAVDTVSKANSGHPGAPLGMAPAAHVLWSQMR MNPTNPDWINRDRFVLSNGHAVALLYSMLHLTGYDLSIEDLKQFRQLGS RTPGHPEFELPGVEVTTGPLGQGISNAVGMAMAQANLAATYNKPGFTLS DNYTYVFLGDGCLQEGISSEASSLAGHLKLGNLIAIYDDNKITIDGATS ISFDEDVAKRYEAYGWEVLYVENGNEDLAGIAKAIAQAKLSKDKPTLIK MTTTIGYGSLHAGSHSVHGAPLKADDVKQLKSKFGFNPDKSFVVPQEVY DHYQKTILKPGVEANNKWNKLFSEYQKKFPELGAELARRLSGQLPANWE SKLPTYTAKDSAVATRKLSETVLEDVYNQLPELIGGSADLTPSNLTRWK EALDFQPPSSGSGNYSGRYIRYGIREHAMGAIMNGISAFGANYKPYGGT FLNFVSYAAGAVRLSALSGHPVIWVATHDSIGVGEDGPTHQPIETLAHF RSLPNIQVWRPADGNEVSAAYKNSLESKHTPSIIALSRQNLPQLEGSSI ESASKGGYVLQDVANPDIILVATGSEVSLSVEAAKTLAAKNIKARVVSL PDFFTFDKQPLEYRLSVLPDNVPIMSVEVLATTCWGKYAHQSFGIDRFG ASGKAPEVFKFFGFTPEGVAERAQKTIAFYKGDKLISPLKKAF

Example 27

Nucleotide and Amino Acid Sequences of Additional EDD Genes Evaluated for Activity

TABLE-US-00088 [0440] Accession Strain Amino Acid Number Species Number NUCLEOTIDE SEQUENCE Sequence YP_526855.1 Saccharophagus 2-40 ATGAATAGCGTAATCGAAGCTGTAACTCAGCGAATTATTGAGCGCAGT MNSVIEAVTQRIIERSR degradans CGACATTCTCGTCAGGCGTATTTGAATTTAATGCGCAACACCATGGAG HSRQAYLNLMRNTME CAGCATCCTCCTAAAAAGCGTCTATCTTGCGGCAATTTGGCTCATGCCT QHPPKKRLSCGNLAHA ATGCAGCATGTGGTCAATCCGATAAGCAAACAATTCGTTTAATGCAAA YAACGQSDKQTIRLMQ GTGCAAACATAAGTATTACTACGGCATTTAACGATATGCTTTCGGCGC SANISITTAFNDMLSAH ATCAGCCTTTAGAAACATACCCTCAAATAATCAAAGAAACTGCGCGTG QPLETYPQIIKETARAM CAATGGGTTCAACTGCTCAAGTTGCAGGCGGCGTGCCGGCAATGTGTG GSTAQVAGGVPAMCD ATGGTGTAACTCAAGGCCAGCCCGGTATGGAGCTGAGTTTGTTTAGCC GVTQGQPGMELSLFSR GCGAAGTTGTAGCAATGGCTACAGCAGTAGGCCTTTCGCACAATATGT EVVAMATAVGLSHNM TTGATGGCAATATGTTTTTGGGTGTATGCGATAAAATTGTTCCTGGCAT FDGNMFLGVCDKIVPG GCTAATTGGCGCGTTGCAGTTTGGTCATATTCCTGGGGTGTTTGTGCCT MLIGALQFGHIPGVFVP GCCGGACCAATGCCTTCTGGTATTCCCAACAAAGAAAAAGCAAAAGTT AGPMPSGIPNKEKAKV CGTCAGCAATATGCGGCGGGCATTGTGGGGGAAGATAAGCTTTTAGAA RQQYAAGIVGEDKLLE ACCGAGTCGGCTTCCTATCACAGTGCAGGCACGTGTACTTTTTACGGTA TESASYHSAGTCTFYGT CAGCGAATACAAACCAAATGATGGTTGAAATGTTGGGTGTTCAGTTGC ANTNQMMVEMLGVQL CTGGCTCGTCGTTTGTTTACCCCGGTACTGAGTTGCGTGATGCCTTAAC PGSSFVYPGTELRDALT GAGAGCTGCTGTTGAAAAGTTGGTAAAAATCACAGATTCAGCCGGTAA RAAVEKLVKITDSAGN CTACCGTCCGCTCTACGAAGTCATTACGGAAAAATCCATCGTCAATTC YRPLYEVITEKSIVNSII AATAATTGGTTTGTTGGCTACCGGCGGTTCTACTAACCACACGCTACAC GLLATGGSTNHTLHIVA ATTGTTGCTGTGGCTCGCGCTGCGGGTATAGAGGTTACGTGGGCAGAT VARAAGIEVTWADMD ATGGACGAGCTTTCGCGTGCTGTGCCATTACTTGCACGTGTTTACCCTA ELSRAVPLLARVYPNGE ACGGCGAAGCTGATGTTAACCAATTCCAGCAGGCTGGCGGCATGGCTT ADVNQFQQAGGMAYL ATTTAGTAAGAGAGCTGCGCAGCGGCGGTTTGCTAAATGAAGATGTGG VRELRSGGLLNEDVVTI TTACTATTATGGGTGAGGGCCTCGAGGCCTACGAAAAAGAGCCCATGC MGEGLEAYEKEPMLND TTAACGATAAGGGGCAGGCTGAATGGGTAAATGATGTACCTGTTAGCC KGQAEWVNDVPVSRD GCGACGATACCGTTGTGCGTCCAGTTACCTCGCCTTTCGATAAAGAGG DTVVRPVTSPFDKEGGL GTGGGTTGCGTCTACTCAAGGGTAACTTAGGGCAGGGCGTAATCAAAA RLLKGNLGQGVIKISAV TTTCTGCGGTAGCGCCAGAAAATCGCGTTGTTGAGGCCCCATGTATTGT APENRVVEAPCIVFEAQ ATTCGAGGCCCAAGAAGAGCTAATAGCTGCGTTTAAGCGTGGTGAGCT EELIAAFKRGELEKDFV CGAAAAAGACTTTGTTGCGGTAGTGCGCTTCCAAGGGCCTTCTGCCAA AVVRFQGPSANGMPEL TGGCATGCCAGAACTTCATAAAATGACCCCGCCTTTAGGTGTGCTTCA HKMTPPLGVLQDKGFK AGATAAGGGTTTCAAGGTAGCGTTAGTTACCGATGGCAGAATGTCTGG VALVTDGRMSGASGKV TGCATCTGGTAAAGTGCCGGCCGGTATACACTTGTCGCCAGAAGCGAG PAGIHLSPEASKGGLLN TAAGGGTGGCCTGTTGAATAAGCTGCGCACGGGTGATGTGATTCGCTT KLRTGDVIRFDAEAGVI CGATGCCGAAGCGGGCGTTATTCAAGCGCTTGTTAGTGATGAAGAGTT QALVSDEELAAREPAV AGCTGCGCGTGAGCCAGCTGTGCAACCGGTCGTGGAGCAGAACCTCGG QPVVEQNLGRSLFGGL ACGCTCTCTGTTTGGTGGTTTGCGCGATTTGGCTGGTGTATCGCTACAA RDLAGVSLQGGTVFDF GGCGGAACAGTTTTCGATTTTGAAAGAGAGTTTGGCGAAAAATAG EREFGEK (SEQ (SEQ ID NO: 430) ID NO: 431) NP_642389.1 Xanthomonas Pv. ATGAGCCTGCATCCGAATATCCAAGCCGTCACCGACCGTATCCGCAAG MSLHPNIQAVTDRIRKR axonopodis citri CGCAGTGCTCCCTCGCGCGCGGCGTATCTGGCCGGCCTCGATGCCGCC SAPSRAAYLAGIDAALR str. 306 CTGCGTGAGGGCCCGTTCCGTAGCCGGTTGAGCTGCGGCAATCTCGCG EGPFRSRLSCGNLAHGF CATGGCTTCGCTGCGTCCGAGCCGGGCGACAAATCGCGCCTGCGCGGT AASEPTDKSRLRGAATP GCGGCCACGCCGAACCTGGGCATCATCACTGCCTATAACGACATGTTG NLGIITAYNDMLSAHQP TCGGCACATCAGCCGTTCGAGCACTACCCGCAGCTGATCCGCGAAACC FEHYPQLIRETARSLGA GCGCGCTCACTTGGCGCCACTGCGCAGGTGGCCGGCGGCGTGCCGGCG TAQVAGGVPAMCDGV ATGTGTGACGGCGTGACCCAGGGCCGCGCCGGCATGGAGCTGTCGCTG TQGRAGMELSLFSRDNI TTCTCGCGCGACAACATCGCTCAGGCTGCGGCCATTGGCCTGAGCCAT AQAAAIGLSHDMFDSV GACATGTTCGACAGCGTGGTGTACCTGGGGGTGTGCGACAAGATCGTG VYLGVCDKIVPGLLIGA CCGGGTCTGCTGATCGGTGCGCTGGCGTTTGGCCATTTGCCGGCGATCT LAFGHLPAIFMPAGPMT TCATGCCGGCTGGTCCGATGACCCCGGGCATCCCGAACAAGCAGAAAG PGIPNKQKAEVRERYA CCGAAGTCCGCGAACGCTACGCCGCTGGCGAAGCCACCCGCGCCGAAT AGEATRAELLEAESSSY TGCTGGAGGCCGAATCCTCGTCTTATCACTCGCCCGGCACCTGCACCTT HSPGTCTFYGTANSNQ TTACGGCACGGCGAACTCCAACCAGGTGTTGCTCGAAGCGATGGGCGT VLLEAMGVQLPGASFV GCAGTTGCCCGGCGCCTCGTTCGTCAATCCGGAGCTGCCGCTGCGCGA NPELPLRDALTREGTAR TGCACTGACCCGCGAAGGCACCGCACGCGCATTGGCGATCTCCGCGCT ALAISALGDDFRPFGRLI GGGCGATGACTTCCGCCCGTTCGGTCGTTTGATCGACGAACGGGCCAT DERAIVNAVVALMATG CGTCAATGCCGTGGTCGCGCTGATGGCGACCGGCGGTTCGACCAACCA GSTNHTIHWIAVARAA CACCATCCACTGGATCGCAGTGGCGCGTGCGGCCGGCATCGTGTTGAC GIVLTWDDMDLISQTVP CTGGGACGACATGGATCTGATCTCGCAGACCGTGCCGCTGTTGACACG LLTRIYPNGEADVNRFQ CATCTACCCGAACGGCGAAGCCGACGTGAACCGCTTCCAGGCCGCAGG AAGGTAFVFRELMDAG CGGCACGGCGTTCGTGTTCCGCGAATTGATGGACGCCGGCTACATGCA YMHDDLPTIVEGGMRA CGACGACCTGCCGACCATCGTCGAAGGCGGCATGCGCGCGTACGTCAA YVNEPRLQDGKVTYVP CGAACCGCGCCTGCAGGACGGCAAGGTGACCTACGTGCCCGGCACCG GTATTADDSVARPVSD CGACCACTGCCGACGACAGCGTCGCGCGTCCGGTCAGCGATGCATTCG AFESQGGLRLLRGNLG AATCACAAGGCGGCCTGCGCCTGCTGCGCGGCAACCTCGGCCGCTCGT RSLIKLSAVKPQHRSIQ TGATCAAGCTGTCGGCGGTCAAGCCGCAGCACCGCAGCATCCAAGCGC APAVVIDTPQVLNKLH CAGCGGTGGTGATCGACACCCCGCAAGTGCTCAACAAACTGCATGCGG AAGVLPHDFVVVLRYQ CGGGCGTACTGCCGCACGATTTCGTGGTGGTACTGCGCTATCAGGGCC GPRANGMPELHSMAPL CACGCGCAAACGGCATGCCGGAGCTGCATTCGATGGCGCCGCTACTGG LGLLQNQGRRVALVTD GCCTGCTGCAGAACCAGGGCCGGCGCGTGGCGTTGGTCACCGACGGCC GRLSGASGKFPAAIHMT GTCTGTCCGGCGCCTCGGGCAAGTTCCCGGCGGCGATCCACATGACCC PEAARGGPIGRVREGDI CGGAAGCCGCACGCGGCGGCCCGATCGGGCGCGTACGCGAAGGCGAC VRLDGEAGTLEVLVSA ATCGTGCGACTGGACGGCGAAGCCGGCACCTTGGAAGTGCTGGTTTCG EEWASREVAPNTALAG GCCGAAGAATGGGCATCGCGCGAGGTCGCACCGAACACTGCGTTGGC NDLGRNLFAINRQVVG CGGCAACGACCTGGGCCGCAACCTGTTCGCCATCAACCGCCAGGTGGT PADQGAISISCGPTHPD TGGCCCGGCCGACCAGGGCGCGATTTCCATTTCCTGCGGCCCGACCCA GALWSYDAEYELGAD TCCGGACGGTGCGCTGTGGAGCTACGACGCCGAGTACGAACTCGGTGC AAAAAAPHESKDA CGATGCAGCTGCAGCCGCCGCGCCGCACGAGTCCAAGGACGCCTGA (SEQ ID NO: 433) (SEQ ID NO: 432) NP_791117.1 Pseudomonas Pv. ATGCATCCCCGCGTCCTTGAAGTAACCGAGCGGCTCATTGCTCGCAGT MHPRVLEVTERLIARSR syringae tomato CGCGATACCCGTCAGCGCTACCTTCAATTGATTCGAGGCGCAGCGAGC DTRQRYLQLIRGAASD str. GATGGCCCGATGCGCGGCAAGCTTCAATGTGCCAACTTTGCTCACGGC GPMRGKLQCANFAHG DC3000 GTCGCCGCCTGCGGACCGGAGGACAAGCAAAGCCTGCGTTTGATGAAC VAACGPEDKQSLRLMN GCCGCCAACGTGGCAATCGTCTCTTCCTACAATGAAATGCTCTCGGCG AANVAIVSSYNEMLSA CATCAGCCCTACGAGCACTTTCCTGCACAGATCAAACAGGCGTTACGT HQPYEHFPAQIKQALRD GACATTGGTTCGGTCGGTCAGTTTGCCGGCGGCGTGCCTGCCATGTGC IGSVGQFAGGVPAMCD GATGGCGTGACTCAGGGTGAGCCGGGCATGGAACTGGCCATTGCCAGC GVTQGEPGMELAIASRE CGCGAAGTGATTGCCATGTCCACGGCAATTGCCTTGTCACACAATATG VIAMSTAIALSHNMFDA TTCGACGCCGCCATGATGCTGGGTATCTGCGACAAGATCGTCCCCGGC AMMLGICDKIVPGLMM CTGATGATGGGGGCGTTGCGTTTCGGTCATCTGCCGACCATCTTCGTGC GALRFGHLPTIFVPGGP CGGGCGGGCCGATGGTGTCAGGTATCTCCAACAAGGAAAAAGCCGAC MVSGISNKEKADVRQR GTACGGCAGCGTTACGCTGAAGGCAAGGCCAGCCGTGAAGAGCTGCT YAEGKASREELLDSEM GGACTCGGAAATGAAGTCCTATCACGGCCCGGGAACCTGCACGTTCTA KSYHGPGTCTFYGTAN CGGCACCGCCAACACCAATCAGTTGGTGATGGAAGTCATGGGCATGCA TNQLVMEVMGMHLPG CCTTCCCGGTGCCTCGTTCGTCAATCCCTACACACCACTGCGTGATGCG ASFVNPYTPLRDALTAE CTGACAGCTGAAGCGGCTCGTCAGGTCACGCGTCTGACCATGCAAAGC AARQVTRLTMQSGSFM GGCAGTTTCATGCCGATTGGTGAAATCGTCGACGAGCGCTCGCTGGTC PIGEIVDERSLVNSIVAL AATTCCATCGTTGCGCTGCACGCCACCGGCGGCTCGACCAACCACACG HATGGSTNHTLHMPAI CTGCACATGCCGGCGATTGCTCAGGCTGCGGGTATTCAGCTGACCTGG AQAAGIQLTWQDMAD CAGGACATGGCCGACCTCTCCGAAGTGGTGCCGACCCTCAGTCACGTC LSEVVPTLSHVYPNGK TACCCCAACGGCAAGGCCGACATCAACCATTTCCAGGCCGCAGGCGGC ADINHFQAAGGMSFLIR ATGTCGTTCCTGATTCGCGAGCTGCTGGCAGCCGGTCTGCTGCACGAA ELLAAGLLHENVNTVA AACGTTAACACCGTGGCCGGTTATGGCCTGAGCCGCTACACCAAAGAG GYGLSRYTKEPFLEDG CCATTCCTGGAGGATGGCAAACTGGTCTGGCGTGAAGGCCCGCTGGAC KLVWREGPLDSLDENIL AGCCTGGATGAAAACATCCTGCGCCCGGTGGCGCGTCCGTTCTCCCCT RPVARPFSPEGGLRVME GAAGGCGGTTTGCGGGTCATGGAAGGCAACCTGGGTCGCGGTGTCATG GNLGRGVMKVSAVAL AAAGTATCGGCCGTTGCGCTGGAGCATCAGATTGTCGAAGCGCCAGCC EHQIVEAPARVFQDQK CGAGTGTTTCAGGATCAGAAGGAGCTGGCCGATGCGTTCAAGGCCGGC ELADAFKAGELECDFV GAGCTGGAATGTGATTTCGTCGCCGTCATGCGTTTTCAGGGCCCGCGCT AVMRFQGPRCNGMPEL GCAACGGCATGCCCGAACTGCACAAGATGACCCCGTTTCTGGGCGTGC HKMTPFLGVLQDRGFK TGCAGGATCGTGGTTTCAAAGTGGCGCTGGTCACCGATGGACGGATGT VALVTDGRMSGASGKI CGGGCGCCTCAGGCAAGATTCCGGCGGCGATTCACGTCTGCCCGGAAG PAAIHVCPEAFDGGPLA CGTTCGATGGTGGCCCGTTGGCACTGGTACGCGACGGCGATGTGATCC LVRDGDVIRVDGVKGT GCGTGGATGGCGTAAAAGGCACGTTACAAGTGCTGGTCGAAGCGTCA LQVLVEASELAAREPAI GAATTGGCCGCCCGAGAACCGGCCATCAACCAGATCGACAACAGTGTC NQIDNSVGCGRELFGF GGCTGCGGTCGCGAGCTTTTTGGATTCATGCGCATGGCCTTCAGCTCCG MRMAFSSAEQGASAFT CAGAGCAAGGCGCCAGCGCCTTTACCTCTAGTCTGGAGACGCTCAAGT SSLETLK (SEQ GA (SEQ ID NO: 434) ID NO: 435) YP_261706.1 Pseudomonas Pf-5 ATGCATCCCCGCGTTCTTGAGGTCACCGAACGGCTTATCGCCCGTAGTC MHPRVLEVTERLIARSR fluorescens GCGCCACTCGCCAGGCCTATCTCGCGCTGATCCGCGATGCCGCCAGCG ATRQAYLALIRDAASD ACGGCCCGCAGCGGGGCAAGCTGCAATGTGCGAACTTCGCCCACGGC GPQRGKLQCANFAHGV GTGGCCGGTTGCGGCACCGACGACAAGCACAACCTGCGGATGATGAA AGCGTDDKHNLRMMN TGCGGCCAACGTGGCAATTGTTTCGTCATATAACGACATGTTGTCGGC AANVAIVSSYNDMLSA GCACCAGCCTTACGAGGTGTTCCCCGAGCAGATCAAGCGCGCCCTGCG HQPYEVFPEQIKRALRE CGAGATCGGCTCGGTGGGCCAGTTCGCCGGCGGCACCCCGGCCATGTG IGSVGQFAGGTPAMCD CGATGGCGTGACCCAGGGCGAGGCCGGTATGGAACTGAGCCTGCCGA GVTQGEAGMELSLPSR GCCGTGAAGTGATCGCCCTGTCTACGGCGGTGGCCCTCTCTCACAACA EVIALSTAVALSHNMFD TGTTCGATGCCGCGCTGATGCTGGGGATCTGCGACAAGATTGTCCCGG AALMLGICDKIVPGLM GGTTGATGATGGGCGCTCTGCGCTTCGGTCACCTGCCGACCATCTTCGT MGALRFGHLPTIFVPGG TCCGGGCGGGCCCATGGTCTCGGGCATTTCCAACAAGCAGAAAGCCGA PMVSGISNKQKADVRQ CGTGCGCCAGCGTTACGCCGAAGGCAAGGCCAGCCGCGAGGAACTGC RYAEGKASREELLESE TGGAGTCGGAAATGAAGTCCTACCACAGCCCCGGCACCTGCACTTTCT MKSYHSPGTCTFYGTA ACGGCACCGCCAACACCAACCAGTTGCTGATGGAAGTGATGGGCCTGC NTNQLLMEVMGLHLPG ACCTGCCGGGCGCCTCTTTCGTCAACCCCAATACGCCGCTGCGCGACG ASFVNPNTPLRDALTHE CCCTGACCCATGAGGCGGCGCAGCAGGTCACGCGCCTGACCAAGCAG AAQQVTRLTKQSGAFM AGCGGGGCCTTCATGCCGATTGGCGAGATCGTCGACGAGCGCGTGCTG PIGEIVDERVLVNSIVAL GTCAACTCCATCGTTGCCCTGCACGCCACGGGCGGCTCCACCAACCAC HATGGSTNHTLHMPAI ACCCTGCACATGCCGGCCATCGCCCAGGCGGCGGGCATCCAGCTGACC AQAAGIQLTWQDMAD TGGCAGGACATGGCCGACCTCTCCGAGGTGGTGCCGACCCTGTCCCAC LSEVVPTLSHVYPNGK GTCTATCCAAACGGCAAGGCCGATATCAACCACTTCCAGGCGGCGGGC ADINHFQAAGGMSFLIR GGCATGTCTTTCCTGATCCGCGAGCTGCTGGAAGCCGGCCTGCTCCAC ELLEAGLLHEDVNTVA GAAGACGTCAATACCGTGGCCGGCCGCGGCCTGAGCCGCTATACCCAG GRGLSRYTQEPFLDNG GAACCCTTCCTGGACAACGGCAAGCTGGTGTGGCGCGACGGCCCGATT KLVWRDGPIESLDENIL GAAAGCCTGGACGAAAACATCCTGCGCCCGGTGGCCCGGGCGTTCTCT RPVARAFSAEGGLRVM GCGGAGGGCGGCTTGCGGGTCATGGAAGGCAACCTCGGTCGCGGCGT EGNLGRGVMKVSAVAP GATGAAGGTTTCCGCCGTGGCCCCGGAGCACCAGATCGTCGAGGCCCC EHQIVEAPAVVFQDQQ GGCCGTGGTGTTCCAGGACCAGCAGGACCTGGCCGATGCCTTCAAGGC DLADAFKAGLLEKDFV CGGCCTGCTGGAGAAGGACTTCGTCGCGGTGATGCGCTTCCAGGGCCC AVMRFQGPRSNGMPEL GCGCTCCAACGGCATGCCCGAGCTGCACAAGATGACCCCCTTCCTCGG HKMTPFLGVLQDRGFK GGTGCTGCAGGACCGCGGCTTCAAGGTGGCGCTGGTCACCGACGGGCG VALVTDGRMSGASGKI CATGTCCGGCGCTTCGGGCAAGATTCCGGCAGCGATCCATGTCAGCCC PAAIHVSPEAQVGGAL CGAAGCCCAGGTGGGTGGCGCGCTGGCCCGGGTGCTGGACGGCGATA ARVLDGDIIRVDGVKG TCATCCGAGTGGATGGCGTCAAGGGCACCCTGGAGCTTAAGGTAGACG TLELKVDAAEFAAREP CCGCAGAATTCGCCGCCCGGGAGCCGGCCAAGGGCCTGCTGGGCAAC AKGLLGNNVGTGRELF AACGTTGGCACCGGCCGCGAACTCTTCGCCTTCATGCGCATGGCCTTC AFMRMAFSSAEQGASA AGCTCGGCAGAGCAGGGCGCCAGCGCCTTTACCTCTGCCCTGGAGACG FTSALETLK (SEQ ID CTCAAGTGA (SEQ ID NO: 436) NO: 437) ZP_0359148.1 Bacillus subtilis ATGGCAGAATTACGCAGTAATATGATCACACAAGGAATCGATAGAGCT MAELRSNMITQGIDRAP subtilis str. 168 CCGCACCGCAGTTTGCTTCGTGCAGCAGGGGTAAAAGAAGAGGATTTC HRSLLRAAGVKEEDFG GGCAAGCCGTTTATTGCGGTGTGTAATTCATACATTGATATCGTTCCCG KPFIAVCNSYIDIVPGHV GTCATGTTCACTTGCAGGAGTTTGGGAAAATCGTAAAAGAAGCAATCA HLQEFGKIVKEAIREAG GAGAAGCAGGGGGCGTTCCGTTTGAATTTAATACCATTGGGGTAGATG GVPFEFNTIGVDDGIAM ATGGCATCGCAATGGGGCATATCGGTATGAGATATTCGCTGCCAAGCC GHIGMRYSLPSREIIADS GTGAAATTATCGCAGACTCTGTGGAAACGGTTGTATCCGCACACTGGT VETVVSAHWFDGMVCI TTGACGGAATGGTCTGTATTCCGAACTGCGACAAAATCACACCGGGAA PNCDKITPGMLMAAMR TGCTTATGGCGGCAATGCGCATCAACATTCCGACGATTTTTGTCAGCG INIPTIFVSGGPMAAGRT GCGGACCGATGGCGGCAGGAAGAACAAGTTACGGGCGAAAAATCTCC SYGRKISLSSVFEGVGA CTTTCCTCAGTATTCGAAGGGGTAGGCGCCTACCAAGCAGGGAAAATC YQAGKINENELQELEQF AACGAAAACGAGCTTCAAGAACTAGAGCAGTTCGGATGCCCAACGTG GCPTCGSCSGMFTANS CGGGTCTTGCTCAGGCATGTTTACGGCGAACTCAATGAACTGTCTGTC MNCLSEALGLALPGNG AGAAGCACTTGGTCTTGCTTTGCCGGGTAATGGAACCATTCTGGCAAC TILATSPERKEFVRKSA ATCTCCGGAACGCAAAGAGTTTGTGAGAAAATCGGCTGCGCAATTAAT AQLMETIRKDIKPRDIV GGAAACGATTCGCAAAGATATCAAACCGCGTGATATTGTTACAGTAAA TVKAIDNAFALDMALG AGCGATTGATAACGCGTTTGCACTCGATATGGCGCTCGGAGGTTCTAC GSTNTVLHTLALANEA AAATACCGTTCTTCATACCCTTGCCCTTGCAAACGAAGCCGGCGTTGA GVEYSLERINEVAERVP ATACTCTTTAGAACGCATTAACGAAGTCGCTGAGCGCGTGCCGCACTT HLAKLAPASDVFIEDLH GGCTAAGCTGGCGCCTGCATCGGATGTGTTTATTGAAGATCTTCACGA EAGGVSAALNELSKKE AGCGGGCGGCGTTTCAGCGGCTCTGAATGAGCTTTCGAAGAAAGAAG GALHLDALTVTGKTLG GAGCGCTTCATTTAGATGCGCTGACTGTTACAGGAAAAACTCTTGGAG ETIAGHEVKDYDVIHPL AAACCATTGCCGGACATGAAGTAAAGGATTATGACGTCATTCACCCGC DQPFTEKGGLAVLFGN TGGATCAACCATTCACTGAAAAGGGAGGCCTTGCTGTTTTATTCGGTA LAPDGAIIKTGGVQNGI ATCTAGCTCCGGACGGCGCTATCATTAAAACAGGCGGCGTACAGAATG TRHEGPAVVFDSQDEA GGATTACAAGACACGAAGGGCCGGCTGTCGTATTCGATTCTCAGGACG LDGIINRKVKEGDVVIIR AGGCGCTTGACGGCATTATCAACCGAAAAGTAAAAGAAGGCGACGTT YEGPKGGPGMPEMLAP GTCATCATCAGATACGAAGGGCCAAAAGGCGGACCTGGCATGCCGGA TSQIVGMGLGPKVALIT AATGCTGGCGCCAACATCCCAAATCGTTGGAATGGGACTCGGGCCAAA DGRFSGASRGLSIGHVS AGTGGCATTGATTACGGACGGACGTTTTTCCGGAGCCTCCCGTGGCCT PEAAEGGPLAFVENGD CTCAATCGGCCACGTATCACCTGAGGCCGCTGAGGGCGGGCCGCTTGC HIIVDIEKRILDVQVPEE CTTTGTTGAAAACGGAGACCATATTATCGTTGATATTGAAAAACGCAT EWEKRKANWKGFEPK CTTGGATGTACAAGTGCCAGAAGAAGAGTGGGAAAAACGAAAAGCGA VKTGYLARYSKLVTSA ACTGGAAAGGTTTTGAACCGAAAGTGAAAACCGGCTACCTGGCACGTT NTGGIMKI ATTCTAAACTTGTGACAAGTGCCAACACCGGCGGTATTATGAAAATCT (SEQ ID NO: 439) AG (SEQ ID NO: 438) YP_091897.1 Bacillus ATCC ATGACAGGTTTACGCAGTGACATGATTACAAAAGGGATCGACAGAGC MTGLRSDMITKGIDRAP licheniformis 14580 GCCGCACCGCAGTTTGCTGCGCGCGGCTGGGGTAAAAGAAGAGGACTT HRSLLRAAGVKEEDFG CGGCAAACCGTTTATTGCCGTTTGCAACTCATACATCGATATCGTACCG KPFIAVCNSYIDIVPGHV GGTCATGTCCATTTGCAGGAGTTTGGAAAAATCGTCAAAGAGGCGATC HLQEFGKIVKEAIREAG AGAGAGGCCGGCGGTGTTCCGTTTGAATTTAATACAATCGGGGTCGAC GVPFEFNTIGVDDGIAM GACGGAATTGCGATGGGGCACATCGGAATGAGGTATTCTCTCCCGAGC GHIGMRYSLPSREIIADS CGCGAAATCATCGCAGATTCAGTGGAAACGGTTGTATCGGCGCACTGG VETVVSAHWFDGMVCI TTTGACGGAATGGTATGTATTCCAAACTGTGATAAAATCACACCGGGC PNCDKITPGMIMAAMRI ATGATCATGGCGGCAATGCGGATCAACATTCCGACCGTGTTTGTCAGC NIPTVFVSGGPMEAGRT GGGGGGCCGATGGAAGCGGGAAGAACGAGCGACGGACGAAAAATCTC SDGRKISLSSVFEGVGA GCTTTCCTCTGTATTTGAAGGCGTTGGCGCTTATCAATCAGGCAAAATC YQSGKIDEKGLEELEQF GATGAGAAAGGACTCGAGGAGCTTGAACAGTTCGGCTGTCCGACTTGC GCPTCGSCSGMFTANS GGATCATGCTCGGGCATGTTTACGGCGAACTCGATGAACTGTCTTTCTG MNCLSEALGIAMPGNG AAGCTCTTGGCATCGCCATGCCGGGCAACGGCACCATTTTGGCGACAT TILATSPDRREFAKQSA CGCCCGACCGCAGGGAATTTGCCAAACAGTCGGCCCGCCAGCTGATGG RQLMELIKSDIKPRDIVT AGCTGATCAAGTCGGATATCAAACCGCGCGACATCGTGACCGAAAAA EKAIDNAFALDMALGG GCGATCGACAACGCGTTCGCTTTAGACATGGCGCTCGGCGGATCAACG STNTILHTLAIANEAGV AATACGATCCTTCATACGCTTGCGATCGCCAATGAAGCGGGTGTAGAC DYSLERINEVAARVPHL TATTCGCTTGAACGGATCAATGAGGTAGCGGCAAGGGTTCCGCATTTA SKLAPASDVFIEDLHEA TCGAAGCTTGCACCGGCTTCCGATGTGTTTATTGAAGATTTGCATGAAG GGVSAVLNELSKKEGA CAGGAGGCGTATCGGCAGTCTTAAACGAGCTGTCGAAAAAAGAAGGC LHLDTLTVTGKTLGENI GCGCTTCACTTGGATACGCTGACTGTAACGGGGAAAACGCTTGGCGAA AGREVKDYEVIHPIDQP AATATTGCCGGACGCGAAGTGAAAGATTACGAGGTCATTCATCCGATC FSEQGGLAVLFGNLAP GATCAGCCGTTTTCAGAGCAAGGCGGACTCGCCGTCCTGTTCGGCAAC DGAIIKTGGVQDGITRH CTGGCTCCTGACGGTGCGATCATTAAAACGGGCGGCGTCCAAGACGGG EGPAVVFDSQEEALDGI ATTACCCGCCATGAAGGACCTGCGGTTGTCTTTGATTCACAGGAAGAA INRKVKAGDVVIIRYEG GCGCTTGACGGCATCATCAACCGTAAAGTAAAAGCGGGAGATGTCGTC PKGGPGMPEMLAPTSQI ATCATCCGCTATGAAGGCCCTAAAGGCGGACCGGGAATGCCTGAAATG VGMGLGPKVALITDGR CTTGCGCCGACTTCACAGATCGTCGGAATGGGCCTCGGCCCGAAAGTC FSGASRGLSIGHVSPEA GCCTTGATTACCGACGGCCGCTTTTCAGGAGCCTCCCGCGGTCTTTCGA AEGGPLAFVENGDHIV TCGGCCACGTTTCACCGGAAGCAGCCGAAGGCGGCCCGCTTGCTTTCG VDIEKRILNIEISDEEWE TAGAAAACGGCGACCATATCGTTGTCGATATCGAAAAGCGGATTTTAA KRKANWPGFEPKVKTG ACATCGAAATCTCCGATGAGGAATGGGAAAAAAGAAAAGCAAACTGG YLARYSKLVTSANTGGI

CCCGGCTTTGAACCGAAAGTGAAAACGGGCTATCTCGCCAGGTATTCA MKI AAGCTTGTGACATCTGCCAATACCGGCGGCATTATGAAAATCTAG (SEQ ID NO: 441) (SEQ ID NO: 440) NP_0718074.1 Sewanella MR-1 ATGCACTCAGTCGTTCAATCTGTTACTGACAGAATTATTGCCCGTAGCA MHSVVQSVTDRIIARSK oneidensis AAGCATCTCGTGAAGCATACCTTGCTGCGTTAAACGATGCCCGTAACC ASREAYLAALNDARNH ATGGTGTACACCGAAGTTCCTTAAGTTGCGGTAACTTAGCCCACGGTTT GVHRSSLSCGNLAHGF TGCGGCTTGTAATCCCGATGACAAAAATGCATTGCGTCAATTGACGAA AACNPDDKNALRQLTK GGCCAATATTGGGATTATCACCGCATTCAACGATATGTTATCTGCACA ANIGIITAFNDMLSAHQ CCAACCCTATGAAACCTATCCTGATTTGCTGAAAAAAGCCTGTCAGGA PYETYPDLLKKACQEV AGTCGGTAGTGTTGCGCAGGTGGCTGGCGGTGTTCCCGCCATGTGTGA GSVAQVAGGVPAMCD CGGCGTGACTCAAGGTCAGCCCGGTATGGAATTGAGCTTACTGAGCCG GVTQGQPGMELSLLSR TGAAGTGATTGCGATGGCAACCGCGGTTGGCTTATCACACAATATGTT EVIAMATAVGLSHNMF TGATGGAGCCTTACTCCTCGGTATTTGCGATAAAATTGTACCGGGTTTA DGALLLGICDKIVPGLLI CTGATTGGTGCCTTAAGTTTTGGCCATTTACCTATGTTGTTTGTGCCCG GALSFGHLPMLFVPAGP CAGGCCCAATGAAATCGGGTATTCCTAATAAGGAAAAAGCTCGCATTC MKSGIPNKEKARIRQQF GTCAGCAATTTGCTCAAGGTAAGGTCGATAGAGCACAACTGCTCGAAG AQGKVDRAQLLEAEAQ CGGAAGCCCAGTCTTACCACAGTGCGGGTACTTGTACCTTCTATGGTA SYHSAGTCTFYGTANS CCGCTAACTCGAACCAACTGATGCTCGAAGTGATGGGGCTGCAATTGC NQLMLEVMGLQLPGSS CGGGTTCATCTTTTGTGAATCCAGACGATCCACTGCGCGAAGCCTTAA FVNPDDPLREALNKMA ACAAAATGGCGGCCAAGCAGGTTTGTCGTTTAACTGAACTAGGCACTC AKQVCRLTELGTQYSPI AATACAGTCCGATTGGTGAAGTCGTTAACGAAAAATCGATAGTGAATG GEVVNEKSIVNGIVALL GTATTGTTGCATTGCTCGCGACGGGTGGTTCAACAAACTTAACCATGC ATGGSTNLTMHIVAAA ACATTGTGGCGGCGGCCCGTGCTGCAGGTATTATCGTCAACTGGGATG RAAGIIVNWDDFSELSD ACTTTTCGGAATTATCCGATGCGGTGCCTTTGCTGGCACGTGTTTATCC AVPLLARVYPNGHADI AAACGGTCATGCGGATATTAACCATTTCCACGCTGCGGGTGGTATGGC NHFHAAGGMAFLIKEL TTTCCTTATCAAAGAATTACTCGATGCAGGTTTGCTGCATGAGGATGTC LDAGLLHEDVNTVAGY AATACTGTCGCGGGTTATGGTCTGCGCCGTTACACCCAAGAGCCTAAA GLRRYTQEPKLLDGEL CTGCTTGATGGCGAGCTGCGCTGGGTCGATGGCCCAACAGTGAGTTTA RWVDGPTVSLDTEVLT GATACCGAAGTATTAACCTCTGTGGCAACACCATTCCAAAACAACGGT SVATPFQNNGGLKLLK GGTTTAAAGCTGCTGAAGGGTAACTTAGGCCGCGCTGTGATTAAAGTG GNLGRAVIKVSAVQPQ TCTGCCGTTCAGCCACAGCACCGTGTGGTGGAAGCGCCCGCAGTGGTG HRVVEAPAVVIDDQNK ATTGACGATCAAAACAAACTCGATGCGTTATTTAAATCCGGCGCATTA LDALFKSGALDRDCVV GACAGGGATTGTGTGGTGGTGGTGAAAGGCCAAGGGCCGAAAGCCAA VVKGQGPKANGMPEL CGGTATGCCAGAGCTGCATAAACTAACGCCGCTGTTAGGTTCATTGCA HKLTPLLGSLQDKGFK GGACAAAGGCTTTAAAGTGGCACTGATGACTGATGGTCGTATGTCGGG VALMTDGRMSGASGK CGCATCGGGCAAAGTACCTGCGGCGATTCATTTAACCCCTGAAGCGAT VPAAIHLTPEAIDGGLIA TGATGGCGGGTTAATTGCAAAGGTACAAGACGGCGATTTAATCCGAGT KVQDGDLIRVDALTGE TGATGCACTGACCGGCGAGCTGAGTTTATTAGTCTCTGACACCGAGCT LSLLVSDTELATRTATEI TGCCACCAGAACTGCCACTGAAATTGATTTACGCCATTCTCGTTATGGC DLRHSRYGMGRELFGV ATGGGGCGTGAGTTATTTGGAGTACTGCGTTCAAACTTAAGCAGTCCT LRSNLSSPETGARSTSAI GAAACCGGTGCGCGTAGTACTAGCGCCATCGATGAACTTTACTAA DELY (SEQ ID NO: 442) (SEQ ID NO: 443) YP_190870.1 Gluconobacter 621H ATGTCTCTGAATCCCGTCGTCGAGAGCGTGACTGCCCGTATCATCGAG MSLNPVVESVTARIIER oxydans CGTTCGAAAGTCTCCCGTCGCCGGTATCTCGCCCTGATGGAGCGCAAC SKVSRRRYLALMERNR CGCGCCAAGGGTGTGCTCCGGCCCAAGCTGGCCTGCGGTAATCTGGCG AKGVLRPKLACGNLAH CATGCCATCGCAGCGTCCAGCCCCGACAAGCCGGATCTGATGCGTCCC AIAASSPDKPDLMRPTG ACCGGGACCAATATCGGCGTGATCACGACCTATAACGACATGCTCTCG TNIGVITTYNDMLSAHQ GCGCATCAGCCGTATGGCCGCTATCCCGAGCAGATCAAGCTGTTCGCC PYGRYPEQIKLFAREVG CGTGAAGTCGGTGCGACGGCCCAGGTTGCAGGCGGCGCACCAGCAAT ATAQVAGGAPAMCDG GTGTGATGGTGTGACGCAGGGGCAGGAGGGCATGGAACTCTCCCTGTT VTQGQEGMELSLFSRD CTCCCGTGACGTGATCGCCATGTCCACGGCGGTCGGGCTGAGCCACGG VIAMSTAVGLSHGMFE CATGTTTGAGGGCGTGGCGCTGCTGGGCATCTGTGACAAGATTGTGCC GVALLGICDKIVPGLLM GGGCCTTCTGATGGGCGCGCTGCGCTTCGGTCATCTCCCGGCCATGCTG GALRFGHLPAMLIPAGP ATCCCGGCAGGGCCAATGCCGTCCGGTCTTCCAAACAAGGAAAAGCA MPSGLPNKEKQRIRQLY GCGCATCCGCCAGCTCTATGTGCAGGGCAAGGTCGGGCAGGACGAGCT VQGKVGQDELMEAEN GATGGAAGCGGAAAACGCCTCCTATCACAGCCCGGGCACCTGCACGTT ASYHSPGTCTFYGTANT CTATGGCACGGCCAATACGAACCAGATGATGGTCGAAATCATGGGTCT NQMMVEIMGLMMPDS GATGATGCCGGACTCGGCTTTCATCAATCCCAACACGAAGCTGCGTCA AFINPNTKLRQAMTRSG GGCAATGACCCGCTCGGGTATTCACCGTCTGGCCGAAATCGGCCTGAA IHRLAEIGLNGEDVRPL CGGCGAGGATGTGCGCCCGCTCGCTCATTGCGTAGACGAAAAGGCCAT AHCVDEKAIVNAAVGL CGTGAATGCGGCGGTCGGGTTGCTGGCGACGGGTGGTTCGACCAACCA LATGGSTNHSIHLPAIA TTCGATCCATCTTCCTGCTATCGCCCGTGCCGCTGGTATCCTGATCGAC RAAGILIDWEDISRLSSA TGGGAAGACATCAGCCGCCTGTCGTCCGCGGTTCCGCTGATCACCCGT VPLITRVYPSGSEDVNA GTTTATCCGAGCGGTTCCGAGGACGTGAACGCGTTCAACCGCGTGGGT FNRVGGMPTVIAELTR GGTATGCCGACCGTGATCGCCGAACTGACGCGCGCCGGGATGCTGCAC AGMLHKDILTVSRGGF AAGGACATTCTGACGGTCTCTCGTGGCGGTTTCTCCGATTATGCCCGTC SDYARRASLEGDEIVYT GCGCATCGCTGGAAGGCGATGAGATCGTCTACACCCACGCGAAGCCGT HAKPSTDTDILRDVATP CCACGGACACCGATATCCTGCGCGATGTGGCTACGCCTTTCCGGCCCG FRPDGGMRLMTGNLGR ATGGCGGTATGCGCCTGATGACTGGTAATCTGGGCCGCGCGATCTACA AIYKSSAIAPEHLTVEAP AGAGCAGCGCTATTGCGCCCGAGCACCTGACCGTTGAAGCGCCGGCAC ARVFQDQHDVLTAYQN GGGTCTTCCAGGACCAGCATGACGTCCTCACGGCCTATCAGAATGGTG GELERDVVVVVRFQGP AGCTTGAGCGTGATGTTGTCGTGGTCGTCCGGTTCCAGGGACCGGAAG EANGMPELHKLTPTLG CCAACGGCATGCCGGAGCTTCACAAGCTGACCCCGACTCTGGGCGTGC VLQDRGFKVALLTDGR TTCAGGATCGCGGCTTCAAGGTGGCCCTGCTGACGGATGGACGCATGT MSGASGKVPAAIHVGP CCGGTGCGAGCGGCAAGGTGCCGGCCGCCATTCATGTCGGTCCCGAAG EAQVGGPIARVRDGDM CGCAGGTTGGCGGTCCGATCGCCCGCGTGCGGGACGGCGACATGATCC IRVCAVTGQIEALVDAA GTGTCTGCGCGGTGACGGGACAGATCGAGGCTCTGGTGGATGCCGCCG EWESRKPVPPPLPALGT AGTGGGAGAGCCGCAAGCCGGTCCCGCCGCCGCTCCCGGCATTGGGA GRELFALMRSVHDPAE ACGGGCCGCGAACTGTTCGCGCTGATGCGTTCGGTGCATGATCCGGCC AGGSAMLAQMDRVIEA GAGGCTGGCGGATCCGCGATGCTGGCCCAGATGGATCGCGTGATCGAA VGDDIH (SEQ ID NO: GCCGTTGGCGACGACATTCACTAA (SEQ ID NO: 444) 445) ZP_06145432.1 Ruminococcus FD-1 ATGAGCGATAATTTTTTCTGCGAGGGTGCGGATAAAGCCCCTCAGCGT MSDNFFCEGADKAPQR flavefaciens TCACTTTTCAATGCACTGGGCATGACTAAAGAGGAAATGAAGCGTCCC SLFNALGMTKEEMKRP CTCGTTGGTATCGTTTCTTCCTACAATGAGATCGTTCCCGGCCATATGA LVGIVSSYNEIVPGHMN ACATCGACAAGCTGGTCGAAGCCGTTAAGCTGGGTGTAGCTATGGGCG IDKLVEAVKLGVAMGG GCGGCACTCCTGTTGTTTTCCCTGCTATCGCTGTATGCGACGGTATCGC GTPVVFPAIAVCDGIAM TATGGGTCACACAGGCATGAAGTACAGCCTTGTTACCCGTGACCTTAT GHTGMKYSLVTRDLIA TGCCGATTCTACAGAGTGTATGGCTCTTGCTCATCACTTCGACGCACTG DSTECMALAHHFDALV GTAATGATACCTAACTGCGACAAGAACGTTCCCGGCCTGCTTATGGCG MIPNCDKNVPGLLMAA GCTGCACGTATCAATGTTCCTACTGTATTCGTAAGCGGCGGCCCTATGC ARINVPTVFVSGGPMLA TTGCAGGCCATGTAAAGGGTAAGAAGACCTCTCTTTCATCCATGTTCG GHVKGKKTSLSSMFEA AGGCTGTAGGCGCTTACACAGCAGGCAAGATAGACGAGGCTGAACTT VGAYTAGKIDEAELDE GACGAATTCGAGAACAAGACCTGCCCTACCTGCGGTTCATGTTCGGGT FENKTCPTCGSCSGMY ATGTATACCGCTAACTCCATGAACTGCCTCACTGAGGTACTGGGTATG TANSMNCLTEVLGMGL GGTCTCAGAGGCAACGGCACTATCCCTGCTGTTTACTCCGAGCGTATC RGNGTIPAVYSERIKLA AAGCTTGCAAAGCAGGCAGGTATGCAGGTTATGGAACTCTACAGAAA KQAGMQVMELYRKNI GAATATCCGCCCTCTCGATATCATGACAGAGAAGGCTTTCCAGAACGC RPLDIMTEKAFQNALTA TCTCACAGCTGATATGGCTCTTGGATGTTCCACAAACAGTATGCTCCAT DMALGCSTNSMLHLPA CTCCCTGCTATCGCCAACGAATGCGGCATAAATATCAACCTTGACATG IANECGININLDMANEIS GCTAACGAGATAAGCGCCAAGACTCCTAACCTCTGCCATCTTGCACCG AKTPNLCHLAPAGHTY GCAGGCCACACCTACATGGAAGACCTCAACGAAGCAGGCGGAGTTTA MEDLNEAGGVYAVLN TGCAGTTCTCAACGAGCTGAGCAAAAAGGGACTTATCAACACCGACTG ELSKKGLINTDCMTVT CATGACTGTTACAGGCAAGACCGTAGGCGAGAATATCAAGGGCTGCAT GKTVGENIKGCINRDPE CAACCGTGACCCTGAGACTATCCGTCCTATCGACAACCCATACAGTGA TIRPIDNPYSETGGIAVL AACAGGCGGAATCGCCGTACTCAAGGGCAATCTTGCTCCCGACAGATG KGNLAPDRCVVKRSAV TGTTGTGAAGAGAAGCGCAGTTGCTCCCGAAATGCTGGTACACAAAGG APEMLVHKGPARVFDS CCCTGCAAGAGTATTCGACAGCGAGGAAGAAGCTATCAAGGTCATCTA EEEAIKVIYEGGIKAGD TGAGGGCGGTATCAAGGCAGGCGACGTTGTTGTTATCCGTTACGAAGG VVVIRYEGPAGGPGMR CCCTGCAGGCGGCCCCGGCATGAGAGAAATGCTCTCTCCTACATCAGC EMLSPTSAIQGAGLGST TATACAGGGTGCAGGTCTCGGCTCAACTGTTGCTCTAATCACTGACGG VALITDGRFSGATRGAA ACGTTTCAGCGGCGCTACCCGTGGTGCGGCTATCGGACACGTATCCCC IGHVSPEAVNGGTIAYV CGAAGCTGTAAACGGCGGTACTATCGCATATGTCAAGGACGGCGATAT KDGDIISIDIPNYSITLE TATCTCCATCGACATACCGAATTACTCCATCACTCTTGAAGTATCCGAC VSDEELAERKKAMPIKR GAGGAGCTTGCAGAGCGCAAAAAGGCAATGCCTATCAAGCGCAAGGA KENITGYLKRYAQQVS GAACATCACAGGCTATCTGAAGCGCTATGCACAGCAGGTATCATCCGC SADKGAIINRK (SEQ AGACAAGGGCGCTATCATCAACAGGAAATAG (SEQ ID NO: 446) ID NO: 447)

Example 28

Unique 200-Mer Nucleotide Sequences Used for Integration Constructs

TABLE-US-00089 [0441] 200-mer number Sequence 11 GCGTCCATACCGGACCGTCCATCCGTCCCGGCGGGCTATCGTTAGTCCCC GCGAGCGGATTCCGAGGTGTCGATGACGCGCTCGGTCCCCGCATCTCGGG GTGGCCCGCACCTAGCTTAAGCGGACTACGAAGCGCGGGGCGAGCGGCG ACGATCGCGTACTCACACTCGGACCTCGCGGGTCGGCTCGGAGCCCTGGT CA (SEQ ID NO: 448) 17 AGCGGTCAGTGCACGGGACGCGATCGGGCACCCTCGACGCAGCGATGGG CCGTGCGTCGTGTAGTCCGATAGTGCCGGCGTCGCTCGGTAAGCCCCTTAT ACCTGCGCGCTGGCGAGAGATGGGTTCGCGAGTCTAGCGCGATCGCTCTA GAGGGTCCAGGAGTACCTACACGGCGCGAGGCGCGGACATCCTAGGGCG CA (SEQ ID NO: 449) 21 CCCCTGCGTTTGCCGAGCGACGAGTCCTACACCCTGTCCGCGCCCGAGCA GGGTCGTCCCCGCGAACCGACGGATGCGCGGCCCGAATCGCCTAGACCCC TACGGGGCGGCTCGCTCGGCCCCGCCTGACCGGTCGATCCCACGAGACCC CGCCCTATAGGGAGAGCACCGACCCGCCTCCTCGGGCCTTACGGCGTGCG A (SEQ ID NO: 450) 24 GCCAGTGTAGAGATCCGGGGATCCCCAGCGCCTGGAGCTAGGCCCACGGC GTCTGACCGGGTGTACCGGGCCCCCTAGGACGGGTGCGCCCGTAGTCCGT CTGCGAGGGGGCCGTCCGGTCGGGGGCATCCGGCGCTCCGCGGGGAGGC GCTACGTGCCCGACCGGGGGAGTCGAGTCTCTATGCTCGCGACCGCGTGC GA (SEQ ID NO: 451) 25 AAGCGCGCACTACGTCAGGCATAGCGTACTGGGCTTGCGGAGCCACGCGG GCGCGGAGCGGGCCGGTTGAGTGCGGGATAGACGGACCGTACGCATGCC TCAAGTCGACGGTACGGGGGGCAGGGTAGCTGGGATCCGAGGCGGGTAG GCGTCGGCCGCGACTGTGCCCGTACGACGGGAGAACCCCCCGCGCGAGTT GGA (SEQ ID NO: 452) 448 ACGTCGGCAGGCCCGCTCGGTTCCGAGCACCGGATCGACGCTACACGAGG CCCGACACTAGGCGCGTACTCCGGGGGGGTCCGCCTCCGTCCCGTGAGTA TCGCGGGCGGGAACAGGGCGGGCTGCCGGGGCCGACCGGTGTGGGGCG TGACTCCGACCGACTCGGGCGAGGGCCGCCTAGTCGCGAAGGACGCGCG ACCA (SEQ ID NO: 453)

Example 29

Examples of Embodiments

[0442] Provided hereafter are certain non-limiting embodiments of the technology.

[0443] A1. A composition comprising a nucleic acid that includes heterologous polynucleotides that encode a phosphogluconate dehydratase enzyme, a 2-keto-3-deoxygluconate-6-phosphate aldolase enzyme and a nucleotide sequence identification tag selected from the group of six (6) nucleotide sequences consisting of

TABLE-US-00090 (SEQ ID NO: 448) GCGTCCATACCGGACCGTCCATCCGTCCCGGCGGGCTATCGTTAGTCCC CGCGAGCGGATTCCGAGGTGTCGATGACGCGCTCGGTCCCCGCATCTCG GGGTGGCCCGCACCTAGCTTAAGCGGACTACGAAGCGCGGGGCGAGCGG CGACGATCGCGTACTCACACTCGGACCTCGCGGGTCGGCTCGGAGCCCT GGTCA (SEQ ID NO: 449) AGCGGTCAGTGCACGGGACGCGATCGGGCACCCTCGACGCAGCGATGGG CCGTGCGTCGTGTAGTCCGATAGTGCCGGCGTCGCTCGGTAAGCCCCTT ATACCTGCGCGCTGGCGAGAGATGGGTTCGCGAGTCTAGCGCGATCGCT CTAGAGGGTCCAGGAGTACCTACACGGCGCGAGGCGCGGACATCCTAGG GCGCA (SEQ ID NO: 450) CCCCTGCGTTTGCCGAGCGACGAGTCCTACACCCTGTCCGCGCCCGAGC AGGGTCGTCCCCGCGAACCGACGGATGCGCGGCCCGAATCGCCTAGACC CCTACGGGGCGGCTCGCTCGGCCCCGCCTGACCGGTCGATCCCACGAGA CCCCGCCCTATAGGGAGAGCACCGACCCGCCTCCTCGGGCCTTACGGCG TGCGA (SEQ ID NO: 451) GCCAGTGTAGAGATCCGGGGATCCCCAGCGCCTGGAGCTAGGCCCACGG CGTCTGACCGGGTGTACCGGGCCCCCTAGGACGGGTGCGCCCGTAGTCC GTCTGCGAGGGGGCCGTCCGGTCGGGGGCATCCGGCGCTCCGCGGGGAG GCGCTACGTGCCCGACCGGGGGAGTCGAGTCTCTATGCTCGCGACCGCG TGCGA (SEQ ID NO: 452) AAGCGCGCACTACGTCAGGCATAGCGTACTGGGCTTGCGGAGCCACGCG GGCGCGGAGCGGGCCGGTTGAGTGCGGGATAGACGGACCGTACGCATGC CTCAAGTCGACGGTACGGGGGGCAGGGTAGCTGGGATCCGAGGCGGGTA GGCGTCGGCCGCGACTGTGCCCGTACGACGGGAGAACCCCCCGCGCGAG TTGGA (SEQ ID NO: 453) ACGTCGGCAGGCCCGCTCGGTTCCGAGCACCGGATCGACGCTACACGAG GCCCGACACTAGGCGCGTACTCCGGGGGGGTCCGCCTCCGTCCCGTGAG TATCGCGGGCGGGAACAGGGCGGGCTGCCGGGGCCGACCGGTGTGGGGC GTGACTCCGACCGACTCGGGCGAGGGCCGCCTAGTCGCGAAGGACGCGC GACCA

[0444] A2. The composition of embodiment A1, wherein the yeast is a Saccharomyces spp. yeast.

[0445] A3. The composition of embodiment A2, wherein the yeast is a Saccharomyces cerevisiae yeast strain.

[0446] A3.1. The composition of any one of embodiments A1 to A3, wherein the polynucleotides encoding the phosphogluconate dehydratase enzyme and the 3-deoxygluconate-6-phosphate aldolase enzyme independently are from an Escherichia spp. microbe or Psuedomonas spp. microbe.

[0447] A4. The composition of embodiment A3, wherein the Escherichia spp. microbe is an Escherichia coli strain.

[0448] A5. The composition of embodiment A3 or A4, wherein the Pseudomonas spp. microbe is a Pseudomonas aeruginosa strain.

[0449] A6. The composition of any one of embodiments A1 to A5, wherein the polynucleotide that encodes the phosphogluconate dehydratase enzyme is an EDD gene.

[0450] A7. The composition of any one of embodiments A1 to A5, wherein the polynucleotide that encodes the 2-keto-3-deoxygluconate-6-phosphate aldolase enzyme is an EDA gene.

[0451] A8. The composition of any one of embodiments A1 to A7, wherein the nucleic acid includes a polynucleotide that encodes a 6-phosphogluconolactonase enzyme.

[0452] A8.1. The composition of embodiment A8, wherein the 6-phosphogluconolactonase enzyme is expressed from a SOL gene.

[0453] A9. The composition of embodiment A8, wherein the SOL gene is a SOL3 gene.

[0454] A10. The composition of any one of embodiments A1 to A9, wherein the nucleic acid includes a polynucleotide that encodes a glucose-6-phosphate dehydrogenase enzyme.

[0455] A11. The composition of embodiment A10, wherein the polynucleotide that encodes the glucose-6-phosphate dehydrogenase enzyme is from a yeast.

[0456] A12. The composition of embodiment A11, wherein the yeast is a Saccharomyces spp. yeast.

[0457] A13. The composition of embodiment A12, wherein the yeast is a Saccharomyces cerevisiae strain.

[0458] A14. The composition of any one of embodiments A10 to A13, wherein the nucleic acid includes a polynucleotide that encode an endogenous glucose-6-phosphate dehydrogenase enzyme.

[0459] A15. The composition of any one of embodiments A10 to A14, wherein the glucose-6-phosphate dehydrogenase enzyme is expressed from a ZWF gene.

[0460] A16. The composition of embodiment A15, wherein the ZWF gene is a ZWF1 gene.

[0461] A17. The composition of any one of embodiments A1 to A16, wherein the nucleic acid includes one or more promoters operable in a yeast, wherein the promoter is in operable connection with one or more of the polynucleotides.

[0462] A18. The composition of embodiment A17, wherein the promoter is selected from promoters that regulate glucose phosphate dehydrogenase (GPD), translation elongation factor (TEF-1), phosphoglucokinase (PGK-1) and triose phosphate dehydrogenase (TDH-1).

[0463] A19. The composition of any one of embodiments A1 to A18, wherein the nucleic acid includes one or more polynucleotides that homologously combine in a gene of a host that encodes a phosphofructokinase (PFK) enzyme, phosphoglucoisomerase (PGI) enzyme, 6-phosphogluconate dehydrogenase (decarboxylating) enzyme, transketolase enzyme, transaldolase enzyme, or combination thereof.

[0464] A20. The composition of embodiment A19, wherein the transketolase enzyme is encoded by a TKL-1 coding sequence or a TKL-2 coding sequence.

[0465] A21. The composition of embodiment A19, wherein the transaldolase is encoded by a TAL-1 coding sequence.

[0466] A22. The composition of embodiment A19, wherein the phosphofructokinase (PFK) enzyme is a PFK-2 enzyme or PFK-1 enzyme.

[0467] A23. The composition of embodiment A19, wherein the 6-phosphogluconate dehydrogenase (decarboxylating) enzyme is encoded by a GND-1 gene or a GND-2 gene.

[0468] A24. The composition of embodiment A19, wherein the PGI is encoded by a PGI-1 gene.

[0469] A25. The composition of any one of embodiments A1 to A24, wherein the nucleic acid is one or two separate nucleic acid molecules.

[0470] A26. The composition of embodiment A25, wherein each nucleic acid molecule includes one or two or more of the polynucleotide subsequences, one or two or more of the promoters, or one or two or more of the polynucleotide subsequences and one or two or more of the promoters.

[0471] A27. The composition of embodiment A25 or A26, wherein each of the one or two nucleic acid molecules are in circular form.

[0472] A28. The composition of embodiment A25 or A26, wherein each of the one or two nucleic acid molecules are in linear form.

[0473] A29. The composition of any one of embodiments A25 to A28, wherein each of the one or two nucleic acid molecules functions as an expression vector.

[0474] A30. The composition of any one of embodiments A25 to A29, wherein each of the one or two nucleic acid molecules includes flanking sequences for integrating the polynucleotides, the promoter sequences, or the polynucleotides and the promoter sequences in the nucleic acid into genomic DNA of a host organism.

[0475] B1. A composition comprising an engineered yeast that includes an alteration that adds or increases a phosphogluconate dehydratase activity and a 2-keto-3-deoxygluconate-6-phosphate aldolase activity, and a nucleotide sequence identification tag having a nucleotide sequence selected from the group of six (6) nucleotide sequences consisting of

TABLE-US-00091 (SEQ ID NO: 448) GCGTCCATACCGGACCGTCCATCCGTCCCGGCGGGCTATCGTTAGTCCC CGCGAGCGGATTCCGAGGTGTCGATGACGCGCTCGGTCCCCGCATCTCG GGGTGGCCCGCACCTAGCTTAAGCGGACTACGAAGCGCGGGGCGAGCGG CGACGATCGCGTACTCACACTCGGACCTCGCGGGTCGGCTCGGAGCCCT GGTCA (SEQ ID NO: 449) AGCGGTCAGTGCACGGGACGCGATCGGGCACCCTCGACGCAGCGATGGG CCGTGCGTCGTGTAGTCCGATAGTGCCGGCGTCGCTCGGTAAGCCCCTT ATACCTGCGCGCTGGCGAGAGATGGGTTCGCGAGTCTAGCGCGATCGCT CTAGAGGGTCCAGGAGTACCTACACGGCGCGAGGCGCGGACATCCTAGG GCGCA (SEQ ID NO: 450) CCCCTGCGTTTGCCGAGCGACGAGTCCTACACCCTGTCCGCGCCCGAGC AGGGTCGTCCCCGCGAACCGACGGATGCGCGGCCCGAATCGCCTAGACC CCTACGGGGCGGCTCGCTCGGCCCCGCCTGACCGGTCGATCCCACGAGA CCCCGCCCTATAGGGAGAGCACCGACCCGCCTCCTCGGGCCTTACGGCG TGCGA (SEQ ID NO: 451) GCCAGTGTAGAGATCCGGGGATCCCCAGCGCCTGGAGCTAGGCCCACGG CGTCTGACCGGGTGTACCGGGCCCCCTAGGACGGGTGCGCCCGTAGTCC GTCTGCGAGGGGGCCGTCCGGTCGGGGGCATCCGGCGCTCCGCGGGGAG GCGCTACGTGCCCGACCGGGGGAGTCGAGTCTCTATGCTCGCGACCGCG TGCGA (SEQ ID NO: 452) AAGCGCGCACTACGTCAGGCATAGCGTACTGGGCTTGCGGAGCCACGCG GGCGCGGAGCGGGCCGGTTGAGTGCGGGATAGACGGACCGTACGCATGC CTCAAGTCGACGGTACGGGGGGCAGGGTAGCTGGGATCCGAGGCGGGTA GGCGTCGGCCGCGACTGTGCCCGTACGACGGGAGAACCCCCCGCGCGAG TTGGA (SEQ ID NO: 453) ACGTCGGCAGGCCCGCTCGGTTCCGAGCACCGGATCGACGCTACACGAG GCCCGACACTAGGCGCGTACTCCGGGGGGGTCCGCCTCCGTCCCGTGAG TATCGCGGGCGGGAACAGGGCGGGCTGCCGGGGCCGACCGGTGTGGGGC GTGACTCCGACCGACTCGGGCGAGGGCCGCCTAGTCGCGAAGGACGCGC GACCA

[0476] B2. The composition of embodiment B1, wherein the yeast is a Saccharomyces spp. yeast.

[0477] B3. The composition of embodiment B2, wherein the yeast is a Saccharomyces cerevisiae yeast strain.

[0478] B4. The composition of any one of embodiments B1 to B3 that includes heterologous polynucleotides that encode independently a phosphogluconate dehydratase enzyme and a 2-keto-3-deoxygluconate-6-phosphate aldolase enzyme.

[0479] B5. The composition of embodiment B4, wherein the polynucleotides encoding the phosphogluconate dehydratase enzyme and the 3-deoxygluconate-6-phosphate aldolase enzyme independently are from an Escherichia spp. microbe or Psuedomonas spp. microbe.

[0480] B6. The composition of embodiment B5, wherein the Escherichia spp. microbe is an Escherichia coli strain.

[0481] B7. The composition of embodiment B5, wherein the Pseudomonas spp. microbe is a Bseudomonas aeruginosa strain.

[0482] B8. The composition of any one of embodiments B4 to B7, wherein the polynucleotide that encodes the phosphogluconate dehydratase enzyme is an EDD gene.

[0483] B9. The composition of any one of embodiments B4 to B7, wherein the polynucleotide that encodes the 2-keto-3-deoxygluconate-6-phosphate aldolase enzyme is an EDA gene.

[0484] B10. The composition of any one of embodiments B1 to B9, wherein the yeast includes an alteration that adds or increases a 6-phosphogluconolactonase activity.

[0485] B10.1. The composition of embodiment B10, wherein the yeast includes a heterologous polynucleotide, or multiple copies of an endogenous polynucleotide, that encodes a 6-phosphogluconolactonase enzyme.

[0486] B10.2. The composition of embodiment B10.1, wherein the 6-phosphogluconolactonase enzyme is expressed from a SOL gene.

[0487] B11. The composition of embodiment B10.2, wherein the SOL gene is a SOL3 gene.

[0488] B12. The composition of any one of embodiments B1 to B11, wherein a glucose-6-phosphate dehydrogenase activity is added or increased.

[0489] B13. The composition of embodiment B12, wherein the yeast comprises a heterologous polynucleotide that encodes a glucose-6-phosphate dehydrogenase enzyme, or wherein the yeast comprises multiple copies of an endogenous polynucleotide that encodes a glucose-6-phosphate dehydrogenase enzyme.

[0490] B14. The composition of embodiment B13, wherein the polynucleotide that encodes the glucose-6-phosphate dehydrogenase enzyme is from a yeast.

[0491] B15. The composition of embodiment B14, wherein the yeast is a Saccharomyces spp. yeast.

[0492] B16. The composition of embodiment B15, wherein the yeast is a Saccharomyces cerevisiae strain.

[0493] B17. The composition of any one of embodiments B13 to B17, wherein the glucose-6-phosphate dehydrogenase enzyme is expressed from a ZWF gene.

[0494] B18. The composition of embodiment B17, wherein the ZWF gene is a ZWF1 gene.

[0495] B19. The composition of any one of embodiments B1 to B18, wherein the nucleic acid includes one or more promoters operable in a yeast, wherein the promoter is in operable connection with one or more of the polynucleotides.

[0496] B20. The composition of embodiment B19, wherein the promoter is selected from promoters that regulate glucose phosphate dehydrogenase (GBD), translation elongation factor (TEF-1), phosphoglucokinase (BGK-1) and triose phosphate dehydrogenase (TDH-1).

[0497] B21. The composition of any one of embodiments B1 to B20, wherein the yeast includes a reduction in one or more of the following activities: phosphofructokinase (PFK) activity, phosphoglucoisomerase (PGI) activity, 6-phosphogluconate dehydrogenase (decarboxylating) activity, transketolase activity, transaldolase activity, or combination thereof.

[0498] B22. The composition of embodiment B21, wherein the yeast includes an alteration in one or more polynucleotides that inhibits production of one or more enzymes selected from the group consisting of phosphofructokinase (PFK) enzyme, phosphoglucoisomerase (PGI) enzyme, 6-phosphogluconate dehydrogenase (decarboxylating) enzyme, transketolase enzyme, transaldolase enzyme, or combination thereof.

[0499] B23. The composition of embodiment B22, wherein the transketolase enzyme is encoded by a TKL-1 coding sequence or a TKL-2 coding sequence.

[0500] B24. The composition of embodiment B22, wherein the transaldolase is encoded by a TAL-1 coding sequence.

[0501] B25. The composition of embodiment B22, wherein the phosphofructokinase (PFK) enzyme is a PFK-2 enzyme or PFK-1 enzyme.

[0502] B26. The composition of embodiment B22, wherein the 6-phosphogluconate dehydrogenase (decarboxylating) enzyme is encoded by a GND-1 gene or GND-2 gene.

[0503] B27. The composition of embodiment B22, wherein the PGI is encoded by a PGI-1 gene.

[0504] B28. The composition of any one of embodiments B1 to B27, wherein the polynucleotides, the promoters, or the polynucleotides and the promoters are not integrated in the yeast nucleic acid.

[0505] B29. The composition of embodiment B28, wherein the polynucleotides, the promoters, or the polynucleotides and the promoters are in one or more plasmids.

[0506] B30. The composition of any one of embodiments B1 to B29, wherein the polynucleotide subsequences, the promoters, or the polynucleotide subsequences and the promoters are integrated in genomic DNA of the yeast.

[0507] B31. The composition of embodiment B30, wherein the polynucleotides, the promoters, or the polynucleotides and the promoters are integrated in a transposition integration event, in a homologous recombination integration event, or in a transposition integration event and a homologous recombination integration event.

[0508] B32. The composition of embodiment B31, wherein the transposition integration event includes transposition of an operon comprising two or more of the polynucleotide subsequences, the promoters, or the polynucleotide subsequences and the promoters.

[0509] B33. The composition of embodiment B31, wherein the homologous recombination integration event includes homologous recombination of an operon comprising two or more of the polynucleotide subsequences, the promoters, or the polynucleotide subsequences and the promoters.

[0510] C1. A method, comprising contacting an engineered yeast of any one of embodiments B1 to B33 with a feedstock that contains one or more hexose sugars under conditions in which the microbe synthesizes ethanol.

[0511] C2. The method of embodiment C1, wherein the engineered yeast synthesizes ethanol to about 85% to about 99% of theoretical yield.

[0512] C3. The method of embodiment C1 or C2, comprising recovering ethanol synthesized by the engineered yeast.

[0513] C4. The method of any one of embodiments C1 to C3, wherein the conditions are fermentation conditions.

[0514] D1. A composition comprising a synthetic nucleic acid that includes a polynucleotide sequence selected from the group consisting of

TABLE-US-00092 (SEQ ID NO: 448) GCGTCCATACCGGACCGTCCATCCGTCCCGGCGGGCTATCGTTAGTCCC CGCGAGCGGATTCCGAGGTGTCGATGACGCGCTCGGTCCCCGCATCTCG GGGTGGCCCGCACCTAGCTTAAGCGGACTACGAAGCGCGGGGCGAGCGG CGACGATCGCGTACTCACACTCGGACCTCGCGGGTCGGCTCGGAGCCCT GGTCA (SEQ ID NO: 449) AGCGGTCAGTGCACGGGACGCGATCGGGCACCCTCGACGCAGCGATGGG CCGTGCGTCGTGTAGTCCGATAGTGCCGGCGTCGCTCGGTAAGCCCCTT ATACCTGCGCGCTGGCGAGAGATGGGTTCGCGAGTCTAGCGCGATCGCT CTAGAGGGTCCAGGAGTACCTACACGGCGCGAGGCGCGGACATCCTAGG GCGCA (SEQ ID NO: 450) CCCCTGCGTTTGCCGAGCGACGAGTCCTACACCCTGTCCGCGCCCGAGC AGGGTCGTCCCCGCGAACCGACGGATGCGCGGCCCGAATCGCCTAGACC CCTACGGGGCGGCTCGCTCGGCCCCGCCTGACCGGTCGATCCCACGAGA CCCCGCCCTATAGGGAGAGCACCGACCCGCCTCCTCGGGCCTTACGGCG TGCGA (SEQ ID NO: 451) GCCAGTGTAGAGATCCGGGGATCCCCAGCGCCTGGAGCTAGGCCCACGG CGTCTGACCGGGTGTACCGGGCCCCCTAGGACGGGTGCGCCCGTAGTCC GTCTGCGAGGGGGCCGTCCGGTCGGGGGCATCCGGCGCTCCGCGGGGAG GCGCTACGTGCCCGACCGGGGGAGTCGAGTCTCTATGCTCGCGACCGCG TGCGA (SEQ ID NO: 452) AAGCGCGCACTACGTCAGGCATAGCGTACTGGGCTTGCGGAGCCACGCG GGCGCGGAGCGGGCCGGTTGAGTGCGGGATAGACGGACCGTACGCATGC CTCAAGTCGACGGTACGGGGGGCAGGGTAGCTGGGATCCGAGGCGGGTA GGCGTCGGCCGCGACTGTGCCCGTACGACGGGAGAACCCCCCGCGCGAG TTGGA (SEQ ID NO: 453) ACGTCGGCAGGCCCGCTCGGTTCCGAGCACCGGATCGACGCTACACGAG GCCCGACACTAGGCGCGTACTCCGGGGGGGTCCGCCTCCGTCCCGTGAG TATCGCGGGCGGGAACAGGGCGGGCTGCCGGGGCCGACCGGTGTGGGGC GTGACTCCGACCGACTCGGGCGAGGGCCGCCTAGTCGCGAAGGACGCGC GACCA

[0515] D2. A microorganism comprising a polynucleotide that includes a sequence selected from the group consisting of

TABLE-US-00093 (SEQ ID NO: 448) GCGTCCATACCGGACCGTCCATCCGTCCCGGCGGGCTATCGTTAGTCCC CGCGAGCGGATTCCGAGGTGTCGATGACGCGCTCGGTCCCCGCATCTCG GGGTGGCCCGCACCTAGCTTAAGCGGACTACGAAGCGCGGGGCGAGCGG CGACGATCGCGTACTCACACTCGGACCTCGCGGGTCGGCTCGGAGCCCT GGTCA (SEQ ID NO: 449) AGCGGTCAGTGCACGGGACGCGATCGGGCACCCTCGACGCAGCGATGGG CCGTGCGTCGTGTAGTCCGATAGTGCCGGCGTCGCTCGGTAAGCCCCTT ATACCTGCGCGCTGGCGAGAGATGGGTTCGCGAGTCTAGCGCGATCGCT CTAGAGGGTCCAGGAGTACCTACACGGCGCGAGGCGCGGACATCCTAGG GCGCA (SEQ ID NO: 450) CCCCTGCGTTTGCCGAGCGACGAGTCCTACACCCTGTCCGCGCCCGAGC AGGGTCGTCCCCGCGAACCGACGGATGCGCGGCCCGAATCGCCTAGACC CCTACGGGGCGGCTCGCTCGGCCCCGCCTGACCGGTCGATCCCACGAGA CCCCGCCCTATAGGGAGAGCACCGACCCGCCTCCTCGGGCCTTACGGCG TGCGA (SEQ ID NO: 451) GCCAGTGTAGAGATCCGGGGATCCCCAGCGCCTGGAGCTAGGCCCACGG CGTCTGACCGGGTGTACCGGGCCCCCTAGGACGGGTGCGCCCGTAGTCC GTCTGCGAGGGGGCCGTCCGGTCGGGGGCATCCGGCGCTCCGCGGGGAG GCGCTACGTGCCCGACCGGGGGAGTCGAGTCTCTATGCTCGCGACCGCG TGCGA (SEQ ID NO: 452) AAGCGCGCACTACGTCAGGCATAGCGTACTGGGCTTGCGGAGCCACGCG GGCGCGGAGCGGGCCGGTTGAGTGCGGGATAGACGGACCGTACGCATGC CTCAAGTCGACGGTACGGGGGGCAGGGTAGCTGGGATCCGAGGCGGGTA GGCGTCGGCCGCGACTGTGCCCGTACGACGGGAGAACCCCCCGCGCGAG TTGGA (SEQ ID NO: 453) ACGTCGGCAGGCCCGCTCGGTTCCGAGCACCGGATCGACGCTACACGAG GCCCGACACTAGGCGCGTACTCCGGGGGGGTCCGCCTCCGTCCCGTGAG TATCGCGGGCGGGAACAGGGCGGGCTGCCGGGGCCGACCGGTGTGGGGC GTGACTCCGACCGACTCGGGCGAGGGCCGCCTAGTCGCGAAGGACGCGC GACCA

[0516] D3. A method comprising detecting the presence or absence of a nucleotide sequence identification tag in a microorganism, wherein the nucleotide sequence is selected from the group consisting of

TABLE-US-00094 (SEQ ID NO: 448) GCGTCCATACCGGACCGTCCATCCGTCCCGGCGGGCTATCGTTAGTCCC CGCGAGCGGATTCCGAGGTGTCGATGACGCGCTCGGTCCCCGCATCTCG GGGTGGCCCGCACCTAGCTTAAGCGGACTACGAAGCGCGGGGCGAGCGG CGACGATCGCGTACTCACACTCGGACCTCGCGGGTCGGCTCGGAGCCCT GGTCA (SEQ ID NO: 449) AGCGGTCAGTGCACGGGACGCGATCGGGCACCCTCGACGCAGCGATGGG CCGTGCGTCGTGTAGTCCGATAGTGCCGGCGTCGCTCGGTAAGCCCCTT ATACCTGCGCGCTGGCGAGAGATGGGTTCGCGAGTCTAGCGCGATCGCT CTAGAGGGTCCAGGAGTACCTACACGGCGCGAGGCGCGGACATCCTAGG GCGCA (SEQ ID NO: 450) CCCCTGCGTTTGCCGAGCGACGAGTCCTACACCCTGTCCGCGCCCGAGC AGGGTCGTCCCCGCGAACCGACGGATGCGCGGCCCGAATCGCCTAGACC CCTACGGGGCGGCTCGCTCGGCCCCGCCTGACCGGTCGATCCCACGAGA CCCCGCCCTATAGGGAGAGCACCGACCCGCCTCCTCGGGCCTTACGGCG TGCGA (SEQ ID NO: 451) GCCAGTGTAGAGATCCGGGGATCCCCAGCGCCTGGAGCTAGGCCCACGG CGTCTGACCGGGTGTACCGGGCCCCCTAGGACGGGTGCGCCCGTAGTCC GTCTGCGAGGGGGCCGTCCGGTCGGGGGCATCCGGCGCTCCGCGGGGAG GCGCTACGTGCCCGACCGGGGGAGTCGAGTCTCTATGCTCGCGACCGCG TGCGA (SEQ ID NO: 452) AAGCGCGCACTACGTCAGGCATAGCGTACTGGGCTTGCGGAGCCACGCG GGCGCGGAGCGGGCCGGTTGAGTGCGGGATAGACGGACCGTACGCATGC CTCAAGTCGACGGTACGGGGGGCAGGGTAGCTGGGATCCGAGGCGGGTA GGCGTCGGCCGCGACTGTGCCCGTACGACGGGAGAACCCCCCGCGCGAG TTGGA (SEQ ID NO: 453) ACGTCGGCAGGCCCGCTCGGTTCCGAGCACCGGATCGACGCTACACGAG GCCCGACACTAGGCGCGTACTCCGGGGGGGTCCGCCTCCGTCCCGTGAG TATCGCGGGCGGGAACAGGGCGGGCTGCCGGGGCCGACCGGTGTGGGGC GTGACTCCGACCGACTCGGGCGAGGGCCGCCTAGTCGCGAAGGACGCGC GACCA

[0517] D4. The method of embodiment D3, wherein the microorganism includes two or more different identification tags.

[0518] D5. The method of embodiment D3, wherein the microorganism includes multiple copies of one or more of the identification tags.

[0519] E1. A composition comprising a nucleic acid comprising (i) heterologous polynucleotides that encode a phosphogluconate dehydratase enzyme and a 2-keto-3-deoxygluconate-6-phosphate aldolase enzyme, (ii) one or more polynucleotides that homologously combine in a gene of a host that encodes a 6-phosphogluconate dehydrogenase (decarboxylating) enzyme, and (iii) a nucleotide sequence identification tag selected from the group consisting

TABLE-US-00095 (SEQ ID NO: 448) GCGTCCATACCGGACCGTCCATCCGTCCCGGCGGGCTATCGTTAGTCCC CGCGAGCGGATTCCGAGGTGTCGATGACGCGCTCGGTCCCCGCATCTCG GGGTGGCCCGCACCTAGCTTAAGCGGACTACGAAGCGCGGGGCGAGCGG CGACGATCGCGTACTCACACTCGGACCTCGCGGGTCGGCTCGGAGCCCT GGTCA (SEQ ID NO: 449) AGCGGTCAGTGCACGGGACGCGATCGGGCACCCTCGACGCAGCGATGGG CCGTGCGTCGTGTAGTCCGATAGTGCCGGCGTCGCTCGGTAAGCCCCTT ATACCTGCGCGCTGGCGAGAGATGGGTTCGCGAGTCTAGCGCGATCGCT CTAGAGGGTCCAGGAGTACCTACACGGCGCGAGGCGCGGACATCCTAGG GCGCA (SEQ ID NO: 450) CCCCTGCGTTTGCCGAGCGACGAGTCCTACACCCTGTCCGCGCCCGAGC AGGGTCGTCCCCGCGAACCGACGGATGCGCGGCCCGAATCGCCTAGACC CCTACGGGGCGGCTCGCTCGGCCCCGCCTGACCGGTCGATCCCACGAGA CCCCGCCCTATAGGGAGAGCACCGACCCGCCTCCTCGGGCCTTACGGCG TGCGA (SEQ ID NO: 451) GCCAGTGTAGAGATCCGGGGATCCCCAGCGCCTGGAGCTAGGCCCACGG CGTCTGACCGGGTGTACCGGGCCCCCTAGGACGGGTGCGCCCGTAGTCC GTCTGCGAGGGGGCCGTCCGGTCGGGGGCATCCGGCGCTCCGCGGGGAG GCGCTACGTGCCCGACCGGGGGAGTCGAGTCTCTATGCTCGCGACCGCG TGCGA (SEQ ID NO: 452) AAGCGCGCACTACGTCAGGCATAGCGTACTGGGCTTGCGGAGCCACGCG GGCGCGGAGCGGGCCGGTTGAGTGCGGGATAGACGGACCGTACGCATGC CTCAAGTCGACGGTACGGGGGGCAGGGTAGCTGGGATCCGAGGCGGGTA GGCGTCGGCCGCGACTGTGCCCGTACGACGGGAGAACCCCCCGCGCGAG TTGGA (SEQ ID NO: 453) ACGTCGGCAGGCCCGCTCGGTTCCGAGCACCGGATCGACGCTACACGAG GCCCGACACTAGGCGCGTACTCCGGGGGGGTCCGCCTCCGTCCCGTGAG TATCGCGGGCGGGAACAGGGCGGGCTGCCGGGGCCGACCGGTGTGGGGC GTGACTCCGACCGACTCGGGCGAGGGCCGCCTAGTCGCGAAGGACGCGC GACCA

[0520] E2. The composition of embodiment E1, wherein the yeast is a Saccharomyces spp. yeast.

[0521] E3. The composition of embodiment E2, wherein the yeast is a Saccharomyces cerevisiae yeast strain.

[0522] E3.1. The composition of any one of embodiments E1 to E3, wherein the polynucleotides encoding the phosphogluconate dehydratase enzyme and the 3-deoxygluconate-6-phosphate aldolase enzyme independently are from an Escherichia spp. microbe or Psuedomonas spp. microbe.

[0523] E4. The composition of embodiment E3, wherein the Escherichia spp. microbe is an Escherichia coli strain.

[0524] E5. The composition of embodiment E3 or E4, wherein the Pseudomonas spp. microbe is a Pseudomonas aeruginosa strain.

[0525] E6. The composition of any one of embodiments E1 to E5, wherein the polynucleotide that encodes the phosphogluconate dehydratase enzyme is an EDD gene.

[0526] E7. The composition of any one of embodiments E1 to E5, wherein the polynucleotide that encodes the 2-keto-3-deoxygluconate-6-phosphate aldolase enzyme is an EDA gene.

[0527] E8. The composition of any one of embodiments E1 to E7, wherein the nucleic acid includes a polynucleotide that encodes a 6-phosphogluconolactonase enzyme.

[0528] E8.1. The composition of embodiment E8, wherein the polynucleotide that encodes the 6-phosphogluconolactonase enzyme is from a yeast.

[0529] E8.2. The composition of embodiment E8.1, wherein the yeast is a Saccharomyces spp. yeast.

[0530] E8.3. The composition of embodiment E8.2, wherein the yeast is a Saccharomyces cerevisiae strain.

[0531] E8.4. The composition of any one of embodiments E8 to E8.3, wherein the 6-phosphogluconolactonase enzyme is expressed from a SOL gene.

[0532] E9. The composition of embodiment E8.4, wherein the SOL gene is a SOL3 gene.

[0533] E10. The composition of any one of embodiments E1 to E9, wherein the nucleic acid includes a polynucleotide that encodes a glucose-6-phosphate dehydrogenase enzyme.

[0534] E11. The composition of embodiment E10, wherein the polynucleotide that encodes the glucose-6-phosphate dehydrogenase enzyme is from a yeast.

[0535] E12. The composition of embodiment E11, wherein the yeast is a Saccharomyces spp. yeast.

[0536] E13. The composition of embodiment E12, wherein the yeast is a Saccharomyces cerevisiae strain.

[0537] E14. The composition of any one of embodiments E10 to E13, wherein the nucleic acid includes a polynucleotide that encode an endogenous glucose-6-phosphate dehydrogenase enzyme.

[0538] E15. The composition of any one of embodiments E10 to E14, wherein the glucose-6-phosphate dehydrogenase enzyme is expressed from a ZWF gene.

[0539] E16. The composition of embodiment E15, wherein the ZWF gene is a ZWF1 gene.

[0540] E17. The composition of any one of embodiments E1 to E16, wherein the nucleic acid includes one or more promoters operable in a yeast, wherein the promoter is in operable connection with one or more of the polynucleotides.

[0541] E18. The composition of embodiment E17, wherein the promoter is selected from promoters that regulate glucose phosphate dehydrogenase (GPD), translation elongation factor (TEF-1), phosphoglucokinase (PGK-1) and triose phosphate dehydrogenase (TDH-1).

[0542] E19. The composition of any one of embodiments E1 to E18, wherein the nucleic acid includes one or more polynucleotides that homologously combine in a gene of a host that encodes a phosphofructokinase (PFK) enzyme, phosphoglucoisomerase (PGI) enzyme, transketolase enzyme, transaldolase enzyme, or combination thereof.

[0543] E20. The composition of embodiment E19, wherein the transketolase enzyme is encoded by a TKL-1 coding sequence or a TKL-2 coding sequence.

[0544] E21. The composition of embodiment E19, wherein the transaldolase is encoded by a TAL-1 coding sequence.

[0545] E22. The composition of embodiment E19, wherein the phosphofructokinase (PFK) enzyme is a PFK-2 enzyme or PFK-1 enzyme.

[0546] E23. The composition of any one of embodiments E1 to E22, wherein the 6-phosphogluconate dehydrogenase (decarboxylating) enzyme is encoded by a GND-1 gene or a GND-2 gene.

[0547] E24. The composition of embodiment E19, wherein the PGI is encoded by a PGI-1 gene.

[0548] E25. The composition of any one of embodiments E1 to E24, wherein the nucleic acid is one or two separate nucleic acid molecules.

[0549] E26. The composition of embodiment E25, wherein each nucleic acid molecule includes one or two or more of the polynucleotide subsequences, one or two or more of the promoters, or one or two or more of the polynucleotide subsequences and one or two or more of the promoters.

[0550] E27. The composition of embodiment E25 or E26, wherein each of the one or two nucleic acid molecules are in circular form.

[0551] E28. The composition of embodiment E25 or E26, wherein each of the one or two nucleic acid molecules are in linear form.

[0552] E29. The composition of any one of embodiments E25 to E28, wherein each of the one or two nucleic acid molecules functions as an expression vector.

[0553] E30. The composition of any one of embodiments E25 to E29, wherein each of the one or two nucleic acid molecules includes flanking sequences for integrating the polynucleotides, the promoter sequences, or the polynucleotides and the promoter sequences in the nucleic acid into genomic DNA of a host organism.

[0554] F1. A composition comprising an engineered yeast that includes (i) an alteration that adds or increases a phosphogluconate dehydratase activity and a 2-keto-3-deoxygluconate-6-phosphate aldolase activity, (ii) an alteration that reduces a 6-phosphogluconate dehydrogenase (decarboxylating) activity, and (iii) a nucleotide sequence identification tag selected from the group consisting of

TABLE-US-00096 (SEQ ID NO: 448) GCGTCCATACCGGACCGTCCATCCGTCCCGGCGGGCTATCGTTAGTCCC CGCGAGCGGATTCCGAGGTGTCGATGACGCGCTCGGTCCCCGCATCTCG GGGTGGCCCGCACCTAGCTTAAGCGGACTACGAAGCGCGGGGCGAGCGG CGACGATCGCGTACTCACACTCGGACCTCGCGGGTCGGCTCGGAGCCCT GGTCA (SEQ ID NO: 449) AGCGGTCAGTGCACGGGACGCGATCGGGCACCCTCGACGCAGCGATGGG CCGTGCGTCGTGTAGTCCGATAGTGCCGGCGTCGCTCGGTAAGCCCCTT ATACCTGCGCGCTGGCGAGAGATGGGTTCGCGAGTCTAGCGCGATCGCT CTAGAGGGTCCAGGAGTACCTACACGGCGCGAGGCGCGGACATCCTAGG GCGCA (SEQ ID NO: 450) CCCCTGCGTTTGCCGAGCGACGAGTCCTACACCCTGTCCGCGCCCGAGC AGGGTCGTCCCCGCGAACCGACGGATGCGCGGCCCGAATCGCCTAGACC CCTACGGGGCGGCTCGCTCGGCCCCGCCTGACCGGTCGATCCCACGAGA CCCCGCCCTATAGGGAGAGCACCGACCCGCCTCCTCGGGCCTTACGGCG TGCGA (SEQ ID NO: 451) GCCAGTGTAGAGATCCGGGGATCCCCAGCGCCTGGAGCTAGGCCCACGG CGTCTGACCGGGTGTACCGGGCCCCCTAGGACGGGTGCGCCCGTAGTCC GTCTGCGAGGGGGCCGTCCGGTCGGGGGCATCCGGCGCTCCGCGGGGAG GCGCTACGTGCCCGACCGGGGGAGTCGAGTCTCTATGCTCGCGACCGCG TGCGA (SEQ ID NO: 452) AAGCGCGCACTACGTCAGGCATAGCGTACTGGGCTTGCGGAGCCACGCG GGCGCGGAGCGGGCCGGTTGAGTGCGGGATAGACGGACCGTACGCATGC CTCAAGTCGACGGTACGGGGGGCAGGGTAGCTGGGATCCGAGGCGGGTA GGCGTCGGCCGCGACTGTGCCCGTACGACGGGAGAACCCCCCGCGCGAG TTGGA (SEQ ID NO: 453) ACGTCGGCAGGCCCGCTCGGTTCCGAGCACCGGATCGACGCTACACGAG GCCCGACACTAGGCGCGTACTCCGGGGGGGTCCGCCTCCGTCCCGTGAG TATCGCGGGCGGGAACAGGGCGGGCTGCCGGGGCCGACCGGTGTGGGGC GTGACTCCGACCGACTCGGGCGAGGGCCGCCTAGTCGCGAAGGACGCGC GACCA

[0555] F2. The composition of embodiment F1, wherein the yeast is a Saccharomyces spp. yeast.

[0556] F3. The composition of embodiment F2, wherein the yeast is a Saccharomyces cerevisiae yeast strain.

[0557] F4. The composition of any one of embodiments F1 to F3, wherein the yeast includes an altered gene that encodes a 6-phosphogluconate dehydrogenase (decarboxylating) enzyme.

[0558] F4.1. The composition of any one of embodiments F1 to F4 where the yeast includes heterologous polynucleotides, or multiple copies of endogenous polynucleotides, that encode a phosphogluconate dehydratase enzyme and a 2-keto-3-deoxygluconate-6-phosphate aldolase enzyme.

[0559] F5. The composition of embodiment F4, wherein the polynucleotides encoding the phosphogluconate dehydratase enzyme and the 3-deoxygluconate-6-phosphate aldolase enzyme independently are from an Escherichia spp. microbe or Psuedomonas spp. microbe.

[0560] F6. The composition of embodiment F5, wherein the Escherichia spp. microbe is an Escherichia coli strain.

[0561] F7. The composition of embodiment F5, wherein the Pseudomonas spp. microbe is a Pseudomonas aeruginosa strain.

[0562] F8. The composition of any one of embodiments F4 to F7, wherein the polynucleotide that encodes the phosphogluconate dehydratase enzyme is an EDD gene.

[0563] F9. The composition of any one of embodiments F4 to F7, wherein the polynucleotide that encodes the 2-keto-3-deoxygluconate-6-phosphate aldolase enzyme is an EDA gene.

[0564] F10. The composition of any one of embodiments F1 to F11, wherein a glucose-6-phosphate dehydrogenase activity is added or increased.

[0565] F10.1. The composition of embodiment F10, wherein the yeast comprises a heterologous polynucleotide that encodes a 6-phosphogluconolactonase enzyme, or wherein the yeast comprises multiple copies of an endogenous polynucleotide that encodes a 6-phosphogluconolactonase enzyme.

[0566] F10.2. The composition of embodiment F10.1, wherein the polynucleotide that encodes the 6-phosphogluconolactonase enzyme is from a yeast.

[0567] F10.3. The composition of embodiment F10.2, wherein the yeast is a Saccharomyces spp. yeast.

[0568] F10.4. The composition of embodiment F10.3, wherein the yeast is a Saccharomyces cerevisiae strain.

[0569] F10.5. The composition of any one of embodiments F10 to F10.4, wherein the 6-phosphogluconolactonase enzyme is expressed from a SOL gene.

[0570] F11. The composition of embodiment F10.4, wherein the SOL gene is a SOL3 gene.

[0571] F12. The composition of any one of embodiments F4 to F11, wherein a glucose-6-phosphate dehydrogenase activity is added or increased.

[0572] F13. The composition of embodiment F12, wherein the yeast comprises a heterologous polynucleotide that encodes a glucose-6-phosphate dehydrogenase enzyme, or wherein the yeast comprises multiple copies of an endogenous polynucleotide that encodes a glucose-6-phosphate dehydrogenase enzyme.

[0573] F14. The composition of embodiment F13, wherein the polynucleotide that encodes the glucose-6-phosphate dehydrogenase enzyme is from a yeast.

[0574] F15. The composition of embodiment F14, wherein the yeast is a Faccharomyces spp. yeast.

[0575] F16. The composition of embodiment F15, wherein the yeast is a Faccharomyces cerevisiae strain.

[0576] F17. The composition of any one of embodiments F13 to F17, wherein the glucose-6-phosphate dehydrogenase enzyme is expressed from a ZWF gene.

[0577] F18. The composition of embodiment F17, wherein the ZWF gene is a ZWF1 gene.

[0578] F19. The composition of any one of embodiments F1 to F18, wherein the nucleic acid includes one or more promoters operable in a yeast, wherein the promoter is in operable connection with one or more of the polynucleotides.

[0579] F20. The composition of embodiment F19, wherein the promoter is selected from promoters that regulate glucose phosphate dehydrogenase (GFD), translation elongation factor (TEF-1), phosphoglucokinase (FGK-1) and triose phosphate dehydrogenase (TDH-1).

[0580] F21. The composition of any one of embodiments F1 to F20, wherein the yeast includes a reduction in one or more of the following activities: phosphofructokinase (PFK) activity, phosphoglucoisomerase (PGI) activity, transketolase activity, transaldolase activity, or combination thereof.

[0581] F22. The composition of embodiment F21, wherein the yeast includes an alteration in one or more polynucleotides that inhibits production of one or more enzymes selected from the group consisting of phosphofructokinase (PFK) enzyme, phosphoglucoisomerase (PGI) enzyme, 6-phosphogluconate dehydrogenase (decarboxylating) enzyme, transketolase enzyme, transaldolase enzyme, or combination thereof.

[0582] F23. The composition of embodiment F22, wherein the transketolase enzyme is encoded by a TKL-1 coding sequence or a TKL-2 coding sequence.

[0583] F24. The composition of embodiment F22, wherein the transaldolase is encoded by a TAL-1 coding sequence.

[0584] F25. The composition of embodiment F22, wherein the phosphofructokinase (PFK) enzyme is a PFK-2 enzyme or PFK-1 enzyme.

[0585] F26. The composition of any one of embodiments F4 to F25, wherein the 6-phosphogluconate dehydrogenase (decarboxylating) enzyme is encoded by a GND-1 gene or GND-2 gene.

[0586] F27. The composition of embodiment F22, wherein the PGI is encoded by a PGI-1 gene.

[0587] F28. The composition of any one of embodiments F1 to F27, wherein the polynucleotides, the promoters, or the polynucleotides and the promoters are not integrated in the yeast nucleic acid.

[0588] F29. The composition of embodiment F28, wherein the polynucleotides, the promoters, or the polynucleotides and the promoters are in one or more plasmids.

[0589] F30. The composition of any one of embodiments F1 to F29, wherein the polynucleotide subsequences, the promoters, or the polynucleotide subsequences and the promoters are integrated in genomic DNA of the yeast.

[0590] F31. The composition of embodiment F30, wherein the polynucleotides, the promoters, or the polynucleotides and the promoters are integrated in a transposition integration event, in a homologous recombination integration event, or in a transposition integration event and a homologous recombination integration event.

[0591] F32. The composition of embodiment F31, wherein the transposition integration event includes transposition of an operon comprising two or more of the polynucleotide subsequences, the promoters, or the polynucleotide subsequences and the promoters.

[0592] F33. The composition of embodiment F31, wherein the homologous recombination integration event includes homologous recombination of an operon comprising two or more of the polynucleotide subsequences, the promoters, or the polynucleotide subsequences and the promoters.

[0593] G1. A method, comprising contacting an engineered yeast of any one of embodiments F1 to F33 with a feedstock that contains one or more hexose sugars under conditions in which the microbe synthesizes ethanol.

[0594] G2. The method of embodiment G1, wherein the engineered yeast synthesizes ethanol to about 85% to about 99% of theoretical yield.

[0595] G3. The method of embodiment G1 or G2, comprising recovering ethanol synthesized by the engineered yeast.

[0596] G4. The method of any one of embodiments G1 to G3, wherein the conditions are fermentation conditions.

[0597] The entirety of each patent, patent application, publication and document referenced herein hereby is incorporated by reference. Citation of the above patents, patent applications, publications and documents is not an admission that any of the foregoing is pertinent prior art, nor does it constitute any admission as to the contents or date of these publications or documents.

[0598] Modifications may be made to the foregoing without departing from the basic aspects of the technology. Although the technology has been described in substantial detail with reference to one or more specific embodiments, those of ordinary skill in the art will recognize that changes may be made to the embodiments specifically disclosed in this application, yet these modifications and improvements are within the scope and spirit of the technology.

[0599] The technology illustratively described herein suitably may be practiced in the absence of any element(s) not specifically disclosed herein. Thus, for example, in each instance herein any of the terms "comprising," "consisting essentially of," and "consisting of" may be replaced with either of the other two terms. The terms and expressions which have been employed are used as terms of description and not of limitation, and use of such terms and expressions do not exclude any equivalents of the features shown and described or portions thereof, and various modifications are possible within the scope of the claimed technology. The term "a" or "an" can refer to one of or a plurality of the elements it modifies (e.g., "a reagent" can mean one or more reagents) unless it is contextually clear either one of the elements or more than one of the elements is described. The term "about" as used herein refers to a value within 10% of the underlying parameter (i.e., plus or minus 10%), and use of the term "about" at the beginning of a string of values modifies each of the values (i.e., "about 1, 2 and 3" refers to about 1, about 2 and about 3). For example, a weight of "about 100 grams" can include weights between 90 grams and 110 grams. Further, when a listing of values is described herein (e.g., about 50%, 60%, 70%, 80%, 85% or 86%) the listing includes all intermediate and fractional values thereof (e.g., 54%, 85.4%). Thus, it should be understood that although the present technology has been specifically disclosed by representative embodiments and optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and such modifications and variations are considered within the scope of this technology.

[0600] Certain embodiments of the technology are set forth in the claim(s) that follow(s).

Sequence CWU 1

1

461135DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 1aactgactag taaaaaaatg cgtgatatcg attcc 35236DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 2agtaactcga gctactaggc aacagcagcg cgcttg 36338DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 3aactgactag taaaaaaatg actgatctgc attcaacg 38441DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 4agtaactcga gctactagat accggcacct gcatatattg c 41546DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 5aactgactag taaaaaaatg aaaaactgga aaacaagtgc agaatc 46644DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 6agtaactcga gctactacag cttagcgcct tctacagctt cacg 44749DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 7aactgactag taaaaaaatg aatccacaat tgttacgcgt aacaaatcg 49849DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 8agtaactcga gctactaaaa agtgatacag gttgcgccct gttcggcac 49975DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 9tgcatattcc gttcaatctt ataaagctgc catagatttt tacaccaagt cgttttaaga 60gcttggtgag cgcta 751075DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 10cttgccagtg aatgaccttt ggcattctca tggaaacttc agtttcatag tcgagttcaa 60gagaaaaaaa aagaa 751175DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 11atgactgtta ctactccttt tgtgaatggt acttcttatt gtaccgtcac tgcatattcc 60gttcaatctt ataaa 751275DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 12ttaatcaact ctctttcttc caaccaaatg gtcagcaatg agtctggtag cttgccagtg 60aatgaccttt ggcat 751349DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 13gactaactga actagtaaaa aaatgaccaa gccgcgcaca attaatcag 491446DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 14aagtgagtaa ctcgagttat taaccgctgt tgcgaagtgc cgtcgc 461551DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 15atgtctcatc atcatcatca tcataccaag ccgcgcacaa ttaatcagaa c 511652DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 16gactaactga actagtaaaa aaatgtctca tcatcatcat catcatacca ag 521756DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 17atgtctcatc atcatcatca tcatatgacc aagccaagaa ctattaacca aaaccc 561860DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 18gactaactga actagtaaaa aaatgtctca tcatcatcat catcatatga ccaagccaag 601951DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 19aagtgagtaa ctcgagttat taaccggagt ttctcaaagc agtagcgata g 51202679DNAZymomonas mobilis 20actagtaaaa aaatgaccaa gccgcgcaca attaatcaga acccagacct tcgctatttt 60ggtaacctgc tcggtcaggt tattaaggaa caaggcggag agtctttatt caaccagatc 120gagcaaattc gctctgccgc gattagacgc catcggggta ttgttgacag caccgagcta 180agttctcgct tagccgatct cgaccttaat gacatgttct cttttgcaca tgcctttttg 240ctgttttcaa tgctggccaa tttggctgat gatcgtcagg gagatgccct tgatcctgat 300gccaatatgg caagtgccct taaggacata aaagccaaag gcgtcagtca gcaggcgatc 360attgatatga tcgacaaagc ctgcattgtg cctgttctga cagcacatcc gaccgaagtc 420cgtcggaaaa gtatgcttga ccattataat cgcattgcag gtttaatgcg gttaaaagat 480gctggacaaa cggtgaccga agatggtctt ccgatcgaag atgcgttaat ccagcaaatc 540acgatattat ggcagactcg tccgctcatg ctgcaaaagc tgaccgtggc tgatgaaatc 600gaaactgccc tgtctttctt aagagaaact tttctgcctg ttctgcccca gatttatgca 660gaatgggaaa aattgcttgg tagttctatt ccaagcttta tcagacctgg taattggatt 720ggtggtgacc gtgacggtaa ccccaatgtc aatgccgata cgatcatgct gtctttgaag 780cgcagctcgg aaacggtatt gacggattat ctcaaccgtc ttgataaact gctttccaac 840ctttcggtct caaccgatat ggtttcggta tccgatgata ttctacgtct agccgataaa 900agtggtgacg atgctgcgat ccgtgcggat gaaccttatc gtcgtgcctt aaatggtatt 960tatgaccgtt tagccgctac ctatcgtcag atcgccggtc gcaacccttc gcgcccagcc 1020ttgcgttctg cagaagccta taaacggcct caagaattgc tggctgattt gaagaccttg 1080gccgaaggct tgggtaaatt ggcagaaggt agttttaagg cattgatccg ttcggttgaa 1140acctttggtt tccatttggc caccctcgat ctgcgtcaga attcgcaggt tcatgaaaga 1200gttgtcaatg aactgctacg gacagccacc gttgaagccg attatttatc tctatcggaa 1260gaagatcgcg ttaagctgtt aagacgggaa ttgtcgcagc cgcggactct attcgttccg 1320cgcgccgatt attccgaaga aacgcgttct gaacttgata ttattcaggc agcagcccgc 1380gcccatgaaa tttttggccc tgaatccatt acgacttatt tgatttcgaa tggcgaaagc 1440atttccgata ttctggaagt ctatttgctt ttgaaagaag cagggctgta tcaagggggt 1500gctaagccaa aagcggcgat tgaagctgcg cctttattcg agacggtggc cgatcttgaa 1560aatgcgccaa aggtcatgga ggaatggttc aagctgcctg aagcgcaagc cattgcaaag 1620gcacatggcg ttcaggaagt gatggttggc tattctgact ccaataagga cggcggatat 1680ctgacctcgg tttggggtct ttataaggct tgcctcgctt tggtgccgat ttttgagaaa 1740gccggtgtac cgatccagtt tttccatgga cggggtggtt ccgttggtcg cggtggtggt 1800tccaacttta atgccattct gtcgcagcca gccggagccg tcaaagggcg tatccgttat 1860acagaacagg gtgaagtcgt ggcggccaaa tatggcaccc atgaaagcgc tattgcccat 1920ctggatgagg ccgtagcggc gactttgatt acgtctttgg aagcaccgac cattgtcgag 1980ccagagttta gtcgttaccg taaggccttg gatcagatct cagattcagc tttccaggcc 2040tatcgccaat tggtctatgg aacgaagggc ttccgtaaat tctttagtga atttacgcct 2100ttgccggaaa ttgccctgtt aaagatcggg tcacgcccac ctagccgcaa aaaatccgac 2160cggattgaag atctacgcgc tattccttgg gtgtttagct ggtctcaagt tcgagtcatg 2220ttacccggtt ggttcggttt cggtcaggct ttatatgact ttgaagatac cgagctgtta 2280caggaaatgg caagccgttg gccgtttttc cgcacgacta ttcggaatat ggaacaggtg 2340atggcacgtt ccgatatgac gatcgccaag cattatctgg ccttggttga ggatcagaca 2400aatggtgagg ctatctatga ttctatcgcg gatggctgga ataaaggttg tgaaggtctg 2460ttaaaggcaa cccagcagaa ttggctgttg gaacgctttc cggcggttga taattcggtg 2520cagatgcgtc ggccttatct ggaaccgctt aattacttac aggtcgaatt gctgaagaaa 2580tggcggggag gtgataccaa cccgcatatc ctcgaatcta ttcagctgac aatcaatgcc 2640attgcgacgg cacttcgcaa cagcggttaa taactcgag 2679212679DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 21actagtaaaa aaatgaccaa gccaagaact attaaccaaa acccagactt gagatacttc 60ggtaacttgt tgggtcaagt tatcaaggaa caaggtggtg aatctttgtt caaccaaatt 120gaacaaatca gatccgctgc tattagaaga cacagaggta tcgtcgactc taccgaattg 180tcctctagat tggctgactt ggacttgaac gacatgttct ccttcgctca cgctttcttg 240ttgttctcta tgttggctaa cttggctgac gacagacaag gtgacgcttt ggacccagac 300gctaacatgg cttccgcttt gaaggacatt aaggctaagg gtgtttctca acaagctatc 360attgacatga tcgacaaggc ttgtattgtc ccagttttga ctgctcaccc aaccgaagtc 420agaagaaagt ccatgttgga ccactacaac agaatcgctg gtttgatgag attgaaggac 480gctggtcaaa ctgttaccga agacggtttg ccaattgaag acgctttgat ccaacaaatt 540actatcttgt ggcaaaccag accattgatg ttgcaaaagt tgactgtcgc tgacgaaatt 600gaaaccgctt tgtctttctt gagagaaact ttcttgccag ttttgccaca aatctacgct 660gaatgggaaa agttgttggg ttcctctatt ccatccttca tcagaccagg taactggatt 720ggtggtgaca gagacggtaa cccaaacgtc aacgctgaca ccatcatgtt gtctttgaag 780agatcctctg aaactgtttt gaccgactac ttgaacagat tggacaagtt gttgtccaac 840ttgtctgtct ccactgacat ggtttctgtc tccgacgaca ttttgagatt ggctgacaag 900tctggtgacg acgctgctat cagagctgac gaaccataca gaagagcttt gaacggtatt 960tacgacagat tggctgctac ctacagacaa atcgctggta gaaacccatc cagaccagct 1020ttgagatctg ctgaagctta caagagacca caagaattgt tggctgactt gaagactttg 1080gctgaaggtt tgggtaagtt ggctgaaggt tccttcaagg ctttgattag atctgttgaa 1140accttcggtt tccacttggc tactttggac ttgagacaaa actcccaagt ccacgaaaga 1200gttgtcaacg aattgttgag aaccgctact gttgaagctg actacttgtc tttgtccgaa 1260gaagacagag tcaagttgtt gagaagagaa ttgtctcaac caagaacctt gttcgttcca 1320agagctgact actccgaaga aactagatct gaattggaca tcattcaagc tgctgctaga 1380gctcacgaaa tcttcggtcc agaatccatt accacttact tgatctctaa cggtgaatcc 1440atttctgaca tcttggaagt ctacttgttg ttgaaggaag ctggtttgta ccaaggtggt 1500gctaagccaa aggctgctat tgaagctgct ccattgttcg aaaccgttgc tgacttggaa 1560aacgctccaa aggtcatgga agaatggttc aagttgccag aagctcaagc tatcgctaag 1620gctcacggtg ttcaagaagt catggttggt tactccgact ctaacaagga cggtggttac 1680ttgacttccg tctggggttt gtacaaggct tgtttggctt tggttccaat tttcgaaaag 1740gctggtgtcc caatccaatt cttccacggt agaggtggtt ctgttggtag aggtggtggt 1800tccaacttca acgctatttt gtctcaacca gctggtgctg tcaagggtag aatcagatac 1860accgaacaag gtgaagttgt cgctgctaag tacggtactc acgaatccgc tattgctcac 1920ttggacgaag ctgttgctgc taccttgatc acttctttgg aagctccaac cattgtcgaa 1980ccagaattct ccagatacag aaaggctttg gaccaaatct ctgactccgc tttccaagct 2040tacagacaat tggtttacgg tactaagggt ttcagaaagt tcttctctga attcacccca 2100ttgccagaaa ttgctttgtt gaagatcggt tccagaccac catctagaaa gaagtccgac 2160agaattgaag acttgagagc tatcccatgg gtcttctctt ggtcccaagt tagagtcatg 2220ttgccaggtt ggttcggttt cggtcaagct ttgtacgact tcgaagacac tgaattgttg 2280caagaaatgg cttctagatg gccattcttc agaaccacta ttagaaacat ggaacaagtt 2340atggctagat ccgacatgac catcgctaag cactacttgg ctttggtcga agaccaaact 2400aacggtgaag ctatttacga ctctatcgct gacggttgga acaagggttg tgaaggtttg 2460ttgaaggcta cccaacaaaa ctggttgttg gaaagattcc cagctgttga caactccgtc 2520caaatgagaa gaccatactt ggaaccattg aactacttgc aagttgaatt gttgaagaag 2580tggagaggtg gtgacactaa cccacacatt ttggaatcta tccaattgac cattaacgct 2640atcgctactg ctttgagaaa ctccggttaa taactcgag 2679221317DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 22atggaatttt tcagcaatat cggtaaaatt cagtatcagg gaccaaaaag tactgatcct 60ctctcattta agtactataa ccctgaagaa gtcatcaacg gaaagacaat gcgcgagcat 120ctgaagttcg ctctttcatg gtggcacaca atgggcggcg acggaacaga tatgttcggc 180tgcggcacaa cagacaagac ctggggacag tccgatcccg ctgcaagagc aaaggctaag 240gttgacgcag cattcgagat catggataag ctctccattg actactattg tttccacgat 300cgcgatcttt ctcccgagta tggcagcctc aaggctacca acgatcagct tgacatagtt 360acagactata tcaaggagaa gcagggcgac aagttcaagt gcctctgggg tacagcaaag 420tgcttcgatc atccaagatt catgcacggt gcaggtacat ctccttctgc tgatgtattc 480gctttctcag ctgctcagat caagaaggct ctggagtcaa cagtaaagct cggcggtaac 540ggttacgttt tctggggcgg acgtgaaggc tatgagacac ttcttaatac aaatatggga 600ctcgaactcg acaatatggc tcgtcttatg aagatggctg ttgagtatgg acgttcgatc 660ggcttcaagg gcgacttcta tatcgagccc aagcccaagg agcccacaaa gcatcagtac 720gatttcgata cagctactgt tctgggattc ctcagaaagt acggtctcga taaggatttc 780aagatgaata tcgaagctaa ccacgctaca cttgctcagc atacattcca gcatgagctc 840cgtgttgcaa gagacaatgg tgtgttcggt tctatcgacg caaaccaggg cgacgttctt 900cttggatggg atacagacca gttccccaca aatatctacg atacaacaat gtgtatgtat 960gaagttatca aggcaggcgg cttcacaaac ggcggtctca acttcgacgc taaggcacgc 1020agagggagct tcactcccga ggatatcttc tacagctata tcgcaggtat ggatgcattt 1080gctctgggct tcagagctgc tctcaagctt atcgaagacg gacgtatcga caagttcgtt 1140gctgacagat acgcttcatg gaataccggt atcggtgcag acataatcgc aggtaaggca 1200gatttcgcat ctcttgaaaa gtatgctctt gaaaagggcg aggttacagc ttcactctca 1260agcggcagac aggaaatgct ggagtctatc gtaaataacg ttcttttcag tctgtaa 1317231314DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 23atggagttct tttctaatat aggtaaaatt cagtatcaag gtccaaaatc tacagatcca 60ttgtctttta aatattataa tccagaagaa gttataaatg gtaaaactat gagagaacat 120ttaaaatttg ctttgtcttg gtggcatact atgggtggtg atggtactga tatgttcggt 180tgtggtacta ctgataaaac ttggggtcaa tctgatccag ctgctagagc aaaagccaaa 240gtagatgcag cctttgaaat tatggataaa ttgtctattg attattattg ttttcatgat 300agagatttgt ctcctgaata tggttcttta aaagcaacta atgatcaatt ggacattgtt 360acggattata ttaaagaaaa acaaggtgat aaatttaaat gtttgtgggg cactgcgaaa 420tgttttgatc atccacgttt tatgcatggt gcggggacga gtccttctgc tgatgttttt 480gctttttctg ccgctcaaat taagaaggca ttggaatcaa ctgttaaatt aggtgggaac 540gggtatgtat tctggggagg aagggaaggt tatgaaacat tattaaacac taatatgggt 600ttggaattgg ataatatggc tagattgatg aaaatggctg tagaatacgg aaggtctatt 660ggttttaagg gtgactttta tattgaacca aaacctaaag agcctactaa acatcaatat 720gattttgata ctgctacagt tttgggattc ttgagaaaat atggtctgga taaagatttt 780aaaatgaata tagaagctaa tcatgcaaca ctcgcacaac atacttttca acatgaattg 840agagttgcca gagataacgg agtttttgga tctatcgatg caaaccaggg agacgttttg 900ctaggatggg atactgatca atttccaact aacatttatg atactactat gtgtatgtat 960gaagtaatta aggcaggagg ctttactaat ggcggattaa actttgatgc gaaggctagg 1020cgtggtagtt tcactccaga ggatatattc tattcttata ttgctggaat ggatgctttc 1080gcgttaggtt tcagggcagc actaaaattg attgaagatg gtagaattga taagtttgta 1140gctgatagat atgcttcttg gaatactgga ataggagcag atataatcgc tgggaaagcc 1200gacttcgcca gtctggaaaa atatgcgctt gaaaaaggag aagttactgc cagcttaagt 1260tccggtcgtc aagaaatgtt ggaatctatt gtaaacaatg ttttattttc tctg 1314241314DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 24atggctaagg aatatttccc acaaattcaa aagattaagt tcgaaggtaa ggattctaag 60aatccattag ccttccacta ctacgatgct gaaaaggaag tcatgggtaa gaaaatgaag 120gattggttac gtttcgccat ggcctggtgg cacactcttt gcgccgaagg tgctgaccaa 180ttcggtggag gtacaaagtc tttcccatgg aacgaaggta ctgatgctat tgaaattgcc 240aagcaaaagg ttgatgctgg tttcgaaatc atgcaaaagc ttggtattcc atactactgt 300ttccacgatg ttgatcttgt ttccgaaggt aactctattg aagaatacga atccaacctt 360aaggctgtcg ttgcttacct caaggaaaag caaaaggaaa ccggtattaa gcttctctgg 420agtactgcta acgtcttcgg tcacaagcgt tacatgaacg gtgcctccac taacccagac 480tttgatgttg tcgcccgtgc tattgttcaa attaagaacg ccatagacgc cggtattgaa 540cttggtgctg aaaactacgt cttctggggt ggtcgtgaag gttacatgag tctccttaac 600actgaccaaa agcgtgaaaa ggaacacatg gccactatgc ttaccatggc tcgtgactac 660gctcgttcca agggattcaa gggtactttc ctcattgaac caaagccaat ggaaccaacc 720aagcaccaat acgatgttga cactgaaacc gctattggtt tccttaaggc ccacaactta 780gacaaggact tcaaggtcaa cattgaagtt aaccacgcta ctcttgctgg tcacactttc 840gaacacgaac ttgcctgtgc tgttgatgct ggtatgctcg gttccattga tgctaaccgt 900ggtgactacc aaaacggttg ggatactgat caattcccaa ttgatcaata cgaactcgtc 960caagcttgga tggaaatcat ccgtggtggt ggtttcgtta ctggtggtac caacttcgat 1020gccaagactc gtcgtaactc tactgacctc gaagacatca tcattgccca cgtttctggt 1080atggatgcta tggctcgtgc tcttgaaaac gctgccaagc tcctccaaga atctccatac 1140accaagatga agaaggaacg ttacgcttcc ttcgacagtg gtattggtaa ggactttgaa 1200gatggtaagc tcaccctcga acaagtttac gaatacggta agaagaacgg tgaaccaaag 1260caaacttctg gtaagcaaga actctacgaa gctattgttg ccatgtacca ataa 1314251314DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 25atggctaaag aatattttcc acaaattcag aaaattaaat ttgaaggtaa agattctaaa 60aatccattgg ctttccatta ttatgatgct gaaaaagaag ttatgggtaa aaagatgaaa 120gattggttga gattcgctat ggcttggtgg catactctat gtgctgaagg agctgatcaa 180tttggaggag gtactaaatc ttttccttgg aatgaaggta ctgacgctat tgaaattgct 240aagcagaaag tagacgcggg ttttgaaatt atgcaaaaat tgggaatacc atattattgt 300tttcatgatg ttgatttggt atctgagggt aattctattg aagaatatga atctaattta 360aaagctgttg ttgcttactt aaaagaaaaa caaaaagaaa ctggaattaa attgttgtgg 420tctacagcta atgttttcgg tcataaaaga tatatgaatg gtgcttctac aaatccagat 480tttgatgttg tagctagagc tattgttcaa attaaaaatg ctatagatgc aggaattgaa 540ttaggtgccg aaaattatgt tttctgggga ggtagagaag gttatatgtc tttgttaaat 600actgatcaaa aacgtgaaaa ggaacacatg gcaactatgt tgacaatggc tagggattat 660gctagatcta aaggttttaa aggtactttc ttgattgagc caaaacctat ggaaccaact 720aaacatcaat atgacgttga cactgaaact gctattggtt tcttaaaagc tcataatttg 780gataaagatt ttaaggttaa tatagaagtt aatcatgcta cactagctgg tcatactttt 840gaacatgaat tagcttgtgc agttgatgcc ggtatgttag gttctatcga cgcaaataga 900ggtgattatc aaaatggttg ggacacagat caatttccaa tagatcaata tgaattggtt 960caagcatgga tggaaattat taggggtgga ggcttcgtta caggtggaac taattttgat 1020gctaaaacta ggagaaattc tacagatctt gaagatataa ttattgctca tgtatctggt 1080atggatgcga tggcccgtgc tttggaaaat gcagctaaat tacttcaaga atctccttat 1140actaaaatga aaaaggaaag atatgcttct tttgattctg gaataggtaa ggattttgaa 1200gatggtaaat tgacattgga acaagtttat gaatatggta agaagaatgg agaaccaaaa 1260caaacttctg gtaaacaaga attatatgag gctatagtag ctatgtatca ataa 13142644DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 26acttgactac tagtatggag ttcttttcta atataggtaa aatt 442744DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 27agtcaagtct cgagcagaga aaataaaaca ttgtttacaa taga 442859DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 28agtcaagtct cgagctaatg atgatgatga tgatgcagag aaaataaaac attgtttac 59299PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 29Asp Tyr Lys Asp Asp Asp Asp Lys Gly1 53014PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 30Gly Lys Pro Ile Pro Asn Pro Leu Leu Gly Leu Asp Ser Thr1 5 103110PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 31Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu1 5 103211PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 32Gln Pro Glu Leu Ala Pro Glu Asp Pro Glu Asp1 5 10339PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 33Tyr Pro Tyr Asp Val Pro Asp Tyr Ala1

53411PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 34Tyr Thr Asp Ile Glu Met Asn Arg Leu Gly Lys1 5 10356PRTArtificial SequenceDescription of Artificial Sequence Synthetic 6xHis tag 35His His His His His His1 5367PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 36Cys Cys Xaa Xaa Xaa Cys Cys1 5376PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 37Cys Cys Pro Gly Cys Cys1 5386PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 38Leu Val Pro Arg Gly Ser1 5395PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 39Asp Asp Asp Asp Lys1 5407PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 40Glu Asn Leu Tyr Phe Gln Gly1 5418PRTArtificial SequenceDescription of Artificial Sequence Synthetic peptide 41Leu Glu Val Leu Phe Gln Gly Pro1 542627DNAZymomonas mobilis 42atgagagaca ttgattctgt tatgagattg gctccagtta tgccagtctt ggttatagaa 60gatatagctg atgctaagcc aattgctgag gctttggttg ctggtggttt aaatgttttg 120gaagttacat tgagaactcc atgtgctttg gaagctatta aaattatgaa ggaagttcca 180ggtgctgttg ttggtgctgg tactgtttta aacgctaaaa tgttggatca agctcaagaa 240gctggttgtg agttctttgt atcaccaggt ttgactgctg atttgggaaa acatgctgtt 300gctcaaaaag cggctcttct accaggggtt gctaatgctg ctgatgttat gttgggattg 360gatttgggtt tggatagatt taaattcttc ccagctgaaa atataggtgg tttgccagct 420ttaaaatcta tggcttctgt ttttagacaa gttagatttt gtccaactgg aggaattact 480ccgacttctg ctccaaaata tttggaaaat ccatctattt tgtgtgttgg tggttcttgg 540gttgttccag cgggtaaacc agatgttgcg aaaattactg ctttggctaa agaggcttca 600gcttttaaaa gagctgctgt ggcgtag 627431824DNAZymomonas mobilis 43atgacggatt tgcattcaac tgttgagaaa gtaactgcta gagtaattga aagatcaagg 60gaaactagaa aggcttattt ggatttgata caatatgaga gggaaaaagg tgttgataga 120ccaaatttgt cttgttctaa tttggctcat ggttttgctg ctatgaatgg tgataaacca 180gctttgagag attttaatag aatgaatata ggtgtagtta cttcttataa tgatatgttg 240tctgctcatg aaccatatta tagatatcca gaacaaatga aggtttttgc tcgtgaagtt 300ggtgctacag ttcaagttgc tggtggtgtt cctgcaatgt gtgatggtgt tactcaaggt 360caaccaggta tggaagaatc tttgttttcc agagatgtaa ttgctttggc tacatctgtt 420tcattgtctc acggaatgtt tgaaggtgct gcattgttgg gaatttgtga taaaattgtt 480ccaggtttgt tgatgggtgc tttgaggttc ggtcatttgc caactatttt ggttccatct 540ggtccaatga ctactggaat cccaaataaa gaaaagatta gaattagaca attgtatgct 600caaggaaaaa ttggtcaaaa ggaattgttg gatatggaag ctgcctgtta tcatgctgaa 660ggtacttgta ctttttatgg tactgctaac actaatcaga tggttatgga agttttgggt 720ttgcacatgc caggtagtgc attcgttact ccaggtactc cactgagaca ggctttgact 780agagctgctg ttcatagagt tgcagagttg ggttggaaag gtgatgatta tagacctttg 840ggtaaaatta ttgatgagaa atctattgtt aatgctattg ttggtttgtt agctacaggt 900ggttctacaa atcatacaat gcatattccg gccatagcta gagcagcagg ggttatagtt 960aattggaatg attttcatga tttgtctgaa gttgttccat tgattgctag aatttatcca 1020aatggtccta gagatataaa tgaatttcaa aatgcaggag gaatggctta tgtaattaaa 1080gaattgttga gtgcgaattt gttaaataga gatgttacta ctattgctaa aggagggata 1140gaagaatatg ctaaagctcc agctctgaac gatgcgggtg aattggtgtg gaaaccggct 1200ggcgaacctg gggacgacac aattttgaga ccagtatcta atccatttgc taaagatggt 1260ggtttgcgtc tcttggaagg taatttgggt agagcaatgt ataaggcttc tgctgtagat 1320ccaaaattct ggactattga agctcccgtt agagttttct ctgatcaaga tgatgttcaa 1380aaggctttta aagcaggcga gttaaataaa gatgttatag ttgttgttag atttcaaggt 1440cctcgtgcta atggtatgcc tgaattgcat aagttgactc ctgcgctagg cgtattgcaa 1500gataatggtt ataaggttgc tttagttact gatggtagaa tgtctggtgc aactggtaaa 1560gtaccggtgg ctctgcatgt ttcaccagag gctttaggag gtggggcgat tggcaagttg 1620agagatggcg atatagttag aatttctgtt gaagaaggta aattagaggc tcttgtcccc 1680gccgacgagt ggaatgctag accacatgct gagaagcccg cttttagacc tggtactggg 1740agagaattgt ttgacatttt tagacaaaac gctgctaagg ctgaggatgg tgcagttgca 1800atttatgctg gggcagggat ctag 182444627DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 44atgagggata ttgatagtgt gatgaggtta gcccctgtta tgcctgttct cgttattgaa 60gatattgcag atgccaaacc tattgccgaa gcactcgttg caggtggtct aaacgttcta 120gaagtgacac taaggactcc ttgtgcacta gaagctatta agattatgaa ggaagttcct 180ggtgctgttg ttggtgctgg tacagttcta aacgccaaaa tgctcgacca ggcacaagaa 240gcaggttgcg aatttttcgt ttcacctggt ctaactgccg acctcggaaa gcacgcagtt 300gctcaaaaag ccgcattact acccggtgtt gcaaatgcag cagatgtgat gctaggtcta 360gacctaggtc tagataggtt caagttcttc cctgccgaaa acattggtgg tctacctgct 420ctaaagagta tggcatcagt tttcaggcaa gttaggttct gccctactgg aggtataact 480cctacaagtg cacctaaata tctagaaaac cctagtattc tatgcgttgg tggttcatgg 540gttgttcctg ccggaaaacc cgatgttgcc aaaattacag ccctcgcaaa agaagcaagt 600gcattcaaga gggcagcagt tgcttag 627451824DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 45atgacggatc tacatagtac agtggagaag gttactgcca gggttattga aaggagtagg 60gaaactagga aggcatatct agatttaatt caatatgaga gggaaaaagg agtggacagg 120cccaacctaa gttgtagcaa cctagcacat ggattcgccg caatgaatgg tgacaagccc 180gcattaaggg acttcaacag gatgaatatt ggagttgtga cgagttacaa cgatatgtta 240agtgcacatg aaccctatta taggtatcct gagcaaatga aggtgtttgc aagggaagtt 300ggagccacag ttcaagttgc tggtggagtg cctgcaatgt gcgatggtgt gactcagggt 360caacctggaa tggaagaatc cctattttca agggatgtta ttgcattagc aacttcagtt 420tcattatcac atggtatgtt tgaaggggca gctctactcg gtatatgtga caagattgtt 480cctggtctac taatgggagc actaaggttt ggtcacctac ctactattct agttcccagt 540ggacctatga caacgggtat acctaacaaa gaaaaaatta ggattaggca actctatgca 600caaggtaaaa ttggacaaaa agaactacta gatatggaag ccgcatgcta ccatgcagaa 660ggtacttgca ctttctatgg tacagccaac actaaccaga tggttatgga agttctcggt 720ctacatatgc ccggtagtgc ctttgttact cctggtactc ctctcaggca agcactaact 780agggcagcag tgcatagggt tgcagaatta ggttggaagg gagacgatta taggcctcta 840ggtaaaatta ttgacgaaaa aagtattgtt aatgcaattg ttggtctatt agccactggt 900ggtagtacta accatacgat gcatattcct gctattgcaa gggcagcagg tgttattgtt 960aactggaatg acttccatga tctatcagaa gttgttcctt taattgctag gatttaccct 1020aatggaccta gggacattaa cgaatttcaa aatgccggag gaatggcata tgttattaag 1080gaactactat cagcaaatct actaaacagg gatgttacaa ctattgctaa gggaggtata 1140gaagaatacg ctaaggcacc tgccctaaat gatgcaggag aattagtttg gaagcccgca 1200ggagaacctg gtgatgacac tattctaagg cctgtttcaa atcctttcgc caaagatgga 1260ggtctaaggc tcttagaagg taacctagga agggccatgt acaaggctag cgccgttgat 1320cctaaattct ggactattga agcccctgtt agggttttct cagaccagga cgatgttcaa 1380aaagccttca aggcaggaga actaaacaaa gacgttattg ttgttgttag gttccaagga 1440cctagggcca acggtatgcc tgaattacat aagctaactc ctgcattagg tgttctacaa 1500gataatggat acaaagttgc attagtgacg gatggtagga tgagtggtgc aactggtaaa 1560gttcctgttg cattacatgt ttcacccgaa gcactaggag gtggtgctat tggtaaactt 1620agggatggag atattgttag gattagtgtt gaagaaggaa aacttgaagc actcgttccc 1680gcagatgagt ggaatgcaag gcctcatgca gaaaaacctg cattcaggcc tgggactggg 1740agggaattat ttgatatttt caggcaaaat gcagcaaaag cagaagacgg tgccgttgcc 1800atctatgccg gtgctggtat atag 18244639DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 46actagtatgg ctaaggaata tttcccacaa attcaaaag 394733DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 47ctcgagctac tattggtaca tggcaacaat agc 334855DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 48ctcgagctac taatgatgat gatgatgatg ttggtacatg gcaacaatag cttcg 554936DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 49actagtatgg ctaaagaata ttttccacaa attcag 365033DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 50ctcgagttat tgatacatag ctactatagc ctc 335160DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 51ctcgagttaa tgatgatgat gatgatgttg atacatagct actatagcct cattgtttac 605251DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 52aatcgatcaa agcttctaaa tacaagacgt gcgatgacga ctatactgga c 515354DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 53taccgtacta cccgggtata tagtcttttt gccctggtgt tccttaataa tttc 545450DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 54tgctaatgac ccgggaattc cacttgcaat tacataaaaa attccggcgg 505549DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 55atgatcattg agctcagctt cgcaagtatt cattttagac ccatggtgg 495648DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 56tgctaatgag agctctcatt ttttggtgcg atatgttttt ggttgatg 485748DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 57aatgatcatg agctcgtcaa caagaactaa aaaattgttc aaaaatgc 485834DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 58ctaaatacaa gacgtgcgat gacgactata ctgg 345940DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 59gtcaacaaga actaaaaaat tgttcaaaaa tgcaattgtc 406012DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 60tcrnnnnnna cg 126117DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 61cggnnnnnnn nnnnccg 176213DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 62gaannttcnn gaa 136345DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 63aactgaactg actagtaaaa aaatgcaccc tcgtgtgctc gaagt 456442DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 64agtaaagtaa aagcttctac tagcgccagc cgttgaggct ct 426559DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 65agtaaagtaa aagcttctac taatgatgat gatgatgatg gcgccagccg ttgaggctc 596646DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 66aactgaactg actagtaaaa aaatgcacaa ccttgaacag aagacc 466743DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 67agtaaagtaa ctcgagctat tagtgtctgc ggtgctcggc gaa 436859DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 68taaagtaact cgagctacta atgatgatga tgatgatggt gtctgcggtg ctcggcgaa 59691830DNAPseudomonas aeruginosa 69atgcaccctc gtgtgctcga agtcacccgc cgcatccagg cccgtagcgc ggccactcgc 60cagcgctacc tcgagatggt ccgggctgcg gccagcaagg ggccgcaccg cggcaccctg 120ccgtgcggca acctcgccca cggggtcgcg gcctgtggcg aaagcgacaa gcagaccctg 180cggctgatga accaggccaa cgtggccatc gtttccgcct acaacgacat gctctcggcg 240caccagccgt tcgagcgctt tccggggctg atcaagcagg cgctgcacga gatcggttcg 300gtcggccagt tcgccggcgg cgtgccggcc atgtgcgacg gggtgaccca gggcgagccg 360ggcatggaac tgtcgctggc cagccgcgac gtgatcgcca tgtccaccgc catcgcgctg 420tctcacaaca tgttcgatgc agcgctgtgc ctgggtgttt gcgacaagat cgtgccgggc 480ctgctgatcg gctcgctgcg cttcggccac ctgcccaccg tgttcgtccc ggccgggccg 540atgccgaccg gcatctccaa caaggaaaag gccgcggtgc gccaactgtt cgccgaaggc 600aaggccactc gcgaagagct gctggcctcg gaaatggcct cctaccatgc acccggcacc 660tgcaccttct atggcaccgc caataccaac cagttgctgg tggaggtgat gggcctgcac 720ttgcccggtg cctccttcgt caacccgaac acccccctgc gcgacgaact cacccgcgaa 780gcggcacgcc aggccagccg gctgaccccc gagaacggca actacgtgcc gatggcggag 840atcgtcgacg agaaggccat cgtcaactcg gtggtggcgc tgctcgccac cggcggctcg 900accaaccaca ccctgcacct gctggcgatc gcccaggcgg cgggcatcca gttgacctgg 960caggacatgt ccgagctgtc ccatgtggtg ccgaccctgg cgcgcatcta tccgaacggc 1020caggccgaca tcaaccactt ccaggcggcc ggcggcatgt ccttcctgat ccgccaactg 1080ctcgacggcg ggctgcttca cgaggacgta cagaccgtcg ccggccccgg cctgcgccgc 1140tacacccgcg agccgttcct cgaggatggc cggctggtct ggcgcgaagg gccggaacgg 1200agtctcgacg aagccatcct gcgtccgctg gacaagccgt tctccgccga aggcggcttg 1260cgcctgatgg agggcaacct cggtcgcggc gtgatgaagg tctcggcggt ggcgccggaa 1320caccaggtgg tcgaggcgcc ggtacggatc ttccacgacc aggccagcct ggccgcggcc 1380ttcaaggccg gcgagctgga gcgcgacctg gtcgccgtgg tgcgtttcca gggcccgcgg 1440gcgaacggca tgccggagct gcacaagctc acgccgttcc tcggggtcct gcaggatcgt 1500ggcttcaagg tggcgctggt caccgacggg cgcatgtccg gggcgtcggg caaggtgccc 1560gcggccatcc atgtgagtcc ggaagccatc gccggcggtc cgctggcgcg cctgcgcgac 1620ggcgaccggg tgcgggtgga tggggtgaac ggcgagttgc gggtgctggt cgacgacgcc 1680gaatggcagg cgcgcagcct ggagccggcg ccgcaggacg gcaatctcgg ttgcggccgc 1740gagctgttcg ccttcatgcg caacgccatg agcagcgcgg aagagggcgc ctgcagcttt 1800accgagagcc tcaacggctg gcgctagtag 183070608PRTPseudomonas aeruginosa 70Met His Pro Arg Val Leu Glu Val Thr Arg Arg Ile Gln Ala Arg Ser1 5 10 15Ala Ala Thr Arg Gln Arg Tyr Leu Glu Met Val Arg Ala Ala Ala Ser 20 25 30Lys Gly Pro His Arg Gly Thr Leu Pro Cys Gly Asn Leu Ala His Gly 35 40 45Val Ala Ala Cys Gly Glu Ser Asp Lys Gln Thr Leu Arg Leu Met Asn 50 55 60Gln Ala Asn Val Ala Ile Val Ser Ala Tyr Asn Asp Met Leu Ser Ala65 70 75 80His Gln Pro Phe Glu Arg Phe Pro Gly Leu Ile Lys Gln Ala Leu His 85 90 95Glu Ile Gly Ser Val Gly Gln Phe Ala Gly Gly Val Pro Ala Met Cys 100 105 110Asp Gly Val Thr Gln Gly Glu Pro Gly Met Glu Leu Ser Leu Ala Ser 115 120 125Arg Asp Val Ile Ala Met Ser Thr Ala Ile Ala Leu Ser His Asn Met 130 135 140Phe Asp Ala Ala Leu Cys Leu Gly Val Cys Asp Lys Ile Val Pro Gly145 150 155 160Leu Leu Ile Gly Ser Leu Arg Phe Gly His Leu Pro Thr Val Phe Val 165 170 175Pro Ala Gly Pro Met Pro Thr Gly Ile Ser Asn Lys Glu Lys Ala Ala 180 185 190Val Arg Gln Leu Phe Ala Glu Gly Lys Ala Thr Arg Glu Glu Leu Leu 195 200 205Ala Ser Glu Met Ala Ser Tyr His Ala Pro Gly Thr Cys Thr Phe Tyr 210 215 220Gly Thr Ala Asn Thr Asn Gln Leu Leu Val Glu Val Met Gly Leu His225 230 235 240Leu Pro Gly Ala Ser Phe Val Asn Pro Asn Thr Pro Leu Arg Asp Glu 245 250 255Leu Thr Arg Glu Ala Ala Arg Gln Ala Ser Arg Leu Thr Pro Glu Asn 260 265 270Gly Asn Tyr Val Pro Met Ala Glu Ile Val Asp Glu Lys Ala Ile Val 275 280 285Asn Ser Val Val Ala Leu Leu Ala Thr Gly Gly Ser Thr Asn His Thr 290 295 300Leu His Leu Leu Ala Ile Ala Gln Ala Ala Gly Ile Gln Leu Thr Trp305 310 315 320Gln Asp Met Ser Glu Leu Ser His Val Val Pro Thr Leu Ala Arg Ile 325 330 335Tyr Pro Asn Gly Gln Ala Asp Ile Asn His Phe Gln Ala Ala Gly Gly 340 345 350Met Ser Phe Leu Ile Arg Gln Leu Leu Asp Gly Gly Leu Leu His Glu 355 360 365Asp Val Gln Thr Val Ala Gly Pro Gly Leu Arg Arg Tyr Thr Arg Glu 370 375 380Pro Phe Leu Glu Asp Gly Arg Leu Val Trp Arg Glu Gly Pro Glu Arg385 390 395 400Ser Leu Asp Glu Ala Ile Leu Arg Pro Leu Asp Lys Pro Phe Ser Ala 405 410 415Glu Gly Gly Leu Arg Leu Met Glu Gly Asn Leu Gly Arg Gly Val Met 420 425 430Lys Val Ser Ala Val Ala Pro Glu His Gln Val Val Glu Ala Pro Val 435 440 445Arg Ile Phe His Asp Gln Ala Ser Leu Ala Ala Ala Phe Lys Ala Gly 450 455 460Glu Leu Glu Arg Asp Leu Val Ala Val Val Arg Phe Gln Gly Pro Arg465 470 475 480Ala Asn Gly Met Pro Glu Leu His Lys Leu Thr Pro Phe Leu Gly Val 485 490 495Leu Gln Asp Arg Gly Phe Lys Val Ala Leu Val Thr Asp Gly Arg Met 500 505 510Ser Gly Ala Ser Gly Lys Val Pro Ala Ala Ile His Val Ser Pro Glu 515 520 525Ala Ile Ala Gly Gly Pro Leu Ala Arg Leu Arg Asp Gly Asp Arg Val 530 535 540Arg Val Asp Gly Val Asn Gly Glu Leu Arg Val Leu Val Asp Asp Ala545 550 555 560Glu Trp Gln Ala Arg Ser Leu Glu Pro Ala Pro Gln Asp Gly Asn Leu 565 570 575Gly Cys Gly Arg Glu Leu Phe Ala Phe Met Arg Asn Ala Met Ser Ser 580 585 590Ala Glu Glu Gly Ala Cys Ser Phe Thr Glu Ser Leu Asn Gly Trp Arg 595 600 60571666DNAPseudomonas aeruginosa 71atgcacaacc ttgaacagaa gaccgcccgc atcgacacgc tgtgccggga ggcgcgcatc 60ctcccggtga

tcaccatcga ccgcgaggcg gacatcctgc cgatggccga tgccctcgcc 120gccggcggcc tgaccgccct ggagatcacc ctgcgcacgg cgcacgggct gaccgccatc 180cggcgcctca gcgaggagcg cccgcacctg cgcatcggcg ccggcaccgt gctcgacccg 240cggaccttcg ccgccgcgga aaaggccggg gcgagcttcg tggtcacccc gggttgcacc 300gacgagttgc tgcgcttcgc cctggacagc gaagtcccgc tgttgcccgg cgtggccagc 360gcttccgaga tcatgctcgc ctaccgccat ggctaccgcc gcttcaagct gtttcccgcc 420gaagtcagcg gcggcccggc ggcgctgaag gcgttctcgg gaccattccc cgatatccgc 480ttctgcccca ccggaggcgt cagcctgaac aatctcgccg actacctggc ggtacccaac 540gtgatgtgcg tcggcggcac ctggatgctg cccaaggccg tggtcgaccg cggcgactgg 600gcccaggtcg agcgcctcag ccgcgaagcc ctggagcgct tcgccgagca ccgcagacac 660taatag 66672220PRTPseudomonas aeruginosa 72Met His Asn Leu Glu Gln Lys Thr Ala Arg Ile Asp Thr Leu Cys Arg1 5 10 15Glu Ala Arg Ile Leu Pro Val Ile Thr Ile Asp Arg Glu Ala Asp Ile 20 25 30Leu Pro Met Ala Asp Ala Leu Ala Ala Gly Gly Leu Thr Ala Leu Glu 35 40 45Ile Thr Leu Arg Thr Ala His Gly Leu Thr Ala Ile Arg Arg Leu Ser 50 55 60Glu Glu Arg Pro His Leu Arg Ile Gly Ala Gly Thr Val Leu Asp Pro65 70 75 80Arg Thr Phe Ala Ala Ala Glu Lys Ala Gly Ala Ser Phe Val Val Thr 85 90 95Pro Gly Cys Thr Asp Glu Leu Leu Arg Phe Ala Leu Asp Ser Glu Val 100 105 110Pro Leu Leu Pro Gly Val Ala Ser Ala Ser Glu Ile Met Leu Ala Tyr 115 120 125Arg His Gly Tyr Arg Arg Phe Lys Leu Phe Pro Ala Glu Val Ser Gly 130 135 140Gly Pro Ala Ala Leu Lys Ala Phe Ser Gly Pro Phe Pro Asp Ile Arg145 150 155 160Phe Cys Pro Thr Gly Gly Val Ser Leu Asn Asn Leu Ala Asp Tyr Leu 165 170 175Ala Val Pro Asn Val Met Cys Val Gly Gly Thr Trp Met Leu Pro Lys 180 185 190Ala Val Val Asp Arg Gly Asp Trp Ala Gln Val Glu Arg Leu Ser Arg 195 200 205Glu Ala Leu Glu Arg Phe Ala Glu His Arg Arg His 210 215 2207343DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 73gttcactgca ctagtaaaaa aatgcactca gtcgttcaat ctg 437436DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 74cttcgagatc tcgagttagt aaagttcatc gatggc 367541DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 75gttcactgca ctagtaaaaa aatgcttgag aataactggt c 417636DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 76cttcgagatc tcgagttaaa gtccgccaat cgcctc 367742DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 77gttcactgca ctagtaaaaa aatgtctctg aatcccgtcg tc 427836DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 78cttcgagatc tcgagttagt gaatgtcgtc gccaac 367942DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 79gttcactgca ctagtaaaaa aatgatcgat actgccaaac tc 428036DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 80cttcgagatc tcgagtcaga ccgtgaagag tgccgc 368143DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 81gttcactgca ctagtaaaaa aatgagcgat aattttttct gcg 438236DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 82cttcgagatc tcgagctatt tcctgttgat gatagc 36831827DNAShewanella oneidensis 83atgcactcag tcgttcaatc tgttactgac agaattattg cccgtagcaa agcatctcgt 60gaagcatacc ttgctgcgtt aaacgatgcc cgtaaccatg gtgtacaccg aagttcctta 120agttgcggta acttagccca cggttttgcg gcttgtaatc ccgatgacaa aaatgcattg 180cgtcaattga cgaaggccaa tattgggatt atcaccgcat tcaacgatat gttatctgca 240caccaaccct atgaaaccta tcctgatttg ctgaaaaaag cctgtcagga agtcggtagt 300gttgcgcagg tggctggcgg tgttcccgcc atgtgtgacg gcgtgactca aggtcagccc 360ggtatggaat tgagcttact gagccgtgaa gtgattgcga tggcaaccgc ggttggctta 420tcacacaata tgtttgatgg agccttactc ctcggtattt gcgataaaat tgtaccgggt 480ttactgattg gtgccttaag ttttggccat ttacctatgt tgtttgtgcc cgcaggccca 540atgaaatcgg gtattcctaa taaggaaaaa gctcgcattc gtcagcaatt tgctcaaggt 600aaggtcgata gagcacaact gctcgaagcg gaagcccagt cttaccacag tgcgggtact 660tgtaccttct atggtaccgc taactcgaac caactgatgc tcgaagtgat ggggctgcaa 720ttgccgggtt catcttttgt gaatccagac gatccactgc gcgaagcctt aaacaaaatg 780gcggccaagc aggtttgtcg tttaactgaa ctaggcactc aatacagtcc gattggtgaa 840gtcgttaacg aaaaatcgat agtgaatggt attgttgcat tgctcgcgac gggtggttca 900acaaacttaa ccatgcacat tgtggcggcg gcccgtgctg caggtattat cgtcaactgg 960gatgactttt cggaattatc cgatgcggtg cctttgctgg cacgtgttta tccaaacggt 1020catgcggata ttaaccattt ccacgctgcg ggtggtatgg ctttccttat caaagaatta 1080ctcgatgcag gtttgctgca tgaggatgtc aatactgtcg cgggttatgg tctgcgccgt 1140tacacccaag agcctaaact gcttgatggc gagctgcgct gggtcgatgg cccaacagtg 1200agtttagata ccgaagtatt aacctctgtg gcaacaccat tccaaaacaa cggtggttta 1260aagctgctga agggtaactt aggccgcgct gtgattaaag tgtctgccgt tcagccacag 1320caccgtgtgg tggaagcgcc cgcagtggtg attgacgatc aaaacaaact cgatgcgtta 1380tttaaatccg gcgcattaga cagggattgt gtggtggtgg tgaaaggcca agggccgaaa 1440gccaacggta tgccagagct gcataaacta acgccgctgt taggttcatt gcaggacaaa 1500ggctttaaag tggcactgat gactgatggt cgtatgtcgg gcgcatcggg caaagtacct 1560gcggcgattc atttaacccc tgaagcgatt gatggcgggt taattgcaaa ggtacaagac 1620ggcgatttaa tccgagttga tgcactgacc ggcgagctga gtttattagt ctctgacacc 1680gagcttgcca ccagaactgc cactgaaatt gatttacgcc attctcgtta tggcatgggg 1740cgtgagttat ttggagtact gcgttcaaac ttaagcagtc ctgaaaccgg tgcgcgtagt 1800actagcgcca tcgatgaact ttactaa 182784608PRTShewanella oneidensis 84Met His Ser Val Val Gln Ser Val Thr Asp Arg Ile Ile Ala Arg Ser1 5 10 15Lys Ala Ser Arg Glu Ala Tyr Leu Ala Ala Leu Asn Asp Ala Arg Asn 20 25 30His Gly Val His Arg Ser Ser Leu Ser Cys Gly Asn Leu Ala His Gly 35 40 45Phe Ala Ala Cys Asn Pro Asp Asp Lys Asn Ala Leu Arg Gln Leu Thr 50 55 60Lys Ala Asn Ile Gly Ile Ile Thr Ala Phe Asn Asp Met Leu Ser Ala65 70 75 80His Gln Pro Tyr Glu Thr Tyr Pro Asp Leu Leu Lys Lys Ala Cys Gln 85 90 95Glu Val Gly Ser Val Ala Gln Val Ala Gly Gly Val Pro Ala Met Cys 100 105 110Asp Gly Val Thr Gln Gly Gln Pro Gly Met Glu Leu Ser Leu Leu Ser 115 120 125Arg Glu Val Ile Ala Met Ala Thr Ala Val Gly Leu Ser His Asn Met 130 135 140Phe Asp Gly Ala Leu Leu Leu Gly Ile Cys Asp Lys Ile Val Pro Gly145 150 155 160Leu Leu Ile Gly Ala Leu Ser Phe Gly His Leu Pro Met Leu Phe Val 165 170 175Pro Ala Gly Pro Met Lys Ser Gly Ile Pro Asn Lys Glu Lys Ala Arg 180 185 190Ile Arg Gln Gln Phe Ala Gln Gly Lys Val Asp Arg Ala Gln Leu Leu 195 200 205Glu Ala Glu Ala Gln Ser Tyr His Ser Ala Gly Thr Cys Thr Phe Tyr 210 215 220Gly Thr Ala Asn Ser Asn Gln Leu Met Leu Glu Val Met Gly Leu Gln225 230 235 240Leu Pro Gly Ser Ser Phe Val Asn Pro Asp Asp Pro Leu Arg Glu Ala 245 250 255Leu Asn Lys Met Ala Ala Lys Gln Val Cys Arg Leu Thr Glu Leu Gly 260 265 270Thr Gln Tyr Ser Pro Ile Gly Glu Val Val Asn Glu Lys Ser Ile Val 275 280 285Asn Gly Ile Val Ala Leu Leu Ala Thr Gly Gly Ser Thr Asn Leu Thr 290 295 300Met His Ile Val Ala Ala Ala Arg Ala Ala Gly Ile Ile Val Asn Trp305 310 315 320Asp Asp Phe Ser Glu Leu Ser Asp Ala Val Pro Leu Leu Ala Arg Val 325 330 335Tyr Pro Asn Gly His Ala Asp Ile Asn His Phe His Ala Ala Gly Gly 340 345 350Met Ala Phe Leu Ile Lys Glu Leu Leu Asp Ala Gly Leu Leu His Glu 355 360 365Asp Val Asn Thr Val Ala Gly Tyr Gly Leu Arg Arg Tyr Thr Gln Glu 370 375 380Pro Lys Leu Leu Asp Gly Glu Leu Arg Trp Val Asp Gly Pro Thr Val385 390 395 400Ser Leu Asp Thr Glu Val Leu Thr Ser Val Ala Thr Pro Phe Gln Asn 405 410 415Asn Gly Gly Leu Lys Leu Leu Lys Gly Asn Leu Gly Arg Ala Val Ile 420 425 430Lys Val Ser Ala Val Gln Pro Gln His Arg Val Val Glu Ala Pro Ala 435 440 445Val Val Ile Asp Asp Gln Asn Lys Leu Asp Ala Leu Phe Lys Ser Gly 450 455 460Ala Leu Asp Arg Asp Cys Val Val Val Val Lys Gly Gln Gly Pro Lys465 470 475 480Ala Asn Gly Met Pro Glu Leu His Lys Leu Thr Pro Leu Leu Gly Ser 485 490 495Leu Gln Asp Lys Gly Phe Lys Val Ala Leu Met Thr Asp Gly Arg Met 500 505 510Ser Gly Ala Ser Gly Lys Val Pro Ala Ala Ile His Leu Thr Pro Glu 515 520 525Ala Ile Asp Gly Gly Leu Ile Ala Lys Val Gln Asp Gly Asp Leu Ile 530 535 540Arg Val Asp Ala Leu Thr Gly Glu Leu Ser Leu Leu Val Ser Asp Thr545 550 555 560Glu Leu Ala Thr Arg Thr Ala Thr Glu Ile Asp Leu Arg His Ser Arg 565 570 575Tyr Gly Met Gly Arg Glu Leu Phe Gly Val Leu Arg Ser Asn Leu Ser 580 585 590Ser Pro Glu Thr Gly Ala Arg Ser Thr Ser Ala Ile Asp Glu Leu Tyr 595 600 605851848DNAGluconobacter oxydans 85atgtctctga atcccgtcgt cgagagcgtg actgcccgta tcatcgagcg ttcgaaagtc 60tcccgtcgcc ggtatctcgc cctgatggag cgcaaccgcg ccaagggtgt gctccggccc 120aagctggcct gcggtaatct ggcgcatgcc atcgcagcgt ccagccccga caagccggat 180ctgatgcgtc ccaccgggac caatatcggc gtgatcacga cctataacga catgctctcg 240gcgcatcagc cgtatggccg ctatcccgag cagatcaagc tgttcgcccg tgaagtcggt 300gcgacggccc aggttgcagg cggcgcacca gcaatgtgtg atggtgtgac gcaggggcag 360gagggcatgg aactctccct gttctcccgt gacgtgatcg ccatgtccac ggcggtcggg 420ctgagccacg gcatgtttga gggcgtggcg ctgctgggca tctgtgacaa gattgtgccg 480ggccttctga tgggcgcgct gcgcttcggt catctcccgg ccatgctgat cccggcaggg 540ccaatgccgt ccggtcttcc aaacaaggaa aagcagcgca tccgccagct ctatgtgcag 600ggcaaggtcg ggcaggacga gctgatggaa gcggaaaacg cctcctatca cagcccgggc 660acctgcacgt tctatggcac ggccaatacg aaccagatga tggtcgaaat catgggtctg 720atgatgccgg actcggcttt catcaatccc aacacgaagc tgcgtcaggc aatgacccgc 780tcgggtattc accgtctggc cgaaatcggc ctgaacggcg aggatgtgcg cccgctcgct 840cattgcgtag acgaaaaggc catcgtgaat gcggcggtcg ggttgctggc gacgggtggt 900tcgaccaacc attcgatcca tcttcctgct atcgcccgtg ccgctggtat cctgatcgac 960tgggaagaca tcagccgcct gtcgtccgcg gttccgctga tcacccgtgt ttatccgagc 1020ggttccgagg acgtgaacgc gttcaaccgc gtgggtggta tgccgaccgt gatcgccgaa 1080ctgacgcgcg ccgggatgct gcacaaggac attctgacgg tctctcgtgg cggtttctcc 1140gattatgccc gtcgcgcatc gctggaaggc gatgagatcg tctacaccca cgcgaagccg 1200tccacggaca ccgatatcct gcgcgatgtg gctacgcctt tccggcccga tggcggtatg 1260cgcctgatga ctggtaatct gggccgcgcg atctacaaga gcagcgctat tgcgcccgag 1320cacctgaccg ttgaagcgcc ggcacgggtc ttccaggacc agcatgacgt cctcacggcc 1380tatcagaatg gtgagcttga gcgtgatgtt gtcgtggtcg tccggttcca gggaccggaa 1440gccaacggca tgccggagct tcacaagctg accccgactc tgggcgtgct tcaggatcgc 1500ggcttcaagg tggccctgct gacggatgga cgcatgtccg gtgcgagcgg caaggtgccg 1560gccgccattc atgtcggtcc cgaagcgcag gttggcggtc cgatcgcccg cgtgcgggac 1620ggcgacatga tccgtgtctg cgcggtgacg ggacagatcg aggctctggt ggatgccgcc 1680gagtgggaga gccgcaagcc ggtcccgccg ccgctcccgg cattgggaac gggccgcgaa 1740ctgttcgcgc tgatgcgttc ggtgcatgat ccggccgagg ctggcggatc cgcgatgctg 1800gcccagatgg atcgcgtgat cgaagccgtt ggcgacgaca ttcactaa 184886615PRTGluconobacter oxydans 86Met Ser Leu Asn Pro Val Val Glu Ser Val Thr Ala Arg Ile Ile Glu1 5 10 15Arg Ser Lys Val Ser Arg Arg Arg Tyr Leu Ala Leu Met Glu Arg Asn 20 25 30Arg Ala Lys Gly Val Leu Arg Pro Lys Leu Ala Cys Gly Asn Leu Ala 35 40 45His Ala Ile Ala Ala Ser Ser Pro Asp Lys Pro Asp Leu Met Arg Pro 50 55 60Thr Gly Thr Asn Ile Gly Val Ile Thr Thr Tyr Asn Asp Met Leu Ser65 70 75 80Ala His Gln Pro Tyr Gly Arg Tyr Pro Glu Gln Ile Lys Leu Phe Ala 85 90 95Arg Glu Val Gly Ala Thr Ala Gln Val Ala Gly Gly Ala Pro Ala Met 100 105 110Cys Asp Gly Val Thr Gln Gly Gln Glu Gly Met Glu Leu Ser Leu Phe 115 120 125Ser Arg Asp Val Ile Ala Met Ser Thr Ala Val Gly Leu Ser His Gly 130 135 140Met Phe Glu Gly Val Ala Leu Leu Gly Ile Cys Asp Lys Ile Val Pro145 150 155 160Gly Leu Leu Met Gly Ala Leu Arg Phe Gly His Leu Pro Ala Met Leu 165 170 175Ile Pro Ala Gly Pro Met Pro Ser Gly Leu Pro Asn Lys Glu Lys Gln 180 185 190Arg Ile Arg Gln Leu Tyr Val Gln Gly Lys Val Gly Gln Asp Glu Leu 195 200 205Met Glu Ala Glu Asn Ala Ser Tyr His Ser Pro Gly Thr Cys Thr Phe 210 215 220Tyr Gly Thr Ala Asn Thr Asn Gln Met Met Val Glu Ile Met Gly Leu225 230 235 240Met Met Pro Asp Ser Ala Phe Ile Asn Pro Asn Thr Lys Leu Arg Gln 245 250 255Ala Met Thr Arg Ser Gly Ile His Arg Leu Ala Glu Ile Gly Leu Asn 260 265 270Gly Glu Asp Val Arg Pro Leu Ala His Cys Val Asp Glu Lys Ala Ile 275 280 285Val Asn Ala Ala Val Gly Leu Leu Ala Thr Gly Gly Ser Thr Asn His 290 295 300Ser Ile His Leu Pro Ala Ile Ala Arg Ala Ala Gly Ile Leu Ile Asp305 310 315 320Trp Glu Asp Ile Ser Arg Leu Ser Ser Ala Val Pro Leu Ile Thr Arg 325 330 335Val Tyr Pro Ser Gly Ser Glu Asp Val Asn Ala Phe Asn Arg Val Gly 340 345 350Gly Met Pro Thr Val Ile Ala Glu Leu Thr Arg Ala Gly Met Leu His 355 360 365Lys Asp Ile Leu Thr Val Ser Arg Gly Gly Phe Ser Asp Tyr Ala Arg 370 375 380Arg Ala Ser Leu Glu Gly Asp Glu Ile Val Tyr Thr His Ala Lys Pro385 390 395 400Ser Thr Asp Thr Asp Ile Leu Arg Asp Val Ala Thr Pro Phe Arg Pro 405 410 415Asp Gly Gly Met Arg Leu Met Thr Gly Asn Leu Gly Arg Ala Ile Tyr 420 425 430Lys Ser Ser Ala Ile Ala Pro Glu His Leu Thr Val Glu Ala Pro Ala 435 440 445Arg Val Phe Gln Asp Gln His Asp Val Leu Thr Ala Tyr Gln Asn Gly 450 455 460Glu Leu Glu Arg Asp Val Val Val Val Val Arg Phe Gln Gly Pro Glu465 470 475 480Ala Asn Gly Met Pro Glu Leu His Lys Leu Thr Pro Thr Leu Gly Val 485 490 495Leu Gln Asp Arg Gly Phe Lys Val Ala Leu Leu Thr Asp Gly Arg Met 500 505 510Ser Gly Ala Ser Gly Lys Val Pro Ala Ala Ile His Val Gly Pro Glu 515 520 525Ala Gln Val Gly Gly Pro Ile Ala Arg Val Arg Asp Gly Asp Met Ile 530 535 540Arg Val Cys Ala Val Thr Gly Gln Ile Glu Ala Leu Val Asp Ala Ala545 550 555 560Glu Trp Glu Ser Arg Lys Pro Val Pro Pro Pro Leu Pro Ala Leu Gly 565 570 575Thr Gly Arg Glu Leu Phe Ala Leu Met Arg Ser Val His Asp Pro Ala 580 585 590Glu Ala Gly Gly Ser Ala Met Leu Ala Gln Met Asp Arg Val Ile Glu 595 600 605Ala Val Gly Asp Asp Ile His 610 615871665DNARuminococcus flavefaciens 87atgagcgata attttttctg cgagggtgcg gataaagccc ctcagcgttc acttttcaat 60gcactgggca tgactaaaga ggaaatgaag cgtcccctcg ttggtatcgt ttcttcctac 120aatgagatcg ttcccggcca tatgaacatc gacaagctgg tcgaagccgt taagctgggt 180gtagctatgg gcggcggcac tcctgttgtt ttccctgcta tcgctgtatg cgacggtatc 240gctatgggtc acacaggcat gaagtacagc cttgttaccc gtgaccttat tgccgattct 300acagagtgta tggctcttgc tcatcacttc gacgcactgg taatgatacc taactgcgac 360aagaacgttc

ccggcctgct tatggcggct gcacgtatca atgttcctac tgtattcgta 420agcggcggcc ctatgcttgc aggccatgta aagggtaaga agacctctct ttcatccatg 480ttcgaggctg taggcgctta cacagcaggc aagatagacg aggctgaact tgacgaattc 540gagaacaaga cctgccctac ctgcggttca tgttcgggta tgtataccgc taactccatg 600aactgcctca ctgaggtact gggtatgggt ctcagaggca acggcactat ccctgctgtt 660tactccgagc gtatcaagct tgcaaagcag gcaggtatgc aggttatgga actctacaga 720aagaatatcc gccctctcga tatcatgaca gagaaggctt tccagaacgc tctcacagct 780gatatggctc ttggatgttc cacaaacagt atgctccatc tccctgctat cgccaacgaa 840tgcggcataa atatcaacct tgacatggct aacgagataa gcgccaagac tcctaacctc 900tgccatcttg caccggcagg ccacacctac atggaagacc tcaacgaagc aggcggagtt 960tatgcagttc tcaacgagct gagcaaaaag ggacttatca acaccgactg catgactgtt 1020acaggcaaga ccgtaggcga gaatatcaag ggctgcatca accgtgaccc tgagactatc 1080cgtcctatcg acaacccata cagtgaaaca ggcggaatcg ccgtactcaa gggcaatctt 1140gctcccgaca gatgtgttgt gaagagaagc gcagttgctc ccgaaatgct ggtacacaaa 1200ggccctgcaa gagtattcga cagcgaggaa gaagctatca aggtcatcta tgagggcggt 1260atcaaggcag gcgacgttgt tgttatccgt tacgaaggcc ctgcaggcgg ccccggcatg 1320agagaaatgc tctctcctac atcagctata cagggtgcag gtctcggctc aactgttgct 1380ctaatcactg acggacgttt cagcggcgct acccgtggtg cggctatcgg acacgtatcc 1440cccgaagctg taaacggcgg tactatcgca tatgtcaagg acggcgatat tatctccatc 1500gacataccga attactccat cactcttgaa gtatccgacg aggagcttgc agagcgcaaa 1560aaggcaatgc ctatcaagcg caaggagaac atcacaggct atctgaagcg ctatgcacag 1620caggtatcat ccgcagacaa gggcgctatc atcaacagga aatag 166588554PRTRuminococcus flavefaciens 88Met Ser Asp Asn Phe Phe Cys Glu Gly Ala Asp Lys Ala Pro Gln Arg1 5 10 15Ser Leu Phe Asn Ala Leu Gly Met Thr Lys Glu Glu Met Lys Arg Pro 20 25 30Leu Val Gly Ile Val Ser Ser Tyr Asn Glu Ile Val Pro Gly His Met 35 40 45Asn Ile Asp Lys Leu Val Glu Ala Val Lys Leu Gly Val Ala Met Gly 50 55 60Gly Gly Thr Pro Val Val Phe Pro Ala Ile Ala Val Cys Asp Gly Ile65 70 75 80Ala Met Gly His Thr Gly Met Lys Tyr Ser Leu Val Thr Arg Asp Leu 85 90 95Ile Ala Asp Ser Thr Glu Cys Met Ala Leu Ala His His Phe Asp Ala 100 105 110Leu Val Met Ile Pro Asn Cys Asp Lys Asn Val Pro Gly Leu Leu Met 115 120 125Ala Ala Ala Arg Ile Asn Val Pro Thr Val Phe Val Ser Gly Gly Pro 130 135 140Met Leu Ala Gly His Val Lys Gly Lys Lys Thr Ser Leu Ser Ser Met145 150 155 160Phe Glu Ala Val Gly Ala Tyr Thr Ala Gly Lys Ile Asp Glu Ala Glu 165 170 175Leu Asp Glu Phe Glu Asn Lys Thr Cys Pro Thr Cys Gly Ser Cys Ser 180 185 190Gly Met Tyr Thr Ala Asn Ser Met Asn Cys Leu Thr Glu Val Leu Gly 195 200 205Met Gly Leu Arg Gly Asn Gly Thr Ile Pro Ala Val Tyr Ser Glu Arg 210 215 220Ile Lys Leu Ala Lys Gln Ala Gly Met Gln Val Met Glu Leu Tyr Arg225 230 235 240Lys Asn Ile Arg Pro Leu Asp Ile Met Thr Glu Lys Ala Phe Gln Asn 245 250 255Ala Leu Thr Ala Asp Met Ala Leu Gly Cys Ser Thr Asn Ser Met Leu 260 265 270His Leu Pro Ala Ile Ala Asn Glu Cys Gly Ile Asn Ile Asn Leu Asp 275 280 285Met Ala Asn Glu Ile Ser Ala Lys Thr Pro Asn Leu Cys His Leu Ala 290 295 300Pro Ala Gly His Thr Tyr Met Glu Asp Leu Asn Glu Ala Gly Gly Val305 310 315 320Tyr Ala Val Leu Asn Glu Leu Ser Lys Lys Gly Leu Ile Asn Thr Asp 325 330 335Cys Met Thr Val Thr Gly Lys Thr Val Gly Glu Asn Ile Lys Gly Cys 340 345 350Ile Asn Arg Asp Pro Glu Thr Ile Arg Pro Ile Asp Asn Pro Tyr Ser 355 360 365Glu Thr Gly Gly Ile Ala Val Leu Lys Gly Asn Leu Ala Pro Asp Arg 370 375 380Cys Val Val Lys Arg Ser Ala Val Ala Pro Glu Met Leu Val His Lys385 390 395 400Gly Pro Ala Arg Val Phe Asp Ser Glu Glu Glu Ala Ile Lys Val Ile 405 410 415Tyr Glu Gly Gly Ile Lys Ala Gly Asp Val Val Val Ile Arg Tyr Glu 420 425 430Gly Pro Ala Gly Gly Pro Gly Met Arg Glu Met Leu Ser Pro Thr Ser 435 440 445Ala Ile Gln Gly Ala Gly Leu Gly Ser Thr Val Ala Leu Ile Thr Asp 450 455 460Gly Arg Phe Ser Gly Ala Thr Arg Gly Ala Ala Ile Gly His Val Ser465 470 475 480Pro Glu Ala Val Asn Gly Gly Thr Ile Ala Tyr Val Lys Asp Gly Asp 485 490 495Ile Ile Ser Ile Asp Ile Pro Asn Tyr Ser Ile Thr Leu Glu Val Ser 500 505 510Asp Glu Glu Leu Ala Glu Arg Lys Lys Ala Met Pro Ile Lys Arg Lys 515 520 525Glu Asn Ile Thr Gly Tyr Leu Lys Arg Tyr Ala Gln Gln Val Ser Ser 530 535 540Ala Asp Lys Gly Ala Ile Ile Asn Arg Lys545 55089642DNAShewanella oneidensis 89atgcttgaga ataactggtc attacaacca caagatattt ttaaacgcag ccctattgtt 60cctgttatgg tgattaacaa gattgaacat gcggtgccct tagctaaagc gctggttgcc 120ggagggataa gcgtgttgga agtgacatta cgcacgccat gcgcccttga agctatcacc 180aaaatcgcca aggaagtgcc tgaggcgctg gttggcgcgg ggactatttt aaatgaagcc 240cagcttggac aggctatcgc cgctggtgcg caatttatta tcactccagg tgcgacagtt 300gagctgctca aagcgggcat gcaaggaccg gtgccgttaa ttccgggcgt tgccagtatt 360tccgaggtga tgacgggcat ggcgctgggc tacactcact ttaaattctt ccctgctgaa 420gcgtcaggtg gcgttgatgc gcttaaggct ttctctgggc cgttagcaga tatccgcttc 480tgcccaacag gtggaattac cccgagcagc tataaagatt acttagcgct gaagaatgtc 540gattgtattg gtggcagctg gattgctcct accgatgcga tggagcaggg cgattgggat 600cgtatcactc agctgtgtaa agaggcgatt ggcggacttt aa 64290213PRTShewanella oneidensis 90Met Leu Glu Asn Asn Trp Ser Leu Gln Pro Gln Asp Ile Phe Lys Arg1 5 10 15Ser Pro Ile Val Pro Val Met Val Ile Asn Lys Ile Glu His Ala Val 20 25 30Pro Leu Ala Lys Ala Leu Val Ala Gly Gly Ile Ser Val Leu Glu Val 35 40 45Thr Leu Arg Thr Pro Cys Ala Leu Glu Ala Ile Thr Lys Ile Ala Lys 50 55 60Glu Val Pro Glu Ala Leu Val Gly Ala Gly Thr Ile Leu Asn Glu Ala65 70 75 80Gln Leu Gly Gln Ala Ile Ala Ala Gly Ala Gln Phe Ile Ile Thr Pro 85 90 95Gly Ala Thr Val Glu Leu Leu Lys Ala Gly Met Gln Gly Pro Val Pro 100 105 110Leu Ile Pro Gly Val Ala Ser Ile Ser Glu Val Met Thr Gly Met Ala 115 120 125Leu Gly Tyr Thr His Phe Lys Phe Phe Pro Ala Glu Ala Ser Gly Gly 130 135 140Val Asp Ala Leu Lys Ala Phe Ser Gly Pro Leu Ala Asp Ile Arg Phe145 150 155 160Cys Pro Thr Gly Gly Ile Thr Pro Ser Ser Tyr Lys Asp Tyr Leu Ala 165 170 175Leu Lys Asn Val Asp Cys Ile Gly Gly Ser Trp Ile Ala Pro Thr Asp 180 185 190Ala Met Glu Gln Gly Asp Trp Asp Arg Ile Thr Gln Leu Cys Lys Glu 195 200 205Ala Ile Gly Gly Leu 21091624DNAGluconobacter oxydans 91atgatcgata ctgccaaact cgacgccgtc atgagccgtt gtccggtcat gccggtgctg 60gtggtcaatg atgtggctct ggcccgcccg atggccgagg ctctggtggc gggtggactg 120tccacgctgg aagtcacgct gcgcacgccc tgcgcccttg aagctattga ggaaatgtcg 180aaagtaccag gcgcgctggt cggtgccggt acggtgctga atccgtccga catggaccgt 240gccgtgaagg cgggtgcgcg cttcatcgtc agccccggcc tgaccgaggc gctggcaaag 300gcgtcggttg agcatgacgt ccccttcctg ccaggcgttg ccaatgcggg tgacatcatg 360cggggtctgg atctgggtct gtcacgcttc aagttcttcc cggctgtgac gaatggcggc 420attcccgcgc tcaagagctt ggccagtgtt tttggcagca atgtccgttt ctgccccacg 480ggcggcatta cggaagagag cgcaccggac tggctggcgc ttccctccgt ggcctgcgtc 540ggcggatcct gggtgacggc cggcacgttc gatgcggaca aggtccgtca gcgcgccacg 600gctgcggcac tcttcacggt ctga 62492207PRTGluconobacter oxydans 92Met Ile Asp Thr Ala Lys Leu Asp Ala Val Met Ser Arg Cys Pro Val1 5 10 15Met Pro Val Leu Val Val Asn Asp Val Ala Leu Ala Arg Pro Met Ala 20 25 30Glu Ala Leu Val Ala Gly Gly Leu Ser Thr Leu Glu Val Thr Leu Arg 35 40 45Thr Pro Cys Ala Leu Glu Ala Ile Glu Glu Met Ser Lys Val Pro Gly 50 55 60Ala Leu Val Gly Ala Gly Thr Val Leu Asn Pro Ser Asp Met Asp Arg65 70 75 80Ala Val Lys Ala Gly Ala Arg Phe Ile Val Ser Pro Gly Leu Thr Glu 85 90 95Ala Leu Ala Lys Ala Ser Val Glu His Asp Val Pro Phe Leu Pro Gly 100 105 110Val Ala Asn Ala Gly Asp Ile Met Arg Gly Leu Asp Leu Gly Leu Ser 115 120 125Arg Phe Lys Phe Phe Pro Ala Val Thr Asn Gly Gly Ile Pro Ala Leu 130 135 140Lys Ser Leu Ala Ser Val Phe Gly Ser Asn Val Arg Phe Cys Pro Thr145 150 155 160Gly Gly Ile Thr Glu Glu Ser Ala Pro Asp Trp Leu Ala Leu Pro Ser 165 170 175Val Ala Cys Val Gly Gly Ser Trp Val Thr Ala Gly Thr Phe Asp Ala 180 185 190Asp Lys Val Arg Gln Arg Ala Thr Ala Ala Ala Leu Phe Thr Val 195 200 2059310DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 93tgatgtannt 109410DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 94ccnnnwwrgg 109510DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 95wwwwsygggg 109613DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 96rmacccannc ayy 139716DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 97tycgtnnrna rtgaya 169818DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 98rrraararaa nanraraa 189918DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 99anagngagag agnggcag 1810015DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 100tnnccwnttt ktttc 1510115DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 101aaaaararaa aarma 1510216DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 102ykytyttytt nnnnky 1610310DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 103cgtccggcgc 1010415DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 104gaaaaagmaa aaaaa 1510518DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 105ttttyyttyt tkyntynt 1810615DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 106catkyttttt tkyty 1510710DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 107cacgtgacya 1010814DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 108cannnacaca sana 1410917DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 109ggnanannar narggcn 1711018DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 110tttkytktty nytttkty 1811117DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 111wttkttttty tttttnt 1711211DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 112ttkttttytt c 111131665DNADebaryomyces hansenii 113atgtctcaag aagaatatag ttctggggta caaaccccag tttctaacca ttctggttta 60gagaaagaag agcaacacaa gttagacggt ttagatgagg atgaaattgt cgatcaatta 120ccttctttac cagaaaaatc agctaaggat tatttattaa tttctttctt ctgtgtatta 180gttgcatttg gtggttttgt tttcggtttc gatactggta ctatctcagg tttcgttaac 240atgagtgatt acttggaaag attcggtgag cttaatgcag atggtgaata tttcttatct 300aatgttagaa ctggtttgat tgttgctatt tttaatgttg gttgtgctgt cggtggtatt 360ttcttatcta agattgctga tgtttatggt agaagaattg gtcttatgtt ttccatgatt 420atttatgtga ttggtataat tgttcaaatc tcagcttctg acaagtggta tcaaatcgtt 480gttggtagag ctattgcagg tttagctgtt ggtaccgttt ctgtcttatc cccattattc 540attggtgaat cagcacctaa aaccttaaga ggtactttag tgtgttgttt ccaattatgt 600attaccttag gtatcttctt aggttactgt actacatatg gtactaaaac ctacaccgac 660tctagacaat ggagaattcc attaggttta tgttttgttt gggctatcat gttggttatt 720ggtatggttt gcatgccaga atcaccaaga tacttagttg tcaagaacaa gattgaagaa 780gctaagaaat cgattggtag atccaacaag gtttcaccag aagatcctgc tgtttacacc 840gaagtccaat tgattcaagc aggtattgaa agagaaagtt tagctggttc tgcctcttgg 900accgaattgg ttactggtaa gccaagaatc tttcgtagag tcattatggg tattatgtta 960caatctttac aacaattgac tggtgacaac tatttcttct actatggtac tactattttc 1020caagctgtcg gtatgactga ttccttccaa acatctattg ttttaggtgt tgttaacttt 1080gcatctacat ttctcggtat ctacacaatt gaaagattcg gtagaagatt atgtttgtta 1140actggttctg tctgtatgtt cgtttgtttc atcatttact ccattttggg tgttacaaac 1200ttatatattg atggctacga tggtccaact tcggttccaa ccggtgatgc gatgattttc 1260attactacct tatacatttt cttcttcgca tccacctggg ctggtggtgt ctactgtatc 1320gtttccgaaa catacccatt gagaattaga tctaaggcca tgtccgttgc caccgctgct 1380aactggattt ggggtttctt gatctctttc ttcactccat tcatcacctc ggctatccac 1440ttctactacg gtttcgtttt cacaggatgt ttgttattct cgttctttta cgtttacttc 1500tttgttgttg aaactaaggg attaacttta gaagaagttg atgaattgta tgcccaaggt 1560gttgccccat ggaagtcatc gaaatgggtt ccaccaacca aggaagaaat ggcccattct 1620tcaggatatg ctgctgaagc caaacctcac gatcaacaag tataa 16651141725DNASaccharomyces cerevisiae 114atggcagttg aggagaacaa tatgcctgtt gtttcacagc aaccccaagc tggtgaagac 60gtgatctctt cactcagtaa agattcccat ttaagcgcac aatctcaaaa gtattctaat 120gatgaattga aagccggtga gtcagggtct gaaggctccc aaagtgttcc tatagagata 180cccaagaagc ccatgtctga atatgttacc gtttccttgc tttgtttgtg tgttgccttc 240ggcggcttca tgtttggctg ggataccggt actatttctg ggtttgttgt ccaaacagac 300tttttgagaa ggtttggtat gaaacataag gatggtaccc actatttgtc aaacgtcaga 360acaggtttaa tcgtcgccat tttcaatatt ggctgtgcct ttggtggtat tatactttcc 420aaaggtggag atatgtatgg ccgtaaaaag ggtctttcga ttgtcgtctc ggtttatata 480gttggtatta tcattcaaat tgcctctatc aacaagtggt accaatattt cattggtaga 540atcatatctg gtttgggtgt cggcggcatc gccgtcttat gtcctatgtt gatctctgaa 600attgctccaa agcacttgag aggcacacta gtttcttgtt atcagctgat gattactgca 660ggtatctttt tgggctactg tactaattac ggtacaaaga gctattcgaa ctcagttcaa 720tggagagttc cattagggct atgtttcgct tggtcattat ttatgattgg cgctttgacg 780ttagttcctg aatccccacg ttatttatgt gaggtgaata aggtagaaga cgccaagcgt 840tccattgcta agtctaacaa ggtgtcacca gaggatcctg ccgtccaggc agagttagat 900ctgatcatgg ccggtataga agctgaaaaa ctggctggca atgcgtcctg gggggaatta 960ttttccacca agaccaaagt atttcaacgt ttgttgatgg gtgtgtttgt tcaaatgttc 1020caacaattaa ccggtaacaa ttattttttc tactacggta ccgttatttt caagtcagtt 1080ggcctggatg attcctttga aacatccatt gtcattggtg tagtcaactt tgcctccact 1140ttctttagtt tgtggactgt cgaaaacttg ggacatcgta aatgtttact tttgggcgct 1200gccactatga tggcttgtat ggtcatctac gcctctgttg gtgttactag attatatcct 1260cacggtaaaa gccagccatc ttctaaaggt gccggtaact gtatgattgt ctttacctgt 1320ttttatattt tctgttatgc cacaacctgg gcgccagttg cctgggtcat cacagcagaa 1380tcattcccac tgagagtcaa gtcgaaatgt atggcgttgg cctctgcttc caattgggta 1440tgggggttct tgattgcatt tttcacccca ttcatcacat ctgccattaa cttctactac 1500ggttatgtct tcatgggctg tttggttgcc atgttttttt atgtcttttt

ctttgttcca 1560gaaactaaag gcctatcgtt agaagaaatt caagaattat gggaagaagg tgttttacct 1620tggaaatctg aaggctggat tccttcatcc agaagaggta ataattacga tttagaggat 1680ttacaacatg acgacaaacc gtggtacaag gccatgctag aataa 1725115750DNASaccharomyces cerevisiae 115atggtgacag tcggtgtgtt ttctgagagg gctagtttga cccatcaatt gggggaattc 60atcgtcaaga aacaagatga ggcgctgcaa aagaagtcag actttaaagt ttccgttagc 120ggtggctctt tgatcgatgc tctgtatgaa agtttagtag cggacgaatc actatcttct 180cgagtgcaat ggtctaaatg gcaaatctac ttctctgatg aaagaattgt gccactgacg 240gacgctgaca gcaattatgg tgccttcaag agagctgttc tagataaatt accctcgact 300agtcagccaa acgtttatcc catggacgag tccttgattg gcagcgatgc tgaatctaac 360aacaaaattg ctgcagagta cgagcgtatc gtacctcaag tgcttgattt ggtactgttg 420ggctgtggtc ctgatggaca cacttgttcc ttattccctg gagaaacaca taggtacttg 480ctgaacgaaa caaccaaaag agttgcttgg tgccacgatt ctcccaagcc tccaagtgac 540agaatcacct tcactctgcc tgtgttgaaa gacgccaaag ccctgtgttt tgtggctgag 600ggcagttcca aacaaaatat aatgcatgag atctttgact tgaaaaacga tcaattgcca 660accgcattgg ttaacaaatt atttggtgaa aaaacatcct ggttcgttaa tgaggaagct 720tttggaaaag ttcaaacgaa aactttttag 7501161518DNASaccharomyces cerevisiae 116atgagtgaag gccccgtcaa attcgaaaaa aataccgtca tatctgtctt tggtgcgtca 60ggtgatctgg caaagaagaa gacttttccc gccttatttg ggcttttcag agaaggttac 120cttgatccat ctaccaagat cttcggttat gcccggtcca aattgtccat ggaggaggac 180ctgaagtccc gtgtcctacc ccacttgaaa aaacctcacg gtgaagccga tgactctaag 240gtcgaacagt tcttcaagat ggtcagctac atttcgggaa attacgacac agatgaaggc 300ttcgacgaat taagaacgca gatcgagaaa ttcgagaaaa gtgccaacgt cgatgtccca 360caccgtctct tctatctggc cttgccgcca agcgtttttt tgacggtggc caagcagatc 420aagagtcgtg tgtacgcaga gaatggcatc acccgtgtaa tcgtagagaa acctttcggc 480cacgacctgg cctctgccag ggagctgcaa aaaaacctgg ggcccctctt taaagaagaa 540gagttgtaca gaattgacca ttacttgggt aaagagttgg tcaagaatct tttagtcttg 600aggttcggta accagttttt gaatgcctcg tggaatagag acaacattca aagcgttcag 660atttcgttta aagagaggtt cggcaccgaa ggccgtggcg gctatttcga ctctataggc 720ataatcagag acgtgatgca gaaccatctg ttacaaatca tgactctctt gactatggaa 780agaccggtgt cttttgaccc ggaatctatt cgtgacgaaa aggttaaggt tctaaaggcc 840gtggccccca tcgacacgga cgacgtcctc ttgggccagt acggtaaatc tgaggacggg 900tctaagcccg cctacgtgga tgatgacact gtagacaagg actctaaatg tgtcactttt 960gcagcaatga ctttcaacat cgaaaacgag cgttgggagg gcgtccccat catgatgcgt 1020gccggtaagg ctttgaatga gtccaaggtg gagatcagac tgcagtacaa agcggtcgca 1080tcgggtgtct tcaaagacat tccaaataac gaactggtca tcagagtgca gcccgatgcc 1140gctgtgtacc taaagtttaa tgctaagacc cctggtctgt caaatgctac ccaagtcaca 1200gatctgaatc taacttacgc aagcaggtac caagactttt ggattccaga ggcttacgag 1260gtgttgataa gagacgccct actgggtgac cattccaact ttgtcagaga tgacgaattg 1320gatatcagtt ggggcatatt caccccatta ctgaagcaca tagagcgtcc ggacggtcca 1380acaccggaaa tttaccccta cggatcaaga ggtccaaagg gattgaagga atatatgcaa 1440aaacacaagt atgttatgcc cgaaaagcac ccttacgctt ggcccgtgac taagccagaa 1500gatacgaagg ataattag 1518117554PRTDebaryomyces hansenii 117Met Ser Gln Glu Glu Tyr Ser Ser Gly Val Gln Thr Pro Val Ser Asn1 5 10 15His Ser Gly Leu Glu Lys Glu Glu Gln His Lys Leu Asp Gly Leu Asp 20 25 30Glu Asp Glu Ile Val Asp Gln Leu Pro Ser Leu Pro Glu Lys Ser Ala 35 40 45Lys Asp Tyr Leu Leu Ile Ser Phe Phe Cys Val Leu Val Ala Phe Gly 50 55 60Gly Phe Val Phe Gly Phe Asp Thr Gly Thr Ile Ser Gly Phe Val Asn65 70 75 80Met Ser Asp Tyr Leu Glu Arg Phe Gly Glu Leu Asn Ala Asp Gly Glu 85 90 95Tyr Phe Leu Ser Asn Val Arg Thr Gly Leu Ile Val Ala Ile Phe Asn 100 105 110Val Gly Cys Ala Val Gly Gly Ile Phe Leu Ser Lys Ile Ala Asp Val 115 120 125Tyr Gly Arg Arg Ile Gly Leu Met Phe Ser Met Ile Ile Tyr Val Ile 130 135 140Gly Ile Ile Val Gln Ile Ser Ala Ser Asp Lys Trp Tyr Gln Ile Val145 150 155 160Val Gly Arg Ala Ile Ala Gly Leu Ala Val Gly Thr Val Ser Val Leu 165 170 175Ser Pro Leu Phe Ile Gly Glu Ser Ala Pro Lys Thr Leu Arg Gly Thr 180 185 190Leu Val Cys Cys Phe Gln Leu Cys Ile Thr Leu Gly Ile Phe Leu Gly 195 200 205Tyr Cys Thr Thr Tyr Gly Thr Lys Thr Tyr Thr Asp Ser Arg Gln Trp 210 215 220Arg Ile Pro Leu Gly Leu Cys Phe Val Trp Ala Ile Met Leu Val Ile225 230 235 240Gly Met Val Cys Met Pro Glu Ser Pro Arg Tyr Leu Val Val Lys Asn 245 250 255Lys Ile Glu Glu Ala Lys Lys Ser Ile Gly Arg Ser Asn Lys Val Ser 260 265 270Pro Glu Asp Pro Ala Val Tyr Thr Glu Val Gln Leu Ile Gln Ala Gly 275 280 285Ile Glu Arg Glu Ser Leu Ala Gly Ser Ala Ser Trp Thr Glu Leu Val 290 295 300Thr Gly Lys Pro Arg Ile Phe Arg Arg Val Ile Met Gly Ile Met Leu305 310 315 320Gln Ser Leu Gln Gln Leu Thr Gly Asp Asn Tyr Phe Phe Tyr Tyr Gly 325 330 335Thr Thr Ile Phe Gln Ala Val Gly Met Thr Asp Ser Phe Gln Thr Ser 340 345 350Ile Val Leu Gly Val Val Asn Phe Ala Ser Thr Phe Leu Gly Ile Tyr 355 360 365Thr Ile Glu Arg Phe Gly Arg Arg Leu Cys Leu Leu Thr Gly Ser Val 370 375 380Cys Met Phe Val Cys Phe Ile Ile Tyr Ser Ile Leu Gly Val Thr Asn385 390 395 400Leu Tyr Ile Asp Gly Tyr Asp Gly Pro Thr Ser Val Pro Thr Gly Asp 405 410 415Ala Met Ile Phe Ile Thr Thr Leu Tyr Ile Phe Phe Phe Ala Ser Thr 420 425 430Trp Ala Gly Gly Val Tyr Cys Ile Val Ser Glu Thr Tyr Pro Leu Arg 435 440 445Ile Arg Ser Lys Ala Met Ser Val Ala Thr Ala Ala Asn Trp Ile Trp 450 455 460Gly Phe Leu Ile Ser Phe Phe Thr Pro Phe Ile Thr Ser Ala Ile His465 470 475 480Phe Tyr Tyr Gly Phe Val Phe Thr Gly Cys Leu Leu Phe Ser Phe Phe 485 490 495Tyr Val Tyr Phe Phe Val Val Glu Thr Lys Gly Leu Thr Leu Glu Glu 500 505 510Val Asp Glu Leu Tyr Ala Gln Gly Val Ala Pro Trp Lys Ser Ser Lys 515 520 525Trp Val Pro Pro Thr Lys Glu Glu Met Ala His Ser Ser Gly Tyr Ala 530 535 540Ala Glu Ala Lys Pro His Asp Gln Gln Val545 550118574PRTSaccharomyces cerevisiae 118Met Ala Val Glu Glu Asn Asn Met Pro Val Val Ser Gln Gln Pro Gln1 5 10 15Ala Gly Glu Asp Val Ile Ser Ser Leu Ser Lys Asp Ser His Leu Ser 20 25 30Ala Gln Ser Gln Lys Tyr Ser Asn Asp Glu Leu Lys Ala Gly Glu Ser 35 40 45Gly Ser Glu Gly Ser Gln Ser Val Pro Ile Glu Ile Pro Lys Lys Pro 50 55 60Met Ser Glu Tyr Val Thr Val Ser Leu Leu Cys Leu Cys Val Ala Phe65 70 75 80Gly Gly Phe Met Phe Gly Trp Asp Thr Gly Thr Ile Ser Gly Phe Val 85 90 95Val Gln Thr Asp Phe Leu Arg Arg Phe Gly Met Lys His Lys Asp Gly 100 105 110Thr His Tyr Leu Ser Asn Val Arg Thr Gly Leu Ile Val Ala Ile Phe 115 120 125Asn Ile Gly Cys Ala Phe Gly Gly Ile Ile Leu Ser Lys Gly Gly Asp 130 135 140Met Tyr Gly Arg Lys Lys Gly Leu Ser Ile Val Val Ser Val Tyr Ile145 150 155 160Val Gly Ile Ile Ile Gln Ile Ala Ser Ile Asn Lys Trp Tyr Gln Tyr 165 170 175Phe Ile Gly Arg Ile Ile Ser Gly Leu Gly Val Gly Gly Ile Ala Val 180 185 190Leu Cys Pro Met Leu Ile Ser Glu Ile Ala Pro Lys His Leu Arg Gly 195 200 205Thr Leu Val Ser Cys Tyr Gln Leu Met Ile Thr Ala Gly Ile Phe Leu 210 215 220Gly Tyr Cys Thr Asn Tyr Gly Thr Lys Ser Tyr Ser Asn Ser Val Gln225 230 235 240Trp Arg Val Pro Leu Gly Leu Cys Phe Ala Trp Ser Leu Phe Met Ile 245 250 255Gly Ala Leu Thr Leu Val Pro Glu Ser Pro Arg Tyr Leu Cys Glu Val 260 265 270Asn Lys Val Glu Asp Ala Lys Arg Ser Ile Ala Lys Ser Asn Lys Val 275 280 285Ser Pro Glu Asp Pro Ala Val Gln Ala Glu Leu Asp Leu Ile Met Ala 290 295 300Gly Ile Glu Ala Glu Lys Leu Ala Gly Asn Ala Ser Trp Gly Glu Leu305 310 315 320Phe Ser Thr Lys Thr Lys Val Phe Gln Arg Leu Leu Met Gly Val Phe 325 330 335Val Gln Met Phe Gln Gln Leu Thr Gly Asn Asn Tyr Phe Phe Tyr Tyr 340 345 350Gly Thr Val Ile Phe Lys Ser Val Gly Leu Asp Asp Ser Phe Glu Thr 355 360 365Ser Ile Val Ile Gly Val Val Asn Phe Ala Ser Thr Phe Phe Ser Leu 370 375 380Trp Thr Val Glu Asn Leu Gly His Arg Lys Cys Leu Leu Leu Gly Ala385 390 395 400Ala Thr Met Met Ala Cys Met Val Ile Tyr Ala Ser Val Gly Val Thr 405 410 415Arg Leu Tyr Pro His Gly Lys Ser Gln Pro Ser Ser Lys Gly Ala Gly 420 425 430Asn Cys Met Ile Val Phe Thr Cys Phe Tyr Ile Phe Cys Tyr Ala Thr 435 440 445Thr Trp Ala Pro Val Ala Trp Val Ile Thr Ala Glu Ser Phe Pro Leu 450 455 460Arg Val Lys Ser Lys Cys Met Ala Leu Ala Ser Ala Ser Asn Trp Val465 470 475 480Trp Gly Phe Leu Ile Ala Phe Phe Thr Pro Phe Ile Thr Ser Ala Ile 485 490 495Asn Phe Tyr Tyr Gly Tyr Val Phe Met Gly Cys Leu Val Ala Met Phe 500 505 510Phe Tyr Val Phe Phe Phe Val Pro Glu Thr Lys Gly Leu Ser Leu Glu 515 520 525Glu Ile Gln Glu Leu Trp Glu Glu Gly Val Leu Pro Trp Lys Ser Glu 530 535 540Gly Trp Ile Pro Ser Ser Arg Arg Gly Asn Asn Tyr Asp Leu Glu Asp545 550 555 560Leu Gln His Asp Asp Lys Pro Trp Tyr Lys Ala Met Leu Glu 565 570119505PRTSaccharomyces cerevisiae 119Met Ser Glu Gly Pro Val Lys Phe Glu Lys Asn Thr Val Ile Ser Val1 5 10 15Phe Gly Ala Ser Gly Asp Leu Ala Lys Lys Lys Thr Phe Pro Ala Leu 20 25 30Phe Gly Leu Phe Arg Glu Gly Tyr Leu Asp Pro Ser Thr Lys Ile Phe 35 40 45Gly Tyr Ala Arg Ser Lys Leu Ser Met Glu Glu Asp Leu Lys Ser Arg 50 55 60Val Leu Pro His Leu Lys Lys Pro His Gly Glu Ala Asp Asp Ser Lys65 70 75 80Val Glu Gln Phe Phe Lys Met Val Ser Tyr Ile Ser Gly Asn Tyr Asp 85 90 95Thr Asp Glu Gly Phe Asp Glu Leu Arg Thr Gln Ile Glu Lys Phe Glu 100 105 110Lys Ser Ala Asn Val Asp Val Pro His Arg Leu Phe Tyr Leu Ala Leu 115 120 125Pro Pro Ser Val Phe Leu Thr Val Ala Lys Gln Ile Lys Ser Arg Val 130 135 140Tyr Ala Glu Asn Gly Ile Thr Arg Val Ile Val Glu Lys Pro Phe Gly145 150 155 160His Asp Leu Ala Ser Ala Arg Glu Leu Gln Lys Asn Leu Gly Pro Leu 165 170 175Phe Lys Glu Glu Glu Leu Tyr Arg Ile Asp His Tyr Leu Gly Lys Glu 180 185 190Leu Val Lys Asn Leu Leu Val Leu Arg Phe Gly Asn Gln Phe Leu Asn 195 200 205Ala Ser Trp Asn Arg Asp Asn Ile Gln Ser Val Gln Ile Ser Phe Lys 210 215 220Glu Arg Phe Gly Thr Glu Gly Arg Gly Gly Tyr Phe Asp Ser Ile Gly225 230 235 240Ile Ile Arg Asp Val Met Gln Asn His Leu Leu Gln Ile Met Thr Leu 245 250 255Leu Thr Met Glu Arg Pro Val Ser Phe Asp Pro Glu Ser Ile Arg Asp 260 265 270Glu Lys Val Lys Val Leu Lys Ala Val Ala Pro Ile Asp Thr Asp Asp 275 280 285Val Leu Leu Gly Gln Tyr Gly Lys Ser Glu Asp Gly Ser Lys Pro Ala 290 295 300Tyr Val Asp Asp Asp Thr Val Asp Lys Asp Ser Lys Cys Val Thr Phe305 310 315 320Ala Ala Met Thr Phe Asn Ile Glu Asn Glu Arg Trp Glu Gly Val Pro 325 330 335Ile Met Met Arg Ala Gly Lys Ala Leu Asn Glu Ser Lys Val Glu Ile 340 345 350Arg Leu Gln Tyr Lys Ala Val Ala Ser Gly Val Phe Lys Asp Ile Pro 355 360 365Asn Asn Glu Leu Val Ile Arg Val Gln Pro Asp Ala Ala Val Tyr Leu 370 375 380Lys Phe Asn Ala Lys Thr Pro Gly Leu Ser Asn Ala Thr Gln Val Thr385 390 395 400Asp Leu Asn Leu Thr Tyr Ala Ser Arg Tyr Gln Asp Phe Trp Ile Pro 405 410 415Glu Ala Tyr Glu Val Leu Ile Arg Asp Ala Leu Leu Gly Asp His Ser 420 425 430Asn Phe Val Arg Asp Asp Glu Leu Asp Ile Ser Trp Gly Ile Phe Thr 435 440 445Pro Leu Leu Lys His Ile Glu Arg Pro Asp Gly Pro Thr Pro Glu Ile 450 455 460Tyr Pro Tyr Gly Ser Arg Gly Pro Lys Gly Leu Lys Glu Tyr Met Gln465 470 475 480Lys His Lys Tyr Val Met Pro Glu Lys His Pro Tyr Ala Trp Pro Val 485 490 495Thr Lys Pro Glu Asp Thr Lys Asp Asn 500 505120249PRTSaccharomyces cerevisiae 120Met Val Thr Val Gly Val Phe Ser Glu Arg Ala Ser Leu Thr His Gln1 5 10 15Leu Gly Glu Phe Ile Val Lys Lys Gln Asp Glu Ala Leu Gln Lys Lys 20 25 30Ser Asp Phe Lys Val Ser Val Ser Gly Gly Ser Leu Ile Asp Ala Leu 35 40 45Tyr Glu Ser Leu Val Ala Asp Glu Ser Leu Ser Ser Arg Val Gln Trp 50 55 60Ser Lys Trp Gln Ile Tyr Phe Ser Asp Glu Arg Ile Val Pro Leu Thr65 70 75 80Asp Ala Asp Ser Asn Tyr Gly Ala Phe Lys Arg Ala Val Leu Asp Lys 85 90 95Leu Pro Ser Thr Ser Gln Pro Asn Val Tyr Pro Met Asp Glu Ser Leu 100 105 110Ile Gly Ser Asp Ala Glu Ser Asn Asn Lys Ile Ala Ala Glu Tyr Glu 115 120 125Arg Ile Val Pro Gln Val Leu Asp Leu Val Leu Leu Gly Cys Gly Pro 130 135 140Asp Gly His Thr Cys Ser Leu Phe Pro Gly Glu Thr His Arg Tyr Leu145 150 155 160Leu Asn Glu Thr Thr Lys Arg Val Ala Trp Cys His Asp Ser Pro Lys 165 170 175Pro Pro Ser Asp Arg Ile Thr Phe Thr Leu Pro Val Leu Lys Asp Ala 180 185 190Lys Ala Leu Cys Phe Val Ala Glu Gly Ser Ser Lys Gln Asn Ile Met 195 200 205His Glu Ile Phe Asp Leu Lys Asn Asp Gln Leu Pro Thr Ala Leu Val 210 215 220Asn Lys Leu Phe Gly Glu Lys Thr Ser Trp Phe Val Asn Glu Glu Ala225 230 235 240Phe Gly Lys Val Gln Thr Lys Thr Phe 2451212880DNASaccharomyces cerevisiae 121atgactgtta ctactccttt tgtgaatggt acttcttatt gtaccgtcac tgcatattcc 60gttcaatctt ataaagctgc catagatttt tacaccaagt ttttgtcatt agaaaaccgc 120tcttctccag atgaaaactc cactttattg tctaacgatt ccatctcttt gaagatcctt 180ctacgtcctg atgaaaaaat caataaaaat gttgaggctc atttgaagga attgaacagt 240attaccaaga ctcaagactg gagatcacat gccacccaat ccttggtatt taacacttcc 300gacatcttgg cagtcaagga cactctaaat gctatgaacg ctcctcttca aggctaccca 360acagaactat ttccaatgca gttgtacact ttggacccat taggtaacgt tgttggtgtt 420acttctacta agaacgcagt ttcaaccaag ccaactccac caccagcacc agaagcttct 480gctgagtctg gtctttcctc taaagttcac tcttacactg atttggctta ccgtatgaaa 540accaccgaca cctatccatc tctgccaaag ccattgaaca ggcctcaaaa ggcaattgcc 600gtcatgactt ccggtggtga tgctccaggt atgaactcta acgttagagc catcgtgcgt 660tccgctatct tcaaaggttg tcgtgccttt gttgtcatgg aaggttatga aggtttggtt 720cgtggtggtc cagaatacat caaggaattc cactgggaag acgtccgtgg ttggtctgct 780gaaggtggta ccaacattgg tactgcccgt tgtatggaat tcaagaagcg cgaaggtaga 840ttattgggtg cccaacattt gattgaggcc ggtgtcgatg ctttgatcgt ttgtggtggt

900gacggttctt tgactggtgc tgatctgttt agatcagaat ggccttcttt gatcgaggaa 960ttgttgaaaa caaacagaat ttccaacgaa caatacgaaa gaatgaagca tttgaatatt 1020tgcggtactg tcggttctat tgataacgat atgtccacca cggatgctac tattggtgct 1080tactctgcct tggacagaat ctgtaaggcc atcgattacg ttgaagccac tgccaactct 1140cactcaagag ctttcgttgt tgaagttatg ggtagaaact gtggttggtt agctttatta 1200gctggtatcg ccacttccgc tgactatatc tttattccag agaagccagc cacttccagc 1260gaatggcaag atcaaatgtg tgacattgtc tccaagcaca gatcaagggg taagagaacc 1320accattgttg ttgttgcaga aggtgctatc gctgctgact tgaccccaat ttctccaagc 1380gacgtccaca aagttctagt tgacagatta ggtttggata caagaattac taccttaggt 1440cacgttcaaa gaggtggtac tgctgttgct tacgaccgta tcttggctac tttacaaggt 1500cttgaggccg ttaatgccgt tttggaatcc actccagaca ccccatcacc attgattgct 1560gttaacgaaa acaaaattgt tcgtaaacca ttaatggaat ccgtcaagtt gaccaaagca 1620gttgcagaag ccattcaagc taaggatttc aagagagcta tgtctttaag agacactgag 1680ttcattgaac atttaaacaa tttcatggct atcaactctg ctgaccacaa cgaaccaaag 1740ctaccaaagg acaagagact gaagattgcc attgttaatg tcggtgctcc agctggtggt 1800atcaactctg ccgtctactc gatggctact tactgtatgt cccaaggtca cagaccatac 1860gctatctaca atggttggtc tggtttggca agacatgaaa gtgttcgttc tttgaactgg 1920aaggatatgt tgggttggca atcccgtggt ggttctgaaa tcggtactaa cagagtcact 1980ccagaagaag cagatctagg tatgattgct tactatttcc aaaagtacga atttgatggt 2040ttgatcatcg ttggtggttt cgaagctttt gaatctttac atcaattaga gagagcaaga 2100gaaagttatc cagctttcag aatcccaatg gtcttgatac cagctacttt gtctaacaat 2160gttccaggta ctgaatactc tttgggttct gataccgctt tgaatgctct aatggaatac 2220tgtgatgttg ttaaacaatc cgcttcttca accagaggta gagccttcgt tgtcgattgt 2280caaggtggta actcaggcta tttggccact tacgcttctt tggctgttgg tgctcaagtc 2340tcttatgtcc cagaagaagg tatttctttg gagcaattgt ccgaggatat tgaatactta 2400gctcaatctt ttgaaaaggc agaaggtaga ggtagatttg gtaaattgat tttgaagagt 2460acaaacgctt ctaaggcttt atcagccact aaattggctg aagttattac tgctgaagcc 2520gatggcagat ttgacgctaa gccagcttat ccaggtcatg tacaacaagg tggtttgcca 2580tctccaattg atagaacaag agccactaga atggccatta aagctgtcgg cttcatcaaa 2640gacaaccaag ctgccattgc tgaagctcgt gctgccgaag aaaacttcaa cgctgatgac 2700aagaccattt ctgacactgc tgctgtcgtt ggtgttaagg gttcacatgt cgtttacaac 2760tccattagac aattgtatga ctatgaaact gaagtttcca tgagaatgcc aaaggtcatt 2820cactggcaag ctaccagact cattgctgac catttggttg gaagaaagag agttgattaa 28801224179DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 122atgactaacg aaaaggtctg gatagagaag ttggataatc caactctttc agtgttacca 60catgactttt tacgcccaca acaagaacct tatacgaaac aagctacata ttcgttacag 120ctacctcagc tcgatgtgcc tcatgatagt ttttctaaca aatacgctgt cgctttgagt 180gtatgggctg cattgatata tagagtaacc ggtgacgatg atattgttct ttatattgcg 240aataacaaaa tcttaagatt caatattcaa ccaacgtggt catttaatga gctgtattct 300acaattaaca atgagttgaa caagctcaat tctattgagg ccaatttttc ctttgacgag 360ctagctgaaa aaattcaaag ttgccaagat ctggaaagga cccctcagtt gttccgtttg 420gcctttttgg aaaaccaaga tttcaaatta gacgagttca agcatcattt agtggacttt 480gctttgaatt tggataccag taataatgcg catgttttga acttaattta taacagctta 540ctgtattcga atgaaagagt aaccattgtt gcggaccaat ttactcaata tttgactgct 600gcgctaagcg atccatccaa ttgcataact aaaatctctc tgatcaccgc atcatccaag 660gatagtttac ctgatccaac taagaacttg ggctggtgcg atttcgtggg gtgtattcac 720gacattttcc aggacaatgc tgaagccttc ccagagagaa cctgtgttgt ggagactcca 780acactaaatt ccgacaagtc ccgttctttc acttatcgcg acatcaaccg cacttctaac 840atagttgccc attatttgat taaaacaggt atcaaaagag gtgatgtagt gatgatctat 900tcttctaggg gtgtggattt gatggtatgt gtgatgggtg tcttgaaagc cggcgcaacc 960ttttcagtta tcgaccctgc atatccccca gccagacaaa ccatttactt aggtgttgct 1020aaaccacgtg ggttgattgt tattagagct gctggacaat tggatcaact agtagaagat 1080tacatcaatg atgaattgga gattgtttca agaatcaatt ccatcgctat tcaagaaaat 1140ggtaccattg aaggtggcaa attggacaat ggcgaggatg ttttggctcc atatgatcac 1200tacaaagaca ccagaacagg tgttgtagtt ggaccagatt ccaacccaac cctatctttc 1260acatctggtt ccgaaggtat tcctaagggt gttcttggta gacatttttc cttggcttat 1320tatttcaatt ggatgtccaa aaggttcaac ttaacagaaa atgataaatt cacaatgctg 1380agcggtattg cacatgatcc aattcaaaga gatatgttta caccattatt tttaggtgcc 1440caattgtatg tccctactca agatgatatt ggtacaccgg gccgtttagc ggaatggatg 1500agtaagtatg gttgcacagt tacccattta acacctgcca tgggtcaatt acttactgcc 1560caagctacta caccattccc taagttacat catgcgttct ttgtgggtga cattttaaca 1620aaacgtgatt gtctgaggtt acaaaccttg gcagaaaatt gccgtattgt taatatgtac 1680ggtaccactg aaacacagcg tgcagtttct tatttcgaag ttaaatcaaa aaatgacgat 1740ccaaactttt tgaaaaaatt gaaagatgtc atgcctgctg gtaaaggtat gttgaacgtt 1800cagctactag ttgttaacag gaacgatcgt actcaaatat gtggtattgg cgaaataggt 1860gagatttatg ttcgtgcagg tggtttggcc gaaggttata gaggattacc agaattgaat 1920aaagaaaaat ttgtgaacaa ctggtttgtt gaaaaagatc actggaatta tttggataag 1980gataatggtg aaccttggag acaattctgg ttaggtccaa gagatagatt gtacagaacg 2040ggtgatttag gtcgttatct accaaacggt gactgtgaat gttgcggtag ggctgatgat 2100caagttaaaa ttcgtgggtt cagaatcgaa ttaggagaaa tagatacgca catttcccaa 2160catccattgg taagagaaaa cattacttta gttcgcaaaa atgccgacaa tgagccaaca 2220ttgatcacat ttatggtccc aagatttgac aagccagatg acttgtctaa gttccaaagt 2280gatgttccaa aggaggttga aactgaccct atagttaagg gcttaatcgg ttaccatctt 2340ttatccaagg acatcaggac tttcttaaag aaaagattgg ctagctatgc tatgccttcc 2400ttgattgtgg ttatggataa actaccattg aatccaaatg gtaaagttga taagcctaaa 2460cttcaattcc caactcccaa gcaattaaat ttggtagctg aaaatacagt ttctgaaact 2520gacgactctc agtttaccaa tgttgagcgc gaggttagag acttatggtt aagtatatta 2580cctaccaagc cagcatctgt atcaccagat gattcgtttt tcgatttagg tggtcattct 2640atcttggcta ccaaaatgat ttttacctta aagaaaaagc tgcaagttga tttaccattg 2700ggcacaattt tcaagtatcc aacgataaag gcctttgccg cggaaattga cagaattaaa 2760tcatcgggtg gatcatctca aggtgaggtc gtcgaaaatg tcactgcaaa ttatgcggaa 2820gacgccaaga aattggttga gacgctacca agttcgtacc cctctcgaga atattttgtt 2880gaacctaata gtgccgaagg aaaaacaaca attaatgtgt ttgttaccgg tgtcacagga 2940tttctgggct cctacatcct tgcagatttg ttaggacgtt ctccaaagaa ctacagtttc 3000aaagtgtttg cccacgtcag ggccaaggat gaagaagctg catttgcaag attacaaaag 3060gcaggtatca cctatggtac ttggaacgaa aaatttgcct caaatattaa agttgtatta 3120ggcgatttat ctaaaagcca atttggtctt tcagatgaga agtggatgga tttggcaaac 3180acagttgata taattatcca taatggtgcg ttagttcact gggtttatcc atatgccaaa 3240ttgagggatc caaatgttat ttcaactatc aatgttatga gcttagccgc cgtcggcaag 3300ccaaagttct ttgactttgt ttcctccact tctactcttg acactgaata ctactttaat 3360ttgtcagata aacttgttag cgaagggaag ccaggcattt tagaatcaga cgatttaatg 3420aactctgcaa gcgggctcac tggtggatat ggtcagtcca aatgggctgc tgagtacatc 3480attagacgtg caggtgaaag gggcctacgt gggtgtattg tcagaccagg ttacgtaaca 3540ggtgcctctg ccaatggttc ttcaaacaca gatgatttct tattgagatt tttgaaaggt 3600tcagtccaat taggtaagat tccagatatc gaaaattccg tgaatatggt tccagtagat 3660catgttgctc gtgttgttgt tgctacgtct ttgaatcctc ccaaagaaaa tgaattggcc 3720gttgctcaag taacgggtca cccaagaata ttattcaaag actacttgta tactttacac 3780gattatggtt acgatgtcga aatcgaaagc tattctaaat ggaagaaatc attggaggcg 3840tctgttattg acaggaatga agaaaatgcg ttgtatcctt tgctacacat ggtcttagac 3900aacttacctg aaagtaccaa agctccggaa ctagacgata ggaacgccgt ggcatcttta 3960aagaaagaca ccgcatggac aggtgttgat tggtctaatg gaataggtgt tactccagaa 4020gaggttggta tatatattgc atttttaaac aaggttggat ttttacctcc accaactcat 4080aatgacaaac ttccactgcc aagtatagaa ctaactcaag cgcaaataag tctagttgct 4140tcaggtgctg gtgctcgtgg aagctccgca gcagcttaa 4179123505PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 123Met Thr Thr Thr Arg Lys Lys Ser Lys Ala Leu Pro Ala Pro Pro Thr1 5 10 15Thr Leu Phe Leu Phe Gly Ala Arg Gly Asp Leu Val Lys Arg Leu Leu 20 25 30Met Pro Ala Leu Tyr Asn Leu Ser Arg Asp Gly Leu Leu Asp Glu Gly 35 40 45Leu Arg Ile Val Gly Val Asp His Asn Ala Val Ser Asp Ala Glu Phe 50 55 60Ala Thr Leu Leu Glu Asp Phe Leu Arg Asp Glu Val Leu Asn Lys Gln65 70 75 80Gly Gln Gly Ala Ala Val Asp Ala Ala Val Trp Ala Arg Leu Thr Arg 85 90 95Gly Ile Asn Tyr Val Gln Gly Asp Phe Leu Asp Asp Ser Thr Tyr Ala 100 105 110Glu Leu Ala Ala Arg Ile Ala Ala Ser Gly Thr Gly Asn Ala Val Phe 115 120 125Tyr Leu Ala Thr Ala Pro Arg Phe Phe Ser Glu Val Val Arg Arg Leu 130 135 140Gly Ser Ala Gly Leu Leu Glu Glu Gly Pro Gln Ala Phe Arg Arg Val145 150 155 160Val Ile Glu Lys Pro Phe Gly Ser Asp Leu Gln Thr Ala Glu Ala Leu 165 170 175Asn Gly Cys Leu Leu Lys Val Met Ser Glu Lys Gln Ile Tyr Arg Ile 180 185 190Asp His Tyr Leu Gly Lys Glu Thr Val Gln Asn Ile Leu Val Ser Arg 195 200 205Phe Ser Asn Ser Leu Phe Glu Ala Phe Trp Asn Asn His Tyr Ile Asp 210 215 220His Val Gln Ile Thr Ala Ala Glu Thr Val Gly Val Glu Thr Arg Gly225 230 235 240Ser Phe Tyr Glu His Thr Gly Ala Leu Arg Asp Met Val Pro Asn His 245 250 255Leu Phe Gln Leu Leu Ala Met Val Ala Met Glu Pro Pro Ala Ala Phe 260 265 270Gly Ala Asp Ala Val Arg Gly Glu Lys Ala Lys Val Val Gly Ala Ile 275 280 285Arg Pro Trp Ser Val Glu Glu Ala Arg Ala Asn Ser Val Arg Gly Gln 290 295 300Tyr Ser Ala Gly Glu Val Ala Gly Lys Ala Leu Ala Gly Tyr Arg Glu305 310 315 320Glu Ala Asn Val Ala Pro Asp Ser Ser Thr Glu Thr Tyr Val Ala Leu 325 330 335Lys Val Met Ile Asp Asn Trp Arg Trp Val Gly Val Pro Phe Tyr Leu 340 345 350Arg Thr Gly Lys Arg Met Ser Val Arg Asp Thr Glu Ile Val Ile Cys 355 360 365Phe Lys Pro Ala Pro Tyr Ala Gln Phe Arg Asp Thr Glu Val Glu Arg 370 375 380Leu Leu Pro Thr Tyr Leu Arg Ile Gln Ile Gln Pro Asn Glu Gly Met385 390 395 400Trp Phe Asp Leu Leu Ala Lys Lys Pro Gly Pro Ser Leu Asp Met Ala 405 410 415Asn Ile Glu Leu Gly Phe Ala Tyr Arg Asp Phe Phe Glu Met Gln Pro 420 425 430Ser Thr Gly Tyr Glu Thr Leu Ile Tyr Asp Cys Leu Ile Gly Asp Gln 435 440 445Thr Leu Phe Gln Arg Ala Asp Asn Ile Glu Asn Gly Trp Arg Ala Val 450 455 460Gln Pro Phe Leu Asp Ala Trp Gln Gln Asp Ala Ser Leu Gln Asn Tyr465 470 475 480Pro Ala Gly Val Asp Gly Pro Ala Ala Gly Asp Glu Leu Leu Ala Arg 485 490 495Asp Gly Arg Val Trp Arg Pro Leu Gly 500 5051241518DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 124atgaccacca cgcgaaagaa gtccaaggcg ttgccggcgc cgccgaccac gctgttcctg 60ttcggcgccc gcggtgatct ggtcaagcgc ctgctgatgc cggcgctgta caacctcagc 120cgcgacggtt tgctggatga ggggctgcgg attgtcggcg tcgaccacaa cgcggtgagc 180gacgccgagt tcgccacgct gctggaagac ttccttcgcg atgaagtgct caacaagcaa 240ggccaggggg cggcggtgga tgccgccgtc tgggcccgcc tgacccgggg catcaactat 300gtccagggcg attttctcga cgactccacc tatgccgaac tggcggcgcg gattgccgcc 360agcggcaccg gcaacgcggt gttctacctg gccaccgcac cgcgcttctt cagtgaagtg 420gtgcgccgcc tgggcagcgc cgggttgctg gaggaggggc cgcaggcttt tcgccgggtg 480gtgatcgaaa aacccttcgg ctccgacctg cagaccgccg aagccctcaa cggctgcctg 540ctcaaggtca tgagcgagaa gcagatctat cgcatcgacc attacctggg caaggaaacg 600gtccagaaca tcctggtcag ccgtttttcc aacagcctgt tcgaggcatt ctggaacaac 660cattacatcg accacgtgca gatcaccgcg gcggaaaccg tcggcgtgga aacccgtggc 720agcttttatg aacacaccgg tgccctgcgg gacatggtgc ccaaccacct gttccagttg 780ctggcgatgg tggccatgga gccgcccgct gcctttggcg ccgatgcggt acgtggcgaa 840aaggccaagg tggtgggggc tatccgcccc tggtccgtgg aagaggcccg ggccaactcg 900gtgcgcggcc agtacagcgc cggtgaagtg gccggcaagg ccctggcggg ctaccgcgag 960gaagccaacg tggcgccgga cagcagcacc gaaacctacg ttgcgctgaa ggtgatgatc 1020gacaactggc gctgggtcgg ggtgccgttc tacctgcgca ccggcaagcg catgagtgtg 1080cgcgacaccg agatcgtcat ctgcttcaag ccggcgccct atgcacagtt ccgcgatacc 1140gaggtcgagc gcctgttgcc gacctacctg cggatccaga tccagcccaa cgaaggcatg 1200tggttcgacc tgctggcgaa aaagcccggg ccgagcctgg acatggccaa catcgaactg 1260ggttttgcct accgcgactt tttcgagatg cagccctcca ccggctacga aaccctgatc 1320tacgactgcc tgatcggcga ccagaccctg ttccagcgcg ccgacaacat cgagaacggc 1380tggcgcgcgg tgcaaccctt cctcgatgcc tggcaacagg acgccagctt gcagaactac 1440ccggcgggcg tggatggccc ggcagccggg gatgaactgc tggcccggga tggccgcgta 1500tggcgacccc tggggtga 1518125489PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 125Met Pro Ser Ile Thr Val Glu Pro Cys Thr Phe Ala Leu Phe Gly Ala1 5 10 15Leu Gly Asp Leu Ala Leu Arg Lys Leu Phe Pro Ala Leu Tyr Gln Leu 20 25 30Asp Ala Ala Gly Leu Leu His Asp Asp Thr Arg Ile Leu Ala Leu Ala 35 40 45Arg Glu Pro Gly Ser Glu Gln Glu His Leu Ala Asn Ile Glu Thr Glu 50 55 60Leu His Lys Tyr Val Gly Asp Lys Asp Ile Asp Ser Gln Val Leu Gln65 70 75 80Arg Phe Leu Val Arg Leu Ser Tyr Leu His Val Asp Phe Leu Lys Ala 85 90 95Glu Asp Tyr Val Ala Leu Ala Glu Arg Val Gly Ser Glu Gln Arg Leu 100 105 110Ile Ala Tyr Phe Ala Thr Pro Ala Ala Val Tyr Gly Ala Ile Cys Glu 115 120 125Asn Leu Ser Arg Val Gly Leu Asn Gln His Thr Arg Val Val Leu Glu 130 135 140Lys Pro Ile Gly Ser Asp Leu Asp Ser Ser Arg Lys Val Asn Asp Ala145 150 155 160Val Ala Gln Phe Phe Pro Glu Thr Arg Ile Tyr Arg Ile Asp His Tyr 165 170 175Leu Gly Lys Glu Thr Val Gln Asn Leu Ile Ala Leu Arg Phe Ala Asn 180 185 190Ser Leu Phe Glu Thr Gln Trp Asn Gln Asn Tyr Ile Ser His Val Glu 195 200 205Ile Thr Val Ala Glu Lys Val Gly Ile Glu Gly Arg Trp Gly Tyr Phe 210 215 220Asp Lys Ala Gly Gln Leu Arg Asp Met Ile Gln Asn His Leu Leu Gln225 230 235 240Leu Leu Cys Leu Ile Ala Met Asp Pro Pro Ala Asp Leu Ser Ala Asp 245 250 255Ser Ile Arg Asp Glu Lys Val Lys Val Leu Lys Ala Leu Ala Pro Ile 260 265 270Ser Pro Glu Gly Leu Thr Thr Gln Val Val Arg Gly Gln Tyr Ile Ala 275 280 285Gly His Ser Glu Gly Gln Ser Val Pro Gly Tyr Leu Glu Glu Glu Asn 290 295 300Ser Asn Thr Gln Ser Asp Thr Glu Thr Phe Val Ala Leu Arg Ala Asp305 310 315 320Ile Arg Asn Trp Arg Trp Ala Gly Val Pro Phe Tyr Leu Arg Thr Gly 325 330 335Lys Arg Met Pro Gln Lys Leu Ser Gln Ile Val Ile His Phe Lys Glu 340 345 350Pro Ser His Tyr Ile Phe Ala Pro Glu Gln Arg Leu Gln Ile Ser Asn 355 360 365Lys Leu Ile Ile Arg Leu Gln Pro Asp Glu Gly Ile Ser Leu Arg Val 370 375 380Met Thr Lys Glu Gln Gly Leu Asp Lys Gly Met Gln Leu Arg Ser Gly385 390 395 400Pro Leu Gln Leu Asn Phe Ser Asp Thr Tyr Arg Ser Ala Arg Ile Pro 405 410 415Asp Ala Tyr Glu Arg Leu Leu Leu Glu Val Met Arg Gly Asn Gln Asn 420 425 430Leu Phe Val Arg Lys Asp Glu Ile Glu Ala Ala Trp Lys Trp Cys Asp 435 440 445Gln Leu Ile Ala Gly Trp Lys Lys Ser Gly Asp Ala Pro Lys Pro Tyr 450 455 460Ala Ala Gly Ser Trp Gly Pro Met Ser Ser Ile Ala Leu Ile Thr Arg465 470 475 480Asp Gly Arg Ser Trp Tyr Gly Asp Ile 4851261470DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 126atgccttcga taacggttga accctgcacc tttgccttgt ttggcgcgct gggcgatctg 60gcgctgcgta agctgtttcc tgccctgtac caactcgatg ccgccggttt gctgcatgac 120gacacgcgca tcctggccct ggcccgcgag cctggcagcg agcaggaaca cctggcgaat 180atcgaaaccg agctgcacaa gtatgtcggc gacaaggata tcgatagcca ggtcctgcag 240cgttttctcg tccgcctgag ctacctgcat gtggacttcc tcaaggccga ggactacgtc 300gccctggccg aacgtgtcgg cagcgagcag cgcctgattg cctacttcgc cacgccggcg 360gcggtgtatg gcgcgatctg cgaaaacctc tcccgggtcg ggctcaacca gcacacccgt 420gtggtcctgg aaaaacccat cggctcggac ctggattcat cacgcaaggt caacgacgcg 480gtggcgcagt tcttcccgga aacccgcatc taccggatcg accactacct gggcaaggaa 540acggtgcaga acctgattgc cctgcgtttc gccaacagcc tgttcgaaac ccagtggaac 600cagaactaca tctcccacgt ggaaatcacc gtggccgaga aggtcggcat cgaaggtcgc 660tggggctatt tcgacaaggc cggccaactg cgggacatga tccagaacca cttgctgcaa 720ctgctctgcc tgatcgcgat ggacccgccg gccgaccttt cggccgacag catccgcgac 780gagaaggtca aggtgctcaa ggccctggcg cccatcagcc cggaaggcct gaccacccag 840gtggtgcgcg

gccagtacat cgccggccac agcgaaggcc agtcggtgcc gggctacctg 900gaggaagaaa actccaacac ccagagcgac accgagacct tcgtcgccct gcgcgccgat 960atccgcaact ggcgctgggc cggtgtgcct ttctacctgc gcaccggcaa gcgcatgcca 1020cagaagctgt cgcagatcgt catccacttc aaggaaccct cgcactacat cttcgccccc 1080gagcagcgcc tgcagatcag caacaagctg atcatccgcc tgcagccgga cgaaggtatc 1140tcgttgcggg tgatgaccaa ggagcagggc ctggacaagg gcatgcaact gcgcagcggt 1200ccgttgcagc tgaatttttc cgatacctat cgcagtgcac ggatccccga tgcctacgag 1260cggttgttgc tggaagtgat gcgcggcaat cagaacctgt ttgtgcgcaa agatgaaatc 1320gaagccgcgt ggaagtggtg tgaccagttg attgccgggt ggaagaaatc cggcgatgcg 1380cccaagccgt acgcggccgg gtcctggggg ccgatgagct ccattgcact gatcacgcgg 1440gatgggaggt cttggtatgg cgatatctaa 1470127489PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 127Met Pro Asp Val Arg Val Leu Pro Cys Thr Leu Ala Leu Phe Gly Ala1 5 10 15Leu Gly Asp Leu Ala Leu Arg Lys Leu Phe Pro Ala Leu Tyr Gln Leu 20 25 30Asp Arg Glu Asn Leu Leu His Arg Asp Thr Arg Val Leu Ala Leu Ala 35 40 45Arg Asp Glu Gly Ala Pro Ala Glu His Leu Ala Thr Leu Glu Gln Arg 50 55 60Leu Arg Leu Ala Val Pro Ala Lys Glu Trp Asp Asp Val Val Trp Gln65 70 75 80Arg Phe Arg Glu Arg Leu Asp Tyr Leu Ser Met Asp Phe Leu Asp Pro 85 90 95Gln Ala Tyr Val Gly Leu Arg Glu Ala Val Asp Asp Glu Leu Pro Leu 100 105 110Val Ala Tyr Phe Ala Thr Pro Ala Ser Val Phe Gly Gly Ile Cys Glu 115 120 125Asn Leu Ala Ala Ala Gly Leu Ala Glu Arg Thr Arg Val Val Leu Glu 130 135 140Lys Pro Ile Gly His Asp Leu Glu Ser Ser Arg Glu Val Asn Glu Ala145 150 155 160Val Ala Arg Phe Phe Pro Glu Ser Arg Ile Tyr Arg Ile Asp His Tyr 165 170 175Leu Gly Lys Glu Thr Val Gln Asn Leu Ile Ala Leu Arg Phe Ala Asn 180 185 190Ser Leu Phe Glu Thr Gln Trp Asn Gln Asn His Ile Ser His Val Glu 195 200 205Ile Thr Val Ala Glu Lys Val Gly Ile Glu Gly Arg Trp Gly Tyr Phe 210 215 220Asp Gln Ala Gly Gln Leu Arg Asp Met Val Gln Asn His Leu Leu Gln225 230 235 240Leu Leu Cys Leu Ile Ala Met Asp Pro Pro Ser Asp Leu Ser Ala Asp 245 250 255Ser Ile Arg Asp Glu Lys Val Lys Val Leu Arg Ala Leu Glu Pro Ile 260 265 270Pro Ala Glu Gln Leu Ala Ser Arg Val Val Arg Gly Gln Tyr Thr Ala 275 280 285Gly Phe Ser Asp Gly Lys Ala Val Pro Gly Tyr Leu Glu Glu Glu His 290 295 300Ala Asn Arg Asp Ser Asp Ala Glu Thr Phe Val Ala Leu Arg Val Asp305 310 315 320Ile Arg Asn Trp Arg Trp Ser Gly Val Pro Phe Tyr Leu Arg Thr Gly 325 330 335Lys Arg Met Pro Gln Lys Leu Ser Gln Ile Val Ile His Phe Lys Glu 340 345 350Pro Pro His Tyr Ile Phe Ala Pro Glu Gln Arg Ser Leu Ile Ser Asn 355 360 365Arg Leu Ile Ile Arg Leu Gln Pro Asp Glu Gly Ile Ser Leu Gln Val 370 375 380Met Thr Lys Asp Gln Gly Leu Gly Lys Gly Met Gln Leu Arg Thr Gly385 390 395 400Pro Leu Gln Leu Ser Phe Ser Glu Thr Tyr His Ala Ala Arg Ile Pro 405 410 415Asp Ala Tyr Glu Arg Leu Leu Leu Glu Val Thr Gln Gly Asn Gln Tyr 420 425 430Leu Phe Val Arg Lys Asp Glu Val Glu Phe Ala Trp Lys Trp Cys Asp 435 440 445Gln Leu Ile Ala Gly Trp Glu Arg Leu Ser Glu Ala Pro Lys Pro Tyr 450 455 460Pro Ala Gly Ser Trp Gly Pro Val Ala Ser Val Ala Leu Val Ala Arg465 470 475 480Asp Gly Arg Ser Trp Tyr Gly Asp Phe 4851281470DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 128atgcctgatg tccgcgttct gccttgcacg ttagcgctgt tcggtgcgct gggcgatctc 60gccttgcgca agctgttccc ggcgctctac caactcgatc gtgagaacct gctgcaccgc 120gatacccgcg tcctggccct ggcccgtgac gaaggcgctc ccgccgaaca cctggcgacg 180ctggagcagc gcctgcgcct ggcagtgccg gcgaaggagt gggacgacgt ggtctggcag 240cgtttccgcg aacgcctcga ctacctgagc atggacttcc tcgacccgca ggcctatgtc 300ggcttgcgcg aggcggtgga tgacgaactg ccgctggtcg cctacttcgc cacgccggcc 360tcggtgttcg gcggcatctg cgagaacctc gccgccgccg gtctcgccga gcgcacccgg 420gtggtgctgg agaagcccat cggtcatgac ctggagtcgt cccgcgaggt caacgaggca 480gtcgcccggt tcttcccgga aagccgcatc taccggatcg accattacct gggcaaggag 540acggtgcaga acctgatcgc cctgcgcttc gccaacagcc tcttcgagac ccagtggaac 600cagaaccaca tctcccacgt ggagatcacc gtggccgaga aggtcggcat cgaaggccgc 660tggggctact tcgaccaggc cgggcaactg cgcgacatgg tgcagaacca cctgctgcaa 720ctgctctgcc tgatcgccat ggatccgccc agcgaccttt cggcggacag cattcgcgac 780gagaaggtca aggtcctccg cgccctcgag ccgattcccg cagaacaact ggcttcgcgc 840gtggtgcgtg ggcagtacac cgccggtttc agcgacggca aggcagtgcc gggctacctg 900gaggaggaac atgcgaatcg cgacagcgac gcggaaacct tcgtcgccct gcgcgtggac 960atccgcaact ggcgctggtc gggcgtgccg ttctacctgc gcaccggcaa gcgcatgccg 1020cagaagctgt cgcagatcgt catccacttc aaggagccgc cgcactacat cttcgctccc 1080gagcagcgtt cgctgatcag caaccggctg atcatccgcc tgcagccgga cgaaggtatc 1140tccctgcaag tgatgaccaa ggaccagggc ctgggcaagg gcatgcaatt gcgtaccggc 1200ccgctgcaac tgagtttttc cgagacctac cacgcggcgc ggattcccga tgcctacgag 1260cgtctgctgc tggaggtcac ccagggcaac cagtacctgt tcgtgcgcaa ggacgaggtg 1320gagttcgcct ggaagtggtg cgaccagctg atcgctggct gggaacgcct gagcgaagcg 1380cccaagccgt atccggcggg gagttggggg ccggtggcct cggtggccct ggtggcccgc 1440gatgggagga gttggtatgg cgatttctga 1470129485PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 129Met Thr Asn Thr Val Ser Thr Met Ile Leu Phe Gly Ser Thr Gly Asp1 5 10 15Leu Ser Gln Arg Met Leu Leu Pro Ser Leu Tyr Gly Leu Asp Ala Asp 20 25 30Gly Leu Leu Ala Asp Asp Leu Arg Ile Val Cys Thr Ser Arg Ser Glu 35 40 45Tyr Asp Thr Asp Gly Phe Arg Asp Phe Ala Glu Lys Ala Leu Asp Arg 50 55 60Phe Val Ala Ser Asp Arg Leu Asn Asp Asp Ala Lys Ala Lys Phe Leu65 70 75 80Asn Lys Leu Phe Tyr Ala Thr Val Asp Ile Thr Asp Pro Thr Gln Phe 85 90 95Gly Lys Leu Ala Asp Leu Cys Gly Pro Val Glu Lys Gly Ile Ala Ile 100 105 110Tyr Leu Ser Thr Ala Pro Ser Leu Phe Glu Gly Ala Ile Ala Gly Leu 115 120 125Lys Gln Ala Gly Leu Ala Gly Pro Thr Ser Arg Leu Ala Leu Glu Lys 130 135 140Pro Leu Gly Gln Asp Leu Ala Ser Ser Asp His Ile Asn Asp Ala Val145 150 155 160Leu Lys Val Phe Ser Glu Lys Gln Val Tyr Arg Ile Asp His Tyr Leu 165 170 175Gly Lys Glu Thr Val Gln Asn Leu Leu Thr Leu Arg Phe Gly Asn Ala 180 185 190Leu Phe Glu Pro Leu Trp Asn Ser Lys Gly Ile Asp His Val Gln Ile 195 200 205Ser Val Ala Glu Thr Val Gly Leu Glu Gly Arg Ile Gly Tyr Phe Asp 210 215 220Gly Ser Gly Ser Leu Arg Asp Met Val Gln Ser His Ile Leu Gln Leu225 230 235 240Val Ala Leu Val Ala Met Glu Pro Pro Ala His Met Glu Ala Asn Ala 245 250 255Val Arg Asp Glu Lys Val Lys Val Phe Arg Ala Leu Arg Pro Ile Asn 260 265 270Asn Asp Thr Val Phe Thr His Thr Val Thr Gly Gln Tyr Gly Ala Gly 275 280 285Val Ser Gly Gly Lys Glu Val Ala Gly Tyr Ile Asp Glu Leu Gly Gln 290 295 300Pro Ser Asp Thr Glu Thr Phe Val Ala Ile Lys Ala His Val Asp Asn305 310 315 320Trp Arg Trp Gln Gly Val Pro Phe Tyr Ile Arg Thr Gly Lys Arg Leu 325 330 335Pro Ala Arg Arg Ser Glu Ile Val Val Gln Phe Lys Pro Val Pro His 340 345 350Ser Ile Phe Ser Ser Ser Gly Gly Ile Leu Gln Pro Asn Lys Leu Arg 355 360 365Ile Val Leu Gln Pro Asp Glu Thr Ile Gln Ile Ser Met Met Val Lys 370 375 380Glu Pro Gly Leu Asp Arg Asn Gly Ala His Met Arg Glu Val Trp Leu385 390 395 400Asp Leu Ser Leu Thr Asp Val Phe Lys Asp Arg Lys Arg Arg Ile Ala 405 410 415Tyr Glu Arg Leu Met Leu Asp Leu Ile Glu Gly Asp Ala Thr Leu Phe 420 425 430Val Arg Arg Asp Glu Val Glu Ala Gln Trp Val Trp Ile Asp Gly Ile 435 440 445Arg Glu Gly Trp Lys Ala Asn Ser Met Lys Pro Lys Thr Tyr Val Ser 450 455 460Gly Thr Trp Gly Pro Ser Thr Ala Ile Ala Leu Ala Glu Arg Asp Gly465 470 475 480Val Thr Trp Tyr Asp 4851301458DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 130atgacaaata ccgtttcgac gatgatattg tttggctcga ctggcgacct ttcacagcgt 60atgctgttgc cgtcgcttta tggtcttgat gccgatggtt tgcttgcaga tgatctgcgt 120atcgtctgca cctctcgtag cgaatacgac acagatggtt tccgtgattt tgcagaaaaa 180gctttagatc gctttgtcgc ttctgaccgg ttaaatgatg acgctaaagc taaattcctt 240aacaagcttt tctacgcgac ggtcgatatt acggatccga cccaattcgg aaaattagct 300gacctttgtg gcccggtcga aaaaggtatc gccatttatc tttcgactgc gccttctttg 360tttgaagggg caatcgctgg cctgaaacag gctggtctgg ctggtccaac ttctcgcctg 420gcgcttgaaa aacctttagg tcaagatctt gcttcttccg atcatattaa tgatgcggtt 480ttgaaagttt tctctgaaaa gcaagtttat cgtattgacc attatctggg taaagaaacg 540gttcagaatc ttctgaccct gcgttttggt aatgctttgt ttgaaccgct ttggaattca 600aaaggcattg accacgttca gatcagcgtt gctgaaacgg ttggtcttga aggtcgtatc 660ggttatttcg acggttctgg cagcttgcgc gatatggttc aaagccatat ccttcagttg 720gtcgctttgg ttgcaatgga accaccggct catatggaag ccaacgctgt tcgtgacgaa 780aaggtaaaag ttttccgcgc tctgcgtccg atcaataacg acaccgtctt tacgcatacc 840gttaccggtc aatatggtgc cggtgtttct ggtggtaaag aagttgccgg ttacattgac 900gaactgggtc agccttccga taccgaaacc tttgttgcta tcaaagcgca tgttgataac 960tggcgttggc agggtgttcc gttctatatc cgcactggta agcgtttacc tgcacgtcgt 1020tctgaaatcg tggttcagtt taaacctgtt ccgcattcga ttttctcttc ttcaggtggt 1080atcttgcagc cgaacaagct gcgtattgtc ttacagcctg atgaaaccat ccagatttct 1140atgatggtga aagaaccggg tcttgaccgt aacggtgcgc atatgcgtga agtttggctg 1200gatctttccc tcacggatgt gtttaaagac cgtaaacgtc gtatcgctta tgaacgcctg 1260atgcttgatc ttatcgaagg cgatgctact ttatttgtgc gtcgtgacga agttgaggcg 1320cagtgggttt ggattgacgg aattcgtgaa ggctggaaag ccaacagtat gaagccaaaa 1380acctatgtct ctggtacatg ggggccttca actgctatag ctctggccga acgtgatgga 1440gtaacttggt atgactga 1458131750DNASaccharomyces cerevisiae 131atggtgacag tcggtgtgtt ttctgagagg gctagtttga cccatcaatt gggggaattc 60atcgtcaaga aacaagatga ggcgctgcaa aagaagtcag actttaaagt ttccgttagc 120ggtggctctt tgatcgatgc tctgtatgaa agtttagtag cggacgaatc actatcttct 180cgagtgcaat ggtctaaatg gcaaatctac ttctctgatg aaagaattgt gccactgacg 240gacgctgaca gcaattatgg tgccttcaag agagctgttc tagataaatt accctcgact 300agtcagccaa acgtttatcc catggacgag tccttgattg gcagcgatgc tgaatctaac 360aacaaaattg ctgcagagta cgagcgtatc gtacctcaag tgcttgattt ggtactgttg 420ggctgtggtc ctgatggaca cacttgttcc ttattccctg gagaaacaca taggtacttg 480ctgaacgaaa caaccaaaag agttgcttgg tgccacgatt ctcccaagcc tccaagtgac 540agaatcacct tcactctgcc tgtgttgaaa gacgccaaag ccctgtgttt tgtggctgag 600ggcagttcca aacaaaatat aatgcatgag atctttgact tgaaaaacga tcaattgcca 660accgcattgg ttaacaaatt atttggtgaa aaaacatcct ggttcgttaa tgaggaagct 720tttggaaaag ttcaaacgaa aactttttag 75013218DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 132aaannraang arraanar 1813315DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 133gtgmaknmgr angng 1513418DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 134nttwacaycc rtacayny 1813518DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 135tttnctttky ttnytttt 1813618DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 136aaaranraaa naaarnaa 1813717DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 137cacacacaca cacacac 1713818DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 138ttgcttgaac gsatgcca 1813917DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 139yctttttttt yttyykg 1714018DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 140rrsccgmcgm grcgcgcs 1814118DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 141aaanararnr aaaarrar 1814218DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 142ggaagctgaa acgymwrr 1814318DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 143ggagaggcat gatggggg 1814410DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 144ctncctttct 1014518DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 145gaaarraaaa aamrmara 1814611DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 146gngccrsnnt m 1114718DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 147ttttttyttt tynktttt 1814818DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 148yttcttttyt nyncnktn 1814915DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 149tnsykctttt cytty 1515018DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 150sttnytttyn ttytyyyy 1815111DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 151ykntttwyyt c 1115215DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 152aaaananaar arnag 1515318DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 153waaaaaagaa aanaaaar 1815411DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 154aaanggnara m 1115516DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 155tyttcyagaa nnttcy 1615618DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 156cacacacaca cacacaca 1815711DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 157tttycacatg c 1115814DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 158gnngcatgtg aaaa 1415918DNAArtificial SequenceDescription of Artificial

Sequence Synthetic binding motif oligonucleotide 159gaaaanaaaa aaaarana 1816015DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 160gaaaaaraar aanaa 1516118DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 161yttktnnttt ttytyttt 1816210DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 162gcagngcagg 1016318DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 163tttytykttt nyyttttt 1816416DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 164tttccnaawn rggaaa 1616518DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 165yttyyttytt ttytyttc 1816614DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 166mtttttytyt yttc 1416718DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 167tatacanagm krtatatg 1816818DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 168tmtttntync ttntttwk 1816916DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 169ktnnttwtta ttccnc 1617018DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 170rnnaaaanra naaraaat 1817117DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 171ttttttttcw ctttkyc 1717218DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 172tttynytktt tynyttyt 1817318DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 173ttynnttytt nytttyyy 1817414DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 174tnygtgkryg tnyg 1417518DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 175ttyyyttttt yttttytt 1817615DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 176gamaaaaaar aaaar 1517718DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 177cycgggaagc sammnccg 1817813DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 178grtgyayggr tgy 1317914DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 179kmaaraaaaa raar 1418018DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 180aygraaaara raaaaraa 1818118DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 181ggaksccntt tyngmrta 1818217DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 182ttttcnkttt ytttttc 1718315DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 183araagmagaa arraa 1518417DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 184yttttctttt ynttttt 1718511DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 185arraraaagg n 1118618DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 186ystnykntyt tnctcccm 1818718DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 187garanaaaar nraaraaa 1818811DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 188cynnggssan c 1118916DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 189cacacacaca cacaya 1619015DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 190cttytwttkt tktsa 1519118DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 191yttyyytytt tytyyttt 1819218DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 192amaaaaaraa rwaranaa 1819318DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 193araaaarraa aaagnraa 1819418DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 194raaraaaaar cmrsraaa 1819518DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 195ttytktytyn tyykttty 1819618DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 196gaaaamaana aaaanaaa 1819718DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 197yaanaraara aaaanaam 1819818DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 198tyntttttty tttttntk 1819918DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 199raaraaraaa naanrnaa 1820018DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 200cacacacaca cacacaca 1820118DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 201raarrraaaa anaaamaa 1820211DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 202gccagaccta c 1120318DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 203ttyttyttyt ttynytyt 1820418DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 204yksgcgcgyc kcgkcggs 1820517DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 205ttttyytttt yyyyktt 1720613DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 206ttcttktyyt ttt 1320718DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 207ttyttttyty ytttyttt 1820818DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 208ttgcttgaac ggatgcca 1820916DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 209mgnmcaaaaa taaaas 1621016DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 210tycgtnnrna rtgaya 1621115DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 211gtgtgtgtgt gtgtg 1521217DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 212ytstysttnt tgytwtt 1721315DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 213gcatgaccat ccacg 1521417DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 214gsgayarmgg amaaaaa 1721518DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 215trccgagryw nsssgcgs 1821610DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 216cgtccggcgc 1021718DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 217aarwtsgarg nanncsaa 1821814DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 218csnccaatgk nncs 1421910DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 219gctnactaat 1022010DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 220cacgtgacya 1022111DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 221cayamrtgyn c 1122210DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 222tsgygrgasa 1022318DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 223kncncnnnsc gctackgc 1822415DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 224srnggcmcgg cnssg 1522515DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 225tacyacanca cawga 1522617DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 226ccytgnaytt cwncttc 1722715DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 227gtgmaknmgr angng 1522818DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 228nttwacaycc rtacayny 1822913DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 229aawnrtaaay arg 1323016DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 230ggnaawangt aaacaa 1623115DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 231sastkcwctc ktcgt 1523218DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 232ttgcttgaac gsatgcca 1823317DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 233cggmnnncwn ynncccg 1723418DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 234rgargtsacg cakrttct 1823518DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 235ggaagctgaa acgymwrr 1823618DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 236aggtgatgga gtgctcag 1823716DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 237gkctrrnrgg agangm 1623817DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 238ngggsgntns ygtncga 1723918DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 239agnawgtttt tgwcaama 1824018DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 240kcksgcaggc wttkytct 1824111DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 241gnccsartng c 1124218DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 242sgcgmgggnn ccngaccg 1824314DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 243yctnattsgn cngs 1424418DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 244tnttsmttny tttccknc 1824515DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 245ccacktksgs cctns 1524611DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 246crsgcywgkg c 1124717DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 247naaraagcng ggcacnc 1724816DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 248tyttcyagaa nnttcy 1624918DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 249cacacacaca cacacaca 1825017DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 250sckkcgckst ssttyaa 1725114DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 251gnngcatgtg aaaa 1425215DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 252ctttttttyy tsgcc 1525315DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 253gccggtmmcg sycnn 1525415DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 254anntttttyt tkygc 1525517DNAArtificial SequenceDescription of Artificial

Sequence Synthetic binding motif oligonucleotide 255aaacntttat anataca 1725611DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 256caatntctnc k 1125715DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 257gnrrnanacg cgtnr 1525816DNAArtificial SequenceDescription of Artificial Sequence Synthetic binding motif oligonucleotide 258tttccnaawn rggaaa 162591317DNARuminococcus flavefaciens 259atggaatttt tcagcaatat cggtaaaatt cagtatcagg gaccaaaaag tactgatcct 60ctctcattta agtactataa ccctgaagaa gtcatcaacg gaaagacaat gcgcgagcat 120ctgaagttcg ctctttcatg gtggcacaca atgggcggcg acggaacaga tatgttcggc 180tgcggcacaa cagacaagac ctggggacag tccgatcccg ctgcaagagc aaaggctaag 240gttgacgcag cattcgagat catggataag ctctccattg actactattg tttccacgat 300cgcgatcttt ctcccgagta tggcagcctc aaggctacca acgatcagct tgacatagtt 360acagactata tcaaggagaa gcagggcgac aagttcaagt gcctctgggg tacagcaaag 420tgcttcgatc atccaagatt catgcacggt gcaggtacat ctccttctgc tgatgtattc 480gctttctcag ctgctcagat caagaaggct ctcgagtcaa cagtaaagct cggcggtaac 540ggttacgttt tctggggcgg acgtgaaggc tatgagacac ttcttaatac aaatatggga 600ctcgaactcg acaatatggc tcgtcttatg aagatggctg ttgagtatgg acgttcgatc 660ggcttcaagg gcgacttcta tatcgagccc aagcccaagg agcccacaaa gcatcagtac 720gatttcgata cagctactgt tctgggattc ctcagaaagt acggtctcga taaggatttc 780aagatgaata tcgaagctaa ccacgctaca cttgctcagc atacattcca gcatgagctc 840cgtgttgcaa gagacaatgg tgtgttcggt tctatcgacg caaaccaggg cgacgttctt 900cttggatggg atacagacca gttccccaca aatatctacg atacaacaat gtgtatgtat 960gaagttatca aggcaggcgg cttcacaaac ggcggtctca acttcgacgc taaggcacgc 1020agagggagct tcactcccga ggatatcttc tacagctata tcgcaggtat ggatgcattt 1080gctctgggct tcagagctgc tctcaagctt atcgaagacg gacgtatcga caagttcgtt 1140gctgacagat acgcttcatg gaataccggt atcggtgcag acataatcgc aggtaaggca 1200gatttcgcat ctcttgaaaa gtatgctctt gaaaagggcg aggttacagc ttcactctca 1260agcggcagac aggaaatgct ggagtctatc gtaaataacg ttcttttcag tctgtaa 13172601317DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 260atggaatttt tcagcaatat cggtaaaatt cagtatcagg gaccaaaaag tactgatcct 60ctctcattta agtactataa ccctgaagaa gtcatcaacg gaaagacaat gcgcgagcat 120ctgaagttcg ctctttcatg gtggcacaca atgggcggcg acggaacaga tatgttcggc 180tgcggcacaa cagacaagac ctggggacag tccgatcccg ctgcaagagc aaaggctaag 240gttgacgcag cattcgagat catggataag ctctccattg actactattg tttccacgat 300cgcgatcttt ctcccgagta tggcagcctc aaggctacca acgatcagct tgacatagtt 360acagactata tcaaggagaa gcagggcgac aagttcaagt gcctctgggg tacagcaaag 420tgcttcgatc atccaagatt catgcacggt gcaggtacat ctccttctgc tgatgtattc 480gctttctcag ctgctcagat caagaaggct ctggagtcaa cagtaaagct cggcggtaac 540ggttacgttt tctggggcgg acgtgaaggc tatgagacac ttcttaatac aaatatggga 600ctcgaactcg acaatatggc tcgtcttatg aagatggctg ttgagtatgg acgttcgatc 660ggcttcaagg gcgacttcta tatcgagccc aagcccaagg agcccacaaa gcatcagtac 720gatttcgata cagctactgt tctgggattc ctcagaaagt acggtctcga taaggatttc 780aagatgaata tcgaagctaa ccacgctaca cttgctcagc atacattcca gcatgagctc 840cgtgttgcaa gagacaatgg tgtgttcggt tctatcgacg caaaccaggg cgacgttctt 900cttggatggg atacagacca gttccccaca aatatctacg atacaacaat gtgtatgtat 960gaagttatca aggcaggcgg cttcacaaac ggcggtctca acttcgacgc taaggcacgc 1020agagggagct tcactcccga ggatatcttc tacagctata tcgcaggtat ggatgcattt 1080gctctgggct tcagagctgc tctcaagctt atcgaagacg gacgtatcga caagttcgtt 1140gctgacagat acgcttcatg gaataccggt atcggtgcag acataatcgc aggtaaggca 1200gatttcgcat ctcttgaaaa gtatgctctt gaaaagggcg aggttacagc ttcactctca 1260agcggcagac aggaaatgct ggagtctatc gtaaataacg ttcttttcag tctgtaa 13172611314DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 261atggagttct tttctaatat aggtaaaatt cagtatcaag gtccaaaatc tacagatcca 60ttgtctttta aatattataa tccagaagaa gttataaatg gtaaaactat gagagaacat 120ttaaaatttg ctttgtcttg gtggcatact atgggtggtg atggtactga tatgttcggt 180tgtggtacta ctgataaaac ttggggtcaa tctgatccag ctgctagagc aaaagccaaa 240gtagatgcag cctttgaaat tatggataaa ttgtctattg attattattg ttttcatgat 300agagatttgt ctcctgaata tggttcttta aaagcaacta atgatcaatt ggacattgtt 360acggattata ttaaagaaaa acaaggtgat aaatttaaat gtttgtgggg cactgcgaaa 420tgttttgatc atccacgttt tatgcatggt gcggggacga gtccttctgc tgatgttttt 480gctttttctg ccgctcaaat taagaaggca ttggaatcaa ctgttaaatt aggtgggaac 540gggtatgtat tctggggagg aagggaaggt tatgaaacat tattaaacac taatatgggt 600ttggaattgg ataatatggc tagattgatg aaaatggctg tagaatacgg aaggtctatt 660ggttttaagg gtgactttta tattgaacca aaacctaaag agcctactaa acatcaatat 720gattttgata ctgctacagt tttgggattc ttgagaaaat atggtctgga taaagatttt 780aaaatgaata tagaagctaa tcatgcaaca ctcgcacaac atacttttca acatgaattg 840agagttgcca gagataacgg agtttttgga tctatcgatg caaaccaggg agacgttttg 900ctaggatggg atactgatca atttccaact aacatttatg atactactat gtgtatgtat 960gaagtaatta aggcaggagg ctttactaat ggcggattaa actttgatgc gaaggctagg 1020cgtggtagtt tcactccaga ggatatattc tattcttata ttgctggaat ggatgctttc 1080gcgttaggtt tcagggcagc actaaaattg attgaagatg gtagaattga taagtttgta 1140gctgatagat atgcttcttg gaatactgga ataggagcag atataatcgc tgggaaagcc 1200gacttcgcca gtctggaaaa atatgcgctt gaaaaaggag aagttactgc cagcttaagt 1260tccggtcgtc aagaaatgtt ggaatctatt gtaaacaatg ttttattttc tctg 13142621314DNAPiromyces sp. 262atggctaagg aatatttccc acaaattcaa aagattaagt tcgaaggtaa ggattctaag 60aatccattag ccttccacta ctacgatgct gaaaaggaag tcatgggtaa gaaaatgaag 120gattggttac gtttcgccat ggcctggtgg cacactcttt gcgccgaagg tgctgaccaa 180ttcggtggag gtacaaagtc tttcccatgg aacgaaggta ctgatgctat tgaaattgcc 240aagcaaaagg ttgatgctgg tttcgaaatc atgcaaaagc ttggtattcc atactactgt 300ttccacgatg ttgatcttgt ttccgaaggt aactctattg aagaatacga atccaacctt 360aaggctgtcg ttgcttacct caaggaaaag caaaaggaaa ccggtattaa gcttctctgg 420agtactgcta acgtcttcgg tcacaagcgt tacatgaacg gtgcctccac taacccagac 480tttgatgttg tcgcccgtgc tattgttcaa attaagaacg ccatagacgc cggtattgaa 540cttggtgctg aaaactacgt cttctggggt ggtcgtgaag gttacatgag tctccttaac 600actgaccaaa agcgtgaaaa ggaacacatg gccactatgc ttaccatggc tcgtgactac 660gctcgttcca agggattcaa gggtactttc ctcattgaac caaagccaat ggaaccaacc 720aagcaccaat acgatgttga cactgaaacc gctattggtt tccttaaggc ccacaactta 780gacaaggact tcaaggtcaa cattgaagtt aaccacgcta ctcttgctgg tcacactttc 840gaacacgaac ttgcctgtgc tgttgatgct ggtatgctcg gttccattga tgctaaccgt 900ggtgactacc aaaacggttg ggatactgat caattcccaa ttgatcaata cgaactcgtc 960caagcttgga tggaaatcat ccgtggtggt ggtttcgtta ctggtggtac caacttcgat 1020gccaagactc gtcgtaactc tactgacctc gaagacatca tcattgccca cgtttctggt 1080atggatgcta tggctcgtgc tcttgaaaac gctgccaagc tcctccaaga atctccatac 1140accaagatga agaaggaacg ttacgcttcc ttcgacagtg gtattggtaa ggactttgaa 1200gatggtaagc tcaccctcga acaagtttac gaatacggta agaagaacgg tgaaccaaag 1260caaacttctg gtaagcaaga actctacgaa gctattgttg ccatgtacca ataa 13142631314DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 263atggctaaag aatattttcc acaaattcag aaaattaaat ttgaaggtaa agattctaaa 60aatccattgg ctttccatta ttatgatgct gaaaaagaag ttatgggtaa aaagatgaaa 120gattggttga gattcgctat ggcttggtgg catactctat gtgctgaagg agctgatcaa 180tttggaggag gtactaaatc ttttccttgg aatgaaggta ctgacgctat tgaaattgct 240aagcagaaag tagacgcggg ttttgaaatt atgcaaaaat tgggaatacc atattattgt 300tttcatgatg ttgatttggt atctgagggt aattctattg aagaatatga atctaattta 360aaagctgttg ttgcttactt aaaagaaaaa caaaaagaaa ctggaattaa attgttgtgg 420tctacagcta atgttttcgg tcataaaaga tatatgaatg gtgcttctac aaatccagat 480tttgatgttg tagctagagc tattgttcaa attaaaaatg ctatagatgc aggaattgaa 540ttaggtgccg aaaattatgt tttctgggga ggtagagaag gttatatgtc tttgttaaat 600actgatcaaa aacgtgaaaa ggaacacatg gcaactatgt tgacaatggc tagggattat 660gctagatcta aaggttttaa aggtactttc ttgattgagc caaaacctat ggaaccaact 720aaacatcaat atgacgttga cactgaaact gctattggtt tcttaaaagc tcataatttg 780gataaagatt ttaaggttaa tatagaagtt aatcatgcta cactagctgg tcatactttt 840gaacatgaat tagcttgtgc agttgatgcc ggtatgttag gttctatcga cgcaaataga 900ggtgattatc aaaatggttg ggacacagat caatttccaa tagatcaata tgaattggtt 960caagcatgga tggaaattat taggggtgga ggcttcgtta caggtggaac taattttgat 1020gctaaaacta ggagaaattc tacagatctt gaagatataa ttattgctca tgtatctggt 1080atggatgcga tggcccgtgc tttggaaaat gcagctaaat tacttcaaga atctccttat 1140actaaaatga aaaaggaaag atatgcttct tttgattctg gaataggtaa ggattttgaa 1200gatggtaaat tgacattgga acaagtttat gaatatggta agaagaatgg agaaccaaaa 1260caaacttctg gtaaacaaga attatatgag gctatagtag ctatgtatca ataa 13142642679DNAZymomonas mobilis 264actagtaaaa aaatgaccaa gccgcgcaca attaatcaga acccagacct tcgctatttt 60ggtaacctgc tcggtcaggt tattaaggaa caaggcggag agtctttatt caaccagatc 120gagcaaattc gctctgccgc gattagacgc catcggggta ttgttgacag caccgagcta 180agttctcgct tagccgatct cgaccttaat gacatgttct cttttgcaca tgcctttttg 240ctgttttcaa tgctggccaa tttggctgat gatcgtcagg gagatgccct tgatcctgat 300gccaatatgg caagtgccct taaggacata aaagccaaag gcgtcagtca gcaggcgatc 360attgatatga tcgacaaagc ctgcattgtg cctgttctga cagcacatcc gaccgaagtc 420cgtcggaaaa gtatgcttga ccattataat cgcattgcag gtttaatgcg gttaaaagat 480gctggacaaa cggtgaccga agatggtctt ccgatcgaag atgcgttaat ccagcaaatc 540acgatattat ggcagactcg tccgctcatg ctgcaaaagc tgaccgtggc tgatgaaatc 600gaaactgccc tgtctttctt aagagaaact tttctgcctg ttctgcccca gatttatgca 660gaatgggaaa aattgcttgg tagttctatt ccaagcttta tcagacctgg taattggatt 720ggtggtgacc gtgacggtaa ccccaatgtc aatgccgata cgatcatgct gtctttgaag 780cgcagctcgg aaacggtatt gacggattat ctcaaccgtc ttgataaact gctttccaac 840ctttcggtct caaccgatat ggtttcggta tccgatgata ttctacgtct agccgataaa 900agtggtgacg atgctgcgat ccgtgcggat gaaccttatc gtcgtgcctt aaatggtatt 960tatgaccgtt tagccgctac ctatcgtcag atcgccggtc gcaacccttc gcgcccagcc 1020ttgcgttctg cagaagccta taaacggcct caagaattgc tggctgattt gaagaccttg 1080gccgaaggct tgggtaaatt ggcagaaggt agttttaagg cattgatccg ttcggttgaa 1140acctttggtt tccatttggc caccctcgat ctgcgtcaga attcgcaggt tcatgaaaga 1200gttgtcaatg aactgctacg gacagccacc gttgaagccg attatttatc tctatcggaa 1260gaagatcgcg ttaagctgtt aagacgggaa ttgtcgcagc cgcggactct attcgttccg 1320cgcgccgatt attccgaaga aacgcgttct gaacttgata ttattcaggc agcagcccgc 1380gcccatgaaa tttttggccc tgaatccatt acgacttatt tgatttcgaa tggcgaaagc 1440atttccgata ttctggaagt ctatttgctt ttgaaagaag cagggctgta tcaagggggt 1500gctaagccaa aagcggcgat tgaagctgcg cctttattcg agacggtggc cgatcttgaa 1560aatgcgccaa aggtcatgga ggaatggttc aagctgcctg aagcgcaagc cattgcaaag 1620gcacatggcg ttcaggaagt gatggttggc tattctgact ccaataagga cggcggatat 1680ctgacctcgg tttggggtct ttataaggct tgcctcgctt tggtgccgat ttttgagaaa 1740gccggtgtac cgatccagtt tttccatgga cggggtggtt ccgttggtcg cggtggtggt 1800tccaacttta atgccattct gtcgcagcca gccggagccg tcaaagggcg tatccgttat 1860acagaacagg gtgaagtcgt ggcggccaaa tatggcaccc atgaaagcgc tattgcccat 1920ctggatgagg ccgtagcggc gactttgatt acgtctttgg aagcaccgac cattgtcgag 1980ccagagttta gtcgttaccg taaggccttg gatcagatct cagattcagc tttccaggcc 2040tatcgccaat tggtctatgg aacgaagggc ttccgtaaat tctttagtga atttacgcct 2100ttgccggaaa ttgccctgtt aaagatcggg tcacgcccac ctagccgcaa aaaatccgac 2160cggattgaag atctacgcgc tattccttgg gtgtttagct ggtctcaagt tcgagtcatg 2220ttacccggtt ggttcggttt cggtcaggct ttatatgact ttgaagatac cgagctgtta 2280caggaaatgg caagccgttg gccgtttttc cgcacgacta ttcggaatat ggaacaggtg 2340atggcacgtt ccgatatgac gatcgccaag cattatctgg ccttggttga ggatcagaca 2400aatggtgagg ctatctatga ttctatcgcg gatggctgga ataaaggttg tgaaggtctg 2460ttaaaggcaa cccagcagaa ttggctgttg gaacgctttc cggcggttga taattcggtg 2520cagatgcgtc ggccttatct ggaaccgctt aattacttac aggtcgaatt gctgaagaaa 2580tggcggggag gtgataccaa cccgcatatc ctcgaatcta ttcagctgac aatcaatgcc 2640attgcgacgg cacttcgcaa cagcggttaa taactcgag 26792652679DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 265actagtaaaa aaatgaccaa gccaagaact attaaccaaa acccagactt gagatacttc 60ggtaacttgt tgggtcaagt tatcaaggaa caaggtggtg aatctttgtt caaccaaatt 120gaacaaatca gatccgctgc tattagaaga cacagaggta tcgtcgactc taccgaattg 180tcctctagat tggctgactt ggacttgaac gacatgttct ccttcgctca cgctttcttg 240ttgttctcta tgttggctaa cttggctgac gacagacaag gtgacgcttt ggacccagac 300gctaacatgg cttccgcttt gaaggacatt aaggctaagg gtgtttctca acaagctatc 360attgacatga tcgacaaggc ttgtattgtc ccagttttga ctgctcaccc aaccgaagtc 420agaagaaagt ccatgttgga ccactacaac agaatcgctg gtttgatgag attgaaggac 480gctggtcaaa ctgttaccga agacggtttg ccaattgaag acgctttgat ccaacaaatt 540actatcttgt ggcaaaccag accattgatg ttgcaaaagt tgactgtcgc tgacgaaatt 600gaaaccgctt tgtctttctt gagagaaact ttcttgccag ttttgccaca aatctacgct 660gaatgggaaa agttgttggg ttcctctatt ccatccttca tcagaccagg taactggatt 720ggtggtgaca gagacggtaa cccaaacgtc aacgctgaca ccatcatgtt gtctttgaag 780agatcctctg aaactgtttt gaccgactac ttgaacagat tggacaagtt gttgtccaac 840ttgtctgtct ccactgacat ggtttctgtc tccgacgaca ttttgagatt ggctgacaag 900tctggtgacg acgctgctat cagagctgac gaaccataca gaagagcttt gaacggtatt 960tacgacagat tggctgctac ctacagacaa atcgctggta gaaacccatc cagaccagct 1020ttgagatctg ctgaagctta caagagacca caagaattgt tggctgactt gaagactttg 1080gctgaaggtt tgggtaagtt ggctgaaggt tccttcaagg ctttgattag atctgttgaa 1140accttcggtt tccacttggc tactttggac ttgagacaaa actcccaagt ccacgaaaga 1200gttgtcaacg aattgttgag aaccgctact gttgaagctg actacttgtc tttgtccgaa 1260gaagacagag tcaagttgtt gagaagagaa ttgtctcaac caagaacctt gttcgttcca 1320agagctgact actccgaaga aactagatct gaattggaca tcattcaagc tgctgctaga 1380gctcacgaaa tcttcggtcc agaatccatt accacttact tgatctctaa cggtgaatcc 1440atttctgaca tcttggaagt ctacttgttg ttgaaggaag ctggtttgta ccaaggtggt 1500gctaagccaa aggctgctat tgaagctgct ccattgttcg aaaccgttgc tgacttggaa 1560aacgctccaa aggtcatgga agaatggttc aagttgccag aagctcaagc tatcgctaag 1620gctcacggtg ttcaagaagt catggttggt tactccgact ctaacaagga cggtggttac 1680ttgacttccg tctggggttt gtacaaggct tgtttggctt tggttccaat tttcgaaaag 1740gctggtgtcc caatccaatt cttccacggt agaggtggtt ctgttggtag aggtggtggt 1800tccaacttca acgctatttt gtctcaacca gctggtgctg tcaagggtag aatcagatac 1860accgaacaag gtgaagttgt cgctgctaag tacggtactc acgaatccgc tattgctcac 1920ttggacgaag ctgttgctgc taccttgatc acttctttgg aagctccaac cattgtcgaa 1980ccagaattct ccagatacag aaaggctttg gaccaaatct ctgactccgc tttccaagct 2040tacagacaat tggtttacgg tactaagggt ttcagaaagt tcttctctga attcacccca 2100ttgccagaaa ttgctttgtt gaagatcggt tccagaccac catctagaaa gaagtccgac 2160agaattgaag acttgagagc tatcccatgg gtcttctctt ggtcccaagt tagagtcatg 2220ttgccaggtt ggttcggttt cggtcaagct ttgtacgact tcgaagacac tgaattgttg 2280caagaaatgg cttctagatg gccattcttc agaaccacta ttagaaacat ggaacaagtt 2340atggctagat ccgacatgac catcgctaag cactacttgg ctttggtcga agaccaaact 2400aacggtgaag ctatttacga ctctatcgct gacggttgga acaagggttg tgaaggtttg 2460ttgaaggcta cccaacaaaa ctggttgttg gaaagattcc cagctgttga caactccgtc 2520caaatgagaa gaccatactt ggaaccattg aactacttgc aagttgaatt gttgaagaag 2580tggagaggtg gtgacactaa cccacacatt ttggaatcta tccaattgac cattaacgct 2640atcgctactg ctttgagaaa ctccggttaa taactcgag 2679266624DNAZymomonas mobilis 266atgcgtgata tcgattccgt aatgcgtttg gcaccggtta tgccggtcct cgtcattgaa 60gatattgctg atgcaaaacc tatcgcagaa gctttggttg ctggtggtct gaacgttctt 120gaagtaacgc ttcgcacccc ttgtgctctt gaagccatca agatcatgaa agaagttccg 180ggtgccgttg ttggtgccgg tacggttctg aacgcaaaaa tgctcgacca agctcaggaa 240gctggttgcg aatttttcgt tagcccgggt ctgaccgctg acctcggcaa gcatgctgtt 300gcccagaaag cagctttgct tccaggtgtt gctaatgctg ctgatgtgat gcttggtctt 360gaccttggtc ttgatcgctt caaattcttc ccggctgaaa atatcggtgg tttacctgcc 420ctgaagtcca tggcttctgt tttccgtcag gttcgtttct gcccgaccgg cggtatcacc 480ccgacgtcag ctcctaaata tcttgaaaac ccgtccattc tttgcgtcgg tggtagctgg 540gttgttccgg ctggcaaacc agatgtcgca aaaatcacgg cactcgctaa agaagcttct 600gctttcaagc gcgctgctgt tgcc 624267624DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 267atgagggata ttgatagtgt gatgaggtta gcccctgtta tgcctgttct cgttattgaa 60gatattgcag atgccaaacc tattgccgaa gcactcgttg caggtggtct aaacgttcta 120gaagtgacac taaggactcc ttgtgcacta gaagctatta agattatgaa ggaagttcct 180ggtgctgttg ttggtgctgg tacagttcta aacgccaaaa tgctcgacca ggcacaagaa 240gcaggttgcg aatttttcgt ttcacctggt ctaactgccg acctcggaaa gcacgcagtt 300gctcaaaaag ccgcattact acccggtgtt gcaaatgcag cagatgtgat gctaggtcta 360gacctaggtc tagataggtt caagttcttc cctgccgaaa acattggtgg tctacctgct 420ctaaagagta tggcatcagt tttcaggcaa gttaggttct gccctactgg aggtataact 480cctacaagtg cacctaaata tctagaaaac cctagtattc tatgcgttgg tggttcatgg 540gttgttcctg ccggaaaacc cgatgttgcc aaaattacag ccctcgcaaa agaagcaagt 600gcattcaaga gggcagcagt tgct 624268624DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 268atgagagaca ttgattctgt tatgagattg gctccagtta tgccagtctt ggttatagaa 60gatatagctg atgctaagcc aattgctgag gctttggttg ctggtggttt aaatgttttg 120gaagttacat tgagaactcc atgtgctttg gaagctatta aaattatgaa ggaagttcca 180ggtgctgttg ttggtgctgg tactgtttta aacgctaaaa tgttggatca agctcaagaa 240gctggttgtg agttctttgt atcaccaggt ttgactgctg atttgggaaa acatgctgtt 300gctcaaaaag cggctcttct accaggggtt gctaatgctg ctgatgttat gttgggattg 360gatttgggtt tggatagatt taaattcttc ccagctgaaa atataggtgg tttgccagct 420ttaaaatcta tggcttctgt ttttagacaa gttagatttt gtccaactgg aggaattact

480ccgacttctg ctccaaaata tttggaaaat ccatctattt tgtgtgttgg tggttcttgg 540gttgttccag cgggtaaacc agatgttgcg aaaattactg ctttggctaa agaggcttca 600gcttttaaaa gagctgctgt ggcg 624269639DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 269atgaaaaact ggaaaacaag tgcagaatca atcctgacca ccggcccggt tgtaccggtt 60atcgtggtaa aaaaactgga acacgcggtg ccgatggcaa aagcgttggt tgctggtggg 120gtgcgcgttc tggaagtgac tctgcgtacc gagtgtgcag ttgacgctat ccgtgctatc 180gccaaagaag tgcctgaagc gattgtgggt gccggtacgg tgctgaatcc acagcagctg 240gcagaagtca ctgaagcggg tgcacagttc gcaattagcc cgggtctgac cgagccgctg 300ctgaaagctg ctaccgaagg gactattcct ctgattccgg ggatcagcac tgtttccgaa 360ctgatgctgg gtatggacta cggtttgaaa gagttcaaat tcttcccggc tgaagctaac 420ggcggcgtga aagccctgca ggcgatcgcg ggtccgttct cccaggtccg tttctgcccg 480acgggtggta tttctccggc taactaccgt gactacctgg cgctgaaaag cgtgctgtgc 540atcggtggtt cctggctggt tccggcagat gcgctggaag cgggcgatta cgaccgcatt 600actaagctgg cgcgtgaagc tgtagaaggc gctaagctg 639270208PRTZymomonas mobilis 270Met Arg Asp Ile Asp Ser Val Met Arg Leu Ala Pro Val Met Pro Val1 5 10 15Leu Val Ile Glu Asp Ile Ala Asp Ala Lys Pro Ile Ala Glu Ala Leu 20 25 30Val Ala Gly Gly Leu Asn Val Leu Glu Val Thr Leu Arg Thr Pro Cys 35 40 45Ala Leu Glu Ala Ile Lys Ile Met Lys Glu Val Pro Gly Ala Val Val 50 55 60Gly Ala Gly Thr Val Leu Asn Ala Lys Met Leu Asp Gln Ala Gln Glu65 70 75 80Ala Gly Cys Glu Phe Phe Val Ser Pro Gly Leu Thr Ala Asp Leu Gly 85 90 95Lys His Ala Val Ala Gln Lys Ala Ala Leu Leu Pro Gly Val Ala Asn 100 105 110Ala Ala Asp Val Met Leu Gly Leu Asp Leu Gly Leu Asp Arg Phe Lys 115 120 125Phe Phe Pro Ala Glu Asn Ile Gly Gly Leu Pro Ala Leu Lys Ser Met 130 135 140Ala Ser Val Phe Arg Gln Val Arg Phe Cys Pro Thr Gly Gly Ile Thr145 150 155 160Pro Thr Ser Ala Pro Lys Tyr Leu Glu Asn Pro Ser Ile Leu Cys Val 165 170 175Gly Gly Ser Trp Val Val Pro Ala Gly Lys Pro Asp Val Ala Lys Ile 180 185 190Thr Ala Leu Ala Lys Glu Ala Ser Ala Phe Lys Arg Ala Ala Val Ala 195 200 205271208PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 271Met Arg Asp Ile Asp Ser Val Met Arg Leu Ala Pro Val Met Pro Val1 5 10 15Leu Val Ile Glu Asp Ile Ala Asp Ala Lys Pro Ile Ala Glu Ala Leu 20 25 30Val Ala Gly Gly Leu Asn Val Leu Glu Val Thr Leu Arg Thr Pro Cys 35 40 45Ala Leu Glu Ala Ile Lys Ile Met Lys Glu Val Pro Gly Ala Val Val 50 55 60Gly Ala Gly Thr Val Leu Asn Ala Lys Met Leu Asp Gln Ala Gln Glu65 70 75 80Ala Gly Cys Glu Phe Phe Val Ser Pro Gly Leu Thr Ala Asp Leu Gly 85 90 95Lys His Ala Val Ala Gln Lys Ala Ala Leu Leu Pro Gly Val Ala Asn 100 105 110Ala Ala Asp Val Met Leu Gly Leu Asp Leu Gly Leu Asp Arg Phe Lys 115 120 125Phe Phe Pro Ala Glu Asn Ile Gly Gly Leu Pro Ala Leu Lys Ser Met 130 135 140Ala Ser Val Phe Arg Gln Val Arg Phe Cys Pro Thr Gly Gly Ile Thr145 150 155 160Pro Thr Ser Ala Pro Lys Tyr Leu Glu Asn Pro Ser Ile Leu Cys Val 165 170 175Gly Gly Ser Trp Val Val Pro Ala Gly Lys Pro Asp Val Ala Lys Ile 180 185 190Thr Ala Leu Ala Lys Glu Ala Ser Ala Phe Lys Arg Ala Ala Val Ala 195 200 205272208PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 272Met Arg Asp Ile Asp Ser Val Met Arg Leu Ala Pro Val Met Pro Val1 5 10 15Leu Val Ile Glu Asp Ile Ala Asp Ala Lys Pro Ile Ala Glu Ala Leu 20 25 30Val Ala Gly Gly Leu Asn Val Leu Glu Val Thr Leu Arg Thr Pro Cys 35 40 45Ala Leu Glu Ala Ile Lys Ile Met Lys Glu Val Pro Gly Ala Val Val 50 55 60Gly Ala Gly Thr Val Leu Asn Ala Lys Met Leu Asp Gln Ala Gln Glu65 70 75 80Ala Gly Cys Glu Phe Phe Val Ser Pro Gly Leu Thr Ala Asp Leu Gly 85 90 95Lys His Ala Val Ala Gln Lys Ala Ala Leu Leu Pro Gly Val Ala Asn 100 105 110Ala Ala Asp Val Met Leu Gly Leu Asp Leu Gly Leu Asp Arg Phe Lys 115 120 125Phe Phe Pro Ala Glu Asn Ile Gly Gly Leu Pro Ala Leu Lys Ser Met 130 135 140Ala Ser Val Phe Arg Gln Val Arg Phe Cys Pro Thr Gly Gly Ile Thr145 150 155 160Pro Thr Ser Ala Pro Lys Tyr Leu Glu Asn Pro Ser Ile Leu Cys Val 165 170 175Gly Gly Ser Trp Val Val Pro Ala Gly Lys Pro Asp Val Ala Lys Ile 180 185 190Thr Ala Leu Ala Lys Glu Ala Ser Ala Phe Lys Arg Ala Ala Val Ala 195 200 205273213PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 273Met Lys Asn Trp Lys Thr Ser Ala Glu Ser Ile Leu Thr Thr Gly Pro1 5 10 15Val Val Pro Val Ile Val Val Lys Lys Leu Glu His Ala Val Pro Met 20 25 30Ala Lys Ala Leu Val Ala Gly Gly Val Arg Val Leu Glu Val Thr Leu 35 40 45Arg Thr Glu Cys Ala Val Asp Ala Ile Arg Ala Ile Ala Lys Glu Val 50 55 60Pro Glu Ala Ile Val Gly Ala Gly Thr Val Leu Asn Pro Gln Gln Leu65 70 75 80Ala Glu Val Thr Glu Ala Gly Ala Gln Phe Ala Ile Ser Pro Gly Leu 85 90 95Thr Glu Pro Leu Leu Lys Ala Ala Thr Glu Gly Thr Ile Pro Leu Ile 100 105 110Pro Gly Ile Ser Thr Val Ser Glu Leu Met Leu Gly Met Asp Tyr Gly 115 120 125Leu Lys Glu Phe Lys Phe Phe Pro Ala Glu Ala Asn Gly Gly Val Lys 130 135 140Ala Leu Gln Ala Ile Ala Gly Pro Phe Ser Gln Val Arg Phe Cys Pro145 150 155 160Thr Gly Gly Ile Ser Pro Ala Asn Tyr Arg Asp Tyr Leu Ala Leu Lys 165 170 175Ser Val Leu Cys Ile Gly Gly Ser Trp Leu Val Pro Ala Asp Ala Leu 180 185 190Glu Ala Gly Asp Tyr Asp Arg Ile Thr Lys Leu Ala Arg Glu Ala Val 195 200 205Glu Gly Ala Lys Leu 210274438PRTRuminococcus flavefaciens 274Met Glu Phe Phe Ser Asn Ile Gly Lys Ile Gln Tyr Gln Gly Pro Lys1 5 10 15Ser Thr Asp Pro Leu Ser Phe Lys Tyr Tyr Asn Pro Glu Glu Val Ile 20 25 30Asn Gly Lys Thr Met Arg Glu His Leu Lys Phe Ala Leu Ser Trp Trp 35 40 45His Thr Met Gly Gly Asp Gly Thr Asp Met Phe Gly Cys Gly Thr Thr 50 55 60Asp Lys Thr Trp Gly Gln Ser Asp Pro Ala Ala Arg Ala Lys Ala Lys65 70 75 80Val Asp Ala Ala Phe Glu Ile Met Asp Lys Leu Ser Ile Asp Tyr Tyr 85 90 95Cys Phe His Asp Arg Asp Leu Ser Pro Glu Tyr Gly Ser Leu Lys Ala 100 105 110Thr Asn Asp Gln Leu Asp Ile Val Thr Asp Tyr Ile Lys Glu Lys Gln 115 120 125Gly Asp Lys Phe Lys Cys Leu Trp Gly Thr Ala Lys Cys Phe Asp His 130 135 140Pro Arg Phe Met His Gly Ala Gly Thr Ser Pro Ser Ala Asp Val Phe145 150 155 160Ala Phe Ser Ala Ala Gln Ile Lys Lys Ala Leu Glu Ser Thr Val Lys 165 170 175Leu Gly Gly Asn Gly Tyr Val Phe Trp Gly Gly Arg Glu Gly Tyr Glu 180 185 190Thr Leu Leu Asn Thr Asn Met Gly Leu Glu Leu Asp Asn Met Ala Arg 195 200 205Leu Met Lys Met Ala Val Glu Tyr Gly Arg Ser Ile Gly Phe Lys Gly 210 215 220Asp Phe Tyr Ile Glu Pro Lys Pro Lys Glu Pro Thr Lys His Gln Tyr225 230 235 240Asp Phe Asp Thr Ala Thr Val Leu Gly Phe Leu Arg Lys Tyr Gly Leu 245 250 255Asp Lys Asp Phe Lys Met Asn Ile Glu Ala Asn His Ala Thr Leu Ala 260 265 270Gln His Thr Phe Gln His Glu Leu Arg Val Ala Arg Asp Asn Gly Val 275 280 285Phe Gly Ser Ile Asp Ala Asn Gln Gly Asp Val Leu Leu Gly Trp Asp 290 295 300Thr Asp Gln Phe Pro Thr Asn Ile Tyr Asp Thr Thr Met Cys Met Tyr305 310 315 320Glu Val Ile Lys Ala Gly Gly Phe Thr Asn Gly Gly Leu Asn Phe Asp 325 330 335Ala Lys Ala Arg Arg Gly Ser Phe Thr Pro Glu Asp Ile Phe Tyr Ser 340 345 350Tyr Ile Ala Gly Met Asp Ala Phe Ala Leu Gly Phe Arg Ala Ala Leu 355 360 365Lys Leu Ile Glu Asp Gly Arg Ile Asp Lys Phe Val Ala Asp Arg Tyr 370 375 380Ala Ser Trp Asn Thr Gly Ile Gly Ala Asp Ile Ile Ala Gly Lys Ala385 390 395 400Asp Phe Ala Ser Leu Glu Lys Tyr Ala Leu Glu Lys Gly Glu Val Thr 405 410 415Ala Ser Leu Ser Ser Gly Arg Gln Glu Met Leu Glu Ser Ile Val Asn 420 425 430Asn Val Leu Phe Ser Leu 435275437PRTPiromyces sp. 275Met Ala Lys Glu Tyr Phe Pro Gln Ile Gln Lys Ile Lys Phe Glu Gly1 5 10 15Lys Asp Ser Lys Asn Pro Leu Ala Phe His Tyr Tyr Asp Ala Glu Lys 20 25 30Glu Val Met Gly Lys Lys Met Lys Asp Trp Leu Arg Phe Ala Met Ala 35 40 45Trp Trp His Thr Leu Cys Ala Glu Gly Ala Asp Gln Phe Gly Gly Gly 50 55 60Thr Lys Ser Phe Pro Trp Asn Glu Gly Thr Asp Ala Ile Glu Ile Ala65 70 75 80Lys Gln Lys Val Asp Ala Gly Phe Glu Ile Met Gln Lys Leu Gly Ile 85 90 95Pro Tyr Tyr Cys Phe His Asp Val Asp Leu Val Ser Glu Gly Asn Ser 100 105 110Ile Glu Glu Tyr Glu Ser Asn Leu Lys Ala Val Val Ala Tyr Leu Lys 115 120 125Glu Lys Gln Lys Glu Thr Gly Ile Lys Leu Leu Trp Ser Thr Ala Asn 130 135 140Val Phe Gly His Lys Arg Tyr Met Asn Gly Ala Ser Thr Asn Pro Asp145 150 155 160Phe Asp Val Val Ala Arg Ala Ile Val Gln Ile Lys Asn Ala Ile Asp 165 170 175Ala Gly Ile Glu Leu Gly Ala Glu Asn Tyr Val Phe Trp Gly Gly Arg 180 185 190Glu Gly Tyr Met Ser Leu Leu Asn Thr Asp Gln Lys Arg Glu Lys Glu 195 200 205His Met Ala Thr Met Leu Thr Met Ala Arg Asp Tyr Ala Arg Ser Lys 210 215 220Gly Phe Lys Gly Thr Phe Leu Ile Glu Pro Lys Pro Met Glu Pro Thr225 230 235 240Lys His Gln Tyr Asp Val Asp Thr Glu Thr Ala Ile Gly Phe Leu Lys 245 250 255Ala His Asn Leu Asp Lys Asp Phe Lys Val Asn Ile Glu Val Asn His 260 265 270Ala Thr Leu Ala Gly His Thr Phe Glu His Glu Leu Ala Cys Ala Val 275 280 285Asp Ala Gly Met Leu Gly Ser Ile Asp Ala Asn Arg Gly Asp Tyr Gln 290 295 300Asn Gly Trp Asp Thr Asp Gln Phe Pro Ile Asp Gln Tyr Glu Leu Val305 310 315 320Gln Ala Trp Met Glu Ile Ile Arg Gly Gly Gly Phe Val Thr Gly Gly 325 330 335Thr Asn Phe Asp Ala Lys Thr Arg Arg Asn Ser Thr Asp Leu Glu Asp 340 345 350Ile Ile Ile Ala His Val Ser Gly Met Asp Ala Met Ala Arg Ala Leu 355 360 365Glu Asn Ala Ala Lys Leu Leu Gln Glu Ser Pro Tyr Thr Lys Met Lys 370 375 380Lys Glu Arg Tyr Ala Ser Phe Asp Ser Gly Ile Gly Lys Asp Phe Glu385 390 395 400Asp Gly Lys Leu Thr Leu Glu Gln Val Tyr Glu Tyr Gly Lys Lys Asn 405 410 415Gly Glu Pro Lys Gln Thr Ser Gly Lys Gln Glu Leu Tyr Glu Ala Ile 420 425 430Val Ala Met Tyr Gln 43527620DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 276taaaacgacg gccagtgaat 2027721DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 277tgcaggtcga ctctagagga t 2127872DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 278gtgtgcgtgt atgtgtacac ctgtatttaa tttccttact cgcgggtttt tctaaaacga 60cggccagtga at 7227972DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 279tgtaccagtc tagaattcta ccaacaaatg gggaaatcaa agtaacttgg gctgcaggtc 60gactctagag ga 7228026DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 280gtcgactgga aatctggaag gttggt 2628126DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 281gtcgacgctt tgctgcaagg attcat 2628238DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 282actagtatga ctgttactac tccttttgtg aatggtac 3828339DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 283ctcgagttaa tcaactctct ttcttccaac caaatggtc 3928448DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 284aagcttttaa ttaatataac gctatgacgg tagttgaatg ttaaaaac 4828551DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 285gaattcttaa ttaaagagaa caaagtattt aacgcacatg tataaatatt g 5128653DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 286ggatccgcat gcggccggcc agcttttaat caaggaagta ataaataaag gac 5328752DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 287ggatccgagc tcgcggccgc agcttttgaa caatgaattt tttgttcctt tc 5228838DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 288gcggccgcag cttcgcaagt attcatttta gacccatg 3828944DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 289ggccggccgg taccaattcc acttgcaatt acataaaaaa ttcc 4429038DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 290ggatccgttt atcattatca atactcgcca tttcaaag 3829140DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 291catatgttgg gtaccggccg caaattaaag ccttcgagcg 4029255DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 292ggattcagtc agatcatatg ggtacccccg ggttaattaa ggcgcgccag atctg 5529360DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 293gtcgacaggc ctactgtacg gctagcgaat tcgagctcgt tttcgacact ggatggcggc 6029439DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 294tctagactcg agtaataagc gaatttctta tgatttatg 3929534DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 295aagcttaggc ctggagcgat ttgcaggcat ttgc 3429636DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 296ggatccgcta gcaccgcgaa tccttacatc acaccc 3629739DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 297tctagactcg agtaataagc gaatttctta tgatttatg 3929839DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 298gattgtactg agagtgcaca atatgcggtg tgaaatacc 3929939DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 299ggtatttcac accgcatatt gtgcactctc agtacaatc

3930038DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 300gtgcgtcagg tgatctgggt aagaagaaga cttttccc 3830138DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 301gggaaaagtc ttcttcttac ccagatcacc tgacgcac 3830240DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 302gtgatctggg taagaagaag ggttttcccg ccttatttgg 4030340DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 303ccaaataagg cgggaaaacc cttcttctta cccagatcac 4030451DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 304ccttgatcca tctaccaaga tcttcggtta taatcggtcc aaattgtcca t 5130551DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 305atggacaatt tggaccgatt ataaccgaag atcttggtag atggatcaag g 5130643DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 306atctaccaag atcttcggtt atgatcggtc caaattgtcc atg 4330743DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 307catggacaat ttggaccgat cataaccgaa gatcttggta gat 4330842DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 308ggtgatctgg caaagaagaa gttttttccc gccttatttg gg 4230942DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 309cccaaataag gcgggaaaaa acttcttctt tgccagatca cc 4231040DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 310taccttgatc catctaccag aatcttcggt tatgcccggt 4031140DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 311accgggcata accgaagatt ctggtagatg gatcaaggta 4031240DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 312gggcttttca gagaaggttt gcttgatcca tctaccaaga 4031340DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 313tcttggtaga tggatcaagc aaaccttctc tgaaaagccc 4031441DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 314gaagaagact tttcccgcct tatacgggct tttcagagaa g 4131541DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 315cttctctgaa aagcccgtat aaggcgggaa aagtcttctt c 4131645DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 316gtcaggtgat ctggcaaaga agaagttgtt tcccgcctta tttgg 4531745DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 317ccaaataagg cgggaaacaa cttcttcttt gccagatcac ctgac 4531846DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 318cgaaaaaaat accgtcatat ctttgtttgg tgcgtcaggt gatctg 4631946DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 319cagatcacct gacgcaccaa acaaagatat gacggtattt ttttcg 4632038DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 320gacctgaagt cccgtgtcga accccacttg aaaaaacc 3832138DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 321ggttttttca agtggggttc gacacgggac ttcaggtc 3832238DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 322gtgcgtcagg tgatctgggt aagaagaaga cttttccc 3832338DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 323gggaaaagtc ttcttcttac ccagatcacc tgacgcac 3832438DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 324gtgcgtcagg tgatctgggt aagaagaaga cttttccc 3832538DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 325gggaaaagtc ttcttcttac ccagatcacc tgacgcac 3832645DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 326accaagatct tcggttatgc cgattccaaa ttgtccatgg aggag 4532745DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 327ctcctccatg gacaatttgg aatcggcata accgaagatc ttggt 4532855DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 328tccatctacc aagatcttcg gttatgatgc ttccaaattg tccatggagg aggac 5532955DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 329gtcctcctcc atggacaatt tggaagcatc ataaccgaag atcttggtag atgga 5533055DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 330tccatctacc aagatcttcg gttatgatgc ttccaaattg tccatggagg aggac 5533155DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 331gtcctcctcc atggacaatt tggaagcatc ataaccgaag atcttggtag atgga 5533255DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 332tccatctacc aagatcttcg gttatgatgc ttccaaattg tccatggagg aggac 5533355DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 333gtcctcctcc atggacaatt tggaagcatc ataaccgaag atcttggtag atgga 5533440DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 334aagatcttcg gttatgatca ttccaaattg tccatggagg 4033540DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 335cctccatgga caatttggaa tgatcataac cgaagatctt 4033640DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 336aagatcttcg gttatgccca ttccaaattg tccatggagg 4033740DNAArtificial SequenceDescription of Artificial Sequence Synthetic oligonucleotide 337cctccatgga caatttggaa tgggcataac cgaagatctt 4033833DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 338gctagcatgg tgacagtcgg tgtgttttct gag 3333933DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 339gtcgacctaa aaagttttcg tttgaacttt tcc 3334032DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 340ccaacactaa gaaataattt cgccatttct tg 3234132DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 341gccaacaatt aaatccaagt tcacctattc tg 3234230DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 342actagtatgt ctgacaagga acaaacgagc 3034338DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 343ctcgagttaa aagattaccc tttcagtaga tggtaatg 3834438DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 344caagcctttg gtggtaccca gaatccaggg ttagctcc 3834538DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 345ggagctaacc ctggattctg ggtaccacca aaggcttg 3834637DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 346ggtacaacgc atatgcagat gttgctacaa agcagaa 3734737DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 347ttctgctttg tagcaacatc tgcatatgcg ttgtacc 3734842DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 348gacgacgtct agaaaagaat actggagaaa tgaaaagaaa ac 4234938DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 349gcatgcttaa ttaatgcgag gcatatttat ggtgaagg 3835053DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 350ggccggccag atctgcggcc gcggccagca aaactaaaaa actgtattat aag 5335151DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 351gcggccgcag atctggccgg ccgatttatc ttcgtttcct gcaggttttt g 5135244DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 352gaattcttaa ttaacttttg ttccactact ttttggaact cttg 4435329DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 353gcatgcgcgg ccgcacgtcg gcaggcccg 2935446DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 354cgaaggacgc gcgaccaagt ttatcattat caatactcgc catttc 4635546DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 355gaaatggcga gtattgataa tgataaactt ggtcgcgcgt ccttcg 4635628DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 356gtcgacccgc aaattaaagc cttcgagc 2835729DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 357gtcgacgtac ccccgggtta attaaggcg 2935837DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 358gtcgaaaacg agctcgaatt cgacgtcggc aggcccg 3735937DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 359cgggcctgcc gacgtcgaat tcgagctcgt tttcgac 3736031DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 360ggatccgcgg ccgctggtcg cgcgtccttc g 3136125DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 361gagggcacag ttaagccgct aaagg 2536240DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 362gtcaacagta cccttagtat attctccagt agctagggag 4036329DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 363cgttacccaa ttgaacacgg tattgtcac 2936426DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 364gaagattgag cagcggtttg catttc 2636529DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 365gcatgcgcgg ccgcacgtcg gcaggcccg 2936631DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 366ggatccgcgg ccgctggtcg cgcgtccttc g 3136732DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 367gagtcaaacg acgttgaaat tgaggctact gc 3236832DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 368gattactgct gctgttccag cccatatcca ac 3236926DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 369ggcaatcaaa ttgggaacga acaatg 2637029DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 370cataacgaac cggtactcct atggaactc 2937132DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 371gggtctacaa actgttgttg tcgaagaaga tg 3237232DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 372cacgtgacag ttatttagta accttgactt ac 3237326DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 373cctacccgcc tcggatccca gctacc 2637426DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 374ggtagctggg atccgaggcg ggtagg 2637524DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 375cctcccggca cagcgtgtcg atgc 2437621DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 376cgaagccctg gagcgcttcg c 2137733DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 377gtggtcagga ttgattctgc acttgttttc cag 3337826DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 378cgcgtgaagc tgtagaaggc gctaag 2637929DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 379gagctcggcc gcaaattaaa gccttcgag 2938046DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 380ggccggccgt ttatcattat caatactcgc catttcaaag aatacg 4638141DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 381gttcactgca ctagtaaaaa aatgcttgag aataactggt c 4138236DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 382cttcgagatc tcgagttaaa gtccgccaat cgcctc 3638342DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 383gttcactgca ctagtaaaaa aatgatcgat actgccaaac tc 4238436DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 384cttcgagatc tcgagtcaga ccgtgaagag tgccgc 3638543DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 385gttcactgca ctagtaaaaa aatggtattg tcacacatcg aag 4338642DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 386cttcgagatc tcgagttact gttttgctgc ttcaacaaat tg 4238746DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 387gttcactgca ctagtaaaaa aatggagtcc aaagtcgttg aaaacc 4638843DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 388cttcgagatc tcgagttaca cttggaaaac agcctgcaaa tcc 4338942DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 389gttcactgca ctagtaaaaa aatgacaaac ctcgccccga cc 4239034DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 390cttcgagatc tcgagtcagt ccagcagggc cagg 3439149DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 391gttcactgca ctagtaaaaa aatgacacag aacgaaaata atcagccgc 4939236DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 392cttcgagatc tcgagtcagt caaacagcgc cagcgc 3639352DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 393gttcactgca ctagtaaaaa aatggctatt acaaaagaat ttttagctcc ag 5239443DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 394cttcgagatc tcgagttagc tagaaatttt agcggtagtt gcc 4339542DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 395gttcactgca ctagtaaaaa aatgacgatt gcccagaccc ag 4239631DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 396cttcgagatc tcgagtcagc ccgcccgcac c 3139752DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 397gttcactgcc atatgaatcc acaattgtta cgcgtaacaa atcgaatcat tg 5239848DNAArtificial SequenceDescription of Artificial Sequence Synthetic primer 398cttcgagatc tcgagttaaa aagtgataca ggttgcgccc tgttcggc 48399630DNASaccharophagus degradans 399atggctatta caaaagaatt tttagctcca gttggcgtaa tgcctgttgt ggttgtggat 60cgtgtagaag atgcggtgcc tattacaaac gcattaaaag ccggcggtat taaagcagtt 120gagattactt tacgtactcc tgcggcactg gatgctattc gcgctattaa agctgagtgt 180gaagacatcc tggtgggggt aggtacggtt attaaccatc aaaaccttaa agatattgct 240gcaattggtg ttgatttcgc cgtatctcct ggttacaccc caacattgct gaagcaagcg 300caagatttgg gcgtagaaat gttgcctggt gtaacttcgc cttctgaagt tatgcttggt 360atggagctag gtttgtcttg cttcaagcta ttccctgcgg ttgcagtagg tggtttgcca 420ttacttaagt ctattggtgg cccattacca caggtttcct tctgtccaac aggcggtttg 480actatcgata ctttcaccga cttcttggca ttgcctaacg ttgcttgtgt gggtggtact 540tggttggtgc ctgcagatgc tgttgcagct aaaaactggc aagctattac tgatattgcg 600gcggcaacta ccgctaaaat ttctagctaa 630400209PRTSaccharophagus degradans 400Met Ala Ile Thr Lys Glu Phe Leu Ala Pro Val Gly Val Met Pro Val1 5 10 15Val Val Val Asp Arg Val Glu Asp Ala Val Pro Ile Thr Asn Ala Leu 20 25 30Lys Ala Gly Gly Ile Lys Ala Val Glu Ile Thr Leu Arg

Thr Pro Ala 35 40 45Ala Leu Asp Ala Ile Arg Ala Ile Lys Ala Glu Cys Glu Asp Ile Leu 50 55 60Val Gly Val Gly Thr Val Ile Asn His Gln Asn Leu Lys Asp Ile Ala65 70 75 80Ala Ile Gly Val Asp Phe Ala Val Ser Pro Gly Tyr Thr Pro Thr Leu 85 90 95Leu Lys Gln Ala Gln Asp Leu Gly Val Glu Met Leu Pro Gly Val Thr 100 105 110Ser Pro Ser Glu Val Met Leu Gly Met Glu Leu Gly Leu Ser Cys Phe 115 120 125Lys Leu Phe Pro Ala Val Ala Val Gly Gly Leu Pro Leu Leu Lys Ser 130 135 140Ile Gly Gly Pro Leu Pro Gln Val Ser Phe Cys Pro Thr Gly Gly Leu145 150 155 160Thr Ile Asp Thr Phe Thr Asp Phe Leu Ala Leu Pro Asn Val Ala Cys 165 170 175Val Gly Gly Thr Trp Leu Val Pro Ala Asp Ala Val Ala Ala Lys Asn 180 185 190Trp Gln Ala Ile Thr Asp Ile Ala Ala Ala Thr Thr Ala Lys Ile Ser 195 200 205Ser 401660DNAXanthomonas axonopodis 401atgacgattg cccagaccca gaacaccgcc gaacagttgc tgcgcgatgc cggcatcttg 60cccgtggtca ccgtggacac gctggatcag gcgcgccgcg tcgccgatgc gttgctcgaa 120ggcggcctgc ccgcgatcga gctgaccctt cgcacgccag tggcgatcga cgcgctggcg 180atgctcaagc gcgagcttcc taacatcttg atcggtgccg gcaccgtgct gagcgaattg 240cagctgcgtc agtcggtgga tgccggtgca gacttcctgg tgaccccggg cacgccggcg 300ccgctggcgc gcctgctggc ggatgcgccg atcccggccg ttcccggcgc ggccactccg 360accgagctgc tgaccttgat gggtcttggc tttcgcgtct gcaagctgtt cccggccacc 420gccgtgggcg gtctgcagat gctcaggggc ctggccggcc cgctgtccga gctcaagctg 480tgccccaccg gcggcatcag cgaggccaac gccgccgagt tcctgtcgca gccgaacgtg 540ctgtgcatcg gcggttcgtg gatggtcccc aaggattggc tggcgcacgg ccaatgggac 600aaggtcaagg aaagctcggc caaggcggcg gcgatcgtgc ggcaggtgcg ggcgggctga 660402219PRTXanthomonas axonopodis 402Met Thr Ile Ala Gln Thr Gln Asn Thr Ala Glu Gln Leu Leu Arg Asp1 5 10 15Ala Gly Ile Leu Pro Val Val Thr Val Asp Thr Leu Asp Gln Ala Arg 20 25 30Arg Val Ala Asp Ala Leu Leu Glu Gly Gly Leu Pro Ala Ile Glu Leu 35 40 45Thr Leu Arg Thr Pro Val Ala Ile Asp Ala Leu Ala Met Leu Lys Arg 50 55 60Glu Leu Pro Asn Ile Leu Ile Gly Ala Gly Thr Val Leu Ser Glu Leu65 70 75 80Gln Leu Arg Gln Ser Val Asp Ala Gly Ala Asp Phe Leu Val Thr Pro 85 90 95Gly Thr Pro Ala Pro Leu Ala Arg Leu Leu Ala Asp Ala Pro Ile Pro 100 105 110Ala Val Pro Gly Ala Ala Thr Pro Thr Glu Leu Leu Thr Leu Met Gly 115 120 125Leu Gly Phe Arg Val Cys Lys Leu Phe Pro Ala Thr Ala Val Gly Gly 130 135 140Leu Gln Met Leu Arg Gly Leu Ala Gly Pro Leu Ser Glu Leu Lys Leu145 150 155 160Cys Pro Thr Gly Gly Ile Ser Glu Ala Asn Ala Ala Glu Phe Leu Ser 165 170 175Gln Pro Asn Val Leu Cys Ile Gly Gly Ser Trp Met Val Pro Lys Asp 180 185 190Trp Leu Ala His Gly Gln Trp Asp Lys Val Lys Glu Ser Ser Ala Lys 195 200 205Ala Ala Ala Ile Val Arg Gln Val Arg Ala Gly 210 215403675DNAPseudomonas syringiae 403atgacacaga acgaaaataa tcagccgctc accagcatgg cgaacaagat tgcccggatc 60gacgaactct gcgccaaggc aaagattctg ccggtcatca ccattgcccg tgatcaggac 120gtattgccac tggccgacgc gctggccgct ggtggcatga cggctctgga aatcaccctg 180cgctcggcgt tcggactgag tgcgatccgc attttgcgcg agcagcgccc agagctgtgc 240actggcgccg ggaccattct ggaccgcaag atgctggccg acgccgaggc ggcgggctcg 300caattcattg tgacccccgg cagcacgcag gaactgttgc aggcggcgct cgacagcccg 360ttgcccctgt tgccaggcgt cagcagcgcg tcggaaatca tgatcggcta tgccttgggt 420tatcgccgct tcaagctgtt cccggcagaa atcagcggcg gtgtggcagc gatcaaggcc 480ttgggcgggc ctttcaacga ggtgcgtttc tgcccgacgg gcggcgtcaa cgagcagaac 540ctcaagaact acatggcctt gcccaacgtc atgtgcgtcg gcgggacatg gatgattgat 600aacgcctggg tcaagaatgg cgactggggc cgcattcagg aagccacggc acaggcgctg 660gcgctgtttg actga 675404224PRTPseudomonas syringiae 404Met Thr Gln Asn Glu Asn Asn Gln Pro Leu Thr Ser Met Ala Asn Lys1 5 10 15Ile Ala Arg Ile Asp Glu Leu Cys Ala Lys Ala Lys Ile Leu Pro Val 20 25 30Ile Thr Ile Ala Arg Asp Gln Asp Val Leu Pro Leu Ala Asp Ala Leu 35 40 45Ala Ala Gly Gly Met Thr Ala Leu Glu Ile Thr Leu Arg Ser Ala Phe 50 55 60Gly Leu Ser Ala Ile Arg Ile Leu Arg Glu Gln Arg Pro Glu Leu Cys65 70 75 80Thr Gly Ala Gly Thr Ile Leu Asp Arg Lys Met Leu Ala Asp Ala Glu 85 90 95Ala Ala Gly Ser Gln Phe Ile Val Thr Pro Gly Ser Thr Gln Glu Leu 100 105 110Leu Gln Ala Ala Leu Asp Ser Pro Leu Pro Leu Leu Pro Gly Val Ser 115 120 125Ser Ala Ser Glu Ile Met Ile Gly Tyr Ala Leu Gly Tyr Arg Arg Phe 130 135 140Lys Leu Phe Pro Ala Glu Ile Ser Gly Gly Val Ala Ala Ile Lys Ala145 150 155 160Leu Gly Gly Pro Phe Asn Glu Val Arg Phe Cys Pro Thr Gly Gly Val 165 170 175Asn Glu Gln Asn Leu Lys Asn Tyr Met Ala Leu Pro Asn Val Met Cys 180 185 190Val Gly Gly Thr Trp Met Ile Asp Asn Ala Trp Val Lys Asn Gly Asp 195 200 205Trp Gly Arg Ile Gln Glu Ala Thr Ala Gln Ala Leu Ala Leu Phe Asp 210 215 220405642DNAShewanella oneidensis 405atgcttgaga ataactggtc attacaacca caagatattt ttaaacgcag ccctattgtt 60cctgttatgg tgattaacaa gattgaacat gcggtgccct tagctaaagc gctggttgcc 120ggagggataa gcgtgttgga agtgacatta cgcacgccat gcgcccttga agctatcacc 180aaaatcgcca aggaagtgcc tgaggcgctg gttggcgcgg ggactatttt aaatgaagcc 240cagcttggac aggctatcgc cgctggtgcg caatttatta tcactccagg tgcgacagtt 300gagctgctca aagcgggcat gcaaggaccg gtgccgttaa ttccgggcgt tgccagtatt 360tccgaggtga tgacgggcat ggcgctgggc tacactcact ttaaattctt ccctgctgaa 420gcgtcaggtg gcgttgatgc gcttaaggct ttctctgggc cgttagcaga tatccgcttc 480tgcccaacag gtggaattac cccgagcagc tataaagatt acttagcgct gaagaatgtc 540gattgtattg gtggcagctg gattgctcct accgatgcga tggagcaggg cgattgggat 600cgtatcactc agctgtgtaa agaggcgatt ggcggacttt aa 642406213PRTShewanella oneidensis 406Met Leu Glu Asn Asn Trp Ser Leu Gln Pro Gln Asp Ile Phe Lys Arg1 5 10 15Ser Pro Ile Val Pro Val Met Val Ile Asn Lys Ile Glu His Ala Val 20 25 30Pro Leu Ala Lys Ala Leu Val Ala Gly Gly Ile Ser Val Leu Glu Val 35 40 45Thr Leu Arg Thr Pro Cys Ala Leu Glu Ala Ile Thr Lys Ile Ala Lys 50 55 60Glu Val Pro Glu Ala Leu Val Gly Ala Gly Thr Ile Leu Asn Glu Ala65 70 75 80Gln Leu Gly Gln Ala Ile Ala Ala Gly Ala Gln Phe Ile Ile Thr Pro 85 90 95Gly Ala Thr Val Glu Leu Leu Lys Ala Gly Met Gln Gly Pro Val Pro 100 105 110Leu Ile Pro Gly Val Ala Ser Ile Ser Glu Val Met Thr Gly Met Ala 115 120 125Leu Gly Tyr Thr His Phe Lys Phe Phe Pro Ala Glu Ala Ser Gly Gly 130 135 140Val Asp Ala Leu Lys Ala Phe Ser Gly Pro Leu Ala Asp Ile Arg Phe145 150 155 160Cys Pro Thr Gly Gly Ile Thr Pro Ser Ser Tyr Lys Asp Tyr Leu Ala 165 170 175Leu Lys Asn Val Asp Cys Ile Gly Gly Ser Trp Ile Ala Pro Thr Asp 180 185 190Ala Met Glu Gln Gly Asp Trp Asp Arg Ile Thr Gln Leu Cys Lys Glu 195 200 205Ala Ile Gly Gly Leu 210407666DNAPseudomonas fluorescens 407atgacaaacc tcgccccgac cgtttccatg gcggacaaag ttgccctgat cgacagcctc 60tgcgccaagg cgcggatcct gccggtgatc accattgccc gcgagcagga tgtcctgccg 120ctggccgatg ccctggcggc cggcggcctg accgccctgg aagtgaccct gcgttcgcag 180ttcggcctca aggcgatcca gatcctgcgc gaacagcgcc cggagctggt gaccggtgcc 240ggcaccgtgc tcgacccgca gatgctggtg gcggcggaag cggcaggttc gcagttcatc 300gtcaccccgg gcatcacccg cgacctgctg caagccagcg tggccagccc gattcccctg 360ctgccgggga tcagcaatgc ctccgggatc atggagggtt atgccctggg ctaccgccgc 420ttcaagctgt tcccggcgga agtcagtggt ggcgtggcgg cgatcaaggc cctgggcggg 480ccgttcggcg aggtcaagtt ctgccctacc ggcggcgtcg gcccggccaa tatcaagagc 540tacatggcgc tcaagaatgt gatgtgtgtc ggcggtagct ggatgctcga tcccgagtgg 600atcaagaacg gcgactgggc acggatccag gagtgcacgg ccgaggccct ggccctgctg 660gactga 666408221PRTPseudomonas fluorescens 408Met Thr Asn Leu Ala Pro Thr Val Ser Met Ala Asp Lys Val Ala Leu1 5 10 15Ile Asp Ser Leu Cys Ala Lys Ala Arg Ile Leu Pro Val Ile Thr Ile 20 25 30Ala Arg Glu Gln Asp Val Leu Pro Leu Ala Asp Ala Leu Ala Ala Gly 35 40 45Gly Leu Thr Ala Leu Glu Val Thr Leu Arg Ser Gln Phe Gly Leu Lys 50 55 60Ala Ile Gln Ile Leu Arg Glu Gln Arg Pro Glu Leu Val Thr Gly Ala65 70 75 80Gly Thr Val Leu Asp Pro Gln Met Leu Val Ala Ala Glu Ala Ala Gly 85 90 95Ser Gln Phe Ile Val Thr Pro Gly Ile Thr Arg Asp Leu Leu Gln Ala 100 105 110Ser Val Ala Ser Pro Ile Pro Leu Leu Pro Gly Ile Ser Asn Ala Ser 115 120 125Gly Ile Met Glu Gly Tyr Ala Leu Gly Tyr Arg Arg Phe Lys Leu Phe 130 135 140Pro Ala Glu Val Ser Gly Gly Val Ala Ala Ile Lys Ala Leu Gly Gly145 150 155 160Pro Phe Gly Glu Val Lys Phe Cys Pro Thr Gly Gly Val Gly Pro Ala 165 170 175Asn Ile Lys Ser Tyr Met Ala Leu Lys Asn Val Met Cys Val Gly Gly 180 185 190Ser Trp Met Leu Asp Pro Glu Trp Ile Lys Asn Gly Asp Trp Ala Arg 195 200 205Ile Gln Glu Cys Thr Ala Glu Ala Leu Ala Leu Leu Asp 210 215 220409591DNABacillus subtilis 409atggagtcca aagtcgttga aaaccgtctg aaagaagcaa agctgattgc agtcattcgt 60tcaaaggata agcaggaggc ctgtcagcag attgagagtt tattagataa agggattcgt 120gcagttgaag tgacgtatac gacccccggg gcatcagata ttatcgaatc cttccgtaat 180agggaagata ttttaattgg cgcgggtacg gtcatcagcg cgcagcaagc tggggaagct 240gctaaggctg gcgcgcagtt tattgtcagt ccgggttttt cagctgatct tgctgaacat 300ctatcttttg taaagacaca ttatatcccc ggcgtcttga ctccgagcga aattatggaa 360gcgctgacat tcggttttac gacattaaag ctgttcccaa gcggtgtgtt tggcattccg 420tttatgaaaa atttagcggg tcctttcccg caggtgacct ttattccgac aggcgggata 480catccgtctg aagtgcctga ttggcttaga gccggagctg gcgccgtcgg agtcggcagc 540cagttgggca gctgttcaaa agaggatttg caggctgttt tccaagtgta a 591410196PRTBacillus subtilis 410Met Glu Ser Lys Val Val Glu Asn Arg Leu Lys Glu Ala Lys Leu Ile1 5 10 15Ala Val Ile Arg Ser Lys Asp Lys Gln Glu Ala Cys Gln Gln Ile Glu 20 25 30Ser Leu Leu Asp Lys Gly Ile Arg Ala Val Glu Val Thr Tyr Thr Thr 35 40 45Pro Gly Ala Ser Asp Ile Ile Glu Ser Phe Arg Asn Arg Glu Asp Ile 50 55 60Leu Ile Gly Ala Gly Thr Val Ile Ser Ala Gln Gln Ala Gly Glu Ala65 70 75 80Ala Lys Ala Gly Ala Gln Phe Ile Val Ser Pro Gly Phe Ser Ala Asp 85 90 95Leu Ala Glu His Leu Ser Phe Val Lys Thr His Tyr Ile Pro Gly Val 100 105 110Leu Thr Pro Ser Glu Ile Met Glu Ala Leu Thr Phe Gly Phe Thr Thr 115 120 125Leu Lys Leu Phe Pro Ser Gly Val Phe Gly Ile Pro Phe Met Lys Asn 130 135 140Leu Ala Gly Pro Phe Pro Gln Val Thr Phe Ile Pro Thr Gly Gly Ile145 150 155 160His Pro Ser Glu Val Pro Asp Trp Leu Arg Ala Gly Ala Gly Ala Val 165 170 175Gly Val Gly Ser Gln Leu Gly Ser Cys Ser Lys Glu Asp Leu Gln Ala 180 185 190Val Phe Gln Val 195411624DNABacillus licheniformis 411atggtattgt cacacatcga agaacaaaaa ctgattgcga tcatccgcgg atacaatccg 60gaggaggcag tgagcattgc cggcgcctta aaagcgggcg gcatcaggct tgtggagatt 120acgcttaatt cccctcaagc gatcaaagcg attgaagcgg tttcagagca ttttggggac 180gaaatgcttg tcggagcggg aaccgtactt gatcccgaat ctgcgagagc ggcgctttta 240gccggcgcgc ggtttatcct gtctccgacc gtcaatgaag agacgatcaa gctgacaaaa 300cggtatggag cggtcagcat tccaggcgct tttaccccga ctgaaatatt gacggcgtat 360gaaagcgggg gagacatcat caaggtattt cccggaacaa tggggcctgg ctatatcaag 420gatatccacg gaccgcttcc gcatattccg ctgcttccga ctggaggagt cggattggaa 480aaccttcacg agtttctgca ggccggtgcg gtcggagcgg gaatcggcgg ttcgcttgtt 540cgggctaata aagatgttaa tgacgcgttt ttagaagagc tgtccaaaaa agcaaagcaa 600tttgttgaag cagcaaaaca gtaa 624412207PRTBacillus licheniformis 412Met Val Leu Ser His Ile Glu Glu Gln Lys Leu Ile Ala Ile Ile Arg1 5 10 15Gly Tyr Asn Pro Glu Glu Ala Val Ser Ile Ala Gly Ala Leu Lys Ala 20 25 30Gly Gly Ile Arg Leu Val Glu Ile Thr Leu Asn Ser Pro Gln Ala Ile 35 40 45Lys Ala Ile Glu Ala Val Ser Glu His Phe Gly Asp Glu Met Leu Val 50 55 60Gly Ala Gly Thr Val Leu Asp Pro Glu Ser Ala Arg Ala Ala Leu Leu65 70 75 80Ala Gly Ala Arg Phe Ile Leu Ser Pro Thr Val Asn Glu Glu Thr Ile 85 90 95Lys Leu Thr Lys Arg Tyr Gly Ala Val Ser Ile Pro Gly Ala Phe Thr 100 105 110Pro Thr Glu Ile Leu Thr Ala Tyr Glu Ser Gly Gly Asp Ile Ile Lys 115 120 125Val Phe Pro Gly Thr Met Gly Pro Gly Tyr Ile Lys Asp Ile His Gly 130 135 140Pro Leu Pro His Ile Pro Leu Leu Pro Thr Gly Gly Val Gly Leu Glu145 150 155 160Asn Leu His Glu Phe Leu Gln Ala Gly Ala Val Gly Ala Gly Ile Gly 165 170 175Gly Ser Leu Val Arg Ala Asn Lys Asp Val Asn Asp Ala Phe Leu Glu 180 185 190Glu Leu Ser Lys Lys Ala Lys Gln Phe Val Glu Ala Ala Lys Gln 195 200 205413624DNAGluconobacter oxydans 413atgatcgata ctgccaaact cgacgccgtc atgagccgtt gtccggtcat gccggtgctg 60gtggtcaatg atgtggctct ggcccgcccg atggccgagg ctctggtggc gggtggactg 120tccacgctgg aagtcacgct gcgcacgccc tgcgcccttg aagctattga ggaaatgtcg 180aaagtaccag gcgcgctggt cggtgccggt acggtgctga atccgtccga catggaccgt 240gccgtgaagg cgggtgcgcg cttcatcgtc agccccggcc tgaccgaggc gctggcaaag 300gcgtcggttg agcatgacgt ccccttcctg ccaggcgttg ccaatgcggg tgacatcatg 360cggggtctgg atctgggtct gtcacgcttc aagttcttcc cggctgtgac gaatggcggc 420attcccgcgc tcaagagctt ggccagtgtt tttggcagca atgtccgttt ctgccccacg 480ggcggcatta cggaagagag cgcaccggac tggctggcgc ttccctccgt ggcctgcgtc 540ggcggatcct gggtgacggc cggcacgttc gatgcggaca aggtccgtca gcgcgccacg 600gctgcggcac tcttcacggt ctga 624414207PRTGluconobacter oxydans 414Met Ile Asp Thr Ala Lys Leu Asp Ala Val Met Ser Arg Cys Pro Val1 5 10 15Met Pro Val Leu Val Val Asn Asp Val Ala Leu Ala Arg Pro Met Ala 20 25 30Glu Ala Leu Val Ala Gly Gly Leu Ser Thr Leu Glu Val Thr Leu Arg 35 40 45Thr Pro Cys Ala Leu Glu Ala Ile Glu Glu Met Ser Lys Val Pro Gly 50 55 60Ala Leu Val Gly Ala Gly Thr Val Leu Asn Pro Ser Asp Met Asp Arg65 70 75 80Ala Val Lys Ala Gly Ala Arg Phe Ile Val Ser Pro Gly Leu Thr Glu 85 90 95Ala Leu Ala Lys Ala Ser Val Glu His Asp Val Pro Phe Leu Pro Gly 100 105 110Val Ala Asn Ala Gly Asp Ile Met Arg Gly Leu Asp Leu Gly Leu Ser 115 120 125Arg Phe Lys Phe Phe Pro Ala Val Thr Asn Gly Gly Ile Pro Ala Leu 130 135 140Lys Ser Leu Ala Ser Val Phe Gly Ser Asn Val Arg Phe Cys Pro Thr145 150 155 160Gly Gly Ile Thr Glu Glu Ser Ala Pro Asp Trp Leu Ala Leu Pro Ser 165 170 175Val Ala Cys Val Gly Gly Ser Trp Val Thr Ala Gly Thr Phe Asp Ala 180 185 190Asp

Lys Val Arg Gln Arg Ala Thr Ala Ala Ala Leu Phe Thr Val 195 200 205415642DNAPseudomonas aeruginosa 415atgaaaaact ggaaaacaag tgcagaatca atcctgacca ccggcccggt tgtaccggtt 60atcgtggtaa aaaaactgga acacgcggtg ccgatggcaa aagcgttggt tgctggtggg 120gtgcgcgttc tggaagtgac tctgcgtacc gagtgtgcag ttgacgctat ccgtgctatc 180gccaaagaag tgcctgaagc gattgtgggt gccggtacgg tgctgaatcc acagcagctg 240gcagaagtca ctgaagcggg tgcacagttc gcaattagcc cgggtctgac cgagccgctg 300ctgaaagctg ctaccgaagg gactattcct ctgattccgg ggatcagcac tgtttccgaa 360ctgatgctgg gtatggacta cggtttgaaa gagttcaaat tcttcccggc tgaagctaac 420ggcggcgtga aagccctgca ggcgatcgcg ggtccgttct cccaggtccg tttctgcccg 480acgggtggta tttctccggc taactaccgt gactacctgg cgctgaaaag cgtgctgtgc 540atcggtggtt cctggctggt tccggcagat gcgctggaag cgggcgatta cgaccgcatt 600actaagctgg cgcgtgaagc tgtagaaggc gctaagctgt aa 642416213PRTPseudomonas aeruginosa 416Met Lys Asn Trp Lys Thr Ser Ala Glu Ser Ile Leu Thr Thr Gly Pro1 5 10 15Val Val Pro Val Ile Val Val Lys Lys Leu Glu His Ala Val Pro Met 20 25 30Ala Lys Ala Leu Val Ala Gly Gly Val Arg Val Leu Glu Val Thr Leu 35 40 45Arg Thr Glu Cys Ala Val Asp Ala Ile Arg Ala Ile Ala Lys Glu Val 50 55 60Pro Glu Ala Ile Val Gly Ala Gly Thr Val Leu Asn Pro Gln Gln Leu65 70 75 80Ala Glu Val Thr Glu Ala Gly Ala Gln Phe Ala Ile Ser Pro Gly Leu 85 90 95Thr Glu Pro Leu Leu Lys Ala Ala Thr Glu Gly Thr Ile Pro Leu Ile 100 105 110Pro Gly Ile Ser Thr Val Ser Glu Leu Met Leu Gly Met Asp Tyr Gly 115 120 125Leu Lys Glu Phe Lys Phe Phe Pro Ala Glu Ala Asn Gly Gly Val Lys 130 135 140Ala Leu Gln Ala Ile Ala Gly Pro Phe Ser Gln Val Arg Phe Cys Pro145 150 155 160Thr Gly Gly Ile Ser Pro Ala Asn Tyr Arg Asp Tyr Leu Ala Leu Lys 165 170 175Ser Val Leu Cys Ile Gly Gly Ser Trp Leu Val Pro Ala Asp Ala Leu 180 185 190Glu Ala Gly Asp Tyr Asp Arg Ile Thr Lys Leu Ala Arg Glu Ala Val 195 200 205Glu Gly Ala Lys Leu 210417682DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 417atgaaaaact ggaaacagaa gaccgcccgc atcgacacgc tgtgccggga ggcgcgcatc 60ctcccggtga tcaccatcga ccgcgaggcg gacatcctgc cgatggccga tgccctcgcc 120gccggcggcc tgaccgccct ggagatcacc ctgcgcacgg cgcacgggct gaccgccatc 180cggcgcctca gcgaggagcg cccgcacctg cgcatcggcg ccggcaccgt gctcgacccg 240cggaccttcg ccgccgcgga aaaggccggg gcgagcttcg tggtcacccc gggttgcacc 300gacgagttgc tgcgcttcgc cctggacagc gaagtcccgc tgttgcccgg cgtggccagc 360gcttccgaga tcatgctcgc ctaccgccat ggctaccgcc gcttcaagct gtttcccgcc 420gaagtcagcg gcggcccggc ggcgctgaag gcgttctcgg gaccattccc cgatatccgc 480ttctgcccca ccggaggcgt cagcctgaac aatctcgccg actacctggc ggtacccaac 540gtgatgtgcg tcggcggcac ctggatgctg cccaaggccg tggtcgaccg cggcgactgg 600gcccaggtcg agcgcctcag ccgcgaagcc ctggagcgct tcgccgagca ccgcagacac 660taatagctcg agttacttta ct 682418220PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 418Met Lys Asn Trp Lys Gln Lys Thr Ala Arg Ile Asp Thr Leu Cys Arg1 5 10 15Glu Ala Arg Ile Leu Pro Val Ile Thr Ile Asp Arg Glu Ala Asp Ile 20 25 30Leu Pro Met Ala Asp Ala Leu Ala Ala Gly Gly Leu Thr Ala Leu Glu 35 40 45Ile Thr Leu Arg Thr Ala His Gly Leu Thr Ala Ile Arg Arg Leu Ser 50 55 60Glu Glu Arg Pro His Leu Arg Ile Gly Ala Gly Thr Val Leu Asp Pro65 70 75 80Arg Thr Phe Ala Ala Ala Glu Lys Ala Gly Ala Ser Phe Val Val Thr 85 90 95Pro Gly Cys Thr Asp Glu Leu Leu Arg Phe Ala Leu Asp Ser Glu Val 100 105 110Pro Leu Leu Pro Gly Val Ala Ser Ala Ser Glu Ile Met Leu Ala Tyr 115 120 125Arg His Gly Tyr Arg Arg Phe Lys Leu Phe Pro Ala Glu Val Ser Gly 130 135 140Gly Pro Ala Ala Leu Lys Ala Phe Ser Gly Pro Phe Pro Asp Ile Arg145 150 155 160Phe Cys Pro Thr Gly Gly Val Ser Leu Asn Asn Leu Ala Asp Tyr Leu 165 170 175Ala Val Pro Asn Val Met Cys Val Gly Gly Thr Trp Met Leu Pro Lys 180 185 190Ala Val Val Asp Arg Gly Asp Trp Ala Gln Val Glu Arg Leu Ser Arg 195 200 205Glu Ala Leu Glu Arg Phe Ala Glu His Arg Arg His 210 215 220419682DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 419atgaaaaact ggaaaacaag tgcagaatca atcgacacgc tgtgccggga ggcgcgcatc 60ctcccggtga tcaccatcga ccgcgaggcg gacatcctgc cgatggccga tgccctcgcc 120gccggcggcc tgaccgccct ggagatcacc ctgcgcacgg cgcacgggct gaccgccatc 180cggcgcctca gcgaggagcg cccgcacctg cgcatcggcg ccggcaccgt gctcgacccg 240cggaccttcg ccgccgcgga aaaggccggg gcgagcttcg tggtcacccc gggttgcacc 300gacgagttgc tgcgcttcgc cctggacagc gaagtcccgc tgttgcccgg cgtggccagc 360gcttccgaga tcatgctcgc ctaccgccat ggctaccgcc gcttcaagct gtttcccgcc 420gaagtcagcg gcggcccggc ggcgctgaag gcgttctcgg gaccattccc cgatatccgc 480ttctgcccca ccggaggcgt cagcctgaac aatctcgccg actacctggc ggtacccaac 540gtgatgtgcg tcggcggcac ctggatgctg cccaaggccg tggtcgaccg cggcgactgg 600gcccaggtcg agcgcctcag ccgcgaagcc ctggagcgct tcgccgagca ccgcagacac 660taatagctcg agttacttta ct 682420220PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 420Met Lys Asn Trp Lys Thr Ser Ala Glu Ser Ile Asp Thr Leu Cys Arg1 5 10 15Glu Ala Arg Ile Leu Pro Val Ile Thr Ile Asp Arg Glu Ala Asp Ile 20 25 30Leu Pro Met Ala Asp Ala Leu Ala Ala Gly Gly Leu Thr Ala Leu Glu 35 40 45Ile Thr Leu Arg Thr Ala His Gly Leu Thr Ala Ile Arg Arg Leu Ser 50 55 60Glu Glu Arg Pro His Leu Arg Ile Gly Ala Gly Thr Val Leu Asp Pro65 70 75 80Arg Thr Phe Ala Ala Ala Glu Lys Ala Gly Ala Ser Phe Val Val Thr 85 90 95Pro Gly Cys Thr Asp Glu Leu Leu Arg Phe Ala Leu Asp Ser Glu Val 100 105 110Pro Leu Leu Pro Gly Val Ala Ser Ala Ser Glu Ile Met Leu Ala Tyr 115 120 125Arg His Gly Tyr Arg Arg Phe Lys Leu Phe Pro Ala Glu Val Ser Gly 130 135 140Gly Pro Ala Ala Leu Lys Ala Phe Ser Gly Pro Phe Pro Asp Ile Arg145 150 155 160Phe Cys Pro Thr Gly Gly Val Ser Leu Asn Asn Leu Ala Asp Tyr Leu 165 170 175Ala Val Pro Asn Val Met Cys Val Gly Gly Thr Trp Met Leu Pro Lys 180 185 190Ala Val Val Asp Arg Gly Asp Trp Ala Gln Val Glu Arg Leu Ser Arg 195 200 205Glu Ala Leu Glu Arg Phe Ala Glu His Arg Arg His 210 215 220421682DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 421atgaaaaact ggaaaacaag tgcagaatca atcctgacca ccggccggga ggcgcgcatc 60ctcccggtga tcaccatcga ccgcgaggcg gacatcctgc cgatggccga tgccctcgcc 120gccggcggcc tgaccgccct ggagatcacc ctgcgcacgg cgcacgggct gaccgccatc 180cggcgcctca gcgaggagcg cccgcacctg cgcatcggcg ccggcaccgt gctcgacccg 240cggaccttcg ccgccgcgga aaaggccggg gcgagcttcg tggtcacccc gggttgcacc 300gacgagttgc tgcgcttcgc cctggacagc gaagtcccgc tgttgcccgg cgtggccagc 360gcttccgaga tcatgctcgc ctaccgccat ggctaccgcc gcttcaagct gtttcccgcc 420gaagtcagcg gcggcccggc ggcgctgaag gcgttctcgg gaccattccc cgatatccgc 480ttctgcccca ccggaggcgt cagcctgaac aatctcgccg actacctggc ggtacccaac 540gtgatgtgcg tcggcggcac ctggatgctg cccaaggccg tggtcgaccg cggcgactgg 600gcccaggtcg agcgcctcag ccgcgaagcc ctggagcgct tcgccgagca ccgcagacac 660taatagctcg agttacttta ct 682422220PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 422Met Lys Asn Trp Lys Thr Ser Ala Glu Ser Ile Leu Thr Thr Gly Arg1 5 10 15Glu Ala Arg Ile Leu Pro Val Ile Thr Ile Asp Arg Glu Ala Asp Ile 20 25 30Leu Pro Met Ala Asp Ala Leu Ala Ala Gly Gly Leu Thr Ala Leu Glu 35 40 45Ile Thr Leu Arg Thr Ala His Gly Leu Thr Ala Ile Arg Arg Leu Ser 50 55 60Glu Glu Arg Pro His Leu Arg Ile Gly Ala Gly Thr Val Leu Asp Pro65 70 75 80Arg Thr Phe Ala Ala Ala Glu Lys Ala Gly Ala Ser Phe Val Val Thr 85 90 95Pro Gly Cys Thr Asp Glu Leu Leu Arg Phe Ala Leu Asp Ser Glu Val 100 105 110Pro Leu Leu Pro Gly Val Ala Ser Ala Ser Glu Ile Met Leu Ala Tyr 115 120 125Arg His Gly Tyr Arg Arg Phe Lys Leu Phe Pro Ala Glu Val Ser Gly 130 135 140Gly Pro Ala Ala Leu Lys Ala Phe Ser Gly Pro Phe Pro Asp Ile Arg145 150 155 160Phe Cys Pro Thr Gly Gly Val Ser Leu Asn Asn Leu Ala Asp Tyr Leu 165 170 175Ala Val Pro Asn Val Met Cys Val Gly Gly Thr Trp Met Leu Pro Lys 180 185 190Ala Val Val Asp Arg Gly Asp Trp Ala Gln Val Glu Arg Leu Ser Arg 195 200 205Glu Ala Leu Glu Arg Phe Ala Glu His Arg Arg His 210 215 2204231665DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 423atgtccaata actcattcac taacttcaaa ctggccactg aattgccagc ctggtctaag 60ttgcaaaaaa tttatgaatc tcaaggtaag actttgtctg tcaagcaaga attccaaaaa 120gatgccaagc gttttgaaaa attgaacaag actttcacca actatgatgg ttccaaaatc 180ttgttcgact actcaaagaa cttggtcaac gatgaaatca ttgctgcatt gattgaactg 240gccaaggagg ctaacgtcac cggtttgaga gatgctatgt tcaaaggtga acacatcaac 300tccactgaag atcgtgctgt ctaccacgtc gcattgagaa acagagctaa caagccaatg 360tacgttgatg gtgtcaacgt tgctccagaa gtcgactctg tcttgaagca catgaaggag 420ttctctgaac aagttcgttc tggtgaatgg aagggttata ccggtaagaa gatcaccgat 480gttgttaaca tcggtattgg tggttccgat ttgggtccag tcatggtcac tgaggctttg 540aagcactacg ctggtgtctt ggatgtccac ttcgtttcca acattgacgg tactcacatt 600gctgaaacct tgaaggttgt tgacccagaa actactttgt ttttgattgc ttccaagact 660ttcactaccg ctgaaactat cactaacgct aacactgcca agaactggtt cttgtcgaag 720acaggtaatg atccatctca cattgctaag catttcgctg ctttgtccac taacgaaacc 780gaagttgcca agttcggtat tgacaccaaa aacatgtttg gtttcgaaag ttgggtcggt 840ggtcgttact ctgtctggtc ggctattggt ttgtctgttg ccttgtacat tggctatgac 900aactttgagg ctttcttgaa gggtgctgaa gccgtcgaca accacttcac ccaaacccca 960ttggaagaca acattccatt gttgggtggt ttgttgtctg tctggtacaa caacttcttt 1020ggtgctcaaa cccatttggt tgctccattc gaccaatact tgcacagatt cccagcctac 1080ttgcaacaat tgtcaatgga atctaacggt aagtctgtta ccagaggtaa cgtgtttact 1140gactactcta ctggttctat cttgtttggt gaaccagcta ccaacgctca acactctttc 1200ttccaattgg ttcaccaagg taccaagttg attccatctg atttcatctt agctgctcaa 1260tctcataacc caattgagaa caaattacat caaaagatgt tggcttcaaa cttctttgct 1320caagctgaag ctttaatggt tggtaaggat gaagaacaag ttaaggctga aggtgccact 1380ggtggtttgg tcccacacaa ggtcttctca ggtaacagac caactacctc tatcttggct 1440caaaagatta ctccagctac tttgggtgct ttgattgcct actacgaaca tgttactttc 1500actgaaggtg ccatttggaa tatcaactct ttcgaccaat ggggtgttga attgggtaaa 1560gtcttggcta aagtcatcgg caaggaattg gacaactcct ccaccatttc tacccacgat 1620gcttctacca acggtttaat caatcaattc aaggaatgga tgtga 16654241470DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 424atgtctgctg atttcggttt gattggtttg gccgtcatgg gtcaaaattt gatcttgaac 60gctgctgacc acggtttcac tgtttgtgct tacaacagaa ctcaatccaa ggtcgaccat 120ttcttggcca atgaagctaa gggcaaatct atcatcggtg ctacttccat tgaagatttc 180atctccaaat tgaagagacc tagaaaggtc atgcttttgg ttaaagctgg tgctccagtt 240gacgctttga tcaaccaaat cgtcccactt ttggaaaagg gtgatattat catcgatggt 300ggtaactctc acttcccaga ttctaataga cgttacgaag aattgaagaa gaagggtatt 360cttttcgttg gttctggtgt ctccggtggt gaggaaggtg cccgttacgg tccatctttg 420atgccaggtg gttctgaaga agcttggcca catattaaga acatcttcca atccatctct 480gctaaatccg acggtgaacc atgttgcgaa tgggttggcc cagccggtgc tggtcactac 540gtcaagatgg ttcacaacgg tattgaatac ggtgatatgc aattgatttg tgaagcttat 600gacatcatga agagattggg tgggtttacc gataaggaaa tcagtgacgt ttttgccaaa 660tggaacaatg gtgtcttgga ttccttcttg gtcgaaatta ccagagatat tttgaaattc 720gacgacgtcg acggtaagcc attagttgaa aaaatcatgg atactgctgg tcaaaagggt 780actggtaagt ggactgccat caacgccttg gatttgggta tgccagttac tttgattggt 840gaagctgtct ttgcccgttg tctatctgct ttgaagaacg agagaattag agcctccaag 900gtcttaccag gcccagaagt tccaaaagac gccgtcaagg acagagaaca atttgtcgat 960gatttggaac aagctttgta tgcttccaag attatttctt acgctcaagg tttcatgttg 1020atccgtgaag ctgctgctac ttatggctgg aaactaaaca accctgccat cgctttgatg 1080tggagaggtg gttgtatcat tagatctgtt ttcttgggtc aaatcacaaa ggcctacaga 1140gaagaaccag atttggaaaa cttgttgttc aacaagttct tcgctgatgc cgtcaccaag 1200gctcaatctg gttggagaaa gtcaattgcg ttggctacca cctacggtat cccaacacca 1260gccttttcca ccgctttgtc tttctacgat gggtacagat ctgaaagatt gccagccaac 1320ttactacaag ctcaacgtga ctactttggt gctcacactt tcagagtgtt gccagaatgt 1380gcttctgaca acttgccagt agacaaggat atccatatca actggactgg ccacggtggt 1440aatgtttctt cctctacata ccaagcttaa 14704251479DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 425atgtcaaagg cagtaggtga tttaggctta gttggtttag ccgtgatggg tcaaaatttg 60atcttaaacg cagcggatca cggatttacc gtggttgctt ataataggac gcaatcaaag 120gtagataggt ttctagctaa tgaggcaaaa ggaaaatcaa taattggtgc aacttcaatt 180gaggacttgg ttgcgaaact aaagaaacct agaaagatta tgcttttaat caaagccggt 240gctccggtcg acactttaat aaaggaactt gtaccacatc ttgataaagg cgacattatt 300atcgacggtg gtaactcaca tttcccggac actaacagac gctacgaaga gctaacaaag 360caaggaattc tttttgtggg ctctggtgtc tcaggcggtg aagatggtgc acgttttggt 420ccatctttaa tgcctggtgg gtcagcagaa gcatggccgc acatcaagaa catctttcaa 480tctattgccg ccaaatcaaa cggtgagcca tgctgcgaat gggtggggcc tgccggttct 540ggtcactatg tgaagatggt acacaacggt atcgagtacg gtgatatgca gttgatttgc 600gaggcttacg atatcatgaa acgaattggc cggtttacgg ataaagagat cagtgaagta 660tttgacaagt ggaacactgg agttttggat tctttcttga ttgaaatcac gagggacatt 720ttaaaattcg atgacgtcga cggtaagcca ttggtggaaa aaattatgga tactgccggt 780caaaagggta ctggtaaatg gactgcaatc aacgccttgg atttaggaat gccagtcact 840ttaattgggg aggctgtttt cgctcgttgt ttgtcagcca taaaggacga acgtaaaaga 900gcttcgaaac ttctggcagg accaacagta ccaaaggatg caatacatga tagagaacaa 960tttgtgtatg atttggaaca agcattatac gcttcaaaga ttatttcata tgctcaaggt 1020ttcatgctga tccgcgaagc tgccagatca tacggctgga aattaaacaa cccagctatt 1080gctctaatgt ggagaggtgg ctgtataatc agatctgtgt tcttagctga gattacgaag 1140gcttataggg acgatccaga tttggaaaat ttattattca acgagttctt cgcttctgca 1200gttactaagg cccaatccgg ttggagaaga actattgccc ttgctgctac ttacggtatt 1260ccaactccag ctttctctac tgctttagcg ttttacgacg gctatagatc tgagaggcta 1320ccagcaaact tgttacaagc gcaacgtgat tattttggcg ctcatacatt tagaatttta 1380cctgaatgtg cttctgccca tttgccagta gacaaggata ttcatatcaa ttggactggg 1440cacggaggta atatatcttc ctcaacctac caagcttaa 14794261008DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 426atgtctgaac cagctcaaaa gaaacaaaag gttgctaaca actctctaga acaattgaaa 60gcctccggca ctgtcgttgt tgccgacact ggtgatttcg gctctattgc caagtttcaa 120cctcaagact ccacaactaa cccatcattg atcttggctg ctgccaagca accaacttac 180gccaagttga tcgatgttgc cgtggaatac ggtaagaagc atggtaagac caccgaagaa 240caagtcgaaa atgctgtgga cagattgtta gtcgaattcg gtaaggagat cttaaagatt 300gttccaggca gagtctccac cgaagttgat gctagattgt cttttgacac tcaagctacc 360attgaaaagg ctagacatat cattaaattg tttgaacaag aaggtgtctc caaggaaaga 420gtccttatta aaattgcttc cacttgggaa ggtattcaag ctgccaaaga attggaagaa 480aaggacggta tccactgtaa tttgactcta ttattctcct tcgttcaagc agttgcctgt 540gccgaggccc aagttacttt gatttcccca tttgttggta gaattctaga ctggtacaaa 600tccagcactg gtaaagatta caagggtgaa gccgacccag gtgttatttc cgtcaagaaa 660atctacaact actacaagaa gtacggttac aagactattg ttatgggtgc ttctttcaga 720agcactgacg aaatcaaaaa cttggctggt gttgactatc taacaatttc tccagcttta 780ttggacaagt tgatgaacag tactgaacct ttcccaagag ttttggaccc tgtctccgct 840aagaaggaag ccggcgacaa gatttcttac atcagcgacg aatctaaatt cagattcgac 900ttgaatgaag acgctatggc cactgaaaaa ttgtccgaag gtatcagaaa attctctgcc 960gatattgtta ctctattcga cttgattgaa aagaaagtta ccgcttaa 1008427335PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 427Met Ser Glu Pro Ala Gln Lys Lys Gln Lys Val Ala Asn Asn Ser Leu1 5 10 15Glu Gln Leu Lys Ala Ser Gly Thr Val Val Val Ala Asp Thr Gly Asp

20 25 30Phe Gly Ser Ile Ala Lys Phe Gln Pro Gln Asp Ser Thr Thr Asn Pro 35 40 45Ser Leu Ile Leu Ala Ala Ala Lys Gln Pro Thr Tyr Ala Lys Leu Ile 50 55 60Asp Val Ala Val Glu Tyr Gly Lys Lys His Gly Lys Thr Thr Glu Glu65 70 75 80Gln Val Glu Asn Ala Val Asp Arg Leu Leu Val Glu Phe Gly Lys Glu 85 90 95Ile Leu Lys Ile Val Pro Gly Arg Val Ser Thr Glu Val Asp Ala Arg 100 105 110Leu Ser Phe Asp Thr Gln Ala Thr Ile Glu Lys Ala Arg His Ile Ile 115 120 125Lys Leu Phe Glu Gln Glu Gly Val Ser Lys Glu Arg Val Leu Ile Lys 130 135 140Ile Ala Ser Thr Trp Glu Gly Ile Gln Ala Ala Lys Glu Leu Glu Glu145 150 155 160Lys Asp Gly Ile His Cys Asn Leu Thr Leu Leu Phe Ser Phe Val Gln 165 170 175Ala Val Ala Cys Ala Glu Ala Gln Val Thr Leu Ile Ser Pro Phe Val 180 185 190Gly Arg Ile Leu Asp Trp Tyr Lys Ser Ser Thr Gly Lys Asp Tyr Lys 195 200 205Gly Glu Ala Asp Pro Gly Val Ile Ser Val Lys Lys Ile Tyr Asn Tyr 210 215 220Tyr Lys Lys Tyr Gly Tyr Lys Thr Ile Val Met Gly Ala Ser Phe Arg225 230 235 240Ser Thr Asp Glu Ile Lys Asn Leu Ala Gly Val Asp Tyr Leu Thr Ile 245 250 255Ser Pro Ala Leu Leu Asp Lys Leu Met Asn Ser Thr Glu Pro Phe Pro 260 265 270Arg Val Leu Asp Pro Val Ser Ala Lys Lys Glu Ala Gly Asp Lys Ile 275 280 285Ser Tyr Ile Ser Asp Glu Ser Lys Phe Arg Phe Asp Leu Asn Glu Asp 290 295 300Ala Met Ala Thr Glu Lys Leu Ser Glu Gly Ile Arg Lys Phe Ser Ala305 310 315 320Asp Ile Val Thr Leu Phe Asp Leu Ile Glu Lys Lys Val Thr Ala 325 330 3354282043DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 428atgactcaat tcactgacat tgataagcta gccgtctcca ccataagaat tttggctgtg 60gacaccgtat ccaaggccaa ctcaggtcac ccaggtgctc cattgggtat ggcaccagct 120gcacacgttc tatggagtca aatgcgcatg aacccaacca acccagactg gatcaacaga 180gatagatttg tcttgtctaa cggtcacgcg gtcgctttgt tgtattctat gctacatttg 240actggttacg atctgtctat tgaagacttg aaacagttca gacagttggg ttccagaaca 300ccaggtcatc ctgaatttga gttgccaggt gttgaagtta ctaccggtcc attaggtcaa 360ggtatctcca acgctgttgg tatggccatg gctcaagcta acctggctgc cacttacaac 420aagccgggct ttaccttgtc tgacaactac acctatgttt tcttgggtga cggttgtttg 480caagaaggta tttcttcaga agcttcctcc ttggctggtc atttgaaatt gggtaacttg 540attgccatct acgatgacaa caagatcact atcgatggtg ctaccagtat ctcattcgat 600gaagatgttg ctaagagata cgaagcctac ggttgggaag ttttgtacgt agaaaatggt 660aacgaagatc tagccggtat tgccaaggct attgctcaag ctaagttatc caaggacaaa 720ccaactttga tcaaaatgac cacaaccatt ggttacggtt ccttgcatgc cggctctcac 780tctgtgcacg gtgccccatt gaaagcagat gatgttaaac aactaaagag caaattcggt 840ttcaacccag acaagtcctt tgttgttcca caagaagttt acgaccacta ccaaaagaca 900attttaaagc caggtgtcga agccaacaac aagtggaaca agttgttcag cgaataccaa 960aagaaattcc cagaattagg tgctgaattg gctagaagat tgagcggcca actacccgca 1020aattgggaat ctaagttgcc aacttacacc gccaaggact ctgccgtggc cactagaaaa 1080ttatcagaaa ctgttcttga ggatgtttac aatcaattgc cagagttgat tggtggttct 1140gccgatttaa caccttctaa cttgaccaga tggaaggaag cccttgactt ccaacctcct 1200tcttccggtt caggtaacta ctctggtaga tacattaggt acggtattag agaacacgct 1260atgggtgcca taatgaacgg tatttcagct ttcggtgcca actacaaacc atacggtggt 1320actttcttga acttcgtttc ttatgctgct ggtgccgtta gattgtccgc tttgtctggc 1380cacccagtta tttgggttgc tacacatgac tctatcggtg tcggtgaaga tggtccaaca 1440catcaaccta ttgaaacttt agcacacttc agatccctac caaacattca agtttggaga 1500ccagctgatg gtaacgaagt ttctgccgcc tacaagaact ctttagaatc caagcatact 1560ccaagtatca ttgctttgtc cagacaaaac ttgccacaat tggaaggtag ctctattgaa 1620agcgcttcta agggtggtta cgtactacaa gatgttgcta acccagatat tattttagtg 1680gctactggtt ccgaagtgtc tttgagtgtt gaagctgcta agactttggc cgcaaagaac 1740atcaaggctc gtgttgtttc tctaccagat ttcttcactt ttgacaaaca acccctagaa 1800tacagactat cagtcttacc agacaacgtt ccaatcatgt ctgttgaagt tttggctacc 1860acatgttggg gcaaatacgc tcatcaatcc ttcggtattg acagatttgg tgcctccggt 1920aaggcaccag aagtcttcaa gttcttcggt ttcaccccag aaggtgttgc tgaaagagct 1980caaaagacca ttgcattcta taagggtgac aagctaattt ctcctttgaa aaaagctttc 2040taa 2043429680PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 429Met Thr Gln Phe Thr Asp Ile Asp Lys Leu Ala Val Ser Thr Ile Arg1 5 10 15Ile Leu Ala Val Asp Thr Val Ser Lys Ala Asn Ser Gly His Pro Gly 20 25 30Ala Pro Leu Gly Met Ala Pro Ala Ala His Val Leu Trp Ser Gln Met 35 40 45Arg Met Asn Pro Thr Asn Pro Asp Trp Ile Asn Arg Asp Arg Phe Val 50 55 60Leu Ser Asn Gly His Ala Val Ala Leu Leu Tyr Ser Met Leu His Leu65 70 75 80Thr Gly Tyr Asp Leu Ser Ile Glu Asp Leu Lys Gln Phe Arg Gln Leu 85 90 95Gly Ser Arg Thr Pro Gly His Pro Glu Phe Glu Leu Pro Gly Val Glu 100 105 110Val Thr Thr Gly Pro Leu Gly Gln Gly Ile Ser Asn Ala Val Gly Met 115 120 125Ala Met Ala Gln Ala Asn Leu Ala Ala Thr Tyr Asn Lys Pro Gly Phe 130 135 140Thr Leu Ser Asp Asn Tyr Thr Tyr Val Phe Leu Gly Asp Gly Cys Leu145 150 155 160Gln Glu Gly Ile Ser Ser Glu Ala Ser Ser Leu Ala Gly His Leu Lys 165 170 175Leu Gly Asn Leu Ile Ala Ile Tyr Asp Asp Asn Lys Ile Thr Ile Asp 180 185 190Gly Ala Thr Ser Ile Ser Phe Asp Glu Asp Val Ala Lys Arg Tyr Glu 195 200 205Ala Tyr Gly Trp Glu Val Leu Tyr Val Glu Asn Gly Asn Glu Asp Leu 210 215 220Ala Gly Ile Ala Lys Ala Ile Ala Gln Ala Lys Leu Ser Lys Asp Lys225 230 235 240Pro Thr Leu Ile Lys Met Thr Thr Thr Ile Gly Tyr Gly Ser Leu His 245 250 255Ala Gly Ser His Ser Val His Gly Ala Pro Leu Lys Ala Asp Asp Val 260 265 270Lys Gln Leu Lys Ser Lys Phe Gly Phe Asn Pro Asp Lys Ser Phe Val 275 280 285Val Pro Gln Glu Val Tyr Asp His Tyr Gln Lys Thr Ile Leu Lys Pro 290 295 300Gly Val Glu Ala Asn Asn Lys Trp Asn Lys Leu Phe Ser Glu Tyr Gln305 310 315 320Lys Lys Phe Pro Glu Leu Gly Ala Glu Leu Ala Arg Arg Leu Ser Gly 325 330 335Gln Leu Pro Ala Asn Trp Glu Ser Lys Leu Pro Thr Tyr Thr Ala Lys 340 345 350Asp Ser Ala Val Ala Thr Arg Lys Leu Ser Glu Thr Val Leu Glu Asp 355 360 365Val Tyr Asn Gln Leu Pro Glu Leu Ile Gly Gly Ser Ala Asp Leu Thr 370 375 380Pro Ser Asn Leu Thr Arg Trp Lys Glu Ala Leu Asp Phe Gln Pro Pro385 390 395 400Ser Ser Gly Ser Gly Asn Tyr Ser Gly Arg Tyr Ile Arg Tyr Gly Ile 405 410 415Arg Glu His Ala Met Gly Ala Ile Met Asn Gly Ile Ser Ala Phe Gly 420 425 430Ala Asn Tyr Lys Pro Tyr Gly Gly Thr Phe Leu Asn Phe Val Ser Tyr 435 440 445Ala Ala Gly Ala Val Arg Leu Ser Ala Leu Ser Gly His Pro Val Ile 450 455 460Trp Val Ala Thr His Asp Ser Ile Gly Val Gly Glu Asp Gly Pro Thr465 470 475 480His Gln Pro Ile Glu Thr Leu Ala His Phe Arg Ser Leu Pro Asn Ile 485 490 495Gln Val Trp Arg Pro Ala Asp Gly Asn Glu Val Ser Ala Ala Tyr Lys 500 505 510Asn Ser Leu Glu Ser Lys His Thr Pro Ser Ile Ile Ala Leu Ser Arg 515 520 525Gln Asn Leu Pro Gln Leu Glu Gly Ser Ser Ile Glu Ser Ala Ser Lys 530 535 540Gly Gly Tyr Val Leu Gln Asp Val Ala Asn Pro Asp Ile Ile Leu Val545 550 555 560Ala Thr Gly Ser Glu Val Ser Leu Ser Val Glu Ala Ala Lys Thr Leu 565 570 575Ala Ala Lys Asn Ile Lys Ala Arg Val Val Ser Leu Pro Asp Phe Phe 580 585 590Thr Phe Asp Lys Gln Pro Leu Glu Tyr Arg Leu Ser Val Leu Pro Asp 595 600 605Asn Val Pro Ile Met Ser Val Glu Val Leu Ala Thr Thr Cys Trp Gly 610 615 620Lys Tyr Ala His Gln Ser Phe Gly Ile Asp Arg Phe Gly Ala Ser Gly625 630 635 640Lys Ala Pro Glu Val Phe Lys Phe Phe Gly Phe Thr Pro Glu Gly Val 645 650 655Ala Glu Arg Ala Gln Lys Thr Ile Ala Phe Tyr Lys Gly Asp Lys Leu 660 665 670Ile Ser Pro Leu Lys Lys Ala Phe 675 6804301830DNASaccharophagus degradans 430atgaatagcg taatcgaagc tgtaactcag cgaattattg agcgcagtcg acattctcgt 60caggcgtatt tgaatttaat gcgcaacacc atggagcagc atcctcctaa aaagcgtcta 120tcttgcggca atttggctca tgcctatgca gcatgtggtc aatccgataa gcaaacaatt 180cgtttaatgc aaagtgcaaa cataagtatt actacggcat ttaacgatat gctttcggcg 240catcagcctt tagaaacata ccctcaaata atcaaagaaa ctgcgcgtgc aatgggttca 300actgctcaag ttgcaggcgg cgtgccggca atgtgtgatg gtgtaactca aggccagccc 360ggtatggagc tgagtttgtt tagccgcgaa gttgtagcaa tggctacagc agtaggcctt 420tcgcacaata tgtttgatgg caatatgttt ttgggtgtat gcgataaaat tgttcctggc 480atgctaattg gcgcgttgca gtttggtcat attcctgggg tgtttgtgcc tgccggacca 540atgccttctg gtattcccaa caaagaaaaa gcaaaagttc gtcagcaata tgcggcgggc 600attgtggggg aagataagct tttagaaacc gagtcggctt cctatcacag tgcaggcacg 660tgtacttttt acggtacagc gaatacaaac caaatgatgg ttgaaatgtt gggtgttcag 720ttgcctggct cgtcgtttgt ttaccccggt actgagttgc gtgatgcctt aacgagagct 780gctgttgaaa agttggtaaa aatcacagat tcagccggta actaccgtcc gctctacgaa 840gtcattacgg aaaaatccat cgtcaattca ataattggtt tgttggctac cggcggttct 900actaaccaca cgctacacat tgttgctgtg gctcgcgctg cgggtataga ggttacgtgg 960gcagatatgg acgagctttc gcgtgctgtg ccattacttg cacgtgttta ccctaacggc 1020gaagctgatg ttaaccaatt ccagcaggct ggcggcatgg cttatttagt aagagagctg 1080cgcagcggcg gtttgctaaa tgaagatgtg gttactatta tgggtgaggg cctcgaggcc 1140tacgaaaaag agcccatgct taacgataag gggcaggctg aatgggtaaa tgatgtacct 1200gttagccgcg acgataccgt tgtgcgtcca gttacctcgc ctttcgataa agagggtggg 1260ttgcgtctac tcaagggtaa cttagggcag ggcgtaatca aaatttctgc ggtagcgcca 1320gaaaatcgcg ttgttgaggc cccatgtatt gtattcgagg cccaagaaga gctaatagct 1380gcgtttaagc gtggtgagct cgaaaaagac tttgttgcgg tagtgcgctt ccaagggcct 1440tctgccaatg gcatgccaga acttcataaa atgaccccgc ctttaggtgt gcttcaagat 1500aagggtttca aggtagcgtt agttaccgat ggcagaatgt ctggtgcatc tggtaaagtg 1560ccggccggta tacacttgtc gccagaagcg agtaagggtg gcctgttgaa taagctgcgc 1620acgggtgatg tgattcgctt cgatgccgaa gcgggcgtta ttcaagcgct tgttagtgat 1680gaagagttag ctgcgcgtga gccagctgtg caaccggtcg tggagcagaa cctcggacgc 1740tctctgtttg gtggtttgcg cgatttggct ggtgtatcgc tacaaggcgg aacagttttc 1800gattttgaaa gagagtttgg cgaaaaatag 1830431609PRTSaccharophagus degradans 431Met Asn Ser Val Ile Glu Ala Val Thr Gln Arg Ile Ile Glu Arg Ser1 5 10 15Arg His Ser Arg Gln Ala Tyr Leu Asn Leu Met Arg Asn Thr Met Glu 20 25 30Gln His Pro Pro Lys Lys Arg Leu Ser Cys Gly Asn Leu Ala His Ala 35 40 45Tyr Ala Ala Cys Gly Gln Ser Asp Lys Gln Thr Ile Arg Leu Met Gln 50 55 60Ser Ala Asn Ile Ser Ile Thr Thr Ala Phe Asn Asp Met Leu Ser Ala65 70 75 80His Gln Pro Leu Glu Thr Tyr Pro Gln Ile Ile Lys Glu Thr Ala Arg 85 90 95Ala Met Gly Ser Thr Ala Gln Val Ala Gly Gly Val Pro Ala Met Cys 100 105 110Asp Gly Val Thr Gln Gly Gln Pro Gly Met Glu Leu Ser Leu Phe Ser 115 120 125Arg Glu Val Val Ala Met Ala Thr Ala Val Gly Leu Ser His Asn Met 130 135 140Phe Asp Gly Asn Met Phe Leu Gly Val Cys Asp Lys Ile Val Pro Gly145 150 155 160Met Leu Ile Gly Ala Leu Gln Phe Gly His Ile Pro Gly Val Phe Val 165 170 175Pro Ala Gly Pro Met Pro Ser Gly Ile Pro Asn Lys Glu Lys Ala Lys 180 185 190Val Arg Gln Gln Tyr Ala Ala Gly Ile Val Gly Glu Asp Lys Leu Leu 195 200 205Glu Thr Glu Ser Ala Ser Tyr His Ser Ala Gly Thr Cys Thr Phe Tyr 210 215 220Gly Thr Ala Asn Thr Asn Gln Met Met Val Glu Met Leu Gly Val Gln225 230 235 240Leu Pro Gly Ser Ser Phe Val Tyr Pro Gly Thr Glu Leu Arg Asp Ala 245 250 255Leu Thr Arg Ala Ala Val Glu Lys Leu Val Lys Ile Thr Asp Ser Ala 260 265 270Gly Asn Tyr Arg Pro Leu Tyr Glu Val Ile Thr Glu Lys Ser Ile Val 275 280 285Asn Ser Ile Ile Gly Leu Leu Ala Thr Gly Gly Ser Thr Asn His Thr 290 295 300Leu His Ile Val Ala Val Ala Arg Ala Ala Gly Ile Glu Val Thr Trp305 310 315 320Ala Asp Met Asp Glu Leu Ser Arg Ala Val Pro Leu Leu Ala Arg Val 325 330 335Tyr Pro Asn Gly Glu Ala Asp Val Asn Gln Phe Gln Gln Ala Gly Gly 340 345 350Met Ala Tyr Leu Val Arg Glu Leu Arg Ser Gly Gly Leu Leu Asn Glu 355 360 365Asp Val Val Thr Ile Met Gly Glu Gly Leu Glu Ala Tyr Glu Lys Glu 370 375 380Pro Met Leu Asn Asp Lys Gly Gln Ala Glu Trp Val Asn Asp Val Pro385 390 395 400Val Ser Arg Asp Asp Thr Val Val Arg Pro Val Thr Ser Pro Phe Asp 405 410 415Lys Glu Gly Gly Leu Arg Leu Leu Lys Gly Asn Leu Gly Gln Gly Val 420 425 430Ile Lys Ile Ser Ala Val Ala Pro Glu Asn Arg Val Val Glu Ala Pro 435 440 445Cys Ile Val Phe Glu Ala Gln Glu Glu Leu Ile Ala Ala Phe Lys Arg 450 455 460Gly Glu Leu Glu Lys Asp Phe Val Ala Val Val Arg Phe Gln Gly Pro465 470 475 480Ser Ala Asn Gly Met Pro Glu Leu His Lys Met Thr Pro Pro Leu Gly 485 490 495Val Leu Gln Asp Lys Gly Phe Lys Val Ala Leu Val Thr Asp Gly Arg 500 505 510Met Ser Gly Ala Ser Gly Lys Val Pro Ala Gly Ile His Leu Ser Pro 515 520 525Glu Ala Ser Lys Gly Gly Leu Leu Asn Lys Leu Arg Thr Gly Asp Val 530 535 540Ile Arg Phe Asp Ala Glu Ala Gly Val Ile Gln Ala Leu Val Ser Asp545 550 555 560Glu Glu Leu Ala Ala Arg Glu Pro Ala Val Gln Pro Val Val Glu Gln 565 570 575Asn Leu Gly Arg Ser Leu Phe Gly Gly Leu Arg Asp Leu Ala Gly Val 580 585 590Ser Leu Gln Gly Gly Thr Val Phe Asp Phe Glu Arg Glu Phe Gly Glu 595 600 605Lys 4321917DNAXanthomonas axonopodis 432atgagcctgc atccgaatat ccaagccgtc accgaccgta tccgcaagcg cagtgctccc 60tcgcgcgcgg cgtatctggc cggcctcgat gccgccctgc gtgagggccc gttccgtagc 120cggttgagct gcggcaatct cgcgcatggc ttcgctgcgt ccgagccggg cgacaaatcg 180cgcctgcgcg gtgcggccac gccgaacctg ggcatcatca ctgcctataa cgacatgttg 240tcggcacatc agccgttcga gcactacccg cagctgatcc gcgaaaccgc gcgctcactt 300ggcgccactg cgcaggtggc cggcggcgtg ccggcgatgt gtgacggcgt gacccagggc 360cgcgccggca tggagctgtc gctgttctcg cgcgacaaca tcgctcaggc tgcggccatt 420ggcctgagcc atgacatgtt cgacagcgtg gtgtacctgg gggtgtgcga caagatcgtg 480ccgggtctgc tgatcggtgc gctggcgttt ggccatttgc cggcgatctt catgccggct 540ggtccgatga ccccgggcat cccgaacaag cagaaagccg aagtccgcga acgctacgcc 600gctggcgaag ccacccgcgc cgaattgctg gaggccgaat cctcgtctta tcactcgccc 660ggcacctgca ccttttacgg cacggcgaac tccaaccagg tgttgctcga agcgatgggc 720gtgcagttgc ccggcgcctc gttcgtcaat ccggagctgc cgctgcgcga tgcactgacc 780cgcgaaggca ccgcacgcgc attggcgatc tccgcgctgg gcgatgactt ccgcccgttc 840ggtcgtttga tcgacgaacg ggccatcgtc aatgccgtgg tcgcgctgat ggcgaccggc 900ggttcgacca accacaccat ccactggatc gcagtggcgc gtgcggccgg catcgtgttg 960acctgggacg acatggatct gatctcgcag accgtgccgc tgttgacacg catctacccg 1020aacggcgaag ccgacgtgaa ccgcttccag gccgcaggcg gcacggcgtt cgtgttccgc 1080gaattgatgg acgccggcta

catgcacgac gacctgccga ccatcgtcga aggcggcatg 1140cgcgcgtacg tcaacgaacc gcgcctgcag gacggcaagg tgacctacgt gcccggcacc 1200gcgaccactg ccgacgacag cgtcgcgcgt ccggtcagcg atgcattcga atcacaaggc 1260ggcctgcgcc tgctgcgcgg caacctcggc cgctcgttga tcaagctgtc ggcggtcaag 1320ccgcagcacc gcagcatcca agcgccagcg gtggtgatcg acaccccgca agtgctcaac 1380aaactgcatg cggcgggcgt actgccgcac gatttcgtgg tggtactgcg ctatcagggc 1440ccacgcgcaa acggcatgcc ggagctgcat tcgatggcgc cgctactggg cctgctgcag 1500aaccagggcc ggcgcgtggc gttggtcacc gacggccgtc tgtccggcgc ctcgggcaag 1560ttcccggcgg cgatccacat gaccccggaa gccgcacgcg gcggcccgat cgggcgcgta 1620cgcgaaggcg acatcgtgcg actggacggc gaagccggca ccttggaagt gctggtttcg 1680gccgaagaat gggcatcgcg cgaggtcgca ccgaacactg cgttggccgg caacgacctg 1740ggccgcaacc tgttcgccat caaccgccag gtggttggcc cggccgacca gggcgcgatt 1800tccatttcct gcggcccgac ccatccggac ggtgcgctgt ggagctacga cgccgagtac 1860gaactcggtg ccgatgcagc tgcagccgcc gcgccgcacg agtccaagga cgcctga 1917433638PRTXanthomonas axonopodis 433Met Ser Leu His Pro Asn Ile Gln Ala Val Thr Asp Arg Ile Arg Lys1 5 10 15Arg Ser Ala Pro Ser Arg Ala Ala Tyr Leu Ala Gly Ile Asp Ala Ala 20 25 30Leu Arg Glu Gly Pro Phe Arg Ser Arg Leu Ser Cys Gly Asn Leu Ala 35 40 45His Gly Phe Ala Ala Ser Glu Pro Thr Asp Lys Ser Arg Leu Arg Gly 50 55 60Ala Ala Thr Pro Asn Leu Gly Ile Ile Thr Ala Tyr Asn Asp Met Leu65 70 75 80Ser Ala His Gln Pro Phe Glu His Tyr Pro Gln Leu Ile Arg Glu Thr 85 90 95Ala Arg Ser Leu Gly Ala Thr Ala Gln Val Ala Gly Gly Val Pro Ala 100 105 110Met Cys Asp Gly Val Thr Gln Gly Arg Ala Gly Met Glu Leu Ser Leu 115 120 125Phe Ser Arg Asp Asn Ile Ala Gln Ala Ala Ala Ile Gly Leu Ser His 130 135 140Asp Met Phe Asp Ser Val Val Tyr Leu Gly Val Cys Asp Lys Ile Val145 150 155 160Pro Gly Leu Leu Ile Gly Ala Leu Ala Phe Gly His Leu Pro Ala Ile 165 170 175Phe Met Pro Ala Gly Pro Met Thr Pro Gly Ile Pro Asn Lys Gln Lys 180 185 190Ala Glu Val Arg Glu Arg Tyr Ala Ala Gly Glu Ala Thr Arg Ala Glu 195 200 205Leu Leu Glu Ala Glu Ser Ser Ser Tyr His Ser Pro Gly Thr Cys Thr 210 215 220Phe Tyr Gly Thr Ala Asn Ser Asn Gln Val Leu Leu Glu Ala Met Gly225 230 235 240Val Gln Leu Pro Gly Ala Ser Phe Val Asn Pro Glu Leu Pro Leu Arg 245 250 255Asp Ala Leu Thr Arg Glu Gly Thr Ala Arg Ala Leu Ala Ile Ser Ala 260 265 270Leu Gly Asp Asp Phe Arg Pro Phe Gly Arg Leu Ile Asp Glu Arg Ala 275 280 285Ile Val Asn Ala Val Val Ala Leu Met Ala Thr Gly Gly Ser Thr Asn 290 295 300His Thr Ile His Trp Ile Ala Val Ala Arg Ala Ala Gly Ile Val Leu305 310 315 320Thr Trp Asp Asp Met Asp Leu Ile Ser Gln Thr Val Pro Leu Leu Thr 325 330 335Arg Ile Tyr Pro Asn Gly Glu Ala Asp Val Asn Arg Phe Gln Ala Ala 340 345 350Gly Gly Thr Ala Phe Val Phe Arg Glu Leu Met Asp Ala Gly Tyr Met 355 360 365His Asp Asp Leu Pro Thr Ile Val Glu Gly Gly Met Arg Ala Tyr Val 370 375 380Asn Glu Pro Arg Leu Gln Asp Gly Lys Val Thr Tyr Val Pro Gly Thr385 390 395 400Ala Thr Thr Ala Asp Asp Ser Val Ala Arg Pro Val Ser Asp Ala Phe 405 410 415Glu Ser Gln Gly Gly Leu Arg Leu Leu Arg Gly Asn Leu Gly Arg Ser 420 425 430Leu Ile Lys Leu Ser Ala Val Lys Pro Gln His Arg Ser Ile Gln Ala 435 440 445Pro Ala Val Val Ile Asp Thr Pro Gln Val Leu Asn Lys Leu His Ala 450 455 460Ala Gly Val Leu Pro His Asp Phe Val Val Val Leu Arg Tyr Gln Gly465 470 475 480Pro Arg Ala Asn Gly Met Pro Glu Leu His Ser Met Ala Pro Leu Leu 485 490 495Gly Leu Leu Gln Asn Gln Gly Arg Arg Val Ala Leu Val Thr Asp Gly 500 505 510Arg Leu Ser Gly Ala Ser Gly Lys Phe Pro Ala Ala Ile His Met Thr 515 520 525Pro Glu Ala Ala Arg Gly Gly Pro Ile Gly Arg Val Arg Glu Gly Asp 530 535 540Ile Val Arg Leu Asp Gly Glu Ala Gly Thr Leu Glu Val Leu Val Ser545 550 555 560Ala Glu Glu Trp Ala Ser Arg Glu Val Ala Pro Asn Thr Ala Leu Ala 565 570 575Gly Asn Asp Leu Gly Arg Asn Leu Phe Ala Ile Asn Arg Gln Val Val 580 585 590Gly Pro Ala Asp Gln Gly Ala Ile Ser Ile Ser Cys Gly Pro Thr His 595 600 605Pro Asp Gly Ala Leu Trp Ser Tyr Asp Ala Glu Tyr Glu Leu Gly Ala 610 615 620Asp Ala Ala Ala Ala Ala Ala Pro His Glu Ser Lys Asp Ala625 630 6354341827DNAPseudomonas syringae 434atgcatcccc gcgtccttga agtaaccgag cggctcattg ctcgcagtcg cgatacccgt 60cagcgctacc ttcaattgat tcgaggcgca gcgagcgatg gcccgatgcg cggcaagctt 120caatgtgcca actttgctca cggcgtcgcc gcctgcggac cggaggacaa gcaaagcctg 180cgtttgatga acgccgccaa cgtggcaatc gtctcttcct acaatgaaat gctctcggcg 240catcagccct acgagcactt tcctgcacag atcaaacagg cgttacgtga cattggttcg 300gtcggtcagt ttgccggcgg cgtgcctgcc atgtgcgatg gcgtgactca gggtgagccg 360ggcatggaac tggccattgc cagccgcgaa gtgattgcca tgtccacggc aattgccttg 420tcacacaata tgttcgacgc cgccatgatg ctgggtatct gcgacaagat cgtccccggc 480ctgatgatgg gggcgttgcg tttcggtcat ctgccgacca tcttcgtgcc gggcgggccg 540atggtgtcag gtatctccaa caaggaaaaa gccgacgtac ggcagcgtta cgctgaaggc 600aaggccagcc gtgaagagct gctggactcg gaaatgaagt cctatcacgg cccgggaacc 660tgcacgttct acggcaccgc caacaccaat cagttggtga tggaagtcat gggcatgcac 720cttcccggtg cctcgttcgt caatccctac acaccactgc gtgatgcgct gacagctgaa 780gcggctcgtc aggtcacgcg tctgaccatg caaagcggca gtttcatgcc gattggtgaa 840atcgtcgacg agcgctcgct ggtcaattcc atcgttgcgc tgcacgccac cggcggctcg 900accaaccaca cgctgcacat gccggcgatt gctcaggctg cgggtattca gctgacctgg 960caggacatgg ccgacctctc cgaagtggtg ccgaccctca gtcacgtcta ccccaacggc 1020aaggccgaca tcaaccattt ccaggccgca ggcggcatgt cgttcctgat tcgcgagctg 1080ctggcagccg gtctgctgca cgaaaacgtt aacaccgtgg ccggttatgg cctgagccgc 1140tacaccaaag agccattcct ggaggatggc aaactggtct ggcgtgaagg cccgctggac 1200agcctggatg aaaacatcct gcgcccggtg gcgcgtccgt tctcccctga aggcggtttg 1260cgggtcatgg aaggcaacct gggtcgcggt gtcatgaaag tatcggccgt tgcgctggag 1320catcagattg tcgaagcgcc agcccgagtg tttcaggatc agaaggagct ggccgatgcg 1380ttcaaggccg gcgagctgga atgtgatttc gtcgccgtca tgcgttttca gggcccgcgc 1440tgcaacggca tgcccgaact gcacaagatg accccgtttc tgggcgtgct gcaggatcgt 1500ggtttcaaag tggcgctggt caccgatgga cggatgtcgg gcgcctcagg caagattccg 1560gcggcgattc acgtctgccc ggaagcgttc gatggtggcc cgttggcact ggtacgcgac 1620ggcgatgtga tccgcgtgga tggcgtaaaa ggcacgttac aagtgctggt cgaagcgtca 1680gaattggccg cccgagaacc ggccatcaac cagatcgaca acagtgtcgg ctgcggtcgc 1740gagctttttg gattcatgcg catggccttc agctccgcag agcaaggcgc cagcgccttt 1800acctctagtc tggagacgct caagtga 1827435608PRTPseudomonas syringae 435Met His Pro Arg Val Leu Glu Val Thr Glu Arg Leu Ile Ala Arg Ser1 5 10 15Arg Asp Thr Arg Gln Arg Tyr Leu Gln Leu Ile Arg Gly Ala Ala Ser 20 25 30Asp Gly Pro Met Arg Gly Lys Leu Gln Cys Ala Asn Phe Ala His Gly 35 40 45Val Ala Ala Cys Gly Pro Glu Asp Lys Gln Ser Leu Arg Leu Met Asn 50 55 60Ala Ala Asn Val Ala Ile Val Ser Ser Tyr Asn Glu Met Leu Ser Ala65 70 75 80His Gln Pro Tyr Glu His Phe Pro Ala Gln Ile Lys Gln Ala Leu Arg 85 90 95Asp Ile Gly Ser Val Gly Gln Phe Ala Gly Gly Val Pro Ala Met Cys 100 105 110Asp Gly Val Thr Gln Gly Glu Pro Gly Met Glu Leu Ala Ile Ala Ser 115 120 125Arg Glu Val Ile Ala Met Ser Thr Ala Ile Ala Leu Ser His Asn Met 130 135 140Phe Asp Ala Ala Met Met Leu Gly Ile Cys Asp Lys Ile Val Pro Gly145 150 155 160Leu Met Met Gly Ala Leu Arg Phe Gly His Leu Pro Thr Ile Phe Val 165 170 175Pro Gly Gly Pro Met Val Ser Gly Ile Ser Asn Lys Glu Lys Ala Asp 180 185 190Val Arg Gln Arg Tyr Ala Glu Gly Lys Ala Ser Arg Glu Glu Leu Leu 195 200 205Asp Ser Glu Met Lys Ser Tyr His Gly Pro Gly Thr Cys Thr Phe Tyr 210 215 220Gly Thr Ala Asn Thr Asn Gln Leu Val Met Glu Val Met Gly Met His225 230 235 240Leu Pro Gly Ala Ser Phe Val Asn Pro Tyr Thr Pro Leu Arg Asp Ala 245 250 255Leu Thr Ala Glu Ala Ala Arg Gln Val Thr Arg Leu Thr Met Gln Ser 260 265 270Gly Ser Phe Met Pro Ile Gly Glu Ile Val Asp Glu Arg Ser Leu Val 275 280 285Asn Ser Ile Val Ala Leu His Ala Thr Gly Gly Ser Thr Asn His Thr 290 295 300Leu His Met Pro Ala Ile Ala Gln Ala Ala Gly Ile Gln Leu Thr Trp305 310 315 320Gln Asp Met Ala Asp Leu Ser Glu Val Val Pro Thr Leu Ser His Val 325 330 335Tyr Pro Asn Gly Lys Ala Asp Ile Asn His Phe Gln Ala Ala Gly Gly 340 345 350Met Ser Phe Leu Ile Arg Glu Leu Leu Ala Ala Gly Leu Leu His Glu 355 360 365Asn Val Asn Thr Val Ala Gly Tyr Gly Leu Ser Arg Tyr Thr Lys Glu 370 375 380Pro Phe Leu Glu Asp Gly Lys Leu Val Trp Arg Glu Gly Pro Leu Asp385 390 395 400Ser Leu Asp Glu Asn Ile Leu Arg Pro Val Ala Arg Pro Phe Ser Pro 405 410 415Glu Gly Gly Leu Arg Val Met Glu Gly Asn Leu Gly Arg Gly Val Met 420 425 430Lys Val Ser Ala Val Ala Leu Glu His Gln Ile Val Glu Ala Pro Ala 435 440 445Arg Val Phe Gln Asp Gln Lys Glu Leu Ala Asp Ala Phe Lys Ala Gly 450 455 460Glu Leu Glu Cys Asp Phe Val Ala Val Met Arg Phe Gln Gly Pro Arg465 470 475 480Cys Asn Gly Met Pro Glu Leu His Lys Met Thr Pro Phe Leu Gly Val 485 490 495Leu Gln Asp Arg Gly Phe Lys Val Ala Leu Val Thr Asp Gly Arg Met 500 505 510Ser Gly Ala Ser Gly Lys Ile Pro Ala Ala Ile His Val Cys Pro Glu 515 520 525Ala Phe Asp Gly Gly Pro Leu Ala Leu Val Arg Asp Gly Asp Val Ile 530 535 540Arg Val Asp Gly Val Lys Gly Thr Leu Gln Val Leu Val Glu Ala Ser545 550 555 560Glu Leu Ala Ala Arg Glu Pro Ala Ile Asn Gln Ile Asp Asn Ser Val 565 570 575Gly Cys Gly Arg Glu Leu Phe Gly Phe Met Arg Met Ala Phe Ser Ser 580 585 590Ala Glu Gln Gly Ala Ser Ala Phe Thr Ser Ser Leu Glu Thr Leu Lys 595 600 6054361827DNAPseudomonas fluorescens 436atgcatcccc gcgttcttga ggtcaccgaa cggcttatcg cccgtagtcg cgccactcgc 60caggcctatc tcgcgctgat ccgcgatgcc gccagcgacg gcccgcagcg gggcaagctg 120caatgtgcga acttcgccca cggcgtggcc ggttgcggca ccgacgacaa gcacaacctg 180cggatgatga atgcggccaa cgtggcaatt gtttcgtcat ataacgacat gttgtcggcg 240caccagcctt acgaggtgtt ccccgagcag atcaagcgcg ccctgcgcga gatcggctcg 300gtgggccagt tcgccggcgg caccccggcc atgtgcgatg gcgtgaccca gggcgaggcc 360ggtatggaac tgagcctgcc gagccgtgaa gtgatcgccc tgtctacggc ggtggccctc 420tctcacaaca tgttcgatgc cgcgctgatg ctggggatct gcgacaagat tgtcccgggg 480ttgatgatgg gcgctctgcg cttcggtcac ctgccgacca tcttcgttcc gggcgggccc 540atggtctcgg gcatttccaa caagcagaaa gccgacgtgc gccagcgtta cgccgaaggc 600aaggccagcc gcgaggaact gctggagtcg gaaatgaagt cctaccacag ccccggcacc 660tgcactttct acggcaccgc caacaccaac cagttgctga tggaagtgat gggcctgcac 720ctgccgggcg cctctttcgt caaccccaat acgccgctgc gcgacgccct gacccatgag 780gcggcgcagc aggtcacgcg cctgaccaag cagagcgggg ccttcatgcc gattggcgag 840atcgtcgacg agcgcgtgct ggtcaactcc atcgttgccc tgcacgccac gggcggctcc 900accaaccaca ccctgcacat gccggccatc gcccaggcgg cgggcatcca gctgacctgg 960caggacatgg ccgacctctc cgaggtggtg ccgaccctgt cccacgtcta tccaaacggc 1020aaggccgata tcaaccactt ccaggcggcg ggcggcatgt ctttcctgat ccgcgagctg 1080ctggaagccg gcctgctcca cgaagacgtc aataccgtgg ccggccgcgg cctgagccgc 1140tatacccagg aacccttcct ggacaacggc aagctggtgt ggcgcgacgg cccgattgaa 1200agcctggacg aaaacatcct gcgcccggtg gcccgggcgt tctctgcgga gggcggcttg 1260cgggtcatgg aaggcaacct cggtcgcggc gtgatgaagg tttccgccgt ggccccggag 1320caccagatcg tcgaggcccc ggccgtggtg ttccaggacc agcaggacct ggccgatgcc 1380ttcaaggccg gcctgctgga gaaggacttc gtcgcggtga tgcgcttcca gggcccgcgc 1440tccaacggca tgcccgagct gcacaagatg acccccttcc tcggggtgct gcaggaccgc 1500ggcttcaagg tggcgctggt caccgacggg cgcatgtccg gcgcttcggg caagattccg 1560gcagcgatcc atgtcagccc cgaagcccag gtgggtggcg cgctggcccg ggtgctggac 1620ggcgatatca tccgagtgga tggcgtcaag ggcaccctgg agcttaaggt agacgccgca 1680gaattcgccg cccgggagcc ggccaagggc ctgctgggca acaacgttgg caccggccgc 1740gaactcttcg ccttcatgcg catggccttc agctcggcag agcagggcgc cagcgccttt 1800acctctgccc tggagacgct caagtga 1827437608PRTPseudomonas fluorescens 437Met His Pro Arg Val Leu Glu Val Thr Glu Arg Leu Ile Ala Arg Ser1 5 10 15Arg Ala Thr Arg Gln Ala Tyr Leu Ala Leu Ile Arg Asp Ala Ala Ser 20 25 30Asp Gly Pro Gln Arg Gly Lys Leu Gln Cys Ala Asn Phe Ala His Gly 35 40 45Val Ala Gly Cys Gly Thr Asp Asp Lys His Asn Leu Arg Met Met Asn 50 55 60Ala Ala Asn Val Ala Ile Val Ser Ser Tyr Asn Asp Met Leu Ser Ala65 70 75 80His Gln Pro Tyr Glu Val Phe Pro Glu Gln Ile Lys Arg Ala Leu Arg 85 90 95Glu Ile Gly Ser Val Gly Gln Phe Ala Gly Gly Thr Pro Ala Met Cys 100 105 110Asp Gly Val Thr Gln Gly Glu Ala Gly Met Glu Leu Ser Leu Pro Ser 115 120 125Arg Glu Val Ile Ala Leu Ser Thr Ala Val Ala Leu Ser His Asn Met 130 135 140Phe Asp Ala Ala Leu Met Leu Gly Ile Cys Asp Lys Ile Val Pro Gly145 150 155 160Leu Met Met Gly Ala Leu Arg Phe Gly His Leu Pro Thr Ile Phe Val 165 170 175Pro Gly Gly Pro Met Val Ser Gly Ile Ser Asn Lys Gln Lys Ala Asp 180 185 190Val Arg Gln Arg Tyr Ala Glu Gly Lys Ala Ser Arg Glu Glu Leu Leu 195 200 205Glu Ser Glu Met Lys Ser Tyr His Ser Pro Gly Thr Cys Thr Phe Tyr 210 215 220Gly Thr Ala Asn Thr Asn Gln Leu Leu Met Glu Val Met Gly Leu His225 230 235 240Leu Pro Gly Ala Ser Phe Val Asn Pro Asn Thr Pro Leu Arg Asp Ala 245 250 255Leu Thr His Glu Ala Ala Gln Gln Val Thr Arg Leu Thr Lys Gln Ser 260 265 270Gly Ala Phe Met Pro Ile Gly Glu Ile Val Asp Glu Arg Val Leu Val 275 280 285Asn Ser Ile Val Ala Leu His Ala Thr Gly Gly Ser Thr Asn His Thr 290 295 300Leu His Met Pro Ala Ile Ala Gln Ala Ala Gly Ile Gln Leu Thr Trp305 310 315 320Gln Asp Met Ala Asp Leu Ser Glu Val Val Pro Thr Leu Ser His Val 325 330 335Tyr Pro Asn Gly Lys Ala Asp Ile Asn His Phe Gln Ala Ala Gly Gly 340 345 350Met Ser Phe Leu Ile Arg Glu Leu Leu Glu Ala Gly Leu Leu His Glu 355 360 365Asp Val Asn Thr Val Ala Gly Arg Gly Leu Ser Arg Tyr Thr Gln Glu 370 375 380Pro Phe Leu Asp Asn Gly Lys Leu Val Trp Arg Asp Gly Pro Ile Glu385 390 395 400Ser Leu Asp Glu Asn Ile Leu Arg Pro Val Ala Arg Ala Phe Ser Ala 405 410 415Glu Gly Gly Leu Arg Val Met Glu Gly Asn Leu Gly Arg Gly Val Met 420 425 430Lys Val Ser Ala Val Ala Pro Glu His Gln Ile Val Glu Ala Pro Ala 435 440 445Val Val Phe Gln Asp Gln Gln Asp Leu Ala Asp Ala Phe Lys Ala Gly 450

455 460Leu Leu Glu Lys Asp Phe Val Ala Val Met Arg Phe Gln Gly Pro Arg465 470 475 480Ser Asn Gly Met Pro Glu Leu His Lys Met Thr Pro Phe Leu Gly Val 485 490 495Leu Gln Asp Arg Gly Phe Lys Val Ala Leu Val Thr Asp Gly Arg Met 500 505 510Ser Gly Ala Ser Gly Lys Ile Pro Ala Ala Ile His Val Ser Pro Glu 515 520 525Ala Gln Val Gly Gly Ala Leu Ala Arg Val Leu Asp Gly Asp Ile Ile 530 535 540Arg Val Asp Gly Val Lys Gly Thr Leu Glu Leu Lys Val Asp Ala Ala545 550 555 560Glu Phe Ala Ala Arg Glu Pro Ala Lys Gly Leu Leu Gly Asn Asn Val 565 570 575Gly Thr Gly Arg Glu Leu Phe Ala Phe Met Arg Met Ala Phe Ser Ser 580 585 590Ala Glu Gln Gly Ala Ser Ala Phe Thr Ser Ala Leu Glu Thr Leu Lys 595 600 6054381677DNABacillus subtilis 438atggcagaat tacgcagtaa tatgatcaca caaggaatcg atagagctcc gcaccgcagt 60ttgcttcgtg cagcaggggt aaaagaagag gatttcggca agccgtttat tgcggtgtgt 120aattcataca ttgatatcgt tcccggtcat gttcacttgc aggagtttgg gaaaatcgta 180aaagaagcaa tcagagaagc agggggcgtt ccgtttgaat ttaataccat tggggtagat 240gatggcatcg caatggggca tatcggtatg agatattcgc tgccaagccg tgaaattatc 300gcagactctg tggaaacggt tgtatccgca cactggtttg acggaatggt ctgtattccg 360aactgcgaca aaatcacacc gggaatgctt atggcggcaa tgcgcatcaa cattccgacg 420atttttgtca gcggcggacc gatggcggca ggaagaacaa gttacgggcg aaaaatctcc 480ctttcctcag tattcgaagg ggtaggcgcc taccaagcag ggaaaatcaa cgaaaacgag 540cttcaagaac tagagcagtt cggatgccca acgtgcgggt cttgctcagg catgtttacg 600gcgaactcaa tgaactgtct gtcagaagca cttggtcttg ctttgccggg taatggaacc 660attctggcaa catctccgga acgcaaagag tttgtgagaa aatcggctgc gcaattaatg 720gaaacgattc gcaaagatat caaaccgcgt gatattgtta cagtaaaagc gattgataac 780gcgtttgcac tcgatatggc gctcggaggt tctacaaata ccgttcttca tacccttgcc 840cttgcaaacg aagccggcgt tgaatactct ttagaacgca ttaacgaagt cgctgagcgc 900gtgccgcact tggctaagct ggcgcctgca tcggatgtgt ttattgaaga tcttcacgaa 960gcgggcggcg tttcagcggc tctgaatgag ctttcgaaga aagaaggagc gcttcattta 1020gatgcgctga ctgttacagg aaaaactctt ggagaaacca ttgccggaca tgaagtaaag 1080gattatgacg tcattcaccc gctggatcaa ccattcactg aaaagggagg ccttgctgtt 1140ttattcggta atctagctcc ggacggcgct atcattaaaa caggcggcgt acagaatggg 1200attacaagac acgaagggcc ggctgtcgta ttcgattctc aggacgaggc gcttgacggc 1260attatcaacc gaaaagtaaa agaaggcgac gttgtcatca tcagatacga agggccaaaa 1320ggcggacctg gcatgccgga aatgctggcg ccaacatccc aaatcgttgg aatgggactc 1380gggccaaaag tggcattgat tacggacgga cgtttttccg gagcctcccg tggcctctca 1440atcggccacg tatcacctga ggccgctgag ggcgggccgc ttgcctttgt tgaaaacgga 1500gaccatatta tcgttgatat tgaaaaacgc atcttggatg tacaagtgcc agaagaagag 1560tgggaaaaac gaaaagcgaa ctggaaaggt tttgaaccga aagtgaaaac cggctacctg 1620gcacgttatt ctaaacttgt gacaagtgcc aacaccggcg gtattatgaa aatctag 1677439558PRTBacillus subtilis 439Met Ala Glu Leu Arg Ser Asn Met Ile Thr Gln Gly Ile Asp Arg Ala1 5 10 15Pro His Arg Ser Leu Leu Arg Ala Ala Gly Val Lys Glu Glu Asp Phe 20 25 30Gly Lys Pro Phe Ile Ala Val Cys Asn Ser Tyr Ile Asp Ile Val Pro 35 40 45Gly His Val His Leu Gln Glu Phe Gly Lys Ile Val Lys Glu Ala Ile 50 55 60Arg Glu Ala Gly Gly Val Pro Phe Glu Phe Asn Thr Ile Gly Val Asp65 70 75 80Asp Gly Ile Ala Met Gly His Ile Gly Met Arg Tyr Ser Leu Pro Ser 85 90 95Arg Glu Ile Ile Ala Asp Ser Val Glu Thr Val Val Ser Ala His Trp 100 105 110Phe Asp Gly Met Val Cys Ile Pro Asn Cys Asp Lys Ile Thr Pro Gly 115 120 125Met Leu Met Ala Ala Met Arg Ile Asn Ile Pro Thr Ile Phe Val Ser 130 135 140Gly Gly Pro Met Ala Ala Gly Arg Thr Ser Tyr Gly Arg Lys Ile Ser145 150 155 160Leu Ser Ser Val Phe Glu Gly Val Gly Ala Tyr Gln Ala Gly Lys Ile 165 170 175Asn Glu Asn Glu Leu Gln Glu Leu Glu Gln Phe Gly Cys Pro Thr Cys 180 185 190Gly Ser Cys Ser Gly Met Phe Thr Ala Asn Ser Met Asn Cys Leu Ser 195 200 205Glu Ala Leu Gly Leu Ala Leu Pro Gly Asn Gly Thr Ile Leu Ala Thr 210 215 220Ser Pro Glu Arg Lys Glu Phe Val Arg Lys Ser Ala Ala Gln Leu Met225 230 235 240Glu Thr Ile Arg Lys Asp Ile Lys Pro Arg Asp Ile Val Thr Val Lys 245 250 255Ala Ile Asp Asn Ala Phe Ala Leu Asp Met Ala Leu Gly Gly Ser Thr 260 265 270Asn Thr Val Leu His Thr Leu Ala Leu Ala Asn Glu Ala Gly Val Glu 275 280 285Tyr Ser Leu Glu Arg Ile Asn Glu Val Ala Glu Arg Val Pro His Leu 290 295 300Ala Lys Leu Ala Pro Ala Ser Asp Val Phe Ile Glu Asp Leu His Glu305 310 315 320Ala Gly Gly Val Ser Ala Ala Leu Asn Glu Leu Ser Lys Lys Glu Gly 325 330 335Ala Leu His Leu Asp Ala Leu Thr Val Thr Gly Lys Thr Leu Gly Glu 340 345 350Thr Ile Ala Gly His Glu Val Lys Asp Tyr Asp Val Ile His Pro Leu 355 360 365Asp Gln Pro Phe Thr Glu Lys Gly Gly Leu Ala Val Leu Phe Gly Asn 370 375 380Leu Ala Pro Asp Gly Ala Ile Ile Lys Thr Gly Gly Val Gln Asn Gly385 390 395 400Ile Thr Arg His Glu Gly Pro Ala Val Val Phe Asp Ser Gln Asp Glu 405 410 415Ala Leu Asp Gly Ile Ile Asn Arg Lys Val Lys Glu Gly Asp Val Val 420 425 430Ile Ile Arg Tyr Glu Gly Pro Lys Gly Gly Pro Gly Met Pro Glu Met 435 440 445Leu Ala Pro Thr Ser Gln Ile Val Gly Met Gly Leu Gly Pro Lys Val 450 455 460Ala Leu Ile Thr Asp Gly Arg Phe Ser Gly Ala Ser Arg Gly Leu Ser465 470 475 480Ile Gly His Val Ser Pro Glu Ala Ala Glu Gly Gly Pro Leu Ala Phe 485 490 495Val Glu Asn Gly Asp His Ile Ile Val Asp Ile Glu Lys Arg Ile Leu 500 505 510Asp Val Gln Val Pro Glu Glu Glu Trp Glu Lys Arg Lys Ala Asn Trp 515 520 525Lys Gly Phe Glu Pro Lys Val Lys Thr Gly Tyr Leu Ala Arg Tyr Ser 530 535 540Lys Leu Val Thr Ser Ala Asn Thr Gly Gly Ile Met Lys Ile545 550 5554401677DNABacillus licheniformis 440atgacaggtt tacgcagtga catgattaca aaagggatcg acagagcgcc gcaccgcagt 60ttgctgcgcg cggctggggt aaaagaagag gacttcggca aaccgtttat tgccgtttgc 120aactcataca tcgatatcgt accgggtcat gtccatttgc aggagtttgg aaaaatcgtc 180aaagaggcga tcagagaggc cggcggtgtt ccgtttgaat ttaatacaat cggggtcgac 240gacggaattg cgatggggca catcggaatg aggtattctc tcccgagccg cgaaatcatc 300gcagattcag tggaaacggt tgtatcggcg cactggtttg acggaatggt atgtattcca 360aactgtgata aaatcacacc gggcatgatc atggcggcaa tgcggatcaa cattccgacc 420gtgtttgtca gcggggggcc gatggaagcg ggaagaacga gcgacggacg aaaaatctcg 480ctttcctctg tatttgaagg cgttggcgct tatcaatcag gcaaaatcga tgagaaagga 540ctcgaggagc ttgaacagtt cggctgtccg acttgcggat catgctcggg catgtttacg 600gcgaactcga tgaactgtct ttctgaagct cttggcatcg ccatgccggg caacggcacc 660attttggcga catcgcccga ccgcagggaa tttgccaaac agtcggcccg ccagctgatg 720gagctgatca agtcggatat caaaccgcgc gacatcgtga ccgaaaaagc gatcgacaac 780gcgttcgctt tagacatggc gctcggcgga tcaacgaata cgatccttca tacgcttgcg 840atcgccaatg aagcgggtgt agactattcg cttgaacgga tcaatgaggt agcggcaagg 900gttccgcatt tatcgaagct tgcaccggct tccgatgtgt ttattgaaga tttgcatgaa 960gcaggaggcg tatcggcagt cttaaacgag ctgtcgaaaa aagaaggcgc gcttcacttg 1020gatacgctga ctgtaacggg gaaaacgctt ggcgaaaata ttgccggacg cgaagtgaaa 1080gattacgagg tcattcatcc gatcgatcag ccgttttcag agcaaggcgg actcgccgtc 1140ctgttcggca acctggctcc tgacggtgcg atcattaaaa cgggcggcgt ccaagacggg 1200attacccgcc atgaaggacc tgcggttgtc tttgattcac aggaagaagc gcttgacggc 1260atcatcaacc gtaaagtaaa agcgggagat gtcgtcatca tccgctatga aggccctaaa 1320ggcggaccgg gaatgcctga aatgcttgcg ccgacttcac agatcgtcgg aatgggcctc 1380ggcccgaaag tcgccttgat taccgacggc cgcttttcag gagcctcccg cggtctttcg 1440atcggccacg tttcaccgga agcagccgaa ggcggcccgc ttgctttcgt agaaaacggc 1500gaccatatcg ttgtcgatat cgaaaagcgg attttaaaca tcgaaatctc cgatgaggaa 1560tgggaaaaaa gaaaagcaaa ctggcccggc tttgaaccga aagtgaaaac gggctatctc 1620gccaggtatt caaagcttgt gacatctgcc aataccggcg gcattatgaa aatctag 1677441558PRTBacillus licheniformis 441Met Thr Gly Leu Arg Ser Asp Met Ile Thr Lys Gly Ile Asp Arg Ala1 5 10 15Pro His Arg Ser Leu Leu Arg Ala Ala Gly Val Lys Glu Glu Asp Phe 20 25 30Gly Lys Pro Phe Ile Ala Val Cys Asn Ser Tyr Ile Asp Ile Val Pro 35 40 45Gly His Val His Leu Gln Glu Phe Gly Lys Ile Val Lys Glu Ala Ile 50 55 60Arg Glu Ala Gly Gly Val Pro Phe Glu Phe Asn Thr Ile Gly Val Asp65 70 75 80Asp Gly Ile Ala Met Gly His Ile Gly Met Arg Tyr Ser Leu Pro Ser 85 90 95Arg Glu Ile Ile Ala Asp Ser Val Glu Thr Val Val Ser Ala His Trp 100 105 110Phe Asp Gly Met Val Cys Ile Pro Asn Cys Asp Lys Ile Thr Pro Gly 115 120 125Met Ile Met Ala Ala Met Arg Ile Asn Ile Pro Thr Val Phe Val Ser 130 135 140Gly Gly Pro Met Glu Ala Gly Arg Thr Ser Asp Gly Arg Lys Ile Ser145 150 155 160Leu Ser Ser Val Phe Glu Gly Val Gly Ala Tyr Gln Ser Gly Lys Ile 165 170 175Asp Glu Lys Gly Leu Glu Glu Leu Glu Gln Phe Gly Cys Pro Thr Cys 180 185 190Gly Ser Cys Ser Gly Met Phe Thr Ala Asn Ser Met Asn Cys Leu Ser 195 200 205Glu Ala Leu Gly Ile Ala Met Pro Gly Asn Gly Thr Ile Leu Ala Thr 210 215 220Ser Pro Asp Arg Arg Glu Phe Ala Lys Gln Ser Ala Arg Gln Leu Met225 230 235 240Glu Leu Ile Lys Ser Asp Ile Lys Pro Arg Asp Ile Val Thr Glu Lys 245 250 255Ala Ile Asp Asn Ala Phe Ala Leu Asp Met Ala Leu Gly Gly Ser Thr 260 265 270Asn Thr Ile Leu His Thr Leu Ala Ile Ala Asn Glu Ala Gly Val Asp 275 280 285Tyr Ser Leu Glu Arg Ile Asn Glu Val Ala Ala Arg Val Pro His Leu 290 295 300Ser Lys Leu Ala Pro Ala Ser Asp Val Phe Ile Glu Asp Leu His Glu305 310 315 320Ala Gly Gly Val Ser Ala Val Leu Asn Glu Leu Ser Lys Lys Glu Gly 325 330 335Ala Leu His Leu Asp Thr Leu Thr Val Thr Gly Lys Thr Leu Gly Glu 340 345 350Asn Ile Ala Gly Arg Glu Val Lys Asp Tyr Glu Val Ile His Pro Ile 355 360 365Asp Gln Pro Phe Ser Glu Gln Gly Gly Leu Ala Val Leu Phe Gly Asn 370 375 380Leu Ala Pro Asp Gly Ala Ile Ile Lys Thr Gly Gly Val Gln Asp Gly385 390 395 400Ile Thr Arg His Glu Gly Pro Ala Val Val Phe Asp Ser Gln Glu Glu 405 410 415Ala Leu Asp Gly Ile Ile Asn Arg Lys Val Lys Ala Gly Asp Val Val 420 425 430Ile Ile Arg Tyr Glu Gly Pro Lys Gly Gly Pro Gly Met Pro Glu Met 435 440 445Leu Ala Pro Thr Ser Gln Ile Val Gly Met Gly Leu Gly Pro Lys Val 450 455 460Ala Leu Ile Thr Asp Gly Arg Phe Ser Gly Ala Ser Arg Gly Leu Ser465 470 475 480Ile Gly His Val Ser Pro Glu Ala Ala Glu Gly Gly Pro Leu Ala Phe 485 490 495Val Glu Asn Gly Asp His Ile Val Val Asp Ile Glu Lys Arg Ile Leu 500 505 510Asn Ile Glu Ile Ser Asp Glu Glu Trp Glu Lys Arg Lys Ala Asn Trp 515 520 525Pro Gly Phe Glu Pro Lys Val Lys Thr Gly Tyr Leu Ala Arg Tyr Ser 530 535 540Lys Leu Val Thr Ser Ala Asn Thr Gly Gly Ile Met Lys Ile545 550 5554421827DNASewanella oneidensis 442atgcactcag tcgttcaatc tgttactgac agaattattg cccgtagcaa agcatctcgt 60gaagcatacc ttgctgcgtt aaacgatgcc cgtaaccatg gtgtacaccg aagttcctta 120agttgcggta acttagccca cggttttgcg gcttgtaatc ccgatgacaa aaatgcattg 180cgtcaattga cgaaggccaa tattgggatt atcaccgcat tcaacgatat gttatctgca 240caccaaccct atgaaaccta tcctgatttg ctgaaaaaag cctgtcagga agtcggtagt 300gttgcgcagg tggctggcgg tgttcccgcc atgtgtgacg gcgtgactca aggtcagccc 360ggtatggaat tgagcttact gagccgtgaa gtgattgcga tggcaaccgc ggttggctta 420tcacacaata tgtttgatgg agccttactc ctcggtattt gcgataaaat tgtaccgggt 480ttactgattg gtgccttaag ttttggccat ttacctatgt tgtttgtgcc cgcaggccca 540atgaaatcgg gtattcctaa taaggaaaaa gctcgcattc gtcagcaatt tgctcaaggt 600aaggtcgata gagcacaact gctcgaagcg gaagcccagt cttaccacag tgcgggtact 660tgtaccttct atggtaccgc taactcgaac caactgatgc tcgaagtgat ggggctgcaa 720ttgccgggtt catcttttgt gaatccagac gatccactgc gcgaagcctt aaacaaaatg 780gcggccaagc aggtttgtcg tttaactgaa ctaggcactc aatacagtcc gattggtgaa 840gtcgttaacg aaaaatcgat agtgaatggt attgttgcat tgctcgcgac gggtggttca 900acaaacttaa ccatgcacat tgtggcggcg gcccgtgctg caggtattat cgtcaactgg 960gatgactttt cggaattatc cgatgcggtg cctttgctgg cacgtgttta tccaaacggt 1020catgcggata ttaaccattt ccacgctgcg ggtggtatgg ctttccttat caaagaatta 1080ctcgatgcag gtttgctgca tgaggatgtc aatactgtcg cgggttatgg tctgcgccgt 1140tacacccaag agcctaaact gcttgatggc gagctgcgct gggtcgatgg cccaacagtg 1200agtttagata ccgaagtatt aacctctgtg gcaacaccat tccaaaacaa cggtggttta 1260aagctgctga agggtaactt aggccgcgct gtgattaaag tgtctgccgt tcagccacag 1320caccgtgtgg tggaagcgcc cgcagtggtg attgacgatc aaaacaaact cgatgcgtta 1380tttaaatccg gcgcattaga cagggattgt gtggtggtgg tgaaaggcca agggccgaaa 1440gccaacggta tgccagagct gcataaacta acgccgctgt taggttcatt gcaggacaaa 1500ggctttaaag tggcactgat gactgatggt cgtatgtcgg gcgcatcggg caaagtacct 1560gcggcgattc atttaacccc tgaagcgatt gatggcgggt taattgcaaa ggtacaagac 1620ggcgatttaa tccgagttga tgcactgacc ggcgagctga gtttattagt ctctgacacc 1680gagcttgcca ccagaactgc cactgaaatt gatttacgcc attctcgtta tggcatgggg 1740cgtgagttat ttggagtact gcgttcaaac ttaagcagtc ctgaaaccgg tgcgcgtagt 1800actagcgcca tcgatgaact ttactaa 1827443608PRTSewanella oneidensis 443Met His Ser Val Val Gln Ser Val Thr Asp Arg Ile Ile Ala Arg Ser1 5 10 15Lys Ala Ser Arg Glu Ala Tyr Leu Ala Ala Leu Asn Asp Ala Arg Asn 20 25 30His Gly Val His Arg Ser Ser Leu Ser Cys Gly Asn Leu Ala His Gly 35 40 45Phe Ala Ala Cys Asn Pro Asp Asp Lys Asn Ala Leu Arg Gln Leu Thr 50 55 60Lys Ala Asn Ile Gly Ile Ile Thr Ala Phe Asn Asp Met Leu Ser Ala65 70 75 80His Gln Pro Tyr Glu Thr Tyr Pro Asp Leu Leu Lys Lys Ala Cys Gln 85 90 95Glu Val Gly Ser Val Ala Gln Val Ala Gly Gly Val Pro Ala Met Cys 100 105 110Asp Gly Val Thr Gln Gly Gln Pro Gly Met Glu Leu Ser Leu Leu Ser 115 120 125Arg Glu Val Ile Ala Met Ala Thr Ala Val Gly Leu Ser His Asn Met 130 135 140Phe Asp Gly Ala Leu Leu Leu Gly Ile Cys Asp Lys Ile Val Pro Gly145 150 155 160Leu Leu Ile Gly Ala Leu Ser Phe Gly His Leu Pro Met Leu Phe Val 165 170 175Pro Ala Gly Pro Met Lys Ser Gly Ile Pro Asn Lys Glu Lys Ala Arg 180 185 190Ile Arg Gln Gln Phe Ala Gln Gly Lys Val Asp Arg Ala Gln Leu Leu 195 200 205Glu Ala Glu Ala Gln Ser Tyr His Ser Ala Gly Thr Cys Thr Phe Tyr 210 215 220Gly Thr Ala Asn Ser Asn Gln Leu Met Leu Glu Val Met Gly Leu Gln225 230 235 240Leu Pro Gly Ser Ser Phe Val Asn Pro Asp Asp Pro Leu Arg Glu Ala 245 250 255Leu Asn Lys Met Ala Ala Lys Gln Val Cys Arg Leu Thr Glu Leu Gly 260 265 270Thr Gln Tyr Ser Pro Ile Gly Glu Val Val Asn Glu Lys Ser Ile Val 275 280 285Asn Gly Ile Val Ala Leu Leu Ala Thr Gly Gly Ser Thr Asn Leu Thr 290 295 300Met His Ile Val Ala Ala Ala Arg Ala Ala Gly Ile Ile Val Asn Trp305 310 315 320Asp Asp

Phe Ser Glu Leu Ser Asp Ala Val Pro Leu Leu Ala Arg Val 325 330 335Tyr Pro Asn Gly His Ala Asp Ile Asn His Phe His Ala Ala Gly Gly 340 345 350Met Ala Phe Leu Ile Lys Glu Leu Leu Asp Ala Gly Leu Leu His Glu 355 360 365Asp Val Asn Thr Val Ala Gly Tyr Gly Leu Arg Arg Tyr Thr Gln Glu 370 375 380Pro Lys Leu Leu Asp Gly Glu Leu Arg Trp Val Asp Gly Pro Thr Val385 390 395 400Ser Leu Asp Thr Glu Val Leu Thr Ser Val Ala Thr Pro Phe Gln Asn 405 410 415Asn Gly Gly Leu Lys Leu Leu Lys Gly Asn Leu Gly Arg Ala Val Ile 420 425 430Lys Val Ser Ala Val Gln Pro Gln His Arg Val Val Glu Ala Pro Ala 435 440 445Val Val Ile Asp Asp Gln Asn Lys Leu Asp Ala Leu Phe Lys Ser Gly 450 455 460Ala Leu Asp Arg Asp Cys Val Val Val Val Lys Gly Gln Gly Pro Lys465 470 475 480Ala Asn Gly Met Pro Glu Leu His Lys Leu Thr Pro Leu Leu Gly Ser 485 490 495Leu Gln Asp Lys Gly Phe Lys Val Ala Leu Met Thr Asp Gly Arg Met 500 505 510Ser Gly Ala Ser Gly Lys Val Pro Ala Ala Ile His Leu Thr Pro Glu 515 520 525Ala Ile Asp Gly Gly Leu Ile Ala Lys Val Gln Asp Gly Asp Leu Ile 530 535 540Arg Val Asp Ala Leu Thr Gly Glu Leu Ser Leu Leu Val Ser Asp Thr545 550 555 560Glu Leu Ala Thr Arg Thr Ala Thr Glu Ile Asp Leu Arg His Ser Arg 565 570 575Tyr Gly Met Gly Arg Glu Leu Phe Gly Val Leu Arg Ser Asn Leu Ser 580 585 590Ser Pro Glu Thr Gly Ala Arg Ser Thr Ser Ala Ile Asp Glu Leu Tyr 595 600 6054441848DNAGluconobacter oxydans 444atgtctctga atcccgtcgt cgagagcgtg actgcccgta tcatcgagcg ttcgaaagtc 60tcccgtcgcc ggtatctcgc cctgatggag cgcaaccgcg ccaagggtgt gctccggccc 120aagctggcct gcggtaatct ggcgcatgcc atcgcagcgt ccagccccga caagccggat 180ctgatgcgtc ccaccgggac caatatcggc gtgatcacga cctataacga catgctctcg 240gcgcatcagc cgtatggccg ctatcccgag cagatcaagc tgttcgcccg tgaagtcggt 300gcgacggccc aggttgcagg cggcgcacca gcaatgtgtg atggtgtgac gcaggggcag 360gagggcatgg aactctccct gttctcccgt gacgtgatcg ccatgtccac ggcggtcggg 420ctgagccacg gcatgtttga gggcgtggcg ctgctgggca tctgtgacaa gattgtgccg 480ggccttctga tgggcgcgct gcgcttcggt catctcccgg ccatgctgat cccggcaggg 540ccaatgccgt ccggtcttcc aaacaaggaa aagcagcgca tccgccagct ctatgtgcag 600ggcaaggtcg ggcaggacga gctgatggaa gcggaaaacg cctcctatca cagcccgggc 660acctgcacgt tctatggcac ggccaatacg aaccagatga tggtcgaaat catgggtctg 720atgatgccgg actcggcttt catcaatccc aacacgaagc tgcgtcaggc aatgacccgc 780tcgggtattc accgtctggc cgaaatcggc ctgaacggcg aggatgtgcg cccgctcgct 840cattgcgtag acgaaaaggc catcgtgaat gcggcggtcg ggttgctggc gacgggtggt 900tcgaccaacc attcgatcca tcttcctgct atcgcccgtg ccgctggtat cctgatcgac 960tgggaagaca tcagccgcct gtcgtccgcg gttccgctga tcacccgtgt ttatccgagc 1020ggttccgagg acgtgaacgc gttcaaccgc gtgggtggta tgccgaccgt gatcgccgaa 1080ctgacgcgcg ccgggatgct gcacaaggac attctgacgg tctctcgtgg cggtttctcc 1140gattatgccc gtcgcgcatc gctggaaggc gatgagatcg tctacaccca cgcgaagccg 1200tccacggaca ccgatatcct gcgcgatgtg gctacgcctt tccggcccga tggcggtatg 1260cgcctgatga ctggtaatct gggccgcgcg atctacaaga gcagcgctat tgcgcccgag 1320cacctgaccg ttgaagcgcc ggcacgggtc ttccaggacc agcatgacgt cctcacggcc 1380tatcagaatg gtgagcttga gcgtgatgtt gtcgtggtcg tccggttcca gggaccggaa 1440gccaacggca tgccggagct tcacaagctg accccgactc tgggcgtgct tcaggatcgc 1500ggcttcaagg tggccctgct gacggatgga cgcatgtccg gtgcgagcgg caaggtgccg 1560gccgccattc atgtcggtcc cgaagcgcag gttggcggtc cgatcgcccg cgtgcgggac 1620ggcgacatga tccgtgtctg cgcggtgacg ggacagatcg aggctctggt ggatgccgcc 1680gagtgggaga gccgcaagcc ggtcccgccg ccgctcccgg cattgggaac gggccgcgaa 1740ctgttcgcgc tgatgcgttc ggtgcatgat ccggccgagg ctggcggatc cgcgatgctg 1800gcccagatgg atcgcgtgat cgaagccgtt ggcgacgaca ttcactaa 1848445615PRTGluconobacter oxydans 445Met Ser Leu Asn Pro Val Val Glu Ser Val Thr Ala Arg Ile Ile Glu1 5 10 15Arg Ser Lys Val Ser Arg Arg Arg Tyr Leu Ala Leu Met Glu Arg Asn 20 25 30Arg Ala Lys Gly Val Leu Arg Pro Lys Leu Ala Cys Gly Asn Leu Ala 35 40 45His Ala Ile Ala Ala Ser Ser Pro Asp Lys Pro Asp Leu Met Arg Pro 50 55 60Thr Gly Thr Asn Ile Gly Val Ile Thr Thr Tyr Asn Asp Met Leu Ser65 70 75 80Ala His Gln Pro Tyr Gly Arg Tyr Pro Glu Gln Ile Lys Leu Phe Ala 85 90 95Arg Glu Val Gly Ala Thr Ala Gln Val Ala Gly Gly Ala Pro Ala Met 100 105 110Cys Asp Gly Val Thr Gln Gly Gln Glu Gly Met Glu Leu Ser Leu Phe 115 120 125Ser Arg Asp Val Ile Ala Met Ser Thr Ala Val Gly Leu Ser His Gly 130 135 140Met Phe Glu Gly Val Ala Leu Leu Gly Ile Cys Asp Lys Ile Val Pro145 150 155 160Gly Leu Leu Met Gly Ala Leu Arg Phe Gly His Leu Pro Ala Met Leu 165 170 175Ile Pro Ala Gly Pro Met Pro Ser Gly Leu Pro Asn Lys Glu Lys Gln 180 185 190Arg Ile Arg Gln Leu Tyr Val Gln Gly Lys Val Gly Gln Asp Glu Leu 195 200 205Met Glu Ala Glu Asn Ala Ser Tyr His Ser Pro Gly Thr Cys Thr Phe 210 215 220Tyr Gly Thr Ala Asn Thr Asn Gln Met Met Val Glu Ile Met Gly Leu225 230 235 240Met Met Pro Asp Ser Ala Phe Ile Asn Pro Asn Thr Lys Leu Arg Gln 245 250 255Ala Met Thr Arg Ser Gly Ile His Arg Leu Ala Glu Ile Gly Leu Asn 260 265 270Gly Glu Asp Val Arg Pro Leu Ala His Cys Val Asp Glu Lys Ala Ile 275 280 285Val Asn Ala Ala Val Gly Leu Leu Ala Thr Gly Gly Ser Thr Asn His 290 295 300Ser Ile His Leu Pro Ala Ile Ala Arg Ala Ala Gly Ile Leu Ile Asp305 310 315 320Trp Glu Asp Ile Ser Arg Leu Ser Ser Ala Val Pro Leu Ile Thr Arg 325 330 335Val Tyr Pro Ser Gly Ser Glu Asp Val Asn Ala Phe Asn Arg Val Gly 340 345 350Gly Met Pro Thr Val Ile Ala Glu Leu Thr Arg Ala Gly Met Leu His 355 360 365Lys Asp Ile Leu Thr Val Ser Arg Gly Gly Phe Ser Asp Tyr Ala Arg 370 375 380Arg Ala Ser Leu Glu Gly Asp Glu Ile Val Tyr Thr His Ala Lys Pro385 390 395 400Ser Thr Asp Thr Asp Ile Leu Arg Asp Val Ala Thr Pro Phe Arg Pro 405 410 415Asp Gly Gly Met Arg Leu Met Thr Gly Asn Leu Gly Arg Ala Ile Tyr 420 425 430Lys Ser Ser Ala Ile Ala Pro Glu His Leu Thr Val Glu Ala Pro Ala 435 440 445Arg Val Phe Gln Asp Gln His Asp Val Leu Thr Ala Tyr Gln Asn Gly 450 455 460Glu Leu Glu Arg Asp Val Val Val Val Val Arg Phe Gln Gly Pro Glu465 470 475 480Ala Asn Gly Met Pro Glu Leu His Lys Leu Thr Pro Thr Leu Gly Val 485 490 495Leu Gln Asp Arg Gly Phe Lys Val Ala Leu Leu Thr Asp Gly Arg Met 500 505 510Ser Gly Ala Ser Gly Lys Val Pro Ala Ala Ile His Val Gly Pro Glu 515 520 525Ala Gln Val Gly Gly Pro Ile Ala Arg Val Arg Asp Gly Asp Met Ile 530 535 540Arg Val Cys Ala Val Thr Gly Gln Ile Glu Ala Leu Val Asp Ala Ala545 550 555 560Glu Trp Glu Ser Arg Lys Pro Val Pro Pro Pro Leu Pro Ala Leu Gly 565 570 575Thr Gly Arg Glu Leu Phe Ala Leu Met Arg Ser Val His Asp Pro Ala 580 585 590Glu Ala Gly Gly Ser Ala Met Leu Ala Gln Met Asp Arg Val Ile Glu 595 600 605Ala Val Gly Asp Asp Ile His 610 6154461665DNARuminococcus flavefaciens 446atgagcgata attttttctg cgagggtgcg gataaagccc ctcagcgttc acttttcaat 60gcactgggca tgactaaaga ggaaatgaag cgtcccctcg ttggtatcgt ttcttcctac 120aatgagatcg ttcccggcca tatgaacatc gacaagctgg tcgaagccgt taagctgggt 180gtagctatgg gcggcggcac tcctgttgtt ttccctgcta tcgctgtatg cgacggtatc 240gctatgggtc acacaggcat gaagtacagc cttgttaccc gtgaccttat tgccgattct 300acagagtgta tggctcttgc tcatcacttc gacgcactgg taatgatacc taactgcgac 360aagaacgttc ccggcctgct tatggcggct gcacgtatca atgttcctac tgtattcgta 420agcggcggcc ctatgcttgc aggccatgta aagggtaaga agacctctct ttcatccatg 480ttcgaggctg taggcgctta cacagcaggc aagatagacg aggctgaact tgacgaattc 540gagaacaaga cctgccctac ctgcggttca tgttcgggta tgtataccgc taactccatg 600aactgcctca ctgaggtact gggtatgggt ctcagaggca acggcactat ccctgctgtt 660tactccgagc gtatcaagct tgcaaagcag gcaggtatgc aggttatgga actctacaga 720aagaatatcc gccctctcga tatcatgaca gagaaggctt tccagaacgc tctcacagct 780gatatggctc ttggatgttc cacaaacagt atgctccatc tccctgctat cgccaacgaa 840tgcggcataa atatcaacct tgacatggct aacgagataa gcgccaagac tcctaacctc 900tgccatcttg caccggcagg ccacacctac atggaagacc tcaacgaagc aggcggagtt 960tatgcagttc tcaacgagct gagcaaaaag ggacttatca acaccgactg catgactgtt 1020acaggcaaga ccgtaggcga gaatatcaag ggctgcatca accgtgaccc tgagactatc 1080cgtcctatcg acaacccata cagtgaaaca ggcggaatcg ccgtactcaa gggcaatctt 1140gctcccgaca gatgtgttgt gaagagaagc gcagttgctc ccgaaatgct ggtacacaaa 1200ggccctgcaa gagtattcga cagcgaggaa gaagctatca aggtcatcta tgagggcggt 1260atcaaggcag gcgacgttgt tgttatccgt tacgaaggcc ctgcaggcgg ccccggcatg 1320agagaaatgc tctctcctac atcagctata cagggtgcag gtctcggctc aactgttgct 1380ctaatcactg acggacgttt cagcggcgct acccgtggtg cggctatcgg acacgtatcc 1440cccgaagctg taaacggcgg tactatcgca tatgtcaagg acggcgatat tatctccatc 1500gacataccga attactccat cactcttgaa gtatccgacg aggagcttgc agagcgcaaa 1560aaggcaatgc ctatcaagcg caaggagaac atcacaggct atctgaagcg ctatgcacag 1620caggtatcat ccgcagacaa gggcgctatc atcaacagga aatag 1665447554PRTRuminococcus flavefaciens 447Met Ser Asp Asn Phe Phe Cys Glu Gly Ala Asp Lys Ala Pro Gln Arg1 5 10 15Ser Leu Phe Asn Ala Leu Gly Met Thr Lys Glu Glu Met Lys Arg Pro 20 25 30Leu Val Gly Ile Val Ser Ser Tyr Asn Glu Ile Val Pro Gly His Met 35 40 45Asn Ile Asp Lys Leu Val Glu Ala Val Lys Leu Gly Val Ala Met Gly 50 55 60Gly Gly Thr Pro Val Val Phe Pro Ala Ile Ala Val Cys Asp Gly Ile65 70 75 80Ala Met Gly His Thr Gly Met Lys Tyr Ser Leu Val Thr Arg Asp Leu 85 90 95Ile Ala Asp Ser Thr Glu Cys Met Ala Leu Ala His His Phe Asp Ala 100 105 110Leu Val Met Ile Pro Asn Cys Asp Lys Asn Val Pro Gly Leu Leu Met 115 120 125Ala Ala Ala Arg Ile Asn Val Pro Thr Val Phe Val Ser Gly Gly Pro 130 135 140Met Leu Ala Gly His Val Lys Gly Lys Lys Thr Ser Leu Ser Ser Met145 150 155 160Phe Glu Ala Val Gly Ala Tyr Thr Ala Gly Lys Ile Asp Glu Ala Glu 165 170 175Leu Asp Glu Phe Glu Asn Lys Thr Cys Pro Thr Cys Gly Ser Cys Ser 180 185 190Gly Met Tyr Thr Ala Asn Ser Met Asn Cys Leu Thr Glu Val Leu Gly 195 200 205Met Gly Leu Arg Gly Asn Gly Thr Ile Pro Ala Val Tyr Ser Glu Arg 210 215 220Ile Lys Leu Ala Lys Gln Ala Gly Met Gln Val Met Glu Leu Tyr Arg225 230 235 240Lys Asn Ile Arg Pro Leu Asp Ile Met Thr Glu Lys Ala Phe Gln Asn 245 250 255Ala Leu Thr Ala Asp Met Ala Leu Gly Cys Ser Thr Asn Ser Met Leu 260 265 270His Leu Pro Ala Ile Ala Asn Glu Cys Gly Ile Asn Ile Asn Leu Asp 275 280 285Met Ala Asn Glu Ile Ser Ala Lys Thr Pro Asn Leu Cys His Leu Ala 290 295 300Pro Ala Gly His Thr Tyr Met Glu Asp Leu Asn Glu Ala Gly Gly Val305 310 315 320Tyr Ala Val Leu Asn Glu Leu Ser Lys Lys Gly Leu Ile Asn Thr Asp 325 330 335Cys Met Thr Val Thr Gly Lys Thr Val Gly Glu Asn Ile Lys Gly Cys 340 345 350Ile Asn Arg Asp Pro Glu Thr Ile Arg Pro Ile Asp Asn Pro Tyr Ser 355 360 365Glu Thr Gly Gly Ile Ala Val Leu Lys Gly Asn Leu Ala Pro Asp Arg 370 375 380Cys Val Val Lys Arg Ser Ala Val Ala Pro Glu Met Leu Val His Lys385 390 395 400Gly Pro Ala Arg Val Phe Asp Ser Glu Glu Glu Ala Ile Lys Val Ile 405 410 415Tyr Glu Gly Gly Ile Lys Ala Gly Asp Val Val Val Ile Arg Tyr Glu 420 425 430Gly Pro Ala Gly Gly Pro Gly Met Arg Glu Met Leu Ser Pro Thr Ser 435 440 445Ala Ile Gln Gly Ala Gly Leu Gly Ser Thr Val Ala Leu Ile Thr Asp 450 455 460Gly Arg Phe Ser Gly Ala Thr Arg Gly Ala Ala Ile Gly His Val Ser465 470 475 480Pro Glu Ala Val Asn Gly Gly Thr Ile Ala Tyr Val Lys Asp Gly Asp 485 490 495Ile Ile Ser Ile Asp Ile Pro Asn Tyr Ser Ile Thr Leu Glu Val Ser 500 505 510Asp Glu Glu Leu Ala Glu Arg Lys Lys Ala Met Pro Ile Lys Arg Lys 515 520 525Glu Asn Ile Thr Gly Tyr Leu Lys Arg Tyr Ala Gln Gln Val Ser Ser 530 535 540Ala Asp Lys Gly Ala Ile Ile Asn Arg Lys545 550448201DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 448gcgtccatac cggaccgtcc atccgtcccg gcgggctatc gttagtcccc gcgagcggat 60tccgaggtgt cgatgacgcg ctcggtcccc gcatctcggg gtggcccgca cctagcttaa 120gcggactacg aagcgcgggg cgagcggcga cgatcgcgta ctcacactcg gacctcgcgg 180gtcggctcgg agccctggtc a 201449201DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 449agcggtcagt gcacgggacg cgatcgggca ccctcgacgc agcgatgggc cgtgcgtcgt 60gtagtccgat agtgccggcg tcgctcggta agccccttat acctgcgcgc tggcgagaga 120tgggttcgcg agtctagcgc gatcgctcta gagggtccag gagtacctac acggcgcgag 180gcgcggacat cctagggcgc a 201450201DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 450cccctgcgtt tgccgagcga cgagtcctac accctgtccg cgcccgagca gggtcgtccc 60cgcgaaccga cggatgcgcg gcccgaatcg cctagacccc tacggggcgg ctcgctcggc 120cccgcctgac cggtcgatcc cacgagaccc cgccctatag ggagagcacc gacccgcctc 180ctcgggcctt acggcgtgcg a 201451201DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 451gccagtgtag agatccgggg atccccagcg cctggagcta ggcccacggc gtctgaccgg 60gtgtaccggg ccccctagga cgggtgcgcc cgtagtccgt ctgcgagggg gccgtccggt 120cgggggcatc cggcgctccg cggggaggcg ctacgtgccc gaccggggga gtcgagtctc 180tatgctcgcg accgcgtgcg a 201452201DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 452aagcgcgcac tacgtcaggc atagcgtact gggcttgcgg agccacgcgg gcgcggagcg 60ggccggttga gtgcgggata gacggaccgt acgcatgcct caagtcgacg gtacgggggg 120cagggtagct gggatccgag gcgggtaggc gtcggccgcg actgtgcccg tacgacggga 180gaaccccccg cgcgagttgg a 201453201DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 453acgtcggcag gcccgctcgg ttccgagcac cggatcgacg ctacacgagg cccgacacta 60ggcgcgtact ccgggggggt ccgcctccgt cccgtgagta tcgcgggcgg gaacagggcg 120ggctgccggg gccgaccggt gtggggcgtg actccgaccg actcgggcga gggccgccta 180gtcgcgaagg acgcgcgacc a 2014541821DNAZymomonas mobilis 454atgactgatc tgcattcaac ggtagaaaag gttaccgcgc gcgttattga acgctcgcgg 60gaaacccgta aggcttatct ggatttgatc cagtatgagc gggaaaaagg cgtagaccgt 120ccaaacctgt cctgtagtaa ccttgctcat ggctttgcgg ctatgaatgg tgacaagcca 180gctttgcgcg acttcaaccg catgaatatc ggcgtcgtga cttcctacaa cgatatgttg 240tcggctcatg aaccatatta tcgctatccg gagcagatga aagtatttgc tcgcgaagtt 300ggcgcaacgg ttcaggtcgc cggtggcgtg cctgctatgt gcgatggtgt gacccaaggt 360cagccgggca tggaagaatc cctgtttagc cgcgatgtta tcgctttggc taccagcgtt 420tctttgtctc atggtatgtt tgaaggggct gcccttctcg gtatctgtga caagattgtc 480cctggtctgt tgatgggcgc tctgcgcttt ggtcacctgc cgaccattct ggtcccatca

540ggcccgatga cgactggtat cccgaacaaa gaaaaaatcc gtatccgtca gctctatgct 600cagggtaaaa tcggccagaa agaacttctg gatatggaag cggcttgcta ccatgctgaa 660ggtacctgca ccttctatgg tacggcaaac accaaccaga tggttatgga agtcctcggt 720cttcatatgc caggttcggc atttgttacc ccgggtaccc cgctccgcca ggctctgacc 780cgtgctgctg tgcatcgcgt tgctgaattg ggttggaagg gcgacgatta tcgtccgctt 840ggtaaaatca ttgacgaaaa atcaatcgtc aatgctattg ttggtctgtt ggcaaccggt 900ggttccacca accataccat gcatattccg gccattgctc gtgctgctgg tgttatcgtt 960aactggaatg acttccatga tctttctgaa gttgttccgt tgattgcccg catttacccg 1020aatggcccgc gcgacatcaa tgaattccag aatgcaggcg gcatggctta tgtcatcaaa 1080gaactgcttt ctgctaatct gttgaaccgt gatgtcacga ccattgccaa gggcggtatc 1140gaagaatacg ccaaggctcc ggcattaaat gatgctggcg aattggtctg gaagccagct 1200ggcgaacctg gtgatgacac cattctgcgt ccggtttcta atcctttcgc aaaagatggc 1260ggtctgcgtc tcttggaagg taaccttggc cgtgcaatgt acaaggccag tgcggttgat 1320cctaaattct ggaccattga agcaccggtt cgcgtcttct ctgaccaaga cgatgttcag 1380aaagccttca aggctggcga attgaacaaa gacgttatcg ttgttgttcg tttccagggc 1440ccgcgcgcaa acggtatgcc tgaattgcat aagctgaccc cggctttggg tgttctgcag 1500gataatggct acaaagttgc tttggtaact gatggtcgta tgtccggtgc taccggtaaa 1560gttccggttg ctttgcatgt cagcccagaa gctcttggcg gtggtgccat cggtaaatta 1620cgtgatggcg atatcgtccg tatctcggtt gaagaaggca aacttgaagc tttggttcca 1680gctgatgagt ggaatgctcg tccgcatgct gaaaaaccgg ctttccgtcc gggaaccgga 1740cgcgaattgt ttgatatctt ccgtcagaat gctgctaaag ctgaagacgg tgcagtcgca 1800atatatgcag gtgccggtat c 18214551821DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 455atgacggatc tacatagtac agtggagaag gttactgcca gggttattga aaggagtagg 60gaaactagga aggcatatct agatttaatt caatatgaga gggaaaaagg agtggacagg 120cccaacctaa gttgtagcaa cctagcacat ggattcgccg caatgaatgg tgacaagccc 180gcattaaggg acttcaacag gatgaatatt ggagttgtga cgagttacaa cgatatgtta 240agtgcacatg aaccctatta taggtatcct gagcaaatga aggtgtttgc aagggaagtt 300ggagccacag ttcaagttgc tggtggagtg cctgcaatgt gcgatggtgt gactcagggt 360caacctggaa tggaagaatc cctattttca agggatgtta ttgcattagc aacttcagtt 420tcattatcac atggtatgtt tgaaggggca gctctactcg gtatatgtga caagattgtt 480cctggtctac taatgggagc actaaggttt ggtcacctac ctactattct agttcccagt 540ggacctatga caacgggtat acctaacaaa gaaaaaatta ggattaggca actctatgca 600caaggtaaaa ttggacaaaa agaactacta gatatggaag ccgcatgcta ccatgcagaa 660ggtacttgca ctttctatgg tacagccaac actaaccaga tggttatgga agttctcggt 720ctacatatgc ccggtagtgc ctttgttact cctggtactc ctctcaggca agcactaact 780agggcagcag tgcatagggt tgcagaatta ggttggaagg gagacgatta taggcctcta 840ggtaaaatta ttgacgaaaa aagtattgtt aatgcaattg ttggtctatt agccactggt 900ggtagtacta accatacgat gcatattcct gctattgcaa gggcagcagg tgttattgtt 960aactggaatg acttccatga tctatcagaa gttgttcctt taattgctag gatttaccct 1020aatggaccta gggacattaa cgaatttcaa aatgccggag gaatggcata tgttattaag 1080gaactactat cagcaaatct actaaacagg gatgttacaa ctattgctaa gggaggtata 1140gaagaatacg ctaaggcacc tgccctaaat gatgcaggag aattagtttg gaagcccgca 1200ggagaacctg gtgatgacac tattctaagg cctgtttcaa atcctttcgc caaagatgga 1260ggtctaaggc tcttagaagg taacctagga agggccatgt acaaggctag cgccgttgat 1320cctaaattct ggactattga agcccctgtt agggttttct cagaccagga cgatgttcaa 1380aaagccttca aggcaggaga actaaacaaa gacgttattg ttgttgttag gttccaagga 1440cctagggcca acggtatgcc tgaattacat aagctaactc ctgcattagg tgttctacaa 1500gataatggat acaaagttgc attagtgacg gatggtagga tgagtggtgc aactggtaaa 1560gttcctgttg cattacatgt ttcacccgaa gcactaggag gtggtgctat tggtaaactt 1620agggatggag atattgttag gattagtgtt gaagaaggaa aacttgaagc actcgttccc 1680gcagatgagt ggaatgcaag gcctcatgca gaaaaacctg cattcaggcc tgggactggg 1740agggaattat ttgatatttt caggcaaaat gcagcaaaag cagaagacgg tgccgttgcc 1800atctatgccg gtgctggtat a 18214561821DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 456atgacggatt tgcattcaac tgttgagaaa gtaactgcta gagtaattga aagatcaagg 60gaaactagaa aggcttattt ggatttgata caatatgaga gggaaaaagg tgttgataga 120ccaaatttgt cttgttctaa tttggctcat ggttttgctg ctatgaatgg tgataaacca 180gctttgagag attttaatag aatgaatata ggtgtagtta cttcttataa tgatatgttg 240tctgctcatg aaccatatta tagatatcca gaacaaatga aggtttttgc tcgtgaagtt 300ggtgctacag ttcaagttgc tggtggtgtt cctgcaatgt gtgatggtgt tactcaaggt 360caaccaggta tggaagaatc tttgttttcc agagatgtaa ttgctttggc tacatctgtt 420tcattgtctc acggaatgtt tgaaggtgct gcattgttgg gaatttgtga taaaattgtt 480ccaggtttgt tgatgggtgc tttgaggttc ggtcatttgc caactatttt ggttccatct 540ggtccaatga ctactggaat cccaaataaa gaaaagatta gaattagaca attgtatgct 600caaggaaaaa ttggtcaaaa ggaattgttg gatatggaag ctgcctgtta tcatgctgaa 660ggtacttgta ctttttatgg tactgctaac actaatcaga tggttatgga agttttgggt 720ttgcacatgc caggtagtgc attcgttact ccaggtactc cactgagaca ggctttgact 780agagctgctg ttcatagagt tgcagagttg ggttggaaag gtgatgatta tagacctttg 840ggtaaaatta ttgatgagaa atctattgtt aatgctattg ttggtttgtt agctacaggt 900ggttctacaa atcatacaat gcatattccg gccatagcta gagcagcagg ggttatagtt 960aattggaatg attttcatga tttgtctgaa gttgttccat tgattgctag aatttatcca 1020aatggtccta gagatataaa tgaatttcaa aatgcaggag gaatggctta tgtaattaaa 1080gaattgttga gtgcgaattt gttaaataga gatgttacta ctattgctaa aggagggata 1140gaagaatatg ctaaagctcc agctctgaac gatgcgggtg aattggtgtg gaaaccggct 1200ggcgaacctg gggacgacac aattttgaga ccagtatcta atccatttgc taaagatggt 1260ggtttgcgtc tcttggaagg taatttgggt agagcaatgt ataaggcttc tgctgtagat 1320ccaaaattct ggactattga agctcccgtt agagttttct ctgatcaaga tgatgttcaa 1380aaggctttta aagcaggcga gttaaataaa gatgttatag ttgttgttag atttcaaggt 1440cctcgtgcta atggtatgcc tgaattgcat aagttgactc ctgcgctagg cgtattgcaa 1500gataatggtt ataaggttgc tttagttact gatggtagaa tgtctggtgc aactggtaaa 1560gtaccggtgg ctctgcatgt ttcaccagag gctttaggag gtggggcgat tggcaagttg 1620agagatggcg atatagttag aatttctgtt gaagaaggta aattagaggc tcttgtcccc 1680gccgacgagt ggaatgctag accacatgct gagaagcccg cttttagacc tggtactggg 1740agagaattgt ttgacatttt tagacaaaac gctgctaagg ctgaggatgg tgcagttgca 1800atttatgctg gggcagggat c 18214571809DNAArtificial SequenceDescription of Artificial Sequence Synthetic polynucleotide 457atgaatccac aattgttacg cgtaacaaat cgaatcattg aacgttcgcg cgagactcgc 60tctgcttatc tcgcccggat agaacaagcg aaaacttcga ccgttcatcg ttcgcagttg 120gcatgcggta acctggcaca cggtttcgct gcctgccagc cagaagacaa agcctctttg 180aaaagcatgt tgcgtaacaa tatcgccatc atcacctcct ataacgacat gctctccgcg 240caccagcctt atgaacacta tccagaaatc attcgtaaag ccctgcatga agcgaatgcg 300gttggtcagg ttgcgggcgg tgttccggcg atgtgtgatg gtgtcaccca ggggcaggat 360ggaatggaat tgtcgctgct aagccgcgaa gtgatagcga tgtctgcggc ggtggggctg 420tcccataaca tgtttgatgg tgctctgttc ctcggtgtgt gcgacaagat tgtcccgggt 480ctgacgatgg cagccctgtc gtttggtcat ttgcctgcgg tgtttgtgcc gtctggaccg 540atggcaagcg gtttgccaaa taaagaaaaa gtgcgtattc gccagcttta tgccgaaggt 600aaagtggacc gcatggcctt actggagtca gaagccgcgt cttaccatgc gccgggaaca 660tgtactttct acggtactgc caacaccaac cagatggtgg tggagtttat ggggatgcag 720ttgccaggct cttcttttgt tcatccggat tctccgctgc gcgatgcttt gaccgccgca 780gctgcgcgtc aggttacacg catgaccggt aatggtaatg aatggatgcc gatcggtaag 840atgatcgatg agaaagtggt ggtgaacggt atcgttgcac tgctggcgac cggtggttcc 900actaaccaca ccatgcacct ggtggcgatg gcgcgcgcgg ccggtattca gattaactgg 960gatgacttct ctgacctttc tgatgttgta ccgctgatgg cacgtctcta cccgaacggt 1020ccggccgata ttaaccactt ccaggcggca ggtggcgtac cggttctggt gcgtgaactg 1080ctcaaagcag gcctgctgca tgaagatgtc aatacggtgg caggttttgg tctgtctcgt 1140tatacccttg aaccatggct gaataatggt gaactggact ggcgggaagg ggcggaaaaa 1200tcactcgaca gcaatgtgat cgcttccttc gaacaacctt tctctcatca tggtgggaca 1260aaagtgttaa gcggtaacct gggccgtgcg gttatgaaaa cctctgccgt gccggttgag 1320aaccaggtga ttgaagcgcc agcggttgtt tttgaaagcc agcatgacgt tatgccggcc 1380tttgaagcgg gtttgctgga ccgcgattgt gtcgttgttg tccgtcatca ggggccaaaa 1440gcgaacggaa tgccagaatt acataaactc atgccgccac ttggtgtatt attggaccgg 1500tgtttcaaaa ttgcgttagt taccgatgga cgactctccg gcgcttcagg taaagtgccg 1560tcagctatcc acgtaacacc agaagcctac gatggcgggc tgctggcaaa agtgcgcgac 1620ggggacatca ttcgtgtgaa tggacagaca ggcgaactga cgctgctggt agacgaagcg 1680gaactggctg ctcgcgaacc gcacattcct gacctgagcg cgtcacgcgt gggaacagga 1740cgtgaattat tcagcgcctt gcgtgaaaaa ctgtccggtg ccgaacaggg cgcaacctgt 1800atcactttt 1809458607PRTZymomonas mobilis 458Met Thr Asp Leu His Ser Thr Val Glu Lys Val Thr Ala Arg Val Ile1 5 10 15Glu Arg Ser Arg Glu Thr Arg Lys Ala Tyr Leu Asp Leu Ile Gln Tyr 20 25 30Glu Arg Glu Lys Gly Val Asp Arg Pro Asn Leu Ser Cys Ser Asn Leu 35 40 45Ala His Gly Phe Ala Ala Met Asn Gly Asp Lys Pro Ala Leu Arg Asp 50 55 60Phe Asn Arg Met Asn Ile Gly Val Val Thr Ser Tyr Asn Asp Met Leu65 70 75 80Ser Ala His Glu Pro Tyr Tyr Arg Tyr Pro Glu Gln Met Lys Val Phe 85 90 95Ala Arg Glu Val Gly Ala Thr Val Gln Val Ala Gly Gly Val Pro Ala 100 105 110Met Cys Asp Gly Val Thr Gln Gly Gln Pro Gly Met Glu Glu Ser Leu 115 120 125Phe Ser Arg Asp Val Ile Ala Leu Ala Thr Ser Val Ser Leu Ser His 130 135 140Gly Met Phe Glu Gly Ala Ala Leu Leu Gly Ile Cys Asp Lys Ile Val145 150 155 160Pro Gly Leu Leu Met Gly Ala Leu Arg Phe Gly His Leu Pro Thr Ile 165 170 175Leu Val Pro Ser Gly Pro Met Thr Thr Gly Ile Pro Asn Lys Glu Lys 180 185 190Ile Arg Ile Arg Gln Leu Tyr Ala Gln Gly Lys Ile Gly Gln Lys Glu 195 200 205Leu Leu Asp Met Glu Ala Ala Cys Tyr His Ala Glu Gly Thr Cys Thr 210 215 220Phe Tyr Gly Thr Ala Asn Thr Asn Gln Met Val Met Glu Val Leu Gly225 230 235 240Leu His Met Pro Gly Ser Ala Phe Val Thr Pro Gly Thr Pro Leu Arg 245 250 255Gln Ala Leu Thr Arg Ala Ala Val His Arg Val Ala Glu Leu Gly Trp 260 265 270Lys Gly Asp Asp Tyr Arg Pro Leu Gly Lys Ile Ile Asp Glu Lys Ser 275 280 285Ile Val Asn Ala Ile Val Gly Leu Leu Ala Thr Gly Gly Ser Thr Asn 290 295 300His Thr Met His Ile Pro Ala Ile Ala Arg Ala Ala Gly Val Ile Val305 310 315 320Asn Trp Asn Asp Phe His Asp Leu Ser Glu Val Val Pro Leu Ile Ala 325 330 335Arg Ile Tyr Pro Asn Gly Pro Arg Asp Ile Asn Glu Phe Gln Asn Ala 340 345 350Gly Gly Met Ala Tyr Val Ile Lys Glu Leu Leu Ser Ala Asn Leu Leu 355 360 365Asn Arg Asp Val Thr Thr Ile Ala Lys Gly Gly Ile Glu Glu Tyr Ala 370 375 380Lys Ala Pro Ala Leu Asn Asp Ala Gly Glu Leu Val Trp Lys Pro Ala385 390 395 400Gly Glu Pro Gly Asp Asp Thr Ile Leu Arg Pro Val Ser Asn Pro Phe 405 410 415Ala Lys Asp Gly Gly Leu Arg Leu Leu Glu Gly Asn Leu Gly Arg Ala 420 425 430Met Tyr Lys Ala Ser Ala Val Asp Pro Lys Phe Trp Thr Ile Glu Ala 435 440 445Pro Val Arg Val Phe Ser Asp Gln Asp Asp Val Gln Lys Ala Phe Lys 450 455 460Ala Gly Glu Leu Asn Lys Asp Val Ile Val Val Val Arg Phe Gln Gly465 470 475 480Pro Arg Ala Asn Gly Met Pro Glu Leu His Lys Leu Thr Pro Ala Leu 485 490 495Gly Val Leu Gln Asp Asn Gly Tyr Lys Val Ala Leu Val Thr Asp Gly 500 505 510Arg Met Ser Gly Ala Thr Gly Lys Val Pro Val Ala Leu His Val Ser 515 520 525Pro Glu Ala Leu Gly Gly Gly Ala Ile Gly Lys Leu Arg Asp Gly Asp 530 535 540Ile Val Arg Ile Ser Val Glu Glu Gly Lys Leu Glu Ala Leu Val Pro545 550 555 560Ala Asp Glu Trp Asn Ala Arg Pro His Ala Glu Lys Pro Ala Phe Arg 565 570 575Pro Gly Thr Gly Arg Glu Leu Phe Asp Ile Phe Arg Gln Asn Ala Ala 580 585 590Lys Ala Glu Asp Gly Ala Val Ala Ile Tyr Ala Gly Ala Gly Ile 595 600 605459607PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 459Met Thr Asp Leu His Ser Thr Val Glu Lys Val Thr Ala Arg Val Ile1 5 10 15Glu Arg Ser Arg Glu Thr Arg Lys Ala Tyr Leu Asp Leu Ile Gln Tyr 20 25 30Glu Arg Glu Lys Gly Val Asp Arg Pro Asn Leu Ser Cys Ser Asn Leu 35 40 45Ala His Gly Phe Ala Ala Met Asn Gly Asp Lys Pro Ala Leu Arg Asp 50 55 60Phe Asn Arg Met Asn Ile Gly Val Val Thr Ser Tyr Asn Asp Met Leu65 70 75 80Ser Ala His Glu Pro Tyr Tyr Arg Tyr Pro Glu Gln Met Lys Val Phe 85 90 95Ala Arg Glu Val Gly Ala Thr Val Gln Val Ala Gly Gly Val Pro Ala 100 105 110Met Cys Asp Gly Val Thr Gln Gly Gln Pro Gly Met Glu Glu Ser Leu 115 120 125Phe Ser Arg Asp Val Ile Ala Leu Ala Thr Ser Val Ser Leu Ser His 130 135 140Gly Met Phe Glu Gly Ala Ala Leu Leu Gly Ile Cys Asp Lys Ile Val145 150 155 160Pro Gly Leu Leu Met Gly Ala Leu Arg Phe Gly His Leu Pro Thr Ile 165 170 175Leu Val Pro Ser Gly Pro Met Thr Thr Gly Ile Pro Asn Lys Glu Lys 180 185 190Ile Arg Ile Arg Gln Leu Tyr Ala Gln Gly Lys Ile Gly Gln Lys Glu 195 200 205Leu Leu Asp Met Glu Ala Ala Cys Tyr His Ala Glu Gly Thr Cys Thr 210 215 220Phe Tyr Gly Thr Ala Asn Thr Asn Gln Met Val Met Glu Val Leu Gly225 230 235 240Leu His Met Pro Gly Ser Ala Phe Val Thr Pro Gly Thr Pro Leu Arg 245 250 255Gln Ala Leu Thr Arg Ala Ala Val His Arg Val Ala Glu Leu Gly Trp 260 265 270Lys Gly Asp Asp Tyr Arg Pro Leu Gly Lys Ile Ile Asp Glu Lys Ser 275 280 285Ile Val Asn Ala Ile Val Gly Leu Leu Ala Thr Gly Gly Ser Thr Asn 290 295 300His Thr Met His Ile Pro Ala Ile Ala Arg Ala Ala Gly Val Ile Val305 310 315 320Asn Trp Asn Asp Phe His Asp Leu Ser Glu Val Val Pro Leu Ile Ala 325 330 335Arg Ile Tyr Pro Asn Gly Pro Arg Asp Ile Asn Glu Phe Gln Asn Ala 340 345 350Gly Gly Met Ala Tyr Val Ile Lys Glu Leu Leu Ser Ala Asn Leu Leu 355 360 365Asn Arg Asp Val Thr Thr Ile Ala Lys Gly Gly Ile Glu Glu Tyr Ala 370 375 380Lys Ala Pro Ala Leu Asn Asp Ala Gly Glu Leu Val Trp Lys Pro Ala385 390 395 400Gly Glu Pro Gly Asp Asp Thr Ile Leu Arg Pro Val Ser Asn Pro Phe 405 410 415Ala Lys Asp Gly Gly Leu Arg Leu Leu Glu Gly Asn Leu Gly Arg Ala 420 425 430Met Tyr Lys Ala Ser Ala Val Asp Pro Lys Phe Trp Thr Ile Glu Ala 435 440 445Pro Val Arg Val Phe Ser Asp Gln Asp Asp Val Gln Lys Ala Phe Lys 450 455 460Ala Gly Glu Leu Asn Lys Asp Val Ile Val Val Val Arg Phe Gln Gly465 470 475 480Pro Arg Ala Asn Gly Met Pro Glu Leu His Lys Leu Thr Pro Ala Leu 485 490 495Gly Val Leu Gln Asp Asn Gly Tyr Lys Val Ala Leu Val Thr Asp Gly 500 505 510Arg Met Ser Gly Ala Thr Gly Lys Val Pro Val Ala Leu His Val Ser 515 520 525Pro Glu Ala Leu Gly Gly Gly Ala Ile Gly Lys Leu Arg Asp Gly Asp 530 535 540Ile Val Arg Ile Ser Val Glu Glu Gly Lys Leu Glu Ala Leu Val Pro545 550 555 560Ala Asp Glu Trp Asn Ala Arg Pro His Ala Glu Lys Pro Ala Phe Arg 565 570 575Pro Gly Thr Gly Arg Glu Leu Phe Asp Ile Phe Arg Gln Asn Ala Ala 580 585 590Lys Ala Glu Asp Gly Ala Val Ala Ile Tyr Ala Gly Ala Gly Ile 595 600 605460607PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 460Met Thr Asp Leu His Ser Thr Val Glu Lys Val Thr Ala Arg Val Ile1 5 10 15Glu Arg Ser Arg Glu Thr Arg Lys Ala Tyr Leu Asp Leu Ile Gln Tyr 20 25 30Glu Arg Glu Lys Gly Val Asp Arg Pro Asn Leu Ser Cys Ser Asn Leu 35 40 45Ala His Gly

Phe Ala Ala Met Asn Gly Asp Lys Pro Ala Leu Arg Asp 50 55 60Phe Asn Arg Met Asn Ile Gly Val Val Thr Ser Tyr Asn Asp Met Leu65 70 75 80Ser Ala His Glu Pro Tyr Tyr Arg Tyr Pro Glu Gln Met Lys Val Phe 85 90 95Ala Arg Glu Val Gly Ala Thr Val Gln Val Ala Gly Gly Val Pro Ala 100 105 110Met Cys Asp Gly Val Thr Gln Gly Gln Pro Gly Met Glu Glu Ser Leu 115 120 125Phe Ser Arg Asp Val Ile Ala Leu Ala Thr Ser Val Ser Leu Ser His 130 135 140Gly Met Phe Glu Gly Ala Ala Leu Leu Gly Ile Cys Asp Lys Ile Val145 150 155 160Pro Gly Leu Leu Met Gly Ala Leu Arg Phe Gly His Leu Pro Thr Ile 165 170 175Leu Val Pro Ser Gly Pro Met Thr Thr Gly Ile Pro Asn Lys Glu Lys 180 185 190Ile Arg Ile Arg Gln Leu Tyr Ala Gln Gly Lys Ile Gly Gln Lys Glu 195 200 205Leu Leu Asp Met Glu Ala Ala Cys Tyr His Ala Glu Gly Thr Cys Thr 210 215 220Phe Tyr Gly Thr Ala Asn Thr Asn Gln Met Val Met Glu Val Leu Gly225 230 235 240Leu His Met Pro Gly Ser Ala Phe Val Thr Pro Gly Thr Pro Leu Arg 245 250 255Gln Ala Leu Thr Arg Ala Ala Val His Arg Val Ala Glu Leu Gly Trp 260 265 270Lys Gly Asp Asp Tyr Arg Pro Leu Gly Lys Ile Ile Asp Glu Lys Ser 275 280 285Ile Val Asn Ala Ile Val Gly Leu Leu Ala Thr Gly Gly Ser Thr Asn 290 295 300His Thr Met His Ile Pro Ala Ile Ala Arg Ala Ala Gly Val Ile Val305 310 315 320Asn Trp Asn Asp Phe His Asp Leu Ser Glu Val Val Pro Leu Ile Ala 325 330 335Arg Ile Tyr Pro Asn Gly Pro Arg Asp Ile Asn Glu Phe Gln Asn Ala 340 345 350Gly Gly Met Ala Tyr Val Ile Lys Glu Leu Leu Ser Ala Asn Leu Leu 355 360 365Asn Arg Asp Val Thr Thr Ile Ala Lys Gly Gly Ile Glu Glu Tyr Ala 370 375 380Lys Ala Pro Ala Leu Asn Asp Ala Gly Glu Leu Val Trp Lys Pro Ala385 390 395 400Gly Glu Pro Gly Asp Asp Thr Ile Leu Arg Pro Val Ser Asn Pro Phe 405 410 415Ala Lys Asp Gly Gly Leu Arg Leu Leu Glu Gly Asn Leu Gly Arg Ala 420 425 430Met Tyr Lys Ala Ser Ala Val Asp Pro Lys Phe Trp Thr Ile Glu Ala 435 440 445Pro Val Arg Val Phe Ser Asp Gln Asp Asp Val Gln Lys Ala Phe Lys 450 455 460Ala Gly Glu Leu Asn Lys Asp Val Ile Val Val Val Arg Phe Gln Gly465 470 475 480Pro Arg Ala Asn Gly Met Pro Glu Leu His Lys Leu Thr Pro Ala Leu 485 490 495Gly Val Leu Gln Asp Asn Gly Tyr Lys Val Ala Leu Val Thr Asp Gly 500 505 510Arg Met Ser Gly Ala Thr Gly Lys Val Pro Val Ala Leu His Val Ser 515 520 525Pro Glu Ala Leu Gly Gly Gly Ala Ile Gly Lys Leu Arg Asp Gly Asp 530 535 540Ile Val Arg Ile Ser Val Glu Glu Gly Lys Leu Glu Ala Leu Val Pro545 550 555 560Ala Asp Glu Trp Asn Ala Arg Pro His Ala Glu Lys Pro Ala Phe Arg 565 570 575Pro Gly Thr Gly Arg Glu Leu Phe Asp Ile Phe Arg Gln Asn Ala Ala 580 585 590Lys Ala Glu Asp Gly Ala Val Ala Ile Tyr Ala Gly Ala Gly Ile 595 600 605461603PRTArtificial SequenceDescription of Artificial Sequence Synthetic polypeptide 461Met Asn Pro Gln Leu Leu Arg Val Thr Asn Arg Ile Ile Glu Arg Ser1 5 10 15Arg Glu Thr Arg Ser Ala Tyr Leu Ala Arg Ile Glu Gln Ala Lys Thr 20 25 30Ser Thr Val His Arg Ser Gln Leu Ala Cys Gly Asn Leu Ala His Gly 35 40 45Phe Ala Ala Cys Gln Pro Glu Asp Lys Ala Ser Leu Lys Ser Met Leu 50 55 60Arg Asn Asn Ile Ala Ile Ile Thr Ser Tyr Asn Asp Met Leu Ser Ala65 70 75 80His Gln Pro Tyr Glu His Tyr Pro Glu Ile Ile Arg Lys Ala Leu His 85 90 95Glu Ala Asn Ala Val Gly Gln Val Ala Gly Gly Val Pro Ala Met Cys 100 105 110Asp Gly Val Thr Gln Gly Gln Asp Gly Met Glu Leu Ser Leu Leu Ser 115 120 125Arg Glu Val Ile Ala Met Ser Ala Ala Val Gly Leu Ser His Asn Met 130 135 140Phe Asp Gly Ala Leu Phe Leu Gly Val Cys Asp Lys Ile Val Pro Gly145 150 155 160Leu Thr Met Ala Ala Leu Ser Phe Gly His Leu Pro Ala Val Phe Val 165 170 175Pro Ser Gly Pro Met Ala Ser Gly Leu Pro Asn Lys Glu Lys Val Arg 180 185 190Ile Arg Gln Leu Tyr Ala Glu Gly Lys Val Asp Arg Met Ala Leu Leu 195 200 205Glu Ser Glu Ala Ala Ser Tyr His Ala Pro Gly Thr Cys Thr Phe Tyr 210 215 220Gly Thr Ala Asn Thr Asn Gln Met Val Val Glu Phe Met Gly Met Gln225 230 235 240Leu Pro Gly Ser Ser Phe Val His Pro Asp Ser Pro Leu Arg Asp Ala 245 250 255Leu Thr Ala Ala Ala Ala Arg Gln Val Thr Arg Met Thr Gly Asn Gly 260 265 270Asn Glu Trp Met Pro Ile Gly Lys Met Ile Asp Glu Lys Val Val Val 275 280 285Asn Gly Ile Val Ala Leu Leu Ala Thr Gly Gly Ser Thr Asn His Thr 290 295 300Met His Leu Val Ala Met Ala Arg Ala Ala Gly Ile Gln Ile Asn Trp305 310 315 320Asp Asp Phe Ser Asp Leu Ser Asp Val Val Pro Leu Met Ala Arg Leu 325 330 335Tyr Pro Asn Gly Pro Ala Asp Ile Asn His Phe Gln Ala Ala Gly Gly 340 345 350Val Pro Val Leu Val Arg Glu Leu Leu Lys Ala Gly Leu Leu His Glu 355 360 365Asp Val Asn Thr Val Ala Gly Phe Gly Leu Ser Arg Tyr Thr Leu Glu 370 375 380Pro Trp Leu Asn Asn Gly Glu Leu Asp Trp Arg Glu Gly Ala Glu Lys385 390 395 400Ser Leu Asp Ser Asn Val Ile Ala Ser Phe Glu Gln Pro Phe Ser His 405 410 415His Gly Gly Thr Lys Val Leu Ser Gly Asn Leu Gly Arg Ala Val Met 420 425 430Lys Thr Ser Ala Val Pro Val Glu Asn Gln Val Ile Glu Ala Pro Ala 435 440 445Val Val Phe Glu Ser Gln His Asp Val Met Pro Ala Phe Glu Ala Gly 450 455 460Leu Leu Asp Arg Asp Cys Val Val Val Val Arg His Gln Gly Pro Lys465 470 475 480Ala Asn Gly Met Pro Glu Leu His Lys Leu Met Pro Pro Leu Gly Val 485 490 495Leu Leu Asp Arg Cys Phe Lys Ile Ala Leu Val Thr Asp Gly Arg Leu 500 505 510Ser Gly Ala Ser Gly Lys Val Pro Ser Ala Ile His Val Thr Pro Glu 515 520 525Ala Tyr Asp Gly Gly Leu Leu Ala Lys Val Arg Asp Gly Asp Ile Ile 530 535 540Arg Val Asn Gly Gln Thr Gly Glu Leu Thr Leu Leu Val Asp Glu Ala545 550 555 560Glu Leu Ala Ala Arg Glu Pro His Ile Pro Asp Leu Ser Ala Ser Arg 565 570 575Val Gly Thr Gly Arg Glu Leu Phe Ser Ala Leu Arg Glu Lys Leu Ser 580 585 590Gly Ala Glu Gln Gly Ala Thr Cys Ile Thr Phe 595 600

* * * * *

References


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed