Reinforcing Brace Frame

Hansen; John

Patent Application Summary

U.S. patent application number 12/964640 was filed with the patent office on 2011-06-09 for reinforcing brace frame. Invention is credited to John Hansen.

Application Number20110131896 12/964640
Document ID /
Family ID44080592
Filed Date2011-06-09

United States Patent Application 20110131896
Kind Code A1
Hansen; John June 9, 2011

REINFORCING BRACE FRAME

Abstract

A reinforcing brace frame for providing lateral and seismic support when used in a multi-story light-gauge steel/wood framed building is disclosed. The reinforcing brace frame comprises a horizontally extending upper metallic frame member, a pair of spaced metallic frame members having a lower end and an upper end, at least one metallic diagonal member, a plurality of slots and at least one abutting tube having a proximal end and a distal end. The pair of spaced metallic frame members is vertically extended and rigidly connected at opposite ends of the upper metallic frame member to form a rigid upright tubular frame. The reinforcing brace frame is stacked and connected by means of the at least one abutting tube which is then bolted in place using at least one attachment means to secure subsequent reinforcing brace frames to resist lateral seismic loads.


Inventors: Hansen; John; (Fullerton, CA)
Family ID: 44080592
Appl. No.: 12/964640
Filed: December 9, 2010

Related U.S. Patent Documents

Application Number Filing Date Patent Number
61285102 Dec 9, 2009

Current U.S. Class: 52/167.3
Current CPC Class: E04B 1/24 20130101; E04B 2001/2421 20130101; E04B 2001/2454 20130101; E04B 2001/246 20130101; E04H 9/0237 20200501; E04B 2001/2496 20130101; E04H 9/028 20130101; E04B 2001/2448 20130101; E04B 2001/2463 20130101
Class at Publication: 52/167.3
International Class: E04H 9/02 20060101 E04H009/02; E04B 1/98 20060101 E04B001/98

Claims



1. A reinforcing brace frame for providing lateral and seismic support when used in a multi-story light gauge steel/wood framed building comprising: a horizontally extending upper metallic frame member; a pair of spaced metallic frame members having a lower end and a upper end vertically extending and rigidly connected at opposite ends of the upper metallic frame member to form a rigid upright tubular frame; at least one metallic diagonal member connected to at least one opposite end of the upper metallic frame member using at least one compression plate; a plurality of slots arranged in the pair of spaced metallic frame members and the at least one metallic diagonal member; and is at least one abutting tube having a proximal end and a distal end, the proximal end inserted through the upper end of the pair of spaced metallic frame members of one reinforcing brace frame and the distal end inserted through the lower end of the pair of spaced metallic frame members of another reinforcing brace frame; whereby the reinforcing brace frame is stacked and connected by means of the at least one abutting tube which is then bolted in place using at least one attachment means to secure subsequent reinforcing brace frames to resist lateral seismic loads.

2. The reinforcing brace frame of claim 1 wherein the plurality of slots is adaptable to allow the penetration of plumbing and electrical elements to pass through the length of the reinforcing brace frame.

3. The reinforcing brace frame of claim 1 wherein the at least one compression plate allows the load to transfer across the at least one compression plate for greater loading of the reinforcing brace frame.

4. The reinforcing brace frame of claim 1 wherein the reinforcing brace frame may be used in podium construction.

5. The reinforcing brace frame of claim 1 wherein the at least one attachment means may be selected from a group consisting of self tapping screws, shot pins and bolt.
Description



CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of PPA Ser. No. 61/285,102 filed Dec. 9, 2009 by the present inventor.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT

[0002] Not Applicable.

FIELD OF THE INVENTION

[0003] This invention relates generally to reinforcing brace frames, and more particularly to a reinforcing brace frame used for supporting a multi-story light-gauge steel/wood framed building.

[0004] DISCUSSION OF RELATED ART

[0005] Earthquakes, tornadoes and hurricanes are common in certain areas of the world. Lateral forces created by wind pressure or by the seismic motion of the ground during an earthquake create substantial shear forces in the walls of a building thereby uplifting the building from its foundation. Moreover, even one such event can damage or destroy large numbers of wood-framed or steel buildings causing billions of dollars of damage; displacing thousands of people from their homes; and seriously injuring or killing the occupants. There are many reinforcing brace frame walls which are used as a complete system of protection against both the severe shear stress and uplifting encountered during tornados, hurricanes and earthquakes.

[0006] Presently, a wide variety of brace frames are available for reinforcing buildings to resolve the problems of shear stress and uplift. While serving to provide permanently reinforcing building walls against the high stress encountered by buildings during earthquakes and high wind situations, which increases the cost of construction and in certain instances, may make difficulty in the proper setting of electrical and plumbing lines. Some brace frames are fabricated in one piece and extend to the total number of the stories of the building, making it difficult to install. These frames are installed using crane and are hard to stabilize during the framing of the building.

[0007] One prior art described in U.S. Pat. No. 7,171,789 issued to Lucey on Feb. 6, 2007 discloses a shear wall construction and method for assembling the same. A plywood sheet includes close laterally-spaced pairs of vertical studs or posts proximate each lateral end. A channel-defining member is fitted and fixed between the spaced studs. A tie member extends from the channel-defining member into a concrete foundation or other underlying building element. A track is also provided for sheathing a lower edge of the shear wall.

[0008] Protrusions from the metal track aid in anchoring the shear wall to the concrete foundation. However, additional equipment is required to install the wall into the concrete, making it very difficult to plumb and level the concrete. Moreover, such shear wall construction is relatively time-consuming, labor-intensive and not well-suited for use in light-frame construction.

[0009] U.S. Pat. No. 6,298,612 issued to Adams on Oct. 9, 2001 provides a wall strengthening component for a building construction, the building construction having a plurality of spaced apart vertical studs within a frame of a building wall or the like. The wall strengthening component includes first and second vertical support members disposed in a spaced apart relationship and a plurality of reinforcing members disposed between the first and second vertical support members. The reinforcing members are configured to resist lateral stress directed against the vertical support members such that the position of the first vertical support member is maintained relative to the position of the second vertical support member. The reinforcing members are configured in a truss-like arrangement forming triangular shaped portions between the vertical support members. The wall strengthening components configured to be operatively placed between adjacent vertical studs within the frame of the building wall or the like and is fastened to the building or the frame of the building wall at opposite vertical ends of the first and second vertical support members. However, such device requires additional components for providing reinforcement and includes complicated structural arrangement.

[0010] U.S. Pat. No. 6,148,583 issued to Hardy on Nov. 21, 2000 discloses a reinforcing brace frame which is utilized in building walls as a complete system of protection against both the severe shear stress and uplifting encountered during tornadoes, hurricanes and earthquakes. The reinforcing brace frame includes two vertically-spaced horizontally extending frame members joined at their opposite ends to two horizontally-spaced vertically extending frame members, and a diagonal member rigidly connected to opposite ends of the horizontally extending frame members. The reinforcing brace frame can also include spaced vertical support members between the vertical frame members. The reinforcing brace frame is directly attached to a concrete foundation by shear bolts and hold down bolts. Consequently, the reinforcing brace frame provides increased resistance against simultaneous shear stress and uplifting, eliminating the need for plywood shear panels. However, the reinforcing brace frame can be used only in small wall areas and cannot be used for multi-story light gauge steel/wood framed building.

[0011] Therefore, there is a need for a structural and stackable reinforcing brace frame which provides lateral and seismic support when used in a multi-story light-gauge steel/wood framed building. Such a needed reinforcing brace frame would include a unique compression plate system that simplifies the embedding of the reinforcing brace frame in the concrete. Moreover, such a frame would provide slots that allow the penetration of plumbing and electrical elements to pass through the length of the reinforcing frame thereby eliminates the necessity of a crane in the installation process. Further, such a reinforcing brace frame would also eliminate the difficult stabilization process that currently exists with multi-story steel framed buildings. The present invention accomplishes these objectives.

SUMMARY OF THE INVENTION

[0012] The present invention provides a reinforcing brace frame for providing lateral and seismic support when used in a multi-story light-gauge steel/wood framed building. The reinforcing brace frame comprises a horizontally extending upper metallic frame member, a pair of spaced metallic frame members having a lower end and an upper end, at least one metallic diagonal member, a plurality of slots and at least one abutting tube having a proximal end and a distal end. The pair of spaced metallic frame members is vertically extended and rigidly connected at opposite ends of the upper metallic frame member to form a rigid upright tubular frame. The at least one metallic diagonal member is connected to at least one opposite end of the upper metallic frame member using at least one compression plate. The compression plate allows the load to transfer across the compression plate for greater loading of the reinforcing brace frame. The plurality of slots is arranged in the pair of spaced metallic frame members and the at least one metallic diagonal member. The plurality of slots is adaptable to allow the penetration of plumbing and electrical elements to pass through the length of the reinforcing brace frame thereby eliminating the necessity of a crane and provides stabilization. Preferably, the reinforcing brace frame is secured to the foundation by hold down bolts.

[0013] The proximal end of the at least one abutting tube is inserted through the upper end of the pair of spaced metallic frame members of the stacked reinforcing brace frames. The distal end of the at least one abutting tube is inserted through the lower end of the pair of spaced metallic frame members of another reinforcing brace frame. Thus, the reinforcing brace frames are stacked and connected by means of the at least one abutting tube which is then bolted in place using at least one attachment means to secure subsequent reinforcing brace frames to resist lateral seismic loads. The at least one attachment means may be selected from a group consisting of self tapping screws, shot pins and bolts. The reinforcing brace frame may be used in podium construction.

[0014] The present invention provides an efficient way to resist lateral seismic loads and uplift in buildings as high as 8 stories. Further, such a frame provides more superior and cost effective means of providing seismic and wind load resistance. Other features and advantages of the present invention will become apparent from the following more detailed description, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] FIG. 1 is a front elevational view of a reinforcing brace frame in accordance with the present invention;

[0016] FIG. 2 is a front elevational view of the present invention, illustrating a way of appending a stacked arrangement of reinforcing brace frames with a subsequent reinforcing brace frame; and

[0017] FIG. 3 is a front elevational view of the reinforcing brace frames stacked and connected together using at least one abutting tube.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0018] FIG. 1 is a front elevational view of a reinforcing brace frame 10 in accordance with the present invention. The reinforcing brace frame 10 comprises a horizontally extending upper metallic frame member 12, a pair of spaced metallic frame members 14 having a lower end 16 and an upper end 18, at least one metallic diagonal member 20, a plurality of slots 22 and at least one abutting tube 24 having a proximal end and a distal end 26. is The pair of spaced metallic frame members 14 is vertically extended and rigidly connected at opposite ends 28, 30 of the upper metallic frame member 12 to form a rigid upright tubular frame. The at least one metallic diagonal member is connected to at least one opposite end of the upper metallic frame member 12 using at least one compression plate 32. The plurality of slots 22 is arranged in the pair of spaced metallic frame members 14 and the at least one metallic diagonal member 20.

[0019] The plurality of slots 22 is adaptable to allow the penetration of plumbing and electrical elements to pass through the length of the reinforcing brace frame 10 thereby eliminating the necessity of a crane and provides stabilization. Preferably, the reinforcing brace frame 10 is secured to the foundation by hold down bolts 34.

[0020] FIG. 2 is a front elevational view of the present invention, illustrating a way of appending a stacked arrangement of reinforcing brace frames 40 with a subsequent reinforcing brace frame 42. The proximal end 44 of the at least one abutting tube 24 is inserted through the upper end 18 of the pair of spaced metallic frame members 14 of the stacked reinforcing brace frames 40. The distal end 26 of the at least one abutting tube 24 is inserted through the lower end of the pair of spaced metallic frame members of another reinforcing brace frame 42. Thus, the reinforcing brace frames are stacked and connected by means of the at least one abutting tube 24 which is then bolted in place using at least one attachment means 46 to secure subsequent reinforcing brace frames to resist lateral seismic loads. The at least one attachment means 46 may be selected from a group consisting of self tapping screws, shot pins and bolts.

[0021] FIG. 3 is a front elevational view of the reinforcing brace frames 40 stacked and connected together using at least one abutting tube 24. The at least one compression plate 32 allows the load to transfer across the at least one compression plate 32 for greater loading of the reinforcing brace frame 10. The reinforcing brace frame may be used in podium construction. The reinforcing brace frame 10 may be a cost effective and superior means that provides seismic and wind load resistance. Single or multiple diagonal members may be arranged for supporting the reinforcing brace frames.

[0022] While a particular form of the invention has been illustrated and described, it will be apparent that various modifications can be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited, except as by the appended claims.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed