Highly elastic leaf spring

Gedenk; Volker

Patent Application Summary

U.S. patent application number 11/921932 was filed with the patent office on 2009-09-03 for highly elastic leaf spring. Invention is credited to Volker Gedenk.

Application Number20090218740 11/921932
Document ID /
Family ID36646222
Filed Date2009-09-03

United States Patent Application 20090218740
Kind Code A1
Gedenk; Volker September 3, 2009

Highly elastic leaf spring

Abstract

The invention relates to a multilayered spring, especially for rail vehicles, having an inner and an outer connecting part and at least two spring layers that are located therebetween and are made alternately of an elastomeric layer and a sheet-metal layer. The elastomeric layers are vulcanized together with the connecting parts and the sheet-metal layers and the elastomeric layers of the spring layer have different thicknesses with respect to each other. Each elastomeric layer is made of the same material. The multilayered spring has a substantially conically contoured support plate which is arranged above the thickest spring layer in the direction in which load is applied. The inner portion of the softest layer initially rests on the support plate when the spring is loaded while the outer portions of the softest layer, followed by the other spring-layers, rest on the support plate in a continually increasing manner as the load increases. The contour of the support plate influences the characteristic line of the spring.


Inventors: Gedenk; Volker; (Hemmingen, DE)
Correspondence Address:
    WALTER OTTESEN
    PO BOX 4026
    GAITHERSBURG
    MD
    20885-4026
    US
Family ID: 36646222
Appl. No.: 11/921932
Filed: May 10, 2006
PCT Filed: May 10, 2006
PCT NO: PCT/EP2006/004364
371 Date: December 11, 2007

Current U.S. Class: 267/294
Current CPC Class: F16F 1/3935 20130101; B61F 5/305 20130101; F16F 1/371 20130101
Class at Publication: 267/294
International Class: B61F 5/30 20060101 B61F005/30

Foreign Application Data

Date Code Application Number
Jun 21, 2005 DE 10 2005 028 565.5

Claims



1. (canceled)

2. A multilayered spring for a vehicle, including a rail vehicle, the multilayered spring being subjectable to a load in a predetermined direction and comprising: an inner connecting part; an outer connecting part; a plurality of spring layers disposed between said connecting parts; said spring layers including a plurality of sheet-metal layers and a plurality of elastomer layers alternating with corresponding ones of said sheet-metal layers; said elastomer layers being vulcanized to corresponding ones of said connecting parts and said sheet-metal layers; said elastomer layers having different thicknesses and one of said elastomer layers having a thickness greater than the remainder of said elastomer layers; a conically-shaped contoured support plate mounted above said one elastomer layer in said load direction; said one layer having an outer portion and being softer than said remainder of said elastomer layers; and, said support plate corresponding to said elastomer layers to cause first said one layer to be supported against said support plate in response to said load and, with said load increasing, to cause said outer portion of said one layer and said remainder of said elastomer layers to become continuously and increasingly supported against said support plate.

3. The multilayered spring of claim 2, wherein all of said elastomer layers are made of the same material.

4. The multilayered spring of claim 3, wherein said one layer is thicker than the elastomer layers of said remainder of said elastomer layers by a factor of three.
Description



[0001] The invention relates to a multilayered spring, in particular for rail vehicles, having an inner connecting part and an outer connecting part and having at least two spring layers which are located between the connecting parts. The spring layers include alternately an elastomer layer and a sheet-metal layer and the elastomer layers are each vulcanized together with the connecting parts and the sheet-metal layers. The elastomer layers of the spring layers have different thicknesses from one another with each elastomer layer being manufactured from the same material.

[0002] Such multilayered springs are also referred to as primary springs because they frequently form the primary spring stage, that is, the spring stage between the wheel and the swivel truck in rail vehicles. The multilayered springs can have different shapes. For example, the individual spring layers can be arranged concentrically with respect to one another in a cylindrical or conical fashion. However, multilayered springs made of differently arranged horizontal or vertical spring layers are also possible. The shape, position and number of the spring layers are adapted to the particular application.

[0003] Individual multilayered springs are usually manufactured for each application and a specific spring characteristic line has to be achieved. Given low loading, which is particularly critical for protection against derailing during the travel operation, the spring must be made very soft. In contrast, when the loading is high, the spring should be hard so that the vehicle remains within the free space profile.

[0004] DE 85 20 180 U1 discloses a multilayered spring which has an additional rubber layer with a Shore hardness which is lower than that of the other layers in order to achieve a specific spring characteristic. However, this multilayered spring requires a limiting stop in order to limit the spring compression of this additional layer. The spring characteristic line is therefore composed of two line segments, a soft, flat segment up to the time when the spring abuts against the limiting stop and a hard, steep segment. The characteristic line therefore has an unevenness which has an unfavorable effect on the suspension behavior.

[0005] In order to obtain an optimal characteristic line of the multilayered spring, it is known to manufacture the elastomer layers of the spring layers from different materials. Such a multilayered spring is shown in DE 28 19 306 A1 or DE 103 01 756 B4.

[0006] However, the use of different materials requires considerable complexity with respect to manufacture, especially when there are different materials within one layer.

[0007] The invention is based on the object of providing a multilayered spring of the type described above which has an improved, constant spring characteristic line while avoiding the above-mentioned disadvantages.

[0008] This object is achieved by virtue of the fact that the multilayered spring has a support plate which is contoured substantially in the shape of a cone, is arranged above the thickest spring layer in the loading direction and corresponds to the spring layers of different thicknesses in such a way that initially the inner part of the softest layer is supported on the support plate and, as the loading increases, the outer parts of the softest layer and the further spring layers are supported in a constantly increasing fashion on the support plate.

[0009] The support plate produces a continuous spring characteristic line since, as a result of this configuration, only the inner, soft spring layer of the multilayered spring experiences spring compression under relatively low loads and the further spring layers increasingly participate in the spring compression under higher loads. Because of the support plate, the thickest, softest spring layer is not overloaded. The characteristic line can be adapted to the application, for example, as a continuously progressive characteristic line depending on the contour of the support plate.

[0010] According to one embodiment of the invention, the elastomer layer of the inner spring layer is thicker than the elastomer layers of the other spring layers by a factor of three.

[0011] As a result, the inner spring layer is considerably softer than the other spring layers. The hardness of such a spring layer is determined both by the hardness of the material and by the geometry of the layer, with the influence of the geometry being determined by the form factor F. The form factor F describes the ratio of free elastomer area to bound elastomer area of an elastomer layer. If the free surface of an elastomer layer becomes larger while the fixedly vulcanized, that is, bound area remains the same, the form factor increases. High values of F describe a soft spring property, while low values of F describe a hard spring property.

[0012] Such a multilayered spring can be adapted in the inventive fashion to various applications with a constant characteristic line and does not require complex production methods since, for example, the omission of one or more sheet-metal layers allows the freely deformable elastomer area of the resulting, relatively thick elastomer layer to be easily enlarged. There is no need to use different materials.

[0013] An exemplary embodiment of the invention will be explained in more detail below with reference to the drawing.

[0014] The single FIGURE shows a multilayered spring 1 in a longitudinal section in the installed position without loading with an inner connecting part 2 directed upwardly with a connecting lug 3 and bearing a load (not shown here).

[0015] Furthermore, the multilayered spring 1 has an outer connecting part 4 and a plurality of conical, concentrically-arranged sheet-metal intermediate layers (5, 6, 7, 8) with average diameters which become larger toward the outside. Conical elastomer layers (9, 10, 11, 12) are arranged between each two sheet-metal intermediate layers 5 to 8. The conical elastomer layers (9, 10, 11, 12) are fixedly vulcanized with their respective surfaces to corresponding surfaces of the inner connecting part 2, the sheet-metal intermediate layers 5 to 8 and the outer connecting part 4. These surfaces of the elastomer layers face toward the main axis 13 of the multilayered spring 1 or face away from the main axis 13.

[0016] The sheet-metal intermediate layers 5 to 8 and the elastomer layers 9 to 12 are arranged with respect to one another in such a way that the multilayered spring 1 has an upwardly tapering truncated cone-like shape.

[0017] A support plate 14, which has a conical shape on its underside 15 facing toward the inner-lying elastomer layer 9, is fixedly mounted on the connecting lug 3 concentrically with respect to the inner connecting part 2.

[0018] The inner-lying elastomer layer 9 has a significantly larger radial thickness than the other elastomer layers 10 to 12. The increased thickness gives rise to a form factor F which is increased compared to the other elastomer layers 10 to 12. The inner elastomer layer 9 is therefore significantly softer than the other elastomer layers 10 to 12.

[0019] Under load, the inner connecting part 2 moves downwardly toward the outer connecting part 4 and the multilayered spring 1 is compressed. In the process, at first only the inner-lying elastomer layer 9 experiences spring compression owing to the softer spring characteristic line. The elastomer layer 9 is supported against the support plate 14. The configuration of the underside 15 of the support plate 14 thereby contributes to the determination of the spring characteristic line of the inner-lying elastomer layer 9. The thickness of the inner-lying elastomer layer 9 and the shape of the underside 15 of the support plate 14 are matched to one another in such a manner that, when the inner-lying elastomer layer 9 experiences complete spring compression, the support plate 14 comes to rest on the inner sheet-metal intermediate layer 5 and the other elastomer layers 10 to 12 are increasingly involved in the further spring compression. This results in a continuously progressive spring characteristic line for the entire multilayered spring 1.

List Of Reference Numerals

[0020] (part of the description) 1 Multilayered spring 2 Inner connecting part

3 Connecting lug

[0021] 4 Outer connecting part 5 Sheet-metal intermediate layer 6 Sheet-metal intermediate layer 7 Sheet-metal intermediate layer 8 Sheet-metal intermediate layer 9 Inner-lying elastomer layer 10 Elastomer layer 11 Elastomer layer 12 Elastomer layer 13 Main axis of the multilayered spring 1 14 Support plate 15 Underside of the support plate

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed