Process And Assembly For Flush Connecting Evaporator Sections Of Juxtaposed Heat Pipes To A Fixing Base

LIN; Kuo-Len ;   et al.

Patent Application Summary

U.S. patent application number 12/202723 was filed with the patent office on 2010-03-04 for process and assembly for flush connecting evaporator sections of juxtaposed heat pipes to a fixing base. Invention is credited to Chih-Hung Cheng, Ken Hsu, Chen-Hsiang Lin, Kuo-Len LIN, Hwai-Ming Wang.

Application Number20100051236 12/202723
Document ID /
Family ID41723596
Filed Date2010-03-04

United States Patent Application 20100051236
Kind Code A1
LIN; Kuo-Len ;   et al. March 4, 2010

PROCESS AND ASSEMBLY FOR FLUSH CONNECTING EVAPORATOR SECTIONS OF JUXTAPOSED HEAT PIPES TO A FIXING BASE

Abstract

A process for flush connecting evaporator sections of juxtaposed heat pipes to a fixing base and forming a plane includes the steps of: providing a fixing base with its bottom surface having an accommodating trough; providing at least two heat pipes each having an evaporator section and a condenser section; disposing the evaporator sections of the heat pipes in the accommodating trough; and machining the evaporator sections of the juxtaposed heat pipes, thereby forming a plane on the evaporator sections of the heat pipe. Via the above process, the evaporator sections of the heat pipes can be juxtaposed in and flush connected to the fixing base, thereby increasing the contact area between the evaporator sections of the heat pipes and a heat-generating element. It further provides an assembly for flush connecting evaporator sections of juxtaposed heat pipes to a fixing base and forming a plane.


Inventors: LIN; Kuo-Len; (Wugu Township, TW) ; Lin; Chen-Hsiang; (Wugu Towship, TW) ; Wang; Hwai-Ming; (Wugu Township, TW) ; Hsu; Ken; (Wugu Township, TW) ; Cheng; Chih-Hung; (Wugu Township, TW)
Correspondence Address:
    HDLS Patent & Trademark Services
    P.O. BOX 220746
    CHANTILLY
    VA
    20153-0746
    US
Family ID: 41723596
Appl. No.: 12/202723
Filed: September 2, 2008

Current U.S. Class: 165/104.21 ; 29/890.032
Current CPC Class: B21D 53/06 20130101; F28D 15/0275 20130101; Y10T 29/49353 20150115
Class at Publication: 165/104.21 ; 29/890.032
International Class: F28D 5/00 20060101 F28D005/00; B21D 53/06 20060101 B21D053/06

Claims



1. A process for flush connecting evaporator sections (21) of juxtaposed heat pipes (20) to a fixing base (10), comprising the steps of: a) providing a fixing base (10) with a bottom surface (11) thereof having an accommodating trough (12); b) providing at least two heat pipes (20) each having an evaporator section (21) and a condenser section (22); c) disposing the evaporator sections (21) of the heat pipes (20) in the accommodating trough (12); and d) machining the evaporator sections (21) of the juxtaposed heat pipes (20), thereby forming a plane (200) on the evaporator sections (21) of the heat pipe (20).

2. The process for flush connecting evaporator sections (21) of juxtaposed heat pipes (20) to a fixing base (10) according to claim 1, wherein the step (b) is performed by providing at least three heat pipes (20).

3. The process for flush connecting evaporator sections (21) of juxtaposed heat pipes (20) to a fixing base (10) according to claim 2, wherein the step (c) is performed by first disposing the evaporator sections (21) of two of the heat pipes (20) in the accommodating trough (12), and then pressing the evaporator sections (21) of at least one heat pipe (20) in the accommodating trough (12).

4. The process for flush connecting evaporator sections (21) of juxtaposed heat pipes (20) to a fixing base (10) according to claim 1, wherein the step (c) is performed by first disposing the evaporator section (21) of one of the heat pipes (20) in the accommodating trough (12), and then pressing the evaporator sections (21) of at least one heat pipe (20) in the accommodating trough (12).

5. The process for flush connecting evaporator sections (21) of juxtaposed heat pipes (20) to a fixing base (10) according to claim 1, wherein the step (c) is performed by first juxtaposing the evaporator sections (21) of the heat pipes (20) on the accommodating trough (12), and then pressing the evaporator sections (21) of the juxtaposed heat pipes (20) in the accommodating trough (12).

6. The process for flush connecting evaporator sections (21) of juxtaposed heat pipes (20) to a fixing base (10) according to claim 1, wherein the machining step is performed by rolling, pressing or die-pressing.

7. The process for flush connecting evaporator sections (21) of juxtaposed heat pipes (20) to a fixing base (10) according to claim 1, wherein the plane (200) formed on the evaporator sections (21) of the heat pipes (20) is higher than the bottom surface (11) of the fixing base (10).

8. The process for flush connecting evaporator sections (21) of juxtaposed heat pipes (20) to a fixing base (10) according to claim 1, wherein the plane (200) formed on the evaporator sections (21) of the heat pipes (20) is in flush with the bottom surface (11) of the fixing base (10).

9. The process for flush connecting evaporator sections (21) of juxtaposed heat pipes (20) to a fixing base (10) according to claim 1, wherein the evaporator sections (21) of the heat pipes (20) are machined at least one time.

10. An assembly for flush connecting evaporator sections (21) of juxtaposed heat pipes (20) to a fixing base (10), comprising: a fixing base (10) with a bottom surface (11) thereof having an accommodating trough (12); and at least two heat pipes (20) each having an evaporator section (21) and a condenser section (22), the evaporator sections (21) of the heat pipes (20) being juxtaposed in the accommodating trough (12), wherein a surface of the evaporator sections (21) of the juxtaposed heat pipes (20) is machined to form a plane (200) that is not lower than the bottom surface (11) of the fixing base (10).

11. The assembly for flush connecting evaporator sections (21) of juxtaposed heat pipes (20) to a fixing base (10) according to claim 10, wherein the plane (200) formed on the evaporator sections (21) of the heat pipes (20) is higher than the bottom surface (11) of the fixing base (10).

12. The assembly for flush connecting evaporator sections (21) of juxtaposed heat pipes (20) to a fixing base (10) according to claim 10, wherein the plane (200) formed on the evaporator sections (21) of the heat pipes (20) is in flush with the bottom surface (11) of the fixing base (10).
Description



BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] The present invention relates to a heat-dissipating device, and in particular to a heat-dissipating device having a plurality of heat pipes and a process for making the same.

[0003] 2. Description of Prior Art

[0004] Since heat pipes have many advantageous features such as large heat-conducting capacity, high heat-transferring rate, light weight, simple structure, versatility, capability of transferring large amount of heat without consuming any electricity, low price etc., they are widely used in dissipating the heat generated by electronic elements. Via the heat pipes, the heat generated by electronic heat-generating elements can be dissipated quickly, thereby overcoming the heat accumulation occurring in the electronic heat-generating elements at current stage.

[0005] Please refer to FIG. 1. When the heat pipe is used in a heat-dissipating device of an electronic product, in order to transfer and dissipate the heat generated by the heat-generating elements more quickly, a plurality of heat pipes 20a is disposed on a heat-conducting base 10a to perform the heat dissipation. Thus, a plurality through slots 101a is provided at intervals on the heat-conducting base 10a, so that the evaporator sections 201a of the heat pipes 20a can be disposed in the through slots 101a respectively. Then, the heat-conducting base 10a with the evaporators 201a of the heat pipes 20a being disposed therein is adhered to a heat-generating element (not shown), so that the heat-conducting base 10a and the heat-generating element can be thermally connected with each other. Condenser sections 202a on the other side of the heat pipes 20a are provided with a plurality of heat-dissipating fins (not shown). With the large heat-conducting capacity of the heat pipe 20a, the heat generated by the heat-generating element can be transferred to each heat-dissipating fin via the heat pipes 20a, thereby dissipating the heat of the heat-generating element continuously and lowering the temperature thereof. Furthermore, with an associated heat-dissipating fan, the heat accumulated in the respective heat-dissipating fins can be dissipated quickly, thereby achieving a good heat-dissipating effect.

[0006] In the above assembly, a separating plate 102a has to be formed between each through slot 101a on the heat-conducting base 10a, so that the heat pipes 20a can be arranged on the heat-conducting base 10a at intervals. Although the separating plates 102a can allow the evaporator sections of the respective heat pipes 20a to be received in the through slots 101a, these separating plates 102a only make the evaporator sections 201a of the heat pipes 20a and the heat-generating element to be brought into a line contact but not a surface contact when the evaporator sections 201a of the heat pipes 20a are adhered to the heat-generating element. As a result, the contacting area between the evaporator sections 201a of the heat pipes 20a and the heat-generating element is reduced, and in turn, the heat-conducting effect of the heat pipes 20a on the heat-generating element is affected. Thus, the heat generated by the heat-generating element cannot be dissipated immediately.

[0007] Therefore, it is an important issue for the present Inventor to overcome the above problems.

SUMMARY OF THE INVENTION

[0008] The present invention is to provide a process and an assembly for flush connecting evaporator sections of juxtaposed heat pipes to a fixing base, whereby the contacting area between the evaporator sections of the heat pipes and a heat-generating element can be increased so as to dissipate the heat of the heat-generating element quickly and improve the heat-conducting efficiency.

[0009] The present invention is to provide a process and an assembly for flush connecting evaporator sections of juxtaposed heat pipes to a fixing base. The process includes the steps of: a) providing a fixing base with its bottom surface having an accommodating trough; b) providing at least two heat pipes each having an evaporator section and a condenser section; c) disposing the evaporator sections of the heat pipes in the accommodating trough; and d) machining the evaporator sections of the juxtaposed heat pipes, thereby forming a plane on the evaporator sections of the heat pipe.

[0010] The present invention is to provide a process and an assembly for flush connecting evaporator sections of juxtaposed heat pipes to a fixing base. With the evaporator sections of the heat pipes being formed into a plane that is higher than or in flush with the bottom surface of the fixing base, the evaporator sections of the heat pipes can be brought into a surface contact with the heat-generating element, thereby dissipating the heat of the heat-generating element quickly.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] FIG. 1 is a schematic view showing the combination of heat pipes and a heat-conducting base in prior art;

[0012] FIG. 2 is a perspective view showing the external appearance of the fixing base of the present invention;

[0013] FIG. 3 is a cross-sectional view of the present invention showing the evaporator sections of two of the heat pipes being pressed in an accommodating trough;

[0014] FIG. 4 is a cross-sectional view of the present invention showing the evaporator sections of at least two heat pipes being pressed into an accommodating trough;

[0015] FIG. 5 is a schematic view showing a step of machining the evaporator sections of juxtaposed heat pipes by a die according to the present invention;

[0016] FIG. 6 is a perspective view showing the external appearance of the present invention;

[0017] FIG. 7 is an assembled cross-sectional view showing the plane formed on the evaporator sections of the heat pipes of the present invention being in flush with the bottom surface of the fixing base;

[0018] FIG. 8 is an assembled cross-sectional view showing the plane formed on the evaporator sections of the heat pipes of the present invention being higher than the bottom surface of the fixing base;

[0019] FIG. 9 is a schematic view showing the operating state of the present invention; and

[0020] FIG. 10 is a flow chart showing a process of an embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0021] The detailed description and technical contents of the present invention will be explained with reference to the accompanying drawings. However, the drawings are illustrative only but not used to limit the present invention.

[0022] Please refer to FIGS. 2 to 6. The present invention provides a process for flush connecting evaporator sections of juxtaposed heat pipes to a fixing base. First, a fixing base 10 is provided. A bottom surface 11 of the fixing base 10 is provided with an accommodating trough 12. Furthermore, at least two heat pipes 20 are provided, in which a wick structure and a working fluid are filled. In the present embodiment, there are three heat pipes 20. Next, evaporator sections 21 of the heat pipes 20 are disposed in the accommodating trough 12. The evaporator section 21 of one of the heat pipes 20 is first disposed in the accommodating trough 12, and then the evaporator section 21 of at least one heat pipe 20 is pressed into the accommodating trough 12. In the present embodiment, the evaporator sections 21 of two of the heat pipes 20 are disposed in the accommodating trough 12, and then the evaporator section 21 of at least one heat pipe 20 is pressed into the accommodating trough 12. In practice, the evaporator sections 21 of the heat pipes 20 are juxtaposed on the accommodating trough 12, and then the evaporator sections 21 of the juxtaposed heat pipes 20 are pressed into the accommodating trough 12. Finally, via a machining step such as rolling, pressing or die-pressing, a pressing die 30 is used in the present embodiment to roll the evaporator sections 21 of the juxtaposed heat pipes 20 at least one time, so that a plane 200 can be formed on the evaporator sections 21 of the heat pipes 20. Thus, the evaporator sections 21 of the juxtaposed heat pipes 20 can be flush connected into the accommodating trough 12 of the fixing base 10.

[0023] Please refer to FIG. 7, which is an assembled cross-sectional view showing the assembly for flush connecting the evaporator sections of the juxtaposed heat pipes to the fixing base according to the present invention. The bottom surface 11 of the fixing base 10 has an accommodating trough 12. The evaporator sections 21 of at least two heat pipes 20 are juxtaposed in the accommodating trough 12. In the present embodiment, three heat pipes 20 are provided. The evaporator sections 21 of the juxtaposed heat pipes 20 are machined to form a plane 200. The plane 200 formed on the evaporator sections 21 of the heat pipes 20 is in flush with the bottom surface 11 of the fixing base 10. Please refer to FIG. 8, which is different from FIG. 7 in that: after machining, the plane 200 formed on the evaporator sections 21 of the heat pipes 20 is higher than the bottom surface 11 of the fixing base 10.

[0024] Please refer FIG. 9, which is a schematic view showing an operating state of the present invention. The evaporator sections 21 of the heat pipes 20 are machined to form a plane 200, and these heat pipes are juxtaposed flush in the accommodating trough 12 of the fixing base 10. The condenser sections 22 of the heat pipes 20 are connected with a heat-dissipating fins assembly 40. In use, the plane 200 is adhered to the surface of a heat-generating element 50. In the present embodiment, the heat-generating element 50 is a CPU disposed on a circuit board. Thus, the heat generated by the heat-generating element 50 can be conducted to the evaporator sections 21 of the heat pipes 20. Then, the heat is transferred from the evaporator sections 21 of the heat pipes 20 to their condenser sections 22. Finally, the heat is transferred from the condenser sections 22 of the heat pipes 20 to the heat-dissipating fins assembly 40 having a larger heat-dissipating area. In this way, the heat generated by the heat-generating element 50 can be transferred to the heat-dissipating fins assembly 40 via the heat pipes 20, thereby dissipating the heat gradually.

[0025] Please refer to FIG. 10, which is a flow chart showing the process for flush connecting evaporator sections of juxtaposed heat pipes to a fixing base according to the present invention (also refer to FIGS. 2 to 9). The process includes the steps as follows. First, in the step 61, a fixing base 10 is provided with its bottom surface 11 having an accommodating trough 12. In the step 62, at least two heat pipes 20 each having an evaporator section 21 and a condenser section 22 are provided. Then, in the step 63, the evaporator sections 21 of the heat pipes 20 are disposed in the accommodating trough 12. Finally, in the step 64, via the machining of a rolling die 30, the evaporator sections 21 of the heat pipes 20 are rolled at least one time, thereby forming a plane 200 on the evaporator sections 21 of the heat pipes 20. The plane 200 is higher than or in flush with the bottom surface 11 of the fixing base 10. The step of disposing the evaporator sections 21 of the heat pipes 20 in the accommodating trough 12 can be performed in such a manner that the evaporator section 21 of one of the heat pipes 20 is first disposed in the accommodating trough 12, and then the evaporator sections 21 of at least one heat pipe 20 are pressed into the accommodating trough 12. In the present embodiment, the evaporator sections 21 of two of the heat pipes 20 are disposed in the accommodating trough 12, and then the evaporator section 21 of at least one heat pipes 20 is pressed into the accommodating trough 12. Alternatively, the evaporator sections 21 of the heat pipes 20 are juxtaposed on the accommodating trough 12, and then the evaporator sections 21 of the juxtaposed heat pipes 20 are pressed into the accommodating trough 12.

[0026] Therefore, according to the present invention, the evaporator sections 21 of at least two heat pipes 20 can be disposed simultaneously in the accommodating trough 12 of the fixing base 10, so that the evaporator sections 21 of the heat pipes 20 and the heat-generating element 50 can be brought into a surface contact, thereby increasing the contact area between the evaporator sections 21 of the heat pipes 20 and the heat-generating element 50. In this way, the heat of the heat-generating element 50 can be dissipated quickly and the heat-conducting efficiency can be improved.

[0027] Although the present invention has been described with reference to the foregoing preferred embodiment, it will be understood that the invention is not limited to the details thereof. Various equivalent variations and modifications can still occur to those skilled in this art in view of the teachings of the present invention. Thus, all such variations and equivalent modifications are also embraced within the scope of the invention as defined in the appended claims.

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed