P2/p2a/p2b Gene Sequences As Diagnostic Targets For The Identification Of Fungal And Yeast Species

Barry; Thomas Gerard ;   et al.

Patent Application Summary

U.S. patent application number 12/997471 was filed with the patent office on 2011-09-08 for p2/p2a/p2b gene sequences as diagnostic targets for the identification of fungal and yeast species. This patent application is currently assigned to National University of Ireland Galway. Invention is credited to Thomas Gerard Barry, Marcin Jankiewicz, Sinead Lahiff, Majella Maher, Louise O'Connor, Terry James Smith, Nina Tuite.

Application Number20110217703 12/997471
Document ID /
Family ID41268781
Filed Date2011-09-08

United States Patent Application 20110217703
Kind Code A1
Barry; Thomas Gerard ;   et al. September 8, 2011

P2/P2A/P2B GENE SEQUENCES AS DIAGNOSTIC TARGETS FOR THE IDENTIFICATION OF FUNGAL AND YEAST SPECIES

Abstract

The present invention relates to nucleic acid primers and probes to detect one or more fungal and yeast species. More specifically the invention relates to the P2, P2A and P2B gene sequences (also known as 60S acidic ribosomal protein P2, RLA-2-ASPFU, Allergen ASP f8 or Afp2), the corresponding RNA, specific probes, primers and oligonucleotides related thereto and their use in diagnostic assays to detect and/or discriminate fungal and yeast species.


Inventors: Barry; Thomas Gerard; (Kinarva, IE) ; Smith; Terry James; (Galway, IE) ; Jankiewicz; Marcin; (Galway, IE) ; O'Connor; Louise; (Galway, IE) ; Tuite; Nina; (Galway, IE) ; Lahiff; Sinead; (Gort, IE) ; Maher; Majella; (Moycullen, IE)
Assignee: National University of Ireland Galway

Family ID: 41268781
Appl. No.: 12/997471
Filed: June 15, 2009
PCT Filed: June 15, 2009
PCT NO: PCT/EP2009/057338
371 Date: May 9, 2011

Current U.S. Class: 435/6.11 ; 536/24.32
Current CPC Class: C12Q 1/6895 20130101
Class at Publication: 435/6.11 ; 536/24.32
International Class: C12Q 1/68 20060101 C12Q001/68; C07H 21/04 20060101 C07H021/04

Foreign Application Data

Date Code Application Number
Jun 13, 2008 IE 2008/0489

Claims



1. A diagnostic kit for a yeast or fungal species comprising an oligonucleotide probe capable of binding to at least a portion of the P2, P2A or P2B genes or its corresponding mRNA.

2. A kit as claimed in claim 1 wherein the portion of the P2 gene is selected from: a portion of the region of the gene from base pair position 1 to base pair position 326 of the Aspergillus P2B gene, a portion of base pair position 1 to base pair position 359 of the C. albicans P2B gene, a portion of base pair position 114 to base pair position 439 of the C. albicans P2A gene, or a portion of the region of the gene from base pair 24 to base pair position 158 in C. glabrata.

3. The kit of claim 1, comprising a probe for one or more of a portion of the region of the gene from base pair position 1 to base pair position 326 of the Aspergillus P2 gene, a portion of the region of the gene from base pair 24 to base pair position 158 in C. glabrata, a probe for a portion of base pair position 1 to base pair position 359 of the C. albicans P2B gene and a probe for a portion of base pair position 114 to by position 439 of the C. albicans P2A gene.

4. The kit of claim 1, wherein the probe is selected from SEQ ID NO 9, 10, 91-94, 105-110, or sequences substantially similar or complementary thereto which can also act as a probe.

5. The kit of claim 1, further comprising a primer for amplification of at least a portion of the P2, P2A and/or P2B gene.

6. The kit of claim 1, comprising a forward and a reverse primer for a portion of the P2, P2A and/or P2B gene.

7. The kit of claim 1, comprising at least one forward in vitro amplification primer and at least one reverse in vitro amplification primer, the forward amplification primer being selected from the group consisting of SEQ ID NO 1, 3, 7, 85-88, 95-99, or sequences substantially similar or complementary thereto which can also act as a forward amplification primer and the reverse amplification primer being selected from the group consisting of SEQ ID NO 2, 4, 5, 6, 8, 89, 90, 100-104 or sequences substantially similar or complementary thereto which can also act as a reverse amplification primer.

8. The kit of claim 1, based on direct nucleic acid detection technologies, signal amplification nucleic acid detection technologies, and nucleic acid in vitro amplification technologies is selected from one or more of Polymerase Chain Reaction (PCR), Ligase Chain Reaction (LCR), Nucleic Acids Sequence Based Amplification (NASBA), Strand Displacement Amplification (SDA), Transcription Mediated Amplification (TMA), Branched DNA technology (bDNA) and Rolling Circle Amplification Technology (RCAT) or other enzymatic in vitro amplification based technologies.

9. A nucleic acid molecule selected from the group consisting of: SEQ ID NO 1 through SEQ ID NO 110 and sequences substantially homologous or substantially complementary thereto or to a portion thereof and having a function in diagnostics based on the P2, P2A and/or P2B genes.

10. A nucleic acid molecule comprising an oligonucleotide having a sequence substantially homologous to or substantially complementary to a portion of a nucleic acid molecule as claimed in claim 9.

11. A method of detecting a target organism in a test sample comprising the steps of: (i) Mixing the test sample with at least one oligonucleotide probe capable of binding to at least a portion of the P2, P2A and/or P2B gene or its corresponding mRNA under appropriate conditions; (ii) hybridizing under a high stringency conditions any nucleic acid that may be present in the test sample with the oligonucleotide to form a probe:target duplex; and (iii) determining whether a probe:target duplex is present; the presence of the duplex positively identifying the presence of the target organism in the test sample.

15. A method as claimed in claim 11 wherein the probe is selected from the group consisting of SEQ ID NO 9, 10, 91-94, 105-110 or sequences substantially homologous or substantially complementary thereto also capable of acting as a probe for the P2B gene.

16. The method of claim 11, wherein the target organism is a yeast and/or fungal species.

17. Use of a kit of claim 1 in a diagnostic assay to measure yeast and/or fungal titres in a patient.

18. A method of assessing the efficacy of a treatment regime designed to reduce yeast and/or fungal titre in a patient comprising use of a kit of claim 1, at one or more key stages of the treatment regime.

19. Use of a kit of claim 1, in a diagnostic assay to measure yeast and or fungal contamination in an environment.

20. Use as claimed in claim 19, wherein the environment is a hospital, a food sample, an environmental sample e.g. water, an industrial sample such as an in-process sample or an end product requiring bioburden or quality assessment.

21. Use of a kit of claim 1, in the identification and/or characterization of one or more disruptive agents that can be used to disrupt the P2, P2A or P2B gene function.

22. Use as claimed in claim 21, wherein the disruptive agent is selected from the group consisting of antisense RNA, PNA, siRNA.

23-25. (canceled)
Description



FIELD OF THE INVENTION

[0001] The present invention relates to nucleic acid primers and probes to detect one or more fungal and yeast species. More specifically the invention relates to the P2, P2A and P2B gene sequences (also known as 60S acidic ribosomal protein P2, RLA-2-ASPFU, Allergen ASP f8 or Afp2), the corresponding RNA, specific probes, primers and oligonucleotides related thereto and their use in diagnostic assays to detect and/or discriminate fungal and yeast species.

BACKGROUND TO THE INVENTION

[0002] Yeast and fungal infections represent a major cause of morbidity and mortality among immunocompromised patients. The number of immunocompromised patients at risk of yeast and fungal infection continues to increase each year, as does the spectrum of fungal and yeast agents causing disease. Mortality from fungal infections, particularly invasive fungal infections, is 30% or greater in certain risk groups. The array of available anti-fungal agents is growing; however, so too is the recognition of both intrinsic and emerging resistance to antifungal drugs. These factors are contributing to the increased need for cost containment in laboratory testing and have led to laboratory consolidation in testing procedures.

[0003] Invasive fungal infections are on the increase. In 2003, it was estimated that there were 9 million at risk patients of which 1.2 million developed infection. Candida spp. and Aspergillus spp. now rank as the most prominent pathogens infecting immunosupressed patients. In particular, infections are common in the urinary tract, the respiratory system and the bloodstream, at the site of insertion of stents, catheters and orthopaedic joints. Approximately, 10% of the known Candida spp. have been implicated in human infection. Invasive candidiasis occurs when candida enters the bloodstream and it is estimated to occur at a frequency of 8/100,000 population in the US with a mortality rate of 40%. Candida albicans is the 4.sup.th most common cause of bloodstream infection. Aspergillosis usually begins as a pulmonary infection that can progress to a life-threatening invasive infection in some patients and has a mortality rate of greater than 90%. Emerging mycoses agents include Fusarium, Scedosporium, Zygomycetes and Trichosporon spp. ("Stakeholder Insight: Invasive fungal infections", Datamonitor, January 2004).

[0004] Immunocompromised patients including transplant and surgical patients, neonates, cancer patients, diabetics and those with HIV/AIDs are at high risk of developing invasive fungal infections (Datamonitor report: Stakeholder opinion--Invasive fungal infections, options outweigh replacements 2004). A large number of severe cases of sepsis are reported each year. Despite improvements in its medical management, sepsis still constitutes one of the greatest challenges in intensive care medicine. Microorganisms (bacteria, fungi and yeast) responsible for causing sepsis are traditionally detected in hospital laboratories with the aid of microbiological culture methods with poor sensitivity (25-82%), which are very time-consuming, generally taking from two to five days to complete, and up to eight days for the diagnosis of fungal infections. Definitive diagnosis of an infection caused by a yeast or fungus is usually based on either, the recovery and identification of a specific agent from clinical specimens or microscopic demonstration of fungi with distinct morphological features. However, there are numerous cases where these methods fail to provide conclusive proof as to the infecting agent. In these instances, the detection of specific host antibody responses can be used, although again this can be affected by the immune status of the patient. Time is critical in the detection and identification of bloodstream infections typically caused by bacteria and fungi. Effective treatment depends on finding the source of infection and making appropriate decisions about antibiotics or antifungals quickly and efficiently. Only after pathogens are correctly identified can targeted therapy using a specific antibiotic or anti-fungal begin. Many physicians would like to see the development of better in vitro amplification and direct detection diagnostic techniques for the early diagnosis of yeast and fungi ("Stakeholder Insight: Invasive fungal infections", Datamonitor, January 2004). Recently Roche.TM. launched a real time PCR based assay (Septifast.TM.), for the detection of bacterial, fungal and yeast DNA in clinical samples. Therefore, there is a clear need for the development of novel rapid diagnostic tests for clinically significant bacterial and fungal pathogens for bioanalysis applications in the clinical sector. This has led the current inventors to identify novel fungal and yeast nucleic acid targets for application in Nucleic Acid Diagnostics (NAD) tests. Fungal and yeast nucleic acid based diagnostics have focused heavily on the ribosomal RNA (rRNA) genes, RNA transcripts, and their associated DNA/RNA regions. The rRNA genes are highly conserved in all fungal species and they also contain divergent and distinctive intergenic transcribed spacer regions. Ribosomal rRNA comprises three genes: the large sub-unit gene (28S), the small sub-unit gene (18S) and the 5.8S gene. The 28S and 18S rRNA genes are separated by the 5.8S rRNA and two internal transcribed spacers (ITS 1 and ITS2). Because the ITS region contains a high number of sequence polymorphisms, numerous researchers have concentrated their efforts on these as targets (Atkins and Clark, 2004). rRNA genes are also multicopy genes with >10 copies within the fungal genome.

[0005] A number of groups are working on developing new assays for fungal and yeast infections. U.S. 2004044193 relates to, amongst a number of other aspects, the transcription factor CaTEC1 of Candida albicans; inhibitors thereof, and methods for the diagnosis and therapy of diseases which are connected with a Candida infection; and also diagnostic and pharmaceutical compositions which contain the nucleotide sequences, proteins, host cells and/or antibodies. WO0183824 relates to hybridization assay probes and accessory oligonucleotides for detecting ribosomal nucleic acids from Candida albicans and/or Candida dubliniensis. U.S. Pat. No. 6,017,699 and U.S. Pat. No. 5,426,026 relate to a set of DNA primers, which can be used to amplify and speciate DNA from five medically important Candida species. U.S. Pat. No. 6,747,137 discloses sequences useful for diagnosis of Candida infections. EP 0422872 and U.S. Pat. No. 5,658,726 disclose probes based on 18S rRNA genes, and U.S. Pat. No. 5,958,693 discloses probes based on 28S rRNA, for diagnosis of a range of yeast and fungal species. U.S. Pat. No. 6,017,366 describes sequences based on chitin synthase gene for use in nucleic acid based diagnostics for a range of Candida species. It is clear though, that development of faster, more accurate diagnostic methods are required, particularly in light of the selection pressure caused by modern anti-microbial treatments which give rise to increased populations of resistant virulent strains with mutated genome sequences. Methods that enable early diagnosis of microbial causes of infection enable the selection of a specific narrow spectrum antibiotic or antifungal to treat the infection (Datamonitor report: Stakeholder opinion--Invasive fungal infections, options outweigh replacements 2004; Datamonitor report: Stakeholder Opinion--Sepsis, under reaction to an overreaction, 2006).

[0006] Ribosomes are a two part organelle, composed of a large and a small subunit. The large subunit possesses a number of features which are conserved in all organisms for example the presence of a complex of a number of acidic proteins, the P proteins which form a stalk-like structure (Abramczyk et al., 2004 Tchorzewski et al., 2000; 2003). In the 60S ribosomal subunit of eukaryotes these acidic P proteins include, P0, P1 and P2 (Wool et al 1991). The complex formed by these P proteins is required for efficient translation. In yeasts, there are two isoforms of P1 (P1A and P1B) and P2 (P2A and P2B) which are encoded by four distinct single copy genes (Newton et al, 1990, Bailey-Serres et al., 1997).

[0007] This invention relates to the use of the P2A, P2B genes in yeast and the P2 gene in fungi. There are currently 65 P2B gene sequences (approx. 360 bp) available in NCBI GenBank database including 3 P2B sequences for Candida albicans and one sequence of high homology for C. glabrata. There are 329 P2 sequences available in NCBI GenBank database including annotated sequences for two Aspergillus species and presumptive P2 sequences for three species. Additional P2B sequences of representative species of Candida and P2 sequences of representative species of Aspergillus were generated by the inventors following the design of PCR primers to amplify P2B gene regions in Candida and P2 gene regions in Aspergillus spp. The published and newly generated P2B and P2 gene sequences for Candida and Aspergillus spp. respectively, were aligned and analysed using bioinformatics tools. PCR primers and species-specific DNA probes for selected species, Candida glabrata and Aspergillus fumigatus were designed and demonstrated for molecular species identification using real-time PCR. These examples demonstrate the potential of P2A/P2B and P2 genes for molecular identification of species of Candida, Aspergillus and other yeast and fungal species.

Definitions

[0008] "Synthetic oligonucleotide" refers to molecules of nucleic acid polymers of 2 or more nucleotide bases that are not derived directly from genomic DNA or live organisms. The term synthetic oligonucleotide is intended to encompass DNA, RNA, and DNA/RNA hybrid molecules that have been manufactured chemically, or synthesized enzymatically in vitro.

[0009] An "oligonucleotide" is a nucleotide polymer having two or more nucleotide subunits covalently joined together. Oligonucleotides are generally about 10 to about 100 nucleotides. The sugar groups of the nucleotide subunits may be ribose, deoxyribose, or modified derivatives thereof such as OMe. The nucleotide subunits may be joined by linkages such as phosphodiester linkages, modified linkages or by non-nucleotide moieties that do not prevent hybridization of the oligonucleotide to its complementary target nucleotide sequence. Modified linkages include those in which a standard phosphodiester linkage is replaced with a different linkage, such as a phosphorothioate linkage, a methylphosphonate linkage, or a neutral peptide linkage. Nitrogenous base analogs also may be components of oligonucleotides in accordance with the invention. A "target nucleic acid" is a nucleic acid comprising a target nucleic acid sequence. A "target nucleic acid sequence," "target nucleotide sequence" or "target sequence" is a specific deoxyribonucleotide or ribonucleotide sequence that can be hybridized to a complementary oligonucleotide.

[0010] An "oligonucleotide probe" is an oligonucleotide having a nucleotide sequence sufficiently complementary to its target nucleic acid sequence to be able to form a detectable hybrid probe:target duplex under high stringency hybridization conditions. An oligonucleotide probe is an isolated chemical species and may include additional nucleotides outside of the targeted region as long as such nucleotides do not prevent hybridization under high stringency hybridization conditions. Non-complementary sequences, such as promoter sequences, restriction endonuclease recognition sites, or sequences that confer a desired secondary or tertiary structure such as a catalytic active site can be used to facilitate detection using the invented probes. An oligonucleotide probe optionally may be labelled with a detectable moiety such as a radioisotope, a fluorescent moiety, a chemiluminescent, a nanoparticle moiety, an enzyme or a ligand, which can be used to detect or confirm probe hybridization to its target sequence. Oligonucleotide probes are preferred to be in the size range of from about 10 to about 100 nucleotides in length, although it is possible for probes to be as much as and above about 500 nucleotides in length, or below 10 nucleotides in length.

[0011] A "hybrid" or a "duplex" is a complex formed between two single-stranded nucleic acid sequences by Watson-Crick base pairings or non-canonical base pairings between the complementary bases. "Hybridization" is the process by which two complementary strands of nucleic acid combine to form a double-stranded structure ("hybrid" or "duplex"). A "fungus" or "yeast" is meant any organism of the kingdom Fungi, and preferably, is directed towards any organism of the phylum Ascomycota. "Complementarity" is a property conferred by the base sequence of a single strand of DNA or RNA which may form a hybrid or double-stranded DNA:DNA, RNA:RNA or DNA:RNA through hydrogen bonding between Watson-Crick base pairs on the respective strands. Adenine (A) ordinarily complements thymine (T) or uracil (U), while guanine (G) ordinarily complements cytosine (C).

[0012] The term "stringency" is used to describe the temperature, ionic strength and solvent composition existing during hybridization and the subsequent processing steps. Those skilled in the art will recognize that "stringency" conditions may be altered by varying those parameters either individually or together. Under high stringency conditions only highly complementary nucleic acid hybrids will form; hybrids without a sufficient degree of complementarity will not form. Accordingly, the stringency of the assay conditions determines the amount of complementarity needed between two nucleic acid strands forming a hybrid. Stringency conditions are chosen to maximize the difference in stability between the hybrid formed with the target and the non-target nucleic acid. With "high stringency" conditions, nucleic acid base pairing will occur only between nucleic acid fragments that have a high frequency of complementary base sequences (for example, hybridization under "high stringency" conditions, may occur between homologs with about 85-100% identity, preferably about 70-100% identity). With medium stringency conditions, nucleic acid base pairing will occur between nucleic acids with an intermediate frequency of complementary base sequences (for example, hybridization under "medium stringency" conditions may occur between homologs with about 50-70% identity). Thus, conditions of "weak" or "low" stringency are often required with nucleic acids that are derived from organisms that are genetically diverse, as the frequency of complementary sequences is usually less.

[0013] `High stringency` conditions are those equivalent to binding or hybridization at 42.degree. C. in a solution consisting of 5.times.SSPE (43.8g/l NaCl, 6.9 g/l NaH.sub.2PO.sub.4H.sub.2O and 1.85 g/l EDTA, ph adjusted to 7.4 with NaOH), 0.5% SDS, 5.times. Denhardt's reagent and 100 .mu.g/l denatured salmon sperm DNA followed by washing in a solution comprising 0.1.times.SSPE, 1.0% SDS at 42.degree. C. when a probe of about 500 nucleotides in length is used.

[0014] `Medium stringency` conditions are those equivalent to binding or hybridization at 42.degree. C. in a solution consisting of 5.times.SSPE (43.8 g/l NaCl, 6.9 g/l NaH.sub.2PO.sub.4H.sub.2O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.5% SDS, 5.times.Denhardt's reagent and 100 .mu.g/ml denatured salmon sperm DNA followed by washing in a solution comprising 1.0.times.SSPE, 1.0% SDS at 42.degree. C., when a probe of about 500 nucleotides in length is used.

[0015] `Low stringency` conditions are those equivalent to binding or hybridization at 42.degree. C. in a solution consisting of 5.times.SSPE (43.8 g/l NaCl, 6.9 g/l NaH.sub.2PO.sub.4H.sub.2O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.1% SDS, 5.times.Denhardt's reagent [50.times. Denhardt's contains per 500 ml: 5 g Ficoll (Type 400, Pharamcia), 5 g BSA (Fraction V; Sigma)] and 100 .mu.g/ml denatured salmon sperm DNA followed by washing in a solution comprising 5.times.SSPE, 0.1% SDS at 42.degree. C., when a probe of about 500 nucleotides in length is used.

[0016] In the context of nucleic acid in-vitro amplification based technologies, "stringency" is achieved by applying temperature conditions and ionic buffer conditions that are particular to that in-vitro amplification technology. For example, in the context of PCR and real-time PCR, "stringency" is achieved by applying specific temperatures and ionic buffer strength for hybridisation of the oligonucleotide primers and, with regards to real-time PCR hybridisation of the probe/s, to the target nucleic acid for in-vitro amplification of the target nucleic acid.

[0017] One skilled in the art will understand that substantially corresponding probes of the invention can vary from the referred-to sequence and still hybridize to the same target nucleic acid sequence. This variation from the nucleic acid may be stated in terms of a percentage of identical bases within the sequence or the percentage of perfectly complementary bases between the probe and its target sequence. Probes of the present invention substantially correspond to a nucleic acid sequence if these percentages are from about 100% to about 80% or from 0 base mismatches in about 10 nucleotide target sequence to about 2 bases mismatched in an about 10 nucleotide target sequence. In preferred embodiments, the percentage is from about 100% to about 85%. In more preferred embodiments, this percentage is from about 90% to about 100%; in other preferred embodiments, this percentage is from about 95% to about 100%

[0018] By "sufficiently complementary" or "substantially complementary" is meant nucleic acids having a sufficient amount of contiguous complementary nucleotides to form, under high stringency hybridization conditions, a hybrid that is stable for detection. The terms "identical" or percent "identity," in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same (i.e., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or higher identity over a specified region, when compared and aligned for maximum correspondence over a comparison window or designated region) as measured using a BLAST or BLAST 2.0 sequence comparison algorithms with default parameters described below, or by manual alignment and visual inspection (see, e.g., NCBI web site at ncbi.nlm.nih.gov/BLAST/or the like). Such sequences are then said to be "substantially identical." This definition also refers to, or may be applied to, the compliment of a test sequence. The definition also includes sequences that have deletions and/or additions, as well as those that have substitutions. As described below, the preferred algorithms can account for gaps and the like. Preferably, identity exists over a region that is at least about 25 amino acids or nucleotides in length, or more preferably over a region that is 50-100 amino acids or nucleotides in length.

[0019] For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Preferably, default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.

[0020] A "comparison window," as used herein, includes reference to a segment of any one of the number of contiguous positions selected from the group consisting of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman, Proc. Nat'l. Acad. Sci. USA 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by manual alignment and visual inspection (see, e.g., Current Protocols in Molecular Biology (Ausubel et al., eds. 1987-2005, Wiley Interscience)). A preferred example of algorithm that is suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al., Nuc. Acids Res. 25:3389-3402 (1977) and Altschul et al., J. Mol. Biol. 215:403-410 (1990), respectively. BLAST and BLAST 2.0 are used, with the parameters described herein, to determine percent sequence identity for the nucleic acids and proteins of the invention. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information. This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, M=5, N=-4 and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength of 3, and expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff, Proc. Natl. Acad. Sci. USA 89:10915 (1989)) alignments (B) of 50, expectation (E) of 10, M=5, N=-4, and a comparison of both strands.

[0021] "Nucleic acid" refers to deoxyribonucleotides or ribonucleotides and polymers thereof in either single- or double-stranded form, and complements thereof. The term encompasses nucleic acids containing known nucleotide analogs or modified backbone residues or linkages, which are synthetic, naturally occurring, and non-naturally occurring, which have similar binding properties as the reference nucleic acid, and which are metabolized in a manner similar to the reference nucleotides. Examples of such analogs include, without limitation, phosphorothioates, phosphoramidates, methyl phosphonates, chiral-methyl phosphonates, 2-O-methyl ribonucleotides, peptide-nucleic acids (PNAs).

[0022] By "nucleic acid hybrid" or "probe:target duplex" is meant a structure that is a double-stranded, hydrogen-bonded structure, preferably about 10 to about 100 nucleotides in length, more preferably 14 to 50 nucleotides in length, although this will depend to an extent on the overall length of the oligonucleotide probe. The structure is sufficiently stable to be detected by means such as chemiluminescent or fluorescent light detection, autoradiography, electrochemical analysis or gel electrophoresis. Such hybrids include RNA:RNA, RNA:DNA, or DNA:DNA duplex molecules.

[0023] "RNA and DNA equivalents" refer to RNA and DNA molecules having the same complementary base pair hybridization properties. RNA and DNA equivalents have different sugar groups (i.e., ribose versus deoxyribose), and may differ by the presence of uracil in RNA and thymine in DNA. The difference between RNA and DNA equivalents do not contribute to differences in substantially corresponding nucleic acid sequences because the equivalents have the same degree of complementarity to a particular sequence.

[0024] By "preferentially hybridize" is meant that under high stringency hybridization conditions oligonucleotide probes can hybridize their target nucleic acids to form stable probe:target hybrids (thereby indicating the presence of the target nucleic acids) without forming stable probe:non-target hybrids (that would indicate the presence of non-target nucleic acids from other organisms). Thus, the probe hybridizes to target nucleic acid to a sufficiently greater extent than to non-target nucleic acid to enable one skilled in the art to accurately detect the presence of (for example Candida) and distinguish these species from other organisms. Preferential hybridization can be measured using techniques known in the art and described herein.

[0025] By "theranostics" is meant the use of diagnostic testing to diagnose the disease, choose the correct treatment regime and monitor the patient response to therapy. The theranostics of the invention may be based on the use of an NAD assay of this invention on samples, swabs or specimens collected from the patient.

OBJECT OF THE INVENTION

[0026] It is an object of the current invention to provide sequences and/or diagnostic assays to detect and identify one or more yeast and fungal species. The current inventors have made use of the P2, P2A and P2B gene sequences to design primers that are specific to Candida P2B genes and to Aspergillus P2 genes. Such primers not only allow the detection of yeast and fungal species but also allow distinction between Candida and Aspergillus spp. This has an advantage over the prior art in that if one wants to identify a fungal pathogen in a sample, which contains Candida as a commensal, the approach of using universal primers may not be successful. There is a strong possibility that the Candida will out-compete the fungal pathogen in the amplification process and will be preferentially amplified, resulting in failure to detect the disease-causing pathogen. The current invention further provides for primers and probes that allow discrimination between different Candida species and among different Aspergillus species.

SUMMARY OF THE INVENTION

[0027] The present invention provides for a diagnostic kit for detection and identification of yeast and/or fungal species, comprising an oligonucleotide probe capable of binding to at least a portion of the P2, P2A or P2B gene or its corresponding mRNA. The oligonucleotide probe may have a sequence substantially homologous to or substantially complementary to a portion of the P2, P2A or P2B gene or its corresponding mRNA. It will thus be capable of binding or hybridizing with a complementary DNA or RNA molecule. The P2 gene may be a fungal P2 gene. The P2A gene may be a yeast gene. The P2B gene may be yeast P2B gene. The nucleic acid molecule may be synthetic. The oligonucleotide probe may have a sequence of SEQ ID NO 9, 10, 91-94, 105-109, or a sequence substantially homologous to or substantially complementary to those sequences, which can also act as a probe for the P2, P2A or P2B genes.

[0028] The kit may comprise more than one such probe. In particular the kit may comprise a plurality of such probes. In addition, the kit may comprise additional probes for other organisms, such as, for example, bacterial species or viruses.

[0029] The identified sequences are suitable not only for in vitro DNA/RNA amplification based detection systems but also for signal amplification based detection systems. Furthermore, the sequences of the invention identified as suitable targets provide the advantages of having significant intragenic sequence heterogeneity in some regions, which is advantageous and enables aspects of the invention to be directed towards group or species-specific targets, and also having significant sequence homogeneity in some regions, which enables aspects of the invention to be directed towards genus-specific yeast and fungal primers and probes for use in direct nucleic acid detection technologies, signal amplification nucleic acid detection technologies, and nucleic acid in vitro amplification technologies for yeast and fungal diagnostics. The P2, P2A and P2B sequences allow for multi-test capability and automation in diagnostic assays. One of the advantages of the sequences of the present invention is that the intragenic P2, P2A and P2B nucleotide sequences diversity between closely related yeast or fungal species enables specific primers and probes for use in diagnostics assays for the detection of yeast and fungi to be designed. The P2, P2A and P2B nucleotide sequences, both DNA and RNA can be used with direct detection, signal amplification detection and in vitro amplification technologies in diagnostics assays. The P2, P2A and P2B sequences allow for multi-test capability and automation in diagnostic assays.

[0030] The kit may further comprise a primer for amplification of at least a portion of the P2 and/or P2A and/or P2B genes. Suitably, the kit comprises a forward and a reverse primer for a portion of the P2, P2A and/or P2B gene.

[0031] The portion of the P2A gene may be equivalent to a portion of the region of the gene from by position 114 to by position 439 of C. albicans (AF317661.1).

[0032] The portion of the P2B gene may be equivalent to a portion of the region of the gene from base pair position 1 to position 335 in C. albicans (XM.sub.--718047.1, XM.sub.--717900.1) or position 8 to base pair position 359 of the P2B gene in C. albicans (AF317662.1). C. albicans.

[0033] Particularly preferred, are kits comprising, a probe for a portion of the P2A C. albicans gene and/or a probe for a portion of the region of the gene equivalent to base pair position 114 to by position 439 of C. albicans (AF317661.1).

[0034] Particularly preferred, are kits comprising, a probe for a portion of the P2B C. albicans gene and/or a probe for a portion of the region of the gene equivalent to base pair position 1 to position 359. Also preferred are probes for a portion of the region of the gene equivalent to base pair position 1 to position 335 in C. albicans (XM.sub.--718047.1, XM_717900.1) or position 8 to by position 359 of the P2B gene in C. albicans (AF317662.1). Equivalent base pair positioning may be found in other organisms, but not necessarily in the same position.

[0035] The portion of the P2B gene may be equivalent to a portion of the region of the gene from base pair 24 to by position 158 in C. glabrata (XM.sub.--444905.1). Particularly preferred, are kits comprising, a probe for a portion of the P2B C. glabrata gene and/or a probe for a portion of the region of the gene equivalent to base pair position 24 to base pair position 158 in C. glabrata. Sequences equivalent to base pair position 24 to base pair position 158 can be found in other organisms, but not necessarily in the same position. The kit may also comprise additional primers or probes.

[0036] The portion of the P2 gene may be equivalent to a portion of the region of the gene from base pair positions 1 to 326 in A. fumigatus. Particularly preferred, are kits comprising, a probe for a portion of the P2 A. fumigatus gene and/or a probe for a portion of the region of the gene equivalent to base pair position 1 to base pair position 326 in A. fumigatus. Equivalent sequences to base pair position 1 to base pair position 326 can be found in other organisms, but not necessarily in the same position. The kit may also comprise additional primers or probes.

[0037] The primer may have a sequence selected from the group SEQ ID NO 1-8, 85-90, 95-104, and a sequence substantially homologous to or substantially complementary to those sequences, which can also act as a primer for the P2, P2A and P2B genes. The primers may also be a primer which preferentially hybridizes to the same nucleotide sequence as is preferentially hybridized by the primers SEQ ID NO 1-8, 85-90, 95-104.

[0038] The kit may comprise at least one forward in vitro amplification primer and at least one reverse in vitro amplification primer, the forward amplification primer having a sequence selected from the group consisting of SEQ ID NO 1, 3, 7; 85-88, 95-99, and a sequence being substantially homologous or complementary thereto which can also act as a forward amplification primer for the P2A, P2B or P2 genes, and the reverse amplification primer having a sequence selected from the group consisting of SEQ ID NO 2, 4, 5, 6, 8, 89, 90, 100-104, and a sequence being substantially homologous or complementary thereto which can also act as a reverse amplification primer for the P2A, P2B or P2 genes

[0039] The diagnostic kit may be based on direct nucleic acid detection technologies, signal amplification nucleic acid detection technologies, and nucleic acid in vitro amplification technologies is selected from one or more of Polymerase Chain Reaction (PCR), Ligase Chain Reaction (LCR), Nucleic Acids Sequence Based Amplification (NASBA), Strand Displacement Amplification (SDA), Transcription Mediated Amplification (TMA), Branched DNA technology (bDNA) and Rolling Circle Amplification Technology (RCAT)), or other in vitro enzymatic amplification technologies.

[0040] The invention also provides a nucleic acid molecule selected from the group consisting of SEQ ID NO.1 to SEQ ID NO. 110 and sequences substantially homologous thereto, or substantially complementary to a portion thereof and having a function in diagnostics based on the P2 and/or P2A and P2B genes. The nucleic acid molecule may comprise an oligonucleotide having a sequence substantially homologous to or substantially complementary to a portion of a nucleic acid molecule of SEQ ID NO.1 to SEQ ID NO. 110. The invention also provides a method of detecting a target organism in a test sample comprising the steps of:

[0041] (i) Mixing the test sample with at least one oligonucleotide probe as defined above under appropriate conditions; and

[0042] (ii) hybridizing under high stringency conditions any nucleic acid that may be present in the test sample with the oligonucleotide to form a probe:target duplex; and

[0043] (iii) determining whether a probe:target duplex is present; the presence of the duplex positively identifying the presence of the target organism in the test sample.

[0044] The nucleic acid molecule and kits of the present invention may be used in a diagnostic assay to detect the presence of one or more yeast and/or fungal species, to measure yeast and/or fungal titres in a patient or in a method of assessing the efficacy of a treatment regime designed to reduce yeast and/or fungal titre in a patient or to measure yeast and/or fungal contamination in an environment. The environment may be a hospital, or it may be a food sample, an environmental sample e.g. water, an industrial sample such as an in-process sample or an end product requiring bioburden or quality assessment. The kits and the nucleic acid molecule of the invention may be used in the identification and/or characterization of one or more disruptive agents that can be used to disrupt the P2A, P2B or P2 gene function. The disruptive agent may be selected from the group consisting of antisense RNA, PNA, and siRNA.

[0045] In some embodiments of the invention, a nucleic acid molecule comprising a species-specific probe can be used to discriminate between species of the same genus. The oligonucleotides of the invention may be provided in a composition for detecting the nucleic acids of yeast and fungal target organisms. Such a composition may also comprise buffers, enzymes, detergents, salts and so on, as appropriate to the intended use of the compositions. It is also envisioned that the compositions, kits and methods of the invention, while described herein as comprising at least one synthetic oligonucleotide, may also comprise natural oligonucleotides with substantially the same sequences as the synthetic nucleotide fragments in place of, or alongside synthetic oligonucleotides.

[0046] The invention also provides for an in vitro amplification diagnostic kit for a target yeast and/or fungal organism comprising at least one forward in vitro amplification primer and at least one reverse in vitro amplification primer, the forward amplification primer being selected from the group consisting of one or more of a sequence being substantially homologous or complementary thereto which can also act as a forward amplification primer, and the reverse amplification primer being selected from the group consisting of one or more of or a sequence being substantially homologous or complementary thereto which can also act as a reverse amplification primer.

[0047] The invention also provides for a diagnostic kit for detecting the presence of candidate yeast and/or fungal species, comprising one or more DNA probes comprising a sequence substantially complementary to, or substantially homologous to the sequence of the P2A, P2B or P2 gene of the candidate yeast and/or fungal species. The present invention also provides for one or more synthetic oligonucleotides having a nucleotide sequence substantially homologous to or substantially complementary to one or more of the group consisting of the P2A, P2B gene or mRNA transcripts thereof, the yeast and or fungal P2 gene or mRNA transcript thereof, the yeast P2B gene or mRNA transcript thereof, one or more of SEQ ID NO 1-SEQ ID NO 110.

[0048] The nucleotide may comprise DNA. The nucleotide may comprise RNA. The nucleotide may comprise a mixture of DNA, RNA and PNA. The nucleotide may comprise synthetic nucleotides. The sequences of the invention (and the sequences relating to the methods, kits compositions and assays of the invention) may be selected to be substantially homologous to a portion of the coding region of the P2, P2A or P2B genes. The gene may be a gene from a target yeast or fungal organism. The sequences of the invention are preferably sufficient so as to be able form a probe:target duplex to the portion of the sequence.

[0049] The invention also provides for a diagnostic kit for a target yeast or fungal organism comprising an oligonucleotide probe substantially homologous to or substantially complementary to an oligonucleotide of the invention (which may be synthetic). It will be appreciated that sequences suitable for use as in vitro amplification primers may also be suitable for use as oligonucleotide probes: while it is preferable that amplification primers may have a complementary portion of between about 15 nucleotides and about 30 nucleotides (more preferably about 15-about 23, most preferably about 20 to about 23), oligonucleotide probes of the invention may be any suitable length. The skilled person will appreciate that different hybridization and or annealing conditions will be required depending on the length, nature & structure (eg. Hybridization probe pairs for LightCycler, Taqman 5' exonuclease probes, hairpin loop structures etc. and sequence of the oligonucleotide probe selected.

[0050] Kits and assays of the invention may also be provided wherein the oligonucleotide probe is immobilized on a surface. Such a surface may be a bead, a membrane, a column, dipstick, a nanoparticle, the interior surface of a reaction chamber such as the well of a diagnostic plate or inside of a reaction tube, capillary or vessel or the like.

[0051] The target yeast or fungal organism may be selected from the group consisting of C. albicans, C. glabrata, C. krusei, C. parapsilosis, C. tropicalis C. dubliniensis, C. guilliermondii, C. norvegiensis, C. famata, C. haemuloni, C. kefyr, C. utilis, C. viswanathii, A. fumigatus, A. nidulans, A. clavatus, A. niger, A. terreus, A. flavus, A. versicolor and Neosartorya fischeri.

[0052] Under these circumstances, the amplification primers and oligonucleotide probes of the invention may be designed to a gene specific or genus specific region so as to be able to identify one or more, or most, or substantially all of the desired organisms of the target organism grouping.

[0053] The test sample may comprise cells of the target yeast and/or fungal organism. The method may also comprise a step for releasing nucleic acid from any cells of the target yeast or fungal organism that may be present in said test sample. Ideally, the test sample is a lysate of an obtained sample from a patient (such as a swab, or blood, urine, saliva, a bronchial lavage, dental specimen, skin specimen, scalp specimen, transplant organ biopsy, stool, mucus, or discharge sample). The test samples may be a food sample, a water sample, an environmental sample, an end product, end product or in-process industrial sample.

[0054] The invention also provides for the use of any one of SEQ ID NO.1 to SEQ ID NO.110 in a diagnostic assay for the presence of one or more yeast or fungal species. The species may be selected from the group consisting of C. albicans, C. glabrata, C. krusei, C. parapsilosis, C. tropicalis, C. dubliniensis, C. guilliermondii, C. norvegiensis, C. famata, C. haemuloni, C. kefyr, C. utilis, C. viswanathii, A. fumigatus, N. fischeri, A. clavatus, A. niger, A. terreus, A. flavus, A. versicolor and A. nidulans.

[0055] The invention also provides for kits for use in clinical diagnostics, theranostics, food safety diagnostics, industrial microbiology diagnostics, environmental monitoring, veterinary diagnostics, bio-terrorism diagnostics comprising one or more of the synthetic oligonucleotides of the invention. The kits may also comprise one or more articles selected from the group consisting of appropriate sample collecting instruments, reagent containers, buffers, labelling moieties, solutions, detergents and supplementary solutions. The invention also provides for use of the sequences, compositions, nucleotide fragments, assays, and kits of the invention in theranostics, Food safety diagnostics, Industrial microbiology diagnostics, Environmental monitoring, Veterinary diagnostics, Bio-terrorism diagnostics.

[0056] The nucleic acid molecules, composition, kits or methods may be used in a diagnostic nucleic acid based assay for the detection of yeast and/or fungal species.

[0057] The nucleic acid molecules, composition, kits or methods may be used in a diagnostic assay to measure yeast and/or fungal titres in a patient. The titres may be measured in vitro.

[0058] The nucleic acid molecules, composition, kits or methods may be used in a method of assessing the efficacy of a treatment regime designed to reduce yeast and/or fungal titre in a patient comprising assessing the yeast and/or fungal titre in the patient (by in vivo methods or in vitro methods) at one or more key stages of the treatment regime. Suitable key stages may include before treatment, during treatment and after treatment. The treatment regime may comprise an antifungal agent, such as a pharmaceutical drug. The nucleic acid molecules, composition, kits or methods may be used in a diagnostic assay to measure potential yeast and/or fungal contamination, for example, in a hospital. The nucleic acid molecules, composition, kits or methods may be used in the identification and/or characterization of one or more disruptive agents that can be used to disrupt the P2, P2A or P2B gene function. Suitable disruptive agents may be selected from the group consisting of antisense RNA, PNA, siRNA.

BRIEF DESCRIPTION OF THE DRAWINGS

[0059] FIG. 1: Primers binding sites (grey highlights or bold text or bold and underlined) in P2B of Candida albicans.

[0060] FIG. 2: Primers binding sites in P2 of Aspergillus fumigatus. The amplified region of interest is underlined (Position 1 to 326).

[0061] FIG. 3: Binding site of C. glabrata probe P1-CglabP2B (bold and underlined) in the amplified fragment of P2B. PCR primers CglabP2B-F/CglabP2B-R are highlighted.

[0062] FIG. 4: Binding site of the A. fumigatus probe P1-AspP2 (bold and underlined) in the amplified fragment of P2B. PCR primers AspP2-F/AspP2-R are highlighted.

[0063] FIG. 5: Resulting amplification curve from Real-Time PCR assay based on the P2B gene for C. glabrata with P1-CglabP2B probe. Specificity of the assay was tested using a panel of DNA from 4 other Candida species and Aspergillus fumigatus. The 3 C. glabrata strains tested were detected and no cross-reaction was observed with DNA from other species.

[0064] FIG. 6. Resulting amplification curve from Real-time PCR based on the P2 gene for A. fumigatus with the P1-AspP2 probe. Specificity of the assay was tested against a panel of DNA from 6 closely related Aspergillus species and C. albicans. The assay detected A. fumigatus but did not detect or cross-react with DNA from C. albicans or significantly with any of the Aspergillus species tested.

[0065] FIG. 7. Alignment of sequence information for Aspergillus species.

DETAILED DESCRIPTION OF THE INVENTION

Materials and Methods

Cell Culture

[0066] Candida species were cultured in Sabouraud broth (4% wt/vol glucose, 1% wt/vol peptone, 1.5% agar) for 48 hours at 37.degree. C. in a shaking incubator. Aspergillus species were cultured in Sabouraud broth (4% wt/vol glucose, 1% wt/vol peptone, 1.5% agar) or agar for 3-4 days at 25.degree. C.

DNA Extraction

[0067] Cells from Candida and Aspergillus spp. were pretreated with lyticase or zymolase enzymes prior to DNA isolation. DNA was isolated Candida and Apergillus spp. using the MagNA Pure System (Roche Molecular Systems) in combination with the MagNA pure Yeast and Bacterial isolation kit III.

DNA sequencing of P2B/P2 gene regions in Candida and Aspergillus spp.

[0068] The available sequences of the P2B genes of Candida and P2 genes of Aspergillus spp. were acquired from the NCBI database and aligned using Clustal W. Three annotated sequences for P2B of C. albicans (XM.sub.--718047.1, XM.sub.--717900.1 and AF317662.1) are available in the NCBI database and a sequence of high homology to P2B in C. albicans has been deposited for Candida glabrata (hypothetical protein, XM.sub.--444905.1), which is considered here to be P2B. In addition to available sequences for P2 in Aspergillus spp., three presumptive P2 sequences are deposited as hypothetical proteins for Aspergillus spp. (XM.sub.--001213622.1, XM.sub.--001397764.1, XM.sub.--658508.1). PCR Primers were designed (Table 1) and synthesized by an external company, TibMolBiol, Germany. Primer set CanP2B-F/CanP2B-R was designed to amplify a 335 by region of the P2B in Candida spp. from positions equivalent to by position 1 to position 335 in C. albicans (XM.sub.--718047.1, XM.sub.--717900.1) or position 8 to by position 342 of the P2B gene in C. albicans (AF317662.1). Primer set CanP2B-F/CanP2B-R may also in selected Candida species amplify a 326 by region of the P2A gene. Primer set CanP2B-F/CanP2B flR was designed to amplify a 352 by region of the P2B equivalent to by 8 to by 359 in C. albicans (AF317662.1). Primer set P2B-F/P2BinR1 were designed to amplify a 312 by region of the P2B gene from by position 1 to by position 312 in XM718047.1/XM 717900.1 and from by position 8 to by 319 of AF317662.1. Primer set CglabP2B-F/CglabP2B-R were designed to amplify the region in P2B equivalent to by position 24 to by position 158 in C. glabrata (XM.sub.--444905.1). Primer set AspP2-F/AspP2-R were designed to amplify a region of P2 in Aspergillus spp. from base pair positions equivalent to 1 to position 326 in A. fumigatus (XM.sub.--750250.1). FIGS. 1 and 2 show the positions of the primer set CanP2B-F/CanP2B-R,CanP2B flR and P2BinR1 in C. albicans and AspP2-F/AspP2-R in A. fumigatus respectively. These primer sets were used to amplify regions of the P2B and P2 genes in other Candida and Aspergillus spp. respectively by conventional PCR on the iCycler BioRad PCR machine or the PTC200 Peltier thermocycler (MJ Research) using the reagents outlined in Table 2 and the thermocycling conditions described in Table 3 or modifications thereof. The PCR reaction products purified with Roche High Pure PCR Product Purification kit or with the ExoSAP-IT kit (USB) according to the manufacturers' instructions were sent for sequencing to Sequiserve, Germany and were sequenced using the forward amplification primer CanP2B-F or AspP2-F. Sequence information was obtained for P2B gene regions for 8 Candida spp. (C. albicans, C. dubliniensis, C. glabrata, C. krusei, C. parapsilosis, C. tropicalis, C. guillermondii, C. lusitanie) and P2 gene regions for 7 Aspergillus species (A. fumigatus, A. nidulans, A. clavatus, A. niger, A. terreus, A. flavus, A. versicolor) and Neosartorya fischeri.

TABLE-US-00001 TABLE 1 PCR primers designed for amplification of P2B gene region in Candida and P2 gene region in Aspergillus spp. Primer Name Primer Sequence 5' to 3' CglabP2B-F ATTGTTGACCCAAGGTGGTAAC CglabP2B-R TCGTCCAAGGACTTACCTTCCAA CanP2B-F ATGAAATACTTAGCTGCTTAC CanP2B-R TAATCGAATAAACCGAAACCCA CanP2B-flR GCGACAAGCAATTTCTCT CanP2BinR1 ATCATCATCAGATTCTTCTTTG AspP2-F ATGAAGCACCTCGCCGC AspP2-R AGACCGAAGCCCATGTC P2ForA GAGGAGCGCCT P2ForB GAGGAGCGCCTC P2ForC GGAGGAGCGCCTC P2ForD TGAGGAGCGCCTC P2RevA CCGGAGGGAACGGA P2RevB CCGGAGGGAACGG CAP2BF (For) ACCTCTCCATCAGCTTCTG CAP2BR (Rev) TCAGCAATCAATTCTTGC CGP2BF (For) ACCTCTGTCTTATCATCTGTCG CKP2BR (Rev) CTCTTCGACGGACTTACC CGP2BF (For) AAGAAGGTTATCGAATCTGTTG CGP2BR (Rev) TTCGTCCAAGGACTTACC CTP2BF (For) TCCGCTTTATTGGAACAAGTTG CTP2BR (Rev) TTCTTGCAAGTCTTTACC CPP2BF (For) TCCTCATTGTTGGAATCCGTTG CPP2BR (Rev) CTCGTTGATGTCTTTACC

TABLE-US-00002 TABLE 2 PCR reagents used to amplify P2B gene region in Candida and P2 gene region in Aspergillus spp. SAMPLE PCR Reaction Mix x1 10x Buffer (100 mM Tris HCl, 15 mM MgCl.sub.2, 5 .mu.l 500 mM KCl pH 8.3) dNTP's Mix, Roche (10 mM dNTP) 1 .mu.l Primer Forward CanP2B-F or AspP2B-F (10 .mu.M) 1 .mu.l Primer Reverse CanP2B-R CanP2B-flR, 1 .mu.l Can P2BinR or AspP2B-R (10 .mu.M) Polymerase TaqPol, Roche 1 U/.mu.l 1 .mu.l H2O, Amgen/Accugene 36-39 .mu.l Genomic DNA Template 2-5 .mu.l TOTAL VOLUME 50 .mu.l

TABLE-US-00003 TABLE 3 PCR reaction conditions used to amplify P2B gene region in Candida and P2 gene region in Aspergillus spp. PCR Thermal profile Step Temp Time 1 94.degree. C. 1 min X 35 2 50.degree. C. 1 min 3 72.degree. C. 1 min 4 72.degree. C. 7 min 5 8.degree. C. Hold Lid preheating was ON

TABLE-US-00004 TABLE 4 TaqMan probes (5'-FAM and 3'-BHQ1 labels) based on the P2B/P2 gene for C. glabrata and A. fumigatus. Probe Name Probe Sequence 5'to 3' P1-Cglab-P2B CAAGAAGGTTATCGAATCTGTTGGTATTG P1-AspP2 CCTGCCGCTGCCGGTGCCGCTGCC P2FumP ACTACAGCTCGAAGATTA P2FlavP ACGTTGAATGATTGAGAC P2NigP TTGCGATTACAAGATGGAA P2TerrP CTTCGGACTACTGCGATGA CAP2BP ACCGCTTTATTGGAATCCGTTG CKP2BP ATCCGACAAGTTAGACAAGTTAATC CGP2BP AGAATCAACGAATTGTTGTCTGC CTP2BP ATCTTCCAAATTAGACTTATTGTTGA CPP2BP GAAGAATCAAGATTATCTACCTTGTTG

TABLE-US-00005 TABLE 5 Real-time PCR reagents SAMPLE Preparation of PCR Reaction Mix x1 HybProb mix 10x conc. (LightCycler .RTM. FastStartDNA 2 .mu.l Master HybProbe Kit) MgCl.sub.2 stock solution (Final conc. in reaction is 3 mM) 1.6 .mu.l Probe P1-CglabP2B or P1-AspP2 2 .mu.l Primer Forward CglabP2B-F or AspP2-F 1 .mu.l Primer Reverse CglabP2B-R or AspP2-R 1 .mu.l H.sub.2O PCR-grade 10.4 .mu.l Genomic DNA Template 2 .mu.l TOTAL VOLUME 20 .mu.l

TABLE-US-00006 TABLE 6 Real-time PCR thermocycling conditions: PCR Thermal profile Cycle Step Temp Time Activation 1 95.degree. C. 10 min X 50 Amplification 1 95.degree. C. 10 sec 2 62 or 65.degree. C. 20 sec 3 70.degree. C. 10 sec Cooling 1 40.degree. C. Hold The PCR was performed with LightCycler .RTM. Roche PCR

Results

Primer and Probe Design

[0069] The publicly available sequence information for the P2B gene in Candida spp. was aligned with the newly generated sequence information for the P2B gene in Candida spp. and analysed using bioinformatics tools. The sequence information available for the P2 gene in Aspergillus spp. was aligned with the newly generated sequence information for the P2 gene in Aspergillus spp. and analysed using bioinformatics tools. Species-specific probes were designed based on the compiled P2B and P2 sequence information for Candida glabrata and Aspergillus fumigatus respectively (Table 4). FIGS. 3 and 4 show the relative positions of the PCR primers and TaqMan DNA probes for the amplification and detection of C. glabrata and A. fumigatus respectively.

Real-time PCR

[0070] These probes were designed as TaqMan probes and demonstrated for species detection in real-time PCR on the LightCycler using reagents and thermocycling conditions detailed in Tables 5 and 6. For the C. glabrata real-time PCR assay based on the P2B gene, PCR primers CglabP2B-F/CglabP2B-R were combined with TaqMan probe P1-Cglab-P2B. The specificity of the assay for the detection of C. glabrata was confirmed by including DNA from a range of closely related Candida species and A. fumigatus in the C. glabrata real-time PCR assay. The assay detected C. glabrata but did not detect or cross-react with DNA from any other Candida species tested or with A. fumigatus DNA. FIG. 5 shows the results of the C. glabrata real-time PCR assay and the specificity of the assay for C. glabrata. For the A. fumigatus real-time PCR assay based on the P2 gene, PCR primers AspP2-F/AspP2-R were combined with TaqMan probe P1-AspP2. The specificity of the assay for the detection of A. fumigatus was confirmed by including DNA from a range of closely related Aspergillus species and C. albicans in the A. fumigatus real-time PCR assay. The assay detected A. fumigatus but did not detect or cross-react with DNA from C. albicans or any of the four Aspergillus species tested. Two additional Aspergillus spp. did show a small amount of cross reaction in the A. fumigatus real-time PCR assay but this can be eliminated with further assay optimisation. FIG. 6 shows the results of the A. fumigatus real-time PCR assay.

[0071] In so far as any sequence disclosed herein differs from its counterpart in the attached sequence listing in PatentIn3.3 software, the sequences within this body of text are to be considered as the correct version.

[0072] The words "comprises/comprising" and the words "having/including" when used herein with reference to the present invention are used to specify the presence of stated features, integers, steps or components but does not preclude the presence or addition of one or more other features, integers, steps, components or groups thereof.

[0073] It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable sub-combination.

SEQ IDs

[0074] Sites of probes, oligonucleotides etc. are shown in bold and underlined. N or x=any nucleotide; w=a/t, m=a/c, r=a/g, k=g/t, s=c/g, y=c/t, h=a/t/c, v=a/g/c, d=a/g/t, b=g/t/c. In some cases, specific degeneracy options are indicated in parenthesis: e.g.: (a/g) is either A or G.

TABLE-US-00007 SEQ ID NO 1: CglabP2B-F ATTGTTGACCCAAGGTGGTAAC SEQ ID NO 2: CglabP2B-R TCGTCCAAGGACTTACCTTCCAA SEQ ID NO 3: CanP2B-F ATGAAATACTTAGCTGCTTAC SEQ ID NO 4: CanP2B-R TAATCGAATAAACCGAAACCCA SEQ ID NO 5: Can P2BflR1 GCGACAAGCAATTTCTCT SEQ ID NO 6: Can P2BinR1 ATCATCATCAGATTCTTCTTTG SEQ ID NO 7: AspP2-F ATGAAGCACCTCGCCGC SEQ ID NO 8: AspP2-R AGACCGAAGCCCATGTC SEQ ID NO 9: P1-Cglab-P2B CAAGAAGGTTATCGAATCTGTTGGTATTG SEQ ID NO 10: P1-AspP2 CCTGCCGCTGCCGGTGCCGCTGCC SEQ ID NO 11: >glab2897\(PF) sequences generated for C.glabrata CTATTGTTGACCCAAGGTGGTAACGAATCTCCAGCTGCTGCTGACATC AAGAAGGTTATCGAATCTGTTGGTATTGAAGCTGACGAAGCCAGAATC AACGAATTGTTGTCTGCTTTGGAAGGTAAGTCCTTGGACGAATTGATC GCTGAAGGTCAACAAAAGTTCGCCTCTGTTCCAGTTGGTGGTGCTGCT GCTGGTGGTGCTTCCGCTGCTGCTGGTGGTGCCGCTGCCGGTGAAGCC GCTGAAGAAAAGGAAGAAGAAGCTGCTGAAGAATCCGATGACGACATG GGTTTCGGTTTATTCGATTA SEQ ID NO 12: >glab8018\(PF) sequences generated for C.glabrata TTGTTGACCCAAGGTGGTAACGAATCTCCAGCTGCTGCTGACATCAAG AAGGTTATCGAATCTGTTGGTATTGAAGCTGACGAAGCCAGAATCAAC GAATTGTTGTCTGCTTTGGAAGGTAAGTCCTTGGACGAATTGATCGCT GAAGGTCAACAAAAGTTCGCCTCTGTTCCAGTTGGTGGTGCTGCTGCT GGTGGTGCTTCCGCTGCTGCTGGTGGTGCCGCTGCCGGTGAAGCCGCT GAAGAAAAGGAAGAAGAAGCTGCTGAAGAATCCGATGACGACATGGGT TTCGGTTTATTCGATTA SEQ ID NO 13: >glab4692\(PF) sequences generated for C.glabrata CTATTGTTGACCCAAGGTGGTAACGAATCTCCAGCTGCTGCTGACATC AAGAAGGTTATCGAATCTGTTGGTATTGAAGCTGACGAAGCCAGAATC AACGAATTGTTGTCTGCTTTGGAAGGTAAGTCCTTGGACGAATTGATC GCTGAAGGTCAACAAAAGTTCGCCTCTGTTCCAGTTGGTGGTGCTGCT GCTGGTGGTGCTTCCGCTGCTGCTGGTGGTGCCGCTGCCGGTGAAGCC GCTGAAGAAAAGGAAGAAGAAGCTGCTGAAGAATCCGATGACGACATG GGTTTCGGTTTATTCGATTA SEQ ID NO 14: >glabl38\(PF) sequences generated for C.glabrata CTATTGTTGACCCAAGGTGGTAACGAATCTCCAGCTGCTGCTGACATC AAGAAGGTTATCGAATCTGTTGGTATTGAAGCTGACGAAGCTAGAATC AACGAATTGTTGTCTGCTTTGGAAGGTAAGTCCTTGGACGAATTGATC GCTGAAGGTCAACAAAAGTTCGCCTCTGTTCCAGTTGGTGGTGCTGCT GCTGGTGGTGCTTCCGCTGCTGCTGGTGGTGCCGCTGCCGGTGAAGCT GCTGAAGAAAAGGAAGAAGAAGCTGCTGAAGAATCCGATGACGACATG GGTTTCGGTTTATTCGATTA SEQ ID NO 15: >krusei3165\(P2BF) sequence generated for C. krusei TTACTCTTAGTCAATGCTGGTAAAACCGCACCATCTGCTGCAGATGTT ACCTCTGTCTTATCATCTGTCGGTATCGAAGTTGAATCCGACAAGTTA GACAAGTTAATCTCCGAATTAGAAGGTAAGTCCGTCGAAGAGTTGATT GCTGAAGGTACTGAAAAGATGGCTTCTGCTCCAGGTGCAGCAGCTGCT CCAGCTTCTGGTGCAGGTGCTTCCACCGAATCTGCTGCAGCAGAAGAA GTTGAAGAAGAAAAGGAAGAATCCGATGATGACATGGGTTTCGGTTTA TTCGATTA SEQ ID NO 16: >krusei9560\(P2BF) sequence generated for C. krusei CATCTGCTGCAGATGTTACCTCTGTCTTATCATCTGTCGGTATCGAAG TTGAATCCGACAAGTTAGACAAGTTAATCTCCGAATTAGAAGGTAAGT CCGTCGAAGAGTTGATTGCTGAAGGTACTGAAAAGATGGCTTCTGCTC CAGGTGCAGCAGCTGCTCCAGCTTCTGGTGCAGGTGCTTCCACCGAAT CTGCTGCAGCAGAAGAAGTTGAAGAAGAAAAGGAAGAATCCGATGATG ACATGGGTTTCGGTTTATTCGATTA SEQ ID NO 17: >krusei60554P2BF) sequence generated for C. krusei CATCTGCTGCAGATGTTACCTCTGTCTTATCATCTGTCGGTATCGAAG TTGAATCCGACAAGTTAGACAAGTTAATCTCCGAATTAGAAGGTAAGT CCGTCGAAGAGTTGATTGCTGAAGGTACTGAAAAGATGGCTTCTGCTC CAGGTGCAGCAGCTGCTCCAGCTTCTGGTGCAGGTGCTTCCACCGAAT CTGCTGCAGCAGAAGAAGTTGAAGAAGAAAAGGAAGAATCCGATGATG ACATGGGTTTCGGTTTATTCGATTA SEQ ID NO 18: >krusei573\(P2B) sequence generated for C. krusei TTACTCTTAGTACATGCTGGTAAAACCGCACCATCTGCTGCAGATGTT ACCTCTGTCTTATCATCTGTCGGTATCGAAGTTGAATCCGACAAGTTA GACAAGTTAATCTCCGAATTAGAAGGTAAGTCCGTCGAAGAGTTGATT GCTGAAGGTACTGAAAAGATGGCTTCTGCTCCAGGTGCAGCAGCTGCT CCAGCTTCTGGTGCAGGTGCTTCCACCGAATCTGCTGCAGCAGAAGAA GTTGAAGAAGAAAAGGAAGAATCCGATGATGACATGGGTTTCGGTTTA TTCGATTA SEQ ID NO 19: >CA562P2B sequence generated for C.albicans TTATTGTTAGTTCAAGGTGGTAACACCTCTCCATCAGCTTCTGATATC ACCGCTTTATTGGAATCCGTTGGTGTTGAAGCCGAAGAATCCAGATTA CAAGCTTTATTGAAAGATTTGGAAGGTAAAGACTTGCAAGAATTGATT GCTGAAGGTAACACCAAATTAGCTTCTGTCCCATCCGGTGGTGCTGCT GCTGGTGGTGCTTCTGCCTCTGCTGGTGCCGCTGCTGGTGGTGCTGCT GAAGCTGAAGAAGAAAAAGAAGAAGAAGCCAAAGAAGAATCTGATGAT GATATGGGTTTCGGTTTATTCGATTAGAGAAATTGCTTGTCGC SEQ ID NO 20: >A765\(P2BF) P2B sequence generated for C.albicans TTATTGTTAGTTCAAGGTGGTAACACCTCTCCATCAGCTTCTGATATC ACCGCTTTATTGGAATCCGTTGGTGTTGAAGCCGAAGAATCCAGATTA CAAGCTTTATTGAAAGATTTGGAAGGTAAAGACTTGCAAGAATTGATT GCTGAAGGTAACACCAAATTAGCTTCTGTCCCATCCGGTGGTGCTGCT GCTGGTGGTGCTTCTGCCTCTGCTGGTGCCGCTGCTGGTGGTGCTGCT GAAGCTGAAGAAGAAAAAGAAGAAGAAGCCAAAGAAGAATCTGATGAT GATATGGGTTTCGGTTTATTCGATTAGAGAAATTGCTTGTCGC SEQ ID NO 21: >A3156\(P2BF) P2B sequence generated for C.albicans TTATTGTTAGTTCAAGGTGGTAACACCTCTCCATCAGCTTCTGATATC ACCGCTTTATTGGAATCCGTTGGTGTTGAAGCCGAAGAATCCAGATTA CAAGCTTTATTGAAAGATTTGGAAGGTAAAGACTTGCAAGAATTGATT GCTGAAGGTAACACCAAATTAGCTTCTGTCCCATCCGGTGGTGCTGCT GCTGGTGGTGCTTCTGCCTCTGCTGGTGCCGCTGCTGGTGGTGCTGCT GAAGCTGAAGAAGAAAAAGAAGAAGAAGCCAAAGAAGAATCTGATGAT GATATGGGTTTCGGTTTATTCGATTAGAGAAATTGCTTGTCGC SEQ ID NO 22: >A2700\(P2BF) P2B sequence generated for C.albicans TTATTGTTAGTTCAAGGTGGTAACACCTCTCCATCAGCTTCTGATATC ACCGCTTTATTGGAATCCGTTGGTGTTGAAGCYGAAGAATCCAGATTA CAAGCTTTATTGAAAGATTTGGAAGGTAAAGACTTGCAAGAATTGATT GCTGAAGGTAACACCAAATTAGCTTCTGTCCCATCCGGTGGTGCTGCT GCTGGTGGTGCTTCTGCCTCTRCTGGTGCCGCTGCTGGYGGTGCTGCY GAAGCTGAAGAAGAAAAAGAAGAAGAAGCCAAAGAAGAATCTGATGAT GATATGGGTTTCGGTTTATTCGATTAGAGAAATTGCTTGTCGC SEQ ID NO 23: >D3949\(P2BF) P2B sequence generated for C.dubliniensis TTGTTGTTAGTTCAAGGTGGTAACGCCACTCCATCAGCTTCTGATATC AGCGCTGTCTTGGAAACTGTTGGTGTTGAAGCCGAAGAATCCAGATTA CAAGCTTTATTGAAAGATTTGGAAGGTAAAGATTTGCAAGAATTGATT GCTGAAGGTAACACCAAATTAGCTTCTGTCCCAACCGGTGGTGCTGCT GCTGGTGGTGCTTCCGGTTCTGCTGGTGCCGCTTCTGGTGCCGCTGCT GAAGCTGAAGAAGAAAAAGAAGAAGAAGCTAAAGAAGAATCTGATGAT GATATGGGTTTCGGTTTATTCGATTAGAGAAATTGCTTGTCGC SEQ ID NO 24: >D7987\(P2BF) sequence generated for C.dubliniensis TTGTTGTTAGTTCAAGGTGGTAACGCCACTCCATCAGCTTCTGATATC

AGCGCTGTCTTGGAAACTGTTGGTGTTGAAGCCGAAGAATCCAGATTA CAAGCTTTATTGAAAGATTTGGAAGGTAAAGATTTGCAAGAATTGATT GCTGAAGGTAACACCAAATTAGCTTCTGTCCCAACCGGTGGTGCTGCT GCTGGTGGTGCTTCCGGTTCTGCTGGTGCCGCTTCTGGTGCCGCTGCT GAAGCTGAAGAAGAAAAAGAAGAAGAAGCCAAAGAAGAATCTGATGAT GATA SEQ ID NO 25: >CP604\(CanP2B-FOR>><<REV) P2B sequences generated for C.parapsilosis ATGAAATACTTAGCTGCTTACTTATTATTGGTCCAAGGTGGTAACGCC TCCCCATCTGCTTCAGACATCTCCTCATTGTTGGAATCCGTTGGTGTT GAAGTTGAAGAATCAAGATTATCTACCTTGTTGAAAGACTTGGAAGGT AAAGACATCAACGAGTTGATTGCTGAAGGTAACACCAAATTGGCCTCA GTTCCATCTGGTGGTGCTGCTGTTGCTTCCGGTTCTGGTGCTTCTGGT GCCGCTGCTGGTGGTGCTGCTGAAGAAGCTAAGGAAGAAGCCAAGGAA GAAGAAAAGGAAGAATCTGATGATGACATGGGTTTCGGTTTATTCGAT TA SEQ ID NO 26: >P2194\(P2BF) sequences generated for C.parapsilosis TTATTATTGGTCCAAGGTGGTAACGCCTCCCCATCTGCTTCAGACATC TCCTCATTGTTGGAATCCGTTGGTGTTGAAGTTGAAGAATCAAGATTA TCTACCTTGTTGAAAGACTTGGAAGGTAAAGACATCAACGAGTTGATT GCTGAAGGTAACACCAAATTGGCCTCAGTTCCATCTGGTGGTGCTGCT GTTGCTTCCGGTTCTGGTGCTTCTGGTGCCGCTGCTGGTGGTGCTGCT GAAGAAGCTAAGGAAGAAGCCAAGGAAGAAGAAAAGGAAGAATCTGAT GATGACATGGGTTTCGGTTTATTCGATTA SEQ ID NO 27: >P96141\(P2BF) sequences generated for C.parapsilosis GGTGGTAACGCCTCCCCATCCGCTTCAGACATCTCATCCTTGTTGGAA TCCGTTGGTGTTGAAGTTGAAGAATCAAGATTGTCCCTCTTGTTGAAA GACTTGGAAGGTAAAGACATCAACGAATTGATTGCTGAAGGTAACACC AAGTTGGCTTCAGTTCCAACTGGTGGTGCTGCTGTTGCTTCTGGTTCT GGTGCTTCAGGTGCCGCTGCTGGTGGTGCTGCTGAAGAAGCCAAAGAA GAATCTGATGATGAT SEQ ID NO 28: >CT94\(P2BF) sequences generated for C.tropicalis GGTGGTAACGCTTCCCCATCTGCTTCTGACATCTCCGCTTTATTGGAA CAAGTTGGTGCTGAAGTTGAATCTTCCAAATTAGACTTATTGTTGAAA GAATTGGAAGGTAAAGACTTGCAAGAATTGATTGCCGAAGGTAACACT AAATTCGCCTCTGTCCCATCCGGTGGTGCTGCTGCTGCTTCYTCTGGT TCCGCTGCCGCTGCTGGTGGTGCCGCTGCCGAAGCTGAAGAAGAAAAA GAAGAAGAAGCCAAAGAAGAATCTGATGATGAT SEQ ID NO 29: >CT2311\(P2BF) sequences generated for C.tropicalis GGTGGTAACGCTTCCCCATCTGCTTCTGACATCTCCGCTTTATTGGAA CAAGTTGGTGCTGAAGTTGAATCTTCCAAATTAGACTTATTGTTGAAA GAATTGGAAGGTAAAGACTTGCAAGAATTGATTGCCGAAGGTAACACT AAATTCGCCTCTGTCCCATCCGGTGGTGCTGCTGCTGCTTCCTCTGGT TCCGCTGCCGCTGCTGGTGGTGCCGCTGCCGAAGCTGAAGAAGAAAAA GAAGAAGAAGCCAAAGAAGAATCTGATGATGAT SEQ ID NO 30: >T-8157\(PF) sequences generated for C.tropicalis TTATTATTAGTCCAAGGTGGTAACRCTTCCCCATCTGCTTCTGACATC TCCGCTTTATTGGAACAAGTTGGTGCTGAAGTTGAATCTTCCAAATTA GACTTATTGTTGAAAGAATTGGAAGGTAAAGACTTGCAAGAATTGATT GCCGAAGGTAACACTAAATTCGCCTCTGTCCCATCCGGTGGTGCTGCY GCTGCTTCCTCTGGTTCCGCTGCCGCTGCTGGTGGTGCCGCTGCCGAA GCTGAAGAAGAAAAAGAAGAAGAAGCCAAAGAAGAATCTGATGATGAT SEQ ID NO 31: >T-2424\(PF) sequences generated for C.tropicalis TTATTATTAGTCCAAGGTGGTAACGCTTCCCCATCTGCTTCTGACATC TCCGCTTTATTGGAACAAGTTGGTGCTGAAGTTGAATCTTCCAAATTA GACTTATTGTTGAAAGAATTGGAAGGTAAAGACTTGCAAGAATTGATT GCCGAAGGTAACACTAAATTCGCCTCTGTCCCATCCGGTGGTGCTGCT GCTGCTTCCTCTGGTTCCGCTGCCGCTGCTGGTGGTGCCGCTGCCGAA GCTGAAGAAGAAAAAGAAGAAGAAGCCAAAGAAGAATCTGATGATGAT SEQ ID NO 32: >T-3895\(PF) sequences generated for C.tropicalis TTATTATTAGTCCAAGGTGGTAACGCTTCCCCATCTGCTTCTGACATC TCCGCTTTATTGGAACAAGTTGGTGCTGAAGTTGAATCTTCCAAATTA GACTTATTGTTGAAAGAATTGGAAGGTAAAGACTTGCAAGAATTGATT GCCGAAGGTAACACTAAATTCGCCTCTGTCCCATCCGGTGGTGCTGCT GCTGCTTCTTCTGGTTCCGCTGCCGCTGCTGGTGGTGCCGCTGCCGAA GCTGAAGAAGAAAAAGAAGAAGAAGCCAAAGAAGAATCTGATGATGAT SEQ ID NO 33: >guill2672\(P2BF) sequences generated for C.guilliermondii TTRTTGTTGGTKRACGCCGGTAACACCTCCCCATCTGCTGCTGACATC AAGGCTGTCTTGGAGTCGGTTTCCATAGAAGTTGACGACGAGAAGGTG TCCAAGTTGTTGAGCGAAGTTGAGGGAAAGAATGCTGAAGAATTGATC GCTGAAGGTAACGAAAAATTGTCTTCTGTTCCAACTGGTGGACCAGCT GCTGCTTCCTCTGGATCTGCTGCCGCTGCCGATGCTCCTGCTGCCGAA GAGGCCGCTGAGGAGGCCGCTGAGGAGTCTGACGACGACATGGGTTTC GGTTTATTCGATTA SEQ ID NO 34: >guill6021\(P2BF) sequences generated for C.guilliermondii TTRTTGTTGGTKRACGCCGGTAACACCTCCCCATCTGCTGCTGACATC AAGGCTGTCTTGGAGTCGGTTTCCATAGAAGTTGACGACGAGAAGGTG TCCAAGTTGTTGAGCGAAGTTGAGGGAAAGAATGCTGAAGAATTGATC GCTGAAGGTAACGAAAAATTGTCTTCTGTTCCAACTGGTGGACCAGCT GCTGCTTCCTCTGGATCTGCTGCCGCTGCCGATGCTCCTGCTGCCGAA GAGGCCGCTGAGGAGGCCGCTGAGGAGTCTGACGACGACATGGGTTTC GGTTTATTCGATTA SEQ ID NO 35: >lus7270\(P2BF) sequences generated for C.lusitanie TTATTGTTGGTCAACGCTGGTAACACCGCCCCATCTGCTGCTGACGTC AAGAAGGTCTTGGAATCCGTCTCTATTGAGGTTGAGGACGACAAGGTT GAGAAGTTGTTGGCTGAAGTTGAAGGCAAGAACGTCGAAGAGTTGATT GCCGAGGGTAACGAGAAGTTGTCTTCTGTTCCATCTGGTGCTCCAGCT GCTGCTGGTGCCGCTGCTGCTTCTGGTTCTACTGAGGCTGCTGCTGAA GAGCCACAAGAAGAAGAGAAGGAGGAGTCTGACGACGACATGGGTTTC GGTTTATTCGATTA SEQ ID NO 36: >AF419.64\(AspP2-F) P2 sequences generated for A.fumigatus TTACCTCCTCCTCGCCCTTGCTGGCAACACCTCCCCGTCCTCTGAGGA TGTCAAGGCCGTCCTCTCTTCCGTTGGCATTGATGCCGATGAGGAGCG CCTGAACAAGCTCATTGCTGAGCTCGAGGGCAAGGACCTCCAGGAGGT TAGTAACTACAGCTCGAAGATTACAGACTGGGAATTTTGGACTGGCGC TGACATCGAACTCTACAACAGCTCATTGCCGAGGGTTCCACCAAGCTC GCTTCCGTTCCCTCCGGTGGTGCTGCCGCCGCTGCTCCTGCCGCTGCC GGTGCCGCTGCCGGTGGTGCTGCTGCTCCTGCCGCTGAGGAGAAGAAG GAGGAGGAGAAGGAGGAGTCCGACGAGGACATGGGCTTCGGTCT SEQ ID NO 37: >F-6951\(APF) P2 sequences generated for A.fumigatus CCTCCTCCTCGCCCTTGCTGGCAACACCTCCCCGTCCTCTGAGGATGT CAAGGCCGTCCTCTCTTCCGTTGGCATTGATGCCGATGAGGAGCGCCT GAACAAGCTCATTGCTGAGCTCGAGGGCAAGGACCTCCAGGAGGTTAG TAACTACAGCTCGAAGATTACAGACTGGGAATTTTGGACTGGCGCTGA CATCGAACTCTACAACAGCTCATCGCCGAGGGTTCCACCAAGCTCGCT TCCGTTCCCTCCGGTGGTGCTGCCGCCGCTGCTCCTGCCGCTGCCGGT GCCGCTGCCGGTGGTGCTGCTGCTCCTGCCGCTGAGGAGAAGAAGGAG GAGGAGAAGGAGGAGTCCGACGAGGACATGGGCTTCGGTCT SEQ ID NO 38: >F-133-61\(APF) P2 sequences generated for A.fumigatus GCAACACCTCCCCGTCCTCTGAGGATGTCAAGGCCGTCCTCTCTTCCG TTGGCATTGATGCCGATGAGGAGCGCCTGAACAAGCTCATTGCTGAGC TCGAGGGCAAGGACCTCCAGGAGGTTAGTAACTACAGCTCGAAGATTA CAGACTGGGAATTTTGGACTGGCGCTGACATCGAACTCTACAACAGCT CATTGCCGAGGGTTCCACCAAGCTCGCTTCCGTTCCCTCCGGTGGTGC TGCCGCCGCTGCTCCTGCCGCTGCCGGTGCCGCTGCCGGTGGTGCTGC TGCTCCTGCCGCTGAGGAGAAGAAGGAGGAGGAGAAGGAGGAGTCCGA CGAGGACATGGGCTTCGGTCT SEQ ID NO 39: >AF493.61\(Asp2F) P2 sequences generated for A.fumigatus TTACCTCCTCCTCGCCCTTGCTGGCAACACCTCCCCGTCCTCTGAGGA TGTCAAGGCCGTCCTCTCTTCCGTTGGCATTGATGCCGATGAGGAGCG CCTGAACAAGCTCATTGCTGAGCTCGAGGGCAAGGACCTCCAGGAGGT TAGTAACTACAGCTCGAAGATTACAGACTGGGAATTTTGGACTGGCGC

TGACATCGAACTCTACAACAGCTCATTGCCGAGGGTTCCACCAAGCTC GCTTCCGTTCCCTCCGGTGGTGCTGCCGCCGCTGCTCCTGCCGCTGCC GGTGCCGCTGCCGGTGGTGCTGCTGCTCCTGCCGCTGAGGAGAAGAAG GAGGAGGAGAAGGAGGAGTCCGACGAGGACATGGGCTTCGGTCT SEQ ID NO 40: >AF1085-P2\(AspP2-F) P2 sequences generated for N.fischeri TTACCTCCTCCTCGCCCTTGCTGGCAACACCTCCCCCTCCGCTGAGGA TGTCAAGGCCGTCCTCTCTTCCGTCGGCATTGACGCCGATGAGGAGCG CCTGAACAAGCTCATTGCTGAGCTCGAGGGCAAGGACCTCCAGGAGGT TAGTACACACGGCTTGAATATTACCGACTGAGAATTTTGGACCGGCGC TGACATCGATTTCTACAACAGCTGATCGCTGAGGGTTCCGCCAAGCTC GCTTCCGTTCCCTCCGGTGGTGCCGGTGGTGCCGCTGCTCCTGCCGCT GGCGGTGCCGCTGCCGGTGGTGCTGCTGCCGCTCCCGCCGAAGAGAAG GAGGAGGAGAAGGAGGAGTCCGACGAGGACATGGGCTTCGGTCT SEQ ID NO 41: >Nid100-2\(P2F) P2B sequence for A. nidulans CTACCTCCTCCTCGCCCTTGCTGGCAACGAGTCTCCCTCCGCCTCCGA CATCAAGGAGGTTCTCTCTTCCGTCGGTGTTGACGCCGACGACGAGCG CCTCGAGAAGCTCATTGCTGAGCTCCAGGGCAAGGACATCAACGAGGT TCGTTATTGCATATAGAGTTGGAAGACGCGGACTGCGGGCTAACGATA ATCTTTAAACAGCTGATCGCTGAGGGTACCACCAAGCTTGCCTCCGTT CCCTCCGGCGGTGCTGGTGGTGCTGCCCCTGCTGCCGCTGCCGGTGGT GCTGCTGCTGCCGAGGCCCCCGCTGCTGAGAAGGAGGAGGAGAAGGAG GAGTCCGATGAGGACATGGGCTTCGGTCT SEQ ID NO 42: >Nid7063\(P2F) P2B sequence for A. nidulans CCTTGCTGGCAACGAGTCTCCCTCCGCCTCCGACATCAAGGAGGTTCT CTCTTCCGTCGGTGTTGACGCCGACGACGAGCGCCTCGAGAAGCTCAT TGCTGAGCTCCAGGGCAAGGACATCAACGAGGTTCGTTATTGCATAGG GTTGGAAGACGCGGACAGCGGGCTAACGATAATCTTCTGAACAGCTGA TCGCTGAGGGTACCACCAAGCTTGCCTCCGTTCCCACCGGCGGTGCTG GTGCTGCTGCCCCTGCTGCCGCTGCCGGTGGTGCTGCCGCTGCCGAGG CTCCCGCTGCTGAGAAGGAGGAGGAGAAGGAGGAGTCCGATGAGGACA TGGGCTTCGGTCT SEQ ID NO 43: >AC5138\(AspP2-F) P2 sequences generated for A.clavatus TTACCTCCTCCTCGCCCTTGGTGGCAACGCCAGCCCCTCCGCTGCTGA TGTTAAGGAGGTTCTCTCTTCTGTCGGCATTGATGCTGATGAGGAGCG CCTCAACAAGCTCATTGCTGAGCTCGAGGGCAAGGACCTTCAGGAGGT TAGTTTTGCGCTGGTCTACGAGAGGAAGATTGTGACAAGATGCTAACG GAAAATTTCTTCAACAGCTGATTGCTGAGGGTTCCACCAAGCTCGCTT CCATTCCCTCCGGCGGTGCTGGTGGTGCTGCCCCCGCCGCTGGCGGTG CTGCCGCCGGTGGTGCTGCTGAGGCCGCTCCCGCTGAGGAGAAGGAGG AGGAGAAGGAGGAGTCCGACGACGACATGGGCTTCGGTCT SEQ ID NO 44: >AN1329399-P2\(AspP2-F) P2 sequences generated for A.niger CTACCTTCTGTTGGCCCTTGCTGGCAACAACACCCCCTCCGCTGAGGA CATCAAGTCCGTCCTCTCCGCCGTCGGCATTGACGCTGAGGAGGAGCG CCTCCAGAAGCTCCTTGCTGAGCTTGAGGGCAAGGACCTCCAGGAGGT CAGTTAACGCCCTTAAAATCTACCAAGAAATTTTGCGATTACAAGATG GAATACTGACAATGGGTTTTCTACAACAGCTCATCTCCGAGGGTACCC AGAAGCTCGCTTCCGTTCCCTCCGGTGGTGCCGGTGCTGCTGCCGCTG CCCCCGCTGCCGGTGGCGCCGCTGCTGCTGAGGCTCCCGCTGAGGAGA AGAAGGAGGAGGCTGCTGAGGAGTCCGATGAGGACATGGGCTTCGGTC T SEQ ID NO 45: >AN2864\(Asp2F) sequences generated for A.niger CTACCTTCTGTTGGCCCTTGCTGGCAACAACACCCCCTCCGCTGAGGA CATCAAGTCCGTCCTCTCCGCCGTCGGCATTGACGCTGAGGAGGAGCG CCTCCAGAAGCTCCTTGCTGAGCTTGAGGGCAAGGACCTCCAGGAGGT CAGTTAACGCCCTTAAAATCTACCAAGAAATTTTGCGATTACAAGATG GAATACTGACAATGGTTTTTCTACAACAGCTCATCTCCGAGGGTACCC AGAAGCTCGCTTCCGTTCCCTCCGGTGGTGCCGGTGCTGCTGCCGCTG CCCCCGCTGCCGGTGGCGCCGCTGCTGCTGAGGCTCCCGCTGAGGAGA AGAAGGAGGAGGCTGCTGAGGAGTCCGATGAGGACATGGGCTTCGGTC T SEQ ID NO 46: >AT118.46\(AspP2 -F) P2 sequences generated for A.terreus TTCCTTCTCCTCGGCCTTGCCGGCAACACCTCCCCCTCTGCTGAGGAC ATCAAGGCTGTCCTCTCCTCCGTCGGCATTGACGCTGATGAGGAGCGC CTCGGCCAGCTCCTGAAGGAGCTCGAGGGCAAGGACATCCAGGAGGTT AGTGATCACCATAACTTCGGACTACTGCGATGAGAACGCGCCATACTA ACGGATTATACAGCTCATCGCTCAGGGCTCTGAGAAGCTCGCTTCCGT TCCCTCTGGCGGTGCTGCCGCTGCTGCTGCTCCCGCCGCTGCCGCTGG CGGTGACGCTGCTGCCCCCGCTGAGAAGAAGGAGGAGGAGAAGGAGGA GGAGTCCGACGAGGACATGGGCTTCGGTCT SEQ ID NO 47: >AF2008\(AspP2-F) P2 sequences generated for A.flavus TTACCTCCTCCTCGCCCTCGCTGGCAACTCCACCCCCTCCGTTGAGGA CATCAAGAGCGTTCTCTCTTCCGTCGGTATTGATGCCGATGAGGAGCG CCTCCAGAAGGTCATCTCCGAGCTCGAGGGCAAGGACCTCCAGCAGGT TCGTAATACGTTGAATGATTGAGACATAGGGCGCCTGCTGACCATCTA CTCACTACAGCTGATCACTGAGGGTAGCGAGAAGCTCGCTACCGTTCC CTCCGGTGGTGCTGGTGCCGCTGCCCCTGCTGCTGGCGGTGCCGCTGC CGGTGGTGACGCCCCCGCCGCTGAGGAGAAGGAGGAAGAGAAGGAGGA GTCCGATGAGGACATGGGCTTCGGTCT SEQ ID NO 48: >AV1323\(AspP2-F) P2 sequences generated for A.versicolor TCGCCCTTGCTGGCAACGAGAGCCCCTCTGCTTCCGACATTAAGGAGG TTCTGTCCTCCGTCGGTGTTGACGCTGACAACGAGCGCCTCGAGAAGC TCATCGCTGAGCTCCAGGGCAAGGACATCAACGAGGTTCGTTTTGACA GATGCATTTGAAATACTTGGCCAGCAGACTAATGAAACCTCTTCTGCA GTTGATCGCTGAGGGTACCACCAAGCTCGCTTCCGTTCCCTCTGGCGG TGGTGGTGGTGCTGCCGCCCCCGCTGCTGGTGGCGCTGCCGCCGCTGA GGCCCCTGCTGCTGAGAAGGAGGAGGAGAAGGAGGAGTCCGACGAGGA ATGGGCTTCGGTCT SEQ ID NO 49: >AV2916\(Asp2F) sequences generated for A.versicolor CCCTTGCTGGCAACGAGAGCCCCTCTGCTTCCGACATTAAGGAGGTTC TGTCCTCCGTCGGTGTTGACGCTGACGACGAGCGCCTCGAGAAGCTCA TCGCTGAGCTCCAGGGCAAGGACATCAACGAGGTTCGTTTTGACAGAT GCGTTTGAAATACTTGGCCAGCAGACTAATGAAACCTCTTCTGCAGTT GATCGCTGAGGGTACCACCAAGCTCGCTTCCGTTCCCTCTGGCGGTGG TGGTGGTGCTGCCGCCCCCGCTGCTGGTGGCGCTGCCGCCGCTGAGGC CCCTGCTGCTGAGAAGGAGGAGGAGAAGGAGGAGTCCGACGAGGACAT GGGCTTCGGTCT SEQ ID NO 50: >Published P2B sequences for C albicans gi|11229041|gb|AF317662.1|AF317662 Candida albicans 60S acidic ribosomal protein type P2-B (p2B) gene, complete cds GGAAAAAATGAAATACTTAGCTGCTTACTTATTGTTAGTTCAAGGTGG TAACACCTCTCCATCAGCTTCTGATATCACCGCTTTATTGGAATCCGT TGGTGTTGAAGCCGAAGAATCCAGATTACAAGCTTTATTGAAAGATTT GGAAGGTAAAGACTTGCAAGAATTGATTGCTGAAGGTAACACCAAATT AGCTTCTGTCCCATCCGGTGGTGCTGCTGCTGGTGGTGCTTCTGCCTC TACTGGTGCCGCTGCTGGTGGTGCTGCCGAAGCTGAAGAAGAAAAAGA AGAAGAAGCCAAAGAAGAATCTGATGATGATATGGGTTTCGGTTTATT CGATTAGAGAAATTGCTTGTCGCCTTTGCTGGTTTGAGAGAAGTATAT TTCCATTATTTTGCATTATATATATATATATGTATTATAACTAATCTA ATAAAAAAAATATGAAAACAAAAATGGCTTCTATATGGCACTGTTTGC A SEQ ID NO 51: >Published P2B sequences for C.glabrata gi|50284952|ref|XM_444905.1| Candida glabrata CBS138 hypothetical protein (CAGLOA03168g) partial mRNA ATGAAGTACTTGGCCGCTTACCTATTGTTGACCCAAGGTGGTAACGAA TCTCCAGCTGCTGCTGACATCAAGAAGGTTATCGAATCTGTTGGTATT GAAGCTGACGAAGCTAGAATCAACGAATTGTTGTCTGCTTTGGAAGGT AAGTCCTTGGACGAATTGATCGCTGAAGGTCAACAAAAGTTCGCCTCT GTTCCAGTTGGTGGTGCTGCTGCTGGTGGTGCTTCCGCTGCTGCTGGT GGTGCCGCTGCCGGTGAAGCTGCTGAAGAAAAGGAAGAAGAAGCTGCT GAAGAATCCGATGACGACATGGGTTTCGGTTTGTTCGACTAA SEQ ID NO 52: >gi|68465556|ref|XM_718047.1| Candida albicans SC5314 cytosolic ribosomal acidic protein P2B (CaO19_5928) partial mRNA ATGAAATACTTAGCTGCTTACTTATTGTTAGTTCAAGGTGGTAACACC

TCTCCATCAGCTTCTGATATCACCGCTTTATTGGAATCCGTTGGTGTT GAAGCCGAAGAATCCAGATTACAAGCTTTATTGAAAGATTTGGAAGGT AAAGACTTGCAAGAATTGATTGCTGAAGGTAACACCAAATTAGCTTCT GTCCCATCCGGTGGTGCTGCTGCTGGTGGTGCTTCTGCCTCTGCTGGT GCCGCTGCTGGTGGTGCTGCTGAAGCTGAAGAAGAAAAAGAAGAAGAA GCCAAAGAAGAATCTGATGATGATATGGGTTTCGGTTTATTCGATTAG SEQ ID NO 53: >gi|68465849|ref|XM_717900.1| Candida albicans SC5314 cytosolic ribosomal acidic protein P2B (CaO19_13349) partial mRNA ATGAAATACTTAGCTGCTTACTTATTGTTAGTTCAAGGTGGTAACACC TCTCCATCAGCTTCTGATATCACCGCTTTATTGGAATCCGTTGGTGTT GAAGCCGAAGAATCCAGATTACAAGCTTTATTGAAAGATTTGGAAGGT AAAGACTTGCAAGAATTGATTGCTGAAGGTAACACCAAATTAGCTTCT GTCCCATCCGGTGGTGCTGCTGCTGGTGGTGCTTCTGCCTCTGCTGGT GCCGCTGCTGGTGGTGCTGCTGAAGCTGAAGAAGAAAAAGAAGAAGAA GCCAAAGAAGAATCTGATGATGATATGGGTTTCGGTTTATTCGATTAG SEQ ID NO 54: >Published P2 sequence for A.fumigatus gi|71001323|ref|XM_750250.1| Aspergillus fumigatus Af293 60S acidic ribosomal protein P2/allergen Asp F 8 (AFUA_2G10100) mRNA, complete cds ATGAAGCACCTCGCCGCTTACCTCCTCCTCGCCCTTGCTGGCAACACC TCCCCGTCCTCTGAGGATGTCAAGGCCGTCCTCTCTTCCGTTGGCATT GATGCCGATGAGGAGCGCCTGAACAAGCTCATTGCTGAGCTCGAGGGC AAGGACCTCCAGGAGCTCATCGCCGAGGGTTCCACCAAGCTCGCTTCC GTTCCCTCCGGTGGTGCTGCCGCCGCTGCTCCTGCCGCTGCCGGTGCC GCTGCCGGTGGTGCTGCTGCTCCTGCCGCTGAGGAGAAGAAGGAGGAG GAGAAGGAGGAGTCCGACGAGGACATGGGCTTCGGTCTTTTCGACTAA SEQ ID NO 55: Published P2 sequence for N.fischeri gi|119480930|ref|1XM_001260493.1|Neosartorya fischeri NRRL 181 60S acidic ribosomal protein P2/allergen Asp F 8 (NFIA_085510) mRNA, complete cds ATGAAGCACCTCGCCGCTTACCTCCTCCTCGCCCTTGCTGGCAACACC TCCCCGTCCGCTGAGGATGTCAAGGCCGTCCTCTCTTCCGTTGGCATT GACGCCGATGAGGAGCGCCTGAACAAGCTCATTGCTGAGCTCGAGGGC AAGGACCTCCAGGAGCTCATCGCCGAGGGTTCCACCAAGCTCGCTTCC GTTCCCTCCGGTGGTGCTGCCGCCGCTGCTCCTGCCGCTGGCGGTGCC GCTGCCGGTGGTGCTGCTGCTCCTGCCGCTGAGGAGAAGAAGGAGGAG GAGAAGGAGGAGTCCGACGAGGACATGGGCTTCGGTCTCTTCGACTAA SEQ ID NO 56: Published P2 sequence for A.clavatus gi|121715403|ref|XM_001275310.1| Aspergillus clavatus NRRL 1 60S acidic ribosomal protein P2, putative (ACLA_069130) mRNA, complete cds ATGAAGCACCTCGCCGCTTACCTCCTCCTCGCCCTTGGTGGCAACGCC AGCCCCTCCGCTGCTGATGTTAAGGAGGTTCTCTCTTCTGTCGGCATT GATGCTGATGAGGAGCGCCTCAACAAGCTCATTGCTGAGCTCGAGGGC AAGGACCTTCAGGAGCTGATTGCTGAGGGTTCCACCAAGCTCGCTTCC ATTCCCTCCGGCGGTGCTGGTGGTGCTGCCCCCGCCGCTGGCGGTGCT GCCGCCGGTGGTGCTGCTGAGGCCGCTCCCGCTGAGGAGAAGGAGGAG GAGAAGGAGGAGTCCGACGACGACATGGGCTTCGGTCTCTTCGACTAA SEQ ID NO 57: Published P2 sequence for A.terreus gi|115395965| ref|XM_001213622.1| Aspergillus terreus NIH2624 predicted protein (ATEG_04444) mRNA, complete cds ATGAAGCACCTCGCCGCTTTCCTTCTCCTCGGCCTTGCCGGCAACACC TCCCCCTCTGCTGAGGACATCAAGGCTGTCCTCTCCTCCGTCGGCATT GACGCTGATGAGGAGCGCCTCGGCCAGCTCCTGAAGGAGCTCGAGGGC AAGGACATCCAGGAGCTCATCGCTCAGGGCTCTGAGAAGCTCGCCTCC GTTCCCTCTGGCGGTGCTGCCGCTGGTGCTGCTGCTCCCGCCGCTGCC GCTGGCGGTGACGCTGCTGCCCCCGCTGAGAAGAAGGAGGAGGAGAAG GAGGAGGAGTCCGACGAGGACATGGGCTTCGGTCTCTTCGACTAA SEQ ID NO 58: Published P2 sequence for A. niger gi|145252575| ref|XM_001397764.1| Aspergillus niger CBS 513.88 hypothetical protein (An16g04930) mRNA, complete cds ATGAAGTACCTCGCCGCCTACCTTCTGTTGGCCCTTGCTGGCAACAAC ACCCCCTCCGCTGAGGACATCAAGTCCGTCCTCTCCGCCGTCGGCATT GACGCTGAGGAGGAGCGCCTCCAGAAGCTCCTTGCTGAGCTTGAGGGC AAGGACCTCCAGGAGCTCATCTCCGAGGGTACCCAGAAGCTCGCTTCC GTTCCCTCCGGTGGTGCCGGTGCTGCTGCCGCTGCCCCCGCTGCCGGT GGCGCCGCTGCTGCTGAGGCTCCCGCTGAGGAGAAGAAGGAGGAGGCT GCTGAGGAGTCCGATGAGGACATGGGCTTCGGTCTCTTCGACTAA SEQ ID NO 59: >gi|67539651|ref|XM_658508.1|Aspergillus nidulans FGSC A4 chromosomel ATGAAGCACCTCGCAGCCTACCTCCTCCTCGCCCTTGCTGGCAACGAG TCTCCCTCCGCCTCCGACATCAAGGAGGTTCTCTCTTCCGTCGGTGTT GACGCCGACGACGAGCGCCTCGAGAAGCTCATTGCTGAGCTCCAGGGC AAGGACATCAACGAGCTGATCGCTGAGGGTACCACCAAGCTTGCCTCC GTTCCCTCCGGCGGTGCTGGTGGTGCTGCCCCTGCTGCCGCTGCCGGT GGTGCTGCTGCTGCCGAGGCCCCCGCTGCTGAGAAGGAGGAGGAGAAG GAGGAGTCCGATGAGGACATGGGCTTCGGTCTCTTCGACTAA SEQ ID NO 60: >gi|11229039|gb|AF317661.1| Candida albicans 60S acidic ribosomal protein type P2-A (p2A) gene, complete cds GAATTCGATTATTGCATTCTGATATTCCCTGCTTTAAATGCATTTGGA AATATTTCGTATATCATGAGATATAATAACATTAATAGCATTTTCATG TTACTAACAAGAATATAGTGAAATACTTAGCTGCTTACTTATTATTAG TTAACGCCGGTAACGCCACCCCATCTGCTGCCGATGTCAAAGCTGTTT TGTCAGCTGCTGATATTGAAGTCGAAGAAGAAAAAGTTGAAAAATTGA TCAGCGAATCGGACGGTAAGAACGTCGAAGAATTGATTGCTGAAGGTA ACGAAAAATTATCATCAGTCCCATCTGGTGCTCCAGCTGCTGCTGCTG GTGGTGCTTCTGCTGCCGCCGGTGGTGAAGCCACTGAAGAAGCTGCTG AAGAAGAAGCTGCTGAAGAATCTGATGACGATATGAGTTTCGGTTTAT TCGATTAAACGAGTCAACAGGCATCTCAAGATCACAGCATAAGG A. fumigatus SEQ ID NO 110: >A. FUM505.62 TTACCTCCTCCTCGCCCTTGCTGGCAACACCTCCCCGTCCTCTGAGGA TGTCAAGGCCGTCCTCTCTTCCGTTGGCATTGATGCCGATGAGGAGCG CCTGAACAAGCTCATTGCTGAGCTCGAGGGCAAGGACCTCCAGGAGGT TAGTAACTACAGCTCGAAGATTACAGACTGGGAATTTTGGACTGGCGC TGACATCGAACTCTACAACAGCTCATTGCCGAGGGTTCCACCAAGCTC GCTTCCGTTCCCTCCGGTGGTGCTGCCGCCGCTGCTCCTGCCGCTGCC GGTGCCGCTGCCGGTGGTGCTGCTGCTCCTGCCGCTGAGGAGAAGAAG GAGGAGGAGAAGGAGGAGTCCGACGAGGACATGGGCTTCGGTCT A. flavus SEQ ID NO 61: >A.flavus2199\(P2) TCGCCCTCGCTGGCAACTCCACCCCCTCCGTTGAGGACATCAAGAGCG TTCTCTCTTCCGTCGGTATTGATGCCGATGAGGAGCGCCTCCAGAAGG TCATCTCCGAGCTCGAGGGCAAGGACCTCCAGCAGGTTCGTAATACGT TGAATGATTGAGACATAGGGCGCCTGCTGACCATCTACTCACTACAGC TGATCACTGAGGGTAGCGAGAAGCTCGCTACCGTTCCCTCCGGTGGTG CTGGTGCCGCTGCCCCTGCTGCTGGCGGTGCCGCTGCCGGTGGTGACG CCCCCGCCGCTGAGGAGAAGGAGGAAGAGAAGGAGGAGTCCGATGAGG ACATGGGCTTCGGTCT A. niger SEQ ID NO 62: >A. nig2828\(P2F) CTACCTTCTGTTGGCCCTTGCTGGCAACAACACCCCCTCCGCTGAGGA CATCAAGTCCGTCCTCTCCGCCGTCGGCATTGACGCTGAGGAGGAGCG CCTCCAGAAGCTCCTTGCTGAGCTTGAGGGCAAGGACCTCCAGGAGGT CAGTTAACGCCCTTAAAAATCTACCAAGAAATTTTGCGATTACAAGAT GGAATACTGACAATGGTTTTTTCTACAACAGCTCATCTCCGAGGGTAC CCAGAAGCTCGCTTCCGTTCCCTCCGGTGGTGCCGGTGCTGCTGCCGC TGCCCCCGCTGCCGGTGGCGCCGCTGCTGCTGAGGCTCCCGCTGAGGA GAAGAAGGAGGAGGCTGCTGAGGAGTCCGATGAGGACATGGGCTTCGG TCT A. terreus SEQ ID NO 63: >A. terr307 TTTCCTTCTCCTCGGCCTTGCCGGCAACACCTCCCCCTCTGCTGAGGA CATCAAGGCTGTCCTCTCCTCCGTCGGCATTGACGCTGATGAGGAGCG CCTCGGCCAGCTCCTGAAGGAGCTCGAGGGCAAGGACATCCAGGAGGT TAGTGATCACCATAACTTCGGACTACTGCGATGAAAACGCGCCATACT AACGGATTATACAGCTCATCGCTCAGGGCTCTGAGAAGCTCGCCTCCG TTCCCTCTGGCGGTGCTGCCGCTGGTGCTGCTGCTCCCGCCGCTGCCG CTGGCGGTGACGCTGCTGCCCCCGCTGAGAAGAAGGAGGAGGAGAAGG AGGAGGAGTCCGACGAGGACATGGGCTTCGGTCT SEQ ID NO 64: >A. terr5677 TTTCCTTCTCCTCGGCCTTGCCGGCAACACCTCCCCCTCTGCTGAGGA CATCAAGGCTGTCCTCTCCTCCGTCGGCATTGACGCTGATGAGGAGCG CCTCGGCCAGCTCCTGAAGGAGCTCGAGGGCAAGGACATCCAGGAGGT

TAGTGATCACCATAACTTCGGACTACTGCGATGAAAACGCGCCATACT AACGGATTATACAGGTCATCGCTCAGGGCTCTGAGAAGCTCGCCTCCG TTCCCTCTGGCGGTGCTGCCGCTGGTGCTGCTGCTCCCGCCGCTGCCG CTGGCGGTGACGCTGCTGCCCCCGCTGAGAAGAAGGAGGAGGAGAAGG AGGAGGAGTCCGACGAGGACATGGGCTTCGGTCT SEQ ID NO 65: >A. terr2729 TTTCCTTCTCCTCGGCCTTGCCGGCAACACCTCCCCCTCTGCTGAGGA CATCAAGGCTGTCCTCTCCTCCGTCGGCATTGACGCTGATGAGGAGCG CCTCGGCCAGCTCCTGAAGGAGCTCGAGGGCAAGGACATCCAGGAGGT TAGTGATCACCATAACTTCGGACTACTGCGATGAAAACGCGCCATACT AACGGATTATACAGCTCATCGCTCAGGGCTCTGAGAAGCTCGCCTCCG TTCCCTCTGGCGGTGCTGCCGCTGGTGCTGCTGCTCCCGCCGCTGCCG CTGGCGGTGACGCTGCTGCCCCCGCTGAGAAGAAGGAGGAGGAGAAGG AGGAGGAGTCCGACGAGGACATGGGCTTCGGTCT SEQ ID NO 66: >A. terr601-65 TTTCCTTCTCCTCGGCCTTGCCGGCAACACCTCCCCCTCTGCTGAGGA CATCAAGGCTGTCCTCTCCTCCGTCGGCATTGACGCTGATGAGGAGCG CCTCGGCCAGCTCCTGAAGGAGCTCGAGGGCAAGGACATCCAGGAGGT TAGTGATCACCATAACTTCGGACTACTGCGATGAAAACGCGCCATACT AACGGATTATACAGCTCATCGCTCAGGGCTCTGAGAAGCTCGCCTCCG TTCCCTCTGGCGGTGCTGCCGCTGGTGCTGCTGCTCCCGCCGCTGCCG CTGGCGGTGACGCTGCTGCCCCCGCTGAGAAGAAGGAGGAGGAGAAGG AGGAGGAGTCCGACGAGGACATGGGCTTCGGTCT A. candidus SEQ ID NO 67: >A. Cand 225-8\(P2F) TGCTCCTCGGCCTCGCMGGCAACGAGACTCCCTCCGCTGCCGACATCA AGGGCGTTCTGTCCGCCGTCGGCATTGACGCCGATGAGGACCGTCTCT CCAAGCTCCTCTCCGAGCTTGAGGGCAAGGACATCAACGAGGTTCGTA TCTCACAGGAATCGCACACGTAACAGAGTCAACAAATACTAATCCCCC GTGCAGCTGATCGCCCAGGGCTCCGAGAAGCTTGCTTCCGTTCCCTCC GGTGGTGCCGCTGGTGGTGCCGCTGCCGCCCCTGCCGCCGCCGCTGGT GGTGACGCTCCCGCCCAGGAGAAGGAGGAGGAGAAGGAGGAGTCCGAT GAGGACATGGGCTTCGGTCT SEQ ID NO 68: >A. Cand14607\(P2F) TGCTCCTCGGCCTCGCCGGCAACGAGTCTCCCTCCGCTGCCGACATCA AGGGCGTTCTGTCCGCCGTCGGCATTGACGCCGATGAGGAGCGTCTCT CCAAGCTCCTCTCCGAGCTTGAGGGCAAGGACATCAACGAGGTTCGTA TCCTGGAATCGCACCGAGACAGAGTCAACAAATACTAATCCCCCGTGC AGCTGATCGCCCAGGGTACCGAGAAGCTTGCTTCCGTTCCCTCCGGTG GCGCCGGCGCTGCTGCTGCCGCCCCTGCCGCCGCTGCTGGTGGTGAGG CCGCCGCTGAGGAGAAGAAGGAGGAGGAGAAGGAGGAGTCCGATGAGG ACATGGGCTTCGGTCT SEQ ID NO 69: >A. Cand-9695\(APF) GGCAACCGAGTCTCCCTCCGCTGCCGACATCAAGGGCGTTCTGTCCGC CGTCGGCATTGACGCCGATGAGGAGCGTCTCTCCAAGCTCCTCTCCGA GCTTGAGGGCAAGGACATCAACGAGGTTCGTATCCTGGAATCGCACCG AGACAGAGTCAACAAATACTAATCCCCCGTGCAGCTGATCGCCCAGGG TACCGAGAAGCTTGCTTCCGTTCCCTCCGGTGGCGCCGGCGCTGCTGC TGCCGCCCCTGCCGCCGCTGCTGGTGGTGAGGCCGCCGCTGAGGAGAA GAAGGAGGAGGAGAAGGAGGAGTCCGATGAGGACATGGGCTTCGGTCT A. clavatus SEQ ID NO 70: >A. clav7944\(P2F) TTACCTCCTCCTCGCCCTTGGTGGCAACGCCAGCCCCTCCGCTGCTGA TGTTAAGGAGGTTCTCTCTTCCGTCGGCATTGATGCTGATGAGGAGCG CCTCAACAAGCTCATTGCTGAGCTCGAGGGCAAGGACCTTCAGGAGGT TAGTTTTACGCTGGTCTACGAGAGGAAGATTGTGACAAGATGCTAACG GAAAATTTCTTCAACAGCTGATTGCTGAGGGTTCCACCAAGCTCGCTT CCATTCCCTCCGGCGGTGCTGGTGGTGCTGCCCCCGCCGCTGGCGGTG CTGCCGCCGGTGGTGCTGCTGAGGCCGCTCCCGCTGAGGAGAAGGAGG AGGAGAAGGAGGAGTCCGACGACGACATGGGCTTCGGTCT SEQ ID NO 71: >A. clav443\(P2F) TTACCTCCTCCTCGCCCTTGGTGGCAACGCCAGCCCCTCCGCTGCTGA TGTTAAGGAGGTTCTCTCTTCCGTTGGCATTGATGCTGATGAGGAGCG CCTCAATAAGCTCATTGCTGAGCTTGAGGGCAAGGACCTTCAGGAGGT TAGTTTACGCCAATCCGCGATATGAAAATTGCGACATGATGCTAACAG GAGAATTTTTCAACAGCTGATTGCTGAGGGTTCCACCAAGCTCGCTTC CATTCCTTCCGGCGGTGCTGCCGGTGCTGCCCCTGCCGCTGGCGCTGC TGCCGGTGGTGCCGCTGAGGCCGCTCCCGCTGAGGAGAAGGAGGAGGA GAAGGAGGAGTCCGACGACGACATGGGCTTCGGTCT A. glaucus SEQ ID NO 72: >A. glau2425\(P2F) ACACGGTGGACTGGCTGGCCGGAAGAGCCGTTGCTGGTGTAAGTTTTG GTAGGACCGTTCAGCTCCRGAKGTCTTTGGGGACAATGGCGACGAGGG CTGTCGATCGTTAGTGTACATTCCAAGGAAGGTAAAAGAAAAAGAATG CGACATACAGTAAGTTGAGCCACTCTGACGCTGGCAGTCATCGCAGTG GTCATAAGCTGTAGCGAGCGGCTGCTCGATGTTGACCGAGTAGGTGAC GGCTTTGCAGAGACAGTGACCGGAAATAGGCATTTTGGACGAGAGGCA GAATATAATTGGACTATAGACTGACAATGATGATGACGATACTGAGGA CCTTTGGGAGGAATGAAACAGATATTTATACCCTCTCCGACCTCGTGT AGTCCATCTGTCTTTCGCTGTCTCTCGGTGGACATGGGCTTCGGTCT SEQ ID NO 73: >A. glau542 GCGTTGGTGCACGACGGTACCAAGGGGACTCTCATACTCCTTAATTCT CTGGCCGGTCCAGTGTCGCGACTCRTATGGAGCACATTAGCAGATATC CCACAGAGCTACCATGTCGTCCAGGCTCTTTGTCTGCTTTGCACATGG CCTTTTCCAACCAGCAGTACCTCCACAGACCCGACGTTCATGCTGTGT GGTATGATGATGCAAGTCGCCATGCAACTTGGTCTTCACCGGCCTTCG CACACTCAGGACTTTASCAAGTTCACAGTGGAGCTGATTGAGGAGGAG CTCAGGGATAAAGTGAGGACATGGGCTTCGGTCT SEQ ID NO 74: >A. glaucus29771\(P2) GCGTTGGAGCACGACTGTACCAGGATACTCATCATCTCCTTAATTTTC TGGCCGGTCCAGCGYCGCGACTAGTATGGAGCACATTATCAGACATCC GACAGAGCTACCATGTCGTAAAGGCTCTTTGTCTGCTCTGCACATGGC CTTTTCCGACCAGCAGTACCTCCACAGACCCTACKTTTATGCTGTGTG GTATGATGATGCAAGTCGCCATGCAGCTTGGTCTTCACCGGCCTTCGC ACACTCAGGACTTTAGCAAGTTTACAGTGGAGCTGATTGAGGAGGAAC TAAGGGACAAAGTGAGGACATGGGCTTCGGTCT A. versicolor SEQ ID NO 75: >A.Vers6898 CGCCCTTGCTGGCAACCAGAGCCCCTCTGCTTCCGATGTTAAGGAGGT TCTCTCCTCCGTCGGTGTTGACGCTGACTCTGAGCGCCTCGAGAAGCT CATCGCTGAGCTCCAGGGCAAGGACATCAACGAGGTTCGTTTTGACAG AACCGCTTGAAATTCTTGGCAGCAGACTAATGAAACATTTTCTGCAGT TGATCGCTGAGGGTACCACTAAGCTCGCTTCCGTTCCCTCTGGCGGTG CTGGTGCTGCTGCTGCTCCCGCTGCTGGTGGCGCTGCTGCCGCTGAGG CCCCTGCCGCCGAGAAGGAGGAGGAGAAGGAGGAGTCCGACGAGGACA TGGGCTTCGGTCT SEQ ID NO 76: >lus66\(P2BF) sequence generated for C. lusitaniae KTATTGTTGGKCAACGCTGGTAACACCGCCCCATCTGCTGCTGACGTC AAGAAGGTCTTGGAATCCGTCTCTATTGAGGTTGAGGACGACAAGGTT GAGAAGTTGTTGGCTGAAGTTGAAGGCAAGAACGTCGAAGAGTTGATT GCCGAGGGTAACGAGAAGTTGTCTTCTGTTCCATCTGGTGCTCCAGCT GCTGCTGGTGCCGCTGCTGCTTCTGGTTCTACTGAGGCTGCTGCTGAA GAGCCACAAGAAGAAGAGAAGGAGGAGTCTGACGACGACATGGGTTTC GGTTTATTCGATTA SEQ ID NO 77: >fam1\(P2BF) sequence generated for C. famata CTTCTCCATCCGCTTCTGACATCAGTAGTTTATTAGAAACCGTTGGTG CTGAAGCTGACGAAGCTAGAATCAGTGCTTTATTGAAGGACTTAGAAG GTAAGCAAGTCGCTGACTTAATTGCTGAAGGTCAAACCAAGTTGGCTT CCGTTCCAACTGGTGGTGCTGGTGCTGCTGCTGGTGGTGCCGCTGCTG CTTCTGGTGATGCCGGTGCAGCTGCTGCTGAAGAAGAAAAGGAAGAAG AAAAGGAAGAATCCGACGATGACATGGGTTTCGGTTTATTCGATTA SEQ ID NO 78: >fam2\(P2BF) sequence generated for C. famata CTTCTCCATCAGCCTCTGACGTCAGTGCTTTATTAGAAACCGTTGGTG CTGAAGTTGACCAAGGTAGAGTTAGTGCTTTATTGAAGGACTTAGAAG GTAAGCAAGTTGCCGACTTAATTGCTGAAGGTCAAACCAAGTTAGCTT CTGTCCCAACCGGTGGTGCTGCTTCTGCTGGTGGTGCTGCCGCTGCTT CTGGTGCTGCCGGTGCAGCTGCTGTTGAAGAAGAAAAGGAAGAAGAAA

AGGAAGAATCCGATGAAGATATGGGTTTCGGTTTATTCGATT SEQ ID NO 79: >fam5\(P2BF) sequence generated for C. famata CTTCTCCATCAGCCTCTGACGTCAGTGCTTTATTAGAAACCGTTGGTG CTGAAGTTGACCAAGGTAGAGTCAGTGCTTTATTGAAGGACTTAGAAG GTAAGCAAGTCGCCGACTTAATTGCTGAAGGTCAAACCAAGTTAGCTT CTGTCCCAACTGGTGGTGCTGCTTCTGCTGGTGGTGCTTCCGCTGCTG CTTCTGGTGATGCCGGTGCAGCTGCTGCTGAAGAAGAAAAGGAAGAAG AAAAGGAAGAATCCGATGAAGATATGGGTTTCGGTTTATTCGATTA SEQ ID NO 80: >haem54\(P2BF) sequence generated for C. haemuloni TTTCGGTTTATTCGATTAACACTTCCCCAGCTGCCTCTGACATCAAGA AGGTGTTGGAGTCTGTCTCCATCGAGGTTGAGGACGACAAGGTCGAGA AGTTGTTGGCTGAGGTCGAGGGCAAGAACGCCGAGGAGTTGATTGCCG AGGGTAACGAGAAGTTGTCTTCTGTCCCAACTGGTGCTCCAGCTGGTG GTGCTGCCGCTGCTGGTGGTGCTGCTCCAGAGGCTGCTGCTGAGAAGG AAGAGGAGGCCGCTGCCGAGGAGTCTGACGACGACATGGGTTTCGGTT TATTCGATTA SEQ ID NO 81: >haem55\(P2BF) sequence generated for C. haemuloni TTATTGTTGGTCAACGCCGGTAACACTTCCCCAGCTGCCTCTGACATC AAGAAGGTGTTGGAGTCTGTCTCCATCGAGGTTGAGGACGACAAGGTC GAGAAGTTGTTGGCTGAGGTCGAGGGCAAGAACGCCGAGGAGTTGATT GCCGAGGGTAACGAGAAGTTGTCTTCTGTCCCAACTGGTGCTCCAGCT GGTGGTGCTGCCGCTGCTGGTGGTGCTGCTCCAGAGGCTGCTGCTGAG AAGGAAGAGGAGGCCGCTGCCGAGGAGTCTGACGACGACATGGGTTTC GGTTTATTCGATTA SEQ ID NO 82: >pul36\(P2BF) sequence generated for C. pulcherrima ACACCTCTCCATCCGCCGCCGATGTCAAGAAGGTCTTGGAGTCCGTTT CCATCGAGGTTGAGGAGGACAAGGTCGAGAAGTTGCTCGCTGAGGTCG AGGGCAAGAGCGTCGAGGACTTGATCGCTGAGGGTAACGAGAAGTTGT CTTCTGTCCCAACTGGTGGCCCAGCCGCCGGTGGTGCCGCTGCCGCTG CTGGTGGTGACGCCGCTCCTGCCGAGGAGGCCGCTGAGGAGGCCGCCG AGGAGTCTGACGACGACATGGGTTTCGGTTTATTCGATTA SEQ ID NO 83: >pul39\(P2BF) sequence generated for C. pulcherrima CATCCGCCGCCGATGTCAAGRAGGTCTTGGAGTCCGTTTCCATCGAGG TTGAGGAGGACAAGATCGAGAAGTTGCTCGCTGAGGTCGAGGGCAAGA GCGTCGAGGACTTGATCGCTGAGGGTAACGAGAAGTTGTCTTCTGTCC CAACTGGTGGCCCAGCCGCCGGTGGTGCCGCTGCCGCTGCCGGTGGTG ACGCCGCTCCTGCCGAGGAGGCCGCTGAGGAGGCCGCCGAGGAGTCTG ACGACGACATGGGTTTCGGTTTATTCGATTA SEQ ID NO 84: >U50\(P2BF) sequence generated for C. utilis ACCGCCGACAAGATCACCTCCGTCTTGGAGTCTGTCGGTATTGAGGTT GAGGAGTCCCAAGTCACCGAGTTGATCTCTGCCCTTGAGGGTAAGTCC GTTGAGGAGCTCATTGCTGAAGGTAACGAGAAGTTGGCTTCTGTTCCA ACCGGTGGTGCTGGTGCTGCTCCAGCTGCCGGTGCCGGTGCTGCTGAT GCTGATGCTCCAGCTGAGGCTGCTGAGGAGGCTGCTGAGGAGGAGTCT GACGATGACATGGGTTTCGGTTTATTCGATTA Seq ID No 85 P2ForA GAGGAGCGCCT Seq ID No 86 P2ForB GAGGAGCGCCTC Seq ID No 87 P2ForC GGAGGAGCGCCTC Seq ID No 88 P2ForD TGAGGAGCGCCTC Seq ID No 89 P2RevA CCGGAGGGAACGGA Seq ID No 90 P2RevB CCGGAGGGAACGG SeqID No 91 P2FumP ACTACAGCTCGAAGATTA Seq ID No 92 P2FlavP ACGTTGAATGATTGAGAC Seq ID No 93 P2NigP TTGCGATTACAAGATGGAA Seq ID No 94 P2TerrP CTTCGGACTACTGCGATGA Seq ID No 95 CAP2BF (For) ACCTCTCCATCAGCTTCTG Seq ID No 96 CGP2BF (For) ACCTCTGTCTTATCATCTGTCG Seq ID No 97 CGP2BF (For) AAGAAGGTTATCGAATCTGTTG Seq ID No 98 CTP2BF (For) TCCGCTTTATTGGAACAAGTTG Seq ID No 99 CPP2BF (For) TCCTCATTGTTGGAATCCGTTG Seq ID 100 CAP2BR (Rev) TCAGCAATCAATTCTTGC SEQ ID 101 CKP2BR (Rev) CTCTTCGACGGACTTACC SEQ ID 102 CGP2BR (Rev) TTCGTCCAAGGACTTACC SEQ ID 103 CTP2BR (Rev) TTCTTGCAAGTCTTTACC SEQ ID 104 CPP2BR (Rev) CTCGTTGATGTCTTTACC SEQ ID 105 CAP2BP (P) ACCGCTTTATTGGAATCCGTTG SEQ ID 106 CKP2BP (P) ATCCGACAAGTTAGACAAGTTAATC SEQ ID 107 CGP2BP (P) AGAATCAACGAATTGTTGTCTGC SEQ ID 108 CTP2BP (P) ATCTTCCAAATTAGACTTATTGTTGA SEQ ID 109 CPP2BP (P) GAAGAATCAAGATTATCTACCTTGTTG

References

[0075] Abramczyk D, Tchorzewski M, Krokowski D, Boguszewska A, Grankowski N. Overexpression, purification and characterization of the acidic ribosomal P-proteins from Candida albicans. Biochim Biophys Acta. 2004 Jun. 11;1672(3):214-23.

[0076] Bailey-Serres J, Vangala S, Szick K, and Lee C H. Acidic phosphoprotein complex of the 60S ribosomal subunit of maize seedling roots. Components and changes in response to flooding. Plant Physiol. 1997 August; 114(4): 1293-1305.

[0077] Newton C H, Shimmin L C, Yee J, Dennis P P. (1990) A family of genes encode the multiple forms of the Saccharomyces cerevisiae ribosomal proteins equivalent to the Escherichia coli L12 protein and a single form of the L10-equivalent ribosomal protein. JBacteriol. 1990; 172: 579-588

[0078] Tchorzewski M, Krokowski D, Boguszewska A, Liljas A, Grankowski N. Structural characterization of yeast acidic ribosomal P proteins forming the P1A-P2B heterocomplex. Biochemistry. 2003 Apr. 1;42(12):3399-408.

[0079] Tchorzewski M, Boguszewska A, Dukowski P, Grankowski N. Oligomerization properties of the acidic ribosomal P-proteins from Saccharomyces cerevisiae: effect of P1A protein phosphorylation on the formation of the P1A-P2B hetero-complex. Biochim Biophys Acta. 2000 Dec 11;1499(1-2):63-73.

[0080] Wool I G, Chan Y L, Gluck A, Suzuki K The primary structure of rat ribosomal proteins PO, P1 and P2 and a proposal for a uniform nomenclature for mammalian and yeast ribosomal proteins. Biochimie 1991; 73: 861-870.

Sequence CWU 1

1

110122DNAArtificial SequencePrimer 1attgttgacc caaggtggta ac 22223DNAArtificial SequencePrimer 2tcgtccaagg acttaccttc caa 23323DNAArtificial SequencePrimer 3tcgtccaagg acttaccttc caa 23422DNAArtificial SequencePrimer 4taatcgaata aaccgaaacc ca 22518DNAArtificial SequencePrimer 5gcgacaagca atttctct 18622DNAArtificial SequencePrimer 6atcatcatca gattcttctt tg 22717DNAArtificial SequencePrimer 7atgaagcacc tcgccgc 17817DNAArtificial SequencePrimer 8agaccgaagc ccatgtc 17929DNAArtificial SequenceProbe based on the P2B/P2 gene for C. glabrata and A. fumigatus. 9caagaaggtt atcgaatctg ttggtattg 291024DNAArtificial SequenceProbe based on the P2B/P2 gene for C. glabrata and A. fumigatus. 10cctgccgctg ccggtgccgc tgcc 2411308DNACandida glabrata 11ctattgttga cccaaggtgg taacgaatct ccagctgctg ctgacatcaa gaaggttatc 60gaatctgttg gtattgaagc tgacgaagcc agaatcaacg aattgttgtc tgctttggaa 120ggtaagtcct tggacgaatt gatcgctgaa ggtcaacaaa agttcgcctc tgttccagtt 180ggtggtgctg ctgctggtgg tgcttccgct gctgctggtg gtgccgctgc cggtgaagcc 240gctgaagaaa aggaagaaga agctgctgaa gaatccgatg acgacatggg tttcggttta 300ttcgatta 30812305DNACandida glabrata 12ttgttgaccc aaggtggtaa cgaatctcca gctgctgctg acatcaagaa ggttatcgaa 60tctgttggta ttgaagctga cgaagccaga atcaacgaat tgttgtctgc tttggaaggt 120aagtccttgg acgaattgat cgctgaaggt caacaaaagt tcgcctctgt tccagttggt 180ggtgctgctg ctggtggtgc ttccgctgct gctggtggtg ccgctgccgg tgaagccgct 240gaagaaaagg aagaagaagc tgctgaagaa tccgatgacg acatgggttt cggtttattc 300gatta 30513308DNACandida glabrata 13ctattgttga cccaaggtgg taacgaatct ccagctgctg ctgacatcaa gaaggttatc 60gaatctgttg gtattgaagc tgacgaagcc agaatcaacg aattgttgtc tgctttggaa 120ggtaagtcct tggacgaatt gatcgctgaa ggtcaacaaa agttcgcctc tgttccagtt 180ggtggtgctg ctgctggtgg tgcttccgct gctgctggtg gtgccgctgc cggtgaagcc 240gctgaagaaa aggaagaaga agctgctgaa gaatccgatg acgacatggg tttcggttta 300ttcgatta 30814308DNACandida glabrata 14ctattgttga cccaaggtgg taacgaatct ccagctgctg ctgacatcaa gaaggttatc 60gaatctgttg gtattgaagc tgacgaagct agaatcaacg aattgttgtc tgctttggaa 120ggtaagtcct tggacgaatt gatcgctgaa ggtcaacaaa agttcgcctc tgttccagtt 180ggtggtgctg ctgctggtgg tgcttccgct gctgctggtg gtgccgctgc cggtgaagct 240gctgaagaaa aggaagaaga agctgctgaa gaatccgatg acgacatggg tttcggttta 300ttcgatta 30815296DNACandida krusei 15ttactcttag tcaatgctgg taaaaccgca ccatctgctg cagatgttac ctctgtctta 60tcatctgtcg gtatcgaagt tgaatccgac aagttagaca agttaatctc cgaattagaa 120ggtaagtccg tcgaagagtt gattgctgaa ggtactgaaa agatggcttc tgctccaggt 180gcagcagctg ctccagcttc tggtgcaggt gcttccaccg aatctgctgc agcagaagaa 240gttgaagaag aaaaggaaga atccgatgat gacatgggtt tcggtttatt cgatta 29616265DNACandida krusei 16catctgctgc agatgttacc tctgtcttat catctgtcgg tatcgaagtt gaatccgaca 60agttagacaa gttaatctcc gaattagaag gtaagtccgt cgaagagttg attgctgaag 120gtactgaaaa gatggcttct gctccaggtg cagcagctgc tccagcttct ggtgcaggtg 180cttccaccga atctgctgca gcagaagaag ttgaagaaga aaaggaagaa tccgatgatg 240acatgggttt cggtttattc gatta 26517265DNACandida krusei 17catctgctgc agatgttacc tctgtcttat catctgtcgg tatcgaagtt gaatccgaca 60agttagacaa gttaatctcc gaattagaag gtaagtccgt cgaagagttg attgctgaag 120gtactgaaaa gatggcttct gctccaggtg cagcagctgc tccagcttct ggtgcaggtg 180cttccaccga atctgctgca gcagaagaag ttgaagaaga aaaggaagaa tccgatgatg 240acatgggttt cggtttattc gatta 26518296DNACandida krusei 18ttactcttag tacatgctgg taaaaccgca ccatctgctg cagatgttac ctctgtctta 60tcatctgtcg gtatcgaagt tgaatccgac aagttagaca agttaatctc cgaattagaa 120ggtaagtccg tcgaagagtt gattgctgaa ggtactgaaa agatggcttc tgctccaggt 180gcagcagctg ctccagcttc tggtgcaggt gcttccaccg aatctgctgc agcagaagaa 240gttgaagaag aaaaggaaga atccgatgat gacatgggtt tcggtttatt cgatta 29619331DNACandida albicans 19ttattgttag ttcaaggtgg taacacctct ccatcagctt ctgatatcac cgctttattg 60gaatccgttg gtgttgaagc cgaagaatcc agattacaag ctttattgaa agatttggaa 120ggtaaagact tgcaagaatt gattgctgaa ggtaacacca aattagcttc tgtcccatcc 180ggtggtgctg ctgctggtgg tgcttctgcc tctgctggtg ccgctgctgg tggtgctgct 240gaagctgaag aagaaaaaga agaagaagcc aaagaagaat ctgatgatga tatgggtttc 300ggtttattcg attagagaaa ttgcttgtcg c 33120331DNACandida albicans 20ttattgttag ttcaaggtgg taacacctct ccatcagctt ctgatatcac cgctttattg 60gaatccgttg gtgttgaagc cgaagaatcc agattacaag ctttattgaa agatttggaa 120ggtaaagact tgcaagaatt gattgctgaa ggtaacacca aattagcttc tgtcccatcc 180ggtggtgctg ctgctggtgg tgcttctgcc tctgctggtg ccgctgctgg tggtgctgct 240gaagctgaag aagaaaaaga agaagaagcc aaagaagaat ctgatgatga tatgggtttc 300ggtttattcg attagagaaa ttgcttgtcg c 33121331DNACandida albicans 21ttattgttag ttcaaggtgg taacacctct ccatcagctt ctgatatcac cgctttattg 60gaatccgttg gtgttgaagc cgaagaatcc agattacaag ctttattgaa agatttggaa 120ggtaaagact tgcaagaatt gattgctgaa ggtaacacca aattagcttc tgtcccatcc 180ggtggtgctg ctgctggtgg tgcttctgcc tctgctggtg ccgctgctgg tggtgctgct 240gaagctgaag aagaaaaaga agaagaagcc aaagaagaat ctgatgatga tatgggtttc 300ggtttattcg attagagaaa ttgcttgtcg c 33122331DNACandida albicans 22ttattgttag ttcaaggtgg taacacctct ccatcagctt ctgatatcac cgctttattg 60gaatccgttg gtgttgaagc ygaagaatcc agattacaag ctttattgaa agatttggaa 120ggtaaagact tgcaagaatt gattgctgaa ggtaacacca aattagcttc tgtcccatcc 180ggtggtgctg ctgctggtgg tgcttctgcc tctrctggtg ccgctgctgg yggtgctgcy 240gaagctgaag aagaaaaaga agaagaagcc aaagaagaat ctgatgatga tatgggtttc 300ggtttattcg attagagaaa ttgcttgtcg c 33123331DNACandida dubliniensis 23ttgttgttag ttcaaggtgg taacgccact ccatcagctt ctgatatcag cgctgtcttg 60gaaactgttg gtgttgaagc cgaagaatcc agattacaag ctttattgaa agatttggaa 120ggtaaagatt tgcaagaatt gattgctgaa ggtaacacca aattagcttc tgtcccaacc 180ggtggtgctg ctgctggtgg tgcttccggt tctgctggtg ccgcttctgg tgccgctgct 240gaagctgaag aagaaaaaga agaagaagct aaagaagaat ctgatgatga tatgggtttc 300ggtttattcg attagagaaa ttgcttgtcg c 33124292DNACandida dubliniensis 24ttgttgttag ttcaaggtgg taacgccact ccatcagctt ctgatatcag cgctgtcttg 60gaaactgttg gtgttgaagc cgaagaatcc agattacaag ctttattgaa agatttggaa 120ggtaaagatt tgcaagaatt gattgctgaa ggtaacacca aattagcttc tgtcccaacc 180ggtggtgctg ctgctggtgg tgcttccggt tctgctggtg ccgcttctgg tgccgctgct 240gaagctgaag aagaaaaaga agaagaagcc aaagaagaat ctgatgatga ta 29225338DNACandida parapsilosis 25atgaaatact tagctgctta cttattattg gtccaaggtg gtaacgcctc cccatctgct 60tcagacatct cctcattgtt ggaatccgtt ggtgttgaag ttgaagaatc aagattatct 120accttgttga aagacttgga aggtaaagac atcaacgagt tgattgctga aggtaacacc 180aaattggcct cagttccatc tggtggtgct gctgttgctt ccggttctgg tgcttctggt 240gccgctgctg gtggtgctgc tgaagaagct aaggaagaag ccaaggaaga agaaaaggaa 300gaatctgatg atgacatggg tttcggttta ttcgatta 33826317DNACandida parapsilosis 26ttattattgg tccaaggtgg taacgcctcc ccatctgctt cagacatctc ctcattgttg 60gaatccgttg gtgttgaagt tgaagaatca agattatcta ccttgttgaa agacttggaa 120ggtaaagaca tcaacgagtt gattgctgaa ggtaacacca aattggcctc agttccatct 180ggtggtgctg ctgttgcttc cggttctggt gcttctggtg ccgctgctgg tggtgctgct 240gaagaagcta aggaagaagc caaggaagaa gaaaaggaag aatctgatga tgacatgggt 300ttcggtttat tcgatta 31727255DNACandida parapsilosis 27ggtggtaacg cctccccatc cgcttcagac atctcatcct tgttggaatc cgttggtgtt 60gaagttgaag aatcaagatt gtccctcttg ttgaaagact tggaaggtaa agacatcaac 120gaattgattg ctgaaggtaa caccaagttg gcttcagttc caactggtgg tgctgctgtt 180gcttctggtt ctggtgcttc aggtgccgct gctggtggtg ctgctgaaga agccaaagaa 240gaatctgatg atgat 25528273DNACandida tropicalis 28ggtggtaacg cttccccatc tgcttctgac atctccgctt tattggaaca agttggtgct 60gaagttgaat cttccaaatt agacttattg ttgaaagaat tggaaggtaa agacttgcaa 120gaattgattg ccgaaggtaa cactaaattc gcctctgtcc catccggtgg tgctgctgct 180gcttcytctg gttccgctgc cgctgctggt ggtgccgctg ccgaagctga agaagaaaaa 240gaagaagaag ccaaagaaga atctgatgat gat 27329273DNACandida tropicalis 29ggtggtaacg cttccccatc tgcttctgac atctccgctt tattggaaca agttggtgct 60gaagttgaat cttccaaatt agacttattg ttgaaagaat tggaaggtaa agacttgcaa 120gaattgattg ccgaaggtaa cactaaattc gcctctgtcc catccggtgg tgctgctgct 180gcttcctctg gttccgctgc cgctgctggt ggtgccgctg ccgaagctga agaagaaaaa 240gaagaagaag ccaaagaaga atctgatgat gat 27330288DNACandida tropicalis 30ttattattag tccaaggtgg taacrcttcc ccatctgctt ctgacatctc cgctttattg 60gaacaagttg gtgctgaagt tgaatcttcc aaattagact tattgttgaa agaattggaa 120ggtaaagact tgcaagaatt gattgccgaa ggtaacacta aattcgcctc tgtcccatcc 180ggtggtgctg cygctgcttc ctctggttcc gctgccgctg ctggtggtgc cgctgccgaa 240gctgaagaag aaaaagaaga agaagccaaa gaagaatctg atgatgat 28831288DNACandida tropicalis 31ttattattag tccaaggtgg taacgcttcc ccatctgctt ctgacatctc cgctttattg 60gaacaagttg gtgctgaagt tgaatcttcc aaattagact tattgttgaa agaattggaa 120ggtaaagact tgcaagaatt gattgccgaa ggtaacacta aattcgcctc tgtcccatcc 180ggtggtgctg ctgctgcttc ctctggttcc gctgccgctg ctggtggtgc cgctgccgaa 240gctgaagaag aaaaagaaga agaagccaaa gaagaatctg atgatgat 28832288DNACandida tropicalis 32ttattattag tccaaggtgg taacgcttcc ccatctgctt ctgacatctc cgctttattg 60gaacaagttg gtgctgaagt tgaatcttcc aaattagact tattgttgaa agaattggaa 120ggtaaagact tgcaagaatt gattgccgaa ggtaacacta aattcgcctc tgtcccatcc 180ggtggtgctg ctgctgcttc ttctggttcc gctgccgctg ctggtggtgc cgctgccgaa 240gctgaagaag aaaaagaaga agaagccaaa gaagaatctg atgatgat 28833302DNACandida guilliermondii 33ttrttgttgg tkracgccgg taacacctcc ccatctgctg ctgacatcaa ggctgtcttg 60gagtcggttt ccatagaagt tgacgacgag aaggtgtcca agttgttgag cgaagttgag 120ggaaagaatg ctgaagaatt gatcgctgaa ggtaacgaaa aattgtcttc tgttccaact 180ggtggaccag ctgctgcttc ctctggatct gctgccgctg ccgatgctcc tgctgccgaa 240gaggccgctg aggaggccgc tgaggagtct gacgacgaca tgggtttcgg tttattcgat 300ta 30234302DNACandida guilliermondii 34ttrttgttgg tkracgccgg taacacctcc ccatctgctg ctgacatcaa ggctgtcttg 60gagtcggttt ccatagaagt tgacgacgag aaggtgtcca agttgttgag cgaagttgag 120ggaaagaatg ctgaagaatt gatcgctgaa ggtaacgaaa aattgtcttc tgttccaact 180ggtggaccag ctgctgcttc ctctggatct gctgccgctg ccgatgctcc tgctgccgaa 240gaggccgctg aggaggccgc tgaggagtct gacgacgaca tgggtttcgg tttattcgat 300ta 30235302DNACandida lusitanie 35ttattgttgg tcaacgctgg taacaccgcc ccatctgctg ctgacgtcaa gaaggtcttg 60gaatccgtct ctattgaggt tgaggacgac aaggttgaga agttgttggc tgaagttgaa 120ggcaagaacg tcgaagagtt gattgccgag ggtaacgaga agttgtcttc tgttccatct 180ggtgctccag ctgctgctgg tgccgctgct gcttctggtt ctactgaggc tgctgctgaa 240gagccacaag aagaagagaa ggaggagtct gacgacgaca tgggtttcgg tttattcgat 300ta 30236380DNAAspergillus fumigatus 36ttacctcctc ctcgcccttg ctggcaacac ctccccgtcc tctgaggatg tcaaggccgt 60cctctcttcc gttggcattg atgccgatga ggagcgcctg aacaagctca ttgctgagct 120cgagggcaag gacctccagg aggttagtaa ctacagctcg aagattacag actgggaatt 180ttggactggc gctgacatcg aactctacaa cagctcattg ccgagggttc caccaagctc 240gcttccgttc cctccggtgg tgctgccgcc gctgctcctg ccgctgccgg tgccgctgcc 300ggtggtgctg ctgctcctgc cgctgaggag aagaaggagg aggagaagga ggagtccgac 360gaggacatgg gcttcggtct 38037377DNAAspergillus fumigatus 37cctcctcctc gcccttgctg gcaacacctc cccgtcctct gaggatgtca aggccgtcct 60ctcttccgtt ggcattgatg ccgatgagga gcgcctgaac aagctcattg ctgagctcga 120gggcaaggac ctccaggagg ttagtaacta cagctcgaag attacagact gggaattttg 180gactggcgct gacatcgaac tctacaacag ctcatcgccg agggttccac caagctcgct 240tccgttccct ccggtggtgc tgccgccgct gctcctgccg ctgccggtgc cgctgccggt 300ggtgctgctg ctcctgccgc tgaggagaag aaggaggagg agaaggagga gtccgacgag 360gacatgggct tcggtct 37738357DNAAspergillus fumigatus 38gcaacacctc cccgtcctct gaggatgtca aggccgtcct ctcttccgtt ggcattgatg 60ccgatgagga gcgcctgaac aagctcattg ctgagctcga gggcaaggac ctccaggagg 120ttagtaacta cagctcgaag attacagact gggaattttg gactggcgct gacatcgaac 180tctacaacag ctcattgccg agggttccac caagctcgct tccgttccct ccggtggtgc 240tgccgccgct gctcctgccg ctgccggtgc cgctgccggt ggtgctgctg ctcctgccgc 300tgaggagaag aaggaggagg agaaggagga gtccgacgag gacatgggct tcggtct 35739380DNAAspergillus fumigatus 39ttacctcctc ctcgcccttg ctggcaacac ctccccgtcc tctgaggatg tcaaggccgt 60cctctcttcc gttggcattg atgccgatga ggagcgcctg aacaagctca ttgctgagct 120cgagggcaag gacctccagg aggttagtaa ctacagctcg aagattacag actgggaatt 180ttggactggc gctgacatcg aactctacaa cagctcattg ccgagggttc caccaagctc 240gcttccgttc cctccggtgg tgctgccgcc gctgctcctg ccgctgccgg tgccgctgcc 300ggtggtgctg ctgctcctgc cgctgaggag aagaaggagg aggagaagga ggagtccgac 360gaggacatgg gcttcggtct 38040380DNANeosartorya fischeri 40ttacctcctc ctcgcccttg ctggcaacac ctccccctcc gctgaggatg tcaaggccgt 60cctctcttcc gtcggcattg acgccgatga ggagcgcctg aacaagctca ttgctgagct 120cgagggcaag gacctccagg aggttagtac acacggcttg aatattaccg actgagaatt 180ttggaccggc gctgacatcg atttctacaa cagctgatcg ctgagggttc cgccaagctc 240gcttccgttc cctccggtgg tgccggtggt gccgctgctc ctgccgctgg cggtgccgct 300gccggtggtg ctgctgccgc tcccgccgaa gagaaggagg aggagaagga ggagtccgac 360gaggacatgg gcttcggtct 38041365DNAAspergillus nidulans 41ctacctcctc ctcgcccttg ctggcaacga gtctccctcc gcctccgaca tcaaggaggt 60tctctcttcc gtcggtgttg acgccgacga cgagcgcctc gagaagctca ttgctgagct 120ccagggcaag gacatcaacg aggttcgtta ttgcatatag agttggaaga cgcggactgc 180gggctaacga taatctttaa acagctgatc gctgagggta ccaccaagct tgcctccgtt 240ccctccggcg gtgctggtgg tgctgcccct gctgccgctg ccggtggtgc tgctgctgcc 300gaggcccccg ctgctgagaa ggaggaggag aaggaggagt ccgatgagga catgggcttc 360ggtct 36542349DNAAspergillus nidulans 42ccttgctggc aacgagtctc cctccgcctc cgacatcaag gaggttctct cttccgtcgg 60tgttgacgcc gacgacgagc gcctcgagaa gctcattgct gagctccagg gcaaggacat 120caacgaggtt cgttattgca tagggttgga agacgcggac agcgggctaa cgataatctt 180ctgaacagct gatcgctgag ggtaccacca agcttgcctc cgttcccacc ggcggtgctg 240gtgctgctgc ccctgctgcc gctgccggtg gtgctgccgc tgccgaggct cccgctgctg 300agaaggagga ggagaaggag gagtccgatg aggacatggg cttcggtct 34943376DNAAspergillus clavatus 43ttacctcctc ctcgcccttg gtggcaacgc cagcccctcc gctgctgatg ttaaggaggt 60tctctcttct gtcggcattg atgctgatga ggagcgcctc aacaagctca ttgctgagct 120cgagggcaag gaccttcagg aggttagttt tgcgctggtc tacgagagga agattgtgac 180aagatgctaa cggaaaattt cttcaacagc tgattgctga gggttccacc aagctcgctt 240ccattccctc cggcggtgct ggtggtgctg cccccgccgc tggcggtgct gccgccggtg 300gtgctgctga ggccgctccc gctgaggaga aggaggagga gaaggaggag tccgacgacg 360acatgggctt cggtct 37644385DNAAspergillus niger 44ctaccttctg ttggcccttg ctggcaacaa caccccctcc gctgaggaca tcaagtccgt 60cctctccgcc gtcggcattg acgctgagga ggagcgcctc cagaagctcc ttgctgagct 120tgagggcaag gacctccagg aggtcagtta acgcccttaa aatctaccaa gaaattttgc 180gattacaaga tggaatactg acaatgggtt ttctacaaca gctcatctcc gagggtaccc 240agaagctcgc ttccgttccc tccggtggtg ccggtgctgc tgccgctgcc cccgctgccg 300gtggcgccgc tgctgctgag gctcccgctg aggagaagaa ggaggaggct gctgaggagt 360ccgatgagga catgggcttc ggtct 38545385DNAAspergillus niger 45ctaccttctg ttggcccttg ctggcaacaa caccccctcc gctgaggaca tcaagtccgt 60cctctccgcc gtcggcattg acgctgagga ggagcgcctc cagaagctcc ttgctgagct 120tgagggcaag gacctccagg aggtcagtta acgcccttaa aatctaccaa gaaattttgc 180gattacaaga tggaatactg acaatggttt ttctacaaca gctcatctcc gagggtaccc 240agaagctcgc ttccgttccc tccggtggtg ccggtgctgc tgccgctgcc cccgctgccg 300gtggcgccgc tgctgctgag gctcccgctg aggagaagaa ggaggaggct gctgaggagt 360ccgatgagga catgggcttc ggtct 38546366DNAAspergillus terreus 46ttccttctcc tcggccttgc cggcaacacc tccccctctg ctgaggacat caaggctgtc 60ctctcctccg tcggcattga cgctgatgag gagcgcctcg gccagctcct gaaggagctc 120gagggcaagg acatccagga ggttagtgat caccataact tcggactact gcgatgagaa 180cgcgccatac taacggatta tacagctcat cgctcagggc tctgagaagc tcgcttccgt 240tccctctggc ggtgctgccg ctgctgctgc tcccgccgct gccgctggcg gtgacgctgc 300tgcccccgct gagaagaagg aggaggagaa ggaggaggag tccgacgagg acatgggctt 360cggtct 36647363DNAAspergillus flavus 47ttacctcctc ctcgccctcg ctggcaactc caccccctcc gttgaggaca tcaagagcgt 60tctctcttcc gtcggtattg atgccgatga ggagcgcctc cagaaggtca tctccgagct

120cgagggcaag gacctccagc aggttcgtaa tacgttgaat gattgagaca tagggcgcct 180gctgaccatc tactcactac agctgatcac tgagggtagc gagaagctcg ctaccgttcc 240ctccggtggt gctggtgccg ctgcccctgc tgctggcggt gccgctgccg gtggtgacgc 300ccccgccgct gaggagaagg aggaagagaa ggaggagtcc gatgaggaca tgggcttcgg 360tct 36348351DNAAspergillus versicolor 48tcgcccttgc tggcaacgag agcccctctg cttccgacat taaggaggtt ctgtcctccg 60tcggtgttga cgctgacaac gagcgcctcg agaagctcat cgctgagctc cagggcaagg 120acatcaacga ggttcgtttt gacagatgca tttgaaatac ttggccagca gactaatgaa 180acctcttctg cagttgatcg ctgagggtac caccaagctc gcttccgttc cctctggcgg 240tggtggtggt gctgccgccc ccgctgctgg tggcgctgcc gccgctgagg cccctgctgc 300tgagaaggag gaggagaagg aggagtccga cgaggacatg ggcttcggtc t 35149348DNAAspergillus versicolor 49cccttgctgg caacgagagc ccctctgctt ccgacattaa ggaggttctg tcctccgtcg 60gtgttgacgc tgacgacgag cgcctcgaga agctcatcgc tgagctccag ggcaaggaca 120tcaacgaggt tcgttttgac agatgcgttt gaaatacttg gccagcagac taatgaaacc 180tcttctgcag ttgatcgctg agggtaccac caagctcgct tccgttccct ctggcggtgg 240tggtggtgct gccgcccccg ctgctggtgg cgctgccgcc gctgaggccc ctgctgctga 300gaaggaggag gagaaggagg agtccgacga ggacatgggc ttcggtct 34850481DNACandida albicans 50ggaaaaaatg aaatacttag ctgcttactt attgttagtt caaggtggta acacctctcc 60atcagcttct gatatcaccg ctttattgga atccgttggt gttgaagccg aagaatccag 120attacaagct ttattgaaag atttggaagg taaagacttg caagaattga ttgctgaagg 180taacaccaaa ttagcttctg tcccatccgg tggtgctgct gctggtggtg cttctgcctc 240tactggtgcc gctgctggtg gtgctgccga agctgaagaa gaaaaagaag aagaagccaa 300agaagaatct gatgatgata tgggtttcgg tttattcgat tagagaaatt gcttgtcgcc 360tttgctggtt tgagagaagt atatttccat tattttgcat tatatatata tatatgtatt 420ataactaatc taataaaaaa aatatgaaaa caaaaatggc ttctatatgg cactgtttgc 480a 48151330DNACandida glabrata 51atgaagtact tggccgctta cctattgttg acccaaggtg gtaacgaatc tccagctgct 60gctgacatca agaaggttat cgaatctgtt ggtattgaag ctgacgaagc tagaatcaac 120gaattgttgt ctgctttgga aggtaagtcc ttggacgaat tgatcgctga aggtcaacaa 180aagttcgcct ctgttccagt tggtggtgct gctgctggtg gtgcttccgc tgctgctggt 240ggtgccgctg ccggtgaagc tgctgaagaa aaggaagaag aagctgctga agaatccgat 300gacgacatgg gtttcggttt gttcgactaa 33052336DNACandida albicans 52atgaaatact tagctgctta cttattgtta gttcaaggtg gtaacacctc tccatcagct 60tctgatatca ccgctttatt ggaatccgtt ggtgttgaag ccgaagaatc cagattacaa 120gctttattga aagatttgga aggtaaagac ttgcaagaat tgattgctga aggtaacacc 180aaattagctt ctgtcccatc cggtggtgct gctgctggtg gtgcttctgc ctctgctggt 240gccgctgctg gtggtgctgc tgaagctgaa gaagaaaaag aagaagaagc caaagaagaa 300tctgatgatg atatgggttt cggtttattc gattag 33653336DNACandida albicans 53atgaaatact tagctgctta cttattgtta gttcaaggtg gtaacacctc tccatcagct 60tctgatatca ccgctttatt ggaatccgtt ggtgttgaag ccgaagaatc cagattacaa 120gctttattga aagatttgga aggtaaagac ttgcaagaat tgattgctga aggtaacacc 180aaattagctt ctgtcccatc cggtggtgct gctgctggtg gtgcttctgc ctctgctggt 240gccgctgctg gtggtgctgc tgaagctgaa gaagaaaaag aagaagaagc caaagaagaa 300tctgatgatg atatgggttt cggtttattc gattag 33654336DNAAspergillus fumigatus 54atgaagcacc tcgccgctta cctcctcctc gcccttgctg gcaacacctc cccgtcctct 60gaggatgtca aggccgtcct ctcttccgtt ggcattgatg ccgatgagga gcgcctgaac 120aagctcattg ctgagctcga gggcaaggac ctccaggagc tcatcgccga gggttccacc 180aagctcgctt ccgttccctc cggtggtgct gccgccgctg ctcctgccgc tgccggtgcc 240gctgccggtg gtgctgctgc tcctgccgct gaggagaaga aggaggagga gaaggaggag 300tccgacgagg acatgggctt cggtcttttc gactaa 33655336DNANeosartorya fischeri 55atgaagcacc tcgccgctta cctcctcctc gcccttgctg gcaacacctc cccgtccgct 60gaggatgtca aggccgtcct ctcttccgtt ggcattgacg ccgatgagga gcgcctgaac 120aagctcattg ctgagctcga gggcaaggac ctccaggagc tcatcgccga gggttccacc 180aagctcgctt ccgttccctc cggtggtgct gccgccgctg ctcctgccgc tggcggtgcc 240gctgccggtg gtgctgctgc tcctgccgct gaggagaaga aggaggagga gaaggaggag 300tccgacgagg acatgggctt cggtctcttc gactaa 33656336DNAAspergillus clavatus 56atgaagcacc tcgccgctta cctcctcctc gcccttggtg gcaacgccag cccctccgct 60gctgatgtta aggaggttct ctcttctgtc ggcattgatg ctgatgagga gcgcctcaac 120aagctcattg ctgagctcga gggcaaggac cttcaggagc tgattgctga gggttccacc 180aagctcgctt ccattccctc cggcggtgct ggtggtgctg cccccgccgc tggcggtgct 240gccgccggtg gtgctgctga ggccgctccc gctgaggaga aggaggagga gaaggaggag 300tccgacgacg acatgggctt cggtctcttc gactaa 33657333DNAAspergillus terreus 57atgaagcacc tcgccgcttt ccttctcctc ggccttgccg gcaacacctc cccctctgct 60gaggacatca aggctgtcct ctcctccgtc ggcattgacg ctgatgagga gcgcctcggc 120cagctcctga aggagctcga gggcaaggac atccaggagc tcatcgctca gggctctgag 180aagctcgcct ccgttccctc tggcggtgct gccgctggtg ctgctgctcc cgccgctgcc 240gctggcggtg acgctgctgc ccccgctgag aagaaggagg aggagaagga ggaggagtcc 300gacgaggaca tgggcttcgg tctcttcgac taa 33358333DNAAspergillus niger 58atgaagtacc tcgccgccta ccttctgttg gcccttgctg gcaacaacac cccctccgct 60gaggacatca agtccgtcct ctccgccgtc ggcattgacg ctgaggagga gcgcctccag 120aagctccttg ctgagcttga gggcaaggac ctccaggagc tcatctccga gggtacccag 180aagctcgctt ccgttccctc cggtggtgcc ggtgctgctg ccgctgcccc cgctgccggt 240ggcgccgctg ctgctgaggc tcccgctgag gagaagaagg aggaggctgc tgaggagtcc 300gatgaggaca tgggcttcgg tctcttcgac taa 33359330DNAAspergillus nidulans 59atgaagcacc tcgcagccta cctcctcctc gcccttgctg gcaacgagtc tccctccgcc 60tccgacatca aggaggttct ctcttccgtc ggtgttgacg ccgacgacga gcgcctcgag 120aagctcattg ctgagctcca gggcaaggac atcaacgagc tgatcgctga gggtaccacc 180aagcttgcct ccgttccctc cggcggtgct ggtggtgctg cccctgctgc cgctgccggt 240ggtgctgctg ctgccgaggc ccccgctgct gagaaggagg aggagaagga ggagtccgat 300gaggacatgg gcttcggtct cttcgactaa 33060476DNACandida albicans 60gaattcgatt attgcattct gatattccct gctttaaatg catttggaaa tatttcgtat 60atcatgagat ataataacat taatagcatt ttcatgttac taacaagaat atagtgaaat 120acttagctgc ttacttatta ttagttaacg ccggtaacgc caccccatct gctgccgatg 180tcaaagctgt tttgtcagct gctgatattg aagtcgaaga agaaaaagtt gaaaaattga 240tcagcgaatc ggacggtaag aacgtcgaag aattgattgc tgaaggtaac gaaaaattat 300catcagtccc atctggtgct ccagctgctg ctgctggtgg tgcttctgct gccgccggtg 360gtgaagccac tgaagaagct gctgaagaag aagctgctga agaatctgat gacgatatga 420gtttcggttt attcgattaa acgagtcaac aggcatctca agatcacagc ataagg 47661352DNAAspergillus flavus 61tcgccctcgc tggcaactcc accccctccg ttgaggacat caagagcgtt ctctcttccg 60tcggtattga tgccgatgag gagcgcctcc agaaggtcat ctccgagctc gagggcaagg 120acctccagca ggttcgtaat acgttgaatg attgagacat agggcgcctg ctgaccatct 180actcactaca gctgatcact gagggtagcg agaagctcgc taccgttccc tccggtggtg 240ctggtgccgc tgcccctgct gctggcggtg ccgctgccgg tggtgacgcc cccgccgctg 300aggagaagga ggaagagaag gaggagtccg atgaggacat gggcttcggt ct 35262386DNAAspergillus niger 62ctaccttctg ttggcccttg ctggcaacaa caccccctcc gctgaggaca tcaagtccgt 60cctctccgcc gtcggcattg acgctgagga ggagcgcctc cagaagctcc ttgctgagct 120tgagggcaag gacctccagg aggtcagtta acgcccttaa aaatctacca agaaattttg 180cgattacaag atggaatact gacaatggtt tttctacaac agctcatctc cgagggtacc 240cagaagctcg cttccgttcc ctccggtggt gccggtgctg ctgccgctgc ccccgctgcc 300ggtggcgccg ctgctgctga ggctcccgct gaggagaaga aggaggaggc tgctgaggag 360tccgatgagg acatgggctt cggtct 38663370DNAAspergillus terreus 63tttccttctc ctcggccttg ccggcaacac ctccccctct gctgaggaca tcaaggctgt 60cctctcctcc gtcggcattg acgctgatga ggagcgcctc ggccagctcc tgaaggagct 120cgagggcaag gacatccagg aggttagtga tcaccataac ttcggactac tgcgatgaaa 180acgcgccata ctaacggatt atacagctca tcgctcaggg ctctgagaag ctcgcctccg 240ttccctctgg cggtgctgcc gctggtgctg ctgctcccgc cgctgccgct ggcggtgacg 300ctgctgcccc cgctgagaag aaggaggagg agaaggagga ggagtccgac gaggacatgg 360gcttcggtct 37064370DNAAspergillus terreus 64tttccttctc ctcggccttg ccggcaacac ctccccctct gctgaggaca tcaaggctgt 60cctctcctcc gtcggcattg acgctgatga ggagcgcctc ggccagctcc tgaaggagct 120cgagggcaag gacatccagg aggttagtga tcaccataac ttcggactac tgcgatgaaa 180acgcgccata ctaacggatt atacaggtca tcgctcaggg ctctgagaag ctcgcctccg 240ttccctctgg cggtgctgcc gctggtgctg ctgctcccgc cgctgccgct ggcggtgacg 300ctgctgcccc cgctgagaag aaggaggagg agaaggagga ggagtccgac gaggacatgg 360gcttcggtct 37065370DNAAspergillus terreus 65tttccttctc ctcggccttg ccggcaacac ctccccctct gctgaggaca tcaaggctgt 60cctctcctcc gtcggcattg acgctgatga ggagcgcctc ggccagctcc tgaaggagct 120cgagggcaag gacatccagg aggttagtga tcaccataac ttcggactac tgcgatgaaa 180acgcgccata ctaacggatt atacagctca tcgctcaggg ctctgagaag ctcgcctccg 240ttccctctgg cggtgctgcc gctggtgctg ctgctcccgc cgctgccgct ggcggtgacg 300ctgctgcccc cgctgagaag aaggaggagg agaaggagga ggagtccgac gaggacatgg 360gcttcggtct 37066370DNAAspergillus terreus 66tttccttctc ctcggccttg ccggcaacac ctccccctct gctgaggaca tcaaggctgt 60cctctcctcc gtcggcattg acgctgatga ggagcgcctc ggccagctcc tgaaggagct 120cgagggcaag gacatccagg aggttagtga tcaccataac ttcggactac tgcgatgaaa 180acgcgccata ctaacggatt atacagctca tcgctcaggg ctctgagaag ctcgcctccg 240ttccctctgg cggtgctgcc gctggtgctg ctgctcccgc cgctgccgct ggcggtgacg 300ctgctgcccc cgctgagaag aaggaggagg agaaggagga ggagtccgac gaggacatgg 360gcttcggtct 37067356DNAAspergillus candidus 67tgctcctcgg cctcgcmggc aacgagactc cctccgctgc cgacatcaag ggcgttctgt 60ccgccgtcgg cattgacgcc gatgaggacc gtctctccaa gctcctctcc gagcttgagg 120gcaaggacat caacgaggtt cgtatctcac aggaatcgca cacgtaacag agtcaacaaa 180tactaatccc ccgtgcagct gatcgcccag ggctccgaga agcttgcttc cgttccctcc 240ggtggtgccg ctggtggtgc cgctgccgcc cctgccgccg ccgctggtgg tgacgctccc 300gcccaggaga aggaggagga gaaggaggag tccgatgagg acatgggctt cggtct 35668352DNAAspergillus candidus 68tgctcctcgg cctcgccggc aacgagtctc cctccgctgc cgacatcaag ggcgttctgt 60ccgccgtcgg cattgacgcc gatgaggagc gtctctccaa gctcctctcc gagcttgagg 120gcaaggacat caacgaggtt cgtatcctgg aatcgcaccg agacagagtc aacaaatact 180aatcccccgt gcagctgatc gcccagggta ccgagaagct tgcttccgtt ccctccggtg 240gcgccggcgc tgctgctgcc gcccctgccg ccgctgctgg tggtgaggcc gccgctgagg 300agaagaagga ggaggagaag gaggagtccg atgaggacat gggcttcggt ct 35269336DNAAspergillus candidus 69ggcaaccgag tctccctccg ctgccgacat caagggcgtt ctgtccgccg tcggcattga 60cgccgatgag gagcgtctct ccaagctcct ctccgagctt gagggcaagg acatcaacga 120ggttcgtatc ctggaatcgc accgagacag agtcaacaaa tactaatccc ccgtgcagct 180gatcgcccag ggtaccgaga agcttgcttc cgttccctcc ggtggcgccg gcgctgctgc 240tgccgcccct gccgccgctg ctggtggtga ggccgccgct gaggagaaga aggaggagga 300gaaggaggag tccgatgagg acatgggctt cggtct 33670376DNAAspergillus clavatus 70ttacctcctc ctcgcccttg gtggcaacgc cagcccctcc gctgctgatg ttaaggaggt 60tctctcttcc gtcggcattg atgctgatga ggagcgcctc aacaagctca ttgctgagct 120cgagggcaag gaccttcagg aggttagttt tacgctggtc tacgagagga agattgtgac 180aagatgctaa cggaaaattt cttcaacagc tgattgctga gggttccacc aagctcgctt 240ccattccctc cggcggtgct ggtggtgctg cccccgccgc tggcggtgct gccgccggtg 300gtgctgctga ggccgctccc gctgaggaga aggaggagga gaaggaggag tccgacgacg 360acatgggctt cggtct 37671372DNAAspergillus clavatus 71ttacctcctc ctcgcccttg gtggcaacgc cagcccctcc gctgctgatg ttaaggaggt 60tctctcttcc gttggcattg atgctgatga ggagcgcctc aataagctca ttgctgagct 120tgagggcaag gaccttcagg aggttagttt acgccaatcc gcgatatgaa aattgcgaca 180tgatgctaac aggagaattt ttcaacagct gattgctgag ggttccacca agctcgcttc 240cattccttcc ggcggtgctg ccggtgctgc ccctgccgct ggcgctgctg ccggtggtgc 300cgctgaggcc gctcccgctg aggagaagga ggaggagaag gaggagtccg acgacgacat 360gggcttcggt ct 37272431DNAAspergillus glaucus 72acacggtgga ctggctggcc ggaagagccg ttgctggtgt aagttttggt aggaccgttc 60agctccrgak gtctttgggg acaatggcga cgagggctgt cgatcgttag tgtacattcc 120aaggaaggta aaagaaaaag aatgcgacat acagtaagtt gagccactct gacgctggca 180gtcatcgcag tggtcataag ctgtagcgag cggctgctcg atgttgaccg agtaggtgac 240ggctttgcag agacagtgac cggaaatagg cattttggac gagaggcaga atataattgg 300actatagact gacaatgatg atgacgatac tgaggacctt tgggaggaat gaaacagata 360tttataccct ctccgacctc gtgtagtcca tctgtctttc gctgtctctc ggtggacatg 420ggcttcggtc t 43173322DNAAspergillus glaucus 73gcgttggtgc acgacggtac caaggggact ctcatactcc ttaattctct ggccggtcca 60gtgtcgcgac tcrtatggag cacattagca gatatcccac agagctacca tgtcgtccag 120gctctttgtc tgctttgcac atggcctttt ccaaccagca gtacctccac agacccgacg 180ttcatgctgt gtggtatgat gatgcaagtc gccatgcaac ttggtcttca ccggccttcg 240cacactcagg actttascaa gttcacagtg gagctgattg aggaggagct cagggataaa 300gtgaggacat gggcttcggt ct 32274321DNAAspergillus glaucus 74gcgttggagc acgactgtac caggatactc atcatctcct taattttctg gccggtccag 60cgycgcgact agtatggagc acattatcag acatccgaca gagctaccat gtcgtaaagg 120ctctttgtct gctctgcaca tggccttttc cgaccagcag tacctccaca gaccctackt 180ttatgctgtg tggtatgatg atgcaagtcg ccatgcagct tggtcttcac cggccttcgc 240acactcagga ctttagcaag tttacagtgg agctgattga ggaggaacta agggacaaag 300tgaggacatg ggcttcggtc t 32175349DNAAspergillus versicolor 75cgcccttgct ggcaaccaga gcccctctgc ttccgatgtt aaggaggttc tctcctccgt 60cggtgttgac gctgactctg agcgcctcga gaagctcatc gctgagctcc agggcaagga 120catcaacgag gttcgttttg acagaaccgc ttgaaattct tggcagcaga ctaatgaaac 180attttctgca gttgatcgct gagggtacca ctaagctcgc ttccgttccc tctggcggtg 240ctggtgctgc tgctgctccc gctgctggtg gcgctgctgc cgctgaggcc cctgccgccg 300agaaggagga ggagaaggag gagtccgacg aggacatggg cttcggtct 34976302DNACandida lusitaniae 76ktattgttgg kcaacgctgg taacaccgcc ccatctgctg ctgacgtcaa gaaggtcttg 60gaatccgtct ctattgaggt tgaggacgac aaggttgaga agttgttggc tgaagttgaa 120ggcaagaacg tcgaagagtt gattgccgag ggtaacgaga agttgtcttc tgttccatct 180ggtgctccag ctgctgctgg tgccgctgct gcttctggtt ctactgaggc tgctgctgaa 240gagccacaag aagaagagaa ggaggagtct gacgacgaca tgggtttcgg tttattcgat 300ta 30277286DNACandida famata 77cttctccatc cgcttctgac atcagtagtt tattagaaac cgttggtgct gaagctgacg 60aagctagaat cagtgcttta ttgaaggact tagaaggtaa gcaagtcgct gacttaattg 120ctgaaggtca aaccaagttg gcttccgttc caactggtgg tgctggtgct gctgctggtg 180gtgccgctgc tgcttctggt gatgccggtg cagctgctgc tgaagaagaa aaggaagaag 240aaaaggaaga atccgacgat gacatgggtt tcggtttatt cgatta 28678282DNACandida famata 78cttctccatc agcctctgac gtcagtgctt tattagaaac cgttggtgct gaagttgacc 60aaggtagagt tagtgcttta ttgaaggact tagaaggtaa gcaagttgcc gacttaattg 120ctgaaggtca aaccaagtta gcttctgtcc caaccggtgg tgctgcttct gctggtggtg 180ctgccgctgc ttctggtgct gccggtgcag ctgctgttga agaagaaaag gaagaagaaa 240aggaagaatc cgatgaagat atgggtttcg gtttattcga tt 28279286DNACandida famata 79cttctccatc agcctctgac gtcagtgctt tattagaaac cgttggtgct gaagttgacc 60aaggtagagt cagtgcttta ttgaaggact tagaaggtaa gcaagtcgcc gacttaattg 120ctgaaggtca aaccaagtta gcttctgtcc caactggtgg tgctgcttct gctggtggtg 180cttccgctgc tgcttctggt gatgccggtg cagctgctgc tgaagaagaa aaggaagaag 240aaaaggaaga atccgatgaa gatatgggtt tcggtttatt cgatta 28680298DNACandida haemulonii 80tttcggttta ttcgattaac acttccccag ctgcctctga catcaagaag gtgttggagt 60ctgtctccat cgaggttgag gacgacaagg tcgagaagtt gttggctgag gtcgagggca 120agaacgccga ggagttgatt gccgagggta acgagaagtt gtcttctgtc ccaactggtg 180ctccagctgg tggtgctgcc gctgctggtg gtgctgctcc agaggctgct gctgagaagg 240aagaggaggc cgctgccgag gagtctgacg acgacatggg tttcggttta ttcgatta 29881302DNACandida haemulonii 81ttattgttgg tcaacgccgg taacacttcc ccagctgcct ctgacatcaa gaaggtgttg 60gagtctgtct ccatcgaggt tgaggacgac aaggtcgaga agttgttggc tgaggtcgag 120ggcaagaacg ccgaggagtt gattgccgag ggtaacgaga agttgtcttc tgtcccaact 180ggtgctccag ctggtggtgc tgccgctgct ggtggtgctg ctccagaggc tgctgctgag 240aaggaagagg aggccgctgc cgaggagtct gacgacgaca tgggtttcgg tttattcgat 300ta 30282280DNACandida pulcherrima 82acacctctcc atccgccgcc gatgtcaaga aggtcttgga gtccgtttcc atcgaggttg 60aggaggacaa ggtcgagaag ttgctcgctg aggtcgaggg caagagcgtc gaggacttga 120tcgctgaggg taacgagaag ttgtcttctg tcccaactgg tggcccagcc gccggtggtg 180ccgctgccgc tgctggtggt gacgccgctc ctgccgagga ggccgctgag gaggccgccg 240aggagtctga cgacgacatg ggtttcggtt tattcgatta 28083271DNACandida pulcherrima 83catccgccgc cgatgtcaag raggtcttgg agtccgtttc catcgaggtt gaggaggaca 60agatcgagaa gttgctcgct gaggtcgagg gcaagagcgt cgaggacttg atcgctgagg 120gtaacgagaa gttgtcttct gtcccaactg gtggcccagc cgccggtggt gccgctgccg 180ctgccggtgg tgacgccgct cctgccgagg aggccgctga ggaggccgcc gaggagtctg 240acgacgacat gggtttcggt ttattcgatt a 27184272DNACandida utilis 84accgccgaca agatcacctc cgtcttggag tctgtcggta ttgaggttga ggagtcccaa 60gtcaccgagt tgatctctgc ccttgagggt aagtccgttg aggagctcat tgctgaaggt 120aacgagaagt tggcttctgt tccaaccggt ggtgctggtg ctgctccagc tgccggtgcc 180ggtgctgctg atgctgatgc tccagctgag gctgctgagg

aggctgctga ggaggagtct 240gacgatgaca tgggtttcgg tttattcgat ta 2728511DNAArtificial SequencePrimer 85gaggagcgcc t 118612DNAArtificial SequencePrimer 86gaggagcgcc tc 128713DNAArtificial SequencePrimer 87ggaggagcgc ctc 138813DNAArtificial SequencePrimer 88tgaggagcgc ctc 138914DNAArtificial SequencePrimer 89ccggagggaa cgga 149013DNAArtificial SequencePrimer 90ccggagggaa cgg 139118DNAArtificial SequencePrimer 91actacagctc gaagatta 189218DNAArtificial SequencePrimer 92acgttgaatg attgagac 189319DNAArtificial SequencePrimer 93ttgcgattac aagatggaa 199419DNAArtificial SequencePrimer 94cttcggacta ctgcgatga 199519DNAArtificial SequencePrimer 95acctctccat cagcttctg 199622DNAArtificial SequencePrimer 96acctctgtct tatcatctgt cg 229722DNAArtificial SequencePrimer 97aagaaggtta tcgaatctgt tg 229822DNAArtificial SequencePrimer 98tccgctttat tggaacaagt tg 229922DNAArtificial SequencePrimer 99tcctcattgt tggaatccgt tg 2210018DNAArtificial SequencePrimer 100tcagcaatca attcttgc 1810118DNAArtificial SequencePrimer 101ctcttcgacg gacttacc 1810218DNAArtificial SequencePrimer 102ttcgtccaag gacttacc 1810318DNAArtificial SequencePrimer 103ttcttgcaag tctttacc 1810418DNAArtificial SequencePrimer 104ctcgttgatg tctttacc 1810522DNAArtificial SequencePrimer 105accgctttat tggaatccgt tg 2210625DNAArtificial SequencePrimer 106atccgacaag ttagacaagt taatc 2510723DNAArtificial SequencePrimer 107agaatcaacg aattgttgtc tgc 2310826DNAArtificial SequencePrimer 108atcttccaaa ttagacttat tgttga 2610927DNAArtificial SequencePrimer 109gaagaatcaa gattatctac cttgttg 27110380DNAAspergillus fumigatus 110ttacctcctc ctcgcccttg ctggcaacac ctccccgtcc tctgaggatg tcaaggccgt 60cctctcttcc gttggcattg atgccgatga ggagcgcctg aacaagctca ttgctgagct 120cgagggcaag gacctccagg aggttagtaa ctacagctcg aagattacag actgggaatt 180ttggactggc gctgacatcg aactctacaa cagctcattg ccgagggttc caccaagctc 240gcttccgttc cctccggtgg tgctgccgcc gctgctcctg ccgctgccgg tgccgctgcc 300ggtggtgctg ctgctcctgc cgctgaggag aagaaggagg aggagaagga ggagtccgac 360gaggacatgg gcttcggtct 380

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed