Electrically Conductive Composition

Van Veen; Peter Adrianus ;   et al.

Patent Application Summary

U.S. patent application number 12/722891 was filed with the patent office on 2010-08-19 for electrically conductive composition. Invention is credited to Corina Prent, Peter Adrianus Van Veen.

Application Number20100209599 12/722891
Document ID /
Family ID40452284
Filed Date2010-08-19

United States Patent Application 20100209599
Kind Code A1
Van Veen; Peter Adrianus ;   et al. August 19, 2010

Electrically Conductive Composition

Abstract

An electrically conductive composition comprising a binder and filler particles in which at least a portion of the particles are silver-plated. In one embodiment the composition comprises a binder such as a polyurethane, electrically conductive filler particles, silver-plated filler particles and solvent.


Inventors: Van Veen; Peter Adrianus; (St. Netherlands, NL) ; Prent; Corina; (Steenwijk, NL)
Correspondence Address:
    Henkel Corporation
    10 Finderne Avenue
    Bridgewater
    NJ
    08807
    US
Family ID: 40452284
Appl. No.: 12/722891
Filed: March 12, 2010

Related U.S. Patent Documents

Application Number Filing Date Patent Number
PCT/US2007/078334 Sep 13, 2007
12722891

Current U.S. Class: 427/126.1 ; 252/503; 252/513; 252/514; 977/773
Current CPC Class: C08K 3/08 20130101; H01B 1/22 20130101; H05K 3/12 20130101; C09D 5/24 20130101; C09D 7/62 20180101; C08K 9/02 20130101; H05K 2201/0218 20130101; C08L 75/04 20130101; H05K 1/095 20130101; C08L 75/04 20130101; C08L 2666/14 20130101; C08L 75/04 20130101; C08L 2666/16 20130101; C08L 75/04 20130101; C08L 2666/04 20130101
Class at Publication: 427/126.1 ; 252/514; 252/513; 252/503; 977/773
International Class: B05D 5/12 20060101 B05D005/12; H01B 1/22 20060101 H01B001/22; H01B 1/02 20060101 H01B001/02; H01B 1/24 20060101 H01B001/24

Claims



1. An electrically conductive composition comprising a binder, and filler particles having a core plated with silver, wherein said composition has a sheet resistivity of less than about 0.100 Ohm/square/25 micron.

2. The conductive composition of claim 1, wherein the core is selected from the group consisting of copper, nickel, palladium, carbon black, carbon fiber, graphite, aluminum, indium tin oxide, glass, polymers, antimony doped tin oxide, silica, alumina, fiber, clay, and mixtures thereof.

3. The conductive composition of claim 2, wherein the core is copper.

4. The conductive composition of claim 1, wherein the binder is selected from the group consisting of polyurethane elastomers, polyesters, phenolic resins, acrylic polymers, acrylic block copolymers, acrylic polymers having tertiary-alkyl amide functionality, polysiloxane polymers, polystyrene copolymers, polyvinyl polymers, divinylbenzene copolymers, polyetheramides, polyvinyl acetals, polyvinyl butyrals, polyvinyl acetols, polyvinyl alcohols, polyvinyl acetates, polyvinyl chlorides, methylene polyvinyl ethers, cellulose acetates, styrene acrylonitriles, amorphous polyolefins, thermoplastic urethanes, polyacrylonitriles, ethylene vinyl acetate copolymers, ethylene vinyl acetate terpolymers, functional ethylene vinyl acetates, ethylene acrylate copolymers, ethylene acrylate terpolymers, ethylene butadiene copolymers and/or block copolymers, styrene butadiene block copolymers, and mixtures thereof.

5. The conductive composition of claim 4, wherein the binder is selected from the group consisting of polyurethane elastomers, polyesters, phenolic resins, copoloymer of polyvinylalcohol, polyvinylacetate and polyvinylchloride, and mixtures thereof.

6. The conductive composition of claim 1, wherein the binder is selected from the group consisting of phenolics, urethanes, phenoxy resins, polyesters, epoxies, melamines and mixtures thereof.

7. The conductive composition of claim 6, wherein the binder is phenolic resins.

8. The conductive composition of claim 1, wherein the composition further comprising electrically conductive filler material selected from the group consisting of silver, copper, gold, palladium, platinum, nickel, gold or silver-coated nickel, carbon black, carbon fiber, graphite, aluminum, indium tin oxide, silver coated copper, silver coated aluminum, metallic coated glass spheres, metallic coated filler, metallic coated polymers, silver coated fiber, silver coated spheres, antimony doped tin oxide, conductive nanospheres, nano silver, nano aluminum, nano copper, nano nickel, carbon nanotubes or mixtures thereof.

9. The conductive composition of claim 1, wherein the composition further comprising surface active agents, surfactants, wetting agents, antioxidants, thixotropes, reinforcement materials, silane functional perfluoroether, phosphate functional perfluoroether, silanes, titanates, wax, phenol formaldehyde, air release agents, flow additives, adhesion promoters, rheology modifiers, surfactants, spacer beads or mixtures thereof.

10. The conductive composition of claim 1, wherein the filler particles comprise in the range of about 20 to about 70 weight percent of the composition.

11. The conductive composition of claim 1, wherein the binder comprises in the range of about 2 to about 40 weight percent of the composition.

12. The conductive composition of claim 8, wherein the electrically conductive filler material comprise in the range of up to about 40 weight percent of the composition.

13. An electrically conductive composition comprising a polyurethane elastomer, one or more silver plated copper particles and at least one solvent.

14. An electronic device comprising the electrically conductive composition of claim 1.

15. A process for making or forming an electronic device with the conductive composition of claim 1 comprising applying the conductive composition by dispensing, stencil, screen rotogravure or flexo printing onto a substrate to form conductive tracts or electronic circuitry, and curing and/or drying said conductive composition at about 120.degree. C. for about 10 minutes.

16. A process for making or forming an electronic device with the conductive composition of claim 13 comprising applying the conductive composition by dispensing, stencil, screen rotogravure or flexo printing onto a substrate to form conductive tracts or electronic circuitry, and curing and/or drying said conductive composition at about 120.degree. C. for about 10 minutes.
Description



CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application is a continuation of International Application No. PCT/US2007/078334 filed Sep. 13, 2007, the contents of which is incorporated herein by reference.

FIELD OF THE INVENTION

[0002] This invention relates to an electrically conductive composition containing silver-plated filler particles.

BACKGROUND OF THE INVENTION

[0003] Silver is utilized as an electrically conductive filler in many commercially available electrically conductive coatings, and encapsulants because its oxide is electrically conductive, and therefore, silver filled systems encounter little or no loss of conductivity during high temperature curing, aging, or other conditions under which the silver may be oxidized. A disadvantage of the use of silver is its high cost and the risk of silver migration within the system.

[0004] The high level of conductivity and low resistance provided by entirely silver-filler based products are not necessary for all conductive material applications. Some applications do not require such high levels of conductivity and low resistance. Copper is another conductive material that may be utilized because it is capable of being processed in forms similar to those in which silver is available, i.e., in powder, dendritic and flake form. The main disadvantage of copper is that its oxide is not conductive, and any surface copper oxide formed during drying or curing limits the conductivity of the system even if close interparticle contact is created. Likewise, many other materials that provide electrical conductivity oxidize under the conditions necessary for formation of a conductive coating.

[0005] There continues to be a need in the art for a more economical electrically conductive composition. The present invention addresses this need.

SUMMARY OF THE PRESENT INVENTION

[0006] The present invention provides an electrically conductive composition comprising a binder, filler particles, in which at least a portion of the filler particles are silver-plated, and optionally, solvent. With the use of silver-plated fillers, the sheet resistivity of the composition is lower than 0.100 Ohm/square/25 micron.

[0007] Another embodiment provides electronic devices manufactured using the electrically conductive composition of the invention.

[0008] Still another embodiment is directed to a process of making or forming an electronic device using the electrically conductive composition of the invention. The process comprises dispensing, for example, by stencil, screen, rotogravure or flexo printing, the electrically conductive composition of the invention onto a substrate to form conductive tracts or electronic circuitry, and then curing and/or drying the composition to obtain conductivity. Exemplary electronic devices that might use these electrically conductive compositions encompass computers and computer equipment, such as printers, fax machines, scanners, keyboards and the like; household appliances; medical sensors; automotive sensors and the like; and personal electronic devices, such as telephones, mobile phones, calculators, remote controls, cameras, CD-players, DVD-players, cassette tape recorders and the like.

DETAILED DESCRIPTION OF THE PRESENT INVENTION

[0009] The binder component of the electrically conductive coating or encapsulant will comprise a thermoplastic system, a thermoset system or a mixture of thermoset and thermoplastic systems.

[0010] The thermoplastic system of the binder component is either a functional or a non-functional thermoplastic polymer. Suitable thermoplastic polymers include, but are not limited to, polyurethane elastomers, polyesters, phenolic resins, acrylic polymers, acrylic block copolymers, acrylic polymers having tertiary-alkyl amide functionality, polysiloxane polymers, polystyrene copolymers, polyvinyl polymers, divinylbenzene copolymers, polyetheramides, polyvinyl acetals, polyvinyl butyrals, polyvinyl acetols, polyvinyl alcohols, polyvinyl acetates, polyvinyl chlorides, methylene polyvinyl ethers, cellulose acetates, styrene acrylonitriles, amorphous polyolefins, thermoplastic urethanes, polyacrylonitriles, ethylene vinyl acetate copolymers, ethylene vinyl acetate terpolymers, functional ethylene vinyl acetates, ethylene acrylate copolymers, ethylene acrylate terpolymers, ethylene butadiene copolymers and/or block copolymers, styrene butadiene block copolymers, and mixtures thereof. Commercially available binder that may be utilized is ESTANE 5703P, which is a polyester-type thermoplastic polyurethane available from Noveon, Ohio, USA; PKHC, which is a phenoxy resin available from Inchem, South Carolina, USA; and UCAR VAGH, which is a copolymer of polyvinylalcohol, polyvinylacetate and polyvinylchloride commercially available from the Dow Chemical Company.

[0011] The thermoset system of the binder component is either a functional or a non-functional thermoset polymer. Suitable thermoset polymers include, but are not limited to, phenolics, urethanes, phenoxy resins, polyesters, epoxies, melamines and mixtures thereof. One commercially available binder that may be utilized is Bakelite Hartz 9132KP, which is a phenolic resin commercially available from Bakelite.

[0012] The total binder content is typically in the range of about 2 to about 50 weight percent of the composition and preferably in the range of about 2 to about 40 weight percent of the composition.

[0013] One or more silver-plated fillers are utilized in the composition. The core of the silver-plated fillers can be electrically conductive or electrically non-conductive. A combination of silver-plated fillers, with electrically conductive core and with electrically non-conductive core, may be used. Exemplary cores include, but are not limited to, copper, nickel, palladium, carbon black, carbon fiber, graphite, aluminum, indium tin oxide, glass, polymers, antimony doped tin oxide, silica, alumina, fiber, clay, and mixtures thereof.

[0014] In one embodiment the core of the silver-plated filler particle is copper. The silver content of the silver-plated filler must be sufficient to provide adequate electrical conductivity and is typically in the range of about 0.2 to about 25 weight percent of the silver-plated filler.

[0015] The one or more silver-plated filler particles comprise in the range of about 1 to about 99 weight percent of the composition and preferably in the range of about 20 to about 70 weight percent of the composition.

[0016] Optionally, one or more electrically conductive filler materials are utilized in the composition in addition to the silver-plated fillers particles. Exemplary conductive filler materials include, but are not limited to, silver, copper, gold, palladium, platinum, nickel, gold or silver-coated nickel, carbon black, carbon fiber, graphite, aluminum, indium tin oxide, silver coated copper, silver coated aluminum, metallic coated glass spheres, metallic coated filler, metallic coated polymers, silver coated fiber, silver coated spheres, antimony doped tin oxide, conductive nanospheres, nano silver, nano aluminum, nano copper, nano nickel, carbon nanotubes and mixtures thereof. The electrically conductive filler material may be the same as or different than the core of any silver-plated filler particle utilized in the composition. The one or more electrically conductive filler materials comprise in the range of about 0 to about 99 weight percent of the composition and preferably in the range of up to about 40 weight percent of the composition.

[0017] The viscosity of the composition can be adjusted with solvents. It is generally preferred that the composition have a low viscosity to enable efficient dispensing, stencil or screen printing of the composition. In one embodiment the composition has a viscosity in the range of about 50 to about 150,000 mPas, and in another embodiment is in the range of about 500 to about 50,000 mPas. The lower range of viscosity, from about 500 to about 4,000 mPas, is preferred for rotogravure or flexo printing of the composition. Higher range of viscosity, from about 3,000 to 50,000 mPas, is preferred for dispensing, stencil or screen printing the composition.

[0018] Exemplary solvents that may be utilized, either separately or in combination, are glycidyl ethers, for example 1,4-butanediol diglycidyl ether; p-tert-butyl-phenyl glycidyl ether, allyl glycidyl ether, glycerol diglycidyl ether, butyldiglycol, 2-(2-butoxyethoxy)-ethylester, butylglycolacetate, acetic acid, 2-butoxyethylester, butylglycol, 2-butoxyethanol, isophorone, 3,3,5 trimethyl-2-cyclohexene-1-one, dimethylsuccinate, dimethylglutarate, dimethyladipate, water, acetic acid, dipropylene glycol (mono)methyl ether, propylacetate, glycidyl ether of alkyl phenol (commercially available from Cardolite Corporation as Cardolite NC513), although other solvents may be utilized.

[0019] Additional ingredients, such as organic additives, may be included in the formulation to provide desired properties. Various additives that may be included are surface active agents, surfactants, wetting agents, antioxidants, thixotropes, reinforcement materials, silane functional perfluoroether, phosphate functional perfluoroether, Canes, titanates, wax, phenol formaldehyde, air release agents, flow additives, adhesion promoters, rheology modifiers, surfactants, spacer beads and mixtures thereof. The ingredients are specifically chosen to obtain the desired balance of properties for the use of the resins utilized in the particular composition. The additional ingredient comprises up to about 20 weight percent of the composition and preferably up to about 10 weight percent of the composition.

[0020] The composition is combined and then applied by dispensing, stencil, screen, rotogravure or flexo printing onto a substrate to form conductive tracts or electronic circuitry, followed by curing and/or drying to produce conductivity. Typically, the composition is cured and/or dried at 120.degree. C. for about 10 minutes. The composition may be cured and/or dried at higher temperatures for less time. In general, these compositions provide sheet resistivity of less than 0.100 Ohm/square/25 .mu.m.

EXAMPLES

[0021] The invention is further illustrated by the following non-limiting example.

[0022] A comparative Sample 1 and Samples A-G were prepared by dissolving the binder in a heated solvent (40.degree. C.) with stirring until a homogenous mixture was formed, The samples were cooled to room temperature, filler was added, and the mixture stirred for an additional 30 minutes. As needed, a 3-roll mill (Buhler) was used to mil the compositions. Each composition was applied as a track of 100.times.2 mm with a thickness of about 5-8 .mu.m on a polyester sheet. The composition was cured and/or dried at 120.degree. C. for 10 minutes, after which the sheet resistance was measured using a Keithley 2000 Multimeter. Sheet resistivity (SR) was calculated by the formula:

SR = R ( tr ) .times. W ( tr ) .times. H ( tr ) L ( tr ) .times. 25 , ##EQU00001##

where

[0023] R(tr)=Resistance track (in Ohm)

[0024] W(tr)=Width of the track (in mm)

[0025] H(tr)=Thickness of the track (in gm)

[0026] L(tr)=Length of the track (in mm)

[0027] The formulations of the compositions and the sheet resistivity for each are reported in Table 1: Compositions and Sheet Resistivity.

TABLE-US-00001 TABLE 1 1 (g) A (g) B (g) C (g) D (g) E (g) F (g) G (g) Formulation Components Binder - ESTANE 5703P.sup.1 5.2 5.2 5.2 5.2 5.4 Binder - UCAR VAGH.sup.2 4.0 4.0 4.0 4.0 4.2 6.5 Binder - PKHC.sup.3 9.1 Binder - Bakelite Hartz 16.0 9132KP.sup.4 Solvent - Dibasicesters.sup.5 40.8 40.8 40.8 40.8 34.3 Solvent - Butylglycolacetate.sup.6 27.3 Solvent - Propylacetate.sup.7 28.5 Solvent - Arcosolv DPM.sup.8 12.6 Filler - Silver flake.sup.9 50.0 30.0 35.0 25.0 Filler - Silver plated copper 20.0 15.0 25.0 ZS-710.sup.10 Filler - Silver plated copper 52.3 63.6 65.0 65.5 NZS 610.sup.11 Organic Additive - BYK 354.sup.12 0.65 Organic Additive - Glycerol.sup.13 5.81 Sheet Resistivity 0.010 0.032 0.024 0.040 0.050 0.032 0.019 0.084 (Ohm/square/25 .mu.m) .sup.1Polyester-type thermoplastic polyurethane available from Noveon, Ohio, USA .sup.2Vinylchloride vinylalcohol vinylacetate copolymer available from Dow Chemical, Belgium .sup.3Phenoxy resin available from Inchem, South Carolina, USA .sup.4Phenolicresin available from Bakelite, Germany .sup.5Mixture of dimethylsuccinate, dimethyladipate and dimethyglutarate available from Keyser & McKay, Netherlands .sup.62(2-butoxy-ethoxy) ethanol available from Chemproha, Netherland .sup.7n-propylacetate available from Chemproha, Netherland .sup.8Dipropylene Glycol (Mono)Methyl Ether available from Arco, Missouri, USA .sup.9Silver flake available from Ferro, Ohio, USA .sup.10Silver plated copper available from Ames Goldsmith, New York, USA .sup.11Silver plated copper available from Ames Goldsmith, New York, USA .sup.12Polyacrylate in solution available from BYK, Germany .sup.131,2,3 propanetriol available from Chemproha, Netherland

[0028] Comparative Sample 1 with silver flake filler had a sheet resistivity of 0.010 Ohms/square/25 .mu.m. Samples made with mixtures of silver flakes and silver plated coppers (Samples A-C) had comparable sheet resistivity to the Comparative Sample 1 and acceptable sheet resistivity, lower than 0.100 Ohm/square/25 micron. Samples made with only silver plated copper, without any silver flakes (Samples D-G), also resulted in comparable sheet resistivity values to Comparative Sample 1, and acceptable sheet resistivity, lower than 0.100 Ohm/square/25 micron. Samples D-G demonstrated that various binder systems may be used to result in comparable sheet resistivity values as Comparative Sample 1, and acceptable sheet resistivity, lower than 0.100 Ohm/square/25 micron.

[0029] Many modifications and variations of this invention can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. The specific embodiments described herein are offered by way of example only, and the invention is to be limited only by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed