Method And Device For Collagen Growth Stimulation

KREINDEL; Michael ;   et al.

Patent Application Summary

U.S. patent application number 13/178656 was filed with the patent office on 2011-11-03 for method and device for collagen growth stimulation. This patent application is currently assigned to SYNERON MEDICAL LTD.. Invention is credited to Lion FLYASH, Michael KREINDEL.

Application Number20110270364 13/178656
Document ID /
Family ID40089995
Filed Date2011-11-03

United States Patent Application 20110270364
Kind Code A1
KREINDEL; Michael ;   et al. November 3, 2011

METHOD AND DEVICE FOR COLLAGEN GROWTH STIMULATION

Abstract

Provided is an applicator for skin treatment having one or more RF electrodes. An article is located between the electrodes, such as a roller or flexible belt containing one or more protruding pins electrically isolated from the RF electrodes. Also provided is a system for skin treatment including the applicator and a control unit. Further provided is a method of treating skin disorders in which a section of the skin is heated while, essentially simultaneously, one or more holes are placed in the heated section of the skin. The present method may be used, for example, in collagen remodeling.


Inventors: KREINDEL; Michael; (Yokneam Illit, IL) ; FLYASH; Lion; (Nazareth-illit, IL)
Assignee: SYNERON MEDICAL LTD.
Yokneam Illit
IL

Family ID: 40089995
Appl. No.: 13/178656
Filed: July 8, 2011

Related U.S. Patent Documents

Application Number Filing Date Patent Number
12222063 Jul 31, 2008
13178656
60935224 Aug 1, 2007

Current U.S. Class: 607/88 ; 607/101; 607/96
Current CPC Class: A61B 2018/0047 20130101; A61B 18/14 20130101; A61B 2018/143 20130101; A61B 18/203 20130101; A61B 2018/00452 20130101; A61B 2017/00747 20130101; A61B 2018/00476 20130101
Class at Publication: 607/88 ; 607/96; 607/101
International Class: A61N 5/06 20060101 A61N005/06; A61N 5/00 20060101 A61N005/00; A61F 7/00 20060101 A61F007/00

Claims



1-22. (canceled)

23. A method of treating skin disorders, comprising heating a section of the skin while, essentially simultaneously, piercing one or more holes in the heated section of the skin.

24. The method of treating skin disorders according to claim 23, wherein the skin is heated by a source of RadioFrequency (RF).

25. The method of treating skin disorders according to claim 23, wherein the skin is heated by a source of light.

26. The method of treating skin disorders according to claim 23, wherein the skin is cooled by a source of cooling fluid.

27. The method of treating skin disorders according to claim 23, further comprising: (a) puncturing a section of skin by one or more invasive pins, and introducing fragmental holes into the skin; and (b) stimulating collagen growth in the skin using an RF electrode and heating the skin.
Description



FIELD OF THE INVENTION

[0001] This invention relates to electromagnetic energy skin treatment and, in particular, skin treatment for dermatological and cosmetic purposes.

BACKGROUND OF THE INVENTION

[0002] It is known that skin damage can stimulate the growth of new collagen. Uncontrolled skin damage may cause scarring, which is excessive collagen growth. However, controlled damage of the skin which is intentionally introduced can stimulate controlled re-growth of collagen in such a way as to improve the appearance of the skin. A well known method of controlled skin damage is ablating the epidermis using laser radiation with wavelengths having strong water absorption. Typical lasers used for epidermal ablation are CO.sub.2 and Er:YAG lasers. U.S. Pat. No. 6,309,387 to Eggers et al. discloses ablation of the epidermis using RF current. This treatment significantly reduces wrinkles and improves skin appearance. The main disadvantages of skin resurfacing are the long healing period that can last for more than a month, and a high risk of dischromia. These disadvantages have reduced the popularity of ablative skin re-surfacing.

[0003] Non-ablative skin resurfacing is based on heating the dermis up to a sub-necrotic temperature with simultaneous cooling of the skin surface. U.S. Pat. No. 5,810,801 to Anderson et al. describes the use of infrared laser radiation penetrating into the skin dermis with dynamic cooling of the skin surface using a cryogen spray. U.S. Pat. No. 5,755,753 to Knowlton describes a method of skin tightening using uni-polar or bi-polar RF electrodes to create skin heating in combination with cooling to generate a negative skin temperature gradient in which the dermis is hotter than the epidermis. The main barrier for introducing RF current is the stratum cornea, which should be hydrated by an electrolytic type of liquid prior the treatment. Non-ablative treatment is much safer and has no down time but the results of the treatment are less satisfactory.

[0004] A method described in U.S. patent publication 20030216719 tries to retain the efficiency of ablative treatment coupled with a shorter healing time and with a lower risk of adverse effects. The device described in this patent publication coagulates fragments of the skin having a size in the range of tens of microns while keeping the distance between the fragments larger than the damaged zone. This treatment provides skin healing within a few days, but the results are very superficial and less satisfactory than with a CO.sub.2 laser, even after multiple sessions.

SUMMARY OF THE INVENTION

[0005] Disclosed is a system and method for collagen growth stimulation. The method and the system use a combination of two different methods of stimulating collagen growth to provide a collagen remodeling process that is controlled and effective.

[0006] This method can be applied to a plurality of clinical treatments including different skin disorders, such as wrinkle treatment, skin tightening, skin rejuvenation, skin dischromia treatment, and others.

[0007] The system comprises a mechanical part creating spaced apart blind micro-holes in the skin with controlled size and surface density and one or more sources of energy providing skin heating.

[0008] Thus, in one of its aspects, the invention provides an applicator for skin treatment, said applicator comprising: [0009] (a) one or more RF electrodes adapted to be applied to skin surface; and [0010] (b) an article located between the electrodes, said article containing one or more protruding pins electrically isolated from the RF electrodes.

[0011] In another of its aspects, the invention provides a system for skin treatment, said system comprising: [0012] (a) an applicator for skin treatment, said applicator including: [0013] i) one or more RF electrodes adapted to be applied to skin surface; and [0014] ii) an article located between the electrodes said article containing one or more protruding pins electrically isolated from the RF electrodes; and [0015] (b) a control unit.

[0016] The invention also provides a method of treating skin disorders, said method comprising heating a section of the skin while, essentially simultaneously, piercing one or more holes in the heated section of the skin.

[0017] The invention still further provides a method of collagen remodeling, said method comprising: [0018] (a) puncturing a section of skin by one or more invasive pins, and introducing fragmental holes into the skin; and [0019] (b) stimulating collagen growth in the skin using an RF electrode and heating the skin.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] In order to understand the invention and to see how it may be carried out in practice, embodiments will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which:

[0021] FIG. 1 is a schematic illustration of an exemplary embodiment of a system for skin treatment in accordance with the present method;

[0022] FIG. 2 is a schematic illustration of an exemplary embodiment of the applicator for use in the system of FIG. 1;

[0023] FIG. 3 is a schematic illustration of a perspective view of the applicator of FIG. 2; and

[0024] FIG. 4 is a schematic illustration of another exemplary embodiment of the applicator for skin treatment in accordance with the present method.

DETAILED DESCRIPTION OF EMBODIMENTS

[0025] Reference is made to FIG. 1, which is a schematic illustration of an exemplary embodiment of a system for skin treatment in accordance with the present method. The system 100 includes an applicator 104 and a control unit 108 both of which will be described in detail below. A cable 112 connects the applicator 104 to the control unit 108. Applicator 104 is adapted to be applied to the skin 116 of an individual and moved over the skin 116 surface 120.

[0026] Control unit 108 includes an RF energy generator 124 that is connected to RF electrodes 204 (FIG. 2) in the applicator 104 via wires in cable 112. Control unit 108 has an input device such as a keypad 128 that allows an operator to input selected values of parameters of the treatment, such as the frequency, pulse duration and intensity of the RF energy. Control unit 108 optionally contains a processor 132 for monitoring and controlling various functions of the system. For example, processor 132 may monitor the electrical impedance between the electrodes 204 in the applicator 104, and determine the temperature distribution close to and at the target skin section. Processor 132 may also determine the parameters of the treatment based upon the impedance between electrodes 204 measurements.

[0027] Control unit 108 may include a source of power supply 136 that provides power to an optional light source located in applicator 104. In the course of operation, when RF is supplied to electrodes 204, the temperature of the electrodes may increase. Electrodes 204 can be cooled using thermo-electric coolers (not shown) or a cold fluid that has a temperature less than that of the skin surface. Control unit 108 may include a source 140 of such a fluid, and pump the fluid to the electrodes when needed.

[0028] FIG. 2 is a schematic illustration of an exemplary embodiment of the applicator for use in the system of FIG. 1. Applicator 104 is shown applied to a skin surface 120. Applicator 104 contains one or more RF electrodes 204, but typically would have a pair of RF electrodes 204, and an article having a form of a roller 208 with pins 212 protruding and extending outwardly in radial direction, electrically isolated from RF electrodes. Article 208 is located between electrodes 204 and is made from an electrically insulating or dielectric material. The diameters of pins 212 are less than 0.5 mm and their length is not more than 3 mm. The typical length of the pins is 0.7 mm and the typical diameter is 0.1 mm. Any biocompatible material, for example, stainless steel, plastic material, and composite materials could be used for making the pins. The density of the pins should be high enough to provide uniform treatment of the treated skin surface. Typically, a pin density of 10-20 per square centimeter is sufficient for successful treatment results. Pins 212 made of metal may be inserted into the roller 208 insulating material. Alternatively, pins 212 may be formed from the same insulating material being an integral part of roller 208.

[0029] FIG. 3 is a schematic illustration of a perspective view of the applicator of FIG. 2. FIG. 2 is a schematic illustration of an exemplary embodiment of the applicator for use in the system of FIG. 1. Applicator 104 has a body 304, which is convenient to hold and serves as a frame that contains a pair of RF electrodes 204, and article 208 having a form of a roller with protruding pins 212 electrically isolated from RF electrodes.

[0030] In an alternative embodiment shown in FIG. 4, the article has the form of an endless flexible belt 406 with pins 410 similar to pins 212 protruding from the belt. Belt 406 may be tensioned between two rollers 414 and, if necessary, conform to a treated section of skin 116. The distance between the rollers may be longer or shorter than the length of electrodes 204.

[0031] In use, applicator 104 or 404 is applied to skin such that RF electrodes 204 contact the skin 116 surface 120. Following this, applicator 104 is moved over skin 116, maintaining contact with skin surface 120. As applicator 104 is moved over the skin surface 120, article 208 (roller 208) or belt 406 rolls over the skin surface 120. Pins 212 or 410 puncture the skin and create blind holes in it, penetrating into the skin to reach a collagen layer 228 located at a depth of over 70 microns below the skin surface. Simultaneously RF energy is supplied to electrodes 204 and an RF current is made to flow between the electrodes 204 through collagen layer 228 of the skin. RF electrodes 204 deliver an RF current to the skin section with holes created in it by pins 212 or 410 and provide heating of the collagen structure 228. The RF power applied should be sufficient to heat a treated skin section by at least 5 (five) degrees C. The optimal skin heating is 10-20 degrees C. over the normal skin temperature. The RF power is preferably in the range of 10-500 W, more preferably 20-100 W. The RF current frequency is in the range of 0.2-100 MHZ, with a typical operating range of 1-10 MHz. Control unit 108 regulates and switches ON or OFF supply of RF power to electrodes 204 by monitoring the impedance between electrodes 204.

[0032] Pins 212 or 410 made of an isolating or dielectric material have a resistance higher than that of the skin and the damaged section of the skin around the pin/s. The lower conductivity of the plastic or dielectric in the interior of blind holes causes the current density to be maximal around the circumference of the holes. Holes produced by pins 212 or 410 are spaced apart from each other and there is no contact between them. The holes damage a small fragment of the skin 116. The high density of RF current around the punctured holes heats the fraction of the skin around each hole more strongly and further stimulates collagen growth.

[0033] As noted above, electrodes 204 may be shorter or longer than the punctured skin section. FIG. 4 illustrates electrodes 204 that are longer than the punctured skin section 420 typically located between rollers 414. Applicator 404 continues its movement to the next skin section to be treated. For example, in one of the directions indicated by arrow 424, leaving the blind holes created by pins 410 filled with air. The lower conductivity of the air in the interior of blind holes causes the current density to be maximal around the circumference of the holes. The high density of RF current around the punctured holes heats more strongly the fraction of the skin around each hole, and longer electrodes extend the treatment time, further stimulating collagen growth.

[0034] The treated skin surface 120 is affected by rolling the article over the skin. Pins of the article penetrate skin 116 and should be sterilized before each treatment. In order to avoid this and simplify the treatment process, both roller 208 and belt 406 could be made as disposable items.

[0035] In another embodiment, instead of an RF current, the skin can be heated using optical energy. The optical energy can be produced by a laser, an incandescent lamp, a flash lamp, or a LED. The belt or roller may be made of transparent material, for example, glass, Polycarbonate, or Perspex.TM. enabling heating with light energy simultaneous with puncturing. Alternatively, light sources may be mounted to illuminate/irradiate from both sides of roller 208.

[0036] The present apparatus and method enable collagen remodeling due to fragmental stimulation of collagen growth in the skin using an electrical electrode and invasive pins.

[0037] While the method and apparatus have been described with respect to a limited number of embodiments, it will be appreciated that many variations, modifications and other applications of the method and apparatus may be made.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed