Compounds And Methods For Treatment And Diagnosis Of Chlamydial Infection

Bhatia; Ajay ;   et al.

Patent Application Summary

U.S. patent application number 11/928477 was filed with the patent office on 2009-02-19 for compounds and methods for treatment and diagnosis of chlamydial infection. This patent application is currently assigned to CORIXA CORPORATION. Invention is credited to Ajay Bhatia, Jeff Guderian, Jean-Francois L. Maisonneuve, Yasir A. W. Skeiky.

Application Number20090047283 11/928477
Document ID /
Family ID27358417
Filed Date2009-02-19

United States Patent Application 20090047283
Kind Code A1
Bhatia; Ajay ;   et al. February 19, 2009

COMPOUNDS AND METHODS FOR TREATMENT AND DIAGNOSIS OF CHLAMYDIAL INFECTION

Abstract

Compounds and methods for the diagnosis and treatment of Chlamydial infection are disclosed. The compounds provided include polypeptides that contain at least one antigenic portion of a Chlamydia antigen and DNA sequences encoding such polypeptides. Pharmaceutical compositions and vaccines comprising such polypeptides or DNA sequences are also provided, together with antibodies directed against such polypeptides. Diagnostic kits containing such polypeptides or DNA sequences and a suitable detection reagent may be used for the detection of Chlamydial infection in patients and in biological samples.


Inventors: Bhatia; Ajay; (Seattle, WA) ; Guderian; Jeff; (Lynnwood, WA) ; Skeiky; Yasir A. W.; (Silver Spring, MD) ; Maisonneuve; Jean-Francois L.; (Federal Way, WA)
Correspondence Address:
    SEED INTELLECTUAL PROPERTY LAW GROUP PLLC
    701 FIFTH AVE, SUITE 5400
    SEATTLE
    WA
    98104
    US
Assignee: CORIXA CORPORATION
Hamilton
MT

Family ID: 27358417
Appl. No.: 11/928477
Filed: October 30, 2007

Related U.S. Patent Documents

Application Number Filing Date Patent Number
11109468 Apr 19, 2005
11928477
10197220 Jul 15, 2002 6919187
11109468
10007693 Dec 5, 2001
10197220
10012256 Nov 6, 2001
10007693
09841260 Apr 23, 2001
10012256
60198853 Apr 21, 2000
09841260
60219752 Jul 20, 2000

Current U.S. Class: 514/1.1 ; 424/185.1; 424/93.71; 435/320.1; 435/325; 435/69.1; 435/7.36; 435/70.3; 436/5; 514/2.4; 514/44R; 530/300; 530/350; 530/387.9; 536/23.1; 536/24.5
Current CPC Class: A61K 2039/5158 20130101; A61K 2039/57 20130101; G01N 33/56927 20130101; A61P 43/00 20180101; A61K 2039/53 20130101; A61P 31/04 20180101; C07K 2319/00 20130101; C07K 14/295 20130101; A61K 2039/505 20130101; A61K 39/118 20130101; A61K 2035/124 20130101; A61K 39/00 20130101; C12N 5/0636 20130101; A61K 2039/515 20130101; A61K 2039/5154 20130101
Class at Publication: 424/139.1 ; 536/23.1; 536/24.5; 530/300; 435/320.1; 530/387.9; 435/7.36; 530/350; 435/69.1; 435/70.3; 435/325; 424/185.1; 514/2; 514/44; 424/93.71; 436/5
International Class: A61K 39/395 20060101 A61K039/395; C07H 21/00 20060101 C07H021/00; C07K 2/00 20060101 C07K002/00; C12N 15/63 20060101 C12N015/63; C07K 16/00 20060101 C07K016/00; G01N 33/571 20060101 G01N033/571; A61K 31/7088 20060101 A61K031/7088; C12Q 1/68 20060101 C12Q001/68; A61K 35/12 20060101 A61K035/12; A61K 38/14 20060101 A61K038/14; C07K 14/00 20060101 C07K014/00; C12P 21/06 20060101 C12P021/06; C12P 21/04 20060101 C12P021/04; C12N 5/00 20060101 C12N005/00

Claims



1-18. (canceled)

19. A composition comprising a pharmaceutically acceptable carrier and a polypeptide, said polypeptide comprising: (i) an amino acid sequence having at least 90% identity to the sequence of residues 8 to 598 of SEQ ID NO: 140; or (ii) an amino acid sequence having at least 90% identity to the sequence of SEQ ID NO: 140.

20. A composition according to claim 19, wherein the polypeptide comprises an amino acid sequence having at least 90% identity to the sequence of residues 8 to 598 of SEQ ID NO: 140.

21. A composition according to claim 20, wherein the polypeptide comprises the sequence of residues 8 to 598 of SEQ ID NO: 140.

22. A composition according to claim 19, wherein the polypeptide comprises an amino acid sequence having at least 90% identity to the sequence of SEQ ID NO: 140.

23. A composition according to claim 19, wherein the polypeptide consists of: (i) an amino acid sequence having at least 90% identity to the sequence of residues 8 to 598 of SEQ ID NO: 140; or (ii) an amino acid sequence having at least 90% identity to the sequence of SEQ ID NO: 140.

24. A composition according to claim 23, wherein the polypeptide consists of an amino acid sequence having at least 90% identity to the sequence of residues 8 to 598 of SEQ ID NO: 140.

25. A composition according to claim 24, wherein the polypeptide consists of the sequence of residues 8 to 598 of SEQ ID NO: 140.

26. A composition according to claim 23, wherein the polypeptide consists of an amino acid sequence having at least 90% identity to the sequence of SEQ ID NO: 140.

27. A composition according to claim 19, wherein the polypeptide is a fusion protein.

28. A composition according to claim 27, wherein the fusion protein comprises an amino acid sequence having at least 90% identity to the sequence of residues 8 to 598 of SEQ ID NO: 140.

29. A composition according to claim 27, wherein the fusion protein comprises an amino acid sequence having at least 90% identity to the sequence of SEQ ID NO: 140.

30. A composition comprising a pharmaceutically acceptable carrier and a polynucleotide comprising a nucleic acid sequence encoding a polypeptide, said polypeptide comprising: (i) an amino acid sequence having at least 90% identity to the sequence of residues 8 to 598 of SEQ ID NO: 140; or (ii) an amino acid sequence having at least 90% identity to the sequence of SEQ ID NO: 140.

31. A composition comprising an immunostimulant and a polypeptide, said polypeptide comprising: (i) an amino acid sequence having at least 90% identity to the sequence of residues 8 to 598 of SEQ ID NO: 140; or (ii) an amino acid sequence having at least 90% identity to the sequence of SEQ ID NO: 140.

32. A composition according to claim 31, wherein the polypeptide comprises an amino acid sequence having at least 90% identity to the sequence of residues 8 to 598 of SEQ ID NO: 140.

33. A composition according to claim 32, wherein the polypeptide comprises the sequence of residues 8 to 598 of SEQ ID NO: 140.

34. A composition according to claim 31, wherein the polypeptide comprises an amino acid sequence having at least 90% identity to the sequence of SEQ ID NO: 140.

35. A composition according to claim 31, wherein the polypeptide consists of: (i) an amino acid sequence having at least 90% identity to the sequence of residues 8 to 598 of SEQ ID NO: 140; or (ii) an amino acid sequence having at least 90% identity to the sequence of SEQ ID NO: 140.

36. A composition according to claim 35, wherein the polypeptide consists of an amino acid sequence having at least 90% identity to the sequence of residues 8 to 598 of SEQ ID NO: 140.

37. A composition according to claim 36, wherein the polypeptide consists of the sequence of residues 8 to 598 of SEQ ID NO: 140.

38. A composition according to claim 35, wherein the polypeptide consists of an amino acid sequence having at least 90% identity to the sequence of SEQ ID NO: 140.

39. A composition according to claim 31, wherein the polypeptide is a fusion protein.

40. A composition according to claim 39, wherein the fusion protein comprises an amino acid sequence having at least 90% identity to the sequence of residues 8 to 598 of SEQ ID NO: 140.

41. A composition according to claim 39, wherein the fusion protein comprises an amino acid sequence having at least 90% identity to the sequence of SEQ ID NO: 140.

42. A composition comprising an immunostimulant and a polynucleotide comprising a nucleic acid sequence encoding a polypeptide, said polypeptide comprising: (i) an amino acid sequence having at least 90% identity to the sequence of residues 8 to 598 of SEQ ID NO: 140; or (ii) an amino acid sequence having at least 90% identity to the sequence of SEQ ID NO: 140.

43. A method for the treatment and/or prevention of chlamydial infection comprising administering an effective amount of a composition according to any one of claims 19 to 43.
Description



CROSS-REFERENCES TO RELATED APPLICATIONS

[0001] This application is a continuation of U.S. patent application Ser. No. 11/109,468 filed Apr. 19, 2005 (now pending); which is a continuation of U.S. patent application Ser. No. 10/197,220 filed Jul. 15, 2002 (now U.S. Pat. No. 6,919,187); which is a continuation-in-part of U.S. patent application Ser. No. 10/007,693 filed Dec. 5, 2001 (now abandoned); which is a continuation-in-part of U.S. patent application Ser. No. 10/012,256 filed Nov. 6, 2001 (now abandoned); which is a continuation-in-part of U.S. patent application Ser. No. 09/841,260 filed Apr. 23, 2001 (now abandoned); which claims the benefit under 35 U.S.C. .sctn. 119(e) of U.S. Provisional Patent Application No. 60/219,752 filed Jul. 20, 2000 and U.S. Provisional Patent Application No. 60/198,853 filed Apr. 21, 2000. These applications are incorporated herein by reference in their entireties.

STATEMENT REGARDING SEQUENCE LISTING

[0002] The Sequence Listing associated with this application is provided in text format in lieu of a paper copy, and is hereby incorporated by reference into the specification. The name of the text file containing the Sequence Listing is 210121.sub.--515C6_SEQUENCE_LISTING.txt. The text file is 468 KB, was created on Oct. 30, 2007, and is being submitted electronically via EFS-Web, concurrent with the filing of the specification.

BACKGROUND OF THE INVENTION

[0003] 1. Field of the Invention

[0004] The present invention relates generally to the detection and treatment of Chlamydial infection. In particular, the invention is related to polypeptides comprising a Chlamydia antigen and the use of such polypeptides for the serodiagnosis and treatment of Chlamydial infection.

[0005] 2. Description of Related Art

[0006] Chlamydiae are intracellular bacterial pathogens that are responsible for a wide variety of important human and animal infections. Chlamydia trachomatis is one of the most common causes of sexually transmitted diseases and can lead to pelvic inflammatory disease (PID), resulting in tubal obstruction and infertility. Chlamydia trachomatis may also play a role in male infertility. In 1990, the cost of treating PID in the US was estimated to be $4 billion. Trachoma, due to ocular infection with Chlamydia trachomatis, is the leading cause of preventable blindness worldwide. Chlamydia pneumonia is a major cause of acute respiratory tract infections in humans and is also believed to play a role in the pathogenesis of atherosclerosis and, in particular, coronary heart disease. Individuals with a high titer of antibodies to Chlamydia pneumonia have been shown to be at least twice as likely to suffer from coronary heart disease as seronegative individuals. Chlamydial infections thus constitute a significant health problem both in the US and worldwide.

[0007] Chlamydial infection is often asymptomatic. For example, by the time a woman seeks medical attention for PID, irreversible damage may have already occurred resulting in infertility. There thus remains a need in the art for improved vaccines and pharmaceutical compositions for the prevention and treatment of Chlamydia infections. The present invention fulfills this need and further provides other related advantages.

BRIEF SUMMARY OF THE INVENTION

[0008] The present invention provides compositions and methods for the diagnosis and therapy of Chlamydia infection. In one aspect, the present invention provides polypeptides comprising an immunogenic portion of a Chlamydia antigen, or a variant of such an antigen. Certain portions and other variants are immunogenic, such that the ability of the variant to react with antigen-specific antisera is not substantially diminished. Within certain embodiments, the polypeptide comprises an amino acid sequence encoded by a polynucleotide sequence selected from the group consisting of (a) a sequence of SEQ ID NO: 1-48,114-121, 125-138, 141-175; (b) the complements of said sequences; and (c) sequences that hybridize to a sequence of (a) or (b) under moderately stringent conditions. In specific embodiments, the polypeptides of the present invention comprise at least a portion of a Chlamydial protein that includes an amino acid sequence selected from the group consisting of sequences recited in SEQ ID NO:122-124 and 139-140 and 167-175 and variants thereof.

[0009] The present invention further provides polynucleotides that encode a polypeptide as described above, or a portion thereof (such as a portion encoding at least 15 amino acid residues of a Chlamydial protein), expression vectors comprising such polynucleotides and host cells transformed or transfected with such expression vectors.

[0010] In a related aspect, polynucleotide sequences encoding the above polypeptides, recombinant expression vectors comprising one or more of these polynucleotide sequences and host cells transformed or transfected with such expression vectors are also provided.

[0011] In another aspect, the present invention provides fusion proteins comprising an inventive polypeptide, or, alternatively, an inventive polypeptide and a known Chlamydia antigen, as well as polynucleotides encoding such fusion proteins, in combination with a physiologically acceptable carrier or immunostimulant for use as pharmaceutical compositions and vaccines thereof.

[0012] The present invention further provides pharmaceutical compositions that comprise: (a) an antibody, both polyclonal and monoclonal, or antigen-binding fragment thereof that specifically binds to a Chlamydial protein; and (b) a physiologically acceptable carrier. Within other aspects, the present invention provides pharmaceutical compositions that comprise one or more Chlamydia polypeptides disclosed herein, for example, a polypeptide of SEQ ID NO: 95-109, 122-124 and 139-140 and 167-175, or a polynucleotide molecule encoding such a polypeptide, such as a polynucleotide sequence of SEQ ID NO: 1-48, 80-94, 114-121 125-138, and 141-166, and a physiologically acceptable carrier. The invention also provides compositions for prophylactic and therapeutic purposes comprising one or more of the disclosed polynucleotides and/or polypeptides and an immunostimulant, e.g., an adjuvant.

[0013] In yet another aspect, methods are provided for stimulating an immune response in a patient, e.g., for inducing protective immunity in a patient, comprising administering to a patient an effective amount of one or more of the above pharmaceutical compositions or vaccines.

[0014] In yet a further aspect, methods for the treatment of Chlamydia infection in a patient are provided, the methods comprising obtaining peripheral blood mononuclear cells (PBMC) from the patient, incubating the PBMC with a polypeptide of the present invention (or a polynucleotide that encodes such a polypeptide) to provide incubated T cells and administering the incubated T cells to the patient. The present invention additionally provides methods for the treatment of Chlamydia infection that comprise incubating antigen presenting cells with a polypeptide of the present invention (or a polynucleotide that encodes such a polypeptide) to provide incubated antigen presenting cells and administering the incubated antigen presenting cells to the patient. Proliferated cells may, but need not, be cloned prior to administration to the patient. In certain embodiments, the antigen presenting cells are selected from the group consisting of dendritic cells, macrophages, monocytes, B-cells, and fibroblasts. Compositions for the treatment of Chlamydia infection comprising T cells or antigen presenting cells that have been incubated with a polypeptide or polynucleotide of the present invention are also provided. Within related aspects, vaccines are provided that comprise: (a) an antigen presenting cell that expresses a polypeptide as described above and (b) an immunostimulant.

[0015] The present invention further provides, within other aspects, methods for removing Chlamydial-infected cells from a biological sample, comprising contacting a biological sample with T cells that specifically react with a Chlamydial protein, wherein the step of contacting is performed under conditions and for a time sufficient to permit the removal of cells expressing the protein from the sample.

[0016] Within related aspects, methods are provided for inhibiting the development of Chlamydial infection in a patient, comprising administering to a patient a biological sample treated as described above. In further aspects of the subject invention, methods and diagnostic kits are provided for detecting Chlamydia infection in a patient. In one embodiment, the method comprises: (a) contacting a biological sample with at least one of the polypeptides or fusion proteins disclosed herein; and (b) detecting in the sample the presence of binding agents that bind to the polypeptide or fusion protein, thereby detecting Chlamydia infection in the biological sample. Suitable biological samples include whole blood, sputum, serum, plasma, saliva, cerebrospinal fluid and urine. In one embodiment, the diagnostic kits comprise one or more of the polypeptides or fusion proteins disclosed herein in combination with a detection reagent. In yet another embodiment, the diagnostic kits comprise either a monoclonal antibody or a polyclonal antibody that binds with a polypeptide of the present invention.

[0017] The present invention also provides methods for detecting Chlamydia infection comprising: (a) obtaining a biological sample from a patient; (b) contacting the sample with at least two oligonucleotide primers in a polymerase chain reaction, at least one of the oligonucleotide primers being specific for a polynucleotide sequence disclosed herein; and (c) detecting in the sample a polynucleotide sequence that amplifies in the presence of the oligonucleotide primers. In one embodiment, the oligonucleotide primer comprises at least about 10 contiguous nucleotides of a polynucleotide sequence peptide disclosed herein, or of a sequence that hybridizes thereto.

[0018] In a further aspect, the present invention provides a method for detecting Chlamydia infection in a patient comprising: (a) obtaining a biological sample from the patient; (b) contacting the sample with an oligonucleotide probe specific for a polynucleotide sequence disclosed herein; and (c) detecting in the sample a polynucleotide sequence that hybridizes to the oligonucleotide probe. In one embodiment, the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a polynucleotide sequence disclosed herein, or a sequence that hybridizes thereto.

[0019] These and other aspects of the present invention will become apparent upon reference to the following detailed description. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.

SEQUENCE IDENTIFIERS

[0020] SEQ ID NO:1 sets forth a DNA sequence identified for clone E4-A2-39 (CT10 positive) that is 1311 bp and contains the entire ORF for CT460 (SWIB) and a partial ORF for CT461 (yael).

[0021] SEQ ID NO:2 sets forth a DNA sequence for clone E2-B10-52 (CT10 positive) that has a 1516 bp insert that contains partial ORFs for genes CT827 (nrdA-ribonucleoside reductase large chain) and CT828 (ndrB-ribonucleoside reductase small chain). These genes were not identified in a Ct L2 library screening.

[0022] SEQ ID NO:3 sets forth a DNA sequence for clone E1-B1-80 (CT10 positive) (2397 bp) that contains partial ORFs for several genes, CT812 (pmpD), CT015 (phoH ATPase), CT016 (hypothetical protein) and pGp1-D (C. trachomatis plasmid gene).

[0023] SEQ ID NO:4 sets forth a DNA sequence for clone E4-F9-4 (CT10, CL8, CT1, CT5, CT13, and CHH037 positive) that contains a 1094 bp insert that has a partial ORF for the gene CT316 (L7/L12 ribosomal protein) as well as a partial ORF for gene CT315 (RNA polymerase beta).

[0024] SEQ ID NO:5 sets forth a DNA sequence for clone E2-H6-40 (CT3 positive) that has a 2129 bp insert that contains the entire ORF for the gene CT288 and very small fragments of genes CT287 and CT289. Genes in this clone have not been identified in screening with a Ct L2 library.

[0025] SEQ ID NO:6 sets forth a DNA sequence for clone E5-D4-2 (CT3, CT10, CT1, CT5, CT12, and CHH037 positive) that has a 1828 bp insert that contains a partial ORF for gene CT378 (pgi), complete ORF for gene CT377 (ItuA) and a complete ORF for the gene CT376 (malate dehydrogenase). In addition, the patient lines CT10, CT1, CT5, CT12, and CHH037 also identified this clone.

[0026] SEQ ID NO:7 sets forth a DNA sequence for clone E6-C1-31 (CT3 positive) that has a 861 bp insert that contains a partial ORF for gene CT858.

[0027] SEQ ID NO:8 sets forth a DNA sequence for clone E9-E11-76 (CT3 positive) that contains a 763 bp insert that is an amino terminal region of the gene for CT798 (Glycogen synthase). This gene was not identified in a previous screening with a Ct L2 library.

[0028] SEQ ID NO:9 sets forth a DNA sequence for clone E2-A9-26 (CT1-positive) that contains part of the gene for ORF-3 which is found on the plasmid in Chlamydia trachomatis.

[0029] SEQ ID NO:10 sets forth a DNA sequence for clone E2-G8-94 (CT1-positive) that has the carboxy terminal end of Lpda gene as well as a partial ORF for CT556.

[0030] SEQ ID NO: 11 sets forth a DNA sequence for clone E1-H1-14 (CT1 positive) that has a 1474 bp insert that contains the amino terminal part of an Lpda ORF on the complementary strand.

[0031] SEQ ID NO: 12 sets forth a DNA sequence for clone E1-A5-53 (CT1 positive) that contains a 2017 bp insert that has an amino terminal portion of the ORF for dnaK gene on the complementary strand, a partial ORF for the grpE gene (CT395) and a partial ORF for CT166.

[0032] SEQ ID NO: 13 sets forth a DNA sequence for clone E3-A1-50 (positive on CT1 line) that is 1199 bp and contains a carboxy terminal portion of the ORF for CT622.

[0033] SEQ ID NO: 14 sets forth a DNA sequence for clone E3-E2-22 that has 877 bp, containing a complete ORF for CT610 on the complementary strand, and was positive on both CT3 and CT10 lines.

[0034] SEQ ID NO: 15 sets forth the DNA sequence for clone E5-E2-10 (CT10 positive) which is 427 bp and contains a partial ORF for the major outer membrane protein omp1. SEQ ID NO: 16 sets forth the DNA sequence for clone E2-D5-89 (516 bp) which is a CT10 positive clone that contains a partial ORF for pmpD gene (CT812).

[0035] SEQ ID NO: 17 sets forth the DNA sequence for clone E4-G9-75 (CT10 positive) which is 723 bp and contains a partial ORF for the amino terminal region of the pmpH gene (CT872).

[0036] SEQ ID NO: 18 sets forth the DNA sequence for clone E3-F2-37 (CT10, CT3, CT11, and CT13 positive-1377 bp insert) which contains a partial ORF for the tRNA-Trp (CT322) gene and a complete ORF for the gene secE (CT321).

[0037] SEQ ID NO: 19 sets forth the DNA sequence for clone E5-A11-8 (CT10 positive-1736 bp) which contains the complete ORF for groES (CT111) and a majority of the ORF for groEL (CT110).

[0038] SEQ ID NO: 20 sets forth the DNA sequence for clone E7-H11-61 (CT3 positive-1135 bp) which has partial inserts for fliA (CT061), tyrS (CT062), TSA (CT603) and a hypothetical protein (CT602).

[0039] SEQ ID NO: 21 sets forth a DNA sequence for clone E6-C8-95 which contains a 731 bp insert that was identified using the donor lines CT3, CT1, and CT12 line. This insert has a carboxy terminal half for the gene for the 60 kDa ORF.

[0040] SEQ ID NO: 22 sets forth the DNA sequence for clone E4-D2-79 (CT3 positive) which contains a 1181 bp insert that is a partial ORF for nrdA gene. The ORF for this gene was also identified from clone E2-B10-52 (CT10 positive).

[0041] SEQ ID NO: 23 sets forth the DNA sequence for clone E1-F9-79 (167 bp; CT11 positive) which contains a partial ORF for the gene CT133 on the complementary strand. CT133 is a predicted rRNA methylase.

[0042] SEQ ID NO: 24 sets forth the DNA sequence for clone E2-G12-52 (1265 bp; CT11 positive) which contains a partial ORF for clpB, a protease ATPase.

[0043] SEQ ID NO: 25 sets forth the DNA sequence for clone E4-H3-56 (463 bp insert; CT1 positive) which contains a partial ORF for the TSA gene (CT603) on the complementary strand.

[0044] SEQ ID NO: 26 sets forth the DNA sequence for clone E5-E9-3 (CT1 positive) that contains a 636 bp insert partially encoding the ORF for dnaK like gene. Part of this sequence was also identified in clone E1-A5-53.

[0045] SEQ ID NO:27 sets forth the full-length serovar E DNA sequence of CT875.

[0046] SEQ ID NO:28 sets for the full-length serovar E DNA sequence of CT622.

[0047] SEQ ID NO:29 sets forth the DNA sequence for clone E3-B4-18 (CT1 positive) that contains a 1224 bp insert containing 4 ORFs. The complete ORF for CT772, and the partial ORFs of CT771, CT191, and CT190.

[0048] SEQ ID NO:30 sets forth the DNA sequence for the clone E9-E10-51 (CT10 positive) that contains an 883 bp insert containing two partial ORF, CT680 and CT679.

[0049] SEQ ID NO:31 sets forth the DNA sequence of the clone E9-D5-8 (CT10, CTCT1, CT4, and CT11 positive) that contains a393 bp insert containing the partial ORF for CT680.

[0050] SEQ ID NO:32 sets forth the DNA sequence of the clone E7-B1-16 (CT10, CT3, CT5, CT11, CT13, and CHH037 positive) that contains a 2577 bp insert containing three ORFs, two full length ORFs for CT694 and CT695 and the third containing the N-terminal portion of CT969.

[0051] SEQ ID NO:33 sets forth the DNA sequence of the clone E9-G2-93 (CT10 positive) that contains a 554 bp insert containing a partial ORF for CT178.

[0052] SEQ ID NO:34 sets forth the DNA sequence of the clone E5-A8-85 (CT1 positive) that contains a 1433 bp insert containing two partial ORFs for CT875 and CT001.

[0053] SEQ ID NO:35 sets forth the DNA sequence of the clone E10-C6-45 (CT3 positive) that contains a 196 bp insert containing a partial ORF for CT827.

[0054] SEQ ID NO:36 sets forth the DNA sequence of the clone E7-H11-10 (CT3 positive) that contains a 1990 bp insert containing the partial ORFs of CT610 and CT613 and the complete ORFs of CT611 and CT612.

[0055] SEQ ID NO:37 sets forth the DNA sequence of the clone E2-F7-11 (CT3 and CT10 positive) that contains a 2093 bp insert. It contains a large region of CT609, a complete ORF for CT610 and a partial ORF for CT611.

[0056] SEQ ID NO:38 sets forth the DNA sequence of the clone E3-A3-31 (CT1 positive) that contains an 1834 bp insert containing a large region of CT622.

[0057] SEQ ID NO:39 sets forth the DNA sequence of the clone E1-G9-23 (CT3 positive) that contains an 1180 bp insert containing almost the entire ORF for CT798.

[0058] SEQ ID NO:40 sets forth the DNA sequence of the clone E4-D6-21 (CT 3 positive) that contains a 1297 bp insert containing the partial ORFs of CT329 and CT327 and the complete ORF of CT328.

[0059] SEQ ID NO:41 sets forth the DNA sequence of the clone E3-F3-18 (CT1 positive) that contains an 1141 bp insert containing the partial ORF of CT871.

[0060] SEQ ID NO:42 sets forth the DNA sequence of the clone E10-B2-57 (CT10 positive) that contains an 822 bp insert containing the complete ORF of CT066.

[0061] SEQ ID NO:43 sets forth the DNA sequence of the clone E3-F3-7 (CT1 positive) that contains a 1643 bp insert containing the partial ORFs of CT869 and CT870.

[0062] SEQ ID NO:44 sets forth the DNA sequence of the clone E10-H8-1 (CT3 and CT10 positive) that contains an 1862 bp insert containing the partial ORFs of CT871 and CT872.

[0063] SEQ ID NO:45 sets forth the DNA sequence of the clone E3-D10-46 (CT1, CT3, CT4, CT11, and CT12 positive) that contains a 1666 bp insert containing the partial ORFs for CT770 and CT773 and the complete ORFs for CT771 and CT722.

[0064] SEQ ID NO:46 sets forth the DNA sequence of the clone E2-D8-19 (CT1 positive) that contains a 2010 bp insert containing partial ORFs, ORF3 and ORF6, and complete ORFs, ORF4 and ORF5.

[0065] SEQ ID NO:47 sets forth the DNA sequence of the clone E4-C3-40 (CT10 positive) that contains a 2044 bp insert containing the partial ORF for CT827 and a complete ORF for CT828.

[0066] SEQ ID NO:48 sets forth the DNA sequence of the clone E3-H6-10 (CT12 positive) that contains a 3743 bp insert containing the partial ORFs for CT223 and CT229 and the complete ORFs for CT224 and CT224, CT225, CT226, CT227, and CT228.

[0067] SEQ ID NO:49 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0454 of the Chlamydia trachomatis gene CT872.

[0068] SEQ ID NO:50 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0187, of the Chlamydia trachomatis gene CT133.

[0069] SEQ ID NO:51 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0075 of the Chlamydia trachomatis gene CT321.

[0070] SEQ ID NO:52 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0074, of the Chlamydia trachomatis gene CT322.

[0071] SEQ ID NO:53 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0948, of the Chlamydia trachomatis gene CT798.

[0072] SEQ ID NO:54 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0985, of the Chlamydia trachomatis gene CT828.

[0073] SEQ ID NO:55 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0984, of the Chlamydia trachomatis gene CT827.

[0074] SEQ ID NO:56 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0062, of the Chlamydia trachomatis gene CT289.

[0075] SEQ ID NO:57 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn00065, of the Chlamydia trachomatis gene CT288.

[0076] SEQ ID NO:58 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0438, of the Chlamydia trachomatis gene CT287.

[0077] SEQ ID NO:59 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0963, of the Chlamydia trachomatis gene CT812.

[0078] SEQ ID NO:60 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0778, of the Chlamydia trachomatis gene CT603.

[0079] SEQ ID NO:61 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0503, of the Chlamydia trachomatis gene CT396.

[0080] SEQ ID NO:62 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0116, of the Chlamydia trachomatis gene CT858.

[0081] SEQ ID NO:63 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0728, of the Chlamydia trachomatis gene CT622.

[0082] SEQ ID NO:64 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0557, of the Chlamydia trachomatis gene CT460.

[0083] SEQ ID NO:65 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0454, of the Chlamydia trachomatis gene CT872.

[0084] SEQ ID NO:66 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0187, of the Chlamydia trachomatis gene CT133.

[0085] SEQ ID NO:67 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0075, of the Chlamydia trachomatis gene CT321.

[0086] SEQ ID NO:68 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0074, of the Chlamydia trachomatis gene CT322.

[0087] SEQ ID NO:69 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0948, of the Chlamydia trachomatis gene CT798.

[0088] SEQ ID NO:70 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0985, of the Chlamydia trachomatis gene CT828.

[0089] SEQ ID NO:71 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0984, of the Chlamydia trachomatis gene CT827.

[0090] SEQ ID NO:72 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0062, of the Chlamydia trachomatis gene CT289.

[0091] SEQ ID NO:73 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0065, of the Chlamydia trachomatis gene CT288.

[0092] SEQ ID NO:74 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0438, of the Chlamydia trachomatis gene CT287.

[0093] SEQ ID NO:75 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0963, of the Chlamydia trachomatis gene CT812.

[0094] SEQ ID NO:76 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0778, of the Chlamydia trachomatis gene CT603.

[0095] SEQ ID NO:77 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn1016, of the Chlamydia trachomatis gene CT858.

[0096] SEQ ID NO:78 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0728, of the Chlamydia trachomatis gene CT622.

[0097] SEQ ID NO:79 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0557, of the Chlamydia trachomatis gene CT460.

[0098] SEQ ID NO:80 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT872.

[0099] SEQ ID NO:81 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT828.

[0100] SEQ ID NO:82 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT827.

[0101] SEQ ID NO:83 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT812.

[0102] SEQ ID NO:84 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT798.

[0103] SEQ ID NO:85 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT681 (MompF).

[0104] SEQ ID NO:86 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT603.

[0105] SEQ ID NO:87 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT460.

[0106] SEQ ID NO:88 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT322.

[0107] SEQ ID NO:89 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT321.

[0108] SEQ ID NO:90 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT289.

[0109] SEQ ID NO:91 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT288.

[0110] SEQ ID NO:92 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT287.

[0111] SEQ ID NO:93 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT133.

[0112] SEQ ID NO:94 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT113.

[0113] SEQ ID NO:95 sets forth the full-length serovar D amino acid sequence of the Chlamydia trachomatis gene CT872.

[0114] SEQ ID NO:96 sets forth the full-length serovar D amino acid sequence of the Chlamydia trachomatis gene CT828.

[0115] SEQ ID NO:97 sets forth the full-length serovar D amino acid sequence of the Chlamydia trachomatis gene CT827.

[0116] SEQ ID NO:98 sets forth the full-length serovar D amino acid sequence of the Chlamydia trachomatis gene CT812.

[0117] SEQ ID NO:99 sets forth the full-length serovar D amino acid sequence of the Chlamydia trachomatis gene CT798.

[0118] SEQ ID NO:100 sets forth the full-length serovar D amino acid sequence of the Chlamydia trachomatis gene CT681.

[0119] SEQ ID NO:101 sets forth the full-length serovar D amino acid sequence of the Chlamydia trachomatis gene CT603.

[0120] SEQ ID NO:102 sets forth the full-length serovar D amino acid sequence of the Chlamydia trachomatis gene CT460.

[0121] SEQ ID NO:103 sets forth the full-length serovar D amino acid sequence of the Chlamydia trachomatis gene CT322.

[0122] SEQ ID NO:104 sets forth the full-length serovar D amino acid sequence of the Chlamydia trachomatis gene CT321.

[0123] SEQ ID NO:105 sets forth the full-length serovar D amino acid sequence of the Chlamydia trachomatis gene CT289.

[0124] SEQ ID NO:106 sets forth the full-length serovar D amino acid sequence of the Chlamydia trachomatis gene CT288.

[0125] SEQ ID NO:107 sets forth the full-length serovar D amino acid sequence of the Chlamydia trachomatis gene CT287.

[0126] SEQ ID NO:108 sets forth the full-length serovar D amino acid sequence of the Chlamydia trachomatis gene CT133.

[0127] SEQ ID NO:109 sets forth the full-length serovar D amino acid sequence of the Chlamydia trachomatis gene CT113.

[0128] SEQ ID NO:110 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0695, of the Chlamydia trachomatis gene CT681.

[0129] SEQ ID NO:111 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0144, of the Chlamydia trachomatis gene CT113.

[0130] SEQ ID NO:112 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0695, of the Chlamydia trachomatis gene CT681.

[0131] SEQ ID NO:113 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0144, of the Chlamydia trachomatis gene CT113.

[0132] SEQ ID NO:114 sets forth the DNA sequence of the clone E7-B12-65 (CHH037 positive) that contains a 1179 bp insert containing complete ORF for 376.

[0133] SEQ ID NO:115 sets forth the DNA sequence of the clone E4-H9-83 (CHH037 positive) that contains the partial ORF for the heat shock protein GroEL (CT110).

[0134] SEQ ID NO:116 sets forth the DNA sequence of the clone E9-B10-52 (CHH037 positive) that contains the partial ORF for the gene yscC (CT674).

[0135] SEQ ID NO:117 sets forth the DNA sequence of the clone E7-A7-79 (CHH037 positive) that contains the complete ORF for the histone like development gene hcta (CT743) and a partial ORF for the rRNA methyltransferase gene ygcA (CT742).

[0136] SEQ ID NO:118 sets forth the DNA sequence of the clone E2-D1-18 (CHH037 positive) that contains the partial ORF for hcta (CT743).

[0137] SEQ ID NO:119 sets forth the DNA sequence for the Chlamydia trachomatis serovar E hypothetical protein CT694.

[0138] SEQ ID NO:120 sets forth the DNA sequence for the Chlamydia trachomatis serovar E hypothetical protein CT695.

[0139] SEQ ID NO:121 sets forth the DNA sequence for the Chlamydia trachomatis serovar E L1 ribosomal protein.

[0140] SEQ ID NO:122 sets forth the amino acid sequence for the Chlamydia trachomatis serovar E hypothetical protein CT694.

[0141] SEQ ID NO:123 sets forth the amino acid sequence for the Chlamydia trachomatis serovar E hypothetical protein CT695.

[0142] SEQ ID NO:124 sets forth the amino acid sequence for the Chlamydia trachomatis serovar E L1 ribosomal protein.

[0143] SEQ ID NO:125 sets forth the DNA sequence of the clone E9-H6-15 (CT3 positive) that contains the partial ORF for the pmpB gene (CT413).

[0144] SEQ ID NO:126 sets forth the DNA sequence of the clone E3-D10-87 (CT1 positive) that contains the partial ORFs for the hypothetical genes CT388 and CT389.

[0145] SEQ ID NO:127 sets forth the DNA sequence of the clone E9-D6-43 (CT3 positive) that contains the partial ORF for the CT858.

[0146] SEQ ID NO:128 sets forth the DNA sequence of the clone E3-D10-4 (CT1 positive) that contains the partial ORF for pGP3-D, an ORF encoded on the plasmid pCHL1.

[0147] SEQ ID NO:129 sets forth the DNA sequence of the clone E3-G8-7 (CT1 positive) that contains the partial ORFs for the CT557 (LpdA) and CT558 (LipA).

[0148] SEQ ID NO:130 sets forth the DNA sequence of the clone E3-F11-32 (CT1 positive) that contains the partial ORF for pmpD (CT812).

[0149] SEQ ID NO:131 sets forth the DNA sequence of the clone E2-F8-5 (CT12 positive) that contains the complete ORF for the 15 kDa ORF (CT442) and a partial ORF for the 60 kDa ORF (CT443).

[0150] SEQ ID NO:132 sets forth the DNA sequence of the clone E2-G4-39 (CT12 positive) that contains the partial ORF for the 60 kDa ORF (CT443).

[0151] SEQ ID NO:133 sets forth the DNA sequence of the clone E9-D1-16 (CT10 positive) that contains the partial ORF for pmpH (CT872).

[0152] SEQ ID NO:134 sets forth the DNA sequence of the clone E3-F3-6 (CT1 positive) that contains the partial ORFs for the genes accB (CT123), L1 ribosomal (CT125) and S9 ribosomal (CT126).

[0153] SEQ ID NO:135 sets forth the DNA sequence of the clone E2-D4-70 (CT12 positive) that contains the partial ORF for the pmpC gene (CT414).

[0154] SEQ ID NO:136 sets forth the DNA sequence of the clone E5-A1-79 (CT1 positive) that contains the partial ORF for ydhO (CT127), a complete ORF for S9 ribosomal gene (CT126), a complete ORF for the L1 ribosomal gene (CT125) and a partial ORF for accC (CT124).

[0155] SEQ ID NO:137 sets forth the DNA sequence of the clone E1-F7-16 (CT12, CT3, and CT11 positive) that contains the partial ORF for the ftsH gene (CT841) and the entire ORF for the pnp gene (CT842).

[0156] SEQ ID NO:138 sets forth the DNA sequence of the clone E1-D8-62 (CT12 positive) that contains the partial ORFs for the ftsH gene (CT841) and for the pnp gene (CT842).

[0157] SEQ ID NO:139 sets forth the amino acid sequence for the serovar E protein CT875.

[0158] SEQ ID NO:140 sets forth the amino acid sequence for the serovar E protein CT622.

[0159] SEQ ID NO:141 sets forth the DNA sequence for the clone E8-C12-38, identified using the line CHH042 that contains the partial ORFs for sfhB (CT658) and CT659.

[0160] SEQ ID NO:142 sets forth the DNA sequence for the clone E1-D12-36, identified using the line CHH042 that contains the partial ORFs for mreB (CT709) (CT658) and pckA (CT710).

[0161] SEQ ID NO:143 sets forth the DNA sequence for the clone E8-D1-46, identified using the line CHH037 that contains the almost complete ORF for the pepA gene (CT045).

[0162] SEQ ID NO:144 sets forth the DNA sequence for the clone E10-A1-10, identified using the line CHH007 that contains the partial ORFs for yscU (CT091) and truB gene (CT094) as well as complete ORFs for ychF (CT092) and ribF (CT093).

[0163] SEQ ID NO:145 sets forth the DNA sequence for the clone E8-B12-80, identified using the line CHH037 that contains a partial ORF for the dag.sub.--2 gene (CT735), a short fragment of the SET domain protein (CT737), as well as a complete ORF for ybcL (CT736).

[0164] SEQ ID NO:146 sets forth the DNA sequence for the clone E2-A8-70, identified using the line CHH037 that contains partial ORFs for the mutS gene (CT792) and the dag.sub.--2 gene (CT735) as well as a complete ORF for the ybcL gene (CT736).

[0165] SEQ ID NO:147 sets forth the DNA sequence for the clone E1-C1-47, identified using the line CHH037 that contains the partial ORFs for the yael gene (CT461) and the prfB gene (CT459) as well as a complete ORF for the SWIB gene (CT460).

[0166] SEQ ID NO:148 sets forth the DNA sequence for the clone E8-G7-86, identified using the line CHH037 that contains partial ORFs for the mesJ gene (CT840) and the ftsH gene (CT841).

[0167] SEQ ID NO:149 sets forth the DNA sequence for the clone E3-E6-84, identified using the line CHH037 that contains partial ORFs for the pmpC gene (CT414) and the hypothetical protein CT611.

[0168] SEQ ID NO:150 sets for the DNA sequence for the clone E2-A11-49, identified using the patient line CHH042, that contains partial ORFs for the HAD superfamily (CT103) and the hypothetical protein CT105, as well as a complete ORF for fabI (CT104).

[0169] SEQ ID NO:151 sets for the DNA sequence for the clone E9-E6-4, identified using the patient line CHH042, it contains a complete ORF for the hypothetical protein CT659 and a partial ORF for gyrA-2 (CT660).

[0170] SEQ ID NO:152 sets for the DNA sequence for the clone E4-G8-49, identified using the patient line CHH042, it contains partial ORFs for the genes pckA (CT710) and mreB (CT709), as well as a partial ORF for the pGP2-D sequence derived from the plasmid.

[0171] SEQ ID NO:153 sets for the DNA sequence for the clone E10-A8-16, identified using the patient line CHH042, it contains partial ORFs for the genes rS3 (CT522) and rL3 (CT528), as well as complete ORFs for the genes rL22 (CT523), rS19 (CT524), rL2 (CT525), rL23 (CT526) and rL4 (CT527).

[0172] SEQ ID NO:154 sets for the DNA sequence for the clone E10-F12-58, identified using the patient line CHH042, that contains partial ORFs for the genes mhpA (CT148), rL16 (CT521), and rL22 (CT523) as well as complete ORFs for the genes rS3 (CT522), rL22 (CT523) and rS19 (CT524).

[0173] SEQ ID NO:155 sets for the DNA sequence for the clone E10-F12-42, identified using the patient line CHH042, that contains partial ORFs for the genes rS3 (CT522) and rL23 (CT526), as well as complete ORFs for the genes rL22 (CT523), rS19 (CT524) and rL2 (CT525).

[0174] SEQ ID NO:156 sets for the DNA sequence for the clone E2-C3-27, identified using the patient line CHH042, that contains partial ORFs for the genes rL16 (CT521) and rS19 (CT524), as well as complete ORFs for the genes rS3 (CT522) and rL22 (CT523).

[0175] SEQ ID NO:157 sets forth the DNA sequence for the clone E2-A11-49, identified using the patient CHH037, that contains partial ORFs for the ftsH gene (CT841), pGP7-D and pGP5-D, as well as a complete ORF for pGP6-D.

[0176] SEQ ID NO:158 sets forth a DNA sequence corresponding to the passenger domain of pmpI.

[0177] SEQ ID NO:159 sets forth a DNA sequence corresponding to the passenger domain of pmpH.

[0178] SEQ ID NO:160 sets forth a DNA sequence corresponding to the passenger domain of pmpG.

[0179] SEQ ID NO:161 sets forth a DNA sequence corresponding to the passenger domain of pmpF.

[0180] SEQ ID NO:162 sets forth a DNA sequence corresponding to the passenger domain of pmpE.

[0181] SEQ ID NO:163 sets forth a DNA sequence corresponding to the passenger domain of pmpD.

[0182] SEQ ID NO:164 sets forth a DNA sequence corresponding to the passenger domain of pmpC.

[0183] SEQ ID NO:165 sets forth a DNA sequence corresponding to the passenger domain of pmpB.

[0184] SEQ ID NO:166 sets forth a DNA sequence corresponding to the passenger domain of pmpA.

[0185] SEQ ID NO:167 sets forth an amino acid sequence corresponding to the passenger domain of pmpI.

[0186] SEQ ID NO:168 sets forth an amino acid sequence corresponding to the passenger domain of pmpH.

[0187] SEQ ID NO:169 sets forth an amino acid sequence corresponding to the passenger domain of pmpG.

[0188] SEQ ID NO:170 sets forth an amino acid sequence corresponding to the passenger domain of pmpF.

[0189] SEQ ID NO:171 sets forth an amino acid sequence corresponding to the passenger domain of pmpE.

[0190] SEQ ID NO:172 sets forth an amino acid sequence corresponding to the passenger domain of pmpD.

[0191] SEQ ID NO:173 sets forth an amino acid sequence corresponding to the passenger domain of pmpC.

[0192] SEQ ID NO:174 sets forth an amino acid sequence corresponding to the passenger domain of pmpB.

[0193] SEQ ID NO:175 sets forth an amino acid sequence corresponding to the passenger domain of pmpA.

DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

[0194] As noted above, the present invention is generally directed to compositions and methods for the diagnosis and treatment of Chlamydial infection. In one aspect, the compositions of the subject invention include polypeptides that comprise at least one immunogenic portion of a Chlamydia antigen, or a variant thereof.

[0195] In specific embodiments, the subject invention discloses polypeptides comprising an immunogenic portion of a Chlamydia antigen, wherein the Chlamydia antigen comprises an amino acid sequence encoded by a polynucleotide molecule including a sequence selected from the group consisting of (a) nucleotide sequences recited in SEQ ID NO:1-48, 114-121, 125-138, and 141-166 (b) the complements of said nucleotide sequences, and (c) variants of such sequences.

Polynucleotide Compositions

[0196] As used herein, the terms "DNA segment" and "polynucleotide" refer to a DNA molecule that has been isolated free of total genomic DNA of a particular species. Therefore, a DNA segment encoding a polypeptide refers to a DNA segment that contains one or more coding sequences yet is substantially isolated away from, or purified free from, total genomic DNA of the species from which the DNA segment is obtained. Included within the terms "DNA segment" and "polynucleotide" are DNA segments and smaller fragments of such segments, and also recombinant vectors, including, for example, plasmids, cosmids, phagemids, phage, viruses, and the like.

[0197] As will be understood by those skilled in the art, the DNA segments of this invention can include genomic sequences, extra-genomic and plasmid-encoded sequences and smaller engineered gene segments that express, or may be adapted to express, proteins, polypeptides, peptides and the like. Such segments may be naturally isolated, or modified synthetically by the hand of man.

[0198] "Isolated," as used herein, means that a polynucleotide is substantially away from other coding sequences, and that the DNA segment does not contain large portions of unrelated coding DNA, such as large chromosomal fragments or other functional genes or polypeptide coding regions. Of course, this refers to the DNA segment as originally isolated, and does not exclude genes or coding regions later added to the segment by the hand of man.

[0199] As will be recognized by the skilled artisan, polynucleotides may be single-stranded (coding or antisense) or double-stranded, and may be DNA (genomic, cDNA or synthetic) or RNA molecules. RNA molecules include HnRNA molecules, which contain introns and correspond to a DNA molecule in a one-to-one manner, and mRNA molecules, which do not contain introns. Additional coding or non-coding sequences may, but need not, be present within a polynucleotide of the present invention, and a polynucleotide may, but need not, be linked to other molecules and/or support materials.

[0200] Polynucleotides may comprise a native Chlamydia sequence or may comprise a variant, or a biological or antigenic functional equivalent of such a sequence. Polynucleotide variants may contain one or more substitutions, additions, deletions and/or insertions, as further described below, preferably such that the immunogenicity of the encoded polypeptide is not diminished, relative to a native Chlamydia protein. The effect on the immunogenicity of the encoded polypeptide may generally be assessed as described herein. The term "variants" also encompasses homologous genes of xenogenic origin.

[0201] When comparing polynucleotide or polypeptide sequences, two sequences are said to be "identical" if the sequence of nucleotides or amino acids in the two sequences is the same when aligned for maximum correspondence, as described below. Comparisons between two sequences are typically performed by comparing the sequences over a comparison window to identify and compare local regions of sequence similarity. A "comparison window" as used herein, refers to a segment of at least about 20 contiguous positions, usually 30 to about 75, 40 to about 50, in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.

[0202] Optimal alignment of sequences for comparison may be conducted using the Megalign program in the Lasergene suite of bioinformatics software (DNASTAR, Inc., Madison, Wis.), using default parameters. This program embodies several alignment schemes described in the following references: Dayhoff, M. O. (1978) A model of evolutionary change in proteins--Matrices for detecting distant relationships. In Dayhoff, M. O. (ed.) Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, Washington D.C. Vol. 5, Suppl. 3, pp. 345-358; Hein J. (1990) Unified Approach to Alignment and Phylogenes pp. 626-645 Methods in Enzymology vol. 183, Academic Press, Inc., San Diego, Calif.; Higgins, D. G. and Sharp, P. M. (1989) CABIOS 5:151-153; Myers, E. W. and Muller W. (1988) CABIOS 4:11-17; Robinson, E. D. (1971) Comb. Theor 11:105; Santou, N. Nes, M. (1987) Mol. Biol. Evol. 4:406-425; Sneath, P. H. A. and Sokal, R. R. (1973) Numerical Taxonomy--the Principles and Practice of Numerical Taxonomy, Freeman Press, San Francisco, Calif.; Wilbur, W. J. and Lipman, D. J. (1983) Proc. Natl. Acad., Sci. USA 80:726-730.

[0203] Alternatively, optimal alignment of sequences for comparison may be conducted by the local identity algorithm of Smith and Waterman (1981) Add. APL. Math 2:482, by the identity alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48:443, by the search for similarity methods of Pearson and Lipman (1988) Proc. Natl. Acad. Sci. USA 85: 2444, by computerized implementations of these algorithms (GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG), 575 Science Dr., Madison, Wis.), or by inspection.

[0204] One preferred example of algorithms that are suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al. (1977) Nucl. Acids Res. 25:3389-3402 and Altschul et al. (1990) J. Mol. Biol. 215:403-410, respectively. BLAST and BLAST 2.0 can be used, for example with the parameters described herein, to determine percent sequence identity for the polynucleotides and polypeptides of the invention. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information. In one illustrative example, cumulative scores can be calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). For amino acid sequences, a scoring matrix can be used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, and expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff and Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915) alignments, (B) of 50, expectation (E) of 10, M=5, N=-4 and a comparison of both strands.

[0205] Preferably, the "percentage of sequence identity" is determined by comparing two optimally aligned sequences over a window of comparison of at least 20 positions, wherein the portion of the polynucleotide or polypeptide sequence in the comparison window may comprise additions or deletions (i.e., gaps) of 20 percent or less, usually 5 to 15 percent, or 10 to 12 percent, as compared to the reference sequences (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid bases or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the reference sequence (i.e., the window size) and multiplying the results by 100 to yield the percentage of sequence identity.

[0206] Therefore, the present invention encompasses polynucleotide and polypeptide sequences having substantial identity to the sequences disclosed herein, for example those comprising at least 50% sequence identity, preferably at least 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% or higher, sequence identity compared to a polynucleotide or polypeptide sequence of this invention using the methods described herein, (e.g., BLAST analysis using standard parameters, as described below). One skilled in this art will recognize that these values can be appropriately adjusted to determine corresponding identity of proteins encoded by two nucleotide sequences by taking into account codon degeneracy, amino acid similarity, reading frame positioning and the like.

[0207] In additional embodiments, the present invention provides isolated polynucleotides and polypeptides comprising various lengths of contiguous stretches of sequence identical to or complementary to one or more of the sequences disclosed herein. For example, polynucleotides are provided by this invention that comprise at least about 15, 20, 30, 40, 50, 75, 100, 150, 200, 300, 400, 500 or 1000 or more contiguous nucleotides of one or more of the sequences disclosed herein as well as all intermediate lengths there between. It will be readily understood that "intermediate lengths", in this context, means any length between the quoted values, such as 16, 17, 18, 19, etc.; 21, 22, 23, etc.; 30, 31, 32, etc.; 50, 51, 52, 53, etc.; 100, 101, 102, 103, etc.; 150, 151, 152, 153, etc.; including all integers through 200-500; 500-1,000, and the like.

[0208] The polynucleotides of the present invention, or fragments thereof, regardless of the length of the coding sequence itself, may be combined with other DNA sequences, such as promoters, polyadenylation signals, additional restriction enzyme sites, multiple cloning sites, other coding segments, and the like, such that their overall length may vary considerably. It is therefore contemplated that a nucleic acid fragment of almost any length may be employed, with the total length preferably being limited by the ease of preparation and use in the intended recombinant DNA protocol. For example, illustrative DNA segments with total lengths of about 10,000, about 5000, about 3000, about 2,000, about 1,000, about 500, about 200, about 100, about 50 base pairs in length, and the like, (including all intermediate lengths) are contemplated to be useful in many implementations of this invention.

[0209] In other embodiments, the present invention is directed to polynucleotides that are capable of hybridizing under moderately stringent conditions to a polynucleotide sequence provided herein, or a fragment thereof, or a complementary sequence thereof. Hybridization techniques are well known in the art of molecular biology. For purposes of illustration, suitable moderately stringent conditions for testing the hybridization of a polynucleotide of this invention with other polynucleotides include prewashing in a solution of 5.times.SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50.degree. C.-65.degree. C., 5.times.SSC, overnight; followed by washing twice at 65.degree. C. for 20 minutes with each of 2.times., 0.5.times. and 0.2.times.SSC containing 0.1% SDS.

[0210] Moreover, it will be appreciated by those of ordinary skill in the art that, as a result of the degeneracy of the genetic code, there are many nucleotide sequences that encode a polypeptide as described herein. Some of these polynucleotides bear minimal homology to the nucleotide sequence of any native gene. Nonetheless, polynucleotides that vary due to differences in codon usage are specifically contemplated by the present invention. Further, alleles of the genes comprising the polynucleotide sequences provided herein are within the scope of the present invention. Alleles are endogenous genes that are altered as a result of one or more mutations, such as deletions, additions and/or substitutions of nucleotides. The resulting mRNA and protein may, but need not, have an altered structure or function. Alleles may be identified using standard techniques (such as hybridization, amplification and/or database sequence comparison).

Probes and Primers

[0211] In other embodiments of the present invention, the polynucleotide sequences provided herein can be advantageously used as probes or primers for nucleic acid hybridization. As such, it is contemplated that nucleic acid segments that comprise a sequence region of at least about 15 nucleotide long contiguous sequence that has the same sequence as, or is complementary to, a 15 nucleotide long contiguous sequence disclosed herein will find particular utility. Longer contiguous identical or complementary sequences, e.g., those of about 20, 30, 40, 50, 100, 200, 500, 1000 (including all intermediate lengths) and even up to full length sequences will also be of use in certain embodiments.

[0212] The ability of such nucleic acid probes to specifically hybridize to a sequence of interest will enable them to be of use in detecting the presence of complementary sequences in a given sample. However, other uses are also envisioned, such as the use of the sequence information for the preparation of mutant species primers, or primers for use in preparing other genetic constructions.

[0213] Polynucleotide molecules having sequence regions consisting of contiguous nucleotide stretches of 10-14, 15-20, 30, 50, or even of 100-200 nucleotides or so (including intermediate lengths as well), identical or complementary to a polynucleotide sequence disclosed herein, are particularly contemplated as hybridization probes for use in, e.g., Southern and Northern blotting. This would allow a gene product, or fragment thereof, to be analyzed, both in diverse cell types and also in various bacterial cells. The total size of fragment, as well as the size of the complementary stretch(es), will ultimately depend on the intended use or application of the particular nucleic acid segment. Smaller fragments will generally find use in hybridization embodiments, wherein the length of the contiguous complementary region may be varied, such as between about 15 and about 100 nucleotides, but larger contiguous complementarity stretches may be used, according to the length complementary sequences one wishes to detect.

[0214] The use of a hybridization probe of about 15-25 nucleotides in length allows the formation of a duplex molecule that is both stable and selective. Molecules having contiguous complementary sequences over stretches greater than 15 bases in length are generally preferred, though, in order to increase stability and selectivity of the hybrid, and thereby improve the quality and degree of specific hybrid molecules obtained. One will generally prefer to design nucleic acid molecules having gene-complementary stretches of 15 to 25 contiguous nucleotides, or even longer where desired.

[0215] Hybridization probes may be selected from any portion of any of the sequences disclosed herein. All that is required is to review the sequence set forth in SEQ ID NO:1-48, 114-121, 125-138, and 141-166, or to any continuous portion of the sequence, from about 15-25 nucleotides in length up to and including the full length sequence, that one wishes to utilize as a probe or primer. The choice of probe and primer sequences may be governed by various factors. For example, one may wish to employ primers from towards the termini of the total sequence.

[0216] Small polynucleotide segments or fragments may be readily prepared by, for example, directly synthesizing the fragment by chemical means, as is commonly practiced using an automated oligonucleotide synthesizer. Also, fragments may be obtained by application of nucleic acid reproduction technology, such as the PCR.TM. technology of U.S. Pat. No. 4,683,202 (incorporated herein by reference), by introducing selected sequences into recombinant vectors for recombinant production, and by other recombinant DNA techniques generally known to those of skill in the art of molecular biology.

[0217] The nucleotide sequences of the invention may be used for their ability to selectively form duplex molecules with complementary stretches of the entire gene or gene fragments of interest. Depending on the application envisioned, one will typically desire to employ varying conditions of hybridization to achieve varying degrees of selectivity of probe towards target sequence. For applications requiring high selectivity, one will typically desire to employ relatively stringent conditions to form the hybrids, e.g., one will select relatively low salt and/or high temperature conditions, such as provided by a salt concentration of from about 0.02 M to about 0.15 M salt at temperatures of from about 50.degree. C. to about 70.degree. C. Such selective conditions tolerate little, if any, mismatch between the probe and the template or target strand, and would be particularly suitable for isolating related sequences.

[0218] Of course, for some applications, for example, where one desires to prepare mutants employing a mutant primer strand hybridized to an underlying template, less stringent (reduced stringency) hybridization conditions will typically be needed in order to allow formation of the heteroduplex. In these circumstances, one may desire to employ salt conditions such as those of from about 0.15 M to about 0.9 M salt, at temperatures ranging from about 20.degree. C. to about 55.degree. C. Cross-hybridizing species can thereby be readily identified as positively hybridizing signals with respect to control hybridizations. In any case, it is generally appreciated that conditions can be rendered more stringent by the addition of increasing amounts of formamide, which serves to destabilize the hybrid duplex in the same manner as increased temperature. Thus, hybridization conditions can be readily manipulated, and thus will generally be a method of choice depending on the desired results.

Polynucleotide Identification and Characterization

[0219] Polynucleotides may be identified, prepared and/or manipulated using any of a variety of well established techniques. For example, a polynucleotide may be identified, by screening a microarray of cDNAs for Chlamydia expression. Such screens may be performed, for example, using a Synteni microarray (Palo Alto, Calif.) according to the manufacturer's instructions (and essentially as described by Schena et al., Proc. Natl. Acad. Sci. USA 93:10614-10619, 1996 and Heller et al., Proc. Natl. Acad. Sci. USA 94:2150-2155, 1997). Alternatively, polynucleotides may be amplified from cDNA prepared from cells expressing the proteins described herein. Such polynucleotides may be amplified via polymerase chain reaction (PCR). For this approach, sequence-specific primers may be designed based on the sequences provided herein, and may be purchased or synthesized.

[0220] An amplified portion of a polynucleotide of the present invention may be used to isolate a full length gene from a suitable library (e.g., Chlamydia cDNA library) using well known techniques. Within such techniques, a library (cDNA or genomic) is screened using one or more polynucleotide probes or primers suitable for amplification. Preferably, a library is size-selected to include larger molecules. Random primed libraries may also be preferred for identifying 5' and upstream regions of genes. Genomic libraries are preferred for obtaining introns and extending 5' sequences.

[0221] For hybridization techniques, a partial sequence may be labeled (e.g., by nick-translation or end-labeling with .sup.32P) using well known techniques. A bacterial or bacteriophage library is then generally screened by hybridizing filters containing denatured bacterial colonies (or lawns containing phage plaques) with the labeled probe (see Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, Cold Spring Harbor, N.Y., 1989). Hybridizing colonies or plaques are selected and expanded, and the DNA is isolated for further analysis. cDNA clones may be analyzed to determine the amount of additional sequence by, for example, PCR using a primer from the partial sequence and a primer from the vector. Restriction maps and partial sequences may be generated to identify one or more overlapping clones. The complete sequence may then be determined using standard techniques, which may involve generating a series of deletion clones. The resulting overlapping sequences can then assembled into a single contiguous sequence. A full length cDNA molecule can be generated by ligating suitable fragments, using well known techniques.

[0222] Alternatively, there are numerous amplification techniques for obtaining a full length coding sequence from a partial cDNA sequence. Within such techniques, amplification is generally performed via PCR. Any of a variety of commercially available kits may be used to perform the amplification step. Primers may be designed using, for example, software well known in the art. Primers are preferably 22-30 nucleotides in length, have a GC content of at least 50% and anneal to the target sequence at temperatures of about 68.degree. C. to 72.degree. C. The amplified region may be sequenced as described above, and overlapping sequences assembled into a contiguous sequence.

[0223] One such amplification technique is inverse PCR (see Triglia et al., Nucl. Acids Res. 16:8186, 1988), which uses restriction enzymes to generate a fragment in the known region of the gene. The fragment is then circularized by intramolecular ligation and used as a template for PCR with divergent primers derived from the known region. Within an alternative approach, sequences adjacent to a partial sequence may be retrieved by amplification with a primer to a linker sequence and a primer specific to a known region. The amplified sequences are typically subjected to a second round of amplification with the same linker primer and a second primer specific to the known region. A variation on this procedure, which employs two primers that initiate extension in opposite directions from the known sequence, is described in WO 96/38591. Another such technique is known as "rapid amplification of cDNA ends" or RACE. This technique involves the use of an internal primer and an external primer, which hybridizes to a polyA region or vector sequence, to identify sequences that are 5' and 3' of a known sequence. Additional techniques include capture PCR (Lagerstrom et al., PCR Methods Applic. 1:111-19, 1991) and walking PCR (Parker et al., Nucl. Acids. Res. 19:3055-60, 1991). Other methods employing amplification may also be employed to obtain a full length cDNA sequence.

[0224] In certain instances, it is possible to obtain a full length cDNA sequence by analysis of sequences provided in an expressed sequence tag (EST) database, such as that available from GenBank. Searches for overlapping ESTs may generally be performed using well known programs (e.g., NCBI BLAST searches), and such ESTs may be used to generate a contiguous full length sequence. Full length DNA sequences may also be obtained by analysis of genomic fragments.

Polynucleotide Expression in Host Cells

[0225] In other embodiments of the invention, polynucleotide sequences or fragments thereof which encode polypeptides of the invention, or fusion proteins or functional equivalents thereof, may be used in recombinant DNA molecules to direct expression of a polypeptide in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences that encode substantially the same or a functionally equivalent amino acid sequence may be produced and these sequences may be used to clone and express a given polypeptide.

[0226] As will be understood by those of skill in the art, it may be advantageous in some instances to produce polypeptide-encoding nucleotide sequences possessing non-naturally occurring codons. For example, codons preferred by a particular prokaryotic or eukaryotic host can be selected to increase the rate of protein expression or to produce a recombinant RNA transcript having desirable properties, such as a half-life which is longer than that of a transcript generated from the naturally occurring sequence.

[0227] Moreover, the polynucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter polypeptide encoding sequences for a variety of reasons, including but not limited to, alterations which modify the cloning, processing, and/or expression of the gene product. For example, DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. In addition, site-directed mutagenesis may be used to insert new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, or introduce mutations, and so forth.

[0228] In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences may be ligated to a heterologous sequence to encode a fusion protein. For example, to screen peptide libraries for inhibitors of polypeptide activity, it may be useful to encode a chimeric protein that can be recognized by a commercially available antibody. A fusion protein may also be engineered to contain a cleavage site located between the polypeptide-encoding sequence and the heterologous protein sequence, so that the polypeptide may be cleaved and purified away from the heterologous moiety.

[0229] Sequences encoding a desired polypeptide may be synthesized, in whole or in part, using chemical methods well known in the art (see Caruthers, M. H. et al. (1980) Nucl. Acids Res. Symp. Ser. 215-223, Horn, T. et al. (1980) Nucl. Acids Res. Symp. Ser. 225-232). Alternatively, the protein itself may be produced using chemical methods to synthesize the amino acid sequence of a polypeptide, or a portion thereof. For example, peptide synthesis can be performed using various solid-phase techniques (Roberge, J. Y. et al. (1995) Science 269:202-204) and automated synthesis may be achieved, for example, using the ABI 431A Peptide Synthesizer (Perkin Elmer, Palo Alto, Calif.).

[0230] A newly synthesized peptide may be substantially purified by preparative high performance liquid chromatography (e.g., Creighton, T. (1983) Proteins, Structures and Molecular Principles, WH Freeman and Co., New York, N.Y.) or other comparable techniques available in the art. The composition of the synthetic peptides may be confirmed by amino acid analysis or sequencing (e.g., the Edman degradation procedure). Additionally, the amino acid sequence of a polypeptide, or any part thereof, may be altered during direct synthesis and/or combined using chemical methods with sequences from other proteins, or any part thereof, to produce a variant polypeptide.

[0231] In order to express a desired polypeptide, the nucleotide sequences encoding the polypeptide, or functional equivalents, may be inserted into appropriate expression vector, i.e., a vector which contains the necessary elements for the transcription and translation of the inserted coding sequence. Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding a polypeptide of interest and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. Such techniques are described in Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview, N.Y., and Ausubel, F. M. et al. (1989) Current Protocols in Molecular Biology, John Wiley & Sons, New York. N.Y.

[0232] A variety of expression vector/host systems may be utilized to contain and express polynucleotide sequences. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with virus expression vectors (e.g., baculovirus); plant cell systems transformed with virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems.

[0233] The "control elements" or "regulatory sequences" present in an expression vector are those non-translated regions of the vector--enhancers, promoters, 5' and 3' untranslated regions--which interact with host cellular proteins to carry out transcription and translation. Such elements may vary in their strength and specificity. Depending on the vector system and host utilized, any number of suitable transcription and translation elements, including constitutive and inducible promoters, may be used. For example, when cloning in bacterial systems, inducible promoters such as the hybrid lacZ promoter of the PBLUESCRIPT phagemid (Stratagene, La Jolla, Calif.) or PSPORT1 plasmid (Gibco BRL, Gaithersburg, Md.) and the like may be used. In mammalian cell systems, promoters from mammalian genes or from mammalian viruses are generally preferred. If it is necessary to generate a cell line that contains multiple copies of the sequence encoding a polypeptide, vectors based on SV40 or EBV may be advantageously used with an appropriate selectable marker.

[0234] In bacterial systems, a number of expression vectors may be selected depending upon the use intended for the expressed polypeptide. For example, when large quantities are needed, for example for the induction of antibodies, vectors which direct high level expression of fusion proteins that are readily purified may be used. Such vectors include, but are not limited to, the multifunctional E. coli cloning and expression vectors such as BLUESCRIPT (Stratagene), in which the sequence encoding the polypeptide of interest may be ligated into the vector in frame with sequences for the amino-terminal Met and the subsequent 7 residues of .beta.-galactosidase so that a hybrid protein is produced; pIN vectors (Van Heeke, G. and S. M. Schuster (1989) J. Biol. Chem. 264:5503-5509); and the like. PGEX Vectors (Promega, Madison, Wis.) may also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. Proteins made in such systems may be designed to include heparin, thrombin, or factor XA protease cleavage sites so that the cloned polypeptide of interest can be released from the GST moiety at will.

[0235] In the yeast, Saccharomyces cerevisiae, a number of vectors containing constitutive or inducible promoters such as alpha factor, alcohol oxidase, and PGH may be used. For reviews, see Ausubel et al. (supra) and Grant et al. (1987) Methods Enzymol. 153:516-544.

[0236] In cases where plant expression vectors are used, the expression of sequences encoding polypeptides may be driven by any of a number of promoters. For example, viral promoters such as the 35S and 19S promoters of CaMV may be used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311. Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used (Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105). These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. Such techniques are described in a number of generally available reviews (see, for example, Hobbs, S. or Murry, L. E. in McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York, N.Y.; pp. 191-196).

[0237] An insect system may also be used to express a polypeptide of interest. For example, in one such system, Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes in Spodoptera frugiperda cells or in Trichoplusia larvae. The sequences encoding the polypeptide may be cloned into a non-essential region of the virus, such as the polyhedrin gene, and placed under control of the polyhedrin promoter. Successful insertion of the polypeptide-encoding sequence will render the polyhedrin gene inactive and produce recombinant virus lacking coat protein. The recombinant viruses may then be used to infect, for example, S. frugiperda cells or Trichoplusia larvae in which the polypeptide of interest may be expressed (Engelhard, E. K. et al. (1994) Proc. Natl. Acad. Sci. 91:3224-3227).

[0238] In mammalian host cells, a number of viral-based expression systems are generally available. For example, in cases where an adenovirus is used as an expression vector, sequences encoding a polypeptide of interest may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain a viable virus which is capable of expressing the polypeptide in infected host cells (Logan, J. and Shenk, T. (1984) Proc. Natl. Acad. Sci. 81:3655-3659). In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells.

[0239] Specific initiation signals may also be used to achieve more efficient translation of sequences encoding a polypeptide of interest. Such signals include the ATG initiation codon and adjacent sequences. In cases where sequences encoding the polypeptide, its initiation codon, and upstream sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a portion thereof, is inserted, exogenous translational control signals including the ATG initiation codon should be provided. Furthermore, the initiation codon should be in the correct reading frame to ensure translation of the entire insert. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers which are appropriate for the particular cell system which is used, such as those described in the literature (Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162).

[0240] In addition, a host cell strain may be chosen for its ability to modulate the expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" form of the protein may also be used to facilitate correct insertion, folding and/or function. Different host cells such as CHO, HeLa, MDCK, HEK293, and WI38, which have specific cellular machinery and characteristic mechanisms for such post-translational activities, may be chosen to ensure the correct modification and processing of the foreign protein.

[0241] For long-term, high-yield production of recombinant proteins, stable expression is generally preferred. For example, cell lines which stably express a polynucleotide of interest may be transformed using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for 1-2 days in an enriched media before they are switched to selective media. The purpose of the selectable marker is to confer resistance to selection, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be proliferated using tissue culture techniques appropriate to the cell type.

[0242] Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase (Wigler, M. et al. (1977) Cell 11:223-32) and adenine phosphoribosyltransferase (Lowy, I. et al. (1990) Cell 22:817-23) genes which can be employed in tk.sup.- or aprt.sup.-cells, respectively. Also, antimetabolite, antibiotic or herbicide resistance can be used as the basis for selection; for example, dhfr which confers resistance to methotrexate (Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. 77:3567-70); npt, which confers resistance to the aminoglycosides, neomycin and G-418 (Colbere-Garapin, F. et al (1981) J. Mol. Biol. 150:1-14); and als or pat, which confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively (Murry, supra). Additional selectable genes have been described, for example, trpB, which allows cells to utilize indole in place of tryptophan, or hisD, which allows cells to utilize histinol in place of histidine (Hartman, S. C. and R. C. Mulligan (1988) Proc. Natl. Acad. Sci. 85:8047-51). Recently, the use of visible markers has gained popularity with such markers as anthocyanins, beta-glucuronidase and its substrate GUS, and luciferase and its substrate luciferin, being widely used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system (Rhodes, C. A. et al. (1995) Methods Mol. Biol. 55:121-131).

[0243] Although the presence/absence of marker gene expression suggests that the gene of interest is also present, its presence and expression may need to be confirmed. For example, if the sequence encoding a polypeptide is inserted within a marker gene sequence, recombinant cells containing sequences can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a polypeptide-encoding sequence under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.

[0244] Alternatively, host cells which contain and express a desired polynucleotide sequence may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein.

[0245] A variety of protocols for detecting and measuring the expression of polynucleotide-encoded products, using either polyclonal or monoclonal antibodies specific for the product are known in the art. Examples include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on a given polypeptide may be preferred for some applications, but a competitive binding assay may also be employed. These and other assays are described, among other places, in Hampton, R. et al. (1990; Serological Methods, a Laboratory Manual, APS Press, St Paul. Minn.) and Maddox, D. E. et al. (1983; J. Exp. Med. 158:1211-1216).

[0246] A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides include oligolabeling, nick translation, end-labeling or PCR amplification using a labeled nucleotide. Alternatively, the sequences, or any portions thereof may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits. Suitable reporter molecules or labels, which may be used include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

[0247] Host cells transformed with a polynucleotide sequence of interest may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a recombinant cell may be secreted or contained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides of the invention may be designed to contain signal sequences which direct secretion of the encoded polypeptide through a prokaryotic or eukaryotic cell membrane. Other recombinant constructions may be used to join sequences encoding a polypeptide of interest to nucleotide sequence encoding a polypeptide domain which will facilitate purification of soluble proteins. Such purification facilitating domains include, but are not limited to, metal chelating peptides such as histidine-tryptophan modules that allow purification on immobilized metals, protein A domains that allow purification on immobilized immunoglobulin, and the domain utilized in the FLAGS extension/affinity purification system (Immunex Corp., Seattle, Wash.). The inclusion of cleavable linker sequences such as those specific for Factor XA or enterokinase (Invitrogen. San Diego, Calif.) between the purification domain and the encoded polypeptide may be used to facilitate purification. One such expression vector provides for expression of a fusion protein containing a polypeptide of interest and a nucleic acid encoding 6 histidine residues preceding a thioredoxin or an enterokinase cleavage site. The histidine residues facilitate purification on IMIAC (immobilized metal ion affinity chromatography) as described in Porath, J. et al. (1992, Prot Exp. Purif. 3:263-281) while the enterokinase cleavage site provides a means for purifying the desired polypeptide from the fusion protein. A discussion of vectors which contain fusion proteins is provided in Kroll, D. J. et al. (1993; DNA Cell Biol. 12:441-453).

[0248] In addition to recombinant production methods, polypeptides of the invention, and fragments thereof, may be produced by direct peptide synthesis using solid-phase techniques (Merrifield J. (1963) J. Am. Chem. Soc. 85:2149-2154). Protein synthesis may be performed using manual techniques or by automation. Automated synthesis may be achieved, for example, using Applied Biosystems 431A Peptide Synthesizer (Perkin Elmer). Alternatively, various fragments may be chemically synthesized separately and combined using chemical methods to produce the full length molecule.

Site-Specific Mutagenesis

[0249] Site-specific mutagenesis is a technique useful in the preparation of individual peptides, or biologically functional equivalent polypeptides, through specific mutagenesis of the underlying polynucleotides that encode them. The technique, well-known to those of skill in the art, further provides a ready ability to prepare and test sequence variants, for example, incorporating one or more of the foregoing considerations, by introducing one or more nucleotide sequence changes into the DNA. Site-specific mutagenesis allows the production of mutants through the use of specific oligonucleotide sequences which encode the DNA sequence of the desired mutation, as well as a sufficient number of adjacent nucleotides, to provide a primer sequence of sufficient size and sequence complexity to form a stable duplex on both sides of the deletion junction being traversed. Mutations may be employed in a selected polynucleotide sequence to improve, alter, decrease, modify, or otherwise change the properties of the polynucleotide itself, and/or alter the properties, activity, composition, stability, or primary sequence of the encoded polypeptide.

[0250] In certain embodiments of the present invention, the inventors contemplate the mutagenesis of the disclosed polynucleotide sequences to alter one or more properties of the encoded polypeptide, such as the antigenicity of a polypeptide vaccine. The techniques of site-specific mutagenesis are well-known in the art, and are widely used to create variants of both polypeptides and polynucleotides. For example, site-specific mutagenesis is often used to alter a specific portion of a DNA molecule. In such embodiments, a primer comprising typically about 14 to about 25 nucleotides or so in length is employed, with about 5 to about 10 residues on both sides of the junction of the sequence being altered.

[0251] As will be appreciated by those of skill in the art, site-specific mutagenesis techniques have often employed a phage vector that exists in both a single stranded and double stranded form. Typical vectors useful in site-directed mutagenesis include vectors such as the M13 phage. These phage are readily commercially-available and their use is generally well-known to those skilled in the art. Double-stranded plasmids are also routinely employed in site directed mutagenesis that eliminates the step of transferring the gene of interest from a plasmid to a phage.

[0252] In general, site-directed mutagenesis in accordance herewith is performed by first obtaining a single-stranded vector or melting apart of two strands of a double-stranded vector that includes within its sequence a DNA sequence that encodes the desired peptide. An oligonucleotide primer bearing the desired mutated sequence is prepared, generally synthetically. This primer is then annealed with the single-stranded vector, and subjected to DNA polymerizing enzymes such as E. coli polymerase I Klenow fragment, in order to complete the synthesis of the mutation-bearing strand. Thus, a heteroduplex is formed wherein one strand encodes the original non-mutated sequence and the second strand bears the desired mutation. This heteroduplex vector is then used to transform appropriate cells, such as E. coli cells, and clones are selected which include recombinant vectors bearing the mutated sequence arrangement.

[0253] The preparation of sequence variants of the selected peptide-encoding DNA segments using site-directed mutagenesis provides a means of producing potentially useful species and is not meant to be limiting as there are other ways in which sequence variants of peptides and the DNA sequences encoding them may be obtained. For example, recombinant vectors encoding the desired peptide sequence may be treated with mutagenic agents, such as hydroxylamine, to obtain sequence variants. Specific details regarding these methods and protocols are found in the teachings of Maloy et al., 1994; Segal, 1976; Prokop and Bajpai, 1991; Kuby, 1994; and Maniatis et al., 1982, each incorporated herein by reference, for that purpose.

[0254] As used herein, the term "oligonucleotide directed mutagenesis procedure" refers to template-dependent processes and vector-mediated propagation which result in an increase in the concentration of a specific nucleic acid molecule relative to its initial concentration, or in an increase in the concentration of a detectable signal, such as amplification. As used herein, the term "oligonucleotide directed mutagenesis procedure" is intended to refer to a process that involves the template-dependent extension of a primer molecule. The term template dependent process refers to nucleic acid synthesis of an RNA or a DNA molecule wherein the sequence of the newly synthesized strand of nucleic acid is dictated by the well-known rules of complementary base pairing (see, for example, Watson, 1987). Typically, vector mediated methodologies involve the introduction of the nucleic acid fragment into a DNA or RNA vector, the clonal amplification of the vector, and the recovery of the amplified nucleic acid fragment. Examples of such methodologies are provided by U.S. Pat. No. 4,237,224, specifically incorporated herein by reference in its entirety.

Polynucleotide Amplification Techniques

[0255] A number of template dependent processes are available to amplify the target sequences of interest present in a sample. One of the best known amplification methods is the polymerase chain reaction (PCR.TM.) which is described in detail in U.S. Pat. Nos. 4,683,195, 4,683,202 and 4,800,159, each of which is incorporated herein by reference in its entirety. Briefly, in PCR.TM., two primer sequences are prepared which are complementary to regions on opposite complementary strands of the target sequence. An excess of deoxynucleoside triphosphates is added to a reaction mixture along with a DNA polymerase (e.g., Taq polymerase). If the target sequence is present in a sample, the primers will bind to the target and the polymerase will cause the primers to be extended along the target sequence by adding on nucleotides. By raising and lowering the temperature of the reaction mixture, the extended primers will dissociate from the target to form reaction products, excess primers will bind to the target and to the reaction product and the process is repeated. Preferably reverse transcription and PCR.TM. amplification procedure may be performed in order to quantify the amount of mRNA amplified. Polymerase chain reaction methodologies are well known in the art.

[0256] Another method for amplification is the ligase chain reaction (referred to as LCR), disclosed in Eur. Pat. Appl. Publ. No. 320,308 (specifically incorporated herein by reference in its entirety). In LCR, two complementary probe pairs are prepared, and in the presence of the target sequence, each pair will bind to opposite complementary strands of the target such that they abut. In the presence of a ligase, the two probe pairs will link to form a single unit. By temperature cycling, as in PCR.TM., bound ligated units dissociate from the target and then serve as "target sequences" for ligation of excess probe pairs. U.S. Pat. No. 4,883,750, incorporated herein by reference in its entirety, describes an alternative method of amplification similar to LCR for binding probe pairs to a target sequence.

[0257] Qbeta Replicase, described in PCT Intl. Pat. Appl. Publ. No. PCT/US87/00880, incorporated herein by reference in its entirety, may also be used as still another amplification method in the present invention. In this method, a replicative sequence of RNA that has a region complementary to that of a target is added to a sample in the presence of an RNA polymerase. The polymerase will copy the replicative sequence that can then be detected.

[0258] An isothermal amplification method, in which restriction endonucleases and ligases are used to achieve the amplification of target molecules that contain nucleotide 5'-[.alpha.-thio]triphosphates in one strand of a restriction site (Walker et al., 1992, incorporated herein by reference in its entirety), may also be useful in the amplification of nucleic acids in the present invention.

[0259] Strand Displacement Amplification (SDA) is another method of carrying out isothermal amplification of nucleic acids which involves multiple rounds of strand displacement and synthesis, i.e. nick translation. A similar method, called Repair Chain Reaction (RCR) is another method of amplification which may be useful in the present invention and is involves annealing several probes throughout a region targeted for amplification, followed by a repair reaction in which only two of the four bases are present. The other two bases can be added as biotinylated derivatives for easy detection. A similar approach is used in SDA.

[0260] Sequences can also be detected using a cyclic probe reaction (CPR). In CPR, a probe having a 3' and 5' sequences of non-target DNA and an internal or "middle" sequence of the target protein specific RNA is hybridized to DNA which is present in a sample. Upon hybridization, the reaction is treated with RNaseH, and the products of the probe are identified as distinctive products by generating a signal that is released after digestion. The original template is annealed to another cycling probe and the reaction is repeated. Thus, CPR involves amplifying a signal generated by hybridization of a probe to a target gene specific expressed nucleic acid.

[0261] Still other amplification methods described in Great Britain Pat. Appl. No. 2 202 328, and in PCT Intl. Pat. Appl. Publ. No. PCT/US89/01025, each of which is incorporated herein by reference in its entirety, may be used in accordance with the present invention. In the former application, "modified" primers are used in a PCR-like, template and enzyme dependent synthesis. The primers may be modified by labeling with a capture moiety (e.g., biotin) and/or a detector moiety (e.g., enzyme). In the latter application, an excess of labeled probes is added to a sample. In the presence of the target sequence, the probe binds and is cleaved catalytically. After cleavage, the target sequence is released intact to be bound by excess probe. Cleavage of the labeled probe signals the presence of the target sequence.

[0262] Other nucleic acid amplification procedures include transcription-based amplification systems (TAS) (Kwoh et al., 1989; PCT Intl. Pat. Appl. Publ. No. WO 88/10315, incorporated herein by reference in its entirety), including nucleic acid sequence based amplification (NASBA) and 3SR. In NASBA, the nucleic acids can be prepared for amplification by standard phenol/chloroform extraction, heat denaturation of a sample, treatment with lysis buffer and minispin columns for isolation of DNA and RNA or guanidinium chloride extraction of RNA. These amplification techniques involve annealing a primer that has sequences specific to the target sequence. Following polymerization, DNA/RNA hybrids are digested with RNase H while double stranded DNA molecules are heat-denatured again. In either case the single stranded DNA is made fully double stranded by addition of second target-specific primer, followed by polymerization. The double stranded DNA molecules are then multiply transcribed by a polymerase such as T7 or SP6. In an isothermal cyclic reaction, the RNAs are reverse transcribed into DNA, and transcribed once again with a polymerase such as T7 or SP6. The resulting products, whether truncated or complete, indicate target-specific sequences.

[0263] Eur. Pat. Appl. Publ. No. 329,822, incorporated herein by reference in its entirety, disclose a nucleic acid amplification process involving cyclically synthesizing single-stranded RNA ("ssRNA"), ssDNA, and double-stranded DNA (dsDNA), which may be used in accordance with the present invention. The ssRNA is a first template for a first primer oligonucleotide, which is elongated by reverse transcriptase (RNA-dependent DNA polymerase). The RNA is then removed from resulting DNA:RNA duplex by the action of ribonuclease H(RNase H, an RNase specific for RNA in a duplex with either DNA or RNA). The resultant ssDNA is a second template for a second primer, which also includes the sequences of an RNA polymerase promoter (exemplified by T7 RNA polymerase) 5' to its homology to its template. This primer is then extended by DNA polymerase (exemplified by the large "Klenow" fragment of E. coli DNA polymerase I), resulting as a double-stranded DNA ("dsDNA") molecule, having a sequence identical to that of the original RNA between the primers and having additionally, at one end, a promoter sequence. This promoter sequence can be used by the appropriate RNA polymerase to make many RNA copies of the DNA. These copies can then re-enter the cycle leading to very swift amplification. With proper choice of enzymes, this amplification can be done isothermally without addition of enzymes at each cycle. Because of the cyclical nature of this process, the starting sequence can be chosen to be in the form of either DNA or RNA.

[0264] PCT Intl. Pat. Appl. Publ. No. WO 89/06700, incorporated herein by reference in its entirety, disclose a nucleic acid sequence amplification scheme based on the hybridization of a promoter/primer sequence to a target single-stranded DNA ("ssDNA") followed by transcription of many RNA copies of the sequence. This scheme is not cyclic; i.e. new templates are not produced from the resultant RNA transcripts. Other amplification methods include "RACE" (Frohman, 1990), and "one-sided PCR" (Ohara, 1989) which are well-known to those of skill in the art.

[0265] Methods based on ligation of two (or more) oligonucleotides in the presence of nucleic acid having the sequence of the resulting "di-oligonucleotide", thereby amplifying the di-oligonucleotide (Wu and Dean, 1996, incorporated herein by reference in its entirety), may also be used in the amplification of DNA sequences of the present invention.

Biological Functional Equivalents

[0266] Modification and changes may be made in the structure of the polynucleotides and polypeptides of the present invention and still obtain a functional molecule that encodes a polypeptide with desirable characteristics. As mentioned above, it is often desirable to introduce one or more mutations into a specific polynucleotide sequence. In certain circumstances, the resulting encoded polypeptide sequence is altered by this mutation, or in other cases, the sequence of the polypeptide is unchanged by one or more mutations in the encoding polynucleotide.

[0267] When it is desirable to alter the amino acid sequence of a polypeptide to create an equivalent, or even an improved, second-generation molecule, the amino acid changes may be achieved by changing one or more of the codons of the encoding DNA sequence, according to Table 1.

[0268] For example, certain amino acids may be substituted for other amino acids in a protein structure without appreciable loss of interactive binding capacity with structures such as, for example, antigen-binding regions of antibodies or binding sites on substrate molecules. Since it is the interactive capacity and nature of a protein that defines that protein's biological functional activity, certain amino acid sequence substitutions can be made in a protein sequence, and, of course, its underlying DNA coding sequence, and nevertheless obtain a protein with like properties. It is thus contemplated by the inventors that various changes may be made in the peptide sequences of the disclosed compositions, or corresponding DNA sequences which encode said peptides without appreciable loss of their biological utility or activity.

TABLE-US-00001 TABLE I Amino Acids Codons Alanine Ala A GCA GCC GCG GCU Cysteine Cys C UGC UGU Aspartic acid Asp D GAC GAU Glutamic acid Glu E GAA GAG Phenylalanine Phe F UUC UUU Glycine Gly G GGA GGC GGG GGU Histidine His H CAC CAU Isoleucine Ile I AUA AUC AUU Lysine Lys K AAA AAG Leucine Leu L UUA UUG CUA CUC CUG CUU Methionine Met M AUG Asparagine Asn N AAC AAU Praline Pro P CCA CCC CCG CCU Glutamine Gln Q CAA CAG Arginine Arg R AGA AGG CGA CGC CGG CGU Serine Ser S AGC AGU UCA UCC UCG UCU Threonine Thr T ACA ACC ACG ACU Valine Val V GUA GUC GUG GUU Tryptophan Trp W UGG Tyrosine Tyr Y UAC UAU

[0269] In making such changes, the hydropathic index of amino acids may be considered. The importance of the hydropathic amino acid index in conferring interactive biologic function on a protein is generally understood in the art (Kyte and Doolittle, 1982, incorporated herein by reference). It is accepted that the relative hydropathic character of the amino acid contributes to the secondary structure of the resultant protein, which in turn defines the interaction of the protein with other molecules, for example, enzymes, substrates, receptors, DNA, antibodies, antigens, and the like. Each amino acid has been assigned a hydropathic index on the basis of its hydrophobicity and charge characteristics (Kyte and Doolittle, 1982). These values are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine (-0.4); threonine (-0.7); serine (-0.8); tryptophan (-0.9); tyrosine (-1.3); proline (-1.6); histidine (-3.2); glutamate (-3.5); glutamine (-3.5); aspartate (-3.5); asparagine (-3.5); lysine (-3.9); and arginine (-4.5).

[0270] It is known in the art that certain amino acids may be substituted by other amino acids having a similar hydropathic index or score and still result in a protein with similar biological activity, i.e. still obtain a biological functionally equivalent protein. In making such changes, the substitution of amino acids whose hydropathic indices are within .+-.2 is preferred, those within .+-.1 are particularly preferred, and those within .+-.0.5 are even more particularly preferred. It is also understood in the art that the substitution of like amino acids can be made effectively on the basis of hydrophilicity. U.S. Pat. No. 4,554,101 (specifically incorporated herein by reference in its entirety), states that the greatest local average hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with a biological property of the protein.

[0271] As detailed in U.S. Pat. No. 4,554,101, the following hydrophilicity values have been assigned to amino acid residues: arginine (+3.0); lysine (+3.0); aspartate (+3.0.+-.1); glutamate (+3.0.+-.1); serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); threonine (-0.4); proline (-0.5.+-.1); alanine (-0.5); histidine (-0.5); cysteine (-1.0); methionine (-1.3); valine (-1.5); leucine (-1.8); isoleucine (-1.8); tyrosine (-2.3); phenylalanine (-2.5); tryptophan (-3.4). It is understood that an amino acid can be substituted for another having a similar hydrophilicity value and still obtain a biologically equivalent, and in particular, an immunologically equivalent protein. In such changes, the substitution of amino acids whose hydrophilicity values are within .+-.2 is preferred, those within .+-.1 are particularly preferred, and those within .+-.0.5 are even more particularly preferred.

[0272] As outlined above, amino acid substitutions are generally therefore based on the relative similarity of the amino acid side-chain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, and the like. Exemplary substitutions that take various of the foregoing characteristics into consideration are well known to those of skill in the art and include: arginine and lysine; glutamate and aspartate; serine and threonine; glutamine and asparagine; and valine, leucine and isoleucine.

[0273] In addition, any polynucleotide may be further modified to increase stability in vivo. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends; the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages in the backbone; and/or the inclusion of nontraditional bases such as inosine, queosine and wybutosine, as well as acetyl-methyl-, thio- and other modified forms of adenine, cytidine, guanine, thymine and uridine.

In Vivo Polynucleotide Delivery Techniques

[0274] In additional embodiments, genetic constructs comprising one or more of the polynucleotides of the invention are introduced into cells in vivo. This may be achieved using any of a variety or well known approaches, several of which are outlined below for the purpose of illustration.

[0275] 1. Adenovirus

[0276] One of the preferred methods for in vivo delivery of one or more nucleic acid sequences involves the use of an adenovirus expression vector. "Adenovirus expression vector" is meant to include those constructs containing adenovirus sequences sufficient to (a) support packaging of the construct and (b) to express a polynucleotide that has been cloned therein in a sense or antisense orientation. Of course, in the context of an antisense construct, expression does not require that the gene product be synthesized.

[0277] The expression vector comprises a genetically engineered form of an adenovirus. Knowledge of the genetic organization of adenovirus, a 36 kb, linear, double-stranded DNA virus, allows substitution of large pieces of adenoviral DNA with foreign sequences up to 7 kb (Grunhaus and Horwitz, 1992). In contrast to retrovirus, the adenoviral infection of host cells does not result in chromosomal integration because adenoviral DNA can replicate in an episomal manner without potential genotoxicity. Also, adenoviruses are structurally stable, and no genome rearrangement has been detected after extensive amplification. Adenovirus can infect virtually all epithelial cells regardless of their cell cycle stage. So far, adenoviral infection appears to be linked only to mild disease such as acute respiratory disease in humans.

[0278] Adenovirus is particularly suitable for use as a gene transfer vector because of its mid-sized genome, ease of manipulation, high titer, wide target-cell range and high infectivity. Both ends of the viral genome contain 100-200 base pair inverted repeats (ITRs), which are cis elements necessary for viral DNA replication and packaging. The early (E) and late (L) regions of the genome contain different transcription units that are divided by the onset of viral DNA replication. The E1 region (E1A and E1B) encodes proteins responsible for the regulation of transcription of the viral genome and a few cellular genes. The expression of the E2 region (E2A and E2B) results in the synthesis of the proteins for viral DNA replication. These proteins are involved in DNA replication, late gene expression and host cell shut-off (Renan, 1990). The products of the late genes, including the majority of the viral capsid proteins, are expressed only after significant processing of a single primary transcript issued by the major late promoter (MLP). The MLP, (located at 16.8 m.u.) is particularly efficient during the late phase of infection, and all the mRNA's issued from this promoter possess a 5'-tripartite leader (TPL) sequence which makes them preferred mRNA's for translation.

[0279] In a current system, recombinant adenovirus is generated from homologous recombination between shuttle vector and provirus vector. Due to the possible recombination between two proviral vectors, wild-type adenovirus may be generated from this process. Therefore, it is critical to isolate a single clone of virus from an individual plaque and examine its genomic structure.

[0280] Generation and propagation of the current adenovirus vectors, which are replication deficient, depend on a unique helper cell line, designated 293, which was transformed from human embryonic kidney cells by Ad5 DNA fragments and constitutively expresses E1 proteins (Graham et al., 1977). Since the E3 region is dispensable from the adenovirus genome (Jones and Shenk, 1978), the current adenovirus vectors, with the help of 293 cells, carry foreign DNA in either the E1, the D3 or both regions (Graham and Prevec, 1991). In nature, adenovirus can package approximately 105% of the wild-type genome (Ghosh-Choudhury et al., 1987), providing capacity for about 2 extra kB of DNA. Combined with the approximately 5.5 kB of DNA that is replaceable in the E1 and E3 regions, the maximum capacity of the current adenovirus vector is under 7.5 kB, or about 15% of the total length of the vector. More than 80% of the adenovirus viral genome remains in the vector backbone and is the source of vector-borne cytotoxicity. Also, the replication deficiency of the E1-deleted virus is incomplete. For example, leakage of viral gene expression has been observed with the currently available vectors at high multiplicities of infection (MOI) (Mulligan, 1993).

[0281] Helper cell lines may be derived from human cells such as human embryonic kidney cells, muscle cells, hematopoietic cells or other human embryonic mesenchymal or epithelial cells. Alternatively, the helper cells may be derived from the cells of other mammalian species that are permissive for human adenovirus. Such cells include, e.g., Vero cells or other monkey embryonic mesenchymal or epithelial cells. As stated above, the currently preferred helper cell line is 293.

[0282] Recently, Racher et al. (1995) disclosed improved methods for culturing 293 cells and propagating adenovirus. In one format, natural cell aggregates are grown by inoculating individual cells into 1 liter siliconized spinner flasks (Techne, Cambridge, UK) containing 100-200 ml of medium. Following stirring at 40 rpm, the cell viability is estimated with trypan blue. In another format, Fibra-Cel microcarriers (Bibby Sterlin, Stone, UK) (5 g/l) is employed as follows. A cell inoculum, resuspended in 5 ml of medium, is added to the carrier (50 ml) in a 250 ml Erlenmeyer flask and left stationary, with occasional agitation, for 1 to 4 h. The medium is then replaced with 50 ml of fresh medium and shaking initiated. For virus production, cells are allowed to grow to about 80% confluence, after which time the medium is replaced (to 25% of the final volume) and adenovirus added at an MOI of 0.05. Cultures are left stationary overnight, following which the volume is increased to 100% and shaking commenced for another 72 h.

[0283] Other than the requirement that the adenovirus vector be replication defective, or at least conditionally defective, the nature of the adenovirus vector is not believed to be crucial to the successful practice of the invention. The adenovirus may be of any of the 42 different known serotypes or subgroups A-F. Adenovirus type 5 of subgroup C is the preferred starting material in order to obtain a conditional replication-defective adenovirus vector for use in the present invention, since Adenovirus type 5 is a human adenovirus about which a great deal of biochemical and genetic information is known, and it has historically been used for most constructions employing adenovirus as a vector.

[0284] As stated above, the typical vector according to the present invention is replication defective and will not have an adenovirus E1 region. Thus, it will be most convenient to introduce the polynucleotide encoding the gene of interest at the position from which the E1-coding sequences have been removed. However, the position of insertion of the construct within the adenovirus sequences is not critical to the invention. The polynucleotide encoding the gene of interest may also be inserted in lieu of the deleted E3 region in E3 replacement vectors as described by Karisson et al. (1986) or in the E4 region where a helper cell line or helper virus complements the E4 defect.

[0285] Adenovirus is easy to grow and manipulate and exhibits broad host range in vitro and in vivo. This group of viruses can be obtained in high titers, e.g., 10.sup.9-10.sup.11 plaque-forming units per ml, and they are highly infective. The life cycle of adenovirus does not require integration into the host cell genome. The foreign genes delivered by adenovirus vectors are episomal and, therefore, have low genotoxicity to host cells. No side effects have been reported in studies of vaccination with wild-type adenovirus (Couch et al., 1963; Top et al., 1971), demonstrating their safety and therapeutic potential as in vivo gene transfer vectors.

[0286] Adenovirus vectors have been used in eukaryotic gene expression (Levrero et al., 1991; Gomez-Foix et al., 1992) and vaccine development (Grunhaus and Horwitz, 1992; Graham and Prevec, 1992). Recently, animal studies suggested that recombinant adenovirus could be used for gene therapy (Stratford-Perricaudet and Perricaudet, 1991; Stratford-Perricaudet et al., 1990; Rich et al., 1993). Studies in administering recombinant adenovirus to different tissues include trachea instillation (Rosenfeld et al., 1991; Rosenfeld et al., 1992), muscle injection (Ragot et al., 1993), peripheral intravenous injections (Herz and Gerard, 1993) and stereotactic inoculation into the brain (Le Gal La Salle et al., 1993).

[0287] 2. Retroviruses

[0288] The retroviruses are a group of single-stranded RNA viruses characterized by an ability to convert their RNA to double-stranded DNA in infected cells by a process of reverse-transcription (Coffin, 1990). The resulting DNA then stably integrates into cellular chromosomes as a provirus and directs synthesis of viral proteins. The integration results in the retention of the viral gene sequences in the recipient cell and its descendants. The retroviral genome contains three genes, gag, pol, and env that code for capsid proteins, polymerase enzyme, and envelope components, respectively. A sequence found upstream from the gag gene contains a signal for packaging of the genome into virions. Two long terminal repeat (LTR) sequences are present at the 5' and 3' ends of the viral genome. These contain strong promoter and enhancer sequences and are also required for integration in the host cell genome (Coffin, 1990).

[0289] In order to construct a retroviral vector, a nucleic acid encoding one or more oligonucleotide or polynucleotide sequences of interest is inserted into the viral genome in the place of certain viral sequences to produce a virus that is replication-defective. In order to produce virions, a packaging cell line containing the gag, pol, and env genes but without the LTR and packaging components is constructed (Mann et al., 1983). When a recombinant plasmid containing a cDNA, together with the retroviral LTR and packaging sequences is introduced into this cell line (by calcium phosphate precipitation for example), the packaging sequence allows the RNA transcript of the recombinant plasmid to be packaged into viral particles, which are then secreted into the culture media (Nicolas and Rubenstein, 1988; Temin, 1986; Mann et al., 1983). The media containing the recombinant retroviruses is then collected, optionally concentrated, and used for gene transfer. Retroviral vectors are able to infect a broad variety of cell types. However, integration and stable expression require the division of host cells (Paskind et al., 1975).

[0290] A novel approach designed to allow specific targeting of retrovirus vectors was recently developed based on the chemical modification of a retrovirus by the chemical addition of lactose residues to the viral envelope. This modification could permit the specific infection of hepatocytes via sialoglycoprotein receptors.

[0291] A different approach to targeting of recombinant retroviruses was designed in which biotinylated antibodies against a retroviral envelope protein and against a specific cell receptor were used. The antibodies were coupled via the biotin components by using streptavidin (Roux et al., 1989). Using antibodies against major histocompatibility complex class I and class II antigens, they demonstrated the infection of a variety of human cells that bore those surface antigens with an ecotropic virus in vitro (Roux et al., 1989).

[0292] 3. Adeno-Associated Viruses

[0293] AAV (Ridgeway, 1988; Hermonat and Muzycska, 1984) is a parovirus, discovered as a contamination of adenoviral stocks. It is a ubiquitous virus (antibodies are present in 85% of the US human population) that has not been linked to any disease. It is also classified as a dependovirus, because its replications is dependent on the presence of a helper virus, such as adenovirus. Five serotypes have been isolated, of which AAV-2 is the best characterized. AAV has a single-stranded linear DNA that is encapsidated into capsid proteins VP1, VP2 and VP3 to form an icosahedral virion of 20 to 24 nm in diameter (Muzyczka and McLaughlin, 1988).

[0294] The AAV DNA is approximately 4.7 kilobases long. It contains two open reading frames and is flanked by two ITRs (FIG. 2). There are two major genes in the AAV genome: rep and cap. The rep gene codes for proteins responsible for viral replications, whereas cap codes for capsid protein VP1-3. Each ITR forms a T-shaped hairpin structure. These terminal repeats are the only essential cis components of the AAV for chromosomal integration. Therefore, the AAV can be used as a vector with all viral coding sequences removed and replaced by the cassette of genes for delivery. Three viral promoters have been identified and named p5, p19, and p40, according to their map position. Transcription from p5 and p19 results in production of rep proteins, and transcription from p40 produces the capsid proteins (Hermonat and Muzyczka, 1984).

[0295] There are several factors that prompted researchers to study the possibility of using rAAV as an expression vector. One is that the requirements for delivering a gene to integrate into the host chromosome are surprisingly few. It is necessary to have the 145-bp ITRs, which are only 6% of the AAV genome. This leaves room in the vector to assemble a 4.5-kb DNA insertion. While this carrying capacity may prevent the AAV from delivering large genes, it is amply suited for delivering the antisense constructs of the present invention.

[0296] AAV is also a good choice of delivery vehicles due to its safety. There is a relatively complicated rescue mechanism: not only wild type adenovirus but also AAV genes are required to mobilize rAAV. Likewise, AAV is not pathogenic and not associated with any disease. The removal of viral coding sequences minimizes immune reactions to viral gene expression, and therefore, rAAV does not evoke an inflammatory response.

[0297] 4. Other Viral Vectors as Expression Constructs

[0298] Other viral vectors may be employed as expression constructs in the present invention for the delivery of oligonucleotide or polynucleotide sequences to a host cell. Vectors derived from viruses such as vaccinia virus (Ridgeway, 1988; Coupar et al., 1988), lentiviruses, polio viruses and herpes viruses may be employed. They offer several attractive features for various mammalian cells (Friedmann, 1989; Ridgeway, 1988; Coupar et al., 1988; Horwich et al., 1990).

[0299] With the recent recognition of defective hepatitis B viruses, new insight was gained into the structure-function relationship of different viral sequences. In vitro studies showed that the virus could retain the ability for helper-dependent packaging and reverse transcription despite the deletion of up to 80% of its genome (Horwich et al., 1990). This suggested that large portions of the genome could be replaced with foreign genetic material. The hepatotropism and persistence (integration) were particularly attractive properties for liver-directed gene transfer. Chang et al. (1991) introduced the chloramphenicol acetyltransferase (CAT) gene into duck hepatitis B virus genome in the place of the polymerase, surface, and pre-surface coding sequences. It was cotransfected with wild-type virus into an avian hepatoma cell line. Culture media containing high titers of the recombinant virus were used to infect primary duckling hepatocytes. Stable CAT gene expression was detected for at least 24 days after transfection (Chang et al., 1991).

[0300] 5. Non-Viral Vectors

[0301] In order to effect expression of the oligonucleotide or polynucleotide sequences of the present invention, the expression construct must be delivered into a cell. This delivery may be accomplished in vitro, as in laboratory procedures for transforming cells lines, or in vivo or ex vivo, as in the treatment of certain disease states. As described above, one preferred mechanism for delivery is via viral infection where the expression construct is encapsulated in an infectious viral particle.

[0302] Once the expression construct has been delivered into the cell the nucleic acid encoding the desired oligonucleotide or polynucleotide sequences may be positioned and expressed at different sites. In certain embodiments, the nucleic acid encoding the construct may be stably integrated into the genome of the cell. This integration may be in the specific location and orientation via homologous recombination (gene replacement) or it may be integrated in a random, non-specific location (gene augmentation). In yet further embodiments, the nucleic acid may be stably maintained in the cell as a separate, episomal segment of DNA. Such nucleic acid segments or "episomes" encode sequences sufficient to permit maintenance and replication independent of or in synchronization with the host cell cycle. How the expression construct is delivered to a cell and where in the cell the nucleic acid remains is dependent on the type of expression construct employed.

[0303] In certain embodiments of the invention, the expression construct comprising one or more oligonucleotide or polynucleotide sequences may simply consist of naked recombinant DNA or plasmids. Transfer of the construct may be performed by any of the methods mentioned above which physically or chemically permeabilize the cell membrane. This is particularly applicable for transfer in vitro but it may be applied to in vivo use as well. Dubensky et al. (1984) successfully injected polyomavirus DNA in the form of calcium phosphate precipitates into liver and spleen of adult and newborn mice demonstrating active viral replication and acute infection. Benvenisty and Reshef (1986) also demonstrated that direct intraperitoneal injection of calcium phosphate-precipitated plasmids results in expression of the transfected genes. It is envisioned that DNA encoding a gene of interest may also be transferred in a similar manner in vivo and express the gene product.

[0304] Another embodiment of the invention for transferring a naked DNA expression construct into cells may involve particle bombardment. This method depends on the ability to accelerate DNA-coated microprojectiles to a high velocity allowing them to pierce cell membranes and enter cells without killing them (Klein et al., 1987). Several devices for accelerating small particles have been developed. One such device relies on a high voltage discharge to generate an electrical current, which in turn provides the motive force (Yang et al., 1990). The microprojectiles used have consisted of biologically inert substances such as tungsten or gold beads.

[0305] Selected organs including the liver, skin, and muscle tissue of rats and mice have been bombarded in vivo (Yang et al., 1990; Zelenin et al., 1991). This may require surgical exposure of the tissue or cells, to eliminate any intervening tissue between the gun and the target organ, i.e. ex vivo treatment. Again, DNA encoding a particular gene may be delivered via this method and still be incorporated by the present invention.

Antisense Oligonucleotides

[0306] The end result of the flow of genetic information is the synthesis of protein. DNA is transcribed by polymerases into messenger RNA and translated on the ribosome to yield a folded, functional protein. Thus there are several steps along the route where protein synthesis can be inhibited. The native DNA segment coding for a polypeptide described herein, as all such mammalian DNA strands, has two strands: a sense strand and an antisense strand held together by hydrogen bonding. The messenger RNA coding for polypeptide has the same nucleotide sequence as the sense DNA strand except that the DNA thymidine is replaced by uridine. Thus, synthetic antisense nucleotide sequences will bind to a mRNA and inhibit expression of the protein encoded by that mRNA.

[0307] The targeting of antisense oligonucleotides to mRNA is thus one mechanism to shut down protein synthesis, and, consequently, represents a powerful and targeted therapeutic approach. For example, the synthesis of polygalactauronase and the muscarine type 2 acetylcholine receptor are inhibited by antisense oligonucleotides directed to their respective mRNA sequences (U.S. Pat. No. 5,739,119 and U.S. Pat. No. 5,759,829, each specifically incorporated herein by reference in its entirety). Further, examples of antisense inhibition have been demonstrated with the nuclear protein cyclin, the multiple drug resistance gene (MDG1), ICAM-1, E-selectin, STK-1, striatal GABA.sub.A receptor and human EGF (Jaskulski et al., 1988; Vasanthakumar and Ahmed, 1989; Peris et al., 1998; U.S. Pat. No. 5,801,154; U.S. Pat. No. 5,789,573; U.S. Pat. No. 5,718,709 and U.S. Pat. No. 5,610,288, each specifically incorporated herein by reference in its entirety). Antisense constructs have also been described that inhibit and can be used to treat a variety of abnormal cellular proliferations, e.g. cancer (U.S. Pat. No. 5,747,470; U.S. Pat. No. 5,591,317 and U.S. Pat. No. 5,783,683, each specifically incorporated herein by reference in its entirety).

[0308] Therefore, in exemplary embodiments, the invention provides oligonucleotide sequences that comprise all, or a portion of, any sequence that is capable of specifically binding to polynucleotide sequence described herein, or a complement thereof. In one embodiment, the antisense oligonucleotides comprise DNA or derivatives thereof. In another embodiment, the oligonucleotides comprise RNA or derivatives thereof. In a third embodiment, the oligonucleotides are modified DNAs comprising a phosphorothioated modified backbone. In a fourth embodiment, the oligonucleotide sequences comprise peptide nucleic acids or derivatives thereof. In each case, preferred compositions comprise a sequence region that is complementary, and more preferably substantially-complementary, and even more preferably, completely complementary to one or more portions of polynucleotides disclosed herein.

[0309] Selection of antisense compositions specific for a given gene sequence is based upon analysis of the chosen target sequence (i.e. in these illustrative examples the rat and human sequences) and determination of secondary structure, T.sub.m, binding energy, relative stability, and antisense compositions were selected based upon their relative inability to form dimers, hairpins, or other secondary structures that would reduce or prohibit specific binding to the target mRNA in a host cell.

[0310] Highly preferred target regions of the mRNA, are those which are at or near the AUG translation initiation codon, and those sequences which were substantially complementary to 5' regions of the mRNA. These secondary structure analyses and target site selection considerations were performed using v.4 of the OLIGO primer analysis software (Rychlik, 1997) and the BLASTN 2.0.5 algorithm software (Altschul et al., 1997).

[0311] The use of an antisense delivery method employing a short peptide vector, termed MPG (27 residues), is also contemplated. The MPG peptide contains a hydrophobic domain derived from the fusion sequence of HIV gp41 and a hydrophilic domain from the nuclear localization sequence of SV40 T-antigen (Morris et al., 1997). It has been demonstrated that several molecules of the MPG peptide coat the antisense oligonucleotides and can be delivered into cultured mammalian cells in less than 1 hour with relatively high efficiency (90%). Further, the interaction with MPG strongly increases both the stability of the oligonucleotide to nuclease and the ability to cross the plasma membrane (Morris et al., 1997).

Ribozymes

[0312] Although proteins traditionally have been used for catalysis of nucleic acids, another class of macromolecules has emerged as useful in this endeavor. Ribozymes are RNA-protein complexes that cleave nucleic acids in a site-specific fashion. Ribozymes have specific catalytic domains that possess endonuclease activity (Kim and Cech, 1987; Gerlach et al., 1987; Forster and Symons, 1987). For example, a large number of ribozymes accelerate phosphoester transfer reactions with a high degree of specificity, often cleaving only one of several phosphoesters in an oligonucleotide substrate (Cech et al., 1981; Michel and Westhof, 1990; Reinhold-Hurek and Shub, 1992). This specificity has been attributed to the requirement that the substrate bind via specific base-pairing interactions to the internal guide sequence ("IGS") of the ribozyme prior to chemical reaction.

[0313] Ribozyme catalysis has primarily been observed as part of sequence-specific cleavage/ligation reactions involving nucleic acids (Joyce, 1989; Cech et al., 1981). For example, U.S. Pat. No. 5,354,855 (specifically incorporated herein by reference) reports that certain ribozymes can act as endonucleases with a sequence specificity greater than that of known ribonucleases and approaching that of the DNA restriction enzymes. Thus, sequence-specific ribozyme-mediated inhibition of gene expression may be particularly suited to therapeutic applications (Scanlon et al., 1991; Sarver et al., 1990). Recently, it was reported that ribozymes elicited genetic changes in some cells lines to which they were applied; the altered genes included the oncogenes H-ras, c-fos and genes of HIV. Most of this work involved the modification of a target mRNA, based on a specific mutant codon that is cleaved by a specific ribozyme.

[0314] Six basic varieties of naturally-occurring enzymatic RNAs are known presently. Each can catalyze the hydrolysis of RNA phosphodiester bonds in trans (and thus can cleave other RNA molecules) under physiological conditions. In general, enzymatic nucleic acids act by first binding to a target RNA. Such binding occurs through the target binding portion of a enzymatic nucleic acid which is held in close proximity to an enzymatic portion of the molecule that acts to cleave the target RNA. Thus, the enzymatic nucleic acid first recognizes and then binds a target RNA through complementary base-pairing, and once bound to the correct site, acts enzymatically to cut the target RNA. Strategic cleavage of such a target RNA will destroy its ability to direct synthesis of an encoded protein. After an enzymatic nucleic acid has bound and cleaved its RNA target, it is released from that RNA to search for another target and can repeatedly bind and cleave new targets.

[0315] The enzymatic nature of a ribozyme is advantageous over many technologies, such as antisense technology (where a nucleic acid molecule simply binds to a nucleic acid target to block its translation) since the concentration of ribozyme necessary to affect a therapeutic treatment is lower than that of an antisense oligonucleotide. This advantage reflects the ability of the ribozyme to act enzymatically. Thus, a single ribozyme molecule is able to cleave many molecules of target RNA. In addition, the ribozyme is a highly specific inhibitor, with the specificity of inhibition depending not only on the base pairing mechanism of binding to the target RNA, but also on the mechanism of target RNA cleavage. Single mismatches, or base-substitutions, near the site of cleavage can completely eliminate catalytic activity of a ribozyme. Similar mismatches in antisense molecules do not prevent their action (Woolf et al., 1992). Thus, the specificity of action of a ribozyme is greater than that of an antisense oligonucleotide binding the same RNA site.

[0316] The enzymatic nucleic acid molecule may be formed in a hammerhead, hairpin, a hepatitis .delta. virus, group I intron or RNaseP RNA (in association with an RNA guide sequence) or Neurospora VS RNA motif. Examples of hammerhead motifs are described by Rossi et al. (1992). Examples of hairpin motifs are described by Hampel et al. (Eur. Pat. Appl. Publ. No. EP 0360257), Hampel and Tritz (1989), Hampel et al. (1990) and U.S. Pat. No. 5,631,359 (specifically incorporated herein by reference). An example of the hepatitis .delta. virus motif is described by Perrotta and Been (1992); an example of the RNaseP motif is described by Guerrier-Takada et al. (1983); Neurospora VS RNA ribozyme motif is described by Collins (Saville and Collins, 1990; Saville and Collins, 1991; Collins and Olive, 1993); and an example of the Group I intron is described in (U.S. Pat. No. 4,987,071, specifically incorporated herein by reference). All that is important in an enzymatic nucleic acid molecule of this invention is that it has a specific substrate binding site which is complementary to one or more of the target gene RNA regions, and that it have nucleotide sequences within or surrounding that substrate binding site which impart an RNA cleaving activity to the molecule. Thus the ribozyme constructs need not be limited to specific motifs mentioned herein.

[0317] In certain embodiments, it may be important to produce enzymatic cleaving agents which exhibit a high degree of specificity for the RNA of a desired target, such as one of the sequences disclosed herein. The enzymatic nucleic acid molecule is preferably targeted to a highly conserved sequence region of a target mRNA. Such enzymatic nucleic acid molecules can be delivered exogenously to specific cells as required. Alternatively, the ribozymes can be expressed from DNA or RNA vectors that are delivered to specific cells.

[0318] Small enzymatic nucleic acid motifs (e.g., of the hammerhead or the hairpin structure) may also be used for exogenous delivery. The simple structure of these molecules increases the ability of the enzymatic nucleic acid to invade targeted regions of the mRNA structure. Alternatively, catalytic RNA molecules can be expressed within cells from eukaryotic promoters (e.g., Scanlon et al., 1991; Kashani-Sabet et al., 1992; Dropulic et al., 1992; Weerasinghe et al., 1991; Ojwang et al., 1992; Chen et al., 1992; Sarver et al., 1990). Those skilled in the art realize that any ribozyme can be expressed in eukaryotic cells from the appropriate DNA vector. The activity of such ribozymes can be augmented by their release from the primary transcript by a second ribozyme (Int. Pat. Appl. Publ. No. WO 93/23569, and Int. Pat. Appl. Publ. No. WO 94/02595, both hereby incorporated by reference; Ohkawa et al., 1992; Taira et al., 1991; and Ventura et al., 1993).

[0319] Ribozymes may be added directly, or can be complexed with cationic lipids, lipid complexes, packaged within liposomes, or otherwise delivered to target cells. The RNA or RNA complexes can be locally administered to relevant tissues ex vivo, or in vivo through injection, aerosol inhalation, infusion pump or stent, with or without their incorporation in biopolymers.

[0320] Ribozymes may be designed as described in Int. Pat. Appl. Publ. No. WO 93/23569 and Int. Pat. Appl. Publ. No. WO 94/02595, each specifically incorporated herein by reference) and synthesized to be tested in vitro and in vivo, as described. Such ribozymes can also be optimized for delivery. While specific examples are provided, those in the art will recognize that equivalent RNA targets in other species can be utilized when necessary.

[0321] Hammerhead or hairpin ribozymes may be individually analyzed by computer folding (Jaeger et al., 1989) to assess whether the ribozyme sequences fold into the appropriate secondary structure. Those ribozymes with unfavorable intramolecular interactions between the binding arms and the catalytic core are eliminated from consideration. Varying binding arm lengths can be chosen to optimize activity. Generally, at least 5 or so bases on each arm are able to bind to, or otherwise interact with, the target RNA.

[0322] Ribozymes of the hammerhead or hairpin motif may be designed to anneal to various sites in the mRNA message, and can be chemically synthesized. The method of synthesis used follows the procedure for normal RNA synthesis as described in Usman et al. (1987) and in Scaringe et al. (1990) and makes use of common nucleic acid protecting and coupling groups, such as dimethoxytrityl at the 5'-end, and phosphoramidites at the 3'-end. Average stepwise coupling yields are typically >98%. Hairpin ribozymes may be synthesized in two parts and annealed to reconstruct an active ribozyme (Chowrira and Burke, 1992). Ribozymes may be modified extensively to enhance stability by modification with nuclease resistant groups, for example, 2'-amino, 2'-C-allyl, 2'-fluoro, 2'-o-methyl, 2'-H (for a review see e.g., Usman and Cedergren, 1992). Ribozymes may be purified by gel electrophoresis using general methods or by high pressure liquid chromatography and resuspended in water.

[0323] Ribozyme activity can be optimized by altering the length of the ribozyme binding arms, or chemically synthesizing ribozymes with modifications that prevent their degradation by serum ribonucleases (see e.g., Int. Pat. Appl. Publ. No. WO 92/07065; Perrault et al, 1990; Pieken et al., 1991; Usman and Cedergren, 1992; Int. Pat. Appl. Publ. No. WO 93/15187; Int. Pat. Appl. Publ. No. WO 91/03162; Eur. Pat. Appl. Publ. No. 92110298.4; U.S. Pat. No. 5,334,711; and Int. Pat. Appl. Publ. No. WO 94/13688, which describe various chemical modifications that can be made to the sugar moieties of enzymatic RNA molecules), modifications which enhance their efficacy in cells, and removal of stem II bases to shorten RNA synthesis times and reduce chemical requirements.

[0324] Sullivan et al. (Int. Pat. Appl. Publ. No. WO 94/02595) describes the general methods for delivery of enzymatic RNA molecules. Ribozymes may be administered to cells by a variety of methods known to those familiar to the art, including, but not restricted to, encapsulation in liposomes, by iontophoresis, or by incorporation into other vehicles, such as hydrogels, cyclodextrins, biodegradable nanocapsules, and bioadhesive microspheres. For some indications, ribozymes may be directly delivered ex vivo to cells or tissues with or without the aforementioned vehicles. Alternatively, the RNA/vehicle combination may be locally delivered by direct inhalation, by direct injection or by use of a catheter, infusion pump or stent. Other routes of delivery include, but are not limited to, intravascular, intramuscular, subcutaneous or joint injection, aerosol inhalation, oral (tablet or pill form), topical, systemic, ocular, intraperitoneal and/or intrathecal delivery. More detailed descriptions of ribozyme delivery and administration are provided in Int. Pat. Appl. Publ. No. WO 94/02595 and Int. Pat. Appl. Publ. No. WO 93/23569, each specifically incorporated herein by reference.

[0325] Another means of accumulating high concentrations of a ribozyme(s) within cells is to incorporate the ribozyme-encoding sequences into a DNA expression vector. Transcription of the ribozyme sequences are driven from a promoter for eukaryotic RNA polymerase I (pol I), RNA polymerase II (pol II), or RNA polymerase III (pol III). Transcripts from pol II or pol III promoters will be expressed at high levels in all cells; the levels of a given pol II promoter in a given cell type will depend on the nature of the gene regulatory sequences (enhancers, silencers, etc.) present nearby. Prokaryotic RNA polymerase promoters may also be used, providing that the prokaryotic RNA polymerase enzyme is expressed in the appropriate cells (Elroy-Stein and Moss, 1990; Gao and Huang, 1993; Lieber et al., 1993; Zhou et al., 1990). Ribozymes expressed from such promoters can function in mammalian cells (e.g. Kashani-Saber et al., 1992; Ojwang et al., 1992; Chen et al., 1992; Yu et al., 1993; L+Huillier et al., 1992; Lisziewicz et al, 1993). Such transcription units can be incorporated into a variety of vectors for introduction into mammalian cells, including but not restricted to, plasmid DNA vectors, viral DNA vectors (such as adenovirus or adeno-associated vectors), or viral RNA vectors (such as retroviral, semliki forest virus, sindbis virus vectors).

[0326] Ribozymes may be used as diagnostic tools to examine genetic drift and mutations within diseased cells. They can also be used to assess levels of the target RNA molecule. The close relationship between ribozyme activity and the structure of the target RNA allows the detection of mutations in any region of the molecule which alters the base-pairing and three-dimensional structure of the target RNA. By using multiple ribozymes, one may map nucleotide changes which are important to RNA structure and function in vitro, as well as in cells and tissues. Cleavage of target RNAs with ribozymes may be used to inhibit gene expression and define the role (essentially) of specified gene products in the progression of disease. In this manner, other genetic targets may be defined as important mediators of the disease. These studies will lead to better treatment of the disease progression by affording the possibility of combinational therapies (e.g., multiple ribozymes targeted to different genes, ribozymes coupled with known small molecule inhibitors, or intermittent treatment with combinations of ribozymes and/or other chemical or biological molecules). Other in vitro uses of ribozymes are well known in the art, and include detection of the presence of mRNA associated with an IL-5 related condition. Such RNA is detected by determining the presence of a cleavage product after treatment with a ribozyme using standard methodology.

Peptide Nucleic Acids

[0327] In certain embodiments, the inventors contemplate the use of peptide nucleic acids (PNAs) in the practice of the methods of the invention. PNA is a DNA mimic in which the nucleobases are attached to a pseudopeptide backbone (Good and Nielsen, 1997). PNA is able to be utilized in a number methods that traditionally have used RNA or DNA. Often PNA sequences perform better in techniques than the corresponding RNA or DNA sequences and have utilities that are not inherent to RNA or DNA. A review of PNA including methods of making, characteristics of, and methods of using, is provided by Corey (1997) and is incorporated herein by reference. As such, in certain embodiments, one may prepare PNA sequences that are complementary to one or more portions of the ACE mRNA sequence, and such PNA compositions may be used to regulate, alter, decrease, or reduce the translation of ACE-specific mRNA, and thereby alter the level of ACE activity in a host cell to which such PNA compositions have been administered.

[0328] PNAs have 2-aminoethyl-glycine linkages replacing the normal phosphodiester backbone of DNA (Nielsen et al., 1991; Hanvey et al., 1992; Hyrup and Nielsen, 1996; Neilsen, 1996). This chemistry has three important consequences: firstly, in contrast to DNA or phosphorothioate oligonucleotides, PNAs are neutral molecules; secondly, PNAs are achiral, which avoids the need to develop a stereoselective synthesis; and thirdly, PNA synthesis uses standard Boc (Dueholm et al., 1994) or Fmoc (Thomson et al., 1995) protocols for solid-phase peptide synthesis, although other methods, including a modified Merrifield method, have been used (Christensen et al., 1995).

[0329] PNA monomers or ready-made oligomers are commercially available from PerSeptive Biosystems (Framingham, Mass.). PNA syntheses by either Boc or Fmoc protocols are straightforward using manual or automated protocols (Norton et al., 1995). The manual protocol lends itself to the production of chemically modified PNAs or the simultaneous synthesis of families of closely related PNAs.

[0330] As with peptide synthesis, the success of a particular PNA synthesis will depend on the properties of the chosen sequence. For example, while in theory PNAs can incorporate any combination of nucleotide bases, the presence of adjacent purines can lead to deletions of one or more residues in the product. In expectation of this difficulty, it is suggested that, in producing PNAs with adjacent purines, one should repeat the coupling of residues likely to be added inefficiently. This should be followed by the purification of PNAs by reverse-phase high-pressure liquid chromatography (Norton et al., 1995) providing yields and purity of product similar to those observed during the synthesis of peptides.

[0331] Modifications of PNAs for a given application may be accomplished by coupling amino acids during solid-phase synthesis or by attaching compounds that contain a carboxylic acid group to the exposed N-terminal amine. Alternatively, PNAs can be modified after synthesis by coupling to an introduced lysine or cysteine. The ease with which PNAs can be modified facilitates optimization for better solubility or for specific functional requirements. Once synthesized, the identity of PNAs and their derivatives can be confirmed by mass spectrometry. Several studies have made and utilized modifications of PNAs (Norton et al., 1995; Haaima et al., 1996; Stetsenko et al., 1996; Petersen et al., 1995; Ulmann et al., 1996; Koch et al., 1995; Orum et al., 1995; Footer et al., 1996; Griffith et al., 1995; Kremsky et al., 1996; Pardridge et al., 1995; Boffa et al., 1995; Landsdorp et al., 1996; Gambacorti-Passerini et al., 1996; Armitage et al., 1997; Seeger et al., 1997; Ruskowski et al., 1997). U.S. Pat. No. 5,700,922 discusses PNA-DNA-PNA chimeric molecules and their uses in diagnostics, modulating protein in organisms, and treatment of conditions susceptible to therapeutics.

[0332] In contrast to DNA and RNA, which contain negatively charged linkages, the PNA backbone is neutral. In spite of this dramatic alteration, PNAs recognize complementary DNA and RNA by Watson-Crick pairing (Egholm et al., 1993), validating the initial modeling by Nielsen et al. (1991). PNAs lack 3' to 5' polarity and can bind in either parallel or antiparallel fashion, with the antiparallel mode being preferred (Egholm et al., 1993).

[0333] Hybridization of DNA oligonucleotides to DNA and RNA is destabilized by electrostatic repulsion between the negatively charged phosphate backbones of the complementary strands. By contrast, the absence of charge repulsion in PNA-DNA or PNA-RNA duplexes increases the melting temperature (T.sub.m) and reduces the dependence of T.sub.m on the concentration of mono- or divalent cations (Nielsen et al., 1991). The enhanced rate and affinity of hybridization are significant because they are responsible for the surprising ability of PNAs to perform strand invasion of complementary sequences within relaxed double-stranded DNA. In addition, the efficient hybridization at inverted repeats suggests that PNAs can recognize secondary structure effectively within double-stranded DNA. Enhanced recognition also occurs with PNAs immobilized on surfaces, and Wang et al. have shown that support-bound PNAs can be used to detect hybridization events (Wang et al., 1996).

[0334] One might expect that tight binding of PNAs to complementary sequences would also increase binding to similar (but not identical) sequences, reducing the sequence specificity of PNA recognition. As with DNA hybridization, however, selective recognition can be achieved by balancing oligomer length and incubation temperature. Moreover, selective hybridization of PNAs is encouraged by PNA-DNA hybridization being less tolerant of base mismatches than DNA-DNA hybridization. For example, a single mismatch within a 16 bp PNA-DNA duplex can reduce the T.sub.m by up to 15.degree. C. (Egholm et al., 1993). This high level of discrimination has allowed the development of several PNA-based strategies for the analysis of point mutations (Wang et al., 1996; Carlsson et al., 1996; Thiede et al., 1996; Webb and Hurskainen, 1996; Perry-O'Keefe et al., 1996).

[0335] High-affinity binding provides clear advantages for molecular recognition and the development of new applications for PNAs. For example, 11-13 nucleotide PNAs inhibit the activity of telomerase, a ribonucleo-protein that extends telomere ends using an essential RNA template, while the analogous DNA oligomers do not (Norton et al., 1996).

[0336] Neutral PNAs are more hydrophobic than analogous DNA oligomers, and this can lead to difficulty solubilizing them at neutral pH, especially if the PNAs have a high purine content or if they have the potential to form secondary structures. Their solubility can be enhanced by attaching one or more positive charges to the PNA termini (Nielsen et al., 1991).

[0337] Findings by Allfrey and colleagues suggest that strand invasion will occur spontaneously at sequences within chromosomal DNA (Boffa et al., 1995; Boffa et al., 1996). These studies targeted PNAs to triplet repeats of the nucleotides CAG and used this recognition to purify transcriptionally active DNA (Boffa et al., 1995) and to inhibit transcription (Boffa et al., 1996). This result suggests that if PNAs can be delivered within cells then they will have the potential to be general sequence-specific regulators of gene expression. Studies and reviews concerning the use of PNAs as antisense and anti-gene agents include Nielsen et al. (1993b), Hanvey et al. (1992), and Good and Nielsen (1997). Koppelhus et al. (1997) have used PNAs to inhibit HIV-1 inverse transcription, showing that PNAs may be used for antiviral therapies.

[0338] Methods of characterizing the antisense binding properties of PNAs are discussed in Rose (1993) and Jensen et al. (1997). Rose uses capillary gel electrophoresis to determine binding of PNAs to their complementary oligonucleotide, measuring the relative binding kinetics and stoichiometry. Similar types of measurements were made by Jensen et al. using BIAcore.TM. technology.

[0339] Other applications of PNAs include use in DNA strand invasion (Nielsen et al., 1991), antisense inhibition (Hanvey et al., 1992), mutational analysis (Orum et al., 1993), enhancers of transcription (Mollegaard et al., 1994), nucleic acid purification (Orum et al., 1995), isolation of transcriptionally active genes (Boffa et al., 1995), blocking of transcription factor binding (Vickers et al., 1995), genome cleavage (Veselkov et al., 1996), biosensors (Wang et al., 1996), in situ hybridization (Thisted et al., 1996), and in a alternative to Southern blotting (Perry-O'Keefe, 1996).

Polypeptide Compositions and Uses

[0340] The present invention, in other aspects, provides polypeptide compositions. Generally, a polypeptide of the invention will be an isolated polypeptide (or an epitope, variant, or active fragment thereof) derived from a mammalian species. Preferably, the polypeptide is encoded by a polynucleotide sequence disclosed herein or a sequence which hybridizes under moderately stringent conditions to a polynucleotide sequence disclosed herein. Alternatively, the polypeptide may be defined as a polypeptide which comprises a contiguous amino acid sequence from an amino acid sequence disclosed herein, or which polypeptide comprises an entire amino acid sequence disclosed herein.

[0341] Likewise, a polypeptide composition of the present invention is understood to comprise one or more polypeptides that are capable of eliciting antibodies that are immunologically reactive with one or more polypeptides encoded by one or more contiguous nucleic acid sequences contained in SEQ ID NO: 1-48, 114-121, 125-138 and 141-166, or to active fragments, or to variants thereof, or to one or more nucleic acid sequences which hybridize to one or more of these sequences under conditions of moderate to high stringency.

[0342] As used herein, an active fragment of a polypeptide includes a whole or a portion of a polypeptide which is modified by conventional techniques, e.g., mutagenesis, or by addition, deletion, or substitution, but which active fragment exhibits substantially the same structure function, antigenicity, etc., as a polypeptide as described herein.

[0343] In certain illustrative embodiments, the polypeptides of the invention will comprise at least an immunogenic portion of a Chlamydia protein or a variant thereof, as described herein. Proteins that are Chlamydia proteins generally also react detectably within an immunoassay (such as an ELISA) with antisera from a patient with a Chlamydial infection. Polypeptides as described herein may be of any length. Additional sequences derived from the native protein and/or heterologous sequences may be present, and such sequences may (but need not) possess further immunogenic or antigenic properties.

[0344] An "immunogenic portion," as used herein is a portion of a protein that is recognized (i.e., specifically bound) by a B-cell and/or T-cell surface antigen receptor. Such immunogenic portions generally comprise at least 5 amino acid residues, more preferably at least 10, and still more preferably at least 20 amino acid residues of a Chlamydia protein or a variant thereof. Certain preferred immunogenic portions include peptides in which an N-terminal leader sequence and/or transmembrane domain have been deleted. Other preferred immunogenic portions may contain a small N- and/or C-terminal deletion (e.g., 1-30 amino acids, preferably 5-15 amino acids), relative to the mature protein.

[0345] Immunogenic portions may generally be identified using well known techniques, such as those summarized in Paul, Fundamental Immunology, 3rd ed., 243-247 (Raven Press, 1993) and references cited therein. Such techniques include screening polypeptides for the ability to react with antigen-specific antibodies, antisera and/or T-cell lines or clones. As used herein, antisera and antibodies are "antigen-specific" if they specifically bind to an antigen (i.e., they react with the protein in an ELISA or other immunoassay, and do not react detectably with unrelated proteins). Such antisera and antibodies may be prepared as described herein, and using well known techniques. An immunogenic portion of a native Chlamydia protein is a portion that reacts with such antisera and/or T-cells at a level that is not substantially less than the reactivity of the full length polypeptide (e.g., in an ELISA and/or T-cell reactivity assay). Such immunogenic portions may react within such assays at a level that is similar to or greater than the reactivity of the full length polypeptide. Such screens may generally be performed using methods well known to those of ordinary skill in the art, such as those described in Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. For example, a polypeptide may be immobilized on a solid support and contacted with patient sera to allow binding of antibodies within the sera to the immobilized polypeptide. Unbound sera may then be removed and bound antibodies detected using, for example, .sup.125I-labeled Protein A.

[0346] As noted above, a composition may comprise a variant of a native Chlamydia protein. A polypeptide "variant," as used herein, is a polypeptide that differs from a native Chlamydia protein in one or more substitutions, deletions, additions and/or insertions, such that the immunogenicity of the polypeptide is not substantially diminished. In other words, the ability of a variant to react with antigen-specific antisera may be enhanced or unchanged, relative to the native protein, or may be diminished by less than 50%, and preferably less than 20%, relative to the native protein. Such variants may generally be identified by modifying one of the above polypeptide sequences and evaluating the reactivity of the modified polypeptide with antigen-specific antibodies or antisera as described herein. Preferred variants include those in which one or more portions, such as an N-terminal leader sequence or transmembrane domain, have been removed. Other preferred variants include variants in which a small portion (e.g., 1-30 amino acids, preferably 5-15 amino acids) has been removed from the N- and/or C-terminal of the mature protein.

[0347] Polypeptide variants encompassed by the present invention include those exhibiting at least about 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% or more identity (determined as described above) to the polypeptides disclosed herein.

[0348] Preferably, a variant contains conservative substitutions. A "conservative substitution" is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged. Amino acid substitutions may generally be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity and/or the amphipathic nature of the residues. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; and amino acids with uncharged polar head groups having similar hydrophilicity values include leucine, isoleucine and valine; glycine and alanine; asparagine and glutamine; and serine, threonine, phenylalanine and tyrosine. Other groups of amino acids that may represent conservative changes include: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his. A variant may also, or alternatively, contain nonconservative changes. In a preferred embodiment, variant polypeptides differ from a native sequence by substitution, deletion or addition of five amino acids or fewer. Variants may also (or alternatively) be modified by, for example, the deletion or addition of amino acids that have minimal influence on the immunogenicity, secondary structure and hydropathic nature of the polypeptide.

[0349] As noted above, polypeptides may comprise a signal (or leader) sequence at the N-terminal end of the protein, which co-translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.

[0350] Polypeptides may be prepared using any of a variety of well known techniques. Recombinant polypeptides encoded by DNA sequences as described above may be readily prepared from the DNA sequences using any of a variety of expression vectors known to those of ordinary skill in the art. Expression may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a DNA molecule that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast, and higher eukaryotic cells, such as mammalian cells and plant cells. Preferably, the host cells employed are E. coli, yeast or a mammalian cell line such as COS or CHO. Supernatants from suitable host/vector systems which secrete recombinant protein or polypeptide into culture media may be first concentrated using a commercially available filter. Following concentration, the concentrate may be applied to a suitable purification matrix such as an affinity matrix or an ion exchange resin. Finally, one or more reverse phase HPLC steps can be employed to further purify a recombinant polypeptide.

[0351] Portions and other variants having less than about 100 amino acids, and generally less than about 50 amino acids, may also be generated by synthetic means, using techniques well known to those of ordinary skill in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain. See Merrifield, J. Am. Chem. Soc. 85:2149-2146, 1963. Equipment for automated synthesis of polypeptides is commercially available from suppliers such as Perkin Elmer/Applied BioSystems Division (Foster City, Calif.), and may be operated according to the manufacturer's instructions.

[0352] Within certain specific embodiments, a polypeptide may be a fusion protein that comprises multiple polypeptides as described herein, or that comprises at least one polypeptide as described herein and an unrelated sequence, such as a known Chlamydia protein. A fusion partner may, for example, assist in providing T helper epitopes (an immunological fusion partner), preferably T helper epitopes recognized by humans, or may assist in expressing the protein (an expression enhancer) at higher yields than the native recombinant protein. Certain preferred fusion partners are both immunological and expression enhancing fusion partners. Other fusion partners may be selected so as to increase the solubility of the protein or to enable the protein to be targeted to desired intracellular compartments. Still further fusion partners include affinity tags, which facilitate purification of the protein.

[0353] Fusion proteins may generally be prepared using standard techniques, including chemical conjugation. Preferably, a fusion protein is expressed as a recombinant protein, allowing the production of increased levels, relative to a non-fused protein, in an expression system. Briefly, DNA sequences encoding the polypeptide components may be assembled separately, and ligated into an appropriate expression vector. The 3' end of the DNA sequence encoding one polypeptide component is ligated, with or without a peptide linker, to the 5' end of a DNA sequence encoding the second polypeptide component so that the reading frames of the sequences are in phase. This permits translation into a single fusion protein that retains the biological activity of both component polypeptides.

[0354] A peptide linker sequence may be employed to separate the first and second polypeptide components by a distance sufficient to ensure that each polypeptide folds into its secondary and tertiary structures. Such a peptide linker sequence is incorporated into the fusion protein using standard techniques well known in the art. Suitable peptide linker sequences may be chosen based on the following factors: (1) their ability to adopt a flexible extended conformation; (2) their inability to adopt a secondary structure that could interact with functional epitopes on the first and second polypeptides; and (3) the lack of hydrophobic or charged residues that might react with the polypeptide functional epitopes. Preferred peptide linker sequences contain Gly, Asn and Ser residues. Other near neutral amino acids, such as Thr and Ala may also be used in the linker sequence. Amino acid sequences which may be usefully employed as linkers include those disclosed in Maratea et al., Gene 40:39-46, 1985; Murphy et al., Proc. Natl. Acad. Sci. USA 83:8258-8262, 1986; U.S. Pat. No. 4,935,233 and U.S. Pat. No. 4,751,180. The linker sequence may generally be from 1 to about 50 amino acids in length. Linker sequences are not required when the first and second polypeptides have non-essential N-terminal amino acid regions that can be used to separate the functional domains and prevent steric interference.

[0355] The ligated DNA sequences are operably linked to suitable transcriptional or translational regulatory elements. The regulatory elements responsible for expression of DNA are located only 5' to the DNA sequence encoding the first polypeptides. Similarly, stop codons required to end translation and transcription termination signals are only present 3' to the DNA sequence encoding the second polypeptide.

[0356] Fusion proteins are also provided. Such proteins comprise a polypeptide as described herein together with an unrelated immunogenic protein. Preferably the immunogenic protein is capable of eliciting a recall response. Examples of such proteins include tetanus, tuberculosis and hepatitis proteins (see, for example, Stoute et al. New Engl. J. Med., 336:86-91, 1997).

[0357] Within preferred embodiments, an immunological fusion partner is derived from protein D, a surface protein of the gram-negative bacterium Haemophilus influenza B (WO 91/18926). Preferably, a protein D derivative comprises approximately the first third of the protein (e.g., the first N-terminal 100-110 amino acids), and a protein D derivative may be lipidated. Within certain preferred embodiments, the first 109 residues of a Lipoprotein D fusion partner is included on the N-terminus to provide the polypeptide with additional exogenous T-cell epitopes and to increase the expression level in E. coli (thus functioning as an expression enhancer). The lipid tail ensures optimal presentation of the antigen to antigen presenting cells. Other fusion partners include the non-structural protein from influenzae virus, NS1 (hemaglutinin). Typically, the N-terminal 81 amino acids are used, although different fragments that include T-helper epitopes may be used.

[0358] In another embodiment, the immunological fusion partner is the protein known as LYTA, or a portion thereof (preferably a C-terminal portion). LYTA is derived from Streptococcus pneumoniae, which synthesizes an N-acetyl-L-alanine amidase known as amidase LYTA (encoded by the LytA gene; Gene 43:265-292, 1986). LYTA is an autolysin that specifically degrades certain bonds in the peptidoglycan backbone. The C-terminal domain of the LYTA protein is responsible for the affinity to the choline or to some choline analogues such as DEAE. This property has been exploited for the development of E. Coli C-LYTA expressing plasmids useful for expression of fusion proteins. Purification of hybrid proteins containing the C-LYTA fragment at the amino terminus has been described (see Biotechnology 10:795-798, 1992). Within a preferred embodiment, a repeat portion of LYTA may be incorporated into a fusion protein. A repeat portion is found in the C-terminal region starting at residue 178. A particularly preferred repeat portion incorporates residues 188-305.

[0359] In general, polypeptides (including fusion proteins) and polynucleotides as described herein are isolated. An "isolated" polypeptide or polynucleotide is one that is removed from its original environment. For example, a naturally-occurring protein is isolated if it is separated from some or all of the coexisting materials in the natural system. Preferably, such polypeptides are at least about 90% pure, more preferably at least about 95% pure and most preferably at least about 99% pure. A polynucleotide is considered to be isolated if, for example, it is cloned into a vector that is not a part of the natural environment.

Illustrative Therapeutic Compositions and Uses

[0360] In another aspect, the present invention provides methods for using one or more of the above polypeptides or fusion proteins (or polynucleotides encoding such polypeptides or fusion proteins) to induce protective immunity against Chlamydial infection in a patient. As used herein, a "patient" refers to any warm-blooded animal, preferably a human. A patient may be afflicted with a disease, or may be free of detectable disease and/or infection. In other words, protective immunity may be induced to prevent or treat Chlamydial infection.

[0361] In this aspect, the polypeptide, fusion protein or polynucleotide molecule is generally present within a pharmaceutical composition or a vaccine. Pharmaceutical compositions may comprise one or more polypeptides, each of which may contain one or more of the above sequences (or variants thereof), and a physiologically acceptable carrier. Vaccines may comprise one or more of the above polypeptides and an immunostimulant, such as an adjuvant or a liposome (into which the polypeptide is incorporated). Such pharmaceutical compositions and vaccines may also contain other Chlamydia antigens, either incorporated into a combination polypeptide or present within a separate polypeptide.

[0362] Alternatively, a vaccine may contain polynucleotides encoding one or more polypeptides or fusion proteins as described above, such that the polypeptide is generated in situ. In such vaccines, the polynucleotides may be present within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid expression systems, bacterial and viral expression systems. Appropriate nucleic acid expression systems contain the necessary polynucleotide sequences for expression in the patient (such as a suitable promoter and terminating signal). Bacterial delivery systems involve the administration of a bacterium (such as Bacillus-Calmette-Guerrin) that expresses an immunogenic portion of the polypeptide on its cell surface. In a preferred embodiment, the polynucleotides may be introduced using a viral expression system (e.g., vaccinia or other pox virus, retrovirus, or adenovirus), which may involve the use of a non-pathogenic (defective) virus. Techniques for incorporating polynucleotides into such expression systems are well known to those of ordinary skill in the art. The polynucleotides may also be administered as "naked" plasmid vectors as described, for example, in Ulmer et al., Science 259:1745-1749, 1993 and reviewed by Cohen, Science 259:1691-1692, 1993. Techniques for incorporating DNA into such vectors are well known to those of ordinary skill in the art. A retroviral vector may additionally transfer or incorporate a gene for a selectable marker (to aid in the identification or selection of transduced cells) and/or a targeting moiety, such as a gene that encodes a ligand for a receptor on a specific target cell, to render the vector target specific. Targeting may also be accomplished using an antibody, by methods known to those of ordinary skill in the art.

[0363] Other formulations for therapeutic purposes include colloidal dispersion systems, such as macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. A preferred colloidal system for use as a delivery vehicle in vitro and in vivo is a liposome (i.e., an artificial membrane vesicle). The uptake of naked polynucleotides may be increased by incorporating the polynucleotides into and/or onto biodegradable beads, which are efficiently transported into the cells. The preparation and use of such systems is well known in the art.

[0364] In a related aspect, a polynucleotide vaccine as described above may be administered simultaneously with or sequentially to either a polypeptide of the present invention or a known Chlamydia antigen. For example, administration of polynucleotides encoding a polypeptide of the present invention, either "naked" or in a delivery system as described above, may be followed by administration of an antigen in order to enhance the protective immune effect of the vaccine.

[0365] Polypeptides and polynucleotides disclosed herein may also be employed in adoptive immunotherapy for the treatment of Chlamydial infection. Adoptive immunotherapy may be broadly classified into either active or passive immunotherapy. In active immunotherapy, treatment relies on the in vivo stimulation of the endogenous host immune system with the administration of immune response-modifying agents (for example, vaccines, bacterial adjuvants, and/or cytokines).

[0366] In passive immunotherapy, treatment involves the delivery of biologic reagents with established immune reactivity (such as effector cells or antibodies) that can directly or indirectly mediate anti-Chlamydia effects and does not necessarily depend on an intact host immune system. Examples of effector cells include T lymphocytes (for example, CD8+ cytotoxic T-lymphocyte, CD4+ T-helper), killer cells (such as Natural Killer cells, lymphokine-activated killer cells), B cells, or antigen presenting cells (such as dendritic cells and macrophages) expressing the disclosed antigens. The polypeptides disclosed herein may also be used to generate antibodies or anti-idiotypic antibodies (as in U.S. Pat. No. 4,918,164), for passive immunotherapy.

[0367] The predominant method of procuring adequate numbers of T-cells for adoptive immunotherapy is to grow immune T-cells in vitro. Culture conditions for expanding single antigen-specific T-cells to several billion in number with retention of antigen recognition in vivo are well known in the art. These in vitro culture conditions typically utilize intermittent stimulation with antigen, often in the presence of cytokines, such as IL-2, and non-dividing feeder cells. As noted above, the immunoreactive polypeptides described herein may be used to rapidly expand antigen-specific T cell cultures in order to generate sufficient number of cells for immunotherapy. In particular, antigen-presenting cells, such as dendritic, macrophage, monocyte, fibroblast, or B-cells, may be pulsed with immunoreactive polypeptides, or polynucleotide sequence(s) may be introduced into antigen presenting cells, using a variety of standard techniques well known in the art. For example, antigen presenting cells may be transfected or transduced with a polynucleotide sequence, wherein said sequence contains a promoter region appropriate for increasing expression, and can be expressed as part of a recombinant virus or other expression system. Several viral vectors may be used to transduce an antigen presenting cell, including pox virus, vaccinia virus, and adenovirus; also, antigen presenting cells may be transfected with polynucleotide sequences disclosed herein by a variety of means, including gene-gun technology, lipid-mediated delivery, electroporation, osmotic shock, and particulate delivery mechanisms, resulting in efficient and acceptable expression levels as determined by one of ordinary skill in the art. For cultured T-cells to be effective in therapy, the cultured T-cells must be able to grow and distribute widely and to survive long term in vivo. Studies have demonstrated that cultured T-cells can be induced to grow in vivo and to survive long term in substantial numbers by repeated stimulation with antigen supplemented with IL-2 (see, for example, Cheever, M., et al, "Therapy With Cultured T Cells: Principles Revisited," Immunological Reviews, 157:177, 1997).

[0368] The polypeptides disclosed herein may also be employed to generate and/or isolate chlamydia-reactive T-cells, which can then be administered to the patient. In one technique, antigen-specific T-cell lines may be generated by in vivo immunization with short peptides corresponding to immunogenic portions of the disclosed polypeptides. The resulting antigen specific CD8+ or CD4+ T-cell clones may be isolated from the patient, expanded using standard tissue culture techniques, and returned to the patient.

[0369] Alternatively, peptides corresponding to immunogenic portions of the polypeptides may be employed to generate Chlamydia reactive T cell subsets by selective in vitro stimulation and expansion of autologous T cells to provide antigen-specific T cells which may be subsequently transferred to the patient as described, for example, by Chang et al, (Crit. Rev. Oncol. Hematol., 22(3), 213, 1996). Cells of the immune system, such as T cells, may be isolated from the peripheral blood of a patient, using a commercially available cell separation system, such as Isolex.TM. System, available from Nexell Therapeutics, Inc. Irvine, Calif. The separated cells are stimulated with one or more of the immunoreactive polypeptides contained within a delivery vehicle, such as a microsphere, to provide antigen-specific T cells. The population of antigen-specific T cells is then expanded using standard techniques and the cells are administered back to the patient.

[0370] In other embodiments, T-cell and/or antibody receptors specific for the polypeptides disclosed herein can be cloned, expanded, and transferred into other vectors or effector cells for use in adoptive immunotherapy. In particular, T cells may be transfected with the appropriate genes to express the variable domains from chlamydia specific monoclonal antibodies as the extracellular recognition elements and joined to the T cell receptor signaling chains, resulting in T cell activation, specific lysis, and cytokine release. This enables the T cell to redirect its specificity in an MHC-independent manner. See for example, Eshhar, Z., Cancer Immunol Immunother, 45(3-4):131-6, 1997 and Hwu, P., et al, Cancer Res, 55(15):3369-73, 1995. Another embodiment may include the transfection of chlamydia antigen specific alpha and beta T cell receptor chains into alternate T cells, as in Cole, D J, et al, Cancer Res, 55(4):748-52, 1995.

[0371] In a further embodiment, syngeneic or autologous dendritic cells may be pulsed with peptides corresponding to at least an immunogenic portion of a polypeptide disclosed herein. The resulting antigen-specific dendritic cells may either be transferred into a patient, or employed to stimulate T cells to provide antigen-specific T cells which may, in turn, be administered to a patient. The use of peptide-pulsed dendritic cells to generate antigen-specific T cells and the subsequent use of such antigen-specific T cells to eradicate disease in a murine model has been demonstrated by Cheever et al, Immunological Reviews, 157:177, 1997). Additionally, vectors expressing the disclosed polynucleotides may be introduced into stem cells taken from the patient and clonally propagated in vitro for autologous transplant back into the same patient.

[0372] Within certain aspects, polypeptides, polynucleotides, T cells and/or binding agents disclosed herein may be incorporated into pharmaceutical compositions or immunogenic compositions (i.e., vaccines). Alternatively, a pharmaceutical composition may comprise an antigen-presenting cell (e.g. a dendritic cell) transfected with a Chlamydial polynucleotide such that the antigen presenting cell expresses a Chlamydial polypeptide. Pharmaceutical compositions comprise one or more such compounds and a physiologically acceptable carrier. Vaccines may comprise one or more such compounds and an immunostimulant. An immunostimulant may be any substance that enhances or potentiates an immune response to an exogenous antigen. Examples of immunostimulants include adjuvants, biodegradable microspheres (e.g., polylactic galactide) and liposomes (into which the compound is incorporated; see e.g., Fullerton, U.S. Pat. No. 4,235,877). Vaccine preparation is generally described in, for example, M. F. Powell and M. J. Newman, eds., "Vaccine Design (the subunit and adjuvant approach)," Plenum Press (NY, 1995). Pharmaceutical compositions and vaccines within the scope of the present invention may also contain other compounds, which may be biologically active or inactive. For example, one or more immunogenic portions of other Chlamydial antigens may be present, either incorporated into a fusion polypeptide or as a separate compound, within the composition or vaccine.

[0373] A pharmaceutical composition or vaccine may contain DNA encoding one or more of the polypeptides as described above, such that the polypeptide is generated in situ. As noted above, the DNA may be present within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid expression systems, bacteria and viral expression systems. Numerous gene delivery techniques are well known in the art, such as those described by Rolland, Crit. Rev. Therap. Drug Carrier Systems 15:143-198, 1998, and references cited therein. Appropriate nucleic acid expression systems contain the necessary DNA sequences for expression in the patient (such as a suitable promoter and terminating signal). Bacterial delivery systems involve the administration of a bacterium (such as Bacillus-Calmette-Guerrin) that expresses an immunogenic portion of the polypeptide on its cell surface or secretes such an epitope.

[0374] In a preferred embodiment, the DNA may be introduced using a viral expression system (e.g., vaccinia or other pox virus, retrovirus, adenovirus, baculovirus, togavirus, bacteriophage, and the like), which often involves the use of a non-pathogenic (defective), replication competent virus.

[0375] For example, many viral expression vectors are derived from viruses of the retroviridae family. This family includes the murine leukemia viruses, the mouse mammary tumor viruses, the human foamy viruses, Rous sarcoma virus, and the immunodeficiency viruses, including human, simian, and feline. Considerations when designing retroviral expression vectors are discussed in Comstock et al. (1997).

[0376] Excellent murine leukemia virus (MLV)-based viral expression vectors have been developed by Kim et al. (1998). In creating the MLV vectors, Kim et al. found that the entire gag sequence, together with the immediate upstream region, could be deleted without significantly affecting viral packaging or gene expression. Further, it was found that nearly the entire U3 region could be replaced with the immediately-early promoter of human cytomegalovirus without deleterious effects. Additionally, MCR and internal ribosome entry sites (IRES) could be added without adverse effects. Based on their observations, Kim et al. have designed a series of MLV-based expression vectors comprising one or more of the features described above.

[0377] As more has been learned about human foamy virus (HFV), characteristics of HFV that are favorable for its use as an expression vector have been discovered. These characteristics include the expression of pol by splicing and start of translation at a defined initiation codon. Other aspects of HFV viral expression vectors are reviewed in Bodem et al. (1997).

[0378] Murakami et al. (1997) describe a Rous sarcoma virus (RSV)-based replication-competent avian retrovirus vectors, IR1 and IR2 to express a heterologous gene at a high level. In these vectors, the IRES derived from encephalomyocarditis virus (EMCV) was inserted between the env gene and the heterologous gene. The IR1 vector retains the splice-acceptor site that is present downstream of the env gene while the IR2 vector lacks it. Murakami et al. have shown high level expression of several different heterologous genes by these vectors.

[0379] Recently, a number of lentivirus-based retroviral expression vectors have been developed. Kafri et al. (1997) have shown sustained expression of genes delivered directly into liver and muscle by a human immunodeficiency virus (HIV)-based expression vector. One benefit of the system is the inherent ability of HIV to transduce non-dividing cells. Because the viruses of Kafri et al. are pseudotyped with vesicular stomatitis virus G glycoprotein (VSVG), they can transduce a broad range of tissues and cell types.

[0380] A large number of adenovirus-based expression vectors have been developed, primarily due to the advantages offered by these vectors in gene therapy applications. Adenovirus expression vectors and methods of using such vectors are the subject of a number of United States patents, including U.S. Pat. No. 5,698,202, U.S. Pat. No. 5,616,326, U.S. Pat. No. 5,585,362, and U.S. Pat. No. 5,518,913, all incorporated herein by reference.

[0381] Additional adenoviral constructs are described in Khatri et al. (1997) and Tomanin et al. (1997). Khatri et al. describe novel ovine adenovirus expression vectors and their ability to infect bovine nasal turbinate and rabbit kidney cells as well as a range of human cell type, including lung and foreskin fibroblasts as well as liver, prostate, breast, colon and retinal lines. Tomanin et al. describe adenoviral expression vectors containing the T7 RNA polymerase gene. When introduced into cells containing a heterologous gene operably linked to a T7 promoter, the vectors were able to drive gene expression from the T7 promoter. The authors suggest that this system may be useful for the cloning and expression of genes encoding cytotoxic proteins.

[0382] Poxviruses are widely used for the expression of heterologous genes in mammalian cells. Over the years, the vectors have been improved to allow high expression of the heterologous gene and simplify the integration of multiple heterologous genes into a single molecule. In an effort to diminish cytopathic effects and to increase safety, vaccinia virus mutant and other poxviruses that undergo abortive infection in mammalian cells are receiving special attention (Oertli et al., 1997). The use of poxviruses as expression vectors is reviewed in Carroll and Moss (1997).

[0383] Togaviral expression vectors, which includes alphaviral expression vectors have been used to study the structure and function of proteins and for protein production purposes. Attractive features of togaviral expression vectors are rapid and efficient gene expression, wide host range, and RNA genomes (Huang, 1996). Also, recombinant vaccines based on alphaviral expression vectors have been shown to induce a strong humoral and cellular immune response with good immunological memory and protective effects (Tubulekas et al., 1997). Alphaviral expression vectors and their use are discussed, for example, in Lundstrom (1997).

[0384] In one study, Li and Garoff (1996) used Semliki Forest virus (SFV) expression vectors to express retroviral genes and to produce retroviral particles in BHK-21 cells. The particles produced by this method had protease and reverse transcriptase activity and were infectious. Furthermore, no helper virus could be detected in the virus stocks. Therefore, this system has features that are attractive for its use in gene therapy protocols.

[0385] Baculoviral expression vectors have traditionally been used to express heterologous proteins in insect cells. Examples of proteins include mammalian chemokine receptors (Wang et al., 1997), reporter proteins such as green fluorescent protein (Wu et al., 1997), and FLAG fusion proteins (Wu et al., 1997; Koh et al., 1997). Recent advances in baculoviral expression vector technology, including their use in virion display vectors and expression in mammalian cells is reviewed by Possee (1997). Other reviews on baculoviral expression vectors include Jones and Morikawa (1996) and O'Reilly (1997).

[0386] Other suitable viral expression systems are disclosed, for example, in Fisher-Hoch et al., Proc. Natl. Acad. Sci. USA 86:317-321, 1989; Flexner et al., Ann. N.Y. Acad. Sci. 569:86-103, 1989; Flexner et al., Vaccine 8:17-21, 1990; U.S. Pat. Nos. 4,603,112, 4,769,330, and 5,017,487; WO 89/01973; U.S. Pat. No. 4,777,127; GB 2,200,651; EP 0,345,242; WO 91/02805; Berkner, Biotechniques 6:616-627, 1988; Rosenfeld et al., Science 252:431-434, 1991; Kolls et al., Proc. Natl. Acad. Sci. USA 91:215-219, 1994; Kass-Eisler et al., Proc. Natl. Acad. Sci. USA 90:11498-11502, 1993; Guzman et al., Circulation 88:2838-2848, 1993; and Guzman et al., Cir. Res. 73:1202-1207, 1993. Techniques for incorporating DNA into such expression systems are well known to those of ordinary skill in the art. In other systems, the DNA may be introduced as "naked" DNA, as described, for example, in Ulmer et al., Science 259:1745-1749, 1993 and reviewed by Cohen, Science 259:1691-1692, 1993. The uptake of naked DNA may be increased by coating the DNA onto biodegradable beads, which are efficiently transported into the cells.

[0387] It will be apparent that a vaccine may comprise a polynucleotide and/or a polypeptide component, as desired. It will also be apparent that a vaccine may contain pharmaceutically acceptable salts of the polynucleotides and/or polypeptides provided herein. Such salts may be prepared from pharmaceutically acceptable non-toxic bases, including organic bases (e.g., salts of primary, secondary and tertiary amines and basic amino acids) and inorganic bases (e.g., sodium, potassium, lithium, ammonium, calcium and magnesium salts). While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will vary depending on the mode of administration. Compositions of the present invention may be formulated for any appropriate manner of administration, including for example, topical, oral, nasal, intravenous, intracranial, intraperitoneal, subcutaneous or intramuscular administration. For parenteral administration, such as subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a fat, a wax or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and magnesium carbonate, may be employed. Biodegradable microspheres (e.g., polylactate polyglycolate) may also be employed as carriers for the pharmaceutical compositions of this invention. Suitable biodegradable microspheres are disclosed, for example, in U.S. Pat. Nos. 4,897,268 and 5,075,109.

[0388] Such compositions may also comprise buffers (e.g., neutral buffered saline or phosphate buffered saline), carbohydrates (e.g., glucose, mannose, sucrose or dextrans), mannitol, proteins, polypeptides or amino acids such as glycine, antioxidants, bacteriostats, chelating agents such as EDTA or glutathione, adjuvants (e.g., aluminum hydroxide), solutes that render the formulation isotonic, hypotonic or weakly hypertonic with the blood of a recipient, suspending agents, thickening agents and/or preservatives. Alternatively, compositions of the present invention may be formulated as a lyophilizate. Compounds may also be encapsulated within liposomes using well known technology.

[0389] Any of a variety of immunostimulants may be employed in the vaccines of this invention. For example, an adjuvant may be included. Most adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, Bortadella pertussis or Mycobacterium tuberculosis derived proteins. Suitable adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, Mich.); Merck Adjuvant 65 (Merck and Company, Inc., Rahway, N.J.); AS-2 (SmithKline Beecham, Philadelphia, Pa.); aluminum salts such as aluminum hydroxide gel (alum) or aluminum phosphate; salts of calcium, iron or zinc; an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides; polyphosphazenes; biodegradable microspheres; monophosphoryl lipid A and quil A. Cytokines, such as GM-CSF or interleukin-2, -7, or -12, may also be used as adjuvants.

[0390] Within the vaccines provided herein, under select circumstances, the adjuvant composition may be designed to induce an immune response predominantly of the Th1 type or Th2 type. High levels of Th1-type cytokines (e.g., IFN-.gamma., TNF.alpha., IL-2 and IL-12) tend to favor the induction of cell mediated immune responses to an administered antigen. In contrast, high levels of Th2-type cytokines (e.g., IL-4, IL-5, IL-6 and IL-10) tend to favor the induction of humoral immune responses. Following application of a vaccine as provided herein, a patient will support an immune response that includes Th1- and Th2-type responses. Within a preferred embodiment, in which a response is predominantly Th1-type, the level of Th1-type cytokines will increase to a greater extent than the level of Th2-type cytokines. The levels of these cytokines may be readily assessed using standard assays. For a review of the families of cytokines, see Mosmann and Coffman, Ann. Rev. Immunol. 7:145-173, 1989.

[0391] Preferred adjuvants for use in eliciting a predominantly Th1-type response include, for example, a combination of monophosphoryl lipid A, preferably 3-de-O-acylated monophosphoryl lipid A (3D-MPL), together with an aluminum salt. MPL adjuvants are available from Corixa Corporation (Seattle, Wash.; see U.S. Pat. Nos. 4,436,727; 4,877,611; 4,866,034 and 4,912,094). CpG-containing oligonucleotides (in which the CpG dinucleotide is unmethylated) also induce a predominantly Th1 response. Such oligonucleotides are well known and are described, for example, in WO 96/02555 and WO 99/33488. Immunostimulatory DNA sequences are also described, for example, by Sato et al., Science 273:352, 1996. Another preferred adjuvant is a saponin, preferably QS21 (Aquila Biopharmaceuticals Inc., Framingham, Mass.), which may be used alone or in combination with other adjuvants. For example, an enhanced system involves the combination of a monophosphoryl lipid A and saponin derivative, such as the combination of QS21 and 3D-MPL as described in WO 94/00153, or a less reactogenic composition where the QS21 is quenched with cholesterol, as described in WO 96/33739. Other preferred formulations comprise an oil-in-water emulsion and tocopherol. A particularly potent adjuvant formulation involving QS21, 3D-MPL and tocopherol in an oil-in-water emulsion is described in WO 95/17210.

[0392] Other preferred adjuvants include Montanide ISA 720 (Seppic, France), SAF (Chiron, Calif., United States), ISCOMS (CSL), MF-59 (Chiron), the SBAS series of adjuvants (e.g., SBAS-2 or SBAS-4, available from SmithKline Beecham, Rixensart, Belgium), Detox (Corixa Corporation; Seattle, Wash.), RC-529 (Corixa Corporation; Seattle, Wash.) and other aminoalkyl glucosaminide 4-phosphates (AGPs), such as those described in pending U.S. patent application Ser. Nos. 08/853,826 and 09/074,720, the disclosures of which are incorporated herein by reference in their entireties.

[0393] Any vaccine provided herein may be prepared using well known methods that result in a combination of antigen, immunostimulant and a suitable carrier or excipient. The compositions described herein may be administered as part of a sustained release formulation (i.e., a formulation such as a capsule, sponge or gel (composed of polysaccharides, for example) that effects a slow release of compound following administration). Such formulations may generally be prepared using well known technology (see, e.g., Coombes et al., Vaccine 14:1429-1438, 1996) and administered by, for example, oral, rectal or subcutaneous implantation, or by implantation at the desired target site. Sustained-release formulations may contain a polypeptide, polynucleotide or antibody dispersed in a carrier matrix and/or contained within a reservoir surrounded by a rate controlling membrane.

[0394] Carriers for use within such formulations are biocompatible, and may also be biodegradable; preferably the formulation provides a relatively constant level of active component release. Such carriers include microparticles of poly(lactide-co-glycolide), as well as polyacrylate, latex, starch, cellulose and dextran. Other delayed-release carriers include supramolecular biovectors, which comprise a non-liquid hydrophilic core (e.g., a cross-linked polysaccharide or oligosaccharide) and, optionally, an external layer comprising an amphiphilic compound, such as a phospholipid (see e.g., U.S. Pat. No. 5,151,254 and PCT applications WO 94/20078, WO/94/23701 and WO 96/06638). The amount of active compound contained within a sustained release formulation depends upon the site of implantation, the rate and expected duration of release and the nature of the condition to be treated or prevented.

[0395] Any of a variety of delivery vehicles may be employed within pharmaceutical compositions and vaccines to facilitate production of an antigen-specific immune response that targets Chlamydia-infected cells. Delivery vehicles include antigen presenting cells (APCs), such as dendritic cells, macrophages, B cells, monocytes and other cells that may be engineered to be efficient APCs. Such cells may, but need not, be genetically modified to increase the capacity for presenting the antigen, to improve activation and/or maintenance of the T cell response, to have anti-Chlamydia effects per se and/or to be immunologically compatible with the receiver (i.e., matched HLA haplotype). APCs may generally be isolated from any of a variety of biological fluids and organs, and may be autologous, allogeneic, syngeneic or xenogeneic cells.

[0396] Certain preferred embodiments of the present invention use dendritic cells or progenitors thereof as antigen-presenting cells. Dendritic cells are highly potent APCs (Banchereau and Steinman, Nature 392:245-251, 1998) and have been shown to be effective as a physiological adjuvant for eliciting prophylactic or therapeutic immunity (see Timmerman and Levy, Ann. Rev. Med. 50:507-529, 1999). In general, dendritic cells may be identified based on their typical shape (stellate in situ, with marked cytoplasmic processes (dendrites) visible in vitro), their ability to take up, process and present antigens with high efficiency, and their ability to activate naive T cell responses. Dendritic cells may, of course, be engineered to express specific cell-surface receptors or ligands that are not commonly found on dendritic cells in vivo or ex vivo, and such modified dendritic cells are contemplated by the present invention. As an alternative to dendritic cells, secreted vesicles antigen-loaded dendritic cells (called exosomes) may be used within a vaccine (see Zitvogel et al., Nature Med. 4:594-600, 1998).

[0397] Dendritic cells and progenitors may be obtained from peripheral blood, bone marrow, lymph nodes, spleen, skin, umbilical cord blood or any other suitable tissue or fluid. For example, dendritic cells may be differentiated ex vivo by adding a combination of cytokines such as GM-CSF, IL-4, IL-13 and/or TNF.alpha. to cultures of monocytes harvested from peripheral blood. Alternatively, CD34 positive cells harvested from peripheral blood, umbilical cord blood or bone marrow may be differentiated into dendritic cells by adding to the culture medium combinations of GM-CSF, IL-3, TNF.alpha., CD40 ligand, LPS, flt3 ligand and/or other compound(s) that induce differentiation, maturation and proliferation of dendritic cells.

[0398] Dendritic cells are conveniently categorized as "immature" and "mature" cells, which allows a simple way to discriminate between two well characterized phenotypes. However, this nomenclature should not be construed to exclude all possible intermediate stages of differentiation. Immature dendritic cells are characterized as APC with a high capacity for antigen uptake and processing, which correlates with the high expression of Fc.gamma. receptor and mannose receptor. The mature phenotype is typically characterized by a lower expression of these markers, but a high expression of cell surface molecules responsible for T cell activation such as class I and class II MHC, adhesion molecules (e.g., CD54 and CD11) and costimulatory molecules (e.g., CD40, CD80, CD86 and 4-1 BB).

[0399] APCs may generally be transfected with a polynucleotide encoding a Chlamydial protein (or portion or other variant thereof) such that the Chlamydial polypeptide, or an immunogenic portion thereof, is expressed on the cell surface. Such transfection may take place ex vivo, and a composition or vaccine comprising such transfected cells may then be used for therapeutic purposes, as described herein. Alternatively, a gene delivery vehicle that targets a dendritic or other antigen presenting cell may be administered to a patient, resulting in transfection that occurs in vivo. In vivo and ex vivo transfection of dendritic cells, for example, may generally be performed using any methods known in the art, such as those described in WO 97/24447, or the gene gun approach described by Mahvi et al., Immunology and cell Biology 75:456-460, 1997. Antigen loading of dendritic cells may be achieved by incubating dendritic cells or progenitor cells with the Chlamydial polypeptide, DNA (naked or within a plasmid vector) or RNA; or with antigen-expressing recombinant bacterium or viruses (e.g., vaccinia, fowlpox, adenovirus or lentivirus vectors). Prior to loading, the polypeptide may be covalently conjugated to an immunological partner that provides T cell help (e.g., a carrier molecule). Alternatively, a dendritic cell may be pulsed with a non-conjugated immunological partner, separately or in the presence of the polypeptide.

[0400] Routes and frequency of administration of pharmaceutical compositions and vaccines, as well as dosage, will vary from individual to individual. In general, the pharmaceutical compositions and vaccines may be administered by injection (e.g., intracutaneous, intramuscular, intravenous or subcutaneous), intranasally (e.g., by aspiration) or orally. Between 1 and 3 doses may be administered for a 1-36 week period. Preferably, 3 doses are administered, at intervals of 3-4 months, and booster vaccinations may be given periodically thereafter. Alternate protocols may be appropriate for individual patients. A suitable dose is an amount of polypeptide or DNA that, when administered as described above, is capable of raising an immune response in an immunized patient sufficient to protect the patient from Chlamydial infection for at least 1-2 years. In general, the amount of polypeptide present in a dose (or produced in situ by the DNA in a dose) ranges from about 1 pg to about 100 mg per kg of host, typically from about 10 pg to about 1 mg, and preferably from about 100 pg to about 1 .mu.g. Suitable dose sizes will vary with the size of the patient, but will typically range from about 0.1 mL to about 5 mL.

[0401] While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will vary depending on the mode of administration. For parenteral administration, such as subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a fat, a wax or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and magnesium carbonate, may be employed. Biodegradable microspheres (e.g., polylactic galactide) may also be employed as carriers for the pharmaceutical compositions of this invention. Suitable biodegradable microspheres are disclosed, for example, in U.S. Pat. Nos. 4,897,268 and 5,075,109.

[0402] In general, an appropriate dosage and treatment regimen provides the active compound(s) in an amount sufficient to provide therapeutic and/or prophylactic benefit. Such a response can be monitored by establishing an improved clinical outcome in treated patients as compared to non-treated patients. Increases in preexisting immune responses to a Chlamydial protein generally correlate with an improved clinical outcome. Such immune responses may generally be evaluated using standard proliferation, cytotoxicity or cytokine assays, which may be performed using samples obtained from a patient before and after treatment.

Detection and Diagnosis

[0403] In another aspect, the present invention provides methods for using the polypeptides described above to diagnose Chlamydial infection. In this aspect, methods are provided for detecting Chlamydial infection in a biological sample, using one or more of the above polypeptides, either alone or in combination. For clarity, the term "polypeptide" will be used when describing specific embodiments of the inventive diagnostic methods. However, it will be clear to one of skill in the art that the fusion proteins of the present invention may also be employed in such methods.

[0404] As used herein, a "biological sample" is any antibody-containing sample obtained from a patient. Preferably, the sample is whole blood, sputum, serum, plasma, saliva, cerebrospinal fluid or urine. More preferably, the sample is a blood, serum or plasma sample obtained from a patient. The polypeptides are used in an assay, as described below, to determine the presence or absence of antibodies to the polypeptide(s) in the sample, relative to a predetermined cut-off value. The presence of such antibodies indicates previous sensitization to Chlamydia antigens which may be indicative of Chlamydia-infection.

[0405] In embodiments in which more than one polypeptide is employed, the polypeptides used are preferably complementary (i.e., one component polypeptide will tend to detect infection in samples where the infection would not be detected by another component polypeptide). Complementary polypeptides may generally be identified by using each polypeptide individually to evaluate serum samples obtained from a series of patients known to be infected with Chlamydia. After determining which samples test positive (as described below) with each polypeptide, combinations of two or more polypeptides may be formulated that are capable of detecting infection in most, or all, of the samples tested.

[0406] A variety of assay formats are known to those of ordinary skill in the art for using one or more polypeptides to detect antibodies in a sample. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988, which is incorporated herein by reference. In a preferred embodiment, the assay involves the use of polypeptide immobilized on a solid support to bind to and remove the antibody from the sample. The bound antibody may then be detected using a detection reagent that contains a reporter group. Suitable detection reagents include antibodies that bind to the antibody/polypeptide complex and free polypeptide labeled with a reporter group (e.g., in a semi-competitive assay). Alternatively, a competitive assay may be utilized, in which an antibody that binds to the polypeptide is labeled with a reporter group and allowed to bind to the immobilized antigen after incubation of the antigen with the sample. The extent to which components of the sample inhibit the binding of the labeled antibody to the polypeptide is indicative of the reactivity of the sample with the immobilized polypeptide.

[0407] The solid support may be any solid material known to those of ordinary skill in the art to which the antigen may be attached. For example, the solid support may be a test well in a microtiter plate, or a nitrocellulose or other suitable membrane. Alternatively, the support may be a bead or disc, such as glass, fiberglass, latex or a plastic material such as polystyrene or polyvinylchloride. The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Pat. No. 5,359,681.

[0408] The polypeptides may be bound to the solid support using a variety of techniques known to those of ordinary skill in the art. In the context of the present invention, the term "bound" refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the antigen and functional groups on the support or may be a linkage by way of a cross-linking agent). Binding by adsorption to a well in a microtiter plate or to a membrane is preferred. In such cases, adsorption may be achieved by contacting the polypeptide, in a suitable buffer, with the solid support for a suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and 1 day. In general, contacting a well of a plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of polypeptide ranging from about 10 ng to about 1 .mu.g, and preferably about 100 ng, is sufficient to bind an adequate amount of antigen.

[0409] Covalent attachment of polypeptide to a solid support may generally be achieved by first reacting the support with a bifunctional reagent that will react with both the support and a functional group, such as a hydroxyl or amino group, on the polypeptide. For example, the polypeptide may be bound to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the polypeptide (see, e.g., Pierce Immunotechnology Catalog and Handbook, 1991, at A12-A13).

[0410] In certain embodiments, the assay is an enzyme linked immunosorbent assay (ELISA). This assay may be performed by first contacting a polypeptide antigen that has been immobilized on a solid support, commonly the well of a microtiter plate, with the sample, such that antibodies to the polypeptide within the sample are allowed to bind to the immobilized polypeptide. Unbound sample is then removed from the immobilized polypeptide and a detection reagent capable of binding to the immobilized antibody-polypeptide complex is added. The amount of detection reagent that remains bound to the solid support is then determined using a method appropriate for the specific detection reagent.

[0411] More specifically, once the polypeptide is immobilized on the support as described above, the remaining protein binding sites on the support are typically blocked. Any suitable blocking agent known to those of ordinary skill in the art, such as bovine serum albumin (BSA) or Tween 20.TM. (Sigma Chemical Co., St. Louis, Mo.) may be employed. The immobilized polypeptide is then incubated with the sample, and antibody is allowed to bind to the antigen. The sample may be diluted with a suitable dilutent, such as phosphate-buffered saline (PBS) prior to incubation. In general, an appropriate contact time (i.e., incubation time) is that period of time that is sufficient to detect the presence of antibody within an HGE-infected sample. Preferably, the contact time is sufficient to achieve a level of binding that is at least 95% of that achieved at equilibrium between bound and unbound antibody. Those of ordinary skill in the art will recognize that the time necessary to achieve equilibrium may be readily determined by assaying the level of binding that occurs over a period of time. At room temperature, an incubation time of about 30 minutes is generally sufficient.

[0412] Unbound sample may then be removed by washing the solid support with an appropriate buffer, such as PBS containing 0.1% Tween 20.TM.. Detection reagent may then be added to the solid support. An appropriate detection reagent is any compound that binds to the immobilized antibody-polypeptide complex and that can be detected by any of a variety of means known to those in the art. Preferably, the detection reagent contains a binding agent (such as, for example, Protein A, Protein G, immunoglobulin, lectin or free antigen) conjugated to a reporter group. Preferred reporter groups include enzymes (such as horseradish peroxidase), substrates, cofactors, inhibitors, dyes, radionuclides, luminescent groups, fluorescent groups and biotin. The conjugation of binding agent to reporter group may be achieved using standard methods known to those of ordinary skill in the art. Common binding agents may also be purchased conjugated to a variety of reporter groups from many commercial sources (e.g., Zymed Laboratories, San Francisco, Calif., and Pierce, Rockford, Ill.).

[0413] The detection reagent is then incubated with the immobilized antibody-polypeptide complex for an amount of time sufficient to detect the bound antibody. An appropriate amount of time may generally be determined from the manufacturer's instructions or by assaying the level of binding that occurs over a period of time. Unbound detection reagent is then removed and bound detection reagent is detected using the reporter group. The method employed for detecting the reporter group depends upon the nature of the reporter group. For radioactive groups, scintillation counting or autoradiographic methods are generally appropriate. Spectroscopic methods may be used to detect dyes, luminescent groups and fluorescent groups. Biotin may be detected using avidin, coupled to a different reporter group (commonly a radioactive or fluorescent group or an enzyme). Enzyme reporter groups may generally be detected by the addition of substrate (generally for a specific period of time), followed by spectroscopic or other analysis of the reaction products.

[0414] To determine the presence or absence of anti-Chlamydia antibodies in the sample, the signal detected from the reporter group that remains bound to the solid support is generally compared to a signal that corresponds to a predetermined cut-off value. In one preferred embodiment, the cut-off value is the average mean signal obtained when the immobilized antigen is incubated with samples from an uninfected patient. In general, a sample generating a signal that is three standard deviations above the predetermined cut-off value is considered positive for Chlamydia-infection. In an alternate preferred embodiment, the cut-off value is determined using a Receiver Operator Curve, according to the method of Sackett et al., Clinical Epidemiology: A Basic Science for Clinical Medicine, Little Brown and Co., 1985, pp. 106-107. Briefly, in this embodiment, the cut-off value may be determined from a plot of pairs of true positive rates (i.e., sensitivity) and false positive rates (100%-specificity) that correspond to each possible cut-off value for the diagnostic test result. The cut-off value on the plot that is the closest to the upper left-hand corner (i.e., the value that encloses the largest area) is the most accurate cut-off value, and a sample generating a signal that is higher than the cut-off value determined by this method may be considered positive. Alternatively, the cut-off value may be shifted to the left along the plot, to minimize the false positive rate, or to the right, to minimize the false negative rate. In general, a sample generating a signal that is higher than the cut-off value determined by this method is considered positive for Chlamydial infection.

[0415] In a related embodiment, the assay is performed in a rapid flow-through or strip test format, wherein the antigen is immobilized on a membrane, such as nitrocellulose. In the flow-through test, antibodies within the sample bind to the immobilized polypeptide as the sample passes through the membrane. A detection reagent (e.g., protein A-colloidal gold) then binds to the antibody-polypeptide complex as the solution containing the detection reagent flows through the membrane. The detection of bound detection reagent may then be performed as described above. In the strip test format, one end of the membrane to which polypeptide is bound is immersed in a solution containing the sample. The sample migrates along the membrane through a region containing detection reagent and to the area of immobilized polypeptide. Concentration of detection reagent at the polypeptide indicates the presence of anti-Chlamydia antibodies in the sample. Typically, the concentration of detection reagent at that site generates a pattern, such as a line, that can be read visually. The absence of such a pattern indicates a negative result. In general, the amount of polypeptide immobilized on the membrane is selected to generate a visually discernible pattern when the biological sample contains a level of antibodies that would be sufficient to generate a positive signal in an ELISA, as discussed above. Preferably, the amount of polypeptide immobilized on the membrane ranges from about 25 ng to about 1 .mu.g, and more preferably from about 50 ng to about 500 ng. Such tests can typically be performed with a very small amount (e.g., one drop) of patient serum or blood.

[0416] Of course, numerous other assay protocols exist that are suitable for use with the polypeptides of the present invention. The above descriptions are intended to be exemplary only. One example of an alternative assay protocol which may be usefully employed in such methods is a Western blot, wherein the proteins present in a biological sample are separated on a gel, prior to exposure to a binding agent. Such techniques are well known to those of skill in the art.

Binding Agents and Their Uses

[0417] The present invention further provides agents, such as antibodies and antigen-binding fragments thereof, that specifically bind to a Chlamydial protein. As used herein, an antibody, or antigen-binding fragment thereof, is said to "specifically bind" to a Chlamydial protein if it reacts at a detectable level (within, for example, an ELISA) with a Chlamydial protein, and does not react detectably with unrelated proteins under similar conditions. As used herein, "binding" refers to a noncovalent association between two separate molecules such that a complex is formed. The ability to bind may be evaluated by, for example, determining a binding constant for the formation of the complex. The binding constant is the value obtained when the concentration of the complex is divided by the product of the component concentrations. In general, two compounds are said to "bind," in the context of the present invention, when the binding constant for complex formation exceeds about 10.sup.3 L/mol. The binding constant may be determined using methods well known in the art.

[0418] Binding agents may be further capable of differentiating between patients with and without a Chlamydial infection using the representative assays provided herein. In other words, antibodies or other binding agents that bind to a Chlamydial protein will generate a signal indicating the presence of a Chlamydial infection in at least about 20% of patients with the disease, and will generate a negative signal indicating the absence of the disease in at least about 90% of individuals without infection. To determine whether a binding agent satisfies this requirement, biological samples (e.g., blood, sera, sputum urine and/or tissue biopsies) from patients with and without Chlamydial infection (as determined using standard clinical tests) may be assayed as described herein for the presence of polypeptides that bind to the binding agent. It will be apparent that a statistically significant number of samples with and without the disease should be assayed. Each binding agent should satisfy the above criteria; however, those of ordinary skill in the art will recognize that binding agents may be used in combination to improve sensitivity.

[0419] Any agent that satisfies the above requirements may be a binding agent. For example, a binding agent may be a ribosome, with or without a peptide component, an RNA molecule or a polypeptide. In a preferred embodiment, a binding agent is an antibody or an antigen-binding fragment thereof. Antibodies may be prepared by any of a variety of techniques known to those of ordinary skill in the art. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. In general, antibodies can be produced by cell culture techniques, including the generation of monoclonal antibodies as described herein, or via transfection of antibody genes into suitable bacterial or mammalian cell hosts, in order to allow for the production of recombinant antibodies. In one technique, an immunogen comprising the polypeptide is initially injected into any of a wide variety of mammals (e.g., mice, rats, rabbits, sheep or goats). In this step, the polypeptides of this invention may serve as the immunogen without modification. Alternatively, particularly for relatively short polypeptides, a superior immune response may be elicited if the polypeptide is joined to a carrier protein, such as bovine serum albumin or keyhole limpet hemocyanin. The immunogen is injected into the animal host, preferably according to a predetermined schedule incorporating one or more booster immunizations, and the animals are bled periodically. Polyclonal antibodies specific for the polypeptide may then be purified from such antisera by, for example, affinity chromatography using the polypeptide coupled to a suitable solid support.

[0420] Monoclonal antibodies specific for an antigenic polypeptide of interest may be prepared, for example, using the technique of Kohler and Milstein, Eur. J. Immunol. 6:511-519, 1976, and improvements thereto. Briefly, these methods involve the preparation of immortal cell lines capable of producing antibodies having the desired specificity (i.e., reactivity with the polypeptide of interest). Such cell lines may be produced, for example, from spleen cells obtained from an animal immunized as described above. The spleen cells are then immortalized by, for example, fusion with a myeloma cell fusion partner, preferably one that is syngeneic with the immunized animal. A variety of fusion techniques may be employed. For example, the spleen cells and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the growth of hybrid cells, but not myeloma cells. A preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. After a sufficient time, usually about 1 to 2 weeks, colonies of hybrids are observed. Single colonies are selected and their culture supernatants tested for binding activity against the polypeptide. Hybridomas having high reactivity and specificity are preferred.

[0421] Monoclonal antibodies may be isolated from the supernatants of growing hybridoma colonies. In addition, various techniques may be employed to enhance the yield, such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse. Monoclonal antibodies may then be harvested from the ascites fluid or the blood. Contaminants may be removed from the antibodies by conventional techniques, such as chromatography, gel filtration, precipitation, and extraction. The polypeptides of this invention may be used in the purification process in, for example, an affinity chromatography step.

[0422] Within certain embodiments, the use of antigen-binding fragments of antibodies may be preferred. Such fragments include Fab fragments, which may be prepared using standard techniques. Briefly, immunoglobulins may be purified from rabbit serum by affinity chromatography on Protein A bead columns (Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988) and digested by papain to yield Fab and Fc fragments. The Fab and Fc fragments may be separated by affinity chromatography on protein A bead columns.

[0423] Monoclonal antibodies of the present invention may be coupled to one or more therapeutic agents. Suitable agents in this regard include radionuclides, differentiation inducers, drugs, toxins, and derivatives thereof. Preferred radionuclides include .sup.90Y, .sup.123I, .sup.125I, .sup.131I, .sup.186Re, .sup.188Re, .sup.211At, and .sup.212Bi. Preferred drugs include methotrexate, and pyrimidine and purine analogs. Preferred differentiation inducers include phorbol esters and butyric acid. Preferred toxins include ricin, abrin, diptheria toxin, cholera toxin, gelonin, Pseudomonas exotoxin, Shigella toxin, and pokeweed antiviral protein.

[0424] A therapeutic agent may be coupled (e.g., covalently bonded) to a suitable monoclonal antibody either directly or indirectly (e.g., via a linker group). A direct reaction between an agent and an antibody is possible when each possesses a substituent capable of reacting with the other. For example, a nucleophilic group, such as an amino or sulfhydryl group, on one may be capable of reacting with a carbonyl-containing group, such as an anhydride or an acid halide, or with an alkyl group containing a good leaving group (e.g., a halide) on the other.

[0425] Alternatively, it may be desirable to couple a therapeutic agent and an antibody via a linker group. A linker group can function as a spacer to distance an antibody from an agent in order to avoid interference with binding capabilities. A linker group can also serve to increase the chemical reactivity of a substituent on an agent or an antibody, and thus increase the coupling efficiency. An increase in chemical reactivity may also facilitate the use of agents, or functional groups on agents, which otherwise would not be possible.

[0426] It will be evident to those skilled in the art that a variety of bifunctional or polyfunctional reagents, both homo- and hetero-functional (such as those described in the catalog of the Pierce Chemical Co., Rockford, Ill.), may be employed as the linker group. Coupling may be effected, for example, through amino groups, carboxyl groups, sulfhydryl groups or oxidized carbohydrate residues. There are numerous references describing such methodology, e.g., U.S. Pat. No. 4,671,958, to Rodwell et al.

[0427] Where a therapeutic agent is more potent when free from the antibody portion of the immunoconjugates of the present invention, it may be desirable to use a linker group which is cleavable during or upon internalization into a cell. A number of different cleavable linker groups have been described. The mechanisms for the intracellular release of an agent from these linker groups include cleavage by reduction of a disulfide bond (e.g., U.S. Pat. No. 4,489,710, to Spitler), by irradiation of a photolabile bond (e.g., U.S. Pat. No. 4,625,014, to Senter et al.), by hydrolysis of derivatized amino acid side chains (e.g., U.S. Pat. No. 4,638,045, to Kohn et al.), by serum complement-mediated hydrolysis (e.g., U.S. Pat. No. 4,671,958, to Rodwell et al.), and acid-catalyzed hydrolysis (e.g., U.S. Pat. No. 4,569,789, to Blattler et al.).

[0428] It may be desirable to couple more than one agent to an antibody. In one embodiment, multiple molecules of an agent are coupled to one antibody molecule. In another embodiment, more than one type of agent may be coupled to one antibody. Regardless of the particular embodiment, immunoconjugates with more than one agent may be prepared in a variety of ways. For example, more than one agent may be coupled directly to an antibody molecule, or linkers which provide multiple sites for attachment can be used. Alternatively, a carrier can be used.

[0429] A carrier may bear the agents in a variety of ways, including covalent bonding either directly or via a linker group. Suitable carriers include proteins such as albumins (e.g., U.S. Pat. No. 4,507,234, to Kato et al.), peptides and polysaccharides such as aminodextran (e.g., U.S. Pat. No. 4,699,784, to Shih et al.). A carrier may also bear an agent by noncovalent bonding or by encapsulation, such as within a liposome vesicle (e.g., U.S. Pat. Nos. 4,429,008 and 4,873,088). Carriers specific for radionuclide agents include radiohalogenated small molecules and chelating compounds. For example, U.S. Pat. No. 4,735,792 discloses representative radiohalogenated small molecules and their synthesis. A radionuclide chelate may be formed from chelating compounds that include those containing nitrogen and sulfur atoms as the donor atoms for binding the metal, or metal oxide, radionuclide. For example, U.S. Pat. No. 4,673,562, to Davison et al. discloses representative chelating compounds and their synthesis.

[0430] A variety of routes of administration for the antibodies and immunoconjugates may be used. Typically, administration will be intravenous, intramuscular, subcutaneous or in site-specific regions by appropriate methods. It will be evident that the precise dose of the antibody/immunoconjugate will vary depending upon the antibody used, the antigen density, and the rate of clearance of the antibody.

[0431] Antibodies may be used in diagnostic tests to detect the presence of Chlamydia antigens using assays similar to those detailed above and other techniques well known to those of skill in the art, thereby providing a method for detecting Chlamydial infection in a patient.

[0432] Diagnostic reagents of the present invention may also comprise DNA sequences encoding one or more of the above polypeptides, or one or more portions thereof. For example, at least two oligonucleotide primers may be employed in a polymerase chain reaction (PCR) based assay to amplify Chlamydia-specific cDNA derived from a biological sample, wherein at least one of the oligonucleotide primers is specific for a DNA molecule encoding a polypeptide of the present invention. The presence of the amplified cDNA is then detected using techniques well known in the art, such as gel electrophoresis. Similarly, oligonucleotide probes specific for a DNA molecule encoding a polypeptide of the present invention may be used in a hybridization assay to detect the presence of an inventive polypeptide in a biological sample.

[0433] The following Examples are offered by way of illustration and not by way of limitation.

EXAMPLES

Example 1

CD4 T Cell Expression Clinging for the Identification of T Cell Stimulating Antigens from Chlamydia Trachomatis Serovar E

[0434] In this example, a CD4+ T cell expression cloning strategy was used to identify Chlamydia trachomatis antigens recognized by patients enrolled in Corixa Corporation's blood donor program. A genomic library of Chlamydia trachomatis serovar E was constructed and screened with Chlamydia specific T cell lines generated by stimulating PBMCs from these donors. Donor CT1 is a 27 yr. old male whose clinical manifestation was non-gonococcal urethritis and his urine was tested positive for Chlamydia by ligase chain reaction. Donor CT3 is a 43 yr. old male who is asymptomatic and infected with serovar J. Donor CT10 is a 24 yr. old female who is asymptomatic and was exposed to Chlamydia through her partner but did not develop the disease. Donor CT11 is a 24 yr. old female with multiple infections (serovar J, F and E).

[0435] Chlamydia specific T-cell lines were generated from donors with Chlamydia genital tract infection or donors exposed to chlamydia who did not develop the disease. T cell lines from donor CT-1, CT-3 and CT-10 were generated by stimulating PBMCs with reticulate bodies of C. trachomatis serovar E. T-cell lines from donor CT-11 were generated by stimulating PBMCs with either reticulate bodies or elementary bodies of C. trachomatis serovar E. A randomly sheared genomic library of C. trachomatis serovar E was constructed in lambda Zap II vector and an amplified library plated out in 96 well microtiter plates at a density of 25 clones/well. Bacteria were induced to express the recombinant protein in the presence of 2 mM IPTG for 2 hr, then pelleted and resuspended in 200 ul RPMI/10% FBS. 10 ul of the induced bacterial suspension was transferred to 96 well plates containing autologous monocyte-derived dendritic cells. After a 2 hour incubation, dendritic cells were washed to remove E. coli and the T cells were added. Positive E. coli pools were identified by determining IFN gamma production and proliferation of T cells in the pools. The number of pools identified by each T-cell line is as follows: CT1 line: 30/480 pools; CT3 line: 91/960 pools; CT10 line: 40/480 pools; CT11 line: 51/480 pools. The clones identified using this approach are set forth in SEQ ID NO:1-14.

[0436] In another example using substantially the same approach described above, we identified 12 additional T-cell reactive clones from Chlamydia trachomatis serovar E expression screening. Clone E5-E9-3 (CT1 positive) contains a 636 bp insert that encodes partially the ORF for dnaK like gene. Part of this sequence was also identified in clone E1-A5-53. Clone E4-H3-56 (CT1 positive, 463 bp insert) contains a partial ORF for the TSA gene (CT603) on the complementary strand. The insert for clone E2-G12-52 (1265 bp) was identified with the CT11 line. It contains a partial ORF for clpB, a protease ATPase. Another clone identified with the CT11 line, E1-F9-79 (167 bp), contains a partial ORF for the gene CT133 on the complementary strand. CT133 is a predicted rRNA methylase. Clone E4-D2-79 (CT3 positive) contains a 1181 bp insert that is a partial ORF for nrdA gene. The ORF for this gene was also identified in clone E2-B10-52 (CT10 positive). Clone E6-C8-95 contains a 731 bp insert that was identified using the donor lines CT3, CT1, and CT12. This insert has a carboxy terminal half for the gene for the 60 kDa ORF. Clone E7-H11-61 (CT3 positive-1135 bp) has partial inserts for fliA (CT061), tyrS (CT062), TSA (CT603) and a hypothetical protein (CT602). The insert for clone E5-A11-8 (CT10 positive-1736 bp) contains the complete ORF for groES (CT111) and a majority of the ORF for groEL (CT110). Clone E3-F2-37 (CT10, CT3, CT11, and CT12 positive-1377 bp insert) contains a partial ORF for gene tRNA-Trp (CT322) and a complete ORF for the gene secE (CT321). E4-G9-75 is another CT10 clone that contains a partial ORF (723 bp insert) for the amino terminal region of the pmpH gene (CT872). Clone E2-D5-89 (516 bp) is also a CT10 positive clone that contains a partial ORF for pmpD gene (12). The insert for clone E5-E2-10 (CT10 positive) is 427 bp and contains a partial ORF for the major outer membrane protein omp1.

Example 2

Additional CD4 T Cell Expression Cloning for the Identification of T Cell Stimulating Antigens from Chlamydia Trachomatis Serovar E

[0437] Twenty sequences were isolated from single clones using a Chlamydia trachomatis serovar E (Ct E) library expression screening method. Descriptions of how the clones and lines were generated are provided in Example 1.

[0438] Clone E5-A8-85 (identified using the CT1 patient line) was found to contain a 1433 bp insert. This insert contains a large region of the C-terminal half of the CT875, a Chlamydia trachomatis hypothetical specific gene that is disclosed in SEQ ID NO:34. Also present in the clone is a partial open reading frame (ORF) of a hypothetical protein CT001 which is on the complementary strand.

[0439] The clone E9-G2-93 (identified using the C10 patient line) was shown to contain a 554 bp insert, the sequence of which is disclosed in SEQ ID NO:33. This sequence encodes a partial ORF for CT178, a hypothetical CT protein.

[0440] Clone E7-B1-16 (identified using the patient lines CT10, CT3, CT5, CT11, CT13, and CHH037) has a 2577 bp insert, the sequence of which is disclosed in SEQ ID NO:32. This clone was found to contain three ORFs. The first ORF contains almost the entire ORF for CT694, a Chlamydia trachomatis (CT) specific hypothetical protein. The second ORF is a full length ORF for CT695, another hypothetical CT protein. The third ORF is the N-terminal portion of CT696.

[0441] Clone E9-D5-8 (identified using the patient lines CT10, CT1, CT4, and CT11) contains a 393 bp insert, which is disclosed in SEQ ID NO:31. It was found to encode a partial ORF for CT680, the S2 ribosomal protein.

[0442] Clone E9-E10-51 (identified using the patient line CT10) contains an 883 bp insert, the sequence of which is disclosed in SEQ ID NO:30. This clone contains two partial ORF. The first of these is for the C-terminal half of CT680, which may show some overlap with the insert present in clone E9-D5-8. The second ORF is the N-terminal partial ORF for CT679, which is the elongation factor TS.

[0443] Clone E3-B4-18 (identified using the CT1 patient line) contains a 1224 bp insert, the sequence of which is disclosed in SEQ ID NO:29. This clone contains 4 ORFs. At the N-terminal end of the clone is the complete ORF for CT772, coding for inorganic pyrophosphatase. The second ORF is a small portion of the C-terminal end of CT771, on the complementary frame. The third is a partial ORF of the hypothetical protein, CT191 and the fourth is a partial ORF for CT190, DNA gyrase-B.

[0444] Clone E10-B2-57 (identified using the CT10 patient line) contains an 822 bp insert, the sequence of which is disclosed in SEQ ID NO:42. This clone contains the complete ORF for CT066, a hypothetical protein, on the complementary strand.

[0445] Clone E3-F3-18 (identified using the CT1 patient line) contains an 1141 bp insert, the sequence of which is disclosed in SEQ ID NO:41. It contains a partial ORF for pmpG (CT871) in frame with the .beta.-gal gene.

[0446] Clone E4-D6-21 (identified using the CT3 patient line) contains a 1297 bp insert, the sequence of which is disclosed in SEQ ID NO:40. This clone contains a very small portion of xseA (CT329), the entire ORF for tpiS (CT328) on the complementary strand, and a partial amino terminal ORF for trpC (CT327) on the top frame.

[0447] Clone E1-G9-23 (identified using the CT3 patient line) contains an 1180 bp insert, the sequence of which is disclosed in SEQ ID NO:39. This clone contains almost the entire ORF for glycogen synthase (CT798).

[0448] Clone E3-A3-31 (identified using the CT1 patient line) contains an 1834 bp insert, the sequence of which is disclosed in SEQ ID NO:38. This clone contains a large region of the hypothetical gene CT622.

[0449] Clone E2-F7-11 (identified using both the CT3 and CT10 patient lines) contains a 2093 bp insert, the sequence of which is disclosed in SEQ ID NO:37. This clone contains a large region of the rpoN gene (CT609) in frame with .beta.-gal and the complete ORF for the hypothetical gene CT610 on the complementary strand. In addition, it also contains the carboxy-terminal end of CT611, another hypothetical gene.

[0450] Clone E7-H11-10 (identified using the CT3 patient line) contains a 1990 bp insert, the sequence of which is disclosed in SEQ ID NO:36. This clone contains the amino terminal partial ORF for CT610, a complete ORF for CT611, another complete ORF for CT612, and a carboxy-terminal portion of CT613. All of these genes are hypothetical and all are present on the complementary strand.

[0451] Clone E10-C6-45 (identified using the CT3 patient line) contains a 196 bp insert, the sequence of which is disclosed in SEQ ID NO:35. This clone contains a partial ORF for nrdA (CT827) in frame with .beta.-gal. This clone contains a relatively small insert and has particular utility in determining the epitope of this gene that contributes to the immunogenicity of Serovar E.

[0452] Clone E3-H6-10 (identified using the CT12 patient line) contains a 3734 bp insert, the sequence of which is disclosed in SEQ ID NO:48. This clone contains ORFs for a series of hypothetical proteins. It contains the partial ORFs for CT223 and CT229 and the complete ORFs for CT224, CT225, CT226, CT227, and CT228.

[0453] Clone E4-C3-40 (identified using the CT10 patient line) contains a 2044 bp insert, the sequence of which is disclosed in SEQ ID NO:47. This clone contains a partial ORF for nrdA (CT827) and the complete ORF for nrdB (CT828).

[0454] Clone E2-D8-19 (identified using the CT1 patient line) contains a 2010 bp insert, the sequence of which is disclosed in SEQ ID NO:46. This clone contains ORF from the Chlamydia trachomatis plasmid as well as containing partial ORFs for ORF3 and ORF6, and complete ORFs for ORF4 and ORF5.

[0455] Clone E3-D10-46 (identified using the patient lines CT1, CT3, CT4, CT11, and CT12) contains a 1666 bp insert, the sequence of which is identified in SEQ ID NO: 45. This clone contains a partial ORF for CT770 (fab F), a complete ORF for CT771 (hydrolase/phosphatase homologue), a complete ORF for CT772 (ppa, inorganic phosphatase), and a partial ORF for CT773 (Idh, Leucine dehydrogenase).

[0456] Clone E10-H8-1 (identified using both the CT3 and CT10 patient lines) contains an 1862 bp insert, the sequence of which is disclosed in SEQ ID NO:44. It contains the partial ORFs for CT871 (pmpG) as well as CT872 (pmpH).

[0457] Clone E3-F3-7 (identified using the CT1 patient line) contains a 1643 bp insert, the sequence of which is identified in SEQ ID NO:43. It contains the partial ORFs for both CT869 (pmpE) and CT870 (pmpF).

Example 3

Additional CD4 T Cell Expression Cloning for the Identification of T Cell Stimulating Antigens from Chlamydia Trachomatis Serovar E

[0458] The T cell line CHH037 was generated from a 22 year-old healthy female sero-negative for Chlamydia. This line was used to screen the Chlamydia trachomatis serovar E library. Nineteen clones were identified from this screen, as described below.

[0459] Clone E7-B12-65, contains an 1179 bp insert, the sequence of which is disclosed in SEQ ID NO:114. It contains the complete ORF of the gene for Malate dehydrogenase (CT376) on the complementary strand.

[0460] Clone E4-H9-83 contains a 772 bp insert, the sequence of which is identified in SEQ ID NO:115. It contains the partial ORF for the heat shock protein GroEL (CT110).

[0461] Clone E9-B10-52 contains a 487 bp insert, the sequence of which is identified in SEQ ID NO:116. It contains a partial ORF for the gene yscC (CT674), a general secretion pathway protein.

[0462] Clone E7-A7-79 contains a 1014 bp insert, the sequence of which is disclosed in SEQ ID NO:117. It contains the complete ORF for the histone like development gene, hcta (CT743) and a partial ORF for the rRNA methyltransferase gene ygcA (CT742).

[0463] Clone E2-D11-18 contains a 287 bp insert, the sequence of which is disclosed in SEQ ID NO:118. It contains the partial ORF for hctA (CT743).

[0464] Clone E9-H6-15, identified using the CT3 line, contains a 713 bp insert the sequence of which is disclosed in SEQ ID NO:125. It contains the partial ORF of the pmpB gene (CT413).

[0465] Clone E3-D10-87, identified using the CT1 line, contains a 780 bp insert, the sequence of which is disclosed in SEQ ID NO:126. It contains the partial ORF for CT388, a hypothetical gene, on the complementary strand, and a partial ORF for CT389, another hypothetical protein.

[0466] Clone E9-D6-43, identified using the CT3 line, contains a 433 bp insert, the sequence of which is disclosed in SEQ ID NO:127. It contains a partial ORF for CT858.

[0467] Clone E3-D10-4, identified using the CT1 line, contains an 803 bp insert, the sequence of which is disclosed in SEQ ID NO:128. It contains a partial ORF for pGP3-D, an ORF encoded on the plasmid pCHL1.

[0468] Clone E3-G8-7, identified using the CT1 line, contains an 842 bp insert, the sequence of which is disclosed in SEQ ID NO:129. It contains partial ORFs for CT557 (Lpda) and CT558 (LipA).

[0469] Clone E3-F11-32, identified using the CT1 line, contains an 813 bp insert, the sequence of which is disclosed in SEQ ID NO:130. It contains a partial ORF for pmpD (CT812).

[0470] Clone E2-F8-5, identified using the CT12 line, contains a 1947 bp insert, the sequence of which is disclosed in SEQ ID NO:131. It contains a complete ORF for the 15 kDa ORF (CT442) and a partial ORF for the 60 kDa ORF (CT443).

[0471] Clone E2-G4-39, identified using the CT12 line, contains a 1278 bp insert, the sequence of which is disclosed in SEQ ID NO:132. It contains the partial ORF of the 60 kDa ORF (CT443).

[0472] Clone E9-D1-16, identified using the CT10 line, contains a 916 bp insert, the sequence of which is disclosed in SEQ ID NO:133. It contains the partial ORF for the pmpH (CT872).

[0473] Clone E3-F3-6, identified using the CT1 line, contains a 751 bp insert, the sequence of which is disclosed in SEQ ID NO:134. It contains the partial ORFs, all on the complementary strand, for genes accB (CT123), L13 ribosomal (CT125), and S9 ribosomal (CT126).

[0474] Clone E2-D4-70, identified using the CT12 line, contains a 410 bp insert, the sequence of which is disclosed in SEQ ID NO:135. It contains the partial ORF for the pmpC gene (CT414).

[0475] Clone E5-A1-79, identified using the CT1 line, contains a 2719 bp insert, the sequence of which is disclosed in SEQ ID NO:136. It contains a partial ORF for ydhO (CT127), a complete ORF for S9 ribosomal gene (CT126 on the complementary strand), a complete ORF for the L13 ribosomal gene (CT125 on the complementary strand) and a partial ORF for accC (CT124 on the complementary strand).

[0476] Clone E1-F7-16, identified using the lines CT12, CT3, and CT11, contains a 2354 bp insert, the sequence of which is disclosed in SEQ ID NO:137. It contains a partial ORF of the ftsH gene (CT841) and the entire ORF for the pnp gene (CT842) on the complementary strand.

[0477] Clone E1-D8-62, identified using the CT12 line, contains an 898 bp insert, the sequence of which is disclosed in SEQ ID NO:138. It contains partial ORFs for the ftsH gene (CT841) and for the pnp gene (CT842).

Example 4

Expression of Chlamydia Trachomatis Recombinant Proteins

[0478] Several Chlamydia trachomatis serovar E specific genes were cloned into pET17b. This plasmid incorporates a 6X histidine tag at the N-terminal to allow for expression and purification of recombinant protein.

[0479] Two full-length recombinant proteins, CT622 and CT875, were expressed in E. coli. Both of these genes were identified using CtLGVII expression screening, but the serovar E homologues were expressed. The primers used to amplify these genes were based on serovar D sequences. The genes were amplified using serovar E genomic DNA as the template. Once amplified, the fragments were cloned in pET-17b with a N-terminal 6X-His Tag. After transforming the recombinant plasmid in XL-1 blue cells, the DNA was prepared and the clones fully sequenced. The DNA was then transformed into the expression host BL21-pLysS cells (Novagen) for production of the recombinant proteins. The proteins were induced with IPTG and purified on Ni-NTA agarose using standard methods. The DNA sequences for CTE622 and CTE875 are disclosed in SEQ ID NO:28 and 27 respectively, and their amino acid sequences are disclosed in SEQ ID NO: 140 and 139, respectively

[0480] Five additional Chlamydia trachomatis genes were cloned. The Chlamydia trachomatis specific protein CT694, the protein CT695, and the L1 ribosomal protein, the DNA sequences of which are disclosed in SEQ ID NO:119, 120 and 121 respectively. The protein sequences of these 6X-histidine recombinant proteins are disclosed in SEQ ID NO: 122 (CT694), 123 (CT695), and 124 (L1 ribosomal protein). The genes CT875 and CT622, from serovar E were also cloned using pET17b as 6X-His fusion proteins. These recombinant proteins were expressed and purified and their amino acid sequences disclosed in SEQ ID NO:139 and 140, respectively.

Example 5

Recombinant Chlamydial Antigens Recognized by T Cell Lines

[0481] Patient T cell lines were generated from the following donors: CT1, CT2, CT3, CT4, CT5, CT6, CT7, CT8, CT9, CT10, CT11, CT12, CT13, CT14, CT15, and CT16. A summary of their details is included in Table II.

TABLE-US-00002 TABLE II C. trachomatis patients Clinical Multiple Patients Gender Age Manifestation Serovar IgG titer Infections CT1 M 27 NGU LCR Negative No CT2 M 24 NGU D Negative E CT3 M 43 Asymptomatic J Ct 1:512 No Shed Eb Cp 1:1024 Dx was HPV Cps 1:256 CT4 F 25 Asymptomatic J Ct 1:1024 Y Shed Eb CT5 F 27 BV LCR Ct 1:256 F/F Cp 1:256 CT6 M 26 Perinial rash G Cp 1:1024 N Discharge, dysuria CT7 F 29 BV E Ct 1:512 N Genital ulcer Cp 1:1024 CT8 F 24 Not Known LCR Not tested NA CT9 M 24 asymptomatic LCR Ct 1:128 N Cp 1:128 CT10 F 20 Mild itch vulvar negative negative Dec. 01, 1998 CT11 F 21 BV J Ct 1:512 F/F/J/E/E Abnormal pap PID December 1996 smear CT12 M 20 asymptomatic LCR Cp 1:512 N CT13 F 18 BV, gonorrhea, G Ct 1:1024 N Ct vaginal discharge, dysuria CT14 M 24 NGU LCR Ct 1:256 N Cp 1:256 CT15 F 21 Muco-purulint culture Ct 1:256 N cervicitis Ct IgM 1:320 Vaginal Cp 1:64 discharge CT16 M 26 Asymptomatic/ LCR NA N contact CL8 M 38 No clinical negative negative No history of disease

[0482] NGU=Non-Gonococcal Urethritis; BV=Bacterial Vaginosis; CT=Chlamydia trachomatis; Cp=Chlamydia pneumoniae; Eb=Chlamydia elementary bodies; HPV=human papiloma virus; Dx=diagnosis; PID=pelvic inflammatory disease; LCR=Ligase change reaction.

[0483] PBMC were collected from a second series of donors and T cell lines have been generated from a sub-set of these. A summary of the details for three such T cell lines is listed in the table below.

TABLE-US-00003 TABLE III Normal Donors Donor Gender Age CT IgG Titer CP IgG Titer CHH011 F 49 1:64 1:16 CHH037 F 22 0 0 CHH042 F 25 0 1:16

[0484] Donor CHH011 is a healthy 49 year old female donor sero-negative for C. trachomatis. PBMC produced higher quantities of IFN-gamma in response to C. trachomatis elementary bodies as compared to C. pneumoniae elementary bodies, indicating a C. trachomatis-specific response. Donor CHH037 is a 22 year old healthy female donor sero-negative for C. trachomatis. PBMC produced higher quantities of IFN-gamma in response to C. trachomatis elementary bodies as compared to C. pneumoniae elementary bodies, indicating a C. trachomatis-specific response. CHH042 is a 25 year old healthy female donor with an IgG titer of 1:16 to C. pneumoniae. PBMC produced higher quantities of IFN-gamma in response to C. trachomatis elementary bodies as compared to C. pneumoniae elementary bodies, indicating a C. trachomatis-specific response.

[0485] Recombinant proteins for several Chlamydia trachomatis genes were generated as described above. Sequences for MOMP were derived from serovar F. The genes CT875, CT622, pmp-B-2, pmpA, and CT529 were derived from serovar E and sequences for the genes gro-EL, Swib, pmpD, pmpG, TSA, CT610, pmpC, pmpE, S13, lpdA, pmpI, and pmpH-C were derived from LII.

[0486] Several of the patient and donor lines described above were tested against the recombinant Chlamydia proteins. Table IV summarizes the results of the T cell responses to the recombinant Chlamydia proteins.

TABLE-US-00004 TABLE IV Recombinant Chlamydia Antigens Recognized By T Cell Lines # of CL8 CT10 CT1 CT3 CT4 CT5 CT11 CT12 CT13 CHH-011 CHH-037 Antigen Sero-var hits L2 E E E L2 E E E E E E gro-EL (CT110) L2 10 - + + + + + + + + + + MompF (CT681) F 10 - + + + + + + + + + + CT875 E 8 - + + - + + + + + - + SWIB (CT460) L2 8 + + - + - + - + + + + pmpD (CT812) L2 5 - + + + + - - + + - - pmpG (CT871) L2 6 - + + - + + nt - + + - TSA (CT603) L2 6 - - + + + + - - + - + CT622 E 3 - - + - + - - - + - - CT610 L2 3 - + - + - - - + - - - pmpB-2 (CT413) E 3 - - + + + - - - - - - pmpC (CT414) L2 4 - - - + - + - + - - + pmpE (CT869) L2 3 - + + - - - - - + - - S13 (CT509) L2 2 + - - - + - - - - - - lpdA (CT557) L2 3 - - + + - - - - - + - pmpI (CT874) L2 2 - - + - - - - - - + - pmpH-C (CT872) L2 1 - - - - - - - + - - - pmpA (CT412) E 0 - - - - - - - - - - - CT529 E 0 - - - - - - - - - - -

Example 6

CD4 T Cell Expression Cloning for Identification of T Cell Stimulating Antigens from Chlamydia Trachomatis Serovar E

[0487] The T cell line CHH037 was generated from a 22 year-old healthy female sero-negative for Chlamydia. This line was used to screen the Chlamydia trachomatis serovar E library (essentially as described in Example 1). Using this T cell line, we describe the identification of 7 clones.

[0488] Clone E8-D1-46 contains a 1754 bp insert, the sequence of which is disclosed in SEQ ID NO:143. It contains an almost complete ORF for the pepA gene (CT045) on the complementary strand, lacking a few amino acids towards the carboxy terminal end.

[0489] Clone E1-A1-10 contains a 3035 bp insert, the sequence of which is disclosed in SEQ ID NO:144. It contains partial ORFs for the yscU gene (CT091) and the truB gene (CT094) on the complementary strand and complete ORFs for the ychF gene (CT092) on the complementary strand and for the ribF gene (CT093) on the complementary strand.

[0490] Clone E8-B12-80 contains a 1353 bp insert, the sequence of which is disclosed in SEQ ID NO:145. It contains a short fragment of the SET domain protein gene (CT737) in frame with .beta.-gal, a complete ORF in the complementary strand for the ybcL gene (CT736) as well as a partial ORF for the dag.sub.--2 gene (CT735) on the complementary strand.

[0491] Clone E2-A8-70 contains a 1627 bp insert, the sequence of which is disclosed in SEQ ID NO:146. It contains a partial ORF for the mutS gene (CT792), a complete ORF for the ybcL gene (CT736) on the complementary strand, in addition to a partial ORF for the dag.sub.--2 gene (CT735).

[0492] Clone E10-C1-47 contains a 1262 bp insert, the sequence of which is disclosed in SEQ ID NO:147. It contains a partial ORF for yael (CT461) on the complementary strand, a complete ORF for SWIB (CT460) on the complementary strand and a partial ORF for prfB (CT459) on the top strand.

[0493] Clone E8-G7-86 contains a 1596 bp insert, the sequence of which is disclosed in SEQ ID NO:148. It contains a partial ORF for the mesJ (CT840) that is in frame with .beta.-gal and a second partial ORF for the ftsH gene (CT841).

[0494] Clone E3-E6-84 contains a 2624 bp insert, the sequence of which is disclosed in SEQ ID NO:149. It contains a partial ORF for the pmpC gene (CT414) as well as a partial ORF on the complementary strand for the hypothetical gene CT611.

[0495] A second line, CHH042, which was generated from a healthy 25 year old female donor, seronegative for Chlamydia, was also screened against the Chlamydia trachomatis serovar E library. This screen led to the identification of 2 clones, E8-C12-38 and E1-D12-36.

[0496] Clone E8-C12-38 contains a 788 bp insert, the sequence of which is disclosed in SEQ ID NO:141. It contains partial ORFs for sfhB (CT658) and for the hypothetical gene, CT659.

[0497] Clone E1-D12-36 contains a 976 bp insert, the sequence of which is disclosed in SEQ ID NO:142. It contains a partial ORF for merB (CT709) in frame with .beta.-gal, as well as a second partial ORF for the pckA gene (CT710).

Example 7

CD4 T Cell Expression Cloning for Identification of T Cell Stimulating Antigens from Chlamydia Trachomatis Serovar E

[0498] The T cell line CHH037 was generated from a 22 year-old healthy female sero-negative for Chlamydia. This line was used to screen the Chlamydia trachomatis serovar E library (essentially as described in Example 1). Using this T cell line, we describe the identification of clone E8-G7-54. This clone was found to contain a 3957 bp, the sequence of which is disclosed in SEQ ID NO: 157. It contains a partial ORF for the ftsH gene (CT841), which is in frame with .beta.-gal. Clone E8-G7-54 also contains 2 partial ORFs on the complementary strand, for pGP7-D and pGP5-D, as well as a complete ORF for pGP6-D, all three of which were from plasmid sequence.

[0499] A second T cell line, CHH042, which was generated from a healthy 25 year old female donor, seronegative for Chlamydia, was also screened against the Chlamydia trachomatis serovar E library. Using this T cell line, we describe the identification of 7 clones.

[0500] Clone E2-C3-27 contains a 1157 bp insert, the sequence of which is disclosed in SEQ ID NO:156. This clone contains complete ORFs for the genes rS3 (CT522) and rL22 (CT523) as well as partial ORFs for the genes rL16 (CT521) and rS19 (CT524).

[0501] Clone E10-F12-42 contains a 1909 bp insert, the sequence of which is disclosed in SEQ ID NO:155. It contains partial ORFs for the genes rS3 (CT522) and rL23 (CT526) as well as complete ORFs for the genes rL22 (CT523) rS19 (CT524) and rL2 (CT525).

[0502] Clone E10-F12-58 contains a 2275 bp insert, the sequence of which is disclosed in SEQ ID NO:154. It contains partial ORFs for the genes mhpA (CT148), rL16 (CT521), and rL2 (CT525) as well as complete ORFs for the genes rS3 (CT522), rL22 (CT523), and rS19 (CT524).

[0503] Clone E10-A8-16 contains a 3141 bp insert, the sequence of which is disclosed in SEQ ID NO:153. It contains partial ORFs for the genes rS3 (CT522) and rL3 (CT528) as well as complete ORFs for the genes rL22 (CT523), rS19 (CT524), rL2 (CT525), rL23 (CT526), and rL4 (CT527).

[0504] Clone E4-G8-49 contains a 1326 bp insert, the sequence of which is disclosed in SEQ ID NO:152. It contains partial ORFs for the genes pckA (CT710) and mreB (CT709), as well as a partial ORF for the pGP2-D from the plasmid.

[0505] Clone E9-E6-4 contains a 725 bp insert, the sequence of which is disclosed in SEQ ID NO:151. It contains a complete ORF for the hypothetical protein CT659 and a partial ORF for gyrA-2 (CT660).

[0506] Clone E2-A11-49 contains a 2052 bp insert, the sequence of which is disclosed in SEQ ID NO:150. It contains partial ORFs for the HAD superfamily (CT103) and the hypothetical protein, CT105, as well as a complete ORF for fabI (CT104).

Example 8

Immunization Against Chlamydia Genital Tract Infection Using the Major Outer Membrane Protein (MOMP) from Serovar F, or the Polymorphic Membrane Proteins G or C from Serovar L2

[0507] A murine model of genital tract infection with human serovar K strain of Chlamydia trachomatis (Ct) was developed that closely resembles the pathology of infection in humans. This model was used to evaluate the effectiveness of immunizing mice with a variety of Ct-specific antigens from different serovars. Specifically, Balb/c mice were vaccinated with a formulation comprising SBAS1 and 10 .mu.g of a recombinant form of either: (1) MOMP from serovar F, (2) pmpC from serovar L2, or (3) pmpG from serovar L2. Control animals consisted of: (1) 2 uninfected animals, (2) 2 AS1-sham vaccinated/infected animals, and (3) 2 animals immunized with AS1-adjuvant and UV-irradiated EB.

[0508] Four weeks following the final vaccination, the animals were treated with 1.25 mg of progesterone prior to being infected with 1.times.10.sup.7 IFU of purified serovar K. Bacterial shedding was then followed over a two-week period, at which time the animals were sacrificed.

[0509] Mice vaccinated with MOMP, pmpG, and to a lesser extent, pmpC demonstrated reduced viral shedding 4 days post-infection when compared to controls. These data demonstrate that heteroptypic protection against Ct genital infection with subunit systemic vaccines containing either MOMP, pmpG, or pmpC is possible.

Example 9

Vaccination Against Chlamydia Genital Infection Using Single Chlamydial Antigens from Serovar E or L2 Adjuvanted with AS1

[0510] Using essentially the same protocol as outlined in Examples 8, several additional Chlamydia antigens were tested for their ability to protect against challenge when used at 10 ug per dose, in combination with AS1, in Balb/c mice. Each experiment contained a negative control group (AS1-sham-vaccinated infected animals) and a positive control group that comprised animals immunized with 10 ug AS1-adjuvanted UV-irradiated elementary bodies (EBs). All the vaccine preparations were administered in the base of the tail, twice, at 3 weeks interval. Mice were challenged 4 weeks post last immunization.

[0511] All mice were treated with 1.25 mg of progesterone and subsequently infected with 1.times.10.sup.6 or 1.times.10.sup.7 purified EBs from serovar K. Bacterial shedding was followed over a 2 week period, at which point the animals were sacrificed. Four antigens including rpoB (fragments N+C used at 5 ug each), pmpDpd, pmpHpd and CT322 showed clear protection against chlamydial shedding (as defined by reaching at least 1 Log 10), 6 others showed marginal but nonetheless quite consistent protection against shedding (CT089, Lpda, CT858, CT622, porB and orf3).

TABLE-US-00005 TABLE V Summary of Vaccination Experiments Protection Infection (xLog.sub.10/AS1) Candidate 10x ifu D4 D7 D4/7 PmpDpd 6 0.67 1.5 0.67 RpoB (CT315) 6 0.67 1.33 0.8 Indeed rpobN + rpobC PmpHpd (CT872) 7 0.83 1.42 0.8 CT322 6 0.8 1.66 1 Lpda (CT557) 6 0 0.67 0.33 CT089 6 0.66 0.33 0.6 858 7 0.42 0.92 0.4 622 6 0.33 0.33 0.33 PorB (CT713) 6 0 0.5 0.33 Orf3 (pgp3, plasmidic) 6 0 0.5 0.4

[0512] Summary of the protection data obtained in the murine model utilizing Chlamydia antigens derived from serovar K. The dose of infection is given. Protection is calculated by comparing medians, and is expressed as a Log 10 reduction factor by comparison of the candidate with the negative control (AS1). D4 and D7 are calculated using individual shedding data taken at day 4 and 7 post infection. D4/7 is a more global protection value calculated using a "mean over 1.sup.st week" obtained by averaging day 4 and 7 value for each individual. Protection ration <0.33 is assimilated to 0.

Example 10

Vaccination Against Chlamydia Genital Infection Using the Major Outer Membrane Protein (MOMP) from Serovar F Alone, or Combined with Other Chlamydial Antigens

[0513] Using a similar method as described in Example 8, Balb/c mice were vaccinated with a formulation comprising SBAS1 and 10 .mu.g of recombinant forms of the MOMP from serovar F. A negative control group included AS1-sham-vaccinated infected animals. The positive control group comprised animals immunized with 10 ug AS1-adjuvanted UV-irradiated elementary bodies (EBs). All the vaccine preparations were administered base of the tail, twice, at 3 weeks interval; mice are challenged 4 weeks post last immunization.

[0514] All the mice were treated with 1.25 mg of progesterone twice (10 and 3 days before infection) and subsequently infected with 1.times.10.sup.5 purified EBs from serovar K. Bacterial shedding was followed over a 1-week period (day 4 and 7), and 2 weeks post challenge, the animals were sacrificed.

[0515] The animals, which had been vaccinated with MOMP, showed drastically reduced levels of bacterial shedding 4-7 days post-infection, when compared to the negative control groups. By day 7 post-infection, a level of bacterial shedding in the MOMP vaccinated animals was comparable with that of the positive control groups.

[0516] The protective qualities of MOMP demonstrates that this antigen is suitable to be used as a base for combination with one or more other chlamydial antigens, formulated in AS1. To illustrate this proposal, Momp was combined with the following CT 875 antigens: (5 ug of each antigen used to vaccinate), CT875 and rpob (10 ug of Momp and of CT875, 5 ug of rpobN and 5 ug of rpobC), pmpGpd (5 ug of Momp and 5 ug of pmpGpd), pmpDpd (5 ug of Momp and 5 ug of pmpDpd), and rpoB (5 ug of Momp, 5 ug of rpobN and 5 ug of rpobC).

[0517] The experiments were conducted using essentially the same protocol as above, except that we increased the challenging dose to 1.times.10.sup.6 purified EBs from serovar K. The results of these experiments are disclosed in Table VI. All combinations gave moderate to good protection, with protection levels better than Momp alone (10 ug per doses). In particular, very good protection was obtained when combining Momp, rpoB, and CT875 together.

TABLE-US-00006 TABLE VI Summary of Vaccination Experiments Protection Experiment (xLog.sub.10/AS1) Candidate 10.sup.xifu D4 D7 D4/7 Momp (CT681) 5 3 3 3 Momp 6 1.08 0.75 0.66 Momp/CT875 6 0.6 3 0.8 Momp/CT875/rpoB (CT315) 6 1.2 3.6 1.66 Momp 6 0 0.75 0.4 Momp/pmpGpd (CT871) 6 1.6 3 2 Momp 6 0 0.4 0 Momp/pmpDpd (CT812) 6 0.33 0.6 0.6 Momp 6 0 0.4 0 Momp/rpoB (n + c)(CT315) 6 0 1 0.33

[0518] Summary of the protection data obtained so far in the K model for each individual antigen formulation: Immune responses are expressed qualitatively. Infection dose for each experiment are given. Protection is calculated by comparing medians, and is expressed as a Log 10 reduction factor by comparison of the candidate with the negative control (AS1). D4 and D7 are calculated using individual shedding data taken at day 4 and 7 post infection. D4/7 is a more global protection value calculated using a "mean over 1.sup.st week" obtained by averaging day 4 and 7 value for each individual.

Example 11

Vaccinations with UV-Irradiated Elementary Bodies (EB) and the Major Outer Membrane Proteins: Mechanisms of Protection

[0519] The above examples have described a murine model of genital infection with human serovar K of Chlamydia trachomatis, which closely resembles the pathology of Chlamydia infection in humans. We have previously described that vaccination of animals with either UV-inactivated EBs from serovar K or the MOMP from serovar F prior to infection with serovar K markedly reduces the amount of bacterial shedding detected.

[0520] To determine the immune mechanisms responsible for protection, the mice were deplete of their CD4+ T cells post-immunization, but prior to and during the course of infection. The level of protection obtained from the animals vaccinated with UV-irradiated EBs was significantly reduced (i.e. a two log increase in the level of bacterial shedding) in the depleted animals compared to the non-completed control group.

[0521] To determine if the T cells from the vaccinated group could be adoptively transferred and confer protection against Chlamydia-infection, T cells were isolated from both groups of vaccinated animals and transferred to naive RAG1 mice that contained no mature T or B cells. To perform these experiments, mice were immunized essentially as described above. Thirty days following the final immunization, the mice were sacrificed and their spleens removed, the erythrocytes lyzed and the white blood cells enriched for T cells using negative selection. Approximately 1.times.10.sup.6 T cells from either the MOMP or EB-vaccinated animals were then transferred intravenously to the progesteronized RAG1 mice. Twenty-four hours following the adoptive transfer of the T cells, the RAG1 mice were infected cervico-vaginally with 1.times.10.sup.7 IFU of serovar K. Bacterial shedding was reduced in RAG1 animals that had received enriched T cells from either EB- or MOMP-vaccinated animals, when compared to controls.

[0522] These findings suggest that vaccination with either EBs or MOMP adjuvated with AS1 results in the stimulation and expansion of chlamydia-specific T cells which play a major, active role in protection against chlamydial infection. Additionally, it demonstrates that a strong T cell component is essential to a successful vaccine against chlamydia infection, and that the model developed here provides this protection.

Example 12

Identification of Chlamydia trachomatis PMP-Passenger Domains

[0523] Amino acid sequences of all the polymorphic membrane proteins (pmps) of Chlamydia trachomatis were analyzed for the presence of different domains. This analysis suggests that the pmps belong to a class of proteins called autotransporter proteins. Autotransporters are a family of secreted proteins from Gram-negative bacteria, possess an overall unifying structure comprising three functional domains: the amino-terminal leader sequence, the secreted mature protein or passenger domain, and a carboxy-terminal (beta-) domain that forms a beta-barrel pore to allow secretion of the passenger protein. Members of this family are important or putative virulence factors in a gram-negative bacteria (Henderson et al. (1998) Trends Microbiol 6(9):370-8).

[0524] Using domain homology searches and sequence alignments, regions of the pmps that are surface exposed were identified and these regions are referred to as passenger domains (PD). The passenger domains were identified as being contained within the following regions:

[0525] PmpA amino acids 52-661, with the corresponding DNA and amino acid sequences disclosed in SEQ ID NOs:166 and 175, respectively;

[0526] PmpB amino acids 24-1420, with the corresponding DNA and amino acid sequences disclosed in SEQ ID NOs:165 and 174, respectively;

[0527] PmpC amino acids 21-1439, with the corresponding DNA and amino acid sequences disclosed in SEQ ID NOs:164 and 173, respectively;

[0528] PmpD amino acids 31-1203, with the corresponding DNA and amino acid sequences disclosed in SEQ ID NOs:163 and 172, respectively;

[0529] PmpE amino acids 19-650, with the corresponding DNA and amino acid sequences disclosed in SEQ ID NOs:162 and 171, respectively;

[0530] PmpF amino acids 26-727, with the corresponding DNA and amino acid sequences disclosed in SEQ ID NOs:161 and 170, respectively;

[0531] PmpG amino acids 28-697, with the corresponding DNA and amino acid sequences disclosed in SEQ ID NOs:160 and 169, respectively;

[0532] PmpH amino acids 25-688, with the corresponding DNA and amino acid sequences disclosed in SEQ ID NOs:159 and 168, respectively; and

[0533] PmpI amino acids 25-566, with the corresponding DNA and amino acid sequences disclosed in SEQ ID NOs:158 and 167, respectively.

[0534] All of the above U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet, are incorporated herein by reference, in their entirety.

[0535] From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

Sequence CWU 1

1

17511311DNAChlamydia trachomatis 1taattcgctt ttacctctct tcttgctgaa gacttggcta tgttttttat tttgacgata 60aacctagtta aggcataaaa gagttgcgaa ggaagagccc taaacttttc ttatcatctt 120ctttaactag gagtcatcca tgagtcaaaa taagaactct gctttcatgc agcctgtgaa 180cgtatccgct gatttagctg ccatcgttgg tgcaggacct atgcctcgca cagagatcat 240taagaaaatg tgggattaca ttaagaagaa tagccttcaa gatcctacaa acaaacgtaa 300tatcaatccc gatgataaat tggctaaagt ttttggaact gaaaaaccta tcgatatgtt 360ccaaatgaca aaaatggttt ctcaacacat cattaaataa aatagaaatt gactcacgtg 420ttcctcgtct ttaagatgag gaactagttc attctttttg ttcgtttctg tgggtattac 480tgtatcttta acaactatct tagcagcacc tgttttgaca tgggtttggg ccaatcactt 540agagcctaac ctattgagag taacgcgttt aaattggaat ctgcctaaaa aatttgctca 600tcttcatggg cttcgcatta tacagatttc ggatttacac ctaaaccact cgacgcctga 660tgcctttcta aaaaaagtat ctcgtaagat ctcttctctt tctccagata ttcttgtatt 720tacaggagac tttgtctgtc gcgctaaagt agaaactcct gaaagattaa aacatttcct 780atgttctctg catgcgccct taggctgttt tgcttgccta ggaaatcatg attacgccac 840ctacgtatcc cgtgatattc acgggaaaat taataccatc tcagcaatga atagccgtcc 900tttaaaaaga gcttttacct ctgtttatca aagtctattc gcctcttctc gcaatgaatt 960tgcagatact ctgaatccac aaattcctaa tccacaccta gtcagtatat tacgcaatac 1020tccatttcaa ttattgcata atcaaagcgc gacactttcc gatacaatca acatcgtggg 1080attaggcgat ttttttgcca aacaattcga tcccaaaaaa gcttttactg actataatcc 1140cacgttacct ggtattatcc tttctcataa tcccgatacg attcaccatc tccaagatta 1200cccaggtgat gttgtttttt ccgggcactc gcatggccct caaatctctc ttccctggcc 1260taagtttgcc aatacgataa ccaataaact ttcagggtta gaaaacccag a 131121516DNAChlamydia trachomatis 2tttgagctcg tgccgctcgt gccggtgcgt gtgaaccgct tcttcaaaag cttgtcttaa 60aagatattgt ctcgcttccg gattagttac atgtttaaaa attgctagaa caatattatt 120cccaaccaag ctctctgcgg tgctgaaaaa acctaaattc aaaagaatga ctcgccgctc 180atcttcagaa agacgatccg acttccataa ttcgatgtct ttccccatgg ggatctctgt 240agggagccag ttatttgcgc agccattcaa ataatgttcc caagcccatt tgtacttaat 300aggaacaagt tggttgacat cgacctggtt gcagttcact agacgcttgc tatttagatt 360aacgcgtttc tgttttccat ctaaaatatc tgcttgcata agaaccgtta attttattgt 420taatttatat gattaattac tgacatgctt cacacccttc ttccaaagaa cagacaggtg 480ctttcttcgc tctttcaaca ataattcctg ccgaagcaga cttattcttc atccaacgag 540gctgaattcc tctcttatta atatctacaa aagatttttc aacggtcgtt gctgatgaag 600atctcagata atacgtagtt ttcaaacctt ttttccaagc cgttaaatac atattcgaca 660gttttttccc gtctggctgg gcaagataaa ggttgaggga ttgccccata tcaatccatt 720tttgtcttcg agacgcgcat tcgataatcc attctggttc aatctcaaaa gctgtcaaga 780aaatatgttt taagtgatct ggtatacgct cgatttccaa taaagaccca tcaaaatatt 840tcaggtcatc taacatatca gcatcccaga tacctaattt cttcaacttc tcaattaaat 900acacatttgg aatcgtgaat tctccggaca aattagactt cacaaacaaa tgtttgtacg 960ttggctcaat agattgagtt actcctataa tgttggagat cgtcgctgtc ggagctatag 1020ccataagctg acaatgtcgc ataccatgct ctttaaccaa actacggata ggttcccaat 1080cttttcttga tgacgtatcc atctggagat ttgcttctcc tcgatagttc gctaacaact 1140gaatcgtatc aatagggagc aaacctctat cccatttcga tcctttataa gagctgtaag 1200tgcctcgttc tttagcgagc agacaagaag cttgaatcgc atagtaagaa atcaactctg 1260aactgtagtc agcaaattct acagcttctt gcgaagcata gcttatatct agcttataca 1320aggcatcttg gaatcccatc acccctaatc caatagcgcg gtgagcaaag ttcgcctctt 1380tagcttcctt tgttggataa aagttaatat caatcacgtt atccaacata cggactgcta 1440tagagatcgt ctcagagagt ttttcctcat caaacccatc ccctacgata tgttgaacta 1500agttaatcga tcctaa 151632397DNAChlamydia trachomatis 3agagtgtgct ggaggagcta tttttgcaaa acgggttcgt attgtagata accaagaggc 60cgttgtattc tcgaacaact tctctgatat ttatggcggc gccattttta caggttctct 120tcgagaagag gataagttag atgggcaaat ccctgaagtc ttgatctcag gcaatgcagg 180ggatgttgtt ttttccggaa attcctcgaa gcgtgatgag catcttcctc atacaggtgg 240gggagccatt tgtactcaaa atttgacgat ttctcagaat acagggaatg ttctgtttta 300taacaacgtg gcctgttcgg gaggagctgt tcgtatagag gatcatggta atgttctttt 360agaagctttt ggaggagata ttgtttttaa aggaaattct tctttcagag cacaaggatc 420cgatgccatc tattttgcag gtaaagaatc gcatattaca gccctgaatg ctacggaagg 480acatgctatt gttttccacg acgcattagt ttttgaaaat ctagaagaaa ggaaatctgc 540tgaagtattg ttaatcaata gtcgagaaaa tccaggttca aaatttctca agtttgatgc 600aattgtgcta ttcgctacct ttagttttct atgtccacgg taaagggatc ggaaagatac 660gcatttattt tcatagtctt tagcttcgat ccctagtgct tccgcatgga ctcgtctgcc 720aagacttttg gttacgaaaa caacaggctc tcgttgagaa atgatttgga gtagctctag 780cgtgaggtgt tttttctgtt tctcgtggtt tgaaagattg actagaggag agacttcaat 840acataactcg ctgccgtttt ttaataaaat ttgaccagag gagggtcttt ccgactgctc 900tagtaataga cgaatattgc ccaatgctct ggaagcattt ttccctgatt catctcgaaa 960ctttgcgcag gattccaatt cttcgattac tgtaaaaggg ataatgatgc gagtgttaga 1020aaaagaggaa agggccttag gatcgtaaat caaaacgctg gtatcaataa cagaggtttt 1080tttcattaca aattcctaaa tgactcaagt gtaaggggga gatagtactt tgattgtgta 1140tcatatccag aaaaattaaa acatgtcttt gttagagaga agtcgggaga gagggttttt 1200agcaatcaac ctccgcgtgt gctaatctgt ttgtcaaaaa tgtacccctt aactacaatg 1260ccgaggaaag cgagtccttc tgttggaggt tgttatgaaa gtcaaaatta atgatcagtt 1320catttgtatt tccccataca tttctgctcg atggaatcag atagctttca tagagtcttg 1380tgatggaggg acggaagggg gtattacttt gaaactccat ttaattgatg gagagacagt 1440ctctataccc aatctaggac aagcgattgt tgatgaggtg ttccaagagc acttgctata 1500tttagagtcc acagctcctc agaaaaacaa ggaagaggaa aaaattagct ctttgttagg 1560agctgttcaa caaatggcta aaggatgcga agtacaggtt ttttctcaaa agggcttggt 1620ttctatgtta ctaggaggag ctggttcgat taatatgttg ttgcaacatt ctccagaaca 1680taaggatcat cctgatcttc ctaccgattt actggagagg atagcgcaaa tgatgcgttc 1740attatctata ggaccaactt ctattttagc taagccagag cctcattgca actgtttgca 1800ttgtcaaatt ggacgagcta cagtggaaga agaggatgcc ggagtatcgg atgaggatct 1860cacttttcgt tcatgggata tctctcaaag tggagaaaag atgtacactg ttacagatcc 1920tttgaatcca gaagtatacc ttttgttttt tttatacgag ccagcactcc aatttctgac 1980tgtgagaata tatcataaat agaccggcct ctagcgctgc gaatagaaaa agtctttgct 2040atagcactat caagccttcc ctttatacgc tcaagcaata gaaacggaga tctacgcaat 2100ggattttcat tgtactcatt aaacgagcgg aaaatgaaat tactcaaatt ttcttcagcg 2160ctacacacgc tcaaatcatc gaggaaaacc gtatgagaaa cggatctact cgtgccgaat 2220tcggcacgag gtctctaatc ttgcagaagg agcacaaatt tttgctgtcc aagggttaaa 2280tactgctgga gaaataggat actgccctcc ttgccctcca gatgcgaagc atcgctatta 2340cttttatgct tatgcgctcg atgttgtgct ttccgatgaa gaaggagtga ccaaaga 239741094DNAChlamydia trachomatis 4tgatgcagaa gacactgtta agaagttaca agaagccggt gctaaggctg ttgctaaagg 60gctgtaattg ttatgggaaa gagaatgctt tgggggttgc ttgcaagctt ctcttttcgt 120ttagctgcac agtagctggg cacagagggg ttcccggtac gtcttaacag atttgtctgg 180acttaacttt tagtgtttgg catcgcaaac agaatatttc tgttgcaatg gttttttctt 240aatggaatca aggtgatagt atttgtcgga tggacaagtg tatagagagt atccagtgtc 300tctgtattgg atagactctg ttttgtccta gctggaaagc atctgtcgta ttcctgttta 360gagatcacag agggactaaa tagggaaatg gtatcgccaa aagtcttaaa gtcttaggag 420agctcgcatg ttcaagtgcc cggagcgggt cagcgtcaaa aagaaagaag atattttaga 480tcttcctaat cttgtcgaag ttcaaatcaa gtcgtataag cagtttcttc aaatcgggaa 540gcttgctgaa gagcgagaaa acattggttt agaagaagtc ttcagagaaa ttttccctat 600caagtcttat aatgaagcta cgattttaga gtacctctct tataacttag gagtgcccaa 660atactcccca gaagagtgta ttcgtcgggg aatcacctat agtgttactt taaaggttcg 720tttccgttta actgatgaaa cggggattaa agaagaagaa gtctatatgg gaaccatccc 780catcatgact cataagggaa cctttattat taatggggca gagagagtcg ttgtttctca 840agtccaccgt tctccaggaa tcaattttga acaagaaaaa cattctaaag ggaatgtttt 900attttctttt agaattattc cttatcgagg aagttggtta gaagctgtct tcgacattaa 960tgaccttatc tatatccata ttgataggaa aaaacgtcgc agaaagattt tagctattga 1020cgtttatccg agctttagga tattcaacag atgcagatat tattgaagag ttcttttctg 1080tagaggagcg ttcc 109452129DNAChlamydia trachomatis 5gcttctttaa gagataagca acaaccgagg aatccactcc tccagacata gcaacaatga 60tagttttacg cacaatgagc ccagaaaacg ctttcgttta ttgaagtttg cacattacaa 120agggccatca tgttagcaaa aaaacaggat caaaaaaacc tatttctcaa gccgcctctt 180ttaaatctta attacaaaaa taaaaatcaa ttcaactttt caaaaaaaga atttaaacat 240taattgttat aaaaacaata tttattataa aataataacc atagttgcgg ggaaatctct 300ttcatggttt attttagagc tcatcaacct aggcatacgc ctaaaacatt tcctttggaa 360gttcaccatt cgttctccga taagcatcct caaattgcta aagctatgcg gattacgggg 420ataaccctcg cagctctatc tctgctcgct gtagtcgcct gcgttattgc cgtctctgcg 480ggaggagctg ccattcctct tgctgtcatt ggtggaattg ctgcaatgtc tggcctctta 540tccgctgcca ccattatctg ttctgcaaaa aaggctctgg ctcaacgaaa acaaaaacaa 600ctagaagagt tgcttccgtt agataatgcg accgagcatg tgaattacct gacctcagac 660acctcttatt ttaatcaatg ggaatcctta gatgctctaa ataagcagtt gtctcagatt 720gacttaacta ttcaagctcc cgaaaaaaaa ctattaaaag aagttcttgg ttccagatac 780gattccatta atcactccat cgaagagatc tccgatcgct ttacgaaaat gctctctctt 840cttcgattaa gagaacattt ttgtcgagga gaagagcgtt atgcccccta tttaagccct 900cctctactta acaagaatcg tttgctgacc caaatcacat ccaatatgat taggatgcta 960ccaaaatccg gtggtgtttt ttccctcaaa gccaatacac taagtcatgc cagccgcaca 1020ctatatacag tattgaaagt cgctttatcc ttaggagttc tcgctggagt cgctgctctt 1080atcatctttc ttccccctag cctgcctttt atcgctgtta taggagtatc ttccttagca 1140ttggggatgg catctttcct tatgattcgg ggcattaagt atttgctcga acattctcct 1200ctgaatagaa agcaattagc taaagatatt caaaaaacca ttatcccaga tgtcttggcc 1260tctatggttc attaccagca tcaattacta tcacatctac atgaaactct attagatgaa 1320gccatcacag ctagatggag cgagcccttc tttattgaac acgctaatct taaggcaaaa 1380attgaagatt tgacaaaaca atatgatata ttgaacgcag cctttaataa atctttacaa 1440caagatgagg cgctccgttc tcaattagag aaacgagctt acttattccc aattcctaat 1500aacgacgaaa atgctaaaac taaagaatcg cagcttctag actcagaaaa tgattcaaat 1560tctgaatttc aggagattat aaataaagga ctagaagctg ccaataaacg acgagctgac 1620gctaagtcaa aattctatac ggaagacgaa acctctgaca aaagattctc tatatggaaa 1680cccacaaaga acttggcatt agaagatttg tggagagtgc atgaagcttg caatgaagag 1740caacaagctc tcctcttaga agattatatg agttataaaa cctcagaatg tcaagctgca 1800ctccaaaaag tgagtcaaga actgaaggcg gcacaaaaat cattcgcagt cctagaaaag 1860catgctctag acagatctta tgaatccagt gtagccatga tggatttagc tagagcgaat 1920caagaaacac accggcttct gaacatcctc tctgaattac aacaactagc acaatacctg 1980ttagataatc actaacggtt cttcataaat gacaaaaaga aaaaggagag ctgttgctgt 2040gctctccttt ttctctaaat attcctgaaa gactaacctt tttatggttg cgttgagcct 2100cctcctcctg ttcccgagga gcccgcaac 212961828DNAChlamydia trachomatis 6gagggagcag cctaactctc ccctctcttc ttaaaaaaga ggggagcctt ttttccttac 60aaagatacgc tagctttttc ctgaagaatc tcatcaagag atatttgcat tttcccacgg 120ataaaggcat cccaaggaag ccctggaatc acttcatatt ctcccgttgc tagcattcga 180caagggaaac caaagattaa atcttccggt aatccatagg gattgtggtc cgaacacact 240ccggaagaaa accattctcc ttcttttggc tgatatattg atcgagcagc ctctgctaaa 300gctcgtgctg cagaagctgc cgaagacttc cctcgtgctt cgattactgc actaccacga 360ctctgtacag aaggcaccat aatattctct aaccaatcac gatccgctat cgtctctgcg 420ataggacggt cattaatcag agcttgcgta aaatcaggca cttgtttggc ggagtgattt 480ccccaaacca caacttgtga tacagccgat aaaggtactt ctgctctatg cgataacatg 540ctatgcatac gattctggtc caatcgtagc atcgcatgaa agttctttct caataatctg 600ggagcatgat tcattgctat ccagcaattg gtattcacag ggttcccaac aacaaaaatc 660tttgcatccc gcttggctgt tgtgttcaaa gcttttcctt gcgtagcaaa aatctcccca 720tttttcttta gaagatccct tctctccatt cctgggcctc taggaactga ccctataagg 780aatgccgcat caatgccatc aaaagcatca tgcaatgatg tcgttacctg cacacgctgt 840aataaaggga aagcaccatc atctagctcc atgcgcacac cagataaagc cctttctgtt 900ccaggaatat cgtagatacg cagatcgatg ccacaatcaa ggccaaaaac atctccatga 960gccagagaaa atagaaagct ataggctatt tgccctgttc ctcctgttac tgctacactc 1020actgtttgag aaaccataag ccaccctctc tttactttta caaaacgcac atactctcaa 1080cactacgttt gcaactaact aattttggtc ccaacatacg tttggatgat aaaagaatca 1140agtacctaga ttccttagta aaagcttttg gcaaaaaaaa gctcatctat ttttcaatag 1200atgagccgac tttaactgaa taagaactta gaaaacttta taaaaaatag gcccgtgtga 1260tcctacccat atacttgatc ccgaccgcat aacttgttgt ccctttttag cagccaaata 1320accgtggaca tctaaaaaac caataaaccg tgcgcgaata aagaacataa agcccctaaa 1380aaaacgattt taagagagaa gtaatagaca gattgtaaca tatttaaaat aaaaactctg 1440caaacaaaaa aactttgcct ggccgtctcc gtagaaagca ctttatgtta aaacgttaaa 1500aagtcttaac atacctcgag cttcgggaaa ctctacagga gcattccccg acatgatgcc 1560tataatttgc gttgccaatt ctttccctaa tgaaacccct tcttgatcaa aagaattgat 1620tccccagcaa aacccttgaa atgcaaattt atgctcataa aaagccaata aactaccagc 1680aatacgagga gaaagctgtt gcgctaccaa tatcgaagaa ggtctgttcc ctttaaacct 1740cttattcggg ttcgcattat ctctaccctg agctaaagct aaagattgag caacaaggtt 1800tgcaaagagc ttttgagatc tcgtgccg 18287861DNAChlamydia trachomatis 7gggcgcacta ctttaaagat tcgtcgtcct tttggtacta cgagagaagt tcgtgtgaaa 60tggcgttatg ttcctgaagg tgtaggagat ttggctacca tagctccttc tatcagggct 120ccacagttac agaaatcgat gagaagcttt ttccctaaga aagatgatgc gtttcatcgg 180tctagttcgc tattctactc tccaatggtt ccgcattttt gggcagagct tcgcaatcat 240tatgcaacga gtggtttgaa aagcgggtac aatattggga gtaccgatgg gtttctccct 300gtcattgggc ctgttatatg ggagtcggag ggtcttttcc gcgcttatat ttcttcggtg 360actgatgggg atggtaagag ccataaagta ggatttctaa gaattcctac atatagttgg 420caggacatgg aagattttga tccttcagga ccgcctcctt gggaagaatt tgctaagatt 480attcaagtat tttcttctaa tacagaagct ttgattatcg accaaacgaa caacccaggt 540ggtagtgtcc tttatcttta tgcactgctt tccatgttga cagaccgtcc tttagaactt 600cctaaacata gaatgattct gactcaggat gaagtggttg atgctttaga ttggttaacc 660ctgttggaaa acgtagacac aaacgtggag tctcgccttg ctctgggaga caacatggaa 720ggatatactg tggatctaca ggttgccgag tatttaaaaa gctttggacg tcaagtattg 780aattgttgga gtaaagggga tatcgagtta tcaacgccta ttcctctttt tggttttgag 840aagattcatc cacatcctcg a 8618763DNAChlamydia trachomatis 8ataacaaaaa catcttgatt atttttgtta aaagaaatac ttaatgagtt ttatttaatt 60aacgaaacga aaagcttgct aatgaaaatt attcacacag ctatcgaatt tgctccggta 120atcaaagccg gaggcctggg agacgcgcta tacggactag caaaagcttt agccgctaat 180cacacaacgg aagtggtaat ccctttatac cctaaattat ttactttgcc caaagaacaa 240gatctttgct cgatccaaaa attatcttat ttttttgctg gagagcaaga agcaactgct 300ttctcctact tttatgaagg aattaaagta actctattca aactcgacac acagccagag 360ttattcgaga atgcggaaac aatctacaca agcgatgatg ccttccgttt ttgcgctttt 420tctgctgctg cggcctccta catccaaaaa gaaggagcca atatcgttca tttacacgat 480tggcatacag gattagttgc tggactactc aaacaacagc cctgctctca attacaaaag 540attgttctta ccctacataa ttttggttat cgaggctata caacacgaga aatattagaa 600gcctcctctt tgaatgaatt ttatatcagc cagtaccaac tatttcgcga tccacaaact 660tgtgtgttgc taaaaggagc tttatactgt tcagatttcg tgactacggt ttctcctaca 720tacgccaaag aaattcttga agattattcc gattacgaaa ttc 7639665DNAChlamydia trachomatis 9ttgaaactaa aaacctaatt tatttaaagc tcaaaataaa aaagagtttt aaaatgggaa 60attctggttt ttatttgtat aacactgaaa actgcgtctt tgctgataat atcaaagttg 120ggcaaatgac agagccgctc aaggaccagc aaataatcct tgggacaaca tcaacacctg 180tcgcagccaa aatgacagct tctgatggaa tatctttaac agtctccaat aattcatcaa 240ccaatgcttc tattacaatt ggtttggatg cggaaaaagc ttaccagctt attctagaaa 300agttgggaga tcaaattctt gatggaattg ctgatactat tgttgatagt acagtccaag 360atattttaga caaaatcaaa acagaccctt ctctaggttt gttgaaagct tttaacaact 420ttccaatcac taataaaatt caatgcaacg ggttattcac tcccagtaac attgaaactt 480tattaggagg aactgaaata ggaaaattca cagtcacacc caaaagctct gggagcatgt 540tcttagtctc agcagatatt attgcatcaa gaatggaagg cggcgttgtt ctagctttgg 600tacgagaagg tgattctaag ccctgcgcga ttagttatgg atactcatca ggcattccta 660attta 66510843DNAChlamydia trachomatis 10tgggaatgtc gaagaatacg attacgttct cgtatctata ggacgccgtt tgaatacaga 60aaatattggc ttggataaag ctggtgttat ttgtgatgaa cgcggagtca tccctaccga 120tgccacaatg cgcacaaacg tacctaacat ttatgctatt ggagatatca caggaaaatg 180gcaacttgcc catgtagctt ctcatcaagg aatcattgca gcacggaata tagctggcca 240taaagaggaa atcgattact ctgccgtccc ttctgtgatc tttaccttcc ctgaagtcgc 300ttcagtaggc ctctccccaa cagcagctca acaacaaaaa atccccgtca aagtaacaaa 360attcccattt cgagctattg gaaaagcggt cgcaatgggc gaggccgatg gatttgcagc 420cattatcagc catgagacta ctcagcagat cctaggagct tatgtgattg gccctcatgc 480ctcatcactg atttccgaaa ttaccctagc agttcgtaat gaactgactc ttccttgtat 540ttacgaaact atccacgcac atccaacctt agcagaagtt tgggctgaaa gtgcgttgtt 600agctgctgat accccattac atatgccccc tgctaaaaaa tgaccgattc agaatctcct 660actcctaaaa aatctatacc cgccagattc cctaagtggc tacgccagaa actcccttta 720gggcgggtat ttgctcaaac tgataatact atcaaaaata aagggcttcc tacagtctgt 780gaggaagcct cttgtccgaa tcgcacccat tgttggtcta gacatacagc gtacctatct 840agc 843111474DNAChlamydia trachomatis 11acagaaggga cggcagagta atcgatttcc tctttatggc cagctatatt ccgtgctgca 60atgattcctt gatgagaagc tacatgggca agttgccatt ttcctgtgat atctccaata 120gcataaatgt taggtacgtt tgtgcgcatt gtggcatcgg tagggatgac tccgcgttca 180tcacaaataa caccagcttt atccaagcca atattttctg tattcaaacg gcgtcctata 240gatacgagaa cgtaatcgta ttcttcgaca ttcccattga tagttaaccg aacgcgatct 300cctatatcct caatatttga tacagaggct tctagtacga aacggagtcc ttgtcgggtg 360aatttatcga acatggtttt tgaaatatct ggattattca aagcaaggat ttgagagctt 420gcttcgatca cagaaacttc ggagcctaac gtatggaata aggaagcgaa ttcgcaaccg 480atcacaccac cgccaataat ggccattttt tgagggattt ctttgaggtt tagcacgcct 540gttgagcata aaatccgagg agattctgcg gaaaaaggaa tcccggggaa agctcgtggt 600tcagagccgg tggctaggat aatggagtgc gctttgatta cagaagggtt ttctcctaag 660atttttactt ctgttgaaga gatcaaagag cctcttccag agaagacagt gatcttattg 720ctgcgaatga gaccattaag tccatcgcgg atgctacgga ctacggaatc cttcctttgt 780accatagcgg gatagttgat gctgaatcct tctacatgaa tcccaaactg gtcagcatgg 840cgtatttggg taacgacttc agctcctgct aagagggctt tagaaggaat acaccctcgg 900tttaaacagg ttccgccagc ctctcgcttt tcgattagcg cagttttgag tcctgcttga 960gcggcagtga ttgctgcaac atagcctcct

ggccccgctc cgataactac acagtcgaaa 1020gcttcattca taacatttcc tcttcaatga gtgtttagga ttgcaacgat ccatatgaga 1080tgattatctg aaggaagagg attctccttc caagcctttc taggaaaggg aaagagaggt 1140ccttcagaca aatacatttc ccggattgta catctgggtg gataaaatct caatgaggag 1200aagtggtagc aggagagaaa aaataggaac gtaagagtgt tatttcgaat gctcagggag 1260agagcggtac ccacgataag caagcagaat cccgactagt gcatagatgt atgagcgatt 1320ctttggccag gagagaacga gtccagagcc tgtcgaaaac aagagaatca tgagcgaaaa 1380ggtaaggaaa ccgcaaccca agaagagagc tgcagtcggc caatattgta gccagtccca 1440ctgggagggg gcaggctctt gaacaggctc ctca 1474122017DNAChlamydia trachomatis 12ataagcattc tcatctaccc agaagtagaa gtcaaaacct tcataagtat ctaaaaagac 60tcgcatataa tcttcgatac catccggagg cgctcctgcg atccatattc catggatgat 120tttctcaaca ggtacacgat ggcctttaaa ttctgttttg atggtttcaa gaacaccttc 180aatcggagtc gtcttaggtt tttcttcggc tttctgttcc ttagcttttg cctgtttagg 240ctgagcctgc gatgatgctg gaagcttctt ctgaatggca tcgacgtatt ttccttgttg 300aatcaaggaa ttctgtcccg cttccgaatt tttatctggc atagagttgt aagcactaat 360gacctttttc agtttattta ataggtcttt aacagtagat ttctgttcag gagtaattcc 420tagtttttct tctatgttct tgggagtaag atcgtatttg ctagcatcaa gattttctat 480ctttccagaa gaagcttcct ccttcttctc ttctatagca cgcttttttc tcgataaaac 540agctgctgta ggaggaactg cactagcaga aatcgttttt accccccccc ctctgaacag 600agtacgtacg aacgttcact ggctgtgtaa taaacttcgt ctttctctta cgaggagagg 660ttttgtcgtt acttcctgtt ctttagagat tgtagtgacc ttattctctg aagtagaagt 720ctctgccgtc tcgtgccgaa ttcggcacga gaagccatgt tatctttgct tagatcaatg 780ccttcttgtt ttttgaattc atcaagcatc cagttgatga tgactccgtc gaagtcgtct 840cctcccaagt gagtatcccc gttggttgag agaacttcaa aaactccgtc accgatttcc 900aagatagaaa tatcgaaagt tcctcctcct aagtcgaaga cggcgatttt tttatctcct 960tccttatcaa taccataagc aagagcggcc gctgttggtt caggaataat gcgtttaaca 1020tctaatcctg cgatacgtcc agcatctttt gtagaagctc tttgagaatc gttaaagtaa 1080gctggtacgg taatgactgc ttccgttact gtttctccga gataagcctc agcagtttcc 1140ttcatcttca tgaggatctg agcgccgatt tcttctggag tgtacagttt ttgttccaca 1200tcaaagaccg catctccttt cgagttagga gcaactttgt aggggactgt tttaatttca 1260gattcgactt cagagaattt tctaccgatg aatcgcttag tagaagccaa tgttttttca 1320ggattggtta ctgcctgacg ttttgcagga attccaacaa gagtttcgcc acctttaaaa 1380gcaacgatag aaggagtagt acgagttcct tcagaagagg caataacttt aggttggcca 1440ccttccataa cagagacgca agagttggtc gtccctaggt cgataccaat aattttgtta 1500gactttcttt tttcgctcat attgaacacc taatttctag gataattatt ctttttcttc 1560gttaccgtct gagtttcctt tagcaggaag ttttgctact ttcactttgg ctacgcgaat 1620aggacgatct cctatcttat aacctttagt aaattcctcc aagatagtcc cttctggaat 1680tgttgtggtt tcttcgattt ctacagcttc atgcaggtac ggattaaata gttctccttt 1740cgaggaatat tcaaccacac ctttctcttc gaagatttgc ttaaattgtt gaaggatcat 1800ttggaatcct atagcccaat tttttacttc ttcagaggtt tgagaagcga atcccaaagc 1860cttttccata ctttcgatag aaggaaggaa atccataaga gcattttcta cagcatactg 1920catcatttct gtgcgttctt tctgtagtcg ttttcttgag ttttctgctt cagcgagagc 1980catcagatat cgatcattct gttcttgcct cgtgccg 2017131171DNAChlamydia trachomatis 13ggtaaacgag ttaaaacaag agcatacagg gctaacggac tcgcctttag tgaaaaaagc 60tgaggagcag attagtcaag cacaaaaaga tattcaagag atcaaaccta gtggttcgga 120tattcctatc gttggtccga gtgggtcagc tgcttccgca ggaagtgcgg caggagcgtt 180gaaatcctct aacaattcag gaagaatttc cttgttgctt gatgatgtag acaatgaaat 240ggcagcgatt gcactgcaag gttttcgatc tatgatcgaa caatttaatg taaacaatcc 300tgcaacagct aaagagctac aagctatgga ggctcagctg actgcgatgt cagatcaact 360ggttggtgcg gatggcgagc tcccagccga aatacaagca atcaaagatg ctcttgcgca 420agctttgaaa caaccatcag cagatggttt ggctacagct atgggacaag tggcttttgc 480agctgccaag gttggaggag gctccgcagg aacagctggc actgtccaga tgaatgtaaa 540acagctttac aagacagcgt tttcttcgac ttcttccagc tcttatgcag cagcactttc 600cgatggatat tctgcttaca aaacactgaa ctctttatat tccgaaagca gaagcggcgt 660gcagtcagct attagtcaaa ctgcaaatcc cgcgctttcc agaagcgttt ctcgttctgg 720catagaaagt caaggacgca gtgcagatgc tagccaaaga gcagcagaaa ctattgtcag 780agatagccaa acgttaggtg atgtatatag ccgcttacag gttctggatt ctttgatgtc 840tacgattgtg agcaatccgc aagcaaatca agaagagatt atgcagaagc tcacggcatc 900tattagcaaa gctccacaat ttgggtatcc tgctgttcag aattctgcgg atagcttgca 960gaagtttgct gcgcaattgg aaagagagtt tgttgatggg gaacgtagtc tcgcagaatc 1020tcaagagaat gcgtttagaa aacagcccgc tttcattcaa caggtgttgg taaacattgc 1080ttctctattc tctggttatc tttcttaacg tgtgattgaa gtttgtgaat gagggggagc 1140caaaaaagaa tttctttttt ggctcttttt t 117114877DNAChlamydia trachomatis 14cagagaattc tcgacatact atctaatcgg atatgtaaag ctgctttaca tcccttgaac 60tagaaataaa atggaaataa aaagcccaga acaagagaag ttgttctggg ctgacagaag 120ctgtcagatc attttaataa gattgatgac aactacgaca agttcctgga tccaaaaaag 180aatctaaaaa gccatacaaa gattgcgtta cttcttgcga tgcctctaac actttatcag 240cgtcatcttt gagaagcatc tcaatgagcg ctttttcttc tctagcatgc cgcacatccg 300cttcttcatg ttctgtgaaa tatgcatagt cttcaggatt ggaaaatcca aagtactcag 360tcaatccacg aattttctct ctagcgatac gtggaatttg actctcataa gaatacaaag 420cagccactcc tgcagctaaa gaatctcctg tacaccaccg cacgaaagta gctactttcg 480cttttgctgc ttcactaggc tcatgagcct ctaactcttc tggagtaact cctagagcaa 540acacaaactg cttccacaaa tcaatatgat tagggtaacc gttctcttca tccatcaagt 600tatctaacaa taacttacgc gcctctaaat catcgcaacg actatgaatc gcagataaat 660atttaggaaa ggctttgata tgtaaataat agtctttggc atacgcctgt aattgctctt 720tagtaagctc ccccttcgac catttcacat aaaacgtgtg ttctagcata tgcttatttt 780gaataattaa atctaactga tctaaaaaat tcataaacac ctccatcatt tcttttcttg 840actccacgta accgcttgca aaaaaggtcc gtataag 87715396DNAChlamydia trachomatis serovar E 15tgtaccaaat atgagcttag atcaatctgt tgttgaactt tacacagata ctgccttctc 60ttggagcgtg ggcgctcgag cagctttgtg ggagtgcgga tgtgcgactt taggggcttc 120tttccaatac gctcaatcta aacctaaagt cgaagaatta aacgttctct gtaacgcagc 180tgagtttact atcaataagc ctaaaggata tgtagggcaa gaattccctc ttgcactcat 240agcaggaact gatgcagcga cgggcactaa agatgcctct attgattacc atgagtggca 300agcaagttta gctctctctt acagattgaa tatgttcact ccctacattg gagttaaatg 360gtctcgagca agttttgatg ccgatacgat tcgtat 39616516DNAChlamydia trachomatis serovar E 16ctcaaaattt gacgatttct cagaatacag ggaatgttct gttttataac aacgtggcct 60gttcgggagg agctgttcgt atagaggatc atggtaatgt tcttttagaa gcttttggag 120gagatattgt ttttaaagga aattcttctt tcagagcaca aggatccgat gccatctatt 180ttgcaggtaa agaatcgcat attacagccc tgaatgctac ggaaggacat gctattgttt 240tccacgacgc attagttttt gaaaatctag aagaaaggaa atctgctgaa gtattgttaa 300tcaatagtcg agaaaatcca ggttacactg gatctattcg atttttagaa gcagaaagta 360aagttcctca atgtattcat gtacaacaag gaagccttga gttgctaaat ggagctacat 420tatgtagtta tggttttaaa caagatgctg gagctaagtt ggtattggct tctggatcta 480aactgaagat tttagattca ggaactcctg tacaag 51617723DNAChlamydia trachomatis serovar E 17ctccttttaa gggggacgat gtttacttga atggagactg cgcttttgtc aatgtctatg 60caggggcaga gaacggctca attatctcag ctaatggcga caatttaacg attaccggac 120aaaaccatac attatcattt acagattctc aagggccagt tcttcaaaat tatgccttca 180tttcagcagg agagacactt actctgaaag atttttcgag tttgatgttc tcgaaaaatg 240tttcttgcgg agaaaaggga atgatctcag ggaaaaccgt gagtatttcc ggagcaggcg 300aagtgatttt ttgggataac tctgtggggt attctccttt gtctattgtg ccagcatcga 360ctccaactcc tccagcacca gcaccagctc ctgctgcttc aagctcttta tctccaacag 420ttagtgatgc tcggaaaggg tctatttttt ctgtagagac tagtttggag atctcaggcg 480tcaaaaaagg ggtcatgttc gataataatg ccgggaattt tggaacagtt tttcgaggta 540atagtaataa taatgctggt agtgggggta gtgggtctgc tacaacacca agttttacag 600ttaaaaactg taaagggaaa gtttctttca cagataacgt agcctcctgt ggaggcggag 660tagtctacaa aggaactgtg cttttcaaag acaatgaagg aggcatattc ttccgaggga 720aca 723181377DNAChlamydia trachomatis serovar E 18aaacagctaa tcgtcactac gctcacgtgg actgccctgg tcacgctgac tatgttaaaa 60acatgatcac cggtgcggct caaatggacg gggctattct agtagtttct gcaacagacg 120gagctatgcc tcaaactaaa gagcatattc ttttggcaag acaagttggg gttccttaca 180tcgttgtttt tctcaataaa attgacatga tttccgaaga agacgctgaa ttggtcgact 240tggttgagat ggagttggct gagcttcttg aagagaaagg atacaaaggg tgtccaatca 300tcagaggttc tgctctgaaa gctttggaag gggatgctgc atacatagag aaagttcgag 360agctaatgca agccgtcgat gataatatcc ctactccaga aagagaaatt gacaagcctt 420tcttaatgcc tattgaggac gtgttctcta tctccggacg aggaactgta gtaactggac 480gtattgagcg tggaattgtt aaagtttccg ataaagttca gttggtcggt cttagagata 540ctaaagaaac gattgttact ggggttgaaa tgttcagaaa agaactccca gaaggtcgtg 600caggagagaa cgttggattg ctcctcagag gtattggtaa gaacgatgtg gaaagaggaa 660tggttgtttg cttgccaaac agtgttaaac ctcatacaca gtttaagtgt gctgtttacg 720ttctgcaaaa agaagaaggt ggacgacata agcctttctt cacaggatat agacctcaat 780tcttcttccg tacaacagac gttacaggtg tggtaactct gcctgaggga gttgagatgg 840tcatgcctgg ggataacgtt gagtttgaag tgcaattgat tagccctgtg gctttagaag 900aaggtatgag atttgcgatt cgtgaaggtg gtcgtacaat cggtgctgga actatttcta 960agatcattgc ataaattaag tgatgtgttg gcgaggctga aaagccttgc ctttgggtgt 1020gtagcttaga tggtagagca gtggcctcca aagccgccgg tcgggggttc gaatccctcc 1080gcactcgtat taggtaactg aaagaagaat tcgcttatgg ggcaagatca ccgaagaaaa 1140tttcttaaga aagtatcttt tgcaaaaaaa caagcagctt ttgcgggtaa ctttatcgaa 1200gaaattaaga agattgagtg ggtaaataag cgaaatctta aaagatacgt caagattgtt 1260ttgatgaata tttttggctt tggattttcc atctattgtg tggatttagc tcttcgaaag 1320tccctttcat tgttcggtaa agtaacaagc tttttctttg gttgattcat gtttaag 1377191736DNAChlamydia trachomatis serovar E 19gtagcggaac aaagccggac cacgaggcct catagaatat aaaaatacga ggagcttaaa 60catgtcagat caagcaacga ccctcaagat taaacctttg ggagatagaa ttttagttaa 120aagagaagaa gaagcttcca ctgcaagagg cggaatcatt cttcctgaca ctgccaagaa 180aaagcaagat agagctgaag ttttagctct aggaacaggc aaaaaagatg ataaagggca 240gcaacttcct tttgaagttc aggttggtga catcgtttta attgataaat attctggcca 300agaactcact gtagaaggtg aagagtacgt catcgttcaa atgagcgaag ttatcgcagt 360tctgcaataa aaactaagag agtgaagtaa gatttaaggg agcgcatcaa tggtcgctaa 420aaacattaaa tacaacgaag aagccagaaa gaaaattcaa aaaggagtta agactttagc 480tgaagctgta aaagtcactc tagggcctaa aggacgacat gttgtcatag ataaaagctt 540cggatcccct caagtaacta aagatggtgt taccgttgcg aaagaagttg agcttgccga 600caaacatgaa aatatgggcg ctcaaatggt caaagaagtc gccagcaaaa ctgctgacaa 660agctggagac ggaactacaa cagctactgt tcttgctgaa gctatctata cagaaggatt 720acgcaatgta acagctggag caaatccaat ggacctcaaa cgaggtattg ataaagctgt 780taaggttgtt gttgatcaaa tcagaaaaat cagcaaacct gttcagcatc ataaagaaat 840tgctcaagtt gcaacaattt ctgctaataa tgatgcagaa atcgggaatc tgattgctga 900agcaatggag aaagttggta aaaacggctc tatcactgtt gaagaagcaa aaggatttga 960aaccgttttg gatgttgttg aaggaatgaa tttcaataga ggttacctct ctagctactt 1020cgcaacaaat ccagaaactc aagaatgtgt attagaagac gctttggttc taatctacga 1080taagaaaatt tctgggatca aagatttcct tcctgtttta caacaagttg ctgaatccgg 1140ccgtcctctt cttattatag cagaagacat tgaaggcgaa gctttagcta ctttggtcgt 1200gaacagaatt cgtggaggat tccgggtttg cgcagttaaa gctccaggct ttggagatag 1260aagaaaagct atgttggaag acatcgctat cttaactggc ggtcaactca ttagcgaaga 1320gttgggcatg aaattagaaa acgctaactt agctatgtta ggtaaagcta aaaaagttat 1380cgtttctaag gaagacacga ccatcgtcga aggaatgggt gaaaaagaag ctttagaagc 1440tcgttgcgaa agcatcaaaa aacaaattga agacagctct tctgattacg ataaagaaaa 1500actccaagag cgtcttgcta agctctctgg tggagtagca gtcattcgcg ttggagctgc 1560aacagagatt gagatgaaag agaaaaaaga tcgtgtagac gatgctcaac atgctacaat 1620cgctgctgtt gaagaaggaa ttcttcctgg tggaggaaca gcattaatcc gttgtatccc 1680tactcttgag gccttcttgc caatgttgac taatgaagat gagcaaattg gagctc 1736201135DNAChlamydia trachomatis serovar E 20ggctcttgat gaaaaagagc ggcaggttat ggctctttat tactatgatg acttggtatt 60aaaagaaatt gggaagattt taggagtgag cgagtcccga gtttctcaga tacactccaa 120agctttattg aagttacgag gtacattgtc cagtctgctt tagtaactgt ctccagaaga 180tcctctttgt atttttccta tcaatattct attggagaag cgcgtcgttt ttttgacgag 240gtgtctgcta tcgcttgcct tgctataaaa agaacaggat agataagatg ttgctagata 300agtttatatg gatagatttt tatgcaacag ttaatcgata accttaagaa acggggtatt 360ctagataatt cttctgcagg attagaaact cgtgccgaag tttgtggaga agagaaagaa 420atctctctag cagactttcg tggtaagtat gtagtgctct tcttttatcc taaagatttc 480acctatgtgt gtcctacaga attgcatgct tttcaagata gattggtaga ttttgaagag 540cggggtgcag tcgtgcttgg ttgctccgtt gacgacattg agacacattc tcgttggctc 600gctgtagcga gaaatgcagg aggaatagag ggaacagaat atcctctgtt agcagaccct 660tcttttaaaa tatcagaagc ttttggtgtt ttgaatcctg aaggatcgct cgctttaaga 720gcgactttcc ttatcgataa acatggggtt gttcgtcatg cggttatcaa tgatcttcct 780ttagggcgtt ccattgacga ggaattgcgt attttagatt cattgatctt ctttgagaac 840cacggaatgg tttgtccagc taactggcgt tctggagagc gtggaatggt gccttctgaa 900gagggattaa aagaatattt ccagacgatg gattaagcat ctttgaaagt aagaaagtcg 960tacagatctt gatctgaaaa gagaagaagg ctttttaatt ttctgcagag agccagcgag 1020gcttcaataa tgttgaagtc tccgccacca ggcaatgcta aggcgatgat attagttagt 1080gaaatctgag tgttaaggaa ataaaggcca aagaagtagc tatcaataaa gaagc 113521731DNAChlamydia trachomatis serovar E 21ttgaagacac tctttctccc ggagtcacag ttcttgaagc tgcaggagct caaatttctt 60gtaataaagt agtttggact gtgaaagaac tgaatcctgg agagtctcta cagtataaag 120ttctagtaag agcacaaact cctggacaat tcacaaataa tgttgttgtg aagagctgct 180ctgactgtgg tacttgtact tcttgcgcag aagcgacaac ttactggaaa ggagttgctg 240ctactcatat gtgcgtagta gatacttgtg accctgtttg tgtaggagaa aatactgttt 300accgtatttg tgtcaccaac agaggttctg cagaagatac aaatgtttct ttaatgctta 360aattctctaa agaactgcaa cctgtatcct tctctggacc aactaaagga acgattacag 420gcaatacagt agtattcgat tcgttaccta gattaggttc taaagaaact gtagagtttt 480ctgtaacatt gaaagcagtt acagctggag atgctcgtgg ggaagcgatt ctttcttccg 540atacattgac tgttccagtt tctgatacag agaatacaca catctattaa tctttgattt 600tatcgatgtg taggtgccgt ccagggattc ctgggcggct tttttttgtt atctatatga 660aaataaaaga gttcattttc ggtctcagag catattctag acgggttttt gaaaaaaata 720agtgtttgtg t 731221181DNAChlamydia trachomatis serovar E 22ctatcgtctg aatgctgaac tgaaacatct ttttgattta gacgcgttag ccgatgctat 60ggatctatct cgagatctac agttttctta catgggtatt caaaatctgt atgatcgtta 120ttttaatcac cacgaagatt gccgtttaga aactccccaa attttttgga tgcgcgttgc 180tatggggttg gcattgaatg agcaagacaa gacttcttgg gctattactt tttataattt 240gctttcgaca ttccgatata caccagctac gccaaccttg ttcaattcag gtatgcggca 300ttctcagtta agctcttgct atctttccac tgtacaagat aatttggtca atatctataa 360ggtcattgct gataacgcta tgctatctaa gtgggcagga gggataggta atgattggac 420ggcggttcgt gcaacagggg ctttaattaa aggaaccaat ggaagaagtc agggagtaat 480tccttttatt aaggtgacaa atgatacagc agtcgcagtg aatcaaggtg gtaaacgcaa 540gggagctgta tgcgtctatt tagaagtttg gcacctcgac tacgaagatt tccttgaatt 600gagaaagaat acaggggatg agcgtcgacg ggctcatgat gtcaatatag ctagctggat 660tccagatctt ttcttcaaac gtttacagca aaaagggaca tggactctat tcagcccaga 720tgatgttccg ggattacacg atgcttatgg ggaagaattt gagcgtttgt acgaagaata 780tgagcggaag gttgataccg gagagattcg gttattcaag aaggtagaag ctgaagatct 840gtggagaaaa atgctcagca tgctttttga aacgggacac ccatggatga cttttaaaga 900tccatccaac atccgttcgg ctcaagatca taaaggcgtg gtgcgttgtt ccaatctgtg 960tacggagatt ttgttaaact gctcggagac agaaactgct gtttgtaatt taggatcgat 1020taacttagtt caacatatcg taggggatgg gttagatgag gaaaaactct ctgagacgat 1080ctctatagca gtccgtatgt tggataacgt gattgatatt aacttttatc caacaaagga 1140agctaaagag gcgaactttg ctcaccgcgc tattggatta g 118123167DNAChlamydia trachomatis serovar E 23ttaaaaagat tttaaactaa aaagaagatt tttaattata gtttttcaaa atcattttga 60tatttttaat gctgagataa acaagaaaag cggaaactcc ttgcgacaaa gattttctgc 120tcgagccctc ttccctgagg attttttagg ggagatccat tcttcca 167241265DNAChlamydia trachomatis serovar E 24caggttcttt ctagacgaac aaagaataat cctatgttga taggggagcc cggagttggg 60aaaacagcaa tcgctgaagg acttgctctt cgcatagtgc aaggggatgt tccagagagt 120ttaaaggaaa agcatctgta tgtactggat atgggagctt tgattgcagg tgccaagtat 180cgaggagagt ttgaagagcg gttaaaaagt gtattgaagg gtgtagaagc ttctgaaggc 240gagtgtatcc tattcattga tgaagtgcat actttagtag gagcgggagc tacagatgga 300gctatggatg cagcgaatct attaaagcct gctttagcac gaggcacttt gcattgtatt 360ggcgctacga ctttgaatga ataccaaaaa tatatagaga aagacgcggc tttggaacgg 420cgtttccagc ctatttttgt aacagaacct tctttggaag atgctgtatt cattctccgg 480gggttaaggg aaaaatatga aatttttcat ggtgtgcgca ttacagaagg ggctttgaat 540gcagctgtag ttctttctta tcgttacatc acagaccgat ttcttcctga taaggcgatt 600gacctaattg atgaggctgc gagtttaatc cgtatgcaaa taggaagttt acctctgcct 660attgatgaaa aggaaagaga attatcagct ttaatcgtga aacaagaagc tattaaacgc 720gagcaagcac cagcttatca ggaagaggct gaagacatgc aaaaagcaat tgaccgggtt 780aaggaagagc tggccgcttt acgcttgcgc tgggatgaag aaaaaggatt aattgcagga 840ttaaaagaaa agaagaatgc tttagaaaat ttaaaatttg ccgaagagga agctgagcgt 900actgccgatt acaatcgggt agcagaacta cgctatagtt tgattccttc tttggaggaa 960gaaattcatt tagctgagga agctttaaat caaagagatg ggcgcctgct tcaagaggaa 1020gttgatgagc ggttgattgc gcaagttgtt gcgaattgga ctggaatccc tgtgcaaaaa 1080atgttggagg gagaatctga aaagttattg gtgttgagga gtctttagaa gaaagggttg 1140tcggacagcc tttcgctatt gccgcagtca gtgattcgat tcgagctgct cgagtaggat 1200tgagtgatcc gcagcgtctc cctcacaagg gaatattagc tggcgcggcg aaccgctggc 1260gaaac 126525463DNAChlamydia trachomatis serovar E 25atgacgaaca accccatgtt tatcgataag gaaagtcgct cttaaagcga gcgatccttc 60aggattcaaa acaccaaaag cttctgatat tttaaaagaa gggtctgcta acagaggata 120ttctgttccc tctattcctc ctgcatttct cgctacagcg agccaacgag aatgtgtctc 180aatgtcgtca acggagcaac caagcacgac tgcaccccgc tcttcaaaat ctaccaatct 240atcttgaaaa gcatgcaatt ctgtaggaca cacataggtg aaatctttag gataaaagaa 300gagcactaca tacttaccac gaaagtctgc tagagagatt tctttctctt ctccacaaac 360aacggcttta ccagaaaaat ccggagcctg tcttccaatt

agtgatccca taatactcct 420cctagaaaga aacaacgcac cagagaggat ttgaacctct gac 46326636DNAChlamydia trachomatis serovar E 26ggtagaaaat tctctgaagt cgaatctgaa attaaaacag tcccctacaa agttgctcct 60aactcgaaag gagatgcggt ctttgatgtg gaacaaaaac tgtacactcc agaagaaatc 120ggcgctcaga tcctcatgaa gatgaaggaa actgctgagg cttatctcgg agaaacagta 180acggaagcag tcattaccgt accagcttac tttaacgatt ctcaaagagc ttctacaaaa 240gatgctggac gtatcgcagg attagatgtt aaacgcatta ttcctgaacc aacagcggcc 300gctcttgctt atggtattga taaggaagga gataaaaaaa tcgccgtctt cgacttagga 360ggaggaactt tcgatatttc tatcttggaa atcggtgacg gagtttttga agttctctca 420accaacgggg atactcactt gggaggagac gacttcgacg gagtcatcat caactggatg 480cttgatgaat tcaaaaaaca agaaggcatt gatctaagca aagataacat ggctttgcaa 540agattgaaag atgctgctga aaaagcaaaa atagaattgt ctggtgtatc gtctactgaa 600atcaatcagc cattcatcac tatcgacgct aatgga 636271797DNAChlamydia trachomatis serE 27atgcatcacc atcaccatca catgagcatc aggggagtag gaggcaacgg gaatagtcga 60atcccttctc ataatgggga tggatcgaat cgcagaagtc aaaatacgaa gggtaataat 120aaagttgaag atcgagtttg ttctctatat tcatctcgta gtaacgaaaa tagagaatct 180ccttatgcag tagtagacgt cagctctatg atcgagagca ccccaacgag tggagagacg 240acaagagctt cgcgtggagt gctcagtcgt ttccaaagag gtttagtacg aatagctgac 300aaagtaagac gagctgttca gtgtgcgtgg agttcagtct ctacaagcag atcgtctgca 360acaagagccg cagaatccgg atcaagtagt cgtactgctc gtggtgcaag ttctgggtat 420agggagtatt ctccttcagc agctagaggg ctgcgtctta tgttcacaga tttctggaga 480actcgggttt tacgccagac ctctcctatg gctggagttt ttgggaatct tgatgtgaac 540gaggctcgtt tgatggctgc gtacacaagt gagtgcgcgg atcatttaga agcgaaggag 600ttggctggcc ctgacggggt agcggccgcc cgggaaattg ctaaaagatg ggagaaaaga 660gttagagatc tacaagataa aggtgctgca cgaaaattat taaatgatcc tttaggccga 720cgaacaccta attatcagag caaaaatcca ggtgagtata ctgtagggaa ttccatgttt 780tacgatggtc ctcaggtagc gaatctccag aacgtcgaca ctggtttttg gctggacatg 840agcaatctct cagacgttgt attatccaga gagattcaaa caggacttcg agcacgagct 900actttggaag aatccatgcc gatgttagag aatttagaag agcgttttag acgtttgcaa 960gaaacttgtg atgcggctcg tactgagata gaagaatcgg gatggactcg agagtccgca 1020tcaagaatgg aaggcgatga ggcgcaagga ccttctagag tacaacaagc ttttcagagc 1080tttgtaaatg aatgtaacag catcgagttc tcatttggga gctttggaga gcatgtgcga 1140gttctctgcg ctagagtatc acgaggatta gctgccgcag gagaggcgat tcgccgttgc 1200ttctcttgtt gtaaaggatc gacgcatcgc tacgctcctc gcgatgacct atctcctgaa 1260ggtgcatcgt tagcagagac tttggctaga ttcgcagatg atatgggaat agagcgaggt 1320gctgatggaa cctacgatat tcctttggta gatgattgga gaagaggggt tcctagtatt 1380gaaggagaag gatctgactc gatctatgaa atcatgatgc ctatctatga agttatgaat 1440atggatctag aaacacgaag atcttttgcg gtacagcaag ggcactatca ggacccaaga 1500gcttcagatt atgacctccc acgtgctagc gactatgatt tgcctagaag cccatatcct 1560actccacctt tgcctcctag atatcagcta cagaatatgg atgtagaagc agggttccgt 1620gaggcagttt atgcttcttt tgtagcagga atgtacaatt atgtagtgac acagccgcaa 1680gagcgtattc ccaatagtca gcaggtggaa gggattctgc gtgatatgct taccaacggg 1740tcacagacat ttagagacct gatgaagcgt tggaatagag aagtcgatag ggaataa 1797281983DNAChlamydia trachomatis serE 28atgcatcacc atcaccatca catggaatca ggaccagaat cagtttcttc taatcagagc 60tcgatgaatc caattattaa tgggcaaatc gcttctaatt cggagaccaa agagtccacg 120aaggcgtccg aagcgagtcc ttcagcatcg tcctctgtaa gcagctggag ttttttatcc 180tcagcaaaga atgcattaat ctctcttcgt gatgccatct tgaataaaaa ttccagtcca 240acagactctc tctctcaatt agaggcctct acttctacct ctacggttac acgtgtagcg 300gcaaaagatt atgatgaggc taaatcgaat tttgatacgg cgaaaagtgg attagagaac 360gctaagacac ttgctgaata cgaaacgaaa atggctgatt tgatggcagc tctccaagat 420atggagcgtt tagctaattc agatcctagt aacaatcata ccgaagaagt aaataatatt 480aagaaagcgc tcgaagcaca aaaagatact attgataagc tgaataaact cgttacgctg 540caaaatcaga ataaatcttt aacagaagtg ttgaaaacaa ctgactctgc agatcagatt 600ccagcgatta atagtcagtt agagatcaac aaaaattctg cagatcaaat tatcaaagat 660ctggaaagac aaaacataag ttatgaagct gttctcacta acgcaggaga ggttatcaaa 720gcttcttctg aagcgggaat taagttagga caagctttgc agtctattgt ggatgctggg 780gaccaaagtc aggctgcagt tctgcaagca cagcaaaata atagcccaga taatattgca 840gccacgaagg aattaattga tgctgctgaa acgaaggtaa acgagttaaa acaagagcat 900acagggctaa cggactcgcc tttagtgaaa aaagctgagg agcagattag tcaagcacaa 960aaagatattc aagagatcaa acctagtggt tcggatattc ctatcgttgg tccgagtggg 1020tcagctgctt ccgcaggaag tgcggcagga gcgttgaaat cctctaacaa ttcaggaaga 1080atttccttgt tgcttgatga tgtagacaat gaaatggcag cgattgcact gcaaggtttt 1140cgatctatga tcgaacaatt taatgtaaac aatcctgcaa cagctaaaga gctacaagct 1200atggaggctc agctgactgc gatgtcagat caactggttg gtgcggatgg cgagctccca 1260gccgaaatac aagcaatcaa agatgctctt gcgcaagctt tgaaacaacc atcagcagat 1320ggtttggcta cagctatggg acaagtggct tttgcagctg ccaaggttgg aggaggctcc 1380gcaggaacag ctggcactgt ccagatgaat gtaaaacagc tttacaagac agcgttttct 1440tcgacttctt ccagctctta tgcagcagca ctttccgatg gatattctgc ttacaaaaca 1500ctgaactctt tatattccga aagcagaagc ggcgtgcagt cagctattag tcaaactgca 1560aatcccgcgc tttccagaag cgtttctcgt tctggcatag aaagtcaagg acgcagtgca 1620gatgctagcc aaagagcagc agaaactatt gtcagagata gccaaacgtt aggtgatgta 1680tatagccgct tacaggttct ggattctttg atgtctacga ttgtgagcaa tccgcaagca 1740aatcaagaag agattatgca gaagctcacg gcatctatta gcaaagctcc acaatttggg 1800tatcctgctg ttcagaattc tgcggatagc ttgcagaagt ttgctgcgca attggaaaga 1860gagtttgttg atggggaacg tagtctcgca gaatctcaag agaatgcgtt tagaaaacag 1920cccgctttca ttcaacaggt gttggtaaac attgcttctc tattctctgg ttatctttct 1980taa 1983291224DNAChlamydia trachomatis serE 29gtaacttttc aacatttttc acaatgacaa gaataaaagc aaaaagaaag gctgccgata 60aaataaaagt tttactgcga gaacagaaga ctaaaactat ctggacgaat aagccggatg 120cgcaggataa ttgcgcataa aacactttaa tagagagtga tcttatgtct aaaacaccat 180tatccatagc tcatccttgg catgggccag tattaacacg cgatgattat gaatctcttt 240gttgctatat agaaatcact ccagccgact ccgttaaatt cgaactggat aaagaaactg 300gtatcctaaa agtggatcgg ccacaaaagt tttctaactt ttgtccttgc ttatacgggc 360tgttacctaa gacttattgt ggagatcttt ctggagaata cagtggtcaa caaagtaaca 420gagagaatat caaaggcgat ggcgatcctc ttgatatctg tgtgttaacg gaaaaaaata 480ttacacaagg gaacatcctc ttgcaagcgc gtcctatcgg agggattcgt attttagact 540cggaagaagc cgatgataaa atcatcgctg ttctagaaga tgatttagtc tatggcaata 600tagaagatat ttctgaatgc ccaggcacag ttttggacat gatccaacac tatttcttaa 660cctataaagc tactccagaa agcttaattc aagcaaaacc agctaaaatt gaaattgtag 720gtttatacgg caaaaaagaa gctcaaaaag tcattcgtct tgctcacgaa gactattgca 780atctttttat gtaaatcgac agaaaaagaa aaggctgttg tgggagattc cacaacggcc 840cctcctaacc aagttttttt catcctaggg gactttatga agcaaataga taactttgaa 900caaattcatc tctcgtgccg aattcggcac gagattaaaa caaagctctc aaaaagagtt 960ggtatcccga attcattcag cagttcccgg tgccaaagtt aaagagatac gctttttatt 1020aggatagtta tggacgcaca agaaaagaaa tacgacgcat cagccatcac cgttttagaa 1080ggattgcaag ctgttcgtga gcgtcctgga atgtacattg gtgatacagg agttaccgga 1140ttgcatcact tggtttatga agtggtggat aacagtatcg atgaggcaat ggcgggtttt 1200tgtaccgagg tcgttgttcg cata 122430883DNAChlamydia trachomatis serE 30atgttgacta acatggcgac catcagaaac tctgtgaaga cattgaacag aattgaattg 60gatcttgaag cttctaattc tggtcttacg aaaaaagaga tcgctttatt aacgaaaaga 120catcgcaagt tgcttaacaa cctggaaggt gttcgtcata tgaactctct cccagggctt 180ttaattgtaa ttgacccggg ctatgagcgc attgctgtcg cagaagctgg aaaactaggc 240attcctgtaa tggccttagt tgatacaaac tgcgatccaa caccaatcaa ccacgttatt 300ccttgcaacg atgattccat taagagtatc cgtctggttg tcaatgtact taaagacgct 360gttattgatg cgaagaagcg ttcaggcatc gaaattttat ctccagtacg tcctgtagaa 420agacctgcag aagaagctgt ggaagagttg cctcttccaa caggtgaagc tcaagatgaa 480gcttcttcta aagaaggttt tttactttgg gcagatattg acaattgcgg ggcattgaaa 540tgagcgactt ctccatggaa acattgaaaa atttaagaca gcagacaggt gtaggcctga 600ctaaatgtaa agaggctcta gagcatgcta agggcaattt agaagatgct gttgtttatt 660tacgtaagct tggtcttgcc tctgcaggca aaaaagaaca ccgagaaaca aaagaaggcg 720taattgctgc actcgttgat gaacgtggtg cggcacttgt tgaagtcaac gttgaaactg 780attttgttgc taacaacagt gttttccgag cattcgttac aggtttgtta tccgatcttc 840ttgaccacaa gcttagcgat gttgaagctt tagctcgcgt aat 88331393DNAChlamydia trachomatis serE 31agttgaaaaa ggctgtttct tgcattcaaa aaactatcga gcaagagaga tctattttgt 60ttgttggaac aaaaaaacag gcaaaacaga tcattagaga agctgctatc gaatgtggcg 120aattctttgc ttcagagaga tggttgggtg gcatgttgac taacatggcg accatcagaa 180actctgtgaa gacattgaac agaattgaat tggatcttga agcttctaat tctggtctta 240cgaaaaaaga gatcgcttta ttaacgaaaa gacatcgcaa gttgcttaac aacctggaag 300gtgttcgtca tatgaactct ctcccagggc ttttaattgt aattgacccg ggctatgagc 360gcattgctgt cgcagaagct ggaaaactag gca 393322577DNAChlamydia trachomatis serE 32attacggagg ccatacggta tcttctcgag gaggatttca agggatatgc gtacgaatag 60ccgatttatt ccgtaactgt ttctctcgta atagaggcac tactactacg ccatctcgaa 120ctgttatcac tcaggcagat atttatcatc cgactatttc tggacaagga gctcaaccta 180ttgtctctac aggagataag aaattagata gcgcaattat tcaagcagat ttgcgtgcgc 240agaataaaca gactttggct acacatattc aaagtaagct aggttctatg gagggacaat 300ctcctcaaga ttataaagct ggtgcgtata gtgcgctaag attgatgctg tttactccag 360gcgaaactac tgtgagtagc gagcgggaac gtcaagcgtg cgttacgggt cgggatctct 420gggaacaggc tgcaggagat cttgctacca atgggaatac agatgggctt atgttaatgg 480ctaacctatc tgtgggaggg aagcatgtgc ctgcggggca tttaagagaa tacatggata 540ctgtaaaggg tacgtttact gatgagaacg aggctacaga tcctacggta gatgccattt 600tagatttagc agcaaaaatc gatgcgacgg aattctctag tcctggttca gggcaagtca 660ttcttaatta tataggaaat tatggacaag tcgttttaga aaacgaggag atgaaccttc 720ttgttttaga agatcaaaat gggcaagatc ctcaacgtgt tcaagataac tcaaaagagt 780tacaaaaact gttagaaaat gctcgaaaaa cagatcctga gttatatttc caaacactaa 840ctgtcataac ttcttctgtt ttcttagact aaagagaagg tatacggtgt tcggtccttt 900caactattaa gaggaagtag tggtgagtag cataagccct atagggggga attctgggcc 960agagggattt tctagtgcat ctcgaggcga tgagattgat gatgtaccag atagtgaaga 1020gggagagcta gaagagcgcg tttcggatca tgcagagtct atcattaccg agagctcgga 1080aacgctgttt cgtactactt cttcatcagg ggtcagtgaa gatcttcagc aacacgttag 1140cttggaggaa tctccacgac aacgaggttt ccttggacgg atccgtgatg cagtagcttc 1200tatttggaag cgtcgtgttg cacgaaggaa tgaaaactat gatgtgaaaa aagcagaaga 1260gcagcaaggg attgtgcaat atctgcagga ttcgaaaatg cctgctttaa cgcgtgccta 1320tcgccatctc cgtgctttca attctgcatg cttacgtacg attcgtgagt ttttcgctac 1380catttttcgt gctttaaggg atgcgtatta tcgacattgt acacgttctg ggatcaactt 1440ttgtggagct gataaagact ctttagaagt tcttgttgcg gtgggtttgc ttttgcgtat 1500ggctacctta cgctcttttg aacatgtcgg tgggaattac gaagatcgat tagtaaataa 1560tgatgctccg gtgacaggtg cggggagaac tcttgttgat gatgctgtag acgatattga 1620atcgatttta aatacgagaa ccaactggcc tcaacatgtc atgatagggt tttctcgtgg 1680tctcgttcaa ttatgtgcga ctccttataa tgcgacttct caagaatgtt tcaagtcgat 1740tgttcgttta gaaaaagaag acccttcttc agattattct caagctttat tattagcagg 1800gataatagat cgcttggcgg agaaagcccc tatggctgca aagtatgttt tggatgcatt 1860gcgtgttcga acttcggagc tcataggaga actcattatt ctcgatttgc ttcctcctgt 1920atggaaggtt ggccgcggag gcgtattccc tcctgtgaat gagcagctcg ttgtgcaaat 1980tgttaatgca aacgtagaac gattgcattc cactttcgct catgagccac aagcttattt 2040gcgtatgatc gaaggtttgg taaccaattt ctttttctta cctagcgagg aagatccttc 2100ttcggttggg aatatctaag aacattttct aatagggaag aggataaata gcgtgaaata 2160atactgatta tgtgaagaat aggcaaaaag acctaaatcc ttatatgcta ttagattctc 2220gtttccctac agattattat ttacgtatcc tagaattagt catccgggat gcttcttgta 2280aattggtata taaccgacgc ctgcatatgt tggaggcgat ccctcttgat caaaaacttt 2340ctactgatca agagggggaa tcaagtattt tacgagaagt gattagcgag ctacttgcgc 2400attctgggga aagttatgcg atttcagctc aattacttgc cgtaatcgat atttatttaa 2460aacaagagca accgtcgaat tcatggttcg ctcgaatctt tcggaagaga gagcgggcta 2520gaaaacgaca aacaattaat aagttgcttt tgttaaaaag tatcctattt tttgaac 257733554DNAChlamydia trachomatis serE 33ttctttatta aaaaaaactt tctcttttct ctcagacttc ttatgagtca agaaactcaa 60cgagtcttgg tgtatggaga aggatttttt agaaaatgtt tatcgtcatt tccgttaccg 120tttttttaaa ttaagtgtac ttccagctct tctcggactc tggctatttt ttactcctaa 180tattcttaac tatttggatt cttctgttat tttatcagat aaaatttgcg gcgtcctttt 240aattttatta tcagctttat ccttttataa tcctgttatt ttgcaactag gcatttttat 300tgggctctgg gtttctttct tttcttgttc ttccgaccta cttcctttag tatttgctca 360tgattcgcta ctaggttttg ccacactagc tattattttt ctactcccta atcgtcctga 420agatctagaa gttggtccta ctattccaga aacttgccat tataatcctt cttccggagg 480gaaaagagct gcggttctta tttttgcttt tgtaggatgg ttacaaagtc gctacttaac 540ttccgcggca cgag 554341433DNAChlamydia trachomatis serE 34ctgcacgaaa attattaaat gatcctttag gccgacgaac acctaattat cagagcaaaa 60atccaggtga gtatactgta gggaattcca tgttttacga tggtcctcag gtagcgaatc 120tccagaacgt cgacactggt ttttggctgg acatgagcaa tctctcagac gttgtattat 180ccagagagat tcaaacagga cttcgagcac gagctacttt ggaagaatcc atgccgatgt 240tagagaattt agaagagcgt tttagacgtt tgcaagaaac ttgtgatgcg gctcgtactg 300agatagaaga atcgggatgg actcgagagt ccgcatcaag aatggaaggc gatgaggcgc 360aaggaccttc tagagcacaa caagcttttc agagctttgt aaatgaatgt aacagcatcg 420agttctcatt tgggagcttt ggagagcatg tgcgagttct ctgcgctaga gtatcacgag 480gattagctgc cgcaggagag gcgattcgcc gttgcttctc ttgttgtaaa ggatcgacgc 540atcgctacgc tcctcgcgat gacctatctc ctgaaggtgc atcgttagca gagactttgg 600ctagattcgc agatgatatg ggaatagagc gaggtgctga tggaacctac gatattcctt 660tggtagatga ttggagaaga ggggttccta gtattgaagg agaaggatct gactcgatct 720atgaaatcat gatgcctatc tatgaagtta tgaatatgga tctagaaaca cgaagatctt 780ttgcggtaca gcaagggcac tatcaggacc caagagcttc agattatgac ctcccacgtg 840ctagcgacta tgatttgcct agaagcccat atcctactcc acctttgcct cctagatatc 900agctacagaa tatggatgta gaagcagggt tccgtgaggc agtttatgct tcttttgtag 960caggaatgta caattatgta gtgacacagc cgcaagagcg tattcccaat agtcagcagg 1020tggaagggat tctgcgtgat atgcttacca acgggtcaca gacatttaga gacctgatga 1080agcgttggaa tagagaagtc gatagggaat aaactggtat ctaccatagg tttgtagcaa 1140aaaactaagc ccaccaagaa gaaattctct ttggtgggct tcttttttta ttcaaaaaag 1200aaagccctct tcaagattat accaagatgg gatgtataat ctgaaaggaa ggcgttttat 1260tctctatcca tatgatggtg gtggtatcct cctttagagg agcagcagtc tccatgacgt 1320tttttgaagc agcacttcaa gaagtttagg cagaccataa ccccagcgat tcccgttact 1380acataagctg cttgtgtcca catggttcct tcaccaagca ggtgagtaag tag 143335196DNAChlamydia trachomatis 35ctcgtgccga tgatacagca gtcgcagtga atcaaggtgg taaacgcaag ggagctgtat 60gcgtctattt agaagtttgg cacctcgact acgaagattt ccttgaattg agaaagaata 120caggggatga gcgtcgacgg gctcatgatg tcaatatagc tagctggatt ccagatcttt 180tcttcaaacg tttaca 196361990DNAChlamydia trachomatis 36ttcactaggc tcatgagcct ctaactcttc tggagtaact cctagagcaa acacaaactg 60cttccacaaa tcaatatgat tagggtaacc gttctcttca tccatcaagt tatctaacaa 120taacttacgc gcctctaaat catcgcaacg actatgaatc gcagataaat atttaggaaa 180ggctttgata tgtaaataat agtctttggc atacgcctgt aattgctctt tagtaagctc 240ccccttcgac catttcacat aaaacgtgtg ttctagcata tgcttatttt gaataattaa 300atctaactga tctaaaaaat tcataaacac ctccatcatt tcttttcttg actccacgta 360accgcttgca aaaaaggtcc gtataagtcc tctgtttcat ctatgcgcaa agaacaatac 420tcttctcgag aagtaggatg tgaatggtag accatattag gtgcctgctc tatcaccgct 480aacggtgttt gctcattccc ctctcccata caaacaacag ccgcaactgc taaggcatct 540acaagattac tttgcgtcat ctgtaagaga cgaccgaaac aatctagcga tcctatatag 600ttgtgtaatg gagaaaatcc ataccaacac agcccgatac ccagtactcc acgccgcatt 660ggagtagtat ggctatctgt aatgattacg cctagctctt tcactcgaaa ataatttctt 720aaccattctc cgatgcgatt acacgatccc aaaatatctt taggatataa aacaaaaggc 780tggtccgtat tcgattcatc aatccctgca gaaggaatca aaataccttc ttttttcgtt 840agatatatcc cgcttttctc acaaaacaaa taagcatccg cttctttttt tatcagctct 900gctttgcaca ttcttgcatc agcgacagcg ccttcacata aactcacaat ctttgaagag 960acaactacca cactccgttc ttgcagaggc ggcaaagcct cttgcaagat ctcttgaagc 1020gaatcatgtg caaatacttt acgtgttttg atcggagtta ttttcataat aataaatact 1080gaaatcctct gtattacaaa tacattcctt cttccatcct gataatcgcg tgatagggaa 1140gaaagtatcg ccccaatatt cctttttgat atgtgtgaca aaacaagctt tcagaaggtt 1200ttgttggaaa aaactttcaa agagctccgc tcccccaatt aaaaacggat gattcaaaga 1260tagtgtccca tactctgcaa aggaagaaac tcctatgcat tgtggtggat gcatcctgcg 1320agaaaagaca acgatatccc gcccatgctt atacttgtct ggaagagact cccaagtctt 1380tcgtcccata atgatgggat gatttcgaat ggtttctgca aaaaaacgta gatcttcggg 1440ataactccaa gggagcttgc ctaaagctcc catcactcct ctgggatcaa tagcaacgat 1500acctgttgct tggatcatac aaacatacca gcccaagcag cagcggctaa ggcacgtctg 1560ttaccttcaa cctgatgcac gcgtagataa tcaactcctc gatcatgaag agatacagaa 1620cagccgatcg tttcccaatc acgatcgtta ctattaaatc ggcccaacat actcaaacac 1680gattttctag aatggcctat taatacagga cactctaaaa cacgtttaaa ctgctttact 1740ccatccatca ataacatcga ctgaacggga gtcttcccaa atcctattcc tggatcgaaa 1800acaacttgcc aacttgtatc taaacctact tgagcaaatt gttctaactg ggactctccc 1860caacgcaaca tttgctcaat aggagattct tcataagaaa gtacacaatc tggtcttgga 1920ggcagcgaac acgaatgatt tattaatagc cgtagcccaa actccttcgc caaatgagcc 1980atttccaaag 1990372093DNAChlamydia trachomatis 37cagaaactct atccgcatac cttcttcggc aaattgatac caattttgcc tcttctcagg 60aacgtactat agctcagtat attgtaggca acctctcccc agaaggactc tttttagaaa 120atcctagtct tgtggctgca gatttaaacg tttccgaaca ccttttccac aaggtatggc 180aacgtatcca acaattacat cctttaggag tcggagcgcc ttccctacag tcctactggg 240tatcgctact acagacatct ccccataagg aggctttagc tattattcgc aaccatttcc 300ctagattagc tcgttgtgat ttcactacta tcgctaggaa aatgcatgca accacaacag 360agattcttac atttcttaga cacgcttttg cttccatccc ttggtgtcca gcagcaggct 420tttccgagac actgcacccc cctgctccag cgcttcctga tgcctacctt tccttctcgc 480gaaactctta ttgggatgtc tctattaata aagattgtct cccctctatt agactcaacg 540acaccgtact agatatctat ccttctcttc ctcgtgaaga gaaagaccac ctatcgcaac

600aaatccgagc agcaaaacaa ttgcttcgca atgtaaaaaa acgagaagaa acgttattgg 660ctatccttcg agttctcatc ccctaccaag aagagttcct tcttaaaaaa cgcacctctc 720ctaaagcttt ttctgtaaaa caaatagctc gcgaactctc tcttcatgaa gctaccgttt 780gtcgcgccat tgataataaa acgttagcaa cccctgttgg attactccct atgcgatcgc 840tatttccaca agcggttgga tcctgccccg atcaatctaa agcaactatt ttgcattgga 900tccaccagtg gatttctaca gaaaaacatc ctctatctga tgcagctatt agccaaaaaa 960ttattgagaa gggcatcccc tgcgcacgac gcacagtagc caaatatcgt tcgcaactga 1020atatcccacc tgcgcaccaa cgcaaacacc tatgctctgt tttaacaaca acacgcacag 1080agaattctcg acatactatc taatcggata tgtaaagctg ctttacatcc cttgaactag 1140aaataaaatg gaaataaaaa gcccagaaca agagaagttg ttctgggctg acagaagctg 1200tcagatcatt ttaataagat tgatgacaac tacgacaagt tcctggatcc aaaaaagaat 1260ctaaaaagcc atacaaagat tgcgttactt cttgcgatgc ctctaacact ttatcagcgt 1320catctttgag aagcatctca atgagcgctt tttcttctct agcatgccgc acatccgctt 1380cttcatgttc tgtgaaatat gcatagtctt caggattgga aaatccaaag tactcagtca 1440atccacgaat tttctctcta gcgatacgtg gaatttgact ctcataagaa tacaaagcag 1500ccactcctgc agctaaagaa tctcctgtac accaccgcac gaaagtagct actttcgctt 1560ttgctgcttc actaggctca tgagcctcta actcttctgg agtaactcct agagcaaaca 1620caaactgctt ccacaaatca atatgattag ggtaaccgtt ctcttcatcc atcaagttat 1680ctaacaataa cttacgcgcc tctaaatcat cgcaacgact atgaatcgca gataaatatt 1740taggaaaggc tttgatatgt aaataatagt ctttggcata cgcctgtaat tgctctttag 1800taagctcccc cttcgaccat ttcacataaa acgtgtgttc tagcatatgc ttattttgaa 1860taattaaatc taactgatct aaaaaattca taaacacctc catcatttct tttcttgact 1920ccacgtaacc gcttgcaaaa aaggtccgta taagtcctct gtttcatcta tgcgcaaaga 1980acaatactct tctcgagaag taggatgtga atggtagacc atattaggtg cctgctctat 2040caccgctaac ggtgtttgct cattcccctc tcccatacaa acaacagccg caa 2093381834DNAChlamydia trachomatis 38ctctacttct acctctacgg ttacacgtgt agcggcaaaa gattatgatg aggctaaatc 60gaattttgat acggcgaaaa gtggattaga gaacgctaag acacttgctg aatacgaaac 120gaaaatggct gatttgatgg cagctctcca agatatggag cgtttagcta attcagatcc 180tagtaacaat cataccgaag aagtaaataa tattaagaaa gcgctcgaag cacaaaaaga 240tactattgat aagctgaata aactcgttac gctgcaaaat cagaataaat ctttaacaga 300agtgttgaaa acaactgact ctgcagatca gattccagcg attaatagtc agttagagat 360caacaaaaat tctgcagatc aaattatcaa agatctggaa agacaaaaca taagttatga 420agctgttctc actaacgcag gagaggttat caaagcttct tctgaagcgg gaattaagtt 480aggacaagct ttgcagtcta ttgtggatgc tggggaccaa agtcaggctg cagttctgca 540agcacagcaa aataatagcc cagataatat tgcagccacg aaggaattaa ttgatgctgc 600tgaaacgaag gtaaacgagt taaaacaaga gcatacaggg ctaacggact cgcctttagt 660gaaaaaagct gaggagcaga ttagtcaagc acaaaaagat attcaagaga tcaaacctag 720tggttcggat attcctatcg ttggtccgag tgggtcagct gcttccgcag gaagtgcggc 780aggagcgttg aaatcctcta acaattcagg aagaatttcc ttgttgcttg atgatgtaga 840caatgaaatg gcagcgattg cactgcaagg ttttcgatct atgatcgaac aatttaatgt 900aaacaatcct gcaacagcta aagagctaca agctatggag gctcagctga ctgcgatgtc 960agatcaactg gttggtgcgg atggcgagct cccagccgaa atacaagcaa tcaaagatgc 1020tcttgcgcaa gctttgaaac aaccatcagc agatggtttg gctacagcta tgggacaagt 1080ggcttttgca gctgccaagg ttggaggagg ctccgcagga acagctggca ctgtccagat 1140gaatgtaaaa cagctttaca agacagcgtt ttcttcgact tcttccagct cttatgcagc 1200agcactttcc gatggatatt ctgcttacaa aacactgaac tctttatatt ccgaaagcag 1260aagcggcgtg cagtcagcta ttagtcaaac tgcaaatccc gcgctttcca gaagcgtttc 1320tcgttctggc atagaaagtc aaggacgcag tgcagatgct agccaaagag cagcagaaac 1380tattgtcaga gatagccaaa cgttaggtga tgtatatagc cgcttacagg ttctggattc 1440tttgatgtct acgattgtga gcaatccgca agcaaatcaa gaagagatta tgcagaagct 1500cacggcatct attagcaaag ctccacaatt tgggtatcct gctgttcaga attctgcgga 1560tagcttgcag aagtttgctg cgcaattgga aagagagttt gttgatgggg aacgtagtct 1620cgcagaatct caagagaatg cgtttagaaa acagcccgct ttcattcaac aggtgttggt 1680aaacattgct tctctattct ctggttatct ttcttaacgt gtgattgaag tttgtgaatg 1740agggggagcc aaaaaagaat ttcttttttg gctctttttt cttttcaaag gaatctcgtg 1800tctacagaag tcttttcagc acgagcggca cgag 1834391180DNAChlamydia trachomatis 39agaaatttct caaaaatcaa agttttttac atttaagggg catcttacca ccacaacaac 60cttctatgag cagaaactat ccattaaata aaagtaatta aatataacaa aaacatcttg 120attatttttg ttaaaagaaa tacttaatga gttttattta attaacgaaa cgaaaagctt 180gctaatgaaa attattcaca cagctatcga atttgctccg gtaatcaaag ccggaggcct 240gggagacgcg ctatacggac tagcaaaagc tttagccgct aatcacacaa cggaagtggt 300aatcccttta taccctaaat tatttacttt gcccaaagaa caagatcttt gctcgatcca 360aaaattatct tatttttttg ctggagagca agaagcaact gctttctcct acttttatga 420aggaattaaa gtaactctat tcaaactcga cacacagcca gagttattcg agaatgcgga 480aacaatctac acaagcgatg atgccttccg tttttgcgct ttttctgctg ctgcggcctc 540ctacatccaa aaagaaggag ccaatatcgt tcatttacac gattggcata caggattagt 600tgctggacta ctcaaacaac agccctgctc tcaattacaa aagattgttc ttaccctaca 660taattttggt tatcgaggct atacaacacg agaaatatta gaagcctcct ctttgaatga 720attttatatc agccagtacc aactatttcg cgatccacaa acttgtgtgt tgctaaaagg 780agctttatac tgttcagatt tcgtgactac ggtttctcct acatacgcca aagaaattct 840tgaagattat tccgattacg aaattcacga tgccattact gctagacaac atcatctccg 900cgggatttta aatggaatcg acacgacaat ttgggggcct gaaacggatc ccaatttagc 960gaaaaactac actaaagagc ttttcgagac cccttcaatt ttttttgaag ctaaagccga 1020gaataaaaaa gccttgtacg aaagattagg cctctcttta gaacactctc cttgcgtgtg 1080cattatttct agaattgctg agcagaaagg tcctcacttt atgaaacagg ccattctcca 1140tgcactagaa aacgcttaca cgctcattat tataggtacc 1180401297DNAChlamydia trachomatis 40agaaacttct ataggagggg atgtgatcga cataggtacg tgtgagttat gggatatcga 60tttgttgtat aatggataag aaattctctg aagataaaga ggctcctcca actaaaagac 120cattaacatc agggcagagg gcaagtgagc gagcattatc ggctttcaca gatcctccgt 180aaagaatggg ggtgcgttcc gcaatatctt tggaaaagag agaagcaatc gtttttctac 240agaaagcatg ggtttcctga actagatcag gatgagctac ttttccggtg cctatagccc 300agactggttc ataagctaga atgaaagagg cttgctcagg gagtttagat aatcctatag 360tcagttgatt taaaagaata tcttgagttg ctccagattc ttgttcttct aaagtttctc 420caatacacag aactggaatc attccactat ggatagctgc agcagctttt tcagcaagta 480caggattttg ttcatgaaag atatgacgtc tttcggaatg tccgatgaga acaaaatcga 540ctccgatatc tttgagcatt ggggctgaaa tctcaccagt aaaagctcct gagtcagctt 600catgagtggt ttgggctcca agaaagatgg gggaatcgct tacagcttgt tgacaagctg 660acagcagtgt gaaaggagga atgattcctg taatgatttg gggattagac agaatgtcac 720tagagatgaa actttttaaa aaggtctgag cttcggtaag cgtcttgttc attttccaat 780taccgaaaac aaattgcttt gatggctcag agtggagaag gtgggcccaa gttggaaatg 840gttttctgtg agtttctttg tctgtaaaca tgagatttgc tgaataacct gtgcatgtat 900tttgtttgta agatagatca aagcgtaata ctcgatttct tgcaaggaag gcttattttt 960atatgattta ttttctattg ctttgatata aatctcttgg atatgctaat cttcctgtct 1020tacttttttc tgtgaatttg cttaaatagt tggttttagc ccctttgtta tatgaaggtg 1080aaaatttgtg gtattacgca tcctgatgat gctcgggaag ctgccaaagc gggagccgat 1140tacattggca tgatttttgc taaagattct cgaagatgtg tgagtgaaga aaaagcaaag 1200tatatcgtag aggctataca ggaagggaat tcggaacctg ttggagtatt cccagagcat 1260tcagtagaag aaattttagc tattactgag acgacag 1297411141DNAChlamydia trachomatis 41ctttccataa gttctttctt tcaatgattc tagcttattc ttgctgctct ttaagtgggg 60gggggtatgc agcagaaatc atgattcctc aaggaattta cgatggggag acgttaactg 120tatcatttcc ctatactgtt ataggagatc cgagtgggac tactgttttt tctgcaggag 180agttaacgtt aaaaaatctt gacaattcta ttgcagcttt gcctttaagt tgttttggga 240acttattagg gagttttact gttttaggga gaggacactc gttgactttc gagaacatac 300ggacttctac aaatggagct gcactaagtg acagcgctaa tagcgggtta tttactattg 360agggttttaa agaattatct ttttccaatt gcaactcatt acttgccgta ctgcctgctg 420caacgactaa taatggtagc cagactccga cgacaacatc tacaccgtct aatggtacta 480tttattctaa aacagatctt ttgttactca ataatgagaa gttctcattc tatagtaatt 540tagtctctgg agatggggga gctatagatg ctaagagctt aacggttcaa ggaattagca 600agctttgtgt cttccaagaa aatactgctc aagctgatgg gggagcttgt caagtagtca 660ccagtttctc tgctatggct aacgaggctc ctattgcctt tatagcgaat gttgcaggag 720taagaggggg agggattgct gctgttcagg atgggcagca gggagtgtca tcatctactt 780caacagaaga tccagtagta agtttttcca gaaatactgc ggtagagttt gatgggaacg 840tagcccgagt aggaggaggg atttactcct acgggaacgt tgctttcctg aataatggaa 900aaaccttgtt tctcaacaat gttgcttctc ctgtttacat tgctgctgag caaccaacaa 960atggacaggc ttctaatacg agtgataatt acggagatgg aggagctatc ttctgtaaga 1020atggtgcgca agcagcagga tccaataact ctggatcagt ttcctttgat ggagagggag 1080tagttttctt tagtagcaat gtagctgctg ggaaaggggg agctatttat gccaaaaagc 1140t 114142822DNAChlamydia trachomatis 42cggcacgagt gtatgctgaa caagcagaag ggcccactga gaacgagcct ctgagaaaaa 60aagcttttat taaaaaatta aaaaaatact ttacaaaact tattctgtag gttgagaaag 120agcttcaacg taagcattcc aaagctccgt acttacaata ttattgcgga tagagcgaat 180taattctctt tttagtgatg gaagaggttt tttggggctg aagcgagcca aaagatcttt 240atcgccaact tgacgagcta actctaacac ccgttcgata tcggtttttg tgaaattcac 300aaagtctctg cgctttttag aacctcgagg agctcgtggt ttagggctaa tggatctggg 360agtgatagaa tcgatcacaa acgtctttaa catttttaac agttgctcag gagcagagtt 420cttcattttt tttaaagtaa aatgatgcat gtagccgcct gttggccctg ggagataacg 480acaaagatca ttttctttac ttcctccgac tttgctaatc gctttagtta tgagctgctc 540tatttcttct tggatagtaa tctgtgccgt agccatgaat agctccttag tgggtagtct 600agttctacag atggtagttt ttgctttatt aattgtaata gtcaactaag tctgtttttt 660tcgatttaat gttcagtcga aataaaaatc aattagtgtt tatcttttgg tgaattctat 720agtggttttt gcttttttcg caatctcatt ttagagattt ttttgatttg gacaaaagaa 780aataaagtac ttcagattgt tttctaagtt tgtttgcata aa 822431634DNAChlamydia trachomatis 43ataaaaaatt aaattttggc tactccctgc tcctaataga atttcaccag aggagcttgc 60tactgttatt gcatttcttc taggaggatt agctgacgta ctggtaccat ttgcattagt 120tacattagtc acaatatttt cattaaaaat aatagcatgg cggtcggcag aaattttgga 180gttactggtt ccgtctatat agatagcgcc ccccttatta ttggcgatat tgtttataaa 240gtaggtaggg ccattatcca ctagggtaac tacaggagcg taaatagctc cgccataatt 300ttttgtgata ttgtcactaa aaaagatcct accacgattg cctgtaacat ctaggcgagt 360agttacttta attgctcctc catcagaagc ttctgaagaa gctgtttcta catttttaaa 420gcagcgattg ttatagaaaa cgatgttacc acgatttcct gttagagaac agatagggga 480gaagatcgct cctcctgcac aacaggcgtt attgatgaag aagagatcgc agttattact 540ctcaaaagaa ttgctcgttc cagcatagat agcgccacct tttcctgctg tattagtttg 600aatacagatg ttgtccataa agagaaaaca agactgattc tcgctcacaa caaaggtatt 660agcggtacta atggctcctc cttggacata agaaaagttc ttcataaatc cgaccacatc 720atgattatga tttatgtaaa gattttgagc atgaatggct ccgccttctc ttattttatc 780agcagcataa ggatttctcc atgtaaatag tctgcaacaa gtattatttt caaagattac 840aggacctatt gtatcacgaa tctccacggt aggagaattg ggactcgcat aaccaatcgc 900accaccactt tcaggggtga gattttttgc aaaataaata ccttcttttt gtgtatcaaa 960aaagcttagg taatctgtta ttgtgacagc agctccttca ttgggagttt tttgtagaat 1020agccagtatg tagcgtaggt tatcgagata gcagttagtg agattgtgag tgtctcctgt 1080caaactaatt ttatttgata gcgactcttt cgtaggatct ggaactgagt tgggcataag 1140aaagattcta gaaggaacct ctctagctag tcctgatagg gagtttccga taaggaaaaa 1200gaaaaacgct tttttcataa ttaaaagacc agagctcctc ctgcattgat gtagtgtgag 1260acagtggaag tagccacttc tgcttgatag ttagcaaata gtttcagatg agaaaatttg 1320agggagtgag aacctctccc ataaaaggaa tgtttagcta atggggtatt tgtggtgacc 1380caagaaccgt tattttggat taatagtgtg ttgagtagag gacgtttcca gtagagggtg 1440ggttggtaag ctagttccat ttcccaagag agtgttggcc atgtatcaga agaataagct 1500cctttgattc ctattggaga gacaacggca gtatgggctt gctctaatgt aaataatcta 1560gctagatcac cgctttctcg gatagaagct ggttctgttc gagagaataa agcctgagca 1620aatggggtga gcat 1634441862DNAChlamydia trachomatis 44gttagctttc cctccaggga tttgcaattt aatgatttta atgatttttt tattcgacat 60attcaaccct ttcatttggc aagacatgga gtcatagtta gagggtctat gtatgcttct 120ctaacaagca atatagaagt atatggccat ggaagatatg agtatcgaga tacttctcga 180ggttatggtt tgagtgcagg aagtaaagtc cggttctaaa aatattggtt agatagttaa 240gtgttagcga tgcctttttc tttgagatct acatcatttt gttttttagc ttgtttgtgt 300tcctattcgt atggattcgc gagctctcct caagtgttaa cacctaatgt aaccactcct 360tttaaggggg acgatgttta cttgaatgga gactgcgctt ttgtcaatgt ctatgcaggg 420gcagagaacg gctcaattat ctcagctaat ggcgacaatt taacgattac cggacaaaac 480catacattat catttacaga ttctcaaggg ccagttcttc aaaattatgc cttcatttca 540gcaggagaga cacttactct gaaagatttt tcgagtttga tgttctcgaa aaatgtttct 600tgcggagaaa agggaatgat ctcagggaaa accgtgagta tttccggagc aggcgaagtg 660attttttggg ataactctgt ggggtattct cctttgtcta ttgtgccagc atcgactcca 720actcctccag caccagcacc agctcctgct gcttcaagct ctttatctcc aacagttagt 780gatgctcgga aagggtctat tttttctgta gagactagtt tggagatctc aggcgtcaaa 840aaaggggtca tgttcgataa taatgccggg aattttggaa cagtttttcg aggtaatagt 900aataataatg ctggtagtgg gggtagtggg tctgctacaa caccaagttt tacagttaaa 960aactgtaaag ggaaagtttc tttcacagat aacgtagcct cctgtggagg cggagtagtc 1020tacaaaggaa ctgtgctttt caaagacaat gaaggaggca tattcttccg agggaacaca 1080gcatacgatg atttagggat tcttgctgct actagtcggg atcagaatac ggagacagga 1140ggcggtggag gagttatttg ctctccagat gattctgtaa agtttgaagg caataaaggt 1200tctattgttt ttgattacaa ctttgcaaaa ggcagaggcg gaagcatcct aacgaaagaa 1260ttctctcttg tagcagatga ttcggttgtc tttagtaaca atacagcaga aaaaggcggt 1320ggagctattt atgctcctac tatcgatata agcacgaatg gaggatcgat tctgtttgaa 1380agaaaccgag ctgcagaagg aggcgccatc tgcgtgagtg aagcaagctc tggttcaact 1440ggaaatctta ctttaagcgc ttctgatggg gatattgttt tttctgggaa tatgacgagt 1500gatcgtcctg gagagcgcag cgcagcaaga atcttaagtg atggaacgac tgtttcttta 1560aatgcttccg gactatcgaa gctgatcttt tatgatcctg tagtacaaaa taattcagca 1620gcgggtgcat cgacaccatc accatcttct tcttctatgc ctggtgctgt cacgattaat 1680cagtccggta atggatctgt gatttttacc gccgagtcat tgactccttc agaaaaactt 1740caagttctta actctacttc taacttccca ggagctctga ctgtgtcagg aggggagttg 1800gttgtgacgg aaggagctac cttaactact gggaccatta cagccacctc tggctcgtgc 1860cg 1862451668DNAChlamydia trachomatis 45agaaaatccg atagcagaaa tagaagaatt cgatgtggtt gcgaacaaag ctcaagattg 60ggatgtcgat gtagctatgt caaattcttt tggttttggc ggacacaatt caacgatatt 120attttcgagg tatgaacctt cattatgatg aaaactaagc acgaatattc ttttggcgtt 180attcctatca gattttttgg tactccggat agaagtacct taaaggcttg ttttatctgc 240catacagatg ggaaacattg gggtttccct aaggggcatg ctgaggaaaa agaaggccct 300caggaagctg ctgagagaga acttgtagaa gaaactggtt tggggattgt taattttttc 360ccaaaaatat ttgtggaaaa ttattccttt aatgacaaag aagaaatctt tgtacgtaaa 420gaggtaactt attttcttgc agaggttaaa ggcgaagtac atgctgatcc tgatgagatc 480tgtgatgtgc agtggctaag ctttcaagaa ggtttacgcc ttttaaattt cccagaaatt 540cgtaatattg ttacggaagc agatgaattt gttcaaagtt atctatttgc ttcataaagt 600cccctaggat gaaaaaaact tggttaggag gggccgttgt ggaatctccc acaacagcct 660tttctttttc tgtcgattta cataaaaaga ttgcaatagt cttcgtgagc aagacgaatg 720actttttgag cttctttttt gccgtataaa cctacaattt caattttagc tggttttgct 780tgaattaagc tttctggagt agctttatag gttaagaaat agtgttggat catgtccaaa 840actgtgcctg ggcattcaga aatatcttct atattgccat agactaaatc atcttctaga 900acagcgatga ttttatcatc ggcttcttcc gagtctaaaa tacgaatccc tccgatagga 960cgcgcttgca agaggatgtt cccttgtgta atattttttt ccgttaacac acagatatca 1020agaggatcgc catcgccttt gatattctct ctgttacttt gttgaccact gtattctcca 1080gaaagatctc cacaataagt cttaggtaac agcccgtata agcaaggaca aaagttagaa 1140aacttttgtg gccgatccac ttttaggata ccagtttctt tatccagttc gaatttaacg 1200gagtcggctg gagtgatttc tatatagcaa caaagagatt cataatcatc gcgtgttaat 1260actggcccat gccaaggatg agctatggat aatggtgttt tagacataag atcactctct 1320attaaagtgt tttatgcgca attatcctgc gcatccggct tattcgtcca gatagtttta 1380gtcttctgtt ctcgcagtaa aacttttatt ttatcggcag cctttctttt tgcttttatt 1440cttgtcattg tgaaaaatgt tgaaaagtta ctcgtggcaa cctttcagac aggttttttg 1500tacgaaagac gagagtgatt gtactgcaaa ataatatgag ccggacgtag gatatgaaat 1560actctttgca aatagaagac ctacatattg aaggatatga acaggttttg aaagttactt 1620gcgagtctgt acagttagtt gctgtaattg ctattcatca gacaaaag 1668462010DNAChlamydia trachomatis 46atatcaaagt tgggcaaatg acagagccgc tcaaggacca gcaaataatc cttgggacaa 60catcaacacc tgtcgcagcc aaaatgacag cttctgatgg aatatcttta acagtctcca 120ataattcatc aaccaatgct tctattacaa ttggtttgga tgcggaaaaa gcttaccagc 180ttattctaga aaagttggga gatcaaattc ttgatggaat tgctgatact attgttgata 240gtacagtcca agatatttta gacaaaatca aaacagaccc ttctctaggt ttgttgaaag 300cttttaacaa ctttccaatc actaataaaa ttcaatgcaa cgggttattc actcccagta 360acattgaaac tttattagga ggaactgaaa taggaaaatt cacagtcaca cccaaaagct 420ctgggagcat gttcttagtc tcagcagata ttattgcatc aagaatggaa ggcggcgttg 480ttctagcttt ggtacgagaa ggtgattcta agccctgcgc gattagttat ggatactcat 540caggcattcc taatttatgt agtctaagaa ccagtattac taatacagga ttgactccga 600caacgtattc attacgtgta ggcggtttag aaagcggtgt ggtatgggtt aatgcccttt 660ctaatggcaa tgatatttta ggaataacaa atacttctaa tgtatctttt ttagaggtaa 720tacctcaaac aaacgcttaa acaattttta ttggattttt cttataggtt ttatatttag 780agaaaacagt tcgaattacg gggtttgtta tgcaaaataa aagaaaagtg agggacgatt 840ttattaaaat tgttaaagat gtgaaaaaag atttccccga attagaccta aaaatacgag 900taaacaagga aaaagtaact ttcttaaatt ctcccttaga actctaccat aaaagtgtct 960cactaattct aggactgctt caacaaatag aaaactcttt aggattattc ccagactctc 1020ctgttcttga aaaattagag gataacagtt taaagctaaa aaaggctttg attatgctta 1080tcttgtctag aaaagacatg ttttccaagg ctgaatagac aacttactct aacgttggag 1140ttgatttgca caccttagtt ttttgctctt ttaagggagg aactggaaaa acaacacttt 1200ctctaaacgt gggatgcaac ttggcccaat ttttagggaa aaaagtgtta cttgctgacc 1260tagacccgca atccaattta tcttctggat tgggggctag tgtcagaagt gaccaaaaag 1320gcttgcacga catagtatac acatcaaacg atttaaaatc aatcatttgc gaaacaaaaa 1380aagatagtgt ggacctaatt cctgcatcat tttcatccga acagtttaga gaattggata 1440ttcatagagg acctagtaac aacttaaagt tatttctgaa tgagtactgc gctccttttt 1500atgacatctg cataatagac actccaccta gcctaggagg gttaacgaaa gaagcttttg 1560ttgcaggaga caaattaatt gcttgtttaa

ctccagaacc tttttctatt ctagggttac 1620aaaagatacg tgaattctta agttcggtcg gaaaacctga agaagaacac attcttggaa 1680tagctttgtc tttttgggat gatcgtaact cgactaacca aatgtatata gacattatcg 1740agtctattta caaaaacaag cttttttcaa caaaaattcg tcgagatatt tctctcagcc 1800gttctcttct taaagaagat tctgtagcta atgtctatcc aaattctagg gccgcagaag 1860atattctgaa gttaacgcat gaaatagcaa atattttgca tatcgaatat gaacgagatt 1920actctcagag gacaacgtga acaaactaaa aaaagaagcg gatgtctttt ttaaaaaaaa 1980tcaaactgcc gcttctctag attttaagaa 2010472044DNAChlamydia trachomatis 47gtcatcaaga aaagattggg aacctatccg tagtttggtt aaagagcatg gtatgcgaca 60ttgtcagctt atggctatag ctccgacagc gacgatctcc aacattatag gagtaactca 120atctattgag ccaacgtaca aacatttgtt tgtgaagtct aatttgtccg gagaattcac 180gattccaaat gtgtatttaa ttgagaagtt gaagaaatta ggtatctggg atgctgatat 240gttagatgac ctgaaatatt ttgatgggtc tttattggaa atcgagcgta taccagatca 300cttaaaacat attttcttga cagcttttga gattgaacca gaatggatta tcgaatgcgc 360gtctcgaaga caaaaatgga ttgatatggg gcaatccctc aacctttatc ttgcccagcc 420agacgggaaa aaactgtcga atatgtattt aacggcttgg aaaaaaggtt tgaaaactac 480gtattatctg agatcttcat cagcaacgac cgttgaaaaa tcttttgtag atattaataa 540gagaggaatt cagcctcgtt ggatgaagaa taagtctgct tcggcaggaa ttattgttga 600aagagcgaag aaagcacctg tctgttcttt ggaagaaggg tgtgaagcat gtcagtaatt 660aatcatataa attaacaata aaattaacgg ttcttatgca agcagatatt ttagatggaa 720aacagaaacg cgttaatcta aatagcaagc gtctagtgaa ctgcaaccag gtcgatgtca 780accaacttgt tcctattaag tacaaatggg cttgggaaca ttatttgaat ggctgcgcaa 840ataactggct ccctacagag atccccatgg ggaaagacat cgaattatgg aagtcggatc 900gtctttctga agatgagcgg cgagtcattc ttttgaattt aggttttttc agcaccgcag 960agagcttggt tgggaataat attgttctag caatttttaa acatgtaact aatccggaag 1020cgagacaata tcttttaaga caagcttttg aagaagcggt tcacacgcac acatttttgt 1080atatttgtga gtcactcgga ttagacgaga aagaaatttt caatgcctat aacgagcgtg 1140ctgcgattaa ggccaaagat gatttccaga tggaaatcac tggcaaggta ttggatccta 1200attttcgcac ggactctgtt gagggtctac aggagtttgt taaaaactta gtaggatact 1260acatcattat ggaagggatt ttcttctata gtgggtttgt gatgatcctt tccttccaca 1320gacaaaataa gatgattggt attggagaac aatatcaata catcttaaga gatgagacaa 1380tccacttgaa ctttggtatt gatttgatca acgggataaa agaagagaac ccggggattt 1440ggactccaga gttacagcaa gaaattgtcg aattaattaa gcgagctgtc gatttagaaa 1500ttgagtatgc gcaagactgt ctccctagag ggattttggg attgagagct tcgatgttca 1560tcgattatgt gcagcatatt gcagaccgtc gtttggaaag aatcggatta aaacctattt 1620atcatacgaa aaacccattc ccttggatga gcgaaacaat agaccttaat aaagagaaaa 1680acttctttga aacaagggtt atagaatatc aacatgcagc aagcttaact tggtagtcct 1740gatatcaaaa taggagaaag cctcaaccat agagttgagg cttttttttg tcatacggta 1800acctgataag aatttttaga ttttcaggtt agaagtaaat gtatttaccc atgaattttt 1860tttaattttc tcataatatc ttgtagccct tttattaaaa tggaaaaggc tagtcacctc 1920tcctatgact actgttagag tggtgagatt tggggttgga gcaggtgtag cctttcgcat 1980acgaagtatt ttcctgtgaa accacaagat ttgaaacttc cctatttttg ggaagaacgt 2040tctc 2044483734DNAChlamydia trachomatis 48gttattcgct tctactccat tagaagtccc taatgctaaa ctcaccattt ttcctccttt 60ccgttaaaac aggaaagaaa ttgtacagaa acattttttt aaagaaatca aaaagccatt 120tgcaggcaga tatcaggcca tttatatcaa aaacagaaag aatgattagg ataaaacttt 180gtcttgccat cgttccagag agcattgaga agccgttttt attataaata cattgcacta 240agaatcttaa aatcgaacag acaacacaat ggctcgaaca gactgatcca cacgcactaa 300ttcaaatgca aaaaacttct aaaatgaaca cagcaagctt gataaaaaca tataaaagaa 360ttggatcata gagctttacg agaaggggcg cactgcaatc tgtctcgacc aaatagcaat 420gcaaacagat aaatacccct aatcattggg aaaaattgag tgtagaatag cctctttctc 480ttcctctatt tgttgcttag ctaacgcgat ttcttcttta gagatatctg caagtctctg 540cttatccaaa aagccttgtc tctcattttc caatacaaat ctgtccagag aaactttttt 600tggctctcca ccatagctag aaattctagt aagaacagca cctagcatca cagatccaaa 660aacaaccagg gtaaccacta cgtcaatcat aggaagcgta gtccaacctg ccccaataaa 720taaggctgct cctgtaacta tgaataaaat actaagaata ccgagcgcaa gcacagcaat 780acgttcgcta caacaagaaa ctctcgcttt agaagcgcta tccaccaaag gagcctctgg 840catataactt ctaagaggta cactatctcc aacaaaactc atggcatccc ccttaaggta 900aaagagaagc tttcctctaa atagaaaagc gtatcgtcaa ctcttttata gatctaaaaa 960gtcttgcttt ccttaatccc acccatgaaa tttagcataa aaaccatcca acatattcac 1020acgctcttct aaaaggccta tttccctatt tttctgagtc tctaaaaccc tataatggct 1080ggaaattttc cgcgcacttt ccttggcttc ttgtaatagc tgatctgaat tgcgtatcac 1140agataacagg taagaaacta atccaaaagc tcctatacaa gaaccaataa ttgcagctct 1200cccactactc ctaaaactaa ggaagaatag actcccccaa gacaaagaaa aactcctcct 1260aaagctgcaa gcaaacttgt tagaacaact acaaataact ggtatgtttt agaacggtga 1320ataaaggagt tgttagccac attttcactg tacctcagtt tttgctgaac aacaattccc 1380taaaaaattg gtaggacgcc aaacgttcat aattactcta cttggaaacc attaataatt 1440atatcagact ttcttccaat acacatttca acccactttg aagctgttct atttttttct 1500gagcaagctc taaatctttg ctcttttgag caagcaatcc ttcaacttct ttcaaatctt 1560cttctgcttc atatagaagt tcttgataag ataacactaa tccaggagtc acggcctctg 1620gagctaactc agatgactct gaagggagtc tcgtcggttt taaagaaaac ccatacatat 1680aaactagact tcctcctata caggcagaac ccagtgtcat tgctaataag ctaagaatag 1740gagcaaaaag agagaccaca cttcctgaaa aaagaagcag aagagcacca cctaaaactg 1800ctagtacccc taataccaag gcacctattg ccaacaattg ctctttacgg cttgtagtag 1860tctgagcacc gatagtttca gtatgatcgg cacgcaatgg tttgctggaa ttacaacaaa 1920aagaaatatt aaacatggcg cctctatttc gcaaaaaaaa ggccaacatg ctacaggaaa 1980gctaattaaa gtaaaaattt ttatatattt caatggtagt taaataccta atctacccaa 2040ccaaaagatg tctaaatgac aaaaaaataa tcgtatttat attatcatga gacacttata 2100gtcacgtctg cttcattcag ctcaaattct aatgaaaaat cggatttaga agaaaataga 2160ctcgaagagt cagaactagc caaaatgttt gttctaattc tattttgcaa tccccgacta 2220caagaccaat agagaaacgt taaccctact cctaaagcca cagaaccaat cataatcgct 2280ccaataccta aaccggcaaa cacaagcgac gatcccccgc aaagcaaaca aagcaaggct 2340acacaactta aaatagcaaa aattcctaag gaaacggcaa attctatatt tcctcttcgt 2400ttgcaataaa tatgcgtctt atacagacac aactctgcgg ggctctccag agttggagcg 2460caagaggaac aaaaaagata agacattgtc gactccggac caaaaaaagg cgagataata 2520cgcgagatgg taaaaataca gaaatatttt tgacatagaa aaccctaacc ctcctttcat 2580cgcgtgagac tagagtgtaa aacaagatgc gaaagcaagg ttcgctatgt ttggaaacaa 2640acctccacac ggtcccggat tatcaaaaca agtcttccag ggatatgtta gagaacgtcc 2700tatccatacc aaagcaacat atagacgtct tttgtgaaaa gactgaatag aggaatctaa 2760gaagcttggt tagcgtctat agatgcttta agagcagctt tttccttttc agcactatcc 2820aaccatcttg tgtagctaga taaaactaag cgcacatcgg acaataaagc ttgctcattt 2880ttctctaatc tgtccaaaca atcaatctca acttctattg ccttagcttc caaagcttgg 2940agatcgtccg taagacctcg cagaaacatc ttattaatga aagagacgga gaccaaagcg 3000tccttctctt ctgaaagatt acgcaaacgt tgctcagcca aaacattttt tgcttctaag 3060ctagcataag aggatcgaca cataagacga gatattcccg cacccacaca agcagatcca 3120ataattaatg cagcaatacc tattgcagta aatatgacat tgctagcgca caaaaccaaa 3180gctaataccc cagcgacaac aactaaagcg cctacgatag ctaaagctat atccaaaatt 3240ttggaacaag tattcccttt tgttgaagac gaagtagatt ttatctctac gcaggaagct 3300gttggcaatg gtaaagaaga agcgtctccg ctaatagtag tactcatttt tccacatttt 3360tatttttaaa acggaaaaac tgtatcagaa cggcgcttta ttcgcaaatc attataaatc 3420cgcaacatgc agaactaaag cgccgtaagc aaaaggaacc cctaactctc agatgcaata 3480tctgaggagt ctttaattat tttttacgac gggatgcctg cacctgcagc cgctctgata 3540atgtcttatt ctcagatctc aatttacaca actctgctgt taattgactg caagtgttct 3600gactttgttg caaccgctgt ttaaaccctt ctgtctgatg acgaatttct tgttcagcat 3660cctcctcaat ggagcaaact gtttcggcat aacgcttaca caaatctaat atttgttctt 3720ccaactcttg gcaa 3734492937DNAChlamydia pneumoniae 49atgcctcttt ctttcaaatc ttcatctttt tgtctacttg cctgtttatg tagtgcaagt 60tgcgcgtttg ctgagactag actcggaggg aactttgttc ctccaattac gaatcagggt 120gaagagatct tactcacttc agattttgtt tgttcaaact tcttgggggc gagtttttca 180agttccttta tcaatagttc cagcaatctc tccttattag ggaagggcct ttccttaacg 240tttacctctt gtcaagctcc tacaaatagt aactatgcgc tactttctgc cgcagagact 300ctgaccttca agaatttttc ttctataaac tttacaggga accaatcgac aggacttggc 360ggcctcatct acggaaaaga tattgttttc caatctatca aagatttgat cttcactacg 420aaccgtgttg cctattctcc agcatctgta actacgtcgg caactcccgc aatcactaca 480gtaactacag gagcctctgc tctccaacct acagactcac tcactgtcga aaacatatcc 540caatcgatca agttttttgg gaaccttgcc aacttcggct ctgcaattag cagttctccc 600acggcagtcg ttaaattcat caataacacc gctaccatga gcttctccca taactttact 660tcgtcaggag gcggcgtgat ttatggagga agctctctcc tttttgaaaa caattctgga 720tgcatcatct tcaccgccaa ctcctgtgtg aacagcttaa aaggcgtcac cccttcatca 780ggaacctatg ctttaggaag tggcggagcc atctgcatcc ctacgggaac tttcgaatta 840aaaaacaatc aggggaagtg caccttctct tataatggta caccaaatga tgcgggtgcg 900atctacgccg aaacctgcaa catcgtaggg aaccagggtg ccttgctcct agatagcaac 960actgcagcga gaaatggcgg agccatctgt gctaaagtgc tcaatattca aggacgcggt 1020cctattgaat tctctagaaa ccgcgcggag aagggtggag ctattttcat aggcccctct 1080gttggagacc ctgcgaagca aacatcgaca cttacgattt tggcttccga aggtgatatt 1140gcgttccaag gaaacatgct caatacaaaa cctggaatcc gcaatgccat cactgtagaa 1200gcagggggag agattgtgtc tctatctgca caaggaggct cacgtcttgt attttatgat 1260cccattacac atagcctccc aaccacaagt ccgtctaata aagacattac aatcaacgct 1320aatggcgctt caggatctgt agtctttaca agtaagggac tctcctctac agaactcctg 1380ttgcctgcca acacgacaac tatacttcta ggaacagtca agatcgctag tggagaactg 1440aagattactg acaatgcggt tgtcaatgtt cttggcttcg ctactcaggg ctcaggtcag 1500cttaccctgg gctctggagg aaccttaggg ctggcaacac ccacgggagc acctgccgct 1560gtagacttta cgattggaaa gttagcattc gatccttttt ccttcctaaa aagagatttt 1620gtttcagcat cagtaaatgc aggcacaaaa aacgtcactt taacaggagc tctggttctt 1680gatgaacatg acgttacaga tctttatgat atggtgtcat tacaatctcc agtagcaatt 1740cctatcgctg ttttcaaagg agcaaccgtt actaagacag gatttcctga tggggagatt 1800gcgactccaa gccactacgg ctaccaagga aagtggtcct acacatggtc ccgtcccctg 1860ttaattccag ctcctgatgg aggatttcct ggaggtccct ctcctagcgc aaatactctc 1920tatgctgtat ggaattcaga cactctcgtg cgttctacct atatcttaga tcccgagcgt 1980tacggagaaa ttgtcagcaa cagcttatgg atttccttct taggaaatca ggcattctct 2040gatattctcc aagatgttct tttgatagat catcccgggt tgtccataac cgcgaaagct 2100ttaggagcct atgtcgaaca cacaccaaga caaggacatg agggcttttc aggtcgctat 2160ggaggctacc aagctgcgct atctatgaac tacacggacc acactacgtt aggactttct 2220ttcgggcagc tttatggaaa aactaacgcc aacccctacg attcacgttg ctcagaacaa 2280atgtatttac tctcgttctt tggtcaattc cctatcgtga ctcaaaagag cgaggcctta 2340atttcctgga aagcagctta tggttattcc aaaaatcacc taaataccac ctacctcaga 2400cctgacaaag ctccaaaatc tcaagggcaa tggcataaca atagttacta tgttcttatt 2460tctgcagaac atcctttcct aaactggtgt cttcttacaa gacctctggc tcaagcttgg 2520gatctttcag gttttatttc cgcagaattc ctaggtggtt ggcaaagtaa gttcacagaa 2580actggagatc tgcaacgtag ctttagtaga ggtaaagggt acaatgtttc cctaccgata 2640ggatgttctt ctcaatggtt cacaccattt aagaaggctc cttctacact gaccatcaaa 2700cttgcctaca agcctgatat ctatcgtgtc aaccctcaca atattgtgac tgtcgtctca 2760aaccaagaga gcacttcgat ctcaggagca aatctacgcc gccacggttt gtttgtacaa 2820atccatgatg tagtagatct caccgaggac actcaggcct ttctaaacta tacctttgac 2880gggaaaaatg gatttacaaa ccaccgagtg tctacaggac taaaatccac attttaa 293750801DNAChlamydia pneumoniae 50atgcattcaa aatttctttc tcgaagaaaa aaaaatagtt ctcataagga ggaaacctct 60tgggattgta tagcctcaag ttacaataag atagtccaag ataaagggca ctactatcat 120agagaaacta tccttcccca actcctgcct tcactcacct taggttcaaa aagttctgta 180ttggatattg gctgcggtca aggtttttta gaaagggccc ttcctaagga atgtcgttat 240ctaggcatag atatctcttc tagattgatt gctctagcaa agaaaatgcg atcggtaaac 300tctcatcagt ttaaggttgc agatcttagc aaacgcctag agttcgtaga accgacatta 360ttctctcatg cagtagcaat cctctccctt caaaatatgg aattccccgg agaggctata 420cgtaatacag ctacgctcct cgaaccactc gggcaatttt ttatagtttt aaaccatcct 480tgttttcgta ttcctagggc atcatcctgg cactatgatg aaaataaaaa agctatctct 540cgtcatatag atcgttatct ctccccaatg aaaatcccaa tcatggctca cccaggacaa 600aaagattcgc cttctaccct ctcctttcac tttcctctaa gctattggtt taaagaactg 660tcttctcatg gattcttagt ttcaggtctt gaggaatgga catcttcaaa aacctcaaca 720ggaaaacgag ctaaggcaga aaacctttgt cgaaaggaat ttccattatt ccttatgatt 780tcatgcatta agataaaata a 80151252DNAChlamydia pneumoniae 51atgaaacaac aacacaatcg taaggcttta tctcgcaaga ttggcacagt gaaaaaacaa 60gccaaatttg caggaagctt tttagatgag attaaaaaaa ttgaatgggt aagcaagcac 120gatcttaaga aatacataaa agtagttctt atcagtattt ttggttttgg atttgctatt 180tatttcgtag atcttgtgtt gcgtaagtca atcacatgtt tagatggtat aacaaccttt 240ttgttcggtt aa 252521185DNAChlamydia pneumoniae 52atgtcaaaag aaacttttca acgtaataag ccccatatca atattgggac gatcgggcac 60gttgaccatg gtaaaactac gctaacagcg gcaattacac gcgcgctatc aggggatgga 120ttggcctctt tccgtgacta tagttcaatt gacaatactc cagaagaaaa ggctcgtgga 180attactatca acgcttctca cgttgaatac gaaaccccaa atcgtcacta cgctcacgta 240gactgccctg gtcacgctga ctatgttaaa aatatgatta caggcgccgc tcaaatggac 300ggagctatcc tagtcgtttc agctacagac ggagctatgc cacaaactaa agaacatatc 360ttgctagctc gccaggttgg agttccttat atcgttgttt tcttgaataa agtagatatg 420atctctcaag aagatgctga acttattgac cttgttgaga tggaacttag tgagcttctt 480gaagaaaaag gctacaaagg atgccctatt atccgtggtt ctgctttgaa agctcttgaa 540ggtgatgcaa attatatcga aaaagttcga gaacttatgc aagctgtgga tgacaacatc 600cctacaccag aaagagaaat tgataagcct ttcttaatgc ctatcgaaga cgtattctca 660atctctggtc gtggtactgt ggttacagga agaatcgagc gtggaatcgt taaagtttct 720gataaagttc agctcgtggg attaggagag actaaagaaa caatcgttac tggagtcgaa 780atgttcagga aagaacttcc tgaaggtcgt gcaggagaaa acgttggttt actcctcaga 840ggtattggaa agaacgatgt tgaaagaggt atggtggttt gtcagcctaa cagcgtgaag 900cctcatacga aatttaagtc agctgtttac gttcttcaga aagaagaagg cggacgtcat 960aagcctttct tcagcggata cagacctcag ttcttcttcc gtactacaga cgtgacagga 1020gtcgtaactc ttcctgaagg aactgaaatg gtaatgcctg gagataacgt tgagcttgat 1080gttgagctca ttggaacagt tgctcttgaa gaaggaatga gatttgcaat tcgtgaaggt 1140ggtcgtacta tcggcgctgg aacgatttca aagatcaatg cttaa 1185531431DNAChlamydia pneumoniae 53atgagaatcg tacaagtcgc tgtagaattc actccaatcg ttaaagtagg cggtctaggc 60gatgctgtag ctagtctatc taaggagtta gcgaaacaaa atgatgtgga agtacttctc 120cctcattatc ctttaatttc caaattctct tcgtctcaag ttctttccga gcgttctttc 180tattatgaat ttttaggcaa gcagcaagcc tctgcaattt cttattctta cgagggtctt 240acgcttacta taattacgtt ggattcacaa atagagcttt tctcaaccac gtccgtgtac 300tctgagaata atgttgtacg tttctctgct tttgcagctg cagctgcagc ttatcttcaa 360gaagcggatc ctgctgacat tgtgcacttg catgactggc atgtaggttt acttgcgggt 420ttattaaaaa accctttaaa ccctgtgcat tcgaagattg tctttactat ccataatttt 480ggttatcgag ggtattgtag tacgcagcta ttagcagcgt cgcaaattga tgattttcat 540ttgagtcact accaactatt tcgcgatccg caaacttctg ttctaatgaa gggagctctc 600tattgttcgg attacattac gacagtgtct cttacttatg tgcaggaaat tataaacgac 660tattctgatt acgaacttca tgatgcgatt ctagcaagaa attctgtatt ttctgggatc 720atcaatggca ttgatgaaga cgtttggaac ccgaagacag atcctgcttt agctgtacag 780tacgatgcaa gcctattaag cgaacctgac gttctcttta ctaaaaaaga agagaacaga 840gcggtattat atgagaagtt ggggatcagt tcagactatt ttcctttgat ttgtgtgatc 900tcacgcattg ttgaggaaaa gggtcctgaa tttatgaaag agattattct ccatgctatg 960gagcacagtt atgcctttat cttgattggg acaagtcaaa atgaggttct tcttaatgag 1020ttccgtaact tacaagattg tttagcgagc tcccccaaca ttcgtttgat cttggacttt 1080aatgatcctt tagccaggct aacttatgct gctgccgata tgatctgcat cccttcacat 1140agggaggctt gtggacttac ccagctgata gcgatgcgtt atggcacagt tcctttagtt 1200cgtaaaactg gagggcttgc tgatacagtg attcctgggg taaatggttt cactttcttt 1260gatacaaaca attttaatga atttcgggct atgcttagca acgctgtaac gacgtatcgt 1320caggagcctg acgtttggtt gaatttgatt gagtcgggaa tgcttcgggc ctctggctta 1380gatgccatgg ctaagcatta cgtaaatctt tatcaatctt tactctcatg a 1431541041DNAChlamydia pneumoniae 54atggaagcag atattttaga tggaaagctc aaacgggttg aggtaagtaa aaaaggattg 60gtgaattgta atcaagtaga tgtcaatcag ctagtcccta tcaagtataa atgggcttgg 120gaacattacc tcaatggatg tgcaaacaac tggcttccta ctgaagttcc tatggcaaga 180gatatcgagt tgtggaaatc agatgaactg tctgaagacg aacgcagggt cattttgtta 240aacctaggat ttttcagtac cgcggaaagc ctagtcggaa ataacatcgt tcttgctatc 300ttcaaacata tcacaaaccc tgaagcaaga cagtatttac tgcgtcaagc ttttgaggaa 360gccgtacata cacatacatt tctctatatt tgcgaatctt taggacttga tgaaggcgaa 420gtattcaatg cctataatga aagagcctca attagggcta aagatgattt tcaaatgaca 480ttaacagtcg atgtccttga tcctaatttt tctgtacagt cttcagaagg ccttgggcag 540ttcattaaaa acttagtagg atactatatc attatggaag gaatcttctt ctatagtggt 600tttgtaatga ttctctcttt ccatagacaa aataaaatga caggaattgg agaacagtac 660caatacatcc tcagagatga aaccatacat ttaaattttg gaatcgatct tatcaatgga 720attaaagaag aaaaccccga agtttggact acggaactac aagaagaaat cgtcgctctt 780attgaaaaag ctgtagagct tgaaattgag tacgctaaag attgcttacc tcgaggaatc 840ttgggattaa gatcttcgat gtttatagat tacgttcgtc atattgcaga tcgtcgttta 900gagagaattg ggttgaagcc tatctatcac tccagaaatc ctttcccttg gatgagcgaa 960accatggatc tgaataaaga aaagaatttc tttgaaaccc gggttaccga ataccaaacc 1020gctggtaatt taagttggta a 1041553135DNAChlamydia pneumoniae 55atggtcgaag ttgaagaaaa gcattacacc atcgtcaaac gtaatggaat gtttgtccca 60tttaatcaag atcggatttt ccaggctttg gaggcagctt ttcgagatac gcgtagctta 120gaaactagtt ctccactacc taaagactta gaagaatcta ttgcgcaaat tactcataaa 180gtcgtgaagg aagtcctcgc taaaatttca gaaggtcagg tagtcactgt agagagaatc 240caggatcttg tagaaagtca gctctatatt agcgggttgc aggatgtggc tcgcgattat 300attgtttaca gggaccaacg caaggcagag cgcggtaact cttcgtccat aattgccatc 360atacgtagag acgggggaag cgctaaattt aatcctatga agatctctgc agctctcgaa 420aaagcattca gagcgacgct ccaaattaat gggatgactc ctcctgcaac actatccgaa 480attaatgacc ttacccttag gatcgttgaa gatgtcctaa gccttcatgg tgaagaagct 540attaatctgg aagagatcca agatattgtt gaaaagcaac ttatggttgc cggctattat 600gatgtggcca agaattatat tttatataga gaagctcgtg cacgagcccg tgctaataaa

660gatcaagatg gacaagaaga gtttgtcccc caagaggaaa cgtacgttgt tcaaaaagaa 720gacggcacca cctaccttct gagaaaaaca gatttagaaa agaggttttc ttgggcatgc 780aaacgctttc ctaaaactac agattctcaa ctgcttgcag atatggcatt tatgaatttg 840tattcaggaa tcaaagaaga cgaggtcacc acagcatgca tcatggcggc acgtgccaat 900atcgagagag aacctgatta cgcttttatc gcagcagaac tcctcacgag ttccttgtat 960gaagagacct taggatgcag ctctcaagac cccaatttat cagaaataca taaaaaacat 1020tttaaagaat acatcctcaa tggagaagag tatcgcttga atcctcaatt aaaggattat 1080gatctcgatg ctcttagtga agtcctagac ctctctagag accaacagtt ttcctatatg 1140ggagtccaaa atctctacga tcgctatttt aatctgcatg aaggacgacg tttagagact 1200gcgcagatct tttggatgcg ggtttctatg ggcttagcct taaatgaagg agaacaaaag 1260aatttttggg caatcacttt ctataatctg ttatccacat tccgctatac cccagcaact 1320cctacattgt ttaactccgg aatgcgtcat tcccaactca gttcatgcta tctttccaca 1380gtaaaagatg acctaagtca catttataag gtgatttctg ataatgcttt gctttctaaa 1440tgggcagggg gaattggaaa tgattggaca gatgtccgtg ctacaggagc tgtaattaag 1500ggaaccaatg gaaagagtca aggcgtcatt cccttcatta aggttgccaa tgatactgca 1560attgcagtga atcagggggg caaacgtaaa ggtgctatgt gcgtatattt agaaaactgg 1620cacttggatt acgaagactt tttagaattg cggaagaata caggagatga gcgtcgtaga 1680actcacgata tcaatacagc aagctggatt cctgatctct tctttaagag actagaaaaa 1740aaaggcatgt ggacactctt tagccccgat gatgtcccag gtttacacga agcctatggg 1800ttagagtttg aaaagcttta tgaagaatat gaacgtaagg ttgaatctgg ggaaatccgt 1860ctttataaaa aagtagaagc cgaagtgctg tggcgtaaaa tgttaagcat gctttacgaa 1920acagggcatc cttggattac atttaaagat ccttcgaata ttcgctcaaa ccaagatcat 1980gttggcgtcg tacgctgttc taatctatgt acagagattt tattgaactg ttcggaatca 2040gagactgcag tttgtaattt aggttccata aacttggtag aacatatccg taatgacaag 2100ttagatgaag aaaaattaaa agaaactatc tcaatagcca tccgtatttt ggataacgtt 2160attgacctga acttctaccc tacaccagag gctaaacaag ccaacctaac tcacagagct 2220gtggggttgg gggttatggg attccaggat gttctttacg agttgaacat tagctatgcc 2280tcacaagaag ctgtcgaatt ttctgacgag tgctcggaga tcatcgcata ctacgctatt 2340ctagcctcga gcttactcgc gaaagaacga ggtacatatg cttcttattc aggatctaag 2400tgggatcgtg ggtatctacc cttagatact atcgagcttc tcaaagaaac tcgcggagag 2460cataatgttc ttgtagacac atcaagtaaa aaagattgga ctccagttcg tgatactatc 2520cagaaatacg gaatgagaaa tagccaggtc atggcaattg ctcctacagc aacgatctcg 2580aatatcatag gggtcaccca atctatagag cccatgtata aacatctctt tgtaaagtcc 2640aacctttccg gagagtttac gatccccaac acctacctga ttaaaaaact taaggaatta 2700ggactttggg atgcagaaat gttagatgat ctaaaatatt ttgacggatc tctattggaa 2760attgaaagga tccctaatca cttgaaaaag cttttcctta cggcatttga aatcgaaccc 2820gagtggatta tagagtgtac ctctagaaga cagaaatgga ttgatatggg agtttctcta 2880aatctgtatc ttgctgagcc agatggtaaa aaactctcca atatgtatct cacggcttgg 2940aaaaaaggat taaagactac ctattattta agatctcaag ctgcaacatc agtagagaaa 3000tcatttatag atatcaataa acgcggcatt cagcctcgtt ggatgaaaaa taaatcagcg 3060tccacaagta ttgtggtcga aagaaaaaca acccccgttt gttcaatgga agaaggttgc 3120gaatcttgtc aataa 3135561386DNAChlamydia pneumoniae 56atgatgagct ctaagcgtac ctcgaaaata gcggtgcttt caattttatt aacatttact 60cactctatag ggttcgcaaa tgcgaattcg tccgtaggtc ttggcacggt ctacattaca 120tccgaggttg taaagaagcc tcagaaagga tcagaaagga aacaagccaa aaaagaacct 180cgtgctcgta aaggatactt agtcccttct tcaaggactc tttcagctcg agcccaaaag 240atgaaaaact cctctcgtaa agagtcttca ggtggttgta acgaaatttc tgcaaattct 300acacccagat ctgtaaaatt acgaagaaac aaacgtgcag aacaaaaggc agctaaacaa 360ggattttcag ctttttctaa cctaactttg aaaagcctac ttcctaaact tccttcaaaa 420caaaaaactt caattcacga gagagaaaaa gcaacctcaa gatttgttaa tgagtctcag 480cttagttccg cacgaaaacg ctactgcaca ccatcttcag ccgctccttc cctattttta 540gaaacagaaa tcgttcgagc tcctgtagaa agaactaaag aacttcaaga taatgaaatt 600catattcctg tagtgcaagt ccaaacgaac cccaaagaac aaaatacaaa gacaactaaa 660cagttggcat cccaagcctc gattcaacaa tctgaaggaa ccgagcaatc attgcgagag 720ctcgcccaag gtgctagcct acctgtctta gtgcgctcta atcctgaagt gtctgtacaa 780agacaaaaag aagagttatt aaaagaactc gtagctgaac gtagacaatg taaaagaaag 840tctgtaagac aagctcttga agctcgttct ttaactaaga aagttgctag aggcggttct 900gtgacctcga ctttacgata cgatccagaa aaagcggcgg aaatcaaaag tagacgcaat 960tgcaaagtaa gtcctgaagc acgtgaacaa aaatattcat cttgcaaaag agatgctcgc 1020gctaatggga aacaagacaa gacaactcct agtgaagatg cttctcaaga agaacaacaa 1080actggggcag gactcgtacg caagactcct aaatctcagg ttgcaagtaa tgctcagaac 1140ttctaccgaa attctaaaaa tacaaacata gatagctatc ttacagctaa ccaatacagc 1200tgtagttctg aagaaacaga ttggccatgt tcttcctgcg tctctaaacg cagaactcac 1260aacagtatat ctgtatgtac catggtagtt actgtcattg cgatgatcgt aggggctttg 1320attatagcta atgctacaga atctcaaaca acatcagatc caactcctcc aactcctact 1380ccatag 1386571731DNAChlamydia pneumoniae 57atgacagatt ttcctactca cttcaaagga cccaaactta accccattaa agtaaatcca 60aacttttttg agaggaatcc taaagtcgca agggtactgc aaattacagc cgtagtctta 120ggaatcattg ccctcttatc cggtatagta ctcattatag gcacccctct cggagctcct 180ataagtatga tcctcggcgg atgtctttta gcttctggag gcgccttatt tgttggtggt 240acgattgcta cgatattgca agctagaaat agttataaga aggccgtgaa ccaaaagaaa 300ctctcagagc ctttgatgga acgccccgaa ttgaaagcct tagattattc cctagatctg 360aaagaggtat gggacctaca tcattctgtt gtcaaacatc ttaaaaaatt agacctgaat 420ctttccaaaa cccaaaggga agttctaaat caaatcaaaa ttgatgatga gggaccctcc 480ctaggggaat gcgccgctat gatttcagaa aactacgacg catgcttaaa gatgctcgcg 540tatcgtgagg agctcctgaa agaacaaacc caataccaag agacacgatt caatcagaac 600ctcactcata gaaataaagt tttgctctcc atcctctcaa ggatcacgga caatatttct 660aaagcgggcg gggtcttttc tttgaaattt tccacgctaa gctcgcggat gtcacgaatt 720cataccacca ccactgtgat tctggcttta agtgccgttg tttctgtcat ggtcgtagca 780gctctaattc caggtggcat tttagcacta cctatacttt tggctgttgc tatttctgca 840ggagtgattg tcaccggact ttcctatcta gttcgtcaga ttttaagtaa caccaagcgt 900aatcgtcagg atttttataa agattttgta aaaaatgtag atatagagct tcttaaccaa 960acggtaactt tacagcgatt cctctttgaa atgctcaaag gtgttctgaa agaagaagaa 1020gaagtctcct tagaaggtca agattggtat acacaataca taaccaatgc acccatagaa 1080aaaagattga tcgaagagat cagagttacc tacaaagaga tcgatgctca gaccaaaaaa 1140atgaagacag acttggagtt cttagaaaat gaggtgcgtt ccgggagact gtctgtagcg 1200tccccgtcgg aagatccaag tgaaactcct atttttactc aaggtaagga gtttgcaaag 1260ttacgtcgcc aaacctctca gaatatatcc acgatttatg gtccggacaa tgaaaatatt 1320gatcccgaat tttccttacc ctggatgcct aaaaaagaag aagaaataga ccatagctta 1380gaacctgtta caaagttgga acccggttca agagaagagt tgttgttggt agagggggtc 1440aacccaacct taagagaact caatatgaga attgcacttc tacaacaaca actatcaagt 1500gtccgaaaat ggagacaccc tcgaggggaa cattacggga atgttatcta ttcagataca 1560gaactcgatc gtattcagat gctagaaggc gcattttata atcacctcag ggaagctcaa 1620gaggaaatca cccagtctct cggagacctt gttgacattc aaaaccgtat tttagggatc 1680atagttgaag gggactcaga ttcaagaaca gaagaagagc ctcaggaata g 1731581086DNAChlamydia pneumoniae 58atgcaacaaa ctgtaattgt agcaatgtca ggaggcgtgg attcttctgt cgttgcctat 60ttattcaaaa aatttaccaa ttataaggtt attggcctct tcatgaagaa ttgggaagag 120gatagcgaag gcggcctttg ctcgtctact aaagattatg aagatgtcga gagggtatgt 180cttcagctcg atatccctta ttacaccgta tcttttgcta aagaatatag agaaagagtg 240ttcgctcgtt tcctcaagga atactcttta ggctacactc ctaaccccga cattctttgt 300aaccgagaaa tcaaatttga ccttctacaa aagaaagtcc aggaacttgg cggagattac 360ctcgctacag ggcactactg ccgattaaat accgagctcc aagaaaccca actccttaga 420ggttgcgatc ctcaaaaaga tcagagctat tttttatcag gaactcctaa aagtgctctt 480cacaatgtgc tctttcctct tggggaaatg aataagactg aagttcgtgc gattgcagct 540caagcagctc ttcccacagc agaaaaaaaa gatagtacag gcatttgctt tatagggaag 600cgccctttta aagagttcct agagaagttt cttcccaata aaacaggcaa cgttatcgat 660tgggatacca aggaaattgt agggcaacat cagggagctc actattatac tatagggcag 720cggcgaggac ttgatcttgg aggatccgag aaaccctgtt atgttgtggg aaaaaatata 780gaggaaaata gcatttatat tgtgaggggg gaagaccatc cccagctcta cctacgggaa 840ttaacagcta gagagctcaa ttggtttacc cctcctaaat ccggatgtca ctgtagcgct 900aaagtccgct accgttctcc tgatgaagct tgcacgatag attatagctc aggtgacgag 960gtcaaggtgc gattttcaca acccgtcaag gcggtaactc caggacaaac aatagcgttt 1020tatcaaggag atacctgcct tggtagtgga gttatcgacg ttcctatgat tccaagtgag 1080ggctag 1086594830DNAChlamydia pneumoniae 59atggtagcga aaaaaacagt acgatcttat aggtcttcat tttctcattc cgtaatagta 60gcaatattgt cagcaggcat tgcttttgaa gcacattcct tacacagctc agaactagat 120ttaggtgtat tcaataaaca gtttgaggaa cattctgctc atgttgaaga ggctcaaaca 180tctgttttaa agggatcaga tcctgtaaat ccctctcaga aagaatccga gaaggttttg 240tacactcaag tgcctcttac ccaaggaagc tctggagaga gtttggatct cgccgatgct 300aatttcttag agcattttca gcatcttttt gaagagacta cagtatttgg tatcgatcaa 360aagctggttt ggtcagattt agatactagg aatttttccc aacccactca agaacctgat 420acaagtaatg ctgtaagtga gaaaatctcc tcagatacca aagagaatag aaaagaccta 480gagactgaag atccttcaaa aaaaagtggc cttaaagaag tttcatcaga tctccctaaa 540agtcctgaaa ctgcagtagc agctatttct gaagatcttg aaatctcaga aaacatttca 600gcaagagatc ctcttcaggg tttagcattt ttttataaaa atacatcttc tcagtctatc 660tctgaaaagg attcttcatt tcaaggaatt atcttttctg gttcaggagc taattcaggg 720ctaggttttg aaaatcttaa ggcgccgaaa tctggggctg cagtttattc tgatcgagat 780attgtttttg aaaatcttgt taaaggattg agttttatat cttgtgaatc tttagaagat 840ggctctgccg caggtgtaaa cattgttgtg acccattgtg gtgatgtaac tctcactgat 900tgtgccactg gtttagacct tgaagcttta cgtctggtta aagatttttc tcgtggagga 960gctgttttca ctgctcgcaa ccatgaagtg caaaataacc ttgcaggtgg aattctatcc 1020gttgtaggca ataaaggagc tattgttgta gagaaaaata gtgctgagaa gtccaatgga 1080ggagcttttg cttgcggaag ttttgtttac agtaacaacg aaaacaccgc cttgtggaaa 1140gaaaatcaag cattatcagg aggagccata tcctcagcaa gtgatattga tattcaaggg 1200aactgtagcg ctattgaatt ttcaggaaac cagtctctaa ttgctcttgg agagcatata 1260gggcttacag attttgtagg tggaggagct ttagctgctc aagggacgct taccttaaga 1320aataatgcag tagtgcaatg tgttaaaaac acttctaaaa cacatggtgg agctatttta 1380gcaggtactg ttgatctcaa cgaaacaatt agcgaagttg cctttaagca gaatacagca 1440gctctaactg gaggtgcttt aagtgcaaat gataaggtta taattgcaaa taactttgga 1500gaaattcttt ttgagcaaaa cgaagtgagg aatcacggag gagccattta ttgtggatgt 1560cgatctaatc ctaagttaga acaaaaggat tctggagaga acatcaatat tattggaaac 1620tccggagcta tcactttttt aaaaaataag gcttctgttt tagaagtgat gacacaagct 1680gaagattatg ctggtggagg cgctttatgg gggcataatg ttcttctaga ttccaatagt 1740gggaatattc aatttatagg aaatataggt ggaagtacct tctggatagg agaatatgtc 1800ggtggtggtg cgattctctc tactgataga gtgacaattt ctaataactc tggagatgtt 1860gtttttaaag gaaacaaagg ccaatgtctt gctcaaaaat atgtagctcc tcaagaaaca 1920gctcccgtgg aatcagatgc ttcatctaca aataaagacg agaagagcct taatgcttgt 1980agtcatggag atcattatcc tcctaaaact gtagaagagg aagtgccacc ttcattgtta 2040gaagaacatc ctgttgtttc ttcgacagat attcgtggtg gtggggccat tctagctcaa 2100catatcttta ttacagataa tacaggaaat ctgagattct ctgggaacct tggtggtggt 2160gaagagtctt ctactgtcgg tgatttagct atcgtaggag gaggtgcttt gctttctact 2220aatgaagtta atgtttgcag taaccaaaat gttgtttttt ctgataacgt gacttcaaat 2280ggttgtgatt cagggggagc tattttagct aaaaaagtag atatctccgc gaaccactcg 2340gttgaatttg tctctaatgg ttcagggaaa ttcggtggtg ccgtttgcgc tttaaacgaa 2400tcagtaaaca ttacggacaa tggctcggca gtatcattct ctaaaaatag aacacgtctt 2460ggcggtgctg gagttgcagc tcctcaaggc tctgtaacga tttgtggaaa tcagggaaac 2520atagcattta aagagaactt tgtttttggc tctgaaaatc aaagatcagg tggaggagct 2580atcattgcta actcttctgt aaatattcag gataacgcag gagatatcct atttgtaagt 2640aactctacgg gatcttatgg aggtgctatt tttgtaggat ctttggttgc ttctgaaggc 2700agcaacccac gaacgcttac aattacaggc aacagtgggg atatcctatt tgctaaaaat 2760agcacgcaaa cagccgcttc tttatcagaa aaagattcct ttggtggagg ggccatctat 2820acacaaaacc tcaaaattgt aaagaatgca gggaacgttt ctttctatgg caacagagct 2880cctagtggtg ctggtgtcca aattgcagac ggaggaactg tttgtttaga ggcttttgga 2940ggagatatct tatttgaagg gaatatcaat tttgatggga gtttcaatgc gattcactta 3000tgcgggaatg actcaaaaat cgtagagctt tctgctgttc aagataaaaa tattattttc 3060caagatgcaa ttacttatga agagaacaca attcgtggct tgccagataa agatgtcagt 3120cctttaagtg ccccttcatt aatttttaac tccaagccac aagatgacag cgctcaacat 3180catgaaggga cgatacggtt ttctcgaggg gtatctaaaa ttcctcagat tgctgctata 3240caagagggaa ccttagcttt atcacaaaac gcagagcttt ggttggcagg acttaaacag 3300gaaacaggaa gttctatcgt attgtctgcg ggatctattc tccgtatttt tgattcccag 3360gttgatagca gtgcgcctct tcctacagaa aataaagagg agactcttgt ttctgccgga 3420gttcaaatta acatgagctc tcctacaccc aataaagata aagctgtaga tactccagta 3480cttgcagata tcataagtat tactgtagat ttgtcttcat ttgttcctga gcaagacgga 3540actcttcctc ttcctcctga aattatcatt cctaagggaa caaaattaca ttctaatgcc 3600atagatctta agattataga tcctaccaat gtgggatatg aaaatcatgc tcttctaagt 3660tctcataaag atattccatt aatttctctt aagacagcgg aaggaatgac agggacgcct 3720acagcagatg cttctctatc taatataaaa atagatgtat ctttaccttc gatcacacca 3780gcaacgtatg gtcacacagg agtttggtct gaaagtaaaa tggaagatgg aagacttgta 3840gtcggttggc aacctacggg atataagtta aatcctgaga agcaaggggc tctagttttg 3900aataatctct ggagtcatta tacagatctt agagctctta agcaggagat ctttgctcat 3960catacgatag ctcaaagaat ggagttagat ttctcgacaa atgtctgggg atcaggatta 4020ggtgttgttg aagattgtca gaacatcgga gagtttgatg ggttcaaaca tcatctcaca 4080gggtatgccc taggcttgga tacacaacta gttgaagact tcttaattgg aggatgtttc 4140tcacagttct ttggtaaaac tgaaagccaa tcctacaaag ctaagaacga tgtgaagagt 4200tatatgggag ctgcttatgc ggggatttta gcaggtcctt ggttaataaa aggagctttt 4260gtttacggta atataaacaa cgatttgact acagattacg gtactttagg tatttcaaca 4320ggttcatgga taggaaaagg gtttatcgca ggcacaagca ttgattaccg ctatattgta 4380aatcctcgac ggtttatatc ggcaatcgta tccacagtgg ttccttttgt agaagccgag 4440tatgtccgta tagatcttcc agaaattagc gaacagggta aagaggttag aacgttccaa 4500aaaactcgtt ttgagaatgt cgccattcct tttggatttg ctttagaaca tgcttattcg 4560cgtggctcac gtgctgaagt gaacagtgta cagcttgctt acgtctttga tgtatatcgt 4620aagggacctg tctctttgat tacactcaag gatgctgctt attcttggaa gagttatggg 4680gtagatattc cttgtaaagc ttggaaggct cgcttgagca ataatacgga atggaattca 4740tatttaagta cgtatttagc gtttaattat gaatggagag aagatctgat agcttatgac 4800ttcaatggtg gtatccgtat tattttctag 483060591DNAChlamydia pneumoniae 60atgacactct ccctagttgg aaaggaagcc cctgattttg ttgcgcaagc tgttgttaat 60ggcgaaacgt gtaccgtatc tttaaaagat tatttaggaa agtatgttgt gcttttcttc 120tatcctaaag attttactta cgtgtgtcct acggaattgc acgcatttca agatgcttta 180ggagaattcc acacccgagg agctgaagtc ataggctgtt ccgtggatga cattgccacc 240catcaacagt ggttagctac taagaaaaag caaggtggta tcgaaggtat tacctatcct 300cttctctcag acgaagataa agtcatttca agaagttatc atgtgttaaa acccgaagaa 360gaattatctt tcagaggagt tttcctgatt gataaaggtg gaatcatccg tcatcttgta 420gtgaatgatc ttcctctagg ccgttctata gaagaagaac ttagaaccct agatgcttta 480atcttctttg aaactaatgg cttagtctgt cctgcaaatt ggcatgaagg agagcgagcg 540atggctccaa atgaagaagg actgcaaaat tatttcggga ctatagacta g 591611983DNAChlamydia pneumoniae 61atgagtgaac acaaaaaatc aagcaaaatt ataggtatag acttaggcac aacaaactcc 60tgcgtatctg ttatggaagg aggacaagct aaagtaatta catcatccga aggaacaaga 120accacgccat cgatcgttgc cttcaaaggt aatgagaaat tagtggggat tccagcaaaa 180cgtcaagcag tgacaaatcc agaaaaaact ctcggctcta caaaacgctt tattggccgt 240aagtactctg aagtagcttc ggaaatccaa accgttcctt atacagtcac ctccggatct 300aaaggtgatg ccgttttcga agttgatggc aaacaataca ctccagaaga aattggcgca 360caaatcttaa tgaaaatgaa agagacagca gaagcttatc taggcgaaac tgtcacagaa 420gcagtgatca ccgtccccgc atacttcaat gattctcaac gagcatccac aaaagatgct 480ggacgcattg caggtctaga tgtaaaacgt atcattccag aacctaccgc agcagctctt 540gcctacggaa tcgataaagt cggtgataaa aaaatcgctg tcttcgacct tggtggagga 600acttttgata tctccatcct agaaatcggt gatggcgtct tcgaagttct atctacaaat 660ggagatactc tcctcggtgg agacgacttt gatgaagtca ttatcaaatg gatgatcgaa 720gaattcaaaa aacaagaagg cattgatctt agcaaagata atatggcctt acaaagactt 780aaagatgctg ctgagaaagc aaaaatagaa ctttcaggag tctcttccac agaaatcaat 840cagccattca tcacaatgga tgcacaagga cctaaacacc ttgcattgac actcacacgt 900gcgcaattcg agaaactcgc agcctctcta atcgaaagaa caaaatctcc atgcatcaaa 960gcactcagtg acgcaaaact ttccgctaag gatatcgatg atgttctctt agttggaggt 1020atgtcaagaa tgcccgcagt gcaagaaact gtaaaagaac tcttcggcaa agagcctaat 1080aaaggagtca accccgacga agttgttgct attggagccg caattcaagg tggtgttctt 1140ggcggagaag ttaaggatgt tctacttcta gacgttatcc ccctatctct gggtatcgaa 1200actctaggag gcgtcatgac gactctggta gagagaaata ctacaatccc tacacagaaa 1260aaacaaatct tctccacagc tgctgataac cagcctgcgg ttaccatcgt agttctccaa 1320ggagagcgtc ccatggccaa agataacaag gaaatcggaa gattcgatct tacagatatc 1380cctccggctc ctcgaggcca tcctcaaatc gaagtctcct tcgatatcga tgcaaacgga 1440attttccatg tctcagctaa agatgttgcc agcggtaaag aacagaaaat tcgtatcgaa 1500gcaagctcag gacttcaaga agatgaaatc caaagaatgg ttcgagatgc cgaaattaat 1560aaggaagaag ataaaaaacg tcgtgaagct tcagatgcta aaaatgaagc cgatagcatg 1620atcttcagag ccgaaaaagc tattaaagat tataaggagc aaattcctga aactttagtt 1680aaagaaatcg aagagcgaat cgaaaacgtg cgcaacgcac tcaaagatga cgctcctatt 1740gaaaaaatta aagaggttac tgaagaccta agcaagcata tgcaaaaaat tggagagtct 1800atgcaatcgc agtctgcatc agcagcagca tcatcggcag ccaatgctaa aggtggacct 1860aacatcaata cagaagattt gaaaaaacat agtttcagta cgaagcctcc ttcaaataac 1920ggttcttcag aagaccatat cgaagaagct gatgtagaaa ttattgataa cgacgataag 1980taa 1983621860DNAChlamydia pneumoniae 62atgaaaaaag ggaaattagg agccatagtt tttggccttc tatttacaag tagtgttgct 60ggtttttcta aggatttgac taaagacaac gcttatcaag atttaaatgt catagagcat 120ttaatatcgt taaaatatgc tcctttacca tggaaggaac tattatttgg ttgggattta 180tctcagcaaa cacagcaagc tcgcttgcaa ctggtcttag aagaaaaacc aacaaccaac 240tactgccaga aggtactctc taactacgtg agatcattaa acgattatca tgcagggatt 300acgttttatc gtactgaaag tgcgtatatc ccttacgtat tgaagttaag tgaagatggt 360catgtctttg tagtcgacgt acagactagc caaggggata tttacttagg ggatgaaatc 420cttgaagtag atggaatggg gattcgtgag gctatcgaaa gccttcgctt tggacgaggg 480agtgccacag actattctgc tgcagttcgt

tccttgacat cgcgttccgc cgcttttgga 540gatgcggttc cttcaggaat tgccatgttg aaacttcgcc gacccagtgg tttgatccgt 600tcgacaccgg tccgttggcg ttatactcca gagcatatcg gagatttttc tttagttgct 660cctttgattc ctgaacataa acctcaatta cctacacaaa gttgtgtgct attccgttcc 720ggggtaaatt cacagtcttc tagtagctct ttattcagtt cctacatggt gccttatttc 780tgggaagaat tgcgggttca aaataagcag cgttttgaca gtaatcacca tatagggagc 840cgtaatggat ttttacctac gtttggtcct attctttggg aacaagacaa ggggccctat 900cgttcctata tctttaaagc aaaagattct cagggcaatc cccatcgcat aggattttta 960agaatttctt cttatgtttg gactgattta gaaggacttg aagaggatca taaggatagt 1020ccttgggagc tctttggaga gatcatcgat catttggaaa aagagactga tgctttgatt 1080attgatcaga cccataatcc tggaggcagt gttttctatc tctattcgtt actatctatg 1140ttaacagatc atcctttaga tactcctaaa catagaatga ttttcactca ggatgaagtc 1200agctcggctt tgcactggca agatctacta gaagatgtct tcacagatga gcaggcagtt 1260gccgtgctag gggaaactat ggaaggatat tgcatggata tgcatgctgt agcctctctt 1320caaaacttct ctcagagtgt cctttcttcc tgggtttcag gtgatattaa cctttcaaaa 1380cctatgcctt tgctaggatt tgcacaggtt cgacctcatc ctaaacatca atatactaaa 1440cctttgttta tgttgataga cgaggatgac ttctcttgtg gagatttagc gcctgcaatt 1500ttgaaggata atggccgcgc tactctcatt ggaaagccaa cagcaggagc tggaggtttt 1560gtattccaag tcactttccc taaccgttct ggaattaaag gtctttcttt aacaggatct 1620ttagctgtta ggaaagatgg tgagtttatt gaaaacttag gagtggctcc tcatattgat 1680ttaggattta cctccaggga tttgcaaact tccaggttta ctgattacgt tgaggcagtg 1740aaaactatag ttttaacttc tttgtctgag aacgctaaga agagtgaaga gcagacttct 1800ccgcaagaga cgcctgaagt tattcgagtc tcttatccca caacgacttc tgcttcgtaa 1860631956DNAChlamydia pneumoniae 63atggttaatc ctattggtcc aggtcctata gacgaaacag aacgcacacc tcccgcagat 60ctttctgctc aaggattgga ggcgagtgca gcaaataaga gtgcggaagc tcaaagaata 120gcaggtgcgg aagctaagcc taaagaatct aagaccgatt ctgtagagcg atggagcatc 180ttgcgttctg cagtgaatgc tctcatgagt ctggcagata agctgggtat tgcttctagt 240aacagctcgt cttctactag cagatctgca gacgtggact caacgacagc gaccgcacct 300acgcctcctc cacccacgtt tgatgattat aagactcaag cgcaaacagc ttacgatact 360atctttacct caacatcact agctgacata caggctgctt tggtgagcct ccaggatgct 420gtcactaata taaaggatac agcggctact gatgaggaaa ccgcaatcgc tgcggagtgg 480gaaactaaga atgccgatgc agttaaagtt ggcgcgcaaa ttacagaatt agcgaaatat 540gcttcggata accaagcgat tcttgactct ttaggtaaac tgacttcctt cgacctctta 600caggctgctc ttctccaatc tgtagcaaac aataacaaag cagctgagct tcttaaagag 660atgcaagata acccagtagt cccagggaaa acgcctgcaa ttgctcaatc tttagttgat 720cagacagatg ctacagcgac acagatagag aaagatggaa atgcgattag ggatgcatat 780tttgcaggac agaacgctag tggagctgta gaaaatgcta aatctaataa cagtataagc 840aacatagatt cagctaaagc agcaatcgct actgctaaga cacaaatagc tgaagctcag 900aaaaagttcc ccgactctcc aattcttcaa gaagcggaac aaatggtaat acaggctgag 960aaagatctta aaaatatcaa acctgcagat ggttctgatg ttccaaatcc aggaactaca 1020gttggaggct ccaagcaaca aggaagtagt attggtagta ttcgtgtttc catgctgtta 1080gatgatgctg aaaatgagac cgcttccatt ttgatgtctg ggtttcgtca gatgattcac 1140atgttcaata cggaaaatcc tgattctcaa gctgcccaac aggagctcgc agcacaagct 1200agagcagcga aagccgctgg agatgacagt gctgctgcag cgctggcaga tgctcagaaa 1260gctttagaag cggctctagg taaagctggg caacaacagg gcatactcaa tgctttagga 1320cagatcgctt ctgctgctgt tgtgagcgca ggagttcctc ccgctgcagc aagttctata 1380gggtcatctg taaaacagct ttacaagacc tcaaaatcta caggttctga ttataaaaca 1440cagatatcag caggttatga tgcttacaaa tccatcaatg atgcctatgg tagggcacga 1500aatgatgcga ctcgtgatgt gataaacaat gtaagtaccc ccgctctcac acgatccgtt 1560cctagagcac gaacagaagc tcgaggacca gaaaaaacag atcaagccct cgctagggtg 1620atttctggca atagcagaac tcttggagat gtctatagtc aagtttcggc actacaatct 1680gtaatgcaga tcatccagtc gaatcctcaa gcgaataatg aggagatcag acaaaagctt 1740acatcggcag tgacaaagcc tccacagttt ggctatcctt atgtgcaact ttctaatgac 1800tctacacaga agttcatagc taaattagaa agtttgtttg ctgaaggatc taggacagca 1860gctgaaataa aagcactttc ctttgaaacg aactccttgt ttattcagca ggtgctggtc 1920aatatcggct ctctatattc tggttatctc caataa 195664264DNAChlamydia pneumoniae 64atgagtcaaa aaaataaaaa ctctgctttt atgcatcccg tgaatatttc cacagattta 60gcagttatag ttggcaaggg acctatgccc agaaccgaaa ttgtaaagaa agtttgggaa 120tacattaaaa aacacaactg tcaggatcaa aaaaataaac gtaatatcct tcccgatgcg 180aatcttgcca aagtctttgg ctctagtgat cctatcgaca tgttccaaat gaccaaagcc 240ctttccaaac atattgtaaa ataa 26465978PRTChlamydia pneumoniae 65Met Pro Leu Ser Phe Lys Ser Ser Ser Phe Cys Leu Leu Ala Cys Leu5 10 15Cys Ser Ala Ser Cys Ala Phe Ala Glu Thr Arg Leu Gly Gly Asn Phe20 25 30Val Pro Pro Ile Thr Asn Gln Gly Glu Glu Ile Leu Leu Thr Ser Asp35 40 45Phe Val Cys Ser Asn Phe Leu Gly Ala Ser Phe Ser Ser Ser Phe Ile50 55 60Asn Ser Ser Ser Asn Leu Ser Leu Leu Gly Lys Gly Leu Ser Leu Thr65 70 75 80Phe Thr Ser Cys Gln Ala Pro Thr Asn Ser Asn Tyr Ala Leu Leu Ser85 90 95Ala Ala Glu Thr Leu Thr Phe Lys Asn Phe Ser Ser Ile Asn Phe Thr100 105 110Gly Asn Gln Ser Thr Gly Leu Gly Gly Leu Ile Tyr Gly Lys Asp Ile115 120 125Val Phe Gln Ser Ile Lys Asp Leu Ile Phe Thr Thr Asn Arg Val Ala130 135 140Tyr Ser Pro Ala Ser Val Thr Thr Ser Ala Thr Pro Ala Ile Thr Thr145 150 155 160Val Thr Thr Gly Ala Ser Ala Leu Gln Pro Thr Asp Ser Leu Thr Val165 170 175Glu Asn Ile Ser Gln Ser Ile Lys Phe Phe Gly Asn Leu Ala Asn Phe180 185 190Gly Ser Ala Ile Ser Ser Ser Pro Thr Ala Val Val Lys Phe Ile Asn195 200 205Asn Thr Ala Thr Met Ser Phe Ser His Asn Phe Thr Ser Ser Gly Gly210 215 220Gly Val Ile Tyr Gly Gly Ser Ser Leu Leu Phe Glu Asn Asn Ser Gly225 230 235 240Cys Ile Ile Phe Thr Ala Asn Ser Cys Val Asn Ser Leu Lys Gly Val245 250 255Thr Pro Ser Ser Gly Thr Tyr Ala Leu Gly Ser Gly Gly Ala Ile Cys260 265 270Ile Pro Thr Gly Thr Phe Glu Leu Lys Asn Asn Gln Gly Lys Cys Thr275 280 285Phe Ser Tyr Asn Gly Thr Pro Asn Asp Ala Gly Ala Ile Tyr Ala Glu290 295 300Thr Cys Asn Ile Val Gly Asn Gln Gly Ala Leu Leu Leu Asp Ser Asn305 310 315 320Thr Ala Ala Arg Asn Gly Gly Ala Ile Cys Ala Lys Val Leu Asn Ile325 330 335Gln Gly Arg Gly Pro Ile Glu Phe Ser Arg Asn Arg Ala Glu Lys Gly340 345 350Gly Ala Ile Phe Ile Gly Pro Ser Val Gly Asp Pro Ala Lys Gln Thr355 360 365Ser Thr Leu Thr Ile Leu Ala Ser Glu Gly Asp Ile Ala Phe Gln Gly370 375 380Asn Met Leu Asn Thr Lys Pro Gly Ile Arg Asn Ala Ile Thr Val Glu385 390 395 400Ala Gly Gly Glu Ile Val Ser Leu Ser Ala Gln Gly Gly Ser Arg Leu405 410 415Val Phe Tyr Asp Pro Ile Thr His Ser Leu Pro Thr Thr Ser Pro Ser420 425 430Asn Lys Asp Ile Thr Ile Asn Ala Asn Gly Ala Ser Gly Ser Val Val435 440 445Phe Thr Ser Lys Gly Leu Ser Ser Thr Glu Leu Leu Leu Pro Ala Asn450 455 460Thr Thr Thr Ile Leu Leu Gly Thr Val Lys Ile Ala Ser Gly Glu Leu465 470 475 480Lys Ile Thr Asp Asn Ala Val Val Asn Val Leu Gly Phe Ala Thr Gln485 490 495Gly Ser Gly Gln Leu Thr Leu Gly Ser Gly Gly Thr Leu Gly Leu Ala500 505 510Thr Pro Thr Gly Ala Pro Ala Ala Val Asp Phe Thr Ile Gly Lys Leu515 520 525Ala Phe Asp Pro Phe Ser Phe Leu Lys Arg Asp Phe Val Ser Ala Ser530 535 540Val Asn Ala Gly Thr Lys Asn Val Thr Leu Thr Gly Ala Leu Val Leu545 550 555 560Asp Glu His Asp Val Thr Asp Leu Tyr Asp Met Val Ser Leu Gln Ser565 570 575Pro Val Ala Ile Pro Ile Ala Val Phe Lys Gly Ala Thr Val Thr Lys580 585 590Thr Gly Phe Pro Asp Gly Glu Ile Ala Thr Pro Ser His Tyr Gly Tyr595 600 605Gln Gly Lys Trp Ser Tyr Thr Trp Ser Arg Pro Leu Leu Ile Pro Ala610 615 620Pro Asp Gly Gly Phe Pro Gly Gly Pro Ser Pro Ser Ala Asn Thr Leu625 630 635 640Tyr Ala Val Trp Asn Ser Asp Thr Leu Val Arg Ser Thr Tyr Ile Leu645 650 655Asp Pro Glu Arg Tyr Gly Glu Ile Val Ser Asn Ser Leu Trp Ile Ser660 665 670Phe Leu Gly Asn Gln Ala Phe Ser Asp Ile Leu Gln Asp Val Leu Leu675 680 685Ile Asp His Pro Gly Leu Ser Ile Thr Ala Lys Ala Leu Gly Ala Tyr690 695 700Val Glu His Thr Pro Arg Gln Gly His Glu Gly Phe Ser Gly Arg Tyr705 710 715 720Gly Gly Tyr Gln Ala Ala Leu Ser Met Asn Tyr Thr Asp His Thr Thr725 730 735Leu Gly Leu Ser Phe Gly Gln Leu Tyr Gly Lys Thr Asn Ala Asn Pro740 745 750Tyr Asp Ser Arg Cys Ser Glu Gln Met Tyr Leu Leu Ser Phe Phe Gly755 760 765Gln Phe Pro Ile Val Thr Gln Lys Ser Glu Ala Leu Ile Ser Trp Lys770 775 780Ala Ala Tyr Gly Tyr Ser Lys Asn His Leu Asn Thr Thr Tyr Leu Arg785 790 795 800Pro Asp Lys Ala Pro Lys Ser Gln Gly Gln Trp His Asn Asn Ser Tyr805 810 815Tyr Val Leu Ile Ser Ala Glu His Pro Phe Leu Asn Trp Cys Leu Leu820 825 830Thr Arg Pro Leu Ala Gln Ala Trp Asp Leu Ser Gly Phe Ile Ser Ala835 840 845Glu Phe Leu Gly Gly Trp Gln Ser Lys Phe Thr Glu Thr Gly Asp Leu850 855 860Gln Arg Ser Phe Ser Arg Gly Lys Gly Tyr Asn Val Ser Leu Pro Ile865 870 875 880Gly Cys Ser Ser Gln Trp Phe Thr Pro Phe Lys Lys Ala Pro Ser Thr885 890 895Leu Thr Ile Lys Leu Ala Tyr Lys Pro Asp Ile Tyr Arg Val Asn Pro900 905 910His Asn Ile Val Thr Val Val Ser Asn Gln Glu Ser Thr Ser Ile Ser915 920 925Gly Ala Asn Leu Arg Arg His Gly Leu Phe Val Gln Ile His Asp Val930 935 940Val Asp Leu Thr Glu Asp Thr Gln Ala Phe Leu Asn Tyr Thr Phe Asp945 950 955 960Gly Lys Asn Gly Phe Thr Asn His Arg Val Ser Thr Gly Leu Lys Ser965 970 975Thr Phe66266PRTChlamydia pneumoniae 66Met His Ser Lys Phe Leu Ser Arg Arg Lys Lys Asn Ser Ser His Lys5 10 15Glu Glu Thr Ser Trp Asp Cys Ile Ala Ser Ser Tyr Asn Lys Ile Val20 25 30Gln Asp Lys Gly His Tyr Tyr His Arg Glu Thr Ile Leu Pro Gln Leu35 40 45Leu Pro Ser Leu Thr Leu Gly Ser Lys Ser Ser Val Leu Asp Ile Gly50 55 60Cys Gly Gln Gly Phe Leu Glu Arg Ala Leu Pro Lys Glu Cys Arg Tyr65 70 75 80Leu Gly Ile Asp Ile Ser Ser Arg Leu Ile Ala Leu Ala Lys Lys Met85 90 95Arg Ser Val Asn Ser His Gln Phe Lys Val Ala Asp Leu Ser Lys Arg100 105 110Leu Glu Phe Val Glu Pro Thr Leu Phe Ser His Ala Val Ala Ile Leu115 120 125Ser Leu Gln Asn Met Glu Phe Pro Gly Glu Ala Ile Arg Asn Thr Ala130 135 140Thr Leu Leu Glu Pro Leu Gly Gln Phe Phe Ile Val Leu Asn His Pro145 150 155 160Cys Phe Arg Ile Pro Arg Ala Ser Ser Trp His Tyr Asp Glu Asn Lys165 170 175Lys Ala Ile Ser Arg His Ile Asp Arg Tyr Leu Ser Pro Met Lys Ile180 185 190Pro Ile Met Ala His Pro Gly Gln Lys Asp Ser Pro Ser Thr Leu Ser195 200 205Phe His Phe Pro Leu Ser Tyr Trp Phe Lys Glu Leu Ser Ser His Gly210 215 220Phe Leu Val Ser Gly Leu Glu Glu Trp Thr Ser Ser Lys Thr Ser Thr225 230 235 240Gly Lys Arg Ala Lys Ala Glu Asn Leu Cys Arg Lys Glu Phe Pro Leu245 250 255Phe Leu Met Ile Ser Cys Ile Lys Ile Lys260 2656783PRTChlamydia pneumoniae 67Met Lys Gln Gln His Asn Arg Lys Ala Leu Ser Arg Lys Ile Gly Thr5 10 15Val Lys Lys Gln Ala Lys Phe Ala Gly Ser Phe Leu Asp Glu Ile Lys20 25 30Lys Ile Glu Trp Val Ser Lys His Asp Leu Lys Lys Tyr Ile Lys Val35 40 45Val Leu Ile Ser Ile Phe Gly Phe Gly Phe Ala Ile Tyr Phe Val Asp50 55 60Leu Val Leu Arg Lys Ser Ile Thr Cys Leu Asp Gly Ile Thr Thr Phe65 70 75 80Leu Phe Gly68394PRTChlamydia pneumoniae 68Met Ser Lys Glu Thr Phe Gln Arg Asn Lys Pro His Ile Asn Ile Gly5 10 15Thr Ile Gly His Val Asp His Gly Lys Thr Thr Leu Thr Ala Ala Ile20 25 30Thr Arg Ala Leu Ser Gly Asp Gly Leu Ala Ser Phe Arg Asp Tyr Ser35 40 45Ser Ile Asp Asn Thr Pro Glu Glu Lys Ala Arg Gly Ile Thr Ile Asn50 55 60Ala Ser His Val Glu Tyr Glu Thr Pro Asn Arg His Tyr Ala His Val65 70 75 80Asp Cys Pro Gly His Ala Asp Tyr Val Lys Asn Met Ile Thr Gly Ala85 90 95Ala Gln Met Asp Gly Ala Ile Leu Val Val Ser Ala Thr Asp Gly Ala100 105 110Met Pro Gln Thr Lys Glu His Ile Leu Leu Ala Arg Gln Val Gly Val115 120 125Pro Tyr Ile Val Val Phe Leu Asn Lys Val Asp Met Ile Ser Gln Glu130 135 140Asp Ala Glu Leu Ile Asp Leu Val Glu Met Glu Leu Ser Glu Leu Leu145 150 155 160Glu Glu Lys Gly Tyr Lys Gly Cys Pro Ile Ile Arg Gly Ser Ala Leu165 170 175Lys Ala Leu Glu Gly Asp Ala Asn Tyr Ile Glu Lys Val Arg Glu Leu180 185 190Met Gln Ala Val Asp Asp Asn Ile Pro Thr Pro Glu Arg Glu Ile Asp195 200 205Lys Pro Phe Leu Met Pro Ile Glu Asp Val Phe Ser Ile Ser Gly Arg210 215 220Gly Thr Val Val Thr Gly Arg Ile Glu Arg Gly Ile Val Lys Val Ser225 230 235 240Asp Lys Val Gln Leu Val Gly Leu Gly Glu Thr Lys Glu Thr Ile Val245 250 255Thr Gly Val Glu Met Phe Arg Lys Glu Leu Pro Glu Gly Arg Ala Gly260 265 270Glu Asn Val Gly Leu Leu Leu Arg Gly Ile Gly Lys Asn Asp Val Glu275 280 285Arg Gly Met Val Val Cys Gln Pro Asn Ser Val Lys Pro His Thr Lys290 295 300Phe Lys Ser Ala Val Tyr Val Leu Gln Lys Glu Glu Gly Gly Arg His305 310 315 320Lys Pro Phe Phe Ser Gly Tyr Arg Pro Gln Phe Phe Phe Arg Thr Thr325 330 335Asp Val Thr Gly Val Val Thr Leu Pro Glu Gly Thr Glu Met Val Met340 345 350Pro Gly Asp Asn Val Glu Leu Asp Val Glu Leu Ile Gly Thr Val Ala355 360 365Leu Glu Glu Gly Met Arg Phe Ala Ile Arg Glu Gly Gly Arg Thr Ile370 375 380Gly Ala Gly Thr Ile Ser Lys Ile Asn Ala385 39069476PRTChlamydia pneumoniae 69Met Arg Ile Val Gln Val Ala Val Glu Phe Thr Pro Ile Val Lys Val5 10 15Gly Gly Leu Gly Asp Ala Val Ala Ser Leu Ser Lys Glu Leu Ala Lys20 25 30Gln Asn Asp Val Glu Val Leu Leu Pro His Tyr Pro Leu Ile Ser Lys35 40 45Phe Ser Ser Ser Gln Val Leu Ser Glu Arg Ser Phe Tyr Tyr Glu Phe50 55 60Leu Gly Lys Gln Gln Ala Ser Ala Ile Ser Tyr Ser Tyr Glu Gly Leu65 70 75 80Thr Leu Thr Ile Ile Thr Leu Asp Ser Gln Ile Glu Leu Phe Ser Thr85 90 95Thr Ser Val Tyr Ser Glu Asn Asn Val Val Arg Phe Ser Ala Phe Ala100 105 110Ala Ala Ala Ala Ala Tyr Leu Gln Glu Ala Asp Pro Ala Asp Ile Val115 120 125His Leu His Asp Trp His Val Gly Leu Leu Ala Gly Leu Leu Lys Asn130 135 140Pro Leu Asn Pro Val His Ser Lys Ile Val Phe Thr Ile His Asn Phe145 150 155 160Gly Tyr Arg Gly Tyr Cys Ser Thr Gln Leu Leu Ala Ala Ser Gln Ile165 170 175Asp Asp Phe His Leu Ser His Tyr Gln Leu Phe Arg Asp Pro Gln Thr180 185 190Ser Val Leu Met Lys Gly Ala Leu Tyr Cys Ser Asp Tyr Ile Thr Thr195 200 205Val Ser Leu Thr Tyr Val Gln Glu Ile Ile Asn Asp Tyr Ser Asp Tyr210 215 220Glu Leu His Asp Ala Ile Leu Ala Arg Asn Ser Val Phe Ser Gly Ile225 230 235 240Ile Asn Gly Ile Asp Glu Asp Val Trp Asn Pro Lys Thr Asp Pro Ala245 250 255Leu Ala Val Gln Tyr Asp Ala Ser Leu Leu Ser Glu Pro Asp Val Leu260 265 270Phe Thr Lys Lys Glu Glu Asn Arg Ala Val Leu Tyr

Glu Lys Leu Gly275 280 285Ile Ser Ser Asp Tyr Phe Pro Leu Ile Cys Val Ile Ser Arg Ile Val290 295 300Glu Glu Lys Gly Pro Glu Phe Met Lys Glu Ile Ile Leu His Ala Met305 310 315 320Glu His Ser Tyr Ala Phe Ile Leu Ile Gly Thr Ser Gln Asn Glu Val325 330 335Leu Leu Asn Glu Phe Arg Asn Leu Gln Asp Cys Leu Ala Ser Ser Pro340 345 350Asn Ile Arg Leu Ile Leu Asp Phe Asn Asp Pro Leu Ala Arg Leu Thr355 360 365Tyr Ala Ala Ala Asp Met Ile Cys Ile Pro Ser His Arg Glu Ala Cys370 375 380Gly Leu Thr Gln Leu Ile Ala Met Arg Tyr Gly Thr Val Pro Leu Val385 390 395 400Arg Lys Thr Gly Gly Leu Ala Asp Thr Val Ile Pro Gly Val Asn Gly405 410 415Phe Thr Phe Phe Asp Thr Asn Asn Phe Asn Glu Phe Arg Ala Met Leu420 425 430Ser Asn Ala Val Thr Thr Tyr Arg Gln Glu Pro Asp Val Trp Leu Asn435 440 445Leu Ile Glu Ser Gly Met Leu Arg Ala Ser Gly Leu Asp Ala Met Ala450 455 460Lys His Tyr Val Asn Leu Tyr Gln Ser Leu Leu Ser465 470 47570346PRTChlamydia pneumoniae 70Met Glu Ala Asp Ile Leu Asp Gly Lys Leu Lys Arg Val Glu Val Ser5 10 15Lys Lys Gly Leu Val Asn Cys Asn Gln Val Asp Val Asn Gln Leu Val20 25 30Pro Ile Lys Tyr Lys Trp Ala Trp Glu His Tyr Leu Asn Gly Cys Ala35 40 45Asn Asn Trp Leu Pro Thr Glu Val Pro Met Ala Arg Asp Ile Glu Leu50 55 60Trp Lys Ser Asp Glu Leu Ser Glu Asp Glu Arg Arg Val Ile Leu Leu65 70 75 80Asn Leu Gly Phe Phe Ser Thr Ala Glu Ser Leu Val Gly Asn Asn Ile85 90 95Val Leu Ala Ile Phe Lys His Ile Thr Asn Pro Glu Ala Arg Gln Tyr100 105 110Leu Leu Arg Gln Ala Phe Glu Glu Ala Val His Thr His Thr Phe Leu115 120 125Tyr Ile Cys Glu Ser Leu Gly Leu Asp Glu Gly Glu Val Phe Asn Ala130 135 140Tyr Asn Glu Arg Ala Ser Ile Arg Ala Lys Asp Asp Phe Gln Met Thr145 150 155 160Leu Thr Val Asp Val Leu Asp Pro Asn Phe Ser Val Gln Ser Ser Glu165 170 175Gly Leu Gly Gln Phe Ile Lys Asn Leu Val Gly Tyr Tyr Ile Ile Met180 185 190Glu Gly Ile Phe Phe Tyr Ser Gly Phe Val Met Ile Leu Ser Phe His195 200 205Arg Gln Asn Lys Met Thr Gly Ile Gly Glu Gln Tyr Gln Tyr Ile Leu210 215 220Arg Asp Glu Thr Ile His Leu Asn Phe Gly Ile Asp Leu Ile Asn Gly225 230 235 240Ile Lys Glu Glu Asn Pro Glu Val Trp Thr Thr Glu Leu Gln Glu Glu245 250 255Ile Val Ala Leu Ile Glu Lys Ala Val Glu Leu Glu Ile Glu Tyr Ala260 265 270Lys Asp Cys Leu Pro Arg Gly Ile Leu Gly Leu Arg Ser Ser Met Phe275 280 285Ile Asp Tyr Val Arg His Ile Ala Asp Arg Arg Leu Glu Arg Ile Gly290 295 300Leu Lys Pro Ile Tyr His Ser Arg Asn Pro Phe Pro Trp Met Ser Glu305 310 315 320Thr Met Asp Leu Asn Lys Glu Lys Asn Phe Phe Glu Thr Arg Val Thr325 330 335Glu Tyr Gln Thr Ala Gly Asn Leu Ser Trp340 345711044PRTChlamydia pneumoniae 71Met Val Glu Val Glu Glu Lys His Tyr Thr Ile Val Lys Arg Asn Gly5 10 15Met Phe Val Pro Phe Asn Gln Asp Arg Ile Phe Gln Ala Leu Glu Ala20 25 30Ala Phe Arg Asp Thr Arg Ser Leu Glu Thr Ser Ser Pro Leu Pro Lys35 40 45Asp Leu Glu Glu Ser Ile Ala Gln Ile Thr His Lys Val Val Lys Glu50 55 60Val Leu Ala Lys Ile Ser Glu Gly Gln Val Val Thr Val Glu Arg Ile65 70 75 80Gln Asp Leu Val Glu Ser Gln Leu Tyr Ile Ser Gly Leu Gln Asp Val85 90 95Ala Arg Asp Tyr Ile Val Tyr Arg Asp Gln Arg Lys Ala Glu Arg Gly100 105 110Asn Ser Ser Ser Ile Ile Ala Ile Ile Arg Arg Asp Gly Gly Ser Ala115 120 125Lys Phe Asn Pro Met Lys Ile Ser Ala Ala Leu Glu Lys Ala Phe Arg130 135 140Ala Thr Leu Gln Ile Asn Gly Met Thr Pro Pro Ala Thr Leu Ser Glu145 150 155 160Ile Asn Asp Leu Thr Leu Arg Ile Val Glu Asp Val Leu Ser Leu His165 170 175Gly Glu Glu Ala Ile Asn Leu Glu Glu Ile Gln Asp Ile Val Glu Lys180 185 190Gln Leu Met Val Ala Gly Tyr Tyr Asp Val Ala Lys Asn Tyr Ile Leu195 200 205Tyr Arg Glu Ala Arg Ala Arg Ala Arg Ala Asn Lys Asp Gln Asp Gly210 215 220Gln Glu Glu Phe Val Pro Gln Glu Glu Thr Tyr Val Val Gln Lys Glu225 230 235 240Asp Gly Thr Thr Tyr Leu Leu Arg Lys Thr Asp Leu Glu Lys Arg Phe245 250 255Ser Trp Ala Cys Lys Arg Phe Pro Lys Thr Thr Asp Ser Gln Leu Leu260 265 270Ala Asp Met Ala Phe Met Asn Leu Tyr Ser Gly Ile Lys Glu Asp Glu275 280 285Val Thr Thr Ala Cys Ile Met Ala Ala Arg Ala Asn Ile Glu Arg Glu290 295 300Pro Asp Tyr Ala Phe Ile Ala Ala Glu Leu Leu Thr Ser Ser Leu Tyr305 310 315 320Glu Glu Thr Leu Gly Cys Ser Ser Gln Asp Pro Asn Leu Ser Glu Ile325 330 335His Lys Lys His Phe Lys Glu Tyr Ile Leu Asn Gly Glu Glu Tyr Arg340 345 350Leu Asn Pro Gln Leu Lys Asp Tyr Asp Leu Asp Ala Leu Ser Glu Val355 360 365Leu Asp Leu Ser Arg Asp Gln Gln Phe Ser Tyr Met Gly Val Gln Asn370 375 380Leu Tyr Asp Arg Tyr Phe Asn Leu His Glu Gly Arg Arg Leu Glu Thr385 390 395 400Ala Gln Ile Phe Trp Met Arg Val Ser Met Gly Leu Ala Leu Asn Glu405 410 415Gly Glu Gln Lys Asn Phe Trp Ala Ile Thr Phe Tyr Asn Leu Leu Ser420 425 430Thr Phe Arg Tyr Thr Pro Ala Thr Pro Thr Leu Phe Asn Ser Gly Met435 440 445Arg His Ser Gln Leu Ser Ser Cys Tyr Leu Ser Thr Val Lys Asp Asp450 455 460Leu Ser His Ile Tyr Lys Val Ile Ser Asp Asn Ala Leu Leu Ser Lys465 470 475 480Trp Ala Gly Gly Ile Gly Asn Asp Trp Thr Asp Val Arg Ala Thr Gly485 490 495Ala Val Ile Lys Gly Thr Asn Gly Lys Ser Gln Gly Val Ile Pro Phe500 505 510Ile Lys Val Ala Asn Asp Thr Ala Ile Ala Val Asn Gln Gly Gly Lys515 520 525Arg Lys Gly Ala Met Cys Val Tyr Leu Glu Asn Trp His Leu Asp Tyr530 535 540Glu Asp Phe Leu Glu Leu Arg Lys Asn Thr Gly Asp Glu Arg Arg Arg545 550 555 560Thr His Asp Ile Asn Thr Ala Ser Trp Ile Pro Asp Leu Phe Phe Lys565 570 575Arg Leu Glu Lys Lys Gly Met Trp Thr Leu Phe Ser Pro Asp Asp Val580 585 590Pro Gly Leu His Glu Ala Tyr Gly Leu Glu Phe Glu Lys Leu Tyr Glu595 600 605Glu Tyr Glu Arg Lys Val Glu Ser Gly Glu Ile Arg Leu Tyr Lys Lys610 615 620Val Glu Ala Glu Val Leu Trp Arg Lys Met Leu Ser Met Leu Tyr Glu625 630 635 640Thr Gly His Pro Trp Ile Thr Phe Lys Asp Pro Ser Asn Ile Arg Ser645 650 655Asn Gln Asp His Val Gly Val Val Arg Cys Ser Asn Leu Cys Thr Glu660 665 670Ile Leu Leu Asn Cys Ser Glu Ser Glu Thr Ala Val Cys Asn Leu Gly675 680 685Ser Ile Asn Leu Val Glu His Ile Arg Asn Asp Lys Leu Asp Glu Glu690 695 700Lys Leu Lys Glu Thr Ile Ser Ile Ala Ile Arg Ile Leu Asp Asn Val705 710 715 720Ile Asp Leu Asn Phe Tyr Pro Thr Pro Glu Ala Lys Gln Ala Asn Leu725 730 735Thr His Arg Ala Val Gly Leu Gly Val Met Gly Phe Gln Asp Val Leu740 745 750Tyr Glu Leu Asn Ile Ser Tyr Ala Ser Gln Glu Ala Val Glu Phe Ser755 760 765Asp Glu Cys Ser Glu Ile Ile Ala Tyr Tyr Ala Ile Leu Ala Ser Ser770 775 780Leu Leu Ala Lys Glu Arg Gly Thr Tyr Ala Ser Tyr Ser Gly Ser Lys785 790 795 800Trp Asp Arg Gly Tyr Leu Pro Leu Asp Thr Ile Glu Leu Leu Lys Glu805 810 815Thr Arg Gly Glu His Asn Val Leu Val Asp Thr Ser Ser Lys Lys Asp820 825 830Trp Thr Pro Val Arg Asp Thr Ile Gln Lys Tyr Gly Met Arg Asn Ser835 840 845Gln Val Met Ala Ile Ala Pro Thr Ala Thr Ile Ser Asn Ile Ile Gly850 855 860Val Thr Gln Ser Ile Glu Pro Met Tyr Lys His Leu Phe Val Lys Ser865 870 875 880Asn Leu Ser Gly Glu Phe Thr Ile Pro Asn Thr Tyr Leu Ile Lys Lys885 890 895Leu Lys Glu Leu Gly Leu Trp Asp Ala Glu Met Leu Asp Asp Leu Lys900 905 910Tyr Phe Asp Gly Ser Leu Leu Glu Ile Glu Arg Ile Pro Asn His Leu915 920 925Lys Lys Leu Phe Leu Thr Ala Phe Glu Ile Glu Pro Glu Trp Ile Ile930 935 940Glu Cys Thr Ser Arg Arg Gln Lys Trp Ile Asp Met Gly Val Ser Leu945 950 955 960Asn Leu Tyr Leu Ala Glu Pro Asp Gly Lys Lys Leu Ser Asn Met Tyr965 970 975Leu Thr Ala Trp Lys Lys Gly Leu Lys Thr Thr Tyr Tyr Leu Arg Ser980 985 990Gln Ala Ala Thr Ser Val Glu Lys Ser Phe Ile Asp Ile Asn Lys Arg995 1000 1005Gly Ile Gln Pro Arg Trp Met Lys Asn Lys Ser Ala Ser Thr Ser Ile1010 1015 1020Val Val Glu Arg Lys Thr Thr Pro Val Cys Ser Met Glu Glu Gly Cys1025 1030 1035 1040Glu Ser Cys Gln72461PRTChlamydia pneumoniae 72Met Met Ser Ser Lys Arg Thr Ser Lys Ile Ala Val Leu Ser Ile Leu5 10 15Leu Thr Phe Thr His Ser Ile Gly Phe Ala Asn Ala Asn Ser Ser Val20 25 30Gly Leu Gly Thr Val Tyr Ile Thr Ser Glu Val Val Lys Lys Pro Gln35 40 45Lys Gly Ser Glu Arg Lys Gln Ala Lys Lys Glu Pro Arg Ala Arg Lys50 55 60Gly Tyr Leu Val Pro Ser Ser Arg Thr Leu Ser Ala Arg Ala Gln Lys65 70 75 80Met Lys Asn Ser Ser Arg Lys Glu Ser Ser Gly Gly Cys Asn Glu Ile85 90 95Ser Ala Asn Ser Thr Pro Arg Ser Val Lys Leu Arg Arg Asn Lys Arg100 105 110Ala Glu Gln Lys Ala Ala Lys Gln Gly Phe Ser Ala Phe Ser Asn Leu115 120 125Thr Leu Lys Ser Leu Leu Pro Lys Leu Pro Ser Lys Gln Lys Thr Ser130 135 140Ile His Glu Arg Glu Lys Ala Thr Ser Arg Phe Val Asn Glu Ser Gln145 150 155 160Leu Ser Ser Ala Arg Lys Arg Tyr Cys Thr Pro Ser Ser Ala Ala Pro165 170 175Ser Leu Phe Leu Glu Thr Glu Ile Val Arg Ala Pro Val Glu Arg Thr180 185 190Lys Glu Leu Gln Asp Asn Glu Ile His Ile Pro Val Val Gln Val Gln195 200 205Thr Asn Pro Lys Glu Gln Asn Thr Lys Thr Thr Lys Gln Leu Ala Ser210 215 220Gln Ala Ser Ile Gln Gln Ser Glu Gly Thr Glu Gln Ser Leu Arg Glu225 230 235 240Leu Ala Gln Gly Ala Ser Leu Pro Val Leu Val Arg Ser Asn Pro Glu245 250 255Val Ser Val Gln Arg Gln Lys Glu Glu Leu Leu Lys Glu Leu Val Ala260 265 270Glu Arg Arg Gln Cys Lys Arg Lys Ser Val Arg Gln Ala Leu Glu Ala275 280 285Arg Ser Leu Thr Lys Lys Val Ala Arg Gly Gly Ser Val Thr Ser Thr290 295 300Leu Arg Tyr Asp Pro Glu Lys Ala Ala Glu Ile Lys Ser Arg Arg Asn305 310 315 320Cys Lys Val Ser Pro Glu Ala Arg Glu Gln Lys Tyr Ser Ser Cys Lys325 330 335Arg Asp Ala Arg Ala Asn Gly Lys Gln Asp Lys Thr Thr Pro Ser Glu340 345 350Asp Ala Ser Gln Glu Glu Gln Gln Thr Gly Ala Gly Leu Val Arg Lys355 360 365Thr Pro Lys Ser Gln Val Ala Ser Asn Ala Gln Asn Phe Tyr Arg Asn370 375 380Ser Lys Asn Thr Asn Ile Asp Ser Tyr Leu Thr Ala Asn Gln Tyr Ser385 390 395 400Cys Ser Ser Glu Glu Thr Asp Trp Pro Cys Ser Ser Cys Val Ser Lys405 410 415Arg Arg Thr His Asn Ser Ile Ser Val Cys Thr Met Val Val Thr Val420 425 430Ile Ala Met Ile Val Gly Ala Leu Ile Ile Ala Asn Ala Thr Glu Ser435 440 445Gln Thr Thr Ser Asp Pro Thr Pro Pro Thr Pro Thr Pro450 455 46073576PRTChlamydia pneumoniae 73Met Thr Asp Phe Pro Thr His Phe Lys Gly Pro Lys Leu Asn Pro Ile5 10 15Lys Val Asn Pro Asn Phe Phe Glu Arg Asn Pro Lys Val Ala Arg Val20 25 30Leu Gln Ile Thr Ala Val Val Leu Gly Ile Ile Ala Leu Leu Ser Gly35 40 45Ile Val Leu Ile Ile Gly Thr Pro Leu Gly Ala Pro Ile Ser Met Ile50 55 60Leu Gly Gly Cys Leu Leu Ala Ser Gly Gly Ala Leu Phe Val Gly Gly65 70 75 80Thr Ile Ala Thr Ile Leu Gln Ala Arg Asn Ser Tyr Lys Lys Ala Val85 90 95Asn Gln Lys Lys Leu Ser Glu Pro Leu Met Glu Arg Pro Glu Leu Lys100 105 110Ala Leu Asp Tyr Ser Leu Asp Leu Lys Glu Val Trp Asp Leu His His115 120 125Ser Val Val Lys His Leu Lys Lys Leu Asp Leu Asn Leu Ser Lys Thr130 135 140Gln Arg Glu Val Leu Asn Gln Ile Lys Ile Asp Asp Glu Gly Pro Ser145 150 155 160Leu Gly Glu Cys Ala Ala Met Ile Ser Glu Asn Tyr Asp Ala Cys Leu165 170 175Lys Met Leu Ala Tyr Arg Glu Glu Leu Leu Lys Glu Gln Thr Gln Tyr180 185 190Gln Glu Thr Arg Phe Asn Gln Asn Leu Thr His Arg Asn Lys Val Leu195 200 205Leu Ser Ile Leu Ser Arg Ile Thr Asp Asn Ile Ser Lys Ala Gly Gly210 215 220Val Phe Ser Leu Lys Phe Ser Thr Leu Ser Ser Arg Met Ser Arg Ile225 230 235 240His Thr Thr Thr Thr Val Ile Leu Ala Leu Ser Ala Val Val Ser Val245 250 255Met Val Val Ala Ala Leu Ile Pro Gly Gly Ile Leu Ala Leu Pro Ile260 265 270Leu Leu Ala Val Ala Ile Ser Ala Gly Val Ile Val Thr Gly Leu Ser275 280 285Tyr Leu Val Arg Gln Ile Leu Ser Asn Thr Lys Arg Asn Arg Gln Asp290 295 300Phe Tyr Lys Asp Phe Val Lys Asn Val Asp Ile Glu Leu Leu Asn Gln305 310 315 320Thr Val Thr Leu Gln Arg Phe Leu Phe Glu Met Leu Lys Gly Val Leu325 330 335Lys Glu Glu Glu Glu Val Ser Leu Glu Gly Gln Asp Trp Tyr Thr Gln340 345 350Tyr Ile Thr Asn Ala Pro Ile Glu Lys Arg Leu Ile Glu Glu Ile Arg355 360 365Val Thr Tyr Lys Glu Ile Asp Ala Gln Thr Lys Lys Met Lys Thr Asp370 375 380Leu Glu Phe Leu Glu Asn Glu Val Arg Ser Gly Arg Leu Ser Val Ala385 390 395 400Ser Pro Ser Glu Asp Pro Ser Glu Thr Pro Ile Phe Thr Gln Gly Lys405 410 415Glu Phe Ala Lys Leu Arg Arg Gln Thr Ser Gln Asn Ile Ser Thr Ile420 425 430Tyr Gly Pro Asp Asn Glu Asn Ile Asp Pro Glu Phe Ser Leu Pro Trp435 440 445Met Pro Lys Lys Glu Glu Glu Ile Asp His Ser Leu Glu Pro Val Thr450 455 460Lys Leu Glu Pro Gly Ser Arg Glu Glu Leu Leu Leu Val Glu Gly Val465 470 475 480Asn Pro Thr Leu Arg Glu Leu Asn Met Arg Ile Ala Leu Leu Gln Gln485 490 495Gln Leu Ser Ser Val Arg Lys Trp Arg His Pro Arg Gly Glu His Tyr500 505 510Gly Asn Val Ile Tyr Ser Asp Thr Glu Leu Asp Arg Ile Gln Met Leu515 520 525Glu Gly Ala Phe Tyr Asn His Leu Arg Glu Ala Gln Glu Glu Ile Thr530 535 540Gln Ser Leu Gly Asp Leu Val Asp Ile Gln Asn Arg Ile Leu Gly Ile545 550 555 560Ile Val Glu Gly Asp Ser Asp Ser Arg Thr Glu Glu Glu Pro Gln Glu565 570 57574361PRTChlamydia pneumoniae 74Met Gln Gln Thr Val Ile Val Ala Met Ser Gly Gly Val Asp Ser Ser5 10 15Val Val Ala Tyr Leu Phe Lys

Lys Phe Thr Asn Tyr Lys Val Ile Gly20 25 30Leu Phe Met Lys Asn Trp Glu Glu Asp Ser Glu Gly Gly Leu Cys Ser35 40 45Ser Thr Lys Asp Tyr Glu Asp Val Glu Arg Val Cys Leu Gln Leu Asp50 55 60Ile Pro Tyr Tyr Thr Val Ser Phe Ala Lys Glu Tyr Arg Glu Arg Val65 70 75 80Phe Ala Arg Phe Leu Lys Glu Tyr Ser Leu Gly Tyr Thr Pro Asn Pro85 90 95Asp Ile Leu Cys Asn Arg Glu Ile Lys Phe Asp Leu Leu Gln Lys Lys100 105 110Val Gln Glu Leu Gly Gly Asp Tyr Leu Ala Thr Gly His Tyr Cys Arg115 120 125Leu Asn Thr Glu Leu Gln Glu Thr Gln Leu Leu Arg Gly Cys Asp Pro130 135 140Gln Lys Asp Gln Ser Tyr Phe Leu Ser Gly Thr Pro Lys Ser Ala Leu145 150 155 160His Asn Val Leu Phe Pro Leu Gly Glu Met Asn Lys Thr Glu Val Arg165 170 175Ala Ile Ala Ala Gln Ala Ala Leu Pro Thr Ala Glu Lys Lys Asp Ser180 185 190Thr Gly Ile Cys Phe Ile Gly Lys Arg Pro Phe Lys Glu Phe Leu Glu195 200 205Lys Phe Leu Pro Asn Lys Thr Gly Asn Val Ile Asp Trp Asp Thr Lys210 215 220Glu Ile Val Gly Gln His Gln Gly Ala His Tyr Tyr Thr Ile Gly Gln225 230 235 240Arg Arg Gly Leu Asp Leu Gly Gly Ser Glu Lys Pro Cys Tyr Val Val245 250 255Gly Lys Asn Ile Glu Glu Asn Ser Ile Tyr Ile Val Arg Gly Glu Asp260 265 270His Pro Gln Leu Tyr Leu Arg Glu Leu Thr Ala Arg Glu Leu Asn Trp275 280 285Phe Thr Pro Pro Lys Ser Gly Cys His Cys Ser Ala Lys Val Arg Tyr290 295 300Arg Ser Pro Asp Glu Ala Cys Thr Ile Asp Tyr Ser Ser Gly Asp Glu305 310 315 320Val Lys Val Arg Phe Ser Gln Pro Val Lys Ala Val Thr Pro Gly Gln325 330 335Thr Ile Ala Phe Tyr Gln Gly Asp Thr Cys Leu Gly Ser Gly Val Ile340 345 350Asp Val Pro Met Ile Pro Ser Glu Gly355 360751609PRTChlamydia pneumoniae 75Met Val Ala Lys Lys Thr Val Arg Ser Tyr Arg Ser Ser Phe Ser His5 10 15Ser Val Ile Val Ala Ile Leu Ser Ala Gly Ile Ala Phe Glu Ala His20 25 30Ser Leu His Ser Ser Glu Leu Asp Leu Gly Val Phe Asn Lys Gln Phe35 40 45Glu Glu His Ser Ala His Val Glu Glu Ala Gln Thr Ser Val Leu Lys50 55 60Gly Ser Asp Pro Val Asn Pro Ser Gln Lys Glu Ser Glu Lys Val Leu65 70 75 80Tyr Thr Gln Val Pro Leu Thr Gln Gly Ser Ser Gly Glu Ser Leu Asp85 90 95Leu Ala Asp Ala Asn Phe Leu Glu His Phe Gln His Leu Phe Glu Glu100 105 110Thr Thr Val Phe Gly Ile Asp Gln Lys Leu Val Trp Ser Asp Leu Asp115 120 125Thr Arg Asn Phe Ser Gln Pro Thr Gln Glu Pro Asp Thr Ser Asn Ala130 135 140Val Ser Glu Lys Ile Ser Ser Asp Thr Lys Glu Asn Arg Lys Asp Leu145 150 155 160Glu Thr Glu Asp Pro Ser Lys Lys Ser Gly Leu Lys Glu Val Ser Ser165 170 175Asp Leu Pro Lys Ser Pro Glu Thr Ala Val Ala Ala Ile Ser Glu Asp180 185 190Leu Glu Ile Ser Glu Asn Ile Ser Ala Arg Asp Pro Leu Gln Gly Leu195 200 205Ala Phe Phe Tyr Lys Asn Thr Ser Ser Gln Ser Ile Ser Glu Lys Asp210 215 220Ser Ser Phe Gln Gly Ile Ile Phe Ser Gly Ser Gly Ala Asn Ser Gly225 230 235 240Leu Gly Phe Glu Asn Leu Lys Ala Pro Lys Ser Gly Ala Ala Val Tyr245 250 255Ser Asp Arg Asp Ile Val Phe Glu Asn Leu Val Lys Gly Leu Ser Phe260 265 270Ile Ser Cys Glu Ser Leu Glu Asp Gly Ser Ala Ala Gly Val Asn Ile275 280 285Val Val Thr His Cys Gly Asp Val Thr Leu Thr Asp Cys Ala Thr Gly290 295 300Leu Asp Leu Glu Ala Leu Arg Leu Val Lys Asp Phe Ser Arg Gly Gly305 310 315 320Ala Val Phe Thr Ala Arg Asn His Glu Val Gln Asn Asn Leu Ala Gly325 330 335Gly Ile Leu Ser Val Val Gly Asn Lys Gly Ala Ile Val Val Glu Lys340 345 350Asn Ser Ala Glu Lys Ser Asn Gly Gly Ala Phe Ala Cys Gly Ser Phe355 360 365Val Tyr Ser Asn Asn Glu Asn Thr Ala Leu Trp Lys Glu Asn Gln Ala370 375 380Leu Ser Gly Gly Ala Ile Ser Ser Ala Ser Asp Ile Asp Ile Gln Gly385 390 395 400Asn Cys Ser Ala Ile Glu Phe Ser Gly Asn Gln Ser Leu Ile Ala Leu405 410 415Gly Glu His Ile Gly Leu Thr Asp Phe Val Gly Gly Gly Ala Leu Ala420 425 430Ala Gln Gly Thr Leu Thr Leu Arg Asn Asn Ala Val Val Gln Cys Val435 440 445Lys Asn Thr Ser Lys Thr His Gly Gly Ala Ile Leu Ala Gly Thr Val450 455 460Asp Leu Asn Glu Thr Ile Ser Glu Val Ala Phe Lys Gln Asn Thr Ala465 470 475 480Ala Leu Thr Gly Gly Ala Leu Ser Ala Asn Asp Lys Val Ile Ile Ala485 490 495Asn Asn Phe Gly Glu Ile Leu Phe Glu Gln Asn Glu Val Arg Asn His500 505 510Gly Gly Ala Ile Tyr Cys Gly Cys Arg Ser Asn Pro Lys Leu Glu Gln515 520 525Lys Asp Ser Gly Glu Asn Ile Asn Ile Ile Gly Asn Ser Gly Ala Ile530 535 540Thr Phe Leu Lys Asn Lys Ala Ser Val Leu Glu Val Met Thr Gln Ala545 550 555 560Glu Asp Tyr Ala Gly Gly Gly Ala Leu Trp Gly His Asn Val Leu Leu565 570 575Asp Ser Asn Ser Gly Asn Ile Gln Phe Ile Gly Asn Ile Gly Gly Ser580 585 590Thr Phe Trp Ile Gly Glu Tyr Val Gly Gly Gly Ala Ile Leu Ser Thr595 600 605Asp Arg Val Thr Ile Ser Asn Asn Ser Gly Asp Val Val Phe Lys Gly610 615 620Asn Lys Gly Gln Cys Leu Ala Gln Lys Tyr Val Ala Pro Gln Glu Thr625 630 635 640Ala Pro Val Glu Ser Asp Ala Ser Ser Thr Asn Lys Asp Glu Lys Ser645 650 655Leu Asn Ala Cys Ser His Gly Asp His Tyr Pro Pro Lys Thr Val Glu660 665 670Glu Glu Val Pro Pro Ser Leu Leu Glu Glu His Pro Val Val Ser Ser675 680 685Thr Asp Ile Arg Gly Gly Gly Ala Ile Leu Ala Gln His Ile Phe Ile690 695 700Thr Asp Asn Thr Gly Asn Leu Arg Phe Ser Gly Asn Leu Gly Gly Gly705 710 715 720Glu Glu Ser Ser Thr Val Gly Asp Leu Ala Ile Val Gly Gly Gly Ala725 730 735Leu Leu Ser Thr Asn Glu Val Asn Val Cys Ser Asn Gln Asn Val Val740 745 750Phe Ser Asp Asn Val Thr Ser Asn Gly Cys Asp Ser Gly Gly Ala Ile755 760 765Leu Ala Lys Lys Val Asp Ile Ser Ala Asn His Ser Val Glu Phe Val770 775 780Ser Asn Gly Ser Gly Lys Phe Gly Gly Ala Val Cys Ala Leu Asn Glu785 790 795 800Ser Val Asn Ile Thr Asp Asn Gly Ser Ala Val Ser Phe Ser Lys Asn805 810 815Arg Thr Arg Leu Gly Gly Ala Gly Val Ala Ala Pro Gln Gly Ser Val820 825 830Thr Ile Cys Gly Asn Gln Gly Asn Ile Ala Phe Lys Glu Asn Phe Val835 840 845Phe Gly Ser Glu Asn Gln Arg Ser Gly Gly Gly Ala Ile Ile Ala Asn850 855 860Ser Ser Val Asn Ile Gln Asp Asn Ala Gly Asp Ile Leu Phe Val Ser865 870 875 880Asn Ser Thr Gly Ser Tyr Gly Gly Ala Ile Phe Val Gly Ser Leu Val885 890 895Ala Ser Glu Gly Ser Asn Pro Arg Thr Leu Thr Ile Thr Gly Asn Ser900 905 910Gly Asp Ile Leu Phe Ala Lys Asn Ser Thr Gln Thr Ala Ala Ser Leu915 920 925Ser Glu Lys Asp Ser Phe Gly Gly Gly Ala Ile Tyr Thr Gln Asn Leu930 935 940Lys Ile Val Lys Asn Ala Gly Asn Val Ser Phe Tyr Gly Asn Arg Ala945 950 955 960Pro Ser Gly Ala Gly Val Gln Ile Ala Asp Gly Gly Thr Val Cys Leu965 970 975Glu Ala Phe Gly Gly Asp Ile Leu Phe Glu Gly Asn Ile Asn Phe Asp980 985 990Gly Ser Phe Asn Ala Ile His Leu Cys Gly Asn Asp Ser Lys Ile Val995 1000 1005Glu Leu Ser Ala Val Gln Asp Lys Asn Ile Ile Phe Gln Asp Ala Ile1010 1015 1020Thr Tyr Glu Glu Asn Thr Ile Arg Gly Leu Pro Asp Lys Asp Val Ser1025 1030 1035 1040Pro Leu Ser Ala Pro Ser Leu Ile Phe Asn Ser Lys Pro Gln Asp Asp1045 1050 1055Ser Ala Gln His His Glu Gly Thr Ile Arg Phe Ser Arg Gly Val Ser1060 1065 1070Lys Ile Pro Gln Ile Ala Ala Ile Gln Glu Gly Thr Leu Ala Leu Ser1075 1080 1085Gln Asn Ala Glu Leu Trp Leu Ala Gly Leu Lys Gln Glu Thr Gly Ser1090 1095 1100Ser Ile Val Leu Ser Ala Gly Ser Ile Leu Arg Ile Phe Asp Ser Gln1105 1110 1115 1120Val Asp Ser Ser Ala Pro Leu Pro Thr Glu Asn Lys Glu Glu Thr Leu1125 1130 1135Val Ser Ala Gly Val Gln Ile Asn Met Ser Ser Pro Thr Pro Asn Lys1140 1145 1150Asp Lys Ala Val Asp Thr Pro Val Leu Ala Asp Ile Ile Ser Ile Thr1155 1160 1165Val Asp Leu Ser Ser Phe Val Pro Glu Gln Asp Gly Thr Leu Pro Leu1170 1175 1180Pro Pro Glu Ile Ile Ile Pro Lys Gly Thr Lys Leu His Ser Asn Ala1185 1190 1195 1200Ile Asp Leu Lys Ile Ile Asp Pro Thr Asn Val Gly Tyr Glu Asn His1205 1210 1215Ala Leu Leu Ser Ser His Lys Asp Ile Pro Leu Ile Ser Leu Lys Thr1220 1225 1230Ala Glu Gly Met Thr Gly Thr Pro Thr Ala Asp Ala Ser Leu Ser Asn1235 1240 1245Ile Lys Ile Asp Val Ser Leu Pro Ser Ile Thr Pro Ala Thr Tyr Gly1250 1255 1260His Thr Gly Val Trp Ser Glu Ser Lys Met Glu Asp Gly Arg Leu Val1265 1270 1275 1280Val Gly Trp Gln Pro Thr Gly Tyr Lys Leu Asn Pro Glu Lys Gln Gly1285 1290 1295Ala Leu Val Leu Asn Asn Leu Trp Ser His Tyr Thr Asp Leu Arg Ala1300 1305 1310Leu Lys Gln Glu Ile Phe Ala His His Thr Ile Ala Gln Arg Met Glu1315 1320 1325Leu Asp Phe Ser Thr Asn Val Trp Gly Ser Gly Leu Gly Val Val Glu1330 1335 1340Asp Cys Gln Asn Ile Gly Glu Phe Asp Gly Phe Lys His His Leu Thr1345 1350 1355 1360Gly Tyr Ala Leu Gly Leu Asp Thr Gln Leu Val Glu Asp Phe Leu Ile1365 1370 1375Gly Gly Cys Phe Ser Gln Phe Phe Gly Lys Thr Glu Ser Gln Ser Tyr1380 1385 1390Lys Ala Lys Asn Asp Val Lys Ser Tyr Met Gly Ala Ala Tyr Ala Gly1395 1400 1405Ile Leu Ala Gly Pro Trp Leu Ile Lys Gly Ala Phe Val Tyr Gly Asn1410 1415 1420Ile Asn Asn Asp Leu Thr Thr Asp Tyr Gly Thr Leu Gly Ile Ser Thr1425 1430 1435 1440Gly Ser Trp Ile Gly Lys Gly Phe Ile Ala Gly Thr Ser Ile Asp Tyr1445 1450 1455Arg Tyr Ile Val Asn Pro Arg Arg Phe Ile Ser Ala Ile Val Ser Thr1460 1465 1470Val Val Pro Phe Val Glu Ala Glu Tyr Val Arg Ile Asp Leu Pro Glu1475 1480 1485Ile Ser Glu Gln Gly Lys Glu Val Arg Thr Phe Gln Lys Thr Arg Phe1490 1495 1500Glu Asn Val Ala Ile Pro Phe Gly Phe Ala Leu Glu His Ala Tyr Ser1505 1510 1515 1520Arg Gly Ser Arg Ala Glu Val Asn Ser Val Gln Leu Ala Tyr Val Phe1525 1530 1535Asp Val Tyr Arg Lys Gly Pro Val Ser Leu Ile Thr Leu Lys Asp Ala1540 1545 1550Ala Tyr Ser Trp Lys Ser Tyr Gly Val Asp Ile Pro Cys Lys Ala Trp1555 1560 1565Lys Ala Arg Leu Ser Asn Asn Thr Glu Trp Asn Ser Tyr Leu Ser Thr1570 1575 1580Tyr Leu Ala Phe Asn Tyr Glu Trp Arg Glu Asp Leu Ile Ala Tyr Asp1585 1590 1595 1600Phe Asn Gly Gly Ile Arg Ile Ile Phe160576196PRTChlamydia pneumoniae 76Met Thr Leu Ser Leu Val Gly Lys Glu Ala Pro Asp Phe Val Ala Gln5 10 15Ala Val Val Asn Gly Glu Thr Cys Thr Val Ser Leu Lys Asp Tyr Leu20 25 30Gly Lys Tyr Val Val Leu Phe Phe Tyr Pro Lys Asp Phe Thr Tyr Val35 40 45Cys Pro Thr Glu Leu His Ala Phe Gln Asp Ala Leu Gly Glu Phe His50 55 60Thr Arg Gly Ala Glu Val Ile Gly Cys Ser Val Asp Asp Ile Ala Thr65 70 75 80His Gln Gln Trp Leu Ala Thr Lys Lys Lys Gln Gly Gly Ile Glu Gly85 90 95Ile Thr Tyr Pro Leu Leu Ser Asp Glu Asp Lys Val Ile Ser Arg Ser100 105 110Tyr His Val Leu Lys Pro Glu Glu Glu Leu Ser Phe Arg Gly Val Phe115 120 125Leu Ile Asp Lys Gly Gly Ile Ile Arg His Leu Val Val Asn Asp Leu130 135 140Pro Leu Gly Arg Ser Ile Glu Glu Glu Leu Arg Thr Leu Asp Ala Leu145 150 155 160Ile Phe Phe Glu Thr Asn Gly Leu Val Cys Pro Ala Asn Trp His Glu165 170 175Gly Glu Arg Ala Met Ala Pro Asn Glu Glu Gly Leu Gln Asn Tyr Phe180 185 190Gly Thr Ile Asp19577619PRTChlamydia pneumoniae 77Met Lys Lys Gly Lys Leu Gly Ala Ile Val Phe Gly Leu Leu Phe Thr5 10 15Ser Ser Val Ala Gly Phe Ser Lys Asp Leu Thr Lys Asp Asn Ala Tyr20 25 30Gln Asp Leu Asn Val Ile Glu His Leu Ile Ser Leu Lys Tyr Ala Pro35 40 45Leu Pro Trp Lys Glu Leu Leu Phe Gly Trp Asp Leu Ser Gln Gln Thr50 55 60Gln Gln Ala Arg Leu Gln Leu Val Leu Glu Glu Lys Pro Thr Thr Asn65 70 75 80Tyr Cys Gln Lys Val Leu Ser Asn Tyr Val Arg Ser Leu Asn Asp Tyr85 90 95His Ala Gly Ile Thr Phe Tyr Arg Thr Glu Ser Ala Tyr Ile Pro Tyr100 105 110Val Leu Lys Leu Ser Glu Asp Gly His Val Phe Val Val Asp Val Gln115 120 125Thr Ser Gln Gly Asp Ile Tyr Leu Gly Asp Glu Ile Leu Glu Val Asp130 135 140Gly Met Gly Ile Arg Glu Ala Ile Glu Ser Leu Arg Phe Gly Arg Gly145 150 155 160Ser Ala Thr Asp Tyr Ser Ala Ala Val Arg Ser Leu Thr Ser Arg Ser165 170 175Ala Ala Phe Gly Asp Ala Val Pro Ser Gly Ile Ala Met Leu Lys Leu180 185 190Arg Arg Pro Ser Gly Leu Ile Arg Ser Thr Pro Val Arg Trp Arg Tyr195 200 205Thr Pro Glu His Ile Gly Asp Phe Ser Leu Val Ala Pro Leu Ile Pro210 215 220Glu His Lys Pro Gln Leu Pro Thr Gln Ser Cys Val Leu Phe Arg Ser225 230 235 240Gly Val Asn Ser Gln Ser Ser Ser Ser Ser Leu Phe Ser Ser Tyr Met245 250 255Val Pro Tyr Phe Trp Glu Glu Leu Arg Val Gln Asn Lys Gln Arg Phe260 265 270Asp Ser Asn His His Ile Gly Ser Arg Asn Gly Phe Leu Pro Thr Phe275 280 285Gly Pro Ile Leu Trp Glu Gln Asp Lys Gly Pro Tyr Arg Ser Tyr Ile290 295 300Phe Lys Ala Lys Asp Ser Gln Gly Asn Pro His Arg Ile Gly Phe Leu305 310 315 320Arg Ile Ser Ser Tyr Val Trp Thr Asp Leu Glu Gly Leu Glu Glu Asp325 330 335His Lys Asp Ser Pro Trp Glu Leu Phe Gly Glu Ile Ile Asp His Leu340 345 350Glu Lys Glu Thr Asp Ala Leu Ile Ile Asp Gln Thr His Asn Pro Gly355 360 365Gly Ser Val Phe Tyr Leu Tyr Ser Leu Leu Ser Met Leu Thr Asp His370 375 380Pro Leu Asp Thr Pro Lys His Arg Met Ile Phe Thr Gln Asp Glu Val385 390 395 400Ser Ser Ala Leu His Trp Gln Asp Leu Leu Glu Asp Val Phe Thr Asp405 410 415Glu Gln Ala Val Ala Val Leu Gly Glu Thr Met Glu Gly Tyr Cys Met420 425 430Asp Met His Ala Val Ala Ser Leu Gln Asn Phe Ser Gln Ser Val Leu435 440 445Ser Ser Trp Val Ser Gly Asp Ile Asn Leu Ser Lys Pro Met Pro Leu450 455 460Leu Gly Phe Ala Gln Val Arg Pro His Pro Lys His Gln Tyr Thr Lys465 470 475 480Pro Leu Phe Met Leu Ile Asp Glu Asp Asp Phe Ser Cys Gly Asp Leu485 490 495Ala Pro Ala Ile Leu Lys Asp Asn Gly Arg Ala Thr

Leu Ile Gly Lys500 505 510Pro Thr Ala Gly Ala Gly Gly Phe Val Phe Gln Val Thr Phe Pro Asn515 520 525Arg Ser Gly Ile Lys Gly Leu Ser Leu Thr Gly Ser Leu Ala Val Arg530 535 540Lys Asp Gly Glu Phe Ile Glu Asn Leu Gly Val Ala Pro His Ile Asp545 550 555 560Leu Gly Phe Thr Ser Arg Asp Leu Gln Thr Ser Arg Phe Thr Asp Tyr565 570 575Val Glu Ala Val Lys Thr Ile Val Leu Thr Ser Leu Ser Glu Asn Ala580 585 590Lys Lys Ser Glu Glu Gln Thr Ser Pro Gln Glu Thr Pro Glu Val Ile595 600 605Arg Val Ser Tyr Pro Thr Thr Thr Ser Ala Ser610 61578651PRTChlamydia pneumoniae 78Met Val Asn Pro Ile Gly Pro Gly Pro Ile Asp Glu Thr Glu Arg Thr5 10 15Pro Pro Ala Asp Leu Ser Ala Gln Gly Leu Glu Ala Ser Ala Ala Asn20 25 30Lys Ser Ala Glu Ala Gln Arg Ile Ala Gly Ala Glu Ala Lys Pro Lys35 40 45Glu Ser Lys Thr Asp Ser Val Glu Arg Trp Ser Ile Leu Arg Ser Ala50 55 60Val Asn Ala Leu Met Ser Leu Ala Asp Lys Leu Gly Ile Ala Ser Ser65 70 75 80Asn Ser Ser Ser Ser Thr Ser Arg Ser Ala Asp Val Asp Ser Thr Thr85 90 95Ala Thr Ala Pro Thr Pro Pro Pro Pro Thr Phe Asp Asp Tyr Lys Thr100 105 110Gln Ala Gln Thr Ala Tyr Asp Thr Ile Phe Thr Ser Thr Ser Leu Ala115 120 125Asp Ile Gln Ala Ala Leu Val Ser Leu Gln Asp Ala Val Thr Asn Ile130 135 140Lys Asp Thr Ala Ala Thr Asp Glu Glu Thr Ala Ile Ala Ala Glu Trp145 150 155 160Glu Thr Lys Asn Ala Asp Ala Val Lys Val Gly Ala Gln Ile Thr Glu165 170 175Leu Ala Lys Tyr Ala Ser Asp Asn Gln Ala Ile Leu Asp Ser Leu Gly180 185 190Lys Leu Thr Ser Phe Asp Leu Leu Gln Ala Ala Leu Leu Gln Ser Val195 200 205Ala Asn Asn Asn Lys Ala Ala Glu Leu Leu Lys Glu Met Gln Asp Asn210 215 220Pro Val Val Pro Gly Lys Thr Pro Ala Ile Ala Gln Ser Leu Val Asp225 230 235 240Gln Thr Asp Ala Thr Ala Thr Gln Ile Glu Lys Asp Gly Asn Ala Ile245 250 255Arg Asp Ala Tyr Phe Ala Gly Gln Asn Ala Ser Gly Ala Val Glu Asn260 265 270Ala Lys Ser Asn Asn Ser Ile Ser Asn Ile Asp Ser Ala Lys Ala Ala275 280 285Ile Ala Thr Ala Lys Thr Gln Ile Ala Glu Ala Gln Lys Lys Phe Pro290 295 300Asp Ser Pro Ile Leu Gln Glu Ala Glu Gln Met Val Ile Gln Ala Glu305 310 315 320Lys Asp Leu Lys Asn Ile Lys Pro Ala Asp Gly Ser Asp Val Pro Asn325 330 335Pro Gly Thr Thr Val Gly Gly Ser Lys Gln Gln Gly Ser Ser Ile Gly340 345 350Ser Ile Arg Val Ser Met Leu Leu Asp Asp Ala Glu Asn Glu Thr Ala355 360 365Ser Ile Leu Met Ser Gly Phe Arg Gln Met Ile His Met Phe Asn Thr370 375 380Glu Asn Pro Asp Ser Gln Ala Ala Gln Gln Glu Leu Ala Ala Gln Ala385 390 395 400Arg Ala Ala Lys Ala Ala Gly Asp Asp Ser Ala Ala Ala Ala Leu Ala405 410 415Asp Ala Gln Lys Ala Leu Glu Ala Ala Leu Gly Lys Ala Gly Gln Gln420 425 430Gln Gly Ile Leu Asn Ala Leu Gly Gln Ile Ala Ser Ala Ala Val Val435 440 445Ser Ala Gly Val Pro Pro Ala Ala Ala Ser Ser Ile Gly Ser Ser Val450 455 460Lys Gln Leu Tyr Lys Thr Ser Lys Ser Thr Gly Ser Asp Tyr Lys Thr465 470 475 480Gln Ile Ser Ala Gly Tyr Asp Ala Tyr Lys Ser Ile Asn Asp Ala Tyr485 490 495Gly Arg Ala Arg Asn Asp Ala Thr Arg Asp Val Ile Asn Asn Val Ser500 505 510Thr Pro Ala Leu Thr Arg Ser Val Pro Arg Ala Arg Thr Glu Ala Arg515 520 525Gly Pro Glu Lys Thr Asp Gln Ala Leu Ala Arg Val Ile Ser Gly Asn530 535 540Ser Arg Thr Leu Gly Asp Val Tyr Ser Gln Val Ser Ala Leu Gln Ser545 550 555 560Val Met Gln Ile Ile Gln Ser Asn Pro Gln Ala Asn Asn Glu Glu Ile565 570 575Arg Gln Lys Leu Thr Ser Ala Val Thr Lys Pro Pro Gln Phe Gly Tyr580 585 590Pro Tyr Val Gln Leu Ser Asn Asp Ser Thr Gln Lys Phe Ile Ala Lys595 600 605Leu Glu Ser Leu Phe Ala Glu Gly Ser Arg Thr Ala Ala Glu Ile Lys610 615 620Ala Leu Ser Phe Glu Thr Asn Ser Leu Phe Ile Gln Gln Val Leu Val625 630 635 640Asn Ile Gly Ser Leu Tyr Ser Gly Tyr Leu Gln645 6507987PRTChlamydia pneumoniae 79Met Ser Gln Lys Asn Lys Asn Ser Ala Phe Met His Pro Val Asn Ile5 10 15Ser Thr Asp Leu Ala Val Ile Val Gly Lys Gly Pro Met Pro Arg Thr20 25 30Glu Ile Val Lys Lys Val Trp Glu Tyr Ile Lys Lys His Asn Cys Gln35 40 45Asp Gln Lys Asn Lys Arg Asn Ile Leu Pro Asp Ala Asn Leu Ala Lys50 55 60Val Phe Gly Ser Ser Asp Pro Ile Asp Met Phe Gln Met Thr Lys Ala65 70 75 80Leu Ser Lys His Ile Val Lys85803048DNAChlamydia trachomatis serovar D 80atgccttttt ctttgagatc tacatcattt tgttttttag cttgtttgtg ttcctattcg 60tatggattcg cgagctctcc tcaagtgtta acacctaatg taaccactcc ttttaagggg 120gacgatgttt acttgaatgg agactgcgct tttgtcaatg tctatgcagg ggcagagaac 180ggctcaatta tctcagctaa tggcgacaat ttaacgatta ccggacaaaa ccatacatta 240tcatttacag attctcaagg gccagttctt caaaattatg ccttcatttc agcaggagag 300acacttactc tgaaagattt ttcgagtttg atgttctcga aaaatgtttc ttgcggagaa 360aagggaatga tctcagggaa aaccgtgagt atttccggag caggcgaagt gattttttgg 420gataactctg tggggtattc tcctttgtct attgtgccag catcgactcc aactcctcca 480gcaccagcac cagctcctgc tgcttcaagc tctttatctc caacagttag tgatgctcgg 540aaagggtcta ttttttctgt agagactagt ttggagatct caggcgtcaa aaaaggggtc 600atgttcgata ataatgccgg gaattttgga acagtttttc gaggtaatag taataataat 660gctggtagtg ggggtagtgg gtctgctaca acaccaagtt ttacagttaa aaactgtaaa 720gggaaagttt ctttcacaga taacgtagcc tcctgtggag gcggagtagt ctacaaagga 780actgtgcttt tcaaagacaa tgaaggaggc atattcttcc gagggaacac agcatacgat 840gatttaggga ttcttgctgc tactagtcgg gatcagaata cggagacagg aggcggtgga 900ggagttattt gctctccaga tgattctgta aagtttgaag gcaataaagg ttctattgtt 960tttgattaca actttgcaaa aggcagaggc ggaagcatcc taacgaaaga attctctctt 1020gtagcagatg attcggttgt ctttagtaac aatacagcag aaaaaggcgg tggagctatt 1080tatgctccta ctatcgatat aagcacgaat ggaggatcga ttctatttga aagaaaccga 1140gctgcagaag gaggcgccat ctgcgtgagt gaagcaagct ctggttcaac tggaaatctt 1200actttaagcg cttctgatgg ggatattgtt ttttctggga atatgacgag tgatcgtcct 1260ggagagcgca gcgcagcaag aatcttaagt gatggaacga ctgtttcttt aaatgcttcc 1320ggactatcga agctgatctt ttatgatcct gtagtacaaa ataattcagc agcgggtgca 1380tcgacaccat caccatcttc ttcttctatg cctggtgctg tcacgattaa tcagtccggt 1440aatggatctg tgatttttac cgccgagtca ttgactcctt cagaaaaact tcaagttctt 1500aactctactt ctaacttccc aggagctctg actgtgtcag gaggggagtt ggttgtgacg 1560gaaggagcta ccttaactac tgggaccatt acagccacct ctggacgagt gactttagga 1620tccggagctt cgttgtctgc cgttgcaggt gctgcaaata ataattatac ttgtacagta 1680tctaagttgg ggattgattt agaatccttt ttaactccta actataagac ggccatactg 1740ggtgcggatg gaacagttac tgttaacagc ggctctactt tagacctagt gatggagagt 1800gaggcagagg tatatgataa tccgcttttt gtgggatcgc tgacaattcc ttttgttact 1860ctatcttcta gtagtgctag taacggagtt acaaaaaatt ctgtcactat taatgatgca 1920gacgctgcgc actatgggta tcaaggctct tggtctgcag attggacgaa accgcctctg 1980gctcctgatg ctaaggggat ggtacctcct aataccaata acactctgta tctgacatgg 2040agacctgctt cgaattacgg tgaatatcga ctggatcctc agagaaaggg agaactagta 2100cccaactctc tttgggtagc gggatctgca ttaagaacct ttactaatgg tttgaaagaa 2160cactatgttt ctagagatgt tggatttgta gcatctctgc atgctctcgg ggattatatt 2220ttgaattata cgcaagatga tcgggatggc tttttagcta gatatggggg attccaggcg 2280accgcagcct cccattatga aaatgggtca atatttggag tggcttttgg acaactctat 2340ggtcagacaa agagcagaat gtattactct aaagatgctg ggaacatgac gatgttgtcc 2400tgtttcggaa gaagttacgt agatattaaa ggaacagaaa ctgttatgta ttgggagacg 2460gcttatggct attctgtgca cagaatgcat acgcagtatt ttaatgacaa aacgcagaag 2520ttcgatcatt cgaaatgtca ttggcacaac aataactatt atgcgtttgt gggtgccgag 2580cataatttct tagagtactg cattcctact cgtcagttcg ctagagatta tgagcttaca 2640gggtttatgc gttttgaaat ggccggagga tggtccagtt ctacacgaga aactggctcc 2700ctaactagat atttcgctcg cgggtcaggg cataatatgt cgcttccaat aggaattgta 2760gctcatgcag tttctcatgt gcgaagatct cctccttcta aactgacact aaatatggga 2820tatagaccag acatttggcg tgtcactcca cattgcaata tggaaattat tgctaacgga 2880gtgaagacac ctatacaagg atctccgctg gcacggcatg ccttcttctt agaagtgcat 2940gatactttgt atattcatca ttttggaaga gcctatatga actattcgct ggatgctcgt 3000cgtcgacaaa cggcacattt tgtatccatg ggcttgaata gaatcttt 3048811038DNAChlamydia trachomatis serovar D 81atgcaagcag atattttaga tggaaaacag aaacgcgtta atctaaatag caagcgtcta 60gtgaactgca accaggtcga tgtcaaccaa cttgttccta ttaagtacaa atgggcttgg 120gaacattatt tgaatggctg cgcaaataac tggctcccta cagagatccc catggggaaa 180gacatcgaat tatggaagtc ggatcgtctt tctgaagatg agcggcgagt cattcttttg 240aatttaggtt ttttcagcac cgcagagagc ttggttggga ataatattgt tctagcaatt 300tttaaacatg taactaatcc ggaagcgaga caatatcttt taagacaagc ttttgaagaa 360gcggttcaca cgcacacatt tttgtatatt tgtgagtcac tcggattaga cgagaaagaa 420attttcaatg cctataacga gcgtgctgcg attaaggcca aagatgattt ccagatggaa 480atcactggca aggtattaga tcctaatttt cgcacggact ctgttgaggg tctacaggag 540tttgttaaaa acttagtagg atactacatc attatggaag ggattttctt ctatagtggg 600tttgtgatga tcctttcctt ccacagacaa aataagatga ttggtattgg agaacaatat 660caatacatct taagagatga gacaatccac ttgaactttg gtattgattt gatcaacggg 720ataaaagaag agaacccgga gatttggact ccagagttac agcaagaaat tgtcgaatta 780attaagcgag ctgtcgattt agaaattgag tatgcgcaag actgtctccc tagagggatt 840ttgggattga gagcttcgat gttcatcgat tatgtgcagc atattgcaga ccgtcgtttg 900gaaagaatcg gattaaaacc tatttatcat acgaaaaacc cattcccttg gatgagcgaa 960acaatagacc ttaataaaga gaaaaacttc tttgaaacaa gggttataga atatcaacat 1020gcagcaagct taacttgg 1038823159DNAChlamydia trachomatis serovar D 82atgtttacaa ggatagttat ggtcgatcta caagaaaagc aatgcacaat tgttaagcgc 60aatggaatgt ttgttccttt cgatcggaac cgtatttttc aggctttaga agcagctttt 120cgagacactc gcagaattga tgatcatatg cctttgcctg aagatctgga aagttccata 180cgctcgataa cgcatcaggt agttaaagaa gttgtgcaaa agattacaga tggacaagtg 240gttactgtag agcgtatcca agatatggtt gaaagccaac tatatgtgaa tggtttgcaa 300gatgttgctc gcgattatat tgtctatcgc gatgaccgta aagcgcatcg gaaaaaatct 360tggcaaagcc tatccgttgt tcgtcgttgt gggactgttg tacactttaa tcctatgaaa 420atttccgccg ctttggaaaa agctttccga gctaccgata agactgaggg gatgactcca 480agttctgtgc gagaggaaat caatgctttg acgcaaaaca ttgtcgcgga aatagaagaa 540tgttgtcctc aacaggatag acgcattgat atcgagaaga ttcaagatat tgttgaacag 600caactaatgg ttgttgggca ttatgctgtt gcaaagaact atattcttta tcgagaagct 660cgcgctcgtg ttcgtgataa cagagaagag gacgggagta cagaaaagac tatagcagaa 720gaagctgttg aggtgctcag taaagacggt tctacctata caatgacgca ttcgcagttg 780ttggctcatt tagcgcgcgc ttgtagtcgt tttccagaaa cgacagatgc ggcgctgctt 840accgatatgg ctttcgcaaa tttctattcc ggtatcaaag agtctgaagt agtactggcc 900tgtattatgg cggctcgtgc caatattgaa aaggagcctg attatgcctt tgttgctgca 960gagctcttac ttgacgttgt atataaggaa gcgttaggga aatcgaaata tgctgaggat 1020ttagaacaag cacatcgcga tcatttcaaa cgctacatcg cagaagggga tacctatcgt 1080ctgaatgctg aactgaaaca tctttttgat ttagacgcgt tagccgatgc tatggatcta 1140tctcgagatc tacagttttc ttacatgggt attcaaaatc tgtatgatcg ttattttaat 1200caccacgaag gttgccgttt agaaactccc caaatttttt ggatgcgcgt tgctatgggg 1260ttggcattga atgagcaaga caagacttct tgggctatta ctttttataa tttgctttcg 1320acattccgat atacaccagc tacgccaacc ttgttcaatt caggtatgcg gcattctcag 1380ttaagctctt gctatctttc cactgtacaa gataatttgg tcaatatcta taaggtcatt 1440gctgataacg ctatgctatc taagtgggca ggagggatag gtaatgattg gacggcgatt 1500cgtgcaacag gggctttaat taaaggaacc aatggaagaa gtcagggagt aattcctttt 1560attaaggtga caaatgatac agcagtcgca gtgaatcaag gtggtaaacg caagggagct 1620gtatgcgtct atttagaagt ttggcacctc gactacgaag atttccttga attgagaaag 1680aatacagggg atgagcgtcg acgggctcat gatgtcaata tagctagctg gattccagat 1740cttttcttca aacgtttaca gcaaaaaggg acatggactc tattcagccc agatgatgtt 1800ccgggattac acgatgctta tggggaagaa tttgagcgtt tgtacgaaga atatgagcgg 1860aaggttgata ccggagagat tcggttattc aagaaggtag aagctgaaga tctgtggaga 1920aaaatgctca gcatgctttt tgaaacggga cacccatgga tgacttttaa agatccatcc 1980aacatccgtt cggctcaaga tcataaaggc gtggtgcgtt gttccaatct gtgtacggag 2040attttgttaa actgctcgga gacagaaact gctgtttgta atttaggatc gattaactta 2100gttcaacata tcgtagggga tgggttagat gaggaaaaac tctctgagac gatctctata 2160gcagtccgta tgttggataa cgtgattgat attaactttt atccaacaaa ggaagctaaa 2220gaggcgaact ttgctcaccg cgctattgga ttaggggtga tgggattcca agatgccttg 2280tataagctag atataagcta tgcttcgcaa gaagctgtag aatttgctga ctacagttca 2340gagttgattt cttactatgc gattcaagct tcttgtctgc tcgctaaaga acgaggcact 2400tacagctctt ataaaggatc gaaatgggat agaggtttgc tccctattga tacgattcag 2460ttgttagcga actatcgagg agaagcaaat ctccagatgg atacgtcatc aagaaaagat 2520tgggaaccta tccgtagttt ggttaaagag catggtatgc gacattgtca gcttatggct 2580atagctccga cagcgacgat ctccaacatt ataggagtaa ctcaatctat tgagccaacg 2640tacaaacatt tgtttgtgaa gtctaatttg tccggagaat tcacgattcc aaatgtgtat 2700ttaattgaga agttgaagaa attaggtatc tgggatgctg atatgttaga tgacctgaaa 2760tattttgatg ggtctttatt ggaaatcgag cgtataccag atcacttaaa acatattttc 2820ttgacagctt ttgagattga accagaatgg attatcgaat gcgcgtctcg aagacaaaaa 2880tggattgata tggggcaatc cctcaacctt tatcttgccc agccagacgg gaaaaaactg 2940tcgaatatgt atttaacggc ttggaaaaaa ggtttgaaaa ctacgtatta tctgagatct 3000tcatcagcaa cgaccgttga aaaatctttt gtagatatta ataagagagg aattcagcct 3060cgttggatga agaataagtc tgcttcggca ggaattattg ttgaaagagc gaagaaagca 3120cctgtctgtt ctttggaaga agggtgtgaa gcatgtcag 3159834593DNAChlamydia trachomatis serovar D 83atgagttccg agaaagatat aaaaagcacc tgttctaagt tttctttgtc tgtagtagca 60gctatccttg cctctgttag cgggttagct agttgcgtag atcttcatgc tggaggacag 120tctgtaaatg agctggtata tgtaggccct caagcggttt tattgttaga ccaaattcga 180gatctattcg ttgggtctaa agatagtcag gctgaaggac agtataggtt aattgtagga 240gatccaagtt ctttccaaga gaaagatgcg gatactcttc ccgggaaggt agagcaaagt 300actttgttct cagtaaccaa tcccgtggtt ttccaaggtg tggaccaaca ggatcaagtc 360tcttcccaag ggttaatttg tagttttacg agcagcaacc ttgattctcc tcgtgacgga 420gaatcttttt taggtattgc ttttgttggg gatagtagta aggctggaat cacattaact 480gacgtgaaag cttctttgtc tggagcggct ttatattcta cagaagatct tatctttgaa 540aagattaagg gtggattgga atttgcatca tgttcttctc tagaacaggg gggagcttgt 600gcagctcaaa gtattttgat tcatgattgt caaggattgc aggttaaaca ctgtactaca 660gccgtgaatg ctgaggggtc tagtgcgaat gatcatcttg gatttggagg aggcgctttc 720tttgttacgg gttctctttc tggagagaaa agtctctata tgcctgcagg agatatggta 780gttgcgaatt gtgatggggc tatatctttt gaaggaaaca gcgcgaactt tgctaatgga 840ggagcgattg ctgcctctgg gaaagtgctt tttgtcgcta atgataaaaa gacttctttt 900atagagaacc gagctttgtc tggaggagcg attgcagcct cttctgatat tgcctttcaa 960aactgcgcag aactagtttt caaaggcaat tgtgcaattg gaacagagga taaaggttct 1020ttaggtggag gggctatatc ttctctaggc accgttcttt tgcaagggaa tcacgggata 1080acttgtgata agaatgagtc tgcttcgcaa ggaggcgcca tttttggcaa aaattgtcag 1140atttctgaca acgaggggcc agtggttttc agagatagta cagcttgctt aggaggaggc 1200gctattgcag ctcaagaaat tgtttctatt cagaacaatc aggctgggat ttccttcgag 1260ggaggtaagg ctagtttcgg aggaggtatt gcgtgtggat ctttttcttc cgcaggtggt 1320gcttctgttt tagggaccat tgatatttcg aagaatttag gcgcgatttc gttctctcgt 1380actttatgta cgacctcaga tttaggacaa atggagtacc agggaggagg agctctattt 1440ggtgaaaata tttctctttc tgagaatgct ggtgtgctca cctttaaaga caacattgtg 1500aagacttttg cttcgaatgg gaaaattctg ggaggaggag cgattttagc tactggtaag 1560gtggaaatta ctaataattc cgaaggaatt tcttttacag gaaatgcgag agctccacaa 1620gctcttccaa ctcaagagga gtttccttta ttcagcaaaa aagaagggcg accactctct 1680tcaggatatt ctgggggagg agcgatttta ggaagagaag tagctattct ccacaacgct 1740gcagtagtat ttgagcaaaa tcgtttgcag tgcagcgaag aagaagcgac attattaggt 1800tgttgtggag gaggcgctgt tcatgggatg gatagcactt cgattgttgg caactcttca 1860gtaagatttg gtaataatta cgcaatggga caaggagtct caggaggagc tcttttatct 1920aaaacagtgc agttagctgg gaatggaagc gtcgattttt ctcgaaatat tgctagtttg 1980ggaggaggag ctcttcaagc ttctgaagga aattgtgagc tagttgataa cggctatgtg 2040ctattcagag ataatcgagg gagggtttat gggggtgcta tttcttgctt acgtggagat 2100gtagtcattt ctggaaacaa gggtagagtt gaatttaaag acaacatagc aacacgtctt 2160tatgtggaag aaactgtaga aaaggttgaa gaggtagagc cagctcctga gcaaaaagac 2220aataatgagc tttctttctt agggagagca gaacagagtt ttattactgc agctaatcaa 2280gctcttttcg catctgaaga tggggattta tcacctgagt catccatttc ttctgaagaa 2340cttgcgaaaa gaagagagtg tgctggagga gctatttttg caaaacgggt tcgtattgta 2400gataaccaag aggccgttgt attctcgaat aacttctctg atatttatgg cggcgccatt 2460tttacaggtt ctcttcgaga agaggataag ttagatgggc aaatccctga agtcttgatc 2520tcaggcaatg caggggatgt tgttttttcc ggaaattcct cgaagcgtga tgagcatctt 2580cctcatacag gtgggggagc catttgtact caaaatttga cgatttctca gaatacaggg 2640aatgttctgt tttataacaa cgtggcctgt tcgggaggag ctgttcgtat agaggatcat 2700ggtaatgttc ttttagaagc ttttggagga gatattgttt

ttaaaggaaa ttcttctttc 2760agagcacaag gatccgatgc tatctatttt gcaggtaaag aatcgcatat tacagccctg 2820aatgctacgg aaggacatgc tattgttttc cacgacgcat tagtttttga aaatctagaa 2880gaaaggaaat ctgctgaagt attgttaatc aatagtcgag aaaatccagg ttacactgga 2940tctattcgat ttttagaagc agaaagtaaa gttcctcaat gtattcatgt acaacaagga 3000agccttgagt tgctaaatgg agccacatta tgtagttatg gttttaaaca agatgctgga 3060gctaagttgg tattggctgc tggagctaaa ctgaagattt tagattcagg aactcctgta 3120caacaagggc atgctatcag taaacctgaa gcagaaatcg agtcatcttc tgaaccagag 3180ggtgcacatt ctctttggat tgcgaagaat gctcaaacaa cagttcctat ggttgatatc 3240catactattt ctgtagattt agcctccttc tcttctagtc aacaggaggg gacagtagaa 3300gctcctcagg ttattgttcc tggaggaagt tatgttcgat ctggagagct taatttggag 3360ttagttaaca caacaggtac tggttatgaa aatcatgctt tattgaagaa tgaggctaaa 3420gttccattga tgtctttcgt tgcttctggt gatgaagctt cagccgaaat cagtaacttg 3480tcggtttctg atttacagat tcatgtagta actccagaga ttgaagaaga cacatacggc 3540catatgggag attggtctga ggctaaaatt caagatggaa ctcttgtcat tagttggaat 3600cctactggat atcgattaga tcctcaaaaa gcaggggctt tagtatttaa tgcattatgg 3660gaagaagggg ctgtcttgtc tgctctgaaa aatgcacgct ttgctcataa tctcactgct 3720cagcgtatgg aattcgatta ttctacaaat gtgtggggat tcgcctttgg tggtttccga 3780actctatctg cagagaatct ggttgctatt gatggataca aaggagctta tggtggtgct 3840tctgctggag tcgatattca attgatggaa gattttgttc taggagttag tggagctgct 3900ttcctaggta aaatggatag tcagaagttt gatgcggagg tttctcggaa gggagttgtt 3960ggttctgtat atacaggatt tttagctgga tcctggttct tcaaaggaca atatagcctt 4020ggagaaacac agaacgatat gaaaacgcgt tatggagtac taggagagtc gagtgcttct 4080tggacatctc gaggagtact ggcagatgct ttagttgaat accgaagttt agttggtcct 4140gtgagaccta ctttttatgc tttgcatttc aatccttatg tcgaagtatc ttatgcttct 4200atgaaattcc ctggctttac agaacaagga agagaagcgc gttcttttga agacgcttcc 4260cttaccaata tcaccattcc tttagggatg aagtttgaat tggcgttcat aaaaggacag 4320ttttcagagg tgaactcttt gggaataagt tatgcatggg aagcttatcg aaaagtagaa 4380ggaggcgcgg tgcagctttt agaagctggg tttgattggg agggagctcc aatggatctt 4440cctagacagg agctgcgtgt cgctctggaa aataatacgg aatggagttc ttacttcagc 4500acagtcttag gattaacagc tttttgtgga ggatttactt ctacagatag taaactagga 4560tatgaggcga atactggatt gcgattgatc ttt 4593841422DNAChlamydia trachomatis serovar D 84atgaaaatta ttcacacagc tatcgaattt gctccggtaa tcaaagccgg aggcctggga 60gacgcgctat acggactagc aaaagcttta gccgctaatc acacaacgga agtggtaatc 120cctttatacc ctaaattatt tactttgccc aaagaacaag atctttgctc gatccaaaaa 180ttatcttatt tttttgctgg agagcaagaa gcaactgctt tctcctactt ttatgaagga 240attaaagtaa ctctattcaa actcgacaca cagccagagt tattcgagaa tgcggaaaca 300atctacacaa gcgatgatgc cttccgtttt tgcgcttttt ctgctgctgc ggcctcctac 360atccaaaaag aaggagccaa tatcgttcat ttacacgatt ggcatacagg attagttgct 420ggactactca aacaacagcc ctgctctcaa ttacaaaaga ttgttcttac cctacataat 480tttggttatc gaggctatac aacacgagaa atattagaag cctcctcttt gaatgaattt 540tatatcagcc agtaccaact atttcgcgat ccacaaactt gtgtgttgct aaaaggagct 600ttatactgtt cagatttcgt gactacggtt tctcctacat acgccaaaga aattcttgaa 660gattattccg attacgaaat tcacgatgcc attactgcta gacaacatca tctccgcggg 720attttaaatg gaatcgacac gacaatttgg gggcctgaaa cggatcccaa tttagcgaaa 780aactacacta aagagctttt cgagacccct tcaatttttt ttgaagctaa agccgagaat 840aaaaaagcct tgtacgaaag attaggcctc tctttagaac actctccttg cgtgtgcatt 900atttctagaa ttgctgagca gaaaggtcct cactttatga aacaggccat tctccatgca 960ctagaaaacg cttacacgct cattattata ggtacctgct acgggaatca attgcatgaa 1020gaatttgcaa atcttcaaga atcattagcg aattcccctg atgtaaggat tcttttgact 1080tatagtgatg tgctggcacg acaaattttc gccgctgcag atatgatctg cattccttct 1140atgtttgaac catgtggact cacacaaatg attggaatgc gttacgggac tgtaccgtta 1200gtaagagcta caggaggact agcagatact gtagcaaatg gaatcaatgg attttccttc 1260tttaatccgc atgacttcta tgaattccga aacatgcttt cggaagcagt gacaacctac 1320cgtaccaacc acgacaagtg gcaacatatt gtacgtgctt gtctagattt ttcttcagac 1380ctagaaactg ccgccaataa atatttagaa atttataaac aa 1422851179DNAChlamydia trachomatis serovar D 85atgaaaaaac tcttgaaatc ggtattagta tttgccgctt tgagttctgc ttcctccttg 60caagctctgc ctgtggggaa tcctgctgaa ccaagcctta tgatcgacgg aattctgtgg 120gaaggtttcg gcggagatcc ttgcgatcct tgcgccactt ggtgtgacgc tatcagcatg 180cgtgttggtt actacggaga ctttgttttc gaccgtgttt tgaaaactga tgtgaataaa 240gaatttcaga tgggtgccaa gcctacaact gatacaggca atagtgcagc tccatccact 300cttacagcaa gagagaatcc tgcttacggc cgacatatgc aggatgctga gatgtttaca 360aatgccgctt gcatggcatt gaatatttgg gatcgttttg atgtattctg tacattagga 420gccaccagtg gatatcttaa aggaaactct gcttctttca atttagttgg attgtttgga 480gataatgaaa atcaaaaaac ggtcaaagcg gagtctgtac caaatatgag ctttgatcaa 540tctgttgttg agttgtatac agatactact tttgcgtgga gcgtcggcgc tcgcgcagct 600ttgtgggaat gtggatgtgc aactttagga gcttcattcc aatatgctca atctaaacct 660aaagtagaag aattaaacgt tctctgcaat gcagcagagt ttactattaa taaacctaaa 720gggtatgtag gtaaggagtt tcctcttgat cttacagcag gaacagatgc tgcgacagga 780actaaggatg cctctattga ttaccatgaa tggcaagcaa gtttagctct ctcttacaga 840ctgaatatgt tcactcccta cattggagtt aaatggtctc gagcaagctt tgatgccgat 900acgattcgta tagcccagcc aaaatcagct acagctattt ttgatactac cacgcttaac 960ccaactattg ctggagctgg cgatgtgaaa actggcgcag agggtcagct cggagacaca 1020atgcaaatcg tttccttgca attgaacaag atgaaatcta gaaaatcttg cggtattgca 1080gtaggaacaa ctattgtgga tgcagacaaa tacgcagtta cagttgagac tcgcttgatc 1140gatgagagag cagctcacgt aaatgcacaa ttccgcttc 117986585DNAChlamydia trachomatis serovar D 86atgggatcac tagttggaag acaggctccg gatttttctg gtaaagccgt tgtttgtgga 60gaagagaaag aaatctctct agcagacttt cgtggtaagt atgtagtgct cttcttttat 120cctaaagatt ttacctatgt ttgtcctaca gaattgcatg cttttcaaga tagattggta 180gattttgaag agcgaggtgc agtcgtgctt ggttgctccg ttgacgacat tgagacacat 240tctcgttggc tcgctgtagc gagaaatgca ggaggaatag agggaacaga atatcctctg 300ttagcagacc cttcttttaa aatatcagaa gcttttggtg ttttgaatcc tgaaggatcg 360ctcgctttaa gagcgacttt ccttatcgat aaatatgggg ttgttcgtca tgcggttatc 420aatgatcttc ctttagggcg ttccattgac gaggaattgc gtattttaga ttcattgatc 480ttctttgaga accacggaat ggtttgtcca gctaactggc gttctggaga gcgtggaatg 540gtgccttctg aagagggatt aaaagaatat ttccagacga tggat 58587258DNAChlamydia trachomatis serovar D 87atgagtcaaa ataagaactc tgctttcatg cagcctgtga acgtatccgc tgatttagct 60gccatcgttg gtgcaggacc tatgcctcgc acagagatca ttaagaaaat gtgggattac 120attaagaaga atggccttca agatcctaca aacaaacgta atatcaatcc cgatgataaa 180ttggctaaag tttttggaac tgaaaaacct atcgatatgt tccaaatgac aaaaatggtt 240tctcaacaca tcattaaa 258881182DNAChlamydia trachomatis serovar D 88atgtcaaaag aaacttttca acgtaataag cctcatatca acatagggac cattggccac 60gttgaccatg gtaagactac gttgacagct gctattacgc gtgcgttgtc tggagatggg 120ttggctgatt ttcgtgatta tagctctatt gacaacactc ctgaagaaaa agctcgcggt 180attacaatta acgcttccca cgttgagtac gaaacagcta atcgtcacta cgctcacgtg 240gactgccctg gtcacgctga ctatgttaaa aacatgatca ccggtgcagc tcaaatggac 300ggggctattc tagtagtttc tgcaacagac ggagctatgc ctcaaactaa agagcatatt 360cttttggcaa gacaagttgg ggttccttac atcgttgttt ttctcaataa aattgacatg 420atttccgaag aagacgctga attggtcgac ttagttgaga tggagttggt tgagcttctt 480gaagagaaag gatacaaagg gtgtccaatc atcagaggtt ctgctctgaa agctttggaa 540ggggatgctg catacataga gaaagttcga gagctaatgc aagccgtcga tgataacatc 600cctactccag aaagagaaat tgacaagcct ttcttaatgc ctattgagga cgtattctct 660atctccggac gaggaactgt agtaactgga cgtattgagc gtggaattgt taaagtttcc 720gataaagttc agttggtcgg tcttagagat actaaagaaa cgattgttac tggggttgaa 780atgttcagaa aagaactccc agaaggtcgt gcaggagaga acgttggatt gctcctcaga 840ggtattggta agaacgatgt ggaaagagga atggttgttt gcttgccaaa cagtgttaaa 900cctcatacac agttcaagtg tgctgtttac gttttgcaaa aagaagaagg tggacgacat 960aagcctttct tcacaggata tagacctcaa ttcttcttcc gtacaacaga cgtcacaggt 1020gtggtaactc tgcctgaggg aattgagatg gtcatgcctg gggataacgt tgagtttgaa 1080gtgcaattga ttagccctgt ggctttagaa gaaggtatga gatttgcgat tcgtgaaggt 1140ggtcgtacaa tcggtgctgg aactatttct aagatcattg ca 118289246DNAChlamydia trachomatis serovar D 89atggggcaag atcaccgaag aaaatttctt aagaaagtat cttttgtaaa aaaacaagca 60gcttttgcgg gtaactttat cgaagaaatt aagaagattg agtgggtaaa taagcgagat 120cttaaaagat acgtcaagat tgttttgatg aatatttttg gctttggatt ttccatctat 180tgtgtggatt tagctcttcg aaagtccctt tcattgttcg gtaaagtaac aagctttttc 240tttggt 246901137DNAChlamydia trachomatis serovar D 90atggtgatcc ctaaggtgga tctaggagaa agtgccgtca tgatgggtta caagcttact 60tcgcaacttg ctatgctttc gatcttattg actttcaccc atactatggg tcatgcaagt 120cagatgagcc aaactcttcc tactattata gaagcacaag cggaagaggc attgcaggct 180gacaggggag ttgctggaca ggctcttaaa aaacttcgta aaaaaagatg tgcttctaga 240aaatctgcat gtaaggcttc ttttaagaaa aaggatttct tttcttgtat tacaaatgga 300ttgttctctg gaaatcatga gcagcgttta actgcgaaaa aagagaacaa ggctcgaggt 360aaagagcctc gagtagtggt tcaaacgact aaaaaacgac aaataactca gtctgagaaa 420gaatttttcg attggctatg taatagtaaa agagaaagaa agcttctcaa gaaaaagcct 480gtaaatactt ctcttgctaa gagtgaagaa ttgagtccta aagaagcagc aatagctgct 540gctcgagctt ctctttctcc agaagaaaaa cgtcaattga ttcgtgagtg gttagcagaa 600gaaaagactg ctcgtaaatc tgggcgtgcg gcttgtgcgg taagtgagaa tcttaaaaga 660gacggaagta ttacttctac attgcgctat gatgcggaga aagctttgac tacacgtgta 720aaacgcaatg aaaattctgt aaatgctaga gcaagacaac gagccgctct tcaaaaagcc 780aagaaagcaa agacggagaa acctgaggct gatgagaaag ctgcagaagc tgttgccgca 840gctccaacca aacaggcgca taaggagcca gagaattact tcgcagctac agcttctaca 900aataatacta atgttatgtc ctatctaaat gctcatcaat accgttgtga ttcttcggag 960acggactggc cttgctcttc ttgtgttacg aaacgccgag ctaacttcgg tatttctgtg 1020tgtactatgg tggttaccgt cattgctatg atcgtaggag ctgttatcat ttctaatgct 1080acagactcta ccgttgcggg ctcctcggga acaggaggag gaggctcaac gcaacca 1137911689DNAChlamydia trachomatis serovar D 91atggtttatt ttagagctca tcaacctagg catacgccta aaacatttcc tttggaagtt 60caccattcgt tctccgataa gcatcctcaa attgctaaag ctatgcggat tacggggata 120gccctcgcag ctctatctct gctcgctgta gtcgcctgcg ttattgccgt ctctgcggga 180ggagctgcca ttcctcttgc tgtcattagt ggaattgctg taatgtctgg cctcttatcc 240gctgccacca ttatctgttc tgcaaaaaag gctttggctc aacgaaaaca aaaacaacta 300gaagagtcgc ttccgttaga taatgcgacc gagcatgtga gttacctgac ctcagacacc 360tcttatttta atcaatggga atccttaggt gctctaaata agcagttgtc tcagattgac 420ttaactattc aagctcccga aaaaaaacta ttaaaagaag ttcttggttc cagatacgat 480tccattaatc actccatcga agagatctcc gatcgcttta cgaaaatgct ctctcttctt 540cgattaagag aacattttta tcgaggagaa gagcgttatg ccccctattt aagccctcct 600ctacttaaca agaatcgttt gctgacccaa atcacatcca atatgattag gatgctacca 660aaatccggtg gtgttttttc cctcaaagcc aatacactaa gtcatgccag ccgcacacta 720tatacagtat taaaagtcgc tttatcctta ggagttctcg ctggagtcgc tgctcttatc 780atctttcttc cccctagcct gccttttatc gctgttatag gagtatcttc cttagcattg 840gggatggcat ctttccttat gattcggggc attaagtatt tgctcgaaca ttctcctctg 900aatagaaagc aactagctaa agatattcaa aaaaccattg gcccagatgt cttggcctct 960atggttcatt accagcatca attactatca catctacatg aaactctatt agatgaagcc 1020atcacagcta gatggagcga gcccttcttt attgaacacg ctaatcttaa ggcaaaaatt 1080gaagatttga caaaacaata tgatatattg aacgcagcct ttaataaatc tttacaacaa 1140gatgaggcgc tccgttctca attagagaaa cgagcttact tattcccaat tcctaataac 1200gacgaaaatg ctaaaactaa agaatcgcag cttctagact cagaaaatga ttcaaattct 1260gaatttcagg agattataaa taaaggacta gaagctgcca ataaacgacg agctgacgct 1320aagtcaaaat tctatacgga agacgaaacc tctgacaaaa tattctctat atggaaaccc 1380acaaagaact tggcattaga agatttgtgg agagtgcatg aagcttgcaa tgaagagcaa 1440caagctctcc tcttagaaga ttatatgagt tataaaacct cagaatgtca agctgcactc 1500caaaaagtga gtcaagaact gaaggcggca caaaaatcat tcgcagtcct agaaaagcat 1560gctctagaca gatcttatga atccagtgta gccacgatgg atttagctag agcgaatcaa 1620gaaacacacc ggcttctgaa catcctctct gaattacaac aactagcaca atacctgtta 1680gataatcac 1689921074DNAChlamydia trachomatis serovar D 92gtgcgtaaaa ctgtcattgt tgctatgtct ggaggagtgg attcctcggt tgttgcttat 60ctcttaaaga agcaagggga gtataatgtt gttgggctct tcatgaaaaa ttggggagag 120caggacgaga atggtgagtg tactgcaacc aaagattttc gcgatgtaga gcggatcgca 180gaacaattgt ccattccata ttacacagtt tccttttcta aggaatataa agagcgagtg 240ttttctagat ttctaagaga atatgcgaac ggctacactc ccaatcctga tgtgttatgc 300aatcgagaaa tcaaatttga tttattacag aagaaggtac gtgagctaaa aggtgatttt 360ttagccacgg gacattattg tcgaggaggg gctgatggaa ctggtttgtc cagaggaata 420gaccccaata aagaccaaag ttatttctta tgtggcactc ctaaggatgc tttatccaat 480gtacttttcc ccctgggagg tatgtataaa acggaggtac gtcgaattgc tcaagaagct 540ggtttagcta ccgccacaaa aaaagatagc acagggattt gcttcattgg taaacggcct 600tttaagagtt tccttgagca gtttgtagca gactctcctg gagacattat tgattttgat 660acacaacagg tagtcggccg acatgaagga gcccattatt atacgattgg acagcgtcga 720gggttaaaca taggaggaat ggaaaagcct tgttatgttc ttagcaagaa tatggaaaag 780aatattgttt acattgtaag gggtgaagat catcctttac tttatcgaca agagctttta 840gctaaggaac ttaattggtt tgttcccttg caggagccta tgatctgtag tgctaaagtt 900cggtacagat cccctgacga gaaatgttct gtatatcctt tggaagatgg aacggtaaaa 960gtgattttcg atgtccctgt gaaagctgtc acccctggac agactgtagc tttctaccag 1020ggggacattt gtttaggagg aggagtgatt gaagtgccta tgattcatca gctg 107493801DNAChlamydia trachomatis serovar D 93atgtccagaa aaccggcttc taactcatcc cggaacacca aacggtcctc agacacttcc 60tgggaagtca ttgcccaaga ttataataaa gccgttgatc gcgatggaca tttctatcat 120aaggaagtga ttctccctaa tctcctttct aagctacata tttcccgctc atcgtctctg 180gttgatgtag gatgtggtca agggattttg gagaagcatt tacccaaaca tctcccttat 240ctaggaatcg atctttcccc tagtctgctg cgttttgcaa agaaaagcgc ttcctcaaaa 300tcacgtcgct ttcttcatca cgatatgacg caaccggtac cagcagatca tcatgagcag 360ttttcccatg ctacagcaat cctttctctt cagaatatgg aatctccaga acaagctatc 420gcacacacag cgaatctttt ggctcctcaa ggtaggttgt ttattgttct caaccatcca 480tgctttcgca tccctaggct ttcttcatgg ctttatgatg agcctaaaaa actcttatct 540agaaaaatag accgctatct ctctcctgtg gcggttccta tcgttgtgca tcctggagaa 600aaacattctg agacgacata ttctttccat ttccccttaa gctattgggt acaagcttta 660tctaatcaca atcttctgat tgatagtatg gaagaatgga tctcccctaa aaaatcctca 720gggaagaggg ctcgagcaga aaatctttgt cgcaaggagt ttccgctttt cttgtttatc 780tcagcattaa aaatatcaaa a 801942601DNAChlamydia trachomatis serovar D 94atggagaaat tttcagatgc agtaagcgaa gccttagaaa aggcgtttga gttagctaaa 60aactctaagc attcctacgt gacagaaaac catttgctga aaagtctttt gcaaaatcca 120ggttccctat tttgtttggt cattaaggat gtgcacggta atcttggttt gcttacttct 180gctgtggacg acgccttacg cagagaacca actgtagtcg agggaaccgc tgttgctagt 240ccttctccaa gtttacagca gttgttgctc aatgcgcatc aagaagctag aagtatgggt 300gacgaatatc tatcagggga tcatttgtta ctagcttttt ggcgatcgac taaagagcct 360tttgcttctt ggagaaaaac tgtaaaaact acctctgaag cgttgaaaga attaattact 420aaattaagac aaggaagtcg tatggactca cctagtgctg aagaaaatct gaaaggatta 480gagaaatact gcaaaaattt gactgtactt gcaagagaag gcaagcttga tcctgtgatt 540ggtcgagatg aagagattag acgtacgata caggttcttt ctagacgaac aaagaataat 600cctatgttga taggggagcc cggagttggg aaaacagcaa tcgctgaagg acttgctctt 660cgcatagtgc aaggggatgt tccagagagt ttaaaggaaa agcatctgta tgtactggat 720atgggagctt tgattgcagg tgccaagtat cgaggagagt ttgaagagcg gttaaaaagt 780gtattgaagg gtgtagaagc ttctgaaggc gagtgtatcc tattcattga tgaagtgcat 840actttagtag gagcgggagc tacagatgga gctatggatg cagcgaatct attaaagcct 900gctttagcac gaggcacttt gcattgtatt ggcgctacga ctttgaatga ataccaaaaa 960tatatagaga aagacgcggc tttggaacgg cgtttccagc ctatttttgt aacagaacct 1020tctttggaag atgctgtatt cattctccgg gggttaaggg aaaaatatga aatttttcat 1080ggtgtgcgca ttacagaagg ggctttgaat gcagctgtag ttctttctta tcgttacatc 1140acagaccgat ttcttcctga taaggcgatt gacctaattg atgaggctgc gagtttaatc 1200cgtatgcaaa taggaagttt acctctgcct attgatgaaa aggaaagaga attatcagct 1260ttaatcgtga aacaagaagc tattaaacgc gagcaagcac cagcttatca ggaagaggct 1320gaagacatgc aaaaagcaat tgaccgggtt aaggaagagc tggccgcttt acgcttgcgc 1380tgggatgaag aaaaaggatt aattacagga ttaaaagaaa agaagaatgc tttagaaaat 1440ttaaaatttg ccgaagagga agctgagcgt actgccgatt acaatcgggt ggcagaacta 1500cgctatagtt tgattccttc tttggaggaa gaaattcatt tagctgagga agctttaaat 1560caaagagatg ggcgcctgct tcaagaggaa gttgatgagc ggttgattgc gcaagttgtt 1620gcgaattgga ctggaatccc tgtgcaaaaa atgttggagg gagaatctga aaagttattg 1680gtgttggagg agtctttaga agaaagggtt gttggacaac ctttcgctat tgccgcagtc 1740agtgattcga ttcgagctgc tcgagtagga ttgagtgatc cgcagcgtcc tctaggagtg 1800tttctatttc ttggacctac aggggtaggg aaaactgagc ttgctaaagc attagcagag 1860cttttattta ataaggaaga agcgatgatt cggtttgaca tgaccgaata tatggaaaaa 1920cattccgttt ccaaattgat aggatctcct ccagggtatg taggatatga agaaggaggg 1980agtctctcag aagctttaag aagacgacct tattctgttg ttctttttga tgagatagaa 2040aaagcagata aagaagtatt taatatttta ttgcagattt ttgatgatgg gattcttacg 2100gatagcaaga agcgtaaggt aaattgtaag aatgctcttt tcattatgac atcaaatatt 2160ggttcgcaag agcttgctga ttattgtact aagaaaggaa ctatcgtaga caaagaagct 2220gtgctatctg ttgttgcccc tgcgcttaaa aattatttta gtccagaatt tatcaatcgt 2280atcgatgaca ttctgccttt cgttcctttg actacggaag acattgtaaa aattgtcggt 2340attcaaatga atcgggttgc tttacgtttg ctggaaagaa aaatttcgtt aacttgggat 2400gattctttag tgctatttct cagtgagcaa ggttatgaca gcgcttttgg agctcgccct 2460ctgaagcgtt tgatacagca aaaagtagtg actatgttgt ctaaagctct tttgaaagga 2520gatatcaaac ctggaatggc ggtggagctt actatggcaa aagatgtagt tgtgtttaaa 2580attaaaacaa atccagctgt g 2601951016PRTChlamydia trachomatis serovar D 95Met Pro Phe Ser Leu Arg Ser Thr Ser Phe Cys Phe Leu Ala Cys Leu5 10 15Cys Ser Tyr Ser Tyr Gly Phe Ala Ser Ser Pro Gln Val Leu Thr Pro20 25 30Asn Val Thr Thr Pro Phe Lys Gly Asp Asp Val Tyr Leu Asn

Gly Asp35 40 45Cys Ala Phe Val Asn Val Tyr Ala Gly Ala Glu Asn Gly Ser Ile Ile50 55 60Ser Ala Asn Gly Asp Asn Leu Thr Ile Thr Gly Gln Asn His Thr Leu65 70 75 80Ser Phe Thr Asp Ser Gln Gly Pro Val Leu Gln Asn Tyr Ala Phe Ile85 90 95Ser Ala Gly Glu Thr Leu Thr Leu Lys Asp Phe Ser Ser Leu Met Phe100 105 110Ser Lys Asn Val Ser Cys Gly Glu Lys Gly Met Ile Ser Gly Lys Thr115 120 125Val Ser Ile Ser Gly Ala Gly Glu Val Ile Phe Trp Asp Asn Ser Val130 135 140Gly Tyr Ser Pro Leu Ser Ile Val Pro Ala Ser Thr Pro Thr Pro Pro145 150 155 160Ala Pro Ala Pro Ala Pro Ala Ala Ser Ser Ser Leu Ser Pro Thr Val165 170 175Ser Asp Ala Arg Lys Gly Ser Ile Phe Ser Val Glu Thr Ser Leu Glu180 185 190Ile Ser Gly Val Lys Lys Gly Val Met Phe Asp Asn Asn Ala Gly Asn195 200 205Phe Gly Thr Val Phe Arg Gly Asn Ser Asn Asn Asn Ala Gly Ser Gly210 215 220Gly Ser Gly Ser Ala Thr Thr Pro Ser Phe Thr Val Lys Asn Cys Lys225 230 235 240Gly Lys Val Ser Phe Thr Asp Asn Val Ala Ser Cys Gly Gly Gly Val245 250 255Val Tyr Lys Gly Thr Val Leu Phe Lys Asp Asn Glu Gly Gly Ile Phe260 265 270Phe Arg Gly Asn Thr Ala Tyr Asp Asp Leu Gly Ile Leu Ala Ala Thr275 280 285Ser Arg Asp Gln Asn Thr Glu Thr Gly Gly Gly Gly Gly Val Ile Cys290 295 300Ser Pro Asp Asp Ser Val Lys Phe Glu Gly Asn Lys Gly Ser Ile Val305 310 315 320Phe Asp Tyr Asn Phe Ala Lys Gly Arg Gly Gly Ser Ile Leu Thr Lys325 330 335Glu Phe Ser Leu Val Ala Asp Asp Ser Val Val Phe Ser Asn Asn Thr340 345 350Ala Glu Lys Gly Gly Gly Ala Ile Tyr Ala Pro Thr Ile Asp Ile Ser355 360 365Thr Asn Gly Gly Ser Ile Leu Phe Glu Arg Asn Arg Ala Ala Glu Gly370 375 380Gly Ala Ile Cys Val Ser Glu Ala Ser Ser Gly Ser Thr Gly Asn Leu385 390 395 400Thr Leu Ser Ala Ser Asp Gly Asp Ile Val Phe Ser Gly Asn Met Thr405 410 415Ser Asp Arg Pro Gly Glu Arg Ser Ala Ala Arg Ile Leu Ser Asp Gly420 425 430Thr Thr Val Ser Leu Asn Ala Ser Gly Leu Ser Lys Leu Ile Phe Tyr435 440 445Asp Pro Val Val Gln Asn Asn Ser Ala Ala Gly Ala Ser Thr Pro Ser450 455 460Pro Ser Ser Ser Ser Met Pro Gly Ala Val Thr Ile Asn Gln Ser Gly465 470 475 480Asn Gly Ser Val Ile Phe Thr Ala Glu Ser Leu Thr Pro Ser Glu Lys485 490 495Leu Gln Val Leu Asn Ser Thr Ser Asn Phe Pro Gly Ala Leu Thr Val500 505 510Ser Gly Gly Glu Leu Val Val Thr Glu Gly Ala Thr Leu Thr Thr Gly515 520 525Thr Ile Thr Ala Thr Ser Gly Arg Val Thr Leu Gly Ser Gly Ala Ser530 535 540Leu Ser Ala Val Ala Gly Ala Ala Asn Asn Asn Tyr Thr Cys Thr Val545 550 555 560Ser Lys Leu Gly Ile Asp Leu Glu Ser Phe Leu Thr Pro Asn Tyr Lys565 570 575Thr Ala Ile Leu Gly Ala Asp Gly Thr Val Thr Val Asn Ser Gly Ser580 585 590Thr Leu Asp Leu Val Met Glu Ser Glu Ala Glu Val Tyr Asp Asn Pro595 600 605Leu Phe Val Gly Ser Leu Thr Ile Pro Phe Val Thr Leu Ser Ser Ser610 615 620Ser Ala Ser Asn Gly Val Thr Lys Asn Ser Val Thr Ile Asn Asp Ala625 630 635 640Asp Ala Ala His Tyr Gly Tyr Gln Gly Ser Trp Ser Ala Asp Trp Thr645 650 655Lys Pro Pro Leu Ala Pro Asp Ala Lys Gly Met Val Pro Pro Asn Thr660 665 670Asn Asn Thr Leu Tyr Leu Thr Trp Arg Pro Ala Ser Asn Tyr Gly Glu675 680 685Tyr Arg Leu Asp Pro Gln Arg Lys Gly Glu Leu Val Pro Asn Ser Leu690 695 700Trp Val Ala Gly Ser Ala Leu Arg Thr Phe Thr Asn Gly Leu Lys Glu705 710 715 720His Tyr Val Ser Arg Asp Val Gly Phe Val Ala Ser Leu His Ala Leu725 730 735Gly Asp Tyr Ile Leu Asn Tyr Thr Gln Asp Asp Arg Asp Gly Phe Leu740 745 750Ala Arg Tyr Gly Gly Phe Gln Ala Thr Ala Ala Ser His Tyr Glu Asn755 760 765Gly Ser Ile Phe Gly Val Ala Phe Gly Gln Leu Tyr Gly Gln Thr Lys770 775 780Ser Arg Met Tyr Tyr Ser Lys Asp Ala Gly Asn Met Thr Met Leu Ser785 790 795 800Cys Phe Gly Arg Ser Tyr Val Asp Ile Lys Gly Thr Glu Thr Val Met805 810 815Tyr Trp Glu Thr Ala Tyr Gly Tyr Ser Val His Arg Met His Thr Gln820 825 830Tyr Phe Asn Asp Lys Thr Gln Lys Phe Asp His Ser Lys Cys His Trp835 840 845His Asn Asn Asn Tyr Tyr Ala Phe Val Gly Ala Glu His Asn Phe Leu850 855 860Glu Tyr Cys Ile Pro Thr Arg Gln Phe Ala Arg Asp Tyr Glu Leu Thr865 870 875 880Gly Phe Met Arg Phe Glu Met Ala Gly Gly Trp Ser Ser Ser Thr Arg885 890 895Glu Thr Gly Ser Leu Thr Arg Tyr Phe Ala Arg Gly Ser Gly His Asn900 905 910Met Ser Leu Pro Ile Gly Ile Val Ala His Ala Val Ser His Val Arg915 920 925Arg Ser Pro Pro Ser Lys Leu Thr Leu Asn Met Gly Tyr Arg Pro Asp930 935 940Ile Trp Arg Val Thr Pro His Cys Asn Met Glu Ile Ile Ala Asn Gly945 950 955 960Val Lys Thr Pro Ile Gln Gly Ser Pro Leu Ala Arg His Ala Phe Phe965 970 975Leu Glu Val His Asp Thr Leu Tyr Ile His His Phe Gly Arg Ala Tyr980 985 990Met Asn Tyr Ser Leu Asp Ala Arg Arg Arg Gln Thr Ala His Phe Val995 1000 1005Ser Met Gly Leu Asn Arg Ile Phe1010 101596346PRTChlamydia trachomatis serovar D 96Met Gln Ala Asp Ile Leu Asp Gly Lys Gln Lys Arg Val Asn Leu Asn5 10 15Ser Lys Arg Leu Val Asn Cys Asn Gln Val Asp Val Asn Gln Leu Val20 25 30Pro Ile Lys Tyr Lys Trp Ala Trp Glu His Tyr Leu Asn Gly Cys Ala35 40 45Asn Asn Trp Leu Pro Thr Glu Ile Pro Met Gly Lys Asp Ile Glu Leu50 55 60Trp Lys Ser Asp Arg Leu Ser Glu Asp Glu Arg Arg Val Ile Leu Leu65 70 75 80Asn Leu Gly Phe Phe Ser Thr Ala Glu Ser Leu Val Gly Asn Asn Ile85 90 95Val Leu Ala Ile Phe Lys His Val Thr Asn Pro Glu Ala Arg Gln Tyr100 105 110Leu Leu Arg Gln Ala Phe Glu Glu Ala Val His Thr His Thr Phe Leu115 120 125Tyr Ile Cys Glu Ser Leu Gly Leu Asp Glu Lys Glu Ile Phe Asn Ala130 135 140Tyr Asn Glu Arg Ala Ala Ile Lys Ala Lys Asp Asp Phe Gln Met Glu145 150 155 160Ile Thr Gly Lys Val Leu Asp Pro Asn Phe Arg Thr Asp Ser Val Glu165 170 175Gly Leu Gln Glu Phe Val Lys Asn Leu Val Gly Tyr Tyr Ile Ile Met180 185 190Glu Gly Ile Phe Phe Tyr Ser Gly Phe Val Met Ile Leu Ser Phe His195 200 205Arg Gln Asn Lys Met Ile Gly Ile Gly Glu Gln Tyr Gln Tyr Ile Leu210 215 220Arg Asp Glu Thr Ile His Leu Asn Phe Gly Ile Asp Leu Ile Asn Gly225 230 235 240Ile Lys Glu Glu Asn Pro Glu Ile Trp Thr Pro Glu Leu Gln Gln Glu245 250 255Ile Val Glu Leu Ile Lys Arg Ala Val Asp Leu Glu Ile Glu Tyr Ala260 265 270Gln Asp Cys Leu Pro Arg Gly Ile Leu Gly Leu Arg Ala Ser Met Phe275 280 285Ile Asp Tyr Val Gln His Ile Ala Asp Arg Arg Leu Glu Arg Ile Gly290 295 300Leu Lys Pro Ile Tyr His Thr Lys Asn Pro Phe Pro Trp Met Ser Glu305 310 315 320Thr Ile Asp Leu Asn Lys Glu Lys Asn Phe Phe Glu Thr Arg Val Ile325 330 335Glu Tyr Gln His Ala Ala Ser Leu Thr Trp340 345971053PRTChlamydia trachomatis serovar D 97Met Phe Thr Arg Ile Val Met Val Asp Leu Gln Glu Lys Gln Cys Thr5 10 15Ile Val Lys Arg Asn Gly Met Phe Val Pro Phe Asp Arg Asn Arg Ile20 25 30Phe Gln Ala Leu Glu Ala Ala Phe Arg Asp Thr Arg Arg Ile Asp Asp35 40 45His Met Pro Leu Pro Glu Asp Leu Glu Ser Ser Ile Arg Ser Ile Thr50 55 60His Gln Val Val Lys Glu Val Val Gln Lys Ile Thr Asp Gly Gln Val65 70 75 80Val Thr Val Glu Arg Ile Gln Asp Met Val Glu Ser Gln Leu Tyr Val85 90 95Asn Gly Leu Gln Asp Val Ala Arg Asp Tyr Ile Val Tyr Arg Asp Asp100 105 110Arg Lys Ala His Arg Lys Lys Ser Trp Gln Ser Leu Ser Val Val Arg115 120 125Arg Cys Gly Thr Val Val His Phe Asn Pro Met Lys Ile Ser Ala Ala130 135 140Leu Glu Lys Ala Phe Arg Ala Thr Asp Lys Thr Glu Gly Met Thr Pro145 150 155 160Ser Ser Val Arg Glu Glu Ile Asn Ala Leu Thr Gln Asn Ile Val Ala165 170 175Glu Ile Glu Glu Cys Cys Pro Gln Gln Asp Arg Arg Ile Asp Ile Glu180 185 190Lys Ile Gln Asp Ile Val Glu Gln Gln Leu Met Val Val Gly His Tyr195 200 205Ala Val Ala Lys Asn Tyr Ile Leu Tyr Arg Glu Ala Arg Ala Arg Val210 215 220Arg Asp Asn Arg Glu Glu Asp Gly Ser Thr Glu Lys Thr Ile Ala Glu225 230 235 240Glu Ala Val Glu Val Leu Ser Lys Asp Gly Ser Thr Tyr Thr Met Thr245 250 255His Ser Gln Leu Leu Ala His Leu Ala Arg Ala Cys Ser Arg Phe Pro260 265 270Glu Thr Thr Asp Ala Ala Leu Leu Thr Asp Met Ala Phe Ala Asn Phe275 280 285Tyr Ser Gly Ile Lys Glu Ser Glu Val Val Leu Ala Cys Ile Met Ala290 295 300Ala Arg Ala Asn Ile Glu Lys Glu Pro Asp Tyr Ala Phe Val Ala Ala305 310 315 320Glu Leu Leu Leu Asp Val Val Tyr Lys Glu Ala Leu Gly Lys Ser Lys325 330 335Tyr Ala Glu Asp Leu Glu Gln Ala His Arg Asp His Phe Lys Arg Tyr340 345 350Ile Ala Glu Gly Asp Thr Tyr Arg Leu Asn Ala Glu Leu Lys His Leu355 360 365Phe Asp Leu Asp Ala Leu Ala Asp Ala Met Asp Leu Ser Arg Asp Leu370 375 380Gln Phe Ser Tyr Met Gly Ile Gln Asn Leu Tyr Asp Arg Tyr Phe Asn385 390 395 400His His Glu Gly Cys Arg Leu Glu Thr Pro Gln Ile Phe Trp Met Arg405 410 415Val Ala Met Gly Leu Ala Leu Asn Glu Gln Asp Lys Thr Ser Trp Ala420 425 430Ile Thr Phe Tyr Asn Leu Leu Ser Thr Phe Arg Tyr Thr Pro Ala Thr435 440 445Pro Thr Leu Phe Asn Ser Gly Met Arg His Ser Gln Leu Ser Ser Cys450 455 460Tyr Leu Ser Thr Val Gln Asp Asn Leu Val Asn Ile Tyr Lys Val Ile465 470 475 480Ala Asp Asn Ala Met Leu Ser Lys Trp Ala Gly Gly Ile Gly Asn Asp485 490 495Trp Thr Ala Ile Arg Ala Thr Gly Ala Leu Ile Lys Gly Thr Asn Gly500 505 510Arg Ser Gln Gly Val Ile Pro Phe Ile Lys Val Thr Asn Asp Thr Ala515 520 525Val Ala Val Asn Gln Gly Gly Lys Arg Lys Gly Ala Val Cys Val Tyr530 535 540Leu Glu Val Trp His Leu Asp Tyr Glu Asp Phe Leu Glu Leu Arg Lys545 550 555 560Asn Thr Gly Asp Glu Arg Arg Arg Ala His Asp Val Asn Ile Ala Ser565 570 575Trp Ile Pro Asp Leu Phe Phe Lys Arg Leu Gln Gln Lys Gly Thr Trp580 585 590Thr Leu Phe Ser Pro Asp Asp Val Pro Gly Leu His Asp Ala Tyr Gly595 600 605Glu Glu Phe Glu Arg Leu Tyr Glu Glu Tyr Glu Arg Lys Val Asp Thr610 615 620Gly Glu Ile Arg Leu Phe Lys Lys Val Glu Ala Glu Asp Leu Trp Arg625 630 635 640Lys Met Leu Ser Met Leu Phe Glu Thr Gly His Pro Trp Met Thr Phe645 650 655Lys Asp Pro Ser Asn Ile Arg Ser Ala Gln Asp His Lys Gly Val Val660 665 670Arg Cys Ser Asn Leu Cys Thr Glu Ile Leu Leu Asn Cys Ser Glu Thr675 680 685Glu Thr Ala Val Cys Asn Leu Gly Ser Ile Asn Leu Val Gln His Ile690 695 700Val Gly Asp Gly Leu Asp Glu Glu Lys Leu Ser Glu Thr Ile Ser Ile705 710 715 720Ala Val Arg Met Leu Asp Asn Val Ile Asp Ile Asn Phe Tyr Pro Thr725 730 735Lys Glu Ala Lys Glu Ala Asn Phe Ala His Arg Ala Ile Gly Leu Gly740 745 750Val Met Gly Phe Gln Asp Ala Leu Tyr Lys Leu Asp Ile Ser Tyr Ala755 760 765Ser Gln Glu Ala Val Glu Phe Ala Asp Tyr Ser Ser Glu Leu Ile Ser770 775 780Tyr Tyr Ala Ile Gln Ala Ser Cys Leu Leu Ala Lys Glu Arg Gly Thr785 790 795 800Tyr Ser Ser Tyr Lys Gly Ser Lys Trp Asp Arg Gly Leu Leu Pro Ile805 810 815Asp Thr Ile Gln Leu Leu Ala Asn Tyr Arg Gly Glu Ala Asn Leu Gln820 825 830Met Asp Thr Ser Ser Arg Lys Asp Trp Glu Pro Ile Arg Ser Leu Val835 840 845Lys Glu His Gly Met Arg His Cys Gln Leu Met Ala Ile Ala Pro Thr850 855 860Ala Thr Ile Ser Asn Ile Ile Gly Val Thr Gln Ser Ile Glu Pro Thr865 870 875 880Tyr Lys His Leu Phe Val Lys Ser Asn Leu Ser Gly Glu Phe Thr Ile885 890 895Pro Asn Val Tyr Leu Ile Glu Lys Leu Lys Lys Leu Gly Ile Trp Asp900 905 910Ala Asp Met Leu Asp Asp Leu Lys Tyr Phe Asp Gly Ser Leu Leu Glu915 920 925Ile Glu Arg Ile Pro Asp His Leu Lys His Ile Phe Leu Thr Ala Phe930 935 940Glu Ile Glu Pro Glu Trp Ile Ile Glu Cys Ala Ser Arg Arg Gln Lys945 950 955 960Trp Ile Asp Met Gly Gln Ser Leu Asn Leu Tyr Leu Ala Gln Pro Asp965 970 975Gly Lys Lys Leu Ser Asn Met Tyr Leu Thr Ala Trp Lys Lys Gly Leu980 985 990Lys Thr Thr Tyr Tyr Leu Arg Ser Ser Ser Ala Thr Thr Val Glu Lys995 1000 1005Ser Phe Val Asp Ile Asn Lys Arg Gly Ile Gln Pro Arg Trp Met Lys1010 1015 1020Asn Lys Ser Ala Ser Ala Gly Ile Ile Val Glu Arg Ala Lys Lys Ala1025 1030 1035 1040Pro Val Cys Ser Leu Glu Glu Gly Cys Glu Ala Cys Gln1045 1050981531PRTChlamydia trachomatis serovar D 98Met Ser Ser Glu Lys Asp Ile Lys Ser Thr Cys Ser Lys Phe Ser Leu5 10 15Ser Val Val Ala Ala Ile Leu Ala Ser Val Ser Gly Leu Ala Ser Cys20 25 30Val Asp Leu His Ala Gly Gly Gln Ser Val Asn Glu Leu Val Tyr Val35 40 45Gly Pro Gln Ala Val Leu Leu Leu Asp Gln Ile Arg Asp Leu Phe Val50 55 60Gly Ser Lys Asp Ser Gln Ala Glu Gly Gln Tyr Arg Leu Ile Val Gly65 70 75 80Asp Pro Ser Ser Phe Gln Glu Lys Asp Ala Asp Thr Leu Pro Gly Lys85 90 95Val Glu Gln Ser Thr Leu Phe Ser Val Thr Asn Pro Val Val Phe Gln100 105 110Gly Val Asp Gln Gln Asp Gln Val Ser Ser Gln Gly Leu Ile Cys Ser115 120 125Phe Thr Ser Ser Asn Leu Asp Ser Pro Arg Asp Gly Glu Ser Phe Leu130 135 140Gly Ile Ala Phe Val Gly Asp Ser Ser Lys Ala Gly Ile Thr Leu Thr145 150 155 160Asp Val Lys Ala Ser Leu Ser Gly Ala Ala Leu Tyr Ser Thr Glu Asp165 170 175Leu Ile Phe Glu Lys Ile Lys Gly Gly Leu Glu Phe Ala Ser Cys Ser180 185 190Ser Leu Glu Gln Gly Gly Ala Cys Ala Ala Gln Ser Ile Leu Ile His195 200 205Asp Cys Gln Gly Leu Gln Val Lys His Cys Thr Thr Ala Val Asn Ala210 215 220Glu Gly Ser Ser Ala Asn Asp His Leu Gly Phe Gly Gly Gly Ala Phe225 230 235 240Phe Val Thr Gly Ser Leu Ser Gly Glu Lys Ser Leu Tyr Met Pro Ala245 250 255Gly Asp Met Val Val Ala Asn Cys Asp Gly Ala Ile Ser Phe Glu Gly260 265 270Asn Ser Ala Asn

Phe Ala Asn Gly Gly Ala Ile Ala Ala Ser Gly Lys275 280 285Val Leu Phe Val Ala Asn Asp Lys Lys Thr Ser Phe Ile Glu Asn Arg290 295 300Ala Leu Ser Gly Gly Ala Ile Ala Ala Ser Ser Asp Ile Ala Phe Gln305 310 315 320Asn Cys Ala Glu Leu Val Phe Lys Gly Asn Cys Ala Ile Gly Thr Glu325 330 335Asp Lys Gly Ser Leu Gly Gly Gly Ala Ile Ser Ser Leu Gly Thr Val340 345 350Leu Leu Gln Gly Asn His Gly Ile Thr Cys Asp Lys Asn Glu Ser Ala355 360 365Ser Gln Gly Gly Ala Ile Phe Gly Lys Asn Cys Gln Ile Ser Asp Asn370 375 380Glu Gly Pro Val Val Phe Arg Asp Ser Thr Ala Cys Leu Gly Gly Gly385 390 395 400Ala Ile Ala Ala Gln Glu Ile Val Ser Ile Gln Asn Asn Gln Ala Gly405 410 415Ile Ser Phe Glu Gly Gly Lys Ala Ser Phe Gly Gly Gly Ile Ala Cys420 425 430Gly Ser Phe Ser Ser Ala Gly Gly Ala Ser Val Leu Gly Thr Ile Asp435 440 445Ile Ser Lys Asn Leu Gly Ala Ile Ser Phe Ser Arg Thr Leu Cys Thr450 455 460Thr Ser Asp Leu Gly Gln Met Glu Tyr Gln Gly Gly Gly Ala Leu Phe465 470 475 480Gly Glu Asn Ile Ser Leu Ser Glu Asn Ala Gly Val Leu Thr Phe Lys485 490 495Asp Asn Ile Val Lys Thr Phe Ala Ser Asn Gly Lys Ile Leu Gly Gly500 505 510Gly Ala Ile Leu Ala Thr Gly Lys Val Glu Ile Thr Asn Asn Ser Glu515 520 525Gly Ile Ser Phe Thr Gly Asn Ala Arg Ala Pro Gln Ala Leu Pro Thr530 535 540Gln Glu Glu Phe Pro Leu Phe Ser Lys Lys Glu Gly Arg Pro Leu Ser545 550 555 560Ser Gly Tyr Ser Gly Gly Gly Ala Ile Leu Gly Arg Glu Val Ala Ile565 570 575Leu His Asn Ala Ala Val Val Phe Glu Gln Asn Arg Leu Gln Cys Ser580 585 590Glu Glu Glu Ala Thr Leu Leu Gly Cys Cys Gly Gly Gly Ala Val His595 600 605Gly Met Asp Ser Thr Ser Ile Val Gly Asn Ser Ser Val Arg Phe Gly610 615 620Asn Asn Tyr Ala Met Gly Gln Gly Val Ser Gly Gly Ala Leu Leu Ser625 630 635 640Lys Thr Val Gln Leu Ala Gly Asn Gly Ser Val Asp Phe Ser Arg Asn645 650 655Ile Ala Ser Leu Gly Gly Gly Ala Leu Gln Ala Ser Glu Gly Asn Cys660 665 670Glu Leu Val Asp Asn Gly Tyr Val Leu Phe Arg Asp Asn Arg Gly Arg675 680 685Val Tyr Gly Gly Ala Ile Ser Cys Leu Arg Gly Asp Val Val Ile Ser690 695 700Gly Asn Lys Gly Arg Val Glu Phe Lys Asp Asn Ile Ala Thr Arg Leu705 710 715 720Tyr Val Glu Glu Thr Val Glu Lys Val Glu Glu Val Glu Pro Ala Pro725 730 735Glu Gln Lys Asp Asn Asn Glu Leu Ser Phe Leu Gly Arg Ala Glu Gln740 745 750Ser Phe Ile Thr Ala Ala Asn Gln Ala Leu Phe Ala Ser Glu Asp Gly755 760 765Asp Leu Ser Pro Glu Ser Ser Ile Ser Ser Glu Glu Leu Ala Lys Arg770 775 780Arg Glu Cys Ala Gly Gly Ala Ile Phe Ala Lys Arg Val Arg Ile Val785 790 795 800Asp Asn Gln Glu Ala Val Val Phe Ser Asn Asn Phe Ser Asp Ile Tyr805 810 815Gly Gly Ala Ile Phe Thr Gly Ser Leu Arg Glu Glu Asp Lys Leu Asp820 825 830Gly Gln Ile Pro Glu Val Leu Ile Ser Gly Asn Ala Gly Asp Val Val835 840 845Phe Ser Gly Asn Ser Ser Lys Arg Asp Glu His Leu Pro His Thr Gly850 855 860Gly Gly Ala Ile Cys Thr Gln Asn Leu Thr Ile Ser Gln Asn Thr Gly865 870 875 880Asn Val Leu Phe Tyr Asn Asn Val Ala Cys Ser Gly Gly Ala Val Arg885 890 895Ile Glu Asp His Gly Asn Val Leu Leu Glu Ala Phe Gly Gly Asp Ile900 905 910Val Phe Lys Gly Asn Ser Ser Phe Arg Ala Gln Gly Ser Asp Ala Ile915 920 925Tyr Phe Ala Gly Lys Glu Ser His Ile Thr Ala Leu Asn Ala Thr Glu930 935 940Gly His Ala Ile Val Phe His Asp Ala Leu Val Phe Glu Asn Leu Glu945 950 955 960Glu Arg Lys Ser Ala Glu Val Leu Leu Ile Asn Ser Arg Glu Asn Pro965 970 975Gly Tyr Thr Gly Ser Ile Arg Phe Leu Glu Ala Glu Ser Lys Val Pro980 985 990Gln Cys Ile His Val Gln Gln Gly Ser Leu Glu Leu Leu Asn Gly Ala995 1000 1005Thr Leu Cys Ser Tyr Gly Phe Lys Gln Asp Ala Gly Ala Lys Leu Val1010 1015 1020Leu Ala Ala Gly Ala Lys Leu Lys Ile Leu Asp Ser Gly Thr Pro Val1025 1030 1035 1040Gln Gln Gly His Ala Ile Ser Lys Pro Glu Ala Glu Ile Glu Ser Ser1045 1050 1055Ser Glu Pro Glu Gly Ala His Ser Leu Trp Ile Ala Lys Asn Ala Gln1060 1065 1070Thr Thr Val Pro Met Val Asp Ile His Thr Ile Ser Val Asp Leu Ala1075 1080 1085Ser Phe Ser Ser Ser Gln Gln Glu Gly Thr Val Glu Ala Pro Gln Val1090 1095 1100Ile Val Pro Gly Gly Ser Tyr Val Arg Ser Gly Glu Leu Asn Leu Glu1105 1110 1115 1120Leu Val Asn Thr Thr Gly Thr Gly Tyr Glu Asn His Ala Leu Leu Lys1125 1130 1135Asn Glu Ala Lys Val Pro Leu Met Ser Phe Val Ala Ser Gly Asp Glu1140 1145 1150Ala Ser Ala Glu Ile Ser Asn Leu Ser Val Ser Asp Leu Gln Ile His1155 1160 1165Val Val Thr Pro Glu Ile Glu Glu Asp Thr Tyr Gly His Met Gly Asp1170 1175 1180Trp Ser Glu Ala Lys Ile Gln Asp Gly Thr Leu Val Ile Ser Trp Asn1185 1190 1195 1200Pro Thr Gly Tyr Arg Leu Asp Pro Gln Lys Ala Gly Ala Leu Val Phe1205 1210 1215Asn Ala Leu Trp Glu Glu Gly Ala Val Leu Ser Ala Leu Lys Asn Ala1220 1225 1230Arg Phe Ala His Asn Leu Thr Ala Gln Arg Met Glu Phe Asp Tyr Ser1235 1240 1245Thr Asn Val Trp Gly Phe Ala Phe Gly Gly Phe Arg Thr Leu Ser Ala1250 1255 1260Glu Asn Leu Val Ala Ile Asp Gly Tyr Lys Gly Ala Tyr Gly Gly Ala1265 1270 1275 1280Ser Ala Gly Val Asp Ile Gln Leu Met Glu Asp Phe Val Leu Gly Val1285 1290 1295Ser Gly Ala Ala Phe Leu Gly Lys Met Asp Ser Gln Lys Phe Asp Ala1300 1305 1310Glu Val Ser Arg Lys Gly Val Val Gly Ser Val Tyr Thr Gly Phe Leu1315 1320 1325Ala Gly Ser Trp Phe Phe Lys Gly Gln Tyr Ser Leu Gly Glu Thr Gln1330 1335 1340Asn Asp Met Lys Thr Arg Tyr Gly Val Leu Gly Glu Ser Ser Ala Ser1345 1350 1355 1360Trp Thr Ser Arg Gly Val Leu Ala Asp Ala Leu Val Glu Tyr Arg Ser1365 1370 1375Leu Val Gly Pro Val Arg Pro Thr Phe Tyr Ala Leu His Phe Asn Pro1380 1385 1390Tyr Val Glu Val Ser Tyr Ala Ser Met Lys Phe Pro Gly Phe Thr Glu1395 1400 1405Gln Gly Arg Glu Ala Arg Ser Phe Glu Asp Ala Ser Leu Thr Asn Ile1410 1415 1420Thr Ile Pro Leu Gly Met Lys Phe Glu Leu Ala Phe Ile Lys Gly Gln1425 1430 1435 1440Phe Ser Glu Val Asn Ser Leu Gly Ile Ser Tyr Ala Trp Glu Ala Tyr1445 1450 1455Arg Lys Val Glu Gly Gly Ala Val Gln Leu Leu Glu Ala Gly Phe Asp1460 1465 1470Trp Glu Gly Ala Pro Met Asp Leu Pro Arg Gln Glu Leu Arg Val Ala1475 1480 1485Leu Glu Asn Asn Thr Glu Trp Ser Ser Tyr Phe Ser Thr Val Leu Gly1490 1495 1500Leu Thr Ala Phe Cys Gly Gly Phe Thr Ser Thr Asp Ser Lys Leu Gly1505 1510 1515 1520Tyr Glu Ala Asn Thr Gly Leu Arg Leu Ile Phe1525 153099474PRTChlamydia trachomatis serovar D 99Met Lys Ile Ile His Thr Ala Ile Glu Phe Ala Pro Val Ile Lys Ala5 10 15Gly Gly Leu Gly Asp Ala Leu Tyr Gly Leu Ala Lys Ala Leu Ala Ala20 25 30Asn His Thr Thr Glu Val Val Ile Pro Leu Tyr Pro Lys Leu Phe Thr35 40 45Leu Pro Lys Glu Gln Asp Leu Cys Ser Ile Gln Lys Leu Ser Tyr Phe50 55 60Phe Ala Gly Glu Gln Glu Ala Thr Ala Phe Ser Tyr Phe Tyr Glu Gly65 70 75 80Ile Lys Val Thr Leu Phe Lys Leu Asp Thr Gln Pro Glu Leu Phe Glu85 90 95Asn Ala Glu Thr Ile Tyr Thr Ser Asp Asp Ala Phe Arg Phe Cys Ala100 105 110Phe Ser Ala Ala Ala Ala Ser Tyr Ile Gln Lys Glu Gly Ala Asn Ile115 120 125Val His Leu His Asp Trp His Thr Gly Leu Val Ala Gly Leu Leu Lys130 135 140Gln Gln Pro Cys Ser Gln Leu Gln Lys Ile Val Leu Thr Leu His Asn145 150 155 160Phe Gly Tyr Arg Gly Tyr Thr Thr Arg Glu Ile Leu Glu Ala Ser Ser165 170 175Leu Asn Glu Phe Tyr Ile Ser Gln Tyr Gln Leu Phe Arg Asp Pro Gln180 185 190Thr Cys Val Leu Leu Lys Gly Ala Leu Tyr Cys Ser Asp Phe Val Thr195 200 205Thr Val Ser Pro Thr Tyr Ala Lys Glu Ile Leu Glu Asp Tyr Ser Asp210 215 220Tyr Glu Ile His Asp Ala Ile Thr Ala Arg Gln His His Leu Arg Gly225 230 235 240Ile Leu Asn Gly Ile Asp Thr Thr Ile Trp Gly Pro Glu Thr Asp Pro245 250 255Asn Leu Ala Lys Asn Tyr Thr Lys Glu Leu Phe Glu Thr Pro Ser Ile260 265 270Phe Phe Glu Ala Lys Ala Glu Asn Lys Lys Ala Leu Tyr Glu Arg Leu275 280 285Gly Leu Ser Leu Glu His Ser Pro Cys Val Cys Ile Ile Ser Arg Ile290 295 300Ala Glu Gln Lys Gly Pro His Phe Met Lys Gln Ala Ile Leu His Ala305 310 315 320Leu Glu Asn Ala Tyr Thr Leu Ile Ile Ile Gly Thr Cys Tyr Gly Asn325 330 335Gln Leu His Glu Glu Phe Ala Asn Leu Gln Glu Ser Leu Ala Asn Ser340 345 350Pro Asp Val Arg Ile Leu Leu Thr Tyr Ser Asp Val Leu Ala Arg Gln355 360 365Ile Phe Ala Ala Ala Asp Met Ile Cys Ile Pro Ser Met Phe Glu Pro370 375 380Cys Gly Leu Thr Gln Met Ile Gly Met Arg Tyr Gly Thr Val Pro Leu385 390 395 400Val Arg Ala Thr Gly Gly Leu Ala Asp Thr Val Ala Asn Gly Ile Asn405 410 415Gly Phe Ser Phe Phe Asn Pro His Asp Phe Tyr Glu Phe Arg Asn Met420 425 430Leu Ser Glu Ala Val Thr Thr Tyr Arg Thr Asn His Asp Lys Trp Gln435 440 445His Ile Val Arg Ala Cys Leu Asp Phe Ser Ser Asp Leu Glu Thr Ala450 455 460Ala Asn Lys Tyr Leu Glu Ile Tyr Lys Gln465 470100393PRTChlamydia trachomatis serovar D 100Met Lys Lys Leu Leu Lys Ser Val Leu Val Phe Ala Ala Leu Ser Ser5 10 15Ala Ser Ser Leu Gln Ala Leu Pro Val Gly Asn Pro Ala Glu Pro Ser20 25 30Leu Met Ile Asp Gly Ile Leu Trp Glu Gly Phe Gly Gly Asp Pro Cys35 40 45Asp Pro Cys Ala Thr Trp Cys Asp Ala Ile Ser Met Arg Val Gly Tyr50 55 60Tyr Gly Asp Phe Val Phe Asp Arg Val Leu Lys Thr Asp Val Asn Lys65 70 75 80Glu Phe Gln Met Gly Ala Lys Pro Thr Thr Asp Thr Gly Asn Ser Ala85 90 95Ala Pro Ser Thr Leu Thr Ala Arg Glu Asn Pro Ala Tyr Gly Arg His100 105 110Met Gln Asp Ala Glu Met Phe Thr Asn Ala Ala Cys Met Ala Leu Asn115 120 125Ile Trp Asp Arg Phe Asp Val Phe Cys Thr Leu Gly Ala Thr Ser Gly130 135 140Tyr Leu Lys Gly Asn Ser Ala Ser Phe Asn Leu Val Gly Leu Phe Gly145 150 155 160Asp Asn Glu Asn Gln Lys Thr Val Lys Ala Glu Ser Val Pro Asn Met165 170 175Ser Phe Asp Gln Ser Val Val Glu Leu Tyr Thr Asp Thr Thr Phe Ala180 185 190Trp Ser Val Gly Ala Arg Ala Ala Leu Trp Glu Cys Gly Cys Ala Thr195 200 205Leu Gly Ala Ser Phe Gln Tyr Ala Gln Ser Lys Pro Lys Val Glu Glu210 215 220Leu Asn Val Leu Cys Asn Ala Ala Glu Phe Thr Ile Asn Lys Pro Lys225 230 235 240Gly Tyr Val Gly Lys Glu Phe Pro Leu Asp Leu Thr Ala Gly Thr Asp245 250 255Ala Ala Thr Gly Thr Lys Asp Ala Ser Ile Asp Tyr His Glu Trp Gln260 265 270Ala Ser Leu Ala Leu Ser Tyr Arg Leu Asn Met Phe Thr Pro Tyr Ile275 280 285Gly Val Lys Trp Ser Arg Ala Ser Phe Asp Ala Asp Thr Ile Arg Ile290 295 300Ala Gln Pro Lys Ser Ala Thr Ala Ile Phe Asp Thr Thr Thr Leu Asn305 310 315 320Pro Thr Ile Ala Gly Ala Gly Asp Val Lys Thr Gly Ala Glu Gly Gln325 330 335Leu Gly Asp Thr Met Gln Ile Val Ser Leu Gln Leu Asn Lys Met Lys340 345 350Ser Arg Lys Ser Cys Gly Ile Ala Val Gly Thr Thr Ile Val Asp Ala355 360 365Asp Lys Tyr Ala Val Thr Val Glu Thr Arg Leu Ile Asp Glu Arg Ala370 375 380Ala His Val Asn Ala Gln Phe Arg Phe385 390101195PRTChlamydia trachomatis serovar D 101Met Gly Ser Leu Val Gly Arg Gln Ala Pro Asp Phe Ser Gly Lys Ala5 10 15Val Val Cys Gly Glu Glu Lys Glu Ile Ser Leu Ala Asp Phe Arg Gly20 25 30Lys Tyr Val Val Leu Phe Phe Tyr Pro Lys Asp Phe Thr Tyr Val Cys35 40 45Pro Thr Glu Leu His Ala Phe Gln Asp Arg Leu Val Asp Phe Glu Glu50 55 60Arg Gly Ala Val Val Leu Gly Cys Ser Val Asp Asp Ile Glu Thr His65 70 75 80Ser Arg Trp Leu Ala Val Ala Arg Asn Ala Gly Gly Ile Glu Gly Thr85 90 95Glu Tyr Pro Leu Leu Ala Asp Pro Ser Phe Lys Ile Ser Glu Ala Phe100 105 110Gly Val Leu Asn Pro Glu Gly Ser Leu Ala Leu Arg Ala Thr Phe Leu115 120 125Ile Asp Lys Tyr Gly Val Val Arg His Ala Val Ile Asn Asp Leu Pro130 135 140Leu Gly Arg Ser Ile Asp Glu Glu Leu Arg Ile Leu Asp Ser Leu Ile145 150 155 160Phe Phe Glu Asn His Gly Met Val Cys Pro Ala Asn Trp Arg Ser Gly165 170 175Glu Arg Gly Met Val Pro Ser Glu Glu Gly Leu Lys Glu Tyr Phe Gln180 185 190Thr Met Asp19510286PRTChlamydia trachomatis serovar D 102Met Ser Gln Asn Lys Asn Ser Ala Phe Met Gln Pro Val Asn Val Ser5 10 15Ala Asp Leu Ala Ala Ile Val Gly Ala Gly Pro Met Pro Arg Thr Glu20 25 30Ile Ile Lys Lys Met Trp Asp Tyr Ile Lys Lys Asn Gly Leu Gln Asp35 40 45Pro Thr Asn Lys Arg Asn Ile Asn Pro Asp Asp Lys Leu Ala Lys Val50 55 60Phe Gly Thr Glu Lys Pro Ile Asp Met Phe Gln Met Thr Lys Met Val65 70 75 80Ser Gln His Ile Ile Lys85103394PRTChlamydia trachomatis serovar D 103Met Ser Lys Glu Thr Phe Gln Arg Asn Lys Pro His Ile Asn Ile Gly5 10 15Thr Ile Gly His Val Asp His Gly Lys Thr Thr Leu Thr Ala Ala Ile20 25 30Thr Arg Ala Leu Ser Gly Asp Gly Leu Ala Asp Phe Arg Asp Tyr Ser35 40 45Ser Ile Asp Asn Thr Pro Glu Glu Lys Ala Arg Gly Ile Thr Ile Asn50 55 60Ala Ser His Val Glu Tyr Glu Thr Ala Asn Arg His Tyr Ala His Val65 70 75 80Asp Cys Pro Gly His Ala Asp Tyr Val Lys Asn Met Ile Thr Gly Ala85 90 95Ala Gln Met Asp Gly Ala Ile Leu Val Val Ser Ala Thr Asp Gly Ala100 105 110Met Pro Gln Thr Lys Glu His Ile Leu Leu Ala Arg Gln Val Gly Val115 120 125Pro Tyr Ile Val Val Phe Leu Asn Lys Ile Asp Met Ile Ser Glu Glu130 135 140Asp Ala Glu Leu Val Asp Leu Val Glu Met Glu Leu Val Glu Leu Leu145 150 155 160Glu Glu Lys Gly Tyr Lys Gly Cys Pro Ile Ile Arg Gly Ser Ala Leu165 170 175Lys Ala Leu Glu Gly Asp Ala Ala Tyr Ile Glu Lys Val Arg Glu Leu180 185 190Met Gln Ala Val Asp Asp Asn Ile Pro Thr Pro Glu Arg Glu Ile Asp195 200 205Lys Pro Phe Leu Met Pro Ile Glu Asp Val Phe Ser Ile Ser Gly Arg210 215 220Gly Thr Val Val Thr Gly Arg Ile Glu Arg Gly Ile Val Lys Val Ser225

230 235 240Asp Lys Val Gln Leu Val Gly Leu Arg Asp Thr Lys Glu Thr Ile Val245 250 255Thr Gly Val Glu Met Phe Arg Lys Glu Leu Pro Glu Gly Arg Ala Gly260 265 270Glu Asn Val Gly Leu Leu Leu Arg Gly Ile Gly Lys Asn Asp Val Glu275 280 285Arg Gly Met Val Val Cys Leu Pro Asn Ser Val Lys Pro His Thr Gln290 295 300Phe Lys Cys Ala Val Tyr Val Leu Gln Lys Glu Glu Gly Gly Arg His305 310 315 320Lys Pro Phe Phe Thr Gly Tyr Arg Pro Gln Phe Phe Phe Arg Thr Thr325 330 335Asp Val Thr Gly Val Val Thr Leu Pro Glu Gly Ile Glu Met Val Met340 345 350Pro Gly Asp Asn Val Glu Phe Glu Val Gln Leu Ile Ser Pro Val Ala355 360 365Leu Glu Glu Gly Met Arg Phe Ala Ile Arg Glu Gly Gly Arg Thr Ile370 375 380Gly Ala Gly Thr Ile Ser Lys Ile Ile Ala385 39010482PRTChlamydia trachomatis serovar D 104Met Gly Gln Asp His Arg Arg Lys Phe Leu Lys Lys Val Ser Phe Val5 10 15Lys Lys Gln Ala Ala Phe Ala Gly Asn Phe Ile Glu Glu Ile Lys Lys20 25 30Ile Glu Trp Val Asn Lys Arg Asp Leu Lys Arg Tyr Val Lys Ile Val35 40 45Leu Met Asn Ile Phe Gly Phe Gly Phe Ser Ile Tyr Cys Val Asp Leu50 55 60Ala Leu Arg Lys Ser Leu Ser Leu Phe Gly Lys Val Thr Ser Phe Phe65 70 75 80Phe Gly105379PRTChlamydia trachomatis serovar D 105Met Val Ile Pro Lys Val Asp Leu Gly Glu Ser Ala Val Met Met Gly5 10 15Tyr Lys Leu Thr Ser Gln Leu Ala Met Leu Ser Ile Leu Leu Thr Phe20 25 30Thr His Thr Met Gly His Ala Ser Gln Met Ser Gln Thr Leu Pro Thr35 40 45Ile Ile Glu Ala Gln Ala Glu Glu Ala Leu Gln Ala Asp Arg Gly Val50 55 60Ala Gly Gln Ala Leu Lys Lys Leu Arg Lys Lys Arg Cys Ala Ser Arg65 70 75 80Lys Ser Ala Cys Lys Ala Ser Phe Lys Lys Lys Asp Phe Phe Ser Cys85 90 95Ile Thr Asn Gly Leu Phe Ser Gly Asn His Glu Gln Arg Leu Thr Ala100 105 110Lys Lys Glu Asn Lys Ala Arg Gly Lys Glu Pro Arg Val Val Val Gln115 120 125Thr Thr Lys Lys Arg Gln Ile Thr Gln Ser Glu Lys Glu Phe Phe Asp130 135 140Trp Leu Cys Asn Ser Lys Arg Glu Arg Lys Leu Leu Lys Lys Lys Pro145 150 155 160Val Asn Thr Ser Leu Ala Lys Ser Glu Glu Leu Ser Pro Lys Glu Ala165 170 175Ala Ile Ala Ala Ala Arg Ala Ser Leu Ser Pro Glu Glu Lys Arg Gln180 185 190Leu Ile Arg Glu Trp Leu Ala Glu Glu Lys Thr Ala Arg Lys Ser Gly195 200 205Arg Ala Ala Cys Ala Val Ser Glu Asn Leu Lys Arg Asp Gly Ser Ile210 215 220Thr Ser Thr Leu Arg Tyr Asp Ala Glu Lys Ala Leu Thr Thr Arg Val225 230 235 240Lys Arg Asn Glu Asn Ser Val Asn Ala Arg Ala Arg Gln Arg Ala Ala245 250 255Leu Gln Lys Ala Lys Lys Ala Lys Thr Glu Lys Pro Glu Ala Asp Glu260 265 270Lys Ala Ala Glu Ala Val Ala Ala Ala Pro Thr Lys Gln Ala His Lys275 280 285Glu Pro Glu Asn Tyr Phe Ala Ala Thr Ala Ser Thr Asn Asn Thr Asn290 295 300Val Met Ser Tyr Leu Asn Ala His Gln Tyr Arg Cys Asp Ser Ser Glu305 310 315 320Thr Asp Trp Pro Cys Ser Ser Cys Val Thr Lys Arg Arg Ala Asn Phe325 330 335Gly Ile Ser Val Cys Thr Met Val Val Thr Val Ile Ala Met Ile Val340 345 350Gly Ala Val Ile Ile Ser Asn Ala Thr Asp Ser Thr Val Ala Gly Ser355 360 365Ser Gly Thr Gly Gly Gly Gly Ser Thr Gln Pro370 375106563PRTChlamydia trachomatis serovar D 106Met Val Tyr Phe Arg Ala His Gln Pro Arg His Thr Pro Lys Thr Phe5 10 15Pro Leu Glu Val His His Ser Phe Ser Asp Lys His Pro Gln Ile Ala20 25 30Lys Ala Met Arg Ile Thr Gly Ile Ala Leu Ala Ala Leu Ser Leu Leu35 40 45Ala Val Val Ala Cys Val Ile Ala Val Ser Ala Gly Gly Ala Ala Ile50 55 60Pro Leu Ala Val Ile Ser Gly Ile Ala Val Met Ser Gly Leu Leu Ser65 70 75 80Ala Ala Thr Ile Ile Cys Ser Ala Lys Lys Ala Leu Ala Gln Arg Lys85 90 95Gln Lys Gln Leu Glu Glu Ser Leu Pro Leu Asp Asn Ala Thr Glu His100 105 110Val Ser Tyr Leu Thr Ser Asp Thr Ser Tyr Phe Asn Gln Trp Glu Ser115 120 125Leu Gly Ala Leu Asn Lys Gln Leu Ser Gln Ile Asp Leu Thr Ile Gln130 135 140Ala Pro Glu Lys Lys Leu Leu Lys Glu Val Leu Gly Ser Arg Tyr Asp145 150 155 160Ser Ile Asn His Ser Ile Glu Glu Ile Ser Asp Arg Phe Thr Lys Met165 170 175Leu Ser Leu Leu Arg Leu Arg Glu His Phe Tyr Arg Gly Glu Glu Arg180 185 190Tyr Ala Pro Tyr Leu Ser Pro Pro Leu Leu Asn Lys Asn Arg Leu Leu195 200 205Thr Gln Ile Thr Ser Asn Met Ile Arg Met Leu Pro Lys Ser Gly Gly210 215 220Val Phe Ser Leu Lys Ala Asn Thr Leu Ser His Ala Ser Arg Thr Leu225 230 235 240Tyr Thr Val Leu Lys Val Ala Leu Ser Leu Gly Val Leu Ala Gly Val245 250 255Ala Ala Leu Ile Ile Phe Leu Pro Pro Ser Leu Pro Phe Ile Ala Val260 265 270Ile Gly Val Ser Ser Leu Ala Leu Gly Met Ala Ser Phe Leu Met Ile275 280 285Arg Gly Ile Lys Tyr Leu Leu Glu His Ser Pro Leu Asn Arg Lys Gln290 295 300Leu Ala Lys Asp Ile Gln Lys Thr Ile Gly Pro Asp Val Leu Ala Ser305 310 315 320Met Val His Tyr Gln His Gln Leu Leu Ser His Leu His Glu Thr Leu325 330 335Leu Asp Glu Ala Ile Thr Ala Arg Trp Ser Glu Pro Phe Phe Ile Glu340 345 350His Ala Asn Leu Lys Ala Lys Ile Glu Asp Leu Thr Lys Gln Tyr Asp355 360 365Ile Leu Asn Ala Ala Phe Asn Lys Ser Leu Gln Gln Asp Glu Ala Leu370 375 380Arg Ser Gln Leu Glu Lys Arg Ala Tyr Leu Phe Pro Ile Pro Asn Asn385 390 395 400Asp Glu Asn Ala Lys Thr Lys Glu Ser Gln Leu Leu Asp Ser Glu Asn405 410 415Asp Ser Asn Ser Glu Phe Gln Glu Ile Ile Asn Lys Gly Leu Glu Ala420 425 430Ala Asn Lys Arg Arg Ala Asp Ala Lys Ser Lys Phe Tyr Thr Glu Asp435 440 445Glu Thr Ser Asp Lys Ile Phe Ser Ile Trp Lys Pro Thr Lys Asn Leu450 455 460Ala Leu Glu Asp Leu Trp Arg Val His Glu Ala Cys Asn Glu Glu Gln465 470 475 480Gln Ala Leu Leu Leu Glu Asp Tyr Met Ser Tyr Lys Thr Ser Glu Cys485 490 495Gln Ala Ala Leu Gln Lys Val Ser Gln Glu Leu Lys Ala Ala Gln Lys500 505 510Ser Phe Ala Val Leu Glu Lys His Ala Leu Asp Arg Ser Tyr Glu Ser515 520 525Ser Val Ala Thr Met Asp Leu Ala Arg Ala Asn Gln Glu Thr His Arg530 535 540Leu Leu Asn Ile Leu Ser Glu Leu Gln Gln Leu Ala Gln Tyr Leu Leu545 550 555 560Asp Asn His107358PRTChlamydia trachomatis serovar D 107Met Arg Lys Thr Val Ile Val Ala Met Ser Gly Gly Val Asp Ser Ser5 10 15Val Val Ala Tyr Leu Leu Lys Lys Gln Gly Glu Tyr Asn Val Val Gly20 25 30Leu Phe Met Lys Asn Trp Gly Glu Gln Asp Glu Asn Gly Glu Cys Thr35 40 45Ala Thr Lys Asp Phe Arg Asp Val Glu Arg Ile Ala Glu Gln Leu Ser50 55 60Ile Pro Tyr Tyr Thr Val Ser Phe Ser Lys Glu Tyr Lys Glu Arg Val65 70 75 80Phe Ser Arg Phe Leu Arg Glu Tyr Ala Asn Gly Tyr Thr Pro Asn Pro85 90 95Asp Val Leu Cys Asn Arg Glu Ile Lys Phe Asp Leu Leu Gln Lys Lys100 105 110Val Arg Glu Leu Lys Gly Asp Phe Leu Ala Thr Gly His Tyr Cys Arg115 120 125Gly Gly Ala Asp Gly Thr Gly Leu Ser Arg Gly Ile Asp Pro Asn Lys130 135 140Asp Gln Ser Tyr Phe Leu Cys Gly Thr Pro Lys Asp Ala Leu Ser Asn145 150 155 160Val Leu Phe Pro Leu Gly Gly Met Tyr Lys Thr Glu Val Arg Arg Ile165 170 175Ala Gln Glu Ala Gly Leu Ala Thr Ala Thr Lys Lys Asp Ser Thr Gly180 185 190Ile Cys Phe Ile Gly Lys Arg Pro Phe Lys Ser Phe Leu Glu Gln Phe195 200 205Val Ala Asp Ser Pro Gly Asp Ile Ile Asp Phe Asp Thr Gln Gln Val210 215 220Val Gly Arg His Glu Gly Ala His Tyr Tyr Thr Ile Gly Gln Arg Arg225 230 235 240Gly Leu Asn Ile Gly Gly Met Glu Lys Pro Cys Tyr Val Leu Ser Lys245 250 255Asn Met Glu Lys Asn Ile Val Tyr Ile Val Arg Gly Glu Asp His Pro260 265 270Leu Leu Tyr Arg Gln Glu Leu Leu Ala Lys Glu Leu Asn Trp Phe Val275 280 285Pro Leu Gln Glu Pro Met Ile Cys Ser Ala Lys Val Arg Tyr Arg Ser290 295 300Pro Asp Glu Lys Cys Ser Val Tyr Pro Leu Glu Asp Gly Thr Val Lys305 310 315 320Val Ile Phe Asp Val Pro Val Lys Ala Val Thr Pro Gly Gln Thr Val325 330 335Ala Phe Tyr Gln Gly Asp Ile Cys Leu Gly Gly Gly Val Ile Glu Val340 345 350Pro Met Ile His Gln Leu355108267PRTChlamydia trachomatis serovar D 108Met Ser Arg Lys Pro Ala Ser Asn Ser Ser Arg Asn Thr Lys Arg Ser5 10 15Ser Asp Thr Ser Trp Glu Val Ile Ala Gln Asp Tyr Asn Lys Ala Val20 25 30Asp Arg Asp Gly His Phe Tyr His Lys Glu Val Ile Leu Pro Asn Leu35 40 45Leu Ser Lys Leu His Ile Ser Arg Ser Ser Ser Leu Val Asp Val Gly50 55 60Cys Gly Gln Gly Ile Leu Glu Lys His Leu Pro Lys His Leu Pro Tyr65 70 75 80Leu Gly Ile Asp Leu Ser Pro Ser Leu Leu Arg Phe Ala Lys Lys Ser85 90 95Ala Ser Ser Lys Ser Arg Arg Phe Leu His His Asp Met Thr Gln Pro100 105 110Val Pro Ala Asp His His Glu Gln Phe Ser His Ala Thr Ala Ile Leu115 120 125Ser Leu Gln Asn Met Glu Ser Pro Glu Gln Ala Ile Ala His Thr Ala130 135 140Asn Leu Leu Ala Pro Gln Gly Arg Leu Phe Ile Val Leu Asn His Pro145 150 155 160Cys Phe Arg Ile Pro Arg Leu Ser Ser Trp Leu Tyr Asp Glu Pro Lys165 170 175Lys Leu Leu Ser Arg Lys Ile Asp Arg Tyr Leu Ser Pro Val Ala Val180 185 190Pro Ile Val Val His Pro Gly Glu Lys His Ser Glu Thr Thr Tyr Ser195 200 205Phe His Phe Pro Leu Ser Tyr Trp Val Gln Ala Leu Ser Asn His Asn210 215 220Leu Leu Ile Asp Ser Met Glu Glu Trp Ile Ser Pro Lys Lys Ser Ser225 230 235 240Gly Lys Arg Ala Arg Ala Glu Asn Leu Cys Arg Lys Glu Phe Pro Leu245 250 255Phe Leu Phe Ile Ser Ala Leu Lys Ile Ser Lys260 265109867PRTChlamydia trachomatis serovar D 109Met Glu Lys Phe Ser Asp Ala Val Ser Glu Ala Leu Glu Lys Ala Phe5 10 15Glu Leu Ala Lys Asn Ser Lys His Ser Tyr Val Thr Glu Asn His Leu20 25 30Leu Lys Ser Leu Leu Gln Asn Pro Gly Ser Leu Phe Cys Leu Val Ile35 40 45Lys Asp Val His Gly Asn Leu Gly Leu Leu Thr Ser Ala Val Asp Asp50 55 60Ala Leu Arg Arg Glu Pro Thr Val Val Glu Gly Thr Ala Val Ala Ser65 70 75 80Pro Ser Pro Ser Leu Gln Gln Leu Leu Leu Asn Ala His Gln Glu Ala85 90 95Arg Ser Met Gly Asp Glu Tyr Leu Ser Gly Asp His Leu Leu Leu Ala100 105 110Phe Trp Arg Ser Thr Lys Glu Pro Phe Ala Ser Trp Arg Lys Thr Val115 120 125Lys Thr Thr Ser Glu Ala Leu Lys Glu Leu Ile Thr Lys Leu Arg Gln130 135 140Gly Ser Arg Met Asp Ser Pro Ser Ala Glu Glu Asn Leu Lys Gly Leu145 150 155 160Glu Lys Tyr Cys Lys Asn Leu Thr Val Leu Ala Arg Glu Gly Lys Leu165 170 175Asp Pro Val Ile Gly Arg Asp Glu Glu Ile Arg Arg Thr Ile Gln Val180 185 190Leu Ser Arg Arg Thr Lys Asn Asn Pro Met Leu Ile Gly Glu Pro Gly195 200 205Val Gly Lys Thr Ala Ile Ala Glu Gly Leu Ala Leu Arg Ile Val Gln210 215 220Gly Asp Val Pro Glu Ser Leu Lys Glu Lys His Leu Tyr Val Leu Asp225 230 235 240Met Gly Ala Leu Ile Ala Gly Ala Lys Tyr Arg Gly Glu Phe Glu Glu245 250 255Arg Leu Lys Ser Val Leu Lys Gly Val Glu Ala Ser Glu Gly Glu Cys260 265 270Ile Leu Phe Ile Asp Glu Val His Thr Leu Val Gly Ala Gly Ala Thr275 280 285Asp Gly Ala Met Asp Ala Ala Asn Leu Leu Lys Pro Ala Leu Ala Arg290 295 300Gly Thr Leu His Cys Ile Gly Ala Thr Thr Leu Asn Glu Tyr Gln Lys305 310 315 320Tyr Ile Glu Lys Asp Ala Ala Leu Glu Arg Arg Phe Gln Pro Ile Phe325 330 335Val Thr Glu Pro Ser Leu Glu Asp Ala Val Phe Ile Leu Arg Gly Leu340 345 350Arg Glu Lys Tyr Glu Ile Phe His Gly Val Arg Ile Thr Glu Gly Ala355 360 365Leu Asn Ala Ala Val Val Leu Ser Tyr Arg Tyr Ile Thr Asp Arg Phe370 375 380Leu Pro Asp Lys Ala Ile Asp Leu Ile Asp Glu Ala Ala Ser Leu Ile385 390 395 400Arg Met Gln Ile Gly Ser Leu Pro Leu Pro Ile Asp Glu Lys Glu Arg405 410 415Glu Leu Ser Ala Leu Ile Val Lys Gln Glu Ala Ile Lys Arg Glu Gln420 425 430Ala Pro Ala Tyr Gln Glu Glu Ala Glu Asp Met Gln Lys Ala Ile Asp435 440 445Arg Val Lys Glu Glu Leu Ala Ala Leu Arg Leu Arg Trp Asp Glu Glu450 455 460Lys Gly Leu Ile Thr Gly Leu Lys Glu Lys Lys Asn Ala Leu Glu Asn465 470 475 480Leu Lys Phe Ala Glu Glu Glu Ala Glu Arg Thr Ala Asp Tyr Asn Arg485 490 495Val Ala Glu Leu Arg Tyr Ser Leu Ile Pro Ser Leu Glu Glu Glu Ile500 505 510His Leu Ala Glu Glu Ala Leu Asn Gln Arg Asp Gly Arg Leu Leu Gln515 520 525Glu Glu Val Asp Glu Arg Leu Ile Ala Gln Val Val Ala Asn Trp Thr530 535 540Gly Ile Pro Val Gln Lys Met Leu Glu Gly Glu Ser Glu Lys Leu Leu545 550 555 560Val Leu Glu Glu Ser Leu Glu Glu Arg Val Val Gly Gln Pro Phe Ala565 570 575Ile Ala Ala Val Ser Asp Ser Ile Arg Ala Ala Arg Val Gly Leu Ser580 585 590Asp Pro Gln Arg Pro Leu Gly Val Phe Leu Phe Leu Gly Pro Thr Gly595 600 605Val Gly Lys Thr Glu Leu Ala Lys Ala Leu Ala Glu Leu Leu Phe Asn610 615 620Lys Glu Glu Ala Met Ile Arg Phe Asp Met Thr Glu Tyr Met Glu Lys625 630 635 640His Ser Val Ser Lys Leu Ile Gly Ser Pro Pro Gly Tyr Val Gly Tyr645 650 655Glu Glu Gly Gly Ser Leu Ser Glu Ala Leu Arg Arg Arg Pro Tyr Ser660 665 670Val Val Leu Phe Asp Glu Ile Glu Lys Ala Asp Lys Glu Val Phe Asn675 680 685Ile Leu Leu Gln Ile Phe Asp Asp Gly Ile Leu Thr Asp Ser Lys Lys690 695 700Arg Lys Val Asn Cys Lys Asn Ala Leu Phe Ile Met Thr Ser Asn Ile705 710 715 720Gly Ser Gln Glu Leu Ala Asp Tyr Cys Thr Lys Lys Gly Thr Ile Val725 730 735Asp Lys Glu Ala Val Leu Ser Val Val Ala Pro Ala Leu Lys Asn Tyr740 745 750Phe Ser Pro Glu Phe Ile Asn Arg Ile Asp Asp Ile Leu Pro Phe Val755 760 765Pro Leu Thr Thr Glu Asp Ile Val Lys Ile Val Gly Ile Gln Met Asn770 775 780Arg Val Ala Leu Arg Leu Leu Glu Arg Lys Ile Ser Leu Thr Trp Asp785 790 795 800Asp Ser Leu Val Leu Phe Leu Ser Glu Gln Gly Tyr Asp Ser Ala Phe805 810 815Gly Ala Arg Pro Leu Lys Arg Leu Ile Gln Gln Lys Val Val Thr Met820 825 830Leu Ser Lys

Ala Leu Leu Lys Gly Asp Ile Lys Pro Gly Met Ala Val835 840 845Glu Leu Thr Met Ala Lys Asp Val Val Val Phe Lys Ile Lys Thr Asn850 855 860Pro Ala Val8651101170DNAChlamydia pneumoniae 110atgaaaaaac tcttaaagtc ggcgttatta tccgccgcat ttgctggttc tgttggctcc 60ttacaagcct tgcctgtagg gaacccttct gatccaagct tattaattga tggtacaata 120tgggaaggtg ctgcaggaga tccttgcgat ccttgcgcta cttggtgcga cgctattagc 180ttacgtgctg gattttacgg agactatgtt ttcgaccgta tcttaaaagt agatgcacct 240aaaacatttt ctatgggagc caagcctact ggatccgctg ctgcaaacta tactactgcc 300gtagatagac ctaacccggc ctacaataag catttacacg atgcagagtg gttcactaat 360gcaggcttca ttgccttaaa catttgggat cgctttgatg ttttctgtac tttaggagct 420tctaatggtt acattagagg aaactctaca gcgttcaatc tcgttggttt attcggagtt 480aaaggtacta ctgtaaatgc aaatgaacta ccaaacgttt ctttaagtaa cggagttgtt 540gaactttaca cagacacctc tttctcttgg agcgtaggcg ctcgtggagc cttatgggaa 600tgcggttgtg caactttggg agctgaattc caatatgcac agtccaaacc taaagttgaa 660gaacttaatg tgatctgtaa cgtatcgcaa ttctctgtaa acaaacccaa gggctataaa 720ggcgttgctt tccccttgcc aacagacgct ggcgtagcaa cagctactgg aacaaagtct 780gcgaccatca attatcatga atggcaagta ggagcctctc tatcttacag actaaactct 840ttagtgccat acattggagt acaatggtct cgagcaactt ttgatgctga taacatccgc 900attgctcagc caaaactacc tacagctgtt ttaaacttaa ctgcatggaa cccttcttta 960ctaggaaatg ccacagcatt gtctactact gattcgttct cagacttcat gcaaattgtt 1020tcctgtcaga tcaacaagtt taaatctaga aaagcttgtg gagttactgt aggagctact 1080ttagttgatg ctgataaatg gtcacttact gcagaagctc gtttaattaa cgagagagct 1140gctcacgtat ctggtcagtt cagattctaa 11701112601DNAChlamydia pneumoniae 111atggagaaat tttccgatgc tgtctctgaa gctttagaga aggctttcga acttgctaaa 60tcttcgaaac atacctatgt cacagaaaat cacctattac tggctttatt agaaaataca 120gagtctctct tttatttggt aattaaggac attcatggga accctggttt gctcaatacg 180gcagttaaag atgcgctctc acgagagccg actgtagttg aaggagaggt ggatcctaaa 240ccttctccgg gtttacaaac ccttcttagg gatgccaaac aagaggcaaa gacattagga 300gatgaataca tttctggaga tcatctgctg cttgcttttt ggagttcaaa caaagagcct 360tttaattctt ggaagcaaac aacaaaagtt agttttaaag atcttaagaa tctgattact 420aaaatacgac gaggaaatcg tatggattcg ccaagcgctg aaagtaattt tcagggttta 480gaaaagtatt gtaaaaattt aacagcatta gctcgtgaag gtaaactgga tcctgtgatc 540ggtagagatg aagaaattcg tagaaccatc caagtgcttt cccgtagaac taaaaataac 600cctatgctta ttggtgagcc gggtgtaggg aaaactgcta tagcagaagg attagctctt 660aggcttatcc agggtgatgt tcctgaatct ctcaaaggta aacagcttta tgtcttagat 720atgggagctt tgattgcagg agctaagtat cgaggtgagt ttgaagaaag actaaagagt 780gttttaaaag atgtagaatc tggagatggc gagcacatta tctttattga tgaggtgcat 840actcttgttg gagcaggagc tactgatgga gctatggatg ctgcgaatct tttaaagcct 900gcattagcaa gagggacgct acactgtatt ggcgcgacga ctttgaatga gtatcagaag 960tatattgaaa aagatgctgc tttggaacgt cgatttcagc ctatttttgt gacagagcct 1020tctttggagg atgctgtctt tattcttcgt ggactaagag aaaaatatga aattttccat 1080ggagtcagga ttacagaggg ggctttgaat gccgcagtcc tactttccta tcgttatatc 1140ccagatcgct ttcttccaga taaggctatc gatttgatag atgaagcggc aagtttaatt 1200cgcatgcaaa ttggtagtct tcctcttcct attgatgaaa aggagagaga gcttgctgct 1260ttgatcgtta agcaagaggc tataaaacgc gagcaatctc cttcctatca agaagaggcg 1320gatgctatgc agaagtctat agatgctttg agagaggaat tagcatctct acgtttgggt 1380tgggatgaag agaagaagtt gatttcgggg ctcaaggaaa aaaagaattc cttggaaagt 1440atgaaatttt ctgaagagga ggcggagcgt gttgcagact ataatcgtgt agctgagctt 1500cggtatagtt taattcccca acttgaagaa gaaatcaaac aggatgaagc ctctttaaat 1560caaagagata accgtctcct tcaagaagaa gttgacgagc gattgattgc gcaagtggta 1620gctaattgga cagggattcc tgtgcaaaaa atgctagaag gggaagctga gaaactgtta 1680attcttgaag aatccttaga agaacgtgtg gtaggacagc cttttgcagt ctctgcggtt 1740agtgattcta ttcgtgctgc acgtgtaggt ttaaatgatc ctcaacgtcc cttaggagtc 1800tttttatttt tagggccaac aggggtagga aaaaccgagc ttgcaaaagc tcttgcagat 1860cttcttttca ataaagagga agctatggtc cgcttcgata tgtcagagta tatggaaaag 1920cattccattt ccaagcttat aggatcttct ccagggtatg tgggttatga ggaaggtggg 1980agtctttctg aggctcttcg acgacgtccc tattcagtag ttctctttga tgagatagag 2040aaagcagata aggaagttct aaatatcctt ttacaggttt ttgatgatgg gattcttacg 2100gatgggaaaa aacgcaaagt aaattgtaaa aatgccttgt ttatcatgac atcaaatata 2160ggttctccag aacttgcaga ttattgttca aaaaaaggaa gtgagcttac gaaagaagcg 2220attctttctg tagtctctcc agtattgaaa agatacttga gccctgaatt tatgaaccga 2280attgatgaga tacttccttt tgttccatta acgaaagaag atatcgtgaa aatagttggc 2340attcaaatgc gaaggattgc ccagagatta aaggcacggc ggatcaattt atcttgggat 2400gattctgtaa tattatttct tagtgaacag ggttatgaca gtgctttcgg agcccgccct 2460ttaaaacgtt tgatccaaca aaaagttgtg atcttgcttt ctaaggcttt gcttaaagga 2520gatattaaac ctgatacatc gattgagttg acgatggcaa aagaggtgct cgtatttaaa 2580aaagtggaaa ctccttctta g 2601112389PRTChlamydia pneumoniae 112Met Lys Lys Leu Leu Lys Ser Ala Leu Leu Ser Ala Ala Phe Ala Gly5 10 15Ser Val Gly Ser Leu Gln Ala Leu Pro Val Gly Asn Pro Ser Asp Pro20 25 30Ser Leu Leu Ile Asp Gly Thr Ile Trp Glu Gly Ala Ala Gly Asp Pro35 40 45Cys Asp Pro Cys Ala Thr Trp Cys Asp Ala Ile Ser Leu Arg Ala Gly50 55 60Phe Tyr Gly Asp Tyr Val Phe Asp Arg Ile Leu Lys Val Asp Ala Pro65 70 75 80Lys Thr Phe Ser Met Gly Ala Lys Pro Thr Gly Ser Ala Ala Ala Asn85 90 95Tyr Thr Thr Ala Val Asp Arg Pro Asn Pro Ala Tyr Asn Lys His Leu100 105 110His Asp Ala Glu Trp Phe Thr Asn Ala Gly Phe Ile Ala Leu Asn Ile115 120 125Trp Asp Arg Phe Asp Val Phe Cys Thr Leu Gly Ala Ser Asn Gly Tyr130 135 140Ile Arg Gly Asn Ser Thr Ala Phe Asn Leu Val Gly Leu Phe Gly Val145 150 155 160Lys Gly Thr Thr Val Asn Ala Asn Glu Leu Pro Asn Val Ser Leu Ser165 170 175Asn Gly Val Val Glu Leu Tyr Thr Asp Thr Ser Phe Ser Trp Ser Val180 185 190Gly Ala Arg Gly Ala Leu Trp Glu Cys Gly Cys Ala Thr Leu Gly Ala195 200 205Glu Phe Gln Tyr Ala Gln Ser Lys Pro Lys Val Glu Glu Leu Asn Val210 215 220Ile Cys Asn Val Ser Gln Phe Ser Val Asn Lys Pro Lys Gly Tyr Lys225 230 235 240Gly Val Ala Phe Pro Leu Pro Thr Asp Ala Gly Val Ala Thr Ala Thr245 250 255Gly Thr Lys Ser Ala Thr Ile Asn Tyr His Glu Trp Gln Val Gly Ala260 265 270Ser Leu Ser Tyr Arg Leu Asn Ser Leu Val Pro Tyr Ile Gly Val Gln275 280 285Trp Ser Arg Ala Thr Phe Asp Ala Asp Asn Ile Arg Ile Ala Gln Pro290 295 300Lys Leu Pro Thr Ala Val Leu Asn Leu Thr Ala Trp Asn Pro Ser Leu305 310 315 320Leu Gly Asn Ala Thr Ala Leu Ser Thr Thr Asp Ser Phe Ser Asp Phe325 330 335Met Gln Ile Val Ser Cys Gln Ile Asn Lys Phe Lys Ser Arg Lys Ala340 345 350Cys Gly Val Thr Val Gly Ala Thr Leu Val Asp Ala Asp Lys Trp Ser355 360 365Leu Thr Ala Glu Ala Arg Leu Ile Asn Glu Arg Ala Ala His Val Ser370 375 380Gly Gln Phe Arg Phe385113866PRTChlamydia pneumoniae 113Met Glu Lys Phe Ser Asp Ala Val Ser Glu Ala Leu Glu Lys Ala Phe5 10 15Glu Leu Ala Lys Ser Ser Lys His Thr Tyr Val Thr Glu Asn His Leu20 25 30Leu Leu Ala Leu Leu Glu Asn Thr Glu Ser Leu Phe Tyr Leu Val Ile35 40 45Lys Asp Ile His Gly Asn Pro Gly Leu Leu Asn Thr Ala Val Lys Asp50 55 60Ala Leu Ser Arg Glu Pro Thr Val Val Glu Gly Glu Val Asp Pro Lys65 70 75 80Pro Ser Pro Gly Leu Gln Thr Leu Leu Arg Asp Ala Lys Gln Glu Ala85 90 95Lys Thr Leu Gly Asp Glu Tyr Ile Ser Gly Asp His Leu Leu Leu Ala100 105 110Phe Trp Ser Ser Asn Lys Glu Pro Phe Asn Ser Trp Lys Gln Thr Thr115 120 125Lys Val Ser Phe Lys Asp Leu Lys Asn Leu Ile Thr Lys Ile Arg Arg130 135 140Gly Asn Arg Met Asp Ser Pro Ser Ala Glu Ser Asn Phe Gln Gly Leu145 150 155 160Glu Lys Tyr Cys Lys Asn Leu Thr Ala Leu Ala Arg Glu Gly Lys Leu165 170 175Asp Pro Val Ile Gly Arg Asp Glu Glu Ile Arg Arg Thr Ile Gln Val180 185 190Leu Ser Arg Arg Thr Lys Asn Asn Pro Met Leu Ile Gly Glu Pro Gly195 200 205Val Gly Lys Thr Ala Ile Ala Glu Gly Leu Ala Leu Arg Leu Ile Gln210 215 220Gly Asp Val Pro Glu Ser Leu Lys Gly Lys Gln Leu Tyr Val Leu Asp225 230 235 240Met Gly Ala Leu Ile Ala Gly Ala Lys Tyr Arg Gly Glu Phe Glu Glu245 250 255Arg Leu Lys Ser Val Leu Lys Asp Val Glu Ser Gly Asp Gly Glu His260 265 270Ile Ile Phe Ile Asp Glu Val His Thr Leu Val Gly Ala Gly Ala Thr275 280 285Asp Gly Ala Met Asp Ala Ala Asn Leu Leu Lys Pro Ala Leu Ala Arg290 295 300Gly Thr Leu His Cys Ile Gly Ala Thr Thr Leu Asn Glu Tyr Gln Lys305 310 315 320Tyr Ile Glu Lys Asp Ala Ala Leu Glu Arg Arg Phe Gln Pro Ile Phe325 330 335Val Thr Glu Pro Ser Leu Glu Asp Ala Val Phe Ile Leu Arg Gly Leu340 345 350Arg Glu Lys Tyr Glu Ile Phe His Gly Val Arg Ile Thr Glu Gly Ala355 360 365Leu Asn Ala Ala Val Leu Leu Ser Tyr Arg Tyr Ile Pro Asp Arg Phe370 375 380Leu Pro Asp Lys Ala Ile Asp Leu Ile Asp Glu Ala Ala Ser Leu Ile385 390 395 400Arg Met Gln Ile Gly Ser Leu Pro Leu Pro Ile Asp Glu Lys Glu Arg405 410 415Glu Leu Ala Ala Leu Ile Val Lys Gln Glu Ala Ile Lys Arg Glu Gln420 425 430Ser Pro Ser Tyr Gln Glu Glu Ala Asp Ala Met Gln Lys Ser Ile Asp435 440 445Ala Leu Arg Glu Glu Leu Ala Ser Leu Arg Leu Gly Trp Asp Glu Glu450 455 460Lys Lys Leu Ile Ser Gly Leu Lys Glu Lys Lys Asn Ser Leu Glu Ser465 470 475 480Met Lys Phe Ser Glu Glu Glu Ala Glu Arg Val Ala Asp Tyr Asn Arg485 490 495Val Ala Glu Leu Arg Tyr Ser Leu Ile Pro Gln Leu Glu Glu Glu Ile500 505 510Lys Gln Asp Glu Ala Ser Leu Asn Gln Arg Asp Asn Arg Leu Leu Gln515 520 525Glu Glu Val Asp Glu Arg Leu Ile Ala Gln Val Val Ala Asn Trp Thr530 535 540Gly Ile Pro Val Gln Lys Met Leu Glu Gly Glu Ala Glu Lys Leu Leu545 550 555 560Ile Leu Glu Glu Ser Leu Glu Glu Arg Val Val Gly Gln Pro Phe Ala565 570 575Val Ser Ala Val Ser Asp Ser Ile Arg Ala Ala Arg Val Gly Leu Asn580 585 590Asp Pro Gln Arg Pro Leu Gly Val Phe Leu Phe Leu Gly Pro Thr Gly595 600 605Val Gly Lys Thr Glu Leu Ala Lys Ala Leu Ala Asp Leu Leu Phe Asn610 615 620Lys Glu Glu Ala Met Val Arg Phe Asp Met Ser Glu Tyr Met Glu Lys625 630 635 640His Ser Ile Ser Lys Leu Ile Gly Ser Ser Pro Gly Tyr Val Gly Tyr645 650 655Glu Glu Gly Gly Ser Leu Ser Glu Ala Leu Arg Arg Arg Pro Tyr Ser660 665 670Val Val Leu Phe Asp Glu Ile Glu Lys Ala Asp Lys Glu Val Leu Asn675 680 685Ile Leu Leu Gln Val Phe Asp Asp Gly Ile Leu Thr Asp Gly Lys Lys690 695 700Arg Lys Val Asn Cys Lys Asn Ala Leu Phe Ile Met Thr Ser Asn Ile705 710 715 720Gly Ser Pro Glu Leu Ala Asp Tyr Cys Ser Lys Lys Gly Ser Glu Leu725 730 735Thr Lys Glu Ala Ile Leu Ser Val Val Ser Pro Val Leu Lys Arg Tyr740 745 750Leu Ser Pro Glu Phe Met Asn Arg Ile Asp Glu Ile Leu Pro Phe Val755 760 765Pro Leu Thr Lys Glu Asp Ile Val Lys Ile Val Gly Ile Gln Met Arg770 775 780Arg Ile Ala Gln Arg Leu Lys Ala Arg Arg Ile Asn Leu Ser Trp Asp785 790 795 800Asp Ser Val Ile Leu Phe Leu Ser Glu Gln Gly Tyr Asp Ser Ala Phe805 810 815Gly Ala Arg Pro Leu Lys Arg Leu Ile Gln Gln Lys Val Val Ile Leu820 825 830Leu Ser Lys Ala Leu Leu Lys Gly Asp Ile Lys Pro Asp Thr Ser Ile835 840 845Glu Leu Thr Met Ala Lys Glu Val Leu Val Phe Lys Lys Val Glu Thr850 855 860Pro Ser8651141179DNAHomo sapiens 114taactctccc ctctcttctt aaaaaagagg ggagcctttt ttccttacaa agatacgcta 60gctttttcct gaagaatctc atcaagagat atttgcattt tcccacggat aaaggcatcc 120caaggaagcc ctggaatcac ttcatattct cccgttgcta gcattcgaca agggaaacca 180aagattaaat cttccggtaa tccataggga ttgtggtccg aacacactcc ggaagaaaac 240cattctcctt cttttggctg atatattgat cgagcagcct ctgctaaagc tcgtgctgca 300gaagctgccg aagacttccc tcgtgcttcg attactgcac taccacgact ctgtacagaa 360ggcaccataa tattctctaa ccaatcacga tccgctatcg tctctgcgat aggacggtca 420ttaatcagag cttgcgtaaa atcaggcact tgtttggcgg agtgatttcc ccaaaccaca 480acttgtgata cagccgataa aggtacttct gctctatgcg ataacatgct atgcatacga 540ttctggtcca atcgtagcat cgcatgaaag ttctttctca ataatctggg agcatgattc 600attgctatcc agcaattggt attcacaggg ttcccaacaa caaaaatctt tgcatcccgc 660ttggctgttg tgttcaaagc ttttccttgc gtagcaaaaa tctccccatt tttctttaga 720agatcccttc tctccattcc tgggcctcta ggaactgacc ctataaggaa tgccgcatca 780atgccatcaa aagcatcatg caatgatgtc gttacctgca cacgctgtaa taaagggaaa 840gcaccatcat ctagctccat gcgcacacca gataaagccc tttctgttcc aggaatatcg 900tagatacgca gatcgatgcc acaatcaagg ccaaaaacat ctccatgagc cagagaaaat 960agaaagctat aggctatttg ccctgttcct cctgttactg ctacactcac tgtttgagaa 1020accataagcc accctctctt tacttttaca aaacgcacat actctcaaca ctacgtttgc 1080aactaactaa ttttggtccc aacatacgtt tggatgataa aagaatcaag tacctagatt 1140ccttagtaaa agcttttggc aaaaaaaagc tcatctatt 1179115772DNAHomo sapiens 115gcaaaactgc tgacaaagct ggagacggaa ctacaacagc tactgttctt gctgaagcta 60tctatacaga aggattacgc aatgtaacag ctggagcaaa tccaatggac ctcaaacgag 120gtattgataa agctgttaag gttgttgttg atcaaatcag aaaaatcagc aaacctgttc 180agcatcataa agaaattgct caagttgcaa caatttctgc taataatgat gcagaaatcg 240ggaatctgat tgctgaagca atggagaaag ttggtaaaaa cggctctatc actgttgaag 300aagcaaaagg atttgaaacc gttttggatg ttgttgaagg aatgaatttc aatagaggtt 360acctctctag ctacttcgca acaaatccag aaactcaaga atgtgtatta gaagacgctt 420tggttctaat ctacgataag aaaatttctg ggatcaaaga tttccttcct gttttacaac 480aagttgctga atccggccgt cctcttctta ttatagcaga agacattgaa ggcgaagctt 540tagctacttt ggtcgtgaac agaattcgtg gaggattccg ggtttgcgca gttaaagctc 600caggctttgg agatagaaga aaagctatgt tggaagacat cgctatctta actggcggtc 660aactcattag cgaagagttg ggcatgaaat tagaaaacgc taacttagct atgttaggta 720aagctaaaaa agttatcgtt tctaaggaag acacgaccat cgtcgaagga at 772116487DNAHomo sapiens 116gcagctcctg caaagccaca agctcctgtc gcacaaacac ggcattttaa aaagagccat 60cagattttct ctcctaattt tacgcagtct tcccaacagg tgaataaacc tgaggaaaga 120agacgtcctt tggagtctcg atacttacaa ggcgcggcta agcaggcagc tgctgcaaag 180gaaaaaaagg ctcttgaaca ggaagtatcc aaacaagaag aagaagcttc taaactctgg 240gaagagaaac agagttatgc tcgtcgtgct gtgaatgcca tcaatttcag tgtaagaaag 300caaatagaag agcaacagaa aaccatttcc aatccaggaa atgaccagac tcttcctggg 360aagaaagatc cacatacatc cggagaacct gttatccaaa cggtacaaga ctgttctcag 420gatcaagaag aagagaaaaa agttctagag cgattaaaca aacgttctct gacgtgtcag 480gatctta 4871171014DNAHomo sapiens 117ctcgtgccga atcttctaac aagagaacaa gctcctttct ttcttttcta aacaaggttc 60agcgctttct attaaaagaa accctattca gaccctatgc agcacatagt tttataaaaa 120atttttctat taacagagga aaaataacct attgataaac agagcggtac aaggagatgc 180aaataaagct gctttaggat ccttacctag attctagaaa atggttgcat gaatttgaac 240aaacaaacta attaaaaatt aaaactgaaa aaaatagttt aaaacaacaa ctagaggata 300ttttttcatg gcgctaaaag atacggcaaa aaaaatgact gacttgttgg aaagtatcca 360acaaaatttg cttaaagcag aaaaaggaaa taaagccgca gcacaaagag ttcgtacaga 420atctatcaaa ttagaaaaga tcgcgaaggt atatcgtaaa gagtccatta aagcagaaaa 480aatgggctta atgaaaaaaa gcaaagccgc tgctaaaaaa gctaaagctg ctgctaagaa 540gcctgttcgc gctacaaaaa cagtggctaa aaaagcttgt acaaaaagaa cttgtgctac 600taaagcaaag gtcaaaccaa caaaaaaagc cgctcctaaa acaaaagtta aaacagcgaa 660aaaaactcgc tcaacaaaaa aataatattt tagcgctttc tcttttttat agagggcact 720tttatcaaca gggccctctt tcctcttctc attgatccct tctctttttt ttgttatcct 780ttccgttctc gcaaaggcaa gtccttgcaa ataaaagtac aacctcacac ctcctttgga 840ggaaaaacct ttcactttct ttaggattca agttgctctc ctgctatcgt aactgtaaac 900attttggcgt ctgtggaggc tgttcatctc ctcaaatgga atatgcatcc tctttaaaaa 960caaaagagct tgcgctccat aatttatttg cacctcttat cccatcccaa aata 1014118287DNAHomo sapiens 118atgcaaataa agctgcttta ggatccttac ctagattcta gaaaatggtt gcatgaattt 60gaacaaacaa actaattaaa aattaaaact gaaaaaaata gtttaaaaca acaactagag 120gatatttttt catggcgcta aaagatacgg caaaaaaaat gactgacttg ttggaaagta 180tccaacaaaa tttgcttaaa

gcagaaaaag gaaataaagc cgcagcacaa agagttcgta 240cagaatctat caaattagaa aagatcgcga aggtatatcg taaagag 2871191002DNAHomo sapiens 119catatgcatc accatcacca tcacatgagt attcgaccta ctaatgggag tggaaatgga 60tacccgtcta ttaatccttc taacgataat caatacggtc ttgtgcaatc gacctctggg 120cctaattacg gaggccatac ggtatcttct cgaggaggat ttcaagggat atgcgtacga 180atagccgatt tattccgtaa ctgtttctct cgtaatagag gcactactac tacgccatct 240cgaactgtta tcactcaggc agatatttat catccgacta tttctggaca aggagctcaa 300cctattgtct ctacaggaga taagaaatta gatagcgcaa ttattcaagc agatttgcgt 360gcgcagaata aacagacttt ggctacacat attcaaagta agctaggttc tatggaggga 420caatctcctc aagattataa agctggtgcg tatagtgcgc taagattgat gctgtttact 480ccaggcgaaa ctactgtgag tagcgagcgg gaacgtcaag cgtgcgttac gggtcgggat 540ctctgggaac aggctgcagg agatcttgct accaatggga atacagatgg gcttatgtta 600atggctaacc tatctgtggg agggaagcat gtgcctgcgg ggcatttaag agaatacatg 660gatactgtaa agggtacgtt tactgatgag aacgaggcta cagatcctac ggtagatgcc 720attttagatt tagcagcaaa aatcgatgcg acggaattct ctagtcctgg ttcagggcaa 780gtcattctta attatatagg aaattatgga caagtcgttt tagaaaacga ggagatgaac 840cttcttgttt tagaagatca aaatgggcaa gatcctcaac gtgttcaaga taactcaaaa 900gagttacaaa aactgttaga aaatgctcga aaaacagatc ctgagttata tttccaaaca 960ctaactgtca taacttcttc tgttttctta gactaaggat cc 10021201218DNAHomo sapiens 120atgcatcacc atcaccatca cgtgagtagc ataagcccta taggggggaa ttctgggcca 60gagggatttt ctagtgcatc tcgaggcgat gagattgatg atgtaccaga tagtgaagag 120ggagagctag aagagcgcgt ttcggatcat gcagagtcta tcattaccga gagctcggaa 180acgctgtttc gtactacttc ttcatcaggg gtcagtgaag atcttcagca acacgttagc 240ttggaggaat ctccacgaca acgaggtttc cttggacgga tccgtgatgc agtagcttct 300atttggaagc gtcgtgttgc acgaaggaat gaaaactatg atgtgaaaaa agcagaagag 360cagcaaggga ttgtgcaata tctgcaggat tcgaaaatgc ctgctttaac gcgtgcctat 420cgccatctcc gtgctttcaa ttctgcatgc ttacgtacga ttcgtgagtt tttcgctacc 480atttttcgtg ctttaaggga tgcgtattat cgacattgta cacgttctgg gatcaacttt 540tgtggagctg ataaagactc tttagaagtt cttgttgcgg tgggtttgct tttgcgtatg 600gctaccttac gctcttttga acatgtcggt gggaattacg aagatcgatt agtaaataat 660gatgctccgg tgacaggtgc ggggagaact cttgttgatg atgctgtaga cgatattgaa 720tcgattttaa atacgagaac caactggcct caacatgtca tgatagggtt ttctcgtggt 780ctcgttcaat tatgtgcgac tccttataat gcgacttctc aagaatgttt caagtcgatt 840gttcgtttag aaaaagaaga cccttcttca gattattctc aagctttatt attagcaggg 900ataatagatc gcttggcgga gaaagcccct atggctgcaa agtatgtttt ggatgcattg 960cgtgttcgaa cttcggagct cataggagaa ctcattattc tcgatttgct tcctcctgta 1020tggaaggttg gccgcggagg cgtattccct cctgtgaatg agcagctcgt tgtgcaaatt 1080gttaatgcaa acgtagaacg attgcattcc actttcgctc atgagccaca agcttatttg 1140cgtatgatcg aaggtttggt aaccaatttc tttttcttac ctagcgagga agatccttct 1200tcggttggga atatctaa 1218121726DNAHomo sapiens 121catatgcatc accatcacca tcacacaaag catggaaaac gcattcgtgg tatccaagag 60acttacgatt tagctaagtc gtattctttg ggtgaagcga tagatatttt aaaacagtgt 120cctactgtgc gtttcgatca aacggttgat gtgtctgtta aattagggat cgatccaaga 180aagagtgatc agcaaattcg tggttcggtt tctttacctc acggtacagg taaagttttg 240cgaattttag tttttgctgc tggagataag gctgcagagg ctattgaagc aggagcggac 300tttgttggta gcgacgactt ggtagaaaaa atcaaaggtg gatgggttga cttcgatgtt 360gcggttgcca ctcccgatat gatgagagag gtcggaaagc taggaaaagt tttaggtcca 420agaaacctta tgcctacgcc taaagccgga actgtaacaa cagatgtggt taaaactatt 480gcggaactgc gaaaaggtaa aattgaattt aaagctgatc gagctggtgt atgcaacgtc 540ggagttgcga agctttcttt cgatagtgcg caaatcaaag aaaatgttga agcgttgtgt 600gcagccttag ttaaagctaa gcccgcaact gctaaaggac aatatttagt taatttcact 660atttcctcga ccatggggcc aggggttacc gtggatacta gggagttgat tgcgttataa 720gaattc 726122330PRTHomo sapiens 122Met His His His His His His Met Ser Ile Arg Pro Thr Asn Gly Ser5 10 15Gly Asn Gly Tyr Pro Ser Ile Asn Pro Ser Asn Asp Asn Gln Tyr Gly20 25 30Leu Val Gln Ser Thr Ser Gly Pro Asn Tyr Gly Gly His Thr Val Ser35 40 45Ser Arg Gly Gly Phe Gln Gly Ile Cys Val Arg Ile Ala Asp Leu Phe50 55 60Arg Asn Cys Phe Ser Arg Asn Arg Gly Thr Thr Thr Thr Pro Ser Arg65 70 75 80Thr Val Ile Thr Gln Ala Asp Ile Tyr His Pro Thr Ile Ser Gly Gln85 90 95Gly Ala Gln Pro Ile Val Ser Thr Gly Asp Lys Lys Leu Asp Ser Ala100 105 110Ile Ile Gln Ala Asp Leu Arg Ala Gln Asn Lys Gln Thr Leu Ala Thr115 120 125His Ile Gln Ser Lys Leu Gly Ser Met Glu Gly Gln Ser Pro Gln Asp130 135 140Tyr Lys Ala Gly Ala Tyr Ser Ala Leu Arg Leu Met Leu Phe Thr Pro145 150 155 160Gly Glu Thr Thr Val Ser Ser Glu Arg Glu Arg Gln Ala Cys Val Thr165 170 175Gly Arg Asp Leu Trp Glu Gln Ala Ala Gly Asp Leu Ala Thr Asn Gly180 185 190Asn Thr Asp Gly Leu Met Leu Met Ala Asn Leu Ser Val Gly Gly Lys195 200 205His Val Pro Ala Gly His Leu Arg Glu Tyr Met Asp Thr Val Lys Gly210 215 220Thr Phe Thr Asp Glu Asn Glu Ala Thr Asp Pro Thr Val Asp Ala Ile225 230 235 240Leu Asp Leu Ala Ala Lys Ile Asp Ala Thr Glu Phe Ser Ser Pro Gly245 250 255Ser Gly Gln Val Ile Leu Asn Tyr Ile Gly Asn Tyr Gly Gln Val Val260 265 270Leu Glu Asn Glu Glu Met Asn Leu Leu Val Leu Glu Asp Gln Asn Gly275 280 285Gln Asp Pro Gln Arg Val Gln Asp Asn Ser Lys Glu Leu Gln Lys Leu290 295 300Leu Glu Asn Ala Arg Lys Thr Asp Pro Glu Leu Tyr Phe Gln Thr Leu305 310 315 320Thr Val Ile Thr Ser Ser Val Phe Leu Asp325 330123405PRTHomo sapiens 123Met His His His His His His Val Ser Ser Ile Ser Pro Ile Gly Gly5 10 15Asn Ser Gly Pro Glu Gly Phe Ser Ser Ala Ser Arg Gly Asp Glu Ile20 25 30Asp Asp Val Pro Asp Ser Glu Glu Gly Glu Leu Glu Glu Arg Val Ser35 40 45Asp His Ala Glu Ser Ile Ile Thr Glu Ser Ser Glu Thr Leu Phe Arg50 55 60Thr Thr Ser Ser Ser Gly Val Ser Glu Asp Leu Gln Gln His Val Ser65 70 75 80Leu Glu Glu Ser Pro Arg Gln Arg Gly Phe Leu Gly Arg Ile Arg Asp85 90 95Ala Val Ala Ser Ile Trp Lys Arg Arg Val Ala Arg Arg Asn Glu Asn100 105 110Tyr Asp Val Lys Lys Ala Glu Glu Gln Gln Gly Ile Val Gln Tyr Leu115 120 125Gln Asp Ser Lys Met Pro Ala Leu Thr Arg Ala Tyr Arg His Leu Arg130 135 140Ala Phe Asn Ser Ala Cys Leu Arg Thr Ile Arg Glu Phe Phe Ala Thr145 150 155 160Ile Phe Arg Ala Leu Arg Asp Ala Tyr Tyr Arg His Cys Thr Arg Ser165 170 175Gly Ile Asn Phe Cys Gly Ala Asp Lys Asp Ser Leu Glu Val Leu Val180 185 190Ala Val Gly Leu Leu Leu Arg Met Ala Thr Leu Arg Ser Phe Glu His195 200 205Val Gly Gly Asn Tyr Glu Asp Arg Leu Val Asn Asn Asp Ala Pro Val210 215 220Thr Gly Ala Gly Arg Thr Leu Val Asp Asp Ala Val Asp Asp Ile Glu225 230 235 240Ser Ile Leu Asn Thr Arg Thr Asn Trp Pro Gln His Val Met Ile Gly245 250 255Phe Ser Arg Gly Leu Val Gln Leu Cys Ala Thr Pro Tyr Asn Ala Thr260 265 270Ser Gln Glu Cys Phe Lys Ser Ile Val Arg Leu Glu Lys Glu Asp Pro275 280 285Ser Ser Asp Tyr Ser Gln Ala Leu Leu Leu Ala Gly Ile Ile Asp Arg290 295 300Leu Ala Glu Lys Ala Pro Met Ala Ala Lys Tyr Val Leu Asp Ala Leu305 310 315 320Arg Val Arg Thr Ser Glu Leu Ile Gly Glu Leu Ile Ile Leu Asp Leu325 330 335Leu Pro Pro Val Trp Lys Val Gly Arg Gly Gly Val Phe Pro Pro Val340 345 350Asn Glu Gln Leu Val Val Gln Ile Val Asn Ala Asn Val Glu Arg Leu355 360 365His Ser Thr Phe Ala His Glu Pro Gln Ala Tyr Leu Arg Met Ile Glu370 375 380Gly Leu Val Thr Asn Phe Phe Phe Leu Pro Ser Glu Glu Asp Pro Ser385 390 395 400Ser Val Gly Asn Ile405124238PRTHomo sapiens 124Met His His His His His His Thr Lys His Gly Lys Arg Ile Arg Gly5 10 15Ile Gln Glu Thr Tyr Asp Leu Ala Lys Ser Tyr Ser Leu Gly Glu Ala20 25 30Ile Asp Ile Leu Lys Gln Cys Pro Thr Val Arg Phe Asp Gln Thr Val35 40 45Asp Val Ser Val Lys Leu Gly Ile Asp Pro Arg Lys Ser Asp Gln Gln50 55 60Ile Arg Gly Ser Val Ser Leu Pro His Gly Thr Gly Lys Val Leu Arg65 70 75 80Ile Leu Val Phe Ala Ala Gly Asp Lys Ala Ala Glu Ala Ile Glu Ala85 90 95Gly Ala Asp Phe Val Gly Ser Asp Asp Leu Val Glu Lys Ile Lys Gly100 105 110Gly Trp Val Asp Phe Asp Val Ala Val Ala Thr Pro Asp Met Met Arg115 120 125Glu Val Gly Lys Leu Gly Lys Val Leu Gly Pro Arg Asn Leu Met Pro130 135 140Thr Pro Lys Ala Gly Thr Val Thr Thr Asp Val Val Lys Thr Ile Ala145 150 155 160Glu Leu Arg Lys Gly Lys Ile Glu Phe Lys Ala Asp Arg Ala Gly Val165 170 175Cys Asn Val Gly Val Ala Lys Leu Ser Phe Asp Ser Ala Gln Ile Lys180 185 190Glu Asn Val Glu Ala Leu Cys Ala Ala Leu Val Lys Ala Lys Pro Ala195 200 205Thr Ala Lys Gly Gln Tyr Leu Val Asn Phe Thr Ile Ser Ser Thr Met210 215 220Gly Pro Gly Val Thr Val Asp Thr Arg Glu Leu Ile Ala Leu225 230 235125713DNAChlamydia trachomatis 125ataacaatcc ctcccaatca tcgttgaacg tacaaggagg agccatctat gccaaaacct 60ctttgtctat tggatcttcc gatgctggaa cctcctatat tttctcgggg aacagtgtct 120ccactgggaa atctcaaaca acagggcaaa tagcgggagg agcgatctac tcccctactg 180ttacattgaa ttgtcctgcg acattctcta acaatacagc ctctatagct acaccgaaga 240cttcttctga agatggatcc tcaggaaatt ctattaaaga taccattgga ggagccattg 300cagggacagc cattacccta tctggagtct ctcgattttc agggaatacg gctgatttag 360gagctgcaat aggaactcta gctaatgcaa atacacccag tgcaactagc ggatctcaaa 420atagcattac agaaaaaatt actttagaaa acggttcttt tatttttgaa agaaaccaag 480ctaataaacg tggagcgatt tactctccta gcgtttccat taaagggaat aatattacct 540tcaatcaaaa tacatccact catgatggaa gcgctatcta ctttacaaaa gatgctacga 600ttgagtcttt aggatctgtt ctttttacag gaaataacgt tacagctaca caagctagtt 660ctgcaacatc tggacaaaat acaaatactg ccaactatgg ggcagccatc ttt 713126780DNAChlamydia trachomatis 126ccttctcctt actcaggagt tttaaaagaa aacgcaccgt ttttacgttt cctcacacaa 60ttaactaaca agcatactca ttctggattt cattgcctcc taaaattctt agtcaaatcc 120gaaagaagcc gacactcgag cgctcttctc ctaaaaatct tgttttttct ctgcttccga 180gttataacgc ggctgtctca taacccacac taacatgatg aaacctctac gtttcggtta 240tttcttttgc acaatctatt ttactttgtt acaggcagcg tttgctaaag aaccgaattc 300ttgtcccgac tgccagaata attggaaaga agtcacccac acggatcaac tccctgaaaa 360catcattcat gctgatgatg cttgttatca ctctggttat gtacaggctc tcattgatat 420gcatttctta gatagctgct gccaggtcat cgttgaaaac caaactgctt acttattttc 480tcttcctaca gatgatgtta cgcgcaacgc cattatcaac ctaattaaag accttccatt 540cattcactcc gtagaaatct gccaagcatc ctatcaaacc tgtcatcatc aaggccctca 600tggaaagact tctcttccag aacaacgttc tttctgtaca aaggtctgtg gaaaagaagc 660tatttggtta ccacagaata ccatcctatt ctcgcctctt gtagcagata ctatccaagc 720aactaatagt gcaggtatcc gttttaacga cgaagtcgta ggaaaacgtg ttggctctgc 780127433DNAChlamydia trachomatis 127ctttaaagat tcgtcgtcct tttggtacta cgagagaagt tcgtgtgaaa tggcgttatg 60ttcctgaagg tgtaggagat ttggctacca tagctccttc tatcagggct ccacagttac 120agaaatcgat gagaagcttt ttccctaaga aagatgatgc gtttcatcgg tctagttcgc 180tattctactc tccaatggtt ccgcattttt gggcagagct tcgcaatcat tatgcaacga 240gtggtttgaa aagcgggtac aatattggga gtaccgatgg gtttctccct gtcattgggc 300ctgttatatg ggagtcggag ggtcttttcc gcgcttatat ttcttcggtg actgatgggg 360atggtaagag ccataaagta ggatttctaa gaattcctac atatagttgg caggacatgg 420aagattttga tcc 433128803DNAChlamydia trachomatis 128atctattaat taatagcaag cttgaaacta aaaacctaat ttatttaaag ctcaaaataa 60aaaagagttt taaaatggga aattctggtt tttatttgta taacactgaa aactgcgtct 120ttgctgataa tatcaaagtt gggcaaatga cagagccgct caaggaccag caaataatcc 180ttgggacaac atcaacacct gtcgcagcca aaatgacagc ttctgatgga atatctttaa 240cagtctccaa taattcatca accaatgctt ctattacaat tggtttggat gcggaaaaag 300cttaccagct tattctagaa aagttgggag atcaaattct tgatggaatt gctgatacta 360ttgttgatag tacagtccaa gatattttag acaaaatcaa aacagaccct tctctaggtt 420tgttgaaagc ttttaacaac tttccaatca ctaataaaat tcaatgcaac gggttattca 480ctcccagtaa cattgaaact ttattaggag gaactgaaat aggaaaattc acagtcacac 540ccaaaagctc tgggagcatg ttcttagtct cagcagatat tattgcatca agaatggaag 600gcggcgttgt tctagctttg gtacgagaag gtgattctaa gccctgcgcg attagttatg 660gatactcatc aggcattcct aatttatgta gtctaagaac cagtattact aatacaggat 720tgactccgac aacgtattca ttacgtgtag gcggtttaga aagcggtgtg gtatgggtta 780atgccctttc taatctcgtg ccg 803129842DNAChlamydia trachomatis 129tgggaatgtc gaagaatacg attacgttct cgtatctata ggacgccgtt tgaatacaga 60aaatattggc ttggataaag ctggtgttat ttgtgatgaa cgcggagtca tccctaccga 120tgccacaatg cgcacaaacg tacctaacat ttatgctatt ggagatatca caggaaaatg 180gcaacttgcc catgtagctt ctcatcaagg aatcattgca gcacggaata tagctggcca 240taaagaggaa atcgattact ctgccgtccc ttctgtgatc tttaccttcc ctgaagtcgc 300ttcagtaggc ctctccccaa cagcagctca acaacaaaaa atccccgtca aagtaacaaa 360attcccattt cgagctattg gaaaagcggt cgcaatgggc gaggccgatg gatttgcagc 420cattatcagc catgagacta ctcagcagat cctaggagct tatgtgattg gccctcatgc 480ctcatcactg atttccgaaa ttaccctagc agttcgtaat gaactgactc ttccttgtat 540ttacgaaact atccacgcac atccaacctt agcagaagtt tgggctgaaa gtgcgttgtt 600agctgctgat accccattac atatgccccc tgctaaaaaa tgaccgattc agaatctcct 660actcctaaaa aatctatacc cgccagattc cctaagtggc tacgccagaa actcccttta 720gggcgggtat ttgctcaaac tgataatact atcaaaaata aagggcttcc tacagtctgt 780gaggaagcct cttgtccgaa tcgcacccat tgttggtcta gacatacagc tacctatcta 840gc 842130813DNAChlamydia trachomatis 130aaaatacttt gagctgcaca agctcccccc tgttctagag aagaacatga tgcaaattcc 60aatccaccct taatcttttc aaagataaga tcttctgtag aatataaagc cgctccagac 120aaagaagctt tcacgtcagt taatgtgatt ccagccttac tactatcccc aacaaaagca 180atacctaaaa aagattctcc gtcacgagga gaatcaaggt tgctgctcgt aaaactacaa 240attaaccctt gggaagagac ttgatcctgt tggtccacac cttggaaaac tacgggattg 300gttactgaga acaaagtact ttgctctacc ttaccgggaa gagtatccgc atctttctct 360tggaaagaac ttggatctcc tacaattaac ctatactgtc cttcagcctg actatcttta 420gacccaacga atagatctcg aatttggtct aacaataaaa ccgcttgagg gcctacatat 480accagctcat ttacagactg tcctccagca tgaagatcta cgcaactagc taacccgcta 540acagaggcaa ggatagctgc tactacagac aaagaaaact tagaacaggt gctttttata 600tctttctcgg aactcatttc aaacctgcga aatagcactt ttttgacaaa ctagcgtacc 660gaaacaatcg gtccaacaac gcgttctgcc tatgatttca caaagacaaa acgacccata 720gacaagctcc agagacgaca ttagagcttt agaccgtgga atgtacaatg ctgactgctt 780tttgagaaag attttttata aagaacaggc cct 8131311947DNAChlamydia trachomatis 131tcttttgcct atagagcaat ctcttatcat tgggtctgat ccaccagact atttcttcta 60gatagagatt ctactacccc atccatggca ttcaacctct catcagtaaa cactttatta 120gagttgttta tctgcccatc atcgatgata tcttctgaag tctttaatac cttcttacat 180aagatccatc tctccggaga acagtgtcct tctatggata aaattcctac gcagatattc 240acgcatccca aaatagcagg aatacctaga tagatggcat ttacaaacga agctgccgaa 300actaggaata tcaaagcagt aatcactaaa agtagtccta tcaccactaa tcccacctta 360aatgcagtgg aagatagaag attcgatata cgctctttca gtgttaatgg tgcagaacta 420gtggaaatat cctgtgccga attggaagat ccagctcctt gaacaacggg tacagtgctc 480atattttaca ttcctttttt ggttgtgagc agggagtcta cacaaacact tatttttttc 540aaaaacccgt ctagaatatg ctctgagacc gaaaatgaac tcttttattt tcatatagat 600aacaaaaaaa agccgcccag gaatccctgg acggcaccta cacatcgata aaatcaaaga 660ttaatagatg tgtgtattct ctgtatcaga aactggaaca gtcaatgtat cggaagaaag 720aatcgcttcc ccacgagcat ctccagctga tactgctttc aatgttacag aaaactctac 780agtttcttta gaacctaatc taggtaacga atcgaatact actgtattgc ctgtaatcgt 840tcctttagtt ggtccagaga aggatacagg ttgcagttct ttagagaatt taagcattaa 900agaaacattt gtatcttctg cagaacctct gttggtgaca caaatacggt aaacagtatt 960ttctcctaca caaacagggt cacaagtatc tactacgcac atatgagtag cagcaactcc 1020tttccagtaa gttgtcgctt ctgcgcaaga agtacaagta ccacagtcag agcagctctt 1080cacaacaaca ttatttgtga attgtccagg agtttgtgct cttactagaa ctttatactg 1140tagagactct ccaggattca gttctttcac agtccaaact actttattac aagaaatttg 1200agctcctgca gcttcaagaa ctgtgactcc gggagaaaga gtgtcttcaa cgacgacatc 1260tcgcaacaca agatctccag gattggaaac ggagatcaca tattctacag gcttacaaac 1320ataagaccaa tctgctcctg caatacttac ttgtacgcaa ggctcattga tcacagttgt 1380tacgcttgct gtatttttat gtcctccaca gtaagaaacc gttgctatat tggtagcacg 1440accacgttta agcggacaaa actctacagt aattgttctg tgctctccag gttgcatatc 1500tccaagagta aacgtcagta cacgctgtcc

agaagagtga gcgtaaccat ctggaacagg 1560attttcaaca acaacgttac gagctattgc tgttccttgg ttcactacat taattttgta 1620aactactggg caacgcaaac aagcattctc tgggccttct tgtttaacac agatagcagg 1680ttgtccacat tttgtaaccg aacggatctc tggacaagcg catactgttg cagctgtaaa 1740gcagcaacct tctttaagag gttttaccca tacagtaatt ttactctttt cgccttgtcc 1800taagcggtca attttccaaa ctagcttacc atcagcagta ggagttgtcg ctggatcact 1860gcgtacgaac tctgcttcac atggtaattg ctgagtaatg ataacatcaa cacaatccct 1920tttacctgta gcagtaattt caatagg 19471321278DNAChlamydia trachomatis 132gataacaaaa aaaagccgcc caggaatccc tggacggcac ctacacatcg ataaaatcaa 60agattaatag atgtgtgtat tctctgtatc agaaactgga acagtcaatg tatcggaaga 120aagaatcgct tccccacgag catctccagc tgatactgct ttcaatgtta cagaaaactc 180tacagtttct ttagaaccta atctaggtaa cgaatcgaat actactgtat tgcctgtaat 240cgttccttta gttggtccag agaaggatac aggttgcagt tctttagaga atttaagcat 300taaagaaaca tttgtatctt ctgcagaacc tctgttggtg acacaaatac ggtaaacagt 360attttctcct acacaaacag ggtcacaagt atctactacg cacatatgag tagcagcaac 420tcctttccag taagttgtcg cttctgcgca agaagtacaa gtaccacagt cagagcagct 480cttcacaaca acattatttg tgaattgtcc aggagtttgt gctcttacta gaactttata 540ctgtagagac tctccaggat tcagttcttt cacagtccaa actactttat tacaagaaat 600ttgagctcct gcagcttcaa gaactgtgac tccgggagaa agagtgtctt caacgacgac 660atctcgcaac acaagatctc caggattgga aacggagatc acatattcta caggcttaca 720aacataagac caatctgctc ctgcaatact tacttgtacg caaggctcat tgatcacagt 780tgttacgctt gctgtatttt tatgtcctcc acagtaagaa accgttgcta tattggtagc 840acgaccacgt ttaagcggac aaaactctac agtaattgtt ctgtgctctc caggttgcat 900atctccaaga gtaaacgtca gtacacgctg tccagaagag tgagcgtaac catctggaac 960aggattttca acaacaacgt tacgagctat tgctgttcct tggttcacta cattaatttt 1020gtaaactact gggcaacgca aacaagcatt ctctgggcct tcttgtttaa cacagatagc 1080aggttgtcca cattttgtaa ccgaacggat ctctggacaa gcgcatactg ttgcagctgt 1140aaagcagcaa ccttctttaa gaggttttac ccatacagta attttactct tttcgccttg 1200tcctaagcgg tcaattttcc aaactagctt accatcagca gtaggagttg tcgctggatc 1260actgcgtacg aactctgc 1278133916DNAChlamydia trachomatis 133atggcgacaa tttaacgatt accggacaaa accatacatt atcatttaca gattctcaag 60ggccagttct tcaaaattat gccttcattt cagcaggaga gacacttact ctgaaagatt 120tttcgagttt gatgttctcg aaaaatgttt cttgcggaga aaagggaatg atctcaggga 180aaaccgtgag tatttccgga gcaggcgaag tgattttttg ggataactct gtggggtatt 240ctcctttgtc tattgtgcca gcatcgactc caactcctcc agcaccagca ccagctcctg 300ctgcttcaag ctctttatct ccaacagtta gtgatgctcg gaaagggtct attttttctg 360tagagactag tttggagatc tcaggcgtca aaaaaggggt catgttcgat aataatgccg 420ggaattttgg aacagttttt cgaggtaata gtaataataa tgctggtagt gggggtagtg 480ggtctgctac aacaccaagt tttacagtta aaaactgtaa agggaaagtt tctttcacag 540ataacgtagc ctcctgtgga ggcggagtag tctacaaagg aactgtgctt ttcaaagaca 600atgaaggagg catattcttc cgagggaaca cagcatacga tgatttaggg attcttgctg 660ctactagtcg ggatcagaat acggagacag gaggcggtgg aggagttatt tgctctccag 720atgattctgt aaagtttgaa ggcaataaag gttctattgt ttttgattac aactttgcaa 780aaggcagagg cggaagcatc ctaacgaaag aattctctct tgtagcagat gattcggttg 840tctttagtaa caatacagca gaaaaaggcg gtggagctat ttatgctcct acgtatcgat 900ataagcacga atggag 916134751DNAChlamydia trachomatismisc_feature741n = A,T,C or G 134agcctctggc gaaggagagc cataaaaagt gcctaccagc ggagaaacaa taaaatctcc 60ctgagcaggc acctcacttt ctttcttctc gatactctct ttaacaatag gattcccaag 120gttttgatct gaggataagt tttgaaatcc agcaaacagt ctgttatcat aaaagactgg 180ctcctgaata cttgggactg tatccctttc taactctaac tccaaacctt cacgcttgat 240aacaatgcgc ttcacgtgcc gaattcggca cgaggctctt tcttacgagg atctcgagtc 300aagaagcctt gagccttcaa ttcttgcttc atgtcttctt tctcttgcag aacagctcta 360gctaaaccca atcgagtagc aataacctga ccttgaaccc ctcctccact tactcggata 420atcaaatcga aactgttgac atcaccgagc attctgagcg gagctaagat ggttgctctt 480tgaacttcaa gagggaaata ttgctctaaa gtctttccat ttacgtcaat ttttccattc 540ccagaacgaa gacgaacgca cacctgcttt cttctgcctg ttgcaacaga ctcttgtatc 600atattctttg tcacaaatta ccccaaatta cgcgtctaaa acaattggtt tgatagcttc 660atactgtgcg taagaactac ctttcaaaac tcttaaagat ttcatttgac gtcttccaag 720ttttgtttta ggcaacattc nttaacagca t 751135410DNAChlamydia trachomatis 135ataatccaga ctcttcctca tctggagata gcgctggaga ctctgaagaa ctgactgaga 60cagaagctgg ttctacaaca gaaactccta ctttaatagg aggaggtgct atctatggag 120aaactgttaa gattgagaac ttctctggcc aaggaatatt ttctggaaac aaagctatcg 180ataacaccac agaaggctcc tcttccaaat ctgacgtcct cggaggtgcg gtctatgcta 240aaacattgtt taatctcgat agcgggagct ctagacgaac tgtcaccttc tccgggaata 300ctgtctcttc tcaatctaca acaggtcagg ttgctggagg agctatctac tctcctactg 360taaccattgc tactcctgta gtattttcta aaaactctgc aacaaacaat 4101362719DNAChlamydia trachomatis 136ctcgtgccga aaagctttct gctctaccaa agagattcgt tttttaaatt cttcattctc 60tctaagagat ttagtttctt tcgcagaaca attgatagat actccgtacg tttggggtgg 120ccggtgcatt cataaacagc ttcctcgtaa tggtgtagat tgttcggggt atattcaact 180actttaccaa gtcacaggaa gaaatatccc tcgcaatgct agagatcaat acagagactg 240ttctccagta aaagatttct cgtctctacc tataggagga cttatcttcc tcaagaaagc 300aagcacggga caaatcaacc atgttatgat gaaaatctcg gagcatgaat tcattcatgc 360tgcggaaaaa atagggaaag tagaaaaagt aatcctagga aatagggctt tctttaaagg 420gaatctattc tgctcattag gtgaaccgcc tatagaagct gtttttggcg ttcctaaaaa 480tagaaaagcc ttcttttgaa agaaggcttt tctgaaacgc actccaatat atggacaagc 540aatagcttat cgtttggaga attggaaact cttacgagct ttcttacgac cgtatttttt 600acgctctttc ttacgaggat ctcgagtcaa gaagccttga gccttcaatt cttgcttcat 660gtcttctttc tcttgcagaa cagctctagc taaacccaat cgagtagcaa taacctgacc 720ttgaacccct cctccactta ctcggataat caaatcgaaa ctgttgacat caccgagcat 780tctgagcgga gctaagatgg ttgctctttg aacttcaaga gggaaatatt gctctaaagt 840ctttccattt acgtcaattt ttccattccc agaacgaaga cgaacgctag aaacagcctg 900ctttcttctg cctgttgcaa cagactcttg tatcatattc tttgtcacaa attaccccaa 960attacgcgtc taaaacaatt ggtttgatag cttcatactg tgcgtaagaa ctacctttca 1020aaactcttaa agatttcatt tgacgtcttc caagttttgt tttaggcaac attcctttaa 1080cagcatgctc gataacataa gcaggctttc gcgcaatcat gttttcaaaa ggaacttctc 1140gcatcccaga aataaagcct gtgtaatagt gatacacttt ctgagttcct tttgcgccag 1200tcaaacgcac tttctcagca ttgatcacaa tgacaccatc tcccatcgct acgtgaggag 1260taaaagtcac cttatgctta cctctcagga tcttcgcaac ttctgaagat aatctcccta 1320aggtcttccc ttcagcatta actacatacc aggctttgtt tcgatcgtcc gaagccttag 1380ctagggtcgt tttcgtatct tttctttttt ccataactta aatcacctta tcagagggaa 1440tgattataat tttgatgatt attttttcca aacaaaaagc agctgtattt gccttctaaa 1500gaatttagaa aagaaaaaat ttcaaaaaga tctcttttct ttttgccttc aaaaacagcc 1560ttacacttct atacttcttt cgaaaaaata ttttagggaa gttcttgaat catgatttac 1620ataataaaaa aaatagttag ctgccatcag ctaaatttaa aaaggtgcta ccagacgcta 1680aaagctggtc cacgtaatta atatcataat cagaaagaag aaacttcgga ttatccaaca 1740tgaactgatg aaaaggaatt gtagaatgca ccccaccaat atggaactct tttaaagctc 1800ttttcataat ggctatcgct tcctctcgat tctttccttt tgtgattacc ttagcaatca 1860tggaatcata ataaggaggt atcgcataac cactgtagca agccccgtct actcgcacag 1920caggacctgc aggagggaga taataatcta atctaccagg ggaaggagta aagttattaa 1980ttggatcctc tgcattgatt cggcattgaa tcacgtgccc tttaaactct atattctttt 2040gcttccaagg cagtttttct cccttagcga cactaatctg agcctttaac aaatcgatcc 2100ctgtcacttc ttccgtaata gtatgttcca cttggatacg cgtattcatc tccatgaaat 2160aaaaacgctt ctccttatct aacagaaatt ctactgttcc aacagagaaa tacccggcac 2220tccgagctaa atccactgct acttttccaa ctttagctcg catttctgga gttaaaatag 2280gacttggagt ctcttctatt aatttttgcc gacgcctttg tactgacaat ctcgttctcc 2340aagatacacg taatttccgt gcttatctcc aattacttga acttctaaat gtcttggatt 2400ttcaataaat ttttcaatat acacgtcagg attattaaat cccgcttctg cttcagcccg 2460agcggcagta aaagccctat agaattcgtc tttttctcta acaatccgta ttcctcgtcc 2520accgcctcca gcaacagctt tgatgacgat ggggaatccg atcttttctg caattctaat 2580cccttccacc tcatccttca ctacaccttc agatccaggg attacagggc acttaatctt 2640tttagccaac tgcttagctg cgactttatc tcccatagtc gctatcgact cagcactagg 2700accgataaat ctcgtgccg 27191372354DNAChlamydia trachomatis 137gtgcaagatg ggacgagttt gaagtttaat actagcacat aacttccctt ctggaggttt 60aggagagagc ccttttatta gggctctctt tttttgtgtg tgaggaaagc tagcgtctaa 120ctaaatgtct ctaagtaagg atgtttttag gggaaatagc gattttcagt gttgagaagc 180ttagttacaa gacaataaac aaggctaaga aaaacctttc ttagccttgt ttctcaacga 240atcgcctata gaagactaat cttccagcgt tgccctatgg ctcagcttca actggccttt 300ttcgttaatg ctaaggagtt taacagcaag cttgtctcct tctttgacaa agccagagat 360attgtctact ttttgtttag acaattcaga aatatgacag agcccttctt ttcctgggag 420gacttctacg aatactccaa atgttgcgat agatgtaaca cggccattat aaactttacc 480gacttcaact tctccagtta atccttcgat aagttcttta gctttgttaa tcgattcttg 540ggtgcttgca gctatgttaa tgacgccgtc atcattgatg tcaacttgcg caccagaacg 600ctcgataatt tgacggattt gttttcctcc gggaccaatg accgttgcga tttttgaggt 660attgatctgc atagtttcaa tgcgcggagc atatttagaa acagttccct taggggaggc 720cagaacctgt gtcataagat taaggatatg actacgccct tgtttagctt gcgctagagc 780ttgctccata atcttatgag tgattccctc tatcttgata tccatttgga aagctgtaat 840acctttagct gttccggcta ctttaaagtc catatctcct agatgatctt ctataccgga 900aatatcagac aagatgatgg cttgatctcg atctaagatt aagcccatag caatacctgc 960cacgggagct ttgataggaa ctccagcatc catgagtgca agacagcctc cacatacgga 1020tgccatggag gaagatccat tagactcagt aatattagat tctaggcgaa tgatataagg 1080gaatcgcgat gtctcaggaa gaacatgact taaagctttc tcagctaatt tcccatgtcc 1140aatttcacgt cttcctgggg aaccaattct gccaacttct cctacggaga aaggagggaa 1200gaaatactgt agatagaagc gagcggctcc atctccattc agatcttcga atcgctgtgc 1260catattttcg cctccaagcg tacatacggc catgctttgc gtctctccgc gagtaaataa 1320gcaacttccg tgtgttcttg gaagaaaagg agtctctatg gaaatggggc gaatctctgt 1380ggtggttcgt ccatctacac gaataccaag atcttggata agagctcgca tttgattgga 1440ttttgctgtc ttaaatgcag ccttaacgtt caacaaagaa aaatcactgt tttcttcttg 1500aaccaagtta gcaataacgg attcctctaa ttctttcgag gcttgctcta gagcttcttt 1560atctctaaaa gacaatgctt tttcgaattt ttctctaata aaatctgaaa ctacattttg 1620tacgtcttct ggcatatcaa gaacggcaga gaaattcttt tgtttgccga tagctttctg 1680ccatgcttca atagcatcgc atattttagc tatataggtt tgcccaaaaa caatagcttc 1740tagaacttgc tcttctgtta aaaagtcgca atgtccttca atcattaaaa ctgcagaagc 1800tgttcctgcc atgacgagat ccagcctgga ggcacttaac tcatctctgg ttgggttaat 1860gacccacttt cctccgacga gcccaacgcg tacacccgca acgatacaat tttgaggaac 1920ctctgagata gctaaagcgg cagaagctcc gcaaatagct agaggatcag gtaaagtttt 1980cccgtcgtaa gaccaaacgt aggacaagac ttgaatatct tgcatgagtc tattaggaaa 2040cgacggacgc aaagagcgat ccattagccg agaaacaaga atttctctct cggaaggccg 2100tccttcacgt tttagaaatc ctccagaggt tcttcctgcg gaggaaaact tctcttgata 2160gtctactctg aaaggcagaa aatcgacagc ctctgacaag gaggctgcac acgctgaaga 2220aaaaacccaa gtctcgttca ttttgacgag aacagcccca ctggcctggc gagctatttt 2280ccctgtctcg aaaattaatg ttttattttt gtctaacgca acagaaaaag tctcaaaagc 2340catggagttg tcct 2354138898DNAChlamydia trachomatis 138tcatcttgtc tgatatttcc ggtatagaag atcatctagg agatatggac tttaaagtag 60ccggaacagc taaaggtatt acagctttcc aaatggatat caagatagag ggaatcactc 120ataagattat ggagcaagct ctagcgcaag ctaaacaagg gcgtagtcat atccttaatc 180ttatgacaca ggttctggcc tcccctaagg gaactgtttc taaatatgct ccgcgcattg 240aaactatgca gatcaatacc tcaaaaatcg caacggtcat tggtcccgga ggaaaacaaa 300tccgtcaaat tatcgagcgt tctggtgcgc aagttgacat caatgatgac ggcgtcatta 360acatagctgc aagcacccaa gaatcgatta acaaagctaa agaacttatc gaaggattaa 420ctggagaagt tgaagtcggt aaagtttata atggccgtgt tacatctatc gcaacatttg 480gagtattcgt agaagtcctc ccaggaaaag aagggctctg tcatatttct gaattgtcta 540aacaaaaagt agacaatatc tctggctttg tcaaagaagg agacaagctt gctgttaaac 600tccttagcat taacgaaaaa ggccagttga agctgagcca tagggcaacg ctggaagatt 660agtcttctat aggcgattcg ttgagaaaca aggctaagaa aggtttttct tagccttgtt 720tattgtcttg taactaagct tctcaacact gaaaatcgct atttccccta aaaacatcct 780tacttagaga catttagtta gacgctagct ttcctcacac acaaaaaaag agagccctaa 840taaaagggct ctctcctaaa cctccagaag ggaagttatg tgctagtatt aaacttca 898139660PRTChlamydia trachomatis 139Met His His His His His His Met Glu Ser Gly Pro Glu Ser Val Ser5 10 15Ser Asn Gln Ser Ser Met Asn Pro Ile Ile Asn Gly Gln Ile Ala Ser20 25 30Asn Ser Glu Thr Lys Glu Ser Thr Lys Ala Ser Glu Ala Ser Pro Ser35 40 45Ala Ser Ser Ser Val Ser Ser Trp Ser Phe Leu Ser Ser Ala Lys Asn50 55 60Ala Leu Ile Ser Leu Arg Asp Ala Ile Leu Asn Lys Asn Ser Ser Pro65 70 75 80Thr Asp Ser Leu Ser Gln Leu Glu Ala Ser Thr Ser Thr Ser Thr Val85 90 95Thr Arg Val Ala Ala Lys Asp Tyr Asp Glu Ala Lys Ser Asn Phe Asp100 105 110Thr Ala Lys Ser Gly Leu Glu Asn Ala Lys Thr Leu Ala Glu Tyr Glu115 120 125Thr Lys Met Ala Asp Leu Met Ala Ala Leu Gln Asp Met Glu Arg Leu130 135 140Ala Asn Ser Asp Pro Ser Asn Asn His Thr Glu Glu Val Asn Asn Ile145 150 155 160Lys Lys Ala Leu Glu Ala Gln Lys Asp Thr Ile Asp Lys Leu Asn Lys165 170 175Leu Val Thr Leu Gln Asn Gln Asn Lys Ser Leu Thr Glu Val Leu Lys180 185 190Thr Thr Asp Ser Ala Asp Gln Ile Pro Ala Ile Asn Ser Gln Leu Glu195 200 205Ile Asn Lys Asn Ser Ala Asp Gln Ile Ile Lys Asp Leu Glu Arg Gln210 215 220Asn Ile Ser Tyr Glu Ala Val Leu Thr Asn Ala Gly Glu Val Ile Lys225 230 235 240Ala Ser Ser Glu Ala Gly Ile Lys Leu Gly Gln Ala Leu Gln Ser Ile245 250 255Val Asp Ala Gly Asp Gln Ser Gln Ala Ala Val Leu Gln Ala Gln Gln260 265 270Asn Asn Ser Pro Asp Asn Ile Ala Ala Thr Lys Glu Leu Ile Asp Ala275 280 285Ala Glu Thr Lys Val Asn Glu Leu Lys Gln Glu His Thr Gly Leu Thr290 295 300Asp Ser Pro Leu Val Lys Lys Ala Glu Glu Gln Ile Ser Gln Ala Gln305 310 315 320Lys Asp Ile Gln Glu Ile Lys Pro Ser Gly Ser Asp Ile Pro Ile Val325 330 335Gly Pro Ser Gly Ser Ala Ala Ser Ala Gly Ser Ala Ala Gly Ala Leu340 345 350Lys Ser Ser Asn Asn Ser Gly Arg Ile Ser Leu Leu Leu Asp Asp Val355 360 365Asp Asn Glu Met Ala Ala Ile Ala Leu Gln Gly Phe Arg Ser Met Ile370 375 380Glu Gln Phe Asn Val Asn Asn Pro Ala Thr Ala Lys Glu Leu Gln Ala385 390 395 400Met Glu Ala Gln Leu Thr Ala Met Ser Asp Gln Leu Val Gly Ala Asp405 410 415Gly Glu Leu Pro Ala Glu Ile Gln Ala Ile Lys Asp Ala Leu Ala Gln420 425 430Ala Leu Lys Gln Pro Ser Ala Asp Gly Leu Ala Thr Ala Met Gly Gln435 440 445Val Ala Phe Ala Ala Ala Lys Val Gly Gly Gly Ser Ala Gly Thr Ala450 455 460Gly Thr Val Gln Met Asn Val Lys Gln Leu Tyr Lys Thr Ala Phe Ser465 470 475 480Ser Thr Ser Ser Ser Ser Tyr Ala Ala Ala Leu Ser Asp Gly Tyr Ser485 490 495Ala Tyr Lys Thr Leu Asn Ser Leu Tyr Ser Glu Ser Arg Ser Gly Val500 505 510Gln Ser Ala Ile Ser Gln Thr Ala Asn Pro Ala Leu Ser Arg Ser Val515 520 525Ser Arg Ser Gly Ile Glu Ser Gln Gly Arg Ser Ala Asp Ala Ser Gln530 535 540Arg Ala Ala Glu Thr Ile Val Arg Asp Ser Gln Thr Leu Gly Asp Val545 550 555 560Tyr Ser Arg Leu Gln Val Leu Asp Ser Leu Met Ser Thr Ile Val Ser565 570 575Asn Pro Gln Ala Asn Gln Glu Glu Ile Met Gln Lys Leu Thr Ala Ser580 585 590Ile Ser Lys Ala Pro Gln Phe Gly Tyr Pro Ala Val Gln Asn Ser Ala595 600 605Asp Ser Leu Gln Lys Phe Ala Ala Gln Leu Glu Arg Glu Phe Val Asp610 615 620Gly Glu Arg Ser Leu Ala Glu Ser Gln Glu Asn Ala Phe Arg Lys Gln625 630 635 640Pro Ala Phe Ile Gln Gln Val Leu Val Asn Ile Ala Ser Leu Phe Ser645 650 655Gly Tyr Leu Ser660140598PRTChlamydia trachomatis 140Met His His His His His His Met Ser Ile Arg Gly Val Gly Gly Asn5 10 15Gly Asn Ser Arg Ile Pro Ser His Asn Gly Asp Gly Ser Asn Arg Arg20 25 30Ser Gln Asn Thr Lys Gly Asn Asn Lys Val Glu Asp Arg Val Cys Ser35 40 45Leu Tyr Ser Ser Arg Ser Asn Glu Asn Arg Glu Ser Pro Tyr Ala Val50 55 60Val Asp Val Ser Ser Met Ile Glu Ser Thr Pro Thr Ser Gly Glu Thr65 70 75 80Thr Arg Ala Ser Arg Gly Val Leu Ser Arg Phe Gln Arg Gly Leu Val85 90 95Arg Ile Ala Asp Lys Val Arg Arg Ala Val Gln Cys Ala Trp Ser Ser100 105 110Val Ser Thr Ser Arg Ser Ser Ala Thr Arg Ala Ala Glu Ser Gly Ser115 120 125Ser Ser Arg Thr Ala Arg Gly Ala Ser Ser Gly Tyr Arg Glu Tyr Ser130 135 140Pro Ser Ala Ala Arg Gly Leu Arg Leu Met Phe Thr Asp Phe Trp Arg145 150 155 160Thr Arg Val Leu Arg Gln Thr Ser Pro Met Ala Gly Val Phe Gly Asn165 170 175Leu Asp Val Asn Glu Ala Arg Leu Met Ala Ala Tyr Thr Ser Glu Cys180

185 190Ala Asp His Leu Glu Ala Lys Glu Leu Ala Gly Pro Asp Gly Val Ala195 200 205Ala Ala Arg Glu Ile Ala Lys Arg Trp Glu Lys Arg Val Arg Asp Leu210 215 220Gln Asp Lys Gly Ala Ala Arg Lys Leu Leu Asn Asp Pro Leu Gly Arg225 230 235 240Arg Thr Pro Asn Tyr Gln Ser Lys Asn Pro Gly Glu Tyr Thr Val Gly245 250 255Asn Ser Met Phe Tyr Asp Gly Pro Gln Val Ala Asn Leu Gln Asn Val260 265 270Asp Thr Gly Phe Trp Leu Asp Met Ser Asn Leu Ser Asp Val Val Leu275 280 285Ser Arg Glu Ile Gln Thr Gly Leu Arg Ala Arg Ala Thr Leu Glu Glu290 295 300Ser Met Pro Met Leu Glu Asn Leu Glu Glu Arg Phe Arg Arg Leu Gln305 310 315 320Glu Thr Cys Asp Ala Ala Arg Thr Glu Ile Glu Glu Ser Gly Trp Thr325 330 335Arg Glu Ser Ala Ser Arg Met Glu Gly Asp Glu Ala Gln Gly Pro Ser340 345 350Arg Val Gln Gln Ala Phe Gln Ser Phe Val Asn Glu Cys Asn Ser Ile355 360 365Glu Phe Ser Phe Gly Ser Phe Gly Glu His Val Arg Val Leu Cys Ala370 375 380Arg Val Ser Arg Gly Leu Ala Ala Ala Gly Glu Ala Ile Arg Arg Cys385 390 395 400Phe Ser Cys Cys Lys Gly Ser Thr His Arg Tyr Ala Pro Arg Asp Asp405 410 415Leu Ser Pro Glu Gly Ala Ser Leu Ala Glu Thr Leu Ala Arg Phe Ala420 425 430Asp Asp Met Gly Ile Glu Arg Gly Ala Asp Gly Thr Tyr Asp Ile Pro435 440 445Leu Val Asp Asp Trp Arg Arg Gly Val Pro Ser Ile Glu Gly Glu Gly450 455 460Ser Asp Ser Ile Tyr Glu Ile Met Met Pro Ile Tyr Glu Val Met Asn465 470 475 480Met Asp Leu Glu Thr Arg Arg Ser Phe Ala Val Gln Gln Gly His Tyr485 490 495Gln Asp Pro Arg Ala Ser Asp Tyr Asp Leu Pro Arg Ala Ser Asp Tyr500 505 510Asp Leu Pro Arg Ser Pro Tyr Pro Thr Pro Pro Leu Pro Pro Arg Tyr515 520 525Gln Leu Gln Asn Met Asp Val Glu Ala Gly Phe Arg Glu Ala Val Tyr530 535 540Ala Ser Phe Val Ala Gly Met Tyr Asn Tyr Val Val Thr Gln Pro Gln545 550 555 560Glu Arg Ile Pro Asn Ser Gln Gln Val Glu Gly Ile Leu Arg Asp Met565 570 575Leu Thr Asn Gly Ser Gln Thr Phe Arg Asp Leu Met Lys Arg Trp Asn580 585 590Arg Glu Val Asp Arg Glu595141788DNAChlamydia trachomatis 141gctttacgta gccatttgca ttaatgctcc gtctcaggaa cgtattcata ctcggatagc 60gcgtcatcct ctaaaaagga aggaaatgac cgtgctttct acacatgccg aaggcggtaa 120ggaagcaatt acccattgcc aagttctagc tacgaatgga cgattaagtg tggttgctct 180atacccagaa acaggcagaa cccaccagct tcgtgtacat atgaagcacc tgggcacacc 240gattctcgga gatcccgttt acgggatccc ctctataaat tttcgttatg gtcttgacaa 300acaacaattg catgcctata gcttggtttt tgctcatccg gagagtgcgg agcgagtgaa 360gctagtgaca aagcttccag acgatatgac ttccttaata gaaaaggaat ttagagaagg 420tgtctctata ctggatggtt cgtgtgattg gtttaaaatc actaggtagt tttgtttttt 480aagtaagaag tataaaatag attatagata ctatttttat ttttctttca caccttcaga 540aaaaagcttg tgtaggattt gcttcgcatg aaagagtttt tagcgtacat tgtaaaaaat 600cttgttgata agccagagga agtgcatctg aaagaggtgc agggaaccaa tacgattatc 660tacgaattga ctgttgctaa gggagatatc ggtaaaatta tcggtaaaga aggacgcact 720attaaggcta tccgtacttt attggtttcc gtagcaagtc gagataatgt gaaagtcagc 780ctagaaat 788142788DNAChlamydia trachomatis 142gctttacgta gccatttgca ttaatgctcc gtctcaggaa cgtattcata ctcggatagc 60gcgtcatcct ctaaaaagga aggaaatgac cgtgctttct acacatgccg aaggcggtaa 120ggaagcaatt acccattgcc aagttctagc tacgaatgga cgattaagtg tggttgctct 180atacccagaa acaggcagaa cccaccagct tcgtgtacat atgaagcacc tgggcacacc 240gattctcgga gatcccgttt acgggatccc ctctataaat tttcgttatg gtcttgacaa 300acaacaattg catgcctata gcttggtttt tgctcatccg gagagtgcgg agcgagtgaa 360gctagtgaca aagcttccag acgatatgac ttccttaata gaaaaggaat ttagagaagg 420tgtctctata ctggatggtt cgtgtgattg gtttaaaatc actaggtagt tttgtttttt 480aagtaagaag tataaaatag attatagata ctatttttat ttttctttca caccttcaga 540aaaaagcttg tgtaggattt gcttcgcatg aaagagtttt tagcgtacat tgtaaaaaat 600cttgttgata agccagagga agtgcatctg aaagaggtgc agggaaccaa tacgattatc 660tacgaattga ctgttgctaa gggagatatc ggtaaaatta tcggtaaaga aggacgcact 720attaaggcta tccgtacttt attggtttcc gtagcaagtc gagataatgt gaaagtcagc 780ctagaaat 7881431754DNAChlamydia trachomatis 143atataatgaa ttaaacaacg cacaccaaat cctgttgcat atttggggta aggcaactct 60tctttttcat ggtaagcagt accggcaatg tccaaatgtg cccatgctac tgaattgtct 120tcgaggaaac gttgtaaaaa tagcgctgca gtaatcgatc ctgcacgatt gctgccgata 180tttttcatat ctgcaatatc tgaatgaagt gcctggtcat atttctctac caaaggcatt 240ctccatagag cttccccggt ctctgatgaa gcttctgcta gatctcttgc caacacgtcg 300ttatttgcaa aaaatccagc cacagattct cctaaagaaa caaccatagc acccgtcaag 360gtagcaaagt caatgatgcg ggtaggatta caatatttca aagcatagga gatggcatct 420gctaaaatca aacgcccttc cgcatcagtg ctgccaattt ctacagaaag gccggtcatt 480ccaacatata catctcccat cttataggca gccgatccaa tcgcattctc tgtagctgga 540atgatcccgg tcacattgat cggaagctcc aaggaagcta aagcagaaaa aattcctaga 600acggtagccg ctccagccat gtcttccttc atggtaatca ttgccttccc aggtttcaaa 660tctagtcctc cggaatcgaa tgttacccct ttaccaatga gtacggttct atctttagat 720ttaggtttac cttggtaatc cagaacaata aaccgaggct caacagcagc gcccttggca 780acagcagcca acaatcccat tttttctttt aatatcgcct tcctatctag aatttttaca 840tccagactcg cgaactcccc tgctagacct tttgctaccg cagcaagttt ttctggagtg 900acttcatctg cattggtatt cactaaatct ctagttaaat ataccccttc aaataggctc 960tcttcttttc taaagatctt gtcccctacc ttagagacaa tacccattac agttactttc 1020tctaggaaag gcaaagacgt atccactttg tgataggttg ggtaattata gttcagagat 1080agcacccctg ctgccaagtt cgttaaaaac tcttctaagg agaagcgcaa ctgtgaaatt 1140gttgggagta aaatatttac aatcttacac ttagcttttc ttaaaacagt agtagcctga 1200gcgtaggctt ctaaaacggt tgttccggat acttcttcgc tcttccctag accaagaaga 1260acaatttttt gttcttttgt gtgatcattt ccaaaaagaa aagccgtttc ccctttcttc 1320cctgaaaaat tggataatgc gttttgatag acaagcttgt agtcctcatc aacaaccgca 1380gcttcttgag ctttagaatt cttcatccaa aaaggaagaa caagagcatc cgctttcgat 1440cgtttatccc aactcgcttg agaatagagt aataccacaa taacctcttt gttgaatcga 1500ttgagtcaat aattaaacac cagtagaacg cgttttgctc atttccgtct caagctggcg 1560gcctgaccca ttctctgcag tagaaaaggc cagaacaagc aaaacaacat ggttttcatc 1620tctacattat tccgagatga aaaaaaggac tataggaaag agtagtcttt ttagcaaata 1680agctctgtta ctccatagac aagaagattc aagagcttct taagatatgg gattgaatca 1740aatgaataga atag 17541443037DNAChlamydia trachomatis 144agtgcggatc atgattctgg ggagctgttt taaaaataga tactaaaaag cttcctaagt 60gttcagcaaa aaatgaagcc aaagaaaacg ttaagaacat ggagacaatg aacgtaatcg 120cagaaggaaa atcttgagat ttggctacct gccccttttt tctagcatcc cgaagacgct 180tgggggtcgc cttttctgtt ttttcgccca tagatggcca gttgcttaag cgctataagg 240aatacttcgc aagttaccgt atataaatgt ttttctcaag aaagaaggtg gcagatgctc 300atcccattta taaacaaaga gtaaggggtt ctttagagaa cggaatattt tttttaaaga 360gcgtttttca tgaagcacta atcttgcttt ttctttagaa tttctttttc cttaataata 420aaaaggctgt gttagcctta agaaaaagct gtacaacttc ttaggtaatg aaaatgggac 480aaacagagtg tggaatagta ggtcttccta atgtagggaa atcaggatta tttaatgcgt 540tgacaggcgc acaagttgcc tcctgtaatt atcccttctg cacaatagat cctaatgtcg 600gtattgtgcc tgttatcgat ccaaggttag agaccttagc acgtatcagt cagagccaaa 660agattatcta tgcagatatg aagtttgtag acatcgcagg attagtaaaa ggagcagcta 720gcggtgctgg cttagggaat cgttttttat cacatattcg agagactcac gctattgcgc 780atgttgttcg ttgcttcgac aatgatgata taacccatgt atctgggaaa attgatcctg 840aagaagatat agctgtgatt aatctagagc tcgtattagc agacttttct tctgccacta 900gcgtgcgaga gaaacttgga aaacaggcta aagggaaaaa agatattggg cagttgctac 960ctctattaga tcgcgtagtt gatcatttag aatcaggaaa tcctgttcga accctctcgc 1020tttctttaga ggaaaaagtt ttattgaaac cctatccttt cctcacagga aagcctatgc 1080tctatattgc gaatattgat gaagactctt taacggatct ggataacccc tatgtccaga 1140aagtacggga gatcgctaaa agagaagagg cgaatgtagt tcctatctgt gtaaaattag 1200aggaagaaat tctatcgctc cctctagagg aacgacaaga ttttttacat agcttaggtc 1260tacaagagtc tggattgaat cgtttagtag cttcagcata ccacactctt gggttaattt 1320cttatttcac tacaggacca caagagactc gagcttggac aatttctaaa ggggctacag 1380cggcagaggc tgcaggggaa attcattcgg atattcaaag aggatttatt cgcgctgaag 1440ttgtaactat ggaggatatt gttgcttacg atggaagagc tggagcgcga gaagccggga 1500aactacgtgc tgaaggtagg gactatattg ttcaggatgg ggatattatg ctctttttgc 1560ataattaaag gagcattcat ctatttttat tgagacgggc ttggcggata tcttcttgaa 1620tggcaaggac aagctcgtct ttagaagaaa agagcttttc ttccctgaga aattgctcag 1680gaatcacagt aatactctta tcgtagagat cttctgaaaa atcaaggata tgtgcctcta 1740ggcatagttg gtgtctttgc attgtgggcg ccatacctaa attcataaca cctgcatagc 1800tgaacccttc aataacgata gtacaagtat atacccctaa aggaagtaga gaatgggtaa 1860ggggaagatt gattgttgca tatccaaaag atgccccgat tcctcgtcca tgagcaacct 1920ttcctgtata agaaaaaggt ctcccaagaa acttttctgc agagcacaaa tctttctttc 1980taagaaattg tcgaattttt ctgctagata caatagtacc ttcaatctgt aggggaggga 2040cttcttctag agatatccct aaagaggcag caaaaggcct taacgtttgt gctgttccta 2100aaccaccctt cccaagtcta gaatcgtaac ccaagacaat tcttgatgga cgtagagtct 2160tgtaaataga ctggataaat ggctctgcct cttgattagc tatttcctgg ttaaaaggga 2220gaacggctag ataatcaatg ccgcagccag ccagaagctg aacacgctcc tcaagagagg 2280taatagtttc tggaggagag ttagacaaag tatgctcagg atgctggctg aacgtaatta 2340ctccagattt gctaggaaac ttcgttaaaa aagaaagcaa agcttggtgt cctaaatgac 2400acccatcgaa aaaacctata gtaacagatt ctacaggatt agaggacggg agcaggctgt 2460agaataagtc catttgcatc acgtaaataa ggagatacat cgaacccggg ttcgtctaaa 2520agattcccat caatacactg atcgatagag aagcttccac tacgtaaccg tcggagttct 2580tctaaataag ctccgcatcc caacatattg cctaactcat gagcgatact gcggatgtat 2640gttcctttgc tgcattgaac tacaaaatgt agacgagggt attcgtattt aaccaaacga 2700agatttaccg ttactgtggc aaaacgtcgt tctatagata acccctgcct agcatattcg 2760tataattttt ttccttgtac tttctttgca gagaacatag gagggacttg ttgaatttcc 2820ccttgaaaat agcttgtgca agtcaaaact tcgtccatag ttggaacttt tttagatcgc 2880ccaacaattt tcccatcgca atcgtaagta tccgtcgtgg ttcctaaatg cgctaccgct 2940gcatactctt tgtcttcaaa cagcatgatg tccgatagtc gggtgaattt tctccctatt 3000agcataacca taacgcctgt agcaaaagga tctaaag 30371451353DNAChlamydia trachomatis 145atcactatgg tccgttgtat tggaagcacc gtaaaaagcg agaggaattc gttccccaag 60aagaataatc tctgatttag tctttttcat atgtgcccat cagctctgcc gtagctatga 120tatgtccgtc catagcttct aacagctgtt ctttggtcac tccttcttca tcggaaagca 180caacatcgag cgcataagca taaaagtaat agcgatgctt cgcatctgga gggcaaggag 240ggcagtatcc tatttctcca gcagtattta acccttggac agcaaaaatt tgtgctcctt 300ctgcaagatt agagactgca ggcgaaaggt tatacactat ccagtgtatc cacaacccat 360cctctcgaac actaggagga acatctggat cttcaacaat aagaacaaga cttttagcct 420ctctagggac atcagaaaaa gacagcggtg gggagatccc aacgccctga cacgaatact 480ttttaggaat cggacggccg taagaaaaag cttgtgaggt gagttgcata attgaggtct 540cctgtattta gggccatgct ctgtaaagcg tggccctatt cttgtactac tgtcgtagtg 600gatcagactg ggcttgcgct tctttacgga gaagggctac ctcataccga gtggcaatta 660cttctctgaa caaggcgatc aaactgatgg aattaaaaat aaccatcccg caaaaaccta 720gatcggatag cgcccagata aactgcattc ctaagacacc acccatgggg attatcgcga 780tataaatagc cttcaacaat aggttagcgc gcttccctgg gatcatatat tctaaacttt 840tttctgcgca agcaaaccat gacagagctg tagtataccc aaacaagatc atggatataa 900gaacaacact tccgcccaac atgcctaacg aagatttgaa agcattcata accatcaaaa 960cccccaactc tccagaatca taggctcctg tcacaagaag caccatcatc gtaatagagc 1020atacgaccgc aacgataacg ggaggtaaga gagtgactaa tccgtctgtc acaggattcg 1080tgcttttaga attagattgc agaatagaaa ccattccgct tccaccgtct gtagccataa 1140tagcacgatt taatcctgta gagattacct gtcctaatgt atagccccca accccggcta 1200tcccagcctt gacacctaaa gcagaagaga aaacgagctg caaagcagga agaattttat 1260cacaatgcat agccaaaact ataacggaga aaaggaaata gaatcctgct acgaaaggaa 1320tcgctttagc agagaagcgg agaactcgag tat 13531461627DNAChlamydia trachomatis 146ccgtttagta agccgcggtt ttaaggtagc cattgctgag caggccgata atactgaagg 60gagcaaaggc ctcgttcctc ggacaatcaa ccgattgata acccctggag cactcttatc 120ctcttctttg ctcccagaaa aagcaaataa ctatgtcctt gcaatcaatc aagtagggtc 180tctctatggt ctctcctgtt tagacttgtc gataggaact ttccttgttg ctgaatacga 240taataccaag gaccttattg aggcgatctg tcggctggct cctacagagt tattgagcca 300cgcaaaattt tatcaaaaaa atgaagctgt tattaaacaa ctccaacagc atttacgtat 360cacactatcc gaatacgttt cttgggcttt cgagtatcag tctgcaacaa agaaattata 420cacgtgtttt caagtttcct ctttagatgg ttttggattg caaggactag tccctgctat 480taatgcggcc ggagcattac tgtcttatat tcaggacaca cttcttcttc ctatttcccc 540tcgtgccgaa ttcggcacga gctctgattt agtctttttc atatgtgccc atcagctctg 600ccgtagctat gatatgtccg tccatagctt ctaacagctg ttctttggtc actccttctt 660catcggaaag cacaacatcg agcgcataag cataaaagta atagcgatgc ttcgcatctg 720gagggcaagg agggcagtat cctatttctc cagcagtatt taacccttgg acagcaaaaa 780tttgtgctcc ttctgcaaga ttagagactg caggcgaaag gttatacact atccagtgta 840tccacaaccc atcctctcga acactaggag gaacatctgg atcttcaaca ataagaacaa 900gacttttagc ctctctaggg acatcagaaa aagacagcgg tggggagatc ccaacgccct 960gacacgaata ctttttagga atcggacggc cgtaagaaaa agcttgtgag gtgagttgca 1020taattgaggt ctcctgtatt tagggccatg ctctgtaaag cgtggcccta ttcttgtact 1080actgtcgtag tggatcagac tgggcttgcg cttctttacg gagaagggct acctcatacc 1140gagtggcaat tacttctctg aacaaggcga tcaaactgat ggaattaaaa ataaccatcc 1200cgcaaaaacc tagatcggat agcgcccaga taaactgcat tcctaagaca ccacccatgg 1260ggattatcgc gatataaata gccttcaaca ataggttagc gcgcttccct gggatcatat 1320attctaaact tttttctgcg caagcaaacc atgacagagc tgtagtatac ccaaacaaga 1380tcatggatat aagaacaaca cttccgccca acatgcctaa cgaagatttg aaagcattca 1440taaccatcaa aacccccaac tctccagaat cataggctcc tgtcacaaga agcaccatca 1500tcgtaataga gcatacgacc gcaacgataa cgggaggtaa gagagtgact aatccgtctg 1560tcacaggatt cgtgctttta gaattagatt gcagaataga aaccattccg cttccaccgt 1620ctgtagc 16271471262DNAChlamydia trachomatis 147gtaaaagctc tttttaaagg acggctattc attgctgaga tggtattaat tttcccgtga 60atatcacggg atacgtaggt ggcgtaatca tgatttccta ggcaagcaaa acagcctaag 120ggcgcatgca gagaacatag gaaatgtttt aatctttcag gagtttctac tttagcgcga 180cagacaaagt ctcctgtaaa tacaagaata tctggagaaa gagaagagat cttacgagat 240acttttttta gaaaggcatc aggcgtcgag tggtttaggt gtaaatccga aatctgtata 300atgcgaagcc catgaagatg agcaaatttt ttaggcagat tccaatttaa acgcgttact 360ctcaataggt taggctctaa gtgattggcc caaacccatg tcaaaacagg tgctgctaag 420atagttgtta aagatacagt aatacccaca gaaacgaaca aaaagaatga actagttcct 480catcttaaag acgaggaaca cgtgagtcaa tttctatttt atttaatgat gtgttgagaa 540accatttttg tcatttggaa catatcgata ggtttttcag ttccaaaaac tttagccaat 600ttatcatcgg gattgatatt acgtttgttt gtaggatctt gaaggctatt cttcttaatg 660taatcccaca ttttcttaat gatctctgtg cgaggcatag gtcctgcacc aacgatggca 720gctaaatcag cggatacgtt cacaggctgc atgaaagcag agttcttatt ttgactcatg 780gatgactcct agttaaagaa gatgataaga aaagtttagg gctcttcctt cgcaactctt 840ttatgcctta actaggttta tcgtcaaaat aaaaaacata gccaagtctt cagcaagaag 900agaggtaaaa gcgaattaga aaacgattta ttcctcggac tattacgcaa gaaattgatc 960cctaagagaa gatcatgtta ccatgagcgt gttttagctg tcaccgccac cgtaatagtg 1020gaaataactg gcaaggaaaa tagctctttg aaaaagaaga gtttgaagtt ggatattttg 1080cgaaaggtta gcaagattat gcatgagaat tttgacaaac gattggaact tttgcttgaa 1140ggtttggctt taactcggag gtctctttga cccggaagga aaagaaaatg agttaaagga 1200attggaacag caggcggtgc aagatggttt ttgggacgat gttgctcgtg cagctcgtgc 1260cg 12621481596DNAChlamydia trachomatis 148accctttgct ttcattagca ggagattctg cggagctgag agaatatttg gatcagcaaa 60cagctccttt tttgttacga gtcgttgata atgagagagg gaaattgtta cctatagagc 120aagagttact aaaaacaccg tttttagcta aatgggtatg caaacagttt ttcctgaacg 180aaagactagt tgcttcaaaa agttttttac aaacggttta tgatcatctt atgacaggct 240ctacagcaag attacggctt cgtaatcgaa cagttttggt aaaagctagg ggagtaatca 300tagaaagtat atattgatag tgtttttggg gcttccctag tgggttcagc agattgctga 360aagaaaaaca cttcttgttt tttatctcta taattagagg tttataaaca aaataataaa 420atattttgat atattgaata attatctgcc tatttgatta gcattgtagt gagttttatg 480gctaaagata aaaaaacaaa tccagaatcc aaaaaaagtt ttcctactgc ttttttcttt 540ctcttgttcg gagtgatttt tggcgtagtc acagttcaaa actttttctc tgctaaaaag 600gcttcggtag gcttcagtca tcaactcgaa catcttgtta acctgaaatt actcattcca 660gaagagagtc gcaagactgc cttgaacgat aatttagtgt catttagtgg tcgtttccgc 720gaggtggtcc ctgctgaagg tcaggttcgg tatcaatatc ttgatcttat tgaacgtaag 780catcagatcg actttgagct ggaagaggcg agtaagtctt taacggtttt atcaaaagaa 840gtgcgtaatg cgatcacttg gttttcagct atttctggaa tgcctatccc cgaagcaggc 900tatactattt ctcctcgaac ggatgttggg ctctctgttt tagaaccttt agtggtttac 960ggccctgtag atgctcaaat tgtgaacctt gctgcgctag aaaatcgggt gcgctctttg 1020cctaaatcta cagaaagtct tagagttttt ggttcggatc tctatgcatt aattgggaaa 1080tatctttctc cagctcttgg tatcgggtct gaatccttaa aaaaagaaat caaagatttg 1140catcagcaag tagaaaactc cttaactcag gttatagaag gggatcaggc tgttgctttg 1200tataaaactg tgcttgagac gttgcataga atttccttag cactagtttc tcctgaagaa 1260gggactcgtt tccatcaatt acgctctgta cgtctatatc gtgaagattt caaccgatgt 1320gtcaaattat taggggagag tgatgagact caggtgcagc tcgataagtt cagaggcgaa 1380ttagtccaag ctgtttggta tttcaataac caagaactct cttctcgagc tttggagaaa 1440caagatcctg aagtgtttag tcgttggttt gaaggcgcta aacaggaatg ggcagcattc 1500tcttcaaata aatctttatc atttagagct ccagatcaac cgcgtaattt agttttagag 1560aagactttca gaagtgaaga gccaacgcct

cattac 15961492624DNAChlamydia trachomatis 149tccgaattct aatacagaag gaagttcagc tagcactaac cttaaaggat ctcaagggga 60tactgctgat acagggactg gtgatgttaa caatgagtct caagacacat cggatactgg 120aaacgctgaa tctggagaac aactacaaga ttctacacaa tctaatgaag aaaatgccct 180tcccaatagt aatattgatc aatctaacga aaacacagac gaatcatctg atagccacac 240tgaggaaata actgacgaga gtgtctcatc gtcctctgaa agtggatcat ctactcctca 300agatggagga gcagcttctt caggggctcc ctcaggagat caatctatct ctgcaaacgc 360ttgtttagct aaaagctatg ctgcgagtac tgatagctcc cccgtatcta attcttcagg 420tttagaagag cctgtcactt cttcttcaga ttcagacgtt actgcatctt ctgataatcc 480agactcttcc tcatctggag atagcgctgg agactctgaa gaactgactg agacagaagc 540tggttctaca acagaaactc ctactttaat aggaggaggt gctatctatg gagaaactgt 600taagattgag aacttctctg gccaaggaat attttctgga aacaaagcta tcgataacac 660cacagaaggc tcctcttcca aatctgacgt cctcggaggt gcggtctatg ctaaaacatt 720gtttaatctc gatagcggga gctctagacg aactgtcacc ttctccggga atactgtctc 780ttctcaatct acaacaggtc aggttgctgg aggagctatc tactctccta ctgtaaccat 840tgctactcct gtagtatttt ctaaaaactc tgcaacaaac aatgctaata acgctacaga 900tactcagaga aaagacacct tcggaggagc tatcggagct acttctgctg tttctctatc 960aggaggggct catttcttag aaaacgttgc tgacctcgga tctgctattg ggttggtgcc 1020aggcacacaa aatacagaaa cagtgaaatt agagtctggc tcctactact ttgaaaaaaa 1080taaagcttta aaacgagcta ctatttacgc acctgtcgtt tccattaaag cctatactgc 1140gacatttaac caaaacagat ctctagaaga aggaagcgcg atttacttta caaaagaagc 1200atctattgag tctttaggct ctgttctctt cacaggaaac ttagtaaccc caacgctaag 1260cacaactata gaaggcacac cagccacaac ctcaggagat gtaacaaaat atggtgctgc 1320tatctttgga caaatagcaa gctcaaacgg atctcagacg gataaccttc ccctgaaact 1380cattgcttca ggaggaaata tttgtttccg aaacaatgaa taccgtccta cttcttctga 1440taccggaacc tctactttct gtagtattgc gggagatgtt aaattaacca tgcaagctgc 1500aaaagggaaa acgatcagtt tctttgatgc aatccggacc tctactaaga aaacaggtac 1560acaggcaact gcctacgata ctctcgatat taataaatct gaggattcag aaactgtaaa 1620ctctgcgttt acaggaacga ttctgttctc ctctgaatta catgaaaata aatcctatat 1680tccacaaaac gtagttctac acagtggatc tcttgtattg aagccaaata ccgagcttca 1740tgtcatttct tttgagcaga aagaaggctc ttctctcgtt atgacacctg gatctgttct 1800ttcgaaccag actgttgctg atggagcttt ggtcataaat aacatgacca ttgatttatc 1860cagcgtagag aaaaatggta ttgctgaagg aaatatcttt actcctccag aattgagaat 1920cgtagacact actacaagtg gaagcggtgg aaccccatct acagatagtg aaagtaacca 1980gaatagtgat gataccgagg agcaaaacaa taatgacgcc tcgaatcaag gagaaagcgc 2040gaatggatcg tcttctcctg cagtagctgt tgcacacaca tctcgtacaa gaaactttgc 2100cgctgcagct acagccacac ctacgacaac accaacggct acaactacaa caagcaacca 2160agtaatccta ggaggagaaa ttaaactcat cgatcctaat gggaccttct tccagaaccc 2220tgcattaaga tccgaccaac aaatctcctt gttagtgctc cctacagact catcaaaaat 2280gcaagctcag aaaatagtac tgacgggtac tcgtgccgaa ttcggcacga gacacagccc 2340gatacccagt actccacgcc gcattggagt agtatggcta tctgtaatga ttacgcctag 2400ctctttcact cgaaaataat ttcttaacca ttctccgatg cgattacacg atcccaaaat 2460atctttagga tataaaacaa aaggctggtc cgtattcgat tcatcaatcc ctgcagaagg 2520aatcaaaata ccttcttttt tcgttagata tatcccgctt ttctcacaaa acaaataagc 2580atccgcttct ttttttatca gctctgcaat tcgatatcaa gctt 26241502052DNAChlamydia trachomatis 150ctttcgaaag ggattaggga aaacatctca ggaactcaaa gcgattcttg atgctgtgta 60ttttcctaca ccagaagctg cgcgactgct ggtggatgtt cagggacatt tatcagaaga 120attttcttat gaagattttg ccattgccaa attttttggt gagagagagg aagtgaagaa 180aattatggat agatttattc aatctccaga agtttcttca caggtaacca tgaattacat 240gcgttggcct tttgatttca aatacgcagt gcttttactt actttaaaag atgtttcaaa 300aggttttgct gtagatcaag ttgttcagac cttctataaa gagaataagc cttttattat 360ggcttctggg gatgatgcta acgatatcga cctgctatct cgaggagatt ttaaaattgt 420tatacagacg gctccagagg agatgcatgg attagcggac tttttggctc ccccggcgaa 480ggatcttggt attctctccg cctgggaagc tggtgagctg cgttacaaac agctagttaa 540tccttaggaa acatttctgg acctatgccc atcacattgg ctccgtgatc cacatagaga 600gtttctcccg taattgcgct agctagggga gagactaaga aggctgctgc tgcgcctact 660tgttcagctt ccattggaga aggtagtgga gcccagtctt ggtagtaatc caccattctc 720tcaataaatc caatagcttt tcctgcacgg ctagctaatg gccctgccga gatagtattc 780actcggactc cccaacgtcg gccggcttcc caagccagta cttttgtatc actttctaaa 840gcagcttttg ctgcgttcat tcctccgcca taccctggaa cagcacgcat ggaagcaaga 900taagttagag agatggtgct agctcctgca ttcataattg ggccaaaatg agagagaagg 960ctgataaagg agtagctgga tgtacttaag gcggcaagat agcctttacg agaggtatca 1020agtaatggtt tagcaatttc cggactgttt gctaaagagt gaacaagaat atcaatgtgt 1080ccaaaatctt ttttcacctg ttctacaact tcggatacag tgtacccaga aagatctttg 1140taacgtttat tttccaaaat ttcctgagga atatcttctg gggtgtcgaa actggcatcc 1200atgggataga ttttagcgaa agttagcaat tctccattgg agagttcacg agatgcattg 1260aattttccta actcccaaga ttgagagaaa attttataga taggaaccca ggtccccaca 1320agtatggttg cgcctgcttc tgctaacatt ttggcaatgc cccagccata cccgttatca 1380tcgcctatgc cggctatgaa agcaattttt cctgttaaat caattttcaa catgagctaa 1440ccccattttg tcttcttgag agaggagagt agcagattct ttattattga gaaacgggcc 1500tcataataca taaggagtag attcactggc tggatccagg tttctagagt aaagagtttc 1560cttgtcaaat gtttaatagt tttaatcttt aaagtgtgaa aaacaggttt tatatgtaga 1620atttcctgtt aaaaataaaa aatccttaaa agaatccggg agttaaaggt atgtcatttg 1680gtattggtag tgcttgttca tctttatgga gccgtttgtg tggttcatca ggcagtgagg 1740gtaacagcga agaaggagtg acgtcttcag gttcagacgc cgcctcaggt tctggtgctg 1800cttctgctgt atgccagcaa cctacgagca gcgcttctac agaagggaat ggtcctagtg 1860tacagatacc aatggtaggg acgtactcag ctaatgtgca aagccttgtg aatcagggtc 1920atggcggacg cggtttcgtg aatagatgct accaaaaata ttctgctagt ggagtaagtc 1980ttacatctat atccattgga gggggagact ctgtggatgg cccgcttcct tcggtagtaa 2040ttacccaaca gc 2052151732DNAChlamydia trachomatis 151tcgcatgaaa gagtttttag cgtacattgt aaaaaatctt gttgataagc cagaggaagt 60gcatctgaaa gaggtgcagg gaaccaatac gattatctac gaattgactg ttgctaaggg 120agatatcggt aaaattatcg gtaaagaagg acgcactatt aaggctatcc gtactttatt 180ggtttccgta gcaagtcgag ataatgtgaa agtcagccta gaaattatgg aagagcggta 240aacgtatacg tttacagctt tttgagtcat tgttagagaa agtcttagcg cgcgtatttt 300ctaacaccgt ttttcttctc gagaagactg tagtcttttt ggcccgagag tttaaggatc 360tcaagggccg agtcacgttt tagaagttct cttcttgatc gagcgcagcg agttcttttg 420ctttcttatg agcggagact ctctcggtag gtaggtcatc aaattttgca atttttgtct 480ttcgatgccc gagttgtctg taggtttcga gcagcttctt aatgtagaga actgtgtatt 540ttttcagttg gctcagatct ttctgtacgc tactgcgttt cttttctaag catgccaact 600ccttctcata ggaattttca tcaaaacaga ggattttttt gatagttaga gctgctagtt 660gagcggttgc ttgcttatca ggagccggga gcgtgtcaag aaatggagtc agagcttcca 720aaacagcgtt gt 7321521326DNAChlamydia trachomatis 152atatgctcag gatcacaagg ccatgctaca tctttctctc caggagctaa gggcttccct 60acactatgta aacacttata gaaagtccca ttagaaccca acatcgctaa aacagaagct 120cccatacgcg tcatgatctt catagaacat acaacataag gagagtctgt aatctcaaca 180ccaatcaaag aaaatggaga gttcaaaggc cccatacaaa aaggcacaat gtagagtgtg 240cgacctcgca tacaccctcg gaataatgca tgcagctctg cacgcatctc ttgaggatct 300ctccagttat ttgttggacc agcttcttct tgagtcttgg tacaaataaa agtaaattgt 360tcagcacgag cgacatcact aggagaagaa cgaacgagga agcagttagg atgcagctca 420ggatttagag gggtcatcac cccagcatcc tgcatctgct ggcaaagctg ttggtattcg 480gcttctgaac catcgcataa ccttacgtcg tcaggtgaca ccaaagcaat tacttcttct 540atccaagatt ttaatcctga atgggttatc ttagatatcc aatcgccggt catactaaac 600tctcttttcg tttcttcaat tgatccagat gttccaaagc tttccctgta cctaaacaga 660ccgctaaaag tggatgcggc gctgtaataa cagagagccc ggtgttttta ctcaatgctt 720tatctaaccc tttaatcaga gctcctcctc cagctagcac catcccacgc tctactaaat 780ctgcagagag ttctggagga cacttctcta gagtcaaccg tacacattct ataatttgct 840gaataggttc tgctaagcac tcccggattt ctacggaatt gattcttttc gtgataggca 900gcccagctac ctgatcgcgt ccgcgtactt ccatctccaa ttcctgatca cctaacggat 960aagcagaacc tatagtaatc ttgatctcct ctgctgtccg cggaccgatc attaaattgt 1020atgtgcggcg catataatta ataatacact catcgaactc atcccctgct atacgcaaag 1080aacgcgactc tacaattcct ccaagagaaa taatagctat ttctgttgtc cctcccccaa 1140tgtcaataat catacttgct gcaggttcat gtacagggag atcgacgcca atggctgctg 1200ccataggctc ttcaatcaga attgcttcct gtgctcccgc atgcaaagca gagtcttcaa 1260cagcgcgttt ttcaaccttg gtagatcaaa tagaatccta ctttgtaatc aagcctgcaa 1320atgtat 13261533141DNAChlamydia trachomatis 153ccgaattctt gattattccc ataccacaaa gatcgccatt tcttagtaac cgctgtgcgg 60aaccctactg gacatccttt ttgacccata ccttactcct actgccctct ctcgccaaca 120atcacagtta gatgactcgt gcgcttcaaa atcggggctc ttcccccacg actcttagac 180ttcattcttt tgaacattgg gccggcatca acccgaactt ctagaacgca aagattttca 240cattttatat tttcattgga ctctgcattt gcaatagcgc tatccaacac ttttttaagg 300catcttccag ccttcatctg agaaaagctg agttgctgtt gagcttcaac aacactacgg 360tttctcatca atcctgcagc taaacgagcc tttcttggct gaacccgtat gtatcgggct 420gtcgctttaa acataacctg tctccttatg acttaccctt ttttaacggg atggctctta 480aacattcttg ttggagagaa ctctcccaac ttgtgtccaa ccatagtttc tgacacaaag 540accgtcaaaa atttacggcc attatgaacc tcaaaagtgt gcccaatcat ttcaggggta 600atcatagaac gacgagacca cgttttgatt ggagttttct tctccaaagc gttcatatct 660cggacctttt tgagaaggtg atgatcaaca aaaggacctt ttcttagcga tctactcata 720atccctattt ccttctatcc ttaactatcc acttattact cttacgctta tcacgagttt 780tcaatccttt cgtgacttta ccccaagggg tctgggaaat gtatccgtta tgacgccctt 840caccacctcc gtgtgggtga tcaacagggt tcatagctgt tcctcgaact gttggccgaa 900ttcctttcca tcgacgacgc ccagctttac cgtctacaca cagattgtga tctgcattgg 960agacctctcc gacagtagct cggcacattt cattcaacat acgaaattcg ccagaaggca 1020tcttcaaagc gacgtatcca gctgttttag cgatgatctg ggctgaaagt cctgcagaac 1080ggactaattt acccccggag ccaggtctca tctccacgtt atgaacagaa agtcccagag 1140ggatgctctt aagagtcatg cagcatccag ttttgaaagg acttccttct ccagaaatca 1200cacgatcgcc tcgcttaatt cctttaggag ctagaatata acgcttttct ccatctacat 1260aattcaatag agcaatataa gcagaacggt ttggatcata ctccacagaa gcaaccttcg 1320cttcaatacc gtctttatta cgtttgaagt cgatcactct ataatgacgt cttactcctc 1380ctccacgatg gcagcaggaa atatgtccta aattatctcg tcctccagag ctctttttga 1440aaaaagaaag ctttttattt ggacgaacac ttcttctaga actagatccc tttaactctc 1500cttgagtagt aagctcatca aaagaaggca gaattaactg tctcgtcccg ggagttactg 1560gcttaaactt tttaaacatg ttattcttct cttccttctt tactaaccaa tagagtgacc 1620atcaacaaaa gtcacaatag ccttcttaaa ccctgcggtt cttccttttc ttcggcctcg 1680gaatattctt gtaggttgag gtttaacaca catggtgttt acttttttaa ccttcacacc 1740tttagcagaa taaattgctt ctatggcttc agcaatcatg ggcttcgtgg cgtccccagc 1800aacaataaat gtgtacttag gatctttgca gaaactgcct ttctttttac cttctccgtc 1860tccgagactc aagccttcca acatctttgc cttctcggtc acataatgtc ttttgacaac 1920atcataagga tctttcatat cctagcttcc cctttaatct tttgttgtag agacaagact 1980ctcgacaagc aattctaaag ccttttctga aaccacaata tttctagcag cggcaatatc 2040gtatccgctg atattctctc cgtaagtaaa tcctcttaca gcagacaaat tacgcacact 2100cagtctcaaa ttctcattgc ttccaacatg agctaagccg tcaacgaaca ataccccacg 2160gcattctacg ttgcattctt ttaagaatct taaagcttct tttgtcttag gagcatccaa 2220gctgctaata aacacagagt tctctgcaac aatcagcttg cctgtttgaa ttttttgagc 2280caaaagcaac tgaatagccg ctcttctctc ttttttgttg atacgaatat gctgatcaaa 2340ttttggctta ggaccgaaaa caatccctcc tcctcggaat tgaggagctg ccaagcaacc 2400ttgacgggca ttccccgtgc ctttttgtct aaaaggcttt ttagtggaat ggctaacttc 2460cgatcgtcct cttgtgcaag cgctccactg acgtttgttg gcctgaatgg ccactagata 2520atcttttact gactgctctt tcccttcagt aaagaaggca tcaggcaatt caaacttccc 2580cgactctttt ccagaaaaat caaattttga taatagaacc attaggacct ctacccctct 2640actccgcaag aacgcttcac aacaacaacg gatcctttaa aaccaggaat tgctccctta 2700acgagcatta cctttctatc caagtcaact tttacgacct ctaaattctt gaccgtaacc 2760cgatcacatc ccatgtgact tggacgttta cttccgggga aacatcggcc aggagtagat 2820cgcatcccag tagatcctgc atgacgatga aatccagaac cgtggctttt tggtcctcct 2880cggaaaccaa attttttcat caccccttgg aagcctttac ccttagaaat tccacagatg 2940tcaacgttag atactccgtc gaaaatttct aacccaaatt catcgcctaa agaaacagac 3000tgaacagcct cttctgaaac gacaacttct tttaaaacac gacaagcacg tcctccggac 3060ttcttaaaat gtccgagtag tgctttggag aaacgctttt caatggtttt ttctggagct 3120tggactacat cagctcccat t 31411542275DNAChlamydia trachomatis 154ttttttaagg aatctaatag ataattccca gtgtctaacc gtatgtctaa agctcgtgat 60cccggtctag ggccttggat ttctttatca ttaggagaca ccttaataat atcactagct 120tcatatttcg atgcgcggtg ggagggatag tatagctctc cttccgcagc atcgagctgc 180ttacacccct taaggtaata gtacatcagg gctggagtat acatgtttga aaaaagaagc 240ttggtagctc ttttctgatg gacctcatta aaatgaggca atacatggct cgtttttagt 300tctttggaaa ggatcaattg ggaagaagcg gcttttttaa ttactggcag gagcttccac 360cctagattaa aagcgtcatg gatattggaa tttactcccg acaggtaaga aaaggataga 420ttattagcaa tgctccccaa gaaaatataa cggtcatgac aaaaaggata ctgtagaaga 480gatgaggaaa tggagagagg atcctctgct agcgcaaggc cataggtata cagaagtttc 540cagagtctgc attccaaatt cgccgaagtc aacaaacgtt gctcccttac tcaatccagc 600aaactgacct ttctgctgct tgcgaaattt tgttcgttta ggcattaaca taataattca 660cacaccctta taacctatct gcactacgca gcacctgcat gattagccgc aggaacggcc 720ttcttttcac caagattaat ccaaactttt atgccgataa ttccataagt agtctctgca 780gacgctgtag cataatcaat atctgctctg agcgtatgaa gaggcacacg accgttctta 840taccattccg accgagcaat ctcagctcca gctaaacgac cagaaacctg aacttttact 900cccaaagcac ctgcatccat tacagattgc aaagcctttt tcattgctct tctgaaagaa 960acccgtcttt ctatctgttt ggcaataccg tctgcgacga gctgagcgtt aagctctggg 1020cgtttaactt ctgcaatctc aacccaaaca tctttgcctg ttagcttttt cagctcggct 1080ttcagagact ctacttcagc ccctttcttc ccgattacta atccaggtct agcagtatgg 1140atagtaactt caattttacc gctcatacgt ttaacaacga atcccgcagc accttgacaa 1200gaaggtttct tcttcaaaaa ttctctaatt ttcacatctt caatgagaaa ttttccgaat 1260tcttgattat tcccatacca caaagatcgc catttcttag taaccgctgt gcggaaccct 1320actggacatc ctttttgacc cataccttac tcctactgcc ctctctcgcc aacaatcaca 1380gttagatgac tcgtgcgctt caaaatcggg gctcttcccc cacgactctt agacttcatt 1440cttttgaaca ttgggccggc atcaacccga acttctagaa cgcaaagatt ttcacatttt 1500atattttcat tggactctgc atttgcaata gcgctatcca acactttttt aaggcatctt 1560ccagccttca tctgagaaaa gctgagttgc tgttgagctt caacaacact acggtttctc 1620atcaatcctg cagctaaacg agcctttctt ggctgaaccc gtatgtatcg ggctgtcgct 1680ttaaacataa cctgtctcct tatgacttac ccttttttaa cgggatggct cttaaacatt 1740cttgttggag agaactctcc caacttgtgt ccaaccatag tttctgacac aaagaccgtc 1800aaaaatttac ggccattatg aacctcaaaa gtgtgcccaa tcatttcagg ggtaatcata 1860gaacgacgag accacgtttt gattggagtt ttcttctcca aagcgttcat atctcggacc 1920tttttgagaa ggtgatgatc aacaaaagga ccttttctta gcgatctact cataatccct 1980atttccttct atccttaact atccacttat tactcttacg cttatcacga gttttcaatc 2040ctttcgtgac tttaccccaa ggggtctggg aaatgtatcc gttatgacgc ccttcaccac 2100ctccgtgtgg gtgatcaaca gggttcatag ctgttcctcg aactgttggc cgaattcctt 2160tccatcgacg acgcccagct ttaccgtcta cacacagatt gtgatctgca ttggagacct 2220ctccgacagt agctcggcac atttcattca acatacgaaa ttcgccagaa ggcat 22751551909DNAChlamydia trachomatis 155ataccgtctg cgacgagctg agcgttaagc tctgggcgtt taacttctgc aatctcaacc 60caaacatctt tgcctgttag ctttttcagc tcggctttca gagactctac ttcagcccct 120ttcttcccga ttactaatcc aggtctagca gtatggatag taacttcaat tttaccgctc 180atacgtttaa caacgaatcc cgcagcacct tgacaagaag gtttcttctt caaaaattct 240ctaattttca catcttcaat gagaaatttt ccgaattctt gattattccc ataccacaaa 300gatcgccatt tcttagtaac cgctgtgcgg aaccctactg gacatccttt ttgacccata 360ccttactcct actgccctct ctcgccaaca atcacagtta gatgactcgt gcgcttcaaa 420atcggggctc ttcccccacg actcttagac ttcattcttt tgaacattgg gccggcatca 480acccgaactt ctagaacgca aagattttca cattttatat tttcattgga ctctgcattt 540gcaatagcgc tatccaacac ttttttaagg catcttccag ccttcatctg agaaaagctg 600agttgctgtt gagcttcaac aacactacgg tttctcatca atcctgcagc taaacgagcc 660tttcttggct gaacccgtat gtatcgggct gtcgctttaa acataacctg tctccttatg 720acttaccctt ttttaacggg atggctctta aacattcttg ttggagagaa ctctcccaac 780ttgtgtccaa ccatagtttc tgacacaaag accgtcaaaa atttacggcc attatgaacc 840tcaaaagtgt gcccaatcat ttcaggggta atcatagaac gacgagacca cgttttgatt 900ggagttttct tctccaaagc gttcatatct cggacctttt tgagaaggtg atgatcaaca 960aaaggacctt ttcttagcga tctactcata atccctattt ccttctatcc ttaactatcc 1020acttattact cttacgctta tcaccgagtt ttcaatcctt tcgtgacttt accccaaggg 1080gtctgggaaa tgtatccgtt atgacgccct tcaccacctc cgtgtgggtg atcaacaggg 1140ttcatagctg ttcctcgaac tgttggccga attcctttcc atcgacgacg cccagcttta 1200ccgtctacac acagattgtg atctgcattg gagacctctc cgacagtagc tcggcacatt 1260tcattcaaca tacgaaattc gccagaaggc atcttcaaag tgacgtatcc agctgtttta 1320gcgatgatct gggctgaaag tcctgcagaa cggactaatt tacccccgga gccaggtctc 1380atctccacgt tatgaacaga aagtcccaga gggatgctct taagagtcat gcagcatcca 1440gttttgaaag gacttccttc tccagaaatc acacgatcgc ctcgcttaat tcctttagga 1500gctagaatat aacgcttttc tccatctaca taattcaata gagcaatata agcagaacgg 1560tttggatcat actccacaga agcaaccttc gcttcaatac cgtctttatt acgtttgaag 1620tcgatcactc tataatgacg tcttactcct cctccacgat ggcagcagga aatatgtcct 1680aaattatctc gtcctccaga gctctttttg aaaaaagaaa gctttttatt tggacgaaca 1740cttcttctag aactagatcc ctttaactct ccttgagtag taagctcatc aaaagaaggc 1800agaattaact gtctcgtccc gggagttact ggcttaaact ttttaaacat gttattcttc 1860tcttccttct ttactaacca atagagtgac catcaacaaa agtcacaat 19091561157DNAChlamydia trachomatis 156ttttgttcgt ttaggcatta acataataat tcacacaccc ttataaccta tctgcactac 60gcagcacctg catgattagc cgcaggaacg gccttctttt caccaagatt aatccaaact 120tttatgccga taattccata agtagtctct gcagacgctg tagcataatc aatatctgct 180ctgagcgtat gaagaggcac acgaccgttc ttataccatt ccgaccgagc aatctcagct 240ccagctaaac gaccagaaac ctgaactttt actcccaaag cacctgcatc cattacagat 300tgcaaagcct ttttcattgc tcttctgaaa gaaacccgtc tttctatctg tttggcaata 360ccgtctgcga cgagctgagc gttaagctct gggcgtttaa cttctgcaat ctcaacccaa 420acatctttgc ctgttagctt tttcagctcg gctttcagag actctacttc agcccctttc 480ttcccgatta ctaatccagg tctagcagta

tggatagtaa cttcaatttt accgctcata 540cgtttaacaa cgaatcccgc agcaccttga caagaaggtt tcttcttcaa aaattctcta 600attttcacat cttcaatgag aaattttccg aattcttgat tattcccata ccacaaagat 660cgccatttct tagtaaccgc tgtgcggaac cctactggac atcctttttg acccatacct 720tactcctact gccctctctc gccaacaatc acagttagat gactcgtgcg cttcaaaatc 780ggggctcttc ccccacgact cttagacttc attcttttga acattgggcc ggcatcaacc 840cgaacttcta gaacgcaaag attttcacat tttatatttt cattggactc tgcatttgca 900atagcgctat ccaacacttt tttaaggcat cttccagcct tcatctgaga aaagctgagt 960tgctgttgag cttcaacaac actacggttt ctcatcaatc ctgcagctaa acgagccttt 1020cttggctgaa cccgtatgta tcgggctgtc gctttaaaca taacctgtct ccttatgact 1080tacccttttt taacgggatg gctcttaaac attcttgttg gagagaactc tcccaacttg 1140tgtccaacca tagtttc 11571573957DNAChlamydia trachomatis 157ttttatggct aaagataaaa aaacaaatcc agaatccaaa aaaagttttc ctactgcttt 60tttctttctc ttgttcggag tgatttttgg cgtagtcaca gttcaaaact ttttctctgc 120taaaaaggct tcggtaggct tcagtcatca actcgaacat cttgttaacc tgaaattact 180cattccagaa gagagtcgca agactgcctt gaacgataat ttagtgtcat ttagtggtcg 240tttccgcgag gtggtccctg ctgaaggtca ggttcggtat caatatcttg atcttattga 300acgtaagcat cagatcgact ttgagctgga agaggcgagt aagtctttaa cggttttatc 360aaaagaagtg cgtaatgcga tcacttggtt ttcagctatt tctggaatgc ctatccccga 420agcaggctat actatttctc ctcgaacgga tgttgggctc tctgttttag aacctttagt 480ggtttacggc cctgtagatg ctcaaattgt gaaccttgct gcgctagaaa atcgggtgcg 540ctctttgcct aaatctacag aaagtcttag agtttttggt tcggatctct atgcattaat 600tgggaaatat ctttctccag ctcttggtat cgggtctgaa tccttaaaaa aagaaatcaa 660agatttgcat cagcaagtag aaaactcctt aactcaggtt atagaagggg atcaggctgt 720tgctttgtat aaaactgtgc ttgagacgtt gcatagaatt tccttagcac tagtttctcc 780tgaagaaggg actcgtttcc atcaattacg ctctgtacgt ctatatcgtg aagatttcaa 840ccgatgtgtc aaattattag gggagagtga tgagactcag gtgcagctcg ataagttcag 900aggcgaatta gtccaagctg tttggtattt caataaccaa gaactctctt ctcgagcttt 960ggagaaacaa gatcctgaag tgtttagtcg ttggtttgaa ggcgctaaac aggaatgggc 1020agcattctct tcaaataaat ctttatcatt tagagctcca gatcaaccgc gtaatttagt 1080tttagagaag actttcagaa gtgaagagcc aacgcctcat tactctggtt atttattcac 1140ttttatgcca attattttgg ttctgctgtt tatctacttt atcttttctc gtcaggtcaa 1200agggatgaac ggttctgcta tgtcgttcgg aaaatctcct gcgcgcttgt tagcaaaagg 1260acaaaacaaa gtaacttttg cggatgtagc agggatagag gaagccaaag aagaactcgt 1320tgagatcgta gatttcttga agaagcctac taaatttact agtttaggag ggcgtatccc 1380taaaggaatt cttctcatag gagctccagg gacagggaaa acattgatag ctaaggctgt 1440cgctggtgag gctgatcgac ctttcttctc catagccggt tctgatttcg ttgaaatgtt 1500tgttggggtt ggagcaagta gaatccgaga tatgttcgag caggcgaagc gtaatgctcc 1560ttgcattatc ttcattgatg aaatcgacgc agttggaaga catcgtggtg ctggtattgg 1620aggtggtcat gacgagagag agcagactct aaaccagctg ttagtagaaa tggatggttt 1680tggtactaac gaaggagtca tccttatggc tgctaccaac cggccggatg ttttggacaa 1740ggctttgttg cgtccaggac gttttgatcg tcgtgttgtt gtgaatcttc ctgatataaa 1800aggtcgtttt gaaattctcg ctgtccacgc caaacgcatt aagctagatc ctactgtaga 1860tcttatggcg gttgcgcgta gcactccagg agcttcagga gctgatttgg aaaatcttct 1920taacgaagca gcattattgg ctgctagaaa agatcgtgca gcggtgacag cagttgaagt 1980tgcagaagct cgagacaagg ttctgtatgg taaagaacgg cgtagtttag agatggatgc 2040tcaagagaaa aaaacaacgg cataccacga gtcagggcat gctattgtag ggctttgtgt 2100tgagcattcg gatcctgtag ataaggtgac gattattcca agaggcttat ctttaggagc 2160cacgcatttc cttccagaaa aaaataaatt aagctactgg aagaaagagc tttatgatca 2220gttagcggtt cttatgggag ctcgtgccga attcggcacg aggcatgccg ctctagcctg 2280tttagatgcc tctgaaacaa cttttccatt aaaaacatct agagacttga ttttaaacaa 2340agattcgctg tggtcaagag aaatagcctt tatcaaggtt tccgataaat ccagaatctc 2400taaagaaaca agaaagttaa tcccagacgc ataatttttt ctagttagat aagataaagt 2460agataaccaa atttccgacg cgtccccaaa agcaaaaaca atctactttt atggaaagcc 2520atcgagccca ttttcttaac caaagctatt caaaatcgga gctctaagat tttaagaaat 2580tttttaacaa aagtccatta tgaccaagtc taccaccaag agttgcaaag tctaccacca 2640agagttgcaa agtctaccac caagagttgc aaagtctacc accaagagtt gcaaatctct 2700ctcgtgaaat caaatcccta aatatatata tataatagat atatatatat gagctgacgg 2760aggatcagct cttttgctta aaaagttcaa aaagctgttg tagaagattt tcgttatagg 2820aggacaaaga aactccggaa cacatgatgc gaagtatctc tattaagaaa tcagataatt 2880ggcgattctt ctctgaatca gacttatcta tcgtttctct aacgtctttg tttctagatg 2940aaggaagaaa ttgatccaac acccttatcg ccgatgagtt cgacattcca catactttcc 3000ctatcacatc gaccttggtt tttaaatcgc cttttctagc ggccaaaata tatgcggatt 3060tataggggat cgattgaaac tctttttgta gagtttggtt ggggaggttt ataaaaagct 3120cgtaatatgc aagagcattg taagcagaag acttagttct aaaaactaac tctatccaag 3180atgaaaaagt tgtgaggaga agtgatcctt actcaggatt tttctagcat tatagatttt 3240ttctcctaaa agaagtacgt gttgcttctg tatggatttt atctgaccag taagcagttt 3300taccgctagg atgtcttctt gataaaattc ttcatccgaa tagttttggg actctgataa 3360aaataatcga tccaaactct gactttcctc agaattcaaa gttgctgaga atagttcaat 3420ggagggaagc gtcttcttaa aatctagaga agcggcagtt tgattttttt taaaaaagac 3480atccgcttct ttttttagtt tgttcacgtt gtcctctgag agtaatctcg ttcatattcg 3540atatgcaaaa tatttgctat ttcatgcgtt aacttcagaa tatcttctgc ggccctagaa 3600tttggataga cattagctac agaatcttct ttaagaagag aacggctgag agaaatatct 3660cgacgaattt ttgttgaaaa aagcttgttt ttgtaaatag actcgataat gtctatatac 3720atttggttag tcgagttacg atcatcccaa aaagacaaag ctattccaag aatgtgttct 3780tcttcaggtt ttccgaccga acttaagaat tcacgtatct tttgtaaccc tagaatagaa 3840aaaggttctg gagttaaaca agcaattaat ttgtctcctg caacaaaagc ttctttcgtt 3900aaccctccta ggctaggtgg agtgtctatt atgcagatgt cataaaaagg agcgcag 39571581626DNAChlamydia 158caggatccct taggtgaaac cgccctcctc actaaaaatc ctaatcatgt cgtctgtaca 60ttttttgagg actgtaccat ggagagcctc tttcctgctc tttgtgctca tgcatcacaa 120gatgatcctt tgtatgtact tggaaattcc tactgttggt tcgtatctaa actccatatc 180acggacccca aagaggctct ttttaaagaa aaaggagatc tttccattca aaattttcgc 240ttcctttcct tcacagattg ctcttccaag gaaagctctc cttctattat tcatcaaaag 300aatggtcagt tatccttgcg caataatggt agcatgagtt tctgtcgaaa tcatgctgaa 360ggctctggag gagccatctc tgcggatgcc ttttctctac aacacaacta tcttttcaca 420gcttttgaag agaattcttc taaaggaaat ggcggagcca ttcaggctca aaccttctct 480ttatctagaa atgtgtcgcc tatttctttc gcccgtaatc gtgcggattt aaatggcggc 540gctatttgct gtagtaatct tatttgttca gggaatgtaa accctctctt tttcactgga 600aactccgcca cgaatggagg cgctatttgt tgtatcagcg atctaaacac ctcagaaaaa 660ggctctctct ctcttgcttg taaccaagaa acgctatttg caagcaattc tgctaaagaa 720aaaggcgggg ctatttatgc caagcacatg gtattgcgtt ataacggtcc tgtttccttc 780attaacaaca gcgctaaaat aggtggagct atcgccatcc agtccggagg gagtctctct 840atccttgcag gtgaaggatc tgttctgttc cagaataact cccaacgcac ctccgaccaa 900ggtctagtaa gaaacgccat ctacttagag aaagatgcga ttctttcttc cttagaagct 960cgcaacggag atattctttt ctttgatcct attgtacaag aaagtagcag caaagaatcg 1020cctcttccct cctctttgca agccagcgtg acttctccca ccccagccac cgcatctcct 1080ttagttattc agacaagtgc aaaccgttca gtgattttct cgagcgaacg tctttctgaa 1140gaagaaaaaa ctcctgataa cctcacttcc caactacagc agcctatcga actgaaatcc 1200ggacgcttag ttttaaaaga tcgcgctgtc ctttccgcgc cttctctctc tcaggatcct 1260caagctctcc tcattatgga agcgggaact tctttaaaaa cttcctctga tttgaagtta 1320gctacgctaa gtattcccct tcattcctta gatactgaaa aaagcgtaac tatccacgcc 1380cctaaccttt ctatccaaaa gatcttcctc tctaattctg gagatgagaa tttttatgaa 1440aatgtagagc ttctcagtaa agagcaaaac aatattcctc tccttactct ctctaaagag 1500caatctcatt tacatcttcc tgatgggaac ctctcttctc actttggata tcaaggagat 1560tggacttttt cttggaaaga ttctgatgaa gggcattctc tgattgctaa ttggacgcct 1620aaaaac 16261591992DNAChlamydia 159agctctcctc aagtgttaac acctaatgta accactcctt ttaaggggga cgatgtttac 60ttgaatggag actgcgcttt tgtcaatgtc tatgcagggg cagagaacgg ctcaattatc 120tcagctaatg gcgacaattt aacgattacc ggacaaaacc atacattatc atttacagat 180tctcaagggc cagttcttca aaattatgcc ttcatttcag caggagagac acttactctg 240aaagattttt cgagtttgat gttctcgaaa aatgtttctt gcggagaaaa gggaatgatc 300tcagggaaaa ccgtgagtat ttccggagca ggcgaagtga ttttttggga taactctgtg 360gggtattctc ctttgtctat tgtgccagca tcgactccaa ctcctccagc accagcacca 420gctcctgctg cttcaagctc tttatctcca acagttagtg atgctcggaa agggtctatt 480ttttctgtag agactagttt ggagatctca ggcgtcaaaa aaggggtcat gttcgataat 540aatgccggga attttggaac agtttttcga ggtaatagta ataataatgc tggtagtggg 600ggtagtgggt ctgctacaac accaagtttt acagttaaaa actgtaaagg gaaagtttct 660ttcacagata acgtagcctc ctgtggaggc ggagtagtct acaaaggaac tgtgcttttc 720aaagacaatg aaggaggcat attcttccga gggaacacag catacgatga tttagggatt 780cttgctgcta ctagtcggga tcagaatacg gagacaggag gcggtggagg agttatttgc 840tctccagatg attctgtaaa gtttgaaggc aataaaggtt ctattgtttt tgattacaac 900tttgcaaaag gcagaggcgg aagcatccta acgaaagaat tctctcttgt agcagatgat 960tcggttgtct ttagtaacaa tacagcagaa aaaggcggtg gagctattta tgctcctact 1020atcgatataa gcacgaatgg aggatcgatt ctatttgaaa gaaaccgagc tgcagaagga 1080ggcgccatct gcgtgagtga agcaagctct ggttcaactg gaaatcttac tttaagcgct 1140tctgatgggg atattgtttt ttctgggaat atgacgagtg atcgtcctgg agagcgcagc 1200gcagcaagaa tcttaagtga tggaacgact gtttctttaa atgcttccgg actatcgaag 1260ctgatctttt atgatcctgt agtacaaaat aattcagcag cgggtgcatc gacaccatca 1320ccatcttctt cttctatgcc tggtgctgtc acgattaatc agtccggtaa tggatctgtg 1380atttttaccg ccgagtcatt gactccttca gaaaaacttc aagttcttaa ctctacttct 1440aacttcccag gagctctgac tgtgtcagga ggggagttgg ttgtgacgga aggagctacc 1500ttaactactg ggaccattac agccacctct ggacgagtga ctttaggatc cggagcttcg 1560ttgtctgccg ttgcaggtgc tgcaaataat aattatactt gtacagtatc taagttgggg 1620attgatttag aatccttttt aactcctaac tataagacgg ccatactggg tgcggatgga 1680acagttactg ttaacagcgg ctctacttta gacctagtga tggagagtga ggcagaggta 1740tatgataatc cgctttttgt gggatcgctg acaattcctt ttgttactct atcttctagt 1800agtgctagta acggagttac aaaaaattct gtcactatta atgatgcaga cgctgcgcac 1860tatgggtatc aaggctcttg gtctgcagat tggacgaaac cgcctctggc tcctgatgct 1920aaggggatgg tacctcctaa taccaataac actctgtatc tgacatggag acctgcttcg 1980aattacggtg aa 19921602010DNAChlamydia 160gcagaaatca tgattcctca aggaatttac gatggggaga cgttaactgt atcatttccc 60tatactgtta taggagatcc gagtgggact actgtttttt ctgcaggaga gttaacgtta 120aaaaatcttg acaattctat tgcagctttg cctttaagtt gttttgggaa cttattaggg 180agttttactg ttttagggag aggacactcg ttgactttcg agaacatacg gacttctaca 240aatggagctg cactaagtga cagcgctaat agcgggttat ttactattga gggttttaaa 300gaattatctt tttccaattg caactcatta cttgccgtac tgcctgctgc aacgactaat 360aatggtagcc agactccgac gacaacatct acaccgtcta atggtactat ttattctaaa 420acagatcttt tgttactcaa taatgagaag ttctcattct atagtaattt agtctctgga 480gatgggggag ctatagatgc taagagctta acggttcaag gaattagcaa gctttgtgtc 540ttccaagaaa atactgctca agctgatggg ggagcttgtc aagtagtcac cagtttctct 600gctatggcta acgaggctcc tattgccttt atagcgaatg ttgcaggagt aagaggggga 660gggattgctg ctgttcagga tgggcagcag ggagtgtcat catctacttc aacagaagat 720ccagtagtaa gtttttccag aaatactgcg gtagagtttg atgggaacgt agcccgagta 780ggaggaggga tttactccta cgggaacgtt gctttcctga ataatggaaa aaccttgttt 840ctcaacaatg ttgcttctcc tgtttacatt gctgctgagc aaccaacaaa tggacaggct 900tctaatacga gtgataatta cggagatgga ggagctatct tctgtaagaa tggtgcgcaa 960gcagcaggat ccaataactc tggatcagtt tcctttgatg gagagggagt agttttcttt 1020agtagcaatg tagctgctgg gaaaggggga gctatttatg ccaaaaagct ctcggttgct 1080aactgtggcc ctgtacaatt cttagggaat atcgctaatg atggtggagc gatttattta 1140ggagaatctg gagagctcag tttatctgct gattatggag atattatttt cgatgggaat 1200cttaaaagaa cagccaaaga gaatgctgcc gatgttaatg gcgtaactgt gtcctcacaa 1260gccatttcga tgggatcggg agggaaaata acgacattaa gagctaaagc agggcatcag 1320attctcttta atgatcccat cgagatggca aacggaaata accagccagc gcagtcttcc 1380gaacctctaa aaattaacga tggtgaagga tacacagggg atattgtttt tgctaatgga 1440aacagtactt tgtaccaaaa tgttacgata gagcaaggaa ggattgttct tcgtgaaaag 1500gcaaaattat cagtgaattc tctaagtcag acaggtggga gtctgtatat ggaagctggg 1560agtacattgg attttgtaac tccacaacca ccacaacagc ctcctgccgc taatcagttg 1620atcacgcttt ccaatctgca tttgtctctt tcttctttgt tagcaaacaa tgcagttacg 1680aatcctccta ccaatcctcc agcgcaagat tctcatcctg caatcattgg tagcacaact 1740gctggttctg ttacaattag tgggcctatc ttttttgagg atttggatga tacagcttat 1800gataggtatg attggctagg ttctaatcaa aaaatcgatg tcctgaaatt acagttaggg 1860actcagccct cagctaatgc cccatcagat ttgactctag ggaatgagat gcctaagtat 1920ggctatcaag gaagctggaa gcttgcgtgg gatcctaata cagcaaataa tggtccttat 1980actctgaaag ctacatggac taaaactggg 20101612106DNAChlamydia 161aatgaaacgg atacgctaca gttccggcga tttacttttt cggatagaga gattcagttc 60gtcctagatc ccgcctcttt aattaccgcc caaaacatcg ttttatctaa tttacagtca 120aacggaaccg gagcctgtac catttcaggc aatacgcaaa ctcaaatctt ttctaattcc 180gttaacacca ccgcagattc tggtggagcc tttgatatgg ttactacctc attcacggcc 240tctgataatg ctaatctact cttctgcaac aactactgca cacataataa aggcggagga 300gctattcgtt ccggaggacc tattcgattc ttaaataatc aagacgtgct tttttataat 360aacatatcgg caggggctaa atatgttgga acaggagatc acaacgaaaa aaataggggc 420ggtgcgcttt atgcaactac tatcactttg acagggaatc gaactcttgc ctttattaac 480aatatgtctg gagactgcgg tggagccatc tctgctgaca ctcaaatatc aataactgat 540accgttaaag gaattttatt tgaaaacaat cacacgctca atcatatacc gtacacgcaa 600gctgaaaata tggcacgagg aggagcaatc tgtagtagaa gagacttgtg ctcaatcagc 660aataattctg gtcccatagt ttttaactat aaccaaggcg ggaaaggtgg agctattagc 720gctacccgat gtgttattga caataacaaa gaaagaatca tcttttcaaa caatagttcc 780ctgggatgga gccaatcttc ttctgcaagt aacggaggag ccattcaaac gacacaagga 840tttactttac gaaataataa aggctctatc tacttcgaca gcaacactgc tacacacgcc 900gggggagcca ttaactgtgg ttacattgac atccgagata acggacccgt ctattttcta 960aataactctg ctgcctgggg agcggccttt aatttatcga aaccacgttc agcgacaaat 1020tatatccata cagggacagg cgatattgtt tttaataata acgttgtctt tactcttgac 1080ggtaatttat tagggaaacg gaaacttttt catattaata ataatgagat aacaccatat 1140acattgtctc tcggcgctaa aaaagatact cgtatctatt tttatgatct tttccaatgg 1200gagcgtgtta aagaaaatac tagcaataac ccaccatctc ctaccagtag aaacaccatt 1260accgttaacc cggaaacaga gttttctgga gctgttgtgt tctcctacaa tcaaatgtct 1320agtgacatac gaactctgat gggtaaagaa cacaattaca ttaaagaagc cccaactact 1380ttaaaattcg gaacgctagc catagaagat gatgcagaat tagaaatctt caatatcccg 1440tttacccaaa atccgactag ccttcttgct ttaggaagcg gcgctacgct gactgttgga 1500aagcacggta agctcaatat tacaaatctt ggtgttattt tacccattat tctcaaagag 1560gggaagagtc cgccttgtat tcgcgtcaac ccacaagata tgacccaaaa tactggtacc 1620ggccaaactc catcaagcac aagtagtata agcactccaa tgattatctt taatgggcgc 1680ctctcaattg tagacgaaaa ttatgaatca gtctacgaca gtatggacct ctccagaggg 1740aaagcagaac aactaattct atccatagaa accactaatg atgggcaatt agactccaat 1800tggcaaagtt ctctgaatac ttctctactc tctcctccac actatggcta tcaaggtcta 1860tggactccta attggataac aacaacctat accatcacgc ttaataataa ttcttcagct 1920ccaacatctg ctacctccat cgctgagcag aaaaaaacta gtgaaacttt tactcctagt 1980aacacaacta cagctagtat ccctaatatt aaagcttccg caggatcagg ctctggatcg 2040gcttccaatt caggagaagt tacgattacc aaacataccc ttgttgtaaa ctgggcacca 2100gtcggc 21061621896DNAChlamydia 162agagaggttc cttctagaat ctttcttatg cccaactcag ttccagatcc tacgaaagag 60tcgctatcaa ataaaattag tttgacagga gacactcaca atctcactaa ctgctatctc 120gataacctac gctacatact ggctattcta caaaaaactc ccaatgaagg agctgctgtc 180acaataacag attacctaag cttttttgat acacaaaaag aaggtattta ttttgcaaaa 240aatctcaccc ctgaaagtgg tggtgcgatt ggttatgcga gtcccaattc tcctaccgtg 300gagattcgtg atacaatagg tcctgtaatc tttgaaaata atacttgttg cagactattt 360acatggagaa atccttatgc tgctgataaa ataagagaag gcggagccat tcatgctcaa 420aatctttaca taaatcataa tcatgatgtg gtcggattta tgaagaactt ttcttatgtc 480caaggaggag ccattagtac cgctaatacc tttgttgtga gcgagaatca gtcttgtttt 540ctctttatgg acaacatctg tattcaaact aatacagcag gaaaaggtgg cgctatctat 600gctggaacga gcaattcttt tgagagtaat aactgcgatc tcttcttcat caataacgcc 660tgttgtgcag gaggagcgat cttctcccct atctgttctc taacaggaaa tcgtggtaac 720atcgttttct ataacaatcg ctgctttaaa aatgtagaaa cagcttcttc agaagcttct 780gatggaggag caattaaagt aactactcgc ctagatgtta caggcaatcg tggtaggatc 840ttttttagtg acaatatcac aaaaaattat ggcggagcta tttacgctcc tgtagttacc 900ctagtggata atggccctac ctactttata aacaatatcg ccaataataa ggggggcgct 960atctatatag acggaaccag taactccaaa atttctgccg accgccatgc tattattttt 1020aatgaaaata ttgtgactaa tgtaactaat gcaaatggta ccagtacgtc agctaatcct 1080cctagaagaa atgcaataac agtagcaagc tcctctggtg aaattctatt aggagcaggg 1140agtagccaaa atttaatttt ttatgatcct attgaagtta gcaatgcagg ggtctctgtg 1200tccttcaata aggaagctga tcaaacaggc tctgtagtat tttcaggagc tactgttaat 1260tctgcagatt ttcatcaacg caatttacaa acaaaaacac ctgcacccct tactctcagt 1320aatggttttc tatgtatcga agatcatgct cagcttacag tgaatcgatt cacacaaact 1380gggggtgttg tttctcttgg gaatggagca gttctgagtt gctataaaaa tggtacagga 1440gattctgcta gcaatgcctc tataacactg aagcatattg gattgaatct ttcttccatt 1500ctgaaaagtg gtgctgagat tcctttattg tgggtagagc ctacaaataa cagcaataac 1560tatacagcag atactgcagc taccttttca ttaagtgatg taaaactctc actcattgat 1620gactacggga actctcctta tgaatccaca gatctgaccc atgctctgtc atcacagcct 1680atgctatcta tttctgaagc tagcgataac cagctacaat cagaaaatat agatttttcg 1740ggactaaatg tccctcatta tggatggcaa ggactttgga cttggggctg ggcaaaaact 1800caagatccag aaccagcatc ttcagcaaca atcactgatc cacaaaaagc caatagattt 1860catagaacct tactactaac atggcttcct gccggg 18961633519DNAChlamydia 163agttgcgtag atcttcatgc tggaggacag tctgtaaatg agctggtata tgtaggccct 60caagcggttt tattgttaga ccaaattcga gatctattcg ttgggtctaa agatagtcag 120gctgaaggac agtataggtt aattgtagga gatccaagtt ctttccaaga gaaagatgcg 180gatactcttc ccgggaaggt agagcaaagt actttgttct cagtaaccaa tcccgtggtt 240ttccaaggtg tggaccaaca ggatcaagtc tcttcccaag ggttaatttg tagttttacg 300agcagcaacc ttgattctcc tcgtgacgga gaatcttttt taggtattgc ttttgttggg 360gatagtagta aggctggaat cacattaact gacgtgaaag cttctttgtc tggagcggct

420ttatattcta cagaagatct tatctttgaa aagattaagg gtggattgga atttgcatca 480tgttcttctc tagaacaggg gggagcttgt gcagctcaaa gtattttgat tcatgattgt 540caaggattgc aggttaaaca ctgtactaca gccgtgaatg ctgaggggtc tagtgcgaat 600gatcatcttg gatttggagg aggcgctttc tttgttacgg gttctctttc tggagagaaa 660agtctctata tgcctgcagg agatatggta gttgcgaatt gtgatggggc tatatctttt 720gaaggaaaca gcgcgaactt tgctaatgga ggagcgattg ctgcctctgg gaaagtgctt 780tttgtcgcta atgataaaaa gacttctttt atagagaacc gagctttgtc tggaggagcg 840attgcagcct cttctgatat tgcctttcaa aactgcgcag aactagtttt caaaggcaat 900tgtgcaattg gaacagagga taaaggttct ttaggtggag gggctatatc ttctctaggc 960accgttcttt tgcaagggaa tcacgggata acttgtgata agaatgagtc tgcttcgcaa 1020ggaggcgcca tttttggcaa aaattgtcag atttctgaca acgaggggcc agtggttttc 1080agagatagta cagcttgctt aggaggaggc gctattgcag ctcaagaaat tgtttctatt 1140cagaacaatc aggctgggat ttccttcgag ggaggtaagg ctagtttcgg aggaggtatt 1200gcgtgtggat ctttttcttc cgcaggtggt gcttctgttt tagggaccat tgatatttcg 1260aagaatttag gcgcgatttc gttctctcgt actttatgta cgacctcaga tttaggacaa 1320atggagtacc agggaggagg agctctattt ggtgaaaata tttctctttc tgagaatgct 1380ggtgtgctca cctttaaaga caacattgtg aagacttttg cttcgaatgg gaaaattctg 1440ggaggaggag cgattttagc tactggtaag gtggaaatta ctaataattc cgaaggaatt 1500tcttttacag gaaatgcgag agctccacaa gctcttccaa ctcaagagga gtttccttta 1560ttcagcaaaa aagaagggcg accactctct tcaggatatt ctgggggagg agcgatttta 1620ggaagagaag tagctattct ccacaacgct gcagtagtat ttgagcaaaa tcgtttgcag 1680tgcagcgaag aagaagcgac attattaggt tgttgtggag gaggcgctgt tcatgggatg 1740gatagcactt cgattgttgg caactcttca gtaagatttg gtaataatta cgcaatggga 1800caaggagtct caggaggagc tcttttatct aaaacagtgc agttagctgg gaatggaagc 1860gtcgattttt ctcgaaatat tgctagtttg ggaggaggag ctcttcaagc ttctgaagga 1920aattgtgagc tagttgataa cggctatgtg ctattcagag ataatcgagg gagggtttat 1980gggggtgcta tttcttgctt acgtggagat gtagtcattt ctggaaacaa gggtagagtt 2040gaatttaaag acaacatagc aacacgtctt tatgtggaag aaactgtaga aaaggttgaa 2100gaggtagagc cagctcctga gcaaaaagac aataatgagc tttctttctt agggagagca 2160gaacagagtt ttattactgc agctaatcaa gctcttttcg catctgaaga tggggattta 2220tcacctgagt catccatttc ttctgaagaa cttgcgaaaa gaagagagtg tgctggagga 2280gctatttttg caaaacgggt tcgtattgta gataaccaag aggccgttgt attctcgaat 2340aacttctctg atatttatgg cggcgccatt tttacaggtt ctcttcgaga agaggataag 2400ttagatgggc aaatccctga agtcttgatc tcaggcaatg caggggatgt tgttttttcc 2460ggaaattcct cgaagcgtga tgagcatctt cctcatacag gtgggggagc catttgtact 2520caaaatttga cgatttctca gaatacaggg aatgttctgt tttataacaa cgtggcctgt 2580tcgggaggag ctgttcgtat agaggatcat ggtaatgttc ttttagaagc ttttggagga 2640gatattgttt ttaaaggaaa ttcttctttc agagcacaag gatccgatgc tatctatttt 2700gcaggtaaag aatcgcatat tacagccctg aatgctacgg aaggacatgc tattgttttc 2760cacgacgcat tagtttttga aaatctagaa gaaaggaaat ctgctgaagt attgttaatc 2820aatagtcgag aaaatccagg ttacactgga tctattcgat ttttagaagc agaaagtaaa 2880gttcctcaat gtattcatgt acaacaagga agccttgagt tgctaaatgg agccacatta 2940tgtagttatg gttttaaaca agatgctgga gctaagttgg tattggctgc tggagctaaa 3000ctgaagattt tagattcagg aactcctgta caacaagggc atgctatcag taaacctgaa 3060gcagaaatcg agtcatcttc tgaaccagag ggtgcacatt ctctttggat tgcgaagaat 3120gctcaaacaa cagttcctat ggttgatatc catactattt ctgtagattt agcctccttc 3180tcttctagtc aacaggaggg gacagtagaa gctcctcagg ttattgttcc tggaggaagt 3240tatgttcgat ctggagagct taatttggag ttagttaaca caacaggtac tggttatgaa 3300aatcatgctt tattgaagaa tgaggctaaa gttccattga tgtctttcgt tgcttctggt 3360gatgaagctt cagccgaaat cagtaacttg tcggtttctg atttacagat tcatgtagta 3420actccagaga ttgaagaaga cacatacggc catatgggag attggtctga ggctaaaatt 3480caagatggaa ctcttgtcat tagttggaat cctactgga 35191644257DNAChlamydia 164agctcgatcc aagatcaaat aaagaatacc gactgcaatg ttagcaaatt aggatattca 60acttctcaag catttactga tatgatgcta gcagacaaca cagagtatcg agctgctgat 120agtgtttcat tctatgactt ttcgacatct tccagattac ctagaaaaca tcttagtagt 180agtagtgaag cttctccaac gacagaagga gtgtcttcat cttcatctgg agaaactgat 240gagaaaacag aagaagaact agacaatggc ggaatcattt atgctagaga gaaactaact 300atctcagaat ctcaggactc tctctctaat caaagcatag aactccatga caatagtatt 360ttcttcggag aaggtgaagt tatctttgat cacagagttg ccctcaaaaa cggaggagct 420atttatggag agaaagaggt agtctttgaa aacataaaat ctctactagt agaagtaaat 480atcgcggtcg agaaaggggg tagcgtctat gcaaaagaac gagtatcttt agaaaatgtt 540accgaagcaa ccttctcctc caatggtggg gaacaaggtg gtggtggaat ctattcagaa 600caggatatgt taatcagtga ttgcaacaat gtacatttcc aagggaatgc tgcaggagca 660acagcagtaa aacaatgtct ggatgaagaa atgatcgtat tgctcgcaga atgcgttgat 720agcttatccg aagatacact ggatagcact ccagaaacgg aacagactga gtcaaatgga 780aatcaagacg gttcgtctga aacagaagat acacaagtat cagaatcacc agaatcaact 840cctagccccg acgatgtttt aggtaaaggt ggtggtatct atacagaaaa atctttgacc 900atcactggaa ttacagggac tatagatttt gtcagtaaca tagctaccga ttctggagca 960ggtgtattca ctaaagaaaa cttgtcttgc accaacacga atagcctaca gtttttgaaa 1020aactcggcag gtcaacatgg aggaggagcc tacgttactc aaaccatgtc tgttactaat 1080acaactagtg aaagtataac tactccccct ctcataggag aagtgatttt ctctgaaaat 1140acagctaaag ggcacggtgg tggtatctgc actaacaaac tttctttatc taatttaaaa 1200acggtgactc tcactaaaaa ctctgcaaag gagtctggag gagctatttt tacagatctg 1260gcgtctatac caataacaga taccccagaa tcttctaccc cctcttcctc ctcgcctgca 1320agcactcctg aagtagttgc ttctgctaaa ataaatcgat tctttgcctc tacggcaaaa 1380ccggcagccc cttctctaac agaggctgag tctgatcaaa cggatcaaac agaaacttct 1440gatactaata gcgatataga cgtgtcgatt gagaacattt tgaatgtcgc tatcaatcaa 1500aacacttctg cgaaaaaagg aggggctatt tacgggaaaa aagctaaact ttcccgtatt 1560aacaatcttg aactttcagg gaattcatcc caggatgtag gaggaggtct ctgtttaact 1620gaaagcgtag aatttgatgc aattggatcg ctcttatccc actataactc tgctgctaaa 1680gaaggtgggg ctattcattc taaaacggtt actctatcta acctcaagtc taccttcact 1740tttgcagata acactgttaa agcaatagta gaaagcactc ctgaagctcc agaagagatt 1800cctccagtag aaggagaaga gtctacagca acagaagatc caaattctaa tacagaagga 1860agttcggcta acactaacct tgaaggatct caaggggata ctgctgatac agggactggt 1920gatgttaaca atgagtctca agacacatca gatactggaa acgctgaatc tgaagaacaa 1980ctacaagatt ctacacaatc taatgaagaa aatacccttc ccaatagtaa tattgatcaa 2040tctaacgaaa acacagacga atcatctgat agccacactg aggaaataac tgacgagagt 2100gtctcatcgt cctctgaaag tggatcatct actcctcaag atggaggagc agcttcttca 2160ggggctccct caggagatca atctatctct gcaaacgctt gtttagctaa aagctatgct 2220gcgagtactg atagctcccc cgtatctaat tcttcaggtt cagaagagcc tgtcacttct 2280tcttcagatt cagacgttac tgcatcttct gataatccag actcttcctc atctggagat 2340agcgctggag actctgaaga accgactgag ccagaagctg gttctacaac agaaactctt 2400actttaatag gaggaggtgc tatctatgga gaaactgtta agattgagaa cttctctggc 2460caaggaatat tttctggaaa caaagctatc gataacacca cagaaggctc ctcttccaaa 2520tctgacgtcc tcggaggtgc ggtctatgct aaaacattgt ttaatctcga tagcgggagc 2580tctagacgaa ctgtcacctt ctccgggaat actgtctctt ctcaatctac aacaggtcag 2640gttgctggag gagctatcta ctctcctact gtaaccattg ctactcctgt agtattttct 2700aaaaactctg caacaaacaa tgctaataac actacagata ctcagagaaa agacaccttt 2760ggaggagcta tcggagctac ttctgctgtt tctctatcag gaggggctca tttcttagaa 2820aacgttgctg acctcggatc tgctattggg ttggtgccag gcacacaaaa tacagaaaca 2880gtgaaattag agtctggctc ctactacttt gaaaaaaata aagctttaaa acgagctact 2940atttacgcac ctgtcgtttc cattaaagcc tatactgcga catttaacca aaacagatct 3000ctagaagaag gaagcgcgat ttactttaca aaagaagcat ctattgagtc tttaggctct 3060gttctcttca caggaaactt agtaacccta acgctaagca caactacaga aggcacacca 3120gccacaacct caggagatgt aacaaaatat ggtgctgcta tctttggaca aatagcaagc 3180tcaaacggat ctcagacgga taaccttccc ctgaaactca ttgcttcagg aggaaatatt 3240tgtttccgaa acaatgaata ccgtcctact tcttctgata ccggaacctc tactttctgt 3300agtattgcgg gagatgttaa attaaccatg caagctgcaa aagggaaaac gatcagtttc 3360tttgatgcaa tccggacctc tactaagaaa acaggtacac aggcaactgc ctacgatact 3420ctcgatatta ataaatctga ggattcagaa actgtaaact ctgcgtttac aggaacgatt 3480ctgttctcct ctgaattaca tgaaaataaa tcctatattc cacaaaacgt agttctacac 3540agtggatctc ttgtattgaa gccaaatacc gagcttcatg ttatttcttt tgagcagaaa 3600gaaggctctt ctctcgttat gacacctgga tctgttcttt cgaaccagac tgttgctgat 3660ggagctttgg tcataaataa catgaccatt gatttatcca gcgtagagaa aaatggtatt 3720gctgaaggaa atatctttac tcctccagaa ttgagaatca tagacactac tacaggtgga 3780agcggtggaa ccccatctac agatagtgaa agtaaccaga atagtgatga taccgaggag 3840caaaataata atgacgcctc gaatcaagga gaaagcgcga atggatcgtc ttctcctgca 3900gtagctgctg cacacacatc tcgtacaaga aactttgccg ctgcagctac agccacacct 3960acgacaacac caacggctac aactacaaca agcaaccaag taatcctagg aggagaaatt 4020aaactcatcg atcctaatgg gaccttcttc cagaaccctg cattaagatc cgaccaacaa 4080atctccttgt tagtgctccc tacagactca tcaaaaatgc aagctcagaa aatagtactg 4140acgggtgata ttgctcctca gaaaggatat acaggaacac tcactctgga tcctgatcaa 4200ctacaaaatg gaacgatctc agtgctctgg aaatttgact cttatagaca atgggct 42571654191DNAChlamydia 165gaacctaaag aattaaattt ctctcgcgta ggaacttctt cctctaccac ttttactgaa 60acagttggag aagctggggc agaatatatc gtctctggta acgcatcttt cacaaaattt 120accaacattc ctactaccga tacaacaact cccacgaact caaactcctc tagctctaac 180ggagagactg cttccgtttc tgaggatagt gactctacaa caacgactcc tgatcctaaa 240ggtggcggcg ccttttataa cgcgcactcc ggagttttat cctttatgac acgatcagga 300acagaaggtt ccttaactct gtctgagata aaaataactg gtgaaggcgg tgctatcttc 360tctcaaggag agctgctatt tacagatctg acaggtctaa ccatccaaaa taacttatcc 420cagctatccg gaggagcgat ttttggagaa tctacaatct ccctatcagg gattactaaa 480gcgactttct cctccaactc tgcagaagtt cctgctcctg ttaagaaacc tacagaacct 540aaagctcaaa cagcaagcga aacgtcgggt tctagtagtt ctagcggaaa tgattcggtg 600tcttccccca gttccagtag agctgaaccc gcagcagcta atcttcaaag tcactttatt 660tgtgctacag ctactcctgc tgctcaaacc gatacagaaa catcaactcc ctctcataag 720ccaggatctg ggggagctat ctatgctaaa ggcgacctta ctatcgcaga ctctcaagag 780gtactattct caataaataa agctactaaa gatggaggag cgatctttgc tgagaaagat 840gtttctttcg agaatattac atcattaaaa gtacaaacta acggtgctga agaaaaggga 900ggagctatct atgctaaagg tgacctctca attcaatctt ctaaacagag tctttttaat 960tctaactaca gtaaacaagg tggtggggct ctatatgttg aaggagatat aaacttccaa 1020gatcttgaag aaattcgcat taagtacaat aaagctggaa cgttcgaaac aaaaaaaatc 1080actttaccaa aagctcaagc atctgcagga aatgcagatg cttgggcctc ttcctctcct 1140caatctggtt ctggagcaac tacagtctcc aactcaggag actctagctc tggctcagac 1200tcggatacct cagaaacagt tccagccaca gctaaaggcg gtgggcttta tactgataag 1260aatctttcga ttactaacat cacaggaatt atcgaaattg caaataacaa agcgacagat 1320gttggaggtg gtgcttacgt aaaaggaacc cttacttgtg aaaactctca ccgtctacaa 1380tttttgaaaa actcttccga taaacaaggt ggaggaatct acggagaaga caacatcacc 1440ctatctaatt tgacagggaa gactctattc caagagaata ctgccaaaga agagggcggt 1500ggactcttca taaaaggtac agataaagct cttacaatga caggactgga tagtttctgt 1560ttaattaata acacatcaga aaaacatggt ggtggagcct ttgttaccaa agaaatctct 1620cagacttaca cctctgatgt ggaaacaatt ccaggaatca cgcctgtaca tggtgaaaca 1680gtcattactg gcaataaatc tacaggaggt aatggtggag gcgtgtgtac aaaacgtctt 1740gccttatcta accttcaaag catttctata tccgggaatt ctgcagctga aaatggtggt 1800ggagcccaca catgcccaga tagcttccca acggcggata ctgcagaaca gcccgcagca 1860gcttctgccg cgacgtctac tcccgagtct gccccagtgg tctcaactgc tctaagcaca 1920ccttcatctt ctaccgtctc ttcattaacc ttactagcag cctcttcaca agcctctcct 1980gcaacctcta ataaggaaac tcaagatcct aatgctgata cagacttatt gatcgattat 2040gtagttgata cgactatcag caaaaacact gctaagaaag gcggtggaat ctatgctaaa 2100aaagccaaga tgtcccgcat agaccaactg aatatctctg agaactccgc tacagagata 2160ggtggaggta tctgctgtaa agaatcttta gaactagatg ccctagtctc cttatctgta 2220acagagaacc ttgttgggaa agaaggtgga ggcttacatg ctaaaactgt aaatatttct 2280aatctgaaat caggcttctc tttctcgaac aacaaagcaa actcctcatc cacaggagtc 2340gcaacaacag cttcagcacc tgctgcagct gctgcttccc tacaagcagc cgcagcagcc 2400gtaccatcat ctccagcaac accaacttat tcaggtgtag taggaggagc tatctatgga 2460gaaaaggtta cattctctca atgtagcggg acttgtcagt tctctgggaa ccaagctatc 2520gataacaatc cctcccaatc atcgttgaac gtacaaggag gagccatcta tgccaaaacc 2580tctttgtcta ttggatcttc cgatgctgga acctcctata ttttctcggg gaacagtgtc 2640tccactggga aatctcaaac aacagggcaa atagcgggag gagcgatcta ctcccctact 2700gttacattga attgtcctgc gacattctct aacaatacag cctctatggc tacaccaaag 2760acttcttctg aagatggatc ctcaggaaat tctattaaag ataccattgg aggagccatt 2820gcagggacag ccattaccct atctggagtc tctcgatttt cagggaatac ggctgattta 2880ggagctgcaa taggaactct agctaatgca aatacaccca gtgcaactag cggatctcaa 2940aatagcatta cagaaaaaat tactttagaa aacggttctt ttatttttga aagaaaccaa 3000gctaataaac gtggagcgat ttactctcct agcgtttcca ttaaagggaa taatattacc 3060ttcaatcaaa atacatccac tcatgatgga agtgctatct actttacaaa agatgctacg 3120attgagtctt taggatctgt tctttttaca ggaaataacg ttacagctac acaagctagt 3180tctgcaacat ctggacaaaa tacaaatact gccaactatg gggcagccat ctttggagat 3240ccaggaacca ctcaatcgtc tcaaacagat gccattttaa cccttcttgc ttcttctgga 3300aacattactt ttagcaacaa cagtttacag aataaccaag gtgatactcc cgctagcaag 3360ttttgtagta ttgcaggata cgtcaaactc tctctacaag ccgctaaagg gaagactatt 3420agctttttcg attgtgtgca cacctctacc aaaaaaatag gttcaacaca aaacgtttat 3480gaaactttag atattaataa agaagagaac agtaatccat atacaggaac tattgtgttc 3540tcttctgaat tacatgaaaa caaatcttac atcccacaga atgcaatcct tcacaacgga 3600actttagttc ttaaagagaa aacagaactc cacgtagtct cttttgagca gaaagaaggg 3660tctaaattaa ttatgaaacc cggagctgtg ttatctaacc aaaacatagc taacggagct 3720ctagttatca atgggttaac gattgatctt tccagtatgg ggactcctca agcaggggaa 3780atcttctctc ctccagaatt acgtatcgtt gccacgacct ctagtgcatc cggaggaagc 3840ggggtcagca gtagtatacc aacaaatcct aaaaggattt ctgcagcagc gccttcaggt 3900tctgccgcaa ctactccaac tatgagcgag aacaaagttt tcctaacagg agaccttact 3960ttaatagatc ctaatggaaa cttttaccaa aaccctatgt taggaagcga tctagatgta 4020ccactaatta agcttccgac taacacaagt gacgtccaag tctatgattt aactttatct 4080ggggatcttt tccctcagaa agggtacatg ggaacctgga cattagattc taatccacaa 4140acagggaaac ttcaagccag atggacattc gatacctatc gtcgctgggt a 41911661830DNAChlamydia 166gaaatggaat tagctatttc tggacataaa caaggtaaag atcgagatac ctttaccatg 60atctcttcct gtcctgaagg cactaattac atcatcaatc gcaaactcat actcagtgat 120ttctcgttac taaataaagt ttcatcaggg ggagcctttc ggaatctagc agggaaaatt 180tccttcttag gaaaaaattc ttctgcgtcc attcatttta aacacattaa tatcaatggt 240tttggagccg gagtcttttc tgaatcctct attgaattta ctgatttacg aaaacttgtt 300gcttttggat ctgaaagcac aggaggaatt tttactgcga aagaggacat ctcttttaaa 360aacaaccacc acattgcctt ccgcaataat atcaccaaag ggaatggtgg cgttatccag 420ctccaaggag atatgaaagg aagcgtatcc tttgtagatc aacgtggagc tatcatcttt 480accaataacc aagctgtaac ttcttcatca atgaaacata gtggtcgtgg aggagcaatt 540agcggtgact tcgcaggatc cagaattctt tttcttaata accaacaaat tactttcgaa 600ggcaatagcg ctgtgcatgg aggtgctatc tacaataaga atggccttgt cgagttctta 660ggaaatgcag gacctcttgc ctttaaagag aacacaacaa tagctaacgg gggagctata 720tacacaagta atttcaaagc gaatcaacaa acatccccca ttctattctc tcaaaatcat 780gcgaataaga aaggcggagc gatttacgcg caatatgtga acttagaaca gaatcaagat 840actattcgct ttgaaaaaaa taccgctaaa gaaggcggtg gagccatcac ctcttctcaa 900tgctcaatta ctgctcataa taccatcatt ttttccgata atgctgccgg agatcttgga 960ggaggagcaa ttcttctaga agggaaaaaa ccttctctaa ccttgattgc tcatagtggt 1020aatattgcat ttagcggcaa taccatgctt catatcacca aaaaagcttc cctagatcga 1080cacaattcta tcttaatcaa agaagctccc tataaaatcc aacttgcagc gaacaaaaac 1140cattctattc atttctttga tcctgtcatg gcattgtcag catcatcttc ccctatacaa 1200atcaatgctc ctgagtatga aactcccttc ttctcaccta agggtatgat cgttttctcg 1260ggtgcgaatc ttttagatga tgctagggaa gatgttgcaa atagaacatc gatttttaac 1320caacccgttc atctatataa tggcacccta tctatcgaaa atggagccca tctgattgtc 1380caaagcttca aacagaccgg aggacgtatc agtttatctc caggatcctc cttggctcta 1440tacacgatga actcgttctt ccatggcaac atatccagca aagaacccct agaaattaat 1500ggtttaagct ttggagtaga tatctctcct tctaatcttc aagcagagat ccgtgccggc 1560aacgctcctt tacgattatc cggatcccca tctatccatg atcctgaagg attattctac 1620gaaaatcgcg atactgcagc atcaccatac caaatggaaa tcttgctcac ctctgataaa 1680attgtagata tctccaaatt tactactgat tctctagtta cgaacaaaca atcaggattc 1740caaggagcct ggcattttag ctggcagcca aatactataa acaatactaa acaaaaaata 1800ttaagagctt cttggctccc aacaggagaa 1830167542PRTChlamydia 167Gln Asp Pro Leu Gly Glu Thr Ala Leu Leu Thr Lys Asn Pro Asn His5 10 15Val Val Cys Thr Phe Phe Glu Asp Cys Thr Met Glu Ser Leu Phe Pro20 25 30Ala Leu Cys Ala His Ala Ser Gln Asp Asp Pro Leu Tyr Val Leu Gly35 40 45Asn Ser Tyr Cys Trp Phe Val Ser Lys Leu His Ile Thr Asp Pro Lys50 55 60Glu Ala Leu Phe Lys Glu Lys Gly Asp Leu Ser Ile Gln Asn Phe Arg65 70 75 80Phe Leu Ser Phe Thr Asp Cys Ser Ser Lys Glu Ser Ser Pro Ser Ile85 90 95Ile His Gln Lys Asn Gly Gln Leu Ser Leu Arg Asn Asn Gly Ser Met100 105 110Ser Phe Cys Arg Asn His Ala Glu Gly Ser Gly Gly Ala Ile Ser Ala115 120 125Asp Ala Phe Ser Leu Gln His Asn Tyr Leu Phe Thr Ala Phe Glu Glu130 135 140Asn Ser Ser Lys Gly Asn Gly Gly Ala Ile Gln Ala Gln Thr Phe Ser145 150 155 160Leu Ser Arg Asn Val Ser Pro Ile Ser Phe Ala Arg Asn Arg Ala Asp165 170 175Leu Asn Gly Gly Ala Ile Cys Cys Ser Asn Leu Ile Cys Ser Gly Asn180 185 190Val Asn Pro Leu Phe Phe Thr Gly Asn Ser Ala Thr Asn Gly Gly Ala195 200 205Ile Cys Cys Ile Ser Asp Leu Asn Thr Ser Glu Lys Gly Ser Leu Ser210 215 220Leu Ala Cys Asn Gln Glu Thr Leu Phe Ala Ser Asn Ser Ala Lys Glu225 230 235 240Lys Gly Gly Ala Ile Tyr Ala Lys His Met Val Leu Arg Tyr Asn Gly245 250 255Pro Val Ser Phe Ile Asn Asn Ser Ala Lys Ile Gly Gly Ala Ile Ala260 265 270Ile Gln Ser Gly

Gly Ser Leu Ser Ile Leu Ala Gly Glu Gly Ser Val275 280 285Leu Phe Gln Asn Asn Ser Gln Arg Thr Ser Asp Gln Gly Leu Val Arg290 295 300Asn Ala Ile Tyr Leu Glu Lys Asp Ala Ile Leu Ser Ser Leu Glu Ala305 310 315 320Arg Asn Gly Asp Ile Leu Phe Phe Asp Pro Ile Val Gln Glu Ser Ser325 330 335Ser Lys Glu Ser Pro Leu Pro Ser Ser Leu Gln Ala Ser Val Thr Ser340 345 350Pro Thr Pro Ala Thr Ala Ser Pro Leu Val Ile Gln Thr Ser Ala Asn355 360 365Arg Ser Val Ile Phe Ser Ser Glu Arg Leu Ser Glu Glu Glu Lys Thr370 375 380Pro Asp Asn Leu Thr Ser Gln Leu Gln Gln Pro Ile Glu Leu Lys Ser385 390 395 400Gly Arg Leu Val Leu Lys Asp Arg Ala Val Leu Ser Ala Pro Ser Leu405 410 415Ser Gln Asp Pro Gln Ala Leu Leu Ile Met Glu Ala Gly Thr Ser Leu420 425 430Lys Thr Ser Ser Asp Leu Lys Leu Ala Thr Leu Ser Ile Pro Leu His435 440 445Ser Leu Asp Thr Glu Lys Ser Val Thr Ile His Ala Pro Asn Leu Ser450 455 460Ile Gln Lys Ile Phe Leu Ser Asn Ser Gly Asp Glu Asn Phe Tyr Glu465 470 475 480Asn Val Glu Leu Leu Ser Lys Glu Gln Asn Asn Ile Pro Leu Leu Thr485 490 495Leu Ser Lys Glu Gln Ser His Leu His Leu Pro Asp Gly Asn Leu Ser500 505 510Ser His Phe Gly Tyr Gln Gly Asp Trp Thr Phe Ser Trp Lys Asp Ser515 520 525Asp Glu Gly His Ser Leu Ile Ala Asn Trp Thr Pro Lys Asn530 535 540168664PRTChlamydia 168Ser Ser Pro Gln Val Leu Thr Pro Asn Val Thr Thr Pro Phe Lys Gly5 10 15Asp Asp Val Tyr Leu Asn Gly Asp Cys Ala Phe Val Asn Val Tyr Ala20 25 30Gly Ala Glu Asn Gly Ser Ile Ile Ser Ala Asn Gly Asp Asn Leu Thr35 40 45Ile Thr Gly Gln Asn His Thr Leu Ser Phe Thr Asp Ser Gln Gly Pro50 55 60Val Leu Gln Asn Tyr Ala Phe Ile Ser Ala Gly Glu Thr Leu Thr Leu65 70 75 80Lys Asp Phe Ser Ser Leu Met Phe Ser Lys Asn Val Ser Cys Gly Glu85 90 95Lys Gly Met Ile Ser Gly Lys Thr Val Ser Ile Ser Gly Ala Gly Glu100 105 110Val Ile Phe Trp Asp Asn Ser Val Gly Tyr Ser Pro Leu Ser Ile Val115 120 125Pro Ala Ser Thr Pro Thr Pro Pro Ala Pro Ala Pro Ala Pro Ala Ala130 135 140Ser Ser Ser Leu Ser Pro Thr Val Ser Asp Ala Arg Lys Gly Ser Ile145 150 155 160Phe Ser Val Glu Thr Ser Leu Glu Ile Ser Gly Val Lys Lys Gly Val165 170 175Met Phe Asp Asn Asn Ala Gly Asn Phe Gly Thr Val Phe Arg Gly Asn180 185 190Ser Asn Asn Asn Ala Gly Ser Gly Gly Ser Gly Ser Ala Thr Thr Pro195 200 205Ser Phe Thr Val Lys Asn Cys Lys Gly Lys Val Ser Phe Thr Asp Asn210 215 220Val Ala Ser Cys Gly Gly Gly Val Val Tyr Lys Gly Thr Val Leu Phe225 230 235 240Lys Asp Asn Glu Gly Gly Ile Phe Phe Arg Gly Asn Thr Ala Tyr Asp245 250 255Asp Leu Gly Ile Leu Ala Ala Thr Ser Arg Asp Gln Asn Thr Glu Thr260 265 270Gly Gly Gly Gly Gly Val Ile Cys Ser Pro Asp Asp Ser Val Lys Phe275 280 285Glu Gly Asn Lys Gly Ser Ile Val Phe Asp Tyr Asn Phe Ala Lys Gly290 295 300Arg Gly Gly Ser Ile Leu Thr Lys Glu Phe Ser Leu Val Ala Asp Asp305 310 315 320Ser Val Val Phe Ser Asn Asn Thr Ala Glu Lys Gly Gly Gly Ala Ile325 330 335Tyr Ala Pro Thr Ile Asp Ile Ser Thr Asn Gly Gly Ser Ile Leu Phe340 345 350Glu Arg Asn Arg Ala Ala Glu Gly Gly Ala Ile Cys Val Ser Glu Ala355 360 365Ser Ser Gly Ser Thr Gly Asn Leu Thr Leu Ser Ala Ser Asp Gly Asp370 375 380Ile Val Phe Ser Gly Asn Met Thr Ser Asp Arg Pro Gly Glu Arg Ser385 390 395 400Ala Ala Arg Ile Leu Ser Asp Gly Thr Thr Val Ser Leu Asn Ala Ser405 410 415Gly Leu Ser Lys Leu Ile Phe Tyr Asp Pro Val Val Gln Asn Asn Ser420 425 430Ala Ala Gly Ala Ser Thr Pro Ser Pro Ser Ser Ser Ser Met Pro Gly435 440 445Ala Val Thr Ile Asn Gln Ser Gly Asn Gly Ser Val Ile Phe Thr Ala450 455 460Glu Ser Leu Thr Pro Ser Glu Lys Leu Gln Val Leu Asn Ser Thr Ser465 470 475 480Asn Phe Pro Gly Ala Leu Thr Val Ser Gly Gly Glu Leu Val Val Thr485 490 495Glu Gly Ala Thr Leu Thr Thr Gly Thr Ile Thr Ala Thr Ser Gly Arg500 505 510Val Thr Leu Gly Ser Gly Ala Ser Leu Ser Ala Val Ala Gly Ala Ala515 520 525Asn Asn Asn Tyr Thr Cys Thr Val Ser Lys Leu Gly Ile Asp Leu Glu530 535 540Ser Phe Leu Thr Pro Asn Tyr Lys Thr Ala Ile Leu Gly Ala Asp Gly545 550 555 560Thr Val Thr Val Asn Ser Gly Ser Thr Leu Asp Leu Val Met Glu Ser565 570 575Glu Ala Glu Val Tyr Asp Asn Pro Leu Phe Val Gly Ser Leu Thr Ile580 585 590Pro Phe Val Thr Leu Ser Ser Ser Ser Ala Ser Asn Gly Val Thr Lys595 600 605Asn Ser Val Thr Ile Asn Asp Ala Asp Ala Ala His Tyr Gly Tyr Gln610 615 620Gly Ser Trp Ser Ala Asp Trp Thr Lys Pro Pro Leu Ala Pro Asp Ala625 630 635 640Lys Gly Met Val Pro Pro Asn Thr Asn Asn Thr Leu Tyr Leu Thr Trp645 650 655Arg Pro Ala Ser Asn Tyr Gly Glu660169670PRTChlamydia 169Ala Glu Ile Met Ile Pro Gln Gly Ile Tyr Asp Gly Glu Thr Leu Thr5 10 15Val Ser Phe Pro Tyr Thr Val Ile Gly Asp Pro Ser Gly Thr Thr Val20 25 30Phe Ser Ala Gly Glu Leu Thr Leu Lys Asn Leu Asp Asn Ser Ile Ala35 40 45Ala Leu Pro Leu Ser Cys Phe Gly Asn Leu Leu Gly Ser Phe Thr Val50 55 60Leu Gly Arg Gly His Ser Leu Thr Phe Glu Asn Ile Arg Thr Ser Thr65 70 75 80Asn Gly Ala Ala Leu Ser Asp Ser Ala Asn Ser Gly Leu Phe Thr Ile85 90 95Glu Gly Phe Lys Glu Leu Ser Phe Ser Asn Cys Asn Ser Leu Leu Ala100 105 110Val Leu Pro Ala Ala Thr Thr Asn Asn Gly Ser Gln Thr Pro Thr Thr115 120 125Thr Ser Thr Pro Ser Asn Gly Thr Ile Tyr Ser Lys Thr Asp Leu Leu130 135 140Leu Leu Asn Asn Glu Lys Phe Ser Phe Tyr Ser Asn Leu Val Ser Gly145 150 155 160Asp Gly Gly Ala Ile Asp Ala Lys Ser Leu Thr Val Gln Gly Ile Ser165 170 175Lys Leu Cys Val Phe Gln Glu Asn Thr Ala Gln Ala Asp Gly Gly Ala180 185 190Cys Gln Val Val Thr Ser Phe Ser Ala Met Ala Asn Glu Ala Pro Ile195 200 205Ala Phe Ile Ala Asn Val Ala Gly Val Arg Gly Gly Gly Ile Ala Ala210 215 220Val Gln Asp Gly Gln Gln Gly Val Ser Ser Ser Thr Ser Thr Glu Asp225 230 235 240Pro Val Val Ser Phe Ser Arg Asn Thr Ala Val Glu Phe Asp Gly Asn245 250 255Val Ala Arg Val Gly Gly Gly Ile Tyr Ser Tyr Gly Asn Val Ala Phe260 265 270Leu Asn Asn Gly Lys Thr Leu Phe Leu Asn Asn Val Ala Ser Pro Val275 280 285Tyr Ile Ala Ala Glu Gln Pro Thr Asn Gly Gln Ala Ser Asn Thr Ser290 295 300Asp Asn Tyr Gly Asp Gly Gly Ala Ile Phe Cys Lys Asn Gly Ala Gln305 310 315 320Ala Ala Gly Ser Asn Asn Ser Gly Ser Val Ser Phe Asp Gly Glu Gly325 330 335Val Val Phe Phe Ser Ser Asn Val Ala Ala Gly Lys Gly Gly Ala Ile340 345 350Tyr Ala Lys Lys Leu Ser Val Ala Asn Cys Gly Pro Val Gln Phe Leu355 360 365Gly Asn Ile Ala Asn Asp Gly Gly Ala Ile Tyr Leu Gly Glu Ser Gly370 375 380Glu Leu Ser Leu Ser Ala Asp Tyr Gly Asp Ile Ile Phe Asp Gly Asn385 390 395 400Leu Lys Arg Thr Ala Lys Glu Asn Ala Ala Asp Val Asn Gly Val Thr405 410 415Val Ser Ser Gln Ala Ile Ser Met Gly Ser Gly Gly Lys Ile Thr Thr420 425 430Leu Arg Ala Lys Ala Gly His Gln Ile Leu Phe Asn Asp Pro Ile Glu435 440 445Met Ala Asn Gly Asn Asn Gln Pro Ala Gln Ser Ser Glu Pro Leu Lys450 455 460Ile Asn Asp Gly Glu Gly Tyr Thr Gly Asp Ile Val Phe Ala Asn Gly465 470 475 480Asn Ser Thr Leu Tyr Gln Asn Val Thr Ile Glu Gln Gly Arg Ile Val485 490 495Leu Arg Glu Lys Ala Lys Leu Ser Val Asn Ser Leu Ser Gln Thr Gly500 505 510Gly Ser Leu Tyr Met Glu Ala Gly Ser Thr Leu Asp Phe Val Thr Pro515 520 525Gln Pro Pro Gln Gln Pro Pro Ala Ala Asn Gln Leu Ile Thr Leu Ser530 535 540Asn Leu His Leu Ser Leu Ser Ser Leu Leu Ala Asn Asn Ala Val Thr545 550 555 560Asn Pro Pro Thr Asn Pro Pro Ala Gln Asp Ser His Pro Ala Ile Ile565 570 575Gly Ser Thr Thr Ala Gly Ser Val Thr Ile Ser Gly Pro Ile Phe Phe580 585 590Glu Asp Leu Asp Asp Thr Ala Tyr Asp Arg Tyr Asp Trp Leu Gly Ser595 600 605Asn Gln Lys Ile Asp Val Leu Lys Leu Gln Leu Gly Thr Gln Pro Ser610 615 620Ala Asn Ala Pro Ser Asp Leu Thr Leu Gly Asn Glu Met Pro Lys Tyr625 630 635 640Gly Tyr Gln Gly Ser Trp Lys Leu Ala Trp Asp Pro Asn Thr Ala Asn645 650 655Asn Gly Pro Tyr Thr Leu Lys Ala Thr Trp Thr Lys Thr Gly660 665 670170702PRTChlamydia 170Asn Glu Thr Asp Thr Leu Gln Phe Arg Arg Phe Thr Phe Ser Asp Arg5 10 15Glu Ile Gln Phe Val Leu Asp Pro Ala Ser Leu Ile Thr Ala Gln Asn20 25 30Ile Val Leu Ser Asn Leu Gln Ser Asn Gly Thr Gly Ala Cys Thr Ile35 40 45Ser Gly Asn Thr Gln Thr Gln Ile Phe Ser Asn Ser Val Asn Thr Thr50 55 60Ala Asp Ser Gly Gly Ala Phe Asp Met Val Thr Thr Ser Phe Thr Ala65 70 75 80Ser Asp Asn Ala Asn Leu Leu Phe Cys Asn Asn Tyr Cys Thr His Asn85 90 95Lys Gly Gly Gly Ala Ile Arg Ser Gly Gly Pro Ile Arg Phe Leu Asn100 105 110Asn Gln Asp Val Leu Phe Tyr Asn Asn Ile Ser Ala Gly Ala Lys Tyr115 120 125Val Gly Thr Gly Asp His Asn Glu Lys Asn Arg Gly Gly Ala Leu Tyr130 135 140Ala Thr Thr Ile Thr Leu Thr Gly Asn Arg Thr Leu Ala Phe Ile Asn145 150 155 160Asn Met Ser Gly Asp Cys Gly Gly Ala Ile Ser Ala Asp Thr Gln Ile165 170 175Ser Ile Thr Asp Thr Val Lys Gly Ile Leu Phe Glu Asn Asn His Thr180 185 190Leu Asn His Ile Pro Tyr Thr Gln Ala Glu Asn Met Ala Arg Gly Gly195 200 205Ala Ile Cys Ser Arg Arg Asp Leu Cys Ser Ile Ser Asn Asn Ser Gly210 215 220Pro Ile Val Phe Asn Tyr Asn Gln Gly Gly Lys Gly Gly Ala Ile Ser225 230 235 240Ala Thr Arg Cys Val Ile Asp Asn Asn Lys Glu Arg Ile Ile Phe Ser245 250 255Asn Asn Ser Ser Leu Gly Trp Ser Gln Ser Ser Ser Ala Ser Asn Gly260 265 270Gly Ala Ile Gln Thr Thr Gln Gly Phe Thr Leu Arg Asn Asn Lys Gly275 280 285Ser Ile Tyr Phe Asp Ser Asn Thr Ala Thr His Ala Gly Gly Ala Ile290 295 300Asn Cys Gly Tyr Ile Asp Ile Arg Asp Asn Gly Pro Val Tyr Phe Leu305 310 315 320Asn Asn Ser Ala Ala Trp Gly Ala Ala Phe Asn Leu Ser Lys Pro Arg325 330 335Ser Ala Thr Asn Tyr Ile His Thr Gly Thr Gly Asp Ile Val Phe Asn340 345 350Asn Asn Val Val Phe Thr Leu Asp Gly Asn Leu Leu Gly Lys Arg Lys355 360 365Leu Phe His Ile Asn Asn Asn Glu Ile Thr Pro Tyr Thr Leu Ser Leu370 375 380Gly Ala Lys Lys Asp Thr Arg Ile Tyr Phe Tyr Asp Leu Phe Gln Trp385 390 395 400Glu Arg Val Lys Glu Asn Thr Ser Asn Asn Pro Pro Ser Pro Thr Ser405 410 415Arg Asn Thr Ile Thr Val Asn Pro Glu Thr Glu Phe Ser Gly Ala Val420 425 430Val Phe Ser Tyr Asn Gln Met Ser Ser Asp Ile Arg Thr Leu Met Gly435 440 445Lys Glu His Asn Tyr Ile Lys Glu Ala Pro Thr Thr Leu Lys Phe Gly450 455 460Thr Leu Ala Ile Glu Asp Asp Ala Glu Leu Glu Ile Phe Asn Ile Pro465 470 475 480Phe Thr Gln Asn Pro Thr Ser Leu Leu Ala Leu Gly Ser Gly Ala Thr485 490 495Leu Thr Val Gly Lys His Gly Lys Leu Asn Ile Thr Asn Leu Gly Val500 505 510Ile Leu Pro Ile Ile Leu Lys Glu Gly Lys Ser Pro Pro Cys Ile Arg515 520 525Val Asn Pro Gln Asp Met Thr Gln Asn Thr Gly Thr Gly Gln Thr Pro530 535 540Ser Ser Thr Ser Ser Ile Ser Thr Pro Met Ile Ile Phe Asn Gly Arg545 550 555 560Leu Ser Ile Val Asp Glu Asn Tyr Glu Ser Val Tyr Asp Ser Met Asp565 570 575Leu Ser Arg Gly Lys Ala Glu Gln Leu Ile Leu Ser Ile Glu Thr Thr580 585 590Asn Asp Gly Gln Leu Asp Ser Asn Trp Gln Ser Ser Leu Asn Thr Ser595 600 605Leu Leu Ser Pro Pro His Tyr Gly Tyr Gln Gly Leu Trp Thr Pro Asn610 615 620Trp Ile Thr Thr Thr Tyr Thr Ile Thr Leu Asn Asn Asn Ser Ser Ala625 630 635 640Pro Thr Ser Ala Thr Ser Ile Ala Glu Gln Lys Lys Thr Ser Glu Thr645 650 655Phe Thr Pro Ser Asn Thr Thr Thr Ala Ser Ile Pro Asn Ile Lys Ala660 665 670Ser Ala Gly Ser Gly Ser Gly Ser Ala Ser Asn Ser Gly Glu Val Thr675 680 685Ile Thr Lys His Thr Leu Val Val Asn Trp Ala Pro Val Gly690 695 700171632PRTChlamydia 171Arg Glu Val Pro Ser Arg Ile Phe Leu Met Pro Asn Ser Val Pro Asp5 10 15Pro Thr Lys Glu Ser Leu Ser Asn Lys Ile Ser Leu Thr Gly Asp Thr20 25 30His Asn Leu Thr Asn Cys Tyr Leu Asp Asn Leu Arg Tyr Ile Leu Ala35 40 45Ile Leu Gln Lys Thr Pro Asn Glu Gly Ala Ala Val Thr Ile Thr Asp50 55 60Tyr Leu Ser Phe Phe Asp Thr Gln Lys Glu Gly Ile Tyr Phe Ala Lys65 70 75 80Asn Leu Thr Pro Glu Ser Gly Gly Ala Ile Gly Tyr Ala Ser Pro Asn85 90 95Ser Pro Thr Val Glu Ile Arg Asp Thr Ile Gly Pro Val Ile Phe Glu100 105 110Asn Asn Thr Cys Cys Arg Leu Phe Thr Trp Arg Asn Pro Tyr Ala Ala115 120 125Asp Lys Ile Arg Glu Gly Gly Ala Ile His Ala Gln Asn Leu Tyr Ile130 135 140Asn His Asn His Asp Val Val Gly Phe Met Lys Asn Phe Ser Tyr Val145 150 155 160Gln Gly Gly Ala Ile Ser Thr Ala Asn Thr Phe Val Val Ser Glu Asn165 170 175Gln Ser Cys Phe Leu Phe Met Asp Asn Ile Cys Ile Gln Thr Asn Thr180 185 190Ala Gly Lys Gly Gly Ala Ile Tyr Ala Gly Thr Ser Asn Ser Phe Glu195 200 205Ser Asn Asn Cys Asp Leu Phe Phe Ile Asn Asn Ala Cys Cys Ala Gly210 215 220Gly Ala Ile Phe Ser Pro Ile Cys Ser Leu Thr Gly Asn Arg Gly Asn225 230 235 240Ile Val Phe Tyr Asn Asn Arg Cys Phe Lys Asn Val Glu Thr Ala Ser245 250 255Ser Glu Ala Ser Asp Gly Gly Ala Ile Lys Val Thr Thr Arg Leu Asp260 265 270Val Thr Gly Asn Arg Gly Arg Ile Phe Phe Ser Asp Asn Ile Thr Lys275 280 285Asn Tyr Gly Gly Ala Ile Tyr Ala Pro Val Val Thr Leu Val Asp Asn290 295 300Gly Pro Thr Tyr Phe Ile Asn Asn Ile Ala Asn Asn Lys Gly Gly Ala305 310 315 320Ile Tyr Ile Asp Gly Thr Ser Asn Ser Lys Ile Ser Ala Asp Arg His325 330 335Ala Ile Ile Phe Asn Glu Asn Ile Val Thr Asn Val Thr Asn Ala Asn340 345 350Gly Thr Ser Thr Ser Ala Asn

Pro Pro Arg Arg Asn Ala Ile Thr Val355 360 365Ala Ser Ser Ser Gly Glu Ile Leu Leu Gly Ala Gly Ser Ser Gln Asn370 375 380Leu Ile Phe Tyr Asp Pro Ile Glu Val Ser Asn Ala Gly Val Ser Val385 390 395 400Ser Phe Asn Lys Glu Ala Asp Gln Thr Gly Ser Val Val Phe Ser Gly405 410 415Ala Thr Val Asn Ser Ala Asp Phe His Gln Arg Asn Leu Gln Thr Lys420 425 430Thr Pro Ala Pro Leu Thr Leu Ser Asn Gly Phe Leu Cys Ile Glu Asp435 440 445His Ala Gln Leu Thr Val Asn Arg Phe Thr Gln Thr Gly Gly Val Val450 455 460Ser Leu Gly Asn Gly Ala Val Leu Ser Cys Tyr Lys Asn Gly Thr Gly465 470 475 480Asp Ser Ala Ser Asn Ala Ser Ile Thr Leu Lys His Ile Gly Leu Asn485 490 495Leu Ser Ser Ile Leu Lys Ser Gly Ala Glu Ile Pro Leu Leu Trp Val500 505 510Glu Pro Thr Asn Asn Ser Asn Asn Tyr Thr Ala Asp Thr Ala Ala Thr515 520 525Phe Ser Leu Ser Asp Val Lys Leu Ser Leu Ile Asp Asp Tyr Gly Asn530 535 540Ser Pro Tyr Glu Ser Thr Asp Leu Thr His Ala Leu Ser Ser Gln Pro545 550 555 560Met Leu Ser Ile Ser Glu Ala Ser Asp Asn Gln Leu Gln Ser Glu Asn565 570 575Ile Asp Phe Ser Gly Leu Asn Val Pro His Tyr Gly Trp Gln Gly Leu580 585 590Trp Thr Trp Gly Trp Ala Lys Thr Gln Asp Pro Glu Pro Ala Ser Ser595 600 605Ala Thr Ile Thr Asp Pro Gln Lys Ala Asn Arg Phe His Arg Thr Leu610 615 620Leu Leu Thr Trp Leu Pro Ala Gly625 6301721173PRTChlamydia 172Ser Cys Val Asp Leu His Ala Gly Gly Gln Ser Val Asn Glu Leu Val5 10 15Tyr Val Gly Pro Gln Ala Val Leu Leu Leu Asp Gln Ile Arg Asp Leu20 25 30Phe Val Gly Ser Lys Asp Ser Gln Ala Glu Gly Gln Tyr Arg Leu Ile35 40 45Val Gly Asp Pro Ser Ser Phe Gln Glu Lys Asp Ala Asp Thr Leu Pro50 55 60Gly Lys Val Glu Gln Ser Thr Leu Phe Ser Val Thr Asn Pro Val Val65 70 75 80Phe Gln Gly Val Asp Gln Gln Asp Gln Val Ser Ser Gln Gly Leu Ile85 90 95Cys Ser Phe Thr Ser Ser Asn Leu Asp Ser Pro Arg Asp Gly Glu Ser100 105 110Phe Leu Gly Ile Ala Phe Val Gly Asp Ser Ser Lys Ala Gly Ile Thr115 120 125Leu Thr Asp Val Lys Ala Ser Leu Ser Gly Ala Ala Leu Tyr Ser Thr130 135 140Glu Asp Leu Ile Phe Glu Lys Ile Lys Gly Gly Leu Glu Phe Ala Ser145 150 155 160Cys Ser Ser Leu Glu Gln Gly Gly Ala Cys Ala Ala Gln Ser Ile Leu165 170 175Ile His Asp Cys Gln Gly Leu Gln Val Lys His Cys Thr Thr Ala Val180 185 190Asn Ala Glu Gly Ser Ser Ala Asn Asp His Leu Gly Phe Gly Gly Gly195 200 205Ala Phe Phe Val Thr Gly Ser Leu Ser Gly Glu Lys Ser Leu Tyr Met210 215 220Pro Ala Gly Asp Met Val Val Ala Asn Cys Asp Gly Ala Ile Ser Phe225 230 235 240Glu Gly Asn Ser Ala Asn Phe Ala Asn Gly Gly Ala Ile Ala Ala Ser245 250 255Gly Lys Val Leu Phe Val Ala Asn Asp Lys Lys Thr Ser Phe Ile Glu260 265 270Asn Arg Ala Leu Ser Gly Gly Ala Ile Ala Ala Ser Ser Asp Ile Ala275 280 285Phe Gln Asn Cys Ala Glu Leu Val Phe Lys Gly Asn Cys Ala Ile Gly290 295 300Thr Glu Asp Lys Gly Ser Leu Gly Gly Gly Ala Ile Ser Ser Leu Gly305 310 315 320Thr Val Leu Leu Gln Gly Asn His Gly Ile Thr Cys Asp Lys Asn Glu325 330 335Ser Ala Ser Gln Gly Gly Ala Ile Phe Gly Lys Asn Cys Gln Ile Ser340 345 350Asp Asn Glu Gly Pro Val Val Phe Arg Asp Ser Thr Ala Cys Leu Gly355 360 365Gly Gly Ala Ile Ala Ala Gln Glu Ile Val Ser Ile Gln Asn Asn Gln370 375 380Ala Gly Ile Ser Phe Glu Gly Gly Lys Ala Ser Phe Gly Gly Gly Ile385 390 395 400Ala Cys Gly Ser Phe Ser Ser Ala Gly Gly Ala Ser Val Leu Gly Thr405 410 415Ile Asp Ile Ser Lys Asn Leu Gly Ala Ile Ser Phe Ser Arg Thr Leu420 425 430Cys Thr Thr Ser Asp Leu Gly Gln Met Glu Tyr Gln Gly Gly Gly Ala435 440 445Leu Phe Gly Glu Asn Ile Ser Leu Ser Glu Asn Ala Gly Val Leu Thr450 455 460Phe Lys Asp Asn Ile Val Lys Thr Phe Ala Ser Asn Gly Lys Ile Leu465 470 475 480Gly Gly Gly Ala Ile Leu Ala Thr Gly Lys Val Glu Ile Thr Asn Asn485 490 495Ser Glu Gly Ile Ser Phe Thr Gly Asn Ala Arg Ala Pro Gln Ala Leu500 505 510Pro Thr Gln Glu Glu Phe Pro Leu Phe Ser Lys Lys Glu Gly Arg Pro515 520 525Leu Ser Ser Gly Tyr Ser Gly Gly Gly Ala Ile Leu Gly Arg Glu Val530 535 540Ala Ile Leu His Asn Ala Ala Val Val Phe Glu Gln Asn Arg Leu Gln545 550 555 560Cys Ser Glu Glu Glu Ala Thr Leu Leu Gly Cys Cys Gly Gly Gly Ala565 570 575Val His Gly Met Asp Ser Thr Ser Ile Val Gly Asn Ser Ser Val Arg580 585 590Phe Gly Asn Asn Tyr Ala Met Gly Gln Gly Val Ser Gly Gly Ala Leu595 600 605Leu Ser Lys Thr Val Gln Leu Ala Gly Asn Gly Ser Val Asp Phe Ser610 615 620Arg Asn Ile Ala Ser Leu Gly Gly Gly Ala Leu Gln Ala Ser Glu Gly625 630 635 640Asn Cys Glu Leu Val Asp Asn Gly Tyr Val Leu Phe Arg Asp Asn Arg645 650 655Gly Arg Val Tyr Gly Gly Ala Ile Ser Cys Leu Arg Gly Asp Val Val660 665 670Ile Ser Gly Asn Lys Gly Arg Val Glu Phe Lys Asp Asn Ile Ala Thr675 680 685Arg Leu Tyr Val Glu Glu Thr Val Glu Lys Val Glu Glu Val Glu Pro690 695 700Ala Pro Glu Gln Lys Asp Asn Asn Glu Leu Ser Phe Leu Gly Arg Ala705 710 715 720Glu Gln Ser Phe Ile Thr Ala Ala Asn Gln Ala Leu Phe Ala Ser Glu725 730 735Asp Gly Asp Leu Ser Pro Glu Ser Ser Ile Ser Ser Glu Glu Leu Ala740 745 750Lys Arg Arg Glu Cys Ala Gly Gly Ala Ile Phe Ala Lys Arg Val Arg755 760 765Ile Val Asp Asn Gln Glu Ala Val Val Phe Ser Asn Asn Phe Ser Asp770 775 780Ile Tyr Gly Gly Ala Ile Phe Thr Gly Ser Leu Arg Glu Glu Asp Lys785 790 795 800Leu Asp Gly Gln Ile Pro Glu Val Leu Ile Ser Gly Asn Ala Gly Asp805 810 815Val Val Phe Ser Gly Asn Ser Ser Lys Arg Asp Glu His Leu Pro His820 825 830Thr Gly Gly Gly Ala Ile Cys Thr Gln Asn Leu Thr Ile Ser Gln Asn835 840 845Thr Gly Asn Val Leu Phe Tyr Asn Asn Val Ala Cys Ser Gly Gly Ala850 855 860Val Arg Ile Glu Asp His Gly Asn Val Leu Leu Glu Ala Phe Gly Gly865 870 875 880Asp Ile Val Phe Lys Gly Asn Ser Ser Phe Arg Ala Gln Gly Ser Asp885 890 895Ala Ile Tyr Phe Ala Gly Lys Glu Ser His Ile Thr Ala Leu Asn Ala900 905 910Thr Glu Gly His Ala Ile Val Phe His Asp Ala Leu Val Phe Glu Asn915 920 925Leu Glu Glu Arg Lys Ser Ala Glu Val Leu Leu Ile Asn Ser Arg Glu930 935 940Asn Pro Gly Tyr Thr Gly Ser Ile Arg Phe Leu Glu Ala Glu Ser Lys945 950 955 960Val Pro Gln Cys Ile His Val Gln Gln Gly Ser Leu Glu Leu Leu Asn965 970 975Gly Ala Thr Leu Cys Ser Tyr Gly Phe Lys Gln Asp Ala Gly Ala Lys980 985 990Leu Val Leu Ala Ala Gly Ala Lys Leu Lys Ile Leu Asp Ser Gly Thr995 1000 1005Pro Val Gln Gln Gly His Ala Ile Ser Lys Pro Glu Ala Glu Ile Glu1010 1015 1020Ser Ser Ser Glu Pro Glu Gly Ala His Ser Leu Trp Ile Ala Lys Asn1025 1030 1035 1040Ala Gln Thr Thr Val Pro Met Val Asp Ile His Thr Ile Ser Val Asp1045 1050 1055Leu Ala Ser Phe Ser Ser Ser Gln Gln Glu Gly Thr Val Glu Ala Pro1060 1065 1070Gln Val Ile Val Pro Gly Gly Ser Tyr Val Arg Ser Gly Glu Leu Asn1075 1080 1085Leu Glu Leu Val Asn Thr Thr Gly Thr Gly Tyr Glu Asn His Ala Leu1090 1095 1100Leu Lys Asn Glu Ala Lys Val Pro Leu Met Ser Phe Val Ala Ser Gly1105 1110 1115 1120Asp Glu Ala Ser Ala Glu Ile Ser Asn Leu Ser Val Ser Asp Leu Gln1125 1130 1135Ile His Val Val Thr Pro Glu Ile Glu Glu Asp Thr Tyr Gly His Met1140 1145 1150Gly Asp Trp Ser Glu Ala Lys Ile Gln Asp Gly Thr Leu Val Ile Ser1155 1160 1165Trp Asn Pro Thr Gly11701731419PRTChlamydia 173Ser Ser Ile Gln Asp Gln Ile Lys Asn Thr Asp Cys Asn Val Ser Lys5 10 15Leu Gly Tyr Ser Thr Ser Gln Ala Phe Thr Asp Met Met Leu Ala Asp20 25 30Asn Thr Glu Tyr Arg Ala Ala Asp Ser Val Ser Phe Tyr Asp Phe Ser35 40 45Thr Ser Ser Arg Leu Pro Arg Lys His Leu Ser Ser Ser Ser Glu Ala50 55 60Ser Pro Thr Thr Glu Gly Val Ser Ser Ser Ser Ser Gly Glu Thr Asp65 70 75 80Glu Lys Thr Glu Glu Glu Leu Asp Asn Gly Gly Ile Ile Tyr Ala Arg85 90 95Glu Lys Leu Thr Ile Ser Glu Ser Gln Asp Ser Leu Ser Asn Gln Ser100 105 110Ile Glu Leu His Asp Asn Ser Ile Phe Phe Gly Glu Gly Glu Val Ile115 120 125Phe Asp His Arg Val Ala Leu Lys Asn Gly Gly Ala Ile Tyr Gly Glu130 135 140Lys Glu Val Val Phe Glu Asn Ile Lys Ser Leu Leu Val Glu Val Asn145 150 155 160Ile Ala Val Glu Lys Gly Gly Ser Val Tyr Ala Lys Glu Arg Val Ser165 170 175Leu Glu Asn Val Thr Glu Ala Thr Phe Ser Ser Asn Gly Gly Glu Gln180 185 190Gly Gly Gly Gly Ile Tyr Ser Glu Gln Asp Met Leu Ile Ser Asp Cys195 200 205Asn Asn Val His Phe Gln Gly Asn Ala Ala Gly Ala Thr Ala Val Lys210 215 220Gln Cys Leu Asp Glu Glu Met Ile Val Leu Leu Ala Glu Cys Val Asp225 230 235 240Ser Leu Ser Glu Asp Thr Leu Asp Ser Thr Pro Glu Thr Glu Gln Thr245 250 255Glu Ser Asn Gly Asn Gln Asp Gly Ser Ser Glu Thr Glu Asp Thr Gln260 265 270Val Ser Glu Ser Pro Glu Ser Thr Pro Ser Pro Asp Asp Val Leu Gly275 280 285Lys Gly Gly Gly Ile Tyr Thr Glu Lys Ser Leu Thr Ile Thr Gly Ile290 295 300Thr Gly Thr Ile Asp Phe Val Ser Asn Ile Ala Thr Asp Ser Gly Ala305 310 315 320Gly Val Phe Thr Lys Glu Asn Leu Ser Cys Thr Asn Thr Asn Ser Leu325 330 335Gln Phe Leu Lys Asn Ser Ala Gly Gln His Gly Gly Gly Ala Tyr Val340 345 350Thr Gln Thr Met Ser Val Thr Asn Thr Thr Ser Glu Ser Ile Thr Thr355 360 365Pro Pro Leu Ile Gly Glu Val Ile Phe Ser Glu Asn Thr Ala Lys Gly370 375 380His Gly Gly Gly Ile Cys Thr Asn Lys Leu Ser Leu Ser Asn Leu Lys385 390 395 400Thr Val Thr Leu Thr Lys Asn Ser Ala Lys Glu Ser Gly Gly Ala Ile405 410 415Phe Thr Asp Leu Ala Ser Ile Pro Ile Thr Asp Thr Pro Glu Ser Ser420 425 430Thr Pro Ser Ser Ser Ser Pro Ala Ser Thr Pro Glu Val Val Ala Ser435 440 445Ala Lys Ile Asn Arg Phe Phe Ala Ser Thr Ala Lys Pro Ala Ala Pro450 455 460Ser Leu Thr Glu Ala Glu Ser Asp Gln Thr Asp Gln Thr Glu Thr Ser465 470 475 480Asp Thr Asn Ser Asp Ile Asp Val Ser Ile Glu Asn Ile Leu Asn Val485 490 495Ala Ile Asn Gln Asn Thr Ser Ala Lys Lys Gly Gly Ala Ile Tyr Gly500 505 510Lys Lys Ala Lys Leu Ser Arg Ile Asn Asn Leu Glu Leu Ser Gly Asn515 520 525Ser Ser Gln Asp Val Gly Gly Gly Leu Cys Leu Thr Glu Ser Val Glu530 535 540Phe Asp Ala Ile Gly Ser Leu Leu Ser His Tyr Asn Ser Ala Ala Lys545 550 555 560Glu Gly Gly Ala Ile His Ser Lys Thr Val Thr Leu Ser Asn Leu Lys565 570 575Ser Thr Phe Thr Phe Ala Asp Asn Thr Val Lys Ala Ile Val Glu Ser580 585 590Thr Pro Glu Ala Pro Glu Glu Ile Pro Pro Val Glu Gly Glu Glu Ser595 600 605Thr Ala Thr Glu Asp Pro Asn Ser Asn Thr Glu Gly Ser Ser Ala Asn610 615 620Thr Asn Leu Glu Gly Ser Gln Gly Asp Thr Ala Asp Thr Gly Thr Gly625 630 635 640Asp Val Asn Asn Glu Ser Gln Asp Thr Ser Asp Thr Gly Asn Ala Glu645 650 655Ser Glu Glu Gln Leu Gln Asp Ser Thr Gln Ser Asn Glu Glu Asn Thr660 665 670Leu Pro Asn Ser Asn Ile Asp Gln Ser Asn Glu Asn Thr Asp Glu Ser675 680 685Ser Asp Ser His Thr Glu Glu Ile Thr Asp Glu Ser Val Ser Ser Ser690 695 700Ser Glu Ser Gly Ser Ser Thr Pro Gln Asp Gly Gly Ala Ala Ser Ser705 710 715 720Gly Ala Pro Ser Gly Asp Gln Ser Ile Ser Ala Asn Ala Cys Leu Ala725 730 735Lys Ser Tyr Ala Ala Ser Thr Asp Ser Ser Pro Val Ser Asn Ser Ser740 745 750Gly Ser Glu Glu Pro Val Thr Ser Ser Ser Asp Ser Asp Val Thr Ala755 760 765Ser Ser Asp Asn Pro Asp Ser Ser Ser Ser Gly Asp Ser Ala Gly Asp770 775 780Ser Glu Glu Pro Thr Glu Pro Glu Ala Gly Ser Thr Thr Glu Thr Leu785 790 795 800Thr Leu Ile Gly Gly Gly Ala Ile Tyr Gly Glu Thr Val Lys Ile Glu805 810 815Asn Phe Ser Gly Gln Gly Ile Phe Ser Gly Asn Lys Ala Ile Asp Asn820 825 830Thr Thr Glu Gly Ser Ser Ser Lys Ser Asp Val Leu Gly Gly Ala Val835 840 845Tyr Ala Lys Thr Leu Phe Asn Leu Asp Ser Gly Ser Ser Arg Arg Thr850 855 860Val Thr Phe Ser Gly Asn Thr Val Ser Ser Gln Ser Thr Thr Gly Gln865 870 875 880Val Ala Gly Gly Ala Ile Tyr Ser Pro Thr Val Thr Ile Ala Thr Pro885 890 895Val Val Phe Ser Lys Asn Ser Ala Thr Asn Asn Ala Asn Asn Thr Thr900 905 910Asp Thr Gln Arg Lys Asp Thr Phe Gly Gly Ala Ile Gly Ala Thr Ser915 920 925Ala Val Ser Leu Ser Gly Gly Ala His Phe Leu Glu Asn Val Ala Asp930 935 940Leu Gly Ser Ala Ile Gly Leu Val Pro Gly Thr Gln Asn Thr Glu Thr945 950 955 960Val Lys Leu Glu Ser Gly Ser Tyr Tyr Phe Glu Lys Asn Lys Ala Leu965 970 975Lys Arg Ala Thr Ile Tyr Ala Pro Val Val Ser Ile Lys Ala Tyr Thr980 985 990Ala Thr Phe Asn Gln Asn Arg Ser Leu Glu Glu Gly Ser Ala Ile Tyr995 1000 1005Phe Thr Lys Glu Ala Ser Ile Glu Ser Leu Gly Ser Val Leu Phe Thr1010 1015 1020Gly Asn Leu Val Thr Leu Thr Leu Ser Thr Thr Thr Glu Gly Thr Pro1025 1030 1035 1040Ala Thr Thr Ser Gly Asp Val Thr Lys Tyr Gly Ala Ala Ile Phe Gly1045 1050 1055Gln Ile Ala Ser Ser Asn Gly Ser Gln Thr Asp Asn Leu Pro Leu Lys1060 1065 1070Leu Ile Ala Ser Gly Gly Asn Ile Cys Phe Arg Asn Asn Glu Tyr Arg1075 1080 1085Pro Thr Ser Ser Asp Thr Gly Thr Ser Thr Phe Cys Ser Ile Ala Gly1090 1095 1100Asp Val Lys Leu Thr Met Gln Ala Ala Lys Gly Lys Thr Ile Ser Phe1105 1110 1115 1120Phe Asp Ala Ile Arg Thr Ser Thr Lys Lys Thr Gly Thr Gln Ala Thr1125 1130 1135Ala Tyr Asp Thr Leu Asp Ile Asn Lys Ser Glu Asp Ser Glu Thr Val1140 1145 1150Asn Ser Ala Phe Thr Gly Thr Ile Leu Phe Ser Ser Glu Leu His Glu1155 1160 1165Asn Lys Ser Tyr Ile Pro Gln Asn Val Val Leu His Ser Gly Ser Leu1170 1175 1180Val Leu Lys Pro Asn Thr Glu Leu His Val Ile Ser Phe Glu Gln Lys1185 1190 1195 1200Glu Gly Ser Ser

Leu Val Met Thr Pro Gly Ser Val Leu Ser Asn Gln1205 1210 1215Thr Val Ala Asp Gly Ala Leu Val Ile Asn Asn Met Thr Ile Asp Leu1220 1225 1230Ser Ser Val Glu Lys Asn Gly Ile Ala Glu Gly Asn Ile Phe Thr Pro1235 1240 1245Pro Glu Leu Arg Ile Ile Asp Thr Thr Thr Gly Gly Ser Gly Gly Thr1250 1255 1260Pro Ser Thr Asp Ser Glu Ser Asn Gln Asn Ser Asp Asp Thr Glu Glu1265 1270 1275 1280Gln Asn Asn Asn Asp Ala Ser Asn Gln Gly Glu Ser Ala Asn Gly Ser1285 1290 1295Ser Ser Pro Ala Val Ala Ala Ala His Thr Ser Arg Thr Arg Asn Phe1300 1305 1310Ala Ala Ala Ala Thr Ala Thr Pro Thr Thr Thr Pro Thr Ala Thr Thr1315 1320 1325Thr Thr Ser Asn Gln Val Ile Leu Gly Gly Glu Ile Lys Leu Ile Asp1330 1335 1340Pro Asn Gly Thr Phe Phe Gln Asn Pro Ala Leu Arg Ser Asp Gln Gln1345 1350 1355 1360Ile Ser Leu Leu Val Leu Pro Thr Asp Ser Ser Lys Met Gln Ala Gln1365 1370 1375Lys Ile Val Leu Thr Gly Asp Ile Ala Pro Gln Lys Gly Tyr Thr Gly1380 1385 1390Thr Leu Thr Leu Asp Pro Asp Gln Leu Gln Asn Gly Thr Ile Ser Val1395 1400 1405Leu Trp Lys Phe Asp Ser Tyr Arg Gln Trp Ala1410 14151741397PRTChlamydia 174Glu Pro Lys Glu Leu Asn Phe Ser Arg Val Gly Thr Ser Ser Ser Thr5 10 15Thr Phe Thr Glu Thr Val Gly Glu Ala Gly Ala Glu Tyr Ile Val Ser20 25 30Gly Asn Ala Ser Phe Thr Lys Phe Thr Asn Ile Pro Thr Thr Asp Thr35 40 45Thr Thr Pro Thr Asn Ser Asn Ser Ser Ser Ser Asn Gly Glu Thr Ala50 55 60Ser Val Ser Glu Asp Ser Asp Ser Thr Thr Thr Thr Pro Asp Pro Lys65 70 75 80Gly Gly Gly Ala Phe Tyr Asn Ala His Ser Gly Val Leu Ser Phe Met85 90 95Thr Arg Ser Gly Thr Glu Gly Ser Leu Thr Leu Ser Glu Ile Lys Ile100 105 110Thr Gly Glu Gly Gly Ala Ile Phe Ser Gln Gly Glu Leu Leu Phe Thr115 120 125Asp Leu Thr Gly Leu Thr Ile Gln Asn Asn Leu Ser Gln Leu Ser Gly130 135 140Gly Ala Ile Phe Gly Glu Ser Thr Ile Ser Leu Ser Gly Ile Thr Lys145 150 155 160Ala Thr Phe Ser Ser Asn Ser Ala Glu Val Pro Ala Pro Val Lys Lys165 170 175Pro Thr Glu Pro Lys Ala Gln Thr Ala Ser Glu Thr Ser Gly Ser Ser180 185 190Ser Ser Ser Gly Asn Asp Ser Val Ser Ser Pro Ser Ser Ser Arg Ala195 200 205Glu Pro Ala Ala Ala Asn Leu Gln Ser His Phe Ile Cys Ala Thr Ala210 215 220Thr Pro Ala Ala Gln Thr Asp Thr Glu Thr Ser Thr Pro Ser His Lys225 230 235 240Pro Gly Ser Gly Gly Ala Ile Tyr Ala Lys Gly Asp Leu Thr Ile Ala245 250 255Asp Ser Gln Glu Val Leu Phe Ser Ile Asn Lys Ala Thr Lys Asp Gly260 265 270Gly Ala Ile Phe Ala Glu Lys Asp Val Ser Phe Glu Asn Ile Thr Ser275 280 285Leu Lys Val Gln Thr Asn Gly Ala Glu Glu Lys Gly Gly Ala Ile Tyr290 295 300Ala Lys Gly Asp Leu Ser Ile Gln Ser Ser Lys Gln Ser Leu Phe Asn305 310 315 320Ser Asn Tyr Ser Lys Gln Gly Gly Gly Ala Leu Tyr Val Glu Gly Asp325 330 335Ile Asn Phe Gln Asp Leu Glu Glu Ile Arg Ile Lys Tyr Asn Lys Ala340 345 350Gly Thr Phe Glu Thr Lys Lys Ile Thr Leu Pro Lys Ala Gln Ala Ser355 360 365Ala Gly Asn Ala Asp Ala Trp Ala Ser Ser Ser Pro Gln Ser Gly Ser370 375 380Gly Ala Thr Thr Val Ser Asn Ser Gly Asp Ser Ser Ser Gly Ser Asp385 390 395 400Ser Asp Thr Ser Glu Thr Val Pro Ala Thr Ala Lys Gly Gly Gly Leu405 410 415Tyr Thr Asp Lys Asn Leu Ser Ile Thr Asn Ile Thr Gly Ile Ile Glu420 425 430Ile Ala Asn Asn Lys Ala Thr Asp Val Gly Gly Gly Ala Tyr Val Lys435 440 445Gly Thr Leu Thr Cys Glu Asn Ser His Arg Leu Gln Phe Leu Lys Asn450 455 460Ser Ser Asp Lys Gln Gly Gly Gly Ile Tyr Gly Glu Asp Asn Ile Thr465 470 475 480Leu Ser Asn Leu Thr Gly Lys Thr Leu Phe Gln Glu Asn Thr Ala Lys485 490 495Glu Glu Gly Gly Gly Leu Phe Ile Lys Gly Thr Asp Lys Ala Leu Thr500 505 510Met Thr Gly Leu Asp Ser Phe Cys Leu Ile Asn Asn Thr Ser Glu Lys515 520 525His Gly Gly Gly Ala Phe Val Thr Lys Glu Ile Ser Gln Thr Tyr Thr530 535 540Ser Asp Val Glu Thr Ile Pro Gly Ile Thr Pro Val His Gly Glu Thr545 550 555 560Val Ile Thr Gly Asn Lys Ser Thr Gly Gly Asn Gly Gly Gly Val Cys565 570 575Thr Lys Arg Leu Ala Leu Ser Asn Leu Gln Ser Ile Ser Ile Ser Gly580 585 590Asn Ser Ala Ala Glu Asn Gly Gly Gly Ala His Thr Cys Pro Asp Ser595 600 605Phe Pro Thr Ala Asp Thr Ala Glu Gln Pro Ala Ala Ala Ser Ala Ala610 615 620Thr Ser Thr Pro Glu Ser Ala Pro Val Val Ser Thr Ala Leu Ser Thr625 630 635 640Pro Ser Ser Ser Thr Val Ser Ser Leu Thr Leu Leu Ala Ala Ser Ser645 650 655Gln Ala Ser Pro Ala Thr Ser Asn Lys Glu Thr Gln Asp Pro Asn Ala660 665 670Asp Thr Asp Leu Leu Ile Asp Tyr Val Val Asp Thr Thr Ile Ser Lys675 680 685Asn Thr Ala Lys Lys Gly Gly Gly Ile Tyr Ala Lys Lys Ala Lys Met690 695 700Ser Arg Ile Asp Gln Leu Asn Ile Ser Glu Asn Ser Ala Thr Glu Ile705 710 715 720Gly Gly Gly Ile Cys Cys Lys Glu Ser Leu Glu Leu Asp Ala Leu Val725 730 735Ser Leu Ser Val Thr Glu Asn Leu Val Gly Lys Glu Gly Gly Gly Leu740 745 750His Ala Lys Thr Val Asn Ile Ser Asn Leu Lys Ser Gly Phe Ser Phe755 760 765Ser Asn Asn Lys Ala Asn Ser Ser Ser Thr Gly Val Ala Thr Thr Ala770 775 780Ser Ala Pro Ala Ala Ala Ala Ala Ser Leu Gln Ala Ala Ala Ala Ala785 790 795 800Val Pro Ser Ser Pro Ala Thr Pro Thr Tyr Ser Gly Val Val Gly Gly805 810 815Ala Ile Tyr Gly Glu Lys Val Thr Phe Ser Gln Cys Ser Gly Thr Cys820 825 830Gln Phe Ser Gly Asn Gln Ala Ile Asp Asn Asn Pro Ser Gln Ser Ser835 840 845Leu Asn Val Gln Gly Gly Ala Ile Tyr Ala Lys Thr Ser Leu Ser Ile850 855 860Gly Ser Ser Asp Ala Gly Thr Ser Tyr Ile Phe Ser Gly Asn Ser Val865 870 875 880Ser Thr Gly Lys Ser Gln Thr Thr Gly Gln Ile Ala Gly Gly Ala Ile885 890 895Tyr Ser Pro Thr Val Thr Leu Asn Cys Pro Ala Thr Phe Ser Asn Asn900 905 910Thr Ala Ser Met Ala Thr Pro Lys Thr Ser Ser Glu Asp Gly Ser Ser915 920 925Gly Asn Ser Ile Lys Asp Thr Ile Gly Gly Ala Ile Ala Gly Thr Ala930 935 940Ile Thr Leu Ser Gly Val Ser Arg Phe Ser Gly Asn Thr Ala Asp Leu945 950 955 960Gly Ala Ala Ile Gly Thr Leu Ala Asn Ala Asn Thr Pro Ser Ala Thr965 970 975Ser Gly Ser Gln Asn Ser Ile Thr Glu Lys Ile Thr Leu Glu Asn Gly980 985 990Ser Phe Ile Phe Glu Arg Asn Gln Ala Asn Lys Arg Gly Ala Ile Tyr995 1000 1005Ser Pro Ser Val Ser Ile Lys Gly Asn Asn Ile Thr Phe Asn Gln Asn1010 1015 1020Thr Ser Thr His Asp Gly Ser Ala Ile Tyr Phe Thr Lys Asp Ala Thr1025 1030 1035 1040Ile Glu Ser Leu Gly Ser Val Leu Phe Thr Gly Asn Asn Val Thr Ala1045 1050 1055Thr Gln Ala Ser Ser Ala Thr Ser Gly Gln Asn Thr Asn Thr Ala Asn1060 1065 1070Tyr Gly Ala Ala Ile Phe Gly Asp Pro Gly Thr Thr Gln Ser Ser Gln1075 1080 1085Thr Asp Ala Ile Leu Thr Leu Leu Ala Ser Ser Gly Asn Ile Thr Phe1090 1095 1100Ser Asn Asn Ser Leu Gln Asn Asn Gln Gly Asp Thr Pro Ala Ser Lys1105 1110 1115 1120Phe Cys Ser Ile Ala Gly Tyr Val Lys Leu Ser Leu Gln Ala Ala Lys1125 1130 1135Gly Lys Thr Ile Ser Phe Phe Asp Cys Val His Thr Ser Thr Lys Lys1140 1145 1150Ile Gly Ser Thr Gln Asn Val Tyr Glu Thr Leu Asp Ile Asn Lys Glu1155 1160 1165Glu Asn Ser Asn Pro Tyr Thr Gly Thr Ile Val Phe Ser Ser Glu Leu1170 1175 1180His Glu Asn Lys Ser Tyr Ile Pro Gln Asn Ala Ile Leu His Asn Gly1185 1190 1195 1200Thr Leu Val Leu Lys Glu Lys Thr Glu Leu His Val Val Ser Phe Glu1205 1210 1215Gln Lys Glu Gly Ser Lys Leu Ile Met Lys Pro Gly Ala Val Leu Ser1220 1225 1230Asn Gln Asn Ile Ala Asn Gly Ala Leu Val Ile Asn Gly Leu Thr Ile1235 1240 1245Asp Leu Ser Ser Met Gly Thr Pro Gln Ala Gly Glu Ile Phe Ser Pro1250 1255 1260Pro Glu Leu Arg Ile Val Ala Thr Thr Ser Ser Ala Ser Gly Gly Ser1265 1270 1275 1280Gly Val Ser Ser Ser Ile Pro Thr Asn Pro Lys Arg Ile Ser Ala Ala1285 1290 1295Ala Pro Ser Gly Ser Ala Ala Thr Thr Pro Thr Met Ser Glu Asn Lys1300 1305 1310Val Phe Leu Thr Gly Asp Leu Thr Leu Ile Asp Pro Asn Gly Asn Phe1315 1320 1325Tyr Gln Asn Pro Met Leu Gly Ser Asp Leu Asp Val Pro Leu Ile Lys1330 1335 1340Leu Pro Thr Asn Thr Ser Asp Val Gln Val Tyr Asp Leu Thr Leu Ser1345 1350 1355 1360Gly Asp Leu Phe Pro Gln Lys Gly Tyr Met Gly Thr Trp Thr Leu Asp1365 1370 1375Ser Asn Pro Gln Thr Gly Lys Leu Gln Ala Arg Trp Thr Phe Asp Thr1380 1385 1390Tyr Arg Arg Trp Val1395175610PRTChlamydia 175Glu Met Glu Leu Ala Ile Ser Gly His Lys Gln Gly Lys Asp Arg Asp5 10 15Thr Phe Thr Met Ile Ser Ser Cys Pro Glu Gly Thr Asn Tyr Ile Ile20 25 30Asn Arg Lys Leu Ile Leu Ser Asp Phe Ser Leu Leu Asn Lys Val Ser35 40 45Ser Gly Gly Ala Phe Arg Asn Leu Ala Gly Lys Ile Ser Phe Leu Gly50 55 60Lys Asn Ser Ser Ala Ser Ile His Phe Lys His Ile Asn Ile Asn Gly65 70 75 80Phe Gly Ala Gly Val Phe Ser Glu Ser Ser Ile Glu Phe Thr Asp Leu85 90 95Arg Lys Leu Val Ala Phe Gly Ser Glu Ser Thr Gly Gly Ile Phe Thr100 105 110Ala Lys Glu Asp Ile Ser Phe Lys Asn Asn His His Ile Ala Phe Arg115 120 125Asn Asn Ile Thr Lys Gly Asn Gly Gly Val Ile Gln Leu Gln Gly Asp130 135 140Met Lys Gly Ser Val Ser Phe Val Asp Gln Arg Gly Ala Ile Ile Phe145 150 155 160Thr Asn Asn Gln Ala Val Thr Ser Ser Ser Met Lys His Ser Gly Arg165 170 175Gly Gly Ala Ile Ser Gly Asp Phe Ala Gly Ser Arg Ile Leu Phe Leu180 185 190Asn Asn Gln Gln Ile Thr Phe Glu Gly Asn Ser Ala Val His Gly Gly195 200 205Ala Ile Tyr Asn Lys Asn Gly Leu Val Glu Phe Leu Gly Asn Ala Gly210 215 220Pro Leu Ala Phe Lys Glu Asn Thr Thr Ile Ala Asn Gly Gly Ala Ile225 230 235 240Tyr Thr Ser Asn Phe Lys Ala Asn Gln Gln Thr Ser Pro Ile Leu Phe245 250 255Ser Gln Asn His Ala Asn Lys Lys Gly Gly Ala Ile Tyr Ala Gln Tyr260 265 270Val Asn Leu Glu Gln Asn Gln Asp Thr Ile Arg Phe Glu Lys Asn Thr275 280 285Ala Lys Glu Gly Gly Gly Ala Ile Thr Ser Ser Gln Cys Ser Ile Thr290 295 300Ala His Asn Thr Ile Ile Phe Ser Asp Asn Ala Ala Gly Asp Leu Gly305 310 315 320Gly Gly Ala Ile Leu Leu Glu Gly Lys Lys Pro Ser Leu Thr Leu Ile325 330 335Ala His Ser Gly Asn Ile Ala Phe Ser Gly Asn Thr Met Leu His Ile340 345 350Thr Lys Lys Ala Ser Leu Asp Arg His Asn Ser Ile Leu Ile Lys Glu355 360 365Ala Pro Tyr Lys Ile Gln Leu Ala Ala Asn Lys Asn His Ser Ile His370 375 380Phe Phe Asp Pro Val Met Ala Leu Ser Ala Ser Ser Ser Pro Ile Gln385 390 395 400Ile Asn Ala Pro Glu Tyr Glu Thr Pro Phe Phe Ser Pro Lys Gly Met405 410 415Ile Val Phe Ser Gly Ala Asn Leu Leu Asp Asp Ala Arg Glu Asp Val420 425 430Ala Asn Arg Thr Ser Ile Phe Asn Gln Pro Val His Leu Tyr Asn Gly435 440 445Thr Leu Ser Ile Glu Asn Gly Ala His Leu Ile Val Gln Ser Phe Lys450 455 460Gln Thr Gly Gly Arg Ile Ser Leu Ser Pro Gly Ser Ser Leu Ala Leu465 470 475 480Tyr Thr Met Asn Ser Phe Phe His Gly Asn Ile Ser Ser Lys Glu Pro485 490 495Leu Glu Ile Asn Gly Leu Ser Phe Gly Val Asp Ile Ser Pro Ser Asn500 505 510Leu Gln Ala Glu Ile Arg Ala Gly Asn Ala Pro Leu Arg Leu Ser Gly515 520 525Ser Pro Ser Ile His Asp Pro Glu Gly Leu Phe Tyr Glu Asn Arg Asp530 535 540Thr Ala Ala Ser Pro Tyr Gln Met Glu Ile Leu Leu Thr Ser Asp Lys545 550 555 560Ile Val Asp Ile Ser Lys Phe Thr Thr Asp Ser Leu Val Thr Asn Lys565 570 575Gln Ser Gly Phe Gln Gly Ala Trp His Phe Ser Trp Gln Pro Asn Thr580 585 590Ile Asn Asn Thr Lys Gln Lys Ile Leu Arg Ala Ser Trp Leu Pro Thr595 600 605Gly Glu610

* * * * *


uspto.report is an independent third-party trademark research tool that is not affiliated, endorsed, or sponsored by the United States Patent and Trademark Office (USPTO) or any other governmental organization. The information provided by uspto.report is based on publicly available data at the time of writing and is intended for informational purposes only.

While we strive to provide accurate and up-to-date information, we do not guarantee the accuracy, completeness, reliability, or suitability of the information displayed on this site. The use of this site is at your own risk. Any reliance you place on such information is therefore strictly at your own risk.

All official trademark data, including owner information, should be verified by visiting the official USPTO website at www.uspto.gov. This site is not intended to replace professional legal advice and should not be used as a substitute for consulting with a legal professional who is knowledgeable about trademark law.

© 2024 USPTO.report | Privacy Policy | Resources | RSS Feed of Trademarks | Trademark Filings Twitter Feed