Implants with Helical Supports and Methods of Use for Spacing Vertebral Members

Melkent; Anthony J. ;   et al.

Patent Application Summary

U.S. patent application number 12/892597 was filed with the patent office on 2011-01-20 for implants with helical supports and methods of use for spacing vertebral members. This patent application is currently assigned to Warsaw Orthopedic, Inc.. Invention is credited to Jonathan M. Dewey, Anthony J. Melkent.

Application Number20110015746 12/892597
Document ID /
Family ID39585089
Filed Date2011-01-20

United States Patent Application 20110015746
Kind Code A1
Melkent; Anthony J. ;   et al. January 20, 2011

Implants with Helical Supports and Methods of Use for Spacing Vertebral Members

Abstract

The present application is directed to implants with inner and outer members positioned in a telescoping arrangement. The members may include helical supports to selectively adjust the height of the implant. The helical supports offer a large contact surface to prevent inadvertent reduction of the length due to application of a compressive force. In some embodiments, the helical support members may be shaped to facilitate movement of the members to increase the height. The shape may further prevent movement that would decrease the height. Some embodiments may also prevent relative rotation of the members. In use, the inner and outer members are moved apart to adjust the height of the implant to space apart the vertebral members. The members may further be constructed to prevent the members from moving together after insertion between the vertebral members.


Inventors: Melkent; Anthony J.; (Memphis, TN) ; Dewey; Jonathan M.; (Memphis, TN)
Correspondence Address:
    MEDTRONIC;Attn: Noreen Johnson - IP Legal Department
    2600 Sofamor Danek Drive
    MEMPHIS
    TN
    38132
    US
Assignee: Warsaw Orthopedic, Inc.
Warsaw
IN

Family ID: 39585089
Appl. No.: 12/892597
Filed: September 28, 2010

Related U.S. Patent Documents

Application Number Filing Date Patent Number
11549791 Oct 16, 2006 7815683
12892597

Current U.S. Class: 623/17.16
Current CPC Class: A61F 2002/3055 20130101; A61F 2002/30224 20130101; A61F 2230/0021 20130101; A61F 2002/30593 20130101; A61F 2/44 20130101; A61F 2220/0091 20130101; A61F 2002/30522 20130101; A61F 2002/30405 20130101; A61F 2220/0025 20130101; A61F 2230/0023 20130101; A61F 2002/30471 20130101; A61F 2002/30601 20130101; A61F 2002/30154 20130101; A61F 2002/30841 20130101; A61F 2002/30156 20130101; A61F 2002/30594 20130101; A61F 2230/0069 20130101
Class at Publication: 623/17.16
International Class: A61F 2/44 20060101 A61F002/44

Claims



1. An implant for spacing apart vertebral members comprising: an outer member having an inner surface; a first helical support that wraps around the inner surface of the outer member; an inner member positioned within the outer member and having an outer surface; a second helical support that wraps around the outer surface of the inner member; the outer and inner members being in telescoping arrangement with the first and second helical supports engaging together; at least one of the first and second helical supports includes a plurality of teeth that are spaced apart by cuts, the plurality of teeth extend radially outward beyond a floor of the cuts.

2. The implant of claim 1, wherein each of the inner and outer members are cylindrical with circular cross-sectional shapes.

3. The implant of claim 1, wherein both of the first and second helical supports include a plurality of teeth.

4. The implant of claim 1, wherein one of the inner and outer members includes an additional helical support that wraps around the member in an opposite direction.

5. The implant of claim 1, wherein the plurality of teeth each include a diamond shape with four straight sides.

6. The implant of claim 5, wherein the plurality of teeth each include an angle of incidence of about 45.degree. formed between a superior side and a horizontal line that extends through the tooth.

7. The implant of claim 5, wherein the plurality of teeth include a flat top surface.

8. The implant of claim 1, wherein the outer member includes a longitudinal slot that extends inward from an end, the slot includes a pair of side walls and a back wall opposite from the end.

9. The implant of claim 1, wherein the plurality of teeth each include a superior side and an inferior side with the superior side extending radially outward at a different angle than the inferior side.

10. The implant of claim 1, wherein the inner and outer members include a common cross-sectional shape.

11. The implant of claim 1, wherein the outer member is formed from at least two separate pieces.

12. An implant for spacing apart vertebral members comprising: an outer member comprising a first helical support that extends along an inner side of the outer member; an inner member positioned in an interior of the outer member, the inner member comprising a second helical support that extends along an outer side of the inner member; each of the outer and inner members including opposing ends and one or more side walls that extend between the ends, at least one of the side walls of each of the outer and inner members being flat; the inner and outer members being axially movable to adjust a height of the implant with the first and second helical supports engaging together to maintain the height.

13. The implant of claim 12, wherein at least one of the first and second helical supports comprises a plurality of teeth that are separated by one or more cuts, the plurality of teeth extending radially outward beyond a floor of the cuts.

14. The implant of claim 12, wherein the outer member and the inner member have a common cross-sectional shape.

15. An implant for spacing apart vertebral members comprising: an outer member having an inner surface; a first helical support on the inner surface of the outer member; an inner member positioned in the outer member and having an outer surface; a second helical support on the outer surface of the inner member; the outer and inner members being in a telescoping arrangement with the first and second helical supports engaged together; the first and second helical supports shaped to prevent relative rotation between the inner and outer members.

16. The implant of claim 15, wherein at least one of the first and second helical supports includes a plurality of teeth that are spaced apart by cuts, the plurality of teeth extending radially outward beyond a floor of the cuts.

17. The implant of claim 15, wherein each of the inner and outer members are cylindrical with circular cross-sectional shapes.

18. The implant of claim 15, wherein one of the inner and outer members includes an additional helical support that wraps around the member in an opposite direction.

19. The implant of claim 15, wherein the outer member includes a longitudinal slot that extends inward from an end of the outer member, the slot having a pair of side walls and a back wall opposite from the end.

20. The implant of claim 15, wherein the plurality of teeth each include a superior side and an inferior side with the superior side extending radially outward at a different angle than the inferior side.
Description



RELATED APPLICATION

[0001] This application is a continuation of co-pending application Ser. No. 11/549,791, filed on Oct. 16, 2006, and herein incorporated by reference in its entirety.

BACKGROUND

[0002] The present application is directed to devices and methods for spacing vertebral members, and more particularly, to intervertebral implants with inner and outer members each with one or more helical supports to selectively adjust the height of the implant.

[0003] The spine is divided into four regions comprising the cervical, thoracic, lumbar, and sacrococcygeal regions. The cervical region includes the top seven vertebral members identified as C1-C7. The thoracic region includes the next twelve vertebral members identified as T1-T12. The lumbar region includes five vertebral members L1-L5. The sacrococcygeal region includes nine fused vertebral members that form the sacrum and the coccyx. The vertebral members of the spine are aligned in a curved configuration that includes a cervical curve, thoracic curve, and lumbosacral curve. Intervertebral discs are positioned between the vertebral members and permit flexion, extension, lateral bending, and rotation.

[0004] Various conditions may lead to damage of the intervertebral discs and/or the vertebral members. The damage may result from a variety of causes including a specific event such as trauma, a degenerative condition, a tumor, or infection. Damage to the intervertebral discs and vertebral members can lead to pain, neurological deficit, and/or loss of motion.

[0005] Various procedures include replacing the entirety or a section of a vertebral member, the entirety or a section of an intervertebral disc, or both. One or more replacement implants may be inserted to replace the damaged vertebral members and/or discs. The implants reduce or eliminate the pain and neurological deficit, and increase the range of motion.

SUMMARY

[0006] The present application is directed to implants for spacing apart vertebral members. The implants may include an outer member having an inner surface. A first helical support may wrap around the inner surface of the outer member. An inner member may be positioned within the outer member and have an outer surface. A second helical support may wrap around the outer surface of the inner member. The outer and inner members may be in telescoping arrangement with the first and second helical supports engaging together. At least one of the first and second helical supports may include a plurality of teeth that are spaced apart by cuts with the plurality of teeth extending radially outward beyond a floor of the cuts.

[0007] The implants may also include an outer member having a first helical support that extends along an inner side of the outer member. An inner member may be positioned in an interior of the outer member. The inner member may include a second helical support that extends along an outer side of the inner member. Each of the outer and inner members may include opposing ends and one or more side walls that extend between the ends. At least one of the side walls of each of the outer and inner members may be flat. The inner and outer members may be axially movable to adjust a height of the implant with the first and second helical supports engaging together to maintain the height.

[0008] The implants may also include an outer member having an inner surface with a first helical support on the inner surface of the outer member. An inner member may be positioned in the outer member and have an outer surface. A second helical support may be on the outer surface of the inner member. The outer and inner members may be in a telescoping arrangement with the first and second helical supports engaged together. The first and second helical supports may be shaped to prevent relative rotation between the inner and outer members.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1 is a perspective view of an implant according to one embodiment.

[0010] FIG. 2 is a perspective view of an implant according to one embodiment.

[0011] FIG. 3 is a perspective view of an implant according to one embodiment.

[0012] FIG. 4 is a perspective view of an outer member according to one embodiment.

[0013] FIG. 5 is a perspective view of an outer member according to one embodiment.

[0014] FIG. 6 is a perspective view of an outer member according to one embodiment.

[0015] FIG. 7 is a side view of an inner member according to one embodiment.

[0016] FIG. 8 is a perspective view of an inner member according to one embodiment.

[0017] FIG. 9 is a section view of an outer member according to one embodiment.

[0018] FIG. 10A is a perspective view of an inner member according to one embodiment.

[0019] FIG. 10B is a detail view of a portion of the inner member of FIG. 10A.

[0020] FIG. 11 is a cut-away view of an inner member within an outer member according to one embodiment.

[0021] FIGS. 12A, 12B, and 12C are side schematic views illustrating relative positions of inner and outer members according to one embodiment.

[0022] FIG. 13 is a partial schematic view of helical supports according to one embodiment.

[0023] FIG. 14 is a side view of an extension positioned within mating slots according to one embodiment.

[0024] FIG. 15 is a side view of an extension according to one embodiment.

DETAILED DESCRIPTION

[0025] The present application is directed to implants and methods of spacing apart vertebral members. The implants may be used for replacement of a vertebral member such as during a corpectomy procedure, replacement of an intervertebral disc during a discectomy procedure, or replacement of both a vertebral member and intervertebral disc. The implants are constructed of inner and outer members that include helical supports for relative movement in a first direction to selectively adjust a height of the implant. The supports engage together to prevent the relative movement of the members in a second direction after insertion within the patient that would decrease the height of the implant.

[0026] FIG. 1 illustrates one embodiment of an implant 10. The implant 10 includes inner and outer members 20, 30 arranged in a telescoping configuration. Helical supports are positioned on the exterior of the inner member 20 and interior of the outer member 30. The helical supports maintain the height H of the implant 10 after insertion within the patient. The supports also provide for relative movement of the members 20, 30 in an outward direction to increase the height H, and prevent or restrict relative movement of the members 20, 30 in an inward direction that would decrease the implant height.

[0027] Members 20, 30 may include a variety of different cross-sectional shapes and sizes. The shapes and sizes of the members 20, 30 provide for relative axial movement to adjust the height H, and also for the helical supports to engage together. FIG. 1 illustrates an embodiment with tubular members 20, including a circular cross-sectional shape. FIG. 2 illustrates an embodiment with a rectangular cross-sectional shape, and FIG. 3 includes a triangular cross-sectional shape. In these embodiments, the cross-sectional shapes of the members 20, 30 are the same. In other embodiments, the shapes may be different provided they allow for axial movement and for engagement of the helical supports.

[0028] One or both members 20, 30 may be constructed as a single piece such as illustrated in FIG. 1. Members 20, 30 may also be constructed from multiple pieces as illustrated in FIG. 4. In this embodiment, member 30 comprises first and second sections 130, 131 connected together with one or more fasteners 132. Each of the members 130, 131 are semi-cylindrical and connect together to form the overall cylindrical member 30. The connection may provide for the members 130, 131 to pivot about the fastener(s) 132 to provide ratcheting action during axial movement of the members 20, 30 as will be explained in detail.

[0029] One or more bands 86 may also attach multiple sections of the members 20, 30 together. FIG. 5 includes a pair of bands 86 that extend around sections 120, 121, and 122 to form member 20. Bands 86 may be constructed of flexible or inflexible materials.

[0030] Outer member 30 includes a body 31 with a hollow interior 32. One or more slots 33 may extend along a longitudinal length of the body 31. The slots 33 allow the body 31 to move radially in a ratcheting manner during movement of the members 20, 30 as will be explained below. In the embodiment of FIG. 6, two slots 33 extend axially along a section of the length and are positioned on opposing sides of the body 31. A hinge 39 may be positioned at the end of the slots 33. Hinge 39 may include an enlarged opening integral with the slot 33 for ratcheting motion of the slotted body. In some embodiments as illustrated in FIGS. 2 and 3, slots 33 are positioned in the corners of the polygonal outer members 30.

[0031] Inner member 20 is sized to fit within the outer member 30. Timer member 20 includes a body 21 with a hollow interior 22. A centerline of the inner member 20 is substantially aligned with a centerline of the outer member 30. Inner member 20 may be the same or different height as the outer member 30.

[0032] Endplates 50 may be positioned on one or more of the members 20, 30 to contact the vertebral members as illustrated in FIG. 1. The endplates 50 may include a variety of shapes and sizes depending upon the context of use. In one embodiment, an opening 51 is positioned on one or both endplates 50. Opening 51 leads into the interiors 22, 32 of the members 20, 30. Graft material may be placed within the center of the implant 10 to facilitate bone growth and fusion with the vertebral members. In another embodiment, the members 20, 30 directly contact the vertebral members (i.e., no endplates 50). The outer surfaces of the endplates 50 or members 20, 30 may include teeth to bite into the vertebral members and maintain the position of the implant 10. Teeth may include a variety of shapes and sizes. The outer surfaces may also include a roughened surface to facilitate contact with the vertebral member.

[0033] Helical supports 40 extend from the exterior of the inner member 20 and the interior of the outer member 30. The helical supports 40 engage together to maintain the height H of the implant 10 under a compressive load. The helical supports 40 may also allow for outward axial movement of the members 20, 30 to enlarge the height as necessary. Helical supports 40 may include a variety of shapes and sizes. The helical supports on the members 20, 30 may be the same or different, may continuously extend around the members 20, 30, or may be discontinuous comprising one or more discrete sections. Further, multiple helical supports 40 may be positioned on one or both members 20, 30.

[0034] FIG. 7 illustrates one embodiment of a helical support 40 extending around the inner member 20. Support 40 includes a helical spline 41. Wraps of the spline 41 are separated by a cut 42. Spline 41 includes a thickness t defined between superior and inferior sides 43, 44. The distance between wraps of the spline 41, and the angle of the spline 41 may vary depending upon the context. FIG. 8 illustrates a similar embodiment with a helical spline 41 separated by a cut 42. The thickness t of the spline 41 is greater and the cut 42 is narrower than that of FIG. 7.

[0035] Multiple helical supports 40 may extend around the members 20, 30. FIG. 9 includes a first helical spline 41a extending in a first direction, and second helical spline 41b in a second direction. Each spline 41a, 41b includes a superior side 43 and an inferior side 44. Cuts 42 are positioned between the splines 41a, 41b. In this embodiment, splines 41a, 41b are substantially the same shape and size. In other embodiments, the splines 41a, 41b may be different.

[0036] Helical supports 40 may also include teeth 45 as illustrated in FIGS. 10A and 10B. Teeth 45 each include one or more superior sides 43 and inferior sides 44. Cuts 42 are positioned adjacent to each of the sides 43, 44. Teeth 45 may further include an outer surface that in this embodiment is substantially smooth. The teeth 45 and cuts 42 are spaced in helical patterns along the body 21. The teeth 45 and cuts 42 generally form a first helical spline that wraps around the body 21 in a first direction, and a second helical spline that wraps around the body in a second direction.

[0037] In some embodiments, the helical supports 40 are the same on each of the members 20, 30. By way of example, each of the members 20, 30 may include a plurality of teeth 45. Alternatively, the helical supports 40 may be different. FIG. 11 illustrates an embodiment with the members 20, 30 including different helical supports 40 with the inner member 20 including teeth 45 that engage with splines 41a, 41b of the outer member 30.

[0038] Movement of the inner member 20 relative to the outer member 30 adjusts the height H of the implant 10. FIGS. 12A-12C illustrate one embodiment of this movement that expands the height of the implant 10 from H to H'. In this embodiment, the inner member 20 includes teeth 45 and the outer member 30 includes a pair of splines 41. As illustrated in FIG. 12A, implant 10 includes a first height H. The splines 41 and teeth 45 are engaged together to maintain the first height H with the inferior sides 44 of the splines 41 in contact against the superior sides 44 of the teeth 45.

[0039] The sides 43, 44 of the helical supports 40 may be configured to facilitate outward movement, and prevent inward movement. The inferior sides 44 of the splines 41 and superior sides 43 of the teeth 45 are disposed at a steep angle that prevents inward movement when a compressive load is applied to the implant 10. In this embodiment, sides 44, 45 each extend outward from their respective bodies at substantially 90.degree.. In another embodiment, the sides 44, 45 are undercut to engage together and prevent inward movement.

[0040] An increase in height is accomplished by applying an outward distraction force along the line C. The force causes the outer member 30 to move outward relative to the inner member 20 and helical support members 40 to slide across each other as illustrated in FIG. 12B. Specifically, the splines 41 and teeth 45 move from the opposing cuts 42 and slide across each other. This outward movement of the support members 40 is facilitated by the superior sides 43 of the splines 41 and inferior sides 44 of the teeth 45 being disposed at a shallow angle. The movement further causes the outer surface of the splines 41 to slide along the surfaces of the teeth 45. In one embodiment, each of the outer surfaces is substantially smooth to facilitate the sliding movement.

[0041] The outward movement may further be assisted by the expansion of the body 31. This expansion may be caused by the flexibility of one or both of the members 20, 30. Expansion may also be caused by a radial expansion of the outer member 30 due to the one or more longitudinal slots 33. The slots 33 provide for the outer member 30 to radially expand thus allowing the helical support member 40 on the outer member 30 to engage and disengage with the inner member 20. In large expansion movements, the outer member 30 moves in a ratcheting motion as the support member 40 moves past the opposing support member 40 on the inner member 20. Using FIG. 12B as an example, the ratcheting motion is caused as the splines 41 slide past the multiple teeth 45 and cuts 42. The movement of the support members 40 may further provide tactile feedback to the surgeon to determine the expansion of the implant 10.

[0042] FIG. 12C illustrates the outer member 30 attached at a higher location along the inner member 20 with the implant 10 now including a greater height H'. The splines 41 are again engaged within the teeth 45 to prevent inward movement.

[0043] Slots 33 may be positioned on the outer member 30 for outward radial movement as described in FIGS. 12A-12C. In another embodiment, one or more slots 33 may be positioned along the longitudinal length of the inner member 20. Slots 33 cause the inner member 20 to move radially inwardly thus allowing for the helical supports 40 to slide past one another.

[0044] The helical supports 40 may not extend along sections of the members 20, 30 that are not slotted. As illustrated in FIG. 9, the splines 41a, 41b extend from a lower edge of the body to the hinges 39. The section above the hinges 39 may not allow for radial movement. Helical supports 40 positioned in this non-slotted section may not be able to become disengaged from the corresponding helical supports 40 and therefore prevent axial expansion of the implant 10.

[0045] The implant 10 may also prevent the relative rotation of the members 20, 30. In one embodiment, rotation is prevented due to the shape of the inner members 20, 30. FIGS. 2 and 3 illustrate embodiments with the shapes of the members 20, 30 preventing rotation.

[0046] One embodiment includes one or more extensions 60 that extend between the members 20, 30. Extensions 60 fit within a slot 33 to prevent rotation and allow for axial movement. FIG. 6 illustrates one embodiment with the extension 60 extending inward into the interior 32 of the outer member 30. The extension 60 is sized to fit within a longitudinal slot 33 in the inner member 20 such as a slot 33 illustrated in FIG. 8. The extension 60 may include a variety of shapes and sizes to fit within the slot 33. Extensions 60 may extend from either of the members 20, 30 to fit within opposing slots 33. Further, multiple extensions 60 may be positioned along the members 20, 30 to fit within one or more slots 33.

[0047] In another embodiment as illustrated in FIG. 14, extension 60 is a separate member that fits within slots 33a, 33b. The extension 60 may move axially within the combined slots 33a, 33b. Extension 60 allows for axial movement of the members 20, 30, yet prevents rotation. FIG. 15 illustrates an embodiment of the extension 60 that includes a core 87 and opposing wings 86. Core 87 is sized to move along the slots 33a, 33b, while the wings 86 prevent escape.

[0048] The members 20, 30 may include a stop mechanism to control the extent of axial movement in the outward direction. In one embodiment, each member 20, 30 includes a rim that contact together and prevent further axial movement.

[0049] Rotation prevention may also be caused by multiple helical supports 40 that wrap in different directions around one of the members 20, 30. The opposing helical supports 40 bind together to prevent relative rotation.

[0050] The angle of incidence .alpha. is formed between a superior side 43 and a horizontal line that extends through the helical support 40 as illustrated in FIG. 10B. The angle of incidence .alpha. of the helical supports 40 may vary depending upon the context. In one embodiment, the angle .alpha. is about 45.degree..

[0051] One or more fasteners 92 may be inserted within the members 20, 30 to lock the implant height as illustrated in FIG. 12C. Fasteners 92 are inserted through the outer member 30 to contact the inner member 20. The fasteners 92 may contact the outer surface of the inner member 20, or extend into an aperture in the body 21. Fasteners 92 may include a variety of configurations including but not limited to screws, rivets, pins, and clips.

[0052] In one embodiment as illustrated in FIG. 10A, helical supports 40 are positioned about the entirety of the members 20, 30. In other embodiments, the inner member 20 may include areas on the members 20, 30 that do not include helical supports 40. The size of these areas may vary depending upon the context of use.

[0053] The shapes and orientations of the superior and inferior sides 43, 44 may vary. In one embodiment as illustrated in FIGS. 12A-12C, inferior edges 44 of the teeth 45 and superior edges 43 of the splines include a shallow angle. In another embodiment as illustrated in FIG. 13, each side 43, 44 extends outward from the respective body 21, 31 at a substantially perpendicularly angle. This configuration may provide a more secure engagement between the supports 40, but may require more axial force to adjust the height.

[0054] The implants 10 may be inserted into the spine from a variety of approaches. One embodiment includes accessing the spine from an anterior approach. Other applications contemplate other approaches, including posterior, postero-lateral, antero-lateral and lateral approaches to the spine. Further, the implants 10 may be used with the various regions of the spine, including the cervical, thoracic, lumbar and/or sacral regions.

[0055] In one embodiment as illustrated in FIG. 1, the outer member 30 extends completely around the inner member 20. In another embodiment, the outer member 30 may extend around a section of the inner member 20. A slot 33 may extend the length of the outer member 30 from a top edge to a bottom edge thereby forming an open section.

[0056] Spatially relative terms such as "under", "below", "over", "inferior", "superior", and the like, are used for ease of description to explain the positioning of one element relative to a second element. These terms are intended to encompass different orientations of the device in addition to different orientations than those depicted in the figures. Further, terms such as "first", "second", and the like, are also used to describe various elements, regions, sections, etc and are also not intended to be limiting. Like terms refer to like elements throughout the description.

[0057] As used herein, the terms "having", "containing", "including", "comprising" and the like are open ended terms that indicate the presence of stated elements or features, but do not preclude additional elements or features. The articles "a", "an" and "the" are intended to include the plural as well as the singular, unless the context clearly indicates otherwise.

[0058] The present invention may be carried out in other specific ways than those herein set forth without departing from the scope and essential characteristics of the invention. In the embodiments described above, the inner member 20 and the outer member 30 are substantially straight. Members 20, 30 may also be curved. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive, and all changes coming within the meaning and equivalency range of the appended claims are intended to be embraced therein.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed