Heat Treatable L12 Aluminum Alloys

Pandey; Awadh B.

Patent Application Summary

U.S. patent application number 12/939345 was filed with the patent office on 2011-02-24 for heat treatable l12 aluminum alloys. This patent application is currently assigned to UNITED TECHNOLOGIES CORPORATION. Invention is credited to Awadh B. Pandey.

Application Number20110041963 12/939345
Document ID /
Family ID40671419
Filed Date2011-02-24

United States Patent Application 20110041963
Kind Code A1
Pandey; Awadh B. February 24, 2011

HEAT TREATABLE L12 ALUMINUM ALLOYS

Abstract

A method of forming high temperature heat treatable aluminum alloys that can be used at temperatures from about -420.degree. F. (-251.degree. C.) up to about 650.degree. F. (343.degree. C.) are described. The alloys are strengthened by dispersion of particles based on the L1.sub.2 intermetallic compound Al.sub.3X. These alloys comprise aluminum, copper, magnesium, at least one of scandium, erbium, thulium, ytterbium, and lutetium; and at least one of gadolinium, yttrium, zirconium, titanium, hafnium, and niobium. Lithium is an optional alloying element.


Inventors: Pandey; Awadh B.; (Jupiter, FL)
Correspondence Address:
    KINNEY & LANGE, P.A.
    THE KINNEY & LANGE BUILDING, 312 SOUTH THIRD STREET
    MINNEAPOLIS
    MN
    55415-1002
    US
Assignee: UNITED TECHNOLOGIES CORPORATION
Hartford
CT

Family ID: 40671419
Appl. No.: 12/939345
Filed: November 4, 2010

Related U.S. Patent Documents

Application Number Filing Date Patent Number
12148396 Apr 18, 2008
12939345

Current U.S. Class: 148/550 ; 148/549
Current CPC Class: C22C 21/16 20130101; C22F 1/057 20130101
Class at Publication: 148/550 ; 148/549
International Class: C22F 1/057 20060101 C22F001/057

Claims



1. A method of forming a heat treatable aluminum alloy, the method comprising: (a) forming a melt consisting of: about 1.0 to about 8.0 weight percent copper; about 0.2 to about 4.0 weight percent magnesium; about 0.5 to about 3.0 weight percent lithium; at least one first element selected from the group comprising about 0.1 to about 0.5 weight percent scandium, about 0.1 to about 6.0 weight percent erbium, about 0.1 to about 10.0 weight percent thulium, about 0.1 to about 15.0 weight percent ytterbium, and about 0.1 to about 12.0 weight percent lutetium; at least one second element selected from the group comprising about 0.1 to about 4.0 weight percent gadolinium, about 0.1 to about 4.0 weight percent yttrium, about 0.05 to about 1.0 weight percent zirconium, about 0.05 to about 2.0 weight percent titanium, about 0.05 to about 2.0 weight percent hafnium, and about 0.05 to about 1.0 weight percent niobium; and the balance substantially aluminum; (b) solidifying the melt to form a solid body; and (c) heat treating the solid body.

2. The method of claim 1, further comprising: refining the structure of the solid body by deformation processing comprising at least one of: extrusion, forging and rolling.

3. The method of claim 1, wherein solidifying comprises a casting process.

4. The method of claim 1, wherein solidifying comprises a rapid solidification process in which the cooling rate is greater than about 10.sup.3.degree. C./second and comprising at least one of: powder processing, atomization, melt spinning, splat quenching, spray deposition, cold spray, plasma spray, laser melting, laser deposition, ball milling, and cryomilling.

5. The method of claim 1, wherein the heat treating comprises: solution heat treatment at about 800.degree. F. (426.degree. C.) to about 1100.degree. F. (593.degree. C.) for about thirty minutes to four hours; quenching; and aging at about 200.degree. F. (93.degree. C.) to about 600.degree. F. (316.degree. C.) for about two to forty-eight hours.

6. A method of forming a heat treatable aluminum alloy, the method comprising: (a) forming a melt consisting of: about 1.0 to about 8.0 weight percent copper; about 0.2 to about 4.0 weight percent magnesium; about 0.5 to about 3.0 weight percent lithium; at least one first element selected from the group comprising about 0.1 to about 0.5 weight percent scandium, about 0.1 to about 6.0 weight percent erbium, about 0.1 to about 10.0 weight percent thulium, about 0.1 to about 15.0 weight percent ytterbium, and about 0.1 to about 12.0 weight percent lutetium; at least one second element selected from the group comprising about 0.1 to about 4.0 weight percent gadolinium, about 0.1 to about 4.0 weight percent yttrium, about 0.05 to about 1.0 weight percent zirconium, about 0.05 to about 2.0 weight percent titanium, about 0.05 to about 2.0 weight percent hafnium, and about 0.05 to about 1.0 weight percent niobium; comprising no more than about 0.1 weight percent iron, about 0.1 weight percent chromium, about 0.1 weight percent manganese, about 0.1 weight percent vanadium, about 0.1 weight percent cobalt, and about 0.1 weight percent nickel; no more than about 1.0 weight percent total other additional elements not listed therein including impurities; and the balance substantially aluminum; (b) solidifying the melt to form a solid body; and (c) heat treating the solid body.

7. The method of claim 6, further comprising: refining the structure of the solid body by deformation processing comprising at least one of: extrusion, forging and rolling.

8. The method of claim 6, wherein solidifying comprises a casting process.

9. The method of claim 6, wherein solidifying comprises a rapid solidification process in which the cooling rate is greater than about 10.sup.3.degree. C./second and comprising at least one of: powder processing, atomization, melt spinning, splat quenching, spray deposition, cold spray, plasma spray, laser melting, laser deposition, ball milling, and cryomilling.

10. The method of claim 6, wherein the heat treating comprises: solution heat treatment at about 800.degree. F. (426.degree. C.) to about 1100.degree. F. (593.degree. C.) for about thirty minutes to four hours; quenching; and aging at about 200.degree. F. (93.degree. C.) to about 600.degree. F. (316.degree. C.) for about two to forty-eight hours.

11. A method of forming a heat treatable aluminum alloy, the method comprising: (a) forming a melt consisting of: about 1.0 to about 8.0 weight percent copper; about 0.2 to about 4.0 weight percent magnesium; about 0.5 to about 3.0 weight percent lithium; at least one first element selected from the group comprising about 0.1 to about 0.5 weight percent scandium, about 0.1 to about 6.0 weight percent erbium, about 0.1 to about 10.0 weight percent thulium, about 0.1 to about 15.0 weight percent ytterbium, and about 0.1 to about 12.0 weight percent lutetium; at least one second element selected from the group comprising about 0.1 to about 4.0 weight percent gadolinium, about 0.1 to about 4.0 weight percent yttrium, about 0.05 to about 1.0 weight percent zirconium, about 0.05 to about 2.0 weight percent titanium, about 0.05 to about 2.0 weight percent hafnium, and about 0.05 to about 1.0 weight percent niobium; no more than about 1.0 weight percent total other additional elements not listed therein including impurities; and the balance substantially aluminum; (b) solidifying the melt to form a solid body; and (c) heat treating the solid body.

12. The method of claim 11, further comprising: refining the structure of the solid body by deformation processing comprising at least one of: extrusion, forging and rolling.

13. The method of claim 11, wherein solidifying comprises a casting process.

14. The method of claim 11, wherein solidifying comprises a rapid solidification process in which the cooling rate is greater than about 10.sup.3.degree. C./second and comprising at least one of: powder processing, atomization, melt spinning, splat quenching, spray deposition, cold spray, plasma spray, laser melting, laser deposition, ball milling, and cryomilling.

15. The method of claim 11 wherein the heat treating comprises: solution heat treatment at about 800.degree. F. (426.degree. C.) to about 1100.degree. F. (593.degree. C.) for about thirty minutes to four hours; quenching; and aging at about 200.degree. F. (93.degree. C.) to about 600.degree. F. (316.degree. C.) for about two to forty-eight hours.
Description



CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is a divisional application of U.S. application Ser. No. 12/148,396, filed Apr. 18, 2008 for HEAT TREATABLE L1.sub.2 ALUMINUM ALLOYS, now U.S. Pat. No. ______.

BACKGROUND

[0002] The present invention relates generally to aluminum alloys and more specifically to heat treatable aluminum alloys produced by melt processing and strengthened by L1.sub.2 phase dispersions.

[0003] The combination of high strength, ductility, and fracture toughness, as well as low density, make aluminum alloys natural candidates for aerospace and space applications. However, their use is typically limited to temperatures below about 300.degree. F. (149.degree. C.) since most aluminum alloys start to lose strength in that temperature range as a result of coarsening of strengthening precipitates.

[0004] The development of aluminum alloys with improved elevated temperature mechanical properties is a continuing process. Some attempts have included aluminum-iron and aluminum-chromium based alloys such as Al--Fe--Ce, Al--Fe--V--Si, Al--Fe--Ce--W, and Al--Cr--Zr--Mn that contain incoherent dispersoids. These alloys, however, also lose strength at elevated temperatures due to particle coarsening. In addition, these alloys exhibit ductility and fracture toughness values lower than other commercially available aluminum alloys.

[0005] Other attempts have included the development of mechanically alloyed Al--Mg and Al--Ti alloys containing ceramic dispersoids. These alloys exhibit improved high temperature strength due to the particle dispersion, but the ductility and fracture toughness are not improved.

[0006] U.S. Pat. No. 6,248,453 discloses aluminum alloys strengthened by dispersed Al.sub.3X L1.sub.2 intermetallic phases where X is selected from the group consisting of Sc, Er, Lu, Yb, Tm, and U. The Al.sub.3X particles are coherent with the aluminum alloy matrix and are resistant to coarsening at elevated temperatures. The improved mechanical properties of the disclosed dispersion strengthened L1.sub.2 aluminum alloys are stable up to 572.degree. F. (300.degree. C.). In order to create aluminum alloys containing fine dispersions of Al.sub.3X L1.sub.2 particles, the alloys need to be manufactured by expensive rapid solidification processes with cooling rates in excess of 1.8.times.10.sup.3 F/sec (10.sup.3.degree. C./sec). U.S. Patent Application Publication No. 2006/0269437 A1 discloses an aluminum alloy that contains scandium and other elements. While the alloy is effective at high temperatures, it is not capable of being heat treated using a conventional age hardening mechanism.

[0007] Heat treatable aluminum alloys strengthened by coherent L1.sub.2 intermetallic phases produced by standard, inexpensive melt processing techniques would be useful.

SUMMARY

[0008] The present invention is heat treatable aluminum alloys that can be cast, wrought, or formed by rapid solidification, and thereafter heat treated. The alloys can achieve high temperature performance and can be used at temperatures up to about 650.degree. F. (343.degree. C.).

[0009] These alloys comprise copper, magnesium, lithium and an Al.sub.3X L1.sub.2 dispersoid where X is at least one first element selected from scandium, erbium, thulium, ytterbium, and lutetium, and at least one second element selected from gadolinium, yttrium, zirconium, titanium, hafnium, and niobium. The balance is substantially aluminum.

[0010] The alloys have less than about 1.0 weight percent total impurities.

[0011] The alloys are formed by a process selected from casting, deformation processing and rapid solidification. The alloys are then heat treated at a temperature of from about 900.degree. F. (482.degree. C.) to about 1100.degree. F. (593.degree. C.) for between about 30 minutes and four hours, followed by quenching in water, and thereafter aged at a temperature from about 200.degree. F. (93.degree. C.) to about 600.degree. F. (315.degree. C.) for about two to about forty-eight hours.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] FIG. 1 is an aluminum copper phase diagram.

[0013] FIG. 2 is an aluminum magnesium phase diagram.

[0014] FIG. 3 is an aluminum lithium phase diagram.

[0015] FIG. 4 is an aluminum scandium phase diagram.

[0016] FIG. 5 is an aluminum erbium phase diagram.

[0017] FIG. 6 is an aluminum thulium phase diagram.

[0018] FIG. 7 is an aluminum ytterbium phase diagram.

[0019] FIG. 8 is an aluminum lutetium phase diagram.

DETAILED DESCRIPTION

[0020] The alloys of this invention are based on the aluminum, copper, magnesium, lithium system. The amount of copper in these alloys ranges from about 1.0 to about 8.0 weight percent, more preferably about 2.0 to about 7.0 weight percent, and even more preferably about 3.5 to about 6.5 weight percent. The amount of magnesium in these alloys ranges from about 0.2 to about 4.0 weight percent, more preferably about 0.4 to about 3.0 weight percent, and even more preferably about 0.5 to about 2.0 weight percent. The amount of lithium in these alloys ranges from about 0.5 to about 3.0 weight percent, more preferably about 1.0 to about 2.5 weight percent, and even more preferably about 1.0 to about 2.0 weight percent.

[0021] Copper, magnesium and lithium are completely soluble in the composition of the inventive alloys discussed herein. Aluminum magnesium lithium alloys are heat treatable with L1.sub.2 Al.sub.3Li (.delta.'), Al.sub.2LiMg, Al.sub.2CuMg (S') and Al.sub.2CuLi precipitating following a solution heat treatment, quench and age process. These phases precipitate as coherent second phases in the aluminum magnesium lithium solid solution matrix. Also, in the solid solutions are dispersions of Al.sub.3X having an L1.sub.2 structure where X is at least one first element selected from scandium, erbium, thulium, ytterbium, and lutetium and at least one second element selected from gadolinium, yttrium, zirconium, titanium, hafnium, and niobium.

[0022] The aluminum copper phase diagram is shown in FIG. 1. The aluminum copper binary system is a eutectic alloy system with a eutectic reaction at 31.2 weight percent magnesium and 1018.degree. F. (548.2.degree. C.). Copper has maximum solid solubility of 6 weight percent in aluminum at 1018.degree. F. (548.2.degree. C.) which can be extended further by rapid solidification processing. Copper provides a considerable amount of precipitation strengthening in aluminum by precipitation of fine second phases. The present invention is focused on hypoeutectic alloy composition ranges.

[0023] The aluminum magnesium phase diagram is shown in FIG. 2. The binary system is a eutectic alloy system with a eutectic reaction at 36 weight percent magnesium and 842.degree. F. (450.degree. C.). Magnesium has maximum solid solubility of 16 weight percent in aluminum at 842.degree. F. (450.degree. C.) which can be extended further by rapid solidification processing. Magnesium provides substantial solid solution strengthening in aluminum. In addition, magnesium provides precipitation strengthening through precipitation of Al.sub.2CuMg (S') phase in the presence of copper.

[0024] The aluminum lithium phase diagram is shown in FIG. 3. The binary system is a eutectic alloy system with a eutectic reaction at 8 weight percent magnesium and 1104.degree. F. (596.degree. C.). Lithium has maximum solid solubility of about 4.5 weight percent in aluminum at 1104.degree. F. (596.degree. C.). Lithium has lesser solubility in aluminum in the presence of magnesium compared to when magnesium is absent. Therefore, lithium provides significant precipitation strengthening through precipitation of Al.sub.3Li (.delta.') phase. Lithium in addition provides reduced density and increased modulus in aluminum. In the presence of magnesium and copper, lithium forms ternary precipitates based on Al.sub.2CuLi and Al.sub.2MgLi.

[0025] The alloys of this invention contain phases consisting of primary aluminum, aluminum copper solid solutions, aluminum magnesium solid solutions, and aluminum lithium solid solutions. In the solid solutions are dispersions of Al.sub.3X having an L1.sub.2 structure where X is at least one element selected from scandium, erbium, thulium, ytterbium, and lutetium. Also present is at least one element selected from gadolinium, yttrium, zirconium, titanium, hafnium, and niobium.

[0026] Exemplary aluminum alloys of this invention include, but are not limited to (in weight percent):

[0027] Al-(1-8)Cu-(0.2-4)Mg-(0.5-3.0)Li-(0.1-0.5)Sc-(0.1-4.0)Gd;

[0028] Al-(1-8)Cu-(0.2-4)Mg-(0.5-3.0)Li-(0.1-6)Er-(0.1-4.0)Gd;

[0029] Al-(1-8)Cu-(0.2-4)Mg-(0.5-3.0)Li-(0.1-10)Tm-(0.1-4.0)Gd;

[0030] Al-(1-8)Cu-(0.2-4)Mg-(0.5-3.0)Li-(0.1-15)Yb-(0.1-4.0)Gd;

[0031] Al-(1-8)Cu-(0.2-4)Mg-(0.5-3.0)Li-(0.1-12)Lu-(0.1-4.0)Gd;

[0032] Al-(1-8)Cu-(0.2-4)Mg-(0.5-3.0)Li-(0.1-0.5)Sc-(0.1-4.0)Y;

[0033] Al-(1-8)Cu-(0.2-4)Mg-(0.5-3.0)Li-(0.1-6)Er-(0.1-4.0)Y;

[0034] Al-(1-8)Cu-(0.2-4)Mg-(0.5-3.0)Li-(0.1-10)Tm-(0.1-4.0)Y;

[0035] Al-(1-8)Cu-(0.2-4)Mg-(0.5-3.0)Li-(0.1-15)Yb-(0.1-4.0)Y;

[0036] Al-(1-8)Cu-(0.2-4)Mg-(0.5-3.0)Li-(0.1-12)Lu-(0.1-4.0)Y;

[0037] Al-(1-8)Cu-(0.2-4)Mg-(0.5-3.0)Li-(0.1-0.5)Sc-(0.05-1.0)Zr;

[0038] Al-(1-8)Cu-(0.2-4)Mg-(0.5-3.0)Li-(0.1-6)Er-(0.05-1.0)Zr;

[0039] Al-(1-8)Cu-(0.2-4)Mg-(0.5-3.0)Li-(0.1-10)Tm-(0.05-1.0)Zr;

[0040] Al-(1-8)Cu-(0.2-4)Mg-(0.5-3.0)Li-(0.1-15)Yb-(0.05-1.0)Zr;

[0041] Al-(1-8)Cu-(0.2-4)Mg-(0.5-3.0)Li-(0.1-12)Lu-(0.05-1.0)Zr;

[0042] Al-(1-8)Cu-(0.2-4)Mg-(0.5-3.0)Li-(0.1-0.5)Sc-(0.05-2.0)Ti;

[0043] Al-(1-8)Cu-(0.2-4)Mg-(0.5-3.0)Li-(0.1-0.5)Er-(0.05-2.0)Ti;

[0044] Al-(1-8)Cu-(0.2-4)Mg-(0.5-3.0)Li-(0.1-10)Tm-(0.05-2.0)Ti;

[0045] Al-(1-8)Cu-(0.2-4)Mg-(0.5-3.0)Li-(0.1-15)Yb-(0.05-2.0)Ti;

[0046] Al-(1-8)Cu-(0.2-4)Mg-(0.5-3.0)Li-(0.1-4)-Lu-(0.05-2.0)Ti;

[0047] Al-(1-8)Cu-(0.2-4)Mg-(0.5-3.0)Li-(0.1-0.5)Sc-(0.05-2.0)Hf;

[0048] Al-(1-8)Cu-(0.2-4)Mg-(0.5-3.0)Li-(0.1-6)Er-(0.05-2.0)Hf;

[0049] Al-(1-8)Cu-(0.2-4)Mg-(0.5-3.0)Li-(0.1-10)Tm-(0.05-2.0)Hf;

[0050] Al-(1-8)Cu-(0.2-4)Mg-(0.5-3.0)Li-(0.1-15)Yb-(0.05-2.0)Hf;

[0051] Al-(1-8)Cu-(0.2-4)Mg-(0.5-3.0)Li-(0.1-12)Lu-(0.05-2.0)Hf;

[0052] Al-(1-8)Cu-(0.2-4)Mg-(0.5-3.0)Li-(0.1-0.5)Sc-(0.05-1.0)Nb;

[0053] Al-(1-8)Cu-(0.2-4)Mg-(0.5-3.0)Li-(0.1-6)Er-(0.05-1.0)Nb;

[0054] Al-(1-8)Cu-(0.2-4)Mg-(0.5-3.0)Li-(0.1-10)Tm-(0.05-1.0)Nb;

[0055] Al-(1-8)Cu-(0.2-4)Mg-(0.5-3.0)Li-(0.1-15)Yb-(0.05-1.0)Nb; and

[0056] Al-(1-8)Cu-(0.2-4)Mg-(0.5-3.0)Li-(0.1-12)Lu-(0.05-1.0)Nb.

[0057] Preferred examples of similar alloys to these are alloys with about 2.0 to about 7.0 weight percent copper, alloys with about 0.4 to about 3.0 weight percent magnesium, and alloys with about 1.0 to about 2.5 weight percent lithium.

[0058] In the inventive aluminum based alloys disclosed herein, scandium, erbium, thulium, ytterbium, and lutetium are potent strengtheners that have low diffusivity and low solubility in aluminum. All these element form equilibrium Al.sub.3X intermetallic dispersoids where X is at least one of scandium, erbium, ytterbium, lutetium, that have an L1.sub.2 structure that is an ordered face centered cubic structure with the X atoms located at the corners and aluminum atoms located on the cube faces of the unit cell.

[0059] Scandium forms Al.sub.3Sc dispersoids that are fine and coherent with the aluminum matrix. Lattice parameters of aluminum and Al.sub.3Sc are very close (0.405 nm and 0.410 nm respectively), indicating that there is minimal or no driving force for causing growth of the Al.sub.3Sc dispersoids. This low interfacial energy makes the Al.sub.3Sc dispersoids thermally stable and resistant to coarsening up to temperatures as high as about 842.degree. F. (450.degree. C.). In the alloys of this invention these Al.sub.3Sc dispersoids are made stronger and more resistant to coarsening at elevated temperatures by adding suitable alloying elements such as gadolinium, yttrium, zirconium, titanium, hafnium, niobium, or combinations thereof, that enter Al.sub.3Sc in solution.

[0060] Erbium forms Al.sub.3Er dispersoids in the aluminum matrix that are fine and coherent with the aluminum matrix. The lattice parameters of aluminum and Al.sub.3Er are close (0.405 nm and 0.417 nm respectively), indicating there is minimal driving force for causing growth of the Al.sub.3Er dispersoids. This low interfacial energy makes the Al.sub.3Er dispersoids thermally stable and resistant to coarsening up to temperatures as high as about 842.degree. F. (450.degree. C.). Additions of magnesium in solid solution in aluminum increase the lattice parameter of the aluminum matrix, and decrease the lattice parameter mismatch further increasing the resistance of the Al.sub.3Er to coarsening. Additions of copper increase the strength of alloys through precipitation of Al.sub.2Cu (.theta.') and Al.sub.2CuMg (S') phases. In the alloys of this invention, these Al.sub.3Er dispersoids are made stronger and more resistant to coarsening at elevated temperatures by adding suitable alloying elements such as gadolinium, yttrium, zirconium, titanium, hafnium, niobium, or combinations thereof that enter Al.sub.3Er in solution.

[0061] Thulium forms metastable Al.sub.3Tm dispersoids in the aluminum matrix that are fine and coherent with the aluminum matrix. The lattice parameters of aluminum and Al.sub.3Tm are close (0.405 nm and 0.420 nm respectively), indicating there is minimal driving force for causing growth of the Al.sub.3Tm dispersoids. This low interfacial energy makes the Al.sub.3Tm dispersoids thermally stable and resistant to coarsening up to temperatures as high as about 842.degree. F. (450.degree. C.). Additions of magnesium in solid solution in aluminum increase the lattice parameter of the aluminum matrix, and decrease the lattice parameter mismatch further increasing the resistance of the Al.sub.3Tm to coarsening. Additions of copper increase the strength of alloys through precipitation of Al.sub.2Cu (.theta.') and Al.sub.2CuMg (S') phases. In the alloys of this invention these Al.sub.3Tm dispersoids are made stronger and more resistant to coarsening at elevated temperatures by adding suitable alloying elements such as gadolinium, yttrium, zirconium, titanium, hafnium, niobium, or combinations thereof that enter Al.sub.3Tm in solution.

[0062] Ytterbium forms Al.sub.3Yb dispersoids in the aluminum matrix that are fine and coherent with the aluminum matrix. The lattice parameters of Al and Al.sub.3Yb are close (0.405 nm and 0.420 nm respectively), indicating there is minimal driving force for causing growth of the Al.sub.3Yb dispersoids. This low interfacial energy makes the Al.sub.3Yb dispersoids thermally stable and resistant to coarsening up to temperatures as high as about 842.degree. F. (450.degree. C.). Additions of magnesium in solid solution in aluminum increase the lattice parameter of the aluminum matrix, and decrease the lattice parameter mismatch further increasing the resistance of the Al.sub.3Yb to coarsening. Additions of copper increase the strength of alloys through precipitation of Al.sub.2Cu (.theta.') and Al.sub.2CuMg (S') phases. In the alloys of this invention, these Al.sub.3Yb dispersoids are made stronger and more resistant to coarsening at elevated temperatures by adding suitable alloying elements such as gadolinium, yttrium, zirconium, titanium, hafnium, niobium, or combinations thereof that enter Al.sub.3Yb in solution.

[0063] Lutetium forms Al.sub.3Lu dispersoids in the aluminum matrix that are fine and coherent with the aluminum matrix. The lattice parameters of Al and Al.sub.3Lu are close (0.405 nm and 0.419 nm respectively), indicating there is minimal driving force for causing growth of the Al.sub.3Lu dispersoids. This low interfacial energy makes the Al.sub.3Lu dispersoids thermally stable and resistant to coarsening up to temperatures as high as about 842.degree. F. (450.degree. C.). Additions of magnesium in solid solution in aluminum increase the lattice parameter of the aluminum matrix, and decrease the lattice parameter mismatch further increasing the resistance of the Al.sub.3Lu to coarsening Additions of copper increase the strength of alloys through precipitation of Al.sub.2Cu (.theta.') and Al.sub.2CuMg (S') phases. In the alloys of this invention, these Al.sub.3Lu dispersoids are made stronger and more resistant to coarsening at elevated temperatures by adding suitable alloying elements such as gadolinium, yttrium, zirconium, titanium, hafnium, niobium, or mixtures thereof that enter Al.sub.3Lu in solution.

[0064] Gadolinium forms metastable Al.sub.3Gd dispersoids in the aluminum matrix that are stable up to temperatures as high as about 842.degree. F. (450.degree. C.) due to their low diffusivity in aluminum. The Al.sub.3Gd dispersoids have a D0.sub.19 structure in the equilibrium condition. Despite its large atomic size, gadolinium has fairly high solubility in the Al.sub.3X intermetallic dispersoids (where X is scandium, erbium, thulium, ytterbium or lutetium). Gadolinium can substitute for the X atoms in Al.sub.3X intermetallic, thereby forming an ordered L1.sub.2 phase which results in improved thermal and structural stability.

[0065] Yttrium forms metastable Al.sub.3Y dispersoids in the aluminum matrix that have an L1.sub.2 structure in the metastable condition and a D0.sub.19 structure in the equilibrium condition. The metastable Al.sub.3Y dispersoids have a low diffusion coefficient which makes them thermally stable and highly resistant to coarsening. Yttrium has a high solubility in the Al.sub.3X intermetallic dispersoids allowing large amounts of yttrium to substitute for X in the Al.sub.3X L1.sub.2 dispersoids which results in improved thermal and structural stability.

[0066] Zirconium forms Al.sub.3Zr dispersoids in the aluminum matrix that have an L1.sub.2 structure in the metastable condition and D0.sub.23 structure in the equilibrium condition. The metastable Al.sub.3Zr dispersoids have a low diffusion coefficient which makes them thermally stable and highly resistant to coarsening. Zirconium has a high solubility in the Al.sub.3X dispersoids allowing large amounts of zirconium to substitute for X in the Al.sub.3X dispersoids, which results in improved thermal and structural stability.

[0067] Titanium forms Al.sub.3Ti dispersoids in the aluminum matrix that have an L1.sub.2 structure in the metastable condition and DO.sub.22 structure in the equilibrium condition. The metastable Al.sub.3Ti despersoids have a low diffusion coefficient which makes them thermally stable and highly resistant to coarsening. Titanium has a high solubility in the Al.sub.3X dispersoids allowing large amounts of titanium to substitute for X in the Al.sub.3X dispersoids, which result in improved thermal and structural stability.

[0068] Hafnium forms metastable Al.sub.3Hf dispersoids in the aluminum matrix that have an L1.sub.2 structure in the metastable condition and a D0.sub.23 structure in the equilibrium condition. The Al.sub.3Hf dispersoids have a low diffusion coefficient, which makes them thermally stable and highly resistant to coarsening. Hafnium has a high solubility in the Al.sub.3X dispersoids allowing large amounts of hafnium to substitute for scandium, erbium, thulium, ytterbium, and lutetium in the above mentioned Al.sub.3X dispersoides, which results in stronger and more thermally stable dispersoids.

[0069] Niobium forms metastable Al.sub.3Nb dispersoids in the aluminum matrix that have an L1.sub.2 structure in the metastable condition and a D0.sub.22 structure in the equilibrium condition. Niobium has a lower solubility in the Al.sub.3X dispersoids than hafnium or yttrium, allowing relatively lower amounts of niobium than hafnium or yttrium to substitute for X in the Al.sub.3X dispersoids. Nonetheless, niobium can be very effective in slowing down the coarsening kinetics of the Al.sub.3X dispersoids because the Al.sub.3Nb dispersoids are thermally stable. The substitution of niobium for X in the above mentioned Al.sub.3X dispersoids results in stronger and more thermally stable dispersoids.

[0070] Al.sub.3X L1.sub.2 precipitates improve elevated temperature mechanical properties in aluminum alloys for two reasons. First, the precipitates are ordered intermetallic compounds. As a result, when the particles are sheared by glide dislocations during deformation, the dislocations separate into two partial dislocations separated by an anti-phase boundary on the glide plane. The energy to create the anti-phase boundary is the origin of the strengthening. Second, the cubic L1.sub.2 crystal structure and lattice parameter of the precipitates are closely matched to the aluminum solid solution matrix. This results in a lattice coherency at the precipitate/matrix boundary that resists coarsening. The lack of an interphase boundary results in a low driving force for particle growth and resulting elevated temperature stability. Alloying elements in solid solution in the dispersed strengthening particles and in the aluminum matrix that tend to decrease the lattice mismatch between the matrix and particles will tend to increase the strengthening and elevated temperature stability of the alloy.

[0071] Copper has considerable solubility in aluminum at 1018.degree. F. (548.2.degree. C.), which decreases with a decrease in temperature. The aluminum copper alloy system provides considerable precipitation hardening response through precipitation of Al.sub.2Cu (.theta.') second phase. Magnesium has considerable solubility in aluminum at 842.degree. F. (450.degree. C.) which decreases with a decrease in temperature. The aluminum magnesium binary alloy system does not provide precipitation hardening, rather it provides substantial solid solution strengthening. When magnesium is added to aluminum copper alloy, it increases the precipitation hardening response of the alloy considerably through precipitation of Al.sub.2CuMg (S') phase. When the ratio of copper to magnesium is high, precipitation hardening occurs through precipitation of GP zones through coherent metastable Al.sub.2Cu (.theta.') to equilibrium Al.sub.2Cu (.theta.) phase. When the ratio of copper to magnesium is low, precipitation hardening occurs through precipitation of GP zones through coherent metastable Al.sub.2CuMg (S') to equilibrium Al.sub.2CuMg (S) phase. Lithium provides considerable strengthening through precipitation of coherent Al.sub.3Li (.delta.') phase. Lithium also forms Al.sub.2MgLi and Al.sub.2CuLi phases which provide additional strengthening when precipitated in desired size and shape. In addition, lithium reduces density and increases modulus of the aluminum alloys due to its lower density and higher modulus.

[0072] The amount of scandium present in the alloys of this invention if any may vary from about 0.1 to about 0.5 weight percent, more preferably from about 0.1 to about 0.35 weight percent, and even more preferably from about 0.1 to about 0.25 weight percent. The Al--Sc phase diagram shown in FIG. 4 indicates a eutectic reaction at about 0.5 weight percent scandium at about 1219.degree. F. (659.degree. C.) resulting in a solid solution of scandium and aluminum and Al.sub.3Sc dispersoids. Aluminum alloys with less than 0.5 weight percent scandium can be quenched from the melt to retain scandium in solid solution that may precipitate as dispersed L1.sub.2 intermetallic Al.sub.3Sc following an aging treatment. Alloys with scandium in excess of the eutectic composition (hypereutectic alloys) can only retain scandium in solid solution by rapid solidification processing (RSP) where cooling rates are in excess of about 10.sup.3.degree. C./second. Alloys with scandium in excess of the eutectic composition cooled normally will have a microstructure consisting of relatively large Al.sub.3Sc dispersoids in a finally divided aluminum-Al.sub.3Sc eutectic phase matrix.

[0073] The amount of erbium present in the alloys of this invention, if any, may vary from about 0.1 to about 6.0 weight percent, more preferably from about 0.1 to about 4.0 weight percent, and even more preferably from about 0.2 to about 2.0 weight percent. The Al--Er phase diagram shown in FIG. 5 indicates a eutectic reaction at about 6 weight percent erbium at about 1211.degree. F. (655.degree. C.). Aluminum alloys with less than about 6 weight percent erbium can be quenched from the melt to retain erbium in solid solutions that may precipitate as dispersed L1.sub.2 intermetallic Al.sub.3Er following an aging treatment. Alloys with erbium in excess of the eutectic composition can only retain erbium in solid solution by rapid solidification processing (RSP) where cooling rates are in excess of about 10.sup.3.degree. C./second. Alloys with erbium in excess of the eutectic composition (hypereutectic alloys) cooled normally will have a microstructure consisting of relatively large Al.sub.3Er dispersoids in a finely divided aluminum-Al.sub.3Er eutectic phase matrix.

[0074] The amount of thulium present in the alloys of this invention, if any, may vary from about 0.1 to about 10.0 weight percent, more preferably from about 0.2 to about 6.0 weight percent, and even more preferably from about 0.2 to about 4.0 weight percent. The Al--Tm phase diagram shown in FIG. 6 indicates a eutectic reaction at about 10 weight percent thulium at about 1193.degree. F. (645.degree. C.). Thulium forms Al.sub.3Tm dispersoids in the aluminum matrix that have an L1.sub.2 structure in the equilibrium condition. The Al.sub.3Tm dispersoids have a low diffusion coefficient which makes them thermally stable and highly resistant to coarsening. Aluminum alloys with less than 10 weight percent thulium can be quenched from the melt to retain thulium in solid solution that may precipitate as dispersed metastable L1.sub.2 intermetallic Al.sub.3Tm following an aging treatment. Alloys with thulium in excess of the eutectic composition can only retain Tm in solid solution by rapid solidification processing (RSP) where cooling rates are in excess of about 10.sup.3.degree. C./second.

[0075] The amount of ytterbium present in the alloys of this invention, if any, may vary from about 0.1 to about 15.0 weight percent, more preferably from about 0.2 to about 8.0 weight percent, and even more preferably from about 0.2 to about 4.0 weight percent. The Al--Yb phase diagram shown in FIG. 7 indicates a eutectic reaction at about 21 weight percent ytterbium at about 1157.degree. F. (625.degree. C.). Aluminum alloys with less than about 21 weight percent ytterbium can be quenched from the melt to retain ytterbium in solid solution that may precipitate as dispersed L1.sub.2 intermetallic Al.sub.3Yb following an aging treatment. Alloys with ytterbium in excess of the eutectic composition can only retain ytterbium in solid solution by rapid solidification processing (RSP) where cooling rates are in excess of about 10.sup.3.degree. C. per second. Alloys with ytterbium in excess of the eutectic composition cooled normally will have a microstructure consisting of relatively large Al.sub.3Yb dispersoids in a finally divided aluminum-Al.sub.3Yb eutectic phase matrix.

[0076] The amount of lutetium present in the alloys of this invention, if any, may vary from about 0.1 to about 12.0 weight percent, more preferably from about 0.2 to about 8.0 weight percent, and even more preferably from about 0.2 to about 4.0 weight percent. The Al--Lu phase diagram shown in FIG. 8 indicates a eutectic reaction at about 11.7 weight percent Lu at about 1202.degree. F. (650.degree. C.). Aluminum alloys with less than about 11.7 weight percent lutetium can be quenched from the melt to retain Lu in solid solution that may precipitate as dispersed L1.sub.2 intermetallic Al.sub.3Lu following an aging treatment. Alloys with Lu in excess of the eutectic composition can only retain Lu in solid solution by rapid solidification processing (RSP) where cooling rates are in excess of about 10.sup.3.degree. C./second. Alloys with lutetium in excess of the eutectic composition cooled normally will have a microstructure consisting of relatively large Al.sub.3Lu dispersoids in a finely divided aluminum-Al.sub.3Lu eutectic phase matrix.

[0077] The amount of gadolinium present in the alloys of this invention, if any, may vary from about 0.1 to about 4 weight percent, more preferably from 0.2 to about 2 weight percent, and even more preferably from about 0.5 to about 2 weight percent.

[0078] The amount of yttrium present in the alloys of this invention, if any, may vary from about 0.1 to about 4 weight percent, more preferably from 0.2 to about 2 weight percent, and even more preferably from about 0.5 to about 2 weight percent.

[0079] The amount of zirconium present in the alloys of this invention, if any, may vary from about 0.05 to about 1 weight percent, more preferably from 0.1 to about 0.75 weight percent, and even more preferably from about 0.1 to about 0.5 weight percent.

[0080] The amount of titanium present in the alloys of this invention, if any, may vary from about 0.05 to about 2 weight percent, more preferably from 0.1 to about 1 weight percent, and even more preferably from about 0.1 to about 0.5 weight percent.

[0081] The amount of hafnium present in the alloys of this invention, if any, may vary from about 0.05 to about 2 weight percent, more preferably from about 0.1 to about 1 weight percent, and even more preferably from about 0.1 to about 0.5 weight percent.

[0082] The amount of niobium present in the alloys of this invention, if any, may vary from about 0.05 to about 1 weight percent, more preferably from about 0.1 to about 0.75 weight percent, and even more preferably from about 0.1 to about 0.5 weight percent.

[0083] In order to have the best properties for the alloys of this invention, it is desirable to limit the amount of other elements. Specific elements that should be reduced or eliminated include no more than about 0.1 weight percent iron, about 0.1 weight percent chromium, about 0.1 weight percent manganese, about 0.1 weight percent vanadium, about 0.1 weight percent cobalt, and about 0.1 weight percent nickel. The total quantity of additional elements should not exceed about 1% by weight, including the above listed impurities and other elements.

[0084] Other additions in the alloys of this invention include at least one of about 0.001 weight percent to about 0.10 weight percent sodium, about 0.001 weight percent to about 0.10 weight calcium, about 0.001 weight percent to about 0.10 weight percent strontium, about 0.001 weight percent to about 0.10 weight percent antimony, about 0.001 weight percent to about 0.10 weight percent barium and about 0.001 weight percent to about 0.10 weight percent phosphorus. These are added to refine the microstructure of the eutectic phase and the primary magnesium or lithium morphology and size.

[0085] These aluminum alloys may be made by any and all consolidation and fabrication processes known to those in the art such as casting (without further deformation), deformation processing (wrought processing), rapid solidification processing, forging, extrusion, rolling, die forging, powder metallurgy and others. The rapid solidification process should have a cooling rate greater that about 10.sup.3.degree. C./second including but not limited to powder processing, atomization, melt spinning, splat quenching, spray deposition, cold spray, plasma spray, laser melting and deposition, ball milling and cryomilling.

[0086] Additional exemplary aluminum alloys of this invention include, but are not limited to (in weight percent):

[0087] about Al-(2-7)Cu-(0.4-3)Mg-(1-2.5)Li-(0.1-0.35)Sc-(0.2-2.0)Gd;

[0088] about Al-(2-7)Cu-(0.4-3)Mg-(1-2.5)Li-(0.1-4)Er-(0.2-2.0)Gd;

[0089] about Al-(2-7)Cu-(0.4-3)Mg-(1-2.5)Li-(0.2-6)Tm-(0.2-2.0)Gd;

[0090] about Al-(2-7)Cu-(0.4-3)Mg-(1-2.5)Li-(0.2-8)Yb-(0.2-2.0)Gd;

[0091] about Al-(2-7)Cu-(0.4-3)Mg-(1-2.5)Li-(0.2-8)Lu-(0.2-2.0)Gd;

[0092] about Al-(2-7)Cu-(0.4-3)Mg-(1-2.5)Li-(0.1-0.35)Sc-(0.2-2.0)Y;

[0093] about Al-(2-7)Cu-(0.4-3)Mg-(1-2.5)Li-(0.1-4)Er-(0.2-2.0)Y;

[0094] about Al-(2-7)Cu-(0.4-3)Mg-(1-2.5)Li-(0.2-6)Tm-(0.2-2.0)Y;

[0095] about Al-(2-7)Cu-(0.4-3)Mg-(1-2.5)Li-(0.2-8)Yb-(0.2-2.0)Y;

[0096] about Al-(2-7)Cu-(0.4-3)Mg-(1-2.5)Li-(0.2-8)Lu-(0.2-2.0)Y;

[0097] about Al-(2-7)Cu-(0.4-3)Mg-(1-2.5)Li-(0.1-0.35)Sc-(0.1-0.75)Zr;

[0098] about Al-(2-7)Cu-(0.4-3)Mg-(1-2.5)Li-(0.1-4)Er-(0.1-0.75)Zr;

[0099] about Al-(2-7)Cu-(0.4-3)Mg-(1-2.5)Li-(0.2-6)Tm-(0.1-0.75)Zr;

[0100] about Al-(2-7)Cu-(0.4-3)Mg-(1-2.5)Li-(0.2-8)Yb-(0.1-0.75)Zr;

[0101] about Al-(2-7)Cu-(0.4-3)Mg-(1-2.5)Li-(0.2-8)Lu-(0.1-0.75)Zr;

[0102] about Al-(2-7)Cu-(0.4-3)Mg-(1-2.5)Li-(0.1-0.35)Sc-(0.1-1.0)Ti;

[0103] about Al-(2-7)Cu-(0.4-3)Mg-(1-2.5)Li-(0.1-0.5)Er-(0.1-1.0)Ti;

[0104] about Al-(2-7)Cu-(0.4-3)Mg-(1-2.5)Li-(0.2-6)Tm-(0.1-1.0)Ti;

[0105] about Al-(2-7)Cu-(0.4-3)Mg-(1-2.5)Li-(0.2-8)Yb-(0.1-1.0)Ti;

[0106] about Al-(2-7)Cu-(0.4-3)Mg-(1-2.5)Li-(0.1-4)-Lu-(0.1-1.0)Ti;

[0107] about Al-(2-7)Cu-(0.4-3)Mg-(1-2.5)Li-(0.1-0.35)Sc-(0.1-1.0)Hf;

[0108] about Al-(2-7)Cu-(0.4-3)Mg-(1-2.5)Li-(0.1-4)Er-(0.1-1.0)Hf;

[0109] about Al-(2-7)Cu-(0.4-3)Mg-(1-2.5)Li-(0.2-6)Tm-(0.1-1.0)Hf;

[0110] about Al-(2-7)Cu-(0.4-3)Mg-(1-2.5)Li-(0.2-8)Yb-(0.1-1.0)Hf;

[0111] about Al-(2-7)Cu-(0.4-3)Mg-(1-2.5)Li-(0.2-8)Lu-(0.1-1.0)Hf;

[0112] about Al-(2-7)Cu-(0.4-3)Mg-(1-2.5)Li-(0.1-0.35)Sc-(0.1-0.75)Nb;

[0113] about Al-(2-7)Cu-(0.4-3)Mg-(1-2.5)Li-(0.1-4)Er-(0.1-0.75)Nb;

[0114] about Al-(2-7)Cu-(0.4-3)Mg-(1-2.5)Li-(0.2-6)Tm-(0.1-0.75)Nb;

[0115] about Al-(2-7)Cu-(0.4-3)Mg-(1-2.5)Li-(0.2-8)Yb-(0.1-0.75)Nb; and

[0116] about Al-(2-7)Cu-(0.4-3)Mg-(1-2.5)Li-(0.2-8)Lu-(0.1-0.75)Nb.

[0117] Preferred examples of similar alloys to these are alloys with about 3.5 to about 6.5 weight percent copper, alloys with about 0.5 to about 2.0 weight percent magnesium, and alloys with about 1.0 to about 2.0 weight percent lithium.

[0118] Even more preferred exemplary aluminum alloys of this invention include, but are not limited to (in weight percent):

[0119] about Al-(3.5-6.5)Cu-(0.5-2)Mg-(1-2)Li-(0.1-0.25)Sc-(0.2-2.0)Gd;

[0120] about Al-(3.5-6.5)Cu-(0.5-2)Mg-(1-2)Li-(0.2-2)Er-(0.2-2.0)Gd;

[0121] about Al-(3.5-6.5)Cu-(0.5-2)Mg-(1-2)Li-(0.2-4)Tm-(0.2-2.0)Gd;

[0122] about Al-(3.5-6.5)Cu-(0.5-2)Mg-(1-2)Li-(0.2-4)Yb-(0.2-2.0)Gd;

[0123] about Al-(3.5-6.5)Cu-(0.5-2)Mg-(1-2)Li-(0.2-4)Lu-(0.2-2.0)Gd;

[0124] about Al-(3.5-6.5)Cu-(0.5-2)Mg-(1-2)Li-(0.1-0.25)Sc-(0.5-2.0)Y;

[0125] about Al-(3.5-6.5)Cu-(0.5-2)Mg-(1-2)Li-(0.2-2)Er-(0.5-2.0)Y;

[0126] about Al-(3.5-6.5)Cu-(0.5-2)Mg-(1-2)Li-(0.2-4)Tm-(0.5-2.0)Y;

[0127] about Al-(3.5-6.5)Cu-(0.5-2)Mg-(1-2)Li-(0.2-4)Yb-(0.5-2.0)Y;

[0128] about Al-(3.5-6.5)Cu-(0.5-2)Mg-(1-2)Li-(0.2-4)Lu-(0.5-2.0)Y;

[0129] about Al-(3.5-6.5)Cu-(0.5-2)Mg-(1-2)Li-(0.1-0.25)Sc-(0.1-0.5)Zr;

[0130] about Al-(3.5-6.5)Cu-(0.5-2)Mg-(1-2)Li-(0.2-2)Er-(0.1-0.5)Zr;

[0131] about Al-(3.5-6.5)Cu-(0.5-2)Mg-(1-2)Li-(0.2-4)Tm-(0.1-0.5)Zr;

[0132] about Al-(3.5-6.5)Cu-(0.5-2)Mg-(1-2)Li-(0.2-4)Yb-(0.1-0.5)Zr;

[0133] about Al-(3.5-6.5)Cu-(0.5-2)Mg-(1-2)Li-(0.2-4)Lu-(0.1-0.5)Zr;

[0134] about Al-(3.5-6.5)Cu-(0.5-2)Mg-(1-2)Li-(0.1-0.25)Sc-(0.1-0.5)Ti;

[0135] about Al-(3.5-6.5)Cu-(0.5-2)Mg-(1-2)Li-(0.1-0.5)Er-(0.1-0.5)Ti;

[0136] about Al-(3.5-6.5)Cu-(0.5-2)Mg-(1-2)Li-(0.2-4)Tm-(0.1-0.5)Ti;

[0137] about Al-(3.5-6.5)Cu-(0.5-2)Mg-(1-2)Li-(0.2-4)Yb-(0.1-0.5)Ti;

[0138] about Al-(3.5-6.5)Cu-(0.5-2)Mg-(1-2)Li-(0.1-4)-Lu-(0.1-0.5)Ti;

[0139] about Al-(3.5-6.5)Cu-(0.5-2)Mg-(1-2)Li-(0.1-0.25)Sc-(0.1-0.5)Hf;

[0140] about Al-(-(3.5-6.5)Cu-(0.5-2)Mg-(1-2)Li-(0.2-2)Er-(0.1-0.5)Hf;

[0141] about Al-(3.5-6.5)Cu-(0.5-2)Mg-(1-2)Li-(0.2-4)Tm-(0.1-0.5)Hf;

[0142] about Al-(3.5-6.5)Cu-(0.5-2)Mg-(1-2)Li-(0.2-4)Yb-(0.1-0.5)Hf;

[0143] about Al-(3.5-6.5)Cu-(0.5-2)Mg-(1-2)Li-(0.2-4)Lu-(0.1-0.5)Hf;

[0144] about Al-(3.5-6.5)Cu-(0.5-2)Mg-(1-2)Li-(0.1-0.25)Sc-(0.1-0.5)Nb;

[0145] about Al-(3.5-6.5)Cu-(0.5-2)Mg-(1-2)Li-(0.2-2)Er-(0.1-0.5)Nb;

[0146] about Al-(3.5-6.5)Cu-(0.5-2)Mg-(1-2)Li-(0.2-4)Tm-(0.1-0.5)Nb;

[0147] about Al-(3.5-6.5)Cu-(0.5-2)Mg-(1-2)Li-(0.2-4)Yb-(0.1-0.5)Nb; and

[0148] about Al-(3.5-6.5)Cu-(0.5-2)Mg-(1-2)Li-(0.2-4)Lu-(0.1-0.5)Nb.

[0149] Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed