Method of Diagnosing, Monitoring, Staging, Imaging and Treating Prostate Cancer

Salceda; Susan ;   et al.

Patent Application Summary

U.S. patent application number 12/199482 was filed with the patent office on 2009-06-04 for method of diagnosing, monitoring, staging, imaging and treating prostate cancer. Invention is credited to Robert Cafferkey, Herve Recipon, Susan Salceda.

Application Number20090142262 12/199482
Document ID /
Family ID33566974
Filed Date2009-06-04

United States Patent Application 20090142262
Kind Code A1
Salceda; Susan ;   et al. June 4, 2009

Method of Diagnosing, Monitoring, Staging, Imaging and Treating Prostate Cancer

Abstract

The present invention provides new methods for detecting, diagnosing, monitoring, staging, prognosticating, imaging and treating prostate cancer.


Inventors: Salceda; Susan; (San Jose, CA) ; Recipon; Herve; (San Francisco, CA) ; Cafferkey; Robert; (Sunnyvale, CA)
Correspondence Address:
    LICATA & TYRRELL P.C.
    66 E.  MAIN STREET
    MARLTON
    NJ
    08053
    US
Family ID: 33566974
Appl. No.: 12/199482
Filed: August 27, 2008

Related U.S. Patent Documents

Application Number Filing Date Patent Number
10918897 Aug 16, 2004 7432064
12199482
09807201 Apr 25, 2001 6902892
PCT/US1999/024331 Oct 19, 1999
10918897
60104737 Oct 19, 1998

Current U.S. Class: 424/1.49 ; 424/138.1; 424/178.1; 424/9.1; 424/9.3; 435/29; 435/6.14; 530/387.7
Current CPC Class: C12Q 1/6886 20130101; C07K 14/82 20130101
Class at Publication: 424/1.49 ; 435/6; 435/29; 530/387.7; 424/9.1; 424/9.3; 424/138.1; 424/178.1
International Class: A61K 51/00 20060101 A61K051/00; C12Q 1/68 20060101 C12Q001/68; C12Q 1/02 20060101 C12Q001/02; A61K 39/395 20060101 A61K039/395; C07K 16/18 20060101 C07K016/18; A61K 49/00 20060101 A61K049/00

Claims



1: A method for diagnosing the presence of prostate cancer in a patient comprising: (a) determining levels of CSG in cells, tissues or bodily fluids in a patient; and (b) comparing the determined levels of CSG with levels of CSG in cells, tissues or bodily fluids from a normal human control, wherein a change in determined levels of CSG in said patient versus normal human control is associated with the presence of prostate cancer.

2: A method of diagnosing metastases of prostate cancer in a patient comprising: (a) identifying a patient having prostate cancer that is not known to have metastasized; (b) determining CSG levels in a sample of cells, tissues, or bodily fluid from said patient; and (c) comparing the determined CSG levels with levels of CSG in cells, tissue, or bodily fluid of a normal human control, wherein an increase in determined CSG levels in the patient versus the normal human control is associated with a cancer which has metastasized.

3: A method of staging prostate cancer in a patient having prostate cancer comprising: (a) identifying a patient having prostate cancer; (b) determining CSG levels in a sample of cells, tissue, or bodily fluid from said patient; and (c) comparing determined CSG levels with levels of CSG in cells, tissues, or bodily fluid of a normal human control, wherein an increase in determined CSG levels in said patient versus the normal human control is associated with a cancer which is progressing and a decrease in the determined CSG levels is associated with a cancer which is regressing or in remission.

4: A method of monitoring prostate cancer in a patient for the onset of metastasis comprising: (a) identifying a patient having prostate cancer that is not known to have metastasized; (b) periodically determining levels of CSG in samples of cells, tissues, or bodily fluid from said patient; and (c) comparing the periodically determined CSG levels with levels of CSG in cells, tissues, or bodily fluid of a normal human control, wherein an increase in any one of the periodically determined CSG levels in the patient versus the normal human control is associated with a cancer which has metastasized.

5: A method of monitoring a change in stage of prostate cancer in a patient comprising: (a) identifying a patient having prostate cancer; (b) periodically determining levels of CSG in cells, tissues, or bodily fluid from said patient; and (c) comparing the periodically determined CSG levels with levels of CSG in cells, tissues, or bodily fluid of a normal human control, wherein an increase in any one of the periodically determined CSG levels in the patient versus the normal human control is associated with a cancer which is progressing in stage and a decrease is associated with a cancer which is regressing in stage or in remission.

6: A method of identifying potential therapeutic agents for use in imaging and treating prostate cancer comprising screening molecules for an ability to bind to CSG wherein the ability of a molecule to bind to CSG is indicative of the molecule being useful in imaging and treating prostate cancer.

7: The method of claim 1, 2, 3, 4, 5 or 6 wherein the CSG comprises SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 or a polypeptide encoded thereby.

8: An antibody which specifically binds CSG.

9: A method of imaging prostate cancer in a patient comprising administering to the patient an antibody of claim 8.

10: The method of claim 9 wherein said antibody is labeled with paramagnetic ions or a radioisotope.

11: A method of treating prostate cancer in a patient comprising administering to the patient an antibody of claim 8.

12: The method of claim 11 wherein the antibody is conjugated to a cytotoxic agent.
Description



FIELD OF THE INVENTION

[0001] This invention relates, in part, to newly developed assays for detecting, diagnosing, monitoring, staging, prognosticating, imaging and treating cancers, particularly prostate cancer.

BACKGROUND OF THE INVENTION

[0002] Cancer of the prostate is the most prevalent malignancy in adult males, excluding skin cancer, and is an increasingly prevalent health problem in the United States. In 1996, it was estimated that 41,400 deaths would result from this disease in the United States alone, indicating that prostate cancer is second only to lung cancer as the most common cause of death in the same population. If diagnosed and treated early, when the cancer is still confined to the prostate, the chances of cure is significantly higher.

[0003] Treatment decisions for an individual are linked to the stage of prostate cancer present in that individual. A common classification of the spread of prostate cancer was developed by the American Urological Association (AUA). The AUA system divides prostate tumors into four stages, A to D. Stage A, microscopic cancer within prostate, is further subdivided into stages A1 and A2. Sub-stage A1 is a well-differentiated cancer confined to one site within the prostate. Treatment is generally observation, radical prostatectomy, or radiation. Sub-stage A2 is a moderately to poorly differentiated cancer at multiple sites within the prostate. Treatment is radical prostatectomy or radiation. Stage B, palpable lump within the prostate, is also further subdivided into sub-stages B1 and B2. In sub-stage B1, the cancer forms a small nodule in one lobe of the prostate. In sub-stage B2, the cancer forms large or multiple nodules, or occurs in both lobes of the prostate. Treatment for sub-stages B1 and B2 is either radical prostatectomy or radiation. Stage C is a large cancer mass involving most or all of the prostate and is also further subdivided into two sub-stages. In sub-stage C1, the cancer forms a continuous mass that may have extended beyond the prostate. In sub-stage C2, the cancer forms a continuous mass that invades the surrounding tissue. Treatment for both these sub-stages is radiation with or without drugs to address the cancer. The fourth stage, Stage D is metastatic cancer and is also subdivided into two sub-stages. In sub-stage D1, the cancer appears in the lymph nodes of the pelvis. In sub-stage D2, the cancer involves tissues beyond lymph nodes. Treatment for both of these sub-stages is systemic drugs to address the cancer as well as pain.

[0004] However, current prostate cancer staging methods are limited. As many as 50% of prostate cancers initially staged as A2, B, or C are actually stage D, metastatic. Discovery of metastasis is significant because patients with metastatic cancers have a poorer prognosis and require significantly different therapy than those with localized cancers. The five year survival rates for patients with localized and metastatic prostate cancers are 93% and 29%, respectively.

[0005] Accordingly, there is a great need for more sensitive and accurate methods for the staging of a cancer in a human to determine whether or not such cancer has metastasized and for monitoring the progress of a cancer in a human which has not metastasized for the onset of metastasis.

[0006] It has now been found that a number of proteins in the public domain are useful as diagnostic markers for prostate cancer. These diagnostic markers are referred to herein as cancer specific genes or CSGs and include, but are not limited to: Pro109 which is a human zinc-.alpha. 2-glycoprotein (Freje et al. Genomics 1993 18(3):575-587); Pro112 which is a human cysteine-rich protein with a zinc-finger motif (Liebhaber et al. Nucleic Acid Research 1990 18(13):3871-3879; WO9514772 and WO9845436); Pro111 which is a prostate-specific transglutaminase (Dubbink et al. Genomics 1998 51(3):434-444); Pro115 which is a novel serine protease with transmembrane, LDLR, and SRCR domains and maps to 21q22.3 (Paoloni-Giacobino et al. Genomics 1997 44(3):309-320; WO9837418 and WO987093); Pro110 which is a human breast carcinoma fatty acid synthase (U.S. Pat. No. 5,665,874 and WO9403599); Pro113 which is a homeobox gene, HOXB13 (Steinicki et al. J. Invest. Dermatol. 1998 111:57-63); Pro114 which is a human tetraspan NET-1 (WO9839446); and Pro118 which is a human JM27 protein (WO9845435). ESTs for these CSGs are set forth in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13 and 15 while the full length contigs for these CSGs are set forth in SEQ ID NO:2, 4, 6, 8, 10, 12, 14 and 16, respectively. Additional CSGs for use in the present invention are depicted herein in SEQ ID NO: 17, 18, 19 and 20.

[0007] In the present invention, methods are provided for detecting, diagnosing, monitoring, staging, prognosticating, imaging and treating prostate cancer via the cancer specific genes referred to herein as CSGs. For purposes of the present invention, CSG refers, among other things, to native protein expressed by the gene comprising a polynucleotide sequence of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20. By "CSG" it is also meant herein polynucleotides which, due to degeneracy in genetic coding, comprise variations in nucleotide sequence as compared to SEQ ID NO: 1-20, but which still encode the same protein. In the alternative, what is meant by CSG as used herein, means the native mRNA encoded by the gene comprising the polynucleotide sequence of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20, levels of the gene comprising the polynucleotide sequence of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20, or levels of a polynucleotide which is capable of hybridizing under stringent conditions to the antisense sequence of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20.

[0008] Other objects, features, advantages and aspects of the present invention will become apparent to those of skill in the art from the following description. It should be understood, however, that the following description and the specific examples, while indicating preferred embodiments of the invention are given by way of illustration only. Various changes and modifications within the spirit and scope of the disclosed invention will become readily apparent to those skilled in the art from reading the following description and from reading the other parts of the present disclosure.

SUMMARY OF THE INVENTION

[0009] Toward these ends, and others, it is an object of the present invention to provide a method for diagnosing the presence of prostate cancer by analyzing for changes in levels of CSG in cells, tissues or bodily fluids compared with levels of CSG in preferably the same cells, tissues, or bodily fluid type of a normal human control, wherein a change in levels of CSG in the patient versus the normal human control is associated with prostate cancer.

[0010] Further provided is a method of diagnosing metastatic prostate cancer in a patient having prostate cancer which is not known to have metastasized by identifying a human patient suspected of having prostate cancer that has metastasized; analyzing a sample of cells, tissues, or bodily fluid from such patient for CSG; comparing the CSG levels in such cells, tissues, or bodily fluid with levels of CSG in preferably the same cells, tissues, or bodily fluid type of a normal human control, wherein an increase in CSG levels in the patient versus the normal human control is associated with prostate cancer which has metastasized.

[0011] Also provided by the invention is a method of staging prostate cancer in a human which has such cancer by identifying a human patient having such cancer; analyzing a sample of cells, tissues, or bodily fluid from such patient for CSG; comparing CSG levels in such cells, tissues, or bodily fluid with levels of CSG in preferably the same cells, tissues, or bodily fluid type of a normal human control sample, wherein an increase in CSG levels in the patient versus the normal human control is associated with a cancer which is progressing and a decrease in the levels of CSG is associated with a cancer which is regressing or in remission.

[0012] Further provided is a method of monitoring prostate cancer in a human having such cancer for the onset of metastasis. The method comprises identifying a human patient having such cancer that is not known to have metastasized; periodically analyzing a sample of cells, tissues, or bodily fluid from such patient for CSG; comparing the CSG levels in such cells, tissue, or bodily fluid with levels of CSG in preferably the same cells, tissues, or bodily fluid type of a normal human control sample, wherein an increase in CSG levels in the patient versus the normal human control is associated with a cancer which has metastasized.

[0013] Further provided is a method of monitoring the change in stage of prostate cancer in a human having such cancer by looking at levels of CSG in a human having such cancer. The method comprises identifying a human patient having such cancer; periodically analyzing a sample of cells, tissues, or bodily fluid from such patient for CSG; comparing the CSG levels in such cells, tissue, or bodily fluid with levels of CSG in preferably the same cells, tissues, or bodily fluid type of a normal human control sample, wherein an increase in CSG levels in the patient versus the normal human control is associated with a cancer which is progressing and a decrease in the levels of CSG is associated with a cancer which is regressing or in remission.

[0014] Further provided are methods of designing new therapeutic agents targeted to a CSG for use in imaging and treating prostate cancer. For example, in one embodiment, therapeutic agents such as antibodies targeted against CSG or fragments of such antibodies can be used to detect or image localization of CSG in a patient for the purpose of detecting or diagnosing a disease or condition. Such antibodies can be polyclonal, monoclonal, or omniclonal or prepared by molecular biology techniques. The term "antibody", as used herein and throughout the instant specification is also meant to include aptamers and single-stranded oligonucleotides such as those derived from an in vitro evolution protocol referred to as SELEX and well known to those skilled in the art. Antibodies can be labeled with a variety of detectable labels including, but not limited to, radioisotopes and paramagnetic metals.

[0015] Therapeutics agents such as antibodies or fragments thereof can also be used in the treatment of diseases characterized by expression of CSG. In these applications, the antibody can be used without or with derivatization to a cytotoxic agent such as a radioisotope, enzyme, toxin, drug or a prodrug.

[0016] Other objects, features, advantages and aspects of the present invention will become apparent to those of skill in the art from the following description. It should be understood, however, that the following description and the specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only. Various changes and modifications within the spirit and scope of the disclosed invention will become readily apparent to those skilled in the art from reading the following description and from reading the other parts of the present disclosure.

DETAILED DESCRIPTION OF THE INVENTION

[0017] The present invention relates to diagnostic assays and methods, both quantitative and qualitative for detecting, diagnosing, monitoring, staging and prognosticating cancers by comparing levels of CSG in a human patient with those of CSG in a normal human control. For purposes of the present invention, what is meant be CSG levels is, among other things, native protein expressed by the gene comprising a polynucleotide sequence of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20. By "CSG" it is also meant herein polynucleotides which, due to degeneracy in genetic coding, comprise variations in nucleotide sequence as compared to SEQ ID NO: 1-20, but which still encode the same protein. The native protein being detected, may be whole, a breakdown product, a complex of molecules or chemically modified. In the alternative, what is meant by CSG as used herein, means the native mRNA encoded by the gene comprising the polynucleotide sequence of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20, levels of the gene comprising the polynucleotide sequence of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20, or levels of a polynucleotide which is capable of hybridizing under stringent conditions to the antisense sequence of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20. Such levels are preferably determined in at least one of, cells, tissues and/or bodily fluids, including determination of normal and abnormal levels. Thus, for instance, a diagnostic assay in accordance with the invention for diagnosing overexpression of CSG protein compared to normal control bodily fluids, cells, or tissue samples may be used to diagnose the presence of prostate cancer.

[0018] All the methods of the present invention may optionally include determining the levels of other cancer markers as well as CSG. Other cancer markers, in addition to CSG, useful in the present invention will depend on the cancer being tested and are known to those of skill in the art.

Diagnostic Assays

[0019] The present invention provides methods for diagnosing the presence of prostate cancer by analyzing for changes in levels of CSG in cells, tissues or bodily fluids compared with levels of CSG in cells, tissues or bodily fluids of preferably the same type from a normal human control, wherein an increase in levels of CSG in the patient versus the normal human control is associated with the presence of prostate cancer.

[0020] Without limiting the instant invention, typically, for a quantitative diagnostic assay a positive result indicating the patient being tested has cancer is one in which cells, tissues or bodily fluid levels of the cancer marker, such as CSG, are at least two times higher, and most preferably are at least five times higher, than in preferably the same cells, tissues or bodily fluid of a normal human control.

[0021] The present invention also provides a method of diagnosing metastatic prostate cancer in a patient having prostate cancer which has not yet metastasized for the onset of metastasis. In the method of the present invention, a human cancer patient suspected of having prostate cancer which may have metastasized (but which was not previously known to have metastasized) is identified. This is accomplished by a variety of means known to those of skill in the art.

[0022] In the present invention, determining the presence of CSG levels in cells, tissues or bodily fluid, is particularly useful for discriminating between prostate cancer which has not metastasized and prostate cancer which has metastasized. Existing techniques have difficulty discriminating between prostate cancer which has metastasized and prostate cancer which has not metastasized and proper treatment selection is often dependent upon such knowledge.

[0023] In the present invention, the cancer marker levels measured in such cells, tissues or bodily fluid is CSG, and are compared with levels of CSG in preferably the same cells, tissue or bodily fluid type of a normal human control. That is, if the cancer marker being observed is just CSG in serum, this level is preferably compared with the levee of CSG in serum of a normal human control. An increase in the CSG in the patient versus the normal human control is associated with prostate cancer which has metastasized.

[0024] Without limiting the instant invention, typically, for a quantitative diagnostic assay a positive result indicating the cancer in the patient being tested or monitored has metastasized is one in which cells, tissues or bodily fluid levels of the cancer marker, such as CSG, are at least two times higher, and most preferably are at least five times higher, than in preferably the same cells, tissues or bodily fluid of a normal patient.

[0025] Normal human control as used herein includes a human patient without cancer and/or non cancerous samples from the patient; in the methods for diagnosing or monitoring for metastasis, normal human control may preferably also include samples from a human patient that is determined by reliable methods to have prostate cancer which has not metastasized.

Staging

[0026] The invention also provides a method of staging prostate cancer in a human patient. The method comprises identifying a human patient having such cancer and analyzing cells, tissues or bodily fluid from such human patient for CSG. The CSG levels determined in the patient are then compared with levels of CSG in preferably the same cells, tissues or bodily fluid type of a normal human control, wherein an increase in CSG levels in the human patient versus the normal human control is associated with a cancer which is progressing and a decrease in the levels of CSG (but still increased over true normal levels) is associated with a cancer which is regressing or in remission.

Monitoring

[0027] Further provided is a method of monitoring prostate cancer in a human patient having such cancer for the onset of metastasis. The method comprises identifying a human patient having such cancer that is not known to have metastasized; periodically analyzing cells, tissues or bodily fluid from such human patient for CSG; and comparing the CSG levels determined in the human patient with levels of CSG in preferably the same cells, tissues or bodily fluid type of a normal human control, wherein an increase in CSG levels in the human patient versus the normal human control is associated with a cancer which has metastasized. In this method, normal human control samples may also include prior patient samples.

[0028] Further provided by this invention is a method of monitoring the change in stage of prostate cancer in a human patient having such cancer. The method comprises identifying a human patient having such cancer; periodically analyzing cells, tissues or bodily fluid from such human patient for CSG; and comparing the CSG levels determined in the human patient with levels of CSG in preferably the same cells, tissues or bodily fluid type of a normal human control, wherein an increase in CSG levels in the human patient versus the normal human control is associated with a cancer which is progressing in stage and a decrease in the levels of CSG is associated with a cancer which is regressing in stage or in remission. In this method, normal human control samples may also include prior patient samples.

[0029] Monitoring a patient for onset of metastasis is periodic and preferably done on a quarterly basis. However, this may be more or less frequent depending on the cancer, the particular patient, and the stage of the cancer.

Assay Techniques

[0030] Assay techniques that can be used to determine levels of gene expression (including protein levels), such as CSG of the present invention, in a sample derived from a patient are well known to those of skill in the art. Such assay methods include, without limitation, radioimmunoassays, reverse transcriptase PCR (RT-PCR) assays, immunohistochemistry assays, in situ hybridization assays, competitive-binding assays, Western Blot analyses, ELISA assays and proteomic approaches: two-dimensional gel electrophoresis (2D electrophoresis) and non-gel based approaches such as mass spectrometry or protein interaction profiling. Among these, ELISAs are frequently preferred to diagnose a gene's expressed protein in biological fluids.

[0031] An ELISA assay initially comprises preparing an antibody, if not readily available from a commercial source, specific to CSG, preferably a monoclonal antibody. In addition a reporter antibody generally is prepared which binds specifically to CSG. The reporter antibody is attached to a detectable reagent such as radioactive, fluorescent or enzymatic reagent, for example horseradish peroxidase enzyme or alkaline phosphatase.

[0032] To carry out the ELISA, antibody specific to CSG is incubated on a solid support, e.g. a polystyrene dish, that binds the antibody. Any free protein binding sites on the dish are then covered by incubating with a non-specific protein such as bovine serum albumin. Next, the sample to be analyzed is incubated in the dish, during which time CSG binds to the specific antibody attached to the polystyrene dish. Unbound sample is washed out with buffer. A reporter antibody specifically directed to CSG and linked to a detectable reagent such as horseradish peroxidase is placed in the dish resulting in binding of the reporter antibody to any monoclonal antibody bound to CSG. Unattached reporter antibody is then washed out. Reagents for peroxidase activity, including a calorimetric substrate are then added to the dish. Immobilized peroxidase, linked to CSG antibodies, produces a colored reaction product. The amount of color developed in a given time period is proportional to the amount of CSG protein present in the sample. Quantitative results typically are obtained by reference to a standard curve.

[0033] A competition assay can also be employed wherein antibodies specific to CSG are attached to a solid support and labeled CSG and a sample derived from the host are passed over the solid support. The amount of label detected which is attached to the solid support can be correlated to a quantity of CSG in the sample.

[0034] Nucleic acid methods can also be used to detect CSG mRNA as a marker for prostate cancer. Polymerase chain reaction (PCR) and other nucleic acid methods, such as ligase chain reaction (LCR) and nucleic acid sequence based amplification (NASABA), can be used to detect malignant cells for diagnosis and monitoring of various malignancies. For example, reverse-transcriptase PCR (RT-PCR) is a powerful technique which can be used to detect the presence of a specific mRNA population in a complex mixture of thousands of other mRNA species. In RT-PCR, an mRNA species is first reverse transcribed to complementary DNA (cDNA) with use of the enzyme reverse transcriptase; the cDNA is then amplified as in a standard PCR reaction. RT-PCR can thus reveal by amplification the presence of a single species of mRNA. Accordingly, if the mRNA is highly specific for the cell that produces it, RT-PCR can be used to identify the presence of a specific type of cell.

[0035] Hybridization to clones or oligonucleotides arrayed on a solid support (i.e. gridding) can be used to both detect the expression of and quantitate the level of expression of that gene. In this approach, a cDNA encoding the CSG gene is fixed to a substrate. The substrate may be of any suitable type including but not limited to glass, nitrocellulose, nylon or plastic. At least a portion of the DNA encoding the CSG gene is attached to the substrate and then incubated with the analyte, which may be RNA or a complementary DNA (cDNA) copy of the RNA, isolated from the tissue of interest. Hybridization between the substrate bound DNA and the analyte can be detected and quantitated by several means including but not limited to radioactive labeling or fluorescence labeling of the analyte or a secondary molecule designed to detect the hybrid. Quantitation of the level of gene expression can be done by comparison of the intensity of the signal from the analyte compared with that determined from known standards. The standards can be obtained by in vitro transcription of the target gene, quantitating the yield, and then using that material to generate a standard curve.

[0036] Of the proteomic approaches, 2D electrophoresis is a technique well known to those in the art. Isolation of individual proteins from a sample such as serum is accomplished using sequential separation of proteins by different characteristics usually on polyacrylamide gels. First, proteins are separated by size using an electric current. The current acts uniformly on all proteins, so smaller proteins move farther on the gel than larger proteins. The second dimension applies a current perpendicular to the first and separates proteins not on the basis of size but on the specific electric charge carried by each protein. Since no two proteins with different sequences are identical on the basis of both size and charge, the result of a 2D separation is a square gel in which each protein occupies a unique spot. Analysis of the spots with chemical or antibody probes, or subsequent protein microsequencing can reveal the relative abundance of a given protein and the identity of the proteins in the sample.

[0037] The above tests can be carried out on samples derived from a variety of cells, bodily fluids and/or tissue extracts such as homogenates or solubilized tissue obtained from a patient. Tissue extracts are obtained routinely from tissue biopsy and autopsy material. Bodily fluids useful in the present invention include blood, urine, saliva or any other bodily secretion or derivative thereof. By blood it is meant to include whole blood, plasma, serum or any derivative of blood.

In Vivo Targeting of CSGs

[0038] Identification of these CSGs is also useful in the rational design of new therapeutics for imaging and treating cancers, and in particular prostate cancer. For example, in one embodiment, antibodies which specifically bind to CSG can be raised and used in vivo in patients suspected of suffering from prostate cancer. Antibodies which specifically bind a CSG can be injected into a patient suspected of having prostate cancer for diagnostic and/or therapeutic purposes. The preparation and use of antibodies for in vivo diagnosis is well known in the art. For example, antibody-chelators labeled with Indium-111 have been described for use in the radioimmunoscintographic imaging of carcinoembryonic antigen expressing tumors (Sumerdon et al. Nucl. Med. Biol. 1990 17:247-254). In particular, these antibody-chelators have been used in detecting tumors in patients suspected of having recurrent colorectal cancer (Griffin et al. J. Clin. Onc. 1991 9:631-640). Antibodies with paramagnetic ions as labels for use in magnetic resonance imaging have also been described (Lauffer, R. B. Magnetic Resonance in Medicine 1991 22:339-342). Antibodies directed against CSG can be used in a similar manner. Labeled antibodies which specifically bind CSG can be injected into patients suspected of having prostate cancer for the purpose of diagnosing or staging of the disease status of the patient. The label used will be selected in accordance with the imaging modality to be used. For example, radioactive labels such as Indium-111, Technetium-99m or Iodine-131 can be used for planar scans or single photon emission computed tomography (SPECT). Positron emitting labels such as Fluorine-19 can be used in positron emission tomography. Paramagnetic ions such as Gadlinium (III) or Manganese (II) can be used in magnetic resonance imaging (MRI). Localization of the label permits determination of the spread of the cancer. The amount of label within an organ or tissue also allows determination of the presence or absence of cancer in that organ or tissue.

[0039] For patients diagnosed with prostate cancer, injection of an antibody which specifically binds CSG can also have a therapeutic benefit. The antibody may exert its therapeutic effect alone. Alternatively, the antibody can be conjugated to a cytotoxic agent such as a drug, toxin or radionuclide to enhance its therapeutic effect. Drug monoclonal antibodies have been described in the art for example by Garnett and Baldwin, Cancer Research 1986 46:2407-2412. The use of toxins conjugated to monoclonal antibodies for the therapy of various cancers has also been described by Pastan et al. Cell 1986 47:641-648. Yttrium-90 labeled monoclonal antibodies have been described for maximization of dose delivered to the tumor while limiting-toxicity to normal tissues (Goodwin and Meares Cancer Supplement 1997 80:22675-2680). Other cytotoxic radionuclides including, but not limited to Copper-67, Iodine-131 and Rhenium-186 can also be used for labeling of antibodies against CSG.

[0040] Antibodies which can be used in these in vivo methods include polyclonal, monoclonal and omniclonal antibodies and antibodies prepared via molecular biology techniques. Antibody fragments and aptamers and single-stranded oligonucleotides such as those derived from an in vitro evolution protocol referred to as SELEX and well known to those skilled in the art can also be used.

[0041] Small molecules predicted via computer imaging to specifically bind to regions of CSGs can also be designed and synthesized and tested for use in the imaging and treatment of prostate cancer. Further, libraries of molecules can be screened for potential anticancer agents by assessing the ability of the molecule to bind to CSGs identified herein. Molecules identified in the library as being capable of binding to CSG are key candidates for further evaluation for use in the treatment of prostate cancer.

EXAMPLES

[0042] The present invention is further described by the following examples. These examples are provided solely to illustrate the invention by reference to specific embodiments. These exemplifications, while illustrating certain aspects of the invention, do not portray the limitations or circumscribe the scope of the disclosed invention.

[0043] All examples outlined here were carried out using standard techniques, which are well known and routine to those of skill in the art, except where otherwise described in detail. Routine molecular biology techniques of the following example can be carried out as described in standard laboratory manuals, such as Sambrook et al., MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Ed.; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989).

Example 1

Identification of CSGs

[0044] Identification of CSGs were carried out by a systematic analysis of data in the LIFESEQ database available from Incyte Pharmaceuticals, Palo Alto, Calif., using the data mining Cancer Leads Automatic Search Package (CLASP) developed by diaDexus LLC, Santa Clara, Calif.

[0045] The CLASP performs the following steps: selection of highly expressed organ specific genes based on the abundance level of the corresponding EST in the targeted organ versus all the other organs; analysis of the expression level of each highly expressed organ specific genes in normal, tumor tissue, disease tissue and tissue libraries associated with tumor or disease; selection of the candidates demonstrating component ESTs were exclusively or more frequently found in tumor libraries. The CLASP allows the identification of highly expressed organ and cancer specific genes. A final manual in depth evaluation is then performed to finalize the CSGs selection.

[0046] Clones depicted in the following Table 1 are CSGs useful in diagnosing, monitoring, staging, imaging and treating prostate cancer.

TABLE-US-00001 TABLE 1 CSGs Clone ID Pro # SEQ ID NO: 3424528H1 Pro109 1, 2 578349H1 Pro112 3, 4 1794013H1 Pro111 5, 6 2189835H1 Pro115 7, 8 3277219H1 Pro110 9, 10 1857415 Pro113 11, 12 1810463H1 Pro114 13, 14 zr65G11 Pro118 15, 16 2626135H1 17 zd46d08 18 1712252H1 19 784583H1 20

Example 2

Relative Quantitation of Gene Expression

[0047] Real-Time quantitative PCR with fluorescent Taqman probes is a quantitation detection system utilizing the 5'-3' nuclease activity of Taq DNA polymerase. The method uses an internal fluorescent oligonucleotide probe (Taqman) labeled with a 5' reporter dye and a downstream, 3' quencher dye. During PCR, the 5'-3' nuclease activity of Taq DNA polymerase releases the reporter, whose fluorescence can then be detected by the laser detector of the Model 7700 Sequence Detection System (PE Applied Biosystems, Foster City, Calif., USA)

[0048] Amplification of an endogenous control is used to standardize the amount of sample RNA added to the reaction and normalize for Reverse Transcriptase (RT) efficiency. Either cyclophilin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ATPase, or 18S ribosomal RNA (rRNA) is used as this endogenous control. To calculate relative quantitation between all the samples studied, the target RNA levels for one sample were used as the basis for comparative results (calibrator). Quantitation relative to the "calibrator" can be obtained using the standard curve method or the comparative method (User Bulletin #2: ABI PRISM 7700 Sequence Detection System).

[0049] The tissue distribution and the level of the target gene were evaluated for every sample in normal and cancer tissues. Total RNA was extracted from normal tissues, cancer tissues, and from cancers and the corresponding matched adjacent tissues. Subsequently, first strand cDNA was prepared with reverse transcriptase and the polymerase chain reaction was done using primers and Taqman probes specific to each target gene. The results were analyzed using the ABI PRISM 7700 Sequence Detector. The absolute numbers are relative levels of expression of the target gene in a particular tissue compared to the calibrator tissue.

Expression of Clone ID 3424528H1 (Pro109)

[0050] For the CSG Pro109, real-time quantitative PCR was performed using the following primers:

TABLE-US-00002 Forward Primer: 5'- ATCAGAACAAAGAGGCTGTGTC -3' (SEQ ID NO: 21) Reverse Primer: 5'- ATCTCTAAAGCCCCAACCTTC -3' (SEQ ID NO: 22)

The absolute numbers depicted in Table 2 are relative levels of expression of the CSG referred to as Pro109 in 12 normal different tissues. All the values are compared to normal stomach (calibrator). These RNA samples are commercially available pools, originated by pooling samples of a particular tissue from different individuals.

TABLE-US-00003 TABLE 2 Relative Levels of CSG Pro109 Expression in Pooled Samples Tissue NORMAL Colon 0.02 Endometrium 0.01 Kidney 0.48 Liver 14.83 Ovary 0.08 Pancreas 4.38 Prostate 11.24 Small Intestine 0.42 Spleen 0 Stomatch 1 Testis 0.62 Uterus 0.02

The relative levels of expression in Table 2 show that with the exception of liver (14.83), Pro109 mRNA expression is higher (11.24) in prostate compared with all other normal tissues analyzed. Pancreas, with a relative expression level of 4.38, is the only other tissue expressing considerable mRNA for Pro109.

[0051] The absolute numbers in Table 2 were obtained analyzing pools of samples of a particular tissue from different individuals. They cannot be compared to the absolute numbers originated from RNA obtained from tissue samples of a single individual in Table 3.

[0052] The absolute numbers depicted in Table 3 are relative levels of expression of Pro109 in 28 pairs of matching samples and 4 unmatched samples. All the values are compared to normal stomach (calibrator). A matching pair is formed by mRNA from the cancer sample for a particular tissue and mRNA from the normal adjacent sample for that same tissue from the same individual.

TABLE-US-00004 TABLE 3 Relative Levels of CSG Pro109 Expression in Individual Samples Matching Normal Sample ID Tissue Cancer Adjacent Pro34B Prostate 1 5.98 6.06 Pro65XB Prostate 2 16.68 3.85 Pro69XB Prostate 3 20.46 6.82 Pro78XB Prostate 4 1.39 1.4 Pro101XB Prostate 5 24.8 9.8 Pro12B Prostate 6 9.1 0.2 Pro13XB Prostate 7 0.5 9.7 Pro20XB Prostate 8 13 12.5 Pro23B Prostate 9 16.8 3 Ovr10005O Ovary 1 0.4 Ovr1028 Ovary 2 1.9 Ovr18GA Ovary 3 0.1 Ovr206I Ovary 4 0.1 Mam12X Mammary Gland 1 13.5 1.4 Mam47XP Mammary Gland 2 0.7 0.2 Lng47XQ Lung 1 2.36 0.03 Lng60XL Lung 2 7.39 0.2 Lng75XC Lung 3 0.77 0.27 StoAC44 Stomach 1 0.05 1.19 StoAC93 Stomach 2 0.55 0.8 StoAC99 Stomach 3 0.12 3.04 ColAS43 Colon 1 16.11 0.07 ColAS45 Colon 2 0.11 0.08 ColAS46 Colon 3 4.99 0.4 Liv15XA Liver 1 8.43 10.97 Liv42X Liver 2 1.57 20.82 Liv94XA Liver 3 2.98 9.19 Pan77X Pancreas 1 36 32 Pan82XP Pancreas 2 0.09 7.09 Pan92X Pancreas 3 0.7 0 Pan71XL Pancreas 4 2.48 0.73 Pan10343 Pancreas 5 46 5.5 0 = Negative

[0053] In the analysis of matching samples, the higher levels of expression were in prostate, showing a high degree of tissue specificity for prostate tissue. Of all the samples different than prostate analyzed, only 4 cancer samples (the cancer sample mammary 1 with 13.5, colon 1 with 16.11, liver 1 with 8.43, and lung 2 with 7.39) showed an expression comparable to the mRNA expression in prostate. These results confirmed some degree of tissue specificity as obtained with the panel of normal pooled samples (Table 2).

[0054] Furthermore, the level of mRNA expression was compared in cancer samples and the isogenic normal adjacent tissue from the same individual. This comparison provides an indication of specificity for the cancer (e.g. higher levels of mRNA expression in the cancer sample compared to the normal adjacent). Table 3 shows overexpression of Pro109 in 6 out of 9 primary prostate cancer tissues compared with their respective normal adjacents. Thus, overexpression in the cancer tissue was observed in 66.66% of the prostate matching samples tested (total of 9 prostate matching samples).

[0055] Altogether, the degree of tissue specificity, plus the mRNA overexpression in 66.66% of the primary prostate matching samples tested is indicative of Pro109 being a diagnostic marker for prostate cancer.

Expression of Clone ID 578349H1 (Pro112):

[0056] For the CSG Pro112, real-time quantitative PCR was performed using the following primers:

TABLE-US-00005 Forward Primer 5'- TGCCGAAGAGGTTCAGTGC -3' (SEQ ID NO: 23) Reverse Primer 5'- GCCACAGTGGTACTGTCCAGAT -3' (SEQ ID NO: 24)

[0057] 5

[0058] The absolute numbers depicted in Table 4 are relative levels of expression of the CSG Pro112 in 12 normal different tissues. All the values are compared to normal thymus (calibrator). These RNA samples are commercially available pools, originated by pooling samples of a particular tissue from different individuals.

TABLE-US-00006 TABLE 4 Relative Levels of CSG Pro112 Expression in Pooled Samples Tissue NORMAL Brain 2.9 Heart 0.1 Kidney 0.2 Liver 0.2 Lung 7.7 Mammary 4.2 Muscle 0.1 Prostate 5.5 Small Intestine 1.8 Testis 1 Thymus 1 Uterus 21

[0059] The relative levels of expression in Table 4 show that Pro112 mRNA expression is the 3.sup.rd most highly expressed gene (after uterus and mammary) in the pool of normal prostate tissue compared to a total of 12 tissues analyzed. The absolute numbers in Table 4 were obtained analyzing pools of samples of a particular tissue from different individuals. These results demonstrate that Pro112 mRNA expression is specific for prostate thus indicating Pro112 to be a diagnostic marker for prostate disease especially cancer.

Expression of Clone ID 1794013H1 (Pro111)

[0060] For the CSG Pro111, real-time quantitative PCR was performed using the following primers:

TABLE-US-00007 Forward Primer 5'- GCTGCAAGTTCTCCACATTGA -3' (SEQ ID NO: 25) Reverse Primer 5'- CAGCCGCAGGTGAAACAC -3' (SEQ ID NO: 26)

The absolute numbers depicted in Table 5 are relative levels of expression of the CSG Pro111 in 12 normal different tissues. All the values are compared to normal testis (calibrator). These RNA samples are commercially available pools, originated by pooling samples of a particular tissue from different individuals.

TABLE-US-00008 TABLE 5 Relative Levels of CSG Pro111 Expression in Pooled Samples Tissue NORMAL Brain 0.04 Heart 0 Kidney 0 Liver 0 Lung 0.05 Mammary 0.14 Muscle 5166.6 Prostate 1483.72 Small Intestine 0.33 Testis 1 Thymus 0.49 Uterus 0.07

[0061] The relative levels of expression in Table 5 show that Pro111 mRNA expression is extraordinarily high in the pool of normal prostate (1483.72) compared to all the other tissues analyzed with the exception of muscle (5166.6). These results demonstrate that Pro111 mRNA expression shows specificity for prostate and muscle.

[0062] The absolute numbers in Table 5 were obtained analyzing pools of samples of a particular tissue from different individuals. They cannot be compared to the absolute numbers originated from RNA obtained from tissue samples of a single individual in Table 6.

[0063] The absolute numbers depicted in Table 6 are relative levels of expression of Pro111 in 48 pairs of matching and 18 unmatched samples. All the values are compared to normal testis (calibrator). A matching pair is formed by mRNA from the cancer sample for a particular tissue and mRNA from the normal adjacent sample for that same tissue from the same individual.

TABLE-US-00009 TABLE 6 Relative Levels of CSG Pro111 Expression in Individual Samples Matching Normal Sample ID Tissue Cancer Adjacent Pro101XB Prostate 1 8.3 21.8 Pro12B Prostate 2 2336 133 Pro13XB Prostate 3 3.4 23 Pro20XB Prostate 4 21.6 121.5 Pro23B Prostate 5 19.4 3.7 Pro34B Prostate 6 15 39 Pro65XB Prostate 7 8 867 Pro69XB Prostate 8 56 94 Pro78XB Prostate 9 24 1515 Pro84XB Prostate 10 119 15.35 Pro90XB Prostate 11 8.08 112.2 Pro91XB Prostate 12 0.88 51.8 ProC215 Prostate 13 0.3 ProC234 Prostate 14 0.35 ProC280 Prostate 15 436.5 Pro109XB Prostate 16 3.43 265 Pro110 Prostate 17 18.2 8.73 Pro125XB Prostate 18 0.34 186 Pro326 Prostate 19 1392 110 Pro10R Prostate 20 0.5 (prostatitis) Pro20R Prostate 21 24.1 (prostatitis) Pro258 Prostate 22 (BPH) 4610 Pro263C Prostate 23 (BPH) 0 Pro267A Prostate 24 (BPH) 1.46 Pro271A Prostate 25 (BPH) 0 Pro460Z Prostate 26 (BPH) 1.47 ProC032 Prostate 27 (BPH) 14.4 Tst39X Testis 1 0 0 Bld32XK Bladder 1 0.44 0.41 Bld46XK Bladder 2 0 0 Bld66X Bladder 3 0 0 BldTR14 Bladder 4 0 0 Kid106XD Kidney 1 0 0 Kid107XD Kidney 2 0 0 Kid109XD Kidney 3 0 0 Pan10343 Pancreas 1 0 0 Pan71XL Pancreas 2 0 0 Pan77X Pancreas 3 0 0 Liv15XA Liver 1 0 0 Liv42X Liver 2 0 0 ClnAS43 Colon 1 0 0 ClnAS45 Colon 2 0 0 ClnAS46 Colon 3 0 0 ClnAS67 Colon 4 0 0 ClnAC19 Colon 5 0 0 ClnAS12 Colon 6 0 0 SmI21XA Small Intestine 1 0 0 SmIH89 Small Intestine 2 0 0 Lng47XQ Lung 1 0.7 0 Lng60XL Lung 2 0 0 Lng75XC Lung 3 0 0 Lng90X Lung 4 0 0 Mam12X Mammary Gland 1 0 1.4 Mam59X Mammary Gland 2 0.2 0 MamA06X Mammary Gland 3 0 0 MamS127 Mammary Gland 4 0 0 Mam162X Mammary Gland 5 0 0 Mam42DN Mammary Gland 6 0 0 Ovr103X Ovary 1 0.14 0 Ovr1005O Ovary 2 0.2 Ovr1028 Ovary 3 0 Ovr1040O Ovary 4 0.2 Ovr18GA Ovary 5 0 Ovr206I Ovary 6 0 Ovr20GA Ovary 7 0.2 Ovr25GA Ovary 8 0 0 = Negative

[0064] In the analysis of matching samples, the higher levels of expression were in prostate showing a high degree of tissue specificity for prostate. These results confirm the tissue specificity results obtained with normal pooled samples (Table 5).

[0065] Furthermore, the level of mRNA expression in cancer samples and the isogenic normal adjacent tissue from the same individual were compared. This comparison provides an indication of specificity for cancer (e.g. higher levels of mRNA expression in the cancer sample compared to the normal adjacent). Table 6 shows overexpression of Pro111 in 5 out of 16 primary prostate cancer samples compared with their respective normal adjacent (prostate samples 2, 5, 10, 17, and 19). Similar expression levels were observed in 3 unmatched prostate cancers (prostate samples 13, 14, 15), 2 prostatitis (prostate samples 20, 21), and 6 benign prostatic hyperplasia samples (prostate samples 22 through 27). Thus, there is overexpression in the cancer tissue of 31.25% of the prostate matching samples tested (total of 16 prostate matching samples).

[0066] Altogether, the high level of tissue specificity, plus the mRNA overexpression in 31.25% of the prostate matching samples tested are indicative of Pro111 being a diagnostic marker for prostate cancer.

Expression of Clone ID 2189835H1 (Pro115)

[0067] For the CSG Pro115, real-time quantitative PCR was performed using the following primers:

TABLE-US-00010 Forward Primer 5'- TGGCTTTGAACTCAGGGTCA -3' (SEQ ID NO: 27) Reverse Primer 5'- CGGATGCACCTCGTAGACAG -3' (SEQ ID NO: 28)

The absolute numbers depicted in Table 7 are relative levels of expression of the CSG Pro115 in 12 normal different tissues. All the values are compared to normal thymus (calibrator). These RNA samples are commercially available pools, originated by pooling samples of a particular tissue from different individuals.

TABLE-US-00011 TABLE 7 Relative Levels of CSG Pro115 Expression in Pooled Samples Tissue NORMAL Brain 0.016 Heart 0.002 Kidney 8.08 Liver 2.20 Lung 112.99 Mammary 29.45 Muscle 0.05 Prostate 337.79 Small Intestine 7.54 Testis 1.48 Thymus 1 Uterus 1.4

[0068] The relative levels of expression in Table 7 show that Pro115 mRNA expression is higher (337.79) in prostate compared with all the other normal tissues analyzed. Lung, with a relative expression level of 112.99, and mammary (29.446) are the other tissues expressing moderate levels of mRNA for Pro115. These results establish Pro115 mRNA expression to be highly specific for prostate.

[0069] The absolute numbers in Table 7 were obtained analyzing pools of samples of a particular tissue from different individuals. They cannot be compared to the absolute numbers originated from RNA obtained from tissue samples of a single individual in Table 8.

[0070] The absolute numbers depicted in Table 8 are relative levels of expression of Pro115 in 17 pairs of matching and 21 unmatched samples. All the values are compared to normal thymus (calibrator). A matching pair is formed by mRNA from the cancer sample for a particular tissue and mRNA from the normal adjacent sample for that same tissue from the same individual.

TABLE-US-00012 TABLE 8 Relative Levels of CSG Pro115 Expression in Individual Samples Matching Normal Sample ID Tissue Cancer Adjacent Pro12B Prostate 1 1475.9 190.3 ProC234 Prostate 2 169.61 Pro109XB Prostate 3 639.53 Pro101XB Prostate 4 1985.2 2882.9 Pro13XB Prostate 5 34.9 13.9 Pro215 Prostate 6 525.59 Pro125XB Prostate 7 556.05 Pro23B Prostate 8 1891.4 1118.6 ProC280 Prostate 9 454.3 Pro20XB Prostate 10 1332.6 Pro34B Prostate 11 362.91 Pro65XB Prostate 12 135.06 Pro69XB Prostate 13 179.67 Pro10R Prostate 14 143.82 (prostatitis) Pro20R Prostate 15 397.79 (prostatitis) Pro258 Prostate 16 (BPH) 216.6 Pro263C Prostate 17 (BPH) 601.25 Pro267A Prostate 18 (BPH) 200.28 Pro271A Prostate 19 (BPH) 111.43 Pro460Z Prostate 20 (BPH) 53.84 ProC032 Prostate 21 (BPH) 56.94 SmI21XA Small Intestine 1 28.8 29.9 SmIH89 Small Intestine 2 70.8 348.5 ClnAC19 Colon 1 22.73 446.47 ClnAS12 Colon 2 116.97 493.18 Kid106XD Kidney 1 86.13 41.14 Kid107XD Kidney 2 0.26 35.14 Lng47XQ Lung 1 5.13 20.98 Lng60XL Lung 2 13.93 114.78 Lng75XC Lung 3 16.47 53.79 Mam12X Mammary Gland 1 6.25 10.75 Mam162X Mammary Gland 2 1.84 2.54 Mam42DN Mammary Gland 3 23.08 35.51 Ovr10050 Ovary 1 0.9 Ovr1028 Ovary 2 261.4 Ovr103X Ovary 3 7 0.1 Ovr20GA Ovary 4 0 Ovr25GA Ovary 5 0 0 = Negative

[0071] Higher levels of expression were seen in prostate, showing a high degree of tissue specificity for prostate tissue. Of all the analyzed samples different from prostate, only two cancer samples (colon 2 with 116.97 and ovary 2 with 261.4), and 5 normal adjacent tissue samples (small intestine 2, colon 1, colon 2, kidney 1, and lung 2), showed an expression comparable to the mRNA expression in prostate. These results confirmed the tissue specificity results obtained with the panel of normal pooled samples (Table 7).

[0072] Furthermore, the levels of mRNA expression in cancer samples and the isogenic normal adjacent tissue from the same individual were compared. This comparison provides an indication of specificity for the cancer (e.g. higher levels of mRNA expression in the cancer sample compared to the normal adjacent). Table 8 shows higher expression of Pro115 in 3 out of 4 matched prostate cancer tissues (prostate samples 1, 5 & 8).

[0073] Altogether, the high level of tissue specificity, plus the higher expression in 75% of the prostate matching samples tested, are indicative of Pro115 being a diagnostic marker for prostate cancer.

Expression of Clone ID 3277219H1 (Pro110):

[0074] For the CSG Pro110, real-time quantitative PCR was performed using the following primers:

TABLE-US-00013 Forward Primer 5'- CGGCAACCTGGTAGTGAGTG -3' (SEQ ID NO: 29) Reverse Primer 5'- CGCAGCTCCTTGTAAACTTCAG -3' (SEQ ID NO: 30)

The absolute numbers depicted in Table 9 are relative levels of expression of the CSG Pro110 in 12 normal different tissues. All the values are compared to normal small intestine (calibrator). These RNA samples are commercially available pools, originated by pooling samples of a particular tissue from different individuals.

TABLE-US-00014 TABLE 9 Relative Levels of CSG Pro110 Expression in Pooled Samples Tissue NORMAL Brain 6.61 Heart 0.7 Kidney 0.74 Liver 7.94 Lung 11.88 Mammary 22.78 Muscle 6.77 Prostate 3.01 Small Intestine 1 Testis 2.58 Thymus 13.74 Uterus 2.61

The relative levels of expression in Table 9 show that Pro110 mRNA expression is not as high in normal prostate (3.01) compared with all the other normal tissues analyzed.

[0075] The absolute numbers in Table 9 were obtained analyzing pools of samples of a particular tissue from different individuals. They cannot be compared to the absolute numbers originated from RNA obtained from tissue samples of a single individual in Table 10.

[0076] The absolute numbers depicted in Table 10 are relative levels of expression of Pro110 in 33 pairs of matching samples. All the values are compared to normal small intestine (calibrator). A matching pair is formed by mRNA from the cancer sample for a particular tissue and mRNA from the normal adjacent sample for that same tissue from the same individual.

TABLE-US-00015 TABLE 10 Relative Levels of CSG Pro110 Expression in Individual Samples Matching Normal Sample ID Tissue Cancer Adjacent Pro12B Prostate 1 11.8 0.3 Pro78XB Prostate 2 14.3 6.3 Pro101XB Prostate 3 33.2 10.7 Pro13XB Prostate 4 0.3 0.4 Pro23XB Prostate 5 25.5 14.4 Pro20XB Prostate 6 43.3 4 Pro34XB Prostate 7 31.8 18.7 Pro65XB Prostate 8 26.9 3.4 Pro69XB Prostate 9 12.5 7 Lng75XC Lung 1 1.9 3 Lng90X Lung 2 5.5 0.5 LngAC11 Lung 3 9.3 9.7 LngAC32 Lung 4 11.2 2.2 Lng47XQ Lung 5 11.3 0.3 Lng60XL Lung 6 29.1 6.8 Mam12B Mammary Gland 1 19.8 0 Mam603X Mammary Gland 2 13.7 0 Mam82XI Mammary Gland 3 73.5 0 MamA04 Mammary Gland 4 0 24.6 MamB011X Mammary Gland 5 17.4 2 MamC012 Mammary Gland 6 0 12.8 MamC034 Mammary Gland 7 0 61 Mam12X Mammary Gland 8 14 2.2 Mam59X Mammary Gland 9 33 2.2 MamA06X Mammary Gland 10 16.4 0.8 Liv15XA Liver 1 4.7 0.6 Liv42X Liver 2 7.5 2.6 Liv94XA Liver 3 0.4 1.4 ClnAS43 Colon 1 52.9 1.4 ClnAS45 Colon 2 2.1 0.8 ClnAS46 Colon 3 39.8 3.7 SmI21X Small Intestine 1 0.9 0.1 SmIH89 Small Intestine 2 5.8 0.9 0 = Negative

The levels of mRNA expression in cancer samples and the isogenic normal adjacent tissue from the same individual were compared. This comparison provides an indication of specificity for the cancer (e.g. higher levels of mRNA expression in the cancer sample compared to the normal adjacent). Table 10 shows overexpression of Pro110 in 8 of the 9 primary prostate cancer tissues compared with their respective normal adjacent (except prostate 4). Thus, there was overexpression in 88.88% of the cancer prostate tissue as compared to the prostate matching samples tested (total of 9 prostate matching samples).

[0077] Although not tissue specific, Pro110 mRNA expression is upregulated in prostate cancer tissues. The mRNA overexpression in 88.88% of the primary prostate matching cancer samples tested is indicative of Pro110 being a diagnostic marker for prostate cancer. Pro110 also showed overexpression in several other cancers tested including small intestine, colon, liver, mammary and lung (see Table 10). Accordingly Pro110 may be a diagnostic marker for other types of cancer as well.

Expression of Clone ID 1857415; Gene ID 346880 (Pro113)

[0078] For the CSG Pro113, real-time quantitative PCR was performed using the following primers:

TABLE-US-00016 Forward Primer 5'- CGGGAACCTACCAGCCTATG -3' (SEQ ID NO: 31) Reverse Primer 5'- CAGGCAACAGGGAGTCATGT -3' (SEQ ID NO: 32)

The absolute numbers depicted in Table 11 are relative levels of expression of the CSG Pro113 in 12 normal different tissues. All the values are compared to normal thymus (calibrator). These RNA samples are commercially available pools, originated by pooling samples of a particular tissue from different individuals.

TABLE-US-00017 TABLE 11 Relative Levels of CSG Pro113 Expression in Pooled Samples Tissue NORMAL Brain 0.03 Heart 0 Kidney 0.01 Liver 0 Lung 0 Mammary Gland 0 Muscle 0.04 Prostate 489.44 Small Intestine 0.02 Testis 0.35 Thymus 1 Uterus 0.13

The relative levels of expression in Table 11 show that Pro113 mRNA expression is higher (489.44) in prostate compared with all the other normal tissues analyzed. Testis, with a relative expression level of 0.35, uterus (0.13), thymus (1.0), kidney (0.01) and brain (0.03) were among the other tissues expressing lower mRNA levels for Pro113. These results establish that Pro113 mRNA expression is highly specific for prostate.

[0079] The absolute numbers in Table 11 were obtained analyzing pools of samples of a particular tissue from different individuals. They cannot be compared to the absolute numbers originated from RNA obtained from tissue samples of a single individual in Table 12.

[0080] The absolute numbers depicted in Table 12 are relative levels of expression of Pro113 in 78 pairs of matching and 25 unmatched tissue samples. All the values are compared to normal thymus (calibrator). A matching pair is formed by mRNA from the cancer sample for a particular tissue and mRNA from the normal adjacent sample for that same tissue from the same individual. In cancers (for example, ovary) where it was not possible to obtain normal adjacent samples from the same individual, samples from a different normal individual were analyzed.

TABLE-US-00018 TABLE 12 Relative Levels of CSG Pro113 Expression in Individual Samples Matched or Unmatched Normal Sample ID Tissue Cancer Adjacent Pro780B/781B Prostate 1 375.58 446.29 Pro1291B/1292B Prostate 2 1060 31 Pro139B96/140B96 Prostate 3 41 32 Pro209B96/210B96 Prostate 4 505 255 Pro1256B/1257B Prostate 5 165.79 141.63 Pro1293B/1294B Prostate 6 1613.7 874.61 Pro694B/695B Prostate 7 458.6 142.21 Pro1012B/1013B Prostate 8 1520 864 Pro1222B/1223B Prostate 9 939 530 Pro845B/846B Prostate 10 1552.4 374.6 Pro1094B/1095B Prostate 11 278.37 135.89 Pro650B/651B Prostate 12 532.81 640.85 Pro902B/903B Prostate 13 609.05 415.86 Pro916B/917B Prostate 14 699.42 401.24 Pro9821110A/110B Prostate 15 156 487.8 ProS9821326A/26B Prostate 16 744.4 472.8 Pro9407c215 Prostate 17 1389.2 Pro9407c234 Prostate 18 305.5 Pro9407c280A Prostate 19 894.5 Pro9409C010R Prostate 20 269.7 (prostatitis) Pro9404C120R Prostate 21 299.2 (prostatitis) Pro1000258 Prostate 22 149.6 (BPH) Pro4001263C Prostate 23 576 (BPH) Pro4001267A Prostate 24 132.1 (BPH) Pro9411C032 Prostate 25 118.2 (BPH) Pro4001460Z Prostate 26 276.3 (BPH) Pro4001271A Prostate 27 58.7 (BPH) Kid1064D/65D Kidney 1 0 0.1 Kid1079D/1080D Kidney 2 0.3 0.02 Kid1097D/1098D Kidney 3 35.14 0.32 Kid1024D/1025D Kidney 4 1.31 0 Kid1183D/1184D Kidney 5 24.79 0 Kid1242D/1243D Kidney 6 0 0 Bld469K Bladder 1 2.88 Bld467K/468K Bladder 2 2.65 Bld327K/328K Bladder 3 0 4.05 Bld470K Bladder 4 1.64 Bld665T/664T Bladder 5 0.21 1.99 Bld1496K/1497K Bladder 6 13.55 1.14 Bld1721K/1722K Bladder 7 120.16 1.34 Tst239X/240X Testis 1 31.5 0.73 TstS9820647A/47B Testis 2 15.7 0 TstS9820663A/663B Testis 3 72 1.4 SknS9821248A/248B Skin 1 1.8 0.5 SknS99448A/448B Skin 2 251.6 0 Skn99816A/816B Skin 3 33 0.7 Sto4004864A4/B4 Stomach 1 14.12 0 Sto4004509A3/B1 Stomach 2 40.74 39 SmI9807A212A/213A Small 0.1 0 Intestine 1 SmI9802H008/H009 Small 5.8 0.1 Intestine 2 Cln9608B012/B011 Colon 1 4.5 0 Cln9709c074ra/073ra Colon 2 65.8 3.1 Cln4004709A1/709B1 Colon 3 1.1 0.9 Cln9405C199/C200 Colon 4 34.76 0.73 Cln9707c004gb/006ga Colon 5 90.26 0.96 Cln96-09-B004/B003 Colon 6 17.9 20.64 Cln9612B006/B005 Colon 7 17.56 0.3 Cln9705F002D/F001C Colon 8 21.39 0 ClnCXGA Colon 9 429.14 142.69 Pan10343a Pancreas 1 0 0 Pan776P/777P Pancreas 2 0 0.15 Pan921O/922O Pancreas 3 7.36 0 Pan714L/715L Pancreas 4 13.57 0.11 Pan824P/825P Pancreas 5 0 0 Lng476Q/477Q Lung 1 0 0 Lng605L/606L Lung 2 0 0.1 Lng11145B/11145C Lung 3 85.9 0 Lng0008632A/32B Lung 4 23.85 0 Lng750C/751C Lung 5 0.32 0.25 Lng8890A/8890B Lung 6 10.63 0 Lng8926A/8926B Lung 7 15.37 0 Lng0010239A/39B Lung 8 26.17 0 Lng9502C109R/110R Lung 9 0.68 0 LngS9821944a/44b Lung 10 0 0 Mam00042D01/42N01 Mammary Gland 1 8.5 0 Mam59XC Mammary Gland 2 61.07 0 Mam9706A066G/67C Mammary Gland 3 4.84 0 Mam14153a1C Mammary Gland 4 9.72 6.99 Mam1620F/1621F Mammary Gland 5 0.91 0 Mam00014D05 Mammary Gland 6 2.45 0 End10479B/D Endometrium 1 133.43 1.12 End9705A125A/126A Endometrium 2 0 0.39 End9704C281A/282A Endometrium 3 23.5 1.56 End680o97/681o97 Endometrium 4 88.89 79.02 Utr1359O/1358O Uterus 1 0.2 0 Utr850U/851U Uterus 2 0 0 Utr1417O/1418O Uterus 3 14 0.4 Utr233U96/234U96 Uterus 4 8.65 4.64 CvxVNM00052D01/52N01 Cervix 1 0.82 77.15 CvxVNM00083D01/83N01 Cervix 2 0.78 221.48 CvxND00023D01/23N01 Cervix 3 3.25 15.22 Ovr1037O/1038O Ovary 1 0.1 0 Ovr1005O Ovary 2 18.96 Ovr1028 Ovary 3 0 Ovr14638A1C Ovary 4 3.2 Ovr14603A1D Ovary 5 882.3 Ovr773O Ovary 6 0 Ovr9702C018GA Ovary 7 0.15 Ovr206I Ovary 8 0 Ovr9702C020GA Ovary 9 0 Ovr9702C025GA Ovary 10 0 Ovr9701C035GA Ovary 11 0.07 Ovr9701C050GB Ovary 12 0.58 0 = Negative

[0081] In the analysis of matching samples, the higher levels of expression were in prostate, showing a high degree of tissue specificity for prostate tissue. In addition to the higher expression levels in prostate cancer samples, Pro113 expression was found to be either induced (where not expressed in normal adjacent tissues) or somewhat upregulated in several other cancers. However, the relative expression and the fold increase in prostate cancer samples far exceeds that in other cancer tissues and is highly significant.

[0082] Furthermore, the levels of mRNA expression in cancer samples and the isogenic normal adjacent tissue from the same individual were compared. This comparison provides an indication of specificity for the cancer (e.g. higher levels of mRNA expression in the cancer sample compared to the normal adjacent). Table 12 shows overexpression of Pro113 in 13 out of 16 primary prostate cancer tissues compared with their respective normal adjacent (prostate samples 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 13, 14, 16). Thus, there was overexpression in the cancer tissue for 81.25% of the prostate matching samples tested. The median for the level of expression in prostate cancer tissue samples is 609, whereas the median for all other cancers is only 7.93, with the exception of one colon sample, colon 9, whose expression was similar to that found in prostate cancer tissues.

[0083] Altogether, the high level of tissue specificity, plus the mRNA overexpression in 81.25% of the primary prostate matching samples tested are indicative of Pro113 being a diagnostic marker for prostate cancer. Expression was also found to be higher in other cancer tissues compared with their respective normal adjacent tissues (kidney, bladder, testis, skin, stomach, small intestine, colon, pancreas, lung, mammary, endometrium, uterus, and ovary) thus indicating Pro113 to be a pan cancer marker.

Expression of Clone ID 1810463H1 (Pro114):

[0084] For the CSG Pro114, real-time quantitative PCR was performed using the following primers:

TABLE-US-00019 Forward Primer 5'- TGGGCATCTGGGTGTCAA -3' (SEQ ID NO: 33) Reverse Primer 5'- CGGCTGCGATGAGGAAGTA -3' (SEQ ID NO: 34)

[0085] The absolute numbers depicted in Table 13 are relative levels of expression of the CSG Pro114 in 12 normal different tissues. All the values are compared to normal muscle (calibrator). These RNA samples are commercially available pools, originated by pooling samples of a particular tissue from different individuals.

TABLE-US-00020 TABLE 13 Relative Levels of CSG Pro114 Expression in Pooled Samples Tissue NORMAL Brain 9.7 Heart 0.7 Kidney 414.4 Liver 4 Lung 882.2 Mammary 44 Muscle 1 Prostate 1951 Small Intestine 22 Testis 367.1 Thymus 25.8 Uterus 139.6

The relative levels of expression in Table 13 show that Pro114 mRNA expression is higher (1951) in prostate compared with all the other normal tissues analyzed. Lung, with a relative expression level of 882.2, kidney 414.4, testis 367.1 and uterus 139.6, are the other tissues expressing higher levels of mRNA for Pro114. These results establish Pro114 mRNA expression to be more specific for prostate than other tissues examined.

[0086] The high level of tissue specificity is indicative of Pro114 being a diagnostic marker for diseases of the prostate, especially cancer.

Expression of Clone ID zr65g11 (Pro118):

[0087] For the CSG Pro118, real-time quantitative PCR was performed using the following primers:

TABLE-US-00021 Forward Primer 5'- GCCCATCTCCTGCTTCTTTAGT -3' (SEQ ID NO: 35) Reverse Primer 5'- CGTCGAGATGGCTCTGATGTA -3' (SEQ ID NO: 36)

[0088] The absolute numbers depicted in Table 14 are relative levels of expression of the CSG Pro118 in 12 normal different tissues. All the values are compared to normal kidney (calibrator). These RNA samples are commercially available pools, originated by pooling samples of a particular tissue from different individuals.

TABLE-US-00022 TABLE 14 Relative Levels of CSG Pro118 Expression in Pooled Samples Tissue NORMAL Colon 0.87 Endometrium 19282 Kidney 1 Liver 0 Ovary 86.22 Pancreas 0 Prostate 962.1 Small Intestine 0 Spleen 0.75 Stomach 0.54 Testis 343.7 Uterus 1064

[0089] The relative levels of expression in Table 14 show that Pro118 mRNA expression is the 3.sup.rd highest in prostate (962.1) next to endometrium (19282) and uterus (1064), which are female-specific tissues. Testis, with a relative expression level of 343.7 is the only other male tissue expressing moderate levels of mRNA for Pro118. These results establish Pro118 mRNA expression to be highly specific for reproductive tissues including the prostate.

[0090] The absolute numbers in Table 14 were obtained analyzing pools of samples of a particular tissue from different individuals. They cannot be compared to the absolute numbers originated from RNA obtained from tissue samples of a single individual in Table 15.

[0091] The absolute numbers depicted in Table 15 are relative levels of expression of Pro118 in 59 pairs of matching and 21 unmatched samples. All the values are compared to normal kidney (calibrator). A matching pair is formed by mRNA from the cancer sample for a particular tissue and mRNA from the normal adjacent sample for that same tissue from the same individual.

TABLE-US-00023 TABLE 15 Relative Levels of CSG Pro118 Expression in Individual Samples Matching Normal Sample ID Tissue Cancer Adjacent Pro12B Prostate 1 41700.7 22242.83 ProC234 Prostate 2 40087 Pro78XB Prostate 3 4075.6 7066.7 Pro109XB Prostate 4 334.4 777.2 Pro84XB Prostate 5 11684 58290 Pro101XB Prostate 6 21474.13 100720.8 Pro91X Prostate 7 14849 33717 Pro13XB Prostate 8 202.57 146.91 ProC215 Prostate 9 73243 Pro125XB Prostate 10 629.6 521.4 Pro23B Prostate 11 157532.6 110654.4 Pro90XB Prostate 12 2317 64134 ProC280 Prostate 13 42020 Pro20XB Prostate 14 2909.31 Pro34B Prostate 15 29610 23264 Pro110 Prostate 16 13354 30991 Pro65XB Prostate 17 10126 11270 Pro69XB Prostate 18 2671.42 Pro326 Prostate 19 9962.3 19231 Pro10R Prostate 20 27355 (prostatitis) Pro20R Prostate 21 21081 (prostatitis) Pro258 Prostate 22 (BPH) 79916.32 Pro263C Prostate 23 (BPH) 108924.5 Pro267A Prostate 24 (BPH) 92910.22 Pro271A Prostate 25 (BPH) 57004.4 Pro460Z Prostate 26 (BPH) 57449.23 ProC032 Prostate 27 (BPH) 45781.44 Kid106XD Kidney 1 3.08 217.36 Kid107XD Kidney 2 0 38.36 Kid109XD Kidney 3 0 123.5 Kid10XD Kidney 4 17.69 67.8 Kid11XD Kidney 5 16.74 360.8 Kid124D Kidney 6 0 167.4 Bld32XK Bladder 1 0 0 Bld47K Bladder 2 36.38 Bld66X Bladder 3 0 4.52 BldTR14 Bladder 4 0 12.17 BldTR17 Bladder 5 0 0 Bld46XK Bladder 6 16.5 0 Tst39X Testis 1 116.6 24.35 Tst647T Testis 2 856.16 43.5 StoAC44 Stomach 1 0 0 StoAC93 Stomach 2 0 0 SmI21XA Small Intestine 1 68.45 0 SmIH89 Small Intestine 2 0 0 ClnAC19 Colon 1 149 21.33 ClnAS12 Colon 2 0 0 ClnB34 Colon 3 0 0 ClnB56 Colon 4 13.04 5.22 ClnAS43 Colon 5 0 0 Lng47XQ Lung 1 0 0 Lng60XL Lung 2 0 0 Lng75XC Lung 3 0 3.38 Lng90X Lung 4 0 0 LngBR26 Lung 5 0 26.82 Pan10343 Pancreas 1 50.47 0 Pan77X Pancreas 2 281.1 0 Pan92X Pancreas 3 18.41 0 Pan71XL Pancreas 4 0 0 Pan82XP Pancreas 5 0 0 PanC044 Pancreas 6 0 0 Mam12X Mammary Gland 1 0 0 Mam162X Mammary Gland 2 0 0 Mam42DN Mammary Gland 3 0 0 MamS127 Mammary Gland 4 12.58 0 Mam14DN Mammary Gland 5 0 0 End28XA Endometrium 1 331.9 1824 End3AX Endometrium 2 27825 65839 End4XA Endometrium 3 10.3 15935 Utr141O Uterus 1 18885 18116 Utr23XU Uterus 2 3358 7674 CvxKS52 Cervix 1 0 0 CvxKS83 Cervix 2 0 0 Ovr1005O Ovary 1 72.86 Ovr1028 Ovary 2 0 Ovr638A Ovary 3 0 Ovr63A Ovary 4 90.88 Ovr773O Ovary 5 1.21 Ovr1040O Ovary 6 5.08 Ovr105O Ovary 7 0 Ovr1118 Ovary 8 7.41 Ovr103X Ovary 9 32.78 Ovr20GA Ovary 10 0 Ovr25GA Ovary 11 1173.83 Ovr35GA Ovary 12 313.4 Ovr50GB Ovary 13 823.1 Ovr18GA Ovary 14 40.6 Ovr206I Ovary 15 1264 Ovr230A Ovary 16 1285 0 = Negative

In the analysis of matching samples, the higher levels of expression were in prostate, endometrium, testis, and ovary showing a high degree of tissue specificity for reproductive tissues. These results confirmed the tissue specificity results obtained with the panel of normal pooled samples (Table 14).

[0092] Furthermore, the levels of mRNA expression in cancer samples and the isogenic normal adjacent tissue from the same individual were compared. This comparison provides an indication of specificity for the cancer (e.g. higher levels of mRNA expression in the cancer sample compared to the normal adjacent). Table 15 shows overexpression of Pro118 in 5 out of 14 primary prostate cancer tissues (prostate samples 1, 8, 10, 11, 15) compared with their respective normal adjacent. Thus, there was overexpression in the cancer tissue for 35.71% of the prostate matching samples tested (total of 14 prostate matching samples). Expression of Pro118 was similarly higher in 3 unmatched cancer tissues (prostate samples 9, 13, 14), 2 prostatitis (prostate samples 20, 21), and 6 benign hyperplasia tissues (prostate samples 22 through 27).

[0093] Altogether, the high level of tissue specificity, plus the mRNA overexpression in 35.71% of the primary prostate matching samples tested are indicative of Pro118 being a diagnostic marker for prostate cancer.

Sequence CWU 1

1

371188DNAHomo sapien 1ggtaaacacc tgcttttatc atcagaacaa agaggctgtg tcccctgccc tatgaggtcc 60atttctgaga gttgtggcta atgggcaaga aggttggggc tttagagatt tgggataaag 120atatcaaaca ccagaaaggt agaaagaagt gatcagatta gggttactta ggtgatgata 180tgaactct 18829819DNAHomo sapien 2cagctggggt ctacccaggt ccatgtcttg gacatgttga gagtttttct ggaaggcagg 60gatacagtgt ggtccaaaaa cacacaaatg cccctactgg cccaggggtt gtcacaatag 120actggaaggg tgacacatcc caggcgcttg ccacccatca cacgcacctc ctacccactg 180gcatccttcc accccaggca cacacaaagc ctcagtccag agatcaactc tggactcagc 240tctgaatttg catatcctgt gtgtagattc attcttcata acctctgccc agcctagctt 300gtgtatcatt tttttttctc tattagggga ggagcccgtc ctggcactcc cattggcctg 360tagattcacc tcccctgggc agggccccag gacccaggat aatatctgtg cctcctgccc 420agaaccctcc aagcagacac aatggtaaga atggtgcctg tcctgctgtc tctgctgctg 480cttctgggtc ctgctgtccc ccaggagaac caagatggtg agtggggaaa gcaagggatg 540ggtgctggag aggactggaa ggaggtgagg aacaggacat gtggctggga gacaggctgg 600atgcagctgg gataccctgg catacggcag gaatgggtgc ccaaggctgt caactccctc 660agctcacaca cttccaggag cattcaggga gcctctgcgc tggcccgaaa taagaccttc 720aggaatctga atctaaaacc cctagtttac agtgaaaaca aagactccaa agaccaagcg 780acctgcttgg ggtagacagt caggacggag taggaaccat atgcctggag ctgcttctgc 840tcctgttcct tccctccttc cgatggctgg gtacacctgc ctgacgctga ggaaaagaga 900gagcagcccc aaggggaaag tgggaaggca ggttggctgg agggatggtg ctagaaggaa 960acccgtgccc aaatcccaca ctcagacacc actgcagtgg gtctggaagg cgagtggctg 1020gaagagaaga gagtgggagc tccgggagat caagagtcac tcctaggata agggaaggag 1080gctgtttgtg gcatgagaat gtgcaggata aagacatgga agcgaatggc ttctcagttg 1140tgtgagttta aaattcatga catttacaaa ttgtcagaaa aggtgttata tgtttgttat 1200ataacaatca ctttggaatg ttaatctgat tctgtgccaa aatctgaatt actcagggtt 1260ctccagagaa acagaactaa taggtggtac acatatacat atatatgtac gtacacatac 1320atacatacac tgtatacaca tggatacaca cacacatagg aagagattta catatatgta 1380tacaaaagag agagagagta gagatttatt ttaagaaatt gactcacact attgggagga 1440gtaacaagtc ctaaatcttc agagccggcc agcaggctgg agacccaggg aagagttgat 1500gtcttagtct tgattccaag ggcagactgt aggcagaatt ctttcctctt taggggacat 1560ctgaggcttt ttctcttaag gccttcaact gattggatga agcccaccac tatggagagt 1620aatccacttt actcaaggtc tactgatttt tttgtaaatt aaaaaaaaaa ctgtgggtgc 1680atagtatgtg tatatattta tggggtacat gagaggtttt gattcaggca tgcaatgtga 1740aataatcaca tcatcaaaaa tgaggtatcc atcccttcaa gcttttatcg tttgtgttac 1800agacaatcca attatacttt tttggttatt ttagttttta aaagtatttg attatttatt 1860tatttattta tttttgagac agagtctcac tctgtcaccc aggcaggagt gcagtggcat 1920gatctcggct cactgcaacc tccgcctccc aggttcaagc aattttcctg cctcagtctc 1980ctgagtagct aggactacag gcacctgcca ccacacctgg ctaatttttt tgtattttta 2040gtagagacgg tttcatcatg ttggccaggc tagtcttgat atcctgacct cgtgatctgc 2100ccgccttggt ctcccaaagt gccgggatta caggtgtcag caactgcgcc tggcctctct 2160tttggttatt taaaagtgta caattaaatt atgattatta ttattatttt tgagatggat 2220tcttgttctg tcacccaggc tggagtgcag tggcgtgatc ttggcttact gcaaacctcc 2280gcctgttggg ttcaagcaat tatcttgcct cgggtgtaca ctgccacaca cggctaactt 2340atgtattttt aatagagata gggtttcacc atgttggcta gactggtctt gacctcttga 2400cctcaagtga tccactcact tcagcctccc agagtgctgg aattacaggc acgagccacc 2460acacctggcc ccagttaaat tattattgac tatagtcacc ctgttgtgct atcaaatagt 2520aggtcttatt cattcttctt tttttttttt tttttgtgac agagttgccc aggctggaat 2580gcagtggtgc aatcttggct cactgcaacc tctgcctccc gggcttaagc gattctcctg 2640cctcagcctt ctgagtcgct gggactacag gtgtgtgcca ccacgcccgg ctaatttatg 2700tatttttagt agagatgggg tttcaccatg ttggccaggc tggtttcgaa ctcctgacct 2760caagtgaccc acctgcctca gcttcccaaa gtgttggaat tacaggcatg agccaccaca 2820cctggcccca gttaaattat tattcactgg agtcactttg ttgtgctatc aaatagtttt 2880ctaactattt tttttgtacc cattaaccac cctcccaatt tccccccaac cctgccacta 2940cccttcccag cctttggtaa ccatccttct actctctatg tccatgaatt caattgtagg 3000gtctactgat ttaaaggcta atcacattta gacactcagg agcaagaata attttagtaa 3060ttgaactagg attctgccat atgacctcca acatcattag cacctgtgta aattgtatca 3120taaaataatt atggaactat tatggaaatg tccctctctc ccagatccca ccttgtacca 3180aaatgcaagg tacaaccccg ggaattctga gctccatcct agtcttaccc tgtgctaatt 3240cagtctgggt catttcttga attttctggt aaattctcct ttctaccctt tctaactata 3300tgtatttgtc aggttaagct agaagtgtta attttttttt tttttgagat ggagccttgc 3360tttgtcacct aggctgaagt gcagtggcat gatctcagct cactgcaagc tccgcctccc 3420gggttcatgc cattctcctg cctcagcctc ctgagtagct gggactacag gcacccgcca 3480ccatgcttgg ctaatttttt gaattcttag tagagacggg gtttcaccat gttagccagg 3540atggtctcga tctcctgacc tcgtgatcca cccgcctcgg ccccctaaag tgctgggatt 3600acaggcgtga gccactgagc ccggacgaaa tgttaatttg ttttttttga gacggagtct 3660cactctgtca tccaagctgg agtgcagtgg catgatcttg gcttgttgca acctctgcct 3720ctctggttca agtgattttc ctgcctcagc ctccagcatg actgggatta caggcccgca 3780ccaccatgcc cagctaattt ttgtattttt taatagagat ggggtttcac catgttggcc 3840aggctggtct tcaactcctg atctcaagta atctgcctgc cttggcctcc caaagtcctg 3900ggattacagg catgagccac ggagcccagc ctagaaatgt taatttctaa cgcatgtcag 3960attccatgca cactgggcaa ggttccattc ctccatgggg tgactcaggg atccaggcca 4020attgcatatt gagactcttt catattatcc tgtggccttc aaagtcgtca cctctaggga 4080tgagaaacaa aagggaaagc cagctggtag ggtcttggac aagaagaaag acatcacttc 4140tgctcacatt ctcttttgac aaaactcagt cacatggtcc caatatatct tcgaggtggc 4200tgagtaatgt tatcttccta tgtgtcaagc agaggaaata atgtagtgaa gacacaggat 4260ggtctctgaa atatcatctc aggcatgaaa gtagagcata ttcacttgag tgagcctcca 4320gtggtgtgaa gttgatggca ggagaaagag ctggggaaga aaaggccagt ggcaggtctc 4380ccctcctagc cctatgcagc cccacagtgg gacccttgca tggacctcaa ccatcagaat 4440cttttctttt gcaggtcgtt actctctgac ctatatctac actgggctgt ccaagcatgt 4500tgaagacgtc cccgcgtttc aggcccttgg ctcactcaat gacctccagt tctttagata 4560caacagtaaa gacaggaagt ctcagcccat gggactctgg agacaggtgg aaggaatgga 4620ggattggaag caggacagcc aacttcagaa ggccagggag gacatcttta tggagaccct 4680gaaagacatt gtggagtatt acaacgacag taacggtcag tgaataacag accacagggg 4740tggaaggtct aacccaagag gcagcccccc cagtgtgagt ggcaagggat cagcaggatg 4800gaaatagtcc caatcccagg ggaagaacag gagacacagc agaaacacag acatgtccgc 4860atcccaccca ccccacagca caggtgctcc ccgcttcccc atcaattgcc ccatcctcat 4920cccaggcctc aggtcacaca ggaagtgatg gcagagtcac ttcctatcca ggcacctatg 4980acctctcacc tccacacccc acccatcgga ggctgatacc cccgtgagaa ggcatcagac 5040tcacccctgt ccagggaggt tgcctggaga gtgagccact ctcaaagtca ctcagacctg 5100ggctcacctg gtggttctgc cagtcctagc tgttgacagt gaaacgttcc caaaatatct 5160ggttgaaatc tgcaaacatt ggagcactga gacctacctc caaacaagtc tgtaatattt 5220aactatgtct gttctatgaa ggatgtcaca gtctgtcctg atctcccttg cagctccatc 5280acctagcaca gggtacagcc aatattggct caattgaaat ttgtggaatc cacagagaaa 5340agcacccggc acacaccgta gcccatgctg ggggctcagg aagtgctgga ttcaaaactg 5400tgggctgtta gagttccttg gagccctaaa gttcctcctt accatacgat gcagacccag 5460gaagggccac ctgcgctatg gtcagaggag ctggtggcag agcccgtgca gagatggtcc 5520ctgtgccccc ggcccagtgc tctttctcct aaaccacact gccagcccca aggcagccaa 5580cctcaggtct ggtgaactgc tggtgttaaa ttatcataga gtgggtgtca aaagatgggc 5640tactaagtac aaaaatgccc aaggtgctac atgggatctg aagattttca aaaggaggca 5700agaaagagat aggcagatgt ttcaaggatg tggggtgggg gaggtcttgg taaggaaaat 5760ggcccaggct gtgtgtcagc aataggagag gagggggcac aggtgatcag aaaagacact 5820gggggaagca ttgatggaca ggaatagaaa tggcaaagtg gataattaag aggaaggagg 5880atgaggagat gaacacaggg tattagaaaa taatagaagg cagggcttgg tggctcactc 5940ttgtaatccc agcactttgg gaggctgagg caggcagatc acctaaggtc aggagttcga 6000gaccagcccg gccaacatgg tgaaaccctg tctctactaa taatacaaaa atagcctggc 6060atggtggcac acgtctgtgg tcccagctac tcaggaggct gaggcaggag aattgcttga 6120acccaggagg cagaggttac agtggccaaa atcctaccat tgcactacag cctgggtgac 6180aagagtgaaa cgttgtctaa aaacaaaaaa caaaaaacaa aaaaaggaaa taatagtagc 6240tgacatttac tgagcactta ctttgtgcca ggcccatcta tgagcatata taatgctcag 6300aatagccccc taaaacagtg ctcttggcat tgccatttca gaggtgagga aatagaggca 6360cagggagttg agtggctcca gttcaggcaa cacaccaggt gggggtgggg ggctggggag 6420agacctggga cgtgagccca gacagcttga gagctttcag agtctatgcc aacagcacca 6480accagtgctg ggtaaacacc tgcttttatc atcagaacaa agaggctgtg tcccctgccc 6540tatgaggtcc atttctgaga gttgtggcta atgggcaaga aggttggggc tttagagatt 6600tgggataaag atatcaaaca ccagaaaggt agaaagaagt gatcagatta gggttactta 6660ggtgatgata tgaactcttc ctagaactga gagaaaaaga gagccttcct ttactcatat 6720gaaatcacaa ataatttcta tccaatttgg aagtacactt tggtgtagtt gtgacagctt 6780cctcaggact cagcataaat tcaaacaaat aattgtcctt agaagagatg ctatagaaga 6840gatagaaata tattcatatt ctgtagcttt tttttttttg agatggagtt ttgctcttgt 6900cacccaagct ggagtgcagt gatgcaatct cagctcactg caaactttgc ctcctgggtt 6960caagggattc tcctgcctca gcctcccgat aactgggact acaggctaca ggcatgtgtc 7020actactcctg gttaattttt tttttttttt tttaagactg agtcttgctc tgtctttcag 7080gctgatgtac aatggctcca tctcggctca ctacaacttc tgtcccccag gttcaagcga 7140ttctcctgcc tcagcctcat gagtagctgg gattacaggc atgtgccagc acacccagca 7200aatttttgta tttttagtag agatgaggtc ttaccatgtt ggccaggctg gtctcaaact 7260cctgacctca ggtgatcctt tggcctcagc ctccctaact gctgggatta caggcatgag 7320ccactgcgtc cagcctaatt ttatattttt ggtagagatg gggtttcacc atattggcca 7380ggctggtctc gaactcatga cctaaggtga tccatcctcc tcagcctctc aaagtgctgg 7440gattacaagt gtgagccact gggcctggtg cttttttttt tttttttttt tttttttttt 7500tgagataggg tctcactctg tcacccaggc tgaaatgcag tagtgtgatt ttggctcatt 7560gcagccttga cttcccaggc tgaagtgatc ctcccacctc agcctcctga gtagctgggg 7620ctacaggcat gcaccaccat gctgcgctaa tttttatatt ttttgtagtg gtgggatttc 7680gccatatcac cctggctggt ctggaacccc tgggctcaag cgatccactc gcttcagctt 7740ctcaaagtgc tgggattaca ggcatgagcc acagcgccca ggctgtagct ctcttaagga 7800ggaacatatc tcatctgaga caaacctgaa atgccaaacc aaactgagtt agcccctctc 7860tgtctgttgt atatattgga gtaataacct atttgtcttg ataaagggat tgcatgcttg 7920aattgcaaaa acctttattt cttttgggtt gcccaatgtg caagactaag agttattttg 7980ataaatttct caccaggctg actgtctctc tgtggggtcg ggggagtttt cagggtctca 8040cgtattgcag ggaaggtttg gttgtgagat cgagaataac agaagcagcg gagcattctg 8100gaaatattac tatgatggaa aggactacat tgaattcaac aaagaaatcc cagcctgggt 8160ccccttcgac ccagcagccc agataaccaa gcagaagtgg gaggcagaac cagtctacgt 8220gcagcgggcc aaggcttacc tggaggagga gtgccctgcg actctgcgga aatacctgaa 8280atacagcaaa aatatcctgg accggcaagg tactcactgc ttcctgctcc ccagtactga 8340gcccagaata aaagacgatc tcaggctagg agctcaggca acatcttagt ccggtctcat 8400ctgttcctgg atgtccctca gacccccagc tttcatcttt taggatttat tccttccctg 8460ggataatata atttgtggtc caaaaagaac atcatcaaaa tttcaggcag aatgggccag 8520gaaggccatt ctttcttgat gagtgtcccc aaatcatctc caattaacag acaaggagct 8580tgaggttagg gaggtgaggg taacactgtc tgtaagaggc agagctggga ctcaaattcc 8640agatttcaga ttccaaatcc catcgttttt tatctctaca atgatgcctc ccatctgggt 8700ggtggagaga agggaggcgt gtaaaagtca gccccagaag gacaagagca agccagtgtg 8760agcggaattg atggctgcaa gctgagactt ggattggaga cgtagtgaga ctcaggattg 8820tgcagtgctg cagggaagtg gttgctggat agaggcatgg gctgaaccaa gcagctggac 8880tgagactggg ggacagaact ccaaagccca ctgagatgtg ggaaaacatg gagaagcaca 8940cggagcattc acaacttatt gccgtcagag tcaatacatg ggtgaggtgg ggattgggca 9000agagggaaag cgtcagcctt ccctgatatt ctggaaagtc tcccggggct gggggtgggc 9060aggtacagag cttcgagctc tgctgatcgc tgacatccag gggtgggggt aggaagagac 9120ctgggccggg agaagtccac ctcaagcctg cagtgtcaca ctctatccct ccacagatcc 9180tccctctgtg gtggtcacca gccaccaggc cccaggagaa aagaagaaac tgaagtgcct 9240ggcctacgac ttctacccag ggaaaattga tgtgcactgg actcgggccg gcgaggtgca 9300ggagcctgag ttacggggag atgttcttca caatggaaat ggcacttacc agtcctgggt 9360ggtggtggca gtgcccccgc aggacacagc cccctactcc tgccacgtgc agcacagcag 9420cctggcccag cccctcgtgg tgccctggga ggccagctag gaagcaaggg ttggaggcaa 9480tgtgggatct cagacccagt agctgccctt cctgcctgat gtgggagctg aaccacagaa 9540atcacagtca atggatccac aaggcctgag gagcagtgtg gggggacaga caggaggtgg 9600atttggagac cgaagactgg gatgcctgtc ttgagtagac ttggacccaa aaaatcatct 9660caccttgagc ccacccccac cccattgtct aatctgtaga agctaataaa taatcatccc 9720tccttgccta gcataacaga gaatcctttt tttaacggtg atgcgctgta gaaatgtgac 9780tagattttct cattggttct gccctcaagc actgaattc 98193250DNAHomo sapien 3cgcccctgcg ccgccgagcc agctgccaga atgccgaact ggggaggagg caagaaatgt 60ggggtgtgtc agaagacggt ttactttgcc gaagaggttc agtgcgaagg caacagcttc 120cataaatcct gcttcctgtg catggtctgc aagaagaatc tggacagtac cactgtggcc 180gtgcatggtg aggagattta ctgcaagtcc tgctacggca agaagtatgg gcccaaaggc 240tatggctacg 25041900DNAHomo sapienUnsure(16)..(16)n=a, c, g or t 4acgccttccg cggagnanan caaaacggcg cgcaggccgg gcgcacccag ccgccacttc 60cgagagcgcc tgccgcccct ggcgccgccg agccagctgc cagaatgccg aactggggag 120gaggcaagaa atgtggggtg tgtcaagaag acggtttact ttgccgaaga ggttcagtgc 180gaaggcaaca gcttccataa atcctgcttc ctgtgcatgg tctgcaagaa gaatctggac 240agtaccactg tgggccgtgc atggtgagga gatttactgg caagtccctg ctacggcaag 300aagtatgggc ccaaaggcta tggctacggg ccagggcgca ggcaccctca gcactgacaa 360gggggagtcg ctgggtatca agcacgagga agcccctggg ccacaggccc accaccaacc 420ccaatggcat ccaaatttgc ccagaagatt ggtggctccg agcgctgccc ccgatgcagc 480caggcagtct atgctgcgga gaaggtgatt ggtgctggga agtcctggca taaggcctgc 540tttcgatgtg ccaagtgtgg caaaggcctt gagtcaacca ccctgggcag acaaggatgg 600cgagatttac tgcaaaggat gttatgctaa aaacttcggg cccaagggct ttggttttgg 660gcaaggagct ggggccttgg tccactctga gtgaggccac catcacccac cacaccctgc 720ccactcctgc gcttttcatc gccattccat tcccagcagc tttggagacc tccaggatta 780tttctctgtc agccctgcca catatcacta atgacttgaa cttgggcatc tggctccctt 840tggtttgggg gtctgcctga ggtcccaccc cactaaaggg ctccccaggc ctgggatctg 900acaccatcac cagtaggaga cctcagtgtt ttgggtctag gtgagagcag gcccctctcc 960ccacacctcg ccccacagag ctctgttctt agcctcctgt gctgcgtgtc catcatcagc 1020tgaccaagac acctgaggac acatcttggc acccagagga gcagcagcaa caggctggag 1080ggagagggaa gcaagaccaa gatgaggagg ggggaaggct gggttttttg gatctcagag 1140attctcctct gtgggaaaga ggttgagctt cctggtgtcc ctcagagtaa gcctgaggag 1200tcccagctta gggagttcac tattggaggc agagaggcat gcaggcaggg tcctaggagc 1260ccctgcttct ccaggcctct tgcctttgag tctttgtgga atggatagcc tcccactagg 1320actgggagga gaataaccca ggtcttaagg accccaaagt caggatgttg tttgatcttc 1380tcaaacatct agttccctgc ttgatgggag gatcctaatg aaatacctga aacatatatt 1440ggcatttatc aatggctcaa atcttcattt atctctggcc ttaaccctgg ctcctgaggc 1500tgcggccagc agagcccagg ccagggctct gttcttgcca cacctgcttg atcctcagat 1560gtggagggag gtaggcactg cctcagtctt catccaaaca cctttccctt tgccctgaga 1620cctcagaatc ttccctttaa cccaagaccc tgcctcttcc actccaccct tctccaggga 1680cccttagatc acatcactcc acccctgcca ggccccaggt taggaatagt ggtgggagga 1740aggggaaagg gctgggcctc accgctccca gcaactgaaa ggacaacact atctggagcc 1800acccactgaa agggctgcag gcatgggctg tacccaagct gatttctcat ctggtcaata 1860aagctgttta gaccagaaaa aaaaaanaaa aaanaaaagg 19005273DNAHomo sapien 5gatgcatcaa aagagctgca agttctccac attgacttct tgaatcagga caacgccgtt 60tctcaccaca catgggagtt ccaaacgagc agtcctgtgt tccggcgagg acaggtgttt 120cacctgcggc tggtgctgaa ccagccccta caatcctacc accaactgaa actggaattc 180agcacagggc cgaatcctag catcgccaaa cacaccctgg tggtgctcga cccgaggacg 240ccctcagacc actacaactg gcaggcaacc ctt 27363021DNAHomo sapien 6tgtggaagca ccaggcatca gagatagagt cttccctggc attgcaggag agaatctgaa 60gggatgatgg atgcatcaaa agagctgcaa gttctccaca ttgacttctt gaatcaggac 120aacgccgttt ctcaccacac atgggagttc caaacgagca gtcctgtgtt ccggcgagga 180caggtgtttc acctgcggct ggtgctgaac cagcccctac aatcctacca ccaactgaaa 240ctggaattca gcacagggcc gaatcctagc atcgccaaac acaccctggt ggtgctcgac 300ccgaggacgc cctcagacca ctacaactgg caggcaaccc ttcaaaatga gtctggcaaa 360gaggtcacag tggctgtcac cagttccccc aatgccatcc tgggcaagta ccaactaaac 420gtgaaaactg gaaaccacat ccttaagtct gaagaaaaca tcctatacct tctcttcaac 480ccatggtgta aagaggacat ggttttcatg cctgatgagg acgagcgcaa agagtacatc 540ctcaatgaca cgggctgcca ttacgtgggg gctgccagaa gtatcaaatg caaaccctgg 600aactttggtc agtttgagaa aaatgtcctg gactgctgca tttccctgct gactgagagc 660tccctcaagc ccacagatag gagggacccc gtgctggtgt gcagggccat gtgtgctatg 720atgagctttg agaaaggcca gggcgtgctc attgggaatt ggactgggga ctatgaaggt 780ggcacagccc catacaagtg gacaggcagt gccccgatcc tgcagcagta ctacaacacg 840aagcaggctg tgtgctttgg ccagtgctgg gtgtttgctg ggatcctgac tacagtgctg 900agagcgttgg gcatcccagc acgcagtgtg acaggcttcg attcagctca cgacacagaa 960aggaacctca cggtggacac ctatgtgaat gagaatggca agaaaatcac cagtatgacc 1020cacgactctg tctggaattt ccatgtgtgg acggatgcct ggatgaagcg accggatctg 1080cccaagggct acgacggctg gcaggctgtg gacgcaacgc cgcaggagcg aagccagggt 1140gtcttctgct gtgggccatc accactgacc gccatccgca aaggtgacat ctttattgtc 1200tatgacacca gattcgtctt ctcagaagtg aatggtgaca ggctcatctg gttggtgaag 1260atggtgaatg ggcaggagga gttacacgta atttcaatgg agaccacaag catcgggaaa 1320aacatcagca ccaaggcagt gggccaagac aggcggagag atatcaccta tgagtacaag 1380tatccagaag gctcctctga ggagaggcag gttcatggat catgccttcc tccttctcag 1440ttctgagagg gagcacagac gacctgtaaa agagaacttt cttcacatgt cggtacaatc 1500agatgatgtg ctgctgggaa actctgttaa tttcaccgtg attcttaaaa ggaagaccgc 1560tgccctacag aatgtcaaca tcttgggctc ctttgaacta cagttgtaca ctggcaagaa 1620gatggcaaaa ctgtgtgacc tcaataagac ctcgcagatc caaggtcaag tatcagaagt 1680gactctgacc ttggactcca agacctacat caacagcctg gctatattag atgatgagcc 1740agttatcaga ggtttcatca ttgcggaaat tgtggagtct aaggaaatca tggcctctga 1800agtattcacg tctttccagt accctgagtt ctctatagag ttgcctaaca caggcagaat 1860tggccagcta cttgtctgca attgtatctt caagaatacc ctggccatcc ccttgactga 1920cgtcaagttc tctttggaaa gcctgggcat ctcctcacta cagacctctg accatgggtg 1980agtctgcctg aggacggtgc agcctggtga gaccatccaa tcccaaataa aatgcacccc 2040aataaaaatg gacccaagaa atttatcgtc aagttaagtt ccaaacaagt gaaagagatt 2100aatgctcaga agattgttct catcaccaag tagccttgtc tgatgctgtg gagccttagt 2160tgagatttca gcatttccta ccttgtggct tagctttcag attatggatg attaaatttg 2220atgacttata tgagggcaga ttcaagagcc agcaggtcaa aaaggccaac acaaccataa 2280gcagccagac ccacaaggcc aggtcctgtg ctatcacagg

gtcaccttct tttacagtta 2340gaaacaccag ccgaggccac agaatcccat ccctttcctg agtcatggcc tcaaaaatca 2400gggccaccat tgtctcaatt caaatccata gatttcgaag ccacagattc tctccctgga 2460gcaagcatga ctatgggcag cccagtgctg ccacctgctg acgacccttg agaagctgcc 2520atatcttcag gccatgggtt caccagccct gaaggcacct gtcaactgga gtgctctctc 2580agcactggga tgggcctgat agaagtgcat tctcctccta ttgcctccat tctcctctct 2640ctatccctga aatccaggaa gtccctctcc tggtgctcca agcagtttga agcccaatct 2700gcaaggacat ttctcaaggg ccatgtggtt ttgcagacaa ccctgtcctc aggcctgaac 2760tcaccataga gacccatgtc agcaaacggt gaccagcaaa tcctcttccc ttattctaaa 2820gctgcccctt gggagactcc agggagaagg cattgcttcc tccctggtgt gaactctttc 2880tttggtattc catccactat cctggcaact caaggctgct tctgttaact gaagcctgct 2940ccttcttgtt ctgccctcca gagatttgct caaatgatca ataagcttta aattaaactc 3000tacttcaaga aaaaaaaacc g 30217267DNAHomo sapien 7gaacattcca gatacctatc attactcgat gctgttgata acagcaagat ggctttgaac 60tcagggtcac caccagctat tggaccttac tatgaaaacc atggatacca accggaaaac 120ccctatcccg cacagcccac tgtggtcccc actgtctacg aggtgcatcc ggctcagtac 180tacccgtccc ccgtgcccca gtacgccccg agggtcctga cgcaggcttc caaccccgtc 240gtctgcacgc agcccaaatc cccatcc 26783443DNAHomo sapien 8gggcgggccg ggccgagtag gcgcgagcta agcaggaggc ggaggcggag gcggagggcg 60aggggcgggg agcgccgcct ggagcgcggc aggtcatatt gaacattcca gatacctatc 120attactcgat gctgttgata acagcaagat ggctttgaac tcagggtcac caccagctat 180tggaccttac tatgaaaacc atggatacca accggaaaac ccctatcccg cacagcccac 240tgtggtcccc actgtctacg aggtgcatcc ggctcagtac tacccgtccc ccgtgcccca 300gtacgccccg agggtcctga cgcaggcttc caaccccgtc gtctgcacgc agcccaaatc 360cccatccggg acagtgtgca cctcaaagac taagaaagca ctgtgcatca ccttgaccct 420ggggaccttc ctcgtgggag ctgcgctggc cgctggccta ctctggaagt tcatgggcag 480caagtgctcc aactctggga tagagtgcga ctcctcaggt acctgcatca acccctctaa 540ctggtgtgat ggcgtgtcac actgccccgg cggggaggac gagaatcggt gtgttcgcct 600ctacggacca aacttcatcc ttcaggtgta ctcatctcag aggaagtcct ggcaccctgt 660gtgccaagac gactggaacg agaactacgg gcgggcggcc tgcagggaca tgggctataa 720gaataatttt tactctagcc aaggaatagt ggatgacagc ggatccacca gctttatgaa 780actgaacaca agtgccggca atgtcgatat ctataaaaaa ctgtaccaca gtgatgcctg 840ttcttcaaaa gcagtggttt ctttacgctg tatagcctgc ggggtcaact tgaactcaag 900ccgccagagc aggatcgtgg gcggcgagag cgcgctcccg ggggcctggc cctgggcagg 960tcagcctgca cgtccagaac gtccacgtgt gcggaggctc catcatcacc cccgagtgga 1020tcgtgacagc cgcccactgc gtggaaaaac ctcttaacaa tccatggcat tggacggcat 1080ttgcggggat tttgagacaa tctttcatgt tctatggagc cggataccaa gtagaaaaag 1140tgatttctca tccaaattat gactccaaga ccaagaacaa tgacattgcg ctgatgaagc 1200tgcagaagcc tctgactttc aacgacctag tgaaaccagt gtgtctgccc aacccaggca 1260tgatgctgca gccagaacag ctctgctgga tttccgggtg gggggccacc gaggagaaag 1320ggaagacctc agaagtgctg aacgctgcca aggtgcttct cattgagaca cagagatgca 1380acagcagata tgtctatgac aacctgatca caccagccat gatctgtgcc ggcttcctgc 1440aggggaacgt cgattcttgc cagggtgaca gtggagggcc tctggtcact tcgaagaaca 1500atatctggtg gctgataggg gatacaagct ggggttctgg ctgtgccaaa gcttacagac 1560caggagtgta cgggaatgtg atggtattca cggactggat ttatcgacaa atgagggcag 1620acggctaatc cacatggtct tcgtccttga cgtcgtttta caagaaaaca atggggctgg 1680ttttgcttcc ccgtgcatga tttactctta gagatgattc agaggtcact tcatttttat 1740taaacagtga acttgtctgg ctttggcact ctctgccatt ctgtgcaggc tgcagtggct 1800cccctgccca gcctgctctc cctaacccct tgtccgcaag gggtgatggc cggctggttg 1860tgggcactgg cggtcaagtg tggaggagag gggtggaggc tgccccattg agatcttcct 1920gctgagtcct ttccaggggc caattttgga tgagcatgga gctgtcacct ctcagctgct 1980ggatgacttg agatgaaaaa ggagagacat ggaaagggag acagccaggt ggcacctgca 2040gcggctgcct ctggggccac ttggtagtgt ccccagccta cctctccaca aggggatttt 2100gctgatgggt tcttagagcc ttagcagccc tggatggtgg ccagaaataa agggaccagc 2160ccttcatggg tggtgacgtg gtagtcacct tgtaagggga acagaaacat ttttgttctt 2220atggggtgag aatatagaca gtgcccttgg gtgcgaggga agcaattgaa aaggaacttg 2280ccctgagcac tcctggtgca ggtctccacc tgcacattgg gtggggctcc tgggagggag 2340actcagcctt cctcctcatc ctccctgacc ctgctcctag caccctggag agtgcacatg 2400ccccttggtc ctgggcaggg gcgccaagtc tggcaccatg ttggcctctt caggcctgct 2460agtcactgga aattgaggtc catgggggaa atcaaggatg ctcagtttaa ggtacactgt 2520ttccatgtta tgtttctaca cattgctacc tcagtgctcc tggaaactta gcttttgatg 2580tctccaagta gtccaccttc atttaactct ttgaaactgt atcatctttg ccaagtaaga 2640gtggtggcct atttcagctg ctttgacaaa atgactggct cctgacttaa cgttctataa 2700atgaatgtgc tgaagcaaag tgcccatggt ggcggcgaag aagagaaaga tgtgttttgt 2760tttggactct ctgtggtccc ttccaatgct gtgggtttcc aaccagggga agggtccctt 2820ttgcattgcc aagtgccata accatgagca ctactctacc atggttctgc ctcctggcca 2880agcaggctgg tttgcaagaa tgaaatgaat gattctacag ctaggactta accttgaaat 2940ggaaagtctt gcaatcccat ttgcaggatc cgtctgtgca catgcctctg tagagagcag 3000cattcccagg gaccttggaa acagttggca ctgtaaggtg cttgctcccc aagacacatc 3060ctaaaaggtg ttgtaatggt gaaaacgtct tccttcttta ttgccccttc ttatttatgt 3120gaacaactgt ttgtcttttt ttgtatcttt tttaaactgt aaagttcaat tgtgaaaatg 3180aatatcatgc aaataaatta tgcgattttt ttttcaaagt aaccactgca tctttgaagt 3240tctgcctggt gagtaggacc agcctccatt tccttataag ggggtgatgt tgaggctgct 3300ggtcagagga ccaaaggtga ggcaaggcca gacttggtgc tcctgtggtt ggtgccctca 3360gttcctgcag cctgtcctgt tggagaggtc cctcaaatga ctccttctta ttattctatt 3420agtctgtttc catgggcgtg ata 34439254DNAHomo sapien 9gtgctgcacc aggccaccat cctgcccaag actgggacag tgtccctgga ggtacggctc 60ctggaggcct cccgtgcctt cgaggtgtca gagaacggca acctggtagt gagtgggaag 120gtgtaccagt gggatgaccc tgaccccagg ctcttcgacc acccggaaag ccccaccccc 180aaccccacgg agcccctctt cctggcccag gctgaagttt acaaggagct gcgtctgcgt 240ggctacgact acgg 254108470DNAHomo sapienUnsure(4131)..(4131)n=a, c, g or t 10cggccgtcga cacggcagcg gccccggcct ccctctccgc cgcgcttcag cctcccgctc 60cgccgcgctc cagcctcgct ctccgccgcc cgcaccgccg cccgcgccct caccagagca 120gccatggagg aggtggtgat tgccggcatg tccgggaagc tgccagagtc ggagaacttg 180caggagttct gggacaacct catcggcggt gtggacatgg tcacggacga tgaccgtcgc 240tggaaggcgg ggctctacgg cctgccccgg cggtccggca agctgaagga cctgtctagg 300tttgatgcct ccttcttcgg agtccacccc aagcaggcac acacgatgga ccctcagctg 360cggctgctgc tggaagtcac ctatgaagcc atcgtggacg gaggcatcaa cccagattca 420ctccgaggaa cacacactgg cgtctgggtg ggcgtgagcg gctctgagac ctcggaggcc 480ctgagccgag accccgagac actcgtgggc tacagcatgg tgggctgcca gcgagcgatg 540atggccaacc ggctctcctt cttcttcgac ttcagagggc ccagcatcgc actggacaca 600gcctgctcct ccagcctgat ggccctgcag aacgcctacc aggccatcca cagcgggcag 660tgccctgccg ccatcgtggg gggcatcaat gtcctgctga agcccaacac ctccgtgcag 720ttcttgaggc tggggatgct cagccccgag ggcacctgca aggccttcga cacagcgggg 780aatgggtact gccgctcgga gggtgtggtg gccgtcctgc tgaccaagaa gtccctggcc 840cggcgggtgt acgccaccat cctgaacgcc ggcaccaata cagatggctt caaggagcaa 900ggcgtgacct tcccctcagg ggatatccag gagcagctca tccgctcgtt gtaccagtcg 960gccggagtgg cccctgagtc atttgaatac atcgaagccc acggcacagg caccaaggtg 1020ggcgaccccc aggagctgaa tggcatcacc cgagccctgt gcgccacccg ccaggagccg 1080ctgctcatcg gctccaccaa gtccaacatg gggcacccgg agccagcctc ggggctggca 1140gccctggcca aggtgctgct gtccctggag cacgggctct gggcccccaa cctgcacttc 1200catagcccca accctgagat cccagcgctg ttggatgggc ggctgcaggt ggtggaccag 1260cccctgcccg tccgtggcgg caacgtgggc atcaactcct ttggcttcgg gggctccaaa 1320cgtgcacatc atcctgaggc ccaacacgca gccgcccccc gcacccggcc cacatgccac 1380cctgccccgt ctgctgcggg ccagcggacg cacccctgag gccgtgcaga agctgctgga 1440gcagggcctc cggcacagcc agggcctggc tttcctgagc atgtgaacga catcgcggct 1500gtccccgacc accgccatgc ccttccgtgg ctacgctgtg ctgggtggtg agacgcggtg 1560gcccagaggt gcagcaggtg cccgctggcg agcgcccgct ctggttcatc tgctctggga 1620tgggcacaca gtggcgcggg atggggctga gcctcatgcg cctggaccgc ttccgagatt 1680ccatcctacg ctccgatgag gctgtgaacc gattcggcct gaaggtgtca cagctgctgc 1740tgagcacaga cgagagcacc tttgatgaca tcgtccattc gtttgtgagc ctgactgcca 1800tccagatagg cctcatagac ctgctgagct gcatggggct gaggccagat ggcatcgtcg 1860gccactccct gggggaggtg gcctgtggct acgccgacgg ctgcctgtcc caggaggagg 1920ccgtcctcgc tgcctactgg aggggacagt gcatcaaaga agcccatctc ccgccgggcg 1980ccatggcagc cgtgggcttg tcctgggagg agtgtaaaca gcgctgcccc ccggcggtgg 2040tgcccgccgc cacaactcca aggacacagt caccatctcg ggacctcagg ccccggtgtt 2100tgagttcgtg gagcagctga ggaaggaggg tgtgtttgcc aaggaggtgc ggaccggcgg 2160tatggccttc cactcctact tcatggaggc catcgcaccc ccactgctgc aggagctcaa 2220gaaggtgatc cgggagccga agccacgttc agcccgctgg ctcagcacct ctatccccga 2280ggcccagtgg cacagcagcc tggcacgcac gtcctccgcc gagtacaatg tcaacaacct 2340ggtgagccct gtgctgttcc aggaggccct gtggcacgtg cctgagcacg cggtggtgct 2400ggagatcgcg ccccacgccc tgctgcaggc tgtcctgaag cgtggcctga agccgagctg 2460caccatcatc cccctgatga agaaggatca cagggacaac ctggagttct tcctggccgg 2520catcggcagg ctgcacctct caggcatcga cgccaacccc aatgccttgt tcccacctgt 2580ggagtcccca gctccccgag gaactcccct catctcccca ctcatcaagt gggaccacag 2640cctggcctgg gacgcgccgg ccgccgagga cttccccaac ggttcaggtt ccccctcagc 2700caccatctac acatgcacac caagctccga gtctcctgac cgctacctgg tggaccacac 2760catcgacggt cgcgtcctct tccccgccac tggctacctg agcatagtgt ggaagacgct 2820ggcccgaccc ctgggcctgg gcgtcgagca gctgcctgtg gtgtttgagg atgtggtgct 2880gcaccaggcc accatcctgc ccaagactgg gacagtgtcc ctggaggtac ggctcctgga 2940ggcctcccgt gccttcgagg tgtcagagaa cggcaacctg gtagtgagtg ggaaggtgta 3000ccagtgggat gaccctgacc ccaggctctt cgaccacccg gaaagcccca cccccaaccc 3060cacggagccc ctcttcctgg cccaggctga agtttacaag gagctgcgtc tgcgtggcta 3120cgactacggc cctcatttcc agggcatcct ggaggccagc ctggaaggtg actcggggag 3180gctgctgtgg aaggataatg ggtgagttca tggacaccat gctgcagatg tccatcctgg 3240gtcggccaag cacggcctgt acctgcccac ccgtgtcacc gccatccaca tcgaccctgc 3300cacccacagg cagaagctgt acacactgca ggacaaggcc caagtggctg acgtggtggt 3360gagcaggtgg ctgagggtca cagtggccgg aggcgtccac atctccgggc tccacactga 3420gtcggccccg cggcggcagc aggagcagca ggtgcccatc ctggagaagt tttgcttcac 3480tccccacacg gaggaggggt gcctgtctga gcacgctgcc ctcgaggagg agctgcaact 3540gtgcaagggg ctggtcgagg cactcgagac caaggtgacc cagcaggggc tgaagatggt 3600ggtgcccgga ctggatgggg cccagatccc cccgggaccc ctcacagcag gaactgcccc 3660ggctgttgtc ggctgcctgc aggcttcagc tcaacgggaa cctgcagctg gagctggcgc 3720aggtgctggc ccaggagagg cccaagctgc cagaggaccc tctgctcagc ggcctcctgg 3780actccccggc actcaaggcc tgcctggaca ctgccgtgga gaacatgccc agcctgaaga 3840tgaaggtggt ggaggtgctg gccggccacg gtcacctgta ttcccgcatc ccaggcctgc 3900tcagccccca tcccctgctg cagctgagct acacggccac cgaccgccac ccccaggccc 3960tggaggctgc ccaggccgag ctgcagcagc acgacgttgc ccagggccag tgggatcccg 4020cagaccctgc ccccagcgcc ctgggcagcg cggacctcct ggtgtgcaac tgtgctgtgg 4080ctgccctcgg ggacccgcct cagctctcag caacatggtg gctgccctga nagaaggggg 4140ctttctgctc ctgcacacac tgctccgggg gcaccccctc ggggacatcg tggccttcct 4200cacctccact gagccgcagt atggccaggg catcctgagc caggacgcgt gggagagcct 4260cttctccagg gtgtcgctgc gcctggtggg cctgaagaag tccttctacg gctccacgct 4320cttcctgtgc cgccggccca ccccgcagga cagccccatc ttcctgccgg tggacgatac 4380cagcttccgc tgggtggagt ctctgaaggg catcctggct gacgaagact ctttcccggc 4440ctgtgtggct gaaggccatc aactgttcca cctcgggcgt ggtgggcttg gtgaactgtc 4500tccgccgaga gcccggcgga acgctccggt gtgtgctgct ctccaacctc agcagcacct 4560cccacgtccc ggaggtggac ccgggctccg cagaactgca gaaggtgttg cagggagacc 4620tggtgatgaa cgtctaccgc gacggggcct ggggggcttt ccgccacttc ctgctggagg 4680aggacaagcc tgaggagccg acggcacatg cctttgtgag caccctcacc cggggggacc 4740tgtccctcca tccgctgggt ctgctcctcg ctgcgccatg cccagcccac ctgccctggc 4800gcccagctct gcacggtcta ctacgcctcc ctcaacttcc gcgacatcat gctggccact 4860ggcaagctgt cccctgatgc catcccaggg aagtggacct cccaggacag cctgctaggt 4920atggagttct cgggccgaga cgccagcggc aagcgtgtga tgggactggt gcctgccaag 4980ggcctggcca cctctgtcct gctgtcaccg gacttcctct gggatgtgcc ttccaactgg 5040acgctggagg aggcggcctc ggtgcctgtc gtctacagca cggcctacta cgcgctggtg 5100gtgcgtgggc gggtgcnccc cggggagacg ctgctcatcc actcgggctc gggcggcgtg 5160ggccaggccg ccatcgccat cgccctcagt ctgggctgcc gcgtcttcac caccgtgggg 5220tcggctgaga agcgggcgta cctccaggcc aggttccccc agctcgacag caccagcttc 5280gccaactccc gggacacatc cttcgagcag catgtgctgt ggcacacggg cgggaagggc 5340gttgacctgg tcttgaactc cttggcggaa gagaagctgc aggccagcgt gaggtgcttg 5400gctacgcacg gtcgcttcct ggaaattggc aaattcgacc tttctcagaa ccacccgctc 5460ggcatggcta tcttcctgaa gaacgtgaca ttccacgggg tcctactgga tgcgttcttc 5520aacgagagca gtgctgactg gcgggaggtg tnggcgcttg tgcaggccgg catccgggat 5580ggggtggtac ggcccctcaa gtgcacggtg ttccatgggg cccaggtgga ggacgccttc 5640cgctacatgg cccaagggaa gcacattggc aaagtcgtcg tgcaggtgct tgcggaggag 5700ccggaggcag tggctgaagg gggccaaacc caagctgatg tcggccatct ccaagacctt 5760ctgcccggcc cacaagagct acatcatcgc tggtggtctg ggtggcttcg gcctggagtt 5820ggcgcagtgg ctgatacagc gtggggtgca gaagctcgtg ttgacttctc gctccgggat 5880ccggacaggc taccaggcca agcaggtccg ccggtggagg cgccagggcg tacaggtgca 5940ggtgtccacc agcaacatca gctcactgga gggggcccgg ggcctcattg ccgaggcggc 6000gcagcttgag gcccgtgggc ggcgtcttca acctggccgt ggtcttgaga gatggcttgc 6060tggagaacca gaccccagag ttcttccagg acgtctgcaa gcccaagtac agcggcaccc 6120tgaacctgga cagggtgacc cgagggcgtg ccctgagctg gactactttg tggtcttctc 6180ctctgtgagc tgcgggcgtg gcaatgcggg acagagcaac tacggctttg ccaatttccg 6240ccatggagcg tatctgtgag aaacgccggc acgaaggcct cccaggcctg gccgtgcagt 6300ggggcgccat cggcgacgtg ggcattttgg tggagacgat gagcaccaac gacacgatcg 6360tcagtggcac gctgccccag cgcatggcgt cctgcctgga ggtgctggac ctcttcctga 6420accagcccca catggtcctg agcagctttg tgctggctga gaaggctgcg gcctataggg 6480acagggacag ccagcgggac ctggtggagg ccgtggcaca catcctgggc atccgcgact 6540tggctgctgt caacctggac agctcactgg cggacctggg cctggactcg ctcatgagcg 6600tggaggtgcg ccagacgctg gagcgtgagc tcaacctggt gctgtccgtg cgcgaggtgc 6660ggcaactcac gctccggaaa ctgcaggagc tgtcctcaaa ggcggatgag gccagcgagc 6720tgggcatgcc ccacgcccaa ggaggatggt ctggcccagc agcagactca gctgaacctg 6780cgctccctgc tggtgaaccc ggagggcccc accctgatgc ggctcaactg ccgtgcagag 6840ctcggagcgg cccctgttcc tggtgcaccc aattcgaggg ctccaccacc gtgttccaca 6900gcctggcctc ccggctcagc atccccacct atggcctgca gtgcacccga gctgcgcccc 6960ttgacagcat ccacagcctg gctgcctact acatcgactg catcaggcag gtgcagcccg 7020agggccccta ccgcgtggcc ggctactcct acggggcctg cgtggccttt gaaatgtgct 7080cccagctgca ggcccagcag agcccagccc ccacccacaa cagcctcttc ctgttcgacg 7140gctcgcccac ctacgtactg gcctacaccc agagctaccg ggcaaagctg accccaggct 7200gtgaggctga ggctgagacg gaggccatat gcttcttcgt gcagcagttc acggacatgg 7260agcacaacag ggtgctggag gcgctgctgc cgctgaaggg cctagaggag cgtgtggcag 7320ccgccgtgga cctgatcatc aagagccacc agggcctgga ccgccaggag ctgagctttg 7380cggcccggtc cttctactac aagctgcgtg ccgctgagca gtacacaccc aaggccaagt 7440accatggcaa cgtgatgcta ctgcgcgcca agacgggtgg cgcctacggc gaggacctgg 7500gcgcggacta caacctctcc caggtatgcg acgggaaagt atccgtccac gtcatcgagg 7560gtgaccaccg cacgctgctg gagggcagcg gcctggagtc catcatcagc atcatccaca 7620gctccctggc tgagccacgc gtgagcgtgc gggagggcta ggcccgtgcc cccgcctgcc 7680accggaggtc actccaccat ccccacccca tcccacccca cccccgccat gcaacgggat 7740tgaagggtcc tgccggtggg accctgtccg gcccagtgcc actgcccccc gaggctagct 7800agacgtaggt gttaggcatg tcccacccac ccgccgcctc ccacggcacc tcggggacac 7860cagagctgcc gacttggaga ctcctggtct gtgaagagcc ggtggtgccc gtgcccgcag 7920gaactggggc tgggcctcgt gcgcccgtgg ggtctgcgct tggtctttct gtgcttggat 7980ttgcatattt attgcattgc tggtagagac ccccaggcct gtccaccctg ccaagactcc 8040tcaggcagcg tgtgggtccc gcactctgcc cccatttccc cgatgtcccc tgcgggcgcg 8100ggcagccacc caagcctgct ggctgcggcc ccctctcggc caggcattgg ctcagcccgc 8160tgagtggggg gtcgtgggcc agtccccgag gactgggccc ctgcacaggc acacagggcc 8220cggccacacc cagcggcccc ccgcacagcc acccgtgggg tgctgccctt atgcccggcg 8280ccgggcacca actccatgtt tggtgtttgt ctgtgtttgt ttttcaagaa atgattcaaa 8340ttgctgcttg gattttgaaa tttactgtaa ctgtcagtgt acacgtctgg accccgtttc 8400atttttacac caatttggta aaaatgctgc tctcagcctc ccacaattaa accgcatgtg 8460atctccaaaa 847011812DNAHomo sapien 11gccgcagcca atcagcgcgc gtgcccgggc ccctgcgtct cttgcgtcaa gacggccgtg 60ctgagcgaat gcaggcgact tgcgagctgg gagcgattta aaacgctttg gattcccccg 120gcctgggtgg ggagagcgag ctgggtgccc cctagattcc ccgcccccgc acctcatgag 180ccgaccctcg gctccatgga gcccggcaat tatgccacct tggatggagc caaggatatc 240gaaggcttgc tgggagcggg aggggggcgg aatctggtcg cccactcccc tctgaccagc 300cacccagcgg cgcctacgct gatgcctgct gtcaactatg cccccttgga tctgccaggc 360tcggcggagc gccaaagcaa tgccacccat gccctggggt gccccagggg acgtccccag 420ctcccgtgcc ttatggttac tttggaggcg ggtactactc ctgccgagtg tcccggagct 480cgctgaaacc ctgtgcccag gcagccaccc tggccgcgta ccccgcggag actcccacgg 540ccggggaaga gtaccccagc cgccccactg agtttgcctt ctatccggga tatccgggaa 600cctaccagcc tatggccagt tacctggacg tgtctgtggt gcagactctg ggtgctcctg 660gagaaccgcg acatgactcc ctgttgcctg tggacagtta ccagtcttgg gctctcgctg 720gtggctggaa cagccagatg tgttgccagg gagaacagaa cccaccaggt cccttttgga 780aggcagcatt tgcagactcc agcgggcagc ac 812122385DNAHomo sapien 12ataagctggg gtaaagtatt ttcgcagttt ctgcctttag gattttatta gcttctctcc 60cccaggccgc agccaatcag cgcgcgtgcc cgggcccctg cgtctcttgc gtcaagacgg 120ccgtgctgag cgaatgcagg cgacttgcga gctgggagcg atttaaaacg ctttggattc 180ccccggcctg ggtggggaga gcgagctggg tgccccctag attccccgcc cccgcacctc 240atgagccgac cctcggctcc atggagcccg gcaattatgc caccttggat ggagccaagg 300atatcgaagg cttgctggga gcgggagggg ggcggaatct ggtcgcccac tcccctctga 360ccagccaccc agcggcgcct acgctgatgc ctgctgtcaa ctatgccccc ttggatctgc 420caggctcggc ggagccgcca aagcaatgcc acccatgccc tggggtgccc caggggacgt 480ccccagctcc cgtgccttat ggttactttg gaggcgggta ctactcctgc cgagtgtccc 540ggagctcgct gaaaccctgt gcccaggcag ccaccctggc cgcgtacccc gcggagactc 600ccacggccgg ggaagagtac cccagccgcc ccactgagtt tgccttctat ccgggatatc 660cgggaaccta ccagcctatg gccagttacc tggacgtgtc tgtggtgcag actctgggtg 720ctcctggaga

accgcgacat gactccctgt tgcctgtgga cagttaccag tcttgggctc 780tcgctggtgg ctggaacagc cagatgtgtt gccagggaga acagaaccca ccaggtccct 840tttggaaggc agcatttgca gactccagcg ggcagcaccc tcctgacgcc tgcgcctttc 900gtcgcggccg caagaaacgc attccgtaca gcaaggggca gttgcgggag ctggagcggg 960agtatgcggc taacaagttc atcaccaagg acaagaggcg caagatctcg gcagccacca 1020gcctctcgga gcgccagatt accatctggt ttcagaaccg ccgggtcaaa gagaagaagg 1080ttctcgccaa ggtgaagaac agcgctaccc cttaagagat ctccttgcct gggtgggagg 1140agcgaaagtg ggggtgtcct ggggagacca ggaacctgcc aagcccaggc tggggccaag 1200gactctgctg agaggcccct agagacaaca cccttcccag gccactggct gctggactgt 1260tcctcaggag cggcctgggt acccagtatg tgcagggaga cggaacccca tgtgacagcc 1320cactccacca gggttcccaa agaacctggc ccagtcataa tcattcatcc tgacagtggc 1380aataatcacg ataaccagta ctagctgcca tgatcgttag cctcatattt tctatctaga 1440gctctgtaga gcactttaga aaccgctttc atgaattgag ctaattatga ataaatttgg 1500aaggcgatcc ctttgcaggg aagctttctc tcagaccccc ttccattaca cctctcaccc 1560tggtaacagc aggaagactg aggagagggg aacgggcaga ttcgttgtgt ggctgtgatg 1620tccgtttagc atttttctca gctgacagct gggtaggtgg acaattgtag aggctgtctc 1680ttcctccctc cttgtccacc ccatagggtg tacccactgg tcttggaagc acccatcctt 1740aatacgatga tttttctgtc gtgtgaaaat gaagccagca ggctgcccct agtcagtcct 1800tccttccaga gaaaaagaga tttgagaaag tgcctgggta attcaccatt aatttcctcc 1860cccaaactct ctgagtcttc ccttaatatt tctggtggtt ctgaccaaag caggtcatgg 1920tttgttgagc atttgggatc ccagtgaagt agatgtttgt agccttgcat acttagccct 1980tcccaggcac aaacggagtg gcagagtggt gccaaccctg ttttcccagt ccacgtagac 2040agattcacgt gcggaattct ggaagctgga gacagacggg ctctttgcag agccgggact 2100ctgagaggga catgagggcc tctgcctctg tgttcattct ctgatgtcct gtacctgggc 2160tcagtgcccg gtgggactca tctcctggcc gcgcagcaaa gccagcgggt tcgtgctggt 2220ccttcctgca ccttaggctg ggggtggggg gcctgccggc gcattctcca cgattgagcg 2280cacaggcctg aagtctggac aacccgcaga accgaagctc cgagcagcgg gtcggtggcg 2340agtagtgggg tcggtggcga gcagttggtg gtgggccgcg gccgc 238513221DNAHomo sapienUnsure(4)..(4)n=a, c, g or t 13dsdnrstatc tttctgtgtg gtgcagccct gttggcagtg ggcatctggg tgtcaatcga 60tggggcatcc tttctgaaga tcttcgggcc actgtcgtcc agtgccatgc agtttgtcaa 120cgtgggctac ttcctcatcg cagccggcgt tgtggtcttt gctcttggtt tcctgggctg 180ctatggtgct aagactgaga gcaagtgtgc cctcgtgacg t 221141533DNAHomo sapien 14gggcacgcag acattctggg aagccacttg ccccacccct gggctgcttc ttcttgagat 60caggaggggc gttgcccagg gctggtgttg ccaggtggag gcctgctgag gcagtggttg 120tggggatcgg tctccaggca gcagggggca gcagggtcaa ggagaggcta actggccacg 180ggtggggcca gcaggcgggc agaaggaggc tttaaagcgc ctaccctgcc tgcaggtgag 240cagtggtgtg tgagagccag gccgtccctc tgcctgccca ctcagtggca acacccggga 300gctgttttgt cctttgtgga gcctcagcag ttccctgctt tcagaactca ctgccaagag 360ccctgaacag gagccaccat ggcagtgctt cagcttcatt aagaccatga tgatcctctt 420caatttgctc atctttctgt gtggtgcagc cctgttggca gtgggcatct gggtgtcaat 480cgatggggca tcctttctga agatcttcgg gccactgtcg tccagtgcca tgcagtttgt 540caacgtgggc tacttcctca tcgcagccgg cgttgtggtc tttgctcttg gtttcctggg 600ctgctatggt gctaagactg agagcaagtg tgccctcgtg acgttcttct tcatcctcct 660cctcatcttc attgctgagg ttgcagctgc tgtggtcgcc ttggtgtaca ccacaatggc 720tgagcacttc ctgacgttgc tggtagtgcc tgccatcaag aaagattatg gttcccagga 780agacttcact caagtgtgga acaccaccat gaaagggctc aagtgctgtg gcttcaccaa 840ctatacggat tttgaggact caccctactt caaagagaac agtgcctttc ccccattctg 900ttgcaatgac aacgtcacca acacagccaa tgaaacctgc accaagcaaa aggctcacga 960ccaaaaagta gagggttgct tcaatcagct tttgtatgac atccgaacta atgcagtcac 1020cgtgggtggt gtggcagctg gaattggggg cctcgagctg gctgccatga ttgtgtccat 1080gtatctgtac tgcaatctac aataagtcca cttctgcctc tgccactact gctgccacat 1140gggaactgtg aagaggcacc ctggcaagca gcagtgattg ggggagggga caggatctaa 1200caatgtcact tgggccagaa tggacctgcc ctttctgctc cagacttggg gctagatagg 1260gaccactcct tttaggcgat gcctgacttt ccttccattg gtgggtggat gggtgggggg 1320cattccagag cctctaaggt agccagttct gttgcccatt cccccagtct attaaaccct 1380tgatatgccc cctaggccta gtggtgatcc cagtgctcta ctgggggatg agagaaaggc 1440attttatagc ctgggcataa gtgaaatcag cagagcctct gggtggatgt gtagaaggca 1500cttcaaaatg cataaacctg ttacaatgtt gcc 153315472DNAHomo sapien 15tcagagaaaa ctcaaacttt attgagagaa ttttcaaatt ttcagtcaca ttttcaatgt 60gacatcagcc atgtgtgtag cttcagcttg tcttcttttt aacttatggc tgcccatctc 120ctgcttcttt agtcttagca tgcttaggat taggtggagt cttctctttt acatcagagc 180catctccacg ctcactccga gtcttttcca gatccatttc ctggcaatca ccttctactt 240tacgttcttc gatcggaggt gttccttctc tctcttgtcc aggttcaata tcctgattgt 300cagttggtgg ttcctcttgc tgagattcac cgggagccac gaatgcaacc acatcgggag 360cctcctgacc atctcctctt cctctggatc ttgatctcac tcgtgcactc atcgctgcaa 420ctagaagatc gtgaactgaa gaacttgagt cagcagagag cctggcgaag aa 47216478DNAHomo sapien 16cttcattctt cgccaggctc tctgctgact caagttcttc agttcacgat cttctagttg 60cagcgatgag tgcacgagtg agatcaagat ccagaggaag aggagatggt caggaggctc 120ccgatgtggt tgcattcgtg gctcccggtg aatctcagca agaggaacca ccaactgaca 180atcaggatat tgaacctgga caagagagag aaggaacacc tccgatcgaa gaacgtaaag 240tagaaggtga ttgccaggaa atggatctgg aaaagactcg gagtgagcgt ggagatggct 300ctgatgtaaa agagaagact ccacctaatc ctaagcatgc taagactaaa gaagcaggag 360atgggcagcc ataagttaaa aagaagacaa gctgaagcta cacacatggc tgatgtcaca 420ttgaaaatgt gactgaaaat ttgaaaattc tctcaataaa gtttgagttt tctctgaa 47817198DNAHomo sapienUnsure(191)..(191)n=a, c, g or t 17cccgctgtac caccccagca tgttctgcgc cggcggaggg caagaccaga aggactcctg 60caacggtgac tctggggggc ccctgatctg caacgggtac ttgcagggcc ttgtgtcttt 120cggaaaagcc ccgtgtggcc aagttggcgt gccaggtgtc tacaccaacc tctgcaaatt 180cactgagtgg nattaagg 19818465DNAHomo sapien 18tggagatgga gtatgtattt attttacaaa aataaatcac catcttcgga ccatttgtag 60actggaacat ttcgagcaat gagtgcgcca cacggacgag tgccctggtg actccctgat 120gttcgcgtca cccccagggc caccttggcg cccgcatgag cctcgcttcc cactcccggc 180ctccaactcc cttccctcgc agccgccatt caccttctgc tgtttatttg tctgcagagc 240gcctggacac cggaaaaggc gattccctga gcgcctggag ttggagacaa ttcctggttc 300agaatttaaa catctttcta aggtaagcgc tgctccaaaa ctcttcgccg cgtggggact 360ttgcaccagg ggcggttggg aaggaagttg gccctccacg ggttcctggg caaccgcggc 420ctgttgaaaa aaggttctgg gtcaaataat ttaacttcgg aggag 46519204DNAHomo sapien 19ggcgggaaca ggcggcgctg gacctgtacc cctacgacgc cgggacggac agcggcttca 60ccttctcctc ccccaacttc gccaccatcc cgcaggacac ggtgaccgag ataacgtcct 120cctctcccag ccacccggcc aactccttct actacccgcg gctgaaggcc ctgcctccca 180tcgccagggt gacactggtg cggc 20420294DNAHomo sapienUnsure(287)..(287)n=a, c, g or t 20gagatttctc ttcaatggct tcctgtgagc tagagtttga aaatatctta aaatcttgag 60ctagagatgg aagtagcttg gacgattttc attatcatgt aaatcgggtc actcaagggg 120ccaaccacag ctgggagcca ctgctcaggg gaaggttcat atgggacttt ctactgccca 180aggttctata caggatataa aggtgcctca cagtatagat ctggtagcaa agtaagaaga 240aacaaacact gatctctttc tgccacccct ctgacccttt ggaactnctc tgac 2942122DNAArtificial SequenceSynthetic 21atcagaacaa agaggctgtg tc 222221DNAArtificial SequenceSynthetic 22atctctaaag ccccaacctt c 212319DNAArtificial SequenceSynthetic 23tgccgaagag gttcagtgc 192422DNAArtificial SequenceSynthetic 24gccacagtgg tactgtccag at 222521DNAArtificial SequenceSynthetic 25gctgcaagtt ctccacattg a 212618DNAArtificial SequenceSynthetic 26cagccgcagg tgaaacac 182720DNAArtificial SequenceSynthetic 27tggctttgaa ctcagggtca 202820DNAArtificial SequenceSynthetic 28cggatgcacc tcgtagacag 202920DNAArtificial SequenceSynthetic 29cggcaacctg gtagtgagtg 203022DNAArtificial SequenceSynthetic 30cgcagctcct tgtaaacttc ag 223120DNAArtificial SequenceSynthetic 31cgggaaccta ccagcctatg 203220DNAArtificial SequenceSynthetic 32caggcaacag ggagtcatgt 203318DNAArtificial SequenceSynthetic 33tgggcatctg ggtgtcaa 183419DNAArtificial SequenceSynthetic 34cggctgcgat gaggaagta 193522DNAArtificial SequenceSynthetic 35gcccatctcc tgcttcttta gt 223621DNAArtificial SequenceSynthetic 36cgtggagatg gctctgatgt a 21372609DNAHomo sapienmisc_feature(2589)..(2589)n is a, c, g, or t 37gcgggccggg ccgagtaggc gcgagctaag caggaggcgg aggcggaggc ggagggcgag 60gggcggggag cgccgcctgg agcgcggcag gtcatattga acattccaga tacctatcat 120tactcgatgc tgttgataac agcaagatgg ctttgaactc agggtcacca ccagctattg 180gaccttacta tgaaaaccat ggataccaac cggaaaaccc ctatcccgca cagcccactg 240tggtccccac tgtctacgag gtgcatccgg ctcagtacta cccgtccccc gtgccccagt 300acgccccgag ggtcctgacg caggcttcca accccgtcgt ctgcacgcag cccaaatccc 360catccgggac agtgtgcacc tcaaagacta agaaagcact gtgcatcacc ttgaccctgg 420ggaccttcct cgtgggagct gcgctggccg ctggcctact ctggaagttc atgggcagca 480agtgctccaa ctctgggata gagtgcgact cctcaggtac ctgcatcaac ccctctaact 540ggtgtgatgg cgtgtcacac tgccccggcg gggaggacga gaatcggtgt gttcgcctct 600acggaccaaa cttcatcctt caggtgtact catctcagag gaagtcctgg caccctgtgt 660gccaagacga ctggaacgag aactacgggc gggcggcctg cagggacatg ggctataaga 720ataattttta ctctagccaa ggaatagtgg atgacagcgg atccaccagc tttatgaaac 780tgaacacaag tgccggcaat gtcgatatct ataaaaaact gtaccacagt gatgcctgtt 840cttcaaaagc agtggtttct ttacgctgta tagcctgcgg ggtcaacttg aactcaagcc 900gccagagcag gatcgtgggc ggcgagagcg cgctcccggg ggcctggccc tggcaggtca 960gcctgcacgt ccagaacgtc cacgtgtgcg gaggctccat catcaccccc gagtggatcg 1020tgacagccgc ccactgcgtg gaaaaacctc ttaacaatcc atggcattgg acggcatttg 1080cggggatttt gagacaatct ttcatgttct atggagccgg ataccaagta gaaaaagtga 1140tttctcatcc aaattatgac tccaagacca agaacaatga cattgcgctg atgaagctgc 1200agaagcctct gactttcaac gacctagtga aaccagtgtg tctgcccaac ccaggcatga 1260tgctgcagcc agaacagctc tgctggattt ccgggtgggg ggccaccgag gagaaaggga 1320agacctcaga agtgctgaac gctgccaagg tgcttctcat tgagacacag agatgcaaca 1380gcagatatgt ctatgacaac ctgatcacac cagccatgat ctgtgccggc ttcctgcagg 1440ggaacgtcga ttcttgccag ggtgacagtg gagggcctct ggtcacttcg aagaacaata 1500tctggtggct gataggggat acaagctggg gttctggctg tgccaaagct tacagaccag 1560gagtgtacgg gaatgtgatg gtattcacgg actggattta tcgacaaatg agggcagacg 1620gctaatccac atggtcttcg tccttgacgt cgttttacaa gaaaacaatg gggctggttt 1680tgcttccccg tgcatgattt actcttagag atgattcaga ggtcacttca tttttattaa 1740acagtgaact tgtctggctt tggcactctc tgccattctg tgcaggctgc agtggctccc 1800ctgcccagcc tgctctccct aaccccttgt ccgcaagggg tgatggccgg ctggttgtgg 1860gcactggcgg tcaagtgtgg aggagagggg tggaggctgc cccattgaga tcttcctgct 1920gagtcctttc caggggccaa ttttggatga gcatggagct gtcacctctc agctgctgga 1980tgacttgaga tgaaaaagga gagacatgga aagggagaca gccaggtggc acctgcagcg 2040gctgccctct ggggccactt ggtagtgtcc ccagcctacc tctccacaag gggattttgc 2100tgatgggttc ttagagcctt agcagccctg ggatggtggc cagaaataaa gggaccagcc 2160cttcatgggt ggtgacgtgg tagtcacttg taaggggaac agaaacattt ttgttcttat 2220ggggtgagaa tatagacagt gcccttgggt gcgagggaag caattgaaaa ggaacttgcc 2280ctgagcactc ctggtgcagg tctccacctg cacattgggt ggggctcctg ggagggagac 2340tcagccttcc tcctcatcct ccctgaccct gctcctagca ccctggagag tgcacatgcc 2400ccttggtcct ggcagggcgc caagtctggc accatgttgg cctcttcagg cctgctagtc 2460actggaaatt gaggtccatg ggggaaatca aggattctca gtttaaggta cactgtttcc 2520atgttatgtt tctacacatt gctacctcag tgctcctgga aacttagctt ttgatgtctt 2580caagtagtnc accttcattt aactctttg 2609

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed