Multichamber Ultrasonic Sensor For Determining A Liquid Level

Beyer; Oliver ;   et al.

Patent Application Summary

U.S. patent application number 12/309432 was filed with the patent office on 2009-12-10 for multichamber ultrasonic sensor for determining a liquid level. This patent application is currently assigned to CONTI TEMIC MICROELECTRONIC GMBH. Invention is credited to Oliver Beyer, Henning Grotevent, Bernd Harigel, Manfred Roth, Gerd Unverzagt, Andreas Weibert.

Application Number20090301187 12/309432
Document ID /
Family ID38686618
Filed Date2009-12-10

United States Patent Application 20090301187
Kind Code A1
Beyer; Oliver ;   et al. December 10, 2009

MULTICHAMBER ULTRASONIC SENSOR FOR DETERMINING A LIQUID LEVEL

Abstract

An ultrasound sensor for determining a fluid level with an elongated housing (1) which comprises a lid (2) and a floor (3), with a measuring chamber (4), arranged in the housing (1), in which a fluid has the same level as outside the measuring chamber (4), and with an ultrasound transmission receiver (5) on the floor (3) within or outside the housing (1) in the area of the measuring chamber (4), the transmitted sound signals of which are reflected on the surface of the fluid and received by the ultrasound transmission receiver (5), in order to determine the fluid level from the signal run time, wherein in the housing (1), alongside the measuring chamber (4), at least one further chamber (6, 7) is arranged at least partially in front of the measuring chamber (4) or at least partially around the measuring chamber (4), wherein the outermost chamber forms the inlet chamber (7), and that the chambers (4, 6, 7) are connected to each other.


Inventors: Beyer; Oliver; (Erlangen, DE) ; Grotevent; Henning; (Nuernberg, DE) ; Harigel; Bernd; (Zell unter Aichelberg, DE) ; Roth; Manfred; (Grosshabersdorf, DE) ; Unverzagt; Gerd; (Nuenrberg, DE) ; Weibert; Andreas; (Nuernberg, DE)
Correspondence Address:
    FASSE PATENT ATTORNEYS, P.A.
    P.O. BOX 726
    HAMPDEN
    ME
    04444-0726
    US
Assignee: CONTI TEMIC MICROELECTRONIC GMBH
Nurnberg
DE

Family ID: 38686618
Appl. No.: 12/309432
Filed: July 18, 2007
PCT Filed: July 18, 2007
PCT NO: PCT/DE2007/001287
371 Date: January 20, 2009

Current U.S. Class: 73/290V
Current CPC Class: G01F 23/296 20130101; G01F 23/2962 20130101
Class at Publication: 73/290.V
International Class: G01F 23/296 20060101 G01F023/296

Foreign Application Data

Date Code Application Number
Jul 18, 2006 DE 10 2006 033 592.9
Aug 25, 2006 DE 10 2006 039 872.6

Claims



1. An ultrasound sensor for determining a fluid level, with an elongated housing (1) which comprises a lid (2) and a floor (3) a measuring chamber (4), arranged in the housing (1), in which a fluid comprises the same level as outside the measuring chamber (4) an ultrasound transmission receiver (5) on the floor (3) inside or outside the housing (1) in the area of the measuring chamber (4), the transmitted sound signals of which reflect on the surface of the fluid and are received by the ultrasound transmission receiver (5), in order to determine the fluid level from the signal run time, characterized in that in the housing (1) alongside the measuring chamber (4) at least one further chamber (6, 7) is arranged at least partially in front of the measuring chamber (4) or at least partially around the measuring chamber (4), wherein the outer chamber forms the inlet chamber (7), and that the chambers (4, 6, 7) are connected to each other.

2. An ultrasound sensor according to claim 1, characterized in that the inlet chamber (7) and the measuring chamber (4) comprise an opening (8) on the side, respectively at a height close to the floor (3) of the housing (1), to enable the fluid to flow in and out.

3-20. (canceled)

21. An ultrasound sensor according to claim 1, characterized in that at least one housing ventilation opening (10) is arranged in the lid (2) or on an outer side of the inlet chamber (7) at a height close to the lid (2).

22. An ultrasound sensor according to claim 1, characterized in that the lid (2) is closed at least in the area of the measuring chamber (4).

23. An ultrasound sensor according to claim 1, characterized in that the measuring chamber (4) comprises on one outer side at a height close to the lid (2) above the maximum measurable fluid level at least one ventilation opening (11).

24. An ultrasound sensor according to claim 1, characterized in that a calibration reflector (12) is arranged in the measuring chamber (4) below the minimum possible fluid level, and the fluid level can be determined from the run time ratio of the signal reflected on the surface of the fluid and on the calibration reflector (12).

25. An ultrasound sensor according to claim 1, characterized in that the profile of at least one chamber (4, 6, 7) is essentially round or square.

26. An ultrasound sensor according to claim 1, characterized in that the outer sides of the chambers (6) which are arranged between the inlet chamber (7) and the measuring chamber (4) are designed as walls which extend from the floor (3) at the most up to a height just below the minimum measurable fluid level.

27. An ultrasound sensor according to claim 26, characterized in that the height and length of the outer side of the chamber (6) which is closest to the measuring chamber (4) are dimensioned in such a manner that the retention capacity of said chamber (6) is greater than the retention capacity of the measuring chamber (4) itself.

28. An ultrasound sensor according to claim 1, characterized in that the outer side of the chambers (6) which are arranged between the inlet chamber (7) and the measuring chamber (4) extend from the floor (3) up to the lid (2), that on the outer side of said chambers (6) close to the lid (2), at least one ventilation opening (11) is arranged, and that on the outer side, at least of the chamber (6) which is closest to the measuring chamber (4), between the floor (3) and the lid (2), at a height below the minimum measurable fluid level, at least one opening (8) is arranged to enable the fluid to flow in and out.

29. An ultrasound sensor according to claim 28, characterized in that the height in which an interim opening (13) is arranged, and the length of the outer side of the chamber (6) which is closest to the measuring chamber is dimensioned, in such a manner that the retention capacity of said chamber (6) is greater than the retention capacity of the measuring chamber (4) itself.

30. An ultrasound sensor according to claim 1, characterized in that the outer sides of the chambers (6) which are arranged between the inlet chamber (7) and the measuring chamber (4) are designed as walls which extend from the floor (3) at least up to a height above the maximum measurable fluid level, and that said outer sides of the chambers (6) comprise at a height close to the floor (3) of the housing (1) one opening (8) respectively to enable the fluid to flow in and out.

31. An ultrasound sensor according to claim 30, characterized in that the openings (8) are arranged in such a manner that the openings (8) in succession in the direction of the measuring chamber (4) are positioned as far away from each other as possible.

32. An ultrasound sensor according to claim 1, characterized in that the outer sides of the chambers (6) which are arranged between the inlet chamber (7) and the measuring chamber (4) extend from the floor (3) to the lid (2), and that said outer sides of the chambers (6) comprise at a height close to the floor (3) of the housing (1) one opening (8) respectively to enable the fluid to flow in and out, and one ventilation opening (11) close to the lid (2).

33. An ultrasound sensor according to claim 32, characterized in that the openings (8) are arranged in such a manner that the openings (8) in succession in the direction of the measuring chamber (4) are positioned as far away from each other as possible.

34. An ultrasound sensor according to claim 1, characterized in that at least one chamber (6, 7) is arranged around or in front of the measuring chamber (4), and that at least in one chamber (4, 6, 7) a separation device (9) is provided, which pre-specifies the flow direction of the fluid on its journey from one chamber (4, 6, 7) into the next chamber (4, 6, 7) through the respective opening (8).

35. An ultrasound sensor according to claim 34, characterized in that the separation device (9) is realised by a separating web (9).

36. An ultrasound sensor according to claim 34, characterized in that the separation device (9) is realised by means of the fact that respectively, the outer sides of two successive chambers (4, 6, 7) touch each other at least at one point.

37. An ultrasound sensor according to claim 1, characterized in that each chamber (6, 7) comprises at least one interim web (14), wherein on the interim web (9), at a height close to the floor (3) of the housing (1), an interim opening (13) is arranged to enable the fluid to flow in and out.

38. An ultrasound sensor according to claim 34, characterized in that each chamber (6, 7) comprises at least one interim web (14), and that the separation devices (9) and the interim webs (14) are higher than the maximum measurable fluid level.
Description



[0001] The invention relates to an ultrasound sensor for determining a fluid level in accordance with the generic term of claim 1.

[0002] Sensors of this type are used in automobile technology, for example, for measuring the level of engine oil or fuel. A sensor on the container floor emits ultrasound impulses. The echo from the fluid surface is reabsorbed by the transmission receiver. The filling level is proportionate to the sound run time. According to the German patent application DE 33 30 059 A1, the sound is guided through a hollow conduit or sound conducting tube which is arranged in a container. At the lower end of the sound conducting tube, the ultrasound transmission receiver is attached. The tube is positioned in the fluid and is filled with fluid via at least one offset opening until the filling level corresponds to that in the container. In the sound conducting tube, which can be curved, the filling level is measured using ultrasound. An embodiment of this type is primarily designed for measuring the filling level with irregularly formed fluid containers. A great disadvantage of this arrangement is that foam from the fluid to be determined can penetrate into the sound conducting tube and slightly falsify the determination of the fluid level.

[0003] The problem of foam formation with a sensor based on ultrasound to determine the fluid level lies, in particular with engine oil, in the fact that due to circulations in the oil while the engine is running, air bubbles of different sizes are created. These air bubbles have the property, depending on their size, of either scattering or reflecting the ultrasound signals. Under these circumstances, a sufficiently precise, error-free measurement cannot be guaranteed.

[0004] An approach to the problem to date of holding a fine-mesh filter (mesh width approx. 60 .mu.m), does not give a satisfactory result. The penetration of air bubbles is prevented by the filter, but this method fails as a result of the dirt particles and other impurities in the oil. Due to these particles, the filter becomes clogged after a very short time, so that a comparison of the level in the measuring chamber with the level of oil in the engine to be determined is no longer possible. Thus, the operation of the sensor in the engine cannot be guaranteed for the entire operational life span.

[0005] Against this background, the object of the invention is to provide an ultrasound sensor of the type described in the introduction, which due to its geometric structure prevents air bubbles from penetrating into the measuring chamber, and which thus enables a permanent and reliable determination of the fluid level.

[0006] This object is attained according to the invention by means of an ultrasound sensor according to the generic term of claim 1 by the features of the characterising part of claim 1.

[0007] In the housing of the sensor, alongside the measuring chamber, in particular at least one further chamber is arranged at least partially in front of the measuring chamber or at least partially around the measuring chamber, wherein the outer chamber forms the inlet chamber. In order to enable the fluid from the inlet chamber to enter the measuring chamber, the chambers are connected to each other.

[0008] The inlet chamber and the measuring chamber comprise on their side, preferably in each case at a height close to the floor of the housing, an opening to enable the fluid to flow in and out. In order to make the route which the fluid travels from the inlet chamber into the measuring chamber, and thus the time during which air bubbles which are present can rise to the surface of the fluid, as long as possible, the opening into the inlet chamber and the opening into the measuring chamber are generally arranged radially as far apart from each other as possible.

[0009] The air which escapes from the surface out of the fluid can leave the sensor through at least one housing ventilation opening which is arranged in the lid or on an outer side of the inlet chamber at a height close to the lid.

[0010] However, it should be ensured that the lid is closed at least in the area of the measuring chamber. This prevents fluid from the area surrounding the sensor, which in high probability contains air bubbles, from directly entering the measuring chamber.

[0011] The pressure compensation in the measuring chamber is created in particular by the fact that on the outer side of the measuring chamber at a height close to the lid, in particular above the maximum measurable fluid level, at least one ventilation opening is included into the chambers outside of the measuring chamber.

[0012] The fluid level in the measuring chamber can be calculated from the run time ratio of the signal reflected on the surface of the fluid and on a calibration reflector. Here, the calibration reflector in the measuring chamber is preferably arranged below the minimum possible fluid level.

[0013] The profile of the chambers can differ from chamber to chamber. This depends, among other things, on the geometry of the installation site. Thus, the inlet chamber can for example comprise an essentially round profile, and the measuring chamber can comprise an essentially square profile.

[0014] The outer sides of the chambers which are arranged between the inlet chamber and the measuring chamber are in particular designed as walls which extend from the floor at the most to a height just below the minimum measurable fluid level of the measuring chamber. The fluid flows through the inlet opening into the inlet chamber. The inlet chamber fills up to the height of the outer side of the next chamber. Further fluid continues to flow through the inlet opening and literally washes over the wall into the next chamber, and so on. The air bubbles rise to the surface of the fluid during this time and disintegrate. The fluid in the chamber in front of the measuring chamber is then advantageously already free of bubbles.

[0015] In order to ensure when the fluid level in the chamber in front of the measuring chamber increases that from this chamber, only bubble-free fluid is able to enter the measuring chamber, the height and length of the outer side of said chamber are measured in such a manner that the fluid retention capacity of this chamber is greater than the retention capacity of the measuring chamber itself.

[0016] Alternatively, the outer side of the chambers which are arranged between the inlet chamber and the measuring chamber can extend from the floor to the lid. In order to enable the air which is formed from the disintegrating air bubbles to escape, at least one ventilation opening is arranged on the outer side of said chambers, in each case close to the lid. In order to enable the fluid to enter the measuring chamber from the inlet chamber, at least one opening to allow the fluid to flow in and out is arranged on each of these outer sides. This opening is located on the outer side at least of the chamber which is closest to the measuring chamber, between the floor and the lid at a height below the minimum measurable fluid level. In a similar manner to the embodiment described above, it is also the case here that the retention capacity of the chamber in front of the measuring chamber is greater than the retention capacity of the measuring chamber itself.

[0017] In a further variant, the outer sides of the chambers which are arranged between the inlet chamber and the measuring chamber are designed as walls which extend from the floor at least up to a height above the maximum measurable fluid level. In order to enable the fluid to flow from the inlet chamber into the measuring chamber, these outer sides of the chamber comprise at a height close to the floor of the housing one opening each to allow the fluid to flow in and out. In order to make the journey which the fluid has to cover during this process, and thus the time in which the fluid and the air bubbles can separate, as long as possible, the openings are arranged in such a manner that the openings which occur in sequence in the direction of the measuring chamber are positioned as far apart as possible from each other.

[0018] With a slightly varied version of the last embodiment of the sensor described, the walls of the chambers extend between the inlet chamber and the measuring chamber up to the lid. Ventilation openings close to the lid ensure that the necessary pressure compensation is provided into the inlet chamber or into the surrounding area.

[0019] In a further embodiment, at least one chamber is arranged at least partially around or in front of the measuring chamber. Furthermore, a separation device is provided between at least two chambers of such a design that the flow direction of the fluid on its journey from one chamber into the next chamber is pre-specified by the respective opening for inflow and outflow. Preferably, as a result, the flow direction of chambers which are arranged in sequence is reversed, and thus the flow journey of the fluid from the inlet opening of the inlet chamber to the measuring chamber is made as long as possible. This separation device can for example in particular be realised with a sensor consisting of concentrically arranged tubes by a separating web which runs radially within one chamber. The same separation effect can also be realised when in each case the outer sides of two successive chambers touch each other, at least at a point preferably above the entire height.

[0020] A further possibility of influencing the flow speed of the fluid is to attach interim webs within a chamber. The flow speed is then determined in particular by the profile and the attachment location of an interim opening located on the interim web. The interim opening is preferably arranged at a height close to the floor of the housing.

[0021] For embodiments with which the fluid is guided on the journey from one chamber into the next through openings close to the floor, the existing separation devices and interim webs must be higher than the maximum possible fluid level.

[0022] Further features, advantages and details of the invention can be found in the following description, in which preferred exemplary embodiments are explained in greater detail with reference to the appended drawings, wherein:

[0023] FIG. 1 shows a profile view of an ultrasound sensor with three chambers, without fluid

[0024] FIG. 2 shows a top view of the sensor in FIG. 1 at level A-A

[0025] FIG. 3 shows a profile view as in FIG. 1, with fluid and the surrounding system, not in operation

[0026] FIG. 4 shows a profile view as in FIG. 1, with fluid and surrounding system, in operation

[0027] FIG. 5 shows a profile view as in FIG. 1, with fluid to a large extent drained

[0028] FIG. 6 shows a profile view as in FIG. 1, outer wall of the chamber in front of the measuring chamber up to the lid and the opening at a height below the minimum measurable fluid level

[0029] FIG. 7 shows a profile view as in FIG. 6, with the opening at a height close to the floor

[0030] FIG. 8 shows a top view of the sensor from FIG. 7 at A-A level

[0031] FIG. 9 shows a top view of a sensor at A-A level, with separation webs and interim webs

[0032] FIG. 10 shows a top view of a sensor at A-A level, with a separating web and a further separation device

[0033] FIG. 11 shows a top view of a sensor at A-A level, with square profile and with a separating web in the inlet chamber, wherein chambers are at least partially arranged in front of and around the measuring chamber

[0034] An ultrasound sensor, briefly referred to as sensor, will now be described below as it is used for example in automobiles for measuring the engine oil level. Here, the levels in the sensor and in the engine itself are identical, and the measuring range of the sensor generally lies between a minimum and a maximum value. FIG. 1 and FIG. 2 show a sensor with three chambers (4, 6, 7) without fluid. The profile is round and the individual chambers (4, 6, 7) are formed by concentrically arranged tubes. The outer tube ends with a floor (3) and a lid (2), and forms the housing (1) of the sensor. The middle tube extends from the floor (3) to the lid (2) and forms the measuring chamber (4). The outer chamber, also. referred to as the inlet chamber (7), and the measuring chamber (4) each have on their respective outer side close to the floor (3) an opening (8) to enable the engine oil to flow in and out. The inlet chamber (7) and the measuring chamber (4) enclose a further chamber (6), wherein the outer side of said chamber (6) is formed by the inner side of the inlet chamber (7) and the inner side of the chamber (6) is formed by the measuring chamber (4). The outer side of the chamber (6) forms a wall which extends from the floor (3) until just below the minimum level to be measured. Outside the housing (1), on the floor in the region of the measuring chamber (4), an ultrasound transmission receiver (5) is attached.

[0035] After the first filling, the oil travels through the opening (8) close to the floor into the inlet chamber (7). The inlet chamber (7) fills up to the height of the outer side of the next chamber (6). If oil continues to flow through the opening (8), it literally washes over the wall into the next chamber (6). The air bubbles rise during this time to the surface of the oil and disintegrate. From the chamber (6), the oil travels through the opening (8) close to the floor into the measuring chamber (4).

[0036] FIG. 3 shows the ratios in the sensor in particular as they occur when the surrounding system, i.e. the engine, is not in operation. The measuring chamber (4) and in particular, the important lower area of the chamber (6) which is positioned before it, are bubble-free. The air which escapes from the remaining oil can escape through a housing ventilation opening (10) in the edge area of the lid (2). The lid is closed in the area of the measuring chamber (4), as a result of which oil containing bubbles is prevented from penetrating directly into the measuring chamber (4) from the engine area. The housing ventilation opening (10) could then be provided on the outer side of the inlet chamber (7), preferably close to the lid (2).

[0037] FIG. 4 shows the ratios in the sensor which are possible when the engine is in operation. The oil is distributed through the moving parts such as the crankshaft and the connecting rod in the engine. As a result, the level in the oil pan, and therefore also in the sensor, decreases. The pressure fluctuations in the measuring chamber (4) which are caused by the changes in level are offset by the ventilation opening (11) close to the lid on the outer side of the measuring chamber. In the chamber (6) positioned in front of the measuring chamber (4), preferably only bubble-free oil is present. If oil flows on through the opening (8) into the inlet chamber (7), bubble-free oil is pressed into the measuring chamber (4) from the chamber (6). Due to the fact that in particular the retention capacity of the chamber (6) is greater due to the dimensioning of the height and length of the wall which surrounds said chamber (6) than that of the measuring chamber (4), it is ensured that with all possible changes in level, only bubble-free oil is present in the measuring chamber. The measurement of the run time of the ultrasound signals which are transmitted by the ultrasound transmission receiver and which are reflected on the calibration reflector (12) or on the surface of the oil present in the measuring chamber (4) is thus advantageously not falsified at any point in time by air bubbles. The calibration reflector (12) mentioned is in particular formed on the inner side of the measuring chamber (4) below the minimum level to be measured.

[0038] FIG. 5 shows the situation in which the oil is drained from the sensor and from the oil pan of the engine which occurs when oil is changed, for example. In the measuring chamber (4) and in the chamber (6) positioned in front of it, only bubble-free oil is present. After the oil pan, and thus also the sensor, has been re-filled, the measurement of the level can begin immediately.

[0039] FIG. 6 shows a sensor as in FIG. 1 to 5, with the difference that here, the outer side of the chamber (6) extends up to the lid (2). The oil travels from the inlet chamber (7) through an opening (8) into the chamber (6) at a height just below the minimum fluid level to be measured. The relative position of the openings (8) in the inlet chamber (7), the chamber (6) in front of it and the measuring chamber (4) is arbitrary with this embodiment in particular. The profile of the openings (8) and the number of openings (8) per chamber (4, 6, 7) can vary among each other, and influences the flow speed of the oil in the sensor. The ventilation opening (11) is arranged on the outer side of the chamber (6) close to the lid (2).

[0040] FIGS. 7 and 8 show a further embodiment of the sensor. The openings (8) in the outer side of each chamber (4, 6, 7) are respectively arranged close to the floor (3). This has the advantage that when the oil is changed, possible residues such as oil sludge and fillings are to a large extent also flushed out. Preferably, the openings (8) which follow in succession in the direction of the measuring chamber (4) are positioned as far apart from each other as possible. As a result, the journey which the oil has to cover through to the measuring chamber (4) is with this embodiment of the sensor as long as possible. When it enters a chamber (6, 7), the oil can however move towards the opening (8) into the next chamber (6, 7) partially in a clockwise direction and partially in an anti-clockwise direction.

[0041] The time during which the oil lingers in a chamber (6, 7) can be prolonged by inserting a separation device (9), as shown in FIG. 9. The separation device (9) in the inlet chamber (7) lies to the right of the opening (8). As a result, in the inlet chamber (7), the flow direction into the next chamber (6) is pre-specified as being in a clockwise direction. The separation device (9) in the next chamber (6) lies to the left of the opening (8) into said chamber (6). This, in this chamber (7) the flow direction is pre-specified as being in an anti-clockwise direction. Due to the fact that the openings (8) and the separation devices (9) lie in the top view in a narrow angle range, and the separation devices (9) of two adjacent chambers (6, 7) lie in alternation to the left and right of the respective openings (8), in this example, the time which the oil requires from entering the inlet chamber (7) until it reaches the measuring chamber (4) is the longest. The arrangement of the separation devices (9) and the openings (8) can naturally vary from embodiment to embodiment. A separation device (9) can for example be realised by a separating web (9) which runs within a chamber (6, 7) from one wall to the other wall. The separation device (9) must in particular be higher than the maximum possible oil level. Preferably, the separation device (9) extends from the floor (3) to the lid (2). The flow speed can also be influenced by the arrangement of at least one interim web (14) within a chamber (6, 7). For the height of an interim web (14), the same applies as for a separating web (9). In contrast to the separating web (9), an interim web (14), can be permeated by the oil, however. For this purpose, an interim opening (13) is arranged in the interim web (14), preferably close to the floor. The number of interim webs (14) per chamber (6, 7) and the profile and number of the interim openings (13) can vary depending on requirements. In FIG. 9, two interim webs (14) are provided in the inlet chamber (7) and one interim web (14) is provided in the chamber (6). The openings (8) to enable the oil to flow in and out to and from a chamber (4, 6, 7) and the interim openings (13) are here positioned at one level in particular. This is not absolutely necessary, however.

[0042] In FIG. 10, the separation device (9) in the inlet chamber (7) is formed by means of the fact that the outer sides of the successive inlet chambers (7) and the chambers (6) touch each other at least one point, here via a small part of the circumference. In the chamber (6), a separating web (9) is provided to the left next to the opening (8) into this chamber (6). The opening (8) into the chamber (6) does not have to lie at the same level as the opening (8) into the inlet chamber (7) or into the measuring chamber (4).

[0043] FIG. 11 shows a top view onto a sensor with a square profile. The inlet chamber (7) is arranged around the measuring chamber (4), and the chambers (6) are arranged at least partially in front of or around the measuring chamber (4).

[0044] The multi-chamber ultrasound sensor described guarantees a slowdown of the oil in the sensor and a bubble-free measuring chamber.

[0045] The present invention has been described with reference to the description provided in such a manner as to explain in the best possible manner the principle of the invention and its practical application. However, with appropriate modifications, the invention can naturally also be used in numerous other embodiments and combinations.

LIST OF REFERENCE NUMERALS

[0046] 1 Housing

[0047] 2 Lid

[0048] 3 Floor

[0049] 4 Measuring chamber

[0050] 5 Ultrasound transmission receiver

[0051] 6 Chamber

[0052] 7 Inlet chamber

[0053] 8 Opening to enable the fluid to flow in and out

[0054] 9 Separation device

[0055] 10 Housing ventilation opening

[0056] 11 Ventilation opening

[0057] 12 Calibration reflector

[0058] 13 Interim opening

[0059] 14 Interim web

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed