Rapid Efficacy Assessment Method For Lung Cancer Therapy

Peck; Konan ;   et al.

Patent Application Summary

U.S. patent application number 12/410040 was filed with the patent office on 2009-09-03 for rapid efficacy assessment method for lung cancer therapy. This patent application is currently assigned to National Health Research Institutes. Invention is credited to Konan Peck, Yuh-Pyng Sher, Jin-Yuan Shih, Cheng-Wen Wu, Pan-Chyr Yang.

Application Number20090220985 12/410040
Document ID /
Family ID37804685
Filed Date2009-09-03

United States Patent Application 20090220985
Kind Code A1
Peck; Konan ;   et al. September 3, 2009

RAPID EFFICACY ASSESSMENT METHOD FOR LUNG CANCER THERAPY

Abstract

The present invention discloses a method for rapid assessment of lung cancer therapy efficacy in a few days instead of weeks by conventional imaging methods. This method can also be used to detect relapse of the cancer and to improve the current TNM cancer staging method for more accurate prognosis. The rapid assessment of therapy efficacy is based on detecting circulating cancer cells in body fluid with high positive detection rate. The high positive detection rate is achieved by using qPCR amplification of multiple marker genes identified by in silico search of DNA sequence database. This invention also discloses a scoring method to calculate the cancer cell load based on qPCR results to correlate the amount of circulating cancer cells in lung cancer patients and predict the treatment outcomes.


Inventors: Peck; Konan; (Taipei City, TW) ; Sher; Yuh-Pyng; (Taipei City, TW) ; Shih; Jin-Yuan; (Taipei City, TW) ; Yang; Pan-Chyr; (Taipei City, TW) ; Wu; Cheng-Wen; (Zhunan Town, TW)
Correspondence Address:
    OCCHIUTI ROHLICEK & TSAO, LLP
    10 FAWCETT STREET
    CAMBRIDGE
    MA
    02138
    US
Assignee: National Health Research Institutes
Zhunan Town
TW

Family ID: 37804685
Appl. No.: 12/410040
Filed: March 24, 2009

Related U.S. Patent Documents

Application Number Filing Date Patent Number
11306532 Dec 31, 2005 7507534
12410040
60596104 Sep 1, 2005

Current U.S. Class: 435/6.12
Current CPC Class: C12Q 2600/118 20130101; C12Q 1/6886 20130101; C12Q 2600/112 20130101; C12Q 2600/106 20130101
Class at Publication: 435/6
International Class: C12Q 1/68 20060101 C12Q001/68

Claims



1. A method for cancer relapse detection which comprises: (a) collecting a blood or pleural effusion sample from a human subject; (b) extracting total RNA from said sample; (c) amplifying a panel of gene transcripts of said total RNA by qPCR, wherein said panel of gene transcripts, named j, comprises keratin 19 (KRT19), ubiquitin thiolesterase (UCHL1), tripartite motif-containing 28 (TRIM28), and highly similar to HSFIB1 for fibronectin; (d) measuring a qPCR threshold cycle number (C.sub.T).sub.j for each gene transcript of j in said panel of gene transcripts of said total RNA from said sample and a qPCR threshold cycle number C.sub.T.sup.(GAPDH) for the control gene transcript of said total RNA from said sample; (e) calculating a differential expression ratio Q.sub.j for each gene transcript of j in said panel of gene transcripts of said total RNA according to Q.sub.j=2.sup.(.DELTA.C.sup.T.sup.).sup.j.sup.-(.DELTA.C.sup.T.sup.).sup.- j.sup.,mean wherein (.DELTA.C.sub.T).sub.j=C.sub.T.sup.(GAPDH)-(C.sub.T).sub.j, and (.DELTA.C.sub.T).sub.j, mean is a predetermined mean of (.DELTA.C.sub.T).sub.j for gene transcript of j over a population of persons not inflicted with lung cancer; (f) calculating a normalized expression ratio E.sub.j for each gene transcript of j in said panel of gene transcripts of said total RNA according to E.sub.j=(Q.sub.j-Q.sub.j,mean)/.sigma..sub.j wherein Q.sub.j, mean is a predetermined mean of differential expression ratio for gene transcript of j over a population of lung cancer patients and .sigma..sub.j is a predetermined standard deviation of differential expression ratio for gene transcript of j over said population of lung cancer patients; (g) calculating a load of cancer cells (Lc) according to Lc=.SIGMA.E.sub.j, where the summation is over all the gene transcripts in said panel of gene transcripts; (h) comparing said Lc from step (g) with a reference load of cancer cells to detect if cancer relapse has occurred in said human subject, wherein said Lc from step (g) higher than said reference load of cancer cells indicates that circulating cancer cells are present in said human subject.

2. A reagent kit for assessment of lung cancer therapy and relapse detection, comprising a panel of PCR primers and probes for the multiple gene transcripts used in real-time quantitative PCR and a scoring method.

3. A reagent kit of claim 2, wherein said multiple gene transcripts are nucleic acid sequences.

4. A reagent kit of claim 2, wherein said nucleic acid sequences are selected from Homo sapiens keratin 19 (KRT19), ubiquitin thiolesterase, tripartite motif-containing 28 (TRIM28) and gene highly similar to HSFIB1 for fibronectin.
Description



CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] Under 37 CFR .sctn. 120, this application is a division of U.S. application Ser. No. 11/306,532 filed Dec. 31, 2005, which claims the benefit of U.S. Provisional Application No. 60/596,104, filed Sep. 1, 2005, which is incorporated herein by reference.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] The present invention relates generally to methods for assessment of carcinoma cancer therapy and relapse detection, and more specifically it relates to an efficacy assessment method for lung cancer therapy to rapidly predict the outcome of lung cancer therapy so treatment with higher likelihood of success can be selected to prevent invalid treatment from wrecking patents, and a routine monitoring method for cancer relapse after the treatment.

[0004] 2. Description of the Related Art

[0005] Lung cancer is the leading cause of cancer-related death and non-small cell lung cancer (NSCLC) accounts for .about.80% of the cases. Attempts to use serum protein markers for the early diagnosis of lung cancer have not yielded satisfactory results for routine screening, and newly developed early diagnostic methods using serum DNA as a diagnostic marker await further validation. Current therapeutic measures remain unable to lower the mortality rate of late-stage lung cancer patients. Surgical resection is still the best cure for the early-stage patients. The tumor, node, metastasis (TNM) classification has been used for cancer staging and prognosis for decades. A large portion of early-stage patients, defined by the current staging system and available imaging modalities, still develop distant metastases although they received surgical removal of the tumor mass. The inability to detect disseminated tumor cells with the current imaging techniques is a major obstacle to accurate cancer staging.

[0006] NSCLC is heterogeneous with respect to histology and biological characteristics. Individual NSCLC cells within a tumor and in different patients' tumors express different amounts of marker gene transcripts. The heterogeneity of marker gene expression levels in NSCLC cells limits the reliability of an assay method with a single-marker detection scheme. Several literature reports have described PCR methods for the detection of tumor cells dispersed in the circulation. However, not one tumor marker is consistently and specifically expressed in all of the primary tumors of a particular malignancy. Literature reports have also shown that a panel of marker genes provides a more reliable and informative approach than a single-marker assay for the detection of melanoma and breast cancer cells in blood. Such assays for lung cancer have been limited by the availability of molecular markers.

[0007] The presence of epithelial cancer cells in the bone marrow and in the peripheral blood of patients with carcinoma has been reported in literature reports and prior arts. In contrast to bone marrow aspirates, peripheral blood samples can be obtained routinely and more readily. Carcinoma accounts for around 85% of human cancers and the carcinoma cells are of epithelial cell lineage. Techniques such as immunocytology and flow cytometry have been employed in prior arts to detect circulating cancer cells in the peripheral blood. However, both techniques are based on extracting or labeling intact carcinoma cells in circulation by antibodies targeting specifically to the epithelial cell surface antigens such as EpCAM and others. Malignant carcinoma cancer cells often are de-differentiated and lose the characteristic epithelial cell surface antigens. In addition, it is known in cancer research field that EpCAM gene expression is often suppressed to facilitate tumor metastasis. Therefore, the antibody based detection methods have been reported to have low positive detection rates or high false negative rates. Polymerase chain reaction (PCR) has been employed to detect disseminated tumor cells in peripheral blood. Several literature reports have described the use of PCR for detecting circulating cancer cells in the peripheral blood of patients of various cancers. For instance, Peck et al., reported the use of cytokeratin 19 as the maker gene for detecting circulating cancer cells in NSCLC patients with an overall positive detection rate around 40%.

[0008] Compared with immunocytology and flow cytometry, PCR has the advantages that it is more readily available, less involved in the operating procedures, less instrument cost, and others. On the other hand, PCR is not able to yield the number of counts of circulating cancer cell in a sample like the other two techniques.

[0009] To overcome the current technology difficulties in achieving high positive detection rate and rapid assessment of lung cancer therapy efficacy and relapse detection, a panel of marker genes for achieving high positive detection rate by qPCR and a quantitative analysis method for predicting lung cancer treatment outcome and for prognosis are needed.

SUMMARY OF THE INVENTION

[0010] The present invention fulfills the needs in lung cancer treatment by teaching a rapid efficacy assessment method for lung cancer therapy and relapse detection.

[0011] The purpose of the present invention is to teach an assessment method for lung cancer therapy. More especially, it teaches a rapid efficacy assessment method for lung cancer therapy by identifying and employing a panel of marker genes for real-time quantitative PCR (qPCR) assay to quantitatively measure the amount of circulating lung cancer cells in body fluids.

[0012] Another purpose of the present method is to teach a method for cancer relapse detection by using real time qPCR with a panel of marker genes for detecting circulating lung cancer cells in body fluids.

[0013] The present invention identifies a panel of markers for the detection of circulating cancer cells in NSCLC patients by in silico analysis of the National Cancer Institute-Cancer Genome Anatomy Project database. The present invention also teaches a quantitative analysis method to calculate load of cancer cells in the circulation. The quantitative analysis method yields results that are highly correlated with the treatment outcomes of lung cancer patients and serves to predict the treatment outcome in a short time after the treatment is administered.

[0014] The method of assessing lung cancer therapy comprises: collecting a body fluid from a subject, extracting total RNA of the body fluid sample, employing qPCR to amplify marker gene transcripts of total RNA for detecting cancer cells in body fluid, and analyzing qPCR threshold cycle number with a set of mathematical formulae.

[0015] The present invention further teaches a method to translate expression level of multiple gene transcripts measured by qPCR to the amount of circulating lung cancer cells which is termed cancer cell load (Lc) in this invention.

[0016] The present invention further teaches a scoring method and mathematical formulae for calculating cancer cell load, Lc, and predicting lung cancer treatment outcome with the Lc value.

[0017] The present invention now will be described more fully hereinafter with reference to the accompanying drawings, which are intended to be read in conjunction with both this summary, the detailed description and any preferred and/or particular embodiments specifically discussed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] The present invention will become apparent upon reading the following detailed description of the present invention in conjunction with the drawings, as follows:

[0019] FIG. 1 shows the analysis of positive detection rates with a panel of 4 marker genes. A, positive detection rate for the individual four marker genes. B, positive detection rate increases with the number of marker genes used in the assay.

[0020] FIG. 2 shows the correlation of Lc value with the concentration of cancer cell number in peripheral blood. A, plot to show that Lc value is linearly correlated with the number of circulating cancer cells. Inset, Lc value versus the number of cancer cells between 0 and 480 cells/mL of peripheral blood. B, median survival time for patients of various TNM stages and with high (.gtoreq.1) or low (<1) Lc values. Inset, survival time of patient classified by the TNM staging method. Bars, standard deviation (SD).

[0021] FIG. 3 shows the survival analysis of late stage patients with high (.gtoreq.1) or low (<1) Lc values. A, Kaplan-Meier survival plots of late TNM stage patients (IIIb and IV). B, Kaplan-Meier survival plots for the same late stage patients grouped by the Lc value. C, Kaplan-Meier survival plots for the stage IIIb patients grouped by the Lc value. D, Kaplan-Meier survival plots for the stage IV patients grouped by the Lc value.

[0022] FIG. 4 shows lung cancer therapy efficacy assessment with circulating cancer cell detection for six different NSCLC patients. Median survival time of each patient is indicated in the figure panels. The designations for the treatment and sampling day are described in the text.

DETAILED DESCRIPTION OF THE INVENTION

[0023] The present invention is directed to a method for lung cancer therapy assessment and a method of cancer relapse detection. Unlike current imaging assessment methods, the present invention provides a rapid assessment that uses multiple marker genes in qPCR assay for detecting circulating lung cancer cells in body fluids.

[0024] Compared with immunohistology and flow cytometry assessment methods, the present invention requires no additional antibody antigen interaction process. Extra molecular recognition process reduces the detection rate. Compared with the RT-PCR detection method for circulating cancer cell in prior art, using a panel of marker genes instead of a single marker gene improves the detection rate. On the other hand, it is not trivial to quantitatively analyze and integrate the expression level of multiple transcripts in a qPCR assay and correlating the analysis results to predict treatment outcome. The present invention teaches a set of mathematical formulae which yield results well correlated with lung cancer treatment outcome.

[0025] The multiple marker genes that may be selected include, but are not limited to, keratin 19 (KRT19), ubiquitin thiolesterase (UCHL1), fibronectin 1 (FN1), and tripartite motif-containing 28 (TRIM28).

[0026] The method of the present invention for rapid lung cancer therapy efficacy assessment comprises the following steps:

[0027] collecting a body fluid sample from a human subject;

[0028] extracting total RNA from said body fluid sample;

[0029] amplifying a panel of gene transcripts of said total RNA by qPCR;

[0030] measuring the expression level of each gene transcript in said panel of gene transcripts of said total RNA from a number of healthy controls and lung cancer patients, wherein a qPCR threshold cycle number is used to represent the expression level of the gene transcripts;

[0031] deriving a reference threshold score using the qPCR threshold cycle numbers of the gene transcripts in the panel measured for healthy controls and lung cancer patients;

[0032] calculating an indicative score using the qPCR threshold cycle numbers of the gene transcripts in the panel measured for a lung cancer patient both before and after therapy; and

[0033] determining therapy efficacy by comparing the indicative scores obtained before and after therapy.

[0034] The formulae used in this invention to calculate the values in these steps can be found in the section "Quantitative Analysis (Scoring) of the PCR Results" below.

[0035] In the present invention, the body fluids are collected from, but not limit to, peripheral blood or pleural effusion.

[0036] In the present invention, the number of multiple gene transcripts selected for amplification is more than two.

[0037] In the present invention, the nucleic acid extraction is done without prior antibody/antigen interaction or other molecular recognition processes to isolate cancer cells from normal blood cells.

[0038] In the present invention, the quantitative analysis for therapy efficacy is performed as early as one day after the therapeutic regimen is administered.

[0039] The method of the present invention for cancer relapse detection comprises the following steps:

[0040] collecting a body fluid sample from a human subject;

[0041] extracting total RNA from said body fluid sample;

[0042] amplifying a panel of gene transcripts of said total RNA by qPCR;

[0043] measuring the expression level of each gene transcript in said panel of gene transcripts of said total RNA from a number of healthy controls and lung cancer patients, wherein a qPCR threshold cycle number is used to represent the expression level of the gene transcripts;

[0044] deriving a reference threshold score using the qPCR threshold cycle numbers of the gene transcripts in the panel measured for healthy controls and lung cancer patients;

[0045] calculating an indicative score using the qPCR threshold cycle numbers of the gene transcripts in the panel measured for a lung cancer patient; and

[0046] determining the presence of circulating lung cancer cells by comparing the indicative scores with the reference threshold score.

[0047] Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The practice of the present invention will employ, unless otherwise indicated, conventional techniques of cell biology, molecular biology, and biochemistry which are within the skill of the art. Such techniques are explained fully in the literature. The following examples are, therefore, to be considered as merely illustrative, and not limitative of the remainder of the disclosure in any way.

[0048] Materials and Methods

[0049] Patients and Specimens

[0050] Peripheral blood samples were obtained with informed consent from 54 patients with histologically documented NSCLC in the National Taiwan University Hospital. Staging procedures included chest radiography, bronchoscopy, brain and thoracic computed tomography, sonography, and bone scintigraphy. The follow-up period of the lung cancer patients was up to 85 months for stage I patients who were still alive in May 2003. The normal control population consisted of 24 healthy volunteers with no history or present diagnosis of malignancy. Among the 54 patients, 32 were men and 22 were women with median age of 65 years (SD=11, range=28-81). In the healthy control group, 16 were men and 8 were women with median age of 57.5 years (SD=15.1, range=27-78). Adenocarcinoma lung cancer cell lines (A549, CL3, H928, CL1-0, CL1-5, CRL-5865, CRL-5806, and CRL-5807) and squamous carcinoma lung cancer cell lines (NCI-H520, H2981, CRL-5802, and HTB-54) were used to validate the candidate markers and for analyzing the correlation between Lc value and cancer cell number.

[0051] Sample Collection and RNA Preparation

[0052] The blood sample collection and RNA preparation methods were the same as described by Peck et al. (Peck, Cancer Res. 58:2761-2765, 1998) Briefly, two samples were collected from each subject with Vacutainers (Becton Dickinson, Rutherford, N.J.). The first tube with 1 to 2 mL of peripheral blood was discarded and only the second tube with 3 to 4 mL of blood was assayed to avoid epithelial cell contamination by the needle when it pierced through the skin. Total RNA was extracted with the QIAamp RNA Blood Mini kit (Qiagen, Hiden, Germany) within 2 hours after the blood samples were collected.

[0053] Identification of Candidate Marker Genes

[0054] To take advantage of the vast information of the expressed sequence tags databases generated with cancer cell lines, we used the cDNA Digital Gene Expression Displayer developed by the Cancer Genome Anatomy Project (Strausberg, J. Pathol, 195:31-40, 2001) to identify genes that were differentially expressed between lung cancer cells and leukocytes. The Digital Gene Expression Displayer program identified differentially expressed genes among 47,036 sequences in five lung cancer cDNA libraries and 21,460 sequences in six leukocyte cDNA libraries with a P filter set at 0.01. The differentially expressed genes were ranked by sequence odds ratio. The genes with the highest sequence odds ratios were selected as candidate marker genes for quantitative PCR (qPCR) assay. The in silico Digital Gene Expression Displayer program search of the National Cancer Institute-Cancer Genome Anatomy Project database yielded 85 overexpressed genes with a sequence odds ratio >16 between the lung cancer cDNA libraries and the leukocyte cDNA libraries. These candidate genes were further verified by real-time quantitative PCR (qPCR). All of the cancer cell lines are listed as above and pooled and peripheral blood mononuclear cells from 12 healthy controls were used as samples in the first round verification. Fifty-nine candidate marker genes showed >2-fold differential expression ratios, but only 19 genes had differential expression ratios >100,000. Marker genes with large differential expression ratios are required to detect rare circulating cancer cells in blood samples containing millions of peripheral blood mononuclear cells. By using qPCR to detect the presence of 19 candidate genes in the clinical specimens of 54 NSCLC patients and 24 normal controls, four marker genes including KRT19 were identified to show positive detection in at least two NSCLC patients. The four marker genes are listed in Table 1.

[0055] The first three marker genes had negligible expression in the blood samples of normal controls by the qPCR assay and are labeled as genes A to C. The fourth gene, labeled as gene D, had high expression in the cancer patient group versus the normal control group, but had residual expression in normal peripheral blood mononuclear cells. Therefore, the present invention sets the positive detection threshold at 99% confidence interval in the normal control group to avoid false positive detection.

TABLE-US-00001 TABLE 1 List of a panel of four marker genes Gene Title RefSeq no. GeneID A keratin 19 (KRT19) NM_002276 3880 B ubiquitin thiolesterase (UCHL1) NM_004181 7345 C fibronectin 1 (FN1) NM_054034 2335 D tripartite motif-containing 28 (TRIM28) NM_005762 10155

[0056] Quantitative PCR Assay

[0057] To detect a few cancer cells in the circulation, a highly sensitive PCR amplification is necessary. cDNA was derived from 1 to 2 .mu.g of total RNA by random primed reverse transcription, and nested PCR was used to amplify the candidate marker gene transcripts for detection. The primer sets for qPCR amplification are listed in Table 1 of U.S. Provisional Application No. 60/596,104, filed Sep. 1, 2005, from which priority benefit is claimed by this application and which is incorporated herein. The first round (outer) of the nested PCR was done using 1 .mu.L of 20-fold diluted cDNA with a PCR mixture containing 0.1 .mu.mol/L outer primer pair, 0.2 mmol/L deoxynucleotide triphosphate, 50 mmol/L Tris-HCl (pH 8.3), 10 mmol/L KCl, 5 mmol/L (NH.sub.4).sub.2SO.sub.4, 2 mmol/L MgCl.sub.2, and 0.75 units of FastStart Taq DNA polymerase (Roche, Mannheim, Germany) in a total volume of 12.5 .mu.L. The PCR conditions were one cycle at 94.degree. C. for 7 minutes followed by 25 cycles at 94.degree. C. for 50 seconds, 60.degree. C. for 50 seconds, 72.degree. C. for 35 seconds, and a final extension at 72.degree. C. for 10 minutes.

[0058] For the second round (inner) of the nested PCR amplification, quantitative measurement was performed with qPCR assay. The reaction mixture contained 2 .mu.L of the first round PCR product, 0.25 .mu.mol/L inner primers, and SYBR Green PCR master mix (Applied Biosystems, Foster City, Calif.) in a total volume of 20 .mu.L. The qPCR assays were done with an ABI prism 7000 SDS (Applied Biosystems) instrument. The qPCR condition was 95.degree. C. for 10 minutes followed by 40 cycles at 95.degree. C. for 15 seconds, 60.degree. C. for 25 seconds, and 72.degree. C. for 35 seconds.

[0059] Quantitative Analysis (Scoring) of the PCR Results

[0060] By using a qPCR instrument, the threshold cycle (C.sub.T), the fractional cycle number at which the SYBR Green I fluorescence exceeded a set level above baseline, was determined. We used GAPDH mRNA as an internal control. The relative amount of mRNA, normalized against the GAPDH mRNA, was expressed as C.sub.T=C.sub.T.sup.(GAPDH)-C.sub.T.sup.(marker gene). If the fluorescence signal was undetected after 40 cycles, the C.sub.T value was given the maximum cycle number of 40 for analysis convenience. The differential expression ratio of a candidate marker gene, Q, for patients versus normal controls was calculated by Q=2.sup.mean of .sup.in normal. To estimate the number of circulating cancer cells, we normalized the differential expression ratio of each marker gene to take into account the different amount of the marker gene transcripts in cancer cells. We then summed up the expression ratios of the marker genes to estimate the cancer cell load in the circulation in a semi-quantitative way. Cancer cells and their gene expression profiles are heterogeneous in individuals. To take the heterogeneity of gene expression in different patients into account, the expression of marker genes need to be normalized among test subjects. The formula for normalizing the expression ratio, E.sub.ij, of a marker gene is E.sub.ij=(Q.sub.ij-Q.sub.j)/.sigma..sub.j, where i is the patient index, j is the marker gene index, Q.sub.ij is the differential expression ratio of marker gene j in patient i, Q.sub.j is the mean and .sigma..sub.j is the standard deviation (SD) of the expression ratios of the 54 patients for marker gene j. The load of cancer cells, Lc, in the circulation of a patient is defined as Lc=.SIGMA.E.sub.j where n is the number of marker genes. In this study, the load of cancer cell, Lc, is used as an indicative score for the amount of circulating cancer cells. The value of Lc ranged between -2.2 and 8.4.

[0061] Statistical Analysis

[0062] Fisher's exact test and Student's t test were used to compare the clinicopathologic characteristics of patients with low and high Lc values. All statistical tests were two sided. Survival time of the patients was calculated from the day of specimen collection. Survival curves were obtained by the Kaplan-Meier method. The difference of survival times between two groups was analyzed with the log-rank test. P<0.05 was considered statistically significant.

Embodiment 1

Enhancement of Positive Detection Rate with Multiple Marker Genes

[0063] As shown in FIG. 1A, the positive detection rate of circulating cancer cells in NSCLC patients was 41%, 11%, 39%, and 11% for genes A to D, respectively. The fractions of positives among all the patients are indicated in the columns.

[0064] Increasing the number of marker genes raised the positive detection rate for NSCLC patients to 72% (39 of 54) compared with 41% (22 of 54) positive detection rate using the KRT19 marker gene alone (FIG. 1B). These results prove that using multiple markers indeed improves the positive detection rate. The B marker gene was not detected in squamous cell lung cancer patients, but the other three genes were detected in patients with adenocarcinoma or squamous cell carcinoma.

Embodiment 2

Circulating Cancer Cell Load and Patient Outcome

[0065] To investigate the correlation between the number of circulating cancer cells and patient outcome, the present invention used cancer cell load Lc (see MATERIALS AND METHODS) as a measure to indicate the number of cancer cells in circulation.

[0066] By definition, Lc increases with the number of circulating cells. The correlation between the number of circulating cancer cells and Lc values can be determined by spiking different numbers of lung cancer cells (CL1-0) into peripheral blood mononuclear cells (FIG. 2A). The present invention shows a good correlation (r=0.99) between cancer cell number and Lc value.

[0067] The data shown in FIGS. 2B and 3 indicate that patients of the same stage who had higher Lc had worse outcomes. The results indicate that Lc measurement is a supplementary tool to the traditional TNM staging method to better predict the outcome of cancer patients.

[0068] To determine whether Lc can be used as an indicator of patient outcome, the present invention analyzed the Lc value versus the survival time of stage I to IIIa patients who received surgical resection. We found that patients who survived for more than 5 years had Lc values less than 1. Therefore, we set Lc=1 as the reference threshold score for the subsequent prognosis studies in the 54 lung cancer patients. The study divided the patients at different stages into two groups (Lc.gtoreq.1 or Lc<1) and examined their survival time. As expected, late-stage patients had shorter survival times than did early-stage patients (FIG. 2B, inset). The cancer load (Lc) study further distinguished that for patients of the same stage, those with low Lc had longer survival time than those with high Lc value (FIG. 2B). For the operable early-stage patients, the survival time is highly correlated (P=0.002) with Lc value. The Lc value was then used to analyze the prognosis of late-stage patients (stages IIIb and IV) with Kaplan-Meier survival plots. The survival time difference was more significant by using Lc as a classification parameter (FIG. 3B, P=0.006) than by using the traditional TNM classification (FIG. 3A, P=0.03). The number of patients in each group is shown in parentheses in the figures. We further used the Lc parameter to divide the patients of the same stage into low (Lc<1) and high (Lc.gtoreq.1) value groups and examined the survival plots. The survival time of stage IIIb patients with low and high Lc value was significantly different (FIG. 3C, P=0.026). The same analysis on stage IV patients did not achieve statistical significance (FIG. 3D, P=0.09). These prognosis studies establish using Lc=1 as the reference threshold score for detecting the presence of circulating lung cancer cells.

[0069] Using the four marker genes and setting the reference threshold score to 1, the positive detection rates of patients with circulating cancer cells were 67% (4 of 6) for stage I, 100% (4 of 4) for stage II, 67% (6 of 9) for stage IIIa, 67% (14 of 21) for stage IIIb, and 79% (11 of 14) for stage IV. The detection rate indicates the sensitivity of using the four markers for detecting the presence of circulating NSCLC cells.

Embodiment 3

Assessment of Therapy Efficacy

[0070] FIG. 4 shows the assessment of six patients before and after therapy. The stage I, II, and IIIa patients received surgical resection, whereas the stage IIIb and IV patients received chemotherapy. "d-n" indicates that the samples were collected n days before therapy, "dn" indicates that the samples were collected on the nth day after therapy, and "n/" indicates the course number of chemotherapy. The stage I patient had negative Lc values before and after treatment and was still alive on the last follow-up date (72.3 months). The Lc values decreased for the stage II and IIIb patients after therapy. The stage IIIa and IV patients had higher Lc values after the last course of treatment and had short survival times. These results suggest that measurement of the cancer cell load, Lc, can be used to reveal whether therapy is efficacious.

Embodiment 4

Relapse Detection

[0071] In FIG. 4 the stage IIIb patient's treatment was efficacious and the Lc value decreased after the first treatment. However, the Lc value went back up to exceed 1 and the patient was given a second course of treatment on the next day. The second treatment for the stage IIIb was assessed to be effective by the method disclosed in this invention on the fifth day after the treatment. The survival time was 60.8 months for the patient. The last example in FIG. 4 was a stage IV patient. The Lc value decreased on the second day of the treatment. The Lc value of the patient went up again to exceed 1 in a follow-up examination and a second treatment was given on the next day. However, the second treatment failed to completely eradicate the cancer cells and the Lc value kept rising with time. The patient had a survival time of 8.6 months.

TABLE-US-00002 TABLE 2 Clinicopathologic characteristics and their correlation with Lc value of NSCLC patients Lc Characteristic Low High P Age (y), mean .+-. SD 63.6 .+-. 10.5 61.3 .+-. 13.0 0.549* Gender, no. patients Male 20 20 0.03 Female 20 2 Smoking, no. patients No 24 7 0.546 Yes 16 7 Histology, no. patients Adenocarcinoma 25 10 0.442 Squamous cell 12 2 carcinoma Poorly differentiated 3 2 Stage.dagger. I-IIIa 14 5 1.0 IIIb-IV 26 9 *Derived with Student's t test; other Ps were derived with Fisher's exact test. All statistical tests were two-sided. .dagger.Tumor stage was classified according to the International System for Staging Lung Cancer.

[0072] The percentage of patients with high Lc value is greater for the late-stage patients than for the early-stage patients except for the stage II patients. The invention study looked into this issue and found that the markers have different detection rates for different histologic types of NSCLC. The markers are more sensitive for detecting squamous carcinoma (85.7%; 12 of 14) compared with adenocarcinomas (68.6%; 24 of 35) and others (60%, 3 of 5). An investigation on the histologic types of the NSCLC patients revealed that the available stage II patients were composed of three (75%) squamous carcinoma and one (25%) adenocarcinoma patients, whereas the other stage patients were composed of 11% to 33% squamous carcinoma, 50% to 71% adenocarcinoma, and 5% to 22% poorly differentiated cell type patients. The higher detection rate of the stage II patients can therefore be attributed to the limited number of clinical samples and their histologic composition.

[0073] The data shows that detection of circulating cancer cells is a valid supplement to the TNM method for better cancer staging. The two methods combined together provide better information for designing lung cancer treatment strategies. In the study of this invention, the 5-year survival rate of early-stage (I-IIIa) NSCLC patients was 30% to 50% after surgical resection. This invention teaches a more precise staging method by including detection of circulating cancer cells to aid in deciding whether adjuvant therapeutic regimens in addition to tumor resection are beneficial to the patients.

[0074] At present, a reliable serologic biomarker assay for assessing the treatment response of NSCLC patients is not available. Two courses of chemotherapy are traditionally given before imaging is done to evaluate the treatment response of NSCLC patients. It showed in lung cancer patients that the Lc could be used for monitoring therapeutic response and relapse. Because different cancer cell types have different levels of marker gene expression, patients with higher Lc values do not necessarily have more circulating cancer cells in their peripheral blood than do patients with lower Lc values. Nevertheless, the semiquantitative approach is useful for measuring the relative cancer cell load in a patient's peripheral blood to monitor the effectiveness of treatment. The present method highlights an alternative approach to rapidly assess the treatment response of NSCLC patients. Compared with imaging methods which take weeks to detect the change of tumor size for therapy efficacy assessment, the invention teaches a method capable of assessing therapy efficacy on the next day of treatment as shown in FIG. 4. The method of the present invention may therefore help to design more comprehensive and reasonable therapeutic regimens at earlier dates for NSCLC patients.

[0075] Unless defined otherwise, the meanings of all technical and scientific terms used herein are those commonly understood by one of ordinary skill in the art to which this invention belongs. One of ordinary skill in the art will also appreciate that any methods and materials similar or equivalent to those described herein can also be used to practice or test the invention. Further, all publications mentioned herein are incorporated by reference.

[0076] Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.

Sequence CWU 1

1

411513DNAHomo sapiens 1cgcccctgac accattcctc ccttcccccc tccaccggcc gcgggcataa aaggcgccag 60gtgagggcct cgccgctcct cccgcgaatc gcagcttctg agaccagggt tgctccgtcc 120gtgctccgcc tcgccatgac ttcctacagc tatcgccagt cgtcggccac gtcgtccttc 180ggaggcctgg gcggcggctc cgtgcgtttt gggccggggg tcgcctttcg cgcgcccagc 240attcacgggg gctccggcgg ccgcggcgta tccgtgtcct ccgcccgctt tgtgtcctcg 300tcctcctcgg gggcctacgg cggcggctac ggcggcgtcc tgaccgcgtc cgacgggctg 360ctggcgggca acgagaagct aaccatgcag aacctcaacg accgcctggc ctcctacctg 420gacaaggtgc gcgccctgga ggcggccaac ggcgagctag aggtgaagat ccgcgactgg 480taccagaagc aggggcctgg gccctcccgc gactacagcc actactacac gaccatccag 540gacctgcggg acaagattct tggtgccacc attgagaact ccaggattgt cctgcagatc 600gacaatgccc gtctggctgc agatgacttc cgaaccaagt ttgagacgga acaggctctg 660cgcatgagcg tggaggccga catcaacggc ctgcgcaggg tgctggatga gctgaccctg 720gccaggaccg acctggagat gcagatcgaa ggcctgaagg aagagctggc ctacctgaag 780aagaaccatg aggaggaaat cagtacgctg aggggccaag tgggaggcca ggtcagtgtg 840gaggtggatt ccgctccggg caccgatctc gccaagatcc tgagtgacat gcgaagccaa 900tatgaggtca tggccgagca gaaccggaag gatgctgaag cctggttcac cagccggact 960gaagaattga accgggaggt cgctggccac acggagcagc tccagatgag caggtccgag 1020gttactgacc tgcggcgcac ccttcagggt cttgagattg agctgcagtc acagctgagc 1080atgaaagctg ccttggaaga cacactggca gaaacggagg cgcgctttgg agcccagctg 1140gcgcatatcc aggcgctgat cagcggtatt gaagcccagc tgggcgatgt gcgagctgat 1200agtgagcggc agaatcagga gtaccagcgg ctcatggaca tcaagtcgcg gctggagcag 1260gagattgcca cctaccgcag cctgctcgag ggacaggaag atcactacaa caatttgtct 1320gcctccaagg tcctctgagg cagcaggctc tggggcttct gctgtccttt ggagggtgtc 1380ttctgggtag agggatggga aggaagggac ccttaccccc ggctcttctc ctgacctgcc 1440aataaaaatt tatggtccaa gggaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1500aaaaaaaaaa aaa 151321110DNAHomo sapiens 2cctgggcggc tccgctagct gtttttcgtc ttccctaggc tatttctgcc gggcgctccg 60cgaagatgca gctcaagccg atggagatca accccgagat gctgaacaaa gtgctgtccc 120ggctgggggt cgccggccag tggcgcttcg tggacgtgct ggggctggaa gaggagtctc 180tgggctcggt gccagcgcct gcctgcgcgc tgctgctgct gtttcccctc acggcccagc 240atgagaactt caggaaaaag cagattgaag agctgaaggg acaagaagtt agtcctaaag 300tgtacttcat gaagcagacc attgggaatt cctgtggcac aatcggactt attcacgcag 360tggccaataa tcaagacaaa ctgggatttg aggatggatc agttctgaaa cagtttcttt 420ctgaaacaga gaaaatgtcc cctgaagaca gagcaaaatg ctttgaaaag aatgaggcca 480tacaggcagc ccatgatgcc gtggcacagg aaggccaatg tcgggtagat gacaaggtga 540atttccattt tattctgttt aacaacgtgg atggccacct ctatgaactt gatggacgaa 600tgccttttcc ggtgaaccat ggcgccagtt cagaggacac cctgctgaag gacgctgcca 660aggtctgcag agaattcacc gagcgtgagc aaggagaagt ccgcttctct gccgtggctc 720tctgcaaggc agcctaatgc tctgtgggag ggactttgct gatttcccct cttcccttca 780acatgaaaat atataccccc ccatgcagtc taaaatgctt cagtacttgt gaaacacagc 840tgttcttctg ttctgcagac acgccttccc ctcagccaca cccaggcact taagcacaag 900cagagtgcac agctgtccac tgggccattg tggtgtgagc ttcagatggt gaagcattct 960ccccagtgta tgtcttgtat ccgatatcta acgctttaaa tggctacttt ggtttctgtc 1020tgtaagttaa gaccttggat gtggtttaat tgtttgtcct caaaaggaat aaaacttttc 1080tgctgataag ataaaaaaaa aaaaaaaaaa 111032402DNAHomo sapiens 3gcccgcgccg gctgtgctgc acagggggag gagagggaac cccaggcgcg agcgggaaga 60ggggacctgc agccacaact tctctggtcc tctgcatccc ttctgtccct ccacccgtcc 120ccttccccac cctctggccc ccaccttctt ggaggcgaca acccccggga ggcattagaa 180gggatttttc ccgcaggttg cgaagggaag caaacttggt ggcaacttgc ctcccggtgc 240gggcgtctct cccccaccgt ctcaacatgc ttaggggtcc ggggcccggg ctgctgctgc 300tggccgtcca gtgcctgggg acagcggtgc cctccacggg agcctcgaag agcaagaggc 360aggctcagca aatggttcag ccccagtccc cggtggctgt cagtcaaagc aagcccggtt 420gttatgacaa tggaaaacac tatcagataa atcaacagtg ggagcggacc tacctaggca 480atgcgttggt ttgtacttgt tatggaggaa gccgaggttt taactgcgag agtaaacctg 540aagctgaaga gacttgcttt gacaagtaca ctgggaacac ttaccgagtg ggtgacactt 600atgagcgtcc taaagactcc atgatctggg actgtacctg catcggggct gggcgaggga 660gaataagctg taccatcgca aaccgctgcc atgaaggggg tcagtcctac aagattggtg 720acacctggag gagaccacat gagactggtg gttacatgtt agagtgtgtg tgtcttggta 780atggaaaagg agaatggacc tgcaagccca tagctgagaa gtgttttgat catgctgctg 840ggacttccta tgtggtcgga gaaacgtggg agaagcccta ccaaggctgg atgatggtag 900attgtacttg cctgggagaa ggcagcggac gcatcacttg cacttctaga aatagatgca 960acgatcagga cacaaggaca tcctatagaa ttggagacac ctggagcaag aaggataatc 1020gaggaaacct gctccagtgc atctgcacag gcaacggccg aggagagtgg aagtgtgaga 1080ggcacacctc tgtgcagacc acatcgagcg gatctggccc cttcaccgat gttcgtgcag 1140ctgtttacca accgcagcct cacccccagc ctcctcccta tggccactgt gtcacagaca 1200gtggtgtggt ctactctgtg gggatgcagt ggctgaagac acaaggaaat aagcaaatgc 1260tttgcacgtg cctgggcaac ggagtcagct gccaagagac agctgtaacc cagacttacg 1320gtggcaactc aaatggagag ccatgtgtct taccattcac ctacaatggc aggacgttct 1380actcctgcac cacagaaggg cgacaggacg gacatctttg gtgcagcaca acttcgaatt 1440atgagcagga ccagaaatac tctttctgca cagaccacac tgttttggtt cagactcgag 1500gaggaaattc caatggtgcc ttgtgccact tccccttcct atacaacaac cacaattaca 1560ctgattgcac ttctgagggc agaagagaca acatgaagtg gtgtgggacc acacagaact 1620atgatgccga ccagaagttt gggttctgcc ccatggctgc ccacgaggaa atctgcacaa 1680ccaatgaagg ggtcatgtac cgcattggag atcagtggga taagcagcat gacatgggtc 1740acatgatgag gtgcacgtgt gttgggaatg gtcgtgggga atggacatgc attgcctact 1800cgcagcttcg agatcagtgc attgttgatg acatcactta caatgtgaac gacacattcc 1860acaagcgtca tgaagagggg cacatgctga actgtacatg cttcggtcag ggtcggggca 1920ggtggaagtg tgatcccgtc gaccaatgcc aggattcaga gactgggacg ttttatcaaa 1980ttggagattc atgggagaag tatgtgcatg gtgtcagata ccagtgctac tgctatggcc 2040gtggcattgg ggagtggcat tgccaacctt tacagaccta tccaagctca agtggtcctg 2100tcgaagtatt tatcactgag actccgagtc agcccaactc ccaccccatc cagtggaatg 2160caccacagcc atctcacatt tccaagtaca ttctcaggtg gagacctgtg agtatcccac 2220ccagaaacct tggatactga gtctcctaat cttatcaatt ctgatggttt ctttttttcc 2280cagcttttga gccaacaact ctgattaact attcctatag catttactat atttgtttag 2340tgaacaaaca atatgtggtc aattaaattg acttgtagac tgaaaaaaaa aaaaaaaaaa 2400aa 240242989DNAHomo sapiens 4ggcgcgcggg cgagcggttg tgcttgtgct tgtggcgcgt ggtgcgggtt tcggcggcgg 60ctgaggaaga agcgcgggcg gcgccttcgg gaggcgagca ggcagcagtt ggccgtgccg 120tagcagcgtc ccgcgcgcgg cgggcagcgg cccaggaggc gcgtggcggc gctcggcctc 180gcggcggcgg cggcggcagc ggcccagcag ttggcggcga gcgcgtctgc gcctgcgcgg 240cgggccccgc gcccctcctc cccccctggg cgcccccggc ggcgtgtgaa tggcggcctc 300cgcggcggca gcctcggcag cagcggcctc ggccgcctct ggcagcccgg gcccgggcga 360gggctccgct ggcggcgaaa agcgctccac cgccccttcg gccgcagcct cggcctctgc 420ctcagccgcg gcgtcgtcgc ccgcgggggg cggcgccgag gcgctggagc tgctggagca 480ctgcggcgtg tgcagagagc gcctgcgacc cgagagggag ccccgcctgc tgccctgttt 540gcactcggcc tgtagtgcct gcttagggcc cgcggccccc gccgccgcca acagctcggg 600ggacggcggg gcggcgggcg acggcaccgt ggtggactgt cccgtgtgca agcaacagtg 660cttctccaaa gacatcgtgg agaattattt catgcgtgat agtggcagca aggctgccac 720cgacgcccag gatgcgaacc agtgctgcac tagctgtgag gataatgccc cagccaccag 780ctactgtgtg gagtgctcgg agcctctgtg tgagacctgt gtagaggcgc accagcgggt 840gaagtacacc aaggaccata ctgtgcgctc tactgggcca gccaagtctc gggatggtga 900acgtactgtc tattgcaacg tacacaagca tgaacccctt gtgctgtttt gtgagagctg 960tgatactctc acctgccgag actgccagct caatgcccac aaggaccacc agtaccagtt 1020cttagaggat gcagtgagga accagcgcaa gctcctggcc tcactggtga agcgccttgg 1080ggacaaacat gcaacattgc agaagagcac caaggaggtt cgcagctcaa tccgccaggt 1140gtctgacgta cagaagcgtg tgcaagtgga tgtcaagatg gccatcctgc agatcatgaa 1200ggagctgaat aagcggggcc gtgtgctggt caatgatgcc cagaaggtga ctgaggggca 1260gcaggagcgc ctggagcggc agcactggac catgaccaag atccagaagc accaggagca 1320cattctgcgc tttgcctctt gggctctgga gagtgacaac aacacagccc ttttgctttc 1380taagaagttg atctacttcc agctgcaccg ggccctcaag atgattgtgg atcccgtgga 1440gccacatggc gagatgaagt ttcagtggga cctcaatgcc tggaccaaga gtgccgaggc 1500ctttggcaag attgtggcag agcgtcctgg cactaactca acaggccctg cacccatggc 1560ccctccaaga gccccagggc ccctgagcaa gcagggctct ggcagcagcc agcccatgga 1620ggtgcaggaa ggctatggct ttgggtcagg agatgatccc tactcaagtg cagagcccca 1680tgtgtcaggt gtgaaacggt cccgctcagg tgagggcgag gtgagcggcc ttatgcgcaa 1740ggtgccacga gtgagccttg aacgcctgga cctggacctc acagctgaca gccagccacc 1800cgtcttcaag gtcttcccag gcagtaccac tgaggactac aaccttattg ttattgaacg 1860tggcgctgcc gctgcagcta ccggccagcc agggactgcg cctgcaggaa cccctggtgc 1920cccacccctg gctggcatgg ccattgtcaa ggaggaggag acggaggctg ccattggagc 1980ccctcctact gccactgagg gccctgagac caaacctgtg cttatggctc ttgcggaggg 2040tcctggtgct gagggtcccc gcctggcctc acctagtggc agcaccagct cagggctgga 2100ggtggtggct cctgagggta cctcagcccc aggtggtggc ccgggaaccc tggatgacag 2160tgccaccatt tgccgtgtct gccagaagcc aggcgatctg gttatgtgca accagtgtga 2220gttttgtttc cacctggact gtcacctgcc ggccctgcag gatgtaccag gggaggagtg 2280gagctgctca ctctgccatg tgctccctga cctgaaggag gaggatggca gcctcagcct 2340ggatggtgca gacagcactg gcgtggtggc caagctctca ccagccaacc agcggaaatg 2400tgagcgtgta ctgctggccc tattctgtca cgaaccctgc cgccccctgc atcagctggc 2460taccgactcc accttctccc tggaccagcc cggtggcacc ctggatctga ccctgatccg 2520tgcccgcctc caggagaagt tgtcacctcc ctacagctcc ccacaggagt ttgcccagga 2580tgtgggccgc atgttcaagc aattcaacaa gttaactgag gacaaggcag acgtgcagtc 2640catcatcggc ctgcagcgct tcttcgagac gcgcatgaac gaggccttcg gtgacaccaa 2700gttctctgct gtgctggtgg agcccccgcc gatgagcctg cctggtgctg gcctgagttc 2760ccaggagctg tctggtggcc ctggtgatgg cccctgaggc tggagccccc atggccagcc 2820cagcctggct ctgttctctg tcctgtcacc ccatccccac tcccctggtg gcctgactcc 2880cactccctgg tggccccatc ccccagttcc tcacgatatg gtttttactt ctgtggattt 2940aataaaaact tcaccagtta aaaaaaaaaa aaaaaaaaaa aaaaaaaaa 2989

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed