Flash Memory Device Capable Of Improving Read Performance

CHAE; Dong-Hyuk

Patent Application Summary

U.S. patent application number 13/098568 was filed with the patent office on 2011-08-25 for flash memory device capable of improving read performance. This patent application is currently assigned to SAMSUNG ELECTRONICS CO., LTD.. Invention is credited to Dong-Hyuk CHAE.

Application Number20110208903 13/098568
Document ID /
Family ID39398797
Filed Date2011-08-25

United States Patent Application 20110208903
Kind Code A1
CHAE; Dong-Hyuk August 25, 2011

FLASH MEMORY DEVICE CAPABLE OF IMPROVING READ PERFORMANCE

Abstract

A flash memory device, related system ad method are disclosed. The memory device includes a memory cell array a page buffer receiving read data, wherein the page buffer includes a main register transferring read data to a cache register during an read operation, and a control logic block controlling operation of the page buffer during the read operation, such that initialization of the main register continuously extends beyond a time period during which read data is transferred from the main register to the cache register.


Inventors: CHAE; Dong-Hyuk; (Seoul, KR)
Assignee: SAMSUNG ELECTRONICS CO., LTD.
Suwon-si
KR

Family ID: 39398797
Appl. No.: 13/098568
Filed: May 2, 2011

Related U.S. Patent Documents

Application Number Filing Date Patent Number
12044179 Mar 7, 2008
13098568

Current U.S. Class: 711/103 ; 711/E12.008
Current CPC Class: G06F 2212/2022 20130101; G06F 12/0893 20130101; G11C 16/26 20130101
Class at Publication: 711/103 ; 711/E12.008
International Class: G06F 12/00 20060101 G06F012/00

Foreign Application Data

Date Code Application Number
Mar 19, 2007 KR 10-2007-0026658

Claims



1. A flash memory device comprising: a memory cell array configured to store N-bit read data, where N is a positive integer; a page buffer circuit comprising a page buffer configured to receive read data from the memory cell array during a read operation, wherein the page buffer comprises a main register transferring read data to a cache register during the read operation; and a control logic block configured to control operation of the page buffer during the read operation such that initialization of the main register continuously extends beyond a time period during which read data is transferred from the main register to the cache register.
Description



CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This U.S. non-provisional patent application is a continuation of U.S. patent application Ser. No. 12/044,179 filed on Mar. 7, 2008, which claims priority under 35 U.S.C. .sctn.119 to Korean Patent Application No. 10-2007-0026658 filed on Mar. 19, 2007, the collective subject matter of which is hereby incorporated by reference.

BACKGROUND OF THE INVENTION

[0002] The present invention relates to semiconductor memory devices. More particularly, the invention relates to flash memory devices executing cache read functions.

[0003] Driven by ever-growing demands for higher performance contemporary memory systems including flash memory devices have incorporated a cache read functionality. During a cache read operation, previous read data stored in a cache register is output to an external circuit while current read data is read from memory through a main register. An exemplary cache read operation will be described with reference to FIG. 1.

[0004] Referring to FIG. 1, a read command, a corresponding read data address, and a read operation start indication are provided to a memory system incorporating flash memory (hereafter, "a flash memory system") according to a predetermined timing sequence. In the constituent flash memory device, after receiving the read start command, a ready/busy signal R/nB transitions from logically "high" to a logically "low" state (i.e., "goes low"). Operation of the main register is initiated after the ready/busy signal R/nB goes low during a first time period P1. The read data identified by the address is read from memory by operation of the main register during a second time period P2. Then, current read data stored in the main register are transferred to a cache register during a third time period P3. After the current read data is transferred to the cache register from the main register, the ready/busy signal R/nB goes high.

[0005] In response to the ready/busy signal R/nB going high, a cache read command is provided to the flash memory device by an external device (e.g., a memory controller in the flash memory system). Upon receiving the cache read command, the ready/busy signal R/nB in the flash memory device goes low during a fourth time period P4 and then returns high. During the fourth time period P4 defined by the transition of the ready/busy signal R/nB, current read data is transferred to the cache register from the main register. Following this read data transfer, the ready/busy signal R/nB goes high. Then, operation of the main register is initiated after the ready/busy signal R/nB goes high beginning a fifth time period P5. Thus, read data is output from memory through the main register and read data stored in the cache register is output to the external device during the fifth and sixth time periods P5 and P6.

[0006] According to this sequence of steps in the cache read operation, previous read data is output to the external circuit from the cache register when the main register is initiated during the fifth time period P5. However, noise commonly associated with the provision of power voltages within the flash memory system occur during the output of the previous read data to the external circuit from the cache register. In addition, noise associated with the initiation of main register operation is also apparent during this time frame. Thus, the simultaneous generation of noise by the initialization of main register operation and output of previous read data from the cache register, may generally degrade channel conditions and cause data errors to arise in the read data being transferred.

SUMMARY OF THE INVENTION

[0007] In one embodiment, the invention provides a flash memory device comprising; a memory cell array configured to store N-bit read data, where N is a positive integer, a page buffer circuit comprising a page buffer configured to receive read data from the memory cell array during a read operation, wherein the page buffer comprises a main register transferring read data to a cache register during the read operation, and a control logic block configured to control operation of the page buffer during the read operation such that initialization of the main register continuously extends beyond a time period during which read data is transferred from the main register to the cache register.

[0008] In another embodiment, the invention provides a method of performing a read operation in a flash memory device comprising a memory cell array; and a page buffer circuit comprising a page buffer, wherein the page buffer comprises a main register and a cache register, the method comprising; initiating operation of the main register, after transferring read data to the cache register, deactivating the main register, receiving a cache read command after deactivation of the main register, reactivating the main register in response to receiving the cache read command, transferring read data from the main register to the cache register upon reactivation of the main register, and maintaining activation of the main register during a delay period following complete transfer of the read data from the main register to the cache register.

[0009] In another embodiment, the invention provides a memory system comprising; a memory controller configured to control a flash memory device in response to a read command and a cache read command provide by an external circuit. The flash memory device comprises; a memory cell array configured to store N-bit read data, where N is a positive integer, a page buffer circuit comprising a page buffer configured to receive read data from the memory cell array during a read operation, wherein the page buffer comprises a main register transferring read data to a cache register during the read operation, and a control logic block configured to control operation of the page buffer during the read operation such that initialization of the main register continuously extends beyond a time period during which read data is transferred from the main register to the cache register.

BRIEF DESCRIPTION OF THE FIGURES

[0010] FIG. 1 is a timing diagram illustrating a conventional cache read operation;

[0011] FIG. 2 is a block diagram of a flash memory device operating within a memory system according to an embodiment of the invention;

[0012] FIG. 3 is a block diagram further illustrating the page buffer shown in FIG. 2;

[0013] FIG. 4 is a timing diagram illustrating a cache read operation for a flash memory device within a memory system according to an embodiment of the invention;

[0014] FIG. 5 is a conceptual diagram further illustrating an exemplary flow of read data during a cache read operation according to an embodiment of the invention; and

[0015] FIG. 6 is a block diagram of a general computational system incorporating a flash memory system according to an embodiment of the invention.

DESCRIPTION OF EMBODIMENTS

[0016] Embodiments of the invention will now be described with reference to the accompanying drawings. The invention may, however, be variously embodied and should not be constructed as being limited to only the illustrated embodiments. Rather, the embodiments are provided as teaching examples.

[0017] FIG. 2 is a block diagram of a flash memory device adapted for use within a memory system according to an embodiment of the invention. In the illustrated embodiment, a NAND flash memory device is assumed for purposes of description, but those skilled in the art will understand that this is merely one example of a class of flash memory devices that might be used within embodiments of the invention.

[0018] Referring to FIG. 2, the flash memory device comprises a memory cell array 100 of conventional arrangement storing N-bit data, where N is a positive integer. A row selector 200 operates under the control of control logic block 600 to select and drive one or more rows within memory cell array 100. A page buffer circuit 300 is configured to read data from memory cell array 100 during a reading operation and drive columns during with one or more defined voltages during a programming operation. As is conventional, page buffer circuit 300 may be composed of multiple page buffers (PB) arranged in relation to the columns within memory cell array 100.

[0019] Each page buffer PB within page buffer circuit 300, (see, e.g., FIG. 3), may include a main register 301 and a cache register 302. According to this illustrated embodiment, during a cache read operation, main register 301 is used to read data from memory cell array 100 and cache register 302 is used to store data transferred from main register 301. In various embodiments of the invention, a page buffer (PB) may be variously configured according to the cache read operation intended. Exemplary page buffer structure capable of implementing a cache read function are disclosed, for example, in U.S. Pat. Nos. 7,180,783; 7,042,770; and 6,996,014, the collective subject matter of which is hereby incorporated by reference.

[0020] Returning to FIG. 2, a column selector 400 also operates under the control of control logic block 600 to select a page buffer within page buffer circuit 300 according to a defined data unit size (e.g., byte or word). During the reading operation, read data received in individual page buffer(s) selected by column selector 400 are output to an external circuit (e.g., a memory controller) by way of input/output (I/O) interface 500 also controlled by control logic block 600.

[0021] During a programming operation, write data applied through I/O interface 500 by control logic block 600 is loaded into individual page buffer(s) selected by column selector 400. Control logic block 600 operates to control overall functions of the flash memory device, and may be implemented using well understood design principals. In particularly relevant part to the illustrated embodiments, control logic block 600 functions to control the activation/deactivation of the ready/busy signal R/nB such that initialization of one or more main register(s) 301 does not coincide with the output of read data from one or more cache register(s) 302. In other words, control logic block 600 deactivates the ready/busy signal R/nB following initialization of main register(s) 301. After deactivating the ready/busy signal R/nB, read data is output to the external circuit from cache register(s) 302, as will be described in some additional detail hereafter.

[0022] FIG. 4 is a timing diagram showing a cache read operation performed by a flash memory device within a memory system according to an embodiment of the invention. FIG. 5 is a related conceptual diagram showing an exemplary flow of data during the cache read operation. For convenience of description only a single page buffer (PB) operation will be described with an understanding that cache read operations enabled by embodiments of the invention may involve more than one page buffer.

[0023] First, as shown in FIG. 4, a read command, a corresponding address, and a read start indication are provided to a flash memory device designed and operated in accordance with an embodiment of the invention. Upon receiving the read start indication, control logic block 600 activates (e.g., causes a high to low transition of) the ready/busy signal R/nB to begin a first time period P10. During the first time period P10, control logic block 600 initiates operation of main register 301 using the ready/busy signal R/nB (1.sup.st step indicated in FIG. 5 by the circled number 1). During a following second period P20, the read data identified by the address is read from a memory cell array 100 through main register 301 under the control of control logic block 600 (2.sup.nd step in FIG. 5). Then, during a third period P30, read data is transferred to cache register 302 from main register 301 by control logic block 600 (3.sup.rd step in FIG. 5). After transferring the read data to cache register 302, control logic block 600 deactivates the ready/busy signal R/nB.

[0024] In response to the deactivation of the ready/busy signal R/nB, a cache read command is applied to the flash memory device from the external circuit (4.sup.th step in FIG. 5). After application of the cache read command, control logic block 600 reactivates the ready/busy signal R/nB.

[0025] The reactivation of the ready/busy signal R/nB begins a fourth period P40 and read data is transferred to cache register 302 from main register 301 by control logic block 600 (5.sup.th step in FIG. 5). Although the transfer of read data to cache register 302 from main register 301 is complete, as shown in FIG. 4, the ready/busy signal R/nB is maintained in an activated state for a delay period (i.e., a fifth time period P50) beyond the completion of read data transfer cycle, and main register 301 remains initiated (6.sup.th step in FIG. 5). Only after the delay period is complete will control logic block 600 deactivate the ready/busy signal R/nB. In response to the deactivation of the ready/busy signal R/nB, read data is output to the external circuit from cache register 302 (7.sup.th step in FIG. 5) during a sixth time period P60 and read data is provided from memory cell array 100 via main register 301 (7.sup.th step in FIG. 5).

[0026] As can be seen from the above description, the initialization period for main register 301 does not overlap with the output of read data from cache register 302. In other words, noise generated by the initialization of main register 301 will be non-coincident with noise generated by the output of read data from cache register 302. Thus, it is far less likely that channel transmission characteristics will be degraded to the point where data errors occur.

[0027] As a result of these improved data transfer properties, a flash memory devices and related memory system incorporating a nonvolatile memory according to an embodiment of the invention, are very well suited to mobile electronic devise such as cellular phones, personal digital assistants (PDA), digital cameras, portable gaming consoles, digital versatile disks (DVDs), routers, global positioning systems (GPS), MP3 players, HD TVs, flash storage devices, etc.

[0028] FIG. 6 is a general block diagram of a computational system susceptible to the incorporation of a flash memory device or a flash memory system according to an embodiment of the invention. The computing system comprises a microprocessor 710, a user interface 720, a modem 760 such as a baseband chipset, a memory controller 740, and the flash memory device 750, all of which are electrically connected to a bus 701. Flash memory device 750 may be configured as described above in relation to FIG. 2.

[0029] In flash memory device 750, N-bit data, where N is a positive integer processed or to be processed by microprocessor 710, is stored by the operative means of memory controller 740. If the computational system shown in FIG. 6 is a mobile apparatus, it will further comprise a battery 730 supplying power. Although not shown in FIG. 6, the computational system may further comprise an application chipset, a camera image processor (e.g., CMOS image sensor; CIS), a mobile DRAM, etc. Further, the flash memory device and/or associated memory controller may be configured on a memory card with the flash memory system.

[0030] As described above, since the initialization period for a main register does not overlap with the output of read data from a cache register, data communication reliability and performance is improved for data read operations performed by a flash memory device according to an embodiment of the invention.

[0031] The above-disclosed subject matter is to be considered illustrative, and not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other embodiments, which fall within the scope of the invention. Thus, to the maximum extent allowed by law, the scope of the present invention is to be determined by the broadest permissible interpretation of the following claims and their equivalents.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed