Genetic Variants in the TCF7L2 Gene as Diagnostic Markers for Risk of Type 2 Diabetes Mellitus

Grant; Struan F.A.

Patent Application Summary

U.S. patent application number 13/294802 was filed with the patent office on 2012-06-14 for genetic variants in the tcf7l2 gene as diagnostic markers for risk of type 2 diabetes mellitus. This patent application is currently assigned to deCODE Genetics ehf.. Invention is credited to Struan F.A. Grant.

Application Number20120149016 13/294802
Document ID /
Family ID37036993
Filed Date2012-06-14

United States Patent Application 20120149016
Kind Code A1
Grant; Struan F.A. June 14, 2012

Genetic Variants in the TCF7L2 Gene as Diagnostic Markers for Risk of Type 2 Diabetes Mellitus

Abstract

Polymorphisms in the gene TCF7L2 are shown by association analysis to be a susceptibility gene for type II diabetes. Methods of diagnosis of susceptibility to diabetes, of decreased susceptibility to diabetes and protection against diabetes, are described, as are methods of treatment for type II diabetes.


Inventors: Grant; Struan F.A.; (Reykjavik, IS)
Assignee: deCODE Genetics ehf.
Reykjavik
IS

Family ID: 37036993
Appl. No.: 13/294802
Filed: November 11, 2011

Related U.S. Patent Documents

Application Number Filing Date Patent Number
12456381 Jun 15, 2009
13294802
11454296 Jun 16, 2006 7585630
12456381
60757155 Jan 6, 2006
60692174 Jun 20, 2005

Current U.S. Class: 435/6.11
Current CPC Class: C12Q 2600/158 20130101; A61P 3/10 20180101; C12Q 1/6886 20130101; C12Q 2600/172 20130101; C12Q 2600/156 20130101; C12Q 1/6883 20130101; C12Q 2600/106 20130101; C12Q 2600/136 20130101
Class at Publication: 435/6.11
International Class: C12Q 1/68 20060101 C12Q001/68

Claims



1. A method of diagnosing a susceptibility to type II diabetes in an individual, comprising analyzing at least one allele of at least one marker associated with the exon 4 LD block of Transcription Factor 7-Like 2 Gene (TCF7L2) in nucleic acid from the individual, wherein the at least one marker is selected from the group consisting of DG10S478, rs12255372, rs7895340, rs11196205, rs7901695, rs7903146, rs12243326, rs4506565, and markers in linkage disequilibrium, characterized by r.sup.2 greater than 0.2, with any of said markers; and diagnosing a susceptibility to type II diabetes in the individual from the presence or absence of the at least one allele, wherein the presence of an at-risk allele for the at least one marker in the nucleic acid is indicative of an increased susceptibility to type II diabetes, and the absence of an at-risk allele is indicative of a decreased susceptibility to type II diabetes.

2. The method of claim 1, wherein the at least one marker comprises at least one marker selected from the group consisting of rs4074720, rs4074719, rs4074718, rs11196181, rs11196182, rs4603236, rs7922298, rs17747324, rs7901695, rs11196185, rs4132115, rs4506565, rs7068741, rs7069007, rs7903146, rs11196187, rs7092484, rs10885402, rs12098651, rs6585198, rs7910244, rs12266632, rs6585199, rs7896811, rs6585200, rs6585201, rs4319449, rs12220336, rs7896091, rs12354626, rs7075199, rs7904519, rs13376896, rs10885405, rs10885406, rs11196192, rs6585202, rs7924080, rs7907610, rs12262948, rs12243326, rs12265110, rs7077039, rs11196198, rs12775336, rs7904948, rs7100927, rs11196199, rs17685538, rs11592706, rs7081912, rs7895340, rs11196200, rs11196201, rs11196202, rs11196203, rs11196204, rs11196205, rs10885409, rs12255372, rs12265291, rs7904443, rs11196208, rs7077247, rs11196209, rs4077527, rs12718338, rs11196210, rs7907632, rs7071302, rs12245680, rs11196213, rs4918789, rs7085785, rs7085989, rs7087006, SG10S405, SG10S428, SG10S422, SG10S427, SG10S408, SG10S409, SG10S406, SG10S407, DG10S2164, DG10S478, and DG10S479.

3. The method of claim 1, wherein the susceptibility is an increased susceptibility characterized by a relative risk of at least 1.2.

4. (canceled)

5. The method of claim 1, wherein the marker is selected from the group consisting of DG10S478, rs12255372, rs7895340, rs11196205, rs7901695, rs7903146, rs12243326, and rs4506565.

6. The method of claim 1, wherein the marker is marker DG10S478, or a marker in linkage disequilibrium with DG10S478, characterized by an r.sup.2 greater than 0.2, and wherein the presence of a non-0 allele in DG10S478 is indicative of increased susceptibility to type II diabetes.

7. The method of claim 1, wherein the marker is marker rs7903146, or a marker in linkage disequilibrium with rs7903146, characterized by an r.sup.2 greater than 0.2, and wherein the presence of a T allele in rs7903146 is indicative of increased susceptibility to type II diabetes.

8. The method according to claim 1 of diagnosing a decreased susceptibility to type II diabetes in an individual, comprising detecting absence of the at-risk allele, wherein the absence of the at-risk allele is indicative of a decreased susceptibility to type II diabetes.

9. The method of claim 8, wherein the decreased susceptibility is characterized by a relative risk of less than 0.8.

10. (canceled)

11. (canceled)

12. (canceled)

13. (canceled)

14. (canceled)

15. (canceled)

16. (canceled)

17. (canceled)

18. A method according to claim 1 of detecting an increased susceptibility to type II diabetes in an individual, comprising detecting an allele of at least one marker located within the exon 4 LD block of TCF7L2 in the individual, wherein identification of said allele at the polymorphism that is indicative of increased risk of type II diabetes in the individual.

19. (canceled)

20. (canceled)

21. The method of claim 18, wherein the at least one marker is selected from the group consisting of rs4074720, rs4074719, rs4074718, rs11196181, rs11196182, rs4603236, rs7922298, rs17747324, rs7901695, rs11196185, rs4132115, rs4506565, rs7068741, rs7069007, rs7903146, rs11196187, rs7092484, rs10885402, rs12098651, rs6585198, rs7910244, rs12266632, rs6585199, rs7896811, rs6585200, rs6585201, rs4319449, rs12220336, rs7896091, rs12354626, rs7075199, rs7904519, rs13376896, rs10885405, rs10885406, rs11196192, rs6585202, rs7924080, rs7907610, rs12262948, rs12243326, rs12265110, rs7077039, rs11196198, rs12775336, rs7904948, rs7100927, rs11196199, rs17685538, rs11592706, rs7081912, rs7895340, rs11196200, rs11196201, rs11196202, rs11196203, rs11196204, rs11196205, rs10885409, rs12255372, rs12265291, rs7904443, rs11196208, rs7077247, rs11196209, rs4077527, rs12718338, rs11196210, rs7907632, rs7071302, rs12245680, rs11196213, rs4918789, rs7085785, rs7085989, rs7087006, SG10S405, SG10S428, SG10S422, SG10S427, SG10S408, SG10S409, SG10S406, SG10S407, DG10S2164, DG10S478, and DG10S479.

22. The method according to claim 1 of diagnosing a decreased susceptibility to type II diabetes in an individual, comprising detecting absence of the at-risk allele located within the exon 4 LD block of TCF7L2 wherein the absence of the at-risk allele is indicative of decreased risk of type II diabetes in the individual.

23. (canceled)

24. (canceled)

25. The method of claim 22, wherein the at least one marker is selected from the group consisting of rs4074720, rs4074719, rs4074718, rs11196181, rs11196182, rs4603236, rs7922298, rs17747324, rs7901695, rs11196185, rs4132115, rs4506565, rs7068741, rs7069007, rs7903146, rs11196187, rs7092484, rs10885402, rs12098651, rs6585198, rs7910244, rs12266632, rs6585199, rs7896811, rs6585200, rs6585201, rs4319449, rs12220336, rs7896091, rs12354626, rs7075199, rs7904519, rs13376896, rs10885405, rs10885406, rs11196192, rs6585202, rs7924080, rs7907610, rs12262948, rs12243326, rs12265110, rs7077039, rs11196198, rs12775336, rs7904948, rs7100927, rs11196199, rs17685538, rs11592706, rs7081912, rs7895340, rs11196200, rs11196201, rs11196202, rs11196203, rs11196204, rs11196205, rs10885409, rs12255372, rs12265291, rs7904443, rs11196208, rs7077247, rs11196209, rs4077527, rs12718338, rs11196210, rs7907632, rs7071302, rs12245680, rs11196213, rs4918789, rs7085785, rs7085989, rs7087006, SG10S405, SG10S428, SG10S422, SG10S427, SG10S408, SG10S409, SG10S406, SG10S407, DG10S2164, DG10S478, and DG10S479.
Description



RELATED APPLICATIONS

[0001] This application is a continuation of U.S. application Ser. No. 11/454,296, filed Jun. 16, 2006, which claims the benefit of U.S. Provisional Application No. 60/757,155, filed on Jan. 6, 2006 and U.S. Provisional Application No. 60/692,174, filed on Jun. 20, 2005. The entire teachings of the above applications are incorporated herein by reference.

BACKGROUND OF THE INVENTION

[0002] Diabetes mellitus, a metabolic disease wherein carbohydrate utilization is reduced and lipid and protein utilization is enhanced, is caused by an absolute or relative deficiency of insulin. In the more severe cases, diabetes is characterized by chronic hyperglycemia, glycosuria, water and electrolyte loss, ketoacidosis and coma. Long term complications include development of neuropathy, retinopathy, nephropathy, generalized degenerative changes in large and small blood vessels and increased susceptibility to infection. The most common form of diabetes is Type II, non-insulin-dependent diabetes that is characterized by hyperglycemia due to impaired insulin secretion and insulin resistance in target tissues. Both genetic and environmental factors contribute to the disease. For example, obesity plays a major role in the development of the disease. Type II diabetes is often a mild form of diabetes mellitus of gradual onset.

[0003] The health implications of Type II diabetes are enormous. In 1995, there were 135 million adults with diabetes worldwide. It is estimated that close to 300 million will have diabetes in the year 2025. (King H., et al., Diabetes Care, 21(9): 1414-1431 (1998)). The prevalence of Type II diabetes in the adult population in Iceland is 2.5% (Vilbergsson, S., et al., Diabet. Med., 14(6): 491-498 (1997)), which comprises approximately 5,000 people over the age of 34 who have the disease. The high prevalence of the disease and increasing population affected shows an unmet medical need to define the genetic factors involved in Type II diabetes to more precisely define the associated risk factors. Also needed are therapeutic agents for prevention of Type II diabetes.

SUMMARY OF THE INVENTION

[0004] The present invention relates to methods of diagnosing an increased susceptibility to type II diabetes, as well as methods of diagnosing a decreased susceptibility to type II diabetes or diagnosing a protection against type II diabetes, by evaluating certain markers or haplotypes relating to the TCF7L2 gene (transcription factor 7-like 2 (T-cell specific, HMG-box), previously referred to as the TCF4 gene (T-cell transcription factor 4)). The methods comprise detecting a genetic marker associated with the exon 4 LD block of TCF7L2 gene.

[0005] In a first aspect, the invention relates to a method of diagnosing a susceptibility to type II diabetes in an individual, comprising analyzing a nucleic acid sample obtained from the individual for a marker or haplotype associated with the exon 4 LD block of TCF7L2, wherein the presence of the marker or haplotype is indicative of a susceptibility to type II diabetes. In one embodiment, the marker or haplotype comprises at least one marker selected from the markers listed in Table 6. In another embodiment, the marker or haplotype is a marker.

[0006] In one preferred embodiment, the marker or haplotype is indicative of increased susceptibility of type II diabetes. The increased susceptibility is in one embodiment characterized by a relative risk of at least 1.2, including a relative risk of at least 1.3 and a relative risk of at least 1.4. In one embodiment, the marker is selected from the group consisting of DG10S478, rs12255372, rs7895340, rs11196205, rs7901695, rs7903146, rs12243326, and rs4506565, and wherein the presence of a non-0 allele (e.g., -4, 4, 8, 12, 16, 20, or other non-0 allele) in DG10S478, a T allele in rs12255372; an A allele in rs7895340; a C allele in rs11196205; a C allele in rs7901695; a T allele in rs7903146; a C allele in rs12243326; or an T allele in rs4506565, is indicative of increased susceptibility to type II diabetes. In a preferred embodiment, the marker is selected from the group consisting of DG10S478 and rs7903146, and wherein the presence of a non-0 allele in DG10S478 or a T allele in rs7903146 is indicative of increased susceptibility to type II diabetes. In yet another preferred embodiment, the marker is rs7903146, and wherein the presence of a T allele in rs7903146 is indicative of increased susceptibility to type II diabetes.

[0007] In another preferred embodiment, the marker or haplotype is indicative of decreased susceptibility of type II diabetes. The decreased susceptibility is in one embodiment characterized by a relative risk of less than 0.8, including a relative risk of less than 0.7. In one embodiment, the marker is selected from the group consisting of DG10S478, rs12255372, rs7895340, rs11196205, rs7901695, rs7903146, rs12243326, and rs4506565, and wherein the presence of a 0 allele in DG10S478, a G allele in SNP rs12255372; a G allele in rs7895340; a G allele in rs11196205; a T allele in rs7901695; a C allele in rs7903146; a T allele in rs12243326; or an A allele in rs4506565 is indicative of a decreased susceptibility to type II diabetes. In a preferred embodiment, the marker is DG10S478, and wherein the presence of a 0 allele in DG10S478 is indicative of decreased susceptibility to type II diabetes. In another preferred embodiment, the marker is rs7903146, and wherein the presence of a C allele in rs7903146 is indicative of decreased susceptibility to type II diabetes.

[0008] In a second aspect, the present invention relates to a kit for assaying a sample from an individual to detect a susceptibility to type II diabetes, wherein the kit comprises one or more reagents for detecting one or more markers associated with the exon 4 LD block of TCF7L2. In one embodiment, the one or more reagents comprise at least one contiguous nucleotide sequence that is completely complementary to a region comprising at least one marker associated with the exon 4 LD block of TCF7L2. In one embodiment, the one or markers is selected from the group consisting of DG10S478, rs12255372, rs7895340, rs11196205, rs7901695, rs7903146, rs12243326, and rs4506565. In a preferred embodiment, the one or more marker is DG10S478 or rs7903146. In another preferred embodiment, the marker is the C allele in rs7903146.

[0009] In another aspect, the present invention relates to a method of assessing an individual for probability of response to a TCF7L2 therapeutic agent, comprising: detecting a marker associated with the exon 4 LD block of TCF7L2, wherein the presence of the marker is indicative of a probability of a positive response to a TCF7L2 therapeutic agent. In one embodiment, the marker is selected from the group consisting of DG10S478, rs12255372, rs7895340, rs11196205, rs7901695, rs7903146, rs12243326, and rs4506565. In another embodiment, the marker is marker DG10S478 or marker rs7903146, and wherein the presence of a non-0 allele in DG10S478 or a T allele in rs7903146 is indicative of a probability of a positive response to a TCF7L2 therapeutic agent.

[0010] Another aspect of the invention relates to the use of a TCF7L2 therapeutic agent for the manufacture of a medicament for the treatment of type II diabetes. In one embodiment, the TCF7L2 therapeutic agent is an agent that alters activity in the Wnt signaling pathway or in the cadherin pathway. In another embodiment, the TCF7L2 therapeutic agent is an agent selected from the group set forth in the Agent Table.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of preferred embodiments of the invention. The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawings will be provided by the Office upon request and payment of the necessary fee.

[0012] The FIGURE depicts the TCF7L2 region of interest with respect to linkage disequilibrium (LD) of SNPs in HapMap project Build 16. The 215.9 kb gene spans seven LD blocks as indicated by the black arrow schematic (based on NCBI RefSeq) which shows the direction of transcription; exons are indicated, with exon 4 highlighted. DG10S478 is located at 114.46 Mb on chromosome 10 (NCBI Build 34) in intron 3 of the TCF7L2 gene, within a 74.9 kb block that incorporates part of intron 3, the whole of exon 4 and part of intron 4 (herein referred to as the "exon 4 LD block of TCF7L2"). The SNP markers are plotted equidistantly rather than according to their physical positions. The FIGURE shows two measures of LD--i.e. D' (upper left part of FIGURE) and r.sup.2 (lower right part).

DETAILED DESCRIPTION OF THE INVENTION

[0013] A description of preferred embodiments of the invention follows.

Loci Associated with Type II Diabetes

[0014] Type II diabetes is characterized by hyperglycemia, which can occur through mechanisms such as impaired insulin secretion, insulin resistance in peripheral tissues and increased glucose output by the liver. Most type II diabetes patients suffer serious complications of chronic hyperglycemia including nephropathy, neuropathy, retinopathy and accelerated development of cardiovascular disease. The prevalence of type II diabetes worldwide is currently 6% but is projected to rise over the next decade (1). This increase in prevalence of type II diabetes is attributed to increasing age of the population and rise in obesity.

[0015] There is evidence for a genetic component to the risk of type II diabetes, including prevalence differences between various racial groups (2, 3), higher concordance rates among monozygotic than dizygotic twins (4, 5) and a sibling relative risk (.lamda..sub.2) for type II diabetes in European populations of approximately 3.5 (6).

[0016] Two approaches have thus far been used to search for genes associated with type II diabetes. Single nucleotide polymorphisms (SNPs) within candidate genes have been tested for association and have, in general, not been replicated or confer only a modest risk of type II diabetes--the most widely reported being a protective Pro12Ala polymorphism in the peroxisome proliferator activated receptor gamma gene (PPARG2) (7) and an at risk polymorphism in the potassium inwardly-rectifying channel, subfamily J, member 11 gene (KIR6.2) (8).

[0017] Genome-wide linkage scans in families with the common form of type II diabetes have yielded several loci, and the primary focus of international research consortia has been on loci on chromosomes 1, 12 and 20 observed in many populations (6). The genes in these loci have yet to be uncovered. However, in Mexican Americans, the calpain 10 (CAPN10) gene was isolated out of a locus on chromosome 2q; this represents the only gene for the common form of type II diabetes to date to be identified through positional cloning (9). The rare Mendelian forms of type II diabetes, namely maturity-onset diabetes of the young (MODY), have yielded six genes by positional cloning (6).

[0018] We previously reported genome-wide significant linkage to chromosome 5q for type II diabetes mellitus in the Icelandic population (10); in the same study, we also reported suggestive evidence of linkage to 10q and 12q. Linkage to the 10q region has also been observed in Mexican Americans (11).

Transcription Factor 7-Like 2 Gene (TCF7L2) Association with Type II Diabetes

[0019] The present invention relates to identification of a type II diabetes-associated LD block ("exon 4 LD block of TCF7L2") within the gene encoding T-cell transcription factor 4 (TCF4-- official gene symbol TCF7L2). Several markers within the exon 4 LD block of TCF7L2, including microsatellite DG10S478 and SNP markers rs7903146 and rs12255372, have been found to be associated with type II diabetes.

The original observation, first found in an Icelandic cohort, of the association of DG10S478 (P=1.3.times.10.sup.-9; Relative risk=1.45; Population attributable risk=22.7%), has subsequently been replicated in a Danish type II diabetes cohort and a United States Caucasian cohort. DG10S478 is located in intron 3 of the TCF7L2 gene on 10q25.2 and within a well defined LD block of 74.9 kb that encapsulates part of intron 3, the whole of exon 4 and part of intron 4. The TCF7L2 gene product is a high mobility group (HMG) box-containing transcription factor that plays a role in the Wnt signaling pathway, also known as the APC3/.beta.-catenin/TCF pathway. TCF7L2 mediates the cell type-specific regulation of proglucagon gene expression (a key player in blood glucose homeostasis) through the Wnt pathway members .beta.-catenin and glycogen synthase kinase-3beta (12). In addition, Wnt signaling maintains preadipocytes in an undifferentiated state through inhibition of the adipogenic transcription factors CCAAT/enhancer binding protein alpha (C/EBPalpha) and peroxisome proliferator-activated receptor gamma (PPARgamma) (13). When Wnt signaling in preadipocytes is prevented by overexpression of dominant-negative TCF7L2, these cells differentiate into adipocytes (13). In addition, it has been reported that the Wnt/.beta.-catenin signaling pathway targets PPARgamma activity through physical interaction with .beta.-catenin and TCF7L2 in colon cancer cells (14). The multifunctional .beta.-catenin protein is also important for mediating cell adhesion through its binding of cadherins (15).

[0020] As a result of this discovery, methods are now available for diagnosis of a susceptibility to type II diabetes, as well as for diagnosis of a decreased susceptibility to type II diabetes and/or a protection against type II diabetes. In preferred embodiments of the invention, diagnostic assays are used to identify the presence of particular alleles, including a 0 allele in marker DG10S478 (associated with a decreased susceptibility to type II diabetes and is an allele that is protective against type II diabetes); a non-0 allele (e.g., -4, 4, 8, 12, 16 or 20, or other allele) in marker DG10S478 (associated with susceptibility to type II diabetes); a G allele in SNP rs12255372 (associated with a decreased susceptibility to type II diabetes and is an allele that is protective against type II diabetes): a T allele in SNP rs12255372 (associated with susceptibility to type II diabetes); a G allele in SNP rs7895340 (associated with a decreased susceptibility to type II diabetes and is an allele that is protective against type II diabetes); an A allele in SNP rs7895340 (associated with susceptibility to type II diabetes); a G allele in SNP rs11196205 (associated with a decreased susceptibility to type II diabetes and is an allele that is protective against type II diabetes); a C allele in SNP rs11196205 (associated with susceptibility to type II diabetes); a T allele in SNP rs7901695 (associated with a decreased susceptibility to type II diabetes and is an allele that is protective against type II diabetes); a C allele in SNP rs7901695 (associated with susceptibility to type II diabetes); a C allele in SNP rs7903146 (associated with a decreased susceptibility to type II diabetes and is an allele that is protective against type II diabetes); a T allele in SNP rs7903146 (associated with a susceptibility to type II diabetes); a C allele in SNP rs12243326 (associated with a susceptibility to type II diabetes); and an T allele in SNP rs4506565 (associated with a susceptibility to type II diabetes). In additional embodiments of the invention, other markers or SNPs, identified using the methods described herein, can be used for diagnosis of a susceptibility to type II diabetes, and also for diagnosis of a decreased susceptibility to type II diabetes or for identification of an allele that is protective against type II diabetes. The diagnostic assays presented below can be used to identify the presence or absence of these particular alleles.

Diagnostic Assays

[0021] Nucleic acids, probes, primers, and antibodies such as those described herein can be used in a variety of methods of diagnosis of a susceptibility to type II diabetes, as well as in kits (e.g., useful for diagnosis of a susceptibility to type II diabetes). Similarly, the nucleic acids, probes, primers, and antibodies described herein can be used in methods of diagnosis of a decreased susceptibility to type II diabetes, as well as in methods of diagnosis of a protection against type II diabetes, and also in kits). In one aspect, the kit comprises primers that can be used to amplify the markers of interest.

[0022] In one aspect of the invention, diagnosis of a susceptibility to type II diabetes is made by detecting a polymorphism in a TCF7L2 nucleic acid as described herein (e.g., the alleles in marker DG10S478 or in SNP rs12255372, rs7895340, rs11196205, rs7901695, rs7903146, rs12243326, rs4506565). The polymorphism can be a change in a TCF7L2 nucleic acid, such as the insertion or deletion of a single nucleotide, or of more than one nucleotide, resulting in a frame shift; the change of at least one nucleotide, resulting in a change in the encoded amino acid; the change of at least one nucleotide, resulting in the generation of a premature stop codon; the deletion of several nucleotides, resulting in a deletion of one or more amino acids encoded by the nucleotides; the insertion of one or several nucleotides, such as by unequal recombination or gene conversion, resulting in an interruption of the coding sequence of the gene; duplication of all or a part of the gene; transposition of all or a part of the gene; or rearrangement of all or a part of the gene. More than one such change may be present in a single gene. Such sequence changes cause a difference in the polypeptide encoded by a TCF7L2 nucleic acid. For example, if the difference is a frame shift change, the frame shift can result in a change in the encoded amino acids, and/or can result in the generation of a premature stop codon, causing generation of a truncated polypeptide. Alternatively, a polymorphism associated with a disease or condition or a susceptibility to a disease or condition associated with a TCF7L2 nucleic acid can be a synonymous alteration in one or more nucleotides (i.e., an alteration that does not result in a change in the polypeptide encoded by a TCF7L2 nucleic acid). Such a polymorphism may alter splicing sites, affect the stability or transport of mRNA, or otherwise affect the transcription or translation of the gene. A TCF7L2 nucleic acid that has any of the changes or alterations described above is referred to herein as an "altered nucleic acid."

[0023] In a first method of diagnosing a susceptibility to type II diabetes, hybridization methods, such as Southern analysis, Northern analysis, or in situ hybridizations, can be used (see Current Protocols in Molecular Biology, Ausubel, F. et al., eds, John Wiley & Sons, including all supplements through 1999). For example, a biological sample (a "test sample") from a test subject (the "test individual") of genomic DNA, RNA, or cDNA, is obtained from an individual (RNA and cDNA can only be used for exonic markers), such as an individual suspected of having, being susceptible to or predisposed for, or carrying a defect for, type II diabetes. The individual can be an adult, child, or fetus. The test sample can be from any source which contains genomic DNA, such as a blood sample, sample of amniotic fluid, sample of cerebrospinal fluid, or tissue sample from skin, muscle, buccal or conjunctival mucosa, placenta, gastrointestinal tract or other organs. A test sample of DNA from fetal cells or tissue can be obtained by appropriate methods, such as by amniocentesis or chorionic villus sampling. The DNA, RNA, or cDNA sample is then examined to determine whether a polymorphism in a TCF7L2 nucleic acid is present, and/or to determine which splicing variant(s) encoded by the TCF7L2 is present. The presence of the polymorphism or splicing variant(s) can be indicated by hybridization of the gene in the genomic DNA, RNA, or cDNA to a nucleic acid probe. A "nucleic acid probe", as used herein, can be a DNA probe or an RNA probe; the nucleic acid probe can contain, for example, at least one polymorphism in a TCF7L2 nucleic acid and/or contain a nucleic acid encoding a particular splicing variant of a TCF7L2 nucleic acid. The probe can be any of the nucleic acid molecules described above (e.g., the gene or nucleic acid, a fragment, a vector comprising the gene or nucleic acid, a probe or primer, etc.).

[0024] To diagnose a susceptibility to type II diabetes, a hybridization sample can be formed by contacting the test sample containing a TCF7L2 nucleic acid with at least one nucleic acid probe. A preferred probe for detecting mRNA or genomic DNA is a labeled nucleic acid probe capable of hybridizing to mRNA or genomic DNA sequences described herein. The nucleic acid probe can be, for example, a full-length nucleic acid molecule, or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to appropriate mRNA or genomic DNA. Suitable probes for use in the diagnostic assays of the invention are described above (see e.g., probes and primers discussed under the heading, "Nucleic Acids of the Invention").

[0025] The hybridization sample is maintained under conditions that are sufficient to allow specific hybridization of the nucleic acid probe to a TCF7L2 nucleic acid. "Specific hybridization", as used herein, indicates exact hybridization (e.g., with no mismatches). Specific hybridization can be performed under high stringency conditions or moderate stringency conditions, for example, as described above. In a particularly preferred aspect, the hybridization conditions for specific hybridization are high stringency.

[0026] Specific hybridization, if present, is then detected using standard methods. If specific hybridization occurs between the nucleic acid probe and TCF7L2 nucleic acid in the test sample, then the TCF7L2 has the polymorphism, or is the splicing variant, that is present in the nucleic acid probe. More than one nucleic acid probe can also be used concurrently in this method. Specific hybridization of any one of the nucleic acid probes is indicative of a polymorphism in the TCF7L2 nucleic acid, or of the presence of a particular splicing variant encoding the TCF7L2 nucleic acid and can be diagnostic for a susceptibility to type II diabetes, or for a decreased susceptibility to type II diabetes (or indicative of a protective allele against type II diabetes).

[0027] In Northern analysis (see Current Protocols in Molecular Biology, Ausubel, F. et al., eds., John Wiley & Sons, supra) the hybridization methods described above are used to identify the presence of a polymorphism or a particular splicing variant, associated with a susceptibility to type II diabetes or associated with a decreased susceptibility to type II diabetes. For Northern analysis, a test sample of RNA is obtained from the individual by appropriate means. Specific hybridization of a nucleic acid probe, as described above, to RNA from the individual is indicative of a polymorphism in a TCF7L2 nucleic acid, or of the presence of a particular splicing variant encoded by a TCF7L2 nucleic acid and is therefore diagnostic for the susceptibility to type II diabetes or the decreased susceptibility to type II diabetes (or indicative of a protective allele against type II diabetes).

[0028] For representative examples of use of nucleic acid probes, see, for example, U.S. Pat. Nos. 5,288,611 and 4,851,330.

[0029] Alternatively, a peptide nucleic acid (PNA) probe can be used instead of a nucleic acid probe in the hybridization methods described above. PNA is a DNA mimic having a peptide-like, inorganic backbone, such as N-(2-aminoethyl) glycine units, with an organic base (A, G, C, T or U) attached to the glycine nitrogen via a methylene carbonyl linker (see, for example, Nielsen, P. E. et al., Bioconjugate Chemistry 5, American Chemical Society, p. 1 (1994). The PNA probe can be designed to specifically hybridize to a TCF7L2 nucleic acid. Hybridization of the PNA probe to a TCF7L2 nucleic acid can be diagnostic for a susceptibility to type II diabetes or decreased susceptibility to type II diabetes (or indicative of a protective allele against type II diabetes).

[0030] In another method of the invention, alteration analysis by restriction digestion can be used to detect an alteration in the gene, if the alteration (mutation) or polymorphism in the gene results in the creation or elimination of a restriction site. A test sample containing genomic DNA is obtained from the individual. Polymerase chain reaction (PCR) can be used to amplify a TCF7L2 nucleic acid (and, if necessary, the flanking sequences) in the test sample of genomic DNA from the test individual. RFLP analysis is conducted as described (see Current Protocols in Molecular Biology, supra). The digestion pattern of the relevant DNA fragment indicates the presence or absence of the alteration or polymorphism in the TCF7L2 nucleic acid, and therefore indicates the presence or absence a susceptibility to type II diabetes or a decreased susceptibility to type II diabetes (or indicative of a protective allele against type II diabetes).

[0031] Sequence analysis can also be used to detect specific polymorphisms in a TCF7L2 nucleic acid. A test sample of DNA or RNA is obtained from the test individual. PCR or other appropriate methods can be used to amplify the gene or nucleic acid, and/or its flanking sequences, if desired. The sequence of a TCF7L2 nucleic acid, or a fragment of the nucleic acid, or cDNA, or fragment of the cDNA, or mRNA, or fragment of the mRNA, is determined, using standard methods. The sequence of the nucleic acid, nucleic acid fragment, cDNA, cDNA fragment, mRNA, or mRNA fragment is compared with the known nucleic acid sequence of the gene or cDNA or mRNA, as appropriate. The presence of a polymorphism in the TCF7L2 indicates that the individual has a susceptibility to type II diabetes or a decreased susceptibility to type II diabetes (or indicative of a protective allele against type II diabetes).

[0032] Allele-specific oligonucleotides can also be used to detect the presence of a polymorphism in a TCF7L2 nucleic acid, through the use of dot-blot hybridization of amplified oligonucleotides with allele-specific oligonucleotide (ASO) probes (see, for example, Saiki, R. et al., Nature 324:163-166 (1986)). An "allele-specific oligonucleotide" (also referred to herein as an "allele-specific oligonucleotide probe") is an oligonucleotide of approximately 10-50 base pairs, preferably approximately 15-30 base pairs, that specifically hybridizes to a TCF7L2 nucleic acid, and that contains a polymorphism associated with a susceptibility to type II diabetes or a polymorphism associated with a decreased susceptibility to type II diabetes (or indicative of a protective allele against type II diabetes). An allele-specific oligonucleotide probe that is specific for particular polymorphisms in a TCF7L2 nucleic acid can be prepared, using standard methods (see Current Protocols in Molecular Biology, supra). To identify polymorphisms in the gene that are associated with type II diabetes, a test sample of DNA is obtained from the individual. PCR can be used to amplify all or a fragment of a TCF7L2 nucleic acid and its flanking sequences. The DNA containing the amplified TCF7L2 nucleic acid (or fragment of the gene or nucleic acid) is dot-blotted, using standard methods (see Current Protocols in Molecular Biology, supra), and the blot is contacted with the oligonucleotide probe. The presence of specific hybridization of the probe to the amplified TCF7L2 nucleic acid is then detected. Hybridization of an allele-specific oligonucleotide probe to DNA from the individual is indicative of a polymorphism in the TCF7L2 nucleic acid, and is therefore indicative of susceptibility to type II diabetes or is indicative of decreased susceptibility to type II diabetes (or indicative of a protective allele against type II diabetes).

[0033] The invention further provides allele-specific oligonucleotides that hybridize to the reference or variant allele of a gene or nucleic acid comprising a single nucleotide polymorphism or to the complement thereof. These oligonucleotides can be probes or primers.

[0034] An allele-specific primer hybridizes to a site on target DNA overlapping a polymorphism and only primes amplification of an allelic form to which the primer exhibits perfect complementarity. See Gibbs, Nucleic Acid Res. 17, 2427-2448 (1989). This primer is used in conjunction with a second primer, which hybridizes at a distal site. Amplification proceeds from the two primers, resulting in a detectable product, which indicates the particular allelic form is present. A control is usually performed with a second pair of primers, one of which shows a single base mismatch at the polymorphic site and the other of which exhibits perfect complementarity to a distal site. The single-base mismatch prevents amplification and no detectable product is formed. The method works best when the mismatch is included in the 3'-most position of the oligonucleotide aligned with the polymorphism because this position is most destabilizing to elongation from the primer (see, e.g., WO 93/22456).

[0035] With the addition of such analogs as locked nucleic acids (LNAs), the size of primers and probes can be reduced to as few as 8 bases. LNAs are a novel class of bicyclic DNA analogs in which the 2' and 4' positions in the furanose ring are joined via an O-methylene (oxy-LNA), S-methylene (thio-LNA), or amino methylene (amino-LNA) moiety. Common to all of these LNA variants is an affinity toward complementary nucleic acids, which is by far the highest reported for a DNA analog. For example, particular all oxy-LNA nonamers have been shown to have melting temperatures of 64EC and 74EC when in complex with complementary DNA or RNA, respectively, as opposed to 28EC for both DNA and RNA for the corresponding DNA nonamer. Substantial increases in T.sub.m are also obtained when LNA monomers are used in combination with standard DNA or RNA monomers. For primers and probes, depending on where the LNA monomers are included (e.g., the 3' end, the 5' end, or in the middle), the T.sub.m could be increased considerably.

[0036] In another aspect, arrays of oligonucleotide probes that are complementary to target nucleic acid sequence segments from an individual can be used to identify polymorphisms in a TCF7L2 nucleic acid. For example, in one aspect, an oligonucleotide array can be used. Oligonucleotide arrays typically comprise a plurality of different oligonucleotide probes that are coupled to a surface of a substrate in different known locations. These oligonucleotide arrays, also described as "Genechips.TM.," have been generally described in the art, for example, U.S. Pat. No. 5,143,854 and PCT patent publication Nos. WO 90/15070 and 92/10092. These arrays can generally be produced using mechanical synthesis methods or light directed synthesis methods that incorporate a combination of photolithographic methods and solid phase oligonucleotide synthesis methods. See Fodor et al., Science 251:767-777 (1991), Pirrung et al., U.S. Pat. No. 5,143,854 (see also PCT Application No. WO 90/15070) and Fodor et al., PCT Publication No. WO 92/10092 and U.S. Pat. No. 5,424,186, the entire teachings are incorporated by reference herein. Techniques for the synthesis of these arrays using mechanical synthesis methods are described in, e.g., U.S. Pat. No. 5,384,261; the entire teachings are incorporated by reference herein. In another example, linear arrays can be utilized.

[0037] Once an oligonucleotide array is prepared, a nucleic acid of interest is hybridized with the array and scanned for polymorphisms. Hybridization and scanning are generally carried out by methods described herein and also in, e.g., published PCT Application Nos. WO 92/10092 and WO 95/11995, and U.S. Pat. No. 5,424,186, the entire teachings are incorporated by reference herein. In brief, a target nucleic acid sequence that includes one or more previously identified polymorphic markers is amplified by well-known amplification techniques, e.g., PCR. Typically, this involves the use of primer sequences that are complementary to the two strands of the target sequence both upstream and downstream from the polymorphism. Asymmetric PCR techniques may also be used. Amplified target, generally incorporating a label, is then hybridized with the array under appropriate conditions. Upon completion of hybridization and washing of the array, the array is scanned to determine the position on the array to which the target sequence hybridizes. The hybridization data obtained from the scan is typically in the form of fluorescence intensities as a function of location on the array.

[0038] Although primarily described in terms of a single detection block, e.g., for detecting a single polymorphism, arrays can include multiple detection blocks, and thus be capable of analyzing multiple, specific polymorphisms. In alternative aspects, it will generally be understood that detection blocks may be grouped within a single array or in multiple, separate arrays so that varying, optimal conditions may be used during the hybridization of the target to the array. For example, it may often be desirable to provide for the detection of those polymorphisms that fall within G-C rich stretches of a genomic sequence, separately from those falling in A-T rich segments. This allows for the separate optimization of hybridization conditions for each situation.

[0039] Additional uses of oligonucleotide arrays for polymorphism detection can be found, for example, in U.S. Pat. Nos. 5,858,659 and 5,837,832, the entire teachings of which are incorporated by reference herein. Other methods of nucleic acid analysis can be used to detect polymorphisms in a type II diabetes gene or variants encoded by a type II diabetes gene. Representative methods include direct manual sequencing (Church and Gilbert, Proc. Natl. Acad. Sci. USA 81:1991-1995 (1988); Sanger, F. et al., Proc. Natl. Acad. Sci. USA 74:5463-5467 (1977); Beavis et al., U.S. Pat. No. 5,288,644); automated fluorescent sequencing; single-stranded conformation polymorphism assays (SSCP); clamped denaturing gel electrophoresis (CDGE); denaturing gradient gel electrophoresis (DGGE) (Sheffield, V. C. et al., Proc. Natl. Acad. Sci. USA 86:232-236 (1989)), mobility shift analysis (Orita, M. et al., Proc. Natl. Acad. Sci. USA 86:2766-2770 (1989)), restriction enzyme analysis (Flavell et al., Cell 15:25 (1978); Geever, et al., Proc. Natl. Acad. Sci. USA 78:5081 (1981)); heteroduplex analysis; chemical mismatch cleavage (CMC) (Cotton et al., Proc. Natl. Acad. Sci. USA 85:4397-4401 (1985)); RNase protection assays (Myers, R. M. et al., Science 230:1242 (1985)); use of polypeptides which recognize nucleotide mismatches, such as E. coli mutS protein; allele-specific PCR, for example.

[0040] In one aspect of the invention, diagnosis of a susceptibility to type II diabetes, or of a decreased susceptibility to type II diabetes (or indicative of a protective allele against type II diabetes), can also be made by expression analysis by quantitative PCR (kinetic thermal cycling). This technique, utilizing TaqMan.RTM. assays, can assess the presence of an alteration in the expression or composition of the polypeptide encoded by a TCF7L2 nucleic acid or splicing variants encoded by a TCF7L2 nucleic acid. TaqMan.RTM. probes can also be used to allow the identification of polymorphisms and whether a patient is homozygous or heterozygous. Further, the expression of the variants can be quantified as physically or functionally different.

[0041] In another aspect of the invention, diagnosis of a susceptibility to type II diabetes or of a decreased susceptibility to type II diabetes (or indicative of a protective allele against type II diabetes), can be made by examining expression and/or composition of a TCF7L2 polypeptide, by a variety of methods, including enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence. A test sample from an individual is assessed for the presence of an alteration in the expression and/or an alteration in composition of the polypeptide encoded by a TCF7L2 nucleic acid, or for the presence of a particular variant encoded by a TCF7L2 nucleic acid. An alteration in expression of a polypeptide encoded by a TCF7L2 nucleic acid can be, for example, an alteration in the quantitative polypeptide expression (i.e., the amount of polypeptide produced); an alteration in the composition of a polypeptide encoded by a TCF7L2 nucleic acid is an alteration in the qualitative polypeptide expression (e.g., expression of an altered TCF7L2 polypeptide or of a different splicing variant). In a preferred aspect, diagnosis of a susceptibility to type II diabetes or of a decreased susceptibility to type II diabetes can be made by detecting a particular splicing variant encoded by that TCF7L2 nucleic acid, or a particular pattern of splicing variants.

[0042] Both such alterations (quantitative and qualitative) can also be present. The term "alteration" in the polypeptide expression or composition, as used herein, refers to an alteration in expression or composition in a test sample, as compared with the expression or composition of polypeptide by a TCF7L2 nucleic acid in a control sample. A control sample is a sample that corresponds to the test sample (e.g., is from the same type of cells), and is from an individual who is not affected by a susceptibility to type II diabetes. An alteration in the expression or composition of the polypeptide in the test sample, as compared with the control sample, is indicative of a susceptibility to type II diabetes. Similarly, the presence of one or more different splicing variants in the test sample, or the presence of significantly different amounts of different splicing variants in the test sample, as compared with the control sample, is indicative of a susceptibility to type II diabetes. Various means of examining expression or composition of the polypeptide encoded by a TCF7L2 nucleic acid can be used, including: spectroscopy, colorimetry, electrophoresis, isoelectric focusing, and immunoassays (e.g., David et al., U.S. Pat. No. 4,376,110) such as immunoblotting (see also Current Protocols in Molecular Biology, particularly Chapter 10). For example, in one aspect, an antibody capable of binding to the polypeptide (e.g., as described above), preferably an antibody with a detectable label, can be used. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab').sub.2) can be used. The term "labeled", with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently labeled secondary antibody and end-labeling a DNA probe with biotin such that it can be detected with fluorescently labeled streptavidin.

[0043] Western blotting analysis, using an antibody as described above that specifically binds to a polypeptide encoded by an altered TCF7L2 nucleic acid or an antibody that specifically binds to a polypeptide encoded by a non-altered nucleic acid, or an antibody that specifically binds to a particular splicing variant encoded by a nucleic acid, can be used to identify the presence in a test sample of a particular splicing variant or of a polypeptide encoded by a polymorphic or altered TCF7L2 nucleic acid, or the absence in a test sample of a particular splicing variant or of a polypeptide encoded by a non-polymorphic or non-altered nucleic acid. The presence of a polypeptide encoded by a polymorphic or altered nucleic acid, or the absence of a polypeptide encoded by a non-polymorphic or non-altered nucleic acid, is diagnostic for a susceptibility to type II diabetes, as is the presence (or absence) of particular splicing variants encoded by the TCF7L2 nucleic acid.

[0044] In one aspect of this method, the level or amount of polypeptide encoded by a TCF7L2 nucleic acid in a test sample is compared with the level or amount of the polypeptide encoded by the TCF7L2 in a control sample. A level or amount of the polypeptide in the test sample that is higher or lower than the level or amount of the polypeptide in the control sample, such that the difference is statistically significant, is indicative of an alteration in the expression of the polypeptide encoded by the TCF7L2 nucleic acid, and is diagnostic for a susceptibility to type II diabetes. Alternatively, the composition of the polypeptide encoded by a TCF7L2 nucleic acid in a test sample is compared with the composition of the polypeptide encoded by the TCF7L2 nucleic acid in a control sample (e.g., the presence of different splicing variants). A difference in the composition of the polypeptide in the test sample, as compared with the composition of the polypeptide in the control sample, is diagnostic for a susceptibility to type II diabetes. In another aspect, both the level or amount and the composition of the polypeptide can be assessed in the test sample and in the control sample. A difference in the amount or level of the polypeptide in the test sample, compared to the control sample; a difference in composition in the test sample, compared to the control sample; or both a difference in the amount or level, and a difference in the composition, is indicative of a susceptibility to type II diabetes.

[0045] The same methods can conversely be used to identify the presence of a difference when compared to a control (disease) sample. A difference from the control is indicative of a decreased susceptibility to diabetes, and/or is indicative of a protective allele against type II diabetes.

Assessment for Markers and Haplotypes

[0046] Populations of individuals exhibiting genetic diversity do not have identical genomes. Rather, the genome exhibits sequence variability between individuals at many locations in the genome; in other words, there are many polymorphic sites in a population. In some instances, reference is made to different alleles at a polymorphic site without choosing a reference allele. Alternatively, a reference sequence can be referred to for a particular polymorphic site. The reference allele is sometimes referred to as the "wild-type" allele and it usually is chosen as either the first sequenced allele or as the allele from a "non-affected" individual (e.g., an individual that does not display a disease or abnormal phenotype). Alleles that differ from the reference are referred to as "variant" alleles.

[0047] A "marker", as described herein, refers to a genomic sequence characteristic of a particular variant allele (i.e. polymorphic site). The marker can comprise any allele of any variant type found in the genome, including SNPs, microsatellites, insertions, deletions, duplications and translocations.

[0048] SNP nomenclature as reported herein refers to the official Reference SNP (rs) ID identification tag as assigned to each unique SNP by the National Center for Biotechnological Information (NCBI).

[0049] A "haplotype," as described herein, refers to a segment of a genomic DNA strand that is characterized by a specific combination of genetic markers ("alleles") arranged along the segment. In a certain embodiment, the haplotype can comprise one or more alleles, two or more alleles, three or more alleles, four or more alleles, or five or more alleles. The genetic markers are particular "alleles" at "polymorphic sites" associated with the exon 4 LD block of TCF7L2. As used herein, "exon 4 LD block of TCF7L2" refers to the LD block on Chr10q whithin which association of variants to type II diabetes is observed. NCBI Build 34 position of this LD block is from 114,413,084-114,488,013 bp. The term "susceptibility", as described herein, encompasses both increased susceptibility and decreased susceptibility. Thus, particular markers and/or haplotypes of the invention may be characteristic of increased susceptility of type II diabetes, as characterized by a relative risk of greater than one. Markers and/or haplotypes that confer increased susceptibility of type II diabetes are furthermore considered to be "at-risk", as they confer an increased risk of disease. Alternatively, the markers and/or haplotypes of the invention are characteristic of decreased susceptibility of type II diabetes, as characterized by a relative risk of less than one.

[0050] A nucleotide position at which more than one sequence is possible in a population (either a natural population or a synthetic population, e.g., a library of synthetic molecules) is referred to herein as a "polymorphic site". Where a polymorphic site is a single nucleotide in length, the site is referred to as a single nucleotide polymorphism ("SNP"). For example, if at a particular chromosomal location, one member of a population has an adenine and another member of the population has a thymine at the same position, then this position is a polymorphic site, and, more specifically, the polymorphic site is a SNP. Alleles for SNP markers as referred to herein refer to the bases A, C, G or T as they occur at the polymorphic site in the SNP assay employed. The person skilled in the art will realise that by assaying or reading the opposite strand, the complementary allele can in each case be measured. Thus, for a polymorphic site containing an A/G polymorphism, the assay employed may either measure the percentage or ratio of the two bases possible, i.e. A and G. Alternatively, by designing an assay that determines the opposite strand on the DNA template, the percentage or ratio of the complementary bases T/C can be measured.

[0051] Quantitatively (for example, in terms of relative risk), identical results would be obtained from measurement of either DNA strand (+ strand or - strand). Polymorphic sites can allow for differences in sequences based on substitutions, insertions or deletions. For example, a polymorphic microsatellite has multiple small repeats of bases (such as CA repeats) at a particular site in which the number of repeat lengths varies in the general population. Each version of the sequence with respect to the polymorphic site is referred to herein as an "allele" of the polymorphic site. Thus, in the previous example, the SNP allows for both an adenine allele and a thymine allele. SNPs and microsatellite markers located within the exon 4 LD block of TCF7L2 found to be associated with type II diabes are described in Tables 2-7.

[0052] Typically, a reference sequence is referred to for a particular sequence. Alleles that differ from the reference are referred to as "variant" alleles. For example, the reference genomic DNA sequence between positions 114413084 and 114488013 of NCBI Build 34 (equals 74929 bp, or 74.9 kb), which refers to the location within Chromosome 10, is described herein as SEQ ID NO:1. A variant sequence, as used herein, refers to a sequence that differs from SEQ ID NO:1 but is otherwise substantially similar. The genetic markers that make up the haplotypes associated with the exon 4 LD block of TCF7L2 are variants. Additional variants can include changes that affect a polypeptide, e.g., a polypeptide encoded by the TCF7L2 gene. These sequence differences, when compared to a reference nucleotide sequence, can include the insertion or deletion of a single nucleotide, or of more than one nucleotide. Such sequence differences may result in a frame shift; the change of at least one nucleotide, may result in a change in the encoded amino acid; the change of at least one nucleotide, may result in the generation of a premature stop codon; the deletion of several nucleotides, may result in a deletion of one or more amino acids encoded by the nucleotides; the insertion of one or several nucleotides, such as by unequal recombination or gene conversion, may result in an interruption of the coding sequence of a reading frame; duplication of all or a part of a sequence; transposition; or a rearrangement of a nucleotide sequence, as described in detail herein. Such sequence changes alter the polypeptide encoded by the nucleic acid. For example, if the change in the nucleic acid sequence causes a frame shift, the frame shift can result in a change in the encoded amino acids, and/or can result in the generation of a premature stop codon, causing generation of a truncated polypeptide. Alternatively, a polymorphism associated with type II diabetes or a susceptibility to type II diabetes can be a synonymous change in one or more nucleotides (i.e., a change that does not result in a change in the amino acid sequence). Such a polymorphism can, for example, alter splice sites, affect the stability or transport of mRNA, or otherwise affect the transcription or translation of an encoded polypeptide. It can also alter DNA to increase the possibility that structural changes, such as amplifications or deletions, occur at the somatic level in tumors. The polypeptide encoded by the reference nucleotide sequence is the "reference" polypeptide with a particular reference amino acid sequence, and polypeptides encoded by variant alleles are referred to as "variant" polypeptides with variant amino acid sequences.

[0053] A polymorphic microsatellite has multiple small repeats of bases that are 2-8 nucleotides in length (such as CA repeats) at a particular site, in which the number of repeat lengths varies in the general population. An indel is a common form of polymorphism comprising a small insertion or deletion that is typically only a few nucleotides long.

[0054] The haplotypes described herein are a combination of various genetic markers, e.g., SNPs and microsatellites, having particular alleles at polymorphic sites. The haplotypes can comprise a combination of various genetic markers, therefore, detecting haplotypes can be accomplished by methods known in the art for detecting sequences at polymorphic sites. For example, standard techniques for genotyping for the presence of SNPs and/or microsatellite markers can be used, such as fluorescence-based techniques (Chen, X. et al., Genome Res. 9(5): 492-98 (1999)), PCR, LCR, Nested PCR and other techniques for nucleic acid amplification. These markers and SNPs can be identified in at-risk haplotypes. Certain methods of identifying relevant markers and SNPs include the use of linkage disequilibrium (LD) and/or LOD scores.

[0055] In certain methods described herein, an individual who is at-risk for type II diabetes is an individual in whom an at-risk marker or haplotype is identified. In one aspect, the at-risk marker or haplotype is one that confers a significant increased risk (or susceptility) of type II diabetes. In one embodiment, significance associated with a marker or haplotype is measured by a relative risk. In a further embodiment, the significance is measured by a percentage. In one embodiment, a significant increased risk is measured as a relative risk of at least about 1.2, including but not limited to: 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8 and 1.9. In a further embodiment, a relative risk of at least 1.2 is significant. In a further embodiment, a relative risk of at least about 1.5 is significant. In a further embodiment, a significant increase in risk is at least about 1.7 is significant. In a further embodiment, a significant increase in risk is at least about 20%, including but not limited to about 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% and 98%. In a further embodiment, a significant increase in risk is at least about 50%.

[0056] In other embodiments of the invention, the marker or haplotype confers decreased risk (decreased susceptibility) of type II diabetes. In one embodiment, significant decreased risk is measured as a relative risk at less than 0.9, including but not limited to 0.9, 0.8, 0.7, 0.6, 0.5, and 0.4. In a further embodiment, significant relative risk is less than 0.7. In another embodiment, the decreased in risk (or susceptibility) is at least about 20%, including but not limited to about 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% and 98%. In a further embodiment, a significant decrease in risk is at least about 30%.

[0057] Thus, the term "susceptibility to type II diabetes" indicates either an increased risk or susceptility or a decreased risk or susceptibility of type II diabetes, by an amount that is significant, when a certain allele, marker, SNP or haplotype is present; significance is measured as indicated above. The terms "decreased risk", "decreased susceptibility" and "protection against," as used herein, indicate that the relative risk is decreased accordingly when a certain other allele, marker, SNP, and/or a certain other haplotype, is present. It is understood however, that identifying whether an increased or decreased risk is medically significant may also depend on a variety of factors, including the specific disease, the marker or haplotype, and often, environmental factors.

[0058] An at-risk marker or haplotype in, or comprising portions of, the TCF7L2 gene, is one where the marker or haplotype is more frequently present in an individual at risk for type II diabetes (affected), compared to the frequency of its presence in a healthy individual (control), and wherein the presence of the marker or haplotype is indicative of susceptibility to type II diabetes. As an example of a simple test for correlation would be a Fisher-exact test on a two by two table. Given a cohort of chromosomes the two by two table is constructed out of the number of chromosomes that include both of the markers or haplotypes, one of the markers or haplotypes but not the other and neither of the markers or haplotypes.

[0059] In certain aspects of the invention, at-risk marker or haplotype is an at-risk marker or haplotype within or near TCF7L2 that significantly correlates with type II diabetes. In other aspects, an at-risk marker or haplotype comprises an at-risk marker or haplotype within or near TCF7L2 that significantly correlates with susceptibility to type II diabetes. In particular embodiments of the invention, the marker or haplotype is associated with the exon 4 LD block of TCF7L2, as described herein.

[0060] Standard techniques for genotyping for the presence of SNPs and/or microsatellite markers can be used, such as fluorescent based techniques (Chen, et al., Genome Res. 9, 492 (1999)), PCR, LCR, Nested PCR and other techniques for nucleic acid amplification. In a preferred aspect, the method comprises assessing in an individual the presence or frequency of SNPs and/or microsatellites in, comprising portions of, the TCF7L2 gene, wherein an excess or higher frequency of the SNPs and/or microsatellites compared to a healthy control individual is indicative that the individual is susceptible to type II diabetes. Such SNPs and markers can form haplotypes that can be used as screening tools. These markers and SNPs can be identified in at-risk haploptypes. For example, an at-risk haplotype can include microsatellite markers and/or SNPs such as marker DG10S478 and/or SNP rs12255372, rs7895340, rs11196205, rs7901695, rs7903146, rs12243326 or rs4506565. The presence of an at-risk haplotype is indicative of increased susceptibility to type II diabetes, and therefore is indicative of an individual who falls within a target population for the treatment methods described herein.

Identification of Susceptibility Variants

[0061] The frequencies of haplotypes in the patient and the control groups can be estimated using an expectation-maximization algorithm (Dempster A. et al., J. R. Stat. Soc. B, 39:1-38 (1977)). An implementation of this algorithm that can handle missing genotypes and uncertainty with the phase can be used. Under the null hypothesis, the patients and the controls are assumed to have identical frequencies. Using a likelihood approach, an alternative hypothesis is tested, where a candidate at-risk-haplotype, which can include the markers described herein, is allowed to have a higher frequency in patients than controls, while the ratios of the frequencies of other haplotypes are assumed to be the same in both groups. Likelihoods are maximized separately under both hypotheses and a corresponding 1-df likelihood ratio statistic is used to evaluate the statistical significance.

[0062] To look for at-risk and protective markers and haplotypes within a linkage region, for example, association of all possible combinations of genotyped markers is studied, provided those markers span a practical region. The combined patient and control groups can be randomly divided into two sets, equal in size to the original group of patients and controls. The marker and haplotype analysis is then repeated and the most significant p-value registered is determined. This randomization scheme can be repeated, for example, over 100 times to construct an empirical distribution of p-values. In a preferred embodiment, a p-value of <0.05 is indicative of an significant marker and/or haplotype association.

[0063] A detailed discussion of haplotype analysis follows.

Haplotype Analysis

[0064] One general approach to haplotype analysis involves using likelihood-based inference applied to NEsted MOdels (Gretarsdottir S., et al., Nat. Genet. 35:131-38 (2003)). The method is implemented in the program NEMO, which allows for many polymorphic markers, SNPs and microsatellites. The method and software are specifically designed for case-control studies where the purpose is to identify haplotype groups that confer different risks. It is also a tool for studying LD structures. In NEMO, maximum likelihood estimates, likelihood ratios and p-values are calculated directly, with the aid of the EM algorithm, for the observed data treating it as a missing-data problem.

Measuring Information

[0065] Even though likelihood ratio tests based on likelihoods computed directly for the observed data, which have captured the information loss due to uncertainty in phase and missing genotypes, can be relied on to give valid p-values, it would still be of interest to know how much information had been lost due to the information being incomplete. The information measure for haplotype analysis is described in Nicolae and Kong (Technical Report 537, Department of Statistics, University of Statistics, University of Chicago; Biometrics, 60(2):368-75 (2004)) as a natural extension of information measures defined for linkage analysis, and is implemented in NEMO.

Statistical Analysis

[0066] For single marker association to the disease, the Fisher exact test can be used to calculate two-sided p-values for each individual allele. All p-values are presented unadjusted for multiple comparisons unless specifically indicated. The presented frequencies (for microsatellites, SNPs and haplotypes) are allelic frequencies as opposed to carrier frequencies. To minimize any bias due the relatedness of the patients who were recruited as families for the linkage analysis, first and second-degree relatives can be eliminated from the patient list. Furthermore, the test can be repeated for association correcting for any remaining relatedness among the patients, by extending a variance adjustment procedure described in Risch, N. & Teng, J. (Genome Res., 8:1273-1288 (1998)), DNA pooling (ibid) for sibships so that it can be applied to general familial relationships, and present both adjusted and unadjusted p-values for comparison. The differences are in general very small as expected. To assess the significance of single-marker association corrected for multiple testing we can carry out a randomization test using the same genotype data. Cohorts of patients and controls can be randomized and the association analysis redone multiple times (e.g., up to 500,000 times) and the p-value is the fraction of replications that produced a p-value for some marker allele that is lower than or equal to the p-value we observed using the original patient and control cohorts.

[0067] For both single-marker and haplotype analyses, relative risk (RR) and the population attributable risk (PAR) can be calculated assuming a multiplicative model (haplotype relative risk model) (Terwilliger, J. D. & Ott, J., Hum. Hered. 42:337-46 (1992) and Falk, C. T. & Rubinstein, P, Ann. Hum. Genet. 51 (Pt 3):227-33 (1987)), i.e., that the risks of the two alleles/haplotypes a person carries multiply. For example, if RR is the risk of A relative to a, then the risk of a person homozygote AA will be RR times that of a heterozygote Aa and RR.sup.2 times that of a homozygote aa. The multiplicative model has a nice property that simplifies analysis and computations--haplotypes are independent, i.e., in Hardy-Weinberg equilibrium, within the affected population as well as within the control population. As a consequence, haplotype counts of the affecteds and controls each have multinomial distributions, but with different haplotype frequencies under the alternative hypothesis. Specifically, for two haplotypes, h.sub.i and h.sub.j, risk(h.sub.i)/risk(h.sub.j)=(f.sub.i/p.sub.i)/(f.sub.j/p.sub.j), where f and p denote, respectively, frequencies in the affected population and in the control population. While there is some power loss if the true model is not multiplicative, the loss tends to be mild except for extreme cases. Most importantly, p-values are always valid since they are computed with respect to null hypothesis.

Linkage Disequilibrium Using NEMO

[0068] LD between pairs of markers can be calculated using the standard definition of D' and R.sup.2 (Lewontin, R., Genetics 49:49-67 (1964); Hill, W. G. & Robertson, A. Theor. Appl. Genet. 22:226-231 (1968)). Using NEMO, frequencies of the two marker allele combinations are estimated by maximum likelihood and deviation from linkage equilibrium is evaluated by a likelihood ratio test. The definitions of D' and R.sup.2 are extended to include microsatellites by averaging over the values for all possible allele combination of the two markers weighted by the marginal allele probabilities. When plotting all marker combination to elucidate the LD structure in a particular region, we plot D' in the upper left corner and the p-value in the lower right corner. In the LD plots the markers can be plotted equidistant rather than according to their physical location, if desired.

Statistical Methods for Linkage Analysis

[0069] Multipoint, affected-only allele-sharing methods can be used in the analyses to assess evidence for linkage. Results, both the LOD-score and the non-parametric linkage (NPL) score, can be obtained using the program Allegro (Gudbjartsson et al., Nat. Genet. 25:12-3 (2000)). Our baseline linkage analysis uses the S.sub.pairs scoring function (Whittemore, A. S., Halpern, J. Biometrics 50:118-27 (1994); Kruglyak L. et al., Am. J. Hum. Genet. 58:1347-63 (1996)), the exponential allele-sharing model (Kong, A. and Cox, N. J., Am. J. Hum. Genet. 61:1179-88 (1997)) and a family weighting scheme that is halfway, on the log-scale, between weighting each affected pair equally and weighting each family equally. The information measure that we use is part of the Allegro program output and the information value equals zero if the marker genotypes are completely uninformative and equals one if the genotypes determine the exact amount of allele sharing by decent among the affected relatives (Gretarsdottir et al., Am. J. Hum. Genet., 70:593-603 (2002)). The P-values were computed two different ways and the less significant result is reported here. The first P-value can be computed on the basis of large sample theory; the distribution of Z.sub.lr=.quadrature.(2[log.sub.c(10)LOD]) approximates a standard normal variable under the null hypothesis of no linkage (Kong, A. and Cox, N. J., Am. J. Hum. Genet. 61:1179-88 (1997)). The second P-value can be calculated by comparing the observed LOD-score with its complete data sampling distribution under the null hypothesis (e.g., Gudbjartsson et al., Nat. Genet. 25:12-3 (2000)). When the data consist of more than a few families, these two P-values tend to be very similar.

Haplotypes and "Haplotype Block" Definition of a Susceptibility Locus

[0070] In certain embodiments, marker and haplotype analysis involves defining a candidate susceptibility locus based on "haplotype blocks" (also called "LD blocks"). It has been reported that portions of the human genome can be broken into series of discrete haplotype blocks containing a few common haplotypes; for these blocks, linkage disequilibrium data provided little evidence indicating recombination (see, e.g., Wall., J. D. and Pritchard, J. K., Nature Reviews Genetics 4:587-597 (2003); Daly, M. et al., Nature Genet. 29:229-232 (2001); Gabriel, S. B. et al., Science 296:2225-2229 (2002); Patil, N. et al., Science 294:1719-1723 (2001); Dawson, E. et al., Nature 418:544-548 (2002); Phillips, M. S. et al., Nature Genet. 33:382-387 (2003)).

[0071] There are two main methods for defining these haplotype blocks: blocks can be defined, as regions of DNA that have limited haplotype diversity (see, e.g., Daly, M. et al., Nature Genet. 29:229-232 (2001); Patil, N. et at, Science 294:1719-1723 (2001); Dawson. E. et al., Nature 418:544-548 (2002); Zhang, K. et al., Proc. Natl. Acad. Sci. USA 99:7335-7339 (2002)), or as regions between transition zones having extensive historical recombination, identified using linkage disequilibrium (see, e.g., Gabriel, S. B. et al., Science 296:2225-2229 (2002); Phillips, M. S. et al., Nature Genet. 33:382-387 (2003); Wang, N. et al., Am. J. Hum. Genet. 71:1227-1234 (2002); Stumpf, M. P., and Goldstein, D. B., Curr. Biol. 13:1-8 (2003)). As used herein, the terms "haplotype block" or "LD block" includes blocks defined by either characteristic.

[0072] Representative methods for identification of haplotype blocks are set forth, for example, in U.S. Published Patent Application Nos. 20030099964, 20030170665, 20040023237 and 20040146870. Haplotype blocks can be used readily to map associations between phenotype and haplotype status. The main haplotypes can be identified in each haplotype block, and then a set of "tagging" SNPs or markers (the smallest set of SNPs or markers needed to distinguish among the haplotypes) can then be identified. These tagging SNPs or markers can then be used in assessment of samples from groups of individuals, in order to identify association between phenotype and haplotype. If desired, neighboring haplotype blocks can be assessed concurrently, as there may also exist linkage disequilibrium among the haplotype blocks.

Haplotypes and Diagnostics

[0073] As described herein, certain markers and haplotypes comprising such markers are found to be useful for determination of susceptibility to type II diabetes--i.e., they are found to be useful for diagnosing a susceptibility to type II diabetes. Particular markers and haplotypes are found more frequently in individuals with type II diabetes than in individuals without type II diabetes. Therefore, these markers and haplotypes have predictive value for detecting type II diabetes, or a susceptibility to type II diabetes, in an individual. Haplotype blocks (i.e. the exon 4 LD block of TCF7L2) comprising certain tagging markers, can be found more frequently in individuals with type II diabetes than in individuals without type II diabetes. Therefore, these "at-risk" tagging markers within the haplotype block also have predictive value for detecting type II diabes, or a susceptibility to type II diabetes, in an individual. "At-risk" tagging markers within the haplotype or LD blocks can also include other markers that distinguish among the haplotypes, as these similarly have predictive value for detecting type II diabetes or a susceptibility to type II diabetes. As a consequence of the haplotype block structure of the human genome, a large number of markers or other variants and/or haplotypes comprising such markers or variants in association with the haplotype block (LD block) may be found to be associated with a certain trait and/or phenotype. Thus, it is possible that markers and/or haplotypes residing within the exon 4 LD block of TCF7L2 as defined herein or in strong LD (characterized by r.sup.2 greater than 0.2) with the exon 4 LD block of TCF7L2 are associated with type II diabetes (i.e. they confer increased or decreased susceptibility of type II diabetes). This includes markers that are described herein (Table 6), but may also include other markers that are in strong LD (characterized by r.sup.2 greater than 0.2) with one or more of the markers listed in Table 6. The identification of such additional variants can be achieved by methods well known to those skilled in the art, for example by DNA sequencing of the LD block A genomic region in particular group of individuals, and the present invention also encompasses such additional variants.

[0074] As described herein, certain markers within the exon 4 LD block of TCF7L2 are found in decreased frequency in individuals with type II diabetes, and haplotypes comprising two or more of those markers listed in Tables 13, 20 and 21 are also found to be present at decreased frequency in individuals with type II diabetes. These markers and haplotypes are thus protective for type II diabetes, i.e. they confer a decreased risk of individuals carrying these markers and/or haplotypes developing type II diabetes.

[0075] The haplotypes and markers described herein are, in some cases, a combination of various genetic markers, e.g., SNPs and microsatellites. Therefore, detecting haplotypes can be accomplished by methods known in the art and/or described herein for detecting sequences at polymorphic sites. Furthermore, correlation between certain haplotypes or sets of markers and disease phenotype can be verified using standard techniques. A representative example of a simple test for correlation would be a Fisher-exact test on a two by two table.

[0076] In specific embodiments, a marker or haplotype associated with the exon 4 LD block of TCF7L2 is one in which the marker or haplotype is more frequently present in an individual at risk for type II diabetes (affected), compared to the frequency of its presence in a healthy individual (control), wherein the presence of the marker or haplotype is indicative of type II diabetes or a susceptibility to type II diabetes. In other embodiments, at-risk tagging markers in linkage disequilibrium with one or more markers associated with the exon 4 LD block of TCF7L2, are tagging markers that are more frequently present in an individual at risk for type II diabetes (affected), compared to the frequency of their presence in a healthy individual (control), wherein the presence of the tagging markers is indicative of increased susceptibility to type II diabetes. In a further embodiment, at-risk markers in linkage disequilibrium with one or more markers associated with the exon 4 LD block of TCF7L2, are markers that are more frequently present in an individual at risk for type II diabetes, compared to the frequency of their presence in a healthy individual (control), wherein the presence of the markers is indicative of susceptibility to type II diabetes.

[0077] In certain methods described herein, an individual who is at risk for type II diabetes is an individual in whom an at-risk marker or haplotype is identified. In one embodiment, the strength of the association of a marker or haplotype is measured by relative risk (RR). RR is the ratio of the incidence of the condition among subjects who carry one copy of the marker or haplotype to the incidence of the condition among subjects who do not carry the marker or haplotype. This ratio is equivalent to the ratio of the incidence of the condition among subjects who carry two copies of the marker or haplotype to the incidence of the condition among subjects who carry one copy of the marker or haplotype. In one embodiment, the marker or haplotype has a relative risk of at least 1.2. In other embodiments, the marker or haplotype has a relative risk of at least 1.3, at least 1.4, at least 1.5, at least 2.0, at least 2.5, at least 3.0, at least 3.5, at least 4.0, or at least 5.0.

[0078] In other methods of the invention, an individual who has a decreased risk (or deceased susceptibility) of type II diabetes is an individual in whom a protective marker or haplotype is identified. In such cases, the relative risk (RR) is less than unity. In one embodiment, the marker or haplotype has a relative risk of less than 0.9. In another embodiments, the marker or haplotype has a relative risk of less than 0.8, less than 0.7, less than 0.6, less than 0.5 or less than 0.4.

Utility of Genetic Testing

[0079] The knowledge about a genetic variant that confers a risk of developing type II diabetes offers the opportunity to apply a genetic-test to distinguish between individuals with increased risk of developing the disease (i.e. carriers of the at-risk variant) and those with decreased risk of developing the disease (i.e. carriers of the protective variant). The core values of genetic testing, for individuals belonging to both of the above mentioned groups, are the possibilities of being able to diagnose the disease at an early stage and provide information to the clinician about prognosis/aggressiveness of the disease in order to be able to apply the most appropriate treatment. For example, the application of a genetic test for type II diabetes can provide an opportunity for the detection of the disease at an earlier stage which may lead to the application of therapeutic measures at an earlier stage, and thus can minimize the deleterious effects of the symptoms and serious health consequences conferred by type II diabetes.

Methods of Therapy

[0080] In another embodiment of the invention, methods can be employed for the treatment of type II diabetes. The term "treatment" as used herein, refers not only to ameliorating symptoms associated with type II diabetes, but also preventing or delaying the onset of type II diabetes; lessening the severity or frequency of symptoms of type II diabetes; and/or also lessening the need for concomitant therapy with other drugs that ameliorate symptoms associated with type II diabetes. In one aspect, the individual to be treated is an individual who is susceptible (at an increased risk) for type II diabetes (e.g., an individual having the presence of an allele other than a 0 allele in marker DG10S478; the presence of a T allele in SNP rs12255372; the presence of an A allele in SNP rs7895340; the presence of a C allele in SNP rs11196205; the presence of a C allele in SNP rs7901695; the presence of a T allele in SNP rs7903146; the presence of a C allele in SNP rs12243326; or the presence of an T allele in SNP rs4506565.

[0081] In additional embodiments of the invention, methods can be employed for the treatment of other diseases or conditions associated with TCF7L2. A TCF7L2 therapeutic agent can be used both in methods of treatment of type II diabetes, as well as in methods of treatment of other diseases or conditions associated with TCF7L2.

[0082] The methods of treatment (prophylactic and/or therapeutic) utilize a TCF7L2 therapeutic agent. A "TCF7L2 therapeutic agent" is an agent that alters (e.g., enhances or inhibits) polypeptide activity and/or nucleic acid expression of TCF7L2, either directly or indirectly (e.g., through altering activity or nucleic acid expression of a protein that interacts with TCF7L2, such as a protein in the Wnt signaling pathway or in the cadherin pathway (e.g., beta-catenin)). In certain embodiments, the TCF7L2 therapeutic agent alters activity and/or nucleic acid expression of TCF7L2.

[0083] TCF7L2 therapeutic agents can alter TCF7L2 polypeptide activity or nucleic acid expression by a variety of means, such as, for example, by providing additional TCF7L2 polypeptide or by upregulating the transcription or translation of the TCF7L2 nucleic acid; by altering posttranslational processing of the TCF7L2 polypeptide; by altering transcription of TCF7L2 splicing variants; or by interfering with TCF7L2 polypeptide activity (e.g., by binding to a TCF7L2 polypeptide), or by binding to another polypeptide that interacts with TCF7L2, by altering (e.g., downregulating) the expression, transcription or translation of a TCF7L2 nucleic acid, or by altering (e.g., agonizing or antagonizing) activity.

[0084] Representative TCF7L2 therapeutic agents include the following: nucleic acids or fragments or derivatives thereof described herein, particularly nucleotides encoding the polypeptides described herein and vectors comprising such nucleic acids (e.g., a gene, cDNA, and/or mRNA, such as a nucleic acid encoding a TCF7L2 polypeptide or active fragment or derivative thereof, or an oligonucleotide; or a complement thereof, or fragments or derivatives thereof, and/or other splicing variants encoded by a Type II diabetes nucleic acid, or fragments or derivatives thereof); polypeptides described herein and/or splicing variants encoded by the TCF7L2 nucleic acid or fragments or derivatives thereof; other polypeptides (e.g., TCF7L2 receptors); TCF7L2 binding agents; or agents that affect (e.g., increase or decrease) activity, antibodies, such as an antibody to an altered TCF7L2 polypeptide, or an antibody to a non-altered TCF7L2 polypeptide, or an antibody to a particular splicing variant encoded by a TCF7L2 nucleic acid as described above; peptidomimetics; fusion proteins or prodrugs thereof; ribozymes; other small molecules; and other agents that alter (e.g., enhance or inhibit) expression of a TCF7L2 nucleic acid, or that regulate transcription of TCF7L2 splicing variants (e.g., agents that affect which splicing variants are expressed, or that affect the amount of each splicing variant that is expressed). Additional representative TCF7L2 therapeutic agents include compounds that influence insulin signaling and/or glucagons, GLP-1 or GIP signaling. More than one TCF7L2 therapeutic agent can be used concurrently, if desired.

[0085] In preferred embodiments, the TCF7L2 therapeutic agent is an agent that interferes with the activity of TCF7L2, such as, for example, an agent that interferes with TCF7L2 binding or interaction of TCF7L2 with beta-catenin (see, e.g., Fasolini, et al., J. Biol. Chem. 278(23):21092-06 (2003)) or with other proteins. Other TCF7L2 therapeutic agents include agents that affect the Wnt signaling pathway or agents that affect the cadherin pathway. Representative agents include agents such as those used for cancer therapy, including, for example, proteins such as the DKK proteins; the beta-catenin binding domain of APC, or Axin; factors such as IDAX, AXAM and ICAT; antisense oligonucleotides or RNA interference (RNAi), such as with the use of Vitravene; oncolytic viral vectors; and other compounds (see, e.g., Luu et al., Current Cancer Drug Targets 4:6530671 (2004)); small molecule antagonists, including, for example, ZTM00990, PKF118-310, PKF118-744, PKF115-584, PKF222-815, CGPO49090, NPDDG39.024, and NPDDG1.024 as described by Lepourcelet et al. (see, e.g., Lepourcelet et al., Cancer Call 5:91-102 (2004)); compounds described in U.S. Pat. No. 6,762,185; compounds described in US Patent applications 20040005313, 20040072831, 20040247593, or 20050059628. Other representative TCF7L2 therapeutic agents include gsk3 inhibitors, including, for example, those described in U.S. Pat. Nos. 6,057,117; 6,153,618; 6,417,185; 6,465,231; 6,489,344; 6,512,102; 6,608,063; 6,716,624; 6,800,632; and published US Patent applications 20030008866; 20030077798; 20030130289; 20030207883; 2000092535; and 200500851. The entire teachings of all of the references, patents and patent applications recited in the Specification are incorporated herein in their entirety.

[0086] Additional representative TCF7L2 therapeutic agents are shown in the Agent Table, below.

TABLE-US-00001 AGENT TABLE Compound name (generated using Autonom, ISIS Draw Compound version 2.5 from MDL Compound name(s) Information Systems) Company Reference Indications AR-0133418 1-(4-Methoxy-benzyl)-3- AstraZeneca AD (SN-4521) (5-nitro-thiazol-2-yl)- urea AR-025028 NSD AstraZeneca CT-98023 N-[4-(2,4-Dichloro- Chiron Corp Wagman et non-insulin phenyl)-5-(1H-imidazol- al., Curr dependent 2-yl)-pyrimidin-2-yl]- Pharm. Des diabetes N'-(5-nitro-pyridin-2- 2004: yl)-ethane-1,2-diamine 10(10) 1105-37 CT-20026 NSD Chiron Corp non-insulin dependent diabetes CT-21022 NSD Chiron Corp non-insulin dependent diabetes CT-20014 NSD Chiron Corp non-insulin dependent diabetes CT-21018 NSD Chiron Corp non-insulin dependent diabetes CHIR-98025 NSD Chiron Corp Wagman et non-insulin al., Curr dependent Pharm. Des diabetes 2004: 10(10) 1105-37 CHIR-99021 NSD Chiron Corp WO- non-insulin CrystalGenomics 2004065370 dependent and Yuyu diabetes mellitus (Korea) CG-100179 NSD Cyclacel Ltd. non-insulin 4-[2-(4-Dimethylamino- dependent 3-nitro-phenylamino)- diabetes, pyrimidin-4-yl]-3,5- among others. dimethyl-1H-pyrrole-2- carbonitrile NP-01139, 4-Benzyl-2-methyl- Neuropharma SA CNS disorders, NP-031112, [1,2,4]thiadiazolidine- AD NP-03112, 3,5-dione NP-00361 3-[9-Fluoro-2- Eli Lilly & Co non-insulin (piperidine-1- dependent carbonyl)-1,2,3,4- diabetes tetrahydro- [1,4]diazepino[6,7,1- hi]indo1-7-yl]-4- imidazo[1,2-a]pyridin- 3-yl-pyrrole-2,5-dione GW-784752x, Cyclopentanecarboxylic GSK WO-03024447 non-insulin GW-784775, acid (6-pyridin-3-yl- (compound dependent SB-216763, furo[2,3-d]pyrimidin-4- referenced: diabetes, SB-415286 yl)-amide 4-[2-(2- neurodegenerative bromophenyl)- disease 4-(4- fluorophenyl)- lH- imidazol-5- yl]pyridine NNC-57-0511, 1-(4-Amino-furazan-3- Novo Nordisk non-insulin NNC-57-0545, yl)-5-piperidin-1- dependent NNC-57-0588 ylmethyl-1H- diabetes, [1,2,3]triazole-4- carboxylic acid [l- pyridin-4-yl-meth-(E)- ylidene]-hydrazide CP-70949 NSD Pfizer Hypoglycemic agent VX-608 NSD Cerebrovascular ischemia, non-insulin dependent diabetes NSD Kinetek Nuclear factor kappa B modulator, Anti- inflammatory, Cell cycle inhibitor, Glycogen synthase kinase-3 beta inhibitor KP-403 class BYETTA Exenatide: C.sub.184H.sub.282N.sub.50O.sub.60S- Amylin/Eli non-insulin (exenatide) Amino acid Lilly & Co dependent sequence:H-His-Gly-Glu- diabetes Gly-Thr-Phe-Thr-Ser- Asp-Leu-Ser-Lys-Gln- Met-Glu-Glu-Glu-Ala- Val-Arg-Leu-Phe-Ile- Glu-Trp-Leu-Lys-Asn- Gly-Gly-Pro-Ser-Ser- Gly-Ala-Pro-Pro-Pro- Ser-NH.sub.2 Vildaglip- NSD Novartis non-insulin tin dependent (LAF237) diabetes- DPP-4 inhibitor NSD = No Structure disclosed (in Iddb3)

[0087] The TCF7L2 therapeutic agent(s) are administered in a therapeutically effective amount (i.e., an amount that is sufficient for "treatment," as described above). The amount which will be therapeutically effective in the treatment of a particular individual's disorder or condition will depend on the symptoms and severity of the disease, and can be determined by standard clinical techniques. In addition, in vitro or in vivo assays may optionally be employed to help identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder, and should be decided according to the judgment of a practitioner and each patient's circumstances. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems.

[0088] In one embodiment, a nucleic acid (e.g., a nucleic acid encoding a TCF7L2 polypeptide); or another nucleic acid that encodes a TCF7L2 polypeptide or a splicing variant, derivative or fragment thereof can be used, either alone or in a pharmaceutical composition as described above. For example, a TCF7L2 gene or nucleic acid or a cDNA encoding a TCF7L2 polypeptide, either by itself or included within a vector, can be introduced into cells (either in vitro or in vivo) such that the cells produce native TCF7L2 polypeptide. If necessary, cells that have been transformed with the gene or cDNA or a vector comprising the gene, nucleic acid or cDNA can be introduced (or re-introduced) into an individual affected with the disease. Thus, cells which, in nature, lack native TCF7L2 expression and activity, or have altered TCF7L2 expression and activity, or have expression of a disease-associated TCF7L2 splicing variant, can be engineered to express the TCF7L2 polypeptide or an active fragment of the TCF7L2 polypeptide (or a different variant of the TCF7L2 polypeptide). In certain embodiments, nucleic acids encoding a TCF7L2 polypeptide, or an active fragment or derivative thereof, can be introduced into an expression vector, such as a viral vector, and the vector can be introduced into appropriate cells in an animal. Other gene transfer systems, including viral and nonviral transfer systems, can be used. Alternatively, nonviral gene transfer methods, such as calcium phosphate coprecipitation, mechanical techniques (e.g., microinjection); membrane fusion-mediated transfer via liposomes; or direct DNA uptake, can also be used.

[0089] Alternatively, in another embodiment of the invention, a nucleic acid of the invention; a nucleic acid complementary to a nucleic acid of the invention; or a portion of such a nucleic acid (e.g., an oligonucleotide as described below), can be used in "antisense" therapy, in which a nucleic acid (e.g., an oligonucleotide) which specifically hybridizes to the mRNA and/or genomic DNA of a Type II diabetes gene is administered or generated in situ. The antisense nucleic acid that specifically hybridizes to the mRNA and/or DNA inhibits expression of the TCF7L2 polypeptide, e.g., by inhibiting translation and/or transcription. Binding of the antisense nucleic acid can be by conventional base pair complementarity, or, for example, in the case of binding to DNA duplexes, through specific interaction in the major groove of the double helix.

[0090] An antisense construct of the present invention can be delivered, for example, as an expression plasmid as described above. When the plasmid is transcribed in the cell, it produces RNA that is complementary to a portion of the mRNA and/or DNA which encodes the TCF7L2 polypeptide. Alternatively, the antisense construct can be an oligonucleotide probe that is generated ex vivo and introduced into cells; it then inhibits expression by hybridizing with the mRNA and/or genomic DNA of the polypeptide. In one embodiment, the oligonucleotide probes are modified oligonucleotides, which are resistant to endogenous nucleases, e.g., exonucleases and/or endonucleases, thereby rendering them stable in vivo. Exemplary nucleic acid molecules for use as antisense oligonucleotides are phosphoramidate, phosphothioate and methylphosphonate analogs of DNA (see also U.S. Pat. Nos. 5,176,996; 5,264,564; and 5,256,775). Additionally, general approaches to constructing oligomers useful in antisense therapy are also described, for example, by Van der Krol et al., (BioTechniques 6:958-976 (1988)); and Stein et al., (Cancer Res. 48:2659-2668 (1988)). With respect to antisense DNA, oligodeoxyribonucleotides derived from the translation initiation site are preferred.

[0091] To perform antisense therapy, oligonucleotides (mRNA, cDNA or DNA) are designed that are complementary to mRNA encoding the TCF7L2 gene. The antisense oligonucleotides bind to TCF7L2 mRNA transcripts and prevent translation. Absolute complementarity, although preferred, is not required. A sequence "complementary" to a portion of an RNA, as referred to herein, indicates that a sequence has sufficient complementarity to be able to hybridize with the RNA, forming a stable duplex; in the case of double-stranded antisense nucleic acids, a single strand of the duplex DNA may thus be tested, or triplex formation may be assayed. The ability to hybridize will depend on both the degree of complementarity and the length of the antisense nucleic acid, as described in detail above. Generally, the longer the hybridizing nucleic acid, the more base mismatches with an RNA it may contain and still form a stable duplex (or triplex, as the case may be). One skilled in the art can ascertain a tolerable degree of mismatch by use of standard procedures.

[0092] The oligonucleotides used in antisense therapy can be DNA, RNA, or chimeric mixtures or derivatives or modified versions thereof, single-stranded or double-stranded. The oligonucleotides can be modified at the base moiety, sugar moiety, or phosphate backbone, for example, to improve stability of the molecule, hybridization, etc. The oligonucleotides can include other appended groups such as peptides (e.g. for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al., Proc. Natl. Acad. Sci. USA 86:6553-6556 (1989); Lemaitre et al., Proc. Natl. Acad. Sci. USA 84:648-652 (1987); PCT International Publication NO: WO 88/09810) or the blood-brain barrier (see, e.g., PCT International Publication NO: WO 89/10134), or hybridization-triggered cleavage agents (see, e.g., Krol et al., BioTechniques 6:958-976 (1988)) or intercalating agents. (See, e.g., Zon, Pharm. Res. 5:539-549 (1988)). To this end, the oligonucleotide may be conjugated to another molecule (e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent).

[0093] The antisense molecules are delivered to cells that express TCF7L2 in vivo. A number of methods can be used for delivering antisense DNA or RNA to cells; e.g., antisense molecules can be injected directly into the tissue site, or modified antisense molecules, designed to target the desired cells (e.g., antisense linked to peptides or antibodies that specifically bind receptors or antigens expressed on the target cell surface) can be administered systematically. Alternatively, in a preferred embodiment, a recombinant DNA construct is utilized in which the antisense oligonucleotide is placed under the control of a strong promoter (e.g., pol III or pol II). The use of such a construct to transfect target cells in the patient results in the transcription of sufficient amounts of single stranded RNAs that will form complementary base pairs with the endogenous TCF7L2 transcripts and thereby prevent translation of the TCF7L2 mRNA. For example, a vector can be introduced in vivo such that it is taken up by a cell and directs the transcription of an antisense RNA. Such a vector can remain episomal or become chromosomally integrated, as long as it can be transcribed to produce the desired antisense RNA. Such vectors can be constructed by recombinant DNA technology methods standard in the art and described above. For example, a plasmid, cosmid, YAC or viral vector can be used to prepare the recombinant DNA construct that can be introduced directly into the tissue site. Alternatively, viral vectors can be used which selectively infect the desired tissue, in which case administration may be accomplished by another route (e.g., systemically).

[0094] Endogenous TCF7L2 polypeptide expression can also be reduced by inactivating or "knocking out" the gene, nucleic acid or its promoter using targeted homologous recombination (e.g., see Smithies et al., Nature 317:230-234 (1985); Thomas & Capecchi, Cell 51:503-512 (1987); Thompson et al., Cell 5:313-321 (1989)). For example, an altered, non-functional gene or nucleic acid (or a completely unrelated DNA sequence) flanked by DNA homologous to the endogenous gene or nucleic acid (either the coding regions or regulatory regions of the nucleic acid) can be used, with or without a selectable marker and/or a negative selectable marker, to transfect cells that express the gene or nucleic acid in vivo. Insertion of the DNA construct, via targeted homologous recombination, results in inactivation of the gene or nucleic acid. The recombinant DNA constructs can be directly administered or targeted to the required site in vivo using appropriate vectors, as described above. Alternatively, expression of non-altered genes or nucleic acids can be increased using a similar method: targeted homologous recombination can be used to insert a DNA construct comprising a non-altered functional gene or nucleic acid in place of an altered TCF7L2 in the cell, as described above. In another embodiment, targeted homologous recombination can be used to insert a DNA construct comprising a nucleic acid that encodes a Type II diabetes polypeptide variant that differs from that present in the cell.

[0095] Alternatively, endogenous TCF7L2 nucleic acid expression can be reduced by targeting deoxyribonucleotide sequences complementary to the regulatory region of a TCF7L2 nucleic acid (i.e., the TCF7L2 promoter and/or enhancers) to form triple helical structures that prevent transcription of the TCF7L2 nucleic acid in target cells in the body. (See generally, Helene, C., Anticancer Drug Des., 6(6):569-84 (1991); Helene, C. et al., Ann. N.Y. Acad. Sci. 660:27-36 (1992); and Maher, L. J., Bioassays 14(12):807-15 (1992)). Likewise, the antisense constructs described herein, by antagonizing the normal biological activity of one of the TCF7L2 proteins, can be used in the manipulation of tissue, e.g., tissue differentiation, both in vivo and for ex vivo tissue cultures. Furthermore, the anti-sense techniques (e.g., microinjection of antisense molecules, or transfection with plasmids whose transcripts are anti-sense with regard to a Type II diabetes gene mRNA or gene sequence) can be used to investigate the role of TCF7L2 or the interaction of TCF7L2 and its binding agents in developmental events, as well as the normal cellular function of TCF7L2 or of the interaction of TCF7L2 and its binding agents in adult tissue. Such techniques can be utilized in cell culture, but can also be used in the creation of transgenic animals.

[0096] In yet another embodiment of the invention, other TCF7L2 therapeutic agents as described herein can also be used in the treatment of Type II diabetes gene. The therapeutic agents can be delivered in a composition, as described above, or by themselves. They can be administered systemically, or can be targeted to a particular tissue. The therapeutic agents can be produced by a variety of means, including chemical synthesis; recombinant production; in vivo production (e.g., a transgenic animal, such as U.S. Pat. No. 4,873,316 to Meade et al.), for example, and can be isolated using standard means such as those described herein.

[0097] A combination of any of the above methods of treatment (e.g., administration of non-altered polypeptide in conjunction with antisense therapy targeting altered mRNA of TCF7L2; administration of a first splicing variant encoded by a TCF7L2 nucleic acid in conjunction with antisense therapy targeting a second splicing encoded by a TCF7L2 nucleic acid) can also be used.

Methods of Assessing Probability of Response to TCF7L2 Therapeutic Agents

[0098] The present invention additionally pertains to methods of assessing an individual's probability of response to a TCF7L2 therapeutic agent. In the methods, markers or haplotypes relating to the TCF7L2 gene are assessed, as described above in relation to assessing an individual for susceptibility to type II diabetes. The presence of an allele, marker, SNP or haplotype associated with susceptibility (increased risk) for type II diabetes (e.g., an allele other than a 0 allele in marker DG10S478; a T allele in SNP rs12255372; an A allele in SNP rs7895340; a C allele in SNP rs11196205; a C allele in SNP rs7901695; a T allele in SNP rs7903146; a C allele in SNP rs12243326; an T allele in SNP rs4506565; a marker associated with the exon 4 LD block of TCF7L2, such as an at-risk haplotype associated with the exon 4 LD block of TCF7L2); is indicative of a probability of a positive response to a TCF7L2 therapeutic agent. "Probability of a positive response" indicates that the individual is more likely to have a positive response to a TCF7L2 therapeutic agent than an individual not having an allele, marker, SNP or haplotype associated with susceptibility (increased risk) for type II diabetes as described herein. A "positive response" to a TCF7L2 therapeutic agent is a physiological response that indicates treatment of type II diabetes. As described above, "treatment" refers not only to ameliorating symptoms associated with type II diabetes, but also preventing or delaying the onset of type II diabetes; lessening the severity or frequency of symptoms of type II diabetes; and/or also lessening the need for concomitant therapy with other drugs that ameliorate symptoms associated with type II diabetes.

Pharmaceutical Compositions

[0099] The present invention also pertains to pharmaceutical compositions comprising agents that alter TCF7L2 activity or which otherwise affect the Wnt signaling pathway or the cadherin pathway, or which can be used as TCF7L2 therapeutic agents. The pharmaceutical compositions can be formulated with a physiologically acceptable carrier or excipient to prepare a pharmaceutical composition. The carrier and composition can be sterile. The formulation should suit the mode of administration.

[0100] Suitable pharmaceutically acceptable carriers include but are not limited to water, salt solutions (e.g., NaCl), saline, buffered saline, alcohols, glycerol, ethanol, gum arabic, vegetable oils, benzyl alcohols, polyethylene glycols, gelatin, carbohydrates such as lactose, amylose or starch, dextrose, magnesium stearate, talc, silicic acid, viscous paraffin, perfume oil, fatty acid esters, hydroxymethylcellulose, polyvinyl pyrolidone, etc., as well as combinations thereof. The pharmaceutical preparations can, if desired, be mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, coloring, flavoring and/or aromatic substances and the like which do not deleteriously react with the active agents.

[0101] The composition, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. The composition can be a liquid solution, suspension, emulsion, tablet, pill, capsule, sustained release formulation, or powder. The composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides. Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, polyvinyl pyrollidone, sodium saccharine, cellulose, magnesium carbonate, etc.

[0102] Methods of introduction of these compositions include, but are not limited to, intradermal, intramuscular, intraperitoneal, intraocular, intravenous, subcutaneous, topical, oral and intranasal. Other suitable methods of introduction can also include gene therapy (as described below), rechargeable or biodegradable devices, particle acceleration devises ("gene guns") and slow release polymeric devices. The pharmaceutical compositions of this invention can also be administered as part of a combinatorial therapy with other agents.

[0103] The composition can be formulated in accordance with the routine procedures as a pharmaceutical composition adapted for administration to human beings. For example, compositions for intravenous administration typically are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may also include a solubilizing agent and a local anesthetic to ease pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example; as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampule or sachette indicating the quantity of active agent. Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water, saline or dextrose/water. Where the composition is administered by injection, an ampule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.

[0104] For topical application, nonsprayable forms, viscous to semi-solid or solid forms comprising a carrier compatible with topical application and having a dynamic viscosity preferably greater than water, can be employed. Suitable formulations include but are not limited to solutions, suspensions, emulsions, creams, ointments, powders, enemas, lotions, sols, liniments, salves, aerosols, etc., which are, if desired, sterilized or mixed with auxiliary agents, e.g., preservatives, stabilizers, wetting agents, buffers or salts for influencing osmotic pressure, etc. The agent may be incorporated into a cosmetic formulation. For topical application, also suitable are sprayable aerosol preparations wherein the active ingredient, preferably in combination with a solid or liquid inert carrier material, is packaged in a squeeze bottle or in admixture with a pressurized volatile, normally gaseous propellant, e.g., pressurized air.

[0105] Agents described herein can be formulated as neutral or salt forms. Pharmaceutically acceptable salts include those formed with free amino groups such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with free carboxyl groups such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.

[0106] The agents are administered in a therapeutically effective amount. The amount of agents which will be therapeutically effective depends in part on the nature of the disorder and/or extent of symptoms, and can be determined by standard clinical techniques. In addition, in vitro or in vivo assays may optionally be employed to help identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the symptoms, and should be decided according to the judgment of a practitioner and each patient's circumstances. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems.

[0107] The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Optionally associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use of sale for human administration. The pack or kit can be labeled with information regarding mode of administration, sequence of drug administration (e.g., separately, sequentially or concurrently), or the like. The pack or kit may also include means for reminding the patient to take the therapy. The pack or kit can be a single unit dosage of the combination therapy or it can be a plurality of unit dosages. In particular, the agents can be separated, mixed together in any combination, present in a single vial or tablet. Agents assembled in a blister pack or other dispensing means is preferred. For the purpose of this invention, unit dosage is intended to mean a dosage that is dependent on the individual pharmacodynamics of each agent and administered in FDA approved dosages in standard time courses.

Screening Assays and Agents Identified Thereby

[0108] The invention also provides methods for identifying agents (e.g., fusion proteins, polypeptides, peptidomimetics, prodrugs, receptors, binding agents, antibodies, small molecules or other drugs, or ribozymes) which alter (e.g., increase or decrease) the activity of the TCF7L2, which otherwise interact with TCF7L2 or with another member of the Wnt signaling pathway or the cadherin pathway (e.g., beta-catenin). For example, in certain embodiments, such agents can be agents which bind to TCF7L2; which have a stimulatory or inhibitory effect on, for example, activity of TCF7L2; or which change (e.g., enhance or inhibit) the ability of TCF7L2 to interact with other members of the Wnt signaling pathway or with members of the cadherin pathway, or which alter posttranslational processing of TCF7L2. In other embodiments, such agents can be agents which alter activity or function of the Wnt signaling pathway or the cadherin pathway.

[0109] In one embodiment, the invention provides assays for screening candidate or test agents that bind to or modulate the activity of TCF7L2 protein (or biologically active portion(s) thereof), as well as agents identifiable by the assays. Test agents can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the `one-bead one-compound` library method; and synthetic library methods using affinity chromatography selection. The biological library approach is limited to polypeptide libraries, while the other four approaches are applicable to polypeptide, non-peptide oligomer or small molecule libraries of compounds (Lam, K. S., Anticancer Drug Des. 12:145 (1997)).

[0110] In one embodiment, to identify agents which alter the activity of TCF7L2, a cell, cell lysate, or solution containing or expressing TCF7L2, or a fragment or derivative thereof, can be contacted with an agent to be tested; alternatively, the protein can be contacted directly with the agent to be tested. The level (amount) of TCF7L2 activity is assessed (e.g., the level (amount) of TCF7L2 activity is measured, either directly or indirectly), and is compared with the level of activity in a control (i.e., the level of activity of the TCF7L2 protein or active fragment or derivative thereof in the absence of the agent to be tested). If the level of the activity in the presence of the agent differs, by an amount that is statistically significant, from the level of the activity in the absence of the agent, then the agent is an agent that alters the activity of TCF7L2. An increase in the level of activity relative to a control, indicates that the agent is an agent that enhances (is an agonist of) activity. Similarly, a decrease in the level of activity relative to a control, indicates that the agent is an agent that inhibits (is an antagonist of) activity. In another embodiment, the level of activity of TCF7L2 or a derivative or fragment thereof in the presence of the agent to be tested, is compared with a control level that has previously been established. A level of the activity in the presence of the agent that differs from the control level by an amount that is statistically significant indicates that the agent alters TCF7L2 activity.

[0111] The present invention also relates to an assay for identifying agents which alter the expression of the TCF7L2 gene (e.g., antisense nucleic acids, fusion proteins, polypeptides, peptidomimetics, prodrugs, receptors, binding agents, antibodies, small molecules or other drugs, or ribozymes) which alter (e.g., increase or decrease) expression (e.g., transcription or translation) of the gene or which otherwise interact with TCF7L2, as well as agents identifiable by the assays. For example, a solution containing a nucleic acid encoding a TCF7L2 can be contacted with an agent to be tested. The solution can comprise, for example, cells containing the nucleic acid or cell lysate containing the nucleic acid; alternatively, the solution can be another solution that comprises elements necessary for transcription/translation of the nucleic acid. Cells not suspended in solution can also be employed, if desired. The level and/or pattern of TCF7L2 expression (e.g., the level and/or pattern of mRNA or of protein expressed, such as the level and/or pattern of different splicing variants) is assessed, and is compared with the level and/or pattern of expression in a control (i.e., the level and/or pattern of the TCF7L2 expression in the absence of the agent to be tested). If the level and/or pattern in the presence of the agent differs, by an amount or in a manner that is statistically significant, from the level and/or pattern in the absence of the agent, then the agent is an agent that alters the expression of a Type II diabetes gene. Enhancement of TCF7L2 expression indicates that the agent is an agonist of TCF7L2 activity. Similarly, inhibition of TCF7L2 expression indicates that the agent is an antagonist of TCF7L2 activity. In another embodiment, the level and/or pattern of TCF7L2 polypeptide(s) (e.g., different splicing variants) in the presence of the agent to be tested, is compared with a control level and/or pattern that have previously been established. A level and/or pattern in the presence of the agent that differs from the control level and/or pattern by an amount or in a manner that is statistically significant indicates that the agent alters TCF7L2 expression.

[0112] In another embodiment of the invention, agents which alter the expression of TCF7L2 or which otherwise interact with TCF7L2 or with another member of the Wnt signaling pathway or the cadherin pathway, can be identified using a cell, cell lysate, or solution containing a nucleic acid encoding the promoter region of the TCF7L2 gene or nucleic acid operably linked to a reporter gene. After contact with an agent to be tested, the level of expression of the reporter gene (e.g., the level of mRNA or of protein expressed) is assessed, and is compared with the level of expression in a control (i.e., the level of the expression of the reporter gene in the absence of the agent to be tested). If the level in the presence of the agent differs, by an amount or in a manner that is statistically significant, from the level in the absence of the agent, then the agent is an agent that alters the expression of TCF7L2, as indicated by its ability to alter expression of a gene that is operably linked to the TCF7L2 gene promoter. Enhancement of the expression of the reporter indicates that the agent is an agonist of TCF7L2 activity. Similarly, inhibition of the expression of the reporter indicates that the agent is an antagonist of TCF7L2 activity. In another embodiment, the level of expression of the reporter in the presence of the agent to be tested is compared with a control level that has previously been established. A level in the presence of the agent that differs from the control level by an amount or in a manner that is statistically significant indicates that the agent alters expression.

[0113] Agents which alter the amounts of different splicing variants encoded by TCF7L2 (e.g., an agent which enhances activity of a first splicing variant, and which inhibits activity of a second splicing variant), as well as agents which are agonists of activity of a first splicing variant and antagonists of activity of a second splicing variant, can easily be identified using these methods described above.

[0114] In other embodiments of the invention, assays can be used to assess the impact of a test agent on the activity of a polypeptide in relation to a TCF7L2 binding agent. For example, a cell that expresses a compound that interacts with a TCF7L2 polypeptide (herein referred to as a "TCF7L2 binding agent", which can be a polypeptide or other molecule that interacts directly or indirectly with a TCF7L2 polypeptide, such as a member of the Wnt signaling pathway or a member of the cadherin pathway) is contacted with TCF7L2 in the presence of a test agent, and the ability of the test agent to alter the interaction between the TCF7L2 and the TCF7L2 binding agent is determined. Alternatively, a cell lysate or a solution containing the TCF7L2 binding agent, can be used. An agent that binds to the TCF7L2 or the TCF7L2 binding agent can alter the interaction by interfering with, or enhancing the ability of the TCF7L2 to bind to, associate with, or otherwise interact with the TCF7L2 binding agent. Determining the ability of the test agent to bind to TCF7L2 or a TCF7L2 binding agent can be accomplished, for example, by coupling the test agent with a radioisotope or enzymatic label such that binding of the test agent to the polypeptide can be determined by detecting the labeled with .sup.125I, .sup.35S, .sup.14C or .sup.3H, either directly or indirectly, and the radioisotope detected by direct counting of radioemmission or by scintillation counting. Alternatively, test agents can be enzymatically labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product. It is also within the scope of this invention to determine the ability of a test agent to interact with the polypeptide without the labeling of any of the interactants. For example, a microphysiometer can be used to detect the interaction of a test agent with TCF7L2 or a TCF7L2 binding agent without the labeling of either the test agent, TCF7L2, or the TCF7L2 binding agent. McConnell, H. M. et al., Science 257:1906-1912 (1992). As used herein, a "microphysiometer" (e.g., Cytosensor.TM.) is an analytical instrument that measures the rate at which a cell acidifies its environment using a light-addressable potentiometric sensor (LAPS). Changes in this acidification rate can be used as an indicator of the interaction between ligand and polypeptide.

[0115] Thus, these receptors can be used to screen for compounds that are agonists or antagonists, for use in treating or studying a susceptibility to type II diabetes. Drugs could be designed to regulate TCF7L2 activation that in turn can be used to regulate signaling pathways and transcription events of genes downstream.

[0116] In another embodiment of the invention, assays can be used to identify polypeptides that interact with TCF7L2. For example, a yeast two-hybrid system such as that described by Fields and Song (Fields, S, and Song, O., Nature 340:245-246 (1989)) can be used to identify polypeptides that interact with TCF7L2. In such a yeast two-hybrid system, vectors are constructed based on the flexibility of a transcription factor that has two functional domains (a DNA binding domain and a transcription activation domain). If the two domains are separated but fused to two different proteins that interact with one another, transcriptional activation can be achieved, and transcription of specific markers (e.g., nutritional markers such as His and Ade, or color markers such as lacZ) can be used to identify the presence of interaction and transcriptional activation. For example, in the methods of the invention, a first vector is used which includes a nucleic acid encoding a DNA binding domain and also TCF7L2, splicing variant, or fragment or derivative thereof, and a second vector is used which includes a nucleic acid encoding a transcription activation domain and also a nucleic acid encoding a polypeptide which potentially may interact with TCF7L2 or a splicing variant, or fragment or derivative thereof. Incubation of yeast containing the first vector and the second vector under appropriate conditions (e.g., mating conditions such as used in the Matchmaker.TM. system from Clontech (Palo Alto, Calif., USA)) allows identification of colonies that express the markers of interest. These colonies can be examined to identify the polypeptide(s) that interact with TCF7L2 or fragment or derivative thereof. Such polypeptides can be used as agents that alter the activity of expression of TCF7L2, as described in relation to methods of treatment.

[0117] In more than one embodiment of the above assay methods of the present invention, it may be desirable to immobilize either the TCF7L2 gene, the TCF7L2 protein, the TCF7L2 binding agent (e.g., another member of the Wnt signaling pathway or member of the cadherin pathway), or other components of the assay on a solid support, in order to facilitate separation of complexed from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay. Binding of a test agent to the protein, or interaction of the protein with a binding agent in the presence and absence of a test agent, can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtitre plates, test tubes, and micro-centrifuge tubes. In one embodiment, a fusion protein (e.g., a glutathione-S-transferase fusion protein) can be provided which adds a domain that allows TCF7L2, TCF7L2 protein, or a TCF7L2 binding agent to be bound to a matrix or other solid support.

[0118] In another embodiment, modulators of expression of nucleic acid molecules of the invention are identified in a method wherein a cell, cell lysate, or solution containing TCF7L2 is contacted with a test agent and the expression of appropriate mRNA or polypeptide (e.g., splicing variant(s)) in the cell, cell lysate, or solution, is determined. The level of expression of appropriate mRNA or polypeptide(s) in the presence of the test agent is compared to the level of expression of mRNA or polypeptide(s) in the absence of the test agent. The test agent can then be identified as a modulator of expression based on this comparison. For example, when expression of mRNA or polypeptide is greater (statistically significantly greater) in the presence of the test agent than in its absence, the test agent is identified as a stimulator or enhancer of the mRNA or polypeptide expression. Alternatively, when expression of the mRNA or polypeptide is less (statistically significantly less) in the presence of the test agent than in its absence, the test agent is identified as an inhibitor of the mRNA or polypeptide expression. The level of mRNA or polypeptide expression in the cells can be determined by methods described herein for detecting mRNA or polypeptide.

[0119] This invention further pertains to novel agents identified by the above-described screening assays. Accordingly, it is within the scope of this invention to further use an agent identified as described herein in the methods of treatment described herein. For example, an agent identified as described herein can be used to alter activity of a protein encoded by a TCF7L2 gene, or to alter expression of TCF7L2 by contacting the protein or the nucleic acid (or contacting a cell comprising the polypeptide or the nucleic acid) with the agent identified as described herein.

Nucleic Acids of the Invention

TCF7L2 Nucleic Acids, Portions and Variants

[0120] The present invention also pertains to isolated nucleic acid molecules comprising human TCF7L2. The TCF7L2 nucleic acid molecules of the present invention can be RNA, for example, mRNA, or DNA, such as cDNA and genomic DNA. DNA molecules can be double-stranded or single-stranded; single stranded RNA or DNA can be the coding, or sense, strand or the non-coding, or antisense strand. The nucleic acid molecule can include all or a portion of the coding sequence of the gene and can further comprise additional non-coding sequences such as introns and non-coding 3' and 5' sequences (including regulatory sequences, for example).

[0121] Additionally, nucleic acid molecules of the invention can be fused to a marker sequence, for example, a sequence that encodes a polypeptide to assist in isolation or purification of the polypeptide. Such sequences include, but are not limited to, those that encode a glutathione-S-transferase (GST) fusion protein and those that encode a hemagglutinin A (HA) polypeptide marker from influenza.

[0122] An "isolated" nucleic acid molecule, as used herein, is one that is separated from nucleic acids that normally flank the gene or nucleotide sequence (as in genomic sequences) and/or has been completely or partially purified from other transcribed sequences (e.g., as in an RNA library). For example, an isolated nucleic acid of the invention may be substantially isolated with respect to the complex cellular milieu in which it naturally occurs, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized. In some instances, the isolated material will form part of a composition (for example, a crude extract containing other substances), buffer system or reagent mix. In other circumstances, the material may be purified to essential homogeneity, for example as determined by PAGE or column chromatography such as HPLC. Preferably, an isolated nucleic acid molecule comprises at least about 50, 80 or 90% (on a molar basis) of all macromolecular species present. With regard to genomic DNA, the term "isolated" also can refer to nucleic acid molecules that are separated from the chromosome with which the genomic DNA is naturally associated. For example, the isolated nucleic acid molecule can contain less than about 5 kb but not limited to 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotides which flank the nucleic acid molecule in the genomic DNA of the cell from which the nucleic acid molecule is derived.

[0123] The nucleic acid molecule can be fused to other coding or regulatory sequences and still be considered isolated. Thus, recombinant DNA contained in a vector is included in the definition of "isolated" as used herein. Also, isolated nucleic acid molecules include recombinant DNA molecules in heterologous host cells, as well as partially or substantially purified DNA molecules in solution. "Isolated" nucleic acid molecules also encompass in vivo and in vitro RNA transcripts of the DNA molecules of the present invention. An isolated nucleic acid molecule can include a nucleic acid molecule or nucleic acid sequence that is synthesized chemically or by recombinant means. Therefore, recombinant DNA contained in a vector is included in the definition of "isolated" as used herein. Also, isolated nucleic acid molecules include recombinant DNA molecules in heterologous organisms, as well as partially or substantially purified DNA molecules in solution. In vivo and in vitro RNA transcripts of the DNA molecules of the present invention are also encompassed by "isolated" nucleic acid sequences. Such isolated nucleic acid molecules are useful in the manufacture of the encoded polypeptide, as probes for isolating homologous sequences (e.g., from other mammalian species), for gene mapping (e.g., by in situ hybridization with chromosomes), or for detecting expression of the gene in tissue (e.g., human tissue), such as by Northern or Southern blot analysis.

[0124] The present invention also pertains to nucleic acid molecules which are not necessarily found in nature but which encode a TCF7L2 polypeptide, or another splicing variant of a TCF7L2 polypeptide or polymorphic variant thereof. Thus, for example, the invention pertains to DNA molecules comprising a sequence that is different from the naturally occurring nucleotide sequence but which, due to the degeneracy of the genetic code, encode a TCF7L2 polypeptide of the present invention. The invention also encompasses nucleic acid molecules encoding portions (fragments), or encoding variant polypeptides such as analogues or derivatives of a TCF7L2 polypeptide. Such variants can be naturally occurring, such as in the case of allelic variation or single nucleotide polymorphisms, or non-naturally-occurring, such as those induced by various mutagens and mutagenic processes. Intended variations include, but are not limited to, addition, deletion and substitution of one or more nucleotides that can result in conservative or non-conservative amino acid changes, including additions and deletions. Preferably the nucleotide (and/or resultant amino acid) changes are silent or conserved; that is, they do not alter the characteristics or activity of a TCF7L2 polypeptide. In one aspect, the nucleic acid sequences are fragments that comprise one or more polymorphic microsatellite markers. In another aspect, the nucleotide sequences are fragments that comprise one or more single nucleotide polymorphisms in a TCF7L2 gene.

[0125] Other alterations of the nucleic acid molecules of the invention can include, for example, labeling, methylation, internucleotide modifications such as uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphoamidates, carbamates), charged linkages (e.g., phosphorothioates, phosphorodithioates), pendent moieties (e.g., polypeptides), intercalators (e.g., acridine, psoralen), chelators, alkylators, and modified linkages (e.g., alpha anomeric nucleic acids). Also included are synthetic molecules that mimic nucleic acid molecules in the ability to bind to a designated sequence via hydrogen bonding and other chemical interactions. Such molecules include, for example, those in which peptide linkages substitute for phosphate linkages in the backbone of the molecule.

[0126] The invention also pertains to nucleic acid molecules that hybridize under high stringency hybridization conditions, such as for selective hybridization, to a nucleotide sequence described herein (e.g., nucleic acid molecules which specifically hybridize to a nucleotide sequence encoding polypeptides described herein, and, optionally, have an activity of the polypeptide). In one aspect, the invention includes variants described herein that hybridize under high stringency hybridization conditions (e.g., for selective hybridization) to a nucleotide sequence encoding an amino acid sequence or a polymorphic variant thereof. In another aspect, the variant that hybridizes under high stringency hybridizations has an activity of a TCF7L2 polypeptide.

[0127] Such nucleic acid molecules can be detected and/or isolated by specific hybridization (e.g., under high stringency conditions). "Specific hybridization," as used herein, refers to the ability of a first nucleic acid to hybridize to a second nucleic acid in a manner such that the first nucleic acid does not hybridize to any nucleic acid other than to the second nucleic acid (e.g., when the first nucleic acid has a higher similarity to the second nucleic acid than to any other nucleic acid in a sample wherein the hybridization is to be performed). "Stringency conditions" for hybridization is a term of art which refers to the incubation and wash conditions, e.g., conditions of temperature and buffer concentration, which permit hybridization of a particular nucleic acid to a second nucleic acid; the first nucleic acid may be perfectly (i.e., 100%) complementary to the second, or the first and second may share some degree of complementarity which is less than perfect (e.g., 70%, 75%, 85%, 90%, 95%). For example, certain high stringency conditions can be used which distinguish perfectly complementary nucleic acids from those of less complementarity. "High stringency conditions", "moderate stringency conditions" and "low stringency conditions", as well as methods for nucleic acid hybridizations are explained on pages 2.10.1-2.10.16 and pages 6.3.1-6.3.6 in Current Protocols in Molecular Biology (Ausubel, F. et al., "Current Protocols in Molecular Biology", John Wiley & Sons, (1998)), and in Kraus, M. and Aaronson, S., Methods Enzymol., 200:546-556 (1991),

[0128] The percent homology or identity of two nucleotide or amino acid sequences can be determined by aligning the sequences for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first sequence for optimal alignment). The nucleotides or amino acids at corresponding positions are then compared, and the percent identity between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % identity=# of identical positions/total # of positions.times.100). When a position in one sequence is occupied by the same nucleotide or amino acid residue as the corresponding position in the other sequence, then the molecules are homologous at that position. As used herein, nucleic acid or amino acid "homology" is equivalent to nucleic acid or amino acid "identity". In certain aspects, the length of a sequence aligned for comparison purposes is at least 30%, for example, at least 40%, in certain aspects at least 60%, and in other aspects at least 70%, 80%, 90% or 95% of the length of the reference sequence. The actual comparison of the two sequences can be accomplished by well-known methods, for example, using a mathematical algorithm. A preferred, non-limiting example of such a mathematical algorithm is described in Karlin et al., Proc. Natl. Acad. Sci. USA 90:5873-5877 (1993). Such an algorithm is incorporated into the NBLAST and XBLAST programs (version 2.0) as described in Altschul et al., Nucleic Acids Res. 25:389-3402 (1997). When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., NBLAST) can be used. In one aspect, parameters for sequence comparison can be set at score=100, wordlength=12, or can be varied (e.g., W=5 or W=20).

[0129] Another preferred non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers and Miller, CABIOS 4(1): 11-17 (1988). Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package (Accelrys, Cambridge, UK). When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used. Additional algorithms for sequence analysis are known in the art and include ADVANCE and ADAM as described in Torellis and Robotti, Comput. Appl. Biosci. 10:3-5 (1994); and FASTA described in Pearson and Lipman, Proc. Natl. Acad. Sci. USA 85:2444-8 (1988).

[0130] In another aspect, the percent identity between two amino acid sequences can be accomplished using the GAP program in the GCG software package using either a BLOSUM63 matrix or a PAM250 matrix, and a gap weight of 12, 10, 8, 6, or 4 and a length weight of 2, 3, or 4. In yet another aspect, the percent identity between two nucleic acid sequences can be accomplished using the GAP program in the GCG software package using a gap weight of 50 and a length weight of 3.

[0131] The present invention also provides isolated nucleic acid molecules that contain a fragment or portion that hybridizes under highly stringent conditions to a nucleotide sequence of TCF7L2, or the complement of such a sequence, and also provides isolated nucleic acid molecules that contain a fragment or portion that hybridizes under highly stringent conditions to a nucleotide sequence encoding an amino acid sequence or polymorphic variant thereof. The nucleic acid fragments of the invention are at least about 15, preferably at least about 18, 20, 23 or 25 nucleotides, and can be 30, 40, 50, 100, 200 or more nucleotides in length. Longer fragments, for example, 30 or more nucleotides in length, which encode antigenic polypeptides described herein, are particularly useful, such as for the generation of antibodies as described below.

Probes and Primers

[0132] In a related aspect, the nucleic acid fragments of the invention are used as probes or primers in assays such as those described herein. "Probes" or "primers" are oligonucleotides that hybridize in a base-specific manner to a complementary strand of nucleic acid molecules. Such probes and primers include polypeptide nucleic acids, as described in Nielsen et al., Science 254:1497-1500 (1991).

[0133] A probe or primer comprises a region of nucleotide sequence that hybridizes to at least about 15, for example about 20-25, and in certain aspects about 40, 50 or 75, consecutive nucleotides of a nucleic acid molecule comprising a contiguous nucleotide sequence of TCF7L2 or polymorphic variant thereof. In other aspects, a probe or primer comprises 100 or fewer nucleotides, in certain aspects from 6 to 50 nucleotides, for example from 12 to 30 nucleotides. In other aspects, the probe or primer is at least 70% identical to the contiguous nucleotide sequence or to the complement of the contiguous nucleotide sequence, for example at least 80% identical, in certain aspects at least 90% identical, and in other aspects at least 95% identical, or even capable of selectively hybridizing to the contiguous nucleotide sequence or to the complement of the contiguous nucleotide sequence. Often, the probe or primer further comprises a label, e.g., radioisotope, fluorescent compound, enzyme, or enzyme co-factor.

[0134] The nucleic acid molecules of the invention such as those described above can be identified and isolated using standard molecular biology techniques and the sequence information provided herein. For example, nucleic acid molecules can be amplified and isolated by the polymerase chain reaction using synthetic oligonucleotide primers designed based on the sequence of TCF7L2 or the complement of such a sequence, or designed based on nucleotides based on sequences encoding one or more of the amino acid sequences provided herein. See generally PCR Technology: Principles and Applications for DNA Amplification (ed. H. A. Erlich, Freeman Press, NY, N.Y., 1992); PCR Protocols: A Guide to Methods and Applications (Eds. Innis et al., Academic Press, San Diego, Calif., 1990); Mattila et al., Nucl. Acids Res. 19: 4967 (1991); Eckert et al., PCR Methods and Applications 1:17 (1991); PCR (eds. McPherson et al., IRL Press, Oxford); and U.S. Pat. No. 4,683,202. The nucleic acid molecules can be amplified using cDNA, mRNA or genomic DNA as a template, cloned into an appropriate vector and characterized by DNA sequence analysis.

[0135] Other suitable amplification methods include the ligase chain reaction (LCR) (see Wu and Wallace, Genomics 4:560 (1989), Landegren et al., Science 241:1077 (1988), transcription amplification (Kwoh et al., Proc. Natl. Acad. Sci. USA 86:1173 (1989)), and self-sustained sequence replication (Guatelli et al., Proc. Nat. Acad. Sci. USA 87:1874 (1990)) and nucleic acid based sequence amplification (NASBA). The latter two amplification methods involve isothermal reactions based on isothermal transcription, which produce both single stranded RNA (ssRNA) and double stranded DNA (dsDNA) as the amplification products in a ratio of about 30 or 100 to 1, respectively.

[0136] The amplified DNA can be labeled, for example, radiolabeled, and used as a probe for screening a cDNA library derived from human cells, mRNA in zap express, ZIPLOX or other suitable vector. Corresponding clones can be isolated, DNA can obtained following in vivo excision, and the cloned insert can be sequenced in either or both orientations by art recognized methods to identify the correct reading frame encoding a polypeptide of the appropriate molecular weight. For example, the direct analysis of the nucleotide sequence of nucleic acid molecules of the present invention can be accomplished using well-known methods that are commercially available. See, for example, Sambrook et al., Molecular Cloning, A Laboratory Manual (2nd Ed., CSHP, New York 1989); Zyskind et al., Recombinant DNA Laboratory Manual, (Acad. Press, 1988)). Additionally, fluorescence methods are also available for analyzing nucleic acids (Chen et al., Genome Res. 9, 492 (1999)) and polypeptides. Using these or similar methods, the polypeptide and the DNA encoding the polypeptide can be isolated, sequenced and further characterized.

[0137] Antisense nucleic acid molecules of the invention can be designed using the nucleotide sequence of TCF7L2 and/or the complement or a portion, and constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid molecule (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used. Alternatively, the antisense nucleic acid molecule can be produced biologically using an expression vector into which a nucleic acid molecule has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid molecule will be of an antisense orientation to a target nucleic acid of interest).

[0138] The nucleic acid sequences can also be used to compare with endogenous DNA sequences in patients to identify one or more of the disorders described above, and as probes, such as to hybridize and discover related DNA sequences or to subtract out known sequences from a sample. The nucleic acid sequences can further be used to derive primers for genetic fingerprinting, to raise anti-polypeptide antibodies using DNA immunization techniques, and as an antigen to raise anti-DNA antibodies or elicit immune responses. Portions or fragments of the nucleotide sequences identified herein (and the corresponding complete gene sequences) can be used in numerous ways, such as polynucleotide reagents. For example, these sequences can be used to: (i) map their respective genes on a chromosome; and, thus, locate gene regions associated with genetic disease; (ii) identify an individual from a minute biological sample (tissue typing); and (iii) aid in forensic identification of a biological sample. Additionally, the nucleotide sequences of the invention can be used to identify and express recombinant polypeptides for analysis, characterization or therapeutic use, or as markers for tissues in which the corresponding polypeptide is expressed, either constitutively, during tissue differentiation, or in diseased states. The nucleic acid sequences can additionally be used as reagents in the screening and/or diagnostic assays described herein, and can also be included as components of kits (e.g., reagent kits) for use in the screening and/or diagnostic assays described herein.

[0139] Kits (e.g., reagent kits) useful in the methods of diagnosis comprise components useful in any of the methods described herein, including for example, hybridization probes or primers as described herein (e.g., labeled probes or primers), reagents for detection of labeled molecules, restriction enzymes (e.g., for RFLP analysis), allele-specific oligonucleotides, antibodies which bind to altered or to non-altered (native) TCF7L2 polypeptide, means for amplification of nucleic acids comprising a TCF7L2 nucleic acid or for a portion of TCF7L2, or means for analyzing the nucleic acid sequence of a TCF7L2 nucleic acid or for analyzing the amino acid sequence of a TCF7L2 polypeptide as described herein, etc. In one aspect, the kit for diagnosing a susceptibility to type II diabetes can comprise primers for nucleic acid amplification of a region in the TCF7L2 nucleic acid comprising the marker DG10S478, the SNP rs12255372, rs895340, rs11196205, rs7901695, rs7903146, rs12243326 and/or rs4506565, or an at-risk haplotype that is more frequently present in an individual having type II diabetes or who is susceptible to type II diabetes. The primers can be designed using portions of the nucleic acids flanking SNPs that are indicative of type II diabetes.

Vectors and Host Cells

[0140] Another aspect of the invention pertains to nucleic acid constructs containing a nucleic acid molecules described herein and the complements thereof (or a portion thereof). The constructs comprise a vector (e.g., an expression vector) into which a sequence of the invention has been inserted in a sense or antisense orientation. As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Expression vectors are capable of directing the expression of genes to which they are operably linked. In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses) that serve equivalent functions.

[0141] In certain aspects, recombinant expression vectors of the invention comprise a nucleic acid molecule of the invention in a form suitable for expression of the nucleic acid molecule in a host cell. This means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operably linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, "operably linked" or "operatively linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell). The term "regulatory sequence" is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel, "Gene Expression Technology", Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990). Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cell and those which direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed and the level of expression of polypeptide desired. The expression vectors of the invention can be introduced into host cells to thereby produce polypeptides, including fusion polypeptides, encoded by nucleic acid molecules as described herein.

[0142] The recombinant expression vectors of the invention can be designed for expression of a polypeptide of the invention in prokaryotic or eukaryotic cells, e.g., bacterial cells such as E. coli, insect cells (using baculovirus expression vectors), yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel, supra. Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.

[0143] Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms "host cell" and "recombinant host cell" are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but also to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.

[0144] A host cell can be any prokaryotic or eukaryotic cell. For example, a nucleic acid molecule of the invention can be expressed in bacterial cells (e.g., E. coli), insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those skilled in the art.

[0145] Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection" are intended to refer to a variety of art-recognized techniques for introducing a foreign nucleic acid molecule (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al., (supra), and other laboratory manuals.

[0146] For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., for resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Preferred selectable markers include those that confer resistance to drugs, such as G418, hygromycin and methotrexate. Nucleic acid molecules encoding a selectable marker can be introduced into a host cell on the same vector as the nucleic acid molecule of the invention or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid molecule can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).

[0147] A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture can be used to produce (i.e., express) a polypeptide of the invention. Accordingly, the invention further provides methods for producing a polypeptide using the host cells of the invention. In one aspect, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding a polypeptide of the invention has been introduced) in a suitable medium such that the polypeptide is produced. In another aspect, the method further comprises isolating the polypeptide from the medium or the host cell.

Antibodies of the Invention

[0148] Polyclonal antibodies and/or monoclonal antibodies that specifically bind one form of the gene product but not to the other form of the gene product are also provided. Antibodies are also provided which bind a portion of either the variant or the reference gene product that contains the polymorphic site or sites. The term "antibody" as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain antigen-binding sites that specifically bind an antigen. A molecule that specifically binds to a polypeptide of the invention is a molecule that binds to that polypeptide or a fragment thereof, but does not substantially bind other molecules in a sample, e.g., a biological sample, which naturally contains the polypeptide. Examples of immunologically active portions of immunoglobulin molecules include F(ab) and F(ab').sub.2 fragments which can be generated by treating the antibody with an enzyme such as pepsin. The invention provides polyclonal and monoclonal antibodies that bind to a polypeptide of the invention. The term "monoclonal antibody" or "monoclonal antibody composition", as used herein, refers to a population of antibody molecules that contain only one species of an antigen binding site capable of immunoreacting with a particular epitope of a polypeptide of the invention. A monoclonal antibody composition thus typically displays a single binding affinity for a particular polypeptide of the invention with which it immunoreacts.

[0149] Polyclonal antibodies can be prepared as described above by immunizing a suitable subject with a desired immunogen, e.g., polypeptide of the invention or a fragment thereof. The antibody titer in the immunized subject can be monitored over time by standard techniques, such as with an enzyme linked immunosorbent assay (ELISA) using immobilized polypeptide. If desired, the antibody molecules directed against the polypeptide can be isolated from the mammal (e.g., from the blood) and further purified by well-known techniques, such as protein A chromatography to obtain the IgG fraction. At an appropriate time after immunization, e.g., when the antibody titers are highest, antibody-producing cells can be obtained from the subject and used to prepare monoclonal antibodies by standard techniques, such as the hybridoma technique originally described by Kohler and Milstein, Nature 256:495-497 (1975), the human B cell hybridoma technique (Kozbor et al., Immunol. Today 4: 72 (1983)), the EBV-hybridoma technique (Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, 1985, Inc., pp. 77-96) or trioma techniques. The technology for producing hybridomas is well known (see generally Current Protocols in Immunology (1994) Coligan et al., (eds.) John Wiley & Sons, Inc., New York, N.Y.). Briefly, an immortal cell line (typically a myeloma) is fused to lymphocytes (typically splenocytes) from a mammal immunized with an immunogen as described above, and the culture supernatants of the resulting hybridoma cells are screened to identify a hybridoma producing a monoclonal antibody that binds a polypeptide of the invention.

[0150] Any of the many well known protocols used for fusing lymphocytes and immortalized cell lines can be applied for the purpose of generating a monoclonal antibody to a polypeptide of the invention (see, e.g., Current Protocols in Immunology, supra; Galfre et al., Nature 266:55052 (1977); R. H. Kenneth, in Monoclonal Antibodies: A New Dimension In Biological Analyses, Plenum Publishing Corp., New York, N.Y. (1980); and Lerner, Yale J. Biol. Med. 54:387-402 (1981)). Moreover, the ordinarily skilled worker will appreciate that there are many variations of such methods that also would be useful.

[0151] Alternative to preparing monoclonal antibody-secreting hybridomas, a monoclonal antibody to a polypeptide of the invention can be identified and isolated by screening a recombinant combinatorial immunoglobulin library (e.g., an antibody phage display library) with the polypeptide to thereby isolate immunoglobulin library members that bind the polypeptide. Kits for generating and screening phage display libraries are commercially available (e.g., the Pharmacia Recombinant Phage Antibody System, Catalog No. 27-9400-01; and the Stratagene SurfJZAP.TM. Phage Display Kit, Catalog No. 240612). Additionally, examples of methods and reagents particularly amenable for use in generating and screening antibody display library can be found in, for example, U.S. Pat. No. 5,223,409; PCT Publication No. WO 92/18619; PCT Publication No. WO 91/17271; PCT Publication No. WO 92/20791; PCT Publication No. WO 92/15679; PCT Publication No. WO 93/01288; PCT Publication No. WO 92/01047; PCT Publication No. WO 92/09690; PCT Publication No. WO 90/02809; Fuchs et al., Bio/Technology 9: 1370-1372 (1991); Hay et al., Hum. Antibod Hybridomas 3:81-85 (1992); Huse et al., Science 246: 1275-1281 (1989); and Griffiths et al., EMBO J. 12:725-734 (1993).

[0152] Additionally, recombinant antibodies, such as chimeric and humanized monoclonal antibodies, comprising both human and non-human portions, which can be made using standard recombinant DNA techniques, are within the scope of the invention. Such chimeric and humanized monoclonal antibodies can be produced by recombinant DNA techniques known in the art.

[0153] In general, antibodies of the invention (e.g., a monoclonal antibody) can be used to isolate a polypeptide of the invention by standard techniques, such as affinity chromatography or immunoprecipitation. A polypeptide-specific antibody can facilitate the purification of natural polypeptide from cells and of recombinantly produced polypeptide expressed in host cells. Moreover, an antibody specific for a polypeptide of the invention can be used to detect the polypeptide (e.g., in a cellular lysate, cell supernatant, or tissue sample) in order to evaluate the abundance and pattern of expression of the polypeptide. Antibodies can be used diagnostically to monitor protein levels in tissue as part of a clinical testing procedure, e.g., to, for example, determine the efficacy of a given treatment regimen. The antibody can be coupled to a detectable substance to facilitate its detection. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include .sup.125I, .sup.131I, .sup.35S or .sup.3H.

[0154] The present invention is now illustrated by the following Exemplification, which is not intended to be limiting in any way.

Exemplification

[0155] Described herein is the identification of transcription factor 7-like 2 (TCF7L2-formerly TCF4) as a gene conferring risk of type II diabetes through single-point association analysis using a dense set of microsatellite markers within the 10q locus.

Methods

Icelandic Cohort

[0156] The Data Protection Authority of Iceland and the National Bioethics Committee of Iceland approved the study. All participants in the study gave informed consent. All personal identifiers associated with blood samples, medical information, and genealogy were first encrypted by the Data Protection Authority, using a third-party encryption system (18).

[0157] For this study, 2400 type II diabetes patients were identified who were diagnosed either through a long-term epidemiologic study done at the Icelandic Heart Association over the past 30 years or at one of two major hospitals in Reykjavik over the past 12 years. Two-thirds of these patients were alive, representing about half of the population of known type II diabetes patients in Iceland today. The majority of these patients were contacted for this study, and the cooperation rate exceeded 80%. All participants in the study visited the Icelandic Heart Association where they answered a questionnaire, had blood drawn and a fasting plasma glucose measurements taken. Questions about medication and age at diagnosis were included. The type II diabetes patients in this study were diagnosed as described in our previously published linkage study (10). In brief, the diagnosis of type II diabetes was confirmed by study physicians through previous medical records, medication history, and/or new laboratory measurements. For previously diagnosed type II diabetes patients, reporting of the use of oral glucose-lowering agent confirmed type II diabetes.

[0158] Individuals who were currently treated with insulin were classified as having type II diabetes if they were also using or had previously used oral glucose-lowering agents. In this cohort the majority of patients on medication take oral glucose-lowering agents and only a small portion (9%) require insulin. For hitherto undiagnosed individuals, the diagnosis of type II diabetes and impaired fasting glucose (IFG) was based on the criteria set by the American Diabetes Association (Expert Committee on the Diagnosis and Classification of Diabetes Mellitus 1997). The average age of the type II diabetes patients in this study was 69.7 years.

Replication Cohorts

[0159] The Danish study group was selected from the PERF (Prospective Epidemiological Risk Factors) study in Denmark (19). 228 females had been diagnosed previously with type II diabetes and/or measured >=7 mM glucose. As controls, 539 unaffected (with respect to type II diabetes) females were randomly drawn from the same study cohort.

[0160] The PENN CATH study in the US is a cross sectional study of the association of biochemical and genetic factors with coronary atherosclerosis in a consecutive cohort of patients undergoing cardiac catheterization at the University of Pennsylvania Medical Center between July 1998 and March 2003. Type II diabetes was defined as history of fasting blood glucose .gtoreq.126 mg/dl, 2-hour post-prandial glucose .gtoreq.200 mg/dl, use of oral hypoglycemic agents, or insulin and oral hypoglycemic in a subject greater than age 40. The University of Pennsylvania Institutional Review Board approved the study protocol and all subjects gave written informed consent. Ethnicity was determined through self-report. 361 Caucasian type II diabetes cases were derived from this cohort. 530 unaffected (with respect to type II diabetes and myocardial infarction) Caucasian controls were randomly drawn from the same study.

[0161] The DNA used for genotyping was the product of whole-genome amplification, by use of the GenomiPhi Amplification kit (Amersham), of DNA isolated from the peripheral blood of the Danish and US type II diabetes patients and controls.

Genotyping

[0162] New sequence repeats (i.e. dinucleotide, trinucleotide, and tetronucleotide repeats) were identified using the Tandem repeats finder software (20) and tested for polymorphicity in 94 controls. The size in basepairs of the lower allele of the CEPH sample 1347-02 (CEPH genomics repository) was subtracted from the size of the microsatellite amplicon and used as a reference. SNP genotyping was carried using direct DNA sequencing (Applied BioSystems) or the Centaurus platform (Nanogen).

Statistical Methods for Association Analysis

[0163] For single marker association to type II diabetes, we used a likelihood ratio test to calculate a two-sided p-value for each allele. We present allelic frequencies rather than carrier frequencies for the microsatellites employed.

[0164] We calculated relative risk (RR) and population attributable risk (PAR) assuming a multiplicative model (16, 17). For the CEPH Caucasian HapMap data, we calculated LD between pairs of SNPs using the standard definition of D' (21) and R.sup.2 (22). When plotting all SNP combinations to elucidate the LD structure in a particular region, we plotted D' in the upper left corner and p-values in the lower right corner. In the LD plot we present, the markers are plotted equidistantly rather than according to their physical positions.

Results

Locus-Wide Association Study

[0165] We previously reported genome-wide significant linkage to chromosome 5q for type II diabetes mellitus in the Icelandic population (10); in the same study, we also reported suggestive evidence of linkage to 10q and 12q. To follow up the 10q locus, we used an association approach employing a high density of genotyped microsatellite markers across a 10.5 Mb region (NCBI Build 34: Chr10:114.2-124.7 Mb) corresponding to this locus. We identified and typed 228 microsatellite markers--i.e. to an average density of one marker every 46 kb (Table 1). All the markers were typed in 1185 Icelandic type II diabetes patients and 931 unrelated population controls.

TABLE-US-00002 TABLE 1 Location of the 228 genotyped microsatellites on chromosome 10 in NCBI Build 34 of the human genome assembly. END: Build 34 Chr10 Alias START: Build 34 Chr10 location location D10S1269 114186051 114186276 DG10S475 114389853 114390116 D10S168 114410102 114410266 DG10S478 114460845 114461228 DG10S479 114475488 114475632 DG10S480 114507574 114507829 DG10S481 114542657 114542924 DG10S1624 114545990 114546237 DG10S1625 114568323 114568715 DG10S488 114713594 114714008 DG10S1630 114770344 114770609 DG10S1631 114778307 114778598 DG10S492 114811884 114812269 DG10S494 114852114 114852280 DG10S495 114879344 114879474 DG10S496 114919414 114919678 DG10S498 114964123 114964270 DG10S500 115024471 115024854 DG10S501 115045332 115045710 DG10S508 115241356 115241602 DG10S1634 115267106 115267460 DG10S512 115357290 115357439 DG10S514 115400157 115400338 DG10S17 115463773 115464048 DG10S1635 115519619 115519900 DG10S520 115536945 115537130 D10S554 115695920 115696071 D10S1237 115784580 115784977 DG10S535 115858565 115858720 D10S1158 115937134 115937433 DG10S1636 115966165 115966382 DG10S540 115983225 115983471 DG10S1637 116025219 116025491 DG10S542 116054130 116054255 DG10S1638 116062921 116063264 D10S1776 116140681 116140897 DG10S546 116141340 116141590 DG10S547 116173634 116173887 DG10S1639 116184720 116184898 DG10S548 116202775 116203174 DG10S550 116288175 116288560 D10S562 116304948 116305132 DG10S1640 116344030 116344279 DG10S1641 116638155 116638540 DG10S566 116866173 116866431 D10S468 116869582 116869674 DG10S567 116904174 116904433 D10S1731 117001692 117001870 DG10S573 117070087 117070192 DG10S576 117153566 117153823 DG10S578 117196538 117196813 DG10S1644 117206992 117207391 DG10S579 117226056 117226234 DG10S580 117240674 117240858 DG10S584 117336471 117336821 DG10S585 117364742 117364845 DG10S586 117385650 117385816 DG10S589 117481892 117482165 DG10S590 117508690 117508966 DG10S591 117520912 117521057 DG10S593 117567541 117567800 D10S1748 117589638 117589885 DG10S596 117629981 117630119 DG10S597 117654759 117654928 DG10S523 117691905 117692329 DG10S598 117691905 117692156 D10S1773 117708786 117708989 DG10S599 117713714 117714115 DG10S524 117713997 117714115 DG10S600 117742602 117743019 DG10S525 117742701 117742986 DG10S1250 117861226 117861405 DG10S604 117867801 117868010 DG10S1293 117932494 117932721 DG10S1144 117950298 117950606 DG10S609 118014503 118014752 DG10S610 118041410 118041787 DG10S1252 118085912 118086081 DG10S612 118092869 118093247 DG10S613 118126058 118126312 DG10S614 118150018 118150178 D10S544 118164684 118164979 D10S1683 118211053 118211180 D10S1657 118287426 118287695 D10S545 118299618 118299851 DG10S1649 118306954 118307121 D10S187 118317655 118317730 DG10S1295 118375973 118376205 DG10S624 118401694 118402073 DG10S1203 118440472 118440835 DG10S627 118514695 118515072 DG10S1650 118521021 118521210 DG10S1681 118522946 118523333 DG10S628 118553693 118553836 DG10S634 118566844 118567191 DG10S639 118712208 118712596 DG10S640 118743450 118743821 D10S221 118766458 118766560 DG10S1686 118766464 118766561 DG10S641 118788135 118788401 DG10S1651 118794961 118795267 DG10S1255 118834290 118834438 DG10S644 118857362 118857745 DG10S1652 118862172 118862311 DG10S1654 118954536 118954869 DG10S1688 118972583 118972717 DG10S1689 118987319 118987480 DG10S1690 119004704 119004986 D10S1425 119004742 119004920 DG10S651 119030166 119030595 DG10S1655 119044005 119044188 DG10S1691 119078576 119078943 DG10S1207 119094382 119094722 D10S1693 119109493 119109731 DG10S1258 119131611 119131788 DG10S656 119177278 119177672 DG10S1694 119177430 119177614 DG10S1695 119204432 119204655 DG10S657 119204769 119205174 DG10S658 119223917 119224102 DG10S1696 119243071 119243408 DG10S1657 119282299 119282586 DG10S1658 119290241 119290632 DG10S661 119305067 119305226 DG10S662 119317406 119317660 DG10S663 119330718 119331131 DG10S1699 119364904 119365188 DG10S665 119396863 119397144 DG10S1659 119412611 119412992 DG10S667 119448478 119448736 DG10S1701 119473676 119473914 D10S1236 119473739 119473870 DG10S669 119485378 119485552 DG10S670 119505799 119505905 D10S190 119510348 119510554 DG10S1702 119510362 119510479 DG10S1153 119526060 119526329 DG10S673 119606691 119606963 DG10S1305 119615268 119615484 DG10S675 119659153 119659532 DG10S1661 119663175 119663453 DG10S1662 119700563 119700948 DG10S1306 119703996 119704204 DG10S1663 119783538 119783739 DG10S1704 119783569 119783694 DG10S631 119788517 119788678 D10S1148 119803465 119803663 D10S1150 119803465 119803662 D10S503 119803476 119803653 DG10S632 119811193 119811621 DG10S681 119811347 119811621 DG10S633 119833701 119833987 D10S2473 119833724 119833869 DG10S682 119838539 119838806 DG10S683 119853558 119853862 DG10S684 119880412 119880572 DG10S685 119909682 119910062 DG10S686 119923527 119923790 DG10S687 119954835 119955083 DG10S1212 119972358 119972707 DG10S1261 119995566 119995727 DG10S1350 120004924 120005036 DG10S1 120030830 120031131 DG10S693 120100794 120101005 DG10S1263 120132349 120132528 D10S542 120417003 120417230 DG10S1664 120444685 120444808 DG10S1163 120506796 120507066 DG10S703 120538236 120538484 DG10S704 120570334 120570593 DG10S706 120642052 120642312 DG10S708 120699520 120699811 DG10S709 120723780 120724158 D10S1701 120849161 120849428 DG10S716 120893782 120894153 DG10S1669 120969521 120969659 DG10S720 121016792 121017048 D10S1792 121042408 121042574 DG10S722 121070320 121070693 DG10S1181 121101362 121101685 DG10S724 121117025 121117286 DG10S1670 121162511 121162898 DG10S726 121217327 121217580 DG10S1167 121247552 121247838 DG10S729 121283257 121283429 DG10S730 121318865 121319131 DG10S731 121342622 121342893 DG10S1278 121384227 121384464 DG10S734 121425229 121425633 DG10S735 121446549 121446695 DG10S1185 121466936 121467248 DG10S1129 121472295 121472600 DG10S1085 121494260 121494657 DG10S1327 121526700 121526830 DG10S1271 121559895 121560066 DG10S741 121638254 121638391 DG10S1087 121647884 121648273 DG10S1359 121713760 121713892 DG10S1120 121726128 121726519 DG10S1671 121750886 121750993 DG10S1673 121823695 121823925 DG10S749 121841816 121841997 DG10S1134 121901381 121901668 DG10S1674 121931406 121931809 DG10S755 121976143 121976435 D10S1757 121989325 121989539 D10S209 121995173 121995376 DG10S757 122029990 122030248 DG10S1283 122045222 122045429 DG10S1191 122071761 122072115 DG10S761 122141102 122141322 DG10S1678 122146312 122146535 DG10S762 122167889 122168135 DG10S763 122185793 122185925 DG10S1284 122207287 122207508 DG10S1137 122220809 122221073 DG10S766 122257534 122257929 DG10S767 122283871 122284250 DG10S1361 122318975 122319081 DG10S1680 122390160 122390294 D10S1230 122407279 122407403 DG10S772 122421708 122421845 DG10S775 122463781 122463941 DG10S777 122524358 122524547 DG10S779 122580228 122580603 DG10S784 122719087 122719236 D10S1483 122948181 122948324 D10S587 124728937 124729112

[0166] Single marker association analysis with the microsatellite markers identified association with DG10S478 (Table 2 and the FIGURE).

TABLE-US-00003 TABLE 2 DG10S478 Association to Type II Diabetes in Iceland Affected freq Control freq Allele (n = 1185) (n = 931) RR [95% CI] Two sided P 0 0.636 0.724 0.67 2.1 .times. 10.sup.-9 4 0.005 0.002 2.36 0.12 8 0.093 0.078 1.21 0.090 12 0.242 0.178 1.48 4.6 .times. 10.sup.-7 16 0.022 0.015 1.53 0.076 20 0.001 0.003 0.39 0.17 X 0.364 0.276 1.50 [1.31, 1.71] 2.1 .times. 10.sup.-9

[0167] Six alleles are observed with this tetra-nucleotide repeat, with alleles 0, 8 and 12 accounting for 98% of chromosomes in the population controls. Allele 0 showed a protective association (Relative Risk (RR)=0.67; P=2.1.times.10.sup.-9) relative to the other alleles combined. This P-value is two-sided and takes into account that some of the patients are related to each other. DG10S478 is located in intron 3 of the transcription factor 7-like 2 (TCF7L2--formerly TCF4) gene on 10q25.2. This marker is within a well defined LD block of 74.9 kb (based on the CEPH Caucasian HapMap Phase II) that encapsulates part of intron 3, the whole of exon 4 and part of intron 4 (the FIGURE).

[0168] When DG10S478 was genotyped in the CEPH Caucasian HapMap families, it became clear that allele G of SNP rs12255372, is observed to be nearly perfectly correlated with allele 0 of DG10S478 (r.sup.2=0.95, P=5.53.times.10.sup.-38), and allele T of rs12255372 is correlated with other alleles of DG10S478. Moreover, the risk conferred by alleles 8 and 12 of DG10S478 do not differ (P=0.3). Hence it is natural to collapse all the non-0 alleles of DG10S478 into a composite allele which will be referred to as allele X. Allele X has frequency of 27.6% and 36.4% in controls and patients respectively. Assuming a multiplicative model (16, 17), compared to the risk for non-carriers, allele X has an estimated RR of 1.50 per copy carried.

Replication of the DG10S478 Association to Type II Diabetes

[0169] To verify the association of DG10S478 to type II diabetes, the microsatellite was genotyped in a Danish type II diabetes cohort of 228 cases and 539 controls. The Danish cohort was selected from the PERF (Prospective Epidemiological Risk Factors) study in Denmark (19). This female type II diabetes cohort had been diagnosed previously with type II diabetes. The association observed in Iceland was replicated (Table 3).

TABLE-US-00004 TABLE 3 DG10S478 Association to Type II Diabetes in Denmark Affected freq Control freq Allele (n = 228) (n = 539) RR [95% CI] Two sided P 0 0.669 0.740 0.71 0.0048 4 0.002 0.004 0.59 0.62 8 0.070 0.048 1.49 0.091 12 0.239 0.190 1.34 0.032 16 0.020 0.018 1.12 0.78 X 0.331 0.260 1.41 [1.11, 1.79] 0.0048

[0170] The composite at-risk allele X has a frequency of 26.0% in controls and 33.1% in type II diabetes cases, giving an estimated RR of 1.41 (P=0.0048).

[0171] Subsequently, the microsatellite was genotyped in a US Caucasian type II diabetes cohort of 361 cases and 530 controls from the PENN CATH study. This study is a cross sectional study of the association of biochemical and genetic factors with coronary atherosclerosis in a consecutive cohort of patients undergoing cardiac catheterization at the University of Pennsylvania Medical Center. Type II diabetes was defined as a history of fasting blood glucose .gtoreq.126 mg/dl, 2-hour post-prandial glucose .gtoreq.200 mg/dl, use of oral hypoglycemic agents, or insulin and oral hypoglycemic in a subject greater than age 40. The association observed in Iceland was also replicated in this population (Table 4).

TABLE-US-00005 TABLE 4 DG10S478 Association to Type II Diabetes in the United States Affected freq Control freq Allele (n = 361) (n = 530) RR [95% CI] Two sided P -4 0.001 0.000 -- -- 0 0.615 0.747 0.54 3.3 .times. 10.sup.-9 4 0.003 0.004 0.73 0.72 8 0.085 0.049 1.79 0.0029 12 0.256 0.180 1.57 1.2 .times. 10.sup.-4 16 0.040 0.020 2.07 0.012 X 0.385 0.253 1.85 [1.51, 2.27] 3.3 .times. 10.sup.-9

[0172] The composite at-risk allele X has a frequency of 25.3% in controls and 38.5% in type II diabetes cases, giving an estimated RR of 1.85 (P=3.3.times.10.sup.-9). Combining the results from all 3 cohorts using a Mantel-Haneszel model (NOTE 3) yields an overall two-sided P of 4.7.times.10.sup.-18.

[0173] The association of the composite at-risk allele to type II diabetes in three populations constitutes strong evidence that variants of the TCF7L2 gene contribute to the risk of type II diabetes.

[0174] After establishing beyond doubt the association of the allele X to type II diabetes, we investigated the mode of inheritance more closely. The dominant model and recessive model can be rejected as the heterozygous carriers clearly have increased risk relative to the non-carriers (P<1.times.10.sup.-6) and reduced risk compared to the homozygous carriers (P<0.0001). The multiplicative model provides a better fit, but there is evidence that the risk of the homozygous carriers relative to the heterozygous carriers is greater than that of the risk of the heterozygous carriers relative to the non-carriers. Table 5 provides model-free estimates of the relative risks of the heterozygous carriers and homozygous carriers compared to the non-carriers,

TABLE-US-00006 TABLE 5 Model-free estimates of the relative risks Genotype Relative Risk Cohort 00 0X [95% CI] XX [95% CI] PAR Iceland 1 1.41 [1.17, 1.70] 2.27 [1.70, 3.04] 0.21 Denmark 1 1.37 [0.98, 1.90] 1.92 [1.13, 3.26] 0.17 USA 1 1.64 [1.23, 2.19] 3.29 [2.13, 5.07] 0.28 Combined 1 1.45 [1.26, 1.67] 2.41 [1.94, 3.00] 0.21

[0175] The three cohorts have similar population frequency for the at-risk allele, but the RR estimates vary; with the strongest effect seen in the US cohort and the weakest in the Danish cohort. While there is no reason for the RR to be identical in the cohorts, it is noted that the differences in the estimated relative risks do not quite reach statistical significance (P>0.05). Combining the results from the cohorts assuming common relative risks, the heterozygous carriers and homozygous carriers are estimated to have relative risks of 1.45 and 2.41 respectively compared to the non-carriers (Table 5). Assuming a population frequency of 26% for the at-risk allele, heterozygous and homozygous carriers make up 38% and 7% of the population respectively. Hence, this variant has enough predictive value to be of clinical use. The corresponding population attributed risk is 21%, which is substantial from a public health point of view.

[0176] It should also be noted that allele X is in excess in impaired fasting glucose (IFG) individuals (fasting serum glucose between 6.1 and 6.9 mM). The composite at-risk allele X has a frequency of 27.7% in 1393 controls and 37.1% in 278 IFG cases, giving an estimated RR of 1.54 (P=1.36.times.10.sup.-5).

Association of SNP Markers within Exon 4 LD Block of TCF7L2 with Type 2 Diabetes.

[0177] In Table 6 we list microsatellite and SNP markers residing within the exon 4 LD block of TCF7L2. The table contains publically available SNPs, as well as SNPs discovered by sequencing the entire LD block region. The table furthermore provides polymorphic microsatellite markers residing within the block.

TABLE-US-00007 TABLE 6 Polymorphic markers residing within the exon 4 LD block of TCF7L2 (between markers rs4074720 and rs7087006, positions in Build 34 co-ordinates: rs4074720 (B34: 114413084) - rs7087006 (B34: 114488013) = 74929bp. Sequence identification references are indicated as appropriate, referring in each instance to the SEQ ID number for the amplimer containing the polymorphism, and forward and reverse primers, as disclosed in the Sequence listing. A. Public SNPs (including all HapMap ethnicities) Public Alias Chromosome 10 B34 location Base Change Sequence ID NO: rs4074720 114413084 A/G rs4074719 114413145 C/T rs4074718 114413204 C/T rs11196181 114413605 A/G rs11196182 114414744 C/T rs4603236 114414765 G/T rs7922298 114414856 C/T rs17747324 114417090 C/T rs7901695 114418675 C/T 17-19 rs11196185 114420079 C/T rs4132115 114420083 A/C rs4506565 114420628 A/T 14-16 rs7068741 114420845 C/T rs7069007 114420872 C/G rs7903146 114422936 C/T 11-13 rs11196187 114424032 A/G rs7092484 114425520 A/G rs10885402 114426284 A/C rs12098651 114426306 A/G rs6585198 114426824 A/G rs7910244 114427209 C/G rs12266632 114429546 C/G rs6585199 114429758 A/G rs7896811 114431304 C/T rs6585200 114433196 A/G rs6585201 114433370 A/G rs4319449 114433993 G/T rs12220336 114434854 A/G rs7896091 114436550 A/G rs12354626 114437016 A/G rs7075199 114437307 C/G rs7904519 114438514 A/G rs13376896 114441336 A/C rs10885405 114442257 C/T rs10885406 114442311 A/G rs11196192 114446874 G/T rs6585202 114447390 C/T rs7924080 114451599 C/T rs7907610 114451677 A/G rs12262948 114452313 C/G rs12243326 114453402 C/T 8-10 rs12265110 114453606 C/T rs7077039 114453664 C/T rs11196198 114456472 A/G rs12775336 114459590 G/T rs7904948 114459672 A/T rs7100927 114460635 A/G rs11196199 114460704 A/G rs17685538 114462058 C/G rs11592706 114463573 C/T rs7081912 114463678 A/G rs7895340 114466112 A/G 23-25 rs11196200 114466525 C/G rs11196201 114467894 A/T rs11196202 114470254 A/G rs11196203 114470447 A/C rs11196204 114470518 A/G rs11196205 114471634 C/G 20-22 rs10885409 114472659 C/T rs12255372 114473489 G/T 5-7 rs12265291 114474827 C/T rs7904443 114475774 A/G rs11196208 114475903 C/T rs7077247 114476658 C/T rs11196209 114477314 A/G rs4077527 114477628 A/G rs12718338 114477634 C/T rs11196210 114478558 C/T rs7907632 114481823 A/G rs7071302 114482114 G/T rs12245680 114484778 C/T rs11196213 114486141 C/T rs4918789 114486394 G/T rs7085785 114487050 C/T rs7085989 114487326 A/G rs7087006 114488013 A/G B. Novel SNPs discovered and subsequently validated in the exon 4 LD block of TCF7L2 (amplimers below): Sequence ID deCODE Alias Chromosome 10 B34 location Base Change NO: SG10S405 114418658 C/T 26-28 SG10S428 114421901 A/C 29-31 SG10S422 114457824 A/G 32-34 SG10S427 114463480 A/T 35-37 SG10S408 114466074 A/T 38-40 SG10S409 114471574 A/C 41-43 SG10S406 114471618 C/G 42-44 SG10S407 114473534 C/G 45-47 C. Polymorphic microsatellites within the exon 4 LD block of TCF7L2 (amplimers below): Sequence ID Microsatellite C10 B34 Start C10 B34 End NO: DG10S2164 114460344 114460627 48-50 DG10S478 114460845 114461228 2-4 DG10S479 114475487 114475632 51-53

TABLE-US-00008 TABLE 7 Amplimers and primers for selected markers within the exon 4 LD block of TCF7L2 >DG10S478 TTCAGGCCATTGGTGTTGTATATATTTCAAGATTTGCTCACAGGTCCAAA GCTTAACTTAAGCTCCCTGAGACATATCATAAAATATGATTTGGGGAAAA ACCCTAATGGGCCATGATCAGAACATTATTATTCAACAAAGGATGAAATG CTTAAGCCAAGATGGCCTTCTTTCTTTCTTTCTTTCTTICTTTTTTTTTA ATGAAAGTTGAGCAGACTCCCGTCCAACAGTTTTCAATGTAGGAATTCCC ACAGCCCCATTTGATTGCAGTTTGTTGAAAAGTTTAATGTTTTTGTAGGC AATTCATAATTTCCACATTGAACAGCCTGAGAGGAAGAGAGCTGGAGCCC ACTGTTGTTTTTGTAGTGGGATGGTGGGAACTTT (SEQ ID NO: 2) Primers: F: TTCAGGCCATTGGTGTTGTA (SEQ ID NO: 3) R: AAAGTTCCCACCATCCCACT (SEQ ID NO: 4) >rs12255372 TTGTCCCTTGAGGTGTACTGGAAACTAAGGCGTGAGGGACTCATAGGGGT CTGGCTTGGAAAGTGTATTGCTATGTCCAGTTTACACATAAGGATGTGCA AATCCAGCAGGTTAGCTGAGCTGCCCAGGAATATCCAGGCAAGAAT K ACCATATTCTGATAATTACTCAGGCCTCTGCCTCATCTCCGCTGCCCCCC CGCCCCCTGACTCTCTTCTGAGTGCCAGATTCAGCCTCCATTTGAATGCC AAATAGACAGGAAATTAGCATGCCCAGAATCCACGTCTTTAGTGCACTCT CTCCCCAGCTCCAAACCTGTTACTGCTTGTGITCAACATCTCAGTAAAGC TCAACAACATCGACCCATT (SEQ ID NO: 5) Primers: F: TTGTCCCTTGAGGTGTACTGG (SEQ ID NO: 6) R: AATGGGTCGATGTTGTTGAG (SEQ ID NO: 7) >rs12243326 GCTGTGAAATCCCCTGTGTAGTGGGAAGAAGAAATAGCAAATCTTAGCTG CCTTGGACCTGATATAATTATTTGTCTTCATTTACATGGTT Y ATCCTTCAAGGTTGAATAAATGATGTGGGAGCTAGTCAAGGGGCTTTAGG TATGTGATTTCATGCCTACTTTTTTTTAGGTAGAGAAACTGAGGTCACAG GGTACTAGAGAATGGACTCTAAGATTCAGGTTTCTGAATTGCCTGTGGTT TTGTTGACTCAACTGCTCTTCTGTTGTTTTTTAGCCACATGCCTTGAAAC AGTCCTCTTTCCCATGTTTCTTCATCAGCACCATTAACCCAAGGTATACT GTCCTCTCTTATCTTTCACAAGGTCTTGGAGTTCCCATGCCTTTGTAAGC ATCCCTCCCCGAGATTCAGCACCAACCAAAATCACATTTGGAAAAATTGC TTGTTTCCCAAGAAGCTTTGGAGGATATGATTTTGTATAGAACGGGTTCA CAGGTTTTCTGTTCATTCTTCTATGGTGGAGTGTGTGTGTATGTGACTCT GTCTTCTCTCCATTCC (SEQ ID NO: 8) Primers: F: GCTGTGAAATCCCCTGTGTAG (SEQ ID NO: 9) R: GGAATGGAGAGAAGACAGAGTCA (SEQ ID NO: 10) >rs7903146 AAGGGAGAAAGCAGGATTGAGCAGGGGGAGCCGTCAGATGGTAATGCAGA TGTGATGAGATCTCTGCCGGACCAAAGAGAAGATTCCTTTTTAAATGGTG ACAAATTCATGGGCTTTCTCTGCCTCAAAACCTAGCACAGCTGTTATTTA CTGAACAATTAGAGAGCTAAGCACTTTTTAGATA Y TATATAATTTAATTGCCGTATGAGGCACCCTTAGTTTTCAGACGAGAAAC CACAGTTACAGGGAAGGCAAGTAACTTAGTCAATGTCAGATAACTAGGAA AAGGTTAGAGGGGCCCTGGACACAGGCCTGTGTGACTGAGAAGCTTGGGC ACTTCACTGCTACATTTCATCTCTTCGCT (SEQ ID NO: 11) Primers: F: AAGGGAGAAAGCAGGATTGA (SEQ ID NO: 12) R: AGCGAAGAGATGAAATGTAGCA (SEQ ID NO: 13) >rs4506565 CTGATGAGGGTAGGGAGCATCTGTCTGCAGCTTCATCTTCATTGTCTAGG GGCTCCAGAAATATCTGTGAGTAAATAAGTTATTTAATCTTTGCCTCAAA TTTCCAGTGACTGTAGGGATATAGCTGTGAGCCTCTAGGAGCTGAGATTT TTTAAATTTCCCACTTAAACATTTATTTAAAAATTTTGTGCTCAGCATGG ACTAAGGACTTTACATTCATTAACTCATTTACAGCTTGATCCTATGCGGT GGGCATTCATTTACAGAGGATCCCATTTTACAGGTGAGGAAGAGGCCAGC TAGGGGTGCAGCCTAGGTTAGTATTCTAGAGCTCATCAGGCTGTGTTGTC CCCAGTGAAAGAATAAGCAAAGAAGTGAATGTTGTGCATTGAGAAAAATG ACTCTCGGAGGAGGATGAGCCTCTCGGATATGGCGACCGAAGTGAT W TGGGGCCCTTGTCAAGGGTCTCTATTATGGCATCAAGAAAAGATGCTGCT TTCGGTGATGCCCGAGGAGAGCCTCAATATTTTACATGGGAAACCTAAAA AAGGGGCCATGTTGTGGTCTCTGCACCTAAGA (SEQ ID NO: 14) Primers: F: CTGATGAGGGTAGGGAGCA (SEQ ID NO: 15) R: TCTTAGGTGCAGAGACCACAAC (SEQ ID NO: 16) >rs7901695 TATTTAGAAACCATAAAATCCACCTATTTGAGGIGTACAATTGAGTGATT TTCTGTATAGTCACAGATCTGTGCAGTCATCCACACCCTCTAACTCCAGG ACATTTTCCTCACCCCCGAGGAGAAACCTCCCTTACCCATTAGCAGTCAC TCCTCATTTCCTCTCCCCCCAGCCCCTGGCAATCACTGTGGATTTGCCTG TTCTTGACATTTCATATAAATGGTATCATAAAATCTA Y GGGCTTTTGTGTCTGTCTGCTTTCACTTAGCATACGGTTCTCAAGGTTCA TCCAGTATTGTAGCATCTATCAGTATGTCATTCCITTTTATGGCCAAATA ATATTTTATTGTATGGATAGACATTTTGTTTATTCATTTATCTGTTTTTG GTTATTATGAGTAACACTACTATGAACATTTTGCACAAATTTTTGTATTG ACATGTTTTCATTTCTCCTGGGTATAGTCCTATGAGTGGAATTGCTGG (SEQ ID NO: 17) Primers: F: TATTTAGAAACCATAAAATCCACCTAT (SEQ ID NO: 18) R: CCAGCAATTCCACTCATAGGAC (SEQ ID NO: 19) >rs11196205 TTGTCTCCTTTTGTTTCTGCTACTGTGAATGATCCTGTGATGATCATCTT TGTGTGTAAATCTTTGTCCCCTCGCCCCCTCCCCTTTTATTATTTTCTTG GGATAGACCCCAGGACAAAAGGTAGAAAAGAACAAAGTGTTAAAAAATTT CTTGATACATAGCCACAGATTATTTTCCTGAAAGTTCTCAACATTTATAA CTAC S AGCAGTATGTAAGAGAGTTATGGTTGGAATGATTTTAATGTCTCTGGGGA ATTTAACAACAAAAAAACTTTAGGCTTCTTTGGAGAGAGACATGCCCTTA ACTCCACCCCGCCCTAGAACAGAGACCCAGCCCATCCAAGTCAGCCTCCC CAGGTCCTCCACCTTCAAAACAGGCAAACGAAATCATTTCTTGAATAATT GGTAGGCTTCAAGGTCAGATGTT (SEQ ID NO: 20) Primers: F: TTGTCTCCTTTTGTTTCTGCTAC (SEQ ID NO: 21) R: AACATCTGACCTTGAAGCCTAC (SEQ ID NO: 22) >rs7895340 TCAGGGACAGTGCATAGGTGTAAAGAAGTTGCTGGTTGGGGGTTCTAATG CAGGTTTCTCCAAAAGTGAATGCCCTGTTAAAAAAAAATTCTTAACAAAT ATACAGAGATTTTTTTTTTAAAAAAGTGTGACAGTTCTAGACACCTAGAG AGTAAA R TGAAGAAGCCTGTTTTCAGGTTTCCCGCCTCCCTGAATTTCCCAGCATGG TCCAGGCTTTGAAATTTATTTATCTGCTTTTGGCAATGGTTGATGGGAAT TTCCCACATTTATTTTTTAGCTACAGAGAAAGGACATTATCTTTAAAATC TCTTCGTTGTTCTCTCTCTTTGA (SEQ ID NO: 23) Primers: F: TCAGGGACAGTGCATAGGTG (SEQ ID NO: 24) R: TCAAAGAGAGAGAACAACGAAGA (SEQ ID NO: 25) >SG10S405 TATTTAGAAACCATAAAATCCACCTATTTGAGGTGTACAATTGAGTGATT TTCTGTATAGTCACAGATCTGTGCAGTCATCCACACCCTCTAACTCCAGG ACATTTTCCTCACCCCCGAGGAGAAACCTCCCTTACCCATTAGCAGTCAC TCCTCATTTCCTCTCCCCCCAGCCCCTGGCAATCACTGTGGATTTGCCTG TTCTTGACATTTCATATAAA Y GGTATCATAAAATCTATGGGCTTTTGTGTCTGTCTGCTTTCACTTAGCAT ACGGTTCTCAAGGTTCATCCAGTATTGTAGCATCTATCAGTATGTCATTC CTTTTTATGGCCAAATAATATTTTATTGTATGGATAGACATTTTGTTTAT TCATTTATCTGTTTTTGGTTATTATGAGTAACACTACTATGAACATTTTG CACAAATTTTTGTATTGACATGTTTTCATTTCTCCTGGGTATAGTCCTAT GAGTGGAATTGCTGGGTCATATAATAAATAACTGTTTAACATTTTGGGGA GCTGCCAAACTTTTAAAACCTTGGGTTCTGTGATGTACCAGTTGTGTTAG GCA (SEQ ID NO: 26) Primers: F: TATTTAGAAACCATAAAATCCACCTAT (SEQ ID NO: 27) R: TGCCTAACACAACTGGTACATC (SEQ ID NO: 28) >SG10S428 TGCCAGGGGTTTTATGGTTAATTTTCCTCCATTATGAGGGTTGACTCAGC CTTGGGTATTAGATGTCTTTGAGAATCCAGGGTTCAAATACCACAGCTGG TAGAATGTTTCTCAACTTGGAGCCAATCTCCATCTACTGAAGGTACGCTG GTTTAGACAGACAACAGGGACATCAGCATTTTAAAAAGCGGTGGAAAAAG TTTGCTTGTCTTGATTGGAGCCATGACATTTTATTTTGAAATTTCAAATA ACATGAAGGGAGGTTTGGAGCGGTTTTTGGTTTATCCAAAGGGCAGTGGA TTGAAGGCTGAGAAACACCAGGCTGAATGGGAGAGGGGTTGGGGTCCCCC TGTGAGATAGTGAAACAATGGTAGTGCCATCCAATGATAGGCACTTTTCT GTCATTCAGAAGCAGAAAGGGGGCCAGAGGCCCATTGGCCTTACTGGG M AGTAAGCTGTAGAGCTGCTGCCTTTTCGTGAAAGGGTTGACACCAACCTT CTCCCCCAGGAAGAGTGACCAGGGACCTGAGGGGCATGGTCGAGCAGATG ACAGCCTTTGTAAAACATCTCC (SEQ ID NO: 29) Primers: F: TGCCAGGGGTTTTATGGTTA (SEQ ID NO: 30) R: GGAGATGTTTTACAAAGGCTGTC (SEQ ID NO: 31) >SG10S422 TTGGTAGAGATGGGGTCTCCTAGGCTGGTCTTGAACTCCTGG R CTCAAGCAATCTTCCTGCCTCAGCCTTCCAAAGTACTGGGATTACTGGCG TGGGCCACCATGCCTGGCTTGAAATTTTTCTATGGCTTTATTCTTTCTCC AAGTACAGAGTCTACCCAACCTICTGAGATCTTTGGTTTTCTTTTCCTAG GTAACTATAGTACATACTTATTTATGTTAAACAACAGCAATCACACATTT CTTTTTCTATACAGTCATGCTTTATAGGCAAATAAAGCCTCCGTCTTAGG CTTTCTGGATTTTTTCAAAAGATGCAATTCCTGGAGTATGTTTTTACTTA GAGCAAAGCAGCCTAGTCTCCTATACCTTCTGCATCTGCAGAAAAGTTGG TTAAACAGACTTTGTAATGATGCCCCTTACAATTCTGAAGGGACTTGTGA AATAGTTTCACAGAGTTTCAGTGTTAGGTATATTTGATCAATGCTAACTT TTGGAAAACTTTGGTGCCTGTATGATTCAGAGGGTAGGGCAGAATATTAA ATTAATCACAACTTCTTGTATTTTAACCATTCTGGGTAAATTGGGATTCC GTGACGCCCAGGCAAAATTAT (SEQ ID NO: 32) Primers: F: TTGGTAGAGATGGGGTCTCC (SEQ ID NO: 33) R: ATAATTTTGCCTGGGCGTCA (SEQ ID NO: 34) >SG10S427 TATCTTATATCCCCTCCAAGCATTCATTAACTGATGGATTAGTGAGTTGG CCTTGAGAAGCATAAAGGCTCGTCTCCATGTGCTTCTAAGCATTGTGTCT AAGTTCTGTTTGGTTTCCTGAGTGAAACTGTCTTAATGTTACCAACAGAA GTTAAATGCCTAAGAG W TTCTTATACATGGGCTGAGTACCTCTGTGACTGGGCAAGCCACCTCACCT CATTTTACCTTGTCTGCAAAATGAGGAACTGGGTCAACTCATCGTTCAAA TCTCACTGAAAGCTAATTGATCGCTTTTGACAGAAGTAGCTCCCTTGGGC CGTATATTTATTTCCTAGCTTGGAGGAAGGIGGGGACAGACAGAATTGAT GTACACCTITATTTTTATCTCTATGGTAAACCTGTGCATACTAAAGCATT CCTCTGGTCTTTTGAGATGAGTGTATACATTGTGTCTGGCCCTGTGCATT TTTTACCAAGAAGTAAGTTTTGTTGAGTAAACTTGGGTTGTATGAAGAAC TGCATGCTCACCGTACTCAAGTAGCTTTTGCTACCTAAAGGACAGCTGCT CATATGTACTTGACTTCCTTTAAAGTGAAGGATGATGACATTTGAAAAAC GGAGGTTGAAAAGGAG (SEQ ID NO: 35) Primers: F: TATCTTATATCCCCTCCAAGCATTC (SEQ ID NO: 36)

R: CTCCTTTTCAACCTCCGTTTT (SEQ ID NO: 37) >SG10S408 TTGAGCATGTGTTATTTAATGAGTTATACCTCTGTCATATGTGTGTGTTT ATATCACAAAATAACTTATTTTTATAAAACCATATTTTGAGTCATCATTT GTGACAATGTCTTCTTTTCTCTGGTATAAATGAGGCATGTAGAAAGAAGA TTGACATTTGCTAGAAGCTTCCCCTTTCCTCTAACTCCACAATAAAATGG ATGCTCATAATTACATCTGCTCCTATAAGGTCAAGATTTCAGGGCTGGAA GTGACCTTAGATCATTTAGGCCCAACTTGCCCTCAGGAAAGGAAACTGAG GCCCAGAGATGCCTTAAGTGAATTGCCCAATGTCACACGCTGAGTCAGTG GCCAGAGCAAGGCTTGGATCCAGTTCTCTGCTCCCTTTCCAGAGCCTTGT GATGTCTTCTCTCCTACAGGAGGTGAAAATAACTGCTGTGGCTGGTTCTG TTTTGCTGACTGTAAATTGGGTCATGGTCAGGGACAGTGCATAGGTGTAA AGAAGTTGCTGGTTGGGGGITCTAATGCAGGTTTCTCCAAAAGTGAATGC CCTGTTAAAAAAAAATTCTTAACAAATATACAGAGATTTTTTTTT W AAAAAAGTGTGACAGTTCTAGACACCTAGAGAGTAAAGTGAAGAAGCCTG TTTTCAGGTTTCCCGCCTCCCTGAATTTCCCAGCATGGTCCAGGCTTTGA AATTTATTTATCTGCTTTTGGCAATGGTTGATGGGAATTTCCCACATTTA TTTTTTAGCTACAGAGAAAGGACATTATCTTTAAAATCTCTTCGTTGTTC TCTCTCTTTGAGTGAGGAGAGAAGATGTGAATCCTGGCAGTGGTTCAGAG TGGACACAGCCCCTGTGTTTGTGGCATAGGCTCTGTGGGCCCCATGCCAG GGAGCAGTACCCCCGTGTAAAGGAGTGGGGGTTTGTCCATTTGGATAGAG CAAAGATCCTCCACCTCAAATCCCACAAGAACAGTTGCCACAACCTGGGC CCTAAGCATCTCATTTTCCTATGTAGAAATTAATGATCTGGAGGAGATGG CAAAACATTCCTTCCAGAGCCTGTGTGGATTTTGG (SEQ ID NO: 38) Primers: F: TTGAGCATGTGTTATTTAATGAGTTA (SEQ ID NO: 39) R: CCAAAATCCACACAGGCTCT (SEQ ID NO: 40) >SG10S409 TAGTGCTCAGTATTTCCAACGTTCTGTTTATTTAAGATGAAAATTGCTGT AGTTAATAAGCACTTCCCCATGTCATTAAAATGCTTAAGGATTTTTAATG ACCACATAACAGTCCATAATATGATTAAACCCCAATTTACTGAATCAATG CCATATTGTTGGGTCTTTAGATTGTCTCCTTTTGTTTCTGCTACTGTGAA TGATCCTGTGATGATCATCTTTGTGTGTAAATCTTTGTCCCCTCGCCCCC TCCCCTTTTATTATTTTCTTGGGATAGACCCCAGGACAAAAGGTAGAAAA GAACAAAGTGTTAAA M AATTTCTTGATACATAGCCACAGATTATTTTCCTGAAAGTTCTCAACATT TATAACTACGAGCAGTATGTAAGAGAGTTATGGTTGGAATGATTTTAATG TCTCTGGGGAATTTAACAACAAAAAAACITTAGGCTTCTTTGGAGAGAGA CATGCCCTTAACTCCACCCCGCCCTAGAACAGAGACCCAGCCCATCCAAG TCAGCCTCCCCAGGTCCTCCACCTTCAAAACAGGCAAACGAAATCATTTC TTGAATAATTGGTAGGCTTCAAGGTCAGATGTT (SEQ ID NO: 41) Primers: F: TAGTGCTCAGTATTTCCAACGTTCT (SEQ ID NO: 42) R: AACATCTGACCTTGAAGCCTACC (SEQ ID NO: 43) >SG10S406 TAGTGCTCAGTATTTCCAACGTTCTGTTTATTTAAGATGAAAATTGCTGT AGTTAATAAGCACTTCCCCATGTCATTAAAATGCTTAAGGATTTTTAATG ACCACATAACAGTCCATAATATGATTAAACCCCAATTTACTGAATCAATG CCATATTGTTGGGTCTTTAGATTGTCTCCTTTTGTTTCTGCTACTGTGAA TGATCCTGTGATGATCATCTTTGTGTGTAAATCTTTGTCCCCTCGCCCCC TCCCCTTTTATTATTTTCTTGGGATAGACCCCAGGACAAAAGGTAGAAAA GAACAAAGTGTTAAAAAATTTCTTGATACATAGCCACAGATTATTTTCCT GAAAGTTCT S AACATTTATAACTACGAGCAGTATGTAAGAGAGTTATGGTTGGAATGATT TTAATGTCTCTGGGGAATTTAACAACAAAAAAACTTTAGGCTTCTTTGGA GAGAGACATGCCCTTAACTCCACCCCGCCCTAGAACAGAGACCCAGCCCA TCCAAGTCAGCCTCCCCAGGTCCTCCACCTTCAAAACAGGCAAACGAAAT CATTTCTTGAATAATTGGTAGGCTTCAAGGICAGATGTT (SEQ ID NO: 44) Primers: F: TAGTGCTCAGTATTTCCAACGTTCT (SEQ ID NO: 42) R: AACATCTGACCTTGAAGCCTACC (SEQ ID NO: 43) >SG10S407 TGCTATGTCCAGTTTACACATAAGGATGTGCAAATCCAGCAGGTTAGCTG AGCTGCCCAGGAATATCCAGGCAAGAATGACCATATTCTGATAATTACTC AGGCCTCTGCCTCATCTCCGCTG S CCCCCCGCCCCCTGACTCTCTTCTGAGTGCCAGATTCAGCCTCCATTTGA ATGCCAAATAGACAGGAAATTAGCATGCCCAGAATCCACGTCTTTAGTGC ACTCTCTCCCCAGCTCCAAACCTGTTACTGCTTGTGTTCAACATCTCAGT AAAGCTCAACAACATCGACCCATTACTTAGGCCTCAAACCTTGGGTGGCA TCGTCGATTGCTCTTTTCTTTCATACCCCACATTCAACCCATCAGCCCAT CCCACAGGCCCAAGTGIGTCCICTCTACCTTCAAAGCGTGTGTGGCATCC ACCGCTTATCACCACCTCTGCCATTACCACTGGAGTCCAGTGCCATCATC TCTCACTTGGATGTGGCCAGAGTGTCTTTGCTGGTCTCCTTCTTGCTTCC TACCTTTGTAACAGCCTATCATCTATCTCTGGICTCCATAGCTCACTCCC ATACTTTGAGAGGGCCTTTGAAAGCCTTAGACAGATCATATCACAGACCT CTATACTGAAAGTCGGG (SEQ ID NO: 45) Primers: F: TGCTATGTCCAGTTTACACATAAGG (SEQ ID NO: 46) R: CCCGACTTTCAGTATAGAGGTCTG (SEQ ID NO: 47) >DG10S2164 CCATCTGTGGAGCAGAGTCACTGAAAGGAAATACTGGAAATACTGGAAGC CACTTGGTGTTTTATCAAGGATGTGAGGTTTCCTGGCAACTTTGTCGCCA TATCATCATCATCATCACCATCATCATCATCATCATCATCATCATCATCA TCATCATCATCATCATCTGCCCTTTAAGTTTTCTGCTTGTTTAGAAAAGA AATTTATACAGAGCCCCCAGTAGCAGCTGTAAGGGGGCAGGTTCTTGGAG CAGCCCATCCTCAACATTCTTGCTGCTGATGGAA (SEQ ID NO: 48) Primers: F: CCATCTGTGGAGCAGAGTCA (SEQ ID NO: 49) R: TTCCATCAGCAGCAAGAATG (SEQ ID NO: 50) >DG10S479 TCCACGCAGAGAGGATCTAAATCTGGCTCTTTCAATTGCCTTCATACAT GTGCATACACACCACACACACACACACACACACACACACACACACACACA CAGACACATACATATGCACACACCCCGACTCAATGGAGGACCCTC (SEQ ID NO: 51) Primers: F: TCCACGCAGAGAGGATCTAAA (SEQ ID NO: 52) R: GAGGGTCCTCCATTGAGTCG (SEQ ID NO: 53)

[0178] To further investigate the possibility that other marker alleles in the exon 4 LD block of TCF7L2 exhibit a higher correlation with type II diabetes than allele X, we used the DG10S478 genotype data generated in the HapMap CEU samples. The five SNPs from HapMap Phase I with strongest correlation to DG10S478 were, in descending order, rs12255372 (r.sup.2=0.95), rs7903146 (r.sup.2=0.78), rs7901695 (r.sup.2=0.61), rs11196205 (r.sup.2=0.43), and rs7895340 (r.sup.2=0.42). We genotyped these five SNPs in the three cohorts and the correlations between the five SNPs and DG10S478, the latter treated as a biallelic marker, were very similar to that observed in the CEU samples. All five SNPs showed association to type II diabetes. While some SNPs showed slightly higher estimated relative risks and lower p-values in one or two of the cohorts, none exhibited stronger association to type II diabetes than DG10S478 when the results for all three cohorts were combined using the Mantel-Haenszel model. However, although rs11196205 and rs7895340 clearly have weaker association to type II diabetes, compared to allele X (RR=1.56, P=4.7.times.10.sup.-18), the strength of the association to type II diabetes for allele T of rs12255372 (RR=1.52, P=2.5.times.10.sup.-16) and for allele T of rs7903146 (RR=1.54, P=2.1.times.10.sup.-17) are comparable.

[0179] Following the subsequent release of HapMap Phase II in October 2005, two additional SNPs were identified that show strong correlation to microsatellite DG10S478--rs12243326 (r.sup.2=0.961) and rs4506565 (r.sup.2=0.716). The alleles associated with susceptibility to type 2 diabetes will be C for rs12243326 (C/T SNP) and T for rs4506565 (A/T SNP).

[0180] It should be noted that among those haplotypes that carry the C allele of rs7903146, those that carry the A allele of rs10885406 have an estimated relative risk of 1.06 compared to those that carry the G allele of rs10885406, but the difference is not statistically significant (P=0.22).

[0181] In an attempt to replicate and refine this association with type 2 diabetes, we genotyped DG10S478, rs12255372 and rs7903146 in a large additional Danish cohort, consisting of 1111 cases and 2315 controls and in a more genetically diverse West African cohort, consisting of 618 cases and 434 controls derived from the Africa America Diabetes Mellitus study (23). In the Danes, all three variants were strongly associated with disease risk, as previously observed in Iceland. However, the association of allele T of rs7903146 (Relative Risk=1.53, P=4.06.times.10.sup.-14, PAR=24.4%) was noticeably stronger than that provided by the other two variants. In the West African study group, after adjustment for relatedness and ethnic origin, we replicated the association of allele T of rs7903146 to type 2 diabetes (Relative Risk=1.45, 95% C.I.=1.20-1.76, P=0.000146, PAR=22.2%), but not in the case of the other two variants. This suggests that allele T of rs7903146 is either the risk variant itself or the closest known correlate of an unidentified risk variant. The exclusion of the markers DG10S478 and rs12255372 as at-risk markers in the West African group was possible because unlike in populations of European ancestry, where the T allele of rs7903146 occurs almost exclusively on chromosomes carrying both allele X of DG10S478 and allele T of rs12255372, in West Africans the T allele of rs7903146 occurs with both alleles of DG10S478 and rs12255372. This is consistent with the observation that T is the ancestral allele of rs7903146, whereas allele X of DG10S478 and allele T of rs12255372 are both different from the chimpanzee reference sequence. More generally, this finding is also consistent with the expectation that relatively diverse populations, such as those of West Africa, provide the means to refine association signals detected in regions of strong linkage disequilibrium in more homogeneous populations.

Discussion

[0182] In this study we describe the identification of a novel candidate gene for type II diabetes within the previously reported 10q linkage region (10), encoding transcription factor 7-like 2 (TCF7L2--formerly TCF4) on 10q25.2. We show that it confers risk of type II diabetes in Iceland, Denmark and the US with similar frequency and relative risks. While the variant does not explain a substantial fraction of the familial clustering of type II diabetes, the population attributed risk of at least 20% is significant from a public health point of view. Compared to the non-carriers, the relative risks of heterozygous carrier of the at-risk composite allele (approximately 38% of the population) and homozygous carriers (about 7% of the population) are 1.45 and 2.41, respectively. Hence, this variant has enough predictive value to be of clinical use.

[0183] We report the variant as a type II diabetes-associated microsatellite, DG10S478, within the third intron of the TCF7L2 gene. The TCF7L2 gene product is a high mobility group (HMG) box-containing transcription factor which plays a role in the Wnt signalling pathway. This pathway is considered one of the key developmental and growth regulatory mechanisms of the cell; it is mediated by secreted glycoproteins, known as Wnts, which initiate many signalling cascades within target cells upon binding to a cognate receptor complex, consisting of a member of the Frizzled family and a member of the LDL receptor family, Lrp5/6 (24). Wnt signaling uncouples the central player in this pathway, .beta.-catenin, from the degradation complex and translocates it to the nucleus where it transiently converts TCF factors from repressors into transcriptional activators (25). The .beta.-catenin protein is also important for mediating cell adhesion through its binding of cadherins (15).

[0184] The NCBI RefSeq for TCF7L2 contains 14 exons. However, Duval et al (26) showed that TCF7L2 has 17 exons, of which 5 are alternative; in addition, it was reported that three alternative splice acceptor sites are used. This study also demonstrated the alternative use of three consecutive exons located in the 3' end of the TCF7L2 gene which change the reading frames used in the last exon, leading to the synthesis of a large number of TCF7L2 isoforms with short, medium, or long COOH-terminal ends.

[0185] Similar to TCF7L2, five of the six positionally cloned genes for the rare Mendelian forms of Type II Diabetes, namely maturity-onset diabetes of the young (MODY), are transcription factors (27). Additional transcription factors have been implicated in the pathogenesis of type II diabetes, including peroxisome proliferator-activated receptor gamma (PPAR.gamma.) (7) and the forkhead gene family (28, 29). Noble et al described a missense mutation (C883A) in the related TCF7 gene in type 1 diabetes (30). However, it is not clear if TCF7 and TCF7L2 operate in the same pathway with respect to the pathogenesis of diabetes.

[0186] Mutations have been described in the TCF7L2 gene, including the deletion of an A in an (A).sub.9 coding repeat (exon 17) (26, 31-33) and a number of mutations in colorectal cell lines (26). DG10S478 resides within a clearly defined 74.9 kb LD block (CEPH Caucasian HapMap Phase II) that encapsulates exon 4 and flanking intronic sequences 5' and 3' to the exon. It is possible that DG10S478 is the causative variant itself; it is also possible that DG10S478 is a surrogate for an underlying variant that affects transcription, splicing or message stability. Such a variant is likely to be in strong LD with DG10S478, i.e. the variant resides within the exon 4 LD block of TCF7L2

[0187] Several lines of evidence suggest an enteroendocrine role of this gene in the pathogenesis of type II diabetes. Firstly, TCF7L2 has been implicated in the development of colorectal cancer (34) and small-molecule antagonists of the oncogenic TCF/.beta.-catenin protein complex have been already described (35). In addition, TCF7L2-/- mice, which die within 24 hours after birth, lack an intestinal epithelial stem-cell compartment (36). Variants of the TCF7L2 gene could influence the susceptibility to type II diabetes through altering levels of the insulinotropic hormone glucagon-like peptide 1 (GLP-1), one of the peptides encoded by the proglucagon gene whose expression in enteroendocrine cells is transcriptionally regulated by TCF7L2. In concert with insulin, GLP-1 exerts crucial effects on blood glucose homeostasis (12). GLP-1 analogs and inhibitors of dipeptidyl peptidase IV are currently in clinical development.

[0188] The references cited in this specification are incorporated herein in their entirety.

REFERENCES

[0189] 1. A. F. Amos, D. J. McCarty, P. Zimmet, Diabet Med 14 Suppl 5, Si (1997). [0190] 2. P. Zimmet et al., Am J Epidemiol 118, 673 (November, 1983). [0191] 3. W. C. Knowler, D. J. Pettitt, M. F. Saad, P. H. Bennett, Diabetes Metab Rev 6, 1 (February, 1990). [0192] 4. B. Newman et al., Diabetologia 30, 763 (October, 1987). [0193] 5. A. H. Barnett, C. Eff, R. D. Leslie, D. A. Pyke, Diabetologia 20, 87 (February, 1981). [0194] 6. A. L. Gloyn, Ageing Res Rev 2, 111 (April, 2003). [0195] 7. D. Altshuler et al., Nat Genet. 26, 76 (September, 2000). [0196] 8. A. L. Gloyn et al., Diabetes 52, 568 (February, 2003). [0197] 9. Y. Horikawa et al., Nat Genet. 26, 163 (October, 2000). [0198] 10. I. Reynisdottir et al., Am J Hum Genet. 73, 323 (August, 2003). [0199] 11. R. Duggirala et al., Am J Hum Genet. 64, 1127 (April, 1999). [0200] 12. F. Yi, P. L. Brubaker, T. Jin, J Biol Chem 280, 1457 (Jan. 14, 2005). [0201] 13. S. E. Ross et al., Science 289, 950 (Aug. 11, 2000). [0202] 14. E. A. Jansson et al., Proc Natl Acad Sci USA 102, 1460 (Feb. 1, 2005). [0203] 15. W. J. Nelson, R. Nusse, Science 303, 1483 (Mar. 5, 2004). [0204] 16. C. T. Falk, P. Rubinstein, Ann Hum Genet. 51 (Pt 3), 227 (July, 1987). [0205] 17. J. D. Terwilliger, J. Ott, Hum Hered 42, 337 (1992). [0206] 18. J. R. Gulcher, K. Kristjansson, H. Gudbjartsson, K. Stefansson, Eur J Hum Genet. 8, 739 (October, 2000). [0207] 19. Y. Z. R. Bagger, B. J.; Alexandersen, P.; Tanko, L. B.; Christiansen, C, J Bone Miner Res Suppl 1, 1 (2001). [0208] 20. G. Benson, Nucleic Acids Res 27, 573 (Jan. 15, 1999). [0209] 21. R. C. Lewontin, Genetics 50, 757 (October, 1964). [0210] 22. W. G. Hill, A. Robertson, Genetics 60, 615 (November, 1968). [0211] 23. C. N. Rotimi et al., Ann Epidemiol 11, 51 (January, 2001). [0212] 24. C. Prunier, B. A. Hocevar, P. H. Howe, Growth Factors 22, 141 (September, 2004). [0213] 25. J. Huelsken, W. Birchmeier, Curr Opin Genet Dev 11, 547 (October, 2001). [0214] 26. A. Duval et al., Cancer Res 60, 3872 (Jul. 15, 2000). [0215] 27. S. S. Fajans, G. I. Bell, K. S. Polonsky, N Engl J Med 345, 971 (Sep. 27, 2001). [0216] 28. C. Wolfrum, E. Asilmaz, E. Luca, J. M. Friedman, M. Stoffel, Nature 432, 1027 (Dec. 23, 2004). [0217] 29. J. Nakae et al., Nat Genet. 32, 245 (October, 2002). [0218] 30. J. A. Noble et al., Diabetes 52, 1579 (June, 2003). [0219] 31. A. Duval et al., Cancer Res 59, 4213 (Sep. 1, 1999). [0220] 32. A. Duval et al., Oncogene 18, 6806 (Nov. 18, 1999). [0221] 33. H. R. Chang et al., Cancer Lett (May 16, 2005). [0222] 34. N. A. Wong, M. Pignatelli, Am J Pathol 160, 389 (February, 2002). [0223] 35. M. Lepourcelet et al., Cancer Cell 5, 91 (January, 2004). [0224] 36. V. Korinek et al., Nat Genet. 19, 379 (August, 1998).

[0225] While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

Sequence CWU 1

1

53174930DNAHomo sapiens 1cttgtgtagg aactcacgct ttgtttattc agcaatcatt cctccagaaa taaccttaat 60agcaacaaga aaaaagaata ggtgtttttt gagctctatc tgccagtttc tctatatatg 120gacattatat attgcaacat aacactcaca atgcctttaa acatcatccc cgttatacag 180ataagaaaac agaatttcaa agaaggtagg ggacttgccc agggatacat agctagcaag 240tggcagcgct ggattgagtc tgggccttgt ctgaggctcg ggtcctgtca tgctctgcgg 300ttgctatgtt gacatgcaaa gggagaggca gctgctggga gtctaggtgg gtttctcttt 360gagaatgcta acgtgaaccc tcaaggtgaa tcagaatcct tttgcaagtg aataatcaga 420tgtaggttcc tgtgtctccc tgtaaaatga aagcctcttt tttccaaggt ccagtataga 480cctgaagctg ggttactctg gaatttccct ctctggctgg agtgactgag gccttgcacg 540tgacattggt gaggactcgc agcctcaggt ctggcttccc ttagcaaccc ccctttcctg 600tctctgcctc tggagttcac cattaaaaaa aaaaaaagaa aaaaagccaa aacactttat 660aaagttacat gctgggtttc ttctatgtcc tagaaactgt cttaattcat cttccccttt 720actcttatat gagcaggaag aaaaaaaaat tgctagtcaa tgctaataat tatggcatgt 780aatgtaattg gaagtgtttc actgacatgc tcatgagagt ttgcggcttc atcttcaggc 840tgggatgtag cactagactt gccttgagtg tctgcacaag cctttgatgc aggtagacca 900tattataaat aggcgcgttg ctatggtgag gatggcagtc cttgcttgct gtgggtaacc 960ttttctacct tctcggacac tgttttaaaa cacagcagcg tgatagcatt tcatttaatt 1020tggaccaagg tggggtagat gaaatgttga gatttagatc taaaatgttg ttgtggtgtt 1080tcagggggtt ctggctcacc tagtactatg gaagattttg cagattgggc ttcctcatga 1140tttatttaga aatagatttt ctaatagatg gggtgagggg agggtggtgg gcagaaggct 1200gggctttctt ctcttccccc tcctcctttc attgagcgct tctgcgaatg tgttggcttt 1260gatgccccag gagctcatac agtgaaatgg aagttcaggt tggcacgttg cagaaatgat 1320tattcctggt agtacgtttc ccattactgt taataatata aagacaattg cctgcctctc 1380aggactcctg cacgtggcta cagtcatttc ttcatggaat tagacacata gcagtgggga 1440ccaggagtgt tttattagtg attgtcctcc tgcaagtttc cagggtatct cagcttagac 1500acatgaatta ttttttcctg ttgcttggag ggtatacttt taattatatt cattcaataa 1560cagagcagtt caggtttgta aaatattttt tctcccccaa ccttttcccc agcatacatc 1620cccgtcccgt aagtttctgg gcagagacaa tctcaggaac ctaaaggttg ctaaaaaatt 1680agctagttgg ccaggcgcat gactcatgcc agtaatccca gcactttggg aggctgaggt 1740gggtggatcg cttgagccca gaaattcgag accagcctag acaacatggc aaaaccctgt 1800ctctacaaac aaaacaaaat ctagctgggc atggtggtgc atgcctgtag tcccagctac 1860tggggaggct gaggtgggcg ggcgattgag ctcaggaggt ccaggctgca gtgagccgtg 1920attgtgccac tgcactgcag cctggatgac tgagtgggac cctgtctcaa taataaataa 1980ataaataaat aaaaaataaa aaaaattagc tagccaagct gcttataggt cttttacatg 2040gccaagccac tttctcacct ttaaaatggt aataacgttt ccgtactcat ctcaatgggt 2100tttgagtgcc aagacagacc gtttgatgga agccctctgg ggagaaaaat gctacccaag 2160acaggctttt caattggaga ctgatccatt ggtgttttgg tcagttggtg ttgaaatccc 2220tatttttcca gctcaggact gcctctctcc ctggaactct tcccgaggtg agttctgcag 2280ccttccttgg gaactctcag cctctggatc ccttcttgcc aggtggagtg gacatgccaa 2340agttgtgggc cagactcgga ctgcctggct tgtctcagca cctttgggga cccacttccc 2400ctctctggga actggggaag ctaacagaga tcttgctagg ggggtggaat cctgtatcca 2460tgtgaggttg tacccccagg ctcctgagtg gtttgaaagt ggggaaccct ggccgggcgc 2520ggtggctcat gcctataatc ccagcacttt gggaggctga ggcgggcgga tcacaaggtc 2580aggagatcga aaccatcctg gctaacacga tgaaaccccg tctctatgtg cgtggtggct 2640ggcacctgta gtcccagctg ctcgggagtc tgaggcagga gaatggcgtg aacccgggag 2700gcggagcttg cagtgagccg agatcgcccc actgcactcc agcctgggcg acagagcgag 2760actccatctc aaaaaaaaaa agaaagaaaa aaaaagaaag tggggaaccc ctcccccagg 2820atgagaagag ccatggggtg agtctctgcc accgccaagg ggagtcaggc tcagaggctg 2880ctacagggac agccagctct ctttagatgg tccccaccat ctagtcaggg cttgttacat 2940atggagcaga gacagcgcag gctgctgctg ttttcctgga gaaggcccct gtcggtctgt 3000tcagctgtag ctgacctttc ctccttgtgc tttttgggga gggagccttg gaaggagtag 3060ggcacgtggg gcactctgct tcccggcccc acactggcga acctatggat tctgcctctg 3120attcctgagg aaacatcact gtgaaggtgg aatgagccac atacagaggt ggctgttggg 3180gccggggagg ggtgaaacgc ccccagggtg tacattgcac caaaagccag gctgcatata 3240gacctcagga tgggctggct tttctattta tttagaagta tttccagagg gtaacctcat 3300tggctacaaa gcatgtctga acaagagctc cgttgttcat tcccagccct gttaccctgg 3360caggatgcag actccaggcg gcctgttggt caggccttgg actcagagag cagtgaagcc 3420tgaggagggg tggggggcag aggcgtgagt ggtctagggc ctcagtccct ccaggacacc 3480ccttgccaag cgcagagaaa gctctgccca tccgtcccct caggcagtgg gattgggcaa 3540cctgggaagc agtgaatgtg cgtcggtagc atagattcca ttccgcacgc caccctcgcc 3600tccgcccccc agccctggga gggatgcatg ccctccggga gacacccaga cccgacagag 3660aggcctttgt tggagctgga ggtgagaatc tgtgggcgtt gggattcctg ggttcgagtt 3720ccagctcact gccaattgcc cgagtgctgg gcgaacattt ctggaatcaa aaggagtgca 3780gcctgcccag cagggcctac gggagccgga ggctgcaggg tgctaagatt gcgttatctt 3840taccaagtgc ccggagctcc tgggagggaa gagagagtcc taggactcag gataggaggt 3900ggttggagtt tctcgaggaa gactccatgc tttggttctg gcccctggaa acccctcctg 3960aggactggac ctccaagcag accccctctg tgactccgga atgcagtgtt actctcttat 4020atttttcttt cttttttttt ttttgagacg gagtctcact ctgtcaccca ggctggagtg 4080cagtggcacg atctcggctc actgcaacct ccgccctccg agttcaagcg attctcctgc 4140ctcagcctcc caagtagctg ggattacagg tgcctgacac cgcgcctggc taattttttg 4200tatttttagt agagatgggg ttttaccatc ttggccaggc tggtcttgaa ctcctgacct 4260cataatccac ccgcctcggc ctccgaaagt gctgggatca caggcgtgag ccaccgcacc 4320cggccactgt cttgtatttc taacgtcccc ctgacttttc tgatcatgta attcttaact 4380ttctcaaaac tgagatttgt cacgtgtcct ctccccactc cattttgtga atcagagtct 4440tccaggggca ggacctggag aatgggtctt tattaacaca catgtgaaaa tgcttttgcc 4500agcaaggcgc ggtggctcat gcatgtaatc ccggcacttt gggaggccga ggcaggcgga 4560tcacttgagg tcagcctggc caacatggta aaaccctgtc tctactaaaa atacaaaaat 4620tagctgggtg tggtcgtggg cacctgtagt cccacctact cgagaggctg aggcatgaga 4680atcactggaa cccaggaggt agaagttgca gtgagccgag atcacaccac tggactccag 4740cttgggtgat agagtgagac tctgtctcaa aaaaagaaaa aaaaaagaaa atgcttttgc 4800catgggctgt ctcctgcttc tgctttgcat tgggcctctg tacctaggtt gcaagattcc 4860tcagggtgca cctgggctta tcgttatctg taagttatcc cagcaagcac ttaaaacaca 4920gtgttggacg atgaatcccc tctacaagag agggacaggg caaaaacgac acctcttgcc 4980tcgcaagctg tcttgggcca aacctcaggt ctattctttc ttttttttga aagtagtggc 5040tgggcacggt ggcttacgcc tgtaatccta gcactttggg aggccaaggc gggcggatct 5100tgaggtcagg agttcgagac cagcttggcc aacatggtaa aactccatct ctactaaaaa 5160tacaaaaatt agctgggcgt ggtggcgcat gcctgtagac ccagctactc aggaggctga 5220ggcaggagaa tcacttgaac ctgagaggca gaggttgcag ttagctgaga ccatgccatt 5280gcactccagc ctgggcggca gagcgagact ctgtctcaaa aaaaaaaaaa aagaaagtag 5340cagctctact gagatattta gaaaccataa aatccaccta tttgaggtgt acaattgagt 5400gattttctgt atagtcacag atctgtgcag tcatccacac cctctaactc caggacattt 5460tcctcacccc cgaggagaaa cctcccttac ccattagcag tcactcctca tttcctctcc 5520ccccagcccc tggcaatcac tgtggatttg cctgttcttg acatttcata taaatggtat 5580cataaaatct atgggctttt gtgtctgtct gctttcactt agcatacggt tctcaaggtt 5640catccagtat tgtagcatct atcagtatgt cattcctttt tatggccaaa taatatttta 5700ttgtatggat agacattttg tttattcatt tatctgtttt tggttattat gagtaacact 5760actatgaaca ttttgcacaa atttttgtat tgacatgttt tcatttctcc tgggtatagt 5820cctatgagtg gaattgctgg gtcatataat aaataactgt ttaacatttt ggggagctgc 5880caaactttta aaaccttggg ttctgtgatg taccagttgt gttaggcagc acagcaaaat 5940gtgacttttg attgccagaa acaatattta aaaagtggtt ataaaaagtg gtttgggagg 6000ctgaggcagg aggatcactt gagcccagga gtttgagacc agcctgggca acatagtgag 6060accctgttaa aaaaaaagaa ggccaggcac agtggctcat gcctgtaatc ccagcacttt 6120gggagactga ggcgagcaga tcacctaagg tcaggagttc cagaccagcc tggccaacat 6180ggcgaaaccc catctctact aaaaatacaa aaattagcca ggcctggtgg tgggcgcctg 6240taatcccagc tactcaggag gcttgaggca ggagaatcgc ttgaacctgg gagactgagg 6300ttgcagtgag cggagatcat gccattgcac tccagcctgg gcaacaagag cgaaactgtg 6360tctcaaaaca aatgaaaaga aaaggctgtc atgttagatc caccctcctc ctcaggggaa 6420cccctgggct gctctctggg tagagatggg aacccaggcc tcgggccagt gagtggaagg 6480aaactttggg atgattgact tgggactggg ctagaggtga agaatctccc agtaggcaaa 6540gttcggcctt acgttttttt gtttcaagca aaccacatca ttacccacag aggccattgg 6600tgagatattt gtaagtctcc tgacagtggc tggagttcgt tgcttggttg ttgtttctct 6660gtctcagccc tggagatggg agtgaccacc tgctctctct ggacagaggc tgtccacgtt 6720catgcaattc cttggacacc ggtggtgcag cgggaggcgt aactgggagt gggagaccct 6780gaactgtgcc ggttcttgca gagtatcact gtgacttcag gcgagtcacc ccacatcagg 6840cagctcagaa caagggattg atctagaagg acctttcacc tgggctattc tgtgactcaa 6900attatcttct cctaagccca ctactgcctg gtgtgttggt taaattagcc taaaggtcat 6960tccctcggag aggccctctg ggaaacctcc ctttcctgag agtcactgct tgctggcgcc 7020tgcccctggg gttccttcag agtcgtgatc atgccctggc ctcttccttt atttggcagt 7080cccttccctt ccccatccct gatgagggta gggagcatct gtctgcagct tcatcttcat 7140tgtctagggg ctccagaaat atctgtgagt aaataagtta tttaatcttt gcctcaaatt 7200tccagtgact gtagggatat agctgtgagc ctctaggagc tgagattttt taaatttccc 7260acttaaacat ttatttaaaa attttgtgct cagcatggac taaggacttt acattcatta 7320actcatttac agcttgatcc tatgcggtgg gcattcattt acagaggatc ccattttaca 7380ggtgaggaag aggccagcta ggggtgcagc ctaggttagt attctagagc tcatcaggct 7440gtgttgtccc cagtgaaaga ataagcaaag aagtgaatgt tgtgcattga gaaaaatgac 7500tctcggagga ggatgagcct ctcggatatg gcgaccgaag tgatatgggg cccttgtcaa 7560gggtctctat tatggcatca agaaaagatg ctgctttcgg tgatgcccga ggagagcctc 7620aatattttac atgggaaacc taaaaaaggg gccatgttgt ggtctctgca cctaagatac 7680taaaggaaat attttatgga gagatgcaac atgtcaggcc ttggagggaa accccaggat 7740ccagatggtt gcactctcaa accagggccc ccctcacctt ggccttcagc atttagtgtt 7800ggaaccaata gcataagctt tggtcaggac ctttgatgga agccacagtg ctcattagtg 7860accacggttg actaccttct ctctcctaag ctgacttctg gagggcacct gggatttccg 7920gccagtgatc agtgctggtg aagcctgaag gccaatgtgt aggtttagct gttcagtcag 7980aacccaaaag gggccaaaga gatggtttcc ttcaacctcc actgagggaa gtgaaagtca 8040tggttcgtta aaaggctgag ctgggaccag agtctagggt tctagaggtg ggaatttcta 8100cagctttggg ggaccttgca agggcatttg ctcttctggg actgcaggga gactgtgctt 8160ctcagagatg ttagcatttg gcttggggag agagaggaaa ggagaggttc atgctccgcc 8220atgatggtgg aaagtgatgt tggtgtggtg aggagctgag ctgaattcta agtggttcca 8280gggaattaac aatgttcctg cccaagtgtc ctgttccccc acaaactaat gaggcagcag 8340gtgtctgaag agaaacattg cagaatgtct gccaggggtt ttatggttaa ttttcctcca 8400ttatgagggt tgactcagcc ttgggtatta gatgtctttg agaatccagg gttcaaatac 8460cacagctggt agaatgtttc tcaacttgga gccaatctcc atctactgaa ggtacgctgg 8520tttagacaga caacagggac atcagcattt taaaaagcgg tggaaaaagt ttgcttgtct 8580tgattggagc catgacattt tattttgaaa tttcaaataa catgaaggga ggtttggagc 8640ggtttttggt ttatccaaag ggcagtggat tgaaggctga gaaacaccag gctgaatggg 8700agaggggttg gggtccccct gtgagatagt gaaacaatgg tagtgccatc caatgatagg 8760cacttttctg tcattcagaa gcagaaaggg ggccagaggc ccattggcct tactgggcag 8820taagctgtag agctgctgcc ttttcgtgaa agggttgaca ccaaccttct cccccaggaa 8880gagtgaccag ggacctgagg ggcatggtcg agcagatgac agcctttgta aaacatctcc 8940ctggtctcat cagcgatatt cgtcctgcct tccttctgag taatttccat cttaggactg 9000gagtcaggtg gagcaagatt ccatgttggt ttctgttggg cctagagtgt cacactgaga 9060cctaatttca tactttatga attctagtac tgctctcgaa ggtaagagcc gtcctctttg 9120gctgaaggtt tttgcctgca accttgcatt gtaatccagt gacacctgac gtatctgtaa 9180atttcttcaa atttctaagt gtattacaac cccgtgtgca aaagatgatt aattaattgc 9240cttgacagta aaacaaaaaa caaaaaaaag gtgtgggggt atatggtatc cctgatttac 9300tatagaagat gcagagagtg aagggagatg aggtggggag gaggggccca ggttctggtc 9360ctactttttt tttttttttt ctaaagagat ggagtcttac catgttggcc agtctaggct 9420tgaactcctg gcctcaagag gtgctctcac ctcagcctcc caaagtgctg ggattatagg 9480cgtgagccac cgagtttagc ccaggttctg tttcttgctt agtcactttc tgtttgaaca 9540aaattggaat ttcctttttg gatctgtttc tttaattgta aattgaatcg gactaaaacc 9600tttccaattt tttcacatgt gaagacatac acaaaagttt tattggaggg ttgcacatgt 9660gaaagaaaaa gggagaaagc aggattgagc agggggagcc gtcagatggt aatgcagatg 9720tgatgagatc tctgccggac caaagagaag attccttttt aaatggtgac aaattcatgg 9780gctttctctg cctcaaaacc tagcacagct gttatttact gaacaattag agagctaagc 9840actttttaga tactatataa tttaattgcc gtatgaggca cccttagttt tcagacgaga 9900aaccacagtt acagggaagg caagtaactt agtcaatgtc agataactag gaaaaggtta 9960gaggggccct ggacacaggc ctgtgtgact gagaagcttg ggcacttcac tgctacattt 10020catctcttcg ctataaacat tttagctttt tgtgtttgct gactggcaac aatacatagt 10080gaaagttcta ataatttgta atgcttttgc atgtctttgt atttttcttg gttatcacat 10140cacatcaaat taagatactg atcagcagtg tgagaggtta tttttccatg tcctcttcat 10200tagtgttagc ttgtggatgg atttgaggct ctctgtgctt tccccccagc aaagtgaata 10260ccagactttc ctattaaaaa aagtatttta tttttcagag acagggtctc attctgtctc 10320ccaggctgga gtgcagtggc acaatcatag cccactgcag cctccaactc ttgggttcaa 10380atgatcctcc tgcctcagcc tctcttaagc agtgcctttc cccattctca tgggactttc 10440caatccatga gatactttgc tgcagggaag ccctgtctgt ccaggcctgt gtaatagacg 10500acttcacatg gtcctgtgtt gttgtttgcc ttctgtgtgg ctaagtttcc atgacctggt 10560ggcttggaag ccccatccct gatttgtggg agaggcaggg aggcaccttg tagcgcacta 10620ggcgttgggc ctgaacaagt ctgtgtgctt ccaatgtctt tgtggggagg tttacgagtc 10680cttcttatta tataatagta tcttgtctta gcttggtgcc tttcttctca gaagcttgag 10740gcactctgca gataccatct caatttgctt tctgggagga ggagaggaag ctacccaaaa 10800gatgaagttc tctgtgaggg gcttgaacac aggttgatag cgttgctggt tagttattct 10860catggtgtgg atgaaaaatg gaatacgctg aaatttcagt tactcgtcac aaaaataagg 10920cgtatgtaga aaacatcctg ggctaagggt ttgcatgctt ctagaacttc ctgttactta 10980atggctgttg agtataaacc tcgggaacag tggggatcct tggagacccc aaataacttg 11040tatttgtggt tactcctgtc ttgtctatca atacccctgt ctatatcgtg ttagaactag 11100gacacacaga ctggattcag aagctggcct ggggtttagg agaacatggg acctaatcct 11160ggccatctcg atttacctcc tggatcttgt tttctcatct gtaaaatgaa ttggggtgtg 11220gactgtttat ggcctgtagg atgctagccc tgagaatttt ctccagatat tctacggtta 11280agtaatttta ggggacactg tctaagcagt tgcctcttgg agaatgaaga tgttcattag 11340gatattgaag gctctgagaa gtcctaaagt taaagaaaat ctgcaatgtt ctttgtggga 11400ccgaataatg caacctggga aatgagggat tagatgacac ttgagtagcc ttccagatct 11460gagacgagtc tcactctgtt tgtttactcc atctgtgatg ggtgtaggca ccatcttggg 11520gagcaagctg tgatagagag ggaacaatac cttgttaatg tttgtctaat tcactaccca 11580ggtgcatggt agtgaattag acactacttt gtaggttctg gagggaagaa gaaaagacga 11640gacctgcctg gactggggct tgagaccact gtcaaataca agtacagttg tacaactggt 11700agggagtggg tcatagtatg gccggtcttt ttaaaggtga ggaattctta ggcccagaaa 11760ggcaaagtga cagatcctgg atttaaccag cagcccagat ttgaggccta gcacatagca 11820aagcaccata gctattcaat agctgccaag tgggagtttg gatgatggct ttcctggaca 11880gcgaaagcag tgatgtttgc ttaggatggc ctttggcagt gctgctgtta tccttaccac 11940tggcaagcca tctcacgggc ccggagggga gggcaaggaa tcctaattct gtgagaaggc 12000tctgggtaca tgagtgtgag atatggatac cctaggctct gcccctgaag acagtggcat 12060cggatttact gcactattcc agtcggacag gcaccttaat ttttctcttt ctgggtgttt 12120gatatggttg ggtcctattt cttctcctcc aaaccccgct agggccattc ccccaccctt 12180cacttcccgg ccttccactg cagtctctaa ggattctgct tcatctttat gtgtgaacag 12240ggttttgaca aacatgatta actgggtatt tttggaaggc tcaggaggaa cgcagagtgc 12300tccggagggc aggcctggag tcaggaatgc ttcctgcaac ctgttcgtgc agtgagcgtg 12360tcttcctcgc cctgcccttg gctggggaat gtgctggctt ggagggcagg agagtgacag 12420gcggtttgag aactccgggc tctcccgtct tcggatggct cctgtgaaag cagggcctga 12480aacttttatc gtcactgctg caggtgaaag actttcattt ggctgtagtg gtccaacaaa 12540gagtatttta tttatgtgtt tccaagccct taaaaattct tttagggcac atcagtgggg 12600agttaataga aactttgaaa taagaaaaat gcctgcaggg taagtagaac cccagccagc 12660cagctccgag ttctgtgctg ttagctggta ggttggttct cagagaagtg gctggctggc 12720tgggttacgg agcccacatc tctaatgcct tagtgttcaa tcattaagtg gatttttttt 12780tttcccttct cttcttttgg tttggaggga ggactactct aaactttact cagggcaggg 12840tagctcctga aagggctccc taacctttct ggtttatgac acaaagaaag tttggaggta 12900ctgggataag agatggcttg ggtgaccccc ctatcatgcc ccctaacaca tacacagcaa 12960accaaaccaa ctcacccttg atcatactcg ttgtttacac gaagggaatt tttattgtct 13020tgtgagtgtt gagtgatgat taaacagaag agatgtgact ccaagcctgg cttcactaag 13080atagtcttgt ttgtttcttt tcctccaaag taatttccta aagaattaaa agcccctttg 13140aaacccagca ctaccttgtc tctgattatc agcataggca ggaagggctt ttaaggtctg 13200agcccagctg tttagaggct acgagacgtg aggcaaatcc tggtatctct ctttgggcct 13260cagtttcttc atctgtgaaa tggcacagta ctaccctcca ccaaggatga tgatgagaat 13320taaatgggat gacaggtttc atccccagct cctgttctta ggaaggaaaa actgtgactt 13380atgaagcctg taggttgtgt tcaggtttgt atgaggcctc ggacttcata caaaggtatc 13440aaagtggcaa accctgatcc agatgttttc agttcagtca gctggtcctt gagcctgttg 13500tgtgccagat atcctgacca aagaagctag atgggagctg ctgtgttgtt ccttggggct 13560gctggatgca agttgtttag gtcggcggtt ttcaaatgct ggtgattttg ctcaccagag 13620gacatttggc aatgtctaga gacatttagc atggccagtc attgggaggt actcctggca 13680tctcgtgggc agaggctaag gatgctattg aacatcctgc aatgcccagg acagccccct 13740gtgacaggag tcatccagcc caacatgtca ctagtgctgc agtggagaag ccctggctgt 13800gtgtgggggt gtgtgtgtgt cctcttctac atttgataag gtaactcaca cttgctgccc 13860ccatgatcgc tgtgggggat gcttatctat gccccagtcc tggtgttggt tgatgggaac 13920atcaagattc aggcaagatg gaaaatagcc cttagaacta gcaggaaaag aatctccttt 13980catttgtcta gaggttctgt taaagtgcct ttgcttctat tttgagactt gttcttaaaa 14040aaaatgcgga tatgaaagaa aataaaaacc acattatccc tccacttttt cttggaggag 14100gatgtgttga agaagtcaaa gttcaccatc cctttagata gaatcatttt gaacaatttc 14160atatgtcaat acattttgct catctctaaa tttcatttta gagcctgtgg tgttctgtgc 14220atggatatgt gtgcgtgtat gcacacaaaa ataaaaggaa atatttattc ttatgaataa 14280gtatagaaat aaattaattt ttggaatctc aaactatcag agacttatgt aataaccaga 14340ggcaggcctg attatgtatg ggcaaagcat ttgtgaacaa tgtctccatt gtataacata 14400caaaacaagc ttttcttcca cattggatat gcaagtcggc cttctccaat aagggcctgt 14460ctctttccaa ctccccccac ctcccacctt tgagcaaaca ttatttattg tggctgatgt 14520gtgatcaggt cttgatttgg ggcctctttt tgatgccttc tctttgtggg atctcaccca 14580cgtgcccctg gagacccttt ggctgccagg gcctttgttt cccagccacc catgtggtgc 14640cagtagtgtc tgctttgtag cgagctgtcc ccagagcctc agcatggctt ggggatggtc 14700tctgaggttg ggcttggatc cctcccactt ttgggctcag aaagaatgac tgccctctat 14760ttccctgtcc ctgccctctc ttatcctgtt tcccagcccg catcatgtta tctttgcttc 14820ttgtaactta ccaaacgatt tatgggcaag taggggaggt gaagagggaa ctcatctatc 14880aagataacct actttgtgcc aaccactgag catagcaatt gtcccttctc cagccctctg 14940aggaccgtgg atgggattct catgaaatga aacaggtgag gaacttttct tttagggaac 15000ttgcttgagg tcccacaggc agcgagtatc aatcaacgtc

aggatctgag ccctgttctg 15060ttcggctgaa aatatactcc ctgagatggt gtaggccacc atggctttca gcaggctctg 15120tgcttggtgg aaggaagctg gaagctgtgt acacacccac ggggaacagg gaccatagag 15180gagcaccttt tgagtgcaga acctggcgaa acatacacct ttagagggat tttaggtacc 15240cttgaggctg ggagaatcaa gcagagctaa gtttcccatt ggggtgtcac agactgaaga 15300aacagagccc taggtagcac agggaagttg attgcccagt atcagttagt ttggctttaa 15360tgactgagaa gagattccac cagttcattg aagagagggc ggacttttta ttggaggaaa 15420gaagagtgcc tgtaagtaga gaagtctccg gggtgtagtg ctgtttgggg caggaagaac 15480agtgtgagcc actgtggaga gaaagcccaa agagtcttgg cagggcaggg agtaggatgg 15540atttgaagcc agaggaagta tggggtctct gtagactcca ggcaagccat gttaatattt 15600taggaagccg tgatggagct gcagatgggt gtggaagtta aagtttaact gttcattcac 15660cagtccttcc cctggagaat gtgcagcacg tggacagtgg aactttaagg tccttggctt 15720gtatttcaca cccaagagat gaataggtcc aggtatgtca tagaccagac taatgaaata 15780acaaatttct tttcaaaaat tttacttttt gtaggaaagc ttctctgtct ggcatttttc 15840ttctcccagt tgtgactcaa tcttaaacgt cttcagacaa ttagcataaa atttcccaca 15900gtgaattgac gtatactttt gagggttcca tttctttttt attttttttt tcttttgaga 15960tggagtttct cgtcacccag gttggagtgc aatggtgcca tcttggctcg ctgcaacctc 16020cgcctcccgg gttcaagcga ttctcctgcc tcagcctcct gagtagctgg gatgtcaggc 16080acccgccacc atgcccggct aattttcgtg tgttttagta gagatggggt tccaccgtgt 16140tggccaggct ggtcacaaac tcccgacctc aggcaatccg cccgcctcgg cctcccaaag 16200gctgtgatta caggtgtgag ccactgtgcc cagcctaggg ttccatttct taacccctcc 16260ttctgatgcc tcagaaagtc ttgctctgta agcctcttgt agctgcctcg gttcagggga 16320agggggaggc ttttgtttta ggaccgtcca gaccatagac acatttcctg gcacctagca 16380cgtgttgggt caaacaggaa tgatgaatgc atgcatgaat gaggttctta gcgctgaaga 16440cggtgtcata ggtggtctac cacgccgcct gatcattcca atggcccatt atgaatgtgt 16500gtgctgcagg gccctcccac gatcccgtca gcactgtgca tgttgtgggg aggtgctggg 16560agaaagactg ggtctcagaa gatgggttag aggtgggtcc ttctctgctg ctggctagca 16620gggtagctgt ggaggggtgc cccatcttgc tggtcttaaa ttttctcact gtaggcaggg 16680agcatgacct ggctgaattc taagtccttt tctactctga ggttcattgt gggtgtgacc 16740tgctgggctc agctctggct ttgggagaca ccctctcccc ttgatctcga caacccctta 16800gcagagccca gtggctccta cagtgccctg agctgcttgc ccgaaggatg cggttgtggt 16860tatctcaccc cctgccaccc tgtttgcgca agggtttgag attgtgtggc ccctccttgt 16920acttcggggt gaggcttgct ccagaaaggt ggtctgcaaa ggggttggct gggggggagg 16980aggaagtcat tctccaagtg tttgtcctca tcgttatccc aaattgcttg cctggaataa 17040ggaaggaaag aaaaaaaaat actcttgagt ggtttgggcc aggattttag ctgatggatc 17100tggtagttcc ctctgtcaga tttgttttct ttgaactgtc tgggccggtc acagtgtcat 17160tgtttaaatg tggaatgtag gtgttctgtg ttctgggaaa taaaaaccaa aactggtcca 17220ggggatccac agaggtaaga aaagaacatt ccaataggaa tgtttcagaa ccaggagggg 17280aggagagaaa aacggctctg ttggtctcct agaggaagaa cttgttagat ttggggagag 17340tcaggataaa tttgacccta agagtctctg attcctttta gagacttttc ttataagaaa 17400taaaatggaa cttgggagag gcggcaactt gggaaacagc acattctgcc gtaatgaaag 17460tcgtcccata agaatttctc tatcccttta gccaaatttc tgtttctaaa aggggaaaag 17520gggctagaga taggcttgtt tgttttctta gttgaatctt actttttgta tttccagccc 17580attctgcagg gtaagaacaa gcacagcccg agggctcact cagtgtgatg ttctagagcc 17640tggctctgcc tcaatccctc acgctggagg atcaggcagc aggggccagt gatggatttt 17700tttttcttcc tttcctcccc tattaatatt tactgaggta taaattacag caaagtgcgc 17760agacctaggt atctaggact gtgaggtttt cctgtgttac ctgtgtaacc acgacccaga 17820tcaagataag gaacttttct ggcatctcag aggctcttcc tgctcccttt cagactccgt 17880ctcccagaag gaactacttc tgattcctat agccatagac tgaattttct tttccaactt 17940catatgcata ggatcatcat gggtgtttta attttaattt catgtctgct tgccactccc 18000aaatggaaat gtgttggcat ctctggatgt ttcttcataa gaaacatgcc ctgtggggca 18060aagcccagga cagggctgtg ctgctgctgg aagtcctgtg cagctggcca gcctctgctc 18120acccctccgg ccacgctggc actttcagct tctccagcct cctgcccttc ccacttccag 18180tcctgcacct gctgtcctca ctgatgcacc tgcccttttc cttccgtcct ttatgtggca 18240cacccttaag ggagacatct tcctgtctgt gttttgcacc ctcttaaaac tacattcctt 18300tcccttcagc attggcatct ctgtccttgt gtattacctg ggatgactat tcagttaaca 18360aatgctttct tcctaggctg tgagcccaag tttgttggat gattggatgg gggcacgttg 18420tgtgagagaa ggatcatggg gtagcatctg gctctcttag aggtgtgtgg gggcgtgtga 18480tgcctgccaa ggcgctttcg ttctgggggg ttctgtgtgt ttgaagcact tgggttgtgt 18540gtccctgagg cctccgtcac gggcaacctc attccttctc tagcctccat cccctgcccc 18600ctgcccaccc caggcctctg gagctggctc cctttcctgc tcactctctt ttggccagga 18660ttttaacata tatcacaggc tggtaggcta agagcttggg acttcccctc accacactca 18720aagcctttga tcttttgctt tggaggtaac atcaaaagga aggctgagga agacagccag 18780gctgtgaagt tcaacgttca agttaatagc ttgactgaag gttgtgctgc gttgtggcag 18840catcaccgag gctggagtaa acagagtgat tctgccacat tttcctggaa atgcacccca 18900atattggaag agggcttctt ttacattcgg aatgaattca ggctgtagtc agagctgctt 18960ttccctttcc ccattttcct tggaagtgtg aaaacttggg ggagaagatg tttgtaggag 19020ggcatgatga ggggtagagg aagcccaaag agaggatctg gggaggggaa gccccatggg 19080atgagactct gaagttatcc ttgccccgat tccgggactt gctatctgcc tgccttttgg 19140cgtggtgtct ctgtgcccct gactgttcct gatttagcga ggtgtttctg aattctgatg 19200gaattcaaag aagcctgggc aggcaggcag cttgacttgg ggcttgggga agcgtgcagc 19260ccagacatag cagcgatgag agggcctcag ggctgagggc tgagatgaga atttcatcac 19320atgcaaaagt gaaagcgacc catcgtcttc tccacttgat ctcttgctga gctttgcaga 19380cactttggtt gttgtttaat ttaacatttt ctgcaatgct ccttttttca gattttcatc 19440caaagctctg tatgagaggt tttcaaaccc attttggccc tgattctatt tggcatacga 19500ttcaactctg gggatggtca tcttccccac acctgcgttg ggtacctttt tggtgtatgc 19560tcagagcatc cttggacatc ttcctggtca gtgtccagca tcgtgaagct gccctttagc 19620ctctcagtgc ccccagatac acctgtctct ctgcgtagcg gcactcagcg tcacctttct 19680gtggggtctt gagaccctga tgatatcagc actatgctgc cagaattccc cttggattct 19740ttagtgtggc ttctcaagca tcccttatcg ctataacgcc ttcatggttt ttggcataac 19800tgtatactac ctgtgctatt atttatttga tgcattcaaa catttgattc atttatttaa 19860actcagtctc actgtaatcc ttaattaaca cctgtgaaat tataggtttg atgtgctact 19920tatttattta ttttttaata cacattagta taatcccgta acggctaaag taacactttg 19980tactgcctaa aaccatgctt gggagcgcca cagtttgaga aagtgcttag ccttcctttc 20040cctcctttag tgacttgtgg tttggggcat ctgttgactc ctagggctcc cttgttcatc 20100tttctgttcc taagctcagg gattagttgc tcaacccagg tgtggcctca aaattctgct 20160catggaatag cctcaggctt ctataaatct catctttttt gttttgtttt gtttttgttt 20220ttgagactga gtcttgctct gttgcccagg ctggagcaca gtggcgcaat ccactgtaac 20280cattgcgttc tgggttcaag cgatcctccc atctcagact cccaagtagc tgggactgta 20340ggctggtacc accaggcccg actaattttt aaattttttg aagagatggg gtctcactat 20400attgcccatg ccggaagtct agttttatag tgatgagaat tcatctgggg tccaaggggc 20460cctcctgtgt tgcttcctgt gctcccctct aaataaagat actccttcca agttgtcctg 20520attttcaggt catcaccatt ttttgagctg gatggggaag ttggcctgga gcagccttcc 20580ctgtctccga gttgcattac ctcctgagag gtctcagcaa atcactgcca tctcttgatc 20640agagttgctg gcaagagtcc tctgtggttc taggttttca gccctggaga ctctcgcctg 20700cattcattat acatgtcctt ttggtgcctt gttgaaaggc atctcctgcc accgaagggt 20760gtgggcttct ggaaattctc agaaaacaca atatgccagc ctccagggat gggtctccaa 20820agcttcagga acatatcctg gggtgttgag gaaacaccca ccttaaaatg ttcctcaagg 20880gggaatgtta ctgcttgccc taaccctctt gagctgatgc tcacatgacg tccctgagat 20940gggcttcttt tttgcccgta cttaaagctg taaagggcca ttgtcaaatt tgtttagctt 21000ctcaattcat gttccttaga ggatggtaaa ttaaagttag cattcctgga cagagccttt 21060catacattga agacaacccg gtgagtctca aggggagagg taagggagag atgaaaggtt 21120ttctccaggc ctgttcggca gcatggactg ttcttttagg taattaaggg agaccataaa 21180agacaattgt gtgagtccat ttacctttca cttgggggtc ttaagtcttt ggttgggctt 21240ctttaaccct gtgtgtcacc cacgggctcc tatgggtgct gttttcattg ttccgttatc 21300tagttggctg gaacacacct ttggggattg gagaatggag ttctgggggc tttgggaact 21360ttgagttttc ctgcaatgtc ctatagaagc ttgagtctgt gattcctggg cagggccttc 21420tcctagttga gtgagattgg tggggcaggg cagccagtta gggggtcatg ggagcaggtg 21480tggaaaaggt tatatgtctt agtaattctt tgtgacaatc accctcattc attgatatct 21540tcttcctatc atgtattagg gcagtggttc ccccaatgtg ctgcacatta ggttcacctg 21600gagagctttt ataaaaatgc caatgcccgg ggcccacttt gggaggagcc aggcatcagt 21660aatttcaaag gtctctaaat gatttacagt ttgggaatca ccgtatgagg atagtaagct 21720ctgagtccta tgcgttctgt gccgaacacc catgaagcag tcttccaagc attttacctg 21780catcatctca attctcacac tgttaaggag atagacagta tcatctccat tttgtagaca 21840agacaactga atctcagaga ggtttaagtc tcaggacacc aaggtcatta ttaatcaggg 21900ggactgtgat tgctcccttt ataaaatgta ggagatattg tggagtacgg ttgagaaacc 21960attgcaatag ttttcttact ttgttaagaa attaggctgg gcgtggtggc tcaggcctat 22020aatcccagca cattgggaat ccgaggtgga cagatctctt gagctcggga gttccagacc 22080agcttgggca acagggtgaa accccatctc gactaaaaat acaaaaatat tagccgggcc 22140tggtggtgtg cacctgtagt ctcagctact tgagaggctg aggtgggagg atcacctgag 22200tccggctgca gtgagctggc attgtgccac tgtactccag cctgggcaat gagagtgaga 22260tcctgtctca aaaaaaagaa aaaaaaggaa attagtggtg gaaggtgact ttgcatctgg 22320gcgtatctgc ctgcagagtt ggtgtcctta ccttgaagaa accctgcttt agttggagta 22380tccttaatgg ttagtggcag gaggggagga gtggttcctg ggagactgga acaaaatatg 22440gtacctgaat gcttaaggct tggcagatga gcagtcattt tcttacacag agcttaggaa 22500agggcatcca ggtagaggaa tcagcatgaa caaaagcaca gggccataga gttctcagaa 22560ggaaagatgg ggttaaccgg agccaagcca gagatctggt ggtagtgggg ggtttccaag 22620ctagaatggt tgtgtggtat tctgtcctca ggggctttga actctgtgtg ctaatgaggc 22680ctcaaattct ctggggctct ggttaaaatg tagattctga tatcagttgg cttgggtggg 22740gccttgcatt tctgtaagcc cttagcagtt gcactgctgc tactaccgtg agtattgctg 22800ttgagcatta ctaccttgag tattgctgtc aagtgttact accttgagta ttgctgttga 22860gtattactgt cgaattttac taccttgagt gttgctgttg agtattacta ccttgagtgt 22920tgctgttgaa tattactact ttgagtatta ctgttgagca taaccacttt gagtattgct 22980cttgagtatt accaccttga gtattgcttt tgagtgctac tgccttgagt atcgctgttg 23040agtattgcta ccttgaatat tactgttgag tattaccacc ttgagtattg ctcttgagta 23100ttaccacctt gagttttgtt cttgagtatt gctaccttga gtattgctgt tgagcattac 23160taccttgagt attgctgttg agcattacta ccttgagtat tgctgttgag cattactacc 23220tcaaggattg ctcttgagct ttaccgcctc aagtattgct cttgagcgtt actgcctcga 23280gtattgccgt tgagtattac tcccttgagt attgccattg agtttagtcc tgtgagtatt 23340gctgctactg cgccttggca atggttttca aactttgcaa cacatcagaa tcacttggga 23400aacctttaaa attctaacgc ccaggtcaca tcccattcca actagatcag aacatctggg 23460gaatgcgagc catgcaccag tagttataaa acctgcccag gtgattccaa agtgtgggaa 23520cctttgagaa gcactgcttt aggggttgga atagtcctgg ctgaatttta atcagggaag 23580actgactgct ccgtttatga aacgtaggag agtggagcag ggttgagaaa ccatcgggat 23640agtgttctta ctttgttacg tgagcaatat ttgttgagtc tctgtggtgg gttctagggg 23700ttcagaggac agcagtgtgc tgctaggatg gtggtctgaa ctagtggaaa ggcactcaaa 23760ggaagaaaga cagaattcta agaggagagg aattttagga aggagatacc caggactttt 23820gaattacagg taatttgatc agaacccaaa actgaaatgt ctctgctctg tgatgaaagg 23880gtttgctggc attgagtaag gagctgcagg aaggccttta acttgtctcc aggtctctta 23940acagctttgt catttacata caagcacctg cctggctaaa ccattcattt ctgtagcttc 24000cttctggatc tgtctaggga atatttgctt tgcatatttt ggggttatct taagtgtttg 24060aaggaaccaa aatatttttc ttaaaaataa cactcaaatg tagttcacat gattaatttt 24120gactgatttg tgagaatcag taagtgctga ctgactgagg cgccccacac atccggcttc 24180cttctgttac tctacgcgtg ttgctgaaac ttaacgaacc catgtggggt cttctcgcct 24240ggtgcagtcc ggcccagtat tcatactgag gtttgcagtg ggagaaagga aggtatttat 24300ttgtaggtca ccaagcaggg caaatccagc agctcacgct taagacctga cctctcccat 24360ggtttataag caagtggttt tttttttttt tttttttttc agactgagtc ttgctctgtc 24420acccaggctg gagtgcagtg gcgtgatctc agctcactgc aacctccgcc tcccaggttc 24480aagcgattct cctgcctcag cctcctgaat agctgggact acaggcgtgc gcccccacac 24540ctggctaagt tttgtctttt tagtagagat ggggtttcac catgttgccc aggctagttt 24600ccagctcctg acctcaagtg atcctcctgc cttgacctcc cagagtgctg ggattacggg 24660catgagccac agtgcctggc ctgtaagcaa gtgtttttaa agaaaggggt aaattttagg 24720gaaacagaag ttctaggcaa aatggtaaat taatacaggg aggtaagaca ttggtttggc 24780ctaaaaagat gggatatttt gaagtggggg ctcataggtc ataagtggat ttaaagattt 24840ttttggtttg taattggtta aggaagataa gctttgatta aagatttggg gtcagcagaa 24900agaaatgtta ggtctggctc gtgggcatgt ctttttctag gcccctcctt ggaaagaact 24960ttagagcaaa gaaaggcagt tggagcttag tccccacttt ctcctgatct gaggtctacg 25020gaccactgga tccatttggt ggggtccatc tttctgaaaa acaagtcagg gacatgtatt 25080gagatgatat tattggtatt tatagggaac caaacaacgc cccatgactc ttttttggct 25140attgttttaa gccactgttt ttttttgttt attgagttgt taacttattt tttaaagcta 25200gctagctgcc tggaatttct ttagaaggaa ctgaagtttt taaaaatttt tatgttgggg 25260ggtattgccc tgcaggcccc taaaaggggt ccctgcgctg tctcaaaact tggatgcaaa 25320aagaagttga gttaacacag gaggacaggg gtagacgcac caagggcatg tgcctcgagt 25380gcgtggtcct tattaagaag ggtggttaga cagggaatgg gttagttccc aggtcggcat 25440tcagctgaaa cagtgatggt taaaattctg aaaaatgtcc acgctctgca ttctcttcct 25500aacacccagg acccagtaac tataaagccc cctaccctgg ggcatagcag ggggcttcag 25560ggacccatga gaaggtcatc tgctgctagt tacactcctt ctgggacctg atttagacag 25620tttggtggta gttttgcgag ggttaatttc agggccaagg atgcttctag aatggaaata 25680ccttcttgac attgggagct ttattggttg attatgtcaa tgtgagaatt caggaagccc 25740agtgctaatc ctccatccta aaaggagtag attggctggg cgtggtggcg catgcctgta 25800atcccagcac tttgggaggc cgagggggcg cggatcacct gaggtcagga gttcaagacc 25860aacatggcga aaccccgtct ctactaaaaa tacataaatt agccaggtgt ggtggtgggc 25920gcctgtaatg ccacctactc gggaggctga ggcagggaga attgcttgat cccaggaggc 25980ggaggctgca gtgagccaag attgtgccac tgccctccag cctgggcgac agagcgagac 26040ttcatctcac aaaaacaaac aaacaaacaa acaaaaacta aaaggagatt tcctccttct 26100gtcctttatg ggagacttca accttgggaa agtctggaat ccttggacat tagaaattct 26160gaagttttgg ctggctgtag tggctcatgc ctataatccc agcacgctgg gaggccgagg 26220caggtggtca cttaggccag gagtttgaga ccagcctggc caacatggtg aaaccccatc 26280tctactaaaa atacaaaaat tagctgggcg tggtagcgga cgcctgtaag cccagctact 26340tgggaggctg aggcaggaga atctccagaa cctatgaggt ggaggttgca gtgagctgag 26400atcacaccat tgcactccag cctgggcaac agaacaagat tccgtttcaa gaaagcagaa 26460actctgaaat ttttgcctgt ccaggccaca tcaatcccat tcctctgctg tctctgcagg 26520attctgtgag gaataattag ttaatgtttg cagagcactt tgaaatcctc agatgaaagg 26580caccggagaa gcacaaagta ttattattta ttattagctt gccccagaat ggaggcgcat 26640gaggccctgg cagctccctg cctcgtgcca ggtgtgatcc tcctgctggg cttttcctgc 26700ctgatgagct tttttttttt tttttttttt gagatcaggt tcagctctgt cgcccaggct 26760ggagtgcagt ggcatgaaaa cagttcactg cacacagctc actgcactgc agcctcaaac 26820acctgggctc aagcaatccc cctgcctcag cctcccaggt aactgggact atatactaca 26880ggcatgcgcc accactcctg gctaattaaa aaaaattttt ttttgtagag atgggggtct 26940cactatgttg cccaggctgg tctcaaactc ctgggcctca aagatgccaa aggttcacac 27000cttggcctct caaagtgctg agatgacagg cgtgagccac tgtgcctgtg ctcaattgat 27060tttctttatt aaagaaacat ggaagaaagt gaaggatgag aatcagtaac gtaacgtgtg 27120cttcagattg tggacaagtg atgtgaagga aacacattgg tcccactgtg gtgacagagc 27180aggggtttcc ttacctggca aggttgcggc tgccattcct tggggtctgg ggttaagacc 27240atctgcctga gggtaacgca gtaataaatc agtactaaag ggcgtactaa agtactgtat 27300tgctaggcta ggccatgctt ggtgtatttt tttttttttt taattgagac ggagtcttgc 27360tttgttgccc aggctggagt gcagtggtgt gatctcggct cactacaacc tctgctgccc 27420agtttcaagt gattctcctg ccttagcctc ctgagtagct gggattacag gcacgtgcta 27480ccatgcttgg ctagttttaa aatattttta gtagagattg ggttttgccg tgttgtccaa 27540gctggtctca aactcctgac ctcaagggat cagcccacct cggcctcccg aagtgctggg 27600attacaggca tgagcctggc tggtgtattt gttttaaatt taaagtttac taaatttaat 27660gatatctggg gaatcagctt gcttcctggg gatctggatg tacttgaggt gagagggtgg 27720ggattcagaa ttatcctttc tatcgcagca tgttctggat tgattcatgt aggtctcaag 27780tgtgtgtaat atttcatttc tttgtgcaat tttggcatgc cgaggcgggc accctgaagc 27840tccggcagag cctggagaca gagtggggag ctctccgctc tttcccttcc ttcatcccag 27900ctgacttcga ctggaattga attcatcagc tgctggagag ttgttttatt tgccctgctg 27960gtggagaggg aggaaaggaa catcatgggg ccaggctttt tttttttaaa ggaaagattt 28020gatttacttt cccccttagt agcatgatgg gcacctgcac ccgccagcta atcagaagcc 28080actgtcccct gaatgcctcc gctgcccacc agatcctgac agcatcccac gcgggagcac 28140tctcgtgtgc ccctggcagc ttctgctgcc tggcagttct ctaaacttgc tggtgtctct 28200ctgcccggag gctcagaaac ccagaggact gaccacttct tgaggctcat gtccagtttg 28260caaagagccc ccagcaagca gagaagggga tttttgtacc agcgatatct cttctccact 28320cctcaacaca ctcctttcca ctctgtctcc tataaacatg gaacagccag gaatactcaa 28380atcctagcct gtcatgaagc caaaaattga tagagatcta ctgtccagaa tgatttctta 28440tagtgaccct gtgtttagtt ggtaagactt tcttaaacca tgagggattc tggtcccaca 28500gggcagtaat atctggggca gagcctgaga cttttctcat tgatttcctc tgtgagccag 28560gagtgactgc tctgatgcag ggtgctgtgt ggttggtaga agctggcgtt atcccatttt 28620acccacgagg aaacaaatga ccagtggtgg agcgggagct cagcatccca tgtgcccact 28680tcctcctcgg gtggactttt cacctgccca tgccgtcttc tttgcaaact ttactgcagt 28740gacggagaca tctttaaata caaattcttg ggggaaccct gtgttccttg gctggagcct 28800ggctgggaag gaggagggag cagagggctc tcttgggtgt ggcctattgc agttgagcca 28860gggaaaggct ggtccactgg agacaccctc tctggtcacc gcagacttcc tgccctccat 28920ccagtgtcct tctacttgca ggatgtgtgc ccagcagaga gaatctctga agccatgtca 28980ttattgggat aacattcctg tcccagtcac cttatttctc agaaaaagga caatgggaaa 29040caagttttta ttgaatccta tgctgggcct attaatgggg tctcttactt ttcatagcag 29100cactgcaaac agagttacgt ttctattcat tttatggatt agaaagctga gatccagagc 29160gggcagatgt aaacctgggg tctttaaaat gcatcctttt tgcaaacaaa taaacttagt 29220gtattaaaag ggctggagag agcagagtaa ggtaacattt gggtggtcag catgtagttc 29280tgggtcccca cagtggagat ggcacagtgc tgggtgctgg gggaactatg gtcactaaga 29340gacactgaat aatttaatgc atgcccctga ttccatcact gactgttgag gtaacacata 29400catttatatt gtcagtggtg gtgatgatta catgagctgc gtaaagcgtt tgaccagtgc 29460ctgcacataa catagtaggt gctcaataaa gatcacccac tcttaagagg tgggaggagg 29520tgaagtcatc tttctgggga gtgttgccct gttgttctct gctgcattct ttctgtcctt 29580tgggctccga gaatgctggg ttgggcagtg tgagtggtct tctcaggcct ctgtgacatg 29640ttgctttcat gaaaggttcc cctctagcca aagactgagt ggtccttgca ggctttctcc 29700tgagtccttt tttttttttt tttttttttt ttaaagacag agactctgtt gccagattgg 29760agtgcagtga cgcggtctcg gctcactgca accgctgcct cccaggttca agcaatctac 29820aaaatgcatc tataaaatga tgcatcagcc tcctgagtat ttgggatcac aggtgcccac 29880taccatgcct gggtattttt ttgtattttt agtagagaca gggtttcacc ctgttgacca 29940gtttggtctc aaactcctga cctcgagtga tccgcctgtc ttgacctccc aaagtgctgg 30000gattacaggc gtgagccact gcacctggcc tctctcctga gtccttttgt ttgtgcctgc 30060tttggggatt ccctctggct ggggtggact gccgggatct

gtttgtccag tgtacatttc 30120ctggtcacct agcaccggcc agctgcggtg ctgggaggaa cagggcctgg ctctgggagg 30180cagctgggag agtcaggaag tgaagaaagt tcttgtgggt gtgatggtgg aaacccaagc 30240agcgtccaga gggagcacaa gagggaggga caaatcttgg gagggtcccg ggccaatggg 30300acccagtgta agaaattgca cctgtcctgg cagatagaga aggtggaagc agtgaatggt 30360agagcatcct cactcttctc tctgccagca agcacctttg gggaagtcct cacggacagg 30420aatgtcgtgt gtcttggctt gagatgtcaa agaaacatgt tggacacacc atggtgacag 30480agcaggagtc tcttaacccc ggcgtggttg aggctgccgt tctggtggga tctggggtca 30540gtcaggggtt aacagtcgct cctgcttgcc tgattgacac agtaataaag gcagtgacac 30600caaactaggt ctcaggaatg tgtcctcgtt agaaagactc actaatggtt gtgggggggt 30660ggcccatgag tccttctggg tggtggcgag aagtagggga ccctttgggc tttgcccttt 30720ttggtcatag gacttcactc cacagacata attgaaccgt tgggtttctg cagccaaatt 30780caaatgtcac caatcttggt cacccctttc atctcttggg tcctctgtaa gttatagcta 30840tctgatagtt tactgaaaaa taaactgaaa atatgtttta aattgtactt tcgatttaaa 30900ataatgttta gagacaaaaa aaaagggtcc aatccacttg gagaaaagca ttgtcaaagg 30960tggttgattt ttttcttttg ctgttttaaa gtggtaagtg gatgagtgtt ttggatatat 31020tgatttttca ggtgtgcagg cggtcacatg aacagctgac attttttttt ttttcatgtg 31080gacttcagcc agtcttgaca cctgcccctt aacgaaaagt aaaccatcgc cttgtttgac 31140agtttaagtg cagtgatacg gatggaggca ggtttacgtt atgttaaagg cttgacaacc 31200cagaaccccc ctgttggttt ctttgttgta acctttgagc cggtggcctg ctgaaatgtc 31260acctttgccc ttctttaaaa gcaggaataa taggtggtga gtgggtggat gcctcttaaa 31320atactggaaa gtgctgtggc ccgagggtaa gctttttaga agtgagtgtg tgtgttgtgt 31380tgttttaatt aatgaatctt ctgggcctga agataatgag gtcagtgagg gcagccatgc 31440tgcctcacag ctcaccttag ggtccttgtt gtccagaacg tgcctgacct actggagggg 31500cctgggaatg cttctttgat tgacgtgggt aggaagacag atgtggcggc ctccatgctg 31560atgggaggca gctgggaaga aggtcatggg caccatctca ggagtggcag agccacctcc 31620ccctctcctc accccgtgtg tctggattct tccagctgtg tggtccttct tcctgcctgg 31680aaatgagcat cctgcagagc tcggctcctg ttcacaccct cctcctaacc ccctactctc 31740cctctccctt tcatccaggg ctggaggacc agatgggctt tacctgatgg agtgtgcttt 31800gctgacatgg tgcaaagagc caattcctgg ttgcaaagag gcagctgggt gcagaggcgg 31860ggtgcattcc tgtaataata ataacttgtg tttttataat actttacagt ctaagtactt 31920ttcaaatact tgacctcatt tagttctcac cacagccctc tgaagggata ttactattac 31980cttcatttta tagatgcgtt aaccagggct tgttttggga ggtagagggg gtgtgagggg 32040gacagagggg agggaaccag tgttgaatga attctgaggc cctgccaaag cagccagcta 32100gctaggtgtt gtttaatgga ctctttgcat ctacagaatg agggaggtgg gatgagggga 32160aattatttca caataactga aggtcggaga gactaactct ctgctcattg tcacacagca 32220gttgagtgcc agctgggatt tgtcacccag gtcacctgac tcctaagccc tgtgatcgtt 32280ctcttctgtc tctagtatac ccagcataat gcccggcaaa gtgctggcat caataaatat 32340ttgtcgaatg ttaaatgagg cttaaagaga accattcatg cttggcacag gggcacagtg 32400agacaaacat gtttcctgcc ctcgtaacct tcgcttccaa attctgtgac cttgggcggg 32460ttgcctgagc tcttttccag ctcagtttcc tgaaaactca tccggaaaat gggtaaaata 32520tcagagtgca ttctgtatgg taagactgca aatgttagat gattctgcta cttattattg 32580ttttcttttt ctcaccacac accttccctt tttatgtaca cctcctagga agtaagtttc 32640tgataacata ctgcattgtt ggataacagc aacaaaaagc acttcctgac attattgccc 32700aaatcaccaa atgaggcaat taccaacttt ggaataagaa tagcaacggt ggtaagagct 32760gacatttctt gagcgcttgc catatgctgg gtgtactact ataagctgct gcctgcaatt 32820atgatttggg aacaactctg aaagtagtta cctcccattt tatagaagag taaactgagg 32880ttcagagagg ttaagtaacc cccccagggt ctctcaggaa gtagttggtg gcctgggatt 32940caaacaccag aattggtctg acttcccact ctttaaacca cactcaaaac tgaactctcc 33000acgtgtgtgt gttctgggca ttttcgcatc tcccttggct tgttgacagc gtggactttt 33060gctttcccat tctcatagaa catggccagt gcaggaggag gaaatccaca ctggtctttg 33120gactgaacca gaggctggcg atggtcccga aacagggtgc caagtggctg acccttgttt 33180ttatgccttg cgctggtaag cttggggcac caggagttct ttgaatttct ctttcttgac 33240tgtccacgcc ttctttaggc aatcttttaa caggctatgt tttaaatctt attgacatct 33300ctgaagaaag aggaggaaaa aaaaatcaag acatggcctt agagaagtga caggttttct 33360ttgagatttt gttttctgtt ttccttttta ttttgtgcac attgcaaaac ctctttggga 33420tgatgatttc gtgtggtttc ttggtagccc ttgggcagct gctgccaggt ttcacccaaa 33480tgcattgtga ccccctgttt cgtgggacgg ctttgcctcc acatggctga ttgtgctctg 33540tgtgtccgct gtgggcagag tgtgattgta agaatcagaa ttctgctggg cttgcaagca 33600tttaaaaaat ctctataagt ttgagaactg gttggaaggg agagatgcag cgacttagaa 33660cacccggcct gcagctgagc ttccgtgtgc ctgggaggag cccatatgga gaaacaggaa 33720aattccactt caccagaaag ctggggaaat gagtgggagt aggggccagg ctggttaact 33780aggaagactt ttggtcactc tgctttactt agcctaaagt gttcatttcc cccttaagcg 33840gtggttaata cgcgtatctg cagatttact ttttggatga tttaaaatct tgcaacatct 33900caagggattg tatcctgatg atactgatta tattaataac aagataatag cttataatat 33960aatagctagc aattaccaag cacttacctt acaccaggta caatgccagg catttgatcc 34020ttacacgaac tctgagagat ggctgtttgt attcccattt tacagatgag ggaagctgtg 34080ctgagagagg tgagttcatt tgcccaagct cacccacttt gagatggtct gcttttatat 34140cctcttagcc caattctttt ggatgtcagc acttggcatg tattaggcac tggataagtg 34200ttttgttgaa tgaacaaaat gatggaactt ggatttgaac ccaggtctga gctggctttg 34260agtcttcaga atagtaggtc caattagtgg agtgggggct cagtagtcca aagggaaagg 34320agcaaggaga cattgtgggg gccgagaaga gggcttctgg ggtgtttcct gggcacattg 34380gcattaaagg catagtgtga agtgccattc aagaccatgt gctggattag tgtttttcct 34440ctccacttga ggtgcttgcg attggctttg tgccccggtg tctgcaaagt gagttgggct 34500gaactcagga agaccttttg gttgggatga ctgtgtattc acctgcacct gagtagggac 34560tgagtttcac ttgccagttt taccgcagca agacctcgtt aagttggctt cctctcattt 34620aggcatttgg gaaactttag gcggctggag tttaattctc aaggcaaagc cccttttcaa 34680gggacatgaa gaaaggcaga gggatatatt taaaatacct gaatgaactg tttctttttc 34740tttttatttt ttgagatgga gtctccctct gtcacccaag ctggagtgca gtggcacgat 34800ctcagctcac tgcaaccttc acctcccagg ttcaagcgat tctcctgcct cagcctcccc 34860agtagctggg actgcaggtg tgcaccacca cacccagcta atttttctat tgttttattt 34920tattttattt attttttaat tttttttttg agacggagtc tcgctctgtt gcccaggctg 34980gagtgcaatg gcgtgatctc ggctcactgc aagctccacc tcccgggttc atgccattct 35040cctgaatcag cctcccaagt agctgggact acaggcacct gccaccacac ccggctcatt 35100ttttgtattt ttagtagaga tggggtttca ccatgttggc caggtctctt gaccttgtga 35160tccgcccgcc tcggcctccc aaagtgctgg gattacaggc gtgagccact gcgacttgca 35220tgtagacagt aatggcaggt cactatcagt gggtctgtta atcaggtgtc caacctggtg 35280ctgggcttgg tggctcatgc ctgtaatcct agcactctgg gaggccaagg cgagtggatc 35340atctgaggtc aggagtacaa gaccagcctg gccaacatag taaaacccca tctctactaa 35400aaatacaaaa attagctagg catggtggga tgcatctgta gtcccagcta ctcaagaaga 35460tgaggcagga gaatggcttg aacctgggag gcggagattg cagtgagcca agatcatgcc 35520actgcactcc atccagcctg gacaacaaag cgagactctc acaacaaaac aaaacaaaca 35580aacaaacaaa caaaaagtca cttgcttctt tttttgcttg cttatggaca taaaccctgt 35640aaactatctc atacatcatg ggagtgagtt tgcagtgggt agactgctat tcacaaactc 35700atatacatcc tatgaaggag tacaggttaa ataaccatta tccaaaatgc ttggggctga 35760aagtgttttg gatttttaat ttttttcaga ttttggaata ttcgcatata cataatgaga 35820tatcctgggg atgggaccca aatctgaaca ggaaattcat ttatgtttta tataaaccct 35880tttttttttt tttttttttg agacagagtt tcacgcttgt tccccaggct ggaatgcagt 35940ggtgtgatct cggctcactg caacctctac ctcccaggtc gaaacgattc tcctgcctca 36000gcctcctgag tagctgagat tacaggggct tcccaccacg cacagctaat ttttgtattt 36060ttagtagaga tgaggtttca ccctgttagc caggctggtc tcgaactcct gacctcaagt 36120gatccacccg ctttggcctc ccaaagtgct gggattacaa tgtgagccac tgtgcatggc 36180cttatataaa ccttaggtaa ttttatacaa tattttaaat aatttttgtg catgaaacag 36240agttttgact gcattttgac tgtgactcct cacttgaggt caggtgtaga cttttccact 36300tgtggtgtca aatttcagat tttgaagctt tatataatga gatagggtct tgctctgttg 36360cccaggctga agtacggtgg cacaatcaca gctcactgca accatgacct cctgggctca 36420agtgatcctc ccatctcagc cacctgagta gctgggacta caggcatgca ctgtgactgg 36480attttttttt tttttttttt ttttgagacg gagtctggaa tctcaagtct cgctctggtg 36540cccaggctgg agtgcaagtg gcgcgttctt ggctcactgc aatctccgcc tcctgggttc 36600aagtgattct cctgtctcag cctcctgagt agctgggatt ataggcgtgt gccaccactt 36660ctggctaatt tttgtagttt tagtagggtc ggagtttcac tgtgttggcc aggttggtct 36720tgaactcctg aactgaagtg atctgcccac cttggcctcc cagagtgatg ggattatagg 36780catgagccac cgtgcccagc cttggctaat tttttatatt ttttgtagag acagggtttc 36840gctatgttgc ccaggttggt cttgaattcc tggactcaag caatctgccc accttggcct 36900cgcaaagtgc tgggattaca ggtgtgagtc accgctcctg gcctgaagca ttttggattt 36960ttgggttaga gttgcacagc ctttactgtt attatcctga tgttattatc cacattttac 37020aggcaaggat ctggaggcgt agagaggtaa aatcattttt tcaaagcccc agaagtacta 37080agccgcagat tctgaatttg aactcaggca ttctgggtca gaattagtga ggttttaagt 37140taattttttt ttttttttta gatagagtct tgctctgtta cccagggtgg agtgacagtg 37200gtgctatctc ggctcactgc aacctctgcc tcccgggttc aagtgattct cctgcctcag 37260cttctagagt agctgggact acagacatgt gccaccacgc ctggctaatt tttgtatttt 37320tattagagat ggtgtttcgc cacgttggcc aggctggtct tgaactcctg acctcaggtg 37380atctaaccac ctcggcctcc agaagtgctg ggattacagg cgtgagccac tgcgcctggc 37440ctaccccctg tcgcccaggc tggagtgcaa gtggcacagt ctcggctcac tgcaacctct 37500gcctcccagg ttcaagcgat tctcctgcct cagcctcctg agtagctggg attacagata 37560cccaccacca tgcctggcta attttttttt tttaagtatt tttagtagag acagagtttc 37620aacaagttgg tcaggctcct cttgaacttc tgacctcatg atctgcctgc ctcggcctcc 37680caaagtgctg ggattacagg catgagccac catgcctggc ctaagtttgg tttttaacca 37740tgctgctttt tctagaccct tctgtcagcc agctccacaa tggtgaatca gggagttagg 37800tccgtctgta agagagggcc caggagctgg gtcagatagg taaagagaca ttccttagtt 37860cttatcctct gctaccaagc catttcttgg gatcaagccc tctttggcct gtgtcattcc 37920acctccatta agttcagcct tctttccttc tttccacatc tttccactgc tgttgaaaac 37980ttgagacctg aaatcccatc tcctgaattc ctgggagctc tagaagtgga gatggccagg 38040ttctgtggtc agagctggtt gggattacaa ataaaccaaa gcctgggaaa ctttcttgct 38100attaatagcg cagacctttt ggggagggaa tacccaaact cgatgctgtt ggaattgatt 38160ttgcctgtct agatgacata ctaatgagct aagtggttag cttcggatca ttattgctct 38220ttcccaagcc aagttctttt aaagactaaa accacaaaag cagagaacga gttgggttag 38280agaggcatag tggctgggtc cagagaaggg agagtggtca gccctggcct taaacatgag 38340aaaataaagg tggtccttgc tttggaatga gttagtggtg ctgactaatt caactggttt 38400ttctttttct ttttggaagt ggaatttgat ttggtgtctg gattttgata gggccattta 38460tatttcttca gcactttttg gttcttgcag aaagttacat tcctagttcc tcaactgctt 38520atttcttttt ggtttttgaa gcaggaattt gatttggtgt ctgggttttg ataggggtgt 38580ttatgtttca tcaatgtctt ttggttcttt cagcgtttct ctccttgtct gtcatgtgtc 38640agagagggtg cctgtcaacg attctctctc tccagggaga aagtctttct taaaacagcc 38700ctaagatcct tatctcctca aatcacccac tttgatgata atatccattg ttctcttctc 38760tgcttcttgg catattctag tcagtctatg tatacaatta aaaaaacaaa acagccctct 38820gtgtccaaag tgcttggaat atcccagtgt ttcacaggag actttggaag tggacaaaac 38880tgtatttcct tccccaaatg aggttattgt gctcgaaata tctcctggta gtttattaaa 38940ggaaaccgca ggcaggggta agagaggcag tttctacagc ctgcaaccct attatcttgc 39000ctcttctttt cgaccctcct tcctccctct cctcttctct ccccccctca ccctattcaa 39060cccagcccca catgtcatgc cgtccccagg aggtagccct gcagccctgc ttctctggga 39120tggtctgttc ttgccacccg tcccatggaa cgtgaagaag gaatttgggg tgtggacttc 39180cttgagtgac taggattaga cccgtcgggt ctgcagtcag acgagaagcg tgtgggcaaa 39240gggaactatt gtgtgaggct tctctggaca gaaagcctgc cttcatcttt tactgtgcct 39300aatggacaat tgagacattc agcttatgtc tgaaaggaaa gtgggccggg atggtctagc 39360agacctccca gatgaaggct tgtaggagga gcaaatagag acaaggatta ccaacagggg 39420gaacaactgg ggcagagtcc tgggagagaa tgtttatttc cttgctctct aggagggatt 39480tggaaagagc cataatcctg ggttaggagt aatttgttac agcaagatga tacttgagtg 39540acaggctgct tctggctgag gcagcaagac ttgcatgcag gggggtcgtg gggcctccag 39600aaggtcagcc tcccgtaaat cttcaccctg gctttggggt ttgttcctcc ccaagcaaaa 39660ttaaccagag gcactgctga cctttgggct tcctgggtgt agcgttacga agcatctcca 39720catgtttgtc acagctagaa tttgacaata aaaatttgga cagggagacc ctgccagagc 39780cactgacctc tttccaatgt gacaagggga aaaaaaacaa aaggaaaacg cagcacgggg 39840tgcggtttca gttgaagttg gaggacacgg agcccagcct gtctcgcatt tgctgtctat 39900gtagactcac taaagcaagt taattcattg ctctttgacc gccaagtctt tcgttgtctt 39960ttgttgttgt ggaatggggg aaagaaatac agaatgggga ggagaaccta attagaaaaa 40020tcaagccttg agagctccca gccatggaga aagaaaggga ttttttagaa gttgtgattt 40080taatatctgc tgcaatctga tgattcatgg atttaaaata acccttccag gtcaccagga 40140ccctgttact tgctggcttt gtacctctca aaggtcattt gttggcttcg tctcttaaca 40200atttccatgg tagacctaaa atttctggct gtgaaatccc ctgtgtagtg ggaagaagaa 40260atagcaaatc ttagctgcct tggacctgat ataattattt gtcttcattt acatggttta 40320tccttcaagg ttgaataaat gatgtgggag ctagtcaagg ggctttaggt atgtgatttc 40380atgcctactt ttttttaggt agagaaactg aggtcacagg gtactagaga atggactcta 40440agattcaggt ttctgaattg cctgtggttt tgttgactca actgctcttc tgttgttttt 40500tagccacatg ccttgaaaca gtcctctttc ccatgtttct tcatcagcac cattaaccca 40560aggtatactg tcctctctta tctttcacaa ggtcttggag ttcccatgcc tttgtaagca 40620tccctccccg agattcagca ccaaccaaaa tcacatttgg aaaaattgct tgtttcccaa 40680gaagctttgg aggatatgat tttgtataga acgggttcac aggttttctg ttcattcttc 40740tatggtggag tgtgtgtgta tgtgactctg tcttctctcc attcctcttt tttttttttt 40800ttttttgaga tggaatttcg cttttgtggc ccaggcttga gtgcaatggc gtgatctcgg 40860ctcactgcaa cctccacctc ctgggttcaa gcgattctcc tgtctcagcc tcgcaagtag 40920ctaggattac aggcatgcgc caccacgtcc agctaatttt tgtattttta gtagagatgg 40980agtttcatca ctttggtcag tctggtcaca caaactcctg acctcaggtg atccaaccgc 41040ctcggcctcc caaagtgctg ggattacagg tgtgagccac cgcgccaagc ctccccatcc 41100ccttttatct cttaaatgaa tgtggtcacc atcaaagatg gtgcctgact cttttttgtt 41160ttcagttcat cttaaattca catataattc acacgtcata aaatgtaccc atttaaggtg 41220tacagttcag tggtttttta gtctatttag tatatttaca agattgtaca aacataccag 41280tatcttaata tttttatcat ccccaaaaga aacactgtaa ccctagcagc cagtctctac 41340ccgccttccc catagctcct ggcaatcact aatttacttc ctgtctctat gaatttgcct 41400attttggtta tttcatataa aaagaatcat acaccatgaa actttcttca tctgccttga 41460agttagcata ttttcaaggg ctaccatgtt gtggcatgtg tcagtactcc atttgttttt 41520attactgaat agtattccat tttatggctg taccgcattt tagttatcca gctatcggtt 41580gagacttggt gcattcttat cccagaacat accatattca gctcccagtg acacccacat 41640tcattcctgg gctgctcctt gtcttccagc tattttcctg gtctcctgtt gcctctgcct 41700acttcagcat gctgtagaga catgggtagt aactaaaaca ttccaattaa ctgcattgta 41760cttggccttt ttataagaag cagtaattag aaaatatggt ggccacaaga ttgatattaa 41820agtgaaagat tgtaaatact tttctgcctg aaggtagatg gcctctggcc tgcctcttag 41880tgggaggttc ttccaggagc ttgcaagcat ccattatttg ttagtcatca gcttagcggc 41940caaggagcat tagcctgtct tgctctgtct gctgaagact ctgagagaca tgggagggca 42000agggctgctc cttttgaatt cttccaatgt cttcatgtcc tttaacctcc tggcttaggg 42060acttgtgtgc tggtggtgga gctgacattt gtttggaatc cacagccctt tgggtgggac 42120tcaatcttgg ggttgcctga agactttgag atggctaggt ctgggcctct tttggtcact 42180atggaacaag actgtctcag aggccagagt ctgtctcacc agctccctgt cttgggactg 42240caccattgca gggtctttgc cctcccctgg agatttctct tcctgcctgg gcacccattg 42300gccattctgc ccgtaagctc agtagggtgt aggcaaaaga gttctggcct ggaagtacca 42360aagtcctgcg ttctggtttc agtccctcat aactgtgtat aactaagtca cttagttttc 42420tgtgcctcac tttcttctgt tttaagatgg atttggagat tattggcttt gaccacctaa 42480aaaggatgta gtgacaatca atttagaggt ctaaaagagc ctttgaggaa gtaaaatgga 42540atcttcaaat ggactacatg ctgattattg acactgccct agcactgata gttgatgttg 42600actgatggtc agaattgctt ggcaagttgg aaaaaagtac gtacagatcc tgggccacta 42660ccaagtttca tttaacagat ctggagtgca tcaggaaaaa agtccctcta aacaagccag 42720caaggtttgg atactgtgca accttttttt tttttttttt ttccttttga gatggagtct 42780ggctctgttg cccaagctgg agtgcagttg cacaatcttg gctcactata acctctgcct 42840cccaggttca agcaattctc ctgctttagc ctcccgagta gctggcataa caggcgcctg 42900ccaccacacc cagctaattt ttatattttt tggagagatg gggtctcacc atgttggcca 42960ggctggtctc gaactactga cctcaaagtg atccgcccac ctctgcctct taaagtgctg 43020ggattacagg catgagccac tgtgtctggc cctacttacc ttctttgtgt taattcctgc 43080accattgatt agcttattgt cccattgact gtgtctttag atgacttctc tgggcctcag 43140aatatctagt ccatagctga cacagagcat ctgtttaatg gtaaatgctg caggaatcca 43200tgcattggag tagaaagagt tttagatcat gttcctcatt tcttgctaca gacttaggca 43260aagcgtggag aagaggttgt ccaatgaaga aatgaagtga catgccaggt cagtggcaga 43320gctaggcctg gaaaataggt ttccagactc ttccctttct accatacttt tcctgggagt 43380acgcactcgt aatttgaaga gcgacttttg ggagagggtg gaaggaaggc ctgggcctca 43440gcctaagggg cccattggtt gtgagaggag ggtctggtga aattccatac cgattgtccg 43500tgtgtgagct gctgtaccat agcctccctg cagaaccact aacctgtcaa atgcagaaat 43560agttcaggga cagagctgtt aaaggattgg cgggttaaag aaaacagtga atcccaagtt 43620ttgttaattg gatttttttg tttgttagtt atttgttttg cttcattgtc ttcatcacac 43680caggggcctc cttaaatctg gtggaaaaat ttccttggaa aacaattcag tgtttgtcca 43740tagacttggg agggagagat gctagatgct ggaaagtctt gcttattact ttggggacac 43800tgagatgttc ccttcaccat gtactttgag acacacatcc tggttgagtt caggcaagga 43860tgcctaacag ttgataagaa aactgggaaa gatagaaggg atttgtaagg taagtcaggg 43920tgagtgaaaa cacatccggt atgctggaga cctagatgct tgactgccac tcgctcctgt 43980cacctcagtc aatctgggtc ttgctctgtt ggccttagtt tcctccttgc taacaggtta 44040gttccacctt tctgcccatt tattttgtag ggttattgtg gatgtcattc tgaactctaa 44100aataccctct aaatatgaag tgatattagt gctctttaca ttgttatgat taaaaatatt 44160tatgagaaaa aggttaactg taaggatttc attgaaaatc ttataacaac caactgatag 44220agatagaaga taaggctatt aaattgttca cacagatgcc ttgatatcct acctttttcc 44280ccctatattc cttttatgtg agaaatgaga tagtgattta agggaaaaac ttaaaagagt 44340tccgactatg ttggtttttt ttcccccaag tcaaccttaa tatcttactt aaatcttttt 44400cttttttatc ttttcttttc tttttttctt ttccctccct ccctcctttc ctcctcctcc 44460ttcccttcct cctcctcctt ctgctgcttc tctctctctc tctcgtttcc ttttcttttc 44520tattcttcct ttttcttttg agaccaggtc ttgctctgtt gctcaggctg gagtgcagtg 44580gcaccttctt ggcttattgc aacctctgcc tcctgggctc aagtgatcct cccacctcag 44640cctcccaagt agctgggacc acaggcacgc gccaccacac tcagctaatt tttttttttt 44700ggtagagatg gggtctccta ggctggtctt gaactcctgg actcaagcaa tcttcctgcc 44760tcagccttcc aaagtactgg gattactggc gtgggccacc atgcctggct tgaaattttt 44820ctatggcttt attctttctc caagtacaga gtctacccaa ccttctgaga tctttggttt 44880tcttttccta ggtaactata gtacatactt atttatgtta aacaacagca atcacacatt 44940tctttttcta tacagtcatg ctttataggc aaataaagcc tccgtcttag gctttctgga 45000ttttttcaaa agatgcaatt cctggagtat gtttttactt agagcaaagc agcctagtct 45060cctatacctt ctgcatctgc agaaaagttg gttaaacaga ctttgtaatg atgcccctta 45120caattctgaa gggacttgtg aaatagtttc acagagtttc

agtgttaggt atatttgatc 45180aatgctaact tttggaaaac tttggtgcct gtatgattca gagggtaggg cagaatatta 45240aattaatcac aacttcttgt attttaacca ttctgggtaa attgggattc cgtgacgccc 45300aggcaaaatt atttgtttat agaagatggg ctgaattttc catcgtccat ttctgagaaa 45360tgaggtaggt ttagaaagag acaatcaggc ctcttcttta acagaaatgt ttgtgtctac 45420taggtgtgtg tcacaatatg agttcctgaa gaaataagtg tccgctattg ggttgtatac 45480ttgtacttcc tattttctta ttttgcacat ttttctggta tttccctttc tatggtgagt 45540ggcttctgat cgtctttcct tttgtaaagt gtaatgatat gagaatcata atcgtggtgc 45600ggtcttttgt gttgcatatt tgtagggggt cagtatgaat ggcccgtggt gaggctgcac 45660tgaaagatta ggagcagcca ccttgatgcg gaggaggctt agtgactttg gacatgatgg 45720gctatggctg gctatactct cagctttggg cgcataagca gagtattgat tttgtatttg 45780gttaaaacca gaagtacaac tttctggcac cagaggatta ggaaaattta acagcggaaa 45840gccatcatga ggatagtaac caattaattc gatttttttg gtcagacatg gctcccacct 45900gtaatcccag cactttggga ggctgaggtg ggagggtcat ctgaggtcag gagtttgaga 45960ccagcctgac caacatggta aaacccgatc tctactaaaa atacaaaaat tagcctggcg 46020tggtgatacg cgcctgtaat cccagctact cgggaggctg aggcaggaga atcacttgaa 46080gctggaaggt agaggttgca gtgagtcgag cttgcgtcac tgcactccag cctaggcaac 46140agagtaagac tgtatctcaa aaataccata attcgttttg tcttttcttt acttttttct 46200ttccttttcc ttcccctctc ccctcccctc cttccctttc ctcccctttc cttccctttc 46260catctctttc cttcctttct tttctctctt tctctctttc tttcaacagg gtctcgctct 46320gaaccttttc cagtcagaat tgctcaggga tttttagact tccattctgg aaaagagggg 46380gtagttattt tggtgagatt gtggtcttgt ggttagacct tgtgatgggg gcctcagcca 46440aagggttcag gatttttttc caagcttttc cctcacaact tgagttaatc cgaaacgttg 46500ctattaggcc accggacatg cttttctgca tgcctgtgtt gggctgtttg gattgaaggc 46560ccagcaaggg aaggcaccct cgcccatctg acacaggcag gcctctacaa ttttattccc 46620taaccagggc atgacaaact atggcccata gaccaaaatt ggcttgccac gtgctttttt 46680ctggccagtg agttaagaat gactttttat tatcattatt attaatattt tttgagccag 46740gttctcattt tgtcacccag gctggagtgc agtggtgcaa tcacggctcc tgcagcgtga 46800aactcctggg ctctagcaat cctcctgcta acttttttta tttttgtaca gtcttgctgt 46860tgttgcccag gctggtctgg aactcctggc cttaagcaat cttccggcct tggccttcca 46920aaatgttggg actacaggcc tgagccgctg catccagcac ttttattatt tttaaatggt 46980tgaaacacat caagagagga ataatatttt ctgacacagg aaaatgatat gaaattcaca 47040tttcagtatc tgtaaataag cttttattgg agcacagcca tgatacaaga catatactga 47100ctgcctgtgg ctgctttcga gttacaatgg ctgagtcgag tagttatgac agagattgtg 47160tgggccgcaa agcctaagat atttgctgtc tggcactttg cagaaaaagt ttgccaaccc 47220tgccctgaac aaataaaggg acaaattcca cttgccccgt ccatctgtgg agcagagtca 47280ctgaaaggaa atactggaaa tactggaagc cacttggtgt tttatcaagg atgtgaggtt 47340tcctggcaac tttgtcgcca tatcatcatc atcatcacca tcatcatcat catcatcatc 47400atcatcatca tcatcatcat catcatctgc cctttaagtt ttctgcttgt ttagaaaaga 47460aatttataca gagcccccag tagcagctgt aagggggcag gttcttggag cagcccatcc 47520tcaacattct tgctgctgat ggaagattct caaggatgaa ggcccctcta tgggagcagg 47580atcagtctgg ctttagtaga tgccaatttc tgctaagact atttcctaaa ggagcctctc 47640ctcatttgcc ttttctccct gttttcattg ggggaggtgg aagaggagaa aaataattag 47700agatgctcac ctttttcttt ttgctggcaa tttaacagtc ttttcagctg ctttgattcc 47760tttcaggcca ttggtgttgt atatatttca agatttgctc acaggtccaa agcttaactt 47820aagctccctg agacatatca taaaatatga tttggggaaa aaccctaatg ggccatgatc 47880agaacattat tattcaacaa aggatgaaat gcttaagcca agatggcctt ctttctttct 47940ttctttcttt cttttttttt aatgaaagtt gagcagactc ccgtccaaca gttttcaatg 48000taggaattcc cacagcccca tttgattgca gtttgttgaa aagtttaatg tttttgtagg 48060caattcataa tttccacatt gaacagcctg agaggaagag agctggagcc cactgttgtt 48120tttgtagtgg gatggtggga actttttttt tccctccccc aaaaggatat aaaactaagt 48180cagatggttg ggaaaacgtg gcacagggtt ccagcccttt tgtaaatctg agatgccccc 48240tcctttaggt cttcctttag gacccaacag aatagaaatt cctgctgctt aatgtctcca 48300ggaaggaaaa aaattttcct ctaggctgta atagtaccta atttcctttt tcttctcttt 48360atttatttat tttccctatt aataagcacc aattgtagaa gatgaaggaa gctgggaaac 48420ccatcacttt tggagaaggt taatagcttc ctttagaaaa tcctgacata atacttattt 48480ccccaaaagg cacttcatca gcctgaatgc cagttaagat tcaaggaatg ggcttggatt 48540tgtgtgtacc cagcggttct gtggcatcaa gttgcactgg gaaggagagt ttggggctgt 48600cactgtggag tccctgcaag tcagcaggac cagggctgtc ttcctgcacc atctggattt 48660ggttagctct ctctgggcag tggggccgag tctcatttcc tccaacaata atgttatata 48720ggcaatgatc ctgggctgcc ctaacataat tgaaaattat gtgtattgta ggcttggagt 48780gctgaaatgt gggctcataa aaatatgtgg tgcaggtagc ctatggagat tggatgtggc 48840acacaatgaa gcttttatgt aaagtaagaa ttataagtct ccatgttaat attgtattat 48900gagtatgaca gttcttgggt gggtcctcag ggcaggtctg tcaccttcaa caaagcccga 48960gtttcctaat tctacagagc tggtatttgg atgtaatcaa atcggttttg caggtggcca 49020aagatgaaaa cttgtccacc aatccagctc tccccactga gggatagcat gggatgtaga 49080tgggtttgac tccatttggc atttttgttc acgggttttt atgagatgga gaggtgagtg 49140ttggtgggtg tccattttgg ttggcctcaa ggaaatgact ctattgagtg gttttgacca 49200atgcagctca tatagttatg tggtaagtga gaatgggaag aagttgggat gagatggggc 49260agtttagatt cccagagccc tctggcctgg gttacagatg gagactggaa atatttactt 49320tagtggttct caacttgaga tgatactgct cccagagaag gtatttggaa gtgatgagat 49380ggtaaggata accaaggggg ttcctgttgg tatttactgt ctgggggctt ggagtcctac 49440aagtccttca gtgtttgggg cagactcccc acctaatacc ctgtcgcaga taggacaact 49500cattcagtac acagatgaaa aaaacagaga tcactgaagc aaggggagtc gatgcagggt 49560cttgtggcaa gatgcagaca caaccggact aataactagg ttgctcacca cgggaggcct 49620ctaggtgaaa gctctgaatt tgtagcagac acacccacct cgtatagatc ctagacgtca 49680tgggaaaatc gactgtgtac tttggcaagt agttcttggg caatgatctt ccagctttag 49740gtataaccaa atttggtttg aatttgccaa gcagtcgtat cttcgaggaa ctccgtcggc 49800tggcttgtgg atggctttgg cacttctgtc tctcgtggga tttgtgcaaa cccttctttc 49860tgtattatcc tttcctgtct tttttctttc tattgaaatt gttctgacca tcaagaccta 49920actctgtgca gccttcccca gtctattgtc ccagaaattc tgtcatcttt cttggcattt 49980cctgagtccc tgagtctctg tcacagtgtc accatgttct gtcttgattt acctgtgtct 50040gtaaggctcc tcatgctggc aaaactcccc gagagcggac atctttgtct ctcctagtgc 50100ttgtcacagc ctgtacacaa agcaagtagt actcagtgtt cattgagtaa agttttctat 50160agaattaata ttaaaaccag ccatttattt tgcttgagga ggtctccgaa atgaccaagg 50220tgtctcctta tatcttatat cccctccaag cattcattaa ctgatggatt agtgagttgg 50280ccttgagaag cataaaggct cgtctccatg tgcttctaag cattgtgtct aagttctgtt 50340tggtttcctg agtgaaactg tcttaatgtt accaacagaa gttaaatgcc taagagtttc 50400ttatacatgg gctgagtacc tctgtgactg ggcaagccac ctcacctcat tttaccttgt 50460ctgcaaaatg aggaactggg tcaactcatc gttcaaatct cactgaaagc taattgatcg 50520cttttgacag aagtagctcc cttgggccgt atatttattt cctagcttgg aggaaggtgg 50580ggacagacag aattgatgta cacctttatt tttatctcta tggtaaacct gtgcatacta 50640aagcattcct ctggtctttt gagatgagtg tatacattgt gtctggccct gtgcattttt 50700taccaagaag taagttttgt tgagtaaact tgggttgtat gaagaactgc atgctcaccg 50760tactcaagta gcttttgcta cctaaaggac agctgctcat atgtacttga cttcctttaa 50820agtgaaggat gatgacattt gaaaaacgga ggttgaaaag gagcagattt ggaattgatg 50880gtttcctagg acacttctgg cttgagattt gtgttttact ttcttccttt ggaatagctc 50940tatattcttt cctctccctc cccacctctc ccactcccct ccagccccca ccaagttaag 51000gtagtagtaa tgaaatcatt ttttctgaag ctaccctgta ctttgaatgc aaagacaaaa 51060aatacagttg ctagtaacat taatcttcta tatgtgtact tactgaactt gagctctgag 51120gaagacccta ttggaattgc atgctttttt atttttttaa tgattatttg catgcttgta 51180tgtttttcag tttctgaccc atgtcacagt tatttcttgg gctagttgtt ctgcatttac 51240tttctgaatt cattgttttt catttcactt ttgtttcctc tcgccagtat ctccagatga 51300aatggccact gcttgatgtc caggcaggga gcctccagag tagacaagcc ctcaaggatg 51360cccggtcccc atcaccggca cacattgtcg taagtaacct cccagagatg atggcttcct 51420ttattgaggg ggtgaaaaag aaaatgcttt tttgatgata acaggcctta tttgtcattt 51480ttttctttct ttaaacacat tttctttgga aatattgttg ggtatagttt atatctataa 51540ggtattcatt ttctgctatt ggaccttaat gattgtaacc tacctggaaa ttttacaaac 51600ctttcctcca ctcttttcca tgtatttggt taaaatctag ccttgtgggc tctagtttat 51660aggacacaat caccatggta tggaggagac tagaggtggt atcaaagcag ttataaaaat 51720acattcaggg caggtgaagt gaagaagagg gaattagaaa actcaaaagg gggtcctgga 51780tttgaaactt gcctattatc ctctccccca atttatctta atatttgttg gcaacattct 51840acactaacat tagaaaaatt tcatctgggc tggctgactt gtaaacctag agtagaaatg 51900aactttgaaa ggctaaaatg gaatttaatc tatacatcca tggctttgaa agtatgtagg 51960tttgatagag aaagcatttg tttttagtac taagagacta caagtgtgtg tctacatata 52020tttttaatgt attttcttag ggttttgtag gctctaagag tggaatttat aaattaacct 52080cttgagaaga tagctcagcc ttatttgaag attcccttct atgtatttat atcatgagct 52140ggacttcata cttttgaaat aattaatgga aggcatattt ttataatgaa tccatccatg 52200acaggtagaa ttatgcaaag catgaatcaa tcatgggttt ttcatttgag tatcacaaaa 52260tgttaatcat aaatacattt tgcctctata ttgtaatttc taaaaattgc aaaataagtt 52320tcttaagtag aaaaatctta agatgcattc tgccattttg ggctaactgc ctccttattt 52380tggagcttgc tgtaattgag catgtgttat ttaatgagtt atacctctgt catatgtgtg 52440tgtttatatc acaaaataac ttatttttat aaaaccatat tttgagtcat catttgtgac 52500aatgtcttct tttctctggt ataaatgagg catgtagaaa gaagattgac atttgctaga 52560agcttcccct ttcctctaac tccacaataa aatggatgct cataattaca tctgctccta 52620taaggtcaag atttcagggc tggaagtgac cttagatcat ttaggcccaa cttgccctca 52680ggaaaggaaa ctgaggccca gagatgcctt aagtgaattg cccaatgtca cacgctgagt 52740cagtggccag agcaaggctt ggatccagtt ctctgctccc tttccagagc cttgtgatgt 52800cttctctcct acaggaggtg aaaataactg ctgtggctgg ttctgttttg ctgactgtaa 52860attgggtcat ggtcagggac agtgcatagg tgtaaagaag ttgctggttg ggggttctaa 52920tgcaggtttc tccaaaagtg aatgccctgt taaaaaaaaa ttcttaacaa atatacagag 52980attttttttt taaaaaagtg tgacagttct agacacctag agagtaaagt gaagaagcct 53040gttttcaggt ttcccgcctc cctgaatttc ccagcatggt ccaggctttg aaatttattt 53100atctgctttt ggcaatggtt gatgggaatt tcccacattt attttttagc tacagagaaa 53160ggacattatc tttaaaatct cttcgttgtt ctctctcttt gagtgaggag agaagatgtg 53220aatcctggca gtggttcaga gtggacacag cccctgtgtt tgtggcatag gctctgtggg 53280ccccatgcca gggagcagta cccccgtgta aaggagtggg ggtttgtcca tttggataga 53340gcaaagatcc tccacctcaa atcccacaag aacagttgcc acaacctggg ccctaagcat 53400ctcattttcc tatgtagaaa ttaatgatct ggaggagatg gcaaaacatt ccttccagag 53460cctgtgtgga ttttggccag gggtgcagca agggggctta ggcacctttt tcctctgctg 53520tgtcttagca ggcgtgttga ccatagcaac tcccctgggg catacacacc ctcttgtaga 53580tggagacctt tgtccaaagc agccacagct ggcaactgtc tacaatcttt tgggctttct 53640gctgtgctca aggggatctg ggaatggcca ttgcctagag gggatgggct ggtggaggaa 53700ggtgggctct gggagccggg gagaagggaa aagccatgaa tttggacaaa aggacaaatg 53760tggtttacat ttgtgaaata cttgaatgct tgtcatgaat ggtgactttg gttctatgag 53820tcagccctgt gatggggtat ttctgcagtc ttcacctgac accaggggtg agaaggagga 53880tttctgggga ggaggaaaga gttgagggag ataggaaagt agagtggaag aaaggccttg 53940cgttgttgac ctctatccac ctggtcacct atagtttttg ggattgagga tgcatacacc 54000ttgagactac aaatttatga ttatattttt gctgaacata aggcaatgtg ccaaccaaaa 54060ccagctgttc tttggctggt acagtgtgtc tttgtttgta aagggtgcat tctgaatggt 54120ggctgataca tcatttgggt ctttgtacag ttaaacattg gccagagggt ctggttcgtg 54180tttagagtcg ccgatgaagg gctaactttt ctccagacac ttggggctct tgttcacact 54240ttgcttttca ctcttttaag taagacatag tcacatcaca gtgtttcatc agacatgttt 54300caaaataatt gtctaaggat tgcttcttaa tttccccgaa atttggaatt gttgtaactt 54360ttgggccaag ctatttcata attatttcta atgtctcgct tgaagaatag ggatgtattc 54420agtgttgatt attaatcatt cgaaactaca actttacaga ttgctaagaa gaataacttc 54480ttccagtacc catatggggc agaatcttca cgtgggaatt cagagcattt tgttggacta 54540ttttaatctg attggattat tttcatgtgg tatgtgggtt accacattag aaacgattga 54600tgtgtagaat aaatgttctt aacaagtgga ggtcaactta tcaaatgata tttacattaa 54660gaatagactc cacaaatttt agttcctgta gctgatatag catctcattt gttatataat 54720ccagtgattc ctaatctgtg ttcagaggag agaggaaatc gattgcaaca gggacgatgc 54780cttcattggc tggcccaaaa ctgggagttt atacaaggcg tcagtctttg ccttcctcct 54840ccctgccttc cctcttcctt cttccttccc catactcccc aacaaattca tggacttctt 54900aacaactcag agacattagc cacaagttcc aagacacccc caccccccag cctccccagt 54960cctattttcg cattcatata actaaactct ttttctttct tggtggagtt ttgaaattta 55020tatttttaat tctttgctcc cttttttcct cttacaaaat gagtgccaag cagctaagtt 55080gtgctgagtg gtagagtttg agtcagtctt ggctggtaag ctgtggggtt aggagccgct 55140ccctggatac cacctctggt gtctttgcta tacaaagact ttcatttagc ctcctttgta 55200tccagcaaaa aaagattcag tacccaaaat ggtggtattt tggtatagta tgtatcttac 55260aaaacggcaa aagacttcaa aagttcctac aattttatct tgggggtttc cttttgaagt 55320cgatgtagaa ttttaccttg gggtggattt tttgtacttc ttggtctggt gtgttttgtt 55380gtgtaatgag catggaggtg tgggataaga aagcagactg aatcccgagg aacaaagcct 55440gccagactgt ggtggtgtac ttttcttgtt gttattgctt aaatgctgca agagagtgga 55500aaactcttac gaaataatgc acgatgggta gaacttcaga gaaaatctct gccgtctacc 55560ctgtgcattt tcgaggaagc tcagagggca tgctgaacct ttgctttttg tttctgaaga 55620gttcagggga acctacccat aattaatttt ttaaaacact acctagagag caccctcttg 55680gttattaaac acatgcgctg tttcgatggg atgtttgacc tggattgtgg atgcttgctg 55740ggacgtggca tgtgttggga ggctctgtgc tgcctgctga gcaccagcaa agccacagtg 55800gcccctacct ctgtgggagg ccctgtgcca ggtgccctca aagagtaggg ggcccatgag 55860ggtatgacca gggggacctg atttcggctg agaagttggc ggggattaca ggcctgggcg 55920gctccctgag gaaattgcat taaaaatgag atctgaaggc ttgattgggg ttggcccaat 55980gaagggatag gagaagggat ggggagtggg cagaaggaaa cacatgtgtg aaggtcctca 56040agggaaaagt gcttggcttg gacagaggca ggaaatcagg taggaggcta gaggtcgggc 56100agggctccgg gagagtgact tggggtgcag catatggtga ggatctgaca ctggggagtc 56160atttgagcag gttggctgtt tctgtaggag cgtgtgttaa gctgctggca gtggggatgg 56220tgaaaataga gatgtggagg aaacagcagc ggaacttgct gacaggttag atattggcat 56280tgagggagaa aggagagtca aaggtaggta gatggagatg cttcactgag tggggagtat 56340tggaggagga gcaggtttgg ggtggaagcg ttgtcctttt agagagattg tatttgccat 56400tgattgattc attcattgtt tctgcaaata tttagtgtgg gaaaaagcat gctagacacc 56460aagagagagt ggagtcaatg aagaacgata acagcaacaa agactgtagc gcttcctatg 56520cgaggcttgt tccagttgct tcagaggctg tgttacccct gttctagaga ggaggaacta 56580ggcccaggga ggtggggatt tgcccagtcg tgggagtcag gatgtgaaac aaggcaccct 56640ggctccagag cacaccgtcc tctcaaccac tgcagagaag ctgggaaaga gacaaataag 56700tgggtgctta gagcacaatg tgtgtggtgt gccaagagca gctgggagcc ctgggacccc 56760cagggaaccc cagccccacc tgggcatggt gggcatggct ggaggaggcc tgctggcttt 56820gctggagagt gggacatgca tcaaggtggc cagagactgg gcttctgggt gtcgtgctgt 56880gactgctgca aagggctcat tgacatatgg tggggagggc cagcgtattt tctgcgggca 56940ggacatttgg gggatatggg gtgtgaccct gtactatcta aaatctttta cttctggatt 57000atctccactt tctctactgc atatatactt tgtttttatt tattttattc atttatctat 57060gactcagcca gactctctaa aagagttgac ttgtgtttcc tagcagccac tgagtcagaa 57120ctttcccatt tcgcagtcag ggctgtggtc agggtgtctg tgttgtctaa ggatataaag 57180caagccttcg ggcactacca aaacattatt ttataaggag aactatgagt acctaatagg 57240aagaaccagg caatcaggtt atcttttggt gaggaagaag tggtagatgg gatcattggt 57300gctttgaagg gagtgggtgg tgtagactcc aaagtgtaca tggggccatg atagagtcta 57360tgtcagatgt ccaaagcttc cttctctcct cccagaaact ctgtcctctg gtgaagagtt 57420ttgaagtttc ctgaggtttg ggttcatggt gtggcaggtg ataccatggc aatagaaaat 57480atcccatcaa gaaggattgt gtgacctcag ttgtagcccc tgcatgttgg aatcacaaca 57540atttgcaggg ccttaaaatc aaatgccatt tcaccaactg ccctcccccg tttttttcag 57600cactgtttgg tagctatctg tttcccctga tattcttgga cacttccaga gatgggggct 57660ctatctcctg gtggtagact gtttcttttt ggtacaatat gaactcttaa gagagttcta 57720cctttaggga gctgcagtct ctctcctgga aatgctcaac tccttaattc atgttttgct 57780gttaaattct gctaatgcct caccttacat gtcttgacaa tttgaaggta gctattgtat 57840tccccgcaac cccaagtctt ctcttcaaaa tgattattaa ttgtaattca aatcatcagt 57900gactggtatc ttagactact taaggatggg aattgctaat tttgtattta aaagttgtac 57960ctctaaagta agtgaaattt atttttaaac gtagctttct tcattcataa agtttatgtt 58020cattgtaggc agtttggaaa acagcccata atctcaccac tcggagatta cattgtgaat 58080aatttggtat atttcctttt agaaatatac caaattatcc ttttttcctc tgagtgtatg 58140aatatttata tttgttttta acatacttga gctcatagtg ctcagtattt ccaacgttct 58200gtttatttaa gatgaaaatt gctgtagtta ataagcactt ccccatgtca ttaaaatgct 58260taaggatttt taatgaccac ataacagtcc ataatatgat taaaccccaa tttactgaat 58320caatgccata ttgttgggtc tttagattgt ctccttttgt ttctgctact gtgaatgatc 58380ctgtgatgat catctttgtg tgtaaatctt tgtcccctcg ccccctcccc ttttattatt 58440ttcttgggat agaccccagg acaaaaggta gaaaagaaca aagtgttaaa aaatttcttg 58500atacatagcc acagattatt ttcctgaaag ttctcaacat ttataactac gagcagtatg 58560taagagagtt atggttggaa tgattttaat gtctctgggg aatttaacaa caaaaaaact 58620ttaggcttct ttggagagag acatgccctt aactccaccc cgccctagaa cagagaccca 58680gcccatccaa gtcagcctcc ccaggtcctc caccttcaaa acaggcaaac gaaatcattt 58740cttgaataat tggtaggctt caaggtcaga tgtttatttt agataattca cagcataaat 58800ttatatgttt taggtacctt agcccctgaa tatactcagt tcatttagga ctattttaga 58860ggtcttgagt ttactcttat aacctcacat ttttttgtga atttttagtt ctattatctt 58920tgttttcatg gcatattatt gggcaaagat actatttatt cgatgctatg tgtgagctgg 58980gtcaggatta tgaccctgag ttatgtttct gggaaaatgt acccacttgt caaagatgcc 59040gttggctcct gtgattaagg tcagcccaca atgaatgtgg ggagggctgg cagcctctca 59100aatcagctct tgaccatttc tcaagctggg gcctgttgtg cttgggggaa gagtctttgg 59160cagctcagct cggggctagc gtttcctgac atttgtttcg ctgaatgtta acaaggttac 59220tggaaaaaag ggttctctcc taaaataggt ttagggaagc actgggatat gcgaagtgaa 59280tgagtttctt tagggcagga tcttgactct gcagggggct tggaggcctt ccctagagtg 59340gggcttccta acactgcaga gctcttccca ggacgagggg caagattggg acctactttg 59400gaaggttgtt tttgtttcgg cacctgctct gtttacgaag cgtgggagcc tgttttaaat 59460taatgtgcgc ctacttagag ctacactcat ggttttgact atgtttatct ttccagtaaa 59520taaaacaaaa ttgttcattt ggcacccagc ctgtcctgct tgtcatttct tgtcttgctg 59580attaactcta tggatggggc atgtttctcc aaccagattg taagtttctt gaagccaagg 59640agccctgtgg ttgatttctt cacatgtggc tctctctcct cccacaatgg tgcttcgtta 59700attaagcaga aaacccatct ctggttaggg actggagttg atttcgtttg gaatgagtgt 59760gacttcatca tgacctgaaa gtgttcagaa ccatcttggt tagcacaagg gcgtggacgt 59820gtgtctactt tctacctgat gggatagcat gtttaatttg gggttatgac actgaatggt 59880ttgccagtaa cttgctaatc caaccttata cattccagct cacagtggag cgtgtctaat 59940tgccacagca gcatttatgt ggaacgtggt tgcacaaaag ctccagaaag tcaggctgag 60000ggctcctatc tctcctcaat cttggtttac gatgtctgtt tctgaggaat cctgggatgg 60060ggccactggc tctttaagag agagcccgat ttggaaatct aggacttgat tgttgattat 60120gggcaataga tacattttaa gaatgatgtt gtaggctgta tgaagtcatt tgatgattgt 60180tttgttaatg gcttgcaggt cagattttca tctttttaaa

ttaattatca tagaaggaga 60240aaacaactgg atttcagaat tgtcccttga ggtgtactgg aaactaaggc gtgagggact 60300cataggggtc tggcttggaa agtgtattgc tatgtccagt ttacacataa ggatgtgcaa 60360atccagcagg ttagctgagc tgcccaggaa tatccaggca agaatgacca tattctgata 60420attactcagg cctctgcctc atctccgctg cccccccgcc ccctgactct cttctgagtg 60480ccagattcag cctccatttg aatgccaaat agacaggaaa ttagcatgcc cagaatccac 60540gtctttagtg cactctctcc ccagctccaa acctgttact gcttgtgttc aacatctcag 60600taaagctcaa caacatcgac ccattactta ggcctcaaac cttgggtggc atcgtcgatt 60660gctcttttct ttcatacccc acattcaacc catcagccca tcccacaggc ccaagtgtgt 60720cctctctacc ttcaaagcgt gtgtggcatc caccgcttat caccacctct gccattacca 60780ctggagtcca gtgccatcat ctctcacttg gatgtggcca gagtgtcttt gctggtctcc 60840ttcttgcttc ctacctttgt aacagcctat catctatctc tggtctccat agctcactcc 60900catactttga gagggccttt gaaagcctta gacagatcat atcacagacc tctatactga 60960aagtcgggat aaattttatc tctggaaaga gtcccaaagc agcgatgaac agatattttg 61020tcctgtcact tgatgaagag gtggggcttt gagacccaag agcttagaat ggagagccta 61080gatgccacta agcccaggca ctggccatgc ttcgagtgga gcttttgtgc tggtggagga 61140gagatggctg ggggacacct gtaggctgag caagtccccg ttcatcagac cctggctcat 61200ccagcagggc gtggctgatg ttttcaatgt tgtatcctga gtgggaccca gatgcttccc 61260aactgtgcca catctgagcc ctgcatgcca tctgtccagt tgcagcctga ctgcaatgtg 61320aggctgctga agagctctgg atggtgtgaa gcaatctgtt ttctagcccg agcctgcata 61380gctggtggat cctggaccgt gattaagtgc atcacctagg cttcaatgag atggagtcac 61440tgtgtgtcca aacagtggga taaaggcttt actctttgtc ttcctgctct gagggcacaa 61500gctgcttgtt tctctcacaa ggacaccgtc tgtgttgctc aggtgctggg gtgaaaaaaa 61560cagcaagcat ttgaaaaggc tgaagaagga aagaaagctg agagcggtac agccttgggg 61620actgagccat cccattgtcc cagaggtggg ggtgttatca agacctgttt ttgagccata 61680cctctgactc ttcctggaaa gttagaccca actcaagaac acactaagag aagtgtttcc 61740ccctagccct ttcagattga aaggagacgc caaccttgat gggtggaggt agaaaataaa 61800gtcccaaaac agtgtcttgt aagcgaaggg gaacatggct gggcagaggg cttctggtga 61860aacttttggg agtattcagt tggaactcag gaaaaaaaaa ttgttttttt ggaaagaggt 61920agcagccccc ttcagccaaa gctcataaat gaaggaatgt ctgagactca gaattacagt 61980gaccaaggca agacattgtc aaaggctgaa taagtgagtt tgactgacag aggccatctc 62040catttttagt atatggccaa gcatctttcc cacagtcttc cttgagcccc ttcccatccc 62100acttctgaaa agcactgagt tggccattat tatgcttttt tcttaaatta tgaagttgtt 62160ttcaggtatt gagaataaca cccaggtgct gaactcccag cataagaaat caaacattca 62220aaatggagta aggttctgaa gctgacatct gtctctacac attttttttt ttctgataat 62280ggcatttcct atctccaccc tcactctttt tgttgtggtg aactacactt cccttgttcc 62340actcggttct gttgcacatg tgattaggca aggggcagat atgtgatatt tattatgagt 62400cttttccacg cagagaggat ctaaatctgg ctctttgcaa ttgccttcat acatgtgcat 62460acacaccaca cacacacaca cacacacaca cacacacaca cacacagaca catacatatg 62520cacacacccc gactcaatgg aggaccctca tttgtagaag ggtaaaatgg gtgaggcgga 62580aatgcctgta tggcaccatg gagttctgtg tagccagttc taatcctggg ctatttggta 62640aggaatgaag ttggagatag tcttctgtcc cttacaacca aaggaattct aactaatagt 62700ttgccaagtt ttatgtttat aataaaaaat gacatgcttt ttcttttgga tttttaatgc 62760ttttgaatta aaaatgctag aacatgaact gattcttcta tcgctattta gatagagcct 62820tgcaagagca gagcacgcat gctttcttta agaacaggtt ggtttgtggt cgtctgagga 62880ctgttttaag gagacttatt atacacaatc atcccccaca aatgatttct aaagagaggc 62940tggtatgaaa gaaggagttt ccatgattct gtcctgtggt tctggggaat tctgaaaatg 63000aactttagat atttttgtga aattcttatt ttcatatttt tggtatctca gagttttctt 63060ttctggcttc tgtttaacat actcttcttt gccctaaatc tctcttattt ttgctccttg 63120ggacaactga agaatcctta gataattaat agtatgaaat actgcccttt tagttgaaaa 63180atgtcacaat aatgtaataa gataaataag gaggtgtcgc tttaacctgt atcgtgtagt 63240ctcctctact tactaacact tacttgtatt actagaagca ttatttttta aatcatggaa 63300aattggtggc aagctgagca tacagttgtt tatttctgtt tgactgatta ttacaacttc 63360attatttgat gaaggttctg tacgttttcc tttaagacac atagaaattg tgagaagatc 63420ctgcagcccc gaaaggctac agtgttgatc caaggactct gagccgagtg cagggtttgt 63480acttggacct gcaggctggg tggcgtctgt gggagcagtg tgttgagaga gattctgagg 63540ctgtatgtgt cagggcctcc aggggaagga tgcattgatg gattaatttc tgccaaggct 63600gaaagaggag agagtaagag gctgtagagg tgtcacagct gtcattgctg ttttaggcag 63660tcaagctttt gggaaagtgt cagaaattga gccccctact ggatctatcg gagccctgtc 63720aaatgtccat ttagatgtcc tggtgaacaa aagttctctg actcaccatt taaaaacttg 63780ttccaaatga aattatggga gaaaggaaca tttttcatcc gaacccagaa tgaggatgta 63840cccaaggaaa aggacgtagg ctcaggagct ggactgtggc tcagctggcc tgatgtatcc 63900cactttgttc ctcccatggc tgggatgtct ctttgctctc catgacccat gtatcttgag 63960gacatgacac atggaccaag cttgaactgc ggattcattt ttatgcattc tacctgtgaa 64020tgattgcagc ggatctagtc gtatttctga gagttactca aactggactt cagcagtgaa 64080ctctacagtt ctcttttcct cccacctttc tattagacat tgcatgatac aaaaatcaag 64140atatttctaa gagggtgata acttcaatgt tatctaaact tttaatttgg aagaagaggg 64200gttctttgtt ctttttaaaa agatacaaac gaacttcttt atctgattct ttttttggtg 64260caaacccatg atgccttctt cctgattcat ctgctacact gtgagttcaa gcctggcgtg 64320ggacacaggc acagctctca tgccaacgat ctcatggtta agttttggaa cataatttga 64380aaaatgtaac ccattgagag gcagtaagga catacggtga gctagtgcgt gtttggacgt 64440ctgtgtggaa taagtgagtg ggtagagagg acatttgtca aggagcggga gggcgggcca 64500ttggcttggg ggaaatgggc tgagactcta ggggtggcca gcaccgcata cggaggccag 64560cagggttggg cttggctaag tgctgtggtg tctggatgcc tatgtgagtt tcctccagaa 64620gttttcagtt ggcaaagtag aacctgctgg atatgtagca agggtgtgga ttgtcgggat 64680cctgctgggc gcaggcgtgt gataccagag gtcagaacag aagctgaggg atgaggcttt 64740gggagctttt tgtcatgcac tgtcctggag cctcagttac tacaaagtct gcaaatgata 64800gaccggagct ttggttctgc ctgatgctag ctcccctgtt cctgattttt cttttcaata 64860ttagacttaa tcccagaatt cacatgttga aagaaaactt agaggtctag tgacataaaa 64920gcctcatttt gatcgttaca gaactgatgc cttgagaaat ggagagagaa gtacacgatc 64980atggtaatac tggatgttca ctgagcactc actagctcca ggccttttct aagtaattta 65040tgaagttgtc aggtttaatc ctcacaacgc ccttatgaat gagctattgt tattatcccg 65100atttggcaga tgaggaaact gaggcttgag gggaggatga cgtactcaag gtcacacagc 65160tgggaggcgg caagctggaa gttgaaccca aggagtctca catcggagcc aggactctca 65220cccttcagtg ttatgctgcc ttaatcaggc acacatacag gcggggagag gcaggtttcc 65280ggacaccaga ctaggctggt gccggtcagg ctacaccagg gaacctggag gcctgtcatt 65340cttttgtgat gctgttagtt cctgttgagg aagtgaggct ttgtgggttc ccaggaggaa 65400aaggtatgaa ctcatggcaa aagaaaggaa ccaaaaaagg gagatttgca tcacaatgag 65460ccttctattc atcctaaatt atacctcctt ttataccatg tgtgtctgca aacttgtggg 65520taaatcacaa atctttctgg taagttacaa tggatggaag gtttttgcat ttctctcaaa 65580tcaccaacca tttaatgcta tgtgtagtca ctccctaatc tatcttttgt ataaatttgg 65640atctttgagt attggggttt tccatgatgt ttggcagttc cccttagggt gtctatctca 65700aagtttgtca cactgacaag ctttggggag agaagttaga ggtgggcttc cctgttttta 65760gtggctgtgt ctgattgttc tgtctgttct ccaggacagg agagattgat tgctttctag 65820ctttttttaa aattaaaaca acaacaacaa aaaaatacag aaaggtacaa aggataacaa 65880acacattcat gtacctgcca cctaaaataa caattactaa tcttttcacc ctcctagccc 65940atgatcttcc ctcccaggct gttattaata tgaaaaccga gttcaggttt ttatactttt 66000cgacatctat ttatattaac gtatgtatta taaataatct tagtagtttt taactttgac 66060ataagtggct tcacattcca cataacattc tgcagcatgt tttcttttat ttttattttt 66120ttctttattt ttaaattttt attttgcagc atgcttttct tattcaacat tacatttgaa 66180ttttttcaac attgtacatt gaaatttagc tcattctttt taactgctct gtagtattta 66240ttgtatgcat atactacagc tttctatttc tgtattgatg gttaattagg ttgcttacag 66300ttttttaaga ttacagattc tgctgtaata accatccttt gggcaagtgt atgtaggtac 66360ctatatatga gtttctctag gattcatacc aaagtagagg aattggtagg gcattggttt 66420gctggtttta attttaattc acatgctatt gtcaagctct ccagaacaac tggatgagtt 66480gattggatca atgagtattt ccatcaccag catataaact ctttcctcat aatcacacca 66540atgcttgatc ctgttggact taaaattttt gccaatttgc tgggtatgca acggcatctt 66600acctaatttg cctttatttg atgactcctg aggttgaaca tctggtcata tgtttatttt 66660ctcctctgtg gcttgcctgg tttaatgcct tcttcatttt aaagaatcag atagttttct 66720gttattgatt tataggaact ctttatataa gttgaaaact tgattatatg tgttggaaat 66780actttttcta ggctgtgatg ttttaaaata ttgctttaga tgggttttca tttttacctt 66840ttattttaga gatggagtct cactgcattg cccaggctgg attgcagtgg ctattcacag 66900gaaagagcat agtatgttac agcctccacc tcctggtacc aagaggtcct cctgccccag 66960cctcctgaat aggtgggacc acaggtgcac atcactgtgc ctagctttgg atgggttttg 67020aaagaaagaa gttttaaatt ttaatgccct caaattcatc tgtattttcc tctgtgcttt 67080tattttgtac ccactctaag tagctccgaa ttctgcagat agttggtgca ggaattctga 67140ttttgagtgg acatctgctc tctaacagtc acattgaagg aaattaggtt tttttggtag 67200gaatctaagc aaggggttga tttgtaaact aggctttaaa tatgatttta agcaactcac 67260ttagaacaag atacaaaaat tgtggactgg acctatatct ggaaaacttg aaagtgctag 67320ggcaataaat aattcttggt cacatacagc cgagatcctg ggctcctgac tctgggacag 67380aagctttcta tattttatct catcagtctt tgcaacaggc tccttgaagc aattttatcc 67440ccattttaga gataagaaaa ccagagctta aagcagttag ataatttatg aagtaagtgg 67500cagagccaag attcaaatcc agacctttct gaccacaaag ctcgttgctg aataccgcgc 67560ctcattgcct tcttgcgaat tacttgggat ttgtttgaat cccaaaatct ttatatgtta 67620ttttaaattt gaatctaatt ggaagtgggg cagtgagggt agaggacaga aagaagggga 67680agagcttgag actcaataat agaaacaaaa aacccgtctc caggagggcg gttcaaaagg 67740aagaattcca tatttcatgt aactgaaacg ttaaaagccc aaataattgc atcatgcaag 67800tctgatgctg agtaatcacc ctcccccata ttattgggga gagggggcaa gaagtctggg 67860aagctgtttt tgcctaagga attacattcc aggggactct gaggatttag gtaaccacaa 67920aagccattta tttcgagtac actgagattt ctaccacttt gatccctaat ccatagcata 67980attaataaat gaaatgtgct gtagcatggg ttttttacaa agtgtacttt taaaatggct 68040tttggtctga catgattcat ttgccacttg gaaaagcgtc atcgcctcag atgggcaggc 68100tgggagaggc tgcctggtgg gtagctgagg gcggtttcct ggggcacagt tcctgccttg 68160ggcctctaca gagcggtctc atccaaacat ctcccagact ctgcgttttc caggaagcgt 68220gcagaaatag gaggccagta ctgaaatgct atctgctctg tgtatgtcag aagaccacaa 68280accacttata acaaatgaag atctttttat ttgttcttat ccctttatgt cacttgagga 68340aagttgctgt gagtaggtga tgatcattac agtgatcact ggttgcccaa actgagaagc 68400cagacatttg gcttggtttc tctcccttcc tcttgtctct cctaccctgt aaacacatac 68460ttggtgatta cccatgggga gacaagacag gctgggaata tatacttctg caacttcagc 68520ctcctgggtt ccagcgattc tcctgcctca gtctccagaa gagctcggat tacaggtgtg 68580caccaccagg cccagctaac tttttgtatt tttagtaaag atggggtttc atcatgttgg 68640ccaggctggt ctcgaactcc tgacctcagg tgatctgccc ttctcggcct cccgaagtgg 68700tgggattata ggcgtgagtc accgagcctg gccccaggca ataatatacc agtgggcaag 68760aaaatattct tgctctcatg ggacttctgt tgggggtcag ggtataggga ggaaggcata 68820gagatgaaaa ccagtaaata agtaacaggg gaaaacattt taaatacatt aataactaat 68880aaaatagaaa taaatctgtt ggctacttaa caggatgtgc cacattccag atacattacg 68940ttaatcctta tgatctttgg gggctaagta ttagtattcc attttacgga tgaagagact 69000gaggctcaga gggaagggag gtggcttttc tcaggtggaa agccagacct tttcagtggt 69060cattcagttc atagctaagg tcttattttc tgtgctctct gtcggctgaa aatgggcaag 69120gtaatttcac atagtgacag gagccatgtc agagaaagag caggacagtg ggacagagag 69180ggaccaggct gggggctgtt tgagatggag ggtcaggaag aaccaaacta agatgtgaac 69240agtgggaggt gttggagctg tggtgcttgc ctagaaggac cctcatcgag caaatagaag 69300cttctggcag gaagaagtta atgtcttgcg tgtgccctat gtaggttcat tagggccttt 69360aaagggggaa gaaggtggtg gctataaatg ttacaatctt acctttggcc cctagggatt 69420ctgtctttca accttggttc agtaacaact tgtgactgcc caacagggct tcctttcggg 69480agagaatggc ttgttacatt caaatatgcc atgaaagtat caccatttat ttcagtgtct 69540gatgccccag cttgggcagc ctgagcaggc tctgaatggg tctgaagagg ccctttagag 69600tagagatgaa gagggggtgg ggaatcctca attctaaaca aagagtctgc aatgggaaga 69660tggccaaatg ctgtttttgg agtgggtgag agggaaaaga aaggtataga tggttcgttg 69720gaaaatgtgg ttttataccg ggttttggtg tcaggtcccc gagggcaaca tggactccac 69780actgtgatcc tccgggcagc tcatagcccc agccccttcc ttttgcttcc tggtcagttt 69840gtgagaagga ggggttgtgt ctccaatctg agcaataagg ggtctgaggg gggttggatc 69900catgtggctt tcctgtgtct tgttccttgt aaaagttcca ggttttgggt cgtgagctgt 69960gtgtgtgtgt gtgcgtgtgt gtgcgctgta cgttaatatg gagagatggg cttgggccag 70020tgggaaatag agagacccgc aagcacagag tgacagggtt tgatagtaag cagcaggcca 70080gcgttgctgc ttttattcct cggtaaatcc ttgcacaatg ccatatgctc ttgcattccg 70140tagctgctgc atagggtgtg atttagttaa tgcccgctct gcaaacagga aacggtgctc 70200actgctgtgt atgcttttca tggagataaa gtgtcaggag caagacccca aacctgcgaa 70260atcactaatg caaccgcccc ccatgcccca aaaggtggga gtgggggata aaaagagtag 70320gaaagtggtg tggggagggg aagctttagg gccataactc agacaatttg tcaggcagtg 70380gcatcggttg ggaggaaaat attgatgtac actttttgtt tttgaacctg aagtttgggt 70440tttttcggat gcattggagg acttttaaat gttttcggag tgccagagtt tggactgtta 70500ggtcaccgta ggtaccggct tgcatatcat ttcagaggaa tattttcaaa actccataaa 70560aacatgcggc tttcaaggct ggaccacttg ttcaggtcct cctcccaccc cccacccttt 70620ttggcaaaac catgcaaaca ttggtattca aaaatatttt gttacttttc ttggcaaagt 70680gttccaagaa ggaattgcaa cacagtctca gagttaggag gcaactttct ggggaaaagg 70740cgggggttgg ggaggtttgg agtttgaatc aaaaacagac accgaagctt taataaaata 70800aatgaagcgg agccctttca gctcacggtg gactgtgttg gtgcgcgggt caggctttaa 70860cgtgcctagt ggaaattgac agtctgagaa ctgggacata aacaaaaatg tcagtccctg 70920ggagtcttgt tcactggaca atgtctcaat tgttcctttg gttttcaagg cagcagggag 70980agtggaatat taactgttta ctgcccaaag ctggctcgga aattgcttgg agaaggggag 71040aaaaaagaca gaaaatcaca ttttttattt agaaactatt aaacatgtca gtaagagata 71100ggaaaagagc agattgtttt ctccttaatt atctgccatt cacttccata tttctgcata 71160ccatttttgg ggtgtgtgtg tgtgaaggaa cagcagggtg tttcttttta aatttgaatg 71220ttagccttgc atattgtcag tttttaaagc ttgctggcat gtagattatc cgcccccggt 71280ggatatgaca gtgggcttta ggaaaggaag tgtgatttct gataacattt acatcttagc 71340tgttcagcgg ataccctgtt agtgtttgtt cttcagaatg ctcagataga acaaaaatca 71400agtggttgga attttaaaaa acaaaatgta tttggctctc cataaaaatg catttagtga 71460taaagggggg cagcaagtaa ctatgtctga gagaaggaat tgcaggcaca gaggagatcc 71520agaattctgt tcacacttga atttacttga ttcgagaaac aaacagcaaa gcctggtgta 71580ttggccttta tctgggcaaa gttcaaaact caactggtaa ttatgtcctt agaagcctta 71640aaaggactgt gttgttacaa aagcagtgac tgagcttact tcttcaggac cgaatgcact 71700cgagttgttt gttagataaa cttgttttaa taaatggggg ggtcagggga gaggtttctg 71760ttcttggaag attccctgat aagtagcttt cttctcttgg agaacttcag gctttctctc 71820caagcgaggg gtttgcaggc agctaaagtc agcttcggct tctgcttcct gtcagtcagg 71880aagtcacttc cttaacccaa attacaagct agagcacaac tccccagcca taccgaaaag 71940agcaggtttt tcccagaaga ctgtgtttct agatgcggaa gtgtaaattg gtacgctgtg 72000tgatcatgga atgcccaaaa tacataggga acagtgttgt tggaaagagg cgctgtgtcc 72060ccaaggagaa gacgccgccc agaatggctg gatcgcctgt tgtggctgag tgcgaggcag 72120ctgtggctgg ctgctgtgtg acgatgacct agtagccacc catgtggagt cctggctgcc 72180tcagaaccct atcacatcta ggcaaaatct tgcatttttt atctgggagg cctgaggact 72240tcagggctgg tggatagtaa gctccttggt tatctcacag atacaagagg tcttgggaat 72300ccacgatcaa acttgatgtg tgcgtttacc ctcctccctt tgaatctgtt attcaaatat 72360ttaagcctcc aaccttgtgg cccctacctg caccacccct cacccccccg acaaaaatca 72420agctcttgac ctcatggctt ctttcagtga cccttggggg acagggtttc ccaaggctgg 72480ttgccagctg gcatggtccc ccgttggtga agtggagacc tgtgtttttt tggtcatttt 72540gcaaagagct tatggatgac agcagttctc tgtgcctcgc tgggacagag tgtattctga 72600ggtccagcgt ctgcatggag atctgcctat ccttcacttg gggtgctcag tagataacgc 72660ggccactttc ctatacattt ccttaattta agggaacagc gtaaactcag cccaggtgga 72720ttaatctctc cagtgacttt tgaaacttca atttccaatt tccctcttat gtctaggtgt 72780gagtgaggat acgtgtagta attgtcgcag gtattagtga gaaagggtgc agatcacaca 72840aatatttcac acgttattag ttggaccaga ctttggaggc aagggagggc cgtgtcacct 72900aggaaatttg ctcttccgtg gagatgaaag ggcagtgaat taagtgcctg ctttttctcc 72960ctttttccct ctgacggtta ttgatcctcc cctggaactg tacagttcac gttctgatct 73020ttttcttgac aaagggaatt cccagtttgt tcgctggcga acgcactagc aggtgaggag 73080ttaaaagttg gcaacgcctg ccctctcgag agtgtcagga tttttagtct cttccttgag 73140agctagaaga tgtttctaaa agaatctctt tggtgactta gaagtggaga gagctttaga 73200agcatggcac aaataaaagg aaagaggcaa acaccgtcat tctacatctg tttattttgt 73260tattaacaaa aggcaaggcg attttcatta aagttttgct ggggttgggg ttgagggtgt 73320agagagcaaa agtgtgagtt gtacaccatg actggaatcg cttggacata ctcttcagca 73380gacatcgtgt gactgtggaa gaaatgagtt tcatgaagat gactgataga aggaagccac 73440tgaaccagtc ctctatcacc tcttccaagg ctaaagtttg gagccacttg cagaaggctc 73500tcctcaaacc cctgtgttct ttgcctaccc ctgctgttgc cacatcatct tggagagctg 73560gctgcttccc tcctcaacta gaagttccta gtgcctgctt agttcttgtc tcttgcttcc 73620caagtgctca caaaatacat ccatgttcgc tacgaggaaa tggaccacat aaggtttccg 73680tgaaaacctt agcccttagg tctaacacag taggaacaga agttaatgtt ttcctgacgt 73740agaagtttct cttgctgctt ctggtcacat ttctttcttg tgtggttctt ctatggctac 73800tgcacttttt tttttttctt actgtctccc ccttccccca cacaccacct tttggggata 73860gggtggcagg tgagaatata aacagataat ggttaagaga tagtttagtc tttctaggcc 73920agattattta gtttttgcca tctaggtaaa attcggtcca attaagcgtc cattaagtgt 73980tttaatataa gctggagaag gagttgaacc tggaggtcag ggctctgtgg tctattacag 74040tccccctggg gtctctagcc caagggagac tccagggtct taataaatga ctgggggttt 74100cattttgagg cctttactac caaagactga ataatacatt gggcatgatg gttttgtcct 74160aaacattaac agccacaaaa ggtagagagt gtgtctgttt atagatacac atgtatcatg 74220aataattagt tggggactgt gcatcaggtc tctcatttta cattcgagga agcaatgcac 74280ggaatgaatt ctggacctgc gaactctgaa tttcaattct ctgtctccta cttttactgg 74340agtgcttgca aacagtacag tgtttttgtt gtgaagttat accgtgcctg taatctctct 74400gcgggtggcc ctcctaagcc ctacttcaag aaatagctct aagctcatga cacccgcccc 74460acccgatgcc tacatatgtc ttatatcctt ggagtagtgt ttggggttgc aaatttgact 74520ttagggagac atactctctg atgataggct aatgcttata tttactgata aacttccttt 74580ttgacggtca tgggcttcgg gggccaccca accaaactgt gtggctgctt ttatgttggg 74640ccaaaagaca ggctccttgt gtcctcccag tttcttaaac aatgaagtca tggcatttta 74700cagtgctggt gaatggattg agattgtggt ggccctggaa tgtggcactg ctctggctgg 74760agggaagatg agagtgaggg atggagagga gaggagagcg ggagatggga acctggtgga 74820cacaggaggg agtgtgagtt ctgagggcca aaggaaactt gacaccggat gggacattaa 74880tctgattctg ttatctgagg ctgtcaccag tcctccctgt cctcctggca 749302384DNAHomo sapiens 2ttcaggccat tggtgttgta tatatttcaa gatttgctca caggtccaaa gcttaactta 60agctccctga gacatatcat aaaatatgat ttggggaaaa accctaatgg gccatgatca 120gaacattatt attcaacaaa ggatgaaatg cttaagccaa gatggccttc tttctttctt 180tctttctttc ttttttttta atgaaagttg agcagactcc cgtccaacag ttttcaatgt 240aggaattccc acagccccat ttgattgcag tttgttgaaa agtttaatgt ttttgtaggc 300aattcataat ttccacattg

aacagcctga gaggaagaga gctggagccc actgttgttt 360ttgtagtggg atggtgggaa cttt 384320DNAHomo sapiens 3ttcaggccat tggtgttgta 20420DNAHomo sapiens 4aaagttccca ccatcccact 205366DNAHomo sapiens 5ttgtcccttg aggtgtactg gaaactaagg cgtgagggac tcataggggt ctggcttgga 60aagtgtattg ctatgtccag tttacacata aggatgtgca aatccagcag gttagctgag 120ctgcccagga atatccaggc aagaatkacc atattctgat aattactcag gcctctgcct 180catctccgct gcccccccgc cccctgactc tcttctgagt gccagattca gcctccattt 240gaatgccaaa tagacaggaa attagcatgc ccagaatcca cgtctttagt gcactctctc 300cccagctcca aacctgttac tgcttgtgtt caacatctca gtaaagctca acaacatcga 360cccatt 366621DNAHomo sapiens 6ttgtcccttg aggtgtactg g 21720DNAHomo sapiens 7aatgggtcga tgttgttgag 208558DNAHomo sapiens 8gctgtgaaat cccctgtgta gtgggaagaa gaaatagcaa atcttagctg ccttggacct 60gatataatta tttgtcttca tttacatggt tyatccttca aggttgaata aatgatgtgg 120gagctagtca aggggcttta ggtatgtgat ttcatgccta ctttttttta ggtagagaaa 180ctgaggtcac agggtactag agaatggact ctaagattca ggtttctgaa ttgcctgtgg 240ttttgttgac tcaactgctc ttctgttgtt ttttagccac atgccttgaa acagtcctct 300ttcccatgtt tcttcatcag caccattaac ccaaggtata ctgtcctctc ttatctttca 360caaggtcttg gagttcccat gcctttgtaa gcatccctcc ccgagattca gcaccaacca 420aaatcacatt tggaaaaatt gcttgtttcc caagaagctt tggaggatat gattttgtat 480agaacgggtt cacaggtttt ctgttcattc ttctatggtg gagtgtgtgt gtatgtgact 540ctgtcttctc tccattcc 558921DNAHomo sapiens 9gctgtgaaat cccctgtgta g 211023DNAHomo sapiens 10ggaatggaga gaagacagag tca 2311364DNAHomo sapiens 11aagggagaaa gcaggattga gcagggggag ccgtcagatg gtaatgcaga tgtgatgaga 60tctctgccgg accaaagaga agattccttt ttaaatggtg acaaattcat gggctttctc 120tgcctcaaaa cctagcacag ctgttattta ctgaacaatt agagagctaa gcacttttta 180gataytatat aatttaattg ccgtatgagg cacccttagt tttcagacga gaaaccacag 240ttacagggaa ggcaagtaac ttagtcaatg tcagataact aggaaaaggt tagaggggcc 300ctggacacag gcctgtgtga ctgagaagct tgggcacttc actgctacat ttcatctctt 360cgct 3641220DNAHomo sapiens 12aagggagaaa gcaggattga 201322DNAHomo sapiens 13agcgaagaga tgaaatgtag ca 2214579DNAHomo sapiens 14ctgatgaggg tagggagcat ctgtctgcag cttcatcttc attgtctagg ggctccagaa 60atatctgtga gtaaataagt tatttaatct ttgcctcaaa tttccagtga ctgtagggat 120atagctgtga gcctctagga gctgagattt tttaaatttc ccacttaaac atttatttaa 180aaattttgtg ctcagcatgg actaaggact ttacattcat taactcattt acagcttgat 240cctatgcggt gggcattcat ttacagagga tcccatttta caggtgagga agaggccagc 300taggggtgca gcctaggtta gtattctaga gctcatcagg ctgtgttgtc cccagtgaaa 360gaataagcaa agaagtgaat gttgtgcatt gagaaaaatg actctcggag gaggatgagc 420ctctcggata tggcgaccga agtgatwtgg ggcccttgtc aagggtctct attatggcat 480caagaaaaga tgctgctttc ggtgatgccc gaggagagcc tcaatatttt acatgggaaa 540cctaaaaaag gggccatgtt gtggtctctg cacctaaga 5791519DNAHomo sapiens 15ctgatgaggg tagggagca 191622DNAHomo sapiens 16tcttaggtgc agagaccaca ac 2217486DNAHomo sapiens 17tatttagaaa ccataaaatc cacctatttg aggtgtacaa ttgagtgatt ttctgtatag 60tcacagatct gtgcagtcat ccacaccctc taactccagg acattttcct cacccccgag 120gagaaacctc ccttacccat tagcagtcac tcctcatttc ctctcccccc agcccctggc 180aatcactgtg gatttgcctg ttcttgacat ttcatataaa tggtatcata aaatctaygg 240gcttttgtgt ctgtctgctt tcacttagca tacggttctc aaggttcatc cagtattgta 300gcatctatca gtatgtcatt cctttttatg gccaaataat attttattgt atggatagac 360attttgttta ttcatttatc tgtttttggt tattatgagt aacactacta tgaacatttt 420gcacaaattt ttgtattgac atgttttcat ttctcctggg tatagtccta tgagtggaat 480tgctgg 4861827DNAHomo sapiens 18tatttagaaa ccataaaatc cacctat 271922DNAHomo sapiens 19ccagcaattc cactcatagg ac 2220428DNAHomo sapiens 20ttgtctcctt ttgtttctgc tactgtgaat gatcctgtga tgatcatctt tgtgtgtaaa 60tctttgtccc ctcgccccct ccccttttat tattttcttg ggatagaccc caggacaaaa 120ggtagaaaag aacaaagtgt taaaaaattt cttgatacat agccacagat tattttcctg 180aaagttctca acatttataa ctacsagcag tatgtaagag agttatggtt ggaatgattt 240taatgtctct ggggaattta acaacaaaaa aactttaggc ttctttggag agagacatgc 300ccttaactcc accccgccct agaacagaga cccagcccat ccaagtcagc ctccccaggt 360cctccacctt caaaacaggc aaacgaaatc atttcttgaa taattggtag gcttcaaggt 420cagatgtt 4282123DNAHomo sapiens 21ttgtctcctt ttgtttctgc tac 232222DNAHomo sapiens 22aacatctgac cttgaagcct ac 2223330DNAHomo sapiens 23tcagggacag tgcataggtg taaagaagtt gctggttggg ggttctaatg caggtttctc 60caaaagtgaa tgccctgtta aaaaaaaatt cttaacaaat atacagagat ttttttttta 120aaaaagtgtg acagttctag acacctagag agtaaartga agaagcctgt tttcaggttt 180cccgcctccc tgaatttccc agcatggtcc aggctttgaa atttatttat ctgcttttgg 240caatggttga tgggaatttc ccacatttat tttttagcta cagagaaagg acattatctt 300taaaatctct tcgttgttct ctctctttga 3302420DNAHomo sapiens 24tcagggacag tgcataggtg 202523DNAHomo sapiens 25tcaaagagag agaacaacga aga 2326574DNAHomo sapiens 26tatttagaaa ccataaaatc cacctatttg aggtgtacaa ttgagtgatt ttctgtatag 60tcacagatct gtgcagtcat ccacaccctc taactccagg acattttcct cacccccgag 120gagaaacctc ccttacccat tagcagtcac tcctcatttc ctctcccccc agcccctggc 180aatcactgtg gatttgcctg ttcttgacat ttcatataaa yggtatcata aaatctatgg 240gcttttgtgt ctgtctgctt tcacttagca tacggttctc aaggttcatc cagtattgta 300gcatctatca gtatgtcatt cctttttatg gccaaataat attttattgt atggatagac 360attttgttta ttcatttatc tgtttttggt tattatgagt aacactacta tgaacatttt 420gcacaaattt ttgtattgac atgttttcat ttctcctggg tatagtccta tgagtggaat 480tgctgggtca tataataaat aactgtttaa cattttgggg agctgccaaa cttttaaaac 540cttgggttct gtgatgtacc agttgtgtta ggca 5742727DNAHomo sapiens 27tatttagaaa ccataaaatc cacctat 272822DNAHomo sapiens 28tgcctaacac aactggtaca tc 2229571DNAHomo sapiens 29tgccaggggt tttatggtta attttcctcc attatgaggg ttgactcagc cttgggtatt 60agatgtcttt gagaatccag ggttcaaata ccacagctgg tagaatgttt ctcaacttgg 120agccaatctc catctactga aggtacgctg gtttagacag acaacaggga catcagcatt 180ttaaaaagcg gtggaaaaag tttgcttgtc ttgattggag ccatgacatt ttattttgaa 240atttcaaata acatgaaggg aggtttggag cggtttttgg tttatccaaa gggcagtgga 300ttgaaggctg agaaacacca ggctgaatgg gagaggggtt ggggtccccc tgtgagatag 360tgaaacaatg gtagtgccat ccaatgatag gcacttttct gtcattcaga agcagaaagg 420gggccagagg cccattggcc ttactgggma gtaagctgta gagctgctgc cttttcgtga 480aagggttgac accaaccttc tcccccagga agagtgacca gggacctgag gggcatggtc 540gagcagatga cagcctttgt aaaacatctc c 5713020DNAHomo sapiens 30tgccaggggt tttatggtta 203123DNAHomo sapiens 31ggagatgttt tacaaaggct gtc 2332614DNAHomo sapiens 32ttggtagaga tggggtctcc taggctggtc ttgaactcct ggrctcaagc aatcttcctg 60cctcagcctt ccaaagtact gggattactg gcgtgggcca ccatgcctgg cttgaaattt 120ttctatggct ttattctttc tccaagtaca gagtctaccc aaccttctga gatctttggt 180tttcttttcc taggtaacta tagtacatac ttatttatgt taaacaacag caatcacaca 240tttctttttc tatacagtca tgctttatag gcaaataaag cctccgtctt aggctttctg 300gattttttca aaagatgcaa ttcctggagt atgtttttac ttagagcaaa gcagcctagt 360ctcctatacc ttctgcatct gcagaaaagt tggttaaaca gactttgtaa tgatgcccct 420tacaattctg aagggacttg tgaaatagtt tcacagagtt tcagtgttag gtatatttga 480tcaatgctaa cttttggaaa actttggtgc ctgtatgatt cagagggtag ggcagaatat 540taaattaatc acaacttctt gtattttaac cattctgggt aaattgggat tccgtgacgc 600ccaggcaaaa ttat 6143320DNAHomo sapiens 33ttggtagaga tggggtctcc 203420DNAHomo sapiens 34ataattttgc ctgggcgtca 2035633DNAHomo sapiens 35tatcttatat cccctccaag cattcattaa ctgatggatt agtgagttgg ccttgagaag 60cataaaggct cgtctccatg tgcttctaag cattgtgtct aagttctgtt tggtttcctg 120agtgaaactg tcttaatgtt accaacagaa gttaaatgcc taagagwttc ttatacatgg 180gctgagtacc tctgtgactg ggcaagccac ctcacctcat tttaccttgt ctgcaaaatg 240aggaactggg tcaactcatc gttcaaatct cactgaaagc taattgatcg cttttgacag 300aagtagctcc cttgggccgt atatttattt cctagcttgg aggaaggtgg ggacagacag 360aattgatgta cacctttatt tttatctcta tggtaaacct gtgcatacta aagcattcct 420ctggtctttt gagatgagtg tatacattgt gtctggccct gtgcattttt taccaagaag 480taagttttgt tgagtaaact tgggttgtat gaagaactgc atgctcaccg tactcaagta 540gcttttgcta cctaaaggac agctgctcat atgtacttga cttcctttaa agtgaaggat 600gatgacattt gaaaaacgga ggttgaaaag gag 6333625DNAHomo sapiens 36tatcttatat cccctccaag cattc 253721DNAHomo sapiens 37ctccttttca acctccgttt t 21381081DNAHomo sapiens 38ttgagcatgt gttatttaat gagttatacc tctgtcatat gtgtgtgttt atatcacaaa 60ataacttatt tttataaaac catattttga gtcatcattt gtgacaatgt cttcttttct 120ctggtataaa tgaggcatgt agaaagaaga ttgacatttg ctagaagctt cccctttcct 180ctaactccac aataaaatgg atgctcataa ttacatctgc tcctataagg tcaagatttc 240agggctggaa gtgaccttag atcatttagg cccaacttgc cctcaggaaa ggaaactgag 300gcccagagat gccttaagtg aattgcccaa tgtcacacgc tgagtcagtg gccagagcaa 360ggcttggatc cagttctctg ctccctttcc agagccttgt gatgtcttct ctcctacagg 420aggtgaaaat aactgctgtg gctggttctg ttttgctgac tgtaaattgg gtcatggtca 480gggacagtgc ataggtgtaa agaagttgct ggttgggggt tctaatgcag gtttctccaa 540aagtgaatgc cctgttaaaa aaaaattctt aacaaatata cagagatttt tttttwaaaa 600aagtgtgaca gttctagaca cctagagagt aaagtgaaga agcctgtttt caggtttccc 660gcctccctga atttcccagc atggtccagg ctttgaaatt tatttatctg cttttggcaa 720tggttgatgg gaatttccca catttatttt ttagctacag agaaaggaca ttatctttaa 780aatctcttcg ttgttctctc tctttgagtg aggagagaag atgtgaatcc tggcagtggt 840tcagagtgga cacagcccct gtgtttgtgg cataggctct gtgggcccca tgccagggag 900cagtaccccc gtgtaaagga gtgggggttt gtccatttgg atagagcaaa gatcctccac 960ctcaaatccc acaagaacag ttgccacaac ctgggcccta agcatctcat tttcctatgt 1020agaaattaat gatctggagg agatggcaaa acattccttc cagagcctgt gtggattttg 1080g 10813926DNAHomo sapiens 39ttgagcatgt gttatttaat gagtta 264020DNAHomo sapiens 40ccaaaatcca cacaggctct 2041599DNAHomo sapiens 41tagtgctcag tatttccaac gttctgttta tttaagatga aaattgctgt agttaataag 60cacttcccca tgtcattaaa atgcttaagg atttttaatg accacataac agtccataat 120atgattaaac cccaatttac tgaatcaatg ccatattgtt gggtctttag attgtctcct 180tttgtttctg ctactgtgaa tgatcctgtg atgatcatct ttgtgtgtaa atctttgtcc 240cctcgccccc tcccctttta ttattttctt gggatagacc ccaggacaaa aggtagaaaa 300gaacaaagtg ttaaamaatt tcttgataca tagccacaga ttattttcct gaaagttctc 360aacatttata actacgagca gtatgtaaga gagttatggt tggaatgatt ttaatgtctc 420tggggaattt aacaacaaaa aaactttagg cttctttgga gagagacatg cccttaactc 480caccccgccc tagaacagag acccagccca tccaagtcag cctccccagg tcctccacct 540tcaaaacagg caaacgaaat catttcttga ataattggta ggcttcaagg tcagatgtt 5994225DNAHomo sapiens 42tagtgctcag tatttccaac gttct 254323DNAHomo sapiens 43aacatctgac cttgaagcct acc 2344599DNAHomo sapiens 44tagtgctcag tatttccaac gttctgttta tttaagatga aaattgctgt agttaataag 60cacttcccca tgtcattaaa atgcttaagg atttttaatg accacataac agtccataat 120atgattaaac cccaatttac tgaatcaatg ccatattgtt gggtctttag attgtctcct 180tttgtttctg ctactgtgaa tgatcctgtg atgatcatct ttgtgtgtaa atctttgtcc 240cctcgccccc tcccctttta ttattttctt gggatagacc ccaggacaaa aggtagaaaa 300gaacaaagtg ttaaaaaatt tcttgataca tagccacaga ttattttcct gaaagttcts 360aacatttata actacgagca gtatgtaaga gagttatggt tggaatgatt ttaatgtctc 420tggggaattt aacaacaaaa aaactttagg cttctttgga gagagacatg cccttaactc 480caccccgccc tagaacagag acccagccca tccaagtcag cctccccagg tcctccacct 540tcaaaacagg caaacgaaat catttcttga ataattggta ggcttcaagg tcagatgtt 59945641DNAHomo sapiens 45tgctatgtcc agtttacaca taaggatgtg caaatccagc aggttagctg agctgcccag 60gaatatccag gcaagaatga ccatattctg ataattactc aggcctctgc ctcatctccg 120ctgscccccc gccccctgac tctcttctga gtgccagatt cagcctccat ttgaatgcca 180aatagacagg aaattagcat gcccagaatc cacgtcttta gtgcactctc tccccagctc 240caaacctgtt actgcttgtg ttcaacatct cagtaaagct caacaacatc gacccattac 300ttaggcctca aaccttgggt ggcatcgtcg attgctcttt tctttcatac cccacattca 360acccatcagc ccatcccaca ggcccaagtg tgtcctctct accttcaaag cgtgtgtggc 420atccaccgct tatcaccacc tctgccatta ccactggagt ccagtgccat catctctcac 480ttggatgtgg ccagagtgtc tttgctggtc tccttcttgc ttcctacctt tgtaacagcc 540tatcatctat ctctggtctc catagctcac tcccatactt tgagagggcc tttgaaagcc 600ttagacagat catatcacag acctctatac tgaaagtcgg g 6414625DNAHomo sapiens 46tgctatgtcc agtttacaca taagg 254724DNAHomo sapiens 47cccgactttc agtatagagg tctg 2448284DNAHomo sapiens 48ccatctgtgg agcagagtca ctgaaaggaa atactggaaa tactggaagc cacttggtgt 60tttatcaagg atgtgaggtt tcctggcaac tttgtcgcca tatcatcatc atcatcacca 120tcatcatcat catcatcatc atcatcatca tcatcatcat catcatctgc cctttaagtt 180ttctgcttgt ttagaaaaga aatttataca gagcccccag tagcagctgt aagggggcag 240gttcttggag cagcccatcc tcaacattct tgctgctgat ggaa 2844920DNAHomo sapiens 49ccatctgtgg agcagagtca 205020DNAHomo sapiens 50ttccatcagc agcaagaatg 2051145DNAHomo sapiens 51tccacgcaga gaggatctaa atctggctct ttgcaattgc cttcatacat gtgcatacac 60accacacaca cacacacaca cacacacaca cacacacaca cagacacata catatgcaca 120caccccgact caatggagga ccctc 1455221DNAHomo sapiens 52tccacgcaga gaggatctaa a 215320DNAHomo sapiens 53gagggtcctc cattgagtcg 20

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed