Methods And Compositions For The Introduction And Regulated Expression Of Genes In Plants

Gordon-Kamm; William J. ;   et al.

Patent Application Summary

U.S. patent application number 12/982180 was filed with the patent office on 2011-07-07 for methods and compositions for the introduction and regulated expression of genes in plants. This patent application is currently assigned to Pioneer Hi-Bred International, Inc.. Invention is credited to William J. Gordon-Kamm, Theodore M. Klein, Keith S. Lowe, Kevin E. McBride, Christopher J. Scelonge, Bing-Bing Wang, Ning Wang, Xinli E. Wu.

Application Number20110167516 12/982180
Document ID /
Family ID43638612
Filed Date2011-07-07

United States Patent Application 20110167516
Kind Code A1
Gordon-Kamm; William J. ;   et al. July 7, 2011

METHODS AND COMPOSITIONS FOR THE INTRODUCTION AND REGULATED EXPRESSION OF GENES IN PLANTS

Abstract

Compositions and methods are provided for the introduction and the regulated expression of genes in plants. Compositions include promoter constructs that provide a level of activity useful for the regulated expression of site-specific recombinases, while avoiding premature excision. Further provided are isolated polynucleotides encoding novel babyboom polypeptides, expression cassettes, and plants comprising the same. Methods for the introduction of genes into plants are provided, including methods for plastid transformation and methods for the transformation of tissues from mature seeds and leaves.


Inventors: Gordon-Kamm; William J.; (Urbandale, IA) ; Klein; Theodore M.; (Wilmington, DE) ; Lowe; Keith S.; (Johnston, IA) ; McBride; Kevin E.; (Davis, CA) ; Scelonge; Christopher J.; (Ankeny, IA) ; Wang; Bing-Bing; (Johnston, IA) ; Wang; Ning; (Johnston, IA) ; Wu; Xinli E.; (Johnston, IA)
Assignee: Pioneer Hi-Bred International, Inc.
Johnston
IA

Family ID: 43638612
Appl. No.: 12/982180
Filed: December 30, 2010

Related U.S. Patent Documents

Application Number Filing Date Patent Number
61291257 Dec 30, 2009

Current U.S. Class: 800/278 ; 435/320.1; 435/419; 435/468; 536/24.1; 800/298
Current CPC Class: C12N 15/8213 20130101; C12N 15/8241 20130101; C12N 15/8216 20130101; C12N 15/8262 20130101
Class at Publication: 800/278 ; 536/24.1; 435/320.1; 435/419; 800/298; 435/468
International Class: A01H 5/00 20060101 A01H005/00; C07H 21/04 20060101 C07H021/04; C12N 15/63 20060101 C12N015/63; C12N 5/10 20060101 C12N005/10; A01H 5/10 20060101 A01H005/10; C12N 15/82 20060101 C12N015/82

Claims



1. A promoter construct comprising a promoter followed by a first attachment B (attB) site, wherein the promoter is selected from the group consisting of: a) a promoter comprising a nucleotide sequence having the sequence set forth in SEQ ID NO: 29; b) a promoter comprising a nucleotide sequence having at least 70% sequence identity to the sequence set forth in SEQ ID NO: 29; and c) a promoter comprising at least 50 contiguous nucleotides of the sequence set forth in SEQ ID NO: 29; and wherein said first attB site has the nucleotide sequence set forth in SEQ ID NO: 31.

2. The promoter construct of claim 1, wherein said first attB site modulates the activity of said promoter.

3. The promoter construct of claim 1, wherein said promoter comprises the sequence set forth in nucleotides 291-430 of SEQ ID NO: 29 or a sequence having at least 70% sequence identity to the sequence set forth in nucleotides 291-430 of SEQ ID NO: 29.

4. The promoter construct of claim 1, wherein said promoter construct further comprises a linker sequence that separates said promoter and said first attB site.

5. The promoter construct of claim 4, wherein said linker sequence that separates said promoter and said first attB site is about 133 nucleotides in length.

6. The promoter construct of claim 4, wherein said linker sequence that separates said promoter and said first attB site comprises nucleotides of a maize rab17 5' untranslated region (5'-UTR).

7. The promoter construct of claim 6, wherein said linker sequence that separates said promoter and said first attB site comprises the nucleotide sequence set forth in SEQ ID NO: 35.

8. The promoter construct of claim 4, wherein said linker sequence that separates said promoter and said first attB site has the sequence set forth in SEQ ID NO: 36 or a nucleotide sequence having at least 70% sequence identity to the sequence set forth in SEQ ID NO: 36.

9. An expression cassette comprising the promoter construct of claim 1 operably linked to a polynucleotide of interest.

10. The expression cassette of claim 9, wherein said polynucleotide of interest is a nucleotide sequence encoding a site-specific recombinase.

11. The expression cassette of claim 10, wherein said site-specific recombinase is selected from the group consisting of FLP, Cre, SSV1, lambda Int, phi C31 Int, HK022, R, Gin, Tn1721, CinH, ParA, Tn5053, Bxb1, TP907-1, and U153.

12. The expression cassette of claim 9, further comprising a polynucleotide encoding a babyboom polypeptide operably linked to a second promoter, wherein said second promoter is active in a plant.

13. The expression cassette of claim 12, wherein said babyboom polypeptide comprises at least two AP2 domains and at least one of the following amino acid sequences: the amino acid sequence set forth in SEQ ID NO: 54 or an amino acid sequence that differs from the amino acid sequence set forth in SEQ ID NO: 54 by one amino acid; and b) the amino acid sequence set forth in SEQ ID NO: 57 or an amino acid sequence that differs from the amino acid sequence sit forth in SEQ ID NO: 57 by one amino acid.

14. The expression cassette of claim 12, wherein said polynucleotide encoding said babyboom polypeptide has a nucleotide sequence selected from the group consisting of: a) the nucleotide sequence set forth in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 68, 116, 117, 120, 121, or 69; b) a nucleotide sequence having at least 70% sequence identity to SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 68, 116, 117, 120, 121, or 69; c) a nucleotide sequence encoding a polypeptide haying the amino acid sequence set forth in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 122, or 28; and d) a nucleotide sequence encoding a polypeptide having an amino acid sequence having at least 70% sequence identity to the amino acid sequence set forth in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 122, or 28.

15. The expression cassette of claim 12, wherein said second promoter is a maize ubiquitin promoter or a maize oleosin promoter.

16. The expression cassette of claim 12, wherein said expression cassette further comprises a polynucleotide encoding a Wuschel polypeptide operably linked to a third promoter, wherein said third promoter is active in a plant.

17. The expression cassette of claim 16, wherein said polynucleotide encoding said Wuschel polypeptide has a nucleotide sequence selected from the group consisting of: a) the nucleotide sequence set forth in SEQ ID NO: 61, 63, 114, or 105; and b) a nucleotide sequence having at least 70% sequence identity to SEQ ID NO: 61, 63, 114, or 105; c) a nucleotide sequence encoding a polypeptide having the amino acid sequence set forth in SEQ ID NO: 62, 64, 115, or 106; and d) a nucleotide sequence encoding a polypeptide having an amino acid sequence having at least 70% sequence identity to SEQ ID NO: 62, 64, 115, or 106.

18. The expression cassette of claim 16, wherein said third promoter is a maize In2-2 promoter or a nopaline synthase promoter.

19. A host cell comprising the expression cassette of claim 9.

20. A plant cell comprising the expression cassette of claim 9.

21. A transgenic seed of a plant comprising the plant cell of claim 20, wherein said seed comprises said expression cassette.

22. A plant cell comprising an expression cassette comprising a promoter construct according to claim 1 operably linked to a polynucleotide encoding a site-specific recombinase, wherein said plant cell further comprises a polynucleotide of interest flanked by a first and a second recombination site, wherein said first and second recombination sites are recombinogenic with respect to one another and are directly repeated, and wherein said site-specific recombinase can recognize and implement recombination at said first and said second recombination sites, thereby excising said polynucleotide of interest.

23. A method for expressing a polynucleotide of interest in a plant cell, said method comprising introducing into said plant cell an expression cassette, wherein said expression cassette is the expression cassette according to claim 9.

24. A method for excising a polynucleotide of interest front a target site in a plant cell, wherein said target site comprises a first site-specific recombination site, said polynucleotide of interest, and a second site-specific recombination site, wherein said first and said second site-specific recombination sites are recombinogenic with respect to one another and are directly repeated, said method comprising: a) introducing into said plant cell an expression cassette comprising a first promoter operably linked to a polynucleotide encoding a site-specific recombinase, wherein said first promoter comprises the promoter construct of claim 1; and b) expressing said polynucleotide encoding said site-specific recombinase, wherein said site-specific recombinase recognizes and implements recombination at said first and said second site-specific recombination sites, thereby excising said polynucleotide of interest.

25. The method of claim 24, wherein said target site comprises in operable linkage: said first recombination site, a second promoter, a polynucleotide sequence encoding a Wuschel polypeptide, a third promoter, a polynucleotide encoding a babyboom polypeptide, and said second recombination site, wherein said polynucleotide encoding said Wuschel polypeptide and its operably linked second promoter can follow or precede said polynucleotide encoding said babyboom polypeptide and its operably linked third promoter in the target site.

26. A method for excising a polynucleotide of interest from a target site in a plant cell, wherein said target site comprises in operable linkage: a first site-specific recombination site, a first promoter, said polynucleotide of interest, a second promoter, a polynucleotide encoding a site-specific recombinase, and a second site-specific recombination site; wherein said first and said second site-specific recombination sites are recombinogenic with respect to one another and are directly repeated; wherein said second promoter comprises the promoter construct of claim 1, wherein the polynucleotide, of interest and its operably linked first promoter can follow or precede the polynucleotide encoding the site-specific recombinase and its operably linked second promoter in the target site; said method comprising expressing said polynucleotide encoding said site-specific recombinase; wherein said site-specific recombinase recognizes and implements recombination at said first and said second site-specific recombination sites, thereby excising said polynucleotide of interest and said polynucleotide encoding said site-specific recombinase.

27. The method of claim 26, wherein said first promoter is a maize ubiquitin promoter or a maize oleosin promoter.

28. The method of claim 26, wherein said target, site further comprises a third promoter operably linked to a polynucleotide, encoding a Wuschel polypeptide, wherein the target site comprises in operable linkage: said first site-specific recombination site, said third promoter, said polynucleotide encoding a Wuschel polypeptide, said first promoter, said polynucleotide of interest, said second promoter, said polynucleotide encoding said site-specific recombinase, and said second site-specific recombination site, wherein the polynucleotide encoding the Wuschel polypeptide and its operably linked third promoter, the polynucleotide of interest and its operably linked first promoter, and the polynucleotide encoding the site-specific recombinase and its operably linked second promoter can be in any order at the target site.

29. The method of claim 28, wherein the target site comprises in the following order: said first site-specific recombination site, said third promoter, said polynucleotide encoding a Wuschel polypeptide, said first promoter, said polynucleotide of interest, said second promoter, said polynucleotide encoding said site-specific recombinase, and said second site-specific recombination site.

30. The method of claim 26, wherein said site-specific recombinase is selected from the group consisting of FLP, Cre, SSV1, lambda Int, phi C31 Int, HK022, R, Gin, Tn1721, CinH, ParA, Tn5053, Bxb1, TP907-1, and U153.

31. The method of claim 26, wherein said polynucleotide of interest is a polynucleotide encoding a cell proliferation factor.

32. The method of claim 31, wherein said cell proliferation factor comprises a babyboom polypeptide.

33. The method of claim 32, wherein said babyboom polypeptide comprises at least two AP2 domains and at least one of the following amino acid sequences: a) the amino acid sequence set forth in SEQ ID NO: 54 or an amino acid sequence that differs from the amino acid sequence set forth in SEQ ID NO: 54 by one amino acid; and b) the amino acid sequence set forth in SEQ ID NO: 57 or an amino acid sequence that differs from the amino acid sequence set forth in SEQ ID NO: 57 by one amino acid.

34. The method of claim 32, wherein said polynucleotide encoding said babyboom polypeptide has a nucleotide sequence selected from the group consisting of: a) the nucleotide sequence set forth in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 68, 116, 117, 120, 121, or 69; b) a nucleotide sequence having at least 70% sequence identity to SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 68, 116, 117, 120, 121, or 69; c) a nucleotide sequence encoding a polypeptide having the amino acid sequence set forth in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 122, or 28; and d) a nucleotide sequence encoding a polypeptide having an amino acid sequence having at least 70% sequence identity to the amino acid sequence set forth in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 122, or 28.

35. A method for transforming a plastid of a plant cell with a polynucleotide of interest, said method comprising: a) introducing into a plant cell a heterologous polynucleotide encoding a cell proliferation factor; b) expressing said heterologous polynucleotide encoding said cell proliferation factor; and c) introducing into a plastid of said plant cell a vector comprising said polynucleotide of interest, wherein the heterologous polynucleotide encoding said cell proliferation factor is expressed prior to, during, or following the introduction into said plastid of said vector comprising said polynucleotide of interest.

36. The method of claim 35, wherein said cell proliferation factor is a babyboom polypeptide.

37. The method of claim 35, wherein said heterologous polynucleotide encoding said cell proliferation factor is operably linked to a promoter, and wherein said promoter is part of a tetracycline-repressor system, and expressing said heterologous polynucleotide comprises providing to said plant cell doxycycline.

38. The method of claim 35, wherein said plastid is a chloroplast, amyloplast, or chromoplast.

39. A method for introducing a polynucleotide of interest into a mature embryo explain of a mature seed, said method comprising: a) dissecting a mature embryo from a mature seed; b) making slices of said mature embryo to prepare said mature embryo explant, wherein said mature embryo explain comprises at least one of the tissues selected from the group consisting of leaf primordia, mesocotyl, shoot apical meristem, and root primordia; and c) introducing into said mature embryo explant: i) a heterologous polynucleotide encoding a cell proliferation factor and expressing said heterologous polynucleotide encoding said cell proliferation factor; and ii) a polynucleotide of interest.

40. The method of claim 39, wherein said mature embryo explant comprises leaf primordia, mesocotyl, and root primordia.

41. The method of claim 39, wherein said cell proliferation factor comprises a babyboom polypeptide.

42. A method for introducing a polynucleotide of interest into a leaf tissue and regenerating a plant therefrom, said method comprising: a) excising a leaf segment from a leaf above the first leaf base node; b) dissecting said leaf fragment into leaf tissue; d) introducing into said leaf tissue: i) a heterologous polynucleotide encoding a cell proliferation factor flanked by recombination sites; ii) an expression cassette comprising the promoter construct according to claim 1 operably linked to a polynucleotide encoding a site-specific recombinase that is capable of recognizing and implementing recombination at said recombination sites; and iii) a polynucleotide of interest; e) expressing said heterologous polynucleotide encoding said cell proliferation factor; f) incubating said leaf tissue under conditions to allow for growth of a callus; g) expressing said polynucleotide encoding said site-specific recombinase, thereby excising said heterologous polynucleotide encoding said cell proliferation factor; h) regenerating a plant from said callus.

43. The method of claim 42, wherein said cell proliferation factor comprises a bah boom polypeptide.

44. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of: a) the amino acid sequence set forth in SEQ ID NO: 2, 4, 8, or 18; and b) an amino acid sequence having at least 75% sequence identity to the sequence set forth in SEQ ID NO: 2, wherein said polypeptide has BBM activity; c) an amino acid sequence having at least 75% sequence identity to the sequence set forth in SEQ ID NO: 4, wherein said amino acid sequence has amino acid residues valine, tyrosine, and leucine at the positions corresponding to positions 311, 312, and 313, respectively of SEQ ID NO: 4, wherein said polypeptide has BBM activity; d) an amino acid sequence having at least 75% sequence identity to the sequence set forth in SEQ ID NO; 8, wherein said amino acid sequence has amino acid residues methionine, alanine, and serine at the positions corresponding to positions 1, 2, and 3, respectively, of SEQ ID NO: 8, wherein said polypeptide has BBM activity; and e) an amino acid sequence having at least 75% sequence identity to the sequence set forth in SEQ ID NO: 18, wherein said amino acid sequence has amino acid residues valine, tyrosine, and leucine at the positions corresponding to positions 337, 338, and 339, respectively, of SEQ ID NO: 18, wherein said polypeptide has BBM activity.

45. An isolated polynucleotide comprising a nucleotide sequence selected from the group consisting of: a) a nucleotide sequence comprising the sequence set forth in SEQ ID NO: 1, 3, 7, or 17; b) a nucleotide sequence having at least 75% sequence identity to the sequence set forth in SEQ ID NO: 1, wherein said nucleotide sequence encodes a polypeptide having BBM activity; c) a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 2, 4, 8, or 18; and d) a nucleotide sequence encoding a polypeptide having an amino acid sequence having at least 75% sequence identity to the amino acid sequence set forth in SEQ ID NO: 2, wherein said polypeptide has BBM activity; e) a nucleotide sequence encoding a polypeptide having an amino acid sequence having at least 75% sequence identity to the sequence set forth in SEQ ID NO: 4, wherein said amino acid sequence has amino acid residues valine, tyrosine, and leucine at the positions corresponding to positions 311, 312, and 313, respectively of SEQ ID NO: 4, wherein said polypeptide has BBM activity; f) a nucleotide sequence encoding a polypeptide having an amino acid sequence having at least 75% sequence identity to the sequence set forth in SEQ ID NO; 8, Wherein said amino acid sequence has amino acid residues methionine, alanine, and serine at the positions corresponding to positions 1, 2, and 3, respectively, of SEQ ID NO: 8, wherein said polypeptide has BBM activity; and g) a nucleotide sequence encoding a polypeptide having an amino acid sequence having at least 75% sequence identity to the sequence set forth in SEQ ID NO: 18, wherein said amino acid sequence has amino acid residues valine, tyrosine, and leucine at the positions corresponding to positions 337, 338, and 339, respectively, of SEQ ID NO: 18, wherein said polypeptide has BBM activity; h) the complement of any one of the nucleotide sequences of a), b), c), d), e), f), or g).

46. An expression cassette comprising the isolated polynucleotide of claim 45, wherein said polynucleotide is operably linked to a promoter that drives expression in a plant.

47. A plant comprising a heterologous polynucleotide operably linked to a promoter that drives expression in the plant, wherein said polynucleotide is selected from the group consisting of: a) a polynucleotide comprising the nucleotide sequence set forth in SEQ ID NO: 1, 3, 5, 7, 17, or 27; or a complement thereof; b) a polynucleotide comprising a nucleotide sequence having at least 75% sequence identity to the sequence set forth in SEQ ID NO: 1, 3, 5, 17, or 27; wherein said nucleotide sequence encodes a polypeptide having BBM activity; c) a polynucleotide encoding the amino acid sequence set forth in SEQ ID NO: 2, 4, 6, 8, 18, or 28; d) a polynucleotide encoding an amino acid sequence having at least 75% sequence identity to the sequence set forth in SEQ ID NO; 8, wherein said amino acid sequence has amino acid residues methionine, alanine, and serine at the positions corresponding to positions 1, 2, and 3, respectively, of SEQ ID NO: 8, wherein said polynucleotide encodes a polypeptide having BBM activity; and e) a polynucleotide encoding an amino acid sequence having at least 75% sequence identity to the amino acid sequence set forth in SEQ ID NO: 2, 4, 6, 18, or 28; wherein said polynucleotide encodes a polypeptide having BBM activity.

48. A method of increasing the activity of a polypeptide in a plant comprising providing to said plant a polypeptide selected from the group consisting of: a) the polypeptide comprising the amino acid sequence of SEQ ID NO: 2, 4, 6, 8, 18, or 28; b) the polypeptide having at least 75% sequence identity to SEQ ID NO: 2, 4, 6, 18, or 28, wherein said polypeptide has BBM activity; and c) the polypeptide having an amino acid sequence having at least 75% sequence identity to the sequence set forth in SEQ ID NO; 8, wherein said amino acid, sequence has amino acid residues methionine, alanine, and serine at the positions corresponding to positions 1, 2, and 3, respectively, of SEQ ID NO: 8, wherein said polypeptide has BBM activity; and wherein increasing the activity of said polypeptide produces a phenotype in the plant selected from the group consisting of: a) produces asexually derived embryos in the plant; b) modifies the regenerative capacity of the plant; c) increases the transformation efficiency in the plant; d) increases or maintains the yield in the plant under abiotic stress; and e) induces embryogenesis.

49. The method of claim 48, wherein providing the polypeptide comprises introducing into said plant a heterologous polynucleotide selected from the group consisting of: a) the polynucleotide comprising SEQ ID NO: 1, 3, 5, 7, 17, or 27; b) the polynucleotide encoding the amino acid sequence of SEQ ID NO: 2, 4, 6, 8, 18, or 28; c) the polynucleotide having at least 75% sequence identity to SEQ ID NO: 1, 3, 5, 17, or 27, wherein said polynucleotide encodes a polypeptide having BBM activity; d) the polynucleotide encoding an amino acid sequence having at least 75% sequence identity to SEQ ID NO: 2, 4, 6, 18, or 28, wherein said polynucleotide encodes a polypeptide having BBM activity; and e) the polynucleotide encoding an amino acid sequence having at least 75% sequence identity to the sequence set forth in SEQ ID NO; 8, wherein said amino acid sequence has amino acid residues methionine, alanine, and serine at the positions corresponding to positions 1, 2, and 3, respectively, of SEQ ID NO: 8, wherein said polynucleotide encodes a polypeptide having BBM activity.

50. A method of transforming a plant cell comprising: (a) transforming a plant cell with a polynucleotide of interest and a heterologous polynucleotide comprising a first nucleotide sequence selected from the group consisting of: a) a nucleotide sequence comprising SEQ ID NO: 1, 3, 5, 7, 17, or 27; b) a nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 2, 4, 6, 8, 18, or 28; c) a nucleotide sequence having at least 75% sequence identity to SEQ ID NO: 1, 3, 5, 17, or 27, wherein said nucleotide sequence encodes a polypeptide having BBM activity; d) a nucleotide sequence encoding an amino acid sequence having at least 75% sequence identity to SEQ ID NO: 2, 4, 6, 18, or 28, wherein said nucleotide sequence encodes a polypeptide having BBM activity; and e) a nucleotide sequence encoding an amino acid sequence having at least 75% sequence identity to the sequence set forth in SEQ ID NO; 8, wherein said amino acid sequence has amino acid residues methionine, alanine, and serine at the positions corresponding to positions 1, 2, and 3, respectively, of SEQ ID NO: 8, wherein said nucleotide sequence encodes a polypeptide having BBM activity.
Description



CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Application No. 61/291,257, filed on Dec. 30, 2009, the contents of which are hereby incorporated by reference in their entirety.

REFERENCE TO A SEQUENCE LISTING SUBMITTED AS A TEXT FILE VIA EFS-WEB

[0002] The official copy of the sequence listing is submitted electronically via EFS-Web as an ASCII formatted sequence listing with a file named 399843SEQLIST.TXT, created on Dec. 29, 2010, and having a size of 534 kilobytes and is filed concurrently with the specification. The sequence listing contained in this ASCII formatted document is part of the specification and is herein incorporated by reference in its entirety.

FIELD OF THE INVENTION

[0003] The present invention is drawn to the field of plant genetics and molecular biology. More particularly, the compositions and methods are directed to the introduction and regulated expression of genes in plants.

BACKGROUND OF THE INVENTION

[0004] Current transformation technology provides an opportunity to engineer plants with desired traits. Major advances in plant transformation have occurred over the last few years. However, most transformation methods rely on the introduction of polynucleotides into embryonic tissues that are rapidly proliferating. Methods that allow for the transformation of more mature tissues would save considerable time and money. Accordingly, methods are needed in the art to increase transformation efficiencies of plants and allow for the transformation of more mature tissues.

[0005] Further, it is often necessary to reduce the activity of a transgene because the transgene may negatively affect the growth or fertility of the plant. Recombination systems can be used to excise the transgene, wherein the expression of a site-specific recombinase is regulated by an inducible promoter. Often, these systems are associated with premature excision. Accordingly, methods are needed in the art to efficiently excise transgenes with limited premature excision.

BRIEF SUMMARY OF THE INVENTION

[0006] Compositions and methods are provided for the introduction and regulated expression of genes in plants. Compositions include promoter constructs useful for regulated induction of expression of an operably linked coding sequence. In particular embodiments, the promoter construct comprises a maize rab17 promoter or an active variant or fragment thereof and an attachment B (attB) site. The modified rab17 promoter constructs find use in methods for regulating the expression of various coding sequences, including site-specific recombinases, which can minimize the premature excision of polynucleotides of interest in plants.

[0007] Further provided are methods for the transformation of plastids, such as chloroplasts, that involve the introduction of a heterologous polynucleotide encoding a cell proliferation factor, such as a babyboom (BBM) polypeptide. Novel BBM sequences are provided, along with methods of introducing the sequences into plants and plants comprising the novel BBM sequences. Methods for preparing and transforming mature embryo explants and leaf tissues are also provided.

BRIEF DESCRIPTION OF THE FIGURES

[0008] FIG. 1 provides a depiction of a phylogenetic analysis of 50 sequences with homology to maize babyboom (BBM).

[0009] FIGS. 2A-2M show the consensus motif sequences 1-10, 14, 15, and 19, respectively, discovered in the analysis described herein, along with the alignments of the regions of various polypeptides used to generate the consensus motifs.

[0010] FIG. 3 depicts the motifs found within 50 sequences with homology to maize BBM (ZmBBM).

[0011] FIG. 4 shows an alignment of the amino acid sequence of various BBM polypeptides: maize babyboom 2 (ZmBBM2; SEQ ID NO: 12), sorghum babyboom 2 (SbBBM2; SEQ ID NO: 28), rice babyboom 2 (OsBBM2; SEQ ID NO: 18), rice babyboom 3 (OsBBM3; SEQ ID NO: 20), rice babyboom 1 (OsBBM1; SEQ ID NO: 16), maize babyboom (ZmBBM; SEQ ID NO: 10), sorghum babyboom (SbBBM; SEQ ID NO: 4), rice babyboom (OsBBM; SEQ ID NO: 14), Brassica babyboom 1 (BnBBM1; SEQ ID NO: 24), Brassica babyboom 2 (BnBBM2; SEQ ID NO: 26), Arabidopsis babyboom (AtBBM; SEQ ID NO: 22), medicago babyboom (MtBBM; SEQ ID NO: 8), soybean babyboom (GmBBM; SEQ ID NO: 2), and grape babyboom (VvBBM; SEQ ID NO: 6).

[0012] FIG. 5 provides a depiction of the motifs found in babyboom polypeptides.

DETAILED DESCRIPTION OF THE INVENTION

[0013] The presently disclosed compositions and methods are useful for the introduction and the regulated expression of genes in plants. Compositions comprise promoter constructs that provide a level of activity useful for the regulated expression of various coding sequences, including site-specific recombinases. Further provided are compositions comprising novel babyboom (BBM) polynucleotide and polypeptide sequences and plants comprising the same. Methods for the introduction of genes into plants are provided, including methods for introducing novel BBM polynucleotides and polypeptides into plants, methods for the enhancement of plastid transformation, and methods for the transformation of tissues from mature seeds.

[0014] The expression cassette having the sequence set forth in SEQ ID NO: 45, which is comprised of the maize rab17 promoter, an attB site, and the coding sequence for the site-specific recombinase FLP, is capable of expressing FLP upon induction in such a manner as to reduce premature excision. Without being bound by any theory or mechanism of action, it is believed that the presence of the attB site modifies the activity of the promoter, allowing for a tightly regulated induction of expression of an operably linked coding sequence. Therefore, compositions include promoter constructs comprising a modified maize rab17 promoter or an active variant or fragment thereof. In some of these embodiments, the promoter construct comprises the maize rab17 promoter or an active variant or fragment thereof and an attB site or a variant or fragment thereof. In some of these embodiments, the maize rab17 promoter has the sequence set forth in SEQ ID NO: 29 or an active variant or fragment thereof.

[0015] As used herein, the term "promoter" includes reference to a region of DNA involved in the recognition and binding of RNA polymerase and other proteins to initiate transcription of a coding sequence. Promoters may be naturally occurring promoters, a variant or fragment thereof, or synthetically derived. A "promoter construct" is a polynucleotide comprising a promoter and optionally, sequences that are not necessary for transcription initiation or part of the coding sequence and are located in between the promoter and the coding sequence in an expression cassette. These intervening sequences can include modulators, restriction sites, sequences of the 5'-untranslated region (5'-UTR), which is the region of a transcript that is transcribed, but is not translated into a polypeptide, and recombination sites.

[0016] The promoter in the promoter constructs is the maize rab17 promoter or an active variant or fragment thereof. The maize rab17 (responsive to abscisic acid) gene (GenBank Accession No. X15994; Vilardell et al. (1990) Plant Mol Biol 14:423-432; Vilardell et al. (1991) Plant Mol Biol 17:985-993; each of which is herein incorporated in its entirety) is expressed in late embryos, but its expression can be induced by exposure to abscisic acid or water stress. The sequence of the maize rab17 promoter corresponds to nucleotides 1-558 of GenBank Accession No. X15994, which was disclosed in Vilardell et al. (1990) Plant Mol Biol 14:423-432 and is set forth in SEQ ID NO: 126. An alternative maize rab17 promoter was disclosed in U.S. Pat. Nos. 7,253,000 and 7,491,813, each of which is herein incorporated by reference in its entirety, and is set forth in SEQ ID NO: 29. The rab17 promoter contains 5 putative abscisic acid responsive elements (ABRE) (Busk et al. (1997) Plant J 11:1285-1295, which is herein incorporated by reference in its entirety). The putative ABRE elements can be found at about -208 to -203 (nucleotides 304 to 309 of SEQ ID NO: 29), -162 to -157 (nucleotides 348 to 353 of SEQ ID NO: 29), -147 to -142 (nucleotides 363 to 368 of SEQ ID NO: 29), -141 to -136 (nucleotides 369 to 374 of SEQ ID NO: 29), and -96 to -91 (nucleotides 414 to 419 of SEQ ID NO: 29) in the maize rab17 promoter. The rab17 promoter also contains drought-responsive elements (DRE), of which the core sequence is identical to the DRE (drought-responsive) and CRT (cold-response elements) elements in Arabidopsis. The drought-responsive elements are found at -213 to -206 (nucleotides 299 to 306 of SEQ ID NO: 29) and -190 to -185 (nucleotides 322 to 327 of SEQ ID NO: 29) of the maize rab17 promoter. The CAAT and TATAA box can be found from nucleotides 395 to 398 and 479 to 484 of SEQ ID NO: 29, respectively.

[0017] In some embodiments, the maize rab17 promoter that is part of the presently disclosed promoter constructs has the sequence set forth in SEQ ID NO: 29 or an active variant or fragment thereof. In other embodiments, the maize rab17 promoter that is part of the presently disclosed promoter constructs has the sequence set forth in SEQ ID NO: 125 or 126 or an active variant or fragment thereof.

[0018] In some embodiments of the methods and compositions, the promoter constructs comprise active variants or fragments of the maize rab17 promoter. An active variant or fragment of a maize rab17 promoter (e.g., SEQ ID NO: 29, 125, 126) is a polynucleotide variant or fragment that retains the ability to initiate transcription. In some embodiments, an active fragment of a maize rab17 promoter may comprise at least about 50, 100, 150, 200, 250, 300, 350, 400, 450, or 500 contiguous nucleotides of SEQ ID NO: 29, 125, or 126, or may have at least about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to SEQ ID NO: 29, 125, or 126. In particular embodiments, an active variant or fragment of the maize rab17 promoter is one that is capable of initiating transcription in response to abscisic acid (ABA). In some of these embodiments, the promoter comprises at least one ABRE element. In particular embodiments, the promoter of the compositions and methods comprises from about -219 to about -102 of the maize rab17 promoter (corresponding to nucleotides 291 to 408 of SEQ ID NO: 29), which was shown to be sufficient to confer ABA responsiveness (Vilardell et al. (1991) Plant Mol Biol 17:985-993, which is herein incorporated by reference in its entirety).

[0019] In other embodiments, an active variant or fragment of the maize rab17 promoter is one that is capable of initiating transcription in response to dessication. In some of these embodiments, the promoter comprises at least one DRE element.

[0020] In particular embodiments, the active maize rab17 promoter fragment comprises from about -219 to about -80 of the maize rab17 promoter (nucleotides 291 to 430 of SEQ ID NO: 29), which comprises all of the putative DRE and ABRE elements.

[0021] Without being bound by any theory or mechanism of action, it is believed that a promoter construct (the sequence of which is set forth in SEQ ID NO: 30) comprising a maize rab17 promoter and a site-specific attachment B (attB) site has a modified level of activity in comparison to the promoter in the absence of the attB site due to the presence and/or the location of the attB site relative to the promoter. Therefore, it is believed the attB site functions as a modulator of the maize rab17 promoter. Accordingly, promoter constructs comprising a maize rab17 promoter or a fragment or variant thereof, and an attB site are provided, and in some of these embodiments, the attB site modifies the activity of the promoter. In other embodiments, the promoter construct comprises a maize rab17 promoter or a fragment or variant thereof and a modulator that modifies the activity of the rab17 promoter.

[0022] As used herein, a "modulator" refers to a polynucleotide that when present between a promoter and a coding sequence, serves to increase or decrease the activity of the promoter. Non-limiting examples of modulators include recombination sites, operators, and insulators.

[0023] Attachment sites are site-specific recombination sites found in viral and bacterial genomes that facilitate the integration or excision of the viral genome into and out of its host genome. Non-limiting examples of a viral and bacterial host system that utilize attachment sites is the lambda bacteriophage and E. coli system (Weisberg and Landy (1983) In Lambda II, eds. Hendrix et al. (Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.) pp. 211-250). The modulator of the promoter constructs can be an E. coli attachment site B (attB) site. The attB site can be naturally occurring E. coli attB sites or an active variants or fragments thereof or a synthetically derived sequence. Synthetically derived attB sites and active variants and fragments of naturally occurring attB sites are those that are capable of recombining with a bacteriophage lambda attachment P site, a process that is catalyzed by the bacteriophage lambda Integrase (Int) and the E. coli Integration Host Factor (IHF) proteins (Landy (1989) Ann Rev Biochem 58: 913-949, which is herein incorporated by reference in its entirety). AttB sites typically have a length of about 25 nucleotides, with a core 15-base pair sequence that is involved in the actual crossover event. Alternatively, active variants and fragments of naturally occurring attB sites are those that are capable of modulating the activity of a promoter when present within a promoter construct. Non-limiting examples of attB sites that can be used include attB1 (SEQ ID NO: 31), attB2 (SEQ ID NO: 32), attB3 (SEQ ID NO: 33), and attB4 (SEQ ID NO: 34), and variants or fragments thereof. In some embodiments, the modulator is an active variant or fragment of an attB site that is capable of modulating (i.e., increasing, decreasing) the activity of a promoter, but is not capable of recombination with an attachment P site. Non-limiting examples of such active variants of an attB site include those having the sequence set forth in SEQ ID NO: 107, 108, or 109.

[0024] In some embodiments, the distance of the modulator from the promoter impacts the ability of the modulator to modify the activity of the promoter. The modulator may be contiguous with the promoter and/or the polynucleotide of interest. In other embodiments, a linker sequence separates the promoter sequence and the modulator. As used herein, a "linker sequence" is a nucleotide sequence that functions to link one functional sequence with another without otherwise contributing to the expression or translation of a polynucleotide of interest when present in a promoter construct. Accordingly, the actual sequence of the linker sequence can vary. The linker sequence can comprise plasmid sequences, restriction sites, and/or regions of the 5'-untranslated region (5'-UTR) of the gene from which the promoter is derived. The linker sequence separating the promoter and the modulator can have a length of about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 400, 500, 1000 nucleotides or greater. In certain embodiments, a linker sequence of about 133 nucleotides separates the promoter and the modulator. In some embodiments, the linker sequence comprises a fragment of the rab17 5'-UTR. The fragment of the 5'-UTR can be about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100 nucleotides, or greater, in length. In certain embodiments, the promoter construct comprises a linker sequence separating the promoter and the modulator that comprises 95 nucleotides of the maize rab17 5'-UTR. In some of these embodiments, the 95 nucleotide sequence has the sequence set forth in SEQ ID NO: 35. In certain embodiments, the linker sequence between the promoter and modulator has the sequence set forth in SEQ ID NO: 36 or a variant or fragment thereof.

[0025] In some embodiments, the promoter construct comprises a linker sequence separating the modulator and the polynucleotide of interest. The length and sequence of this linker may also vary and can be about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 400, 500, 1000 nucleotides or greater in length. In certain embodiments, a linker sequence of about 61 nucleotides separates the modulator and the polynucleotide of interest. In certain embodiments, the linker sequence between the modulator and the polynucleotide of interest has the sequence set forth in SEQ ID NO: 37 or a variant or fragment thereof. In other embodiments, a linker sequence of about 25 nucleotides separates the modulator and the polynucleotide of interest. In certain embodiments, the linker sequence between the modulator and the polynucleotide of interest has the sequence set forth in SEQ ID NO: 123.

[0026] In certain embodiments, the promoter construct has the sequence set forth in SEQ ID NO: 30 or a variant or fragment thereof.

[0027] The promoter constructs can be operably linked to a polynucleotide of interest that encodes a polynucleotide or polypeptide within an expression cassette. "Operably linked" denotes a functional linkage between two or more elements. For example, an operable linkage between a polynucleotide of interest and a promoter is a functional link that allows for expression of the polynucleotide of interest. Operably linked elements may be contiguous or non-contiguous. The expression cassette can comprise other 5' or 3' regulatory elements necessary for expression.

[0028] Regulatory elements that can be included in the expression cassette 5' to the polynucleotide of interest include 5' leader sequences. Such leader sequences can act to enhance translation. Translation leaders are known in the art and include: picornavirus leaders, for example, EMCV leader (Encephalomyocarditis 5' noncoding region) (Elroy-Stein et al. (1989) Proc. Natl. Acad. Sci. USA 86:6126-6130); potyvirus leaders, for example, TEV leader (Tobacco Etch Virus) (Gallie et al. (1995) Gene 165(2):233-238), MDMV leader (Maize Dwarf Mosaic Virus) (Virology 154:9-20), and human immunoglobulin heavy-chain binding protein (BiP) (Macejak et al. (1991) Nature 353:90-94); untranslated leader from the coat protein mRNA of alfalfa mosaic virus (AMV RNA 4) (Jobling et al. (1987) Nature 325:622-625); tobacco mosaic virus leader (TMV) (Gallie et al. (1989) in Molecular Biology of RNA, ed. Cech (Liss, New York), pp. 237-256); and maize chlorotic mottle virus leader (MCMV) (Lommel et al. (1991) Virology 81:382-385). See also, Della-Cioppa et al. (1987) Plant Physiol. 84:965-968. Other methods or sequences known to enhance translation can also be utilized, for example, introns, and the like.

[0029] The expression cassette may also comprise a transcriptional and/or translational termination region functional in plants. The termination region may be native with the transcriptional initiation region (i.e., promoter), may be native with the operably linked polynucleotide of interest, may be native with the plant host, or may be derived from another source (i.e., foreign to the promoter, the polynucleotide of interest, the plant host, or any combination thereof). Convenient termination regions are available from the potato proteinase inhibitor (PinII) gene or the Ti-plasmid of A. tumefaciens, such as the octopine synthase and nopaline synthase termination regions. See also Guerineau et al. (1991) Mol. Gen. Genet. 262:141-144; Proudfoot (1991) Cell 64:671-674; Sanfacon et al. (1991) Genes Dev. 5:141-149; Mogen et al. (1990) Plant Cell 2:1261-1272; Munroe et al. (1990) Gene 91:151-158; Ballas et al. (1989) Nucleic Acids Res. 17:7891-7903; and Joshi et al. (1987) Nucleic Acid Res. 15:9627-9639. In some embodiments, the pinII termination sequence has the sequence set forth in SEQ ID NO: 38 or an active variant or fragment thereof that is capable of terminating transcription and/or translation in a plant cell.

[0030] In certain embodiments, the expression cassette can comprise a recombination site, such as an attachment site 3' to the polynucleotide of interest. In some of these embodiments, the recombination site is a second attB site. In some of those embodiments wherein the promoter comprises a first attB site, the second attB site following the polynucleotide of interest and the modulator attB are non-identical. In some of those embodiments wherein the modulator attB site is attB1 (SEQ ID NO: 31), the second attB site 3' of the polynucleotide of interest can have the sequence set forth in SEQ ID NO: 31 (attB1), SEQ ID NO: 32 (attB2), SEQ ID NO: 33 (attB3), or SEQ ID NO: 34 (attB4), or an active variant or fragment thereof.

[0031] The recombination site 3' to the polynucleotide of interest can be 5' or 3' to the termination region when present. The recombination site can be contiguous with the polynucleotide of interest and/or the termination sequence, if present. In some embodiments, however, a linker sequence separates the polynucleotide of interest and the recombination site. The length of this linker sequence can vary, but in some embodiments, is about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, or 90 nucleotides in length. In particular embodiments, the linker sequence separating the recombination site and the polynucleotide of interest is about 16 nucleotides. In certain embodiments, the recombination site and the polynucleotide of interest are separated by a linker sequence having the nucleotide sequence set forth in SEQ ID NO: 39, or a variant or fragment thereof. In other embodiments, the linker sequence separating the recombination site and the polynucleotide of interest is about 8 nucleotides. In certain embodiments, the recombination site and the polynucleotide of interest are separated by a linker sequence having the nucleotide sequence set forth in SEQ ID NO: 124, or a variant or fragment thereof.

[0032] In some of those embodiments wherein a termination region is present on the expression cassette and the expression cassette further comprises a recombination site 3' to the polynucleotide of interest, the termination region is 3' to the recombination site and a linker sequence separates the recombination site and the termination region. The length of this linker sequence can vary, but in some embodiments, is about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, or 90 nucleotides in length. In particular embodiments, the linker sequence separating the recombination site and the termination region is about 14 nucleotides. In certain embodiments, the recombination site and the termination region are separated by a linker sequence having the nucleotide sequence set forth in SEQ ID NO: 40 or a variant or fragment thereof.

[0033] The expression cassettes comprise a presently disclosed promoter construct regulating the expression of a polynucleotide of interest. The polynucleotide of interest may be any polynucleotide that encodes a polynucleotide (e.g., antisense, siRNA) or encodes a polypeptide. Where appropriate, the polynucleotide(s) of interest may be optimized for increased expression in the transformed plant. That is, the polynucleotides can be synthesized using plant-preferred codons for improved expression. See, for example, Campbell and Gowri (1990) Plant Physiol. 92:1-11 for a discussion of host-preferred codon usage. Methods are available in the art for synthesizing plant-preferred genes. See, for example, U.S. Pat. Nos. 5,380,831, and 5,436,391, and Murray et al. (1989) Nucleic Acids Res. 17:477-498, herein incorporated by reference.

[0034] Additional sequence modifications are known to enhance gene expression in a cellular host. These include elimination of sequences encoding spurious polyadenylation signals, exon-intron splice site signals, transposon-like repeats, and other such well-characterized sequences that may be deleterious to gene expression. The G-C content of the sequence may be adjusted to levels average for a given cellular host, as calculated by reference to known genes expressed in the host cell. When possible, the sequence is modified to avoid predicted hairpin secondary mRNA structures.

[0035] In some embodiments, the polynucleotide of interest comprises a polynucleotide that encodes a site-specific recombinase. A site-specific recombinase, also referred to herein as a recombinase, is a polypeptide that catalyzes conservative site-specific recombination between its compatible recombination sites, and includes native polypeptides as well as derivatives, variants and/or fragments that retain activity, and native polynucleotides, derivatives, variants, and/or fragments that encode a recombinase that retains activity. The recombinase used in the methods and compositions can be a native recombinase or a biologically active fragment or variant of the recombinase. For reviews of site-specific recombinases and their recognition sites, see Sauer (1994) Curr Op Biotechnol 5:521-527; and Sadowski (1993) FASEB 7:760-767, each of which is herein incorporated by reference in its entirety.

[0036] Any recombinase system can be used in the methods and compositions. Non-limiting examples of site-specific recombinases include FLP, Cre, SSV1, lambda Int, phi C31 Int, HK022, R, Gin, Tn1721, CinH, ParA, Tn5053, Bxb1, TP907-1, U153, and other site-specific recombinases known in the art, including those described in Thomson and Ow (2006) Genesis 44:465-476, which is herein incorporated by reference in its entirety. Examples of site-specific recombination systems used in plants can be found in U.S. Pat. Nos. 5,929,301, 6,175,056, 6,331,661; and International Application Publication Nos. WO 99/25821, WO 99/25855, WO 99/25841, and WO 99/25840, the contents of each are herein incorporated by reference.

[0037] In some embodiments, the polynucleotide of interest encodes a recombinase from the Integrase or Resolvase families, including biologically active variants and fragments thereof. The Integrase family of recombinases has over one hundred members and includes, for example, FLP, Cre, lambda integrase, and R. For other members of the Integrase family, see, for example, Esposito et al. (1997) Nucleic Acids Res 25:3605-3614; and Abremski et al. (1992) Protein Eng 5:87-91; each of which are herein incorporated by reference in its entirety. Other recombination systems include, for example, the Streptomycete bacteriophage phi C31 (Kuhstoss et al. (1991) J Mol Biol 20:897-908); the SSV1 site-specific recombination system from Sulfolobus shibatae (Maskhelishvili et al. (1993) Mol Gen Genet 237:334-342); and a retroviral integrase-based integration system (Tanaka et al. (1998) Gene 17:67-76). In some embodiments, the recombinase does not require cofactors or a supercoiled substrate. Such recombinases include Cre, FLP, or active variants or fragments thereof.

[0038] The FLP recombinase is a protein that catalyzes a site-specific reaction that is involved in amplifying the copy number of the two-micron plasmid of S. cerevisiae during DNA replication. FLP recombinase catalyzes site-specific recombination between two FRT sites. The FLP protein has been cloned and expressed (Cox (1993) Proc Natl Acad Sci USA 80:4223-4227, which is herein incorporated by reference in its entirety). The FLP recombinase for use in the methods and compositions may be derived from the genus Saccharomyces. In some embodiments, a recombinase polynucleotide modified to comprise more plant-preferred codons is used. A recombinant FLP enzyme encoded by a nucleotide sequence comprising maize preferred codons (FLPm) that catalyzes site-specific recombination events is known (the polynucleotide and polypeptide sequence of which is set forth in SEQ ID NO: 41 and 42, respectively; see, e.g., U.S. Pat. No. 5,929,301, which is herein incorporated by reference in its entirety). Additional functional variants and fragments of FLP are known (Buchholz et al. (1998) Nat Biotechnol 16:657-662; Hartung et al. (1998) J Biol Chem 273:22884-22891; Saxena et al. (1997) Biochim Biophys Acta 1340:187-204; Hartley et al. (1980) Nature 286:860-864; Voziyanov et al. (2002) Nucleic Acids Res 30:1656-1663; Zhu & Sadowski (1995) J Biol Chem 270:23044-23054; and U.S. Pat. No. 7,238,854, each of which is herein incorporated by reference in its entirety).

[0039] The bacteriophage recombinase Cre catalyzes site-specific recombination between two lox sites. The Cre recombinase is known (Guo et al. (1997) Nature 389:40-46; Abremski et al. (1984) J Biol Chem 259:1509-1514; Chen et al. (1996) Somat Cell Mol Genet 22:477-488; Shaikh et al. (1977) J Biol Chem 272:5695-5702; and, Buchholz et al. (1998) Nat Biotechnol 16:657-662, each of which is herein incorporated by reference in its entirety). Cre polynucleotide sequences may also be synthesized using plant-preferred codons, for example such sequences (moCre; the polynucleotide and polypeptide sequence of which is set forth in SEQ ID NO: 43 and 44, respectively) are described, for example, in International Application Publication No. WO 99/25840, which is herein incorporated by reference in its entirety. Variants of the Cre recombinase are known (see, for example U.S. Pat. No. 6,890,726; Rufer & Sauer (2002) Nucleic Acids Res 30:2764-2772; Wierzbicki et al. (1987) J Mol Biol 195:785-794; Petyuk et al. (2004) J Biol Chem 279:37040-37048; Hartung & Kisters-Woike (1998) J Biol Chem 273:22884-22891; Santoro & Schultz (2002) Proc Natl Acad Sci USA 99:4185-4190; Koresawa et al. (2000) J Biochem (Tokyo) 127:367-372; and Vergunst et al. (2000) Science 290:979-982, each of which are herein incorporated by reference in its entirety).

[0040] In some embodiments, the polynucleotide of interest encodes a chimeric recombinase. A chimeric recombinase is a recombinant fusion protein which is capable of catalyzing site-specific recombination between recombination sites that originate from different recombination systems. For example, if the set of recombination sites comprises a FRT site and a LoxP site, a chimeric FLP/Cre recombinase or active variant or fragment thereof can be used, or both recombinases may be separately provided. Methods for the production and use of such chimeric recombinases or active variants or fragments thereof are described, for example, in International Application Publication No. WO 99/25840; and Shaikh & Sadowski (2000) J Mol Biol 302:27-48, each of which are herein incorporated by reference in its entirety.

[0041] In other embodiments, a variant recombinase is used. Methods for modifying the kinetics, cofactor interaction and requirements, expression, optimal conditions, and/or recognition site specificity, and screening for activity of recombinases and variants are known, see for example Miller et al. (1980) Cell 20:721-9; Lange-Gustafson and Nash (1984) J Biol Chem 259:12724-32; Christ et al. (1998) J Mol Biol 288:825-36; Lorbach et al. (2000) J Mol Biol 296:1175-81; Vergunst et al. (2000) Science 290:979-82; Dorgai et al. (1995) J Mol Biol 252:178-88; Dorgai et al. (1998) J Mol Biol 277:1059-70; Yagu et al. (1995) J Mol Biol 252:163-7; Sclimente et al. (2001) Nucleic Acids Res 29:5044-51; Santoro and Schultze (2002) Proc Natl Acad Sci USA 99:4185-90; Buchholz and Stewart (2001) Nat Biotechnol 19:1047-52; Voziyanov et al. (2002) Nucleic Acids Res 30:1656-63; Voziyanov et al. (2003) J Mol Biol 326:65-76; Klippel et al. (1988) EMBO J 7:3983-9; Arnold et al. (1999) EMBO J 18:1407-14; and International Application Publication Nos. WO 03/08045, WO 99/25840, and WO 99/25841; each of which is herein incorporated by reference in its entirety.

[0042] In particular embodiments, the expression cassette has the sequence set forth in SEQ ID NO: 45 or a variant or fragment thereof.

[0043] The expression cassette can be part of a vector that comprises multiple expression cassettes or multiple genes, such as a selectable marker gene. Selectable marker genes may be used to identify transformed cells or tissues. Marker genes include genes encoding antibiotic resistance, such as those encoding neomycin phosphotransferase II (NEO) and hygromycin phosphotransferase (HPT), as well as genes conferring resistance to herbicidal compounds, such as glufosinate ammonium, bromoxynil, imidazolinones, and 2,4-dichlorophenoxyacetate (2,4-D). See generally, Yarranton (1992) Curr. Opin. Biotech. 3:506-511; Christopherson et al. (1992) Proc. Natl. Acad. Sci. USA 89:6314-6318; Yao et al. (1992) Cell 71:63-72; Reznikoff (1992) Mol. Microbiol. 6:2419-2422; Barkley et al. (1980) in The Operon, pp. 177-220; Hu et al. (1987) Cell 48:555-566; Brown et al. (1987) Cell 49:603-612; Figge et al. (1988) Cell 52:713-722; Deuschle et al. (1989) Proc. Natl. Acad. Aci. USA 86:5400-5404; Fuerst et al. (1989) Proc. Natl. Acad. Sci. USA 86:2549-2553; Deuschle et al. (1990) Science 248:480-483; Gossen (1993) Ph.D. Thesis, University of Heidelberg; Reines et al. (1993) Proc. Natl. Acad. Sci. USA 90:1917-1921; Labow et al. (1990) Mol. Cell. Biol. 10:3343-3356; Zambretti et al. (1992) Proc. Natl. Acad. Sci. USA 89:3952-3956; Baim et al. (1991) Proc. Natl. Acad. Sci. USA 88:5072-5076; Wyborski et al. (1991) Nucleic Acids Res. 19:4647-4653; Hillenand-Wissman (1989) Topics Mol. Struc. Biol. 10:143-162; Degenkolb et al. (1991) Antimicrob. Agents Chemother. 35:1591-1595; Kleinschnidt et al. (1988) Biochemistry 27:1094-1104; Bonin (1993) Ph.D. Thesis, University of Heidelberg; Gossen et al. (1992) Proc. Natl. Acad. Sci. USA 89:5547-5551; Oliva et al. (1992) Antimicrob. Agents Chemother. 36:913-919; Hlavka et al. (1985) Handbook of Experimental Pharmacology, Vol. 78 (Springer-Verlag, Berlin); Gill et al. (1988) Nature 334:721-724. Such disclosures are herein incorporated by reference. The above list of selectable marker genes is not meant to be limiting. Any selectable marker gene can be used.

[0044] In some embodiments, an expression cassette comprising a presently disclosed promoter construct can further comprise a polynucleotide encoding a cell proliferation factor. As used herein, a "cell proliferation factor" is a polypeptide or a polynucleotide capable of stimulating growth of a cell or tissue, including but not limited to promoting progression through the cell cycle, inhibiting cell death, such as apoptosis, stimulating cell division, and/or stimulating embryogenesis. The polynucleotides can fall into several categories, including but not limited to, cell cycle stimulatory polynucleotides, developmental polynucleotides, anti-apoptosis polynucleotides, hormone polynucleotides, or silencing constructs targeted against cell cycle repressors or pro-apoptotic factors. The following are provided as non-limiting examples of each category and are not considered a complete list of useful polynucleotides for each category: 1) cell cycle stimulatory polynucleotides including plant viral replicase genes such as RepA, cyclins, E2F, prolifera, cdc2 and cdc25; 2) developmental polynucleotides such as Lec1, Kn1 family, WUSCHEL, Zwille, BBM, Aintegumenta (ANT), FUS3, and members of the Knotted family, such as Kn1, STM, OSH1, and SbH1; 3) anti-apoptosis polynucleotides such as CED9, Bcl2, Bcl-X(L), Bcl-W, A1, McL-1, Mac1, Boo, and Bax-inhibitors; 4) hormone polynucleotides such as IPT, TZS, and CKI-1; and 5) silencing constructs targeted against cell cycle repressors, such as Rb, CK1, prohibitin, and weel, or stimulators of apoptosis such as APAF-1, bad, bax, CED-4, and caspase-3, and repressors of plant developmental transitions, such as Pickle and WD polycomb genes including FIE and Medea. The polynucleotides can be silenced by any known method such as antisense, RNA interference, cosuppression, chimerplasty, or transposon insertion.

[0045] The cell proliferation factors can be introduced into cells through the introduction of a polynucleotide that encodes the proliferation factor. The use of the term "polynucleotide" is not intended to limit compositions to polynucleotides comprising DNA. Polynucleotides can comprise ribonucleotides and combinations of ribonucleotides and deoxyribonucleotides. Such deoxyribonucleotides and ribonucleotides include both naturally occurring molecules and synthetic analogues. The polynucleotides also encompass all forms of sequences including, but not limited to, single-, double-, or multi-stranded forms, hairpins, stem-and-loop structures, circular plasmids, and the like. The polynucleotide encoding the cell proliferation factor may be native to the cell or heterologous. A native polypeptide or polynucleotide comprises a naturally occurring amino acid sequence or nucleotide sequence. "Heterologous" in reference to a polypeptide or a nucleotide sequence is a polypeptide or a sequence that originates from a different species, or if from the same species, is substantially modified from its native form in composition and/or genomic locus by deliberate human intervention.

[0046] An "isolated" or "purified" polynucleotide or protein, or biologically active portion thereof, is substantially or essentially free from components that normally accompany or interact with the polynucleotide or protein as found in its naturally occurring environment. Thus, an isolated or purified polynucleotide or protein is substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized. Optimally, an "isolated" polynucleotide is free of sequences (optimally protein encoding sequences) that naturally flank the polynucleotide (i.e., sequences located at the 5' and 3' ends of the polynucleotide) in the genomic DNA of the organism from which the polynucleotide is derived. For example, in various embodiments, the isolated polynucleotide can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb, or 0.1 kb of nucleotide sequence that naturally flank the polynucleotide in genomic DNA of the cell from which the polynucleotide is derived. A protein that is substantially free of cellular material includes preparations of protein having less than about 30%, 20%, 10%, 5%, or 1% (by dry weight) of contaminating protein. When the protein or biologically active portion thereof is recombinantly produced, optimally culture medium represents less than about 30%, 20%, 10%, 5%, or 1% (by dry weight) of chemical precursors or non-protein-of-interest chemicals.

[0047] Any of a number of cell proliferation factors can be used. In certain embodiments, those cell proliferation factors that are capable of stimulating embryogenesis are used to enhance targeted polynucleotide modification. Such cell proliferation factors are referred to herein as embryogenesis-stimulating polypeptides and they include, but are not limited to, babyboom polypeptides.

[0048] In some embodiments, the cell proliferation factor is a member of the AP2/ERF family of proteins. The AP2/ERF family of proteins is a plant-specific class of putative transcription factors that regulate a wide variety of developmental processes and are characterized by the presence of an AP2 DNA binding domain that is predicted to form an amphipathic alpha helix that binds DNA (PFAM Accession PF00847). The AP2 domain was first identified in APETALA2, an Arabidopsis protein that regulates meristem identity, floral organ specification, seed coat development, and floral homeotic gene expression. The AP2/ERF proteins have been subdivided into distinct subfamilies based on the presence of conserved domains. Initially, the family was divided into two subfamilies based on the number of DNA binding domains, with the ERF subfamily having one DNA binding domain, and the AP2 subfamily having 2 DNA binding domains. As more sequences were identified, the family was subsequently subdivided into five subfamilies: AP2, DREB, ERF, RAV, and others. (Sakuma et al. (2002) Biochem Biophys Res Comm 290:998-1009).

[0049] Members of the APETALA2 (AP2) family of proteins function in a variety of biological events, including but not limited to, development, plant regeneration, cell division, embryogenesis, and cell proliferation (see, e.g., Riechmann and Meyerowitz (1998) Biol Chem 379:633-646; Saleh and Pages (2003) Genetika 35:37-50 and Database of Arabidopsis Transcription Factors at daft.cbi.pku.edu.cn). The AP2 family includes, but is not limited to, AP2, ANT, Glossy15, AtBBM, BnBBM, and maize ODP2/BBM.

[0050] Provided herein is an analysis of fifty sequences with homology to a maize BBM sequence (also referred to as maize ODP2 or ZmODP2, the polynucleotide and amino acid sequence of the maize BBM is set forth in SEQ ID NO: 9 and 10, respectively; the polynucleotide and amino acid sequence of another ZmBBM is set forth in SEQ ID NO: 121 and 122, respectively). The analysis identified three motifs (motifs 4-6; set forth in SEQ ID NOs: 51-53), along with the AP2 domains (motifs 2 and 3; SEQ ID NOs: 49 and 50) and linker sequence that bridges the AP2 domains (motif 1; SEQ ID NO: 48), that are found in all of the BBM homologues. Thus, motifs 1-6 distinguish these BBM homologues from other AP2-domain containing proteins (e.g., WRI, AP2, and RAP2.7) and these BBM homologues comprise a subgroup of AP2 family of proteins referred to herein as the BBM/PLT subgroup. In some embodiments, the cell proliferation factor that is used in the methods and compositions is a member of the BBM/PLT group of AP2 domain-containing polypeptides. In these embodiments, the cell proliferation factor comprises two AP2 domains and motifs 4-6 (SEQ ID NOs: 51-53) or a fragment or variant thereof. In some of these embodiments, the AP2 domains have the sequence set forth in SEQ ID NOs: 49 and 50 or a fragment or variant thereof, and in particular embodiments, further comprises the linker sequence of SEQ ID NO: 48 or a fragment or variant thereof. In other embodiments, the cell proliferation factor comprises at least one of motifs 4-6 or a fragment or variant thereof, along with two AP2 domains, which in some embodiments have the sequence set forth in SEQ ID NO: 49 and/or 50 or a fragment or variant thereof, and in particular embodiments have the linker sequence of SEQ ID NO: 48 or a fragment or variant thereof. Based on the phylogenetic analysis provided herein, the subgroup of BBM/PLT polypeptides can be subdivided into the BBM, AIL6/7, PLT1/2, AIL1, PLT3, and ANT groups of polypeptides.

[0051] In some embodiments, the cell proliferation factor is a babyboom (BBM) polypeptide, which is a member of the AP2 family of transcription factors. The BBM protein from Arabidopsis (AtBBM) is preferentially expressed in the developing embryo and seeds and has been shown to play a central role in regulating embryo-specific pathways. Overexpression of AtBBM has been shown to induce spontaneous formation of somatic embryos and cotyledon-like structures on seedlings. See, Boutiler et al. (2002) The Plant Cell 14:1737-1749. The maize BBM protein also induces embryogenesis and promotes transformation (See, U.S. Pat. No. 7,579,529, which is herein incorporated by reference in its entirety). Thus, BBM polypeptides stimulate proliferation, induce embryogenesis, enhance the regenerative capacity of a plant, enhance transformation, and as demonstrated herein, enhance rates of targeted polynucleotide modification. As used herein "regeneration" refers to a morphogenic response that results in the production of new tissues, organs, embryos, whole plants or parts of whole plants that are derived from a single cell or a group of cells. Regeneration may proceed indirectly via a callus phase or directly, without an intervening callus phase. "Regenerative capacity" refers to the ability of a plant cell to undergo regeneration.

[0052] In some embodiments, the babyboom polypeptide comprises two AP2 domains and at least one of motifs 7 and 10 (set forth in SEQ ID NO: 54 and 57, respectively) or a variant or fragment thereof. In certain embodiments, the AP2 domains are motifs 3 and 2 (SEQ ID NOs: 50 and 49, respectively) or a fragment or variant thereof, and in particular embodiments, the babyboom polypeptide further comprises a linker sequence between AP2 domain 1 and 2 having motif 1 (SEQ ID NO: 48) or a fragment or variant thereof. In particular embodiments, the BBM polypeptide further comprises motifs 4-6 (SEQ ID NOs 51-53) or a fragment or variant thereof. The BBM polypeptide can further comprise motifs 8 and 9 (SEQ ID NOs: 55 and 56, respectively) or a fragment or variant thereof, and in some embodiments, motif 10 (SEQ ID NO: 57) or a variant or fragment thereof. In some of these embodiments, the BBM polypeptide also comprises at least one of motif 14 (set forth in SEQ ID NO: 58), motif 15 (set forth in SEQ ID NO: 59), and motif 19 (set forth in SEQ ID NO: 60), or variants or fragments thereof. The variant of a particular amino acid motif can be an amino acid sequence having at least about 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or greater sequence identity with the motif disclosed herein. Alternatively, variants of a particular amino acid motif can be an amino acid sequence that differs from the amino acid motif by 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acids.

[0053] Non-limiting examples of babyboom polynucleotides and polypeptides that can be used in the methods and compositions include the Arabidopsis thaliana AtBBM (SEQ ID NOs: 21 and 22), Brassica napus BnBBM1 (SEQ ID NOs: 23 and 24), Brassica napus BnBBM2 (SEQ ID NOs: 25 and 26), Medicago truncatula MtBBM (SEQ ID NOs: 7 and 8), Glycine max GmBBM (SEQ ID NOs: 1 and 2), Vitis vinifera VvBBM (SEQ ID NOs: 5 and 6), Zea mays ZmBBM (SEQ ID NOs: 9 and 10 and genomic sequence set forth in SEQ ID NO: 68; or SEQ ID NOs: 121 and 122 and genomic sequence set forth in SEQ ID NO: 116) and ZmBBM2 (SEQ ID NOs: 11 and 12), Oryza sativa OsBBM (polynucleotide sequences set forth in SEQ ID NOs: 13 and 120; amino acid sequence set forth in SEQ ID NO: 14; and genomic sequence set forth in SEQ ID NO: 117), OsBBM1 (SEQ ID NOs: 15 and 16), OsBBM2 (SEQ ID NOs: 17 and 18), and OsBBM3 (SEQ ID NOs: 19 and 20), Sorghum bicolor SbBBM (SEQ ID NOs: 3 and 4 and genomic sequence set forth in SEQ ID NO: 69) and SbBBM2 (SEQ ID NOs: 27 and 28) or active fragments or variants thereof. In particular embodiments, the cell proliferation factor is a maize BBM polypeptide (SEQ ID NO: 10, 122, or 12) or a variant or fragment thereof, or is encoded by a maize BBM polynucleotide (SEQ ID NO: 9, 68, 121, 116, or 11) or a variant or fragment thereof.

[0054] Thus, in some embodiments, a polynucleotide encoding a cell proliferation factor has a nucleotide sequence having at least 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to the nucleotide sequence set forth in SEQ ID NO: 13, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 68, 116, 117, 120, 121, or 69 or the cell proliferation factor has an amino acid sequence having at least 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to the amino acid sequence set forth in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 122, or 28. In some of these embodiments, the cell proliferation factor has at least one of motifs 7 and 10 (SEQ ID NO: 54 and 57, respectively) or a variant or fragment thereof at the corresponding amino acid residue positions in the babyboom polypeptide. In other embodiments, the cell proliferation factor further comprises at least one of motif 14 (set forth in SEQ ID NO: 58), motif 15 (set forth in SEQ ID NO: 59), and motif 19 (set forth in SEQ ID NO: 60) or a variant or fragment thereof at the corresponding amino acid residue positions in the babyboom polypeptide.

[0055] In other embodiments, other cell proliferation factors, such as, Lec1, Kn1 family, WUSCHEL (e.g., WUS1, the polynucleotide and amino acid sequence of which is set forth in SEQ ID NO: 61 and 62; WUS2, the polynucleotide and amino acid sequence of which is set forth in SEQ ID NO: 63 and 64; WUS2 alt, the polynucleotide and amino acid sequence of which is set forth in SEQ ID NO: 114 and 115; WUS3, the polynucleotide and amino acid sequence of which is set forth in SEQ ID NO: 105 and 106), Zwille, and Aintegumeta (ANT), may be used alone, or in combination with a babyboom polypeptide or other cell proliferation factor. See, for example, U.S. Application Publication No. 2003/0135889, International Application Publication No. WO 03/001902, and U.S. Pat. No. 6,512,165, each of which is herein incorporated by reference. When multiple cell proliferation factors are used, or when a babyboom polypeptide is used along with any of the abovementioned polypeptides, the polynucleotides encoding each of the factors can be present on the same expression cassette or on separate expression cassettes. When two or more factors are coded for by separate expression cassettes, the expression cassettes can be provided to the plant simultaneously or sequentially.

[0056] In some embodiments, polynucleotides or polypeptides having homology to a known babyboom polynucleotide or polypeptide and/or sharing conserved functional domains can be identified by screening sequence databases using programs such as BLAST. The databases can be queried using full length sequences, or with fragments including, but not limited to, conserved domains or motifs. In some embodiments, the sequences retrieved from the search can be further characterized by alignment programs to quickly identify and compare conserved functional domains, regions of highest homology, and nucleotide and/or amino differences between sequences, including insertions, deletions, or substitutions, including those programs described in more detail elsewhere herein. The retrieved sequences can also be evaluated using a computer program to analyze and output the phylogenetic relationship between the sequences.

[0057] In other embodiments, polynucleotides or polypeptides having homology to a known babyboom polynucleotide or polypeptide or one that has been disclosed herein and/or sharing conserved functional domains can be identified using standard nucleic acid hybridization techniques, such as those described in more detail elsewhere herein. Extensive guides on nucleic acid hybridization include Tijssen (1993) Laboratory Techniques in Biochemistry and Molecular Biology--Hybridization with Nucleic Acid Probes, Part I, Chapter 2 (Elsevier, NY); Ausubel et al., eds. (1995) Current Protocols in Molecular Biology, Chapter 2 (Greene Publishing and Wiley-Interscience, NY); and, Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, N.Y.).

[0058] Compositions further comprise isolated BBM polynucleotides and isolated BBM polypeptides and variants and fragments thereof, expression cassettes comprising the same, and plants comprising the same. Compositions can comprise isolated polynucleotides encoding GmBBM (SEQ ID NO: 1), SbBBM (SEQ ID NO: 3), MtBBM (SEQ ID NO: 7), or OsBBM2 (SEQ ID NO: 17) or an active variant or fragment thereof. Isolated polypeptides include those having SEQ ID NO: 2, 4, 8, or 18 (GmBBM, SbBBM, MtBBM, or OsBBM2, respectively) or an active variant or fragment thereof. The percent identity of the novel BBM polypeptide sequences with those known in the art is presented in Table 1.

TABLE-US-00001 TABLE 1 The percent sequence identity between each of 14 babyboom polypeptides. ZmBBM2 SbBBM2 OsBBM2 OsBBM3 OsBBM1 ZmBBM SbBBM ZmBBM2 100 SbBBM2 92 100 OsBBM2 79 77 100 OsBBM3 64 66 67 100 OsBBM1 50 46 46 46 100 ZmBBM 43 44 44 47 47 100 SbBBM 43 44 42 45 44 90 100 OsBBM 44 44 45 46 49 69 70 BnBBM1 42 41 42 41 40 45 42 BnBBM2 43 41 42 41 39 46 44 AtBBM 43 41 39 42 41 43 43 MtBBM 41 40 40 41 43 42 43 GmBBM 45 44 42 45 44 41 42 VvBBM 51 48 50 48 50 48 47 OsBBM BnBBM1 BnBBM2 AtBBM MtBBM GmBBM VvBBM ZmBBM2 SbBBM2 OsBBM2 OsBBM3 OsBBM1 ZmBBM SbBBM OsBBM 100 BnBBM1 43 100 BnBBM2 44 97 100 AtBBM 42 81 82 100 MtBBM 41 47 47 47 100 GmBBM 44 46 46 43 68 100 VvBBM 48 49 49 48 58 62 100

[0059] By "fragment" is intended a portion of the polynucleotide or a portion of an amino acid sequence and hence protein encoded thereby. Fragments of a polynucleotide may retain the biological activity of the native polynucleotide and, for example, have promoter activity (i.e., capable of initiating transcription), or are capable of stimulating proliferation, inducing embryogenesis, or modifying the regenerative capacity of a plant. In those embodiments wherein the polynucleotide encodes a polypeptide, fragments of the polynucleotide may encode protein fragments that retain the biological activity of the native protein. Alternatively, fragments of a polynucleotide that are useful as hybridization probes generally do not retain biological activity or encode fragment proteins that retain biological activity. Thus, fragments of a nucleotide sequence may range from at least about 20, 50, 100, 150, 200, 250, 300, 400, 500 nucleotides, or greater.

[0060] A fragment of a polynucleotide that encodes a biologically active portion of a cell proliferation factor, for example, will encode at least 15, 25, 30, 50, 100, 150, 200, 250, 300, 400, 500 contiguous amino acids, or up to the total number of amino acids present in the full-length cell proliferation factor. Fragments of a cell proliferation factor polynucleotide that are useful as hybridization probes or PCR primers generally need not encode a biologically active portion of a cell proliferation factor.

[0061] "Variants" is intended to mean substantially similar sequences. For polynucleotides, a variant comprises a polynucleotide having deletions at the 5' and/or 3' end; deletion and/or addition of one or more nucleotides at one or more internal sites in the native polynucleotide; and/or substitution of one or more nucleotides at one or more sites in the native polynucleotide. As used herein, a "native" polynucleotide or polypeptide comprises a naturally occurring nucleotide sequence or amino acid sequence, respectively. For polynucleotides encoding polypeptides conservative variants include those sequences that, because of the degeneracy of the genetic code, encode the amino acid sequence the polypeptide (e.g., cell proliferation factor). Naturally occurring variants such as these can be identified with the use of well-known molecular biology techniques, such as, for example, with polymerase chain reaction (PCR) and hybridization techniques. Variant polynucleotides also include synthetically derived polynucleotides, such as those generated, for example, by using site-directed mutagenesis. Generally, variants of a particular will have at least about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to that particular polynucleotide as determined by sequence alignment programs and parameters.

[0062] Variants of a particular polynucleotide that encodes a polypeptide can also be evaluated by comparison of the percent sequence identity between the polypeptide encoded by a variant polynucleotide and the polypeptide encoded by the particular polynucleotide. Percent sequence identity between any two polypeptides can be calculated using sequence alignment programs and parameters. Where any given pair of polynucleotides is evaluated by comparison of the percent sequence identity shared by the two polypeptides they encode, the percent sequence identity between the two encoded polypeptides is at least about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity.

[0063] "Variant" protein is intended to mean a protein derived from the native protein by deletion of one or more amino acids at the N-terminal and/or C-terminal end of the native protein; deletion and/or addition of one or more amino acids at one or more internal sites in the native protein; and/or substitution of one or more amino acids at one or more sites in the native protein. Variant proteins retain the desired biological activity of the native protein. For example, variant cell proliferation factors stimulate proliferation and variant babyboom polypeptides are capable of stimulating proliferation, inducing embryogenesis, modifying the regenerative capacity of a plant, increasing the transformation efficiency in a plant, increasing or maintaining the yield in a plant under abiotic stress, producing asexually derived embryos in a plant, and/or enhancing rates of targeted polynucleotide modification. Such variants may result from, for example, genetic polymorphism or from human manipulation. Biologically active variants of a native cell proliferation factor will have at least about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to the amino acid sequence for the native protein as determined by sequence alignment programs and parameters. A biologically active variant of a cell proliferation factor protein may differ from that protein by as few as 1-15 amino acid residues, as few as 1-10, such as 6-10, as few as 5, as few as 4, 3, 2, or even 1 amino acid residue.

[0064] In some embodiments, variants or fragments of the BBM polypeptide have amino acid residues valine, tyrosine, and leucine at the positions corresponding to positions 311, 312, and 313, respectively, of SEQ ID NO: 4 or variants or fragments of the BBM polynucleotide encodes a polypeptide having amino acid residues valine, tyrosine, and leucine at the positions corresponding to positions 311, 312, and 313, respectively, of SEQ ID NO: 4. In certain embodiments, variants or fragments of the BBM polypeptide have amino acid residues valine, tyrosine, and leucine at the positions corresponding to positions 337, 338, and 339, respectively, of SEQ ID NO: 18 or variants or fragments of the BBM polynucleotide encodes a polypeptide having amino acid residues valine, tyrosine, and leucine at the positions corresponding to positions 337, 338, and 339, respectively, of SEQ ID NO: 18. In other embodiments, variants or fragments of the BBM polypeptide have amino acid residues methionine, alanine, and serine at the positions corresponding to positions 1, 2, and 3, respectively, of SEQ ID NO: 8 or variants or fragments of the BBM polynucleotide encodes a polypeptide having amino acid residues methionine, alanine, and serine at the positions corresponding to positions 1, 2, and 3, respectively of SEQ ID NO: 8.

[0065] The babyboom polynucleotides and polypeptides can be introduced into a plant or plant cell in order to stimulate embryogenesis, modify the regenerative capacity of the plant, increase the transformation efficiency of the plant, increase or maintain the yield in the plant under abiotic stress, and/or to enhance targeted polynucleotide modification. The babyboom polynucleotide or polypeptide can be provided to a plant simultaneously with or prior to the introduction of a polynucleotide of interest in order to facilitate transformation of the plant with the polynucleotide of interest. Further, a haploid plant cell can be provided a novel babyboom polynucleotide or polypeptide to produce a haploid plant embryo (see U.S. Pat. No. 7,579,529, which is herein incorporated by reference in its entirety).

[0066] The cell proliferation factor polynucleotide can be operably linked to a promoter active in a plant. Various promoters can be used for the regulation of the expression of the cell proliferation factor. The promoter may be selected based on the desired outcome or expression pattern (for a review of plant promoters, see Potenza et al. (2004) In Vitro Cell Dev Biol 40:1-22).

[0067] Constitutive promoters include, for example, the core promoter of the Rsyn7 promoter and other constitutive promoters disclosed in WO 99/43838 and U.S. Pat. No. 6,072,050; the core CaMV 35S promoter (Odell et al. (1985) Nature 313:810-812); rice actin (McElroy et al. (1990) Plant Cell 2:163-171); ubiquitin (Christensen et al. (1989) Plant Mol. Biol. 12:619-632 and Christensen et al. (1992) Plant Mol. Biol. 18:675-689); pEMU (Last et al. (1991) Theor. Appl. Genet. 81:581-588); MAS (Velten et al. (1984) EMBO J. 3:2723-2730); ALS promoter (U.S. Pat. No. 5,659,026), the Agrobacterium nopaline synthase (NOS) promoter (Bevan et al. (1983) Nucl. Acids Res. 11:369-385), and the like. Other constitutive promoters are described in, for example, U.S. Pat. Nos. 5,608,149; 5,608,144; 5,604,121; 5,569,597; 5,466,785; 5,399,680; 5,268,463; 5,608,142; and 6,177,611.

[0068] In some embodiments, an inducible promoter can be used, such as from a pathogen-inducible promoter. Such promoters include those from pathogenesis-related proteins (PR proteins), which are induced following infection by a pathogen; e.g., PR proteins, SAR proteins, beta-1,3-glucanase, chitinase, etc. See, for example, Redolfi et al. (1983) Neth. J. Plant Pathol. 89:245-254; Uknes et al. (1992) Plant Cell 4:645-656; and Van Loon (1985) Plant Mol. Virol. 4:111-116. See also WO 99/43819, herein incorporated by reference. Promoters that are expressed locally at or near the site of pathogen infection include, for example, Marineau et al. (1987) Plant Mol. Biol. 9:335-342; Matton et al. (1989) Mol Plant-Microbe Interact 2:325-331; Somsisch et al. (1986) Proc. Natl. Acad. Sci. USA 83:2427-2430; Somsisch et al. (1988) Mol. Gen. Genet. 2:93-98; and Yang (1996) Proc. Natl. Acad. Sci. USA 93:14972-14977. See also, Chen et al. (1996) Plant J. 10:955-966; Zhang et al. (1994) Proc. Natl. Acad. Sci. USA 91:2507-2511; Warner et al. (1993) Plant J. 3:191-201; Siebertz et al. (1989) Plant Cell 1:961-968; U.S. Pat. No. 5,750,386 (nematode-inducible); and the references cited therein. Additional promoters include the inducible promoter for the maize PRms gene, whose expression is induced by the pathogen Fusarium moniliforme (see, for example, Cordero et al. (1992) Physiol. Mol. Plant Path. 41:189-200). Wound-inducible promoters include potato proteinase inhibitor (pin II) gene (Ryan (1990) Ann. Rev. Phytopath. 28:425-449; Duan et al. (1996) Nat Biotechnol 14:494-498); wun1 and wun2, U.S. Pat. No. 5,428,148; win1 and win2 (Stanford et al. (1989) Mol. Gen. Genet. 215:200-208); system in (McGurl et al. (1992) Science 225:1570-1573); WIP1 (Rohmeier et al. (1993) Plant Mol. Biol. 22:783-792; Eckelkamp et al. (1993) FEBS Lett 323:73-76); MPI gene (Corderok et al. (1994) Plant J. 6:141-150); and the like, herein incorporated by reference. Another inducible promoter is the maize In2-2 promoter (deVeylder et al. (2007) Plant Cell Physiol 38:568-577, herein incorporated by reference).

[0069] Chemical-regulated promoters can be used to modulate the expression of a gene in a plant through the application of an exogenous chemical regulator. The promoter may be a chemical-inducible promoter, where application of the chemical induces gene expression, or a chemical-repressible promoter, where application of the chemical represses gene expression. Chemical-inducible promoters are known in the art and include, but are not limited to, the maize In2-2 promoter, which is activated by benzenesulfonamide herbicide safeners (De Veylder et al. (1997) Plant Cell Physiol. 38:568-77), the maize GST promoter (GST-II-27, WO 93/01294), which is activated by hydrophobic electrophilic compounds that are used as pre-emergent herbicides, the PR-1 promoter (Cao et al. (2006) Plant Cell Reports 6:554-60), which is activated by BTH or benxo(1,2,3)thiaidazole-7-carbothioic acid s-methyl ester, the tobacco PR-1a promoter (Ono et al. (2004) Biosci. Biotechnol. Biochem. 68:803-7), which is activated by salicylic acid, the copper inducible ACEI promoter (Mett et al. (1993) PNAS 90:4567-4571), the ethanol-inducible promoter AlcA (Caddick et al. (1988) Nature Biotechnol 16:177-80), an estradiol-inducible promoter (Bruce et al. (2000) Plant Cell 12:65-79), the XVE estradiol-inducible promoter (Zao et al. (2000) Plant J 24:265-273), the VGE methoxyfenozide inducible promoter (Padidam et al. (2003) Transgenic Res 12:101-109), and the TGV dexamethasone-inducible promoter (Bohner et al. (1999) Plant J 19:87-95). Other chemical-regulated promoters of interest include steroid-responsive promoters (see, for example, the glucocorticoid-inducible promoter in Schena et al. (1991) Proc. Natl. Acad. Sci. USA 88:10421-10425 and McNellis et al. (1998) Plant J. 14(2):247-257) and tetracycline-inducible and tetracycline-repressible promoters (see, for example, Gatz et al. (1991) Mol. Gen. Genet. 227:229-237; Gatz et al. (1992) Plant J 2:397-404; and U.S. Pat. Nos. 5,814,618 and 5,789,156), herein incorporated by reference.

[0070] Tissue-preferred promoters can be utilized to target enhanced expression of a sequence of interest within a particular plant tissue. Tissue-preferred promoters include Kawamata et al. (1997) Plant Cell Physiol. 38(7):792-803; Hansen et al. (1997) Mol. Gen Genet. 254(3):337-343; Russell et al. (1997) Transgenic Res. 6(2):157-168; Rinehart et al. (1996) Plant Physiol. 112(3):1331-1341; Van Camp et al. (1996) Plant Physiol. 112(2):525-535; Canevascini et al. (1996) Plant Physiol. 112(2):513-524; Lam (1994) Results Probl. Cell Differ. 20:181-196; and Guevara-Garcia et al. (1993) Plant J. 4(3):495-505.

[0071] Leaf-preferred promoters are known in the art. See, for example, Yamamoto et al. (1997) Plant J. 12:255-265; Kwon et al. (1994) Plant Physiol. 105:357-67; Yamamoto et al. (1994) Plant Cell Physiol. 35:773-778; Gotor et al. (1993) Plant J. 3:509-18; Orozco et al. (1993) Plant Mol. Biol. 23:1129-1138; and Matsuoka et al. (1993) Proc. Natl. Acad. Sci. USA 90:9586-9590. In addition, promoter of cab and rubisco can also be used. See, for example, Simpson et al. (1958) EMBO J 4:2723-2729 and Timko et al. (1988) Nature 318:57-58.

[0072] Root-preferred promoters are known and can be selected from the many available. See, for example, Hire et al. (1992) Plant Mol. Biol. 20:207-218 (soybean root-specific glutamine synthase gene); Keller and Baumgartner (1991) Plant Cell 3:1051-1061 (root-specific control element in the GRP 1.8 gene of French bean); Sanger et al. (1990) Plant Mol. Biol. 14:433-443 (root-specific promoter of the mannopine synthase (MAS) gene of Agrobacterium tumefaciens); and Miao et al. (1991) Plant Cell 3:11-22 (full-length cDNA clone encoding cytosolic glutamine synthase (GS), which is expressed in roots and root nodules of soybean). See also Bogusz et al. (1990) Plant Cell 2:633-641, where two root-specific promoters isolated from hemoglobin genes from the nitrogen-fixing nonlegume Parasponia andersonii and the related non-nitrogen-fixing nonlegume Trema tomentosa are described. Leach and Aoyagi (1991) describe their analysis of the promoters of the highly expressed rolC and rolD root-inducing genes of Agrobacterium rhizogenes (see Plant Sci (Limerick) 79:69-76). Teeri et al. (1989) used gene fusion to lacZ to show that the Agrobacterium T-DNA gene encoding octopine synthase is especially active in the epidermis of the root tip and that the TR2' gene is root specific in the intact plant and stimulated by wounding in leaf tissue (see EMBO J. 8:343-350). The TR1' gene, fused to nptII (neomycin phosphotransferase II) showed similar characteristics. Additional root-preferred promoters include the VfENOD-GRP3 gene promoter (Kuster et al. (1995) Plant Mol. Biol. 29:759-772); and rolB promoter (Capana et al. (1994) Plant Mol. Biol. 25:681-691. See also U.S. Pat. Nos. 5,837,876; 5,750,386; 5,633,363; 5,459,252; 5,401,836; 5,110,732; and 5,023,179. Another root-preferred promoter includes the promoter of the phaseolin gene (Murai et al. (1983) Science 23:476-482 and Sengopta-Gopalen et al. (1988) Proc. Natl. Acad. Sci. USA 82:3320-3324.

[0073] Seed-preferred promoters include both those promoters active during seed development as well as promoters active during seed germination. See Thompson et al. (1989) BioEssays 10:108, herein incorporated by reference. Such seed-preferred promoters include, but are not limited to, Cim1 (cytokinin-induced message); cZ19B1 (maize 19 kDa zein); and milps (myo-inositol-1-phosphate synthase); (see WO 00/11177 and U.S. Pat. No. 6,225,529; herein incorporated by reference). For dicots, seed-preferred promoters include, but are not limited to, bean .beta.-phaseolin, napin, .beta.-conglycinin, soybean lectin, cruciferin, and the like. For monocots, seed-preferred promoters include, but are not limited to, maize 15 kDa zein, 22 kDa zein, 27 kDa gamma zein, waxy, shrunken 1, shrunken 2, globulin 1, oleosin, nuc1, etc. See also WO 00/12733, where seed-preferred promoters from end1 and end2 genes are disclosed; herein incorporated by reference.

[0074] Where low-level expression is desired, weak promoters will be used. Generally, by "weak promoter" is intended a promoter that drives expression of a coding sequence at a low level. By low level is intended at levels of about 1/1000 transcripts to about 1/100,000 transcripts to about 1/500,000 transcripts. Alternatively, it is recognized that weak promoters also encompasses promoters that are expressed in only a few cells and not in others to give a total low level of expression. Where a promoter is expressed at unacceptably high levels, portions of the promoter sequence can be deleted or modified to decrease expression levels. Such weak constitutive promoters include, for example, the core promoter of the Rsyn7 promoter (WO 99/43838 and U.S. Pat. No. 6,072,050), the core 35S CaMV promoter, and the like.

[0075] Other promoters of interest include the Rab16 promoter (Mundy et al. (1990) PNAS 87: 1406-1410), the Brassica LEA3-1 promoter (U.S. Application Publication No. US 2008/0244793), the HVA1s, Dhn8s, and Dhn4s from barley and the wsi18j, rab16Bj from rice (Xiao and Xue (2001) Plant Cell Rep 20:667-73), and D113 from cotton (Luo et al. (2008) Plant Cell Rep 27:707-717).

[0076] In some embodiments, the polynucleotide encoding a cell proliferation factor (e.g., babyboom polypeptide) is operably linked to a maize ubiquitin promoter or a maize oleosin promoter (e.g., SEQ ID NO: 65 or a variant or fragment thereof).

[0077] In some of those embodiments wherein the vector comprises a presently disclosed promoter construct operably linked to a polynucleotide encoding a site-specific recombinase and in some embodiments, a polynucleotide encoding a babyboom polypeptide, the vector can further comprise a polynucleotide encoding a Wuschel polypeptide (see International Application Publication No. WO 01/23575 and U.S. Pat. No. 7,256,322, each of which are herein incorporated by reference in its entirety). In certain embodiments, the polynucleotide encoding the Wuschel polypeptide has the sequence set forth in SEQ ID NO: 61, 63, 114, or 105 (WUS1, WUS2, WUS2 alt, or WUS3, respectively) or an active variant or fragment thereof. In particular embodiments, the Wuschel polypeptide has the sequence set forth in SEQ ID NO: 62, 64, 115, or 106 (WUS1, WUS2, WUS2 alt, or WUS3, respectively) or an active variant or fragment thereof. In some of these embodiments, the polynucleotide encoding a Wuschel polypeptide is operably linked to a promoter active in the plant, including but not limited to the maize In2-2 promoter or a nopaline synthase promoter. In some of these embodiments, the expression cassettes for the site-specific recombinase, the babyboom polypeptide, and the Wuschel polypeptide are all flanked by site-specific recombination sites that are directly repeated and are recognized by the site-specific recombinase whose expression is regulated by a presently disclosed promoter construct, such that expression of the site-specific recombinase results in the excision of the three expression cassettes.

[0078] In some embodiments, the vector comprises a promoter disclosed herein (maize Rab17 promoter with an attB1 site) operably linked to a site-specific recombinase (e.g., Cre, FLP); a second promoter operably linked to a cell proliferation factor (e.g., a babyboom polypeptide); and a third promoter operably linked to a polynucleotide of interest, such as those disclosed elsewhere herein (e.g., trait gene), or multiple polynucleotides of interest operably linked to one or more promoters; and in some embodiments, a fourth promoter operably linked to a WUS gene. In some of these embodiments, the expression cassettes for the site-specific recombinase, the cell proliferation factor, and the Wuschel polypeptide are all flanked by site-specific recombination sites that are directly repeated and are recognized by the site-specific recombinase, such that expression of the site-specific recombinase results in the excision of the three expression cassettes, leaving the polynucleotides of interest (e.g., trait genes) behind. In other embodiments, the polynucleotide of interest (e.g., trait gene) is introduced along with or following the vector comprising a presently disclosed promoter operably linked to a site-specific recombinase, and at least one cell proliferation factor (e.g., babyboom polypeptide, Wuschel polypeptide) operably linked to one or more promoters, wherein the polynucleotide of interest is present on a separate vector from the expression cassettes for the site-specific recombinase and cell proliferation factor(s). In some of these embodiments, the expression cassettes for the site-specific recombinase and cell proliferation factor(s) are flanked by recombination sites that are recognized by the site-specific recombinase. Expression of the cell proliferation factors facilitates the transformation of the polynucleotide of interest (e.g., trait gene) and expression of the site-specific recombinase results in the excision of the expression cassettes for the site-specific recombinase and cell proliferation factor(s).

[0079] The presently disclosed promoter constructs, expression cassettes, and vectors can be introduced into a host cell. By "host cell" is meant a cell, which comprises a heterologous nucleic acid sequence. Host cells may be prokaryotic cells such as E. coli, or eukaryotic cells such as yeast, insect, amphibian, or mammalian cells. In some examples, host cells are monocotyledonous or dicotyledonous plant cells. In particular embodiments, the monocotyledonous host cell is a maize host cell.

[0080] An intermediate host cell may be used, for example, to increase the copy number of the cloning vector and/or to mediate transformation of a different host cell. With an increased copy number, the vector containing the nucleic acid of interest can be isolated in significant quantities for introduction into the desired plant cells. In one embodiment, plant promoters that do not cause expression of the polypeptide in bacteria are employed.

[0081] Prokaryotes most frequently are represented by various strains of E. coli; however, other microbial strains may also be used. Commonly used prokaryotic control sequences which are defined herein to include promoters for transcription initiation, optionally with an operator, along with ribosome binding sequences, include such commonly used promoters as the beta lactamase (penicillinase) and lactose (lac) promoter systems (Chang et al. (1977) Nature 198:1056), the tryptophan (trp) promoter system (Goeddel et al. (1980) Nucleic Acids Res. 8:4057) and the lambda derived P L promoter and N-gene ribosome binding site (Shimatake et al. (1981) Nature 292:128). The inclusion of selection markers in DNA vectors transfected in E. coli is also useful. Examples of such markers include genes specifying resistance to ampicillin, tetracycline, or chloramphenicol.

[0082] The vector is selected to allow introduction into the appropriate host cell. Bacterial vectors are typically of plasmid or phage origin. Appropriate bacterial cells are infected with phage vector particles or transfected with naked phage vector DNA. If a plasmid vector is used, the bacterial cells are transfected with the plasmid vector DNA. Expression systems for expressing a protein are available using Bacillus sp. and Salmonella (Palva et al. (1983) Gene 22:229-235); Mosbach et al. (1983) Nature 302:543-545).

[0083] Methods for expressing a polynucleotide of interest in a plant comprise introducing an expression cassette or vector. Alternatively, the method can comprise introducing a promoter construct, wherein the promoter construct is stably integrated into the genome of the plant and operably linked to a polynucleotide of interest.

[0084] "Introducing" is intended to mean presenting to the organism, such as a plant, or the cell the polynucleotide or polypeptide in such a manner that the sequence gains access to the interior of a cell of the organism or to the cell itself. The methods and compositions do not depend on a particular method for introducing a sequence into an organism or cell, only that the polynucleotide or polypeptide gains access to the interior of at least one cell of the organism. Methods for introducing polynucleotides or polypeptides into plants are known in the art including, but not limited to, stable transformation methods, transient transformation methods, virus-mediated methods, and sexual breeding.

[0085] "Stable transformation" is intended to mean that the nucleotide construct introduced into a plant integrates into a genome of the plant and is capable of being inherited by the progeny thereof. "Transient transformation" is intended to mean that a polynucleotide is introduced into the plant and does not integrate into a genome of the plant or a polypeptide is introduced into a plant.

[0086] Protocols for introducing polypeptides or polynucleotide sequences into plants may vary depending on the type of plant or plant cell, i.e., monocot or dicot, targeted for transformation. Suitable methods of introducing polypeptides and polynucleotides into plant cells include microinjection (Crossway et al. (1986) Biotechniques 4:320-334), electroporation (Riggs et al. (1986) Proc. Natl. Acad. Sci. USA 83:5602-5606, Agrobacterium-mediated transformation (U.S. Pat. No. 5,563,055 and U.S. Pat. No. 5,981,840), direct gene transfer (Paszkowski et al. (1984) EMBO J. 3:2717-2722), and ballistic particle acceleration (see, for example, U.S. Pat. No. 4,945,050; U.S. Pat. No. 5,879,918; U.S. Pat. No. 5,886,244; and, U.S. Pat. No. 5,932,782; Tomes et al. (1995) in Plant Cell, Tissue, and Organ Culture: Fundamental Methods, ed. Gamborg and Phillips (Springer-Verlag, Berlin); McCabe et al. (1988) Biotechnology 6:923-926); and Lec1 transformation (WO 00/28058). Also see Weissinger et al. (1988) Ann. Rev. Genet. 22:421-477; Sanford et al. (1987) Particulate Science and Technology 5:27-37 (onion); Christou et al. (1988) Plant Physiol. 87:671-674 (soybean); McCabe et al. (1988) Bio/Technology 6:923-926 (soybean); Finer and McMullen (1991) In Vitro Cell Dev. Biol. 27P:175-182 (soybean); Singh et al. (1998) Theor. Appl. Genet. 96:319-324 (soybean); Datta et al. (1990) Biotechnology 8:736-740 (rice); Klein et al. (1988) Proc. Natl. Acad. Sci. USA 85:4305-4309 (maize); Klein et al. (1988) Biotechnology 6:559-563 (maize); U.S. Pat. Nos. 5,240,855; 5,322,783; and, 5,324,646; Klein et al. (1988) Plant Physiol. 91:440-444 (maize); Fromm et al. (1990) Biotechnology 8:833-839 (maize); Hooykaas-Van Slogteren et al. (1984) Nature 311:763-764; U.S. Pat. No. 5,736,369 (cereals); Bytebier et al. (1987) Proc. Natl. Acad. Sci. USA 84:5345-5349 (Liliaceae); De Wet et al. (1985) in The Experimental Manipulation of Ovule Tissues, ed. Chapman et al. (Longman, New York), pp. 197-209 (pollen); Kaeppler et al. (1990) Plant Cell Rep 9:415-418 and Kaeppler et al. (1992) Theor. Appl. Genet. 84:560-566 (whisker-mediated transformation); D'Halluin et al. (1992) Plant Cell 4:1495-1505 (electroporation); Li et al. (1993) Plant Cell Rep 12:250-255 and Christou and Ford (1995) Annals of Botany 75:407-413 (rice); Osjoda et al. (1996) Nat Biotechnol 14:745-750 (maize via Agrobacterium tumefaciens); all of which are herein incorporated by reference.

[0087] In specific embodiments, the sequences can be provided to a plant using a variety of transient transformation methods. Such transient transformation methods include, but are not limited to, the introduction of the polypeptide of interest directly into the plant or the introduction of a polynucleotide encoding the polypeptide of interest into the plant. Such methods include, for example, microinjection or particle bombardment. See, for example, Crossway et al. (1986) Mol Gen. Genet. 202:179-185; Nomura et al. (1986) Plant Sci. 44:53-58; Hepler et al. (1994) Proc. Natl. Acad. Sci. 91:2176-2180 and Hush et al. (1994) J Cell Sci 107:775-784, all of which are herein incorporated by reference. Alternatively, the polynucleotide can be transiently transformed into the plant using techniques known in the art. Such techniques include viral vector system and the precipitation of the polynucleotide in a manner that precludes subsequent release of the DNA. Thus, the transcription from the particle-bound DNA can occur, but the frequency with which its released to become integrated into the genome is greatly reduced. Such methods include the use particles coated with polyethylimine (PEI; Sigma #P3143).

[0088] In other embodiments, the polynucleotide may be introduced into plants by contacting plants with a virus or viral nucleic acids. Generally, such methods involve incorporating a nucleotide construct within a viral DNA or RNA molecule. It is recognized that the cell proliferation factor may be initially synthesized as part of a viral polyprotein, which later may be processed by proteolysis in vivo or in vitro to produce the desired recombinant protein. Further, it is recognized that promoters also encompass promoters utilized for transcription by viral RNA polymerases. Methods for introducing polynucleotides into plants and expressing a protein encoded therein, involving viral DNA or RNA molecules, are known in the art. See, for example, U.S. Pat. Nos. 5,889,191, 5,889,190, 5,866,785, 5,589,367, 5,316,931, and Porta et al. (1996) Molecular Biotechnology 5:209-221; herein incorporated by reference.

[0089] Other methods of introducing polynucleotides into a plant can be used, including plastid transformation methods, and the methods for introducing polynucleotides into tissues from seedlings or mature seeds.

[0090] Methods are known in the art for the targeted insertion of a polynucleotide at a specific location in the plant genome. In one embodiment, the insertion of the polynucleotide at a desired genomic location is achieved using a site-specific recombination system. See, for example, WO99/25821, WO99/25854, WO99/25840, WO99/25855, and WO99/25853, all of which are herein incorporated by reference. Briefly, the polynucleotide can be contained in a transfer cassette flanked by two non-recombinogenic recombination sites. The transfer cassette is introduced into a plant having stably incorporated into its genome a target site which is flanked by two non-recombinogenic recombination sites that correspond to the sites of the transfer cassette. An appropriate recombinase is provided and the transfer cassette is integrated at the target site. The polynucleotide of interest is thereby integrated at a specific chromosomal position in the plant genome.

[0091] In specific embodiments, methods are provided for the excision of a polynucleotide of interest from a target site in a plant, wherein the polynucleotide of interest is flanked by a first and a second recombination site that are recombinogenic with respect to one another and that are directly repeated. The method comprises introducing into the plant an expression cassette comprising a presently disclosed promoter construct (e.g., SEQ ID NO: 30 or a variant or fragment thereof) operably linked to a site-specific recombinase, expressing the recombinase, so that the recombinase recognizes and implements recombination at the recombination sites flanking the polynucleotide of interest, thereby excising the polynucleotide of interest. The expression cassette can comprise any of the linker sequences, attB sites, termination regions, etc., such as those described herein.

[0092] The terms "target site," and "target sequence," as used interchangeably herein, refer to a polynucleotide sequence present in a cell of an organism, such as a plant, that comprises at least one site-specific recombination site. The target site may be part of the organism's native genome or integrated therein or may be present on an episomal polynucleotide. The genomic target sequence may be on any region of any chromosome, and may or may not be in a region encoding a protein or RNA. The target site may be native to the cell or heterologous. In some embodiments, the heterologous target sequence may have been transgenically inserted into the organism's genome, and may be on any region of any chromosome, including an artificial or satellite chromosome, and may or may not be in a region encoding a protein or RNA. It is recognized that the cell or the organism may comprise multiple target sites, which may be located at one or multiple loci within or across chromosomes.

[0093] Alternative methods for excising a polynucleotide of interest from a target site in a plant include providing a plant comprising a target site comprising in operable linkage: a first site-specific recombination site, a first promoter, the polynucleotide of interest, a second promoter, a polynucleotide encoding a site-specific recombinase, and a second site-specific recombination site. The first and the second site-specific recombination sites are recombinogenic with respect to one another and directly repeated. The polynucleotide of interest and its operably linked promoter may precede or follow the polynucleotide encoding the site-specific recombinase and its operably linked promoter. The second promoter is one of the presently disclosed promoter constructs (e.g., SEQ ID NO: 30 or a variant or fragment thereof). The method comprises expressing the site-specific recombinase, whereby the site-specific recombinase recognizes and implements recombination at the first and the second site-specific recombination sites, thereby excising the polynucleotide of interest and the polynucleotide encoding the site-specific recombinase.

[0094] In some embodiments, the target site further comprises a third promoter operably linked to a polynucleotide encoding a Wuschel polypeptide. The three expression cassettes may be in any order, but in some embodiments, the target site comprises in operable linkage: the first site-specific recombination site, the third promoter, the polynucleotide encoding a Wuschel polypeptide, the first promoter, the polynucleotide of interest, the second promoter, the polynucleotide encoding the site-specific recombinase, and the second site-specific recombination site, wherein expression of the recombinase results in the excision of all three expression cassettes. The expression cassette can comprise any of the linker sequences, attB sites, termination regions, etc., such as those described herein.

[0095] Methods are provided to enhance the efficiency of plastid transformation, which include introducing into a plant cell a heterologous polynucleotide encoding a cell proliferation factor and expressing the heterologous polynucleotide before, during, or immediately following the transformation of the plastid of the plant cell with a polynucleotide of interest. The heterologous polynucleotide encoding a cell proliferation factor can be co-delivered with the polynucleotide of interest or the cell proliferation polynucleotide can first be introduced into the plant, followed by the introduction of the polynucleotide of interest.

[0096] As used herein, a "plastid" refers to an organelle present in plant cells that stores and manufactures chemical compounds used by the cell, such as starch, fatty acids, terpenes, and that has been derived from a proplastid. Thus, plastids of plants typically have the same genetic content. Plastids include chloroplasts, which are responsible for photosynthesis, amyloplasts, chromoplasts, statoliths, leucoplasts, elaioplasts, and proteinoplasts.

[0097] The plastid genome is circular and varies in size among plant species from about 120 to about 217 kilobase pairs (kb). The genome typically includes a large inverted repeat, which can contain up to about 76 kilobase pairs, but which is more typically in the range of about 20 to about 30 kilobase pairs. The inverted repeat present in the plastid genome of various organisms has been described (Palmer (1990) Trends Genet 6:115-120).

[0098] Transformation of plastids can result in a homoplasmic state, wherein essentially all of the plastids in a plant cell have the introduced DNA integrated into the plastid genome. This occurs through a selection process, whereby those cells that comprise a sufficient number of transformed plastids having an introduced selectable marker gene survive on the selection medium, and through the reproduction of the transformed plastid genomes. Plastids can be present in a plant cell at a very high copy number, with up to 50,000 copies per cell present for the chloroplast genome (Bendich (1987) BioEssays 6:279-282). Thus, through plastid transformation, plant cells can be engineered to maintain an introduced gene of interest at a very high copy number.

[0099] While plastid transformation is routine and relatively efficient in tobacco by bombardment of leaves, the application of plastid transformation technology in important crop species is not routine. For example, plastid transformation in maize and wheat has not been reported. Plastid transformation is possible in soybean, but the frequency of transformation with vectors carrying trait genes is low. Plastid transformation is possible in rice, but homoplasmic events have not been recovered.

[0100] The introduction and expression of polynucleotides encoding cell proliferation factors may be used to enhance the efficiency of plastid transformation. Any cell proliferation factor known in the art or described elsewhere herein may be used to enhance plastid transformation, including babyboom polypeptides. In certain embodiments, embryogenesis-stimulating polypeptides are used to enhance plastid transformation.

[0101] Methods are known in the art for introducing genes into the plastid genome. See, for example, Svab et al. (1990) Proc. Natl. Acad. Sci. USA 87: 8526-8530; Svab and Maliga (1993) Proc. Natl. Acad. Sci. USA 90: 913-917; Svab and Maliga (1993) EMBO J. 12: 601-606; and U.S. Pat. Nos. 5,451,513 and 5,545,818; each of which is herein incorporated by reference in its entirety.

[0102] One method involves the integration of a polynucleotide of interest into the plastid genome through homologous recombination. Such methods involve the introduction of a polynucleotide of interest flanked by regions of homology with regions of the plastid genome into a plant cell. Delivery of the polynucleotide of interest into the plant cell can be via any method of transformation known in the art, including those described elsewhere herein. These include, but are not limited to, particle gun delivery (Svab, Z. et al. (1990) Proc Natl Acad Sci USA 87:8526-8530; Svab and Maliga (1993) Proc Natl Acad Sci USA 90:913-917; and Staub and Maliga (1993) EMBO J 12:601-606; and U.S. Pat. Nos. 5,451,513 and 5,545,818; each of which is herein incorporated by reference in its entirety) and Agrobacterium-mediated transformation (U.S. Pat. No. 5,563,055 and U.S. Pat. No. 5,981,840). In some species, protoplasts can also be used for chloroplast transformation (O'Neill et al. (1993) Plant J 3:729-38; and Spoerlein et al. (1991) Theor Appl Gen 82:717-722; each of which is herein incorporated by reference in its entirety). Once the polynucleotide of interest flanked by the homologous regions enters the cell, the polynucleotide of interest will be integrated within the plastid genome.

[0103] The homologous regions flanking the polynucleotide of interest, and in some embodiments, its operably linked promoter, and in particular embodiments, the selectable marker gene as well, may vary in length. In some embodiments, the region of homology with the plastid genome is about 50, 75, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 base pairs or greater in length. In most instances, the frequency of recombination and thus the frequency of obtaining plants having transformed plastids decreases with the decreasing size of the homologous regions. In those embodiments wherein the regions of homology are present in the inverted repeat regions of the plastid genome, two copies of the polynucleotide of interest are expected per transformed plastid.

[0104] In some embodiments, the polynucleotide of interest can be co-delivered with a selectable marker gene that is active in the plastid. The selectable marker gene and the polynucleotide of interest can be present on a single DNA construct or on separate constructs. A number of markers have been developed for use with plant cells, such as resistance to chloramphenicol, the aminoglycoside G418, hygromycin, or the like. Genes conferring resistance to kanamycin (NPTII or AphA6) have been used as a selectable marker for plastid transformation (Carrer et al. (1993) Mol Gen Genetics 241:49-56; and Huang et al. (2002) Mol Gen Genomics 268:19-27; each of which is herein incorporated by reference in its entirety). Other genes which encode a product involved in chloroplast metabolism may also be used as selectable markers.

[0105] Another example of a selectable marker gene for plastid transformation is a selectable marker gene that confers resistance to a substance which inhibits protein synthesis by the plastids, such that cells which have acquired the phenotype are selected for by contacting the cells with a substance which inhibits protein synthesis by the plastids. The plastid DNA encoding the nonlethal selectable phenotype may comprise 16S ribosomal DNA mutated to confer resistance to the effects of streptomycin, or to spectinomycin, or to both antibiotics simultaneously. Expression of heterologous genes that modify non-lethal antibiotics such as streptomycin or spectinomycin by phosphorylation, adenylation or acetylation also are suitable for the selection of plastid transformation events. Another non-limiting example of a gene that confers resistance to streptomycin and spectinomycin is the bacterial aadA gene that codes for streptomycin spectinomycin adenyltransferase (Svab et al. (1993) Proc Natl Acad Sci USA 90:913-917). The aadA gene product allows for continued growth and greening of cells in the presence of streptomycin or spectinomycin whose chloroplasts comprise the selectable marker gene product. Cells which do not contain the selectable marker gene product are bleached. Selection for the aadA gene marker is thus based on identification of plant cells which are not bleached by the presence of streptomycin or spectinomycin, in the plant growth medium.

[0106] Other examples of selectable marker genes are those that confer resistance to an herbicide, including a photosystem II herbicide, such as a triazine herbicide, specifically the triazine herbicide atrazine. This phenotype not only provides nonlethal selection, but also provides herbicide resistance. Genes that provide resistance to plant herbicides such as glyphosate, bromoxynil, or imidazolinone may find use as a selectable marker gene. Such genes have been reported (Stalker et al. (1985) J Biol Chem 260:4724-4728 (glyphosate resistant EPSP); Stalker et al. (1985) J Biol Chem 263:6310-6314 (bromoxynil resistant nitrilase gene); and Sathasivan et al. (1990) Nucl Acids Res 18:2188 (AHAS imidazolinone resistance gene); each of which is herein incorporated by reference in its entirety).

[0107] The selectable marker gene and/or the polynucleotide of interest can be placed under the regulatory control of a chloroplast 5' promoter and 3' transcription termination regions, such as the tobacco 16S rRNA promoter rrn region and rps16 3' termination region. Numerous additional promoter regions may also be used to drive expression of the selectable marker gene and/or the polynucleotide of interest, including various plastid promoters and bacterial promoters which have been shown to function in plant plastids. Further, if nuclear expression of the selectable marker gene and/or the polynucleotide of interest is not desired, plastid introns can be incorporated into the selectable marker gene and/or the polynucleotide of interest. Certain classes of plastid introns can not be correctly spliced out in the nucleus, thereby preventing expression of the selectable marker gene and/or the polynucleotide of interest within the nucleus. The polynucleotide of interest and/or the heterologous polynucleotide encoding the cell proliferation factor may be optimized for expression in the chloroplast to account for differences in codon usage between the plant nucleus and this organelle. In this manner, the polynucleotide may be synthesized using chloroplast-preferred codons. See, for example, U.S. Pat. No. 5,380,831, herein incorporated by reference.

[0108] An additional method of plastid transformation occurs through the transactivation of a silent plastid-borne transgene by tissue-preferred expression of a nuclear-encoded and plastid-directed RNA polymerase. Such a system has been reported in McBride et al. (1994) Proc. Natl. Acad. Sci. USA 91: 7301-7305, which is herein incorporated by reference in its entirety. In these methods, the heterologous polynucleotide encoding the cell proliferation factor is introduced into the cell and expressed prior to, during, or immediately after the expression of the plastid-directed RNA polymerase.

[0109] In order to select those cells having transformed plastids, following introduction of the chloroplast transformation vectors, the treated tissue is placed on tissue culture medium containing the appropriate selection agent. After a suitable period of incubation on selection medium, transformed cells can be identified and grown to a stage that allows regeneration of the whole plants. The regeneration processes are basically identical to those used for standard nuclear transformation events. Special care must be taken to ensure that selection and regeneration conditions promote the elimination of most wild-type chloroplast genomes. The status of the proportion of wild-type to transformed chloroplast genomes can be monitored by standard molecular techniques including Southern and PCR analysis.

[0110] For tobacco and a number of other species, leaves are a preferred target for plastid transformation. In some embodiments, one or more cell proliferation factors (e.g., babyboom polypeptides) can be used to trigger a tissue culture response from leaves of maize and other species. For boosting chloroplast transformation, polynucleotides encoding cell proliferation factors under the control of inducible promoters can be introduced into the species of interest by standard nuclear transformation protocols. Events that contain the transgene can be characterized for expression of the inducible embryogenesis-stimulating polypeptides. Then, the expression of the polynucleotide encoding the cell proliferation factor is induced, thereby stimulating an embryogenic tissue culture response. For example, leaves from plants transformed with the polynucleotide(s) encoding a cell proliferation factor under the control of the tetracycline-repressor system can be placed on medium containing appropriate concentrations of doxycyline for induction of expression. The leaves can be maintained on the induction medium to allow for cell division and the initiation of embryogenic callus to take place. The plastids of the leaves can be transformed with the polynucleotide of interest, and in certain embodiments, a selectable marker gene just prior to the induction of the polynucleotide(s) encoding cell proliferation factor, during induction, or immediately after induction. Alternatively, leaf tissue can be transformed using the methods disclosed elsewhere herein. After plastid transformation, the plastid transformation events can be selected by incubating the leaves on selection medium. Following selection, the leaves or plant cells are grown on medium that stimulates callus formation.

[0111] Methods are provided for the preparation and transformation of dried mature seeds, mature embryos, and mature embryo explants. A mature embryo explant is a tissue dissected from a mature embryo, which is an embryo that has an age of at least about 18 days after pollination. Methods for preparing a mature embryo comprise dissecting a mature embryo from a mature seed and methods for preparing a mature embryo explant further comprise preparing slices (e.g., longitudinal slices) of the mature embryo. The mature embryo explant comprises at least one of the following tissues: leaf primordia, mesocotyl, shoot apical meristem, and root primordia. In some embodiments, the mature embryo explant comprises leaf primordia, mesocotyl, and root primordia. In some of these embodiments, the mature embryo explant further comprises a shoot apical meristem. The slices may be prepared using any method or suitable apparatus known in the art, including slices prepared by hand with a scalpel. In certain embodiments, each mature embryo is sliced into about 3 to 4 thin sections using a scalpel. The use of a dissecting microscope can aid in slicing of the mature embryo.

[0112] The mature seed from which the mature embryo or mature embryo explant is derived can be a seed of any plant. In some embodiments, the mature seed is from a monocot. In particular embodiments, the mature seed is from maize, rice, sorghum, barley, wheat, oats, or millet. In certain embodiments, the mature seed is from a recalcitrant plant, such as an elite maize inbred. As used herein, a "recalcitrant tissue" or "recalcitrant plant" is a tissue or a plant that has a low rate of transformation using traditional methods of transformation, such as those disclosed elsewhere herein. In some embodiments, the recalcitrant tissue or plant is unable to be transformed in the absence of the cell proliferation factor. In other embodiments, the recalcitrant tissue or plant has a rate of successful transformation of less than about 20%, less than about 15%, less than about 10%, less than about 5%, less than about 1%, less than about 0.1%, less than about 0.01%, less than about 0.001%, or less.

[0113] The mature embryo or mature embryo explant can be prepared from a dried mature seed. The dried mature seed can comprise about 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 5%, 1%, 0.1% or less water than a mature seed that has not been dried. The dried mature seed can be imbibed with an aqueous solution for a sufficient period of time to allow the dried mature seed to soften so that the mature embryo may be dissected from the seed and in some embodiments, mature embryo explant slices prepared from the mature embryo. In some embodiments, the dried mature seed is imbibed in an aqueous solution for about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48 hours or greater. In certain embodiments, the aqueous solution is water. In certain embodiments, the dried mature seed is imbibed for a sufficient period of time to induce germination of the seed. A germinated seed is one in which the radical has emerged.

[0114] Mature embryos and mature embryo explants can be transformed with a polynucleotide of interest through the provision of a cell proliferation factor (e.g., babyboom polypeptide). A heterologous polynucleotide encoding the cell proliferation factor is introduced into the mature embryo explant prior to or at the same time as the introduction of the polynucleotide of interest. The heterologous polynucleotide encoding the cell proliferation factor and the polynucleotide of interest can be provided on the same expression cassette or on separate expression cassettes.

[0115] The polynucleotides can be introduced into the mature embryo explant using any method known in the art, including but not limited to, Agrobacterium-mediated transformation.

[0116] In some embodiments, transformed mature embryo explants can be identified. Any method can be used to identify a plant cell or tissue comprising the polynucleotide of interest. In some examples, plant cells or tissues comprising the polynucleotide of interest are identified using one or more of the following techniques, including but not limited to PCR methods, hybridization methods such as Southern or Northern blots, restriction digest analyses, or DNA sequencing. In some embodiments, the transformed mature embryo explants can be identified by incubating the leaf mature embryo explants under conditions to allow for growth of a callus. In some embodiments, those mature embryo explants that are able to grow into a callus with significant proliferation indicate those mature embryo explains that have been transformed. In other embodiments, the transformed mature embryo explants can be identified and selected for through the introduction and expression of a selectable marker gene into the mature embryo explant.

[0117] Methods are also provided herein for the transformation of leaf tissues, which can be a leaf base. A leaf base is the tissue of a leaf above the first leaf base node. The leaf tissue can be derived from any plant. In some embodiments, the leaf tissue is derived from a monocot. In particular embodiments, the leaf tissue is derived from maize, rice, sorghum, barley, wheat, oats, or millet. In certain embodiments, the leaf tissue is derived from a recalcitrant plant, such as an elite maize inbred.

[0118] The leaf base can be from a mature leaf or a leaf from a seedling. As used herein, a "seedling" refers to a germinated seed or germinated embryo, or a plantlet generated in an in vitro system (e.g., from callus). The seedlings can be prepared by germinating seeds or dissecting mature embryos from mature seeds for germination. In some embodiments, the mature embryos are dissected from dried mature seeds that have been imbibed with an aqueous solution, as described herein.

[0119] In some embodiments, the coleoptile is removed from the leaf tissue and the leaf fragment is split longitudinally, and then horizontal slices are made to cross-dissect the leaf fragment into leaf tissue pieces. In particular embodiments, the pieces of leaf tissue are about 1 to 2 mm in length.

[0120] The leaf tissue can be transformed with a polynucleotide of interest through the provision of a cell proliferation factor (e.g., babyboom polypeptide). The polynucleotides can be introduced into the leaf tissue using any method known in the art, including but not limited to, Agrobacterium-mediated transformation. A heterologous polynucleotide of interest encoding the cell proliferation factor is introduced into the leaf tissue prior to or at the same time as the introduction of the polynucleotide of interest. The heterologous polynucleotide encoding the cell proliferation factor is expressed. The heterologous polynucleotide encoding the cell proliferation factor and the polynucleotide of interest can be provided on the same expression cassette or on separate expression cassettes.

[0121] In some embodiments, transformed leaf tissues can be identified. Any method can be used to identify a plant cell or tissue comprising the polynucleotide of interest. In some examples, plant cells or tissues comprising the polynucleotide of interest are identified using one or more of the following techniques, including but not limited to PCR methods, hybridization methods such as Southern or Northern blots, restriction digest analyses, or DNA sequencing. In some embodiments, the transformed leaf tissues can be identified by incubating the leaf tissues under conditions to allow for growth of a callus. In some embodiments, those leaf tissues that are able to grow a callus with significant proliferation indicate those leaf tissues that have been transformed. In other embodiments, the transformed leaf tissue can be identified and selected for through the introduction and expression of a selectable marker gene into the leaf tissue.

[0122] The cells that have been transformed may be grown into plants in accordance with conventional ways. See, for example, McCormick et al. (1986) Plant Cell Rep 5:81-84. These plants may then be grown, and either pollinated with the same transformed strain or different strains, and the resulting hybrid having constitutive expression of the desired phenotypic characteristic identified. Two or more generations may be grown to ensure that expression of the desired phenotypic characteristic is stably maintained and inherited and then seeds harvested to ensure expression of the desired phenotypic characteristic has been achieved. In this manner, transformed seed (also referred to as "transgenic seed") having a nucleotide construct, for example, an expression cassette, stably incorporated into their genome is provided. Thus, compositions of the invention include plant cells, plant tissues, plant parts, and plants comprising the presently disclosed polynucleotides, polypeptides, promoter constructs, expression cassettes, or vectors. Likewise, the methods of the invention can be performed in plant cells, plant tissues, plant parts, and plants.

[0123] In some embodiments, the activity and/or level of the cell proliferation factor (e.g., babyboom polypeptide, Wuschel) is reduced prior to regenerating a plant from a cell or tissue having the polynucleotide of interest. In some of these embodiments, the polynucleotide encoding the cell proliferation factor is excised prior to the regeneration of a plant. In certain embodiments, the promoter and other regulatory elements that are operably linked to the heterologous polynucleotide encoding the cell proliferation factor are excised along with the cell proliferation factor coding sequence. In certain embodiments, the polynucleotide encoding the cell proliferation factor is flanked by recombination sites and an appropriate site-specific recombinase is introduced into the mature embryo explant or callus grown therefrom to excise the polynucleotide encoding the cell proliferation factor prior to regeneration of the mature embryo explant or callus into a plant. In some of those embodiments wherein both a babyboom polypeptide and a Wuschel polypeptide are provided to the plant cell, both the polynucleotide encoding the babyboom polypeptide and the polynucleotide encoding the Wuschel polypeptide are excised. The two polynucleotides can be present on the same or different expression cassettes and, therefore, can be excised in one or two different excision reactions. In some of these embodiments, the polynucleotide encoding the site-specific recombinase for excising the babyboom and Wuschel polynucleotides can be located on the same expression cassette as the babyboom and Wuschel polynucleotides and all three polynucleotides can be excised through the activity of the site-specific recombinase.

[0124] In order to control the excision of the cell proliferation factor, the expression of the site-specific recombinase that is responsible for the excision can be controlled by a late embryo promoter or an inducible promoter. In some embodiments, the late embryo promoter is GZ (Uead et al. (1994) Mol Cell Biol 14:4350-4359), gamma-kafarin promoter (Mishra et al. (2008) Mol Biol Rep 35:81-88), G1b1 promoter (Liu et al. (1998) Plant Cell Reports 17:650-655), ZM-LEG1 (U.S. Pat. No. 7,211,712), EEP1 (U.S. Patent Application No. US 2007/0169226), B22E (Klemsdal et al. (1991) Mol Gen Genet 228:9-16), or EAP1 (U.S. Pat. No. 7,321,031). In some embodiments, the inducible promoter that regulates the expression of the site-specific recombinase is a heat-shock, light-induced promoter, a drought-inducible promoter, including but not limited to Hva1 (Straub et al. (1994) Plant Mol Biol 26:617-630), Dhn, and WSI18 (Xiao & Xue (2001) Plant Cell Rep 20:667-673). In other embodiments, expression of the site-specific recombinase is regulated by the maize rab17 promoter, or one of the presently disclosed promoter constructs (e.g., maize rab17 promoter and an attB site). In some embodiments, the site-specific recombinase that excises the polynucleotide encoding the cell proliferation factor is FLP or Cre.

[0125] Any plant species can be transformed, including, but not limited to, monocots and dicots. Examples of plant species of interest include, but are not limited to, corn (Zea mays), Brassica sp. (e.g., B. napus, B. rapa, B. juncea), particularly those Brassica species useful as sources of seed oil, alfalfa (Medicago sativa), rice (Oryza sativa), rye (Secale cereale), sorghum (Sorghum bicolor, Sorghum vulgare), millet (e.g., pearl millet (Pennisetum glaucum), proso millet (Panicum miliaceum), foxtail millet (Setaria italica), finger millet (Eleusine coracana)), sunflower (Helianthus annuus), safflower (Carthamus tinctorius), wheat (Triticum aestivum), soybean (Glycine max), tobacco (Nicotiana tabacum), potato (Solanum tuberosum), peanuts (Arachis hypogaea), cotton (Gossypium barbadense, Gossypium hirsutum), sweet potato (Ipomoea batatus), cassava (Manihot esculenta), coffee (Coffea spp.), coconut (Cocos nucifera), pineapple (Ananas comosus), citrus trees (Citrus spp.), cocoa (Theobroma cacao), tea (Camellia sinensis), banana (Musa spp.), avocado (Peryea americana), fig (Ficus casica), guava (Psidium guajava), mango (Mangifera indica), olive (Olea europaea), papaya (Carica papaya), cashew (Anacardium occidentale), macadamia (Macadamia integrifolia), almond (Prunus amygdalus), sugar beets (Beta vulgaris), sugarcane (Saccharum spp.), oats (Avena), barley (Hordeum), Arabidopsis, switchgrass, vegetables, ornamentals, grasses, and conifers.

[0126] Vegetables include tomatoes (Lycopersicon esculentum), lettuce (e.g., Lactuca sativa), green beans (Phaseolus vulgaris), lima beans (Phaseolus limensis), peas (Lathyrus spp.), and members of the genus Cucumis such as cucumber (C. sativus), cantaloupe (C. cantalupensis), and musk melon (C. melo). Ornamentals include azalea (Rhododendron spp.), hydrangea (Macrophylla hydrangea), hibiscus (Hibiscus rosasanensis), roses (Rosa spp.), tulips (Tulipa spp.), daffodils (Narcissus spp.), petunias (Petunia hybrida), carnation (Dianthus caryophyllus), poinsettia (Euphorbia pulcherrima), and chrysanthemum.

[0127] Conifers that may be employed in practicing the present invention include, for example, pines such as loblolly pine (Pinus taeda), slash pine (Pinus elliotii), ponderosa pine (Pinus ponderosa), lodgepole pine (Pinus contorta), and Monterey pine (Pinus radiata); Douglas-fir (Pseudotsuga menziesii); Western hemlock (Tsuga canadensis); Sitka spruce (Picea glauca); redwood (Sequoia sempervirens); true firs such as silver fir (Abies amabilis) and balsam fir (Abies balsamea); and cedars such as Western red cedar (Thuja plicata) and Alaska yellow-cedar (Chamaecyparis nootkatensis). In specific embodiments, plants of the present invention are crop plants (for example, corn, alfalfa, sunflower, Brassica, soybean, cotton, safflower, peanut, sorghum, wheat, millet, tobacco, etc.). In other embodiments, corn and soybean and sugarcane plants are optimal, and in yet other embodiments corn plants are optimal.

[0128] Other plants of interest include grain plants that provide seeds of interest, oil-seed plants, and leguminous plants. Seeds of interest include grain seeds, such as corn, wheat, barley, rice, sorghum, rye, etc. Oil-seed plants include cotton, soybean, safflower, sunflower, Brassica, maize, alfalfa, palm, coconut, etc. Leguminous plants include beans and peas. Beans include guar, locust bean, fenugreek, soybean, garden beans, cowpea, mungbean, lima bean, fava bean, lentils, chickpea, etc.

[0129] As used herein, the term plant also includes plant cells, plant protoplasts, plant cell tissue cultures from which plants can be regenerated, plant calli, plant clumps, and plant cells that are intact in plants or parts of plants such as embryos, pollen, ovules, seeds, leaves, flowers, branches, fruit, kernels, ears, cobs, husks, stalks, roots, root tips, anthers, and the like. Grain is intended to mean the mature seed produced by commercial growers for purposes other than growing or reproducing the species. Progeny, variants, and mutants of the regenerated plants are also included within the scope of the invention, provided that these parts comprise the introduced polynucleotides.

[0130] If the polynucleotide of interest is introduced into an organism, it may impart various changes in the organism, particularly plants, including, but not limited to, modification of the fatty acid composition in the plant, altering the amino acid content of the plant, altering pathogen resistance, and the like. These results can be achieved by providing expression of heterologous products, increased expression of endogenous products in plants, or suppressed expression of endogenous produces in plants.

[0131] General categories of polynucleotides of interest include, for example, those genes involved in information, such as zinc fingers, those involved in communication, such as kinases, those involved in biosynthetic pathways, and those involved in housekeeping, such as heat shock proteins. More specific categories of transgenes, for example, include sequences encoding important traits for agronomics, insect resistance, disease resistance, herbicide resistance, sterility, grain characteristics, oil, starch, carbohydrate, phytate, protein, nutrient, metabolism, digestability, kernel size, sucrose loading, and commercial products.

[0132] Traits such as oil, starch, and protein content can be genetically altered in addition to using traditional breeding methods. Modifications include increasing content of oleic acid, saturated and unsaturated oils, increasing levels of lysine and sulfur, providing essential amino acids, and also modification of starch. Protein modifications to alter amino acid levels are described in U.S. Pat. Nos. 5,703,049, 5,885,801, 5,885,802, and 5,990,389 and WO 98/20122, herein incorporated by reference.

[0133] Insect resistance genes may encode resistance to pests such as rootworm, cutworm, European Corn Borer, and the like. Such genes include, for example, Bacillus thuringiensis toxic protein genes (U.S. Pat. Nos. 5,366,892; 5,747,450; 5,737,514; 5,723,756; 5,593,881; and Geiser et al. (1986) Gene 48:109); lectins (Van Damme et al. (1994) Plant Mol. Biol. 24:825); and the like.

[0134] Genes encoding disease resistance traits include detoxification genes, such as against fumonosin (U.S. Pat. No. 5,792,931); avirulence (avr) and disease resistance (R) genes (Jones et al. (1994) Science 266:789; Martin et al. (1993) Science 262:1432; and Mindrinos et al. (1994) Cell 78:1089); and the like.

[0135] Herbicide resistance traits may include genes coding for resistance to herbicides that act to inhibit the action of acetolactate synthase (ALS), in particular the sulfonylurea-type herbicides (e.g., the S4 and/or Hra mutations in ALS), genes coding for resistance to herbicides that act to inhibit action of glutamine synthase, such as phosphinothricin or basta (e.g., the bar gene), genes providing resistance to glyphosate, such as GAT (glyphosate N-acetyltransferase; U.S. Pat. No. 6,395,485), EPSPS (enolpyruvylshikimate-3-phosphate synthase; U.S. Pat. Nos. 6,867,293, 5,188,642, 5,627,061), or GOX (glyphosate oxidoreductase; U.S. Pat. No. 5,463,175), or other such genes known in the art. The nptII gene encodes resistance to the antibiotics kanamycin and geneticin.

[0136] Sterility genes can also be encoded in an expression cassette and provide an alternative to physical detasseling. Examples of genes used in such ways include male tissue-preferred genes and genes with male sterility phenotypes such as QM, described in U.S. Pat. No. 5,583,210. Other genes include kinases and those encoding compounds toxic to either male or female gametophytic development.

[0137] Commercial traits can also be encoded on a gene or genes that could, for example increase starch for ethanol production, or provide expression of proteins.

[0138] Reduction of the activity of specific genes (also known as gene silencing, or gene suppression) is desirable for several aspects of genetic engineering in plants. Many techniques for gene silencing are well known to one of skill in the art, including but not limited to antisense technology (see, e.g., Sheehy et al. (1988) Proc. Natl. Acad. Sci. USA 85:8805-8809; and U.S. Pat. Nos. 5,107,065; 5,453,566; and 5,759,829); cosuppression (e.g., Taylor (1997) Plant Cell 9:1245; Jorgensen (1990) Trends Biotech. 8(12):340-344; Flavell (1994) Proc. Natl. Acad. Sci. USA 91:3490-3496; Finnegan et al. (1994) Bio/Technology 12: 883-888; and Neuhuber et al. (1994) Mol. Gen. Genet. 244:230-241); RNA interference (Napoli et al. (1990) Plant Cell 2:279-289; U.S. Pat. No. 5,034,323; Sharp (1999) Genes Dev. 13:139-141; Zamore et al. (2000) Cell 101:25-33; Javier (2003) Nature 425:257-263; and, Montgomery et al. (1998) Proc. Natl. Acad. Sci. USA 95:15502-15507), virus-induced gene silencing (Burton, et al. (2000) Plant Cell 12:691-705; and Baulcombe (1999) Curr. Op. Plant Bio. 2:109-113); target-RNA-specific ribozymes (Haseloff et al. (1988) Nature 334: 585-591); hairpin structures (Smith et al. (2000) Nature 407:319-320; WO 99/53050; WO 02/00904; and WO 98/53083); ribozymes (Steinecke et al. (1992) EMBO J. 11:1525; U.S. Pat. No. 4,987,071; and, Perriman et al. (1993) Antisense Res. Dev. 3:253); oligonucleotide mediated targeted modification (e.g., WO 03/076574 and WO 99/25853); Zn-finger targeted molecules (e.g., WO 01/52620; WO 03/048345; and WO 00/42219); and other methods or combinations of the above methods known to those of skill in the art.

[0139] The following terms are used to describe the sequence relationships between two or more polynucleotides or polypeptides: (a) "reference sequence", (b) "comparison window", (c) "sequence identity", and, (d) "percentage of sequence identity."

[0140] (a) As used herein, "reference sequence" is a defined sequence used as a basis for sequence comparison. A reference sequence may be a subset or the entirety of a specified sequence; for example, as a segment of a full-length cDNA or gene sequence, or the complete cDNA or gene sequence.

[0141] (b) As used herein, "comparison window" makes reference to a contiguous and specified segment of a polynucleotide sequence, wherein the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two polynucleotides. Generally, the comparison window is at least 20 contiguous nucleotides in length, and optionally can be 30, 40, 50, 100, or longer. Those of skill in the art understand that to avoid a high similarity to a reference sequence due to inclusion of gaps in the polynucleotide sequence a gap penalty is typically introduced and is subtracted from the number of matches.

[0142] Methods of alignment of sequences for comparison are well known in the art. Thus, the determination of percent sequence identity between any two sequences can be accomplished using a mathematical algorithm. Non-limiting examples of such mathematical algorithms are the algorithm of Myers and Miller (1988) CABIOS 4:11-17; the local alignment algorithm of Smith et al. (1981) Adv. Appl. Math. 2:482; the global alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48:443-453; the search-for-local alignment method of Pearson and Lipman (1988) Proc. Natl. Acad. Sci. 85:2444-2448; the algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 872264, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5877.

[0143] Computer implementations of these mathematical algorithms can be utilized for comparison of sequences to determine sequence identity. Such implementations include, but are not limited to: CLUSTAL in the PC/Gene program (available from Intelligenetics, Mountain View, Calif.); the ALIGN program (Version 2.0) and GAP, BESTFIT, BLAST, FASTA, and TFASTA in the GCG Wisconsin Genetics Software Package, Version 10 (available from Accelrys Inc., 9685 Scranton Road, San Diego, Calif., USA). Alignments using these programs can be performed using the default parameters. The CLUSTAL program is well described by Higgins et al. (1988) Gene 73:237-244 (1988); Higgins et al. (1989) CABIOS 5:151-153; Corpet et al. (1988) Nucleic Acids Res. 16:10881-90; Huang et al. (1992) CABIOS 8:155-65; and Pearson et al. (1994) Meth. Mol. Biol. 24:307-331. The ALIGN program is based on the algorithm of Myers and Miller (1988) supra. A PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used with the ALIGN program when comparing amino acid sequences. The BLAST programs of Altschul et al (1990) J. Mol. Biol. 215:403 are based on the algorithm of Karlin and Altschul (1990) supra. BLAST nucleotide searches can be performed with the BLASTN program, score=100, wordlength=12, to obtain nucleotide sequences homologous to a nucleotide sequence encoding a protein of the invention. BLAST protein searches can be performed with the BLASTX program, score=50, wordlength=3, to obtain amino acid sequences homologous to a protein or polypeptide of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST (in BLAST 2.0) can be utilized as described in Altschul et al. (1997) Nucleic Acids Res. 25:3389. Alternatively, PSI-BLAST (in BLAST 2.0) can be used to perform an iterated search that detects distant relationships between molecules. See Altschul et al. (1997) supra. When utilizing BLAST, Gapped BLAST, PSI-BLAST, the default parameters of the respective programs (e.g., BLASTN for nucleotide sequences, BLASTX for proteins) can be used. See www.ncbi.nlm.nih.gov. Alignment may also be performed manually by inspection.

[0144] Unless otherwise stated, sequence identity/similarity values provided herein refer to the value obtained using GAP Version 10 using the following parameters: % identity and % similarity for a nucleotide sequence using GAP Weight of 50 and Length Weight of 3, and the nwsgapdna.cmp scoring matrix; % identity and % similarity for an amino acid sequence using GAP Weight of 8 and Length Weight of 2, and the BLOSUM62 scoring matrix; or any equivalent program thereof. By "equivalent program" is intended any sequence comparison program that, for any two sequences in question, generates an alignment having identical nucleotide or amino acid residue matches and an identical percent sequence identity when compared to the corresponding alignment generated by GAP Version 10.

[0145] GAP uses the algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48:443-453, to find the alignment of two complete sequences that maximizes the number of matches and minimizes the number of gaps. GAP considers all possible alignments and gap positions and creates the alignment with the largest number of matched bases and the fewest gaps. It allows for the provision of a gap creation penalty and a gap extension penalty in units of matched bases. GAP must make a profit of gap creation penalty number of matches for each gap it inserts. If a gap extension penalty greater than zero is chosen, GAP must, in addition, make a profit for each gap inserted of the length of the gap times the gap extension penalty. Default gap creation penalty values and gap extension penalty values in Version 10 of the GCG Wisconsin Genetics Software Package for protein sequences are 8 and 2, respectively. For nucleotide sequences the default gap creation penalty is 50 while the default gap extension penalty is 3. The gap creation and gap extension penalties can be expressed as an integer selected from the group of integers consisting of from 0 to 200. Thus, for example, the gap creation and gap extension penalties can be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65 or greater.

[0146] GAP presents one member of the family of best alignments. There may be many members of this family, but no other member has a better quality. GAP displays four figures of merit for alignments: Quality, Ratio, Identity, and Similarity. The Quality is the metric maximized in order to align the sequences. Ratio is the quality divided by the number of bases in the shorter segment. Percent Identity is the percent of the symbols that actually match. Percent Similarity is the percent of the symbols that are similar. Symbols that are across from gaps are ignored. A similarity is scored when the scoring matrix value for a pair of symbols is greater than or equal to 0.50, the similarity threshold. The scoring matrix used in Version 10 of the GCG Wisconsin Genetics Software Package is BLOSUM62 (see Henikoff and Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915).

[0147] (c) As used herein, "sequence identity" or "identity" in the context of two polynucleotides or polypeptide sequences makes reference to the residues in the two sequences that are the same when aligned for maximum correspondence over a specified comparison window. When percentage of sequence identity is used in reference to proteins it is recognized that residue positions which are not identical often differ by conservative amino acid substitutions, where amino acid residues are substituted for other amino acid residues with similar chemical properties (e.g., charge or hydrophobicity) and therefore do not change the functional properties of the molecule. When sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Sequences that differ by such conservative substitutions are said to have "sequence similarity" or "similarity". Means for making this adjustment are well known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1. The scoring of conservative substitutions is calculated, e.g., as implemented in the program PC/GENE (Intelligenetics, Mountain View, Calif.).

[0148] (d) As used herein, "percentage of sequence identity" means the value determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison, and multiplying the result by 100 to yield the percentage of sequence identity.

[0149] In hybridization techniques, all or part of a known polynucleotide is used as a probe that selectively hybridizes to other corresponding polynucleotides present in a population of cloned genomic DNA fragments or cDNA fragments (i.e., genomic or cDNA libraries) from a chosen organism. The hybridization probes may be genomic DNA fragments, cDNA fragments, RNA fragments, or other oligonucleotides, and may be labeled with a detectable group such as .sup.32P, or any other detectable marker. Thus, for example, probes for hybridization can be made by labeling synthetic oligonucleotides based on the babyboom polynucleotide. Methods for preparation of probes for hybridization and for construction of cDNA and genomic libraries are generally known in the art and are disclosed in Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, N.Y.).

[0150] For example, the entire babyboom polynucleotide, or one or more portions thereof, may be used as a probe capable of specifically hybridizing to corresponding babyboom polynucleotide and messenger RNAs. To achieve specific hybridization under a variety of conditions, such probes include sequences that are unique among babyboom polynucleotide sequences and are optimally at least about 10 nucleotides in length, and most optimally at least about 20 nucleotides in length. Such probes may be used to amplify corresponding babyboom polynucleotide from a chosen plant by PCR. This technique may be used to isolate additional coding sequences from a desired plant or as a diagnostic assay to determine the presence of coding sequences in a plant. Hybridization techniques include hybridization screening of plated DNA libraries (either plaques or colonies; see, for example, Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, N.Y.).

[0151] Hybridization of such sequences may be carried out under stringent conditions. By "stringent conditions" or "stringent hybridization conditions" is intended conditions under which a probe will hybridize to its target sequence to a detectably greater degree than to other sequences (e.g., at least 2-fold over background). Stringent conditions are sequence-dependent and will be different in different circumstances. By controlling the stringency of the hybridization and/or washing conditions, target sequences that are 100% complementary to the probe can be identified (homologous probing). Alternatively, stringency conditions can be adjusted to allow some mismatching in sequences so that lower degrees of similarity are detected (heterologous probing). Generally, a probe is less than about 1000 nucleotides in length, optimally less than 500 nucleotides in length.

[0152] Typically, stringent conditions will be those in which the salt concentration is less than about 1.5 M Na ion, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30.degree. C. for short probes (e.g., 10 to 50 nucleotides) and at least about 60.degree. C. for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. Exemplary low stringency conditions include hybridization with a buffer solution of 30 to 35% formamide, 1 M NaCl, 1% SDS (sodium dodecyl sulphate) at 37.degree. C., and a wash in 1.times. to 2.times.SSC (20.times.SSC=3.0 M NaCl/0.3 M trisodium citrate) at 50 to 55.degree. C. Exemplary moderate stringency conditions include hybridization in 40 to 45% formamide, 1.0 M NaCl, 1% SDS at 37.degree. C., and a wash in 0.5.times. to 1.times.SSC at 55 to 60.degree. C. Exemplary high stringency conditions include hybridization in 50% formamide, 1 M NaCl, 1% SDS at 37.degree. C., and a wash in 0.1.times.SSC at 60 to 65.degree. C. Optionally, wash buffers may comprise about 0.1% to about 1% SDS. Duration of hybridization is generally less than about 24 hours, usually about 4 to about 12 hours. The duration of the wash time will be at least a length of time sufficient to reach equilibrium.

[0153] Specificity is typically the function of post-hybridization washes, the critical factors being the ionic strength and temperature of the final wash solution. For DNA-DNA hybrids, the T.sub.m can be approximated from the equation of Meinkoth and Wahl (1984) Anal. Biochem. 138:267-284: T.sub.m=81.5.degree. C.+16.6 (log M)+0.41 (% GC)-0.61 (% form)-500/L; where M is the molarity of monovalent cations, % GC is the percentage of guanosine and cytosine nucleotides in the DNA, % form is the percentage of formamide in the hybridization solution, and L is the length of the hybrid in base pairs. The T.sub.m is the temperature (under defined ionic strength and pH) at which 50% of a complementary target sequence hybridizes to a perfectly matched probe. T.sub.m is reduced by about 1.degree. C. for each 1% of mismatching; thus, T.sub.m, hybridization, and/or wash conditions can be adjusted to hybridize to sequences of the desired identity. For example, if sequences with .gtoreq.90% identity are sought, the T.sub.m can be decreased 10.degree. C. Generally, stringent conditions are selected to be about 5.degree. C. lower than the thermal melting point (T.sub.m) for the specific sequence and its complement at a defined ionic strength and pH. However, severely stringent conditions can utilize a hybridization and/or wash at 1, 2, 3, or 4.degree. C. lower than the thermal melting point (T.sub.m); moderately stringent conditions can utilize a hybridization and/or wash at 6, 7, 8, 9, or 10.degree. C. lower than the thermal melting point (T.sub.m); low stringency conditions can utilize a hybridization and/or wash at 11, 12, 13, 14, 15, or 20.degree. C. lower than the thermal melting point (T.sub.m). Using the equation, hybridization and wash compositions, and desired T.sub.m, those of ordinary skill will understand that variations in the stringency of hybridization and/or wash solutions are inherently described. If the desired degree of mismatching results in a T.sub.m of less than 45.degree. C. (aqueous solution) or 32.degree. C. (formamide solution), it is optimal to increase the SSC concentration so that a higher temperature can be used. An extensive guide to the hybridization of nucleic acids is found in Tijssen (1993) Laboratory Techniques in Biochemistry and Molecular Biology--Hybridization with Nucleic Acid Probes, Part I, Chapter 2 (Elsevier, New York); and Ausubel et al., eds. (1995) Current Protocols in Molecular Biology, Chapter 2 (Greene Publishing and Wiley-Interscience, New York). See Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, N.Y.).

[0154] It is to be noted that the term "a" or "an" entity refers to one or more of that entity; for example, "a polypeptide" is understood to represent one or more polypeptides. As such, the terms "a" (or "an"), "one or more," and "at least one" can be used interchangeably herein.

[0155] Throughout this specification and the claims, the words "comprise," "comprises," and "comprising" are used in a non-exclusive sense, except where the context requires otherwise.

[0156] As used herein, the term "about," when referring to a value is meant to encompass variations of, in some embodiments .+-.50%, in some embodiments .+-.20%, in some embodiments .+-.10%, in some embodiments .+-.5%, in some embodiments .+-.1%, in some embodiments .+-.0.5%, and in some embodiments .+-.0.1% from the specified amount, as such variations are appropriate to perform the disclosed methods or employ the disclosed compositions.

[0157] Further, when an amount, concentration, or other value or parameter is given as either a range, preferred range, or a list of upper preferable values and lower preferable values, this is to be understood as specifically disclosing all ranges formed from any pair of any upper range limit or preferred value and any lower range limit or preferred value, regardless of whether ranges are separately disclosed. Where a range of numerical values is recited herein, unless otherwise stated, the range is intended to include the endpoints thereof, and all integers and fractions within the range. It is not intended that the scope of the presently disclosed subject matter be limited to the specific values recited when defining a range.

[0158] The following examples are offered by way of illustration and not by way of limitation.

EXPERIMENTAL

Example 1

A Modified Rab17 Promoter for the Regulated Expression of Genes

[0159] Gateway.TM. technology (Invitrogen, Carlsbad, Calif.) was used to place Gateway.TM. recombination sites between a promoter and a coding sequence, and between the coding sequence and a terminator. The product of a Gateway.TM. reaction set up in this manner leaves attB sites in those locations.

[0160] The rab17 promoter was identified as a candidate for regulating the expression of FLP recombinase for excision of polynucleotides encoding cell proliferation factors in tissue culture. It was tested for FLP/FRT excision of cell proliferation factor genes in culture. The PHP31004 plasmid was constructed, which has the following operably linked components: Rab17 Pro-attB1::FLPm-attB2::PinII+Ubi Pro-FRT1::CFP::PinII+Ubi Pro::ZmBBM::PinII-FRT1::YFP::PinII+Ubi Pro::moPAT::PinII. The sequence of the expression cassette for the FLPm gene in the PHP31004 plasmid is provided in SEQ ID NO: 46.

[0161] After excision by the FLP recombinase, the PHP31004 plasmid has the following operably linked components: Rab17 Pro-attB1::FLPm-attB2::PinII+Ubi Pro-FRT1::YFP::PinII+Ubi Pro::moPAT::PinII.

[0162] A plasmid (PHP30642) lacking the attB sites, but comprising the FLPm gene was constructed. The PHP30642 has the following operably linked components: Rab17 pro::FLPm::Gz-W64A term+Ubi pro-FRT1::CFP::PinII+UbiPro::ZmBBM::PinII-FRT1::YFP::PinII+Ubi Pro::moPAT::PinII. The sequence of the expression cassette for the FLPm gene in the PHP30642 plasmid is provided in SEQ ID NO: 47.

[0163] After excision by the FLP recombinase, the PHP30642 plasmid has the following operably linked components: Rab17 pro::FLPm::Gz-W64A term+Ubi pro-FRT1::YFP::PinII+Ubi pro::moPAT::PinII. The construct lacking the attB sites resulted in frequent premature excision of the cell proliferation factor genes.

Example 2

Transformation of Maize Immature Embryos

[0164] Transformation can be accomplished by various methods known to be effective in plants, including particle-mediated delivery, Agrobacterium-mediated transformation, PEG-mediated delivery, and electroporation.

[0165] a. Particle-Mediated Delivery

[0166] Transformation of maize immature embryos using particle delivery is performed as follows. Media recipes follow below.

[0167] The ears are husked and surface sterilized in 30% Clorox bleach plus 0.5% Micro detergent for 20 minutes, and rinsed two times with sterile water. The immature embryos are excised and placed embryo axis side down (scutellum side up), 25 embryos per plate, on 560Y medium for 4 hours and then aligned within the 2.5-cm target zone in preparation for bombardment.

[0168] A plasmid comprising the Zm-BBM (also referred to as Zm-ODP2) coding sequence (set forth in SEQ ID NO: 9) operably linked to a promoter is constructed. This could be a weak promoter such as nos, a tissue-specific promoter, such as globulin-1 or oleosin, an inducible promoter such as In2, or a strong promoter such as ubiquitin plus a plasmid containing the selectable marker gene phosphinothricin N-acetyltransferase (PAT; Wohlleben et al. (1988) Gene 70:25-37) that confers resistance to the herbicide bialaphos. The plasmid DNA containing the selectable marker gene PAT and the BBM plasmid are precipitated onto 1.1 .mu.m (average diameter) tungsten pellets using a calcium chloride (CaCl.sub.2) precipitation procedure by mixing 100 .mu.l prepared tungsten particles in water, 10 .mu.l (1 .mu.g) DNA in Tris EDTA buffer (1 .mu.g total DNA), 100 .mu.l 2.5 M CaCl.sub.2, and 10 .mu.l 0.1 M spermidine. Each reagent is added sequentially to the tungsten particle suspension, with mixing. The final mixture is sonicated briefly and allowed to incubate under constant vortexing for 10 minutes. After the precipitation period, the tubes are centrifuged briefly, liquid is removed, and the particles are washed with 500 ml 100% ethanol, followed by a 30 second centrifugation. Again, the liquid is removed, and 105 .mu.l 100% ethanol is added to the final tungsten particle pellet. For particle gun bombardment, the tungsten/DNA particles are briefly sonicated. 10 .mu.l of the tungsten/DNA particles is spotted onto the center of each macrocarrier, after which the spotted particles are allowed to dry about 2 minutes before bombardment.

[0169] The sample plates are bombarded at level #4 with a Biorad Helium Gun. All samples receive a single shot at 450 PSI, with a total of ten aliquots taken from each tube of prepared particles/DNA.

[0170] Following bombardment, the embryos are incubated on 560Y medium for 2 days, then transferred to 560R selection medium containing 3 mg/liter Bialaphos, and subcultured every 2 weeks. After approximately 10 weeks of selection, selection-resistant callus clones are transferred to 288J medium to initiate plant regeneration. Following somatic embryo maturation (2-4 weeks), well-developed somatic embryos are transferred to medium for germination and transferred to a lighted culture room. Approximately 7-10 days later, developing plantlets are transferred to 272V hormone-free medium in tubes for 7-10 days until plantlets are well established. Plants are then transferred to inserts in flats (equivalent to a 2.5'' pot) containing potting soil and grown for 1 week in a growth chamber, subsequently grown an additional 1-2 weeks in the greenhouse, then transferred to Classic 600 pots (1.6 gallon) and grown to maturity. Plants are monitored and scored for transformation efficiency, and/or modification of regenerative capabilities.

[0171] Bombardment medium (560Y) comprises 4.0 g/l N6 basal salts (SIGMA C-1416), 1.0 ml/l Eriksson's Vitamin Mix (1000.times.SIGMA-1511), 0.5 mg/l thiamine HCl, 120.0 g/l sucrose, 1.0 mg/l 2,4-D, and 2.88 g/l L-proline (brought to volume with D-I H.sub.2O following adjustment to pH 5.8 with KOH); 2.0 g/l Gelrite (added after bringing to volume with D-I H.sub.2O); and 8.5 mg/l silver nitrate (added after sterilizing the medium and cooling to room temperature).

[0172] Selection medium (560R) comprises 4.0 g/l N6 basal salts (SIGMA C-1416), 1.0 ml/l Eriksson's Vitamin Mix (1000.times.SIGMA-1511), 0.5 mg/l thiamine HCl, 30.0 g/l sucrose, and 2.0 mg/l 2,4-D (brought to volume with D-I H.sub.2O following adjustment to pH 5.8 with KOH); 3.0 g/l Gelrite (added after bringing to volume with D-I H.sub.2O); and 0.85 mg/l silver nitrate and 3.0 mg/l bialaphos (both added after sterilizing the medium and cooling to room temperature).

[0173] Plant regeneration medium (288J) comprises 4.3 g/l MS salts (GIBCO 11117-074), 5.0 ml/l MS vitamins stock solution (0.100 g nicotinic acid, 0.02 g/l thiamine HCL, 0.10 g/l pyridoxine HCL, and 0.40 g/l glycine brought to volume with polished D-I H.sub.2O) (Murashige and Skoog (1962) Physiol. Plant. 15:473), 100 mg/l myo-inositol, 0.5 mg/l zeatin, 60 g/l sucrose, and 1.0 ml/l of 0.1 mM abscisic acid (brought to volume with polished D-I H.sub.2O after adjusting to pH 5.6); 3.0 g/l Gelrite (added after bringing to volume with D-I H.sub.2O); and 1.0 mg/l indoleacetic acid and 3.0 mg/l bialaphos (added after sterilizing the medium and cooling to 60.degree. C.).

[0174] Hormone-free medium (272V) comprises 4.3 g/l MS salts (GIBCO 11117-074), 5.0 ml/l MS vitamins stock solution (0.100 g/l nicotinic acid, 0.02 g/l thiamine HCL, 0.10 g/l pyridoxine HCL, and 0.40 g/l glycine brought to volume with polished D-I H.sub.2O), 0.1 g/l myo-inositol, and 40.0 g/l sucrose (brought to volume with polished D-I H.sub.2O after adjusting pH to 5.6); and 6 g/l bacto-agar (added after bringing to volume with polished D-I H.sub.2O), sterilized and cooled to 60.degree. C.

[0175] b. Agrobacterium-Mediated Transformation

[0176] Agrobacterium-mediated transformation was performed essentially as described in Djukanovic et al. (2006) Plant Biotech J 4:345-57. Briefly, 10-12 day old immature embryos (0.8-2.5 mm in size) were dissected from sterilized kernels and placed into liquid medium (4.0 g/L N6 Basal Salts (Sigma C-1416), 1.0 ml/L Eriksson's Vitamin Mix (Sigma E-1511), 1.0 mg/L thiamine HCl, 1.5 mg/L 2,4-D, 0.690 g/L L-proline, 68.5 g/L sucrose, 36.0 g/L glucose, pH 5.2). After embryo collection, the medium was replaced with 1 ml Agrobacterium at a concentration of 0.35-0.45 OD.sub.550. Maize embryos were incubated with Agrobacterium for 5 min at room temperature, then the mixture was poured onto a media plate containing 4.0 g/L N6 Basal Salts (Sigma C-1416), 1.0 ml/L Eriksson's Vitamin Mix (Sigma E-1511), 1.0 mg/L thiamine HCl, 1.5 mg/L 2,4-D, 0.690 g/L L-proline, 30.0 g/L sucrose, 0.85 mg/L silver nitrate, 0.1 nM acetosyringone, and 3.0 g/L Gelrite, pH 5.8. Embryos were incubated axis down, in the dark for 3 days at 20.degree. C., then incubated 4 days in the dark at 28.degree. C., then transferred onto new media plates containing 4.0 g/L N6 Basal Salts (Sigma C-1416), 1.0 ml/L Eriksson's Vitamin Mix (Sigma E-1511), 1.0 mg/L thiamine HCl, 1.5 mg/L 2,4-D, 0.69 g/L L-proline, 30.0 g/L sucrose, 0.5 g/L MES buffer, 0.85 mg/L silver nitrate, 3.0 mg/L Bialaphos, 100 mg/L carbenicillin, and 6.0 g/L agar, pH 5.8. Embryos were subcultured every three weeks until transgenic events were identified. Somatic embryogenesis was induced by transferring a small amount of tissue onto regeneration medium (4.3 g/L MS salts (Gibco 11117), 5.0 ml/L MS Vitamins Stock Solution, 100 mg/L myo-inositol, 0.1 .mu.M ABA, 1 mg/L IAA, 0.5 mg/L zeatin, 60.0 g/L sucrose, 1.5 mg/L Bialaphos, 100 mg/L carbenicillin, 3.0 g/L Gelrite, pH 5.6) and incubation in the dark for two weeks at 28.degree. C. All material with visible shoots and roots were transferred onto media containing 4.3 g/L MS salts (Gibco 11117), 5.0 ml/L MS Vitamins Stock Solution, 100 mg/L myo-inositol, 40.0 g/L sucrose, 1.5 g/L Gelrite, pH 5.6, and incubated under artificial light at 28.degree. C. One week later, plantlets were moved into glass tubes containing the same medium and grown until they were sampled and/or transplanted into soil.

Example 3

Transient Expression of BBM Enhances Transformation

[0177] Parameters of the transformation protocol can be modified to ensure that the BBM activity is transient. One such method involves precipitating the BBM-containing plasmid in a manner that allows for transcription and expression, but precludes subsequent release of the DNA, for example, by using the chemical PEI.

[0178] In one example, the BBM plasmid is precipitated onto gold particles with PEI, while the transgenic expression cassette (UBI::moPAT.about.GFPm::PinII; moPAT is the maize optimized PAT gene) to be integrated is precipitated onto gold particles using the standard calcium chloride method.

[0179] Briefly, gold particles were coated with PEI as follows. First, the gold particles were washed. Thirty-five mg of gold particles, 1.0 in average diameter (A.S.I. #162-0010), were weighed out in a microcentrifuge tube, and 1.2 ml absolute EtOH was added and vortexed for one minute. The tube was incubated for 15 minutes at room temperature and then centrifuged at high speed using a microfuge for 15 minutes at 4.degree. C. The supernatant was discarded and a fresh 1.2 ml aliquot of ethanol (EtOH) was added, vortexed for one minute, centrifuged for one minute, and the supernatant again discarded (this is repeated twice). A fresh 1.2 ml aliquot of EtOH was added, and this suspension (gold particles in EtOH) was stored at -20.degree. C. for weeks. To coat particles with polyethylimine (PEI; Sigma #P3143), 250 .mu.l of the washed gold particle/EtOH mix was centrifuged and the EtOH discarded. The particles were washed once in 100 .mu.l ddH.sub.2O to remove residual ethanol, 250 .mu.l of 0.25 mM PEI was added, followed by a pulse-sonication to suspend the particles and then the tube was plunged into a dry ice/EtOH bath to flash-freeze the suspension, which was then lyophilized overnight. At this point, dry, coated particles could be stored at -80.degree. C. for at least 3 weeks. Before use, the particles were rinsed 3 times with 250 .mu.l aliquots of 2.5 mM HEPES buffer, pH 7.1, with 1.times. pulse-sonication, and then a quick vortex before each centrifugation. The particles were then suspended in a final volume of 250 .mu.l HEPES buffer. A 25 .mu.l aliquot of the particles was added to fresh tubes before attaching DNA. To attach uncoated DNA, the particles were pulse-sonicated, then 1 .mu.g of DNA (in 5 .mu.l water) was added, followed by mixing by pipetting up and down a few times with a Pipetteman and incubated for 10 minutes. The particles were spun briefly (i.e. 10 seconds), the supernatant removed, and 60 .mu.l EtOH added. The particles with PEI-precipitated DNA-1 were washed twice in 60 .mu.l of EtOH. The particles were centrifuged, the supernatant discarded, and the particles were resuspended in 45 .mu.l water. To attach the second DNA (DNA-2), precipitation using TFX-50 was used. The 45 .mu.l of particles/DNA-1 suspension was briefly sonicated, and then 5 .mu.l of 100 ng/.mu.l of DNA-2 and 2.5 .mu.l of TFX-50 were added. The solution was placed on a rotary shaker for 10 minutes, centrifuged at 10,000 g for 1 minute. The supernatant was removed, and the particles resuspended in 60 .mu.l of EtOH. The solution was spotted onto macrocarriers and the gold particles onto which DNA-1 and DNA-2 had been sequentially attached were delivered into scutellar cells of 10 DAP Hi-II immature embryos using a standard protocol for the PDS-1000. For this experiment, the DNA-1 plasmid contained a UBI::RFP::pinII expression cassette, and DNA-2 contained a UBI::CFP::pinII expression cassette. Two days after bombardment, transient expression of both the CFP and RFP fluorescent markers was observed as numerous red & blue cells on the surface of the immature embryo. The embryos were then placed on non-selective culture medium and allowed to grow for 3 weeks before scoring for stable colonies. After this 3-week period, 10 multicellular, stably-expressing blue colonies were observed, in comparison to only one red colony. This demonstrated that PEI-precipitation could be used to effectively introduce DNA for transient expression while dramatically reducing integration of the PEI-introduced DNA and thus reducing the recovery of RFP-expressing transgenic events. In this manner, PEI-precipitation can be used to deliver transient expression of BBM and/or WUS2.

[0180] For example, the particles are first coated with UBI::BBM::pinII using PEI, then coated with UBI::moPAT.about.YFP using TFX-50, and then bombarded into scutellar cells on the surface of immature embryos. PEI-mediated precipitation results in a high frequency of transiently expressing cells on the surface of the immature embryo and extremely low frequencies of recovery of stable transformants (relative to the TFX-50 method). Thus, it is expected that the PEI-precipitated BBM cassette expresses transiently and stimulates a burst of embryogenic growth on the bombarded surface of the tissue (i.e. the scutellar surface), but this plasmid will not integrate. The PAT.about.GFP plasmid released from the Ca.sup.++/gold particles is expected to integrate and express the selectable marker at a frequency that results in substantially improved recovery of transgenic events. As a control treatment, PEI-precipitated particles containing a UBI::GUS::pinII (instead of BBM) are mixed with the PAT.about.GFP/Ca.sup.++ particles. Immature embryos from both treatments are moved onto culture medium containing 3 mg/l bialaphos. After 6-8 weeks, it is expected that GFP+, bialaphos-resistant calli will be observed in the PEI/BBM treatment at a much higher frequency relative to the control treatment (PEI/GUS).

[0181] As an alternative method, the BBM plasmid is precipitated onto gold particles with PEI, and then introduced into scutellar cells on the surface of immature embryos, and subsequent transient expression of the BBM gene elicits a rapid proliferation of embryogenic growth. During this period of induced growth, the explants are treated with Agrobacterium using standard methods for maize (see Example 1), with T-DNA delivery into the cell introducing a transgenic expression cassette such as UBI::moPAT.about.GFPm::pinII After co-cultivation, explants are allowed to recover on normal culture medium, and then are moved onto culture medium containing 3 mg/l bialaphos. After 6-8 weeks, it is expected that GFP.sup.+, bialaphos-resistant calli will be observed in the PEI/BBM treatment at a much higher frequency relative to the control treatment (PEI/GUS).

[0182] It may be desirable to "kick start" callus growth by transiently expressing the BBM and/or WUS2 polynucleotide products. This can be done by delivering BBM and WUS2 5'-capped polyadenylated RNA, expression cassettes containing BBM and WUS2 DNA, or BBM and/or WUS2 proteins. All of these molecules can be delivered using a biolistics particle gun. For example 5'-capped polyadenylated BBM and/or WUS2 RNA can easily be made in vitro using Ambion's mMessage mMachine kit. RNA is co-delivered along with DNA containing a polynucleotide of interest and a marker used for selection/screening such as Ubi::moPAT.about.GFPm::PinII. It is expected that the cells receiving the RNA will immediately begin dividing more rapidly and a large portion of these will have integrated the agronomic gene. These events can further be validated as being transgenic clonal colonies because they will also express the PAT.about.GFP fusion protein (and thus will display green fluorescence under appropriate illumination). Plants regenerated from these embryos can then be screened for the presence of the polynucleotide of interest.

Example 4

Excision of Genes Encoding Cell Proliferation Factors

[0183] a. Rab17::CRE

[0184] The following T-DNA was constructed: RB-Ubi pro-loxP::Rab17 pro-attB1::Cre-attB2::PinII+NOS::ZmWUS2::PinII+Ubi pro::ZmBBM::PinII-loxP::YFP::PinII+Ubi pro::moPAT::PinII-LB. As a control, a T-DNA containing Ubi pro::moPAT::PinII was constructed. These T-DNA are introduced into immature embryos (approximately 0.8-2.5 mm in length) of the maize inbred PHH5G using standard Agrobacterium-mediated transformation methods. Non-transformed immature embryos of this inbred swell and initiate a small volume of callus cells, but proliferation does not occur on media compositions typically used for maize tissue culture (for example, 605J media, which comprises 4.3 g/l MS salts, 0.6 g/l Shenk & Hildebrand vitamins, 100 mg/l calcium chloride, 275 mg/l ammonium sulfate, 275 mg/l ammonium sulfate, 240 mg/l potassium phosphate, 100 mg/l magnesium sulfate, 3.4 g/l potassium nitrate, 1.8 mg/l boric acid, 6 mg/l manganese sulfate, 0.15 mg/l sodium molybdate, 0.5 mg/l potassium iodide, 22 mg/l disodium EDTA, 17 mg/l ferrous sulfate, 3.4 mg/l silver nitrate, 1 g/l L-proline, 0.2 mg/l nicotinic acid, 0.4 mg/l thiamine, 0.2 mg/l pyridoxine, 0.8 mg/l glycine, 100 mg/l carbenicillin, 0.8 mg/l 2-4D, 1.2 mg/l dicamba, 0.3 g/l casein hydrosylate, 20 g/l sucrose, 0.6 g/l glucose, and 6 g/l TC agar, pH 5.8). Likewise, PHH5G immature embryos transformed with Ubi pro::moPAT::PinII alone do not produce healthy, growing callus, irrespective of whether bialaphos selection is provided. Thus, no transformed events were produced after introducing Ubi pro::moPAT::PinII alone (or with Ubi pro::moPAT::PinII+Ubi pro::YFP::PinII) In contrast, when the genes encoding cell proliferation factors (BBM and WUS2)+Ubi pro::moPAT::PinII were introduced into PHH5G immature embryos, vigorously-growing callus transformants were recovered from 45% of the treated embryos. To remove the genes encoding cell proliferation factors, the Rab17 promoter can be induced through exposure to either 20 mM abscisic acid (ABA), 20-30% sucrose, or desiccation. In this experiment, callus was placed on dry filter papers for three days to induce excision, and then transferred to regeneration medium. If callus was not treated to induce the expression of Cre recombinase, excision of the genes encoding cell proliferation factors did not occur and viable plantlets were not regenerated. However, for events that were taken through the desiccation treatment, Cre excision occurred in over 90% of single copy events (activating YFP) and subsequent regeneration was not inhibited. Transgenic plants were screened using combinations of PCR primers designed to detect the presence of the Ubi pro-loxP::YFP junction formed as a result of excision, and moPAT (not effected by excision), and the absence of Cre, WUS2 and BBM. Plants in which excision was complete were grown to maturity and were either selfed or out-crossed to wild-type plants. Transgenic progeny seed were readily identified through the yellow fluorescence phenotype and plants were easily tracked through either BASTA resistance or yellow fluorescence. PCR analysis in both the T1 and T2 generations indicated that only the excised locus was present in a single genomic copy and that no Agrobacterium plasmid backbone was present.

[0185] Both FLP and Cre recombinase have been successfully used to excise genes encoding cell proliferation factors before regeneration. The following two constructs represent examples of how the recombinases can be used for controlled excision:

PHP32371-FLP/FRT

[0186] RB-Ubi-FRT1::CFP::PinII-attB4+Rab17 Pro-attB1::FLP-attB2::PinII+Nos::ZmWUS2::PinII+Ubi::ZmBBM::PinII-FRT1::YF- P::PinII+Ubi::moPAT::PinII-LB

[0187] The T-DNA sequence of PHP32371 is set forth in SEQ ID NO: 110.

PHP35648-Cre/LoxP

[0188] RB-Ubi-LoxP::CFP::PinII-attB4+Rab17 Pro-attb1::Cre-attB2::PinII+Nos::ZmWUS2::PinII+Ubi::ZmBBM::PinII-LoxP::YF- P::PinII+Ubi::MOPAT::PinII-LB

[0189] The T-DNA sequence of PHP35648 is set forth in SEQ ID NO: 111.

[0190] For both recombinases, expression was controlled by the Rab17 promoter (Vilardell et al. (1991) Plant Mol. Biol 17:985-993) with the attb1 site.

[0191] For both constructs, transgenic callus events were readily recovered, and both constructs worked well for excision of the expression cassettes comprising genes encoding cell proliferation factors (see Table 2). Of the total number of calli exposed to the 3-day desiccation treatment, 61% (Cre) and 29% (FLP) of the resultant plants exhibited a normal wild-type phenotype. As confirmation of excision, PCR analysis in both the T1 and T2 generations indicated that only the excised locus was present in a single genomic copy and that no Agrobacterium plasmid backbone was present.

TABLE-US-00002 TABLE 2 Desiccation-induced excision of the recombinase, BBM & WUS expression cassettes prior to regeneration. # of Callus # of events # of T0 plant- # with a events exposed with normal T0 lets analyzed # of single totally-excised to desiccation plant phenotype using PCR copy plants DevGene package PHP35648 180 110 (61%) 168 94 (56%) 81 (86%) PHP32371 118 34 (29%) 75 51 (68%) 31 (61%)

[0192] Additional constructs that utilize Cre/LoxP were generated.

PHP46446: RB-LoxP-Rab17 Pro-attB1::Cre-attB2::PinII+Nos::Zm-WUS2::PinII::GZ-W64A Term-attB2+Ubi::ZmBBM::PinII-LoxP-LB

PHP48733: RB-LoxP-Rab17 Pro-attB1::Cre-attB2::PinII+Nos:ZmWUS2::PinII+Ubi::ZmBBM::PinII-LoxP-LB

[0193] The T-DNA sequences of PHP46446 and PHP48733 is set forth in SEQ ID NO: 112 and 113, respectively.

[0194] Introduction of PHP35648, PHP48733, or PHP46446 into PHH5G immature maize embryos via Agrobacterium resulted in a transformation frequency of 46%, 67%, or 37%, respectively (see Table 3).

TABLE-US-00003 TABLE 3 Transformation of PHH5G immature maize embryos with maize BBM and WUS2 cell proliferation factors. No. of Transformation No. of No. of callus frequency at Construct ears embryos events callus level PHP35648 14 589 268 45.5 PHP48733 14 584 389 66.6 PHP46446 14 547 203 37.1

[0195] The use of the PHP35648, PHP48733, PHP46446, and PHP32371 constructs (all of which comprised the Rab17 promoter (Vilardell et al. (1991) Plant Mol. Biol 17:985-993) with the attb1 site regulating the expression of the recombinase), did not result in frequent premature excision of the cell proliferation factor genes, similar to the results presented in Example 1 with the PHP31004 construct.

[0196] b. Tetracycline-Inducible CRE

[0197] A 35S promoter in which three tetracycline operator sequences (Top3) have been introduced in proximity to the TATA box (Gatz et al. (1992) Plant J 2:397-404) was operably linked to the CRE structural gene in the following T-DNA which also includes an expression cassette for the tetracycline repressor (TETR), BBM, WUS2, and moPAT, as follows:

RB-loxP-35S::Top3::CRE::PinII+Ubi pro::TETR::PinII+NOS::ZmWUS2::PinII+UBI::ZmBBM::PinII-loxP+UBI::moPAT::Pi- nII-LB

[0198] After Agrobacterium-mediated transformation of 12 DAP PH581 immature embryos, followed by 6 weeks of selection on 3 mg/l bialaphos, embryos into which the control T-DNA was introduced (RB-UBI::moPAT::PinII-LB) produced transformed events at a 1% frequency. In contrast, when the above T-DNA containing ZmBBM & ZmWUS2 was transformed into immature embryos harvested from the same PH581 ears, transgenic calli were recovered at a 15% frequency. Before regenerating plantlets, callus is moved onto medium containing 0.5 mg/l tetracycline for 1 week to induce CRE-mediated excision of CRE, WUS and BBM expression cassettes. Glufosinate ammonium-resistant plants are then readily regenerated.

Example 5

Control of BBM and WUS Expression with Regulated Promoters to Increase Transformation Frequencies

[0199] a. OLE PRO::BBM

[0200] In the inbred PH581 maize line, the introduction of UBI::ZmBBM+NOS:ZmWUS2 increased transformation frequencies from <1% in the control treatment (UBI PRO::moPAT::PinII alone) to 15%. However, such strong over-expression of BBM negatively affects the regeneration of plantlets. Therefore, an oleosin promoter having high levels of expression in callus, with little to no activity during vegetative growth was used to express BBM. When OLE::ZmBBM::PinII+NOS::ZmWUS2::PinII was introduced into PH581 on a first T-DNA and UBI PRO::moPAT::PinII was introduced into the same cells on a second T-DNA, callus transformants were recovered at a 25% frequency. Normal, fertile plants were regenerated and crossed to wild-type PH581. T1 progeny in which the cell proliferation gene locus had segregated away from the UBI PRO::moPAT::PinII locus were readily recovered.

[0201] b. Tetracycline-Inducible BBM and WUS2

[0202] A 35S promoter in which three tetracycline operator sequences have been introduced in proximity to the TATA box (Gatz et al. (1992) Plant J 2:397-404) is operably linked to both the BBM and WUS2 genes, and these expression cassettes are put into a T-DNA along with an expression cassette for the tetracycline repressor (TETR) as follows. [0203] RB-35S-Top3::ZmBBM::PinII+35S-Top3::ZmWUS2::PinII+UBI::moPAT::PinII-LB

[0204] Following Agrobacterium-mediated transformation of Hi-II immature maize embryos, the embryos are transferred to selection medium 560R with 3 mg/l bialaphos+/-0.5 mg/l tetracycline. In the control treatment in which only the UBI::moPAT::PinII expression cassette is introduced, the transformation frequency is typically around 5-10%. For embryos in which the inducible BBM and WUS2 genes are introduced, transformation frequency is expected to be greatly increased upon the addition of tetracycline to the medium.

Example 6

Regulated Expression of BBM and WUS2 for Re-Transformation

[0205] Stable transgenic events in PHH5G are produced that express ZmBBM and ZmWUS2 in a regulated fashion, for example, having BBM and WUS2 under the control of the OLE and NOS promoters, respectively, or having them being driven by a tetracycline-inducible promoter. Immature embryos are then harvested and re-transformed using Agrobacterium to deliver UBI::moPAT::PinII PHH5G embryos not expressing BBM and WUS2 (i.e. wild-type control embryos) produce no transformation events. However, embryos expressing OLE PRO::ZmBBM::PinII and NOS PRO::ZmWUS2::PinII are expected to produce a much higher frequency of bialaphos-resistant events. Regulated expression of the genes encoding cell proliferation factors is expected to enhance the regeneration frequency of normal fertile plants, and the cell proliferation gene locus should readily segregate away from the newly-generated "trait" locus (represented here by the UBI::moPAT::PinII locus). Likewise, when the expression of tetracycline-inducible genes encoding cell proliferation factors are stimulated by the addition of 0.5 mg/l tetracycline, Agrobacterium-mediated transformation to deliver the RB-UBI::moPAT::PinII-LB T-DNA is expected to result in enhanced transformation frequencies.

Example 7

Two T-DNA Co-Transformation to Deliver Genes Encoding Cell Proliferation Factors and Trait Genes Separately

[0206] An Agrobacterium was modified to contain two engineered plasmids, each containing a separate T-DNA. T-DNA-1 was PHP35648 (see Example 4 for description), and T-DNA-2 (PHP41877) contained RB-attB4-UBI::moPAT::PinII+UBI-FRT1::RFP::PinII-attB1+UBI::GAT::PinII-att- B2-FRT87-attB3-LB (GAT=glyphosate-N-acetyltransferase) representing the T-DNA that will contain the desired stack of trait genes). Agrobacterium-mediated transformation of PHH5G immature maize embryos was followed by glyphosate selection. Only embryos that have integrated T-DNA-1 grew since growth in culture for PHH5G only occurred when the ZmWUS2 and ZmBBM genes were present. Only embryos containing T-DNA-2 were glyphosate-resistant and exhibited red fluorescence. Thus, only embryos that were co-transformed with both T-DNAs grew on glyphosate.

Example 8

Identification of BBM Motifs

[0207] Fifty genes from different plant species were identified through a homology search using the maize BBM amino acid sequence (SEQ ID NO: 10) queried against annotated protein sequences (see FIG. 1). The gene structure and sequences of these BBM homologs were manually inspected and compared with EST/cDNA alignments whenever possible. The fifty polypeptides are set forth in SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 67, and 70-104. To systematically identify possible motifs within the BBM homologs, protein sequences of these fifty homologs were submitted to the MEME web server, available on the world wide web at meme.nbcr.net/meme4.sub.--1/cgi-bin/meme.cgi, with the following specific parameters:

[0208] Number of different motifs: 20

[0209] Minimum motif width: 5

[0210] Maximum motif width: 300

[0211] Minimum number of sites: 5

[0212] Default values were applied for all other parameters. The raw results from MEME were manually compared with multiple sequence alignments generated by clustalw. Only those candidates showing good consensus with the sequence alignments were considered as motifs for further analysis.

[0213] The fifty genes were subjected to a phylogenetic analysis and a total of six subgroups were identified, including BBM, PLT3, PLT1/2, AIL6/7, AIL1, and ANT (see FIG. 1). FIG. 3 depicts all 50 sequences with each of the motifs that were identified using the MEME web server. FIG. 2 provides the motif consensus sequences along with alignments of the various polypeptides used by the MEME web server to generate the consensus motif. With a few exceptions, motifs 1-6, as defined immediately hereinbelow, are present in all 50 genes. This includes motifs 1-3 (SEQ ID NOs 48-50, respectively), which represent the two AP2 domains and a sequence linking the two domains (linker sequence). Motif 4, with the consensus sequence of PK[L/V][E/A][D/N]FLG (SEQ ID NO: 51) is amino-terminal to the two AP2 domains. Motif 5 (SEQ ID NO: 52) flanks the two AP2 domains on the carboxy terminal end of the polypeptides. Near the amino terminus of the polypeptides is motif 6, with the consensus sequence of NWL[G/S]FSLSP (SEQ ID NO: 53).

[0214] There were motifs that were relatively specific for the BBM subgroup of the homologous sequences (referred to herein as BBM polypeptides). An alignment of the BBM polypeptides can be found in FIG. 4. Motif 7 is found in all BBM polypeptides at the amino terminus of the polypeptide and has the consensus sequence of [G/E]LSMIK[T/N]WLR (SEQ ID NO: 54). Another motif that is present in all of the BBM polypeptides except for the polypeptides from Brassica and from Arabidopsis, is Motif 10. Motif 10 has the consensus sequence of WCK[Q/P]EQD (SEQ ID NO: 57) and is located downstream of the AP2 domains.

[0215] There are three more motifs specific to the BBM group of polypeptides, including Motif 15 (SEQ ID NO: 59) which appears only in BBM orthologs, but not in the monocot BBM2 polypeptides; a monocot specific motif (Motif 19; SEQ ID NO: 60); and a general BBM specific motif (Motif 14; SEQ ID NO: 58), which appears in BBM homologs except for the Brassica and legume branch.

[0216] FIG. 5 provides a summary of the motif structure of the BBM homologs. The amino terminal motifs 4 and 6 and the AP2 flanking motif 5 distinguish the BBM homologous sequences from other two AP2 domain-containing homologs, such as WRI, AP2, and RAP2.7. Therefore, motifs 1-6 can be considered as core BBM/PLT family motifs. Many subgroups of the BBM/PLT family (BBM, PLT1/2, AIL1, and ANT) also have a carboxy-terminal motif (motif 8; SEQ ID NO: 55) and the third amino terminal motif (motif 9; SEQ ID NO: 56).

[0217] The BBM polypeptides all have one additional motif (motif 7; SEQ ID NO: 54) in the amino terminus, and all but the Brassica and Arabidopsis BBM homologs have an AP2 downstream motif (motif 10; SEQ ID NO: 57). Some other BBM/PLT family members (e.g., monocot AIL1) may have a similar motif as motif 7, but none of them also have motif 9. Motif 10 appears only in BBM polypeptides. In summary, the MEME predicted motifs 1-10 can be regarded as BBM polypeptide motifs. All monocot BBM polypeptides (corn, sorghum, and rice) also have motif 14, 15, and 19 (see FIG. 3). Some dicot BBM polypeptides and the second monocot BBM group (BBM2) have one or two of these motifs, but none have all three motifs.

Example 9

Use of Maize BBM and WUS2 to Increase Transformation in Rice

[0218] a. Oryza sativa L. ssp. Indica

[0219] Mature and immature Indica embryos were transformed using Agrobacterium with a T-DNA comprising the PHP46911 plasmid (control for immature embryos; see immediately hereinbelow for a description), the PHP32269 plasmid (control for mature embryos; see immediately hereinbelow for a description), or PHP35648.

PHP46911: RB-CaMV35S::Hyg::Nos term+Ubi-FRT1::Zs-yellow1::PinII-FRT87-LB PHP32269: RB-Ubi::PMI::PinII+Ubi::mo-PAT.about.Zs-yellow1::PinII-LB (PMI=phosphomannose isomerase)

[0220] i. Immature Embryo Transformation

[0221] Immature embryos of proprietary Indica strain 851G were transformed using the methods disclosed in International Application Publication No. WO/1995/06722 and Hiei and Komari (2006) Plant Cell, Tissue and Organ Culture 85:271-283, each of which is herein incorporated by reference in its entirety. Results are shown hereinbelow in Table 4.

TABLE-US-00004 TABLE 4 Transformation events in Oryza sativa L. ssp. Indica 851G immature embryos infected with Agrobacterium containing PHP35648. Embryo No. No. of Pieces/Embryo Total No. of Events/Embryo 1 2 1 (100%) 2 3 1 (100%) 3 6 3 (300%) 4 2 2 (200%) 5 3 3 (300%) 6 3 2 (200%) 7 6 2 (200%) 8 7 2 (200%) 9 11 6 (600%) 10 3 3 (300%) 11 5 3 (300%) 12 3 3 (300%) TOTAL 54 31 (258%)

[0222] In total, infection of 12 immature Indica embryos with Agrobacterium containing the PHP35648 plasmid resulted in 31 transformation events, a transformation frequency of 258% events/embryo. The 31 events were derived from 54 pieces of embryo, for a transformation frequency of 57% events/embryo pieces. On the other hand, the infection of nine embryos with Agrobacterium containing PHP46911 resulted in only one single transformation event and an overall transformation frequency of 11%.

[0223] ii. Mature Embryo Transformation

[0224] Mature embryos of Indica strains IRV95 and 851G were transformed using the following protocol. Healthy rice seeds were dehusked and soaked in 50 ml of sterile water with a drop of Tween 20 for 5 minutes. The seeds were sterilized with 75% ethanol for 2-3 minutes, followed by a soak in 50 ml sodium hypochlorite and a drop of Tween 20 for 15-20 minutes. The seeds were rinsed and then callus was initiated in callus induction medium (4.3 g/l MS salts, 10 ml/l B5 vitamins (100.times.), 2 mg/l 2,4-D, 500 mg/l L-proline, 30 g/l sucrose, 0.3 g/casein hydrolysate, 3 g/l Gelrite (added after bringing to volume with D-I H.sub.2O and adjusting pH to 5.8) under continuous light at 32.degree. C. for 12 days.

[0225] Established callus was transformed using Agrobacterium by incubating the callus with the Agrobacterium for 10-15 minutes. The Agrobacterium solution was then decanted and 12-15 seeds were placed onto a filter paper disk that had been pre-moistened with 0.5 ml of AAM medium (50 ml/l AA macro elements (20.times.), 10 ml/l AA microelements (B5 microelements; 100.times.), 10 ml/l AA vitamins (B5 vitamins; 100.times.), 5 ml/l Fe-EDTA-B5 (200.times.), 1 mg/L 2,4-D, 100 ml/l amino acids, 68.5 g/l sucrose, 36 g/l glucose, 500 mg/l cas amino acid at pH 5.2) containing 50 .mu.M acetosyringone. The seeds and pre-moistened filter papers were cultured in the dark at 21.degree. C. for 72 hours in ACCM medium (4.3 g/l MS salts, 10 ml/l B5 vitamins (100.times.), 2 mg/l 2,4-D, 20 g/l sucrose, 10 g/l glucose, 0.5 g/l casein hydrolysate, 3 g/l Gelrite (added after bringing to volume with D-I H.sub.2O and adjusting pH to 5.2) containing 200 .mu.M acetosyringone. The calli were washed and then transferred to resting ASM medium (100 ml/l 580S major salts (10.times.), 10 ml/l 580S minor salts (100.times.), 5 ml/l 580S FeETDA-L (200.times.), 5 ml/l 580S vitamins (200.times.), 100 mg/l myo-inositol, 300 mg/l casein hydrolysate, 30 g/l maltose, 2 mg/l 2,4-D, 500 mg/l L-proline, 0.5 g/l MES buffer, 8 g/l agar (added after bringing to volume with D-I H.sub.2O and adjusting pH to 5.8) containing 250 mg/l carbenicillin for 15 days. Following the 15 day incubation, the calli were transferred to selection medium (100 ml/l 580S major salts (10.times.), 10 ml/l 580S minor salts (100.times.), 5 ml/l 580S FeEDTA-L (200.times.), 5 ml/l 580S vitamins (200.times.), 100 mg/l myo-inositol, 300 mg/l casein hydrolysate, 30 g/l sucrose, 2 mg/l 2,4-D, 500 mg/l L-proline, 0.5 g/l MES buffer, 8 g/l agar (added after bringing to volume with D-I H.sub.2O and adjusting pH to 5.8) with 200 mg/l carbenicillin and 2 mg/l bialaphos and subcultured every 15 days until transformation events arose.

[0226] The event was then dessicated on filter paper at 28.degree. C. for 48 hours to excise the developmental genes. Dessicated events were identified based on the expression of Zs-yellow visualized under the microscope. The dessicated event was transferred to regeneration medium (100 ml/l N6 major salts (10.times.), 10 ml/l FeEDTA (100.times.), 10 ml/l B5 minor salts (100.times.), 10 ml/l B5 vitamins (100.times.), 1 mg/l 1-naphthalene acetic acid, 3 mg/l 6-benzyl amino purine, 30 g/L maltose, 0.3 g/l proline, 0.3 g/l vitamin assay casamino acids, 4 g/l agarose type 1, 30 mg/l glutamine (added after adjusting pH to 5.8 and sterilization) and grown at 32.degree. C. under light. After 1-1.5 months, green shoots emerged from the callus and it was transferred to rooting medium (100 ml/l MS major salts (10.times.), 10 ml/l FeEDTA (100.times.), 10 ml/l MS minor salts (100.times.), 10 ml/l MS vitamins (100.times.), 2 mg/l indole-3-butyric acid, 15 g/l sucrose, 1 g/l vitamin assay casamino acids, 10.times.AA amino acid at pH 5.8). After another 15-20 days, the rooted plants are hardened in Y-medium (1.25 ml/l Stock A (9.14 g/100 ml ammonium nitrate (HIMEDIA RM5657)), 1.25 ml/l Stock B (4.03 g/100 ml sodium hydrogen phosphate (HIMEDIA 58282)), 1.25 ml/l Stock C (7.14 g/100 ml potassium sulfate (HIMEDIA 29658-4B)), 1.25 ml/l Stock D (8.86 g/100 ml calcium chloride (HIMEDIA C5080)), 1.25 ml/l Stock E (3.234 g/100 ml magnesium sulfate (HIMEDIA RM683)), 1.25 ml/l Stock F (15 mg/100 ml magnesium chloride tetrahydrate (HIMEDIA 10149), 6.74 mg/100 ml ammonium molybdate (HIMEDIA 271974), 9.34 mg/100 ml boric acid (SIGMA 136768), 0.35 mg/100 ml zinc sulfate helpta hydrate (HIMEDIA RM695), 0.31 mg/100 ml copper sulfate hepta hydrate (HIMEDIA C8027), 0.77 mg/100 ml ferric chloride hexa hydrate (SIGMA 236489), 119 mg/100 ml citric acid monohydrate (HIMEDIA C4540)) at pH 5.2.

[0227] Results are shown hereinbelow in Table 5.

TABLE-US-00005 TABLE 5 Transformation events in Oryza sativa L. ssp. Indica 851G and IRV95 mature embryo-derived callus. % of No. of No. of regenerated Seed infected No. of % of events events/infected No Variety Construct calli events events regenerated calli 1 851G PHP35648 100 8 8.00% 5 5.00% PHP32269 50 1 2.00% 0 0.00% 2 851G PHP35648 130 18 13.85% N/A.sup.a N/A PHP32269 50 1 2.00% N/A N/A 3 IRV95 PHP35648 128 20 15.63% N/A N/A PHP32269 50 1 2.00% N/A N/A .sup.aN/A data not available; calli are currently being dessicated, so no data on number or percentage of regenerated events are available

[0228] b. Nipponbare Rice (cv. Kitake)

[0229] Callus was initiated from mature embryos of Oryza sativa, var. Nipponbare, cv. Kitake, and established callus was transformed using Agrobacterium strain LBA4404 containing UBI::ZmBBM::PinII and NOS PRO::ZmWUS2::PinII between the T-DNA borders. Callus culture medium for rice consisted of N6 salts, Eriksson's vitamins, 0.5 mg/l thiamine, 2 mg/lo 2,4-D, 2.1 g/l proline, 30 g/l sucrose, 300 mg/l casein hydrolysate, 100 mg/l myo-inositol, and 3 g/l gelrite at pH 5.8. Five days after Agro-infection, callus was observed under an epifluorescent dissecting microscope. For calli that were transformed with UBI::ZS-GREEN::PinII alone, all the visible fluorescent foci were single cells, with a few possible 2-4 cell foci. When callus was transformed with NOS::ZmWUS2::PinII+UBI::ZmBBM::PinII+UBI::ZS-GREEN::PinII and observed 5 days later, numerous rapidly-growing, green-fluorescent, multicellular colonies were present.

Example 10

The Rice, Sorghum and Grape BBM Genes Increase Transformation Frequency in Maize

[0230] Growth assays were performed to test whether BBM genes from various species would stimulate growth in maize. For these experiments, 10-13 DAP embryos of the genotype PH581 were bombarded with a first plasmid containing a UBI PRO::moPAT.about.GFP::pinII expression cassette plus either a plasmid containing 35S::GUS::pinII (control treatment) or a BBM gene driven by the ubiquitin promoter. To attach the DNAs to gold particles, a 25 .mu.l aliquot of 0.6 .mu.m particles (0.01 mg/.mu.l) was added to fresh tubes before attaching DNA. To attach uncoated DNA, the particles were pulse-sonicated, then 500 ng of each DNA (in 5 .mu.l water) was added, followed by mixing (pipetting up and down a few times with a Pipetteman). Then 2.5 .mu.l of TFX-50 was added, and the solution was placed on a rotary shaker for 10 minutes. After centrifugation at 10,000 g for 1 minute, the supernatant was removed, and the particles were resuspended in 60 .mu.l of EtOH, followed by a 10 minute incubation. The particles were spun briefly (i.e., 10 seconds), the supernatant removed, and 60 .mu.l EtOH added. The solution was spotted onto macrocarriers and the gold particles onto which DNA had been attached were delivered into scutellar cells of 10-13 DAP immature embryos using a standard protocol for the DuPont PDS-1000 Helium Gun. After 4-5 weeks on culture medium, the embryos were examined and the number of GFP-expressing multicellular colonies were counted.

[0231] a. OsBBM

[0232] Based on the rice BBM genomic sequence (SEQ ID NO: 117), TIGR software was used to predict intron splicing and the resultant cDNA sequence (OsBBM (MOD1) is set forth in SEQ ID NO: 118). A plasmid containing an expression cassette for the rice BBM (MOD1) gene (UBI PRO::OsBBM (MOD1)::PinII) was co-delivered with UBI::moPAT.about.GFP::PinII into 13 DAP PH581 immature embryos using the particle gun. When the UBI PRO::moPAT.about.GFP::pinII cassette was introduced with 35S::GUS, few multicellular growing sectors were observed (see Tables 6-10). When UBI::ZmBBM::PinII was introduced along with UBI::moPAT.about.GFP::PinII, a stimulation of growth was observed as indicated by the total number of growing multicellular colonies observed as well as the number of embryos with multiple growing colonies. Despite many conserved amino acid motifs between the encoded maize protein and the protein encoded by the predicted OsBBM (MOD1) cDNA, when the rice expression cassette UBI::OsBBM (MOD1)::PinII, was introduced along with the moPAT.about.GFP cassette, no stimulation of growth was observed relative to the control treatment (35S::GUS) (see Tables 6 and 7). Based on a comparison of the maize and rice MOD1 amino acid sequences, and a more careful analysis of the rice genomic sequence, it was determined that the TIGR software failed to predict the splicing around a 9-bp exon that encodes the amino acids VYL in the first AP2 domain. Upon including this 9 bp exon in a re-synthesized rice cDNA (OsBBM (MOD2); set forth in SEQ ID NO: 120), and introducing this in the expression cassette UBI::OsBBM (MOD2)::PinII, a growth stimulation similar to that observed for the maize BBM gene was observed (Table 7, 8, 9 and 10).

TABLE-US-00006 TABLE 6 Number of green-fluorescent multicellular colonies six weeks after bombardment with UBI::moPAT~GFP plus the plasmid indicated in each treatment. Total Number GFP + Colonies/Bombarded Embryo of Multicellular TRT 0 1 2 3 4 5 6 7 8 9 10 Colonies 35S::GUS 44 0 UBI::ZmBBM 15 10 5 4 3 1 1 1 25 UBI::OsBBM 42 0 (MOD1) OLE::ZmBBM 14 16 6 1 14 OLE::ZmANT 44 0

TABLE-US-00007 TABLE 7 Number of green-fluorescent multicellular colonies five weeks after bombardment with UBI::moPAT~GFP plus the plasmid indicated in each treatment. Total Number GFP + Colonies/Bombarded Embryo of Multicellular TRT 0 1 2 3 4 5 6 7 8 Colonies 35S::GUS 70 5 0 3 8 UBI::ZmBBM 19 24 17 7 3 1 52 UBI::OsBBM 70 4 2 6 (MOD1) UBI::OsBBM 28 29 11 3 1 1 45 (MOD2) OLE::ZmBBM 28 24 11 9 2 1 2 49 OLE::ZmANT 55 16 1 1 1 19

TABLE-US-00008 TABLE 8 Number of green-fluorescent multicellular colonies five weeks after bombardment with UBI::moPAT~GFP plus the plasmid indicated in each treatment. Number of GFP + Total Number Colonies per Scored Embryo of Multicellular Treatment 0 1 2 3 4 5 6 Colonies 35S::GUS 70 5 0 3 0 0 0 8 UBI::ZmBBM 19 24 17 7 3 1 0 52 UBI::OsBBM 28 29 11 3 1 1 0 73 (MOD2) OLE::ZmBBM 28 24 11 9 2 1 2 49 OLE::ZmANT 55 16 1 1 1 0 0 19

TABLE-US-00009 TABLE 9 Number of green-fluorescent multicellular colonies five weeks after bombardment with UBI::moPAT~GFP plus the plasmid indicated in each treatment. Number of GFP + Total Number Colonies per Scored Embryo of Multicellular Treatment 0 1 2 3 4 5 6 Colonies 35S::GUS 61 6 1 0 0 0 0 7 UBI::ZmBBM 21 29 12 3 2 0 0 46 UBI::OsBBM 27 29 5 2 0 1 0 37 (MOD2) UBI::VvBBM 32 21 6 0 1 0 0 28 UBI::ZmBBM (genomic) 9 36 13 6 3 0 0 58

TABLE-US-00010 TABLE 10 Number of green-fluorescent multicellular colonies five weeks after bombardment with UBI::moPAT~GFP plus the plasmid indicated in each treatment. GFP + Colonies/Scored Embryo Total Number of Multicellular TRT 0 1 2 3 4 5 6 7 8 9 10 Colonies 35S::GUS 80 11 11 UBI::ZmBBM 43 28 13 5 2 48 UBI::OsBBM 45 32 11 3 46 (MOD2) UBI::SbBBM 81 10 10 (MOD1)

[0233] b. SbBBM

[0234] Based on the sorghum genomic BBM sequence (SEQ ID NO: 69), TIGR software was used to predict intron splicing and the resultant cDNA sequence (SbBBM (MOD1) is set forth in SEQ ID NO: 3). A plasmid containing an expression cassette for the sorghum BBM (MOD1) gene (UBI PRO::SbBBM (MOD1)::PinII) was co-delivered with UBI::moPAT.about.GFP::PinII into 13 DAP PH581 immature embryos using the particle gun. When the UBI PRO::moPAT.about.GFP::PinII cassette was introduced with 35S::GUS, few multicellular growing sectors were observed (see Table 10). Unlike UBI::ZmBBM and UBI::OsBBM (MOD2), which in this experiment produced a similar positive growth stimulation, UBI::SbBBM (MOD1)::PinII failed to simulate growth. Assuming there was some unknown defect in the SbBBM (MOD1) synthetic cDNA, the sorghum genomic BBM was cloned using PCR and sequenced to verify fidelity. In an earlier experiment, the maize genomic BBM (SEQ ID NO: 116) was placed behind the UBI promoter and when compared to the UBI::ZmBBM cDNA construct it produced a similar degree of growth stimulation (Table 9). Using the genomic sorghum clone [UBI::SbBBM (GEN)], a similar level of growth stimulation was also observed (Tables 11 and 12).

TABLE-US-00011 TABLE 11 Number of green-fluorescent multicellular colonies five weeks after bombardment with UBI::moPAT~GFP plus the plasmid indicated in each treatment. Total Number GFP + Colonies/Scored Embryo of Multicellular Treatment 0 1 2 3 4 5 6 7 8 Colonies * 35S::GUS 57 3 3 UBI:VvBBM-NoVYL 57 3 3 UBI:VvBBM 36 15 4 1 1 1 22 UBI:SbBBM (Genomic) 10 19 11 11 4 3 2 50 UBI:ZmBBM 12 18 8 10 4 3 1 1 45

TABLE-US-00012 TABLE 12 Number of green-fluorescent multicellular colonies five weeks after bombardment with UBI::moPAT~GFP plus the plasmid indicated in each treatment. Total Number GFP + Colonies/Scored Embryo of Multicellular TRT 0 1 2 3 4 5 Colonies 35S::GUS 60 0 UBI::ZmBBM 19 18 11 7 4 1 41 UBI::SbBBM (Genomic) 20 15 14 6 5 60 UBI::VvBBM 46 11 3 14 UBI::VvBBM-No VYL 60 0

[0235] c. VvBBM

[0236] A nucleotide sequence was derived that provided good codon usage for maize, but expressed the amino acid sequence of a grape BBM (VvBBM; SEQ ID NO: 5). A plasmid containing an expression cassette for a synthetic grape BBM gene (UBI PRO::VvBBM::PinII) was co-delivered with UBI::moPAT.about.GFP::PinII into 10 DAP PH581 immature maize embryos using the particle gun. When the UBI PRO::moPAT.about.GFP::PinII cassette was introduced alone, no (Table 12) or very few (Tables 9 and 11) multicellular growing sectors were observed. When UBI::VvBBM::PinII+UBI::moPAT.about.GFP::PinII were co-delivered, numerous RFP+multicellular colonies were observed growing on the surface of bombarded embryo after 4 weeks. As with growth stimulation by the maize, rice and sorghum BBM genes, the growth stimulation imparted by the UBI::VvBBM::PinII cassette was manifested by an increase in the overall number of multicellular colonies, and also an increase in the number of multicellular colonies growing on single embryos (see Tables 9, 11 and 12). When a construct comprising the VvBBM sequence, in which the 9-bp sequence encoding VYL in the AP2 domain was removed, was introduced into maize, there was no observed growth stimulation (Tables 11 and 12), similar to the observations made with the rice BBM gene lacking this same exon.

[0237] d. Maize ANT Gene

[0238] The following constructs were used for comparison: OLE PRO::ZmBBM::pinII, and OLE PRO::ZmANT::pinII. The nucleotide and amino acid sequences of ZmANT are set forth in SEQ ID NOs: 66 and 67. Each of these plasmids was co-delivered with UBL:moPAT.about.GFP::pinII into 10 or 13 DAP PH581 immature embryos using the particle gun. When the UBI PRO::moPAT.about.GFP::pinII cassette was introduced alone, no (Table 6) or few multicellular growing sectors (Tables 7 and 8) were observed. When OLE::ZmBBM::pinII+UBI::moPAT.about.GFP::pinII were co-delivered, a substantial increase in the number of embryos with GFP+ multicellular colonies were observed growing on the surface of each bombarded embryo after 5 weeks (i.e. relative to the control treatment). In addition, the number of embryos supporting multiple GFP+colonies increased. Embryos co-bombarded with OLE::ZmANT::pinII+UBI::moPAT::pinII appeared identical (Table 6, with no multicellular colonies in either treatment) or similar to the control treatment (FIGS. 6 and 7, with only a 2-fold increase in colony formation and numerous single GFP+ cells (indicating only transient expression but no division) and a reduced number of GFP+ colonies relative to the BBM treatment. In a second experiment with the same treatments (control with no BBM or ANT, Ole::BBM or Ole::ANT), out of 44 embryos shot per treatment, the control and ANT treatments produced no multicellular GFP+ colonies after 3 weeks while the BBM treatment produced 14 colonies.

Example 11

Expression of the Maize BBM and WUS Genes Improves Transformation in Sorghum

[0239] Agrobacterium tumefaciens LBA4404 and a super-binary vector constructed with pSB1 and pSB11 (Komari et al. (1996) Plant J 10:165-174; Thompson et al. (1987) EMBO J 6:2519-2523) can be used for sorghum transformation (Zhao (2006) In "Agrobacterium Protocols," vol. 1, Kan Wang, ed. Hamana Press, Totowa, N.J.; U.S. Pat. No. 6,369,298; and International Application Publication No. WO 98/49332). The super-binary vector contained a selectable marker gene, bar (Chalfie et al. (1994) Science 263:802-805) and a visible marker gene, such as red fluorescent protein (RFP), yellow fluorescent protein (YFP), or intron-GFP (Jefferson et al. (1986) Proc Natl Acad Sci USA 83:8447-8451).

[0240] Minimal AB media included 50 ml/l Stock A, 50 ml/l Stock B, 5 g/l glucose, 9 g/l Phytagar. For the Agrobacterium strain used in this protocol, 50 mg/l spectinomycin is added after autoclaving. Stock A included 60 g/l K.sub.2HPO.sub.4, and 20 g/l NaH.sub.2PO.sub.4, pH 7.0. Stock B is 20 g/l NH.sub.4C1, 6 g/l MgSO.sub.4 7H.sub.2O, 3 g/l KCl, 0.2 g/l CaCl.sub.2, and 0.5 g/l FeSO.sub.4 H.sub.2O. YP medium contained 5 g/l yeast extract, 10 g/l peptone, 5 g/l NaCl, and 15 g/l Bacto-agar. For the Agrobacterium stain used in this protocol, 50 mg/l spectinomycin was added after autoclaving.

[0241] PHI-I media included 4.3 g/l MS salts (GIBCO BRL catalog no. 11117-874), 0.5 mg/l nicotinic acid, 0.5 mg/l pyridoxine HCl, 1 mg/l thiamine HCl, 0.1 g/l myo-inositol, 1 g/l vitamin assay casamino acids, 1.5 mg/l 2,4-D, 68.5 g/l sucrose, 36 g/l glucose, pH 5.2. 100 .mu.M acetosyringone is added before using.

[0242] PHI-T media included PHI-I with sucrose reduced to 20 g/l and glucose reduced to 10 g/l, 2,4-D increased to 2 mg/l, and with 0.5 g/l MES buffer, 0.7 g/l L-proline, 10 mg/l ascorbic acid, 100 .mu.M acetosyringone and 8 g/l agar, pH 5.8 added.

[0243] PHI-U media included PHI-T without glucose and acetosyringone, and with 1.5 mg/l 2,4-D, 100 mg/l carbenicillin, and 5 mg/l PPT (glufosinate-HN4) added.

[0244] PHI-RF media included 4.3 g/L MS salts (GIBCO BRL 11117-074), 0.5 mg/L nicotinic acid, 0.1 mg/L thiamine HCl, 0.5 mg/L pyridoxine HCl, 2.0 mg/L glycine, 0.1 g/L myo-inositol, 0.49 .mu.M cupric sulfate, 0.5 mg/L zeatin (Sigma Z-0164), 1 mg/L IAA, 26.4 .mu.g/L ABA, 0.1 mg/L thidiazuron, 60 g/L sucrose, 3 mg/L bialaphos, 100 mg/L carbenicillin, and 8 g/L agar, pH 5.6.

[0245] PHI-Z media included 2.15 g/L MS salts, 2.5 ml/L MS vitamin mix, 20 g/L sucrose, and 3 g/L gelrite, pH 5.6

[0246] Suspension for immature embryo infection consisted of 100 .mu.M acetosyringone in PHI-I medium (pre-warmed to room temperature). Bacteria were scraped off a working plate with a sterile bacteria loop and placed in PHI-I with 100 .mu.M acetosyringone. The suspension was vigorously vortexed to break clumps and form a uniform suspension as determined by visual inspection. 1 ml of Agro-suspension was taken to measure optical density at 550 nm. The suspension was diluted with PHI-I plus 100 .mu.M acetosyringone to 10.sup.9 cfu/ml (OD at 0.7).

[0247] Sorghum plants were grown under greenhouse, growth chamber, or field conditions. Healthy sorghum plants were always important for a successful transformation. Immature panicles were harvested 9-13 days post-pollination depending on the growing conditions. The size of immature zygotic embryos used in transformation ranged from 0.8 to 2.5 mm in length. Immature kernels were removed from the panicles and sterilized with 50% bleach and 0.1% Tween-20 for 30 min. with vacuum, then the kernels were rinsed three times with sterile water. The kernels were kept in sterile water before isolating embryos. Embryos were aseptically dissected from each sterilized sorghum kernel and placed in a 2-ml microtube containing 2 ml PHI-I with 100 .mu.M acetosyringone. Usually, about 100 embryos were placed in each tube.

[0248] PHI-I liquid medium was removed from the tube comprising the embryos with a 1 ml micropipettor and replaced with 1 ml of the Agrobacterium suspension. The tube was gently inverted a few times to mix well and incubated 5 minutes at room temperature. The Agrobacterium suspension was removed from the tube with a 1 ml micropipettor. The embryos were scraped from the tube using a sterile spatula. Immature embryos were transferred to a plate of PHI-T medium in a 100.times.15 mm Petri dish. The embryos were oriented with embryonic axis down on the surface of the medium. These embryos were incubated at 21-25.degree. C. in the dark for 3 days. The embryos were transferred to PHI-U minus PPT with the same orientation and incubated at 28.degree. C. in the dark for 4 days.

[0249] The embryos were transferred to PHI-U medium and incubated at 28.degree. C. in the dark for 2-3 weeks and were subcultured every two to three weeks for about 10-20 weeks to obtain enough callus for regeneration into plants.

[0250] These calli were transferred to PHI-RF medium and incubated at 28.degree. C. in the dark for approximately 2-3 weeks to develop shoots. When shoots formed, these cultures were moved to a lighted culture room under conditions of 16 hours light (270 .mu.E m.sup.-2 sec.sup.-1) and 8 hours dark at 25.degree. C. Shoots (about 3-5 cm tall) were transferred to plastic boxes (10.times.9.times.10 cm) containing PHI-Z medium. These shoots were cultured under the same light and temperature conditions for 3-5 days. Each box contained shoots derived from a single embryo. When the plantlets reached about 8-10 cm tall with healthy roots, these plantlets were transferred to pots with Universal Mix (Strong-Lite, Seneca, Ill.61360) in the greenhouse.

[0251] Embryos were harvested from developing sorghum seed and transformed using Agrobacterium, delivering the PHP32371 T-DNA (see Example 4). As a control treatment, embryos were transformed with RB-Ubi::moPAT+Ubi:CFP-LB. Callus was selected on 3 mg/l bialaphos, and monitored for fluorescence to aid in identifying transgenic sectors. Sorghum transformation frequencies using Ubi:moPAT+Ubi:CFP averaged 0.5%. By comparison, in six experiments, a total of 393 embryos were transformed with PHP32371, producing an average transformation frequency of 18.3% (see Table 13). Callus from the first experiment (30 events from a starting total of 140 embryos) was used to test the desiccation-induced excision controlled by the Rab17 promoter, and subsequent plant regeneration. Twenty-one events were desiccated for three days on dry filter papers and then taken through the standard regeneration protocol. Fifteen of the 21 events produced a total of 81 plants, with multiple plants being regenerated for many of the individual events. Of these, 60% contained a single copy of the integrated DNA, and of the single copy events, 91% produced PCR results indicating complete excision of the genes encoding cell proliferation factors. From excised events, normal phenotype plants lacking FLP and WUS2 were readily regenerated.

TABLE-US-00013 TABLE 13 Transformation efficiencies after Agrobacterium-mediated transformation with PHP32371. Number of Experiment Number of Transformation Transformation ID Embryos Events Frequency (%) 1 140 30 21.4 2 40 3 7.5 3 60 8 13.3 4 40 7 17.5 5 61 12 19.7 6 52 12 23.1 Average 18.3

Example 12

Expression of the Maize BBM and WUS Genes Improves Transformation in Sugarcane

[0252] A developmental gene binary vector with the ZmBBM/ZmWUS2 gene cassette was compared with a standard vector containing moPAT plus either DsRED or YFP without the ZmBBM/ZmWUS2 gene cassette for transformation frequency using two Agrobacterium strains, AGL1 and LBA4404, in CP89-2376 and CP01-1372 sugarcane cultivars. The developmental gene binary vector contains Ubi::LoxP::CFP+Rab17Pro-attB1::Cre-attB2::PinII+Nos::ZmWUS2::Pin- II+Ubi::ZmBBM::PinII-LoxP::YFP+Ubi:: MOPAT::PinII. The Lox cassette containing CFP::Cre::WUS::BBM can be excised by Cre recombinase controlled by the Rab17 promoter. Callus tissues of both CP89-2376 and CP01-1372 cultivars were induced and maintained on DBC3 medium. Tissues were infected with Agrobacterium containing the developmental gene binary vector in 10 mM MgSO4 plus 100 uM acetosyringone and then cocultivated with liquid DBC3(M5G) medium plus 100 uM acetosyringone on the filter paper in Petri dishes at 21.degree. C. in the dark. Three days after cocultivation, the tissues were transferred to DBC3 containing 100 mg/L cefotaxime and 150 mg/L timentin for AGL1, and DBC3 containing 100 mg/L carbenicillin for LBA4404, and incubated at 26.degree. C. (.+-.1.degree. C.) in the dark or dim light for 3-7 days. Afterwards, the tissues were transferred to the same media as the previous step plus 3 or 5 mg/L bialaphos. After two months from the initiation of the experiment, transformation frequency was calculated by the number of tissues showing CFP expression divided by the number of explants infected by Agrobacterium. Table 14 demonstrated that AGL1 was even more efficient in transformation than LBA4404 in both CP89-2376 and CP01-1372. There was also a genotype difference in transformation frequency; CP89-2376 had much higher transformation frequencies than CP01-1372 using either of the Agrobacterium strains.

[0253] AGL1 containing the developmental gene vector was also used to test sugarcane germplasm screening in another set of experiments using 5 different cultivars (CP96-1252, CP01-1372, CP89-2376, CPCL97-2730 and HoCP85-845). Callus tissues of all 5 cultivars tested were induced and maintained on DBC3 medium and tissues were infected with AGL1 containing the developmental gene binary vector. The use of developmental genes dramatically increased transformation frequency in all 5 cultivars tested. Transformation frequencies in the most amenable cultivar, CP89-2376, using a standard binary vector averaged 116.7% (56/48) (Table 14). In contrast, an average transformation frequency in this cultivar from 5 experiments was >2,512.5% (>1,005 events/40 tissues infected) using the developmental gene binary vector. Similar results were obtained from the remaining 4 cultivars, CP96-1252, CP01-1372, CPCL97-2730 and HoCP85-845; transformation frequencies ranged from 62.5% to 187.5% in these 4 cultivars while no transgenic events were obtained using the standard vector without the BBM/WUS gene cassette from these cultivars.

TABLE-US-00014 TABLE 14 Transformation frequency in sugarcane using the developmental genes ZmBBM and ZmWUS2. Agrobacterium Binary Sugarcane Cultivar Strain Vector CP96-1252 CPO1-1372 CP89-2376 CPCL97-2730 HoCP85-845 AGL1 DG.sup.a n.t..sup.c 37.5% n.t. n.t. n.t. (3/8) LBA4404 DG n.t. 0% n.t. n.t. n.t. (0/8) AGL1 DG n.t. >1,250.0% >6,250.0% n.t. n.t. (>100/8) (>500/8) LBA4404 DG n.t. 12.5% >1,500% n.t. n.t. (1/8) (>120/8) AGL1 DG n.t. n.t. 687.5% n.t. n.t. (>55/8) AGL1 DG n.t. n.t. >2,500% 175.0% n.t. (>200/8) (14/8) AGL1 DG 150.0% 62.5% >625.0% 62.5% n.t. (12/8) (5/8) (>50/8) (6/8) AGL1 DG n.t. n.t. >2,500% n.t. 187.5% (>200/8) (15/8) AGL1 Std.sup.b 0% 0% 116.7% 0% 0% (0/8) (0/8) (56/48) (0/8) (0/8) Each transformation treatment had 8 pieces of callus tissues 0.4-0.5 cm in size. DG.sup.a: developmental gene vector with BBM/WUS gene cassette Std.sup.b: standard vector without BBM/WUS gene cassette n.t..sup.c.: not tested

[0254] Transgenic callus tissues were desiccated on dry filter papers for three days to induce excision of the Lox cassette containing CFP::Cre::WUS::BBM by Cre recombinase driven by the Rab17 promoter. Excision was monitored by observing YFP expression on desiccated transgenic callus events by the presence of the UBI:loxP:YFP junction formed as a result of excision. Cre excision occurred at 83 of 87 transgenic events (95.4%) (Table 15). Plants from some transgenic events after excision are being regenerated on MSB plus 1 mg/L bialaphos and antibiotics.

TABLE-US-00015 TABLE 15 Excision efficiency of the BBM/WUS gene cassette in transgenic sugarcane events by desiccation. Sugarcane Agrobacterium Binary Excision Cultivar Strain Vector Efficiency (%) CP89-2376 AGL1 DG.sup.a 93% (40/43) CP89-2376 LBA4404 DG 100% (25/25) CP01-1372 AGL1 DG 100% (13/13) CP01-1372 LBA4404 DG 0% (0/1) CP89-2376 AGL1 DG 100% (5/5) Average 95.4% (83/87) DG.sup.a developmental gene vector with BBM/WUS gene cassette

Example 13

Complementation of Separately Transformed BBM and WUS2 Genes

[0255] Nos::ZmWUS2::PinII and Rab17-attB1::CRE::PinII are integrated into the genome of an inbred maize plant. LoxP-UBI::BBM::PinII-LoxP+a trait gene operably linked to a promoter are re-transformed into the inbred as a single T-DNA. The BBM and WUS2 genes will complement each other, stimulating rapid growth only in the cells where both are present. BBM is then excised and normal fertile plants are regenerated. Later, the WUS2/CRE locus is segregated away from the genome.

Example 14

Transformation of Mature Dried Maize Seed

[0256] Cell proliferation factors can be used to increase transformation and/or recovery frequencies in recalcitrant plants and/or target tissues, such as mature seed.

[0257] A T-DNA containing an excisable construct comprising a maize BBM and a maize WUS gene was constructed:

PHP38333: RB-Ubi-LoxP::CFP::PinII-attB4+Rab17 Pro-attb1::Cre-attB2::PinII+Nos::ZmWUS2::PinII+Ubi::ZmBBM::PinII-LoxP::YF- P::PinII+Ubi::moPAT::PinII-LB

[0258] As a control treatment, embryos were transformed with PHP32269: RB-Ubi::moPAT-YFP::PinII-LB.

[0259] The glycerol stock of a thymidine-auxotrophic mutant Agrobacterium strain LBA4404 with vector PHP38333, or the control vector were stored at -80.degree. C. before use. A master plate was made by dipping an inoculation loop into a glycerol stock and streaking onto 12V solid medium with 50 mg/l thymidine in a 100.times.15 Petri dish (for PHP38333) or onto 12S solid medium with 50 mg/l spectinomycin (for the control plasmid). Plates were incubated (inverted) at 28.degree. C. in the dark for 2-3 days to produce single colonies. Master plates were stored at 4.degree. C. for up to 4 weeks and are used for initiating fresh culture for transformation. Several colonies were picked from the master plates and streaked onto 810F solid medium with 50 mg/l thymidine and incubated at 28.degree. C., in the dark for 1 day and fresh Agrobacterium was used for transformation.

[0260] To make the Agrobacterium suspension, 20 ml of 700 liquid medium with 50 mg/l thymidine was added into a 50 ml snap cap tube. A stock solution of acetosyringone (AS) was added to achieve a final concentration of 200 uM and a stock solution of Silwet L-77 was added to achieve a final concentration of 0.04%. Agrobacterium was collected from a 1-day culture plate and suspended in the 700 liquid medium. The tube was vortexed until the Agrobacterium culture clumps were completely broken up and evenly dispersed throughout the solution. One ml of the suspension was transferred to a spectrophotometer tube and the OD of the suspension was adjusted to 0.7 at 550 nm by adding either more Agrobacterium or more of the same suspension medium.

[0261] Maize inbred line PHN46 was used as the initial genotype for transformation tests. Dry seeds were placed in a covered glass jar, in an 80% ethanol solution with stirring for 5 min. The ethanol was decanted and a 50% bleach solution with a few drops of the surfactant Tween-20 were added and seeds in the bleach solution were stirred for 30 min and washed three times with sterile water in a sterile flow hood. Surface sterilized seed were soaked in the sterile water for approximately 24 h at room temperature, which is sufficient to trigger germination. After 24 hours, the softened seeds were sterilized once again with a 50% bleach solution for 5 min, and then washed three times with sterile water in a sterile flow hood.

[0262] Mature embryos were dissected out of the softened and sterilized kernels. Each mature embryo was sliced into 3-4 thin sections by hand using a No. 10 surgical scalpel under the dissecting microscope. Each explant contained exposed leaf primordia, mesocotyl and root primordia regions. These regions on the embryo chips were the target area for T-DNA delivery during Agrobacterium-mediated transformation and contain cells that are culture responsive. Sliced explants were transferred into a 6-well culture plate containing 4 ml 700 liquid medium. About 45 explants were placed into each well for Agrobacterium infection.

[0263] Liquid medium in the 6-well plate was removed from the explants and replaced with 4 ml of prepared Agrobacterium suspension. The 6-well plate was transferred into a transparent polycarbonate desiccator container. The desiccator was covered and placed on a platform shaker rotating at a speed of 100 RPM and connected to an in-house vacuum system for 30 min. After infection, the Agrobacterium suspension was drawn off from the wells and the explants were transferred onto solid 7101 co-cultivation medium with 50 mg/l thymidine. The infected embryo explants on the solid medium were incubated at 21.degree. C. in the dark for 3 days. The number of infected explants was recorded to later calculate transformation efficiencies.

[0264] To evaluate T-DNA delivery efficiency, both the control vector without genes encoding cell proliferation factors and the vector with the genes encoding cell proliferation factors were used to infect embryo explants. After 3d co-cultivation, all of the chips were transferred onto 605J medium for continuous culture. T-DNA delivery was evaluated around 5 d after Agrobacterium infection. Transient expression of the color marker YFP (control vector) or CFP (test vector PHP38333) was a reliable indicator of the T-DNA delivery efficiency. In general, 30%-50% of the infected explants showed T-DNA delivery in the right target tissues or cells. Using an optimized infection medium and protocol, 70%-80% T-DNA delivery efficiency to the target area was achieved. Infected explants were sub-cultured to fresh medium every 3 weeks. After 6 weeks of culture, healthy, vigorously growing, embryogenic type I callus could be identified from those explants that had been infected with vector PHP38333 containing the genes encoding cell proliferation factors. These growing calli represented transformed events confirmed by the color marker (CFP) expression. Non-transformed tissues showed either no growth or very limited growth. Embryogenic type I callus were picked and transferred onto fresh culture medium to let the callus proliferate before plant regeneration (10-12 weeks). Transformation efficiency for PHP38333 at the callus level ranged from 12% to 20% calculated as the number events recovered per total number of infected explants (Table 16). Embryo explants that were infected with control vector PHP32269 also showed good T-DNA delivery based on transient YFP expression in the infected cells. However, these cells did not show significant proliferation and no healthy callus was formed during continuous culture.

TABLE-US-00016 TABLE 16 Transformation frequency of PHP38333 in PHN46 embryo chips. Experiment Number of Chips Number of CFP(+) Transformation No. infected Events Frequency (%) 1 137 23 16.8% 2 134 19 14.2% 3 149 20 13.4% 4 140 25 17.9% 5 148 18 12.2% 6 137 26 19.0% 7 129 27 20.9% 8 136 20 14.7% 9 137 21 15.3% 10 147 24 16.3% Total 1393 223 16.0%

[0265] Transformed callus tissues were treated with either one of the following two desiccation methods to induce excision of the genes encoding cell proliferation factors before plant regeneration.

[0266] 1) Desiccation by natural air exchange: Transformed callus tissues were transferred to an empty 60 mm.times.25 mm Petri dish containing a piece of autoclaved glass filter paper and covered with a lid but not sealed. Petri dishes with callus tissues were placed into a culture box with a loose cover. The box was kept at 28.degree. C. in the dark for 3 days.

[0267] 2) Desiccation in chambers containing a saturated salt solution: Transformed callus tissues were transferred to an empty 60 mm.times.25 mm Petri dish containing a piece of autoclaved glass filter paper and covered with a lid. The Petri dishes with callus tissues were placed into a container with a tight sealing cover. A glass jar containing saturated (NH.sub.4).sub.2SO.sub.4 salt solution without a cover was placed in the container. The container was kept at 28.degree. C. in the dark for 3 days (as the moisture in the air inside the container was absorbed by the saturated salt solution, the callus tissue gradually lost water and experienced desiccation stress).

[0268] After 3 days of desiccation treatment, the callus tissues were transferred to 289L regeneration media for 2-3 weeks in the dark. When shoots formed with a length of about 1-2 cm, callus tissues with shoots were transferred to hormone-free 272V medium for further development of shoots and roots in the light culture room. When plantlets had formed well-developed shoots and roots, plant regeneration efficiency was evaluated. The plant regeneration frequency (number of callus producing plants out of total number of callus events for plant regeneration) varied from 45% to 75% among 10 initial experiments. At this stage, leaf samples were collected from the plantlets derived from each callus event for molecular analysis. Detailed PCR analyses were performed to determine the copy number of transgenes as well as to confirm that the genes encoding proliferation factors were excised and were not present in the regenerated transgenic plants.

[0269] Based on the molecular analysis of 316 TO plants from 162 events, about 60% of the transgenic plants contain a single copy of the transgenes. These single-copy transgenic plants showed very efficient excision of the genes encoding cell proliferation factors from the desiccation-treatment-induction (see results in Table 17). In general, plants with complete excision of genes encoding cell proliferation factors displayed normal phenotype in the tube and also in later developmental stages in the greenhouse. In contrast, TO plants in which excision did not occur (or where it was incomplete) displayed an abnormal phenotype, such as thickened roots.

[0270] Based on PCR analysis results, chimeric or incomplete excision TO plants can be eliminated and only complete-excision (free of genes encoding cell proliferation factors) events were sent to the greenhouse.

TABLE-US-00017 TABLE 17 Analysis of T0 plants for excision of genes encoding cell proliferation factors. T0 Plants Number of Events Single Copy Complete Excision 162 (Events) 103 (63.6%) 94 (91.3%) 316 (Plants) 189 (59.8%) 173 (91.5%)

Example 15

Transformation of Leaf Tissues

[0271] a. Preparation of Agrobacterium and Maize Leaf Explants

[0272] Agrobacterium suspensions were prepared as described in Example 14. Pioneer maize inbred lines PHN46, PHR03 and PHEJW were used as the initial genotypes for transformation tests. Dry seed was sterilized and imbibed overnight as described above.

[0273] Sterilized seeds were placed onto 272V solid medium for direct germination. Alternatively, mature embryos were dissected from softened and sterilized seeds and placed onto 272V solid medium for faster germination. Plates with seeds or isolated embryos were placed in a culture box and incubated at 28.degree. C. in the dark for 3-7 days. Shoot segments of about 2-3 cm long above the first leaf base node of the seedling were excised under sterile conditions. The coleoptile was removed and the leaf fragment was split longitudinally first, then cross-dissected into smaller segments (0.5 to 2 mm). Alternatively, the 2-3 cm-long segment above the first leaf base node of the seedling was simply diced with the scalpel to produce small leaf segments. Small leaf segments were transferred into a 6-well culture plate containing 4 ml of 700 liquid medium.

[0274] Liquid medium in the 6-well plate with leaf pieces were drawn off and replaced with 4 ml prepared Agrobacterium suspension. The 6-well plate was transferred into a transparent polycarbonate desiccator container. The desiccator was covered and placed on a platform of the shaker with a speed of 100 RPM and connected to an in-house vacuum system for 15 min. After infection, the Agrobacterium suspension was drawn off from the wells and the leaf tissues were transferred onto solid 7101 co-cultivation medium with 50 mg/l thymidine and were incubated at 21.degree. C. in the dark for 3 days.

[0275] After 3d co-cultivation, all of the leaf tissues were transferred to 13152C culture medium. T-DNA delivery was evaluated about 5 d after Agrobacterium infection. Transient expression of the color marker YFP (control vector) or CFP (test vector PHP38333) was a reliable indicator of the T-DNA delivery efficiency. 10%-25% of infected leaf segments showed multiple fluorescent cells along the cut edges or surface of leaf segments in all three inbred lines tested. Infected leaf tissues were sub-cultured every 2 weeks. After 6-8 weeks of culture, stable transformed callus events could be identified. The transgenic nature of these stable callus events was indicated by the expression of the fluorescent gene. Callus events with significant proliferation were subjected to desiccation treatment, and transferred onto regeneration medium for 2-4 weeks. Stable transgenic plantlets were regenerated from two tested maize inbreds, PHN46 and PHR03. Results from numerous experiments clearly demonstrated that stable transgenic plants could be produced form transformation of seedling tissue by using the vector that expresses the genes encoding cell proliferation factors. Leaf tissues infected with the control vector also showed good T-DNA delivery based on transient YFP expression, but the infected cells did not exhibit any subsequent proliferation and no stable callus events were identified from this treatment.

Example 16

The Utilization of Cell Proliferation Factors for Enhancing Chloroplast Transformation

[0276] For tobacco and a number of other species, leaves are a preferred target for chloroplast transformation. Cell proliferation factors are used to trigger a tissue culture response from leaves of maize and other species. For boosting chloroplast transformation, cell proliferation factor genes under the control of inducible promoters are introduced into the species of interest by standard nuclear transformation protocols. Events that contain the transgene are characterized for expression of the inducible cell proliferation factor genes. For example, leaves of maize from plants transformed with the cell proliferation factor genes under the control of the tetracycline-repressor system are placed on medium containing appropriate concentrations of doxycyline. The doxycyline then activates the cell proliferation factor genes and thereby induces an embryogenic tissue culture response. The leaves are maintained on this medium for about 7-21 days during which time cell division and the initiation of embryogenic callus will take place. The leaves are bombarded with chloroplast transformation vectors carrying the aadA selectable marker gene and trait gene just prior to induction of the cell proliferation genes, during induction or just after induction. One to seven days after bombardment with the chloroplast transformation vector, the tissue is placed in petri plates containing agarose-solidified media supplemented with spectinomycin. The plates are then incubated at 28.degree. C. in the light. The tissue is transferred to fresh medium every two weeks. After about 8 weeks of incubation, green callus is observed. This tissue can be further proliferated on 13152 medium (4.3 g/l MS salts, 0.25 g/l myo-inositol, 1.0 g/l casein hydrolysate, 1 mg/l thiamine, 1 mg/l 2,4-D, 30 g/l maltose, 0.69 g/l proline, 1.2 mg/l cupric sulfate, and 3.5 g/l phytagel, pH 5.8) and the tissue analyzed for the presence of the transgene using appropriate methods including PCR and Southern analysis.

[0277] In an alternative approach, expression cassettes containing the tetracycline-inducible BBM and WUS genes are co-bombarded along with the chloroplast transformation vectors carrying the aadA gene for selection. Either leaf explants or established green tissue callus are used as the target tissue for bombardment. Tetracycline or doxycycline at a concentration of 0.5 to 2.0 mg/l is added to the culture medium (13152) after particle bombardment. Expression of BBM and WUS in cells that have received DNA stimulate callus growth rates during the period while tetracycline (or doxycycline) is present in the medium. The accelerated growth that is stimulated by BBM & WUS will result in improved recovery of homoplastic transgenic events, and the nuclear-integrated BBM/WUS genes can be removed by outcrossing T0 plants to wild-type plants and selecting BBM/WUS null plants in the T1 generation.

[0278] In another variation on the particle gun approach for delivery of BBM and WUS, a UBI::BBM::PinII and a nos::WUS2::pinII are co-delivered along with the chloroplast transformation vectors.

[0279] In another alternative approach, the cell proliferation factor genes are delivered into leaf tissue by vacuum infiltration of an Agrobacterium solution. The cell proliferation factor genes are under the control of strong constitutive promoters such as ubi or act or viral promoters such as 35S (Gardner et al. (1981) Nucl Acids Res 9:2871-2888), MMV (Dey and Maiti (1999) Plant Mol Biol 40:771-782), or BSV (Shenk et al. (2001) Plant Mol Biol 47:399-412). The cell proliferation factor genes are carried on binary vectors that facilitate transfer from the bacteria to plant cells. Following vacuum infiltration, the tissue is incubated for an appropriate period of time to allow expression of the cell proliferation factor genes in the leaf tissue. Transient expression from the cell proliferation factor genes delivered by Agrobacterium is expected to provide a strong boost in cell division and tissue culture response. After vacuum infiltration with Agrobacterium, the tissue is bombarded with a chloroplast transformation vector carrying the aadA selectable marker gene. The tissue is then transferred to media containing spectinomycin and transgenic events selected. It is expected that the Agrobacterium-delivered cell proliferation factor genes will not be integrated into the nuclear genome of most of the events that are recovered.

[0280] All publications and patent applications mentioned in the specification are indicative of the level of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

[0281] Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the inventions are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

Sequence CWU 1

1

12612133DNAGlycine maxCDS(1)...(2133) 1atg ggg tct atg aat ttg tta ggt ttt tct ctc tct cct caa gaa cac 48Met Gly Ser Met Asn Leu Leu Gly Phe Ser Leu Ser Pro Gln Glu His1 5 10 15cct tct agt caa gat cac tct caa acg gca cct tct cgt ttt tgc ttc 96Pro Ser Ser Gln Asp His Ser Gln Thr Ala Pro Ser Arg Phe Cys Phe 20 25 30aac cct gat gga atc tca agc act gat gta gca gga gac tgc ttt gat 144Asn Pro Asp Gly Ile Ser Ser Thr Asp Val Ala Gly Asp Cys Phe Asp 35 40 45ctc act tct gac tca act cct cat tta ctc aac ctt ccc tct tac ggc 192Leu Thr Ser Asp Ser Thr Pro His Leu Leu Asn Leu Pro Ser Tyr Gly 50 55 60ata tac gaa gct ttt cat agg agc aac aat att cac acc act caa gat 240Ile Tyr Glu Ala Phe His Arg Ser Asn Asn Ile His Thr Thr Gln Asp65 70 75 80tgg aag gag aac tac aac agc caa aac ttg cta ttg gga act tca tgc 288Trp Lys Glu Asn Tyr Asn Ser Gln Asn Leu Leu Leu Gly Thr Ser Cys 85 90 95agc aac caa aac atg aac cac aac cat cag caa caa caa caa caa cag 336Ser Asn Gln Asn Met Asn His Asn His Gln Gln Gln Gln Gln Gln Gln 100 105 110cca aag ctt gaa aac ttc ctc ggt gga cac tca ttt ggt gaa cat gag 384Pro Lys Leu Glu Asn Phe Leu Gly Gly His Ser Phe Gly Glu His Glu 115 120 125caa ccc tac ggt ggt aac tca gcc tct aca gaa tac atg ttc ccg gct 432Gln Pro Tyr Gly Gly Asn Ser Ala Ser Thr Glu Tyr Met Phe Pro Ala 130 135 140cag ccg gta ttg gcc ggt ggc ggc ggc ggt ggt agc aat agc agc aac 480Gln Pro Val Leu Ala Gly Gly Gly Gly Gly Gly Ser Asn Ser Ser Asn145 150 155 160aca agc aac agt agc tcc ata ggg tta tcc atg ata aag aca tgg ttg 528Thr Ser Asn Ser Ser Ser Ile Gly Leu Ser Met Ile Lys Thr Trp Leu 165 170 175agg aac caa cca cca cac tca gaa aac aac aat aac aac aac aat gaa 576Arg Asn Gln Pro Pro His Ser Glu Asn Asn Asn Asn Asn Asn Asn Glu 180 185 190agt ggt ggc aat agt aga agc agt gtg cag cag act cta tca ctt tcc 624Ser Gly Gly Asn Ser Arg Ser Ser Val Gln Gln Thr Leu Ser Leu Ser 195 200 205atg agt act ggt tca caa tca agc aca tca cta ccc ctt ctc act gct 672Met Ser Thr Gly Ser Gln Ser Ser Thr Ser Leu Pro Leu Leu Thr Ala 210 215 220agt gtg gat aat gga gag agt tct tct gat aac aaa caa cca cat acc 720Ser Val Asp Asn Gly Glu Ser Ser Ser Asp Asn Lys Gln Pro His Thr225 230 235 240acg gct gca ctt gat aca acc caa acc gga gcc att gaa act gca ccc 768Thr Ala Ala Leu Asp Thr Thr Gln Thr Gly Ala Ile Glu Thr Ala Pro 245 250 255aga aag tcc att gac act ttt gga cag aga act tct atc tac cgt ggt 816Arg Lys Ser Ile Asp Thr Phe Gly Gln Arg Thr Ser Ile Tyr Arg Gly 260 265 270gta aca agg cat agg tgg acg ggg agg tat gag gct cac ctg tgg gat 864Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu Trp Asp 275 280 285aat agt tgt aga aga gag gga caa act cgc aaa gga agg caa gtt tac 912Asn Ser Cys Arg Arg Glu Gly Gln Thr Arg Lys Gly Arg Gln Val Tyr 290 295 300ttg gga ggt tat gac aaa gaa gaa aag gca gct aga gcc tac gat ttg 960Leu Gly Gly Tyr Asp Lys Glu Glu Lys Ala Ala Arg Ala Tyr Asp Leu305 310 315 320gca gca cta aaa tac tgg gga aca act acg aca aca aat ttt cca att 1008Ala Ala Leu Lys Tyr Trp Gly Thr Thr Thr Thr Thr Asn Phe Pro Ile 325 330 335agc cac tat gag aaa gag ttg gaa gaa atg aag cac atg act agg caa 1056Ser His Tyr Glu Lys Glu Leu Glu Glu Met Lys His Met Thr Arg Gln 340 345 350gag tac gtt gcg tca ttg aga agg aag agt agt ggg ttt tct cgc ggg 1104Glu Tyr Val Ala Ser Leu Arg Arg Lys Ser Ser Gly Phe Ser Arg Gly 355 360 365gca tcc att tat cga ggt gtg acg aga cac cat caa cat gga aga tgg 1152Ala Ser Ile Tyr Arg Gly Val Thr Arg His His Gln His Gly Arg Trp 370 375 380caa gcg agg att gga aga gtt gct ggc aac aag gat ctc tac ttg gga 1200Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly385 390 395 400act ttc agc acc caa gag gag gca gca gaa gca tat gat gta gca gca 1248Thr Phe Ser Thr Gln Glu Glu Ala Ala Glu Ala Tyr Asp Val Ala Ala 405 410 415atc aaa ttc aga gga cta agt gct gtt aca aac ttt gac atg agc aga 1296Ile Lys Phe Arg Gly Leu Ser Ala Val Thr Asn Phe Asp Met Ser Arg 420 425 430tat gac gtg aaa agc ata ctt gag agc acc act ttg cca att ggt ggt 1344Tyr Asp Val Lys Ser Ile Leu Glu Ser Thr Thr Leu Pro Ile Gly Gly 435 440 445gct gca aag cgt ttg aag gat atg gag cag gtg gaa ctg agg gtg gag 1392Ala Ala Lys Arg Leu Lys Asp Met Glu Gln Val Glu Leu Arg Val Glu 450 455 460aat gtt cat aga gca gat caa gaa gat cat agt agc atc atg aac tct 1440Asn Val His Arg Ala Asp Gln Glu Asp His Ser Ser Ile Met Asn Ser465 470 475 480cac tta act caa gga atc att aac aac tat gca gca gga gga aca aca 1488His Leu Thr Gln Gly Ile Ile Asn Asn Tyr Ala Ala Gly Gly Thr Thr 485 490 495gcg act cat cat cat aac tgg cac aat gct ctt gca ttc cac caa cct 1536Ala Thr His His His Asn Trp His Asn Ala Leu Ala Phe His Gln Pro 500 505 510caa cct tgc acc acc ata cac tac cct tat gga caa aga att aat tgg 1584Gln Pro Cys Thr Thr Ile His Tyr Pro Tyr Gly Gln Arg Ile Asn Trp 515 520 525tgc aag caa gaa caa gac aac tct gat gcc tct cac tct ttg tct tat 1632Cys Lys Gln Glu Gln Asp Asn Ser Asp Ala Ser His Ser Leu Ser Tyr 530 535 540tca gat att cat caa cta cag cta ggg aac aat ggc aca cac aac ttc 1680Ser Asp Ile His Gln Leu Gln Leu Gly Asn Asn Gly Thr His Asn Phe545 550 555 560ttt cac aca aat tca ggg ttg cac cct atg tta agc atg gat tct gct 1728Phe His Thr Asn Ser Gly Leu His Pro Met Leu Ser Met Asp Ser Ala 565 570 575tcc att gac aat agc tct tca tct aac tct gtt gtt tat gat ggt tat 1776Ser Ile Asp Asn Ser Ser Ser Ser Asn Ser Val Val Tyr Asp Gly Tyr 580 585 590gga ggt ggt ggg ggc tat aat gtg att cct atg ggg act act act act 1824Gly Gly Gly Gly Gly Tyr Asn Val Ile Pro Met Gly Thr Thr Thr Thr 595 600 605gtt gtt gca aat gat ggt gat caa aat cca aga agc aat cat ggt ttt 1872Val Val Ala Asn Asp Gly Asp Gln Asn Pro Arg Ser Asn His Gly Phe 610 615 620ggt gat aat gag ata aag gca ctt ggt tat gaa agt gtg tat ggt tct 1920Gly Asp Asn Glu Ile Lys Ala Leu Gly Tyr Glu Ser Val Tyr Gly Ser625 630 635 640aca act gat cct tat cat gca cat gca agg aac ttg tat tat ctt act 1968Thr Thr Asp Pro Tyr His Ala His Ala Arg Asn Leu Tyr Tyr Leu Thr 645 650 655caa cag caa cca tct tct gtt gat gca gtg aag gct agt gca tat gat 2016Gln Gln Gln Pro Ser Ser Val Asp Ala Val Lys Ala Ser Ala Tyr Asp 660 665 670caa gga tct gca tgc aat act tgg gtt cca act gct att cca act cat 2064Gln Gly Ser Ala Cys Asn Thr Trp Val Pro Thr Ala Ile Pro Thr His 675 680 685gca cca agg tct agt act agt atg gct ctc tgc cat ggt gct acg ccc 2112Ala Pro Arg Ser Ser Thr Ser Met Ala Leu Cys His Gly Ala Thr Pro 690 695 700ttc tct tta ttg cat gaa tag 2133Phe Ser Leu Leu His Glu705 7102710PRTGlycine max 2Met Gly Ser Met Asn Leu Leu Gly Phe Ser Leu Ser Pro Gln Glu His1 5 10 15Pro Ser Ser Gln Asp His Ser Gln Thr Ala Pro Ser Arg Phe Cys Phe 20 25 30Asn Pro Asp Gly Ile Ser Ser Thr Asp Val Ala Gly Asp Cys Phe Asp 35 40 45Leu Thr Ser Asp Ser Thr Pro His Leu Leu Asn Leu Pro Ser Tyr Gly 50 55 60Ile Tyr Glu Ala Phe His Arg Ser Asn Asn Ile His Thr Thr Gln Asp65 70 75 80Trp Lys Glu Asn Tyr Asn Ser Gln Asn Leu Leu Leu Gly Thr Ser Cys 85 90 95Ser Asn Gln Asn Met Asn His Asn His Gln Gln Gln Gln Gln Gln Gln 100 105 110Pro Lys Leu Glu Asn Phe Leu Gly Gly His Ser Phe Gly Glu His Glu 115 120 125Gln Pro Tyr Gly Gly Asn Ser Ala Ser Thr Glu Tyr Met Phe Pro Ala 130 135 140Gln Pro Val Leu Ala Gly Gly Gly Gly Gly Gly Ser Asn Ser Ser Asn145 150 155 160Thr Ser Asn Ser Ser Ser Ile Gly Leu Ser Met Ile Lys Thr Trp Leu 165 170 175Arg Asn Gln Pro Pro His Ser Glu Asn Asn Asn Asn Asn Asn Asn Glu 180 185 190Ser Gly Gly Asn Ser Arg Ser Ser Val Gln Gln Thr Leu Ser Leu Ser 195 200 205Met Ser Thr Gly Ser Gln Ser Ser Thr Ser Leu Pro Leu Leu Thr Ala 210 215 220Ser Val Asp Asn Gly Glu Ser Ser Ser Asp Asn Lys Gln Pro His Thr225 230 235 240Thr Ala Ala Leu Asp Thr Thr Gln Thr Gly Ala Ile Glu Thr Ala Pro 245 250 255Arg Lys Ser Ile Asp Thr Phe Gly Gln Arg Thr Ser Ile Tyr Arg Gly 260 265 270Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu Trp Asp 275 280 285Asn Ser Cys Arg Arg Glu Gly Gln Thr Arg Lys Gly Arg Gln Val Tyr 290 295 300Leu Gly Gly Tyr Asp Lys Glu Glu Lys Ala Ala Arg Ala Tyr Asp Leu305 310 315 320Ala Ala Leu Lys Tyr Trp Gly Thr Thr Thr Thr Thr Asn Phe Pro Ile 325 330 335Ser His Tyr Glu Lys Glu Leu Glu Glu Met Lys His Met Thr Arg Gln 340 345 350Glu Tyr Val Ala Ser Leu Arg Arg Lys Ser Ser Gly Phe Ser Arg Gly 355 360 365Ala Ser Ile Tyr Arg Gly Val Thr Arg His His Gln His Gly Arg Trp 370 375 380Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly385 390 395 400Thr Phe Ser Thr Gln Glu Glu Ala Ala Glu Ala Tyr Asp Val Ala Ala 405 410 415Ile Lys Phe Arg Gly Leu Ser Ala Val Thr Asn Phe Asp Met Ser Arg 420 425 430Tyr Asp Val Lys Ser Ile Leu Glu Ser Thr Thr Leu Pro Ile Gly Gly 435 440 445Ala Ala Lys Arg Leu Lys Asp Met Glu Gln Val Glu Leu Arg Val Glu 450 455 460Asn Val His Arg Ala Asp Gln Glu Asp His Ser Ser Ile Met Asn Ser465 470 475 480His Leu Thr Gln Gly Ile Ile Asn Asn Tyr Ala Ala Gly Gly Thr Thr 485 490 495Ala Thr His His His Asn Trp His Asn Ala Leu Ala Phe His Gln Pro 500 505 510Gln Pro Cys Thr Thr Ile His Tyr Pro Tyr Gly Gln Arg Ile Asn Trp 515 520 525Cys Lys Gln Glu Gln Asp Asn Ser Asp Ala Ser His Ser Leu Ser Tyr 530 535 540Ser Asp Ile His Gln Leu Gln Leu Gly Asn Asn Gly Thr His Asn Phe545 550 555 560Phe His Thr Asn Ser Gly Leu His Pro Met Leu Ser Met Asp Ser Ala 565 570 575Ser Ile Asp Asn Ser Ser Ser Ser Asn Ser Val Val Tyr Asp Gly Tyr 580 585 590Gly Gly Gly Gly Gly Tyr Asn Val Ile Pro Met Gly Thr Thr Thr Thr 595 600 605Val Val Ala Asn Asp Gly Asp Gln Asn Pro Arg Ser Asn His Gly Phe 610 615 620Gly Asp Asn Glu Ile Lys Ala Leu Gly Tyr Glu Ser Val Tyr Gly Ser625 630 635 640Thr Thr Asp Pro Tyr His Ala His Ala Arg Asn Leu Tyr Tyr Leu Thr 645 650 655Gln Gln Gln Pro Ser Ser Val Asp Ala Val Lys Ala Ser Ala Tyr Asp 660 665 670Gln Gly Ser Ala Cys Asn Thr Trp Val Pro Thr Ala Ile Pro Thr His 675 680 685Ala Pro Arg Ser Ser Thr Ser Met Ala Leu Cys His Gly Ala Thr Pro 690 695 700Phe Ser Leu Leu His Glu705 71032112DNASorghum bicolorCDS(1)...(2112) 3atg gct act gtg aac aac tgg ctc gct ttc tcc ctc tcc ccg cag gag 48Met Ala Thr Val Asn Asn Trp Leu Ala Phe Ser Leu Ser Pro Gln Glu1 5 10 15ctg ccg ccc acc cag acg gac tcc acc ctc atc tct gcc gcc acc acc 96Leu Pro Pro Thr Gln Thr Asp Ser Thr Leu Ile Ser Ala Ala Thr Thr 20 25 30gac gat gtc tcc ggc gat gtc tgc ttc aac atc ccc caa gat tgg agc 144Asp Asp Val Ser Gly Asp Val Cys Phe Asn Ile Pro Gln Asp Trp Ser 35 40 45atg agg gga tcc gag ctt tcg gcg ctc gtc gcc gag ccg aag ctg gag 192Met Arg Gly Ser Glu Leu Ser Ala Leu Val Ala Glu Pro Lys Leu Glu 50 55 60gac ttc ctc ggc gga atc tcc ttc tcc gag cag cac cac aag gcc aac 240Asp Phe Leu Gly Gly Ile Ser Phe Ser Glu Gln His His Lys Ala Asn65 70 75 80tgc aac atg atc ccc agc act agc agc aca gct tgc tac gcg agc tcg 288Cys Asn Met Ile Pro Ser Thr Ser Ser Thr Ala Cys Tyr Ala Ser Ser 85 90 95ggt gct acc gcc ggc tac cat cac cag ctg tac cac cag ccc acc agc 336Gly Ala Thr Ala Gly Tyr His His Gln Leu Tyr His Gln Pro Thr Ser 100 105 110tcc gcg ctc cac ttc gct gac tcc gtc atg gtg gcc tcc tcg gcc ggc 384Ser Ala Leu His Phe Ala Asp Ser Val Met Val Ala Ser Ser Ala Gly 115 120 125ggc gtc cac gac gga ggt gcc atg ctc agc gcg gcc agc gct aat ggt 432Gly Val His Asp Gly Gly Ala Met Leu Ser Ala Ala Ser Ala Asn Gly 130 135 140agc gct ggc gct ggc gct gcc agt gcc aat ggc agc ggc agc atc ggg 480Ser Ala Gly Ala Gly Ala Ala Ser Ala Asn Gly Ser Gly Ser Ile Gly145 150 155 160ctg tcc atg atc aag aac tgg ctg cgg agc caa cca gct ccc atg cag 528Leu Ser Met Ile Lys Asn Trp Leu Arg Ser Gln Pro Ala Pro Met Gln 165 170 175ccg agg gtg gcg gcg gct gag agc gtg cag ggg ctc tct ttg tcc atg 576Pro Arg Val Ala Ala Ala Glu Ser Val Gln Gly Leu Ser Leu Ser Met 180 185 190aac atg gcg ggg gcg acg caa ggc gcc gct ggc atg cca ctt ctt gct 624Asn Met Ala Gly Ala Thr Gln Gly Ala Ala Gly Met Pro Leu Leu Ala 195 200 205gga gag cgc ggc cgg gcg ccc gag agt gtc tcg acg tcg gca cag ggt 672Gly Glu Arg Gly Arg Ala Pro Glu Ser Val Ser Thr Ser Ala Gln Gly 210 215 220gga gcc gtc gtc acg gct cca aag gag gat agc ggt ggc agc ggt gtt 720Gly Ala Val Val Thr Ala Pro Lys Glu Asp Ser Gly Gly Ser Gly Val225 230 235 240gcc gcc acc ggc gcc cta gta gcc gtg agc acg gac acg ggt ggc agc 768Ala Ala Thr Gly Ala Leu Val Ala Val Ser Thr Asp Thr Gly Gly Ser 245 250 255ggc gcg tcg gct gac aac acg gca agg aag acg gtg gac acg ttc ggg 816Gly Ala Ser Ala Asp Asn Thr Ala Arg Lys Thr Val Asp Thr Phe Gly 260 265 270cag cgc acg tcg att tac cgt ggc gtg aca agg cat aga tgg act ggg 864Gln Arg Thr Ser Ile Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly 275 280 285aga tat gaa gca cat ctg tgg gac aac agt tgc aga agg gaa gga caa 912Arg Tyr Glu Ala His Leu Trp Asp Asn Ser Cys Arg Arg Glu Gly Gln 290 295 300act cgc aag ggt cgt caa gtc tat tta ggt ggc tat gat aaa gag gag 960Thr Arg Lys Gly Arg Gln Val Tyr Leu Gly Gly Tyr Asp Lys Glu Glu305 310 315 320aaa gct gct agg gct tat gat ctg gct gct ctt aag tac tgg ggt ccc 1008Lys Ala Ala Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr Trp Gly Pro 325 330 335acg aca aca aca aat ttt cca gtg aat aac tac gaa aag gag ctg gag 1056Thr Thr Thr Thr Asn Phe Pro Val Asn Asn Tyr Glu Lys Glu Leu Glu 340 345 350gat atg aag cac atg aca agg cag gag ttt gta gcg tct ctg aga agg 1104Asp Met Lys His Met Thr Arg Gln Glu Phe Val Ala Ser Leu Arg Arg 355 360 365aag agc agt ggt ttc tcc aga ggt gca tcc att tac agg gga gtg act 1152Lys Ser Ser Gly Phe Ser Arg

Gly Ala Ser Ile Tyr Arg Gly Val Thr 370 375 380agg cat cac cag cat gga aga tgg caa gca cgg att gga cga gtt gca 1200Arg His His Gln His Gly Arg Trp Gln Ala Arg Ile Gly Arg Val Ala385 390 395 400ggg aac aag gat ctc tac ttg ggc acc ttc agc acg cag gag gag gca 1248Gly Asn Lys Asp Leu Tyr Leu Gly Thr Phe Ser Thr Gln Glu Glu Ala 405 410 415gcg gag gca tac gac att gcg gcg atc aag ttc cgc ggc ctc aac gcc 1296Ala Glu Ala Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly Leu Asn Ala 420 425 430gtc aca aac ttc gac atg agc cgc tac gac gtc aag agc atc ctg gac 1344Val Thr Asn Phe Asp Met Ser Arg Tyr Asp Val Lys Ser Ile Leu Asp 435 440 445agc agt gcg ctc ccc atc ggc agc gcc gcc aag cgt ctc aag gag gcc 1392Ser Ser Ala Leu Pro Ile Gly Ser Ala Ala Lys Arg Leu Lys Glu Ala 450 455 460gag gcc gcc gcg tcc gca cag cac cat gcc ggc gtg gtg agc tac gac 1440Glu Ala Ala Ala Ser Ala Gln His His Ala Gly Val Val Ser Tyr Asp465 470 475 480gtc ggc cgc ata gcc tca cag ctc ggc gac ggc ggc gcc ctg gcg gcg 1488Val Gly Arg Ile Ala Ser Gln Leu Gly Asp Gly Gly Ala Leu Ala Ala 485 490 495gcg tac ggc gcg cac tac cat ggc gcc tgg ccg acc atc gcg ttc cag 1536Ala Tyr Gly Ala His Tyr His Gly Ala Trp Pro Thr Ile Ala Phe Gln 500 505 510ccg agc gcg gcc acg ggc ctg tac cac ccg tac gcg cag ccg atg cgc 1584Pro Ser Ala Ala Thr Gly Leu Tyr His Pro Tyr Ala Gln Pro Met Arg 515 520 525ggg tgg tgc aag cag gag cag gac cac gcg gtg atc gcg gcc gcg cac 1632Gly Trp Cys Lys Gln Glu Gln Asp His Ala Val Ile Ala Ala Ala His 530 535 540agc ctg cag gag ctc cac cac ctg aac ctg ggt gct gcc gcc ggc gcg 1680Ser Leu Gln Glu Leu His His Leu Asn Leu Gly Ala Ala Ala Gly Ala545 550 555 560cac gac ttc ttc tcg gcg ggg cag cag gcg gcg atg cac ggc ctg ggt 1728His Asp Phe Phe Ser Ala Gly Gln Gln Ala Ala Met His Gly Leu Gly 565 570 575agc atg gac aat gca tca ctc gag cac agc acc ggc tcc aac tcc gtc 1776Ser Met Asp Asn Ala Ser Leu Glu His Ser Thr Gly Ser Asn Ser Val 580 585 590gtg tac aac ggt gtt ggt gat agc aac ggc agc acc gtc gtc ggc agt 1824Val Tyr Asn Gly Val Gly Asp Ser Asn Gly Ser Thr Val Val Gly Ser 595 600 605ggt ggc tac atg atg cct atg agc gct gcc acg gcg acg gct acc acg 1872Gly Gly Tyr Met Met Pro Met Ser Ala Ala Thr Ala Thr Ala Thr Thr 610 615 620gca atg gtg agc cac gag cag gtg cat gca cgg gca cag ggt gat cac 1920Ala Met Val Ser His Glu Gln Val His Ala Arg Ala Gln Gly Asp His625 630 635 640cac gac gaa gcc aag cag gct gct cag atg ggg tac gag agc tac ctg 1968His Asp Glu Ala Lys Gln Ala Ala Gln Met Gly Tyr Glu Ser Tyr Leu 645 650 655gtg aac gca gag aac tat ggc ggc ggg agg atg tct gcg gcc tgg gcg 2016Val Asn Ala Glu Asn Tyr Gly Gly Gly Arg Met Ser Ala Ala Trp Ala 660 665 670act gtc tca gcg cca ccg gcg gca agc agc aac gat aac atg gcg gac 2064Thr Val Ser Ala Pro Pro Ala Ala Ser Ser Asn Asp Asn Met Ala Asp 675 680 685gtc ggc cat ggc ggc gca cag ctc ttc agt gtc tgg aac gat act taa 2112Val Gly His Gly Gly Ala Gln Leu Phe Ser Val Trp Asn Asp Thr 690 695 7004703PRTSorghum bicolor 4Met Ala Thr Val Asn Asn Trp Leu Ala Phe Ser Leu Ser Pro Gln Glu1 5 10 15Leu Pro Pro Thr Gln Thr Asp Ser Thr Leu Ile Ser Ala Ala Thr Thr 20 25 30Asp Asp Val Ser Gly Asp Val Cys Phe Asn Ile Pro Gln Asp Trp Ser 35 40 45Met Arg Gly Ser Glu Leu Ser Ala Leu Val Ala Glu Pro Lys Leu Glu 50 55 60Asp Phe Leu Gly Gly Ile Ser Phe Ser Glu Gln His His Lys Ala Asn65 70 75 80Cys Asn Met Ile Pro Ser Thr Ser Ser Thr Ala Cys Tyr Ala Ser Ser 85 90 95Gly Ala Thr Ala Gly Tyr His His Gln Leu Tyr His Gln Pro Thr Ser 100 105 110Ser Ala Leu His Phe Ala Asp Ser Val Met Val Ala Ser Ser Ala Gly 115 120 125Gly Val His Asp Gly Gly Ala Met Leu Ser Ala Ala Ser Ala Asn Gly 130 135 140Ser Ala Gly Ala Gly Ala Ala Ser Ala Asn Gly Ser Gly Ser Ile Gly145 150 155 160Leu Ser Met Ile Lys Asn Trp Leu Arg Ser Gln Pro Ala Pro Met Gln 165 170 175Pro Arg Val Ala Ala Ala Glu Ser Val Gln Gly Leu Ser Leu Ser Met 180 185 190Asn Met Ala Gly Ala Thr Gln Gly Ala Ala Gly Met Pro Leu Leu Ala 195 200 205Gly Glu Arg Gly Arg Ala Pro Glu Ser Val Ser Thr Ser Ala Gln Gly 210 215 220Gly Ala Val Val Thr Ala Pro Lys Glu Asp Ser Gly Gly Ser Gly Val225 230 235 240Ala Ala Thr Gly Ala Leu Val Ala Val Ser Thr Asp Thr Gly Gly Ser 245 250 255Gly Ala Ser Ala Asp Asn Thr Ala Arg Lys Thr Val Asp Thr Phe Gly 260 265 270Gln Arg Thr Ser Ile Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly 275 280 285Arg Tyr Glu Ala His Leu Trp Asp Asn Ser Cys Arg Arg Glu Gly Gln 290 295 300Thr Arg Lys Gly Arg Gln Val Tyr Leu Gly Gly Tyr Asp Lys Glu Glu305 310 315 320Lys Ala Ala Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr Trp Gly Pro 325 330 335Thr Thr Thr Thr Asn Phe Pro Val Asn Asn Tyr Glu Lys Glu Leu Glu 340 345 350Asp Met Lys His Met Thr Arg Gln Glu Phe Val Ala Ser Leu Arg Arg 355 360 365Lys Ser Ser Gly Phe Ser Arg Gly Ala Ser Ile Tyr Arg Gly Val Thr 370 375 380Arg His His Gln His Gly Arg Trp Gln Ala Arg Ile Gly Arg Val Ala385 390 395 400Gly Asn Lys Asp Leu Tyr Leu Gly Thr Phe Ser Thr Gln Glu Glu Ala 405 410 415Ala Glu Ala Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly Leu Asn Ala 420 425 430Val Thr Asn Phe Asp Met Ser Arg Tyr Asp Val Lys Ser Ile Leu Asp 435 440 445Ser Ser Ala Leu Pro Ile Gly Ser Ala Ala Lys Arg Leu Lys Glu Ala 450 455 460Glu Ala Ala Ala Ser Ala Gln His His Ala Gly Val Val Ser Tyr Asp465 470 475 480Val Gly Arg Ile Ala Ser Gln Leu Gly Asp Gly Gly Ala Leu Ala Ala 485 490 495Ala Tyr Gly Ala His Tyr His Gly Ala Trp Pro Thr Ile Ala Phe Gln 500 505 510Pro Ser Ala Ala Thr Gly Leu Tyr His Pro Tyr Ala Gln Pro Met Arg 515 520 525Gly Trp Cys Lys Gln Glu Gln Asp His Ala Val Ile Ala Ala Ala His 530 535 540Ser Leu Gln Glu Leu His His Leu Asn Leu Gly Ala Ala Ala Gly Ala545 550 555 560His Asp Phe Phe Ser Ala Gly Gln Gln Ala Ala Met His Gly Leu Gly 565 570 575Ser Met Asp Asn Ala Ser Leu Glu His Ser Thr Gly Ser Asn Ser Val 580 585 590Val Tyr Asn Gly Val Gly Asp Ser Asn Gly Ser Thr Val Val Gly Ser 595 600 605Gly Gly Tyr Met Met Pro Met Ser Ala Ala Thr Ala Thr Ala Thr Thr 610 615 620Ala Met Val Ser His Glu Gln Val His Ala Arg Ala Gln Gly Asp His625 630 635 640His Asp Glu Ala Lys Gln Ala Ala Gln Met Gly Tyr Glu Ser Tyr Leu 645 650 655Val Asn Ala Glu Asn Tyr Gly Gly Gly Arg Met Ser Ala Ala Trp Ala 660 665 670Thr Val Ser Ala Pro Pro Ala Ala Ser Ser Asn Asp Asn Met Ala Asp 675 680 685Val Gly His Gly Gly Ala Gln Leu Phe Ser Val Trp Asn Asp Thr 690 695 70051932DNAVitis viniferaCDS(1)...(1932) 5atg gct tcc atg aac aac tgg ttg ggt ttc tct ttg tcc cct cga gaa 48Met Ala Ser Met Asn Asn Trp Leu Gly Phe Ser Leu Ser Pro Arg Glu1 5 10 15ctt cca cca cag cct gaa aat cac tca cag aac agt gtc tct aga ctt 96Leu Pro Pro Gln Pro Glu Asn His Ser Gln Asn Ser Val Ser Arg Leu 20 25 30ggt ttc aac tct gat gaa atc tct ggg act gat gtg tca ggt gag tgt 144Gly Phe Asn Ser Asp Glu Ile Ser Gly Thr Asp Val Ser Gly Glu Cys 35 40 45ttt gat ctc act tca gat tcc act gct ccc tct ctc aac ctc cct ccc 192Phe Asp Leu Thr Ser Asp Ser Thr Ala Pro Ser Leu Asn Leu Pro Pro 50 55 60cct ttt ggg ata ctt gaa gca ttc aac agg aat aat cag ccc caa gat 240Pro Phe Gly Ile Leu Glu Ala Phe Asn Arg Asn Asn Gln Pro Gln Asp65 70 75 80act aac tac aaa acc acc act tct gag ctc tcc atg ctc atg ggt agt 288Thr Asn Tyr Lys Thr Thr Thr Ser Glu Leu Ser Met Leu Met Gly Ser 85 90 95tca tgc agt agt cat cat aac ctc gaa aac caa gaa ccc aaa ctt gaa 336Ser Cys Ser Ser His His Asn Leu Glu Asn Gln Glu Pro Lys Leu Glu 100 105 110aat ttc ctg ggc tgc cgc tct ttt gct gat cat gag cag aaa ctt caa 384Asn Phe Leu Gly Cys Arg Ser Phe Ala Asp His Glu Gln Lys Leu Gln 115 120 125ggg tac tac att tcc att ggt tta tcc atg atc aag aca tgg ctg cgg 432Gly Tyr Tyr Ile Ser Ile Gly Leu Ser Met Ile Lys Thr Trp Leu Arg 130 135 140aac caa cct gca ccc acc cat cag gat aac aac aag agt act gat act 480Asn Gln Pro Ala Pro Thr His Gln Asp Asn Asn Lys Ser Thr Asp Thr145 150 155 160ggg cct gtc ggt gga gcc gcc gct ggg aac cta ccc aat gca cag acc 528Gly Pro Val Gly Gly Ala Ala Ala Gly Asn Leu Pro Asn Ala Gln Thr 165 170 175tta tcg ttg tcc atg agc acc ggc tcg cac cag acc ggt gcc att gaa 576Leu Ser Leu Ser Met Ser Thr Gly Ser His Gln Thr Gly Ala Ile Glu 180 185 190acg gtg cca agg aag tcc att gat aca ttt gga cag agg aca tcc ata 624Thr Val Pro Arg Lys Ser Ile Asp Thr Phe Gly Gln Arg Thr Ser Ile 195 200 205tac cgt ggt gta aca agg cat aga tgg acg ggt aga tat gag gct cat 672Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His 210 215 220cta tgg gac aac agt tgc aga aga gaa gga caa act cga aag gga agg 720Leu Trp Asp Asn Ser Cys Arg Arg Glu Gly Gln Thr Arg Lys Gly Arg225 230 235 240caa gtt tat tta ggt ggt tat gac aaa gaa gaa aag gca gct agg gct 768Gln Val Tyr Leu Gly Gly Tyr Asp Lys Glu Glu Lys Ala Ala Arg Ala 245 250 255tac gat tta gca gca ctg aag tat tgg ggt acc acc acc aca aca aat 816Tyr Asp Leu Ala Ala Leu Lys Tyr Trp Gly Thr Thr Thr Thr Thr Asn 260 265 270ttc cct att agc aac tat gaa aaa gag ata gag gag atg aag cac atg 864Phe Pro Ile Ser Asn Tyr Glu Lys Glu Ile Glu Glu Met Lys His Met 275 280 285aca agg cag gag tac gta gca tct ctg cga agg aag agt agc ggg ttt 912Thr Arg Gln Glu Tyr Val Ala Ser Leu Arg Arg Lys Ser Ser Gly Phe 290 295 300tct cgt gga gca tcc ata tat aga gga gtg acc aga cac cat cag cat 960Ser Arg Gly Ala Ser Ile Tyr Arg Gly Val Thr Arg His His Gln His305 310 315 320ggg aga tgg cag gca agg att gga aga gtc gca ggc aac aaa gat ctt 1008Gly Arg Trp Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys Asp Leu 325 330 335tac ttg gga act ttc agc acc caa gag gaa gca gca gag gcc tat gac 1056Tyr Leu Gly Thr Phe Ser Thr Gln Glu Glu Ala Ala Glu Ala Tyr Asp 340 345 350att gct gcc att aag ttt cga gga ttg aat gcg gtg acc aac ttt gat 1104Ile Ala Ala Ile Lys Phe Arg Gly Leu Asn Ala Val Thr Asn Phe Asp 355 360 365atg agt aga tat gat gtt aat agc att cta gag agc agt acc ttg ccg 1152Met Ser Arg Tyr Asp Val Asn Ser Ile Leu Glu Ser Ser Thr Leu Pro 370 375 380att ggt gga gct gca aag cgg ttg aaa gat gct gag cag gct gaa atg 1200Ile Gly Gly Ala Ala Lys Arg Leu Lys Asp Ala Glu Gln Ala Glu Met385 390 395 400act ata gat gga cag agg aca gac gat gag atg agc tca cag ctg act 1248Thr Ile Asp Gly Gln Arg Thr Asp Asp Glu Met Ser Ser Gln Leu Thr 405 410 415gat gga atc aac aac tat gga gca cac cac cat ggc tgg cct act gtt 1296Asp Gly Ile Asn Asn Tyr Gly Ala His His His Gly Trp Pro Thr Val 420 425 430gca ttc caa caa gct cag cca ttt agc atg cac tac cct tat ggc cat 1344Ala Phe Gln Gln Ala Gln Pro Phe Ser Met His Tyr Pro Tyr Gly His 435 440 445cag cag agg gct gtt tgg tgt aag caa gag caa gac cct gat ggc aca 1392Gln Gln Arg Ala Val Trp Cys Lys Gln Glu Gln Asp Pro Asp Gly Thr 450 455 460cac aac ttt caa gat ctt cac caa cta caa ttg gga aac act cac aac 1440His Asn Phe Gln Asp Leu His Gln Leu Gln Leu Gly Asn Thr His Asn465 470 475 480ttc ttc cag cct aat gtt ctg cac aac ctc atg agc atg gac tct tct 1488Phe Phe Gln Pro Asn Val Leu His Asn Leu Met Ser Met Asp Ser Ser 485 490 495tca atg gac cat agc tca ggc tcc aat tca gtc atc tat agc ggt ggt 1536Ser Met Asp His Ser Ser Gly Ser Asn Ser Val Ile Tyr Ser Gly Gly 500 505 510gga gcc gct gat ggc agc gct gca act ggc ggc agt ggc agt ggg agc 1584Gly Ala Ala Asp Gly Ser Ala Ala Thr Gly Gly Ser Gly Ser Gly Ser 515 520 525ttc caa ggg gta ggt tat ggg aac aac att ggc ttt gtg atg ccc ata 1632Phe Gln Gly Val Gly Tyr Gly Asn Asn Ile Gly Phe Val Met Pro Ile 530 535 540agc acc gtc atc gct cat gaa ggc ggc cat ggc cag gga aat ggt ggc 1680Ser Thr Val Ile Ala His Glu Gly Gly His Gly Gln Gly Asn Gly Gly545 550 555 560ttt gga gat agc gaa gtg aag gcg att ggt tac gac aac atg ttt gga 1728Phe Gly Asp Ser Glu Val Lys Ala Ile Gly Tyr Asp Asn Met Phe Gly 565 570 575tcg aca gat cct tac cat gct agg agc ttg tac tat ctt tca cag caa 1776Ser Thr Asp Pro Tyr His Ala Arg Ser Leu Tyr Tyr Leu Ser Gln Gln 580 585 590tca tct gca ggc atg gtg aag ggc agt agt gca tat gat cag ggg tca 1824Ser Ser Ala Gly Met Val Lys Gly Ser Ser Ala Tyr Asp Gln Gly Ser 595 600 605ggg tgt aac aac tgg gtt cca act gca gtt cca acc cta gct cca agg 1872Gly Cys Asn Asn Trp Val Pro Thr Ala Val Pro Thr Leu Ala Pro Arg 610 615 620act aac agc ttg gca gta tgc cat gga aca cct aca ttc aca gta tgg 1920Thr Asn Ser Leu Ala Val Cys His Gly Thr Pro Thr Phe Thr Val Trp625 630 635 640aat gat aca taa 1932Asn Asp Thr6643PRTVitis vinifera 6Met Ala Ser Met Asn Asn Trp Leu Gly Phe Ser Leu Ser Pro Arg Glu1 5 10 15Leu Pro Pro Gln Pro Glu Asn His Ser Gln Asn Ser Val Ser Arg Leu 20 25 30Gly Phe Asn Ser Asp Glu Ile Ser Gly Thr Asp Val Ser Gly Glu Cys 35 40 45Phe Asp Leu Thr Ser Asp Ser Thr Ala Pro Ser Leu Asn Leu Pro Pro 50 55 60Pro Phe Gly Ile Leu Glu Ala Phe Asn Arg Asn Asn Gln Pro Gln Asp65 70 75 80Thr Asn Tyr Lys Thr Thr Thr Ser Glu Leu Ser Met Leu Met Gly Ser 85 90 95Ser Cys Ser Ser His His Asn Leu Glu Asn Gln Glu Pro Lys Leu Glu 100 105 110Asn Phe Leu Gly Cys Arg Ser Phe Ala Asp His Glu Gln Lys Leu Gln 115 120 125Gly Tyr Tyr Ile Ser Ile Gly Leu Ser Met Ile Lys Thr Trp Leu Arg 130 135 140Asn Gln Pro Ala Pro Thr His Gln Asp Asn Asn Lys Ser Thr Asp Thr145 150 155 160Gly Pro Val Gly Gly Ala Ala Ala Gly Asn Leu Pro Asn Ala Gln Thr 165 170 175Leu Ser Leu Ser Met Ser Thr Gly Ser His Gln Thr Gly Ala Ile Glu 180 185 190Thr Val Pro Arg Lys Ser Ile Asp Thr Phe Gly Gln Arg Thr Ser Ile 195

200 205Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His 210 215 220Leu Trp Asp Asn Ser Cys Arg Arg Glu Gly Gln Thr Arg Lys Gly Arg225 230 235 240Gln Val Tyr Leu Gly Gly Tyr Asp Lys Glu Glu Lys Ala Ala Arg Ala 245 250 255Tyr Asp Leu Ala Ala Leu Lys Tyr Trp Gly Thr Thr Thr Thr Thr Asn 260 265 270Phe Pro Ile Ser Asn Tyr Glu Lys Glu Ile Glu Glu Met Lys His Met 275 280 285Thr Arg Gln Glu Tyr Val Ala Ser Leu Arg Arg Lys Ser Ser Gly Phe 290 295 300Ser Arg Gly Ala Ser Ile Tyr Arg Gly Val Thr Arg His His Gln His305 310 315 320Gly Arg Trp Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys Asp Leu 325 330 335Tyr Leu Gly Thr Phe Ser Thr Gln Glu Glu Ala Ala Glu Ala Tyr Asp 340 345 350Ile Ala Ala Ile Lys Phe Arg Gly Leu Asn Ala Val Thr Asn Phe Asp 355 360 365Met Ser Arg Tyr Asp Val Asn Ser Ile Leu Glu Ser Ser Thr Leu Pro 370 375 380Ile Gly Gly Ala Ala Lys Arg Leu Lys Asp Ala Glu Gln Ala Glu Met385 390 395 400Thr Ile Asp Gly Gln Arg Thr Asp Asp Glu Met Ser Ser Gln Leu Thr 405 410 415Asp Gly Ile Asn Asn Tyr Gly Ala His His His Gly Trp Pro Thr Val 420 425 430Ala Phe Gln Gln Ala Gln Pro Phe Ser Met His Tyr Pro Tyr Gly His 435 440 445Gln Gln Arg Ala Val Trp Cys Lys Gln Glu Gln Asp Pro Asp Gly Thr 450 455 460His Asn Phe Gln Asp Leu His Gln Leu Gln Leu Gly Asn Thr His Asn465 470 475 480Phe Phe Gln Pro Asn Val Leu His Asn Leu Met Ser Met Asp Ser Ser 485 490 495Ser Met Asp His Ser Ser Gly Ser Asn Ser Val Ile Tyr Ser Gly Gly 500 505 510Gly Ala Ala Asp Gly Ser Ala Ala Thr Gly Gly Ser Gly Ser Gly Ser 515 520 525Phe Gln Gly Val Gly Tyr Gly Asn Asn Ile Gly Phe Val Met Pro Ile 530 535 540Ser Thr Val Ile Ala His Glu Gly Gly His Gly Gln Gly Asn Gly Gly545 550 555 560Phe Gly Asp Ser Glu Val Lys Ala Ile Gly Tyr Asp Asn Met Phe Gly 565 570 575Ser Thr Asp Pro Tyr His Ala Arg Ser Leu Tyr Tyr Leu Ser Gln Gln 580 585 590Ser Ser Ala Gly Met Val Lys Gly Ser Ser Ala Tyr Asp Gln Gly Ser 595 600 605Gly Cys Asn Asn Trp Val Pro Thr Ala Val Pro Thr Leu Ala Pro Arg 610 615 620Thr Asn Ser Leu Ala Val Cys His Gly Thr Pro Thr Phe Thr Val Trp625 630 635 640Asn Asp Thr72070DNAMedicago truncatulaCDS(1)...(2070) 7atg gcc tct atg aac ttg tta ggt ttc tct cta tct cca caa gaa caa 48Met Ala Ser Met Asn Leu Leu Gly Phe Ser Leu Ser Pro Gln Glu Gln1 5 10 15cat cca tca aca caa gat caa acg gtg gct tcc cgt ttt ggg ttc aac 96His Pro Ser Thr Gln Asp Gln Thr Val Ala Ser Arg Phe Gly Phe Asn 20 25 30cct aat gaa atc tca ggc tct gat gtt caa gga gat cac tgc tat gat 144Pro Asn Glu Ile Ser Gly Ser Asp Val Gln Gly Asp His Cys Tyr Asp 35 40 45ctc tct tct cac aca act cct cat cat tca ctc aac ctt tct cat cct 192Leu Ser Ser His Thr Thr Pro His His Ser Leu Asn Leu Ser His Pro 50 55 60ttt tcc att tat gaa gct ttc cac aca aat aac aac att cac acc act 240Phe Ser Ile Tyr Glu Ala Phe His Thr Asn Asn Asn Ile His Thr Thr65 70 75 80caa gat tgg aag gag aac tac aac aac caa aac cta cta ttg gga aca 288Gln Asp Trp Lys Glu Asn Tyr Asn Asn Gln Asn Leu Leu Leu Gly Thr 85 90 95tca tgc atg aac caa aat gtg aac aac aac aac caa caa gca caa cca 336Ser Cys Met Asn Gln Asn Val Asn Asn Asn Asn Gln Gln Ala Gln Pro 100 105 110aag cta gaa aac ttc ctc ggt gga cac tct ttc acc gac cat caa gaa 384Lys Leu Glu Asn Phe Leu Gly Gly His Ser Phe Thr Asp His Gln Glu 115 120 125tac ggt ggt agc aac tca tac tct tca tta cac ctc cca cct cat cag 432Tyr Gly Gly Ser Asn Ser Tyr Ser Ser Leu His Leu Pro Pro His Gln 130 135 140ccg gaa gca tcc tgt ggc ggt ggt gat ggt agt aca agt aac aat aac 480Pro Glu Ala Ser Cys Gly Gly Gly Asp Gly Ser Thr Ser Asn Asn Asn145 150 155 160tca ata ggt tta tct atg ata aaa aca tgg ctc aga aac caa cca cca 528Ser Ile Gly Leu Ser Met Ile Lys Thr Trp Leu Arg Asn Gln Pro Pro 165 170 175cca cca gaa aac aac aac aat aac aac aat gaa agt ggt gca cgt gtg 576Pro Pro Glu Asn Asn Asn Asn Asn Asn Asn Glu Ser Gly Ala Arg Val 180 185 190cag aca cta tca ctt tct atg agt act ggc tca cag tca agt tca tct 624Gln Thr Leu Ser Leu Ser Met Ser Thr Gly Ser Gln Ser Ser Ser Ser 195 200 205gtg cct ctt ctc aat gca aat gtg atg agt ggt gag att tcc tca tcg 672Val Pro Leu Leu Asn Ala Asn Val Met Ser Gly Glu Ile Ser Ser Ser 210 215 220gaa aac aaa caa cca ccc aca act gca gtt gta ctt gat agc aac caa 720Glu Asn Lys Gln Pro Pro Thr Thr Ala Val Val Leu Asp Ser Asn Gln225 230 235 240aca agt gtc gtt gaa agt gct gtg cct aga aaa tcc gtt gat aca ttt 768Thr Ser Val Val Glu Ser Ala Val Pro Arg Lys Ser Val Asp Thr Phe 245 250 255gga caa aga act tcc att tac cgt ggt gta aca agg cat aga tgg aca 816Gly Gln Arg Thr Ser Ile Tyr Arg Gly Val Thr Arg His Arg Trp Thr 260 265 270ggg aga tat gaa gct cac ctt tgg gat aat agt tgt aga aga gag ggg 864Gly Arg Tyr Glu Ala His Leu Trp Asp Asn Ser Cys Arg Arg Glu Gly 275 280 285cag act cgc aaa gga agg caa gtt tac ttg gga ggt tat gac aaa gaa 912Gln Thr Arg Lys Gly Arg Gln Val Tyr Leu Gly Gly Tyr Asp Lys Glu 290 295 300gaa aaa gca gct aga gcc tat gat ttg gca gca cta aaa tat tgg gga 960Glu Lys Ala Ala Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr Trp Gly305 310 315 320aca act act aca aca aat ttt cca att agc cat tat gaa aaa gaa gtg 1008Thr Thr Thr Thr Thr Asn Phe Pro Ile Ser His Tyr Glu Lys Glu Val 325 330 335gaa gaa atg aag cat atg aca agg caa gag tac gtt gcg tca ttg aga 1056Glu Glu Met Lys His Met Thr Arg Gln Glu Tyr Val Ala Ser Leu Arg 340 345 350agg aaa agt agt ggt ttt tca cga ggt gca tcc att tac cga gga gta 1104Arg Lys Ser Ser Gly Phe Ser Arg Gly Ala Ser Ile Tyr Arg Gly Val 355 360 365aca aga cat cat caa cat ggt aga tgg caa gct agg att gga aga gtt 1152Thr Arg His His Gln His Gly Arg Trp Gln Ala Arg Ile Gly Arg Val 370 375 380gca ggc aac aaa gat ctc tac cta gga act ttc agc act caa gaa gag 1200Ala Gly Asn Lys Asp Leu Tyr Leu Gly Thr Phe Ser Thr Gln Glu Glu385 390 395 400gca gca gag gca tat gat gtg gca gca ata aaa ttc aga gga ctg agt 1248Ala Ala Glu Ala Tyr Asp Val Ala Ala Ile Lys Phe Arg Gly Leu Ser 405 410 415gca gtt aca aac ttt gac atg agc aga tat gat gtc aaa acc ata ctt 1296Ala Val Thr Asn Phe Asp Met Ser Arg Tyr Asp Val Lys Thr Ile Leu 420 425 430gag agc agc aca tta cca att ggt ggt gct gca aag cgt tta aaa gac 1344Glu Ser Ser Thr Leu Pro Ile Gly Gly Ala Ala Lys Arg Leu Lys Asp 435 440 445atg gag caa gtt gaa ttg aat cat gtg aat gtt gat att agc cat aga 1392Met Glu Gln Val Glu Leu Asn His Val Asn Val Asp Ile Ser His Arg 450 455 460act gaa caa gat cat agc atc atc aac aac act tcc cat tta aca gaa 1440Thr Glu Gln Asp His Ser Ile Ile Asn Asn Thr Ser His Leu Thr Glu465 470 475 480caa gcc atc tat gca gca aca aat gca tct aat tgg cat gca ctt tca 1488Gln Ala Ile Tyr Ala Ala Thr Asn Ala Ser Asn Trp His Ala Leu Ser 485 490 495ttc caa cat caa caa cca cat cat cat tac aat gcc aac aac atg cag 1536Phe Gln His Gln Gln Pro His His His Tyr Asn Ala Asn Asn Met Gln 500 505 510tta cag aat tat cct tat gga act caa act caa aag ctt tgg tgc aaa 1584Leu Gln Asn Tyr Pro Tyr Gly Thr Gln Thr Gln Lys Leu Trp Cys Lys 515 520 525caa gaa caa gat tct gat gat cat agt act tat act act gct act gat 1632Gln Glu Gln Asp Ser Asp Asp His Ser Thr Tyr Thr Thr Ala Thr Asp 530 535 540att cat caa cta cag tta ggg aat aat aat aac aat act cac aat ttc 1680Ile His Gln Leu Gln Leu Gly Asn Asn Asn Asn Asn Thr His Asn Phe545 550 555 560ttt ggt tta caa aat atc atg agt atg gat tct gct tcc atg gat aat 1728Phe Gly Leu Gln Asn Ile Met Ser Met Asp Ser Ala Ser Met Asp Asn 565 570 575agt tct gga tct aat tct gtt gtt tat ggt ggt gga gat cat ggt ggt 1776Ser Ser Gly Ser Asn Ser Val Val Tyr Gly Gly Gly Asp His Gly Gly 580 585 590tat gga gga aat ggt gga tat atg att cca atg gct att gca aat gat 1824Tyr Gly Gly Asn Gly Gly Tyr Met Ile Pro Met Ala Ile Ala Asn Asp 595 600 605ggt aac caa aat cca aga agc aac aac aat ttt ggt gag agt gag att 1872Gly Asn Gln Asn Pro Arg Ser Asn Asn Asn Phe Gly Glu Ser Glu Ile 610 615 620aaa gga ttt ggt tat gaa aat gtt ttt ggg act act act gat cct tat 1920Lys Gly Phe Gly Tyr Glu Asn Val Phe Gly Thr Thr Thr Asp Pro Tyr625 630 635 640cat gca cag gca gca agg aac ttg tac tat cag cca caa caa tta tct 1968His Ala Gln Ala Ala Arg Asn Leu Tyr Tyr Gln Pro Gln Gln Leu Ser 645 650 655gtt gat caa gga tca aat tgg gtt cca act gct att cca aca ctt gct 2016Val Asp Gln Gly Ser Asn Trp Val Pro Thr Ala Ile Pro Thr Leu Ala 660 665 670cca agg act acc aat gtc tct cta tgt cct cct ttc act ttg ttg cat 2064Pro Arg Thr Thr Asn Val Ser Leu Cys Pro Pro Phe Thr Leu Leu His 675 680 685gaa tag 2070Glu 8689PRTMedicago truncatula 8Met Ala Ser Met Asn Leu Leu Gly Phe Ser Leu Ser Pro Gln Glu Gln1 5 10 15His Pro Ser Thr Gln Asp Gln Thr Val Ala Ser Arg Phe Gly Phe Asn 20 25 30Pro Asn Glu Ile Ser Gly Ser Asp Val Gln Gly Asp His Cys Tyr Asp 35 40 45Leu Ser Ser His Thr Thr Pro His His Ser Leu Asn Leu Ser His Pro 50 55 60Phe Ser Ile Tyr Glu Ala Phe His Thr Asn Asn Asn Ile His Thr Thr65 70 75 80Gln Asp Trp Lys Glu Asn Tyr Asn Asn Gln Asn Leu Leu Leu Gly Thr 85 90 95Ser Cys Met Asn Gln Asn Val Asn Asn Asn Asn Gln Gln Ala Gln Pro 100 105 110Lys Leu Glu Asn Phe Leu Gly Gly His Ser Phe Thr Asp His Gln Glu 115 120 125Tyr Gly Gly Ser Asn Ser Tyr Ser Ser Leu His Leu Pro Pro His Gln 130 135 140Pro Glu Ala Ser Cys Gly Gly Gly Asp Gly Ser Thr Ser Asn Asn Asn145 150 155 160Ser Ile Gly Leu Ser Met Ile Lys Thr Trp Leu Arg Asn Gln Pro Pro 165 170 175Pro Pro Glu Asn Asn Asn Asn Asn Asn Asn Glu Ser Gly Ala Arg Val 180 185 190Gln Thr Leu Ser Leu Ser Met Ser Thr Gly Ser Gln Ser Ser Ser Ser 195 200 205Val Pro Leu Leu Asn Ala Asn Val Met Ser Gly Glu Ile Ser Ser Ser 210 215 220Glu Asn Lys Gln Pro Pro Thr Thr Ala Val Val Leu Asp Ser Asn Gln225 230 235 240Thr Ser Val Val Glu Ser Ala Val Pro Arg Lys Ser Val Asp Thr Phe 245 250 255Gly Gln Arg Thr Ser Ile Tyr Arg Gly Val Thr Arg His Arg Trp Thr 260 265 270Gly Arg Tyr Glu Ala His Leu Trp Asp Asn Ser Cys Arg Arg Glu Gly 275 280 285Gln Thr Arg Lys Gly Arg Gln Val Tyr Leu Gly Gly Tyr Asp Lys Glu 290 295 300Glu Lys Ala Ala Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr Trp Gly305 310 315 320Thr Thr Thr Thr Thr Asn Phe Pro Ile Ser His Tyr Glu Lys Glu Val 325 330 335Glu Glu Met Lys His Met Thr Arg Gln Glu Tyr Val Ala Ser Leu Arg 340 345 350Arg Lys Ser Ser Gly Phe Ser Arg Gly Ala Ser Ile Tyr Arg Gly Val 355 360 365Thr Arg His His Gln His Gly Arg Trp Gln Ala Arg Ile Gly Arg Val 370 375 380Ala Gly Asn Lys Asp Leu Tyr Leu Gly Thr Phe Ser Thr Gln Glu Glu385 390 395 400Ala Ala Glu Ala Tyr Asp Val Ala Ala Ile Lys Phe Arg Gly Leu Ser 405 410 415Ala Val Thr Asn Phe Asp Met Ser Arg Tyr Asp Val Lys Thr Ile Leu 420 425 430Glu Ser Ser Thr Leu Pro Ile Gly Gly Ala Ala Lys Arg Leu Lys Asp 435 440 445Met Glu Gln Val Glu Leu Asn His Val Asn Val Asp Ile Ser His Arg 450 455 460Thr Glu Gln Asp His Ser Ile Ile Asn Asn Thr Ser His Leu Thr Glu465 470 475 480Gln Ala Ile Tyr Ala Ala Thr Asn Ala Ser Asn Trp His Ala Leu Ser 485 490 495Phe Gln His Gln Gln Pro His His His Tyr Asn Ala Asn Asn Met Gln 500 505 510Leu Gln Asn Tyr Pro Tyr Gly Thr Gln Thr Gln Lys Leu Trp Cys Lys 515 520 525Gln Glu Gln Asp Ser Asp Asp His Ser Thr Tyr Thr Thr Ala Thr Asp 530 535 540Ile His Gln Leu Gln Leu Gly Asn Asn Asn Asn Asn Thr His Asn Phe545 550 555 560Phe Gly Leu Gln Asn Ile Met Ser Met Asp Ser Ala Ser Met Asp Asn 565 570 575Ser Ser Gly Ser Asn Ser Val Val Tyr Gly Gly Gly Asp His Gly Gly 580 585 590Tyr Gly Gly Asn Gly Gly Tyr Met Ile Pro Met Ala Ile Ala Asn Asp 595 600 605Gly Asn Gln Asn Pro Arg Ser Asn Asn Asn Phe Gly Glu Ser Glu Ile 610 615 620Lys Gly Phe Gly Tyr Glu Asn Val Phe Gly Thr Thr Thr Asp Pro Tyr625 630 635 640His Ala Gln Ala Ala Arg Asn Leu Tyr Tyr Gln Pro Gln Gln Leu Ser 645 650 655Val Asp Gln Gly Ser Asn Trp Val Pro Thr Ala Ile Pro Thr Leu Ala 660 665 670Pro Arg Thr Thr Asn Val Ser Leu Cys Pro Pro Phe Thr Leu Leu His 675 680 685Glu 92130DNAZea maysCDS(1)...(2130) 9atg gcc act gtg aac aac tgg ctc gct ttc tcc ctc tcc ccg cag gag 48Met Ala Thr Val Asn Asn Trp Leu Ala Phe Ser Leu Ser Pro Gln Glu1 5 10 15ctg ccg ccc tcc cag acg acg gac tcc acg ctc atc tcg gcc gcc acc 96Leu Pro Pro Ser Gln Thr Thr Asp Ser Thr Leu Ile Ser Ala Ala Thr 20 25 30gcc gac cat gtc tcc ggc gat gtc tgc ttc aac atc ccc caa gat tgg 144Ala Asp His Val Ser Gly Asp Val Cys Phe Asn Ile Pro Gln Asp Trp 35 40 45agc atg agg gga tca gag ctt tcg gcg ctc gtc gcg gag ccg aag ctg 192Ser Met Arg Gly Ser Glu Leu Ser Ala Leu Val Ala Glu Pro Lys Leu 50 55 60gag gac ttc ctc ggc ggc atc tcc ttc tcc gag cag cat cac aag tcc 240Glu Asp Phe Leu Gly Gly Ile Ser Phe Ser Glu Gln His His Lys Ser65 70 75 80aac tgc aac ttg ata ccc agc act agc agc aca gtt tgc tac gcg agc 288Asn Cys Asn Leu Ile Pro Ser Thr Ser Ser Thr Val Cys Tyr Ala Ser 85 90 95tca gct gct agc acc ggc tac cat cac cag ctg tac cag ccc acc agc 336Ser Ala Ala Ser Thr Gly Tyr His His Gln Leu Tyr Gln Pro Thr Ser 100 105 110tcc gcg ctc cac ttc gcg gac tcc gtc atg gtg gcc tcc tcg gcc ggt 384Ser Ala Leu His Phe Ala Asp Ser Val Met Val Ala Ser Ser Ala Gly 115 120 125gtc cac gac ggc ggt tcc atg ctc agc gcg gcc gcc gct aac ggt gtc 432Val His Asp Gly Gly Ser Met

Leu Ser Ala Ala Ala Ala Asn Gly Val 130 135 140gct ggc gct gcc agt gcc aac ggc ggc ggc atc ggg ctg tcc atg atc 480Ala Gly Ala Ala Ser Ala Asn Gly Gly Gly Ile Gly Leu Ser Met Ile145 150 155 160aag aac tgg ctg cgg agc caa ccg gcg ccc atg cag ccg agg gcg gcg 528Lys Asn Trp Leu Arg Ser Gln Pro Ala Pro Met Gln Pro Arg Ala Ala 165 170 175gcg gct gag ggc gcg cag ggg ctc tct ttg tcc atg aac atg gcg ggg 576Ala Ala Glu Gly Ala Gln Gly Leu Ser Leu Ser Met Asn Met Ala Gly 180 185 190acg acc caa ggc gct gct ggc atg cca ctt ctc gct gga gag cgc gca 624Thr Thr Gln Gly Ala Ala Gly Met Pro Leu Leu Ala Gly Glu Arg Ala 195 200 205cgg gcg ccc gag agt gta tcg acg tca gca cag ggt ggt gcc gtc gtc 672Arg Ala Pro Glu Ser Val Ser Thr Ser Ala Gln Gly Gly Ala Val Val 210 215 220gtc acg gcg ccg aag gag gat agc ggt ggc agc ggt gtt gcc ggt gct 720Val Thr Ala Pro Lys Glu Asp Ser Gly Gly Ser Gly Val Ala Gly Ala225 230 235 240cta gta gcc gtg agc acg gac acg ggt ggc agc ggc ggc gcg tcg gct 768Leu Val Ala Val Ser Thr Asp Thr Gly Gly Ser Gly Gly Ala Ser Ala 245 250 255gac aac acg gca agg aag acg gtg gac acg ttc ggg cag cgc acg tcg 816Asp Asn Thr Ala Arg Lys Thr Val Asp Thr Phe Gly Gln Arg Thr Ser 260 265 270att tac cgt ggc gtg aca agg cat aga tgg act ggg aga tat gag gca 864Ile Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala 275 280 285cat ctt tgg gat aac agt tgc aga agg gaa gga caa act cgt aag ggt 912His Leu Trp Asp Asn Ser Cys Arg Arg Glu Gly Gln Thr Arg Lys Gly 290 295 300cgt caa gtc tat tta ggt ggc tat gat aaa gag gag aaa gct gct agg 960Arg Gln Val Tyr Leu Gly Gly Tyr Asp Lys Glu Glu Lys Ala Ala Arg305 310 315 320gct tat gat ctt gct gct ctg aag tac tgg ggt gcc aca aca aca aca 1008Ala Tyr Asp Leu Ala Ala Leu Lys Tyr Trp Gly Ala Thr Thr Thr Thr 325 330 335aat ttt cca gtg agt aac tac gaa aag gag ctc gag gac atg aag cac 1056Asn Phe Pro Val Ser Asn Tyr Glu Lys Glu Leu Glu Asp Met Lys His 340 345 350atg aca agg cag gag ttt gta gcg tct ctg aga agg aag agc agt ggt 1104Met Thr Arg Gln Glu Phe Val Ala Ser Leu Arg Arg Lys Ser Ser Gly 355 360 365ttc tcc aga ggt gca tcc att tac agg gga gtg act agg cat cac caa 1152Phe Ser Arg Gly Ala Ser Ile Tyr Arg Gly Val Thr Arg His His Gln 370 375 380cat gga aga tgg caa gca cgg att gga cga gtt gca ggg aac aag gat 1200His Gly Arg Trp Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys Asp385 390 395 400ctt tac ttg ggc acc ttc agc acc cag gag gag gca gcg gag gcg tac 1248Leu Tyr Leu Gly Thr Phe Ser Thr Gln Glu Glu Ala Ala Glu Ala Tyr 405 410 415gac atc gcg gcg atc aag ttc cgc ggc ctc aac gcc gtc acc aac ttc 1296Asp Ile Ala Ala Ile Lys Phe Arg Gly Leu Asn Ala Val Thr Asn Phe 420 425 430gac atg agc cgc tac gac gtg aag agc atc ctg gac agc agc gcc ctc 1344Asp Met Ser Arg Tyr Asp Val Lys Ser Ile Leu Asp Ser Ser Ala Leu 435 440 445ccc atc ggc agc gcc gcc aag cgt ctc aag gag gcc gag gcc gca gcg 1392Pro Ile Gly Ser Ala Ala Lys Arg Leu Lys Glu Ala Glu Ala Ala Ala 450 455 460tcc gcg cag cac cac cac gcc ggc gtg gtg agc tac gac gtc ggc cgc 1440Ser Ala Gln His His His Ala Gly Val Val Ser Tyr Asp Val Gly Arg465 470 475 480atc gcc tcg cag ctc ggc gac ggc gga gcc cta gcg gcg gcg tac ggc 1488Ile Ala Ser Gln Leu Gly Asp Gly Gly Ala Leu Ala Ala Ala Tyr Gly 485 490 495gcg cac tac cac ggc gcc gcc tgg ccg acc atc gcg ttc cag ccg ggc 1536Ala His Tyr His Gly Ala Ala Trp Pro Thr Ile Ala Phe Gln Pro Gly 500 505 510gcc gcc acc aca ggc ctg tac cac ccg tac gcg cag cag cca atg cgc 1584Ala Ala Thr Thr Gly Leu Tyr His Pro Tyr Ala Gln Gln Pro Met Arg 515 520 525ggc ggc ggg tgg tgc aag cag gag cag gac cac gcg gtg atc gcg gcc 1632Gly Gly Gly Trp Cys Lys Gln Glu Gln Asp His Ala Val Ile Ala Ala 530 535 540gcg cac agc ctg cag gac ctc cac cac ttg aac ctg ggc gcg gcc ggc 1680Ala His Ser Leu Gln Asp Leu His His Leu Asn Leu Gly Ala Ala Gly545 550 555 560gcg cac gac ttt ttc tcg gca ggg cag cag gcc gcc gcc gca gct gcg 1728Ala His Asp Phe Phe Ser Ala Gly Gln Gln Ala Ala Ala Ala Ala Ala 565 570 575atg cac ggc ctg gct agc atc gac agt gcg tcg ctc gag cac agc acc 1776Met His Gly Leu Ala Ser Ile Asp Ser Ala Ser Leu Glu His Ser Thr 580 585 590ggc tcc aac tcc gtc gtc tac aac ggc ggg gtc ggc gat agc aac ggc 1824Gly Ser Asn Ser Val Val Tyr Asn Gly Gly Val Gly Asp Ser Asn Gly 595 600 605gcc agc gcc gtt ggc agc ggc ggt ggc tac atg atg ccg atg agc gct 1872Ala Ser Ala Val Gly Ser Gly Gly Gly Tyr Met Met Pro Met Ser Ala 610 615 620gcc gga gca acc act aca tcg gca atg gtg agc cac gag cag atg cat 1920Ala Gly Ala Thr Thr Thr Ser Ala Met Val Ser His Glu Gln Met His625 630 635 640gca cgg gcc tac gac gaa gcc aag cag gct gct cag atg ggg tac gag 1968Ala Arg Ala Tyr Asp Glu Ala Lys Gln Ala Ala Gln Met Gly Tyr Glu 645 650 655agc tac ctg gtg aac gcg gag aac aat ggt ggc gga agg atg tct gca 2016Ser Tyr Leu Val Asn Ala Glu Asn Asn Gly Gly Gly Arg Met Ser Ala 660 665 670tgg ggg acc gtc gtc tct gca gcc gcg gcg gca gca gca agc agc aac 2064Trp Gly Thr Val Val Ser Ala Ala Ala Ala Ala Ala Ala Ser Ser Asn 675 680 685gac aac att gcc gcc gac gtc ggc cat ggc ggc gcg cag ctc ttc agt 2112Asp Asn Ile Ala Ala Asp Val Gly His Gly Gly Ala Gln Leu Phe Ser 690 695 700gtc tgg aac gac act taa 2130Val Trp Asn Asp Thr70510709PRTZea mays 10Met Ala Thr Val Asn Asn Trp Leu Ala Phe Ser Leu Ser Pro Gln Glu1 5 10 15Leu Pro Pro Ser Gln Thr Thr Asp Ser Thr Leu Ile Ser Ala Ala Thr 20 25 30Ala Asp His Val Ser Gly Asp Val Cys Phe Asn Ile Pro Gln Asp Trp 35 40 45Ser Met Arg Gly Ser Glu Leu Ser Ala Leu Val Ala Glu Pro Lys Leu 50 55 60Glu Asp Phe Leu Gly Gly Ile Ser Phe Ser Glu Gln His His Lys Ser65 70 75 80Asn Cys Asn Leu Ile Pro Ser Thr Ser Ser Thr Val Cys Tyr Ala Ser 85 90 95Ser Ala Ala Ser Thr Gly Tyr His His Gln Leu Tyr Gln Pro Thr Ser 100 105 110Ser Ala Leu His Phe Ala Asp Ser Val Met Val Ala Ser Ser Ala Gly 115 120 125Val His Asp Gly Gly Ser Met Leu Ser Ala Ala Ala Ala Asn Gly Val 130 135 140Ala Gly Ala Ala Ser Ala Asn Gly Gly Gly Ile Gly Leu Ser Met Ile145 150 155 160Lys Asn Trp Leu Arg Ser Gln Pro Ala Pro Met Gln Pro Arg Ala Ala 165 170 175Ala Ala Glu Gly Ala Gln Gly Leu Ser Leu Ser Met Asn Met Ala Gly 180 185 190Thr Thr Gln Gly Ala Ala Gly Met Pro Leu Leu Ala Gly Glu Arg Ala 195 200 205Arg Ala Pro Glu Ser Val Ser Thr Ser Ala Gln Gly Gly Ala Val Val 210 215 220Val Thr Ala Pro Lys Glu Asp Ser Gly Gly Ser Gly Val Ala Gly Ala225 230 235 240Leu Val Ala Val Ser Thr Asp Thr Gly Gly Ser Gly Gly Ala Ser Ala 245 250 255Asp Asn Thr Ala Arg Lys Thr Val Asp Thr Phe Gly Gln Arg Thr Ser 260 265 270Ile Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala 275 280 285His Leu Trp Asp Asn Ser Cys Arg Arg Glu Gly Gln Thr Arg Lys Gly 290 295 300Arg Gln Val Tyr Leu Gly Gly Tyr Asp Lys Glu Glu Lys Ala Ala Arg305 310 315 320Ala Tyr Asp Leu Ala Ala Leu Lys Tyr Trp Gly Ala Thr Thr Thr Thr 325 330 335Asn Phe Pro Val Ser Asn Tyr Glu Lys Glu Leu Glu Asp Met Lys His 340 345 350Met Thr Arg Gln Glu Phe Val Ala Ser Leu Arg Arg Lys Ser Ser Gly 355 360 365Phe Ser Arg Gly Ala Ser Ile Tyr Arg Gly Val Thr Arg His His Gln 370 375 380His Gly Arg Trp Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys Asp385 390 395 400Leu Tyr Leu Gly Thr Phe Ser Thr Gln Glu Glu Ala Ala Glu Ala Tyr 405 410 415Asp Ile Ala Ala Ile Lys Phe Arg Gly Leu Asn Ala Val Thr Asn Phe 420 425 430Asp Met Ser Arg Tyr Asp Val Lys Ser Ile Leu Asp Ser Ser Ala Leu 435 440 445Pro Ile Gly Ser Ala Ala Lys Arg Leu Lys Glu Ala Glu Ala Ala Ala 450 455 460Ser Ala Gln His His His Ala Gly Val Val Ser Tyr Asp Val Gly Arg465 470 475 480Ile Ala Ser Gln Leu Gly Asp Gly Gly Ala Leu Ala Ala Ala Tyr Gly 485 490 495Ala His Tyr His Gly Ala Ala Trp Pro Thr Ile Ala Phe Gln Pro Gly 500 505 510Ala Ala Thr Thr Gly Leu Tyr His Pro Tyr Ala Gln Gln Pro Met Arg 515 520 525Gly Gly Gly Trp Cys Lys Gln Glu Gln Asp His Ala Val Ile Ala Ala 530 535 540Ala His Ser Leu Gln Asp Leu His His Leu Asn Leu Gly Ala Ala Gly545 550 555 560Ala His Asp Phe Phe Ser Ala Gly Gln Gln Ala Ala Ala Ala Ala Ala 565 570 575Met His Gly Leu Ala Ser Ile Asp Ser Ala Ser Leu Glu His Ser Thr 580 585 590Gly Ser Asn Ser Val Val Tyr Asn Gly Gly Val Gly Asp Ser Asn Gly 595 600 605Ala Ser Ala Val Gly Ser Gly Gly Gly Tyr Met Met Pro Met Ser Ala 610 615 620Ala Gly Ala Thr Thr Thr Ser Ala Met Val Ser His Glu Gln Met His625 630 635 640Ala Arg Ala Tyr Asp Glu Ala Lys Gln Ala Ala Gln Met Gly Tyr Glu 645 650 655Ser Tyr Leu Val Asn Ala Glu Asn Asn Gly Gly Gly Arg Met Ser Ala 660 665 670Trp Gly Thr Val Val Ser Ala Ala Ala Ala Ala Ala Ala Ser Ser Asn 675 680 685Asp Asn Ile Ala Ala Asp Val Gly His Gly Gly Ala Gln Leu Phe Ser 690 695 700Val Trp Asn Asp Thr705112040DNAZea maysCDS(1)...(2040) 11atg gct tca gcg aac aac tgg ctg ggc ttc tcg ctc tcg ggc cag gat 48Met Ala Ser Ala Asn Asn Trp Leu Gly Phe Ser Leu Ser Gly Gln Asp1 5 10 15aac ccg cag cct aac cag gat agc tcg cct gcc gcc ggt atc gac atc 96Asn Pro Gln Pro Asn Gln Asp Ser Ser Pro Ala Ala Gly Ile Asp Ile 20 25 30tcc ggc gcc agc gac ttc tat ggc ctg ccc acg cag cag ggc tcc gac 144Ser Gly Ala Ser Asp Phe Tyr Gly Leu Pro Thr Gln Gln Gly Ser Asp 35 40 45ggg cat ctc ggc gtg ccg ggc ctg cgg gac gat cac gct tct tat ggt 192Gly His Leu Gly Val Pro Gly Leu Arg Asp Asp His Ala Ser Tyr Gly 50 55 60atc atg gag gcc tac aac agg gtt cct caa gaa acc caa gat tgg aac 240Ile Met Glu Ala Tyr Asn Arg Val Pro Gln Glu Thr Gln Asp Trp Asn65 70 75 80atg agg ggc ttg gac tac aac ggc ggt ggc tcg gag ctc tcg atg ctt 288Met Arg Gly Leu Asp Tyr Asn Gly Gly Gly Ser Glu Leu Ser Met Leu 85 90 95gtg ggg tcc agc ggc ggc ggc ggg ggc aac ggc aag agg gcc gtg gaa 336Val Gly Ser Ser Gly Gly Gly Gly Gly Asn Gly Lys Arg Ala Val Glu 100 105 110gac agc gag ccc aag ctc gaa gat ttc ctc ggc ggc aac tcg ttc gtc 384Asp Ser Glu Pro Lys Leu Glu Asp Phe Leu Gly Gly Asn Ser Phe Val 115 120 125tcc gat caa gat cag tcc ggc ggt tac ctg ttc tct gga gtc ccg ata 432Ser Asp Gln Asp Gln Ser Gly Gly Tyr Leu Phe Ser Gly Val Pro Ile 130 135 140gcc agc agc gcc aat agc aac agc ggg agc aac acc atg gag ctc tcc 480Ala Ser Ser Ala Asn Ser Asn Ser Gly Ser Asn Thr Met Glu Leu Ser145 150 155 160atg atc aag acc tgg cta cgg aac aac cag gtg gcc cag ccc cag ccg 528Met Ile Lys Thr Trp Leu Arg Asn Asn Gln Val Ala Gln Pro Gln Pro 165 170 175cca gct cca cat cag ccg cag cct gag gaa atg agc acc gac gcc agc 576Pro Ala Pro His Gln Pro Gln Pro Glu Glu Met Ser Thr Asp Ala Ser 180 185 190ggc agc agc ttt gga tgc tcg gat tcg atg gga agg aac agc atg gtg 624Gly Ser Ser Phe Gly Cys Ser Asp Ser Met Gly Arg Asn Ser Met Val 195 200 205gcg gct ggt ggg agc tcg cag agc ctg gcg ctc tcg atg agc acg ggc 672Ala Ala Gly Gly Ser Ser Gln Ser Leu Ala Leu Ser Met Ser Thr Gly 210 215 220tcg cac ctg ccc atg gtt gtg ccc agc ggc gcc gcc agc gga gcg gcc 720Ser His Leu Pro Met Val Val Pro Ser Gly Ala Ala Ser Gly Ala Ala225 230 235 240tcg gag agc aca tcg tcg gag aac aag cga gcg agc ggt gcc atg gat 768Ser Glu Ser Thr Ser Ser Glu Asn Lys Arg Ala Ser Gly Ala Met Asp 245 250 255tcg ccc ggc agc gcg gta gaa gcc gta ccg agg aag tcc atc gac acg 816Ser Pro Gly Ser Ala Val Glu Ala Val Pro Arg Lys Ser Ile Asp Thr 260 265 270ttc ggg caa agg acc tct ata tat cga ggt gta aca agg cat aga tgg 864Phe Gly Gln Arg Thr Ser Ile Tyr Arg Gly Val Thr Arg His Arg Trp 275 280 285aca ggg cgg tat gag gct cat cta tgg gat aat agt tgt aga agg gaa 912Thr Gly Arg Tyr Glu Ala His Leu Trp Asp Asn Ser Cys Arg Arg Glu 290 295 300ggg cag agt cgc aag ggt agg caa gtt tac ctt ggt ggc tat gac aag 960Gly Gln Ser Arg Lys Gly Arg Gln Val Tyr Leu Gly Gly Tyr Asp Lys305 310 315 320gag gac aag gca gca agg gct tat gat ttg gca gct ctc aag tat tgg 1008Glu Asp Lys Ala Ala Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr Trp 325 330 335ggc act acg aca aca aca aat ttc cct ata agc aac tac gaa aag gag 1056Gly Thr Thr Thr Thr Thr Asn Phe Pro Ile Ser Asn Tyr Glu Lys Glu 340 345 350cta gaa gaa atg aaa cat atg act aga cag gag tac att gca tac cta 1104Leu Glu Glu Met Lys His Met Thr Arg Gln Glu Tyr Ile Ala Tyr Leu 355 360 365aga aga aat agc agt gga ttt tct cgt ggg gcg tca aag tat cgt gga 1152Arg Arg Asn Ser Ser Gly Phe Ser Arg Gly Ala Ser Lys Tyr Arg Gly 370 375 380gta act aga cat cat cag cat ggg aga tgg caa gca agg ata ggg aga 1200Val Thr Arg His His Gln His Gly Arg Trp Gln Ala Arg Ile Gly Arg385 390 395 400gtt gca gga aac aag gat ctc tac ttg ggc aca ttc agc acc gag gag 1248Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly Thr Phe Ser Thr Glu Glu 405 410 415gag gcg gcg gag gcc tac gac atc gcc gcg atc aag ttc cgc ggt ctc 1296Glu Ala Ala Glu Ala Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly Leu 420 425 430aac gcc gtc acc aac ttc gac atg agc cgc tac gac gtg aag agc atc 1344Asn Ala Val Thr Asn Phe Asp Met Ser Arg Tyr Asp Val Lys Ser Ile 435 440 445ctc gag agc agc aca ctg cct gtc ggc ggt gcg gcc agg cgc ctc aag 1392Leu Glu Ser Ser Thr Leu Pro Val Gly Gly Ala Ala Arg Arg Leu Lys 450 455 460gac gcc gtg gac cac gtg gag gcc ggc gcc acc atc tgg cgc gcc gac 1440Asp Ala Val Asp His Val Glu Ala Gly Ala Thr Ile Trp Arg Ala Asp465 470 475 480atg gac ggc gcc gtg atc tcc cag ctg gcc gaa gcc ggg atg ggc ggc 1488Met Asp Gly Ala Val Ile Ser Gln Leu Ala Glu Ala Gly Met Gly Gly 485 490 495tac gcc tcg tac ggc cac cac ggc tgg ccg acc atc gcg ttc cag cag 1536Tyr Ala Ser Tyr Gly His His Gly Trp Pro Thr Ile Ala Phe Gln Gln 500 505 510ccg tcg ccg ctc tcc gtc cac tac ccg tac ggc cag ccg tcc cgc ggg 1584Pro Ser Pro Leu Ser Val His Tyr Pro Tyr Gly Gln Pro Ser Arg Gly

515 520 525tgg tgc aaa ccc gag cag gac gcg gcc gcc gcc gcg gcg cac agc ctg 1632Trp Cys Lys Pro Glu Gln Asp Ala Ala Ala Ala Ala Ala His Ser Leu 530 535 540cag gac ctc cag cag ctg cac ctc ggc agc gcg gcc cac aac ttc ttc 1680Gln Asp Leu Gln Gln Leu His Leu Gly Ser Ala Ala His Asn Phe Phe545 550 555 560cag gcg tcg tcg agc tcc aca gtc tac aac ggc ggc gcc ggc gcc agt 1728Gln Ala Ser Ser Ser Ser Thr Val Tyr Asn Gly Gly Ala Gly Ala Ser 565 570 575ggt ggg tac cag ggc ctc ggt ggt ggc agc tct ttc ctc atg ccg tcg 1776Gly Gly Tyr Gln Gly Leu Gly Gly Gly Ser Ser Phe Leu Met Pro Ser 580 585 590agc act gtc gtg gcg gcg gcc gac cag ggg cac agc agc acg gcc aac 1824Ser Thr Val Val Ala Ala Ala Asp Gln Gly His Ser Ser Thr Ala Asn 595 600 605cag ggg agc acg tgc agc tac ggg gac gac cac cag gag ggg aag ctc 1872Gln Gly Ser Thr Cys Ser Tyr Gly Asp Asp His Gln Glu Gly Lys Leu 610 615 620atc ggt tac gac gcc gcc atg gtg gcg acc gca gct ggt gga gac ccg 1920Ile Gly Tyr Asp Ala Ala Met Val Ala Thr Ala Ala Gly Gly Asp Pro625 630 635 640tac gct gcg gcg agg aac ggg tac cag ttc tcg cag ggc tcg gga tcc 1968Tyr Ala Ala Ala Arg Asn Gly Tyr Gln Phe Ser Gln Gly Ser Gly Ser 645 650 655acg gtg agc atc gcg agg gcg aac ggg tac gct aac aac tgg agc tct 2016Thr Val Ser Ile Ala Arg Ala Asn Gly Tyr Ala Asn Asn Trp Ser Ser 660 665 670cct ttc aac aac ggc atg ggg tga 2040Pro Phe Asn Asn Gly Met Gly 67512679PRTZea mays 12Met Ala Ser Ala Asn Asn Trp Leu Gly Phe Ser Leu Ser Gly Gln Asp1 5 10 15Asn Pro Gln Pro Asn Gln Asp Ser Ser Pro Ala Ala Gly Ile Asp Ile 20 25 30Ser Gly Ala Ser Asp Phe Tyr Gly Leu Pro Thr Gln Gln Gly Ser Asp 35 40 45Gly His Leu Gly Val Pro Gly Leu Arg Asp Asp His Ala Ser Tyr Gly 50 55 60Ile Met Glu Ala Tyr Asn Arg Val Pro Gln Glu Thr Gln Asp Trp Asn65 70 75 80Met Arg Gly Leu Asp Tyr Asn Gly Gly Gly Ser Glu Leu Ser Met Leu 85 90 95Val Gly Ser Ser Gly Gly Gly Gly Gly Asn Gly Lys Arg Ala Val Glu 100 105 110Asp Ser Glu Pro Lys Leu Glu Asp Phe Leu Gly Gly Asn Ser Phe Val 115 120 125Ser Asp Gln Asp Gln Ser Gly Gly Tyr Leu Phe Ser Gly Val Pro Ile 130 135 140Ala Ser Ser Ala Asn Ser Asn Ser Gly Ser Asn Thr Met Glu Leu Ser145 150 155 160Met Ile Lys Thr Trp Leu Arg Asn Asn Gln Val Ala Gln Pro Gln Pro 165 170 175Pro Ala Pro His Gln Pro Gln Pro Glu Glu Met Ser Thr Asp Ala Ser 180 185 190Gly Ser Ser Phe Gly Cys Ser Asp Ser Met Gly Arg Asn Ser Met Val 195 200 205Ala Ala Gly Gly Ser Ser Gln Ser Leu Ala Leu Ser Met Ser Thr Gly 210 215 220Ser His Leu Pro Met Val Val Pro Ser Gly Ala Ala Ser Gly Ala Ala225 230 235 240Ser Glu Ser Thr Ser Ser Glu Asn Lys Arg Ala Ser Gly Ala Met Asp 245 250 255Ser Pro Gly Ser Ala Val Glu Ala Val Pro Arg Lys Ser Ile Asp Thr 260 265 270Phe Gly Gln Arg Thr Ser Ile Tyr Arg Gly Val Thr Arg His Arg Trp 275 280 285Thr Gly Arg Tyr Glu Ala His Leu Trp Asp Asn Ser Cys Arg Arg Glu 290 295 300Gly Gln Ser Arg Lys Gly Arg Gln Val Tyr Leu Gly Gly Tyr Asp Lys305 310 315 320Glu Asp Lys Ala Ala Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr Trp 325 330 335Gly Thr Thr Thr Thr Thr Asn Phe Pro Ile Ser Asn Tyr Glu Lys Glu 340 345 350Leu Glu Glu Met Lys His Met Thr Arg Gln Glu Tyr Ile Ala Tyr Leu 355 360 365Arg Arg Asn Ser Ser Gly Phe Ser Arg Gly Ala Ser Lys Tyr Arg Gly 370 375 380Val Thr Arg His His Gln His Gly Arg Trp Gln Ala Arg Ile Gly Arg385 390 395 400Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly Thr Phe Ser Thr Glu Glu 405 410 415Glu Ala Ala Glu Ala Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly Leu 420 425 430Asn Ala Val Thr Asn Phe Asp Met Ser Arg Tyr Asp Val Lys Ser Ile 435 440 445Leu Glu Ser Ser Thr Leu Pro Val Gly Gly Ala Ala Arg Arg Leu Lys 450 455 460Asp Ala Val Asp His Val Glu Ala Gly Ala Thr Ile Trp Arg Ala Asp465 470 475 480Met Asp Gly Ala Val Ile Ser Gln Leu Ala Glu Ala Gly Met Gly Gly 485 490 495Tyr Ala Ser Tyr Gly His His Gly Trp Pro Thr Ile Ala Phe Gln Gln 500 505 510Pro Ser Pro Leu Ser Val His Tyr Pro Tyr Gly Gln Pro Ser Arg Gly 515 520 525Trp Cys Lys Pro Glu Gln Asp Ala Ala Ala Ala Ala Ala His Ser Leu 530 535 540Gln Asp Leu Gln Gln Leu His Leu Gly Ser Ala Ala His Asn Phe Phe545 550 555 560Gln Ala Ser Ser Ser Ser Thr Val Tyr Asn Gly Gly Ala Gly Ala Ser 565 570 575Gly Gly Tyr Gln Gly Leu Gly Gly Gly Ser Ser Phe Leu Met Pro Ser 580 585 590Ser Thr Val Val Ala Ala Ala Asp Gln Gly His Ser Ser Thr Ala Asn 595 600 605Gln Gly Ser Thr Cys Ser Tyr Gly Asp Asp His Gln Glu Gly Lys Leu 610 615 620Ile Gly Tyr Asp Ala Ala Met Val Ala Thr Ala Ala Gly Gly Asp Pro625 630 635 640Tyr Ala Ala Ala Arg Asn Gly Tyr Gln Phe Ser Gln Gly Ser Gly Ser 645 650 655Thr Val Ser Ile Ala Arg Ala Asn Gly Tyr Ala Asn Asn Trp Ser Ser 660 665 670Pro Phe Asn Asn Gly Met Gly 675132088DNAOryza sativaCDS(1)...(2088) 13atg gcc acc atg aac aac tgg ctg gcc ttc tcc ctc tcc ccg cag gat 48Met Ala Thr Met Asn Asn Trp Leu Ala Phe Ser Leu Ser Pro Gln Asp1 5 10 15cag ctc ccg ccg tct cag acc aac tcc act ctc atc tcc gcc gcc gcc 96Gln Leu Pro Pro Ser Gln Thr Asn Ser Thr Leu Ile Ser Ala Ala Ala 20 25 30acc acc acc acc gcc ggc gac tcc tcc acc ggc gac gtc tgc ttc aac 144Thr Thr Thr Thr Ala Gly Asp Ser Ser Thr Gly Asp Val Cys Phe Asn 35 40 45atc ccc caa gat tgg agc atg agg gga tcg gag ctc tcg gcg ctc gtc 192Ile Pro Gln Asp Trp Ser Met Arg Gly Ser Glu Leu Ser Ala Leu Val 50 55 60gcc gag ccg aag ctg gag gac ttc ctc ggc ggc atc tcc ttc tcg gag 240Ala Glu Pro Lys Leu Glu Asp Phe Leu Gly Gly Ile Ser Phe Ser Glu65 70 75 80cag cag cat cat cac ggc ggc aag ggc ggc gtg atc ccg agc agc gcc 288Gln Gln His His His Gly Gly Lys Gly Gly Val Ile Pro Ser Ser Ala 85 90 95gcc gct tgc tac gcg agc tcc ggc agc agc gtc ggc tac ctg tac cct 336Ala Ala Cys Tyr Ala Ser Ser Gly Ser Ser Val Gly Tyr Leu Tyr Pro 100 105 110cct cca agc tca tcc tcg ctc cag ttc gcc gac tcc gtc atg gtg gcc 384Pro Pro Ser Ser Ser Ser Leu Gln Phe Ala Asp Ser Val Met Val Ala 115 120 125acc tcc tcg ccc gtc gtc gcc cac gac ggc gtc agc ggc ggc ggc atg 432Thr Ser Ser Pro Val Val Ala His Asp Gly Val Ser Gly Gly Gly Met 130 135 140gtg agc gcc gcc gcc gcc gcg gcg gcc agt ggc aac ggc ggc att ggc 480Val Ser Ala Ala Ala Ala Ala Ala Ala Ser Gly Asn Gly Gly Ile Gly145 150 155 160ctg tcc atg atc aag aac tgg ctc cgg agc cag ccg gcg ccg cag ccg 528Leu Ser Met Ile Lys Asn Trp Leu Arg Ser Gln Pro Ala Pro Gln Pro 165 170 175gcg cag gcg ctg tct ctg tcc atg aac atg gcg ggg acg acg acg gcg 576Ala Gln Ala Leu Ser Leu Ser Met Asn Met Ala Gly Thr Thr Thr Ala 180 185 190cag ggc ggc ggc gcc atg gcg ctc ctc gcc ggc gca ggg gag cga ggc 624Gln Gly Gly Gly Ala Met Ala Leu Leu Ala Gly Ala Gly Glu Arg Gly 195 200 205cgg acg acg ccc gcg tca gag agc ctg tcc acg tcg gcg cac gga gcg 672Arg Thr Thr Pro Ala Ser Glu Ser Leu Ser Thr Ser Ala His Gly Ala 210 215 220acg acg gcg acg atg gct ggt ggt cgc aag gag att aac gag gaa ggc 720Thr Thr Ala Thr Met Ala Gly Gly Arg Lys Glu Ile Asn Glu Glu Gly225 230 235 240agc ggc agc gcc ggc gcc gtg gtt gcc gtc ggc tcg gag tca ggc ggc 768Ser Gly Ser Ala Gly Ala Val Val Ala Val Gly Ser Glu Ser Gly Gly 245 250 255agc ggc gcc gtg gtg gag gcc ggc gcg gcg gcg gcg gcg gcg agg aag 816Ser Gly Ala Val Val Glu Ala Gly Ala Ala Ala Ala Ala Ala Arg Lys 260 265 270tcc gtc gac acg ttc ggc cag aga aca tcg atc tac cgc ggc gtg aca 864Ser Val Asp Thr Phe Gly Gln Arg Thr Ser Ile Tyr Arg Gly Val Thr 275 280 285agg cat aga tgg aca ggg agg tat gag gct cat ctt tgg gac aac agc 912Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu Trp Asp Asn Ser 290 295 300tgc aga aga gag ggc caa act cgc aag ggt cgt caa gtc tat cta ggt 960Cys Arg Arg Glu Gly Gln Thr Arg Lys Gly Arg Gln Val Tyr Leu Gly305 310 315 320ggt tat gac aaa gag gaa aaa gct gct aga gct tat gat ttg gct gct 1008Gly Tyr Asp Lys Glu Glu Lys Ala Ala Arg Ala Tyr Asp Leu Ala Ala 325 330 335ctc aaa tac tgg ggc ccg acg acg acg aca aat ttt ccg gta aat aac 1056Leu Lys Tyr Trp Gly Pro Thr Thr Thr Thr Asn Phe Pro Val Asn Asn 340 345 350tat gaa aag gag ctg gag gag atg aag cac atg aca agg cag gag ttc 1104Tyr Glu Lys Glu Leu Glu Glu Met Lys His Met Thr Arg Gln Glu Phe 355 360 365gta gcc tct ttg aga agg aag agc agt ggt ttc tcc aga ggt gca tcc 1152Val Ala Ser Leu Arg Arg Lys Ser Ser Gly Phe Ser Arg Gly Ala Ser 370 375 380att tac cgt gga gta act agg cat cac cag cat ggg aga tgg caa gca 1200Ile Tyr Arg Gly Val Thr Arg His His Gln His Gly Arg Trp Gln Ala385 390 395 400agg ata gga aga gtt gca ggg aac aag gac ctc tac ttg ggc acc ttc 1248Arg Ile Gly Arg Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly Thr Phe 405 410 415agc acg cag gag gag gcg gcg gag gcg tac gac atc gcg gcg atc aag 1296Ser Thr Gln Glu Glu Ala Ala Glu Ala Tyr Asp Ile Ala Ala Ile Lys 420 425 430ttc cgg ggg ctc aac gcc gtc acc aac ttc gac atg agc cgc tac gac 1344Phe Arg Gly Leu Asn Ala Val Thr Asn Phe Asp Met Ser Arg Tyr Asp 435 440 445gtc aag agc atc ctc gac agc gct gcc ctc ccc gtc ggc acc gcc gcc 1392Val Lys Ser Ile Leu Asp Ser Ala Ala Leu Pro Val Gly Thr Ala Ala 450 455 460aag cgc ctc aag gac gcc gag gcc gcc gcc gcc tac gac gtc ggc cgc 1440Lys Arg Leu Lys Asp Ala Glu Ala Ala Ala Ala Tyr Asp Val Gly Arg465 470 475 480atc gcc tcg cac ctc ggc ggc gac ggc gcc tac gcc gcg cat tac ggc 1488Ile Ala Ser His Leu Gly Gly Asp Gly Ala Tyr Ala Ala His Tyr Gly 485 490 495cac cac cac cac tcg gcc gcc gcc gcc tgg ccg acc atc gcg ttc cag 1536His His His His Ser Ala Ala Ala Ala Trp Pro Thr Ile Ala Phe Gln 500 505 510gcg gcg gcg gcg ccg ccg ccg cac gcc gcc ggg ctt tac cac ccg tac 1584Ala Ala Ala Ala Pro Pro Pro His Ala Ala Gly Leu Tyr His Pro Tyr 515 520 525gcg cag ccg ctg cgt ggg tgg tgc aag cag gag cag gac cac gcc gtg 1632Ala Gln Pro Leu Arg Gly Trp Cys Lys Gln Glu Gln Asp His Ala Val 530 535 540atc gcg gcg gcg cac agc ctg cag gat ctc cac cac ctc aac ctc ggc 1680Ile Ala Ala Ala His Ser Leu Gln Asp Leu His His Leu Asn Leu Gly545 550 555 560gcc gcc gcc gcc gcg cat gac ttc ttc tcg cag gcg atg cag cag cag 1728Ala Ala Ala Ala Ala His Asp Phe Phe Ser Gln Ala Met Gln Gln Gln 565 570 575cac ggc ctc ggc agc atc gac aac gcg tcg ctc gag cac agc acc ggc 1776His Gly Leu Gly Ser Ile Asp Asn Ala Ser Leu Glu His Ser Thr Gly 580 585 590tcc aac tcc gtc gtc tac aac ggc gac aat ggc ggc gga ggc ggc ggc 1824Ser Asn Ser Val Val Tyr Asn Gly Asp Asn Gly Gly Gly Gly Gly Gly 595 600 605tac atc atg gcg ccg atg agc gcc gtg tcg gcc acg gcc acc gcg gtg 1872Tyr Ile Met Ala Pro Met Ser Ala Val Ser Ala Thr Ala Thr Ala Val 610 615 620gcg agc agc cac gat cac ggc ggc gac ggc ggg aag cag gtg cag atg 1920Ala Ser Ser His Asp His Gly Gly Asp Gly Gly Lys Gln Val Gln Met625 630 635 640ggg tac gac agc tac ctc gtc ggc gca gac gcc tac ggc ggc ggc ggc 1968Gly Tyr Asp Ser Tyr Leu Val Gly Ala Asp Ala Tyr Gly Gly Gly Gly 645 650 655gcc ggg agg atg cca tcc tgg gcg atg acg ccg gcg tcg gcg ccg gcc 2016Ala Gly Arg Met Pro Ser Trp Ala Met Thr Pro Ala Ser Ala Pro Ala 660 665 670gcc acg agc agc agc gac atg acc gga gtc tgc cat ggc gca cag ctc 2064Ala Thr Ser Ser Ser Asp Met Thr Gly Val Cys His Gly Ala Gln Leu 675 680 685ttc agc gtc tgg aac gac aca taa 2088Phe Ser Val Trp Asn Asp Thr 690 69514695PRTOryza sativa 14Met Ala Thr Met Asn Asn Trp Leu Ala Phe Ser Leu Ser Pro Gln Asp1 5 10 15Gln Leu Pro Pro Ser Gln Thr Asn Ser Thr Leu Ile Ser Ala Ala Ala 20 25 30Thr Thr Thr Thr Ala Gly Asp Ser Ser Thr Gly Asp Val Cys Phe Asn 35 40 45Ile Pro Gln Asp Trp Ser Met Arg Gly Ser Glu Leu Ser Ala Leu Val 50 55 60Ala Glu Pro Lys Leu Glu Asp Phe Leu Gly Gly Ile Ser Phe Ser Glu65 70 75 80Gln Gln His His His Gly Gly Lys Gly Gly Val Ile Pro Ser Ser Ala 85 90 95Ala Ala Cys Tyr Ala Ser Ser Gly Ser Ser Val Gly Tyr Leu Tyr Pro 100 105 110Pro Pro Ser Ser Ser Ser Leu Gln Phe Ala Asp Ser Val Met Val Ala 115 120 125Thr Ser Ser Pro Val Val Ala His Asp Gly Val Ser Gly Gly Gly Met 130 135 140Val Ser Ala Ala Ala Ala Ala Ala Ala Ser Gly Asn Gly Gly Ile Gly145 150 155 160Leu Ser Met Ile Lys Asn Trp Leu Arg Ser Gln Pro Ala Pro Gln Pro 165 170 175Ala Gln Ala Leu Ser Leu Ser Met Asn Met Ala Gly Thr Thr Thr Ala 180 185 190Gln Gly Gly Gly Ala Met Ala Leu Leu Ala Gly Ala Gly Glu Arg Gly 195 200 205Arg Thr Thr Pro Ala Ser Glu Ser Leu Ser Thr Ser Ala His Gly Ala 210 215 220Thr Thr Ala Thr Met Ala Gly Gly Arg Lys Glu Ile Asn Glu Glu Gly225 230 235 240Ser Gly Ser Ala Gly Ala Val Val Ala Val Gly Ser Glu Ser Gly Gly 245 250 255Ser Gly Ala Val Val Glu Ala Gly Ala Ala Ala Ala Ala Ala Arg Lys 260 265 270Ser Val Asp Thr Phe Gly Gln Arg Thr Ser Ile Tyr Arg Gly Val Thr 275 280 285Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu Trp Asp Asn Ser 290 295 300Cys Arg Arg Glu Gly Gln Thr Arg Lys Gly Arg Gln Val Tyr Leu Gly305 310 315 320Gly Tyr Asp Lys Glu Glu Lys Ala Ala Arg Ala Tyr Asp Leu Ala Ala 325 330 335Leu Lys Tyr Trp Gly Pro Thr Thr Thr Thr Asn Phe Pro Val Asn Asn 340 345 350Tyr Glu Lys Glu Leu Glu Glu Met Lys His Met Thr Arg Gln Glu Phe 355 360 365Val Ala Ser Leu Arg Arg Lys Ser Ser Gly Phe Ser Arg Gly Ala Ser 370 375 380Ile Tyr Arg Gly Val Thr Arg His His Gln His Gly Arg Trp Gln Ala385 390 395 400Arg Ile Gly Arg Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly Thr Phe 405 410

415Ser Thr Gln Glu Glu Ala Ala Glu Ala Tyr Asp Ile Ala Ala Ile Lys 420 425 430Phe Arg Gly Leu Asn Ala Val Thr Asn Phe Asp Met Ser Arg Tyr Asp 435 440 445Val Lys Ser Ile Leu Asp Ser Ala Ala Leu Pro Val Gly Thr Ala Ala 450 455 460Lys Arg Leu Lys Asp Ala Glu Ala Ala Ala Ala Tyr Asp Val Gly Arg465 470 475 480Ile Ala Ser His Leu Gly Gly Asp Gly Ala Tyr Ala Ala His Tyr Gly 485 490 495His His His His Ser Ala Ala Ala Ala Trp Pro Thr Ile Ala Phe Gln 500 505 510Ala Ala Ala Ala Pro Pro Pro His Ala Ala Gly Leu Tyr His Pro Tyr 515 520 525Ala Gln Pro Leu Arg Gly Trp Cys Lys Gln Glu Gln Asp His Ala Val 530 535 540Ile Ala Ala Ala His Ser Leu Gln Asp Leu His His Leu Asn Leu Gly545 550 555 560Ala Ala Ala Ala Ala His Asp Phe Phe Ser Gln Ala Met Gln Gln Gln 565 570 575His Gly Leu Gly Ser Ile Asp Asn Ala Ser Leu Glu His Ser Thr Gly 580 585 590Ser Asn Ser Val Val Tyr Asn Gly Asp Asn Gly Gly Gly Gly Gly Gly 595 600 605Tyr Ile Met Ala Pro Met Ser Ala Val Ser Ala Thr Ala Thr Ala Val 610 615 620Ala Ser Ser His Asp His Gly Gly Asp Gly Gly Lys Gln Val Gln Met625 630 635 640Gly Tyr Asp Ser Tyr Leu Val Gly Ala Asp Ala Tyr Gly Gly Gly Gly 645 650 655Ala Gly Arg Met Pro Ser Trp Ala Met Thr Pro Ala Ser Ala Pro Ala 660 665 670Ala Thr Ser Ser Ser Asp Met Thr Gly Val Cys His Gly Ala Gln Leu 675 680 685Phe Ser Val Trp Asn Asp Thr 690 695151680DNAOryza sativaCDS(1)...(1680) 15atg gcc tcc atc acc aac tgg ctc ggc ttc tcc tcc tcc tcc ttc tcc 48Met Ala Ser Ile Thr Asn Trp Leu Gly Phe Ser Ser Ser Ser Phe Ser1 5 10 15ggc gcc ggc gcc gac ccc gtc ctg ccc cac ccg ccg ctg caa gag tgg 96Gly Ala Gly Ala Asp Pro Val Leu Pro His Pro Pro Leu Gln Glu Trp 20 25 30ggg agc gct tat gag ggc ggc ggc acg gtg gcg gcc gcc ggc ggg gag 144Gly Ser Ala Tyr Glu Gly Gly Gly Thr Val Ala Ala Ala Gly Gly Glu 35 40 45gag acg gcg gcg ccg aag ctg gag gac ttc ctc ggc atg cag gtg cag 192Glu Thr Ala Ala Pro Lys Leu Glu Asp Phe Leu Gly Met Gln Val Gln 50 55 60cag gag acg gcc gcc gcg gcg gcg ggg cac ggc cgt gga ggc agc tcg 240Gln Glu Thr Ala Ala Ala Ala Ala Gly His Gly Arg Gly Gly Ser Ser65 70 75 80tcg gtc gtt ggg ctg tcc atg atc aag aac tgg cta cgc agc cag ccg 288Ser Val Val Gly Leu Ser Met Ile Lys Asn Trp Leu Arg Ser Gln Pro 85 90 95ccg ccc gcg gtg gtt ggg gga gaa gac gct atg atg gcg ctc gcg gtg 336Pro Pro Ala Val Val Gly Gly Glu Asp Ala Met Met Ala Leu Ala Val 100 105 110tcg acg tcg gcg tcg ccg ccg gtg gac gcg acg gtg ccg gcc tgc att 384Ser Thr Ser Ala Ser Pro Pro Val Asp Ala Thr Val Pro Ala Cys Ile 115 120 125tcg ccg gat ggg atg ggg tcg aag gcg gcc gac ggc ggc ggc gcg gcc 432Ser Pro Asp Gly Met Gly Ser Lys Ala Ala Asp Gly Gly Gly Ala Ala 130 135 140gag gcg gcg gcg gcg gcg gcg gcg cag agg atg aag gcg gcc atg gac 480Glu Ala Ala Ala Ala Ala Ala Ala Gln Arg Met Lys Ala Ala Met Asp145 150 155 160acg ttc ggg cag cgg acg tcc atc tac cgg ggt gtc acc aag cac agg 528Thr Phe Gly Gln Arg Thr Ser Ile Tyr Arg Gly Val Thr Lys His Arg 165 170 175tgg aca gga agg tat gaa gcc cat ctt tgg gat aac agc tgc aga aga 576Trp Thr Gly Arg Tyr Glu Ala His Leu Trp Asp Asn Ser Cys Arg Arg 180 185 190gaa ggt cag act cgc aaa ggc aga caa gta tat ctt gga gga tat gat 624Glu Gly Gln Thr Arg Lys Gly Arg Gln Val Tyr Leu Gly Gly Tyr Asp 195 200 205aag gaa gaa aaa gct gct agg gct tat gat ttg gct gcc ctt aaa tac 672Lys Glu Glu Lys Ala Ala Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr 210 215 220tgg ggc act aca acg acg acg aat ttt ccg gta agc aac tac gaa aaa 720Trp Gly Thr Thr Thr Thr Thr Asn Phe Pro Val Ser Asn Tyr Glu Lys225 230 235 240gag ttg gat gaa atg aag cac atg aat agg cag gaa ttt gtt gca tcc 768Glu Leu Asp Glu Met Lys His Met Asn Arg Gln Glu Phe Val Ala Ser 245 250 255ctt aga aga aaa agc agt gga ttt tca cgt ggt gct tcc ata tat cgt 816Leu Arg Arg Lys Ser Ser Gly Phe Ser Arg Gly Ala Ser Ile Tyr Arg 260 265 270ggt gtt aca aga cac cat cag cat gga agg tgg caa gca agg ata gga 864Gly Val Thr Arg His His Gln His Gly Arg Trp Gln Ala Arg Ile Gly 275 280 285cgg gtg gca gga aac aag gat ctg tat ttg ggc aca ttt ggc acc caa 912Arg Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly Thr Phe Gly Thr Gln 290 295 300gag gaa gct gca gag gca tat gat atc gct gca atc aaa ttc cgt ggt 960Glu Glu Ala Ala Glu Ala Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly305 310 315 320ctc aat gct gtg aca aac ttt gac atg agc cgg tac gat gtc aag agc 1008Leu Asn Ala Val Thr Asn Phe Asp Met Ser Arg Tyr Asp Val Lys Ser 325 330 335atc att gaa agc agc aat ctc cca att ggt act gga acc acc cgg cga 1056Ile Ile Glu Ser Ser Asn Leu Pro Ile Gly Thr Gly Thr Thr Arg Arg 340 345 350ttg aag gac tcc tct gat cac act gat aat gtc atg gac atc aat gtc 1104Leu Lys Asp Ser Ser Asp His Thr Asp Asn Val Met Asp Ile Asn Val 355 360 365aat acc gaa ccc aat aat gtg gta tca tcc cac ttc acc aat ggg gtt 1152Asn Thr Glu Pro Asn Asn Val Val Ser Ser His Phe Thr Asn Gly Val 370 375 380ggc aac tat ggt tcg cag cat tat ggt tac aat gga tgg tcg cca att 1200Gly Asn Tyr Gly Ser Gln His Tyr Gly Tyr Asn Gly Trp Ser Pro Ile385 390 395 400agc atg cag ccg atc ccc tcg cag tac gcc aac ggc cag ccc agg gca 1248Ser Met Gln Pro Ile Pro Ser Gln Tyr Ala Asn Gly Gln Pro Arg Ala 405 410 415tgg ttg aaa caa gag cag gac agc tct gtg gtt aca gcg gcg cag aac 1296Trp Leu Lys Gln Glu Gln Asp Ser Ser Val Val Thr Ala Ala Gln Asn 420 425 430ctg cac aat cta cat cat ttt agt tcc ttg ggc tac acc cac aac ttc 1344Leu His Asn Leu His His Phe Ser Ser Leu Gly Tyr Thr His Asn Phe 435 440 445ttc cag caa tct gat gtt cca gac gtc aca ggt ttc gtt gat gcg cct 1392Phe Gln Gln Ser Asp Val Pro Asp Val Thr Gly Phe Val Asp Ala Pro 450 455 460tcg agg tcc agt gac tca tac tcc ttc agg tac aat gga aca aat ggc 1440Ser Arg Ser Ser Asp Ser Tyr Ser Phe Arg Tyr Asn Gly Thr Asn Gly465 470 475 480ttt cat ggt ctc ccg ggt gga atc agc tat gct atg ccg gtt gcg aca 1488Phe His Gly Leu Pro Gly Gly Ile Ser Tyr Ala Met Pro Val Ala Thr 485 490 495gcg gtg gac caa ggt cag ggc atc cat ggc tat gga gaa gat ggt gtg 1536Ala Val Asp Gln Gly Gln Gly Ile His Gly Tyr Gly Glu Asp Gly Val 500 505 510gca ggc att gac acc aca cat gac ctg tat ggc agc cgt aat gtg tac 1584Ala Gly Ile Asp Thr Thr His Asp Leu Tyr Gly Ser Arg Asn Val Tyr 515 520 525tac ctt tcc gag ggt tcg ctt ctt gcc gat gtc gaa aaa gaa ggc gac 1632Tyr Leu Ser Glu Gly Ser Leu Leu Ala Asp Val Glu Lys Glu Gly Asp 530 535 540tat ggc caa tct gtg ggg ggc aac agc tgg gtt ttg ccg aca ccg tag 1680Tyr Gly Gln Ser Val Gly Gly Asn Ser Trp Val Leu Pro Thr Pro545 550 55516559PRTOryza sativa 16Met Ala Ser Ile Thr Asn Trp Leu Gly Phe Ser Ser Ser Ser Phe Ser1 5 10 15Gly Ala Gly Ala Asp Pro Val Leu Pro His Pro Pro Leu Gln Glu Trp 20 25 30Gly Ser Ala Tyr Glu Gly Gly Gly Thr Val Ala Ala Ala Gly Gly Glu 35 40 45Glu Thr Ala Ala Pro Lys Leu Glu Asp Phe Leu Gly Met Gln Val Gln 50 55 60Gln Glu Thr Ala Ala Ala Ala Ala Gly His Gly Arg Gly Gly Ser Ser65 70 75 80Ser Val Val Gly Leu Ser Met Ile Lys Asn Trp Leu Arg Ser Gln Pro 85 90 95Pro Pro Ala Val Val Gly Gly Glu Asp Ala Met Met Ala Leu Ala Val 100 105 110Ser Thr Ser Ala Ser Pro Pro Val Asp Ala Thr Val Pro Ala Cys Ile 115 120 125Ser Pro Asp Gly Met Gly Ser Lys Ala Ala Asp Gly Gly Gly Ala Ala 130 135 140Glu Ala Ala Ala Ala Ala Ala Ala Gln Arg Met Lys Ala Ala Met Asp145 150 155 160Thr Phe Gly Gln Arg Thr Ser Ile Tyr Arg Gly Val Thr Lys His Arg 165 170 175Trp Thr Gly Arg Tyr Glu Ala His Leu Trp Asp Asn Ser Cys Arg Arg 180 185 190Glu Gly Gln Thr Arg Lys Gly Arg Gln Val Tyr Leu Gly Gly Tyr Asp 195 200 205Lys Glu Glu Lys Ala Ala Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr 210 215 220Trp Gly Thr Thr Thr Thr Thr Asn Phe Pro Val Ser Asn Tyr Glu Lys225 230 235 240Glu Leu Asp Glu Met Lys His Met Asn Arg Gln Glu Phe Val Ala Ser 245 250 255Leu Arg Arg Lys Ser Ser Gly Phe Ser Arg Gly Ala Ser Ile Tyr Arg 260 265 270Gly Val Thr Arg His His Gln His Gly Arg Trp Gln Ala Arg Ile Gly 275 280 285Arg Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly Thr Phe Gly Thr Gln 290 295 300Glu Glu Ala Ala Glu Ala Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly305 310 315 320Leu Asn Ala Val Thr Asn Phe Asp Met Ser Arg Tyr Asp Val Lys Ser 325 330 335Ile Ile Glu Ser Ser Asn Leu Pro Ile Gly Thr Gly Thr Thr Arg Arg 340 345 350Leu Lys Asp Ser Ser Asp His Thr Asp Asn Val Met Asp Ile Asn Val 355 360 365Asn Thr Glu Pro Asn Asn Val Val Ser Ser His Phe Thr Asn Gly Val 370 375 380Gly Asn Tyr Gly Ser Gln His Tyr Gly Tyr Asn Gly Trp Ser Pro Ile385 390 395 400Ser Met Gln Pro Ile Pro Ser Gln Tyr Ala Asn Gly Gln Pro Arg Ala 405 410 415Trp Leu Lys Gln Glu Gln Asp Ser Ser Val Val Thr Ala Ala Gln Asn 420 425 430Leu His Asn Leu His His Phe Ser Ser Leu Gly Tyr Thr His Asn Phe 435 440 445Phe Gln Gln Ser Asp Val Pro Asp Val Thr Gly Phe Val Asp Ala Pro 450 455 460Ser Arg Ser Ser Asp Ser Tyr Ser Phe Arg Tyr Asn Gly Thr Asn Gly465 470 475 480Phe His Gly Leu Pro Gly Gly Ile Ser Tyr Ala Met Pro Val Ala Thr 485 490 495Ala Val Asp Gln Gly Gln Gly Ile His Gly Tyr Gly Glu Asp Gly Val 500 505 510Ala Gly Ile Asp Thr Thr His Asp Leu Tyr Gly Ser Arg Asn Val Tyr 515 520 525Tyr Leu Ser Glu Gly Ser Leu Leu Ala Asp Val Glu Lys Glu Gly Asp 530 535 540Tyr Gly Gln Ser Val Gly Gly Asn Ser Trp Val Leu Pro Thr Pro545 550 555172112DNAOryza sativaCDS(1)...(2112) 17atg gct tct gca aac aac tgg ctg ggc ttc tcg ctc tcc ggc caa gag 48Met Ala Ser Ala Asn Asn Trp Leu Gly Phe Ser Leu Ser Gly Gln Glu1 5 10 15aat ccg cag cct cac cag gat agc tcg cct ccg gca gcc atc gac gtc 96Asn Pro Gln Pro His Gln Asp Ser Ser Pro Pro Ala Ala Ile Asp Val 20 25 30tcc ggc gcc ggc gac ttc tat ggc ctg ccg acg tcg cag ccg acg gcg 144Ser Gly Ala Gly Asp Phe Tyr Gly Leu Pro Thr Ser Gln Pro Thr Ala 35 40 45gcc gac gcg cac ctc ggc gtg gcg ggg cat cat cac aac gcc tcg tat 192Ala Asp Ala His Leu Gly Val Ala Gly His His His Asn Ala Ser Tyr 50 55 60ggc atc atg gag gcc ttc aat agg gga gct caa gag gca caa gat tgg 240Gly Ile Met Glu Ala Phe Asn Arg Gly Ala Gln Glu Ala Gln Asp Trp65 70 75 80aac atg agg ggg ctg gac tac aac ggc ggc gcc tcg gag ctg tcg atg 288Asn Met Arg Gly Leu Asp Tyr Asn Gly Gly Ala Ser Glu Leu Ser Met 85 90 95ctc gtc ggc tcc agc ggc ggc aag agg gcg gcg gcg gtg gag gag acc 336Leu Val Gly Ser Ser Gly Gly Lys Arg Ala Ala Ala Val Glu Glu Thr 100 105 110gag ccg aag ctg gag gac ttc ctc ggc ggc aac tcg ttc gtc tcc gag 384Glu Pro Lys Leu Glu Asp Phe Leu Gly Gly Asn Ser Phe Val Ser Glu 115 120 125caa gat cat cac gcg gcg ggg ggc ttc ctc ttc tcc ggc gtc ccg atg 432Gln Asp His His Ala Ala Gly Gly Phe Leu Phe Ser Gly Val Pro Met 130 135 140gcc agc agc acc aac agc aac agc ggg agc aac act atg gag ctc tcc 480Ala Ser Ser Thr Asn Ser Asn Ser Gly Ser Asn Thr Met Glu Leu Ser145 150 155 160atg atc aag acc tgg ctc cgg aac aac ggc cag gtg ccc gcc ggc cac 528Met Ile Lys Thr Trp Leu Arg Asn Asn Gly Gln Val Pro Ala Gly His 165 170 175cag ccg cag cag cag cag ccg gcg gcc gcg gcc gcc gcc gcg cag cag 576Gln Pro Gln Gln Gln Gln Pro Ala Ala Ala Ala Ala Ala Ala Gln Gln 180 185 190cag gcg cac gag gcg gcg gag atg agc acc gac gcg agc gcg agc agc 624Gln Ala His Glu Ala Ala Glu Met Ser Thr Asp Ala Ser Ala Ser Ser 195 200 205ttc ggg tgc tcc tcc gac gcg atg ggg agg agt aac aac ggc ggc gcg 672Phe Gly Cys Ser Ser Asp Ala Met Gly Arg Ser Asn Asn Gly Gly Ala 210 215 220gtc tcg gcg gcg gcc ggc ggg acg agc tcg cag agc ctg gcg ctc tcg 720Val Ser Ala Ala Ala Gly Gly Thr Ser Ser Gln Ser Leu Ala Leu Ser225 230 235 240atg agc acg ggc tcg cac tcg cac ctg cct atc gtc gtc gcc ggc ggc 768Met Ser Thr Gly Ser His Ser His Leu Pro Ile Val Val Ala Gly Gly 245 250 255ggg aac gcc agc ggc gga gcg gcc gag agc aca tcg tcg gag aac aag 816Gly Asn Ala Ser Gly Gly Ala Ala Glu Ser Thr Ser Ser Glu Asn Lys 260 265 270cgg gcc agc ggc gcc atg gat tcg ccg ggc ggt ggc gcg ata gag gcc 864Arg Ala Ser Gly Ala Met Asp Ser Pro Gly Gly Gly Ala Ile Glu Ala 275 280 285gtg ccg agg aag tcc atc gac acg ttc ggg caa agg acc tcg ata tat 912Val Pro Arg Lys Ser Ile Asp Thr Phe Gly Gln Arg Thr Ser Ile Tyr 290 295 300cga ggt gta aca agg cat aga tgg aca ggg cga tat gag gct cat ctc 960Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu305 310 315 320tgg gat aat agc tgt aga aga gaa ggg cag agt cgc aag ggt agg caa 1008Trp Asp Asn Ser Cys Arg Arg Glu Gly Gln Ser Arg Lys Gly Arg Gln 325 330 335gtt tat ctt ggt ggc tat gac aag gag gat aaa gca gcg aga gct tat 1056Val Tyr Leu Gly Gly Tyr Asp Lys Glu Asp Lys Ala Ala Arg Ala Tyr 340 345 350gat ttg gca gct ctg aag tat tgg ggc aca aca aca aca aca aat ttc 1104Asp Leu Ala Ala Leu Lys Tyr Trp Gly Thr Thr Thr Thr Thr Asn Phe 355 360 365cca ata agt aac tat gaa aaa gag cta gat gaa atg aaa cat atg acc 1152Pro Ile Ser Asn Tyr Glu Lys Glu Leu Asp Glu Met Lys His Met Thr 370 375 380agg cag gag tat att gca tac cta aga agg aat agc agt gga ttt tct 1200Arg Gln Glu Tyr Ile Ala Tyr Leu Arg Arg Asn Ser Ser Gly Phe Ser385 390 395 400cgt ggt gca tcg aaa tat cgt ggt gta acc agg cac cat cag cat ggg 1248Arg Gly Ala Ser Lys Tyr Arg Gly Val Thr Arg His His Gln His Gly 405 410 415aga tgg caa gca agg ata ggg agg gtt gca gga aac aag gac ctc tac 1296Arg Trp Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys Asp Leu Tyr 420 425 430tta ggc acc ttc agc acc gag gag gag gcg gcg gag gcg tac gac atc 1344Leu Gly Thr Phe Ser Thr Glu Glu Glu Ala Ala Glu Ala Tyr Asp Ile 435 440 445gcg gcg atc aag ttc cgg ggg

ctc aac gcc gtc acc aac ttt gac atg 1392Ala Ala Ile Lys Phe Arg Gly Leu Asn Ala Val Thr Asn Phe Asp Met 450 455 460agc cgc tac gac gtc aag agc atc ctg gag agc agc acg ctg ccg gtg 1440Ser Arg Tyr Asp Val Lys Ser Ile Leu Glu Ser Ser Thr Leu Pro Val465 470 475 480ggc ggc gcg gcg agg cgg ctg aag gag gcg gcg gac cac gcg gag gcg 1488Gly Gly Ala Ala Arg Arg Leu Lys Glu Ala Ala Asp His Ala Glu Ala 485 490 495gcc ggc gcc acc atc tgg cgc gcc gcc gac atg gac ggc gcc ggc gtc 1536Ala Gly Ala Thr Ile Trp Arg Ala Ala Asp Met Asp Gly Ala Gly Val 500 505 510atc tcc ggc ctg gcc gac gtc ggg atg ggc gcc tac gcc gcc tcg tac 1584Ile Ser Gly Leu Ala Asp Val Gly Met Gly Ala Tyr Ala Ala Ser Tyr 515 520 525cac cac cac cac cac cac ggc tgg ccg acc atc gcg ttc cag cag ccg 1632His His His His His His Gly Trp Pro Thr Ile Ala Phe Gln Gln Pro 530 535 540ccg ccg ctc gcc gtg cac tac ccg tac ggc cag gcg ccg gcg gcg ccg 1680Pro Pro Leu Ala Val His Tyr Pro Tyr Gly Gln Ala Pro Ala Ala Pro545 550 555 560tcg cgc ggg tgg tgc aag ccc gag cag gac gcc gcc gtc gct gcc gcc 1728Ser Arg Gly Trp Cys Lys Pro Glu Gln Asp Ala Ala Val Ala Ala Ala 565 570 575gcg cac agc ctc cag gac ctc cag cag ctg cac ctc ggc agc gcc gcc 1776Ala His Ser Leu Gln Asp Leu Gln Gln Leu His Leu Gly Ser Ala Ala 580 585 590gcc cac aac ttc ttc cag gcg tcg tcg agc tcg acg gtc tac aac ggc 1824Ala His Asn Phe Phe Gln Ala Ser Ser Ser Ser Thr Val Tyr Asn Gly 595 600 605ggc ggc ggc ggg tac cag ggc ctc ggt ggc aac gcc ttc ttg atg ccg 1872Gly Gly Gly Gly Tyr Gln Gly Leu Gly Gly Asn Ala Phe Leu Met Pro 610 615 620gcg agc acc gtc gtg gcc gac cag ggg cac agc agc acg gcc acc aac 1920Ala Ser Thr Val Val Ala Asp Gln Gly His Ser Ser Thr Ala Thr Asn625 630 635 640cat gga aac acc tgc agc tac ggc aac gag gag cag ggg aag ctc atc 1968His Gly Asn Thr Cys Ser Tyr Gly Asn Glu Glu Gln Gly Lys Leu Ile 645 650 655ggg tac gac gcc atg gcg atg gcg agc ggc gcc gcc ggc ggc ggg tac 2016Gly Tyr Asp Ala Met Ala Met Ala Ser Gly Ala Ala Gly Gly Gly Tyr 660 665 670cag ctg tcg cag ggc tcg gcg tcg acg gtg agc atc gcg agg gcg aac 2064Gln Leu Ser Gln Gly Ser Ala Ser Thr Val Ser Ile Ala Arg Ala Asn 675 680 685ggc tac tcg gcc aac tgg agc tcg cct ttc aat ggc gcc atg gga tga 2112Gly Tyr Ser Ala Asn Trp Ser Ser Pro Phe Asn Gly Ala Met Gly 690 695 70018703PRTOryza sativa 18Met Ala Ser Ala Asn Asn Trp Leu Gly Phe Ser Leu Ser Gly Gln Glu1 5 10 15Asn Pro Gln Pro His Gln Asp Ser Ser Pro Pro Ala Ala Ile Asp Val 20 25 30Ser Gly Ala Gly Asp Phe Tyr Gly Leu Pro Thr Ser Gln Pro Thr Ala 35 40 45Ala Asp Ala His Leu Gly Val Ala Gly His His His Asn Ala Ser Tyr 50 55 60Gly Ile Met Glu Ala Phe Asn Arg Gly Ala Gln Glu Ala Gln Asp Trp65 70 75 80Asn Met Arg Gly Leu Asp Tyr Asn Gly Gly Ala Ser Glu Leu Ser Met 85 90 95Leu Val Gly Ser Ser Gly Gly Lys Arg Ala Ala Ala Val Glu Glu Thr 100 105 110Glu Pro Lys Leu Glu Asp Phe Leu Gly Gly Asn Ser Phe Val Ser Glu 115 120 125Gln Asp His His Ala Ala Gly Gly Phe Leu Phe Ser Gly Val Pro Met 130 135 140Ala Ser Ser Thr Asn Ser Asn Ser Gly Ser Asn Thr Met Glu Leu Ser145 150 155 160Met Ile Lys Thr Trp Leu Arg Asn Asn Gly Gln Val Pro Ala Gly His 165 170 175Gln Pro Gln Gln Gln Gln Pro Ala Ala Ala Ala Ala Ala Ala Gln Gln 180 185 190Gln Ala His Glu Ala Ala Glu Met Ser Thr Asp Ala Ser Ala Ser Ser 195 200 205Phe Gly Cys Ser Ser Asp Ala Met Gly Arg Ser Asn Asn Gly Gly Ala 210 215 220Val Ser Ala Ala Ala Gly Gly Thr Ser Ser Gln Ser Leu Ala Leu Ser225 230 235 240Met Ser Thr Gly Ser His Ser His Leu Pro Ile Val Val Ala Gly Gly 245 250 255Gly Asn Ala Ser Gly Gly Ala Ala Glu Ser Thr Ser Ser Glu Asn Lys 260 265 270Arg Ala Ser Gly Ala Met Asp Ser Pro Gly Gly Gly Ala Ile Glu Ala 275 280 285Val Pro Arg Lys Ser Ile Asp Thr Phe Gly Gln Arg Thr Ser Ile Tyr 290 295 300Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu305 310 315 320Trp Asp Asn Ser Cys Arg Arg Glu Gly Gln Ser Arg Lys Gly Arg Gln 325 330 335Val Tyr Leu Gly Gly Tyr Asp Lys Glu Asp Lys Ala Ala Arg Ala Tyr 340 345 350Asp Leu Ala Ala Leu Lys Tyr Trp Gly Thr Thr Thr Thr Thr Asn Phe 355 360 365Pro Ile Ser Asn Tyr Glu Lys Glu Leu Asp Glu Met Lys His Met Thr 370 375 380Arg Gln Glu Tyr Ile Ala Tyr Leu Arg Arg Asn Ser Ser Gly Phe Ser385 390 395 400Arg Gly Ala Ser Lys Tyr Arg Gly Val Thr Arg His His Gln His Gly 405 410 415Arg Trp Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys Asp Leu Tyr 420 425 430Leu Gly Thr Phe Ser Thr Glu Glu Glu Ala Ala Glu Ala Tyr Asp Ile 435 440 445Ala Ala Ile Lys Phe Arg Gly Leu Asn Ala Val Thr Asn Phe Asp Met 450 455 460Ser Arg Tyr Asp Val Lys Ser Ile Leu Glu Ser Ser Thr Leu Pro Val465 470 475 480Gly Gly Ala Ala Arg Arg Leu Lys Glu Ala Ala Asp His Ala Glu Ala 485 490 495Ala Gly Ala Thr Ile Trp Arg Ala Ala Asp Met Asp Gly Ala Gly Val 500 505 510Ile Ser Gly Leu Ala Asp Val Gly Met Gly Ala Tyr Ala Ala Ser Tyr 515 520 525His His His His His His Gly Trp Pro Thr Ile Ala Phe Gln Gln Pro 530 535 540Pro Pro Leu Ala Val His Tyr Pro Tyr Gly Gln Ala Pro Ala Ala Pro545 550 555 560Ser Arg Gly Trp Cys Lys Pro Glu Gln Asp Ala Ala Val Ala Ala Ala 565 570 575Ala His Ser Leu Gln Asp Leu Gln Gln Leu His Leu Gly Ser Ala Ala 580 585 590Ala His Asn Phe Phe Gln Ala Ser Ser Ser Ser Thr Val Tyr Asn Gly 595 600 605Gly Gly Gly Gly Tyr Gln Gly Leu Gly Gly Asn Ala Phe Leu Met Pro 610 615 620Ala Ser Thr Val Val Ala Asp Gln Gly His Ser Ser Thr Ala Thr Asn625 630 635 640His Gly Asn Thr Cys Ser Tyr Gly Asn Glu Glu Gln Gly Lys Leu Ile 645 650 655Gly Tyr Asp Ala Met Ala Met Ala Ser Gly Ala Ala Gly Gly Gly Tyr 660 665 670Gln Leu Ser Gln Gly Ser Ala Ser Thr Val Ser Ile Ala Arg Ala Asn 675 680 685Gly Tyr Ser Ala Asn Trp Ser Ser Pro Phe Asn Gly Ala Met Gly 690 695 700191977DNAOryza sativaCDS(1)...(1977) 19atg gct tct gca gat aac tgg cta ggc ttc tcg ctc tcc ggc caa ggc 48Met Ala Ser Ala Asp Asn Trp Leu Gly Phe Ser Leu Ser Gly Gln Gly1 5 10 15aac cca cag cat cac cag aac ggc tcg ccg tct gcc gcc ggc gac gcc 96Asn Pro Gln His His Gln Asn Gly Ser Pro Ser Ala Ala Gly Asp Ala 20 25 30gcc atc gac atc tcc ggc tca ggc gac ttc tat ggt ctg cca acg ccg 144Ala Ile Asp Ile Ser Gly Ser Gly Asp Phe Tyr Gly Leu Pro Thr Pro 35 40 45gac gca cac cac atc ggc atg gcg ggc gaa gac gcg ccc tat ggc gtc 192Asp Ala His His Ile Gly Met Ala Gly Glu Asp Ala Pro Tyr Gly Val 50 55 60atg gat gct ttc aac aga ggc acc cat gaa acc caa gat tgg gcg atg 240Met Asp Ala Phe Asn Arg Gly Thr His Glu Thr Gln Asp Trp Ala Met65 70 75 80agg ggt ttg gac tac ggc ggc ggc tcc tcc gac ctc tcg atg ctc gtc 288Arg Gly Leu Asp Tyr Gly Gly Gly Ser Ser Asp Leu Ser Met Leu Val 85 90 95ggc tcg agc ggc ggc ggg agg agg acg gtg gcc ggc gac ggc gtc ggc 336Gly Ser Ser Gly Gly Gly Arg Arg Thr Val Ala Gly Asp Gly Val Gly 100 105 110gag gcg ccg aag ctg gag aac ttc ctc gac ggc aac tca ttc tcc gac 384Glu Ala Pro Lys Leu Glu Asn Phe Leu Asp Gly Asn Ser Phe Ser Asp 115 120 125gtg cac ggc caa gcc gcc ggc ggg tac ctc tac tcc gga agc gct gtc 432Val His Gly Gln Ala Ala Gly Gly Tyr Leu Tyr Ser Gly Ser Ala Val 130 135 140ggc ggc gcc ggt ggt tac agt aac ggc gga tgc ggc ggc gga acc ata 480Gly Gly Ala Gly Gly Tyr Ser Asn Gly Gly Cys Gly Gly Gly Thr Ile145 150 155 160gag ctg tcc atg atc aag acg tgg ctc cgg agc aac cag tcg cag cag 528Glu Leu Ser Met Ile Lys Thr Trp Leu Arg Ser Asn Gln Ser Gln Gln 165 170 175cag cca tcg ccg ccg cag cac gct gat cag ggc atg agc acc gac gcc 576Gln Pro Ser Pro Pro Gln His Ala Asp Gln Gly Met Ser Thr Asp Ala 180 185 190agc gcg agc agc tac gcg tgc tcc gac gtg ctg gtg ggg agc tgc ggc 624Ser Ala Ser Ser Tyr Ala Cys Ser Asp Val Leu Val Gly Ser Cys Gly 195 200 205ggc ggc ggc gcc ggg ggc acg gcg agc tcg cat ggg cag ggc ctg gcg 672Gly Gly Gly Ala Gly Gly Thr Ala Ser Ser His Gly Gln Gly Leu Ala 210 215 220ctg tcg atg agc acg ggg tcg gtg gcc gcc gcc gga ggg ggc ggc gcc 720Leu Ser Met Ser Thr Gly Ser Val Ala Ala Ala Gly Gly Gly Gly Ala225 230 235 240gtc gtc gcg gcc gag agc tcg tcg tcg gag aac aag cgg gtg gat tcg 768Val Val Ala Ala Glu Ser Ser Ser Ser Glu Asn Lys Arg Val Asp Ser 245 250 255ccg ggc ggc gcc gtg gac ggc gcc gtc ccg agg aaa tcc atc gac acc 816Pro Gly Gly Ala Val Asp Gly Ala Val Pro Arg Lys Ser Ile Asp Thr 260 265 270ttc ggg caa agg acg tct ata tac cga ggt gta aca agg cat aga tgg 864Phe Gly Gln Arg Thr Ser Ile Tyr Arg Gly Val Thr Arg His Arg Trp 275 280 285aca gga aga tat gaa gct cat ctg tgg gat aat agc tgt agg aga gaa 912Thr Gly Arg Tyr Glu Ala His Leu Trp Asp Asn Ser Cys Arg Arg Glu 290 295 300ggc caa agt cgc aag ggg aga cag gtt tat ttg ggc ggt tat gac aaa 960Gly Gln Ser Arg Lys Gly Arg Gln Val Tyr Leu Gly Gly Tyr Asp Lys305 310 315 320gaa gat aag gcg gct cgg gct tat gat ttg gca gct cta aaa tac tgg 1008Glu Asp Lys Ala Ala Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr Trp 325 330 335ggc acg acc aca aca aca aat ttc cca atg agt aat tat gaa aag gag 1056Gly Thr Thr Thr Thr Thr Asn Phe Pro Met Ser Asn Tyr Glu Lys Glu 340 345 350cta gag gaa atg aaa cac atg acc agg cag gag tac att gca cat ctt 1104Leu Glu Glu Met Lys His Met Thr Arg Gln Glu Tyr Ile Ala His Leu 355 360 365aga agg aat agc agt gga ttt tct cgt ggt gca tcc aaa tat cgt ggt 1152Arg Arg Asn Ser Ser Gly Phe Ser Arg Gly Ala Ser Lys Tyr Arg Gly 370 375 380gtt act agg cat cat cag cat ggg aga tgg cag gca agg ata ggg cga 1200Val Thr Arg His His Gln His Gly Arg Trp Gln Ala Arg Ile Gly Arg385 390 395 400gtt gca ggc aac aag gat atc tac cta ggc acc ttc agc acc gag gag 1248Val Ala Gly Asn Lys Asp Ile Tyr Leu Gly Thr Phe Ser Thr Glu Glu 405 410 415gag gcc gcc gag gcg tac gac atc gcc gcc atc aag ttc cgc ggg ctc 1296Glu Ala Ala Glu Ala Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly Leu 420 425 430aac gcc gtc acc aac ttc gac atg agc cgg tac gac gtc aag agc atc 1344Asn Ala Val Thr Asn Phe Asp Met Ser Arg Tyr Asp Val Lys Ser Ile 435 440 445ctg gac agc agc acg ctg ccg gtc ggc ggc gcg gcg cgg cgg ctc aag 1392Leu Asp Ser Ser Thr Leu Pro Val Gly Gly Ala Ala Arg Arg Leu Lys 450 455 460gag gcg gag gtc gcc gcc gcc gcc gcg ggc ggc ggc gtg atc gtc tcc 1440Glu Ala Glu Val Ala Ala Ala Ala Ala Gly Gly Gly Val Ile Val Ser465 470 475 480cac ctg gcc gac ggc ggt gtg ggt ggg tac tac tac ggg tgc ggc ccg 1488His Leu Ala Asp Gly Gly Val Gly Gly Tyr Tyr Tyr Gly Cys Gly Pro 485 490 495acc atc gcg ttc ggc ggc ggc ggc cag cag ccg gcg ccg ctc gcc gtg 1536Thr Ile Ala Phe Gly Gly Gly Gly Gln Gln Pro Ala Pro Leu Ala Val 500 505 510cac tac ccg tcg tac ggc cag gcc agc ggg tgg tgc aag ccg gag cag 1584His Tyr Pro Ser Tyr Gly Gln Ala Ser Gly Trp Cys Lys Pro Glu Gln 515 520 525gac gcg gtg atc gcg gcc ggg cac tgc gcg acg gac ctc cag cac ctg 1632Asp Ala Val Ile Ala Ala Gly His Cys Ala Thr Asp Leu Gln His Leu 530 535 540cac ctc ggg agc ggc ggc gcc gcc gcc acc cac aac ttc ttc cag cag 1680His Leu Gly Ser Gly Gly Ala Ala Ala Thr His Asn Phe Phe Gln Gln545 550 555 560ccg gcg tca agc tcg gcc gtc tac ggc aac ggc ggc ggc ggc ggc ggc 1728Pro Ala Ser Ser Ser Ala Val Tyr Gly Asn Gly Gly Gly Gly Gly Gly 565 570 575aac gcg ttc atg atg ccg atg ggc gcc gtg gtg gcc gcc gcc gat cac 1776Asn Ala Phe Met Met Pro Met Gly Ala Val Val Ala Ala Ala Asp His 580 585 590ggc ggg cag agc agc gcc tac ggc ggt ggc gac gag agc ggg agg ctc 1824Gly Gly Gln Ser Ser Ala Tyr Gly Gly Gly Asp Glu Ser Gly Arg Leu 595 600 605gtc gtg ggg tac gac ggc gtc gtc gac ccg tac gcg gcc atg aga agc 1872Val Val Gly Tyr Asp Gly Val Val Asp Pro Tyr Ala Ala Met Arg Ser 610 615 620gcg tac gag ctc tcg cag ggc tcg tcg tcg tcg tcg gtg agc gtc gcg 1920Ala Tyr Glu Leu Ser Gln Gly Ser Ser Ser Ser Ser Val Ser Val Ala625 630 635 640aag gcg gcg aac ggg tac ccg gac aac tgg agc tcg ccg ttc aac ggc 1968Lys Ala Ala Asn Gly Tyr Pro Asp Asn Trp Ser Ser Pro Phe Asn Gly 645 650 655atg gga tga 1977Met Gly20658PRTOryza sativa 20Met Ala Ser Ala Asp Asn Trp Leu Gly Phe Ser Leu Ser Gly Gln Gly1 5 10 15Asn Pro Gln His His Gln Asn Gly Ser Pro Ser Ala Ala Gly Asp Ala 20 25 30Ala Ile Asp Ile Ser Gly Ser Gly Asp Phe Tyr Gly Leu Pro Thr Pro 35 40 45Asp Ala His His Ile Gly Met Ala Gly Glu Asp Ala Pro Tyr Gly Val 50 55 60Met Asp Ala Phe Asn Arg Gly Thr His Glu Thr Gln Asp Trp Ala Met65 70 75 80Arg Gly Leu Asp Tyr Gly Gly Gly Ser Ser Asp Leu Ser Met Leu Val 85 90 95Gly Ser Ser Gly Gly Gly Arg Arg Thr Val Ala Gly Asp Gly Val Gly 100 105 110Glu Ala Pro Lys Leu Glu Asn Phe Leu Asp Gly Asn Ser Phe Ser Asp 115 120 125Val His Gly Gln Ala Ala Gly Gly Tyr Leu Tyr Ser Gly Ser Ala Val 130 135 140Gly Gly Ala Gly Gly Tyr Ser Asn Gly Gly Cys Gly Gly Gly Thr Ile145 150 155 160Glu Leu Ser Met Ile Lys Thr Trp Leu Arg Ser Asn Gln Ser Gln Gln 165 170 175Gln Pro Ser Pro Pro Gln His Ala Asp Gln Gly Met Ser Thr Asp Ala 180 185 190Ser Ala Ser Ser Tyr Ala Cys Ser Asp Val Leu Val Gly Ser Cys Gly 195 200 205Gly Gly Gly Ala Gly Gly Thr Ala Ser Ser His Gly Gln Gly Leu Ala 210 215 220Leu Ser Met Ser Thr Gly Ser Val Ala Ala Ala Gly Gly Gly Gly Ala225 230 235 240Val Val Ala Ala Glu Ser Ser Ser Ser Glu Asn Lys Arg Val Asp Ser 245 250 255Pro Gly Gly Ala Val Asp Gly Ala Val Pro Arg Lys Ser Ile Asp Thr 260 265 270Phe Gly Gln Arg Thr Ser Ile Tyr Arg Gly Val Thr Arg His Arg Trp 275 280 285Thr Gly Arg Tyr Glu Ala His Leu Trp Asp Asn Ser

Cys Arg Arg Glu 290 295 300Gly Gln Ser Arg Lys Gly Arg Gln Val Tyr Leu Gly Gly Tyr Asp Lys305 310 315 320Glu Asp Lys Ala Ala Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr Trp 325 330 335Gly Thr Thr Thr Thr Thr Asn Phe Pro Met Ser Asn Tyr Glu Lys Glu 340 345 350Leu Glu Glu Met Lys His Met Thr Arg Gln Glu Tyr Ile Ala His Leu 355 360 365Arg Arg Asn Ser Ser Gly Phe Ser Arg Gly Ala Ser Lys Tyr Arg Gly 370 375 380Val Thr Arg His His Gln His Gly Arg Trp Gln Ala Arg Ile Gly Arg385 390 395 400Val Ala Gly Asn Lys Asp Ile Tyr Leu Gly Thr Phe Ser Thr Glu Glu 405 410 415Glu Ala Ala Glu Ala Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly Leu 420 425 430Asn Ala Val Thr Asn Phe Asp Met Ser Arg Tyr Asp Val Lys Ser Ile 435 440 445Leu Asp Ser Ser Thr Leu Pro Val Gly Gly Ala Ala Arg Arg Leu Lys 450 455 460Glu Ala Glu Val Ala Ala Ala Ala Ala Gly Gly Gly Val Ile Val Ser465 470 475 480His Leu Ala Asp Gly Gly Val Gly Gly Tyr Tyr Tyr Gly Cys Gly Pro 485 490 495Thr Ile Ala Phe Gly Gly Gly Gly Gln Gln Pro Ala Pro Leu Ala Val 500 505 510His Tyr Pro Ser Tyr Gly Gln Ala Ser Gly Trp Cys Lys Pro Glu Gln 515 520 525Asp Ala Val Ile Ala Ala Gly His Cys Ala Thr Asp Leu Gln His Leu 530 535 540His Leu Gly Ser Gly Gly Ala Ala Ala Thr His Asn Phe Phe Gln Gln545 550 555 560Pro Ala Ser Ser Ser Ala Val Tyr Gly Asn Gly Gly Gly Gly Gly Gly 565 570 575Asn Ala Phe Met Met Pro Met Gly Ala Val Val Ala Ala Ala Asp His 580 585 590Gly Gly Gln Ser Ser Ala Tyr Gly Gly Gly Asp Glu Ser Gly Arg Leu 595 600 605Val Val Gly Tyr Asp Gly Val Val Asp Pro Tyr Ala Ala Met Arg Ser 610 615 620Ala Tyr Glu Leu Ser Gln Gly Ser Ser Ser Ser Ser Val Ser Val Ala625 630 635 640Lys Ala Ala Asn Gly Tyr Pro Asp Asn Trp Ser Ser Pro Phe Asn Gly 645 650 655Met Gly211755DNAArabidopsis thalianaCDS(1)...(1755) 21atg aac tcg atg aat aac tgg tta ggc ttc tct ctc tct cct cat gat 48Met Asn Ser Met Asn Asn Trp Leu Gly Phe Ser Leu Ser Pro His Asp1 5 10 15caa aat cat cac cgt acg gat gtt gac tcc tcc acc acc aga acc gcc 96Gln Asn His His Arg Thr Asp Val Asp Ser Ser Thr Thr Arg Thr Ala 20 25 30gta gat gtt gcc gga ggg tac tgt ttt gat ctg gcc gct ccc tcc gat 144Val Asp Val Ala Gly Gly Tyr Cys Phe Asp Leu Ala Ala Pro Ser Asp 35 40 45gaa tct tct gcc gtt caa aca tct ttt ctt tct cct ttc ggt gtc acc 192Glu Ser Ser Ala Val Gln Thr Ser Phe Leu Ser Pro Phe Gly Val Thr 50 55 60ctc gaa gct ttc acc aga gac aat aat agt cac tcc cga gat tgg gac 240Leu Glu Ala Phe Thr Arg Asp Asn Asn Ser His Ser Arg Asp Trp Asp65 70 75 80atc aat ggt ggt gca tgc aat aca tta acc aat aac gaa caa aat gga 288Ile Asn Gly Gly Ala Cys Asn Thr Leu Thr Asn Asn Glu Gln Asn Gly 85 90 95cca aag ctt gag aat ttc ctc ggc cgc acc acc acg att tac aat acc 336Pro Lys Leu Glu Asn Phe Leu Gly Arg Thr Thr Thr Ile Tyr Asn Thr 100 105 110aac gag acc gtt gta gat gga aat ggc gat tgt gga gga gga gac ggt 384Asn Glu Thr Val Val Asp Gly Asn Gly Asp Cys Gly Gly Gly Asp Gly 115 120 125ggt ggt ggc ggc tca cta ggc ctt tcg atg ata aaa aca tgg ctg agt 432Gly Gly Gly Gly Ser Leu Gly Leu Ser Met Ile Lys Thr Trp Leu Ser 130 135 140aat cat tcg gtt gct aat gct aat cat caa gac aat ggt aac ggt gca 480Asn His Ser Val Ala Asn Ala Asn His Gln Asp Asn Gly Asn Gly Ala145 150 155 160cga ggc ttg tcc ctc tct atg aat tca tct act agt gat agc aac aac 528Arg Gly Leu Ser Leu Ser Met Asn Ser Ser Thr Ser Asp Ser Asn Asn 165 170 175tac aac aac aat gat gat gtc gtc caa gag aag act att gtt gat gtc 576Tyr Asn Asn Asn Asp Asp Val Val Gln Glu Lys Thr Ile Val Asp Val 180 185 190gta gaa act aca ccg aag aaa act att gag agt ttt gga caa agg acg 624Val Glu Thr Thr Pro Lys Lys Thr Ile Glu Ser Phe Gly Gln Arg Thr 195 200 205tct ata tac cgc ggt gtt aca agg cat cgg tgg aca ggt aga tac gag 672Ser Ile Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu 210 215 220gca cat tta tgg gac aat agt tgc aaa aga gaa ggc cag act cgc aaa 720Ala His Leu Trp Asp Asn Ser Cys Lys Arg Glu Gly Gln Thr Arg Lys225 230 235 240gga aga caa gtt tat ctg gga ggt tat gac aaa gaa gaa aaa gca gct 768Gly Arg Gln Val Tyr Leu Gly Gly Tyr Asp Lys Glu Glu Lys Ala Ala 245 250 255agg gct tac gat tta gcc gca cta aag tat tgg gga ccc acc act act 816Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr Trp Gly Pro Thr Thr Thr 260 265 270act aac ttc ccc ttg agt gaa tat gag aaa gag gta gaa gag atg aag 864Thr Asn Phe Pro Leu Ser Glu Tyr Glu Lys Glu Val Glu Glu Met Lys 275 280 285cac atg acg agg caa gag tat gtt gcc tct ctg cgc agg aaa agt agt 912His Met Thr Arg Gln Glu Tyr Val Ala Ser Leu Arg Arg Lys Ser Ser 290 295 300ggt ttc tct cgt ggt gca tcg att tat cga gga gta aca agg cat cac 960Gly Phe Ser Arg Gly Ala Ser Ile Tyr Arg Gly Val Thr Arg His His305 310 315 320caa cat gga agg tgg caa gct agg atc gga aga gtc gcc ggt aac aaa 1008Gln His Gly Arg Trp Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys 325 330 335gac ctc tac ttg gga act ttc ggc aca cag gaa gag gct gct gag gct 1056Asp Leu Tyr Leu Gly Thr Phe Gly Thr Gln Glu Glu Ala Ala Glu Ala 340 345 350tat gac att gca gcc att aaa ttc aga gga tta agc gca gtg act aac 1104Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly Leu Ser Ala Val Thr Asn 355 360 365ttc gac atg aac aga tac aat gtt aaa gca atc ctc gag agc ccg agt 1152Phe Asp Met Asn Arg Tyr Asn Val Lys Ala Ile Leu Glu Ser Pro Ser 370 375 380cta cct att ggt agt tct gcg aaa cgt ctc aag gac gtt aac aat ccg 1200Leu Pro Ile Gly Ser Ser Ala Lys Arg Leu Lys Asp Val Asn Asn Pro385 390 395 400gtt cca gct atg atg att agt aat aac gtt tca gag agt gca aat aat 1248Val Pro Ala Met Met Ile Ser Asn Asn Val Ser Glu Ser Ala Asn Asn 405 410 415gtt agc ggt tgg caa aac act gcg ttt cag cat cat cag gga atg gat 1296Val Ser Gly Trp Gln Asn Thr Ala Phe Gln His His Gln Gly Met Asp 420 425 430ttg agc tta ttg cag caa cag cag gag agg tac gtt ggt tat tac aat 1344Leu Ser Leu Leu Gln Gln Gln Gln Glu Arg Tyr Val Gly Tyr Tyr Asn 435 440 445gga gga aac ttg tct acc gag agt act agg gtt tgt ttc aaa caa gag 1392Gly Gly Asn Leu Ser Thr Glu Ser Thr Arg Val Cys Phe Lys Gln Glu 450 455 460gag gaa caa caa cac ttc ttg aga aac tcg ccg agt cac atg act aat 1440Glu Glu Gln Gln His Phe Leu Arg Asn Ser Pro Ser His Met Thr Asn465 470 475 480gtt gat cat cat agc tcg acc tct gat gat tct gtt acc gtt tgt gga 1488Val Asp His His Ser Ser Thr Ser Asp Asp Ser Val Thr Val Cys Gly 485 490 495aat gtt gtt agt tat ggt ggt tat caa gga ttc gca atc cct gtt gga 1536Asn Val Val Ser Tyr Gly Gly Tyr Gln Gly Phe Ala Ile Pro Val Gly 500 505 510aca tcg gtt aat tac gat ccc ttt act gct gct gag att gct tac aac 1584Thr Ser Val Asn Tyr Asp Pro Phe Thr Ala Ala Glu Ile Ala Tyr Asn 515 520 525gca aga aat cat tat tac tat gct cag cat cag caa caa cag cag att 1632Ala Arg Asn His Tyr Tyr Tyr Ala Gln His Gln Gln Gln Gln Gln Ile 530 535 540cag cag tcg ccg gga gga gat ttt ccg gtg gcg att tcg aat aac cat 1680Gln Gln Ser Pro Gly Gly Asp Phe Pro Val Ala Ile Ser Asn Asn His545 550 555 560agc tct aac atg tac ttt cac ggg gaa ggt ggt gga gaa ggg gct cca 1728Ser Ser Asn Met Tyr Phe His Gly Glu Gly Gly Gly Glu Gly Ala Pro 565 570 575acg ttt tca gtt tgg aac gac act tag 1755Thr Phe Ser Val Trp Asn Asp Thr 58022584PRTArabidopsis thaliana 22Met Asn Ser Met Asn Asn Trp Leu Gly Phe Ser Leu Ser Pro His Asp1 5 10 15Gln Asn His His Arg Thr Asp Val Asp Ser Ser Thr Thr Arg Thr Ala 20 25 30Val Asp Val Ala Gly Gly Tyr Cys Phe Asp Leu Ala Ala Pro Ser Asp 35 40 45Glu Ser Ser Ala Val Gln Thr Ser Phe Leu Ser Pro Phe Gly Val Thr 50 55 60Leu Glu Ala Phe Thr Arg Asp Asn Asn Ser His Ser Arg Asp Trp Asp65 70 75 80Ile Asn Gly Gly Ala Cys Asn Thr Leu Thr Asn Asn Glu Gln Asn Gly 85 90 95Pro Lys Leu Glu Asn Phe Leu Gly Arg Thr Thr Thr Ile Tyr Asn Thr 100 105 110Asn Glu Thr Val Val Asp Gly Asn Gly Asp Cys Gly Gly Gly Asp Gly 115 120 125Gly Gly Gly Gly Ser Leu Gly Leu Ser Met Ile Lys Thr Trp Leu Ser 130 135 140Asn His Ser Val Ala Asn Ala Asn His Gln Asp Asn Gly Asn Gly Ala145 150 155 160Arg Gly Leu Ser Leu Ser Met Asn Ser Ser Thr Ser Asp Ser Asn Asn 165 170 175Tyr Asn Asn Asn Asp Asp Val Val Gln Glu Lys Thr Ile Val Asp Val 180 185 190Val Glu Thr Thr Pro Lys Lys Thr Ile Glu Ser Phe Gly Gln Arg Thr 195 200 205Ser Ile Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu 210 215 220Ala His Leu Trp Asp Asn Ser Cys Lys Arg Glu Gly Gln Thr Arg Lys225 230 235 240Gly Arg Gln Val Tyr Leu Gly Gly Tyr Asp Lys Glu Glu Lys Ala Ala 245 250 255Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr Trp Gly Pro Thr Thr Thr 260 265 270Thr Asn Phe Pro Leu Ser Glu Tyr Glu Lys Glu Val Glu Glu Met Lys 275 280 285His Met Thr Arg Gln Glu Tyr Val Ala Ser Leu Arg Arg Lys Ser Ser 290 295 300Gly Phe Ser Arg Gly Ala Ser Ile Tyr Arg Gly Val Thr Arg His His305 310 315 320Gln His Gly Arg Trp Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys 325 330 335Asp Leu Tyr Leu Gly Thr Phe Gly Thr Gln Glu Glu Ala Ala Glu Ala 340 345 350Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly Leu Ser Ala Val Thr Asn 355 360 365Phe Asp Met Asn Arg Tyr Asn Val Lys Ala Ile Leu Glu Ser Pro Ser 370 375 380Leu Pro Ile Gly Ser Ser Ala Lys Arg Leu Lys Asp Val Asn Asn Pro385 390 395 400Val Pro Ala Met Met Ile Ser Asn Asn Val Ser Glu Ser Ala Asn Asn 405 410 415Val Ser Gly Trp Gln Asn Thr Ala Phe Gln His His Gln Gly Met Asp 420 425 430Leu Ser Leu Leu Gln Gln Gln Gln Glu Arg Tyr Val Gly Tyr Tyr Asn 435 440 445Gly Gly Asn Leu Ser Thr Glu Ser Thr Arg Val Cys Phe Lys Gln Glu 450 455 460Glu Glu Gln Gln His Phe Leu Arg Asn Ser Pro Ser His Met Thr Asn465 470 475 480Val Asp His His Ser Ser Thr Ser Asp Asp Ser Val Thr Val Cys Gly 485 490 495Asn Val Val Ser Tyr Gly Gly Tyr Gln Gly Phe Ala Ile Pro Val Gly 500 505 510Thr Ser Val Asn Tyr Asp Pro Phe Thr Ala Ala Glu Ile Ala Tyr Asn 515 520 525Ala Arg Asn His Tyr Tyr Tyr Ala Gln His Gln Gln Gln Gln Gln Ile 530 535 540Gln Gln Ser Pro Gly Gly Asp Phe Pro Val Ala Ile Ser Asn Asn His545 550 555 560Ser Ser Asn Met Tyr Phe His Gly Glu Gly Gly Gly Glu Gly Ala Pro 565 570 575Thr Phe Ser Val Trp Asn Asp Thr 580231740DNABrassica napusCDS(1)...(1740) 23atg aat aat aac tgg tta ggc ttt tct ctc tct cct tat gaa caa aat 48Met Asn Asn Asn Trp Leu Gly Phe Ser Leu Ser Pro Tyr Glu Gln Asn1 5 10 15cac cat cgt aag gac gtc tac tct tcc acc acc aca acc gtc gta gat 96His His Arg Lys Asp Val Tyr Ser Ser Thr Thr Thr Thr Val Val Asp 20 25 30gtc gcc gga gag tac tgt tac gat ccg acc gct gcc tcc gat gag tct 144Val Ala Gly Glu Tyr Cys Tyr Asp Pro Thr Ala Ala Ser Asp Glu Ser 35 40 45tca gcc atc caa aca tcg ttt cct tct ccc ttt ggt gtc gtc gtc gat 192Ser Ala Ile Gln Thr Ser Phe Pro Ser Pro Phe Gly Val Val Val Asp 50 55 60gct ttc acc aga gac aac aat agt cac tcc cga gat tgg gac atc aat 240Ala Phe Thr Arg Asp Asn Asn Ser His Ser Arg Asp Trp Asp Ile Asn65 70 75 80ggt tgt gca tgc aat aac atc cac aac gat gag caa gat gga cca aag 288Gly Cys Ala Cys Asn Asn Ile His Asn Asp Glu Gln Asp Gly Pro Lys 85 90 95ctt gag aat ttc ctt ggc cgc acc acc acg att tac aac acc aac gaa 336Leu Glu Asn Phe Leu Gly Arg Thr Thr Thr Ile Tyr Asn Thr Asn Glu 100 105 110aac gtt gga gat gga agt gga agt ggc tgt tat gga gga gga gac ggt 384Asn Val Gly Asp Gly Ser Gly Ser Gly Cys Tyr Gly Gly Gly Asp Gly 115 120 125ggt ggt ggc tca cta gga ctt tcg atg ata aag aca tgg ctg aga aat 432Gly Gly Gly Ser Leu Gly Leu Ser Met Ile Lys Thr Trp Leu Arg Asn 130 135 140caa ccc gtg gat aat gtt gat aat caa gaa aat ggc aat gct gca aaa 480Gln Pro Val Asp Asn Val Asp Asn Gln Glu Asn Gly Asn Ala Ala Lys145 150 155 160ggc ctg tcc ctc tca atg aac tca tct act tct tgt gat aac aac aac 528Gly Leu Ser Leu Ser Met Asn Ser Ser Thr Ser Cys Asp Asn Asn Asn 165 170 175gac agc aat aac aac gtt gtt gcc caa ggg aag act att gat gat agc 576Asp Ser Asn Asn Asn Val Val Ala Gln Gly Lys Thr Ile Asp Asp Ser 180 185 190gtt gaa gct aca ccg aag aaa act att gag agt ttt gga cag agg acg 624Val Glu Ala Thr Pro Lys Lys Thr Ile Glu Ser Phe Gly Gln Arg Thr 195 200 205tct ata tac cgc ggt gtt aca agg cat cgg tgg aca gga aga tat gag 672Ser Ile Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu 210 215 220gca cat tta tgg gat aat agt tgt aaa aga gaa ggc caa acg cgc aaa 720Ala His Leu Trp Asp Asn Ser Cys Lys Arg Glu Gly Gln Thr Arg Lys225 230 235 240gga aga caa gtt tat ttg gga ggt tat gac aaa gaa gaa aaa gca gct 768Gly Arg Gln Val Tyr Leu Gly Gly Tyr Asp Lys Glu Glu Lys Ala Ala 245 250 255agg gct tat gat tta gcc gca ctc aag tat tgg gga acc acc act act 816Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr Trp Gly Thr Thr Thr Thr 260 265 270act aac ttc ccc atg agc gaa tat gaa aaa gag gta gaa gag atg aag 864Thr Asn Phe Pro Met Ser Glu Tyr Glu Lys Glu Val Glu Glu Met Lys 275 280 285cac atg aca agg caa gag tat gtt gcc tca ctg cgc agg aaa agt agt 912His Met Thr Arg Gln Glu Tyr Val Ala Ser Leu Arg Arg Lys Ser Ser 290 295 300ggt ttc tct cgt ggt gca tcg att tat cgt gga gta aca aga cat cac 960Gly Phe Ser Arg Gly Ala Ser Ile Tyr Arg Gly Val Thr Arg His His305 310 315 320caa cat gga aga tgg caa gct agg ata gga aga gtc gcc ggt aac aaa 1008Gln His Gly Arg Trp Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys 325 330 335gac ctc tac ttg gga act ttt ggc aca caa gaa gaa gct gca gag gca 1056Asp Leu Tyr Leu Gly Thr Phe Gly Thr Gln Glu Glu Ala Ala Glu Ala 340 345 350tac gac att gcg gcc atc aaa ttc aga gga tta acc

gca gtg act aac 1104Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly Leu Thr Ala Val Thr Asn 355 360 365ttc gac atg aac aga tac aac gtt aaa gca atc ctc gaa agc cct agt 1152Phe Asp Met Asn Arg Tyr Asn Val Lys Ala Ile Leu Glu Ser Pro Ser 370 375 380ctt cct att ggt agc gcc gca aaa cgt ctc aag gag gct aac cgt ccg 1200Leu Pro Ile Gly Ser Ala Ala Lys Arg Leu Lys Glu Ala Asn Arg Pro385 390 395 400gtt cca agt atg atg atg atc agt aat aac gtt tca gag agt gag aat 1248Val Pro Ser Met Met Met Ile Ser Asn Asn Val Ser Glu Ser Glu Asn 405 410 415agt gct agc ggt tgg caa aac gct gcg gtt cag cat cat cag gga gta 1296Ser Ala Ser Gly Trp Gln Asn Ala Ala Val Gln His His Gln Gly Val 420 425 430gat ttg agc tta ttg cac caa cat caa gag agg tac aat ggt tat tat 1344Asp Leu Ser Leu Leu His Gln His Gln Glu Arg Tyr Asn Gly Tyr Tyr 435 440 445tac aat gga gga aac ttg tct tcg gag agt gct agg gct tgt ttc aaa 1392Tyr Asn Gly Gly Asn Leu Ser Ser Glu Ser Ala Arg Ala Cys Phe Lys 450 455 460caa gag gat gat caa cac cat ttc ttg agc aac acg cag agc ctc atg 1440Gln Glu Asp Asp Gln His His Phe Leu Ser Asn Thr Gln Ser Leu Met465 470 475 480act aat atc gat cat caa agt tct gtt tcg gat gat tcg gtt act gtt 1488Thr Asn Ile Asp His Gln Ser Ser Val Ser Asp Asp Ser Val Thr Val 485 490 495tgt gga aat gtt gtt ggt tat ggt ggt tat caa gga ttt gca gcc ccg 1536Cys Gly Asn Val Val Gly Tyr Gly Gly Tyr Gln Gly Phe Ala Ala Pro 500 505 510gtt aac tgc gat gcc tac gct gct agt gag ttt gat tat aac gca aga 1584Val Asn Cys Asp Ala Tyr Ala Ala Ser Glu Phe Asp Tyr Asn Ala Arg 515 520 525aac cat tat tac ttt gct cag cag cag cag acc cag cag tcg cca ggt 1632Asn His Tyr Tyr Phe Ala Gln Gln Gln Gln Thr Gln Gln Ser Pro Gly 530 535 540gga gat ttt ccc gcg gca atg acg aat aat gtt ggc tct aat atg tat 1680Gly Asp Phe Pro Ala Ala Met Thr Asn Asn Val Gly Ser Asn Met Tyr545 550 555 560tac cat ggg gaa ggt ggt gga gaa gtt gct cca aca ttt aca gtt tgg 1728Tyr His Gly Glu Gly Gly Gly Glu Val Ala Pro Thr Phe Thr Val Trp 565 570 575aac gac aat tag 1740Asn Asp Asn24579PRTBrassica napus 24Met Asn Asn Asn Trp Leu Gly Phe Ser Leu Ser Pro Tyr Glu Gln Asn1 5 10 15His His Arg Lys Asp Val Tyr Ser Ser Thr Thr Thr Thr Val Val Asp 20 25 30Val Ala Gly Glu Tyr Cys Tyr Asp Pro Thr Ala Ala Ser Asp Glu Ser 35 40 45Ser Ala Ile Gln Thr Ser Phe Pro Ser Pro Phe Gly Val Val Val Asp 50 55 60Ala Phe Thr Arg Asp Asn Asn Ser His Ser Arg Asp Trp Asp Ile Asn65 70 75 80Gly Cys Ala Cys Asn Asn Ile His Asn Asp Glu Gln Asp Gly Pro Lys 85 90 95Leu Glu Asn Phe Leu Gly Arg Thr Thr Thr Ile Tyr Asn Thr Asn Glu 100 105 110Asn Val Gly Asp Gly Ser Gly Ser Gly Cys Tyr Gly Gly Gly Asp Gly 115 120 125Gly Gly Gly Ser Leu Gly Leu Ser Met Ile Lys Thr Trp Leu Arg Asn 130 135 140Gln Pro Val Asp Asn Val Asp Asn Gln Glu Asn Gly Asn Ala Ala Lys145 150 155 160Gly Leu Ser Leu Ser Met Asn Ser Ser Thr Ser Cys Asp Asn Asn Asn 165 170 175Asp Ser Asn Asn Asn Val Val Ala Gln Gly Lys Thr Ile Asp Asp Ser 180 185 190Val Glu Ala Thr Pro Lys Lys Thr Ile Glu Ser Phe Gly Gln Arg Thr 195 200 205Ser Ile Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu 210 215 220Ala His Leu Trp Asp Asn Ser Cys Lys Arg Glu Gly Gln Thr Arg Lys225 230 235 240Gly Arg Gln Val Tyr Leu Gly Gly Tyr Asp Lys Glu Glu Lys Ala Ala 245 250 255Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr Trp Gly Thr Thr Thr Thr 260 265 270Thr Asn Phe Pro Met Ser Glu Tyr Glu Lys Glu Val Glu Glu Met Lys 275 280 285His Met Thr Arg Gln Glu Tyr Val Ala Ser Leu Arg Arg Lys Ser Ser 290 295 300Gly Phe Ser Arg Gly Ala Ser Ile Tyr Arg Gly Val Thr Arg His His305 310 315 320Gln His Gly Arg Trp Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys 325 330 335Asp Leu Tyr Leu Gly Thr Phe Gly Thr Gln Glu Glu Ala Ala Glu Ala 340 345 350Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly Leu Thr Ala Val Thr Asn 355 360 365Phe Asp Met Asn Arg Tyr Asn Val Lys Ala Ile Leu Glu Ser Pro Ser 370 375 380Leu Pro Ile Gly Ser Ala Ala Lys Arg Leu Lys Glu Ala Asn Arg Pro385 390 395 400Val Pro Ser Met Met Met Ile Ser Asn Asn Val Ser Glu Ser Glu Asn 405 410 415Ser Ala Ser Gly Trp Gln Asn Ala Ala Val Gln His His Gln Gly Val 420 425 430Asp Leu Ser Leu Leu His Gln His Gln Glu Arg Tyr Asn Gly Tyr Tyr 435 440 445Tyr Asn Gly Gly Asn Leu Ser Ser Glu Ser Ala Arg Ala Cys Phe Lys 450 455 460Gln Glu Asp Asp Gln His His Phe Leu Ser Asn Thr Gln Ser Leu Met465 470 475 480Thr Asn Ile Asp His Gln Ser Ser Val Ser Asp Asp Ser Val Thr Val 485 490 495Cys Gly Asn Val Val Gly Tyr Gly Gly Tyr Gln Gly Phe Ala Ala Pro 500 505 510Val Asn Cys Asp Ala Tyr Ala Ala Ser Glu Phe Asp Tyr Asn Ala Arg 515 520 525Asn His Tyr Tyr Phe Ala Gln Gln Gln Gln Thr Gln Gln Ser Pro Gly 530 535 540Gly Asp Phe Pro Ala Ala Met Thr Asn Asn Val Gly Ser Asn Met Tyr545 550 555 560Tyr His Gly Glu Gly Gly Gly Glu Val Ala Pro Thr Phe Thr Val Trp 565 570 575Asn Asp Asn251740DNABrassica napusCDS(1)...(1740) 25atg aat aat aac tgg tta ggc ttt tct ctc tct cct tat gaa caa aat 48Met Asn Asn Asn Trp Leu Gly Phe Ser Leu Ser Pro Tyr Glu Gln Asn1 5 10 15cac cat cgt aag gac gtc tgc tct tcc acc acc aca acc gcc gta gat 96His His Arg Lys Asp Val Cys Ser Ser Thr Thr Thr Thr Ala Val Asp 20 25 30gtc gcc gga gag tac tgt tac gat ccg acc gct gcc tcc gat gag tct 144Val Ala Gly Glu Tyr Cys Tyr Asp Pro Thr Ala Ala Ser Asp Glu Ser 35 40 45tca gcc atc caa aca tcg ttt cct tct ccc ttt ggt gtc gtc ctc gat 192Ser Ala Ile Gln Thr Ser Phe Pro Ser Pro Phe Gly Val Val Leu Asp 50 55 60gct ttc acc aga gac aac aat agt cac tcc cga gat tgg gac atc aat 240Ala Phe Thr Arg Asp Asn Asn Ser His Ser Arg Asp Trp Asp Ile Asn65 70 75 80ggt agt gca tgt aat aac atc cac aat gat gag caa gat gga cca aaa 288Gly Ser Ala Cys Asn Asn Ile His Asn Asp Glu Gln Asp Gly Pro Lys 85 90 95ctt gag aat ttc ctt ggc cgc acc acc acg att tac aac acc aac gaa 336Leu Glu Asn Phe Leu Gly Arg Thr Thr Thr Ile Tyr Asn Thr Asn Glu 100 105 110aac gtt gga gat atc gat gga agt ggg tgt tat gga gga gga gac ggt 384Asn Val Gly Asp Ile Asp Gly Ser Gly Cys Tyr Gly Gly Gly Asp Gly 115 120 125ggt ggt ggc tca cta gga ctt tcg atg ata aag aca tgg ctg aga aat 432Gly Gly Gly Ser Leu Gly Leu Ser Met Ile Lys Thr Trp Leu Arg Asn 130 135 140caa ccc gtg gat aat gtt gat aat caa gaa aat ggc aat ggt gca aaa 480Gln Pro Val Asp Asn Val Asp Asn Gln Glu Asn Gly Asn Gly Ala Lys145 150 155 160ggc ctg tcc ctc tca atg aac tca tct act tct tgt gat aac aac aac 528Gly Leu Ser Leu Ser Met Asn Ser Ser Thr Ser Cys Asp Asn Asn Asn 165 170 175tac agc agt aac aac ctt gtt gcc caa ggg aag act att gat gat agc 576Tyr Ser Ser Asn Asn Leu Val Ala Gln Gly Lys Thr Ile Asp Asp Ser 180 185 190gtt gaa gct aca ccg aag aaa act att gag agt ttt gga cag agg acg 624Val Glu Ala Thr Pro Lys Lys Thr Ile Glu Ser Phe Gly Gln Arg Thr 195 200 205tct ata tac cgc ggt gtt aca agg cat cgg tgg aca gga aga tat gag 672Ser Ile Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu 210 215 220gca cat tta tgg gat aat agt tgt aaa cga gaa ggc caa acg cgc aaa 720Ala His Leu Trp Asp Asn Ser Cys Lys Arg Glu Gly Gln Thr Arg Lys225 230 235 240gga aga caa gtt tat ttg gga ggt tat gac aaa gaa gaa aaa gca gct 768Gly Arg Gln Val Tyr Leu Gly Gly Tyr Asp Lys Glu Glu Lys Ala Ala 245 250 255agg gct tat gat tta gcc gca ctc aag tat tgg gga acc acc act act 816Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr Trp Gly Thr Thr Thr Thr 260 265 270act aac ttc ccc atg agc gaa tat gag aaa gag ata gaa gag atg aag 864Thr Asn Phe Pro Met Ser Glu Tyr Glu Lys Glu Ile Glu Glu Met Lys 275 280 285cac atg aca agg caa gag tat gtt gcc tca ctt cgc agg aaa agt agt 912His Met Thr Arg Gln Glu Tyr Val Ala Ser Leu Arg Arg Lys Ser Ser 290 295 300ggt ttc tct cgt ggt gca tcg att tat cgt gga gta aca aga cat cac 960Gly Phe Ser Arg Gly Ala Ser Ile Tyr Arg Gly Val Thr Arg His His305 310 315 320caa cat gga aga tgg caa gct agg ata gga aga gtc gcc ggt aac aaa 1008Gln His Gly Arg Trp Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys 325 330 335gac ctc tac ttg gga act ttt ggc aca caa gaa gaa gct gca gag gca 1056Asp Leu Tyr Leu Gly Thr Phe Gly Thr Gln Glu Glu Ala Ala Glu Ala 340 345 350tac gac att gcg gcc atc aaa ttc aga gga tta acc gca gtg act aac 1104Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly Leu Thr Ala Val Thr Asn 355 360 365ttc gac atg aac aga tac aac gtt aaa gca atc ctc gaa agc cct agt 1152Phe Asp Met Asn Arg Tyr Asn Val Lys Ala Ile Leu Glu Ser Pro Ser 370 375 380ctt cct att ggt agc gcc gca aaa cgt ctc aag gag gct aac cgt ccg 1200Leu Pro Ile Gly Ser Ala Ala Lys Arg Leu Lys Glu Ala Asn Arg Pro385 390 395 400gtt cca agt atg atg atg atc agt aat aac gtt tca gag agt gag aat 1248Val Pro Ser Met Met Met Ile Ser Asn Asn Val Ser Glu Ser Glu Asn 405 410 415aat gct agc ggt tgg caa aac gct gcg gtt cag cat cat cag gga gta 1296Asn Ala Ser Gly Trp Gln Asn Ala Ala Val Gln His His Gln Gly Val 420 425 430gat ttg agc tta ttg cag caa cat caa gag agg tac aat ggt tat tat 1344Asp Leu Ser Leu Leu Gln Gln His Gln Glu Arg Tyr Asn Gly Tyr Tyr 435 440 445tac aat gga gga aac ttg tct tcg gag agt gct agg gct tgt ttc aaa 1392Tyr Asn Gly Gly Asn Leu Ser Ser Glu Ser Ala Arg Ala Cys Phe Lys 450 455 460caa gag gat gat caa cac cat ttc ttg agc aac acg cag agc ctc atg 1440Gln Glu Asp Asp Gln His His Phe Leu Ser Asn Thr Gln Ser Leu Met465 470 475 480act aat atc gat cat caa agt tct gtt tca gat gat tcg gtt act gtt 1488Thr Asn Ile Asp His Gln Ser Ser Val Ser Asp Asp Ser Val Thr Val 485 490 495tgt gga aat gtt gtt ggt tat ggt ggt tat caa gga ttt gca gcc ccg 1536Cys Gly Asn Val Val Gly Tyr Gly Gly Tyr Gln Gly Phe Ala Ala Pro 500 505 510gtt aac tgc gat gcc tac gct gct agt gag ttt gac tat aac gca aga 1584Val Asn Cys Asp Ala Tyr Ala Ala Ser Glu Phe Asp Tyr Asn Ala Arg 515 520 525aac cat tat tac ttt gct cag cag cag cag acc cag cat tcg cca gga 1632Asn His Tyr Tyr Phe Ala Gln Gln Gln Gln Thr Gln His Ser Pro Gly 530 535 540gga gat ttt ccc gcg gca atg acg aat aat gtt ggc tct aat atg tat 1680Gly Asp Phe Pro Ala Ala Met Thr Asn Asn Val Gly Ser Asn Met Tyr545 550 555 560tac cat ggg gaa ggt ggt gga gaa gtt gct cca aca ttt aca gtt tgg 1728Tyr His Gly Glu Gly Gly Gly Glu Val Ala Pro Thr Phe Thr Val Trp 565 570 575aac gac aat tag 1740Asn Asp Asn26579PRTBrassica napus 26Met Asn Asn Asn Trp Leu Gly Phe Ser Leu Ser Pro Tyr Glu Gln Asn1 5 10 15His His Arg Lys Asp Val Cys Ser Ser Thr Thr Thr Thr Ala Val Asp 20 25 30Val Ala Gly Glu Tyr Cys Tyr Asp Pro Thr Ala Ala Ser Asp Glu Ser 35 40 45Ser Ala Ile Gln Thr Ser Phe Pro Ser Pro Phe Gly Val Val Leu Asp 50 55 60Ala Phe Thr Arg Asp Asn Asn Ser His Ser Arg Asp Trp Asp Ile Asn65 70 75 80Gly Ser Ala Cys Asn Asn Ile His Asn Asp Glu Gln Asp Gly Pro Lys 85 90 95Leu Glu Asn Phe Leu Gly Arg Thr Thr Thr Ile Tyr Asn Thr Asn Glu 100 105 110Asn Val Gly Asp Ile Asp Gly Ser Gly Cys Tyr Gly Gly Gly Asp Gly 115 120 125Gly Gly Gly Ser Leu Gly Leu Ser Met Ile Lys Thr Trp Leu Arg Asn 130 135 140Gln Pro Val Asp Asn Val Asp Asn Gln Glu Asn Gly Asn Gly Ala Lys145 150 155 160Gly Leu Ser Leu Ser Met Asn Ser Ser Thr Ser Cys Asp Asn Asn Asn 165 170 175Tyr Ser Ser Asn Asn Leu Val Ala Gln Gly Lys Thr Ile Asp Asp Ser 180 185 190Val Glu Ala Thr Pro Lys Lys Thr Ile Glu Ser Phe Gly Gln Arg Thr 195 200 205Ser Ile Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu 210 215 220Ala His Leu Trp Asp Asn Ser Cys Lys Arg Glu Gly Gln Thr Arg Lys225 230 235 240Gly Arg Gln Val Tyr Leu Gly Gly Tyr Asp Lys Glu Glu Lys Ala Ala 245 250 255Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr Trp Gly Thr Thr Thr Thr 260 265 270Thr Asn Phe Pro Met Ser Glu Tyr Glu Lys Glu Ile Glu Glu Met Lys 275 280 285His Met Thr Arg Gln Glu Tyr Val Ala Ser Leu Arg Arg Lys Ser Ser 290 295 300Gly Phe Ser Arg Gly Ala Ser Ile Tyr Arg Gly Val Thr Arg His His305 310 315 320Gln His Gly Arg Trp Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys 325 330 335Asp Leu Tyr Leu Gly Thr Phe Gly Thr Gln Glu Glu Ala Ala Glu Ala 340 345 350Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly Leu Thr Ala Val Thr Asn 355 360 365Phe Asp Met Asn Arg Tyr Asn Val Lys Ala Ile Leu Glu Ser Pro Ser 370 375 380Leu Pro Ile Gly Ser Ala Ala Lys Arg Leu Lys Glu Ala Asn Arg Pro385 390 395 400Val Pro Ser Met Met Met Ile Ser Asn Asn Val Ser Glu Ser Glu Asn 405 410 415Asn Ala Ser Gly Trp Gln Asn Ala Ala Val Gln His His Gln Gly Val 420 425 430Asp Leu Ser Leu Leu Gln Gln His Gln Glu Arg Tyr Asn Gly Tyr Tyr 435 440 445Tyr Asn Gly Gly Asn Leu Ser Ser Glu Ser Ala Arg Ala Cys Phe Lys 450 455 460Gln Glu Asp Asp Gln His His Phe Leu Ser Asn Thr Gln Ser Leu Met465 470 475 480Thr Asn Ile Asp His Gln Ser Ser Val Ser Asp Asp Ser Val Thr Val 485 490 495Cys Gly Asn Val Val Gly Tyr Gly Gly Tyr Gln Gly Phe Ala Ala Pro 500 505 510Val Asn Cys Asp Ala Tyr Ala Ala Ser Glu Phe Asp Tyr Asn Ala Arg 515 520 525Asn His Tyr Tyr Phe Ala Gln Gln Gln Gln Thr Gln His Ser Pro Gly 530 535 540Gly Asp Phe Pro Ala Ala Met Thr Asn Asn Val Gly Ser Asn Met Tyr545 550 555 560Tyr His Gly Glu Gly Gly Gly Glu Val Ala Pro Thr Phe Thr Val Trp 565 570 575Asn Asp Asn272082DNASorghum bicolorCDS(1)...(2082)

27atg gct tcg acg aac aac cac tgg ctg ggt ttc tcg ctc tcg ggc cag 48Met Ala Ser Thr Asn Asn His Trp Leu Gly Phe Ser Leu Ser Gly Gln1 5 10 15gat aac ccg cag cct aat cat cag gac agc tcg cct gcc gcc gcc ggc 96Asp Asn Pro Gln Pro Asn His Gln Asp Ser Ser Pro Ala Ala Ala Gly 20 25 30atc gac atc tcc ggc gcc agc gac ttc tat ggc ttg ccc acg cag cag 144Ile Asp Ile Ser Gly Ala Ser Asp Phe Tyr Gly Leu Pro Thr Gln Gln 35 40 45ggc tcc gac ggg aat ctc ggc gtg ccg ggc ctg cgg gac gat cac gct 192Gly Ser Asp Gly Asn Leu Gly Val Pro Gly Leu Arg Asp Asp His Ala 50 55 60tct tat ggc atc atg gag gcc ttc aac agg gtt cct caa gaa acc caa 240Ser Tyr Gly Ile Met Glu Ala Phe Asn Arg Val Pro Gln Glu Thr Gln65 70 75 80gat tgg aac atg agg gga ttg gac tac aac ggc ggt ggc tcg gaa ctc 288Asp Trp Asn Met Arg Gly Leu Asp Tyr Asn Gly Gly Gly Ser Glu Leu 85 90 95tcg atg ctt gtg ggg tcc agc ggc ggc ggc ggg ggc ggc ggc aag agg 336Ser Met Leu Val Gly Ser Ser Gly Gly Gly Gly Gly Gly Gly Lys Arg 100 105 110gcc gtg gaa gac agc gag ccc aag ctc gaa gat ttc ctc ggc ggc aac 384Ala Val Glu Asp Ser Glu Pro Lys Leu Glu Asp Phe Leu Gly Gly Asn 115 120 125tcg ttc gtc tcc gag cat gat cag tcc ggc ggt tac ctg ttc tct gga 432Ser Phe Val Ser Glu His Asp Gln Ser Gly Gly Tyr Leu Phe Ser Gly 130 135 140gtc ccg atg gcc agc agc acc aac agc aac agc ggg agc aac acc atg 480Val Pro Met Ala Ser Ser Thr Asn Ser Asn Ser Gly Ser Asn Thr Met145 150 155 160gag ctc tcc atg atc aag acc tgg ctc cgg aac aac cag gtg ccc cag 528Glu Leu Ser Met Ile Lys Thr Trp Leu Arg Asn Asn Gln Val Pro Gln 165 170 175ccg cag ccg cca gca gct ccg cat cag gcg ccg cag act gag gag atg 576Pro Gln Pro Pro Ala Ala Pro His Gln Ala Pro Gln Thr Glu Glu Met 180 185 190agc acc gac gcc aac gcc agc gcc agc agc ttt ggc tgc tcg gat tcg 624Ser Thr Asp Ala Asn Ala Ser Ala Ser Ser Phe Gly Cys Ser Asp Ser 195 200 205atg ggg agg aac ggc acg gtg gcg gct gct ggg agc tcc cag agc ctg 672Met Gly Arg Asn Gly Thr Val Ala Ala Ala Gly Ser Ser Gln Ser Leu 210 215 220gcg ctc tcg atg agc acg ggc tcg cac ctg ccg atg gtt gtg gcc ggc 720Ala Leu Ser Met Ser Thr Gly Ser His Leu Pro Met Val Val Ala Gly225 230 235 240ggc ggc gcc agc gga gcg gcc tcg gag agc acg tca tcg gag aac aag 768Gly Gly Ala Ser Gly Ala Ala Ser Glu Ser Thr Ser Ser Glu Asn Lys 245 250 255cga gcg agc ggc gcc atg gat tcg ccc ggc agc gcg gta gaa gcc gtc 816Arg Ala Ser Gly Ala Met Asp Ser Pro Gly Ser Ala Val Glu Ala Val 260 265 270ccg agg aag tcc atc gac acg ttc ggg caa agg acc tct ata tat cga 864Pro Arg Lys Ser Ile Asp Thr Phe Gly Gln Arg Thr Ser Ile Tyr Arg 275 280 285ggt gta aca aga cat aga tgg aca ggg cga tat gag gct cat cta tgg 912Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu Trp 290 295 300gat aat agt tgt aga aga gaa ggg cag agt cgc aag ggt agg caa gtt 960Asp Asn Ser Cys Arg Arg Glu Gly Gln Ser Arg Lys Gly Arg Gln Val305 310 315 320tac ctt ggt ggc tat gac aag gaa gac aag gca gca agg gct tat gat 1008Tyr Leu Gly Gly Tyr Asp Lys Glu Asp Lys Ala Ala Arg Ala Tyr Asp 325 330 335ttg gca gct ctc aag tat tgg ggc act act aca aca aca aat ttc cct 1056Leu Ala Ala Leu Lys Tyr Trp Gly Thr Thr Thr Thr Thr Asn Phe Pro 340 345 350ata agc aac tat gaa aag gag cta gag gaa atg aaa cat atg act agg 1104Ile Ser Asn Tyr Glu Lys Glu Leu Glu Glu Met Lys His Met Thr Arg 355 360 365cag gag tat att gca tac cta aga aga aat agc agt gga ttt tct cgt 1152Gln Glu Tyr Ile Ala Tyr Leu Arg Arg Asn Ser Ser Gly Phe Ser Arg 370 375 380ggc gca tca aaa tat cgt gga gta act aga cat cat cag cat ggg aga 1200Gly Ala Ser Lys Tyr Arg Gly Val Thr Arg His His Gln His Gly Arg385 390 395 400tgg caa gca agg ata ggg aga gtt gca gga aac aag gat ctc tac ttg 1248Trp Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys Asp Leu Tyr Leu 405 410 415ggc aca ttc agc acc gag gag gag gcg gcg gag gcc tac gac atc gcc 1296Gly Thr Phe Ser Thr Glu Glu Glu Ala Ala Glu Ala Tyr Asp Ile Ala 420 425 430gcg atc aag ttc cgc ggt ctg aac gcc gtc acc aac ttc gac atg agc 1344Ala Ile Lys Phe Arg Gly Leu Asn Ala Val Thr Asn Phe Asp Met Ser 435 440 445cgc tac gac gtc aag agc atc ctc gag agc agc acg ctg cct gtc ggc 1392Arg Tyr Asp Val Lys Ser Ile Leu Glu Ser Ser Thr Leu Pro Val Gly 450 455 460ggc gcg gcc agg cgc ctc aag gat gcc gtg gac cac gtg gag gcc ggc 1440Gly Ala Ala Arg Arg Leu Lys Asp Ala Val Asp His Val Glu Ala Gly465 470 475 480gcc acc atc tgg cgc gcc gac atg gac ggc ggc gtg atc tcc cag ctc 1488Ala Thr Ile Trp Arg Ala Asp Met Asp Gly Gly Val Ile Ser Gln Leu 485 490 495gcc gaa gcc ggg atg ggc ggc tac gcc tcg tac ggg cac cac gcc tgg 1536Ala Glu Ala Gly Met Gly Gly Tyr Ala Ser Tyr Gly His His Ala Trp 500 505 510ccg acc atc gcg ttc cag cag ccg tcg ccg ctc tcc gtc cac tac ccg 1584Pro Thr Ile Ala Phe Gln Gln Pro Ser Pro Leu Ser Val His Tyr Pro 515 520 525tac ggg cag ccg ccg tcc cgc ggg tgg tgc aag ccc gag cag gac gcg 1632Tyr Gly Gln Pro Pro Ser Arg Gly Trp Cys Lys Pro Glu Gln Asp Ala 530 535 540gcc gtc gcc gcc gcc gcg cac agc ctg cag gac ctc cag cag ctg cac 1680Ala Val Ala Ala Ala Ala His Ser Leu Gln Asp Leu Gln Gln Leu His545 550 555 560ctc ggc agc gcg gca cac aac ttc ttc cag gcg tcg tcg agc tcg gca 1728Leu Gly Ser Ala Ala His Asn Phe Phe Gln Ala Ser Ser Ser Ser Ala 565 570 575gtc tac aac agc ggc ggc ggc ggc gct agc ggc ggg tac cac cag ggc 1776Val Tyr Asn Ser Gly Gly Gly Gly Ala Ser Gly Gly Tyr His Gln Gly 580 585 590ctc ggt ggc ggc agc agc tcc ttc ctc atg ccg tcg agc act gtc gtg 1824Leu Gly Gly Gly Ser Ser Ser Phe Leu Met Pro Ser Ser Thr Val Val 595 600 605gcg ggg gcc gac cag ggg cac agc agc agc acg gcc aac cag ggg agc 1872Ala Gly Ala Asp Gln Gly His Ser Ser Ser Thr Ala Asn Gln Gly Ser 610 615 620acg tgc agc tac ggg gac gat cac cag gaa ggg aag ctc atc ggg tac 1920Thr Cys Ser Tyr Gly Asp Asp His Gln Glu Gly Lys Leu Ile Gly Tyr625 630 635 640gac gcc atg gtg gcg gcg acc gca gcc ggc ggg gac ccg tac gcc gcg 1968Asp Ala Met Val Ala Ala Thr Ala Ala Gly Gly Asp Pro Tyr Ala Ala 645 650 655gcg agg agc ggg tac cag ttc tcg tcg cag ggc tcg gga tcc acg gtg 2016Ala Arg Ser Gly Tyr Gln Phe Ser Ser Gln Gly Ser Gly Ser Thr Val 660 665 670agc atc gcg agg gcg aac ggg tac tct aac aac tgg agc tct cct ttc 2064Ser Ile Ala Arg Ala Asn Gly Tyr Ser Asn Asn Trp Ser Ser Pro Phe 675 680 685aac ggc ggc atg ggg tga 2082Asn Gly Gly Met Gly 69028693PRTSorghum bicolor 28Met Ala Ser Thr Asn Asn His Trp Leu Gly Phe Ser Leu Ser Gly Gln1 5 10 15Asp Asn Pro Gln Pro Asn His Gln Asp Ser Ser Pro Ala Ala Ala Gly 20 25 30Ile Asp Ile Ser Gly Ala Ser Asp Phe Tyr Gly Leu Pro Thr Gln Gln 35 40 45Gly Ser Asp Gly Asn Leu Gly Val Pro Gly Leu Arg Asp Asp His Ala 50 55 60Ser Tyr Gly Ile Met Glu Ala Phe Asn Arg Val Pro Gln Glu Thr Gln65 70 75 80Asp Trp Asn Met Arg Gly Leu Asp Tyr Asn Gly Gly Gly Ser Glu Leu 85 90 95Ser Met Leu Val Gly Ser Ser Gly Gly Gly Gly Gly Gly Gly Lys Arg 100 105 110Ala Val Glu Asp Ser Glu Pro Lys Leu Glu Asp Phe Leu Gly Gly Asn 115 120 125Ser Phe Val Ser Glu His Asp Gln Ser Gly Gly Tyr Leu Phe Ser Gly 130 135 140Val Pro Met Ala Ser Ser Thr Asn Ser Asn Ser Gly Ser Asn Thr Met145 150 155 160Glu Leu Ser Met Ile Lys Thr Trp Leu Arg Asn Asn Gln Val Pro Gln 165 170 175Pro Gln Pro Pro Ala Ala Pro His Gln Ala Pro Gln Thr Glu Glu Met 180 185 190Ser Thr Asp Ala Asn Ala Ser Ala Ser Ser Phe Gly Cys Ser Asp Ser 195 200 205Met Gly Arg Asn Gly Thr Val Ala Ala Ala Gly Ser Ser Gln Ser Leu 210 215 220Ala Leu Ser Met Ser Thr Gly Ser His Leu Pro Met Val Val Ala Gly225 230 235 240Gly Gly Ala Ser Gly Ala Ala Ser Glu Ser Thr Ser Ser Glu Asn Lys 245 250 255Arg Ala Ser Gly Ala Met Asp Ser Pro Gly Ser Ala Val Glu Ala Val 260 265 270Pro Arg Lys Ser Ile Asp Thr Phe Gly Gln Arg Thr Ser Ile Tyr Arg 275 280 285Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu Trp 290 295 300Asp Asn Ser Cys Arg Arg Glu Gly Gln Ser Arg Lys Gly Arg Gln Val305 310 315 320Tyr Leu Gly Gly Tyr Asp Lys Glu Asp Lys Ala Ala Arg Ala Tyr Asp 325 330 335Leu Ala Ala Leu Lys Tyr Trp Gly Thr Thr Thr Thr Thr Asn Phe Pro 340 345 350Ile Ser Asn Tyr Glu Lys Glu Leu Glu Glu Met Lys His Met Thr Arg 355 360 365Gln Glu Tyr Ile Ala Tyr Leu Arg Arg Asn Ser Ser Gly Phe Ser Arg 370 375 380Gly Ala Ser Lys Tyr Arg Gly Val Thr Arg His His Gln His Gly Arg385 390 395 400Trp Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys Asp Leu Tyr Leu 405 410 415Gly Thr Phe Ser Thr Glu Glu Glu Ala Ala Glu Ala Tyr Asp Ile Ala 420 425 430Ala Ile Lys Phe Arg Gly Leu Asn Ala Val Thr Asn Phe Asp Met Ser 435 440 445Arg Tyr Asp Val Lys Ser Ile Leu Glu Ser Ser Thr Leu Pro Val Gly 450 455 460Gly Ala Ala Arg Arg Leu Lys Asp Ala Val Asp His Val Glu Ala Gly465 470 475 480Ala Thr Ile Trp Arg Ala Asp Met Asp Gly Gly Val Ile Ser Gln Leu 485 490 495Ala Glu Ala Gly Met Gly Gly Tyr Ala Ser Tyr Gly His His Ala Trp 500 505 510Pro Thr Ile Ala Phe Gln Gln Pro Ser Pro Leu Ser Val His Tyr Pro 515 520 525Tyr Gly Gln Pro Pro Ser Arg Gly Trp Cys Lys Pro Glu Gln Asp Ala 530 535 540Ala Val Ala Ala Ala Ala His Ser Leu Gln Asp Leu Gln Gln Leu His545 550 555 560Leu Gly Ser Ala Ala His Asn Phe Phe Gln Ala Ser Ser Ser Ser Ala 565 570 575Val Tyr Asn Ser Gly Gly Gly Gly Ala Ser Gly Gly Tyr His Gln Gly 580 585 590Leu Gly Gly Gly Ser Ser Ser Phe Leu Met Pro Ser Ser Thr Val Val 595 600 605Ala Gly Ala Asp Gln Gly His Ser Ser Ser Thr Ala Asn Gln Gly Ser 610 615 620Thr Cys Ser Tyr Gly Asp Asp His Gln Glu Gly Lys Leu Ile Gly Tyr625 630 635 640Asp Ala Met Val Ala Ala Thr Ala Ala Gly Gly Asp Pro Tyr Ala Ala 645 650 655Ala Arg Ser Gly Tyr Gln Phe Ser Ser Gln Gly Ser Gly Ser Thr Val 660 665 670Ser Ile Ala Arg Ala Asn Gly Tyr Ser Asn Asn Trp Ser Ser Pro Phe 675 680 685Asn Gly Gly Met Gly 69029508DNAZea mays 29ctatagtatt ttaaaattgc attaacaaac atgtcctaat tggtactcct gagatactat 60accctcctgt tttaaaatag ttggcattat cgaattatca ttttactttt taatgttttc 120tcttctttta atatatttta tgaattttaa tgtattttaa aatgttatgc agttcgctct 180ggacttttct gctgcgccta cacttgggtg tactgggcct aaattcagcc tgaccgaccg 240cctgcattga ataatggatg agcaccggta aaatccgcgt acccaacttt cgagaagaac 300cgagacgtgg cgggccgggc caccgacgca cggcaccagc gactgcacac gtcccgccgg 360cgtacgtgta cgtgctgttc cctcactggc cgcccaatcc actcatgcat gcccacgtac 420acccctgccg tggcgcgccc agatcctaat cctttcgccg ttctgcactt ctgctgccta 480taaatggcgg catcgaccgt cacctgct 50830665DNAArtificial SequencePromoter construct comprising Zea mays Rab17 promoter and attB1 site 30ctatagtatt ttaaaattgc attaacaaac atgtcctaat tggtactcct gagatactat 60accctcctgt tttaaaatag ttggcattat cgaattatca ttttactttt taatgttttc 120tcttctttta atatatttta tgaattttaa tgtattttaa aatgttatgc agttcgctct 180ggacttttct gctgcgccta cacttgggtg tactgggcct aaattcagcc tgaccgaccg 240cctgcattga ataatggatg agcaccggta aaatccgcgt acccaacttt cgagaagaac 300cgagacgtgg cgggccgggc caccgacgca cggcaccagc gactgcacac gtcccgccgg 360cgtacgtgta cgtgctgttc cctcactggc cgcccaatcc actcatgcat gcccacgtac 420acccctgccg tggcgcgccc agatcctaat cctttcgccg ttctgcactt ctgctgccta 480taaatggcgg catcgaccgt cacctgcttc accaccggcg agccacatcg agaacacgat 540cgagcacaca agcacgaaga ctcgtttagg agaaaccaca aaccaccaag ccgtgcaagc 600accaagcttg gtcacccggt ccgggcctag aaggccagct tcaagtttgt acaaaaaagc 660aggct 6653124DNAArtificial Sequenceattachment B1 site 31caagtttgta caaaaaagca ggct 243224DNAArtificial Sequenceattachment B2 site 32acccagcttt cttgtacaaa gtgg 243322DNAArtificial Sequenceattachment B3 site 33acaactttgt ataataaagt tg 223422DNAArtificial Sequenceattachment B4 site 34acaactttgt atagaaaagt tg 223595DNAZea mays 35tcaccaccgg cgagccacat cgagaacacg atcgagcaca caagcacgaa gactcgttta 60ggagaaacca caaaccacca agccgtgcaa gcacc 9536133DNAArtificial SequencePlasmid linker sequence 36tcaccaccgg cgagccacat cgagaacacg atcgagcaca caagcacgaa gactcgttta 60ggagaaacca caaaccacca agccgtgcaa gcaccaagct tggtcacccg gtccgggcct 120agaaggccag ctt 1333761DNAArtificial SequencePlasmid linker sequence 37tcgaaggaga tagaaccaat tctctaagga aatacttaac catggtcgac tggatccaac 60a 6138318DNAArtificial SequencePinII terminator 38agacttgtcc atcttctgga ttggccaact taattaatgt atgaaataaa aggatgcaca 60catagtgaca tgctaatcac tataatgtgg gcatcaaagt tgtgtgttat gtgtaattac 120tagttatctg aataaaagag aaagagatca tccatatttc ttatcctaaa tgaatgtcac 180gtgtctttat aattctttga tgaaccagat gcatttcatt aaccaaatcc atatacatat 240aaatattaat catatataat taatatcaat tgggttagca aaacaaatct agtctaggtg 300tgttttgcga attgcggc 3183916DNAArtificial SequencePlasmid linker sequence 39gtttcgagat atctag 164014DNAArtificial SequencePlasmid linker sequence 40ccgttaacgg atcc 14411272DNAArtificial SequenceMaize optimized FLP coding sequence 41atg ccc cag ttc gac atc ctc tgc aag acc ccc ccc aag gtg ctc gtg 48Met Pro Gln Phe Asp Ile Leu Cys Lys Thr Pro Pro Lys Val Leu Val1 5 10 15agg cag ttc gtg gag agg ttc gag agg ccc tcc ggc gag aag atc gcc 96Arg Gln Phe Val Glu Arg Phe Glu Arg Pro Ser Gly Glu Lys Ile Ala 20 25 30ctc tgc gcc gcc gag ctc acc tac ctc tgc tgg atg atc acc cac aac 144Leu Cys Ala Ala Glu Leu Thr Tyr Leu Cys Trp Met Ile Thr His Asn 35 40 45ggc acc gcc att aag agg gcc acc ttc atg tca tac aac acc atc atc 192Gly Thr Ala Ile Lys Arg Ala Thr Phe Met Ser Tyr Asn Thr Ile Ile 50 55 60tcc aac tcc ctc tcc ttc gac atc gtg aac aag tcc ctc cag ttc aaa 240Ser Asn Ser Leu Ser Phe Asp Ile Val Asn Lys Ser Leu Gln Phe Lys65 70 75 80tac aag acc cag aag gcc acc atc ctc gag gcc tcc ctc aag aag ctc 288Tyr Lys Thr Gln Lys Ala Thr Ile Leu Glu Ala Ser Leu Lys Lys Leu 85 90 95atc ccc gcc tgg gag ttc acc atc atc ccc tac tac ggc cag aag cac 336Ile Pro Ala Trp Glu Phe Thr Ile Ile Pro Tyr Tyr Gly Gln Lys His

100 105 110cag tcc gac atc acc gac atc gtg tca tcc ctc cag ctt cag ttc gag 384Gln Ser Asp Ile Thr Asp Ile Val Ser Ser Leu Gln Leu Gln Phe Glu 115 120 125tcc tcc gag gag gct gac aag ggc aac tcc cac tcc aag aag atg ctg 432Ser Ser Glu Glu Ala Asp Lys Gly Asn Ser His Ser Lys Lys Met Leu 130 135 140aag gcc ctc ctc tcc gag ggc gag tcc atc tgg gag atc acc gag aag 480Lys Ala Leu Leu Ser Glu Gly Glu Ser Ile Trp Glu Ile Thr Glu Lys145 150 155 160atc ctc aac tcc ttc gag tac acc tcc agg ttc act aag acc aag acc 528Ile Leu Asn Ser Phe Glu Tyr Thr Ser Arg Phe Thr Lys Thr Lys Thr 165 170 175ctc tac cag ttc ctc ttc ctc gcc acc ttc atc aac tgc ggc agg ttc 576Leu Tyr Gln Phe Leu Phe Leu Ala Thr Phe Ile Asn Cys Gly Arg Phe 180 185 190tca gac atc aag aac gtg gac ccc aag tcc ttc aag ctc gtg cag aac 624Ser Asp Ile Lys Asn Val Asp Pro Lys Ser Phe Lys Leu Val Gln Asn 195 200 205aag tac ctc ggc gtg atc atc cag tgc ctc gtg acc gag acc aag acc 672Lys Tyr Leu Gly Val Ile Ile Gln Cys Leu Val Thr Glu Thr Lys Thr 210 215 220tcc gtg tcc agg cac atc tac ttc ttc tcc gct cgc ggc agg atc gac 720Ser Val Ser Arg His Ile Tyr Phe Phe Ser Ala Arg Gly Arg Ile Asp225 230 235 240ccc ctc gtg tac ctc gac gag ttc ctc agg aac tca gag ccc gtg ctc 768Pro Leu Val Tyr Leu Asp Glu Phe Leu Arg Asn Ser Glu Pro Val Leu 245 250 255aag agg gtg aac agg acc ggc aac tcc tcc tcc aac aag cag gag tac 816Lys Arg Val Asn Arg Thr Gly Asn Ser Ser Ser Asn Lys Gln Glu Tyr 260 265 270cag ctc ctc aag gac aac ctc gtg agg tcc tac aac aag gcc ctc aag 864Gln Leu Leu Lys Asp Asn Leu Val Arg Ser Tyr Asn Lys Ala Leu Lys 275 280 285aag aac gcc ccc tac tcc atc ttc gcc atc aag aac ggc ccc aag tcc 912Lys Asn Ala Pro Tyr Ser Ile Phe Ala Ile Lys Asn Gly Pro Lys Ser 290 295 300cac atc ggt agg cac ctc atg acc tcc ttc ctc tca atg aag ggc ctc 960His Ile Gly Arg His Leu Met Thr Ser Phe Leu Ser Met Lys Gly Leu305 310 315 320acc gag ctc acc aac gtg gtg ggc aac tgg tcc gac aag agg gcc tcc 1008Thr Glu Leu Thr Asn Val Val Gly Asn Trp Ser Asp Lys Arg Ala Ser 325 330 335gcc gtg gcc agg acc acc tac acc cac cag atc acc gcc atc ccc gac 1056Ala Val Ala Arg Thr Thr Tyr Thr His Gln Ile Thr Ala Ile Pro Asp 340 345 350cac tac ttc gcc ctc gtg tca agg tac tac gcc tac gac ccc atc tcc 1104His Tyr Phe Ala Leu Val Ser Arg Tyr Tyr Ala Tyr Asp Pro Ile Ser 355 360 365aag gag atg atc gcc ctc aag gac gag act aac ccc atc gag gag tgg 1152Lys Glu Met Ile Ala Leu Lys Asp Glu Thr Asn Pro Ile Glu Glu Trp 370 375 380cag cac atc gag cag ctc aag ggc tcc gcc gag ggc tcc atc agg tac 1200Gln His Ile Glu Gln Leu Lys Gly Ser Ala Glu Gly Ser Ile Arg Tyr385 390 395 400ccc gcc tgg aac ggc atc atc tcc cag gag gtg ctc gac tac ctc tcc 1248Pro Ala Trp Asn Gly Ile Ile Ser Gln Glu Val Leu Asp Tyr Leu Ser 405 410 415tcc tac atc aac agg agg atc tga 1272Ser Tyr Ile Asn Arg Arg Ile 42042423PRTArtificial SequenceFLP 42Met Pro Gln Phe Asp Ile Leu Cys Lys Thr Pro Pro Lys Val Leu Val1 5 10 15Arg Gln Phe Val Glu Arg Phe Glu Arg Pro Ser Gly Glu Lys Ile Ala 20 25 30Leu Cys Ala Ala Glu Leu Thr Tyr Leu Cys Trp Met Ile Thr His Asn 35 40 45Gly Thr Ala Ile Lys Arg Ala Thr Phe Met Ser Tyr Asn Thr Ile Ile 50 55 60Ser Asn Ser Leu Ser Phe Asp Ile Val Asn Lys Ser Leu Gln Phe Lys65 70 75 80Tyr Lys Thr Gln Lys Ala Thr Ile Leu Glu Ala Ser Leu Lys Lys Leu 85 90 95Ile Pro Ala Trp Glu Phe Thr Ile Ile Pro Tyr Tyr Gly Gln Lys His 100 105 110Gln Ser Asp Ile Thr Asp Ile Val Ser Ser Leu Gln Leu Gln Phe Glu 115 120 125Ser Ser Glu Glu Ala Asp Lys Gly Asn Ser His Ser Lys Lys Met Leu 130 135 140Lys Ala Leu Leu Ser Glu Gly Glu Ser Ile Trp Glu Ile Thr Glu Lys145 150 155 160Ile Leu Asn Ser Phe Glu Tyr Thr Ser Arg Phe Thr Lys Thr Lys Thr 165 170 175Leu Tyr Gln Phe Leu Phe Leu Ala Thr Phe Ile Asn Cys Gly Arg Phe 180 185 190Ser Asp Ile Lys Asn Val Asp Pro Lys Ser Phe Lys Leu Val Gln Asn 195 200 205Lys Tyr Leu Gly Val Ile Ile Gln Cys Leu Val Thr Glu Thr Lys Thr 210 215 220Ser Val Ser Arg His Ile Tyr Phe Phe Ser Ala Arg Gly Arg Ile Asp225 230 235 240Pro Leu Val Tyr Leu Asp Glu Phe Leu Arg Asn Ser Glu Pro Val Leu 245 250 255Lys Arg Val Asn Arg Thr Gly Asn Ser Ser Ser Asn Lys Gln Glu Tyr 260 265 270Gln Leu Leu Lys Asp Asn Leu Val Arg Ser Tyr Asn Lys Ala Leu Lys 275 280 285Lys Asn Ala Pro Tyr Ser Ile Phe Ala Ile Lys Asn Gly Pro Lys Ser 290 295 300His Ile Gly Arg His Leu Met Thr Ser Phe Leu Ser Met Lys Gly Leu305 310 315 320Thr Glu Leu Thr Asn Val Val Gly Asn Trp Ser Asp Lys Arg Ala Ser 325 330 335Ala Val Ala Arg Thr Thr Tyr Thr His Gln Ile Thr Ala Ile Pro Asp 340 345 350His Tyr Phe Ala Leu Val Ser Arg Tyr Tyr Ala Tyr Asp Pro Ile Ser 355 360 365Lys Glu Met Ile Ala Leu Lys Asp Glu Thr Asn Pro Ile Glu Glu Trp 370 375 380Gln His Ile Glu Gln Leu Lys Gly Ser Ala Glu Gly Ser Ile Arg Tyr385 390 395 400Pro Ala Trp Asn Gly Ile Ile Ser Gln Glu Val Leu Asp Tyr Leu Ser 405 410 415Ser Tyr Ile Asn Arg Arg Ile 420431032DNAArtificial SequenceMaize optimized Cre coding sequence 43atg tcc aac ctg ctc acg gtt cac cag aac ctt ccg gct ctt cca gtg 48Met Ser Asn Leu Leu Thr Val His Gln Asn Leu Pro Ala Leu Pro Val1 5 10 15gac gcg acg tcc gat gaa gtc agg aag aac ctc atg gac atg ttc cgc 96Asp Ala Thr Ser Asp Glu Val Arg Lys Asn Leu Met Asp Met Phe Arg 20 25 30gac agg caa gcg ttc agc gag cac acc tgg aag atg ctg ctc tcc gtc 144Asp Arg Gln Ala Phe Ser Glu His Thr Trp Lys Met Leu Leu Ser Val 35 40 45tgc cgc tcc tgg gct gca tgg tgc aag ctg aac aac agg aag tgg ttc 192Cys Arg Ser Trp Ala Ala Trp Cys Lys Leu Asn Asn Arg Lys Trp Phe 50 55 60ccc gct gag ccc gag gac gtg agg gat tac ctt ctg tac ctg caa gct 240Pro Ala Glu Pro Glu Asp Val Arg Asp Tyr Leu Leu Tyr Leu Gln Ala65 70 75 80cgc ggg ctg gca gtg aag acc atc cag caa cac ctt gga caa ctg aac 288Arg Gly Leu Ala Val Lys Thr Ile Gln Gln His Leu Gly Gln Leu Asn 85 90 95atg ctt cac agg cgc tcc ggc ctc ccg cgc ccc agc gac tcg aac gcc 336Met Leu His Arg Arg Ser Gly Leu Pro Arg Pro Ser Asp Ser Asn Ala 100 105 110gtg agc ctc gtc atg cgc cgc atc agg aag gaa aac gtc gat gcc ggc 384Val Ser Leu Val Met Arg Arg Ile Arg Lys Glu Asn Val Asp Ala Gly 115 120 125gaa agg gca aag cag gcc ctc gcg ttc gag agg acc gat ttc gac cag 432Glu Arg Ala Lys Gln Ala Leu Ala Phe Glu Arg Thr Asp Phe Asp Gln 130 135 140gtc cgc agc ctg atg gag aac agc gac agg tgc cag gac att agg aac 480Val Arg Ser Leu Met Glu Asn Ser Asp Arg Cys Gln Asp Ile Arg Asn145 150 155 160ctg gcg ttc ctc gga att gca tac aac acg ctc ctc agg atc gcg gaa 528Leu Ala Phe Leu Gly Ile Ala Tyr Asn Thr Leu Leu Arg Ile Ala Glu 165 170 175att gcc cgc att cgc gtg aag gac att agc cgc acc gac ggc ggc agg 576Ile Ala Arg Ile Arg Val Lys Asp Ile Ser Arg Thr Asp Gly Gly Arg 180 185 190atg ctt atc cac att ggc agg acc aag acg ctc gtt tcc acc gca ggc 624Met Leu Ile His Ile Gly Arg Thr Lys Thr Leu Val Ser Thr Ala Gly 195 200 205gtc gaa aag gcc ctc agc ctc gga gtg acc aag ctc gtc gaa cgc tgg 672Val Glu Lys Ala Leu Ser Leu Gly Val Thr Lys Leu Val Glu Arg Trp 210 215 220atc tcc gtg tcc ggc gtc gcg gac gac cca aac aac tac ctc ttc tgc 720Ile Ser Val Ser Gly Val Ala Asp Asp Pro Asn Asn Tyr Leu Phe Cys225 230 235 240cgc gtc cgc aag aac ggg gtg gct gcc cct agc gcc acc agc caa ctc 768Arg Val Arg Lys Asn Gly Val Ala Ala Pro Ser Ala Thr Ser Gln Leu 245 250 255agc acg agg gcc ttg gaa ggt att ttc gag gcc acc cac cgc ctg atc 816Ser Thr Arg Ala Leu Glu Gly Ile Phe Glu Ala Thr His Arg Leu Ile 260 265 270tac ggc gcg aag gat gac agc ggt caa cgc tac ctc gca tgg tcc ggg 864Tyr Gly Ala Lys Asp Asp Ser Gly Gln Arg Tyr Leu Ala Trp Ser Gly 275 280 285cac tcc gcc cgc gtt gga gct gct agg gac atg gcc cgc gcc ggt gtt 912His Ser Ala Arg Val Gly Ala Ala Arg Asp Met Ala Arg Ala Gly Val 290 295 300tcc atc ccc gaa atc atg cag gcg ggt gga tgg acg aac gtg aac att 960Ser Ile Pro Glu Ile Met Gln Ala Gly Gly Trp Thr Asn Val Asn Ile305 310 315 320gtc atg aac tac att cgc aac ctt gac agc gag acg ggc gca atg gtt 1008Val Met Asn Tyr Ile Arg Asn Leu Asp Ser Glu Thr Gly Ala Met Val 325 330 335cgc ctc ctg gaa gat ggt gac tga 1032Arg Leu Leu Glu Asp Gly Asp 34044343PRTArtificial SequenceCre 44Met Ser Asn Leu Leu Thr Val His Gln Asn Leu Pro Ala Leu Pro Val1 5 10 15Asp Ala Thr Ser Asp Glu Val Arg Lys Asn Leu Met Asp Met Phe Arg 20 25 30Asp Arg Gln Ala Phe Ser Glu His Thr Trp Lys Met Leu Leu Ser Val 35 40 45Cys Arg Ser Trp Ala Ala Trp Cys Lys Leu Asn Asn Arg Lys Trp Phe 50 55 60Pro Ala Glu Pro Glu Asp Val Arg Asp Tyr Leu Leu Tyr Leu Gln Ala65 70 75 80Arg Gly Leu Ala Val Lys Thr Ile Gln Gln His Leu Gly Gln Leu Asn 85 90 95Met Leu His Arg Arg Ser Gly Leu Pro Arg Pro Ser Asp Ser Asn Ala 100 105 110Val Ser Leu Val Met Arg Arg Ile Arg Lys Glu Asn Val Asp Ala Gly 115 120 125Glu Arg Ala Lys Gln Ala Leu Ala Phe Glu Arg Thr Asp Phe Asp Gln 130 135 140Val Arg Ser Leu Met Glu Asn Ser Asp Arg Cys Gln Asp Ile Arg Asn145 150 155 160Leu Ala Phe Leu Gly Ile Ala Tyr Asn Thr Leu Leu Arg Ile Ala Glu 165 170 175Ile Ala Arg Ile Arg Val Lys Asp Ile Ser Arg Thr Asp Gly Gly Arg 180 185 190Met Leu Ile His Ile Gly Arg Thr Lys Thr Leu Val Ser Thr Ala Gly 195 200 205Val Glu Lys Ala Leu Ser Leu Gly Val Thr Lys Leu Val Glu Arg Trp 210 215 220Ile Ser Val Ser Gly Val Ala Asp Asp Pro Asn Asn Tyr Leu Phe Cys225 230 235 240Arg Val Arg Lys Asn Gly Val Ala Ala Pro Ser Ala Thr Ser Gln Leu 245 250 255Ser Thr Arg Ala Leu Glu Gly Ile Phe Glu Ala Thr His Arg Leu Ile 260 265 270Tyr Gly Ala Lys Asp Asp Ser Gly Gln Arg Tyr Leu Ala Trp Ser Gly 275 280 285His Ser Ala Arg Val Gly Ala Ala Arg Asp Met Ala Arg Ala Gly Val 290 295 300Ser Ile Pro Glu Ile Met Gln Ala Gly Gly Trp Thr Asn Val Asn Ile305 310 315 320Val Met Asn Tyr Ile Arg Asn Leu Asp Ser Glu Thr Gly Ala Met Val 325 330 335Arg Leu Leu Glu Asp Gly Asp 340451198DNAArtificial SequenceExpression cassette comprising Zea mays rab17 promoter, attB1 site, and FLPm coding sequence 45ctatagtatt ttaaaattgc attaacaaac atgtcctaat tggtactcct gagatactat 60accctcctgt tttaaaatag ttggcattat cgaattatca ttttactttt taatgttttc 120tcttctttta atatatttta tgaattttaa tgtattttaa aatgttatgc agttcgctct 180ggacttttct gctgcgccta cacttgggtg tactgggcct aaattcagcc tgaccgaccg 240cctgcattga ataatggatg agcaccggta aaatccgcgt acccaacttt cgagaagaac 300cgagacgtgg cgggccgggc caccgacgca cggcaccagc gactgcacac gtcccgccgg 360cgtacgtgta cgtgctgttc cctcactggc cgcccaatcc actcatgcat gcccacgtac 420acccctgccg tggcgcgccc agatcctaat cctttcgccg ttctgcactt ctgctgccta 480taaatggcgg catcgaccgt cacctgcttc accaccggcg agccacatcg agaacacgat 540cgagcacaca agcacgaaga ctcgtttagg agaaaccaca aaccaccaag ccgtgcaagc 600accaagcttg gtcacccggt ccgggcctag aaggccagct tcaagtttgt acaaaaaagc 660aggcttcgaa ggagatagaa ccaattctct aaggaaatac ttaaccatgg tcgactggat 720ccaacaatgc cccagttcga catcctctgc aagacccccc ccaaggtgct cgtgaggcag 780ttcgtggaga ggttcgagag gccctccggc gagaagatcg ccctctgcgc cgccgagctc 840acctacctct gctggatgat cacccacaac ggcaccgcca ttaagagggc caccttcatg 900tcatacaaca ccatcatctc caactccctc tccttcgaca tcgtgaacaa gtccctccag 960ttcaaataca agacccagaa ggccaccatc ctcgaggcct ccctcaagaa gctcatcccc 1020gcctgggagt tcaccatcat cccctactac ggccagaagc accagtccga catcaccgac 1080atcgtgtcat ccctccagct tcagttcgag tcctccgagg aggctgacaa gggcaactcc 1140cactccaaga agatgctgaa ggccctcctc tccgagggcg agtccatctg ggagatca 1198462370DNAArtificial SequencePlasmid PHP31004 46ctatagtatt ttaaaattgc attaacaaac atgtcctaat tggtactcct gagatactat 60accctcctgt tttaaaatag ttggcattat cgaattatca ttttactttt taatgttttc 120tcttctttta atatatttta tgaattttaa tgtattttaa aatgttatgc agttcgctct 180ggacttttct gctgcgccta cacttgggtg tactgggcct aaattcagcc tgaccgaccg 240cctgcattga ataatggatg agcaccggta aaatccgcgt acccaacttt cgagaagaac 300cgagacgtgg cgggccgggc caccgacgca cggcaccagc gactgcacac gtcccgccgg 360cgtacgtgta cgtgctgttc cctcactggc cgcccaatcc actcatgcat gcccacgtac 420acccctgccg tggcgcgccc agatcctaat cctttcgccg ttctgcactt ctgctgccta 480taaatggcgg catcgaccgt cacctgcttc accaccggcg agccacatcg agaacacgat 540cgagcacaca agcacgaaga ctcgtttagg agaaaccaca aaccaccaag ccgtgcaagc 600accaagcttg gtcacccggt ccgggcctag aaggccagct tcaagtttgt acaaaaaagc 660aggcttcgaa ggagatagaa ccaattctct aaggaaatac ttaaccatgg tcgactggat 720ccaacaatgc cccagttcga catcctctgc aagacccccc ccaaggtgct cgtgaggcag 780ttcgtggaga ggttcgagag gccctccggc gagaagatcg ccctctgcgc cgccgagctc 840acctacctct gctggatgat cacccacaac ggcaccgcca ttaagagggc caccttcatg 900tcatacaaca ccatcatctc caactccctc tccttcgaca tcgtgaacaa gtccctccag 960ttcaaataca agacccagaa ggccaccatc ctcgaggcct ccctcaagaa gctcatcccc 1020gcctgggagt tcaccatcat cccctactac ggccagaagc accagtccga catcaccgac 1080atcgtgtcat ccctccagct tcagttcgag tcctccgagg aggctgacaa gggcaactcc 1140cactccaaga agatgctgaa ggccctcctc tccgagggcg agtccatctg ggagatcacc 1200gagaagatcc tcaactcctt cgagtacacc tccaggttca ctaagaccaa gaccctctac 1260cagttcctct tcctcgccac cttcatcaac tgcggcaggt tctcagacat caagaacgtg 1320gaccccaagt ccttcaagct cgtgcagaac aagtacctcg gcgtgatcat ccagtgcctc 1380gtgaccgaga ccaagacctc cgtgtccagg cacatctact tcttctccgc tcgcggcagg 1440atcgaccccc tcgtgtacct cgacgagttc ctcaggaact cagagcccgt gctcaagagg 1500gtgaacagga ccggcaactc ctcctccaac aagcaggagt accagctcct caaggacaac 1560ctcgtgaggt cctacaacaa ggccctcaag aagaacgccc cctactccat cttcgccatc 1620aagaacggcc ccaagtccca catcggtagg cacctcatga cctccttcct ctcaatgaag 1680ggcctcaccg agctcaccaa cgtggtgggc aactggtccg acaagagggc ctccgccgtg 1740gccaggacca cctacaccca ccagatcacc gccatccccg accactactt cgccctcgtg 1800tcaaggtact acgcctacga ccccatctcc aaggagatga tcgccctcaa ggacgagact 1860aaccccatcg aggagtggca gcacatcgag cagctcaagg gctccgccga gggctccatc 1920aggtaccccg cctggaacgg catcatctcc caggaggtgc tcgactacct ctcctcctac 1980atcaacagga ggatctgagt ttcgagatat ctagacccag ctttcttgta caaagtggcc 2040gttaacggat ccagacttgt ccatcttctg gattggccaa cttaattaat gtatgaaata 2100aaaggatgca cacatagtga catgctaatc actataatgt gggcatcaaa gttgtgtgtt 2160atgtgtaatt actagttatc tgaataaaag agaaagagat catccatatt tcttatccta 2220aatgaatgtc acgtgtcttt ataattcttt gatgaaccag atgcatttca ttaaccaaat 2280ccatatacat ataaatatta atcatatata attaatatca attgggttag caaaacaaat 2340ctagtctagg tgtgttttgc gaattgcggc 2370472383DNAArtificial SequencePlasmid PHP30642 47ctatagtatt ttaaaattgc

attaacaaac atgtcctaat tggtactcct gagatactat 60accctcctgt tttaaaatag ttggcattat cgaattatca ttttactttt taatgttttc 120tcttctttta atatatttta tgaattttaa tgtattttaa aatgttatgc agttcgctct 180ggacttttct gctgcgccta cacttgggtg tactgggcct aaattcagcc tgaccgaccg 240cctgcattga ataatggatg agcaccggta aaatccgcgt acccaacttt cgagaagaac 300cgagacgtgg cgggccgggc caccgacgca cggcaccagc gactgcacac gtcccgccgg 360cgtacgtgta cgtgctgttc cctcactggc cgcccaatcc actcatgcat gcccacgtac 420acccctgccg tggcgcgccc agatcctaat cctttcgccg ttctgcactt ctgctgccta 480taaatggcgg catcgaccgt cacctgcttc accaccggcg agccacatcg agaacacgat 540cgagcacaca agcacgaaga ctcgtttagg agaaaccaca aaccaccaag ccgtgcaagc 600accatggatc caacaatgcc ccagttcgac atcctctgca agaccccccc caaggtgctc 660gtgaggcagt tcgtggagag gttcgagagg ccctccggcg agaagatcgc cctctgcgcc 720gccgagctca cctacctctg ctggatgatc acccacaacg gcaccgccat taagagggcc 780accttcatgt catacaacac catcatctcc aactccctct ccttcgacat cgtgaacaag 840tccctccagt tcaaatacaa gacccagaag gccaccatcc tcgaggcctc cctcaagaag 900ctcatccccg cctgggagtt caccatcatc ccctactacg gccagaagca ccagtccgac 960atcaccgaca tcgtgtcatc cctccagctt cagttcgagt cctccgagga ggctgacaag 1020ggcaactccc actccaagaa gatgctgaag gccctcctct ccgagggcga gtccatctgg 1080gagatcaccg agaagatcct caactccttc gagtacacct ccaggttcac taagaccaag 1140accctctacc agttcctctt cctcgccacc ttcatcaact gcggcaggtt ctcagacatc 1200aagaacgtgg accccaagtc cttcaagctc gtgcagaaca agtacctcgg cgtgatcatc 1260cagtgcctcg tgaccgagac caagacctcc gtgtccaggc acatctactt cttctccgct 1320cgcggcagga tcgaccccct cgtgtacctc gacgagttcc tcaggaactc agagcccgtg 1380ctcaagaggg tgaacaggac cggcaactcc tcctccaaca agcaggagta ccagctcctc 1440aaggacaacc tcgtgaggtc ctacaacaag gccctcaaga agaacgcccc ctactccatc 1500ttcgccatca agaacggccc caagtcccac atcggtaggc acctcatgac ctccttcctc 1560tcaatgaagg gcctcaccga gctcaccaac gtggtgggca actggtccga caagagggcc 1620tccgccgtgg ccaggaccac ctacacccac cagatcaccg ccatccccga ccactacttc 1680gccctcgtgt caaggtacta cgcctacgac cccatctcca aggagatgat cgccctcaag 1740gacgagacta accccatcga ggagtggcag cacatcgagc agctcaaggg ctccgccgag 1800ggctccatca ggtaccccgc ctggaacggc atcatctccc aggaggtgct cgactacctc 1860tcctcctaca tcaacaggag gatctgagtt ctagttcgaa tgtgagttga tccccggcgg 1920tgtcccccac tgaagaaact atgtgctgta gtatagccgc tggctagcta gctagttgag 1980tcatttagcg gcgatgattg agtaataatg tgtcacgcat caccatgcat gggtggcagt 2040ctcagtgtga gcaatgacct gaatgaacaa ttgaaatgaa aagaaaaaag tattgttcca 2100aattaaacgt tttaaccttt taataggttt atacaataat tgatatatgt tttctgtata 2160tgtctaattt gttatcatcc atttagatat agacgaaaaa aaatctaaga actaaaacaa 2220atgctaattt gaaatgaagg gagtatatat tgggataatg tcgatgagat ccctcgtaat 2280atcaccgaca tcacacgtgt ccagttaatg tatcagtgat acgtgtattc acatttgttg 2340cgcgtaggcg tacccaacaa ttttgatcga ctatcagaaa gtc 23834831PRTArtificial SequenceConsensus sequence motif 1 48Tyr Glu Lys Glu Leu Glu Glu Met Lys Xaa Met Thr Arg Gln Glu Xaa1 5 10 15Xaa Ala Xaa Leu Arg Arg Lys Ser Ser Gly Phe Ser Arg Gly Ala 20 25 304963PRTArtificial SequenceConsensus sequence motif 2 49Ser Xaa Tyr Arg Gly Val Thr Arg His His Gln His Gly Arg Trp Gln1 5 10 15Ala Arg Ile Gly Arg Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly Thr 20 25 30Phe Ser Thr Xaa Glu Glu Ala Ala Glu Ala Tyr Asp Xaa Ala Ala Ile 35 40 45Lys Phe Arg Gly Leu Asn Ala Val Thr Asn Phe Xaa Xaa Xaa Arg 50 55 605068PRTArtificial SequenceConsensus sequence motif 3 50Ser Xaa Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu1 5 10 15Ala His Leu Trp Asp Asn Ser Cys Arg Xaa Glu Gly Gln Xaa Arg Lys 20 25 30Xaa Xaa Xaa Gly Gly Tyr Asp Lys Glu Xaa Lys Ala Ala Arg Ala Tyr 35 40 45Asp Leu Ala Ala Leu Lys Tyr Trp Gly Xaa Xaa Thr Xaa Xaa Asn Phe 50 55 60Pro Xaa Ser Asn65518PRTArtificial SequenceConsensus sequence motif 4 51Pro Lys Xaa Xaa Xaa Phe Leu Gly1 55213PRTArtificial SequenceConsensus sequence motif 5 52Ser Ser Thr Leu Pro Xaa Gly Gly Xaa Ala Xaa Xaa Xaa1 5 10539PRTArtificial SequenceConsensus sequence motif 6 53Asn Trp Leu Xaa Phe Ser Leu Ser Pro1 55410PRTArtificial SequenceConsensus sequence motif 7 54Xaa Leu Ser Met Ile Lys Xaa Trp Leu Arg1 5 10558PRTArtificial SequenceConsensus sequence motif 8 55Pro Xaa Phe Xaa Xaa Trp Asn Asp1 5565PRTArtificial SequenceConsensus sequence motif 9 56Leu Xaa Leu Ser Met1 5577PRTArtificial SequenceConsensus sequence motif 10 57Trp Cys Lys Xaa Glu Gln Asp1 5587PRTArtificial SequenceConsensus sequence motif 14 58Trp Pro Thr Ile Ala Phe Gln1 55911PRTArtificial SequenceConsensus sequence motif 15 59Ser Xaa Gly Ser Asn Ser Val Val Tyr Asn Gly1 5 10607PRTArtificial SequenceConsensus sequence motif 19 60Gln Asp Trp Xaa Met Arg Gly1 561975DNAZea maysCDS(1)...(975) 61atg gag acg cca cag cag caa tcc gcc gcc gcc gcc gcc gcc gcc gcc 48Met Glu Thr Pro Gln Gln Gln Ser Ala Ala Ala Ala Ala Ala Ala Ala1 5 10 15cac ggg cag gac gac ggc ggg tcg ccg ccg atg tcg ccg gcc tcc gcc 96His Gly Gln Asp Asp Gly Gly Ser Pro Pro Met Ser Pro Ala Ser Ala 20 25 30gcg gcg gcg gcg ctg gcg aac gcg cgg tgg aac ccg acc aag gag cag 144Ala Ala Ala Ala Leu Ala Asn Ala Arg Trp Asn Pro Thr Lys Glu Gln 35 40 45gtg gcc gtg ctg gag ggg ctg tac gag cac ggc ctg cgc acc ccc agc 192Val Ala Val Leu Glu Gly Leu Tyr Glu His Gly Leu Arg Thr Pro Ser 50 55 60gcg gag cag ata cag cag atc acg ggc agg ctg cgg gag cac ggc gcc 240Ala Glu Gln Ile Gln Gln Ile Thr Gly Arg Leu Arg Glu His Gly Ala65 70 75 80atc gag ggc aag aac gtc ttc tac tgg ttc cag aac cac aag gcc cgc 288Ile Glu Gly Lys Asn Val Phe Tyr Trp Phe Gln Asn His Lys Ala Arg 85 90 95cag cgc cag agg cag aag cag gac agc ttc gcc tac ttc agc agg ctc 336Gln Arg Gln Arg Gln Lys Gln Asp Ser Phe Ala Tyr Phe Ser Arg Leu 100 105 110ctc cgc cgg ccc ccg ccg ctg ccc gtg ctc tcc atg ccc ccc gcg cca 384Leu Arg Arg Pro Pro Pro Leu Pro Val Leu Ser Met Pro Pro Ala Pro 115 120 125ccg tac cat cac gcc cgc gtc ccg gcg ccg ccc gcg ata ccg atg ccg 432Pro Tyr His His Ala Arg Val Pro Ala Pro Pro Ala Ile Pro Met Pro 130 135 140atg gcg ccg ccg ccg ccc gct gca tgc aac gac aac ggc ggc gcg cgt 480Met Ala Pro Pro Pro Pro Ala Ala Cys Asn Asp Asn Gly Gly Ala Arg145 150 155 160gtg atc tac agg aac cca ttc tac gtg gct gcg ccg cag gcg ccc cct 528Val Ile Tyr Arg Asn Pro Phe Tyr Val Ala Ala Pro Gln Ala Pro Pro 165 170 175gca aat gcc gcc tac tac tac cca cag cca cag cag cag cag cag cag 576Ala Asn Ala Ala Tyr Tyr Tyr Pro Gln Pro Gln Gln Gln Gln Gln Gln 180 185 190cag gtg aca gtc atg tac cag tac ccg aga atg gag gta gcc ggc cag 624Gln Val Thr Val Met Tyr Gln Tyr Pro Arg Met Glu Val Ala Gly Gln 195 200 205gac aag atg atg acc agg gcc gcg gcg cac cag cag cag cag cac aac 672Asp Lys Met Met Thr Arg Ala Ala Ala His Gln Gln Gln Gln His Asn 210 215 220ggc gcc ggg caa caa ccg gga cgc gcc ggc cac ccc agc cgc gag acg 720Gly Ala Gly Gln Gln Pro Gly Arg Ala Gly His Pro Ser Arg Glu Thr225 230 235 240ctc cag ctg ttc ccg ctc cag ccc acc ttc gtg ctg cgg cac gac aag 768Leu Gln Leu Phe Pro Leu Gln Pro Thr Phe Val Leu Arg His Asp Lys 245 250 255ggg cgc gcc gcc aac ggc agt aat aac gac tcc ctg acg tcg acg tcg 816Gly Arg Ala Ala Asn Gly Ser Asn Asn Asp Ser Leu Thr Ser Thr Ser 260 265 270acg gcg act gcg aca gcg aca gcg aca gcg aca gcg tcc gct tcc atc 864Thr Ala Thr Ala Thr Ala Thr Ala Thr Ala Thr Ala Ser Ala Ser Ile 275 280 285tcc gag gac tcg gat ggc ctg gag agc ggc agc tcc ggc aag ggc gtc 912Ser Glu Asp Ser Asp Gly Leu Glu Ser Gly Ser Ser Gly Lys Gly Val 290 295 300gag gag gcg ccc gcg ctg ccg ttc tat gac ttc ttc ggg ctc cag tcc 960Glu Glu Ala Pro Ala Leu Pro Phe Tyr Asp Phe Phe Gly Leu Gln Ser305 310 315 320tcc gga ggc cgc tga 975Ser Gly Gly Arg62324PRTZea mays 62Met Glu Thr Pro Gln Gln Gln Ser Ala Ala Ala Ala Ala Ala Ala Ala1 5 10 15His Gly Gln Asp Asp Gly Gly Ser Pro Pro Met Ser Pro Ala Ser Ala 20 25 30Ala Ala Ala Ala Leu Ala Asn Ala Arg Trp Asn Pro Thr Lys Glu Gln 35 40 45Val Ala Val Leu Glu Gly Leu Tyr Glu His Gly Leu Arg Thr Pro Ser 50 55 60Ala Glu Gln Ile Gln Gln Ile Thr Gly Arg Leu Arg Glu His Gly Ala65 70 75 80Ile Glu Gly Lys Asn Val Phe Tyr Trp Phe Gln Asn His Lys Ala Arg 85 90 95Gln Arg Gln Arg Gln Lys Gln Asp Ser Phe Ala Tyr Phe Ser Arg Leu 100 105 110Leu Arg Arg Pro Pro Pro Leu Pro Val Leu Ser Met Pro Pro Ala Pro 115 120 125Pro Tyr His His Ala Arg Val Pro Ala Pro Pro Ala Ile Pro Met Pro 130 135 140Met Ala Pro Pro Pro Pro Ala Ala Cys Asn Asp Asn Gly Gly Ala Arg145 150 155 160Val Ile Tyr Arg Asn Pro Phe Tyr Val Ala Ala Pro Gln Ala Pro Pro 165 170 175Ala Asn Ala Ala Tyr Tyr Tyr Pro Gln Pro Gln Gln Gln Gln Gln Gln 180 185 190Gln Val Thr Val Met Tyr Gln Tyr Pro Arg Met Glu Val Ala Gly Gln 195 200 205Asp Lys Met Met Thr Arg Ala Ala Ala His Gln Gln Gln Gln His Asn 210 215 220Gly Ala Gly Gln Gln Pro Gly Arg Ala Gly His Pro Ser Arg Glu Thr225 230 235 240Leu Gln Leu Phe Pro Leu Gln Pro Thr Phe Val Leu Arg His Asp Lys 245 250 255Gly Arg Ala Ala Asn Gly Ser Asn Asn Asp Ser Leu Thr Ser Thr Ser 260 265 270Thr Ala Thr Ala Thr Ala Thr Ala Thr Ala Thr Ala Ser Ala Ser Ile 275 280 285Ser Glu Asp Ser Asp Gly Leu Glu Ser Gly Ser Ser Gly Lys Gly Val 290 295 300Glu Glu Ala Pro Ala Leu Pro Phe Tyr Asp Phe Phe Gly Leu Gln Ser305 310 315 320Ser Gly Gly Arg 63909DNAZea maysCDS(1)...(909) 63atg gcg gcc aat gcg ggc ggc ggt gga gcg gga gga ggc agc ggc agc 48Met Ala Ala Asn Ala Gly Gly Gly Gly Ala Gly Gly Gly Ser Gly Ser1 5 10 15ggc agc gtg gct gcg ccg gcg gtg tgc cgc ccc agc ggc tcg cgg tgg 96Gly Ser Val Ala Ala Pro Ala Val Cys Arg Pro Ser Gly Ser Arg Trp 20 25 30acg ccg acg ccg gag cag atc agg atg ctg aag gag ctc tac tac ggc 144Thr Pro Thr Pro Glu Gln Ile Arg Met Leu Lys Glu Leu Tyr Tyr Gly 35 40 45tgc ggc atc cgg tcg ccc agc tcg gag cag atc cag cgc atc acc gcc 192Cys Gly Ile Arg Ser Pro Ser Ser Glu Gln Ile Gln Arg Ile Thr Ala 50 55 60atg ctg cgg cag cac ggc aag atc gag ggc aag aac gtc ttc tac tgg 240Met Leu Arg Gln His Gly Lys Ile Glu Gly Lys Asn Val Phe Tyr Trp65 70 75 80ttc cag aac cac aag gcc cgc gag cgc cag aag cgc cgc ctc acc agc 288Phe Gln Asn His Lys Ala Arg Glu Arg Gln Lys Arg Arg Leu Thr Ser 85 90 95ctc gac gtc aac gtg ccc gcc gcc ggc gcg gcc gac gcc acc acc agc 336Leu Asp Val Asn Val Pro Ala Ala Gly Ala Ala Asp Ala Thr Thr Ser 100 105 110caa ctc ggc gtc ctc tcg ctg tcg tcg ccg ccg cct tca ggc gcg gcg 384Gln Leu Gly Val Leu Ser Leu Ser Ser Pro Pro Pro Ser Gly Ala Ala 115 120 125cct ccc tcg ccc acc ctc ggc ttc tac gcc gcc ggc aat ggc ggc gga 432Pro Pro Ser Pro Thr Leu Gly Phe Tyr Ala Ala Gly Asn Gly Gly Gly 130 135 140tcg gct gtg ctg ctg gac acg agt tcc gac tgg ggc agc agc ggc gct 480Ser Ala Val Leu Leu Asp Thr Ser Ser Asp Trp Gly Ser Ser Gly Ala145 150 155 160gcc atg gcc acc gag aca tgc ttc ctg cag gac tac atg ggc gtg acg 528Ala Met Ala Thr Glu Thr Cys Phe Leu Gln Asp Tyr Met Gly Val Thr 165 170 175gac acg ggc agc tcg tcg cag tgg cca cgc ttc tcg tcg tcg gac acg 576Asp Thr Gly Ser Ser Ser Gln Trp Pro Arg Phe Ser Ser Ser Asp Thr 180 185 190ata atg gcg gcg gcc gcg gcg cgg gcg gcg acg acg cgg gcg ccc gag 624Ile Met Ala Ala Ala Ala Ala Arg Ala Ala Thr Thr Arg Ala Pro Glu 195 200 205acg ctc cct ctc ttc ccg acc tgc ggc gac gac ggc ggc agc ggt agc 672Thr Leu Pro Leu Phe Pro Thr Cys Gly Asp Asp Gly Gly Ser Gly Ser 210 215 220agc agc tac ttg ccg ttc tgg ggt gcc gcg tcc aca act gcc ggc gcc 720Ser Ser Tyr Leu Pro Phe Trp Gly Ala Ala Ser Thr Thr Ala Gly Ala225 230 235 240act tct tcc gtt gcg atc cag cag caa cac cag ctg cag gag cag tac 768Thr Ser Ser Val Ala Ile Gln Gln Gln His Gln Leu Gln Glu Gln Tyr 245 250 255agc ttt tac agc aac agc aac agc acc cag ctg gcc ggc acc ggc aac 816Ser Phe Tyr Ser Asn Ser Asn Ser Thr Gln Leu Ala Gly Thr Gly Asn 260 265 270caa gac gta tcg gca aca gca gca gca gcc gcc gcc ctg gag ctg agc 864Gln Asp Val Ser Ala Thr Ala Ala Ala Ala Ala Ala Leu Glu Leu Ser 275 280 285ctc agc tca tgg tgc tcc cct tac cct gct gca ggg agt atg tga 909Leu Ser Ser Trp Cys Ser Pro Tyr Pro Ala Ala Gly Ser Met 290 295 30064302PRTZea mays 64Met Ala Ala Asn Ala Gly Gly Gly Gly Ala Gly Gly Gly Ser Gly Ser1 5 10 15Gly Ser Val Ala Ala Pro Ala Val Cys Arg Pro Ser Gly Ser Arg Trp 20 25 30Thr Pro Thr Pro Glu Gln Ile Arg Met Leu Lys Glu Leu Tyr Tyr Gly 35 40 45Cys Gly Ile Arg Ser Pro Ser Ser Glu Gln Ile Gln Arg Ile Thr Ala 50 55 60Met Leu Arg Gln His Gly Lys Ile Glu Gly Lys Asn Val Phe Tyr Trp65 70 75 80Phe Gln Asn His Lys Ala Arg Glu Arg Gln Lys Arg Arg Leu Thr Ser 85 90 95Leu Asp Val Asn Val Pro Ala Ala Gly Ala Ala Asp Ala Thr Thr Ser 100 105 110Gln Leu Gly Val Leu Ser Leu Ser Ser Pro Pro Pro Ser Gly Ala Ala 115 120 125Pro Pro Ser Pro Thr Leu Gly Phe Tyr Ala Ala Gly Asn Gly Gly Gly 130 135 140Ser Ala Val Leu Leu Asp Thr Ser Ser Asp Trp Gly Ser Ser Gly Ala145 150 155 160Ala Met Ala Thr Glu Thr Cys Phe Leu Gln Asp Tyr Met Gly Val Thr 165 170 175Asp Thr Gly Ser Ser Ser Gln Trp Pro Arg Phe Ser Ser Ser Asp Thr 180 185 190Ile Met Ala Ala Ala Ala Ala Arg Ala Ala Thr Thr Arg Ala Pro Glu 195 200 205Thr Leu Pro Leu Phe Pro Thr Cys Gly Asp Asp Gly Gly Ser Gly Ser 210 215 220Ser Ser Tyr Leu Pro Phe Trp Gly Ala Ala Ser Thr Thr Ala Gly Ala225 230 235 240Thr Ser Ser Val Ala Ile Gln Gln Gln His Gln Leu Gln Glu Gln Tyr 245 250 255Ser Phe Tyr Ser Asn Ser Asn Ser Thr Gln Leu Ala Gly Thr Gly Asn 260 265 270Gln Asp Val Ser Ala Thr Ala Ala Ala Ala Ala Ala Leu Glu Leu Ser 275 280 285Leu Ser Ser Trp Cys Ser Pro Tyr Pro Ala Ala Gly Ser Met 290 295 30065961DNAZea mays 65gatccgattg actatctcat tcctccaaac ccaaacacct caaatatatc tgctatcggg 60attggcattc ctgtatccct acgcccgtgt accccctgtt tagagaacct cccaaggtat 120aagatggcga agattattgt tgtcttgtct ttcatcatat atcgagtctt tccctaggat 180attattattg gcaatgagca ttacacggtt aatcgattga gagaacatgc atctcacctt 240cagcaaataa ttacgataat ccatatttta cgcttcgtaa cttctcatga gtttcgatat 300acaaatttgt tttctggaca ccctaccatt catcctcttc ggagaagaga ggaagtgtcc 360tcaatttaaa tatgttgtca tgctgtagtt cttcacccaa tctcaacagg taccaagcac 420attgtttcca caaattatat tttagtcaca ataaatctat attattatta atatactaaa 480actatactga cgctcagatg cttttactag ttcttgctag tatgtgatgt aggtctacgt 540ggaccagaaa atagtgagac acggaagaca aaagaagtaa aagaggcccg gactacggcc

600cacatgagat tcggccccgc cacctccggc aaccagcggc cgatccaacg gaagtgcgcg 660cacacacaca acctcgtata tatcgccgcg cggaagcggc gcgaccgagg aagccttgtc 720ctcgacaccc cctacacagg tgtcgcgctg cccccgacac gagtcccgca tgcgtcccac 780gcggccgcgc cagatcccgc ctccgcgcgt tgccacgccc tctataaaca cccagctctc 840cctcgccctc atctacctca ctcgtagtcg tagctcaagc atcagcggca gcggcagcgg 900caggagctct gggcagcgtg cgcacgtggg gtacctagct cgctctgcta gcctacctta 960a 961661917DNAZea maysCDS(1)...(1917) 66atg acc agc aac agc agc cag aac atg agc agc tgc agc acc ggc gga 48Met Thr Ser Asn Ser Ser Gln Asn Met Ser Ser Cys Ser Thr Gly Gly1 5 10 15agc gac gcg gcg gtc ggc ggc ggc agc tgg ctc ggc ttc tcg ctg tcg 96Ser Asp Ala Ala Val Gly Gly Gly Ser Trp Leu Gly Phe Ser Leu Ser 20 25 30cct cac atg gcg gcg acc atg gac ggc gcg gcc gac ggc gtt ccg gtg 144Pro His Met Ala Ala Thr Met Asp Gly Ala Ala Asp Gly Val Pro Val 35 40 45cag cac cac cac cac gaa ggc ctc ttc tac cct ccc gtc gtc agc tcc 192Gln His His His His Glu Gly Leu Phe Tyr Pro Pro Val Val Ser Ser 50 55 60tcg ccc gcg ccc ttc tgc tac gct ctc ggc ggc ggc caa gat ggc ctc 240Ser Pro Ala Pro Phe Cys Tyr Ala Leu Gly Gly Gly Gln Asp Gly Leu65 70 75 80gcc acg gcg gcc gcc aat ggt ggc ggg ggg ttc tac ccc ggg ctc tcc 288Ala Thr Ala Ala Ala Asn Gly Gly Gly Gly Phe Tyr Pro Gly Leu Ser 85 90 95tct atg ccg ctc aag tcc gac ggc tcc cta tgc atc ctg gag gcc ctc 336Ser Met Pro Leu Lys Ser Asp Gly Ser Leu Cys Ile Leu Glu Ala Leu 100 105 110cac agg agc gag caa gaa cgg cac ggg gtg gtg gtg tcg tcg tcg tcg 384His Arg Ser Glu Gln Glu Arg His Gly Val Val Val Ser Ser Ser Ser 115 120 125ccc aaa ctg gag gat ttc ttg ggc gcg agc gcg agc acg gcg atg gcg 432Pro Lys Leu Glu Asp Phe Leu Gly Ala Ser Ala Ser Thr Ala Met Ala 130 135 140ctg agc ttg gac agc tcc agc ttc tac tac ggc tgc ggc cac ggc cac 480Leu Ser Leu Asp Ser Ser Ser Phe Tyr Tyr Gly Cys Gly His Gly His145 150 155 160ggc cac gac caa ggc ggg tac ctg cag cca atg cag tgc gcg gtg atg 528Gly His Asp Gln Gly Gly Tyr Leu Gln Pro Met Gln Cys Ala Val Met 165 170 175ccc ggc tcg ggc ggg cac gac gtg tac ggc ggc ggg cac gcg cag atg 576Pro Gly Ser Gly Gly His Asp Val Tyr Gly Gly Gly His Ala Gln Met 180 185 190gtg gac gag cag tcc gcc gcg gca atg gcg gcg agc tgg ttc tcc gcc 624Val Asp Glu Gln Ser Ala Ala Ala Met Ala Ala Ser Trp Phe Ser Ala 195 200 205cgc ggc aat ggc ggc tac gac gtc gac ggc gcc ggc gcc ggc gcc atc 672Arg Gly Asn Gly Gly Tyr Asp Val Asp Gly Ala Gly Ala Gly Ala Ile 210 215 220gtg ccg ttg cag ggc cac ccg cac ccg ctc gcc ctc tcc atg agc tcc 720Val Pro Leu Gln Gly His Pro His Pro Leu Ala Leu Ser Met Ser Ser225 230 235 240ggg acg ggg tcc cag tcc agc agc gtc acc atg caa gtc ggc agc gcc 768Gly Thr Gly Ser Gln Ser Ser Ser Val Thr Met Gln Val Gly Ser Ala 245 250 255cac gcc gac gcc gtc acc gag tac atc gcc atg gac ggg agc aag aag 816His Ala Asp Ala Val Thr Glu Tyr Ile Ala Met Asp Gly Ser Lys Lys 260 265 270cgc ggc gcc ggc aac ggc gct agt gcc ggg cag aag cag ccc acc atc 864Arg Gly Ala Gly Asn Gly Ala Ser Ala Gly Gln Lys Gln Pro Thr Ile 275 280 285cac cgc aag acc atc gac aca ttc ggg cag cgc acg tcg cag tac cgc 912His Arg Lys Thr Ile Asp Thr Phe Gly Gln Arg Thr Ser Gln Tyr Arg 290 295 300ggc gtc acc agg cat agg tgg acg ggg agg tat gag gcg cac ctc tgg 960Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu Trp305 310 315 320gac aac agc tgc agg aag gaa ggg cag acc cgg aaa ggc cgg caa gtt 1008Asp Asn Ser Cys Arg Lys Glu Gly Gln Thr Arg Lys Gly Arg Gln Val 325 330 335tat ctc ggc ggg tat gac gtg gag gag aag gcc gcg agg gca tat gac 1056Tyr Leu Gly Gly Tyr Asp Val Glu Glu Lys Ala Ala Arg Ala Tyr Asp 340 345 350ctg gcg gcg ctc aag tac tgg ggg acg tcc acg cac gtg aat ttc ccg 1104Leu Ala Ala Leu Lys Tyr Trp Gly Thr Ser Thr His Val Asn Phe Pro 355 360 365gtg gag gac tac agg gaa gag ctg gag gag atg aag aac atg acc aga 1152Val Glu Asp Tyr Arg Glu Glu Leu Glu Glu Met Lys Asn Met Thr Arg 370 375 380cag gag tac gtc gct cac ctg aga agg aaa agc agc ggc ttc tcg cgc 1200Gln Glu Tyr Val Ala His Leu Arg Arg Lys Ser Ser Gly Phe Ser Arg385 390 395 400ggc gct tcg atc tac cgg gga gtc acc agg cat cac cag cac ggg cgg 1248Gly Ala Ser Ile Tyr Arg Gly Val Thr Arg His His Gln His Gly Arg 405 410 415tgg cag gcg cgc atc ggc cgc gtc tcg ggc aac aag gac ctc tac ctc 1296Trp Gln Ala Arg Ile Gly Arg Val Ser Gly Asn Lys Asp Leu Tyr Leu 420 425 430gga acg ttc agc acc cag gag gag gcg gcg gag gcg tac gac gtg gcc 1344Gly Thr Phe Ser Thr Gln Glu Glu Ala Ala Glu Ala Tyr Asp Val Ala 435 440 445gcg atc aag ttc cgc ggc ctc agc gcg gtc acc aac ttc gac atc acg 1392Ala Ile Lys Phe Arg Gly Leu Ser Ala Val Thr Asn Phe Asp Ile Thr 450 455 460cgg tac gac gtg gac aag atc atg gag agc agc acg ctg ctc ccg ggc 1440Arg Tyr Asp Val Asp Lys Ile Met Glu Ser Ser Thr Leu Leu Pro Gly465 470 475 480gag cag gtc cgg cgc agg aag gaa ggc gcc gac gcc gcg gtc tcg gag 1488Glu Gln Val Arg Arg Arg Lys Glu Gly Ala Asp Ala Ala Val Ser Glu 485 490 495gcc gcc gcc gcg ctg gtg cag gcc ggc aac tgc atg acg gac acc tgg 1536Ala Ala Ala Ala Leu Val Gln Ala Gly Asn Cys Met Thr Asp Thr Trp 500 505 510aag atc cag gcg gcg ctg ccg gct gcc gcg cgg gcc gac gag cgc ggc 1584Lys Ile Gln Ala Ala Leu Pro Ala Ala Ala Arg Ala Asp Glu Arg Gly 515 520 525gcc ggc cag cag cag cgt cag gac ttg ctg tcg agc gag gcc ttc tcg 1632Ala Gly Gln Gln Gln Arg Gln Asp Leu Leu Ser Ser Glu Ala Phe Ser 530 535 540ctg ctc cac gac atc gtg tcc gtc gac gcc gct gct ggt aca ggg aca 1680Leu Leu His Asp Ile Val Ser Val Asp Ala Ala Ala Gly Thr Gly Thr545 550 555 560ggg ggc atg tcg aac gcg tcc tcg tcg ctg gcc ccc agc gtg agc aac 1728Gly Gly Met Ser Asn Ala Ser Ser Ser Leu Ala Pro Ser Val Ser Asn 565 570 575tcc cgg gag cag agc ccg gac cgg ggc ggc gcc agc ctc gcc atg ctc 1776Ser Arg Glu Gln Ser Pro Asp Arg Gly Gly Ala Ser Leu Ala Met Leu 580 585 590ttc gcc aag ccc gcc gcg gcg ccc aag ctg gct tgc ccg ctg ccg ctg 1824Phe Ala Lys Pro Ala Ala Ala Pro Lys Leu Ala Cys Pro Leu Pro Leu 595 600 605ggg tcc tgg gtg tcg ccg tcc gcg gtg tcc gcc agg ccg ccc ggc gtg 1872Gly Ser Trp Val Ser Pro Ser Ala Val Ser Ala Arg Pro Pro Gly Val 610 615 620tca atc gcg cac ctg ccg gtg ttc gcc gcg tgg acc gac gca tga 1917Ser Ile Ala His Leu Pro Val Phe Ala Ala Trp Thr Asp Ala625 630 63567638PRTZea mays 67Met Thr Ser Asn Ser Ser Gln Asn Met Ser Ser Cys Ser Thr Gly Gly1 5 10 15Ser Asp Ala Ala Val Gly Gly Gly Ser Trp Leu Gly Phe Ser Leu Ser 20 25 30Pro His Met Ala Ala Thr Met Asp Gly Ala Ala Asp Gly Val Pro Val 35 40 45Gln His His His His Glu Gly Leu Phe Tyr Pro Pro Val Val Ser Ser 50 55 60Ser Pro Ala Pro Phe Cys Tyr Ala Leu Gly Gly Gly Gln Asp Gly Leu65 70 75 80Ala Thr Ala Ala Ala Asn Gly Gly Gly Gly Phe Tyr Pro Gly Leu Ser 85 90 95Ser Met Pro Leu Lys Ser Asp Gly Ser Leu Cys Ile Leu Glu Ala Leu 100 105 110His Arg Ser Glu Gln Glu Arg His Gly Val Val Val Ser Ser Ser Ser 115 120 125Pro Lys Leu Glu Asp Phe Leu Gly Ala Ser Ala Ser Thr Ala Met Ala 130 135 140Leu Ser Leu Asp Ser Ser Ser Phe Tyr Tyr Gly Cys Gly His Gly His145 150 155 160Gly His Asp Gln Gly Gly Tyr Leu Gln Pro Met Gln Cys Ala Val Met 165 170 175Pro Gly Ser Gly Gly His Asp Val Tyr Gly Gly Gly His Ala Gln Met 180 185 190Val Asp Glu Gln Ser Ala Ala Ala Met Ala Ala Ser Trp Phe Ser Ala 195 200 205Arg Gly Asn Gly Gly Tyr Asp Val Asp Gly Ala Gly Ala Gly Ala Ile 210 215 220Val Pro Leu Gln Gly His Pro His Pro Leu Ala Leu Ser Met Ser Ser225 230 235 240Gly Thr Gly Ser Gln Ser Ser Ser Val Thr Met Gln Val Gly Ser Ala 245 250 255His Ala Asp Ala Val Thr Glu Tyr Ile Ala Met Asp Gly Ser Lys Lys 260 265 270Arg Gly Ala Gly Asn Gly Ala Ser Ala Gly Gln Lys Gln Pro Thr Ile 275 280 285His Arg Lys Thr Ile Asp Thr Phe Gly Gln Arg Thr Ser Gln Tyr Arg 290 295 300Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu Trp305 310 315 320Asp Asn Ser Cys Arg Lys Glu Gly Gln Thr Arg Lys Gly Arg Gln Val 325 330 335Tyr Leu Gly Gly Tyr Asp Val Glu Glu Lys Ala Ala Arg Ala Tyr Asp 340 345 350Leu Ala Ala Leu Lys Tyr Trp Gly Thr Ser Thr His Val Asn Phe Pro 355 360 365Val Glu Asp Tyr Arg Glu Glu Leu Glu Glu Met Lys Asn Met Thr Arg 370 375 380Gln Glu Tyr Val Ala His Leu Arg Arg Lys Ser Ser Gly Phe Ser Arg385 390 395 400Gly Ala Ser Ile Tyr Arg Gly Val Thr Arg His His Gln His Gly Arg 405 410 415Trp Gln Ala Arg Ile Gly Arg Val Ser Gly Asn Lys Asp Leu Tyr Leu 420 425 430Gly Thr Phe Ser Thr Gln Glu Glu Ala Ala Glu Ala Tyr Asp Val Ala 435 440 445Ala Ile Lys Phe Arg Gly Leu Ser Ala Val Thr Asn Phe Asp Ile Thr 450 455 460Arg Tyr Asp Val Asp Lys Ile Met Glu Ser Ser Thr Leu Leu Pro Gly465 470 475 480Glu Gln Val Arg Arg Arg Lys Glu Gly Ala Asp Ala Ala Val Ser Glu 485 490 495Ala Ala Ala Ala Leu Val Gln Ala Gly Asn Cys Met Thr Asp Thr Trp 500 505 510Lys Ile Gln Ala Ala Leu Pro Ala Ala Ala Arg Ala Asp Glu Arg Gly 515 520 525Ala Gly Gln Gln Gln Arg Gln Asp Leu Leu Ser Ser Glu Ala Phe Ser 530 535 540Leu Leu His Asp Ile Val Ser Val Asp Ala Ala Ala Gly Thr Gly Thr545 550 555 560Gly Gly Met Ser Asn Ala Ser Ser Ser Leu Ala Pro Ser Val Ser Asn 565 570 575Ser Arg Glu Gln Ser Pro Asp Arg Gly Gly Ala Ser Leu Ala Met Leu 580 585 590Phe Ala Lys Pro Ala Ala Ala Pro Lys Leu Ala Cys Pro Leu Pro Leu 595 600 605Gly Ser Trp Val Ser Pro Ser Ala Val Ser Ala Arg Pro Pro Gly Val 610 615 620Ser Ile Ala His Leu Pro Val Phe Ala Ala Trp Thr Asp Ala625 630 635682260DNAZea mays 68cttccctaac ctttgcactg tccaaaatgg cttcctgatc ccctcacttc ctcgaatcaa 60tctaagaaga aactcaagcc gcaaccatta ggggcagatt aattgctgca ctttcagata 120atcaaccatg gccactgtga acaactggct cgctttctcc ctctccccgc aggagctgcc 180gccctcccag acgacggact ccacactcat ctcggccgcc accgccgacc atgtctccgg 240cgatgtctgc ttcaacatcc cccaagattg gagcatgagg ggatcagagc tttcggcgct 300cgtcgcggag ccgaagctgg aggacttcct cggcggcatc tccttctccg agcagcatca 360caaggccaac tgcaacatga tacccagcac tagcagcaca gtttgctacg cgagctcagg 420tgctagcacc ggctaccatc accagctgta ccaccagccc accagctcag cgctccactt 480cgcggactcc gtaatggtgg cctcctcggc cggtgtccac gacggcggtg ccatgctcag 540cgcggccgcc gctaacggtg tcgctggcgc tgccagtgcc aacggcggcg gcatcgggct 600gtccatgatt aagaactggc tgcggagcca accggcgccc atgcagccga gggtggcggc 660ggctgagggc gcgcaggggc tctctttgtc catgaacatg gcggggacga cccaaggcgc 720tgctggcatg ccacttctcg ctggagagcg cgcacgggcg cccgagagtg tatcgacgtc 780agcacagggt ggagccgtcg tcgtcacggc gccgaaggag gatagcggtg gcagcggtgt 840tgccggcgct ctagtagccg tgagcacgga cacgggtggc agcggcggcg cgtcggctga 900caacacggca aggaagacgg tggacacgtt cgggcagcgc acgtcgattt accgtggcgt 960gacaaggcat agatggactg ggagatatga ggcacatctt tgggataaca gttgcagaag 1020ggaagggcaa actcgtaagg gtcgtcaagt ctatttaggt ggctatgata aagaggagaa 1080agctgctagg gcttatgatc ttgctgctct gaagtactgg ggtgccacaa caacaacaaa 1140ttttccagtg agtaactacg aaaaggagct cgaggacatg aagcacatga caaggcagga 1200gtttgtagcg tctctgagaa ggaagagcag tggtttctcc agaggtgcat ccatttacag 1260gggagtgact aggcatcacc aacatggaag atggcaagca cggattggac gagttgcagg 1320gaacaaggat ctttacttgg gcaccttcag cacccaggag gaggcagcgg aggcgtacga 1380catcgcggcg atcaagttcc gcggcctcaa cgccgtcacc aacttcgaca tgagccgcta 1440cgacgtgaag agcatcctgg acagcagcgc cctccccatc ggcagcgccg ccaagcgcct 1500caaggaggcc gaggccgcag cgtccgcgca gcaccaccac gccggcgtgg tgagctacga 1560cgtcggccgc atcgcctcgc agctcggcga cggcggagcc ctggcggcgg cgtacggcgc 1620gcactaccac ggcgccgcct ggccgaccat cgcgttccag ccgggcgccg ccagcacagg 1680cctgtaccac ccgtacgcgc agcagccaat gcgcggcggc gggtggtgca agcaggagca 1740ggaccacgcg gtgatcgcgg ccgcgcacag cctgcaggac ctccaccacc tgaacctggg 1800cgcggccggc gcgcacgact ttttctcggc agggcagcag gccgccgccg ctgcgatgca 1860cggcctgggt agcatcgaca gtgcgtcgct cgagcacagc accggctcca actccgtcgt 1920ctacaacggc ggggtcggcg acagcaacgg cgccagcgcc gtcggcggca gtggcggtgg 1980ctacatgatg ccgatgagcg ctgccggagc aaccactaca tcggcaatgg tgagccacga 2040gcaggtgcat gcacgggcct acgacgaagc caagcaggct gctcagatgg ggtacgagag 2100ctacctggtg aacgcggaga acaatggtgg cggaaggatg tctgcatggg ggactgtcgt 2160gtctgcagcc gcggcggcag cagcaagcag caacgacaac atggccgccg acgtcggcca 2220tggcggcgcg cagctcttca gtgtctggaa cgacacttaa 2260693766DNASorghum bicolor 69atggctactg tgaacaactg gctcgctttc tccctctccc cgcaggagct gccgcccacc 60cagacggact ccaccctcat ctctgccgcc accaccgacg atgtctccgg cgatgtctgc 120ttcaacatcc cccaaggtat gcatctatcg atcgatatat gtacgtacag tgcgcatata 180tatatatatc tgcagtttgt ggtacgaata ctgattgaag ctagcatgaa atgtcgtttg 240ttctttcaga ttggagcatg aggggatccg agctttcggc gctcgtcgcc gagccgaagc 300tggaggactt cctcggcgga atctccttct ccgagcagca ccacaaggcc aactgcaaca 360tgatccccag cactagcagc acagcttgct acgcgagctc gggtgctacc gccggctacc 420atcaccagct gtaccaccag cccaccagct ccgcgctcca cttcgctgac tccgtcatgg 480tggcctcctc ggccggcggc gtccacgacg gaggtgccat gctcagcgcg gccagcgcta 540atggtagcgc tggcgctggc gctgccagtg ccaatggcag cggcagcatc gggctgtcca 600tgatcaagaa ctggctgcgg agccaaccag ctcccatgca gccgagggtg gcggcggctg 660agagcgtgca ggggctctct ttgtccatga acatggcggg ggcgacgcaa ggcgccgctg 720gcatgccact tcttgctgga gagcgcggcc gggcgcccga gagtgtctcg acgtcggcac 780agggtggagc cgtcgtcacg gctccaaagg aggatagcgg tggcagcggt gttgccgcca 840ccggcgccct agtagccgtg agcacggaca cgggtggcag cggcgcgtcg gctgacaaca 900cggcaaggaa gacggtggac acgttcgggc agcgcacgtc gatttaccgt ggcgtgacaa 960ggtaataagg gtccggtatt acaatgaatc gtcacttcgt cagagaacta aactagcaca 1020aatcagcaat gaatcaagta atatcatgaa atttagaaaa gccgttagca atgcaaggag 1080ctatcattat agatttgatt gcatctagac agttctgaat taaatgagta gggcaatgtg 1140tagcctttga tgatctcgct gattattagg agtgccattt gtattggcta tgattgtggt 1200atatacagca gtagacaatt aacaaaaggc taccactttc gaattatttt aggcatagat 1260ggactgggag atatgaagca catctgtggg acaacagttg cagaagggaa ggacaaactc 1320gcaagggtcg tcaaggtacc aatataatgc aatacaccgt atttaaatat atatgctttt 1380ctgtaattaa gtttatactt tcacaaaact gacattactt cgcattatca tttttggatt 1440gtcgtcgtca tgattggcgg gattgaaatg aactattgaa tctacagtct atttaggtaa 1500gcgatttcac ttggttatta atttgggacc aactacttaa tccagtttgt ttttccccta 1560taaccattat tttttcatct gtgttctcaa ctcttacttt tccatcttgt tccactgata 1620ggtggctatg ataaagagga gaaagctgct agggcttatg atctggctgc tcttaagtac 1680tggggtccca cgacaacaac aaattttcca gtatgtatat gtagaatgca gttttacttc 1740actgaagatc atacctttgc tatgtctcaa atgccgttca ttagttagtg gatctgaagt 1800gaaggttctg taatttttgt taactatgta cattgctgga attgtactta aagtcatttg 1860tttttgtata tctaggtgaa taactacgaa aaggagctgg aggatatgaa gcacatgaca 1920aggcaggagt ttgtagcgtc tctgagaagg tcggtcgaac agcattgatt aatcaatgcc 1980aactctattg aataaacatc tactctgtta attgttaaag tttgagagaa agatctgcat 2040gttagatctt aatagaccac tgtatatgaa tgcaggaaga gcagtggttt ctccagaggt 2100gcatccattt acaggggagt gactaggtat gaattcatat aatggcgtca acaaacacac

2160atacactttg attgaggagg cgaatgcacg catggattga atgtgaatgg tgttttactt 2220gaactatgta attataggca tcaccagcat ggaagatggc aagcacggat tggacgagtt 2280gcagggaaca aggatctcta cttgggcacc ttcagtaagt atcagagatg ttttctcatt 2340gtatatagag gagtacttct atatgtatat atacattcag ttattcacca cacaaaagca 2400aattgcagtc aactaataac aatctcaacg caatgagaag caagtgttac agctgatagt 2460acacatttgt agaccttctg catatggatg ttatatatga tgactattaa aaatgtgacc 2520attgcatcaa gtcatgcaaa gttgcattgc agtagtacat acattactta gtgcatgctc 2580ctcaagtggc tttttcaaac ctgatcccat gtctggcgct attgttgtct cccattcacc 2640cgtgcatcag gtcaaaatag tactatgcct caataagaaa cacatgagca tgcactggca 2700gcagcagact aatcaagttc tatcatttac taataaacta attaggctac agcatccaaa 2760agattctacc cattaagcca caactgttca tgcatgcatt cataaaccag gataccacca 2820tgcatgcgtg caccgtgttc gtgcttggaa tattgagctg agccgagtgc acccttgcgt 2880ggatgcaggc acgcaggagg aggcagcgga ggcatacgac attgcggcga tcaagttccg 2940cggcctcaac gccgtcacaa acttcgacat gagccgctac gacgtcaaga gcatcctgga 3000cagcagtgcg ctccccatcg gcagcgccgc caagcgtctc aaggaggccg aggccgccgc 3060gtccgcacag caccatgccg gcgtggtgag ctacgacgtc ggccgcatag cctcacagct 3120cggcgacggc ggcgccctgg cggcggcgta cggcgcgcac taccatggcg cctggccgac 3180catcgcgttc cagccgagcg cggccacggg cctgtaccac ccgtacgcgc agccgatgcg 3240cgggtggtgc aagcaggagc aggaccacgc ggtgatcgcg gccgcgcaca gcctgcagga 3300gctccaccac ctgaacctgg gtgctgccgc cggcgcgcac gacttcttct cggcggggca 3360gcaggcggcg atgcacggcc tgggtagcat ggacaatgca tcactcgagc acagcaccgg 3420ctccaactcc gtcgtgtaca acggtgttgg tgatagcaac ggcagcaccg tcgtcggcag 3480tggtggctac atgatgccta tgagcgctgc cacggcgacg gctaccacgg caatggtgag 3540ccacgagcag gtgcatgcac gggcacaggg tgatcaccac gacgaagcca agcaggctgc 3600tcagatgggg tacgagagct acctggtgaa cgcagagaac tatggcggcg ggaggatgtc 3660tgcggcctgg gcgactgtct cagcgccacc ggcggcaagc agcaacgata acatggcgga 3720cgtcggccat ggcggcgcac agctcttcag tgtctggaac gatact 376670530PRTGlycine max 70Met Asp Ser Ser Ser Ser Ser Pro Pro Asn Ser Thr Asn Asn Asn Ser1 5 10 15Leu Ala Phe Ser Leu Ser Asn His Phe Pro Asn Pro Ser Ser Ser Pro 20 25 30Leu Ser Leu Phe His Ser Phe Thr Tyr Pro Ser Leu Ser Leu Thr Gly 35 40 45Ser Asn Thr Val Asp Ala Pro Pro Glu Pro Thr Ala Gly Ala Gly Pro 50 55 60Thr Asn Leu Ser Ile Phe Thr Gly Gly Pro Lys Phe Glu Asp Phe Leu65 70 75 80Gly Gly Ser Ala Ala Thr Ala Thr Thr Val Ala Cys Ala Pro Pro Gln 85 90 95Leu Pro Gln Phe Ser Thr Asp Asn Asn Asn His Leu Tyr Asp Ser Glu 100 105 110Leu Lys Ser Thr Ile Ala Ala Cys Phe Pro Arg Ala Leu Ala Ala Glu 115 120 125Gln Ser Thr Glu Pro Gln Lys Pro Ser Pro Lys Lys Thr Val Asp Thr 130 135 140Phe Gly Gln Arg Thr Ser Ile Tyr Arg Gly Val Thr Arg His Arg Trp145 150 155 160Thr Gly Arg Tyr Glu Ala His Leu Trp Asp Asn Ser Cys Arg Arg Glu 165 170 175Gly Gln Ser Arg Lys Gly Arg Gln Val Tyr Leu Gly Gly Tyr Asp Lys 180 185 190Glu Asp Lys Ala Ala Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr Trp 195 200 205Gly Pro Thr Thr Thr Thr Asn Phe Pro Ile Ser Asn Tyr Glu Lys Glu 210 215 220Leu Glu Glu Met Lys Asn Met Thr Arg Gln Glu Phe Val Ala Ser Leu225 230 235 240Arg Arg Lys Ser Ser Gly Phe Ser Arg Gly Ala Ser Ile Tyr Arg Gly 245 250 255Val Thr Arg His His Gln His Gly Arg Trp Gln Ala Arg Ile Gly Arg 260 265 270Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly Thr Phe Ser Thr Gln Glu 275 280 285Glu Ala Ala Glu Ala Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly Leu 290 295 300Asn Ala Val Thr Asn Phe Asp Met Ser Arg Tyr Asp Val Lys Ser Ile305 310 315 320Ala Asn Ser Thr Leu Pro Ile Gly Gly Leu Ser Gly Lys Asn Lys Asn 325 330 335Ser Thr Asp Ser Ala Ser Glu Ser Lys Ser His Glu Pro Ser Gln Ser 340 345 350Asp Gly Asp Pro Ser Ser Ala Ser Ser Val Thr Phe Ala Ser Gln Gln 355 360 365Gln Pro Ser Ser Ser Asn Leu Ser Phe Ala Ile Pro Ile Lys Gln Asp 370 375 380Pro Ser Asp Tyr Trp Ser Ile Leu Gly Tyr His Asn Thr Pro Leu Asp385 390 395 400Asn Ser Gly Ile Arg Asn Thr Thr Ser Thr Val Thr Thr Thr Thr Phe 405 410 415Pro Ser Ser Asn Asn Gly Thr Ala Ser Ser Leu Thr Pro Phe Asn Met 420 425 430Glu Phe Ser Ser Ala Pro Ser Ser Thr Gly Ser Asp Asn Asn Ala Ala 435 440 445Phe Phe Ser Gly Gly Gly Ile Phe Val Gln Gln Gln Thr Ser His Gly 450 455 460His Gly Asn Ala Ser Ser Gly Ser Ser Ser Ser Ser Leu Ser Cys Ser465 470 475 480Ile Pro Phe Ala Thr Pro Ile Phe Ser Leu Asn Ser Asn Thr Ser Tyr 485 490 495Glu Ser Ser Ala Gly Tyr Gly Asn Trp Ile Gly Pro Thr Leu His Thr 500 505 510Phe Gln Ser His Ala Lys Pro Ser Leu Phe Gln Thr Pro Ile Phe Gly 515 520 525Met Glu 53071528PRTGlycine max 71Met Asp Ser Cys Ser Ser Pro Pro Asn Asn Asn Ser Leu Ala Phe Ser1 5 10 15Leu Ser Asn His Phe Pro Asn Pro Ser Ser Ser Pro Leu Ser Leu Phe 20 25 30His Ser Phe Thr Tyr Pro Ser Leu Ser Leu Thr Gly Ser His Thr Ala 35 40 45Asp Ala Pro Pro Glu Pro Ile Ala Gly Gly Gly Ala Thr Asn Leu Ser 50 55 60Ile Phe Thr Gly Ala Pro Lys Phe Glu Asp Phe Leu Gly Gly Ser Ser65 70 75 80Ala Thr Ala Thr Ala Thr Thr Cys Ala Pro Pro Gln Leu Pro Gln Phe 85 90 95Ser Thr Asp Asn Asn Asn His Leu Tyr Asp Ser Glu Leu Lys Thr Thr 100 105 110Ile Ala Ala Cys Phe Pro Arg Ala Phe Ala Ala Glu Pro Thr Thr Glu 115 120 125Pro Gln Lys Pro Ser Pro Lys Lys Thr Val Asp Thr Phe Gly Gln Arg 130 135 140Thr Ser Ile Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr145 150 155 160Glu Ala His Leu Trp Asp Asn Ser Cys Arg Arg Glu Gly Gln Ser Arg 165 170 175Lys Gly Arg Gln Val Tyr Leu Gly Gly Tyr Asp Lys Glu Asp Lys Ala 180 185 190Ala Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr Trp Gly Pro Thr Thr 195 200 205Thr Thr Asn Phe Pro Ile Ser Asn Tyr Glu Lys Glu Leu Glu Glu Met 210 215 220Lys Asn Met Thr Arg Gln Glu Phe Val Ala Ser Leu Arg Arg Lys Ser225 230 235 240Ser Gly Phe Ser Arg Gly Ala Ser Ile Tyr Arg Gly Val Thr Arg His 245 250 255His Gln His Gly Arg Trp Gln Ala Arg Ile Gly Arg Val Ala Gly Asn 260 265 270Lys Asp Leu Tyr Leu Gly Thr Phe Ser Thr Gln Glu Glu Ala Ala Glu 275 280 285Ala Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly Leu Asn Ala Val Thr 290 295 300Asn Phe Asp Met Ser Arg Tyr Asp Val Lys Ser Ile Ala Asn Ser Thr305 310 315 320Leu Pro Ile Gly Gly Leu Ser Gly Lys Asn Lys Asn Ser Thr Asp Ser 325 330 335Ala Ser Glu Ser Lys Ser His Glu Ala Ser Arg Ser Asp Glu Arg Asp 340 345 350Pro Ser Ala Ala Ser Ser Val Thr Phe Ala Ser Gln Gln Gln Pro Ser 355 360 365Ser Ser Thr Leu Ser Phe Ala Ile Pro Ile Lys Gln Asp Pro Ser Asp 370 375 380Tyr Trp Ser Ile Leu Gly Tyr His Asn Ser Pro Leu Asp Asn Thr Gly385 390 395 400Ile Arg Asn Thr Thr Ser Val Thr Ala Thr Ser Phe Pro Ser Ser Asn 405 410 415Asn Gly Thr Thr Ser Ser Leu Thr Pro Phe His Met Glu Phe Ser Asn 420 425 430Ala Pro Thr Ser Thr Gly Ser Asp Asn Asp Ala Ala Phe Phe Ser Gly 435 440 445Gly Gly Ile Phe Val Gln Gln Gln Ser Gly His Gly Asn Gly His Gly 450 455 460Ser Gly Ser Ser Gly Ser Ser Ser Ser Ser Leu Ser Cys Ser Ile Pro465 470 475 480Phe Ala Thr Pro Ile Phe Ser Leu Asn Ser Asn Thr Ser Tyr Glu Asn 485 490 495Ser Ala Gly Tyr Gly Asn Trp Ile Gly Pro Thr Leu His Thr Phe Gln 500 505 510Ser His Ala Lys Pro Ser Leu Phe Gln Thr Pro Ile Phe Gly Met Glu 515 520 52572488PRTZea mays 72Met Asp Met Asp Met Ser Ser Ala Tyr Pro His His Trp Leu Ser Phe1 5 10 15Ser Leu Ser Asn Asn Tyr His His Gly Leu Leu Glu Ala Phe Ser Asn 20 25 30Ser Ser Gly Thr Pro Leu Gly Asp Glu Gln Gly Ala Val Glu Glu Ser 35 40 45Pro Arg Thr Val Glu Asp Phe Leu Gly Gly Val Gly Gly Ala Gly Ala 50 55 60Pro Pro Gln Pro Ala Ala Ala Ala Asp Gln Asp His Gln Leu Val Cys65 70 75 80Gly Glu Leu Gly Ser Ile Thr Ala Arg Phe Leu Arg His Tyr Pro Ala 85 90 95Ala Pro Ala Gly Thr Thr Val Glu Asn Pro Gly Ala Val Thr Val Ala 100 105 110Ala Met Ser Ser Thr Asp Val Ala Gly Ala Glu Ser Asp Gln Ala Arg 115 120 125Arg Pro Ala Glu Thr Phe Gly Gln Arg Thr Ser Ile Tyr Arg Gly Val 130 135 140Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu Trp Asp Asn145 150 155 160Ser Cys Arg Arg Glu Gly Gln Ser Arg Lys Gly Arg Gln Val Tyr Leu 165 170 175Gly Gly Tyr Asp Lys Glu Glu Lys Ala Ala Arg Ala Tyr Asp Leu Ala 180 185 190Ala Leu Lys Tyr Trp Gly Pro Thr Thr Thr Thr Asn Phe Pro Val Ser 195 200 205Asn Tyr Glu Lys Glu Leu Glu Glu Met Lys Ser Met Thr Arg Gln Glu 210 215 220Phe Ile Ala Ser Leu Arg Arg Lys Ser Ser Gly Phe Ser Arg Gly Ala225 230 235 240Ser Ile Tyr Arg Gly Val Thr Arg His His Gln His Gly Arg Trp Gln 245 250 255Ala Arg Ile Gly Arg Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly Thr 260 265 270Phe Ser Thr Gln Glu Glu Ala Ala Glu Ala Tyr Asp Ile Ala Ala Ile 275 280 285Lys Phe Arg Gly Leu Asn Ala Val Thr Asn Phe Asp Met Ser Arg Tyr 290 295 300Asp Val Glu Ser Ile Leu Ser Ser Asp Leu Pro Val Gly Gly Gly Ala305 310 315 320Ser Gly Arg Ala Pro Ala Lys Phe Pro Leu Asp Ser Leu Gln Pro Gly 325 330 335Ser Ala Ala Ala Met Met Leu Ala Gly Ala Ala Ala Ala Ser Gln Ala 340 345 350Thr Met Pro Pro Ser Glu Lys Asp Tyr Trp Ser Leu Leu Ala Leu His 355 360 365Tyr Gln Gln Gln Gln Glu Gln Glu Arg Gln Phe Pro Ala Ser Ala Tyr 370 375 380Glu Ala Tyr Gly Ser Gly Gly Val Asn Val Asp Phe Thr Met Gly Thr385 390 395 400Ser Ser Gly Asn Asn Asn Asn Asn Thr Gly Ser Gly Val Met Trp Gly 405 410 415Ala Thr Thr Gly Ala Val Val Val Gly Gln Gln Asp Ser Ser Gly Lys 420 425 430Gln Gly Asn Gly Tyr Ala Ser Asn Ile Pro Tyr Ala Ala Ala Ala Met 435 440 445Val Ser Gly Ser Ala Gly Tyr Glu Gly Ser Thr Gly Asp Asn Gly Thr 450 455 460Trp Val Thr Thr Thr Thr Ser Ser Asn Thr Gly Thr Ala Pro His Tyr465 470 475 480Tyr Asn Tyr Leu Phe Gly Met Glu 48573495PRTOryza sativa 73Met Asp Met Asp Thr Ser His His Tyr Pro Trp Leu Asn Phe Ser Leu1 5 10 15Ala His His Cys Glu Met Glu Glu Glu Glu Arg Gly Ala Ala Ala Glu 20 25 30Leu Ala Ala Ile Ala Gly Ala Ala Pro Pro Pro Lys Leu Glu Asp Phe 35 40 45Leu Gly Gly Gly Cys Asn Gly Gly Ser Ser Gly Gly Ala Cys Pro Pro 50 55 60Val Gln Thr Thr Ala Pro Thr Ala Ala Glu Leu Tyr Glu Ser Glu Leu65 70 75 80Lys Phe Leu Ala Ala Gly Phe Gln Leu Ser Gly Ala Ala Gly Ala Ala 85 90 95Pro Pro Val Pro Ala Leu Leu Pro Ala Ala Ala Leu Glu Gln Thr Asp 100 105 110Glu Thr Lys Gln Leu Ala Leu Pro Pro Gln Ala Ala Val Ala Pro Pro 115 120 125Pro Glu Gln Lys Lys Ala Val Asp Ser Phe Gly Gln Arg Thr Ser Ile 130 135 140Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His145 150 155 160Leu Trp Asp Asn Ser Cys Arg Arg Glu Gly Gln Ser Arg Lys Gly Arg 165 170 175Gln Val Tyr Leu Gly Gly Tyr Asp Lys Glu Glu Lys Ala Ala Arg Ala 180 185 190Tyr Asp Leu Ala Ala Leu Lys Tyr Trp Gly Pro Ser Thr Thr Thr Asn 195 200 205Phe Pro Val Ala Glu Tyr Glu Lys Glu Leu Glu Glu Met Lys His Met 210 215 220Thr Arg Gln Glu Phe Val Ala Ser Leu Arg Arg Lys Ser Ser Gly Phe225 230 235 240Ser Arg Gly Ala Ser Ile Tyr Arg Gly Val Thr Arg His His Gln His 245 250 255Gly Arg Trp Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys Asp Leu 260 265 270Tyr Leu Gly Thr Phe Gly Thr Glu Glu Glu Ala Ala Glu Ala Tyr Asp 275 280 285Ile Ala Ala Ile Lys Phe Arg Gly Leu Asn Ala Val Thr Asn Phe Glu 290 295 300Ile Gly Arg Tyr Asn Val Glu Ser Ile Ile Ser Ser Asn Leu Pro Ile305 310 315 320Gly Ser Met Ala Gly Asn Arg Ser Thr Lys Ala Gly Leu Glu Leu Ala 325 330 335Pro Ser Ser Ser Ala Asp Ala Ile Ala Ala Thr Glu Ala Asn His Thr 340 345 350Gly Val Ala Pro Pro Ser Thr Leu Ala Phe Thr Ala Leu Pro Met Lys 355 360 365Tyr Asp Gln Ala Asp Tyr Leu Ser Tyr Leu Ala Leu Gln His His Gln 370 375 380Gln Gly Asn Leu Gln Gly Leu Gly Phe Gly Leu Tyr Ser Ser Gly Val385 390 395 400Asn Leu Asp Phe Ala Asn Ala Asn Gly Asn Gly Ala Met Ser Asn Cys 405 410 415Tyr Thr Asn Val Ser Leu His Glu Gln Gln Gln Gln His Gln His Gln 420 425 430His Gln Gln Glu Gln Gln Gln Asp Gln Gln Asp Asp Gln Ser Gln Ser 435 440 445Ser Asn Asn Ser Cys Gly Ser Ile Pro Phe Ala Thr Pro Ile Ala Phe 450 455 460Ser Gly Ser Tyr Glu Ser Ser Met Thr Ala Ala Gly Thr Phe Gly Tyr465 470 475 480Tyr Pro Asn Val Ala Ala Phe Gln Thr Pro Ile Phe Gly Met Glu 485 490 49574558PRTArabidopsis thaliana 74Met Lys Asn Asn Asn Asn Lys Ser Ser Ser Ser Ser Ser Tyr Asp Ser1 5 10 15Ser Leu Ser Pro Ser Ser Ser Ser Ser Ser His Gln Asn Trp Leu Ser 20 25 30Phe Ser Leu Ser Asn Asn Asn Asn Asn Phe Asn Ser Ser Ser Asn Pro 35 40 45Asn Leu Thr Ser Ser Thr Ser Asp His His His Pro His Pro Ser His 50 55 60Leu Ser Leu Phe Gln Ala Phe Ser Thr Ser Pro Val Glu Arg Gln Asp65 70 75 80Gly Ser Pro Gly Val Ser Pro Ser Asp Ala Thr Ala Val Leu Ser Val 85 90 95Tyr Pro Gly Gly Pro Lys Leu Glu Asn Phe Leu Gly Gly Gly Ala Ser 100 105 110Thr Thr Thr Thr Arg Pro Met Gln Gln Val Gln Ser Leu Gly Gly Val 115 120 125Val Phe Ser Ser Asp Leu Gln Pro Pro Leu His Pro Pro Ser Ala Ala 130 135 140Glu Ile Tyr Asp Ser Glu Leu Lys Ser Ile Ala Ala Ser Phe Leu Gly145

150 155 160Asn Tyr Ser Gly Gly His Ser Ser Glu Val Ser Ser Val His Lys Gln 165 170 175Gln Pro Asn Pro Leu Ala Val Ser Glu Ala Ser Pro Thr Pro Lys Lys 180 185 190Asn Val Glu Ser Phe Gly Gln Arg Thr Ser Ile Tyr Arg Gly Val Thr 195 200 205Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu Trp Asp Asn Ser 210 215 220Cys Arg Arg Glu Gly Gln Ser Arg Lys Gly Arg Gln Val Tyr Leu Gly225 230 235 240Gly Tyr Asp Lys Glu Asp Lys Ala Ala Arg Ala Tyr Asp Leu Ala Ala 245 250 255Leu Lys Tyr Trp Gly Pro Thr Thr Thr Thr Asn Phe Pro Ile Ser Asn 260 265 270Tyr Glu Ser Glu Leu Glu Glu Met Lys His Met Thr Arg Gln Glu Phe 275 280 285Val Ala Ser Leu Arg Arg Lys Ser Ser Gly Phe Ser Arg Gly Ala Ser 290 295 300Met Tyr Arg Gly Val Thr Arg His His Gln His Gly Arg Trp Gln Ala305 310 315 320Arg Ile Gly Arg Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly Thr Phe 325 330 335Ser Thr Gln Glu Glu Ala Ala Glu Ala Tyr Asp Ile Ala Ala Ile Lys 340 345 350Phe Arg Gly Leu Asn Ala Val Thr Asn Phe Asp Ile Ser Arg Tyr Asp 355 360 365Val Lys Ser Ile Ala Ser Cys Asn Leu Pro Val Gly Gly Leu Met Pro 370 375 380Lys Pro Ser Pro Ala Thr Ala Ala Ala Asp Lys Thr Val Asp Leu Ser385 390 395 400Pro Ser Asp Ser Pro Ser Leu Thr Thr Pro Ser Leu Thr Phe Asn Val 405 410 415Ala Thr Pro Val Asn Asp His Gly Gly Thr Phe Tyr His Thr Gly Ile 420 425 430Pro Ile Lys Pro Asp Pro Ala Asp His Tyr Trp Ser Asn Ile Phe Gly 435 440 445Phe Gln Ala Asn Pro Lys Ala Glu Met Arg Pro Leu Ala Asn Phe Gly 450 455 460Ser Asp Leu His Asn Pro Ser Pro Gly Tyr Ala Ile Met Pro Val Met465 470 475 480Gln Glu Gly Glu Asn Asn Phe Gly Gly Ser Phe Val Gly Ser Asp Gly 485 490 495Tyr Asn Asn His Ser Ala Ala Ser Asn Pro Val Ser Ala Ile Pro Leu 500 505 510Ser Ser Thr Thr Thr Met Ser Asn Gly Asn Glu Gly Tyr Gly Gly Asn 515 520 525Ile Asn Trp Ile Asn Asn Asn Ile Ser Ser Ser Tyr Gln Thr Ala Lys 530 535 540Ser Asn Leu Ser Val Leu His Thr Pro Val Phe Gly Leu Glu545 550 55575568PRTArabidopsis thaliana 75Met Asn Ser Asn Asn Trp Leu Ala Phe Pro Leu Ser Pro Thr His Ser1 5 10 15Ser Leu Pro Pro His Ile His Ser Ser Gln Asn Ser His Phe Asn Leu 20 25 30Gly Leu Val Asn Asp Asn Ile Asp Asn Pro Phe Gln Asn Gln Gly Trp 35 40 45Asn Met Ile Asn Pro His Gly Gly Gly Gly Glu Gly Gly Glu Val Pro 50 55 60Lys Val Ala Asp Phe Leu Gly Val Ser Lys Ser Gly Asp His His Thr65 70 75 80Asp His Asn Leu Val Pro Tyr Asn Asp Ile His Gln Thr Asn Ala Ser 85 90 95Asp Tyr Tyr Phe Gln Thr Asn Ser Leu Leu Pro Thr Val Val Thr Cys 100 105 110Ala Ser Asn Ala Pro Asn Asn Tyr Glu Leu Gln Glu Ser Ala His Asn 115 120 125Leu Gln Ser Leu Thr Leu Ser Met Gly Ser Thr Gly Ala Ala Ala Ala 130 135 140Glu Val Ala Thr Val Lys Ala Ser Pro Ala Glu Thr Ser Ala Asp Asn145 150 155 160Ser Ser Ser Thr Thr Asn Thr Ser Gly Gly Ala Ile Val Glu Ala Thr 165 170 175Pro Arg Arg Thr Leu Glu Thr Phe Gly Gln Arg Thr Ser Ile Tyr Arg 180 185 190Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu Trp 195 200 205Asp Asn Ser Cys Arg Arg Glu Gly Gln Ser Arg Lys Gly Arg Gln Val 210 215 220Tyr Leu Gly Gly Tyr Asp Lys Glu Glu Lys Ala Ala Arg Ala Tyr Asp225 230 235 240Leu Ala Ala Leu Lys Tyr Trp Gly Pro Ser Thr Thr Thr Asn Phe Pro 245 250 255Ile Thr Asn Tyr Glu Lys Glu Val Glu Glu Met Lys Asn Met Thr Arg 260 265 270Gln Glu Phe Val Ala Ser Ile Arg Arg Lys Ser Ser Gly Phe Ser Arg 275 280 285Gly Ala Ser Met Tyr Arg Gly Val Thr Arg His His Gln His Gly Arg 290 295 300Trp Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys Asp Leu Tyr Leu305 310 315 320Gly Thr Phe Ser Thr Glu Glu Glu Ala Ala Glu Ala Tyr Asp Ile Ala 325 330 335Ala Ile Lys Phe Arg Gly Leu Asn Ala Val Thr Asn Phe Glu Ile Asn 340 345 350Arg Tyr Asp Val Lys Ala Ile Leu Glu Ser Asn Thr Leu Pro Ile Gly 355 360 365Gly Gly Ala Ala Lys Arg Leu Lys Glu Ala Gln Ala Leu Glu Ser Ser 370 375 380Arg Lys Arg Glu Glu Met Ile Ala Leu Gly Ser Asn Phe His Gln Tyr385 390 395 400Gly Ala Ala Ser Gly Ser Ser Ser Val Ala Ser Ser Ser Arg Leu Gln 405 410 415Leu Gln Pro Tyr Pro Leu Ser Ile Gln Gln Pro Phe Glu His Leu His 420 425 430His His Gln Pro Leu Leu Thr Leu Gln Asn Asn Asn Asp Ile Ser Gln 435 440 445Tyr His Asp Ser Phe Ser Tyr Ile Gln Thr Gln Leu His Leu His Gln 450 455 460Gln Gln Thr Asn Asn Tyr Leu Gln Ser Ser Ser His Thr Ser Gln Leu465 470 475 480Tyr Asn Ala Tyr Leu Gln Ser Asn Pro Gly Leu Leu His Gly Phe Val 485 490 495Ser Asp Asn Asn Asn Thr Ser Gly Phe Leu Gly Asn Asn Gly Ile Gly 500 505 510Ile Gly Ser Ser Ser Thr Val Gly Ser Ser Ala Glu Glu Glu Phe Pro 515 520 525Ala Val Lys Val Asp Tyr Asp Met Pro Pro Ser Gly Gly Ala Thr Gly 530 535 540Tyr Gly Gly Trp Asn Ser Gly Glu Ser Ala Gln Gly Ser Asn Pro Gly545 550 555 560Gly Val Phe Thr Met Trp Asn Glu 56576474PRTSorghum bicolor 76Met Asp Met Asp Met Ser Ser Ala Tyr Pro His His Trp Leu Ser Phe1 5 10 15Ser Leu Ser Asn Asn Tyr His His Gly Leu Leu Glu Ala Phe Ser Asn 20 25 30Ser Ser Ser Ala Ala Pro Leu Gly Asp Glu Gln Gly Thr Val Glu Glu 35 40 45Ser Pro Lys Met Val Glu Asp Phe Leu Gly Gly Val Gly Gly Ala Gly 50 55 60Ala Pro Pro Ala Ala Ala Thr Ala Ala Glu Asp His Gln Leu Val Cys65 70 75 80Gly Glu Leu Gly Ser Ile Thr Ala Gly Phe Leu Arg His Tyr Pro Ala 85 90 95Pro Gly Thr Thr Val Glu Asn Pro Gly Ala Val Thr Val Ala Ala Met 100 105 110Ser Thr Asp Val Ala Glu Ser Asp Gln Ala Arg Arg Pro Ala Glu Thr 115 120 125Phe Gly Gln Arg Thr Ser Ile Tyr Arg Gly Val Thr Arg His Arg Trp 130 135 140Thr Gly Arg Tyr Glu Ala His Leu Trp Asp Asn Ser Cys Arg Arg Glu145 150 155 160Gly Gln Ser Arg Lys Gly Arg Gln Val Tyr Leu Gly Gly Tyr Asp Lys 165 170 175Glu Glu Lys Ala Ala Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr Trp 180 185 190Gly Ala Thr Thr Thr Thr Asn Phe Pro Val Ser Asn Tyr Glu Lys Glu 195 200 205Leu Glu Glu Met Lys Ser Met Thr Arg Gln Glu Phe Ile Ala Ser Leu 210 215 220Arg Arg Lys Ser Ser Gly Phe Ser Arg Gly Ala Ser Ile Tyr Arg Gly225 230 235 240Val Thr Arg His His Gln His Gly Arg Trp Gln Ala Arg Ile Gly Arg 245 250 255Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly Thr Phe Ser Thr Gln Glu 260 265 270Glu Ala Ala Glu Ala Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly Leu 275 280 285Asn Ala Val Thr Asn Phe Asp Met Ser Arg Tyr Asp Val Asp Ser Ile 290 295 300Leu Asn Ser Asp Leu Pro Val Gly Gly Gly Ala Ala Gly Arg Ala Ser305 310 315 320Lys Phe Pro Leu Asp Ser Leu Gln Pro Gly Ser Ala Ala Ala Met Ile 325 330 335Ala Gly Ala Ala Ser Gln Ala Met Pro Pro Ser Glu Lys Asp Tyr Trp 340 345 350Ser Leu Leu Ala Leu His Tyr Gln Gln Gln Gln Gln Gln Gln Gln Phe 355 360 365Pro Ala Ser Ala Tyr Glu Ala Tyr Gly Ser Gly Val Asn Val Asp Phe 370 375 380Thr Met Gly Thr Ser Ser His Ser Ser Ser Asn Thr Gly Ser Gly Val385 390 395 400Met Trp Gly Thr Thr Thr Gly Ala Met Gly Gln Gln Asp Ser Ser Ser 405 410 415Ser Lys Gln Gly Asn Gly Tyr Ala Ser Asn Ile Pro Tyr Ala Ala Ala 420 425 430Ala Ala Ala Met Val Ser Gly Ser Ala Gly Tyr Glu Gly Ser Thr Gly 435 440 445Asn Asn Gly Thr Trp Val Thr Ser Ser Thr Ser Thr Ser Thr Ala Pro 450 455 460Gln Tyr Tyr Asn Tyr Leu Phe Gly Met Glu465 47077549PRTOryza sativa 77Met Asp Met Asn Ser Gly Trp Leu Gly Phe Ser Leu Ser Ser Ser Ser1 5 10 15Ala Arg Gly Tyr Gly Asp Gly Cys Gly Glu Gly Asn Gly Gly Gly Asp 20 25 30Gly Asp Gly Ser Cys Ser Ser Pro Val Ala Ala Ser Pro Leu Val Ala 35 40 45Met Pro Leu His Ser Asp Gly Ser Val His Tyr Asp Ala Pro Asp Trp 50 55 60Arg His Ala Glu Ala Lys Asp Pro Lys Leu Glu Asp Phe Met Ser Val65 70 75 80Ser Tyr Ser Asn Lys Ser Ser Ser Asn Leu Tyr Gly Ser Ser Ser Ser 85 90 95Ser Ser Cys Gly His Ala Asp Gln Ile Lys Tyr His His Val His Asp 100 105 110Val Gln Ala Phe Ser Thr Pro Tyr Phe Tyr Gly His Gly Gly Ser Gly 115 120 125Val Gly Ile Asp Ile Asn Met Asn Ala Pro Pro Ala Gly Cys Thr Gly 130 135 140Val Leu Pro Asp His Arg Pro Pro Pro Pro Gln Gln Asp His Ile Phe145 150 155 160Leu Pro Pro His Gly Gln Tyr Phe Leu Gly Pro Pro Asn Pro Met Ala 165 170 175Pro Ala Pro Met Tyr Asn Ala Gly Gly Gly Gly Gly Gly Val Val Asp 180 185 190Gly Ser Met Ser Ile Ser Gly Ile Lys Ser Trp Leu Arg Gln Ala Met 195 200 205Tyr Val Pro Glu Arg Ser Ala Ala Ala Leu Ser Leu Ser Val Pro Ala 210 215 220Ala Pro Pro Ser Glu Ala Pro Leu Pro Pro Ala Ala Met Pro Val Val225 230 235 240Arg Lys Pro Ala Gln Thr Phe Gly Gln Arg Thr Ser Gln Phe Arg Gly 245 250 255Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu Trp Asp 260 265 270Asn Thr Cys Arg Lys Glu Gly Gln Thr Arg Lys Gly Arg Gln Val Tyr 275 280 285Leu Gly Gly Tyr Asp Lys Glu Glu Lys Ala Ala Arg Ala Tyr Asp Leu 290 295 300Ala Ala Leu Lys Tyr Trp Gly Pro Thr Thr His Ile Asn Phe Pro Leu305 310 315 320Ser Thr Tyr Glu Lys Glu Leu Glu Glu Met Lys His Met Thr Arg Gln 325 330 335Glu Phe Ile Ala His Leu Arg Arg Asn Ser Ser Gly Phe Ser Arg Gly 340 345 350Ala Ser Met Tyr Arg Gly Val Thr Arg His His Gln His Gly Arg Trp 355 360 365Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly 370 375 380Thr Phe Ser Thr Gln Glu Glu Ala Ala Glu Ala Tyr Asp Ile Ala Ala385 390 395 400Ile Lys Phe Arg Gly Leu Asn Ala Val Thr Asn Phe Asp Ile Ser Lys 405 410 415Tyr Asp Val Lys Arg Ile Cys Ser Ser Thr His Leu Ile Gly Gly Asp 420 425 430Leu Ala Cys Arg Arg Ser Pro Thr Arg Met Leu Pro Pro Asp Ala Pro 435 440 445Ala Gly Ala Ala Gly Val Asp Val Val Val Ala Pro Gly Asp His Gln 450 455 460Gln Ile Ser Ala Gly Gly Gly Gly Ala Ser Asp Asn Ser Asp Thr Ala465 470 475 480Ser Asp Gly His Arg Gly Ala His Leu Leu His Gly Leu Gln Tyr Ala 485 490 495His Ala Met Lys Phe Glu Ala Gly Glu Ser Ser Gly Gly Gly Gly Gly 500 505 510Asp Gly Ala Thr Thr Asn Trp Met Ala Ala Ala Ala Ala Ala Ala Arg 515 520 525Pro Val Ala Gly Ile Pro Thr Thr Val His His Gln Leu Pro Val Phe 530 535 540Ala Leu Trp Asn Asp54578553PRTGlycine max 78Met Asn Asn Asn Trp Leu Ser Phe Pro Leu Ser Pro Thr His Ser Ser1 5 10 15Leu Pro Ala His Asp Leu Gln Ala Thr Gln Tyr His Gln Phe Ser Leu 20 25 30Gly Leu Val Asn Glu Asn Met Asp Asn Pro Phe Gln Asn His Asp Trp 35 40 45Asn Leu Ile Asn Thr His Ser Ser Asn Glu Ile Pro Lys Val Ala Asp 50 55 60Phe Leu Gly Val Ser Lys Ser Glu Asn Gln Ser Asp Leu Ala Ala Leu65 70 75 80Asn Glu Ile His Ser Asn Asp Ser Asp Tyr Leu Phe Thr Asn Asn Ser 85 90 95Leu Val Pro Met Gln Asn Pro Val Leu Asp Thr Pro Ser Asn Glu Tyr 100 105 110Gln Glu Asn Ala Asn Ser Asn Leu Gln Ser Leu Thr Leu Ser Met Gly 115 120 125Ser Gly Lys Asp Ser Thr Cys Glu Thr Ser Gly Glu Asn Ser Thr Asn 130 135 140Thr Thr Val Glu Val Ala Pro Arg Arg Thr Leu Asp Thr Phe Gly Gln145 150 155 160Arg Thr Ser Ile Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg 165 170 175Tyr Glu Ala His Leu Trp Asp Asn Ser Cys Arg Arg Glu Gly Gln Ser 180 185 190Arg Lys Gly Arg Gln Val Tyr Leu Gly Gly Tyr Asp Lys Glu Glu Lys 195 200 205Ala Ala Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr Trp Gly Thr Ser 210 215 220Thr Thr Thr Asn Phe Pro Ile Ser Asn Tyr Glu Lys Glu Leu Asp Glu225 230 235 240Met Lys His Met Thr Arg Gln Glu Phe Val Ala Ala Ile Arg Arg Lys 245 250 255Ser Ser Gly Phe Ser Arg Gly Ala Ser Met Tyr Arg Gly Val Thr Arg 260 265 270His His Gln His Gly Arg Trp Gln Ala Arg Ile Gly Arg Val Ala Gly 275 280 285Asn Lys Asp Leu Tyr Leu Gly Thr Phe Ser Thr Glu Glu Glu Ala Ala 290 295 300Glu Ala Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly Leu Asn Ala Val305 310 315 320Thr Asn Phe Asp Met Ser Arg Tyr Asp Val Lys Ala Ile Leu Glu Ser 325 330 335Asn Thr Leu Pro Ile Gly Gly Gly Ala Ala Lys Arg Leu Lys Glu Ala 340 345 350Gln Ala Leu Glu Ser Ser Arg Lys Arg Glu Glu Met Ile Ala Leu Gly 355 360 365Ser Ser Ser Thr Phe Gln Tyr Gly Thr Ser Ala Ser Ser Ser Arg Leu 370 375 380His Ala Tyr Pro Leu Met Gln His His His Gln Phe Glu Gln Pro Gln385 390 395 400Pro Leu Leu Thr Leu Gln Asn His Asp Ile Ser Ser Ser His Phe Ser 405 410 415His Gln Gln Asp Pro Leu His His Gln Gly Tyr Ile Gln Thr Gln Leu 420 425 430Gln Leu His Gln Gln Ser Gly Ala Ser Ser Tyr Ser Phe Gln Asn Asn 435 440 445Ala Gln Phe Tyr Asn Gly Tyr Leu Gln Asn His Pro Ala Leu Leu Gln 450 455 460Gly Met Met Asn Met Gly Ser Ser Ser Ser Ser Ser Ser Val Leu Glu465

470 475 480Asn Asn Asn Ser Asn Asn Asn Asn Asn Asn Val Gly Gly Phe Val Gly 485 490 495Ser Gly Phe Gly Met Ala Ser Asn Ala Thr Ala Gly Asn Thr Val Gly 500 505 510Thr Ala Glu Glu Leu Gly Leu Val Lys Val Asp Tyr Asp Met Pro Ala 515 520 525Gly Gly Tyr Gly Gly Trp Ser Ala Ala Asp Ser Met Gln Thr Ser Asn 530 535 540Gly Gly Val Phe Thr Met Trp Asn Asp545 55079509PRTMedicago truncatula 79Met Asp Lys Ser Ser Ser Ser Pro Pro Thr Asn Thr Asn Asn Thr Ser1 5 10 15Leu Ala Phe Ser Leu Ser Asn Asn Asn Phe Pro Asn Pro Ser His Ser 20 25 30Ser Ser Ser His Leu Ser Leu Phe His Ser Phe Thr Pro Tyr Pro Ser 35 40 45Ser Ile Ile Pro Pro Ser Leu Thr Leu Thr Gly Ser Asn Asn Pro Val 50 55 60Glu Ala Ser Pro Glu Ala Thr Asp Gly Gly Thr Thr Asn Leu Ser Ile65 70 75 80Phe Thr Gly Gly His Lys Phe Glu Asp Phe Leu Gly Ser Ser Val Ala 85 90 95Pro Thr Arg Thr Ala Ala Ala Thr Cys Ala Pro Thr Gln Leu Gln Gln 100 105 110Phe Ser Thr Asp Asn Asp Val Tyr Asn Ser Glu Leu Lys Lys Thr Ile 115 120 125Ala Ala Cys Phe Pro Gly Gly Tyr Pro Thr Glu Pro Asn Ser Glu Pro 130 135 140Gln Lys Pro Ser Pro Lys Lys Thr Val Asp Thr Phe Gly Gln Arg Thr145 150 155 160Ser Ile Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu 165 170 175Ala His Leu Trp Asp Asn Ser Cys Arg Arg Glu Gly Gln Ser Arg Lys 180 185 190Gly Arg Gln Gly Gly Tyr Asp Lys Glu Glu Lys Ala Ala Arg Ala Tyr 195 200 205Asp Leu Ala Ala Leu Lys Tyr Trp Gly Pro Thr Thr Thr Thr Asn Phe 210 215 220Pro Ile Ser Asn Tyr Glu Lys Glu Ile Asp Asp Met Lys Asn Met Thr225 230 235 240Arg Gln Glu Phe Val Ala Ser Leu Arg Arg Lys Ser Ser Gly Phe Ser 245 250 255Arg Gly Ala Ser Ile Tyr Arg Gly Val Thr Arg His His Gln His Gly 260 265 270Arg Trp Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys Asp Leu Tyr 275 280 285Leu Gly Thr Phe Ser Thr Gln Glu Glu Ala Ala Glu Ala Tyr Asp Ile 290 295 300Ala Ala Ile Lys Phe Arg Gly Leu Asn Ala Val Thr Asn Phe Asp Met305 310 315 320Ser Arg Tyr Asp Val Lys Ser Ile Ala Asn Cys Ser Leu Pro Ile Gly 325 330 335Gly Leu Ser Asn Lys Asn Asn Lys Asn Ser Thr Asp Cys Val Ser Glu 340 345 350Thr Lys Ile Asn Glu Pro Ile Gln Ser Asp Glu Ile Asp His Pro Ser 355 360 365Ser Thr Ser Ser Ala Thr Thr Leu Ser Phe Ala Leu Pro Ile Lys Gln 370 375 380Asp Pro Ser Thr Asp Tyr Trp Ser Asn Ile Leu Gly Phe His Asn Asn385 390 395 400Pro Ser Ala Val Thr Thr Thr Thr Ile Pro Phe Asn Met Asp Phe Ser 405 410 415Ala His Val Pro Ser Asn Thr Asn Ser Asp Asn Pro His Asn Ala Ala 420 425 430Phe Phe Ser Gly Ser Gly Ile Phe Val Gln Gln Gln Asn Met Asn Gly 435 440 445Ser Ser Gly Ser Asn Ser Ser Ser Ser Ser Ser Ala Ser Thr Ser Ser 450 455 460Ile Pro Phe Ala Thr Pro Ile Phe Ser Leu Asn Ser Asn Ser Ser Ser465 470 475 480Tyr Gly Asn Gly Asn Asn Trp Ile Gly His Thr Phe Gln Thr His Ala 485 490 495Lys Pro Ser Leu Phe Gln Thr Pro Ile Phe Gly Met Glu 500 50580492PRTZea mays 80Met Asp Thr Ser His His Tyr His Pro Trp Leu Asn Phe Ser Leu Ala1 5 10 15His His Cys Asp Leu Glu Glu Glu Glu Arg Gly Ala Ala Ala Glu Leu 20 25 30Ala Ala Ile Ala Gly Ala Ala Pro Pro Pro Lys Leu Glu Asp Phe Leu 35 40 45Gly Gly Gly Val Ala Thr Gly Gly Pro Glu Ala Val Ala Pro Ala Glu 50 55 60Met Tyr Asp Ser Asp Leu Lys Phe Ile Ala Ala Ala Gly Phe Leu Gly65 70 75 80Gly Ser Ala Ala Ala Ala Ala Thr Ser Pro Leu Ser Ser Leu Asp Gln 85 90 95Ala Gly Ser Lys Leu Ala Leu Pro Ala Ala Ala Ala Ala Pro Ala Pro 100 105 110Glu Gln Arg Lys Ala Val Asp Ser Phe Gly Gln Arg Thr Ser Ile Tyr 115 120 125Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu 130 135 140Trp Asp Asn Ser Cys Arg Arg Glu Gly Gln Ser Arg Lys Gly Arg Gln145 150 155 160Val Tyr Leu Gly Gly Tyr Asp Lys Glu Glu Lys Ala Ala Arg Ala Tyr 165 170 175Asp Leu Ala Ala Leu Lys Tyr Trp Gly Ser Ser Thr Thr Thr Asn Phe 180 185 190Pro Val Ala Glu Tyr Glu Lys Glu Val Glu Glu Met Lys Asn Met Thr 195 200 205Arg Gln Glu Phe Val Ala Ser Leu Arg Arg Lys Ser Ser Gly Phe Ser 210 215 220Arg Gly Ala Ser Ile Tyr Arg Gly Val Thr Arg His His Gln His Gly225 230 235 240Arg Trp Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys Asp Leu Tyr 245 250 255Leu Gly Thr Phe Ser Thr Glu Glu Glu Ala Ala Glu Ala Tyr Asp Ile 260 265 270Ala Ala Ile Lys Phe Arg Gly Leu Asn Ala Val Thr Asn Phe Glu Ile 275 280 285Ser Arg Tyr Asn Val Glu Thr Ile Met Ser Ser Asn Leu Pro Val Ala 290 295 300Ser Met Ser Ser Ser Ala Ala Ala Ala Ala Gly Gly Arg Ser Ser Lys305 310 315 320Ala Leu Glu Ser Pro Pro Ser Gly Ser Leu Asp Gly Gly Gly Gly Met 325 330 335Pro Val Val Glu Ala Ser Thr Ala Pro Pro Leu Phe Ile Pro Val Lys 340 345 350Tyr Asp Gln Gln Gln Gln Glu Tyr Leu Ser Met Leu Ala Leu Gln Gln 355 360 365His His Gln Gln Gln Gln Ala Gly Asn Leu Leu Gln Gly Pro Leu Val 370 375 380Gly Phe Gly Gly Leu Tyr Ser Ser Gly Val Asn Leu Asp Phe Ala Asn385 390 395 400Ser His Gly Thr Ala Ala Pro Ser Ser Met Ala His His Cys Tyr Ala 405 410 415Asn Gly Thr Ala Ser Ala Ser His Glu His Gln His Gln Met Gln Gln 420 425 430Gly Gly Glu Asn Glu Thr Gln Pro Gln Pro Gln Gln Ser Ser Ser Ser 435 440 445Cys Ser Ser Leu Pro Phe Ala Thr Pro Val Ala Phe Asn Gly Ser Tyr 450 455 460Glu Ser Ser Ile Thr Ala Ala Gly Pro Phe Gly Tyr Ser Tyr Pro Asn465 470 475 480Val Ala Ala Phe Gln Thr Pro Ile Tyr Gly Met Glu 485 49081469PRTOryza sativa 81Met Asp Met Asp Met Ser Ser Ala Tyr Pro His His Trp Leu Ser Phe1 5 10 15Ser Leu Ser Asn Asn Tyr His His Gly Leu Leu Glu Ala Leu Ser Thr 20 25 30Thr Ser Ala Pro Pro Leu Gly Glu Glu Gly Pro Ala Glu Gly Ala Pro 35 40 45Lys Met Glu Asp Phe Leu Gly Gly Leu Gly Gly Gly Gly Gly Ala Val 50 55 60Ala Ala Ala Pro Ala Ala Ala Pro Glu Asp Gln Leu Ser Cys Gly Glu65 70 75 80Leu Gly Ser Ile Ala Ala Gly Phe Leu Arg Arg Tyr Pro Ala Pro Glu 85 90 95Asn Ala Gly Gly Val Thr Ile Ala Met Ala Thr Asp Ala Ala Ala Glu 100 105 110Leu Ala Asp Pro Ala Arg Arg Thr Ala Glu Thr Phe Gly Gln Arg Thr 115 120 125Ser Ile Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu 130 135 140Ala His Leu Trp Asp Asn Ser Cys Arg Arg Glu Gly Gln Ser Arg Lys145 150 155 160Gly Arg Gln Val Tyr Leu Gly Gly Tyr Asp Lys Glu Glu Lys Ala Ala 165 170 175Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr Trp Gly Pro Thr Thr Thr 180 185 190Thr Asn Phe Pro Val Ala Asn Tyr Glu Thr Glu Leu Glu Glu Met Lys 195 200 205Ser Met Thr Arg Gln Glu Phe Ile Ala Ser Leu Arg Arg Lys Ser Ser 210 215 220Gly Phe Ser Arg Gly Ala Ser Ile Tyr Arg Gly Val Thr Arg His His225 230 235 240Gln His Gly Arg Trp Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys 245 250 255Asp Leu Tyr Leu Gly Thr Phe Ser Thr Gln Glu Glu Ala Ala Glu Ala 260 265 270Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly Leu Asn Ala Val Thr Asn 275 280 285Phe Asp Met Ser Arg Tyr Asp Val Asp Ser Ile Leu Asn Ser Asp Leu 290 295 300Pro Val Gly Gly Gly Ala Ala Thr Arg Ala Ser Lys Phe Pro Ser Asp305 310 315 320Pro Ser Leu Pro Leu Pro Ser Pro Ala Met Pro Pro Ser Glu Lys Asp 325 330 335Tyr Trp Ser Leu Leu Ala Leu His Tyr His His His Gln Gln Gln Gln 340 345 350Gln Gln Gln Gln Phe Pro Ala Ser Ala Phe Asp Thr Tyr Gly Cys Ser 355 360 365Ser Gly Val Asn Val Asp Phe Thr Met Gly Thr Ser Ser His Ser Gly 370 375 380Ser Asn Ser Asn Ser Ser Ser Ser Ser Ala Ile Trp Gly Thr Ala Ala385 390 395 400Gly Ala Ala Met Gly Arg Gln Gln Asn Gly Gly Ser Ser Asn Lys Gln 405 410 415Ser Asn Ser Tyr Ser Gly Asn Asn Ile Pro Tyr Ala Ala Ala Ala Ala 420 425 430Met Thr Ser Gly Ser Ala Leu Tyr Gly Gly Ser Thr Gly Ser Asn Gly 435 440 445Thr Trp Val Ala Ser Asn Thr Ser Thr Ala Pro His Phe Tyr Asn Tyr 450 455 460Leu Phe Gly Met Glu46582562PRTGlycine max 82Met Asn Asn Asn Trp Leu Ser Phe Pro Leu Ser Pro Thr His Ser Ser1 5 10 15Leu Pro Ala His Asp Leu Gln Ala Thr Gln Tyr His Gln Phe Ser Leu 20 25 30Gly Leu Val Asn Glu Asn Met Glu Asn Pro Phe Gln Asn His Asp Trp 35 40 45Ser Leu Ile Asn Thr His Ser Ser Ser Glu Val Pro Lys Val Ala Asp 50 55 60Phe Leu Gly Val Ser Lys Ser Glu Asn Glu Ser Asp Leu Ala Ala Ser65 70 75 80Leu Asn Glu Ile Gln Ser Asn Asp Ser Asp Tyr Leu Phe Thr Asn Asn 85 90 95Ser Leu Val Pro Met Gln Asn Pro Ala Val Asp Thr Pro Ser Asn Glu 100 105 110Tyr Gln Glu Asn Ala Asn Ser Ser Leu Gln Ser Leu Thr Leu Ser Met 115 120 125Gly Ser Gly Lys Asp Ser Thr Cys Glu Thr Ser Gly Asp Asn Ser Thr 130 135 140Asn Thr Thr Thr Thr Thr Thr Val Glu Ala Ala Pro Arg Arg Thr Leu145 150 155 160Asp Thr Phe Gly Gln Arg Thr Ser Ile Tyr Arg Gly Val Thr Arg His 165 170 175Arg Trp Thr Gly Arg Tyr Glu Ala His Leu Trp Asp Asn Ser Cys Arg 180 185 190Arg Glu Gly Gln Ser Arg Lys Gly Arg Gln Val Tyr Leu Gly Gly Tyr 195 200 205Asp Lys Glu Glu Lys Ala Ala Arg Ser Tyr Asp Leu Ala Ala Leu Lys 210 215 220Tyr Trp Gly Thr Ser Thr Thr Thr Asn Phe Pro Ile Ser Asn Tyr Glu225 230 235 240Lys Glu Leu Asp Glu Met Lys His Met Thr Arg Gln Glu Phe Val Ala 245 250 255Ala Ile Arg Arg Lys Ser Ser Gly Phe Ser Arg Gly Ala Ser Met Tyr 260 265 270Arg Gly Val Thr Arg His His Gln His Gly Arg Trp Gln Ala Arg Ile 275 280 285Gly Arg Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly Thr Phe Ser Thr 290 295 300Glu Glu Glu Ala Ala Glu Ala Tyr Asp Ile Ala Ala Ile Lys Phe Arg305 310 315 320Gly Leu Asn Ala Val Thr Asn Phe Asp Met Ser Arg Tyr Asp Val Lys 325 330 335Ala Ile Leu Glu Ser Asn Thr Leu Pro Ile Gly Gly Gly Ala Ala Lys 340 345 350Arg Leu Lys Glu Ala Gln Ala Leu Glu Ser Ser Arg Lys Arg Glu Glu 355 360 365Met Ile Ala Leu Gly Ser Ser Thr Phe Gln Tyr Gly Thr Thr Ser Ser 370 375 380Asn Ser Arg Leu His Ala Tyr Pro Leu Met Gln His His His Gln Phe385 390 395 400Glu Gln Pro Gln Pro Leu Leu Thr Leu Gln Asn His Asp Ile Ser Ser 405 410 415His Phe Ser His Gln Gln Asp Pro Leu His Gln Gly Tyr Ile Gln Thr 420 425 430Gln Leu Gln Leu His Gln Gln Gln Ser Gly Gly Ser Ser Ser Tyr Ser 435 440 445Phe Gln Asn Asn Asn Ile Asn Asn Ala Gln Phe Tyr Asn Gly Tyr Asn 450 455 460Leu Gln Asn His Pro Ala Leu Leu Gln Gly Met Ile Asn Met Gly Ser465 470 475 480Ser Ser Ser Ser Ser Val Leu Glu Asn Asn Asn Ser Asn Asn Asn Asn 485 490 495Val Gly Gly Phe Val Gly Ser Gly Phe Gly Met Ala Ser Asn Ala Thr 500 505 510Ser Gly Asn Thr Val Gly Thr Ala Glu Glu Leu Gly Leu Val Lys Val 515 520 525Asp Tyr Asp Met Pro Thr Gly Gly Tyr Gly Gly Trp Ser Ala Ala Ala 530 535 540Ala Ala Glu Ser Met Gln Thr Ser Asn Ser Gly Val Phe Thr Met Trp545 550 555 560Asn Asp83574PRTArabidopsis thaliana 83Met Asn Ser Asn Asn Trp Leu Gly Phe Pro Leu Ser Pro Asn Asn Ser1 5 10 15Ser Leu Pro Pro His Glu Tyr Asn Leu Gly Leu Val Ser Asp His Met 20 25 30Asp Asn Pro Phe Gln Thr Gln Glu Trp Asn Met Ile Asn Pro His Gly 35 40 45Gly Gly Gly Asp Glu Gly Gly Glu Val Pro Lys Val Ala Asp Phe Leu 50 55 60Gly Val Ser Lys Pro Asp Glu Asn Gln Ser Asn His Leu Val Ala Tyr65 70 75 80Asn Asp Ser Asp Tyr Tyr Phe His Thr Asn Ser Leu Met Pro Ser Val 85 90 95Gln Ser Asn Asp Val Val Val Ala Ala Cys Asp Ser Asn Thr Pro Asn 100 105 110Asn Ser Ser Tyr His Glu Leu Gln Glu Ser Ala His Asn Leu Gln Ser 115 120 125Leu Thr Leu Ser Met Gly Thr Thr Ala Gly Asn Asn Val Val Asp Lys 130 135 140Ala Ser Pro Ser Glu Thr Thr Gly Asp Asn Ala Ser Gly Gly Ala Leu145 150 155 160Ala Val Val Glu Thr Ala Thr Pro Arg Arg Ala Leu Asp Thr Phe Gly 165 170 175Gln Arg Thr Ser Ile Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly 180 185 190Arg Tyr Glu Ala His Leu Trp Asp Asn Ser Cys Arg Arg Glu Gly Gln 195 200 205Ser Arg Lys Gly Arg Gln Val Tyr Leu Gly Gly Tyr Asp Lys Glu Asp 210 215 220Lys Ala Ala Arg Ser Tyr Asp Leu Ala Ala Leu Lys Tyr Trp Gly Pro225 230 235 240Ser Thr Thr Thr Asn Phe Pro Ile Thr Asn Tyr Glu Lys Glu Val Glu 245 250 255Glu Met Lys His Met Thr Arg Gln Glu Phe Val Ala Ala Ile Arg Arg 260 265 270Lys Ser Ser Gly Phe Ser Arg Gly Ala Ser Met Tyr Arg Gly Val Thr 275 280 285Arg His His Gln His Gly Arg Trp Gln Ala Arg Ile Gly Arg Val Ala 290 295 300Gly Asn Lys Asp Leu Tyr Leu Gly Thr Phe Ser Thr Glu Glu Glu Ala305 310 315 320Ala Glu Ala Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly Leu Asn Ala 325 330 335Val Thr Asn Phe Glu Ile Asn Arg Tyr Asp Val Lys Ala Ile Leu Glu 340 345

350Ser Ser Thr Leu Pro Ile Gly Gly Gly Ala Ala Lys Arg Leu Lys Glu 355 360 365Ala Gln Ala Leu Glu Ser Ser Arg Lys Arg Glu Ala Glu Met Ile Ala 370 375 380Leu Gly Ser Ser Phe Gln Tyr Gly Gly Gly Ser Ser Thr Gly Ser Gly385 390 395 400Ser Thr Ser Ser Arg Leu Gln Leu Gln Pro Tyr Pro Leu Ser Ile Gln 405 410 415Gln Pro Leu Glu Pro Phe Leu Ser Leu Gln Asn Asn Asp Ile Ser His 420 425 430Tyr Asn Asn Asn Asn Ala His Asp Ser Ser Ser Phe Asn His His Ser 435 440 445Tyr Ile Gln Thr Gln Leu His Leu His Gln Gln Thr Asn Asn Tyr Leu 450 455 460Gln Gln Gln Ser Ser Gln Asn Ser Gln Gln Leu Tyr Asn Ala Tyr Leu465 470 475 480His Ser Asn Pro Ala Leu Leu His Gly Leu Val Ser Thr Ser Ile Val 485 490 495Asp Asn Asn Asn Asn Asn Gly Gly Ser Ser Gly Ser Tyr Asn Thr Ala 500 505 510Ala Phe Leu Gly Asn His Gly Ile Gly Ile Gly Ser Ser Ser Thr Val 515 520 525Gly Ser Thr Glu Glu Phe Pro Thr Val Lys Thr Asp Tyr Asp Met Pro 530 535 540Ser Ser Asp Gly Thr Gly Gly Tyr Ser Gly Trp Thr Ser Glu Ser Val545 550 555 560Gln Gly Ser Asn Pro Gly Gly Val Phe Thr Met Trp Asn Glu 565 57084543PRTMedicago truncatula 84Met Asn Asn Asn Trp Leu Ser Phe Pro Leu Ser Pro Ser His Ser Ser1 5 10 15Leu Pro Ser Asn Asp Leu Gln Ala Thr Gln Tyr His His Phe Pro Leu 20 25 30Gly Leu Val Asn Asp Asn Met Glu Asn Pro Phe Gln Asn His Asp Trp 35 40 45Asn Leu Met Asn Thr His Asn Ser Asn Glu Val Pro Lys Val Ala Asp 50 55 60Phe Leu Gly Val Cys Lys Ser Glu Asn His Ser Asp Leu Ala Thr Pro65 70 75 80Asn Glu Ile Gln Ser Asn Asp Ser Asp Tyr Leu Phe Thr Asn Asn Asn 85 90 95Thr Leu Met Pro Met Gln Asn Gln Met Val Thr Thr Cys Thr Asn Glu 100 105 110Tyr Gln Glu Lys Ala Ser Asn Ser Asn Leu Gln Ser Leu Thr Leu Ser 115 120 125Met Gly Ser Gly Lys Asp Ser Thr Cys Glu Thr Ser Gly Glu Asn Ser 130 135 140Thr Asn Thr Val Glu Val Ala Val Pro Lys Arg Thr Ser Glu Thr Phe145 150 155 160Gly Gln Arg Thr Ser Ile Tyr Arg Gly Val Thr Lys His Arg Trp Thr 165 170 175Gly Arg Tyr Glu Ala His Leu Trp Asp Asn Ser Cys Arg Arg Glu Gly 180 185 190Gln Ser Arg Lys Gly Arg Gln Gly Gly Tyr Asp Lys Glu Glu Lys Ala 195 200 205Ala Arg Ser Tyr Asp Leu Ala Ala Leu Lys Tyr Trp Gly Thr Ser Thr 210 215 220Thr Thr Asn Phe Pro Val Ser Asn Tyr Glu Lys Glu Ile Asp Glu Met225 230 235 240Lys His Met Thr Arg Gln Glu Phe Val Ala Ser Ile Arg Arg Lys Ser 245 250 255Ser Gly Phe Ser Arg Gly Ala Ser Met Tyr Arg Gly Val Thr Arg His 260 265 270His Gln His Gly Arg Trp Gln Ala Arg Ile Gly Arg Val Ala Gly Asn 275 280 285Lys Asp Leu Tyr Leu Gly Thr Phe Ser Thr Glu Glu Glu Ala Ala Glu 290 295 300Ala Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly Leu Asn Ala Val Thr305 310 315 320Asn Phe Asp Met Thr Arg Tyr Asp Val Lys Ala Ile Leu Glu Ser Asn 325 330 335Thr Leu Pro Ile Gly Gly Gly Ala Ala Lys Arg Leu Lys Glu Ala Gln 340 345 350Ala Leu Glu Thr Ser Arg Lys Arg Glu Glu Met Leu Ala Leu Asn Ser 355 360 365Ser Ser Phe Gln Tyr Gly Thr Ser Ser Ser Ser Asn Thr Arg Leu Gln 370 375 380Pro Tyr Pro Leu Met Gln Tyr His His Gln Phe Glu Gln Pro Gln Pro385 390 395 400Leu Leu Thr Leu Gln Asn Asn His Glu Ser Leu Asn Ser Gln Gln Phe 405 410 415Ser Gln His Gln Gly Gly Gly Tyr Phe Gln Thr Gln Leu Glu Leu Cys 420 425 430Gln Gln Gln Asn Gln Gln Pro Ser Gln Asn Ser Asn Ile Gly Ser Phe 435 440 445Tyr Asn Gly Tyr Tyr Gln Asn His Pro Gly Leu Phe Gln Met Asn Asn 450 455 460Ile Gly Ser Ser Ser Ser Ser Ser Val Met Gly Asn Asn Gly Gly Gly465 470 475 480Ser Ser Gly Ile Tyr Ser Asn Ser Gly Gly Leu Ile Ser Asn Asn Ala 485 490 495Val Glu Glu Phe Val Pro Val Lys Val Asp Tyr Asp Met Gln Gly Asp 500 505 510Gly Ser Gly Phe Gly Gly Trp Ser Ala Ala Gly Glu Asn Met Gln Thr 515 520 525Ala Asp Leu Phe Thr Met Trp Asn Asp Tyr Glu Thr Arg Glu Asn 530 535 54085543PRTZea mays 85Met Asp Met Asn Asn Gly Trp Leu Gly Phe Ser Leu Ser Pro Ser Ala1 5 10 15Ala Ser Arg Gly Gly Tyr Gly Tyr Gly Asp Gly Gly Gly Gly Ala Ser 20 25 30Ala Ser Ala Cys Gly Asp Gly Glu Gly Ser Cys Pro Ser Pro Ala Ala 35 40 45Ala Ala Ser Pro Leu Pro Leu Val Ala Met Pro Leu Asp Asp Ser Leu 50 55 60His Tyr Ser Ser Ala Pro Asp Trp Arg His Gly Ala Ala Glu Ala Lys65 70 75 80Gly Pro Lys Leu Glu Asp Phe Met Ser Ile Thr Cys Ser Asn Lys Ser 85 90 95Ser Gly Arg Ser Leu Tyr Asp Ser Cys Gly His His Asp Asp Glu Gln 100 105 110Ala Ser Lys Tyr His Glu Val His Gly Ile His Pro Leu Ser Cys Gly 115 120 125Ser Tyr Tyr His Gly Cys Ile Ser Ser Gly Gly Gly Gly Gly Gly Gly 130 135 140Ile Gly Leu Gly Ile Asn Met Asn Ala Pro Pro Cys Thr Gly Gly Phe145 150 155 160Pro Asp His Gln His His Gln Phe Val Pro Ser Ser His His Gly Gln 165 170 175Tyr Phe Leu Gly Ala Pro Ala Ala Ser Ala Gly Pro Pro Ala Gly Ala 180 185 190Ala Met Pro Met Tyr Asn Ala Gly Gly Gly Ser Val Val Gly Gly Ser 195 200 205Met Ser Ile Ser Gly Ile Lys Ser Trp Leu Arg Glu Ala Met Tyr Val 210 215 220Pro Pro Glu Arg Pro Ala Ala Ala Ala Leu Ser Leu Ala Val Thr Asp225 230 235 240Asp Val Pro Pro Ala Glu Pro Pro Gln Leu Leu Pro Ala Pro Leu Pro 245 250 255Val His Arg Lys Pro Ala Gln Thr Phe Gly Gln Arg Thr Ser Gln Phe 260 265 270Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu 275 280 285Trp Asp Asn Thr Cys Arg Lys Glu Gly Gln Thr Arg Lys Gly Arg Gln 290 295 300Val Tyr Leu Gly Gly Tyr Asp Arg Glu Glu Lys Ala Ala Arg Ala Tyr305 310 315 320Asp Leu Ala Ala Leu Lys Tyr Trp Gly Pro Ser Thr His Ile Asn Phe 325 330 335Pro Leu Ser His Tyr Glu Lys Glu Leu Glu Glu Met Lys His Met Ser 340 345 350Arg Gln Glu Phe Ile Ala His Leu Arg Arg Asn Ser Ser Gly Phe Ser 355 360 365Arg Gly Ala Ser Met Tyr Arg Gly Val Thr Arg His His Gln His Gly 370 375 380Arg Trp Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys Asp Leu Tyr385 390 395 400Leu Gly Thr Phe Ser Thr Gln Glu Glu Ala Ala Glu Ala Tyr Asp Ile 405 410 415Ala Ala Ile Lys Phe Arg Gly Leu Asn Ala Val Thr Asn Phe Asp Ile 420 425 430Ser Lys Tyr Asp Val Lys Arg Ile Cys Ala Ser Thr His Leu Ile Gly 435 440 445Gly Gly Asp Ala Cys Arg Arg Ser Pro Thr Arg Pro Pro Asp Ala Ala 450 455 460Pro Ala Leu Ala Gly Gly Ala Asp Arg Ser Ser Asp Ala Pro Gly Asp465 470 475 480Gln Ala Ala Ser Asp Asn Ser Asp Thr Ser Asp Gly His Arg Gly Ala 485 490 495His Leu Leu His Gly Leu Gln Tyr Gly His Pro Met Lys Leu Glu Ala 500 505 510Gly Glu Gly Ser Ser Trp Met Ala Ala Ala Ala Ala Ala Arg Pro Val 515 520 525Pro Gly Val His Gln Leu Pro Met Phe Ala Leu Trp Asn Asp Cys 530 535 54086512PRTGlycine max 86Met Ser Asn Trp Leu Gly Phe Ser Leu Thr Pro His Leu Arg Ile Asp1 5 10 15Glu Glu Phe Glu Arg Glu Asn Gln Glu Arg Gly Gly Gly Ile Ile Leu 20 25 30Phe Glu Lys Lys Lys Thr Lys Trp Arg Tyr Asp Ser Ala Ile Gly Gly 35 40 45Gly Asn Ser Asn Glu Glu Gly Pro Lys Leu Glu Asp Phe Leu Gly Cys 50 55 60Tyr Ser Asn Ser Pro Ala Lys Val Phe Cys Gln Asp Ser Gln Pro Asp65 70 75 80Gln Asn Gln Ser Gln Asn Asn Val Ser Lys Ile Asn Ile Glu Thr Gly 85 90 95Asp Asn Leu Thr Asn Pro Ser Ser Leu Leu His Ser Phe His Ala Tyr 100 105 110Asn Asp Asn Ser His Ala Leu Ile Pro Thr Asn Gly Met Tyr Lys Ser 115 120 125Trp Leu Ala Gln Thr Gln Phe Ser Ser Asp Gly Lys Pro Ser Asn Glu 130 135 140Ala Asn Gly Cys Asn Phe Gln Ser Leu Ser Leu Thr Met Ser Pro Ser145 150 155 160Val Gln Asn Gly Val Gly Ala Ile Ser Ser Val Gln Val Asn Glu Asp 165 170 175Ser Arg Lys Arg Val Met Ala Lys Ser His Ala Arg Glu Pro Val Pro 180 185 190Arg Lys Ser Ile Asp Thr Phe Gly Gln Arg Thr Ser Gln Tyr Arg Gly 195 200 205Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu Trp Asp 210 215 220Asn Ser Cys Arg Lys Glu Gly Gln Thr Arg Lys Gly Arg Gln Gly Gly225 230 235 240Tyr Asp Lys Glu Glu Lys Ala Ala Lys Ala Tyr Asp Leu Ala Ala Leu 245 250 255Lys Tyr Trp Gly Pro Thr Thr His Ile Asn Phe Pro Leu Ser Thr Tyr 260 265 270Glu Lys Glu Leu Glu Glu Met Lys His Met Thr Arg Gln Glu Phe Val 275 280 285Ala Asn Leu Arg Arg Lys Ser Ser Gly Phe Ser Arg Gly Ala Ser Val 290 295 300Tyr Arg Gly Val Thr Arg His His Gln His Gly Arg Trp Gln Ala Arg305 310 315 320Ile Gly Arg Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly Thr Phe Ser 325 330 335Thr Gln Glu Glu Ala Ala Glu Ala Tyr Asp Ile Ala Ala Ile Lys Phe 340 345 350Arg Gly Thr Ser Ala Val Thr Asn Phe Asp Ile Ser Arg Tyr Asp Val 355 360 365Lys Arg Ile Cys Ser Ser Ser Thr Leu Ile Ala Gly Asp Leu Ala Lys 370 375 380Arg Ser Pro Lys Glu Ser Pro Ala Pro Pro Pro Pro Leu Ala Ile Thr385 390 395 400Asp Gly Glu His Ser Asp Glu Leu Ser Asn Met Met Trp Asn Ala Asn 405 410 415Asn Ser Asp Glu Gln Ala Gln Asn Glu Ser Gly Gly Ala Glu Phe Asn 420 425 430Asn Asn Val Thr Glu Ser Ser Ser Ser Gln Gln Val Ser Pro Ser Ser 435 440 445Asn Lys Asp Ala Leu Asn Pro Gln Ser Pro Asn Glu Phe Gly Val Ser 450 455 460Gly Ala Asp Tyr Gly His Gly Tyr Phe Thr Leu Asp Gly Pro Lys Tyr465 470 475 480Asp Asp Gly Asn Asn Glu Asn Asp His Met Ser Thr Asn Arg Leu Gly 485 490 495Asn Leu Gly Leu Val Asn Gln Val Pro Met Phe Ala Leu Trp Asn Glu 500 505 51087485PRTSorghum bicolor 87Met Asp Thr Ser His His Tyr Pro Trp Leu Asn Phe Ser Leu Ala His1 5 10 15His Gly Asp Leu Glu Glu Glu Glu Arg Gly Ala Ala Ala Glu Leu Ala 20 25 30Ala Ile Ala Gly Ala Ala Pro Pro Pro Lys Leu Glu Asp Phe Leu Gly 35 40 45Gly Gly Val Ile Asn Gly Glu Ser Ala Arg Ser Gly Gly Gly Val Pro 50 55 60Val Ala Ala Pro Glu Val Ser Ala Pro Ala Glu Met Tyr Asp Ser Asp65 70 75 80Leu Lys Phe Ile Ala Ala Ala Gly Phe Leu Gly Gly Gly Ser Ala Ala 85 90 95Gly Pro Val Ala Thr Ser Pro Leu Ser Ser Leu Asp Gln Ala Asp Pro 100 105 110Lys Leu Ala Leu Pro Ala Ala Ala Ala Ala Ala Pro Ala Pro Glu Gln 115 120 125Arg Lys Ala Val Asp Ser Phe Gly Gln Arg Thr Ser Ile Tyr Arg Gly 130 135 140Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu Trp Asp145 150 155 160Asn Ser Cys Arg Arg Glu Gly Gln Ser Arg Lys Gly Arg Gln Gly Gly 165 170 175Tyr Asp Lys Glu Glu Lys Ala Ala Arg Ala Tyr Asp Leu Ala Ala Leu 180 185 190Lys Tyr Trp Gly Ser Ser Thr Thr Thr Asn Phe Pro Val Ala Glu Tyr 195 200 205Glu Lys Glu Leu Glu Glu Met Lys Thr Met Thr Arg Gln Glu Phe Val 210 215 220Ala Ser Leu Arg Arg Lys Ser Ser Gly Phe Ser Arg Gly Ala Ser Ile225 230 235 240Tyr Arg Gly Val Thr Arg His His Gln His Gly Arg Trp Gln Ala Arg 245 250 255Ile Gly Arg Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly Thr Phe Ser 260 265 270Thr Glu Glu Glu Ala Ala Glu Ala Tyr Asp Ile Ala Ala Ile Lys Phe 275 280 285Arg Gly Leu Asn Ala Val Thr Asn Phe Glu Ile Ser Arg Tyr Asn Val 290 295 300Glu Ser Ile Met Asn Ser Asn Ile Pro Met Gly Ser Met Ser Ala Gly305 310 315 320Gly Arg Ser Asn Lys Ala Leu Glu Ser Pro Pro Ser Gly Ser Pro Asp 325 330 335Ala Met Pro Val Glu Ala Ser Thr Ala Pro Leu Phe Ala Ala Leu Pro 340 345 350Val Lys Tyr Asp Gln Gln Gln Gln Asp Tyr Leu Ser Met Leu Ala Leu 355 360 365Gln His His Gln Gln Gly Asn Leu Gln Gly Leu Gly Phe Gly Leu Tyr 370 375 380Ser Ser Gly Val Asn Leu Asp Phe Ala Asn Ser His Ser Thr Ala Ser385 390 395 400Ser Met Thr His Cys Tyr Val Asn Gly Gly Thr Val Ser Ser His Glu 405 410 415Gln His Gln His His Gln Gln Leu Gln Asp His Gln Gln Gln Gly Glu 420 425 430Ser Glu Thr Gln Gln Ser Ser Asn Ser Cys Ser Ser Leu Pro Phe Ala 435 440 445Thr Pro Ile Ala Phe Asn Gly Ser Tyr Glu Ser Ser Met Thr Ala Ala 450 455 460Gly Pro Phe Gly Tyr Ser Tyr Pro Asn Val Ala Ala Phe Gln Thr Pro465 470 475 480Ile Tyr Gly Met Glu 48588507PRTGlycine max 88Met Ala Arg Ala Thr Asn Trp Leu Ser Phe Ser Leu Ser Pro Met Glu1 5 10 15Met Leu Arg Thr Ser Glu Pro Gln Phe Leu Gln Tyr Asp Ala Ala Ser 20 25 30Ala Thr Ser Ser His His Tyr Tyr Leu Asp Asn Leu Tyr Thr Asn Gly 35 40 45Trp Gly Asn Gly Ser Leu Lys Phe Glu Gln Asn Leu Asn His Ser Asp 50 55 60Val Ser Phe Val Glu Ser Ser Ser Gln Ser Val Gly His Val Pro Pro65 70 75 80Pro Pro Pro Lys Leu Glu Asp Phe Leu Gly Asp Ser Ser Ala Val Met 85 90 95Arg Tyr Ser Asp Ser Gln Thr Glu Thr Gln Asp Ser Ser Leu Thr His 100 105 110Ile Tyr Asp His His His His His His His His His Gly Ser Thr Ser 115 120 125Tyr Phe Gly Gly Asp Gln Gln Asp Leu Lys Ala Ile Thr Gly Phe Gln 130 135 140Ala Phe Ser Thr Asn Ser Gly Ser Glu Val Asp Asp Ser Ala Ser Ile145 150

155 160Gly Lys Ala Gln Ala Ser Glu Phe Gly Thr His Ser Ile Glu Ser Ser 165 170 175Gly Asn Glu Phe Ala Ala Phe Ser Gly Gly Thr Thr Gly Thr Leu Ser 180 185 190Leu Ala Val Ala Leu Ser Ser Glu Lys Ala Val Val Ala Ala Glu Ser 195 200 205Asn Ser Ser Lys Lys Ile Val Asp Thr Phe Gly Gln Arg Thr Ser Ile 210 215 220Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His225 230 235 240Leu Trp Asp Asn Ser Cys Arg Arg Glu Gly Gln Ala Arg Lys Gly Arg 245 250 255Gln Gly Gly Tyr Asp Lys Glu Glu Lys Ala Ala Arg Ala Tyr Asp Leu 260 265 270Ala Ala Leu Lys Tyr Trp Gly Pro Thr Ala Thr Thr Asn Phe Pro Val 275 280 285Ser Asn Tyr Ser Lys Glu Val Glu Glu Met Lys His Val Thr Lys Gln 290 295 300Glu Phe Ile Ala Ser Leu Arg Arg Lys Ser Ser Gly Phe Ser Arg Gly305 310 315 320Ala Ser Ile Tyr Arg Gly Val Thr Arg His His Gln Gln Gly Arg Trp 325 330 335Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly 340 345 350Thr Phe Ala Thr Glu Glu Glu Ala Ala Glu Ala Tyr Asp Ile Ala Ala 355 360 365Ile Lys Phe Arg Gly Ala Asn Ala Val Thr Asn Phe Glu Met Asn Arg 370 375 380Tyr Asp Val Glu Ala Ile Met Lys Ser Ser Leu Pro Val Gly Gly Ala385 390 395 400Ala Lys Arg Leu Arg Leu Ser Leu Glu Ser Glu Gln Lys Ala Pro Pro 405 410 415Val Asn Ser Ser Ser Gln Gln Gln Asn Pro Gln Cys Gly Asn Val Ser 420 425 430Gly Ser Ile Asn Phe Ser Ala Ile His Gln Pro Ile Ala Ser Ile Pro 435 440 445Cys Gly Ile Pro Phe Asp Ser Thr Thr Ala Tyr Tyr Pro His Asn Leu 450 455 460Phe Gln His Phe His Pro Thr Asn Ala Gly Ala Ala Ala Ser Ala Val465 470 475 480Thr Ser Ala Asn Ala Thr Ala Leu Thr Ala Leu Pro Ala Ser Ala Ala 485 490 495Thr Glu Phe Phe Ile Trp Pro His Gln Ser Tyr 500 50589569PRTArabidopsis thaliana 89Met Glu Met Leu Arg Ser Ser Asp Gln Ser Gln Phe Val Ser Tyr Asp1 5 10 15Ala Ser Ser Ala Ala Ser Ser Ser Pro Tyr Leu Leu Asp Asn Phe Tyr 20 25 30Gly Trp Ser Asn Gln Lys Pro Gln Glu Phe Phe Lys Glu Glu Ala Gln 35 40 45Leu Ala Ala Ala Ala Ser Met Ala Asp Ser Thr Ile Leu Thr Thr Phe 50 55 60Val Asp Pro Gln Ser His His Ser Gln Asn His Ile Pro Lys Leu Glu65 70 75 80Asp Phe Leu Gly Asp Ser Ser Ser Ile Val Arg Tyr Ser Asp Asn Ser 85 90 95Gln Thr Asp Thr Gln Asp Ser Ser Leu Thr Gln Ile Tyr Asp Pro Arg 100 105 110His His His Asn Gln Thr Gly Phe Tyr Ser Asp His His Asp Phe Lys 115 120 125Thr Met Ala Gly Phe Gln Ser Ala Phe Ser Thr Asn Ser Gly Ser Glu 130 135 140Val Asp Asp Ser Ala Ser Ile Gly Arg Thr His Leu Ala Gly Asp Tyr145 150 155 160Leu Gly His Val Val Glu Ser Ser Gly Pro Glu Leu Gly Phe His Gly 165 170 175Gly Ser Thr Gly Ala Leu Ser Leu Gly Val Asn Val Asn Asn Asn Thr 180 185 190Asn His Arg Asn Asp Asn Asp Asn His Tyr Arg Gly Asn Asn Asn Gly 195 200 205Glu Arg Ile Asn Asn Asn Asn Asn Asn Asp Asn Glu Lys Thr Asp Ser 210 215 220Glu Lys Glu Lys Ala Val Val Ala Val Glu Thr Ser Asp Cys Ser Asn225 230 235 240Lys Lys Ile Ala Asp Thr Phe Gly Gln Arg Thr Ser Ile Tyr Arg Gly 245 250 255Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu Trp Asp 260 265 270Asn Ser Cys Arg Arg Glu Gly Gln Ala Arg Lys Gly Arg Gln Val Tyr 275 280 285Leu Gly Gly Tyr Asp Lys Glu Asp Lys Ala Ala Arg Ala Tyr Asp Leu 290 295 300Ala Ala Leu Lys Tyr Trp Asn Ala Thr Ala Thr Thr Asn Phe Pro Ile305 310 315 320Thr Asn Tyr Ser Lys Glu Val Glu Glu Met Lys His Met Thr Lys Gln 325 330 335Glu Phe Ile Ala Ser Leu Arg Arg Lys Ser Ser Gly Phe Ser Arg Gly 340 345 350Ala Ser Ile Tyr Arg Gly Val Thr Arg His His Gln Gln Gly Arg Trp 355 360 365Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly 370 375 380Thr Phe Ala Thr Glu Glu Glu Ala Ala Glu Ala Tyr Asp Ile Ala Ala385 390 395 400Ile Lys Phe Arg Gly Ile Asn Ala Val Thr Asn Phe Glu Met Asn Arg 405 410 415Tyr Asp Val Glu Ala Ile Met Lys Ser Ala Leu Pro Ile Gly Gly Ala 420 425 430Ala Lys Arg Leu Lys Leu Ser Leu Glu Ala Ala Ala Ser Ser Glu Gln 435 440 445Lys Pro Ile Leu Gly His His Gln Leu His His Phe Gln Gln Gln Gln 450 455 460Gln Gln Gln Gln Leu Gln Leu Gln Ser Ser Pro Asn His Ser Ser Ile465 470 475 480Asn Phe Ala Leu Cys Pro Asn Ser Ala Val Gln Ser Gln Gln Ile Ile 485 490 495Pro Cys Gly Ile Pro Phe Glu Ala Ala Ala Leu Tyr His His His Gln 500 505 510Gln Gln Gln Gln His Gln Gln Gln Gln Gln Gln Gln Asn Phe Phe Gln 515 520 525His Phe Pro Ala Asn Ala Ala Ser Asp Ser Thr Gly Ser Asn Asn Asn 530 535 540Ser Asn Val Gln Gly Thr Met Gly Leu Met Ala Pro Asn Pro Ala Glu545 550 555 560Phe Phe Leu Trp Pro Asn Gln Ser Tyr 56590574PRTMedicago truncatula 90Met Ser Asn Trp Leu Gly Phe Ser Leu Thr Pro His Leu Arg Ile Asp1 5 10 15Glu Glu Phe Gly Thr Glu Asn Gln Asn Gln Asn Gln Asn His Val Ala 20 25 30Glu Gly Ser Glu Ile Gly Arg Asn Tyr Val Thr Pro Ser Ser His Pro 35 40 45His Pro His His Leu Ser Ile Met Pro Leu Arg Ser Asp Gly Ser Leu 50 55 60Cys Val Ser Asp Ser Phe Thr Pro Gln Glu Trp Arg Tyr Glu Asn Ala65 70 75 80Ile Thr Asp Gly Asn Ser Asn Glu Glu Gly Pro Lys Leu Glu Asp Phe 85 90 95Leu Gly Cys Tyr Ser Asn Gln Asn Gln Asn Ser Thr Thr Thr Ser Thr 100 105 110Met Ser Lys Ile Asn Val Asn Val Ser Pro Ser Phe Cys Thr Asn Asn 115 120 125Asn Pro Glu Ile Asp Thr Arg Glu Asn Leu Thr Asn Gln Ser Leu Ile 130 135 140His Ser Phe His Ala Tyr Asn Asp His Ser Asn Asn Asn His His Ala145 150 155 160Leu Ile His Asp Asn Ser Met Tyr Lys Ser Trp Met Thr Gln Thr Gln 165 170 175Phe Ser Ser Glu Gly Lys Thr Thr Ser Ser Asp Gly Asn Gly Phe Gln 180 185 190Ser Leu Asn Leu Thr Met Ser Pro Cys Val Gln Asn Gly Val Gly Gly 195 200 205Gly Val Gly Ser Ala Ile Ser Asn Val Gln Val Asn Glu Asp Pro Arg 210 215 220Lys Arg Ser Leu Ser Lys Ser Asn Ala Arg Glu Pro Val Pro Arg Lys225 230 235 240Ser Ile Asp Thr Phe Gly Gln Arg Thr Ser Gln Tyr Arg Gly Val Thr 245 250 255Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu Trp Asp Asn Ser 260 265 270Cys Arg Lys Glu Gly Gln Thr Arg Lys Gly Arg Gln Gly Gly Tyr Asp 275 280 285Lys Glu Glu Lys Ala Ala Lys Ala Tyr Asp Leu Ala Ala Leu Lys Tyr 290 295 300Trp Gly Pro Thr Thr His Ile Asn Phe Pro Leu Ser Thr Tyr Asp Lys305 310 315 320Glu Leu Glu Glu Met Lys His Met Thr Arg Gln Glu Phe Val Ala Asn 325 330 335Leu Arg Arg Lys Ser Ser Gly Phe Ser Arg Gly Ala Ser Val Tyr Arg 340 345 350Gly Val Thr Arg His His Gln His Gly Arg Trp Gln Ala Arg Ile Gly 355 360 365Arg Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly Thr Phe Ser Thr Gln 370 375 380Glu Glu Ala Ala Glu Ala Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly385 390 395 400Thr Ser Ala Val Thr Asn Phe Asp Ile Ser Arg Tyr Asp Val Lys Arg 405 410 415Ile Cys Ser Ser Ser Thr Leu Ile Thr Gly Asp Leu Ala Lys Arg Ser 420 425 430Pro Lys Asp Ser Thr Pro Pro Ala Thr Thr Ala Glu Asp Phe Asn Ser 435 440 445Cys Gly Ser Ser Ser Thr Leu Ser Gln Pro Pro Pro Leu Thr Ile Thr 450 455 460Asp Gly Glu Gln His Ser Asp Glu Leu Ser Asn Met Val Trp Asn Ser465 470 475 480Asn Asn Asp Glu Gln Lys Pro Gln Asn Gly Thr Asn Ile Thr Glu Ser 485 490 495Ser Gln His Gly Ser Pro Ser Asn Lys Asn Glu Met Asn Pro Gln Ser 500 505 510Pro Lys Cys Ser Leu Gly Leu Pro Asn Glu Phe Gly Val Ser Gly Ala 515 520 525Asp Tyr Gly His Gly Tyr Phe Thr Leu His Gly Pro Lys Phe Asp Asp 530 535 540Gly Ser Asn Glu Asn Asp His Met Asn Asn Asn Arg Leu Gly Asn Leu545 550 555 560Gly Leu Val Asn Gln Val Pro Met Phe Ala Leu Trp Asn Glu 565 57091541PRTSorghum bicolor 91Met Asp Met Asn Asn Gly Trp Leu Gly Phe Ser Leu Ser Pro Ser Ala1 5 10 15Gly Arg Gly Gly Tyr Gly Asp Gly Gly Ala Ser Ala Ser Gly Asp Gly 20 25 30Gly Asp Gly Ser Cys Ser Ser Pro Ala Ala Ala Ala Ser Pro Val Pro 35 40 45Leu Val Ala Met Pro Leu Gln Pro Asp Gly Ser Leu His Tyr Thr Ser 50 55 60Ala Pro Asp Trp Arg His Gly Ala Ala Glu Ala Asn Gly Pro Lys Leu65 70 75 80Glu Asp Phe Met Ser Val Thr Cys Ser Ser Asn Asn Lys Arg Ser Ser 85 90 95Ser Ser Ser Ser Phe Tyr Asp Arg Cys Ser His Ala Glu Gln Ala Asn 100 105 110Lys Tyr His Glu Val His Asp Leu Gln Pro Leu Ser Cys Gly Ser Tyr 115 120 125Tyr His Gly Ser Ser Gly Gly Gly Gly Asn Gly Ile Ala Leu Gly Ile 130 135 140Asn Met Asn Ala Pro Pro Cys Ser Gly Gly Gly Phe Pro Asp His His145 150 155 160His His His Gln Phe Val Ser Ser His His Gly Gln Tyr Phe Leu Gly 165 170 175Ala Pro Leu Asn Ala Ser Pro Pro Gly Ala Val Pro Met Tyr Ser Ala 180 185 190Gly Gly Gly Gly Val Gly Gly Ser Met Ser Ile Ser Gly Ile Lys Ser 195 200 205Trp Leu Arg Glu Ala Met Tyr Val Pro Pro Glu Arg Pro Val Ala Ala 210 215 220Ala Ala Ala Leu Ser Leu Ala Val Thr Asp Asp Val Gly Ala Glu Pro225 230 235 240Pro Gln Leu Leu Pro Ala Ala Pro Met Pro Pro Val His Arg Lys Pro 245 250 255Ala Gln Thr Phe Gly Gln Arg Thr Ser Gln Phe Arg Gly Val Thr Arg 260 265 270His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu Trp Asp Asn Thr Cys 275 280 285Arg Lys Glu Gly Gln Thr Arg Lys Gly Arg Gln Gly Gly Tyr Asp Arg 290 295 300Glu Glu Lys Ala Ala Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr Trp305 310 315 320Gly Pro Ser Thr His Ile Asn Phe Pro Leu Ser His Tyr Glu Lys Glu 325 330 335Leu Glu Glu Met Lys His Met Ser Arg Gln Glu Phe Ile Ala His Leu 340 345 350Arg Arg Asn Ser Ser Gly Phe Ser Arg Gly Ala Ser Met Tyr Arg Gly 355 360 365Val Thr Arg His His Gln His Gly Arg Trp Gln Ala Arg Ile Gly Arg 370 375 380Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly Thr Phe Ser Thr Gln Glu385 390 395 400Glu Ala Ala Glu Ala Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly Leu 405 410 415Asn Ala Val Thr Asn Phe Asp Ile Ser Lys Tyr Asp Val Lys Arg Ile 420 425 430Cys Ala Ser Thr His Leu Ile Gly Gly Gly Asp Ala Cys Arg Arg Ser 435 440 445Pro Thr Gln Pro Pro Asp Ala Pro Ala Leu Ala Ile Asp Ala Ala Gly 450 455 460Ala Asp Arg Ser Ser Asp Ala Pro Gly Gly Gly Asp Gln Ala Val Ser465 470 475 480Asp Asn Ser Asp Thr Ser Ala Gly His Arg Gly Ala His Leu Leu His 485 490 495Gly Leu Gln Tyr Gly His Pro Met Lys Leu Glu Ala Gly Glu Gly Ser 500 505 510Ser Trp Met Ala Ala Ala Thr Ala Ala Ala Ala Arg Pro Val Ala Gly 515 520 525Val His Gln Leu Pro Val Phe Ala Leu Trp Asn Asp Cys 530 535 54092555PRTArabidopsis thaliana 92Met Lys Ser Phe Cys Asp Asn Asp Asp Asn Asn His Ser Asn Thr Thr1 5 10 15Asn Leu Leu Gly Phe Ser Leu Ser Ser Asn Met Met Lys Met Gly Gly 20 25 30Arg Gly Gly Arg Glu Ala Ile Tyr Ser Ser Ser Thr Ser Ser Ala Ala 35 40 45Thr Ser Ser Ser Ser Val Pro Pro Gln Leu Val Val Gly Asp Asn Thr 50 55 60Ser Asn Phe Gly Val Cys Tyr Gly Ser Asn Pro Asn Gly Gly Ile Tyr65 70 75 80Ser His Met Ser Val Met Pro Leu Arg Ser Asp Gly Ser Leu Cys Leu 85 90 95Met Glu Ala Leu Asn Arg Ser Ser His Ser Asn His His Gln Asp Ser 100 105 110Ser Pro Lys Val Glu Asp Phe Phe Gly Thr His His Asn Asn Thr Ser 115 120 125His Lys Glu Ala Met Asp Leu Ser Leu Asp Ser Leu Phe Tyr Asn Thr 130 135 140Thr His Glu Pro Asn Thr Thr Thr Asn Phe Gln Glu Phe Phe Ser Phe145 150 155 160Pro Gln Thr Arg Asn His Glu Glu Glu Thr Arg Asn Tyr Gly Asn Asp 165 170 175Pro Ser Leu Thr His Gly Gly Ser Phe Asn Val Gly Val Tyr Gly Glu 180 185 190Phe Gln Gln Ser Leu Ser Leu Ser Met Ser Pro Gly Ser Gln Ser Ser 195 200 205Cys Ile Thr Gly Ser His His His Gln Gln Asn Gln Asn Gln Asn His 210 215 220Gln Ser Gln Asn His Gln Gln Ile Ser Glu Ala Leu Val Glu Thr Ser225 230 235 240Val Gly Phe Glu Thr Thr Thr Met Ala Ala Ala Lys Lys Lys Arg Gly 245 250 255Gln Glu Asp Val Val Val Val Gly Gln Lys Gln Ile Val His Arg Lys 260 265 270Ser Ile Asp Thr Phe Gly Gln Arg Thr Ser Gln Tyr Arg Gly Val Thr 275 280 285Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu Trp Asp Asn Ser 290 295 300Phe Lys Lys Glu Gly His Ser Arg Lys Gly Arg Gln Val Tyr Leu Gly305 310 315 320Gly Tyr Asp Met Glu Glu Lys Ala Ala Arg Ala Tyr Asp Leu Ala Ala 325 330 335Leu Lys Tyr Trp Gly Pro Ser Thr His Thr Asn Phe Ser Ala Glu Asn 340 345 350Tyr Gln Lys Glu Ile Glu Asp Met Lys Asn Met Thr Arg Gln Glu Tyr 355 360 365Val Ala His Leu Arg Arg Lys Ser Ser Gly Phe Ser Arg Gly Ala Ser 370 375 380Ile Tyr Arg Gly Val Thr Arg His His Gln His Gly Arg Trp Gln Ala385 390 395 400Arg Ile Gly Arg Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly Thr Phe 405 410 415Gly Thr Gln Glu Glu Ala Ala Glu Ala Tyr Asp Val Ala Ala Ile Lys

420 425 430Phe Arg Gly Thr Asn Ala Val Thr Asn Phe Asp Ile Thr Arg Tyr Asp 435 440 445Val Asp Arg Ile Met Ser Ser Asn Thr Leu Leu Ser Gly Glu Leu Ala 450 455 460Arg Arg Asn Asn Asn Ser Ile Val Val Arg Asn Thr Glu Asp Gln Thr465 470 475 480Ala Leu Asn Ala Val Val Glu Gly Gly Ser Asn Lys Glu Val Ser Thr 485 490 495Pro Glu Arg Leu Leu Ser Phe Pro Ala Ile Phe Ala Leu Pro Gln Val 500 505 510Asn Gln Lys Met Phe Gly Ser Asn Met Gly Gly Asn Met Ser Pro Trp 515 520 525Thr Ser Asn Pro Asn Ala Glu Leu Lys Thr Val Ala Leu Thr Leu Pro 530 535 540Gln Met Pro Val Phe Ala Ala Trp Ala Asp Ser545 550 55593678PRTSorghum bicolor 93Met Thr Asn Asn Asn Gly Asn Gly Thr Asn Ala Ala Ala Ser Ser Trp1 5 10 15Leu Gly Phe Ser Leu Ser Pro His Met Ala Ser Ala Met Asp Glu His 20 25 30His His Val Gln Gln Gln Gln Gln His His His His His Ser Leu Phe 35 40 45Phe Pro Ser Val Thr Ala Ala Ala Ala Ala Ala Tyr Gly Leu Gly Gly 50 55 60Ser Asp Gly Gly Val Ala Thr Ser Ala Ser Pro Tyr Tyr Thr Pro Gln65 70 75 80Leu Ala Ser Met Pro Leu Lys Ser Asp Gly Ser Leu Cys Ile Met Glu 85 90 95Ala Leu Arg Arg Ser Asp Gln Pro Asp His His Gly Pro Lys Leu Glu 100 105 110Asp Phe Leu Gly Ala Ala Ala Ala Gln Ser Gln Ala Met Ala Leu Ser 115 120 125Leu Gln Asp Asn Pro Ala Ala Ala Ala Ser Ser Phe Tyr Tyr Tyr Gly 130 135 140Asn Gly Gly Gly Gly Gly Ser Gly His Gln His His Gly Gly Phe Leu145 150 155 160Gln Pro Cys Ala Asp Leu Tyr Gly Gly Pro Ser Glu Ala Ser Leu Val 165 170 175Ala Asp Asp Asp Glu Ala Ala Ala Ala Ala Thr Ala Met Ala Ser Trp 180 185 190Val Ala Ala Arg Ala Gly Glu Ser Gly Gly Val Leu Ser Ala Ala Ala 195 200 205Ala Ala Ala Gly His Gln His His His His Ala Leu Ala Leu Ser Met 210 215 220Ser Ser Gly Ser Leu Ser Ser Cys Val Thr Ala His Pro Gly Ala Ala225 230 235 240Ala Ala Asp Tyr Gly Val Val Ala Ala Thr Ala Ser Ala Ser Leu Asp 245 250 255Gly Gly Arg Lys Arg Gly Gly Ala Ala Gly Gln Lys Gln Pro Val His 260 265 270His Arg Lys Ser Ile Asp Thr Phe Gly Gln Arg Thr Ser Gln Tyr Arg 275 280 285Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu Trp 290 295 300Asp Asn Ser Cys Lys Lys Glu Gly Gln Thr Arg Lys Gly Arg Gln Gly305 310 315 320Gly Tyr Asp Met Glu Glu Lys Ala Ala Arg Ala Tyr Asp Leu Ala Ala 325 330 335Leu Lys Tyr Trp Gly Pro Ser Thr His Ile Asn Phe Pro Leu Glu Asp 340 345 350Tyr Gln Glu Glu Leu Glu Glu Met Lys Asn Met Thr Arg Gln Glu Tyr 355 360 365Val Ala His Leu Arg Arg Lys Ser Ser Gly Phe Ser Arg Gly Ala Ser 370 375 380Met Tyr Arg Gly Val Thr Arg His His Gln His Gly Arg Trp Gln Ala385 390 395 400Arg Ile Gly Arg Val Ser Gly Asn Lys Asp Leu Tyr Leu Gly Thr Phe 405 410 415Ser Thr Gln Glu Glu Ala Ala Glu Ala Tyr Asp Ile Ala Ala Ile Lys 420 425 430Phe Arg Gly Leu Asn Ala Val Thr Asn Phe Asp Ile Thr Arg Tyr Asp 435 440 445Val Asp Lys Ile Met Ala Ser Asn Thr Leu Leu Pro Gly Asp Leu Ala 450 455 460Arg Arg Arg Lys Asp Asp Asp Pro Ala Ala Val Ile Ala Gly Ala Asp465 470 475 480Ala Ser Asn Gly Gly Gly Val Thr Thr Ala Ala Ala Ala Ala Ala Leu 485 490 495Val Gln Gln Ala Ala Ala Ala Ala Ala Ala Gly Ala Gly Gly Asn His 500 505 510Ser Ala Ser Ser Ser Glu Thr Trp Ile Lys Val Ala Ala Ala Ala Ala 515 520 525Leu Gln Ala Ala Gly Ala Ala Pro Arg Asp Gly Asn His His His His 530 535 540His His Asp Val Leu Ser Gly Glu Ala Phe Ser Val Leu His Asp Leu545 550 555 560Val Val Thr Ala Ala Asp Gly Gly Asn Gly Asn Gly Asn Gly Gly His 565 570 575His His His His Val His Asn Ser Ala Ala Thr Ala Gln His Met Ser 580 585 590Met Ser Ser Ala Ser Ser Leu Val Thr Ser Leu Gly Asn Ser Arg Glu 595 600 605Gly Ser Pro Asp Arg Gly Gly Gly Leu Ser Met Leu Phe Ser Lys Pro 610 615 620Pro Ala Pro Ala Pro Ala Ala Ser Ala His Ala Ala Asn Lys Pro Met625 630 635 640Ser Pro Leu Met Pro Leu Gly Ser Trp Ala Ser Thr Ala Ala Ala Ser 645 650 655Ala Arg Ala Ala Ala Ala Ala Val Ser Ile Ala His Met Pro Val Phe 660 665 670Ala Ala Trp Thr Asp Ala 67594509PRTGlycine max 94Met Ala Arg Ala Ser Thr Asn Trp Leu Ser Phe Ser Leu Ser Pro Met1 5 10 15Asp Met Leu Arg Thr Pro Glu Pro Gln Phe Val Gln Tyr Asp Ala Ala 20 25 30Ser Asp Thr Ser Ser His His Tyr Tyr Leu Asp Asn Leu Tyr Thr Asn 35 40 45Gly Trp Gly Asn Gly Ser Leu Lys Phe Glu Gln Asn Leu Asn His Ser 50 55 60Asp Val Ser Phe Val Gln Ser Ser Ser Gln Ser Val Ser His Ala Pro65 70 75 80Pro Lys Leu Glu Asp Phe Leu Gly Asp Ser Ser Ala Val Met Arg Tyr 85 90 95Ser Asp Ser Gln Thr Glu Thr Gln Asp Ser Ser Leu Thr His Ile Tyr 100 105 110Asp His His His His His His His Gly Ser Ser Ala Tyr Phe Gly Gly 115 120 125Asp His Gln Asp Leu Lys Ala Ile Thr Gly Phe Gln Ala Phe Ser Thr 130 135 140Asn Ser Gly Ser Glu Val Asp Asp Ser Ala Ser Ile Gly Lys Ala Gln145 150 155 160Gly Ser Glu Phe Gly Thr His Ser Ile Glu Ser Ser Val Asn Glu Phe 165 170 175Ala Ala Phe Ser Gly Gly Thr Asn Thr Gly Gly Thr Leu Ser Leu Ala 180 185 190Val Ala Gln Ser Ser Glu Lys Ala Val Ala Ala Ala Ala Glu Ser Asp 195 200 205Arg Ser Lys Lys Val Val Asp Thr Phe Gly Gln Arg Thr Ser Ile Tyr 210 215 220Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu225 230 235 240Trp Asp Asn Ser Cys Arg Arg Glu Gly Gln Ala Arg Lys Gly Arg Gln 245 250 255Gly Gly Tyr Asp Lys Glu Glu Lys Ala Ala Arg Ser Tyr Asp Leu Ala 260 265 270Ala Leu Lys Tyr Trp Gly Pro Thr Ala Thr Thr Asn Phe Pro Val Ser 275 280 285Asn Tyr Ser Lys Glu Val Glu Glu Met Lys His Val Thr Lys Gln Glu 290 295 300Phe Ile Ala Ser Leu Arg Arg Lys Ser Ser Gly Phe Ser Arg Gly Ala305 310 315 320Ser Ile Tyr Arg Gly Val Thr Arg His His Gln Gln Gly Arg Trp Gln 325 330 335Ala Arg Ile Gly Arg Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly Thr 340 345 350Phe Ala Thr Glu Glu Glu Ala Ala Glu Ala Tyr Asp Ile Ala Ala Ile 355 360 365Lys Phe Arg Gly Ala Asn Ala Val Thr Asn Phe Glu Met Asn Arg Tyr 370 375 380Asp Val Glu Ala Ile Met Lys Ser Ser Leu Pro Val Gly Gly Ala Ala385 390 395 400Lys Arg Leu Lys Leu Ser Leu Glu Ser Glu Gln Lys Ala Leu Pro Val 405 410 415Ser Ser Ser Ser Ser Ser Ser Gln Gln Gln Asn Pro Gln Cys Gly Asn 420 425 430Val Ser Ala Ser Ile Asn Phe Ser Ser Ile His Gln Pro Ile Ala Ser 435 440 445Ile Pro Cys Gly Ile Pro Phe Asp Ser Thr Thr Ala Tyr Tyr His His 450 455 460Asn Leu Phe Gln His Phe His Pro Thr Asn Ala Gly Thr Ala Ala Ser465 470 475 480Ala Val Thr Ser Ala Asn Ala Asn Ala Leu Thr Ala Leu Pro Pro Thr 485 490 495Ala Ala Ala Glu Phe Phe Ile Trp Pro His Gln Ser Tyr 500 50595652PRTOryza sativa 95Met Ala Ser Gly Asn Ser Ser Ser Ser Ser Gly Ser Met Ala Ala Thr1 5 10 15Ala Gly Gly Val Gly Gly Trp Leu Gly Phe Ser Leu Ser Pro His Met 20 25 30Ala Thr Tyr Cys Ala Gly Gly Val Asp Asp Val Gly His His His His 35 40 45His His Val His Gln His Gln Gln Gln His Gly Gly Gly Leu Phe Tyr 50 55 60Asn Pro Ala Ala Val Ala Ser Ser Phe Tyr Tyr Gly Gly Gly His Asp65 70 75 80Ala Val Val Thr Ser Ala Ala Gly Gly Gly Ser Tyr Tyr Gly Ala Gly 85 90 95Phe Ser Ser Met Pro Leu Lys Ser Asp Gly Ser Leu Cys Ile Met Glu 100 105 110Ala Leu Arg Gly Gly Asp Gln Glu Gln Gln Gly Val Val Val Ser Ala 115 120 125Ser Pro Lys Leu Glu Asp Phe Leu Gly Ala Gly Pro Ala Met Ala Leu 130 135 140Ser Leu Asp Asn Ser Ala Phe Tyr Tyr Gly Gly His Gly His His Gln145 150 155 160Gly His Ala Gln Asp Gly Gly Ala Val Gly Gly Asp Pro His His Gly 165 170 175Gly Gly Gly Phe Leu Gln Cys Ala Val Ile Pro Gly Ala Gly Ala Gly 180 185 190His Asp Ala Ala Leu Val His Asp Gln Ser Ala Ala Ala Val Ala Ala 195 200 205Gly Trp Ala Ala Met His Gly Gly Gly Tyr Asp Ile Ala Asn Ala Ala 210 215 220Ala Asp Asp Val Cys Ala Ala Gly Pro Ile Ile Pro Thr Gly Gly His225 230 235 240Leu His Pro Leu Thr Leu Ser Met Ser Ser Ala Gly Ser Gln Ser Ser 245 250 255Cys Val Thr Val Gln Ala Ala Ala Ala Gly Glu Pro Tyr Met Ala Met 260 265 270Asp Ala Val Ser Lys Lys Arg Gly Gly Ala Asp Arg Ala Gly Gln Lys 275 280 285Gln Pro Val His Arg Lys Ser Ile Asp Thr Phe Gly Gln Arg Thr Ser 290 295 300Gln Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala305 310 315 320His Leu Trp Asp Asn Ser Cys Lys Lys Glu Gly Gln Thr Arg Lys Gly 325 330 335Arg Gln Gly Gly Tyr Asp Met Glu Glu Lys Ala Ala Arg Ala Tyr Asp 340 345 350Leu Ala Ala Leu Lys Tyr Trp Gly Pro Ser Thr His Ile Asn Phe Pro 355 360 365Leu Glu Asp Tyr Gln Glu Glu Leu Glu Glu Met Lys Asn Met Ser Arg 370 375 380Gln Glu Tyr Val Ala His Leu Arg Arg Lys Ser Ser Gly Phe Ser Arg385 390 395 400Gly Ala Ser Ile Tyr Arg Gly Val Thr Arg His His Gln His Gly Arg 405 410 415Trp Gln Ala Arg Ile Gly Arg Val Ser Gly Asn Lys Asp Leu Tyr Leu 420 425 430Gly Thr Phe Ser Thr Gln Glu Glu Ala Ala Glu Ala Tyr Asp Val Ala 435 440 445Ala Ile Lys Phe Arg Gly Leu Asn Ala Val Thr Asn Phe Asp Ile Thr 450 455 460Arg Tyr Asp Val Asp Lys Ile Leu Glu Ser Ser Thr Leu Leu Pro Gly465 470 475 480Glu Leu Ala Arg Arg Lys Gly Lys Val Gly Asp Gly Gly Gly Ala Ala 485 490 495Ala Val Ala Asp Ala Ala Ala Ala Leu Val Gln Ala Gly Asn Val Ala 500 505 510Glu Trp Lys Met Ala Thr Ala Ala Ala Leu Pro Ala Ala Ala Arg Thr 515 520 525Glu Gln Gln Gln Gln His Gly His Gly Gly His Gln His His Asp Leu 530 535 540Leu Pro Ser Asp Ala Phe Ser Val Leu Gln Asp Ile Val Ser Thr Val545 550 555 560Asp Ala Ala Gly Ala Pro Pro Arg Ala Pro His Met Ser Met Ala Ala 565 570 575Thr Ser Leu Gly Asn Ser Arg Glu Gln Ser Pro Asp Arg Gly Val Gly 580 585 590Gly Gly Gly Gly Gly Gly Val Leu Ala Thr Leu Phe Ala Lys Pro Ala 595 600 605Ala Ala Ser Lys Leu Tyr Ser Pro Val Pro Leu Asn Thr Trp Ala Ser 610 615 620Pro Ser Pro Ala Val Ser Ser Val Pro Ala Arg Ala Gly Val Ser Ile625 630 635 640Ala His Leu Pro Met Phe Ala Ala Trp Thr Asp Ala 645 65096440PRTArabidopsis thaliana 96Met Ala Asp Ser Thr Thr Leu Ser Thr Phe Phe Asp His Ser Gln Thr1 5 10 15Gln Ile Pro Lys Leu Glu Asp Phe Leu Gly Asp Ser Phe Val Arg Tyr 20 25 30Ser Asp Asn Gln Thr Glu Thr Gln Asp Ser Ser Ser Leu Thr Pro Phe 35 40 45Tyr Asp Pro Arg His Arg Thr Val Ala Glu Gly Val Thr Gly Phe Phe 50 55 60Ser Asp His His Gln Pro Asp Phe Lys Thr Ile Asn Ser Gly Pro Glu65 70 75 80Ile Phe Asp Asp Ser Thr Thr Ser Asn Ile Gly Gly Thr His Leu Ser 85 90 95Ser His Val Val Glu Ser Ser Thr Thr Ala Lys Leu Gly Phe Asn Gly 100 105 110Asp Cys Thr Thr Thr Gly Gly Val Leu Ser Leu Gly Val Asn Asn Thr 115 120 125Ser Asp Gln Pro Leu Ser Cys Asn Asn Gly Glu Arg Gly Gly Asn Ser 130 135 140Asn Lys Lys Lys Thr Val Ser Lys Lys Glu Thr Ser Asp Asp Ser Lys145 150 155 160Lys Lys Ile Val Glu Thr Leu Gly Gln Arg Thr Ser Ile Tyr Arg Gly 165 170 175Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu Trp Asp 180 185 190Asn Ser Cys Arg Arg Glu Gly Gln Ala Arg Lys Gly Arg Gln Val Tyr 195 200 205Leu Gly Gly Tyr Asp Lys Glu Asp Arg Ala Ala Arg Ala Tyr Asp Leu 210 215 220Ala Ala Leu Lys Tyr Trp Gly Ser Thr Ala Thr Thr Asn Phe Pro Val225 230 235 240Ser Ser Tyr Ser Lys Glu Leu Glu Glu Met Asn His Met Thr Lys Gln 245 250 255Glu Phe Ile Ala Ser Leu Arg Arg Lys Ser Ser Gly Phe Ser Arg Gly 260 265 270Ala Ser Ile Tyr Arg Gly Val Thr Arg His His Gln Gln Gly Arg Trp 275 280 285Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly 290 295 300Thr Phe Ala Thr Glu Glu Glu Ala Ala Glu Ala Tyr Asp Ile Ala Ala305 310 315 320Ile Lys Phe Arg Gly Ile Asn Ala Val Thr Asn Phe Glu Met Asn Arg 325 330 335Tyr Asp Ile Glu Ala Val Met Asn Ser Ser Leu Pro Val Gly Gly Ala 340 345 350Ala Ala Lys Arg His Lys Leu Lys Leu Ala Leu Glu Ser Pro Ser Ser 355 360 365Ser Ser Ser Asp His Asn Leu Gln Gln Gln Gln Leu Leu Pro Ser Ser 370 375 380Ser Pro Ser Asp Gln Asn Pro Asn Ser Ile Pro Cys Gly Ile Pro Phe385 390 395 400Glu Pro Ser Val Leu Tyr Tyr His Gln Asn Phe Phe Gln His Tyr Pro 405 410 415Leu Val Ser Asp Ser Thr Ile Gln Ala Pro Met Asn Gln Ala Glu Phe 420 425 430Phe Leu Trp Pro Asn Gln Ser Tyr 435 44097651PRTZea mays 97Met Ala Asn Gly Ser Asn Trp Leu Gly Phe Ser Leu Ser Pro His Thr1 5 10 15Ala Met Glu Val Pro Ser Val Ser Glu Pro Ala Ser Thr His His Ala 20 25 30Pro Pro Pro Pro Ser Ser Ser Thr Thr Ile Ser Ser Ser Ser Thr Asn 35 40 45Asn Thr Ile Ser Ser Asn Phe Leu Phe Ser Pro

Met Ala Ser Pro Tyr 50 55 60Pro Gly Tyr Tyr Cys Val Gly Gly Ala Tyr Gly Asp Gly Thr Ser Ala65 70 75 80Ala Gly Val Tyr Tyr Ser His Leu Pro Ala Met Pro Asn Lys Ser Asp 85 90 95Asp Gly Thr Leu Cys Asn Met Glu Gly Met Val Pro Ser Ser Pro Pro 100 105 110Lys Leu Glu Asp Phe Leu Gly Gly Gly Asn Gly Gly Gly Gln Glu Thr 115 120 125Ala Thr Tyr Tyr Ser His Gln Gln Gln Gly Gln Glu Glu Gly Ala Ser 130 135 140Arg Asp Tyr Arg Gln Tyr His Tyr Gln His Gln Gln Leu Val Pro Tyr145 150 155 160Asn Phe Gln Pro Leu Thr Glu Ala Glu Met Leu Gln Glu Gly Ala Ala 165 170 175Pro Met Glu Glu Ala Met Ala Ala Ala Lys Asn Phe Leu Leu Ala Ser 180 185 190Tyr Gly Ala Cys Tyr Ser Asn Glu Glu Thr Arg Pro Leu Ser Leu Ser 195 200 205Met Met Ser Pro Gly Thr Gln Leu Ser Ser Cys Val Ser Ala Ala Pro 210 215 220Gln Gln Gln His Gln Met Ala Ala Thr Val Ala Thr Ala Ala Thr Ala225 230 235 240Ala Ala Ala Leu Gly Arg Ser Asn Gly Asp Gly Glu Gln Cys Val Gly 245 250 255Arg Lys Arg Ser Thr Gly Lys Gly Gly His Lys Gln Thr Val His Arg 260 265 270Lys Ser Ile Asp Thr Phe Gly Gln Arg Thr Ser Arg Tyr Arg Gly Val 275 280 285Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu Trp Asp Asn 290 295 300Ser Cys Arg Lys Asp Gly Gln Thr Arg Lys Gly Arg Gln Val Tyr Leu305 310 315 320Gly Gly Tyr Asp Thr Glu Asp Lys Ala Ala Arg Ala Tyr Asp Leu Ala 325 330 335Ala Leu Lys Tyr Trp Gly Pro Ala Thr His Val Asn Phe Pro Val Glu 340 345 350Asn Tyr Arg Asp Glu Leu Glu Glu Met Lys Gly Met Thr Arg Gln Glu 355 360 365Phe Val Ala His Leu Arg Arg Arg Ser Ser Gly Phe Ser Arg Gly Ala 370 375 380Ser Ile Tyr Arg Gly Val Thr Arg His His Gln Gln Gly Arg Trp Gln385 390 395 400Ser Arg Ile Gly Arg Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly Thr 405 410 415Phe Thr Thr Gln Glu Glu Ala Ala Glu Ala Tyr Asp Ile Ala Ala Ile 420 425 430Lys Phe Arg Gly Leu Asn Ala Val Thr Asn Phe Asp Ile Ala Arg Tyr 435 440 445Asp Val Asp Lys Ile Met Glu Ser Ser Thr Leu Leu Ala Val Glu Glu 450 455 460Ala Arg Lys Val Lys Ala Val Glu Ala Ala Ser Ser Ala Pro Met Thr465 470 475 480His Thr His Ser Gly Gly Lys Glu Gln Leu Asn Ala Thr Thr Ala Glu 485 490 495Glu Thr Ser Ser Ala Gly Trp Arg Met Val Leu His Gly Ser Pro His 500 505 510Gln Leu Glu Ala Ala Arg Cys Pro Glu Ala Ala Asp Leu Gln Ser Ala 515 520 525Ile Met Asn Asn Asp Ser His Pro Arg Pro Ser Leu His Gly Ile Ala 530 535 540Gly Leu Asp Ile Glu Cys Ala Val His Asp His His Asp His Leu Asp545 550 555 560Val Pro Ala Gly Ser Arg Thr Thr Ala Ala Gly Ser Ile Asn Phe Ser 565 570 575Asn Ser Ser Ser Gln Val Thr Ser Leu Gly Asn Ser Arg Glu Gly Ser 580 585 590Pro Glu Arg Leu Gly Leu Ala Met Met Tyr Gly Lys Gln Pro Ser Ser 595 600 605Ala Val Ser Leu Ala Ala Thr Met Ser Pro Trp Thr Pro Val Ala Ala 610 615 620Gln Thr Val Ala His Val Leu Lys Gln Gln Pro Asn Val Val Val Ser625 630 635 640His Arg Pro Val Phe Ala Ala Trp Ala Asp Ala 645 65098656PRTMedicago truncatula 98Met Lys Arg Met Glu Asn Asn Asp Asp Ser Val Asp Ile Asn Asn Glu1 5 10 15Asn Asn Trp Leu Gly Phe Ser Leu Ser Pro Gln Met Asn Asn Ile Gly 20 25 30Val Ser Ser His Thr His His His Ser Leu Pro Ser Ala Thr Ala Thr 35 40 45Ala Ser Glu Val Val Pro Leu Gln Ala Ser Phe Tyr His Ser Ser Pro 50 55 60Leu Ser Asn Phe Cys Tyr Ser Tyr Gly Leu Glu His Glu Asn Ala Gly65 70 75 80Leu Tyr Ser Leu Leu Pro Ile Met Pro Leu Lys Ser Asp Gly Ser Leu 85 90 95Phe Glu Met Glu Ala Leu Ser Arg Ser Gln Thr Gln Ala Met Ser Thr 100 105 110Thr Ser Ala Pro Lys Leu Glu Asn Phe Leu Gly Asn Glu Ala Met Gly 115 120 125Thr Pro His Tyr Ala Cys Ser Ser Thr Val Thr Glu Thr Met Pro Leu 130 135 140Ser Leu Asp Ser Met Phe Gln Asn Gln Ile Gln Gln Asn Met Asn Met145 150 155 160Asn Asn Gln Gln His Leu Ser Tyr Tyr Asn Ser Thr Leu Arg Asn His 165 170 175Glu Leu Met Leu Glu Gly Ser Lys Gln Ser Gln Thr Ser Ser Gly Asn 180 185 190Phe His Gln Ser Asn Met Gly Glu Asp His Gly Leu Ser Gly Leu Lys 195 200 205Asn Trp Val Leu Arg Asn Phe Pro Ala Ser His Gly His Asp Gln Ser 210 215 220Lys Met Ile Val Pro Val Val Glu Glu Asn Glu Gly Glu Cys Gly Ser225 230 235 240Asn Ile Gly Ser Met Ala Tyr Gly Asp Leu His Ser Leu Ser Leu Ser 245 250 255Met Ser Pro Ser Ser Gln Ser Ser Cys Val Thr Thr Ser Gln Asn Met 260 265 270Ser Ser Ala Val Val Glu Asn Ser Val Ala Met Asp Thr Lys Lys Arg 275 280 285Gly Ser Glu Lys Phe Glu Gln Lys Gln Ile Val His Arg Lys Ser Ile 290 295 300Asp Thr Phe Gly Gln Arg Thr Ser Gln Tyr Arg Gly Val Thr Arg His305 310 315 320Arg Trp Thr Gly Arg Tyr Glu Ala His Leu Trp Asp Asn Ser Cys Lys 325 330 335Lys Glu Gly Gln Ser Arg Lys Gly Arg Gln Gly Gly Tyr Asp Met Glu 340 345 350Glu Lys Ala Ala Arg Ala Tyr Asp Gln Ala Ala Leu Lys Tyr Trp Gly 355 360 365Pro Ser Thr His Ile Asn Phe Pro Leu Glu Asn Tyr Gln Asn Gln Leu 370 375 380Glu Glu Met Lys Asn Met Thr Arg Gln Glu Tyr Val Ala His Leu Arg385 390 395 400Arg Lys Ser Ser Gly Phe Ser Arg Gly Ala Ser Met Tyr Arg Gly Val 405 410 415Thr Ser Arg His His Gln His Gly Arg Trp Gln Ala Arg Ile Gly Arg 420 425 430Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly Thr Phe Ser Thr Gln Glu 435 440 445Glu Ala Ala Glu Ala Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly Ala 450 455 460Asn Ala Val Thr Asn Phe Asp Ile Ile Lys Tyr Asp Val Glu Lys Ile465 470 475 480Met Ala Ser Ser Asn Leu Leu Asn Ile Glu Gln Ala Arg Arg Asn Lys 485 490 495Glu Val Val Asp Ile Ser Ser Thr Gln Tyr Ile Asp Gln Asn Lys Pro 500 505 510Ser Ser Ala Tyr Asp Asn Asn Ser Thr Gln Glu Ala Ile Ser Met Gln 515 520 525Lys Ser Met Val Leu Tyr Gln Ser Ser Gln His Gln Gln Leu Gln Gln 530 535 540Asn Gln Pro Arg Phe Glu Asn Glu Arg Thr His Gln Thr Phe Ser Ser545 550 555 560Val Ser Leu Asp Asn Met Phe His Gln Glu Val Val Glu Glu Ala Ser 565 570 575Lys Met Arg Thr His Val Ser Asn Ala Ser Ser Leu Ala Thr Ser Leu 580 585 590Ser Ser Ser Arg Glu Gly Thr Pro Asp Arg Thr Ser Leu Gln Asn Leu 595 600 605Ser Gly Ile Met Pro Ser Thr Ala Ser Lys Leu Leu Val Thr Ser Ala 610 615 620Pro Asn Ser Asn Leu Asn Ser Trp Asp Pro Ser Gln His Leu Arg Pro625 630 635 640Ser Leu Ser Leu Pro Gln Met Pro Val Phe Ala Ala Trp Thr Asp Ala 645 650 65599546PRTGlycine max 99Met Lys Arg Met Asn Glu Ser Asn Asn Thr Asp Asp Gly Asn Asn His1 5 10 15Asn Trp Leu Gly Phe Ser Leu Ser Pro His Met Lys Met Glu Val Thr 20 25 30Ser Ala Ala Thr Val Ser Asp Asn Asn Val Pro Thr Thr Phe Tyr Met 35 40 45Ser Pro Ser His Met Ser Asn Ser Gly Met Cys Tyr Ser Val Gly Glu 50 55 60Asn Gly Asn Phe His Ser Pro Leu Thr Val Met Pro Leu Lys Ser Asp65 70 75 80Gly Ser Leu Gly Ile Leu Glu Ala Leu Asn Arg Ser Gln Thr Gln Val 85 90 95Met Val Pro Thr Ser Ser Pro Lys Leu Glu Asp Phe Leu Gly Gly Ala 100 105 110Thr Met Gly Thr His Glu Tyr Gly Asn His Glu Arg Gly Leu Ser Leu 115 120 125Asp Ser Ile Tyr Tyr Asn Ser Gln Asn Ala Glu Ala Gln Pro Asn Arg 130 135 140Asn Leu Leu Ser His Pro Phe Arg Gln Gln Gly His Ala Pro Ser Glu145 150 155 160Glu Glu Ala Thr Lys Glu Thr His Val Ser Val Met Pro Gln Met Thr 165 170 175Gly Gly Gly Leu Gln Asn Trp Ile Leu Glu Gln Gln Met Asn Cys Gly 180 185 190Ile Trp Asn Glu Arg Ser Gly Val Ser Val Gly Thr Val Gly Cys Gly 195 200 205Glu Leu Gln Ser Leu Ser Leu Ser Met Ser Pro Gly Ser Gln Ser Ser 210 215 220Cys Val Thr Ala Pro Ser Gly Thr Asp Ser Val Ala Val Asp Ala Lys225 230 235 240Lys Arg Gly His Ala Lys Leu Gly Gln Lys Gln Pro Val His Arg Lys 245 250 255Ser Ile Asp Thr Phe Gly Gln Arg Thr Ser Gln Tyr Arg Gly Val Thr 260 265 270Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu Trp Asp Asn Ser 275 280 285Cys Lys Lys Glu Gly Gln Thr Arg Lys Gly Arg Gln Gly Gly Tyr Asp 290 295 300Met Glu Glu Lys Ala Ala Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr305 310 315 320Trp Gly Pro Ser Thr His Ile Asn Phe Ser Ile Glu Asn Tyr Gln Val 325 330 335Gln Leu Glu Glu Met Lys Asn Met Ser Arg Gln Glu Tyr Val Ala His 340 345 350Leu Arg Arg Lys Ser Ser Gly Phe Ser Arg Gly Ala Ser Ile Tyr Arg 355 360 365Gly Val Thr Arg His His Gln His Gly Arg Trp Gln Ala Arg Ile Gly 370 375 380Arg Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly Thr Phe Ser Thr Gln385 390 395 400Glu Glu Ala Ala Glu Ala Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly 405 410 415Ala Asn Ala Val Thr Asn Phe Asp Ile Ser Arg Tyr Asp Val Glu Arg 420 425 430Ile Met Ala Ser Ser Asn Leu Leu Ala Gly Glu Leu Ala Arg Arg Asn 435 440 445Lys Asp Asn Asp Pro Arg Asn Glu Ala Ile Asp Tyr Asn Lys Ser Val 450 455 460Phe Lys Gln Glu Thr Thr Met Lys Met Ile Arg Ser Gly Arg Cys Leu465 470 475 480Ser Ser Ser Arg Glu Ala Ser Pro Glu Lys Met Gly Pro Ser Leu Leu 485 490 495Phe Pro Lys Pro Pro Pro Met Glu Thr Lys Ile Val Asn Pro Ile Gly 500 505 510Thr Ser Val Thr Ser Trp Leu Pro Ser Pro Thr Val Gln Met Arg Pro 515 520 525Ser Pro Ala Ile Ser Leu Ser His Leu Pro Val Phe Ala Ala Trp Thr 530 535 540Asp Thr545100415PRTArabidopsis thaliana 100Met Lys Lys Trp Leu Gly Phe Ser Leu Thr Pro Pro Leu Arg Ile Cys1 5 10 15Asn Ser Glu Glu Glu Glu Leu Arg His Asp Gly Ser Asp Val Trp Arg 20 25 30Tyr Asp Ile Asn Phe Asp His His His His Asp Glu Asp Val Pro Lys 35 40 45Val Glu Asp Leu Leu Ser Asn Ser His Gln Thr Glu Tyr Pro Ile Asn 50 55 60His Asn Gln Thr Asn Val Asn Cys Thr Thr Val Val Asn Arg Leu Asn65 70 75 80Pro Pro Gly Tyr Leu Leu His Asp Gln Thr Val Val Thr Pro His Tyr 85 90 95Pro Asn Leu Asp Pro Asn Leu Ser Asn Asp Tyr Gly Gly Phe Glu Arg 100 105 110Val Gly Ser Val Ser Val Phe Lys Ser Trp Leu Glu Gln Gly Thr Pro 115 120 125Ala Phe Pro Leu Ser Ser His Tyr Val Thr Glu Glu Ala Gly Thr Ser 130 135 140Asn Asn Ile Ser His Phe Ser Asn Glu Glu Thr Gly Tyr Asn Thr Asn145 150 155 160Gly Ser Met Leu Ser Leu Ala Leu Ser His Gly Ala Cys Ser Asp Leu 165 170 175Ile Asn Glu Ser Asn Val Ser Ala Arg Val Glu Glu Pro Val Lys Val 180 185 190Asp Glu Lys Arg Lys Arg Leu Val Val Lys Pro Gln Val Lys Glu Ser 195 200 205Val Pro Arg Lys Ser Val Asp Ser Tyr Gly Gln Arg Thr Ser Gln Tyr 210 215 220Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu225 230 235 240Trp Asp Asn Ser Cys Lys Lys Glu Gly Gln Thr Arg Arg Gly Arg Gln 245 250 255Val Tyr Leu Gly Gly Tyr Asp Glu Glu Glu Lys Ala Ala Arg Ala Tyr 260 265 270Asp Leu Ala Ala Leu Lys Tyr Trp Gly Pro Thr Thr His Leu Asn Phe 275 280 285Pro Leu Ser Asn Tyr Glu Lys Glu Ile Glu Glu Leu Asn Asn Met Asn 290 295 300Arg Gln Glu Phe Val Ala Met Leu Arg Arg Asn Ser Ser Gly Phe Ser305 310 315 320Arg Gly Ala Ser Val Tyr Arg Gly Val Thr Arg His His Gln His Gly 325 330 335Arg Trp Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys Asp Leu Tyr 340 345 350Leu Gly Thr Phe Ser Thr Gln Glu Glu Ala Ala Glu Ala Tyr Asp Ile 355 360 365Ala Ala Ile Lys Phe Arg Gly Leu Asn Ala Val Thr Asn Phe Asp Ile 370 375 380Asn Arg Tyr Asp Val Lys Arg Ile Cys Ser Ser Ser Thr Ile Val Asp385 390 395 400Ser Asp Gln Ala Lys His Ser Pro Thr Ser Ser Gly Ala Gly His 405 410 415101428PRTZea mays 101Met Ser Pro Pro Thr Asn Gly Ala Ile Ser Leu Ala Tyr Ala Pro Ser1 5 10 15Met Met Leu Gly Ala Gly Ala Leu Thr Asn Pro Pro Leu Leu Pro Phe 20 25 30Asp Gly Phe Thr Asp Glu Asp Phe Leu Ala Ser Ala Asp Ala Ala Leu 35 40 45Leu Gly Glu Ala Gly Thr Asp Gln Thr Leu Leu Leu Leu Pro Ser Cys 50 55 60Pro Gly Ala Asn Cys Cys Gly Gly Ser Ser Ser Asp Gln Gly Leu Gly65 70 75 80Ala Leu Ala Cys Glu Val Thr Thr Ala Gly Ser Phe Ser Leu Leu Gly 85 90 95Gln Pro Ala Pro Gly Gln Val Ser Trp Glu Val Thr Thr Ala Val Ala 100 105 110Ala Asp Arg Asn Thr Phe Ser Arg Ala Arg Asp Pro Ala Pro Ser Pro 115 120 125Pro Pro Ser Pro Ala Leu Pro Leu Val Gln Thr Thr Ser Gln Ser Gln 130 135 140Arg Thr Ser Ile Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg145 150 155 160Tyr Glu Ala His Leu Trp Asp Asn Thr Cys Arg Lys Glu Gly Gln Lys 165 170 175Arg Lys Gly Arg Gln Val Tyr Leu Gly Gly Tyr Asp Lys Glu Asp Lys 180 185 190Ala Ala Arg Ala Tyr Asp Ile Ala Ala Leu Lys Tyr Trp Gly Asp Asn 195 200 205Ala Thr Thr Asn Phe Pro Arg Glu Asn Tyr Ile Arg Glu Ile Gln Asp 210 215 220Met Gln Asn Met Asn Arg Arg Asp Val Val Ala Ser Leu Arg Arg Lys225 230 235 240Ser Ser Gly Phe Ser Arg Gly Ala Ser Ile Tyr Arg Gly Val Thr Lys

245 250 255His His Gln His Gly Arg Trp Gln Ala Arg Ile Gly Arg Val Ala Gly 260 265 270Asn Lys Asp Leu Tyr Leu Gly Thr Phe Ala Thr Glu Gln Glu Ala Ala 275 280 285Glu Ala Tyr Asp Ile Ala Ala Leu Lys Phe Arg Gly Glu Asn Ala Val 290 295 300Thr Asn Phe Glu Pro Ser Arg Tyr Asn Leu Leu Ala Ile Ala Gln Arg305 310 315 320Asp Ile Pro Ile Leu Gly Arg Lys Leu Ile Gln Lys Pro Ala Pro Glu 325 330 335Ala Glu Asp Gln Ala Ala Leu Ser Ala Arg Ser Phe Ser Gln Ser Gln 340 345 350Gln Ser Ser Asn Ser Leu Pro Pro Tyr Phe Leu Thr Asn Leu Leu Gln 355 360 365Pro Leu Pro Ser Gln His Ser Leu Ala Gln Ala Leu Pro Ser Tyr Asn 370 375 380Asn Leu Gly Phe Gly Glu Pro Ser Leu Tyr Trp Pro Cys Pro Cys Gly385 390 395 400Asp Pro Gly Glu Gln Lys Val Gln Leu Gly Ser Lys Leu Glu Ile Val 405 410 415Asp Gly Leu Val Gln Leu Ala Asn Ser Ala Ala Asn 420 425102438PRTArabidopsis thaliana 102Met Lys Lys Arg Leu Thr Thr Ser Thr Cys Ser Ser Ser Pro Ser Ser1 5 10 15Ser Val Ser Ser Ser Thr Thr Thr Ser Ser Pro Ile Gln Ser Glu Ala 20 25 30Pro Arg Pro Lys Arg Ala Lys Arg Ala Lys Lys Ser Ser Pro Ser Gly 35 40 45Asp Lys Ser His Asn Pro Thr Ser Pro Ala Ser Thr Arg Arg Ser Ser 50 55 60Ile Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Phe Glu Ala65 70 75 80His Leu Trp Asp Lys Ser Ser Trp Asn Ser Ile Gln Asn Lys Lys Gly 85 90 95Lys Gln Val Tyr Leu Gly Ala Tyr Asp Ser Glu Glu Ala Ala Ala His 100 105 110Thr Tyr Asp Leu Ala Ala Leu Lys Tyr Trp Gly Pro Asp Thr Ile Leu 115 120 125Asn Phe Pro Ala Glu Thr Tyr Thr Lys Glu Leu Glu Glu Met Gln Arg 130 135 140Val Thr Lys Glu Glu Tyr Leu Ala Ser Leu Arg Arg Gln Ser Ser Gly145 150 155 160Phe Ser Arg Gly Val Ser Lys Tyr Arg Gly Val Ala Arg His His His 165 170 175Asn Gly Arg Trp Glu Ala Arg Ile Gly Arg Val Phe Gly Asn Lys Tyr 180 185 190Leu Tyr Leu Gly Thr Tyr Asn Thr Gln Glu Glu Ala Ala Ala Ala Tyr 195 200 205Asp Met Ala Ala Ile Glu Tyr Arg Gly Ala Asn Ala Val Thr Asn Phe 210 215 220Asp Ile Ser Asn Tyr Ile Asp Arg Leu Lys Lys Lys Gly Val Phe Pro225 230 235 240Phe Pro Val Asn Gln Ala Asn His Gln Glu Gly Ile Leu Val Glu Ala 245 250 255Lys Gln Glu Val Glu Thr Arg Glu Ala Lys Glu Glu Pro Arg Glu Glu 260 265 270Val Lys Gln Gln Tyr Val Glu Glu Pro Pro Gln Glu Glu Glu Glu Lys 275 280 285Glu Glu Glu Lys Ala Glu Gln Gln Glu Ala Glu Ile Val Gly Tyr Ser 290 295 300Glu Glu Ala Ala Val Val Asn Cys Cys Ile Asp Ser Ser Thr Ile Met305 310 315 320Glu Met Asp Arg Cys Gly Asp Asn Asn Glu Leu Ala Trp Asn Phe Cys 325 330 335Met Met Asp Thr Gly Phe Ser Pro Phe Leu Thr Asp Gln Asn Leu Ala 340 345 350Asn Glu Asn Pro Ile Glu Tyr Pro Glu Leu Phe Asn Glu Leu Ala Phe 355 360 365Glu Asp Asn Ile Asp Phe Met Phe Asp Asp Gly Lys His Glu Cys Leu 370 375 380Asn Leu Glu Asn Leu Asp Cys Cys Val Val Gly Arg Glu Ser Pro Pro385 390 395 400Ser Ser Ser Ser Pro Leu Ser Cys Leu Ser Thr Asp Ser Ala Ser Ser 405 410 415Thr Thr Thr Thr Thr Thr Ser Val Ser Cys Asn Tyr Leu Phe Gln Gly 420 425 430Leu Phe Val Gly Ser Glu 435103432PRTArabidopsis thaliana 103Met Trp Asp Leu Asn Asp Ala Pro His Gln Thr Gln Arg Glu Glu Glu1 5 10 15Ser Glu Glu Phe Cys Tyr Ser Ser Pro Ser Lys Arg Val Gly Ser Phe 20 25 30Ser Asn Ser Ser Ser Ser Ala Val Val Ile Glu Asp Gly Ser Asp Asp 35 40 45Asp Glu Leu Asn Arg Val Arg Pro Asn Asn Pro Leu Val Thr His Gln 50 55 60Phe Phe Pro Glu Met Asp Ser Asn Gly Gly Gly Val Ala Ser Gly Phe65 70 75 80Pro Arg Ala His Trp Phe Gly Val Lys Phe Cys Gln Ser Asp Leu Ala 85 90 95Thr Gly Ser Ser Ala Gly Lys Ala Thr Asn Val Ala Ala Ala Val Val 100 105 110Glu Pro Ala Gln Pro Leu Lys Lys Ser Arg Arg Gly Pro Arg Ser Arg 115 120 125Ser Ser Gln Tyr Arg Gly Val Thr Phe Tyr Arg Arg Thr Gly Arg Trp 130 135 140Glu Ser His Ile Trp Asp Cys Gly Lys Gln Val Tyr Leu Gly Gly Phe145 150 155 160Asp Thr Ala His Ala Ala Ala Arg Ala Tyr Asp Arg Ala Ala Ile Lys 165 170 175Phe Arg Gly Val Glu Ala Asp Ile Asn Phe Asn Ile Asp Asp Tyr Asp 180 185 190Asp Asp Leu Lys Gln Met Thr Asn Leu Thr Lys Glu Glu Phe Val His 195 200 205Val Leu Arg Arg Gln Ser Thr Gly Phe Pro Arg Gly Ser Ser Lys Tyr 210 215 220Arg Gly Val Thr Leu His Lys Cys Gly Arg Trp Glu Ala Arg Met Gly225 230 235 240Gln Phe Leu Gly Lys Lys Tyr Val Tyr Leu Gly Leu Phe Asp Thr Glu 245 250 255Val Glu Ala Ala Arg Ala Tyr Asp Lys Ala Ala Ile Lys Cys Asn Gly 260 265 270Lys Asp Ala Val Thr Asn Phe Asp Pro Ser Ile Tyr Asp Glu Glu Leu 275 280 285Asn Ala Glu Ser Ser Gly Asn Pro Thr Thr Pro Gln Asp His Asn Leu 290 295 300Asp Leu Ser Leu Gly Asn Ser Ala Asn Ser Lys His Lys Ser Gln Asp305 310 315 320Met Arg Leu Arg Met Asn Gln Gln Gln Gln Asp Ser Leu His Ser Asn 325 330 335Glu Val Leu Gly Leu Gly Gln Thr Gly Met Leu Asn His Thr Pro Asn 340 345 350Ser Asn His Gln Phe Pro Gly Ser Ser Asn Ile Gly Ser Gly Gly Gly 355 360 365Phe Ser Leu Phe Pro Ala Ala Glu Asn His Arg Phe Asp Gly Arg Ala 370 375 380Ser Thr Asn Gln Val Leu Thr Asn Ala Ala Ala Ser Ser Gly Phe Ser385 390 395 400Pro His His His Asn Gln Ile Phe Asn Ser Thr Ser Thr Pro His Gln 405 410 415Asn Trp Leu Gln Thr Asn Gly Phe Gln Pro Pro Leu Met Arg Pro Ser 420 425 430104449PRTArabidopsis thaliana 104Met Leu Asp Leu Asn Leu Asn Ala Asp Ser Pro Glu Ser Thr Gln Tyr1 5 10 15Gly Gly Asp Ser Tyr Leu Asp Arg Gln Thr Ser Asp Asn Ser Ala Gly 20 25 30Asn Arg Val Glu Glu Ser Gly Thr Ser Thr Ser Ser Val Ile Asn Ala 35 40 45Asp Gly Asp Glu Asp Ser Cys Ser Thr Arg Ala Phe Thr Leu Ser Phe 50 55 60Asp Ile Leu Lys Val Gly Ser Ser Ser Gly Gly Asp Glu Ser Pro Ala65 70 75 80Ala Ser Ala Ser Val Thr Lys Glu Phe Phe Pro Val Ser Gly Asp Cys 85 90 95Gly His Leu Arg Asp Val Glu Gly Ser Ser Ser Ser Arg Asn Trp Ile 100 105 110Asp Leu Ser Phe Asp Arg Ile Gly Asp Gly Glu Thr Lys Leu Val Thr 115 120 125Pro Val Pro Thr Pro Ala Pro Val Pro Ala Gln Val Lys Lys Ser Arg 130 135 140Arg Gly Pro Arg Ser Arg Ser Ser Gln Tyr Arg Gly Val Thr Phe Tyr145 150 155 160Arg Arg Thr Gly Arg Trp Glu Ser His Ile Trp Asp Cys Gly Lys Gln 165 170 175Val Tyr Leu Gly Gly Phe Asp Thr Ala His Ala Ala Ala Arg Ala Tyr 180 185 190Asp Arg Ala Ala Ile Lys Phe Arg Gly Val Asp Ala Asp Ile Asn Phe 195 200 205Thr Leu Gly Asp Tyr Glu Glu Asp Met Lys Gln Val Gln Asn Leu Ser 210 215 220Lys Glu Glu Phe Val His Ile Leu Arg Arg Gln Ser Thr Gly Phe Ser225 230 235 240Arg Gly Ser Ser Lys Tyr Arg Gly Val Thr Leu His Lys Cys Gly Arg 245 250 255Trp Glu Ala Arg Met Gly Gln Phe Leu Gly Lys Lys Ala Tyr Asp Lys 260 265 270Ala Ala Ile Asn Thr Asn Gly Arg Glu Ala Val Thr Asn Phe Glu Met 275 280 285Ser Ser Tyr Gln Asn Glu Ile Asn Ser Glu Ser Asn Asn Ser Glu Ile 290 295 300Asp Leu Asn Leu Gly Ile Ser Leu Ser Thr Gly Asn Ala Pro Lys Gln305 310 315 320Asn Gly Arg Leu Phe His Phe Pro Ser Asn Thr Tyr Glu Thr Gln Arg 325 330 335Gly Val Ser Leu Arg Ile Asp Asn Glu Tyr Met Gly Lys Pro Val Asn 340 345 350Thr Pro Leu Pro Tyr Gly Ser Ser Asp His Arg Leu Tyr Trp Asn Gly 355 360 365Ala Cys Pro Ser Tyr Asn Asn Pro Ala Glu Gly Arg Ala Thr Glu Lys 370 375 380Arg Ser Glu Ala Glu Gly Met Met Ser Asn Trp Gly Trp Gln Arg Pro385 390 395 400Gly Gln Thr Ser Ala Val Arg Pro Gln Pro Pro Gly Pro Gln Pro Pro 405 410 415Pro Leu Phe Ser Val Ala Ala Ala Ser Ser Gly Phe Ser His Phe Arg 420 425 430Pro Gln Pro Pro Asn Asp Asn Ala Thr Arg Gly Tyr Phe Tyr Pro His 435 440 445Pro 105663DNAZea maysCDS(1)...(663) 105atg gag gcg ctg agc ggg cgg gta ggc gtc aag tgc ggg cgg tgg aac 48Met Glu Ala Leu Ser Gly Arg Val Gly Val Lys Cys Gly Arg Trp Asn1 5 10 15cct acg gcg gag cag gtg aag gtc ctg acg gag ctc ttc cgc gcg ggg 96Pro Thr Ala Glu Gln Val Lys Val Leu Thr Glu Leu Phe Arg Ala Gly 20 25 30ctg cgg acg ccc agc acg gag cag atc cag cgc atc tcc acc cac ctc 144Leu Arg Thr Pro Ser Thr Glu Gln Ile Gln Arg Ile Ser Thr His Leu 35 40 45agc gcc ttc ggc aag gtg gag agc aag aac gtc ttc tac tgg ttc cag 192Ser Ala Phe Gly Lys Val Glu Ser Lys Asn Val Phe Tyr Trp Phe Gln 50 55 60aac cac aag gcc cgc gag cgc cac cac cac aag aag cgc cgc cgc ggc 240Asn His Lys Ala Arg Glu Arg His His His Lys Lys Arg Arg Arg Gly65 70 75 80gcg tcg tcg tcc tcc ccc gac agc ggc agc ggc agg gga agc aac aac 288Ala Ser Ser Ser Ser Pro Asp Ser Gly Ser Gly Arg Gly Ser Asn Asn 85 90 95gag gaa gac ggc cgt ggt gcc gcc tcg cag tcg cac gac gcc gac gcc 336Glu Glu Asp Gly Arg Gly Ala Ala Ser Gln Ser His Asp Ala Asp Ala 100 105 110gac gcc gac ctc gtg ctg caa ccg cca gag agc aag cgg gag gcc aga 384Asp Ala Asp Leu Val Leu Gln Pro Pro Glu Ser Lys Arg Glu Ala Arg 115 120 125agc tat ggc cac cat cac cgg ctc gtg aca tgc tac gtc agg gac gtg 432Ser Tyr Gly His His His Arg Leu Val Thr Cys Tyr Val Arg Asp Val 130 135 140gtg gag cag cag gag gcg tcg ccg tcg tgg gag cgg ccg acg agg gag 480Val Glu Gln Gln Glu Ala Ser Pro Ser Trp Glu Arg Pro Thr Arg Glu145 150 155 160gtg gag acg cta gag ctc ttc ccc ctc aag tcg tac ggc gac ctc gag 528Val Glu Thr Leu Glu Leu Phe Pro Leu Lys Ser Tyr Gly Asp Leu Glu 165 170 175gcg gcg gag aag gtc cgg tcg tac gtc aga ggc atc gcc gcc acc agc 576Ala Ala Glu Lys Val Arg Ser Tyr Val Arg Gly Ile Ala Ala Thr Ser 180 185 190gag cag tgc agg gag ttg tcc ttc ttc gac gtc tcc gcc ggc cgg gat 624Glu Gln Cys Arg Glu Leu Ser Phe Phe Asp Val Ser Ala Gly Arg Asp 195 200 205ccg ccg ctc gag ctc agg ctc tgc agc ttc ggt ccc tag 663Pro Pro Leu Glu Leu Arg Leu Cys Ser Phe Gly Pro 210 215 220106220PRTZea mays 106Met Glu Ala Leu Ser Gly Arg Val Gly Val Lys Cys Gly Arg Trp Asn1 5 10 15Pro Thr Ala Glu Gln Val Lys Val Leu Thr Glu Leu Phe Arg Ala Gly 20 25 30Leu Arg Thr Pro Ser Thr Glu Gln Ile Gln Arg Ile Ser Thr His Leu 35 40 45Ser Ala Phe Gly Lys Val Glu Ser Lys Asn Val Phe Tyr Trp Phe Gln 50 55 60Asn His Lys Ala Arg Glu Arg His His His Lys Lys Arg Arg Arg Gly65 70 75 80Ala Ser Ser Ser Ser Pro Asp Ser Gly Ser Gly Arg Gly Ser Asn Asn 85 90 95Glu Glu Asp Gly Arg Gly Ala Ala Ser Gln Ser His Asp Ala Asp Ala 100 105 110Asp Ala Asp Leu Val Leu Gln Pro Pro Glu Ser Lys Arg Glu Ala Arg 115 120 125Ser Tyr Gly His His His Arg Leu Val Thr Cys Tyr Val Arg Asp Val 130 135 140Val Glu Gln Gln Glu Ala Ser Pro Ser Trp Glu Arg Pro Thr Arg Glu145 150 155 160Val Glu Thr Leu Glu Leu Phe Pro Leu Lys Ser Tyr Gly Asp Leu Glu 165 170 175Ala Ala Glu Lys Val Arg Ser Tyr Val Arg Gly Ile Ala Ala Thr Ser 180 185 190Glu Gln Cys Arg Glu Leu Ser Phe Phe Asp Val Ser Ala Gly Arg Asp 195 200 205Pro Pro Leu Glu Leu Arg Leu Cys Ser Phe Gly Pro 210 215 22010724DNAArtificial SequenceattB1 variant 107caagttcgta caaaaaagca ggct 2410823DNAArtificial SequenceattB1 variant 108caagtttgta caaaaaggac tct 2310924DNAArtificial SequenceattB1 variant 109caagtgcata caaaaaggac tgct 2411017747DNAArtificial SequencePHP32371 110gtttacccgc caatatatcc tgtcaaacac tgatagttta aactgaaggc gggaaacgac 60aatctgatca tgagcggaga attaagggag tcacgttatg acccccgccg atgacgcggg 120acaagccgtt ttacgtttgg aactgacaga accgcaacgt tgaaggagcc actcagcaag 180ctggtacgat tgtaatacga ctcactatag ggcgaattga gcgctgttta aacgctcttc 240aactggaaga gcggttacca gagctggtca cctttgtcca ccaagatgga actgcggccg 300ctcattaatt aagtcaggcg cgcctctagt tgaagacacg ttcatgtctt catcgtaaga 360agacactcag tagtcttcgg ccagaatggc catctggatt cagcaggcct agaaggccat 420ttaaatcctg aggatctggt cttcctaagg acccgggata tcgctatcaa ctttgtatag 480aaaagttggg ccgaattcga gctcggtacg gccagaatgg cccggaccgg gttaccgaat 540tcgagctcgg taccctggga tccggtgcgg gcctcttcgc tattacgcca gctggcgaaa 600gggggatgtg ctgcaaggcg attaagttgg gtaacgccag ggttttccca gtcacgacgt 660tgtaaaacga cggccagtgc caagctcaga tcagcttgca tgcctgcagt gcagcgtgac 720ccggtcgtgc ccctctctag agataatgag cattgcatgt ctaagttata aaaaattacc 780acatattttt tttgtcacac ttgtttgaag tgcagtttat ctatctttat acatatattt 840aaactttact ctacgaataa tataatctat agtactacaa taatatcagt gttttagaga 900atcatataaa tgaacagtta gacatggtct aaaggacaat tgagtatttt gacaacagga 960ctctacagtt ttatcttttt agtgtgcatg tgttctcctt tttttttgca aatagcttca 1020cctatataat acttcatcca ttttattagt acatccattt agggtttagg gttaatggtt 1080tttatagact aattttttta gtacatctat tttattctat tttagcctct aaattaagaa 1140aactaaaact ctattttagt ttttttattt aataatttag atataaaata gaataaaata 1200aagtgactaa aaattaaaca aatacccttt aagaaattaa aaaaactaag gaaacatttt 1260tcttgtttcg agtagataat gccagcctgt taaacgccgt cgacgagtct aacggacacc 1320aaccagcgaa ccagcagcgt cgcgtcgggc caagcgaagc agacggcacg gcatctctgt 1380cgctgcctct ggacccctct cgagagttcc gctccaccgt tggacttgct ccgctgtcgg 1440catccagaaa ttgcgtggcg gagcggcaga cgtgagccgg cacggcaggc ggcctcctcc 1500tcctctcacg gcacggcagc tacgggggat tcctttccca ccgctccttc gctttccctt 1560cctcgcccgc cgtaataaat agacaccccc tccacaccct ctttccccaa cctcgtgttg 1620ttcggagcgc acacacacac aaccagatct cccccaaatc cacccgtcgg cacctccgct 1680tcaaggtacg ccgctcgtcc tccccccccc cccctctcta ccttctctag atcggcgttc 1740cggtccatgg ttagggcccg gtagttctac ttctgttcat gtttgtgtta gatccgtgtt 1800tgtgttagat ccgtgctgct agcgttcgta cacggatgcg acctgtacgt cagacacgtt 1860ctgattgcta acttgccagt gtttctcttt ggggaatcct gggatggctc tagccgttcc 1920gcagacggga tcgatttcat gatttttttt gtttcgttgc

atagggtttg gtttgccctt 1980ttcctttatt tcaatatatg ccgtgcactt gtttgtcggg tcatcttttc atgctttttt 2040ttgtcttggt tgtgatgatg tggtctggtt gggcggtcgt tctagatcgg agtagaattc 2100tgtttcaaac tacctggtgg atttattaat tttggatctg tatgtgtgtg ccatacatat 2160tcatagttac gaattgaaga tgatggatgg aaatatcgat ctaggatagg tatacatgtt 2220gatgcgggtt ttactgatgc atatacagag atgctttttg ttcgcttggt tgtgatgatg 2280tggtgtggtt gggcggtcgt tcattcgttc tagatcggag tagaatactg tttcaaacta 2340cctggtgtat ttattaattt tggaactgta tgtgtgtgtc atacatcttc atagttacga 2400gtttaagatg gatggaaata tcgatctagg ataggtatac atgttgatgt gggttttact 2460gatgcatata catgatggca tatgcagcat ctattcatat gctctaacct tgagtaccta 2520tctattataa taaacaagta tgttttataa ttattttgat cttgatatac ttggatgatg 2580gcatatgcag cagctatatg tggatttttt tagccctgcc ttcatacgct atttatttgc 2640ttggtactgt ttcttttgtc gatgctcacc ctgttgtttg gtgttacttc tgcaggtcga 2700ctctagagga tccaccatgg ctagcgaagt tcctattccg aagttcctat tctctagaaa 2760gtataggaac ttcagatctg ccctgtccaa caagttcatc ggcgacgaca tgaagatgac 2820ctaccacatg gacggctgcg tgaacggcca ctacttcacc gtgaagggcg agggcagcgg 2880caagccctac gagggcaccc agacctccac cttcaaggtg accatggcca acggcggccc 2940cctggccttc tccttcgaca tcctgtccac cgtgttcatg tacggcaacc gctgcttcac 3000cgcctacccc accagcatgc ccgactactt caagcaggcc ttccccgacg gcatgtccta 3060cgagagaacc ttcacctacg aggacggcgg cgtggccacc gccagctggg agatcagcct 3120gaagggcaac tgcttcgagc acaagtccac cttccacggc gtgaacttcc ccgccgacgg 3180ccccgtgatg gccaagaaga ccaccggctg ggacccctcc ttcgagaaga tgaccgtgtg 3240cgacggcatc ttgaagggcg acgtgaccgc cttcctgatg ctgcagggcg gcggcaacta 3300cagatgccag ttccacacct cctacaagac caagaagccc gtgaccatgc cccccaacca 3360cgtggtggag caccgcatcg ccagaaccga cctggacaag ggcggcaaca gcgtgcagct 3420gaccgagcac gccgtggccc acatcacctc cgtggtgccc ttctgaagcg gccgcaacct 3480agacttgtcc atcttctgga ttggccaact taattaatgt atgaaataaa aggatgcaca 3540catagtgaca tgctaatcac tataatgtgg gcatcaaagt tgtgtgttat gtgtaattac 3600tagttatctg aataaaagag aaagagatca tccatatttc ttatcctaaa tgaatgtcac 3660gtgtctttat aattctttga tgaaccagat gcatttcatt aaccaaatcc atatacatat 3720aaatattaat catatataat taatatcaat tgggttagca aaacaaatct agtctaggtg 3780tgttttgcga attcgtaatc atggtcatag ctgtttcctg tgtgaaattg ttatccgctc 3840acaattccac acaacatacg agccggaagc ataaagtgta aagcctgggg tgcctaatga 3900gtgagctaac tcacattaat tgcgttgcgc tcactgcccg ctttccagtc gggaaacctg 3960tcgtgccagc tgcattaatg aatcggccaa cgcgcgggga gaggcggttt gcgtattggg 4020cgctcttccg atccgatatc gatgggccct ggccgaagct tggtcacccg gtccgggcct 4080agaaggccag cttcaagttt gtacaaaaaa gcaggctccg gccagaatgg cccggaccgg 4140gttaccgaat tcgagctcgg taccctggga tccgatatcg atgggccctg gccgaagctg 4200ggatatcgct atcaactttg tatagaaaag ttgggccgaa ttcgagctcg gtacggccag 4260aatggcccgg accgggttac cgaattcgag ctcggtaccc tggggatccc tatagtattt 4320taaaattgca ttaacaaaca tgtcctaatt ggtactcctg agatactata ccctcctgtt 4380ttaaaatagt tggcattatc gaattatcat tttacttttt aatgttttct cttcttttaa 4440tatattttat gaattttaat gtattttaaa atgttatgca gttcgctctg gacttttctg 4500ctgcgcctac acttgggtgt actgggccta aattcagcct gaccgaccgc ctgcattgaa 4560taatggatga gcaccggtaa aatccgcgta cccaactttc gagaagaacc gagacgtggc 4620gggccgggcc accgacgcac ggcaccagcg actgcacacg tcccgccggc gtacgtgtac 4680gtgctgttcc ctcactggcc gcccaatcca ctcatgcatg cccacgtaca cccctgccgt 4740ggcgcgccca gatcctaatc ctttcgccgt tctgcacttc tgctgcctat aaatggcggc 4800atcgaccgtc acctgcttca ccaccggcga gccacatcga gaacacgatc gagcacacaa 4860gcacgaagac tcgtttagga gaaaccacaa accaccaagc cgtgcaagca ccaagcttgg 4920tcacccggtc cgggcctaga aggccagctt caagtttgta caaaaaagca ggcttcgaag 4980gagatagaac caattctcta aggaaatact taaccatggt cgactggatc caacaatgcc 5040ccagttcgac atcctctgca agaccccccc caaggtgctc gtgaggcagt tcgtggagag 5100gttcgagagg ccctccggcg agaagatcgc cctctgcgcc gccgagctca cctacctctg 5160ctggatgatc acccacaacg gcaccgccat taagagggcc accttcatgt catacaacac 5220catcatctcc aactccctct ccttcgacat cgtgaacaag tccctccagt tcaaatacaa 5280gacccagaag gccaccatcc tcgaggcctc cctcaagaag ctcatccccg cctgggagtt 5340caccatcatc ccctactacg gccagaagca ccagtccgac atcaccgaca tcgtgtcatc 5400cctccagctt cagttcgagt cctccgagga ggctgacaag ggcaactccc actccaagaa 5460gatgctgaag gccctcctct ccgagggcga gtccatctgg gagatcaccg agaagatcct 5520caactccttc gagtacacct ccaggttcac taagaccaag accctctacc agttcctctt 5580cctcgccacc ttcatcaact gcggcaggtt ctcagacatc aagaacgtgg accccaagtc 5640cttcaagctc gtgcagaaca agtacctagg tttgtttctg cttctacctt tgatatatat 5700ataataatta tcattaatta gtagtaatat aatatttcaa atattttttt caaaataaaa 5760gaatgtagta tatagcaatt gcttttctgt agtttataag tgtgtatatt ttaatttata 5820acttttctaa tatatgacca aaacatggtg atgcctaggt gtcatcatcc agtgcctcgt 5880gaccgagacc aagacctccg tgtccaggca catctacttc ttctccgctc gcggcaggat 5940cgaccccctc gtgtacctcg acgagttcct caggaactca gagcccgtgc tcaagagggt 6000gaacaggacc ggcaactcct cctccaacaa gcaggagtac cagctcctca aggacaacct 6060cgtgaggtcc tacaacaagg ccctcaagaa gaacgccccc tactccatct tcgccatcaa 6120gaacggcccc aagtcccaca tcggtaggca cctcatgacc tccttcctct caatgaaggg 6180cctcaccgag ctcaccaacg tggtgggcaa ctggtccgac aagagggcct ccgccgtggc 6240caggaccacc tacacccacc agatcaccgc catccccgac cactacttcg ccctcgtgtc 6300aaggtactac gcctacgacc ccatctccaa ggagatgatc gccctcaagg acgagactaa 6360ccccatcgag gagtggcagc acatcgagca gctcaagggc tccgccgagg gctccatcag 6420gtaccccgcc tggaacggca tcatctccca ggaggtgctc gactacctct cctcctacat 6480caacaggagg atctgagttt cgagatatct agacccagct ttcttgtaca aagtggccgt 6540taacggatcc agacttgtcc atcttctgga ttggccaact taattaatgt atgaaataaa 6600aggatgcaca catagtgaca tgctaatcac tataatgtgg gcatcaaagt tgtgtgttat 6660gtgtaattac tagttatctg aataaaagag aaagagatca tccatatttc ttatcctaaa 6720tgaatgtcac gtgtctttat aattctttga tgaaccagat gcatttcatt aaccaaatcc 6780atatacatat aaatattaat catatataat taatatcaat tgggttagca aaacaaatct 6840agtctaggtg tgttttgcga attgcggcaa gcttgcggcc gccccagctt ggtcacccgg 6900tccgggccta gaaggccgat ctcccgggca cccagctttc ttgtacaaag tggccgttaa 6960cggatcggcc agaatggccc ggaccgggtt accgaattcg agctcggtac cctgggatcg 7020accgaagctg accgaagctt gcggccgcac actgatagtt taaactgaag gcgggaaacg 7080acaatctgat catgagcgga gaattaaggg agtcacgtta tgacccccgc cgatgacgcg 7140ggacaagccg ttttacgttt ggaactgaca gaaccgcaac gattgaagga gccactcagc 7200cgcgggtttc tggagtttaa tgagctaagc acatacgtca gaaaccatta ttgcgcgttc 7260aaaagtcgcc taaggtcact atcagctagc aaatatttct tgtcaaaaat gctccactga 7320cgttccataa attcccctcg gtatccaatt agagtctcat attcactctc ccgggggatc 7380tcgactctag aggatcgctc aggaaggccg ctgagataga ggcatggcgg ccaatgcggg 7440cggcggtgga gcgggaggag gcagcggcag cggcagcgtg gctgcgccgg cggtgtgccg 7500ccccagcggc tcgcggtgga cgccgacgcc ggagcagatc aggatgctga aggagctcta 7560ctacggctgc ggcatccggt cgcccagctc ggagcagatc cagcgcatca ccgccatgct 7620gcggcagcac ggcaagatcg agggcaagaa cgtcttctac tggttccaga accacaaggc 7680ccgcgagcgc cagaagcgcc gcctcaccag cctcgacgtc aacgtgcccg ccgccggcgc 7740ggccgacgcc accaccagcc aactcggcgt cctctcgctg tcgtcgccgc cgccttcagg 7800cgcggcgcct ccctcgccca ccctcggctt ctacgccgcc ggcaatggcg gcggatcggc 7860tgtgctgctg gacacgagtt ccgactgggg cagcagcggc gctgccatgg ccaccgagac 7920atgcttcctg caggactaca tgggcgtgac ggacacgggc agctcgtcgc agtggccacg 7980cttctcgtcg tcggacacga taatggcggc ggccgcggcg cgggcggcga cgacgcgggc 8040gcccgagacg ctccctctct tcccgacctg cggcgacgac ggcggcagcg gtagcagcag 8100ctacttgccg ttctggggtg ccgcgtccac aactgccggc gccacttctt ccgttgcgat 8160ccagcagcaa caccagctgc aggagcagta cagcttttac agcaacagca acagcaccca 8220gctggccggc accggcaacc aagacgtatc ggcaacagca gcagcagccg ccgccctgga 8280gctgagcctc agctcatggt gctcccctta ccctgctgca gggagtatgt gagagcaacg 8340cgagctgcca ctgctcttca ctgatgtctc tggaatggaa ggaggaggaa gtgagcatag 8400cgttggtgcg ttgctgtcaa gggcgaattg taccacatgg ttaacctaga cttgtccatc 8460ttctggattg gccaacttaa ttaatgtatg aaataaaagg atgcacacat agtgacatgc 8520taatcactat aatgtgggca tcaaagttgt gtgttatgtg taattactag ttatctgaat 8580aaaagagaaa gagatcatcc atatttctta tcctaaatga atgtcacgtg tctttataat 8640tctttgatga accagatgca tttcattaac caaatccata tacatataaa tattaatcat 8700atataattaa tatcaattgg gttagcaaaa caaatctagt ctaggtgtgt tttgcgaatt 8760gcggccgcca ccgcggtgga gctcgaattc cggtcagctt gcatgcctgc agtgcagcgt 8820gacccggtcg tgcccctctc tagagataat gagcattgca tgtctaagtt ataaaaaatt 8880accacatatt ttttttgtca cacttgtttg aagtgcagtt tatctatctt tatacatata 8940tttaaacttt actctacgaa taatataatc tatagtacta caataatatc agtgttttag 9000agaatcatat aaatgaacag ttagacatgg tctaaaggac aattgagtat tttgacaaca 9060ggactctaca gttttatctt tttagtgtgc atgtgttctc cttttttttt gcaaatagct 9120tcacctatat aatacttcat ccattttatt agtacatcca tttagggttt agggttaatg 9180gtttttatag actaattttt ttagtacatc tattttattc tattttagcc tctaaattaa 9240gaaaactaaa actctatttt agttttttta tttaataatt tagatataaa atagaataaa 9300ataaagtgac taaaaattaa acaaataccc tttaagaaat taaaaaaact aaggaaacat 9360ttttcttgtt tcgagtagat aatgccagcc tgttaaacgc cgtcgacgag tctaacggac 9420accaaccagc gaaccagcag cgtcgcgtcg ggccaagcga agcagacggc acggcatctc 9480tgtcgctgcc tctggacccc tctcgagagt tccgctccac cgttggactt gctccgctgt 9540cggcatccag aaattgcgtg gcggagcggc agacgtgagc cggcacggca ggcggcctcc 9600tcctcctctc acggcaccgg cagctacggg ggattccttt cccaccgctc cttcgctttc 9660ccttcctcgc ccgccgtaat aaatagacac cccctccaca ccctctttcc ccaacctcgt 9720gttgttcgga gcgcacacac acacaaccag atctccccca aatccacccg tcggcacctc 9780cgcttcaagg tacgccgctc gtcctccccc ccccccctct ctaccttctc tagatcggcg 9840ttccggtcca tgcatggtta gggcccggta gttctacttc tgttcatgtt tgtgttagat 9900ccgtgtttgt gttagatccg tgctgctagc gttcgtacac ggatgcgacc tgtacgtcag 9960acacgttctg attgctaact tgccagtgtt tctctttggg gaatcctggg atggctctag 10020ccgttccgca gacgggatcg atttcatgat tttttttgtt tcgttgcata gggtttggtt 10080tgcccttttc ctttatttca atatatgccg tgcacttgtt tgtcgggtca tcttttcatg 10140cttttttttg tcttggttgt gatgatgtgg tctggttggg cggtcgttct agatcggagt 10200agaattctgt ttcaaactac ctggtggatt tattaatttt ggatctgtat gtgtgtgcca 10260tacatattca tagttacgaa ttgaagatga tggatggaaa tatcgatcta ggataggtat 10320acatgttgat gcgggtttta ctgatgcata tacagagatg ctttttgttc gcttggttgt 10380gatgatgtgg tgtggttggg cggtcgttca ttcgttctag atcggagtag aatactgttt 10440caaactacct ggtgtattta ttaattttgg aactgtatgt gtgtgtcata catcttcata 10500gttacgagtt taagatggat ggaaatatcg atctaggata ggtatacatg ttgatgtggg 10560ttttactgat gcatatacat gatggcatat gcagcatcta ttcatatgct ctaaccttga 10620gtacctatct attataataa acaagtatgt tttataatta ttttgatctt gatatacttg 10680gatgatggca tatgcagcag ctatatgtgg atttttttag ccctgccttc atacgctatt 10740tatttgcttg gtactgtttc ttttgtcgat gctcaccctg ttgtttggtg ttacttctgc 10800aggtcgactc tagaggatcc atggccactg tgaacaactg gctcgctttc tccctctccc 10860cgcaggagct gccgccctcc cagacgacgg actccacact catctcggcc gccaccgccg 10920accatgtctc cggcgatgtc tgcttcaaca tcccccaaga ttggagcatg aggggatcag 10980agctttcggc gctcgtcgcg gagccgaagc tggaggactt cctcggcggc atctccttct 11040ccgagcagca tcacaaggcc aactgcaaca tgatacccag cactagcagc acagtttgct 11100acgcgagctc aggtgctagc accggctacc atcaccagct gtaccaccag cccaccagct 11160cagcgctcca cttcgcggac tccgtaatgg tggcctcctc ggccggtgtc cacgacggcg 11220gtgccatgct cagcgcggcc gccgctaacg gtgtcgctgg cgctgccagt gccaacggcg 11280gcggcatcgg gctgtccatg attaagaact ggctgcggag ccaaccggcg cccatgcagc 11340cgagggtggc ggcggctgag ggcgcgcagg ggctctcttt gtccatgaac atggcgggga 11400cgacccaagg cgctgctggc atgccacttc tcgctggaga gcgcgcacgg gcgcccgaga 11460gtgtatcgac gtcagcacag ggtggagccg tcgtcgtcac ggcgccgaag gaggatagcg 11520gtggcagcgg tgttgccggc gctctagtag ccgtgagcac ggacacgggt ggcagcggcg 11580gcgcgtcggc tgacaacacg gcaaggaaga cggtggacac gttcgggcag cgcacgtcga 11640tttaccgtgg cgtgacaagg catagatgga ctgggagata tgaggcacat ctttgggata 11700acagttgcag aagggaaggg caaactcgta agggtcgtca agtctattta ggtggctatg 11760ataaagagga gaaagctgct agggcttatg atcttgctgc tctgaagtac tggggtgcca 11820caacaacaac aaattttcca gtgagtaact acgaaaagga gctcgaggac atgaagcaca 11880tgacaaggca ggagtttgta gcgtctctga gaaggaagag cagtggtttc tccagaggtg 11940catccattta caggggagtg actaggcatc accaacatgg aagatggcaa gcacggattg 12000gacgagttgc agggaacaag gatctttact tgggcacctt cagcacccag gaggaggcag 12060cggaggcgta cgacatcgcg gcgatcaagt tccgcggcct caacgccgtc accaacttcg 12120acatgagccg ctacgacgtg aagagcatcc tggacagcag cgccctcccc atcggcagcg 12180ccgccaagcg cctcaaggag gccgaggccg cagcgtccgc gcagcaccac cacgccggcg 12240tggtgagcta cgacgtcggc cgcatcgcct cgcagctcgg cgacggcgga gccctggcgg 12300cggcgtacgg cgcgcactac cacggcgccg cctggccgac catcgcgttc cagccgggcg 12360ccgccagcac aggcctgtac cacccgtacg cgcagcagcc aatgcgcggc ggcgggtggt 12420gcaagcagga gcaggaccac gcggtgatcg cggccgcgca cagcctgcag gacctccacc 12480acctgaacct gggcgcggcc ggcgcgcacg actttttctc ggcagggcag caggccgccg 12540ccgctgcgat gcacggcctg ggtagcatcg acagtgcgtc gctcgagcac agcaccggct 12600ccaactccgt cgtctacaac ggcggggtcg gcgacagcaa cggcgccagc gccgtcggcg 12660gcagtggcgg tggctacatg atgccgatga gcgctgccgg agcaaccact acatcggcaa 12720tggtgagcca cgagcaggtg catgcacggg cctacgacga agccaagcag gctgctcaga 12780tggggtacga gagctacctg gtgaacgcgg agaacaatgg tggcggaagg atgtctgcat 12840gggggactgt cgtgtctgca gccgcggcgg cagcagcaag cagcaacgac aacatggccg 12900ccgacgtcgg ccatggcggc gcgcagctct tcagtgtctg gaacgacact taagcgtacg 12960tgccggcctg gctctccgaa agggcgaatt ccagcacact ggcggccgtt actagaccca 13020acctagactt gtccatcttc tggattggcc aacttaatta atgtatgaaa taaaaggatg 13080cacacatagt gacatgctaa tcactataat gtgggcatca aagttgtgtg ttatgtgtaa 13140ttactagtta tctgaataaa agagaaagag atcatccata tttcttatcc taaatgaatg 13200tcacgtgtct ttataattct ttgatgaacc agatgcattt cattaaccaa atccatatac 13260atataaatat taatcatata taattaatat caattgggtt agcaaaacaa atctagtcta 13320ggtgtgtttt gcgaatgcgg ccgccaccgc ggtggagctc gaattccggt cgatccgata 13380tcgatgggcc ctggccgaag ctaattcctg cagtgcagcg tgacccggtc gtgcccctct 13440ctagtggatc tgagcttcta gcgaagttcc tattccgaag ttcctattct ctagaaagta 13500taggaacttc agatctgccc acagcaagca cggcctgaag gaggagatga ccatgaagta 13560ccacatggag ggctgcgtga acggccacaa gttcgtgatc accggcgagg gcatcggcta 13620ccccttcaag ggcaagcaga ccatcaacct gtgcgtgatc gagggcggcc ccctgccctt 13680cagcgaggac atcctgagcg ccggcttcaa gtacggcgac cggatcttca ccgagtaccc 13740ccaggacatc gtggactact tcaagaacag ctgccccgcc ggctacacct ggggccggag 13800cttcctgttc gaggacggcg ccgtgtgcat ctgtaacgtg gacatcaccg tgagcgtgaa 13860ggagaactgc atctaccaca agagcatctt caacggcgtg aacttccccg ccgacggccc 13920cgtgatgaag aagatgacca ccaactggga ggccagctgc gagaagatca tgcccgtgcc 13980taagcagggc atcctgaagg gcgacgtgag catgtacctg ctgctgaagg acggcggccg 14040gtaccggtgc cagttcgaca ccgtgtacaa ggccaagagc gtgcccagca agatgcccga 14100gtggcacttc atccagcaca agctgctgcg ggaggaccgg agcgacgcca agaaccagaa 14160gtggcagctg accgagcacg ccatcgcctt ccccagcgcc ctggcctgaa gcggccgcaa 14220cctagacttg tccatcttct ggattggcca acttaattaa tgtatgaaat aaaaggatgc 14280acacatagtg acatgctaat cactataatg tgggcatcaa agttgtgtgt tatgtgtaat 14340tactagttat ctgaataaaa gagaaagaga tcatccatat ttcttatcct aaatgaatgt 14400cacgtgtctt tataattctt tgatgaacca gatgcatttc attaaccaaa tccatataca 14460tataaatatt aatcatatat aattaatatc aattgggtta gcaaaacaaa tctagtctag 14520gtgtgttttg cgaattagct tggtcacccg gtccgggcct agaaggccag cttgcggccg 14580ccccgggcaa ctttattata caaagttgat agatatcgga ccgattaaac tttaattcgg 14640tccgaagctt gcatgcctgc agtgcagcgt gacccggtcg tgcccctctc tagagataat 14700gagcattgca tgtctaagtt ataaaaaatt accacatatt ttttttgtca cacttgtttg 14760aagtgcagtt tatctatctt tatacatata tttaaacttt actctacgaa taatataatc 14820tatagtacta caataatatc agtgttttag agaatcatat aaatgaacag ttagacatgg 14880tctaaaggac aattgagtat tttgacaaca ggactctaca gttttatctt tttagtgtgc 14940atgtgttctc cttttttttt gcaaatagct tcacctatat aatacttcat ccattttatt 15000agtacatcca tttagggttt agggttaatg gtttttatag actaattttt ttagtacatc 15060tattttattc tattttagcc tctaaattaa gaaaactaaa actctatttt agttttttta 15120tttaataatt tagatataaa atagaataaa ataaagtgac taaaaattaa acaaataccc 15180tttaagaaat taaaaaaact aaggaaacat ttttcttgtt tcgagtagat aatgccagcc 15240tgttaaacgc cgtcgacgag tctaacggac accaaccagc gaaccagcag cgtcgcgtcg 15300ggccaagcga agcagacggc acggcatctc tgtcgctgcc tctggacccc tctcgagagt 15360tccgctccac cgttggactt gctccgctgt cggcatccag aaattgcgtg gcggagcggc 15420agacgtgagc cggcacggca ggcggcctcc tcctcctctc acggcaccgg cagctacggg 15480ggattccttt cccaccgctc cttcgctttc ccttcctcgc ccgccgtaat aaatagacac 15540cccctccaca ccctctttcc ccaacctcgt gttgttcgga gcgcacacac acacaaccag 15600atctccccca aatccacccg tcggcacctc cgcttcaagg tacgccgctc gtcctccccc 15660ccccccctct ctaccttctc tagatcggcg ttccggtcca tgcatggtta gggcccggta 15720gttctacttc tgttcatgtt tgtgttagat ccgtgtttgt gttagatccg tgctgctagc 15780gttcgtacac ggatgcgacc tgtacgtcag acacgttctg attgctaact tgccagtgtt 15840tctctttggg gaatcctggg atggctctag ccgttccgca gacgggatcg atttcatgat 15900tttttttgtt tcgttgcata gggtttggtt tgcccttttc ctttatttca atatatgccg 15960tgcacttgtt tgtcgggtca tcttttcatg cttttttttg tcttggttgt gatgatgtgg 16020tctggttggg cggtcgttct agatcggagt agaattctgt ttcaaactac ctggtggatt 16080tattaatttt ggatctgtat gtgtgtgcca tacatattca tagttacgaa ttgaagatga 16140tggatggaaa tatcgatcta ggataggtat acatgttgat gcgggtttta ctgatgcata 16200tacagagatg ctttttgttc gcttggttgt gatgatgtgg tgtggttggg cggtcgttca 16260ttcgttctag atcggagtag aatactgttt caaactacct ggtgtattta ttaattttgg 16320aactgtatgt gtgtgtcata catcttcata gttacgagtt taagatggat ggaaatatcg 16380atctaggata ggtatacatg ttgatgtggg ttttactgat gcatatacat gatggcatat 16440gcagcatcta ttcatatgct ctaaccttga gtacctatct attataataa acaagtatgt 16500tttataatta ttttgatctt gatatacttg gatgatggca tatgcagcag ctatatgtgg 16560atttttttag ccctgccttc atacgctatt tatttgcttg gtactgtttc ttttgtcgat 16620gctcaccctg ttgtttggtg ttacttctgc aggtcgactt taacttagcc taggatccac 16680acgacaccat gtcccccgag cgccgccccg tcgagatccg cccggccacc gccgccgaca 16740tggccgccgt gtgcgacatc gtgaaccact acatcgagac ctccaccgtg aacttccgca 16800ccgagccgca gaccccgcag gagtggatcg acgacctgga gcgcctccag gaccgctacc 16860cgtggctcgt ggccgaggtg gagggcgtgg tggccggcat cgcctacgcc ggcccgtgga 16920aggcccgcaa cgcctacgac tggaccgtgg agtccaccgt gtacgtgtcc caccgccacc 16980agcgcctcgg cctcggctcc accctctaca cccacctcct

caagagcatg gaggcccagg 17040gcttcaagtc cgtggtggcc gtgatcggcc tcccgaacga cccgtccgtg cgcctccacg 17100aggccctcgg ctacaccgcc cgcggcaccc tccgcgccgc cggctacaag cacggcggct 17160ggcacgacgt cggcttctgg cagcgcgact tcgagctgcc ggccccgccg cgcccggtgc 17220gcccggtgac gcagatctga gtcgaaacct agacttgtcc atcttctgga ttggccaact 17280taattaatgt atgaaataaa aggatgcaca catagtgaca tgctaatcac tataatgtgg 17340gcatcaaagt tgtgtgttat gtgtaattac tagttatctg aataaaagag aaagagatca 17400tccatatttc ttatcctaaa tgaatgtcac gtgtctttat aattctttga tgaaccagat 17460gcatttcatt aaccaaatcc atatacatat aaatattaat catatataat taatatcaat 17520tgggttagca aaacaaatct agtctaggtg tgttttgcga attgcggccg ccaccgcggt 17580ggagctcgaa ttcattccga ttaatcgtgg cctcttgctc ttcaggatga agagctatgt 17640ttaaacgtgc aagcgctact agacaattca gtacattaaa aacgtccgca atgtgttatt 17700aagttgtcta agcgtcaatt tgtttacacc acaatatatc ctgccac 1774711117373DNAArtificial SequencePHP35648 111gtttacccgc caatatatcc tgtcaaacac tgatagttta aactgaaggc gggaaacgac 60aatctgatca tgagcggaga attaagggag tcacgttatg acccccgccg atgacgcggg 120acaagccgtt ttacgtttgg aactgacaga accgcaacgt tgaaggagcc actcagcaag 180ctggtacgat tgtaatacga ctcactatag ggcgaattga gcgctgttta aacgctcttc 240aactggaaga gcggttacca gagctggtca cctttgtcca ccaagatgga actgcggccg 300ctcattaatt aagtcaggcg cgcctctagt tgaagacacg ttcatgtctt catcgtaaga 360agacactcag tagtcttcgg ccagaatggc catctggatt cagcaggcct agaaggccat 420ttaaatcctg aggatctggt cttcctaagg acccgggata tcgctatcaa ctttgtatag 480aaaagttggg ccgaattcga gctcggtacg gccagaatgg cccggaccgg gttaccgaat 540tcgagctcgg taccctggga tccggtgcgg gcctcttcgc tattacgcca gctggcgaaa 600gggggatgtg ctgcaaggcg attaagttgg gtaacgccag ggttttccca gtcacgacgt 660tgtaaaacga cggccagtgc caagctcaga tcagcttgca tgcctgcagt gcagcgtgac 720ccggtcgtgc ccctctctag agataatgag cattgcatgt ctaagttata aaaaattacc 780acatattttt tttgtcacac ttgtttgaag tgcagtttat ctatctttat acatatattt 840aaactttact ctacgaataa tataatctat agtactacaa taatatcagt gttttagaga 900atcatataaa tgaacagtta gacatggtct aaaggacaat tgagtatttt gacaacagga 960ctctacagtt ttatcttttt agtgtgcatg tgttctcctt tttttttgca aatagcttca 1020cctatataat acttcatcca ttttattagt acatccattt agggtttagg gttaatggtt 1080tttatagact aattttttta gtacatctat tttattctat tttagcctct aaattaagaa 1140aactaaaact ctattttagt ttttttattt aataatttag atataaaata gaataaaata 1200aagtgactaa aaattaaaca aatacccttt aagaaattaa aaaaactaag gaaacatttt 1260tcttgtttcg agtagataat gccagcctgt taaacgccgt cgacgagtct aacggacacc 1320aaccagcgaa ccagcagcgt cgcgtcgggc caagcgaagc agacggcacg gcatctctgt 1380cgctgcctct ggacccctct cgagagttcc gctccaccgt tggacttgct ccgctgtcgg 1440catccagaaa ttgcgtggcg gagcggcaga cgtgagccgg cacggcaggc ggcctcctcc 1500tcctctcacg gcacggcagc tacgggggat tcctttccca ccgctccttc gctttccctt 1560cctcgcccgc cgtaataaat agacaccccc tccacaccct ctttccccaa cctcgtgttg 1620ttcggagcgc acacacacac aaccagatct cccccaaatc cacccgtcgg cacctccgct 1680tcaaggtacg ccgctcgtcc tccccccccc cccctctcta ccttctctag atcggcgttc 1740cggtccatgg ttagggcccg gtagttctac ttctgttcat gtttgtgtta gatccgtgtt 1800tgtgttagat ccgtgctgct agcgttcgta cacggatgcg acctgtacgt cagacacgtt 1860ctgattgcta acttgccagt gtttctcttt ggggaatcct gggatggctc tagccgttcc 1920gcagacggga tcgatttcat gatttttttt gtttcgttgc atagggtttg gtttgccctt 1980ttcctttatt tcaatatatg ccgtgcactt gtttgtcggg tcatcttttc atgctttttt 2040ttgtcttggt tgtgatgatg tggtctggtt gggcggtcgt tctagatcgg agtagaattc 2100tgtttcaaac tacctggtgg atttattaat tttggatctg tatgtgtgtg ccatacatat 2160tcatagttac gaattgaaga tgatggatgg aaatatcgat ctaggatagg tatacatgtt 2220gatgcgggtt ttactgatgc atatacagag atgctttttg ttcgcttggt tgtgatgatg 2280tggtgtggtt gggcggtcgt tcattcgttc tagatcggag tagaatactg tttcaaacta 2340cctggtgtat ttattaattt tggaactgta tgtgtgtgtc atacatcttc atagttacga 2400gtttaagatg gatggaaata tcgatctagg ataggtatac atgttgatgt gggttttact 2460gatgcatata catgatggca tatgcagcat ctattcatat gctctaacct tgagtaccta 2520tctattataa taaacaagta tgttttataa ttattttgat cttgatatac ttggatgatg 2580gcatatgcag cagctatatg tggatttttt tagccctgcc ttcatacgct atttatttgc 2640ttggtactgt ttcttttgtc gatgctcacc ctgttgtttg gtgttacttc tgcaggtcga 2700ctctagagga tccaccatgg ctagcataac ttcgtatagc atacattata cgaagttatc 2760cagatctgcc ctgtccaaca agttcatcgg cgacgacatg aagatgacct accacatgga 2820cggctgcgtg aacggccact acttcaccgt gaagggcgag ggcagcggca agccctacga 2880gggcacccag acctccacct tcaaggtgac catggccaac ggcggccccc tggccttctc 2940cttcgacatc ctgtccaccg tgttcatgta cggcaaccgc tgcttcaccg cctaccccac 3000cagcatgccc gactacttca agcaggcctt ccccgacggc atgtcctacg agagaacctt 3060cacctacgag gacggcggcg tggccaccgc cagctgggag atcagcctga agggcaactg 3120cttcgagcac aagtccacct tccacggcgt gaacttcccc gccgacggcc ccgtgatggc 3180caagaagacc accggctggg acccctcctt cgagaagatg accgtgtgcg acggcatctt 3240gaagggcgac gtgaccgcct tcctgatgct gcagggcggc ggcaactaca gatgccagtt 3300ccacacctcc tacaagacca agaagcccgt gaccatgccc cccaaccacg tggtggagca 3360ccgcatcgcc agaaccgacc tggacaaggg cggcaacagc gtgcagctga ccgagcacgc 3420cgtggcccac atcacctccg tggtgccctt ctgaagcggc cgcaacctag acttgtccat 3480cttctggatt ggccaactta attaatgtat gaaataaaag gatgcacaca tagtgacatg 3540ctaatcacta taatgtgggc atcaaagttg tgtgttatgt gtaattacta gttatctgaa 3600taaaagagaa agagatcatc catatttctt atcctaaatg aatgtcacgt gtctttataa 3660ttctttgatg aaccagatgc atttcattaa ccaaatccat atacatataa atattaatca 3720tatataatta atatcaattg ggttagcaaa acaaatctag tctaggtgtg ttttgcgaat 3780tcgtaatcat ggtcatagct gtttcctgtg tgaaattgtt atccgctcac aattccacac 3840aacatacgag ccggaagcat aaagtgtaaa gcctggggtg cctaatgagt gagctaactc 3900acattaattg cgttgcgctc actgcccgct ttccagtcgg gaaacctgtc gtgccagctg 3960cattaatgaa tcggccaacg cgcggggaga ggcggtttgc gtattgggcg ctcttccgct 4020gatccgatat cgatgggccc tggccgaagc ttggtcaccc ggtccgggcc tagaaggcca 4080gcttcaagtt tgtacaaaaa agcaggctcc ggccagaatg gcccggaccg ggttaccgaa 4140ttcgagctcg gtaccctggg atccgatatc gatgggccct ggccgaagct gggatatcgc 4200tatcaacttt gtatagaaaa gttgggccga attcgagctc ggtacggcca gaatggcccg 4260gaccgggtta ccgaattcga gctcggtacc ctggggatcc ctatagtatt ttaaaattgc 4320attaacaaac atgtcctaat tggtactcct gagatactat accctcctgt tttaaaatag 4380ttggcattat cgaattatca ttttactttt taatgttttc tcttctttta atatatttta 4440tgaattttaa tgtattttaa aatgttatgc agttcgctct ggacttttct gctgcgccta 4500cacttgggtg tactgggcct aaattcagcc tgaccgaccg cctgcattga ataatggatg 4560agcaccggta aaatccgcgt acccaacttt cgagaagaac cgagacgtgg cgggccgggc 4620caccgacgca cggcaccagc gactgcacac gtcccgccgg cgtacgtgta cgtgctgttc 4680cctcactggc cgcccaatcc actcatgcat gcccacgtac acccctgccg tggcgcgccc 4740agatcctaat cctttcgccg ttctgcactt ctgctgccta taaatggcgg catcgaccgt 4800cacctgcttc accaccggcg agccacatcg agaacacgat cgagcacaca agcacgaaga 4860ctcgtttagg agaaaccaca aaccaccaag ccgtgcaagc accaagcttg gtcacccggt 4920ccgggcctag aaggccagct tcaagtttgt acaaaaaagc aggcttcgaa ggagatagaa 4980ccgatccacc atgtccaacc tgctcacggt tcaccagaac cttccggctc ttccagtgga 5040cgcgacgtcc gatgaagtca ggaagaacct catggacatg ttccgcgaca ggcaagcgtt 5100cagcgagcac acctggaaga tgctgctctc cgtctgccgc tcctgggctg catggtgcaa 5160gctgaacaac aggaagtggt tccccgctga gcccgaggac gtgagggatt accttctgta 5220cctgcaagcg cgaggtttgt ttctgcttct acctttgata tatatataat aattatcatt 5280aattagtagt aatataatat ttcaaatatt tttttcaaaa taaaagaatg tagtatatag 5340caattgcttt tctgtagttt ataagtgtgt atattttaat ttataacttt tctaatatat 5400gaccaaaaca tggtgatgcc taggtctggc agtgaagacc atccagcaac accttggaca 5460actgaacatg cttcacaggc gctccggcct cccgcgcccc agcgactcga acgccgtgag 5520cctcgtcatg cgccgcatca ggaaggaaaa cgtcgatgcc ggcgaaaggg caaagcaggc 5580cctcgcgttc gagaggaccg atttcgacca ggtccgcagc ctgatggaga acagcgacag 5640gtgccaggac attaggaacc tggcgttcct cggaattgca tacaacacgc tcctcaggat 5700cgcggaaatt gcccgcattc gcgtgaagga cattagccgc accgacggcg gcaggatgct 5760tatccacatt ggcaggacca agacgctcgt ttccaccgca ggcgtcgaaa aggccctcag 5820cctcggagtg accaagctcg tcgaacgctg gatctccgtg tccggcgtcg cggacgaccc 5880aaacaactac ctcttctgcc gcgtccgcaa gaacggggtg gctgccccta gcgccaccag 5940ccaactcagc acgagggcct tggaaggtat tttcgaggcc acccaccgcc tgatctacgg 6000cgcgaaggat gacagcggtc aacgctacct cgcatggtcc gggcactccg cccgcgttgg 6060agctgctagg gacatggccc gcgccggtgt ttccatcccc gaaatcatgc aggcgggtgg 6120atggacgaac gtgaacattg tcatgaacta cattcgcaac cttgacagcg agacgggcgc 6180aatggttcgc ctcctggaag atggtgactg agctagaccc agctttcttg tacaaagtgg 6240ccgttaacgg atccagactt gtccatcttc tggattggcc aacttaatta atgtatgaaa 6300taaaaggatg cacacatagt gacatgctaa tcactataat gtgggcatca aagttgtgtg 6360ttatgtgtaa ttactagtta tctgaataaa agagaaagag atcatccata tttcttatcc 6420taaatgaatg tcacgtgtct ttataattct ttgatgaacc agatgcattt cattaaccaa 6480atccatatac atataaatat taatcatata taattaatat caattgggtt agcaaaacaa 6540atctagtcta ggtgtgtttt gcgaattgcg gcaagcttgc ggccgcccca gcttggtcac 6600ccggtccggg cctagaaggc cgatctcccg ggcacccagc tttcttgtac aaagtggccg 6660ttaacggatc ggccagaatg gcccggaccg ggttaccgaa ttcgagctcg gtaccctggg 6720atcgaccgaa gctgaccgaa gcttgcggcc gcacactgat agtttaaact gaaggcggga 6780aacgacaatc tgatcatgag cggagaatta agggagtcac gttatgaccc ccgccgatga 6840cgcgggacaa gccgttttac gtttggaact gacagaaccg caacgattga aggagccact 6900cagccgcggg tttctggagt ttaatgagct aagcacatac gtcagaaacc attattgcgc 6960gttcaaaagt cgcctaaggt cactatcagc tagcaaatat ttcttgtcaa aaatgctcca 7020ctgacgttcc ataaattccc ctcggtatcc aattagagtc tcatattcac tctcccgggg 7080gatctcgact ctagaggatc gctcaggaag gccgctgaga tagaggcatg gcggccaatg 7140cgggcggcgg tggagcggga ggaggcagcg gcagcggcag cgtggctgcg ccggcggtgt 7200gccgccccag cggctcgcgg tggacgccga cgccggagca gatcaggatg ctgaaggagc 7260tctactacgg ctgcggcatc cggtcgccca gctcggagca gatccagcgc atcaccgcca 7320tgctgcggca gcacggcaag atcgagggca agaacgtctt ctactggttc cagaaccaca 7380aggcccgcga gcgccagaag cgccgcctca ccagcctcga cgtcaacgtg cccgccgccg 7440gcgcggccga cgccaccacc agccaactcg gcgtcctctc gctgtcgtcg ccgccgcctt 7500caggcgcggc gcctccctcg cccaccctcg gcttctacgc cgccggcaat ggcggcggat 7560cggctgtgct gctggacacg agttccgact ggggcagcag cggcgctgcc atggccaccg 7620agacatgctt cctgcaggac tacatgggcg tgacggacac gggcagctcg tcgcagtggc 7680cacgcttctc gtcgtcggac acgataatgg cggcggccgc ggcgcgggcg gcgacgacgc 7740gggcgcccga gacgctccct ctcttcccga cctgcggcga cgacggcggc agcggtagca 7800gcagctactt gccgttctgg ggtgccgcgt ccacaactgc cggcgccact tcttccgttg 7860cgatccagca gcaacaccag ctgcaggagc agtacagctt ttacagcaac agcaacagca 7920cccagctggc cggcaccggc aaccaagacg tatcggcaac agcagcagca gccgccgccc 7980tggagctgag cctcagctca tggtgctccc cttaccctgc tgcagggagt atgtgagagc 8040aacgcgagct gccactgctc ttcactgatg tctctggaat ggaaggagga ggaagtgagc 8100atagcgttgg tgcgttgctg tcaagggcga attgtaccac atggttaacc tagacttgtc 8160catcttctgg attggccaac ttaattaatg tatgaaataa aaggatgcac acatagtgac 8220atgctaatca ctataatgtg ggcatcaaag ttgtgtgtta tgtgtaatta ctagttatct 8280gaataaaaga gaaagagatc atccatattt cttatcctaa atgaatgtca cgtgtcttta 8340taattctttg atgaaccaga tgcatttcat taaccaaatc catatacata taaatattaa 8400tcatatataa ttaatatcaa ttgggttagc aaaacaaatc tagtctaggt gtgttttgcg 8460aattgcggcc gccaccgcgg tggagctcga attccggtca gcttgcatgc ctgcagtgca 8520gcgtgacccg gtcgtgcccc tctctagaga taatgagcat tgcatgtcta agttataaaa 8580aattaccaca tatttttttt gtcacacttg tttgaagtgc agtttatcta tctttataca 8640tatatttaaa ctttactcta cgaataatat aatctatagt actacaataa tatcagtgtt 8700ttagagaatc atataaatga acagttagac atggtctaaa ggacaattga gtattttgac 8760aacaggactc tacagtttta tctttttagt gtgcatgtgt tctccttttt ttttgcaaat 8820agcttcacct atataatact tcatccattt tattagtaca tccatttagg gtttagggtt 8880aatggttttt atagactaat ttttttagta catctatttt attctatttt agcctctaaa 8940ttaagaaaac taaaactcta ttttagtttt tttatttaat aatttagata taaaatagaa 9000taaaataaag tgactaaaaa ttaaacaaat accctttaag aaattaaaaa aactaaggaa 9060acatttttct tgtttcgagt agataatgcc agcctgttaa acgccgtcga cgagtctaac 9120ggacaccaac cagcgaacca gcagcgtcgc gtcgggccaa gcgaagcaga cggcacggca 9180tctctgtcgc tgcctctgga cccctctcga gagttccgct ccaccgttgg acttgctccg 9240ctgtcggcat ccagaaattg cgtggcggag cggcagacgt gagccggcac ggcaggcggc 9300ctcctcctcc tctcacggca ccggcagcta cgggggattc ctttcccacc gctccttcgc 9360tttcccttcc tcgcccgccg taataaatag acaccccctc cacaccctct ttccccaacc 9420tcgtgttgtt cggagcgcac acacacacaa ccagatctcc cccaaatcca cccgtcggca 9480cctccgcttc aaggtacgcc gctcgtcctc cccccccccc ctctctacct tctctagatc 9540ggcgttccgg tccatgcatg gttagggccc ggtagttcta cttctgttca tgtttgtgtt 9600agatccgtgt ttgtgttaga tccgtgctgc tagcgttcgt acacggatgc gacctgtacg 9660tcagacacgt tctgattgct aacttgccag tgtttctctt tggggaatcc tgggatggct 9720ctagccgttc cgcagacggg atcgatttca tgattttttt tgtttcgttg catagggttt 9780ggtttgccct tttcctttat ttcaatatat gccgtgcact tgtttgtcgg gtcatctttt 9840catgcttttt tttgtcttgg ttgtgatgat gtggtctggt tgggcggtcg ttctagatcg 9900gagtagaatt ctgtttcaaa ctacctggtg gatttattaa ttttggatct gtatgtgtgt 9960gccatacata ttcatagtta cgaattgaag atgatggatg gaaatatcga tctaggatag 10020gtatacatgt tgatgcgggt tttactgatg catatacaga gatgcttttt gttcgcttgg 10080ttgtgatgat gtggtgtggt tgggcggtcg ttcattcgtt ctagatcgga gtagaatact 10140gtttcaaact acctggtgta tttattaatt ttggaactgt atgtgtgtgt catacatctt 10200catagttacg agtttaagat ggatggaaat atcgatctag gataggtata catgttgatg 10260tgggttttac tgatgcatat acatgatggc atatgcagca tctattcata tgctctaacc 10320ttgagtacct atctattata ataaacaagt atgttttata attattttga tcttgatata 10380cttggatgat ggcatatgca gcagctatat gtggattttt ttagccctgc cttcatacgc 10440tatttatttg cttggtactg tttcttttgt cgatgctcac cctgttgttt ggtgttactt 10500ctgcaggtcg actctagagg atccatggcc actgtgaaca actggctcgc tttctccctc 10560tccccgcagg agctgccgcc ctcccagacg acggactcca cactcatctc ggccgccacc 10620gccgaccatg tctccggcga tgtctgcttc aacatccccc aagattggag catgagggga 10680tcagagcttt cggcgctcgt cgcggagccg aagctggagg acttcctcgg cggcatctcc 10740ttctccgagc agcatcacaa ggccaactgc aacatgatac ccagcactag cagcacagtt 10800tgctacgcga gctcaggtgc tagcaccggc taccatcacc agctgtacca ccagcccacc 10860agctcagcgc tccacttcgc ggactccgta atggtggcct cctcggccgg tgtccacgac 10920ggcggtgcca tgctcagcgc ggccgccgct aacggtgtcg ctggcgctgc cagtgccaac 10980ggcggcggca tcgggctgtc catgattaag aactggctgc ggagccaacc ggcgcccatg 11040cagccgaggg tggcggcggc tgagggcgcg caggggctct ctttgtccat gaacatggcg 11100gggacgaccc aaggcgctgc tggcatgcca cttctcgctg gagagcgcgc acgggcgccc 11160gagagtgtat cgacgtcagc acagggtgga gccgtcgtcg tcacggcgcc gaaggaggat 11220agcggtggca gcggtgttgc cggcgctcta gtagccgtga gcacggacac gggtggcagc 11280ggcggcgcgt cggctgacaa cacggcaagg aagacggtgg acacgttcgg gcagcgcacg 11340tcgatttacc gtggcgtgac aaggcataga tggactggga gatatgaggc acatctttgg 11400gataacagtt gcagaaggga agggcaaact cgtaagggtc gtcaagtcta tttaggtggc 11460tatgataaag aggagaaagc tgctagggct tatgatcttg ctgctctgaa gtactggggt 11520gccacaacaa caacaaattt tccagtgagt aactacgaaa aggagctcga ggacatgaag 11580cacatgacaa ggcaggagtt tgtagcgtct ctgagaagga agagcagtgg tttctccaga 11640ggtgcatcca tttacagggg agtgactagg catcaccaac atggaagatg gcaagcacgg 11700attggacgag ttgcagggaa caaggatctt tacttgggca ccttcagcac ccaggaggag 11760gcagcggagg cgtacgacat cgcggcgatc aagttccgcg gcctcaacgc cgtcaccaac 11820ttcgacatga gccgctacga cgtgaagagc atcctggaca gcagcgccct ccccatcggc 11880agcgccgcca agcgcctcaa ggaggccgag gccgcagcgt ccgcgcagca ccaccacgcc 11940ggcgtggtga gctacgacgt cggccgcatc gcctcgcagc tcggcgacgg cggagccctg 12000gcggcggcgt acggcgcgca ctaccacggc gccgcctggc cgaccatcgc gttccagccg 12060ggcgccgcca gcacaggcct gtaccacccg tacgcgcagc agccaatgcg cggcggcggg 12120tggtgcaagc aggagcagga ccacgcggtg atcgcggccg cgcacagcct gcaggacctc 12180caccacctga acctgggcgc ggccggcgcg cacgactttt tctcggcagg gcagcaggcc 12240gccgccgctg cgatgcacgg cctgggtagc atcgacagtg cgtcgctcga gcacagcacc 12300ggctccaact ccgtcgtcta caacggcggg gtcggcgaca gcaacggcgc cagcgccgtc 12360ggcggcagtg gcggtggcta catgatgccg atgagcgctg ccggagcaac cactacatcg 12420gcaatggtga gccacgagca ggtgcatgca cgggcctacg acgaagccaa gcaggctgct 12480cagatggggt acgagagcta cctggtgaac gcggagaaca atggtggcgg aaggatgtct 12540gcatggggga ctgtcgtgtc tgcagccgcg gcggcagcag caagcagcaa cgacaacatg 12600gccgccgacg tcggccatgg cggcgcgcag ctcttcagtg tctggaacga cacttaagcg 12660tacgtgccgg cctggctctc cgaaagggcg aattccagca cactggcggc cgttactaga 12720cccaacctag acttgtccat cttctggatt ggccaactta attaatgtat gaaataaaag 12780gatgcacaca tagtgacatg ctaatcacta taatgtgggc atcaaagttg tgtgttatgt 12840gtaattacta gttatctgaa taaaagagaa agagatcatc catatttctt atcctaaatg 12900aatgtcacgt gtctttataa ttctttgatg aaccagatgc atttcattaa ccaaatccat 12960atacatataa atattaatca tatataatta atatcaattg ggttagcaaa acaaatctag 13020tctaggtgtg ttttgcgaat gcggccgcca ccgcggtgga gctcgaattc cggtcgatcc 13080gatgatcctg agcttctagc ataacttcgt atagcataca ttatacgaag ttatccagat 13140ctgcccacag caagcacggc ctgaaggagg agatgaccat gaagtaccac atggagggct 13200gcgtgaacgg ccacaagttc gtgatcaccg gcgagggcat cggctacccc ttcaagggca 13260agcagaccat caacctgtgc gtgatcgagg gcggccccct gcccttcagc gaggacatcc 13320tgagcgccgg cttcaagtac ggcgaccgga tcttcaccga gtacccccag gacatcgtgg 13380actacttcaa gaacagctgc cccgccggct acacctgggg ccggagcttc ctgttcgagg 13440acggcgccgt gtgcatctgt aacgtggaca tcaccgtgag cgtgaaggag aactgcatct 13500accacaagag catcttcaac ggcgtgaact tccccgccga cggccccgtg atgaagaaga 13560tgaccaccaa ctgggaggcc agctgcgaga agatcatgcc cgtgcctaag cagggcatcc 13620tgaagggcga cgtgagcatg tacctgctgc tgaaggacgg cggccggtac cggtgccagt 13680tcgacaccgt gtacaaggcc aagagcgtgc ccagcaagat gcccgagtgg cacttcatcc 13740agcacaagct gctgcgggag gaccggagcg acgccaagaa ccagaagtgg cagctgaccg 13800agcacgccat cgccttcccc agcgccctgg cctgaagcgg ccgcaaccta gacttgtcca 13860tcttctggat tggccaactt aattaatgta tgaaataaaa ggatgcacac atagtgacat 13920gctaatcact ataatgtggg catcaaagtt gtgtgttatg tgtaattact agttatctga 13980ataaaagaga aagagatcat ccatatttct tatcctaaat gaatgtcacg tgtctttata 14040attctttgat gaaccagatg catttcatta accaaatcca tatacatata aatattaatc 14100atatataatt aatatcaatt gggttagcaa aacaaatcta gtctaggtgt gttttgcgaa 14160ttagcttggt cacccggtcc gggcctagaa ggccagcttg cggccgcccc gggcaacttt 14220attatacaaa gttgatagat atcggaccga ttaaacttta attcggtccg aagcttgcat

14280gcctgcagtg cagcgtgacc cggtcgtgcc cctctctaga gataatgagc attgcatgtc 14340taagttataa aaaattacca catatttttt ttgtcacact tgtttgaagt gcagtttatc 14400tatctttata catatattta aactttactc tacgaataat ataatctata gtactacaat 14460aatatcagtg ttttagagaa tcatataaat gaacagttag acatggtcta aaggacaatt 14520gagtattttg acaacaggac tctacagttt tatcttttta gtgtgcatgt gttctccttt 14580ttttttgcaa atagcttcac ctatataata cttcatccat tttattagta catccattta 14640gggtttaggg ttaatggttt ttatagacta atttttttag tacatctatt ttattctatt 14700ttagcctcta aattaagaaa actaaaactc tattttagtt tttttattta ataatttaga 14760tataaaatag aataaaataa agtgactaaa aattaaacaa atacccttta agaaattaaa 14820aaaactaagg aaacattttt cttgtttcga gtagataatg ccagcctgtt aaacgccgtc 14880gacgagtcta acggacacca accagcgaac cagcagcgtc gcgtcgggcc aagcgaagca 14940gacggcacgg catctctgtc gctgcctctg gacccctctc gagagttccg ctccaccgtt 15000ggacttgctc cgctgtcggc atccagaaat tgcgtggcgg agcggcagac gtgagccggc 15060acggcaggcg gcctcctcct cctctcacgg caccggcagc tacgggggat tcctttccca 15120ccgctccttc gctttccctt cctcgcccgc cgtaataaat agacaccccc tccacaccct 15180ctttccccaa cctcgtgttg ttcggagcgc acacacacac aaccagatct cccccaaatc 15240cacccgtcgg cacctccgct tcaaggtacg ccgctcgtcc tccccccccc ccctctctac 15300cttctctaga tcggcgttcc ggtccatgca tggttagggc ccggtagttc tacttctgtt 15360catgtttgtg ttagatccgt gtttgtgtta gatccgtgct gctagcgttc gtacacggat 15420gcgacctgta cgtcagacac gttctgattg ctaacttgcc agtgtttctc tttggggaat 15480cctgggatgg ctctagccgt tccgcagacg ggatcgattt catgattttt tttgtttcgt 15540tgcatagggt ttggtttgcc cttttccttt atttcaatat atgccgtgca cttgtttgtc 15600gggtcatctt ttcatgcttt tttttgtctt ggttgtgatg atgtggtctg gttgggcggt 15660cgttctagat cggagtagaa ttctgtttca aactacctgg tggatttatt aattttggat 15720ctgtatgtgt gtgccataca tattcatagt tacgaattga agatgatgga tggaaatatc 15780gatctaggat aggtatacat gttgatgcgg gttttactga tgcatataca gagatgcttt 15840ttgttcgctt ggttgtgatg atgtggtgtg gttgggcggt cgttcattcg ttctagatcg 15900gagtagaata ctgtttcaaa ctacctggtg tatttattaa ttttggaact gtatgtgtgt 15960gtcatacatc ttcatagtta cgagtttaag atggatggaa atatcgatct aggataggta 16020tacatgttga tgtgggtttt actgatgcat atacatgatg gcatatgcag catctattca 16080tatgctctaa ccttgagtac ctatctatta taataaacaa gtatgtttta taattatttt 16140gatcttgata tacttggatg atggcatatg cagcagctat atgtggattt ttttagccct 16200gccttcatac gctatttatt tgcttggtac tgtttctttt gtcgatgctc accctgttgt 16260ttggtgttac ttctgcaggt cgactttaac ttagcctagg atccacacga caccatgtcc 16320cccgagcgcc gccccgtcga gatccgcccg gccaccgccg ccgacatggc cgccgtgtgc 16380gacatcgtga accactacat cgagacctcc accgtgaact tccgcaccga gccgcagacc 16440ccgcaggagt ggatcgacga cctggagcgc ctccaggacc gctacccgtg gctcgtggcc 16500gaggtggagg gcgtggtggc cggcatcgcc tacgccggcc cgtggaaggc ccgcaacgcc 16560tacgactgga ccgtggagtc caccgtgtac gtgtcccacc gccaccagcg cctcggcctc 16620ggctccaccc tctacaccca cctcctcaag agcatggagg cccagggctt caagtccgtg 16680gtggccgtga tcggcctccc gaacgacccg tccgtgcgcc tccacgaggc cctcggctac 16740accgcccgcg gcaccctccg cgccgccggc tacaagcacg gcggctggca cgacgtcggc 16800ttctggcagc gcgacttcga gctgccggcc ccgccgcgcc cggtgcgccc ggtgacgcag 16860atctgagtcg aaacctagac ttgtccatct tctggattgg ccaacttaat taatgtatga 16920aataaaagga tgcacacata gtgacatgct aatcactata atgtgggcat caaagttgtg 16980tgttatgtgt aattactagt tatctgaata aaagagaaag agatcatcca tatttcttat 17040cctaaatgaa tgtcacgtgt ctttataatt ctttgatgaa ccagatgcat ttcattaacc 17100aaatccatat acatataaat attaatcata tataattaat atcaattggg ttagcaaaac 17160aaatctagtc taggtgtgtt ttgcgaattg cggccgccac cgcggtggag ctcgaattca 17220ttccgattaa tcgtggcctc ttgctcttca ggatgaagag ctatgtttaa acgtgcaagc 17280gctactagac aattcagtac attaaaaacg tccgcaatgt gttattaagt tgtctaagcg 17340tcaatttgtt tacaccacaa tatatcctgc cac 1737311211111DNAArtificial SequencePHP46446 112gtttacccgc caatatatcc tgtcaaacac tgatagttta aactgaaggc gggaaacgac 60aatctgatca tgagcggaga attaagggag tcacgttatg acccccgccg atgacgcggg 120acaagccgtt ttacgtttgg aactgacaga accgcaacgt tgaaggagcc actcagcaag 180ctggtacgat tgtaatacga ctcactatag ggcgaattga gcgctgttta aacgctcttc 240aactggaaga gcggttacta ccggctggat ggcggggcct tgatcgtgca ccgccggcgt 300ccggactaac taactagtcg agctagttac cctatgaggt gacatgaagc gctcacggtt 360actatgacgg ttagcttcac gactgttggt ggcagtagcg tacgacttag ctatagttcc 420ggacttaccg ggcccaccgg tggtaccgag ctcgtttaaa cgctcttcaa ctggaagagc 480ggttaccaga gctggtcacc tttgtccacc aagatggaac tggcgcggct aatttaaatc 540ctgaggatat cgctatcaac tttgtataga aaagttgggc cgaattcgag ctcggtacgg 600ccagaatggc ccggaccggg ttaccgaatt cgagctcggt accctgggat ccgatatcga 660tgggccctgg ccgaagcttg gtcacccggt ccgggcctag aaggccagct tcaagtttgt 720acaaaaaagc aggctccggc cagaatggcc cggaccgggt taccgaattc gagctcggta 780ccctgggatc cgatatcgat gggccctggc cgaagcttgg tcacccggtc cgggcctaga 840aggccgatct cccgggcacc cagctttctt gtacaaagtg gccgttaacg gatcggccag 900aatggcccgg accgggttac cgaattcgag ctcggtaccc tgggatccga tatcgatggg 960ccctggccga agcttggtca cccggtccgg gcctagaagg ccagcttcgg ccgccccggg 1020caactttatt atacaaagtt gatagataaa tcctgaggat ctggtcttcc taaggacccg 1080ggatatcgga ccgattaaac tttaattcgg tccgacctgg tggcgccgct agcgtatacg 1140aagttcctat tccgaagttc ctattctcca gaaagtatag gaacttctgt acaataactt 1200cgtatagcat acattatacg aagttatgcc cgggctggta tttcaaaact atagtatttt 1260aaaattgcat taacaaacat gtcctaattg gtactcctga gatactatac cctcctgttt 1320taaaatagtt ggcattatcg aattatcatt ttactcttta atgttttctc ttcttttaat 1380atattttatg aattttaatg tattttaaaa tgttatgcag ttcgctctgg acttttctgc 1440tgcgcctaca cttgggtgta ctgggcctaa attcagcctg accgaccgcc tgcattgaat 1500aatggatgag caccggtaaa atccgcgtac ccaactttcg agaagaaccg agacgtggcg 1560ggccgggcca ccgacgcacg gcaccagcga ctgcacacgt cccgccggcg tacgtgtacg 1620tgctgttccc tcactggccg cccaatccac tcatgcatgc ccacgtacac ccctgccgtg 1680gcgcgcccag atcctaatcc tttcgccgtt ctgcacttct gctgcctata aatggcggca 1740tcgaccgtca cctgcttcac caccggcgag ccacatcgag aacacgatcg agcacacaag 1800cacgaagact cgtttaggag aaaccacaaa ccaccaagcc gtgcaagcac caagcttggt 1860cacccggtcc gggcctagaa ggccagcttc aagtttgtac aaaaaagcag gcttcgaagg 1920agatagaacc gatccaccat gtccaacctg ctcacggttc accagaacct tccggctctt 1980ccagtggacg cgacgtccga tgaagtcagg aagaacctca tggacatgtt ccgcgacagg 2040caagcgttca gcgagcacac ctggaagatg ctgctctccg tctgccgctc ctgggctgca 2100tggtgcaagc tgaacaacag gaagtggttc cccgctgagc ccgaggacgt gagggattac 2160cttctgtacc tgcaagcgcg aggtttgttt ctgcttctac ctttgatata tatataataa 2220ttatcattaa ttagtagtaa tataatattt caaatatttt tttcaaaata aaagaatgta 2280gtatatagca attgcttttc tgtagtttat aagtgtgtat attttaattt ataacttttc 2340taatatatga ccaaaacatg gtgatgccta ggtctggcag tgaagaccat ccagcaacac 2400cttggacaac tgaacatgct tcacaggcgc tccggcctcc cgcgccccag cgactcgaac 2460gccgtgagcc tcgtcatgcg ccgcatcagg aaggaaaacg tcgatgccgg cgaaagggca 2520aagcaggccc tcgcgttcga gaggaccgat ttcgaccagg tccgcagcct gatggagaac 2580agcgacaggt gccaggacat taggaacctg gcgttcctcg gaattgcata caacacgctc 2640ctcaggatcg cggaaattgc ccgcattcgc gtgaaggaca ttagccgcac cgacggcggc 2700aggatgctta tccacattgg caggaccaag acgctcgttt ccaccgcagg cgtcgaaaag 2760gccctcagcc tcggagtgac caagctcgtc gaacgctgga tctccgtgtc cggcgtcgcg 2820gacgacccaa acaactacct cttctgccgc gtccgcaaga acggggtggc tgcccctagc 2880gccaccagcc aactcagcac gagggccttg gaaggtattt tcgaggccac ccaccgcctg 2940atctacggcg cgaaggatga cagcggtcaa cgctacctcg catggtccgg gcactccgcc 3000cgcgttggag ctgctaggga catggcccgc gccggtgttt ccatccccga aatcatgcag 3060gcgggtggat ggacgaacgt gaacattgtc atgaactaca ttcgcaacct tgacagcgag 3120acgggcgcaa tggttcgcct cctggaagat ggtgactgag ctagacccag ctttcttgta 3180caaagtggcc gttaacggat ccagacttgt ccatcttctg gattggccaa cttaattaat 3240gtatgaaata aaaggatgca cacatagtga catgctaatc actataatgt gggcatcaaa 3300gttgtgtgtt atgtgtaatt actagttatc tgaataaaag agaaagagat catccatatt 3360tcttatccta aatgaatgtc acgtgtcttt ataattcttt gatgaaccag atgcatttca 3420ttaaccaaat ccatatacat ataaatatta atcatatata attaatatca attgggttag 3480caaaacaaat ctagtctagg tgtgttttgc gaattgcggc aagcttcggc cgccccagct 3540tggtcacccg gtccgggcct agaaggccga tctcccgggc acccagcttt cttgtacaaa 3600gtggccgtta acggatcggc cagaatggcc cggaccgggt taccgaattc gagctcggta 3660ccctgggatc gaccgaagct gaccgaagct tgcggccgca cactgatagt ttaaactgaa 3720ggcgggaaac gacaatctga tcatgagcgg agaattaagg gagtcacgtt atgacccccg 3780ccgatgacgc gggacaagcc gttttacgtt tggaactgac agaaccgcaa cgttgaagga 3840gccactcagc cgcgggtttc tggagtttaa tgagctaagc acatacgtca gaaaccatta 3900ttgcgcgttc aaaagtcgcc taaggtcact atcagctagc aaatatttct tgtcaaaaat 3960gctccactga cgttccataa attcccctcg gtatccaatt agagtctcat attcactctc 4020ccgggggatc tcgactctag aggatcgctc aggaaggccg ctgagataga ggcatggcgg 4080ccaatgcggg cggcggtgga gcgggaggag gcagcggcag cggcagcgtg gctgcgccgg 4140cggtgtgccg ccccagcggc tcgcggtgga cgccgacgcc ggagcagatc aggatgctga 4200aggagctcta ctacggctgc ggcatccggt cgcccagctc ggagcagatc cagcgcatca 4260ccgccatgct gcggcagcac ggcaagatcg agggcaagaa cgtcttctac tggttccaga 4320accacaaggc ccgcgagcgc cagaagcgcc gcctcaccag cctcgacgtc aacgtgcccg 4380ccgccggcgc ggccgacgcc accaccagcc aactcggcgt cctctcgctg tcgtcgccgc 4440cgccttcagg cgcggcgcct ccctcgccca ccctcggctt ctacgccgcc ggcaatggcg 4500gcggatcggc tgtgctgctg gacacgagtt ccgactgggg cagcagcggc gctgccatgg 4560ccaccgagac atgcttcctg caggactaca tgggcgtgac ggacacgggc agctcgtcgc 4620agtggccacg cttctcgtcg tcggacacga taatggcggc ggccgcggcg cgggcggcga 4680cgacgcgggc gcccgagacg ctccctctct tcccgacctg cggcgacgac ggcggcagcg 4740gtagcagcag ctacttgccg ttctggggtg ccgcgtccac aactgccggc gccacttctt 4800ccgttgcgat ccagcagcaa caccagctgc aggagcagta cagcttttac agcaacagca 4860acagcaccca gctggccggc accggcaacc aagacgtatc ggcaacagca gcagcagccg 4920ccgccctgga gctgagcctc agctcatggt gctcccctta ccctgctgca gggagtatgt 4980gagagcaacg cgagctgcca ctgctcttca ctgatgtctc tggaatggaa ggaggaggaa 5040gtgagcatag cgttggtgcg ttgctgtcaa gggcgaattc acatggttaa cctagacttg 5100tccatcttct ggattggcca acttaattaa tgtatgaaat aaaaggatgc acacatagtg 5160acatgctaat cactataatg tgggcatcaa agttgtgtgt tatgtgtaat tactagttat 5220ctgaataaaa gagaaagaga tcatccatat ttcttatcct aaatgaatgt cacgtgtctt 5280tataattctt tgatgaacca gatgcatttc attaaccaaa tccatataca tataaatatt 5340aatcatatat aattaatatc aattgggtta gcaaaacaaa tctagtctag gtgtgttttg 5400cgaatgcggc cgcgactcta gatcataatc agccatacca cattcgaatg tgagttgatc 5460cccggcggtg tcccccactg aagaaactat gtgctgtagt atagccgctg cccgctggct 5520agctagctag ttgagtcatt tagcggcgat gattgagtaa taatgtgtca cgcatcacca 5580tgcatgggtg gcagtgtcag tgtgagcaat gacctgaatg aacaattgaa atgaaaagaa 5640aaaagtattg ttccaaatta aacgttttaa ccttttaata ggtttataca ataattgata 5700tatgttttct gtatatgtct aatttgttat catccattta gatatagaca aaaaaaatct 5760aagaactaaa acaaatgcta atttgaaatg aagggagtat atattgggat aatgtcgatg 5820agatccctcg taatatcacc gacatcacac gtgtccagtt aatgtatcag tgatacgtgt 5880attcacattt gttgcgcgta ggcgtaccca acaattttga tcgactatca gaaagtcaac 5940ggaagcgagt cgacctcgag ggggggcccg gtaccaagat atcaaccgcg gaaagatcta 6000agcatgcaag ggcccaagtc gacctgcaga agcttcggtc cgggcctaga aggccgatct 6060cccgggcacc cagctttctt gtacaaagtg gccgttaacg gatcggccag aatggcccgg 6120accgggttac cgaattcgag ctcggtaccc tgggatcgac cgaagcttgc atgcctgcag 6180tgcagcgtga cccggtcgtg cccctctcta gagataatga gcattgcatg tctaagttat 6240aaaaaattac cacatatttt ttttgtcaca cttgtttgaa gtgcagttta tctatcttta 6300tacatatatt taaactttac tctacgaata atataatcta tagtactaca ataatatcag 6360tgttttagag aatcatataa atgaacagtt agacatggtc taaaggacaa ttgagtattt 6420tgacaacagg actctacagt tttatctttt tagtgtgcat gtgttctcct ttttttttgc 6480aaatagcttc acctatataa tacttcatcc attttattag tacatccatt tagggtttag 6540ggttaatggt ttttatagac taattttttt agtacatcta ttttattcta ttttagcctc 6600taaattaaga aaactaaaac tctattttag tttttttatt taataattta gatataaaat 6660agaataaaat aaagtgacta aaaattaaac aaataccctt taagaaatta aaaaaactaa 6720ggaaacattt ttcttgtttc gagtagataa tgccagcctg ttaaacgccg tcgacgagtc 6780taacggacac caaccagcga accagcagcg tcgcgtcggg ccaagcgaag cagacggcac 6840ggcatctctg tcgctgcctc tggacccctc tcgagagttc cgctccaccg ttggacttgc 6900tccgctgtcg gcatccagaa attgcgtggc ggagcggcag acgtgagccg gcacggcagg 6960cggcctcctc ctcctctcac ggcaccggca gctacggggg attcctttcc caccgctcct 7020tcgctttccc ttcctcgccc gccgtaataa atagacaccc cctccacacc ctctttcccc 7080aacctcgtgt tgttcggagc gcacacacac acaaccagat ctcccccaaa tccacccgtc 7140ggcacctccg cttcaaggta cgccgctcgt cctccccccc ccccctctct accttctcta 7200gatcggcgtt ccggtccatg catggttagg gcccggtagt tctacttctg ttcatgtttg 7260tgttagatcc gtgtttgtgt tagatccgtg ctgctagcgt tcgtacacgg atgcgacctg 7320tacgtcagac acgttctgat tgctaacttg ccagtgtttc tctttgggga atcctgggat 7380ggctctagcc gttccgcaga cgggatcgat ttcatgattt tttttgtttc gttgcatagg 7440gtttggtttg cccttttcct ttatttcaat atatgccgtg cacttgtttg tcgggtcatc 7500ttttcatgct tttttttgtc ttggttgtga tgatgtggtc tggttgggcg gtcgttctag 7560atcggagtag aattctgttt caaactacct ggtggattta ttaattttgg atctgtatgt 7620gtgtgccata catattcata gttacgaatt gaagatgatg gatggaaata tcgatctagg 7680ataggtatac atgttgatgc gggttttact gatgcatata cagagatgct ttttgttcgc 7740ttggttgtga tgatgtggtg tggttgggcg gtcgttcatt cgttctagat cggagtagaa 7800tactgtttca aactacctgg tgtatttatt aattttggaa ctgtatgtgt gtgtcataca 7860tcttcatagt tacgagttta agatggatgg aaatatcgat ctaggatagg tatacatgtt 7920gatgtgggtt ttactgatgc atatacatga tggcatatgc agcatctatt catatgctct 7980aaccttgagt acctatctat tataataaac aagtatgttt tataattatt ttgatcttga 8040tatacttgga tgatggcata tgcagcagct atatgtggat ttttttagcc ctgccttcat 8100acgctattta tttgcttggt actgtttctt ttgtcgatgc tcaccctgtt gtttggtgtt 8160acttctgcag gtcgactcta gaggatccat ggccactgtg aacaactggc tcgctttctc 8220cctctccccg caggagctgc cgccctccca gacgacggac tccacactca tctcggccgc 8280caccgccgac catgtctccg gcgatgtctg cttcaacatc ccccaagatt ggagcatgag 8340gggatcagag ctttcggcgc tcgtcgcgga gccgaagctg gaggacttcc tcggcggcat 8400ctccttctcc gagcagcatc acaaggccaa ctgcaacatg atacccagca ctagcagcac 8460agtttgctac gcgagctcag gtgctagcac cggctaccat caccagctgt accaccagcc 8520caccagctca gcgctccact tcgcggactc cgtaatggtg gcctcctcgg ccggtgtcca 8580cgacggcggt gccatgctca gcgcggccgc cgctaacggt gtcgctggcg ctgccagtgc 8640caacggcggc ggcatcgggc tgtccatgat taagaactgg ctgcggagcc aaccggcgcc 8700catgcagccg agggtggcgg cggctgaggg cgcgcagggg ctctctttgt ccatgaacat 8760ggcggggacg acccaaggcg ctgctggcat gccacttctc gctggagagc gcgcacgggc 8820gcccgagagt gtatcgacgt cagcacaggg tggagccgtc gtcgtcacgg cgccgaagga 8880ggatagcggt ggcagcggtg ttgccggcgc tctagtagcc gtgagcacgg acacgggtgg 8940cagcggcggc gcgtcggctg acaacacggc aaggaagacg gtggacacgt tcgggcagcg 9000cacgtcgatt taccgtggcg tgacaaggca tagatggact gggagatatg aggcacatct 9060ttgggataac agttgcagaa gggaagggca aactcgtaag ggtcgtcaag tctatttagg 9120tggctatgat aaagaggaga aagctgctag ggcttatgat cttgctgctc tgaagtactg 9180gggtgccaca acaacaacaa attttccagt gagtaactac gaaaaggagc tcgaggacat 9240gaagcacatg acaaggcagg agtttgtagc gtctctgaga aggaagagca gtggtttctc 9300cagaggtgca tccatttaca ggggagtgac taggcatcac caacatggaa gatggcaagc 9360acggattgga cgagttgcag ggaacaagga tctttacttg ggcaccttca gcacccagga 9420ggaggcagcg gaggcgtacg acatcgcggc gatcaagttc cgcggcctca acgccgtcac 9480caacttcgac atgagccgct acgacgtgaa gagcatcctg gacagcagcg ccctccccat 9540cggcagcgcc gccaagcgcc tcaaggaggc cgaggccgca gcgtccgcgc agcaccacca 9600cgccggcgtg gtgagctacg acgtcggccg catcgcctcg cagctcggcg acggcggagc 9660cctggcggcg gcgtacggcg cgcactacca cggcgccgcc tggccgacca tcgcgttcca 9720gccgggcgcc gccagcacag gcctgtacca cccgtacgcg cagcagccaa tgcgcggcgg 9780cgggtggtgc aagcaggagc aggaccacgc ggtgatcgcg gccgcgcaca gcctgcagga 9840cctccaccac ctgaacctgg gcgcggccgg cgcgcacgac tttttctcgg cagggcagca 9900ggccgccgcc gctgcgatgc acggcctggg tagcatcgac agtgcgtcgc tcgagcacag 9960caccggctcc aactccgtcg tctacaacgg cggggtcggc gacagcaacg gcgccagcgc 10020cgtcggcggc agtggcggtg gctacatgat gccgatgagc gctgccggag caaccactac 10080atcggcaatg gtgagccacg agcaggtgca tgcacgggcc tacgacgaag ccaagcaggc 10140tgctcagatg gggtacgaga gctacctggt gaacgcggag aacaatggtg gcggaaggat 10200gtctgcatgg gggactgtcg tgtctgcagc cgcggcggca gcagcaagca gcaacgacaa 10260catggccgcc gacgtcggcc atggcggcgc gcagctcttc agtgtctgga acgacactta 10320agcgtacgtg ccggcctggc tctccgaaag ggcgaattcc agcacactgg cggccgttac 10380tagacccaac ctagacttgt ccatcttctg gattggccaa cttaattaat gtatgaaata 10440aaaggatgca cacatagtga catgctaatc actataatgt gggcatcaaa gttgtgtgtt 10500atgtgtaatt actagttatc tgaataaaag agaaagagat catccatatt tcttatccta 10560aatgaatgtc acgtgtcttt ataattcttt gatgaaccag atgcatttca ttaaccaaat 10620ccatatacat ataaatatta atcatatata attaatatca attgggttag caaaacaaat 10680ctagtctagg tgtgttttgc gaattagctt ggtcacccgg tccgggccta gaaggccagc 10740ttcggccgcc ccgggcaact ttattataca aagttgatag atcgaataac ttcgtatagc 10800atacattata cgaagttatc ctgagctgat tccgatgact tcgtaggttc ctagctcaag 10860ccgctcgtgt ccaagcgtca cttacgatta gctaatgatt acggcatcta ggaccgacta 10920gctaactaac tagtacgtag aattgtagaa ttaattcatt ccgattaatc gtggcctctt 10980gctcttcagg atgaagagct atgtttaaac gtgcaagcgc tactagacaa ttcagtacat 11040taaaaacgtc cgcaatgtgt tattaagttg tctaagcgtc aatttgttta caccacaata 11100tatcctgcca c 1111111310477DNAArtificial SequencePHP48733 113gtttacccgc caatatatcc tgtcaaacac tgatagttta aactgaaggc gggaaacgac 60aatctgatca tgagcggaga attaagggag tcacgttatg acccccgccg atgacgcggg 120acaagccgtt ttacgtttgg aactgacaga accgcaacgt tgaaggagcc actcagcaag 180ctggtacgat tgtaatacga ctcactatag ggcgaattga gcgctgttta aacgctcttc 240aactggaaga gcggttacta ccggctggat ggcggggcct tgatcgtgca ccgccggcgt 300ccggactaac taactagtcg agctagttac cctatgaggt gacatgaagc gctcacggtt 360actatgacgg ttagcttcac gactgttggt ggcagtagcg tacgacttag ctatagttcc 420ggacttaccg ggcccaccgg tggtaccgag ctcgtttaaa cgctcttcaa ctggaagagc 480ggttaccaga gctggtcacc tttgtccacc aagatggaac tggcgcggct aatttaaatc 540ctgaggatat cgctatcaac tttgtataga aaagttgggc cgaattcgag ctcggtacgg 600ccagaatggc ccggaccggg ttaccgaatt cgagctcggt accctgggat ccgatatcga 660tgggccctgg ccgaagcttg gtcacccggt ccgggcctag

aaggccagct tcaagtttgt 720acaaaaaagc aggctccggc cagaatggcc cggaccgggt taccgaattc gagctcggta 780ccctgggatc cgatatcgat gggccctggc cgaagcttgg tcacccggtc cgggcctaga 840aggccgatct cccgggcacc cagctttctt gtacaaagtg gccgttaacg gatcggccag 900aatggcccgg accgggttac cgaattcgag ctcggtaccc tgggatccga tatcgatggg 960ccctggccga agcttggtca cccggtccgg gcctagaagg ccagcttcgg ccgccccggg 1020caactttatt atacaaagtt gatagataaa tcctgaggat ctggtcttcc taaggacccg 1080ggatatcgga ccgattaaac tttaattcgg tccgacctgg tggcgccgct agcataactt 1140cgtatagcat acattatacg aagttatcca tatctgaccg gcttaccgaa tgcgtgctcg 1200ctaccctggg atgcgatttc gatggcccct ggccgaagct ggcatatcgc tatgaccggg 1260ttagccaatt cgacctcgct accctgggga tgctacgtaa cgcgtctata gtattttaaa 1320attgcattaa caaacatgtc ctaattggta ctcctgagat actataccct cctgttttaa 1380aatagttggc attatcgaat tatcatttta ctttttaatg ttttctcttc ttttaatata 1440ttttatgaat tttaatgtat tttaaaatgt tatgcagttc gctctggact tttctgctgc 1500gcctacactt gggtgtactg ggcctaaatt cagcctgacc gaccgcctgc attgaataat 1560ggatgagcac cggtaaaatc cgcgtaccca actttcgaga agaaccgaga cgtggcgggc 1620cgggccaccg acgcacggca ccagcgactg cacacgtccc gccggcgtac gtgtacgtgc 1680tgttccctca ctggccgccc aatccactca tgcatgccca cgtacacccc tgccgtggcg 1740cgcccagatc ctaatccttt cgccgttctg cacttctgct gcctataaat ggcggcatcg 1800accgtcacct gcttcaccac cggcgagcca catcgagaac acgatcgagc acacaagcac 1860gaagactcgt ttaggagaaa ccacaaacca ccaagccgtg caagcaccag gcttgggcac 1920ccgctccggg cttagaaggc cagcttcaag tttgtacaaa aaagcaggct tcgaaggaga 1980tagaaccgat ccaccatgtc caacctgctc acggttcacc agaaccttcc ggctcttcca 2040gtggacgcga cgtccgatga agtcaggaag aacctcatgg acatgttccg cgacaggcaa 2100gcgttcagcg agcacacctg gaagatgctg ctctccgtct gccgctcctg ggctgcatgg 2160tgcaagctga acaacaggaa gtggttcccc gctgagcccg aggacgtgag ggattacctt 2220ctgtacctgc aagcgcgagg tttgtttctg cttctacctt tgatatatat ataataatta 2280tcattaatta gtagtaatat aatatttcaa atattttttt caaaataaaa gaatgtagta 2340tatagcaatt gcttttctgt agtttataag tgtgtatatt ttaatttata acttttctaa 2400tatatgacca aaacatggtg atgcctaggt ctggcagtga agaccatcca gcaacacctt 2460ggacaactga acatgcttca caggcgctcc ggcctcccgc gccccagcga ctcgaacgcc 2520gtgagcctcg tcatgcgccg catcaggaag gaaaacgtcg atgccggcga aagggcaaag 2580caggccctcg cgttcgagag gaccgatttc gaccaggtcc gcagcctgat ggagaacagc 2640gacaggtgcc aggacattag gaacctggcg ttcctcggaa ttgcatacaa cacgctcctc 2700aggatcgcgg aaattgcccg cattcgcgtg aaggacatta gccgcaccga cggcggcagg 2760atgcttatcc acattggcag gaccaagacg ctcgtttcca ccgcaggcgt cgaaaaggcc 2820ctcagcctcg gagtgaccaa gctcgtcgaa cgctggatct ccgtgtccgg cgtcgcggac 2880gacccaaaca actacctctt ctgccgcgtc cgcaagaacg gggtggctgc ccctagcgcc 2940accagccaac tcagcacgag ggccttggaa ggtattttcg aggccaccca ccgcctgatc 3000tacggcgcga aggatgacag cggtcaacgc tacctcgcat ggtccgggca ctccgcccgc 3060gttggagctg ctagggacat ggcccgcgcc ggtgtttcca tccccgaaat catgcaggcg 3120ggtggatgga cgaacgtgaa cattgtcatg aactacattc gcaaccttga cagcgagacg 3180ggcgcaatgg ttcgcctcct ggaagatggt gactgagcta gacccagctt tcttgtacaa 3240agtggccgtt aacggatgca gacttgtcca tcttctggat tggccaactt aattaatgta 3300tgaaataaaa ggatgcacac atagtgacat gctaatcact ataatgtggg catcaaagtt 3360gtgtgttatg tgtaattact agttatctga ataaaagaga aagagatcat ccatatttct 3420tatcctaaat gaatgtcacg tgtctttata attctttgat gaaccagatg catttcatta 3480accaaatcca tatacatata aatattaatc atatataatt aatatcaatt gggttagcaa 3540aacaaatcta gtctaggtgt gttttgcgaa ttgcggcaag gttgcgcccg ccccagcttg 3600gtcagccgct ccgggcttag aaggccgatc tcgcgggcac ccagctttct tctacaaagt 3660ggccgtttac ggatcggcta gaatgtcccg caccggctta ccgatttgca cctcgctacc 3720ctgggttcga ccgaagctga ccgatgcttg cgcccgctcg cgaggccggc cacactgata 3780gtttaaactg aaggcgggaa acgacaatct gatcatgagc ggagaattaa gggagtcacg 3840ttatgacccc cgccgatgac gcgggacaag ccgttttacg tttggaactg acagaaccgc 3900aacgattgaa ggagccactc agccgcgggt ttctggagtt taatgagcta agcacatacg 3960tcagaaacca ttattgcgcg ttcaaaagtc gcctaaggtc actatcagct agcaaatatt 4020tcttgtcaaa aatgctccac tgacgttcca taaattcccc tcggtatcca attagagtct 4080catattcact ctcccggcgg atctcgactc tagaggatcg ctcaggaagg ccgctgagat 4140agagccatgg cggccaatgc gggcggcggt ggagcgggag gaggcagcgg cagcggcagc 4200gtggctgcgc cggcggtgtg ccgccccagc ggctcgcggt ggacgccgac gccggagcag 4260atcaggatgc tgaaggagct ctactacggc tgcggcatcc ggtcgcccag ctcggagcag 4320atccagcgca tcaccgccat gctgcggcag cacggcaaga tcgagggcaa gaacgtcttc 4380tactggttcc agaaccacaa ggcccgcgag cgccagaagc gccgcctcac cagcctcgac 4440gtcaacgtgc ccgccgccgg cgcggccgac gccaccacca gccaactcgg cgtcctctcg 4500ctgtcgtcgc cgccgccttc aggcgcggcg cctccctcgc ccaccctcgg cttctacgcc 4560gccggcaatg gcggcggatc ggctgtgctg ctggacacga gttccgactg gggcagcagc 4620ggcgctgcta tggccaccga gacatgcttc ctgcaggact acatgggcgt gacggacacg 4680ggcagctcgt cgcagtggcc acgcttctcg tcgtcggaca cgataatggc ggcggccgcg 4740gcgcgggcgg cgacgacgcg ggcgcccgag acgctccctc tcttcccgac ctgcggcgac 4800gacggcggca gcggtagcag cagctacttg ccgttctggg gtgccgcgtc cacaactgcc 4860ggcgccactt cttccgttgc gatccaacag caacaccagc tgcaggagca gtacagcttt 4920tacagcaaca gcaacagcac ccagctggcc ggcaccggca accaagacgt atcggcaaca 4980gcagcagcag ccgccgccct ggagctgagc ctcagctcat ggtgctcccc ttaccctgct 5040gcagggagta tgtgagagca acgcgagctg ccactgctct tcactgatgt ctctggaatg 5100gaaggaggag gaagtgagca tagcgttggt gcgttgctgt caagggcgaa ttgtaccaca 5160tggttaacct agacttgtcc atcttctgga ttggccaact taattaatgt atgaaataaa 5220aggatgcaca catagtgaca tgctaatcac tataatgtgg gcatcaaagt tgtgtgttat 5280gtgtaattac tagttatctg aataaaagag aaagagatca tccatatttc ttatcctaaa 5340tgaatgtcac gtgtctttat aattctttga tgaaccagat gcatttcatt aaccaaatcc 5400atatacatat aaatattaat catatataat taatatcaat tgggttagca aaacaaatct 5460agtctaggtg tgttttgcgg gtaccattta aattgcgccc gccacggccg tggaggtcgt 5520attccggtca gcttgcatcc ctgcagtgca gcgtgacccg gtcgtgcccc tctctagaga 5580taatgagcat tgcatgtcta agttataaaa aattaccaca tatttttttt gtcacacttg 5640tttgaagtgc agtttatcta tctttataca tatatttaaa ctttactcta cgaataatat 5700aatctatagt actacaataa tatcagtgtt ttagagaatc atataaatga acagttagac 5760atggtctaaa ggacaattga gtattttgac aacaggactc tacagtttta tctttttagt 5820gtgcatgtgt tctccttttt ttttgcaaat agcttcacct atataatact tcatccattt 5880tattagtaca tccatttagg gtttagggtt aatggttttt atagactaat ttttttagta 5940catctatttt attctatttt agcctctaaa ttaagaaaac taaaactcta ttttagtttt 6000tttatttaat aatttagata taaaatagaa taaaataaag tgactaaaaa ttaaacaaat 6060accctttaag aaattaaaaa aactaaggaa acatttttct tgtttcgagt agataatgcc 6120agcctgttaa acgccgtcga cgagtctaac ggacaccaac cagcgaacca gcagcgtcgc 6180gtcgggccaa gcgaagcaga cggcacggca tctctgtcgc tgcctctgga cccctctcga 6240gagttccgct ccaccgttgg acttgctccg ctgtcggcat ccagaaattg cgtggcggag 6300cggcagacgt gagccggcac ggcaggcggc ctcctcctcc tctcacggca ccggcagcta 6360cgggggattc ctttcccacc gctccttcgc tttcccttcc tcgcccgccg taataaatag 6420acaccccctc cacaccctct ttccccaacc tcgtgttgtt cggagcgcac acacacacaa 6480ccagatctcc cccaaatcca cccgtcggca cctccgcttc aaggtacgcc gctcgtcctc 6540cccccccccc ctctctacct tctctagatc ggcgttccgg tccatgcatg gttagggccc 6600ggtagttcta cttctgttca tgtttgtgtt agatccgtgt ttgtgttaga tccgtgctgc 6660tagcgttcgt acacggatgc gacctgtacg tcagacacgt tctgattgct aacttgccag 6720tgtttctctt tggggaatcc tgggatggct ctagccgttc cgcagacggg atcgatttca 6780tgattttttt tgtttcgttg catagggttt ggtttgccct tttcctttat ttcaatatat 6840gccgtgcact tgtttgtcgg gtcatctttt catgcttttt tttgtcttgg ttgtgatgat 6900gtggtctggt tgggcggtcg ttctagatcg gagtagaatt ctgtttcaaa ctacctggtg 6960gatttattaa ttttggatct gtatgtgtgt gccatacata ttcatagtta cgaattgaag 7020atgatggatg gaaatatcga tctaggatag gtatacatgt tgatgcgggt tttactgatg 7080catatacaga gatgcttttt gttcgcttgg ttgtgatgat gtggtgtggt tgggcggtcg 7140ttcattcgtt ctagatcgga gtagaatact gtttcaaact acctggtgta tttattaatt 7200ttggaactgt atgtgtgtgt catacatctt catagttacg agtttaagat ggatggaaat 7260atcgatctag gataggtata catgttgatg tgggttttac tgatgcatat acatgatggc 7320atatgcagca tctattcata tgctctaacc ttgagtacct atctattata ataaacaagt 7380atgttttata attattttga tcttgatata cttggatgat ggcatatgca gcagctatat 7440gtggattttt ttagccctgc cttcatacgc tatttatttg cttggtactg tttcttttgt 7500cgatgctcac cctgttgttt ggtgttactt ctgcaggtcg actctagagg atccatggcc 7560actgtgaaca actggctcgc tttctccctc tccccgcagg agctgccgcc ctcccagacg 7620acggactcca cactcatctc ggccgccacc gccgaccatg tctccggcga tgtctgcttc 7680aacatccccc aagattggag catgagggga tcagagcttt cggcgctcgt cgcggagccg 7740aagctggagg acttcctcgg cggcatctcc ttctccgagc agcatcacaa ggccaactgc 7800aacatgatac ccagcactag cagcacagtt tgctacgcga gctcaggtgc tagcaccggc 7860taccatcacc agctgtacca ccagcccacc agctcagcgc tccacttcgc ggactccgta 7920atggtggctt cctcggccgg tgtccacgac ggcggtgcca tgctcagcgc ggccgccgct 7980aacggtgtcg ctggcgctgc cagtgccaac ggcggcggca tcgggctgtc catgattaag 8040aactggctgc ggagccaacc ggcgcccatg cagccgaggg tggcggcggc tgagggcgcg 8100caggggctct ctttgtccat gaacatggcg gggacgaccc aaggcgctgc tggcatgcca 8160cttctcgctg gagagcgcgc acgggcgccc gagagtgtat cgacgtcagc acagggtgga 8220gccgtcgtcg tcacggcgcc gaaggaggat agcggtggca gcggtgttgc cggcgctcta 8280gtagccgtga gcacggacac gggtggcagc ggcggcgcgt cggctgacaa cacggcaagg 8340aagacggtgg acacgttcgg gcagcgcacg tcgatttacc gtggcgtgac aaggcataga 8400tggactggga gatatgaggc acatctttgg gataacagtt gcagaaggga agggcaaact 8460cgtaagggtc gtcaagtcta tttaggtggc tatgataaag aggagaaagc tgctagggct 8520tatgatcttg ctgctctgaa gtactggggt gccacaacaa caacaaattt tccagtgagt 8580aactacgaaa aggagctcga ggacatgaag cacatgacaa ggcaggagtt tgtagcgtct 8640ctgagaagga agagcagtgg tttctccaga ggtgcatcca tttacagggg agtgactagg 8700catcaccaac atggaagatg gcaagcacgg attggacgag ttgcagggaa caaggatctt 8760tacttgggca ccttcagcac ccaggaggag gcagcggagg cgtacgacat cgcggcgatc 8820aagttccgcg gcctcaacgc cgtcaccaac ttcgacatga gccgctacga cgtgaagagc 8880atcctggaca gcagcgccct ccccatcggc agcgccgcca agcgcctcaa ggaggccgag 8940gccgcagcgt ccgcgcagca ccaccacgcc ggcgtggtga gctacgacgt cggccgcatc 9000gcctcgcagc tcggcgacgg cggagccctg gcggcggcgt acggcgcgca ctaccacggc 9060gccgcctggc cgaccatcgc gttccagccg ggcgccgcca gcacaggcct gtaccacccg 9120tacgcgcagc agccaatgcg cggcggcggg tggtgcaagc aggagcagga ccacgcggtg 9180atcgcggccg cgcacagcct gcaggacctc caccacctga acctgggcgc ggccggcgcg 9240cacgactttt tctcggcagg gcagcaggcc gccgccgctg cgatgcacgg cctgggtagc 9300atcgacagtg cgtcgctcga gcacagcacc ggctccaact ccgtcgtcta caacggcggg 9360gtcggcgaca gcaacggcgc cagcgccgtc ggcggcagtg gcggtggcta catgatgccg 9420atgagcgctg ccggagcaac cactacatcg gcaatggtga gccacgagca ggtgcatgca 9480cgggcctacg acgaagccaa gcaggctgct cagatggggt acgagagcta cctggtgaac 9540gcggagaaca atggtggcgg aaggatgtct gcatggggga ctgtcgtgtc tgcagccgcg 9600gcggcagcag caagcagcaa cgacaacatg gccgccgacg tcgggcatgg cggcgcgcag 9660ctcttcagtg tctggaacga cacttaagcg tacgtgccgg cctggctctc cgaaagggcg 9720tattccagca cactggcggc cgttactaga cccaacctag acttgtccat cttctggatt 9780ggccaactta attaatgtat gaaataaaag gatgcacaca tagtgacatg ctaatcacta 9840taatgtgggc atcaaagttg tgtgttatgt gtaattacta gttatctgaa taaaagagaa 9900agagatcatc catatttctt atcctaaatg aatgtcacgt gtctttataa ttctttgatg 9960aaccagatgc atttcattaa ccaaatccat atacatataa atattaatca tatataatta 10020atatcaattg ggttagcaaa acaaatctag tctaggtgtg ttttgcgaat tagcttggtc 10080acccggtccg ggcctagaag gccagcttcg gccgccccgg gcaactttat tatacaaagt 10140tgatagatcg aataacttcg tatagcatac attatacgaa gttatcctga gctgattccg 10200atgacttcgt aggttcctag ctcaagccgc tcgtgtccaa gcgtcactta cgattagcta 10260atgattacgg catctaggac cgactagcta actaactagt acgtagaatt gtagaattaa 10320ttcattccga ttaatcgtgg cctcttgctc ttcaggatga agagctatgt ttaaacgtgc 10380aagcgctact agacaattca gtacattaaa aacgtccgca atgtgttatt aagttgtcta 10440agcgtcaatt tgtttacacc acaatatatc ctgccac 10477114978DNAZea maysCDS(1)...(978) 114atg gcg gcc aat gcg ggc ggc ggt gga gcg gga gga ggc agc ggc agc 48Met Ala Ala Asn Ala Gly Gly Gly Gly Ala Gly Gly Gly Ser Gly Ser1 5 10 15ggc agc gtg gct gcg ccg gcg gtg tgc cgc ccc agc ggc tcg cgg tgg 96Gly Ser Val Ala Ala Pro Ala Val Cys Arg Pro Ser Gly Ser Arg Trp 20 25 30acg ccg acg ccg gag cag atc agg atg ctg aag gag ctc tac tac ggc 144Thr Pro Thr Pro Glu Gln Ile Arg Met Leu Lys Glu Leu Tyr Tyr Gly 35 40 45tgc ggc atc cgg tcg ccc agc tcg gag cag atc cag cgc atc acc gcc 192Cys Gly Ile Arg Ser Pro Ser Ser Glu Gln Ile Gln Arg Ile Thr Ala 50 55 60atg ctg cgg cag cac ggc aag atc gag ggc aag aac gtc ttc tac tgg 240Met Leu Arg Gln His Gly Lys Ile Glu Gly Lys Asn Val Phe Tyr Trp65 70 75 80ttc cag aac cac aag gcc cgc gag cgc cag aag cgc cgc ctc acc agc 288Phe Gln Asn His Lys Ala Arg Glu Arg Gln Lys Arg Arg Leu Thr Ser 85 90 95ctc gac gtc aac gtg ccc gcc gcc ggc gcg gcc gac gcc acc acc agc 336Leu Asp Val Asn Val Pro Ala Ala Gly Ala Ala Asp Ala Thr Thr Ser 100 105 110caa ctc ggc gtc ctc tcg ctg tcg tcg ccg cct tca ggc gcg gcg cct 384Gln Leu Gly Val Leu Ser Leu Ser Ser Pro Pro Ser Gly Ala Ala Pro 115 120 125ccc tcg ccc acc ctc ggc ttc tac gcc gcc ggc aat ggc ggc gga tcg 432Pro Ser Pro Thr Leu Gly Phe Tyr Ala Ala Gly Asn Gly Gly Gly Ser 130 135 140gct ggg ctg ctg gac acg agt tcc gac tgg ggc agc agc ggc gct gct 480Ala Gly Leu Leu Asp Thr Ser Ser Asp Trp Gly Ser Ser Gly Ala Ala145 150 155 160atg gcc acc gag aca tgc ttc ctg cag gac tac atg ggc gtg acg gac 528Met Ala Thr Glu Thr Cys Phe Leu Gln Asp Tyr Met Gly Val Thr Asp 165 170 175acg ggc agc tcg tcg cag tgg cca tgc ttc tcg tcg tcg gac acg ata 576Thr Gly Ser Ser Ser Gln Trp Pro Cys Phe Ser Ser Ser Asp Thr Ile 180 185 190atg gcg gcg gcg gcg gcc gcg gcg cgg gtg gcg acg acg cgg gcg ccc 624Met Ala Ala Ala Ala Ala Ala Ala Arg Val Ala Thr Thr Arg Ala Pro 195 200 205gag aca ctc cct ctc ttc ccg acc tgc ggc gac gac gac gac gac gac 672Glu Thr Leu Pro Leu Phe Pro Thr Cys Gly Asp Asp Asp Asp Asp Asp 210 215 220agc cag ccc ccg ccg cgg ccg cgg cac gca gtc cca gtc ccg gca ggc 720Ser Gln Pro Pro Pro Arg Pro Arg His Ala Val Pro Val Pro Ala Gly225 230 235 240gag acc atc cgc ggc ggc ggc ggc agc agc agc agc tac ttg ccg ttc 768Glu Thr Ile Arg Gly Gly Gly Gly Ser Ser Ser Ser Tyr Leu Pro Phe 245 250 255tgg ggt gcc ggt gcc gcg tcc aca act gcc ggc gcc act tct tcc gtt 816Trp Gly Ala Gly Ala Ala Ser Thr Thr Ala Gly Ala Thr Ser Ser Val 260 265 270gcg atc cag cag caa cac cag ctg cag gag cag tac agc ttt tac agc 864Ala Ile Gln Gln Gln His Gln Leu Gln Glu Gln Tyr Ser Phe Tyr Ser 275 280 285aac agc acc cag ctg gcc ggc acc ggc agc caa gac gta tcg gct tca 912Asn Ser Thr Gln Leu Ala Gly Thr Gly Ser Gln Asp Val Ser Ala Ser 290 295 300gcg gcc gcc ctg gag ctg agc ctc agc tca tgg tgc tcc cct tac cct 960Ala Ala Ala Leu Glu Leu Ser Leu Ser Ser Trp Cys Ser Pro Tyr Pro305 310 315 320gct gca ggg agc atg tga 978Ala Ala Gly Ser Met 325115325PRTZea mays 115Met Ala Ala Asn Ala Gly Gly Gly Gly Ala Gly Gly Gly Ser Gly Ser1 5 10 15Gly Ser Val Ala Ala Pro Ala Val Cys Arg Pro Ser Gly Ser Arg Trp 20 25 30Thr Pro Thr Pro Glu Gln Ile Arg Met Leu Lys Glu Leu Tyr Tyr Gly 35 40 45Cys Gly Ile Arg Ser Pro Ser Ser Glu Gln Ile Gln Arg Ile Thr Ala 50 55 60Met Leu Arg Gln His Gly Lys Ile Glu Gly Lys Asn Val Phe Tyr Trp65 70 75 80Phe Gln Asn His Lys Ala Arg Glu Arg Gln Lys Arg Arg Leu Thr Ser 85 90 95Leu Asp Val Asn Val Pro Ala Ala Gly Ala Ala Asp Ala Thr Thr Ser 100 105 110Gln Leu Gly Val Leu Ser Leu Ser Ser Pro Pro Ser Gly Ala Ala Pro 115 120 125Pro Ser Pro Thr Leu Gly Phe Tyr Ala Ala Gly Asn Gly Gly Gly Ser 130 135 140Ala Gly Leu Leu Asp Thr Ser Ser Asp Trp Gly Ser Ser Gly Ala Ala145 150 155 160Met Ala Thr Glu Thr Cys Phe Leu Gln Asp Tyr Met Gly Val Thr Asp 165 170 175Thr Gly Ser Ser Ser Gln Trp Pro Cys Phe Ser Ser Ser Asp Thr Ile 180 185 190Met Ala Ala Ala Ala Ala Ala Ala Arg Val Ala Thr Thr Arg Ala Pro 195 200 205Glu Thr Leu Pro Leu Phe Pro Thr Cys Gly Asp Asp Asp Asp Asp Asp 210 215 220Ser Gln Pro Pro Pro Arg Pro Arg His Ala Val Pro Val Pro Ala Gly225 230 235 240Glu Thr Ile Arg Gly Gly Gly Gly Ser Ser Ser Ser Tyr Leu Pro Phe 245 250 255Trp Gly Ala Gly Ala Ala Ser Thr Thr Ala Gly Ala Thr Ser Ser Val 260 265 270Ala Ile Gln Gln Gln His Gln Leu Gln Glu Gln Tyr Ser Phe Tyr Ser 275 280 285Asn Ser Thr Gln Leu Ala Gly Thr Gly Ser Gln Asp Val Ser Ala Ser 290 295 300Ala Ala Ala Leu Glu Leu Ser Leu Ser Ser Trp Cys Ser Pro Tyr Pro305 310 315 320Ala Ala Gly Ser Met 3251163727DNAZea mays

116atggccactg tgaacaactg gctcgctttc tccctctccc cgcaggagct gccgccctcc 60cagacgacgg actccacact catctcggcc gccaccgccg accatgtctc cggcgatgtc 120tgcttcaaca tcccccaaga ttggagcatg aggggatcag agctttcggc gctcgtcgcg 180gagccgaagc tggaggactt cctcggcggc atctccttct ccgagcagca tcacaaggcc 240aactgcaaca tgatacccag cactagcagc acagtttgct acgcgagctc aggtgctagc 300accggctacc atcaccagct gtaccaccag cccaccagct cagcgctcca cttcgcggac 360tccgtaatgg tggcctcctc ggccggtgtc cacgacggcg gtgccatgct cagcgcggcc 420gccgctaacg gtgtcgctgg cgctgccagt gccaacggcg gcggcatcgg gctgtccatg 480atcaagaact ggctgcggag ccaaccggcg cccatgcagc cgagggcggc ggcggctgag 540ggcgcgcagg ggctctcttt gtccatgaac atggcgggga cgacccaagg cgctgctggc 600atgccacttc tcgctggaga gcgcgcacgg gcgcccgaga gtgtatcgac gtcagcacag 660ggtggtgccg tcgtcgtcac ggcgccgaag gaggatagcg gtggcagcgg tgttgccggt 720gctctagtag ccgtgagcac ggacacgggt ggcagcggcg gcgcgtcggc tgacaacacg 780gcaaggaaga cggtggacac gttcgggcag cgcacgtcga tttaccgtgg cgtgacaagg 840taagggggtg gatgaatcaa gtaatcatga aattttgaaa agccattggt aatccaagga 900actgtcatga tagatttgat tgcatctaga catagttccg atcgaatcaa atgagtaggc 960caatgtttag cctttgggga tctcgctgat tattaggagt accattgtat tgggcatggt 1020tgtggtatag tagtagacaa ttaacaaaaa agctaccact tttcaattat tttaggcata 1080gatggactgg gagatatgag gcacatcttt gggataacag ttgcagaagg gaaggacaaa 1140ctcgtaaggg tcgtcaaggt atacaaatat aatgcaacat actgtcatta aatatgcttt 1200ttctgtaagt tttatatttc accaatgatg ttgttattgt taactgacat tgcttcacac 1260tatcaatttt ggattcggcg caatgatttg tgggattgaa atcaaatctt aaatctacag 1320tctatttagg tacgcgattt ctctccaact acttaatgca gttcgtttct ccctataacc 1380atattctttt tcatctcaaa tctcactcga ctcttttttt ttatcttgta ccattgatag 1440gtggctatga taaagaggag aaagctgcta gggcttatga tcttgctgct ctgaagtact 1500ggggtcccac aacaacaaca aatttcccag tatgtatatg tagcatccag ttttacttta 1560ctgaagttca tatctcgtta tgggctataa atatgtatca aatgatgtcc attagctagt 1620gatctggagt gaaggttcta tagtaaagta aacgctgtgt gcggagtgca gtagcgggag 1680gtctctcttc tattttctaa gaaaaatgga cattgctgaa attgtactta aagtcgttta 1740ttttattttt ttgtatttcc aggtgagtaa ctacgaaaag gagctcgagg acatgaagca 1800catgacaagg caggagtttg tagcgtctct gagaaggtcg gtctaacagc attgattaat 1860cagtaccacc tctactgaat aaaatctgct gctatttgtt aaattttgag cgaggtcaac 1920tgcatatttg atcttattag accactgtat atgaatgcag gaagagcagt ggtttctcca 1980gaggtgcatc catttacagg ggagtgacta ggtatgaatt catatagcta agaacttaac 2040atcaacaaaa acacacatac acttgggttg atgtggcaga tgcatgcatg gattgaaaat 2100gtgtgcatgt tgttttactt gaactcgatc tctgtattta taggcatcac caacatggaa 2160gatggcaagc acggattgga cgagttgcag ggaacaagga tctttacttg ggcaccttca 2220gtaagtagca aacaaatatg tttttgcatt gtatatagag tacccttgaa tatataaatt 2280caccacatat acaagcaagt tacagtcaac taacacaatc tcaacgcaac gagaaagcaa 2340gtgttccagc tgatagtaca catttgtaga ccagccgcat atggttgttt tgtatgcatg 2400atgactatta aaaatgtgac catcgcatta agtcatgcaa agttgcattg cagtagtaca 2460ttgcttagtg catgctcctc aagtggcttt tttcaaacct gatcccatgt ctggtgctat 2520tgttgtctcc cattcacccg tgcatcaggt caaaatagta ccatgcctga ataagaaaaa 2580caaaacgagc atgcactggc agcagcagac taataaacaa agttccagca tttactaata 2640aactaattag gctacagcat ccaaaagatt cttccaatta agccacaact gttcatgcat 2700acatgggtat gccacccagg ataccatgca tgcaccgtgc acgacgaaag cgaaacgctc 2760gttctcggaa tattagaact gacgaagccg agtgcaacct tctgtcgtgg atgcaggcac 2820ccaggaggag gcagcggagg cgtacgacat cgcggcgatc aagttccgcg gcctaaacgc 2880cgtcaccaac ttcgacatga gccgctacga cgtgaagagc atcctggaca gcagcgccct 2940ccccatcggc agcgccgcca agcgcctcaa ggaggccgag gccgcagcgt ccgcgcagca 3000ccaccacgcc ggcgtggtga gttacgacgt cggccgcatc gcctcgcagc tcggcgacgg 3060cggagccctg gcggcggcgt acggcgcgca ctaccacggc gccgcctggc cgaccatcgc 3120gttccagccg ggcgccgcca ccacaggcct gtaccacccg tacgcgcagc agccaatgcg 3180cggcggcggg tggtgcaagc aggagcagga ccacgcggtg atcgcggccg cgcacagcct 3240gcaggacctc caccacctga acctgggcgc ggccggcgcg cacgactttt tctcggcagg 3300gcagcaggcc gccgccgctg cgatgcacgg cctgggtagc atcgacagtg cgtcgctcga 3360gcacagcacc ggctccaact ccgtcgtcta caacggcggg gtcggcgaca gcaacggcgc 3420cagcgccgtc ggcggcagtg gcggtggcta catgatgccg atgagcgctg ccggagcaac 3480cactacatcg gcaatggtga gccacgagca ggtgcatgca cgggcctacg acgaagccaa 3540gcaggctgct cagatggggt acgagagcta cctggtgaac gcggagaaca atggtggcgg 3600aaggatgtct gcatggggga ctgtcgtgtc tgcagccgcg gcggcagcag caagcagcaa 3660cgacaacatg gccgccgacg tcggccatgg cggcgcgcag ctcttcagtg tctggaacga 3720cacttaa 37271174325DNAOryza sativa 117atgcatatct atcttatata aatatctacc agtgatactg ttgcttagtg ctccaaacct 60ctcttgacct cttcttcttc ttctcagtta gcttagctta agcttcccct aaccttgagc 120tcaccacaac aatggcgact tgatctaaca gagcttaacc aagtagcaaa tcatacatat 180aaccatagct taattcgcat tgaatcttgt cttgttcagt gtgaatcatc aaccatggcc 240accatgaaca actggctggc cttctccctc tccccgcagg atcagctccc gccgtctcag 300accaactcca ctctcatctc cgccgccgcc accaccacca ccgccggcga ctcctccacc 360ggcgacgtct gcttcaacat cccccaaggt aattaagctc accaatcgat gcatgcattc 420atgagctaga tatagctagt gttggttggg atttgaagag acatgcatgt ttgattgatt 480gatttgatgt gcagattgga gcatgagggg atcggagctc tcggcgctcg tcgccgagcc 540gaagctggag gacttcctcg gcggcatctc cttctcggag cagcagcatc atcacggcgg 600caagggcggc gtgatcccga gcagcgccgc cgcttgctac gcgagctccg gcagcagcgt 660cggctacctg taccctcctc caagctcatc ctcgctccag ttcgccgact ccgtcatggt 720ggccacctcc tcgcccgtcg tcgcccacga cggcgtcagc ggcggcggca tggtgagcgc 780cgccgccgcc gcggcggcca gtggcaacgg cggcattggc ctgtccatga tcaagaactg 840gctccggagc cagccggcgc cgcagccggc gcaggcgctg tctctgtcca tgaacatggc 900ggggacgacg acggcgcagg gcggcggcgc catggcgctc ctcgccggcg caggggagcg 960aggccggacg acgcccgcgt cagagagcct gtccacgtcg gcgcacggag cgacgacggc 1020gacgatggct ggtggtcgca aggagattaa cgaggaaggc agcggcagcg ccggcgccgt 1080ggttgccgtc ggctcggagt caggcggcag cggcgccgtg gtggaggccg gcgcggcggc 1140ggcggcggcg aggaagtccg tcgacacgtt cggccagaga acatcgatct accgcggcgt 1200gacaaggtat ttagggtgca attaattaat catctatcta tattttgctc aaaaaagttc 1260atctactagc tagcttagca caaatcatca tcagtgtaat catatatatt ctttgatgat 1320ttaactgtgt tgcatgaatt cattcctatt tgatgtttgt gatttggatc ccattttcta 1380ggatagctat ataggtgata gattgatcat tagatttgta ggatttatca ttatgtcatt 1440attatgtggg acatgattgt tgtgattaac aaagttgtaa tatcttttgg tttggttata 1500ggcatagatg gacagggagg tatgaggctc atctttggga caacagctgc agaagagagg 1560gccaaactcg caagggtcgt caaggtaggc taactagtgc catttaaatc gattaattgt 1620ttttttatgc tccaatggcg attgatactg atcttgtttc tttttctaat gatcatttcg 1680ggatcgaatg atcttcctct gtttgatcga acttggcttt tgaatctaca gtctatctag 1740gtgagtgaga ttccttgaac ctagatgttc tgtttgcgat gcatgtatat attcggtaga 1800ttgaattatt tgctgatctt tgctttcttg aagtttaatg atcttataaa ttgtaatgct 1860gataggtggt tatgacaaag aggaaaaagc tgctagagct tatgatttgg ctgctctcaa 1920atactggggc ccgacgacga cgacaaattt tccggtgtgt ttataattaa tatacagatt 1980gtgtcacatt gttattttct cactctttta tttgatactg atctagtgta atgatgatta 2040ctaaaactgt acttaaaggc aatggtttct gtatttttca ggtaaataac tatgaaaagg 2100agctggagga gatgaagcac atgacaaggc aggagttcgt agcctctttg agaaggttgg 2160tctctacaat caagatatcc atactatact aattaatttc cttttagatt tatagtaatt 2220tatctatcgc attgaagtta attaattatc tgatgcttac tgatactaac aaatactgtt 2280ccttatatgt gcaggaagag cagtggtttc tccagaggtg catccattta ccgtggagta 2340actaggtaca tatatatatg catcattgta caattaattt ttttaatttt tttagggtaa 2400aaaatgaaga ctgtgatata gatccattaa tttgatcttg tgtacttgta aatataggca 2460tcaccagcat gggagatggc aagcaaggat aggaagagtt gcagggaaca aggacctcta 2520cttgggcacc ttcagtaagt acaaatattc atatttatac tgcaaaacca tataaatcca 2580tattaataag tatgtccttt ctcattgagt atacaaaata tcatattttc ttggcaagta 2640caatttattc attcagggca aaatagtagt agtaagaaag aggggtgact cttcaaagaa 2700cacagagctt acttaagcct gtaactaatt aattaaacta aaaatgtgat ctgcaagtca 2760tgtcaagttg cattacacca ctaatatata tactctgtgc atgcttgcat gctctcctca 2820tgtggctagc taccttttca aaccttccat gtctggtgct actcctgtct ccattcacca 2880ctgcacctgg tcaagatcct cactaattaa gaaacaataa tgcattattt gcagtaaata 2940atttaactag tgttaatcac attctttgca acacaaacta atcaccaatt aagctagcta 3000gctagccaaa atgataatct tgcttgcatg cgctaatggt gtgtgtgatg atggtggtgt 3060cacgcatgca ggcacgcagg aggaggcggc ggaggcgtac gacatcgcgg cgatcaagtt 3120ccgggggctc aacgccgtca ccaacttcga catgagccgc tacgacgtca agagcatcct 3180cgacagcgct gccctccccg tcggcaccgc cgccaagcgc ctcaaggacg ccgaggccgc 3240cgccgcctac gacgtcggcc gcatcgcctc gcacctcggc ggcgacggcg cctacgccgc 3300gcattacggc caccaccacc actcggccgc cgccgcctgg ccgaccatcg cgttccaggc 3360ggcggcggcg ccgccgccgc acgccgccgg gctttaccac ccgtacgcgc agccgctgcg 3420tgggtggtgc aagcaggagc aggaccacgc cgtgatcgcg gcggcgcaca gcctgcagga 3480tctccaccac ctcaacctcg gcgccgccgc cgccgcgcat gacttcttct cgcaggcgat 3540gcagcagcag cacggcctcg gcagcatcga caacgcgtcg ctcgagcaca gcaccggctc 3600caactccgtc gtctacaacg gcgacaatgg cggcggaggc ggcggctaca tcatggcgcc 3660gatgagcgcc gtgtcggcca cggccaccgc ggtggcgagc agccacgatc acggcggcga 3720cggcgggaag caggtgcaga tggggtacga cagctacctc gtcggcgcag acgcctacgg 3780cggcggcggc gccgggagga tgccatcctg ggcgatgacg ccggcgtcgg cgccggccgc 3840cacgagcagc agcgacatga ccggagtctg ccatggcgca cagctcttca gcgtctggaa 3900cgacacataa aaaaaaaact aggttagcca gcttaattag cagggtaaac cactgacaca 3960attaagccat acttaaatta gggttcatga gatgaccatt aagcaggtta ttatcattaa 4020tgatgtttaa tttctcaatt agtacttagc tcaaaaggag gggatttctt ctgaaggatg 4080gtgatggctt gtgaaattga acctggtgtt cttgccatga tttttttttc acaagctgcc 4140attttggggt tcaggttcag aaggatcctg attattatta accagccata tatatataga 4200agggtagaaa tggaggtatc ctgcttgtaa attggggcaa tggtagctag agttgatgca 4260atgaccatgc ttcatgtgat gagaactaat tgtcttcctc tgatcaaatt aagcaggaag 4320attaa 43251182079DNAOryza sativaCDS(1)...(2079) 118atg gcc act atg aac aac tgg ctc gcc ttc tcg ctc tcg ccg cag gac 48Met Ala Thr Met Asn Asn Trp Leu Ala Phe Ser Leu Ser Pro Gln Asp1 5 10 15caa ctc cca ccg tcg cag acc aat agc act ctc atc tcc gct gct gca 96Gln Leu Pro Pro Ser Gln Thr Asn Ser Thr Leu Ile Ser Ala Ala Ala 20 25 30acc acc aca acc gca ggc gat tcg tca acg ggc gac gtc tgc ttc aac 144Thr Thr Thr Thr Ala Gly Asp Ser Ser Thr Gly Asp Val Cys Phe Asn 35 40 45atc cct caa gac tgg tcc atg cgc gga agc gag ctt agc gct ctc gtc 192Ile Pro Gln Asp Trp Ser Met Arg Gly Ser Glu Leu Ser Ala Leu Val 50 55 60gcg gag ccc aag ttg gag gat ttc ttg gga ggc atc tcc ttc tcg gag 240Ala Glu Pro Lys Leu Glu Asp Phe Leu Gly Gly Ile Ser Phe Ser Glu65 70 75 80caa cag cat cat cac ggc gga aag ggc ggt gtt atc cca agc tct gct 288Gln Gln His His His Gly Gly Lys Gly Gly Val Ile Pro Ser Ser Ala 85 90 95gcc gca tgc tat gca agc tcc ggc tcc agc gtg ggc tac ctc tac cct 336Ala Ala Cys Tyr Ala Ser Ser Gly Ser Ser Val Gly Tyr Leu Tyr Pro 100 105 110ccg cct tca tcc tcg tca ctt cag ttt gca gac agc gtg atg gtc gca 384Pro Pro Ser Ser Ser Ser Leu Gln Phe Ala Asp Ser Val Met Val Ala 115 120 125acc tca tct cca gtg gtt gcg cac gat ggc gtg agc ggt ggc ggt atg 432Thr Ser Ser Pro Val Val Ala His Asp Gly Val Ser Gly Gly Gly Met 130 135 140gtc tca gca gca gcg gct gca gca gct tcg ggt aat ggc ggg att ggc 480Val Ser Ala Ala Ala Ala Ala Ala Ala Ser Gly Asn Gly Gly Ile Gly145 150 155 160ctc tcc atg atc aag aac tgg ctc agg agc caa ccg gct ccg caa cct 528Leu Ser Met Ile Lys Asn Trp Leu Arg Ser Gln Pro Ala Pro Gln Pro 165 170 175gcg caa gca ctc agc ctg tcg atg aac atg gct ggt act act acc gct 576Ala Gln Ala Leu Ser Leu Ser Met Asn Met Ala Gly Thr Thr Thr Ala 180 185 190caa ggt gga ggc gca atg gca ctt ctc gca ggc gct ggc gaa aga gga 624Gln Gly Gly Gly Ala Met Ala Leu Leu Ala Gly Ala Gly Glu Arg Gly 195 200 205agg acc aca cca gca tcc gag agc ctc tct act tcc gcg cac gga gcc 672Arg Thr Thr Pro Ala Ser Glu Ser Leu Ser Thr Ser Ala His Gly Ala 210 215 220acc acg gct aca atg gct ggc ggg agg aaa gag atc aac gag gaa gga 720Thr Thr Ala Thr Met Ala Gly Gly Arg Lys Glu Ile Asn Glu Glu Gly225 230 235 240tct gga tcc gct ggt gcc gtg gtt gca gtt ggc tca gaa tca ggt gga 768Ser Gly Ser Ala Gly Ala Val Val Ala Val Gly Ser Glu Ser Gly Gly 245 250 255tcc ggc gct gtt gtt gaa gct ggt gcc gct gcg gca gcg gct cgg aag 816Ser Gly Ala Val Val Glu Ala Gly Ala Ala Ala Ala Ala Ala Arg Lys 260 265 270agc gtt gat act ttc ggc caa aga acg agc atc tac aga ggc gtt act 864Ser Val Asp Thr Phe Gly Gln Arg Thr Ser Ile Tyr Arg Gly Val Thr 275 280 285cgg cac cgc tgg acc ggc agg tac gag gca cac ttg tgg gac aac agc 912Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu Trp Asp Asn Ser 290 295 300tgt cgc cgc gag ggc caa act agg aag gga aga cag gga gga tat gac 960Cys Arg Arg Glu Gly Gln Thr Arg Lys Gly Arg Gln Gly Gly Tyr Asp305 310 315 320aaa gag gag aag gct gcc aga gcg tac gac ctg gcc gcg ttg aag tac 1008Lys Glu Glu Lys Ala Ala Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr 325 330 335tgg ggt cca aca acg acg acc aac ttc ccg gtg aac aac tac gag aag 1056Trp Gly Pro Thr Thr Thr Thr Asn Phe Pro Val Asn Asn Tyr Glu Lys 340 345 350gag ctg gaa gag atg aag cac atg acg cgg cag gag ttc gtc gct tct 1104Glu Leu Glu Glu Met Lys His Met Thr Arg Gln Glu Phe Val Ala Ser 355 360 365ctc agg cgc aag tca tct ggt ttc tcc aga ggt gcg tcg atc tat aga 1152Leu Arg Arg Lys Ser Ser Gly Phe Ser Arg Gly Ala Ser Ile Tyr Arg 370 375 380gga gtt acc cgc cac cac cag cac gga agg tgg cag gca aga atc ggg 1200Gly Val Thr Arg His His Gln His Gly Arg Trp Gln Ala Arg Ile Gly385 390 395 400aga gtc gcc ggt aac aag gac ctg tac ttg gga acc ttc tcg act cag 1248Arg Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly Thr Phe Ser Thr Gln 405 410 415gag gag gca gcg gaa gcg tat gac att gcg gcg atc aag ttc cgc ggt 1296Glu Glu Ala Ala Glu Ala Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly 420 425 430ctc aat gcc gtg acc aac ttc gac atg tca cgc tat gat gtc aag tcg 1344Leu Asn Ala Val Thr Asn Phe Asp Met Ser Arg Tyr Asp Val Lys Ser 435 440 445att ctg gat agc gct gcg ttg cct gtg gga acc gct gcc aaa cgc ctc 1392Ile Leu Asp Ser Ala Ala Leu Pro Val Gly Thr Ala Ala Lys Arg Leu 450 455 460aag gac gcg gaa gca gct gcc gcg tac gat gtt ggc agg att gcc tca 1440Lys Asp Ala Glu Ala Ala Ala Ala Tyr Asp Val Gly Arg Ile Ala Ser465 470 475 480cat ctc ggt gga gat gga gct tac gct gcc cac tac ggg cat cat cac 1488His Leu Gly Gly Asp Gly Ala Tyr Ala Ala His Tyr Gly His His His 485 490 495cac tct gca gcc gca gct tgg cct aca ata gca ttc caa gcg gca gcg 1536His Ser Ala Ala Ala Ala Trp Pro Thr Ile Ala Phe Gln Ala Ala Ala 500 505 510gct cct cct cca cac gct gct ggt ctt tac cat ccg tac gcg caa cct 1584Ala Pro Pro Pro His Ala Ala Gly Leu Tyr His Pro Tyr Ala Gln Pro 515 520 525ctc cgc ggt tgg tgt aag cag gaa caa gat cat gcg gtg att gcg gct 1632Leu Arg Gly Trp Cys Lys Gln Glu Gln Asp His Ala Val Ile Ala Ala 530 535 540gca cac agc ttg caa gat ctg cat cac ctc aat ctg gga gcc gca gca 1680Ala His Ser Leu Gln Asp Leu His His Leu Asn Leu Gly Ala Ala Ala545 550 555 560gct gcc cat gac ttc ttc tca caa gcc atg cag cag cag cat ggc ctg 1728Ala Ala His Asp Phe Phe Ser Gln Ala Met Gln Gln Gln His Gly Leu 565 570 575ggc agc ata gac aat gcg tct ctg gag cac tcc acc gga tcg aac tcg 1776Gly Ser Ile Asp Asn Ala Ser Leu Glu His Ser Thr Gly Ser Asn Ser 580 585 590gtg gtg tac aat gga gac aac ggc gga gga ggt gga ggt tac atc atg 1824Val Val Tyr Asn Gly Asp Asn Gly Gly Gly Gly Gly Gly Tyr Ile Met 595 600 605gca cct atg tca gcg gtc tct gct acc gct acg gcg gtg gcc tca tcc 1872Ala Pro Met Ser Ala Val Ser Ala Thr Ala Thr Ala Val Ala Ser Ser 610 615 620cac gac cac ggt gga gac ggc ggc aag cag gtc caa atg ggc tac gac 1920His Asp His Gly Gly Asp Gly Gly Lys Gln Val Gln Met Gly Tyr Asp625 630 635 640tcc tac ctt gtg gga gct gac gct tac ggc gga gga gga gct ggt cgc 1968Ser Tyr Leu Val Gly Ala Asp Ala Tyr Gly Gly Gly Gly Ala Gly Arg 645 650 655atg cct agc tgg gcc atg acg cct gct tct gct cct gcg gct acg agc 2016Met Pro Ser Trp Ala Met Thr Pro Ala Ser Ala Pro Ala Ala Thr Ser 660 665 670tcg tcg gat atg aca gga gtg tgt cat ggc gcc caa ctg ttc tcg gtg 2064Ser Ser Asp Met Thr Gly Val Cys His Gly Ala Gln Leu Phe Ser Val 675 680 685tgg aat gat aca tag 2079Trp Asn Asp Thr 690119692PRTOryza sativa 119Met Ala Thr Met Asn Asn Trp Leu

Ala Phe Ser Leu Ser Pro Gln Asp1 5 10 15Gln Leu Pro Pro Ser Gln Thr Asn Ser Thr Leu Ile Ser Ala Ala Ala 20 25 30Thr Thr Thr Thr Ala Gly Asp Ser Ser Thr Gly Asp Val Cys Phe Asn 35 40 45Ile Pro Gln Asp Trp Ser Met Arg Gly Ser Glu Leu Ser Ala Leu Val 50 55 60Ala Glu Pro Lys Leu Glu Asp Phe Leu Gly Gly Ile Ser Phe Ser Glu65 70 75 80Gln Gln His His His Gly Gly Lys Gly Gly Val Ile Pro Ser Ser Ala 85 90 95Ala Ala Cys Tyr Ala Ser Ser Gly Ser Ser Val Gly Tyr Leu Tyr Pro 100 105 110Pro Pro Ser Ser Ser Ser Leu Gln Phe Ala Asp Ser Val Met Val Ala 115 120 125Thr Ser Ser Pro Val Val Ala His Asp Gly Val Ser Gly Gly Gly Met 130 135 140Val Ser Ala Ala Ala Ala Ala Ala Ala Ser Gly Asn Gly Gly Ile Gly145 150 155 160Leu Ser Met Ile Lys Asn Trp Leu Arg Ser Gln Pro Ala Pro Gln Pro 165 170 175Ala Gln Ala Leu Ser Leu Ser Met Asn Met Ala Gly Thr Thr Thr Ala 180 185 190Gln Gly Gly Gly Ala Met Ala Leu Leu Ala Gly Ala Gly Glu Arg Gly 195 200 205Arg Thr Thr Pro Ala Ser Glu Ser Leu Ser Thr Ser Ala His Gly Ala 210 215 220Thr Thr Ala Thr Met Ala Gly Gly Arg Lys Glu Ile Asn Glu Glu Gly225 230 235 240Ser Gly Ser Ala Gly Ala Val Val Ala Val Gly Ser Glu Ser Gly Gly 245 250 255Ser Gly Ala Val Val Glu Ala Gly Ala Ala Ala Ala Ala Ala Arg Lys 260 265 270Ser Val Asp Thr Phe Gly Gln Arg Thr Ser Ile Tyr Arg Gly Val Thr 275 280 285Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu Trp Asp Asn Ser 290 295 300Cys Arg Arg Glu Gly Gln Thr Arg Lys Gly Arg Gln Gly Gly Tyr Asp305 310 315 320Lys Glu Glu Lys Ala Ala Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr 325 330 335Trp Gly Pro Thr Thr Thr Thr Asn Phe Pro Val Asn Asn Tyr Glu Lys 340 345 350Glu Leu Glu Glu Met Lys His Met Thr Arg Gln Glu Phe Val Ala Ser 355 360 365Leu Arg Arg Lys Ser Ser Gly Phe Ser Arg Gly Ala Ser Ile Tyr Arg 370 375 380Gly Val Thr Arg His His Gln His Gly Arg Trp Gln Ala Arg Ile Gly385 390 395 400Arg Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly Thr Phe Ser Thr Gln 405 410 415Glu Glu Ala Ala Glu Ala Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly 420 425 430Leu Asn Ala Val Thr Asn Phe Asp Met Ser Arg Tyr Asp Val Lys Ser 435 440 445Ile Leu Asp Ser Ala Ala Leu Pro Val Gly Thr Ala Ala Lys Arg Leu 450 455 460Lys Asp Ala Glu Ala Ala Ala Ala Tyr Asp Val Gly Arg Ile Ala Ser465 470 475 480His Leu Gly Gly Asp Gly Ala Tyr Ala Ala His Tyr Gly His His His 485 490 495His Ser Ala Ala Ala Ala Trp Pro Thr Ile Ala Phe Gln Ala Ala Ala 500 505 510Ala Pro Pro Pro His Ala Ala Gly Leu Tyr His Pro Tyr Ala Gln Pro 515 520 525Leu Arg Gly Trp Cys Lys Gln Glu Gln Asp His Ala Val Ile Ala Ala 530 535 540Ala His Ser Leu Gln Asp Leu His His Leu Asn Leu Gly Ala Ala Ala545 550 555 560Ala Ala His Asp Phe Phe Ser Gln Ala Met Gln Gln Gln His Gly Leu 565 570 575Gly Ser Ile Asp Asn Ala Ser Leu Glu His Ser Thr Gly Ser Asn Ser 580 585 590Val Val Tyr Asn Gly Asp Asn Gly Gly Gly Gly Gly Gly Tyr Ile Met 595 600 605Ala Pro Met Ser Ala Val Ser Ala Thr Ala Thr Ala Val Ala Ser Ser 610 615 620His Asp His Gly Gly Asp Gly Gly Lys Gln Val Gln Met Gly Tyr Asp625 630 635 640Ser Tyr Leu Val Gly Ala Asp Ala Tyr Gly Gly Gly Gly Ala Gly Arg 645 650 655Met Pro Ser Trp Ala Met Thr Pro Ala Ser Ala Pro Ala Ala Thr Ser 660 665 670Ser Ser Asp Met Thr Gly Val Cys His Gly Ala Gln Leu Phe Ser Val 675 680 685Trp Asn Asp Thr 6901202088DNAOryza sativaCDS(1)...(2088) 120atg gcc act atg aac aac tgg ctc gcc ttc tcg ctc tcg ccg cag gac 48Met Ala Thr Met Asn Asn Trp Leu Ala Phe Ser Leu Ser Pro Gln Asp1 5 10 15caa ctc cca ccg tcg cag acc aat agc act ctc atc tcc gct gct gca 96Gln Leu Pro Pro Ser Gln Thr Asn Ser Thr Leu Ile Ser Ala Ala Ala 20 25 30acc acc aca acc gca ggc gat tcg tca acg ggc gac gtc tgc ttc aac 144Thr Thr Thr Thr Ala Gly Asp Ser Ser Thr Gly Asp Val Cys Phe Asn 35 40 45atc cct caa gac tgg tcc atg cgc gga agc gag ctt agc gct ctc gtc 192Ile Pro Gln Asp Trp Ser Met Arg Gly Ser Glu Leu Ser Ala Leu Val 50 55 60gcg gag ccc aag ttg gag gat ttc ttg gga ggc atc tcc ttc tcg gag 240Ala Glu Pro Lys Leu Glu Asp Phe Leu Gly Gly Ile Ser Phe Ser Glu65 70 75 80caa cag cat cat cac ggc gga aag ggc ggt gtt atc cca agc tct gct 288Gln Gln His His His Gly Gly Lys Gly Gly Val Ile Pro Ser Ser Ala 85 90 95gcc gca tgc tat gca agc tcc ggc tcc agc gtg ggc tac ctc tac cct 336Ala Ala Cys Tyr Ala Ser Ser Gly Ser Ser Val Gly Tyr Leu Tyr Pro 100 105 110ccg cct tca tcc tcg tca ctt cag ttt gca gac agc gtg atg gtc gca 384Pro Pro Ser Ser Ser Ser Leu Gln Phe Ala Asp Ser Val Met Val Ala 115 120 125acc tca tct cca gtg gtt gcg cac gat ggc gtg agc ggt ggc ggt atg 432Thr Ser Ser Pro Val Val Ala His Asp Gly Val Ser Gly Gly Gly Met 130 135 140gtc tca gca gca gcg gct gca gca gct tcg ggt aat ggc ggg att ggc 480Val Ser Ala Ala Ala Ala Ala Ala Ala Ser Gly Asn Gly Gly Ile Gly145 150 155 160ctc tcc atg atc aag aac tgg ctc agg agc caa ccg gct ccg caa cct 528Leu Ser Met Ile Lys Asn Trp Leu Arg Ser Gln Pro Ala Pro Gln Pro 165 170 175gcg caa gca ctc agc ctg tcg atg aac atg gct ggt act act acc gct 576Ala Gln Ala Leu Ser Leu Ser Met Asn Met Ala Gly Thr Thr Thr Ala 180 185 190caa ggt gga ggc gca atg gca ctt ctc gca ggc gct ggc gaa aga gga 624Gln Gly Gly Gly Ala Met Ala Leu Leu Ala Gly Ala Gly Glu Arg Gly 195 200 205agg acc aca cca gca tcc gag agc ctc tct act tcc gcg cac gga gcc 672Arg Thr Thr Pro Ala Ser Glu Ser Leu Ser Thr Ser Ala His Gly Ala 210 215 220acc acg gct aca atg gct ggc ggg agg aaa gag atc aac gag gaa gga 720Thr Thr Ala Thr Met Ala Gly Gly Arg Lys Glu Ile Asn Glu Glu Gly225 230 235 240tct gga tcc gct ggt gcc gtg gtt gca gtt ggc tca gaa tca ggt gga 768Ser Gly Ser Ala Gly Ala Val Val Ala Val Gly Ser Glu Ser Gly Gly 245 250 255tcc ggc gct gtt gtt gaa gct ggt gcc gct gcg gca gcg gct cgg aag 816Ser Gly Ala Val Val Glu Ala Gly Ala Ala Ala Ala Ala Ala Arg Lys 260 265 270agc gtt gat act ttc ggc caa aga acg agc atc tac aga ggc gtt act 864Ser Val Asp Thr Phe Gly Gln Arg Thr Ser Ile Tyr Arg Gly Val Thr 275 280 285cgg cac cgc tgg acc ggc agg tac gag gca cac ttg tgg gac aac agc 912Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu Trp Asp Asn Ser 290 295 300tgt cgc cgc gag ggc caa act agg aag gga aga cag gtc tat cta gga 960Cys Arg Arg Glu Gly Gln Thr Arg Lys Gly Arg Gln Val Tyr Leu Gly305 310 315 320gga tat gac aaa gag gag aag gct gcc aga gcg tac gac ctg gcc gcg 1008Gly Tyr Asp Lys Glu Glu Lys Ala Ala Arg Ala Tyr Asp Leu Ala Ala 325 330 335ttg aag tac tgg ggt cca aca acg acg acc aac ttc ccg gtg aac aac 1056Leu Lys Tyr Trp Gly Pro Thr Thr Thr Thr Asn Phe Pro Val Asn Asn 340 345 350tac gag aag gag ctg gaa gag atg aag cac atg acg cgg cag gag ttc 1104Tyr Glu Lys Glu Leu Glu Glu Met Lys His Met Thr Arg Gln Glu Phe 355 360 365gtc gct tct ctc agg cgc aag tca tct ggt ttc tcc aga ggt gcg tcg 1152Val Ala Ser Leu Arg Arg Lys Ser Ser Gly Phe Ser Arg Gly Ala Ser 370 375 380atc tat aga gga gtt acc cgc cac cac cag cac gga agg tgg cag gca 1200Ile Tyr Arg Gly Val Thr Arg His His Gln His Gly Arg Trp Gln Ala385 390 395 400aga atc ggg aga gtc gcc ggt aac aag gac ctg tac ttg gga acc ttc 1248Arg Ile Gly Arg Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly Thr Phe 405 410 415tcg act cag gag gag gca gcg gaa gcg tat gac att gcg gcg atc aag 1296Ser Thr Gln Glu Glu Ala Ala Glu Ala Tyr Asp Ile Ala Ala Ile Lys 420 425 430ttc cgc ggt ctc aat gcc gtg acc aac ttc gac atg tca cgc tat gat 1344Phe Arg Gly Leu Asn Ala Val Thr Asn Phe Asp Met Ser Arg Tyr Asp 435 440 445gtc aag tcg att ctg gat agc gct gcg ttg cct gtg gga acc gct gcc 1392Val Lys Ser Ile Leu Asp Ser Ala Ala Leu Pro Val Gly Thr Ala Ala 450 455 460aaa cgc ctc aag gac gcg gaa gca gct gcc gcg tac gat gtt ggc agg 1440Lys Arg Leu Lys Asp Ala Glu Ala Ala Ala Ala Tyr Asp Val Gly Arg465 470 475 480att gcc tca cat ctc ggt gga gat gga gct tac gct gcc cac tac ggg 1488Ile Ala Ser His Leu Gly Gly Asp Gly Ala Tyr Ala Ala His Tyr Gly 485 490 495cat cat cac cac tct gca gcc gca gct tgg cct aca ata gca ttc caa 1536His His His His Ser Ala Ala Ala Ala Trp Pro Thr Ile Ala Phe Gln 500 505 510gcg gca gcg gct cct cct cca cac gct gct ggt ctt tac cat ccg tac 1584Ala Ala Ala Ala Pro Pro Pro His Ala Ala Gly Leu Tyr His Pro Tyr 515 520 525gcg caa cct ctc cgc ggt tgg tgt aag cag gaa caa gat cat gcg gtg 1632Ala Gln Pro Leu Arg Gly Trp Cys Lys Gln Glu Gln Asp His Ala Val 530 535 540att gcg gct gca cac agc ttg caa gat ctg cat cac ctc aat ctg gga 1680Ile Ala Ala Ala His Ser Leu Gln Asp Leu His His Leu Asn Leu Gly545 550 555 560gcc gca gca gct gcc cat gac ttc ttc tca caa gcc atg cag cag cag 1728Ala Ala Ala Ala Ala His Asp Phe Phe Ser Gln Ala Met Gln Gln Gln 565 570 575cat ggc ctg ggc agc ata gac aat gcg tct ctg gag cac tcc acc gga 1776His Gly Leu Gly Ser Ile Asp Asn Ala Ser Leu Glu His Ser Thr Gly 580 585 590tcg aac tcg gtg gtg tac aat gga gac aac ggc gga gga ggt gga ggt 1824Ser Asn Ser Val Val Tyr Asn Gly Asp Asn Gly Gly Gly Gly Gly Gly 595 600 605tac atc atg gca cct atg tca gcg gtc tct gct acc gct acg gcg gtg 1872Tyr Ile Met Ala Pro Met Ser Ala Val Ser Ala Thr Ala Thr Ala Val 610 615 620gcc tca tcc cac gac cac ggt gga gac ggc ggc aag cag gtc caa atg 1920Ala Ser Ser His Asp His Gly Gly Asp Gly Gly Lys Gln Val Gln Met625 630 635 640ggc tac gac tcc tac ctt gtg gga gct gac gct tac ggc gga gga gga 1968Gly Tyr Asp Ser Tyr Leu Val Gly Ala Asp Ala Tyr Gly Gly Gly Gly 645 650 655gct ggt cgc atg cct agc tgg gcc atg acg cct gct tct gct cct gcg 2016Ala Gly Arg Met Pro Ser Trp Ala Met Thr Pro Ala Ser Ala Pro Ala 660 665 670gct acg agc tcg tcg gat atg aca gga gtg tgt cat ggc gcc caa ctg 2064Ala Thr Ser Ser Ser Asp Met Thr Gly Val Cys His Gly Ala Gln Leu 675 680 685ttc tcg gtg tgg aat gat aca tag 2088Phe Ser Val Trp Asn Asp Thr 690 6951212133DNAZea maysCDS(1)...(2133) 121atg gcc act gtg aac aac tgg ctc gct ttc tcc ctc tcc ccg cag gag 48Met Ala Thr Val Asn Asn Trp Leu Ala Phe Ser Leu Ser Pro Gln Glu1 5 10 15ctg ccg ccc tcc cag acg acg gac tcc aca ctc atc tcg gcc gcc acc 96Leu Pro Pro Ser Gln Thr Thr Asp Ser Thr Leu Ile Ser Ala Ala Thr 20 25 30gcc gac cat gtc tcc ggc gat gtc tgc ttc aac atc ccc caa gat tgg 144Ala Asp His Val Ser Gly Asp Val Cys Phe Asn Ile Pro Gln Asp Trp 35 40 45agc atg agg gga tca gag ctt tcg gcg ctc gtc gcg gag ccg aag ctg 192Ser Met Arg Gly Ser Glu Leu Ser Ala Leu Val Ala Glu Pro Lys Leu 50 55 60gag gac ttc ctc ggc ggc atc tcc ttc tcc gag cag cat cac aag gcc 240Glu Asp Phe Leu Gly Gly Ile Ser Phe Ser Glu Gln His His Lys Ala65 70 75 80aac tgc aac atg ata ccc agc act agc agc aca gtt tgc tac gcg agc 288Asn Cys Asn Met Ile Pro Ser Thr Ser Ser Thr Val Cys Tyr Ala Ser 85 90 95tca ggt gct agc acc ggc tac cat cac cag ctg tac cac cag ccc acc 336Ser Gly Ala Ser Thr Gly Tyr His His Gln Leu Tyr His Gln Pro Thr 100 105 110agc tca gcg ctc cac ttc gcg gac tcc gta atg gtg gcc tcc tcg gcc 384Ser Ser Ala Leu His Phe Ala Asp Ser Val Met Val Ala Ser Ser Ala 115 120 125ggt gtc cac gac ggc ggt gcc atg ctc agc gcg gcc gcc gct aac ggt 432Gly Val His Asp Gly Gly Ala Met Leu Ser Ala Ala Ala Ala Asn Gly 130 135 140gtc gct ggc gct gcc agt gcc aac ggc ggc ggc atc ggg ctg tcc atg 480Val Ala Gly Ala Ala Ser Ala Asn Gly Gly Gly Ile Gly Leu Ser Met145 150 155 160att aag aac tgg ctg cgg agc caa ccg gcg ccc atg cag ccg agg gtg 528Ile Lys Asn Trp Leu Arg Ser Gln Pro Ala Pro Met Gln Pro Arg Val 165 170 175gcg gcg gct gag ggc gcg cag ggg ctc tct ttg tcc atg aac atg gcg 576Ala Ala Ala Glu Gly Ala Gln Gly Leu Ser Leu Ser Met Asn Met Ala 180 185 190ggg acg acc caa ggc gct gct ggc atg cca ctt ctc gct gga gag cgc 624Gly Thr Thr Gln Gly Ala Ala Gly Met Pro Leu Leu Ala Gly Glu Arg 195 200 205gca cgg gcg ccc gag agt gta tcg acg tca gca cag ggt gga gcc gtc 672Ala Arg Ala Pro Glu Ser Val Ser Thr Ser Ala Gln Gly Gly Ala Val 210 215 220gtc gtc acg gcg ccg aag gag gat agc ggt ggc agc ggt gtt gcc ggc 720Val Val Thr Ala Pro Lys Glu Asp Ser Gly Gly Ser Gly Val Ala Gly225 230 235 240gct cta gta gcc gtg agc acg gac acg ggt ggc agc ggc ggc gcg tcg 768Ala Leu Val Ala Val Ser Thr Asp Thr Gly Gly Ser Gly Gly Ala Ser 245 250 255gct gac aac acg gca agg aag acg gtg gac acg ttc ggg cag cgc acg 816Ala Asp Asn Thr Ala Arg Lys Thr Val Asp Thr Phe Gly Gln Arg Thr 260 265 270tcg att tac cgt ggc gtg aca agg cat aga tgg act ggg aga tat gag 864Ser Ile Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu 275 280 285gca cat ctt tgg gat aac agt tgc aga agg gaa ggg caa act cgt aag 912Ala His Leu Trp Asp Asn Ser Cys Arg Arg Glu Gly Gln Thr Arg Lys 290 295 300ggt cgt caa gtc tat tta ggt ggc tat gat aaa gag gag aaa gct gct 960Gly Arg Gln Val Tyr Leu Gly Gly Tyr Asp Lys Glu Glu Lys Ala Ala305 310 315 320agg gct tat gat ctt gct gct ctg aag tac tgg ggt gcc aca aca aca 1008Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr Trp Gly Ala Thr Thr Thr 325 330 335aca aat ttt cca gtg agt aac tac gaa aag gag ctc gag gac atg aag 1056Thr Asn Phe Pro Val Ser Asn Tyr Glu Lys Glu Leu Glu Asp Met Lys 340 345 350cac atg aca agg cag gag ttt gta gcg tct ctg aga agg aag agc agt 1104His Met Thr Arg Gln Glu Phe Val Ala Ser Leu Arg Arg Lys Ser Ser 355 360 365ggt ttc tcc aga ggt gca tcc att tac agg gga gtg act agg cat cac 1152Gly Phe Ser Arg Gly Ala Ser Ile Tyr Arg Gly Val Thr Arg His His 370 375 380caa cat gga aga tgg caa gca cgg att gga cga gtt gca ggg aac aag 1200Gln His Gly Arg Trp Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys385 390 395 400gat ctt tac ttg ggc acc ttc agc acc cag gag gag gca gcg gag gcg 1248Asp Leu Tyr Leu

Gly Thr Phe Ser Thr Gln Glu Glu Ala Ala Glu Ala 405 410 415tac gac atc gcg gcg atc aag ttc cgc ggc ctc aac gcc gtc acc aac 1296Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly Leu Asn Ala Val Thr Asn 420 425 430ttc gac atg agc cgc tac gac gtg aag agc atc ctg gac agc agc gcc 1344Phe Asp Met Ser Arg Tyr Asp Val Lys Ser Ile Leu Asp Ser Ser Ala 435 440 445ctc ccc atc ggc agc gcc gcc aag cgc ctc aag gag gcc gag gcc gca 1392Leu Pro Ile Gly Ser Ala Ala Lys Arg Leu Lys Glu Ala Glu Ala Ala 450 455 460gcg tcc gcg cag cac cac cac gcc ggc gtg gtg agc tac gac gtc ggc 1440Ala Ser Ala Gln His His His Ala Gly Val Val Ser Tyr Asp Val Gly465 470 475 480cgc atc gcc tcg cag ctc ggc gac ggc gga gcc ctg gcg gcg gcg tac 1488Arg Ile Ala Ser Gln Leu Gly Asp Gly Gly Ala Leu Ala Ala Ala Tyr 485 490 495ggc gcg cac tac cac ggc gcc gcc tgg ccg acc atc gcg ttc cag ccg 1536Gly Ala His Tyr His Gly Ala Ala Trp Pro Thr Ile Ala Phe Gln Pro 500 505 510ggc gcc gcc agc aca ggc ctg tac cac ccg tac gcg cag cag cca atg 1584Gly Ala Ala Ser Thr Gly Leu Tyr His Pro Tyr Ala Gln Gln Pro Met 515 520 525cgc ggc ggc ggg tgg tgc aag cag gag cag gac cac gcg gtg atc gcg 1632Arg Gly Gly Gly Trp Cys Lys Gln Glu Gln Asp His Ala Val Ile Ala 530 535 540gcc gcg cac agc ctg cag gac ctc cac cac ctg aac ctg ggc gcg gcc 1680Ala Ala His Ser Leu Gln Asp Leu His His Leu Asn Leu Gly Ala Ala545 550 555 560ggc gcg cac gac ttt ttc tcg gca ggg cag cag gcc gcc gcc gct gcg 1728Gly Ala His Asp Phe Phe Ser Ala Gly Gln Gln Ala Ala Ala Ala Ala 565 570 575atg cac ggc ctg ggt agc atc gac agt gcg tcg ctc gag cac agc acc 1776Met His Gly Leu Gly Ser Ile Asp Ser Ala Ser Leu Glu His Ser Thr 580 585 590ggc tcc aac tcc gtc gtc tac aac ggc ggg gtc ggc gac agc aac ggc 1824Gly Ser Asn Ser Val Val Tyr Asn Gly Gly Val Gly Asp Ser Asn Gly 595 600 605gcc agc gcc gtc ggc ggc agt ggc ggt ggc tac atg atg ccg atg agc 1872Ala Ser Ala Val Gly Gly Ser Gly Gly Gly Tyr Met Met Pro Met Ser 610 615 620gct gcc gga gca acc act aca tcg gca atg gtg agc cac gag cag gtg 1920Ala Ala Gly Ala Thr Thr Thr Ser Ala Met Val Ser His Glu Gln Val625 630 635 640cat gca cgg gcc tac gac gaa gcc aag cag gct gct cag atg ggg tac 1968His Ala Arg Ala Tyr Asp Glu Ala Lys Gln Ala Ala Gln Met Gly Tyr 645 650 655gag agc tac ctg gtg aac gcg gag aac aat ggt ggc gga agg atg tct 2016Glu Ser Tyr Leu Val Asn Ala Glu Asn Asn Gly Gly Gly Arg Met Ser 660 665 670gca tgg ggg act gtc gtg tct gca gcc gcg gcg gca gca gca agc agc 2064Ala Trp Gly Thr Val Val Ser Ala Ala Ala Ala Ala Ala Ala Ser Ser 675 680 685aac gac aac atg gcc gcc gac gtc ggc cat ggc ggc gcg cag ctc ttc 2112Asn Asp Asn Met Ala Ala Asp Val Gly His Gly Gly Ala Gln Leu Phe 690 695 700agt gtc tgg aac gac act taa 2133Ser Val Trp Asn Asp Thr705 710122710PRTZea mays 122Met Ala Thr Val Asn Asn Trp Leu Ala Phe Ser Leu Ser Pro Gln Glu1 5 10 15Leu Pro Pro Ser Gln Thr Thr Asp Ser Thr Leu Ile Ser Ala Ala Thr 20 25 30Ala Asp His Val Ser Gly Asp Val Cys Phe Asn Ile Pro Gln Asp Trp 35 40 45Ser Met Arg Gly Ser Glu Leu Ser Ala Leu Val Ala Glu Pro Lys Leu 50 55 60Glu Asp Phe Leu Gly Gly Ile Ser Phe Ser Glu Gln His His Lys Ala65 70 75 80Asn Cys Asn Met Ile Pro Ser Thr Ser Ser Thr Val Cys Tyr Ala Ser 85 90 95Ser Gly Ala Ser Thr Gly Tyr His His Gln Leu Tyr His Gln Pro Thr 100 105 110Ser Ser Ala Leu His Phe Ala Asp Ser Val Met Val Ala Ser Ser Ala 115 120 125Gly Val His Asp Gly Gly Ala Met Leu Ser Ala Ala Ala Ala Asn Gly 130 135 140Val Ala Gly Ala Ala Ser Ala Asn Gly Gly Gly Ile Gly Leu Ser Met145 150 155 160Ile Lys Asn Trp Leu Arg Ser Gln Pro Ala Pro Met Gln Pro Arg Val 165 170 175Ala Ala Ala Glu Gly Ala Gln Gly Leu Ser Leu Ser Met Asn Met Ala 180 185 190Gly Thr Thr Gln Gly Ala Ala Gly Met Pro Leu Leu Ala Gly Glu Arg 195 200 205Ala Arg Ala Pro Glu Ser Val Ser Thr Ser Ala Gln Gly Gly Ala Val 210 215 220Val Val Thr Ala Pro Lys Glu Asp Ser Gly Gly Ser Gly Val Ala Gly225 230 235 240Ala Leu Val Ala Val Ser Thr Asp Thr Gly Gly Ser Gly Gly Ala Ser 245 250 255Ala Asp Asn Thr Ala Arg Lys Thr Val Asp Thr Phe Gly Gln Arg Thr 260 265 270Ser Ile Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu 275 280 285Ala His Leu Trp Asp Asn Ser Cys Arg Arg Glu Gly Gln Thr Arg Lys 290 295 300Gly Arg Gln Val Tyr Leu Gly Gly Tyr Asp Lys Glu Glu Lys Ala Ala305 310 315 320Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr Trp Gly Ala Thr Thr Thr 325 330 335Thr Asn Phe Pro Val Ser Asn Tyr Glu Lys Glu Leu Glu Asp Met Lys 340 345 350His Met Thr Arg Gln Glu Phe Val Ala Ser Leu Arg Arg Lys Ser Ser 355 360 365Gly Phe Ser Arg Gly Ala Ser Ile Tyr Arg Gly Val Thr Arg His His 370 375 380Gln His Gly Arg Trp Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys385 390 395 400Asp Leu Tyr Leu Gly Thr Phe Ser Thr Gln Glu Glu Ala Ala Glu Ala 405 410 415Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly Leu Asn Ala Val Thr Asn 420 425 430Phe Asp Met Ser Arg Tyr Asp Val Lys Ser Ile Leu Asp Ser Ser Ala 435 440 445Leu Pro Ile Gly Ser Ala Ala Lys Arg Leu Lys Glu Ala Glu Ala Ala 450 455 460Ala Ser Ala Gln His His His Ala Gly Val Val Ser Tyr Asp Val Gly465 470 475 480Arg Ile Ala Ser Gln Leu Gly Asp Gly Gly Ala Leu Ala Ala Ala Tyr 485 490 495Gly Ala His Tyr His Gly Ala Ala Trp Pro Thr Ile Ala Phe Gln Pro 500 505 510Gly Ala Ala Ser Thr Gly Leu Tyr His Pro Tyr Ala Gln Gln Pro Met 515 520 525Arg Gly Gly Gly Trp Cys Lys Gln Glu Gln Asp His Ala Val Ile Ala 530 535 540Ala Ala His Ser Leu Gln Asp Leu His His Leu Asn Leu Gly Ala Ala545 550 555 560Gly Ala His Asp Phe Phe Ser Ala Gly Gln Gln Ala Ala Ala Ala Ala 565 570 575Met His Gly Leu Gly Ser Ile Asp Ser Ala Ser Leu Glu His Ser Thr 580 585 590Gly Ser Asn Ser Val Val Tyr Asn Gly Gly Val Gly Asp Ser Asn Gly 595 600 605Ala Ser Ala Val Gly Gly Ser Gly Gly Gly Tyr Met Met Pro Met Ser 610 615 620Ala Ala Gly Ala Thr Thr Thr Ser Ala Met Val Ser His Glu Gln Val625 630 635 640His Ala Arg Ala Tyr Asp Glu Ala Lys Gln Ala Ala Gln Met Gly Tyr 645 650 655Glu Ser Tyr Leu Val Asn Ala Glu Asn Asn Gly Gly Gly Arg Met Ser 660 665 670Ala Trp Gly Thr Val Val Ser Ala Ala Ala Ala Ala Ala Ala Ser Ser 675 680 685Asn Asp Asn Met Ala Ala Asp Val Gly His Gly Gly Ala Gln Leu Phe 690 695 700Ser Val Trp Asn Asp Thr705 71012325DNAArtificial SequencePlasmid linker sequence 123tcgaaggaga tagaaccgat ccacc 251248DNAArtificial SequencePlasmid linker sequence 124tgagctag 8125508DNAZea mays 125ctatagtatt ttaaaattgc attaacaaac atgtcctaat tggtactcct gagatactat 60accctcctgt tttaaaatag ttggcattat cgaattatca ttttactttt taatgttttc 120tcttctttta atatatttta tgaattttaa tgtattttaa aatgttatgc agttcgctct 180ggacttttct cgtgcgccta cacttgggtg tactgggcct aaattcagcc tgaccgaccg 240cctgcattga ataatggatg agcaccggta aaatccgcgt acccaacttt cgagaagaac 300cgagacgtgg cgggccgggc caccgacgca cggcaccagc gactgcacac gtcccgccgg 360cgtacgtgta cgtgctgttc cctcactggc cgcccaatcc actcatgcat gcccacgtac 420acccctgccg tggcgcgccc agatcctaat cctttcgccg ttctgcactt ctgctgccta 480taaatggcgg catcgaccgt cacctgct 508126558DNAZea mays 126gtactgtaat atttatatta tatataatta taaactataa tatttcaaaa ctatagtatt 60ttaaaattgc attaacaaac atgtcctaat tggtactcct gagatactat accctcctgt 120tttaaaatag ttggcattat cgaattatca ttttactttt taatgttttc tcttctttta 180atatatttta tgaattttaa tgtattttaa aatgttatgc agttcgctct ggacttttct 240cgtgcgccta cacttgggtg tactgggcct aaattcagcc tgaccgaccg cctgcattga 300ataatggatg agcaccggta aaatccgcgt acccaacttt cgagaagaac cgagacgtgg 360cgggccgggc caccgacgca cggcaccagc gactgcacac gtcccgccgg cgtacgtgta 420cgtgctgttc cctcactggc cgcccaatcc actcatgcat gcccacgtac acccctgccg 480tggcgcgccc agatcctaat cctttcgccg ttctgcactt ctgctgccta taaatggcgg 540catcgaccgt cacctgct 558

* * * * *

References


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed