Decreasing RUBISCO content of algae and cyanobacteria cultivated in high carbon dioxide

Schatz; Daniella ;   et al.

Patent Application Summary

U.S. patent application number 12/584571 was filed with the patent office on 2010-04-01 for decreasing rubisco content of algae and cyanobacteria cultivated in high carbon dioxide. This patent application is currently assigned to TransAlgae Ltd. Invention is credited to Doron Eisenstadt, Jonathan Gressel, Daniella Schatz, Shai Ufaz.

Application Number20100081177 12/584571
Document ID /
Family ID43733265
Filed Date2010-04-01

United States Patent Application 20100081177
Kind Code A1
Schatz; Daniella ;   et al. April 1, 2010

Decreasing RUBISCO content of algae and cyanobacteria cultivated in high carbon dioxide

Abstract

Algae and cyanobacteria are genetically engineered to have lower RUBISCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) content in order to grow more efficiently at elevated carbon dioxide levels while recycling industrial CO.sub.2 emissions back to products, and so as not to be able to grow outside of cultivation.


Inventors: Schatz; Daniella; (Givataim, IL) ; Gressel; Jonathan; (Rehovot, IL) ; Eisenstadt; Doron; (Haifa, IL) ; Ufaz; Shai; (Givat Ada, IL)
Correspondence Address:
    DODDS & ASSOCIATES
    1707 N STREET NW
    WASHINGTON
    DC
    20036
    US
Assignee: TransAlgae Ltd
Rehovot
IL

Family ID: 43733265
Appl. No.: 12/584571
Filed: September 8, 2009

Related U.S. Patent Documents

Application Number Filing Date Patent Number
61191169 Sep 5, 2008
61191453 Sep 9, 2008

Current U.S. Class: 435/134 ; 435/170; 435/252.3; 435/257.2; 435/41; 435/471
Current CPC Class: C12N 2310/11 20130101; C12N 9/90 20130101; C12N 1/20 20130101; C12N 9/88 20130101; C12P 7/6463 20130101; C12N 2310/14 20130101; C12N 15/1137 20130101; C12N 1/12 20130101; C12P 21/02 20130101; C12Y 401/01039 20130101; C12N 9/16 20130101; C12N 9/93 20130101; C07K 14/62 20130101
Class at Publication: 435/134 ; 435/170; 435/41; 435/252.3; 435/471; 435/257.2
International Class: C12P 7/64 20060101 C12P007/64; C12P 1/04 20060101 C12P001/04; C12P 1/00 20060101 C12P001/00; C12N 1/21 20060101 C12N001/21; C12N 15/74 20060101 C12N015/74; C12N 1/13 20060101 C12N001/13

Claims



1. A method to over produce homologous or heterologous compounds in cyanobacteria or algae cells, said method comprising the steps of: a) Reducing amount of RUBISCO protein in the cells by genetically transforming the cells; b) Transforming the cells with a gene of interest under control of constitutive or inducible promoter to express production of the compound; and c) Cultivating the transgenic cell line in elevated carbon dioxide concentrations.

2. The method of claim 1, wherein reducing the amount of RUBISCO is achieved by transforming the cells with a transformation vector comprising rbcS or rbcL encoding polynucleotides in an antisense or in an RNAi-construct under a constitutive promoter.

3. The method of claim 2, wherein the transformation vector also comprises a polynucleotide sequence encoding the gene of interest.

4. The method of claim 1, wherein the cyanobacteria is selected from the group consisting Synechococcus PCC7002, Synechococcus WH-7803, and Thermosynechococcus elongatus BP-1.

5. The method of claim 4, wherein the cells are transformed by electroporation, microporation or by particle bombardment.

6. (canceled)

7. (canceled)

8. (canceled)

9. The method of claim 1, wherein the gene of interest encodes proteins.

10. The method of claim 9, wherein the proteins are pharmaceutical proteins or industrial proteins.

11. The method of claim 10, wherein the protein is human insulin.

12. The method of claim 10, wherein the protein is thermostable phytase.

13. The method of claim 9, wherein the proteins enhance algal or cyanobacterial growth.

14. The method of claim 13, wherein the proteins are rate limiting enzymes of photosynthesis.

15. The method of claim 14, wherein the enzyme is selected from the group consisting of fructose-1,6,-bisphosphate aldolase, choloplast triosephosphate isomerase and acetyl CoA carboxylase.

16. The method of claim 9, wherein the proteins are storage proteins.

17. The method of claim 16, wherein the protein is 15 Kd zein or BHL8.

18. The method of claim 1, wherein the gene of interest is encoding of production of oils or lipids.

19. The method of claim 18, wherein the gene of interest encodes acetylCo-carboxylase.

20. A method to cultivate algae and cyanobacteria under high CO.sub.2 concentration, wherein the algae and cyanobacteria are genetically modified to express low amounts of RUBISCO protein.

21. A method to prevent establishment of transgenic algal or cyanobacterial cells in the natural environment by down regulating the amount of RUBISCO protein in the cells by genetic modification, whereby the cells become incapable to grow in ambient carbon dioxide concentrations.

22. A transgenic alga or cyanobacterium, transformed with a vector comprising rbcS or rbcL encoding polynucleotides in an antisense or an RNAi-construct under a constitutive promoter; whereby the transgenic alga or cyanobacterium expresses reduced content of RUBISCO protein.

23. The transgenic alga or cyanobacterium of claim 22, wherein the alga or cyanobacterium also transformed to express a gene of interest.

24. The transgenic alga or cyanobacterium of claim 23, wherein the gene of interest and the antisense or RNAi construct are transformed in tandem.

25. The method of claim 1, wherein the alga is selected from the group consisting of Chlamydomon reinhardtii, Pavlova lutheri, Isochrysis CS-177, Nanochloropsis CS-179, Nanochloropsis CS-24 Nanochloropsis salina CS-190, Tetraselmis suecica, Tetraselmis chuii and Nannochloris sp

26. The method of claim 25, wherein the cells are transformed by electroporation, microporation or by particle bombardment.

27. The method of claim 26, wherein the RNAi-construct comprises SEQ ID NO: 1.
Description



PRIORITY

[0001] This application claims priority of the U.S. Provisional applications No. 61/191,169 filed on Sep. 5.sup.th 2008 and 61/191,453 filed on Sep. 9.sup.th 2008.

SEQUENCE LISTING

[0002] This application contains sequence data provided on a computer readable diskette and as a paper version. The paper version of the sequence data is identical to the data provided on the diskette

FIELD OF THE INVENTION

[0003] This invention relates to the field of genetically engineering algae and cyanobacteria to grow more efficiently on industrial waste emissions of carbon dioxide and is applicable for use with algae and cyanobacteria cultured in closed bioreactors and covered or open ponds for producing high value products, as well as biofuels. It builds on integrating principles of genetic engineering, photosynthetic physiology and biochemistry, chemical engineering of bioreactors, and waste emission engineering.

BACKGROUND OF THE INVENTION

[0004] A major breakthrough in the large scale cultivation of algae and cyanobacteria to produce commercially useful products was the discovery that many such species could be cultivated with flue gas (up to 80% CO.sub.2) or even pure CO.sub.2 whereas most other organisms (plants and animals) are "biochemically anaesthetized" at CO.sub.2 levels of 5% or higher, slowing all metabolism. This opened the way for cultivating such organisms on CO.sub.2 emissions to the environment (Murakami and Ikenouchi 1997, Negoro, et al. 1993).

[0005] Cyanobacteria have already begun to be genetically engineered to utilize these elevated CO.sub.2 levels by over expressing genes encoding rate limiting enzymes of the "dark reactions" (CO.sub.2 assimilating reactions that utilize NADPH and ATP from the light reactions) of photosynthesis. Thus, for example, engineering genes from rice encoding for cytosolic fructose-1,6-bisphosphate aldolase and spinach triose phosphate isomerase in cells of a cyanobacterium doubled their activities and greatly increased photosynthetic efficiency and biomass yields (Kang et al. 2005, Ma et al. 2007).

[0006] However, one can only over-express enzymes to a limited extent, as the cell does not have unlimited capacity. Therefore, the existing methods have only a limited capacity and there is a need to improve these methods to enhance the use of elevated carbon dioxide concentration in algal cultures.

SUMMARY OF THE INVENTION

[0007] The instant invention provides a solution to this existing problem by reducing the levels of other enzymes to "make room" for the over expressed, rate limiting enzymes such as fructose-1,6-bisphosphate aldolase (ALD), chloroplast triosephosphate isomerase (TPI) or acetyl CoA carboxylase (ACCase) that enhance sink capacity to utilize fixed carbon dioxide.

[0008] Ribulose-1,5-bisphosphate carboxylase/oxygenase (RUBISCO) is the key photosynthetic enzyme that catalyzes the first step of CO.sub.2 fixation. The chloroplast localized holoenzyme of plants and algae in Sub-kingdom Viridaeplantae, Phylum Chlorophyta (heretofore referred to as green algae) contain eight nuclear genome encoded small subunits and eight chloroplast genome encoded large subunits. In red lineage algae (Sub-Kingdom Chromobiota, Phylum Haptophyta, Heterokonotophyta, Bacillariophyta and others (Table 1), all sub-units are encoded in the chloroplast.

TABLE-US-00001 TABLE 1 Phylogeny of some of algae used Genus Family Order Phylum Sub-Kingdom Chlamydomonas Chlamydomonadaceae Volvocales Chlorophyta Viridaeplantae Nannochloris Coccomyxaceae Chlorococcales Chlorophyta Viridaeplantae Tetraselmis Chlorodendraceae Chlorodendrales Chlorophyta Viridaeplantae Phaeodactylum Phaeodactylaceae Naviculales Bacillariophyta Chromobiota Nannochloropsis Monodopsidaceae Eustigmatales Heterokontophyta Chromobiota Pavlova Pavlovaceae Pavlovales Haptophyta Chromobiota Isochrysis Isochrysidaceae Isochrysidales Haptophyta Chromobiota Phylogeny according to: http://www.algaebase.org/browse/taxonomy/ Note: Many genes that in higher plants and Chlorophyta are encoded in the nucleus are encoded on the chloroplast genome (plastome) of Chromobiota, red lineage algae (Grzebyk, et al. (2003).

[0009] The present consensus is that even more RUBISCO is needed for efficient photosynthesis, as demonstrated in the recent suggestion that elevated RUBISCO would enhance the rate of photosynthesis in algae commercially cultivated for biofuels (Huntley and Redalje 2007). Counter-intuitively, the inventors of this disclosure chose to "make room" for other enzymes by reducing concentration of the RUBISCO enzyme, typically considered to be rate limiting for CO.sub.2 assimilation in photosynthetic cells; RUBISCO can comprise up to 70% of the soluble protein in plant cells.

[0010] Photosynthesis produces the sugars needed for the biosynthesis of the specific primary and secondary metabolites of interest in each case (biofuels, pigments, enzymes, pharmaceuticals, starch, etc.). RUBISCO is the first enzyme in the dark reactions of photosynthesis, "fixing" carbon dioxide onto an organic molecule. The later reactions use NADPH and ATP generated by the light reactions to reduce the fixed CO.sub.2 to carbohydrates. RUBISCO was the best enzyme evolution could produce pre-antiquity, which was of little matter early in the evolution of earth, e.g. in the Archean era 3.5 billion years ago when CO.sub.2 concentrations in the atmosphere were thought to be at least 100 times more than at present (FIG. 1.4 in Falkowski and Raven, 1997), and the very low affinity for CO.sub.2 to RUBISCO was of little consequence. As oxygenous photosynthesis began to remove CO.sub.2 from the atmosphere and elevate atmospheric O.sub.2, the levels of RUBISCO became limiting, and evolution gradually increased the levels of RUBISCO in photosynthetic organisms to the present high levels. Presently, high concentrations of CO.sub.2 can be inexpensively provided to algae and cyanobacteria in culture from industrial combustion of fuels. This will lead to much of the RUBISCO being superfluous, and decreasing its content "makes way" for over-expressing other enzymes needed for photosynthesis as well as releasing resources for more soluble products. This would be one way of sequestering large amounts of carbon dioxide, presently imperative due to the purported relationships between elevated global carbon dioxide levels and global warming. Even though the small subunit of RUBISCO is encoded by a family of genes, the gene products are interchangeable, with considerable consensus among them.

[0011] According to this disclosure, reducing RUBISCO in green algae can be done by using either antisense or RNAi technology, both targeting the consensus sequences of the small nuclear encoded subunit, which, in many cases, has been shown to control the biosynthesis of both subunits. Obviously, total suppression is undesirable, as RUBISCO is needed for CO.sub.2 fixation. The level of suppression that is advantageous is a function of: a. experimental determination for each pond or bioreactor condition and concentration of CO.sub.2 introduced into the system; and b. the availability of the CO.sub.2 to the organisms in the medium. Reducing RUBISCO in red lineage algae according to this disclosure, can be done by knockout of one or both RUBISCO subunits in the chloroplast by homologous recombination and transformation of the same RUBISCO gene under a mutated promoter, which will decrease the RUBISCO expression level.

[0012] Many algae and especially cyanobacteria have atypical (for higher organisms) G:C contents and consequently atypical codon usages and DNA sequences. While there is a high consensus in amino acid sequences in RUBISCO subunits, it is far less at the nucleotide level, requiring sequencing of the genes encoding RUBISCO subunits from each target organism before embarking on generating RNAi or antisense constructs and engineering them into the cell thus reducing RUBISCO according to the codon usage of the target organism.

[0013] One drawback to genetically engineering algae and cyanobacteria for large scale cultivation is the risk of inadvertent "spills" into the environment. It is highly unlikely (i.e. as near to impossible as a scientist can evaluate) that organisms optimized to live and grow in an atmosphere of >5% CO.sub.2, yet having a lower than normal RUBISCO content can survive for long in nature where the CO.sub.2 concentration is <0.5%, as the engineered organism has lost most of its ability to scavenge CO.sub.2 from the environment. Thus, this risk from inadvertent transgenic release is negated, whether the organism is engineered just for lowered RUBISCO, or engineered with lowered RUBISCO and elevated other enzymes, whether photosynthesis related, or related to other properties.

[0014] The present invention relates to the use of algae or cyanobacteria cultivated in ponds or bioreactors that have had their RUBISCO contents transgenically lowered by antisense or RNAi or other transgenic technologies giving rise to similarly lowered RUBISCO contents. These novel organisms are especially adapted to thrive in cultivation with high CO.sub.2 levels in the medium, allowing for the over-expression of other, rate limiting enzymes of photosynthesis as well as enzymes encoding for other desirable traits. Thus, these organisms are platforms for further engineering.

[0015] In one embodiment the small subunit of RUBISCO is subjected to RNAi suppression and in another it is subjected to antisense. In yet another embodiment both large and small subunits are suppressed by chloroplast transformation of the rbcLS gene cluster under the control of a mutated promoter replacing the endogenous promoter and genes.

[0016] In other embodiments DNA encoding other traits is either engineered in tandem with the RUBISCO suppression simultaneously (co-transformation) or subsequent to the engineering of partial RUBISCO suppression. In such embodiments algae or cyanobacteria with reduced RUBISCO levels are used as a platform for further engineering of other desired traits, with greater efficiency of organism activity. These include genes encoding enzymes such as fructose-1,6-bisphosphate aldolase (ALD), chloroplast triosephosphate isomerase (TPI) or acetyl CoA carboxylase (ACCase) that enhance sink capacity to utilize fixed carbon dioxide. Conversely, other transgenic traits may be in the algae or cyanobacteria prior to transformation for partial RUBISCO suppression.

[0017] According to one embodiment the alga or cyanobacterium transformed to express reduced RUBISCO content is also transformed to express pharmaceutical or industrial proteins, such as human insulin AAN39451 or AY138590 or thermostable phytase, such as disclosed in U.S. Pat. No. 6,720,174. Other desired proteins to be expressed in transgenic algae or cyanobacteria with reduced RUBISCO content are storage proteins, such as 15 kDZein or BHL8. The transgenic algae expressing reduced RUBISCO content may also be transformed to express altered oil or lipid contents.

A SHORT DESCRIPTION OF THE DRAWINGS

[0018] FIG. 1. Map of the plasmid pSI-PDS-rbcS RNAi containing the cassette designed to induce RNAi of C. reinhardtii RUBISCO small subunit. An inverted repeat of the first 234 by of RbcS2 coding region encoding the RUBISCO small subunit is cloned downstream to the pds gene conferring resistance to the herbicide fluorochloridone. The transgene is under the control of the HSP70-RbcS2 promoter and RbcS2 terminator (taken from pDI103, Sizova et al, 2001).

[0019] FIG. 2. Map of the plasmid pSI-rbcS-AS containing the cassette designed to induce antisense of C. reinhardtii RUBISCO small subunit and the psaD-Ble cassette conferring resistance to the antibiotic Zeocin. The coding region of RbcS2 from C. reinhardtii encoding the RUBISCO small subunit is cloned in antisense orientation downstream to the HSP70-rbcS promoter.

DETAILED DESCRIPTION OF THE INVENTION

[0020] Algae and cyanobacteria with biotechnological utility are chosen from among the following, non-exclusive list of organisms.

List of Species:

[0021] Pavlova lutheri, Isochrysis CS-177, Nannochloropsis oculata CS-179, Nannochloropsis like CS-246, Nannochloropsis salina CS-190, Tetraselmis suecica, Tetraselmis chuii and Nannochloris sp., Chlamydomonas reinhardtii as representatives of all algae species. The phylogeny of the algae is summarized in Table 1. Synechococcus PCC7002, Synechococcus WH-7803, Thermosynechococcus elongaues BP-1 are used as representatives of all cyanobactrial species.

[0022] Algae and cyanobacteria with partially suppressed RUBISCO are achieved by standard molecular biological procedures, as outlined in numerous texts and papers. First, consensus sequences of the large and small subunits of RUBISCO are used to "fish out" the respective genes by low stringency PCR using a consensus sequences chosen to have the least number of nucleotide variants. Standard software is used to design degenerate primers according to these consensus sequences. After fishing out fragments of the genes, larger segments of the genes are obtained using the RACE (rapid amplification of cDNA ends) technique. The resulting sequences are used to design anti-sense and RNAi constructs that are then inserted into respective cassettes and transformed into the algae and cyanobacteria using techniques readily available to those skilled in the art. Different cassettes are used having different promoters such that a large variety of expression levels are achieved, so that RUBISCO will be reduced by varying amounts. A large number of transformation events were generated for each algal species, and the best transformants chosen as described below.

[0023] The growth rates of the transformants are measured under conditions of various levels of high CO.sub.2 (1%; 5%; 14%; 100%) and those that appear best are rechecked in mini bioreactors and pilot scale ponds to ascertain which have the best yield, under a variety of environmental conditions and CO.sub.2 concentrations.

[0024] The best transformants of each organism can then be used as platforms for inserting other genes into the algae or cyanobacteria to optimize the production of valuable compounds. The algae come from a large taxonomical cross section of species (Table 1)

[0025] The general approach for green algae is as follows: [0026] 1. Cloning of the algae RUBISCO small subunit (rbcS) cDNA in antisense (AS) orientation under the control of a constitutive promoter such as the rbcS promoter and 3'rbcS terminator, downstream to a selectable marker. The selectable marker can be Sh ble, which confers resistance to the antibiotic Zeocine, the pds gene, which confers resistance to fluridone and fluorochloridone. [0027] 2. Generation of an RNAi cassette (as described in detail in Schroda, 2006) of the algae rbcS gene comprising a 300 by cDNA/cDNA inverted repeat under the control of a constitutive promoter downstream to a selectable marker described above.

[0028] The general approach for red lineage marine algae species (Sub-kingdom Chromobiota, Table 1), is to replace the chloroplast RUBISCO small or large subunit with a DNA construct containing the same RUBISCO subunit gene controlled by a mutated promoter, use antisense or with a chloroplast expression vector, and directly transform the chloroplasts, as has been done with Chlamydomonas (Franklin and Mayfield, 2004)

[0029] The general approach for cyanobacteria is as follows:

[0030] Cloning of the RUBISCO small subunit (rbcS) or large subunit (rbcL) gene from a cyanobacteria species under the control of mutated promoter and replacing the respective endogenous gene with the cloned cassette using homologous recombination, as described in Clerico et al. (2007).

[0031] The methodology used in the various steps of enabling the invention is described here below:

[0032] Nucleic Acid Extraction Genomic DNA is isolated using either the Stratagene (La Jolla, Calif., USA) DNA purification kit or a combination of the QIAGEN (Valencia, Calif., USA) DNeasy plant mini kit and phenol chloroform extraction method (Davies et al. 1992). Total RNA is isolated using either the QIAGENS Plant RNeasy Kit or the Trizol Reagent (Invitrogen, Carlsbad, Calif., USA).

[0033] RACE analysis The full length RbcS small and large subunits from algae or cyanobacteria with unknown genomic sequences are determined by 3' and 5' RACE and nested PCR using the First Choice RLM-RACE Kit (Ambion, Austin, Tex., USA), as described by Liu and Gorovsky (1993).

[0034] Transformation of Plasmid DNA

[0035] Transformation of Chlamydomonas Algae cells in 0.4 mL of growth medium containing 5% PEG (polyethylene glycol MW6000) were transformed with the plasmid from examples 1 and 2 by the glass bead vortex method (Kindle, 1990). The transformation mixture was then transferred to 50 mL of non-selective growth medium for recovery and incubated for at least 18 h at 25.degree. C. in the light. Cells were collected by centrifugation and plated at a density of 10.sup.8 cells per Petri dish. Transformants were grown on fresh TAP or SGII agar plates containing a selection agent for 7-10 days in 25.degree. C.

Transformation of Marine Algae

I. Electroporation

[0036] Fresh algal cultures are grown to mid exponential phase in artificial sea water (ASW)+f/2 media. Cells are then harvested and washed twice with fresh media. After resuspending the cells in 1/50 of the original volume, protoplasts are prepared by adding an equal volume of 4% hemicellulase (Sigma) and 2% Driselase (Sigma) in ASW and are incubated at 37.degree. C. for 4 hours. Protoplast formation is tested by Calcofluor white (Fluka) staining. Protoplasts are washed twice with ASW containing 0.6M D-mannitol (Sigma) and 0.6M D-sorbitol (Sigma) and resuspended in the same media, after which DNA is added (10 .mu.g linear DNA for each 100 .mu.l protoplasts). Protoplasts are transferred to cold electroporation cuvettes and incubated on ice for 7 minutes, then pulsed in a BTX ECM830 (Harvard Apparatus, Holliston, Mass., USA) electroporation apparatus. A variety of pulses is usually applied, ranging from 1000 to 1500 volts, 10-20 ms each pulse. Each cuvette is pulsed 5-10 times. Immediately after pulsing the cuvettes are placed on ice for 5 minutes and then the protoplasts are added to 250 .mu.l of fresh growth media (without selection). After incubating the protoplasts for 24 hours in low light, 25.degree. C. the cells are plated onto selective solid media and incubated under normal growth conditions until single colonies appear.

II. Microporation

[0036] [0037] A fresh algal culture is grown to mid exponential phase in ASW+f/2 media. A 10 mL sample of the culture is harvested, washed twice with Dulbecco's phosphate buffered saline (DPBS, Gibco) and resuspended in 250 .mu.l of buffer R (supplied by Digital Bio, Seoul, Korea, the producer of the microporation apparatus and kit). After adding 8 .mu.g linear DNA to every 100 .mu.l cells, the cells are pulsed. A variety of pulses is usually needed, depending on the type of cells, ranging from 700 to 1700 volts, 10-40 ms pulse length; each sample is pulsed 1-5 times. Immediately after pulsing the cells are transferred to 200 .mu.l fresh growth media (without selection). After incubating for 24 hours in low light, 25.degree. C., the cells are plated onto selective solid media and incubated under normal growth conditions until single colonies appear.

III. Particle Bombardment

[0037] [0038] A fresh algal culture is grown to mid exponential phase in ASW+f/2 media. 24 hours prior to bombardment cells are harvested, washed twice with fresh ASW+f/2 and re-suspended in 1/10 of the original cell volume in ASW+f/2. 0.5 mL of each cell suspension is spotted onto the center of a 55 mm Petri dish containing 1.5% agar solidified ASW+f/2 media. Plates are left to dry under normal growth conditions. Bombardment is carried out using a BioRad PDS1000/He system according to the manufacturer's (BioRad) instructions, using M10 tungsten powder for cells larger than 2 microns in diameter, and tungsten powder comprised of particles smaller than 0.6 microns (FW06, Canada Fujian Jinxin Powder Metallurgy Co., Markham, ON, Canada) for smaller cells. The tungsten is coated with linear DNA. 1100 or 1350 psi rupture discs are used. All disposables are supplied by BioRad. After bombardment the plates are incubated under normal growth conditions for 24 hours followed by transferring the cells onto selective solid media and incubated under normal growth conditions until single colonies appear. For chloroplast transformation, this method is carried out in the same way, but the resulting transformants are screened for the presence of the transgene in the chloroplast.

Transformation of Cyanobacteria

[0039] For transformation to Synechococcus PCC7002, cells are cultured in 100 mL of BG-11+Turks Island Salts liquid medium (http://www.crbip.pasteur.fr/fiches/fichemediumjsp?id=548) at 28.degree. C. under white fluorescent light and cultured to mid exponential growth phase. To 1.0 mL of cell suspension containing 2.times.10.sup.8 cells, 0.5-1.0 .mu.g of donor DNA (in 10 mM Tris/1 mM EDTA, pH 8.0) is added, and the mixture is incubated in the dark at 26.degree. C. overnight. After incubation for a further 6 h in the light, the transformants are selected on BG-11+Turks Island Salts 1.5% agar plates containing a selection agent until single colonies appear.

There is no prior art known to us of previously transforming the following species: Pavlova lutheri, Isochrysis CS-177, Nannochloropsis oculata CS-179, Nannochloropsis like CS-246, Nannochloropsis salina CS-190, Tetraselmis suecica, Tetraselmis chuii and Nannochloris sp. nor has microporation been used previously for transforming algae cyanobacteria or higher plants.

[0040] RNA extraction, cDNA synthesis and quantitative RT-PCR analysis Total RNA is isolated using either the QIAGENS Plant RNeasy Kit or the Trizol Reagent (Invitrogen, Carlsbad, Calif., USA). cDNA is synthesized using 3 .mu.g total RNA as a template using SuperscriptII kit (Invitrogen, Carlsbad, Calif., USA) according to the manufacturer's instructions. Real-time quantitative PCR reactions are preformed in an optical 96-well plate using the ABI PRISM 7300 Sequence Detection System (Applied Biosystems, Scoresby, Victoria, Australia) and SYBR Green I for monitoring dsDNA synthesis. For all PCR reactions the following standard thermal profile is used: 50.degree. C. for 2 min; 95.degree. C. for 15 min; 40 cycles of 95.degree. C. for 15 sec and 60.degree. C. for 1 min. In order to compare data from different cDNA samples, C.sub.T (threshold cycle) values for all genes are normalized to the C.sub.T values of Ubiquitin, or 16S rDNA for algae and cyanobacteria, respectively, which are used as internal references in all experiments. All primers are designed using the Primer Express 2.0 software (Applied Biosystems, Foster City, Calif., USA). The sequences of sense and antisense designed primers correspond to two consecutive exons of the studied genes, excluding any genomic DNA amplification. The real-time PCR data is analyzed using the comparative CT-method with appropriate validation experiments performed beforehand (Applied Biosystems, User Bulletin #2, http://home.appliedbiosystems.com/). All experiments are repeated at least three times with cDNA templates prepared from three independent colonies of algae or cyanobacteria and every reaction is set up in triplicates.

[0041] Protein extraction 1 to 10 mL cells at 5.times.10.sup.6 cell/mL are harvested and resuspended in 500 .mu.l extraction buffer (50 mM Tris pH=7.0; 1 mM EDTA; 100 mM NaCl; 0.5% NP-40; and protease inhibitor (Sigma cat# P9599). Then 100 .mu.l of glass beads (425-600 .mu.m, Sigma) are added and cells are broken in a bead beater (MP FastPrep-24, MP Biomedicals, Solon, Ohio, USA) for 20 sec. The tube content is centrifuged for 15 min, 13000.times.g, at 4.degree. C. The supernatant is removed to new vial.

[0042] Protein separation by PAGE and western analysis Extracted proteins are separated on a 4-20% gradient SDS-PAGE (Gene Bio-Application Ltd., Kfar Hanagid, Israel, at 160V for 1 hr. They were then either stained by Coomassie (Sigma) or blotted onto PVDF (Millipore, Billerica, Mass., USA) membranes for 1 h at 100 volts in the transfer buffer (25 mM Tris, 192 mM glycine and 20% methanol). The proteins are detected with the RbcL RUBISCO large subunit, form I and form II antibody (Agrisera, Vannas, Sweden) diluted to a ratio of 1:10000 in antibody incubation buffer (5% skim milk, Difco). An alkaline phosphatase conjugated anti-rabbit antibody (Millipore, Billerica, Mass., USA), at 1:10000 dilution in the same buffer was used as a secondary antibody. Detection was carried out using the standard alkaline phosphatase detection procedure (Blake et al., 1984).

[0043] Physiological Assessment To assess physiological properties of genetically modified algae compared with their relevant wild type strains and other algal candidates we perform a set of procedures that enable us to evaluate each strain. Initially, each genetically modified strain is checked for the modified trait, (reduced RUBISCO content). A screening process is established where colonies of transgenic algae or cyanobacteria are allowed to grow on solid media supplemented with selection reagent (an antibiotic or herbicide) to check if the desired trait has been established. Next, the fastest growing colonies are picked and transferred to liquid medium for further physiological evaluation.

This includes: [0044] 1. Growth rate [0045] 2. Photosynthetic activity at ambient and high carbon dioxide concentrations [0046] 3. Respiration activity [0047] 4. Tolerance to a-biotic parameters [0048] 5. Lipid content [0049] 6. Protein content An overall report is generated for each strain that is used to estimate the feasibility of using the strain.

[0050] Growth Rate Growth rates are measured using one or more of the following techniques: [0051] Direct cell count [0052] Optical density at a relevant wavelength (e.g. 730 nm) [0053] Pigment/Chlorophyll concentration (where this method is applicable) [0054] Percentage of packed volume

[0055] Photosynthetic Activity One of the important parameters indicating the welfare of a photoautotrophic culture is its photosynthetic capability. To measure this, one or more of several methodologies are applied: [0056] Oxygen evolution--using Clark Type electrodes. [0057] Variable fluorescence--using PAM (Pulse Amplitude Modulated fluorometry)

[0058] Oxygen consumption in darkness is also evaluated in order to estimate net photosynthetic potential of the algal culture. As part of the photosynthetic evaluation several abiotic parameters that potentially influence the physiological state of a culture are followed. [0059] Light intensity tolerance (at a given cell density) is evaluated. P/I (photosynthesis vs. irradiance) curves are used to determine optimal light intensity per cell. [0060] Performance at different CO.sub.2 levels (e.g. ambient; 1%; 5%; 14%; 100%). This is coupled with pH tolerance. [0061] Temperature tolerance. Each culture is tested at optimal temp. In addition, temperatures are raised temperatures to the highest points possible without inhibiting other culture activities.

[0062] Growth conditions Cells of eukaryotic marine cultures and transformants thereof are grown on artificial seawater medium (Goyet, 1989) supplemented with f/2 (Guillard, 1962). Marine cultures are grown at 18-20.degree. C. with a 16/8 h light/dark period. Fresh water cultures (e.g. the diploid wild-type Chlamydomonas reinhardtii) and transformants thereof are grown photoautotrophically on liquid medium, using mineral medium as previously described (Harris, 1989), with the addition of 5 mM NaHCO.sub.3.sup.-, with continuous shaking and illumination at 22.degree. C. Marine cyanobactertial cultures and transformants thereof are grown in BG11 medium BG11 (Stanier et al., 1971) supplemented with Turks Island Salts and with 20 mM HEPES-NaOH buffer pH 7.8 (http://www.crbip.pasteur.fr/fiches/fichemedium.jsp?id=548). Cyanobacterial cultures are grown at 25.degree. C. where relevant under continuous white light, with constant CO.sub.2-air bubbling.

[0063] Growth Rate Estimation Cells are harvested in the logarithmic growth phase and re-suspended in fresh growth media. Cultures are brought to a cell density corresponding to .about.3 .mu.g/mL chlorophyll a. Light intensity is optimized for each culture and temperature is maintained at growth temperature .+-.1.degree. C. Where required, cells are concentrated by centrifugation (3000 g, 5 min) and re-suspended in fresh media. A time-series sampling procedure is followed where a subsample of each culture is collected and the number of cells per mL is estimated. As well as direct counting, optical density at different wavelengths, percentage of packed volume and chlorophyll concentrations are also measured.

[0064] Photosynthetic Activity: Oxygen evolution Measurements of O.sub.2 concentrations are performed using a Clark type O.sub.2 electrode (Pasco Scientific, Roseville, Calif., USA). Twenty mL of cell suspension containing 15 .mu.g chlorophyll/mL are placed in the O.sub.2 electrode chamber, at relevant temperature. Cells are exposed to various light intensities and regimes (e.g. flashing light). Incubations in darkness are performed in these air-tight vessels to follow oxygen consumption in the dark.

[0065] Fluorescence measurements Electron transfer activity of photosystem II is measured by pulse modulated fluorescence (PAM) kinetics using PAM-101 (Walz, Effertlich, Germany). Light intensity (measured at the surface of the chamber) of the modulated measuring beam (at 1.6 kHz frequency) is 0.1 .mu.mol photons m.sup.-2 s.sup.-1. White actinic light is delivered at 50-1500 .mu.mol photons m.sup.-2 s.sup.-1 as required in different experiments and is used to assess steady state fluorescence (F.sub.s). Maximum fluorescence (F.sub.m) is measured with saturating white light pulses of 4000 .mu.mol photons m.sup.-2 s.sup.-1 for 1 s.

[0066] Additional Experiments [0067] Light intensity tolerance (at a given cell density) is evaluated. P/I (photosynthesis vs. irradiance) curves are used to determine optimal light intensity per cell. Four mL of cell suspension containing 15 .mu.g chlorophyll/mL are placed in the O.sub.2 electrode chamber, at relevant temperatures and various light intensities. Oxygen evolution rates are measured at each light intensity. [0068] Performance at different CO.sub.2 levels (e.g. ambient; 1%; 5%; 14%; 100%). Growth rate estimations and photosynthetic activity (methodology described above) are evaluated when cultures are maintained at different CO.sub.2 levels. [0069] Temperature tolerance. Each culture is tested at optimal temp. In addition, we attempt to raise temperatures to the highest point possible without inhibiting other culture activities. The invention is now described by means of various non limiting examples using the above methods:

Example 1

Generation of C. reinhardtii Expressing RNAi of RbcS2B Gene Under the Control of the HSP70-rbcS2 Promoter

[0070] For generation of RNAi of rbcS2 (ACCESSION NO: X04472), a 774 by fragment (SEQ ID NO:1) corresponding to forward and reverse orientation of nucleotides 1 to 234 of rbcS2 gene separated by 246 by spacer region comprised from the 3.sup.rd intron of the rbcS2 gene (REGION: 1947.2184), was custom synthesized by DNA2.0 Inc, (Menlo Park, Calif., USA). The 774 by region (SEQ OD NO:1) was then cloned into BamHI restriction site in plasmid pSI-PDS downstream to the pds gene, generating the plasmid pSI-PDS rbcS RNAi (FIG. 1).

[0071] The plasmid was transformed to C. reinhardtii CW15 strain (CC-400) and transfromants were selected on SGII medium supplemented with 3.times.10.sup.7 M fluorochloridone (FCD). FCD resistant colonies were transferred to liquid media for DNA and protein extraction. Tetraselmis suecica, Tetraselmis chuii and Nannochloris sp are transformed with the above cassette using to the transformation methods described above. Total proteins are separated on 4-20% gradient SDS-PAGE (Geba, Israel) and stained with Coomassie blue or transferred to PVDF membranes (Millipore, Billerica, Mass., USA) for western blot analysis using the anti RbcL RUBISCO large subunit, form I and form II antibody (Agrisera, Vannas, Sweden).

[0072] Colonies with reduced RUBISCO levels are further analyzed as described in examples 5 to 7.

Example 2

Generation of C. reinhardtii Expressing the rbcS2 Gene in Antisense Orientation Under the Control of the HSP70-rbcS2 Promoter

[0073] For the generation of plasmids containing the C. reinhardtii rbcS2 gene in antisense orientation under the control of the HSP70-rbcS2 promoter (FIG. 2), the 579 by fragment of the C. reinhardtii rbcS2 gene was PCR amplified with primers BstBI-rbcS2B: GCTTCGAATCAACGAGCGCCTCCATTTAC (SEQ ID NO:2), and XhoI-rbcS2 AS GCCTCGAGATGGCCGCCGTCATTGCCAA (SEQ ID NO:3) containing the BstBI and XhoI sites at their 5' and 3' regions, respectively, and was cloned into pGEM-T vector (Promega, Madison, Wis., USA). The BstBI-XhoI fragment was then introduced into the BstBI/XhoI sites of plasmid pSI-PDS rbcS RNAi, replacing the pds-rbcS RNAi cassette (Example 1). A psaD-Ble fragment (comprising the Ble selectable marker (SEQ ID NO: 4) under the control of the psaD promoter (SEQ ID NO:5), excised from pGenD-Ble) was further ligated into the plasmid using NotI restriction site. The resulting pSI-rbcS-AS plasmid was then transformed to C. reinhardtii CW15 (CC-400) and transformants were selected on TAP medium supplemented with 5 .mu.g/mL Zeocin. Approximately 100 Zeocin resistant colonies were transferred to liquid media for protein extraction and rbcS level analysis.

[0074] Tetraselmis suecica, Tetraselmis chuii and Nannochloris sp are transformed with the above cassette using to the transformation methods described above. Colonies with reduced RUBISCO levels are further analyzed as described in examples 5 to 7.

Example 3

Generation of Cyanobacterial Transformants with Reduced Rubisco Expression Levels

[0075] In order to reduce expression level of rbcL in the cyanobacterium Synechococcus PCC7002, the native rbcL promoter is replaced with a mutated one. The rbcL region (SEQ ID NO: 6) is synthesized with random mutations in the promoter region (nucleotides 1165-1638 in SEQ ID NO: 6) and a spectinomycin resistance cassette upstream of the promoter. Resulting fragments are then cloned into pGEM-T (Promega, Madison, Wis., USA) to create a library of plasmids containing a myriad of mutated promoters. The resulting library is transformed into Synechococcus PCC7002, and following homologous recombination (that occurs naturally in cyanobacteria) clones are screened for transformants with reduced RUBISCO content.

Example 4

Chloroplast Transformation of Red Lineage Algae

[0076] To reduce rbcS expression level of red lineage marine algae, the sequence of the algae chloroplast DNA is obtained using 454 sequencing (CD Genomics, Shirley, N.Y., USA). Then, a DNA fragment containing the rbcS gene and its flanking regions is obtained by PCR on DNA isolated from the marine algae. The rbcS coding sequence is then cloned under a mutated rbcL promoter and rbcL terminator together with a spectinomycin resistance gene cassette comprising rbcL promoter, bacterial AAD gene (SEQ ID NO:7) and rbcL terminator as described in Takahashi, (1991). This construct is then transformed to the algae chloroplast DNA using particle bombardment as described in the methods part, and according to Spectinomycin resistant colonies are then selected and analyzed using PCR on genomic DNA to confirm the homologous recombination. Positive colonies are then selected for further analysis as described in Examples 5-7.

Example 5

Demonstration that Transformed Algae and Cyanobacteria have Optimal Photosynthesis at Elevated CO.sub.2

[0077] Cultures of reduced RUBISCO-content transformants of algae and cyanobacteria are compared to those of their respective wild type. While the latter reveal maximal photosynthesis rates at concentrations of 0.03-1% CO.sub.2, transformed algal and cyanobacterial cells exhibit maximal photosynthesis rates at CO.sub.2 concentrations above 4%. The increased CO.sub.2 concentrations compensated for reduced RUBISCO contents.

Example 6

Demonstration that Transformed Algal and Cyanobacterial Strains Cannot Compete with Wild Type Cultures at Ambient CO.sub.2 Concentrations

[0078] The algal and cyanobacterial transformants described above function best under bioreactor and/or pond conditions at high CO.sub.2 concentrations. An additional benefit arising from this condition is that these strains cannot cope with natural occurring conditions such as ambient CO.sub.2 concentration. Being currently at 0.03% in the atmosphere, CO.sub.2 becomes a major limiting factor for the transformants cultured with ambient carbon dioxide levels. In order to demonstrate such growth limitation reduced-RUBISCO-content transformants are co-cultured with wild-type cells at ambient CO.sub.2 concentrations. A time-sequence sampling protocol is followed and cells are collected from the growth vessels. Cells are then transferred to plates for colony isolation, then replicas are made of each colony. One plate contains normal growth media while its duplicate contained a selection factor (e.g. antibiotics/herbicides). This enables the differentiation between wild-type cells and transformants, allowing following wild-type cells outcompeting reduced RUBISCO content transformants co-cultivated under ambient carbon dioxide.

Example 7

Demonstration that Transformed Algal and Cyanobacterial Strains have Increased Levels of Photosynthesis when Sink-Enhancing Genes are Transformed into These Strains

[0079] Reduced-RUBISCO-content transgenic algae and cyanobacteria are further transformed with sink-enhancing genes. As was previously demonstrated by Miyagawa et al., (2001), overexpression of cyanobacteria fructose-1,6-/sedoheptulose-1,7-bisphosphatase (FBP/SBPase) (SEQ ID NO:8) in tobacco enhances photosynthesis and growth, is used. The reduced-RUBISCO-content.times.FBP/SBPase transformants are compared with the reduced-RUBISCO-content transformants alone under conditions of 14% CO.sub.2. Oxygen evolution is followed as an indication for photoautotrophic assimilation, and higher oxygen production rates are observed with the reduced-RUBISCO-content.times.FBP/SBPase transformants. This implies higher Ci assimilation rates, and therefore suggests enhanced energy harvesting even at when RUBISCO levels are reduced.

Growth Rate Estimation

[0080] Cultures of Reduced-RUBISCO-Content (RRC) transformants of green algae (Tetraselmis suecica, Tetraselmis chuii, Nannochloris sp. and Chlamydomonas reinhardtii) are compared to those of their respective wild type. Wild type cells reveal a saturation-curve-like pattern where growth rates increase with increasing CO.sub.2 concentrations. At ambient CO.sub.2 concentrations, reduced-RUBISCO-content cells exhibit reduced growth rates. Their doubling times are reduced (at ambient CO.sub.2) but increased with increasing CO.sub.2 concentrations.

Photosynthetic Activity:

Oxygen Evolution and PAM Fluorescence

[0081] Again, cultures of Reduced-RUBISCO-Content transformants of green algae (Tetraselmis suecica, Tetraselmis chuii, Nannochloris sp and Chlamydomonas reinhardtii) are compared to those of their respective wild type. Wild-type cells reveal a typical P/I saturation curve. In contrast, reduced-RUBISCO-content cells exhibit a slight decrease in optimal light intensity, i.e. saturation and inhibition occurs at lower light intensities. When CO.sub.2 levels are raised to 14% or more, P/I curves of reduced-RUBISCO-content cells return to normal parameters. The increase of CO.sub.2 concentrations compensates for the reduced RUBISCO content.

Lipid and Protein Contents

[0082] Finally, we test reduced-RUBISCO-content transformants for lipid and protein content, and compare them to those of wild type cells. Lipid and protein content are lower in the transformants than in wild type cells at ambient CO.sub.2 concentrations. However, when CO.sub.2 levels are increased to 14% or more, lipid and protein contents exceed those of wild type cells.

REFERENCES

[0083] Blake M S, Johnston K H, Russell-Jones G J and Gotschlich E C. (1984) A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots. Anal Biochem 136:175-9. [0084] Clerico E M, Ditty J L, Golden S S (2007) Specialized techniques for site-directed mutagenesis in cyanobacteria. Methods Mol Biol 362: 155-171. [0085] Deng M D, Coleman J R (1999) Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol 65:523-528 [0086] Falkowski, P G and Raven J A (1997) Aquatic Photosynthesis. Blackwell Science. Malden, Mass. 373, 705-509. [0087] Franklin S E and Mayfield S P. (2004) Prospects for molecular farming in the green alga Chlamydomonas reinhardtii. Curr Opin Plant Biol, 7:159-165. [0088] Grzebyk, D., Schofield O., Falkowski P., and J. Bernhard (2003) The Mesozoic radiation of eukaryotic algae: the portable plastid hypothesis. J Phycol 39:259-267 [0089] Harris, E. (1989). The Chlamydomonas Sourcebook: a Comprehensive Guide to Biology and Laboratory Use, Academic Press. [0090] Helman, Y., Tchernov, D., Reinhold, L., Shibata, M., Ogawa, T., Schwarz, R., Ohad, I. and Kaplan, A. (2003) Genes encoding A-type flavoproteins are essential for photoreduction of O.sub.2 in cyanobacteria. Curr Biol 13: 230-235 [0091] Huntley M. E. and Redalje, D. G. (2007). CO.sub.2 mitigation and renewable oil from photosynthetic microbes: A new appraisal, Mitig. Adapt. Strateg. Glob. Change 12, 573-608. [0092] Kang R J, Shi D J, Cong W, Ma W M, Cai Z L, Ouyang F. (2005) Effects of co-expression of two higher plants genes ALD and TPI in Anabaena sp. PCC7120 on photosynthetic CO.sub.2 fixation. Enzym Microb Tech 36: 600-604. [0093] Kindle K L (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. PNAS 87:1228. [0094] Liu X, and Gorovsky M A (1993) Mapping the 5' and 3' ends of Tetrahymena thermophila mRNAs using RNA ligase mediated amplification of cDNA ends (RLM-RACE). Nucl Acids Res 21: 4954-4960. [0095] Lumbreras V, Stevens D. and, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J 14: 441-447. [0096] Ma, V M, Wei, L, Wang, Q, Shi, D and Chen, H. (2007) Increased activity of the non-regulated enzymes fructose-1,6-bisphosphate aldolase and triosephosphate isomerase in Anabaena sp strain PCC 7120 increases photosynthetic yield, J Appl Phycol 19:207-213. [0097] Miyagawa, Y. Tamoi, M. and Shigeoka. S. (2001) Overexpression of a cyanobacterial fructose-1,6-/sedoheptulose-1,7 bisphosphatase in tobacco enhances photosynthesis and growth. Nature 19: 965-969. [0098] Murakami M. and Ikenouchi M. (1997) The biological CO.sub.2 fixation and utilization project by RITE (2)--Screening and breeding of microalgae with high capability in fixing CO.sub.2. Energy Conyers Mgmt. 38: S493-S497. [0099] Negoro, M, Hamansaki, A, Ikuta, Y Makita, T, Hirayama, K. and Suzuki, S. (1993) Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler, 39: 643-653. [0100] Prentki P and Krisch H M (1984) In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29: 303-313 [0101] Schroda M. (2006) RNA silencing in Chlamydomonas: mechanisms and tools. Curr Genet. 49: 69-84 [0102] Sizova, I, Fuhrmann, M, and Hegemann, P. (2001) A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. Gene 277: 221-229. [0103] Stanier, R Y, Kunisawa, R, Mandel, M and Cohen-Bazire, G. (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev. 35: 171-205. [0104] Y. Takahashi, M. Goldschmidt-Clermont, S.-Y. Soen, L. G. Franzenl and J.-D. Rochaix. (1991) Directed chloroplast transformation in Chiamydomonas reinhardtii: insertional inactivation of the psaC gene encoding the iron sulfur protein destabilizes photosystem I. EMBO J. 10: 2033-2040. [0105] Wyman, M, Gregolry, R P F, and Carr, N G. (1985) Novel role for phycoerythrin in a marine cyanobacterium, Synechochoccus strain DC2. Science 230: 818-820.

Sequence CWU 1

1

81774DNAartificial sequencechemically synthetized 1ggatcctcta gagtcactca acatcttaaa atggccgccg tcattgccaa gtcctccgtc 60tccgcggccg tggcccgccc ggcccgctcc agcgtgcgcc ccatggccgc gctgaagccc 120gccgtcaagg ccgcccccgt ggctgccccg gctcaggcca accagatgat ggtctggacc 180ccggtcaaca acaagatgtt cgagaccttc tcctacctgc cccccctgag cgacgagcag 240atcgccgccc aggtcgacta cattgtaagt ctggcgagag cccgacgggt ccactgtggc 300actgggttag cttttggcac acgggtccac tgtggcactg gttagcttgg caccgggaca 360gcgcctatct caccgcgggg aactgacgca tacccctgct cgtgcttcag cacggaaaag 420caaggggccc aattccatct ttggtggttc tgtgcgctgg tgactgaacc tcttctccct 480cccatttccc gtgcgcccgc agctgtacta aatgtagtcg acctgggcgg cgatctgctc 540gtcgctcagg gggggcaggt aggagaaggt ctcgaacatc ttgttgttga ccggggtcca 600gaccatcatc tggttggcct gagccggggc agccacgggg gcggccttga cggcgggctt 660cagcgcggcc atggggcgca cgctggagcg ggccgggcgg gccacggccg cggagacgga 720ggacttggca atgacggcgg ccattttaag atgttgagtg actctagagg atcc 774229DNAartificial sequencechemically synthetized 2gcttcgaatc aacgagcgcc tccatttac 29328DNAartificial sequencechemically synthetized 3gcctcgagat ggccgccgtc attgccaa 284375DNAPichia pastorismisc_feature(1)..(375)bleomycin binding protein(Ble) gene sequence 4atggccaagt tgaccagtgc cgttccggtg ctcaccgcgc gcgacgtcgc cggagcggtc 60gagttctgga ccgaccggct cgggttctcc cgggacttcg tggaggacga cttcgccggt 120gtggtccggg acgacgtgac cctgttcatc agcgcggtcc aggaccaggt ggtgccggac 180aacaccctgg cctgggtgtg ggtgcgcggc ctggacgagc tgtacgccga gtggtcggag 240gtcgtgtcca cgaacttccg ggacgcctcc gggccggcca tgaccgagat cggcgagcag 300ccgtgggggc gggagttcgc cctgcgcgac ccggccggca actgcgtgca cttcgtggcc 360gaggagcagg actga 3755822DNAChalmydomonas sp.promoter(1)..(822)Chlamydomonas psaD promoter 5gcggccgcca cacacctgcc cgtctgcctg acaggaagtg aacgcatgtc gagggaggcc 60tcaccaatcg tcacacgagc cctcgtcaga aacacgtctc cgccacgctc tccctctcac 120ggccgacccc gcagcccttt tgccctttcc taggccaccg acaggaccca ggcgctctca 180gcatgcctca acaacccgta ctcgtgccag cggtgccctt gtgctggtga tcgcttggaa 240gcgcatgcga agacgaaggg gcggagcagg cggcctggct gttcgaaggg ctcgccgcca 300gttcgggtgc ctttctccac gcgcgcctcc acacctaccg atgcgtgaag gcaggcaaat 360gctcatgttt gcccgaactc ggagtcctta aaaagccgct tcttgtcgtc gttccgagac 420atgttagcag atcgcagtgc cacctttcct gacgcgctcg gccccatatt cggacgcaat 480tgtcatttgt agcacaattg gagcaaatct ggcgaggcag taggctttta agttgcaagg 540cgagagagca aagtgggacg cggcgtgatt attggtattt acgcgacggc ccggcgcgtt 600agcggccctt cccccaggcc agggacgatt atgtatcaat attgttgcgt tcgggcactc 660gtgcgagggc tcctgcgggc tggggagggg gatctgggaa ttggaggtac gaccgagatg 720gcttgctcgg ggggaggttt cctcgccgag caagccaggg ttaggtgttg cgctcttgac 780tcgttgtgca ttctaggacc ccactgctac tcacaacaag cc 82263001DNAartificial sequencechemically synthetized 6tttcaacgag ggcaggcatg tgccatacgt ggataccacc ggaagccaca ggcatggtgc 60cggggagaga agcgtagtct tgggtgaaga atacaccgcg agaacgatct tcttcaacgt 120agtcttcacg catcaggtct acgaaaccga gggtggcggc gcgatcgcct tcgagcttac 180caacaaccgt accggagtgg aggtggtcac caccagagag gcggagacac ttagcgagaa 240cgcggaagtg aataccgtgg ttcttctgac ggtcgattac cgcgtgcatt gcccggtgga 300tgtggagcag aacgccgtta tcacgacacc acttcgcaag ggtagtattc gcagtgaaac 360caccagttaa gaagtcgtgc atgatgatgg gagtgccgat ttccttagcg aattcagccc 420gcttgagcat ttcttcgcaa gtgccagcgg tgacgttaag gtagtgaccc ttaacttcgt 480tggtttcagc ttgggatttt tcgatagctt cttgaacgaa caggaagcga tcgcgccaac 540gcatgaaagg ctgagagttg atgttttcgt catctttggt gaagtcaaga ccaccacgga 600gacattcata aaccgcacga ccgtagttct tcgcagacag accgagcttc ggcttaatcg 660tacaaccgag gagaggacga ccatacttgt tgaggaggtc acgctctaca gtgatcccgt 720ggggaggccc ttggtaagtt ttgattaacg caacggggaa gcggatatct tcgaggcgca 780gggcacgcag cgctttaaaa ccgaatacgt taccaaccaa ggaagtcaaa acgttggtta 840cagaaccttc ttcaaacaga tcgagggggt aagcaacgaa acagaaatat tggttgtctt 900caccgggaac gggttcaaca ttgtagcaac gacccttgta gcggtcgagg tcagttaaac 960catcggtcca tacagtggtc caagtaccgg tagaagattc agccgcaaca gccgcagcac 1020attcttcggg ggggactcca ggttggggag tcatccggaa acaagcgagt aagtcggtat 1080ctttcggggt gtaatcgggg gtgtagtaag tcaggcggta gtcctgtaca ccggcattaa 1140acccagcaga tttggtctga accatgcggt tttcctccag caaaaatgct tatctttaac 1200agacaaatac cagtaacggt attgttggtc gaaaacttca aaaatcttac gttggcaaaa 1260ctgcttttta aaattctgaa gattcaagtc ttatgacttt ctttaatctg tgggatatgt 1320taccacagcc tcgacttatt tttatctttt agcaacaaaa aaagattgct tttgtttttt 1380gggctgatta gcatttctaa tgctgtttga tgggcctatt ttacccttac aaaaatacct 1440aaaaaagcca taaaatcccg ctcgaattca gccatgctac ctaatgagac attgggctaa 1500aaccgttttc tgtcgggatc tttagagagg gaaagcgttc aaatgagatg aattaagtat 1560ttatgtttct caacaatctc ctttaagaac tttaaacatt taattttcac tcaagcaatc 1620atgaaagttt tgtggggcta aggctcatct ggttgatttg gggtattgag agaattttgg 1680tgagggaata gggtcattaa tagttgattg atataaactt gcccgacaac tggtgttttt 1740tcgcccgatt ctagggattc ctttgattct ggaaccgtcg gcatcacttc ggtgtttggt 1800gtttcagttg gaggggatcc tgcttctggt gggggctgga cattgggacg attgctgctg 1860ctagtgggcg atcgccctgg tggcgaaaag gttgtggcag tctggttagt tgtatcttct 1920gcctgccaag gatcgagggg ttgggttgtc gattgattcg cgggttttgg cggttgagtc 1980tggtaagaag cggtggtttc ttggcgggac ggatcgccga tgaggctttg gggcgggaga 2040attgcggcgg cggcgatcgc cgcttgaaat agggtagagc cataacctaa gcaggcattt 2100tctcccactg agcattggcc aatgatcagg cagcctgccc cgataatcgc gccggcatgg 2160atctcgatgt tgccgccgtg ggcctggata atcgcacctg caccaataca agcaccagtg 2220gcgatcgcca cataattgcc ttcggttgct tgcagaataa caccgggggc aataaccgca 2280cggggatgaa tccttacatc gccactaatt tgaatatctg gatgggtaat tgcctggaaa 2340gtcacaatga ttctgtcaac ggtgattcaa ttaatcacag gtggggtaag ggttggggga 2400tagacattcg ttttctcccc cataacgaag tggtcgcgtt acacaaccta ggggcgttgg 2460ataatttcct caagcacccg tcgtttagcc gcttcatcga caccaatcat gcggacatat 2520tcgccactgt gctcctggag acaaccttcg aggtgacgta aaacttctgc ctcttgggtg 2580ctgtcaatgg tgccacaact actccaggac ttaacacgga aacggcgctt atcggcgtgt 2640tctgttccaa tcttgtagcc ttgcatcaaa agcgaacgga ctttagaaac cacatcccca 2700ctgagactcc cgctactgtg acccccgaaa ccattgctgc ttggggctgc tttcgtgcct 2760cccgaaaaac tactggttgc ggttgctgtc tggacaggcg cattgttgcc agggcgttgg 2820atgatgatct ctgcggcccg tgttttggag ttggggtcaa cggcgattaa ctggacatat 2880tcgttgggga actgggcggc gatcgcctgg atatttgcca aaatctgatt agcagaatga 2940ccctccacaa agcctgcccc tagccaagac tgggttttaa aacggcgagt gctggcgtgt 3000t 30017792DNAEscherichia colimisc_feature(1)..(792)aadA gene sequence 7atgagggaag cggtgatcgc cgaagtatcg actcaactat cagaggtagt tggcgtcatc 60gagcgccatc tcgaaccgac gttgctggcc gtacatttgt acggctccgc agtggatggc 120ggcctgaagc cacacagtga tattgatttg ctggttacgg tgaccgtaag gcttgatgaa 180acaacgcggc gagctttgat caacgacctt ttggaaactt cggcttcccc tggagagagc 240gagattctcc gcgctgtaga agtcaccatt gttgtgcacg acgacatcat tccgtggcgt 300tatccagcta agcgcgaact gcaatttgga gaatggcagc gcaatgacat tcttgcaggt 360atcttcgagc cagccacgat cgacattgat ctggctatct tgctgacaaa agcaagagaa 420catagcgttg ccttggtagg tccagcggcg gaggaactct ttgatccggt tcctgaacag 480gatctatttg aggcgctaaa tgaaacctta acgctatgga actcgccgcc cgactgggct 540ggcgatgagc gaaatgtagt gcttacgttg tcccgcattt ggtacagcgc agtaaccggc 600agaatcgcgc cgaaggatgt cgctgccgac tgggcaatgg agcgcctgcc ggcccagtat 660cagcccgtca tacttgaagc tagacaggct tatcttggac aagaagaaga tcgcttggcc 720tcgcgcgcag atcagttgga agaatttgtt cactacgtga aaggcgagat caccaaggta 780gtcggcaaat aa 79281935DNAartificial sequencechemically synthetized 8atggccgccg tcattgccaa gtcctccgtc tccgcggccg tggcccgccc ggcccgctcc 60agcgtgcgcc ccatggccgc gctgaagccc gccgtcaagg ccgcccccgt ggctgccccg 120gctcaggcca accagatgga gaagactatt ggcctggaga tcattgaggt ggtggagcag 180gccgcgatcg cctccgctcg cctcatgggc aagggcgaga agaacgaggc tgaccgcgtg 240gccgtggagg cgatgcgggt gcgcatgaac caggtggaga tgctgggccg catcgtgatt 300ggcgagggcg agcgcgacga ggcgcccatg ctgtatatcg gcgaggaggt gggcatctac 360cgcgacgcgg acaagcgcgc gggtgtgccc gccggcaagc tggtggagat cgacattgcc 420gtggacccct gcgagggcac caacctgtgc gcgtacggcc agccggggtc catggccgtc 480ctggccatca gcgagaaggg cggcctgttc gcggcccccg acttctacat gaagaagctg 540gcggctcctc cggcggcgaa gggcaaggtc gacattaaca agtcggccac ggagaacctg 600aagatcctgt ccgagtgcct ggaccgggcc atcgatgagc tggtggtggt cgtgatggac 660atggccgccg tcattgccaa gtcctccgtc tccgcggccg tggcccgccc ggcccgctcc 720agcgtgcgcc ccatggccgc gctgaagccc gccgtcaagg ccgcccccgt ggctgccccg 780gctcaggcca accagatgga gaagactatt ggcctggaga tcattgaggt ggtggagcag 840gccgcgatcg cctccgctcg cctcatgggc aagggcgaga agaacgaggc tgaccgcgtg 900gccgtggagg cgatgcgggt gcgcatgaac caggtggaga tgctgggccg catcgtgatt 960ggcgagggcg agcgcgacga ggcgcccatg ctgtatatcg gcgaggaggt gggcatctac 1020cgcgacgcgg acaagcgcgc gggtgtgccc gccggcaagc tggtggagat cgacattgcc 1080gtggacccct gcgagggcac caacctgtgc gcgtacggcc agccggggtc catggccgtc 1140ctggccatca gcgagaaggg cggcctgttc gcggcccccg acttctacat gaagaagctg 1200gcggctcctc cggcggcgaa gggcaaggtc gacattaaca agtcggccac ggagaacctg 1260aagatcctgt ccgagtgcct ggaccgggcc atcgatgagc tggtggtggt cgtgatggac 1320cggccgcgcc acaaggagct catccaagag atccgccagg cgggtgcccg ggtgcgcctg 1380atcagcgacg gggacgtgag cgcggctatc agctgcggct tcgcggggac caacacccac 1440gccctgatgg gcatcggcgc cgctcctgag ggcgtgatta gcgccgcggc gatgcgctgc 1500ctgggcggcc actttcaggg ccagctgatc tacgacccgg aggtggtgaa gacgggcctc 1560atcggcgagt cgcgcgagtc gaacatcgcc cggctgcagg agatggggat cacggacccc 1620gaccgcgtgt acgatgctaa cgagctggct tcgggccagg aggtcctctt cgccgcctgc 1680ggcatcaccc ccggcctgct gatggagggc gtccgcttct tcaagggtgg cgcccggacc 1740cagagcctcg tcatttcctc gcagtcgcgc acggcccgct tcgtggacac cgtccacatg 1800ttcgacgacg tgaagaccgt gagcctgcgc ctggagtacc cctacgacgt gccggactac 1860gcgggctacc cttacgacgt ccccgattat gccggttcct acccgtacga tgtgcccgac 1920tacgccgccc agtaa 1935

* * * * *

References


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed